

Process development for deep drawing with integrated electromagnetic forming

S. Gies, O. K. Demir, A. E. Tekkaya October 06, 2015

Outline

- Introduction
- Electromagnetic Radius Calibration
 - Process Sequence
 - Results
 - Summary
- Electromagnetic Forming in the Flange
 - Process Analysis
 - Results
 - Summary

Outline

- Introduction

- Electromagnetic Radius Calibration
 - Process Sequence
 - Results
 - Summary
- Electromagnetic Forming in the Flange
 - Process Analysis
 - Results
 - Summary

Introduction

Motivation: Increased design freedom in deep drawing

Problem: \rightarrow min. edge radius

- \rightarrow max. drawing ratio $\beta_{\text{max}} = \frac{r_0}{r_P}$
- \rightarrow max. drawing depth h_{max}

Bottom tear at a cylindrical cup

Introduction

Motivation: Increased design freedom in deep drawing

Problem: \rightarrow min. edge radius

- \rightarrow max. drawing ratio $\beta_{\text{max}} = \frac{r_0}{r_P}$
- \rightarrow max. drawing depth h_{max}

Bottom tear at a cylindrical cup

Electromagnetic Radius Calibration

 \rightarrow Decreasing min. edge radius

 $R_{\rm DD}$

 $R_{\rm DD} > R_{\rm EM}$

Electromagnetic Forming in the Flange

 \rightarrow Increasing β_{\max} and h_{\max}

Ø130 mm

Outline

- Introduction

- Electromagnetic Radius Calibration

- Process Sequence
- Results
- Summary
- Electromagnetic Forming in the Flange
 - Process Analysis
 - Results
 - Summary

Process sequence

2. EM Calibration

Process sequence

2. EM Calibration

Process sequence

2. EM Calibration

Process sequence

Setup and Procedure

und Leichtbau

Results: After deep drawing

Results: After EM-Calibration

Results: After EM-Calibration

Results: After deep drawing

und Leichtbau

Results: After EM-Calibration

und Leichtbau

Summary

Electromagnetic Radius Calibration

- Increased forming limit
- Decreased cup radius ($R_{DD} = 21 \text{mm} \rightarrow R_{EM} = 13 \text{mm}$)
- Mainly caused by strain-rate change
- No strain-path change required
- No remaining quasi-static forming limit required

Outline

- Introduction
- Electromagnetic Radius Calibration
 - Process Sequence
 - Results
 - Summary

- Electromagnetic Forming in the Flange

- Process Analysis
- Results
- Summary

Introduction

Motivation: Increased design freedom

Problem: \rightarrow min. edge radius

- \rightarrow max. drawing ratio $\beta_{\text{max}} = \frac{r_0}{r_P}$
- \rightarrow max. drawing depth h_{max}

Bottom tear at a cylindrical cup

nd Leichtbau

Electromagnetic Radius Calibration

→ Decreasing min. edge radius

Electromagnetic Forming in the Flange

→ Increasing β_{\max} and h_{\max}

Process analysis: Failure mechanism

und Leichtbau

Process analysis: Failure mechanism

EM bulge forming in the flange^{*1}

Process analysis: Reduction of meridional stresses

Jmformtechnik

und Leichtbau

^{*1} Shang, J.: Electromagnetically Assisted Sheet Metal Stamping, 2006

Process analysis: Reduction of meridional stresses

Process analysis: Reduction of meridional stresses

Derivation of coil position

und Leichtbau

Process analysis: Reduction of meridional stresses

Derivation of coil position

und Leichtbau

Setup and Procedure

Deep drawing

Punch diameter:	130 mm
Punch radius:	20 mm
Die radius:	10 mm

Electromagnetic forming

Coil diameter:	162 mm (inner)
Coil turn width:	3.35 mm
Pulse generator:	Maxwell 7000
	$R_{\rm i}$ = 3.3 m Ω
	$L_{\rm i} = 50 \rm nH$
	C = 992 μF
Workpiece:	
Material	EN AW-5083
Sheet thickness	1mm
Yield stress	150 MPa

Setup and Procedure

Deep drawing

Punch diameter:	130 mm
Punch radius:	20 mm
Die radius:	10 mm

Electromagnetic forming

Coil diameter:	162 mm (inner)
Coil turn width:	3.35 mm
Pulse generator:	Maxwell 7000
	$R_{\rm i}$ = 3.3 m Ω
	$L_{\rm i} = 50 \rm nH$
	$C = 992 \mu F$
Workpiece:	
Material	EN AW-5083
Sheet thickness	1mm
Yield stress	150 MPa

Results: Overview

1. Limit of conventional deep drawing $\rightarrow \beta_{\text{max}} = 2.0$

Figure: Material failure in simulation and experiment (β =2.1)

Results: Overview

1. Limit of conventional deep drawing $\rightarrow \beta_{\text{max}} = 2.0$

Figure: Material failure in simulation and experiment (β =2.1)

2. Process window for EM-assisted deep drawing

Results: Determination of process window

und Leichtbau

Results: Overview

1. Limit of conventional deep drawing $\rightarrow \beta_{\text{max}} = 2.0$

Figure: Material failure in simulation and experiment (β =2.1)

- 2. Process window for EM-assisted deep drawing $\rightarrow \beta_{\text{max,EM}} = 2.1$
- 3. Increase of the drawing depth h_{max}

Results: Increase of the maximum drawing depth h_{max}

nd Leichtbau

Summary

Electromagnetic Radius Calibration

- Increased forming limit
- Decreased cup radius ($R_{DD} = 21 \text{mm} \rightarrow R_{EM} = 13 \text{mm}$)
- Mainly caused by strain-rate change
- No strain-path change required
- No remaining quasi-static forming limit required

Electromagnetic Forming in the Flange

- Process analysis: Effect of coil position
- Process window: Discharge frequency f vs. Bulge height h
- Increased drawing ratio ($\beta_{max} = 2.0 \rightarrow \beta_{max,EM} = 2.1$)
- Increased forming depth (up to 73%)

Thank you for your attention.

This work is based on the results of PAK343. We would like to thank the German Research Foundation (DFG) for its financial support.

www.iul.eu