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Chapter 1

Introduction

The development of the laser in the early 1960s [1–3] laid the foundation for exploring a
novel class of optical phenomena which is generally referred to as nonlinear optics [4; 5].
With the availability of monochromatic, highly directed laser beams, it became possible to
achieve much higher illumination intensities than before. When focused on a material, the
corresponding electric field amplitude of a laser beam can even approach the magnitude
of intra-atomic fields. In this case, the light-matter interaction significantly deviates from
the rules of classical or linear optics.

Probably the most prominent example of nonlinear optics is second harmonic genera-
tion. It was also one of the first nonlinear effects to be demonstrated [6]. A laser beam
incident on a quartz crystal resulted in the generation of a beam with half the input wave-
length. The emission was caused by atoms in the crystal which coupled to the high electric
field amplitude of the incident beam. As it is characteristic for nonlinear effects, the power
of the second harmonic beam depends nonlinearly, in this case quadratically, on the input
intensity.

Second harmonic generation illustrates the coupling of differently colored beams via
nonlinear light-matter interaction. It follows that the superposition principle does not
necessarily hold within the regime of nonlinear optics. In linear optics, the electric field
components of two superimposed electromagnetic waves add up linearly. If these are co-
herent and exhibit the same wavelength, interference effects will occur. Depending on
the relative phase, the amplitudes of both waves may add up or cancel each other out.
However, if the two waves feature different wavelengths, they do not interfere.

A striking manifestation of the breakdown of the superposition principle is the nonlinear
effect of coherently controlled current injection [7; 8], in the following denoted as QUIC
(quantum interference control) [9]. It is based on the interference of two differently colored
laser beams which are coherently superimposed on a solid, typically a semiconductor. The
relative phase of both beams determines the amplitude of a current that is optically injected
in the material.
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The underlying mechanism of QUIC is a simultaneous excitation of the same electronic
transitions via two harmonically related beams. More specifically, their wavelength and
thus their energy differ by a factor of two. Owing to the energetic difference, both beams
cannot directly excite the same transitions. However, the energy of two photons from the
longer-wavelength beam may be combined via two-photon absorption. This effect describes
the excitation of one electron transition via the simultaneous absorption of two photons
[10; 11]. Being a nonlinear optical process, it requires high intensities to be observed.

Taken alone, one-photon absorption of the higher-energetic beam and two-photon ab-
sorption of the other beam only result in an increase of the number of excited charge
carriers. If both beams are superimposed, the two absorption paths interfere. In a semi-
conductor, this quantum interference eventually results in an unequal excitation of electrons
with opposite velocity. Thus, a current begins to flow. Its direction and amplitude can be
controlled by the relative phase and polarization of both beams.

In 1997, shortly after the theoretical prediction [7], QUIC was first demonstrated in the
prototypical direct band gap semiconductor gallium arsenide (GaAs) [8]. Two-color pulse
pairs which were coherently superimposed on the semiconductor resulted in a measurable
voltage drop across two metallic contacts on top of the sample. The pulse pairs were derived
from an ultrashort pulse laser. By concentrating the energy in pulses with durations in the
order of pico- or femtoseconds, such a system allows to realize much higher peak intensities
than a continuous-wave laser [12; 13]. Later, QUIC has also been applied to other material
classes, like the indirect band gap semiconductors silicon and germanium [14; 15], graphene
[16], the topological insulator Bi2Se3 [17] or copper [18].

QUIC differs fundamentally from current generation via application of a voltage. The
latter requires at least two electrical contacts which have to be defined beforehand on the
sample. An applied electric field results in a gradual acceleration of the carriers. The rise
and fall time of the resulting current is limited by parasitic capacitances of the circuit; it
is at least in the order of picoseconds.

A current which is induced via an ultrashort pulse pair emerges practically instanta-
neously. As the electrons are directly excited into states with non-zero velocity, they do
not have to be accelerated by an external field. In this case, the time scales are determined
by the light-matter interaction which is typically limited by the pulse duration. Therefore,
ultrashort current bursts in the order of femtoseconds can be realized. Besides direct cur-
rent measurements via electrical contacts on the sample, these bursts can be detected via
their emission of terahertz radiation [19].

The unique properties of QUIC make it a versatile tool for studies of electron transport.
As an all-optical process, it allows to inject currents at arbitrary spots with microscopic
dimensions. Most notably, current injection has been demonstrated at carbon nanotubes
[20; 21] or even single GaAs nanowires [22]. By controlling the polarization and optical
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phase of the pulses, direction-resolved information about the electron transport can be
retrieved. In contrast to voltage-induced currents, it is even possible to inject current
components which are perpendicular to the axis of a nanowire.

The explicit phase dependence of current injection can be utilized for spectroscopic
studies. A sample which is placed into the beam path alters the optical phase and in-
fluences the injected current. In turn, spectrally-resolved transmission properties of the
sample can be extracted from measurements of the current [23; 24]. Furthermore, current
measurements allow to determine the carrier-envelope phase of the incident laser pulses [25;
26]. This parameter refers to the relative phase of the electromagnetic wave with respect
to the peak of the pulses.

As one part of this thesis, a detection technique is presented which utilizes QUIC in a
GaAs sample to retrieve the spectral phase of the incident laser pulses. Upon propagation
through a dispersive medium, for example glass, the spectral components of a laser pulse are
temporally shifted due to a wavelength-dependent speed of light [27, ch. 22.1; 28, ch. 17.1].
This effect manifests in the spectral phase of the electric field component and may lead
to a temporal broadening of the pulse. The broadening becomes the more relevant, the
shorter the pulse is. In particular, pulses with sub-100 fs pulse durations are significantly
influenced by dispersion [29, p. A150ff]. In order to fully characterize such ultrashort pulses
and eventually compensate the broadening, it is desirable to measure the spectral phase.

The determination of the spectral phase is a non-trivial task as it is not directly access-
ible. Measurements with a photodiode, for example, only reveal the intensity of the electric
field, which does not contain explicit information about the phase. Furthermore, the
temporal resolution of such an electronic-based detection is not sufficient for femtosecond
pulses. Therefore, more sophisticated measurement schemes have been developed [30; 31].
Typically, these are based on the detection of a nonlinear light-matter interaction which is
caused by two superimposed pulse replicas. For example, SHG-FROG (second harmonic
generation – frequency-resolved optical gating) is based on second harmonic generation
by two temporally shifted pulse replicas [32–34]. An iterative algorithm is then able to
reconstruct the spectral phase from the recorded second harmonic intensity.

The alternative phase-retrieval scheme presented in this thesis is based on the explicit
phase dependence of QUIC. The spectral phase of the laser pulses manifests directly in
measurements of the injected current and is shown to be extractable without the need for
a complex algorithm. Apart from a theoretical derivation of the underlying concept, the
presented study also comprises an experimental evaluation of this phase-retrieval scheme.

Another part of this thesis focuses on the interaction between QUIC and a voltage-
induced current. More specifically, the experimental realization of an optical current de-
tection scheme proposed by Liu et al. [35; 36] is investigated at a thin GaAs sample.
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In essence, the presence of a current in the sample is expected to inhibit the injection
of an additional current. As a consequence, the absorption of the pulse pair should be
reduced. Therefore, the voltage-induced current could be detected by analyzing the pulse
pair transmission.

Typically, current measurement techniques rely on the detection of a voltage drop or
the detection of the surrounding magnetic field [37; 38]. These schemes require external
probes which limit the spatial resolution. By contrast, an all-optical current detection
scheme would only be limited by the laser beam which can be focused on arbitrary spots
with microscopic dimensions. Furthermore, the temporal resolution would not be limited by
electronics. By using femtosecond pulses, ultrafast current dynamics could be investigated.

Apart from practical applications, the thesis also addresses the underlying physics of
QUIC itself. A special focus lies on the current injection at high excitation intensities.
Theoretical studies show marked deviations from the initial description of QUIC in this
regime [39–42]. In particular, the current amplitude is predicted to stagnate due to satura-
tion of the induced transitions. Furthermore, the carriers are expected to strongly couple
to the high electric field amplitudes of the laser pulses. Ultimately, even the influence of
Rabi oscillations, a coherent light-induced oscillation of the carrier population, is predicted
[41; 42]. However, this high-intensity regime is rather unexplored experimentally.

In this thesis, the high-intensity regime of QUIC is investigated within a collaborative
theoretical as well as experimental study. The current injection in a contacted GaAs sample
is analyzed with respect to its power dependence and the temporal behavior of the excited
carriers. These measurements are supported by theoretical simulations by Huynh Thanh
Duc from the Ho Chi Minh City Institute of Physics and Torsten Meier from the University
of Paderborn.

This thesis is structured as follows: Chapter 2 lays out the theoretical background of
nonlinear optics and QUIC. The experimental methods for the realization and measurement
of QUIC are described in Chapter 3. Furthermore, this chapter details the preparation
as well as the properties of the employed samples, which are based on low-temperature
grown GaAs (LT-GaAs). Chapter 4 presents the collaborative study of QUIC in the high-
intensity regime. The underlying theory and the experimental implementation of spectral
phase-retrieval via QUIC are covered in Chapter 5. Chapter 6 addresses the experimental
implementation of an all-optical current detection scheme based on QUIC. Finally, the
results of this thesis are briefly summarized in Chapter 7.

Parts of the results that are presented within this thesis have already been published
in references [43–45]. Furthermore, parts of this thesis are in preparation for publication
elsewhere [46].
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Chapter 2

Theoretical Background

This thesis covers different aspects of coherently controlled current injection (QUIC) in
semiconductors. By superimposing a laser beam with its second harmonic, QUIC allows
to optically induce an electrical current without the need for an externally applied voltage.
Direction and amplitude of the injected current can be controlled by the relative phase and
polarization of the two beams.

QUIC belongs to the field of nonlinear optics that is briefly introduced in chapter 2.1.
The specific theory of QUIC is sketched in chapter 2.2.

2.1 Nonlinear Optics

Optical phenomena are distinguished between linear and nonlinear effects. Everyday phe-
nomena like reflection, refraction or absorption belong to the field of linear optics; that is,
the respective coefficients, such as the absorption coefficient, are independent of the irra-
diance. More precisely, the term “linear” refers to the proportionality between the electric
field amplitude E of the exciting electromagnetic wave and the resulting polarization P in
the material which must not be confused with the polarization of the electric field. The
proportionality factor is given by the frequency-dependent electric susceptibility χ(ω) [27,
ch. 21.1]:

P = ε0χE (2.1)

Phenomenologically, the polarization P can be described as the result of a collective
displacement of bound electrons induced by the electric field amplitude E of the incident
electromagnetic wave. The electrons begin to oscillate and, according to Maxwell’s laws,
emit an electromagnetic wave with a wavelength given by the oscillation frequency. The
resulting superimposed electromagnetic field depends on the relative phase of the exciting
as well as the emitted wave. For example, reflection at a metal surface can be interpreted
as a destructive interference in transmission direction and constructive interference in the
opposite direction. The polarization P scales linearly as long as the assumption of a
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parabolic binding potential holds.
The invention of the laser in the early 1960s [1–3] triggered the research field of nonlinear

optics [4; 5]. When focused on a material, the electric field amplitude of a laser beam can
approach the magnitude of intra-atomic fields. As a consequence, the linear approximation
of the polarization P breaks down. Crystalline solids generally exhibit a relative low
threshold intensity for the observation of nonlinear optical effects. Their high density
and periodic atomic arrangement can be utilized for an efficient constructive superposition
of the nonlinear responses of the individual atoms, also known as phase matching [47,
ch. 11.3.3].

One of the first nonlinear effects to be demonstrated was second harmonic generation
(SHG) in a crystalline quartz sample [6], i.e. an electromagnetic wave with double the
frequency of the incoming field was emitted. In terms of the phenomenological picture,
the emission can be interpreted as the result of an asymmetry in the electrons’ binding
potential. Owing to this asymmetry, the electron movement is not entirely harmonic but
contains components with double the frequency [47, ch. 11.2.1]. This effect becomes more
relevant with increasing field amplitude. Specifically, the intensity of the emitted second
harmonic beam scales with the squared intensity of the input beam.

Nonlinear effects can be incorporated into equation (2.1) via an expansion of the sus-
ceptibility χ in terms of the driving field E; for example, SHG is described by the second
order susceptibility χ(2) [5, ch. 3.1]:

P = ε0χ
(1)E+ ε0χ

(2)E2 + ε0χ
(3)E3 + . . . (2.2)

As a general rule, χ(i) declines rapidly with the order i. The orders χ(i) are differently
sized tensors that depend on the polarization as well as the wavelength of the incoming
beams. However, because of symmetry conditions, there is typically only a very limited
number of nonzero tensor components for crystalline solids [47, ch. 11.3.2]. Higher order
terms that are nonlinear in the electric field amplitude E may even stem from beams of
different wavelengths. An example for such an effect is nonlinear frequency mixing [27,
p. 883ff]. The superposition of two beams can result in a differently colored beam with the
sum- or difference frequency. As a generalization of SHG, it is also described by χ(2).

QUIC is a third order nonlinear effect that is related to χ(3) [48]. It relies on a coher-
ent superposition of two-photon and one-photon absorption of a fundamental beam and
its second harmonic, respectively. The former process can be thought of as a nonlinear
transition induced by a simultaneous absorption of two photons [10; 11]. Its transition
energy corresponds to the sum of both photon energies. A detailed theoretical derivation
of QUIC is outlined in the following chapter. A more extensive review of nonlinear optics
can be found elsewhere [4; 5; 27, ch. 21; 47, ch. 11].
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2.2 Coherently Controlled Current Injection (QUIC)

QUIC relies on the coherent interaction of a solid, in this case a direct band gap semi-
conductor, with a light wave as well as with its second harmonic. Both waves are able to
excite the same electron transitions from a valence to the conduction band via one- and
two-photon absorption. The coherent superposition of two transition paths connecting the
same states leads to quantum interference. As a result, an anisotropic carrier distribution
is excited that manifests as a current flow.

The governing parameter of the quantum interference is the relative phase between
the fundamental and second harmonic wave. The explicit phase dependence distinguishes
QUIC from the majority of other nonlinear effects. For example, the phase dependence
of SHG is only implicit by the influence on the envelope of the emitted wave (cf. chapter
5.2). An illustrative analogue for the interference of transition paths is Young’s double slit
experiment that is sketched later in this chapter. The microscopic theory of QUIC is based
on time-dependent perturbation theory and outlined at the end of this chapter.

The general idea of quantum interference controlled via phase manipulation dates back
to the late 1960s and early 1970s (see [48] and references within). Not least because of long
coherence times, these concepts were first demonstrated at discrete energy levels in atoms
and simple molecules. The control of photochemical reactions in molecules established the
research field of coherence control. Implementations of coherence control in solids initially
focused on atomic-like systems, for example excitons, quantum dots or nanostructures. In
particular, directed ionization of AlGaAs/GaAs quantum wells that results in a current
flow was demonstrated in 1995 [49].

QUIC in bulk semiconductors, the subject of this thesis, was first theoretically pro-
posed by the group of J. E. Sipe in 1996 [7]. Subsequently, QUIC was experimentally
demonstrated in GaAs by the group of H. M. van Driel [8]. The mechanism for current
generation crucially differs from directed ionization. In the latter case, the current flow
is merely a result of charge separation. By contrast, QUIC directly allows to manipulate
the carrier velocity by inducing a carrier distribution that is asymmetric in the momentum
space.

In the following, the underlying mechanism of QUIC in bulk semiconductors is discussed
for the prototypical material GaAs. Fig. 2.1(a) sketches its direct energy dispersion E(k)

around k = 0. The band gap is denoted by EG. For simplicity, k is restricted to one
dimension and only one conduction band and one valence band is shown. To inject a
current into GaAs, a linearly polarized fundamental wave is coherently superimposed with
its second harmonic exhibiting twice the photon energy. The wavelengths are chosen such
that the respective photon energies �ω and 2�ω of the fundamental beam and its second



8 2 Theoretical Background

Fig. 2.1: (a) Schematic illustration of QUIC in a direct band gap semiconductor: The
simultaneous absorption of two photons with the energy �ω and one photon with 2�ω results
in an interference of the addressed transitions. As a consequence, an asymmetric carrier
distribution may be excited that corresponds to a current flow. (b) Sketch of Young’s double
slit experiment: The light propagation of a coherent light source is restricted to two slits.
The phase difference between the two waves propagating through different slits manifests as
interference pattern on a screen.

harmonic fulfill the energy relation �ω < EG < 2�ω. Whereas photons of the second
harmonic beam are directly absorbed, the lowest order interaction of the fundamental beam
is two-photon absorption. Both absorption processes are depicted with differently colored
arrows in Fig. 2.1(a). Owing to the negligible photon momentum, the transitions connect
states with practically the same k value. In accordance with time-dependent perturbation
theory (see below), two-photon absorption is illustrated by an electron transition involving
an additional intermediate state.

One-photon absorption induces electron transitions from the valence to the conduction
band with an energy difference determined by the photon energy. If the photon energy
exceeds the band gap EG, the electrons are excited at k �= 0. According to the effective
mass approximation, the electron velocity is related to the slope ∂E(k)/∂k of the energy
dispersion [50, ch. 12]. Despite a nonzero slope at k �= 0, one-photon absorption of linearly
polarized waves alone does not induce a current because it is an isotropic process1. There
is an equal number of carriers generated at −k and +k with opposite velocities that cancel
each other out. The same argument holds for two-photon absorption; it cannot optically
induce a current, either. However, if both processes are combined, their carrier distributions
do not simply add up. Both transition paths interfere and generate an anisotropic carrier

1There is a current injection scheme that is based on the absorption of only one elliptically polarized
beam. It was demonstrated by the group of H. M. Driel [51] and can be derived using a similar theory as
the two-color current injection [48].
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distribution that corresponds to a current flow.
Young’s double-slit experiment, depicted in Fig. 2.1(b), constitutes an illustrative ana-

logue for the interference of transition paths. A double slit is placed between a screen
and a coherent light source, such as a laser. The latter defines the initial state of the
photons; their arrival at the screen corresponds to the final state. Because of the slits, the
propagation is restricted to two paths, comparable to the two absorption paths of QUIC.
If one slit is covered, only a single spot is visible on the screen2. Its shape is described by
the respective intensity |A1|2 or |A2|2 of the transmitted light amplitude. However, these
single-slit patterns may not simply be added if both slits are opened.

The coherent superposition of two light amplitudes propagating through different slits
results in an additional phase-dependent term:

|A1 + A2|2 = |A1|2 + 2Re
{
A1A2

}
+ |A2|2 (2.3)

If the relative phases of A1 and A2 are incorporated via exponential phase terms of the form
exp(−iφ), the phase dependence becomes apparent: 2Re

{
A1A2

} ∝ cos(Δφ). Depending
on whether the two light waves interfere constructively or destructively, the respective spot
on the screen is illuminated or dark. As a result, the additional term 2Re

{
A1A2

}
manifests

as interference pattern of parallel fringes. Similarly, the direction and amplitude of the
coherently controlled current can be manipulated by the relative phase of the fundamental
and second harmonic beam. Depending on the relative phase, there is an unequal number
of carriers excited at −k and +k.

In order to describe QUIC quantitatively, the groups of J. E. Sipe and H. M. van Driel
developed a theoretical approach based on time-dependent perturbation theory [48]. This
approach is sketched in the following whereby only essential steps are given. Lengthy ex-
pressions as well as calculations that do not substantially add to the general understanding
of the derivation are omitted.

Initially, the electronic band structure, as depicted in Fig. 2.1(a), is calculated for a
steady state electron distribution. Transitions by photon absorption are incorporated via
time-dependent perturbation theory. In specific, the influence of an electromagnetic field is
included with a semiclassical minimal coupling approach. “Semiclassical” refers to the fact
that electrons are treated quantum-mechanically while the light is treated as a classical
wave. Such an approach sufficiently describes the influence of a moderate electromagnetic
field on the electronic states [28, ch. 2.3]. Second quantization of the light field would be
necessary if the intensity is so low that single photon effects become relevant, an example
of which is spontaneous emission. The opposite regime of high intensities and specifically
its influence on QUIC is the subject of chapter 4.

2For simplicity, diffraction at a single slit is neglected.
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To begin with, it is instructive to discuss the employed perturbation theory for a single
electron in a crystal potential U(r). Its time-independent Hamiltonian is given by

H0 =
1

2me
p2 + U(r). (2.4)

Here, me denotes the electron mass, p the momentum operator and r the position oper-
ator. Similar to classical electromagnetism, the interaction with an electromagnetic field
is incorporated by a gauge transformation of the momentum operator p, also known as
minimal coupling [52, p. 130ff]:

p → p− e

c
A(t) (2.5)

With typical wavelengths in the order of micrometers and lattice constants in the order
of nanometers and less, it is justified to employ the long-wavelength limit for the vector
potential A(t). That is, the field amplitude is independent of the position operator r.
Consequently, magnetic effects can be neglected according to the relation B = ∇ × A.
The electric field is given by E(t) = −Ȧ(t)/c. An electromagnetic wave with the angular
frequency ω can therefore be described by the vector potential

A(t) = A(ω) exp(−iωt) + c.c. with E(ω) = i (ω/c)A(ω). (2.6)

After gauge transformation, the time-dependent Hamiltonian H(t) can be further sim-
plified by neglecting the term proportional to A2 since it does not substantially contribute
to current injection [48]. Finally, the Hamiltonian H(t) can be separated into the unper-
turbed term H0 and a perturbation V (t) that is linear in p ·A(t):

H(t) =
1

2me
p2 + U(r)− e

mec
p ·A(t) = H0 + V (t) (2.7)

Solutions of the time-independent Hamiltonian H0 are steady electron states. If the
time-dependent perturbation V (t) is small compared to H0, it does not significantly alter
the energy eigenvalues. However, according to time-dependent perturbation theory, V (t)

causes transitions between different states. In specific, the probability density wi→f for a
transition from the initial state i to the final state f can be calculated by Fermi’s golden
rule [52, ch. 5.6]. Applied to the absorption of a monochromatic wave (cf. equation 2.6),
it is given by

wi→f =
2π

�
|Mfi|2 δ(Ef − Ei − �ω). (2.8)

The delta distribution corresponds to the conservation of energy; M denotes the transition
matrix element that is expanded in orders of the perturbation V (t). For a first order
calculation in Dirac notation, the matrix element is of the form 〈f |V (t) |i〉.

In order to apply these calculations on electrons in a semiconductor, the Hamiltonian
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H0 is expressed by Bloch states with crystal momentum k. The respective energy eigen-
values correspond to the energy dispersion that is illustrated in Fig. 2.1(a). The coherent
superposition of the fundamental and second harmonic field is modeled by the following
vector potential, whereby ω is assumed to satisfy the energy relation �ω < Eg < 2�ω:

A(t) = A(ω) exp(−iωt) +A(2ω) exp(−i2ωt) + c.c. (2.9)

One-photon absorption of the second harmonic field induces an electron transition from
a state |v〉 in a valence band to a state |c〉 in the conduction band. As explained above,
the respective matrix element M (1)

cv is of the form 〈c|V (t1) |v〉. To account for two-photon
absorption of the fundamental field, the second-order matrix element M

(2)
cv of the form∑

i 〈c|V (t1) |i〉 〈i|V (t2) |v〉 must be included. This matrix element can be interpreted as a
transition via an intermediate state |i〉.

It is crucial to note that both matrix elements exhibit a different dependence on the
velocity operator v as well as the electric field amplitudes E. This follows from their
different dependence on the perturbation V (t) that is linear in p ·A. The momentum
operator p is, in turn, proportional to the velocity operator v. According to equation (2.6),
the amplitudes of the vector potential are proportional to the electric field amplitudes. On
the basis of these dependences, it is possible to derive the general functional form of QUIC.

The current injection rate depends on the carrier injection rate ṅ and the respective
electron velocity v which is given by the slope ∂E(k)/∂k. Since the slope is a function of
the crystal momentum k, the injection rate must be averaged over all states in the valence
and conduction bands:

dJ
dt

∝ q
∑
c,v,k

ṅc,v,kvc,v,k (2.10)

The injection rate ṅ is a linear function of the probability density wv→c for transitions from
a valence to the conduction band. It can be derived by inserting the sum of the first- and
second-order matrix elements into Fermi’s golden rule (2.8). Similar to Young’s double slit
experiment, the superposition results in an interference term:

wv→c ∝
∣∣M (1)

cv +M (2)
cv

∣∣2 = ∣∣M (1)
cv

∣∣2 + 2Re
{
M (1)

cv M
(2)
cv

}
+

∣∣M (2)
cv

∣∣2 (2.11)

Because of its threefold dependence on V (t), the interference term is the only term
that is an odd function of the velocity. It corresponds to an anisotropic carrier generation
as illustrated in Fig. 2.1(a). Inserted into equation (2.10), the interference term results
in the only term that is an even function of the velocity. In contrast to the terms of the
individual absorptions, it does not cancel out by the summation over the symmetric band
diagram that corresponds to averaging over the velocity. It thus becomes evident that only
the coherent superposition of both transitions is able to inject a current.
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Based on the dependence on V (t), it is further possible to derive the fundamental
dependence of the current injection rate on the electric field amplitudes. The first- and
second-order matrix elements are proportional to E(2ω) and E(ω)2, respectively. The
complex conjugation in the interference term corresponds to an inversion of the frequency
of one component (cf. equation (2.9)). For these reasons, the current injection rate should
be of the form E(ω)2E(−2ω).

An explicit calculation of the current injection rate confirms the predicted dependences:

dJa

dt
= ηabcd3 (ω)Eb(ω)Ec(ω)Ed(2ω) + c.c. (2.12)

The fourth rank tensor ηabcd3 (ω) quantifies the relation between the current injection rate
and the electric fields. It also describes the dependence of the current orientation on the
polarization of the electric fields, which is neglected above. Both the differently orientated
current components as well as the polarization components are denoted by superscripts in
Einstein’s notation. Furthermore, apart from the electron current, the tensor also contains
the current contribution of holes.

If an anisotropic electron distribution in the conduction band is optically excited, there
is a complementary distribution in the valence bands, as indicated in Fig. 2.1(a). Owing to
the opposite slope of both depicted bands, electrons in the conduction band and holes in the
valence band at the same crystal momentum move into opposite directions. Furthermore,
their absolute velocities differ due to different effective masses. In specific, the effective
electron mass in GaAs is 0.067 ·me compared to an effective mass of 0.5 ·me and 0.08 ·me

for the heavy and light hole band, respectively [47, p. 361; 53]. Therefore, the electron
and light hole velocity significantly exceeds the velocity of heavy holes. However, since
the effective mass also determines the density of states, light holes only account for a
few percent of the total hole density at the band maximum [53]. In consequence, current
injection is predominantly determined by the electron contribution [9; 48].

It can be demonstrated that η3 is related to the imaginary part of the third-order
susceptibility χ(3)(0;ω, ω,−2ω) [7; 54]. The explicit components of η3 can be calculated
via density functional theory. With regard to GaAs and a fundamental wavelength of
1550 nm – also used for experiments within the context of this thesis – the nonzero tensor
elements are ηxxxx3 = 2 · ηxxyy3 = 2 · ηxyxy3 , ηxyyx3 � ηxxxx3 and their equivalent permutations
with x and y exchanged [7]. In this context, x and y denote directions along different
crystallographic axes. Hence, if all polarizations are aligned along the same crystallographic
axis, the current injection is at its maximum and directed along this axis. In this case,
equation (2.12) can be further simplified. If the respective phases of the electric fields are
incorporated via exponential terms of the form exp(−iφ), the explicit phase dependence of
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QUIC becomes more obvious:

dJx

dt
∝ [Ex(ω)]2 Ex(2ω) sin(2φω − φ2ω) (2.13)

For completeness, it should be mentioned that the time-dependent perturbation ap-
proach also yields other coherence control effects. Apart from charge current injection, the
superposition of a fundamental beam and its second harmonic may be utilized to inject
spin-polarized currents [55–58] or to control the carrier density in semiconductors [59; 60].
The former requires both beams to be orthogonally polarized; the latter only occurs if cer-
tain symmetry conditions are fulfilled with respect to the field polarizations and the lattice.
Although counterintuitive at first glance, it is even possible to inject a charge current with
only one elliptically polarized beam [51]. In this case, the two interfering absorption paths
are addressed via different polarization components.

The theoretical approach demonstrates that QUIC fundamentally differs from conven-
tional current generation via an external voltage. Most notably, QUIC is an all-optical
process. Since transitions are induced at k �= 0, the excited carriers exhibit a nonzero
velocity practically instantaneously without being accelerated by an external force. Under
ideal conditions, the majority of electrons moves collectively in the same direction with an
average velocity of about 500 km/s [48]. Hence, with the help of ultrashort pulse lasers,
QUIC allows to generate highly directed current bursts with a duration of 100 fs and less.
Moreover, the current can be injected at arbitrary spots with minimum diameters of only
a few micrometers. In practice, the lower limit is mainly determined by focusing optics.
As explained above, the current direction can be further manipulated by amplitude, phase
and polarization of the electric fields.

The above mentioned features of QUIC are in striking contrast to current generation via
an external field. First, the application of a voltage requires at least two electrical contacts
that have to be defined beforehand. Second, if a voltage is applied to a semiconductor,
the rise and fall time is limited by an RC constant. As evident from maximum CPU clock
rates of a few GHz, the RC constant is usually at least in the order of picoseconds. Third,
the underlying mechanism of current generation is fundamentally different. Without an
external field, excess electrons reside at the band minimum in thermal equilibrium. An
applied voltage causes a gradual acceleration of the electrons by displacing them in the
Brillouin zone. The displacement can be thought of as a minor k-shift of the electron
distribution as a whole [9; 61, p. 120f]. However, only the small fraction of electron states
that are not compensated by states with opposite k value contribute to the nonzero drift
velocity.

QUIC provides a versatile tool to manipulate and study carrier dynamics on a short
timescale with high spatial selectivity. It has been applied to a variety of material classes
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as well as experimental concepts. Remarkably, QUIC could be demonstrated in silicon
and germanium [14; 15]. Their indirect band gap is typically associated with a low optical
response and it further requires a modification of the theoretical approach. Besides, QUIC
was applied to graphene, which exhibits a linear dispersion with a vanishing band gap
[16], the topological insulator Bi2Se3 [17] and copper [18]. By tightly focusing the input
beams, it was possible to efficiently inject currents into carbon nanotubes [20; 21] and even
single GaAs nanowires [22]. The spatial selectivity of QUIC can even extended beyond
the diffraction limit with the help of lithographically defined nanoantennas that result in
a local field enhancement [62].

Besides studies of electron transport, QUIC can also be used for other applications.
Because of the ultrashort rise and fall time, the injected current acts as a source for
terahertz radiation. In fact, terahertz measurements are an established method to detect
QUIC [14; 15; 19–21; 63]. Furthermore, the explicit phase dependence of QUIC has been
utilized for measurements of the carrier-envelope phase of a pulse train [25; 26] and phase-
resolved material spectroscopy [23; 24]. An advanced interferometric technique that allows
to reconstruct the spectral phase of the input laser pulses is demonstrated in chapter 5.
Chapter 6 discusses the experimental implementation of a proposed QUIC-based optical
current detection technique.
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Chapter 3

Experimental Methods

The thesis covers three different aspects of QUIC. Despite their different specific require-
ments, the setups are based on the same experimental concept that is outlined in the
present chapter. In this context, it is instructive to recall equation (2.12) that describes
the current injection:

dJa

dt
= ηabcd3 (ω)Eb(ω)Ec(ω)Ed(2ω) + c.c. (3.1)

Because of the threefold dependence on the electric field amplitudes, QUIC scales non-
linearly with the total irradiance. Hence, the requirement of ultrashort pulse lasers is
obvious: In contrast to conventional lasers which emit a continuous beam, the energy is
concentrated in ultrashort pulses resulting in high peak intensities. Here, the term “ultra-
short” particularly refers to pulse durations in the order of 100 fs or less. The employed
laser systems are addressed in chapter 3.1.

Apart from their high peak intensities, ultrashort pulses also allow to perform time-
resolved measurements in a pump-probe scheme [64, ch. 9]. A material’s response to a first
pulse is detected via transmission or reflection of a second pulse with variable delay. The
temporal resolution of such a measurement is determined by the pulse length, comparable
to the temporal limitation of a photography by the shutter speed of the camera.

QUIC requires laser pulses of different wavelengths, a fundamental beam with the an-
gular frequency ω and its second harmonic with the frequency 2ω and twice the photon
energy. Furthermore, the relative delay of the pulses must be precisely controllable to
resolve the phase dependence of QUIC. For this purpose, the second harmonic beam is
generated by the fundamental beam itself, and subsequently the beams are split up in an
interferometer. Finally, the beams are focused onto a contacted sample of low-temperature
grown GaAs (LT-GaAs) wherein QUIC takes place. The interferometric setup is described
in more detail in chapter 3.2. Chapter 3.3 addresses QUIC in LT-GaAs as well as the mea-
surement procedure. All experiments are performed at ambient conditions (T = 300 K).
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3.1 Ultrashort Pulse Laser Systems

The experiments presented in the following chapters mainly employ two commercially
available ultrashort pulse laser systems: The compact fiber laser FemtoFiber Scientific
(FFS) of TOPTICA Photonics and the optical parametric amplifier OPA 9850 (OPA) of
COHERENT. In fact, the latter is only the last stage of a laser system that is seeded by a
titanium-sapphire laser.

The FFS features two synchronized outputs with an average power in the order of
200 mW. Each output emits about 100 fs-wide linearly-polarized pulses at a repetition
rate of 75 MHz. The central wavelength is fixed at about 1550 nm.

The OPA allows to tune the wavelength in a range from 1200 nm to 1600 nm. Depend-
ing on the wavelength, the average power is in the order of a few tens of milliwatts. The
linearly-polarized pulses exhibit a width of about 50 fs and a repetition rate of 250 kHz.

Both laser systems rely on passive modelocking techniques to generate femtosecond
pulses [28, ch. 8.3]. First, an active medium with a broad gain spectrum is required.
The minimum pulse width is inversely proportional to the spectral width as evident from
the Fourier transform of a Gaussian wave packet (cf. chapter 5.1). Second, it must be
ensured that all spectral components are in phase, also called mode-locked. A random
phase distribution would result in a temporal shift of the components and causes the pulse
to broaden. In practice, passive modelocking is achieved with a mechanism that favors
high peak intensities on the basis of nonlinear optical effects.

The FFS utilizes nonlinear intensity-dependent polarization rotation in an erbium-
doped fiber [65] that simultaneously acts as active medium. Upon propagation through
the fiber, light components with high peak intensities acquire a different polarization and
are preferably transmitted by additional polarization optics. The latter and the fiber are
arranged as a ring resonator. Starting with noisy continuous-wave emission, the intensity
peaks are amplified with every pass until only one ultrashort pulse circulates. It is partly
outcoupled, further amplified and directed to the two outputs.

The seed laser of the OPA system employs another modelocking technique. The active
medium, a titanium-doped sapphire crystal, is placed in a resonator formed by a high
reflective mirror and a semitransparent output mirror. Because of the optical Kerr effect,
the refractive index of the active medium changes significantly at high peak intensities
[28, p. 218]. Therefore, the laser beam experiences intensity-dependent focusing. By
an appropriate arrangement of the focusing optics in the resonator, round-trip losses of
low-intensity components are higher than for high-intensity components. Thus, the laser
favors the propagation and gain of ultrashort pulses with high peak intensities. After
further amplification, the pulses of the titanium-sapphire laser are seeded into the OPA.

Utilizing frequency mixing, the OPA allows to tune the wavelength [27, p. 884ff]. A
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portion of the input “pump” pulse is used to generate a white-light continuum via nonlinear
processes in a sapphire crystal. Subsequently, the pump pulse and the continuum are
superimposed in a beta barium borate (BBO) crystal. Only a specific spectral component
of the continuum for which the phase matching condition is fulfilled, the “signal” beam,
contributes to frequency mixing. Phase matching and thus the selected wavelength can
be conveniently adjusted by rotating the crystal. In turn, the crystal generates a pulsed
beam, the “idler”, with a wavelength given by the energetic difference of the pump and
the signal component. Furthermore, the signal beam is amplified by the high power pump
beam during this process. In the experiments presented here, only the signal beam with
the above mentioned wavelength range is used.

The choice of wavelengths for QUIC in semiconductors is determined by the energy
relation �ω < EG < 2�ω. With a room-temperature band-gap of 1.42 eV [66, p. 412;
53], this condition is conveniently fulfilled for GaAs and a fundamental wavelength in the
commercially used telecom range around 1.5 μm. In fact, the widespread availability of
pulsed laser sources in the telecom range and thus the simple room temperature application
of QUIC triggered the initial choice of GaAs [48]. A wavelength of 1.55 μm corresponds to
a photon energy of 0.8 eV. Consequently, two-photon absorption of the fundamental beam
as well as one-photon absorption of the second harmonic beam in GaAs result in an excess
energy of 180 meV.

3.2 Interferometric Setup

The main purpose of the interferometric setup, sketched in Fig. 3.1, is to generate the
second harmonic beam from the fundamental beam and to control both beams in intensity,
polarization and phase. Previously, the laser output is directed into a telescope consisting of
two lenses. By adjusting their relative position, it is possible to minimize beam divergence
that may otherwise disturb the measurements.

To ensure phase stability, the second harmonic beam is derived from the fundamental
beam via SHG. For this purpose, the fundamental beam is focused into a nonlinear crys-
tal. In particular, either beta barium borate (BBO) or bismuth borate (BiBO) is used.
With crystal thicknesses in the order of a millimeter and a fundamental wavelength around
1.5 μm, both laser systems are able to generate several milliwatts of an orthogonally po-
larized second harmonic beam. The orthogonal polarization is a result of the crystal’s
birefringence and the phase matching condition that has to be fulfilled [28, ch. 15.4]. A
second lens behind the crystal collimates both beams that propagate collinearly into the
subsequent interferometer.

The beams are individually manipulated in a Michelson interferometer featuring one
arm for each color. A dichroic beamsplitter transmits the fundamental beam and reflects
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Fig. 3.1: Prototypical experimental scheme for the realization and detection of QUIC in
LT-GaAs: A nonlinear crystal is used to generate the second harmonic of the output of an
ultrashort pulse laser. The individual intensity, the polarization and the relative phase of the
two beams can be controlled in a two-color interferometer. Both beams are collinearly focused
on a contacted LT-GaAs sample at room temperature with a typical contact gap width in the
order of 10 μm. The induced current is recorded with a lock-in amplifier which is referenced
to a chopper wheel placed at the laser output. A beamsplitter in front of the focussing optic
redirects the reflections of the sample to a camera that allows to monitor the focal spots on
the sample.

the second harmonic beam. Further filters in the arms, a low- and a high-pass filter, ensure
an effective separation of both harmonics. Retroreflectors are placed at equal distance
in both arms, so that the beams are recombined on the same beamsplitter. While the
retroreflector of the second harmonic arm is fixed, the retroreflector of the other arm is
mounted on a motorized stage.

In order to resolve the phase dependence of QUIC, the relative phase of both beams
must be controlled on a subwavelength scale. For that purpose, a computer-controllable
linear motor stage of the XM series by Newport is used. The stage is specified with a
uni-directional repeatability of 50 nm at a travel range of 50 mm1. The overall arm lengths
are kept as short as possible to minimize phase distortion of the individual beams, for
example by air turbulences or vibrations. The minimum length is limited by additional
optical elements that are placed into the arms; it is typically in the order of 20 cm.

Apart from phase, QUIC depends on the intensity and polarization of the beams. Half-
wave plates in the interferometer allow to adjust the relative polarization of both beams
and ultimately to address specific elements of the current injection tensor η3. In particular,

1In comparison, a 100 fs delay corresponds to a stage movement of 15 μm.
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the beams’ orthogonal polarization that results from SHG must be altered to address the
largest element ηxxxx3 . The beam intensity is set individually via neutral density filter
wheels (ND filters) with variable attenuation. In this way, unintentional phase shifts, that
would otherwise result from the exchange of different filters with a fixed attenuation, are
prevented.

Before both beams are focused onto the LT-GaAs sample, it must be ensured that they
propagate collinearly. Otherwise their phase relation would vary across the beam width
and current injection would be reduced. To this end, both beams can be redirected through
a separate thin nonlinear crystal onto a camera. The nonlinear crystal generates another
second harmonic beam from the fundamental beam. The resulting interference pattern of
both second harmonic beams on the camera is a direct measure for collinearity.

Efficient current injection further requires appropriate focusing to enhance the illumi-
nation intensity. For this reason, the reflected light from the sample is redirected onto
another camera by a beamsplitter in front of the focusing optic. The camera allows to
monitor the focal spot and its relative position on the LT-GaAs sample. Moreover, the
size and relative position of the beams’ focal spots can directly be measured by replacing
the sample with a beam profiler. The beam profiler scans a laser beam with a movable slit
and automatically calculates its spatial width.

3.3 QUIC in LT-GaAs

The presented QUIC measurements rely on the detection of the induced charge separation
via metallic contacts on top of the sample. The sample itself typically consists of a few
micrometer thick epilayer of low-temperature grown GaAs (LT-GaAs) on an intrinsic GaAs
substrate. Its lateral size is in the order of a few millimeters. LT-GaAs has proven superior
to intrinsic GaAs for such a detection scheme [8; 9]. Essentially, defect states in LT-GaAs
preserve the charge separation and thus the voltage that would otherwise equilibrate rapidly
after optical excitation [67].

As depicted in Fig. 3.1, the collinear excitation beams are focused onto the gap of
a metallic contact pair. It is defined via optical lithography and metallic evaporation,
typically titanium and gold with a thickness in the order of 100 nm. A gap size in the
order of the beam width that determines the charge separation, typically a few tens of
micrometers, ensures a high detection efficiency. The sample is glued into a chip carrier and
contacted with bond wires to facilitate convenient current measurements via macroscopic
electrical connectors. Furthermore, the chip carrier is mounted on a micro-positioner for
precise alignment. The measurement procedure itself employs lock-in technique and is
explained at the end of this chapter. In the following, a more detailed description of QUIC
in LT-GaAs is given.
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LT-GaAs is grown by molecular beam epitaxy (MBE) at a substrate temperature of
200 ◦C to 400 ◦C [68]. This is well below the typical temperature of about 600 ◦C for
stoichiometric growth of GaAs. Excess arsenic atoms form defects in LT-GaAs, mainly
by substituting gallium atoms (antisite defects) or by occupying additional sites in the
lattice (interstitial defects). Thermal annealing at about 600 ◦C rearranges the defects and
restores the lattice constant to a relaxed state.

Concerning QUIC, it is sufficient to describe the defect states in LT-GaAs by an ad-
ditional band approximately in the middle of the band gap [69; 70]. A simplified band
diagram is depicted in Fig. 3.2. Since individual defect states have a low conductivity
due to their spatial separation, the illustration as a continuous band must be treated with
caution. Concerning photon energies that exceed the band gap by about 100 meV or more,
the optical properties of LT-GaAs and intrinsic GaAs do not significantly differ [9]. With
a linear absorption coefficient of 1.5 · 104 cm−1 for 775 nm, the second harmonic beam is
fully absorbed in the LT-GaAs layer. Therefore, the following discussion of QUIC focuses
on LT-GaAs.

Fig. 3.2 depicts the electron distribution in the band diagram of LT-GaAs for dif-
ferent time scales during the current injection process. Furthermore, a top view of the

Fig. 3.2: Schematic temporal evolution of the carrier distribution during and after current
injection in LT-GaAs. The upper panels illustrate the occupation in a simplified band dia-
gram; the states in the middle of the band gap represent defects. The lower panels depict the
spatial carrier separation in the sample that is measured via two metallic contacts. (a) The
coherent absorption of a fundamental wave and its second harmonic generates an asymmetric
carrier distribution that results in a current flow. (b) After injection, the carriers quickly
thermalize and the current decays. Electrons and holes are spatially separated because of
their different velocities. (c) Carriers are trapped within defect states and a frozen electronic
dipole remains that can be detected via metallic contacts.
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LT-GaAs and the adjacent metal contacts illustrates the spatial charge separation. First,
in Fig. 3.2(a), a pulse pair consisting of an infrared fundamental pulse as well as its second
harmonic impinges on the LT-GaAs surface between the metal contacts. The respective
one- and two-photon absorption correspond to a transition energy of about 1.6 eV. As ex-
plained in chapter 2.2, the interference of absorption paths results in an asymmetric carrier
distribution that manifests as current flow. Determined by the slope of the dispersion, the
electron and hole distribution move into opposite directions and a spatial charge separation
forms. The duration of current injection is determined by the pulse length, in the context
of the presented measurements about 100 fs.

Subsequent to injection on a time scale of about 100 fs, the current declines by inelastic
scattering, e.g. electron-phonon or impurity scattering [9; 48; 71; 72]. In terms of the
band diagram, such a thermalization corresponds to a relaxation of the carriers to the
center of the band, as depicted in Fig. 3.2(b). With an average electron velocity of several
100 km/s, individual electrons may only move a few tens of nanometers [48; 67]. However,
the collective injection in the focal spot results in a carrier separation given by the beam
widths [67]. The injected electron and hole distributions overlap in the middle of the
illuminated area and can directly recombine. At opposing edges of the area, there is a
local excess of electrons and holes which form an electronic dipole. These opposing charges
attract each other by Coulomb forces that would eventually neutralize the dipole. In a
first approximation, the charge dynamics can be described by a rigid shift model with a
neutralization time of about 1 ps, given by the density-dependent plasma frequency [67].
Consequently, the electron dipole is hardly measurable in intrinsic GaAs [9].

Utilizing defect states in LT-GaAs, see Fig. 3.2(c), the carriers are trapped and the
dipole can be frozen before it neutralizes. The respective carrier trapping time is about
1 ps or even less [70; 72–74]. In comparison, the carrier lifetime in intrinsic GaAs is at
least in the order of nanoseconds [75]. Owing to the spatial separation of defect states
in LT-GaAs, the carriers are immobilized. Moreover, the recombination to the valence
bands is hindered as there are few empty states; the current flow has caused a local excess
of carriers. Only a low hopping-conductivity or thermally excited carriers may cause a
long-time neutralization of the dipole.

The long-lived electronic dipole induces charges in the metallic Schottky contact pair.
In turn, a measurable compensating current flows if both contacts are connected. Because
of the defects, LT-GaAs should have a lower Schottky barrier as well as a lower resistivity
than GaAs [68; 76, ch. 3.6]. The measurements on LT-GaAs presented in the following
chapters feature average currents of up to a few nanoampere. Taking the pulse width and
the repetition rate of the laser into account, the average current amounts to a remarkable
peak current injection. For example, an average current of 1 nA injected by 100 fs pulses at
a repetition rate of 75 MHz corresponds to a peak current of about 100 μA. What is more,
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the calculated peak current only constitutes a lower limit since the extraction efficiency of
the contacts as well as the amplitude of internal compensating currents in the sample are
unknown.

Lock-in technique is used to measure these currents as low as a few picoampere. The
laser output is periodically blocked by a chopper wheel with a frequency of a few 100 Hz. In
essence, a lock-in amplifier that is connected to the sample only records current components
which are modulated by such frequency. Noise and disturbing signals at other frequencies,
e.g. from the power grid at multiples of 50 Hz, are suppressed.

The experiments in the following chapters require phase resolved measurements of
QUIC. To this end, current interferograms as exemplarily depicted in Fig. 3.3(a) are
recorded. The average current is plotted against the relative delay τ between the fun-
damental and second harmonic pulses. A constant offset that may result from phase-
independent photocurrents of the illuminated metal-semiconductor junction is subtracted.
In practice, the interferograms consist of subsequent current measurements with a stepwise
length increment of one interferometer arm. A typical increment of about 40 nm corre-
sponds to a temporal resolution of 0.3 fs and is sufficient to resolve the phase dependence
(see Fig. 3.3(b)).

Current interferograms correspond to a convolution of the electric field components
of the laser beams which are incident on the sample. The temporal dependences of the

Fig. 3.3: (a) Exemplary current interferogram taken with the fiber laser FFS: Plot of the
recorded current injection in LT-GaAs as a function of the relative delay τ between the
impinging fundamental and second harmonic laser pulses. Their relative timing is illustrated
in the top. A constant current offset is subtracted. The graph resembles a convolution of the
pulse envelopes modulated by a carrier wave. (b) The closeup around τ = 0 illustrates the
temporal resolution of the measurement and the phase dependence of QUIC which manifests
as oscillation.
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respective electric fields read Eω(t− τ) for the fundamental beam in the variable arm and
E2ω(t) for the second harmonic beam in the fixed arm. Average current measurements
translate into a time-integration of the current injection rate (2.12). Omitting the complex
conjugated term for clarity, the resulting current relation reads:

I(τ) ∝
∫

J̇(t, τ) dt ∝
∫ [

Eω(t− τ)
]2

E2ω(t) dt (3.2)

The current interferogram I(τ) displayed in Fig. 3.3(a) resembles a Gaussian envelope
modulated by a carrier wave. It results from the phase-dependent convolution of Gaussian-
like pulses. For illustration, their relative delay is sketched in the top of the figure. When
the relative delay τ between the pulses is swept, the injected current periodically changes
its direction and amplitude due to the explicit phase dependence of QUIC. In accordance
with the phase dependence sin(2φω−φ2ω) of the injection rate (2.13), the current oscillates
with a temporal oscillation period that corresponds to the frequency of the second harmonic
beam. The inset 3.3(b) exemplarily shows this carrier wave around τ ≈ 0.

The envelope of the current interferogram is given by the temporal overlap of the
pulses. On the far left and right side in Fig. 3.3(a), the pulses are significantly delayed
with respect to each other and there is consequently almost no current injected. The
current increases with the pulses’ temporal overlap. It reaches its maximum if both pulses
impinge simultaneously on the sample.

As stated in the beginning, this chapter describes a prototype setup for measurements
of QUIC in LT-GaAs. The following individual experiments require specific modifications
that are elucidated in the respective chapters. For example, chapter 5 relies on a three-
beam interferometer. Chapter 6 focuses on the pulse transmission through the sample
rather than the resulting current injection.
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Chapter 4

QUIC Beyond the χ(3) Model

The initial theoretical model of QUIC is based on a time-dependent perturbation approach
which effectively translates into a χ(3) description, see chapter 2.2. With respect to the
electric field amplitude E and relative phase φ of the exciting laser pulses, the power scaling
is given by dJ/dt ∝ E2

ωE2ω sin(2φω − φ2ω). In essence, the scaling stems from interference
of two transition paths, namely two-photon absorption of fundamental laser pulses and
one-photon absorption of their second harmonics.

Theoretical studies of QUIC in one- and two-dimensional structures predict significant
deviations of this χ(3) picture at elevated excitation intensities due to higher-order effects,
e.g. Pauli blocking of the optically addressed states [39–42]. Specifically, saturation effects
and even the influence of Rabi oscillations are expected. The experimental accessibility
of this regime is rather unexplored to date despite the ready availability of high-intensity
ultrashort laser sources. Although previous experimental studies already observed devia-
tions of the power scaling [8; 9; 19; 48], these were mainly attributed to carrier dynamics
following the injection and not investigated in more detail.

In the following, an extensive study of QUIC in GaAs in the high-intensity regime is
presented. The current injection in contacted LT-GaAs samples is experimentally investi-
gated with respect to its irradiance scaling and temporal behavior. These measurements,
presented in chapter 4.2, are supported by numerical simulations of QUIC in bulk GaAs
under realistic experimental conditions. Therefore, the simulations allow to quantitatively
assess the experimental accessibility of the high-intensity regime in which the χ(3) picture
breaks down. The simulation results as well as the underlying theory are briefly sum-
marized in chapter 4.1. Finally, both the numerical as well as experimental findings are
discussed regarding the origin of the observed deviations. Apart from mechanisms during
injection, the discussion also includes the influence of the measurement process and the
carrier dynamics that follow the injection.

Parts of the results that are presented within this chapter have already been published
in references [43; 44] and are in preparation for publication elsewhere [46].
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4.1 Numerical Simulations

The study of QUIC at high excitation intensities is supported by numerical simulations
performed by Huynh Thanh Duc and Torsten Meier from the Ho Chi Minh City Institute
of Physics and the University of Paderborn, respectively. In the present chapter, the
simulation results as well as the underlying model are briefly summarized. A detailed
description can be found in reference [44]. The numerical and experimental results are
both discussed in chapter 4.3.

In contrast to the perturbative approach of QUIC that is discussed in chapter 2.2,
the following simulations represent numerically exact solutions of multiband semiconduc-
tor Bloch equations. These equations specifically describe the light-matter interaction of
semiconductors even in the nonlinear regime [77, ch. 12]. In particular, the simulations
presented here follow the theoretical approach that has been previously applied by Duc,
Meier et al. to analyze the temporal behavior of QUIC and predict deviations from the
perturbative theory [39–42]: Simulations for one- and two-dimensional structures revealed
a highly nonlinear behavior at elevated excitation intensities, e.g. in the form of saturation
effects. These saturation effects are attributed to Pauli blocking of the optically addressed
states and a field-induced redistribution of the carrier distribution. Ultimately, even an
influence of Rabi oscillations on QUIC is predicted.

In order to quantitatively compare the simulations with the measurements in the fol-
lowing chapter and assess the experimental accessibility of the high-intensity regime, a
realistic three-dimensional approach is required. To this end, the band structure of room-
temperature bulk GaAs is calculated via a 14 band k ·p theory [77, ch. 3.3]. The light-
matter interaction is incorporated into the semiconductor Bloch equations via the minimal
coupling Hamiltonian HI ∝ A ·p (cf. chapter 2.2). Furthermore, relaxation and dephas-
ing of the carrier distribution are both treated phenomenologically with a typical decay
time of 150 fs. As a consequence, carrier-carrier scattering is not explicitly included in the
simulations.

The vector potential A(t) is derived from the electric field E(t) of the superimposed
fundamental and second harmonic laser pulses. These are described by plane waves with
a Gaussian temporal envelope and a central frequency of ω and 2ω that correspond to a
photon energy of 0.8 eV and 1.6 eV, respectively:

E(t) = Eω exp
(−t2/2τ 2L

)
cos (ωt+ φω) + E2ω exp

(−t2/2τ 2L
)
cos (2ωt+ φ2ω) (4.1)

Here, Eω/2ω denotes the electric field amplitude of the pulses, φω/2ω their relative phase
and τL their width that is set to 100 fs for both pulses.

The temporal evolution of the injected current density J(t) at T = 300 K is derived by
integrating the calculated asymmetric carrier distribution weighted by the corresponding
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momentum. In order to extract the maximum current, the relative phase of both electro-
magnetic waves is set to π/2. Fig. 4.1 depicts the injected current density 100 fs after the
pulse maximum as a function of the fundamental field amplitude Eω for different fixed field
amplitudes of the second harmonic pulse E2ω. The covered intensity range is specifically
chosen to match the intensities of the measurements presented in chapter 4.2.

In essence, the numerical simulations predict marked deviations from the perturbative
approach in an experimentally accessible regime. As long as the fundamental field am-
plitudes are low enough, the curves follow the perturbative χ(3) scaling dJ/dt ∝ E2ωE

2
ω.

Empirical parabolic fits are added to the graph for illustration. If the fundamental field
amplitude exceeds 1 MV/cm, the numerically simulated current densities are significantly
below the perturbative expectation and begin to saturate. A similar behavior is observed
in the experimental study of QUIC in the high-intensity regime which is presented in the
following chapter. A detailed discussion of both the numerical and experimental results
concerning the underlying processes that cause the deviations is given in chapter 4.3.

�

�

�

�

Fig. 4.1: Simulated density of injected currents in room-temperature GaAs 100 fs after the
pulse maximum. The density is plotted against the electric field amplitude of the incident
fundamental pulses for fixed amplitudes of the second harmonic pulses. Empirical parabolic
fits illustrate deviations from the scaling of the perturbative χ(3) model.
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4.2 Experimental Study

The following chapter focuses on the experimental study of QUIC in the high-intensity
regime. After a short introduction of the experimental setup, the dependence of the abso-
lute current injection amplitude on the intensity of the exciting laser pulses is presented.
Similar to the numerical simulations, it features marked deviations from the perturbative
theory of QUIC. Additional time-resolved measurements allow to investigate the observed
saturation effects and their underlying mechanisms in more detail.

Experimental Setup

The experimental setup that is mainly used to investigate QUIC in the high-intensity
regime is similar to the setup which is described in chapter 3.2 and depicted in Fig. 3.1. A
nonlinear crystal generates the second harmonic beam from the fundamental beam. Both
beams are split up in a two-color interferometer that allows to manipulate the relative
delay, the individual power and polarization of the pulses. Subsequently, the beams are
collinearly focused onto a contacted LT-GaAs sample. Currents that are induced in a
metallic contact pair are measured via a lock-in amplifier.

Special attention is paid to provide high and reproducible excitation intensities in the
sample. Apart from strong focusing, this requires both beams to be precisely characterized
as well as aligned on the sample. In this way, the excitation intensities can be assessed nu-
merically allowing for a quantitative comparison with the simulations presented in chapter
4.1.

The measurements predominantly rely on the FFS fiber laser because of its long-term
stability regarding output power as well as beam alignment. For this reason, the following
description focuses on the specific setup of the fiber laser. However, additional measure-
ments with the OPA laser system are also performed and addressed later in this chapter.
The fiber laser provides 90 fs-wide pulses with a central wavelength of 1550 nm and a rep-
etition rate of 75 MHz. An average output power of about 250 mW is able to generate
more than 10 mW of second harmonic power via a 2 mm thick BiBO crystal. Owing to
multiple reflections and absorption, e.g. by additional filters or polarization optics in the
interferometer, the respective beam powers amount to a maximum of 80 mW for the fun-
damental beam and 8 mW for the second harmonic beam in front of the focusing lens of
the sample.

An aspheric focusing lens with a focal length of 11 mm and a numerical aperture of
0.26 is used to achieve high excitation intensities in the sample. The resulting focal spot
diameters are about 10 μm for the fundamental beam and 20 μm× 35 μm for the second
harmonic beam. Differences in spot size and the asymmetry of the second harmonic beam
result from chromatic aberration of the lens as well as anisotropy of SHG. These spot sizes
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are measured by a beam profiler that is placed at the position of the LT-GaAs sample
during adjustment. The beam profiler further allows to ensure that both beams propagate
collinearly and their focal spots overlap.

The alignment of the focal spots is monitored via a camera that collects the reflected
light of the sample surface with a beamsplitter in front of the focusing lens (cf. Fig. 3.1).
Although the wavelength of the fundamental beam is beyond the detection range of the
camera, the focal spot can still be observed by luminescence of the LT-GaAs sample.
Electrons that are excited via two-photon absorption or from the defect states relax to the
band minimum and recombine across the band gap. The corresponding emitted wavelength
of about 870 nm can be detected by the camera. In fact, the luminescence is only detectable
if the sample surface is positioned in the focal plane, making it a viable method for sample
alignment.

If not stated otherwise, the following measurements are performed with a sample that
consists of a 2 μm thick epilayer of LT-GaAs on top of an intrinsic (100) oriented GaAs
substrate. The LT-GaAs layer was grown by molecular beam epitaxy well below the
temperature for stoichiometric growth and afterwards annealed at about 600 ◦C. Metallic
contacts on top of the LT-GaAs were defined by optical lithography and subsequent vapor
deposition of titanium and gold. Two separate contacts with opposing parallel edges form
a contact pair with a gap width of 50 μm (cf. Fig. 3.1). Finally, the sample was glued
into a chip carrier and contacted via bond wires. These sample preparation steps were
performed in the group of A. W. Holleitner at the Technische Universität München.

Intensity Dependence of the Current Injection Amplitude

As a first approach, the irradiance scaling of the time-integrated current injection is ex-
perimentally investigated. To this end, the maximum amplitude of current interferograms
is extracted for different intensity combinations of the fundamental and the second har-
monic beam. To ensure maximum intensity, the sample is placed into the focal plane with
the above mentioned spot dimensions. Influence of parasitical illumination effects of the
metal-semiconductor junction [25; 78] are minimized by positioning the focal spots exactly
in the middle of the contact gap that exceeds the spot size. The polarization plane of the
fundamental and second harmonic beam are both aligned along the width of the gap. In
this way, the measurement probes the largest tensor element ηxxxx3 . For practical reasons,
the sample is slightly tilted to reduce back reflections into the laser that may distort its
operation.

Fig. 4.2 depicts the results of the current measurement series. The maximum current
amplitude is plotted against the fundamental beam intensity for three exemplary fixed
intensities of the second harmonic beam. Each data point corresponds to a measurement
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Fig. 4.2: Extracted maximum current amplitudes of QUIC in room-temperature LT-GaAs
for different intensity combinations of the incident fundamental and second harmonic laser
pulses. Each data point is derived from the oscillation amplitude of a current interferogram
recorded around maximum pulse overlap (cf. Fig. 3.3) with the fiber laser setup. Empirical
parabolic fits illustrate deviations from the scaling of the perturbative χ(3) model.
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of a current interferogram (cf. Fig. 3.3). In specific, the current values are extracted from
the amplitude of the current oscillation at maximum pulse overlap (in Fig. 3.3 at τ ≈ 0).
As already stated, the absolute current magnitude depends on a variety of parameters
whose determination is beyond the scope of this thesis. In order to quantitatively analyze
the functional dependence of current injection, the abscissa denotes the calculated peak
amplitudes of the electric field. Corresponding peak intensities of the beams are also shown
in the top scales. Both quantities are derived from the measured average beam power Pavg.

In order to calculate the peak intensity of the pulses, their temporal and spatial inten-
sity distributions are approximated by simplified functions. The Gaussian-like temporal
envelope is modeled by a step function. Its temporal width is determined by the FWHM tp

of the laser pulse. The spatial intensity distribution is approximated by a homogeneously
illuminated ellipse. Its axes correspond to the 1/e-widths of the actual intensity distribu-
tions. The latter are derived from the above mentioned beam profiler measurements. These
yield the 1/e2-widths a and b that are related to the ellipse area A via A = a · b · π/8. In
this case, the approximated focal spot areas amount to Aω ≈ 44 μm2 for the fundamental
beam and A2ω ≈ 260 μm2 for the second harmonic beam.

The temporal width of the fundamental beam is determined via intensity autocorrela-
tion (see also chapter 5.1). In a first approximation, the fundamental and second harmonic
beam are both assigned the same FWHM of tp ≈ 90 fs. Although the second harmonic
pulses should be shorter than the fundamental pulses, the smaller central wavelength is
more susceptible to dispersion, e.g. by the focusing lens, which in turn causes pulse broad-
ening (see also chapter 5.1). Besides, it has to be taken into account that the fiber laser
emits pulses with a repetition rate of frep = 75 MHz. Owing to reflection losses at the lens
as well as the sample surface, the average power in front of the focusing lens is corrected by
a transmission factor of T ≈ 0.6. Taken all together, the peak intensity I can be derived
from the average beam power via

I =
PavgT

tpfrepA
. (4.2)

In a next step, the peak amplitude E of the electric field is derived from the peak
intensity. With respect to propagation of an electromagnetic wave in a material with
refractive index n, both quantities are related via the Poynting vector [27, p. 165f]:

I =
ε0c0n

2
|E|2 (4.3)

Here, ε0 and c0 denote the vacuum permittivity and the speed of light in vacuum, respect-
ively. The refractive index n of GaAs amounts to 3.4 for the fundamental wavelength of
1550 nm and 3.7 for the second harmonic wavelength of 775 nm [9, and references within].
In the case of the fiber laser setup, the calculated excitation peak field amplitudes reach up
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to Eω = 2 MV/cm and E2ω = 240 kV/cm, respectively. As intended, the fiber laser setup
covers similar field amplitude ranges as the numerical simulations presented in chapter 4.1.

A plot of the current amplitude against the electric field amplitudes allows for a direct
comparison with the predicted scaling law dJ/dt ∝ η3 E

2
ω E2ω as well as the numerical

simulations. Indeed, for fixed excitation fields E2ω, the current amplitudes in Fig. 4.2
scale quadratically with low excitation fields Eω, as illustrated by empirical parabolic
fits. However, if the fundamental excitation field Eω exceeds 0.5 MV/cm, the current
amplitude is significantly lower than predicted by the perturbative theory. Eventually,
the current amplitude even saturates and begins to decline again. These effects are the
more pronounced, the lower the fixed intensity of the second harmonic beam is. Besides,
a reduction of the second harmonic intensity results in an overall reduction of the current
amplitude.

The experimental data in Fig. 4.2 features a similar dependence on the fundamental field
amplitude Eω as the numerical simulations in Fig. 4.1. Both show significant deviations
from the parabolic behavior in the range of 1 MV/cm and above. Particularly at high
second harmonic intensities, the functional dependence of the experimental curves and the
theoretical simulations agree well. By contrast, the experimental measurements for the
lowest second harmonic intensity show a much more pronounced current saturation than
the simulations.

For further discussion, it is necessary to consider the validity of a direct comparison be-
tween the measurements and the numerical simulations of QUIC. The simulations describe
the injected current density in intrinsic GaAs right after excitation by plane waves with a
Gaussian temporal profile. In contrast, the measurements reflect the time-integrated cur-
rent that is induced in metallic contacts on the sample. The current injection itself takes
place in LT-GaAs at a spatially confined focal spot and is mediated via a charge dipole
that is not included in the simulation. Such factors may additionally affect the current
measurement.

In order to investigate the observed current saturation and above mentioned effects in
more detail, additional measurements are performed. In particular, time-resolved mea-
surements allow to distinguish between effects that influence the measurement process or
the current injection itself. For example, the charge dipole is affected by the surrounding
carrier density that increases with the illumination intensity.

Similar to the measurement series described above, the maximum current amplitude is
also determined as a function of the second harmonic intensity for different fixed funda-
mental beam intensities. At second harmonic field amplitudes in the order of 100 kV/cm,
the current begins to saturate and deviate from the expected linear scaling with respect
to the electric field amplitude. In general, the current dependence on the second harmonic
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field is more complicated than the current dependence on the fundamental field. With
a photon energy that exceeds the band gap, the second harmonic beam is able to excite
direct transitions between a valence band and the conduction band. As a consequence,
the current measurement is more susceptible to disturbing effects induced by the second
harmonic beam. For example, even low stray light of the second harmonic beam is able
to generate significant photocurrents at the metal-semiconductor junction. For this rea-
son, the present chapter focuses on current saturation by an increase of the fundamental
intensity at a fixed second harmonic intensity.

To rule out that the saturation is not caused by a potential current limitation of the
setup, for example by a decreasing current extraction efficiency of the metallic contacts, the
measurement series depicted in Fig. 4.2 is repeated for different experimental conditions.
First, measurements with a different LT-GaAs sample featuring a gap width of only 25 μm

are carried out. Although the recorded currents are much larger with amplitudes of more
than 10 nA, the current exhibits saturation effects at similar fundamental field intensities
as in Fig. 4.2.

By probing the QUIC tensor element ηxxyy3 instead of ηxxxx3 , as in the previous mea-
surements, the current injection amplitude can be reduced while keeping the illumination
intensity the same. Such a measurement requires a simultaneous pulse triplet consisting
of a vertically polarized second harmonic pulse, a vertically polarized fundamental pulse
and a horizontally polarized fundamental pulse. Therefore, a third interferometer arm is
added to the setup by placing a beamsplitter into the fundamental beam arm (cf. Fig. 4.4).
Half-wave plates allow to adjust the relative polarization of the three pulses. For better
comparison, the measurements at this three-beam setup employ the same sample as the
measurements shown in Fig. 4.2.

As expected, the measurements which yield the ηxxyy3 current component feature signifi-
cantly smaller amplitudes than the previous measurement series. Nevertheless, the current
shows saturation effects at similar intensities. Therefore, it can be concluded that the
saturation is indeed linked to the excitation intensities and not simply to the amplitude of
the injected current.

To further investigate the reproducibility of current saturation, the measurement se-
ries depicted in Fig. 4.2 is also repeated with the OPA laser system employing a similar
interferometric setup but a different LT-GaAs sample. In fact, with the LT-GaAs sample
described at the beginning of this chapter, current injection by the OPA laser system is
barely measurable. Apart from the lower average beam powers of the OPA system in the
order of 1 mW, such behavior can be attributed to the lower repetition rate of 250 kHz.
As detailed in chapter 3.3, the measurement of current injection can be explained by the
generation of a long-living electronic dipole in the LT-GaAs that induces a compensating
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current. If the repetition rate of the laser pulses is too low, the dipole may decay on time
scales much shorter than the pulse separation and the current measurement is hampered.
However, by using another LT-GaAs sample with different growth parameters and a smaller
gap width of about 10 μm, a higher extraction efficiency can be achieved and it is possible
to inject measurable currents with the OPA system.

Similar to the measurement series depicted in Fig. 4.2, the current injection amplitude
is determined for different intensity combinations at the OPA setup. Fig. 4.3 shows the
extracted current amplitude as a function of the fundamental excitation intensity for fixed
intensities of the second harmonic beam. In the same way as in Fig. 4.2, the lower scale
is linear in the peak amplitude of the electric field. The top scale shows the corresponding
peak intensities. The respective wavelengths of both beams are similar to the measure-
ment series at the fiber laser setup. Beam diameters in the focal spot are 15 μm for the
fundamental beam and 34 μm× 44 μm for the second harmonic beam. Again, the tempo-
ral width of the fundamental pulses, here about 50 fs, is also used to calculate excitation
intensities of the second harmonic pulses. Because of a lower repetition rate, beam pow-
ers in the order of 1 mW on the sample amount to even higher peak intensities and field
amplitudes than in the fiber laser setup.

In general, the functional dependence of the OPA measurement series is in accordance
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Fig. 4.3: Extracted maximum current amplitudes of QUIC in room-temperature LT-GaAs
for different intensity combinations of the incident fundamental and second harmonic laser
pulses. Each data point is derived from a current interferogram recorded around maximum
pulse overlap at the OPA laser system. Empirical parabolic fits illustrate deviations from
the scaling of the perturbative χ(3) model. The depicted excitation fields E2ω correspond to
intensities I2ω of 0.2 GW/cm2, 0.8 GW/cm2 and 3.2 GW/cm2, respectively.
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with the measurements at the fiber laser setup. An increase in the fixed second harmonic
intensity also results in an overall increase of the current amplitudes. Here, the lowest
second harmonic intensity approximately equals the highest second harmonic intensity in
Fig. 4.2. The data points scale quadratically with low intensities of the fundamental beam,
in accordance with the χ(3) model. Empirical parabolic fits are added for illustration.
Similar to the previous measurement series, the current begins to saturate at excitation
fields in the order of 1 MV/cm. The upwards trend at the highest intensity is probably
related to a slight misalignment by the filter wheel that is used to adjust the intensity and
set to maximum transmission in this case.

Time-Resolved Measurements

In order to experimentally investigate the origin of the current saturation, further time-
resolved measurements are carried out. Although the OPA laser system covers a broader
intensity range, these measurements are predominantly performed with the fiber laser
setup. The FFS is more stable regarding beam intensity as well as alignment and allows
for reproducible measurement conditions. Furthermore, the low average powers of the OPA
system complicate a precise intensity adjustment. For example, excitation amplitudes of
Eω = 1 MV/cm and E2ω = 200 kV/cm correspond to an average OPA beam power of only
100 μW and 25 μW, respectively. Lastly, in contrast to the fiber laser setup, the focal spots
of the OPA setup exceed the gap width of the corresponding LT-GaAs sample making it
susceptible to potential illumination effects at the semiconductor-metal junction.

To get more insight into the microscopic processes that follow the pulsed laser ex-
citation, the experimental setup is modified to perform pump-probe type measurements.
Special focus is put on the influence of an increased irradiance on the measurement process.
As stated above, the injected current is mediated by an electronic dipole whose dynamics
are affected by carrier excitation. For this reason, the injected current amplitudes are
determined as a function of an additional delayed fundamental pump pulse which causes
an increase of the carrier density.

As displayed in Fig. 4.4, the additional pump beam is realized by adding a third in-
terferometer arm to the setup. To this end, a second beamsplitter is placed into the
fundamental beam arm. The transmitted beam serves as pump beam. Its relative delay
τpump with respect to the pulse pairs can be adjusted via the motorized XM stage. The
reflected fundamental and second harmonic beam provide the simultaneous pulse pairs for
QUIC. By tuning the arm length of the second harmonic beam with a piezo actuator, the
relative delay τ between the pulse pair components can be slightly adjusted. All beams
are collinearly focused on the 50 μm gap of the LT-GaAs sample that is described at the
beginning of this chapter. The polarization of the pulse pair is aligned along the width
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Fig. 4.4: Experimental scheme for time-resolved measurements of QUIC; the setup is similar
to the prototypical setup displayed in Fig. 3.1: The emitted laser pulses are frequency-doubled
in a nonlinear crystal and steered into an interferometer which allows to control the individual
delay, polarization and intensity of the beams (optics not shown). Via a beamsplitter in the
fundamental beam arm, an additional fundamental pump beam is provided. Its relative delay
τpump with respect to the other beams can be controlled with a motorized stage. The other
two arms provide the fundamental and second harmonic component of the overlapping pulse
pairs which are used for QUIC. Their relative delay τ can be fine-tuned with a piezo-driven
stage. All beams are collinearly focused on a contacted LT-GaAs sample; the photoresponse
is recorded with a lock-in amplifier.

of the gap to maximize current injection. By contrast, the pump pulse is orthogonally
polarized to the pulse pair to minimize interference effects.

Here, the pump-probe scheme is based on two probe beams, namely on the overlapping
pulse pair whose time-averaged current injection is measured as a function of the additional
pump beam. To this end, the relative delay τ between both pulse pair components is
slightly varied while keeping the arm length of the additional pump beam and in turn τpump

constant. The current amplitudes of the resulting current interferograms are extracted in
the same way as above. Such measurements are repeated for different delay times τpump as
well as different beam intensities.

Fig. 4.5 depicts the current amplitude of the interferograms as a function of the pump
delay τpump. The pulse timing is illustrated in the top of the figure. At negative delay times
τpump, the fundamental pump pulse impinges on the LT-GaAs before the pulse pair. The
calculated excitation intensities are 10 GW/cm2 for the pump pulse and 1 GW/cm2 for the
fundamental component of the pulse pair. As evident from Fig. 4.2, the pump intensity
is in the range in which current saturation occurs. The intensity of the second harmonic
beam differs for the three curves displayed in Fig. 4.5. The highest intensity approximately
corresponds to the second harmonic intensity of Fig. 4.2(a). For better comparison, the
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Fig. 4.5: Extracted current amplitudes of QUIC in LT-GaAs by a pulse pair (E2ω +Eω) as
a function of the relative delay τpump of an additional fundamental pump pulse (Eω,pump).
The relative pulse ordering with respect to the sample is displayed in the top. At negative
delay times, the pump pulse precedes the overlapping pulse pair. Current amplitudes are
extracted from the amplitudes of current interferograms recorded by slightly varying the
relative delay τ between the pulse pair components around maximum overlap while keeping
the pump delay τpump constant. Afterwards, the current amplitudes are normalized to the
corresponding amplitudes extracted for the same excitation intensities but with the pump
beam blocked. Measurements are performed with fixed intensities of the fundamental beams
and three different intensities of the second harmonic beam. Apart from a delay-independent
reduction, the current amplitudes can be described by a one-sided exponential decay with a
time constant in the order of 2 ps.

three curves are normalized to the corresponding unpumped current amplitudes. To this
end, reference current interferograms are recorded with the pump beam blocked.

The data of Fig. 4.5 reveals two main effects of the pump beam. On the one hand, the
pump pulse causes an overall decrease of the current amplitude that is almost independent
of the pump delay. On the other hand, the curves contain a delay-dependent component
for negative delay times. When τpump approaches zero, the current amplitude is more and
more reduced. An empirical exponential fit of the form − exp(τpump/T ) yields a decay
constant of T ≈ 2 ps. It should be emphasized that there is not such a distinct delay-
dependent component for positive τpump. At τpump ≈ 0, the data is distorted by residual
interference effects of both fundamental beams. For this reason, the pump-probe scheme
is not suited to identify additional effects on a timescale of 100 fs or less.

The relative magnitude of the delay-dependent and delay-independent current reduction
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depends on the second harmonic intensity. For the lowest curve in Fig. 4.5 with I2ω =

4.1 MW/cm2, a delay-independent reduction of about 85 % dominates. On the contrary,
the current decrease is almost entirely determined by the delay-dependent component for
the highest curve with I2ω = 230 MW/cm2. At τpump ≈ −0.5 ps, the corresponding current
reduction amounts to about 25 %. The curve for an intermediate second harmonic intensity
contains significant portions of both the delay-independent and the delay-dependent effect.

First, the following discussion focuses on the delay-independent current reduction. This
effect can be attributed to a carrier-induced recombination of the electronic dipole. Such
macroscopic charge separation forms after current injection and allows to measure the
injection via metallic contacts, as discussed in chapter 3.3. If the fundamental pump pulse
hits the LT-GaAs sample, it massively populates the conduction band via two-photon
absorption and excitation of defect states. In essence, these free carriers may result in a
short circuit of the dipole and in turn reduce the measured current amplitude.

A pump intensity of Iω = 10 GW/cm2 results in an estimated carrier density in the
order of 1018 cm−3. The majority is generated via excitation of defect states. Transmission
measurements on the same material yield a corresponding fundamental absorption constant
of α = 750 cm−1 that gives rise to a corresponding excitation density of 5 · 1018 cm−3.
However, such a density should only be regarded as an upper limit since the typical density
of defect states in LT-GaAs is in the same range [69; 79]. Moreover, the calculation
assumes that all photons are homogeneously absorbed within a volume given by the spot
size and the absorption depth α−1. Additionally, two-photon absorption generates a carrier
density of 1017 cm−3. This calculation is based on a two-photon absorption coefficient of
β = 3.5 cm/GW for GaAs that was determined via z-scan measurements with the same
laser system [80] and agrees with previous studies [81]. Owing to the nonlinear behavior
of two-photon absorption, the absorption length of two-photon absorption also depends on
the peak intensity I via (βI)−1.

While the picture of a pump-induced discharge mechanism is illustrative for positive
delay times τpump, it is quite counterintuitive that the the pump pulse may result in the same
current reduction if it precedes the current injection process. However, it must be taken
into account that the laser emits pulses with a repetition rate of 75 MHz. Consequently, a
slightly negative pump delay is equivalent to a delay of 13.6 ns with respect to the current
injection of the previous pulse pair. If the recombination time of the dipole significantly
exceeds the pulse separation, the discharge should be independent of the timing of the
pump pulse.

A rough estimation of the discharge time of the unperturbed electronic dipole on the
basis of its RC constant is given in the following. As already stated in chapter 3.3, the
spatial charge distribution is immobilized by defect states with a separation given by the
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beam diameter. In a first approximation, the electronic dipole can be modeled by a ca-
pacitor consisting of two oppositely charged parallel cylinders embedded in a GaAs matrix
with εr ≈ 13 [53], as sketched in Fig. 4.6. The minimum beam diameter of about 10 μm

determines the length l and distance s of both cylinders. Their diameter d defines the
depth of the charge distribution. It is set by the absorption length of the second harmonic
beam to 670 nm [9, and references within]. The resulting capacitance of both cylinders can
be approximated to C = πεrε0l/ arcosh(s/d) ≈ 1 fF [82, p. 319].

Apart from the capacitance, the decay time of the capacitor is determined by the
resistance between both cylinders. To this end, the interspace is modeled by a GaAs
cuboid with the dimensions d × s × l. Presuming a typical specific resistance of 106 Ωcm
for annealed LT-GaAs [68], the resistance amounts to R ≈ 15 GΩ. Taken together, the RC

time constant that determines the discharge of a capacitor can be computed to τRC = RC =

15 μs. In comparison, the pulse separation of the fiber laser is three order of magnitude
lower.

With the above calculated time constant, it is reasonable to assume that the electronic
dipole is practically in a steady state. After initial buildup, the electronic dipole is merely
slightly reinforced by the current injection of each succeeding pulse pair. For this reason,
the current reduction by dipole recombination should not depend on the relative timing
of the pump pulse and the pulse pair. By contrast, the pulse separation of the OPA laser
system is in the same order as the calculated discharge time. This explains why the same
sample generates barely measurable currents at the repetition rate of the OPA laser system.

Similar to the pump pulse, the dipole can also be partially discharged by the current
generating pulse pair itself. Particularly the second harmonic pulse efficiently populates the
conduction band since its energy exceeds the band gap. Indeed, the current amplitudes in
Fig. 4.2 also deviate from the theoretically predicted proportionality to E2ω and are lower
than expected at high second harmonic intensities.

Fig. 4.6: Approximation of the frozen charge dipole by two oppositely charged parallel
cylinders embedded in a GaAs matrix. The length l and distance s of the cylinders is given
by the beam diameter (cf. Fig. 3.2). The diameter d of the cylinder and in turn the depth of
the charge distribution is determined by the absorption length.
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Such discharge effects would be in line with the observed intensity dependence of the
delay-independent current reduction in Fig. 4.5. If the induced carrier density of the pulse
pair is relatively small, the discharge is dominated by the high-intensity pump pulse. On
the contrary, if the second harmonic intensity is very high, the pulse pair already results
in an efficient partial discharge of the dipole. In this case, the additional influence of the
pump pulse would be significantly reduced as observed for a second harmonic intensity
of I2ω = 230 MW/cm2. With an absorption constant of 1.5 · 104 cm−1 for 775 nm [9,
and references within] such a second harmonic intensity gives rise to a carrier density of
1018 cm−3. However, concerning a direct comparison of the electron densities, it must be
taken into account that the spot size of the second harmonic beam exceeds the spot size
of the fundamental beam. In general, it should be noted that an exact deduction of the
underlying discharge mechanism is not feasible on the basis of the data in Fig. 4.5 alone.

A central result of Fig. 4.5 is the observation that the delay-independent current re-
duction of the pump pulse vanishes at very high second harmonic intensities. This finding
helps to interpret the data in Fig. 4.2. As already stated, the observed current saturation
at low second harmonic intensities is much more pronounced than the saturation in the
theoretical simulations in section 4.1. Such a deviation can be attributed to the above
mentioned dipole discharge. On the contrary, the influence of the fundamental intensity
on the dipole discharge should be negligible for the curve in Fig. 4.2(a).

Apart from the delay-independent reduction, the data in Fig. 4.5 also contains a com-
ponent that depends on the timing of the pump beam. It is most pronounced if the
delay-independent reduction is suppressed and can be approximated by a one-sided expo-
nential decay. The decay constant of T ≈ 2 ps matches the typical trapping time of defects
in LT-GaAs [70; 72–74]. In specific, additional time-resolved transmission measurements at
the same LT-GaAs material yield a trapping time in the order of 1 ps [43]. These features
indicate that this current reduction component is directly related to an interaction of the
pump-induced carrier density on the one side and the current injection by the pulse pair
on the other side.

After excitation, the carriers rapidly relax to the band minimum and are trapped in
defect states within the following picoseconds. As a result, for τpump � −1 ps, the pump-
induced carriers have already been trapped in defect states when the pulse pair impinges.
If τpump approaches zero, the residual density of free carriers increases and the current
amplitude decreases. For τpump > 0, at which the pulse pair precedes the pump pulse,
the current amplitude returns practically instantaneously to the baseline level. Because
of the interference effects of the fundamental pump and probe pulse in Fig. 4.5, an exact
deduction of the behavior at τpump ≈ 0 is not feasible. Nevertheless, the data indicate
that this current reduction component depends on the density of free carriers during the
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current injection process which takes place on a time scale in the order of 100 fs, given by
the width of the pulse pair. A detailed discussion of the processes on such a time scale is
given in chapter 4.3.

The distortion by the interference of both fundamental pulses motivates another set
of experiments with the two-beam setup depicted in Fig. 3.1. The current interferograms
of the two-beam experiment reflect the current injection as a function of the temporal
overlap of the approximately 100 fs wide pulses. In case that the current injection depends
on the exact ordering of the fundamental and second harmonic pulse, such an effect should
manifest in the envelope of the current interferogram. To this end, full interferograms as
in Fig. 3.3 are recorded for different intensity combinations. Subsequently, the difference
between the respective upper and lower envelopes of the oscillating current signal are
numerically extracted.

Fig. 4.7(a) exemplarily displays these differential envelopes for different fundamental
intensities and a fixed second harmonic intensity of I2ω = 340 MW/cm2. For better com-
parison, all curves are normalized to unity. In this way, the delay-independent intensity
dependence of the current injection, particularly the above mentioned dipole discharge ef-
fect, cancels out. As illustrated in the top of Fig. 3.3, the fundamental pulse precedes the
second harmonic pulse for τ < 0.

The curves reveal a significant influence of the fundamental intensity on the width
of the envelopes. While the envelopes are almost unchanged for τ > 0, an increase of
the fundamental intensity results in a marked current reduction for τ < 0 at which the
fundamental pulse precedes. For example, at τ = −60 fs the current is reduced by up
to 15 %. Such a behavior is in line with the measurements of Fig. 4.5 and corroborates
that the current reduction is sensitive to the pulse ordering. However, it should also be
noted that both experiments are not directly comparable because of the different pulse
combinations.

For a quantitative analysis, the widths (FWHM) of the envelopes are extracted. These
are plotted in Fig. 4.7(b) as a function of the fundamental excitation intensity for different
fixed second harmonic intensities. The latter are distinguished by different symbols. In
general, the covered intensity range is similar to the range of Fig. 4.2. As expected, the
envelope widths decrease with an increase of the fundamental intensity. In comparison to
the data point at the lowest fundamental intensity, the widths decreases by up to 10 %.

The current envelopes are also evaluated for the measurements at the OPA laser system
whose amplitudes are depicted in Fig. 4.3. In contrast to the measurements above, a signif-
icant and reproducible influence of the fundamental intensity on the envelopes cannot be
determined. However, it should be noted that the current interferograms are much noisier,
particularly at the lowest intensities, which impedes an exact analysis. Furthermore, the
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Fig. 4.7: (a) Envelopes of current interferograms recorded at the fiber laser setup for different
intensities of the incident fundamental and second harmonic pulses. The curves represent the
normalized difference of the upper and lower envelopes of current interferograms recorded
by varying the relative delay τ between the fundamental and second harmonic pulses (cf.
Fig. 3.3). At negative delay times τ , the fundamental pulses precede the second harmonic
pulses. The relative current reduction at τ < 0 is illustrated by an arrow at τ = −60 fs. (b)
Temporal width (FWHM) of the envelopes of the interferograms as a function of irradiance.
Arrows denote the temporal width of the corresponding envelopes depicted in (a).

expected influence on the envelopes should be in general less pronounced since the pulses
and in turn the current interferograms are only half as wide compared to the measurements
at the fiber laser setup. Finally, the pulse intensities of the OPA system may be too high.
As depicted in Fig. 4.3, the current amplitudes already begin to flatten after the third data
point. In the case of maximum saturation, a further increase of the excitation intensity
would not be expected to affect the envelopes.

4.3 Discussion of Ultrafast Dynamics

In this chapter, the underlying mechanisms of the saturation effects of the experimen-
tal measurements and the numerical simulations of QUIC are discussed. While the dis-
cussion in the previous chapter focuses on the influence of the rather long-living frozen
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charge dipole, the present chapter addresses the dynamics on picosecond and femtosecond
time scales. In particular the previously mentioned time-resolved measurements indicate
a marked distortion of current injection on such time scales.

The delay-dependent component of the pump-probe measurements (cf. Fig. 4.5) im-
plies a link between the current saturation and the density of free carriers during current
injection. Such an influence can be attributed to different mechanisms. First, an enhanced
carrier density affects the motion of the injected carriers. Second, a massive population
of the bands influences electron transitions and therewith current injection. At the end
of the chapter, the influence of a further higher-order effect, the intraband acceleration, is
discussed.

Influence of Current Dynamics

After current injection by the pulse pair, the carriers form an electronic dipole in the
LT-GaAs sample. Following the approach of Zhao et al., the dynamics of such a dipole
can be approximated by a rigid shift model [67]. To this end, the dipole is modeled by
two slightly shifted Gaussian charge distributions describing electrons and holes. Both
distributions attract each other via Coulomb forces of the resulting space-charge field that
eventually leads to a dipole recombination. With the simplification that the width of the
distributions is fixed, the dynamics can be shown to resemble a damped harmonic oscillator.
In specific, the oscillation period is determined by the inverse plasma frequency Ω−1. To
apply such a model on the measurements presented above, the properties of LT-GaAs have
to be taken into account since the study of Zhao et al. focuses on QUIC in GaAs/AlGaAs
multi-quantum wells and bulk GaAs.

Defect states in LT-GaAs freeze the electronic dipole before it recombines and therefore
allow for a measurement via external electrical contacts. In essence, the dynamics can be
thought of as a competition between the carrier trapping on the one side and the dipole
recombination on the other side. While the trapping time is more or less fixed with a time
constant in the order of 1 ps, the plasma frequency increases with the carrier density. As a
consequence, a high carrier density may result in a partial recombination before the dipole
is immobilized by trap states.

The plasma frequency Ω of electrons with an effective mass m∗
e and a density of ne in

a solid is given by Ω2 = nee
2/(4π2εm∗

e) [19; 47, ch. 7]. Consequently, the inverse plasma
frequency Ω−1 is proportional to 1/

√
ne. For GaAs and the above mentioned excitation

densities of about 1018 cm−3, the inverse plasma frequency is in the order of 1 ps and
comparable to the trapping time. If the density decreases, the inverse plasma frequency
prolongs.

Regarding the pump-probe measurements, the residual carrier density during current
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injection increases if τpump of the preceding pump pulse approaches zero. As a result, Ω−1

decreases. Simultaneously, the current injection amplitude decreases. However, concerning
positive delay times at which the pump pulse succeeds the pulse pair, the observed temporal
dependence does not seem fully consistent with the dynamics of the rigid shift model. If
such processes take place on a picosecond time scale during and after current injection,
a high-intensity fundamental pulse would be expected to influence the current amplitude
at least partially even if it slightly succeeds the pulse pair. The increase of the plasma
frequency would just be slightly delayed. However, it must be emphasized that the rigid
shift model is only intended to illustrate the carrier dynamics in a qualitative way and does
not describe the exact dynamics [67].

Numerical calculations for multiple quantum wells by Sherman et al. that are based on
a hydrodynamic model yield significant deviations of the dipole dynamics from the rigid
shift model [83]. Particularly at high carrier densities, the behavior of an electron-hole
plasma is predicted to be nonuniform and in general more complex because of carrier-carrier
interactions, specifically Coulomb interaction and drag effects. Thus, it is not unexpected
that the carrier dynamics may depend on the pulse ordering. At room temperature and
moderate carrier densities, currents that are optically injected into LT-GaAs rapidly relax
on a time scale in the order of 100 fs, predominantly by LO-phonon scattering and impurity
scattering [9, and references within]. If a high-intensity fundamental pulse precedes the
second harmonic pulse, the current is injected into an already existing electron-hole plasma
that immediately affects the carrier motion. In the reverse case, however, the current may
have already relaxed when the additional electron-hole plasma is generated.

The specific influence of an enhanced carrier density on the decay of the injected current
has also been theoretically investigated by Duc et al. [39; 40]. Indeed, the studies reveal
that while the current relaxation is dominated by interaction with LO-phonons at low
densities, the influence of carrier-carrier scattering increases with the electron density.
However, a quantitative comparison with the measurements presented here is not feasible
because the simulations only cover one- and two-dimensional structures.

Band Filling Effects

The simulations presented in chapter 4.1 are specifically based on a three-dimensional
model with excitation conditions similar to those of the experimental study. These simu-
lations yield the current density right after injection without the influence of succeeding
dipole dynamics. Since relaxation processes are treated in a phenomenological way with
a constant relaxation time, the influence of an intensity-dependent scattering is also not
explicitly included in the simulations. By switching off these subsequent current dynam-
ics, the simulations specifically allow to investigate the behavior of QUIC itself at high
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intensities. As the simulations still predict a current saturation for elevated intensities (cf.
Fig. 4.1), it can be concluded that the injection process itself deviates from the perturbative
theory at such excitation intensities.

At high excitation intensities, electron transitions and therewith QUIC are predicted to
be influenced by band filling effects during the light-matter interaction [39; 40]. According
to Pauli’s exclusion principle, there is only a finite number of Bloch states available in
a band. Furthermore, optical transitions only address a relatively small portion of these
states that is determined by the photon energy. Therefore, a high-intensity pulse is able to
excite a high percentage of the addressed electrons in the valence bands into the conduction
band. As a consequence, the absorption of a succeeding pulse is reduced as there are less
electrons in the valence bands and less free states in the conduction band left. With respect
to a pump pulse whose energy exceeds the band gap, such bleaching effects have already
been observed in GaAs [84–86]. Since QUIC is based on the simultaneous absorption of
two pulses that address the same states, it is also predicted to be affected by state blocking.

In a first approximation, band filling effects can be estimated by calculating the number
of addressed states. According to the effective-mass approximation, the energy dispersion
E(k) and the resulting density of states D(E) at the Γ-point (k = 0) can be described by
a parabolic band [87, ch. 6.15] with

E =
�
2|k|2
2m∗

e
and D(E) =

1

2π2

(
2m∗

e

�2

) 3
2 √

E. (4.4)

Here, m∗
e denotes the effective electron mass. Concerning optically induced transitions,

the excess energy E is determined by the photon energy. Owing to the negligible photon
momentum, a transition from a hole to the conduction band connects states with virtually
the same k-vector. The excess kinetic energy of the excited electrons and holes can be
calculated on the basis of the energy conservation taking the band gap EG into account. In
essence, the excess energy of electrons and holes is weighted by their effective masses. For
GaAs and an excitation energy of 1.6 eV, as used in the experiments in chapter 4.2, the
excess energy amounts to 160 meV for electrons in the conduction band and 20 meV for
heavy holes. Because of their high effective mass, the hole density of states is dominated
by heavy holes and exceeds the corresponding density in the conduction band. Therefore,
the number of addressed states is mainly limited by the conduction band.

The energy bandwidth of optically addressed states in a band is determined by the
temporal pulse width tp (FWHM). According to the time-bandwidth product (see also
chapter 5.1), the minimum frequency bandwidth of a laser pulse is given by Δf = 0.44/tp.
In turn, the energy bandwidth can be calculated via ΔE = hΔf which results in 20 meV

for a 90 fs pulse width. As a first approximation, the total number of addressed states in
the conduction band can be estimated by multiplying the energy bandwidth ΔE with the
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density of states D(E). With the above calculated parameters, the density amounts to
9 · 1017 cm−3 for electrons and 7 · 1018 cm−3 for heavy holes.

The density of potentially addressed states compares with the number of excited carriers
that is estimated on the basis of the absorption coefficients. The calculation is performed
in the same way as in chapter 4.2. It is assumed that all photons are absorbed within a
volume determined by the spot size and the absorption length. Regarding the fiber laser
setup and the corresponding simulations, an excitation with the fundamental wavelength
of 1550 nm and an intensity of 18 GW/cm2 gives rise to a density of 4 · 1017 cm−3 via two-
photon absorption. As mentioned in chapter 4.2, direct absorption of a second harmonic
beam with a peak intensity of 230 MW/cm2 generates a carrier density of 1018 cm−3.
Furthermore, the fundamental beam may excite carriers in the order of 1018 cm−3 from
defect states in LT-GaAs that are not included in the simulations. However, since these
defect states are scattered in the band gap [68–70], their excitation does not necessarily
address the same states as the interband transitions.

Regarding the measurements at the OPA setup, the calculated carrier densities are
even higher. At the highest intensities displayed in Fig. 4.3, the densities are 3 · 1018 cm−3

for two-photon absorption and 9 · 1018 cm−3 for direct interband absorption. On the other
side, the energy bandwidth and in turn the number of addressed states is doubled due to
the shorter pulse length of about 50 fs.

The comparison of the number of potentially addressed states on the one hand and the
calculated number of excited carriers on the other hand implies that absorption saturation
has a significant influence at such excitation intensities. Obviously, the calculation of the
excited carriers is only a rough estimation and should be regarded as an upper limit, not
least since these partially exceed the number of addressable states. Nevertheless, it can be
concluded that increasing the excitation intensity should indeed significantly reduce the
number of available states and therefore influence QUIC.

In order to investigate experimentally whether increased fundamental excitation results
in substantial Pauli blocking via two-photon transitions alone, the transmission of intrinsic
GaAs is probed by time-resolved measurements. These measurements are performed at
the interferometric fiber laser setup (cf. Fig. 3.1) to provide the same range of excitation
intensities as in the current measurements and in the simulations. The LT-GaAs sample
is exchanged with a 400 nm thick layer of GaAs glued on a thin glass substrate since the
thickness of the contacted LT-GaAs clearly exceeds the absorption length of the second
harmonic beam and would impede transmission measurements. Also, by using nominally
intrinsic GaAs, the influence of defect states is minimized.

By changing the relative length of one interferometer arm, the transmission of a weak
second harmonic probe beam is measured as a function of the delay of a high-intensity
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fundamental pump beam. To this end, the transmitted beams are filtered with a shortpass
and focused with a lens onto a silicon photodiode. Its photocurrent is proportional to
the intensity of the incident light and recorded by a lock-in amplifier. Since both beams
address the same states in the conduction band, the transmission of the second harmonic
beam reflects the state occupation induced by the fundamental beam.

Fig. 4.8(a) displays the pump-induced relative transmission change of the second har-
monic beam as a function of the relative delay τ between the pump and probe pulses.
Peak intensities of the fundamental pump beam and the second harmonic probe beam
are 7.5 GW/cm2 and 4.2 MW/cm2, respectively. The transmission change is measured by
referencing the lock-in amplifier to a chopper that is placed into the fundamental beam
arm. The measured data is divided by the absolute transmission of the second harmonic
beam to calculate the differential transmission. Additionally, by multiplying by a factor of
≈ 4, the transmission is corrected for the smaller spot size of the pump pulse compared to
the probe spot. The solid black curve represents a smooth function that is applied to filter
noise and interference effects. The latter probably stems from residual second harmonic
intensity in the fundamental arm or SHG by the pump beam.

The curves reveal a significant τ -dependent influence of the fundamental pump beam. If
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Fig. 4.8: (a) Differential transmission of a second harmonic probe beam through a 400 nm
thick layer of GaAs as a function of the relative delay of a high-intensity fundamental pump
beam. At negative delay times, the pump pulses precede the probe pulses. The transmission
is corrected for the different spot sizes of the pump and probe beam. The decay of the
transmission increase at negative delay times can be approximated by a biexponential function
with decay constants in the order of 100 fs and 2 ps. (b) Maximum differential transmission (in
(a) at τ ≈ −0.1 ps) as a function of the fundamental pump beam intensity with an empirical
parabolic fit.
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a probe pulse precedes a pump pulse, the transmission is unchanged. However, if the pulses
impinge simultaneously, the transmission is increased by up to 1.6 %. Fig. 4.8(b) plots the
measured maximum transmission change as a function of the fundamental pump inten-
sity. As expected for excitation by two-photon absorption and illustrated by an empirical
parabolic fit, the transmission change rises approximately quadratically.

The relative transmission change is comparable to previous studies of absorption satura-
tion in GaAs induced by a pump pulse whose energy exceeds the band gap [85]. An extrapo-
lation on the basis of the data in reference [85] yields an excitation density of 1.7 · 1017 cm−3

by two-photon absorption. It is in the same order as the density of 7 · 1016 cm−3 calculated
by the two-photon absorption coefficient. Taking the simplifications of the calculations
and the uncertainty of the nonlinear two-photon absorption coefficient into account, both
densities agree quite well.

After pump excitation, the transmission decays with two time constants, 100 fs and 2 ps.
The former decay constant can be attributed to the electron and hole relaxation to the band
minimum and maximum, respectively [71]. Similar thermalization times have also been
observed for absorption saturation induced by a pump beam whose energy exceeds the band
gap [84; 86]. The longer decay component can be attributed to interband recombination,
e.g. by electron-phonon scattering.

The longer decay component implies a significant occupation of the optically addressed
states even if the carrier distribution is thermalized. The required density to completely
fill the corresponding bands from their minimum or maximum to the optically addressed
states can be calculated by integrating the density of states. With the above mentioned
parameters, the total density amounts to 5 · 1018 cm−3 for electrons and heavy holes each.
However, since the distribution is smeared out due to thermalization, even lower excitation
densities are sufficient to influence the absorption. The broadening at room temperature
can be approximated by kBT = 26 meV. It is comparable to the energetic pulse width and
the excess energy of the optically excited heavy holes. In comparison, the excess energy
of excited electrons is 160 meV. Therefore, the longer decay component of the observed
transmission decrease can be predominantly attributed to state blocking in the heavy hole
band.

In general, the temporal behavior of the transmission measurements in Fig. 4.8 is con-
sistent with the temporal behavior of the current measurements in Fig. 4.5 and Fig. 4.7.
If the second harmonic pulse hits the sample first, its absorption is not affected by the
succeeding high-intensity fundamental pulse and the current injection is only reduced by a
delay-independent component. If the fundamental pulse impinges on the sample first, there
is already a substantial number of states occupied when the second harmonic beam arrives.
At such delay times the second harmonic absorption as well as the measured current is
reduced. When the fundamental pump pulse precedes the second harmonic pulse by about
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1 ps, the absorption and the current are influenced by a thermalized carrier distribution
that has partially recombined.

In conclusion, the transmission measurements corroborate that state blocking by two-
photon absorption has indeed a significant influence at such excitation intensities. A quan-
titative comparison of the observed transmission changes on the one side and the measured
and simulated current injection on the other side reveals that the relative current reduc-
tion is higher than the corresponding absorption reduction. However, it must be taken
into account that QUIC is a nonlinear process that cannot be directly compared to the
transmission measurements. Probably, the influence of state blocking is higher for QUIC
since it relies on two transition paths, one-photon and two-photon absorption, that both
depend on the number of available states. Furthermore, the transmission measurements
do not include the influence of a high-intensity second harmonic pulse and, in case of the
measurements, LT-GaAs defect states.

Influence of Intraband Acceleration

Concerning the second harmonic intensity, the theoretical simulations shown in Fig. 4.1
predict a weak influence on the current saturation. Although the peak electric field am-
plitude of the second harmonic beam varies by an order of magnitude, the onset of the
saturation does not significantly change. Indeed, the onset of the current saturation mea-
sured at the OPA setup and shown in Fig. 4.3 does not considerably depend on the second
harmonic intensity, either. As already stated, the corresponding measurements at the fiber
laser setup in Fig. 4.2 cannot be directly compared because of additional discharge effects
at low second harmonic intensities. However, the reduction of the current envelope width
in Fig. 4.7, wherein delay-independent effects cancel out, also reveals a weak influence of
the second harmonic intensity.

If current saturation solely depended on the total number of excited carriers, a more
pronounced influence of the second harmonic intensity would be expected. In the inves-
tigated intensity range, one-photon absorption of a second harmonic pulse is estimated
to excite a comparable or even higher number of carriers than two-photon absorption of
a fundamental pulse. In order to excite a fixed number of carriers by a pulse pair, the
required intensity of the fundamental component is reduced if the intensity of the second
harmonic component increases. As a consequence, an increase of the second harmonic
intensity would be expected to shift the onset of the current saturation to lower intensities
of the fundamental beam. However, the measurements and particularly the simulations
that do not include additional current dynamics or potential influence of LT-GaAs defect
states do not reveal such a pronounced behavior.

For the discussion of these observations it is instructive to recall the underlying theory
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of the perturbative approach of QUIC on the one hand and the numerical simulations on
the other hand. As detailed in chapter 2.2, the perturbative approach of QUIC is based on
two interfering transition paths based on two-photon absorption of a fundamental beam
and one-photon absorption of a second harmonic beam. Regarding the band structure (c.f.
Fig. 2.1(a)), the corresponding processes are illustrated by vertical transitions. However,
strictly speaking, these transitions only represent the lowest orders of the time-dependent
perturbation expansion. One-photon absorption is described by a first order perturba-
tion term and two-photon absorption by a second order perturbation term. While this
approximation is valid at low intensities and correctly predicts QUIC in this regime, a
perturbative approach principally does not describe the full light-matter interaction. This
also applies to the above mentioned influence of Pauli blocking that has been treated in
the same perturbative picture by two transitions that address the same states.

In contrast to the perturbative theory, the theoretical simulations in chapter 4.1 repre-
sent exact solutions of the semiconductor Bloch equations. With respect to the underlying
model, the simulations fully describe the light-matter interaction and the injected current.
If the excitation intensities increase, the perturbative theory deviates more and more from
the exact solution and the simple picture of two vertical transitions breaks down. In fact,
it can be shown that QUIC also relies on intraband interactions of states with different
quasimomenta k [40]. Specifically, it can be shown that the interaction of an electric field
with carriers in a semiconductor can be described by an explicit intraband acceleration
term which modifies the quasimomentum [40; 88–90]:

k̃ = k+
e

�

∫
E(t) dt (4.5)

Taken alone, the term leads to a k-shift of the carriers and in case of a light wave to
an oscillation that broadens the carrier distribution in the k-space [40]. In the case of
optical excitation, the maximum k-shift can be estimated by integrating the maximum
field amplitude over half an oscillation period:
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If the equation is evaluated for a fundamental pulse with the frequency f = c/λ and a
peak field amplitude of Eω = 1 MV/cm at which current saturation occurs, the maximum
k-shift amounts to Δkω = 2.5 · 108 1/m. Remarkably, such a shift corresponds to about
1 % of the width of the first Brillouin zone of GaAs [53] and is accompanied by a significant
energy shift. In comparison, a second harmonic pulse with a maximum field amplitude in
the order of 200 kV/cm yields a k-shift of only Δk2ω = 2.5 · 107 1/m.

In the following, a qualitative estimation of the influence of a significant k-shift on
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QUIC is given. It must be noted that a quantitative evaluation of the influence of a single
interaction term on the resulting current injection is difficult, not least since there are
other interaction terms involved, such as interband excitation. Furthermore, interference
effects of the electric fields contribute to QUIC. On the basis of the parabolic band approx-
imation (4.4), the excess energy and energy bandwidth of the optically addressed states
in the conduction band can be calculated to 160 meV and 20 meV, respectively. Their
corresponding quasimomentum is in the order of 5 · 108 1/m and therefore comparable to
the additional k-shift by the fundamental pulse. Consequently, it is reasonable to assume
that at such excitation intensities the transitions are significantly affected by the k-shift
and the perturbative theory of QUIC breaks down. Furthermore, such a k-shift of the
occupied states would also complicate the Pauli blocking mechanism.

Concerning the dependence of the current saturation on the second harmonic pulse,
it is important to note the intensity dependence of the intraband acceleration term (4.5).
In contrast to carrier excitation by one-photon and two-photon absorption, the intraband
acceleration term features the same linear dependence on the electric field amplitude for
both the fundamental and the second harmonic beam. Therefore, the maximum k-shift of
the second harmonic beam is lower than the corresponding maximum of the fundamental
beam in the investigated intensity range. Such a relative weak influence of the second
harmonic intensity is consistent with the intensity dependence of the simulations in Fig. 4.1.

In conclusion, the comparison of the theoretical simulations with the estimated intra-
band acceleration terms indicates that the perturbative theory of QUIC indeed breaks down
in the investigated intensity range and Pauli blocking alone is not sufficient to completely
describe the deviations. Since the intraband acceleration only occurs during the light-
matter interaction, it can obviously not be attributed to all experimental measurements,
in particular not to the current reduction by a preceding pump pulse.

4.4 Conclusion and Outlook

The behavior of QUIC in GaAs in the high-intensity regime is extensively studied. As pre-
dicted by numerical simulations, measurements of the current injection amplitude show
pronounced saturation effects if the peak intensity of the fundamental beam exceeds
5 GW/cm2, which corresponds to an electric field amplitude of 1 MV/cm. Additional
time-resolved measurements as well as theoretical estimates are conducted to discuss the
cause of these deviations from the perturbative approach of QUIC.

In practice, current injection is measured via contacted LT-GaAs samples. Pump-probe
type measurements reveal that the observed current reduction can partly be attributed to
carrier dynamics that follow the current injection. In essence, an increase of the intensity
results in a higher carrier density that in turn reduces the magnitude of the measured
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charge dipole.
The theoretical simulations specifically address the current injection process itself in

bulk GaAs. They represent exact solutions of the semiconductor Bloch equations that
describe the light-matter interaction. The excitation conditions of the underlying three-
dimensional model are similar to those of the experimental study. Therefore, saturation
features in the simulations reflect deviations of QUIC from the perturbative approach at
experimentally accessible intensities.

In a first approach, the influence of Pauli blocking via a massive population of the
optically addressed states is investigated. A comparison of the calculated number of po-
tentially addressed states on the one side and the number of excited states on the other
side implies a significant influence of state blocking at such intensities. Experimentally,
this influence is corroborated by time-resolved transmission measurements at a thin GaAs
layer that reveal a significant absorption saturation. Such effects are also consistent with
features of the current injection measurements.

The intensity dependence of the simulated current injection implies further deviations
of QUIC beyond Pauli blocking. It can be shown that QUIC also relies on intraband inter-
action of states with different quasimomentum. Specifically, such a light-matter interaction
can be described by an explicit intraband acceleration term. A calculation of this term for
the investigated intensity regime yields a substantial shift of the carriers’ quasimomentum
implying a significant influence on QUIC.

In conclusion, the study indicates significant deviations of QUIC from the perturbative
χ(3) picture at experimentally accessible excitation intensities. An experimental implemen-
tation of a terahertz detection scheme for QUIC would allow for further investigations from
a different point of view. Since terahertz emission originates from the accelerated carriers,
it would be less influenced by the formation of the carrier dipole.
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Chapter 5

Phase-Retrieval of Ultrashort Laser
Pulses via QUIC

The invention of ultrashort pulse lasers with pulse durations in the picosecond and fem-
tosecond range [12; 13] triggered the development of new optical applications in research
and industry. The high peak intensity of ultrashort laser pulses allows to investigate novel
nonlinear optical effects [64], such as QUIC. Furthermore, the high peak intensities can be
utilized for precise material processing [91–93]. In essence, the short pulse widths minimize
damage of adjacent material. Besides, ultrashort pulses allow for time-resolved measure-
ments with a temporal resolution determined by the pulse length [64; 94]. Therefore, a
precise temporal characterization of ultrashort pulses is of central importance.

Because of their short duration, the temporal characterization of femtosecond laser
pulses is a non-trivial task. The temporal intensity profile of such a pulse cannot simply be
recorded by electronic means, e.g. with a photodiode, as these measurements are limited to
at least picoseconds by parasitic capacitances. Apart from that, a time-resolved intensity
measurement of a laser pulse only yields the envelope of the electric field component.
However, if the duration of a pulse corresponds to only a few dozens optical wavelengths,
as for femtosecond pulses, the spectral phase of the electromagnetic wave is also essential
for the temporal characterization.

Ultrashort laser pulses are generated via modelocking, that is an in-phase superposition
of different electromagnetic waves centered around a central frequency [28, ch. 8.3]. Owing
to a wavelength-dependent speed of light, propagation of a laser pulse through a dispersive
material, for example glass, induces a phase difference of the spectral components that in
turn results in temporal pulse broadening [28, ch. 17.1]. In order to compensate for such
effects, it is desirable to know about the spectral phase of the pulses.

In order to overcome the aforementioned challenges, sophisticated methods for temporal
pulse characterization have been developed [30; 31]. Typically, these methods are based
on the spectral response of a nonlinear optical effect which allows to deduce the spectral
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phase. In the case of SHG-FROG (second harmonic generation – frequency-resolved optical
gating) [32–34], the employed nonlinearity is second harmonic generation. The required
temporal resolution is achieved by sampling a pulse with a replica of itself. Finally, the
spectral phase can be extracted from the spectral response via an iterative algorithm.

In the following, a novel phase-retrieval method based on QUIC is presented. Similar to
SHG-FROG, the pulse is sampled by a replica of itself and its second harmonic. However,
because of its explicit phase dependence, QUIC directly allows to extract the spectral phase
of the pulses by calculating the Fourier transform of one current interferogram without the
need for a complex algorithm.

The underlying theoretical concept of phase-retrieval is outlined in chapter 5.1 after
a short introduction into the general characterization of ultrashort laser pulses. Chapter
5.2 focuses on the experimental implementation of the new method as well as SHG-FROG
that is used as reference. By a comparison of both methods for laser pulses with different
spectral phases, phase-retrieval via QUIC is finally evaluated in chapter 5.3.

Parts of the results that are presented within this chapter have already been published
in reference [45] and are in preparation for publication elsewhere [46].

5.1 Theoretical Background of Spectral Phase-Retrieval

The proposed method to retrieve the spectral phase of a pulse is based on QUIC. It utilizes
the interference of a fundamental laser beam and its second harmonic. The underlying
theory of the method is presented in detail in this chapter. But first, a short introduction
into the characterization of ultrashort laser pulses is given.

Characterization of Ultrashort Laser Pulses

Concerning the temporal behavior, the electric field amplitude of a laser pulse can typically
be approximated by a Gaussian envelope which is modulated by a carrier wave [27, ch. 22.1]:

E(t) ∝ exp

[
−2 ln(2)

(
t

tp

)2
]

exp (iω0t) + c.c. (5.1)

The angular frequency ω0 determines the central wavelength of the wave packet. Here,
the envelope is chosen in such a way that tp represents the common definition of the pulse
duration, the full width at half maximum (FWHM) of the intensity given by I ∝ |E|2.

Intensity autocorrelation constitutes a typical method to determine the FWHM experi-
mentally [27, p. 1002f; 28, p. 489ff]. As sketched in Fig. 5.1, the laser pulse is split up
and superimposed with itself in a nonlinear crystal. One of the three emerging frequency-
doubled beams is generated by frequency-mixing of both incoming pulses and only present
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Fig. 5.1: Experimental scheme of intensity autocorrelation: Two delayed laser pulse replicas
are superimposed in a nonlinear crystal. The intensity of the central emerging frequency-
mixed beam is recorded with a photodiode as a function of the relative delay τ . The temporal
width of the resulting autocorrelation signal is related to the laser pulse width.

if these overlap spatially as well as temporally. Its intensity is recorded by a photodiode as
a function of the delay τ between the two incoming pulses. The resulting curve corresponds
to an autocorrelation, thus giving the method its name. With respect to laser pulses with
a Gaussian envelope as described in equation 5.1, the FWHM of the autocorrelation signal
(FWHMA) is directly related to the pulse duration tp via tp = FWHMA/

√
2.

While intensity autocorrelation is an appealing method owing to its simple setup, it
also inherits critical limitations that have to be taken into account. Obviously, an auto-
correlation is always symmetric with respect to the time axis. Therefore, it does not allow
to reconstruct the actual pulse envelope and may conceal a deviation from the typical
assumption of a Gaussian. As a direct consequence, it is impossible to derive the spectral
phase of a laser pulse from intensity autocorrelation.

The spectral phase is related to the Fourier representation of E(t):

E(t) =

∫
Ê(ω) exp(iωt)dω (5.2)

Here, Ê(ω) denotes the Fourier transform of E(t). As a complex function, Ê(ω) can also
be expressed as Ê(ω) = |Ê(ω)| · exp (−iφ(ω)), separating the spectral amplitude |Ê(ω)|
from the spectral phase φ(ω). The spectral amplitude |Ê(ω)| can easily be retrieved from
a spectral measurement of a pulse. To illustrate the influence of the spectral phase, two
exemplary laser pulses are discussed.

Fig. 5.2 depicts the electric field amplitude of two pulses in time-domain as well as
frequency-domain connected via Fourier transformation. Both pulses feature the same
Gaussian spectral amplitude. However, their temporal shapes differ because of the different
spectral phases. The left pulse exhibits a flat spectral phase, that is, all spectral components
are in phase, also called mode-locked. In this case, the pulse duration is only determined
by the width of the spectrum via the time-bandwidth product Δω · tp = 2π · 0.44 [27,
p. 938]. Consequently, such pulses are called transform-limited or bandwidth-limited. For
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Fig. 5.2: Spectral and temporal representation of a transform-limited pulse (left) and a pulse
with positive GVD (right). Both pulses feature the same spectral bandwidth Δω. The phase
curvature on the right side results in temporal broadening.

a fixed spectral width Δω, the equation also marks the minimum possible pulse duration.
A deviation from the Gaussian spectral amplitude or the flat phase results in a longer pulse
duration.

If the pulse propagates through a dispersive medium, the spectral phase changes. Owing
to the frequency-dependent speed of light, different frequency components propagate with
a different velocity. To quantify this dispersion, the Taylor expansion of the spectral phase
centered around the central frequency ω0 is employed [28, p. 466ff]:

φω0(ω) = φ(ω0) + φ′(ω0)(ω − ω0) +
1

2
φ′′(ω0)(ω − ω0)

2 +O(ω3) (5.3)

Linear terms correspond to an overall delay of the pulse that does not affect the envelope
of the pulse. Concerning the pulse duration, only the quadratic and higher-order terms are
relevant. If these are nonzero, the pulse is said to be “chirped”. For typical experimental
scenarios involving dispersion by common glass substrates, the quadratic term dominates
[29, p. A150ff]. It is characterized by the curvature φ′′(ω0), the group velocity dispersion
(GVD) which is denoted by φ′′

ω0
in the following. Higher-order terms are usually at least

an order of magnitude smaller.
The right part of Fig. 5.2 depicts a chirped pulse with a positively curved spectral

phase (GVD > 0). In contrast to the unchirped transform-limited pulse on the left, the
spectral components are out of phase and delayed with respect to each other; the longer
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wavelength components precede the shorter wavelength parts. As a direct consequence,
the pulse broadens. For a purely quadratic phase the resulting pulse duration tp can
be calculated via the following analytic expression with t0 denoting the FWHM of the
corresponding transform-limited pulse [28, p. 470ff]:

tp = t0

[
1 +

(
4 ln(2)φ′′

ω0

t20

)2
]1/2

(5.4)

Evidently, broadening by GVD becomes more relevant with shorter pulses, specifically
in the range of 100 fs or less. On the one hand, short pulses feature a broad spectrum
according to the time-bandwidth product, making them susceptible to dispersion. On the
other hand, a slight broadening by a few femtoseconds has only a relatively small impact
if the pulse duration is in the order of picoseconds.

Since phase-induced pulse broadening is a reversible process, a positive phase curvature
may be compensated by introducing a material with a negative GVD. Therefore, it is
desirable to know about the spectral phase. However, the phase is not directly accessible
as only the intensity of the pulses (I ∝ |E|2) can directly be measured wherein the phase
cancels out. This has led to the development of more advanced concepts [30; 31], most
notably the class of MIIPS (multiphoton intrapulse interference phase scan) [95; 96], FROG
(frequency-resolved optical gating) [32–34; 97] and SPIDER (spectral phase interferometry
for direct electric field reconstruction) [98–101]. In the case of MIIPS, the spectral phase is
derived from the response of SHG to an additional phase modification by a pulse shaper.
Similar to intensity autocorrelation, the latter two methods are based on a superposition of
pulse replicas employing non-linear effects. The spectral phase is retrieved with the use of
additional information, namely the spectrum as well as interference. A detailed description
of SHG-FROG (second harmonic generation – FROG) is given in chapter 5.2.

Here, a new method for phase-retrieval based on QUIC is proposed and experimentally
demonstrated. Most notably, the underlying nonlinearity explicitly depends on the spectral
phase. In essence, the spectral phase of the pulses can be directly retrieved from the Fourier
transform of only one current interferogram.

Derivation of Phase-Retrieval via QUIC

In the following, the theoretical derivation of the proposed phase-retrieval method is
sketched. To begin with, it is instructive to recall equation (2.12) that describes the
current injection rate of QUIC. For reasons of clarity, the complex conjugated terms are
omitted in the following:

dJa

dt
= ηabcd3 (ω)Eb(ω)Ec(ω)Ed(2ω) (5.5)
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In comparison with the relation I ∝ E ·E that describes the intensity of an electric
field, the current injection rate additionally depends linearly on the electric field amplitude
of the second harmonic field. As a consequence, current injection explicitly depends on the
optical phase, in contrast to an intensity measurement where the phase cancels out. The
explicit phase dependence of QUIC has been previously utilized for optical spectroscopy of
a material by placing it into the interferometer [23; 24]. In that case, the laser pulses are
merely a tool to characterize the material.

Here, it is shown that the phase dependence of QUIC can be further utilized to retrieve
the absolute phase of the incoming laser pulses on the basis of one current interferogram.
To this end, the delay between a certain combination of fundamental and second harmonic
electric field components is swept during the measurement. It should be emphasized that
the aim of the proposed method is to characterize the fundamental beam; the second
harmonic field E2ω merely serves as an intermediate product. For this reason, whenever
the GVD is mentioned, it refers to the fundamental pulses if not stated otherwise.

In practice, the fundamental laser pulses are frequency-doubled in a nonlinear crystal
to provide E2ω. Subsequently, the beams are split up in an interferometer as displayed
in Fig. 5.3. An arm with a fixed length contains a portion of the fundamental beam
with the electric field amplitude E

(2)
ω (t). The other arm contains a simultaneous pulse

pair consisting of both the fundamental beam and its second harmonic. Their respective
electric field amplitudes are denoted with E

(1)
ω (t+τ) and E2ω(t+τ). By varying the length

of the second arm, the delay τ is adjusted. Finally, the pulse triplet is collinearly focused

Fig. 5.3: Experimental scheme of the proposed phase-retrieval method: The pulses to be
characterized are frequency-doubled in a nonlinear crystal. An interferometer allows to control
the relative delay τ between a portion of the fundamental field component E

(2)
ω (t) and an

overlapping pulse pair consisting of both a fundamental component E(1)
ω (t+τ) and the second

harmonic component E2ω(t+ τ). All beams are collinearly focused on a contacted LT-GaAs
sample. The injected current I(τ) is measured as a function of the relative delay τ .
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onto a contacted LT-GaAs sample; the injected current is measured as a function of the
delay τ . Every data point of the resulting current interferogram corresponds to a temporal
integration of the current injection rate (5.5) for a fixed delay τ : I(τ) ∝ ∫

J̇(t, τ) dt.
Since there are two separate fundamental laser beams, there are three different potential

field combinations for equation (5.5):

1. E
(2)
ω (t)E

(2)
ω (t)E2ω(t+ τ)

2. E
(2)
ω (t)E

(1)
ω (t+ τ)E2ω(t+ τ)

3. E
(1)
ω (t+ τ)E

(1)
ω (t+ τ)E2ω(t+ τ)

In the first and third case, the fundamental electric field components both stem from only
one fundamental beam, E

(1)
ω or E

(2)
ω , respectively. In the second case, the fundamental

field components originate from different interferometer arms. Obviously, there is only one
option for E2ω.

Different field combinations result in different dependences of the corresponding current
components on the delay τ . If all field amplitudes stem from one interferometer arm,
as in the third case, the resulting current is independent of the delay τ . Consequently,
it manifests as a constant offset in the current interferogram and does not contain any
phase information. In contrast, the other two contributions oscillate with respect to the
delay τ . The first case is equivalent to the interferometric current injection discussed in
chapter 3.3. As both fundamental field amplitudes are delayed with respect to E2ω, the
corresponding current interferogram oscillates with the central angular frequency 2ω0. In
the second case, however, only one fundamental field component is delayed with respect
to the remaining fields resulting in the oscillation frequency ω0. Utilizing the substitution
t′ = t+τ both current components can be expressed as convolutions of the form (f ∗g)(τ) =∫
f(τ − t′)g(t′) dt′:

I1(τ) ∝
∫ +∞

−∞
E

(2)
ω (t′ − τ)E

(2)
ω (t′ − τ)E2ω(t

′) dt′ =
(
E

(2)
ω (−τ)

)2

∗ E2ω(τ) (5.6)

I2(τ) ∝
∫ +∞

−∞
E

(2)
ω (t′ − τ)E

(1)
ω (t′)E2ω(t

′) dt′ = E
(2)
ω (−τ) ∗

(
E

(1)
ω (τ) ·E2ω(τ)

)
(5.7)

In the following, it is shown that the spectral phase of the fundamental laser pulse,
particularly its GVD, is deducible from the spectral phases of the two oscillating current
contributions by rather simple relations. The spectral phases of both current contributions
are in turn accessible from the Fourier transform F of only one current interferogram.
Since the injected currents of both components can be described as vectors, it is assumed
that they are superimposed linearly in the interferogram. The exact relation depends on
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experimental extraction efficiencies, the injection amplitude and injection direction given by
the tensor η3. However, an exact quantification of the current amplitudes is not necessary
since only the spectral phase of the Fourier transform is crucial for the following derivation.

Fig. 5.4 displays the general concept for the retrieval of the spectral phase from the
Fourier transform of the measured current interferogram. The envelope of the interferogram
results from the convolution of the three pulses. The different frequencies of the two current
components manifest as beating pattern. By taking the Fourier transform, both current
components can be separated. They appear as peaks at the frequencies ω0 and 2ω0 with the
respective spectral phases Φω and Φ2ω. For this reason, both components can be treated
separately in the theoretical approach. Finally, the spectral phase of the laser pulses, in
specific their GVD, can be computed on the basis of Φω and Φ2ω.

Owing to the convolution theorem F{f ∗ g} = F{f} · F{g} and its equivalent
F{f · g} = F{f} ∗ F{g}, the Fourier transforms factorize into the Fourier transforms
of the electric fields:

F{I1}(ω) ∝ F
{(

E
(2)
ω (−τ)

)2
}

· F {E2ω(τ)} =
(
Ê

(2)
ω (ω) ∗ Ê(2)

ω (ω)
)
· Ê2ω(ω) (5.8)

F{I2}(ω) ∝ F
{
E

(2)
ω (−τ)

}
· F

{
E

(1)
ω (τ) ·E2ω(τ)

}
= Ê

(2)
ω (ω) ·

(
Ê

(1)
ω (−ω) ∗ Ê2ω(ω)

)
(5.9)

Here, Ê(ω) denotes the Fourier transform of E(τ). The arguments τ and ω refer to the
delay and the angular frequency of the Fourier transform, respectively. The argument ω

should not be confused with the index that distinguishes fundamental and second harmonic

Fig. 5.4: Procedure for phase-retrieval of a laser pulse based on QUIC: A specific combination
of the fundamental laser pulse and its second harmonic is superimposed on a contacted LT-
GaAs sample (cf. Fig. 5.3). The photoresponse is recorded as a function of the relative pulse
delay τ . The resulting current interferogram corresponds to a superposition of two convoluted
electric field combinations that feature different oscillation periods. Both convolutions I1 and
I2 are separated by calculating the Fourier transform. Based on the spectral phases Φω and
Φ2ω of the Fourier transform centered around the respective oscillations frequency, the spectral
phase of the incident laser pulses, particularly their GVD, can be computed.
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components. Furthermore, it is important to pay attention to the sign of the arguments.
For example, the expression Ê(−ω) represents the Fourier transform of E(τ), wherein the
sign of ω is inverted afterwards. Moreover, the order of the Fourier transform and the
complex conjugation is interchanged in the above expressions according to the relation
F{ f(τ) } = f̂(−ω). If the pulses experience the same, preferably negligible, dispersion in
the interferometer arms, it can be assumed that Ê(1)

ω = Ê
(2)
ω = Êω. The resulting equations

directly relate the Fourier transforms of the experimental current interferograms on the
left-hand-side with the Fourier transforms of the pulses’ electric fields on the right-hand
side.

Initially, the theory of QUIC is formulated for monochromatic waves. Here, it is as-
sumed that equation (5.5) and subsequently the two equations above are also valid for
wave packets, implying a frequency-independent constant η3. As the spectral width of
laser pulses is relatively small (Δω = 7 · 1011 Hz for a 100 fs pulse, according to the time-
bandwidth product) the assumption seems justified. Furthermore, the good agreement of
the experimental results with the reference measurements (see chapter 5.3) corroborates
the assumption a posteriori.

To derive the relation of the spectral phases, the Fourier transforms in equations (5.8)
and (5.9) are each expressed as a product of the corresponding spectral amplitude and an
exponential phase factor. For clarity, the phase of the current interferogram is denoted
with Φ and the phase of the electric fields with φ. In the following, the spectral amplitudes
|Ê(ω)| of the fundamental and second harmonic pulses are modeled by Gaussian envelopes
centered around ω0 and 2ω0, respectively. In principal, the two equations above can also
be solved numerically for other pulse envelopes. However, a Gaussian spectrum constitutes
the typical situation for an ultrashort pulse laser. In this case, the equations for the GVD
can be solved analytically and result in simple relations.

Mathematically, the Fourier transforms Ê(ω) of the fundamental electric wave packet
and its second harmonic are described by Gaussian functions. As above, the index ω and
2ω mark the fundamental and second harmonic pulse:

Êω(ω) ∝ exp

(
−t2p0,ω

(ω − ω0)
2

ln(256)

)
exp(−iφω(ω)) (5.10)

Ê2ω(ω) ∝ exp

(
−t2p0,2ω

(ω − 2ω0)
2

ln(256)

)
exp(−iφ2ω(ω)) (5.11)

The first factors in equation (5.10) and (5.11) correspond to Fourier transforms of
bandwidth-limited pulses described by equation (5.1). Via the exponential phase fac-
tors, the influence of dispersion is incorporated (cf. equation (5.2)). The phases φω(ω)

and φ2ω(ω) are represented by the Taylor expansion (5.3). As mentioned above, GVD is
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typically the dominant influence on the pulse duration as long as the dispersion is not too
high. If the higher-order terms are neglected, the equations (5.8) and (5.9) can be solved
analytically for the resulting Fourier transforms Êω(ω) and Ê2ω(ω).

First, the convolutions and products of the Fourier transforms on the right-hand side
of equations (5.8) and (5.9) are calculated. This results in two Gaussian-like peaks that
are centered around ω0 and 2ω0. The corresponding exponential phase factors are sorted
by the order of ω whereby only the second order ω2 of the phase factor is relevant for
the pulse duration. Hence, the right-hand sides of the equations are rewritten in the form
Aω0 · exp [i/2 ·Dω0 · (ω − ω0)

2] and A2ω0 · exp [i/2 ·D2ω0 · (ω − 2ω0)
2]. Evidently, Dω0 and

D2ω0 correspond to the curvature of the spectral phase on the left-hand side, i.e. to the
Fourier transform of the current components. Therefore, the calculations directly relate
the phase curvature of the current interferogram to the respective GVD φ′′

ω0
and φ′′

2ω0
of

the fundamental and second harmonic pulses:

Dω0 =
ln(16)

(
φ′′
ω0

(
16 ln(2)2(φ′′

2ω0
−φ′′

ω0
)2+(t2p0,2ω+t2p0,ω)

2
)
+16φ′′

2ω0
φ′′
ω0

ln(2)2(φ′′
2ω0

−φ′′
ω0

)−φ′′
2ω0

t4p0,ω+φ′′
ω0

t4p0,2ω

)

64 ln(2)3(φ′′
2ω0

−φ′′
ω0

)2+4 ln(2)(t2p0,2ω+t2p0,ω)
2 (5.12)

D2ω0 =
1

2
φ′′
ω0

− φ′′
2ω0

(5.13)

The widths tp0
refer to the respective transform-limited pulse length that can be ex-

tracted from a spectral measurement utilizing the time-bandwidth product. If the dis-
persion is not too high, i.e. if |φ′′

ω0
|, |φ′′

2ω0
| � t2p0,ω

, t2p0,2ω
, equation (5.12) can be simplified

further. On the one hand, it can be assumed that the width of the fundamental pulse and its
second harmonic, generated with a thin nonlinear crystal, are related via tp0,2ω = tp0,ω/

√
2

[102]. On the other hand, the terms φ′′ can be neglected with respect to t2p0
. Mathemati-

cally, these assumptions are equivalent to the calculation of the limit tp0,2ω = tp0,ω/
√
2 → ∞

that simplifies the equation for Dω0 :

Dω0 =
10

9
φ′′
ω0

− 4

9
φ′′
2ω0

(5.14)

By rearranging the two linear equations (5.13) and (5.14), the relations for the GVD
can be obtained:

φ′′
ω0

=
9

8
Dω0 −

1

2
D2ω0 (5.15)

φ′′
2ω0

=
9

16
Dω0 −

5

4
D2ω0 (5.16)

Ideally, the pulses do not experience additional dispersion in the interferometer. In this
case, the GVD of the second harmonic pulse should be half the GVD of the fundamental
pulse [102] implying D2ω0 = 0 according to equation (5.13). As a result, the system of
two equations simplifies to only one equation; the GVD of the pulses only depends on the
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phase curvature of the current’s Fourier transform centered around the angular frequency
ω0. Therefore, the curvature centered around the angular frequency 2ω0 is not needed in
this approximation:

φ′′
ω0

=
9

8
Dω0 (5.17)

Although not as instructive as the analytic derivation above, the relation of the spec-
tral phases can also be calculated numerically. To this end, the electric field amplitudes
E(t) in the current injection equation (5.5) are modeled by chirped pulses with a Gaussian
envelope. Afterwards, the respective Fourier transforms of the current interferograms are
computed numerically. Their spectral phases are extracted under the above mentioned as-
sumption of low chirp and with the relation tp0,2ω = tp0,ω/

√
2 → ∞. Besides a confirmation

of the analytic equations, the computation reveals that there are similar relations for the
third order of the phase. The third derivatives of the Fourier transform phase D(3) and the
third derivatives φ′′′ of the pulse phase also depend linearly on each other:

D(3)
ω0

=
26

27
φ′′′
ω0

− 8

27
φ′′′
2ω0

(5.18)

D
(3)
2ω0

=
1

4
φ′′′
ω0

− φ′′′
2ω0

(5.19)

In conclusion, the proposed method constitutes a straightforward technique to recon-
struct the phase of laser pulses, particularly their GVD. Because of the explicit phase
dependence of QUIC, the phase information of the pulses can be extracted directly from
the Fourier transform of one current interferogram without the need for a complex algo-
rithm. The experimental realization of this method is described in the following chapter.
The results and the validity of the simplifying assumptions are discussed in chapter 5.3.
In essence, the results are in good agreement with the reference measurements for typical
experimental scenarios and the simplifications prove to be justified.

5.2 Experimental Implementation

In order to benchmark the proposed phase-retrieval concept, it is compared with an already
well-established method. To this end, differently chirped pulses are consecutively charac-
terized via the proposed method and SHG-FROG. The experimental setup can be divided
into three parts (see Fig. 5.5): The spectral phase of the pulses is directly manipulated at
the laser output by inserting glass slabs into the beam path. The slabs simulate the typical
origin of pulse broadening, namely propagation through dispersive components like lenses.
Subsequently, a flip-mirror allows to alternatively steer the manipulated laser beam into
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the QUIC setup or an SHG-FROG setup that is used for reference. The details of these
three parts are elucidated in the following.

Phase Manipulation of Ultrashort Laser Pulses

The phase-retrieval method is exemplarily demonstrated at the OPA laser system described
in chapter 3.1. It delivers ultrashort laser pulses with a duration of 45 fs at a repetition rate
of 250 kHz. The central wavelength is tuned to 1450 nm and satisfies the energy relation
�ω < EG < 2�ω for GaAs. A telescope is used to compensate the beam divergence;
polarization optics ensure a well-defined vertical polarization of the beam.

The chirp of the pulses is manipulated by inserting different glass slabs into the beam
path. Upon their propagation through the glass, the pulses acquire a significantly different
spectral phase φ(ω), particularly a different GVD. Essentially, the sign of the GVD is
determined by the choice of the material; the magnitude is determined by the thickness of
the inserted glass slab. To identify the appropriate materials and to calculate the expected
change of the GVD, the Sellmeier equation is used. The Sellmeier equation describes a
material’s refractive index n as a function of the (vacuum) wavelength λ via the empirical
material-dependent Sellmeier coefficients Ai and Bi [103]:

n2 = 1 +
A1λ

2

λ2 − B2
1

+
A2λ

2

λ2 − B2
2

+
A3λ

2

λ2 − B2
3

(5.20)

A pulse that passes through a material with refractive index n and thickness d experi-
ences a phase difference given by Δφ = 2π/λ · (n − 1) · d when compared to propagation
through a volume of air with the same thickness (nair ≈ 1). Substituting λ = 2π · c/ω
allows to derive the GVD, the second derivative of the phase with respect to the angular
frequency ω. Here, c denotes the vacuum speed of light. Like the refractive index n, the
GVD depends on the wavelength. Typically, a material is characterized by the GVD per
length in units of fs2/cm.

To impose a positive as well as a negative GVD, two different types of glass are chosen,
namely SF11 made by SCHOTT and the quartz glass Infrasil made by HERAEUS. For the
given central wavelength of 1450 nm, they exhibit a GVD of +620 fs2/cm and −160 fs2/cm,
respectively. Slabs with different thicknesses in the range from a few millimeters to several
centimeters are prepared to provide a GVD change in the range from about −500 fs2 to
+1000 fs2. Each set of slabs is cut from the same bar to ensure that all pieces of the same
material exhibit the same optical properties. Special care is taken during the polishing
process to maintain plane parallelism of the opposing surfaces. Otherwise, the beam would
be deflected by one of the surfaces.

The glass slabs are mounted in a special holder that allows to accurately adjust their
rotation in order to minimize beam deflection. For this purpose, the slab is tilted until
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the surface reflections are directed into the path of the incoming beam indicating normal
incidence. The deflection can be monitored with a camera in the QUIC setup.

After adjustment of a glass slab, the laser beam is consecutively directed into the QUIC
setup as well as into the SHG-FROG setup via a flip mirror. Both measurement procedures
only take a few minutes. In this way, it is ensured that neither a different alignment of the
glass slabs nor long-term instabilities of the laser may distort the comparison.

QUIC Setup

Conceptually, the experimental setup for the proposed phase-retrieval method is similar to
the setup described in chapter 3.2. However, there are some significant modifications with
respect to the interferometer and the detection. The method requires one electric field
component E

(2)
ω of the fundamental beam to be delayed against a pulse pair consisting of

another portion E
(1)
ω of the fundamental beam and a field component E2ω of the second

harmonic beam. One way to realize such a scheme is to construct a three arm interferometer
wherein every field component propagates through its own arm. Here, a modified two-arm
interferometer is used with the advantage of reduced complexity. The apparent downside
of such a setup is that it requires low dispersion to ensure a simultaneous propagation of
the pulse pair. However, as the method’s aim is to derive the phase of the pulses, this
condition must be fulfilled in any case. Otherwise, the phase would be significantly altered
by the setup itself. For this reason, reflective or thin optics are used whenever possible.

The experimental setup is sketched in Fig. 5.5. After modification by glass slabs, the
beam is focused into a 0.5 mm thick BBO crystal to generate the second harmonic beam.
Although BiBO has a higher conversion efficiency, a BBO crystal is chosen since it results
in a lower dispersion for both beams. For example, the GVD of the second harmonic
beam, induced by the 0.5 mm thick BBO crystal, is only a few tens fs2 compared to
almost 100 fs2, induced by a BiBO crystal of the same thickness. Yet, the BBO crystal
is sufficient to generate about 1 mW of second harmonic beam from the incoming 20 mW

fundamental beam. Both, the vertically polarized fundamental beam and the horizontally
polarized second harmonic beam are collimated by a spherical mirror and directed into the
subsequent interferometer.

Two pellicles serve as beamsplitter and combiner in the interferometer. The pellicles
consist of 2 μm nitrocellulose films, causing negligible dispersion. In contrast to a dichroic
beamsplitter, the pellicles transmit and reflect portions of both beams. Consequently, the
second harmonic beam in one arm must be filtered to realize the desired field combina-
tions. Besides, interference of two second harmonic beams would severely perturb the
measurement as their photon energy exceeds the band gap of GaAs.

The strong absorption of photons exceeding the band gap can in turn be utilized to
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Fig. 5.5: Experimental setup of the proposed phase-retrieval method: The pulses of an
ultrashort laser source are frequency-doubled in a 0.5 mm thick BBO. An interferometer allows
to control the relative polarization and delay τ of a portion of the fundamental field component
E

(2)
ω and an overlapping pulse pair consisting of both a fundamental component E(1)

ω and the
second harmonic component E2ω. All beams are collinearly focused on the ≈ 10 μm wide gap
of two metallic contacts on top of an LT-GaAs sample. The inset illustrates the alignment of
the sample and the optical polarizations. A lock-in amplifier records the injected current. A
flip-mirror in front of the BBO allows to steer the laser pulses into a reference SHG-FROG
setup. Dispersive glass samples put right behind the laser output allow to control the pulses’
spectral phase. To minimize dispersion of the setup itself, reflective or thin optics are used.

realize an efficient low-dispersive longpass filter. Placing a 140 μm thick silicon wafer piece
into the reflected path of the interferometer is sufficient to entirely block the second har-
monic beam while attenuating the fundamental beam only slightly and adding a GVD of
only 140 fs2 to the latter beam. To further minimize reflection losses at the surface, the
wafer piece is oriented at Brewster’s angle. Additionally, the polarization of this funda-
mental beam is rotated by 90◦ with a 90 μm thick half-wave plate for reasons that are
elucidated below. The electric field component of the fundamental beam in this arm with
a fixed length is denoted with E

(2)
ω (t).

The electric field components of the pulse pair in the other arm are denoted with
E

(1)
ω (t + τ) and E2ω(t + τ). Apart from a retroreflector, there are no additional optical

components in the arm to prevent dispersion of the pulse pair. The retroreflector is mounted
on the motorized stage that allows to precisely adjust the delay τ of the pulse pair with
respect to the field component E

(2)
ω (t).

All three beams are superimposed by the second pellicle at the exit of the interferometer.
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Subsequently, they are focused on a contacted LT-GaAs detector by a parabolic mirror with
a focal length of 25 mm. It should be noted that the resulting peak intensities are much
lower than in the study of the high-intensity regime of QUIC presented in chapter 4.2
because of the longer focal length. Current measurements are performed with a lock-in
amplifier which is connected to the two gold contacts that are spaced about 10 μm apart.

In order to derive the spectral phase of the pulses, it is necessary to measure two different
current components simultaneously. As described in chapter 5.1, the current components
result from different combinations of the electric fields E(1)

ω (t+ τ), E2ω(t+ τ) and E
(2)
ω (t).

Depending on whether the fundamental field components in equation (5.5) stem from both
interferometer arms or only from one arm, the current component oscillates with the central
frequency ω0 or 2ω0 with respect to the delay τ . The direction and amplitude of the injected
current in the GaAs detector is governed by the polarization-dependent tensor η3. For the
given material and wavelength, theoretical calculations predict the nonzero components to
be ηxxxx3 ≈ 2ηxxyy3 = 2ηxyxy3 and ηxyyx3 � ηxxyy3 [7] (see also chapter 2.2). Here, the first
index determines the current direction, the last index denotes the polarization of the second
harmonic beam and the remaining two indices denote the polarization of the fundamental
beams; x and y represent perpendicular directions.

To ensure an efficient detection of both current components, the electric field polar-
izations and the detector have to be aligned according to the tensor components. With
the configuration displayed in Fig. 5.5, the current components address the largest tensor
elements ηxxxx3 and ηyyxx3 . The former corresponds to the two beam setup described in
chapter 3.2, whereby both horizontal polarized fundamental field components stem from
the fixed arm. The second current component is perpendicularly oriented and originates
from fundamental field components of differently polarized arms. Turning the detector by
about 45◦ as indicated by the inset in Fig. 5.5 optimizes the simultaneous detection of both
current components. If the polarization of E(2)

ω (t) were not altered by a wave-plate, only
the smallest non-zero element ηxyyx3 would be addressed. It should be noted that the con-
siderations above assume the x and y directions to coincide with the crystallographic axes.
Although this condition is not taken care of, the general conclusions do not change. A de-
viation from the crystallographic axes can be thought of as superposition of the situations
discussed above.

In addition to the current interferogram, the proposed method requires a measurement
of the fundamental beam’s spectrum to compute the theoretical unchirped pulse length
tp0,ω. To this end, the spectrum is acquired right behind the glass slabs by a conventional
fiber-coupled spectrometer.
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SHG-FROG Setup

SHG-FROG (second harmonic generation – FROG), an implementation of the general
FROG method (frequency-resolved optical gating), serves as benchmark for the proposed
phase-retrieval method. The general concept of FROG was developed by the group of
R. Trebino in 1993 [32; 33]. The underlying principle of all FROG methods is the numerical
reconstruction of the electric field of a pulse based on its spectrally-resolved response to
a nonlinear optical effect. First, FROG was demonstrated utilizing nonlinearities of the
refractive index. Shortly after, SHG-FROG was demonstrated [104]. As the name implies,
it is based on second harmonic generation [34].

The SHG-FROG setup, sketched in Fig. 5.6, is similar to the setup of intensity auto-
correlation (cf. Fig. 5.1). Two pulse replicas with a variable delay τ are noncollinearly
superimposed in a nonlinear crystal causing frequency-mixing. In essence, the nonlinear
response of one pulse is gated by the second pulse. Unlike intensity autocorrelation, the
mixing signal is spectrally resolved as a function of the pulses’ delay τ . The resulting
dataset is called FROG trace, a 2D map depicting the spectral amplitude of the second
harmonic beam as a function of the wavelength and the relative delay τ . The phase infor-
mation is implicitly incorporated in the trace. An iterative algorithm is able to reconstruct
the electric field of the pulse including its spectral phase from the FROG trace.

The algorithm is based on the fact that the field of the mixing signal must comply with
two constraints [34]. On the one hand, the signal is generated via frequency-mixing of two
identical pulses that are delayed with respect to each other. It follows that the signal field
ESig must be expressible as an autocorrelation of the electric field E of the pulses. Here,
ESig is a two-dimensional function, describing the envelope of the electric field as a function

Fig. 5.6: Experimental scheme of SHG-FROG: Similar to intensity autocorrelation (cf.
Fig. 5.1) two laser pulse replicas are superimposed in a nonlinear crystal. The emerging
central frequency-mixed beam is fed into a spectrometer. The measurement yields a color-
coded intensity map as a function of the optical frequency ω and the relative delay τ . Based
on this FROG trace, an iterative algorithm is able to reconstruct the input pulse.
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of the time t and the delay τ :

ESig(t, τ) ∝ E(t)E(t− τ) (5.21)

On the other hand, the spectral intensity of ESig must correspond to the experimental
FROG trace. Because of its influence on the pulses’ envelope, the spectral phase manifests
implicitly in the FROG trace. As stated above, a deviation from a flat phase corresponds to
a delay of the spectral components (cf. Fig. 5.2). Therefore, the leading and trailing edge
of a chirped pulse feature different central wavelengths. If these wavelengths superimpose
in the nonlinear crystal, the spectrum of the resulting frequency-mixing signal will deviate
from the case of a transform-limited pulse. The relation between the electric field amplitude
of the mixing signal and the FROG trace reads

IFROG(ω, τ) ∝ |ESig(ω, τ)|2. (5.22)

Both constraints correspond to a subset of potential functions describing the electric
field of the pulse. Apart from the time-reversal ambiguity described below, there is theo-
retically only one solution that complies with both constraints.

As illustrated in Fig. 5.7, the FROG algorithm tries to find the solution iteratively.
Starting with an initial guess for the electric field, the algorithm systematically adapts the
field in such a way that it successively complies with one of the two constraints. Thereby,
the resulting field of each iteration is used as input for the next step. The modifications
to be made decrease with every step and the reconstructed field approaches the correct
solution Efinal.

In fact, the electric field of a pulse cannot be reconstructed precisely since FROG traces
stem from discrete spectral measurements that are always subjected to experimental errors.
Eventually, the algorithm gets stuck in a loop calculating neighboring solutions. The degree
of convergence can be assessed via the G-error. It is defined as the root-mean-square

Fig. 5.7: Schematic of the SHG-FROG algorithm: Starting with an initial guess for the
electric field, the algorithm consecutively modifies the function to alternatively comply with
the two constraints. The final solution corresponds to the intersection of both subsets.
(Fig. adapted from [34].)
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deviation of the reconstructed FROG trace from the experimental FROG trace IFROG [34].
In this context, both the experimental and the reconstructed trace must be normalized to
unity:

G =

[
1

N2

N∑
ω,τ=1

[
IFROG(ω, τ)− |ESig(ω, τ)|2

]2]1/2

(5.23)

While the fundamental concept of the FROG algorithm is quite intuitive, its concrete
implementation is very sophisticated. It must be ensured that the iteration converges
reliably and efficiently. With respect to Fig. 5.7, this condition translates into a monotonous
decline in the distance of the iterated solution from the intersection of both subsets. A
brief summary of the basic concepts of the SHG-algorithm is given in the following; a full
description can be found elsewhere [34].

First, the algorithm must be initialized with an electric field E(0) that can be a Gaussian
envelope or simply noise. Subsequently, the signal field E

(0)
Sig is computed with equation

(5.21). Its Fourier transform is modified in order to comply with equation (5.22) and
the experimental FROG trace. For this purpose, the spectral amplitude of the signal
field is replaced with the square root of the FROG trace while keeping the spectral phase
unchanged. Via inverse-Fourier transformation the new field E

(1)
Sig is converted into time-

domain.
In the next step, the electric field E(2) is determined that describes E

(1)
Sig best on the

basis of equation (5.21). Mathematically, this step corresponds to the minimization of the
Z-error that is defined as the sum of the normalized squared deviations:

Z =
N∑

t,τ=1

|Esig(t, τ)− E(t)E(t− τ)|2 (5.24)

In practice, it is sufficient to perform a one-dimensional minimization with the direction
given by the gradient of Z. The resulting electric field E(2), in turn, serves as input for
the first iteration step above, substituting E(0). This iteration cycle is repeated until the
desired degree of convergence is achieved.

The data analysis, presented in the next chapter, is based on an implementation of
the FROG algorithm in MATLAB. The code is freely accessible from the group of R.
Trebino [105]. The FROG traces are acquired by a setup that is based on a fiber-coupled
spectrometer: After appropriate attenuation, the laser beam to be characterized is split
up into two paths. The delay τ is controlled by changing the length of one path with
a retroreflector mounted on a motorized stage. Both beams are focused into a nonlinear
crystal by spherical mirrors that minimize dispersion. Furthermore, the nonlinear crystal,
a 0.5 mm thick BBO crystal, is identical to the one used in the coherent control setup and
exhibits the same dispersion. During adjustment, the BBO crystal is exchanged with a
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beam profiler that allows to measure the beams’ position and size. In this way, it can be
ensured that the beams fully overlap in the focus. Otherwise, the measurement may be
distorted by spatial dispersion of the laser source [106; 107], i.e. the phase of the pulse
changes across the beam width. Here, spatial dispersion would become most influential in
the BBO crystal if the two beams barely overlapped.

The BBO crystal emits three frequency-doubled beams. Only the central one is gener-
ated by frequency-mixing of both incoming beams and only present if these spatially and
temporally overlap. This central beam is focused into a fiber-coupled spectrometer; the
other beams are independent on the delay τ and blocked. It should be noted that disper-
sion by the fiber and the lens in front of the spectrometer does not influence the FROG
trace as the spectrometer only records the time-integrated spectral intensity. In contrast,
dispersion in front of the BBO may influence the measurement as frequency mixing is im-
plicitly sensitive to a pulse’s phase. In fact, this phase sensitivity is the basis of the FROG
method.

The FROG trace is a two-dimensional matrix. Each row corresponds to a spectrum
of the mixing signal for a fixed delay τ that increases with the row number. To ensure
a reliable pulse reconstruction, it is necessary to capture the full nonlinear response of
the pulse superposition. Therefore, a spectrometer with a sufficient detection range and
resolution is required. Here, a fiber-coupled spectrometer with a 2048 pixel detector is used
spanning a wavelength range from 520 nm to 1200 nm. In comparison, the bandwidth of
a transform-limited 50 fs second harmonic pulse centered around 750 nm is 17 nm. Apart
from that, the travel range of the motorized stage must be chosen such that the two
pulses are entirely shifted against each other and no longer overlap at the first and last
measurement. If recorded correctly, the spectral response should be centered in the FROG
trace and its edges should not contain any signal.

The FROG trace is imported into the MATLAB application after it has been modified
to match the input format. For example, the code requires the trace to be a square matrix
that is a function of frequency instead of wavelength. Additionally, the background noise
of the spectrometer is subtracted beforehand to minimize artifacts. Fig. 5.8 depicts the
graphical user interface of the MATLAB application for an exemplary FROG trace. The
experimental FROG trace itself is shown in the upper left corner. The horizontal and
vertical axes correspond to the delay τ in units of fs and the frequency in units of 1015 Hz,
respectively. A logarithmic color scale visualizes the spectral intensity. Proceeding counter-
clockwise, the interface displays the reconstructed FROG trace, the deviation between
those two traces, the G- and Z-error plotted against the iteration step and finally the
reconstructed pulse in frequency-domain in units of 1015 Hz as well as time-domain in
units of fs.

Fig. 5.8 depicts a situation where the iteration has already converged. As can be
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Fig. 5.8: Interface of the freely available MATLAB implementation of a FROG algorithm
[105]: The input FROG trace is shown in the top left, the reconstructed trace is shown below.
Proceeding counter-clockwise the screenshot displays the difference of both traces, the G- and
Z-error as a function of the iteration and the amplitude as well as phase of the reconstructed
laser pulse in frequency- and time-domain. In this case, the FROG trace stems from the
output of the OPA laser system with a positive GVD induced by an SF11 slab. The GVD
manifests as phase curvature in the frequency-domain of the pulse reconstruction.

seen from the error, the algorithm is stuck in a loop and the error does not decrease any
further. This is why the program was stopped after a few hundred iteration steps which
take less than one minute on a modern desktop computer. The resulting Gaussian-like
pulse is displayed in phase and amplitude featuring a FWHM of 55 fs. With respect to
the frequency-domain, the phase exhibits a strong curvature indicating a significant GVD
which is induced by an SF11 slab. However, the actual sign of the GVD cannot be deduced
from the FROG trace because of the time-reversal ambiguity of SHG-FROG [34].

As evident from equation (5.21), the mixing signal is a symmetric autocorrelation that
manifests in the symmetry of the FROG trace with respect to the time axis. In conse-
quence, it is not possible to deduce the sign of the time axis of the pulse reconstruction.
Equivalently, it is not possible to derive the sign of even terms in the Taylor expansion
of the phase, like the GVD (cf. equation (5.3)). However, this shortcoming can easily be
overcome by performing two measurements. In between, the pulses’ GVD is altered by a
known value. In practice, this can easily be realized by putting a dispersive material like
glass into the beam path. Subsequently, the sign of the time axis can be deduced from the
difference of the measurements.
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5.3 Experimental Evaluation of the Proposed Method

This chapter focuses on the practical application of the proposed phase-retrieval method.
The specific influence of three differently chirped pulse trains on the spectral phase of
the current interferogram is exemplarily discussed. Subsequently, the proposed method
is compared to SHG-FROG measurements. By introducing different glass slabs into the
beam path, the GVD of nominally 45 fs wide pulses with a central wavelength of 1450 nm is
varied between about −500 fs2 and +1000 fs2. The validity of the simplifying assumptions
that are made during the derivation are discussed at the end of this chapter.

Exemplary Application

Once set up, the measurement procedure of the proposed method is similar to that of
the two-beam interferometer as described in chapter 3.3. By varying the length of one
interferometer arm, the injected current is measured as a function of the relative pulse
delay τ . An exemplary resulting current interferogram is depicted in Fig. 5.9(a). In this
case, the corresponding laser pulses are not altered by an additional glass slab. A constant
current offset, caused by the phase-independent current injection term (cf. chapter 5.1) or
conventional photocurrents, is subtracted. Special care is taken during alignment of the
focal spot on the sample to minimize the influence of additional photocurrents that may
occur at the illuminated metal-semiconductor junction.

The current interferogram exhibits a Gaussian-like envelope that resembles the one
from the two-beam interferometer. However, the interferogram in Fig. 5.9(a) results from
two overlying convolutions of different field combinations. Since both current contributions
oscillate with different frequencies with respect to the delay τ , the envelope of the inter-
ferogram is modulated by two carrier waves which manifest as beating pattern. Owing
to the symmetry of the interferogram, it can be concluded that the pulse pair impinges
simultaneously on the sample, as claimed by the theoretical approach in chapter 5.1.

Fig. 5.9(b) depicts the amplitude of the interferogram’s Fourier transform. It reveals the
two predicted Gaussian-like peaks at the central angular frequencies ω0 ≈ 1.3 · 1015 Hz and
2ω0 ≈ 2.6 · 1015 Hz. These correspond to wavelengths of 1450 nm and 725 nm that coincide
with the fundamental and second harmonic beam. The similar amplitude of both peaks
confirms that the tilted sample geometry allows to measure both current contributions
with similar efficiency. Apart from noise, the Fourier transform does not contain any other
peaks.

The proposed method relies on the spectral phase of the Fourier transform, that is
exemplarily depicted in Fig. 5.10. Black circles mark the spectral phase of the current in-
terferogram in Fig. 5.9(a) that is recorded with unaltered laser pulses. Red triangles facing
upwards and blue triangles facing downwards correspond to measurements with laser pulses
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Fig. 5.9: (a) Current interferogram recorded at the three-beam setup with 45 fs-wide funda-
mental laser pulses at 1.45 μm. The relative timing τ of the two fundamental pulses and the
second harmonic pulse is illustrated above the diagram. Different field combinations result in
two current contributions that oscillate with a different frequency. A constant current offset
is subtracted for analysis. (b) The Fourier amplitude of the current interferogram reveals the
central angular frequencies ω0 and 2ω0 of the two carrier waves.

�

�

�

Fig. 5.10: Spectral phases of the current interferograms’ Fourier transforms centered around
the peaks of the Fourier amplitude at ω0 and 2ω0 (cf. Fig. 5.9(b)). The introduction of a
positive (negative) GVD by pulse propagation through SF11 (Infrasil) significantly influences
the spectral phase. The curves correspond to polynomial fits.
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that propagate through an additional slab of 5.3 mm SF11 or 10 mm Infrasil, respectively,
inducing a positive or negative GVD. The depicted frequency range corresponds to the
inner part of both peaks in Fig. 5.9(b). If the signal-to-noise ratio is too low as in the outer
parts of the peaks, the spectral phase is not well-resolved. An offset that is constant or
linear in the frequency is subtracted from all data points. This offset merely corresponds
to a shift of the whole current interferogram on the time axis and does not alter the pulse
shape.

Prior to calculating the Fourier transform, the current interferograms are padded with
zeros on one side of the time axis. While these do not add any information, the reduced step
size of the Fourier transform prevents the FFT algorithm from introducing arbitrary phase
jumps of 2π. Although the resulting spectral phases are equivalent, phase jumps would
complicate the further analysis. It should be noted that alternatively the measurement
range of the current interferogram could be extended. However, as the pulses would not
overlap at such delay times there would not be any signal, either. Therefore, the additional
zeros do not add any false information.

Introducing a material into the beam path significantly influences the spectral phase
centered around ω0. While the spectral phase of the measurement with unaltered laser
pulses corresponds to an almost flat curve, the other two curves exhibit a significant cur-
vature with opposite signs. With a calculated GVD modification of +330 fs2 for the SF11
slab and −160 fs2 for the Infrasil slab, the opposite curvature of the according curves is in
line with the theoretical prediction. Recalling the simplified equation (5.17), the curvature
Dω0 of the spectral phase is predicted to be proportional to the GVD of the laser pulses:
φ′′
ω0

= 9/8 ·Dω0 . Based on this equation, it can already be deduced from Fig. 5.10 that the
unaltered laser pulses are almost transform-limited.

In contrast, the spectral phase at 2ω0 changes little by the introduction of additional
slabs. The phase is generally relatively flat, compared to the phase at ω0. If the assump-
tion φ′′

2ω0
= 1/2 ·φ′′

ω0
for thin nonlinear crystals holds [102], a flat phase agrees with the

theoretical prediction of equation (5.13): D2ω0 = 1/2 ·φ′′
ω0
−φ′′

2ω0
. The slight deviation from

a straight flat phase may result from residual dispersion differences in the interferometer,
e.g. the silicon filter, or it may indicate that the assumption above is not fully fulfilled
for a 0.5 mm thick BBO crystal. However, both shortcomings could easily be overcome.
Owing to the high conversion efficiency of BBO and the high absorption of silicon with
respect to the second harmonic beam, much thinner pieces would be sufficient. In fact,
the BBO crystal in the above mentioned setup is shifted out of focus to lower the intensity
and prevent generation of a white-light continuum. The components used in the setup are
partly chosen based on availability.

To account for the phase deviations at 2ω0, the following calculation of the GVD of the
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fundamental beam employs equation (5.15) which is not further simplified:

φ′′
ω0

=
9

8
Dω0 −

1

2
D2ω0 (5.25)

Nevertheless, it should be emphasized that the deviations from the flat phase are generally
relatively small. Taking into account that the GVD depends much less on the curvature
at 2ω0 than at ω0, the approximation D2ω0 ≈ 0 can be considered as justified. As a
direct consequence, the derivation of the GVD does not require the corresponding current
component to be measured at all. However, in practice, the spectral phase at 2ω0 can be
regarded as a useful indicator for the validity of the measurement.

In order to evaluate the measurements quantitatively, third-order polynomial functions
that are centered around ω0 or 2ω0 are fitted to the spectral phase. The corresponding
curves are depicted in Fig. 5.10. Evidently, these are dominated by the quadratic terms
1/2 ·Dω0 · (ω − ω0)

2 as well as 1/2 ·D2ω0 · (ω − 2ω0)
2 and agree very well with the data

points. As predicted, the influence of the introduced material on the cubic components of
the phase is small compared to the quadratic component. For this reason, the following
discussion focuses on the derived GVD. At the same time, these findings corroborate that
the GVD is sufficient to describe propagation of Gaussian-like pulses with a duration of
about 50 fs through typical experimental setups.

Comparison with SHG-FROG

For a sophisticated evaluation, the proposed method is applied to laser pulses with different
chirp induced by additional glass slabs. The curvatures of the interferograms’ spectral
phases are derived as explained above and inserted into equation (5.25) to calculate the
GVD. For comparison, the laser pulses are also characterized by the SHG-FROG setup.
To minimize influence of laser instabilities or alignment of the glass slab, both methods are
subsequently applied without changing the glass slab in between. Reference measurements
with unaltered pulses at the beginning and at the end of each measurement series ensure
that there is no long-term drift of the laser which may disturb the measurement.

The FROG measurements are processed as described in chapter 5.2. The GVD is
derived by fitting a polynomial function to the spectral phase of the reconstructed laser
pulse (cf. Fig. 5.8). The sign of the GVD cannot be deduced from one FROG measurement
alone. However, it can be determined from the comparison of two measurements if the GVD
is changed by a known value, in this case with glass slabs.

Fig. 5.11 depicts the results of both phase-retrieval methods. The derived GVD is
plotted against the expected GVD change. The latter is calculated from the thickness
of the inserted glass slabs on the basis of the Sellmeier equation (5.20). Negative values
correspond to an additional pulse propagation through Infrasil; positive values correspond
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Fig. 5.11: Quantitative comparison of the GVD retrieval via SHG-FROG and the proposed
method based on QUIC. Measurements are performed at the OPA laser system with nom-
inally 45 fs-wide laser pulses at a central wavelength of 1.45 μm. The determined GVD is
plotted against the theoretically expected GVD introduced by glass slabs and calculated by
their Sellmeier coefficients. Error bars correspond to the standard deviation of three mea-
surements. The linear theoretical expectation is corrected by an empirical offset of −50 fs2

that corresponds to the residual GVD of the laser output.

to measurements with SF11 slabs. The data points are based on three consecutive mea-
surement series that are carried out to assess the variance of both methods. Red diamonds
mark the average GVD that is derived from the three individual current interferograms
via the proposed method. Error bars quantify the respective standard deviations. The
corresponding FROG data are indicated by blue circles. A straight line represents the
theoretical expectation for the experimental GVD. Since the GVD of the unaltered laser
pulses is unknown a priori, an empirical offset of −50 fs2 is added that is based on the
experimental data points from the FROG measurements.

The reference FROG measurements exhibit a low scatter and follow the linear theo-
retical expectation. Significant deviations only occur for low absolute values of the GVD.
Such deviations may result from the specific setup or the SHG-FROG algorithm. On the
one hand, the FROG trace may be distorted by phase-mismatch that increases with the
thickness of the employed nonlinear crystal [34]. As stated above, the 0.5 mm thick BBO
crystal is chosen on the basis of availability and could be exchanged with a thinner one.
On the other hand, the SHG-FROG algorithm itself has difficulties to reconstruct pulses
with a flat phase [34]. Nevertheless, the FROG measurements allow to derive the GVD of
the unaltered laser pulses which is required to determine the above mentioned offset of the
theoretical expectation.
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In general, the results of the proposed phase-retrieval method agree well with the FROG
data and the theoretical expectation. Particularly, the determination of low absolute values
of the GVD including their sign proves the validity and accuracy of the proposed method.
On the contrary, the highest values tend to be underestimated. Such a flattening is expected
from the employed simplified equation (5.25) and is addressed in more detail below. The
variance of the data points is higher than for the corresponding FROG measurements.
However, it must be mentioned that the specific QUIC setup exhibits much longer path
lengths and is consequently more susceptible to misalignment of the input beam.

Although special care is taken, a slight misalignment of the slabs or deviation from plane
parallelism of the glass surfaces may amount to a substantial misalignment in the setup.
In fact, there are also measurements with glass slabs of up to 60 mm length corresponding
to higher GVD values that are excluded from Fig. 5.11 because of the high scatter. Such
an influence of misalignment could be reduced by shortening the path lengths of the setup.
In general, it should be emphasized that the specific setup represents a first prototype for
the proposed method. Taking this into account, the measurements agree quite well.

Theoretical Limitations of the Proposed Method

The aforementioned underestimation of a high GVD results from the simplifications of
equation (5.25). The latter is an approximation of the more complex equations (5.12)
and (5.13) which is only valid if the condition |φ′′

ω0
|, |φ′′

2ω0
| � t2p0,ω

, t2p0,2ω
is fulfilled. Both

relations are exemplarily depicted in Fig. 5.12. The calculated phase curvature Dω0 at
ω0 is plotted against the GVD φ′′

ω0
that serves as variable in this case. To simplify the

illustration, φ′′
2ω0

= φ′′
ω0
/2 is assumed. The three exemplary curves are calculated for pulse

durations tp0,ω =
√
2 · tp0,2ω of 30 fs, 45 fs and the limit tp0,ω → ∞. In practice, the pulse

duration can be derived from the spectral width of the pulse utilizing the time-bandwith
product. For example, the OPA features a Gaussian spectrum that is centered around
1.45 μm with a FWHM of 70 nm. The resulting pulse duration tp0,ω calculates to 45 fs and
thus corresponds to the middle curve in Fig. 5.12.

The calculated curvature Dω0 scales approximately linearly with the GVD φ′′
ω0

if its
absolute values are not too high. At higher values, the curves in Fig. 5.12 begin to flatten.
The longer the pulse length tp0,ω is, the more shifts the onset point to higher GVD values.
Ultimately, the relation becomes completely linear in the limit tp0,ω → ∞. It corresponds
to the simplified linear equation (5.17): φ′′

ω0
= 9/8 ·Dω0 . The curve for tp0,ω = 45 fs

begins to significantly flatten for absolute GVD values exceeding 500 fs2. As a result,
high GVD values are underestimated if they are derived from the phase curvature via the
simplified linear equation. Indeed, Fig. 5.11 exhibits such a behavior. While absolute values
below 500 fs2 agree well with the theoretical expectation, higher values are systematically
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Fig. 5.12: Numerical calculation of the phase curvature of the Fourier transform at ω0 as a
function of the GVD of the fundamental laser pulse. With respect to the second harmonic
pulse, φ′′

2ω0
= 1/2 ·φ′′

ω0
as well as tp0,2ω = 1/

√
2 · tp0,ω is assumed. The curvature is calculated

for two explicit fundamental pulse durations and the limit tp0,ω → ∞. The latter corresponds
to the linear relation Dω0 = 8/9 ·φ′′

ω0
.

underestimated.
If the GVD is derived via equation (5.13), the underestimation of high values can be

corrected. In this way, the accuracy of the proposed method can be extended to a broader
range of GVD values. However, there is still an upper limit. As evident from the curve
for tp0,ω = 30 fs2 in Fig. 5.12, the curvature eventually passes through a maximum and
declines. In this case, the derived GVD is very sensitive to small changes of the curvature
and there is an ambiguous relation between both.

To conclude, the practical relevance of the theoretical limitations is discussed. A dif-
ference of ±500 fs2, at which the linear approximation begins to break down, amounts to
a propagation through 31 mm Infrasil in the above mentioned setup. Such quartz glasses
or borosilicate glasses, e.g. BK-7 by SCHOTT, with comparable GVD are typically used
for optical components like lenses [29, p. A152]. For comparison, the lenses that are used
in the experiments presented here exhibit a thickness of a few millimeters. Furthermore,
it is instructive to calculate the induced pulse broadening. According to equation (5.4),
a GVD of 500 fs2 broadens a 45 fs pulse by 20%. In conclusion, even the linear equation
(5.25) is suitable for typical experimental setups, employing Gaussian-like pulses.

5.4 Conclusion and Outlook

A novel phase-retrieval method for ultrashort laser pulses is theoretically proposed as well
as experimentally demonstrated. It is based on QUIC in LT-GaAs by a superposition of
the beam to be characterized and its second harmonic. In essence, the GVD of the pulses
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can be directly retrieved from the Fourier transform of a single current interferogram.
The phase-retrieval method is applied to nominally 45 fs long pulses with a central

wavelength of 1.45 μm. In order to benchmark this technique, it is compared with an
SHG-FROG setup. By introducing different glass slabs into the beam path, the chirp of
the pulses is systematically altered. Although the underlying theory is based on some sim-
plifications and the setup is only a prototype, the proposed method proves quite accurate
with respect to typical experimental scenarios. Especially small absolute GVD values and
the change of the GVD sign can be precisely derived.

Such sensitivity can be explained by the explicit phase dependence of the method. In
contrast to other methods, such as SHG-FROG, the underlying QUIC process explicitly
depends on the optical phase. Amplitude and direction of the injected currents are di-
rectly influenced by the relative phase of the fundamental and second harmonic beam. In
comparison, SHG-FROG is based on an iterative algorithm that extracts the phase from
implicitly phase dependent spectra of a mixing signal.

The prototype setup could be further improved by shrinking the setup size or optimizing
the choice of components. For example, such a long high precision stage as in the prototype
setup is not necessary; a much cheaper piezo stage with a travel range of a few tens of
micrometers corresponding to the pulse duration should be sufficient. Choosing appropriate
semiconductors for current injection with another band gap than GaAs [108], could extend
the method to other optical wavelengths ranges.

In principal, the method should also be applicable to other pulse durations. QUIC has
been demonstrated for laser pulses with a duration of up to 175 fs [8], though the influence
of the spectral phase on such long pulses is much less pronounced. In the opposite regime,
the method should benefit from the fact that the spectral width of a pulse scales inversely
with its duration.
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Chapter 6

Optical Current Detection via QUIC

Current measurements typically rely on the detection of a voltage drop across a resistor.
Alternative measurement schemes are based on the detection of the surrounding magnetic
field, for example with a Hall sensor or via induction [37; 38]. Utilizing the Faraday effect
– a magnetically induced rotation of the light polarization – a current’s magnetic field
can also be detected optically. Similar to the aforementioned methods, the latter method
requires an external probe, in this case a fiber coil, which limits the spatial resolution to
macroscopic scales [37; 38; 109].

An optical measurement scheme which is based on direct interaction between a current
and a light wave would allow to detect currents on arbitrary microscopic spots via tightly
focused laser beams. Furthermore, all-optical methods are not limited by electronic RC

constants and enable ultrafast time-resolved measurements by using femtosecond laser
pulses. However, such an optical current detection is non-trivial as it requires a sensitivity
to the anisotropy of the carrier distribution. Linear transmission measurements are only
sensitive to the total density of excited carriers since one-photon absorption is symmetric
with respect to the crystal momentum (cf. chapter 2.2).

The crystal momentum of occupied electronic states can be detected indirectly by
angle-resolved photoemission spectroscopy, i.e. angle-resolved velocity measurements of
photoemitted electrons [110]. Femtosecond time-resolved two-photon photoemission, a
subtype, is based on an optical excitation of electrons via ultrashort laser pulses [111]. For
example, such techniques have previously been utilized for time-resolved measurements
of coherently controlled surface currents in copper [18]. The drawbacks of angle-resolved
photoemission methods are their sophisticated detection schemes which require electron
optics and vacuum conditions for electron propagation.

An optical current measurement technique which is based on the analysis of transmitted
or reflected laser beams would simplify the detection scheme. However, for the reason
mentioned above, such a method may not rely on linear transmission or reflection alone.
Recently, current-induced second harmonic generation in GaAs has been demonstrated for
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current detection [112; 113].
There is a theoretical proposal by Liu et al. for current detection utilizing QUIC [35;

36]. This proposal is based on the fact that both the carrier distribution of the current as
well as the induced transition rates of QUIC are asymmetric with respect to the crystal
momentum. Depending on whether both exhibit the same or opposite asymmetry, the
transmission of the input beams is expected to be either more or less increased by state
blocking. By controlling the asymmetry of the transition rates via the relative phase of
the pulse pair, QUIC could be utilized to probe an anisotropic charge distribution via
transmission measurements. In turn, this technique would allow to investigate ultrafast
current dynamics by all-optical means.

In the following, the proposal for electrical current detection via QUIC is experimentally
investigated and discussed with respect to its practicability. After a brief explanation of
the theoretical proposal in chapter 6.1, an experimental implementation is presented in
chapter 6.2. Measurements which are performed with this implementation are discussed
in chapter 6.3.

Parts of this chapter are in preparation for publication elsewhere [46].

6.1 Theoretical Proposal

Current detection via QUIC relies on the interaction of the current’s asymmetric carrier
distribution with the optically induced transitions. The present chapter illustrates the
underlying theoretical concept of the proposal by Liu et al. [35; 36]. Within this context,
the fundamentally differing mechanisms of current generation via a static electric field on
the one side and via QUIC on the other side are discussed.

The application of a static voltage to a semiconductor results in a current flow which
is mediated by free carriers, i.e. electrons in the conduction band or holes in the valence
bands. Strictly speaking, an ideal semiconductor at T = 0 K is insulating by definition
since all bands are either entirely filled or empty. However, in realistic scenarios there
is always a finite number of thermally excited carriers. Additionally, the density of free
carriers can be enhanced permanently by doping or temporarily by optical excitation as in
the setup described in chapter 6.2.

With respect to the carriers’ energy dispersion E(k), the application of an external
electric field E results in a shift of the carriers’ crystal momentum k [87, ch. 8.2]:

dk
dt

= −eE (6.1)

Without scattering, an external field would cause a monotonic increase of the crystal
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momentum. Carrier scattering limits the average k-shift to a constant value which is
linear in the current relaxation time τr. The resulting asymmetry of the carrier distribution
corresponds to a directed charge current.

Fig. 6.1(a) illustrates the voltage-induced k-shift of a thermally or optically excited
carrier distribution in the conduction and valence band. For simplicity, the displayed
crystal momentum k is restricted to one dimension and only two bands are shown. Both
the electron and hole distribution are shifted in the same direction. The behavior of the
hole distribution can also be interpreted as a positive k-shift of an electron distribution with
respect to the energy minimum of the valence band. Owing to the opposite slope of both
bands, electrons and holes move into opposite directions and their current contributions add
up. It should be mentioned that the displayed k-shift is exaggerated for clarity. Typically,
the asymmetry of a voltage-induced current is relatively low and only a small number of
carriers which are not compensated by carriers with opposite velocities contribute to the
current.

The average k-shift of the electron distribution typically exceeds the shift of the hole
distribution as the relaxation times differ. The relaxation time τr and in turn the distribu-

Fig. 6.1: Illustration of optical current detection in a direct band gap semiconductor utilizing
QUIC. The upper panels depict simplified band diagrams; differently shaded areas mark the
electron and hole distribution. The lower panels represent side views of the sample. (a) The
generation of a current via application of an external voltage corresponds to a k-shift of the
electron and hole distribution. (b) The coherent superposition of a fundamental beam and its
second harmonic induces transitions whose addressed crystal momentum k can be controlled
by the relative phase of the beams. If the transitions at +k are suppressed, the absorption of
the beams is hardly influenced by the carrier distribution of the current. (c) If the transitions
are excited at +k, the absorption is reduced since the addressed states are already occupied
by the carrier distribution of the current.
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tions’ asymmetry can be approximated on the basis of the carriers’ mobility μ = e τr/m
∗
e,

which is 8800 cm2/Vs for electrons and 400 cm2/Vs for holes in room-temperature GaAs
[87, ch. 8.3]. With an effective mass of m∗

e = 0.067 ·me for electrons and m∗
h = 0.5 ·me

for heavy holes, the calculation yields relaxation times of about 300 fs for electrons and
100 fs for holes. Because of their lower density of states, the contribution of light holes is
neglected.

In contrast to voltage-induced current generation, QUIC is an all-optical process. As
described in chapter 2.2, the coherent absorption of a fundamental beam and its second
harmonic causes interfering one-photon and two-photon transitions at crystal momenta
with opposite sign. The absolute value of the crystal momentum is determined by the
photon energy. Controlled by the relative phase and the polarization of the beams, carriers
are predominantly excited at +k or −k. The resulting asymmetric electron and hole
distributions correspond to directed electron and hole currents which add up. In contrast
to voltage-induced current generation, the asymmetry of the distributions is much more
pronounced and a majority of the excited carriers may contribute to the current.

If both current generation processes are combined, the voltage-induced current may
influence the optical transitions. Fig. 6.1(b) as well as (c) show situations in which a fun-
damental beam and its second harmonic are perpendicularly focused onto a thin GaAs
sample. Simultaneously, an external voltage induces a current in the sample. The external
voltage causes a positive k-shift of the previously excited carrier distribution. The exci-
tation could be either induced thermally or optically by an additional pump beam which
must not be confused with the two beams for QUIC. Via appropriate polarization adjust-
ment of the latter beams, the current is injected parallel to the voltage-induced current.
Governed by the optical phase, the corresponding transitions are predominantly induced
at −k, as in Fig. 6.1(b), or at +k, as in (c).

Depending on whether the optical transitions at +k or −k dominate, the transmission of
the beams is expected to be either more or less influenced by current-induced state blocking.
In the latter case, as depicted in Fig. 6.1(b), optical transitions are induced between mostly
unoccupied electronic states. The absorption of the beams is hardly influenced by the
current’s carrier distributions which are centered at k > 0. However, if the optically
addressed states are predominantly located at +k, as depicted in Fig. 6.1(c), they are
significantly influenced by the current. Owing to the occupation of electron and hole states
at +k by the current, there are less states available for optical excitation. As a consequence,
the absorption of the beams is reduced. In practice, this effect should be more pronounced
for the second harmonic beam as one-photon transition rates are typically higher than
two-photon transitions rates of the corresponding fundamental beam.

By analyzing the transmission of the beams as a function of their relative phase, QUIC
allows to probe the current direction optically. Since the in-plane angle of the coherently
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injected current can be controlled by the beams’ polarization, it should also be possible to
derive an angle-resolved current map. In comparison, one- or two-photon absorption alone
is only sensitive to the density of free carriers. As the induced transitions are symmetric
with respect to the crystal momentum k, only the average occupation in the bands is
probed. The average occupation, however, does not change by application of an external
voltage.

QUIC only accounts for a small portion of the beams’ interaction with the semiconduc-
tor. In practice, the individual one- and two-photon absorption of the beams significantly
exceed the current-induced absorption saturation. However, the proposed current detection
technique benefits from the explicit phase dependence of QUIC. By measuring the differen-
tial transmission with respect to the optical phase, the contribution of phase-independent
one- and two-photon absorption cancels out and the current-induced transmission change
remains. Therefore, Liu et al. predict a high sensitivity of this technique [35; 36].

With respect to a quantitative analysis, it must be taken into account that the trans-
mission signal represents an integrated response. It contains both the asymmetric electron
and hole distribution and depends on the input pulses which determine the optically ad-
dressed states. If excess carriers are provided by n-doping, as in the proposal by Liu et al.,
the hole distribution can be neglected. In this case, the transmission signal only reflects
the electron current. The experimental implementation which is presented in the following
chapter relies on optical carrier generation. Therefore, it resembles the situation depicted
in Fig. 6.1.

6.2 Experimental Implementation

The optical current detection technique is exemplarily applied to a GaAs sample in which a
current is induced via application of an external voltage. Since the optical detection relies
on QUIC, the experimental implementation partly resembles the prototypical QUIC setup
presented in chapter 3.2. In essence, a pulse train of coherent two-color laser pulse pairs,
manipulated by an interferometer, is focused on the current in the GaAs sample. The beam
transmission through the sample is expected to be influenced by the current and is measured
as a function of the relative optical phase. More specifically, the transmission signal should
oscillate with respect to the relative delay τ between the pulse pair components, similar
to the oscillation in the current interferogram shown in Fig. 3.3. Such a transmission
measurement sets special requirements on the setup and particularly on the sample. This
requirements are addressed in more detail below.
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Experimental Setup

Fig. 6.2 depicts the experimental implementation of the current detection technique that
is developed as part of this thesis. The FFS fiber laser is used as a light source. On the
one side, it features a stable output with respect to beam intensity and alignment. On
the other side, it features a second synchronized beam output that is able to generate
an additional second harmonic pump beam for current generation, as is explained further
below. Both outputs emit about 100 fs-wide pulses with a central wavelength of 1550 nm.

One output beam is frequency-doubled in a nonlinear crystal to provide a train of
two-color pulse pairs for QUIC. Via a subsequent interferometer, both components can be
manipulated with respect to their individual intensity, polarization and relative delay τ . In
particular, a half-wave plate in one arm is used to achieve a parallel horizontal polarization
of both harmonics. Furthermore, the interferometer allows to ensure a collinear propagation

Fig. 6.2: Experimental scheme for current detection utilizing QUIC: One output beam of
the fiber laser source is frequency-doubled in a nonlinear crystal and steered into a two-color
interferometer which allows to control the probe beams’ individual delay τ , their polarization
and intensity (optics not shown). Both beams are collinearly focused on the ≈ 10 μm wide
gap of two metal contacts on top of a thin GaAs sample. The second synchronized laser
output is also frequency-doubled to provide an additional second harmonic pump beam. It is
focused on the same spot as the other beams to generate a spatial confined distribution of free
carriers which is accelerated by an external voltage. The intensity of the transmitted probe
beams is recorded with a photodiode. A filter in front of the photodiode allows to select a
specific beam.
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of both beams before these are perpendicularly focused on a GaAs sample. To reduce back
reflections that may distort the laser source, the sample is slightly tilted.

Basically, the sample consists of a thin layer of GaAs with vertical gold stripes on top.
The pulse pairs are collinearly focused on the gap of two parallel metallic contacts. The fo-
cal spot diameters are approximately 20 μm for the fundamental beam and 30 μm×20 μm

for the second harmonic component. Simultaneously, an external voltage supply induces
a horizontal current between the contacts. Because of the horizontal polarization of the
beams, both the pulse pairs and the voltage-induced current address the same crystal mo-
menta. To measure the current’s influence on the beam transmission, the sample thickness
has to be in the order of the absorption length or less. In the case of GaAs and a second
harmonic wavelength of 775 nm, the absorption length amounts to 670 nm [9, and refer-
ences within]. The absorption length of the fundamental beam is significantly higher since
its photon energy is below the band gap. A detailed description of the preparation and
characterization of the employed GaAs sample is given below.

To enhance the amplitude of the voltage-induced current, the conductivity of the in-
trinsic GaAs layer is locally increased by optical excitation. For that purpose, the second
synchronized laser output is also frequency-doubled in a nonlinear crystal, resulting in a
second harmonic beam power in the order of 20 mW. A shortpass filter blocks the fun-
damental beam. The additional second harmonic pump beam allows to directly excite
carriers in GaAs from a valence to the conduction band. It is focused on the same spot
between the metal contacts as the pulse pairs. The minimum focal spot diameter of the
pump beam is about 20 μm. A different angle of incidence minimizes disturbance of the
pulse pair transmission measurement. The delay τpump of the pump beam with respect to
the pulse pairs is controlled with a motorized stage.

The transmitted pulse pairs are collected with a lens behind the sample and focused on
a photodiode. An additional shortpass or longpass filter allows to select a specific beam.
The induced photocurrent is proportional to the irradiance and recorded with a lock-in
amplifier. The amplifier is either referenced to a chopper in a beam path or to a square-
wave voltage which is applied to the sample to induce a modulated current. The latter is
generated by a waveform generator which is connected to the contact pair. Alternatively,
a constant-voltage source is used which is simultaneously able to precisely measure the
induced current. In conclusion, the measurement setup allows to analyze the individual
beam transmission and the induced current as a function of various variables, such as
irradiance, optical phase or current amplitude.
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Sample Fabrication and Characterization

The employed sample is based on a polished GaAs wafer with locally etched windows.
These windows have a thickness in the order of the absorption length of the second harmonic
beam and allow for measurements of the pulse pair transmission. The lateral dimensions
of the windows are 200 μm × 300 μm. Metallic contact pairs on top of the windows are
used to apply a voltage and induce a current. It should be noted that the sample does
not have to be made from LT-GaAs since the current detection technique is based on a
measurement of the beam transmission instead of a measurement of the injected current.

Most parts of the sample preparation steps were performed in the group of Technische
Physik 1 at the Friedrich-Alexander-Universität Erlangen-Nürnberg. First, a 380 μm thick
substrate of (100) oriented GaAs was overgrown with a thin layer of AlAs and a GaAs layer
with a thickness in the order of 1 μm. Afterwards, the substrate was locally removed from
the back side via selective etching of predefined areas. The AlAs layer acted as etch stop
and prevented the removal of the upper GaAs layer. Gold contacts on top of the windows
were defined via optical lithography and metallic evaporation. To enhance mechanical
stability, the sample was glued on a transparent glass substrate which in turn was glued
into a sample holder with macroscopic electrical contacts. Later, the metallic contacts were
connected to the sample holder via tungsten wires and conductive adhesive.

Fig. 6.3 shows a top view of an exemplary section of the sample. The windows appear as
shaded areas because of their different thickness. The depicted metallic contact pair which

Fig. 6.3: Exemplary top view of the GaAs sample used for transmission measurements.
Windows were etched from the back side and appear as shaded areas with dimensions of
200 μm × 300 μm (encircled for clarity). The metallic contact pairs on top of the windows
exhibit a gap width of about 13 μm. An external voltage can be applied via tungsten wires
which are glued to the contacts. Only contact pairs that lay on top of a window are used in
the experiments.
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lies on top of the windows has a gap size of about 13 μm. Both contacts are connected
to the sample holder with separate wires. The sample also features other windows with
metallic contact pairs on top that have a gap width of up to 200 μm.

To characterize the contact pairs with respect to the induction of an electric field in
the GaAs window underneath, the Franz-Keldysh effect is employed [47, ch. 3.3.5; 114–
116]. This effect can be thought of as a reduction of the effective band gap by application
of an electric field. The reduction of the band gap is accompanied by an energetic shift
of the density of states. As a result, the absorption of a beam increases if its energy is
slightly below the unperturbed band gap. By contrast, the absorption of a beam with an
energy slightly above the band gap is reduced. Therefore, the electric field amplitude in the
windows can be compared on the basis of voltage-dependent transmission measurements.

Measurements of the Franz-Keldysh effect are performed with a titanium-sapphire laser.
Its output spectrum is tuned to ≈ 870 nm to match the band gap of GaAs. Utilizing a
narrow bandpass filter, a specific spectral component of the laser output can be selected
whose central wavelength is shifted by −10 nm or +10 nm with respect to the band gap.
A weak portion of the selected spectral component is focused on the gap of a contact pair
with a GaAs window underneath. The contact pair is connected to a waveform generator
that provides a square-wave voltage alternating between 0 V and up to +10 V or −10 V.
The voltage-dependent transmission of the windows is recorded with a photodiode and
a lock-in amplifier. The latter is referenced to the frequency of the square-wave voltage.
This measurement technique suppresses voltage-independent transmission components and
ensures a high sensitivity.

While a quantitative analysis of the Franz-Keldysh effect is quite extensive, the trans-
mission measurements allow to qualitatively compare different contact pairs. The strongest
responses are recorded at the windows depicted in Fig. 6.3. These exhibit a transmission
change of up to 0.15 % at a voltage amplitude of +10 V or −10 V. As expected, the sign
of the differential transmission changes if the wavelength is shifted across the band gap.
These findings are comparable with studies of the Franz-Keldysh effect in similar structures
consisting of an LT-GaAs layer and a contact pair with a gap width of 25 μm [117].

By contrast, the response of the other windows is weaker by at least a factor of 2.
Partially, the differential transmission signals of the other contacts exhibit a pronounced
asymmetry with respect to the applied voltage and unexpected sign changes. These ob-
servations indicate that the field distribution in those windows is relatively weak and
inhomogeneous compared to the windows depicted in Fig. 6.3.

The contact pairs and GaAs windows are also characterized with respect to their
current-voltage characteristic. In particular, it is tested whether the additional second
harmonic pump pulse is able to significantly reduce the resistance and enhance the induced
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current. An additional excitation is necessary since the metal-semiconductor junction and
the intrinsic GaAs in between result in a high resistance. Indeed, if a constant voltage of
10 V is applied to the windows depicted in Fig. 6.3 without optical excitation, a current of
only 20 nA is measured. If the polarity is reversed, the current amplitude drops to 3 nA.
This asymmetry indicates that the junction rather behaves like a Schottky contact.

The current measurements at the two windows are consecutively repeated with addi-
tional optical excitation by the second harmonic pump beam. With a spot diameter of
about 20 μm, the optically excited area exceeds the gap width of 12 μm. The peak intensity
is in the order of 1 GW/cm2 and results in an approximated carrier density of 5 · 1018 cm−3

in GaAs (cf. chapter 4.2 for calculation). As detailed in chapter 4.3, such a carrier density
results in an observable absorption saturation of the second harmonic beam. Therefore,
such a carrier density should also be sufficient to result in a significant voltage-induced
occupation asymmetry of the optically addressed states.

As a consequence of the optical excitation, the current in the GaAs windows is signif-
icantly increased. If a voltage of 10 V is applied to the contact pair, an average current
of about 20 μA is induced. With a beam diameter of 20 μm and an absorption length
of 670 nm, the current density calculates to 150 A/cm2. The peak density may even by
higher since the optical excitation is pulsed. If the polarity of the voltage is inverted, the
maximum current changes by only a few microampere, indicating a rather ohmic behavior
of the illuminated junction.

In conclusion, it can be shown that the sample geometry is suitable to induce significant
currents in the GaAs windows. On the basis of the aforementioned measurement series, the
two windows which are depicted in Fig. 6.3 are chosen for an exemplary application of the
optical current detection technique. The experimental results are presented and discussed
in the following chapter.

6.3 Application of the Current Detection Technique

The proposed optical current detection technique is based on the phase-dependent influence
of a current on the transmission of a coherent two-color pulse pair. Such transmission
measurements are presented and discussed in the following. Within this context, disturbing
influences by second harmonic generation in the sample itself are investigated.

Voltage-Dependent Transmission Measurements

The optical current detection technique is consecutively applied to the two GaAs windows
depicted in Fig. 6.3. In essence, the pulse pair transmission is measured as a function of
their relative optical phase and the current amplitude which is induced in the window.
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As detailed in chapter 6.1, the latter determines the asymmetry of the carrier distribution
of the current with respect to the crystal momentum. The relative phase of the pulse
pair components determines the asymmetry of the optical transitions. If the transitions
predominantly address electronic states which are already occupied by the current, the
transmission is expected to be increased because of absorption saturation.

The absorption saturation and thus the sensitivity of the current detection technique
depend on the mutual coherence of the pulse pair components. Therefore, special attention
is paid to ensure collinear propagation and focusing of the pulse pair. To this end, the
GaAs sample is exchanged with a beam profiler during adjustment. Furthermore, it is
verified that the polarization of both pulse pair components coincides with the direction of
the voltage-induced current. In this way, the pulse pairs and the current address the same
electronic states.

By monitoring the beam transmission with a photodiode, the foci of the beams can
be accurately aligned on a GaAs window. The transmission signal reaches its maximum
if the beams are focused on the center of the gap. An unintended illumination of the
neighboring metal contacts or the thicker GaAs substrate can be directly identified by a
reduced transmission.

In order to adjust the temporal overlap of the pulse pair components, the amplitude
of the coherently injected current is measured. For this purpose, the contact pairs are
connected to a lock-in amplifier that is referenced to a chopper at the laser output. By
changing the length of the fundamental beam arm, current interferograms similar to the
one depicted in Fig. 3.3 are recorded. During these measurements, the second harmonic
pump beam is blocked. Although the windows consist of nominally intrinsic GaAs instead
of LT-GaAs, both windows yield relatively high current amplitudes. At peak intensities
of about 6 GW/cm2 for the fundamental beam and 200 MW/cm2 for the second harmonic
component, the maximum peak to peak current amplitudes are in the order of 200 nA.
These relatively high current amplitudes are probably related to the low gap width and
defect states that act similar to the defects in LT-GaAs.

The current to be probed is generated by an external voltage at a position which is
determined by the second harmonic pump beam. Therefore, it is desirable to optimize
the overlap of the foci of the pulse pair components on the one hand and the focus of the
second harmonic pump beam on the other hand. To this end, the pulse pair transmission is
monitored while adjusting the alignment and the delay τpump of the second harmonic pump
beam. Even without application of an external voltage, the massive carrier excitation by
the pump pulse results in a transmission change due to absorption saturation. While the
spatial alignment of the pump beam is adjusted to maximize absorption saturation, τpump

is set such that each pump pulse precedes a pulse pair by a few picoseconds. In this way, it
is on the one hand ensured that the coherent transitions by the pulse pair are induced in an
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already quasi-thermalized carrier distribution with a well-defined asymmetry, determined
by the external voltage. On the other hand, such a delay is not long enough for the
distribution to fully recombine across the band gap.

After adjustment, the GaAs windows and the current within are probed by phase-
resolved measurements of the transmission of one pulse pair component. For this purpose,
the relative delay τ between the pulse pair components is slightly varied around maximum
temporal overlap while keeping the delay τpump of the pump beam constant. A photodiode
behind the sample records the intensity of the transmitted beam. The pulse pair component
to be monitored is selected by an additional longpass or shortpass filter in front of the
photodiode. To check for reproducibility, the measurements are performed at both windows
depicted in Fig. 6.3.

Despite careful alignment, measurements with the fundamental beam component do
not show a significant and reproducible phase-dependent transmission signal. However,
this observation is not unexpected since the fundamental beam may only interact via
two-photon transitions. Given the same illumination intensity, these are less likely than
corresponding one-photon transitions. Therefore, the following measurements concentrate
on the transmission of the second harmonic beam.

Fig. 6.4(a) exemplarily depicts the transmission of the second harmonic pulse pair
component. A lock-in amplifier records the response of the photodiode. It is referenced to
a chopper in the arm of the fundamental pulse pair component. In this way, stray light by
the second harmonic pump beam is suppressed. During the measurement, a fixed voltage
of −10 V, 0 V or +10 V is applied to the contacts. The delay τpump is set such that each
pump pulse precedes a pulse pair by 2.5 ps. The approximated peak illumination intensities
on the window are 6 GW/cm2 for the fundamental pulse pair component, 200 MW/cm2

for the second harmonic pulse pair component and 700 MW/cm2 for the additional second
harmonic pump beam. It should be noted that the current saturation which is presented
and discussed in chapter 4 is rather small at such pulse pair intensities (cf. Fig. 4.2(a)).

Fig. 6.4(a) reveals distinct oscillations of the transmission with respect to the delay τ .
Similar to the measurements of QUIC (cf. Fig. 3.3(b)), the oscillation period corresponds
to the wavelength of the second harmonic pulse pair component. The oscillation amplitudes
are in the order of 10−3. These are calculated by normalizing the signal to the total intensity
of the transmitted second harmonic pulse pair component. The latter is determined by
referencing the lock-in amplifier to a chopper in the corresponding beam arm.

Apart from the oscillating signal, the recorded transmissions also contain phase-
independent components in the order of 10−2. These may for instance be caused by the
optically induced increase of the total carrier density. Since the proposed optical cur-
rent detection explicitly depends on the relative phase, the constant components are not
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Fig. 6.4: Differential transmission of the second harmonic pulse pair component as a function
of the relative delay τ between the pulse pair components for different voltages applied to
the illuminated GaAs window. Approximated peak illumination intensities are 6 GW/cm2

for the fundamental pulse pair component, 200 MW/cm2 for the second harmonic pulse pair
component and 700 MW/cm2 for the additional second harmonic pump pulse. (a) Signal
recorded with a constant voltage and the lock-in amplifier referenced to a chopper in the
fundamental beam arm. (b) Signal recorded by referencing the lock-in amplifier to a square-
wave voltage. Both signals are normalized to the total transmission of the second harmonic
pulse pair component. A constant offset is subtracted from both graphs.

analyzed in more detail and subtracted from the graph.
The voltage dependence of the oscillation amplitudes is less pronounced than expected.

In fact, the oscillation is even present if no voltage is applied to the GaAs window. In case
that the oscillation is solely caused by the current-induced transmission increase detailed
in chapter 6.1, the oscillation would be expected to vanish if no current and thus no
asymmetry of the carrier distribution is present. Therefore, these oscillations must have
another origin that is discussed in more detail below.

Most strikingly, an increase of the applied voltage results in a significant shift of the
oscillation with respect to the delay τ . In order to separate this effect from the voltage-
independent oscillation, another measurement technique is used. Instead of the chopper
in the fundamental beam arm, the lock-in amplifier is referenced to a square-wave voltage
that is applied to the sample. The square wave-voltage alternates with a frequency of
571 Hz between 0 V and up to ±10 V. In this way, the measurement is only sensitive to
voltage-induced transmission changes.



94 6 Optical Current Detection via QUIC

Exemplary measurements of the voltage-induced transmission changes are shown in
Fig. 6.4(b). The corresponding experimental parameters, e.g. irradiances or pulse delays,
are the same as in Fig. 6.4(a). Therefore, the differential transmission can be normalized
in the same way. Furthermore, phase-independent offsets are subtracted. The two curves
correspond to measurements employing square-wave voltages with the same amplitude of
10 V but with different polarity.

Both curves feature similar oscillation amplitudes and the same oscillation period as
the curves in Fig. 6.4(a). However, the phases of the two curves differ by π and therefore
correlate with the orientation of the applied voltage. Such a behavior is in agreement
with the voltage-dependent phase shift of the three curves in Fig. 6.4(a). The observed
oscillations can be thought of as a superposition of two slightly shifted oscillations, a
voltage-independent component and a voltage-dependent component.

In order to investigate the underlying mechanism of the voltage-dependent component,
the corresponding oscillation amplitudes are determined as a function of the illumination
intensity. To this end, measurements as shown in Fig. 6.4(b) are repeated with different
intensity combinations of both pulse pair components. If the intensity of the second har-
monic component is kept constant, the extracted oscillation amplitudes scale linearly with
the intensity of the fundamental beam. If the intensity of the fundamental component
is kept constant, the oscillation amplitudes scale with the root of the second harmonic
irradiance. Taken together, the phase-dependent transmission scales in the same way as
the QUIC amplitude. However, the intensity dependence alone is not sufficient to identify
QUIC as the origin of the transmission oscillation. At least, it can be concluded that the
transmission signal originates from a nonlinear optical effect.

Influence of Second Harmonic Generation

The fact that the transmission signal features a sine-like phase dependence even if no
voltage is applied to the GaAs windows indicates the influence of another effect than
current-induced absorption saturation. A potential candidate for such an effect is second
harmonic generation (SHG) in the GaAs sample itself [118, and references within; 119].
If the fundamental pulse pair component is frequency-doubled in the GaAs window, the
emergent beam exhibits the same wavelength and propagation direction as the second
harmonic pulse pair component. As a consequence, the illumination intensity on the pho-
todiode would also be determined by the interference of the two second harmonic beams.
In particular, the intensity would exhibit the same oscillation period as the oscillations in
Fig. 6.4(a).

SHG in the GaAs window can be identified by a spectrally-resolved measurement. To
this end, the photodiode behind the sample is exchanged with a spectrometer. During such
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a measurement, only the fundamental beam is focused on the GaAs window. The other two
second harmonic beams are blocked as their high intensity would saturate the spectrometer
and perturb the measurement. For the same reason, the transmitted fundamental beam
is prevented from entering the spectrometer by a shortpass filter between the sample and
the detector.

If the fundamental beam is focused on the GaAs window, the spectrometer indeed
reveals a peak at the second harmonic wavelength. According spectra are depicted in
Fig. 6.5(a) for an exemplary fundamental beam intensity of 6 GW/cm2. The peak features
a central wavelength of about 780 nm, which is half the input beams’ central wavelength
of about 1550 nm. Utilizing again the photodiode, the integrated intensity of the emerging
second harmonic component can be estimated to about 0.3 nW.

Application of a voltage to the GaAs window significantly influences the spectral am-
plitude of the second harmonic component. In this case, a voltage of +20 V causes an
increase of up to 50 %. On the contrary, a negative voltage results in a slight decrease of
the amplitude. It should be noted that the application of a voltage of ±10 V, which is used
in the previous measurements, has a qualitatively similar but less pronounced influence on
the spectral amplitudes.

To affirm that the spectral peaks stem from SHG in the sample, their dependence
on the input beam intensity is analyzed. For example, improper filtering in the two-
color interferometer could result in a residual second harmonic beam component in the
fundamental arm. The intensity of such a second harmonic component would scale linearly

�

�

�

Fig. 6.5: (a) Spectra of the second harmonic signal behind the GaAs sample at a fixed
intensity of the fundamental input beam and different voltages applied to the contact pair.
(b) Integrated intensity of the second harmonic peaks as a function of the fundamental beam
intensity and the applied voltage. The curves correspond to parabolic fits.
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with the attenuation of the fundamental beam arm. In contrast, the intensity of SHG
scales with the squared intensity of the fundamental input beam. Therefore, spectra of
the second harmonic component are acquired for different fundamental beam intensities.
Subsequently, the integrated intensity of the peaks is extracted.

Fig. 6.5(b) plots the integrated intensity of the second harmonic component as a func-
tion of the fundamental beam intensity and the applied voltage. As expected for SHG,
the data points agree well with parabolic fits which are illustrated by curves. If a posi-
tive or negative voltage is applied to the GaAs window, the respective scaling factor of the
parabolic fits is higher or lower than without a voltage. Similar to Fig. 6.5(a), the amplitude
increase at positive voltages is much higher than the decrease at negative voltages. The
underlying mechanism of this voltage dependence is addressed later in the chapter. First,
the discussion focuses on the influence of SHG on the previously presented transmission
measurements for the case that no voltage is applied to the sample.

During transmission measurements, the photodiode is simultaneously illuminated by
two second harmonic beams. On the one hand, the pulses from the second harmonic arm
of the interferometer transmit through the sample and hit the detector. On the other hand,
as described above, the pulses from the fundamental arm generate an additional beam by
SHG in the sample. Since the pulses from both second harmonic beams feature the same
central wavelength and overlap spatially as well as temporally, the intensity on the detector
is modulated by interference. This intensity can be described by a superposition of the
corresponding electric field amplitudes E:

|E2ω,trans + E2ω,SHG|2 ∝ I2ω,trans + 2 cos(Δφ2ω)
√

I2ω,trans · I2ω,SHG + I2ω,SHG (6.2)

Here, the index “trans” refers to the transmitted beam from the second harmonic arm and
“SHG” to the beam that is generated in the sample. The first and third term on the right-
hand side of the equation denote the intensities of the individual beams. The interference
of both beams is described by the second term. Its sign is determined by the phase
difference Δφ2ω of the pulses. If the relative delay between the pulse pair components
in the interferometer is continuously swept, the intensity oscillates with a period that
corresponds to the second harmonic wavelength, as it is the case in Fig. 6.4(a).

In order to quantify the influence of interference on the transmission measurements,
the oscillation amplitude of the intensity is exemplarily calculated for the measurement
depicted in Fig. 6.4(a). The corresponding transmitted average beam power I2ω,trans is in
the order of 200 μW. As mentioned above, the average second harmonic power I2ω,SHG can
be estimated to 0.3 nW. If normalized to the total transmission which is dominated by
I2ω,trans, the relative oscillation amplitude is given by 2 ·√I2ω,SHG/I2ω,trans. Inserting the
above mentioned intensities yields a relative oscillation amplitude of 2 · 10−3.
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The calculated interference amplitude exceeds the observed oscillation in Fig. 6.4(a) by
a factor of 4. However, it must be taken into account that the calculation assumes optimal
coherence of both beams which is not fulfilled in practice. For one, the polarizations of both
beams do not coincide but exhibit an angle of 45◦ with respect to each other. Furthermore,
it is not taken care of that the beams propagate collinearly and illuminate the same area
on the detector. As a consequence, the intensity interference is reduced compared to the
calculation.

Owing to the good agreement of the oscillation amplitudes and the consistent oscillation
period, it is reasonable to attribute the voltage-independent oscillation in Fig. 6.4(a) to
interference, caused by SHG in the sample. In the following, it is further argued that it
is also reasonable to attribute the voltage-dependent oscillation component in Fig. 6.4(b)
to interference. Most likely, the application of a voltage influences the second harmonic
generation in the sample via EFISH (electric field-induced second harmonic generation).

EFISH refers to frequency-doubling in a material by coupling of the electric field am-
plitude Eω of the incident beam with the amplitude of a static electric field EDC [120; 121;
122, and references within]. In terms of nonlinear optics, this effect is described by the
fourth-rank tensor χ(3)(−2ω;ω, ω, 0). Omitting the optical polarizations for clarity, the
material’s polarization P follows the relation

PEFISH ∝ χ(3)(−2ω;ω, ω, 0)E2
ω EDC. (6.3)

Since the electric field amplitude of the emitted second harmonic beam scales linearly
with the polarization P , the second harmonic intensity is proportional to the square of
the fundamental beam intensity, as it is also the case for regular SHG. Additionally, the
second harmonic field amplitude is proportional to the static field amplitude EDC. As a
consequence, the phase is shifted by π upon a reversal of the polarity of the constant field
[123].

Referring back to Fig. 6.5, the voltage-induced difference of the detected second har-
monic intensity can be attributed to EFISH. Conventional SHG and EFISH both cause
frequency-doubling of the incident fundamental beam. As evident from the good agreement
with the parabolic fits, the voltage-induced difference in amplitude follows the quadratic
intensity dependence of EFISH. On the basis of reference transmission measurements with
the second harmonic pulse pair component, it can be ruled out that the difference is sim-
ply caused by a voltage-dependent absorption in the sample. The fact that depending
on the voltage polarity the intensity is either increased or decreased can be explained by
interference.

The spectrometer detects a superposition of two second harmonic components generated
by conventional SHG as well as EFISH. Depending on their relative optical phase, these
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interfere constructively or destructively. While the optical phase of the conventional SHG
component is fixed, the EFISH component depends on the orientation of the static field.
As a result the total intensity may be decreased upon application of a negative voltage.

A simultaneous generation of an EFISH component and of a field-independent SHG
component in the sample is also consistent with the oscillations in Fig. 6.4(a). As men-
tioned above, the voltage-induced phase shift can be interpreted as a superposition of two
oscillations, a voltage-independent component and a voltage-induced component. The for-
mer can be explained by interference of the second harmonic pulse pair component with
SHG in the sample. The voltage-induced oscillation can be attributed to interference with
an EFISH component. Consistent with the field dependence of EFISH, the voltage-induced
oscillation in Fig. 6.4(b) is shifted by π if the polarity is inverted.

Apart from a phase shift in Fig. 6.4(a), the superposition of both oscillation compo-
nents results in an increase of the oscillation amplitude for positive voltages and a decrease
for negative voltages. This behavior is in qualitative agreement with the detected second
harmonic intensity in Fig. 6.5. Quantitatively, the detected intensity difference does not
match the relative amplitudes of the SHG and EFISH oscillation component even if twice
the voltage is applied to the sample. However, it must be taken into account that the
experimental conditions of both measurements differ. In contrast to the transmission mea-
surements, the GaAs window and the contact pair are only illuminated by the fundamental
beam during the spectral measurements.

Without illumination by a second harmonic beam, whose energy exceeds the band gap,
the semiconductor-metal junction behaves rather like a high-resistive Schottky contact. As
affirmed by the previously mentioned current-voltage characteristics, the penetration of the
electric field into such a junction is reduced and asymmetric with respect to the polarity of
the applied voltage. Consequently, the EFISH component in such a junction also features
a reduced and asymmetric voltage-dependence. Therefore, the lack of a pump beam is
able to resolve the discrepancy between the spectral measurements and the transmission
measurements.

In summary, it can be concluded that the presented transmission measurements are
dominated, if not fully determined, by interference of second harmonic components gen-
erated by SHG and EFISH. Measurements with lower intensity combinations of the pulse
pair than in the measurement depicted in Fig. 6.4 show similar results. In fact, a reduc-
tion of the intensity is not expected to alter the amplitude relation between QUIC and
interference by second harmonic generation.

QUIC, which is the underlying effect of the proposed optical current detection, and
interference by second harmonic generation both exhibit the same intensity dependence.
As evident from equation 6.2, intensity interference is proportional to the square root of
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the intensity of both interfering second harmonic components. The intensity of second
harmonic generation in the sample is in turn proportional to the squared intensity of the
incident fundamental beam. Consequently, the oscillation amplitude scales with

√
I2ω Iω,

similar to QUIC. As already mentioned, such scaling is also observed for the amplitude of
the voltage-induced oscillations of the transmission measurements.

6.4 Conclusion and Outlook

An experimental implementation of the optical current detection scheme proposed by Liu
et al. [35; 36] is presented and evaluated. The detection scheme is based on QUIC by a two-
color pulse pair incident on the sample to be probed. Via the relative phase and polarization
of the pulse pair components, the crystal momentum of the optically addressed electronic
states can be controlled. If these electronic states are already occupied, the transmission
of the pulse pair is expected to be increased because of absorption saturation. Such a
selective absorption saturation would allow to sense an anisotropic carrier distribution
which corresponds to the presence of a current. In specific, the current should manifest in
the dependence of the transmission on the relative phase of the pulse pair.

The presented implementation of the detection technique is designed for an exemplary
application at a voltage-induced current in a thin GaAs sample. Via frequency-doubling
of ultrashort laser pulses in a nonlinear crystal and a subsequent interferometer, collinear
coherent pulse pairs are provided; their components can be individually adjusted in inten-
sity, relative delay and polarization. In essence, the sample to be probed consists of a thin
layer of GaAs with metallic contacts on top to apply a voltage. In order to increase the
amplitude of the induced current, the sample is further excited by an additional laser beam.
The sample thickness is chosen such that components of the fundamental wavelength of
1.55 μm as well as of its second harmonic are transmitted. These transmitted components
are recorded with a detector behind the sample.

On the basis of independent control measurements, it can be demonstrated that the
setup fulfills the fundamental requirements of the proposed detection technique. Measure-
ments of QUIC in the sample confirm a precise and coherent superposition of the pulse pair
components. Therefore, the pulse pairs allow for a selective optical excitation of electronic
states. Moreover, current-voltage characteristics imply a significant and localized current
induction in the GaAs layer by the metallic contacts on top and selective optical excitation
with the pump beam. The calculated excitation density corresponds to a massive popula-
tion of the electronic bands that should result in a significant influence on the pulse pair
transmission.

Despite careful design and optimization of the setup, the transmission measurements
do not allow to deduce an influence by current-dependent saturation absorption. The
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transmission of the fundamental beam does not feature a significant and reproducible
dependence on the relative phase of the pulse pair. This result is not unexpected since the
fundamental beam may only interact with the electronic states via two-photon absorption.
In contrast, the second harmonic beam is able to directly address the electronic states.
However, these measurements are perturbed by interference which can be attributed to
second harmonic generation in the sample.

The focused illumination of the GaAs sample by the fundamental beam results in
frequency-doubling which is verified by spectrally-resolved measurements. An additional
voltage application influences the frequency-doubling in the sample by electric field-induced
second harmonic generation (EFISH). As a consequence, the transmitted second harmonic
pulse pair component interferes with the additionally generated second harmonic beam.
The resulting intensity interference on the detector features a similar phase- and voltage-
dependence as the predicted absorption saturation. Furthermore, QUIC and the inter-
ference follow the same intensity dependence. Therefore, a potential influence by current-
dependent saturation absorption cannot simply be separated from the pronounced intensity
interference.

There is still room for potential improvements of the setup which have not been tested
yet because of their relatively high effort. By using another laser system with a longer
wavelength, the sensitivity to the anisotropic carrier distribution could be enhanced. If the
optically probed electronic states are closer to the band gap, they should be more influ-
enced by the quasi-thermalized carrier distribution. Aside from that, the second harmonic
generation could be reduced if another sample is used which is fabricated from another
material or exhibits another crystal orientation. However, it must be taken into account
that the reduction of such a nonlinear response may also be accompanied by a reduction
of the magnitude of QUIC.

Apart from the aforementioned improvements, it could be tested whether the detection
scheme is applicable on spin currents. Spin currents arise when carrier distributions of
different spin states feature unequal anisotropies. Utilizing orthogonally polarized pulse
pairs, coherence control has been demonstrate for the injection of pure spin currents with
no net charge transfer [55–58]. Similar to coherent charge current injection, the spin
current direction can be controlled by the pulse pair’s relative polarization and optical
phase. Conversely, a spin current should also manifest in the beam transmission, since the
pulse pair addresses specific spin states. However, in the case of pure spin currents which
do not result in a charge imbalance, the influence of EFISH should be minimized.
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Chapter 7

Summary

This thesis covers physics and applications of coherently controlled current injection
(QUIC) in the prototypical direct band gap semiconductor GaAs. QUIC is a nonlinear
optical process that allows to inject currents by all-optical means. An ultrashort two-color
laser pulse pair which is incident on a GaAs sample causes an interference of electronic
transitions. Eventually, this quantum interference results in an ultrafast current burst. Its
direction and amplitude can be controlled by the relative phase and polarization of the
pulses. The use of low-temperature grown GaAs (LT-GaAs) allows to measure the current
via metallic contacts on top of the sample. Essentially, defects in LT-GaAs freeze the
charge separation of ultrafast current bursts and prevent it from a rapid recombination.

The first part of the thesis addresses the high-intensity regime of QUIC for which
significant deviations from the initial theoretical description are predicted. Indeed, a col-
laborative experimental and theoretical study shows a pronounced current saturation at
elevated intensities. Partly, the observed deviations can be attributed to an increased re-
combination of the induced charge dipole. Pump-probe type measurements and theoretical
calculations also indicate significant deviations of the injection process itself. If the illumi-
nation intensity is increased, the induced transition rates eventually stagnate as there is
only a finite number of optically addressable states. Therefore, the current injection is
reduced due to absorption saturation of the laser pulses. Furthermore, the increased coup-
ling between the carriers and the electric field amplitudes of the pulses can result in a
breakdown of the perturbative description of the light-matter interaction.

In the second part of the thesis it is demonstrated that QUIC can be utilized to retrieve
the spectral phase of ultrashort laser pulses. A specific combination of the beam to be
characterized and its second harmonic is focused on a contacted LT-GaAs sample. The
injected current is measured as a function of the temporal delay of these beams. Owing
to the explicit phase dependence of QUIC, the spectral phase of the incident pulses, in
particular their group velocity dispersion (GVD), can be directly retrieved from a Fourier
transform of the current measurement. For a quantitative evaluation, the measurement
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scheme is applied to differently chirped pulses with a central wavelength of 1.5 μm and
a nominal pulse duration of 50 fs. With respect to typical experimental conditions, the
retrieved GVD values are in good agreement with reference measurements by SHG-FROG.

The last part of the thesis discusses the experimental implementation of a proposed
QUIC-based current detection scheme. In essence, a current in a semiconductor is predicted
to manifest in the transmission of an incident two-color pulse pair. Depending on the
relative phase of the two pulses, their absorption is expected to be reduced. This detection
scheme is exemplarily applied to a voltage-induced current in a thin GaAs sample. The
transmission of the pulse pairs is measured as a function of the relative optical phase as
well as the current amplitude. It can be shown that the setup fulfills the fundamental
requirements of the proposal. However, it turns out that interference by second harmonic
generation in the sample perturbs the experimental implementation of the optical current
detection scheme.

In conclusion, this thesis gives new insights into the physics and practical applications
of QUIC. The study of the high-intensity regime advances the understanding of QUIC con-
cerning the underlying light-matter interaction as well as the subsequent current dynamics.
The prototype of the phase-retrieval scheme demonstrates that QUIC can provide a reliable
alternative to existing methods for the temporal characterization of ultrashort laser pulses.
Further modifications of the setup could improve the accuracy of this technique and extend
its range of applicability. Although the all-optical current detection scheme could not be
demonstrated experimentally, the study allows to identify the disturbing influences and to
deduce practical solutions for future investigations.
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