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Abstract

This paper investigates the interplay of term premia,
monetary policy, and the economy in the euro zone. For
this purpose I use a no-arbitrage macro-finance model
of the term structure of government bond yields as in
Ireland (2015), where yields are modeled as linear-affi ne
functions of the state vector. Movements in term premia
are captured by an unobservable risk variable. Restric-
tions on the dynamic of the state equation are entailed
in order to identify the structural model. The model
is estimated using Bayesian estimation techniques. The
results highlight a rich dynamic between term premia,
monetary policy, and the economy. In line with the
"practitioners view" I find that an exogenous rise in pre-
mia dampens economic activity. Moreover, during the
sample period, the ECB lowered the nominal short-term
interest rate in response to a rise in term premia.
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1 Introduction

Standard decomposition of yields separates the yield of a long-term bond into an expec-

tation part and a term premium part. The expectation part consists of the average of the

expected sum of short-term interest rates until the bond matures while the term premium

part compensates risk-averse investors for the risk of holding longer-dated instruments.

In order to affect the economy, manipulating the expectations of the future short rates by

the forward guidance of future short-term interest rates is one important tool of central

banks, as emphasized by Woodford (2005). This routine is known as the term-structure

expectation channel. However, to the extent that aggregate demand depends, among

other macroeconomic factors, not only on the short-term interest rate but also on long-

term interest rates, by influencing the term structure premium incorporated in long-term

bond yields, there is another, less conventional way, how central banks might be able to

affect economic activity. This paper analyses the effects of movements in term premia

on the economy, the effects of monetary policy on term premia, and whether the ECB

responds, in turn, on term premia movements.

The effects of variations in term premia on the economy, and how monetary policy

affects these premia, are in the focus of policy makers and researchers, not solely, but es-

pecially since the financial crisis. During the crisis, with the short-term nominal interest

rate at the zero lower bound, unconventional methods of monetary policy sought to reduce

term premia in long-term bond yields in order to ease financial conditions. Specifically,

as noted by former Federal Reserve Chairman Ben Bernanke (2013, p.7), "to the extent

that Treasury securities and agency-guaranteed securities are not perfect substitutes for

other assets, Federal Reserve purchases of these assets should lower their term premiums,

putting downward pressure on long term interest rates and easing financial conditions

more broadly." But also before the onset of the financial crisis, the effects of changes in

term premia on the economy and the response of monetary policy to these fluctuations

were considered by researchers and policy makers. As explained, again, by then Federal

Reserve Chairman Bernanke (2006), "if spending depends on long-term interest rates,

special factors that lower the spread between long-term and short-term interest rates will

stimulate aggregate demand. Thus, when the term premium declines, a higher short-term

rate is required to obtain the long-term rate and the overall mix of financial conditions

consistent with maximum sustainable employment and stable prices". Rudebusch, Sack,
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and Swanson (2007) discuss and summarize this view under the expression "practitioner

view". The practitioner view states two assumptions. Firstly, a drop in the term pre-

mium and with it in long-term yields, all else is being equal, works to stimulate aggregate

demand and output. Secondly, optimal monetary policy requires the central bank to

counteract the drop in the premium in order to balance output and inflation. Though

this view is prevalent among practitioner (Rudebusch, Sack, and Swanson, 2007), surpris-

ingly less evidence for it has been found so far. The empirical findings of the effects of

changes of the premium on output are rather mixed, ranging from exactly the opposite

relationship of what one would expect from the practitioner view to the expected inverse

relationship between term premia and output. Since a broad literature focuses on the ef-

fects of movements of term premia on output, the next section serves a literature overview

of the effects of term premia movements on GDP.

However, not are only the effects of changes in term premia on output unclear, but

also how monetary policy should respond to these changes (if it responds at all). The

practitioner view advocates that in response to a rise in the term premium, the central

bank should lower the policy rate to offset the increase.2 In contrast, Goodfriend (1993)

and McCallum (2005) argue that the central bank should increase the short-term interest

rate in response to a rise in the term premium. Both interpret the rise in the term

premium as evidence for an increase in inflation scares which the central bank should

fight by raising the short-term interest rate. More recently, Ireland (2015) investigates

the response of monetary policy to changes in the term premium for the US. He provides

evidence that an increase in the premium led the Fed tighten monetary policy.

This paper seeks to evaluate the interplay of monetary policy, term premia and the

economy in the Euro Area. My analysis focuses on the euro area before and during the

financial crisis in order to investigate if movements in term premia affect output and

inflation, whether the ECB responds to these movements, and how term premia in turn

responds to conventional monetary policy actions. For this purposes, I apply the macro-

finance model of the term structure proposed by Ireland (2015) to the euro area.

The recent period raises questions about a non-negativity constraint or lower-bound

constraint on the interest rate processes, usually known as the “zero lower bound”. While

2Indeed, Carlstrom, Fuerst and Paustian (2014) demonstrate in a DSGE model with segmented finan-
cial markets and imperfect financial intermediation that a negative response coeffi cient in the monetary
policy rule on the term premium increases welfare modestly.
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the results of Bauer and Rudebusch (2015) stress the relevance of shadow rate models (a

particular class of term structure models that respects a lower bound for the short-term

interest rate process) for the US, the need of this kind of models for the Euro area is less

clear. Indeed, as argued by Christensen and Krogstrup (2014, 2015) standard Gaussian

modelling approaches appear to be fully warranted, since particular bond yields in Europe

(in their example: German and Swiss bond yields) “have actually been well below zero for

intermediate maturities and for extended periods in recent years.”Thus, they do not find

it obvious that a lower bound should be enforced. Also Dewachter et al. (2014b), using

government bond yields of five European countries, do not enforce a zero lower bound on

European bond yields and on the process of the risk-free short-term interest rate (proxied

by the OIS rate).

For analyzing the yield curve, and especially term structure premia, macro-finance

models bring along several benefits. In contrast to pure finance models, macro-finance

models allow bond prices and macroeconomic fundamentals to evolve jointly over time.

The short-end of the yield curve, that is, the short-term risk-free interest rate is under

the control of the central bank, using information of the state of macroeconomy helps to

model the short-term interest rate process. Moreover, evidence shows that term premia

are not only time varying, but also different across bond maturities. Exploiting all infor-

mation available over the entire yield curve helps to identify the term premium and thus

to separate term premia from the expectation part of long-term yields. Instead of deter-

mining specific channels through which macroeconomic and other shocks affect premia

and premia affect the economy, macro-finance models do not specify a particular trans-

mission channel. This is in particular appealing because of the conflicting evidence of the

effects of movements in term premia on the economy from previous empirical studies.

Yet, some assumptions to ensure identification and to make yield equations consistent

with each other in the cross section and the time series have to be made. In order to

model the dynamics of yields consistently over the yield curve, cross-equation restrictions

are needed. Based on Duffi e and Kan (1996), these cross-equation restrictions arise from

the assumption of the absence of arbitrage opportunities in bond markets. The precise

specification of the term structure part of the model follows Dewachter and Iania (2012),

Dewachter et al. (2014a), and Ireland (2015): In order to evaluate the interplay of

term premia movements, monetary policy and the economy, a latent risk variable that
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captures term premia movements is employed. In the spirit of Cochrane and Piazzesi

(2005, 2008), the risk variable is constructed to be the only force that drives the one-period

expected excess holding return (the one period-return premium) and is integrated into

the state space system. The dynamics of the state variables are modeled as a structural

vector autoregressive (VAR) model. The risk variable responds to all state variables

and, based on evidence that a large fraction of variations in term premia is not fully

spanned by macroeconomic factors (Cochrane and Piazzesi, 2009, and Joslin, Priebsch

and Singleton, 2014), also exhibits an autonomous dynamic. Moreover, while Dewachter

and Iania (2012) and Dewachter et al. (2014a) does not allow term premia to affect

the economy, following Ireland (2015), the model allows for feedbacks from term premia

movements to the economy. Identification of the structural shocks of the state equations

is achieved by imposing restrictions on the contemporaneous relation among the variables

of the state equation. The estimation of the model is carried out by Bayesian estimation

techniques. The likelihood function is constructed using the Kalman filter. The posterior

is evaluated using an Adaptive Metropolis (AM) algorithm in the lines of Haario, Saksman

and Tamminen (2001).

My results reveal a rich dynamic between term premia, monetary policy and the

economy. In line with the practitioner view, I find that a rise in term premia is associated

with a drop in the output gap and a drop in inflation. The ECB lowers the short-term

interest rate in response to an increase in term premia. Thus, during the sample period,

the ECB mitigates the effect of a rise in the term premium on the yield curve by lowering

the short-end of the yield curve. However, I find only negligible effects of conventional

monetary policy on term premia in turn.

The remainder of the paper is organized as follows. The next section serves a literature

overview of the effects of term premia movements on output. Section 3 explains the macro-

finance model and discusses the decomposition of the yield curve into the expectation

part and term premia part. The next Section casts the model into the state space system,

describes the data and discusses the estimation procedure and the prior distribution.

Section 5 presents and discusses the results of the estimation. The last Section concludes.
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2 Literature overview

This section covers a literature overview of the empirical results and the theoretical con-

sideration of the effects of term premia movements on output.

In standard linearized New-Keynesian models, term premia do simply not exist. Log-

linearization eliminates higher order terms like term premia by construction. In order to

analyze term premia in a DSGE framework, limits-to-arbitrage or non-linear setups are

required. Rudebusch, Sack and Swanson (2007) show that a non-linear New-Keynesian

model with habit formation produces time-varying term premia which respond to the

state of the economy. They emphasize that the relationship between the term premium

and the output gap depends on the kind of the underlying distortion. However, their

model does not offer a feedback from the term premium to the economy. Andrés, López-

Salido and Nelson (2004) use a New-Keynesian model with imperfect substitutability

between different financial assets and segmented asset markets to analyze the effect of

long-term yields on aggregate demand and supply. They demonstrate that an increase

in term premia dampens economic activity. Chen, Cúrdia, and Ferrero (2012) estimate a

linearized DSGE model with segmented financial markets and limits to arbitrage. They

evaluate the effects of LSAP on the economy where the effects are transmitted by a

drop in the term premium of long-term government bonds. Though the decrease in term

premia works to stimulate economy activity, their results suggest that the effects are only

moderate. Similarly, Kiley (2012) estimates a model with segmented markets and limits-

to-arbitrage using not only government long-term bond yields, but also private long-term

bond yields. His results also suggest that a decline in the term premium has positive, but

moderate effects on aggregate spending.

Using less structural approaches, a broad empirical literature analyzes the effect of

changes of term premia on the economy, using either macro-finance models or reduced

form regressions. The following passage summarizes their findings.

Hamilton and Kim (2002) use a regression to investigate the effects of the short-long

term yield spread on GDP growth. They were the first who decompose the yield spread

into an expectation part and a term premium part in order to evaluate the effects of

both components of the spread on GDP growth separately. Using ex-post observed short

rates as instruments for ex-ante expected rates isolate the expectation part, they find

that a decline in premia is associated with slower future GDP growth, contradicting the
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practitioner view. Also, Favero, Kaminska, and Söderström (2005) find that a lower term

premium predicts slower future GDP growth. They decompose the yield spread similar to

Hamilton and Kim (2002), but use an estimated real-time VAR to predict the expectations

of future short-term rates. Wright (2006) investigates whether the return forecast factor

of Cochrane and Piazzesi (2005) - a linear combination of the spot rate and four forward

rates which predicts term premia in one- to five-year maturity bonds - helps to forecast

recessions. He documents that lower term premia raise the odds of a recession.

In contrast to these results, Ang, Piazzesi, and Wei (2006) find that changes in the

term premium do not affect output growth. They run a regression of output growth on

the term premium and expected future short rates, where the premium and the expected

future short rates are computed from the estimates of a VAR with long-term rates, GDP

growth, and the short-term interest rate. Also Rosenberg and Maurer (2007) find that the

term premium has no predictive power for future GDP growth. They decompose the yield

spread as in Hamilton and Kim (2002) and use both components in a recession forecasting

model. In their estimation, the term premium is measured by the Kim-Wright (2005) term

premium measure - the estimated term premium from a no-arbitrage dynamic latent 3-

factor model. Dewachter et al. (2014a) use a macro-finance model of the term structure

where a latent variable captures all movement in the one-period expected excess holding

return (the return premium). They also find that movements in the term premium have

no predictive power for future output growth.

However, in line with the practitioner view, Rudebusch, Sack, and Swanson (2007) find

that a decline in the term premium is associated with higher positive GDP growth. They

decompose the term spread in order to perform a regression of GDP growth on changes in

the term premium, using the Kim-Wright term premium measure. Also, Jardet, Montfort,

and Pegoraro (2013) and Joslin, Priebsch, and Singleton (2014) find both that a rise

in the term premium lowers GDP growth in the short run, but has positive effects on

GDP growth for longer horizons. While the former use a macro-finance near-cointegrated

VAR(p) term structure model, the latter employ macro-finance model with imperfect

correlated macro risk to explore the sources of variation in expected excess returns on

bonds and the effects of term premium shocks on GDP growth and inflation. Recently,

using a vector autoregression macro-finance model of the term structure, Ireland (2015)

find that a rise in the term premium leads to a drop in output.
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3 The Model

In this section the macro-finance model is presented. It is a joint model of the macro-

economy and the term structure as introduced into the macro-finance literature by Ang

and Piazzesi (2003). The structure of the macro part of the model follows closely Ireland

(2015). The term structure is modeled by an affi ne no-arbitrage model of the term struc-

ture as developed by Duffi e and Kan (1996) and Dai and Singleton (2000). Motivated by

the evidence of Cochrane and Piazzesi (2008) that one single factor accounts for most

of the movements in expected excess holding returns, a latent variable that captures all

movements in the one-period return premium is introduced. By restricting the prices of

risk, this variable is constructed to be the only potential source for time variation in the

market prices of risk and thus, for movements in term premia. The specification of the

term structure model follows Dewachter and Iania (2011), Dewachter et al. (2014a) and

Ireland (2015).

The model section is structured as follows. The first part describes the structural

macroeconomic dynamics and casts the macro model into its state representation. The

state variables are then used as pricing factors in the term structure model. Cross-equation

restrictions, based on the assumption of no-arbitrage, are employed to tie the movements

of yields closely together. Finally, different notion of the term structure premium - the

yield and the return premium - are discussed and related to the latent risk variable.

3.1 The Macro Part

Following Ireland (2015) the macroeconomic dynamics are described by five state vari-

ables, three of them are observable - the nominal short-term interest rate rt, the inflation

rate πt, and the output gap g
y
t - and two variables are unobservable, a risk variable vt and

the central bank’s inflation target π∗t .

In order to simplify the notation, the inflation gap and the interest rate gap are defined.

The inflation rate gap is defined as the deviation of the inflation rate from central bank’s

inflation target,

gπt ≡ πt − π∗t ,

and the interest rate gap is defined as the deviation of the interest rate from the inflation

target,

grt ≡ rt − π∗t .
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The central bank’s policy rule for the short-term nominal interest rate can then be

specified in terms of the interest rate gap, the inflation gap and the output gap. Specifi-

cally, the central bank sets the interest rate according to the following interest rate rule

in the spirit of Taylor (1993),

grt − gr = ρr
(
grt−1 − gr

)
+ (1− ρr)

[
ρπg

π
t + ρy (gyt − gy) + ρvvt

]
+ σrεrt, (1)

where ρr, ρr ∈ (0, 1), is the interest rate smoothing parameter, ρπ, ρπ > 0, is the central

bank’s response parameters on inflation ρy, ρy > 0, is the response parameters on the

output gap, and ρv is the response parameter on the variation in term premia variable,

σr, σr > 0, is a volatility parameter, and gr and gy are the steady state values of grt and g
y
t ,

respectively. The shock εrt is supposed to be standard normally distributed and represents

the interest rate policy shock. The notation of the interest rate rule incorporates the

assumption that the steady state value of the inflation gap is zero. Thus, it is assumed that

in the steady state the actual inflation rate equals the central bank’s target rate. While ρπ

and ρy are restricted to be non-negative, the sign of the parameter of the term premium

variable, ρv, is not constrained. A positive value of ρv implies that the central bank

tends to tighten monetary policy in response to a rise in term premia. Goodfriend (1993)

and McCallum (2005) argue that this should be the case if the central bank regards an

increase in premia as an indicator of “inflation scares”or as an indicator of policy laxity.3

In contrast, Bernanke (2006) argues that, to the extent that aggregate demand depends

also on long-term interest rates, a rise in the term premium requires the central bank to

lower the short-term interest rate in order to offset the effects of the decline in premia and

to retain the economic condition, all else being equal. Thus, the coeffi cient ρv should be

negative. This so called practitioner view, as labeled and discussed by Rudebusch, Sack

and Swanson (2007), states that optimal monetary policy should account for movements

in premia by adjusting the interest rate contrary to the direction of the movements in

term premia. Apparently, if ρv is zero, the central bank does not react at all on changes

in the term structure premium.

3To be precise, McCallum (2005) suggests that the central bank should tighten monetary policy if
the interest rate spread between long-term bond yields and the short-term rate increases, given that the
expectation hypothesis holds and that the premium follows an AR(1) process. A rise in the long-short
rate spread might be due to two reasons: an increase in future expected short rates or an increase in the
term structure premium. In McCallum’s specification of the interest rate rule, the central bank reacts
on the long-short spread, and with it, in general, on the fluctuation in the term premium. However, the
cause for the rise in the spread is not identified.
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The incorporation of an unobservable time-varying inflation target is a common ap-

proach in the recent macro-finance term structure literature (as in e.g. Dewachter and

Lyrio, 2006, Hördahl et al., 2006, Rudebusch and Wu, 2008, or Hördahl and Tristani,

2012). It allows, on the one hand, for some variation of the conduction of monetary

policy, and it helps, on the other hand, to capture movements in long-term nominal gov-

ernment bond yields which arise due to changes in central bank’s inflation target. In fact,

Barr and Campbell (1997) for the UK and Gürkaynak et al. (2005) for the US find that

movements in long-term interest rates occur mainly due to changes in expected inflation.

Also Hördahl et al. (2006), using a macro-finance term structure model with German

data, find that changes in the perceived inflation target tend to have a stronger impact

on long-term yields than policy rate-, inflation-, or output shocks. The inflation target

π∗t is supposed to follow a first-order autoregressive process (AR(1)),

π∗t = (1− ρπ∗) π∗ + ρπ∗π
∗
t−1 + σπ∗επ∗t, (2)

where π∗ is the steady state level of the inflation target, ρπ∗ ∈ [0, 1), σπ∗ > 0 and the shock

επ∗t is standard normally distributed. As in Hördahl et al. (2006), Rudebusch and Wu

(2008), Hördahl and Tristani (2012), or Ireland (2015), this restriction is imposed to ensure

stationarity of the inflation target process. As noted by Ireland (2015) a non-stationary

inflation target leads to non-stationary inflation and non-stationary nominal short-term

interest rate. As shown by Campbell, Lo and MacKinley (1997 p. 433) or Spencer (2008)

for models with homoscedastic shocks a unit root in the nominal short-term interest rate

translates in undefined asymptotic long-term bond yields. Thus, the assumption of the

stationarity of the inflation target process ensures that the term structure part of the

model is well-behaved.

Similar to Ireland (2015), the dynamics of the remaining three state variables are

modeled as in more conventional structural VAR models. The inflation gap, the output

gap, and the risk variable are linear functions of their own lags, the lags of all other state

variables, their own innovations, and in some cases of the innovations of the other state

variables. This specification allows for a fairly high degree of flexibility while restric-

tions on the contemporaneous relationship of these variables ensure identification of the

structural model.

Specifically, the output gap is supposed to depend on own lags, on lags of the interest

rate gap, the inflation gap and the risk variable, and on the innovations of the inflation
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target επ?t, and on its own innovations εyt,

gyt − gy =

3∑
i=1

ρiyr
(
grt−i − gr

)
+

3∑
i=1

ρiyπg
π
t−i +

3∑
i=1

ρiyy
(
gyt−i − gy

)
(3)

+ρyvvt−1 + σyπ?σπ?επ?t + σyεyt,

where the volatility parameter σy is non-negative, and εyt is standard normally distributed.

The inflation gap is assumed to depend on own lags, on lags of the interest rate gap, the

output gap, and the term premium variable, and on innovations of the inflation target

επ?t and on its own innovations επt, innovations of the output gap εyt

gπt =
3∑
i=1

ρiπr
(
grt−i − gr

)
+

3∑
i=1

ρiππg
π
t−i +

3∑
i=1

ρiπy
(
gyt−i − gy

)
(4)

+ρπvvt−1 + σππ?σπ?επ?t + σπyσyεyt + σπεπt,

where the volatility parameter σπ is non-negative and επt is standard normally distrib-

uted. Finally, similar to Bekaert et al. (2013) and Ireland (2015), the risk variable is

supposed to respond contemporaneously on all distortions of the economy, as bond prices

do. Specifically, the risk variable depends on its own lags and lags of all others state

variables and on its own innovations εvt and additionally all innovations in all other state

variables,

vt = ρvr
(
grt−1 − gr

)
+ ρvπg

π
t−1 + ρvy

(
gyt−1 − gy

)
+ ρvπ?

(
π?t−1 − π?

)
(5)

+ρvvvt−1 + σvrσrεrt + σvπσπεπt + σvyσyεyt + σvπ?σπ?επ?t + σvεvt,

where the volatility parameter σv is non-negative, and εvt is standard normally distributed.

The chosen structure imposes restrictions in order to identify structural shocks. As in

Ireland (2015), shocks to the inflation target επ∗t affect the interest rate gap, the inflation

gap, the output gap and the risk variable only contemporaneously. All further effects of

fluctuations in the central bank’s inflation target affect the economy only if the change in

the inflation gap and interest rate gap are not fully offset by a proportional adjustment

of the interest rate and the inflation rate (Ireland, 2015). This specification imposes a

form of long-run monetary neutrality. In order to separate the effects of monetary policy

on term premia from the effects of the changes in term premia on the short-term interest

rate, the effects of the short-term interest rate and term premia movements on output and

inflation from the effects of inflation and output on the short-term interest rate and term

premia, and the effects of inflation on output from the effects of output on inflation the
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following restrictions on the contemporaneous relationship of these variables are imposed.

Shocks to the risk variable affect the interest rate only through the change in the risk

variable while a shock to the interest rate directly affects the term premium variable. The

interest rate and the risk variable respond on shocks to the inflation gap and the output

gap instantly, but innovations in the risk variable εvt and in the interest rate εrt do not

affect the output gap and the inflation gap immediately, but rather with one period lag.

Finally, as in Christiano et al. (2005), the inflation gap shock επt does not affect the

output gap contemporaneously.

Define the vectors Xt and εt containing the state variables and the innovations by

Xt =
[
grt grt−1 grt−2 gπt gπt−1 gπt−2 gyt gyt−1 gyt−2 π?t vt

]′
,

and

εt =
[
εrt 0 0 επt 0 0 εyt 0 0 επ?t εvt

]′
,

then eq., (1) - (5) can be expressed as

P0Xt = µ0 + P1Xt−1 + Σ0εt. (6)

For the specific form of the matrices P0, P1, µ0, and Σ0 see Appendix (A.1). Eq. (6)

gives the structural form of the model. Multiplying by P−10 yields the reduced form

representation of the state equation,

Xt = µ+ PXt−1 + Σεt, (7)

where

µ = P−10 µ0,

P = P−10 P1

and

Σ = P−10 Σ0.

3.2 The Term Structure Model

Affi ne term structure models, as developed by Duffi e and Kan (1996) and Dai and Sin-

gleton (2000), are a particular class of term structure models4 where the time t yield y(τ)t
4More precisely, the discrete-time term structure model presented in this section belongs to the class

of essentially affi ne models of the term structure, as categorized by Duffee (2002), and introduced by
Gourieroux et al. (2002) in discrete time.
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of τ−period zero coupon bond is modeled as an affi ne function of the state vector Xt ,

y
(τ)
t = Aτ +B

′

τXt,

where both coeffi cients Aτ and Bτ depend on the maturity τ . Though yields are linear

affi ne in the state vector Xt, Aτ and B
′
τ are highly non-linear functions of underlying

parameters. The particular functional form of these coeffi cients is derived from cross-

equation restrictions, which in turn stem from the assumption of the absence of arbitrage

opportunities. These restrictions tie the movements of yields closely together.

The outlined affi ne term structure model is similar to the one described in Ang and

Piazzesi (2003). However, in contrast to Ang and Piazzesi, restrictions are imposed on

parameters contained in the matrix of prices of risk which permit the risk variable vt to

be the only source of fluctuations in the prices of risk and with it in the term premium.

This subsection is structured as follows: the first part relates the short end of the yield

curve to the state vector. The next part derives the pricing kernel which is used to price

bonds. Finally, under the assumption of no-arbitrage, the functional form of the affi ne

yield curve representation is derived and the solution for the coeffi cients Aτ and Bτ is

presented.

3.2.1 Short rate equation

The short-term rate, and thus the short end of the yield curve, is from eq. (1) under the

control of the central bank. The short end of the yield curve can be modeled as an affi ne

function of the state vector Xt,

rt = δ0 + δ
′

1Xt, (8)

where δ0 is a scalar, and δ
′

1 is a 1x11 selection vector indicating the position of g
r
t and τ t

in Xt. The coeffi cients δ0 and δ1 are set to ensure consistency between the macro part

and the term structure part of the model. This requires δ0 to be equal to zero, δ0 = 0,

and

δ
′

1 =
[

1 0 0 0 0 0 0 0 0 1 0
]
,

so that eq. (8) corresponds to the definition of the interest rate gap.

3.2.2 Pricing Kernel

The prices of government bonds are supposed to be arbitrage free. As shown in Harrison

and Kreps (1979) or in Duffi e (2001, pp. 108) the assumption of the absence of arbi-
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trage guarantees for the existence of an “equivalent martingale measure”or “risk-neutral

measure”Q.5 Under the risk-neutral measure Q the price P (τ)t of any zero-coupon asset

maturing in τ periods satisfies

P
(τ)
t = EQ

t

(
exp (−rt)P (τ−1)t+1

)
.

Thus, pricing under the risk-neutral measure implies that the price of an asset is given by

the expected discounted future value of the asset, where the discounting takes place with

the risk-free short-term interest rate. If market participants are risk-neutral, the risk-

neutral probability measure coincides with the data generating measure H. However, in

general, the risk-neutral probability measure does not coincide with the data generating

process (Piazzesi, 2010, p. 697). The Radon-Nikodym derivative, which is denoted in

the following by ξt, ξt ≡ dQ/dH, provides the link between the risk-neutral measure Q

and the data generating measure H (see Duffi e, 2001, p. 110). It is used to convert one

probability measure into an equivalent measure.6

The specification of the pricing kernel is in reduced form. Though it is not explicitly

derived from underlying preferences and is in particular not expressed in terms of marginal

utility, it is widely used in the finance and macro-finance literature since it does match

empirical properties fairly well (see Dai and Singleton, 2002). For discrete time models,

following Ang and Piazzesi (2003), the nominal pricing kernel mt+1 is defined by

mt+1 ≡ exp (−rt)
ξt+1
ξt

, (9)

and ξt is supposed to follow the log-normal process

ξt+1 = ξt exp

(
−1

2
λ
′

tλt − λ
′

tεt+1

)
, (10)

where λt is an 11-dimensional vector of time-varying prices of risk. Combining eq. (9)

and (10) yields for the pricing kernel,

mt+1 = exp

(
−rt −

1

2
λ
′

tλt − λ
′

tεt+1

)
. (11)

5Moreover, if markets are also complete, then this risk neutral probability measure is also unique
(Harrison and Kreps, 1979).

6Given the existence of the risk-neutral measure, for any random variable with finite variance the
following holds:

EQt (Zt+1) =
Et
(
ξt+1Zt+1

)
ξt

,

where EQt (·) denotes the time t−conditional expectations under Q, Et (·) the time t−conditional expec-
tations under H, and where already is implied that ξt is martingale (see Duffi e, 2001, p. 168).
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The log-normal pricing kernel depends on the short-term interest rate, the structural

shocks and the prices of risk. The prices of risk drive the response of the long-term

government bond yields to macro, policy and risk shocks. If all elements in λt are equal

to zero, pricing takes places under the risk-neutral probability measure.

The prices of risk are supposed to be affi ne functions of the state variables, taking the

functional form

λt = λ0 + λ1Xt, (12)

where λ0 is an 11× 1 vector and λ1 is an 11× 11 matrix. For the market prices of risk, I

assume that only contemporaneous state variables are priced. The vector of constants λ0

is given by

λ0 =
[
λr0 0 0 λπ0 0 0 λy0 0 0 λπ

∗

0 λv0

]′
.

Note that the coeffi cients in λ0 and λ1 do no vary over time. All fluctuations in the prices

of risk λt are caused by movements in the state variables in Xt. Evidence by Cochrane

and Piazzesi (2005,2008) indicates that one single factor accounts for a large portion of

variation in one-period return premia. In the spirit of this factor, the risk variable vt

is constructed to be the single source for time variation in the prices of risk. Following

Dewachter and Iania(2012), Dewachter et al. (2014a), and Ireland (2015) the identification

of the risk variable is done by setting all elements in λ1, except the last column, to be

equal to zero,

λ1 =



0 0 0 0 0 0 0 0 0 0 Λr

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Λπ

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Λy

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Λπ∗

0 0 0 0 0 0 0 0 0 0 Λv



. (13)

From eq. (12) together with the restrictions in eq. (13) all movements in the price

of risk arise only from changes in the variable that is ordered as the last element in the
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vector Xt, that is, the risk variable vt. As discussed in Section (3.3), these restrictions

work to attribute movements in term premia to changes in the risk variable vt.

3.2.3 Bond Prices

Given the pricing kernel, the assumption of the absence of arbitrage opportunities implies

that under the data generating probability measure for any gross return Rt of a nominal

asset the following equation holds

Et (mt+1Rt+1) = 1. (14)

Let P τ
t denote the price of a default-free, zero-coupon bond maturing in τ periods. Then,

eq. (14) implies that all zero-coupon bond prices can be computed recursively by the

no-arbitrage condition

P
(τ)
t = Et

(
mt+1P

(τ−1)
t+1

)
. (15)

That is, the time t price of a τ+1-period zero-coupon bond equals the expected discounted

price of a τ -period discount bond in period t + 1, where pricing occurs under the data-

generating measure using the stochastic discount factor mt+1.

Given this set-up, Ang and Piazzesi (2003) demonstrate that the price of a zero-coupon

bond P (τ)t maturing at time t+ τ can be written as an exponentially affi ne function of the

state vector Xt. Thus, the price of a bond maturing in τ -periods is

P
(τ)
t = exp

(
Āτ + B̄′τXt

)
, (16)

where the coeffi cients Āt and B̄τ can be computed recursively by the following ordinary

differential equations (see Appendix (A.2))

Āτ+1 = Āτ + B̄′τ (µ− Σλ0) +
1

2
B̄′τΣΣ′B̄τ − δ0, (17)

B̄′τ+1 = B̄′τ (P − Σλ1)− δ′1. (18)

Eq. (11), (15) and P 0t+1 = 1 together imply that the log discount bond price of a bond

maturing next period is given by log (P 1t ) = −rt . Consistency of eq. (8) and (16) for

τ = 1, given log (P 1t ) = −rt, requires then that the initial condition for Āτ and B̄τ are

given by: Ā1 = δ0 = 0, and B̄′1 = −δ′1. The τ -period zero-coupon bond yield y
(τ)
t is

related to the bond price by

y
(τ)
t = −

log
(
P
(τ)
t

)
τ

. (19)
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Substituting eq. (16) into eq. (19), yields the affi ne yield curve representation with

functional form

y
(τ)
t = Aτ +B

′

τXt. (20)

where Aτ ≡ −Āτ/τ and Bτ ≡ −B̄τ/τ .

3.3 Term Structure Premia and the Expectation Hypothesis

Term structure premia can be captured in different forms (see e.g. Cochrane and Piazzesi,

2008, or Joslin et al., 2014). In the following, similar to Dewachter et al. (2014a), I will

focus on the yield premium and the return premium. The definition of these premia is

based on Cochrane and Piazzesi (2008). The yield premium is the most prominent form

of the term premium and the one used by Ireland (2015). It can be composed into the

average of expected future return premia of declining maturities. The one-period return

premium in turn is only driven by the risk variable vt. Before discussing both types

of term structure premia, their relationship to each other and their relation to the risk

variable, I will review some relevant basic relationships between holding period returns,

excess holding returns and bond prices (see e.g. Cochrane, 2005, or Cochrane and Piazzesi,

2008). The holding period return hpr(τ)t+1 is the return from buying a bond at time t that

matures in t+ τ periods and selling this bond the period after. Formally, it is defined by

hpr
(τ)
t+1 ≡ p

(τ−1)
t+1 − p

(τ)
t , (21)

where p(τ)t is the log price of a zero-coupon bond maturing in t + τ periods, p(τ)t ≡

log
(
P
(τ)
t

)
. The excess holding period return (or short excess return) hprx(τ)t+1 is the

return from buying a long term bond in period t and selling it in the subsequent period

in excess of the return from buying and holding a short term bond maturing next period,

hprx
(τ)
t+1 ≡ hpr

(τ)
t+1 − y

(1)
t . (22)

The yield of a τ -period zero-coupon default-free long-term bond y(τ)t can be decom-

posed in an expectation part and a part which is denoted as the yield premium κ
(τ)
t (see

e.g. Cochrane and Piazzesi, 2008):

y
(τ)
t =

1

τ
Et

(
τ−1∑
i=0

y
(1)
t+i

)
+ κ

(τ)
t . (23)

The expectation part consists of the average of expected future short rates over the bond’s

residual maturity. Rearranging eq. (23) gives the definition of the yield premium. Thus,
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the yield premium can be interpreted as the average expected return from buying a τ -

period bond and holding this bond until maturity financed by a sequence of short-term

debt. It is the compensation that a risk-averse investor demands for holding a long-term

bond instead of a sequence of short-term bonds. Under the (pure) expectation hypothesis

of the term structure, this premium is (zero) constant.

The yield premium can be written as the average of expected future return premia of

declining maturity (as in Cochrane and Piazzesi, 2008, or Ludvigson and Ng, 2009; for a

detailed derivation see Appendix (A.3)), where the respective return premium is defined

as the expected i+ 1-period excess return, Et
(
hprxτt+i+1

)
,

κ
(τ)
t =

1

τ

τ−1∑
i=0

Et

(
hprx

(τ−i)
t+i+1

)
, (24)

with

Et

(
hprx

(τ−i)
t+i+1

)
= Et

(
hpr

(τ−i)
t+i+1 − y

(1)
t+i

)
.

Under the expectation hypothesis, these premia are constant but maturity specific. Eq.

(24) illustrates that the yield- and the return premium (subsumed under the expression

“term structure premium”) are not the same objects, but both are related and can be

derived from the other. While the yield premium reflects the premium in a bond yield over

the full lifetime of the bond, the return premium reflects the per-period holding premium.

Moreover, if return premia are zero or constant also the yield premium would be zero or

constant.

In order to compute the yield and the return premium, the expectations of future short

rates and excess returns have to be calculated. Following Ireland (2015), the expected

value of the future short-term rate can be written as

Et
(
y1t+j

)
= Et (rt+j) = δ′1Et (Xt+j) ,

given eq. (8). Now define the unconditional expectation of the state vector by µ̄, µ̄ ≡

E (Xt), then, from eq. (7) one can write µ̄ = (I − P )−1 µ. Subtracting µ̄ from both sides

of eq. (7) yields the (demeaned) state equation:

Xt+1 − µ̄ = P (Xt − µ̄) + Σεt+1.

Then, the time-t conditional expected future short rate for period t + j, ∀j > 0, can be

18



computed by

Et (rt+j) = δ′1
(
I − δ′P j

)
µ̄+ δ′1P

jXt

By rearranging eq. (23), and using y(τ)t = Aτ +B′τXt the yield premium is given by

κ
(τ)
t = Aτ − δ′1

[
I − 1

τ

τ−1∑
j=0

P j

]
µ̄+

[
Bτ − δ′1

1

τ

τ−1∑
j=0

P j

]
Xt.

Using Στ−1
j=0P

j = (I − P τ ) (I − P )−1, the yield premium can be expressed in a computa-

tionally more convenient form (as in Ireland, 2015)

κ
(τ)
t = Aτ − δ′1

(
I − 1

τ
(I − P τ ) (I − P )−1

)
µ̄ (25)

+

(
B′τ − δ′1

1

τ
(I − P τ ) (I − P )−1

)
Xt.

The return premium can be calculated by plugging the model implied log prices, p(τ)t =

Āτ + B̄′τXt, into the definition i + 1-period return premium and rearranging terms (see

Appendix (A.4)),

Et

(
hprx

(τ)
t+i+1

)
= B̄′τ−1Σ

[
λ0 + λ1

(
I − P i

)
µ̄+ λ1P

iXt

]
(26)

−1

2
B̄′τ−1ΣΣ′B̄τ−1

If i = 0, then eq. (26) is the one-period return premium. From the restrictions on the

elements in λ1 in eq. (13) the risk variable vt is identified as the driving force of the

one-period return premium. Precisely, the one-period return premium of a bond with

maturity τ is given by

Et

(
hprx

(τ)
t+1

)
= B̄′τ−1Σ (λ0 + λ1Xt)−

1

2
B̄′τ−1ΣΣ′B̄τ−1. (27)

Eq. (27) reveals that all variation over time in one-period return premia arises solely from

fluctuations in vt for all bond maturities. In contrast, to the extent that the risk variable

is not zero over time, the yield premium is affected by all state variables if τ > 1. To see

this, recall that the yield premium can be written as the average of expected future return

premia of declining maturity. Since the i-period return premium, in general, depends on

all state variables, from eq. (24) also the yield premium depends on all state variables if

τ > 1.

Finally, if all elements in the matrix λ1 are equal to zero, then the one-period return

premium and the yield premium are constant. In this case, in eq. (27) the term λ1Xt
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disappears, eliminating all time variation in the one-period return premium. Similar, as

shown by Ireland (2015) taking λ1 = 011x11 into account in eq. eq. (18) leads to

B′τ = δ′1
1

τ
(I − P τ ) (I − P )−1 .

Plugging B′τ in eq. (25) confirms that κ
(τ)
t is constant, if all elements in the matrix λ1 are

equal to zero. The discussion of the different types of term premia completes the model

section.

4 Estimation

The first part of this section presents the state space system. The next part summarizes

the data set that is used for the estimation of the model. Then the estimation method is

discussed. The last part presents and discusses the choice of the prior distribution for the

parameters.

4.1 The State Space System

The macro part and the affi ne term structure model form a state-space system. The state

equation, given by eq. (7), describes the dynamic of the state vector, while the observables

- output gap, inflation, the short-term interest and the long-term government bond yields

- are linked to the state vector by measurement equations.

For the estimation, a version of the state-state space model without constant terms

is employed. By dropping the constant terms appearing in eq. (7) and (20) , and using

demeaned data the estimation is simplified. Precisely, under the assumption that the

central bank is able - on average - to implement its target inflation rate, so that the

average of the actual inflation rate equals the average target inflation rate, the steady

state values of gr, τ and gy can be calibrated to match the data averages of the short-

term interest rate, the output gap and inflation. Moreover, as demonstrated in Ireland

(2015), the values of the elements in λ0 can be calibrated so that the steady state values

of yields match the average yields. Thus, the state-space system is given by

Xt = PXt−1 + Σεt, (28)

Zt = UXt + V ηt, (29)
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where the vector Zt containing the eight observables is defined by

Zt ≡
[
rt πt gyt y12t y24t y36t y48t y60t

]′
,

the matrix U is specified by

U =



Ur

Uπ

Uy

B′12

B′24

B′36

B′48

B′60



,

with

Ur =
[

1 0 0 0 0 0 0 0 0 1 0
]

Uπ =
[

0 1 0 0 0 0 0 0 0 1 0
]

Uy =
[

0 0 1 0 0 0 0 0 0 0 0
]

in order to connect the observable macro variables to the state vector Xt, the vector B′n,

n = {12, 24, 36, 48, 60}, is determined by eq. (18), given the definitionBτ ≡ −B̄τ/τ and

for given starting values B̄′1 = −δ′1, and the matrix V contains the volatility parameters

of the measurement errors ηt. These errors are attached in order to avoid stochastic

singularity. The problem of stochastic singularity arises in this type of models because

numerous yield data are observed, but only a few structural shocks of potentially also

observable state variables are used, so that the number of observable variables exceeds the

number of shocks. Noise or measurement errors are added in order to give the model the

ability to fit the high dimensional data vector with a lower dimensional state vector. Two

different assumptions on the nature of these measurement errors are commonly drawn:

Either only some yields are measured with errors (as e.g. in Ang and Piazzesi, 2003, or

Ireland, 2015) or all yields are measured with errors (as e.g. in Ang et al., 2007, or Chib

and Ergashev, 2009). Following, among others, Chib and Ergashev (2009), I will treat

all yields (except the policy rate) as measured with errors.7 Specifically, the matrix V is

7As discussed in Piazzesi (2007, p. 726), supposing that only a certain number of yields - that is, the
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given by

V =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

σ12 0 0 0 0

0 σ24 0 0 0

0 0 σ36 0 0

0 0 0 σ48 0

0 0 0 0 σ60


with σ12, σ24, σ36, σ48 and σ60 > 0 and the vector of the corresponding measurement

errors ηt is given by

ηt =
[
η12t η24t η36t η48t η60t

]′
.

These zero-mean measurement errors are supposed to be standard normally distributed.

4.2 Data

I include euro area data from September 2004 to April 2014 in my sample. The data

set contains macro data and yield data. The data is taken from the Bundesbank and

the ECB. The macroeconomic variables are the inflation rate, the output gap, and the

nominal short-term interest rate. The financial variables are the yields from an index

of risk-free zero-coupon treasury bonds of European countries with maturities of 12, 24,

36, 48 and 60 months. The yield data is only available from the ECB since Fall 2004,

restricting effectively the size of the available sample. Due to the short sample size of

the dataset - roughly ten years - I use monthly data. This compromises between the

high-frequency yield data and the lower frequency macro data. The sample space covers

116 observations per time series. Moreover, data for the risk-free short-term interest rate

- the OIS rate for the Eurozone - is only available since mid-2005. During the estimation,

the yield data from Fall 2004 until June 2005 are treated as missing observations. The

time path of the missing observations is constructed by the Kalman filter.

required number of shocks that needs to be added in order to avoid stochastic singularity - is observed
with errors seems to be arbitrary, especially which particular yield should be observed with an error
and which particular yield not. Data entry mistakes and interpolation methods for construction the
zero-coupon yield date might lead to errors that should potentially affect all yields. Thus, if some yields
are measured with errors the assumption that possibly all yields are observed with errors seems to be
plausible. See Piazzesi (2007, pp. 726) for a more detailed discussion of noise- or measurement errors in
the context of affi ne term structure models.
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The output gap variable is defined as the percentage (logarithmic) deviation of actual

output from trend output. Since GDP data is only available on a quarterly frequency, I

use the seasonally adjusted industrial production index of the Euro area (Euro area 18,

fixed composition) as a proxy for output (as e.g. Clarida, Galí and Gertler, 1998, Ang and

Piazzesi, 2003, or Favero, 2006). Trend output is constructed using the HP filter with

a smoothing parameter equal to 14.400. The inflation rate is measured by the annual

rate of change of the seasonally adjusted HICP of the Euro area in percentage. For the

risk-free zero-coupon yield data, an index of government bonds of countries from the euro

area is used. The government bond index consists of all countries of the euro area that are

AAA rated. All yields are continuously compounded. The yield data is taken from the

ECB. The yield index of risk-free zero-coupon treasury bonds is not available for bonds

with one-month residual maturity. To overcome this shortcoming, the risk-free nominal

short-term interest rate is proxied by the Overnight Indexed Swap (OIS) rate. The OIS

rate is an interest rate swap with a floating rate indexed on an overnight interbank rate.

In the case of the Euro area, this overnight interbank rate is the EONIA. It had become,

in particular for the euro area, a lately widely used measure for the risk-free rate (among

others by Borgy et al. 2012, Dewachter et al., 2014b, Dubeq et al., 2013, Finlay and

Chambers, 2009, Filipovíc and Trolle, 2013, or Joyce et al., 2011), rather than inter-bank

rates like the EONIA.8 The OIS rate date is taken from the Bundesbank.

Table (1) provides some summary statistics of the data for the macroeconomic vari-

ables and the yield data. The sample average of inflation is around the ECB’s announced

inflation target of 2 percent. By construction, the mean of the output gap is equal to zero.

All macroeconomic variables are persistent, reflected by high first to third order autocorre-

lation. The summary statistics of the yields confirm that the employed yield data are line

with stylized facts of yield curves9 (though the sample space covers the financial crisis):

First, the average yield curve is upward slopping. Thus, the longer the residual maturity

of a government bond, the higher are yields. Second, the term structure of volatility of

yields is downward slopping. The standard deviation of yields declines with maturity.

Third, yields are highly autocorrelated. The first to third-order sample autocorrelations

8Euro area inter-bank rates, which are on unsecured interbank lending, are quite likely to compromise
a certain amount of premia for credit risks, in particular, since the onset of the financial crisis in 2007. In
contrast, netting and credit enhancement mechanisms of in swap contracts seem to work, also in times
of financial turmoil, to mitigate counterparty risk (see Bomfim, 2003).

9See for example Campbell, 1995, Ang and Piazzesi, 2003, or Hördahl, Tristani and Vestin, 2008.

23



Table 1: Descriptive summary statistics
Obs.: Moments Autocorrelation
116* Mean S.d. Skewness Kurtosis 1. Lag 2. Lag 3. Lag
πt 1.9619 0.9031 −0.5073 3.4419 0.9591 0.8970 0.8101
gyt 0 3.6550 −0.8297 4.4141 0.9548 0.8963 0.8086
rt 1.5976 1.5223 0.5976 1.7124 0.9938 0.9791 0.9579

y12t 1.6825 1.4942 0.4331 1.6909 0.9918 0.9761 0.9547
y24t 1.8873 1.4262 0.2816 1.7316 0.9892 0.9722 0.9511
y36t 2.1010 1.3350 0.1095 1.7670 0.9877 0.9705 0.9497
y48t 2.3142 1.2431 −0.0487 1.8122 0.9862 0.9690 0.9487
y60t 2.5185 1.1566 −0.1835 1.8681 0.9843 0.9666 0.9468

Source: yield data, industrial production and inflation: ECB; OIS rate: Bun-
desbank. The 12 - 60 month yields are annual zero coupon bond yields. In-
flation is calculated as the percentage year-to-year change of the HICP of the
Eurozone. Output is measured by industrial production and the output gap is
defined as the deviation of actual output from its trend.
* For the OIS rate, the sample period is 2005:07 to 2014:04, covering 106
observations in total.

are not below 0.94. Fourth, yields move closely together. The correlation between yields

of treasury bonds with maturity of 12 and yield of treasuries with maturity of 36months is

equal to 0.9769 (not displayed in the table) and the correlation between yields of treasury

bonds with maturity of 60 months and yields of treasuries with maturity of 60 months is

equal to 0.9880.

4.3 Method

To estimate the state space model, I apply Bayesian estimation techniques. As often

noted in the literature, even the estimation of pure affi ne term structure model is com-

putationally challenging and time-consuming (see e.g. Christensen et al, 2011, or Chib

and Ergashev, 2009). Adding the macro-dynamics enhances these diffi culties due to the

complexity of the macroeconomic interactions with the term structure and vice versa

(Rudebusch and Wu, 2008). The parameters in the B(τ) matrices of the observation equa-

tions are highly non-linear functions of the underlying parameters of the state equations

and the prices of risk. This non-linearity, as demonstrated by Chib and Ergashev (2009),

can produce multimodal likelihood functions. Applying Bayesian estimation techniques

allow to employ a priori information which help to down-weight regions of the parameter

space which are not economically reasonable and help to rule out economically implausible
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parameter values. As a result, the posterior distribution can be smoother than the like-

lihood function (see Chib and Ergashev, 2009). Moreover, the usage of prior information

is helpful when dealing with short data sets.

4.3.1 Posterior and Likelihood function

Formally, let Z denotes the data set, Z = (Z1, ..., ZT )′, where T is the number of total

observations, and let θ denotes the vector of all parameters contained in the matrices

P , Σ, Λ and V , then from Bayes rule, the joint posterior distribution of θ, π (θ|X), is

obtained by combining the likelihood function of the observables, the prior distribution

of the parameter vector and a norming constant, thus,

π (θ|Z) ∝ L (Z|θ) p (θ) ,

where L (Z|θ) is the likelihood function, and p (θ) is the prior distribution. Denote by Zt−1
all available information of the observable variables at time t − 1, Zt−1 ≡ (Z1, ..., Zt−1)

′.

If the initial state X0 and the innovations {εt, ηt}
T
t=1 are multivariate Gaussians, then

the conditional distribution of the observables Zt on Zt−1 is also Gaussian (see Hamilton,

1994, p. 385)

Zt|Zt−1 ∼ N
(
UXt|t−1, Rt|t−1

)
,

where Xt|t−1 denotes the one step ahead forecast, Xt|t−1 ≡ E [Xt|Zt−1, θ], and Rt|t−1

denotes the conditional variance, Rt|t−1 ≡ V ar (Zt|Zt−1, θ).10 Since two of the state

variables are latent, the likelihood L (Z|θ) is constructed using the standard Kalman

filter recursions (see Harvey, 1991). Hence, the joint density of the date set Z given θ can

be written as

L (Z|θ) =
T∏
t=1

(2π)−
T
2
[
det
(
Rt|t−1

)]− 1
2

× exp

(
−1

2

(
Zt − UXt|t−1

)′ (
Rt|r−1

)−1 (
Zt − UXt|t−1

))
.

At the start of the recursions, the initial matrix of the variance of the forecast errors is

set equal to the unconditional variance of the state variables.

Since the posterior density is, in general, not known in closed form, I apply Markov

Chain Monte Carlo (MCMC) methods (the Adaptive-Metropolis algorithm) in order to

simulate draws from the joint posterior distribution.
10See Appendix (A.5) for the explicit expressions of the prediction and updating equations of the mean

and the variance.
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4.3.2 MCMC Method

The choice of the proposal density of the Metropolis-Hastings algorithm is crucial for the

speed of the convergence of the chain (Rosenthal, 2010). The scaling of the posterior

distribution is often done by trial and error. But not only is the scaling of the proposal

density “by hand”in general time-consuming, improving the proposal distribution manu-

ally also becomes very diffi cult, if not infeasible, in high-dimensional problems. Therefore,

I employ the Adaptive Metropolis (AM) algorithm as introduced by Haario et al. (2001)

to evaluate the posterior. The main idea of the AM algorithm is to run a chain that alters

its own proposal distribution by using all information about the posterior cumulated so

far. Thus, the algorithm improves on the fly. Precisely, the covariance of the proposal

distribution is updated each step using all available information. Apart from the updat-

ing scheme, the algorithm is identical to the standard random walk Metropolis-Hastings

algorithm. Due to the adaptive nature of the algorithm it is non-Markovian, but Haario

et al. (2001) show that it still has the correct ergodic properties.

Let θ0, ..., θj−1, denote the sampled parameters until j − 1 iterations, where θ0 is the

initial set of parameters. I follow Haario et al. (2001) and let the proposal distribution,

denoted by q (·|θ0, ..., θj−1), be a multivariate Gaussian distribution with mean at the

current value of the parameter vector θj−1 and a covariance matrix Ct. The algorithm

starts with a pre-specified strictly positive proposal distribution covariance C0. After an

initial period n0 the adaption takes place by updating the covariance of the proposal

distribution according to Cj = sdCov (θ0, ...θj) + sdεId, where sd is a parameter that

depends only on the dimension d of the parameter vector θ and ε > 0 is a (very small)

constant employed to prevent Cj from becoming singular. In practice, the calculation of

the covariance Cj is simplified using the following recursion formula (see Haario et al.,

2001):

Cj+1 =
j − 1

j
Cj +

sd
j

(
θ̄j−1θ̄

′

j−1 − (j + 1) θ̄j θ̄
′

j + θjθ
′

j + εId

)
.

Precisely, the AM algorithm is given by the following steps:

1. Set the number of total iterations n and specify the initial period n0 (n0 < n) after

which the adaption starts. Chose an (arbitrary) positive definite initial covariance

matrix C0 and specify the initial parameter vector θ0. Set Cj = C0 and θj−1 = θ0.

2. Draw a candidate θ∗j from q (·|θj−1, Cj)
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3. Compute α
(
θ∗j , θj−1

)
= min

[
1,

π(θ∗j |·)
π(θj−1|·)

]
.

4. Set θj = θ∗j with probability α
(
θ∗j , θj−1

)
and set θj = θj−1 with probability 1− α

(
θ∗j , θj−1

)
.

5. Update Cj+1 =

 C0, j ≤ n0

sdCov (θ0, ...θj) + sdεI, j > n0
.

6. Repeat step 2-5 until j = n.

Haario et al. (2001) note that the choice of an appropriate initial covariance C0 helps

to speed up the algorithm and thus to increase effi ciency. Therefore, I use a scaled down

version of the inverse of the Hessian matrix computed at the posterior mode for the initial

covariance matrix. The initial parameter vector is set to the parameter values at the

mode. For the choice of the scaling parameter sd I follow Haario et al. (2001) (whose

choice in turn is based on Gelman et al. (1996)) and set sd = (2.4)2 /d. The initial period

is set to n0 = 20, 000 and the number of draws is set to n = 1, 000, 000.

As noted by Chib and Ergashev (2009), the mode of the posterior can in general

not be found using Newton-like optimization methods. Therefore, I employ the Covari-

ance Matrix Adaption Evolution Strategy (CMA-ES) algorithm. The CMA-ES is a sto-

chastic method for numerical parameter optimization of non-linear, non-convex functions

with many local optima. It belongs to the class of evolutionary optimization algorithms

(Hansen and Ostermeier, 2001). The computation of the mode is conducted by the soft-

ware package Dynare (Adjemian et al., 2011).

4.4 Parameter Restrictions and Prior Distributions

4.4.1 Parameter Restrictions

During the estimation the following restrictions, in addition to restrictions on the in-

terest rate rule parameters and on the parameter of the inflation target process (the

non-negativity restrictions of ρy and ρπ, and the restriction that ρr and ρτ ∈ [0, 1), are

imposed.

To ensure stationarity of the VAR part the eigenvalues of P are constrained to be

less than unity in absolute value, eig (P ) < |1|. Likewise, a similar eigenvalue restrictions

need to be imposed in order to ensure stability of the no-arbitrage recursions (see Dai and
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Singleton, 2000). Specifically, the eigenvalues of P − Σλ1 are constraint to be less than

unity in absolute value, eig (P − Σλ1) < |1|. For identification, the parameter σv of the

latent variable needs to be normalized. As well known in the literature of latent factor

models (e.g. Dai and Singleton, 2000), multiplicative transformations of the latent factor

lead to observationally equivalent systems. In order to fix the scale of the latent variable,

the constraint σv = 0.01 is imposed. Additionally, the direction in which an increase in

the risk variable vt moves term structure premia needs to be pinned down. Following

Ireland (2015), without loss of generality the constraint Λπ ≤ 0 is imposed during the

estimation. Finally, similar to Dewachter et al. (2014a) and Ireland (2015), to impose

that vt only moves the prices of risk, which are associated to the other four state variables,

the constraint Λv = 0 is imposed.

After imposing these restrictions, there are 50 parameters left to estimate in eq. (28)

- (29). The next sub-section presents the prior distribution of these parameters.

4.4.2 Prior Distributions

Using prior information from previous studies and restricting parameters to lie in an eco-

nomically reasonable region helps to reduce the complexity of the maximization problem

by down-weighting economically non-meaningful regions of the parameter space (see Chib

and Ergashev, 2009, for a deeper discussion). The first part of table (2) displays the prior

distributions of the coeffi cients in the monetary policy rule. I follow closely Smets and

Wouters (2003) for the choice of these priors. Since the parameter capturing the degree of

interest rate smoothing ρr is supposed to be in the interval between 0 and 1, it is assumed

that ρr is Beta distributed. I set the prior mean equal to 0.8 and the standard deviation

equal to 0.05, assuming a high degree of interest rate inertia. The parameter governing

central bank’s reaction on deviation of the actual inflation rate from its target rate is

assumed to be Gamma distributed with a mean of 1.5 and a standard deviation of 0.25.

I employ the Gamma distribution to ensure that the parameter ρπ cannot be negative.

The prior mean satisfies the Taylor principle. Likewise, I also suppose that the prior for

the parameter of central bank’s reaction on deviation from the output gap is Gamma

distributed. The prior mean is chosen to correspond roughly to the Taylor coeffi cient of

0.5. Finally, the coeffi cient of central bank’s response on movements in term premia ρv is

assumed to be Normal distributed with a mean of 0 and a standard deviation of 0.5, so

that the interval [−1.96; 1.96] covers 95% of the probability mass. The choice of the prior
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Table 2: Summary of the prior distribution
Taylor Rule

Parameter type mean std. dev. Parameter type mean std. dev.
ρr B 0.80 0.05 ρπ G 1.500 0.250
ρv N 0.00 0.250 ρy G 0.045 0.025

Macro Part
Parameter type mean s.d. Parameter type mean std. dev.

ρ1πr N -0.20 0.150 ρ2yπ N 0.00 0.075
ρ2πr N 0.00 0.075 ρ3yπ N 0.00 0.050
ρ3πr N 0.00 0.050 ρ1yy N 0.90 0.150
ρ1ππ N 0.90 0.150 ρ2yy N 0.00 0.075
ρ2ππ N 0.00 0.075 ρ3yy N 0.00 0.050
ρ3ππ N 0.00 0.050 ρvπ N 0.00 0.150
ρ1πy N 0.00 0.150 ρvv N 0.90 0.150
ρ2πy N 0.00 0.075 ρvy N 0.00 0.150
ρ3πy N 0.00 0.050 ρvr N 0.00 0.150
ρ1yr N -0.20 0.150 ρvτ N 0.00 0.150
ρ2yr N 0.00 0.075 ρτ B 0.90 0.100
ρ3yr N 0.00 0.050 ρyv N 0.00 0.250
ρ1yπ N 0.00 0.150 ρπv N 0.00 0.250

Volatility and co-movement parameters
Parameter type mean std. dev. Parameter type mean std. dev.

σvr N 0.00 2.00 σπ IG 0.01 0.200
σvπ N 0.00 2.00 σy IG 0.01 0.200
σvy N 0.00 2.00 στ IG 0.01 0.200
σvτ N 0.00 2.00 σ12 IG 0.0001 0.001
σyπ N 0.00 2.00 σ24 IG 0.0001 0.001
σyτ N 0.00 2.00 σ36 IG 0.0001 0.001
σπτ N 0.00 2.00 σ48 IG 0.0001 0.001
σr IG 0.01 0.20 σ60 IG 0.0001 0.001

Prices of Risk
Parameter type mean std. dev. Parameter type mean std. dev.

Λr N 0.00 25.00 Λπ N 0.00 25.00
Λτ N 0.00 25.00 Λy N 0.00 25.00
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means implies that monetary policy is, a priori, characterized by a standard Taylor rule.

Given the normalization of σv the choice of the standard deviation implies a relatively

uninformative prior.

The choice of the priors of the parameters describing the dynamics of the macroecon-

omy is displayed in the second part of table (2). As described in Section (2.1), these

dynamics are modeled as in a structural VAR model. The priors for the VAR part (eq.

1 - 5) are chosen in the spirit of Minnesota (see Litterman, 1986) by assuming that al-

most all coeffi cients are normal distributed and by setting the prior means of most of

the coeffi cients equal to zero except for these coeffi cients corresponding to the first own

lags of the dependent variables. These coeffi cients are set equal to 0.9 as suggested by

Koop and Korobilis (2010). The choice of the prior means reflects the assumption that

these variables exhibit a high degree of persistence, but do not follow a unit root process.

The standard deviation of the prior distribution of the parameters is weighted by the lag

length, implying that with increasing lag length the coeffi cients are shrunk towards zero.

As in Dewachter et al. (2014a), I set the standard deviations for the coeffi cients on the

first lags equal to 0.15. Departing from Minnesota and following Dewachter and Iania

(2011) and Dewachter et al. (2014a), I choose a negative prior mean for the parameters

ρ1yr and ρ
1
πr. These choices capture beliefs that an increase in the interest rate dampens

economic activity. For the parameters ρyv and ρπv I choose a relatively uninformative

prior. Precisely, I set the prior mean equal to zero and the standard deviation equal to

0.25, assuming that movements in the term premium do not affect output and inflation

a priori. The coeffi cient of the inflation target process is Beta distributed with a mean of

0.9 and a standard deviation of 0.1. Employing the Beta distribution guarantees that the

process of the inflation target is stationary while avoiding that the central bank’s inflation

target jumps erratically. The overall choice of these priors satisfies the stationarity of the

macro dynamics.

The third part of table (2) presents the prior distributions of the volatility parame-

ters associated with the structural shocks and the measurement errors, and the prior

distributions of the co-movement parameters. The prior distributions of the volatility

parameters corresponding to the structural shocks and the measurement errors follow,

similar to Dewachter (2008), the Inverse Gamma distribution with a mean of 0.01 and

0.0001, respectively, and a standard deviation of 0.2 and 0.001, respectively, correspond-
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ing to a mean of 1 percentage of the structural shocks and a mean of 0.01 percentage of

the measurement errors. This specification captures the beliefs that measurement errors

should be rather small. I employ the Inverse Gamma distribution in order to prevent

the volatility parameter to be negative or equal to 0. The prior distributions for the

co-movement parameters follow a Normal distribution with a mean of 0 and standard

deviation of 2. Noteworthy, the choice of the priors satisfies the stationarity condition

and the stability condition of the no-arbitrage recursions. Hence, under the chosen prior

specification eig (P ) < |1| and eig (P − Σλ1) < |1| hold.

Finally, for the choice of the prior distributions of the coeffi cients Λπ, Λy, Λr, and Λτ

(the elements in the prices of risk), I follow Dewachter and Iania (2011) and Dewachter

et al. (2014a). The last part of table (2) presents the priors for the prices of risk. I use

relatively uninformative priors, reflected by the choice of large standard deviations. More

precisely, each element in the prices of risk is assumed to be Normal distributed with a

mean of 0 and a standard deviation of 25.

5 Results

Table (3) and (4) list the results of the estimation. They report the posterior modes of the

parameters, the posterior means, and the 90% highest posterior density (HPD) interval.

While the posterior mode is obtained by maximizing the (log-) posterior distribution, the

latter results are obtained by using the Adaptive Metropolis algorithm outlined in Section

(4.3.2). First, the estimated values of the interest rate rule parameters are discussed.

Then, I will evaluate the estimated mode by plotting impulse response functions (IRF)

and decomposing the error forecast variance.

5.1 Policy coeffi cients

Focusing on the four estimated parameters of the interest rate rule displayed in the first

four rows in the table (3), I find that all four parameters are significantly different from

zero, including the ECB’s response parameter to movements in term structure premia ρv.

The posterior mean of ρv is significantly different from zero and negative, ρv = −0.4419,

implying that the ECB lowered the interest rate in response to a rise in term premia.

Thus, in line with the practitioner view, this indicates that the central bank counteracted

changes in term premia, presumably to retain the overall mix of financial conditions,
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balancing output and inflation. Carlstrom, Fuerst, and Paustian (2015) demonstrate that

in a DSGE model with imperfect financial markets a negative response coeffi cient on term

premia in the monetary policy rule improves welfare. In contrast, Ireland (2015), who

estimated the same parameter, but for the Fed with US data from the 1950th until 2007

(and for an extended sample until the end of 2014), using a restricted maximum likelihood

approach, finds a positive and significant coeffi cient.

The estimated values of the other three parameters of the interest rate rule are similar

to those from studies using a more standard interest rate rules specification for the Euro

Area (e.g. Andrés et al., 2006, or Smets and Wouters, 2003). The estimate of the

interest rate inertia ρr = 0.8894 reflects a high degree of interest rate smoothing. The

estimate of the coeffi cient measuring central bank’s response to changes in the output gap

is ρy = 0.0335. The estimated coeffi cient of the central bank’s response to a change in

inflation is larger than one, ρπ = 1.2220, satisfying the Taylor principle.

5.2 Model’s Dynamic

The estimation results for the remaining parameters are summarized in table (3) and

table (4). Rather than interpreting each coeffi cient separately I will describe the results

of the parameter estimates jointly by computing impulse response functions (IRFs) of

the model’s variables to the fundamental shocks of the economy and by decomposing the

forecast error variance. Both methods help to examine the dynamic of the estimated

model and to describe the propagation and the relevance of different shocks.

Each of the following figures shows the impulse response of the model’s variables to a

particular shock. Each shock is of a size of one-standard-deviation. The first column of

each figure displays the impulse responses of the macroeconomic variables (the nominal

short-term interest rate rt, the inflation rate πt, the output gap g
y
t , and central bank’s

inflation target π?t ). The second column contains the impulse responses of the yield rates

(from the 12-month rate to the 60-month rate). The third and fourth column display

the IRFs of the one-period return premium Et

(
hprx

(τ)
t+1

)
and the yield premium κt,

respectively, incorporated in yield rates with corresponding maturities. By construction,

the one-period return premium is driven only by the risk variable vt, while the yield

premium, which captures the premium in yields over the full lifetime of the bond, is

affected by all state variables. The light gray shaded areas cover the 90 percentage HPD
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Table 3: Results: Posterior Distribution
Parameter Prior Mean Post. Mode Post. Mean 90% HPD Interval Prior
ρr 0.8000 0.8894 0.8880 0.8623 0.9156 B
ρπ 1.5000 1.2151 1.2220 0.9557 1.4898 G
ρy 0.0450 0.0387 0.0335 0.0066 0.0565 G
ρv 0.0000 -0.3734 -0.4419 -0.5631 -0.3152 N
ρvv 0.9000 0.9121 0.8810 0.8318 0.9287 N
ρvr 0.0000 -0.3025 -0.3268 -0.4596 -0.2015 N
ρvπ 0.0000 -0.1544 -0.0781 -0.2496 0.0977 N
ρvy 0.0000 0.2206 0.1852 0.1339 0.2386 N
ρvπ∗ 0.0000 -0.3309 -0.2981 -0.3694 -0.2326 N
ρπ∗ 0.9000 0.9911 0.9914 0.9848 0.9983 B
ρπv 0.0000 -0.0287 -0.0304 -0.0480 -0.0127 N
ρyv 0.0000 -0.0672 -0.0513 -0.0989 -0.0067 N
ρ1πr -0.2000 -0.0817 -0.0759 -0.1943 0.0457 N
ρ2πr 0.0000 0.0009 0.0070 -0.0816 0.1006 N
ρ3πr 0.0000 -0.0308 -0.0221 -0.0898 0.0434 N
ρ1ππ 0.9000 1.0409 0.9550 0.8510 1.0510 N
ρ2ππ 0.0000 -0.0613 0.0226 -0.0654 0.1068 N
ρ3ππ 0.0000 -0.0266 -0.0561 -0.1170 0.0040 N
ρ1πy 0.0000 -0.0104 -0.0089 -0.0441 0.0272 N
ρ2πy 0.0000 0.0165 0.0230 -0.0214 0.0690 N
ρ3πy 0.0000 0.0341 0.0262 -0.0022 0.0527 N
ρ1yr -0.2000 -0.0805 0.0045 -0.1536 0.1737 N
ρ2yr 0.0000 -0.0004 0.0185 -0.0955 0.1259 N
ρ3yr 0.0000 -0.0536 -0.0169 -0.0952 0.0576 N
ρ1yπ 0.0000 0.1303 0.0966 -0.0667 0.2539 N
ρ2yπ 0.0000 0.0698 -0.0099 -0.1153 0.1032 N
ρ3yπ 0.0000 -0.0173 -0.0060 -0.0766 0.0650 N
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Parameter Prior Mean Post. Mode Post. Mean 90% HPD Interval Prior
ρ1yy 0.9000 1.0774 1.0535 0.9724 1.1343 N
ρ2yy 0.0000 -0.0295 -0.0025 -0.0890 0.0867 N
ρ3yy 0.0000 -0.1568 -0.1580 -0.2121 -0.0997 N
σr 0.0100 0.0015 0.0015 0.0013 0.0017 IG
σπ 0.0100 0.0024 0.0024 0.0021 0.0027 IG
σy 0.0100 0.0100 0.0101 0.0090 0.0112 IG
σπ∗ 0.0100 0.0012 0.0013 0.0012 0.0014 IG
σππ∗ 0.0000 -0.9346 -0.8115 -1.1483 -0.4841 N
σπy 0.0000 0.0343 0.0400 0.0066 0.0764 N
σyπ∗ 0.0000 0.3129 0.1885 -1.1469 1.4834 N
σvr 0.0000 -0.0498 0.9940 -0.4997 2.5729 N
σvπ 0.0000 2.6076 1.9368 1.1157 2.7783 N
σvy 0.0000 -0.5391 -0.4342 -0.7126 -0.1729 N
σvπ∗ 0.0000 -0.6049 0.6033 -1.5026 2.4979 N
Λr 0.0000 1.1078 2.2702 -1.4728 6.0125 N
Λπ 0.0000 -2.4393 -5.0232 -9.9820 -0.0001 N
Λy 0.0000 0.1887 -1.4573 -5.4025 2.6230 N
Λπ∗ 0.0000 -0.5709 -0.8612 -1.3745 -0.3219 N
σ12 0.0001 0.0005 0.0005 0.0005 0.0006 IG
σ24 0.0001 0.0001 0.0001 0.0001 0.0001 IG
σ36 0.0001 0.0000 0.0000 0.0000 0.0000 IG
σ48 0.0001 0.0000 0.0000 0.0000 0.0000 IG
σ60 0.0001 0.0001 0.0001 0.0001 0.0001 IG

Table 4: Results: Posterior Distribution

interval while the dark gray shaded areas cover the 68 HPD interval. The IRF (displayed

by the blue line) is computed as the mean impulse response. The output gap is depicted

in percentage deviation of the steady state, and the inflation- and the yield rate are shown

in annualized percentage points. One period corresponds to one month.

Figure (1) shows the response to a term premium shock. The increase in the risk

variable causes one-period return premia and yield premia for bond yields of all maturities

to rise. Similar to a negative demand shock, output and inflation drop in response to a

term premium shock. In line with the findings of Ireland (2015) for the US, the plots show

that an exogenous rise in term premia works to dampen economic activity. According to

the interest rate rule, the rise in the risk variable causes the central bank to ease monetary

policy and to drop short-term rate. The one-period return premia and the yield premia

follow the risk variable closely. The effects of a term premium shock are more pronounced

for premia of bonds with longer maturities. Following the short-term interest rate, long-

term yields decline. Notably, the decline in long-term yields is mitigated by the increase
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Figure 1: Impulse responses of the model’s variables to a one-standard-deviation term
premia variable shock εvt.
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in term premia. Since the inflation target is given by a univariate autoregressive process,

the inflation target is not affected by shocks to the other state variables.

Figure (2) displays the response of the economy to a positive interest rate rule shock.

The interest rate rises on impact and stays above its steady state level for more than 12

months, converging back to its steady state. The response of the output gap and the

response of the inflation rate to the interest rate shock are in line with previous study and

economic theory. The tightening of monetary policy dampens economic activity, leading

to a drop in output and inflation though the response of the output gap is not statistically

significant from zero on the 90 percent level. The mean IRFs of the risk variable and of

the term premia variables confirm their close relationship though the response of the

risk variable and the term premia variables to the interest rate shock is not significantly

different from zero.

The impulse responses to the output shock εyt are displayed in figure (3). The output

gap rises sharply on impact and decreases slowly over the next 16 months back to its

steady state. Inflation rises slowly with its peak after 8 months and remains positive for

another 12 months. The increase in the output gap and inflation causes monetary policy

to tighten. Following the rise in the short-term interest rate, all yields move upward.

Overall, the effects of this shock work similar to an aggregate demand shock. The IRF of

the risk variable reveals an interesting dynamic of term premia over time in response to

an output shock. On impact, the term premia variable drops and converges back to its

steady state value for the next 3 months. After recovering, vt remains significantly above

zero for more than 18 months.

The impulse responses to an innovation in the inflation rate are shown in figure (4).

Inflation rises sharply and converges back to its steady state in less than 16 months.

According to the interest rate rule, the short-term interest rate is raised in response to

the jump in inflation. Yields follow the short-term interest rate. The response of the

output gap is not significantly different from zero. The response of the economy to the

inflation shock affect mainly inflation and the risk variable. In response to the inflation

shock, the risk variable rises on impact and stays significantly different from zero for more

than 12 months. Following the risk variable, the one-period return premium and the yield

premium both rise.

Finally, figure (5) presents the impulse responses to a shock to the inflation target π∗t .
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Figure 2: Impulse responses of the model’s variable to a one-standard-deviation interest
rate shock εrt.
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Figure 3: Impulse responses of the model’s variables to a one-standard-deviation output
gap shock εyt.
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Figure 4: Impulse responses of the model’s variables to a one-standard-deviation inflation
shock επt.
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Figure 5: Impulse responses of the model’s variables to a one-standard-deviation output
gap shock επ∗t.
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From the parameter estimates of the inflation target process ρπ∗ = 0.9939 the inflation

target process is highly persistent. Actual inflation rises along with the new inflation

target rate. Also, the nominal short-term interest rate and bond yields rise. The inflation

target shock works similar to the level factor shock in finance term structure models.11

It moves bond yields simultaneously and persistently upward, resulting in a higher level

of the yield curve. The output gap does not respond on impact but starts to rise slowly

after two years. Similarly to the findings of Ireland (2015), term premia drop in response

to the shock to the inflation target.

The displayed results highlight a multidirectional interaction of term premia, monetary

policy, and the macroeconomy. Previous empirical works indicate that the bond term

premium varies over the business cycle and that this variation is countercyclical (Cochrane

and Piazzesi, 2005; Piazzesi and Swanson, 2008; or Ludvigson and Ng, 2009). My results

correspond to these findings, but emphasizes that the kind of underlying disturbance

is crucial for the sign of the correlation between output gap and term premia, as theory

suggests (see e.g. Hördahl et al., 2008, Rudebusch, Sack and Swanson, 2007, or Rudebusch

and Swanson, 2012). Shocks to the risk variable move output gap and term premia in

opposite directions, leading to a countercyclical relationship. Shocks to the inflation target

do not move output gap and term premia on impact, but with a delay. In contrast, the

relation between output gap and term premia dynamics in response to output shocks is

more complicated. A positive innovation to the output gap results into a countercyclical

movement of term premia on impact and for the next periods. However, after around 18

months the relationship is eventually reversed. The results indicate, thus, whether term

premia are countercyclical over the business cycle or not depends on the source of the

fluctuations.

Next, in order to assess the relative importance of different shocks for the variability

of a variable, I compute the forecast error variance decomposition (FEVD). The FEVD

helps to quantify the contribution of each of the five structural shocks to the forecast error

variance of the model’s variables. Formally, the fraction of the forecast error variance of

variable i due shock j for horizon h, denoted by φi,,j (h), is defined by

φi,,j (h) =
ωi,,j (h)

Ωi (h)
,

11The first three latent factors studied in affi ne term structure models in finance are commonly denoted
by “level”, “slope”, and “curvature”factor, referring to the effect the factors have on the yield curve.
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Table 5: FEVD of macroeconomic variables
Short-Term Interest Rate

h εr επ εy εv επ∗

1 59.35 0.12 2.64 4.53 33.26
12 15.19 2.86 2.98 64.91 14.06
36 3.87 1.83 1.34 51.70 41.26
60 2.01 1.06 0.90 31.40 64.99
∞ 0.70 0.38 0.33 11.26 87.33

Inflation
h εr επ εy εv επ∗

1 0.00 97.96 1.93 0.00 0.11
12 4.44 45.07 34.09 9.25 7.15
36 4.74 13.79 22.55 8.42 40.49
60 4.00 20.04 18.97 10.32 46.67
∞ 3.86 19.30 18.29 10.97 47.59

Output Gap
h εr επ εy εv επ∗

1 0.00 0.00 99.85 0.00 0.15
12 0.49 0.07 90.91 8.46 0.10
36 0.62 0.08 84.29 10.71 4.30
60 0.59 0.08 80.25 10.24 8.84
∞ 0.53 0.07 71.49 9.14 18.76

Term Premium
h εr επ εy εv επ∗

1 0 23.87 17.07 58.73 0.32
12 2.82 11.31 31.43 52.98 1.47
36 3.51 6.47 22.67 53.31 14.04
60 2.20 4.16 14.01 40.74 38.88
∞ 0.76 1.45 4.83 14.92 78.04

where ωi,,j (h) is the forecast error variance of variable i due to shock j at horizon h

and Ωi (h) is the total error forecast variance of variable i at horizon h. Table (5) and

(6) present the FEVD of the model’s variables for different horizons to the five structural

disturbances. The FEVD of the macroeconomic variables are displayed in table (5). Since

the inflation target does only react on own innovations, over all horizons 100 percent of

the forecast error variance is simply explained by inflation target shocks. Therefore it is

omitted from table (5).

In the short run, more than half of the variability of the short-term interest rate is due

to interest rate shocks. Term premium shocks εvt account for between 30 to 65 percent of

the error forecast variance of the interest rate on a two to five-year horizon. In the long run,

inflation target shocks account for more than 87 percent of movements in the interest rate.
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Term premia shocks do not only move the short term interest rate, but do also account

for sizeable variations in inflation, output gap and the risk variable itself, revealing a non-

negligible influence of term premia shocks on the economy. In line with the “practitioners

view”, risk shocks play an important role for economic activity. They account for between

8 - 10 percent of the forecast error variance in the output gap, and also for between 8

- 10 percent in the inflation rate, both at horizons between one and five years. The

forecast error variance of the risk variable in turn is driven by different disturbances, each

differently important on different horizons. On a one to five-year horizon, term premium

shocks account for the bulk of movements in term premia (between 40 and 53 percent).

This corresponds to the findings of Dewachter et al. (2015a) and Ireland (2015) who

find that a large fraction of movements in term premia is not driven by macroeconomic

shocks, but by exogenous term premia shocks. In the short run, in addition to term premia

shocks, inflation shocks account for a large fraction of the forecast error variance in term

premia, while in the long run inflation target shocks account for more than 78 percent

of the forecast error variance in term premia. At the horizon between three and five

years, output gap shocks εyt account for between 14 and 22 percent of variations in term

premia. The results indicate a bidirectional linkage, running from the macroeconomic to

term premia and vice versa. According to the estimated model, interest rate shocks did

not account for much variance of the other variables over the sample period. Movements

in the output gap are mainly driven by own shocks. Variations in the inflation rate are

due to inflation shocks and output gap shocks in the short run and inflation target shocks

in the long run. Term premia and output shocks account for a sizeable fraction of the

forecast error variance in the inflation rate on a one to three years horizon.

The FEVD of bond yields is presented in table (6). In addition to the five funda-

mental disturbances, also the components of the forecast error variance stemming from

measurement errors are reported. Term premium shocks account for sizeable variation in

bond yields, in particular, for bonds with shorter terms to maturity and for short forecast

horizons. In line with evidence of Barr and Campbell (1997), Gürkaynak et al. (2005) or

Hördahl et al. (2006), most of the variation in bond yields is caused by inflation target

shocks. The contribution of inflation target shocks to the forecast error variance in bond

yields is even more pronounced for long-term bonds and increasing in the forecast horizon.

Inflation target shocks account for between 51 and 92 percent of movements in yields of
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Table 6: FEVD of Bond yields
One Year Yield Rate

Horizon Structural Shock Measurement errors
h εr επ εy εv επ∗ η12t η24t η36t η48t η60t
1 13.98 2.68 2.53 60.48 14.74 5.60 0 0 0 0
12 3.98 2.94 0.59 74.17 17.98 0.35 0 0 0 0
36 1.25 1.53 0.82 45.11 51.20 0.08 0 0 0 0
60 0.69 0.90 0.58 27.12 70.67 0.05 0 0 0 0
∞ 0.26 0.35 0.24 10.54 88.60 0.02 0 0 0 0

Two Year Yield Rate
Horizon Structural Shock Measurement errors

h εr επ επ εv επ∗ η12t η24t η36t η48t η60t
1 4.79 3.03 0.18 67.16 24.65 0 0.20 0 0 0
12 1.58 2.36 0.19 62.12 33.73 0 0.01 0 0 0
36 0.55 1.13 0.59 34.11 63.62 0 0 0 0 0
60 0.32 0.68 0.42 20.80 77.78 0 0 0 0 0
∞ 0.13 0.35 0.24 10.54 98.60 0 0 0 0 0

Three Year Yield Rate
Horizon Structural Shock Measurement errors

h εr επ εy εv επ∗ η12t η24t η36t η48t η60t
1 2.31 2.54 0.00 53.30 41.83 0 0 0 0 0
12 0.82 1.77 0.17 45.97 51.27 0 0 0 0 0
36 0.30 0.82 0.44 24.46 73.98 0 0 0 0 0
60 0.18 0.50 0.32 15.27 83.72 0 0 0 0 0
∞ 0.08 0.22 0.14 6.74 92.82 0 0 0 0 0

Four Year Yield Rate
Horizon Structural Shock Measurement errors

h εr επ εy εv επ∗ η12t η24t η36t η48t η60t
1 1.29 2.00 0.00 54.30 41.83 0 0 0 0 0
12 0.46 1.30 0.11 32.61 65.52 0 0 0 0 0
36 0,18 0.60 0.31 17.42 81.49 0 0 0 0 0
60 0.12 0.38 0.23 11.16 88.12 0 0 0 0 0
∞ 0.05 0.17 0.11 5.20 94.46 0 0 0 0 0

Five Year Yield Rate
Horizon Structural Shock Measurement errors

h εr επ εy εv επ∗ η12t η24t η36t η48t η60t
1 0.77 1.56 0.00 27.04 70.56 0 0 0 0 0.07
12 0.37 0.97 0.06 23.04 75.65 0 0 0 0 0.01
36 0.11 0.45 0.21 12.52 86.70 0 0 0 0 0
60 0.07 0.29 0.16 8.22 91.25 0 0 0 0 0
∞ 0.04 0.14 0.08 4.02 95.72 0 0 0 0 0
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bonds of 3- to 5-year residual maturity at forecast horizons between one and five years.

But also for bonds with shorter terms to maturity (two years and less), inflation target

shocks are important determinants of the forecast error variance. These findings confirm

the earlier observation that inflation target shocks work similar to a level shock, moving

the entire yield curve upward. Notably, measurement error shocks do not contribute to

much movement in bond yields, confirming a good fit of the model. They account for

around 5 percent of the one-month ahead forecast error variance in the one-year rate,

less than 0.23 percent of the one-month ahead forecast error variance in the two-year

rate and even less for rates of bonds with longer terms to maturity. The contribution of

measurement errors to the variance of bond yields declines considerably with the forecast

horizon.

6 Conclusion

In this work, I evaluate the interplay of term premia, monetary policy and the economy in

the euro area. Using a macro-finance model of the term structure, which explicitly allows

term premia to affect the economy, my findings reveal a broad interaction among term

premia, monetary policy, and the economy. Movements in term premia are captured by an

unobservable risk variable, which responds to all other state variables, but also exhibits

an autonomous dynamic. By restricting the prices of risk in the pricing kernel (as in

Dewachter et al., 2015a, and Ireland, 2015) this variable is identified to account for all

variations in the one-period return premium. Furthermore, restrictions, similar to those

from more conventional VAR models, on the state process of macroeconomic variables

are entailed to disentangle the effects of fundamental shocks to the endogenous variables.

In line with earlier studies of the term structure and term premia, I find that the term

premium is time-varying and that it responds to the state of the economy, contradicting

the expectation hypotheses.

I emphasize two aspects of my findings. First, a rise in the term premium does affect

the economy. Precisely, proving evidence for the practitioner view, a pure exogenous term

premium shock dampens output and inflation, similar to an aggregate demand shock.

Second, the analysis reveals that the ECB reacted on movements in the term premium

during the sample period. Indeed, in order to counteract the change in the premia, the

central bank shifts the policy rate contrary to the change in the premium. Furthermore,
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this paper does not find evidence for strong effects of conventional monetary policy on

term premia. Nevertheless, overall, the results indicate a broad dynamic between term

premia, monetary policy- and the economy.

Examining how term premia movements affect the economy and the effects of con-

ventional monetary policy on term premia is one first step. A natural question arising

from these finding is how unconventional monetary policy actions, in particular, “quan-

titative easing”(QE), affects the term premium. QE intends to stimulate the economy

through aggregate demand channels not only by reducing long-term yields, the so-called

signaling channel but also by reducing the term premium part in long-term yields, the

so-called “portfolio-balance”channel (International Monetary Fund report, 2013). Recent

studies12 find that QE worked to reduce long-term yields though the magnitude of these

effects differs greatly and the channel through which large-scale asset purchases affects

long-term yields is not clear. If changes in term premia work to affect the economy, what

are the qualitative and quantitative effects of QE on term premia? However, the analysis

of these effects is beyond the scope of this paper.

12Among many others, Bauer and Rudebusch (2015), Carlstrom, Fuerst, and Paustian (2014), Chen,
Cúrdia, and Ferrero (2012), Gagnon et al. (2011), Hamilton and Wu (2012), Krishnamurthy and Vissing-
Jorgensen (2011), and Woodford (2012).
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A Appendix

A.1 Parameter Vectors and Matrices

The vectors and matrices P0, P1, µ0, and Σ0 in eq. (7) are defined as

P0 ≡



1 0 0 − (1− ρr) ρπ 0 0 − (1− ρr) ρy 0 0 0 − (1− ρr) ρv
0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1



,

P1 ≡



ρr 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

ρ1πr ρ2πr ρ3πr ρ1ππ ρ2ππ ρ3ππ ρ1πy ρ2πy ρ3πy 0 ρπv

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

ρ1yr ρ2yr ρ3yr ρ1yπ ρ2yπ ρ3yπ ρ1yy ρ2yy ρ3yy 0 ρyv

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 ρπ? 0

ρvr 0 0 ρvπ 0 0 ρvy 0 0 ρvπ? ρvv



,
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µ0 ≡



(1− ρr)
(
gr − ρygy

)
0

0

− (ρ1πr + ρ2πr + ρ3πr) g
r −

(
ρ1πy + ρ2πy + ρ3πy

)
gy

0

0(
1−

[
ρ1yy + ρ2yy + ρ3yy

])
gy −

(
ρ1yr + ρ2yr + ρ3yr

)
gr

0

0

(1− ρπ?) π?

−ρvrgr − ρvygy − ρvπ?π?


and

Σ0 ≡



σr 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 σπ 0 0 σπyσy 0 0 σππ?σπ? 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 σy 0 0 σyπ?σπ? 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 σπ? 0

σvrσr 0 0 σvπσπ 0 0 σvyσy 0 0 σvπ?σπ? σv



.

A.2 Recursive bond prices

Following Ang and Piazzesi (2003), the difference equations are derived by induction using

eq. (15). Start with τ = 0, then, from P 0t+1 = 1, eq. (15) implies

P 1t = Et (mt+1)

= Et

(
exp

(
−rt −

1

2
λ′tλt − λ′tεt+1

))
= exp (−rt)

where I used that εt is standard normally distributed so that mt+1 log-normal dis-

tributed with mean µ = −rt − 1
2
λ′tλt and variance σ

2 = λ′tλt. Now suppose that
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P 1t = exp
(
Ā1 + B̄1Xt

)
holds, then substituting eq. (8) for rt leads to

exp
(
Āτ + B̄

′

τXt

)
= exp (−δ′1X) .

Matching coeffi cients leads to the initial conditions Ā1 = 0 and B̄
′
1 = −δ′1. Next, in order

to show that the recursions in eq. (17) and (18) hold for arbitrary values of τ > 1 suppose

that P τ
t = exp

(
Āτ + B̄τXt

)
. Substitute eq. (7), eq. (12), (11) and (16) into eq. (15)

yields

P τ+1
t = Et

(
exp

(
−δ′1Xt −

1

2
λ′tλt − λ′tεt+1

)
exp

(
Āτ + B̄′τXt+1

))
= exp

(
−δ′1Xt −

1

2
λ′tλt + Āτ

)
Et
(
exp

(
B̄′τXt+1 − λ′tεt+1

))
= exp

(
−δ′1Xt −

1

2
λ′tλt + Āτ

)
Et
(
exp

(
B̄′τ [µ+ PXt + Σεt+1]− λ′tεt+1

))
= exp

(
−1

2
λ′tλt + Āτ + B̄′τµ+

[
B̄′τP − δ′1

]
Xt

)
Et
(
exp

(
B̄′τΣεt+1 − λ′tεt+1

))
= exp

(
−1

2
λ′tλt + Āτ + B̄′τµ+

[
B̄′τP − δ′1

]
Xt

)
Et
(
exp

([
B̄′τΣ− λ′t

]
εt+1

))
= exp

(
−1

2
λ′tλt + Āτ + B̄′τµ+

[
B̄′τP − δ′1

]
Xt +

1

2

[
B̄′τΣΣ′B̄τ − 2B̄′τΣλt + λ′tλt

])
= exp

(
Āτ + B̄′τµ+

1

2
B̄′τΣΣ′B̄τ − B̄′τΣλt +

[
B̄′τP − δ′1

]
Xt

)
= exp

(
Āτ + B̄′τµ+

1

2
B̄′τΣΣ′B̄τ − B̄′τΣλ0 +

[
B̄′τP − B̄′τΣλ1 − δ′1

]
Xt

)
,

where the sixth equality is obtained by computing the expectation of the exponential

function using the normality of εt+1 and

Et
(
exp

([
B̄′τΣ− λ′t

]
εt+1

))
= exp

(
µ̄+

1

2
σ̄2
)

with µ̄ = 0 and σ̄2 = B̄τΣΣ′B̄′τ −2B̄τΣλt+λ′tλt Matching coeffi cients yields the recursive

relations in eq. (17) and (18).

A.3 Yield premium and return premium

This part of the appendix demonstrates that the yield premium can be written as the

average of expected future return premia of declining maturity. The yield premium of
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τ -period bond κ(τ)t is given by

κ
(τ)
t = y

(τ)
t −

1

τ
Et

[
τ−1∑
i=0

y
(1)
t+i

]
=

1

τ

[
τy

(τ)
t − Et

τ−1∑
i=0

y
(1)
t+i

]
.

=
1

τ

[
−p(τ)t − Et

τ−1∑
i=0

y
(1)
t+i

]

where the last equality uses the relation yτt = −pτt /τ . Now add Et
∑τ−1

i=0 p
τ−i−1
t+i+1 −

Et
∑τ−1

i=0 p
τ−i−1
t+i+1 , rearrange terms, and use the definition Et

(
hprxτ−it+i+1

)
= p

(τ−i−1)
t+i+1 −

p
(τ−i)
t+i − y

(1)
t+i to obtain

κ
(τ)
t =

1

τ

[
−p(τ)t − Et

τ−1∑
i=0

y
(1)
t+i

]

=
1

τ
Et

[
τ−1∑
i=0

pτ−i−1t+i+1 −
τ−1∑
i=0
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(τ)
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y
(1)
t+i

]

=
1

τ
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(τ)
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(1)
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]

=
1

τ
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[
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=
1

τ
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τ
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Finally, note that p(0)t+τ = 0 (since P 0t+τ = exp
(
p
(0)
t+τ

)
= 1) and Et

(
hprx1t+τ

)
= p

(0)
t+τ −

p
(1)
t+τ−1 − y

(1)
t+τ−1. hence,

κ
(τ)
t =

1

τ
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i=0
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(
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)
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A.4 Computation of the i+ 1-period return premium

The return premium is given by (for τ > i)

Et

(
hprx

(τ)
t+i+1

)
= Et

(
hpr

(τ)
t+i+1

)
− Et

(
y
(1)
t+i.
)
.

= Et

(
p
(τ−1)
t+i+1 − p

(τ)
t+i

)
− Et

(
y
(1)
t+i.
)

Plugging the log prices and the expected short rate into the equation above yields

Et

(
hprx

(τ)
t+i+1

)
= Ā(τ−1) + B̄′(τ−1)EtXt+i+1 − Ā(τ) − B̄′(τ)EtXt+i − δ′µ̄− δ′P i (Xt − µ̄)

Using EtXt+j = µ̄ + P j (Xt − µ̄), µ = (I − P ) µ̄, eq. (17), rearranging, and collecting

terms yields

Et

(
hprx

(τ)
t+i+1

)
= −B̄′(τ−1) (µ− Σλ0)−

1

2
B̄′(τ−1)ΣΣ′B̄τ−1 + B̄′(τ−1)EtXt+i+1

−B̄′(τ)EtXt+i − δ′µ̄− δ′P i (Xt − µ̄)
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1

2
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i+1 − B̄′(τ)P i − δ′1P i
]
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where c is defined by
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2
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Now use B̄′(τ) = B̄′(τ−1) (P − Σλ1)− δ′1 to see that

c = B̄′(τ−1)Σλ0 −
1

2
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and
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Hence,

Et

(
hprx

(τ)
t+i+1

)
= B̄′τ−1Σ

[
λ0 + λ1

[(
I − P i

)
µ̄+ P iXt

]]
− 1

2
B̄′τ−1ΣΣ′B̄τ−1

Note that the i+ 1-period return premium depends on the state of the economy only due

to the term λ1P
iXt. As long as not only the elements in the last columns of P i but also

other elements in the columns in P i are different from zero and P i 6= I, all variation in

the variables in Xt affect Et
(
hprx

(τ)
t+i+1

)
. For i = 0 follows P i = I so that the 1-period

return premium reads

Et

(
hprx

(τ)
t+1

)
= B̄′τ−1Σλ0 −

1

2
B̄′τ−1ΣΣ′B̄′τ−1 + B̄τ−1Σλ1Xt

= B̄′τ−1Σ [λ0 + λ1Xt]−
1

2
B̄′τ−1ΣΣ′B̄′τ−1.

Due to the restricted form of λ1 the only source of variation in Et
(
hprx

(τ)
t+1

)
is the variable

that is ordered at the last position in Xt.

A.5 The Likelihood Function

The likelihood function reads

L (Z|θ) =
T∏
t=1

(2π)−
T
2
[
det
(
Rt|t−1

)]− 1
2

× exp

(
−1

2

(
Zt − UXt|t−1

)′ (
Rt|r−1

)−1 (
Zt − UXt|t−1

))
.

whereRt|t−1 denotes the conditional variance,

Rt|t−1 ≡ V ar (Zt|Zt−1, θ) = UΞt|t−1U
′ + V V ′

Xt|t−1 denotes the one step ahead forecast,

Xt|t−1 ≡ E [Xt|Zt−1, θ] = PXt−1|t−1

with

Xt|t ≡ Xt|t−1 + Ξt|t−1U
(
U ′Ξt|t−1U + V V ′

)−1 (
Zt − UXt|t−1

)
,

and Ξt+1|t denotes the mean squared error of the forecasts

Ξt+1|t ≡ E
[(
Xt+1 −Xt|t

) (
Xt+1 −Xt+1|t

)′]
= P

(
Ξt|t−1 − Ξt|t−1U

(
U ′Ξt|t−1U + V V ′

)−1
U ′Ξt|t−1

)
P ′ + ΣΣ′.

The Kalman filter is implemented by iterating on Xt|t−1 andΞt|t−1for given initial values

Ξ1|0 and X1|t.
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