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Abstract  I 

 

Abstract 

In biology-oriented synthesis (BIOS) the scaffolds of natural products are chosen as the starting points 

for the synthesis of potentially bioactive compounds. Natural products have evolved to carry out 

diverse functions in the biological sphere. Therefore, their scaffolds represent a privileged section of 

the chemical space, enriched with bioactivity. Synthesis of compound collections with a common 

natural product scaffold provides a pool of structures from which the bioactive compounds are 

identified by various biological assays. Identified biologically active compounds can serve as probes in 

chemical biology research. 

In the present work a compound collection inspired by the withanolide class of natural products was 

synthesized. The withanolides comprise a family of natural products embodying a steroid core, which 

share a γ- or δ-lactone/lactol as the common structural feature. Two complementary libraries were 

prepared in order to cover a possibly broad chemical space. Both synthetic pathways start from 

commercially available and enantiomerically pure compounds. In part A, a library of full steroidal 

analogues was prepared. The synthesis starts from commercially available pregnenolone and leads to 

withanolide analogues in 10–11 steps. In Part B, a compound collection based on the trans-hydrindane 

dehydro-δ-lactone scaffold was prepared. The synthesis starts from (S)-(+)-Hajos-Parrish diketone and 

takes 12–13 steps to withanolide analogues. 

All synthesized compounds were submitted to cell-based assays for the modulation of cellular signaling 

pathways. One compound derived from the collection of full steroidal analogues is an inhibitor of the 

Wnt signaling pathway with an IC50 of 110±20 nM. It only modestly affects the enzymatic activity of 

TNKS1/2, a known target of Wnt inhibitors, and has most likely another target. One compound derived 

from collection B is an inhibitor of the Hedgehog signaling pathway with an IC50 of 1.8±0.6 µM. It acts 

a cyclopamine-competitive antagonist at the Smoothened receptor with a Ki of 57±10 nM.  

Finally, in part C an alternative approach to the synthesis of withanolide analogues was discussed. 

Hereby, no lactone is assembled in multiple steps, but instead a Prins cyclization used for the quick 

and stereoselective synthesis of a six-membered ring.  
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Kurzfassung 

In der Biologie-orientieten Synthese (BIOS) werden die Gerüststrukturen von Naturstoffen als 

Startpunkte in der Suche nach potentiell biologisch aktiven Verbindungen gewählt. Naturstoffe sind 

evolviert um vielfältige Funktionen in der Biosphäre auszuüben. Ihre Gerüststrukturen repräsentieren 

daher einen priveligierten Teil des chemischen Strukturraums, angereichert mit biologischer Aktivität. 

Die Synthese von Substanzbibliotheken mit einer gemeinsamen naturstoffbasierten Gerüsststruktur 

stellt eine Sammlung von Strukturen bereit, aus der die biologisch aktiven Verbindungen mittels 

biologischer Assays identifiziert werden. Die identifizierten biologisch aktiven Verbindungen können 

als Sonden in der chemischen Biologie eingesetzt werden.  

In der vorliegenden Arbeit wurde eine Substanzbibliothek inspiriert von Withanoliden synthetisiert. 

Withanolide sind eine Familie von Naturstoffen mit einem Steroid-Grundgerüst, die ein γ- oder δ-

Lacton/Lactol als gemeinsames Strukturmerkmal teilen. Um einen möglichst großen Strukturraum 

abzudecken, wurden zwei komplementäre Substanzbibliothekten hergestellt. Beide Synthesewege 

beginnen bei kommerziell erhältlichen und enantiomerenreinen Verbindungen. In Teil A wurde eine 

Substanzbibliothek von steroidhaltigen Analoga hergestellt. Die Synthese startet von kommerziell 

erhältlichem Pregnenolon und führt in 10-11 Schritten zu Withanlid-Analoga. In Teil B wurde eine 

Substanzbibliothek basierend auf dem trans-Hydrindan-Dehydro-δ-Lacton hergestellt. Die Synthese 

beginnt bei (S)-(+)-Hajos-Parrish Diketon und führt in 12-13 Schritten zu Withanlid-Analoga. 

Alle synthetisierten Verbindungen wurden zell-basierten Untersuchungen bezüglich der Modulierung 

von zellulären Signalwegen unterzogen. Eine Verbindung aus der Gruppe der steroidhaltigen Analoga 

ist ein Inhibitor des Wnt-Signalwegs mit einem IC50 von 110±20 nM. Die Verbindung beeinflusst nur 

mäßig die enzymatische Aktivität von TNKS1/2, einem bekannten Zielprotein von gängigen Inhibitoren 

des Wnt-Signalwegs, und besitzt aller Wahrscheinlichkeit nach eine andere zelluläre Zielstruktur. Eine 

weitere Verbindung aus Teil B ist ein Inhibitor des Hedgehog-Signalweg mit einem IC50 von 1.8±0.6 µM. 

Sie ist ein Cyclopamin-kompetitiver Antagonist am membranständigen Smoothened-Rezeptorprotein 

mit einem Ki von 57±10 nM. 

Zuletzt wurde in Teil C ein alternativer Zugang zu Withanolid-Analoga diskutiert. Hierbei wurde das 

Lakton nicht in einem mehrstufigen Prozess aufgebaut, sonderen eine Prins-Zyklisierung für die 

schnelle und stereoselektive Synthese eines sechsgliedrigen Rings genutzt. 
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I   Introduction 

1.1   Natural products 

1.1.1   Natural Products and their Role in Drug Discovery 

In the broadest sense, a natural product is any compound produced by an organism. The three groups 

of polymeric structures, that is, proteins, nucleic acids and polysaccharides are generally excluded from 

this definition. Within the fields of chemical biology and medicinal chemistry the definition is further 

narrowed to secondary metabolites only.[1] Primary metabolites are those compounds who perform 

inevitable physiological functions in the organism. This covers all compounds of ubiquitous metabolic 

pathways like glycolysis, citric acid cycle or urea cycle, as well as compounds with structural functions 

like lipids. Primary metabolites are identical or similar among all organisms. Contrary to this, secondary 

metabolites are not essential for survival, but provide an evolutionary advantage to the producer. 

Secondary metabolites (SM) are found in bacteria, sponges, plants, lower animals like amphibians and 

others, they do not occur in higher animals like humans. The two main purposes of SM are protection 

against herbivores in case of plants and predators in case of amphibian etc., as well as protection 

against invasion by microbes and parasites. Plants are sessile and in contrast to most animals cannot 

escape in case of danger. Many species have therefore evolved to produce SM as a chemical defense 

mechanism. Alternatively, plants can forego the synthesis of SM if they possess mechanical and 

morphological barriers like spikes, thorns, impenetrable bark and so on. As a defense mechanism 

against microbes and parasites, secondary metabolites are a feature of organisms that lack an immune 

system, whereas they are absent in organisms which possess an immune system. Hence, sessile and 

slow-moving organisms, as well as defenseless plants use SM as a chemical defense mechanism against 

all kinds of threats in their ecological environment.[2] 

Secondary metabolites with a defense function achieve this by acting as toxins.  In evolution, several 

strategies have developed how the plant can protect itself from its own SM.[3] Oftentimes, plant natural 

products are stored as glycosides, that is, they have one or more sugar molecules attached to a 

hydroxyl group. In this form, the compound is stored in the vacuole, a compartment common to plant 
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cells. In case the cell is damaged by an herbivore, the compartment boundaries are destroyed and the 

vacuole content comes into contact with the cytosol. The cytosol contains glycosidases which cleave 

the glycoside bonds and release the biologically active aglycon.  

Secondary metabolites can be grouped according to structural features or biosynthetic origin (Figure 

1). According to the latter, many SM can be classified into three major categories: alkaloids, terpenoids 

and polyketides.[4] Two prominent alkaloids are the penicillins (1) and quinine (2)[5]. Because alkaloids 

are biosynthesized from amino acids they always contain at least one nitrogen atom. Often, the 

individual amino acid constituents can be distinguished in the structure, as for example in the 

penicillins (1)[6]. Terpenoids are derived from five-carbon isoprene units, assembled in thousands of 

ways. Prominent examples are the various isomers of pinene (5)[7], withanolide A (6)[8] and 

tetrahydrocannabinol (7)[9]. Due to their biosynthetic origin, the number of carbon atoms is oftentimes 

an integral multiple of five. Polyketides are biosynthesized from acyl-CoA units in a process similar to 

fatty acid synthesis. This polymerization-like biosynthetic origin is sometimes reflected in highly 

ordered degree of the the product structures, as for example in brevetoxin B (8).[10] Tetracycine (9) is 

another polyketide and a very important antibiotic.[11]  

As mentioned above, a key feature of natural products is their organization in compound families. That 

means that organisms do not biosynthesize a certain natural product in a target-oriented metabolic 

pathway, but rather a large number of similar compounds sharing a common scaffold but varying in 

substitution. The diversity in the oxygenation patterns of secondary metabolites is for the most part 

achieved through the oxidase reactions catalysed by cytochrome P450 enzymes (CYPs). CYPs catalyze 

aliphatic and aromatic bond hydroxylations, epoxidations and many more reactions. The reactions 

generally occur with high chemo-, regio-, and stereoselectivity.[12]  
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Figure 1: The three main categories of secondary metabolites, their biosynthetic origin and examples.  
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Since ancient times, people have attempted to cure diseases by producing remedies from natural 

materials. The traditional use of plants as the main delivery of pharmaceuticals has been coined 

ethnopharmacology. There are noteworthy examples of plant preparations with a real active 

ingredient. This way, people have been unwittingly using natural products as drugs. Prominent 

examples are aspirin and penicillin (Figure 2). The knowledge of the use of willow bark as a remedy for 

pains and fever dates back to the ancient Sumerians and Egyptians, as well as Hippocrates.[13] The 

active ingredient of the willow tree bark was discovered in 1763 by Edward Stone to be salicylic acid 

(8).[14] Since 1899 acetylsalicylic acid is marketed worldwide as aspirin. Many ancient cultures 

independently discovered the effectiveness of moulds to treat infections.[15] This could work because 

some moulds produce antibiotic substances. Today, the discovery of penicillin (1) is attributed to 

Alexander Fleming in 1928. After a long way of development, the mass production of penicillin started 

in the 1940s.[16] Penicillin was the first antibiotic substance to be discovered and has paved the way to 

many more substance classes, including other natural products.  

Examples of natural products or natural product derived drugs approved in the last decades include 

paclitaxel (11), lovastatin (12) and amphotericin B (13).1 In 1980, lovastatin (also called mevinolin) was 

reported as a metabolite of the fungus Aspergillus terreus.[17] The natural product can be used as a 

drug without any chemical modification. In 1987, lovastatin was the first statin approved by the U.S. 

Food and Drug Administration (FDA) as a drug for lowering cholesterol levels by inhibiting the enzyme 

HMG-CoA reductase.[18] Amphotericin B (11) is an antifungal drug originally isolated from Streptomyces 

nodosus in 1955. It was first approved by the FDA in 1966. Due to its severe and possibly lethal side 

effects, it is of limited use.[19] Paclitaxel is used in cancer chemotherapy. It was discovered in 1971 and 

received its first FDA approval in 1992. Paclitaxel was a major breakthrough in cancer therapy because 

it was not only a new active ingredient, but also added a completely new mechanism of action to the 

arsenal of cancer treatment. Paclitaxel stabilizes the microtubule polymer and protects it from 

disassembly. Microtubule dynamics is therefore impaired and mitosis haltet.[20] All above mentioned 

drugs or close synthetic derivatives thereof are on the 19th edition of the World Health Organization's 

List of Essential Medicines, a list of the most important medication needed in a basic health system. 

One of the best examples for the successful truncation of a natural product is that of halichondrin B 

(14). A truncated synthetic derivative of this polyether macrolide, named eribulin (15), has been 

approved by the FDA in 2010 as a new treatment option for late-stage breast cancer.[21]  

Many more examples of natural products as sources of drugs can be found in the literature.[22] Natural 

products are involved in ca. 50% of all newly approved small molecules drugs in the years 

                                                           
1 The following FDA approval dates were retrieved from the official online database of the U.S. Food and Drug 
Administration. 
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2000−2010.[22c] The human usage of natural products as medications can be either according to their 

natural purpose, or not. An example for the former is penicillin. Members of the family Penicillium 

produce penicillin as a means of “chemical warfare” against bacteria. People have learnt to isolate the 

active ingredient and use it for the very same purpose. A contrary example is taxol. In fact, taxol did 

not evolve as a ligand for human tubulin and its activity in humans is a mere coincidence. Also, it is part 

of a comprehensive picture of natural products to note that they have been used by humans for many 

other purposes than medication as well. For example, indigo has been used as dye, vanillin and 

capsaicin as flavors, caffeine, nicotine as stimulants, et cetera.[2c]  

 

Figure 2: Prominent drugs based on natural products. The year of approval is given in brackets. 
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1.1.2   The Steroid Scaffold in Biology & Medicine 

Steroidal compounds are a key feature of all eukaryotic organisms.[23] While absent in prokaryotes, the 

cellular membranes of plants, animals, and fungi all contain a type of steroid, where it influences the 

cell membrane's fluidity. The most common type of animal steroid is cholesterol (16, Figure 3), the 

most notable plant sterol (phytosterol) is stigmasterol. Besides its function in cell membranes, in 

vertebrates steroids have a second function as messenger molecules. In humans, the biosynthesis of 

all further steroid hormones starts from cholesterol and proceeds over many steps to five groups of 

compounds. These are glucocorticoids, mineralocorticoids, androgens, estrogens, and 

progestagens.[24] Given the ubiquitous distribution and countless bioactivities, the steroid scaffold is 

unique among natural products! At the beginning of the 20th century there was enormous interest in 

establishing the structure of steroids. Wieland and Windaus elucidated several of the key structural 

motifs, but unfortunately proposed the incorrect structure 17. Among other things, this wrong 

structure was part of the reason for their separate receipt of the Nobel Prize in Chemistry in 1927 and 

1928, respectively. The mistake was brought to light in 1932 when Bernal elucidated the first X-ray 

crystal structure of the steroid ergosterol.[25] 

 

Figure 3: Correct cholesterol structure (16) and the cholesterol structure as proposed by Wieland and Windaus (17) 

Steroidal hormones or their derivatives are widely used for therapeutic purposes (Figure 4). Most 

notable is the group of synthetic glucocorticoids, which are structural analogues of cortisone and bind 

as agonists to the glucocorticoid receptor. The activated GR complex up-regulates the expression of 

anti-inflammatory proteins which turn immune activity and inflammation down. Among the 

indications are allergies, asthma, autoimmune diseases, and sepsis. An important example of this 

compound class is dexamethasone (18). Another widely known group of steroidal drugs are oral 

contraceptives. They were first approved in the USA in 1960 for birth control and contain a 

combination of an estrogen and a progestogen. Further selected examples of synthetic steroid drugs 

are listed below.[26]  



Introduction  7 
 

 

 

Figure 4: Steroidal drugs and their fields of application.   
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1.2   BIOS and the Synthesis of Natural 
Product inspired Libraries  

The synthesis and biological evaluation of compound libraries is the main source of new medicines. 

Between 1999 and 2008, 45 of the 50 FDA approvals for first-in-class small molecules originated from 

a screen.[27] A new rational framework for the synthesis and biological evaluation of compound libraries 

based on natural products was introduced in the concept of “biology-oriented synthesis” (BIOS). BIOS 

is one of many guiding principles in the search for bioactive compounds in chemical biology research 

and drug discovery. The ultimate goal of chemical biology is on the one hand to completely chart and 

map the biologically relevant chemical space of drug-like small molecules, and on the other hand to be 

able to selectively manipulate all proteins (as well as other biological targets) encoded by the human 

genome.[28] However, this wish is hampered by the apparently endless number of chemical structures 

as well as proteins. 

In reality, the sequence and shape variation among proteins is far lower than suggested by the 

seemingly endless pool of amino acid sequences, given by 20n (n = number of amino acids in the 

protein). In fact, only a tiny portion of possible amino acid sequences can fold to a thermodynamically 

stable globular protein, and moreover, many proteins of unrelated amino acid sequence can have 

similar folds. Hence, the structure of the protein fold is conserved in nature on a far higher level than 

the amino acid sequence. The estimated total number of fold types in nature is in the range of a few 

1000s and even lower if restricted to the structures of major protein families.[29]  

Contrary to this, chemical space is enormous, even if limited to biologically relevant drug-like small 

molecules. It is estimated that there are potentially 1060 organic compounds with a molecular weight 

below 500 Da.[30] Obviously, given the natural limitations in time and matter it is impossible to 

synthesize all of them. Hence, at least in terms of numbers of compounds, even large compound 

libraries with millions of compounds used in drug discovery cover only a minute fraction of the 

complete chemical space. It is therefore clear that a rationale for the navigating and populating of 

biologically relevant chemical space must be found. 

A possible solution to this problem is the use of natural products as starting points in the search for 

biologically active compounds. Firstly, in the course of their biosynthesis, the intermediates proceed 

through sequential binding to different enzymes. Secondly, many natural products display a variety of 

biological activities, either within one organism or across species. Taken together, natural products 

have evolved to interact with multiple proteins and therefore represent “privileged” chemical 
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structures. Besides the mere abundance of biological activity within natural products, the selectivity 

and specificity also plays a role. Due to the fact that natural products must also have evolved not to be 

toxic to their own producer, they are less likely to damage biological structures common to all 

organisms, such as membranes or DNA.[31] Last, chiral natural products are usually biosynthesized in 

enantiopure form. This is important, as the two enantiomers of a bioactive compound can have 

profoundly different effects. While one is active in the desired way, the other can be inactive or even 

possess undesired side effects.[32] However, in some cases both enantiomers of a natural product can 

be available.[33] 

Several chemoinformatic analyses on the properties of drugs, natural products and compounds from 

combinatorial chemistry have been published in the past two decades.[34] It was found that natural 

products differ significantly from synthetic compounds, which are synthesized primarily on the basis 

of chemical accessibility. Natural products contain more stereogenic centers and fused rings, but fewer 

aromatic rings and rotatable bonds. Therefore, natural products represent more rigid, nonflat three-

dimensional structures compared to synthetic compounds.[35] Indeed, it has been demonstrated that 

the fraction of sp3-carbons increases in the transition of compounds from discovery, through clinical 

testing, to drugs.[36] 

As well as proteins, natural products do not have random structures, but possess highly conserved 

scaffolds (Figure 5). Typically, natural products are organized in classes of compounds with one 

common scaffold and varying substituents around it (vide infra). The limited numbers of protein fold 

types with their conserved shapes of ligand binding sites parallels the limited number of natural 

product scaffolds classes with their conserved substituent orientation. The hypothesis of BIOS is that 

individual proteins of one conserved fold type can be addressed by one class of compounds sharing 

the same scaffold and substituted in different ways. In this approach, presented by Koch et al., a 

protein structure similarity cluster (PSSC) is identified, which contains proteins with similarly folded 

ligand binding cores, irrespective of sequence differences.[37] The scaffolds of ligands that bind to one 

member of this cluster can be used as starting points for the development of novel ligands for other 

members of the same cluster. To this end, Koch et al. used the scaffold of a natural product.  
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Figure 5: Individual proteins of one fold type can be addressed by one class of compounds sharing the same scaffold and 
substituted in different ways. Reprinted with permission from [29]. (Copyright (2014) American Chemical Society) 

In addition to the clustering of proteins structures, natural product scaffolds can also be clustered in a 

systematic way. With the assistance of chemoinformatics, natural product scaffolds can be classified 

and arranged hierarchically, guided by a set of rules. Koch et al. have proposed the first Structural 

Classification of Natural Products (SCONP) (Figure 6) that was introduced by analysis of the Dictionary 

of Natural Products (DNP), the most comprehensive database resource of natural product 

structures.[38] For each scaffold, a branch is generated by iterative deconstruction of one ring at a time. 

 

Figure 6: Graphical representation of the NP scaffold tree. For clarity, only scaffolds are shown that represent cumulatively 
at least 0.2% of the NP population in the DNP. Reprinted with permission from [38]. 
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BIOS defines a viable alternative to the concept of combinatorial chemistry. Combinatorial chemistry 

includes synthetic methods that enable the preparation of a large number (tens of thousands or even 

millions) of compounds in a single process. In spite of the large number of produced compounds, the 

success rate of the approach proved to be poor. This has been attributed to the molecular properties 

typical of molecules generated by combinatorial chemistry.[34a, 36] The synthetic methods available in 

combinatorial chemistry allowed only for the synthesis of achiral, aromatic compounds. This goes hand 

in hand with a lack of chirality as well as structure rigidity and is the exact opposite of natural products. 

These properties of compound collections which are subjected to high-throughput screening are at 

least part of the reason for the high attrition rate in drug discovery.  

The typical approach in BIOS is the identification of a promising class of natural products or scaffold, 

respectively. A synthetic strategy is devised that should feature a compromise between a maximum of 

substitution variability and a minimum of steps.[39] In this regard, it has to be differentiated between 

natural product-derived and -inspired collections. The synthesis of natural product derived compound 

collections usually starts from the natural product itself. Derivatization occurs in only a few steps, 

determined by the reactivity of the natural product. Hence, the synthesis of stereoisomers is generally 

not possible. On the other hand, collections inspired by natural products are synthesized from smaller 

building blocks, in a way that the different substituents are introduced in the course of the synthesis. 

Substantial variations in substitution pattern and stereochemistry compared to the parent natural 

product are possible.  

The goal of the synthesis of compound collections is to delineate a structure-activity relationship (SAR) 

for a bioactive compound. The detailed knowledge of the SAR allows the reduction of structural 

complexity towards a compound which is amenable to chemical synthesis and further optimization. In 

the past, reduction of complexity and even truncation of natural products has in many cases shown to 

be very effective.[21] 

There are recent examples of natural product inspired compound libraries endowed with biologically 

active compounds. Dakas et al. have developed an enantioselective, catalytic synthesis strategy 

towards a class of neuritogenic iridoids.[40] The iridoid family of natural products has been known 

before to possess pronounced neuritogenic properties. In another approach, the synthesis of a iridoid-

inspired compound collection led to the discovery of inhibitors of the Wnt and Hedgehog signaling 

pathways.[41] Voigt et al. synthesized a natural product Inspired tetrahydropyran collection and 

subjected the products to a phenotypic screen. This led to the identification mitosis inhibitors and the 

unravelling of their mechanism of action.[42]  
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1.3   Withanolides 

1.3.1   Withanolide Structures and Bioactivities  

The withanolides comprise a family of natural products embodying a steroid core, which share a γ- or 

δ-lactone/lactol as the common structural motif. The polyoxygenated character of withanolides is the 

basis for a variety of modifications of the steroid core, resulting in complex structural features. Most 

withanolides can be roughly grouped in two types of structures, which are designated A (Figure 7) and 

B (Figure 8). Type A withanolides bear a δ-lactone or δ-lactol, whereas type B withanolides are those 

with a γ-lactone or γ-lactol. In type A withanolides, the oxygenation is concentrated around the A- and 

B-rings, while the trans-hydrindane dehydro-δ-lactone part is largely conserved. Furthermore, there 

are natural products which are biosynthetically related to withanolides, but possess a modified steroid 

skeleton. Physalins, neophysalins, withajardins and others belong to that group. Like many natural 

products, withanolides also occur as glycosides, linked to one or more sugar residues at the A-ring. 

Withanolides can be mainly found in 19 genera of Solanaceae, which live in the temperate and tropical 

zones around the world. The most prominent source of withanolides is Withania somnifera, known 

commonly as ashwagandha or Indian ginseng. Herbal medicines containing withanolides as active 

ingredients have a wide range of ethnopharmacological applications. Specifically, Withania somnifera 

is well known for its use in Ayurvedic medicine[43] and its extract is commercially available.  

Withaferin A (26) was the first withanolide-type natural product isolated from Withania somnifera in 

1965.[44] The withanolides were classified for the first time in 1981 by Kirson & Glotter.[45] Since then, 

withanolides have been reviewed for several times.[46] The latest comprehensive review on the 

classification and bioactivities of withanolides appeared in 2011.[47]  
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Figure 7: Type A withanolides. The common trans-hydrindane dehydro-δ-lactone scaffold is highlighted in bold. 

 

Figure 8: Type B withanolides. 

Natural withanolides and withanolide analogues are reported to possess diverse bioactivities.[47] 

Among them are potent anti-inflammatory effects[48], as well as the modulation of the mTOR[49], the 

Wnt pathway[50] and the Hedgehog pathway[51]. A large portion of the literature about withanolides is 

concerned with their neuritogenic and neuroprotective activity. For example, withanolide A and 

derivatives were recently shown to promote neurite outgrowth[8b, 52] and the synthetic, simplified 

withanolide analogue denosomin exhibits neuroprotective activity, exceeding the original natural 

compound sominone.[53] Although no FDA-approved withanolide drug is on the market, Ashwagandha 



14  Introduction 
 

(Withania somnifera) extract containing withanolides is commercially available without prescription. 

It is advertised for a number of beneficial effects, including anti-aging, stress relief or blood sugar 

stabilization. 

1.3.2   Synthetic Studies towards Withanolides 

Numerous synthetic efforts have been reported in the literature towards generating withanolides.[46c] 

Some chosen examples are presented in the following section. 

Synthetic works on the withanolides have always used naturally available steroids as starting materials. 

The challenge remained to elaborate the right oxygenation pattern in the steroid core and to build up 

the lactone side chain in a stereoselective manner. The only stereocenter in the lactone side chain is 

C-22 and has always the R-configuration in natural withanolides (Figure 7, page 13).  

Ishiguro et al. were the first to accomplish the partial synthesis of a withanolide model compound, 

which had the A- and B-ring of withaferin A, but the side chain of cholesterol.[54] Only one year later 

the same group has accomplished the elaboration of the typical α,β-unsaturated δ-lactone on a 

steroidal aldehyde via an aldol reaction with an α,β-unsaturated ester. However, the proper 

stereochemistry at C-22 was not achieved (Scheme 1).[55]  

 

Scheme 1: Lactone construction via y-coupling of lithium dienolates with the steroidal 22-aldehydes. [55] 

Later on this strategy was systematically investigated and it was discovered that a MOM-protected 

hydroxyl group at C-20 is key to the desired 22(R)-configuration.[56] The first application of this 

methodology in the synthesis of withanolides was achieved by Gamoh et al. in 1984.[57] In their 

stereocontrolled synthesis of withanolide D the side chain moiety was installed in one step with full 
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stereocontrol at C-22 (Scheme 2). Although this methodology is remarkable, it has been shown 

effective only for this particular dimethyl substitution pattern of the lactone. 

 

Scheme 2: Side chain construction according to Gamoh et al. [57] 

A general strategy for the establishment of the C-22(R)-configuration was developed by Weihe et al. 

in 1978 (Scheme 3).[58] It relies on the diastereoselective epoxidation of α,β-unsaturated ketone 42. 

Treatment of 42 with 30% hydrogen peroxide and dilute sodium hydroxide furnishes after 

reacetylation the product 43 in 94% yield. The NMR spectrum indicated that it was a mixture of 43 and 

the isomeric epoxide in a ratio of approximately 95:5. The epoxy ketone 43 was transformed to the 

unsaturated lactone 47 in four further steps. 

 

Scheme 3: Withanolide synthesis according to Weihe et al.[58] (a) H2O2, NaOH, ethanol; (b) Al(Hg), ether/ethanol; 
(c) bromoacetyl bromide, pyridine, ether; (d) triethyl phosphite; (e) NaH, THF, reflux. 

One more strategy for the establishment of the right C-22-configuration was presented by Hirayama 

et al. in 1982 (Scheme 4). Starting from commercially available steroidal acid 48 several withanolides 

were prepared, including withaferin A (27).[59] The key stereodefining step is the diastereoselective 

dihydroxylation of 49 with osmium tetraoxide, followed by tosylation. This transformation furnishes a 

5:1 mixture of epimers, with the major diastereomer 50.[60]   
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Scheme 4: Withanolide synthesis according to Hirayama et al.[59a] (a) OsO4, N-methylmopholine oxide, t-BuOH/THF/H2O/p-
TsCl·Py. 

The most recent synthetic strategy towards withanolides uses a ring-closing metathesis (RCM) for the 

buildup of the unsaturated lactone (Scheme 5).[53] Matsuya et al. synthesized 8 withanolide derivatives 

and evaluated their neuritogenic and neuroprotective properties. The disadvantage of this strategy is 

the low-yielding RCM in the last step for R2 = Me. The formation of a tetrasubstituted olefin is a big 

challenge and diminishes the yield as illustrated by the fact that R2 is limited to H or Me.  

 

Scheme 5: Withanolide synthesis according to Matsuya et al.[53] (a) (+)-Ipc2B(allyl)borane; (b) MeC(=CH2)CH2Br, Mg; (c) 
10 mol% Stewart-Grubbs catalyst, toluene, 80 °C. 
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The research on withanolides in the context of their neuritogenic and neuroprotective activity was 

continued by Gademann et al. In 2011 they published the total synthesis of the neuritogenic compound 

withanolide A[8b], followed in 2013 by semisynthetic derivatives.[52] Gademann et al. relied on the 

method shown in Scheme 2.  
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I I   Aim of the Project  

The various bioactivities of withanolides, in particular their modulation of signaling pathways, inspired 

us to design a compound collection based on the withanolide class of natural products. It was 

anticipated that library synthesis based on these natural products would cover a promising section of 

the biologically relevant chemical space and may yield interesting and novel small molecule 

modulators of signaling pathways. The compound collection should be subjected to a series of cell-

based screens for various biological activities. Subsequent synthesis of analogues and derivatives 

based on a possible hit structure should enable us to delineate a structure–activity relationship and 

identify a lead structure for further research into medicinal chemistry and chemical biology. If possible, 

the mechanism of action of hit compounds should be investigated through cell-based and biochemical 

assays.  

As mentioned above, the structures of many bioactive type A withanolides significantly vary in the 

oxygenation pattern of the A- and B-rings, while the trans-hydrindane dehydro-δ-lactone part is 

conserved. In order to cover a greatest possible chemical space, the library should include both 

systematic variations of the A- and B-rings on the one hand, as well as in the lactone part on the other 

hand (Figure 9). The idea was to use a commercially available steroid or a segment of the steroid 

scaffold as starting material.  

 

Figure 9: The two possible synthetic precursors to a withanolide inspired compound collection.  
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I I I   Results and 

Discussion 

3.1   Part A: Full Steroid Analogues 

3.1.1   Synthesis Planning 

The synthetic pathway to the compound collection should feature the possibility to introduce a braod 

array of substituents in the variable positions R1 and R2, if possible also in R3 (Scheme 6). As discussed 

above, RCM of the double bond in the lactone is not a promising retrosynthetic step. Instead, it was 

planned to introduce R2 via a cross coupling reaction of enol triflate 59. The enol triflate functional 

group can be accessed from keto ester 60, which in turn leads to the open-chain compound 61. 61 

possesses three stereogenic centers, only one of which needs to be established with the indicated 

configuration in order to match with natural withanolides. The stereocenter at R3 can have either 

configuration as it is unknown which effect any substituent R3 would have, the stereocenter at R1 is 

inconsequential. There are tho ways for the synthesis of 61, depicted by routes A and B. Disconnection 

A corresponds to a vinylogous aldol reaction in the forward direction and reveals an aldehyde 62 and 

keto ester 63. Disconnection B corresponds to a Claisen condensation between aldol adduct 64 and 

substituted ester 66 in the forward direction. An alternative to an aldol adduct is β-lactone 65, which 

is in fact a ring-closed aldol adduct. Enantioselective, catalytic methods for vinylogous aldol reactions 

(Route A) are reported and do usually employ a synthetic equivalent of an acetoacetate ester as 

nucleophile.[61] However, it was anticipated that this would be a troublesome route, given that 

substrates 63 would have to be prepared and a narrow substate scope for R1 and R3 was expected 

according to literature reports. The more promising strategy seemed to be disconnection B to a chiral 
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β-lactone and a substituted ester. A methodology for the stereoselective synthesis of β-lactones 65 is 

known.[62] The desired configuration at C-22 would be established using this method. Herein a new 

strategy towards the establishment of the right C-22(R)-confuguration in the construction of 

withanolides was proposed. In the synthesis of other natural products with an α,β-unsaturated δ-

lactone the asymmetic [2+2]-cyclocondensation was already successfully used.[63] 

 

Scheme 6: Retrosynthesis of the unsaturated lactone 

During the synthesis planning attention was focused to the presence of substituents at the unsaturated 

lactone because any additional substituent decreases the rate of Michael additions.[64] Table 1 shows 

kinetic data for the reaction of several α,β-unsaturated esters with glutathione (67). As electrophilic 

functional groups, Michael acceptors may form covalent bonds to nucleophilic sites of proteins and 

the DNA. Therefore, Michael acceptor reactivity of compounds is known to be a major reason for 

toxicity and other biological activity.[65] Because withanolides are always at least α-substituted and 

oftentimes also β-substituted at the lactone, their Michael acceptor reactivity should be weak. 

Accordingly, electrophilicity of the lactone is not invoked as the basis for biological activities of 

withanolides.  
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Table 1: α,β-unsaturated carbonyls with information on their Michael acceptor reactivity. Depicted are experimental 
second-order rate constants of their reaction with GSH. Data copied from [64] 

 

 

The preparation of the compound collection was planned to start from a commercially available 

steroidal compound. Although numerous steroids are commercially available, for several reasons the 

steroid of choice was the endogenous steroid hormone pregnenolone. First of all, it is inexpensive, so 

that many grams can be used as starting material. Second, after manipulation of the ketone, it has only 

one secondary hydroxyl group as single functional group. This means a lower molecular weight 

compared to other, higher oxygenated steroids, while at the same time the steroid core is unreactive 

and compatible to all kinds of reagents and conditions. Withanolide analogues were planned to be 

synthesized via the pathway shown in Scheme 7. The pathway from 70 to 73 equals to Scheme 6. The 

β-lactone was planned to be opened by ester enolates, introducing the second variable group R1. 

Δ-lactone closure and triflation would transform 72 to vinyl triflate 71. The triflate functionality allows 

for the introduction of the last variable group R2. The key stereo-defining step is the asymmetric 

cinchona alkaloid-catalyzed formal cycloaddition between 75 and acid chlorides 74 to β-lactone 73. 

This transformation was supposed to create two stereocenters and introduce a variable substituent R3 

in the configuration shown below. Aldehyde 75 can be prepared from commercially available and 

inexpensive pregnenolone (76).  
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Scheme 7: Outline of the synthetic pathway of part A 

3.1.2   Synthesis 

The synthesis of aldehyde 75 is effected in 4 steps as shown in Scheme 8. Pregnenolone (76) is TBS-

protected and the keto group subjected to a Wittig reaction using methyltriphenylphosphonium 

bromide. The resulting alkene is hydroborated with 9-BBN, followed by the oxidation of primary 

alcohol 79 to known aldehyde 75. These four steps were performed starting from 5 g pregnenolone 

with slightly different conditions than described in the literature.[66] Hydroboration of olefin 78 yields 

an epimeric mixture of alcohols with 79 being the major isomer. The ratio of epimers is 14:1 according 

to literature and was not determined in this work.[67] The major diastereomer was purified by flash 

column chromatography (FCC). 
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Scheme 8: Synthesis of aldehyde 75. (a) TBS-Cl, i-Pr2EtN, CH2Cl2, RT; (b) methyltriphenylphosphonium bromide, potassium 
tert-butoxide, toluene, RT; (c) 9-BBN, H2O2, NaOH, THF; (d) DMSO, oxalyl chloride, Et3N, THF. 

The next step is the asymmetric cinchona alkaloid-catalyzed cyclocondensation between 75 and acetyl 

chloride to β-lactone 80 (Scheme 9).[62] It is important to note that this reaction is a cyclocondensation 

and not a cycloaddition. While cycloadditions progress in a concerted fashion without ionic 

intermediates, cyclocondensations are classical reactions between nucleophile and electrophile, 

involving ionic intermediates, as shown in Scheme 10. Readily available and inexpensive 

O-trimethylsilyl quinine 82 (TMSQ), prepared by silylation of commercially available quinine[68], 

catalyzes this transformation. TMSQ catalyzes the ketene-aldehyde addition through nucleophilic 

addition to the ketene, generating the acylammonium enolate. The stereochemical induction is 

proposed to proceed via a six-membered transition state. Compared to the original publication, 

30 mol% instead of 10 mol% catalyst were added due to the hindered aldehyde 75. The product was 

isolated as an epimeric mixture in a ratio of ~95:5. The reaction proceeds cleanly but did never run to 

completion. Typically 40–50% of the product was isolated, together with most of the unreacted 

starting material. The total recovery of material is >95% and the reisolated starting material can be 

subjected to the same conditions again. The best yield achieved was 85%. Unfortunately, no 

conversion was achieved with propionyl chloride instead of acetyl chloride. Most likely steric hindrance 

in the transition state is the reason for this, probably caused by the stereocenter in α-position to the 

aldehyde. Therefore, no substituent R3 (Scheme 6 and Scheme 7) could be introduced. When epimeric 

catalyst O-trimethylsilyl quinidine (83) instead of O-trimethylsilyl quinine was used, the epimeric 

β-lactone 81 was isolated as the major product in 63% yield and with a stereochemical ratio of 90:10. 
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Scheme 9: Both epimers of the β-lactone are accessible. (a) acetyl chloride, O-TMS quinine, LiClO4, i-Pr2EtN, CH2Cl2/Et2O, 
−78 °C; (b) acetyl chloride, O-TMS quinidine, LiClO4, i-Pr2EtN, CH2Cl2/Et2O, −78 °C. 

 

Scheme 10: Model for stereoselectivity in the assymetric cyclocondensation between 75 and acetyl chloride.[62] 

Initially, 80 could be opened by the lithium-enolates of tert-butyl acetate (89a) and tert-butyl 

propionate (89b) to furnish δ-hydroxy-β-keto-esters 90 and 92 (Scheme 11). After β-lactone opening 

with tert-butyl acetate, the product 90 could be easily ring-closed with TFA in dichloromethane. 

However, the product of β-lactone opening with tert-Butyl propionate (92) could not be effectively 

ring-closed under acidic (TFA, formic acid, HCl in CH2Cl2) and basic (K2CO3 in methanol) conditions. 
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Scheme 11: Initial observations in β-lactone openings and δ-lactone closures. 

Therefore, ethyl esters instead of tert-butyl esters were used in order to introduce a substituent R1≠H 

(Scheme 13). For R1≠H, a new stereocenter is generated in the β-lactone opening, but it is 

inconsequential. Tert-butyl acetate, ethyl propionate, ethyl isovalerate and ethyl hydrocinnamate are 

commercially available and inexpensive. Ethyl 4-pentenoate is commercially available as well, but very 

costly. Therefore, it was prepared from diethyl allylmalonate by Krapcho decarboxylation. The short 

lifetime of lithium enolates generated from ethyl esters upon treatment with LDA, especially from 

ethyl hydrocinnamate and ethyl isovalerate (next page), was problematic. The lithium enolates 

decomposed in solution at −78 °C within minutes, probably by ketene formation and following side 

reactions (Scheme 12). Inclusion of 1 equivalent hexamethylphosphoramide (HMPA) did not solve the 

problem. Therefore, a large excess of the lithium enolates was used for the β-lactone openings. 

 

Scheme 12: Side reactions of ester enolates. 

Compounds 99a-d readily underwent cyclization under basis conditions (K2CO3 in methanol) to keto 

lactones 100a-d. Crude products 100a-d were converted to the vinyl triflates 101a-d with 
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trifluoromethanesulfonic anhydride and triethylamine at −78 °C. The products were again not purified 

and used as the crude for the next transformation. Finally, the vinyl triflates 101a-d were TBS-

deprotected to furnish a series of compounds amenable for various late-stage functionalizations. 

Because of the difficulty to purify and characterize a diastereomeric mixture, the yield was calculated 

over four steps from 80 to 102a-d. The vinyl triflates 102a-d were benchstable and when stored at low 

temperature (4 °C) for many months did not show any sign of decomposition.  

 

Scheme 13: Synthesis of enol triflates 101. (a) LDA, THF, −78 °C; (b) K2CO3, MeOH, RT; (c) trifluoromethanesulfonic anhydride, 
Et3N, CH2Cl2, −78 °C; (d) triethylamine trihydrofluoride, CH2Cl2, RT; (e) NaCl, DMSO/H2O. 

As written above, for R1=H (tert-butyl ester), TFA in dichloromethane was most effective for the ring 

closure of 90 to 91 (Scheme 14). Column chromatographic purification of 91 did always lead to a 
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diminished yield of only ~50% and therefore the compound was used as the crude for the next 

transformation. Probably the slightly acidic conditions on silica gel effect lactone opening to the very 

polar carboxylic acid. The yield over four steps from 80 to 102e was 46%. 

 

Scheme 14: Sequence for R1 = H. (a) LDA, THF, -78 °C; (b) TFA, CH2Cl2, RT; (c) trifluoromethanesulfonic anhydride, Et3N, CH2Cl2, 
−78 °C; (d) triethylamine trihydrofluoride, CH2Cl2, RT. 

The presented ring-opening of the β-lactone posed limitations regarding the nucleophiles that can be 

used (Scheme 15). The lithium enolate of ethyl 3-pyridylacetate could not be generated, probably due 

to lithiation of the pyridine ring. Ethyl cyanoacetate on the other hand could be transformed to the 

lithium enolate, but did not react with the β-lactone under the conditions used. 

 

Scheme 15: Failed attempts of β-lactone opening. 

The vinyl triflates 102a-e served as the starting materials for the following diversifying reactions 

(Scheme 16). Suzuki-couplings, Negishi-couplings[69] and reductive elimination of the triflate were the 

performed cross coupling reactions. Suzuki couplings were performed with a variety of aryl and 

heteroaryl boronic acids under the same conditions. All reactions were reliable and clean, with yields 
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ranging from 72% to 99%. Negishi couplings were performed with diethyl zinc, isopropyl zinc halide 

derived from transmetalation of isopropyl Grignard, and an alkyl zinc halide derived from zinc insertion 

into the alkyl halide. Zinc insertion was performed using a procedure from Knochel et al.[70] Reductinve 

elimination of the enol triflates was achieved with tributyltin hydride and catalytic amounts of 

tetrakis(triphenylphosphine)palladium(0).[71]  

 

Scheme 16: Cross coupling reactions and reductive elimination. Only the yields for individual reactions are given, yields over 
two steps are excluded. 

Addition-elimination reactions were performed with thiophenol and a series of amines (Scheme 17). 

Reaction with thiophenol was effected by treating 102c with potassium thiophenolate, generated by 

deprotonating thiophenol with KHMDS in a separate flask. The addition-elimination with amines was 

an exceptionally clean reaction. The reactions were performed in dichloromethane at ambient 

temperature. Depending on the reactivity of the amine, the number of equivalents and the reaction 

time were varied. Reaction with secondary amines was significantly faster than with primary amines. 
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Scheme 17: Addition-elimination with amines and thiophenol. 

While the α-unsubstituted enol triflate 102e neatly underwent addition-elimination with primary and 

secondary amines, the reaction did not yield the desired product in the presence of an α-substituent 

R1 other than H (Scheme 18). Reaction of enol triflate 102a (R1 = Me) with piperidine in 

dichloromethane at ambient temperature was very sluggish. In 1,2-dichloroethane at 50 °C a polar 

product was forming that could be observed by thin layer chromatography (TLC). However, this 

product could not be isolated because it decomposed to a less polar compound on silica. From the 

mixture of both products the desired product 116 was detected by HRMS. The decomposition product 

was isolated in 72% yield and determined to be α,β-unsaturated ketone 120. The proposed mechanism 

is depicted below.[72].  

 

Scheme 18: Failed addition elimination reaction. 
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It was observed that the isolated amine adducts were of limited stability in organic solvents, though 

stable enough for characterization and biological evaluation (Scheme 19). Experiments revealed that 

the amine adducts are stable in DMSO-d6 over one week at ambient temperature. In CHCl3 however, 

the above mentioned fragmentation occured. Instability to slightly acidic conditions is further 

demonstrated by the fact that attempted TBS-deprotection of 121 with triethylamine trihydrofluoride 

led to decomposition. In order to be isolated and fully characterized, the fragmentation product 125 

was later made on purpose. First, enol triflate 102e was treated with piperidine to affect the addition-

elimination reaction. After complete transformation, triethylamine trihydrofluoride was added and the 

mixture was stirred for one week at ambient temperature. The decomposition was still not complete, 

but the fragmentation product was isolated in 48% yield.  

 

Scheme 19: Fragmentation of the lactone. 

During the synthesis of amine adducts, the poor solubility in organic solvents, especially in DMSO, was 

noted. For biological assays it was necessary to prepare 10 mM solutions of the compounds in DMSO, 

which was in some cases far above the solubility limit. Several compounds could be only dissolved in a 

solvent mixture like CD2Cl2/CD3OD or CDCl3/CD3OD for NMR measurements. Interestingly, acetylation 
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of the secondary alcohol enhanced the solubility (Scheme 20). Acetylation is possible in the presence 

of the vinylogous urethane. 

 
Scheme 20: Synthesis of amines. (a) amine, CH2Cl2, RT; (b) acetic anhydride, DMAP, CH2Cl2, RT. 

Besides a possible fragmentation of the lactone, hydrolysis of the vinylogous urethane in aqueous 

solution is also a possible, yet never observed side reaction (Scheme 21). The hydrolysis product was 

prepared from 90 in two steps and also submitted for biological assays as a control. 

 
Scheme 21: Synthesis of the putative enamine hydrolysis product 127. 

In order to further increase the diversity of the library, one-step modifications of the cross-coupling 

and addition-elimination products were performed (Scheme 22). The easiest way to achieve this was 

the installation of appendages on the secondary alcohol in the A-ring. As written above, acetylation 

had the additional benefit to increase the solubility of the products in organic solvents and DMSO. In 

addition, carbonate formation, carbamoylation and methylation were also performed. Epoxidation of 

the C5-C6 olefin with mCPBA leads to an inseparable 4:1 mixture of diastereomers, with the α-epoxide 

being the major isomer.[73] 
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Scheme 22: Steroid core modifications. Only the yields for individual reactions are given, yields over two steps are excluded. 
(a) acetic anhydride, DMAP, CH2Cl2, RT; (b) methyl chloroformate, pyridine, CH2Cl2, RT; (c) chlorosulfonyl isocyanate, CH2Cl2; 
then H2O/THF; (d) methyl iodide, NaH, DMF, RT; (e) mCPBA, CH2Cl2, RT. 

The complete library is presented in Figure 10 and Table 2. It contains 50 compounds. 

 

Figure 10: Summary of the compound collection synthesized in Part A.
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Table 2: Full library 

Entry Cp. Nr R1 R2 R3 R4 

1 130a 
  

  

2 130b 
  

  

3 130c 
    

4 130d 
 

   

5 130e 
 

   

6 130f 
 

   

7 130g 
    

8 130h 
    

9 130i 
 

   

10 130j 
 

   

11 130k 
 

   

12 130l 
 

   

13 130m 
    

14 130n 
    

15 130o 
    

16 130p 
    

17 130q 
 

   

18 130r 
    

19 130s 
    

20 130t 
    

21 130u 
    

22 130v 
    

23 130w 
    

 

24 131a   
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25 131b  
   

26 131c  
   

27 131d     

28 131e     

29 131f     

 
30 132a 

 
 

  

31 132b 
 

 
  

32 132c 
    

33 132d 
    

34 132e 
    

35 132f 
 

 
  

36 132g 
 

 
  

37 132h 
    

 
38 114a   

  

39 114b   
  

40 114c     

41 114d     

42 114e     

43 114f  
   

44 114g  
   

45 114h  

 
  

46 114i     

47 114j     

48 114k     
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49 133a 

    

50 133b 
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One problem was the occurance of conformers in NMR spectra. The reason is hindered rotation of the 

substituents at the double bond in the lactone (Figure 11). The ratio of conformers was determined in 

the 1H NMR spectra by integration of the marked proton signal at C-22. The signals of the hydrogens 

at C-23 were also split. 132c is a mixture of conformers of 85:15 in CDCl3 at 27 °C. In C6D6 at 70 °C the 

ratio slightly changes to 81:19. 133a is a mixture of conformers of 80:20 in CDCl3 at 27 °C. In C6D6 at 

70 °C the ratio slightly changes to 75:25. 

 

Figure 11: Compounds appearing as conformers in NMR spectra. 
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3.1.3   Biological Results 

The two general ways of discovering drug candidates or, more generally speaking, bioactive 

compounds are the target-based approaches (target-first, forward chemical biology) and the 

phenotypic approaches (function-first, reverse chemical biology). Both are successfully used in drug 

discovery. The advantage of the phenotypic approach is that a prior knowledge of the molecular 

mechanism of action (MMOA) of a compound is not required. On the other hand, this makes it more 

difficult to optimize a hit compound.[27, 74] Biological screenings presented in this work use the 

phenotypic approach and were performed at the Compound Management and Screening Center 

(COMAS), Dortmund. Among others, COMAS screens compounds for the identification of modulators 

of the Wnt and Hedgehog signaling pathways. Both signaling pathways play roles in growth control 

and embryonic development. In embryonic development as well as tissue renewal in adults the growth 

of cells is limited by the optimal size and functions of organs and tissues. Cancer cells circumvent these 

growth limiting mechanisms and return to a style of growth which is limited by the availability of 

nutrients. This way, embryonic development, tissue renewal and cancer are interconnected. Hence, 

the Wnt and Hedgehog signaling pathways are relevant to drug discovery in cancer.[75] 

Wnt signaling covers three different cellular signal transduction pathways, initiated by the binding of 

a Wnt protein to a membrane receptor on a cell surface, called Frizzled (Fz). Wnt proteins are a group 

of 19 secreted glycoproteins, which act as ligands in autocrine and paracrine signaling. The main 

function of Wnt signaling is the control of certain aspects of embryonic development and tissue 

renewal in adults. Aberrant activity of Wnt signaling in adults is associated with carcinogenesis. The 

mechanism of Wnt signaling and its role in diseases have been reviewed several times in the past 

years.[76] The three known Wnt signaling pathways are the canonical Wnt pathway, the noncanonical 

planar cell polarity pathway, and the noncanonical Wnt/calcium pathway. In this work, the focus lies 

on the canonical Wnt pathway.  

The transcriptional coactivator β-catenin plays a central role in the canonical Wnt pathway (Figure 12). 

Its cytoplasmic level is regulated by the presence of Wnt proteins. In the absence of Wnt ligands, 

β-catenin is degraded by the destruction complex, which among others includes the following proteins: 

the scaffolding protein Axin, the tumor suppressor protein adenomatous polyposis coli (APC), glycogen 

synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α). There are two Axin genes, which have 

different modes of expression. While Axin1 is constutively expressed, Axin2 is a Wnt target gene and 

at the same time part of the β-catenin destruction complex. It is therefore part of a negative feedback 

loop.[77] Following phosphorylation of β-catenin by the kinases GSK3β and CK1α, it is ubiquitinated and 

degraded by the proteasome. At low levels of β-catenin, Wnt target genes are transcriptionally 

repressed. Binding of Wnt proteins to Fz and the coreceptor LDL-related proteins (LRP-5/6) disrupts 
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the function of the destruction complex. β-catenin is no longer degraded and translocates to the 

nucleus. There it acts as a transcriptional coactivator of LEF/TCF and stimulates the transcription of 

Wnt target genes. Among the target genes are Axin2 and Cyclin D1. Other important components of 

the Wnt pathway are the poly-ADP-ribosylating enzymes Tankyrase 1 and Tankyrase 2 (TNKS1/2). The 

Tankyrases are poly(ADP-ribose) polymerases. Both Tankyrase isoforms directly PARsylate Axin and 

promote its degradation through the ubiquitin-proteasome pathway.[78] Tankrases are regarded as 

potential drug targets.[79] 

 

Figure 12: The canonical Wnt signalling pathway. Figure copied from [80] Reuse of this figure has been licensed by Nature 
Publishing Group. 

Notably, colorectal cancers are strongly linked to mutations in the APC gene, underscoring the 

importance of Wnt/β-catenin pathway towards carcinogenesis. This includes the inherited disease 

familial adenomatous polyposis (FAP), as well as sporadic adenomas and cancers.[81] The colon contains 

a population of stem cells which give rise to all differentiated cell types. They are maintained in a 

proliferative state by continuous Wnt signaling from surrounding specialized cells. Cessation of 

exposure to Wnt signal proteins normally makes them stop dividing and leave the stem-cell niche. 

Loss-of-function mutations in the APC gene mimic the effect of continual exposure to Wnt signal and 

lead to an inappropriate expanding of colon epithelium, called an adenoma. Adenomas on their part 

have a tendency to become malignant and to lead to colon cancer.[80] 

Currently, there is a high interest in developing a cancer treatment that specifically targets Wnt 

signaling. Agents targeting Wnt signaling can be grouped in small molecules, blocking antibodies and 



Results and Discussion  39 
 

 

peptides. As far as today, there is no FDA-approved drug which selectively targets Wnt signaling. 

However, a few small molecules with other cellular targets also modulate Wnt signaling in vivo (Figure 

13).[82] For example, the FDA-approved anthelmintic drug pyrvinium (134) is a potent inhibitor of Wnt 

signaling with a half maximal effective concentration (EC50) of ~10 nM, acting as an allosteric activator 

of CK1α.[83] In 2009, the small molecule XAV939 (135) was identified from a chemical genetic screen to 

inhibit β-catenin-dependent transcription.[78] XAV939 inhibits the poly-ADP-ribosylating enzymes 

Tankyrase 1 and Tankyrase 2, thereby stabilizing Axin and stimulating β-catenin degradation. Chen et 

al. screened a library of ~200.000 synthetic compounds and have identified two novel classes of small 

molecules that disrupt Wnt signaling. One class inhibits the activity of Porcupine, a membrane-bound 

enzyme that is essential to the secretion of Wnt proteins and the other abrogates the destruction of 

Axin proteins.[84] Interestingly, there are already reports on the inhibition of the Wnt pathway by 

withanolides! Coagulin-L (136) inhibits adipocyte differentiation by a mechanism which involves 

modulation of the Wnt pathway.[50a] Withanolide D (137) induced apoptosis in pancreatic ductal 

adenocarcinoma by abrogating β-catenin signaling.[50b]  

 

Figure 13: Wnt signaling modulators 

All synthesized withanolide analogues were submitted to COMAS and underwent a screening for 

modulation of the Wnt and Hh signaling pathways. The activity in the Wnt pathway was investigated 

using a TOPFLASH-based Wnt reporter-gene assay. For this, a HEK293 reporter cell line was employed 

that contains the TOPFLASH reporter and is highly sensitive to stimulation by the protein Wnt3a, owing 
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to the presence of additional copies of the Frizzled receptor.[85] Stimulation with Wnt3a results in a 10–

20-fold induction of a luciferase reporter. Compounds were screened at a concentration of 30 µM. In 

addition, the influence of the compounds on cell viability was determined, whereby only compounds 

that did not reduce viability by more than 20% were considered as hits. To rule out an inhibition of the 

luciferase protein or interference with transcription or translation, compounds were assayed in a 

HEK293 cell line that constitutively expresses firefly luciferase. 

Initially, compound 130i, the product of addition elimination reaction of 102e with piperidine, was 

detected to inhibit the TOPFLASH reporter gene assay. However, it did interfere with the assay itself 

by increasing the luciferase activity. The initially synthesized compound library contained only 130i as 

the single amine adduct. Therefore, a more focused library of amine adducts 130j–130w was prepared 

(Figure 14, Table 3). All further biological experiments were performed by Shobhna Kapoor. 

 

Figure 14: Focused library of amine adducts 130i–130w. 

Experiments were performed in five different cell lines. Mouse L cells are fibroblasts and HEK 293 

human embryonic kidney cells. For the reporter gene assay, a variant of the HEK 293 cell line was used, 

named HEK 293T. These cells contain the Simian Vacuolating Virus 40 (SV40) Large T-antigen, which 

enables them to replicate transfected plasmids containing the SV40 origin of replication. Besides that, 

the human colorectal cancer (CRC) cell lines HCT116 and SW480, both of which harbor mutations in 

key Wnt pathway components, were used. The cell line HCT116 has a Ser45 deletion in one β-catenin 

allele and one wild type allele.[86] This mutation of a GSK3β phosphorylation site prevents the 

degradation of β-catenin because the crucial phosphorylation at Ser45 cannot occur. In this cell line 

the canonical Wnt pathway is therefore constitutively active. The cell line SW480 expresses only 

truncated APC protein. The destruction complex remains intact and β-catenin can be phosphorylated, 

but however, ubiquitination of β-catenin is impaired.[87]   

In the first step, a Wnt-responsive Super-Topflash (STF) luciferase reporter assay in HEK293T cells was 

performed. In this assay, the expression of firefly luciferase is under the control of the Wnt pathway. 
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Inhibition of the Wnt pathway results in a lower expression of the luciferase gene.  As a control, 

constitutively expressed Renilla luciferase is used, which is not influenced by the Wnt pathway. If 

assayed compounds are toxic, the luminescence signals from both luciferase proteins would be 

diminished. The cells were transiently transfected with STF and control TK-Renilla plasmids. Canonical 

Wnt signaling was activated using Wnt3a conditioned medium (Wnt3a-CM), and the Wnt signaling 

pathway activity was determined at 10 and 30 µM of the respective compounds. A firefly luciferase 

inhibition of greater than 60% was regarded as a hit and the compound was tested for dose-response 

inhibition. The half maximal inhibitory concentration (IC50) values of all assayed compounds are given 

in Table 3. 130k and 130o were insoluble in DMSO and could not be used. 

Table 3: Chemical structures and Wnt pathway inhibition potency of withanolide analogues. Wnt reporter activity was 
measured in HEK293T cells transiently transfected with STF and Renilla control plasmid for 8 h, and luciferase activitiy was 
measured 22 h after compound addition in Wnt3a-CM. The luminescent signal for firefly luciferase was normalized to the 
signal of Renilla luciferase. Pathway activity set to 100 % for cells treated with DMSO. The IC50 values reported are mean 
value ± s.d. of three independent experiments each carried out in triplicate.  

 

IC50 Wnt pathway inhibition [µM] 

                              R1 

R2   

 

130i 

2.61±0.67 

130j 

4.5±1.3 

 

130k 

Insoluble 

in DMSO 

130l 

3.21±0.84 

 

130m 

> 30 

130n 

> 30 

 

130o 

Insoluble 

in DMSO 

130p 

2.40±1.0 

 

130r 

> 30 
- 

 

130s 

0.11±0.02 

130t 

0.35±0.06 

 
- 

130u 

0.77±0.1 
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130v 

> 30 

130w 

1.14±0.42 

 

The data do not allow any clear conclusion regarding the structure-activity relationship among amine 

adducts. However, 130s was the most potent compound with an IC50 of 110±20 nM and much more 

active than the initial hit compound 130i. At the same time, withanolide analogues are not toxic to 

HEK 293 cells for the duration of the experiment. Importantly, the decomposition product 125 as well 

as the putative hydrolysis product 128 (Figure 15) were totally inactive in the same assay. 

 

Figure 15: Possible decomposition products of Wnt inhibitors. 

Deeper biological investigations were performed in order to elucidate the mechanism of action of Wnt 

pathway inhibition caused by withanolide analogues. For this, the most active analog 130s and the less 

active compound 130i were chosen.  

130i and 130s dit potently inhibit canonical Wnt signaling in HEK293T cells in a dose-dependent 

manner (Figure 16). Importantly, in this assay luciferase was not influenced by the compounds. The 

most active analog 130s suppressed the STF-dependent reporter gene expression in HCT116 and 

SW480 cell lines (Figure 17). Further evidence for the inhibition of Wnt signaling comes from the 

analysis of Wnt target gene expression. Upon activation of the canonical Wnt pathway in HEK293 cells, 

130i and 130s caused a dose-dependent decrease in the expression of the Wnt target genes Axin2 and 

Cyclin D1 on the mRNA level (Figure 18). 
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Figure 16: 130i and 130s potently reduce canonical Wnt signaling. Dose-response inhibition of Wnt signaling in HEK293T 
cells transiently transfected with STF and Renilla plasmids. Varying concentrations of the compounds or DMSO (0.3%) were 
added in Wnt3a-CM to the transfected cells and luciferase activities were measured 22 h later. The firefly luciferase activity 
was normalized to the activity of Renilla luciferase. Pathway activity was set to 100 % for cells treated with DMSO. Data 
represent mean values ± s.d of > 3 independent experiments each carried out in triplicate.  

 

Figure 17: 130s inhibits aberrant Wnt signaling in colorectal cancer cells. 130s-mediated reduction of reporter activity in 
β-catenin mutant HCT116 cells (a) and APC truncated mutant SW480 (b) cancer cells. Cells were transiently transfected 
with STF and Renilla plasmids and 8 h later 130s was added in Wnt3a-CM for additional 22 h. Data are mean values ± s.d. 
of 3 independent experiments each carried out in triplicate. 

 

Figure 18: 130i and 130s reduce Wnt-specific target gene expression. Dose-dependent reduction in the relative 
expression of Wnt-target genes Axin2 and Cyclin D1 by 130s (a) and 130i (b). HEK293 cells were treated with varying 
compound concentrations or DMSO in Wnt3a-CM for 24 h, followed by RNA isolation, reverse transcription and 
quantitative PCR with gene-specific oligonucleotides for Axin2, Cyclin D1 and GAPDH. The relative mRNA expression level 
for each gene was normalized to the level of GAPDH as an internal control. The gene expression level of cells treated with 
Wnt3a and DMSO was set to 100 %. Data represent mean values ± s.d. of three independent experiments each performed 
in triplicate. 
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The effect of 130s and 130i on the cellular levels of β-catenin was monitored via In-Cell-Western assay 

and re-confirmed for selected conditions by means of immunoblotting. 130s and 130i substantially 

reduced the β-catenin protein expression levels in Wnt3a-induced HEK293 and mouse L cells in a dose-

dependent and temporal fashion (Figure 19). 130s had no effect on the cytoplasmic β-catenin levels in 

mutant HCT116 cells and only modestly affected the β-catenin levels in SW480 cells (Figure 20), yet 

they potently inhibited the Wnt signaling in these cells (Figure 17). The fact that Wnt pathway 

inhibition and the β-catenin level do not necessarily correlate, suggests that the compounds target a 

pathway component that is omnipresent across all cell types upstream of β-catenin. 

 

Figure 19: 130i and 130s inhibit Wnt-induced β-catenin stabilization in a time- and dose-dependent manner. Reduction in 
Wnt-induced cellular accumulation of β-catenin in HEK293 and L cells in response to 130s (a) and  130i (b). Cells were treated 
with various concentrations of compounds or DMSO in Wnt3a-CM for 24 h, followed by quantification of β-catenin levels 
using In-cell Western. Dashed lines represent the basal levels of endogenous catenin levels in non-activated cells. Normalized 
β-catenin levels represented are mean values ± s.d. of 3 independent experiments, each in quadruplicates.  Temporal changes 
in β-catenin abundance in HEK293 (a) and L cells (b) upon treatment with 10 µM of compounds in Wnt3a-CM. For (c) and (d), 
representative curves are shown. 
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Figure 20: 130s-mediated inhibition of aberrant Wnt pathway activity in colorectal cancer cells. In-cell quantification of 
endogenous cellular β-catenin levels in HCT116 and SW480 upon treatment with indicated concentration of 130s for 24 h. 
Normalized β-catenin levels represented are mean ± s.d. of three independent experiments, each performed in 
quadruplicates. 

Treatment of HEK293 cells with 130i and 130s, as well as HCT116 and SW480 cells with 130s led to a 

rise in the protein levels of Axin2 (Figure 21 and Figure 22). In HEK293 and SW480 cells the rise of Axin2 

was accompanied by an increase of the protein level of phosphorylated β-catenin ((S33/S37/Thr41)-pβ-

catenin). As expected from the fact that β-catenin harbors a crucial point mutation in HCT116 cells, no 

phosphorylated β-catenin was observed here. In HCT116 and SW480 cells, the effect of 130s was 

similar to that of IWR-1, a known compound which stabilizes Axin proteins by abrogating their 

turnover.[84]  

 

Figure 21: 130i and 130s induce stabilization of Axin2 proteins and increase -catenin phosphorylation. HEK293 cells were 
incubated with 10 µM of indicated compounds in Wnt3a-CM for 24 h prior to cell lysis. Cell lysates were subjected to 

immunoblotting to determine the levels of Axin2, and β-catenin phosphorylation. -actin was used as the loading control. 

 

Figure 22: 130s induces stabilization of Axin2 protein in SW480 and HCT116 cells. Western blot analyses were performed in 
in SW480 (a) and HCT116 (b) at the indicated concentrations upon compound treatement for 24 h. The cells were incubated 
with 10 µM of indicated compounds in Wnt3a-CM for 24 h prior to cell lysis. Cell lysates were subjected to immunoblotting 

to determine the levels of Axin2 and β-catenin phosphorylation. -actin was used as the loading control. 
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Taken together, the results suggest that in HEK293 and mouse L cells 130s causes the degradation of 

β-catenin by increasing the the protein level of Axin2. Axin2 is the least abundant component and the 

rate-limiting factor of the destruction complex.[86] Notably, 130s caused a reduction of Axin2 mRNA 

and at the same time an increase in the protein level. Therefore, 130s seems to stabilize the existing 

pool of Axin2. In CRC cell lines, where the protein level of β-catenin was weakly influenced by 130s, 

albeit observed inhibitory activity on Wnt signaling suggests that compound treatment elevates 

sequestration of β-catenin by the destruction complex. According to the results above, sequestered β-

catenin is not degraded, but is prevented to transfer to the nucleus and drive Wnt-dependent 

transcription. The observed increase in Axin2 protein levels upon treatment with 130s could be the 

consequence of Tankyrase (TNKS) inhibition or other reasons. However, 130i and 130s did only 

moderately inhibit the enzymatic activity of TNKS1/2 (Figure 23). Presumably another target is 

involved in the observed Wnt pathway inhibition in cellular assays. Hence, the molecular mechanism 

of action is currently unknown. 

 

Figure 23: 130i and 130s only modestly affect the TNKS1/2 enzymatic activity. TNKS2 enzymatic activity in response to 
treatment with 130s (a) and 130i (b) was determined using TNKS2 histone ribosylation kit. (c) The effect of 130i and 130s on 
the enzymatic activity of TNKS1. Data shown are mean values ± s.d. of three independent measurements performed in 
duplicates.  
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3.1.4   Synthesis of Probes for Target Identification 

Since the synthesized Wnt inhibitors only modestly affect Tankyrase activity, the question remains 

what their cellular target is. This question can be addressed with chemical proteomics techniques 

based on affinity isolation.[88] In order to perform pulldown experiments, positive and negative probes 

are required. Compound 130s serves as the positive probe, while two negative probes were planned 

to be used (Figure 24). Negative probe 138 contains the lactone, but without any functionality. In the 

other negative probe 139, the lactone side chain is completely removed. Decomposition product 125 

was not used as a negative probe in order to avoid Michael acceptor reactivity. Vinylogous carboxylic 

acid 128 is also not suitable (page 42).  

 

Figure 24: The planned positive and negative probes for pulldown experiments. 

Compound 138 was prepared in 5 steps from aldehyde 75, as shown in Scheme 23. The pathway from 

75 to 143 is identical to a synthesis performed in part B (vide infra) and works well. The hydrogenation 

of 143 required careful control because undesired hydrogenation of the olefin in the B-ring occured 

with prolonged reaction time![89] Because the starting material 143, the desired product 138 and the 

product of undesired overhydrogenation 144 all have the same chromatographic retention factor on 

TLC, the conversion was monitored by NMR.  
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Scheme 23: Synthesis of inactive compound 129. (a) (+)-Ipc2B(allyl)borane, NaOH, H2O2, THF; (b) acryloyl chloride, Et3N, 
CH2Cl2, RT; (c) Grubbs Catalyst, 2nd Generation, toluene, 80 °C; (d) triethylamine trihydrofluoride, CH2Cl2, RT; (e) Pd/C, H2, 
THF, RT. 

Compound 139 was prepared in one step by Wolff–Kishner reduction of commercially available (+)-

dehydroisoandrosterone (145) (Scheme 24)[90]. It was observed that the hydrazone formation between 

the starting material and hydrazine is very fast, while the following evolution of nitrogen is the rate-

limiting step. The yield is relatively low because full conversion from the hydrazone intermediate to 

the product was not achieved. 

 

Scheme 24: Wolff–Kishner reduction of dehydroisoandrosterone. 

The linker for the probe molecules was prepared based on a known procedure with some minor 

changes (Scheme 25).[91] Triethylene glycol (146) was in four steps transformed into compound 150 
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with an azide group at one end and a bromoacetyl group at the other. Most importantly, the Staudinger 

reaction of 148 was performed with tributylphosphine instead of triphenylphosphine. This was 

necessary because the crude product 149 does always contain traces of the respective phosphine 

oxide, generated in the Stauinger reaction. After the carbamate formation with 130s (vide infra), 

triphenylphosphine oxide was inseparable from the product by column chromatography.  

 

Scheme 25: Synthesis of the linker. (a) p-TsCl, KOH, CH2Cl2, RT; (b) NaN3, TBAI, DMF, 80 °C; (c) PBu3, aq HCl, toluene, RT; (d) 
bromoacetyl bromide, Na2CO3, CH2Cl2/H2O, RT. 

The attachment of the linker to the probe compounds via ether linkage was tested with deoxygenated 

compound 139 and (+)-dehydroisoandrosterone (145) (Scheme 26). All attempts to this transformation 

following procedures from the literature failed.[91-92] Probably the alcohol has to be deprotonated with 

a strong base prior to addition of the linker. Unfortunately however, strongly basic conditions could 

lead to side reactions with the enolizable substrate 138 or decomposition of sensitive compound 130s. 

 

Scheme 26: Attempted attachment of the linker via an ether. 
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As an alternative to the ether linkage it was decided to switch to carbamates (Scheme 27). The 

pulldown probes with carbamate linkage could be prepared from compounds 130s, 138 and 139 

together with azidoamine 149 under mild conditions, without strong bases or acids. The secondary 

alcohol of the steroid core first reacts with 4-nitrophenyl chloroformate (152), substituting chloride. 

When the first step is completed, the linker 149 is added and the amino group substitutes intensely 

yellow 4-nitrophenol (154). 

 

Scheme 27: Carbamate formation for linker synthesis. 

Probe molecules 155, 156 and 157 underwent the Wnt-responsive Super-Topflash (STF) luciferase 

reporter assay in order to see the effect of the attached linker on Wnt inhibitory activity (Figure 25). 

As a control, 130s was tested on the same plate and showed the expected strong activity with an IC50 

of 0.19 µM. The positive probe 155 was an order of magnitude less active than 130s, but still active 

enough for pulldown experiments. 156 showed an unexpected moderate IC50 of 4.36 µM. 157 was 

totally inactive with an IC50 of ~ 694 µM. In this case however, the data points could not be properly 

fitted and the IC50 is only an orientation value. Based on these results, 157 was decided to be used as 

the negative probe.  
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Figure 25: Probe compounds and their Wnt inhibitory activities. 

For coupling to magnetic beads, the azide incorporated in the linker had to be reduced to the amine. 

The final Staudinger reactions were performed with polymer-supported triphenylphosphine. Initial 

experiments have shown that the reduction products are difficult to separate from triphenylphosphine 

oxide due to similar retention times in RP-HPLC (C4 column). Therefore, triphenylphosphine on solid 

support was used in order to avoid purification. The azides 155 and 157 were stirred with 5 equivalents 

of polymer-supported triphenylphosphine in THF/water. After full conversion was achieved, the 

reaction mixtures were filtered and concentrated to provide pulldown probes 157 and 159 (Scheme 

28). Unfortunately, the products contained small amount of aromatic impurities originating from the 

polymer. However, this is of no consequence because the probes are coupled to beads and therefore 

separated from soluble impurities. 

 

Scheme 28: The three pulldown probes. 
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3.1.5   Summary & Outlook 

In summary, a collection of withanolide analogs bearing a full steroid scaffold was prepared. One 

subgroup of compounds contained potent and novel inhibitors of the Wnt signaling pathway. Deep 

biological investigations were performed for 130s, the most potent compound. In future, target 

identification will provide insight into the molecular mechanism of action of 130s. Besides this, the 

structural requirements for the biological activity will be further investigated. As mentioned above, 

the lactone appendage on the steroid core is required for Wnt pathway inhibition. This result proves 

the necessity of the presented multistep synthesis and validates the natural product based compound 

collection. However, it remains to be addressed whether the whole steroid is required for the observed 

biological activity. In vivo, the steroid scaffold bears the danger of poor selectivity due to the bulk of 

steroid-binding proteins. Therefore it would be desirable to truncate the steroid, under the condition 

that the molecules remain biologically active. In order to put this hypothesis to the test, it was planned 

to synthesize three truncated compounds 160, 161 and 162 (Figure 26), which possess only the rings 

C and D of the steroid core. 160 is the truncated version of the most active Wnt pathway inhibitor 

130s, while 161 and 162 are related to two less active analogues 130i and 130v. 

 

Figure 26: Structural requirements for activity and planned truncated compounds. 

A proposal for the synthesis of such truncated compounds is shown in Scheme 29. The synthesis starts 

from Hajos-Parrish ketone (163) and leads in 13 steps to the desired products. Chemo- and 

stereoselective reductions of 163 to 164[93], as well as 164 to 165 are described.[94] The sequence from 

166 to 170 correcponds to Part B and proceeds over intermediate 168, the last known compound of 

the proposed sequence[95]. From 170 the synthesis will follow the path discussed above.  
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Scheme 29: Proposed synthesis of truncated Wnt pathway inhibitors. (a) CuBr-DMS, t-BuLi, DIBAL-H, THF/HMPA, −78 °C; (b) 
NaBH4, 2-propanol, 0 °C; (c) TBS-Cl, imidazole, CH2Cl2, RT; (d) ethyltriphenylphosphonium bromide, potassium tert-butoxide, 
THF, RT; (e) paraformaldehyde, BF3·Et2O, CH2Cl2; (f) Pd/C, H2; (g) PCC, CH2Cl2, RT; (h) acetyl chloride, O-TMS quinine, LiClO4, 
i-Pr2EtN, CH2Cl2/Et2O, −78 °C; (i) tert-butyl acetate, LDA, THF; (j) TFA, CH2Cl2, RT; (k) trifluoromethanesulfonic anhydride, Et3N, 
CH2Cl2, −78 °C; (l) triethylamine trihydrofluoride, CH2Cl2, RT; (m) amine, CH2Cl2, RT.  
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3.2   Part B: Truncated steroid analogues 

The following chapter is related to: 

Biology-Oriented Synthesis of a Withanolide-Inspired Compound Collection Reveals Novel 

Modulators of Hedgehog Signaling 

Jakub Švenda, Michael Sheremet, Lea Kremer, Lukáš Maier, Jonathan O. Bauer, Carsten 

Strohmann, Slava Ziegler, Kamal Kumar, Herbert Waldmann 

Angew. Chem. Int. Ed. 2015, 54, 5596–5602; Angew. Chem. 2015, 127, 5688–5694 

 

3.2.1   Synthesis Planning 

The synthesis plan for the compound collection evolved around late-stage intermediates which bear a 

fully assembled unsaturated δ-lactone and possess a functional group amenable for diversification, 

leading to the preparation of a compound library (Scheme 30). The secondary alcohol 176, the vinyl 

triflate 177 and the ketone 178 meet this criterion. Both the secondary alcohol and the enol triflate 

are accessible from the respective ketone 178. The retrosynthetic analysis starts with the disassembly 

of the unsaturated lactone. Ring-opening leads to ester 179, which can in turn be prepared by an 

esterification between homoallylic alcohol 180 and known carboxylic acid 181. 180 is the product of a 

Brown allylation of aldehyde 182. 182 contains a trans-hydrindane ring system and bears a short side 

chain. The side chain can be installed by a sequence of a distereoselective ene reaction, hydrogenation 

of the newly formed double bond and oxidation of the primary alcohol to the aldehyde (184 to 182). 

184, the substrate of the ene reaction, is derived from (S)-(+)-Hajos-Parrish diketone by a Wittig 

olefination and a conjugate reduction. Hence, the requirement of a C- and D-ring mimic is met by (S)-

(+)-Hajos-Parrish diketone (163, CAS: 17553-86-5), which was used as the starting material for the 

synthesis of a compound library.  
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Scheme 30: Retrosynthetic analysis of truncated steroids. 

3.2.2   Synthesis and initial biological Evaluation 

The synthetic strategy was partly developed by Ph.D. Jakub Švenda.  

The synthesis commences from commercially available (S)-(+)-Hajos-Parrish diketone (Scheme 31). The 

first reaction is a diastereoselective conjugate reduction with DIBAL-H in the presence of t-BuLi and 

CuBr (164).[93] 73% of the pure diastereomer can be obtained on multigram scale. The more reactive 

ketone afterwards has to be protected as the acetal (185), followed by a Wittig reaction with 

ethyltriphenylphosphonium bromide. The Wittig reaction had a reproducible E/Z-selectivity of >95/5. 

These first three steps lead to described compound 186 and proceed with 52% total yield.[95-96] 
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Scheme 31: (a) CuBr-DMS, t-BuLi, DIBAL-H, THF/HMPA, −78 °C; (b) ethylene glycol, oxalic acid, CH3CN, RT; 
(c) ethyltriphenylphosphonium bromide, potassium tert-butoxide, THF, RT. 

The synthesis of acrylic acid 181 was described by Liu et al. (Scheme 32).[97] Methyl acrylate is subjected 

to a Baylis–Hillman reaction with paraformaldehyde, followed by TIPS-protection of the primary 

alcohol and saponification of the methyl ester. All reactions can be performed on multigram scale. The 

yields given below are according to Liu et al. and were not determined in this work. 

 

Scheme 32: (a) paraformaldehyde (10 equiv), DABCO (0.5 equiv), dioxane/H2O (1:1), 72 h; (b) TIPS-Cl, imidazole, DMAP, 
CH2Cl2, 0°C to RT, 1 h; (c) LiOH, THF/H2O (1:1), RT, 36 h. Yields according to Liu et al.[97] 

Exposure of a mixture of 186 and paraformaldehyde to catalytic quantities of boron trifluoride 

etherate provided the corresponding homoallylic alcohol 190 in 75% yield (Scheme 33). The inclusion 

of activated 4-Å molecular sieves in the reaction was crucial in preventing the otherwise facile cleavage 

of the acetal protective group. Diastereoselective hydrogenation of the resulting homoallylic alcohol 

190, followed by standard conditions of Swern oxidation, provided aldehyde 192 in 81% yield over the 

two steps. As the aldehyde 192 proved unstable toward longer storage, a fresh batch of 192 was 

subjected to an asymmetric allylation reaction using (+)-B-allyldiisopinocampheylborane. Oxidative 

workup followed by acid-induced cleavage of the acetal protective group provided a mixture of the 

allylation product and (+)-isopinocampheol, from which the (R)-configured allylic alcohol 180 was 

isolated in 84% yield over 2 steps. Esterification of allylic alcohol 180 with acrylic acid derivative 181 

yielded acrylic ester 179 in 77% yield, which served as a precursor to all planned -lactone 

intermediates (176, 177 and 178).  



Results and Discussion  57 
 

 

 

Scheme 33: Synthesis of common precursor 179. 

Ring-closing metathesis of protected acrylic ester 179 catalyzed by 30 mol% of ruthenium(II) complex 

193[53, 98] followed by a deprotection step with triethylamine trihydrofluoride yielded δ-lactone 194 

(29% over 8 steps from 186). Chemo- and stereoselective[95] reduction of 178 with excess sodium 

borohydride provided access to the secondary alcohol 176 (25% over 8 steps from 186). In order to 

access the enol triflate intermediate 177, the ester 179 was treated with potassium 

hexamethyldisilazide and the resulting enolate was trapped with Commins reagent[99], leading to a 

single regioisomer of the enol triflate product.[100] TIPS-deprotection with excess triethylamine 

trihydrofluoride and ring-closing metathesis catalyzed by 10 mol% ruthenium(II) complex 193 were 

both fully compatible with the presence of the enol triflate. The δ-lactone product 177 was isolated in 

54% yield over the three steps (21% over 9 steps from 186).  
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Scheme 34: Synthetic pathway from 179 to late-stage intermediates 194, 176 and 177. 

Compounds 194, 176 and 177 are the late-stage intermediates amenable for final diversifying 

transformations. TIPS-deprotected ketone 194 was used for an oxime formation with methoxyamine 

hydrochloride, alcohol 176 underwent a carbamate formation and esterifications, and enol triflate 177 

was used for Suzuki and Heck cross couplings (Scheme 35). The following reactions were performed by 

Ph.D. Jakub Švenda. 
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Scheme 35: Derivatization of trans-hydrindane dehydro-δ-lactone intermediates 176, 177 and 194. 
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In the course of the present work, five Suzuki coupling products with heteroaromatic boronic acids 

(Scheme 36) were prepared from 177. 

 

Scheme 36: The five prepared heteroaromatic coupling produts. 

A new way of derivatization of the enol triflate was the reductive elimination to the unsubstituted 

olefin (Scheme 37). 

 

Scheme 37: Reductive elimination of triflate group. 

The initial compound collection of 28 compounds was evaluated in COMAS for modulation of Wnt and 

Hh cell signaling pathways. In the following section, a short introduction to Hh signaling is given. The 

Hedgehog signaling pathway was discovered in Drosophila melanogaster[101] and is evolutionarily 

conserved. “Hedgehog” was the name of a mutant phenotype of Drosophila larvae given by Nüsslein-

Volhard and Eric F. Wieschaus. The mechanism and function of Hedgehog signaling has been reviewed 

in detail.[102] The main components of the mammalian Hh signaling pathway are the three secreted Hh 
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proteins Sonic Hedgehog (SHH), Indian Hedgehog (IHH) and Desert Hedgehog (DHH), the two 

membrane proteins Patched (PTCH) and Smoothened (SMO), and the glioma-associated oncogene 

transcription factors (GLI1, GLI2 and GLI3) (Figure 27). In the absence of the Hh ligands, the Hh receptor 

protein PTCH is localized in the cilium and inhibits SMO by preventing it from trafficking to the cilia. 

Upon binding of a Hh protein, PTCH is displaced from the cilia, alleviating SMO inhibition and allowing 

its activation and accumulation in the cilia. Activated SMO elicits a signal transduction pathway that 

releases GLI transcription factors from a protein complex with Suppressor of Fused (SUFU). Activated 

GLI proteins translocate to the nucleus and promote the expression of Hh target genes, one of which 

is PTCH1.[102b]  

 

Figure 27: The mammalian Hh signaling pathway. Figure copied from [102b]. Reuse of this figure has been licensed by Nature 
Publishing Group. 

Hh signaling has an important role in ontogenesis and its malfunction leads to aberrant development. 

In adults it is largely inactive, except for its function in tissue renewal.[103] Activation of the hedgehog 

pathway has been implicated in the development of cancers in various organs, especially basal cell 

carcinoma (BCC) of the skin.[104] It is known that mutated SMO can function as an oncogene in BCCs. 

BCC, a malignancy of the skin, is the most common cancer. It is rarely life-threatening and can most 

often be removed by surgical excision. Only in a few patients BCC progresses to a life-threatening, 

inoperable tumor or becomes metastatic.[105]  
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In the past decades a lot of effort was put in the development of Hh signaling inhibitors, with a major 

focus on targeting the Smoothened receptor (Figure 28).[106] Many natural products were identidied as 

modulators of the Hh signaling, notably also several withanolides belonging to the physalin 

subclass.[107] Physalin H (205) acts as an Hh signaling inhibitor by blockink GLI1-DNA-complex 

formation.[51] Another class of natural product-derived Hedgehog pathway inhibitors is based on 

vitamin D3 (207).[108] Many Hh pathway inhibitors can be grouped in three types according to their 

molecular target. Those are the Smoothened receptor, Hh proteins and GLI. Among all compounds 

targeting the Smoothened receptor, cyclopamine (206) is the most notable. The plant natural product 

cyclopamine, isolated from Veratrum californicum, inhibits Hh signaling by acting as an antagonist at 

the SMO receptor.[109] It has a modified steroid core and is biosynthesized from cholesterol.[110] 

Synthetic Hh signaling inhibitors include SANT-2 (208), discovered through small molecule screens.[111] 

In 2009, the first inhibitor of SHH, the extracellular signaling protein, was reported and coined 

robotnikinin (209). It was a macrocycle derived from a diversity oriented synthesis (DOS) library.[112] In 

the following, SAR studies on robotnikinin were performed.[113] Steroids are already known to play a 

role in vertebrate Hh signaling. SMO is endogenously activated by oxysterols, which are oxidized 

cholesterol derivatives. Oxysterol binding to vertebrate SMO is required for normal Hh signaling.[114] 

Nedelcu et al. developed azasterols that block Hh signaling triggered by the Hh ligand and by 

oxysterols. The azasterol 22-NHC (210) is an inhibitor of SMO and contains the cholesterol scaffold! 

Besides Hh signaling inhibitors, Hh pathway activators are also known. In 2002, Wu et al. screened a 

combinatorial library of heterocycles for their ability to induce the differentiation of multipotent 

mesenchymal progenitor cells into osteoblasts. A substituted purine derivative, named 

purmorphamine (211), showed a strong activity.[115] Later it turned out that purmorphamine does so 

by activating the Hh pathway as a Smoothened agonist.[116] Another SMO agonist is SAG (212)[111a], for 

which extensive SAR-studies were performed.[117]  

The first-in-class, commercial small-molecule Hh inhibitor is vismodegib (213) (Erivedge®, Genentech). 

It was approved in 2012 by the US FDA for treating locally advanced and metastatic basal-cell 

carcinoma (BCC).[118] Cyclopamine itself cannot be used as a drug because of poor aqueous solubility 

(ca. 5 μg/ml) and acid lability. It readily undergoes an acid-catalyzed rearrangement to an inactive 

compound with known structure.[119] While cyclopamine is still used for research purposes, no 

synthetic derivative thereof has so far been successful as drug candidate. A close derivative named 

Saridegib (also known as IPI-926)[120] was introduced to a phase II clinical trial in patients with 

myelofibrosis, but showed disappointing results.[121] Currently, many pharmaceutical companies are 

developing Hh inhibitors with varying targets.[122] The clinical application of single-agent SMO inhibitors 

is currently limited to BCC, which is almost solely dependent on Hh signaling. However, BCC rarely 
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requires systemic therapy. For other cancers, only a fraction of patients harbor mutations in Hh 

pathway genes.[102b] 

 

Figure 28: Known Hh signaling modulators. 

In COMAS a cell-based assay was performed, which links Hedgehog pathway activity to the enzymatic 

activity of alkaline phosphatase. The assay uses mouse embryonic mesoderm fibroblast C3H10T1/2 

cells. Upon treatment with the Hh signaling agonist purmorphamine (211), the cells differentiate into 

osteoblasts. During differentiation they express osteoblast-specific genes, such as alkaline 

phosphatase (ALK). The enzymatic activity of ALK is measured by monitoring the luminescence signal 

of the substrate hydrolysis product. Inhibition of the pathway results in a decrease of luminescence, 

while pathway activation would result in an increase of luminescence. Several compounds appeared 
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to significantly inhibit the Hh signaling pathway in the low µM range. The strongest Hh pathway 

inhibitor was carbamate 202a (Entry 1) with a mean IC50 of 1.22±0.03 µM, while cross coupling and 

Heck coupling products were less active. Given that many Hh pathway inhibitors target the 

Smoothened receptor, the question was addressed whether the inhibitors found in the present work 

do so as well. Herefore, several of the compounds were sent to a SMO binding assay, performed by SB 

Drug Discovery. The underlying principle is the displacement of [3H]-Cyclopamine from Smoothened 

membranes and the reference inhibitor SANT-2 (208) served as a control. The results are shown Table 

4.   

Table 4: Initial biological results. All comounds shown below were synthesized by Ph.D. Jakub Švenda. [a] Mean IC50 values 
± s.d. (n ≥ 3) for inhibition of the Hedgehog pathway as determined in an osteogenesis assay. [b] Influencce on the viability 
of C3H10T1/2 cells as determined upon treatment with the compounds at 10 μM for 72 h using the CellTiter-Glo assay; >10 
means, the cell viability at 10 μM was between 50-70% while inactive means that >70% cells were viable at 10 µM. [c] Ki 
values ± standard deviation (n≥2), as determined in a Smoothened competition assay using [3H]-radiolabeled cyclopamine. 

Entry Structure 
mean Hh IC50 

[µM]a 
Hh Viability IC50 

[µM]b 
Ki SMO Binding 

[µM]c 

1 

 

1.8±0.6 inactive 0.057±0.01 

2 

 

1.89±0.53 inactive 10.99±2.96 

3 

 

1.98±0.37 inactive 
No inhibition at 

30 M 

4 

 

2.16±0.7 inactive 6.12±4.04 

5 

 

2.32±0.53 > 10 
No inhibition at 

30 M 
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6 

 

2.67±1.07 > 10 
No inhibition at 

30 M 

7 

 

2.69±0.49 inactive nd 

8 

 

2.75±0.24 inactive nd 

9 

 

2.92±1.12 inactive nd 

10 

 

7.98±0.54 inactive nd 

 

Phenyl carbamate 202a was a strong Hh pathway inhibitor and also a Smoothened receptor binder 

with an inhibition constant (Ki) of 57±10 nM! At the same time it showed no cytotoxicity. A deeper 

investigation of 202a was started. The first goal was the synthesis of a sublibrary of carbamate 

analogues.  
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3.2.3   In-depth Analysis of Carbamates 

Building on phenyl carbamate 202a, a more focused library was prepared (Figure 29). Four variants of 

the lactone were prepared, including variants with and without the hydroxymethyl group, as well as 

with or without the unsaturation. In addition, compounds which completely lack the lactone were also 

prepared. 

 

Figure 29: Synthesis of a focused carbamate library. 

For the synthesis of all different δ-lactone intermediates, homoallylic alcohol 180 was used. Besides 

esterification with building block 181, homoallylic alcohol 180 was also acylated with acryloyl chloride 

(214) (Scheme 38). In this case, the following RCM can be performed with 5 mol% catalyst only, 

compared to the RCM of 179. For the following ketone reduction lithium tri-tert-butoxyaluminum 

hydride had to be used instead of NaBH4. With NaBH4 significant amounts of side products were 

formed, presumably due to reaction with the unsaturated lactone. In order to study the biological 

effects of unsaturation, compounds 176 and 216 were hydrogenated to produce saturated lactones 

217 and 218. In case of 176, hydrogenation led to an inseparable epimeric mixture in a ratio of 6:1, 

with the major diastereomer as reported.[59a, 123] Hydrogenations of this system in the context of 

withanolide synthesis were studied by Iwadate et al. in detail.[124]   
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Scheme 38: Pathway from 180 to substrates for carbamate formation. (a) DCC, DMAP, RT; (b) Et3N, RT; (c) Stewart-Grubbs 
ruthenium catalyst (193), toluene, 80 °C; (d) NaBH4, 2-propanol, 0 °C; (e) LiAlH[OtBu]3, THF, 0 °C; (f) Pd/C, H2, THF, RT.  

In order to address whether the lactone is a structural requirement for Hh inhibition, a series of 

analogues lacking the δ-lactone was synthesized. To this end, intermediate 190 was transformed into 

mono-TIPS-protected alcohol 221 in four steps (Scheme 39). 

 

Scheme 39: Synthesis of compound 221. (a) Pd/C, THF, RT; (b) p-TsOH·H2O, acetone/H2O, 50 °C; (c) TIPS-Cl, Imidazole, CH2Cl2, 
RT; (d) NaBH4, 2-propanol, 0°C. 

Five series of carbamate analogues were synthesized from 176, 216, 217, 218 and 221. Electron-rich 

as well as electron-deficient aromatic isocyanates, benzyl isocyanates and alkyl isocyanates were used. 
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The carbamate formations were generally performed in DCM or in 1,2-dichloroethane in case higher 

temperature was necessary (Scheme 40). The number of equivalents of the isocyanate was adjusted 

according to their reactivity. 1-Methylimidazole (NMI) is an effective catalyst for this 

transformation.[125] In general, aromatic isocyanates are far more reactive than aliphatic analogues. 

Electron withdrawing groups on the phenyl ring do further increase the reaction rate, while electron 

donating ones do decrease the rate. The extremely unreactive tert-butyl isocyanate was used as a co-

solvent. After carbamate formation the reaction mixture was worked up and the TBS-deprotection was 

performed in case of the carbamate series from 176, 217 and 221. A slightly different protocol was 

used for the carbamate formation with chlorosulfonyl isocyanate 226o. In this case, after carbamate 

formation the chlorosulfonyl group is hydrolyzed to reveal the carbamoyl moiety.  

 

Scheme 40: Carbamate synthesis from alcohols 176, 216, 217, 216 and 221. 

One reoccurring problem in the carbamate formations was the undesired formation of urea (Scheme 

41), a known problem in the reaction between alcohols and isocyanates.[126] Even if the reaction was 

performed in anhydrous solvents, the problem remained because urea could form during aqueous 
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workup or on the column if no workup was performed. The isocyanates themselves also partly 

contained urea impurities. In some cases it was impossible to separate the desired product from the 

urea side product. 

 

Scheme 41: Urea formation from an isocyanate in the presence of water. 

Another method for carbamate formation was used for the synthesis of 2-pyridyl carbamates because 

the respective isocyanate is commercially not available (Scheme 42, Route A). 2-Aminopyridine (230) 

was treated with 4-nitrophenyl chloroformate (152) in the presence of DMAP to generate a reactive 

carbamate intermediate (231). This intermediate was added to a solution of the starting material and 

substitution of 4-nitrophenol yielded the desired product. This is a reverse way of carbamate formation 

compared to Scheme 27 (page 50). In the present case, 2-aminopyridine proved too unreactive to 

substitute 4-nitrophenol from the carbonate intermediate 232 (Route B). 

 
Scheme 42: Synthesis of 2-pyridyl carbamates. 
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In order to probe the necessity of a stereoselective synthesis, an additional series of withanolide 

analogues with non-natural configuration at two carbon atoms was prepared. The two modified 

stereocenters are the one at the alcohol in the trans-hydrindane core (marked in blue, Figure 30) and 

the stereocenter within the lactone (marked in green). This was possible due to the fact that both 

stereocenters are introduced in reagent-controlled reactions. The other theroretically controllable 

stereocenter marked in blue was not varied because the switch from a trans-hydrindane to a cis-

hydrindane would completely alter the geometry of the molecule. This would probably also change 

the diastereoselectivity in the introduction of the stereocenters marked in red, which are generated in 

purely diastereoselective reactions and cannot be controlled.  

 

Figure 30: Origin of the stereocenters 

While Brown allylation of aldehyde 192 with (+)-Ipc2B(allyl)borane yields a homoallylic alcohol with a 

configuration as it occurs in the lactone of naturally occurring withanolides (180), allylation with 

(-)-Ipc2B(allyl)borane yields the epimer 233. The two following steps are equal to Scheme 33 and 

Scheme 34 and lead to epimeric ketone 234. The opposite configuration of the secondary alcohol was 

achieved by reduction of ketones 178 and 234 with L-Selectride (Scheme 43).[127]  
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Scheme 43: Generation of stereoisomeric analogues. (a) (-)-Ipc2B(allyl)borane, H2O2, NaOH, THF; (b) (+)-Ipc2B(allyl)borane, 
H2O2, NaOH, THF; (c) p-TsOH·H2O, acetone/H2O, 50 °C; (d) NaBH4, 2-propanol, 0 °C; (e) L-Selectride, THF, -78 °C. 

Besides the carbamates themselves, the parent substrates for carbamate formation 216 and 218 were 

also submitted to COMAS to undergo the Hh pathway inhibition assay. In case of 176, 217 and 221 the 

respective TBS-deprotected versions 238, 239 and 240 were prepared and assayed (Figure 31).  
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Figure 31: The five substrates for carbamate formation without TBS groups. 

The compound collection was submitted to COMAS and underwent a cell-based screen for modulation 

of the Hh pathway. The most active compounds from the COMAS screen which were also not cytotoxic 

were again submitted to the Smoothened receptor binding assay performed at SB Drug Discovery©. 

The complete dataset is shown in Table 5. 
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Table 5: Full dataset. [a] Mean IC50 values ± s.d. (n ≥ 3) for inhibition of the Hedgehog pathway as determined in an 
osteogenesis assay. [b] Influencce on the viability of C3H10T1/2 cells as determined upon treatment with the compounds at 
10 μM for 72 h using the CellTiter-Glo assay; >10 means, the cell viability at 10 μM was between 50-70% while inactive means 
that >70% cells were viable at 10 µM. [c] Ki values ± standard deviation (n≥2) for 202a and 202f, otherwise n=1, as determined 
in a Smoothened competition assay using [3H]-radiolabeled cyclopamine. 
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The desired combination of properties for a compound is strong activity and low toxicity. The series of 

analogues with an unsaturated lactone and the hydroxymethyl group combines strong Hh pathway 

inhibition with low toxicity. The phenyl carbamate and substituted analogues are the most active. 

Hydrogenation of the lactone significantly reduces the activity while the compounds remain non-toxic. 

An intriguing observation is that compounds with an unsubstituted, unsaturated lactone are toxic, 

whereas those with a hydroxymethyl group are not. This observation is in accordance with the Michael 

acceptor reactivity trends explained above (page 20). Saturated analogues lacking the hydroxymethyl 

group are poor Hh pathway inhibitors and are not toxic. The truncated series of compounds 225 

contains moderately active Hh pathway inhibitors, which are in part toxic.  The molecules are very poor 

SMO binders in the micromolar range. The strongest Hh pathway inhibitor 202a has an IC50 of 

1.8±0.6 µM and is also a SMO binder with a Ki of 57±10 nM. SMO is a 7-transmembrane GPCR and a 

key element of the Hedgehog signaling. The diastereomers of 202a are phenyl carbamates 241a, 242a 

and 243a. All are significantly less potent as Hh pathway inhibitors (Table 6). This finding emphasizes 

the necessity of a stereoselective synthesis. 202a possesses the C22-configuration of natural 

withanolides, and a deviation from the natural product diminishes the biological activity. 4-

fluorophenyl carbamate 242b is also significantly less active than 202a. 

Table 6: Diastereomeric carbamates. [a] Mean IC50 values ± s.d. (n ≥ 3) for inhibition of the Hedgehog pathway as determined 
in an osteogenesis assay. [b] Influencce on the viability of C3H10T1/2 cells as determined upon treatment with the 
compounds at 10 μM for 72 h using the CellTiter-Glo assay; >10 means, the cell viability at 10 μM was between 50-70% while 
inactive means that >70% cells were viable at 10 µM. 

 

  

mean Hh IC50 

[µM]a

Hh Viability 

IC50 [µM]
b

mean Hh IC50 

[µM]a

Hh Viability 

IC50 [µM]
b

mean Hh IC50 

[µM]a

Hh Viability 

IC50 [µM]
b

     R

9.40 ± 2.75 inactive not determined
toxic (IC50 not 

determied)
inactive inactive

3.20 ± 0.4 > 10- -
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Further experiments were performed by Lea Kremer in order to link the observed Hh pathway 

inhibition in COMAS to the antagonistic effect at the SMO receptor (Figure 32). To this end, 202a was 

compared to vismodegib, the only approved Smoothened antagonist drug. As a first step, a reporter 

gene assay was performed. NIH/3T3 cells were stably transfected with a GLI-responsive firefly 

luciferase reporter plasmid[128] and a pRL-TK constituitive Renilla luciferase expression vector (SHH-

LIGHT2 cells[109c]). The cells were treated with 202a or DMSO as a control in the presence of the Hh 

signaling agonist purmorphamine (211, page 62). Firefly luciferase/Renilla luciferase ratios were 

determined at different concentrations of 202a. Apparently, 202a inhibits GLI-dependent reporter 

gene expression, as seen by the relative decrease of firefly luciferase expression compared to Renilla 

luciferase (Figure 32a).  

The expression of Hh target genes can be monitored by the quantification of mRNA (Figure 32b). 

NIH/3T3 cells were incubated with purmorphamine and 2 µM of 202a or vismodegib and DMSO as 

controls for 48 h. After cell lysis and cDNA preparation, quantitative PCR was carried out employing 

oligonucleotides which are specific for PTCH1 or GAPDH as a reference gene. Compared to cells only 

treated with purmorphamine, 202a decreases the expression of the Hedgehog target gene Patched 1 

(PTCH1) in the same range as vismodegib. 

The displacement of cyclopamine from SMO caused by 202a can be visualized with the use of BODIPY-

cyclopamine (Figure 32c). BODIPY-cyclopamine is a commercially available compound, in which the 

fluorophore BODIPY is covalently linked to cyclopamine. HEK293T cells, transfected with a SMO 

expression plasmid, were fixed and treated with 202a or vismodegib and DMSO as controls in the 

presence of BODIPY-cyclopamine. In order to visualize DNA, the cells were then stained with 4',6-

diamidino-2-phenylindole (DAPI, blue). The displacement of BODIPY-cyclopamine from SMO is visible 

from the decrease of green fluorescence in cells treated with 202a or vismodegib.[116a] A comparable 

result was also obtained from flow cytometry (Figure 32d)[109d]. HEK293T cells were transfected with a 

SMO expression plasmid. Two days later, the cells were treated with 202a or DMSO as control in the 

presence of 5 nM BODIPY-cyclopamine. The cells were then subjected to flow cytometry analysis to 

detect SMO-bound BODIPY-cyclopamine. Compared to DMSO-treated and unstained cells, both 

vismodegib and 202a strongly interfere with the binding of BODIPY-cyclopamine to SMO. The effect of 

vismodegib is more pronounced than that of 202a. 
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Figure 32: Biological experiments with 202a. (a) 202a inhibits GLI-dependent reporter gene expression. SHH-LIGHT2 cells 
were treated with 4 µM purmorphamine and different concentrations of 202a or DMSO as control for 48 h. Firefly 
luciferase/Renilla luciferase ratios were determined. Values are expressed as percentage of DMSO-treated cells. Nonlinear 
regression was performed using a four parameter fit. Data are mean values (n = 3) ± s.d. (b) 202a decreases the expression 
of the Hedgehog target gene Patched 1 (PTCH1). NIH/3T3 cells were incubated with 2 µM purmorphamine and different 
concentrations of 202a or vismodegib and DMSO as controls for 48 h. Upon cell lysis and cDNA preparation, quantitative PCR 
was carried out employing specific oligonucleotides for PTCH1 or GAPDH as a reference gene. Expression levels of PTCH1 
were normalized to the levels of GAPDH and are depicted as percentage of purmorphamine-activated cells (100%). Data are 
mean values (n = 3) ± s.d. (c and d) Compound 202a interferes with the binding of BODIPY-cyclopamine to SMO. (c) HEK293T 
cells were transfected with a SMO expression plasmid. 48 h later cells were fixed and treated with 202a or vismodegib and 
DMSO as controls in the presence of 5 nM BODIPY-cyclopamine for 4 h. Cells were then stained with DAPI (blue) to visualize 
the DNA. Scale bar: 20 µm. (d) HEK293T cells were transfected with a SMO expression plasmid. Two days later, cells were 
treated with 202a or DMSO as control in the presence of 5 nM BODIPY-cyclopamine for 5 hours. Cells were then subjected to 
flow cytometry analysis to detect SMO-bound BODIPY-cyclopamine. The graph shows the median BODIPY-cyclopamine 
fluorescence intensity of SMO-transfected cells upon treatment with the compounds. Data are mean values (n = 3) ± s.d. and 
are presented as percentage of DMSO-treated cells (100%). (Reuse of this figure has been licensed by Wiley.) 

In summary, a compound collection based on the trans-hydrindane dehydro-δ-lactone scaffold was 

synthesized in a stereoselective manner. The synthesis strategy features the preparation and selective 

functionalization of three functionalized key intermediates. A biological investigation of the collection 

revealed novel and potent inhibitors of the Hedgehog signaling pathway. The molecular mechanism of 

action was shown to be the binding to the Smoothened protein. 
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3.2.4   Discussion & Outlook 

Targeted cancer chemotherpy has become an emergent concept in the past decades.[129] Standard 

chemotherapueutics act on all rapidly dividing normal and cancerous cells by interfering with 

ubiquitious structures like DNA or microtubules. A classic example of a generally cytotoxic drug is 

cisplatin. Cisplatin crosslinks DNA, thereby interfering with mitosis in all body cells.[130] In contratst to 

this, targeted therapies block the growth and spread of cancers by interfering with a specific molecular 

target (typically a protein) that has an essential role in tumour growth. One approach towards targeted 

therapy is the use of small molecule inhibitors of tumor-specific proteins. This has been already 

validated by clinic success as seen in the example of imatinib. Imatinib is a tyrosine-kinase inhibitor 

used in the treatment of chronic myelogenous leukemia (CML) ans is regarded a breakthrough in 

cancer treatment.[131] Another technique is the targeting of cell-surface receptors with monoclonal 

antibodies, possibly also conjugated to small molecule drugs.[132] An important example oft he latter is 

the monoclonal antibody Trastuzumab, which blockst he HER2 receptor on the cell surface of certain 

types of breast cancer.[133] Applied to the present work, a possible application of 202a would be further 

developmet towards a drug in targeted cancer chemotherapy, indicated for patients with an overactive 

Hh signaling pathway.  

The other major application of a bioactive compound is that as a chemical probe. Both for drugs and 

probes high potency is vital. Beyond that, drug candidates and tool compounds must meet different 

criteria.[134] For a drug to be successful, bioavailability, metabolism, cost of manufacture and so on are 

preconditions for success. On the other hand, selectivity for one target is not essential and the 

mechanism of action may even be unknwon. Contrary to this, among the prerequisites of a useful 

probe are a known mechanism of action and well-defined selectivity. Interaction with multiple targets 

is undesired for probes.[134b, 135] The question of selectivity of 202a for SMO has not been addressed by 

the present work and would be the first question if follow-up studies should be conducted.  
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3.3   Part C: Prins cyclizations 

In the projects described above, the α,β-unsaturated δ-lactone was constructed in a multistep 

procedure from an aldehyde. We were interested in finding a way how a lactone or a lactone mimic 

could be prepared quicker, using the intermediates described above. From literature it is known that 

Prins-type cyclizations are a powerful way for the stereoselective synthesis of substituted 

tetrahydropyran rings from aldehydes (Scheme 44). Its application in natural product synthesis is 

substantial and has been reviewed.[136] 

 

Scheme 44: Retrosynthetic analysis of a Prins cyclization. 

The stereochemical outcome of the Prins cyclization is dictated by the orientation of substituents in 

the six-membered transition state (Scheme 45). Alkyl groups will generally adapt pseudoequatorial 

orientations in the transition state. The predictability of the stereochemical outcome adds to the 

synthetic value of this reaction. From the mechanism, typical side reactions are clearly visible. In the 

presence of an excess of homoallylic alcohol a Brønsted- or Lewis-acid-catalyzed acetalization can 

occur. Furthermore, the [3,3]-oxonia-Cope rearrangement leads to a scrambling of subunits.[136] 

 

Scheme 45: The mechanism of the Prins cyclization and possible side reactions. 
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From all available literature procedures describing Prins cyclizations, in the present work a report from 

Barry et al. was used.[137] It uses TFA as Bronsted acids catalyst and results in a hydroxyl substituent 

para to the oxygen. Initially the trifluoroacetate anion reacts as nucleophile, followed by basic 

methanolysis of the labile ester (Scheme 46). The intermediate ester was not isolated.  

 

Scheme 46: TFA-catalyzed Prins cyclization. 

The aldehydes 256 and 258 were used for Prins cyclizations (Scheme 47). While aldehyde 256 could be 

isolated and was benchstable, unstable aldehyde 258 was prepared from intermediate 191 by acetal 

deprotection and oxidation, and immediately used for Prins cyclization. Both aldehydes underwent 

Prins cyclization with (S)-(+)-4-penten-2-ol. The configuration of the newly formed stereocenters can 

be inferred from the mechanism above. However, both products appear to be mixtures of 

stereoisomers in a ratio of 90:10 at C-22 of 257 and the corresponding carbon atom C-1 in 259. For 

257, the ratio was determined based on integration of the singlet proton signal at C-18. The proton 

signals at C-22 and C-26 are split and partly overlap, while the proton signal at C-24 is not split and 

does therefore represent a single stereoisomer at this position. For 259, the ratio was determined 

based on integration of the proton signals at C-5. Here as well, the proton signal at C-3 is not split. 

 

Scheme 47: Prins cyclizations with (S)-(+)-4-penten-2-ol. (a) p-TsOH·H2O, acetone/H2O, (b) PCC, CH2Cl2, RT. 
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256 was also subjected to Prins cyclization with (R)-(−)-4-penten-2-ol (Scheme 48). The product 261 

was extremely poorly soluble in all common organic solvents and even crushed out from DMSO. It was 

therefore diacetylated to 262 in order to obtain a soluble compound. An inseparable mixture of two 

spots on TLC formed, which were isolated together. As before, 1H and COSY NMR spectra were used 

to infer the stereochemical outcome at the two newly formed stereocenters at C-22 and C-24. The 

NMR shows a mixture of diastereomers in a ratio of 72:28 based on integration of the 1H signals from 

C-18. The proton signals at C-3 and C-24 cannot be distinguished, but appear both as single signals. 

Compared to this, the signals at C-22 and C-26 are split, as before hinting towards an epimeric mixture 

at C-22. In accordance to the stereochemical model, comparing the proton signal to that of 257, the 

configuration at C-22 appears to be the opposite one. Hence, the structure shown below most likely 

represents the major isomer of the product. 

 

Scheme 48: Reaction of 256 with (R)-(−)-4-penten-2-ol. 

The stereochemical outcome can be understood from the six-membered transition state of the 

reaction (Scheme 49). The scheme below shows the formation of the major isomer. The difference in 

the stereoselectivities in the reaction of 256 with (S)-(+)-4-penten-2-ol and (R)-(−)-4-penten-2-ol must 

be the consequence of the chirality of the substrate. Most likely the α-stereocenter of the aldehyde 

plays a major role. 
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Scheme 49: Six-membered transition state of the reaction of 256 with (R)-(−)-4-penten-2-ol. 

In summary, Prins cyclizations were validated as a reasonable way for the synthesis of withanolide 

analogues. The obtained three products were prepared in moderate stereoselectivities. Probably 

larger groups R (Scheme 44, page 78) would exert a stronger stereoinductive effect in the six-

membered transition state and improve stereoselectivities. Biological data for the compounds was not 

obtained. 
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IV  Summary and 

Conclusions 

In the present work a synthetic approach to the withanolide scaffold was developed and applied to 

the preparation of a compound collection. In order to cover a possibly broad chemical space, two 

complementary synthetic strategies were pursued, resulting in a collection of ~100 compounds. 

Collection A is based on full steroids and collection B on the trans-hydrindane scaffold (Figure 33). 

 

Figure 33: Outline of the two compound collections. 

In Part A, the steroid core was kept largely constant while the lactone side chain, which is typical of 

withanolides, was assembled with the incorporation of variable substituents R1 and R2 (Scheme 50). 

To this end, a synthetic route different from all so far described approaches towards withanolides was 

used. In order to further increase the variability of the collection, one-step modifications of the steroid 

core were performed in some cases. To this end, the olefin in the B-ring was epoxidized (R3) or 

appendages on the secondary hydroxyl group attached (R4). The important feature of the strategy is 

the assembly of a tetrasubstituted olefin in the lactone with a wide range of possible appendages. This 

has not been achieved by the currently known synthetic approaches towards withanolides.  
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Scheme 50: Summary of the synthetic pathway of part A. 

In Part B, a compound collection based on the trans-hydrindane dehydro-δ-lactone scaffold was 

prepared. Three fully assembled late-stage intermediates were prepared and derivatized by Suzuki- 

and Heck-type cross coupling reactions, esterifications, carbamate formations and oxime formations 

(Scheme 51). The CD-rings, as well as the typical α,β-unsaturated δ-lactone were kept constant, while 

mimics of the A-ring were attached to the C-ring. 

 

Scheme 51: Summary of the synthetic pathway of part B. 
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After the identification of an initial Hh pathway inhibitor, a focused library of 40 compounds was 

prepared. Variations of the lactone and the carbamate moiety were incorporated (Scheme 52). 

 

Scheme 52: Synthesis of a focused library. 

Finally, in part C an alternative approach to the synthesis of withanolide analogues was discussed 

(Scheme 53). Hereby, no lactone is assembled in multiple steps, but instead a Prins cyclization is used 

for the quick and stereoselective synthesis of a six-membered ring. Three products were prepared by 

this method.  

 

Scheme 53: Prins cyclizations for the synthesis of tetrahydropyran rings as lactone mimics. 

The compound library was submitted to a series of cell-based assays for the modulation of cellular 

signaling pathways. After the identification of one initial hit compound from each collection, two more 

focused sublibraries were synthesized in order to delineate a structure-activity relationship and obtain 

even more active compounds. Compound 130s, derived from the collection of full steroidal analogues, 

is an inhibitor of the Wnt signaling pathway with an IC50 of 110±20 nM. It only modestly affects the 

TNKS1/2 enzymatic activity and has most likely another target. The target identification is currently 

ongoing. Compound 202a, derived from collection B, is an inhibitor of the Hedgehog signaling pathway 

with an IC50 of 1.8±0.6 µM. It acts a cyclopamine-competitive antagonist at the Smoothened receptor 

with a Ki of 57±10 nM. Interestingly, the hit compound 202a initially identified in COMAS remained the 

most active compound among all synthesized close analogues. Hence, the sublibrary did not yield a 

more active Hh inhibitor, but allowed to develop a SAR.   
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Figure 34: The two hit compounds 130s and 202a. 

A possible application of compounds 130s and 202a would be the further development towards 

chemical probes, as tools for the study of biological systems. Alternatively, they could be used as drug 

candidates for targeted cancer chemotherapy, indicated for patients with aberrant Wnt- or Hh-

pathways, respectively.  
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V  Experimental Part  

5.1   General 

5.1.1   General Experimental Procedures 

Reactions were carried out in standard glassware. Air- and moisture-sensitive liquids were transferred 

by syringe or stainless steel cannula. Organic solutions were concentrated by rotary evaporation at 40–

60 °C.  

Analytical thin-layer chromatography (TLC) was performed using aluminum plates pre-coated with 

silica gel (Silica gel 60 F254, Merck KGA). TLC plates were visualized by exposure to ultraviolet light (UV), 

then were stained by submersion in aqueous ceric ammonium molybdate (CAM) or aqueous potassium 

permanganate solution (KMnO4) followed by brief heating by a heat pistol. CAM solution was prepared 

as follows: 40 g of ammonium pentamolybdate + 1.6 g of cerium(IV) sulfate + 800 ml of diluted sulfuric 

acid (1:9, with water, v/v). KMnO4 solution was prepared as follows: 1.5 g potassium permanganate + 

10 g potassium carbonate + 1.25 ml 10% sodium hydroxide + 200 ml water. 

Flash column chromatography was performed as described by Still et al.,[138] employing silica gel Merck 

60 (particle size 0.040–0.063 mm). 

5.1.2   Materials 

Chemicals were obtained from Sigma-Aldrich, Acros Organics, TCI or Alfa Aesar and were used without 

further purification. The molarity of solutions of n-butyllithium was determined by titration against 

diphenylacetic acid as an indicator.[139] Dry dichloromethane was prepared using a MBRAUN MB-SPS-

800 Solvent Purification Systems. Dry tetrahydrofuran, methanol, toluene and diethyl ether over 

molecular sieves were purchased from Sigma-Aldrich or Acros Organics.  
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5.1.3   Instrumentation 

Proton and carbon nuclear magnetic resonance spectra (1H NMR and 13C NMR) spectra were recorded 

on Varian Mercury 200 (200 MHz), Bruker Avance DPX-300 (300 MHz), Varian Mercury 400 (400 MHz), 

Bruker Avance DRX 500 (500 MHz), INOVA500 (500 MHz) and Bruker AV600 (600 MHz) at ambient 

temperature. Proton chemical shifts are expressed in parts per million (ppm,  scale) and are 

referenced to residual protium in the NMR solvent (CHCl3,  7.26 ppm; CH2Cl2,  5.30 ppm; Acetone-

d6, 2.05; DMSO-d6, 2.50 ppm, CD3OD, 3.31 ppm). Data are represented as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple resonances), 

coupling constant (J) in Hertz, integration, and assignment. Carbon chemical shifts are expressed in 

parts per million (ppm,  scale) and are referenced to the carbon resonances of the NMR solvent 

(CDCl3,  77.00; CD2Cl2, 54.00; Acetone-d6, 206.26; DMSO-d6, 39.52, CD3OD, 49.00 ppm).  Fourier 

Transform Infrared spectra (FTIR) were obtained from neat compounds using a Bruker Tensor 27 FT-

IR spectrometer. Data are represented as follows: frequency of absorption (cm–1), intensity of 

absorption (vs = very strong, s = strong, m = medium, w = weak, br = broad). High resolution mass 

spectra (HRMS) were recorded on a LTQ Orbitrap mass spectrometer coupled to an Acceka HPLC-

System (HPLC column: Hypersyl GOLD, 50 mm x 1 mm, particle size 1.9 μm, ionization method: electron 

spray ionization). Optical rotations (𝛼𝐷
𝑅𝑇) were measured in a Schmidt + Haensch Polartronic HH8 

polarimeter in cuvettes with a path length of 10 cm at ambient temperature. The concentration is 

given as g/100 ml. Melting points were measured in a Büchi® melting point apparatus Model B-540. 
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5.2   Experimental Part for Part A 

5.2.1   Synthesis of Enol Triflates 

Synthesis of known Aldehyde 75 from Pregnenolone 

1-((3S,8S,9S,10R,13S,14S,17S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethan-1-one (77)[66b, 140] 

 
To a solution of pregnenolone (4.973 g, 15.71 mmol, 1 equiv) in dichloromethane (50 ml) were added 

tert-butyldimethylsilyl chloride (3.553 g, 23.57 mmol, 1.5 equiv) and N,N-diisopropylethylamine 

(10.95 ml, 62.85 mmol, 4 equiv). The resulting suspension was stirred at ambient temperature 

overnight. Then, dichloromethane and a saturated aqueous solution of sodium chloride were added. 

The organic phase was separated and dried over anhydrous magnesium sulfate. The dried solution was 

filtered and the filtrate was concentrated in vacuo. Purification of the residue by flash-column 

chromatography (gradient elution with 4–12% ethyl acetate in petroleum ether) provided TBS-

protected pregnenolone 77 (6.467 g, 96%). 

White solid. TLC (10% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.31 (m, 1H), 3.48 (m, 1H), 2.53 (t, J = 8.9 Hz, 1H), 2.32–2.13 (m, 3H), 2.12 (3H, s), 2.07–1.94 (m, 2H), 

1.81 (dt, J = 13.2, 3.3 Hz), 1.76–1.37 (m, 9H), 1.30–0.90 (m, 4H), 0.99 (s, 3H), 0.88 (s, 9H), 0.62 (s, 3H), 

0.05 (s, 6H). 13C NMR (CDCl3, 100 MHz) δ: 209.55, 141.51, 120.84, 72.52, 63.71, 56.94, 50.04, 44.01, 

42.75, 38.85, 37.37, 36.58, 32.02, 31.85, 31.79, 31.55, 25.92, 24.48, 22.79, 21.06, 19.41, 18.26, 13.21, 

-4.59. FTIR (neat), cm-1: 2925 (br), 1699 (s), 1074 (vs), 829 (s), 773 (s). HRMS (ESI): Calcd for 

(C27H46O2Si+H+): 431.33398, found: 431.33350. Elemental analysis: Calcd C 75.29, H 10.76; found C 

75.1, H 11.0. Melting point: 164 °C (lit: 162–164 °C)[140]  
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tert-butyl(((3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-(prop-1-en-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)dimethylsilane (78)[66b] 

 
To a suspension of methyltriphenylphosphonium bromide (13.609 g, 38.1 mmol, 3 equiv) in dry 

toluene (120 ml) was added potassium tert-butoxide (4.275 g, 38.1 mmol, 3 equiv). The resulting 

yellow suspension was stirred vigorously at ambient temperature for 30 min. Then, TBS-protected 

pregnenolone 76 (5.470 g, 12.70 mmol, 1 equiv) was added. Resulting suspension was stirred for 1 h 

until full conversion. The reaction was quenched by addition of saturated an aqueous solution of 

sodium ammonium chloride. The organic phase was separated and the aqueous phase was extracted 

with dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, 

the dried solution was filtered, and the filtrate was concentrated in vacuo. The obtained residue was 

purified by flash-column chromatography (gradient elution with 0–15% ethyl acetate in petroleum 

ether) to provide alkene 78 (4.890 g, 90%). 

White solid. 1H NMR (CDCl3, 500 MHz,) δ: 5.33 (m, 1H), 4.85 (s, 1H), 4.71 (s, 1H), 3.48 (m, 1H), 2.27 (m, 

1H), 2.17 (ddd, J = 13.3, 4.9, 2.2 Hz, 1H), 2.07–1.95 (m, 2H), 1.87 (dt, J = 12.3, 3.6 Hz, 1H), 1.84–1.62 

(m, 5H) overlapping with 1.76 (s, 3H), 1.61–1.39 (m, 5H), 1.28–0.85 (m, 5H), 1.00 (s, 3H), 0.89 (s, 9H), 

0.58 (s, 3H), 0.06 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 145.66, 141.61, 121.06, 110.67, 72.61, 57.26, 

56.56, 50.37, 43.11, 42.83, 38.71, 37.41, 36.65, 32.24, 32.09, 31.86, 25.94, 25.42, 24.65, 24.26, 21.12, 

19.46, 18.26, 12.68, -4.58. FTIR (neat), cm-1: 2929 (br), 1251 (m), 1079 (vs), 887 (s), 837 (s). Melting 

point: 141 °C. 

(S)-2-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)propan-1-ol (79)[66b, 140] 

 
To a 0 °C of alkene 78 (5.172 g, 12.06 mmol, 1 equiv) in dry THF (90 ml) was added 9-BBN (0.5 M 

solution in THF, 48.25 ml, 24.13 mmol, 2 equiv) under argon. The ice-water cooling bath was removed 

and the resulting solution was stirred at ambient temperature for 3 h. The solution was again cooled 

to 0 °C before sodium hydroxide (2.0 M aqueous solution, 48.25 ml, 96.5 mmol, 8 equiv) and hydrogen 

peroxide (30% aqueous solution by weight, 9.38 ml, 96.5 mmol, 8 equiv) were added sequentially. The 

mixture was allowed to reach ambient temperature and then was stirred for 30 min. The mixture was 

diluted with dichloromethane and washed with a saturated aqueous solution of sodium chloride. The 
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washed organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated in 

vacuo. The remaining residue was purified by flash-column chromatography (gradient elution with 10–

50% ethyl acetate in petroleum ether) several times in order to remove the minor diastereomer to 

yield alcohol 79 (4.61 g, 85%). 

White crystalline solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.55 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 5.32 (m, 1H), 3.63 (dd, J = 10.5, 3.2 Hz), 3.47 (m, 1H), 3.36 (dd, J = 10.5, 6.9 Hz), 2.27 (m, 

1H), 2.16 (ddd, J = 13.3, 4.9, 2.1 Hz), 2.06–1.90 (m, 2H), 1.88–0.90 (m, 19H), 1.05 (d, J = 6.6 Hz, 3H), 

1.00 (s, 3H), 0.88 (s, 9H), 0.69 (s, 3H), 0.05 (s, 6H). 13C NMR (CDCl3, 100 MHz) δ: 141.55, 121.06, 72.61, 

68.01, 56.50, 52.37, 50.14, 42.79, 42.40, 39.61, 38.74, 37.36, 36.55, 32.05, 31.89, 27.72, 25.93, 24.37, 

21.03, 19.42, 18.27, 16.75, 11.91, -4.60. FTIR (neat), cm-1: 1470 (br), 1382 (m), 1255 (m), 1084 (s). The 

compound was not detectable by HRMS. Elemental analysis: Calcd C 75.27, H 11.28; found C 74.9, H 

11.3. Melting point: 154 °C (lit: 153.5–155.5 °C)[140] 

(S)-2-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)propanal (75)[66b] 

 
Dimethyl sulfoxide (1.75 ml, 24.6 mmol, 2.5 equiv) was added to a −78 °C solution of oxalyl chloride 

(1.35 ml, 15.77 mmol, 1.6 equiv) in dichloromethane (40 ml). After 30 min, a solution of alcohol 78 

(4.40 g, 9.86 mmol, 1 equiv) in dichloromethane (100 ml) was added to the above mixture at −78 °C. 

The resulting suspension was stirred for 1 h, then triethylamine (4.95 ml, 35.5 mmol, 3.6 equiv) was 

added at −78 °C. The mixture was stirred for additional 15 min at −78 °C before allowed to warm to 

ambient temperature. The obtained clear solution was diluted with dichloromethane and the diluted 

solution was washed with saturated aqueous solution of sodium chloride. The washed organic phase 

was dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated in vacuo. 

Purification of the residue by flash-column chromatography (gradient elution with 4–15% ethyl acetate 

in petroleum ether) provided aldehyde 75 (3.73 g, 85%).  

White solid. TLC (5% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 

9.57 (d, J = 3.2 Hz, 1H), 5.31 (m, 1H), 3.48 (m, 1H), 2.36 (m, 1H), 2.26 (m, 1H), 2.17 (ddd, J = 13.4, 4.9, 

2.2 Hz, 1H), 2.02–1.92 (m, 2H), 1.92–1.84 (m, 1H), 1.83–1.76 (m, 1H), 1.75–1.32 (m, 9H), 1.28–0.90 (m, 

5H), 1.13 (d, J = 6.8 Hz, 3H), 1.00 (s, 3H), 0.89 (s, 9H), 0.72 (s, 3H), 0.05 (s, 6H). 13C NMR (CDCl3, 126 

MHz) δ: 205.03, 141.57, 120.94, 72.58, 56.07, 51.07, 50.22, 49.49, 42.99, 42.82, 39.52, 37.40, 36.61, 

32.09, 31.93, 31.88, 27.06, 25.94, 24.67, 21.02, 19.43, 18.26, 13.46, 12.23, -4.57. FTIR (neat), cm-1: 
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2932 (br), 1720 (vs), 1252 (m), 1078 (vs), 832 (s), 771 (s). The compound was not detectable by HRMS. 

Elemental analysis: Calcd C 75.61, H 10.88; found C 75.8, H 11.1. 

β-Lactone Formation 

(R)-4-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)oxetan-2-one (80) 

 
To a solution of O-TMS-quinine[68, 141] (241 mg, 607 µmol, 0.3 equiv) and aldehyde 75 (900 mg, 

2.02 mmol, 1 equiv) in dry CH2Cl2 (15 ml) was added a solution of LiClO4 (646 mg, 6.05 mmol, 3 equiv) 

in diethyl ether (6 ml) and the reaction mixture was cooled to −78 °C. To the resulting mixture was 

added N,N-diisopropylethylamine (2.11 ml, 12.1 mmol, 6 equiv). A solution of acetyl chloride (1 M 

solution in CH2Cl2, 10.1 ml, 10.1 mmol, 5 equiv) was then added over 4 h by syringe pump. The reaction 

mixture was diluted with dichloromethane and a saturated aqueous solution of ammonium chloride 

was added. The organic phase was separated and the aqueous phase was extracted with 

dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, the 

dried solution was filtered and the filtrate was concentrated in vacuo. The residue was purified by 

flash-column chromatography (gradient elution with 4–25% ethyl acetate in petroleum ether) to 

provide the product 80 (841 mg, 85%) in an epimeric ratio of ~95:5 at the marked carbon atom. 

The reaction does usually not run to completion and yields between 40 and 85% can be achieved. The 

remaining starting material can be reisolated without change and reused. 

Crystalline white solid. TLC (15% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 5.32 (m, 1H), 4.49 (dd, J = 10.5, 5.8 Hz, 1H), 3.47 (m, 1H), 3.31 (dd, J = 16.4, 5.9 Hz, 1H), 

3.15 (dd, J = 16.4, 4.6 Hz, 1H), 2.27 (m, 1H), 2.16 (ddd, J = 13.3, 4.9, 2.1 Hz, 1H), 2.10–1.90 (m, 3H), 

1.85–1.37 (m, 10H), 1.27–0.92 (m, 9H), 1.00 (s, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.88 (s, 9H), 0.73 (s, 3H), 

0.05 (s, 6H). 13C NMR (CDCl3, 100 MHz) δ: 168.46, 141.55, 120.91, 73.83, 72.55, 56.11, 53.47, 50.11, 

43.02, 42.76, 39.64, 38.70, 37.91, 37.35, 36.53, 32.03, 31.87, 31.82, 27.44, 25.92, 24.44, 21.01, 19.41, 

18.26, 12.01, 11.98, -4.60. FTIR (neat), cm-1: 2934 (s), 1840 (s), 1383 (m), 1255 (m), 1084 (vs), 836 (vs). 

HRMS (ESI): Calcd for (C30H50O3Si+H+): 487.36020, found: 487.35935. 𝜶𝑫
𝑹𝑻= -36.0 (c = 0.79 in CH2Cl2). 

Melting point: 173–174 °C. 
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(S)-4-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)oxetan-2-one (81) 

 
Epimeric β-lactone 81 was prepared using the same procedure as for β-lactone 80 with O-TMS 

quinidine[68, 141] (83) instead of O-TMS quinine (82). The product was isolated in 63% yield and an 

epimeric ratio of 90:10 at the marked carbon atom. Only the signals of the major diastereomer are 

listed. 

White crystalline solid. TLC (15% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 5.31 (m, 1H), 4.40 (dd, J = 10.4, 5.8 Hz, 1H), 3.48 (m, 1H), 3.40 (dd, J = 16.4, 5.8 Hz, 1H), 

3.21 (dd, J = 16.4, 4.4 Hz, 1H), 2.26 (m, 1H), 2.16 (ddd, J = 13.3, 4.8, 2.0 Hz, 1H), 2.08–1.90 (m, 2H), 

1.85–1.59 (m, 5H), 1.58–0.84 (m, 12H), 1.09 (d, J = 6.7 Hz, 3H), 1.00 (s, 3H), 0.88 (s, 9H), 0.72 (s, 3H), 

0.05 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 168.46, 141.57, 120.90, 74.83, 72.57, 56.13, 53.04, 50.07, 

42.85, 42.79, 41.37, 39.63, 39.37, 37.35, 36.54, 32.05, 31.94, 31.80, 27.64, 25.92, 24.35, 21.03, 19.40, 

18.23, 13.40, 11.87, -4.59. FTIR (neat), cm-1: 2934 (s), 1842 (s), 1811 (vs), 1383 (m), 1255 (m), 1083 (vs), 

837 (vs). HRMS (ESI): Calcd for (C30H50O3Si+H+): 487.36020, found: 487.35993. 

Synthesis of Ester 106 

ethyl 4-pentenoate, CAS: 1968-40-7 (106) 

 
Sodium chloride (13.331 g, 228 mmol, 3 equiv) was added to a solution of diethyl allylmalonate (15 ml, 

76 mmol, 1 equiv) in dimethyl sulfoxide (47.5 ml) and water (2.5 ml). The solution was heated to 160 °C 

for 48 h. The reaction mixture was filtered through a plug of anhydrous magnesium sulfate and the 

resulting solution applied on a silica column. Purification by flash-column chromatography (gradient 

elution with 0–10% ethyl acetate in pentane) provided ethyl 4-pentenoate (106) (5.92 g, 61%). 

Colourless oil. TLC (5% ethyl acetate in petroleum ether): Rf = 0.40 (KMnO4). 1H NMR (CDCl3, 500 MHz) 

δ: 5.86–5.73 (m, 1H), 5.03 (dd, J = 17.2, 1.3 Hz, 1H), 4.97 (dd, J = 10.3, 1.0 Hz, 1H), 4.10 (q, J = 7.1 Hz, 

1H), 2.40–2.31 (m, 4H), 1.22 (t, J = 7.2 Hz, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.91, 136.65, 115.32, 

60.20, 33.52, 28.83, 14.15. 
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β-Lactone opening with substituted esters 

tert-butyl (5R,6S)-6-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-5-hydroxy-3-oxoheptanoate 

(90) 

 
To a freshly prepared solution of LDA (0.5 M in THF, 5.55 ml, 2.77 mmol, 2.70 equiv) at −78 °C was 

added tert-butyl acetate (409 µl, 3.05 mmol, 3 equiv) dropwise. β-Lactone 80 (500 mg, 1.03 mmol, 

1 equiv) was dissolved in dry THF (20 ml) and the solution cooled to −78 °C. The solution of the ester 

enolate was added to the starting material via syringe. The reaction mixture was quenched after 15 

min by addition of saturated aqueous solution of ammonium chloride at −78 °C and the resulting 

mixture was diluted with dichloromethane. The separated organic phase was dried over anhydrous 

magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated in vacuo. The 

residue was purified by flash-column chromatography (gradient elution with 7–25% ethyl acetate in 

petroleum ether) to yield product 90 (402 mg, 65%).  

White amorphous solid. TLC (25% ethyl acetate in petroleum ether): Rf = 0.5 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 5.27 (m, 1H), 4.13 (dd, J = 7.5, 3.6 Hz, 1H), 3.44 (m, 1H), 3.37 (s, 2H), 2.76 (br s, 1H), 2.52 

(m, 2H), 2.28–2.17 (m, 1H), 2.16–2.08 (m, 1H), 2.01–1.87 (m, 2H), 1.81–0.98 (m, 17H), 1.43 (s, 9H), 0.96 

(s, 3H), 0.90 (d, J = 6.7 Hz, 3H), 0.85 (s, 9H), 0.66 (s, 3H), 0.01 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 204.91, 

166.22, 141.57, 120.96, 82.20, 72.59, 68.88, 56.50, 53.15, 51.35, 50.21, 43.15, 42.79, 42.70, 40.73, 

39.80, 37.37, 36.55, 32.06, 31.90, 31.88, 27.95, 27.38, 25.91, 24.29, 21.03, 19.38, 18.22, 12.56, 11.85, 

-4.60. FTIR (neat), cm-1: 2932 (s), 2857 (m), 1739 (s), 1705 (s), 1250 (s), 1083 (vs). HRMS (ESI): Calcd for 

(C36H62O5Si+H+): 603.44393, found: 603.44444. 𝜶𝑫
𝑹𝑻= -20.4 (c = 1.43 in CH2Cl2). Elemental analysis: 

Calcd C 71.71, H 10.36; found C 71.5, H 10.0. 
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Procedure for Closure of β-Keto-δ-Ester Alcohol 90 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)dihydro-2H-pyran-2,4(3H)-

dione (91) 

  
To a solution of 90 (265 mg, 440 µmol, 1 equiv) in dichloromethane (20 ml) was added trifluoroacetic 

acid (50 µl, 659 µmol, 1.5 equiv) and the solution was stirred at room temperature overnight. The 

reaction mixture was diluted with dichloromethane and a saturated aqueous solution of sodium 

bicarbonate was added. The organic phase was separated and the aqueous phase was extracted with 

dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, the 

dried solution was filtered and the filtrate was concentrated in vacuo. The crude product 91 was used 

for the next transformation. A sample of the product was purified by column chromatography for 

analysis purposes. 

White crystalline solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.5 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 5.31 (m, 1H), 4.67 (dt, J = 11.8, 3.1 Hz, 1H), 3.57 (d, J = 19.0 Hz, 1H), 3.47 (m, 1H), 3.40 (d, J = 

19.0 Hz, 1H), 2.53 (dd, J = 18.1, 2.9 Hz, 1H), 2.46 (dd, J = 18.1, 11.8 Hz, 1H), 2.26 (m, 1H), 2.21–2.12 (m, 

2H), 2.04–1.92 (m, 2H), 1.80 (dt, J = 12.9, 3.0 Hz, 1H), 1.75–0.85 (m, 15H), 1.04 (d, J = 6.6 Hz, 3H), 1.00 

(s, 3H), 0.88 (s, 9H), 0.74 (s, 3H), 0.05 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 200.67, 167.43, 141.61, 

120.81, 77.52, 72.55, 56.33, 51.96, 50.08, 46.84, 42.88, 42.78, 39.67, 38.54, 37.63, 37.36, 36.55, 32.04, 

31.91, 31.82, 27.45, 25.92, 24.28, 21.00, 19.40, 18.23, 12.42, 11.77, -4.59. FTIR (neat), cm-1: 2931 (br), 

1765 (s), 1727 (s), 1696 (s), 1092 (s), 835 (s). HRMS (ESI): Calcd for (C32H52O4Si+H+): 529.37076, found: 

529.37069. 𝜶𝑫
𝑹𝑻= +8.7 (c = 1.0 in CH2Cl2). Melting point: 169–170 °C.  
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Representative Procedure for Triflation of β-Keto Esters 

(R)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-oxo-3,6-dihydro-2H-

pyran-4-yl trifluoromethanesulfonate (109) 

 
To the crude product of δ-lactone closure (procedure above) in dichloromethane (12 ml) at −78 °C was 

added triethylamine (123 µl, 879 µmol, 2 equiv relative to 90). After 5 min, trifluoromethanesulfonic 

anhydride (74 µl, 440 µmol, 1 equiv relative to 90) was added. The reaction was quenched after 15 min 

by addition of a saturated aqueous solution of sodium bicarbonate at −78 °C and the resulting mixture 

was diluted with dichloromethane. The separated organic phase was dried over anhydrous magnesium 

sulfate, the dried solution was filtered, and the filtrate was concentrated in vacuo. The residue was 

purified by flash-column chromatography (gradient elution with 5–10% ethyl acetate in petroleum 

ether) to yield enol triflate 109 as a colourless oil.  

Representative Procedure for TBS-Deprotection 

(R)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-oxo-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate (102e) 

 
To a solution of tert-butyldimethylsilyl ether 109 (procedure above) in dichloromethane (10 ml) was 

added triethylamine trihydrofluoride (2 ml). The reaction flask was sealed and stirring continued for 

1 h. The reaction mixture was diluted with dichloromethane and the diluted mixture was neutralized 

by addition of a saturated aqueous solution of sodium bicarbonate. The organic phase was separated 

and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried 

over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated 

in vacuo. The obtained residue was purified by flash-column chromatography (gradient elution with 

10–60% ethyl acetate in petroleum ether) to provide deprotected enol triflate 102e (167 mg, 70% over 

three steps from 90). 
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White solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

6.02 (d, J = 2.5 Hz, 1H), 5.34 (m, 1H), 4.57 (dd, J = 12.7, 3.6 Hz, 1H), 3.51 (m, 1H), 2.80 (ddd, J = 17.7, 

12.9, 2.4 Hz, 1H), 2.36 (dd, J = 17.9, 3.6 Hz, 1H), 2.31–1.90 (m, 5H), 1.90–0.85 (m, 17H), 1.04 (d, J = 6.6 

Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 163.37, 162.48, 140.78, 121.29, 118.30 

(q, J = 320.9 Hz), 109.85, 79.08, 71.62, 56.19, 51.73, 49.93, 42.83, 42.16, 39.56, 38.55, 37.17, 36.41, 

31.83, 31.74, 31.52, 27.16, 26.76, 24.24, 20.95, 19.32, 13.13, 11.70. FTIR (neat), cm-1: 2932 (br), 1740 

(s), 1433 (s), 1209 (vs), 1136 (s). HRMS (ESI): Calcd for (C27H37F3O6S+H+): 547.23357, found: 547.23312. 

𝜶𝑫
𝑹𝑻= +23.4 (c = 1.0 in CHCl3). Melting point: 86 °C. 

Representative Procedure for the Synthesis of Enol Triflates 102a-d 

(R)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5-methyl-6-oxo-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate (102a) 

 
To a freshly prepared solution of LDA (0.5 M in THF, 3.7 ml, 1.85 mmol, 9 equiv) at −78 °C was added 

ethyl propionate (234 µl, 2.03 mmol, 9.9 equiv) dropwise. β-Lactone 80 (100 mg, 205 µmol, 1 equiv) 

was dissolved in dry THF (10 ml) and the solution cooled to −78 °C. The solution of ester enolate was 

added to the starting material via syringe. The reaction was quenched after 15 min by addition of a 

saturated aqueous solution of ammonium chloride at −78 °C and the resulting mixture was diluted 

with dichloromethane. The separated organic phase was dried over anhydrous magnesium sulfate, the 

dried solution was filtered, and the filtrate was concentrated in vacuo. The residue was purified by 

flash-column chromatography (gradient elution with 5–30% ethyl acetate in petroleum ether) to yield 

the product. 

To a solution of starting material in methanol (6 ml) was added potassium carbonate (19.9 mg, 

144 µmol, 0.7 equiv relative to the β-lactone) and the solution was stirred for 45 min at room 

temperature. Methanol was evaporated and the residue dissolved in dichloromethane and a saturated 
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aqueous solution of ammonium chloride. The organic phase was separated and the aqueous phase 

was extracted with dichloromethane. The combined organic phases were dried over anhydrous 

magnesium sulfate, the dried solution was filtered and the filtrate was concentrated in vacuo. The 

crude product was used for the next transformation.  

To a solution of β-keto ester 100a in CH2Cl2 (15 ml) at −78 °C was added triethylamine (57.3 µl, 

411 µmol, 2 equiv relative to the β-lactone). After 5 min, trifluoromethanesulfonic anhydride (34.6 µl, 

205 µmol, 1 equiv relative to the β-lactone) was added. The reaction was quenched after 15 min by 

addition of saturated an aqueous solution of sodium bicarbonate at −78 °C and the resulting mixture 

was diluted with dichloromethane. The separated organic phase was dried over anhydrous magnesium 

sulfate, the dried solution was filtered, and the filtrate was concentrated in vacuo. The crude product 

was used for the next transformation. 

To a solution of tert-butyldimethylsilyl ether 101a in dichloromethane (5 ml) was added triethylamine 

trihydrofluoride (1.5 ml). The reaction flask was sealed and stirring continued for 1 h. The reaction 

mixture was diluted with dichloromethane and the diluted mixture was neutralized by addition of 

saturated an aqueous solution of sodium bicarbonate. The organic phase was separated and the 

aqueous phase was extracted with dichloromethane. The combined organic phases were dried over 

anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated in 

vacuo. The obtained residue was purified by flash-column chromatography (gradient elution with 20–

50% ethyl acetate in petroleum ether) to provide deprotected enol triflate 102a (66.2 mg, 57% over 

four steps). 

White solid. TLC (30% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.34 (m, 1H), 4.52 (dd, J = 12.9, 3.5 Hz, 1H), 3.51 (m, 1H), 2.84 (ddd, J = 17.1, 13.2, 2.7 Hz, 1H), 2.39 (dd, 

J = 17.53, 2.50 Hz, 1H), 2.34–0.85 (m, 22H), 1.96 (d, J = 1.7 Hz, 3H), 1.03 (d, J = 6.6 Hz, 1H), 1.00 (s, 3H), 

0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.23, 156.28, 140.78, 121.33, 120.12, 118.19 (q, J = 320.4 

Hz), 78.40, 71.63, 56.14, 51.73, 49.94, 42.82, 42.18, 39.53, 38.55, 37.18, 36.43, 31.86, 31.74, 31.54, 

27.15, 26.90, 24.26, 20.97, 19.33, 13.20, 11.70, 10.71. FTIR (neat), cm-1: 3287 (br), 2933 (br), 1738 (s), 

1209 (s), 1138 (s), 1057 (s). HRMS (ESI): Calcd for (C28H39F3O6S+H+): 561.24922, found: 561.24974. 𝜶𝑫
𝑹𝑻= 

+23.8 (c = 2.0 in CH2Cl2). Melting point: 170–171 °C. 
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(R)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5-isopropyl-6-oxo-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate 

(102b) 

 
The product was synthesized according to the general procedure for the synthesis of enol triflates 

(page 96) in 61% yield over four steps (600 mg of starting material). The β-lactone was opened by 

60 equiv of the lithium enolate generated from ethyl isovalerate. 

Colourless foam. TLC (30% ethyl acetate in petroleum ether): Rf = 0.41 (CAM). 1H NMR (CDCl3, 400 

MHz) δ: 5.34 (m, 1H), 4.46 (dd, J = 12.8, 3.4 Hz, 1H), 3.52 (m, 1H), 3.06 (hept, J = 6.9 Hz, 1H), 2.82 (dd, 

J = 17.4, 13.0 Hz, 1H), 2.35 (dd, J = 17.4, 3.4 Hz, 1H), 2.31–0.9 (m, 22H), 1.29 (d, J = 7.0 Hz, 3H), 1.20 (d, 

J = 6.9 Hz, 3H), 1.02 (d, J = 6.7 Hz, 3H), 1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 163.36, 

154.94, 140.79, 128.87, 121.35, 118.10 (weak q, J = 320 Hz, CF3), 78.04, 71.64, 56.14, 51.80, 49.96, 

42.84, 42.20, 39.55, 38.50, 37.20, 36.44, 31.88, 31.76, 31.56, 27.21, 26.90, 26.48, 24.26, 20.98, 20.35, 

19.78, 19.34, 13.27, 11.70. FTIR (neat), cm-1: 2938 (br), 1730 (s), 1423 (m), 1214 (vs), 1139 (s). HRMS 

(ESI): Calcd for (C30H43F3O6S+H+): 589.28052, found: 589.28033. 𝜶𝑫
𝑹𝑻= +22.4 (c = 1.0 in CH2Cl2). 

(R)-5-allyl-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-oxo-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate 

(102c) 

 
The product was synthesized according to the general procedure for the synthesis of enol triflates 

(page 96) in 48% yield over four steps. The β-lactone was opened of by 12 equiv of the lithium enolate 

generated from ethyl 4-pentenoate (106). 

Colourless foam. TLC (30% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 5.78 (m, 1H), 5.34 (m, 1H), 5.13 (dd, J = 17.1, 1.3 Hz, 1H), 5.09 (dd, J = 10.1, 1.2 Hz, 1H), 4.52 

(dt, J = 12.8, 3.5 Hz, 1H), 3.52 (m, 1H), 3.20 (dd, J = 13.5, 6.4 Hz, 1H), 3.13 (dd, J = 14.7, 6.3 Hz, 1H), 2.86 

(dd, J = 17.1, 13.3 Hz, 1H), 2.43 (dd, J = 17.5, 3.3 Hz, 1H), 2.38–2.16 (m, 3H), 2.13–1.92 (m, 3H), 1.88–

1.78 (m, 2H), 1.74–0.84 (m, 14H), 1.03 (d, J = 6.7 Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 

MHz) δ: 164.41, 156.50, 140.76, 132.37, 122.20, 121.37, 118.17 (weak q, J = 320.4 Hz), 117.59, 78.30, 

71.72, 56.15, 51.80, 49.98, 42.86, 42.15, 39.57, 38.55, 37.20, 36.44, 31.89, 31.76, 31.52, 29.04, 27.18, 
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26.83, 24.26, 20.99, 19.33, 13.24, 11.71. FTIR (neat), cm-1: 2934 (br), 1728 (s), 1419 (s), 1214 (vs), 1136 

(s). HRMS (ESI): Calcd for (C30H41F3O6S+H+): 587.26487, found: 587.26579. 𝜶𝑫
𝑹𝑻= +8.7 (c = 2.0 in CH2Cl2). 

(R)-5-benzyl-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-oxo-3,6-dihydro-2H-pyran-4-yl trifluoromethanesulfonate 

(102d) 

 
The product was synthesized according to the general procedure for the synthesis of enol triflates 

(page 96) in 46% yield over four steps. The β-lactone was opened of by 31 equiv of the lithium enolate 

generated from ethyl ethyl hydrocinnamate. 

Colourless foam. TLC (35% ethyl acetate in petroleum ether): Rf = 0.4 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 7.32–7.19 (m, 5H), 5.34 (m, 1H), 4.49 (dt, J = 12.8, 3.5 Hz, 1H), 3.79 (d, J = 15.4 Hz, 1H), 3.75 (d, J = 

14.2 Hz, 1H), 3.52 (m, 1H), 2.90 (dd, J = 17.1, 13.3 Hz, 1H), 2.47 (dd, J = 17.6, 3.4 Hz, 1H), 2.34–2.18 (m, 

2H), 2.12–1.75 (m, 6H), 1.73–0.85 (m, 14H), 1.03 (d, J = 6.7 Hz, 3H), 1.01 (s, 3H), 0.71 (s, 3H). 13C NMR 

(CDCl3, 126 MHz) δ: 164.51, 156.45, 140.79, 136.94, 128.72, 128.63, 126.83, 123.22, 121.34, 118.19 

(weak q, J = 320.5 Hz), 78.18, 71.66, 56.13, 51.79, 49.98, 42.86, 42.19, 39.57, 38.52, 37.21, 36.44, 31.89, 

31.75, 31.55, 30.50, 27.18, 26.83, 24.25, 20.99, 19.33, 13.26, 11.70. FTIR (neat), cm-1: 2935 (br), 1727 

(s), 1426 (s), 1213 (vs), 1135 (vs), 754 (s). HRMS (ESI): Calcd for (C34H43F3O6S+H+): 637.28052, found: 

637.28183. 𝜶𝑫
𝑹𝑻= -16.5 (c = 2.0 in CH2Cl2). 
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5.2.2   Synthesis of Withanolide Analogues 

Representative Procedure for Coupling of Enol Triflates 102a-e with Boronic Acids 

(R)-4-(2,3-dichlorophenyl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (130e) 

 

Palladium tetrakis(triphenylphosphine) (3.1 mg, 2.74 mol, 0.05 equiv) was added to a stirred solution 

of enol triflate 102e (30 mg, 54.9 µmol, 1 equiv), boronic acid (20.9 mg, 109.8 µmol, 2 equiv), and 

triethylamine (38.3 L, 274 µmol, 5 equiv) in tetrahydrofuran/water solvent mixture (4:1, 2.5 ml) at 

ambient temperature. After 10 min, the reaction mixture was diluted with dichloromethane and 

washed with saturated an aqueous solution of ammonium chloride. The separated aqueous layer was 

extracted with dichloromethane. The combined organic phases were dried over anhydrous magnesium 

sulfate, the dried solution was filtered, and the filtrate was concentrated in vacuo. The obtained 

residue was purified by flash-column chromatography (gradient elution with 20–65% ethyl acetate in 

petroleum ether) to provide the coupling product 130e (29 mg, 99%). 

For coupling reactions with 102b and 102d, the reaction mixture was warmed to 50 °C. 

White solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

7.50 (dd, J = 8.0, 1.1 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 7.12 (dd, J = 7.6, 1.2 Hz, 1H), 6.00 (d, J = 2.4 Hz, 

1H), 5.34 (m, 1H), 4.69 (dd, J = 12.7, 3.0 Hz, 1H), 3.51 (m, 1H), 2.67 (ddd, J = 16.9, 13.1, 2.3 Hz, 1H), 2.49 

(dd, J = 17.7, 2.9 Hz, 1H), 2.27–0.84 (m, 22H), 1.07 (d, J = 6.5 Hz), 1.00 (s, 3H), 0.73 (s, 3H). 13C NMR 

(CDCl3, 100 MHz) δ: 165.08, 156.27, 140.76, 139.88, 133.91, 130.96, 129.88, 127.87, 127.16, 121.41, 

119.84, 80.50, 71.68, 56.28, 52.12, 49.98, 42.78, 42.19, 39.65, 38.90, 37.17, 36.43, 31.84, 31.79, 31.56, 

27.70, 27.28, 24.31, 20.99, 19.35, 13.45, 11.71. FTIR (neat), cm-1: 2930 (br), 1702 (vs), 1411 (m), 1057 

(s), 1041 (s). HRMS (ESI): Calcd for (C32H40Cl2O3+H+): 542.2355, found: 543.24216, calcd for 

(C32H40Cl37ClO3+H+): 545.23978, found: 545.23926, calcd for (C32H40
37Cl2O3+H+): 547.23683, found: 

547.23630. 𝜶𝑫
𝑹𝑻= +28.1 (c = 1.0 in CHCl3). Melting point: 234 °C. 
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Representative Procedure for Coupling of Enol Triflates with Diethylzinc 

(R)-4-ethyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (130a) 

 
To a solution of enol triflate 102e (59 mg, 108 µmol, 1 equiv) in tetrahydrofuran (3 ml) at ambient 

temperature were added SPhos (4.43 mg, 10.8 µmol, 0.1 equiv) and palladium(II) acetate (1.21 mg, 

5.4 µmol, 0.05 equiv), as solutions in tetrahydrofuran (500 µl) each. Then, diethylzinc solution (1.0 M 

in hexanes, 162 µl, 161 µmol, 1.5 equiv), was added. The reaction was stirred for 5 min until full 

consumption of the starting material was seen on the TLC. The reaction mixture was diluted with 

dichloromethane and washed with a saturated aqueous solution of ammonium chloride. The 

separated aqueous layer was extracted with dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was 

concentrated in vacuo. The obtained residue was purified by flash-column chromatography (gradient 

elution with 20–65% ethyl acetate in petroleum ether). The neat product was extracted with a small 

amount of ethyl acetate in order to remove a yellow impurity, to provide the coupling product 130a 

(37.3 mg, 81%). 

White amorphous solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.28 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 5.76 (s, 1H), 5.33 (m, 1H), 4.40 (dt, J = 13.0, 3.3 Hz, 1H), 3.50 (m, 1H), 2.42–2.13 (m, 3H) 

overlapping with 2.25 (q, J = 7.3 Hz, 2H), 2.10–1.89 (m, 4H), 1.88–0.83 (m, 17H), 1.11 (t, J = 7.4 Hz, 3H), 

1.01 (d, J = 6.9 Hz, 3H), 0.99 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 166.01, 162.71, 140.83, 

121.31, 114.31, 79.59, 71.62, 56.31, 52.05, 50.00, 42.72, 42.16, 39.62, 38.77, 37.18, 36.42, 31.83, 

31.79, 31.53, 29.74, 27.27, 27.01, 24.25, 20.97, 19.32, 13.34, 11.66, 10.78. FTIR (neat), cm-1: 3481 (m), 

2922 (br), 1701 (vs), 1290 (m). HRMS (ESI): Calcd for (C28H42O3+H+): 427.32067, found: 427.32028. 𝜶𝑫
𝑹𝑻= 

+36.4 (c = 2.0 in CHCl3). Melting point: 264 °C. 
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Representative Procedure for Coupling of Enol Triflate 102e with Isopropylmagnesium 

chloride 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-isopropyl-5,6-dihydro-2H-pyran-2-one (130c) 

 
To neat zinc bromide (282 mg, 1.94 mmol, 18 equiv) were added tetrahydrofuran (5.67 ml) and an 

isopropylmagnesium chloride solution (2 M in tetrahydrofuran, 809 µl, 1.62 mmol, 15 equiv). In a 

separate flask, enol triflate 102e was dissolved in tetrahydrofuran (3 ml). Palladium(II) acetate 

(1.21 mg, 5.4 µmol, 0.05 equiv) and SPhos (4.43 mg, 10.8 µmol, 0.1 equiv) were added as a solution in 

tetrahydrofuran (500 µl), each. 5 minutes later, the solution of the zinc reagent was added. The 

reaction mixture was stirred for 15 min at ambient temperature. The reaction mixture was diluted with 

dichloromethane and washed with a saturated aqueous solution of ammonium chloride. The 

separated aqueous layer was extracted with dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was 

concentrated in vacuo. The obtained residue was purified by flash-column chromatography (gradient 

elution with 20–50% ethyl acetate in petroleum ether). A yellow impurity was extracted from the dry 

product with ethyl acetate to provide the coupling product 130c (24.4 mg, 51%). 

White solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.76 (s, 1H), 5.35 (m, 1H), 4.37 (dt, J = 13.1, 3.3 Hz, 1H), 3.52 (m, 1H), 2.44 (hept, J = 6.8 Hz, 1H), 2.38–

2.14 (m, 3H), 2.10–0.83 (m, 21H), 1.11 (d, J = 6.8 Hz, 3H) overlapping with 1.11 (d, J = 6.9 Hz, 3H), 1.03 

(d, J = 6.7 Hz, 3H), 1.01 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 166.65, 166.27, 140.84, 121.38, 

113.44, 79.86, 71.69, 56.32, 52.19, 50.05, 42.77, 42.21, 39.66, 38.78, 37.21, 36.46, 34.77, 31.87, 31.83, 

31.58, 27.30, 25.11, 24.29, 21.01, 20.39, 19.88, 19.35, 13.42, 11.71. FTIR (neat), cm-1: 3489 (m), 2923 

(br), 1699 (vs), 1061 (s). HRMS (ESI): Calcd for (C29H44O3+H+): 441.33632, found: 441.33622. 𝜶𝑫
𝑹𝑻= +22.6 

(c = 1.0 in CHCl3). Melting point: 263 °C. 
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Representative Procedure for Addition-Elimination reaction of Enol Triflate 102e with 

Amines 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(piperidin-1-yl)-5,6-dihydro-2H-pyran-2-one (130i) 

 
To a solution of 102e (39.6 mg; 72 µmol, 1 equiv) in dichloromethane (2 ml) was added piperidine 

(30.8 mg, 35.8 µl, 263 µmol, 5 equiv) and the solution was stirred at room temperature for 10 min. The 

product was purified by flash-column chromatography (gradient elution with 80–100% ethyl acetate 

in petroleum ether, then 2–8% ethyl acetate in methanol) to yield the product 130i (34 mg, 

quantitative yield). 

Depending on the reactivity of the amine, the number of equivalents was varied. For reaction with 

primary amines, 10–50 equvalents amine were added. The products are instable to acid and should not 

be purified by HPLC if the water contains TFA. 

White solid. TLC (100% ethyl acetate): Rf = 0.42 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 5.32 (m, 1H), 4.82 

(s, 1H), 4.32 (dt, J = 12.8, 3.2 Hz, 1H), 3.50 (m, 1H), 3.35–3.15 (m, 4H), 2.37–0.83 (m, 30H), 1.02 (d, J = 

6.6 Hz, 3H), 1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 169.42, 160.35, 140.88, 121.30, 

84.69, 77.13, 71.62, 56.36, 52.24, 50.08, 47.22, 42.77, 42.19, 39.65, 38.84, 37.21, 36.45, 31.86, 31.83, 

31.55, 27.30, 25.27, 24.77, 24.28, 24.14, 20.99, 19.33, 13.38, 11.67. FTIR (neat), cm-1: 2918 (br), 1650 

(vs), 1580 (s), 1261 (s), 799 (m). HRMS (ESI): Calcd for (C31H47NO3+H+): 482.36287, found: 482.36278. 

𝜶𝑫
𝑹𝑻= -26.3 (c = 1.0 in CHCl3). Melting point: 202.7 °C. 
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Decomposition of aminated Products 

(R,E)-5-((3S,8S,9S,10R,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-
cyclopenta[a]phenanthren-17-yl)hex-3-en-2-one (125)[142] 

 
To enol triflate 102e (28 mg, 51.2 µmol, 1 equiv) in dichloromethane (2 ml) at ambient temperature 

was added piperidine (51 µl, 512 µmol, 10 equiv). After stirring for 10 min, full conversion to 130i (see 

procedure before) was achieved. Triethylamine trihydrofluoride (500 µl, 3.07 mmol, 60 equiv) was 

added and stirring was continued for 7 days. Then, dichloromethane and a saturated aqueous solution 

of sodium bicarbonate were added. The organic phase was separated and dried over anhydrous 

magnesium sulfate. The dried solution was filtered and the filtrate was concentrated in vacuo. 

Purification of the residue by flash-column chromatography (gradient elution with 10–50% ethyl 

acetate in petroleum ether) provided unsaturated ketone 125 (9.2 mg, 48%). 

White crystalline solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.48 (CAM). 1H NMR (CDCl3, 

300 MHz) δ: 6.65 (dd, J = 15.9, 8.8 Hz, 1H), 5.99 (d, J = 15.9 Hz, 1H), 5.34 (m, 1H), 3.52 (m, 1H), 2.35–

2.12 (m, 3H) overlapping with 2.22 (s, 3H), 2.07–0.88 (m, 19H), 1.10 (d, J = 6.6 Hz, 3H), 1.01 (s, 3H), 

0.72 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ: 199.20, 153.89, 140.74, 128.94, 121.51, 71.71, 56.52, 54.97, 

50.04, 42.69, 42.23, 39.96, 39.59, 37.22, 36.46, 31.85, 31.79, 31.59, 28.14, 26.85, 24.26, 21.01, 19.37, 

19.26, 12.10. FTIR (neat), cm-1: 2931 (br), 1662 (vs), 1266 (s), 1063 (s), 979 (m). HRMS (ESI): Calcd for 

(C25H38O2+H+): 371.29446, found: 371.29454. 𝜶𝑫
𝑹𝑻= -38.4 (c = 0.81 in CH2Cl2). Melting point: 167 °C (lit: 

163–165 °C)[142]. 
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Procedure for Addition-Elimination with Thiophenol 

(R)-3-allyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(phenylthio)-5,6-dihydro-2H-pyran-2-one (114k) 

 
Enol triflate 102c (28.6 mg, 48.8 µmol, 1 equiv) was at ambient temperature dissolved in dry 

tetrahydrofuran (2 ml). Thiophenol (125 µl, 1.22 mmol, 25 equiv) and potassium hexamethyldisilazide 

(0.5 M solution in toluene, 1.95 ml, 975 µmol, 20 equiv) were dissolved in tetrahydrofuran (5 ml) in a 

separate flask at ambient temperature. The potassium thiophenolate solution (500 µl, 68.9 µmol, 

1.4 equiv) was added to the solution of starting material. After 5 min, the mixture was diluted with 

dichloromethane and washed with a saturated aqueous solution of ammonium chloride. The 

separated aqueous layer was extracted with dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was 

concentrated in vacuo. The obtained residue was purified by flash-column chromatography (gradient 

elution with 20–50% ethyl acetate in petroleum ether) to provide the product 114k (26.3 mg, 98%). 

Colourless foam. TLC (40% ethyl acetate in petroleum ether): Rf = 0.42 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 7.46–7.36 (m, 5H), 5.95–5.83 (m, 1H), 5.33 (m, 1H), 5.16 (dd, J = 17.1, 1.6 Hz, 1H), 5.08 (dd, J 

= 10.0, 1.4 Hz, 1H), 4.30 (dt, J = 13.0, 3.1 Hz, 1H), 3.50 (m, 1H), 3.39 (ddd, J = 14.6, 6.6, 1.1 Hz, 1H), 3.32 

(dd, J = 14.7, 6.1 Hz, 1H), 2.34–2.16 (m, 3H), 2.00–0.68 (m, 21H), 0.98 (s, 3H), 0.89 (d, J = 6.7 Hz, 3H), 

0.64 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 164.39, 151.86, 140.84, 134.26, 134.15, 130.17, 129.48, 

129.28, 125.25, 121.33, 116.13, 79.09, 71.72, 56.13, 52.06, 49.98, 42.68, 42.23, 39.50, 38.57, 37.23, 

36.43, 32.66, 31.83, 31.77, 31.60, 27.71, 27.05, 24.17, 20.96, 19.32, 13.42, 11.64. FTIR (neat), cm-1: 

2932 (br), 1708 (vs), 1692 (vs), 1378 (s), 1056 (s). HRMS (ESI): Calcd for (C35H46O3S+H+): 547.32404, 

found: 547.32346. 𝜶𝑫
𝑹𝑻= +130.0 (c = 1.0 in CHCl3). 
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Representative Procedure for Reductive Elimination 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-methyl-5,6-dihydro-2H-pyran-2-one (131d) 

 
To a solution of enol triflate 102a (109 mg, 194 µmol, 1 equiv) in tetrahydrofuran (7 ml) at ambient 

temperature were added lithium chloride (24.7 mg, 583 µmol, 3 equiv), tetrakis(triphenylphosphine) 

palladium(0) (11.2 mg, 9.72 µmol, 0.05 equiv) and tributyltin hydride (418 µl, 1.56 mmol, 8 equiv) 

dropwise. After 5 min, the mixture was diluted with dichloromethane and washed with a saturated 

aqueous solution of sodium chloride. The separated aqueous layer was extracted with 

dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, the 

dried solution was filtered, and the filtrate was concentrated in vacuo. The obtained residue was 

purified by flash-column chromatography (gradient elution with 20–70% ethyl acetate in petroleum 

ether) to provide the product 131d (65.8 mg, 82%). 

White amorphous solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.49 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 6.59 (d, J = 6.3 Hz, 1H), 5.34 (m, 1H), 4.44 (dt, J = 13.1, 3.4 Hz, 1H), 3.51 (m, 1H), 2.42–0.82 

(m, 24H), 1.90 (s, 3H), 1.01 (d, J = 7.9 Hz, 1H), 1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 

166.57, 140.81, 139.41, 128.19, 121.38, 80.31, 71.69, 56.33, 52.01, 50.02, 42.72, 42.21, 39.64, 38.89, 

37.20, 36.44, 31.86, 31.81, 31.58, 27.27, 24.29, 23.27, 20.99, 19.35, 16.97, 13.45, 11.66. FTIR (neat), 

cm-1: 3368 (br), 2932 (br), 1719 (vs), 1132 (m). HRMS (ESI): (Calcd for C27H40O3+H+): 413.30502, found: 

413.30443. 𝜶𝑫
𝑹𝑻= +12.3 (c = 1.0 in CH2Cl2). 
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5.2.3   Modification of Withanolide Analogues 

Representative Procedure for Epoxidation 

(R)-6-((S)-1-((3S,4aR,5aS,6aS,6bS,9R,9aS,11aS,11bR)-3-hydroxy-9a,11b-
dimethylhexadecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-9-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (130h) 

 
To a solution of alkene 143 (23 mg, 53.9 µmol, 1 equiv) in dichloromethane (2 ml) at ambient 

temperature was added meta-chloroperoxybenzoic acid (14 mg, 80.9 µmol, 1.5 equiv) and resulting 

solution was stirred for 30 min at ambient temperature. The mixture was diluted with 

dichloromethane and washed with a saturated aqueous solution of sodium bicarbonate. The separated 

aqueous layer was extracted with dichloromethane. The combined organic phases were dried over 

anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated in 

vacuo. The obtained residue was purified by flash-column chromatography (gradient elution with 20–

70% ethyl acetate in petroleum ether) to provide the epoxide 130h (23.6 mg, 91%).  

The product is a mixture of diasteromers in a ratio of 4:1 according to 1H NMR. 

White amorphous solid. TLC (40% ethyl acetate in dichloromethane): Rf = 0.36 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 6.90 (d, J = 9.1, 6.4, 1.7 Hz, 1H), 5.99 (dd, J = 9.7, 2.7 Hz, 1H), 4.46 (dt, J = 12.9, 3.5 Hz, 1H), 

3.90 (m, 0.79H, major diastereomer), 3.69 (m, 0.21H, minor diastereomer), 3.05 (d, J = 2.2 Hz, 0.21H, 

minor diastereomer), 2.90 (d, J = 4.4 Hz, 0.79H, major diastereomer), 2.36 (m, 1H), 2.18–0.90 (m, 23H), 

1.06 (s, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.68 and 0.65 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 164.94, 145.52, 

121.26, 80.21, 68.66, 65.66, 59.12, 56.49, 51.80, 42.80, 42.53, 39.81, 39.34, 38.96, 34.84, 32.39, 31.07, 

29.91, 28.75, 27.14, 24.05, 23.06, 20.60, 15.89, 13.36, 11.69. FTIR (neat), cm-1: 2930 (br), 1714 (vs), 

1386 (m), 1262 (s), 1040 (vs). HRMS (ESI): Calcd for (C26H38O4+H+): 415.28429, found: 415.28402. 𝜶𝑫
𝑹𝑻= 

+19.1 (c = 1.0 in CHCl3). 
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Representative Procedure for Carbamoylation 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-ethyl-5-isopropyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl carbamate (132b) 

 
To a 0 °C solution of alcohol 132a (26.6 mg, 56.8 µmol, 1 equiv) in dry dichloromethane (3 ml) was 

added chlorosulfonyl isocyanate (7.41 µl, 85.1 µmol, 1.5 equiv) as a solution in dichloromethane 

(500 µl). Then, the ice-water cooling bath was removed and the resulting solution was stirred for 5 min 

at ambient temperature. Water (2 ml) and tetrahydrofuran (5 ml) were added and stirring was 

continued for 5 min. The reaction mixture was poured into a saturated aqueous solution of sodium 

bicarbonate and the product was extracted into dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate, the dried solution was filtered and the filtrate was 

concentrated in vacuo. The residue was purified by flash-column chromatography (gradient elution 

with 10–60% ethyl acetate in petroleum ether) to provide carbamate 132b (22.8 mg, 78%). 

Colourless amorphous solid. TLC (30% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR 

(CDCl3, 400 MHz) δ: 5.37 (m, 1H), 4.63 (s, 2H), 4.48 (m, 1H), 4.24 (dt, J = 13.1, 3.0 Hz, 1H), 2.89 (hept, J 

= 6.9 Hz, 1H), 2.42–1.77 (m, 10H), 1.72–0.83 (m, 15H), 1.24 (d, J = 7.0 Hz, 3H), 1.18 (d, J = 6.9 Hz, 3H), 

1.07 (t, J = 7.5 Hz, 3H), 1.01 (s, 3H) overlapping with 1.01 (m, 3H), 0.70 (s, 3H). 13C NMR (CDCl3, 100 

MHz) δ: 165.23, 156.45, 153.52, 139.73, 130.90, 122.32, 78.42, 74.58, 56.26, 52.19, 49.97, 42.72, 

39.62, 38.65, 38.33, 36.93, 36.50, 31.84, 31.82, 27.95, 27.66, 27.53, 27.39, 26.71, 24.28, 21.40, 20.97, 

20.40, 19.28, 13.53, 12.40, 11.68. FTIR (neat), cm-1: 2937 (br), 1704 (vs), 1459 (m), 1331 (m), 1053 (vs). 

HRMS (ESI): Calcd for (C32H49NO4+H+): 512.37344, found: 512.37299. 𝜶𝑫
𝑹𝑻= +31.4 (c = 1.0 in CHCl3). 
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Representative Procedure for Methylation 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-methoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-methyl-5,6-dihydro-2H-pyran-2-one (131e) 

 
To a solution of 131d (10.6 mg, 25.7 µmol, 1 equiv) in dry dimethylformamide (2 ml) were added 

sodium hydride (60 % dispersion in mineral oil, 10.3 mg, 257 µmol, 10 equiv) and methyl iodide (32 µl, 

514 µmol, 10 equiv) at ambient temperature. The reaction mixture was stirred for one hour. The 

reaction mixture was diluted with dichloromethane and quenched with 1M HCl solution. The 

separated aqueous layer was once again extracted with dichloromethane. The combined organic 

phases were dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate 

was concentrated in vacuo. The obtained residue was purified by flash-column chromatography 

(gradient elution with 5–25% ethyl acetate in petroleum ether) to provide the methyl ether 131e 

(10.7 mg, 98%). 

Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CDCl3, 600 MHz) 

δ: 6.59 (d, J = 6.5 Hz, 1H), 5.34 (m, 1H), 4.45 (dt, J = 13.2, 3.5 Hz, 1H), 3.35 (s, 3H), 3.05 (tt, J = 11.2, 4.5 

Hz, 1H), 2.42–2.30 (m, 2H), 2.20–2.12 (m, 1H), 2.07 (ddd, J = 18.6, 6.5, 3.6 Hz, 1H), 2.04–1.80 (m, 5H), 

1.91 (s, 3H), 1.72–1.57 (m, 2H), 1.56–0.85 (m, 12H), 1.02 (d, J = 6.7 Hz, 3H), 1.00 (s, 3H), 0.71 (s, 3H). 

13C NMR (CDCl3, 151 MHz) δ: 166.63, 140.94, 139.45, 128.22, 121.33, 80.34, 80.29, 56.37, 55.59, 52.03, 

50.10, 42.74, 39.66, 38.91, 38.62, 37.13, 36.85, 31.86, 27.93, 27.28, 24.30, 23.28, 20.99, 19.33, 16.99, 

13.47, 11.68. FTIR (neat), cm-1: 2931 (br), 1719 (vs), 1444 (m), 1378 (m), 1100 (s). HRMS (ESI): Calcd 

for (C28H42O3+H+): 427.32067, found: 427.32133.  
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Procedure for Carbonate Formation 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-5-allyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl methyl carbonate (114j) 

 
To a solution of alcohol 114i (16.2 mg, 36.9 µmol, 1 equiv) in dry dichloromethane (2 ml) were added 

methyl chloroformate (11.4 µl, 148 µmol, 4 equiv) and pyridine (5.95 µl, 73.9 µmol, 2 equiv) as a 

solution in dichloromethane (800 µl). The reaction was stirred at ambient temperature until full 

conversion was achieved. The reaction mixture was diluted with dichloromethane and washed with 

saturated aqueous solution of sodium bicarbonate. The separated aqueous layer was extracted with 

dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, the 

dried solution was filtered, and the filtrate was concentrated in vacuo. The obtained residue was 

purified by flash-column chromatography (gradient elution with 5–25% ethyl acetate in petroleum 

ether) to provide the carbonate 114j (15.3 mg, 83%). 

TLC (15% ethyl acetate in petroleum ether): Rf = 0.38 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 6.59 (d, J = 

5.5 Hz, 1H), 5.91–5.79 (m, 1H), 5.39 (m, 1H), 5.12 (m, 1H), 5.09 (s, 1H), 4.52–4.40 (m, 2H), 3.76 (s, 3H), 

3.05 (d, J = 5.8 Hz, 2H), 2.45–2.31 (m, 3H), 2.11 (ddd, J = 18.0, 6.5, 3.4 Hz, 1H), 2.06–1.83 (m, 5H), 1.75–

0.90 (m, 17H), 1.02 (d, J = 7.2 Hz, 3H) overlapping with 1.02 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 

MHz) δ: 165.77, 155.16, 139.46, 139.44, 134.84, 131.01, 122.65, 117.09, 80.10, 77.79, 56.33, 54.45, 

52.07, 49.99, 42.79, 39.65, 38.91, 38.01, 36.86, 36.53, 34.61, 31.87, 31.85, 27.67, 27.32, 24.30, 23.37, 

21.00, 19.24, 13.48, 11.69. FTIR (neat), cm-1: 2934 (br), 1737 (vs), 1705 (vs), 1271 (vs), 1256 (vs). HRMS 

(ESI): Calcd for (C31H44O5+H+): 497.32615, found: 497.32621. 𝜶𝑫
𝑹𝑻= +5.0 (c = 1.0 in CHCl3). 
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Representative Procedure for Acetylation 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(5-acetylthiophen-2-yl)-5-allyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-
dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (114d) 

 
To a solution of 114c (26.3 mg, 46.7 µmol, 1 equiv) in dichloromethane (2 ml) were added neat 4-

dimethylaminopyridine (5.7 mg, 46.7 µmol, 1 equiv) and acetic anhydride (8.8 µl, 93.5 µmol, 2 equiv) 

as a solution in dichloromethane (500 µl). After 2 h, the reaction mixture was diluted with 

dichloromethane and saturated aqueous sodium bicarbonate. The organic phase was separated and 

the aqueous phase was extracted with dichloromethane. The combined organic phases were dried 

over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated 

in vacuo. The obtained residue was purified by flash-column chromatography (gradient elution with 

10–45% ethyl acetate in petroleum ether) to provide the product 114d (25.8 mg, 91%). 

Colourless amorphous solid. TLC (25% ethyl acetate in petroleum ether): Rf = 0.42 (CAM). 1H NMR 

(CDCl3, 400 MHz) δ: 7.64 (d, J = 3.9 Hz, 1H), 7.28 (d, J = 4.0 Hz, 1H), 5.95 (m, 1H), 5.37 (m, 1H), 5.11 (d, 

J = 11.5 Hz, 1H), 5.07 (d, J = 17.9 Hz, 1H), 4.59 (m, 1H) overlapping with 4.54 (dt, J = 13.2, 3.0 Hz, 1H), 

3.44 (dd, J = 15.6, 5.5 Hz, 1H), 3.28 (dd, J = 15.6, 5.1 Hz, 1H), 2.86 (dd, J = 16.8, 13.4 Hz, 1H), 2.58 (s, 

3H), 2.46 (dd, J = 17.2, 2.6 Hz, 1H), 2.32 (m, 2H), 2.13–0.80 (m, 19H), 2.02 (s, 3H), 1.07 (d, J = 6.6 Hz, 

3H), 1.02 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 190.54, 170.54, 165.89, 147.82, 145.48, 

142.63, 139.66, 134.85, 132.20, 129.01, 127.17, 122.34, 116.24, 78.62, 73.85, 56.18, 52.03, 49.89, 

42.78, 39.57, 38.81, 38.03, 36.92, 36.52, 32.44, 31.82, 31.78, 30.05, 27.69, 27.36, 26.73, 24.26, 21.41, 

20.94, 19.26, 13.44, 11.69. FTIR (neat), cm-1: 2938 (br), 1706 (vs), 1664 (vs), 1242 (vs). HRMS (ESI): 

Calcd for (C37H48O5S+H+): 605.32952, found: 605.33034. 𝜶𝑫
𝑹𝑻= +27.5 (c = 1.0 in CHCl3).  
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5.2.4   Synthesis of Pulldown Probes 

Synthesis of the Linker 

(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) (147)[91] 

 
Potassium hydroxide (3.36 g, 60 mmol, 4 equiv) was added to an ice-cold solution of triethylene glycol 

(146) (2 ml, 15 mmol, 1 equiv) in dichloromethane (30 ml). 4-Toluenesulfonyl chloride (6.35 g, 

33.3 mmol, 2.22 equiv) was added portionwise at 0 °C until full conversion was achieved. Then, water 

was added and the aqueous phase was extracted with dichloromethane. The separated 

dichloromethane solution was extracted with water, dried over MgSO4 and concentrated. The 

remaining residue was purified by flash-column chromatography (gradient elution with 3–15% diethyl 

ether in dichloromethane) to provide the product 147 (5.2 g, 76%). 

Colourless oil, which solidifies upon standing. TLC (50% ethyl acetate in petroleum ether): Rf = 0.36 

(KMnO4). 1H NMR (CDCl3, 200 MHz) δ: 7.76 (d, J = 8.4 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 4.11 (t, J = 4.7 Hz, 

4H), 3.62 (t, J = 4.7 Hz, 4H), 3.49 (s, 4H), 2.42 (s, 6H). 13C NMR (CDCl3, 50 MHz) δ: 144.78, 132.73, 129.74, 

127.79, 70.50, 69.14, 68.56, 21.51. FTIR (neat), cm-1: 2871 (w), 1346 (s), 1171 (vs), 1015 (s), 980 (s), 

910 (vs). HRMS (ESI): Calcd for (C20H26O8S2+H+): 459.11419, found: 459.11463. 

1,2-bis(2-azidoethoxy)ethane (148)[91] 

 
To a solution of 147 (5.08 g, 11.0 mmol, 1 equiv) in dimethylformamide (30 ml) were added sodium 

azide (2.88 g, 44.3 mmol, 4 equiv) and tetrabutylammonium iodide (204 mg, 554 µmol, 5 mol%). The 

reaction mixture was stirred at 80 °C for 6 h. Dimethylformamide was then evaporated under reduced 

pressure and the residue was suspended in diethyl ether. The solution was then extracted with 1M HCl 

and saturated NaCl. The organic layer was dried over MgSO4 and the solvent evaporated to afford the 

product 148 (1.96 g, 89%).  

Yellow oil. TLC (50% ethyl acetate in petroleum ether): Rf = 0.56 (KMnO4). 1H NMR (CDCl3, 200 MHz) δ: 

3.70–3.62 (m, 4H), 3.65 (s, 4H), 3.36 (t, J = 5.0 Hz, 4H). 13C NMR (CDCl3, 50 MHz) δ: 70.59, 70.00, 50.54. 

FTIR (neat), cm-1: 2868 (br), 2092 (vs), 1283 (s), 1118 (s). HRMS (ESI): Calcd for (C6H12N6O2+H+): 

201.10945, found: 201.10978. 
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2-(2-(2-azidoethoxy)ethoxy)ethan-1-amine (149)[91] 

 
To a solution of 148 (1.9 g, 9.5 mmol, 1 equiv) in toluene (10 ml) were added aqueous hydrochloric 

acid (5%, 10 ml) and tri-n-butylphosphine (2.37 ml, 9.5 mmol, 1 equiv). The solution was stirred 

overnight at ambient temperature. Then, the reaction mixture was diluted with more toluene and 

water. The aqueous layer was separated, extracted with dichloromethane and then basified with 

excess solid sodium hydroxide to pH 14. The aqueous solution was extracted with dichloromethane, 

the organic layer was dried over MgSO4 and concentrated under reduced pressure to afford the 

product 149 (935 mg, 57%). 

Yellow oil. 1H NMR (DMSO-d6, 500 MHz) δ: 3.63–3.59 (m, 2H), 3.59–3.55 (m, 2H), 3.54–3.49 (m, 2H), 

3.42–3.33 (m, 4H), 2.65 (t, J = 5.8 Hz, 2H), 1.57 (br s, 2H). 13C NMR (DMSO-d6, 50 MHz) δ: 73.16, 69.71, 

69.63, 69.34, 50.00, 41.39. FTIR (neat), cm-1: 2864 (br), 2097 (vs), 1284 (m), 1117 (vs). HRMS (ESI): 

Calcd for (C6H14N4O2+H+): 175.11895, found 175.11940. 

N-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-2-bromoacetamide (150)[91] 

 
To a solution of 149 (538 mg, 3.09 mmol, 1 equiv) in a mixture of dichloromethane (15 ml) and 

saturated aqueous sodium carbonate (15 ml) was added bromoacetyl bromide (404 µl, 4.63 mmol, 

1.50 equiv) at ambient temperature. The reaction mixture was stirred for 2h. Then, the reaction 

mixture was diluted with saturated aqueous sodium bicarbonate and the water phase was extracted 

with dichloromethane. The organic phase was washed with 1M HCl and dried over anhydrous 

magnesium sulfate. The dried solution was filtered and the filtrate was concentrated in vacuo to 

provide the product (818 mg, 90%). 

Colourless oil. 1H NMR (DMSO-d6, 500 MHz) δ: 8.31 (s, 1H), 3.85 (s, 2H), 3.60 (t, J = 5.0 Hz, 1H), 3.58–

3.55 (m, 2H), 3.55–3.51 (m, 2H), 3.44 (t, J = 5.8 Hz, 1H), 3.39 (t, J = 5.0 Hz, 1H). 13C NMR (DMSO-d6, 126 

MHz) δ: 166.01, 69.59, 69.22, 68.73, 49.99, 39.09, 29.41. FTIR (neat), cm-1: 2868 (br), 2098 (vs), 1656 

(vs), 1533 (s), 1284 (s), 1116 (vs). HRMS (ESI): Calcd for (C8H15BrN4O3+H+): 295.04003, found 295.04073, 

calcd for (C8H15
81BrN4O3+H+): 297.03798, found 297.03818. 
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Synthesis of the negative Probes 138 and 139 

(2S,3R)-2-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)hex-5-en-3-ol (140)[53] 

 
 (+)-B-Allyldiisopinocampheylborane (1.0 M solution in pentane, 600 µL, 600 µmol, 1.3 equiv) was 

added dropwise to a −78 °C solution of aldehyde 75 (200 mg, 450 µmol, 1 equiv) in tetrahydrofuran 

(10 ml). After 25 min, the cooling bath was removed and sodium hydroxide (2.0 M aqueous solution, 

450 µL, 899 µmol, 2 equiv) and hydrogen peroxide (35% aqueous solution by weight, 87 µl, 2 equiv) 

were added sequentially. The mixture was allowed to reach ambient temperature and then was stirred 

for 20 h. The oxidation mixture was diluted with dichloromethane and sequentially washed with water 

and saturated aqueous solution of sodium chloride. The washed organic phase was dried over 

anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The remaining residue was purified 

by flash-column chromatography (gradient elution with 5–15% ethyl acetate in petroleum ether) to 

provide the homoallylic product 140 (176 mg, 80%). 

White crystalline solid. TLC (15% ethyl acetate in petroleum ether): Rf = 0.46 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 5.90–5.79 (m, 1H), 5.32 (m, 1H), 5.18–5.10 (m, 2H), 3.69 (m, 1H), 3.48 (m, 1H), 2.32–2.12 

(m, 3H), 2.06–1.92 (m, 3H), 1.85–1.67 (m, 4H), 1.66–1.31 (m, 9H), 1.23–0.90 (m, 5H), 1.00 (s, 3H), 0.95 

(d, J = 6.7 Hz, 3H), 0.89 (s, 9H), 0.71 (s, 3H), 0.05 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 141.62, 136.28, 

121.02, 117.79, 72.62, 72.20, 56.46, 53.15, 50.25, 42.82, 42.70, 41.18, 39.83, 37.40, 36.59, 34.95, 

32.09, 31.96, 31.94, 27.43, 25.94, 24.39, 21.08, 19.42, 18.26, 12.50, 11.85, -4.57. FTIR (neat), cm-1: 

2934 (s), 1470 (m), 1383 (m), 1255 (m), 1084 (s), 837 (s). HRMS (ESI): Calcd for (C31H54O2Si+H+): 

487.39658, found 487.39424. 𝜶𝑫
𝑹𝑻= -31.1 (c = 1.0 in CH2Cl2). Melting point: 133 °C (lit: 125– 127 °C)[53] 

(2S,3R)-2-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)hex-5-en-3-yl acrylate (141) 

 
Acryloyl chloride (54 μl, 666 µmol, 2 equiv) and triethylamine (186 μl, 1.33 mmol, 4 equiv) were added 

to a solution of homoallylic alcohol 140 (162 mg, 333 µmol, 1 equiv) in dichloromethane (20 ml). The 

resulting light yellow solution was stirred at ambient temperature for 10 min. Then, dichloromethane 
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and a saturated aqueous solution of sodium bicarbonate were added. The organic phase was 

separated and dried over anhydrous magnesium sulfate. The dried solution was filtered and the filtrate 

was concentrated in vacuo. Purification of the residue by flash-column chromatography (gradient 

elution with 5–20% ethyl acetate in petroleum ether) provided acrylic ester 141 (140 mg, 78%).  

White crystalline solid. TLC (5% ethyl acetate in petroleum ether): Rf = 0.46 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 6.37 (dd, J = 17.3, 1.5 Hz, 1H), 6.10 (dd, J = 17.3, 10.4 Hz, 1H), 5.78 (dd, J = 10.4, 1.5 Hz, 1H) 

overlapping with 5.82–5.68 (m, 1H), 5.31 (m, 1H), 5.10–5.02 (m, 2H), 5.02–4.97 (m, 1H), 3.48 (m, 1H), 

2.32–2.21 (m, 3H), 2.16 (ddd, J = 13.4, 4.7, 2.0 Hz, 1H), 2.02–1.93 (m, 2H), 1.90–1.38 (m, 11H), 1.30–

0.84 (m, 6H), 0.99 (s, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.68 (s, 3H). 13C NMR (CDCl3, 126 MHz) 

δ: 165.75, 141.54, 135.13, 130.08, 129.05, 121.03, 116.79, 76.08, 72.60, 56.47, 53.12, 50.22, 42.81, 

42.75, 39.82, 39.16, 37.40, 36.57, 32.15, 32.09, 31.92, 27.16, 25.93, 24.34, 21.07, 19.41, 18.24, 13.15, 

11.86, -4.58. FTIR (neat), cm-1: 2933 (s), 1720 (s), 1196 (s), 1060 (vs), 836 (s). The compound was not 

detectable by HRMS. 𝜶𝑫
𝑹𝑻= -17.2 (c = 1.0 in CH2Cl2). Melting point: 128-129 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (142) 

 
2nd Generation Grubbs catalyst (9.9 mg, 11.7 μmol, 0.05 equiv) was added to a solution of acrylate 

ester 141 (126 mg, 233 μmol, 1 equiv) in toluene (18 ml). The resulting mixture was stirred for 1 h at 

80 °C. The dark brown mixture was concentrated in vacuo. Purification of the residue by flash-column 

chromatography (gradient elution with 0–10% ethyl acetate in dichloromethane) provided 

dehydrolactone 142 (100 mg, 84%). 

White amorphous solid. TLC (dichloromethane): Rf = 0.25 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 6.93–

6.86 (m, 1H), 5.99 (dd, J = 9.7, 2.3 Hz, 1H), 5.30 (m, 1H), 4.48 (dt, J = 12.9, 3.5 Hz, 1H), 3.47 (m, 1H), 

2.42–2.21 (m, 2H), 2.20–2.08 (m, 2H), 2.07–1.91 (m, 3H), 1.90–1.30 (m, 10H), 1.27–0.90 (m, 6H), 1.03 

(d, J = 6.6 Hz, 3H), 0.99 (s, 3H), 0.88 (s, 9H), 0.71 (s, 3H), 0.04 (s, 6H). 13C NMR (CDCl3, 126 MHz) δ: 

164.88, 145.43, 141.62, 121.30, 120.85, 80.25, 72.55, 56.42, 52.08, 50.16, 42.79, 39.72, 38.99, 37.36, 

36.55, 32.04, 31.91, 31.86, 27.30, 25.91, 24.29, 23.07, 21.01, 19.38, 18.21, 13.41, 11.68, -4.60. FTIR 

(neat), cm-1: 2933 (br), 1726 (s), 1698 (s), 1381 (s), 1246 (s), 1079 (s). HRMS (ESI): Calcd for 

(C32H52O3Si+H+): 513.37585, found 513.37537. 𝜶𝑫
𝑹𝑻= +24.0 (c = 1.0 in CH2Cl2). 
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(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (143) 

 
The product was prepared from 142 according to the general TBS-deprotection procedure (page 95) 

in 97% yield. 

White crystalline solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 

300 MHz) δ: 6.85 (m, 1H), 5.86 (dd, J = 9.7, 2.2 Hz, 1H), 5.20 (m, 1H), 4.38 (dt, J = 12.5, 3.2 Hz, 1H), 3.33 

(m, 1H), 2.36–0.72 (m, 24H), 0.90 (d, J = 6.8 Hz, 3H), 0.88 (s, 3H), 0.60 (s, 3H). 13C NMR (CDCl3, 75 MHz) 

δ: 165.69, 146.34, 140.66, 121.00, 120.52, 80.40, 70.94, 56.05, 51.70, 49.78, 42.49, 41.53, 39.38, 38.74, 

36.96, 36.19, 31.61, 31.52, 30.84, 26.99, 24.00, 22.75, 20.72, 19.01, 13.03, 11.36. FTIR (neat), cm-1: 

2930 (s), 1708 (vs), 1389 (s), 1267 (s), 804 (s). HRMS (ESI): Calcd for (C26H38O3+H+): 399.28937, found 

399.28882. 𝜶𝑫
𝑹𝑻= +23.6 (c = 1.0 in CH2Cl2). Melting point: 234 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)tetrahydro-2H-pyran-2-one (138) 

 
To a solution of unsaturated lactone 143 (62 mg, 156 μmol, 1 equiv) in tetrahydrofuran (5 ml) at 

ambient temperature was added 10% palladium-on-carbon (8.3 mg, 7.78 µmol, 0.05 equiv). The 

reaction flask was repeatedly evacuated-backfilled with dihydrogen, then a dihydrogen-filled balloon 

was attached. After vigorous stirring for 90 min at ambient temperature, the reaction mixture was 

filtered through cotton with dichloromethane and the filtrate was concentrated in vacuo to provide 

the crude hydrogenation product. Purification of the residue by flash-column chromatography 

(gradient elution with 30–100% ethyl acetate in petroleum ether) provided saturated lactone 138 (54 

mg, 87%). 

The hydrogenation time is not well reproducible! If the reaction is run for too long, hydrogenation of 

the olefin in the B-ring occurs. The starting material, the desired product and the overhydrogenation 

product all cospot on TLC and the reaction can be only monitored by NMR.The desired product and the 

overhydrogenation product cannot be separated by column chromatography! 
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White crystalline solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 5.34 (m, 1H), 4.34 (dt, J = 11.6, 3.1 Hz, 1H), 3.50 (m, 1H), 2.63–2.53 (m, 1H), 2.44–2.34 (m, 

1H), 2.32–2.26 (m, 1H), 2.26–2.17 (m, 1H), 2.05–0.86 (m, 24H), 1.00 (s, 3H), 0.95 (d, J = 6.7 Hz, 1H), 

0.70 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.15, 140.85, 121.37, 83.10, 71.68, 56.33, 52.17, 50.06, 

42.74, 42.23, 39.65, 39.43, 37.22, 36.45, 31.88, 31.83, 31.59, 29.73, 27.29, 24.29, 21.08, 21.00, 19.34, 

18.87, 12.83, 11.70. FTIR (neat), cm-1: 3444 (br), 2931 (br), 1712 (vs), 1255 (s), 1051 (s). HRMS (ESI): 

Calcd for (C26H40O3+H+): 401.30502, found 401.30599. 𝜶𝑫
𝑹𝑻= -32.7 (c = 1.0 in CH2Cl2). Melting point: 

220 °C.  

(3S,8S,9S,10R,13S,14S)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-
cyclopenta[a]phenanthren-3-ol (139)[90, 143] 

 
Hydrazine monohydrate (507 µl, 10.4 mmol, 6 equiv) and sodium hydroxide (408 mg, 10.20 mmol, 

5.9 equiv) were added to a suspension of (+)-dehydroisoandrosterone (500 mg, 1.73 mmol, 1 equiv) in 

ethylene glycol (7 ml). The reaction mixture was stirred at 200 °C in a seled tube for 2 h. Then the tube 

was opened and stirring at 190 °C continued for further 20 h. Then, dichloromethane and a saturated 

aqueous solution of ammonium chloride were added. The organic phase was separated and dried over 

anhydrous magnesium sulfate. The dried solution was filtered and the filtrate was concentrated in 

vacuo. Purification of the residue by flash-column chromatography (gradient elution with 25–40% 

ethyl acetate in petroleum ether) provided product 139 (263 mg, 55%).  

White crystalline solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). 1H NMR (CDCl3, 

300 MHz) δ: 5.34 (m, 1H), 3.52 (m, 1H), 2.35–2.15 (m, 3H), 2.08–1.94 (m, 1H), 1.91–0.82 (m, 18H) 

overlapping with 1.01 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ: 140.72, 121.71, 71.75, 54.80, 

50.38, 42.27, 40.55, 40.23, 38.66, 37.29, 36.61, 32.16, 32.10, 31.63, 25.59, 21.10, 20.47, 19.42, 17.22. 

FTIR (neat), cm-1: 3223 (br), 2931 (s), 1451 (m), 1376 (m), 1052 (vs). HRMS (ESI): Calcd for (C19H30O+H+): 

275.23694, found 275.23668. 𝜶𝑫
𝑹𝑻= -53.6 (c = 1.0 in CH2Cl2). Melting point: 129 °C (lit: 129–131 °C)[143]. 
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Attachment of the Linker 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(cyclopentylamino)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (2-(2-(2-

azidoethoxy)ethoxy)ethyl)carbamate (155) 

 
To a solution of 130s (21.8 mg, 45.3 µmol, 1 equiv) in 1,2-dichloroethane (3 ml) at 60 °C were added 

4-nitrophenyl chloroformate (36.5 mg, 181 µmol, 4 equiv), 4-dimethylaminopyridine (16.6 mg, 

136 µmol, 3 equiv) and triethylamine (12.6 µl, 90.5 µmol, 2 equiv). The reaction was stirred at 60 °C 

until full consumption of the starting material was observed in TLC. Then the linker (149) was added 

dropwise and the conversion was monitored by TLC. The reaction was stirred at 60 °C until full 

conversion was achieved. The reaction mixture was diluted with dichloromethane and the solution 

extracted with a saturated aqueous solution of potassium carbonate until the organic layer was 

colourless. The organic solution was then dried over MgSO4 and concentrated. Purification of the 

residue by flash-column chromatography (gradient elution with 50–100% ethyl acetate in petroleum 

ether) provided product 155 (21.4 mg, 69%).  

The starting material and the carbamate product co-spot on TLC. It is therefore essential to achieve full 

conversion to the carbonate intermediate before addition of the linker. Otherwise a mixture is formed. 

If the basic extraction is not complete, traces of 4-Nitrophenol remain in the product and cannot be 

removed by column chromatography. The product should not be purified by HPLC if the solvent contains 

TFA because otherwise fragmentation to compound 125 occurs. 
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Colourless foam. TLC (ethyl acetate): Rf = 0.62 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 5.35 (m, 1H), 5.11 

(m, 1H), 4.61 (s, 1H), 4.52 (d, J = 6.0 Hz, 1H), 4.40 (m, 1H), 4.33 (dt, J = 13.2, 3.2 Hz, 1H), 3.71 (m, 1H), 

3.63 (t, J = 5.0 Hz, 2H), 3.61–3.56 (m, 4H), 3.51 (t, J = 5.2 Hz, 2H), 3.36 (t, J = 5.0 Hz, 2H), 3.29 (q, J = 5.2 

Hz, 2H), 2.48 (m, 1H), 2.36–2.21 (m, 2H), 2.05–1.92 (m, 5H), 1.90–1.79 (m, 3H), 1.75–0.91 (m, 20H), 

1.00 (s, 3H), 0.99 (d, J = 7.1 Hz, 3H), 0.72 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 169.05, 156.61, 140.77, 

122.63, 83.03, 77.78, 74.72, 71.10, 70.85, 70.63, 70.52, 57.05, 54.84, 52.91, 51.38, 50.71, 43.33, 41.31, 

40.34, 39.51, 39.14, 37.64, 37.14, 33.56, 33.38, 32.47, 28.72, 27.89, 24.88, 24.59, 24.53, 21.61, 19.69, 

13.70, 12.07. FTIR (neat), cm-1: 3292 (br), 2938 (br), 2100 (s), 1655 (s), 1596 (s). HRMS (ESI): Calcd for 

(C38H59N5O6+H+): 682.45381, found 682.45618. 𝜶𝑫
𝑹𝑻= +32.1 (c = 1.5 in CH2Cl2). 

(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (2-(2-(2-

azidoethoxy)ethoxy)ethyl)carbamate (156) 

 
The compound was prepared according to the general procedure above in 68% yield. 

Yellow oil, which solidifies at low temperature. TLC (70% ethyl acetate in petroleum ether): Rf = 0.37 

(CAM). 1H NMR (CDCl3, 500 MHz) δ: 5.36 (m, 1H), 5.11 (m, 1H), 4.48 (m, 1H), 4.33 (dt, J = 11.5, 3.0 Hz, 

1H), 3.67 (t, J = 5.0 Hz, 2H), 3.63 (m, 4H), 3.55 (t, J = 5.0 Hz, 2H), 3.39 (t, J = 5.0 Hz, 2H), 3.36 (m, 2H), 

2.59 (m, 1H), 2.45–2.32 (m, 2H), 2.27 (m, 1H), 2.05–0.85 (m, 23H), 1.00 (s, 3H), 0.94 (d, J = 6.7 Hz, 3H), 

0.70 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.10, 156.14, 139.93, 122.12, 83.09, 74.17, 70.54, 70.24, 

70.17, 70.03, 56.27, 52.15, 50.62, 49.95, 42.73, 40.63, 39.61, 39.44, 38.51, 36.97, 36.51, 31.85, 31.82, 

29.74, 28.10, 27.28, 24.28, 21.07, 20.96, 19.26, 18.87, 12.81, 11.69. FTIR (neat), cm-1: 2935 (br), 2109 

(s), 1726 (vs), 1708 (vs), 1524 (s), 1239 (vs). HRMS (ESI): Calcd for (C33H52N4O6+H+): 601.39596, found 

601.39893. 𝜶𝑫
𝑹𝑻= -15.3 (c = 1.0 in CH2Cl2). 

 
(3S,8S,9S,10R,13S,14S)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl (2-(2-(2-azidoethoxy)ethoxy)ethyl)carbamate (157) 

 
The compound was prepared according to the general procedure above in 73% yield. 

Yellow oil, which solidifies at low temperature. TLC (40% ethyl acetate in petroleum ether): Rf = 0.30 

(CAM). 1H NMR (CDCl3, 500 MHz) δ: 5.36 (m, 1H), 5.11 (s, 1H), 4.49 (m, 1H), 3.67 (t, J = 5.0 Hz, 2H), 3.63 
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(m, 4H), 3.55 (t, J = 5.1 Hz, 2H), 3.40 (t, J = 5.0 Hz, 2H), 3.36 (m, 2H), 2.40–2.32 (m, 1H), 2.31–2.22 (m, 

1H), 2.03–1.95 (m, 1H), 1.92–1.81 (m, 2H), 1.77–1.34 (m, 10H), 1.21–1.08 (m, 4H), 1.01 (s, 3H), 0.99–

0.85 (m, 2H), 0.70 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 156.16, 139.84, 122.40, 74.27, 70.55, 70.25, 

70.19, 70.04, 54.76, 50.63, 50.30, 40.65, 40.54, 40.24, 38.64, 38.55, 37.05, 36.68, 32.16, 32.10, 28.16, 

25.58, 21.06, 20.47, 19.33, 17.22. FTIR (neat), cm-1: 3333 (br), 2940 (br), 2092 (s), 1711 (vs), 1542 (s). 

HRMS (ESI): Calcd for (C26H42N4O4+H+): 475.32788, found 475.32989. 𝜶𝑫
𝑹𝑻= -35.0 (c = 1.0 in CH2Cl2). 

Melting point: 68–69 °C. 

Reduction of the Pulldown Probes 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(cyclopentylamino)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (2-(2-(2-

aminoethoxy)ethoxy)ethyl)carbamate (158) 

 
Polymer-supported triphenylphosphine2 (1.4-2.0 mmol/g on polystyrene, 176 mg, 5 equiv) was four 

times washed with THF (3 ml). The starting material (40.9 mg, 60 µmol, 1 equiv) was added as a 

solution in THF (2 ml), followed by 300 µl water. The reaction was stirred at ambient temperature for 

5 days. The reaction mixture was filtered through CHROMAFIL® PET-45/15 MS filters several times and 

concentrated to afford the product 158 in 81% yield. 

Polymer-supported triphenylphosphine can contain a substantial amount of unbound 

triphenylphosphine. It is therefore essential to wash it prior to usage. After complete reaction, polymer-

supported triphenylphosphine/triphenylphosphine oxide can be only removed by multiple filtration. 

Yellow foam. 1H NMR (CD2Cl2, 500 MHz) δ: 5.45 (t, J = 5.5 Hz, 1H), 5.35 (m, 1H), 4.73 (m, NH), 4.60 (s, 

1H), 4.40 (m, 1H), 4.32 (dt, J = 13.2, 3.1 Hz, 1H), 3.70 (m, 1H), 3.61–3.54 (m, 4H), 3.54–3.46 (m, 4H), 

                                                           
2 Purchased from Alfa Aesar (L19478). The catalyst loading was assumed as 1.7 mmol/g. 
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3.34–3.22 (m, 2H), 2.85 (m, 2H), 2.47 (m, 1H), 2.35–2.23 (m, 2H), 2.05–0.78 (m, 31H), 1.00 (s, 3H), 0.99 

(d, J = 7.0 Hz, 3H), 0.72 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ 169.19, 156.73, 140.75, 125.96, 122.64, 

82.83, 77.82, 70.86, 70.71, 70.62, 68.32, 57.04, 54.83, 52.91, 50.71, 43.33, 40.34, 39.51, 39.16, 37.64, 

37.14, 33.52, 33.34, 32.47, 30.67, 28.74, 27.89, 26.15, 24.88, 24.60, 24.55, 21.61, 19.70, 13.72, 12.08. 

FTIR (neat), cm-1: 3270 (br), 2931 (s), 1655 (vs), 1596 (vs), 1551 (vs), 1258 (vs). HRMS (ESI): Calcd for 

(C38H61N3O6+H+): 656.46331, found 656.46624. 

(3S,8S,9S,10R,13S,14S)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-
cyclopenta[a]phenanthren-3-yl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate (159) 

 
The product was prepared according to the general Staudinger reaction protocol (page 120) from 157 

in 87% yield. 

Yellow oil. 1H NMR (DMSO-d6, 500 MHz) δ: 7.04 (t, J = 5.5 Hz, 1H), 5.34 (m, 1H), 4.31 (m, 1H), 3.49 (m, 

4H), 3.39 (t, J = 6.1 Hz, 2H), 3.36 (t, J = 5.8 Hz, 2H), 3.10 (dd, J = 11.8, 5.9 Hz, 2H), 2.66 (t, J = 5.7 Hz, 2H), 

2.32–2.25 (m, 1H), 2.25–2.18 (m, 1H), 2.00–1.91 (m, 1H), 1.88–0.80 (m, 20H), 0.97 (s, 3H), 0.69 (s, 3H). 

13C NMR (DMSO-d6, 126 MHz) δ: 155.68, 139.74, 121.80, 72.90, 72.59, 69.51, 69.08, 66.97, 54.22, 

49.76, 41.13, 38.30, 38.10, 36.62, 36.19, 34.33, 31.62, 30.39, 27.87, 25.15, 25.09, 20.99, 20.59, 20.06, 

19.01, 17.03. FTIR (neat), cm-1: 3334 (br), 2931 (vs), 1698 (vs), 1454 (m), 1518 (s), 1250 (vs). HRMS 

(ESI): Calcd for (C26H44N2O4+H+): 449.33738, found 449.33863.  
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5.2.5   Analytical Characterization of Withanolide Analogues 

(R)-3-allyl-4-ethyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (114a) 

 
The product was synthesized according to the general Negishi Coupling procedure (page 101) from 

102c in 59% yield. 3 equiv diethylzinc were added in one portion. 

Pale yellow foam. TLC (40% ethyl acetate in petroleum ether): Rf = 0.46 (CAM). 1H NMR (CDCl3, 400 

MHz) δ: 5.84 (m, 1H), 5.34 (m, 1H), 5.01 (dd, J = 16.9, 1.2 Hz, 1H), 4.98 (dd, J = 9.9, 1.2 Hz, 1H), 4.34 (dt, 

J = 13.2, 3.2 Hz, 1H), 3.51 (m, 1H), 3.16 (dd, J = 15.3, 6.0 Hz, 1H), 3.06 (dd, J = 15.1, 5.8 Hz), 2.50–2.15 

(m, 5H), 2.10–1.90 (m, 4H), 1.89–1.77 (m, 2H), 1.75–0.85 (m, 15H), 1.07 (t, J = 7.6 Hz, 3H), 1.01 (d, J = 

8.0 Hz, 3H) overlapping with 1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 166.58, 155.95, 

140.83, 135.74, 123.51, 121.38, 114.98, 78.74, 71.68, 56.32, 52.11, 50.04, 42.73, 42.20, 39.64, 38.75, 

37.20, 36.44, 31.86, 31.83, 31.57, 30.59, 27.33, 26.92, 24.28, 21.00, 19.35, 13.46, 11.82, 11.68. FTIR 

(neat), cm-1: 2933 (br), 1687 (vs), 1129 (m), 1058 (m). HRMS (ESI): Calcd for (C31H46O3+H+): 

467.35197, found: 467.35196.  

(R)-3-allyl-4-ethyl-6-((S)-1-((3S,4aR,5aS,6aS,6bS,9R,9aS,11aS,11bR)-3-hydroxy-9a,11b-
dimethylhexadecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-9-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (114b) 

 
The product was synthesized according to the general epoxidation procedure (page 107) of 114a in 

85% yield. The product is a mixture of diastereomers in a ratio of ~10:1. Only the signals of the major 

product are listed. 

Colourless oil. TLC (60% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 

5.89–5.78 (m, 1H), 5.05–4.95 (m, 2H), 4.32 (dt, J = 13.2, 3.3 Hz, 1H), 3.90 (m, 1H), 3.20–3.12 (m, 1H), 

3.10–3.02 (m, 1H), 2.90 (d, J = 4.4 Hz, 1H), 2.45–0.80 (m, 26H), 1.09–1.06 (m, 6H), 0.99 (d, J = 6.6 Hz, 

3H), 0.64 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 166.55, 155.95, 135.76, 123.56, 115.00, 78.69, 68.66, 

65.69, 59.14, 56.46, 51.88, 42.79, 42.53, 39.81, 39.34, 38.76, 34.84, 32.40, 31.07, 30.60, 29.92, 28.78, 

27.20, 26.95, 26.92, 24.06, 20.60, 15.89, 13.41, 11.83, 11.70. FTIR (neat), cm-1: 2935 (br), 1704 (vs), 

1463 (m), 1183 (m), 1125 (s). HRMS (ESI): Calcd for (C31H46O4+H+): 483.34689, found: 483.34690.  
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(R)-4-(5-acetylthiophen-2-yl)-3-allyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (114c) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100) from 102c 

in 98% yield.  

Orange foam. TLC (50% ethyl acetate in petroleum ether): Rf = 0.2 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 7.63 (d, J = 4.0 Hz, 1H), 7.28 (d, J = 4.0 Hz, 1H), 5.94 (m, 1H), 5.33 (m, 1H), 5.10 (dd, J = 10.4, 1.2 Hz, 

1H) overlapping with 5.06 (m, 1H), 4.53 (dt, J = 12.8, 2.9 Hz, 1H), 3.51 (m, 1H), 3.44 (dd, J = 15.6, 4.9 

Hz, 1H), 3.27 (dd, J = 15.6, 5.2 Hz, 1H), 2.85 (dd, J = 16.8, 13.4 Hz, 1H), 2.57 (s, 3H), 2.45 (dd, J = 17.2, 

2.7 Hz, 1H), 2.34–2.16 (m, 2H), 2.13–1.08 (m, 20H), 1.06 (d, J = 6.6 Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 

13C NMR (CDCl3, 100 MHz) δ: 190.57, 165.85, 147.84, 145.41, 142.60, 140.77, 134.82, 132.23, 129.01, 

127.12, 121.33, 116.21, 78.59, 71.60, 56.20, 51.99, 49.93, 42.75, 42.14, 39.57, 38.76, 37.15, 36.40, 

32.40, 31.83, 31.76, 31.51, 30.03, 27.32, 26.69, 24.23, 20.95, 19.32, 13.40, 11.66. FTIR (neat), cm-1: 

2923 (br), 1691 (vs), 1633 (s), 1276 (s). HRMS (ESI): Calcd for (C35H46O4S+H+): 563.31896, found: 

563.31854. 𝜶𝑫
𝑹𝑻= +41.0 (c = 1.0 in CHCl3). 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(5-acetylthiophen-2-yl)-5-allyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-
dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl carbamate (114e) 

  
The product was synthesized according to the general carbamoylation procedure (page 108) from 114c 

in 86% yield.  

Pale yellow amorphous solid. TLC (70% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR 

(CDCl3, 400 MHz) δ: 7.73 (s, 1H), 7.64 (d, J = 3.9 Hz, 1H), 7.28 (d, J = 4.0 Hz, 1H), 5.95 (m, 1H), 5.40 (m, 

1H), 5.11 (d, J = 10.5 Hz, 1H), 5.07 (d, J = 17.4 Hz, 1H), 4.62 (m, 1H), 4.54 (dt, J = 13.0, 3.0 Hz), 4.05 (s, 

2H), 3.44 (dd, J = 15.5, 5.5 Hz, 1H), 3.28 (dd, J = 15.6, 5.2 Hz, 1H), 2.86 (dd, J = 16.8, 13.4 Hz, 1H), 2.58 

(s, 3H), 2.51–1.10 (m, 20H), 1.07 (d, J = 6.6 Hz, 3H), 1.02 (s, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 100 MHz) 

δ: 190.64, 165.94, 149.56, 147.86, 145.48, 142.66, 138.85, 134.85, 132.26, 129.04, 127.18, 123.12, 

116.26, 78.63, 77.68, 59.31, 56.14, 52.02, 49.79, 42.78, 39.52, 38.80, 37.83, 36.71, 36.44, 32.44, 31.78, 

30.07, 27.58, 27.35, 26.73, 24.25, 20.95, 19.23, 13.45, 11.70. FTIR (neat), cm-1: 2937 (br), 1703 (s), 1663 
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(s), 1166 (vs), 991 (s). HRMS (ESI): Calcd for (C36H47NO5S+H+): 606.32477, found: 606.32568. 𝜶𝑫
𝑹𝑻= +27.5 

(c = 1.0 in CHCl3). 

(R)-3-allyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(pyridin-3-yl)-5,6-dihydro-2H-pyran-2-one (114f) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100) from 102c 

in 95% yield.  

Colourless foam. TLC (70% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 8.62 (s, 1H), 8.54 (s, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.36 (dd, J = 7.6, 4.9 Hz, 1H), 5.88 (m, 1H), 5.32 (m, 

1H), 5.02 (d, J = 10.2 Hz, 1H), 4.93 (d, J = 17.2 Hz, 1H), 4.58 (dt, J = 13.0, 3.1 Hz, 1H), 3.50 (m, 1H), 3.19 

(dd, J = 15.1, 4.8 Hz, 1H), 2.91 (dd, J = 15.1, 5.8 Hz, 1H), 2.83 (dd, J = 16.8, 13.9 Hz, 1H), 2.34–0.82 (m, 

23H) overlapping the following signals, 1.06 (d, J = 6.6 Hz, 3H), 0.99 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 

100 MHz) δ: 165.62, 149.55, 148.25, 147.58, 140.84, 135.54, 134.62, 127.63, 123.35, 121.30, 115.94, 

78.94, 71.59, 56.28, 52.00, 49.97, 42.75, 42.19, 39.61, 38.82, 37.18, 36.42, 32.07, 31.83, 31.78, 31.55, 

29.87, 27.40, 24.24, 20.96, 19.33, 13.45, 11.68. FTIR (neat), cm-1: 2931 (br), 1707 (vs), 1391 (w), 715 

(m). HRMS (ESI): Calcd for (C34H45NO3+H+): 516.34722, found: 516.34638. 𝜶𝑫
𝑹𝑻= -10.0 (c = 1.0 in CHCl3). 

(R)-3-allyl-4-(6-chloropyridin-3-yl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (114g) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100) from 102c 

in 98% yield.  

Colourless foam. TLC (50% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 8.33 (d, J = 2.4 Hz, 1H), 7.56 (dd, J = 8.2, 2.4 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 5.94–5.82 (m, 

1H), 5.33 (m, 1H), 5.04 (dd, J = 10.2, 1.2 Hz), 4.95 (dd, J = 17.2, 1.2 Hz, 1H), 4.58 (dt, J = 13.0, 3.2 Hz, 

1H), 3.51 (m, 1H), 3.20 (dd, J = 15.3, 4.7 Hz, 1H), 2.90 (dd, J = 15.3, 5.8 Hz, 1H), 2.82 (dd, J = 16.7, 13.7 

Hz, 1H), 2.33–2.18 (m, 3H), 2.14–1.90 (m, 3H), 1.87–1.78 (m, 2H), 1.75–0.91 (m, 15H), 1.06 (d, J = 6.6 

Hz, 3H), 1.00 (s, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.37, 151.65, 147.79, 146.97, 140.81, 

137.26, 135.40, 133.56, 128.19, 124.18, 121.35, 116.12, 78.95, 71.70, 56.32, 52.04, 50.02, 42.81, 42.20, 
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39.66, 38.85, 37.20, 36.44, 32.17, 31.87, 31.80, 31.57, 29.78, 27.44, 24.25, 20.99, 19.34, 13.46, 11.70. 

FTIR (neat), cm-1: 3401 (br), 2931 (br), 1707 (vs), 1461 (s), 1107 (vs). HRMS (ESI): Calcd for 

(C34H44ClNO3+H+): 550.30825, found: 550.30770, calcd for (C34H44
37ClNO3+H+): 552.30530, found: 

552.30485. 𝜶𝑫
𝑹𝑻= -21.3 (c = 1.0 in CHCl3). 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-5-allyl-4-(1-isobutyl-1H-pyrazol-4-yl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-
10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (114h) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100), followed 

by acetylation (page 111) from 102c in 86% yield over two steps.  

Colourless oil. TLC (25% ethyl acetate in petroleum ether): Rf = 0.28 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 7.68 (s, 1H), 7.59 (s, 1H), 6.01–5.92 (m, 1H), 5.37 (m, 1H), 5.11 (dd, J = 10.3, 1.4 Hz, 1H), 5.06 (dd, J 

= 17.3, 1.4 Hz, 1H), 4.60 (m, 1H), 4.50 (dt, J = 13.0, 2.9, 2.9 Hz, 1H), 3.93 (d, J = 7.2 Hz, 2H), 3.39 (dd, J = 

16.0, 4.8 Hz, 1H), 3.20 (dd, J = 16.2, 4.8 Hz, 1H), 2.76 (dd, J = 16.7, 13.5 Hz, 1H), 2.37 (dd, J = 17.1, 2.7 

Hz, 1H), 2.34–1.10 (m, 22H) overlapping with 2.03 (s, 3H), 1.07 (d, J = 6.6 Hz, 3H), 1.02 (s, 3H), 0.92 (d, 

J = 6.6 Hz, 6H), 0.73 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 170.53, 167.02, 142.75, 139.68, 138.89, 

135.28, 129.61, 122.34, 121.57, 119.20, 115.56, 78.34, 73.84, 59.98, 56.25, 52.07, 49.97, 42.79, 39.59, 

38.93, 38.05, 36.96, 36.53, 32.22, 31.83, 29.60, 28.20, 27.70, 27.39, 24.28, 21.42, 20.96, 19.86, 19.27, 

13.52, 11.69. FTIR (neat), cm-1: 2938 (br), 1730 (s), 1694 (vs), 1240 (vs), 1025 (vs), 730 (vs). HRMS (ESI): 

Calcd for (C38H54N2O4+H+): 603.41563, found: 603.41641. 𝜶𝑫
𝑹𝑻= +23.0 (c = 1.0 in CHCl3). 

(R)-3-allyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (114i) 

 
The product was synthesized according to the general procedure for reductive elimination of enol 

triflates (page 105) from 102c in 81% yield. 7.5 equiv tributyltin hydride were added dropwise. 

White solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 

6.59 (d, J = 5.3 Hz, 1H), 5.85 (m, 1H), 5.35 (m, 1H), 5.11 (m, 1H), 5.09 (m, 1H), 4.44 (dt, J = 13.1, 3.5 Hz, 

1H), 3.52 (m, 1H), 3.05 (d, J = 5.6 Hz, 2H), 2.42–2.17 (m, 4H), 2.11 (ddd, J = 18.1, 6.5, 3.5 Hz, 1H), 2.06–

1.04 (m, 19H), 1.02 (d, J = 6.7 Hz, 3H) overlapping with 1.01 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 



126  Experimental Part 
 

MHz) δ: 165.80, 140.84, 139.48, 134.80, 130.95, 121.40, 117.10, 80.10, 71.71, 56.36, 52.04, 50.07, 

42.77, 42.24, 39.67, 38.88, 37.23, 36.47, 34.59, 31.90, 31.83, 31.61, 27.30, 24.30, 23.34, 21.02, 19.35, 

13.47, 11.68. FTIR (neat), cm-1: 2931 (s), 1712 (vs), 1379 (m). HRMS (ESI): Calcd for (C29H42O3+H+): 

439.32067, found: 439.32022. 𝜶𝑫
𝑹𝑻= +7.7 (c = 1.0 in CHCl3). 

(R,E)-6-((3S,8S,9S,10R,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-
cyclopenta[a]phenanthren-17-yl)hept-4-en-3-one (120) 

 
The desired product 116 was attempted to be synthesized according to the general amination 

procedure (page 103) from 102a. The reaction was performed in 1,2-dichloroethane at 50 °C. The 

desired product decomposed on silica to 120, which was isolated in 72% yield. 

White amorphous solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.55 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 6.68 (dd, J = 15.9, 8.9 Hz, 1H), 6.01 (dd, J = 15.9, 0.6 Hz, 1H), 5.34 (m, 1H), 3.52 (m, 1H), 

2.54 (q, J = 7.4 Hz, 2H), 2.32–2.18 (m, 3H), 2.03–1.92 (m, 2H), 1.88–1.80 (m, 2H), 1.78–1.18 (m, 15H), 

1.10 (d, J = 7.1 Hz, 3H), 1.09 (t, J = 7.3 Hz, 3H), 1.01 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 

152.45, 140.74, 127.71, 121.55, 71.76, 56.55, 55.03, 50.09, 42.70, 42.27, 39.92, 39.62, 37.25, 36.50, 

33.21, 31.89, 31.82, 31.63, 28.15, 24.29, 21.04, 19.39, 19.33, 12.13, 8.25. FTIR (neat), cm-1: 3369 (br), 

2930 (vs), 1669 (s), 1624 (s), 1458 (s), 1054 (vs). HRMS (ESI): Calcd for (C26H40O2+H+): 385.31011, found: 

385.31127. 

(R)-4-hydroxy-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (128) 

 
The product was prepared from 125 by TBS-deprotection (page 95), followed by δ-lactone closure 

(page 94) in 45% yield over 2 steps.  

White crystalline solid. TLC (40% ethyl acetate in dichloromethane): Rf = 0.42 (CAM). 1H NMR (DMSO-

d6, 500 MHz) δ: 11.37 (s, 1H), 5.27 (m, 1H), 4.93 (s, 1H), 4.57 (m, 1H), 4.32 (d, J = 11.6 Hz, 1H), 3.25 (m, 

1H), 2.46 (m, 1H), 2.20–0.85 (m, 22H), 0.95 (s, 3H) overlapping a (m, 3H), 0.69 (s, 3H). 13C NMR 

(DMSO-d6, 126 MHz) δ: 173.11, 141.27, 120.30, 90.59, 76.95, 69.98, 55.65, 51.26, 49.61, 42.20, 38.34, 

36.92, 36.05, 31.48, 31.40, 31.33, 26.57, 23.98, 20.62, 19.11, 12.97, 11.50. FTIR (neat), cm-1: 2932 (br), 
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1765 (s), 1719 (vs), 1374 (s), 1040 (s). HRMS (ESI): Calcd for (C26H38O4+H+): 415.28429, found: 

415.28401. 𝜶𝑫
𝑹𝑻= +24.4 (c = 0.52 in DMSO). Melting point: 181 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-phenethyl-5,6-dihydro-2H-pyran-2-one (130d) 

 
The zinc reagent was prepared from (2-Iodoethyl)benzene according to a procedure from Knochel et 

al.[70] The coupling was performed as reported above for the coupling with diethyl zinc (page 101), 

followed by TBS-deprotection according to the general procedure (page 95) to provide the product 

130d in 45% yield over two steps. 

White crystalline solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.5 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 7.30 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 7.17 (d, J = 7.4 Hz, 2H), 5.80 (s, 1H), 5.35 (m, 1H), 

4.39 (dt, J = 13.1, 3.3 Hz, 1H), 3.52 (m, 1H), 2.89–2.79 (m, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.40–2.15 (m, 

5H), 2.10–1.80 (m, 6H), 1.68–0.86 (m, 13H), 1.02 (s, 3H) overlapping with 1.02 (d, 3H), 0.72 (s, 3H). 

13C NMR (CDCl3, 126 MHz) δ: 165.69, 160.26, 140.87, 140.12, 128.62, 128.17, 126.43, 121.39, 116.05, 

79.58, 71.73, 56.40, 52.11, 50.10, 42.79, 42.26, 39.69, 38.83, 38.31, 37.25, 36.48, 33.07, 31.91, 31.86, 

31.63, 27.33, 27.19, 24.30, 21.03, 19.37, 13.37, 11.69. FTIR (neat), cm-1: 3478 (br), 2926 (br), 1698 (vs), 

1262 (s), 1061 (s), 1018 (s). HRMS (ESI): Calcd for (C34H46O3+H+): 503.35197, found: 503.35137. 𝜶𝑫
𝑹𝑻= 

+35.8 (c = 1.0 in CHCl3). Melting point: 187–188 °C. 

(R)-4-ethyl-6-((S)-1-((3S,4aR,5aS,6aS,6bS,9R,9aS,11aS,11bR)-3-hydroxy-9a,11b-
dimethylhexadecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-9-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (130b) 

  
The product was synthesized according to the general epoxidation procedure (page 107) from 130a in 

80% yield. The product is a mixture of stereoisomers in a ratio of 4:1. Only the carbon signals of the 

major diastereomer are listed.  

White solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.48 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.76 (m, 1H), 4.39 (dd, J = 13.1, 3.3 Hz, 1H), 3.89 (m, 0.8H, major diastereomer), 3.68 (m, 0.2H, minor 
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diastereomer), 3.05 (d, J = 2.1 Hz, 0.2H, minor diastereomer), 2.90 (d, J = 4.3 Hz, 0.8H, major 

diastereomer), 2.35 (m, 1H), 2.26 (q, J = 7.3 Hz, 2H), 2.12–0.90 (m, 23H), 1.12 (t, J = 7.4 Hz, 3H), 1.06 (s, 

3H), 0.99 (d, J = 6.6 Hz, 3H), 0.67 and 0.65 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 166.01, 162.75, 114.34, 

79.55, 68.64, 65.69, 59.13, 56.46, 51.82, 42.77, 42.49, 39.78, 39.30, 38.78, 34.82, 32.37, 31.04, 29.88, 

29.78, 28.76, 27.15, 27.04, 24.04, 20.58, 15.89, 13.31, 11.69, 10.82. FTIR (neat), cm-1: 3471 (br), 2936 

(br), 1698 (vs), 1259 (m). HRMS (ESI): Calcd for (C28H42O4+H+): 443.31559, found: 443.31530. 𝜶𝑫
𝑹𝑻= 

+31.6 (c = 1.0 in CHCl3). 

(R)-4-(4-(dimethylamino)phenyl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (130f) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100) from 102e 

in 98% yield.  

Green-brown amorphos solid. TLC (60% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR 

(CDCl3 , 400 MHz) δ: 7.48 (d, J = 9.0 Hz, 2H), 6.69 (d, J = 9.0 Hz, 2H), 6.22 (d, J = 1.8 Hz, 1H), 5.35 (m, 

1H), 4.51 (dt, J = 12.2, 3.5 Hz, 1H), 3.53 (m, 1H), 3.03 (s, 3H), 2.71–2.50 (m, 2H), 2.35–0.85 (m, 22H), 

1.10 (d, J = 6.6 Hz, 3H), 1.02 (s, 3H), 0.74 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 167.20, 154.96, 151.84, 

140.81, 127.40, 122.84, 121.43, 111.61, 109.63, 79.39, 71.73, 56.37, 52.26, 50.07, 42.80, 42.21, 40.08, 

39.68, 38.97, 37.22, 36.46, 31.88, 31.84, 31.58, 27.32, 24.79, 24.30, 21.03, 19.37, 13.52, 11.72. FTIR 

(neat), cm-1: 2931 (br), 1683 (vs), 1592 (vs), 1527 (s), 1365 (s). HRMS (ESI): Calcd for (C34H47NO3+H+): 

518.36287, found: 518.36217. 𝜶𝑫
𝑹𝑻= +6.4 (c = 1.0 in CHCl3). 

(R)-4-(5-acetylthiophen-2-yl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (130g) 

 
The product was synthesized according to the general Suzuki Coupling procedure (page 100) from 102e 

in 72% yield.  

White powder. TLC (60% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 7.65 (d, J = 4.0 Hz, 1H), 7.39 (d, J = 4.0 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 5.35 (m, 1H), 4.57 (dt, J = 12.8, 
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3.4 Hz, 1H), 3.53 (m, 1H), 2.74 (ddd, J = 17.1, 13.0, 2.4 Hz, 1H), 2.58 (s, 3H), 2.53 (dd, J = 17.4, 3.3 Hz, 

1H), 2.34–2.19 (m, 2H), 2.17–0.92 (m, 20H), 1.09 (d, J = 6.7 Hz, 3H), 1.02 (s, 3H), 0.75 (s, 3H). 13C NMR 

(CDCl3, 126 MHz) δ: 190.33, 165.24, 147.45, 147.26, 146.16, 140.86, 132.56, 127.51, 121.40, 114.97, 

79.56, 71.72, 56.36, 52.18, 50.08, 42.89, 42.25, 39.71, 38.90, 37.24, 36.49, 31.93, 31.85, 31.62, 27.38, 

26.76, 25.82, 24.31, 21.04, 19.37, 13.43, 11.74. FTIR (neat), cm-1: 2926 (br), 2855 (m), 1701 (s), 1261 

(s), 731 (s). HRMS (ESI): Calcd for (C32H42O4S+H+): 523.28766, found: 523.28789. 𝜶𝑫
𝑹𝑻= +69.7 (c = 1.0 in 

CHCl3). 

(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-((S)-1-((R)-6-oxo-4-(piperidin-1-yl)-3,6-dihydro-2H-pyran-2-yl)ethyl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130j) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 98% over two steps. 

White crystalline solid. TLC (70% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). 1H NMR (CD2Cl2, 

500 MHz) δ: 5.36 (m, 1H), 4.73 (s, 1H), 4.52 (m, 1H), 4.28 (dt, J = 12.8, 3.4 Hz, 1H), 3.32–3.16 (m, 4H), 

2.34–2.24 (m, 3H), 2.15 (dd, J = 16.1, 3.3 Hz, 1H), 2.07–1.92 (m, 3H) overlapping with 1.97 (s, 3H), 1.90–

1.77 (m, 2H), 1.75–1.33 (m, 13H), 1.30–0.92 (m, 7H), 1.02 (s, 3H) overlapping with 1.02 (d, J = 6.6 Hz, 

3H), 0.73 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 170.79, 169.27, 161.03, 140.56, 122.83, 84.89, 77.62, 

74.40, 57.03, 52.85, 50.74, 47.82, 43.37, 40.31, 39.70, 38.69, 37.61, 37.18, 32.49, 28.34, 27.89, 27.51, 

25.93, 25.47, 24.90, 24.82, 21.72, 21.61, 19.68, 13.72, 12.09. FTIR (neat), cm-1: 2935 (vs), 1673 (vs), 

1571 (vs), 1440 (m), 1374 (m), 1236 (vs). HRMS (ESI): Calcd for (C33H49NO4+H+): 524.37344, found: 

524.37411. 𝜶𝑫
𝑹𝑻= -23.8 (c = 1.0 in CH2Cl2). Melting point: 144 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-morpholino-5,6-dihydro-2H-pyran-2-one (130k) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

89% yield. 

White crystalline solid. TLC (10% methanol in dichloromethane): Rf = 0.56 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 5.34 (m, 1H), 4.87 (s, 1H), 4.36 (dt, J = 12.9, 3.3 Hz, 1H), 3.75 (m, 4H), 3.51 (m, 1H), 3.34–3.25 

(m, 2H), 3.23–3.16 (m, 2H), 2.40–2.18 (m, 3H), 2.14 (dd, J = 16.1, 3.2 Hz, 1H), 2.11–1.93 (m, 3H), 1.90–
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1.77 (m, 2H), 1.75–0.85 (m, 15H), 1.04 (d, J = 6.6 Hz, 3H), 1.01 (s, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 126 

MHz) δ: 168.59, 160.69, 140.90, 121.34, 86.94, 77.30, 71.69, 66.05, 56.45, 52.29, 50.12, 46.03, 42.83, 

42.24, 39.71, 38.86, 37.24, 36.48, 31.90, 31.87, 31.61, 27.37, 24.49, 24.31, 21.02, 19.36, 13.39, 11.70. 

FTIR (neat), cm-1: 1651 (s), 1445 (m), 1258 (vs), 1172 (s), 1034 (s). HRMS (ESI): Calcd for (C30H45NO4+H+): 

484.34214, found: 484.34153. 𝜶𝑫
𝑹𝑻= +4.4 (c = 0.64 in 1:1 CH2Cl2/ MeOH). Melting point: Colourless 

crystals gradually turn red-brown above 160 °C, followed by melting of the crystals at 234 °C. 

(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-((S)-1-((R)-4-morpholino-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130l) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 88% yield over two steps. For reasons of solubility the NMR was 

measured in CD3OD/CD2Cl2. The spectra are referenced to CD2Cl2.  

White crystalline solid. TLC (ethyl acetate): Rf = 0.38 (CAM). 1H NMR (CD3OD, 300 MHz) δ: 5.34 (m, 1H), 

4.77 (s, 1H), 4.50 (m, 1H), 4.33 (dt, J = 12.8, 3.5 Hz, 1H), 3.77–3.61 (m, 4H) overlapping with CH3OH, 

3.38–3.12 (m, 4H), 2.42–2.23 (m, 3H), 2.18 (dd, J = 16.3, 3.6 Hz, 1H), 2.07–0.89 (m, 19H), 1.97 (s, 3H), 

1.00 (d, J = 6.5 Hz, 3H), 0.99 (s, 3H), 0.71 (s, 3H). 13C NMR (CD2Cl2, 75 MHz) δ: 171.61, 170.83, 162.41, 

140.46, 122.89, 85.41, 78.26, 74.74, 66.62, 57.00, 52.69, 50.68, 46.70, 43.35, 40.25, 39.64, 38.59, 

37.54, 37.14, 32.44, 28.25, 27.85, 25.05, 24.84, 21.65, 21.56, 19.60, 13.56, 12.00. FTIR (neat), cm-1: 

2938 (br), 1730 (m), 1665 (s), 1572 (s), 1238 (vs), 1025 (s). HRMS (ESI): Calcd for (C32H47NO5 +H+): 

526.35270, found: 526.35331. 𝜶𝑫
𝑹𝑻= -9.7 (c = 0.84 in 1:1 CH2Cl2/MeOH). Melting point: 182 °C. 

(R)-4-(dimethylamino)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (130m) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

96% yield.  

White crystalline solid. TLC (10% methanol in dichloromethane): Rf = 0.56 (CAM). 1H NMR (CDCl3, 500 

MHz) δ: 5.35 (m, 1H), 4.69 (s, 1H), 4.33 (dt, J = 12.8, 3.3 Hz, 1H), 3.52 (m, 1H), 2.95 (s, 6H), 2.42–1.90 

(m, 9H), 1.89–1.06 (m, 15H), 1.04 (d, J = 6.7 Hz, 3H), 1.01 (s, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 126 MHz) 
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δ: 169.02, 161.03, 140.89, 121.40, 83.84, 77.08, 71.73, 56.44, 52.34, 50.14, 42.83, 42.26, 39.72, 39.30, 

38.82, 37.26, 36.50, 31.92, 31.88, 31.63, 27.35, 24.83, 24.33, 21.04, 19.37, 13.43, 11.72. FTIR (neat), 

cm-1: 3346 (br), 2918 (br), 1643 (vs), 1575 (vs), 1264 (s), 790 (s). HRMS (ESI): Calcd for (C28H43NO3+H+): 

442.33157, found: 442.33129. 𝜶𝑫
𝑹𝑻= +12.2 (c = 0.98 in 1:1 CH2Cl2/MeOH). Melting point: 228.0 °C 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(dimethylamino)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130n) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 82% yield over two steps.  

TLC (ethyl acetate): Rf = 0.24 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 5.36 (m, 1H), 4.57 (s, 1H), 4.52 (m, 

1H), 4.29 (dt, J = 12.8, 3.4 Hz, 1H), 2.91 (s, 6H), 2.37–2.15 (m, 4H), 2.06–1.92 (m, 3H) overlapping with 

1.97 (s, 3H), 1.90–1.78 (m, 2H), 1.74–1.32 (m, 8H), 1.26–0.90 (m, 6H), 1.02 (d, J = 6.5 Hz, 1H), 1.01 (s, 

3H), 0.73 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 170.82, 169.17, 161.96, 140.56, 122.82, 83.69, 77.61, 

74.41, 57.01, 52.82, 50.73, 43.37, 40.29, 39.73, 39.64, 38.69, 37.61, 37.18, 32.48, 28.33, 27.89, 25.46, 

24.89, 21.72, 21.60, 19.68, 13.71, 12.09. FTIR (neat), cm-1: 2949 (br), 1733 (s), 1655 (vs), 1596 (vs), 1238 

(vs). HRMS (ESI): Calcd for (C30H45NO4+H+): 484.34214, found: 484.34245. Melting point: Crystals 

gradually turn red-brown above 100 °C, followed by decomposition at 165 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(pyrrolidin-1-yl)-5,6-dihydro-2H-pyran-2-one (130o) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

quantitative yield. For solubility reasons the NMR was measured in a mixture of CDCl3 and CD3OD. The 

NMR is referenced to CDCl3.  

White crystalline solid. TLC (ethyl acetate): Rf = 0.3 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 5.16 (m, 1H), 

4.20 (dt, J = 12.9, 2.9 Hz, 1H), 4.13 (s, 1H) overlapping with CD3OH, 3.28 (m, 3H), 3.07 (m, 2H), 2.30 (dd, 

J = 16.1, 13.7 Hz, 1H), 2.14–0.70 (m, 27H), 0.86 (d, J = 6.6 Hz, 3H) overlapping with 0.83 (s, 3H), 0.55 (s, 

3H). 13C NMR (CDCl3, 100 MHz) δ: 170.91, 159.71, 140.62, 120.92, 70.86, 56.02, 51.84, 49.80, 42.46, 

41.43, 39.35, 38.54, 36.92, 36.15, 31.59, 31.48, 30.74, 27.01, 25.41, 24.85, 24.35, 23.94, 20.68, 18.90, 

12.86, 11.28. FTIR (neat), cm-1: 2923 (br), 2496 (m), 1644 (s), 1561 (vs), 1447 (m), 1037 (m). HRMS 
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(ESI): Calcd for (C30H45NO3+H+): 468.34722, found: 468.34730. 𝜶𝑫
𝑹𝑻= 34.3 (c = 1.0 in 1:1 CH2Cl2/MeOH). 

Melting point: Colourless crystals gradually turn red-brown above 190 °C, followed by decomposition. 

(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-((S)-1-((R)-6-oxo-4-(pyrrolidin-1-yl)-3,6-dihydro-2H-pyran-2-yl)ethyl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130p) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 80% yield over two steps.  

White crystalline solid. TLC (ethyl acetate): Rf = 0.45 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 5.36 (m, 1H), 

4.60 (m, 1H), 4.57 (s, 1H), 4.35 (dt, J = 12.8, 2.9 Hz, 1H), 3.42 (m, 2H), 3.21 (m, 2H), 2.43 (m, 1H), 2.31 

(m, 2H), 2.17 (dd, J = 16.3, 2.9 Hz, 1H), 2.11–0.83 (m, 23H), 2.02 (s, 3H), 1.03 (m, 3H) overlapping with 

1.01 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 170.55, 169.18, 158.68, 139.71, 122.33, 82.79, 

77.20, 73.84, 56.33, 52.27, 50.01, 47.78, 42.75, 39.62, 38.73, 38.04, 36.96, 36.52, 31.81, 27.69, 27.31, 

25.73, 25.26, 24.74, 24.28, 21.41, 20.95, 19.26, 13.39, 11.68. FTIR (neat), cm-1: 2939 (br), 1731 (s), 1665 

(s), 1560 (vs), 1443 (s), 1238 (vs), 1035 (s). HRMS (ESI): Calcd for (C32H47NO4+H+): 510.35779, found: 

510.35799. 𝜶𝑫
𝑹𝑻= +23.5 (c = 1.0 in CHCl3). Melting point: Colourless crystals gradually turn red-brown 

above 180 °C, followed by melting at 195 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(piperazin-1-yl)-5,6-dihydro-2H-pyran-2-one (130q) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

96% yield. For solubility reasons the NMR was measured in a mixture of CDCl3 and CD3OD. The NMR is 

referenced to CD3OD. 

White crystalline solid. TLC (20% methanol in dichloromethane): Rf = 0.35 (CAM). 1H NMR (CD3OD, 500 

MHz) δ: 5.33 (m, 1H), 4.81 (s, 1H), 4.36 (dt, J = 12.8, 3.4 Hz, 1H), 3.46–3.33 (m, 5H), 2.98–2.86 (m, 4H), 

2.42 (dd, J = 16.1, 13.2 Hz, 1H), 2.32 (dd, J = 16.4, 3.5 Hz, 1H), 2.27–2.16 (m, 2H), 2.08–0.85 (m, 21H), 

1.05 (d, J = 6.7 Hz, 3H), 1.01 (s, 3H), 0.75 (s, 3H). 13C NMR (CD3OD, 126 MHz) δ: 172.16, 163.08, 141.82, 

121.97, 84.62, 71.99, 57.23, 52.82, 51.15, 49.86, 46.99, 45.39, 44.15, 43.61, 42.60, 40.56, 40.03, 38.15, 

37.31, 32.84, 32.63, 31.89, 28.10, 25.41, 25.07, 21.84, 19.78, 13.68, 12.14. FTIR (neat), cm-1: 3342 (br), 

2914 (br), 1636 (vs), 1563 (vs), 1441 (m), 1247 (s). HRMS (ESI): Calcd for (C30H46N2O3+H+): 483.35812, 
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found: 483.35831. 𝜶𝑫
𝑹𝑻= -6.1 (c = 0.82 in 1:1 CH2Cl2/MeOH). Melting point: Turns brown at 224 °C, then 

melting at 225.1 °C. 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(prop-2-yn-1-ylamino)-5,6-dihydro-2H-pyran-2-one (130r) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

71% yield.  

White amorphous solid. TLC (ethyl acetate): Rf = 0.60 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 5.28 (m, 

1H), 4.66 (s, 1H), 4.35 (dt, J = 13.4, 3.2 Hz, 1H), 3.82 (d, J = 2.3 Hz, 1H), 3.37 (m, 1H), 2.52–2.44 (m, 1H), 

2.41 (t, J = 2.4 Hz, 1H), 2.24–2.10 (m, 2H), 2.07–1.87 (m, 4H), 1.85–0.75 (m, 18H), 0.97 (d, J = 7.7 Hz, 

1H) overlapping with 0.96 (s, 3H), 0.69 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 171.49, 161.32, 141.80, 

121.83, 82.26, 78.84, 72.95, 71.94, 57.13, 52.89, 50.96, 43.44, 42.52, 40.45, 39.63, 37.99, 37.17, 32.80, 

32.64, 32.51, 31.85, 27.90, 27.12, 24.93, 21.71, 19.71, 13.61, 12.04. FTIR (neat), cm-1: 2929 (br), 1643 

(m), 1596 (vs), 1241 (m), 798 (m). HRMS (ESI): Calcd for (C29H41NO3+H+): 452.31592, found: 452.31629. 

𝜶𝑫
𝑹𝑻= +25.4 (c = 1.0 in 1:1 CH2Cl2/ MeOH). 

(R)-4-(cyclopentylamino)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (130s) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

97% yield.  

White crystalline solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.36 (CAM). 1H NMR (CD3OD, 

500 MHz) δ: 5.34 (m, 1H), 4.60 (s, 1H), 4.37 (dt, J = 13.5, 3.2 Hz, 1H), 3.73 (m, 1H), 3.41 (m, 1H), 2.49 

(m, 1H), 2.28–0.84 (m, 33H), 1.03 (d, 3H) overlapping with 1.02 (s, 3H), 075 (s, 3H). 13C NMR (CD3OD, 

126 MHz) δ: 172.94, 162.46, 142.06, 122.06, 80.39, 79.17, 72.17, 57.47, 55.10, 53.25, 51.36, 43.69, 

42.76, 40.79, 40.00, 38.31, 37.44, 33.27, 33.07, 32.99, 32.76, 32.05, 28.13, 27.52, 25.18, 24.84, 24.79, 

21.97, 19.79, 13.69, 12.12. FTIR (neat), cm-1: 3306 (br), 2935 (br), 1590 (vs), 1242 (s), 1040 (s). HRMS 

(ESI): Calcd for (C31H47NO3+H+): 482.36287, found: 482.36245. 𝜶𝑫
𝑹𝑻= +30.0 (c = 1.0 in 1:1 CH2Cl2/MeOH). 
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Melting point: Colourless crystals gradually turn red-brown above 200 °C, followed by melting at 

220 °C. 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(cyclopentylamino)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130t) 

 
The product was synthesized according to the general acetylation procedure (page 111) of 130s in 88% 

yield. 

White crystalline solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CD2Cl2, 

500 MHz) δ: 5.35 (m, 1H), 4.61 (s, 1H), 4.53 (m, 2H), 4.33 (dt, J = 13.2, 3.2 Hz, 1H), 3.71 (m, 1H), 2.48 

(m, 1H), 2.28 (d, J = 7.8 Hz, 2H), 2.05–1.92 (m, 5H) overlapping with 1.97 (s, 3H), 1.90–1.77 (m, 3H), 

1.75–0.81 (m, 20H), 1.01 (s, 3H), 0.99 (d, J = 6.7 Hz, 3H), 0.72 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 

170.82, 169.13, 159.32, 140.54, 122.81, 83.00, 77.80, 74.42, 57.04, 54.85, 52.91, 50.71, 43.34, 40.33, 

39.51, 38.68, 37.62, 37.17, 33.56, 33.38, 32.46, 28.33, 27.89, 24.88, 24.59, 24.54, 21.73, 21.60, 19.67, 

13.71, 12.08. FTIR (neat), cm-1: 2939 (br), 1732 (m), 1653 (s), 1596 (s), 1238 (vs). HRMS (ESI): Calcd for 

(C33H49NO4+H+): 524.37344, found: 524.37418. 𝜶𝑫
𝑹𝑻= +31.2 (c = 1.0 in CH2Cl2). Melting point: Gradual 

decomposition above 130 °C, no clear melting. 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(cyclopropylamino)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130u) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 74% yield over two steps.  

Colourless amorphous solid. 1H NMR (CD2Cl2, 500 MHz) δ: 5.36 (m, 1H), 4.97 (s, 1H), 4.65 (br s, 1H), 

4.52 (m, 1H), 4.34 (dt, J = 13.2, 3.3 Hz, 1H), 2.50–2.38 (m, 2H), 2.32–2.24 (m, 2H), 1.97 (s, 3H) 

overlapping with 2.04–1.93 (m, 3H), 1.90–1.76 (m, 3H), 1.75–0.90 (m, 14H), 1.01 (s, 3H), 0.99 (d, J = 

6.7 Hz, 3H), 0.78–0.74 (m, 2H), 0.72 (s, 3H), 0.58–0.48 (m, 2H). 13C NMR (CD2Cl2, 126 MHz) δ: 170.80, 

168.78, 140.55, 122.81, 84.85, 77.90, 74.40, 57.02, 52.86, 50.71, 43.34, 40.31, 39.50, 38.69, 37.61, 

37.17, 32.46, 32.45, 28.33, 27.87, 27.36, 25.01, 24.87, 21.73, 21.59, 19.67, 13.69, 12.07, 7.71, 7.36. 

FTIR (neat), cm-1: 2940 (br), 1732 (s), 1637 (s), 1585 (s), 1541 (s), 1237 (vs). HRMS (ESI): Calcd for 

(C31H45NO4+H+): 496.34214, found: 496.34322. Melting point: Turns brown at 169–170 °C. 
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(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-4-(propylamino)-5,6-dihydro-2H-pyran-2-one (130v) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e in 

92% yield. 

White crystalline solid. TLC (ethyl acetate): Rf = 0.36 (CAM). 1H NMR (CD3OD, 500 MHz) δ: 5.34 (m, 1H), 

4.58 (s, 1H), 4.37 (dt, J = 13.5, 3.2 Hz, 1H), 3.41 (m, 1H), 3.04 (t, J = 7.1 Hz, 1H), 2.52 (m, 1H), 2.30–0.90 

(m, 26H), 1.03 (d, J = 6.9 Hz, 1H), 1.02 (s, 3H), 0.97 (t, J = 7.4 Hz, 3H), 0.76 (s, 3H). 13C NMR (CD3OD, 126 

MHz) δ: 172.94, 163.07, 142.01, 122.02, 79.69, 79.14, 72.13, 57.43, 53.20, 51.30, 45.49, 43.65, 42.71, 

40.74, 39.94, 38.25, 37.40, 32.93, 32.72, 32.01, 28.09, 27.52, 25.13, 22.22, 21.93, 19.76, 13.65, 12.09, 

11.73. FTIR (neat), cm-1: 3324 (br), 2926 (br), 1655 (vs), 1609 (s), 1556 (s), 1259 (s), 1243 (s). HRMS 

(ESI): Calcd for (C29H45NO3+H+): 456.34722, found: 456.34726. 𝜶𝑫
𝑹𝑻= +22.3 (c = 0.49 in 1:1 

CH2Cl2/MeOH). Melting point: Compound gradually turns brown above 200 °C, melting at 256 °C. 

(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-((S)-1-((R)-6-oxo-4-(propylamino)-3,6-dihydro-2H-pyran-2-yl)ethyl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (130w) 

 
The product was synthesized according to the general amination procedure (page 103) from 102e, 

followed by acetylation (page 111) in 84% yield over two steps. 

White crystalline solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.54 (CAM). 1H NMR (CD2Cl2, 

500 MHz) δ: 5.36 (m, 1H), 4.60 (s, 1H), 4.53 (m, 1H) overlapping with 4.49 (m, 1H), 4.34 (dt, J = 13.2, 

3.3 Hz, 1H), 3.02 (dd, J = 12.5, 7.1 Hz, 2H), 2.51 (m, 1H), 2.29 (d, J = 7.7 Hz, 2H), 2.05–1.77 (m, 6H) 

overlapping with 1.97 (s, 3H), 1.75–0.90 (m, 16H), 1.01 (s, 3H), 1.00 (d, J = 6.7 Hz, 3H), 0.94 (t, J = 7.4 

Hz, 3H), 0.72 (s, 3H). 13H NMR (CD2Cl2, 126 MHz) δ: 170.81, 169.11, 160.02, 140.55, 122.81, 82.38, 

77.83, 74.41, 57.04, 52.90, 50.71, 45.37, 43.34, 40.33, 39.51, 38.68, 37.62, 37.17, 32.46, 28.33, 27.89, 

24.88, 22.35, 21.73, 21.60, 19.67, 13.71, 12.08, 11.80. FTIR (neat), cm-1: 2932 (br), 1732 (s), 1598 (br), 

1241 (vs). HRMS (ESI): Calcd for (C31H47NO4+H+): 498.35779, found: 498.35837. 𝜶𝑫
𝑹𝑻= +34.9 (c = 1.0 in 

CH2Cl2). Melting point: Compound gradually turns brown above 200 °C, melting at 228 °C. 
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(R)-4-ethyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-methyl-5,6-dihydro-2H-pyran-2-one (131a) 

 
The product was synthesized according to the general Negishi Coupling procedure from 102a (page 

101) in 76% yield. 2.5 equiv diethylzinc were added in three portions. 

White solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.36 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.34 (m, 1H), 4.32 (dt, J = 13.2, 3.3 Hz, 1H), 3.51 (m, 1H), 2.45–2.13 (m, 5H), 2.07–1.75 (m, 6H) 

overlapping with 1.87 (s, 3H), 1.74–0.81 (m, 20H), 1.06 (t, J = 7.60 Hz, 3H), 1.87 (s, 3H), 1.01 (d, J = 

6.1 Hz, 3H), 1.00 (s, 3H), 0.70 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 167.38, 154.29, 140.83, 121.36, 

121.15, 78.71, 71.66, 56.32, 52.10, 50.04, 42.71, 42.20, 39.64, 38.77, 37.20, 36.44, 31.86, 31.82, 31.56, 

27.32, 27.16, 26.93, 24.28, 20.99, 19.34, 13.44, 12.01, 11.66, 11.53. FTIR (neat), cm-1: 3507 (br), 2940 

(br), 1692 (vs), 1183 (m), 1133 (s), 1062 (s). HRMS (ESI): Calcd for (C29H44O3+H+): 441.33632, found: 

441.33602. 𝜶𝑫
𝑹𝑻= +40.3 (c = 1.0 in CHCl3). Melting point: 218–220 °C. 

(R)-4-(5-acetylthiophen-2-yl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-methyl-5,6-dihydro-2H-

pyran-2-one (131b) 

 
The product was synthesized according to the general Suzuki Coupling procedure from 102a (page 100) 

in 98% yield.  

White powder. TLC (50% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 7.66 (d, J = 4.0 Hz, 1H), 7.26 (d, J = 4.0 Hz, 1H), 5.34 (m, 1H), 4.51 (dt, J = 12.9, 3.1 Hz, 1H), 3.52 (m, 

1H), 2.78 (m, 1H), 2.58 (s, 3H), 2.49 (m, 1H), 2.34–2.17 (m, 2H) overlapping with 2.21 (s, 3H), 2.12–0.82 

(m, 20H), 1.06 (d, J = 6.7 Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 190.62, 166.90, 

148.24, 145.46, 140.80, 140.76, 132.08, 129.34, 124.99, 121.36, 78.57, 71.64, 56.26, 52.06, 49.99, 

42.78, 42.19, 39.62, 38.79, 37.18, 36.44, 31.87, 31.79, 31.56, 29.33, 27.37, 26.73, 24.28, 20.99, 19.34, 

15.43, 13.43, 11.69. FTIR (neat), cm-1: 3236 (br), 2941 (br), 1698 (s), 1667 (s), 1057 (vs). HRMS (ESI): 

Calcd for (C33H44O4S+H+): 537.30331, found: 537.30270. 𝜶𝑫
𝑹𝑻= +140.3 (c = 1.0 in CHCl3). Melting point: 

134 °C. 
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(R)-4-(5-acetylthiophen-2-yl)-6-((S)-1-((3S,4aR,5aS,6aS,6bS,9R,9aS,11aS,11bR)-3-hydroxy-9a,11b-
dimethylhexadecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-9-yl)ethyl)-3-methyl-5,6-dihydro-2H-pyran-2-one 

(131c) 

 
The product was synthesized according to the general epoxidation procedure from 131b (page 107) in 

90% yield. It is a mixture of stereoisomers in a ratio of 4:1. Only the carbon signals of the major 

stereoisomer are listed. 

Colourless foam. TLC (80% ethyl acetate in petroleum ether): Rf = 0.38 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 7.67 (d, J = 4.0 Hz, 1H), 7.27 (m, 1H), 4.49 (dt, J = 12.9, 3.0 Hz, 1H), 3.90 (m, 0.8H, major 

diastereomer), 3.70 (m, 0.2H, minor diastereomer), 3.06 (d, J = 1.8 Hz, 0.8H, major diastereomer), 2.90 

(d, J = 4.3 Hz, 0.2H, minor diastereomer), 2.77 (m, 1H), 2.58 (s, 3H), 2.47 (d, J = 17.1 Hz, 1H), 2.20 (s, 

3H), 2.12–0.94 (m, 22H), 1.06 (s, 3H), 1.03 (d, J = 6.7 Hz, 3H), 0.69 and 0.66 (s, 3H). 13C NMR (CDCl3, 

100 MHz) δ: 190.58, 166.88, 148.10, 145.55, 140.81, 132.02, 129.32, 124.97, 78.53, 68.62, 65.64, 

59.10, 56.38, 51.81, 42.82, 42.44, 39.78, 39.28, 38.79, 34.83, 32.37, 31.04, 29.92, 29.26, 28.77, 27.22, 

26.77, 24.06, 20.57, 15.88, 15.42, 13.41, 11.71. FTIR (neat), cm-1: 3481 (m), 2922 (m), 1701 (vs). HRMS 

(ESI): Calcd for (C33H44O5S+H+): 553.29822, found: 553.29868. 𝜶𝑫
𝑹𝑻= +126.7 (c = 1.0 in CHCl3). 

(R)-6-((S)-1-((3S,4aR,5aS,6aS,6bS,9R,9aS,11aS,11bR)-3-hydroxy-9a,11b-
dimethylhexadecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-9-yl)ethyl)-3-methyl-5,6-dihydro-2H-pyran-2-one 

(131f) 

 
The product was synthesized according to the general epoxidation procedure (page 107) of 131d in 

84% yield. It is a mixture of stereoisomers in a ratio of 4:1. Only the carbon signals of the major 

stereoisomer are listed. 

White powder. TLC (70% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 6.58 (d, J = 6.2 Hz, 1H), 4.42 (dt, J = 13.0, 3.3 Hz, 1H), 3.89 (m, 0.8H, major diastereomer), 3.68 (m, 

0.2H, minor diastereomer), 3.05 (d, J = 1.8 Hz, 0.2H, minor diastereomer), 2.89 (d, J = 4.3 Hz, 0.8H, 

major diastereomer), 2.33 (m, 1H), 2.12–0.80 (m, 23H), 1.89 (s, 3H), 1.05 (s, 3H), 0.98 (d, J = 6.5 Hz, 

3H), 0.66 and 0.64 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 166.55, 139.43, 128.16, 80.24, 68.62, 65.68, 

59.12, 56.44, 51.74, 42.74, 42.49, 39.77, 39.29, 38.87, 34.81, 32.36, 31.03, 29.87, 28.73, 27.11, 24.03, 
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23.27, 20.57, 16.95, 15.87, 13.38, 11.66. FTIR (neat), cm-1: 2931 (br), 1718 (vs), 1129 (m), 1037 (m). 

HRMS (ESI): Calcd for (C27H40O4+H+): 429.29994, found: 429.29943. 

(R)-4-ethyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-isopropyl-5,6-dihydro-2H-pyran-2-one (132a) 

 
The product was synthesized according to the general Negishi Coupling procedure from 102b (page 

101) in 87% yield. 19 equiv diethylzinc were added in four portions. 

White amorphous solid. TLC (30% ethyl acetate in petroleum ether): Rf = 0.42 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 5.35 (m, 1H), 4.24 (ddd, J = 13.1, 3.1, 3.1 Hz, 1H), 3.52 (m, 1H), 2.89 (hept, J = 6.9 Hz, 1H), 

2.40–0.85 (m, 26H), 1.25 (d, J = 7.0 Hz, 3H), 1.18 (d, J = 6.9 Hz, 3H), 1.07 (t, J = 7.6 Hz, 3H), 1.01 (s, 3H) 

overlapping with 1.01 (d, J = 6.4 Hz, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.23, 153.49, 

140.84, 130.92, 121.41, 78.44, 71.71, 56.34, 52.22, 50.07, 42.74, 42.22, 39.67, 38.65, 37.22, 36.47, 

31.89, 31.85, 31.60, 27.67, 27.56, 27.40, 26.72, 24.30, 21.40, 21.02, 20.40, 19.36, 13.55, 12.40, 11.69. 

FTIR (neat), cm-1: 3448 (br), 2933 (br), 1696 (vs), 1057 (vs). HRMS (ESI): Calcd for (C31H48O3+H+): 

469.36762, found: 469.36713. 𝜶𝑫
𝑹𝑻= +35.8 (c = 1.0 in CHCl3).  

(R)-4-(2,3-dichlorophenyl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-isopropyl-5,6-dihydro-

2H-pyran-2-one (132c) 

 
The product was synthesized according to the general Suzuki Coupling procedure from 102b (page 

100) in 98% yield. At ambient temperature in CDCl3 the NMR shows a mixture of conformations in a 

ratio of 85:15. Only the 13C signals of the major conformer are listed.  

Colourless amorphous solid. TLC (30% ethyl acetate in petroleum ether): Rf = 0.26 (CAM). 1H NMR 

(CDCl3, 400 MHz) δ: 7.46 (m, 1H), 7.25 (m, 1H), 7.01 (dd, J = 7.6, 1.4 Hz), 5.34 (m, 1H), 4.62 (dt, J = 12.6, 

2.8 Hz, 0.85H, major conformer), 4.50 (dt, J = 13.3, 3.3 Hz, 0.15H, minor conformer), 3.50 (m, 1H), 2.92 

(dd, J = 17.3, 13.4 Hz, 0.15H, minor conformer), 2.52 (dd, J = 17.4, 13.1 Hz, 0.85H, major conformer), 

2.34 (m, 1H), 2.31–2.21 (m, 2H), 2.18 (dd, J = 17.4, 2.6 Hz), 2.10–0.84 (m, 20H), 1.17 (d, J = 7.0 Hz, 3H), 

1.11 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 

164.66, 147.65, 140.78, 140.66, 134.60, 133.80, 130.09, 129.91, 127.75, 126.02, 121.45, 79.28, 71.70, 
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56.29, 52.17, 50.04, 42.75, 42.24, 39.68, 38.69, 37.20, 36.45, 31.88, 31.80, 31.59, 30.19, 29.31, 27.30, 

24.33, 21.17, 21.01, 20.34, 19.35, 13.50, 11.70. FTIR (neat), cm-1: 2935 (br), 1718 (vs), 1454 (m), 1056 

(vs), 789 (vs). HRMS (ESI): Calcd for (C35H46Cl2O3+H+): 585.28968, found: 585.29064, calcd for 

(C35H46Cl37ClO3+H+): 587.28673, found: 587.28782, calcd for (C35H46
37Cl2O3+H+): 589.28378, found: 

589.28584. 𝜶𝑫
𝑹𝑻= +39.0 (c = 1.0 in CHCl3). 

(R)-4-(6-chloropyridin-3-yl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-isopropyl-5,6-dihydro-

2H-pyran-2-one (132d) 

 
The product was synthesized according to the general Suzuki coupling procedure (page 100) from the 

TBS-protected enol triflate 101b in 92% yield. The coupling product was then TBS-deprotected (page 

95) in 90% yield. 

White amorphous solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 8.26 (d, J = 2.1 Hz, 1H), 7.49 (dd, J = 8.2, 2.4 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 5.34 (m, 1H), 

4.50 (dt, J = 12.9, 3.0 Hz, 1H), 3.51 (m, 1H), 2.67 (dd, J = 17.7, 13.2 Hz, 1H), 2.59 (hept, J = 6.9 Hz, 1H), 

2.36–0.80 (m, 23H), 1.26 (d, J = 6.9 Hz, 3H), 1.13 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 1.00 (s, 3H), 

0.72 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 164.04, 151.26, 147.68, 145.28, 140.79, 137.36, 135.38, 

134.30, 124.32, 121.36, 78.73, 71.66, 56.27, 52.04, 49.96, 42.75, 42.17, 39.60, 38.68, 37.16, 36.42, 

31.83, 31.79, 31.54, 30.48, 29.52, 27.49, 24.26, 21.76, 20.96, 20.57, 19.34, 13.45, 11.69. FTIR (neat), 

cm-1: 3403 (br), 2935 (br), 1709 (vs), 1461 (s), 1108 (m), 1055 (s). HRMS (ESI): Calcd for 

(C34H46ClNO3+H+): 552.32390, found: 552.32359, calcd for (C34H46
37ClNO3+H+): 554.32095, found: 

554.32156. 𝜶𝑫
𝑹𝑻= +54.2 (c = 1.0 in CH2Cl2). 

(R)-4-(5-acetylthiophen-2-yl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-isopropyl-5,6-dihydro-

2H-pyran-2-one (132e) 

 
The product was synthesized according to the general Suzuki Coupling procedure from 102b (page 

100) in 98% yield.  

Colourless foam. TLC (40% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 7.63 (d, J = 3.9 Hz, 1H), 7.10 (d, J = 3.9 Hz, 1H), 5.35 (m, 1H), 4.45 (dt, J = 12.7, 2.8 Hz, 1H), 3.51 (m, 
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1H), 3.06 (hept, J = 6.9 Hz, 1H), 2.69 (dd, J = 17.6, 13.0 Hz, 1H), 2.57 (s, 3H), 2.37 (dd, J = 17.7, 2.7 Hz, 

1H), 2.33–2.18 (m, 2H), 2.09–1.92 (m, 3H), 1.88–0.83 (m, 17H), 1.39 (d, J = 6.9 Hz, 3H), 1.17 (d, J = 6.8 

Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 1.00 (s, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 190.62, 166.90, 

148.24, 145.46, 140.80, 140.76, 132.08, 129.34, 124.99, 121.36, 78.57, 71.64, 56.26, 52.06, 49.99, 

42.78, 42.19, 39.62, 38.79, 37.18, 36.44, 31.87, 31.79, 31.56, 29.33, 27.37, 26.73, 24.28, 20.99, 19.34, 

15.43, 13.43, 11.69. FTIR (neat), cm-1: 2932 (br), 1708 (vs), 1663 (vs), 1268 (vs), 1054 (vs). HRMS (ESI): 

Calcd for (C35H48O4S+H+): 565.33461, found: 565.33404. 𝜶𝑫
𝑹𝑻= +223.8 (c = 1.0 in CHCl3). 

(3S,8S,9S,10R,13S,14S,17R)-17-((S)-1-((R)-4-(1-isobutyl-1H-pyrazol-4-yl)-5-isopropyl-6-oxo-3,6-dihydro-2H-pyran-2-
yl)ethyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate 

(132f) 

 
The product was synthesized according to the general Suzuki Coupling procedure from 102b (page 

100), followed by acetylation (page 111) in 88% yield over two steps.  

Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 

7.60 (s, 1H), 7.45 (s, 1H), 5.37 (d, J = 4.5 Hz, 1H), 4.60 (m, 1H), 4.40 (dt, J = 13.0, 3.1 Hz, 1H), 3.96 (dd, J 

= 10.8, 4.5 Hz, 1H), 3.92 (dd, J = 10.8, 4.6 Hz, 1H), 3.06 (hept, J = 6.9 Hz, 1H), 2.56 (dd, J = 17.5, 13.1 Hz), 

2.35–2.18 (m, 4H), 2.08–1.94 (m, 4H) overlapping with 2.03 (s, 3H), 1.92–1.42 (m, 11H), 1.40 (d, J = 

6.9 Hz, 3H), 1.28–0.90 (m, 4H), 1.19 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 7.0 Hz, 3H) overlapping with 1.03 (s, 

3H), 0.94 (d, J = 6.7 Hz), 0.93 (d, J = 6.7 Hz), 0.73 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 170.49, 165.29, 

140.20, 139.77, 138.88, 130.82, 129.16, 122.35, 119.22, 77.95, 73.87, 59.97, 56.33, 52.25, 50.06, 42.83, 

39.67, 38.76, 38.10, 37.01, 36.58, 31.90, 31.86, 29.64, 29.48, 28.91, 27.74, 27.52, 24.34, 21.39, 21.32, 

21.00, 20.58, 19.88, 19.28, 13.61, 11.71. FTIR (neat), cm-1: 2936 (br), 1698 (vs), 1241 (vs), 1024 (s). 

HRMS (ESI): Calcd for (C38H56N2O4+H+): 605.43128, found: 605.43211. 𝜶𝑫
𝑹𝑻= +161.2 (c = 1.0 in CHCl3). 

(R)-4-(1-isobutyl-1H-pyrazol-4-yl)-3-isopropyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-methoxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (132g) 

 
The product was synthesized according to the general Suzuki Coupling procedure from 102b (page 

100), followed by methylation (page 109) in 71% yield over two steps.  
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Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

7.60 (s, 1H), 7.46 (s, 1H), 5.36 (m, 1H), 4.40 (dt, J = 12.8, 2.9 Hz, 1H), 3.94 (dd, J = 7.3, 1.1 Hz), 3.35 (s, 

3H), 3.05 (m, 2H), 2.55 (dd, J = 17.5, 13.1 Hz, 1H), 2.39 (m, 1H), 2.29 (dd, J = 17.7, 2.7 Hz, 1H), 2.25–0.8 

(m, 21H), 1.40 (d, J = 7.0 Hz, 3H), 1.19 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 1.00 (s, 3H), 0.94 (d, J 

= 3.2 Hz, 3H), 0.92 (d, J = 3.2 Hz, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.31, 140.95, 140.17, 

138.86, 130.73, 129.18, 121.30, 119.15, 80.25, 77.93, 59.93, 56.35, 55.57, 52.20, 50.14, 42.81, 39.66, 

38.70, 38.63, 37.14, 36.85, 31.89, 29.63, 29.40, 28.87, 27.93, 27.50, 24.34, 21.31, 21.01, 20.55, 19.87, 

19.33, 13.61, 11.71. FTIR (neat), cm-1: 2933 (br), 1697 (vs), 1608 (m), 1539 (m), 1458 (s). HRMS (ESI): 

Calcd for (C37H56N2O3+H+): 577.43637, found: 577.43699. 𝜶𝑫
𝑹𝑻= +145.4 (c = 1.0 in CHCl3). 

(R)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-17-yl)ethyl)-3-isopropyl-5,6-dihydro-2H-pyran-2-one (132h) 

  
The product was synthesized according to the general procedure for reductive elimination of enol 

triflates from 102b (page 105) in 54% yield. 29 equiv tributyltin hydride were added dropwise. 

Colourless crystals. TLC (30% ethyl acetate in petroleum ether): Rf = 0.28 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 6.53 (d, J = 6.4 Hz, 1H), 5.34 (m, 1H), 4.36 (dt, J = 13.0, 3.4 Hz, 1H), 3.51 (m, 1H), 2.84 (hept, 

J = 6.9 Hz, 1H), 2.40–2.16 (m, 3H), 2.09 (ddd, J = 18.0, 6.6, 3.4 Hz), 2.04–0.82 (m, 20H), 1.09 (d, J = 6.8 

Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 7.6 Hz), 1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) 

δ: 165.82, 140.80, 138.49, 136.01, 121.40, 79.66, 71.69, 56.32, 52.02, 50.02, 42.73, 42.20, 39.63, 38.80, 

37.20, 36.44, 31.87, 31.82, 31.57, 28.24, 27.30, 24.28, 23.07, 22.22, 21.07, 21.00, 19.35, 13.51, 11.66. 

FTIR (neat), cm-1: 3481 (m), 2922 (m), 1701 (vs). HRMS (ESI): Calcd for (C29H44O3+H+): 441.33632, found: 

441.33609. 𝜶𝑫
𝑹𝑻= +12.5 (c = 1.0 in CHCl3). Melting point: 228 °C. 

(R)-3-benzyl-4-(2,3-dichlorophenyl)-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-

one (133a) 

 
The product was synthesized from TBS-protected enol triflate 101d according to the general Suzuki 

Coupling procedure (page 100) in 76% yield. The coupling product was deprotected according to the 
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general TBS-deprotecting procedure (page 95) in 84% yield. At ambient temperature in CDCl3 the NMR 

shows a mixture of conformations in a ratio of 80:20. The 13C signals of the major conformer are listed. 

White amorphous solid. TLC (40% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 7.53–7.44 (m, 1H), 7.30–7.10 (m, 4H), 7.05–6.92 (m, 3H), 5.34 (m, 1H), 4.68 (dt, J = 12.8, 

3.1 Hz, 0.75H, major conformer), 4.57 (dt, J = 13.0, 3.1 Hz, 0.25H, minor conformer), 3.79 (d, J = 14.5 

Hz, 0.25H, minor conformer), 3.63 (d, J = 14.5 Hz, 0.75H, major conformer), 3.51 (m, 1H), 3.44 (d, J = 

14.4 Hz, 0.75H, major conformer), 3.27 (d, J = 14.5 Hz, 0.25H, minor conformer), 3.05–2.95 (m, 0.25H, 

minor conformer), 2.65–2.51 (m, 0.75H, major conformer), 2.45–0.85 (m, 23H), 1.04 (d, J = 6.7 Hz, 3H), 

1.00 (s, 3H), 0.71 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.95, 149.81, 140.72, 139.65, 138.58, 133.91, 

130.42, 130.23, 129.16, 128.59, 128.44, 128.29, 128.22, 127.81, 126.88, 126.12, 121.47, 79.44, 71.69, 

56.24, 52.12, 49.97, 42.74, 42.20, 39.64, 38.71, 37.16, 36.42, 33.47, 31.83, 31.78, 31.56, 29.13, 27.26, 

24.32, 20.98, 19.35, 13.54, 11.69. FTIR (neat), cm-1: 3393 (br), 2933 (br), 1709 (vs), 1188 (s), 728 (vs), 

697 (vs). HRMS (ESI): Calcd for (C39H46Cl2O3+H+): 633.28968, found: 633.28953, calcd for 

(C39H46Cl37ClO3+H+): 635.28673, found: 635.28664, calcd for (C39H46
37Cl2O3+H+): 637.28378, found: 

637.28328. 𝜶𝑫
𝑹𝑻= -5.3 (c = 1.0 in CHCl3). 

(R)-3-benzyl-6-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (133b) 

 
The product was synthesized according to the general procedure for reductive elimination of enol 

triflates (page 105) from 102d in 45% yield. 30 equiv tributyltin hydride were added dropwise. 

White crystalline solid. TLC 50% ethyl acetate in petroleum ether): Rf = 0.56 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 7.35–7.15 (m, 5H), 6.38 (d, J = 6.1 Hz, 1H), 5.34 (m, 1H), 4.42 (dt, J = 13.1, 3.4 Hz, 1H), 3.62 

(s, 2H), 3.51 (m, 1H), 2.42–2.18 (m, 3H), 2.12–0.82 (m, 21H), 1.01 (d, J = 6.7 Hz, 3H) overlapping with 

1.00 (s, 3H), 0.70 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.90, 140.77, 140.05, 138.38, 132.29, 129.23, 

128.46, 126.39, 121.36, 80.01, 71.67, 56.26, 51.94, 49.98, 42.71, 42.16, 39.59, 38.81, 37.17, 36.46, 

36.41, 31.83, 31.78, 31.53, 27.26, 24.25, 23.27, 20.97, 19.32, 13.46, 11.64. FTIR (neat), cm-1: 2935 (br), 

1711 (vs), 1381 (s), 1238 (m), 1057 (s). HRMS (ESI): Calcd for (C33H44O3+H+): 489.33632, found: 

489.33562. 𝜶𝑫
𝑹𝑻= +1.2 (c = 1.0 in CHCl3). Melting point: 170–172 °C. 
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5.3   Experimental Part for Part B 

5.3.1   Synthesis of Functionalized δ-Lactone Intermediates 

Synthesis of known Intermediate 186 

(3aS,7aS)-7a-methylhexahydro-1H-indene-1,5(4H)-dione (164)[144] 

 
t-BuLi (1.7 M in pentane, 2.36 ml, 4.02 mmol, 0.33 equiv) was added dropwise to a suspension of 

copper(I) bromide dimethyl sulfide complex (751 mg, 3.65 mmol, 0.3 equiv) in THF (8 mL) at −78 °C 

and the whole mixture was stirred for 60 min at that temperature. HMPA (4.5 ml) was added to the 

mixture. Then a solution of the starting material (2 g, 12.2 mmol, 1 equiv) in THF (5 ml) was added 

dropwise at −78, followed by an addition of DIBAL-H (1.0 M in toluene, 18.3 ml, 18.3 mmol, 1.5 equiv) 

and HMPA (8.5 ml) over 4 hours via syringe pump. 5% HCl was added to the mixture and the whole 

mixture was extracted with dichloromethane. The combined organic phases were dried over 

anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated in 

vacuo. The obtained residue was purified by flash-column chromatography (gradient elution with 20–

40% ethyl acetate in petroleum ether) to provide 164 (1.48 g, 73%) as a pure stereoisomer. The 

measured NMR spectra match with reported data.[144] 

(3aS,7aS,Z)-1-ethylidene-7a-methyloctahydrospiro[indene-5,2'-[1,3]dioxolane] (186) 

 
The ketal protection was performed according to the procedure of Kotoku et al.[144], followed by a 

Wittig according to Minato et al.[72] in 71% yield over two steps. 

1H NMR (CDCl3, 500 MHz) δ: 5.13 (qt, J = 7.1, 2.0 Hz, 1H), 3.93 (s, 4H), 2.45–2.10 (m, 3H), 1.90–1.65 (m, 

5H), 1.63 (dt, J = 7.1, 1.9 Hz, 3H), 1.61–1.47 (m, 2H), 1.35–1.27 (m, 1H), 0.92 (s, 3H). 13C NMR (CDCl3, 

126 MHz) δ: 148.66, 113.89, 109.76, 64.24, 64.11, 47.09, 43.42, 35.29, 33.90, 31.67, 31.52, 26.42, 

15.05, 13.12. 
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Synthesis of protected Aldehyde 192 

(S)-2-((3aS,7aS)-7a-methyl-3,3a,4,6,7,7a-hexahydrospiro[indene-5,2'-[1,3]dioxolan]-1-yl)propan-1-ol (190) 

 
To a suspension of known alkene 186 (816 mg, 3.67 mmol, 1 equiv) and paraformaldehyde (331 mg, 

11.01 mmol, 3 equiv) in dichloromethane (40 ml) at ambient temperature were added activated 4-Å 

molecular sieves (~2.5 g).3 After stirring for 1.0 h at ambient temperature, the above mixture was 

placed into an ice-water cooling bath. Boron trifluoride-etherate (1.0 M solution in dichloromethane, 

367 µl, 367 µmol, 0.1 equiv) was added dropwise and the reaction mixture was stirred for 10 h at 0 °C. 

Then, triethylamine (512 µL, 3.67 mmol, 1 equiv) was added at 0 °C followed, after 10 min, by addition 

of a saturated aqueous solution of sodium bicarbonate (20 ml). The resulting biphasic mixture was 

allowed to warm to ambient temperature. The organic phase was separated and the aqueous phase 

was extracted with dichloromethane (70 ml). The combined organic phases were dried over anhydrous 

magnesium sulfate, the dried solution was filtered, and the filtrate was concentrated in vacuo. The 

obtained residue was purified by flash-column chromatography (gradient elution with 10–30% ethyl 

acetate in petroleum ether) to provide homoallylic alcohol 190 (693 mg, 75%4). 

Colourless oil that solidified upon standing at ambient temperature. TLC (20% ethyl acetate in 

petroleum ether): Rf = 0.20 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 5.41 (m, 1H), 3.88 (m, 4H), 3.55 (dd, J 

= 10.6, 7.1 Hz, 1H), 3.46 (dd, J = 10.6, 6.4 Hz, 1H), 2.33 (m, 1H), 2.03–1.88 (m, 3H), 1.79–1.62 (m, 5H), 

1.57–1.47 (m, 2H), 1.00 (d, J = 6.9 Hz, 3H), 0.82 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 157.5, 123.8, 

110.5, 67.1, 64.9, 64.7, 48.3, 47.1, 36.1, 35.2, 33.3, 32.8, 32.0, 18.5, 15.1. FTIR (neat), cm-1: 3421 (br), 

2931 (m), 1087 (m). HRMS (ESI): Calcd for (C15H24O3+H+): 253.1798, found: 253.1800. 𝜶𝑫
𝑹𝑻= +4.3 (c = 

1.0 in CH2Cl2). 

(S)-2-((1R,3aS,7aS)-7a-methyloctahydrospiro[indene-5,2'-[1,3]dioxolan]-1-yl)propanal (192) 

 
To a 23 °C solution of homoallylic alcohol 190 (530 mg, 2.10 mmol, 1 equiv) in tetrahydrofuran (21 ml) 

was added 10% palladium on carbon (75 mg). The reaction flask was repeatedly evacuated-backfilled 

                                                           
3 Presence of activated 4-A molecular sieves was important to minimize undesired cleavage of the acetal 
protective group.   
4 The yield and stereoselectivity worsen if reaction is upscaled. 
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with dihydrogen (five cycles), then a dihydrogen-filled balloon was attached. After vigorous stirring for 

11.5 h at ambient temperature, the reaction mixture was filtered through Celite® eluting with ethyl 

acetate and the filtrate was concentrated in vacuo to provide 535 mg of the crude hydrogenation 

product 191 as a colourless oil.  

In a separate flask, a solution of dimethyl sulfoxide (344 L, 4.84 mmol, 2.3 equiv) in dichloromethane 

(5 ml) was added to a −78 °C solution of oxalyl chloride (196 L, 2.31 mmol, 1.1 equiv) in 

dichloromethane (10 ml) over 2 min. After 20 min, a solution of crude hydrogenation product 191 

(535 mg, 2.10 mmol, 1 equiv; see paragraph above) in dichloromethane (10 ml) was added to the 

above mixture at −78 °C over 5 min. The resulting suspension was stirred for 30 min, then triethylamine 

(1.06 ml, 7.57 mmol, 3.6 equiv) was added dropwise over 5 min at −78 °C. The mixture was stirred for 

additional 1 h at −78 °C before allowed to warm to ambient temperature. The obtained clear solution 

was diluted with dichloromethane (120 ml) and the diluted solution was washed sequentially with 

water (20 ml) and saturated aqueous solution of sodium chloride (20 ml). The washed organic phase 

was dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated in vacuo. 

Purification of the residue by flash-column chromatography (gradient elution with 10–15% ethyl 

acetate in petroleum ether) provided aldehyde 192 (429 mg, 81% over 2 steps).  

Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). 1H NMR (CD2Cl2, 500 MHz)  

δ: 9.52 (d, J = 3.2 Hz, 1H), 3.86 (s, 4 H), 2.30 (m, 1H), 1.95–1.13 (m, 12H), 1.07 (d, J = 6.9 Hz, 3H), 0.74 

(s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 205.3, 110.1, 64.8, 64.7, 50.7, 50.1, 47.4, 43.0, 36.7, 35.9, 31.8, 

28.1, 26.7, 13.8, 11.0. FTIR (neat), cm-1: 2944 (s), 2873 (m), 1723 (vs), 1076 (vs). Calcd for (C15H24O3+H+): 

253.1798, found: 253.1797. 𝜶𝑫
𝑹𝑻= +8.5 (c = 1.0 in CH2Cl2). 

Brown Allylation and Deprotection of 192 

(1R,3aS,7aS)-1-((2S,3R)-3-hydroxyhex-5-en-2-yl)-7a-methyloctahydro-5H-inden-5-one (180) 

 
(+)-B-Allyldiisopinocampheylborane (1.0 M solution in pentane, 2.24 ml, 2.24 mmol, 1.1 equiv) was 

added dropwise to a −78 °C solution of aldehyde 192 (513 mg, 2.03 mmol, 1 equiv) in tetrahydrofuran 

(40 ml). After 25 min, the reaction mixture was allowed to warm to 0 °C and sodium hydroxide (2.0 M 

aqueous solution, 2.03 ml, 4.07 mmol, 2 equiv) and hydrogen peroxide (30% aqueous solution by 

weight, 461 L, 2 equiv) were added sequentially. The mixture was allowed to reach ambient 

temperature and then was stirred for 11 h. The oxidation mixture was diluted with dichloromethane 
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(100 ml) and sequentially washed with water (40 ml) and saturated aqueous solution of sodium 

chloride (40 ml). Washed organic phase was dried over anhydrous magnesium sulfate, filtered, and 

concentrated in vacuo. The residue comprising a closely running mixture of protected allylation 

product and (+)-isopinocampheol was dissolved in a 10:1 acetone-water mixture (22 ml) and p-

toluenesulfonic acid monohydrate (193 mg, 1.02 mmol, 0.5 equiv) was added at ambient temperature. 

The resulting solution was warmed to 50 °C in an oil bath. After 30 min, the reaction mixture was 

allowed to cool down to ambient temperature, then was diluted with dichloromethane (100 ml). The 

diluted mixture was washed with saturated aqueous sodium bicarbonate (30 ml), the organic phase 

was separated and the aqueous phase was extracted with dichloromethane (50 ml). The combined 

organic extracts were dried over anhydrous magnesium sulfate, filtered, and the filtrate was 

concentrated in vacuo. The remaining residue was purified by flash-column chromatography (gradient 

elution with 10–30% ethyl acetate in petroleum ether) to provide the homoallylic product 180 (429 

mg, 84% over 2 steps).  

Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.15 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 5.83 (m, 1H), 5.17 (m, 1H), 5.14 (app s, 1H), 3.71 (ddd, J = 10.6, 3.2, 2.4 Hz, 1H), 2.48–2.12 (m, 6H), 

2.04–1.75 (m, 4H), 1.70–1.48 (m, 3H), 1.33–1.16 (m, 2H), 0.97 (d, J = 6.8 Hz, 3H), 0.94 (s, 3H). 13C NMR 

(CDCl3, 126 MHz) δ: 211.9, 135.9, 118.1, 71.8, 51.9, 49.6, 42.7, 42.2, 41.0, 37.7, 37.5, 34.9, 28.2, 26.4, 

12.4, 10.5. FTIR (neat), cm-1: 3451 (br), 2947 (m), 1707 (s), 1014 (m). HRMS (ESI): Calcd for 

(C16H26O2+H+): 251.2006, found: 251.2002. 𝜶𝑫
𝑹𝑻= +41.8 (c = 2.0 in CH2Cl2). 

Esterification of homoallylic Alcohols 180 and 233 

(2S,3R)-2-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)hex-5-en-3-yl 2-(((triisopropylsilyl)oxy)methyl)acrylate 
(179) 

 
Dicyclohexylcarbodiimide (884 mg, 4.28 mmol, 2.5 equiv) and 4-dimethylaminopyridine (105 mg, 0.86 

mmol, 0.5 equiv) were added sequentially to an ice-cold solution of homoallylic alcohol 180 (429 mg, 

1.71 mmol, 1 equiv) and acrylic acid 181[97] (1.11 g, 4.28 mmol, 2.5 equiv) in dichloromethane (20 ml). 

After 30 min, the ice-water cooling bath was removed and the resulting light yellow suspension was 

stirred vigorously at ambient temperature for 16 h. Then, dichloromethane (100 ml) and saturated 

aqueous solution of sodium bicarbonate (40 ml) were added. The organic phase was separated and 

dried over anhydrous magnesium sulfate. The dried solution was filtered and the filtrate was 
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concentrated in vacuo. Purification of the residue by flash-column chromatography (gradient elution 

with 0.5–0.7% ethyl acetate in dichloromethane) provided acrylic ester 179 (649 mg, 77%).  

Colourless oil. TLC (20% ethyl acetate in petroleum ether): Rf = 0.60 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 6.26 (d, J = 2.0 Hz, 1H), 5.97 (d, J = 2.1 Hz, 1H), 5.73 (m, 1H), 5.08–5.00 (m, 2H), 5.05 (ddd, J = 9.5, 

3.5, 3.5 Hz, 1H), 4.46 (s, 2H), 2.45–2.23 (m, 6H), 2.14 (m, 1H), 2.00–1.91 (m, 2H), 1.85–1.52 (m, 4H), 

1.36–1.04 (m, 22H), 0.99 (d, J = 6.8 Hz, 3H), 0.92 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 211.6, 165.5, 

140.0, 134.8, 123.3, 117.2, 75.7, 61.7, 52.0, 49.7, 42.7, 42.3, 39.0, 37.7, 37.5, 32.2, 28.0, 26.4, 18.0, 

13.1, 12.0, 10.5. FTIR (neat), cm-1: 2944 (s), 1711 (vs), 1096 (vs). HRMS (ESI): Calcd for (C29H51O4Si+H+): 

491.3551, found: 491.3543. 𝜶𝑫
𝑹𝑻= +26.5 (c = 1.0 in CHCl3). 

Triflation of 179 

(2S,3R)-2-((1R,3aS,7aS)-7a-methyl-5-(((trifluoromethyl)sulfonyl)oxy)-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)hex-5-en-3-yl 
2-(((triisopropylsilyl)oxy)methyl)acrylate (179-I) 

 
To a −78 °C solution of ketone 179 (400 mg, 0.82 mmol, 1 equiv) in tetrahydrofuran (16 ml) was added 

potassium hexamethyldisilazide (0.5 M solution in toluene, 1.96 ml, 0.98 mmol, 1.2 equiv). After 30 

min, Comins reagent (384 mg, 0.98 mmol, 1.2 equiv) was added as a solution in tetrahydrofuran (4 ml) 

at −78 °C. The reaction was quenched after 15 min by addition of pH 7 phosphate buffer (10 ml) at −78 

°C. The resulting mixture was allowed to warm to ambient temperature and then was diluted with 

dichloromethane (100 ml). The separated organic phase was dried over anhydrous magnesium sulfate, 

the dried solution was filtered, and the filtrate was concentrated in vacuo. The residue was purified by 

flash-column chromatography (gradient elution with 0–1% ethyl acetate in dichloromethane) to yield 

enol triflate 179-I (410 mg, 81%).  

Colourless oil. TLC (5% ethyl acetate in petroleum ether): 0.75 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.26 

(d, J = 1.9 Hz, 1H), 5.97 (d, J = 2.0 Hz, 1H), 5.78–5.65 (m, 2H), 5.07–4.98 (m, 3H), 4.45 (s, 2H), 2.40–2.04 

(m, 6H), 1.98–1.64 (m, 5H), 1.34–1.22 (m, 2H), 1.17–1.02 (m, 21H), 0.97 (d, J = 6.8 Hz, 3H), 0.71 (s, 3H). 

13C NMR (CDCl3, 100 MHz) δ: 165.4, 148.6, 140.0, 134.7, 123.3, 119.0 (weak q, J = 319 Hz, CF3), 118.1, 

117.2, 75.6, 61.6, 51.8, 46.0, 41.2, 38.8, 38.6, 32.1, 30.5, 27.7, 25.8, 18.0, 12.8, 11.9, 10.9. FTIR (neat), 

cm-1: 2945 (m), 1711 (m), 1417 (s), 1209 (s). HRMS (ESI): Calcd for (C30H49F3O6SSi+H+): 623.3044, found: 

623.3042.  



148  Experimental Part 
 

General TBS-Deprotection Protocol 

(2S,3R)-2-((1R,3aS,7aS)-7a-methyl-5-(((trifluoromethyl)sulfonyl)oxy)-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)hex-5-en-3-yl 
2-(hydroxymethyl)acrylate (179-II) 

 
To a 23 °C solution of tri-isopropylsilyl ether 179-I (410 mg, 0.66 mmol, 1 equiv) in dichloromethane 

(8.8 ml) was added triethylamine-trihydrofluoride (2 ml). The reaction flask was sealed and stirring 

continued for 22 h. The reaction mixture was diluted with dichloromethane and the diluted mixture 

was carefully neutralized by addition of saturated aqueous solution of sodium bicarbonate. The organic 

phase was separated and the aqueous phase was extracted with dichloromethane. The combined 

organic phases were dried over anhydrous magnesium sulfate, the dried solution was filtered, and the 

filtrate was concentrated in vacuo. The obtained residue was purified by flash-column chromatography 

(gradient elution with 10–30% ethyl acetate in petroleum ether) to provide deprotected acrylate ester 

179-II (256 mg, 83%).  

Colourless oil. TLC (15% ethyl acetate in petroleum ether): Rf = 0.18 (CAM). 1H NMR (CDCl3, 500 MHz)  

δ: 6.26 (s, 1H), 5.81 (d, J = 0.9 Hz, 1H), 5.73 (m, 1H), 5.66 (m, 1H), 5.12–5.01 (m, 3H), 4.35 (d, J = 14.0 

Hz, 1H), 4.29 (d, J = 13.5 Hz, 1H), 2.39–2.05 (m, 7H), 1.93 (m, 2H), 1.85–1.64 (m, 3H), 1.31 (m, 2H), 0.98 

(d, J = 6.8 Hz, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.7, 148.6, 139.6, 134.8, 125.7, 118.5 

(weak q, J = 319 Hz, CF3), 118.0, 117.4, 76.1, 62.7, 51.9, 46.0, 41.3, 38.8, 38.6, 32.1, 30.5, 27.7, 25.8, 

12.8, 10.9. FTIR (neat), cm-1: 3450 (br), 2947 (m), 1710 (s), 1416 (vs), 1209 (vs), 1143 (vs). HRMS (ESI): 

Calcd for (C21H29F3O6S+H+): 467.1710, found: 467.1700. 𝜶𝑫
𝑹𝑻= +27.4 (c = 1.0 in CH2Cl2). 



Experimental Part  149 
 

 

Ring-closing Metathesis of Ester 179-II 

(1R,3aS,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-
1H-inden-5-yl trifluoromethanesulfonate (177) 

 
Note: Portionwise addition of ruthenium(II) catalyst 193 was employed in all ring-closing metathesis 

experiments detailed below.  

First portion of Stewart-Grubbs ruthenium catalyst 193 (20 mg, 35.7 µmol, 0.05 equiv) was added to a 

80 °C solution of acrylate ester 179-II (333 mg, 714 µmol, 1 equiv) in toluene (135 ml; deoxygenated 

by bubbling a stream of argon through toluene solution for 45 min). After 2 h, the second portion of 

Stewart-Grubbs ruthenium catalyst 193 (20 mg, 35.7 µmol, 0.05 equiv) was added and stirring was 

continued for additional 2 h at 80 °C. The reaction mixture was allowed to cool down to ambient 

temperature, then a solution of potassium isocyanoacetate (90% purity, 79 mg, 0.64 mmol, 1 equiv) in 

methanol (6 ml) was added, and the resulting mixture was stirred for 1 h.[145] The dark yellow-brown 

mixture was concentrated in vacuo. Purification of the residue by flash-column chromatography 

(gradient elution with 30–50% ethyl acetate in petroleum ether) provided dehydrolactone 177 

(250 mg, 80%).  

White powder. TLC (40% ethyl acetate in petroleum ether): Rf = 0.18 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 6.85 (d, J = 6.0 Hz, 1H), 5.68 (app d, J = 5.7 Hz, 1H), 4.50 (ddd, J = 13.1, 3.4, 3.4 Hz, 1H), 4.32 (d, J = 

14.5 Hz, 1H), 4.30 (d, J = 14.5 Hz, 1H), 2.48–2.00 (m, 8H), 1.78 (m, 3H), 1.50 (m, 1H), 1.36–1.20 (m, 2H), 

1.05 (d, J = 6.7 Hz, 3H), 0.76 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.7, 148.5, 140.4, 131.5, 118.5 

(weak q, J = 319 Hz, CF3), 117.9, 80.1, 61.7, 50.9, 46.0, 41.4, 38.7, 38.5, 30.6, 27.9, 25.8, 23.0, 13.1, 

10.8. FTIR (neat), cm-1: 3434 (br), 2943 (m), 1710 (vs), 1415 (vs), 1208 (vs), 1141 (vs). HRMS (ESI): Calcd 

for (C19H25F3O6S+H+): 439.1397, found: 439.1391. 𝜶𝑫
𝑹𝑻= +57.0 (c = 0.93 in CH2Cl2). 
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Ring-closing Metathesis of Ester 179 and Synthesis of 194 

(R)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-dihydro-
2H-pyran-2-one (178) 

 
The first portion of Stewart-Grubbs ruthenium catalyst 193 (52.3 mg, 91.7 µmol, 0.15 equiv) was added 

to an 80 °C solution of acrylate ester 179 (300 mg, 611 µmol, 1 equiv) in toluene (200 ml; deoxygenated 

by bubbling a stream of argon into toluene for 45 min). After 3 h, the second portion of Stewart-Grubbs 

ruthenium catalyst 193 (52.3 mg, 91.7 µmol, 0.15 equiv) was added and stirring was continued for 

additional 4.5 h at 80 °C. The reaction mixture was allowed to cool down to ambient temperature, then 

a solution of potassium isocyanoacetate (90% purity, 167 mg, 1.22 mmol, 2 equiv) in methanol (8 ml) 

was added, and the resulting mixture was stirred for 1 h. The dark yellow-brown mixture was 

concentrated in vacuo. Purification of the residue by flash-column chromatography (gradient elution 

with 10–30% ethyl acetate in petroleum ether) provided unreacted acrylate ester 179 (56 mg, 19%) 

initially, followed by dehydrolactone 178 (211 mg, 75%).  

White powder. TLC (20% acetone in petroleum ether): Rf = 0.27 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

6.96 (m, 1H), 4.60–4.37 (m, 2H), 4.47 (ddd, J = 13.3, 3.7, 3.7 Hz, 1H), 2.50–2.02 (m, 8H), 1.90–1.74 (m, 

2H), 1.72–1.46 (m, 2H), 1.39–1.00 (m, 26H), 0.96 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 211.6, 165.0, 

137.6, 131.7, 79.9, 60.6, 50.8, 49.6, 42.7, 42.2, 38.8, 37.6, 37.4, 28.1, 26.3, 22.9, 18.1, 13.4, 12.0, 10.4. 

FTIR (neat), cm-1: 2944 (s), 1713 (vs), 1067 (m). HRMS (ESI): Calcd for (C27H47O4Si+H+): 463.3238, found: 

463.3233. 𝜶𝑫
𝑹𝑻= +76.7 (c = 1.0 in CH2Cl2). 

(R)-3-(hydroxymethyl)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)ethyl)-5,6-dihydro-2H-pyran-2-one 
(194) 

 
194 was prepared from 178 according to the general TBS-deprotection protocol (page 148) in >99% 

yield. 
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White amorphous solid. TLC (70% ethyl acetate in petroleum ether): Rf = 0.20 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 6.83 (d, J = 6.0 Hz, 1H), 4.51 (ddd, J = 13.2, 3.6, 3.6 Hz, 1H), 4.32 (d, J = 14.5 Hz, 1H), 4.29 

(d, J = 14.5 Hz, 1H), 2.46–2.06 (m, 10H), 1.85–1.76 (m, 2H), 1.69–1.48 (m, 3H), 1.36–1.18 (m, 2H), 1.05 

(d, J = 6.7 Hz, 3H), 0.95 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 211.4, 165.8, 140.4, 131.4, 80.0, 61.5, 50.8, 

49.6, 42.7, 42.2, 38.8, 37.6, 37.3, 28.1, 26.3, 23.1, 13.4, 10.4. FTIR (neat), cm-1: 3434 (br), 2948 (w), 

1707 (vs). HRMS (ESI): Calcd for (C18H27O4+H+): 307.1904, found: 307.1904. 𝜶𝑫
𝑹𝑻= +95.36 (c = 0.69 in 

CHCl3). 

Sodium Borohydride Reduction of Ketone 178 and Synthesis of 238 

(R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-
dihydro-2H-pyran-2-one (176) 

 
Sodium borohydride (19 mg, 0.51 mmol, 3 equiv) was added to an ice-cold solution of ketone 178 

(78 mg, 0.17 mmol, 1 equiv) in 2-propanol (5 ml). The resulting suspension was stirred for 5 min at 

0 °C, then for 15 min at ambient temperature. The obtained clear solution was diluted with 

dichloromethane (20 ml) and an excess of unreacted sodium borohydride was carefully quenched by 

dropwise addition of a saturated aqueous solution of ammonium chloride. The organic phase was 

separated and the aqueous phase was extracted further with dichloromethane. The combined organic 

phases were dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated in 

vacuo. The residue was purified by flash-column chromatography (gradient elution with 10–30% ethyl 

acetate in petroleum ether) to provide alcohol 176 (66 mg, 84%; pure diastereomer5).  

White foam. TLC (30% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CDCl3, 400 MHz)  δ: 

6.95 (m, 1H), 4.55 (m, 1H), 4.45 (ddd, J = 13.2, 3.6, 3.6 Hz, 1H), 4.42 (m, 1H), 3.61 (m, 1H), 2.38 (m, 1H), 

2.19 (m, 1H), 2.03 (m, 1H), 1.92 (m, 1H), 1.86–1.05 (m, 32H), 1.01 (d, J = 6.8 Hz, 3H), 0.75 (s, 3H). 

13C NMR (CDCl3, 100 MHz) δ: 165.1, 137.6, 131.6, 80.2, 71.5, 60.7, 51.3, 48.3, 42.3, 39.0, 37.5, 35.0, 

31.5, 27.7, 25.8, 23.0, 18.0, 13.4, 12.0, 11.0. FTIR (neat), cm-1: 3401 (br), 2940 (m), 1709 (s), 1066 (s). 

HRMS (ESI): Calcd for (C27H48O4Si+H+): 465.3395, found: 465.3390. 𝜶𝑫
𝑹𝑻= +40.6 (c = 1.0 in CH2Cl2).  

                                                           
5 A small amount of epimeric product (opposite alcohol configuration), separable from the major diastereomer, 
was also isolated (~10%). 
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(R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(hydroxymethyl)-5,6-dihydro-2H-
pyran-2-one (238) 

 
The product was prepared from 176 according to the general TBS-deprotection protocol (page 148) in 

83% yield. 

TLC (70% ethyl acetate in petroleum ether): Rf = 0.22 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.84 (d, J = 

5.4 Hz, 1H), 4.49 (ddd, J = 13.1, 3.6, 3.6 Hz, 1H), 4.30 (s, 2H), 3.61 (m, 1H), 2.42 (m, 1H), 2.23 (m, 1H), 

2.17 (m, 1H), 2.08–1.66 (m, 6H), 1.58–1.04 (m, 8H), 1.01 (d, J = 6.7 Hz, 3H), 0.76 (s, 3H). 13C NMR (CDCl3, 

100 MHz) δ: 165.9, 140.7, 131.1, 80.3, 71.5, 61.7, 51.2, 48.3, 42.3, 38.9, 37.4, 35.0, 31.4, 27.7, 25.7, 

23.0, 13.4, 11.0. FTIR (neat), cm-1: 3369 (br), 2940 (m), 1701 (vs). HRMS (ESI): Calcd for (C18H29O4+H+): 

309.2060, found: 309.2061. 𝜶𝑫
𝑹𝑻= +66.79 (c = 0.76 in CHCl3).  

Synthesis of δ-Lactone Intermediate 217 and of 239 

(3S,6R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-
(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-one (217) 

 
To a 23 °C solution of unsaturated lactone 176 (70 mg, 150 µmol, 1 equiv) in tetrahydrofuran (11 ml) 

was added 10% palladium-on-carbon (16 mg). The reaction flask was repeatedly evacuated-backfilled 

with dihydrogen (five cycles), then a dihydrogen-filled balloon was attached. After vigorous stirring 

overnight at ambient temperature, the reaction mixture was filtered through Celite® eluting with ethyl 

acetate and the filtrate was concentrated in vacuo. Purification of the residue by flash-column 

chromatography (gradient elution with 10–60% ethyl acetate in petroleum ether) provided saturated 

lactone 217 (54 mg, 77%, mixture of diastereomers 6:1).  

Colourless oil. TLC (40% ethyl acetate in petroleum ether): Rf = 0.39 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 4.31 (m, 1H), 4.09 (dd, J = 9.6, 5.6 Hz, 0.15H, minor stereoisomer), 4.03 (dd, J = 9.8, 4.2 Hz, 0.85H, 

major stereoisomer), 3.93 (dd, J = 9.6, 3.3 Hz, 0.15H, minor stereoisomer), 3.88 (dd, J = 9.8, 7.7 Hz, 

0.85H, major stereoisomer), 3.60 (m, 1H), 2.68 (ddd, J = 7.7, 7.6, 4.3, 0.85H, major stereoisomer), 2.53 

(m, 0.15H, minor stereoisomer), 2.20–1.07 (m, 18H), 1.06–0.99 (m, 21H), 0.93 (d, J = 6.7 Hz, 3H), 0.73 

(s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 173.77, 81.26, 71.46, 64.22, 51.33, 48.23, 42.21, 41.01, 39.10, 

37.31, 34.92, 31.37, 27.78, 25.70, 21.61, 19.47, 17.92, 17.90, 12.73, 11.81, 10.95. FTIR (neat), cm-1: 



Experimental Part  153 
 

 

3391 (br), 2941 (s), 2865 (s), 1726 (s), 1463 (m). HRMS (ESI): Calcd for (C27H50O4Si+H+): 467.35511, 

found: 467.35491. 

(3S,6R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(hydroxymethyl)tetrahydro-2H-
pyran-2-one (239) 

 
The product was synthesized according to the general TBS-deprotection protocol (page 148) from 217. 

The yield was not determined.  

White crystalline solid. TLC (80% ethyl acetate in dichloromethane): Rf = 0.24 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 4.34 (dt, J = 11.3, 3.3 Hz, 1H), 3.76 (dd, J = 11.5, 4.4 Hz, 1H) overlapping with 3.72 (dd, J = 

11.5, 6.9 Hz, 1H), 3.62 (m, 1H), 2.69 (m, 1H), 2.07–1.06 (m, 19H), 0.97 (d, J = 6.7 Hz, 1H), 0.76 (s, 3H). 

HRMS (ESI): Calcd for (C18H30O4+H+): 311.22169, found: 311.22155.  

Synthesis of δ-Lactone Intermediates 216 and 218 

(2S,3R)-2-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)hex-5-en-3-yl acrylate (215) 

 
Acryloyl chloride (69 µl, 0.85 mmol, 2 equiv) and triethylamine (236 µl, 1.69 mmol, 4 equiv) were added 

to a solution of homoallylic alcohol 180 (106 mg, 0.42 mmol, 1 equiv) in dichloromethane (10 ml). The 

resulting light yellow solution was stirred at ambient temperature for 1 h. Then, dichloromethane 

(100 ml) and saturated aqueous solution of sodium bicarbonate (40 ml) were added. Organic phase 

was separated and dried over anhydrous magnesium sulfate. The dried solution was filtered and the 

filtrate was concentrated in vacuo. Purification of the residue by flash-column chromatography 

(gradient elution with 5–30% ethyl acetate in petroleum ether) provided acrylic ester 215 (92 mg, 71%).  

Colourless oil. TLC (30% ethyl acetate in petroleum ether): Rf = 0.6 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

6.38 (dd, J = 17.3, 1.1 Hz, 1H), 6.10 (dd, J = 17.3, 10.4 Hz, 1H), 5.80 (dd, J = 10.4, 1.1 Hz, 1H), 5.73 (m, 

1H), 5.04 (m, 3H), 2.50–1.47 (m, 12), 1.38–1.18 (m, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.91 (s, 3H). 13C NMR 

(CDCl3, 100 MHz) δ: 211.78, 165.74, 134.75, 130.39, 128.82, 117.04, 75.62, 51.78, 49.63, 42.68, 42.15, 

38.97, 37.60, 37.44, 32.02, 27.91, 26.32, 13.05, 10.49. FTIR (neat), cm-1: 2958 (br), 1715 (vs), 1405 (m), 

1193 (vs). HRMS (ESI): Calcd for (C19H28O3+H+): 305.21112, found: 305.21106. 𝜶𝑫
𝑹𝑻= +44.0 (c = 1.0 in 

CH2Cl2). 
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(R)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (215-I) 

 
Stewart-Grubbs ruthenium catalyst 193 (24 mg, 42 µmol, 0.05 equiv) was added to a solution of 

acrylate ester 215 (260 mg, 854 µmol, 1 equiv) in toluene (65 ml). The resulting mixture was stirred for 

1 h at 80 °C. The dark yellow-brown mixture was concentrated in vacuo. Purification of the residue by 

flash-column chromatography (gradient elution with 40–80% ethyl acetate in petroleum ether) 

provided dehydrolactone 215-I (196 mg, 83%).  

White powder. TLC (40% ethyl acetate in petroleum ether): Rf = 0.30 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 6.91 (ddd, J = 9.5, 6.6, 2.5 Hz, 1H), 6.00 (dd, J = 6.6, 2.8 Hz, 1H), 4.50 (dt, J = 13.0, 3.6 Hz, 1H), 2.46–

2.05 (m, 8H), 1.86–1.50 (m, 5H), 1.36–1.18 (m, 2H), 1.05 (d, J = 6.7 Hz, 3H), 0.95 (s, 3H). 13C NMR (CDCl3, 

126 MHz) δ: 211.4, 164.7, 145.3, 121.3, 79.8, 50.8, 49.6, 42.6, 42.2, 38.9, 37.6, 37.4, 28.1, 26.2, 23.0, 

13.4, 10.3. FTIR (neat), cm-1: 2948 (m), 1703 (vs), 1261 (s). HRMS (ESI): Calcd for (C17H24O3+H+): 

277.1798, found: 277.1798. 𝜶𝑫
𝑹𝑻= +102.78 (c = 1.28 in CHCl3). 

(R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (216) 

 
Lithium tri-tert-butoxyaluminum hydride (168 mg, 662 µmol, 1 equiv) was added to an ice-cold solution 

of ketone 215-I (183 mg, 662 µmol, 1 equiv) in THF (20 ml). The resulting solution was stirred for 5 min 

at 0 °C. The obtained clear solution was diluted with dichloromethane and an excess of unreacted 

lithium tri-tert-butoxyaluminum hydride was carefully quenched by dropwise addition of a 1M solution 

of hydrochloric acid (10 ml). The organic phase was separated and the aqueous phase was extracted 

further with dichloromethane. The combined organic phases were dried over anhydrous magnesium 

sulfate, filtered, and the filtrate was concentrated in vacuo. The residue was purified by flash-column 

chromatography (gradient elution with 50–100% ethyl acetate in petroleum ether) to provide alcohol 

216 (146 mg, 79%; pure diastereomer).  
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TLC (40% ethyl acetate in petroleum ether): Rf = 0.15 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 6.90 (m, 1H), 

6.01 (dd, J = 9.7, 2.8 Hz, 1H), 4.48 (dt, J = 13.0, 3.6 Hz, 1H), 3.62 (tt, J = 10.0, 4.9 Hz, 1H), 2.36 (m, 1H), 

2.13 (ddd, J =18.3, 6.4, 3.5 Hz, 1H), 2.04 (m, 1H), 1.93 (dt, J = 13.0, 3.6 Hz, 1H), 1.85 – 1.70 (m, 3H), 1.70 

– 1.18 (m, 7H), 1.09 (m, 1H), 1.02 (d, J = 6.7, 3H), 0.76 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 164.9, 

145.5, 121.4, 80.1, 71.5, 51.3, 48.3, 42.4, 39.0, 37.4, 35.0, 31.5, 27.7, 25.7, 23.1, 13.4, 11.0. FTIR (neat), 

cm-1: 3410 (br), 2940 (m), 1720 (vs), 1260 (m), 1029 (m). HRMS (ESI): Calcd for (C17H26O3+H+): 279.1955, 

found: 279.1954. 𝜶𝑫
𝑹𝑻= +105.79 (c = 0.16 in CHCl3). 

(R)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)tetrahydro-2H-pyran-2-one (218) 

  
To a solution of unsaturated lactone 216 (92 mg, 330 µmol, 1 equiv) in tetrahydrofuran (10 ml) at 

ambient temperature was added 10% palladium on carbon (18 mg). The reaction flask was repeatedly 

evacuated-backfilled with dihydrogen (five cycles), then a dihydrogen-filled balloon was attached. 

After vigorous stirring overnight at ambient temperature, the reaction mixture was filtered through 

Celite® eluting with ethyl acetate and the filtrate was concentrated in vacuo to provide the crude 

hydrogenation product (colourless oil). Purification of the residue by flash-column chromatography 

(gradient elution with 50–80% ethyl acetate in petroleum ether) provided saturated lactone 218 (71 

mg, 76%). 

Colourless oil. TLC (70% ethyl acetate in petroleum ether): Rf = 0.29 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 4.32 (ddd, J = 11.60, 3.09, 3.09 Hz, 1H), 3.59 (m, 1H), 2.57 (ddd = 16.68, 7.14, 3.64 Hz, 1H), 2.37 (ddd 

= 17.20, 9.92, 7.28 Hz, 1H), 2.0–1.05 (m, 18H), 0.92 (d, J = 6.69 Hz, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 

100 MHz) δ: 172.16, 82.97, 71.40, 51.30, 48.20, 42.21, 39.40, 37.29, 34.87, 31.32, 29.68, 27.68, 25.68, 

20.99, 18.81, 12.71, 10.93. FTIR (neat), cm-1: 3467 + 3398 (br), 2937 (m), 1724 (s), 1703 (s), 1255 (s). 

HRMS (ESI): Calcd for (C17H28O3+H+): 281.21112, found: 281.21051. 
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Synthesis of epimeric δ-Lactone Intermediate 234 

(1R,3aS,7aS)-1-((2S,3S)-3-hydroxyhex-5-en-2-yl)-7a-methyloctahydro-5H-inden-5-one (233) 

  
The compound was prepared from 192 according to the Brown allylation and acetal deprotection 

protocol (page 145) in 80% yield. (-)-Ipc2B(allyl)borane instead of (+)-Ipc2B(allyl)borane was used for 

the Brown allylation. 

TLC (30% ethyl acetate in petroleum ether): Rf = 0.23 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 5.79 (m, 1H), 

5.13 (m, 1H), 5.09 (m, 1H), 3.72 (ddd, J = 8.6, 4.9, 1.5 Hz, 1H), 2.50–1.19 (m, 16H), 0.94 (d, J = 6.7 Hz, 

3H), 0.90 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 212.05, 135.41, 117.63, 72.03, 51.33, 49.82, 42.77, 

41.70, 40.19, 40.00, 37.65, 37.50, 28.49, 26.24, 11.60, 10.40. FTIR (neat), cm-1: 3429 (br), 2967 (m), 

2940 (m), 2361 (m), 2342 (m), 1706 (s). HRMS (ESI): Calcd for (C16H26O2+H+): 251.20056, found: 

251.19991. 𝜶𝑫
𝑹𝑻= +44.8 (c = 1.0 in CHCl3). 

(2S,3S)-2-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)hex-5-en-3-yl 2-(((triisopropylsilyl)oxy)methyl)acrylate 
(233-I) 

  
The compound was prepared from 233 according to the esterification protocol described above (page 

146) in 70% yield. 

TLC (10% ethyl acetate in petroleum ether): Rf = 0.33 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.24 (m, 1H), 

5.97 (m, 1H), 5.71 (m, 1H), 5.14–5.00 (m, 3H), 4.44 (s, 2H), 2.50–1.98 (m, 7H), 1.85–1.00 (m, 8H), 1.09–

1.00 (m, 24H), 0.92 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 211.74, 165.41, 140.04, 133.85, 123.51, 

117.73, 75.02, 61.70, 51.44, 49.81, 42.71, 41.77, 38.63, 37.61, 37.45, 36.80, 28.84, 26.28, 17.97, 12.83, 

11.97, 10.34. FTIR (neat), cm-1: 2944 (m), 2866 (m), 1711 (vs), 1266 (m), 1095 (vs). HRMS (ESI): Calcd 

for (C29H50O4Si+H+): 491.35511, found: 491.35456. 𝜶𝑫
𝑹𝑻= +38.1 (c = 1.0 in CHCl3). 
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(S)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-5-oxooctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-dihydro-
2H-pyran-2-one (234) 

  
The compound was prepared according to the ring-closing metathesis protocol described above (page 

150) in 63% yield. 11% of the starting material were isolated. 

TLC (20% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.97 (d, J = 

6.1 Hz, 1H), 4.60–4.45 (m, 2H), 4.44–4.35 (m, 1H), 2.67–2.53 (m, 1H), 2.48–1.10 (m, 17H), 1.10–1.02 

(m, 21H), 0.91 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 211.62, 164.86, 137.88, 131.46, 79.63, 60.72, 50.14, 

49.58, 42.71, 41.69, 39.53, 37.41, 37.36, 28.46, 27.26, 26.19, 17.98, 13.23, 11.91, 10.43. FTIR (neat), 

cm-1: 2943 (m), 2865 (m), 1710 (vs), 1462 (m), 1068 (vs), 681 (s). HRMS (ESI): Calcd for (C27H46O4Si+H+): 

463.32381, found: 463.32405. 𝜶𝑫
𝑹𝑻= +10.0 (c = 1.0 in CHCl3).  

L-Selectride Reduction of Ketones 178 and 234, Synthesis of 235, 236 and 237 

(R)-6-((S)-1-((1R,3aS,5R,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-
dihydro-2H-pyran-2-one (236) 

 
To a −78 °C solution of ketone 178 (200 mg, 432 µmol, 1 equiv) in dry tetrahydrofuran (8 ml) was added 

L-Selectride (1 M solution in tetrahydrofuran, 519 µl, 518 µmol, 1.2 equiv) dropwise. After stirring for 

1 h at ambient temperature the reaction was quenched by addition of saturated aqueous ammonium 

chloride at −78 °C. The obtained solution was diluted with ethyl acetate and the diluted solution was 

washed with water. The washed organic phase was dried over anhydrous magnesium sulfate, filtered 

and the filtrate was concentrated in vacuo. Purification of the residue by flash-column chromatography 

(gradient elution with 20–35% ethyl acetate in petroleum ether) provided epimeric alcohol 236 (65 

mg, 32%). 

Colourless oil. 1H NMR (CDCl3, 400 MHz) δ: 6.99 (m, 1H), 4.58 (m, 1H), 4.49 (dt, J = 13.2, 3.6 Hz, 1H), 

4.44 (m, 1H), 4.11 (m, 1H), 2.42 (m, 1H), 2.23 (m, 1H), 2.07 (m, 1H), 1.88–1.13 (m, 13H), 1.10 (m, 21H), 

1.07 (d, J = 6.7 Hz, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.11, 137.68, 131.50, 80.24, 66.35, 

60.71, 51.92, 42.63, 41.95, 38.96, 34.49, 33.21, 29.14, 26.81, 26.20, 22.85, 17.99, 13.49, 11.93, 9.86. 

FTIR (neat), cm-1: HRMS (ESI): Calcd for (C27H48O4Si+H+): 465.33946, found: 465.33939.  
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(S)-6-((S)-1-((1R,3aS,5S,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-
dihydro-2H-pyran-2-one (235) 

  
The compound was prepared from 234 according to the sodium borohydride reduction protocol 

described above (page 151) in 63% yield. 

1H NMR (CDCl3, 500 MHz) δ: 6.95 (m, 1H), 4.54 (d, J = 15.8 Hz, 1H), 4.47 (d, J = 12.9 Hz, 1H), 4.39 (d, J = 

15.7 Hz, 1H), 3.62 (m, 1H), 2.58 (t, J = 15.8 Hz, 1H), 2.40–0.80 (m, 39H), 0.72 (s, 3H). 13C NMR (CDCl3, 

126 MHz) δ: 165.05, 138.00, 131.37, 79.87, 71.44, 60.72, 50.54, 48.40, 41.71, 39.60, 37.24, 35.04, 

31.42, 28.10, 27.28, 25.62, 17.96, 13.15, 11.90, 10.97. FTIR (neat), cm-1: 3402 (br), 2941 (s), 2865 (s), 

1701 (s), 1062 (s). HRMS (ESI): Calcd for (C27H48O4Si+H+): 465.33946, found: 465.33962.  

(S)-6-((S)-1-((1R,3aS,5R,7aS)-5-hydroxy-7a-methyloctahydro-1H-inden-1-yl)ethyl)-3-(((triisopropylsilyl)oxy)methyl)-5,6-
dihydro-2H-pyran-2-one (237) 

  
The product was prepared from 234 using the general L-Selectride reduction protocol (page 157) in 

39% yield. 

TLC (30% ethyl acetate in petroleum ether): Rf = 0.23 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.96 (m, 1H), 

4.56 (m, 1H), 4.49 (m, 1H), 4.41 (m, 1H), 4.05 (m, 1H), 2.59 (m, 1H), 2.10 (m, 1H), 2.18–1.10 (m, 14H), 

1.08 and 1.07 (m, 24H), 0.67 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.06, 137.93, 131.40, 80.11, 66.33, 

60.74, 51.19, 42.10, 42.05, 39.67, 34.26, 33.28, 29.16, 27.20, 26.11, 18.00, 13.43, 11.90, 9.91. FTIR 

(neat), cm-1: 2940 (m), 2865 (m), 1707 (vs), 1462 (w), 1061 (vs). HRMS (ESI): Calcd for (C27H48O4Si+H+): 

465.33946, found: 465.33958. 
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Synthesis of functionalized Intermediate 221 and of 240 

(1R,3aS,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-5H-inden-5-one (219) 

 
190 was hydrogenated as described above (page 144). The hydrogenation product was not purified by 

column chromatography and the crude product subjected to acetal deprotection as described above 

(page 145) to yield 219. The yield over two steps is 69%. 

TLC (50% ethyl acetate in petroleum ether): Rf = 0.31 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 3.59 (dd, J 

= 10.5, 3.3 Hz, 1H), 3.32 (dd, J = 10.5, 6.8 Hz, 1H), 2.39 (ddd, J = 16.1, 13.0, 7.0 Hz, 1H), 2.28–2.17 (m, 

3H), 2.13 (ddd, J = 12.9, 7.1, 1.7 Hz, 1H), 1.93 (m, 1H), 1.79 (m, 1H), 1.72–1.39 (m, 5H), 1.27 (m, 2H), 

1.03 (d, J = 6.7 Hz, 3H), 0.90 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 212.02, 67.94, 51.85, 50.35, 43.27, 

42.44, 39.27, 38.16, 38.02, 29.06, 26.99, 17.06, 10.87. FTIR (neat), cm-1: 3412 (br), 2948 (s), 2870 (m), 

1705 (vs), 1041 (m), 1013 (m), 985 (m). HRMS (ESI): Calcd for (C13H22O2+H+): 211.16926, found: 

211.16907.  

(1R,3aS,7aS)-7a-methyl-1-((S)-1-((triisopropylsilyl)oxy)propan-2-yl)octahydro-5H-inden-5-one (220) 

 
To a solution of alcohol 219 (200 mg, 951 µmol, 1 equiv) in dichloromethane (15 ml) were added 

Triisopropylsilyl chloride (303 µl, 1.43 mmol, 1.5 equiv) and imidazole (129 mg, 1.90 mmol, 2 equiv). 

The resulting suspension was stirred at ambient temperature overnight. Then, dichloromethane and 

saturated aqueous solution of sodium chloride were added. The organic phase was separated and 

dried over anhydrous magnesium sulfate. The dried solution was filtered and the filtrate was 

concentrated in vacuo. Purification of the residue by flash-column chromatography (gradient elution 

with 3–10% ethyl acetate in petroleum ether) provided TBS-protected product 220 (285 mg, 82%). 

Colourless oil. TLC (10% ethyl acetate in petroleum ether): Rf = 0.49 (CAM). 1H NMR (CDCl3, 400 MHz) 

δ: 3.67 (dd, J = 9.42, 3.30 Hz, 1H), 3.41 (dd, J = 9.43, 6.81 Hz, 1H), 2.47–2.10 (m, 5H), 2.02–1.89 (m, 1H), 

1.86–1.74 (m, 1H), 1.73–1.18 (m, 6H), 1.13–1.00 (m, 24H), 0.92 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 

212.14, 67.88, 51.26, 49.78, 42.79, 41.85, 39.20, 37.60, 37.55, 28.59, 26.51, 18.05, 17.02, 12.01, 10.58. 

FTIR (neat), cm-1: 2945 (s), 2867 (s), 1716 (s), 1464 (m). HRMS (ESI): Calcd for (C22H42O2Si+H+): 

367.30268, found: 367.30273. 𝜶𝑫
𝑹𝑻= +36.7 (c = 1.0 in CHCl3). 
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(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((triisopropylsilyl)oxy)propan-2-yl)octahydro-1H-inden-5-ol (221) 

 
The compound was prepared from 220 according to the sodium borohydride reduction protocol 

described above (page 151) in 66% yield. 

TLC (30% ethyl acetate in petroleum ether): Rf = 0.48 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 3.66 (dd, J = 

9.4, 3.4 Hz, 1H) overlapping with 3.62 (m, 1H), 3.37 (dd, J = 9.3, 7.1 Hz, 1H), 1.99–1.70 (m, 4H), 1.60–

1.08 (m, 10H), 1.06 (m, 21H), 1.03 (d, J = 6.6 Hz, 3H), 0.73 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 71.76, 

68.08, 51.80, 48.46, 41.92, 39.34, 37.41, 35.16, 31.60, 28.25, 25.97, 18.06, 16.98, 12.05, 11.22. HRMS 

(ESI): Calcd for (C22H44O2Si+H+): 369.31833, found: 369.31828. 𝜶𝑫
𝑹𝑻= +14.5 (c = 1.0 in CHCl3). 

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-ol (240) 

 
The product was synthesized according to the general TBS-deprotection protocol (page 148) from 221. 

The yield was not determined. 

Colourless oil. TLC (50% ethyl acetate in dichloromethane): Rf = 0.21 (CAM). 1H NMR (CD2Cl2, 300 MHz) 

δ: 3.57 (dd, J = 10.5, 3.3 Hz, 1H) overlapping with 3.55 (m, 1H), 3.28 (dd, J = 10.4, 6.9 Hz, 1H), 1.93–

1.66 (m, 4H), 1.60–1.06 (m, 11H), 0.99 (d, J = 6.6 Hz, 1H), 0.71 (s, 3H). 13C NMR (CD2Cl2, 75 MHz) δ: 

72.04, 68.14, 52.25, 48.97, 42.45, 39.41, 37.92, 35.71, 32.15, 28.70, 26.43, 16.99, 11.48. FTIR (neat), 

cm-1: 3312 (br), 2931 (m), 2866 (m), 1469 (w), 1444 (w), 1024 (s).  
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5.3.2   Synthesis of Withanolide Analogues 

Representative Procedure for Carbamate Formation with Isocyanates 

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl phenylcarbamate (202a) 

 
To a 23 °C solution of alcohol 176 (20 mg, 43 µmol, 1 equiv) and N-methylimidazole (0.7 µL, 8.6 µmol, 

0.2 equiv) in dichloromethane (1.1 ml) was added phenyl isocyanate (9.4 µL, 86 µmol, 2 equiv) and the 

resulting clear solution was stirred for 18 h at ambient temperature. The reaction mixture was poured 

into a saturated aqueous solution of sodium bicarbonate (2 ml) and the product mixture was extracted 

into dichloromethane (2  30 ml). The combined organic phases were dried over anhydrous 

magnesium sulfate, the dried solution was filtered and the filtrate was concentrated in vacuo. The 

obtained residue was filtered over a short plug of silica eluting with 10% ethyl acetate in petroleum 

ether to provide the crude, protected carbamate product (semisolid material), which was dissolved in 

dichloromethane (1 ml) and triethylamine-trihydrofluoride (200 µL). The mixture was stirred for 22 h 

at ambient temperature. Then, a saturated aqueous solution of sodium bicarbonate (2 ml) was added 

and the reaction mixture was extracted with dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate and the dried solution was filtered. The filtrate was 

concentrated and the residue was purified by flash-column chromatography (gradient elution with 30–

50% ethyl acetate in petroleum ether) to provide carbamate 202a (11 mg, 60%).  

Depending on the reactivity of the amine, the number of equivalents and the reaction temperature 

were varied. For alkyl isocyanates more equivalents and a temperature of 60 °C in 1,2-dichloroethane 

is necessary.  

Amorphous solid. TLC (55% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 7.41–7.26 (m, 4H), 7.05 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 5.6 Hz, 1H), 6.57 (s, 1H), 4.70 (m, 

1H), 4.50 (dt, J = 13.1, 3.5 Hz, 1H), 4.33 (d, J = 14.4 Hz, 1H), 4.29 (d, J = 14.4 Hz, 1H), 2.43 (m, 1H), 2.19 

(m, 1H), 2.10–1.52 (m, 8H), 1.47–1.09 (m, 6H), 1.03 (d, J = 6.7 Hz, 3H), 0.79 (s, 3H). 13C NMR (CDCl3, 100 

MHz) δ: 165.93, 153.10, 140.72, 137.94, 131.30, 129.03, 123.29, 118.48, 80.27, 74.50, 61.72, 51.14, 

48.00, 42.20, 38.89, 37.13, 31.35, 27.67, 27.55, 25.69, 23.05, 13.34, 10.89. FTIR (neat), cm-1: 3322 (br), 

2946 (m), 1700 (s), 1539 (m), 1224 (s). HRMS (ESI): Calcd for (C25H33NO5+H+): 428.2432, found: 

428.2427. 𝜶𝑫
𝑹𝑻= +43.78 (c = 0.41 in CHCl3). 
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Representative Procedure for Synthesis of 2-Pyridylcarbamates 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl pyridin-2-
ylcarbamate (222e) 

 
4-dimethylaminopyridine (9.6 mg, 79 µmol, 1.5 equiv), 2-aminopyridin (37 mg, 393 µmol, 7.5 equiv) 

and 4-nitrophenyl chloroformate (64 mg, 315 µmol, 6 equiv) were suspended in 1,2-dichloroethane 

(2 ml). After 30 min, the suspension was added to a solution of alcohol 216 (14.6 mg, 52 µmol, 1 equiv) 

in 1 ml 1,2-dichloroethane at 70 °C. After 5 min, the reaction mixture was diluted with 

dichloromethane (50 ml) and washed with saturated aqueous solution of sodium chloride (30 ml). The 

separated aqueous layer was extracted with dichloromethane (25 ml). The combined organic phases 

were dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was 

concentrated in vacuo. The obtained residue was purified by flash-column chromatography (gradient 

elution with 0–30% ethyl acetate in dichloromethane) to provide carbamate (222e, 19.8 mg, 95%).  

White solid. TLC (15% ethyl acetate in petroleum ether): Rf = 0.41 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 

9.01 (br s, 1H), 8.31 (d, J = 4.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.70 (m, 1H), 6.99 (dd, J = 6.7, 5.5 Hz, 

1H), 6.91 (m, 1H), 6.00 (dd, J = 9.7, 2.2 Hz, 1H), 4.73 (m, 1H), 4.49 (dt, J = 12.9, 3.5 Hz, 1H), 2.37 (m, 

1H), 2.10–1.06 (m, 13H) , 2.15 (ddd, J = 18.3, 6.3, 3.5 Hz, 1H), 1.03 (d, J = 6.7 Hz, 3H), 0.80 (s, 3H). 

13C NMR (CDCl3, 126 MHz) δ: 164.82, 153.03, 152.05, 147.17, 145.41, 138.65, 121.29, 118.45, 112.54, 

80.04, 74.82, 51.27, 48.04, 42.22, 39.02, 37.17, 31.34, 27.67, 27.55, 25.68, 23.07, 13.33, 10.90. FTIR 

(neat), cm-1: 1720 (vs), 1587 (s), 1541 (s), 1439 (s), 1223 (vs). HRMS (ESI): Calcd for (C23H30N2O4+H+): 

399.22783, found: 399.22628. 𝜶𝑫
𝑹𝑻= +62.7 (c = 1.0 in CHCl3).  
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Representative Procedure for Coupling of Enol Triflate 177 with Boronic Acids 

(R)-6-((S)-1-((1R,3aS,7aS)-5-(6-chloropyridin-3-yl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)ethyl)-3-
(hydroxymethyl)-5,6-dihydro-2H-pyran-2-one (198o) 

 
Palladium tetrakis(triphenylphosphine) (3.3 mg, 2.85 µmol, 0.05 equiv) was added to a vigorously 

stirred solution of enol triflate 177 (25 mg, 57 µmol, 1 equiv), 6-chloro-3-pyridinylboronic acid (18 mg, 

114 µmol, 2 equiv), and triethylamine (39.8 L, 285 µmol, 5 equiv) in tetrahydrofuran-water solvent 

mixture (6:1, 1.4 ml) at ambient temperature. After 5 min, the reaction mixture was diluted with 

dichloromethane and washed with a saturated aqueous solution of ammonium chloride. The 

separated aqueous layer was extracted with dichloromethane. The combined organic phases were 

dried over anhydrous magnesium sulfate, the dried solution was filtered, and the filtrate was 

concentrated in vacuo. The obtained residue was purified by flash-column chromatography (gradient 

elution with 30–60% ethyl acetate in petroleum ether) to provide the coupling product 198o (18.7 mg, 

82%).  

TLC (80% ethyl acetate in petroleum ether): Rf = 0.42 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 8.41 (d, J = 

2.5 Hz, 1H), 7.67 (dd, J = 8.4, 2.5 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 5.6 Hz, 1H), 6.10 (m, 1H), 

4.53 (dt, J = 13.1, 3.6 Hz, 1H), 4.34 (d, J = 14.9 Hz, 1H), 4.31 (d, J = 14.9 Hz, 1H), 2.86 (br s, 1H), 2.53–

2.38 (m, 3H), 2.27–2.04 (m, 4H), 1.85–1.68 (m, 3H), 1.52–1.23 (m, 3H), 1.08 (d, J = 6.7 Hz, 3H), 0.73 (s, 

3H). 13C NMR (CDCl3, 126 MHz) δ: 165.81, 148.77, 145.76, 140.49, 136.32, 135.58, 131.85, 131.47, 

126.99, 123.88, 80.33, 61.67, 51.76, 45.46, 42.02, 41.06, 38.85, 29.78, 27.38, 26.48, 23.12, 13.09, 

11.10. FTIR (neat), cm-1: 3393 (br), 2922 (br), 1704 (vs), 1681 (vs). HRMS (ESI): Calcd for 

(C23H28ClNO3+H+): 402.18305, found: 402.18245, calcd for (C23H28
37ClNO3+H+): 404.18010, found: 

404.17953. 𝜶𝑫
𝑹𝑻= +65.1 (c = 1.0 in CHCl3).  
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Reductive Elimination of Enol Triflate 177 

(R)-3-(hydroxymethyl)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)ethyl)-5,6-dihydro-2H-
pyran-2-one (204) 

 
To a solution of enol triflate 177 (19.4 mg, 44.3 µmol, 1 equiv) in tetrahydrofuran (2 ml) at ambient 

temperature were added lithium chloride (5.6 mg, 132 µmol, 3 equiv), tetrakis(triphenylphosphine) 

palladium(0) (2.5 mg, 2.2 µmol, 0.05 equiv) and at last tributyltin hydride (23.8 µl, 88.5 mmol, 2 equiv). 

After 5 min, the mixture was diluted with dichloromethane and washed with saturated aqueous 

solution of sodium chloride. The separated aqueous layer was extracted with dichloromethane. The 

combined organic phases were dried over anhydrous magnesium sulfate, the dried solution was 

filtered, and the filtrate was concentrated in vacuo. The obtained residue was purified by flash-column 

chromatography (gradient elution with 5–80% ethyl acetate in petroleum ether) to provide the 

product (12.6 mg, 98%). 

White amorphous solid. TLC (50% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CDCl3, 

500 MHz) δ: 6.85 (d, J = 6.2 Hz, 1H), 5.63 (m, 1H), 5.56 (m, 1H), 4.52 (dt, J = 13.2, 3.6 Hz, 1H), 4.33 (d, J 

= 15.0 Hz, 1H), 4.30 (d, J = 15.0 Hz, 1H), 2.44 (m, 1H), 2.38–1.10 (m, 13H), 1.05 (d, J = 6.7 Hz, 3H), 0.68 

(s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.96, 140.69, 131.38, 126.17, 126.02, 80.55, 61.76, 52.04, 

44.95, 41.83, 41.33, 38.88, 28.21, 27.08, 26.63, 23.07, 13.04, 10.79. FTIR (neat), cm-1: 2891 (br), 1701 

(vs), 1397 (m), 1129 (s), 1042 (s). HRMS (ESI): Calcd for (C18H26O3+H+): 291.19547, found: 291.19489. 

𝜶𝑫
𝑹𝑻= +127.7 (c = 0.6 in CHCl3). 
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Carbamoylation Procedure 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl carbamate (222o)  

 
To a solution of alcohol 216 (14.6 mg, 52.4 µmol, 1 equiv) in dichloromethane (1 ml) was added a 

solution of chlorosulfonyl isocyanate (6.85 µl, 78.7 µmol, 1.5 equiv) as a solution in dichloromethane 

(500 µl). The resulting solution was stirred for 5 min at ambient temperature. Methanol (300 µl) was 

added and stirring was continued for several more minutes. The reaction mixture was poured into a 

saturated aqueous solution of sodium chloride and the product mixture was extracted into 

dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, the 

dried solution was filtered and the filtrate was concentrated in vacuo. The residue was purified by 

flash-column chromatography (gradient elution with 0–6% methanol in ethyl acetate) to provide 

carbamate 222o (16 mg, 95%).  

Colourless oil. 1H NMR (CDCl3, 400 MHz) δ: 6.92 (m, 1H), 6.01 (dd, J = 9.7, 2.4 Hz, 1H), 4.72 (m, 1H), 

4.48 (dd, J = 12.8, 3.3 Hz), 4.04 (s, 2H, NH2), 2.37 (m, 1H), 2.23–0.81 (m, 14H) overlapping with 1.01 (d, 

J = 6.6 Hz, 3H), 0.77 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.04, 149.75, 145.58, 121.22, 71.36, 51.10, 

47.81, 42.08, 38.94, 36.90, 30.87, 27.59, 27.09, 25.55, 23.01, 13.33, 10.86. FTIR (neat), cm-1: 2949 (br), 

1694 (s), 1461 (m), 1378 (s), 1166 (s).HRMS (ESI): Calcd for (C18H27NO4+H+): 322.20128, found: 

322.20163. 𝜶𝑫
𝑹𝑻= +42.1 (c = 1.0 in CH2Cl2).  
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5.3.3   Analytical Characterization of Withanolide Analogues 

(R)-6-((S)-1-((1R,3aS,7aS)-5-(5-acetylthiophen-2-yl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)ethyl)-3-
(hydroxymethyl)-5,6-dihydro-2H-pyran-2-one (198p) 

 
The product was synthesized according to the general Suzuki coupling procedure (page 163) from 177 

in 95% yield.    

TLC (80% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CD2Cl2, 100 MHz) δ: 7.54 (d, J = 

4.0 Hz, 1H), 6.97 (d, J = 4.0 Hz, 1H), 6.84 (d, J = 5.8 Hz, 1H), 6.28 (m, 1H), 4.49 (dt, J = 13.1, 3.6 Hz, 1H), 

4.26 (d, J = 15.0 Hz, 1H), 4.22 (d, J = 15.0 Hz, 1H), 2.46 (s, 3H) overlapping a m (3H), 2.25–1.95 (m, 4H), 

1.83–1.66 (m, 3H), 1.50–1.20 (m, 4H), 1.04 (d, J = 6.7 Hz, 3H), 0.71 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) 

δ: 190.91, 166.25, 155.16, 141.70, 141.13, 133.69, 131.81, 130.84, 127.80, 122.80, 80.82, 61.98, 52.18, 

45.78, 42.46, 41.75, 39.42, 30.51, 27.80, 26.95, 26.79, 23.57, 13.36, 11.43. FTIR (neat), cm-1: 3376 (br), 

1713 (vs), 1622 (vs), 1287 (vs), 1044 (vs). HRMS (ESI): Calcd for (C24H30O4S+H+): 415.19376, found: 

415.19339. 𝛼𝐷
𝑅𝑇= +120.3 (c = 1.0 in CHCl3).  

(R)-6-((S)-1-((1R,3aS,7aS)-5-(2,4-dimethoxypyrimidin-5-yl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)ethyl)-3-
(hydroxymethyl)-5,6-dihydro-2H-pyran-2-one (198q) 

 
The product was synthesized according to the general Suzuki coupling procedure (page 163) from 177 

in 98% yield.    

TLC (70% ethyl acetate in petroleum ether): Rf = 0.3 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 8.04 (s, 1H), 

6.86 (d, J = 5.9 Hz, 1H), 5.76 (d, J = 4.9 Hz, 1H), 4.52 (dt, J = 13.0, 3.4 Hz, 1H), 4.33 (d, J = 14.4 Hz, 1H), 

4.30 (d, J = 14.4 Hz, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 2.52–2.00 (m, 7H), 1.80–1.62 (m, 3H), 1.48–1.12 (m, 

4H), 1.06 (d, J = 6.6 Hz, 3H), 0.74 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 168.33, 165.90, 163.87, 155.80, 

140.61, 131.34, 130.63, 127.12, 117.97, 80.42, 61.60, 54.72, 53.92, 51.78, 45.39, 41.92, 40.97, 38.83, 

30.83, 27.35, 26.45, 23.04, 13.04, 11.05. FTIR (neat), cm-1: 3369 (br), 2923 (br), 1708 (s), 1467 (s), 1393 

(vs). HRMS (ESI): Calcd for (C24H32N2O5 +H+): 429.23840, found: 429.23787. 𝜶𝑫
𝑹𝑻= +76.3 (c = 1.0 in 

CHCl3).  
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(R)-3-(hydroxymethyl)-6-((S)-1-((1R,3aS,7aS)-5-(1-isobutyl-1H-pyrazol-4-yl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-
1-yl)ethyl)-5,6-dihydro-2H-pyran-2-one (198r) 

 
The product was synthesized according to the general Suzuki coupling procedure (page 163) from 177 

in 87% yield.    

TLC (60% ethyl acetate in petroleum ether): Rf = 0.25 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.55 (s, 1H), 

7.30 (s, 1H), 6.86 (d, J = 6.0 Hz, 1H), 5.86 (m, 1H), 4.52 (dt, J = 13.1, 3.5 Hz, 1H), 4.33 (d, J = 14.9 Hz, 1H), 

4.30 (d, J = 14.9 Hz, 1H), 3.87 (d, J = 7.2 Hz, 2H), 2.53–1.95 (m, 8H), 1.80–1.65 (m, 3H), 1.50–1.15 (m, 

4H), 1.06 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.7 Hz, 6H), 0.71 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.89, 

140.56, 135.49, 131.41, 127.55, 125.31, 123.84, 119.89, 80.46, 61.59, 59.72, 51.84, 45.29, 41.62, 41.41, 

38.88, 30.35, 29.65, 27.35, 26.58, 23.08, 19.92, 13.02, 10.98.  FTIR (neat), cm-1: 3162 (br), 2956 (br), 

1717 (vs), 1396 (s). HRMS (ESI): Calcd for (C25H36N2O3+H+): 413.27987, found: 413.27934. 𝜶𝑫
𝑹𝑻= +93.3 

(c = 1.0 in CHCl3).  

(R)-3-(hydroxymethyl)-6-((S)-1-((1R,3aS,7aS)-7a-methyl-5-(thiophen-2-yl)-2,3,3a,4,7,7a-hexahydro-1H-inden-1-yl)ethyl)-
5,6-dihydro-2H-pyran-2-one (198s) 

 
The product was synthesized according to the general Suzuki coupling procedure (page 163) from 177 

in 84% yield.    

TLC (60% ethyl acetate in petroleum ether): Rf = 0.4 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.10 (dd, J = 

4.7, 1.3 Hz, 1H), 6.96 (m, 2H), 6.86 (d, J = 5.8 Hz, 1H), 6.07 (d, J = 5.3 Hz, 1H), 4.53 (dt, J = 13.1, 3.6 Hz 

1H), 4.33 (d, J = 14.8 Hz, 1H), 4.30 (d, J = 14.8 Hz, 1H), 2.60–1.20 (m, 14H), 1.07 (d, J = 6.7 Hz, 3H), 0.72 

(s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.90, 146.32, 140.64, 131.39, 130.38, 127.17, 123.10, 122.86, 

121.26, 80.43, 61.69, 51.78, 45.40, 41.78, 41.40, 38.86, 30.34, 27.40, 26.51, 23.09, 13.03, 11.05. FTIR 

(neat), cm-1: 3401 (br), 2936 (br), 1703 (vs), 1392 (m), 1045 (m). HRMS (ESI): Calcd for (C22H28O3S+H+): 

373.18319, found: 373.18325. 𝜶𝑫
𝑹𝑻= +107.4 (c = 1.0 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl (4-fluorophenyl)carbamate (202b) 

  
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 77% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.27 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 7.32 (m, 2H), 

6.99 (t, J = 8.7 Hz, 2H), 6.85 (d, J = 5.9 Hz, 1H), 6.56 (s, 1H), 4.69 (m, 1H), 4.50 (dt, J = 13.1, 3.5 Hz, 1H), 

4.33 (d, J = 14.4 Hz, 1H), 4.29 (d, J = 14.4 Hz, 1H), 2.43 (m, 1H) overlapping a broad s(1H), 2.19 (ddd, J 

= 18.3, 6.3, 3.5 Hz, 1H), 2.10–1.05 (m, 13H), 1.03 (d, J = 6.7 Hz, 3H), 0.78 (s, 3H). 13C NMR (CDCl3, 100 

MHz) δ: 165.91, 158.86 (d, J = 242.6 Hz), 153.28, 140.69, 133.94, 131.31, 120.32, 115.62 (d, J = 22.5 

Hz), 80.26, 74.61, 61.69, 51.13, 47.98, 42.19, 38.88, 37.11, 31.34, 27.65, 27.54, 25.68, 23.04, 13.33, 

10.88. FTIR (neat), cm-1: 2949 (br), 1510 (s), 1213 (vs), 1059 (s), 730 (vs). HRMS (ESI): Calcd for 

(C25H32FNO5+H+): 446.23373, found: 446.23350. 𝜶𝑫
𝑹𝑻= +26.7 (c = 1.0 in CHCl3). 

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl (3,4,5-trimethoxyphenyl)carbamate (202c) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 97% yield.  

Brown amorphous solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.34 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 6.85 (d, J = 6.0 Hz, 1H), 6.67 (s, 2H), 6.60 (s, 1H), 4.67 (m, 1H), 4.49 (dt, J = 12.7, 3.3 Hz, 

1H), 4.32 (d, J = 14.2 Hz, 1H), 4.29 (d, J = 14.2 Hz, 1H), 3.83 (s, 6H), 3.79 (s, 3H), 2.58 (br s, 1H (OH)), 

2.43 (m, 1H), 2.19 (ddd, J = 18.2, 6.0, 3.3 Hz, 1H), 2.60–0.8 (m, 14H) 1.02 (d, J = 6.6 Hz, 3H), 0.77 (s, 3H). 

13C NMR (CDCl3, 100 MHz) δ: 165.90, 153.34, 153.18, 140.68, 134.12, 133.75, 131.26, 95.98, 80.23, 

74.56, 61.63, 60.95, 55.97, 51.08, 47.97, 42.16, 38.85, 37.08, 31.32, 27.62, 27.52, 25.65, 23.02, 13.32, 

10.87. FTIR (neat), cm-1: 3331 (br), 2942 (br), 1699 (vs), 1218 (vs), 1122 (vs). HRMS (ESI): Calcd for 

(C28H39NO8+H+): 518.27484, found: 518.27525. 𝜶𝑫
𝑹𝑻= +28.4 (c = 1.0 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl (4-acetylphenyl)carbamate (202d) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 96% yield.  

White crystalline solid. TLC (80% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR (CDCl3, 

400 MHz) δ: 7.92 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 6.98 (s, 1H), 6.86 (d, J = 5.95 Hz, 1H), 4.71 

(m, 1H), 4.49 (dt, J = 13.0, 3.5 Hz, 1H), 4.33 (d, J = 14.0 Hz, 1H), 4.29 (d, J = 14.0 Hz, 1H), 2.56 (s, 3H) 

overlapping with a br s (1H), 2.42 (m, 1H), 2.19 (ddd, J = 18.2, 6.2, 3.5 Hz), 2.11–1.83 (m, 4H), 1.80–

1.07 (m, 9H), 1.02 (d, J = 6.62 Hz, 3H), 0.77 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 196.95,  165.91, 152.67, 

142.53, 140.71, 131.95, 131.24, 129.83, 117.46, 80.23, 74.98, 61.58, 51.06, 47.91, 42.14, 38.83, 37.04, 

31.24, 27.61, 27.45, 26.37, 25.63, 23.01, 13.32, 10.86  FTIR (neat), cm-1: 3303 (br), 2946 (m), 1719 (s). 

HRMS (ESI): Calcd for (C27H35NO6+H+): 470.25371, found: 470.25364. 𝜶𝑫
𝑹𝑻= +38.1 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl pyridin-2-ylcarbamate (202e) 

 
The product was synthesized according to the general procedure for the synthesis of 2-

pyridylcarbamates (page 162) from 176 in 63% yield.   

TLC (80% ethyl acetate in petroleum ether): Rf = 0.31 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 8.96 (s, 1H), 

8.30 (d, J = 4.8 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.68 (m, 1H), 6.98 (dd, J = 6.8, 5.5 Hz, 1H), 6.83 (d, J = 

6.0 Hz, 1H), 4.71 (m, 1H), 4.47 (dt, J = 13.1, 3.5, 3.5 Hz, 1H), 4.25 (d, J = 14.9 Hz, 1H), 4.22 (d, J = 15.1 

Hz, 1H), 2.52 (br s, 1H (OH)) overlapping with 2.39 (m, 1H), 2.18 (ddd, J = 18.2, 6.3, 3.6 Hz, 1H), 2.10–

1.08 (m, 13H), 1.01 (d, J = 6.7 Hz, 3H), 0.80 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 166.24, 153.55, 152.90, 

148.26, 141.08, 138.86, 131.85, 118.93, 112.70, 80.74, 75.27, 62.02, 51.70, 48.54, 42.74, 39.52, 37.69, 

31.89, 28.14, 26.27, 23.58, 13.65, 11.24. FTIR (neat), cm-1: 2947 (br), 1727 (s), 1698 (s), 1591 (s), 1222 

(vs). HRMS (ESI): Calcd for (C24H32N2O5+H+): 429.23840, found: 429.23775. 𝜶𝑫
𝑹𝑻= +49.8 (c = 0.82 in 

CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl (4-chlorophenyl)carbamate (202f) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 82% yield.   

TLC (70% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.32 (d, J = 

8.5 Hz, 2H), 7.25 (m, 2H), 6.85 (d, J = 5.8 Hz, 1H), 6.65 (s, 1H), 4.69 (m, 1H), 4.49 (dt, J = 13.1, 3.5 Hz, 

1H), 4.33 (d, J = 14.5 Hz, 1H), 4.30 (d, J = 14.6 Hz, 1H), 2.50 (br s, 1H), 2.43 (ddd, J = 17.7, 13.2, 1.6 Hz, 

1H), 2.19 (ddd, J = 18.2, 6.2, 3.3 Hz, 1H), 2.10–1.05 (m, 13H), 1.02 (d, J = 6.7 Hz, 3H), 0.78 (s, 3H). 13C 

NMR (CDCl3, 126 MHz) δ: 165.87, 153.03, 140.62, 136.61, 131.34, 128.98, 128.24, 119.75, 80.24, 74.75, 

61.63, 51.14, 47.98, 42.18, 38.88, 37.12, 31.32, 27.65, 27.52, 25.67, 23.06, 13.32, 10.88. FTIR (neat), 

cm-1: 3317 (br), 2947 (br), 1697 (vs), 1219 (vs). HRMS (ESI): Calcd for (C25H32ClNO5+H+): 462.20418, 

found: 462.20420, calcd for (C25H32
37ClNO5+H+): 464.20123, found: 464.20229. 𝜶𝑫

𝑹𝑻= +34.0 (c = 1.0 in 

CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl benzylcarbamate (202g) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 85% yield.   

TLC (70% ethyl acetate in petroleum ether): Rf = 0.34 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 7.30 (m, 5H), 

6.85 (d, J = 5.9 Hz, 1H), 4.96 (m, 1H), 4.63 (m, 1H), 4.49 (dt, J = 13.1, 3.5 Hz, 1H),  4.35 (d, J = 5.6 Hz, 

2H), 4.30 (m, 2H), 2.50 (br s, 1H (OH)), 2.42 (m, 1H), 2.18 (ddd, J = 18.3, 6.3, 3.5 Hz, 1H), 2.10–1.05 (m, 

13H), 1.01 (d, J = 6.6 Hz, 3H), 0.75 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 165.90, 156.25, 140.67, 138.53, 

131.26, 128.59, 127.44, 127.39, 80.25, 74.14, 61.61, 51.10, 47.98, 44.94, 42.16, 38.85, 37.13, 31.40, 

27.64, 27.59, 25.66, 23.01, 13.30, 10.85. FTIR (neat), cm-1: 3340 (s), 2945 (m), 1519 (m), 1693 (vs), 1234 

(vs). HRMS (ESI): Calcd for (C26H35NO5+H+): 442.25880, found: 442.25880. 𝜶𝑫
𝑹𝑻= +35.4 (c = 1.0 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl ((R)-1-phenylethyl)carbamate (202h) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 76% yield.   

TLC (70% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 7.36–7.21 

(m, 5H), 6.84 (d, J = 5.9 Hz, 1H), 4.89 (br m, 1H), 4.82 (br s, 1H), 4.57 (m, 1H), 4.48 (dt, J = 13.1, 3.5 Hz, 

1H), 4.32 (d, J = 14.9 Hz, 1H), 4.29 (d, J = 14.9 Hz, 1H), 2.42 (ddd, J = 18.0, 13.1, 1.7 Hz, 1H) overlapping 

a br s(1H), 2.17 (ddd, J = 18.0, 6.4, 3.5 Hz, 1H), 2.07–1.04 (m, 13H) overlapping with 1.47 (d, J = 6.8 Hz, 

3H), 1.01 (d, J = 6.6 Hz, 3H), 0.74 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.84, 155.42, 143.73, 140.54, 

131.40, 128.57, 127.22, 125.87, 80.27, 74.04, 61.64, 51.18, 50.55, 48.04, 42.21, 38.91, 37.20, 31.43, 

27.68, 25.68, 23.07, 22.52, 13.30, 10.86. FTIR (neat), cm-1: 3326 (br), 2946 (br), 1695 (vs), 1234 (s), 750 

(vs). HRMS (ESI): Calcd for (C27H37NO5+H+): 456.27445, found: 456.27455. 𝜶𝑫
𝑹𝑻= +53.2 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl ((S)-1-phenylethyl)carbamate (202i) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 72% yield.   

TLC (70% ethyl acetate in petroleum ether): Rf = 0.27 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.36–7.22 

(m, 5H), 6.84 (d, J = 6.0 Hz, 1H), 4.89 (m, 1H), 4.81 (br s, 1H), 4.57 (m, 1H), 4.48 (dt, J = 13.1, 3.4 Hz, 

1H), 4.32 (d, J = 14.8 Hz, 1H), 4.29 (d, J = 14.8 Hz, 1H), 2.41 (m, 1H) overlapping  br s(1H), 2.18 (ddd, J = 

18.2, 6.3, 3.4 Hz, 1H), 1.47 (d, J = 6.8 Hz, 3H) overlapping with 2.10–1.05 (m, 13H), 1.01 (d, J = 6.6 Hz, 

3H), 0.74 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.88, 140.62, 131.35, 128.58, 127.23, 125.88, 80.28, 

74.00, 61.66, 51.15, 50.53, 48.01, 42.19, 38.90, 37.17, 31.40, 27.67, 27.60, 25.68, 23.05, 22.49, 13.30, 

10.85. FTIR (neat), cm-1: 3337 (br), 2945 (br), 1694 (vs), 1234 (s), 1047 (s). HRMS (ESI): Calcd for 

(C27H37NO5+H+): 456.27445, found: 456.27445. 𝜶𝑫
𝑹𝑻= +13.9 (c = 1.0 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl cyclopentylcarbamate (202j) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 73% yield.   

TLC (80% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 6.82 (d, J = 

6.2 Hz, 1H), 4.61 (br s, 1H) overlapping with 4.52 (m, 1H) overlapping with 4.45 (dd, J = 13.1, 3.5 Hz, 

1H), 4.24 (d, J = 15.0 Hz, 1H), 4.20 (d, J = 15.8 Hz, 1H), 3.88 (1, J = 6.5 Hz, 1H), 2.47 (br s, 1H (OH)) 

overlapping with 2.38 (ddd, J = 17.8, 13.2, 1.8 Hz, 1H), 2.16 (ddd, J = 18.3, 6.4, 3.6 Hz, 1H), 2.05–1.05 

(m, 21H), 0.99 (d, J = 6.7 Hz, 3H), 0.75 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 166.26, 156.14, 141.10, 

131.83, 80.77, 74.09, 62.03, 53.16, 51.70, 48.55, 42.73, 39.52, 37.73, 33.71, 32.04, 28.26, 28.14, 26.29, 

24.02, 23.57, 13.62, 11.20. FTIR (neat), cm-1: 3295 (br), 2945 (br), 1703 (vs), 1681 (vs), 1542 (m). HRMS 

(ESI): Calcd for (C24H37NO5+H+): 420.27445, found: 420.27425. 𝜶𝑫
𝑹𝑻= +53.9 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl cyclohexylcarbamate (202k) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 74% yield.   

TLC (70% ethyl acetate in petroleum ether): Rf = 0.29 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 6.84 (d, J = 

6.0 Hz, 1H), 4.57 (m, 1H), 4.49 (dd, J = 13.0, 3.5 Hz, 1H) overlapping a br s(1H), 4.32 (d, J = 15.0 Hz, 1H), 

4.29 (d, J = 14.8 Hz, 1H), 3.45 (m, 1H), 2.42 (m, 1H), 2.18 (ddd, J = 18.3, 6.3, 3.7 Hz, 1H) overlapping a 

broad s(1H), 2.10–1.05 (m, 23H), 1.01 (d, J = 6.7 Hz, 3H), 0.76 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 

165.85, 155.43, 140.55, 131.41, 80.29, 73.63, 61.64, 51.21, 49.67, 48.06, 42.23, 38.92, 37.24, 33.43, 

31.49, 27.69, 27.68, 25.71, 25.50, 24.75, 23.08, 13.31, 10.87. FTIR (neat), cm-1: 2929 (m), 2928 (m), 

1692 (vs), 1550 (m), 1041 (s). HRMS (ESI): Calcd for (C25H39NO5+H+): 434.29010, found: 434.28998. 

𝜶𝑫
𝑹𝑻= +40.3 (c = 0.9 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl ethylcarbamate (202l) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 68% yield. 

TLC (70% ethyl acetate in petroleum ether): Rf = 0.22 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.85 (d, J = 

5.9 Hz, 1H), 4.57 (m, 1H), 4.49 (dd, J = 13.2, 3.6 Hz, 1H) overlapping a br s(1H), 4.32 (d, J = 14.8 Hz, 1H), 

4.29 (d, J = 13.8 Hz, 1H), 3.19 (q, J = 6.9 Hz, 2H), 2.42 (ddd, J = 17.8, 13.2, 1.6 Hz, 1H), 2.18 (m, 1H), 

2.13–1.15 (m, 14H), 1.12 (t, J = 7.2 Hz, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.76 (s, 3H). 13C NMR (CDCl3, 100 

MHz) δ: 165.89, 156.15, 140.64, 131.35, 80.29, 73.87, 61.66, 51.18, 48.04, 42.21, 38.91, 37.21, 35.84, 

31.48, 27.69, 27.66, 25.70, 23.07, 15.25, 13.32, 10.87. FTIR (neat), cm-1: 3307 (br), 2936 (br), 1687 (vs), 

1261 (s). HRMS (ESI): Calcd for (C21H33NO5+H+): 380.24315, found: 380.24331. 𝜶𝑫
𝑹𝑻= +58.3 (c = 0.5 in 

CHCl3). 

(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl propylcarbamate (202m) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 86% yield.    

TLC (70% ethyl acetate in petroleum ether): Rf = 0.34 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.85 (d, J = 

6.1 Hz, 1H), 4.64–4.52 (m, 2H), 4.49 (dt, J = 13.0, 3.5 Hz, 1H), 4.32 (d, J = 14.28 Hz, 1H), 4.28 (d, J = 

14.64 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 2.61 (s, br, 1H), 2.42 (m, 1H), 2.18 (ddd, J = 18.2, 6.3, 3.5 Hz, 1H), 

2.10–1.00 (m, 15H), 1.01 (d, J = 6.63 Hz, 3H), 0.90 (t, J = 7.40 Hz, 3H), 0.75 (s, 3H). 13C NMR (CDCl3, 

100 MHz) δ: 165.91, 156.24, 140.66, 131.27, 80.26, 73.71, 61.61, 51.11, 47.99, 42.58, 42.17, 38.86, 

37.15, 31.43, 27.65, 27.62, 25.67, 23.18, 23.01, 13.30, 11.20, 10.85. FTIR (neat), cm-1: 3305 (br), 2960 

(m), 2959 (w), 1682 (s), 1534 (m). HRMS (ESI): Calcd for (C22H35NO5+H+): 394.25880, found: 394.25785. 

𝜶𝑫
𝑹𝑻= +55.9 (c = 1.0 in CHCl3).  
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(1R,3aS,5S,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl tert-butylcarbamate (202n) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 176 in 92% yield.    

TLC (70% ethyl acetate in petroleum ether): Rf = 0.40 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 6.84 (d, J = 

5.6 Hz, 1H), 4.57 (m, 2H), 4.48 (dd, J = 13.1, 3.6 Hz), 4.31 (d, J = 15.0 Hz, 1H), 4.28 (d, J = 15.0 Hz, 1H), 

2.42 (m, 1H) overlapping a br s (1H), 2.18 (ddd, J = 18.2, 6.4, 3.6 Hz), 1.30 (s, 9H) overlapping a m (13H), 

1.01 (d, J = 6.7 Hz, 3H), 0.75 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 165.83, 154.73, 140.52, 131.40, 80.28, 

73.23, 61.62, 51.19, 50.23, 48.10, 42.23, 38.92, 37.26, 31.50, 28.98, 27.69, 27.67, 25.71, 23.08, 13.30, 

10.87. FTIR (neat), cm-1: 3368 (br), 2951 (br), 1699 (vs), 1267 (m). HRMS (ESI): Calcd for (C23H37NO5+H+): 

408.27445, found: 408.27423. 𝜶𝑫
𝑹𝑻= +39.9 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl phenylcarbamate 
(222a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 216 in 98% yield.  

TLC (40% ethyl acetate in petroleum ether): Rf = 0.24 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.36 (d, J = 

7.8 Hz, 2H), 7.27 (t, J = 7.9 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.90 (m, 1H), 6.72 (br s, 1H), 5.93 (dd, J = 9.7, 

2.7 Hz, 1H), 4.67 (m, 1H), 4.46 (dt, J = 12.9, 3.6 Hz, 1H), 2.34 (m, 1H), 2.13 (ddd, J = 18.3, 6.2, 3.6 Hz, 

1H), 2.05–1.05 (m, 13H), 1.00 (d, J = 6.7 Hz, 3H), 0.78 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 165.22, 

153.62, 146.34, 138.89, 129.46, 123.59, 121.48, 118.98, 80.59, 75.03, 51.75, 48.53, 42.73, 39.66, 37.69, 

31.90, 28.14, 26.27, 23.58, 13.63, 11.23. FTIR (neat), cm-1: 2938 (br), 1724 (s), 1689 (s), 1223 (vs). HRMS 

(ESI): Calcd for (C24H31NO4+H+): 398.23258, found: 398.23201. 𝜶𝑫
𝑹𝑻= +60.2 (c = 1.0 in CHCl3).  



Experimental Part  175 
 

 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl (3,4,5-
trimethoxyphenyl)carbamate (222c) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 216 in 84% yield.  

TLC (60% ethyl acetate in petroleum ether): Rf = 0.33 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 6.90 (m, 

1H), 6.67 (s, 1H) overlapping with 6.66 (s, 2H), 5.92 (dd, J = 9.7, 2.7 Hz, 1H), 4.65 (m, 1H), 4.46 (dt, J = 

12.9, 3.6 Hz, 1H), 3.77 (s, 6H), 3.70 (s, 3H), 2.33 (m, 1H), 2.13 (ddd, J = 18.4, 6.3, 3.6 Hz, 1H), 2.05–1.05 

(m, 12H), 1.00 (d, J = 6.6 Hz, 3H), 0.95–0.80 (m, 1H), 0.77 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 165.19, 

153.98, 153.66, 146.32, 134.92, 134.35, 121.48, 96.70, 80.57, 75.07, 61.04, 56.45, 51.74, 48.53, 42.73, 

39.65, 37.68, 31.90, 28.14, 28.13, 26.26, 23.58, 13.63, 11.22. FTIR (neat), cm-1: 2941 (br), 1716 (vs), 

1217 (vs), 1126 (vs), 749 (vs). HRMS (ESI): Calcd for (C27H37NO7+H+): 488.26428, found: 488.26449. 

𝜶𝑫
𝑹𝑻= +31.7 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl (4-
acetylphenyl)carbamate (222d) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 216 in 96% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.47 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 7.92 (d, J = 

8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 6.98 (br s, 1H), 6.92 (ddd, J = 8.5, 6.2, 1.3 Hz, 1H), 6.01 (dd, J = 9.7, 

2.6 Hz, 1H), 4.71 (m, 1H), 4.48 (dd, J = 12.9, 3.4 Hz, 1H), 2.56 (s, 3H), 2.37 (m, 1H), 2.15 (ddd, J = 18.3, 

6.2, 3.5 Hz, 1H), 2.08–1.07 (m, 13H), 1.02 (d, J = 6.6 Hz, 3H), 0.77 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 

196.88, 164.92, 152.67, 145.54, 142.54, 131.96, 129.82, 121.21, 117.46, 80.03, 74.97, 51.16, 47.93, 

42.15, 38.97, 37.05, 31.26, 27.62, 27.46, 26.37, 25.63, 23.01, 13.32, 10.86. FTIR (neat), cm-1: 3304 (m), 

2931 (br), 1722 (s), 1592 (s), 1219 (vs). HRMS (ESI): Calcd for (C26H33NO5+H+): 440.24315, found: 

440.24292. 𝜶𝑫
𝑹𝑻= +52.6 (c = 1.0 in CHCl3).  



176  Experimental Part 
 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl 
cyclopentylcarbamate (222j) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 216 in 90% yield.  

TLC (60% ethyl acetate in petroleum ether): Rf = 0.47 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 6.94–6.87 

(m, 1H), 6.00 (dd, J = 9.7, 2.5 Hz, 1H), 4.57 (m, 2H), 4.47 (dt, J = 13.0, 3.5 Hz, 1H), 3.95 (m, 1H), 2.36 (m, 

1H), 2.14 (ddd, J = 18.3, 6.3, 3.5 Hz, 1H), 2.05–1.05 (m, 21H), 1.01 (d, J = 6.7 Hz, 3H), 0.75 (s, 3H). 

13C NMR (CDCl3, 100 MHz) δ: 164.90, 155.68, 145.52, 121.22, 80.07, 73.62, 52.57, 51.21, 48.02, 42.17, 

39.00, 37.18, 33.23, 31.47, 27.65, 25.67, 23.47, 23.01, 13.30, 10.85. FTIR (neat), cm-1: 3353 (m), 2948 

(br), 1719 (m), 1696 (s), 1518 (m). HRMS (ESI): Calcd for (C23H35NO4+NH4
+): 407.29043, found: 

407.29235. 𝜶𝑫
𝑹𝑻= +57.2 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((2R,5S)-5-(hydroxymethyl)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-
5-yl phenylcarbamate (223a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 217 in 52% yield.    

TLC (70% ethyl acetate in petroleum ether): Rf = 0.38 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 7.35 (d, J = 

7.8 Hz, 2H), 7.27 (t, J = 8.0 Hz, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.67 (br s, 1H), 4.67 (m, 1H), 4.32 (dt, J = 

11.5, 3.3 Hz, 1H), 3.67 (d, J = 6.1 Hz, 2H), 2.73 (br s, 1H), 2.65 (m, 1H), 2.05–1.00 (m, 17H), 0.95 (d, J = 

6.7 Hz, 3H), 0.78 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 176.53, 153.68, 138.96, 129.52, 123.68, 119.10, 

80.69, 75.15, 63.09, 51.99, 48.61, 42.79, 40.99, 39.54, 37.78, 31.99, 28.32, 28.22, 26.35, 20.37, 20.28, 

13.07, 11.32. FTIR (neat), cm-1: 3392 (w), 2950 (br), 2360 (w), 1720 (vs). HRMS (ESI): Calcd for 

(C25H35NO5+H+): 430.25880, found: 430.25859. 𝜶𝑫
𝑹𝑻= -8.4 (c = 0.5 in CHCl3).  



Experimental Part  177 
 

 

(1R,3aS,5S,7aS)-1-((S)-1-((2R,5S)-5-(hydroxymethyl)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-
5-yl (3,4,5-trimethoxyphenyl)carbamate (223c) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 217 in 73% yield.  

TLC (80% ethyl acetate in petroleum ether): Rf = 0.29 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 6.65 (s, 3H), 

4.65 (m, 1H), 4.32 (dt, J = 11.3, 3.3 Hz, 1H), 3.78 (s, 6H), 3.70 (s, 3H), 3.67 (d, J = 5.9 Hz, 2H), 2.75 (br s, 

1H), 2.65 (m, 1H), 2.05–1.10 (m, 17H), 0.95 (d, J = 6.7 Hz, 3H), 0.77 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) 

δ: 176.51, 154.09, 153.74, 134.98, 134.63, 97.02, 80.69, 75.19, 63.09, 61.10, 56.57, 51.98, 48.61, 42.79, 

40.99, 39.54, 37.77, 31.99, 28.31, 28.22, 26.35, 20.37, 20.29, 13.07, 11.31. FTIR (neat), cm-1: 2941 (br), 

1724 (vs), 1510 (m), 1220 (vs), 1127 (vs). HRMS (ESI): Calcd for (C28H41NO8+H+): 520.29049, found: 

520.29093. 𝜶𝑫
𝑹𝑻= -11.6 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((2R,5S)-5-(hydroxymethyl)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-
5-yl (4-acetylphenyl)carbamate (223d) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 217 in 71% yield.    

TLC (80% ethyl acetate in petroleum ether): Rf = 0.39 (CAM). 1H NMR (DMSO-d6, 400 MHz) δ: 10.00 (s, 

1H), 7.89 (d, J = 8.9 Hz, 2H), 7.58 (d, J = 8.9 Hz, 2H), 4.67 (t, J = 5.4 Hz, 1H), 4.63 (m, 1H), 4.35 (dt, J = 

11.3, 3.4 Hz), 3.62 (m, 1H), 3.51 (m, 1H), 2.67 (m, 1H), 2.10–1.10 (m, 20H), 0.88 (d, J = 6.6 Hz, 3H), 0.74 

(s, 3H). 13C NMR (DMSO-d6, 126 MHz) δ: 196.30, 173.47, 152.81, 143.75, 130.89, 129.44, 117.17, 79.72, 

73.83, 61.32, 50.61, 47.20, 41.59, 40.34, 38.51, 36.45, 31.08, 27.28, 27.05, 26.28, 25.34, 20.39, 18.97, 

12.44, 10.67. FTIR (neat), cm-1: 3329 (w), 2960 (br), 1588 (m), 1217 (s), 1184 (m). HRMS (ESI): Calcd for 

(C27H37NO6+H+): 472.26936, found: 472.26927. 𝜶𝑫
𝑹𝑻= -14.0 (c = 0.4 in DMSO).  



178  Experimental Part 
 

(1R,3aS,5S,7aS)-1-((S)-1-((2R,5S)-5-(hydroxymethyl)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-
5-yl pyridin-2-ylcarbamate (223e) 

 
The product was synthesized according to the general procedure for the synthesis of 2-

pyridylcarbamates (page 162) from 217 in 55% yield.    

TLC (50% ethyl acetate in dichloromethane): Rf = 0.33 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 8.43 (s, 1H), 

8.26 (d, J = 4.4 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 6.97 (m, 1H), 4.70 (m, 1H), 4.32 

(dd, J = 11.3, 3.4 Hz, 1H), 3.67 (d, J = 5.6 Hz, 2H), 2.74 (br s, 1H), 2.65 (m, 1H), 2.10–1.10 (m, 17H), 0.95 

(d, J = 6.7 Hz, 3H), 0.79 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 176.53, 153.53, 152.82, 148.36, 138.83, 

119.06, 112.72, 80.69, 75.42, 63.09, 52.00, 48.63, 42.80, 41.00, 39.54, 37.78, 31.96, 28.32, 28.19, 

26.35, 20.39, 20.29, 13.08, 11.33. FTIR (neat), cm-1: 2945 (br), 1718 (vs), 1585 (m), 1538 (m), 1224 (s). 

HRMS (ESI): Calcd for (C24H34N2O5+H+): 431.25405, found: 431.25346. 𝜶𝑫
𝑹𝑻= -13.5 (c = 0.5 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((2R,5S)-5-(hydroxymethyl)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-
5-yl (4-chlorophenyl)carbamate (223f) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 217 in 48% yield.  

TLC (70% ethyl acetate in petroleum ether): Rf = 0.35 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.33 (d, J = 

8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.68 (br s, 1H), 4.66 (m, 1H), 4.31 (dd, J = 11.2, 3.2 Hz, 1H), 3.66 (m, 

2H), 2.72 (m, 1H), 2.65 (m, 1H), 2.05–1.05 (m, 17H), 0.95 (d, J = 6.7 Hz, 3H), 0.77 (s, 3H). 13C NMR 

(CD2Cl2, 126 MHz) δ: 176.53, 153.57, 137.70, 129.47, 128.48, 120.35, 80.68, 75.41, 63.09, 51.98, 48.59, 

42.78, 40.99, 39.53, 37.75, 31.95, 28.31, 28.18, 26.34, 20.38, 20.28, 13.08, 11.3. FTIR (neat), cm-1: 2944 

(br), 1725 (s), 1512 (s), 1207 (s), 1048 (s). HRMS (ESI): Calcd for (C25H34ClNO5+H+): 464.21983, found: 

464.21980, calcd for (C25H34
37ClNO5+H+): 466.21688, found: 466.21733. 𝜶𝑫

𝑹𝑻= +6.4 (c = 0.4 in CHCl3).  



Experimental Part  179 
 

 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl phenylcarbamate 
(224a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 68% yield.    

TLC (40% ethyl acetate in petroleum ether): Rf = 0.25 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.37 (d, J = 

7.8 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.05 (t, J = 7.3 Hz, 1H), 6.56 (br s, 1H), 4.70 (m, 1H), 4.34 (dd, J = 

11.6, 3.0 Hz, 1H), 2.60 (m, 1H), 2.40 (ddd, J = 17.4, 10.0, 7.3 Hz, 1H), 2.05–1.10 (m, 17H), 0.95 (d, J = 

6.7 Hz, 3H), 0.77 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.06, 153.14, 137.99, 129.01, 123.27, 118.52, 

82.92, 74.60, 51.37, 48.01, 42.20, 39.51, 37.16, 31.39, 29.75, 27.69, 27.59, 25.72, 21.11, 18.90, 12.76, 

10.92. FTIR (neat), cm-1: 3286 (br), 2941 (br), 1703 (s), 1542 (m), 1223 (s). HRMS (ESI): Calcd for 

(C24H33NO4+H+): 400.24824, found: 400.24756. 𝜶𝑫
𝑹𝑻= +10.0 (c = 0.7 in CHCl3).  

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl (3,4,5-
trimethoxyphenyl)carbamate (224c) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 59% yield.  

TLC (70% ethyl acetate in petroleum ether): Rf = 0.47 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 6.65 (s, 2H), 

6.61 (s, 1H), 4.65 (m, 1H), 4.31 (dd, J = 11.5, 3.0 Hz), 3.78 (s, 6H), 3.70 (s, 3H), 2.52 (m, 1H), 2.33 (m, 

1H), 2.00–1.08 (m, 17H), 0.92 (d, J = 6.7 Hz, 3H), 0.77 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 172.33, 

154.07, 153.71, 134.94, 134.57, 96.93, 83.32, 75.22, 61.09, 56.54, 51.97, 48.59, 42.77, 40.19, 37.76, 

31.98, 30.36, 28.20, 26.34, 21.64, 19.47, 13.11, 11.30. FTIR (neat), cm-1: 2943 (br), 1719 (vs), 1606 (s), 

1218 (vs), 1126 (vs). HRMS (ESI): Calcd for (C27H39NO7+H+): 490.27993, found: 490.28023.  



180  Experimental Part 
 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl (4-
acetylphenyl)carbamate (224d) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 66% yield.  

TLC (60% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.88 (d, J = 

8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.02 (br s, 1H), 4.69 (m, 1H), 4.31 (dt, J = 11.8, 3.1 Hz, 1H), 2.60–

2.45 (m, 1.6H), 2.34 (ddd, J = 17.1, 9.7, 7.2 Hz, 1H), 2.05–1.05 (m, 17H), 0.92 (d, J = 6.7 Hz, 3H), 0.76 (s, 

3H). 13C NMR (CD2Cl2, 100 MHz) δ: 197.10, 172.38, 153.19, 143.32, 132.51, 130.18, 117.92, 117.84, 

83.31, 75.58, 51.86, 48.46, 42.68, 40.11, 37.63, 31.83, 30.32, 28.12, 28.07, 26.27, 21.55, 19.41, 13.06, 

11.25. FTIR (neat), cm-1: 2947 (br), 1724 (s), 1587 (s), 1529 (s), 1212 (s). HRMS (ESI): Calcd for 

(C26H35NO5+H+): 442.25880, found: 442.25951. 𝜶𝑫
𝑹𝑻= +6.2 (c = 0.8 in CHCl3).  

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl pyridin-2-
ylcarbamate (224e) 

 
The product was synthesized according to the general procedure for the synthesis of 2-

pyridylcarbamates (162) from 218 in 74% yield.   

TLC (20% ethyl acetate in petroleum ether): Rf = 0.49 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 8.91 (s, 1H), 

8.30 (d, J = 4.4 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.71 (m, 1H), 6.99 (t, J = 6.1 Hz, 1H), 4.73 (m, 1H), 4.34 

(dt, J = 11.3, 2.8 Hz, 1H), 2.60 (m, 1H), 2.40 (ddd, J = 17.2, 9.7, 7.2 Hz, 1H), 2.05–1.85 (m, 5H), 1.85–

1.10 (m, 12H), 0.95 (d, J = 6.7 Hz, 3H), 0.79 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.01, 152.99, 151.98, 

147.02, 138.75, 118.46, 112.58, 82.89, 74.92, 51.37, 48.02, 42.19, 39.49, 37.15, 31.34, 29.74, 27.68, 

27.55, 25.71, 21.11, 18.89, 12.77, 10.93. FTIR (neat), cm-1: 2947 (br), 1720 (vs), 1586 (m), 1535 (m), 

1223 (vs). HRMS (ESI): Calcd for (C23H32N2O4+H+): 401.24348, found: 401.24190. 𝜶𝑫
𝑹𝑻= +7.6 (c = 0.87 in 

CH2Cl2).  



Experimental Part  181 
 

 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl (4-
chlorophenyl)carbamate (224f) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 45% yield.    

TLC (50% ethyl acetate in petroleum ether): Rf = 0.43 (CAM). 1H NMR (Acetone-d6, 500 MHz) δ: 8.67 

(br s, 1H (NH, lost by deuteration)), 7.60 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.9 Hz, 2H), 4.66 (m, 1H), 4.37 

(dd, J = 11.7, 3.2 Hz, 1H), 2.53 (m, 1H), 2.34 (ddd, J = 16.7, 9.3, 7.3 Hz, 1H), 2.02–1.17 (m, 17H), 0.95 (d, 

J = 6.7 Hz, 3H), 0.80 (s, 3H). 13C NMR (Acetone-d6, 126 MHz) δ: 171.80, 154.22, 139.58, 129.69, 127.84, 

120.75, 82.93, 75.17, 52.40, 48.90, 43.12, 40.69, 38.14, 32.43, 30.43, 28.62, 28.45, 26.72, 21.93, 19.66, 

13.28, 11.43. FTIR (neat), cm-1: 3295 (br), 2944 (br), 1708 (vs), 1219 (vs). HRMS (ESI): Calcd for 

(C24H32ClNO4+H+): 434.20926, found: 434.20914, calcd for (C24H32
37ClNO4+H+): 436.20631, found: 

436.20662. 𝜶𝑫
𝑹𝑻= +3.9 (c = 0.89 in acetone).  

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl benzylcarbamate 
(224g) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 57% yield.    

TLC (50% ethyl acetate in petroleum ether): Rf = 0.38 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.35–7.23 

(m, 5H), 4.95 (m, 1H), 4.63 (m, 1H), 4.34 (m, 3H), 2.59 (m, 1H), 2.39 (ddd, J = 17.8, 10.0, 7.2 Hz), 2.05–

1.05 (m, 17H), 0.94 (d, J = 6.7 Hz, 3H), 0.74 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.05, 156.25, 138.61, 

128.59, 127.44, 127.38, 82.92, 74.20, 51.34, 48.00, 44.97, 42.17, 39.49, 37.17, 31.45, 29.73, 27.68, 

27.63, 25.70, 21.08, 18.87, 12.73, 10.88. FTIR (neat), cm-1: 3337 (br), 2945 (br), 1710 (vs), 1515 (m), 

1237 (vs). HRMS (ESI): Calcd for (C25H35NO4+H+): 414.26389, found: 414.26412. 𝜶𝑫
𝑹𝑻= +10.2 (c = 1.0 in 

CH2Cl2).  



182  Experimental Part 
 

(1R,3aS,5S,7aS)-7a-methyl-1-((S)-1-((R)-6-oxotetrahydro-2H-pyran-2-yl)ethyl)octahydro-1H-inden-5-yl 
cyclopentylcarbamate (224j) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 218 in 89% yield.   

TLC (60% ethyl acetate in petroleum ether): Rf = 0.46 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 4.55 (m, 2H), 

4.33 (dd, J = 11.6, 3.1 Hz, 1H), 3.95 (m, 1H), 2.59 (m, 1H), 2.39 (ddd, J = 17.3, 10.0, 7.3 Hz, 1H), 2.00–

1.05 (m, 25H), 0.93 (d, J = 6.70 Hz, 3H), 0.74 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 172.06, 155.77, 82.94, 

73.70, 52.60, 51.36, 48.02, 42.17, 39.49, 37.20, 33.25, 31.51, 29.74, 27.68, 25.71, 23.49, 21.08, 18.88, 

12.73, 10.88. FTIR (neat), cm-1: 2949 (br), 1707 (vs), 1524 (m), 1237 (vs). HRMS (ESI): Calcd for 

(C23H37NO4+H+): 392.27954, found: 392.27917. 𝜶𝑫
𝑹𝑻= +10.0 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl phenylcarbamate (225a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 45% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.64 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 7.37 (d, J = 

7.9 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.05 (t, J = 7.3 Hz, 1H), 6.62 (s, 1H), 4.70 (m, 1H), 3.64 (dd, J = 10.5, 

3.2 Hz, 1H), 3.37 (dd, J = 10.5, 6.9 Hz), 2.05–1.80 (m, 4H), 1.70–1.13 (m, 10H), 1.04 (d, J = 6.6 Hz, 3H), 

0.76 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 153.17, 138.00, 128.99, 123.19, 118.48, 74.78, 67.76, 51.51, 

48.06, 41.80, 38.71, 37.05, 31.43, 28.09, 27.62, 25.80, 16.63, 11.09. FTIR (neat), cm-1: 3315 (br), 2946 

(m), 1698 (s), 1539 (s), 1223 (vs). HRMS (ESI): Calcd for (C20H29NO3+H+): 332.22202, found: 332.22173. 

𝜶𝑫
𝑹𝑻= +4.4 (c = 0.63 in CHCl3). 
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(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl (3,4,5-trimethoxyphenyl)carbamate 
(225c) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 55% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.42 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 6.65 (s, 2H), 

6.60 (s, 1H), 4.64 (m, 1H), 3.78 (s, 6H), 3.69 (s, 3H), 3.58 (dd, J = 10.4, 3.2 Hz, 1H), 3.30 (dd, J = 10.4, 6.9 

Hz, 1H), 2.00–1.80 (m, 4H), 1.65–1.10 (m, 10H), 1.00 (d, J = 6.6 Hz, 3H), 0.74 (s, 3H). 13C NMR (CD2Cl2, 

100 MHz) δ: 153.99, 153.67, 134.93, 134.35, 96.69, 75.33, 68.08, 61.04, 56.46, 52.17, 48.66, 42.35, 

39.38, 37.66, 31.99, 28.61, 28.21, 26.38, 16.97, 11.40. FTIR (neat), cm-1: 3324 (br), 2944 (m), 1607 (s), 

1219 (vs), 1126 (vs). HRMS (ESI): Calcd for (C23H35NO6+H+): 422.25371, found: 422.25335. 𝜶𝑫
𝑹𝑻= +41.5 

(c = 0.39 in Acetone). 

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl (4-acetylphenyl)carbamate (225d) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 84% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CD2Cl2, 126 MHz) δ: 7.89 (d, J = 

8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.04 (br s, 1H), 4.69 (m, 1H), 3.59 (dd, J = 10.5, 3.2 Hz, 1H), 3.31 

(dd, J = 10.5, 6.9 Hz, 1H), 2.51 (s, 3H), 2.00–1.82 (m, 4H), 1.67–1.15 (m, 10H), 1.01 (d, J = 6.6 Hz, 3H), 

0.75 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) δ: 197.10, 153.32, 143.45, 132.64, 130.26, 118.04, 75.87, 

68.14, 52.31, 48.71, 42.42, 39.43, 37.73, 31.99, 28.65, 28.21, 26.74, 26.44, 17.04, 11.46. FTIR (neat), 

cm-1: 2949 (br), 1665 (m), 1592 (s), 1530 (s), 1216 (vs). HRMS (ESI): Calcd for (C22H31NO4+H+): 

374.23258, found: 374.23267. 𝜶𝑫
𝑹𝑻= +2.5 (c = 1.0 in Acetone). 
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(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl pyridin-2-ylcarbamate (225e) 

 
The product was synthesized according to the general procedure for the synthesis of 2-

pyridylcarbamates (page 162) from 221 in 69% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.4 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 9.01 (s, 1H), 

8.30 (d, J = 4.9 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.68 (m, 1H), 6.97 (m, 1H), 4.71 (m, 1H), 3.59 (dd, J = 

10.4, 3.1 Hz, 1H), 3.31 (dd, J = 10.4, 6.9 Hz, 1H), 2.03–1.80 (m, 4H), 1.70–1.10 (m, 10H), 1.01 (d, J = 6.6 

Hz, 3H), 0.76 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 153.59, 152.98, 148.25, 138.85, 118.87, 112.71, 

75.48, 68.06, 52.19, 48.68, 42.36, 39.40, 37.68, 31.98, 28.62, 28.22, 26.39, 16.99, 11.42. FTIR (neat), 

cm-1: 2946 (br), 1725 (vs), 1438 (s), 1219 (vs). HRMS (ESI): Calcd for (C19H28N2O3+H+): 333.21727, found: 

333.21712. 𝜶𝑫
𝑹𝑻= +15.0 (c = 0.57 in Acetone). 

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl (4-chlorophenyl)carbamate (225f) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 82% yield. 

TLC (40% ethyl acetate in petroleum ether): Rf = 0.34 (CAM). 1H NMR (Acetone-d6, 500 MHz) δ: 8.67 

(br s, 1H), 7.59 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.9 Hz, 2H), 4.65 (m, 1H), 3.56 (d, J = 9.9 Hz, 1H), 3.33 (m, 

1H), 2.02–1.82 (m, 4H), 1.66–1.16 (m, 10H), 1.03 (d, J = 6.6 Hz, 3H), 0.77 (s, 3H). 13C NMR (Acetone-d6, 

126 MHz) δ: 154.24, 139.61, 129.70, 127.84, 120.76, 75.32, 67.54, 52.95, 49.15, 42.80, 40.12, 38.21, 

32.51, 28.97, 28.68, 26.84, 17.50, 11.64. FTIR (neat), cm-1: 3393 (br), 2931 (m), 1550 (s), 1243 (vs), 830 

(s). HRMS (ESI): Calcd for (C20H28ClNO3+H+): 366.18305, found: 366.18299, calcd for (C20H28
37ClNO3+H+): 

368.18010, found: 368.18013. 
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(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl benzylcarbamate (225g) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 60% yield. 

TLC (30% ethyl acetate in petroleum ether): Rf = 0.26 (CAM). 1H NMR (CDCl3, 500 MHz) δ:  7.36–7.24 

(m, 5H), 4.92 (br s, 1H), 4.64 (m, 1H), 4.36 (d, J = 5.4 Hz, 2H), 3.63 (dd, J = 10.5, 3.2 Hz, 1H), 3.36 (dd, J 

= 10.5, 6.9 Hz, 1H), 1.97–1.80 (m, 4H), 1.62–1.13 (m, 10H), 1.04 (d, J = 6.6 Hz, 3H), 0.74 (s, 3H). 13C NMR 

(CDCl3, 126 MHz δ: 156.30, 138.66, 128.62, 127.49, 127.40, 74.45, 67.83, 51.59, 48.12, 45.01, 41.84, 

38.76, 37.14, 31.55, 28.12, 27.73, 25.83, 16.64, 11.10. 𝜶𝑫
𝑹𝑻= hardly any signal (c = 0.75 in CHCl3). 

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl ((R)-1-phenylethyl)carbamate (225h) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 74% yield. 

TLC (50% ethyl acetate in petroleum ether): Rf = 0.37 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.35–7,18 

(m, 5H), 4.98 (br s, 1H), 4.74 (m, 1H), 4.51 (m, 1H), 3.56 (dd, J = 10.5, 3.2 Hz, 1H), 3.28 (dd, J = 10.5, 

7.0 Hz, 1H), 2.00–1.05 (m, 14H) overlapping with 1.41 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.71 

(s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 155.85, 144.88, 129.01, 127.58, 126.35, 74.70, 68.08, 52.18, 

51.06, 48.65, 42.34, 39.40, 37.69, 32.06, 28.61, 28.28, 26.38, 23.11, 16.96, 11.38. FTIR (neat), cm-1: 

3298 (br), 2947 (br), 1685 (vs), 1242 (vs), 698 (vs). HRMS (ESI): Calcd for (C22H33NO3+H+): 360.25332, 

found: 360.25339. 𝜶𝑫
𝑹𝑻= +40.2 (c = 0.89 in Acetone). 
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(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl ((S)-1-phenylethyl)carbamate (225i) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 65% yield. 

TLC (50% ethyl acetate in petroleum ether): Rf = 0.37 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.36–7.18 

(m, 5H), 5.01 (br s, 1H), 4.75 (m, 1H), 4.51 (m, 1H), 3.56 (dd, J = 10.5, 3.2 Hz, 1H), 3.28 (dd, J = 10.5, 

7.0 Hz, 1H),  1.95–1.68 (m, 4H), 1.60–1.05 (m, 10H) overlapping with 1.42 (d, J = 6.9 Hz, 3H), 0.98 (d, J 

= 6.6 Hz, 3H), 0.71 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 155.85, 129.01, 127.58, 126.36, 74.69, 68.07, 

52.19, 51.05, 48.65, 42.34, 39.40, 37.68, 32.06, 28.62, 28.27, 26.39, 23.11, 16.97, 11.38. FTIR (neat), 

cm-1: 3313 (br), 2948 (br), 1686 (vs), 1242 (vs), 698 (s). HRMS (ESI): Calcd for (C22H33NO3+H+): 

360.25332, found: 360.25335. 𝜶𝑫
𝑹𝑻= -29.7 (c = 1.0 in CHCl3). 

(1R,3aS,5S,7aS)-1-((S)-1-hydroxypropan-2-yl)-7a-methyloctahydro-1H-inden-5-yl cyclopentylcarbamate (225j) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 221 in 72% yield. 

TLC (50% ethyl acetate in petroleum ether): Rf = 0.34 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 4.59 (br s, 

1H) overlapping with 4.52 (m, 1H), 3.89 (m, 1H), 3.57 (dd, J = 10.5, 3.3 Hz, 1H), 3.29 (dd, J = 10.5, 6.9 Hz, 

1H), 1.95–1.10 (m, 22H), 0.99 (d, J = 6.6 Hz, 3H), 0.72 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 156.16, 

74.31, 68.09, 53.21, 52.21, 48.69, 42.36, 39.41, 37.73, 33.73, 32.14, 28.62, 28.34, 26.41, 24.03, 16.97, 

11.39. FTIR (neat), cm-1: 2946 (m), 2869 (w), 1685 (s), 1529 (m), 1243 (s). HRMS (ESI): Calcd for 

(C19H33NO3+H+): 324.25332, found: 324.25299. 𝜶𝑫
𝑹𝑻= +6.4 (c = 0.7 in CHCl3). 
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(1R,3aS,5R,7aS)-1-((S)-1-((R)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl phenylcarbamate (241a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 236 in 71% yield.  

TLC (70% ethyl acetate in petroleum ether): Rf = 0.45 (CAM). 1H NMR (CD2Cl2, 500 MHz) δ: 7.37 (d, J = 

7.8 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 5.5 Hz, 1H), 6.68 (br s, 1H), 5.01 

(m, 1H),  4.48 (dd, J = 13.1, 3.6 Hz, 1H), 4.24 (m, 2H), 2.50–2.35 (m, 2H), 2.18 (ddd, J = 18.3, 6.5, 3.6 Hz, 

1H), 2.02 (m, 1H), 1.87–1.08 (m, 12H), 1.03 (d, J = 6.7 Hz, 3H), 0.73 (s, 3H). 13C NMR (CD2Cl2, 126 MHz) 

δ: 166.28, 153.60, 141.06, 139.00, 131.97, 129.54, 123.62, 118.97, 80.94, 71.36, 62.10, 52.47, 43.49, 

42.94, 39.62, 35.74, 31.05, 27.34, 27.02, 26.70, 23.67, 13.82, 10.41. FTIR (neat), cm-1: 2941 (br), 1696 

(vs), 1540 (s), 1443 (m), 1221 (vs). HRMS (ESI): Calcd for (C25H33NO5+H+): 428.24315, found: 428.24293. 

𝜶𝑫
𝑹𝑻= +51.5 (c = 1.0 in CHCl3).  

(1R,3aS,5S,7aS)-1-((S)-1-((S)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl phenylcarbamate (242a) 

  
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 235 in 75% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.28 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.36 (d, J = 

7.8 Hz, 2H). 7.28 (m, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.83 (d, J = 6.0 Hz, 1H), 6.70 (s, 1H), 4.68 (m, 1H), 4.49 

(ddd, J = 13.0, 3.3, 1.0 Hz, 1H), 4.23 (m, 2H), 2.58 (ddd, J = 18.1, 13.2, 2.0 Hz, 1H), 2.48 (m, 1H), 2.25–

1.05 (m, 14H), 1.02 (d, J = 6.6 Hz, 3H), 0.75 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 166.18, 153.59, 141.42, 

138.91, 131.71, 129.46, 123.56, 118.97, 80.57, 75.11, 62.10, 51.31, 48.66, 42.18, 40.00, 37.63, 32.01, 

28.50, 28.20, 27.90, 26.16, 13.56, 11.18. FTIR (neat), cm-1: 3336 (m), 2940 (br), 1717 (s), 1693 (s), 1541 

(s), 1227 (vs). HRMS (ESI): Calcd for (C25H33NO5+H+): 428.24315, found: 428.24294. 𝜶𝑫
𝑹𝑻= -13.9 (c = 1.0 

in CHCl3). 
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(1R,3aS,5S,7aS)-1-((S)-1-((S)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl (4-fluorophenyl)carbamate (242b) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 235 in 87% yield. 

TLC (60% ethyl acetate in petroleum ether): Rf = 0.28 (CAM). 1H NMR (CD2Cl2, 400 MHz) δ: 7.33 (m, 

2H), 6.98 (t, J = 8.7 Hz, 2H), 6.83 (d, J = 5.8 Hz, 1H), 6.70 (s, 1H), 4.67 (m, 1H), 4.49 (dd, J = 13.1, 2.7 Hz, 

1H), 4.23 (m, 2H), 2.58 (ddd, J = 17.9, 13.2, 1.8 Hz, 1H), 2.48 (m, 1H), 2.30–1.05 (m, 14H), 1.02 (d, J = 

6.6 Hz, 3H), 0.74 (s, 3H). 13C NMR (CD2Cl2, 100 MHz) δ: 166.19, 159.24 (d, J = 241.0 Hz), 153.75, 141.42, 

135.03, 131.71, 120.77, 115.97 (d, J = 22.6 Hz), 80.57, 75.23, 62.09, 51.30, 48.65, 42.17, 40.00, 37.61, 

32.00, 28.50, 28.18, 27.90, 26.15, 13.56, 11.17. FTIR (neat), cm-1: 3341 (m), 2947 (br), 1726 (s), 1693 

(s), 1211 (vs). HRMS (ESI): Calcd for (C25H32FNO5+H+): 446.23373, found: 446.23372. 𝜶𝑫
𝑹𝑻= -13.5 (c = 1.0 

in CHCl3) 

(1R,3aS,5R,7aS)-1-((S)-1-((S)-5-(hydroxymethyl)-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-1H-inden-5-
yl phenylcarbamate (243a) 

 
The product was synthesized according to the general procedure for carbamate formation (page 161) 

from 237 in 52% yield. 

TLC (70% ethyl acetate in methylene chloride): Rf = 0.38 (CAM). 1H NMR (CDCl3, 500 MHz) δ: 7.46 (d, J 

= 7.9 Hz, 2H), 7.29 (t, J = 7.9 Hz, 2H), 7.21 (br s, 1H), 7.03 (t, J = 7.9 Hz, 1H), 6.90 (d, J = 4.9 Hz, 1H), 5.06 

(m, 1H), 4.54 (ddd, J = 12.9, 3.6, 1.0 Hz, 1H), 4.36 (d, J = 13.8 Hz, 1H), 4.32 (d, J = 13.8 Hz, 1H), 2.63 (m, 

1H) overlapping a br s (1H), 2.12 (ddd, J = 18.1, 6.3, 3.6 Hz, 1H), 1.97–1.87 (m, 1H), 1.87–1.62 (m, 6H), 

1.61–1.44 (m, 4H), 1.34–1.07 (m, 2H), 1.04 (d, J = 6.8 Hz, 3H), 0.68 (s, 3H). 13C NMR (CDCl3, 126 MHz) 

δ: 166.06, 153.26, 140.91, 138.38, 131.20, 128.92, 122.94, 118.38, 80.20, 70.36, 61.41, 51.16, 42.92, 

41.67, 39.73, 34.89, 30.49, 27.33, 27.25, 26.48, 25.87, 13.11, 10.00. HRMS (ESI): Calcd for 

(C25H33NO5+H+): 428.24315, found: 428.24295.   
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5.4   Experimental Part for Part C 

(S)-2-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-
cyclopenta[a]phenanthren-17-yl)propanal (256)[146] 

 
The compound was prepared from 74 according to the general TBS-deprotection protocol (page 95) in 

95% yield. 

TLC (30% ethyl acetate in petroleum ether): Rf = 0.32 (CAM). 1H NMR (CD2Cl2, 300 MHz) δ: 9.52 (d, J = 

3.2 Hz, 1H), 5.33 (m, 1H), 3.44 (m, 1H), 2.39–0.87 (m, 22H), 1.08 (d, J = 6.8 Hz, 3H), 0.99 (s, 3H), 0.71 (s, 

3H). 13C NMR (CD2Cl2, 75 MHz) δ: 205.51, 141.51, 121.83, 72.13, 56.53, 51.52, 50.69, 50.06, 43.43, 

42.82, 39.99, 37.80, 37.01, 32.40, 32.38, 32.20, 27.57, 25.14, 21.54, 19.73, 13.78, 12.48. FTIR (neat), 

cm-1: 3419 (br), 2932 (s), 1718 (vs), 1442 (m), 1376 (m), 1056 (vs). HRMS (ESI): Calcd for (C22H34O2+H+): 

331.26316, found: 331.26238. Melting point: 153–154 °C (lit: 152–153 °C)[146]. 

5.4.1   General Procedure for Prins Cyclization 

(4S,6S)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-methyltetrahydro-2H-2λ3-pyran-4-ol (257) 

 

To aldehyde 256 (40 mg, 121 µmol, 1 equiv) in dichloromethane (4 ml) was added (S)-(+)-4-penten-2-

ol (24.9 µl, 242 µmol, 2 equiv) and trifluoroacetic acid (463 µmol, 6.05 mmol, 50 equiv). The reaction 

was stirred at ambient temperature until full conversion was achieved and then quenched by addition 

of saturated aqueous sodium bicarbonate. The resulting mixture was diluted with dichloromethane. 

The separated organic phase was dried over anhydrous magnesium sulfate, the dried solution was 

filtered, and the filtrate was concentrated in vacuo. The intermediate was dissolved in methanol 

(10 ml) and potassium carbonate (33.4 mg, 242 µmol, 2 equiv) was added. Within several minutes the 

intermediate ester was cleaved.  The reaction mixture was diluted with dichloromethane and washed 

with a saturated aqueous solution of ammonium chloride. The separated aqueous layer was extracted 
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with dichloromethane. The combined organic phases were dried over anhydrous magnesium sulfate, 

the dried solution was filtered, and the filtrate was concentrated in vacuo. The obtained residue was 

purified by flash-column chromatography (gradient elution with 10–100% ethyl acetate in petroleum 

ether) to provide the product 257 (37.3 mg, 90%).  

According to 1H NMR, the product appears to be a 90:10 mixture of epimers at the marked carbon 

atom. Below, only the carbon signals of the major stereoisomer are given. 

White solid. TLC (60% ethyl acetate in petroleum ether): Rf = 0.36 (CAM). 1H NMR (CDCl3, 400 MHz) δ: 

5.34 (m, 1H), 3.76 (m, 1H), 3.51 (m, 1H), overlapping with 3.45–3.40 (m, 0.1H, minor stereoisomer) 

3.37–3.23 (m, 1.9H, major stereoisomer), 2.35–2.15 (m, 2H), 2.03–1.70 (m, 8H), 1.65–0.85 (m, 17H), 

1.17 (d, J = 6.2 Hz, 3H), 0.99 (s, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.66 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ: 

140.75, 121.61, 77.22, 71.69, 71.63, 68.89, 56.48, 52.33, 50.06, 43.20, 42.22, 42.07, 40.26, 39.64, 

38.36, 37.20, 36.45, 31.94, 31.83, 31.58, 27.57, 24.17, 21.81, 21.07, 19.36, 13.44, 11.75. FTIR (neat), 

cm-1: 3347 (br), 2932 (br), 1447 (m), 1361 (m), 1042 (s). HRMS (ESI): Calcd for (C27H44O3+H+): 417.33632, 

found: 417.33596. Melting point: 190–191 °C. 

5.4.2   Analytical Characterization of Withanolide Analogues 

 
(1R,3aS,7aS)-1-((S)-1-((2S,4R,6S)-4-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)ethyl)-7a-methyloctahydro-5H-inden-5-

one (259) 

 
The acetal of crude compound 191 was deprotected (page 145), the primary alcohol oxidized (page 

145) to 258 and the product then subjected to the conditions described above. The yield over four 

steps is 40%. According to 1H NMR, the product appears to be a 90:10 mixture of epimers at the marked 

carbon atom. Below, only the carbon signals of the major stereoisomer are given. 

Colourless oil. TLC (50% ethyl acetate in petroleum ether): Rf = 0.44 (CAM). 1H NMR (CDCl3, 500 MHz) 

δ: 3.77 (m, 1H), 3.49–3.40 (m, 0.1H, minor stereoisomer), 3.37–3.27 (m, 1.9H, major stereoisomer), 

2.45–2.20 (m, 4H), 2.12 (ddd, J = 13.0, 7.0, 1.9 Hz, 1H), 2.00–1.55 (m, 8H), 1.50–1.32 (m, 3H), 1.29–1.00 

(m, 2H), 1.17 (d, J = 6.2 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.88 (s, 3H). 13C NMR (CDCl3, 126 MHz) δ: 

212.34, 76.85, 71.69, 68.79, 51.13, 49.77, 43.20, 42.82, 41.58, 40.23, 38.33, 37.60, 37.55, 28.39, 26.26, 

21.77, 13.33, 10.42. FTIR (neat), cm-1: 3400 (br), 2947 (br), 2869 (s), 1707 (vs), 1137 (s). HRMS (ESI): 

Calcd for (C18H30O3+H+): 295.22677, found: 295.22653.  
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(4R,6R)-2-((S)-1-((3S,8S,9S,10R,13S,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)-6-methyltetrahydro-2H-2λ3-pyran-4-yl acetate (262) 

 

The product was synthesized from 256 according to the general procedure for Prins cyclization (page 

189), followed by acetylation (page 111) in 65% yield over three steps. According to 1H NMR, the 

product appears to be a 72:28 mixture of epimers at the marked carbon atom. Below, only the carbon 

signals of the major stereoisomer are given. 

Colourless oil. TLC minor stereoisomer (15% ethyl acetate in petroleum ether): Rf = 0.50 (CAM). TLC 

major stereoisomer (15% ethyl acetate in petroleum ether): Rf = 0.48 (CAM). 1H NMR (CDCl3, 600 MHz) 

δ: 5.36 (m, 1H), 4.85 (m, 1H), 4.59 (m, 1H), 3.55–3.47 (m, 0.72H, major stereoisomer), 3.39 (ddd, J = 

11.4, 3.3, 1.5 Hz, 0.72H, major stereoisomer), 3.37–3.33 (m, 0.28H, minor stereoisomer), 2.35–2.26 (m, 

2H), 2.03 (s, 3H), 2.02 (s, 3H), 2.00 –0.84 (m, 23H), 1.20 (d, J = 6.3 Hz, 3H), 1.00 (s, 3H), 0.95 (d, J = 6.7 

Hz, 3H), 0.69 (s, 2.16H, major stereoisomer), 0.65 (s, 0.84H, minor stereoisomer). 13C NMR (CDCl3, 151 

MHz) δ: 170.58, 170.54, 139.61, 122.52, 73.92, 71.23, 71.10, 56.28, 52.53, 49.94, 42.57, 39.84, 39.63, 

39.27, 38.05, 36.92, 36.52, 31.82, 29.78, 27.71, 27.33, 24.29, 21.76, 21.42, 21.34, 20.94, 19.24, 13.49, 

11.80. FTIR (neat), cm-1: 2937 (br), 1733 (s), 1448 (w), 1364 (m), 1237 (vs), 1027 (s). HRMS (ESI): Calcd 

for (C31H48O5+Na+): 523.33940, found: 523.34082. 
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7.1   Abbreviations 

aq   aqueous 

ALK   Alkaline phosphatase 

APC   Adenomatous polyposis coli 

9-BBN   9-borabicyclo(3.3.1)nonane 

BCC    basal cell carcinoma 

BIOS   Biology-oriented synthesis / Biologie-orientiete Synthese 

Calcd   calculated 

CK1α   Casein kinase 1α 

CoA   coenzyme A 

COMAS   Compound Management and Screening Center 

CRC   colorectal cancer 

CYPs    Cytochrome P450 

δ   chemical shift 

DABCO   1,4-diazabicyclo[2.2.2]octane 

DAPI   4',6-diamidino-2-phenylindole 

DCC   N,N'-dicyclohexylcarbodiimide 

DCM   dichloromethane 

DHH   Desert hedgehog 

DMAP   4-dimethylaminopyridine  

DMSO   dimethylsulfoxide 
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DNP    Dictionary of Natural Products 

DOS   diversity oriented synthesis  

EC50   half maximal effective concentration 

equiv   equivalent(s) 

Et   ethyl 

FAP   familial adenomatous polyposis 

FCC   flash column chromatography 

FDA    U.S. Food and Drug Administration 

FTIR   Fourier transform infrared spectroscopy 

g   gram(s) 

GAPDH   Glyceraldehyde 3-phosphate dehydrogenase 

GLI1, GLI2 and GLI3 Glioma-associated oncogene transcription factors 

GSK3β   Glycogen synthase kinase 3β 

Hh    Hedgehog 

HMPA   hexamethylphosphoramide 

HRMS   high resolution mass spectrometry 

IC50    half maximal inhibitory concentration 

IHH   Indian hedgehog 

LDA   lithium diisopropylamide 

LRP-5/6   LDL-related proteins 5/6 

KHMDS   potassium bis(trimethylsilyl)amide 

Ki   inhibition constant 

Me   methyl 

MeOH   methanol 

mg   milligram 

MMOA    molecular mechanism of action 

ml   millilitre 

n-BuLi    n-butyllithium 

NMR    nuclear magnetic resonance 

PTCH   Patched 
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p-TsCl    para-toluenesulfonyl chloride 

p-TsOH·H2O  para-toluenesulfonic acid monohydrate 

RCM   ring-closing metathesis 

RT   room temperature 

SAR   structure activity relationship 

SCONP   Structural classification of natural products 

s.d.   standard deviation 

SHH   Sonic hedgehog 

SM    secondary metabolite 

SUFU   Suppressor of Fused 

SV40   Simian vacuolating virus 40 

TBAI   tetrabutylammonium iodide 

TBS   tert-butyldimethylsilyl 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 

TIPS    triisopropylsilyl 

TMS    trimethylsilyl 

TLC    thin layer chromatography 

Wnt3a-CM  Wnt3a conditioned medium 
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