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Abstract

Given a sequential data input, we tackle parallel dynamic skyline com-
putation of the read data by means of a spatial tree structure for indexing
fine-grained feature vectors. For this purpose, we modified the Skyline
Breaker algorithm that solves skyline computation with multiple local
split decision trees concurrently. With this approach, we propose an al-
gorithm for dynamic skyline computation that inherits the robustness
against the “dimension curse” and different data distributions.

1 Introduction

Let us assume a group of tourists going sight-seeing in the historic downtown
of Wroclaw. During their sight-seeing trip they want to locate a restaurant
by querying a database with their mobile phone. Their current location is
at a noisy construction site in an actual quite nice place. Hence, they prefer
a restaurant that should be close to their current location, but not in direct
vicinity of it. Moreover, they search an affordable dinner with exception of fast-
food. But unfortunately, the database just classifies the locations by price. In
order to cope with this restriction, they take a certain price as ideal. Alas, there
might be no restaurant that matches both properties “affordable” and “nearby
center”, because fast-food stands and more expensive restaurants might also
located closer to downtown. If the query result is unsatisfiable, the tourists
might slightly modify their query ahead of the next try (e.g., by moving to
another location or arguing about the price). Without an ingenious strategy,
common skyline algorithms have to project the restaurants w.r.t. the query
each time from scratch. Dynamic skyline algorithms provide fast results for
recurring queries of the same kind by caching [20]. The key of dynamic skyline
is a generalized mapping of the input data to the feature vector space. Instead
of reconstructing this mapping for each query, it stays the same during recurring
queries. Effectively, the vector space is parametrized by a query vector, i.e., it
is shifted by an offset.
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1.1 Dynamic Skylines

Consider we have a data set Ω and a scoring function f : Ω → Rn. We call an
element a ∈ Ω a tuple, and f(a) its respective (feature) vector. Let us say that
we have a query vector q ∈ Rn and want to compute the dynamic skyline of
q [19], i.e., we want to find all vectors of f(Ω) that are not dominated by any
other vectors w.r.t. q. A vector dominates another vector if its distance to q has
an equal or lower value than the other vector’s distance to q in all respective
coordinates, and a strictly lower value in at least one coordinate. According to
this definition, the query vector q ∈ Rn always dominates all other vectors, but
q is not part of f(Ω) in general. We call q an offset vector, because it moves the
best location 0 ∈ Rn of the classical skyline problem to its own location (e.g. we
translate the vector space by Rn → Rn, v 7→ v+q). Vectors are often illustrated
as points of the Rn vector space equipped with the l1 norm. The latter is useful,
as two points are incomparable with respect to domination when their norm is
equal.

1.2 Structure of the Paper

This paper provides a modification of the Skyline Breaker algorithm [16]. While
the original paper suggests an algorithm for classic skyline computation, we ex-
tend its usage to dynamic skyline queries. Therefore, we review the main ideas
before addressing our new enhancements. The rest of our paper is organized as
follows: Section 2 contains an overview of related work with regards to skyline
computation on tree data structures. We introduce basic definitions and helpful
lemmata in Section 3 with the sLSD-tree structure in Section 4 before focusing
on the algorithm itself in Section 5. There, we present the problem and high-
light different techniques for optimizations. Finally, Section 6 reflects possible
performance speedups and slowdowns.

2 Related Work

The approach of skyline-computation by means of geometric representation of
data already cherishes a huge authorship. Kossmann et al. [15] propose near-
est neighbor (NN) search operating on an R*-tree [1] structure. This idea was
extended by Papadias et al. [18] featuring the branch-and-bound skyline (BBS)
algorithm. They were also the first to propose the dynamic skyline problem [19].
Using the M-tree [7] as a geometrical representation for the data, Chen and
Lian [6] reasoned about pruning techniques for fast dynamic skyline computa-
tion. Additional to providing a dynamic skyline algorithm, Sacharidis et al.
[20] proposed caching methods to speed up computation in subsequent queries.
Along with new proposals for skyline computation, the focus of recent research
projects tends to parallelization of classic skyline algorithms. Selke et al. [21]
discuss a variant of block-nested loop (BNL) using the Lazy List [9] data struc-
ture. Techniques like optimistic locking are shown as a good trade off between
redundant synchronization steps and race conditions. By doing so, they manage
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to successfully shrink the sequential fraction of BNL. Next to BNL, a possible
parallelization of BBS and SFS are treated by Im et al. [14]. Obviously, dynamic
skylines and parallel skyline algorithms are part of an active research area. The
combination of both fields is topic of this paper.

3 Preliminaries

As in common calculus, πi : Rn → R denotes the projection to the i-th coordi-
nate, i.e., for all (v1, . . . , vn) ∈ Rn

πi(v1, . . . , vn) = vi with i ∈ {1, . . . , n} .

We call a function f : Ω → Rn a scoring function. Here Ω is a subset of
an arbitrary universe, in an abstract sense. Further, for a scoring function
f : Ω → Rn, we call v := f(x) ∈ Rn the feature vector of x ∈ Ω. We will now
consider a fixed offset q ∈ Rn. The motivation about the definitions is that
f and q induce a strict weak ordering ≺q on Ω, called a dynamic scoring of
Ω. For two vectors v, w ∈ Rn, we call v better than w w.r.t. q if there exists a
j ∈ {1, . . . , n} such that |πj (v − q)| < |πj (w − q)| and |πi (v − q)| ≤ |πi (w − q)|
for every i ∈ {1, . . . , n}. We shortly write v ≺q w. Analogously, we write x ≺q y
for two tuples x, y ∈ Ω if and only if f(x) ≺q f(y) holds.

In case there is no possibility of confusion, we write |S| to express the car-
dinality of a set S, i.e., the number of elements of S.

3.1 Formal Problem Definition

The dynamic skyline parameterizes the classic skyline by a feature vector q as
an offset [19]. More concretely, the dynamic skyline set Sq (Ω) ⊂ Ω holds the
condition

x ∈ Sq (Ω) :⇔ ∀o ∈ Ω, there either exists a j ∈ {1, . . . , n}
such that |πj (f(x)− q)| < |πj (f(o)− q)|
or f(x) = f(o)

⇔ there exists no o ∈ Ω with o ≺q x.

We also call x ∈ Sq (Ω) a tuple that is not dominated by any other tuple of Ω.
In the following, when the sense is obvious, we identify a tuple x ∈ Ω with its
value f(x), e.g., we do not explicitly mention any notion of f . So when speaking
about coordinates of x, we actually mean the coordinates of f(x).

Lemma 1. Let U1, . . . , Uk ⊂ Ω be a cover of Ω, i.e.,⋃k
i=1 Ui = Ω. Then Sq (Ω) ⊂

⋃k
i=1 Sq (Ui)

Proof. Let x ∈ Sq (Ω) ∩ Ui, then for all o ∈ Ui ⊂ Ω, there either exists a
j ∈ {1, . . . , n} such that |πj (f(x)− q)| < |πj (f(o)− q)| or f(x) = f(o). Hence
x ∈ Sq (Ui).
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4 The sLSD-Tree

The LSD-tree is a hybrid tree that has bucket nodes as leaves and directory
nodes as internal nodes. Moreover, it is a binary tree as a bucket split divides
two bucket nodes with a hyperplane. Bucket nodes are the actual nodes which
store the data. We call the data of this kind of node a bucket. On the other
hand, directory nodes only save the split-position and the two bucket nodes split
by the hyperplane. In the beginning, the tree possesses a single bucket node.
Whenever a bucket contains more than M elements, this bucket node will be
split. In our case, the split point is determined by the median of all elements
according to one dimension. After the split, we have a left and a right bucket
node: The left bucket contains those elements which have smaller values than
the split-position in the split-dimension. The information of the split is saved in
a new directory node that replaces the previous bucket node and adopts both
new bucket nodes as children. Exactly as the kd-tree, the split-dimension can
be determined by the tree-depth of the bucket node which shall be split. In
another perspective, the LSD-tree partitions data of Rn into disjoint cuboids
where each cuboid contains all elements of exactly one bucket. So each bucket
can be represented as a cuboid which coordinates are saved in the ancestor
nodes’ split positions. We call this particular cuboid the bounding cuboid of
the bucket. Computing the NN of an arbitrary point q ∈ Rn is done by the
following steps: First traverse the tree in a top-down manner in order to locate
the bucket, in which q would belong. Next, walk recursively upwards while
analyzing at each depth the sibling for near points. Note that the sibling can
be a subtree, hence we have to analyze it recursively, too. Henrich [10] proposes
an algorithm that takes the distances to already found points for a bound to
stop the näıve search prematurely. The difference between the LSD-tree and
our sLSD-tree is the lack of external directory nodes as we are constraining the
problem for in-memory use cases. Finally, our sLSD saves data of type Ω, but
uses the function f to determine the position of the data.

4.1 Dealing with skewed distributions

The sLSD-tree splits an overfull bucket by sorting its elements in a certain
dimension and taking the median. This dimension is determined by its parent
node. In the worst case scenario, all elements share the same value in this
dimension. A split would therefore create two new buckets; one assigned with
the entire content and the other left empty. Henrich [12] avoids this bad behavior
by simply iterating over the split dimension until he finds different values of the
elements in this dimension. For termination, we just have to check if at least
two elements have different feature vectors. Another method would take those
dimensions as split dimension into account, for which only few objects’ value
collide with the median value in this dimension. If there are multiple dimensions
with the same number of minimal collisions, then we take the dimension with
the highest variance in objects’ value out of this remaining set. This additional
filter tries to hinder any bucket of becoming too elongated in specific dimensions.
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4.2 Complexity Analysis

As a member of the kd-tree family, the sLSD-tree possibly shares complexity
traits with its ancestor. In fact, the kd-tree is a specialization of the sLSD-tree
with a maximum bucket size of M = 1. On the one hand, for neglectably small
M , the sLSD-tree provides operations like inserting or locating an element in
O (log2 |Ω|) average and O (|Ω|) worst time, too. On the other hand, a M ≥
|Ω| lets the sLSD-tree store the entire data in a single bucket. Hence, the
time complexity is based on the data structure used for the buckets. For the
other cases with 1 � M < |Ω|, we have to take care for the more complex
insertion step. If we assume contrarily to Subsection 4.1 that the median value
is always unique under all considered objects during a split, then any split of
an overfull bucket at the median creates two buckets, each containing at least
bM/2c elements. Moreover, our algorithm will not remove any element of the
sLSD-tree. After inserting M + 1 elements, there is at no time any bucket with
less than bM/2c elements. Let us use the random variables bi ∈ [bM/2c ,M)
with i = 1, . . . , k for counting the elements of each bucket of an sLSD-tree with k
leaves. These variables satisfy the constraint that

∑k
i=1 bi = |Ω|. In the average

case, the occupancy rate is distributed uniformly over all intervals, hence we get
3
4kM = |Ω|, i.e., k = 4|Ω|

3M = O
(

|Ω|
M

)
. Therefore, the sLSD-tree has an average

depth of O
(

log2
|Ω|
M

)
. The costs for inserting an element are a combination of

a) finding the bucket in which the element shall be inserted. The time is loga-
rithmic in the depth of the tree.

b) splitting this bucket if it is overfull. The split is done by sorting the elements
in one dimension that takes
O (M log2M) time and creating a new bucket that takes O (M) time for
moving half of the elements to the new bucket. Overall, a newly created
bucket can take M/2 new elements in the average before it has to be split.
Hence, this step takes O (log2M) amortized time.

To sum up, insertion takes O (log2 |Ω|) amortized time in average. In the worst
case, all buckets have minimal occupancy, i.e., bi = bM/2c. Thus, we have

k = 2|Ω|
M . Let us take an empty sLSD tree. If we insert a sequence of elements

Ω that are strictly ordered, we obtain, like for kd-trees, a caterpillar tree with
the worst case depth of O (Ω) if we drop the restraint of unique values. It is
easy to see that the distribution of elements will not only affect the number
of buckets, but also the time complexity. Fortunately, Henrich [11] provides a
heuristic online-strategy that tries to redistribute the occupancy. His strategy
tries to shift the split position of the parent node of an overflowing bucket in
order to prevent the split of the bucket. But we have to take into account, what
kind of node the sibling of the brimful bucket is:

a) If it is a bucket that has space left, we just shift the parent node’s split
position such that the number of elements gets rebalanced.
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b) If the sibling is a subtree that can adopt a new element without splitting one
of its children, we shift again the split position of the bucket’s parent node.
But this time, we also have to recompute the split information of the interim
nodes of this subtree.

If none of these conditions can be applied, we declare the bucket’s parent node
as overfull and try to shift the split position of its respective parent. Hence, if a
local redistribution is not possible, we recursively go upwards the tree and recon-
struct the split information. Regarding aggressive shifting strategies, there is a
certain trade-off between overall bucket utilization and the number of directory
nodes [11].

4.3 Geometrical Characteristics

In the context of the Skyline Breaker algorithm we are particularly interested
in catching skyline points out of the sLSD-tree quickly. Therefore, we need to
compute the bounding cuboids for nodes with arbitrary depth. For that, we
denote with depth (e) the depth of any node e of an sLSD-tree. The following
lemmas will help us to solve this task.

Lemma 2 ([16]). Let b be an arbitrary leaf node. To determine the bounding
cuboid of b we need to examine n ancestors of b.

Let o = (o1, . . . , on) ∈ f(Ω) be a feature vector and q = (q1, . . . , qn) the
query vector.

Lemma 3. The pairwise disjoint, non-bounded cuboids D1 := (q1 + d1,∞) ×
(q2 + d2,∞) · · · × (qn + dn,∞), D2 := (−∞, q1 − d1) × (q2 + d2,∞) · · · × (qn +
dn,∞), . . . , D2n := (−∞, q1 − d1) × · · · × (−∞, qn − dn)) do not contain any

skyline point, where d := (|q1 − o1| , . . . , |qn − on|). Furthermore, Rn \
⋃2n

j=1Dj

is connected.

Proof. For every feature vector u ∈
⋃2n

j=1Dj we have |πj (u− q)| > |πj (o− q)|
for every j = 1, . . . , n, and thus u is dominated by o.

Lemma 4. Both the siblings of Bq and the descendants of Bq’s ancestors with
depth at least depth (Bq)− n+ 1 can contain skyline points.

Proof. W.l.o.g. we assume depth (Bq) > n − 1. Let p be the ancestor of Bq

with a depth of depth (Bq) − n and let c be the child that is the ancestor of
Bq. The node c has a depth of depth (Bq) − n + 1. The descendant directory
nodes of c and c itself cannot have any split position farther away from q than p.
Otherwise, the bucket Bq would be at a different location than q. Because of the
definition of Bq, no directory node that is both ancestor of Bq and descendant
of p has the split-dimension of p. Hence, there is no leave node of c whose
bounding cuboid is contained (entirely) in D (of Lemma 3 with Bo ← Bq).

Remark 1. According to Lemma 4, if the depth of the sLSD tree is less than
n− 1, the pruning technique cannot be done.
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5 The Algorithm

While the original algorithm restricts itself to non-negative feature vectors, we
had to relinquish this constraint in order to parametrize the skyline computation
with an arbitrary offset q. Therefore, we reintroduce basic original concepts,
while providing our alternations.

5.1 The Dynamic Skyline Breaker Algorithm

We generate an sLSD-tree for each thread. Each thread starts with the SBDyn

(Algorithm 1) immediately after its tree is filled with the input data. Firstly, we
search the nearest neighbor of q with respect to the l1 norm in terms of bucket
nodes by Henrich’s distance-scan algorithm [12]. While locating this node, at
most 2n − 1 buckets have to be examined. Because we have not yet found any
dominator, these buckets might contain skyline points additional to a. Hence,
we collect these buckets for local skyline computation and call them {Bi}i∈I for
some I. Let a ∈ f(Ω) ⊂ Rn be a NN of q and let Bq denote the bucket in which
q would be added. Now, having Lemma 2 in mind, we start to traverse the tree
reversely, counting our steps upwards. We initialize a vector v ← q that keeps
track of the geometrical position. While climbing the tree upwards, we examine
the sibling c of the node we came from. Until we have not counted upwards
to the dimension n, at least one of v’s coordinates is zero (see Lemma 4). So
we cannot discard c. In other words, we need to traverse c and collect all of
its buckets. When we have reached the number n with our counting, one of
the descendants of c could be discarded. That is because some descendants’
bucket might be contained in the region without skyline points considered in
Lemma 3. Therefore, we start a new task that traverses c, done by the tree
clipping, described in Section 5.3 and Algorithm 2. We have traversed the tree
when we have reached the root node while climbing up the tree from Bq. The
last step is the allocation of the global skyline.

5.2 Skyline in a Bucket

For local skyline calculation we can modify any skyline algorithm to work with
an offset of q. We did this with a simple BNL-based algorithm that works
directly on the bucket, while subtracting the offset ahead of comparison.

5.3 The Tree Clip Algorithm

Algorithm 2 works with a divide and conquer (DC) strategy. We start with
a directory node and the split information of its parent node. It is advisable
to hold this data in a variable v ∈ Rn by setting the coordinate entry of p at
the split-dimension to the split-position, while all other coordinates are kept
identical to q’s position for a start. The other child c of our current directory
node can be illustrated as a cuboid with the corner point ec = v that is closest
to q. So, while we traverse the children of our current directory node, we
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Algorithm 1 Dynamic Skyline Breaker

function sbDyn(q ∈ Rn)
Q← Set(∅) ⊂ Ω
(a,Bq, {Bi}i)← NearestNeighbor(q)
Assert(a = minarga∈f(Ω) ‖a− q‖l1)
Q.insert (Sq (Bq ∪ {Bi}i))
N ← Bq

for i← 0 to n do
c← N,N ← N.parent
c← N.left = c ?N.right : N.left
Q.insert (Sq (c))

end for
while N 6= root do

c← N,N ← N.parent
c← N.left = c ?N.right : N.left
if c is a BucketNode then

Q.insert (Sq (c))
else

v ← q ∈ Rn

w ← split-position of N
v.(split-dimension of N)← w
clip(q, c, v,Q)

end if
end while
return Sq (Q)

end function

note down the split information in v until we have gained coordinates for all
dimensions. With this information represented by the split point v ∈ Rn, using
the condition a ≺q v, we now check whether discarding the child node c is
feasible. If the condition holds, we know that all elements contained in the
cuboid of c are dominated by a. Thus, we discard the node c, even if it is a
directory node. Otherwise, we have to traverse the right node recursively, again
denoting its split data.

6 Analysis and Optimization

Let us retrace the versatile steps involved in the algorithm while analyzing the

time complexity. At the start, locating Bq will take O
(

log2
|Ω|
M

)
in the aver-

age andO (|Ω|) in the worst case, according to Subsection 4.2. Subsequently, a is
found while examining at most 2n − 1 that takes
O ((2n − 1)M) time in the worst case. If we take a balanced sLSD-tree for
granted, the preparation step of Subsection 5.3, that moves upwards until reach-
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Algorithm 2 Clipping the Tree

function clip(q ∈ Rn, N : node, v ∈ Rn, Q ⊂ Ω)
w ← split-position of N
d← split-dimension of N
c← q.d < w ?N.left : N.right
if c is a BucketNode then

Q.insert (Sq (c))
else

clip(q, c, v,Q)
end if
v′ ← v
v′.d← w
if a 6≺q v

′ then
c← c = N.left ?N.right : N.left
if c is a BucketNode then

Q.insert (Sq (c))
else

clip(q, c, v′, Q)
end if

end if
end function

ing at least n different dimensions, will also take O (2n) buckets into consider-
ation. For local skyline computation of any bucket, an algorithm like BNL [5]
applied in Subsection 5.2 needs at least Ω(M) time and has O

(
M2
)

worst time
complexity. The time taken by the actual tree clipping algorithm is heavily
dependent of the distribution of split information and takes at least time pro-
portional to the remaining depth of the current node in the sLSD-tree after
the preparation step. By building our algorithm upon the sLSD-tree we yield
a combinatorial approach that employs both the DC-strategy of Subsection 5.3
and some nested-loop algorithm of Subsection 5.2. Both strategies are weighted
by the maximum bucket size M . On the one extreme, for M = 1 we get a kd-
tree like structure with singletons as buckets. According to the complexities of
Subsection 4.2, setting M = 1 creates a much larger tree structure and exploits
entirely the DC-strategy. On the other hand, taking any M > |Ω| puts the entire
content in a single bucket and just evaluates the nested-loop algorithm. For tak-

ing advantage of both algorithms, a M ∈ (1, |Ω|
2n+1 ] has to be chosen, dependent

of the input data’s distribution. Obviously, there are data sets for which choos-
ing a small or large M results in a speed-up. A best-case scenario for large M
is a correlated data set with O (|U |) time complexity for the BNL of any subset

U ⊂ Ω. If the sLSD-tree is balanced, we have a depth of O
(

log2
|Ω|
M

)
and thus

|Ω|
M leaves. Hence, the algorithm will take at most O (|Ω| log2 |Ω|) time. On the
other hand, extremely anti-correlated data can pose the worst case running time
for the BNL. But if the clipping condition holds for most of the time, we have
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for |Ω|
M ≥ 2n the best case running time O

(
log2

|Ω|
M − n

)
for the tree climbing

algorithm that collects O (2n) buckets of a balanced LSD-tree in addition. For
merging these buckets, we have 2nO (M) best case and 22nO

(
M2
)

worst case
time. Note that both times are independent of |Ω|. Hence, we argue that the
dimensional factor plays only a minority role for reasonable large |Ω| > 22n.

Proposition 1. The Skyline Breaker algorithm accesses the optimal number of
nodes for computing the dynamic skyline set of q, i.e., no algorithm will solve
the same problem while visiting fewer nodes on the same data structure without
knowledge of the contents of any bucket.

Proof. Let us assume that our algorithm unnecessarily inspects a bucket u that
can be safely pruned. The bucket u has a bounding rectangle with corner points
(u0, . . . , u2n). Let uL be a best corner, i.e., uL ≺q ui for every i = 1, . . . , 2n.
In the contrary, there has to be an element v ∈ Ω with f(v) ≺ uL. Otherwise,
without further knowledge, we have to inspect the bucket u. We also know
that the NN of q is always part of the skyline set. Hence, every algorithm that
computes the dynamic skyline set has to access the bucket Ba that would take a
as a new element of the global skyline. Due to the fact that Algorithm 2 traverses
the tree from Bq upwards, we will encounter nodes in an ascendingly, weakly
sorted order w.r.t. its best corner. In other words, the algorithm will either find
a bucket containing v before accessing u or find a bucket that dominates v. In
both cases, we will not inspect the bucket u; either we clip a subtree containing
u or u itself.

6.1 Improving the Clipping Condition

The tree clipping (Algorithm 2) could be extended to use a list of known skyline
points instead of solely a (a as defined in Section 5.1). A large list S′ ⊂ S of
global skyline points reinforces the clipping in Subsection 5.3 by testing o ≺q p
for any o ∈ S′ instead of only a. Thus a skyline subset will provide a higher
chance of clipping. Actually, we can already enlist some points while finding a;
let us recall that the search for the NN of q can take at most 2n−1 buckets {Bi}i
into account. Due to the distance-scan algorithm [12], each of these buckets is a
neighbor of Bq. The possibly huge number arises from the number of orthants
that are spawned by q (see Lemma 3). Because the bounding cuboids form a
connected region that contains q, there exists a certain area in which we can
be sure that local skyline points belong to the global dynamic skyline. More
precisely, we compute the maximal cube (i.e., a cuboid with equal sides) that is
contained in the union of all buckets. We denote its side length with s. Then any
o ∈ Sq (

⋃
iBi) with ‖o− q‖l1 ≤ s is in the global skyline Sq (Ω). If there would

be a p ≺q o then ‖p− q‖l1 ≤ s and hence p ∈ Sq (
⋃

iBi), a contradiction for o
being a local skyline point. By taking any yet encountered local skyline point
for filtering during the clipping, Proposition 1 is tightened to the statement that
the algorithm is optimal w.r.t. the class of algorithms that may use knowledge
of the buckets’ contents, too.
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6.2 Analysis of Parallelism

At first glance, it seems an easy task to divide the algorithm in independent
subtasks: Firstly, the input data is partitioned and each part gets processed
by a different thread. Particularly for a concurrent input source like in RAM
stored data of a CRCW, there is no sequential bottleneck. In the main step,
each thread computes independently the skyline of its fetched input data. Fi-
nally, we just merge the local skylines until a single (i.e., the global) skyline
remains. Unfortunately, the described algorithm is not embarrassingly parallel;
it has several delicate parts for that we have to take care when adding concur-
rent structures to our code. In particular, this involves the queue that holds the
computed, local skylines. For this job, Java 7’s ConcurrentLinkedQueue with
wait-free access support [17] seemed fitting for us. Moreover, before climbing its
tree, every thread must have a NN of q in order to exploit the clipping technique.
This may be either a point of the thread’s own input data set, a global NN of q
or even a list comprising every already found skyline point. Hence, we either use
a global barrier or a concurrent list that is filled with newly found local skyline
points and trimmed when an already stored point gets dominated by a recently
collected point; this point cannot be dominated by another point of the list, oth-
erwise the trimmed point would have been trimmed in advance. The other parts
of the implementation are rewritten in the MapReduce and Fork/Join model.
Both are two different models for parallel execution. They share the common
goal to ease parallelization of a given sequential task. Nevertheless, their field
of application is orthogonal. While MapReduce targets distributed computing,
Fork/Join works merely on a single node. We will describe our algorithm as
a hybrid approach that employs both models — MapReduce for distributing
the work-load to different nodes and Fork/Join for local multi threaded com-
putation. For the latter, we just translate the ideas of [16] to dynamic skyline
computation. In order to describe our idea in the MapReduce framework, let
us take a partition {Uj}j∈J of Ω, i.e.,

⋃
j∈J Uj = Ω with Ui ∩ Uj = ∅ for

i, j ∈ J pairwise different. The three functions map : ({j} , Uj) 7→ ({j} ,Sq (Uj))
, combine : ((a,Sq (A)), (b,Sq (B))) 7→ (a ∪ b,Sq (A ∪B)) for each a, b ⊂ J with
any A,B ⊂ Ω and reduce : (J, Sq (Ω)) 7→ Sq (Ω) represent the common work
flow of our MapReduce application. In particular, our implementation is a de-
terministic, multi threaded program [3], because its schedule is predetermined
by a fixed number of tasks that consists of the starting threads and the threads
that combine the local skylines. Nevertheless, the code of Subsection 5.3 is
non-deterministic w.r.t. thread spawning. That is caused by the fact that the
number of tasks is dependent of the effectiveness of the clipping and the recur-
sive divide and conquer technique. The latter tells us that the tree clipping is a
fully strict computation [2]. Because common frameworks like Hadoop do not
allow dynamic task creation [8], the clipping cannot be described in terms of
the MapReduce model. Fortunately, translating this part of the algorithm to
the Fork/Join model seemed the right choice; Blumofe et al. showed that the
work-stealing technique is optimal for scheduling fully-strict computations.
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6.3 Caching Dynamic Skylines

The construction of the sLSD-trees in Subsection 5.1 is done on the fly, i.e.,
the tree is not getting rebalanced during the bulk insertion. For reuse, we
can restructure the sLSD-trees to prevent worst case scenarios for next queries.
Therefore, we exchange our median-based split strategy with a distribution de-
pendent one [13] in order to cope, for instance, with skew distributed data. An

optimal refactoring of the tree results in a balanced tree with O
(

|Ω|
M

)
depth.

Additionally, we save after each query the offset vector q along with its dynamic
skyline set Sq (Ω) for reuse [20]. For effective caching we have to introduce the
notion of orthants of q:

Definition 1. The offset q splits the space into 2n orthants. If we give each
orthant a number, we can write the j-th orthant of q as Oq

j for every j =

1, . . . , 2n. By Lemma 1, we have Sq (Ω) ⊂
⋃2n

j=1 Sq
(
Oq

j

)
.

Now, Proposition 1 and a variation of [20, Lemma 2] comes in handy:

Lemma 5. Let q′ be an old offset and b a node of the sLSD-tree whose bounding

cuboid Cb ⊂ Oq′

j belongs to the j-th orthant of q′, but does not contain any points

of the j-th orthant skyline set Sq′(Oq′

j ). If q is an offset and q′ belongs to the
j-th orthant of q, then b does not intersect with Sq (Ω) and thus can be clipped.

The cache is used to provide additional conditions for the clipping algorithm.
But before employing the cache, we take only these elements into consideration
that effectively help clipping:

Corollary 1 ([20]). Let q′ and q′′ be two old queries for that we cached their
results. If q′ ≺q q

′′, then elements of the dynamic skyline-set of q′′ are either

part or dominated by elements of Sq′(Ω). Hence, q′′ will not clip additional
nodes of the sLSD-tree.

7 Conclusion

We have been taken on the shoulders of the Skyline Breaker algorithm that
grants us the ability to handle high-dimensional features regardless of the input
data’s distribution. Some parts of the parallel algorithm were changed in or-
der to cope with the dynamic version of skyline computation. The theoretical
evaluation addresses the combinatorial nature of the algorithm and treats both
best and worst case scenarios w.r.t. different maximum bucket sizes.
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[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
Proceedings of the 17th International Conference on Data Engineering, page
421–430. IEEE Computer Society, 2001.

[6] L. Chen and X. Lian. Dynamic Skyline Queries in Metric Spaces. EDBT
’08, page 333–343. ACM, 2008.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces. VLDB ’97, page 426–435. Morgan
Kaufmann Publishers Inc., 1997.

[8] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[9] S. Heller, M. Herlihy, V. Luchangco, M. Moir, S. William, and N. Shavit.
A Lazy Concurrent List-Based Set Algorithm. Parallel Processing Letters,
17(4):411–424, 2007.

[10] A. Henrich. A Distance Scan Algorithm for Spatial Access Structures. In
ACM-GIS, page 136–143, 1994.

[11] A. Henrich. Improving the Performance of Multi-Dimensional Access Struc-
tures Based on k-d-Trees. In ICDE, page 68–75. IEEE Computer Society,
1996.

[12] A. Henrich. The LSDh-Tree: An Access Structure for Feature Vectors. In
ICDE, page 362–369. IEEE Computer Society, 1998.

[13] A. Henrich, H.-W. Six, and P. Widmayer. The LSD tree: Spatial Access
to Multidimensional Point and Nonpoint Objects. In VLDB, page 45–53.
Morgan Kaufmann, 1989.

[14] H. Im, J. Park, and S. Park. Parallel skyline computation on multicore
architectures. Inf. Syst., 36(4):808–823, 2011.

13



[15] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In VLDB, page 275–286. Morgan
Kaufmann, 2002.
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