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Chapter 1

Without big data analytics, companies are blind and deaf, wandering out
onto the web like deer on a freeway.

– Geoffrey Moore, author and consultant.

Introduction

Over the past years Big Data has become the predominant term of our information
system era. Gaining knowledge from massive amounts of data is regarded one of
the key challenges of our times. Starting with the problem to process the immense
volume of data, Big Data has emerged additional properties: the variety of different
types of data and the velocity in which new data is being produced. This is often
referred to as the 3 V ’s of the Big Data challenge [100]:

• Volume: the ability to process data in the range of terabytes and petabytes

• Variety: the need to combine data from all kinds of different sources and formats

• Velocity: the ability to keep up with the immense speed of generated data.

Two fundamental aspects have changed in the data we are facing today, requiring the
paradigm shift that makes it Big Data: The sizes of data sets have grown to amounts
intractable by existing batch approaches, and the rate at which data changes demands
for short-term reactions to data drifts and updates of the models describing the data.
The shear volume of data demands for highly scalable platforms that provide huge
storage capacities in a distributed setting. The progressing decrease of the lifetime
of our data additionally demands for analytical processes that produce continuous
results in near real-time.

The volume problem of big data has generally been addressed by massive parallelism.
With the drop of hardware prizes and evolving use of large cloud setups, computing
farms are deployed to handle data at a large scale. Though parallelism and concepts
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1. Introduction

for cluster computing have been studied for long, their applicability was mostly lim-
ited to specific use cases. One of the most influential works to use computing clusters
in data analysis is probably Google’s revival of the map-and-reduce paradigm [57].
The concept has been around in functional programming for years and has now been
transported to large-scale cluster systems consisting of thousands of compute nodes.
Apache’s open-source Hadoop [54] implementation of a map-and-reduce platform
nowadays builds the foundation for various large-scale systems and has become the
de-facto standard for Big Data processing with open-source systems. In [129] Sakr,
Liu and Fayoumi survey the family of MapReduce systems along with their improve-
ments. Emerged from the Hadoop platform has the Zookeeper cluster management
sub-project [2]. Zookeeper is a fault-tolerant, distributed coordination service that
has become one of the key core-components of modern distributed scale-out plat-
forms. Recently, a new project called Mesos [83] has been proposed for abstacting
cluster resource management, which might become a replacement for Zookeeper.

From Batches to Continuous Streams

Whereas the volume and variety have been the first encounters of the Big Data
era, the need to address the velocity of data processing has become more and more
important: As data is generated at higher speed, the validity of data is a quickly
decreasing quality. For a very simple example, one may look at text data – long-term
static web pages have been supplanted by more up-to-date weblogs. With blogging
systems people started providing much more frequent updates, which have then been
superseeded by micro-blogging in the form of twitter messages or status updates in
social media. Where static pages had a validity of months or years, blogging pushed
that periods down to days or weeks. The validity of twitter messages is often much
less than days.
As a result, the processing of data needs to keep up with that evolvement of data
and any results computed in today’s systems must reflect that. Following the blog
example, in mid 2010 Google changed its indexing system from pure batch-wise

Web Pages Blogs Twitter

2008 2010 2014

Map&Reduce Caffeine MillWheel

Figure 1.1.: Transition of technologies towards real-time processing for search results
within Google to match up the decreasing life time of information.
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1.1. The Lambda Architecture

indexing to online updates of the search index in order to provide search results
that reflect articles found within the last 10 or 15 minutes [3]. Figure 1.1 shows the
different software systems used by Google over the past years.

Another example can be found in Formula 1 racing: Modern racing cars are equipped
with hundreds of telemetric sensors that measure brake temperature, fuel consump-
tion, provide video data of tyres (to derive tyre temperature and outwear) and so
on. This telemetric data plays such an important role, that it has become part of
the official regulations in Formula 1.

The use of data analysis in Formula 1 is diverse: From air tunnel simulations in the
car construction phase (ahead of pre-season) to testing rides of the constructed car
(pre-season) to realtime optimization of the car’s fine tuning during the race (season).
While racing, the telemetric data is transmitted in near-realtime to the pit lane center
at the track with a delay in the range of milliseconds. The radio transmission of the
telemetric data is handled by custom technology especially developed for the low-
latency transmission from high speeding cars. The data is further transmitted to
the team’s data centers for realtime analysis. The analytical results are then used to
optimize the engine (e.g. ignition timings) or give hints to the driver on where and
how he can gain speed and decrease the lap time. Therefore, the analysis needs to
be performed online to be able to apply the optimization right within the race.

The software techniques used within Formula 1 racing range from Map-Reduce cluster
computation (e.g. simulation data) to distributed stream processing (realtime racing
data). Racing teams like Red Bull Racing partner with SAP [137] to make use of
SAP’s HANA in-memory database and deploy Apache Hadoop clusters or NoSQL
databases to still their analysis demands in time.

1.1. The Lambda Architecture

Looking at a generic picture of today’s data applications, it is rather common to have
data that is produced by some process (e.g. customers shopping) being stored in a
database. Running analytical processes will reveal some sort of results, e.g. a daily
report or a prediction model for future purchases (e.g. to improve pre-ordering).
Figure 1.2 below outlines this scheme.

Database

Data
(continuous)

Results

Batch Process

Figure 1.2.: A generic outline of an data oriented application.
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1. Introduction

This generic architecture poses two problems, which arise when (a) data volume
increases and (b) the results being required to reflect even the last minute data that
most recently arrived. In the last section we briefly outlined two real world examples.
The Lambda Architecture is a term that has first been defined by Nathan Marz in
[109]. The central observation is that the answer to a query (e.g. financial report,
prediction model,...) is a result computed from all the data that is available:

result = query(all data).

Computing the results by a (massively parallelized) batch job does produce a response
with a significant delay, but does not include the data that has been collected in
the period from starting the batch job to its completion. Therefore, the generic
application scheme of Figure 1.2 does not meet todays data demands. Even the
computation of an index, that provides the basis for ad-hoc computation of the final
results does not solve this.

The Lambda Architecture as proposed by Marz therefore introduces three basic com-
ponents for designing Big Data software systems: The traditional batch layer, the
serving layer and the speed layer. Where the batch layer handles the execution of
long-term jobs on history data, it typically produces intermediate results for com-
puting the final query response. These intermediate outcomes are stored within the
serving layer such that they can be queried in real-time. To bridge the gap between
the continuous data that needs to be incorporated into the final query outcome, the
speed layer is introduced as a streaming approach that will compute online results
and feed these back into the service layer. Queries to the system are answered by
aggregating intermediate results from the serving layer. Figure 1.3 shows the three
components of the lambda architecture:

Serving Layer

Speed Layer Batch Layer

λ
Figure 1.3.: The components of the Lambda Architecture.

Simply by building a software system using these guiding component layout does
not meet the requirements of Big Data per se. The implementation of each of the
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1.2. Objectives of this Thesis

layers needs to be scalable to a large amount of computing nodes and requires loosely
coupled fault tolerant components to be in place.
The aforementioned Apache Hadoop system serves as an example for the batch layer.
It provides large scale distributed storage and execution of batch jobs. Software such
as Apache Cassandra [98], Google BigTable [46] or the distributed full-text index
ElasticSearch set the scene to implement a serving layer within a Big Data system.
The speed layer may be provided by streaming platforms such as Apache Storm [61],
Apache Samza [4], Google’s MillWheel [12] or others.

1.2. Objectives of this Thesis

The design and implementation of a Big Data infrastructure requires in-depth knowl-
edge and careful planning. With the lack of an exact definition of Big Data, an in-
teresting view on the term was given by Albert Bifet in a statement during his visit
at the SFB 876 Topical Seminar:

“Big Data problems are those, which are not solvable with standard off-the-
shelf software systems.”

Albert Bifet, October 2013.

The volume, variety and velocity of data pose challenges to the Big Data platform
design which are focusing on the performance of the system. Scaling up a system to
the demands of Big Data is a task that requires careful optimization and adaption of
algorithms with a direct integration of the distributed nature, keeping data locality
and network design in mind. This implies a highly specifalized implementation of a
system architecture for each application domain. A few principles and building blocks
to design such applications have been identified in the Lambda Architecture. The
large scale systems that may be used for implementing any of the layers within the
Lambda Architecture require sophisticated tuning to be adapted to specific applica-
tion tasks. Figure 1.4 shows the triangle of different aspects that form the challenges
of designing software systems to tackle Big Data tasks.

Big Data
Volumes

Complexity of
Applications

Ressource Limitations

Figure 1.4.: Three fundamental aspects of the challenges that Big Data poses to
modern application development.
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1.2.1. Requirements of Big Data Application Design

The major aspect in Big Data applications has been tackled by several software
platforms: The distributed scale up to a huge number of nodes that empower the
large scale software systems. With the scaling factor comes a considerable new as-
pect: the rising complexity of the now distributed applications. New programming
paradigms and concepts are introduced and the ways in which developers need to
think about application design are subject to change. This complexity increases the
resources required to design and build Big Data applications in terms of development
costs. Considering the development of Big Data systems, we further investigate the
following areas:

Usability

Rapid PrototypingMulti-Paradigm

Platform Independence

Though these aspects have found their advocates in traditional software development,
Big Data often is focused on pure scalability and robustness. Opening Big Data
techniques to end-users requires careful consideration on these facets.

Usability Gap

A leading question is the applicability of modern Big Data technologies by domain
experts. The increased complexity of these distributed applications demands for
extensive combined knowledge of the architecture and the application domain. Often,
these extensive skills are not present in the area of domain experts. We refer to this
situation as the usability gap – the techniques and architecture of Big Data are not
directly usable by application experts and require considerable efforts to be used.
The usability gap is a Big Data aspect that has not yet received much attention.

Platform Independence

A more technical aspect, that in some sense is related to the usability gap is the
quickly evolving landscape of Big Data techniques. As the evolution of the platforms
comes with various improvements of computational speed, management or scalability
features, it challenges end users with the question on which platform to use. Each
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of the software systems usually builds upon a proprietary API that results in ap-
plications being implemented with a single target platform in mind. The ultimate
commitment to a specific platform inherits several risks to end-users: With the quick
evolution of the software landscape, users may end up with platforms that are no
longer maintained; a specific platform may turn out not to be fully suited for the
applications needs; or it will be hard to set up the application in a different setting
(i.e. on smaller, non-distributed scale).

Multi-Paradigm Design

Where the platform independence aims at running some implemented application on
different engines of the same kind (e.g. streaming engine), the Big Data world fosters
the use of different paradigms for application design. The Lambda Architecture itself
inherits three different approaches: flow-based streaming applications, map-reduce
like batch processing and a service oriented query-system.
Interestingly, none of these paradigms is new: Flow-based programming [112, 111]
has been around since the 1970s; the map-reduce principle was already prominent in
the old days of LISP or other functional programming languages. The Big Data era
now revitalises some of these concepts in new distributed computing contexts and
requires their combination within a global application design.
An approach for defining applications for Big Data in a larger context should aim
at supporting as many of these paradigms as possible with as few code changes as
possible.

Rapid Prototyping and Extensibility

From an application designer perspective, the typical applications have moved from
a static set of features to evolving modules – especially the use of Big Data in sci-
entific areas therefore demands quick adaption of applications to new findings or
insights gained from previous analysis processes. This needs to be reflected when
trying to bridge the usability gap mentioned above: new approaches to Big Data ap-
plication design need to support the end-user mindset as well as a quick and flexible
(declarative) modelling of applications.
The integration of existing libraries as well as the combination with other platforms
is required to embed an application into the complex environment of a Big Data
architecture. A proper level of abstraction is therefore required to model applications
in a flexible way by the use of existing software components.

1.2.2. Objectives addressed in this Thesis

The need for data analysis in the Big Data area has spawned a development that
grows beyond the traditional machine learning research and methods being tested
on small data sets such as the UCI Machine Learning Repository [6]: Data analysis
needs to be directly implemented within the Big Data architectures. This requires
the creation of applications that reflect the complete cycle from data acquisition,
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1. Introduction

“UCI Machine Learning”

Big Data Analytics

Data

Acquisition
Filtering

Feature

Extraction
Modelling

Optimizations Predictions Insights

Figure 1.5.: The outreach of data analysis within Big Data.

pre-processing, and feature extraction to the training and application of models for
prediction, process parameter optimization or new insights that support the business
understanding, as shown in Figure 1.5.

This thesis addresses the usability gap and application design of Big Data streaming
applications. The goal of this thesis is to bridge the gap between distributed (and
non-distributed) data stream processing and its adaptability in different application
domains. The core contribution is an abstract data stream processing framework,
named streams, which inherently considers the aforementioned Big Data modelling
requirements with a strong emphasis on usability and extensibility. The following
core objectives define the setting in which we developed the streams platform:

(1) Usability

Providing high-level application modelling with different modules, heterogenous
data sources, while keeping the coding level part as low as possible.

(2) Platform Independence

Aiming at the design of streaming applications with small and large scale ar-
chitectures (e.g. Raspberry PI vs. Apache Storm).

(3) Multi-Paradigm Support

Abstraction of concepts, which allow for mapping applications to different en-
vironments (Map&Reduce as well as streaming).

(3) Rapid Prototyping

Providing third party library integration into the declarative application mod-
elling and allowing for easy integration of custom code.

The streams system as proposed in this thesis is an abstract framework for the mod-
elling of data flows as streaming applications. These abstract data flow graphs can
be compiled to different execution engines. By providing a declarative application
modelling, it enables users to define multiple connected processes and services. The
layer of abstraction defined by the streams platform targets the needs of the domain
expert users’ to define data processes while deliberating them from the complexity
of large scale distributed environments as much as possible.
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Among the easy orchestration of applications using the streams approach, we use
the abstraction step inherent to streams to support a multi-paradigm design, which
maximizes the code re-use even among different programming paradigms. By easily
lifting external libraries to the abstract layer of streams we allow for the simple
inclusion of existing software libraries directly into the application modelling. This
features an inherently extensible platform.
To facilitate the application design in a rapid prototyping manner, the streams ap-
proach uses a declarative application design, that allows for defining an application
by its data flow. The declarative nature of the approach eases the modelling of
applications for domain experts as it minimises the need to write program code.

1.2.3. Indicators and Evaluation Criteria

As the design of the streams framework has been motivated with the guiding principles
listed above, we will now develop a set of measurements to ensure the compliance
of the framework with these criteria. Obviously, the aforementioned objectives like
usability, rapid prototyping or code re-use are hard to assess in qualitative numbers
or ratings. User feedback to evaluate usability is one approach, but only provides
reasonable insights when focusing in a very specific aspect, e.g. parts or concepts
within a particular user interface. Especially the power inherited by the abstraction
principle is hard to evaluate with user feedbacks or a questionnaire.
We set out the following criteria for a placement of streams within the continuum of
the Big Data landscape:

(E.1) Platform Independence
The modelling of streaming applications for multiple execution engines.

(E.2) Code Re-Use
The extent to which domain specific code can be re-used without any or only
little modifications.

(E.3) Abstract Modelling
The degree to which domain experts can design their application data flows
without the need to compile code or deal with programming interfaces.

(E.4) Extensibility
The ease of adapting the framework to new application domains.

(E.5) Speed/Performance
The extent to which the abstract application specification can be fine tuned to
gain the maximum performance with respect to different requirements.

The criteria (E.1) to (E.3) are targeted to assess the power of abstraction that comes
with the proposed streams framework. The extensibility (E.4) investigates the ver-
satility and flexibility of streams within different application domains and contexts.
The execution platform provided by streams itself is the objective in criterium (E.5),
where we compare the performance of an application in different execution engines.
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1.3. Outline

The thesis is divided into two parts: The first part covers an in-depth overview of the
current state of the art regarding general purpose streaming systems and introduces
the streams framework as a light-weight middle layer abstraction to streaming plat-
forms. For each of the evaluation criteria, we will discuss their conceptual adherence
when describing the streams approach and the modelling user interface experiments
we performed. The second part deals with the evaluation of streams with regard to
the indicating properties E.1 through E.5. For this we investigate several real-world
examples where we used the framework and show its versatility by outlining its use
in typical scenarios of Big Data processing.

Figure 1.6 illustrates the overall structure of the thesis and the interconnections of
the different chapters. The first three chapters build upon each other, focusing on the
abstraction of stream application modelling towards a generic user modelling using
simple gesture interactions. Chapters 5 and 6 detail the good use of the streams
framework for two real-world applications of Big Data.

Abstractions Applications

Chapter 1

Introduction

Chapter 2

Streaming Survey

Chapter 3

streams Framework

Chapter 4

Visual Proces Design

Chapter 5

Telescope Data

Chapter 6

Video Analysis

Chapter 7

Conclusion

Figure 1.6.: The outline of this thesis.

The first part is structured as following: Chapter 2 outlines an abstract view on
data streaming and gives an extensive overview of the current landscape of streaming
platforms. In Chapter 3 we introduce the abstraction layers of the streams framework
and the design of the modelling approach provided within streams. Based on the
abstractions provided by streams we investigate the use of machine learning methods
for a modelling UI that allows for sketching applications using interactive gestures
in Chapter 4.

Part two is concerned with the application of the concepts developed in the first half of
the thesis. The insight gained in Chapter 3 and Chapter 4 and the software developed
therein (the streams framework) has been applied in various different application
domains, proving its versatile and flexible use. We demonstrate this applicability with
two selected use-case studies: In Chapter 5 we show the applicability of the streams
approach in high-volume scientific data of a physics experiment. While we discuss the
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simplicity of streams and its use by domain experts (physicists), we also investigate
the code reusability of components implemented using the streams API with regard to
machine learning libraries such as MOA or WEKA. Chapter 6 deals with streaming
analytics in the EU project ViSTA-TV, featuring the rapid development of video-
analysis combined with statistical measures of viewing behavior. This chapter deals
with the heterogenity of data sources that Big Data environments face.

We close the thesis with a summary and outlook in Chapter 7.

1.4. Applications and Publications

The Applications part of the thesis gives an overview of two selected use-cases, that
demonstrate the applicability of the streams framework in real-world scenarios.

The first example is the setting of processing large scale scientific data, recorded with
a Cherenkov telscope. The emphasis here is on the bridging of the interdisciplinary
gap as it targets the use of streams and modelling of data flows by domain experts
(physicists).

The second use-case is the application of streams within the EU project ViSTA-TV.
This project focused on the extraction of valuable viewership information from IP-TV
platforms in real-time. The streams framework served as the underlying modelling
framework to define the global data flow of the streaming architecture in ViSTA-TV.

1.4.1. Publications Covered by this Thesis

In addition to the applications, a number of scientific publications related to the
streams framework is listed in the following.

Technical Reports in SFB-876

The work on this thesis was partially funded by the Deutsche Forschungsgesellschaft
(DFG) through their grant on the collaborative research center SFB 876, Providing
Information by Resource-Constrained Data Analysis. The following technical reports
have been published in this context:

• The streams Framework
Bockermann, Christian and Blom, Hendrik.
SFB876, Technical Report 6, 2012.

• A Survey of the Stream Processing Landscape
Bockermann, Christian.
SFB-876, Technical Report 6, 2014.

The report of 2014 forms the basis of the survey in Chapter 2, whereas Chapter 3 is
based on the technical report of 2012.
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Peer-Reviewed Publications

An integration of streaming processes with the streams abstraction has been inves-
tigated for the RapidMiner application. We also explored the automatic integration
of software libraries for existing architectures. Both works have been published in:

• Processing Data Streams with the RapidMiner Streams Plugin.
Bockermann, Christian and Blom, Hendrik.
In Processings of the RapidMiner Community Meeting and Conference (RCOMM-
2012), 2012.

• Get some Coffee for free – Writing Operators with RapidMiner Beans
Bockermann, Christian and Blom, Hendrik.
In Processings of the RapidMiner Community Meeting and Conference (RCOMM-
2012), 2012.

The visualizations and interactive modelling of data flows (Chapter 4) is based on
the following publications:

• A Visual Programming Approach to Big Data Analytics.
Bockermann, Christian.
In Proceedings of Design, User Experience, and Usability. 3rd International
Conference, DUXU, 2014, HCI International.

• Data Mining Arts – Learning to Paint RapidMiner Processes
Bockermann, Christian.
In Proceedings of the RapidMiner Community Meeting and Conference (RCOMM-
2013), Shaker-Verlag, 2013.

The work on the FACT telescope data (Chapter 5) is documented in:

• Online Analysis of High-Volume Data Streams in Astroparticle Physics
Bockermann, Christian and Brügge, Kai and Egorov, Alexey and Buss, Jens
and Morik, Katharina and Rhode, Wolfgang and Ruhe, Tim.
In Proceedings of the ECML/PKDD 2015, Industrial Track, 2015.
Awarded with Best Industrial Paper Prize.

Chapter 6 covers the ViSTA-TV EU project and the techniques therein have been
published as project deliverables to the EU commission. In addition, the chapter
covers the processing of high-speed sensor data, which was subject of a collaborative
work for the challenge of the DEBS conference:

• TechniBall: DEBS 2013 Grand Challenge
Gal, Avigdor and Keren, Sarah and Sondak, Mor and Weidlich, Matthias and
Blom, Hendrik and Bockermann, Christian.
In Proceedings of the 7th ACM International Conference on Distributed Event-
Based Systems (DEBS’13), Arlington, TX, USA, June 29 - July 3, pp. 319-324,
2013.
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1.4.2. Projects and Publications beyond the Thesis

During the work on this thesis, streams has found further use in a few additional EU
funded projects and scientific publications. The following list1 provides a collection
of projects and publications that I have been involved with during the course of this
thesis and which have not been included in this work.

Traffic Data in Smart Cities

The EU project INSiGHT is a project that investigates the Big Data analysis of
smart city data sources, such as traffic analysis. A large portition of this data is
streaming data and requires real-time processing to obtain the most valuable results
on time.

The following papers [133, 16, 104, 105] have been published in this context:

• Heterogeneous Stream Processing and Crowdsourcing for Traffic Monitoring:
Highlights
Schnitzler, Francois and Artikis, Alexander and Weidlich, Matthias and Bout-
sis, Ioannis and Liebig, Thomas and Piatkowski, Nico and Bockermann, Chris-
tian and Morik, Katharina and Kalogeraki, Vana and Marecek, Jakub and Gal,
Avigdor and Mannor, Shie and Kinane, Dermot and Gunopulos, Dimitrios.
In Proceedings of the European Conference on Machine Learning (ECML), Nec-
tar Track, pp. 520-523, 2014.

• Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Man-
agement
Alexander Artikis and Matthias Weidlich and Francois Schnitzler and Ioannis
Boutsis and Thomas Liebig and Nico Piatkowski and Christian Bockermann
and Katharina Morik and Vana Kalogeraki and Jakub Marecek and Avigdor
Gal and Shie Mannor and Dimitrios Gunopulos and Dermot Kinane.
In Proceedings of the 17th International Conference on Extending Database
Technology, 2014.

• Predictive Trip Planning – Smart Routing in Smart Cities
Liebig, Thomas and Piatkowski, Nico and Bockermann, Christian and Morik,
Katharina.
In Proceedings of the Workshop on Mining Urban Data at the International
Conference on Extending Database Technology, pp. 331–338, 2014.

• Route Planning with Real-Time Traffic Predictions
Thomas Liebig and Nico Piatkowski and Christian Bockermann and Katharina
Morik.
In Proceedings of the LWA 2014 Workshops: KDML, IR, FGWM, pp. 83-94,
2014.
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Big Data Learning

The streams framework was used to implement learning at large scale using stochastic
gradient descent in a joint work with Sangkyun Lee [102]:

• Scalable stochastic gradient descent with improved confidence.
Sangkyun, Lee and Bockermann, Christian.
In Big Learning – Algorithms, Systems, and Tools for Learning at Scale, 2011.

Relational Mining in Social Network Data Streams

Exploiting the relational structures in social networks and the messages published
within these networks, we investigated the search for user subgroups using a stream-
lined tensor factorization [36]. This was a joint work with Felix Jungermann:

• Stream-based Community Discovery via Relational Hypergraph Factorization on
Evolving Networks
Bockermann, Christian and Jungermann, Felix.
In Proceedings of the Workshop on Dynamic Networks and Knowledge Discov-
ery (DyNaK 2010), 2010.

Log Data Analysis

In an early stage of this work, we investigated the online processing of log data
streams in the context of security related research. This involved the use of machine
learning to learn security models for web-application firewalls [28] and the identifi-
cation of attacks in streams of SQL query logs [32]. In [15] we investigated distance
measures for clustering malware based on their behavior data.

• Learning SQL for Database Intrusion Detection Using Context-Sensitive Mod-
elling.
Bockermann, Christian and Apel, Martin and Meier, Michael.
In Proceedings of the 6th Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 196–205, 2009.

• Measuring Similarity of Malware Behavior
Apel, Martin and Bockermann, Christian and Meier, Michael.
In Proceedings of the 5th LCN Workshop on Security in Communications Net-
works (SICK) in conjunction with the 34th Annual IEEE cConference on Local
Computer Networks, pp. 891–899, IEEE Computer Society, 2009.

• On the Automated Creation of Understandable Positive Security Models for
Web Applications
Bockermann, Christian and Mierswa, Ingo and Morik, Katharina.
In 2nd International Workshop on Web and Pervasive Security, pp. 554–559,
2007.
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The implementation of a managment tool for fine-grained audit log data of a web
application firewall has become a prominent niche project in the ModSecurity com-
munity and has been published at the German Unix User Group (GUUG):

• Ich habe eine WAF - Hilfe, sie loggt!
Bockermann, Christian.
In Proceedings of the Frühjahrsfachgespräch 2013, GUUG, Frankfurt, 2013.
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Chapter 2

The goal is to turn data into information, and information into insight.

– Carly Fiorina, former executive of HP.

Stream Processing Survey

The raising interest and requirements to deal with real-time data has spawned the
development of various platforms for handling continuous streams of data. As already
noted in Chapter 1 the speed layer has become one of the key components in Big
Data architectures. The different approaches and frameworks, that have emerged
from this trend, provide a plethora of software systems for implementing that layer
within either the speed layer of a Big Data environment or embedded into small
devices. The plethora of different platforms and newly appearing software systems
gives rise to several questions:

• What differentiates general purpose streaming platforms from one another?

• Which properties does each platform provide? Which drawbacks?

• What is the best platform for a given use case?

• How does a streaming application look like for any of these platforms?

In this chapter we will survey the landscape of existing streaming platforms and
review the requirements for stream processing that are tackled by these frameworks.
Furthermore we will give an overview of the general concepts which are inherited in
all of them.

Starting with a review of the trend of new software being available, we will give a more
abstract notion of streaming applications and the platforms that are built for these
in Section 2.2. In the light of the requirements posed by data stream processing we
will investigate the different approaches taken by each of the platforms in Section 2.3
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in more detail. Section 2.4 will then outline the specific properties of each platform
with regard to the abstract functionality presented in 2.3. Finally, in Section 2.5 we
will discuss the strengths and weaknesses of the surveyed frameworks.

2.1. Emerging Streaming Platforms

Research in stream processing has come a long way from low-level signal processing
networks to general purpose systems for managing data streams. Popular academic
approaches for these data stream management systems (DSMS) are Borealis [7, 19],
TelegraphCQ [45] and STREAM [75].

As shown in Figure 2.1, the field of stream processing approaches can be divided
into query-based systems that emerged from database research; the online algorithm
research, which has brought up sketch-based algorithms for computing approximate
results in a single-pass over the data; and finally the general purpose streaming plat-
forms, which provide means for implementing and executing custom streaming ap-
plications. These areas are not disjoint and benefit from each other.

Data Stream
Processing

Online
Algorithmic

Research

Online
Machine
Learning

Online
Statistics

General
Purpose

Streaming
Platforms

Data Stream
Query

Languages

Figure 2.1.: A partitioning of data stream processing into different areas, which have
naturally evolved from previous database research as well as resource con-
strianed algorithmic engineering. The emerging general purpose stream-
ing platforms are the subject of this thesis.

Query-based Systems

Query-based systems utilize a high-level query language to induce state automata
from a user specified query, that are capable of online processing of streaming items.
Depending on the query, the automaton will emit a stream of updated results for
that query. Query languages are often tightly bound to SQL-like dialects that extend
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a common language base with additional keywords for specifying window sizes for
aggregates or intervals for emitting results.

The query-based approaches are closely related and covered by the so called complex
event processing systems, which deduce high-level events from more atomic events.
The aforementioned academic frameworks Borealis, Telegraph CQ or STREAM also
fall into the category of complex event processing.

Esper [108] is an open-source complex event processing engine that features an SQL-
like query language. We demonstrate the use of Esper in Chapter 6.

Online Algorithmic Research

The field of online algorithmic research more generally explores different algorithmic
aspects of computing results from unbounded, streaming data sources. A lot of the
problems that are easy to solve on static data become intractable to compute on
data streams, especially with the additional constraints of resource limitations like
processing power or main memory. This area has brought up fundamental algorithms
for simple problems such as counting elements in a stream [52, 69] or maintaining
statistics over streams [77, 89, 107]. In parallel, learning methods that are capable
of incrementally training models for prediction [23, 13, 58, 13] or clustering tasks
[21, 41, 47, 78, 10, 9] have been proposed.

A comprehensive colllection of various online algorithms for machine learning is pro-
vided in the open-source MOA library [25]. MOA stands for Massive Online Analysis
and provides implementations for classifiers or clustering algorithms that support in-
cremental training or usage. It integrates a lot of the algorithms mentioned above,
such as Hoeffding Tree classifiers [58] and clustering algorithms [10].

General Purpose Streaming Platforms

The general purpose streaming platforms have emerged from real world needs to pro-
cess data continuously and being able to define custom streaming applications
for specific business use cases. Whereas query based systems and the online al-
gorithmic engineering focus on solutions to specific problems, the general purpose
frameworks provide platforms for executing streaming applications, whilst providing
low-level means – such as API function – for application programming, scalability
and fault-tolerance.

The integration of specific libraries and approaches like query based systems into
the implementation of custom streaming applications integrates the outcome of the
different fields into an environment that is powered by a general purpose streaming
platform. An example for such integrative solutions is the 2013 DEBS challenge:
The challenge was dedicated to process moving sensor data as fast as possible while
computing and maintaining statistics over various sliding windows. This involved
low-level preprocessing as well as high-level count aggregations over windows. The
former is best implemented in some programming language, pre-aggregating and
filtering items to a lower frequency stream. The outcome stream can then be fed
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into a high-level query engine such as Esper [108] for computing online windowed
statistics. Such an approach has been proposed in [67], combining low-level processing
with a high-level query based system using the streams framework as general purpose
stream processing framework. We will outline this integration in Chapter 4.

2.1.1. Evolvement of General Purpose Streaming Frameworks

The trend to continuous online processing of real-world data has fostered a number of
open-source software frameworks for general purpose data stream processing. Most
of these systems are distributed stream processing systems (DSPS) that allow for
distributed computation among a large set of computing nodes. With Yahoo!’s S4
[113] engine being among the oldest such framework, we plotted a history of versions
for most of the major stream processing platforms in Figure 2.2. Each dot is a new
release whereas the circles are announcements or scientific publications related to
the framework. In addition to the streaming platforms, we include the version dates
of the Apache Hadoop project as the state-of-the-art batch processing framework
into the chart. From that, one can clearly derive from this figure the shift of the
requirement for data stream processing starting in 2011. The recent announcements
of new frameworks such as Samza [4] or MillWheel [12] show that there still is an
intrinsic need to expand the existing frameworks for better suitability.

Zookeeper

Hadoop

Hadoop 2.x (YARN)

MillWheel

S4

Storm

streams

Spark Streaming

Muppet

Samza

Stratosphere / Flink

Kafka

2007 2008 2009 2010 2011 2012 2013

Figure 2.2.: A history plot of versions of different stream processing platforms (green
background). The lower part (gray background) denotes the Hadoop
open-source Map&Reduce framework for batch processing.
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2.2. An Abstract View on Stream Processing

A natural perception on data stream processing is the modeling of data flows by
means of a graph. Such a graph contains sources of data that continuously emit
items, which are processed by connected nodes that do some actual computation on
the items.

Historically, this has been the core concept in message passing systems and follows
a data driven programming concept. Essentially two types of elements need to be
present: a data source element and an element that defines the processing of items
emitted by the source as shown in Figure 2.3. In addition to that a common definition
for the atomic data items that are emitted by sources and consumed by processing
nodes needs to be defined.

With different terminologies, these elements are present in all the surveyed streaming
platforms. As an example, within the Storm framework, sources are referred to as
Spouts and processing nodes are called Bolts. The messages or data items passed
between components in Storm are called Tuples.

S di+2 di+1 di

Data Source

Data Items

P

Processing Node

Figure 2.3.: The concept of a simple Data Source and Processing Node.

Streaming Applications as Data Flow Graphs

This simple notion of sources, items and processing nodes, allows for defining stream-
ing applications by means of connected components within a graph. Such graphs are
the application structure in all modern streaming platforms. For a very simple ex-
ample, the graph shown in Figure 2.4 defines a streaming application that contains
a single data source of log messages mi, which is consumed by a processor node that
extracts some tags t0, . . . , tj , . . . , tk from the incoming messages. The extracted tags

Syslog Tag

Counter

Counter

Counter

mi
Sum

c0

c1

c2

t0

tj

tk

Figure 2.4.: A simple graph for a streaming application that consumes data, and
defines processing nodes for extracting new information and counting
elements from that extracted new items.
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are consumed by a collection of counter nodes, each of which maintains counters for
the tags it processes. The counting nodes emit their aggregated counts to a final
processing node which sums up the counts emitted by the counters. The Counter
nodes represent the executive elements of the streaming applications and pose the
algorithmic challenges in the online algorithm research field. As an example, simple
counting of elements in a streaming manner has been studied in [52, 69]. The objec-
tive of a general purpose streaming platform here is to provide an API to implement
efficient algorithms for the task at hand and include it as processing node within a
data flow graph definition, i.e. the design of a streaming application. The platforms
task is then to execute instances of such a graph on one or more (in the distributed
case) compute nodes and manage the distribution and routing of messages from one
processing node to the other.

2.2.1. Requirements of General Purpose Streaming Platforms

The execution of streaming applications is subject to various requirements that differ
from traditional batch processing. In [139] Michael Stonebraker et.al. derived a set of
general requirements for data stream processing engines that have become accepted
distinctive features for streaming engines. The 8 proposed requirements listed in
[139] are:

(R1) Keep the data moving
Process data without the need of storage to keep latency at an absolute mini-
mum.

(R2) Query using SQL on Streams
Provide high-level means for building extensive operators.

(R3) Handle stream imperfections
Provide built-in features for handling missing values or out-of-order data.

(R4) Generate predictable outcomes
Guarantee repeatable outcomes and predictable results of executed processes.

(R5) Integrate stored and streaming data
The ability to combine streaming data with static external offline information.

(R6) Guarantee Data safety and Availabilty
Provide means for fault tolerance, resumption of execution and high availabilty.

(R7) Partition and scale applications automatically
Include means to distribute processing among multiple processing units like
CPUs or compute nodes.

(R8) Process and respond instantaneously
Achieve real-time response with minimal overhead for high-volume data streams.
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Some of these requirements are inherently conflicting: providing guarantees for data
safety and availability (R2) comes with a performance cost as it requires persistent
states to be written to high available backend storage, which will introduce additional
latency to data processing (R1), (R8).

In addition to those computation oriented requirements, the notion of usability plays
an important role for the acceptance and usefulness of a streaming engine by an end
user. This requirement is only partly reflected in (R2) and we will additional include
usability as an additional quality to this survey.

Some of the requirements listed above are inherent to all surveyed stream processing
engine: Todays streaming architectures are designed for moving data. In-memory
processing is a central property. Online algorithmic research has investigated the
development of algorithms that run in sub-linear time and with fixed bounds for
memory usage. By trading memory consumption for precision these approaches ad-
dress the on-the-fly data processing without requiring expensive offline computations.

As we will outline in 2.4, the partitioning of data streams and scaling of the processing
among multiple nodes is a key quality of the distributed streaming platforms and is
being addressed by each framework in slightly different ways. The systems differ
mostly in the level of transparency of how these features are provided to the user.

An interesting quality is the ability to deal with out-of-order data streams. Given
the notion of a global temporal ordering of messages, the handling of global clocks
in distributed systems has a long history of research (cf. [99]).

2.2.2. Usability and Process Modelling

Although the representation of streaming applications by data flow graphs is shared
by all the surveyed streaming platforms, the frameworks differ in the way these appli-
cations are being created. A common denominator is the existence of a programming
API that each of the frameworks provide. These APIs essentially provide an environ-
ment for custom user functions and further classes and functions to programmatically
create application graphs.

Making use of these APIs, an application is often represented as some entry-level
code that is submitted to the framework, upon execution creates a data flow graph
and triggers the execution of that graph on the platform. Any modification of the
graph requires a recompilation and resubmission of the modified streaming program
to the framework.

This programmatic creation of streaming applications allows for an extensive use of
the frameworks features: apart from basic common functions, the frameworks mainly
differ in the provisioning of features that an application developer may use.

From Developers to Application Designers

The code-level approach for creating streaming applications introduces a burden for
making direct use of such platforms by domain experts: with high expertises in their
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application domain, they are often confronted with a plethora of new concepts and
features offered by the APIs of modern streaming architectures.

As the importance of stream processing raises among different application domains,
the question arises how domain experts can benefit from the emerging frameworks:

• What is an appropriate level of abstraction for designing streaming applications
by non-developers?

• How may domain experts best incorporate their custom functions into a stream-
ing application?

• What level of abstraction does support the best re-use of existing code?

Based on these questions we extend the scope of the representation of streaming
applications from low level programmatic creation to higher level application design.
Figure 2.5 shows the stack of different design levels.

Storm – S4 – Samza

Programming API

Framework Level

API Level

Custom Code

Process Design

Figure 2.5.: Different Levels for modelling streaming applications.

Apart from the very specific code level provided by APIs of the various streaming
platforms, the process design level offers a much more high-level notion of creating
applications. Concepts situated at this layer usually address the layout of the data
flow graphs by use of pre-existing operators often accompanied with graphical tools.
Examples for such approaches in batch processing are the RapidMiner tool suite [110]
or KNIME [22] (both examples for application design in the data mining field). We
will review the use of graphical notations in more detail in Chapter 4.

2.2.3. Features of Modern Streaming Platforms

As mentioned above, the various streaming frameworks are geared towards the exe-
cution of streaming applications, each trading off features like the requirements listed
above. We will in the following characterize the mentioned frameworks in a more
coarse way, than the fine-grained list of requirements proposed by Stonebraker et al.
in [139].
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The following categories capture the aforementioned requirements and provide a
distinction of the different platforms with the key qualities, that each system provides:

(1) Execution Semantics and High Availability

(2) Distribution and Scalability

(3) Usability and Process Modelling

The execution semantics and high availability refer to the way messages are processed
in the system. In the ideal situation, each message is processed exactly once. In case
of node failures, the systems may re-send messages to compensate such failures by
re-processing data items. Depending on the granularity of the API presented to the
user, such failure handling is arranged in a transparent way.
The distribution and scalability aspect becomes important when facing large volumes
of data. As a consequence of Big Data, many systems are inherently designed for the
execution among multiple nodes, which are managed in a centralized or de-centralized
manner. The distribution of data streams among processes may have a direct impact
on the organization of computations, as we will outline in Section 2.4.5.
Finally, the usability and process modelling aspect introduces an important facet
when integrating a streaming platform in real-world projects. Support for a trans-
parent and easy to use environment that fosters a quick rapid-prototyping allows
domain experts to make best use of a streaming framework.

2.3. General Purpose Streaming Platforms

Based on the abstract view of streaming applications in Section 2.2, we can iden-
tify basically two major functionalities of streaming platforms that allow streaming
applications to be run:

1. A queueing or message passing component, that provides communication be-
tween processing nodes

2. An execution engine, which provides a runtime or context for the execution of
processing nodes.

In early versions, the two components have been tightly coupled, i.e. most execution
engines use a fixed specific message passing system. For example, in the beginning of
the Apache S4 system, it completely relied on TCP connections for message passing.
This has recently changed and some execution engines allow the use of different
queueing systems interchangebly.
Looking at the distributed nature of modern streaming platforms, a management
system for distributing the execution engine and the message passing components
onto a collection of connected cluster nodes is required as well. The Apache Zookeeper
project has become the de facto standard of an open-source cluster management
platform and serves as the basis for all the platforms surveyed in this chapter.
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In the following we will first review some of the available open-source queueing and
message passing systems in Section 2.3.1 and then provide a detailed description of
the stream execution engines in Section 2.3.2. Based on this, we look into a number
of implementations of popular streaming systems in Section 2.4.

2.3.1. Queueing and Message Passing

Each of the stream processing frameworks presented in Section 2.4 requires means
of passing messages between the processing nodes of a streaming application. At
the most low-level is probably the message transfer using TCP connections between
nodes, where the engine will manage a directory of TCP endpoints of all available
nodes and maintain the TCP connections between these. As an example, the S4 sys-
tem in its early stages used direct TCP connections between its distributed processing
elements.

As applications scale to larger sizes, more sophisticated features are required. As an
example using reliable multicast to distribute messages among multiple subscribers
may be used to implement a hot standby fault tolerant mechanism (c.f. [88]). There
exists a large number of different message passing systems, such as RabbitMQ [127],
ActiveMQ [1], ZeroMQ (ØMQ) [11, 84] or the Apache Kafka message broker. The
two major messaging systems that are used within the stream processing frameworks
surveyed in this article are ZeroMQ and Apache Kafka.

2.3.1.1. Direct Remote Method Invocation

The simplest form of sending messages across elements of a streaming application is
a transparent remote procedure call (RPC) interface, which is inherently provided by
a wide range of modern programming languages. As an example, the Java language
includes the remote method invocation (RMI) system, which allows calling methods
of remote objects. Such remote calls are usually mapped to simple client-server
communications using TCP or other network protocols. For calling remote objects
a broker is required, which provides a directory service listing the available remote
objects.

A popular programming paradigm based on remote procedure calls is the Message
Passing Interface MPI. MPI was developed to be an abstract interface allowing to
build massive parallel applications that execute among a set of nodes.

2.3.1.2. The ZeroMQ Queueing System

ZeroMQ (ØMQ) is a low-level messaging system that provides an API and bindings
for various languages. It is an open-source library distributed under the Apache
LGPL license. It abstracts the underlying transport protocol and provides reliable
message passing, load balancing and intelligent message batching. The general aim
of ØMQ is to build an API that is fast and stable to use, while allowing for a wide
range of network topologies to be defined among the communicating components.
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Scalability and Performance

Its lightweight design and minimum overhead results in high throughput performance
and minimal latency. Despite its performance, ØMQ allows a wide variety of different
message network models like the communication with a centralized broker (see Figure
2.6a) as well as direct communication of the participating nodes (Figure 2.6b).

In addition there are multiple ways of using a centralized broker as directory service
for establishing the direct communication between nodes. All these network schemes
are supported by the API of ØMQ.
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App B
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App D

Input

Output
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Without Broker
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Input
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Figure 2.6.: ØMQ messaging with a central broker (left) and direct communication
without a broker (right).

2.3.1.3. Apache Kafka

Apache Kafka [96, 97, 71] has been designed as a reliable, distributed messaging
system that follows the publish-subscriber pattern. It has recently been developed
at LinkedIn as part of their streaming architecture and been donated to the Apache
Software Foundation as an open-source messaging system. The Kafka systems is
implemented in Scala and published under the Apache 2 License.

Kafka provides a broker for managing queues, which are called topics. Producers of
data streams publish messages to topics and consumers subscribe to topics to retrieve
the messages from that topic. Figure 2.7 shows the role of Kafka as a broker.

Kafka Clus-
ter

Producer

Producer

Producer

Consumer

Consumer

Consumer

Figure 2.7.: A Kafka cluster, passing messages from producers to consumers.
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A key design decision of Kafka over other messaging systems is, that Kafka explicitly
stores all messages on disk. As streaming data is of serial nature, Kafka exploits the
speed of serial writing and likewise serial reading from modern hard drives. Moreover,
it benefits from page-caching of filesystem I/O in modern operating systems, without
implementing its own caching stragegies. This makes Kafka a fast queueing system
with a large persistent buffer. The persistent nature of Kafka topics therefore directly
allows to resume message processing of a topic at several points in the past: If the
configured storage is able to hold a week of data on hard drives, processing of messages
can be restarted from any time within that week. By this, Kafka directly supports
easy means to the resuming of failed processing.

Kafka Clusters and High Availability

Kafka is designed to run in a cluster of machines, as a Kafka cluster, that is coordi-
nated by an underlying Zookeeper system. Using Zookeeper, an election of a master
node is performed and the other nodes become slave nodes. Topics of a Kafka sys-
tem can be created with a replication factor. The cluster will ensure that messages
published to a topic will be replicated among multiple nodes within the cluster. De-
pending on the replication factor, this tolerates one or more nodes to fail without
data loss. Consumers subscribing to a topic may use multiple brokers of the cluster
to subscribe to a topic.

Scalability and Partitioned Streams

As has been noted in Section 2.2.1, an important feature in modern streaming ar-
chitecture is the ability to scale processing and message passing to a large number
of nodes. Scaling out data processing relies on data partitioning and paralleliza-
tion of tasks computing results on the data partitions. The Kafka system divides
the messages of a topic into disjoint partitions. Figure 2.8 shows the structure of
a topic (or stream) in Kafka. A topic is split into a number of partitions to which
new messages are appended. The partition to which a new message is appended is

Topic

0 1 2 3 4 5 6 7 8 9 A BPartition 0

0 1 2 3 4 5 6 7 8 9 APartition 1

0 1 2 3 4 5 6 7 8 9 A B CPartition 2

Writes

Old New

Topic Subscriptions

Kafka Cluster

Cluster Node Cluster Node

P0 P3 P1 P2

C1 C2 C3 C4 C5 C6

Consumer Group A Consumer Group B

Figure 2.8.: Kafka topics divided into partitions (left) and consumer groups sub-
scribed to a topic (right).
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either determined by a specified partition key or by a random hash value. Using a
partition key ensures that all messages related to a specific value are appended to
the same partition. The ordering of messages is determined by the ordering within
each partition. As an example, using the username of a stream of twitter messages
as message key for partitioning, will ensure that all messages of a user always appear
in the same partition.
Consumers subscribe to topics and will receive all messages that are published for
their topics. To exploit the maximum performance using parallelization, a consumer
typically is reflected by a consumer group, which includes multiple consumer in-
stances each of which is connected to one or more partitions of the topic. As can
be seen in Figure 2.8, consumer group A has two consumers each of which connects
to two partitions. The consumer group B consists of four consumer instances, which
exclusively connect to a single partition of the topic.
This n-to-m mapping of partitions to consumer instances allows for a high level of
parallelisation and allows for a high degree of scalability of the message processing.
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2.3.2. Stream Execution Engines

The core component of a general purpose stream processing system is a (distributed)
runtime environment that manages the execution and distribution of processing nodes
of a data flow graph. The processing nodes are connected by a queueing or message
passing system as outlined in the previous section. The task of the execution engine
is to instantiate the processing nodes and to execute the nodes within a runtime
environment. The environment itself may be executing on a single machine or on a
cluster of multiple machines. Usually, the environment provides a worker context or
executor for each element of the data flow graph and these executors continuously
run the code of those elements.

Figure 2.9 shows an abstract data flow graph on the left hand side and an instance of
the graph with processing nodes being distributed and executed on two cluster nodes.
As can be seen, the data source S has been instantiated on the upper cluster node
and is being run within some executor. The executor provides a runtime context to
the processing node instance. Likewise instances of processes P1 and P3 are being
executed. For P2 there exist two instances and output of P1 is distributed among
these executing instances.

Data Flow Graph

S P1

P2

P3

Executing Process Graph on a Cluster

S P1

P2 P2′ P3

Stream Source

Processing Node

Executor

Cluster Node

Figure 2.9.: A distributed streaming engine executing a data flow graph on a cluster
of nodes. Key to scalability is the partitioning of data streams and
spawning of multiple copies of processes. In this figure process P2 is
spawned twice.

The cluster nodes of a distributed streaming runtime take care of supervising and
spawning the required number of executors as well as balancing the executors among
the available nodes (load balancing). In addition, the cluster nodes handle failing
executors (processing nodes) and – depending on the fault tolerance model supported
by the engine – may restart new instances of processing nodes and replay buffered
messages.

The coordination of instantiating the processing nodes of a data flow graph and
distributing these node instances among the executors on the different nodes of the
cluster is usually being performed by a central master node.
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2.3.2.1. Distributed Streaming Applications

The example in Figure 2.4 already demonstrates an important aspect in todays
stream processing platforms: the ability to scale the computation by partitioning
the data stream into substreams and handling these substreams with multiple copies
of some processing nodes. In the given example of Figure 2.4, the stream of tags is
partitioned (e.g. by hashing the tag string) and dispatched among a set of Counter
nodes. This approach translates the divide-and-conquer principle inherited in the
Map-Reduce framework to the streaming setting.

Starting with the simple example, the scale-out affects the processing of the stream
of tags that is produced by the Tag Extractor node, where a single instance of that
node is contained in the graph. For additionally scaling the tag extraction part, the
messages mi need to be partitioned by some discriminitive key k(mi) and dispatched
among a set of tag extractor nodes.

Syslog

Tag

Tag

Tag

Counter

...

Counter

Counter

......

Counter

...

Sum

Sum

Sum

Sum

Figure 2.10.: Data partitioning at the tag extraction stage, providing scale-out at
an earlier stage for handling large amounts of messages mi, which are
partitioned by some explicit key k(mi).

This in turn opens various options for scale-out as the outgoing tags can be routed
to a large number of counters. An additional layer for aggregating the local sums is
required to compute a continuous global sum over all tags of the partitioned stream.

The application graph shown in Figure 2.10 is a high-level representation of the appli-
cation using data partitioning. Based on the partitioning of data and the replication
of processing nodes, the execution of the nodes can be distributed among several
computing nodes of a cluster. For this, message passing between cluster nodes needs
to be provided by the stream processing framework. For an efficient deployment of
the overall streaming application graph, the streaming platforms provide scheduling
algorithms which take over the distribution of processing node instances among the
cluster nodes.
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2.3.2.2. Fault Tolerance in Distributed Streaming Applications

Large scale systems pose additional challenges to the underlying architecture. Among
the most challenging problems is the fault tolerance of computation. Systems of hun-
dreds or thousands of nodes/machines make hardware failures a day-to-day problem.
Hence, large scale distributed systems need to provide mechanisms to allow for the
streaming applications to deal with system failures and recover computations.
Fault tolerance is usually implemented by replication and restart: Within the Map-
Reduce system all data is replicated in blocks on different nodes and map tasks on
these blocks are restarted if the task is not finished after a specified time. In this
case, the data is however static and permanently resides on hard disks.
In the stream setting this is slightly different: often, data cannot be stored perma-
nently due to the high velocity and volume. Therefore only small parts of the data
are stored for a short period of time and any attempts to ensure consistent operation
over system faults is limited by this constraint. In [88] Hwang et al have broken down
approaches to achieve high-availability into tree types of recovery guarantees:

• Precise Recovery

• Rollback Recovery

• Gap Recovery.

The strongest of these guarantees, the precise recovery, handles any effects of failure
without a loss of information or precision. That is, the result of processing with
failures occurring is identical to an execution without errors.

To the other extreme, the gap recovery matches the need to operate on the most
recent data available. Failure may lead to (temporal) loss of data being processed,
but processing will continue as soon as new data arrives. This situation is found in
temporal outages of sensors in a sensor network and any shortcomings may need to
be taken care of by the application - e.g. by interpolating missing measurements.

The rollback recovery is probably the best known approach that is inherent in the
ACID paradigm of transaction oriented commits and rollbacks in traditional database
systems. The following Figure 2.11 shows two examples for fault tolerance handling
using commits with replication of state and restart (rollback). The simple Tag Ex-
tractor node on the left does not require a state as it does preprocessing on a single
item only. Replication can easily be done by creating a new instance of the same
node on a different machine and routing data items to that replica. In the case of a
stateful processing node, such as the Counter node on the right hand side, the state
needs to be check-pointed, made persistent and a replication of the node needs to
resume the stream processing at the last check-point, requiring a replay of the data
that has been processed by the failing node since that very last check-point.

Frameworks differ with respect to the transparency how they offer fault tolerance and
high-availability guarantees to the user: Most of the frameworks do provide failure
detection (e.g. by timeouts) and replay of data. By signaling that to the user code,
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Figure 2.11.: Fault tolerance handling by replication: Stateful nodes require state
persistence, check-pointing and spooling of items.

it is possible for custom code to handle deduplication of replayed data and recover
from the last commit point. Some of the frameworks directly provide deduplication of
messages and even offer state management functions through their API. This allows
for freeing custom code from state handling in the first place, enabling the framework
to fully provide a transparent failure recovery.
The buffering of replay data differs among the frameworks as well: Whereas Storm
targets at rollback recovery by using acknowledgements to control in-memory buffer-
ing for data replay between check-points, the Samza system uses Kafka as message
broker, which comes with optimized serial writes on disks to maintain a copy of the
stream on different nodes.
Opposed to that, the S4 framework in its early stages did operate at the gap recovery
level and tolerates failures by requiring re-starts to be resumable with acceptance of
loss of intermediate results or state. We will discuss the details for each framework
in Section 2.4.

2.3.2.3. Programming API

To allow for the implementation of custom processing nodes, the stream execution
engines include programming APIs that wrap the context of the executors. Based
on the features provided by the engines, these method to signal persistency of state
or submit messages to other queues/processing nodes are available.
The programming API therefore embeds the custom code into an execution context,
that provides the distributed execution and communication among nodes. The API
also supplies means for checkpointing to ensure fault-tolerance as provided by the
execution system. The programming APIs of the streaming platforms differ in their
functional power: whereas Storm does not provide any utility functions for managing
state, MillWheel or streams provide interfaces to handle the state of computations
completely outside the scope of the user code.
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2.4. Stream Processing Frameworks

In the previous Section 2.3 we gave a general overview of the structure of stream pro-
cessing platforms. As already shown in the introduction, a large amount of different
implementations exist, each of which focuses on different aspects in stream process-
ing. In this section, we survey a set of popular streaming platforms. As already noted
in the version history plot in Section 2.1.1, the development of streaming engines is a
quickly moving field. During the course of this thesis, several new frameworks have
been proposed and some have been discontinued. The Stratosphere system, which we
outline in Section 2.4.5, by now has been rebranded to Apache Flink and has become
an official Apache project. The S4.io project, which has been one of the early large
scale streaming frameworks did loose a large portion of its community support and
its development has been abandoned.

2.4.1. Apache Storm

The Storm project is a distributed stream processing engine that has initially been
started by Nathan Marz and further been developed at Twitter. It is written in
Java and clojure and currently being incubated into the Apache Software Founda-
tion. Storm provides a notion of a topology that describes a streaming application.
Such a topology consists of spouts, which emit data and bolts, which consume data
from spouts, do some processing and may produce new data as output. Figure 2.12
shows a simple topology with connected spouts and bolts that represent a streaming
application. A topology within Storm is defined by a Java program that creates a
topology object and submits it to a storm cluster.

Bolt

Bolt

Bolt

Bolt

Spout

Spout

Spout

Bolt A Bolt B

Bolt C

Storm Topology Definition Running Topology with Grouping

Figure 2.12.: A simple Storm topology (left) and groupings (right).

A storm cluster is a set of at least one nimbus node and one or more supervisor
nodes. The supervisors provide an environment to execute spouts and bolts whereas
the nimbus is a central coordinator that balances the instances of the spouts and bolts
among the supervisors. Storm uses the Apache Zookeeper system that provides the
coordination of its cluster nodes.
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Messages and Message Passing

The messages passed within Storm are called tuples. A tuple is a set of values for
a predefined set of fields. Each spout and bolt defines the fields of the tuples it
emits statically in advance. All tuples need to be serialized into a binary form before
transmission to other components. This serialization is handled by the kryo library,
which provides a fast serialization of Java objects. To pass messages between the
elements of a topology, Storm uses the ØMQ messaging system.

Storm is designed to handle all processing in memory without disk storage. The low
latency of message passing using the high-performance ØMQ system directly yields
towards requirement (R1).

(1) Execution Semantics and High Availability

Storm features several execution semantics. In its default mode, all tuples are pro-
cessed in an at-most-once manner, i.e. tuples are sent to bolts and will not be re-send
if a bolt fails. In addition, Storm optionally provides an at-least-once processing of
tuples, i.e. it ensures that an item is processed by a bolt at least one time. This is
achived by buffering tuples sent to a bolt in main memory and releasing these tuples
as soon as the receiving bolt has acknowledged their correct processing. In case such
an acknowledgement is not received within some time limit, the tuples are sent to
the bolt again. This may result in tuples being processed multiple times as well as
tuples arriving out-of-order. The at-least-once semantic requires the code of the bolt
to explicitly send acknowledgements.

As the strongest processing guarantee, Storm supports the exactly-once processing
of tuples. With the acknowledgements of processed tuples and additional state per-
sistency of bolts, this allows for a transaction oriented processing. For that, the code
of the bolt is required to maintain its state in some external storage and allow for
reloading its state at instantiation time. Thus, if a bolt fails, Storm is able to create
a new instance of that bolt, which will restore its state from some external storage
and Storm will handle the replay of the tuples that have not yet been acknowledged
by the failed instance of the bolt. The storing of the bolts state as well as restoring
the state upon restart is required to be coded by the developer. Storm does not
automatically save and restore states of a bolt.

With this behavior, Storm supports the implementation of the rollback recovery mech-
anism described in [88], requiring a strategy of commits/rollbacks to be provided by
the programmer of the bolt. The exactly once processing of tuples ensures the pre-
dictable outcome and reproducability of the execution of topologies (R4).

Storms message processing guarantees may even be bound to transitive dependencies
between messages. That is, if some tuple m is processed and the processing at
some node results in new tuples m′1, . . . ,m

′
k being emitted, then m is regarded as

fully processed of all the related tuples m′i have been processed. The successful
processing of a tuple is noted by an active acknowledgement, sent from the processing
node to the node the tuple originated from. This may result in dependency trees
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among the topology as shown in Figure 2.13. Until a tuple is acknowledged, the
sender of the tuple will buffer it in main memory for a potential resubmission. If
processing of a tuple m′i fails, Storm will re-send the tuple as part of its recovery
mechanism. By backpropagation of the acknowledgements by the processing nodes,
the tree can finally be fully acknowledged back to the root tuple and all the tuples
of the tree can be discarded from the recovery buffers as fully processed. The use
of acknowledgements within the topology obviously adds processing overhead to the
overall system. Therefore it is left optional to the user to make use of this feature or
tolerate a possible lossy or incomplete processing of messages.
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Figure 2.13.: Storm topology and full processing of dependent messages.

High availability of Storm applications is achieved by running multiple supervisors
and managing them on top of a fault tolerant coordinator (Zookeeper). The Storm
system detects failures by missing acknowledgements (i.e. through timeouts) and
connection errors and employs restarts of instances of bolts on different supervisors.
Apart from the aforementioned message acknowledgements, Storm does not provide
any features to achieve persistency of the state of processing nodes. To ensure that
the processing of messages resumes properly in case of a fault, the nodes are required
to be implemented such that state is made persistent in some (fault tolerant) storage
and acknowledgements are sent as soon as the state has been reliably stored.
New supervisors may join a cluster at any time and a rebalancing of the topology
element instances allows for a hot moving of components to other machines. By
ensuring that the supervisors themselves are running under process supervision, this
creates a fault tolerant stream processing platform.

(2) Distribution and Scalability

In addition to defining spouts and bolts and connecting them within a topology, for
each bolt the number of worker threads may be specified. This results in one or
more copies of a bolt to be instantiated and executed. By using groupings of the
data streams (i.e. the connection between elements), this allows for splitting up
a stream of tuples by custom groups and delegating these to different copies of a
bolt. Figure 2.12 shows the distribution of data streams among instances of a bolt.
This allows for scaling up computation by distributing a high-volume stream among
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multiple instances of a bolt, which may in turn be distributed among multiple nodes
of a storm cluster. The data grouping itself needs to be manually defined within the
topology and remains static. The cluster then automatically manages the distribution
of the bolt instances among all available cluster nodes and routes the data elements
accordingly. The distribution of streams among multiple instances of bolts offers a
high degree of scalability (R7).

(3) Usability and Process Modelling

The core structure of a Storm application is the topology of spouts and bolts. This
topology defines the data flow graph of the tuples and additionally allows for the user
to define groupings of the tuples to split high volume data streams into substreams
that are processed by multiple instances of a bolt.

The topology itself is defined in Java or clojure code and the user provides a Java
program that creates the topology and submits it to the cluster. Regarding the
usabilty levels defined in Section 2.2.2, Storm applications are created on the Custom
Code level by using the API provided with Storm.

2.4.2. Apache Samza

The Samza framework is a stream processing execution engine that is tightly built
around the Kafka messsage broker. Samza has originally been developed at LinkedIn
and has recently been donated to the Apache Software Foundation. It is implemented
in the Java and the Scala programming languages. Processing nodes in Samza are
represented by Samza Jobs. A Samza job is connected to a set of input and output
streams, as shown in Figure 2.14. Thus, a job contains a list of input descriptions,
output descriptions and a Stream Task that is to be executed for each of the messages
from the input. When a job is being executed, a number of Stream Tasks of the job are
instantiated and provided to Task Runners. These runners represent the execution
context of the task instances and are managed by the Samza runtime system. The
philosophy of the Samza framework defines jobs as completely decoupled executing
tasks that are only connected to input and output streams. Any more complex data
flow graphs are created by submitting additional jobs to the Samza cluster which are
then connected by the topics provided by the messaging systems.

Input Stream I1

...

Input Stream Im

Samza Job

Stream Task

Output Stream O1

...

Output Stream On

Figure 2.14.: A Samza Job with m input streams and n output streams. The job is
executing a Stream Task that is provided by the user/developer.
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(1) Execution Semantics and High Availabilty

As Samza uses Kafka as message broker1, all messages are stored on disk, providing
persistence of the streams consumed and produced by Samza’s stream tasks. This
allows for a restart of failed tasks by resuming at the last valid position in the data
stream that is provided by Kafka. Building on top of Kafka, Samza does provide an
at-least-once semantic for the processing of messages. Any further message guarantees
(i.e. exactly-once) requires custom handling, e.g. by keeping track of duplicates and
discarding messages that have already been processed.

Instead of implementing its own, fault tolerant process execution engine (i.e. like
Storm), Samza provides a context for its jobs by means of Task Runners and uses the
Hadoop YARN platform to distribute and execute these Task Runners on a cluster
of machines. Hadoop YARN is a continuation of the Apache Hadoop framework
and provides a high-level cluster API of loosely coupled machines. Worker machines
in such a YARN cluster run a Node Manager process which registers to a central
Resource Manager to provide computing resources. A YARN application is then a
set of executing elements that are distributed among the Node Manager processes
of the cluster machines. Hadoop YARN provides abstract means for handling fault
tolerance by restarting processes.

Samza Distributed Execution

Samza Client

job
Resource Manager

Node Manager Node Manager Node Manager

AM

Samza Job

Samza Application Master

Yarn Container

Yarn Node Manager

Yarn Resource Manager

Figure 2.15.: Architecture of the Samza job execution on Hadoop YARN. The Samza
client requests the instantiation of an Application Master, which then
distributes copies of the task of a Samza job among YARN containers.

For executing a Samza job, the job elements are provided to a Samza Application
Master (AM), which is allocated by requesting the Resource Manager to start a new
instance of the AM. The AM then queries the registered Resource Managers to create
YARN containers for executing Samza Task Runners. These Task Runners are then
used to run the Stream Tasks of the Samza job. As the allocation of distributed
YARN containers is provided by the Resource Manager, this results in a managed
distributed execution of Samza jobs completely taken care of by Hadoop YARN.

1Use of Apache Kafka as message broker is the default setting. Samza claims to support different
messaging systems as replacement.
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(2) Distribution and Scalability

A Samza job that is defined by a Stream Task T and connected to an input stream I
will result in the parallel execution of multiple instances of the job task T for distinct
parts of the stream I. The partitioning of data streams (i.e. Kafka topic) in Samza
is provided by the partitions of topics of the Kafka messaging framework (see Section
2.3.1.3). With the splitting of data streams into sub streams Samza provides a level
of parallelization by spawning multiple copies of the Stream Task contained in the
Job and executing these copies in several Task Runners. Each of the Stream Task
instances is connected to one or more partitions of the input and output streams.
Figure 2.16 shows the definition of a Samza Job connected to a single input stream.
When executing, the Samza system will fork copies of task T for processing the
partitions.

Samza Job Definition Samza Job Execution

Input Stream
Samza Job

Stream Task T

Part 0

Part 1

Part 2

Stream Task T

Stream Task T

Stream Task T

Task Runner

Task Runner

Task Runner

Figure 2.16.: Partitions of a stream being connected to multiple instances of a Stream
Task executing in several Task Runners.

The distribution of the task execution and the messaging is handled by the Hadoop
YARN system. Samza uses Task Runners in YARN containers of a distributed YARN
cluster to execute the Stream Task instances. On the other hand, the distributed
Kafka message broker system provides the replication and availability of Kafka topics
among multiple nodes and each task can be directly subscribed to a near partition
of the stream it is connected to.

(3) Usability and Process Modelling

The modelling of data flow graphs within Samza requires the implementation and
deployment of Samza jobs by custom Stream Tasks. For this, Samza provides a Java
API for the implementation of producers and consumers. The code for a job is then
compiled and bundled in a Java archive file, which is submitted to the execution
environment (YARN) by the Samza client application.
With the Samza philosophy of decoupled jobs, there is no notion of a complete data
flow graph being modeled as a single entity. Instead, users are responsible for setting
up and deploying each job on their own.
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2.4.3. S4 – Distributed Stream Computing Platform

The S4 platform is a distributed stream processing framework that was initially
developed at Yahoo! and has been submitted to the Apache Software Foundation for
incubation into the Apache Software Repository. It is open sources under under the
Apache 2 license.

Note: According to the Apache incubator report of March 2014, S4 has considered
to be retiring from incubation as the community is inactive and development efforts
have deceased.

The S4 system uses a cluster of processing nodes, each of which may execute the
processing elements (PE) of a data flow graph. The nodes are coordinated using
Apache Zookeeper. Upon deployment of a streaming application, the processing
elements of the application’s graph are instantiated at various nodes and the S4
system routes the events that are to be processed to these instances. Figure 2.17
outlines the structure of a processing node in the S4 system.

Each event in the S4 system is identified by a key. Based upon this key, streams can
be partitioned, allowing to scale the processing by parallelizing the data processing
of a single partitioned stream among multiple instances of processing elements. For
this, two types of processing elements exist: keyless PEs and keyed PEs. The keyless
PEs can be executed on every processing node and events are randomly distributed
among these. The keyed processing elements define a processing context by the key,
which ensures all events for a specific key to be routed to that exact PE instance.

The messaging between processing nodes of an S4 cluster is handled using TCP
connections.

(1) Execution Semantics and High Availability

S4 focuses on a lossy failover, i.e. it uses a set of passive stand-by processing nodes
which will spawn new processing elements if an active node fails. No event buffering
or acknowledgement is provided, which results in at-most-once message semantics.
As noted in [113], the newly spawned processing elements will be started with a fresh

Processing Node

PE1 PE2 PEn

Event

Listener
Dispatcher Emitter

Figure 2.17.: The structure of an S4 processing node executing multiple processing
elements (PEs). A node may execute the PEs of various applications.
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state and no automatic state management is provided.

Based on information on the latest 0.6.0 version2, an automatic check-pointing mech-
anism has been implemented, which allows for processing elements to be periodically
checkpointed by serializing the Java object to a backend storage. This checkpointing
process is configurable to be triggered by time intervals or by message events.

(2) Distribution and Scalability

With its concept of key-based partitioning of stream events, S4 follows the same
principles as the other frameworks: scalability is gained by parallel processing of
messages where the partitioning key defines the context of each of the parallel pro-
cessing element instance.

By using the Apache Zookeeper system, S4 builds upon a decentralized cluster man-
agement of nodes. However, as of [113], the number of processing nodes within an
S4 cluster is fixed, i.e. no additional nodes can be added dynamically.

(3) Usability and Process Modelling

The S4 system uses a dependency injection based approach which is based on the
Spring Framework [136]. Spring provides an XML based configuration that allows
for users to define processing elements and their interconnection to be specified in an
XML file.

2.4.4. MillWheel

MillWheel [12] is a distributed, fault-tolerant stream processing framework developed
by Tyler Akidau, Alex Balikov et al. at Google. It is a low-latency data processing
framework for streaming applications that is widely used at Google, but at the time
of writing, there does not exist an open-source implementation3.

The design goals of MillWheel are:

• minimum latency, no intrinsic barries for data input into the system

• persistent state abstractions available to user code

• out-of-order processing of data with low watermark timestamps inherently pro-
vided by the system

• scale out to a large number of nodes without increasing latency

• exactly-once processing of messages.

2For information beyond the official publication [113], please refer to http://incubator.apache.

org/s4/doc/0.6.0/.
3Google did not release an open-source implementation of its Map-Reduce framework either.

Apache Hadoop is an open-source community implementation of the Google Map-Reduce frame-
work.
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Applications in the MillWheel system are defined as data flow graphs of data tran-
formations or processing nodes, which are in MillWheel terminology called computa-
tions. The topology of computations can be changed dynamically, allowing for users
to add or remove computations from the running system without a restart.

From the messaging perspective, MillWheel follows the publish-subscriber paradigm:
a stream is some named channel in the system to which computations can subscribe
for messages and publish new result messages. As stated in [12], messages are de-
livered using plain remote procedure calls (RPC), which indicates that no queueing
is included. Messages are associated with a key field, which is used for creating a
computation context. Computations are performed within the context of that key,
which allows for a separation of states and parallelization of processing among differ-
ent key values. A computation that subscribes to a stream specifies a key extractor
that determines the key value for the computation context.

In the example in Figure 2.18, the computation A will process messages which are
aligned by the key search query (e.g. values like “Britney Spears”,...), whereas
computation B receives the same query objects grouped by the cookie id value of
the records.

Stream “Queries”

Computation A

Computation B

Keys e.g. “iphone”, “Britney Spears”,...

Keys e.g. “F4D8913A”, “B98FDD12”,...

Key: search query

Key: cookie id

Key Extractor

Key Extractor

Figure 2.18.: Two computations subscribing to a stream called queries. Each com-
putation specifies a key extractor that defines which key value the mes-
sages contain.

(1) Execution Semantics and High Availability

The MillWheel system provides an API for writing custom computations, which offers
abstract access to state managing and communication functions. By exclusively
using these functions for state and communication, the user code is freed of any
custom state handling and the system will keep track of the computations state
(using high availability storage). This allows for the system to run computations in
an idempotent manner. The computations are provided with a persistent storage
that is unique per key, per computation.

Moving the state management entirely to the MillWheel API allows for providing
a restart failure handling policy. By combining this with an automatic duplication
handling by the system, MillWheel guarantees an exactly-once processing of data
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records.

A distinctive feature of MillWheel over the other frameworks is the focus on process-
ing out-of-order messages. All messages in MillWhell are represented as triples

(key, value, timestamp)

where key is some arbitrary meta data field, that defines the semantic context of a
message as described above. The value field is some byte string that can contain
a custom payload i.e. the complete record for that message. Finally, a timestamp
marks the time that tuple is associated with. Based on the timestamp values, the
MillWheel system computes the low watermarks.

Let A be a computation and τ(A) be the timestamp of the oldest, not yet finished
work of A. The low watermark LA of a computation A is recursively defined as:

LA = min
[
τ(A) , min{LC | C outputs to A}

]
.

The MillWheel system manages a global low watermark among the processes of the
application which advances with the progress of completed work. This allows for
out-of-order events to be transparently managed by the application – it only needs
to rely on the clock provided by MillWheel.

(2) Distribution and Scalability

The MillWheel execution engine consists of a central (replicated) master node, that
manages the balancing of computations among a set of slave nodes. As outlined in
2.3.2.1, the central aspect of scaling stream processing is the partitioning of data
streams among multiple instances of a process/computation. To this end, MillWheel
exploits the message context by the extracted keys, where each computation is per-
formed in the context of a particular key value. The key space for the computations
is split into key intervals and the intervals are then assigned to the slave nodes. This
determines how messages need to be routed by their key to the correct computa-
tion instance. The key intervals in MillWheel can be dynamically merged, split and
moved among the slave nodes to adapt to increasing or decreasing work loads.

Persistent state is backed by highly scalable and distributed systems like Google’s
BigTable [46] or Spanner [51]. These systems are designed in a fault-tolerant manner
themselves and provide reliable storage.

(3) Usability and Process Modelling

As of [12], no information is provided about the programming API or the way stream-
ing applications in MillWheel are defined. The authors only provide a small excerpt
of the definition of key extractors in a JSON like syntax. The sample implementation
of computations in [12] suggests a C++ based implementation of user code.
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MillWheel supports a dynamic change of the data flow graph, allowing users to add
or remove computations without restarting the system. Similar to the Samza frame-
work described in Section 2.4.2, components/computations can therefore dynamically
subscribe/unsubscribe to channels.

2.4.5. Stratosphere / Apache Flink

The Stratosphere [5] project is a DFG funded research project aiming at big data
analytics with low latency. It extends the Map&Reduce paradigm by a declarative
contract-based programming model (called PACT) that enables compile-time op-
timization of program parallelization. Stratosphere focuses on streaming data and
compiles PACT programs into data flow graphs of the Nephele execution engine [143].

Stratosphere is written in the Scala and Java programming languages and runs on
a Java virtual machine. It is an active open-source project that by now has been
incubated into the Apache Software repository under its new name Apache Flink.

Applications in Stratosphere are implemented as Java or Scala programs using the
abstract API provided by the system. This allows users to create data flow graphs
using provided or custom functions. Each of the functions of the graph, which are
referred to as user-functions, specifies an input contract and may specify additional
output contracts. These contracts are the core idea of the PACT programming model
and define properties of the input and output required and produced by the user-
functions. Each possible function inherently provides hints about its input and output
partitioning. Based on this partitioning hints, a compiler (Figure 2.19) is applied to

PACT Program

0 1

2 3

4

5

6

Data Flow Graph

Compiler

Nephele Cluster

Figure 2.19.: Compilation of a PACT program into a data flow graph. The data flow
graph is statically optimized at compile-time, based on the input- and
output-contracts of the user-functions.

generate an optimized execution plan for the given PACT program. The resulting
data flow includes the user-function nodes as well as channels and nodes for parti-
tioning of the data into parallelisation units, which reflect the scope of data required
by the user-functions.

The resulting application graph is submitted to the local or distributed Stratosphere
cluster which analyzes the graph and instantiates the required node instances and
distributes these instances among the worker nodes of the cluster.
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(1) Execution Semantics & High Availability

The programming model used by Stratosphere focuses on an exactly-once messaging,
that is completely hidden to the user. Users write their PACT programs typically
in Java or Scala without the need to take care of deduplication or output errors.
The fault-tolerant behavior is provided by the Nephele execution engine, that the
compiler of Stratosphere is designed for. Though the authors in [5] note, that other
execution engines might be used as well, Stratosphere is currently designed to work
with Nephele.

(2) Distribution and Scalability

The ability to scale computation to a large number of nodes is one of the central
aspects of the Stratosphere system. As in the other frameworks, scalability is gained
by data partitioning and parallelization. For this partitioning Stratosphere explicitly
introduces the notion of parallelization units (PU). Though this follows the same
principles as the groupings in Storm or the partitionings of topics in Samza/Kafka,
the idea of the partitioning units is more tightly bound to the user functions or
processors of the data flow graph.
With the PACT programming principles, each user function defines its input and
(optionally) output data with regard to the split into parallelization units. This
explicitly defined extra information about the streaming functions can then be ex-
ploited by the compiler to generate data flow graphs from PACT programs that
are optimized towards parallel processing of the PUs among multiple nodes of the
Nephele compute cluster system.
The Nephele system, that Stratosphere builds up on, is a distributed system of com-
puting nodes which are coordinated by a central master. Nephele supports fault-
tolerance execution of processes among its nodes, featuring re-start and data dedupli-
cation. This provides an execution environment to Stratosphere that ensures reliable
processing with exactly-once messaging semantics.

(3) Usability and Process Modelling

The design level of Stratosphere/Apache Flink is layered at the code level. Flink
provides a joint runtime environment that is capable of executing batch and streaming
applications. For the batch job execution, the compiler applies optimizations that
are hidden from the user perspective, vastly easing the job definition.
The execution of streaming jobs follows similar approaches like Apache Storm, addi-
tionally providing light-weight automatic snapshots for fault-tolerance. The defini-
tion of streaming applications still requires manual coding in Java or Scala.
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2.5. Summary

While the implementations of general stream processing frameworks presented in
2.4 do provide the abstract means of data processing in a continuous manner, they
differ with regard to the guarantees they provide and the modelling capabilities they
address.

A framework like streams does not provide any fault-tolerance features by its own
runtime, but focuses on the abstract user-modelling of streaming applications using
streaming functions. Storm provides fault-tolerance in a transaction save manner,
but expects data to arrive in order, while MillWheel builds upon low watermark
timestamps and does treat all data streams as unordered.

Looking at the history of development in each of these frameworks, their functionality
has somewhat converged towards a common set of features, which are supported by
either of the implementations:

1. Streaming applications defined as data flow graphs

2. Processing nodes/streaming functions as graph nodes

3. Partitioning of data streams for distribution

4. Restart of nodes and replay of data for fault-tolerance

5. Deduplication of messages for exactly-once semantics.

What makes a distinction even more difficult is the fact, that some of the functional-
ities inherent to one framework can easily be provided by additional user code within
the other. Storm for example does not provide an API for state persistency, but
includes callbacks for restoring state from external storage. This state persistency
in contrast is directly integrated as part of the MillWheel API. Pushing this even
further is S4, by providing automatic persistent checkpointing by the platform itself.
However, this is tightly bound to user code, which may not be easily storable in an
automatic fashion. Storm itself did not provide support for Timers in versions earlier
than 0.8.x. These needed to be added with custom code, which has by now been
superseeded by an inherent support for Timers.

This generally leads to a convergence of the various approaches to a set of frame-
works that provide a joint set of fatures. As a result, frameworks that did not
receive a reasonable acceptance, e.g. due to a too complicated usage or API, have
been abandoned. Most prominent being the Yahoo! S4 framework, which has been
discontinued, as well as frameworks like CIEL or Dryad.

2.5.1. Comparison of Stream Processing Engines

In an attempt to extract the major benefits of each of the frameworks, we will give a
walk-through of the features and highlight the capabilities of each framework for that
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feature. Our streams framework, which we will discuss in Chapter 3 is slightly off
this scale: It addresses a middle-layer abstraction, that plays together with several of
the surveyed execution engines and therefore inherits (some of) the properties of the
executing platform. Based on the prototype implementation of the streams-runtime
and the streams-storm integration, we highlight this effect by showing streams in
these two variants within the overall feature matrix.

(1) Execution Semantics and High Availability

The basic semantic for processing messages is the number of times a message may be
processed by a processing node. Typically all frameworks do support an exactly-once
delivery by now. Earlier versions of S4 were focusing on at-most-once execution,
following the so-called gap recovery error handling, that accepts a (short) loss of
messages.

The messages are in general ordered by their creation time and most framework pose
a strict ordering of message while they are being passed between processing nodes.
This ordering of messages is broken up in the partitioning of data streams where an
ordering is only given on each partition of the stream. The Storm and Samza systems
as well as the streams-runtime, which we will present in Section 3.3.3, assume ordered
message streams. MillWheel [12] is the only system reviewed here, which inherently
deal with out-of-order messages. The OOP approach, proposed in [103] addresses this
problem as well. Both systems are quite similar in that respect and use timestamps
on messages with a low watermark that indicates the progress of work.

Maintaining state is crucial for a number of stream processing tasks and is closely
linked to fault tolerance handling. Even simple tasks such as counting elements
require to manage the state of counters and possibly restoring these counts in case
of a restart of the counter.

Despite the streams-runtime, which is geared towards embedded and single-node
processing, all the frameworks provide fault tolerance by resending data that has
not been acknowledged by a receiving node. Here, Storm provides an additional
in-depth ack’ing by building a multi-node dependency chain that is required to be
fully acknowledged by each node. However it does not integrate means for state
persistency which needs to manually be handled by custom user code. The streams-
runtime is following a gap-recovery approach using fail-fast and supervision. While
this does not compare well to the sophisticated recovery mechanisms of the other
frameworks, the targeting on single-node embeddable platforms makes this the most
adequate way of dealing with outages.

Samza and MillWheel offer state management APIs that makes it easy to write user
code which outsources any state handling to a backend, that is usually a itself a
high available distributed storage system (Apache Cassandra, Spanner, BigTable,
etc.). The streams API does provide a similar API for storing state in a process
context which can be mapped to a distributed persistent store, but does only include
a non-replicated in-memory store in its default embeddable streams-runtime.
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(2) Distribution and Scalability

The scalability aspect is in princpiple handled by partitioning data streams based on
some function and processing the partitions by multiple instances of the processing
nodes. This core concept is provided by each of the frameworks in slightly different
ways. Where Storm and Samza/Kafka address this by incorporating so called group-
ings or partitions, the streams framework currently requires a more explicit manual
layout of the partitioning and the data flow graph that corresponds to that.
A more declarative approach is provided by the Stratosphere system, which requires
the user code to explicitly define properties of its input and output data in a way
that allows for the provided compiler to create parallelized data flows from these
descriptions. That property is unique to the Stratosphere approach.

Except for the streams-runtime, all the surveyed frameworks built upon a distributed
execution environment, providing computation nodes that are managed by a central
master node. Frameworks like Storm, Samza and MillWheel support a rebalancing
of the executing processes among the computation nodes, allowing for a dynamic
adaptation of the running data flow graph to changes in the data traffic distribution.
At the moment MillWheel seems to be the only framework that supports dynamic
data flow graphs, which enable the users to add and remove processing nodes without
restarting the system. This behavior is partly inherent to the publish-subscriber
approach provided by Samza, as streaming applications are defined as loosely coupled
components, connected by the queueing system.

(3) Usability and Process Modelling

All the surveyed platform feature a proprietary API for implementing custom com-
ponents to build data flow graphs. The majority of the frameworks requires a code-
level design of applications. In the case of Storm, the application is defined as a
custom Java main program, that will create the topology upon startup. Samza uses
a collection of configuration files, each of which handles the deployoment of a single
component of the overall application. The abandoned S4.io framework is the only
candidate that fosters a declarative XML specification of application.
The streams framework in contrast, starts with a focus on the high-level XML de-
scription of applications and a mapping the defined elements to components of an
execution engine. In case of the streams-storm module, this results in defined process
elements to be mapped to the executing bolts of a Storm topology.
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Feature Matrix

We summarize the features of the different streaming platforms in a feature matrix.
The matrix breaks down the characteristics introduced in Section 2.2.3:

(1) Execution Semantics and High Availability

(2) Distribution and Scalability

(3) Usability and Process Modelling

to the message semantics and persistent state properties – related to execution seman-
tics and high availability; the scalability feature and support for distributed exection
and the level of application modelling with respect to the usability aspect. As an
additional feature, we added the embedded aspect to the matrix, which shows the
clear distinction between the platforms, that are directly geared towards sole cluster
use and the streams framework, capabable of using the streams-runtime for execution
on smaller platforms and mobile Android systems (prototype).
The following Table 2.1 shows the feature matrix for the different stream processing
frameworks. The support for some of the features is not always a binary distinction.
As an example, the creation of dynamic graphs is not supported by Storm, but can
be mimiced by dynamically adding new processing elements in a new topology that
connects to the existing graph that is already exeuting. By dynamic graphs, we
refer here to the possibility of changing the application’s data flow graph while the
application is being executed on the platform.
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Table 2.1.: A feature matrix of the surveyed stream processing engines. Some prop-
erties (marked with “?”) cannot be clearly validated due to missing doc-
umentation of the frameworks.
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2.5.2. The Feature Radar

For a more global classification of the surveyed frameworks we look into a groaser
categorization. With the more detailed distinctive features from Table 2.1, we can
derive the higher-level landscape view as shown in the radar chart in Figure 2.20.
Based on five categories, this figure roughly outlines the key aspects that each of the
frameworks focuses on. Clearly, a few dominating aspects are the strong emphasis
of MillWheel on the out-of-order processing and the streams framework aiming at
process modelling and its focus on embedded setups.
The majority of the frameworks has been developed with the large scale processing
requirements of Big Data in mind: being able to split the streams into partitions and
to parallelize execution among a large set of distributed compute nodes.

Distribution

Scalability

Embeddable Process Modelling

Out-of-Order
MillWheel

Storm

Samza

Stratosphere

streams

Figure 2.20.: Key aspects of general purpose streaming frameworks focus on. Mill-
Wheel is the sole framework additionally focussing on out-of-order pro-
cessing.

61





Chapter 3

Il semble que la perfection soit atteinte non quand il n’y a plus rien à
ajouter, mais quand il n’y a plus rien à retrancher.

It seems that perfection is attained not when there is nothing more to add,
but when there is nothing more to remove.

– Antoine de Saint Exupéry, L’Avion

The streams Framework

Based on the requirements of streaming applications, various frameworks for stream
processing have been proposed. In Chapter 2 we outlined the most popular state-of-
the-art instances of such frameworks. Even though each of these platforms – over its
development history – converges to a similar set of features, all these platforms use
proprietary and specific API and modelling scheme. There does not exist a way to
express a streaming application in a generic way that is decoupled from the underlying
streaming platform. Moreover, the fast evolving landscape of streaming platforms
(see Chapter 2) leaves architects with a difficult decision to choose a platform that
is stable and appropriate for their requirements. Due to the proprietary APIs, this
decision is hard to overcome at a later stage.

The streams framework approaches these drawbacks by providing a layer of abstrac-
tion that allows for modelling streaming applications as data flow graphs with as
little platform specifics as possible. Rather than implementing yet another stream-
ing environment, streams provides a high-level facade and serves as a middle-layer
interface to various stream execution engines. This enables application designers
and developers to focus on their specific task at hand without having to deal with
platform specifics.

We approach this goal by three steps: First, we define an abstract scheme of the
representation of a streaming application by means of the data flow graph. Second,
we propse an XML based dialect that makes use of the dependency injection pattern
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and allows for specifying streaming applications in a declarative approach. Finally,
we do provide an API that enables users to implement custom streaming functions
for use within their applications.

All of these steps are decoupled from the actual execution of the applications and
not bound to an execution engine. The execution and deployment of the user defined
streaming applications is carried out by compiling the abstract application model
into an instance of the streaming platform that is desired to be used for execution.

This chapter is structured as follows: In Section 3.1 we review the properties of
streaming application and motivate the approach we follow with the streams plat-
form. In Section 3.2, we will agglomerate the core properties inherent to the design of
streaming applications and introduce the application model of the streams framework.
Based on that high-level view, we present our XML based dialect for the modelling
of applications as well as the streams API that provides the programmatic interface
to the application design. In Section 3.3.3 we will discuss the compilation of generic
applications defined with the streams framework to an execution platform. By pro-
viding compilers (or builders) for different execution platforms (namely the streams
runtime engine and the Storm platform), we show the versatility of our approach.

3.1. A Framework for Integrated Process Design

The creation and deployment of streaming applications takes place in various con-
texts with the involvement of different people in different roles. Given an application
domain, there is a group of domain experts that require data of their domain to
be processed. Often these experts do not have an expertise in application develop-
ment or the implementation of complex software systems. With a backend software
architecture that facilitates the processing of streaming data in various application
domains, we need to take into account the different roles of people that are affiliated
with that domain. For an example, we may have a look at the FACT telescope,
which we will describe in Chapter 5 in more detail:

The FACT telescope is an experiment set up by physicists to measure cosmic
beams. These measurements are required to be processed and analysed to
approve or reject scientific hypotheses of physics. The telescope produces a
continuous stream of data and due to its sheer volume and additional require-
ments by the physicists, it needs to be processed in a streaming manner.

Creating a streaming application for the analysis requires a large amount of domain
knowledge on the one hand as well as a comprehensive software design expertise to
build a system that can scale along future requirements of the telescope experiment,
on the other hand. In addition, the data analysis process itself is continuously devel-
oped along with new insights gained in experimental studies of the telescope. This
requires a high degree of flexibility for the design of streaming applications. A rapid
prototyping environment for quickly building, testing and deploying data processing
and analysis chains therefore becomes a key requirement.

64



3.1. A Framework for Integrated Process Design

Different Levels of Design

The design and implementation of a streaming application in Big Data environments
requires specific programming skills and a high degree of expertise in distributed
computation. Domain experts (e.g. physicists) are usually focused on the task of
their application domain, rather than capable of maintaining a distributed Big Data
infrastructure. Hence, this demands for a training of the experts to marnage large
scale distributed streaming environments such as Apache Storm or Apache Samza.
Taking into account the expert not being familiar with all the evolving streaming
platforms and the requirement to be able to change the data processing when new
insights have been gained, a more high-level design approach is much more desirable.

With the underlying concept of flow based programming as originally proposed by
J. Paul Morrison in the early 1970s [112, 111], the design of applications by means
of their data flow has added a level of abstraction that makes it easier for analysts
to specify their data processing application. Defining this data flow can still take
place at various design levels and in different granularities. We will discuss the
granularity of process design in Section 3.2. With the background of the existing,
modern streaming platforms, one can derive the coarse levels depicted in Figure 3.1
at which data flow modelling takes place.

Design Level

API Level

Execution Level

<application>

<stream id="data" class="MyInputStream" />

<process input="data" copies="3">

<my.package.MyProcessor alpha="2.4" interval="5min"/>

</process>

...

</application>

Storm Samza streams Runtime

TopologyBuilder b = new TopologyBuilder()

b.setSpout( "input", new InputSpout())

b.setBolt( "p1", new MyProcessingBolt(), 4).shuffledGroup("input")

b.setBolt( "p2", new OutputProcBolt(), 3).groupingBy("age")

Topology t = b.createTopology()

public class MyTaskClass implements StreamTask {
public void process(...){
}

}

job.properties:

task.class=my.package.MyTaskClass

task.inputs=kafka.PageViewEvent

systems.kafka.samza.factory=org.apache.samza...

public class MyProcessor implements Processor {
public Data process(Data item){
}

}

Figure 3.1.: By introducing a higher level abstraction of streaming applications by
means of a declarative XML based modelling. The streams framework
serves as a middle layer for process design. Its declarative application
design provides a higher level abstraction of application modelling.

The top level handles the conceptual design of the domain exports – ideally purely
focusing on the data processing task at hand. This Design Level should try to hide
as many of the implementation details as possible and allow for users to create data
flows without the need to write custom code.

The bottom level is defined by the streaming platforms, which handle the execution
of (distributed) data flow, and provide cluster management and fault-tolerance. On
top of this execution level, the different platforms typically provide a programming
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API level, which is exposed to the analysts to implement their data flow within that
specific platform.

3.1.1. Objectives of the streams Approach

Based on the experiences gained in the collaborations with experts from various
application domains, we derived a few requirements, which are key to acceptance
of such an approach for domain experts. Throughout the design of the streams
framework, we focused on the following four major objectives:

1. Usability (more specifically: Simplicity)

2. Rapid Prototyping

3. Easy Integration of external Libraries

4. Extensibility – Provisioning of an integrative platform

As pointed out above, simplicty is a major concern when building a platform that
is designed to be used in various applications by users that come from a minor
programming background. Choosing a proper level of abstraction for representing
an application with as few basic elements as possible is one of the design decision we
opted for within streams.

The process of developing a data processing pipeline for scientific or productive en-
vironments often is of iterative nature. Therefore, supporting a rapid prototyping
design approach is almost mandatory in most application areas. The streams frame-
work features rapid prototyping by providing a declarative approach to application
design that is based on an XML based configuration language. This supports two
important aspects: first, streaming applications can be shared and versioned by shar-
ing a copy of the XML document that defines the application, and second, domain
experts may easily adopt and modify their application by simply adjusting the XML
configuration.

For a vast amount of applications there already exists specific tools and libraries that
allow for reading or processing data, visualization of results or even provide toolboxes
of machine learning or data analysis algorithms. An integration of such external
libraries into applications build using streams needs to be as simple as possible to
reduce any overhead of implementation or processing time. Likewise any code that
is designed using the streams framework should be easily embeddable within custom
applications.

Building an integrative platform focuses on the aim to provide a framework that can
easily be used in various use cases. By providing a simple API in combination with
the easy integration of external libraries, streams aims to provide a glue element in
data stream system design. This objective becomes much clearer in Part 2 of this
thesis, where we focus on the integration of streams in various projects as well as its
central role as glue element.
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3.1.2. Platform Independence and Code Re-use

A major drawback in the use of platform specific APIs to implement functions is
the portability and re-use of those implementations in other contexts. The existing
frameworks feature a development process that directly aims at sole use of a sin-
gle platform rather than a neutral environment. A higher-level API almost always
involves a decrease in performance over an implementation that is exactly geared
towards a specific use-case. In the streams approach, we approach this trade-off by
promoting users to write code in a way that allows a fine-grained modular design
with a minimal performance degradation. This is achieved by a very thin API layer
combined with a dependency injection approach that will produce an execution graph
that is very close to a specific solution for the executing platform in order to keep
the performance decrease at a minimum.

We approach this goal by separating the functional implementation that is usually
provided by a domain expert (i.e. with custom code) from the properties of the
executing platforms. Platform specifics such as state management or fault-tolerance
are then applied to custom code by an aspect oriented [91] wrapper approach, which
we will dicsuss in Sections 3.3.3 and 3.3.4.1.

Streaming Functions and Processes

The streams framework provides a light programming interface (API) that allows for
the implementation of custom streaming functions. In general, these functions are
chained into a pipeline. Each of those functions can be applied to a data item, which
are the basic messages, that streams focuses on. The output of such a streaming
function is again a data item (e.g. holding additional results from the function
application) and is fed as input into the next streaming function. The functions
serve as the basic building blocks to define streaming applications with the streams
platform.

f1 f2d f1(d) ...

Figure 3.2.: Streaming functions fi chained into a pipeline. The functions serve as
the most atomic building blocks in the streams design approach.

As the API is distinct from the implementation of the execution platforms, the
streaming functions may directly be embedded into other contexts as well. This
maximizes the code re-use of any generic or domain specific functionality that has
been implemented using the streams API. In Section 3.3.4.1 and 3.3.4.2 we discuss
the easy re-use of streaming functions on other execution engines such as Apache
Storm or even batch processing frameworks like Apache Hadoop, which is subject in
Section 5.4. We detail the notion of streaming functions in Section 3.2.2.
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Aspect Oriented Extensibility

Looking at the properties of the streaming platforms discussed in Chapter 2, a fair
amount of these features can be handled independent of the actual application. Treat-
ing streaming applications as data flow graphs, a prominent property of distributed
streaming platforms is to allocate resources for node instances of the application
graph among a set of different machines and connecting them. By focusing on the
mere representation of processing nodes as small processes executing pipelines of
streaming functions, the execution of such functions can easily be mapped onto the
processing elements of various platforms. That allows for distributed execution of
these high-level building blocks on those execution engines.

Other features are the management of restarts of components if a machine that is
executing a node of the application graph fails. By wrapping pipelines of streaming
functions into executing elements of these execution engines the simple restart capa-
bilities are automatically inherited. For non-pure functions that require a state, an
abstract state model is injected into these function that allows to provide different
state-persistence approaches to be injected into streaming functions. Such properties
refer to the execution environment and do not affect the design of the application.

3.1.3. Executing Abstract Data Flow Graphs

The main objective of the streams framework is to provide an adequate abstraction
layer, which enables users to design streaming processes without the need to write
any code. A user can prototype streaming applications, which are the top-level ele-
ments containing a data flow graph built from some base elements such as a stream
and process elements. These process elements in turn provide the execution environ-
ment for pipelines of streaming functions as mentioned above. By means of these
elements, streaming applications can be defined in an XML specification. This XML
specification is described in detail in Section 3.3.1.

The XML process definitions are designed to be independent of the underlying ex-
ecution platform. The streams framework provides its own default runtime imple-
mentation, which is able to execute the XML data flow graphs. In addition, streams
provides a compiler to map XML process definitions to Storm topology, to execute
processes on a Storm cluster. Another runtime is provided for the Android platform,
which allows for executing streams definitions on mobile Android devices.

Figure 3.3.: The XML is compiled into data flows for different runtimes.
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3.2. Abstraction of Application Modelling

As outlined in Section 2.2, the general representation of a streaming application
can be viewed as a data flow graph of connected components. This notion of an
application is prevalent in the reviewed streaming platforms discussed in Chapter 2.

Defining Data Flows

In the platforms outlined in Chapter 2, users define applications by means of custom
code that will create an application graph including various computing nodes that
execute custom functions for all items processed by the application. With the concept
of streaming functions mentioned above, streams aims at defining a finer grained
control of the processes. We will refer to these two levels of granularity in process
design as the process level and the processor level, shown in Figure 3.4.

The predominant approach of existing frameworks uses a process level design which
binds user level code directly into the implementation of process elements. An ex-
ample for this are Bolts, which define the atomic building blocks of a streaming
application within Storm.

(a) Process Level Granularity

Process

p1 ... pk

Process

(b) Processor Level Granularity

Figure 3.4.: Different granularity of design for data flow graphs.

With the granularity of streaming functions, which in Figure 3.4 are depicted as
p1 through pk, the executing blocks of e.g. Storm can be modelled as pipeline of
functions sequentially applied to incoming messages or data items.

The benefits of this finer grained level of design are lighter weight functions, improved
code reuse and higher flexibility, as the designer can easily change the behavior of a
process by adding or removing streaming functions from its pipeline. The improved
code reuse derives from the decoupling of the function implementations from the
executing process element. Each streaming function by itself can also output mes-
sages to other targets (e.g. queues). Mapping each function into its own executing
process element, we essentially incorporate the same behavior as within the process
level granularity as shown in Figure 3.5.

p1 pk

Figure 3.5.: Mapping streaming functions into a separate process elements.

69



3. The streams Framework

In addition to existing frameworks, this type of processor level granularity allows for
grouping streaming functions that run computations on large data items (e.g. in
video frame processing) into a single executing process. As communication within a
process is guaranteed to be local, the designer is enabled to limit communication by
wrapping computations on large items into a single process.

Handling the Any-Time Property

A key distinction of streaming versus traditional batch applications is the missing
termination of streaming applications (in the theoretical sense). Thus, streaming
applications do not compute a result that can be obtained after the application
has finished. In the life cycle of a streaming application this requires current or
intermediate results of the processing to be available. As for example in the setting
of a node that computes the average value of a parameter, the current average needs
to be provided to query for. Within the stream processing literature, this requirement
is often referred to as any-time property, which we dicsussed in Section 2.2.1. There
are essentially two ways how this any-time property can be realized. First, by using
asynchronuous function calls to access intermediate results of streaming functions;
and second, by setting up streaming functions to periodically emit their results to
some index or database that can be queried asynchronuously.

The second option is captured in the serving layer of the Lambda architecture as
discussed in Section 1.1. It can directly be modelled by implementing streaming
functions such, that they emit their current results or state into a database at either
fixed intervals or every k processed items, for some predefined k. This approach is
immediately available following the data flow granularity we described above.

The serving layer approach is geared towards Big Data systems. It is not well suited
for small environments and may not fulfill finer grained any-time behavior require-
ments. Hence, we introduce an abstract service layer, that works orthogonally to the
data flow view as shown in Figure 3.6. The service layer allows any of the streaming
functions to export or use functionality required or provided by other elements. The
functions can be called at any time.

p1 ... pi ... pk

Control Flow

Data Flow

Figure 3.6.: Control flow to access functionalities that are provided by any of the
streaming functions, orthogonal to the usually data flow.

A simple example for such functionality is the training of a classifier in an online
setting. Let a streaming function t be some instance that processes data to con-
tinuously update (train) a prediction model M . That may yield provisioning of a
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classification function f that can be called at any time, providing a prediction based
on the current state of the model M . In this example, the function t would be a
streaming function element that additionally provides f , where t would be called for
any item that is processed in the stream (data flow).

3.2.1. Representation of Data and Streams of Data

A central aspect of data stream processing is the representation of data items that
contain the values which are to be processed. From a message passing system point of
view this is the concrete representation of messages. The abstraction of the streams
framework considers the case of continuous streaming data being modeled as a se-
quence of data items which traverse the compute graph.

There are multiple ways to represent data items in the various streaming platforms
discussed in Chapter 2. In general, an item of data is a set of key-value pairs (k, v),
where each pair reflects an attribute of the item with name k and value v. Based on
the requirements of the streaming platform in use, the set of attributes of an item
may be purely dynamic or statically defined. In addition, attribute values may be
typed or untyped.

Such properties have a direct impact on the capabilities of the platform. As an ex-
ample, the static definition of the set of attributes a node in the application graph
produces, allows for building an optimized data flow graph by exploiting that in-
formation and distributing items among nodes by specific attribute values of known
attributes. This can be checked at startup time of the application. The Storm
platform requires each node to provide the exact structure of the items its emitting
at compile time. On the downside, changes in the data items (e.g. adding new
attributes) require a re-compilation of the application code.

Another important aspect of data representation is whether to use a compact or
explicit realization. By a compact data representation, we refer to attribute values
be backed up by a central mapping rather than the attribute value itself. This
data model is for example used within the RapidMiner software [110] or the WEKA
library [79] and may achieve a very high compression of nominal attributes, since only
a single instance of each nominal value is stored and shared among different items
with the same value for the attribute. This representation requires the mapping of
references to the nominal values to be maintained and shared among all nodes, that
are processing these data items. In the context of large scale distributed systems,
the maintenance of such a central nominal mapping becomes infeasible.

Data Items in streams

Within the streams architecture we deliberately use a dynamic and untyped represen-
tation for items of a stream. Though this minimizes the ability to check compatiblity
of connected nodes, it provides a high degree of freedom with regard to the rapid
prototyping objective followed by streams. The data model in streams also uses an
explicit representation of attribute values.
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A data item within streams s a set of (k, v) pairs, where each pair reflects an attribute
with a name k and a value v. The names are required to be of type String whereas
the values can be of any type that implements Java’s Serializable interface.

Key Value

x1 1.3

x2 8.4

source "file:/tmp/test.csv"

Table 3.1.: A data item example with the three attributes x1, x2 and source.

Table 3.1 shows a sample data item as a table of (key,value) rows. This representation
of data items is implemented by hash tables, which are available in almost every
modern programming language.

The use of such hash tables was chosen to provide a flexible data structure that
allows for encoding a wide range of record types. Moreover it supports an easy
interoperation when combining different programming languages to implement parts
of a streaming process. This enables the use of languages like Python, Ruby or
JavaScript to implement custom process as we will outline in more detail in Section
3.4.1.

Streams of Data

A data stream is an entity that provides access to a (possibly unbounded) sequence
of data items. The streams abstraction layer defines a data stream as an element,
which essentially provides a method to obtain the next item of a stream. Figure 3.7
shows the structure of data items embedded in the flow of a data stream.

Stream

Key Value

@id

timestamp

message

frame:data

348342047

1434466236000

Hello, world!

ImageRGB@387de8

Figure 3.7.: A data stream as a sequence of data item objects.

The streams-core library contains several implementations for data streams that re-
veal data items from numerous formats such as CSV data, SQL databases, JSON or
XML formatted data. A list of the available data stream implementations can be
found in the Appendix D.1. Application specific implementations for data streams
can easily be written by custom Java classes.

72



3.2. Abstraction of Application Modelling

3.2.2. Streaming Functions for Data Items

The basic design approach for streaming applications within streams is to allow users
to design their data flow by creating pipelines of functions that are applied to all
items produced by a streaming source (e.g. a stream or a queue). These pipelines
are build up from simple streaming functions. Streaming functions (also referred to
as processors) are the atomic functional units within streams. A streaming function
usually is applied to a single item of data and produces a new or modified data item
as a result. This notion of a streaming function reflects the basic pipeline principle
that is inherent in streams as shown in Figure 3.8.
The processors are realized by objects that provide a single method called process().
This method is called for each incoming data item and produces a data item as result.
In the simplest case of a processor that is equivalent to the identity function, the
process() method simply returns the data item it was called with.
This very simple pattern of a streaming function or processor already captures a lot of
use-cases for feature extraction, filtering or other tasks. With the flexible data item
structure, even complex results can be created within one processor and be added to
the resulting data item.

Stateless vs. Stateful Processors

The most common preprocessing steps, such as feature extraction, do not rely on any
state. This is different in more complex stages, such as counting elements or even
training a classifier online. The bare processor interface only covers the process()

method. Volatile state information may easily be stored in member attributes of the
processor implementation. This can be initialized upon the first call of the process()
method and be used in subsequent calls.
Maintaining state in a reliable way requires more of a life-cycle for the proces-
sor instances. Hence, streams offers an abstract Context, that is handed over to
stateful processors upon initialization time and can be used to store state infor-
mation in a more reliable way. The stateful behavior of processors is covered by
the StatefulProcessor interfaces, which provides additional init() and finish()

methods.
Figure 3.9 shows the lifecycle of a stateful processor. Like regular processors, each
processor object is instantiated and its parameters are being set. After that, the
stateful processors are provided with a reference to the context by the init(Context)
method call. Following that, the processor will be executed by calling process() for

(f)d d′

Figure 3.8.: A streaming function or processor in its single-input/single-output fash-
ion. The function f implemented by the processor is applied to each
item d, and its result d′ is fed to the next processor.
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each data item that is obtained from the input stream of its executing process. After
the input stream has run dry, the finish() method will be called, signaling the
processor that no more items will be arriving.

S

(1) Processor object created

(2) Parameters set

Initialized Processing Data Finishing

Object released

process()init(Context)

1 2

finish()

3

Figure 3.9.: Lifecycle of a stateful processor.

The context provided to the stateful processors is defined by the ProcessContext

interface and is shared among all processors of a process. This allows for intra-process
communication between processors of a process. The default implementation uses a
simple memory-mapped key-value storage. More sophisticated implementations of
such a context may for example be bound to high-available key-values stores such as
Apache Cassandra [98] or the like.

Processors and Emitters

A restriction of processors is, that each processor can only produce a single output
item upon receiving some input. In some situations, this does not match the data
flow. As a simple example, the splitting of Twitter messages into word tokens will
usually result in a sequence of tokens based on a single input message, i.e. the output
of this splitting processor is a short stream and not a single data item.

For a more general concept of functions that create multiple outputs, processors may
be connected to one or multiple sinks. These sinks reflect elements that data can be
written to and allow processors to create multiple output items within a single call
of their process() method. Figure 3.10 shows the data flow of an emitter function,
that outputs to S1, . . . , Sk. To these outputs, typically one or more processes are
connected, consuming the emitted items.

3.2.3. Processes and Data Flow

The data streams defined above encapsulate the format and reading of data items
from some source. The streams framework defines a process as the consumer of such
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S1
...

Sk

(f , S1, . . . , Sk)d d′

Figure 3.10.: A processor that is connected to one or more sinks (Si) to which it can
write any number of output elements.

a source of items. A process is connected to a stream and will apply a series of
processors to each item that it reads from its attached data stream. Each processor
is a function that is applied to a data item and will return a (modified or new) data
item as a result. The resulting data item then serves as input to the next processor
of the process. This reflects the pipes-and-filters concept mentioned in the beginning
of this section.

The processors are the low-level functional units that actually do the data processing
and transform the data items. There exists a variety of different processors for
manipulating data, extracting or parsing values or computing new attributes that
are added to the data items. From the perspective of a process designer, the stream
and process elements form the basic data flow elements whereas the processors are
those that do the work.

The simple setup in Figure 3.11 shows the general role of a process and its processors.
In the default implementations of the streams library, this forms a pull oriented data
flow pattern as the process reads from the stream one item at a time and will only
read the next item if all the inner processors have completed. Where this pull strategy
forms a computing strategy of lazy evaluation as the data items are only read as they
are processed, the streams library is not limited to a pull oriented data flow.

Stream

p1 pn

Process

Figure 3.11.: A process reading from a stream and applying processors.

Using multiple Processes

In the streams framework, processes are by default the only executing elements.
A process reads from its attached stream and applies all inner processors to each
data item. The process will be running until no more data items can be read from
the stream (i.e. the stream returns null). Multiple streams and processes can be
defined and executed in parallel, making use of multi-core CPUs as each process is
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run in a separate thread. This is the default execution behavior in the reference
streams runtime implementation. As streams processes may be executed in other
environments as well, the exact behavior might be subject to change with regard to
the execution environment.
For communication between processes, the streams environment provides the notion
of queues. Queues can temporarily store a limited number of data items and can be
fed by processors. They do provide stream functionality as well, which allows queues
to be read from by other processes. Figure 3.12 shows two processes being connected
by a queue. The enlarged processor in the first process is a simple Enqueue processor
that pushes a copy of the current data item into the queue of the second process.
The second process constantly reads from this queue, blocking while the queue is
empty. The default queue implementation within streams is blocking.

S

Stream

Q

Queue

Process P2

Process P1

stream.flow.Enqueue

Figure 3.12.: Two Processes P1 and P2 communicating via queues.

These five basic elements (stream, data item, processor, process and queue) already
allow for modeling a wide range of data stream processes with a sequential and multi-
threaded data flow. Apart from the continuous nature of the data stream source,
this model of execution matches the same pipelining idea known from tools like
RapidMiner, where each processor (operator) performs some work on a complete set
of data (example set).

3.2.4. A Service Layer for Anytime Accessibility

A fundamental requirement of data stream processing is the anytime paradigm, which
allows for querying processors for their state, prediction model or aggregated statistics
at any time. We will refer to this anytime access as the control flow. Within the
streams framework, these anytime available functions are modeled as services. A
service is a set of functions that is usually provided by processors and which can be
invoked at any time. Other processors may consume/call services.
This defines a control flow that is orthogonal to the data flow. Whereas the flow of
data is sequential and determined by the data source, the control flow represents the
anytime property as the functions of services may be called asynchronously to the
data flow. Figure 3.13 shows the flow of data and service access.
Examples for services my be classifiers, which provide functions for predictions based
on their current state (model); static lookup services, which provide additional data
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Stream Process
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Figure 3.13.: Orthogonal data and control flow. Processors p1, . . . , pn may use ser-
vices, as well as export functionality by providing services (see pi).

to be merged into the stream or services that can be queried for current statistical
information (mean, average, counts).

Service References and Naming Scheme

In order to define the data flow as well as the control flow, a naming scheme is
required. Each service needs to have an unique identifier assigned to it. This identifier
is available within the scope of the application and will be used by service consumers
(e.g. other processors) to reference that service.
At a higher level, when multiple streaming applications are running in parallel, each
application is associated with an identifier by itself. This imposes a hierarchical
namespace of applications and services that are defined within these applications.
The streams library constitutes a naming scheme to allow for referencing services
within a single application as well as referring to services within other (running)
applications.
A reference to a service is provided by using the identifier (string) that has been
specified along with the service definition. Following a URL like naming format,
services within other applications can be referenced by using the application identifier
and the service identifier that is to be referred to within that application, e.g.

//application-3/service-2.

The names will be used by the streams library to automatically resolve references to
services.
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3.3. Realization of the streams Architecture

In the previous section we outlined an abstraction of data flow application design by
means of high level components and their connections within a data flow graph. The
streams architecture is an implementation of these abstractions for building streaming
applications using a descriptive XML specification of the application and a high-level
API for inclusion of custom streaming functions.

S

Streaming Application streams Architecture

XML

Programming API

Figure 3.14.: Representation of a streaming application and the releveant levels of
the modelling stack provided by the streams framework.

From a software design perspective, streams defines a platform that builds upon
the dependency injection pattern [65, 120]. This pattern provides means to define
elements (in this case using XML) and their references. The platform handles instan-
tiation of these elements as well as the injection of parameters and other referenced
objects. Within the context of the modelling of streaming applications, users can
define data sources and processes, which reference these sources. Using the platform,
these source-references are automatically resolved and prior to start of the applica-
tion, the sources and processes are instantiated and the created sources are injected
into the process elements.
In this Section we give an in-depth overview of the streams architecture, focusing on

• the Programming API that provides facades to all elements of abstract stream-
ing applications,

• the XML based design language to allow users for defining an application in a
rapid-prototyping way.

3.3.1. Designing Streaming Applications in XML

The XML specification of a streaming application is one of the fundamentals within
the streams framework approach. The target of the XML is to provide elements for
any of the building blocks that a user needs to create an application that matches
his idea of the data flow for the task to solve. The streams XML definitions provide
a single XML element for each of the components of a streaming application. The
following elements are available:
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• stream, which defines a stream of data;

• process, representing an active components that processes a stream of data;

• queue, which defines an element that data can be send to and received from;

• service, which defines a standalone service that can be queried from within a
process pipeline.

Each of these elements supports a basic set of attributes, which determine the exact
behavior of the element. Most importantly, all elements (except process) require an
id attribute to be referenced from other elements. The other required attribute is
the class attribute, which defines the exact class that is implementing this element.

The following example in Figure 3.15 defines a stream of data that is read from a
file in CSV format. The stream is bound to the identifier dataStream by which it
can be referenced from within other elements. As can be seen in the example, the
stream defines a stream of data, which is provided by a specific application. The
class attribute of the stream element defines the exact Java class that is used for
instantiating the appropriate stream instance.

<application>

<stream id="dataStream" class="stream.io.CSVStream"

url="file:/example/data.csv" />

</application>

Figure 3.15.: The definition of a single stream in an application.

3.3.1.1. Outline of a Streaming Application

An application defined in streams consists of a collection of nodes and their edges in
the data flow graph. The nodes are represented by the aforementioned elements such
as a stream, a process or a queue. Each of these elements has a directly corresponding
XML element. The overall application is wrapped in an application element as
shown in Figure 3.16.

<application>

</application>

<stream/> <process/>

<queue/>

<process/>

<process/>

Figure 3.16.: The outline of a streaming application.
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The elements are typically identified by a unique ID provided in their id attribute.
The connections between the defined elements are established by referencing other
elements using their id value.

Defining Streams and Queues

Streams and queues are the central sources of data within an application. A stream
is regarded as an object that continuously emits data items. Queues in addition
allow for the insertion of data items from other processes and allow for establishing
an inter-process communication within elements of the application.

As will be described in more detail in Section 3.3.2, each of the elements is associated
with a specific implementation that provides the specific code for the element. In
case of the stream element, the implementing classes need to extend the Stream

interface. A detailed description of that interface will be given in the section about
the Programming API (3.3.2). The specific implementation is selected by the class

attribute of the XML element.

As for the stream element, there exists a wide range of predefined classes within
the streams-core package that provide a stream implementation, e.g. for CSV for-
matted data, data in JSON format, etc. A complete list of the supported stream
implementations can be found in Appendix D.

<stream id="myStream" class="stream.io.CSVStream"

url="https://sfb876.de/data/example.csv.gz" />

Figure 3.17.: Definition of a stream that reads data in CSV format from a URL.

The example element in Figure 3.17 defines a stream object that is identified by
its myStream identifier. The class used for creating an instance of that stream is
stream.io.CSVStream and it will read the data from the specified URL. The URL
is another abstraction provided by the streams concept, which aims at deliberating
stream implementations from handling specific URLs themself, but using a generic
URL implementation that automatically handles on-the-fly compression and a large
set of different protocols.

Similar to a stream object, queues can be defined using the queue element with a
specific implementation. The streams environment provides a default implementation
of queues, which is based on a limitted size blocking queue. Figure 3.18 shows
the queue element within an application, with the default implementation and a
maximum size of 1000 elements.

<queue id="myQueue" size="1000" />

Figure 3.18.: Definition of a blocking queue (default).
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Defining Processes

Processes are the active elements within a streaming application, i.e. these objects
read data from some source (i.e. a stream or a queue) and apply a sequence of
streaming functions to each of the items read. A process is defined using the process
element. It may be assigned an identifier using the id attribute, but that is not
mandatory. The most important attribute for a process is its input attribute, which
specifies the ID of the source (i.e. a stream or a queue) from which it should read
its data. Figure 3.19 shows a process that is connected to the stream we defined in
Figure 3.17 above:

<process id="optional" input="myStream">

<!-- streaming functions inside -->

</process>

Figure 3.19.: A process connected to the previously defined stream.

The process element does not directly support a selectable implementation1. The
reason for this is, that the behavior of this specific element is usually determined by
the execution engine. For example, a process is mapped to a worker thread within
the streams-runtime or a bolt in the Storm engine.

The fundamental part within a process element is the set of nested components,
which define the pipeline of streaming functions. The process elements represent the
sequential application of streaming functions as described in Section 3.2.2. These
streaming functions are provided by classes that extend the stream.Processor in-
terface, which will be outlined in Section 3.3.2. Processes execute these processors
in a sequence as shown in Figure 3.20:

S f1 f2 f3

Process

Figure 3.20.: The pipeline within a process, executing functions f1, f2 and f3 in that
order for each data item obtained from the input S of the process.

A pipeline of such processors (or streaming functions) can be defined in XML by
referencing the implementations directly as nested elements of the process. At this
level, streams provides a direct mapping of XML element names to the processor
implementation.
Figure 3.21 shows the XML definition of that pipeline of three processors inside of
a process. In this simple process, the first processor stream.flow.Delay will slow

1The default behavior of processes is provided by the stream.runtime.DefaultProcess implemen-
tation. A different implementation can still be selected, but does essentially only relate to the
handling of the pipeline of streaming functions.
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down the process by delaying the execution of each item by 10 milliseconds. The
following SetValue function will add a new item called answer to the data item with
a value of 42.0. The last processor will simply print out a text representation of each
item to the standard output.

<process id="optional" input="myStream">

<stream.flow.Delay time="10ms" />

<stream.data.SetValue key="answer" value="42.0" />

<stream.data.PrintData />

</process>

Figure 3.21.: A simple process applying a pipeline of three processors (streaming
functions) to each data item obtained from the stream defined as
myStream.

The streams-api and streams-core packages provide a large amount of generic proces-
sor implementations that can directly be used for designing streaming applications.
By such processors, the XML specification can easily be extended to a fine grained
data flow specification language. An example for this is the stream.flow.If proces-
sor, which in turn may include nested processors that are executed as a sub-pipeline
in the same way as the process pipeline itself. This If processor is empowered by the
streams expression language, which offers high performance expressions to be used
within the application design. Figure 3.22 shows the use of the If processor with
a simple expression. A detailed description of the expression language is given in
Section 3.3.1.3. A complete list of the generic processors already provided by the
streams packages streams-api and streams-core can be found in Appendix D.

<process id="optional" input="myStream">

<stream.flow.If condition="%{data.temperature} > 23.4">

<stream.data.PrintData/>

</stream.flow.If>

</process>

Figure 3.22.: Use of the stream.flow.If processor to execute the PrintData func-
tions only for data items, which contain an attribute temperature with
a value larger than 23.4.

Defining Services

A service in the streams terminology is an entity that exports one or more func-
tions, which can be called at any time. Usually, services a queried from within the
process(Data) method of processors, e.g. to look up external data for the cur-
rent item or store information about that data in some external storage provided
by the service. Services in streams are defined by an interface for the service, which
extends the special Service marker interface. This allows for service injection to
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identify injection points based on Java’s reflection API. Services can be provided by
any Java class that implements the interface of the service, i.e. regular processor
implementations or simple Java classes.
The definition of a service in the XML specification can be done in two ways:

1. Define a service implemented by a processor,

2. definition of a service implemented by a standalone Java class (no processor).

In both situations, the specification of an identifier attribute id is mandatory. This
id is used to register the service in the naming service of streams and allows for
referencing the service from other elements, such as processors. In the case of a
service, that is provided by a processor, the processor is simply added to a process
element, additionally provided with an id parameter to define the name of the service.
To define a service that is provided by a standalone Java implementation, i.e. not
provided by a processor, streams contains the service element. This element re-
quires the aforementioned id attribute, the class that implements the service and
any additional parameters, that are required by the service implementation. These
parameters are injected into the service object after instantiation in the same way as
handled for regular processor objects. Figure 3.23 shows the definition of a look-up
service, which is referenced from within a processor. The service is registered under
the name database and the processor using the service has a set-method called
setCatalog(..) which is later used to inject the service reference into the processor
object.

<application>

<service id="database" class="my.lookup.DatabaseImpl" />

<process input="...">

<my.lookup.Processor catalog="database" />

</process>

</application>

Figure 3.23.: Definition of a standalone service element, referenced by a processor.

3.3.1.2. Parameterising Applications

In various situations it is comfortable to parameterize the XML specification of a
streaming application. This allows for developers to start the same application with
different settings without requiring a rewrite and can be useful to create applications
that rely on external files that may be referred to in a dynamic way.
As a simple parameterization, the streams XML provides variable expansion using a
syntax that is known from various tools and libraries. Using the ${..} expression,
variables become global and can be used at any location within the XML definition.
This variable expansion can be used to directly reference defined parameters or sys-
tem properties. The references are resolved at initialization time, i.e. at the time
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when the XML is processed and before the application is started. An example for
using variables in the application specification is shown in Figure 3.24. In this case,
the base path of an URL is defined using the variable dataDirectory.

<application>

<stream id="data" class="stream.io.CSVStream"

url="${dataDirectory}/test-data.csv.gz" />

<process input="data">

<!-- process the data -->

</process>

</application>

Figure 3.24.: A streaming application defining a stream using simple variables.

The parameters can be defind using the properties element in different ways: Either
by directly defining the variable and its value using the variable name as XML tag
and the value as its body, or by specifying file or a URL from which the properties
should be read. Figure 3.25 shows the definition of the my.variable parameter with
the value 42 and the referencing of additional parameters from a specified file. The
last properties element in this example references a specified resource within the
classpath.

<properties>

<my.variable>42</my-variable>

</properties>

<properties file="/path/to/settings.txt" />

<properties url="classpath:/default-settings.properties" />

Figure 3.25.: The properties element to define variables.

Additional properties are read from the file settings.txt which expects to contain
each variable definition in a single line as:

# lines starting with ’#’ are ignored

variable=value

Figure 3.26.: Format of a file defining variables.

A special case for this kind of settings in a file is the .streams.properties file in
the home directory of the user starting the application/runtime. This file is expected
to contain variable definitions in the same format as the settings file in Figure 3.26.
If that file does not exist, it will be ignored. The use of an external properties file
in the user home directory allows for specifying credentials such as user passwords
or tokens required for authentication in a file that is accessible by the user only.
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The variables can then be referenced within the XML without having to include this
sensitive information inside the application specification.

Variable Definition Order

The variables defined in properties are defined in the order in which they appear
in the XML definition. Variables defined at a later stage may therefore overwrite
existing variables. In the example of Figure 3.25 the variable my.variable may be
overwritten by a value in the settings.txt file that was referenced by the following
properties element.

The order in which variables are defined is:

(1) Variables are read from the .streams.properties file in the home directory
of the user that is starting the application,

(2) Variables defined by properties elements in their order of appearance in the
XML,

(3) Variables defined using the Java System properties, possibly overwriting vari-
ables defined in step (1) or (2).

As the variable expansion includes the Java system properties, applications can easily
be provided with variables by setting properties when starting the Java system. This
especially allows for defining default values in the XML using properties elements
and overwriting those values using System properties.

The following command starts the streams runtime with an application definition and
sets an additional variable:

java -DdataDirectory="/tmp" -cp streams.jar app.xml

Variables can be used anywhere in the XML attributes, the variables of an application
are expanded at startup time. Therefore any changes of the variables after the
application deployment will have no effect.

3.3.1.3. The streams Dynamic Expression Language

The streams framework provides a simple and fast2 expression language, that can be
used for filtering items or comparing values by directly including expressions in the
XML. The expression language is somewhat similar to variable expansion, but much
more powerful. It allows for dynamically querying variables of different scopes at
runtime.

2The current version of the streams expression language is based on precompiled expression trees
and has been implemented by Hendrik Blom.
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The expressions are strings that contain references to variables using a format like
%{exp} where exp is a scope identifier, followed by a dot . and the identifier of the
variable that should be resolved within the selected scope:

%{data.temperature} > 32.0

Expressions may resolve to arbitrary objects (including Boolean objects). Boolean
expressions are especially useful for filtering or conditioned execution of processors,
e.g. by adding binary operators to the expressions such as the > operators above.
Building more complex expression can be achieved by the boolean AND and OR op-
erators. Table 3.2 shows a list of the operators supported by the streams dynamic
expression language.

Operator Use

= Comparison (object or numerical equality).

>, < Numerical comparision with constants or other variable expressions.

@rx Regular expression match.

AND, OR Combine boolean expressions.

Table 3.2.: The operators supported by the dynamic expression language.

Scopes of Variables in Expressions

A streaming application defines a hierarchy of scopes, where the application itself is
the global top scope. This global scope is referred to as the container scope. Nested
inside is the process, which reflects a scope that is related to the executing process
in which an expression is resolved. Finally, the lowest scope is the data scope, which
is associated to a particular data item that is being processed while resolving the
expression.

<process input="myStream">

<stream.flow.If condition="%{data.temperature} > 32.0">

<stream.data.PrintData />

</stream.flow.If>

</process>

Figure 3.27.: A simple expression with a numerical comparison using a variable from
the data scope, which refers to the attribute temperature of the current
data item.
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3.3.1.4. Modularising large Applications

When applications grow in size and complexity, it is often helpful to decompose the
application structure into different modules. Such modules are typically defined in
separate files, which can be included into the global application specification using
the include element.

<application>

<!-- define all the sources in a separate file -->

<include url="file:sources.xml" />

<process input="data">

</process>

</application>

Figure 3.28.: Inclusion of a module defined in a separate XML file.

As shown in Figure 3.28, all the sources of the given example are defined in a separate
XML configuration file. The modules defined in these separate files are usually
wrapped inside a module element and may contain any of the basic building blocks
of a streams application, such as stream, queue or process elements. Any of the
variables defined in the parent application file will be inherited and can be used
within the module. Figure 3.29 below shows a module that could be included from
within the example in Figure 3.28.

<!-- a very simple module -->

<module>

<!-- define a stream -->

<stream id="data" class="stream.io.CSVStream"

url="https://sfb876.de/data/sample.csv.gz" />

</module>

Figure 3.29.: A simple module defining a single data stream.
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3.3.2. A Programming API for Streaming Applications

In the previous sections we outlined how to create data flow graphs for data stream
processing by XML elements of the streams framework. We also introduced streaming
functions or processors as the atomic functional units that provide the work required
to do the data processing. Alongside to the XML modelling language, the streams
framework provides a programming API that closely resembles the elements used to
model a streaming application and facilitates the inclusion of custom functions and
code into the application design. Each of the aforementioned application elements,
such as streams or processors, does have a direct programming interface that provides
a light-weight facade to implement custom components and directly integrate these
into the application at the modelling or design level.

The streams-core package in addition already provides a rich set of generic processor
implementations that can be used to aggregate statistics, or manipulate data. In
many application use cases, we still face the problem of requiring application specific
pre-processing or functionality that cannot directly be achieved with the existing
streams core processors. Such functionality can easily be added by custom imple-
mentations of processors. The streams framework provides an easy to use Java API,
which encapsulates the abstract concepts outlined in Section 3.2.

In this section, we will walk-through the implementation of custom processors using
the Java language. By simple extensions of the streams approach, it is possible to
implement streaming functions in a variety of other languages, such as JavaScript,
Ruby or Python, which will be described in Section 3.4.1.

3.3.2.1. Representation of Data

Among the most fundamental elements of the API is the stream.Data interface,
which is the central container to encapsulate a message or tuple of data. The in-
stances of classes implementing the stream.Data interface are referred to as data
items and will be exchanged between the other objects such as queues and processes.
The interface stream.Data is a simple generic Map with keys of String type and
associated values that can be any serializable Java objects. The choice for using a
dynamic map over a fixed data structure is motivated by the more intuitiv use of
maps, which are provided in any programming language. Another important factor
is the flexibility, provided by maps: it does not require any pre-defined number of
attributes and can be extended with new elements as required. This is crucial in the
context of rapid-prototyping of data preprocessing, in which streams excels.

Creating Data Items with a Factory

The usual way to create new instances of Data is the use of the DataFactory class.
Figure Following the factory pattern [68] to create new data items allows for glob-
ally selecting the best implementation of the Data interface for different execution
platforms. 3.30 shows the Java code to create a new data item.
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// Creating an empty Data element

Data item = DataFactory.create();

// Adding an attribute to the element

item.put( "answer", 42.0d );

Figure 3.30.: Creating a new instance of Data.

The use of the factory pattern becomes obvious when compiling defined streaming
applications to the Storm platform. As Storm follows a different data model, this
mismatch needs to be compensated, e.g. by using a different DataFactory class.

3.3.2.2. Interfaces for Sinks and Sources

Within a streaming application, there are two fundamental types of elements – sinks
and sources. A source provides a continuous sequence of data items, whereas a sink
may receive a sequence of items for further processing. This is the highest level of
abstraction that we modelled within the streams API. These two different types of
elements are reflected by the top-most interfaces within the hierarchie of inheritance
outlined in Figure 3.31.

<<interface>>

stream.io.Source

void init()

Data read()

void close()

<<interface>>

stream.io.Sink

void init()

void write(Data)

void close()

<<interface>>

stream.io.Barrel

void clear()

<<interface>>

stream.io.Queue

void getCapacity()

void setCapacity(int)

<<interface>>

stream.io.Stream

int getLimit()

void setLimit(int)

<<interface>>

stream.io.MultiStream

Map<String,Source> getStreams()

void addStream(String,Source)

Figure 3.31.: The hierarchy of different interfaces which reflect source or sink elements
within the streams API.

As can be seen in this figure, the elements need to provide an init() as well as a
close() method. These are handled at the very beginning and the very end of the
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application’s running time. As the sinks provide methods for writing data items to
them, the source elements all provide a read() method to obtain the next item in
the sequence. The lifecycle of all elements within a streaming application, which
implement the source or sink interfaces consists of the following phases:

1. The object is created and all parameters are set.

2. The object is initialized, i.e. its init() method is called.

3. While the application is running, calls to read() / write() are performed.

4. The object is closed, i.e. its close() method is called.

The Barrel is an intermediate interface, that reflects an unbounded queue, which
data can be written to and read from. The more specific Queue interface additionally
provides some limit on the number of items that can be stored. Likewise, the Source

represents some unbounded sequence of data, where a Stream element may be limited
by the user. The MultiStream interface allows for the definition of streams that may
contain additional substreams. This may be data coming from different sensors,
which are represented by an interleaved stream of data items or data generators
that sample different streams to create a sampled stream from different generating
functions. Using these interfaces enables users to quickly implement custom classes
for domain specific data sources, as we will demonstrate in the discussion of the
use-cases in chapters 5 and 6 of this thesis. The streams-core package (see Appendix
D) already provides a wide range of implementations for various formats as well as
data generators. We provide a sample implementation of a data stream in Appendix
C.1.1.

3.3.2.3. The Process and Processor Interfaces

Within an application graph, the sink and source elements denote passive elements
that produce or consume data items. Mangling and processing of these items is
delegated to processes which are the active, executing elements of an application.
The role of processes has been outlined in an abstract manner in Section 3.2.3 – a
process will continuously read data items from some source and apply its pipeline
of streaming functions (processors) to each of the items. The process element itself
is represented by the Process interface, which inherits the behavior of the abstract
LifeCycle interface. This lifecycle defines a generic behavior that consists of

(1) the initialization after object creation (init(Context)), given some context,

(2) execution of the object as the application is running,

(3) the proper shutdown notification (finish()) at the end of the application.

Between steps (1) and (3), the behavior of elements is different: As stream and queue
elements are passive entities, no active execution is required. In case of a process
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Algorithm 1 Pseudocode for the semantics of a process element.

Source S
Processors P = 〈p1, . . . , pk〉
while d← S 6= nil do . While the source produces data

for i← 1, k do . Apply all processors of P
d′ := pi.process(d)
if d′ = nil then

break . If pi has no results, read next item
end if
d := d′ . Result of pi becomes the input to pi+1

end for
end while

element, it will continuously execute the dispatch loop shown in Algorithm 1. The
pseudocode shows the exact semantics of the executing process: For each item, the
list of processors, which forms the pipeline of streaming functions, is applied. The
output of one processor is then given as input to the next processor in the pipeline.
If any of the processors returns an no output (i.e. nil), then the process continues
execution with the next item from its input source.
The complete inheritance relations for processes are outlined in Figure 3.32. As can
be seen in that diagram, each process may optionally have an output, represented
by any sink implementation. If there exists an output attached to the process, the
result of the last processor in the pipeline will be written to that sink.

<<interface>>

stream.runtime.LifeCycle

void init(Context)
void finish()

<<interface>>

stream.Process

void setInput(Source)

Source getInput()

void execute()

<<interface>>

stream.io.Source

void init()

Data read()

void close()

<<interface>>

stream.io.Sink

void init()

Data write()

void close()

11 1 0..1

<<interface>>

stream.Processor

Data process(Data)

1

0..n

Process Input Process Output
(optional)

Figure 3.32.: A UML diagram for the relevant interfaces regarding the processing of
data items obtained from data sources.
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Processors – An Interface for Streaming Functions

The process element and its associated interfaces define the input, execution and
(optional) output of elements in the application. This is only related to the handling
of data and routing of data items through the data flow graph.

Central to an application is the inner pipeline of streaming functions that are executed
by each of the processes. This pipeline consists of a sequence of processors defined
by the Processor interface. Any Java class implementing this interface directly be
included as part of a process’ pipeline in the definition of a streaming application.
The Processor interface defines a single method:

public interface Processor {

public Data process( Data item );

}

Figure 3.33.: The central Java interface of a streaming function/processor.

This interface defines the functionality of a stateless processor. The process(Data)

method is called for each data item read by the process that executes the processor.

Classes implementing this interface are expected to meet the JavaBeans properties,
i.e. provide a constructor that does not require any arguments and feature set- and
get-methods for each of its properties. Following the JavaBean conventions allows for
creating a direct relationship of the attributes of a processor with its definition in the
application XML definition. The streams framework then takes care of instantiating
objects of the processor classes as defined in the corresponding XML. Figure 3.34
shows a simple Identity processor that does not modify the data items and its
reference in the XML definition of an application process.

The example of Figure 3.34 shows the separation of modelling (XML) from the
actual implementation (Java code) as well as the conductive transition from code
to modelling. On the one hand, it allows application designers to define applications
on a high-level by means of the XML notation, whereas the XML elements directly
reference Java classes that provide the low-level functionality. This close correlation

package org.jwall.example;

public class Identity

implements Processor

{

public Data process(Data item){

return item;

}

}

<application>

...

<process input="data">

<org.jwall.example.Identity/>

</process>

...

</application>

Figure 3.34.: A simple processor implementation (left) and its use within the defini-
tion of a process (right).
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of code and application modelling was a major objective we addressed as it features
the rapid prototyping requirement mentioned in Section 3.1.1.

Handling State with StatefulProcessor

We discussed the abstract lifecycle of a processor object in Section 3.2.2: After the
processor object has been instantiated, it will be equipped with the parameters from
the XML, i.e. all XML attribute values are injected. For a more detailed description
of the parameter injection see Section 3.3.2.4 below.

Before the parent process starts calling the instantiated processors for each data item,
the provided

public void init(ProcessContext ctx);

method of the StatefulProcessor interface is called. The provided context object
provides a generic storage for data that the processor may want to persist. This may
be counter values, buffered data items, or the like. The default implementation of
this context is a volatile hashmap, that does not provide any persistency. For a more
complex and highly-available solution, it can be exchanged by injecting a wrapper
for a fault-tolerant key-value store instead.

3.3.2.4. Dependency Injection for XML Definitions

In the previous sections we set the scene for implementing components using a small
set of interfaces. By referencing these components within a process element, we can
define executable pipelines tailored to a specific use case. This pipeline defines an
implicit concept of connecting components within a process.

For building more complex applications, the pipelines themselves are not sufficient.
Connecting various components with each other is handled by dependency injection,
which allows for propagating references of instances of the applications components
to other components. The dependency injection of streams handles the setup of any
objects, that are defined in the XML specification and is used for all the different
elements. The setup can be boiled down to two aspects:

1. Injection of parameters defined in the XML,

2. Injection of component references as defined in the XML.

Though the injection of object dependencies, such as service references is handled
very similarly, the injection of parameters resides at a slightly different level.

Parameter Injection for Application Components

The streams framework handles a large portion of the setup of objects based on the
XML definition. This amounts to the instantiation of objects and their proper ini-
tialization with parameters. The parameter injection is responsible for equipping
instantiated objects with the parameter values defined in the XML. As the XML
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attributes are un-typed text values, the parameter injection needs to identify the ap-
propriate set-method and possibly needs to create the value object, which is provided
as argument to the set-method call, as provided in the XML attribute string.

The parameter injection of streams handles all standard Java types, such as Double

or Integer values and selects the required type based on the method name matching:
For some XML attribute X, the target object class is scanned for a method setX(..),
which requires a single argument, when being called. The type of argument is deter-
mined using Java’s reflection API and is expected to provide a constructor method
that takes a String value, namely the provided XML attribute value, as parameter.
This allows for the parameter injection to basically support any parameter type, that
has a String argument constructor. Figure 3.35 shows the way XML parameters are
injected.

<application>

<process>

<my.package.MyProcessor threshold="42.0">

</process>

</application>
Object

class MyProcessor

setThreshold(Double v);

setThreshold(new Double("42"))

Figure 3.35.: Schematic illustration of the dependency injection principle.

In addition to the injection of such single valued parameters, the streams parameter
injection supports the use of array parameter types. In case, the associated set-
method for some XML attribute X requires an array as argument, the String value
of the XML attribute is interpreted as a comma-separated list of values. The XML
attribute string is split at its comma locations and an array is created, which con-
tains the objects created from the resulting substrings. These objects are created in
the same manner as for the single-argument methods, namely by using the String

argument constructor. This implies, that the generalization to array parameters is
only applicable to parameters, which in turn provide a String argument constructor.

Injection of (Remote) Service References

The parameter injection handles the elementary provision of parameters, where each
parameter value is newly instantiated based upon the value provided in the XML
attribute. The service injection handles the establishing of references in processors
to already existing elements. For example, a processor may reference a sink or a
service element by its id attribute. For this, the processor will need to provide a
set-method for the appropriate object/service type.

As the sink, queue and service elements are registered to the applications naming
service, the service injection will look up the referenced object using that naming
service, instead of creating a new one from the string value. Figure 3.36 illustrates
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the injection of a service element into a processor instance using the naming service
of the executing streams container.
As shown in Figure 3.36, the naming service serves as a central registry for various
objects. The naming service concept is by itself defined using abstract interfaces,
which allows for different implementations. The naming service is provided to the
application at its startup time. The standalone service elements are processed before
any of the processors, allowing for these services to be registered to the naming
registry that the application is connected to. Before the services are injected into the
processors their are referenced from, any processor that provides a service by itself is
registered as well. An example for this use-case is shown in the test-then-train setup
outlined in Section 3.4.2.

<application>

<service id="MetaDB" class="example.MetaDataDB" />

<process>

<example.AddMetaData database="MetaDB">

</process>

</application>

Naming Service

MetaDB ref:example.MetaDataDB@1234
1 Register Service object

2 Lookup

3 Proxy Reference

Proxy:MetaDB

4 Inject Reference through set-method

setDatabase(new Proxy(MetaDB));

Figure 3.36.: Scheme of the service injection, providing the linkage of existing objects
(services, queues) with their referencing processors.

The default naming service that is built into the streams-runtime engine uses the
RMI registry system, allowing to reference remote service endpoints as well. In case
of such remote object references, the step (3) Proxy Reference is required to ensure a
proper remote call initiation. In case of local services, i.e. referencing services within
an application, the object references can directly be injected.
Remote services, that are part of other running application instances, can be refer-
enced by the application’s id and the identifier of the service element. For example,
the MetaDB service in application baseServices will be referenced by the string:

//baseServices/MetaDB

The abstraction layer of the naming service concept provides implementations such
as multi-cast auto discovery to automatically locate applications running in the local
network.
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3.3.3. The streams Runtime Implementation

A fundamental aspect of the streams approach is the distinction of the definition of
an application by its data-flow from the actual execution of the application itself.
The streams-runtime provides a simple, non-distributed, execution environment for
running streams applications. It is a prototype implementation that has become a
mature execution engine deployed in several use-cases.
The runtime provides implementations for the dependency injection, parameter in-
jection and process setup. Each application is being started in its own, light-weight
instance of the execution engine. It features an RMI-based remote naming service,
which allows for remote service lookups and communication between applications
running within a local network.
The structure of the streams runtime is similar to the model known from Java Servlet
containers: It provides a nest for objects (streams, processes, processors) and han-
dles their instantiation based on the XML specification. Active components such
as processes are wrapped by worker-threads, that implement a pull-oriented mecha-
nism. Figure 3.37 shows the XML specification of an application and its instantiation
within a ProcessContainer, which is an instance of the streams-runtime providing the
setup and execution of the application elements.

<application>

<stream id="data" class="." url="." />

<process input="data" copies="3">

<stream.flow.Skip condition="..">

<example.MyProcessor t="42.0">

</process>

</application>

ProcessContainer

WorkerThread

Process Instance

Stream Instance

stream.flow.Skip

example.MyProcessor

XML Specification Application Instance in Process Container

input.read()

Figure 3.37.: The XML specification of an application and its instantiation within
the streams-runtime engine.

As shown in the Figure 3.37 above, each element of the application is instantiated
within the container. The process element is special as it provides a copies attribute,
that allows more than one instance of the process to be created. In given example,
this results in three worker threads to be spawned, each executing its own instance
of the process and the processor pipeline it defines. The different instances of the
worker threads will in parallel read from the single stream instance, each gaining a
(random) share of the input stream.
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3.3.4. Compiling to other Streaming Platforms

The execution of streams application with the streams-runtime is one possible way for
running an application. With its abstraction layer, streams provides the possibility
to map its generic components to other stream engines, as well. We presented a
number of state-of-the-art streaming engines in Chapter 2, most notably the Apache
Storm framework.

As we pointed out in that Chapter 2, the general notion of an application in any
of the presented frameworks is that of a data-flow graph. Such a graph is easily
defined by the streams XML scheme and its basic elements. These elements (stream,
process, processor) are defined in a generic way without any binding to a specific
target platform. The general approach of running streams applications therfore, is
the instantiation of sources and the processor pipelines and mapping these to the
appropriate elements of the target platform.

3.3.4.1. Running streams Applications on Apache Storm

In case of the Apache Storm platform, the active, executing components of a Storm
topology are the spouts, which represent data sources, and the bolts, which provide the
application of functionality. The Storm platform is slightly different to the streams-
runtime as it is based on the push principle, instead of using the pull philosophy for
its data-flows. Apart from this basic difference, the execution of streams applications
on a Storm cluster affects the following aspects:

• Wrapping of data items within tuples, which provide the basic unit of data
within Storm.

• Provisioning of spouts (data sources) for the defined stream elements of an
application.

• Wrapping of process elements in some form of bolts as the basic Storm processing
nodes in a topology.

The execution of a streams application on the Storm platform is performed by creat-
ing a Storm topology from the application’s XML specification. By using the XML
interpreter of streams all the required elements are being created and mapped to the
Storm topology by instantiating corresponding generic wrapper implementations.
Each such wrapper is provided with the full XML configuration and the identifier of
the component it is wrapping, according to the aspects listed above.

We will discuss each of these aspects individually in the following.

Mapping Data Items to Tuples

The basic unit of data that is passed over within a Storm topology are so-called
tuples. Tuples are pre-defined records, that do provide fields and values similar to
the hashmap based data items of streams. The fields of the tuples within such a

97



3. The streams Framework

topology need to be known at startup time of the topology, as some of the topology’s
elements may require that information for more efficient routing of the data. Storm
makes heavy use of so-called groupings, which describe the splitting of a stream of
data into several sub-streams.

As an example, the grouping of elements by userId will result in a stream of user-
related events to be split into k disjoint sub-streams, where the grouping ensures,
that all events for a specific value of userId will always be mapped to the same sub-
stream as shown in Figure 3.38. The default grouping method is a shuffled grouping,
which does a random split of the stream without taking care of this property based
coherence.

Figure 3.38.: The grouping of a stream based on some field, e.g. userId.

The wrapping of streams’ data items to tuples is performed by creating a new, empty
tuple and storing the data item into the field stream.Data. This tuple can then be
passed through the topology. As the data item itself only contains objects that
are inherently serializable by Java’s native serialization method, the wrapped tuple
can directly be transferred over network connections. In case, the topology uses a
grouping strategy that is different from the shuffled grouping, the fields relevant for
the grouping need to be extracted from the data item and additionally be placed in
the appropriate field.

Wrapping stream Elements in Spouts

A Spout is the basic data source element within a Storm topology. It is created by
the topology builder and can be spawned into multiple copies. Upon start, each
spout will emit a (possibly unbound) stream of tuples. This behavior follows the
push principle.

As the stream implementations within the streams API simply do provide the pars-
ing and reading of data from any input stream, these can easily be wrapped by a
generic spout implementation. This generic implementation is provided by the class
streams.storm.StreamSpout. The StreamSpout internally creates an instance of
the stream element it wraps and initializes it. This instantiation and initialization
is performed by the same parameter injection code that is provided in the streams-
runtime package, ensuring that the wrapped stream instance behaves exactly the
same as if it executes within the streams-runtime engine. Figure 3.39 illustrates the
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generic spout implementation. After the generic spout has been initialized and cre-
ated the stream instance it is wrapping, it will open the stream and loop over its
content, repeatingly calling the read() method, which produces the next data item.
The items read from the stream will be wrapped within a tuple and emitted to the
output channel, to which any consuming bolt may be subscribed.

StreamSpout

Stream Instance

read():Data

wrap(Data)

emit(tuple)

loop()

Figure 3.39.: Generic implementation of a spout wrapping a stream instance.

Wrapping process Elements in Bolts

The wrapping of processes and their inner processor pipeline is handled in the same
way as for the wrapping of stream elements: The pipeline of processors is instantiated
within a generic ProcessBolt class, which executes the inner processors for all tuples
that it receives. The tuples either contain a wrapped data item, which needs to be
unwrapped, or can directly be used by copying their fields into an empty data item
that is pushed down the processor pipeline. The resulting data items then need to
be wrapped into a tuple and can then be emitted to any consuming bolt. Figure 3.40
shows the concept of the wrapping ProcessBolt that applies the inner processor
pipeline to incoming tuples.

ProcessBolt

unwrap(tuple)

processor

processor

processor

process(Data)

Sink Dispatcher

wrap(Data)

write(Data)

execute(tuple) emit(tuple)

Figure 3.40.: The concept of wrapping processor pipeline (i.e. process elements) with
a generic Bolt implementation.

To transparently provide the queue concept of the streams environment, each instanti-
ated ProcessBolt additionally contains a queue dispatcher, that maps the referenced
queues of the XML specifiction to named streams within the Storm topology. The
injection of queue-wrappers is performed directly after the parameter injection of all
the processors of the pipeline.
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In a way, similar to the transparent provisioning of queues, all the instantiated pro-
cess pipelines within the ProcessBolts are provided with an implementation of the
ProcessContext interface. As outlined in Section 3.3.2.3, each process is initialized
with a context reference that allows for storing state information. In case of the
ProcessBolt, the injected process context can be conntected to a high availability
storage. To support the check-pointing feature provided by Storm in an abstract
manner, the context can be used to send transaction like commits. This approach
to state handling and fault-tolerance is similar to the ideas found in the frameworks
S4.io by Yahoo! and MillWheel by Google. We note here, that this type of state
persistency is not yet implemented in the execution of streams applications as Storm
topologies.

Integrating Existing Spout/Bolt Implementations

As the streams framework also aims at the integration of existing components, we
extended the XML specification of streams applications to directly allow for referenc-
ing spouts and bolts that may already exist. For the integration, the XML definitions
are extended by

<storm:spout/> and <storm:bolt/>

tags, which require a class attribute. By this class attribute, the streams’ topol-
ogy builder can determine the implementing class for the appropriate element. In
addition, these elements require a id attribute to define the name of the component
and allow for linking the components, i.e. connecting a defined bolt to a specific
spout. If the spout/bolt classes follow the JavaBeans conventions and do provide
set-methods for their parameter attributes, then these attributes are automatically
populated from values specified in XML attributes of the corresponding elements.
This is performed in the same way as the parameter injection is handled for regular
streams applications (see Section 3.3.2.4).
The example in Figure 3.41 shows the definition of a spout with id user:data, that
emits a stream of tuples holding user events. This spout is connected to a bolt with
id counts, which processes the incoming events and emits a new stream of counts,
e.g. event counts per user. The resulting stream of counts is consumed by a streams
process, which executes two processors for each of the incoming count events.

<application>

<storm:spout id="user:data" class="example.UserEventSpout" />

<storm:bolt id="counts" input="user:data" class="example.UserCountBolt" />

<process input="counts">

<stream.flow.Skip condition="..">

<example.MyProcessor t="42.0">

</process>

</application>

Figure 3.41.: Definition of spouts and bolts within a streams application.
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3.3.4.2. Running streams Applications on Apache Samza

The general outline of an application for the Apache Samza system is slightly different
than the topology concept of Storm: Where the user defines a complete application
graph within one bootstrap method in Storm, the same application will need to be
broken down into separate jobs for Apache Samza. Recalling the structure of Samza,
as outlined in Section 2.4.2, it is based around the Apache Kafka publish-subscriber
system. So instead of building a complete data-flow graph, the user will define Samza
Jobs and deploy each of them individually to the running cluster.

Mapping streams Processes to Samza Jobs

In order to run a streams application on the Apache Samza platform, the stream and
process elements need to be mapped to jobs in the Samza ecosystem. Due to the
light-weight API, all stream implementations as well as the process execution can eas-
ily be wrapped into such jobs, similar to the wrapping of the corresponding elements
in the aforementioned Storm integration. Queue elements can directly be mapped to
the topics of a Kafka system. The API for implementing Samza jobs is very similar
to the concept of the process in streams. Figure 3.42 shows a skeleton of a generic
Samza job. The instantiation of the inner processor objects and their parameter
injection can easily be employed from the streams embedded runtime environment
(as is used for the Storm integration).

public class SamzaProcessImpl implements StreamTask, InitableTask {

public void init( Config config, TaskContext context) {

// initialize inner processors + parameters

}

public void process(IncomingMessageEnvelope message,

MessageCollector collector,

TaskCoordinator coordinator)

{

// (1) unrwap data item from message

// (2) apply list of processors / streaming functions

// (3) send wrapped data item to collector

}

}

Figure 3.42.: A skeleton for a generic Samza job wrapper.

Handling Kafka Messages

In addition to the implementation of a generic process wrapper, Kafka requires a
custom serialization of messages. This needs to be set up manually, but as all values
within a data item implement the Serializable interface, the default Java serializer
can directly be used to implement a custom serialization scheme.

101



3. The streams Framework

Depending on the performance requirements, a fine-tuned serializer may improve the
messaging throughput for specific use-cases, such as the transport of large raw-data
messages, produced by the FACT telescope in Chapter 5.

Creating Samza Job Configurations

With a generic stream and process implementation, the final step for a mapping of
streams applications to Samza is the creation of the Samza Job configurations. In
Samza, each job is defined in a single Java properties file, as shown in Figure 3.43.
This example is derived from the Apache Samza project page and illustrates the
definition of a task MyTaskClass, which subscribes to the PageViewEvent topic of
the Kafka system.

# This is the class above, which Samza will instantiate when the job is run

task.class=com.example.samza.MyTaskClass

# Define a system called "kafka" (you can give it any name, and you can define

# multiple systems if you want to process messages from different sources)

systems.kafka.samza.factory=org.apache.samza.system.kafka.KafkaSystemFactory

# The job consumes a topic called "PageViewEvent" from the "kafka" system

task.inputs=kafka.PageViewEvent

Figure 3.43.: Example for a Samza Job configuration.

These configurations can easily be generated from the XML specification of a streams
application. Though the porting of streams applications to their execution on the
Samza platform has not yet been implemented, the embeddable nature of the streams
concepts, make such a port easily possible.
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3.4. Extensions of the streams Framework

In the previous sections we outlined how to create data flow graphs for data stream
processing by means of the XML elements that are provided by the streams frame-
work. We also introduced the processors as the atomic functional units that provide
the work required to do the data processing. Following the modelling of streaming
applications we discussed the execution or deployment of such applications on differ-
ent platforms. As a first extension to the streams platform, we investigate the use of
alternative ways to add custom functions to an application. By exploiting prominent
scripting languages like JavaScript or Ruby, we integrated the execution of processors
written in those languages directly into the definition of streaming applications using
streams. The use of scripting languages will be discussed in Section 3.4.1. Besides
the modelling of applications for different platforms, the streams framework features
the easy integration of external libraries for creating complex data flows by directly
referencing elements from third-party libraries. As an example we will outline the
integration of the MOA library for online learning in Section 3.4.2.

3.4.1. Using Scripting Languages in streams

Scripting languages provide a convenient way to integrate ad-hoc functionality into
stream processes. Based on the Java Scripting Engine that is provided within the
Java virtual machine, the streams library includes support for several scripting lan-
guages, most notably the JavaScript language.
Additional scripting languages are being supported by the Scripting Engine interfaces
of the Java virtual machine. This requires the corresponding Java implementations
(Java archives) to be available on the classpath when starting the streams runtime.
Currently the following scripting languages are supported:

• JavaScript (built into the Java VM)

• JRuby (requires jruby-library in classpath).

Further support for integrating additional languages like Python is planned.

3.4.1.1. Using JavaScript for Processing

JavaScript (or ECMAScript) has transformed itself from a pure web-client language
to a more and more generic utility language. Projects like node.js provide fast and
powerful execution engines for ECMAScript that are geared for running backend
server tasks. The JavaScript language has long been part of the Java API, which
provides a pure Java-based ECMAScript interpreter using its ScriptingEngine inter-
face. The popularity and simplicity of the JavaScript language offers a nice tool for
rapid-prototyping processors using inline-code directly within the XML specification
of a streams application.
The integration of JavaScript into streams is provided by a simple JavaScript pro-
cessor, that can be used to run JavaScript functions on data items. The script needs
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to implement the same interfaces as the Java version of a processor. Figure 3.44
illustrates a simple example for using inline JavaScript code to define a processor.

<application>

...

<process input="...">

<!-- Execute a process(data) function defined as inline

JavaScript function -->

<JavaScript>

function process(item){

var value = item.get( "x1" );

if ( value != null ) {

item.put( "x1", value * 3.14159);

}

return item;

}

</JavaScript>

</process>

</application>

Figure 3.44.: The Processor interfaces implemented by inline JavaScript inside of a
JavaScript element.

Within the JavaScript environment, the data items are accessible as the item param-
eter to the defined process function. The function is expected to either return the
resulting item of its computation or null. The latter case allows for filtering items
and stops the further application of subsequent streaming functions (see 3.3.2.3).

Performance of Scripting

The scripting feature within streams is mapped to the Java scripting API. This API
provides a pluggable interface for various scripting engines that can be used to execute
code within any of these engines. An ECMA-script (or JavaScript) interpreter has
been integrated as a core element of the Java API. The functions implemented in
the scripting language are pre-parsed and pre-compiled at initialization time. Most
scripting engines do provide an intermediate format (such as byte code) that is more
performant than a fully interpreted execution.

For a performance comparison, we will look at a simple streaming application, which
uses a simple synthetic Gaussian generator and applies a Multiply processor that
multiplies each element of the stream with some constant number. Figure 3.45 illus-
trates the setup used for evaluating the performance of inline JavaScript.

S Multiply DataRate

Figure 3.45.: Setup to evaluate the JavaScript performance.
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The DataRate processor simply counts the number of items processed per second.
We implemented the Multiply processor in native Java code as well as in JavaScript.
Figure 3.46 shows the data rate (items per second) obtained for multiplying a single
value in a sequence of 10 million items with a constant. The test was performed on
an Intel Core i7 (3.4 GHz) running Linux and using the OpenJDK Java Runtime
in version 1.7.0-65. The data rate computed as the average of processing 10 million
data items divided by the running time (wall clock) in seconds.

5 · 105 106

1220225.033

1153135.378

33906.316

w/o Multiply

using Java

using JavaScript

Figure 3.46.: Throughput performance of the same function (multiply) implemented
using native Java and JavaScript. The base line without the multiply
function reaches about 1.2 million items per second.

As expected, the script implementation is clearly outperformed by the compiled
Java code. The performance of the ECMA interpreter in the Java runtimes does
not compare well to the highly tuned JavaScript engines such as the one built into
Google’s Chrome browser. The feature of inline scripting code addresses the rapid
prototyping requirements for application design as it allows simple filters to quickly
be embedded into the XML using inline functions.

3.4.2. Integration of the MOA Library

Gaining contemporary insights from streaming data is a significant requirement when
building streaming applications. Often, such applications are geared towards the
identification of outlier points within the streaming data or are used to train classifiers
from realtime data for in-time predictions. The MOA library [24] provides a toolbox
of various online classifiers implemented in Java. With the streams-moa package,
these classifiers can easily be integrated into streaming applications defined using
the streams framework. The integration of MOA is based on three aspects:

(1) A representation of data items as MOA instances,

(2) incorporation of MOA learners as streams processors,

(3) realization of prediction services to facilitate anytime behavior of the classifiers.

The representation of data items for MOA is based on a more fundamental mapping
of streams items to WEKA instances, as this is the basic data structure that MOA
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shares with WEKA. The incorporation of MOA learners is an example of extending
the dependency injection mechanism of streams by instantiating objects from exter-
nal libraries and wrapping them in streams processors. This incorporation is best
performed with an intuitiv mapping in mind, to help users to easily understand the
concept behind.

3.4.2.1. Learning from Data Items

The MOA library is based on the interfaces and API of WEKA and uses the WEKA
data structures for representing instances or examples a classifier model can be trained
with. The corresponding Java class Instance defines a fixed set of attributes (fea-
tures) and their appropriate value for a single record. Figure 3.47 shows the concept
of a WEKA instance representing a record in some data table. As opposed to WEKA,
the MOA libraries views this table as an unbounded stream of instances. As MOA
uses the same Instance classes for representing tuples, this implies to define a generic
wrapping scheme, that is applicable to both libraries.

x1 x2 x3 x4 x5 x6 y

0.91 0.55 0.19 0.36 0.60 0.13

0.90 0.71 0.34 0.70 0.66 0.15

0.37 0.3 0.48 0.14 0.48 0.59

0.21 0.28 0.31 0.19 0.31 0.23

−1

+1

+1

−1

Instance

Key Value

x1 0.21

x2 0.28

x3 0.31

x4 0.19

x5 0.31

x6 0.23

@label 1

Figure 3.47.: A WEKA instance with attributes x1, . . . , x6 and a given label y on the
left-hand side, and the corresponding data item representation on the
right-hand side.

To allow for a seamless mapping with as little configuration overhead as possible,
we decided to apply a convention based mapping, that is based on the following
requirements:

• Any data type contained in an item that is suitable for machine learning with
MOA and WEKA should be automatically provided as feature/attribute to
MOA/WEKA.

• Special attributes within the streams item, that are not intended for being used
as regular features by MOA/WEKA need to be identified.

• It should be possible to overrule any of the conventions by a more specific
configuration, if one is desired and provided by the user.
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Convention-Based Data Mapping

We combine the requirements mentioned above in a set of convention rules, that
affect the data mapping itself and the required additional parameterization of the
learner implementations as processors within streams. The following rules are used
as conventions:

1. The mapping strategy is based on the first data item, that is processed by
a wrapped MOA/WEKA learner. If a subsequent item provides additional
attributes that qualify for regular features, these are simply ignored.

2. Any attribute in the data item, which has a key starting with the @ character
is regarded as an annotation and treated as a special attribute.

3. Special attributes are not used as regular features for learning.

4. The class/label attribute is expected to be provided in attribute @label.

5. Any non-special attributes of the data item are regarded as regular features, if
their data type matches any of the following

• String type attributes are mapped to String features.

• Integer, Long, Short, Float and Double type attributes are mapped to
regular real-valued features.

• Boolean type attributes are mapped to real-valued features with the map-
ping true = 1.0 and false = 0.0.

The handling of special attributes marked with a leading @ character has long been
a basic assumption within the streams framework. All core processor functions, that
are provided within the standard streams library, use the @ for marking attributes as
annotations. As an example, the CreateID processor adds a unique identifier to each
processed item. By default, this identifier is stored with key @id. As an identifier is
not a feature to train a classifier upon, it will correctly be ignored by the wrapping
following the rules from above.

3.4.2.2. Wrapping MOA Classifiers

The mapping scheme – as implied by the conventions above – allows for provid-
ing a stream of instances to a MOA classifier implementation. The MOA classi-
fiers are integrated into streams by training the model on incoming data within the
process(Data) method call. Thus, for learning from a stream of labeled data, the
MOA classifier can simply be put into the processing queue of a process. The follow-
ing Figure 3.48 shows the integration of a MOA Naive Bayes classifier into a streams
process. The configuration in this figure uses the features parameter to select all
regular attributes as features, excluding the humidity attribute. In addition, the at-
tribute with key class will be used as label, instead of the default @label attribute.
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Any item, that does not provide a class label in the attribute class is simply skipped
by the learner.
The wrapping of MOA classifiers is performed by instantiating a generic processor
implementation which handles the following steps:

1. the creation of the MOA classifier object

2. the injection of XML attributes to options of the classifier object

3. the wrapping of data items to instances for training the classifier.

The parameter injection based on the XML attributes allows for configuring all op-
tions of the classifier using the same XML syntax as known from the other processors,
including variable expansion, etc. The features and the label parameters do pro-
vide the fine-tuning of the data-to-instance wrapping.

<application>

<stream id="data" class="stream.io.CSVStream"

url="${dataDirectory}/test-data.csv.gz" />

<process input="data">

<!-- continuously train a Naive Bayes classifier -->

<moa.classifiers.bayes.NaiveBayes id="myClassifier"

features="*,!humidity" label="class" />

</process>

</application>

Figure 3.48.: A MOA classifier, being trained on a stream.

3.4.2.3. Providing Classification as a Service

With the training of the classifier being provided by the process(Data) method of
the processor that is automatically being wrapped for the classifier, the functionality
of applying the current model to some data is missing. The prediction based on
the current model is exposed as a PredictionService that is implemented by the
wrapping processor. This service provides a simple

Serializable predict(Data item)

method, that returns the result of the current classifier, applied to the specified data
item. With the realization as a service, this allows for other processors to reference
the classifier and use its prediction capabilities. For this, the classifier needs to be
provided with an id attribute as shown in Figure 3.48 to allow for being referenced by
other components. This service oriented integration of the classifiers can be used in
a variety of different setups, including a test-then-train scenario as shown in Figure
3.49. The process in this figure consists of three processors: the first applies the
current model of the classifier as is provided by the PredictionService functionality of

108



3.4. Extensions of the streams Framework

the classifier (last processor). The output of this first processor is a data item that
includes the key @prediction(@label).
The Compute Error processors handles data items that contain a @label and a
@prediction(@label) attribute and produces a new @predictionError attribute
that contains a 1.0 of the prediction mismatches the label and 0.0 otherwise. The
streams core framework contains different implementations of Compute Error proces-
sors, such as PredictionError or RegressionError, each of which covers a specific
way for assessing the error.
The data items are further handed over to the last processor in the chain: the Naive
Bayes classifier. This will incorporate the data item into its current model. As
the attributes, that have been added by the Apply Prediction and Compute Error
processors all use keys starting with an @ character, these qualify as special attributes
and will not be regarded as regular features by the classifiers. Thus, the evaluation
does not add any confusing information to the learner.

PredictionService

Apply Prediction

Compute Error

Naive Bayes

Figure 3.49.: Schematic layout of a test-then-train setup within a single process.

This integration of MOA into streams is provided by the streams-moa package.
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3.5. Summary

In this chapter we introduced the streams framework in detail: the design decisions
and the abstraction layer that have been considered, as well as the platform inde-
pendence and the easy extensibility.

Focusing on the modelling of streaming applications, the streams framework provides
an intuitiv XML specification scheme, that aims at using only a small set of elements
to cover the complete range of application aspects that need to be defined. For a pre-
defined set of processor elements, this allows for domain experts to define data-flows
without the need of low-level programming. We set the (E.3) Abstract Modelling
as one of our goals for the design of this platform. As we will see in Part II of the
thesis, this provides the basis for using streams in a wide range of applications, as
claimed by the (E.4) Extensibility criterion.
Closely related to the abstract modelling is the aspect of (E.2) Code Re-Use. As the
modelling layer focuses on processors or streaming functions as its abstract building
blocks, the data abstraction provided by the data items allows for a flexible orches-
tration of existing components and re-use of functions. The flat stack of design levels,
as described in Section 3.1, features the implementation of processors with minimum
external references, which makes it possible to easily embed processors or stream
classes in the context of custom libraries, that do not rely on the streams-runtime
engine.

With the abstract modelling of streams, with respect to the XML specifications,
the framework targets the platform independence, which we defined as one of the
main criteria (E.1) Platform Independence in the introduction. Starting from the
generic notion of streaming applications as data-flow graphs, the streams abstraction
allows for modelling applications that can likewise be execution on the streams-
runtime (Section 3.3.3) as well as the Apache Storm platform (Section 3.3.4). With
the streams-runtime engine, we provide a non-distributed reference implementation of
an execution engine for streams. The streams-storm package provides a prototype for
wrapping applications defined in the abstract XML to topologies that are executing
on Apache Storm. We further discussed the transition to other execution engines
with the example of Apache Samza.
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Chapter 4

Simplicity is the ultimate sophistication.

– Leonardo da Vinci

User Guided Process Design

Solving (scientific) analysis tasks in an application domain by programming often
boils down to finding a program representation of the analysists mental representa-
tions of her solution. Therefore, programming or application design has also been
described as finding a mapping between the problem domain and the program do-
main. It is obvious that these two domains differ by a smaller or larger extent – based
on the application domain. This is even more true for different levels of experience
of users: domain experts are typically focused on the domain specific task at hand
and often lack experience in programming, whereas programmers are highly skilled
on the implementation part but not seldom miss appropriate capabilities for solving
the domain problem.

The streams framework introduced in the previous chapter tackles this flaw by pro-
viding a general approach for the orchestration of components into streaming ap-
plications. Until now, we defined applications by some specification language that
resembles the flow of data and any processing elements to transform messages or ex-
tract features as required by the domain experts. The different platforms do require
their users to use a specific platform API for creating an application graph. This
poses a big hurdle for end-users as the technical details and proprietary APIs should
not be not part of the solution of their task at hand. With the goal of deliberating
end-users from the technical burdens when designing applications for their data pro-
cessing tasks, we started raising the modelling level to a more abstract layer. The
streams framework approaches this step by providing an intermediate programming
API as well as a declarative description of applications by means of XML. These
XML descriptions are still a rather technical concept and representation compared
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to the intuitive act of designing a graph that resembles the flow of data.
Pushing the user towards solely focusing on the design of the application’s data flow
is the general guideline that we adapted in this work. By reusing a natural visual
representation we aim at providing a level of application modelling that fosters the
design of applications with a direct focus on the user’s task at hand. The leading
questions that motivate this part of the thesis are:

• What are appropriate visualizations for data flows?

• How does application modelling translate to modern UI devices?

• Can we hide complexity to ease application creation to domain expert?

The research direction that covers this kind of questions governs the field of visual
programming languages and approaches. Numerous approaches have been proposed
for visualizing and graphically editing programs or workflows at different levels of
abstractions, e.g. by using icons for building blocks or control flow elements such
as loops. As we will briefly discuss in Section 4.1.2 there is no generic best way to
design a visual interface that reflects the different requirements of all users.
Given different visualizations and their properties, the aforementioned question (2)
meets todays usability constraints best: Given modern touch devices, we seek for an
appropriate way of users designing streaming applications with the limited display
and interaction possibilities of modern hardware. Therefore, the goal of this part of
the thesis is to explore efficient ways to use gesture interactions of the user with touch-
enabled devices (e.g. tablet computers) in order to derive streaming applications
from sketches like the one shown in Figure 4.1. Based on the existing works in
gesture interaction for UI design, we integrate a machine learning based gesture
detection, that allows for customized user-gestures to be trained, providing a flexible
user interface on modern touch devices. For this we build a prototype of a sketch-
based editor that uses interactive training of a machine learning model to detect user
gestures and derive the appropriate editor actions.
This chapter is structured as follows: We provide a more in-depth introduction to
the field of visual programming with a brief historical review and some related works

Figure 4.1.: A sample sketch of a data flow for a streaming application.
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in that area. For a motivation we outline some commercially successful real-world
examples that show the importance and acceptance of visual programming.

In light of the streams abstraction outlined in Chapter 3, we derive a symbolic lan-
guage for data flows that connects the representation of an application by its data
flow with a simple graphical notation. Following that, we describe our sketching
approach to derive streaming applications from interactive drawings from end-users.
In Section 4.2.3 we investigate the use of machine learning methods to map interac-
tive user gestures to the steps for designing or orchestrating a streaming application.
Based on this evaluation we present a prototype interactive designer application that
allows for the creation of data flows for RapidMiner or streams applications by solely
relying on gesture interaction.

4.1. Visual Programming

A graphical representation and modelling of applications is not new and has been
proposed before. Many tools exist that provide their own way of specifying analysis
processes with user interactions. Under the term visual programming (also known
as graphical programming) various tools have been created with a focus of differ-
ent groups of end-users – ranging from educational software like Scratch [122] to
teach programming at the middle school level, over the Lego NXT-G system [144] to
systems for more complex tasks such as RapidMiner [110] or LabView [93].

The visual programming languages can roughly be divided into two categories:

(a) Languages that focus on low-level algorithm design,

(b) Languages for modelling the data flow of an application.

Languages of the first category closely follow the imperative nature of programming
languages by providing symbolic means or icons that allow users to implement al-
gorithms by means of atomic building blocks. Languages and environments that
aim for this closely algorithmic view are LabView or the NXT-G system for LEGO
Mindstorm robots. The Scratch [122] programming language is another well-known
candidate to facilitate the teaching of programming in education. Scratch provides
a colorful, puzzle-like environment that allows for beginners to create programs by
connecting tiles to a puzzle as shown in Figure 4.2.

Figure 4.2.: Low level building blocks of the Scratch visual programming tool.
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The other block of visual programming languages focuses on the modelling of data
flows, typically in the form of data flow graphs. As this is the level of modelling
that corresponds to streaming applications, we will only review some of the data flow
oriented visual programming approaches.

Visual Programming for Data Flows

With the abstract description of streaming applications by means of data flowing
between components, the graph of connected components becomes a natural rep-
resentation for such programs/applications. In Chapter 2 we reviewed a collection
of streaming engines that build upon such graphs and introduced our own abstract
representation of streaming graphs for the streams framework in Chapter 3.

In the data flow graphs of the flow-based programming paradigm, each node of
the graph corresponds to some data manipulation or operation and the nodes are
connected by edges that represent the data flow. Visual programming tools based
on the data flow have been proposed for various domains – from music synthesizers
[141, 85] and image manipulation and 3-D design [124, 90] to general data processing
[140] and data mining [110, 22]. Figure 4.3 shows the data flow visualization of
the RapidMiner data mining tool. Eric Hosick provides a large collection of visual
programming tools for all application domains [86].

Figure 4.3.: A workflow graph of the RapidMiner tool, connecting different nodes (op-
erators). Each operator is executed one after the other and the resulting
output is fed as input to the next node.

Most of the mentioned tools follow the typical desktop style software, providing a
toolbar and menu for user interaction and a central design area. The transfer of such
desktop style software systems to modern touch-based devices requires a complete
new concept for dealing with workflows for the modelling as these devices to not
feature fine-grained pointing with a mouse, may be limited in screen resolution and
lack support for multiple mouse buttons (e.g. right click) and multi-way switching
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as provided with connected keybords (using the shift key or other meta keys).
For touch screen devices, the use of gestures has recently gained interest in various
works and sets the scene for new ways of process modelling by direct user interactions
[66, 145, 132]. In this context, tools like Audulus [85] are of special interest for our
work, because they are specifically designed for touch-based devices.

4.1.1. Gesture-based Process Design

The majority of process modelling and software modelling systems focuses on tra-
ditional point-and-click environments of desktop systems. However, the design of
process models is still a very creative ad-hoc tasks, resulting in many of todays de-
signs being first created in a free-hand sketch manner. As an indicator, large and
upright whiteboards still remain an important fitment in modern offices and have in
the recent past been advanced to electronic e-whiteboards or smart boards.
The transition to electronic sketching surfaces in smart boards or other touch-based
devices such as tablet computers, has fostered several studies on computer interaction
with these devices for process and software modelling. Especially in the area of UML
design, there exists several studies that explore the use of touch or pen-based user
gestures for freehand sketching of UML diagrams. In [48] Chen et al. proposed an
e-whiteboard application for sketch-based creation of UML diagrams using Rubine’s
algorithm [126] for recognition of gestures. A similar approach also focusing on UML
design was introduced in the Tool Knight by Damm et al. in [55]. Similar to [48],
Knight uses Rubine’s algorithm for gesture detection. For a more generic use of
sketching-based modelling, Grundy et al. developed a meta-tool [76] that hooks into
the Eclipse Modeling Framework (EMF) system to provide gesture interaction to a
wider range of editors which use EMF as their basic editing API.

Gestures for User Interaction

The gestures of modern tablet devices refer to a temporal movement of one or more
pointers (fingers) along a surface. This includes “stationary” gestures like tapping
on one location as well as continuous moving along some path or the mere swiping
with one or more fingers.
A general typecast of gestures can be made into two categories [146]:

• physical gestures; and

• symbolic gestures.

Physical gestures refer to any actions that modify some object on the screen. This
can for example be the movement of some node or the establishing of a link between
nodes in a diagram. In contrast, the symbolic gestures are those, that trigger some
editing action based on the symbolic meaning of the gesture. As an example, the
drawing of a box may create some new rectangle node in the diagram, whereas the
drawing of some letter results in a more specialized node to be added at the location
of the gesture.

115



4. User Guided Process Design

As the aforementioned tools do provide preliminary support for gesture based inter-
action, this may raise the question on what kind of gestures or type of gestures may
best be suited for end-users. In [66] Frisch et al. presented a user-study on gesture-
based diagram editing using interactive displays. Focusing on the use of gestures
in process modeling, Kolb et al. [95] conducted a user-study for modifying process
models using a proof-of-concept application in a tablet device.

4.1.2. Cognitive Dimensions of Visual Programming

With the plethora of different tools for various domains and levels of granularity, a
thorough evaluation of visual programming approaches is non-trivial. The percep-
tion of a graphical visualization of a program (or application) may be very different
within a group of users, leading to different mental models of the program. In con-
trast, the mental model that is derived from a concise textual representation of the
same program may require more expertise in interpretation (knowledge of language
elements) but usually results in the same conception.

Though this might be true at the level of a low-level programming language, higher-
level languages like SQL may produce examples where a visualization is helpful to
associate a common mental model to a query statement as shown in Figure 4.4.
The evaluation and assessment of visual programming approaches is in particular
a subjective task that is influenced by the experience of users, their focus and the
complexity of the context in which they are deploying the visual tools at hand.

SELECT A.*,B.*

FROM A INNER JOIN

B ON B.id = A.id
A B

Figure 4.4.: Visual representation of an SQL join as overlapping sets.

In [74] Green and Petre developed a framework of cognitive dimensions for analysing
visual programming environments on a psychological basis. Two fundamental aspects
are outlined in [74] which are based on their previous works in [72, 73] and empirical
studies by Sinha and Vessey [135, 142]:

(1) Every notation highlights some kinds of information at the expense of obscuring
other kinds.

(2) When seeking information, there must be a cognitive fit between the mental
representation and the external representaion.

The SQL example of Figure 4.4 again is a good example for these two fundamental
aspects: The visual set representation highlights the fact of the set of elements from
both sets A and B that meet some condition, but does not depict the condition itself,
therefore obscuring the details of the matching id column in the database tables. The
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cognitive fit of the mental representation is certainly provided by the fact that set
theory and their applicable visualization as (overlapping) rings is a widely accepted
concept that is even taught early in school.

Green and Petre further respect the different skill sets of users as well as the intent
of the visual programming language in their congnitive dimensions approach. The
context of a visual programming environment as outlined in Figure 4.5 poses different
challenges and core areas on the design of a visual environment.

Novice

Expert

End User

CS Professional

Figure 4.5.: The context in which visual programming environments need to persist.

In light of these considerations, [74] proposes as list of different aspects for the design
of a visual programming language or tool, which forms the framework of the cognitive
dimensions. Some of these aspects are inherently conflicting and need to be balanced
with regard to the exact context of the visual environment/language. The following
list is an excerpt of some properties of visual programming environments that go
back to Daniel Hils [82], pioneering the congnitive dimensions proposed by Green
and Petre:

D.1 Pure Data Flow Model
Does the environment focus on pure data flow only? Is control flow mixed into
the data flow or not supported at all?

D.2 Box Line Representations
Most of the environments use box line representation for defining components
and their interconnection and dependency. Further functionality may be e.g.
highlighted by colors. Secondary notation (e.g. of additional node properties)
is an important feature useful for many users. Is secondary notation provided
along pure box line representations?

D.3 Iteration
Does the environment/language support iteration? How are loops visualized?

D.4 Procedural Abstraction
Can functionality be combined into new nodes as custom building blocks?

D.5 Sequential Execution Construct
When designing in a visual environment, it may not always be obvious, in which
order the objects are executing. This may need to be explicitly specified or be
inherently deductable from the visualization.
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D.6 Type checking
Does the environment/language require strict typing of elements? Can errors
be checked for during design time? What limitations does that imply?

D.7 Use of higher-order functions
Do nodes in the data flow graph process data only or is the passing of functions
to nodes allowed?

D.8 Execution Modes
Execution of data flows can either be data driven or demand driven. In the
setting of modern event-based systems, the data driven execution is prevalent.

The exact assessment of these aspects of visual language design is not an accurate
process. The authors propose a list of examples on how to apply any of those dimen-
sions to a given visual programming language.

Sketching Interfaces in the Context of Cognitive Dimensions

We outlined the cognitive dimensions framework here to define a context of developing
user interfaces from a more psychological perspective. The aspects derived by Green
and Petre provide a guideline for investigating the sketching of streaming applications
as we will adhere in the following sections. More importantly, their works show
the limits that need to be chosen explicitly when providing a visual programming
environment. This becomes even more evident when designing a visual environment
for an already existing framework or language. In this case, a few of the dimensions
are already fixated by the underlying streams system, which we aim for as the major
target platform for sketching. Some of these aspects include:

• The focus of streams is a modelling of the data flow. Control flow can be
integrated by specific processors, but especially the flat layout, which we will
describe in Section 4.3.2 is aiming at (almost) pure data-flow (cf. D.1),

• streams aims at a non-typed (or only weakly typed) environment that does not
provide for online type-checking (cf. D.6),

• The execution modes of streams are geared towards different runtime environ-
ments – especially the execution in distributed environments may not be fully
visualizable by the sketch-based approach (cf. D.8).

We will provide a more elaborate discussion for our sketch-based prototyping envi-
ronment in the summary in Section 4.4.
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4.2. A Sketch Approach to the Design of Applications

In the previous section we have provided a high-level overview of the landscape of
visual programming with an emphasis on the data flow-based process modelling.
Most of the existing approaches focus on desktop oriented traditional menu-based
tools that do not match the modern touch screen devices. The use of gestures to
bring visual process design to these touch interfaces has fostered some initial research,
which we discussed in 4.1.1. Based on this research, we developed a framework for
deriving sketch-based editors for process modelling using gestures. The goal is to
transform gesture based sketches as shown on the left-hand side of Figure 4.6 into
a graph representation that matches existing tools, such as RapidMiner [110] or the
streams framework.

Training Data Select Attributes Train Model

Validation

Test Data Select Attributes

Figure 4.6.: A sketch of a simple streaming application and its corresponding graph
visualization which is backed by the XML definition.

Outline of Sketch-Based Editing

In this work we focus on sketch-based editing with a two-dimensional interactive
surface. The surface can be a tablet computer, a smart board or a smart table. The
minimum requirements are sensors to track movements of a pointer, which can be
a finger or a stylus. The basic components for providing gesture-based sketching of
processes are:

• A set of pre-defined gestures that define the semantics of gestures to the user,

• a recorder of the user interaction with the device,

• some feature extraction process that maps interactions to some space suitable
for detection;

• and a gesture classifier, which detects a set of pre-defined (or pre-trained)
gestures from these interactions represented by the extracted features.

We will further extend these works by combining the use of gestures with a machine-
learning approach that features

• symbolic gestures for data flow design, and
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• a user-based re-trainable classifer for gestures.

In this section, we introduce the sketching of streaming applications by providing a
symbolic “language” for describing an application’s data flow using a simple stylus
and a two dimensional interaction surface. The analogon is that of a design draftsman
composing a technical object (e.g. a building or a machine), which in this case is
the outline of a streaming application. In addition, we introduce some gestures for
manipulating elements. With respect to the distinction of gesture types mentioned
in Section 4.1.1 this leads to an environment supporting symbolic as well as physical
gestures.

4.2.1. Symbolification of Data Flow Patterns

Following a purely flow-based approach, in this work we focus on the modelling of the
data flow between nodes. The set of symbols we define a priori provides a base set
of elements to create nodes and a data flow between these. In light of the cognitive
dimensions mentioned earlier, the symbols only constitute the data flow and do not
affect any of the dimensions such as type checking or iteration. We focus on the box
and line representation and leave all the other dimensions to further adaptions of the
sketch concept in two different prototype tools that we will show in Section 4.3.

Starting with the data flow graph, which we earlier showed in Chapter 3, we derive
some of the basic symbols required to sketch streaming applications. Figure 4.7
shows a simple example application that users need to be able to sketch. Again,
the green circles represent sources or queues and the blue boxes associate active
processes, which read data from their connected sources and possibly write (new)
data to queues.

S P

Figure 4.7.: A minimalistic streaming application with a few nodes of different types.

In the context of creating processes and establishing a data flow between these, we
can get along with a very limited set of symbols – a symbol for each of the entities
the user needs to create: sources, sinks/queues and processes. In addition we need
a gesture to connect two of these elements, for which we use a simple (straight)
line. The following symbols can easily be derived from the high-level data flow figure
above:
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Source Process Queue

Figure 4.8.: Three basic symbols to match parts of a streaming application.

Sketching Parallelized Data Flows

An important aspect for designing modern streaming applications is their paral-
lelization. Most of the streaming environments we introduced in Chapter 2 aim at
a parallel and distributed execution of appropriate data flow graphs. For popular
engines like Storm or Samza, the degree of parallelization is inherently defined by
parallelizing the data flow. We showed an example of a parallelized variant of the
counting of twitter tags earlier. The scheme in Figure 4.9 recalls this parallel graph:

T

C

C

C

S

∑

Figure 4.9.: A data flow graph including parallelized counters (C nodes) of a single
stream. The counter nodes refer to multiple instances of a single specified
node, i.e. the parallelization relies on exact copies of the Cs.

In this example, some node T extracts tags or countable features from the inputs and
creates a high volume stream as output. This high volume stream is partitioned into
a set of sub-streams each of which is handled by a separate counter. This concept
features the data parallelism on streams of data items as inherent to all the major
streaming engines. The key choice of the user is on how to divide the stream of data
so that it can best be processed in parallel.
This data parallelization is geared to create multiple instances of the same data con-
suming process – in the example above these are the counter nodes C. The resulting
streams of counts may require further joining to provide a stream of final results.
The joining here is not to be seen as synonymous with the act of aggregation: Where
we see joining as a bundling or merging of data, any aggregations of that data are
carried out by subsequent processor nodes.
Allowing users to define such parallelism on a high-level basis, requires a symbol for
splitting a flow of data (represented by an edge) into a set of disjoint sub flows. This
split symbol has a counterpart to join the resulting streams of parallel processes back
into a single output stream, which we will refer to as the join symbol. Figure 4.10
shows hand painted versions of the two symbols. It is worth noting, that there exists
multiple ways to express parallelization within the sketch level. For our use, we will
stick to these rather simplistic symbols.

121



4. User Guided Process Design

Split Join

Figure 4.10.: Symbols for splitting (C) and joining (B) of data flows.

The join and split symbols are high-level elements to indicate a parallelization of the
data flow. The exact semantics on how the data stream is split (e.g. a random split or
a grouping of items by some identifying feature) or how the resulting sub streams are
to be joined again (e.g. interleaved, join-by-timestamp) need to further be specified
by the user. This in turn is a good example for the use of secondary notation as
proclaimed in [74] within the cognitive dimension framework. We will discuss the
problem of parameterization of the basic symbols in the context of the prototype
designer application in Section 4.3. The derived symbols now allow for sketching
a parallelized version of counting extracted features from a high volume streams as
shown in the sketch in Figure 4.11. Instead of requiring the user to individually draw
each parallel instance of the data flow, this is captured by the join and split elements.

Figure 4.11.: Sketch of an application that uses a split (C) and a join (B) node to
parallelize an inner pipeline. Only the dark lines refer to the user sketch.

Data Flow and Inner Process Layout

So far, we talked about the creation of processes and their interconnections. The
processes themselves further consist of a pipeline of processor nodes, that actually
represent the functions which are to be applied to each of the processed data items
received. This leads to a hierarchy of nested elements in the application design.
The nesting of elements, e.g. processors within a process, is related to the cognitive
dimension of procedural abstraction and part of most visual programming languages.
In [132] and [145] this action is connected with two-finger pin-zooming, giving the user
the feeling of “zooming into the details”. The pin-zooming is an intuitive action in
modern interface design. If we zoom into the first process, we might have a processor
pipeline as shown in Figure 4.12.

S P

Figure 4.12.: Pin-Zooming into a process by moving two pointers diagonally apart.
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4.2.2. Recording User Interactions for Gesture Detection

After the previous section on different symbols and gestures that are useful for sketch-
ing streaming applications, we now focus on the detection of these gestures from
interactions of users with a touch device. A first step is to trace the user interaction
and derive events that matches these interactions to a pre-defined set of symbols and
gestures.
Modern table computers or other smart surfaces do provide a – typically fine-grained
– resolution of tracing a single or multiple pointers, which can be a special stylus,
light or simply a finger, on a 2-dimensional input area. The tracking typically emits
a sequence of events which include the x and y coordinates of the tracked entity on
the surface. Figure 4.13 shows an example of a grid and a simple user-drawn figure
(red). The trace produced by this interaction is the sequence of events marked as
black dots along the grid lines.

Figure 4.13.: A digital surface for tracing user interaction on a grid with high reso-
lution. The traces produce sequences of location-based events.

For a more formalized perspective, we define the notion of a sketch pad as an abstract
area with some resolution as follows:

Definition: Let w, h ∈ R with w, h > 0. A sketch pad P = [0, w] × [0, h] is a
2-dimensional space with width w and height h. A user interaction with P is a
sequence of points (xi, yi, ti) ∈ P × T that result from the user touching the pad.
Each point consists of coordinates xi and yi and a timestamp ti of the time at which
the interaction took place.

The resolution of the coordinate system of P highly depends on the device and surface
used. High-definition tablet computers do provide a much higher resolution for their
touch grids as opposed to smart-board devices, which therefore come in much larger
screen sizes. The time resolution T is usually provided in the order of milliseconds.

Partitioning Traces

When tracing user interactions for gestures, a crucial step is the partitioning of traces
into distinct gestures. If we have a closer look at the creation of the sketch in Figure
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4.13, it is obvious that there exist multiple different symbols each of which may have
been drawn with a sequence of moves. If we leave away the labels of the sketches,
then Figure 4.14 shows different stages of the drawing that eventually lead to the
sketch of the process as shown in Figure 4.6.

Step 1 Step 2 Step 3

Figure 4.14.: Stepwise creation of a process sketch.

The dissection of the drawing into distinct stages is one of the key parts for the
process designer approach as each distinct stage reflects a single gesture. A simple
way to break down the drawing into a sequence of moves is to define a move as a
single pen stroke. This leads to the following definition of a gesture:

Definition: A move is a sequence of points that starts with the touch down of a pen
and ends with the lift up of the pen. For a given time interval τ , a gesture is sequence
of moves 〈m0, . . . ,ml〉 such that the time between the end of move mi and the start
of move mi+1 is less or equal to τ .

With that definition, a gesture is a connected set of moves that leads to distinct parts
of the drawing. For example, each of the two boxes of the last step of Figure 4.14 is
the result of a single gesture. In case of the boxes, these gestures consist of multiple
moves, i.e. we assume that the boxes have been drawn with multiple strokes. Of
course it is also possible to draw the same boxes with a single stroke only. The line
that connects the two boxes is obviously the result of a gesture of only a single move.
Another consequence of this definition is, that we can now regard a sketch simply as
a sequence of gestures, each of which is related to an element of the sketch. The task
of handwriting recognition, which is closely related to our gesture detection problem,
inherits the problem of segmentation, i.e. a scanned writing needs to be dissected
into single characters pictograms, which are then classified into letters.

In the gesture detection presented here, we solve the segmentation task by splitting
the recorded gestures using timing information as desribed in the definition above.

4.2.3. Machine Learning for Gesture Recognition

In the previous section we developed the notion of gestures as short user interaction
with a sketch pad. Each G of the resulting gestures G is an ordered set

G = {(x1, y1, t1), (x2, y2, t2), . . .} with ti < ti+1

where ti refers to the timestamp of the gesture points.
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The final step in the sketch-based design approach is to find a mapping of a gesture
G to the set of possible editor actions, which in turn are the previously defined
symbols, as outlined in Section 4.2.1. The recognition of gestures has become an
important research topic in the human computer interaction (HCI) field. Approaches
to recognize gestures date back to the prominent algorithm by Rubine [126], which
exploits geometric properties of the gestures. Other approaches use template objects
to describe gestures as a set of detectable geometric components [80]. In [116], Luke
Olsen et al. provide a survey of different approaches to recognize gestures.
A slightly different way to categorize gesture recognition is the use of machine learning
algorithms. In this case, the gestures need to be transformed into a feature space
that describes distinct properties of each gesture type and is suitable to be applied
to training a classifier.

An outline of the gesture recognition using machine learning is given in Figure 4.15.
Besides the training of the classifier, a proper preprocessing and feature extraction
are two essential steps before machine learning can be applied. In the following,
we will give an outline of different features that can be used to classify gestures
and investigate the use of these different features in combination with a variation of
classifiers.

Feature Extraction Classifier Training

Gesture Pre-
diction Model

Figure 4.15.: Process from gestures tracking to classifier training using features ex-
tracted from the recorded gestures.

Feature Extraction for Interactive Gestures

Most of the available classifiers rely on a representation of their input that comes
as real-valued vectors of some feature space F ' Rd. The feature extraction we are
looking into can roughly be divided into

• image-based features,

• trace-based features, and

• context related features.

The image-based features are extracted from a graphical representation of a gesture
as a bitmap image. A prominent example for this class of features are the MNIST
features [101], which we will outline in Section 4.2.3.1. By trace-based features, we
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refer to any property which can directly be derived from the gesture traces, i.e. the
ordered set G of points, associated with the gesture. This can be the number of
points or the time-span the user required for drawing the gesture.

The feature related to the context refer to any characteristics of the gesture that
refers to other objects (e.g. boxes, circles) that are touched by a gesture. A simple
example is given by a straight line that starts directly at some element A and ends
at an element B as previously shown by the connecting line in Figure 4.14.

4.2.3.1. Image-Based Feature Representations of Gestures

A wide variety of different features can be extracted from a graphical representation
of gestures as bitmap images. In this case, the trace of a gesture is drawn onto an
empty bitmap and the resulting image is used to extract meaningful information.
This image transformation results in some loss of information, such as the timing
information and order of the points.

The general idea for representing gestures as a feature vector reclines from the MNIST
handwriting recognition [101]. This popular data set is related to the task of identi-
fying digits from handwritten graphics, e.g. ZIP codes that have been scanned from
letters or post cards. Figure 4.16 shows sample digits of the MNIST data set.

Figure 4.16.: Some digits of the MNIST handwritten dataset.

The digits are represented by a grayscale bitmap image of some squared size like
28 × 28 pixels. Each pixel holds a gray color value. The feature vector extracted
from the digit images is a sparse vector of length p = 28 · 28 = 784 where each
attribute represents a pixel of the bitmap image. Alternative weighting schemes are
for example the weighting of each pixel by its euclidean distance to the center [44].

Extracting Features from Gestures Images

An important advantage over the handwriting recognition task as provided by the
MNIST data is the interactivity of the recorded gestures in the use case at hand: As
we discussed above, the partitioning or segmentation of gesture traces into disjoint
traces is already done. Segmenting letters from handwriting images is a tough task.

Figure 4.17 shows a low-resolution bitmap image that has been derived from a high-
resolution gesture trace. By scaling the gesture image to a fixed size, this method
provides some invariance over different more eccentric gestures for the same symbol
or action. Also, the gesture is mapped to a fixed area and a fixed offset (0,0), which
keeps invarince with regard to the location where the gesture has been drawn.

As can be seen in the bitmap, several parts of the original trace are lost during the
transformation. The downscaling of the image is a heuristic to provide features that
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Figure 4.17.: A high-resolution gesture recorded from a tablet device being mapped
to a coarse bitmap image of size 17× 17.

are to some degree robust against scaling. Other heuristics may additionally provide
a way to normalize the gesture image by some rotation.
The bitmap now serves as the basis for the feature extraction. There are a number
of image features being proposed in the MNIST related literature. We focus on the
following selection of features for our sketch-based modelling approach:

1. pixel:<ID>, a feature value for each pixel,

2. height, width: original height, width of the gesture interaction (in pixels),

3. scale:x, scale:y: factors used to scale the gesture to the 16× 16 square.

Per Pixel Features

By mapping the gesture to a bitmap image of size 16× 16 pixels, this leaves us with
256 features. Reckoning each pixel p = (x, y) ∈ R2 as a single feature leaves the
question on how to derive a feature value f(p) ∈ R of each p. The simplest approach
is for each pixel to compute its feature value in a binary fashion, i.e. let w = 1.0 in

f(p) =

{
w, if pixel at p = (x, y) is part of the gesture trace
0.0, otherwise.

(4.1)

In addition, the weight of each pixel feature can be based on different objectives,
such as the center distance or some fixed point as shown in Figure 4.18. In the case
of the center-distance based weight, we end up with w = ||p− c|| in Equation (4.1)
with c being the center in the fixed-sized bitmap.

Figure 4.18.: Using the distance to the center as pixel feature value.
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4.2.3.2. Trace-Based Features for Gestures

The transformation of gesture traces into bitmap images does not preserve any of
the timing information of the traces nor does it provide insight into the number of
strokes the trace is made of. Two features, which can directly be extraced from the
traces are:

• gestureDuration: time in milliseconds of the user interaction,

• numberOfStrokes: the number of strokes the gesture consists of.

In addition to these basic properties, Olsen proposed the use of geometric information
directly derived from the trace [115]. The features in [115] are based on a quantifi-
cation of the angle that is spanned by three consecutive points of the trace. Figure
4.19 shows the sequence of angles produced by this approach.

[0.0-22.5]
[22.5-45.0]
[45.0-67.5]
[67.5-90.0]
[90.0-112.5]
[112.5-135.0]
[135.0-157.5]
[157.5-180.0]
[180.0-202.5]
[202.5-225.0]
[225.0-247.5]
[247.5-270.0]
[270.0-292.5]
[292.5-315.0]
[315.0-337.5]
[337.5-360.0]
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15.0

(a) Gesture Trace (b) Angles along Trace (c) Distribution of Angles

Figure 4.19.: Angles derived from a gesture trace. Left hand figure (a) shows the
recorded trace, where (b) depicts a enlarged fraction of the trace, high-
lighting the consecutive points and (c) showing the distribution of angles
derived from the trace.

For any three consecutive points pi−1,pi,pi+1 ∈ R2 the angle α is computed as

α =
v ×w

||v|| · ||w||
, (4.2)

where v = (pi − pi−1), w = (pi − pi+1) and × refers to the vector product in R2.

α′ =
180

π
· arccosα (4.3)

The transformation in (4.3) leads to α′ representing angles of the range [0, 360] ⊂ R.
For use as features to classify the gesture trace, Olsen proposed a binning of the angle
values into k bins and use a histogram over those bins as characterizing features.
If we apply the angle quantification to the gestures defined in Section 4.2.1, we obtain
the distribution of angles as shown in Table 4.1. As can be seen in the table, the
angle distribution differs significantly between various symbols. The split (C) and
join (B) gestures are the closest ones with regard to their angle histograms. This is
rather plausible as they represent the same symbol where one is just the mirrored
version of the other.
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Source Process

Split Join

Delete Edit/Annotate

Table 4.1.: The angle distribution for the gestures defined in Section 4.2.1.

4.2.3.3. Adding Context Features to Gesture Traces

While recording gestures during user interaction, a few additional features can be
derived from the interaction context. The interaction context is given by the set of
elements that have been defined based upon previous gestures. A straight forward
example are the start- and end-points of gestures. Figure 4.20 shows two gestures
that directly relate to a context of existing elements. The left-hand gestures shows
the connect gesture to establish a link between two elements. The gesture on the
right-hand side shows the edit or annotate gesture that triggers the detail or edit-
dialog of the object it started from.

S

Connect Gesture Edit Gesture

Figure 4.20.: The left gesture shows the connection of two elements, the right hand
gesture shows the gesture for triggering the editing dialog of an object.

The start and end elements of the trace can be encoded as nominal features that
reference the object. However, the mere identifier of the elements are specific to a
single graph or document. Therefore we use more generic information such as the
object type to be extracted to support a distinction of the same gesture resulting
in different actions based on the element their are “acting” upon. The first context
features we are extracting from the traces are the start and end element types:

• source:type, the type of the element the trace start on,

• target:type, the type of the element the trace ended on.
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As an example, the connect gesture in Figure 4.20 will be associated with features
such as source:type=process and target:type=process.

Context by Gesture Overlays

Other context based features may be derived from application elements that are
covered by the area of a gesture or elements that appear near the area of a user
gesture. Examples for such gestures are the delete gesture or an encircling gesture
to select a set of objects as shown in Figure 4.21. Such a select gesture may be
similar to the source gesture by mimicking a closed circuit, but is distinguishable by
requiring its area to cover one or more elements. The size of the area is essentially
already covered by some of the image-based features (e.g. height and width along
with the scale factors). From the area spanned by the trace we extract the feature
elementsCovered which holds the number of elements covered by the trace.

Delete Gesture Select Gesture

Figure 4.21.: Two examples of gestures that cover other elements with their gesture
area (highlighted as brigtht green area).

4.2.4. Evaluation of Features and Classifiers for Gesture Recognition

In the previous section we discussed several approaches for extracting features from
traces, suitable for training a classifier to map the traces to a set of predefined
gestures. Thus, we treat the gesture recognition task as a learning problem with
multiple classes. There are two questions we will further investigate before testing
the resulting prediction model in a prototype application:

1. What are the best features for the gesture recognition problem?

2. What are the best performing classifiers?

This enables us to incorporate a pre-trained model and use the gesture detection
based on this model in a prototype application as we will demonstrate in Section 4.3.
The investigation of these questions motivate a nested loop setup to explore feature
extraction as well as the classifiers, which both rely on multiple parameters (scale of
image features, binning of angles, etc.). Before discussing the evaluation of features
and classifiers in detail, we will first outline the assembly of the evaluation set. Based
on this set of gesture traces, we use the flexible streams framework to implement a
parameterized feature extraction chain, that allows for testing the different variations.
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4.2.4.1. Building an Evaluation Set

For investigating the feature quality in combination with different classifiers, we
created a data set containing several gestures and additional symbols. The symbols
and gestures of this set represent the classes we introduced for process flow modelling
in Section 4.2.1. Using a sketch surface application that tracks a pointer or stylus on
an Android tablet, we manually created 60 drawings for each of these seven gestures,
resulting in a data set of 420 examples. The trace recording application emits a
stream S = 〈 s0, s1, . . . 〉 of events si = (x, y, t) while tracing the pointer, where t
contains the timestamp in milliseconds of the pointer arriving at location (x, y). For
each of the drawings, we stored the complete trace of the gesture, allowing us to
extract any of the features outlined in Section 4.2.3. Our basic set of gestures covers
the elements shown in the following Figure:

Stream Process Split Join

Edit Connect Delete

Figure 4.22.: The gestures used for building the basic test and training data set.

The partitioning of the traces into moves or segments was done based on additional
pen-down and pen-up events produced by the recording application. A gesture was
regarded to be finished as soon as a time of µ = 450ms had passed after the last pen-
up event. The recording of the gesture traces was implemented as a simple streaming
application, as modeled in Figure 4.23:

S

P

∆(t) > µ

Touch Surface Gesture Trace

Figure 4.23.: The streams application for recording the gesture traces and segment-
ing gestures based on time segementation. The process P tranforms
incoming (x, y, t) sequences into the full traces.
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An Extended Data Set for Training and Testing

For exploring the limits of possible classes that can be distinguished by the classifiers,
we created additional gestures for alphabetic symbols. In a real-world application
these can easily serves as short-cut gestures for inserting user-defined elements into a
graph or triggering often-used actions. As an example, a combined gesture of a circle
that includes the letter S might be a short-cut for adding a specific source node to
the graph.

Symbol “A” Symbol “B” Symbol “C” Symbol “D”

Figure 4.24.: Some of the letters for which traces have been added in the extended
gesture dataset.

The use of letter-like symbols inspires a stacking of gestures into multi-gesture ele-
ments, such as drawing a circle and adding a second gesture (e.g. a letter) on top
of that. This will result in a sequence of gestures that need to be classified after
each gesture of that sequence has been identified. Such an approach leads to more
complex actions that can be bound to gestures. However, in our current evaluation
we focus on the detection of single-element gestures.

4.2.4.2. Feature Extraction from Gesture Traces

Our first question is the performance of the different features for distinguishing the
gestures. We already looked at the angle distribution of the features proposed by
Olsen [115] for a few selected examples of our gestures. An important aspect for the
feature extraction is its online applicability. As gesture detection is done in real-time,
i.e. the prediction model is applied on-line, the training of a classifier is only useful
for features that are available in real-time. Any computation of features that are
derived from the training data set as a whole are of no use. This also affects some
preprocessing steps, such as normalization.

The feature extraction methods, we introduced in 4.2.3 and investigated here, are
implemented as streams processors. This allows for setting up different extraction
chains for testing the performance and parameterization of the features. Input to
the feature extraction chain is a stream of gesture traces as produced by the trace
segmentation step shown in Figure 4.23. With the streams-weka extension, which we
present in Section 5.2.3, the trained models can directly be applied to the features
extracted by these streams-based processors.

The different settings concern the features extracted as well as the parameters for
each extraction. For the image-based features this focuses on the resolution of the
images (tranformation of traces to images of size w × h). Here, we set l := w = h
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and explore the features for resolutions of 8 × 8, 16 × 16, 24 × 24 and 32 × 32. For
the trace-based features we test the angle quantification proposed in [115]. Here we
vary the discretization of angles by the number k of bins. We test the binning for
values of k ∈ {8, 16, 24, 32}.
These settings imply three different main branches to be investigated: image-based
features, trace-based features and a combined use of both feature sets. Based on the
evaluations for the image- and trace-based featues we select the two best parameters
from each (lopt1 , lopt2 for the image size, kopt1 , kopt2 for the angle binning) for an
evaluation of a combination of these features. This results in a total of 12 different
feature extraction variations, which we picked for investigation. Table 4.2 outlines
the different areas to search for the image- and trace-based feature sets. We present
the results for each of the branches in combination with different classifiers in the
following section.

Image-Based Trace-Based Combined

8× 8 16× 16 24× 24 32× 32 k = 8 k = 16 k = 24 k = 32
lopt1 × lopt1 lopt2 × lopt2
kopt1 kopt2 kopt1 kopt2

Table 4.2.: Starting branches of the different feature evaluations.

4.2.4.3. Experimental Evaluation of Features and Classifiers

Next to the evaluation of different feature extractions, the selection of the best clas-
sification model is an important question. For assessing the different combinations
of features and models, we seek for a nested search of each of these aspects. Figure
4.25 shows the layout of our evaluation template. The outer loop addresses different
feature extraction setups, each of which will be evaluated in combination with a set of
different classifiers. The overall performance will be determined by a cross-validation
at the innermost spot of the setup.
The classifiers we evaluted are the Support Vector Machine, Neural Networks, and a
Decision Tree approach [121]. With regard to a simple implementation and resource-

Evaluation

Data

Loop: Features

Feature

Extraction

Loop: Classifiers

Classifier

Evaluation

Figure 4.25.: Outline of the experiment setup.
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saving re-training (e.g. for adaptive training of new gestures on mobile devices), we
additionally explore the use of the Naive Bayes classifier [92] and the Perceptron
algorithm as proposed in [125]. For each of the selected classifiers we try to find the
best parameterization using a heuristic grid-optimization over its parameters. The
performance of the classifiers for the appropriate input (i.e. related to the feature
extraction used) is determined using a 10-fold cross validation.

accuracy (m
in)

accuracy (avg)

precisio
n (m

in)

precisio
n (avg)

DecisionTree 0.417 0.510 0.417 0.510

NaiveBayes 0.375 0.396 0.375 0.396

Perceptron 0.521 0.625 0.521 0.625

SVM 0.698 0.708 0.698 0.708

Trace-based Features

accuracy (m
in)

accuracy (avg)

precisio
n (m

in)

precisio
n (avg)

DecisionTree 0.729 0.792 0.729 0.792

NaiveBayes 0.754 0.788 0.754 0.788

Perceptron 0.052 0.134 0.052 0.134

SVM 0.938 0.958 0.938 0.958

Image-based Features

Figure 4.26.: Different classifiers tested for gesture prediction, based on trace- and
image-based features.

The evaluation results in the tables in Figure 4.26 summarize the overall classification
rate for each of the main feature sets: trace-based and image-based features. For the
real use of the gesture prediction in an application, we are especially interested in
the minimum performance of each feature set and the combined classifier. As can be
derived from the figure above, the image-based features work much better for most
of the classifiers, except for the Perceptron algorithm.

In a second step, we are interested in the performance increase by combining the
different feature sets. The results for the combined features for different classifiers are
provided in Figure 4.3. It is interesting to see that the performance on the combined
features decreases for the decision tree, which can be assumed to be struggling with
the large number of features, compared to examples. The SVM, using a linear kernel
and an optimized C = 1000, perfectly identifies all gestures correctly.

accuracy (m
in)

accuracy (avg)

precisio
n (m

in)

precisio
n (avg)

DecisionTree 0.646 0.790 0.646 0.790

NaiveBayes 0.812 0.866 0.812 0.866

Perceptron 0.312 0.544 0.312 0.544

SVM 1.000 1.000 1.000 1.000

Combined Features

Table 4.3.: Improved prediction by combining trace- and image-based features.
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4.3. An Application to streams and RapidMiner

In Section 4.2.4 we focused on an investigation of different feature representations
and classifiers for gesture detection. As a next step, we integrate the resulting predic-
tion models into a real-world application to demonstrate their use for sketch-based
process modelling. As pointed out earlier, we implemented the gesture analysis and
feature extraction as processors using the streams API. The result is a gesture recog-
nition library called streams-gestures, that allows for an easy embedding of gesture
recording, feature extraction and detection into different applications. By the use
of our streams-gestures library, we demonstrate the applicability of the sketch-based
approach in two use cases:

(1) The RapidMiner Artist application for modelling RapidMiner processes, and

(2) the StreamsDesigner Android application for creating streams applications.

The first example is a prototype application to show the use of sketch-based proto-
typing within an existing tool, enhancing the RapidMiner tool suite with a remote
editor to control the tool using gestures. The latter focuses on building a sketch-based
environment for the streams framework.

The general concept for all sketch-based editors is to define a mapping of detected
gestures to editor actions. Such actions comprise the adding of new elements at
a specific location (e.g. based on the gesture location), removing an element or
updating an element’s properties. In the context of flow-based design the connection
of elements as well as their disconnection is another important action.

The streams-gesture library does not restrict the number of gesture types per se and
is therefore suitable to map an arbitrary set of different gestures to editor actions. We
already discussed some characteristics to select the best gestures for a specific use-
case in Section 4.1.2. In this section, we focus on a small set of major editing actions
that seem to be most important when creating processes using the RapidMiner tool or
defining a streams configuration in XML. Table 4.4 shows the different editor actions
we used in each of the prototypes. The specific nodes column refers to the creation
of different nodes with different gestures.
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streams Designer

RapidMiner Artist

Table 4.4.: The different editor actions tested in the prototypes.
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The RapidMiner Artist prototype does not support all actions as we decided to
exclude the editing from the gesture motions and fall back to a more desktop style
editing as found in the original RapidMiner interface.

4.3.1. The RapidMiner Artist Application

The RapidMiner Artist is prototype editor for interacting with RapidMiner that uses
interactive gestures to trigger editing actions for RapidMiner processes. This en-
hances the visual editor provided by RapidMiner using sketch-based editing. The
setup is based on a local application that is able to send commands to a remote
RapidMiner instance. For this to work, it requires two components: the RapidMiner
Arts Plugin and the RapidMiner Artist application. Figure 4.27 shows the architec-
ture of the interplay of the two components.

Figure 4.27.: RapidMiner Artist and the RapidMiner Arts plugin.

The RapidMiner Arts Plugin is a small extension for RapidMiner which adds a remote
service endpoint to the RapidMiner system. It is initialized at startup time and
provides multicast announcement over TCP sockets. This allows for auto-discovery
of RapidMiner instances enabled with the plugin in the local network. In addition
to the remote service endpoint, the plugin includes a web server that provides an
interactive gesture trainer. This trainer can be used to add new labeled gestures
to the data set and by this provides a way to interactively add new gestures to
RapidMiner.

The RapidMiner Artist is a standalone Java application that provides an alternative
process editor for RapidMiner. It is decoupled from the RapidMiner tool itself and
communicates with the RapidMiner Arts plugin.

Painting Processes with the RapidMiner Artist

The RapidMiner Artist tool provides a sketch pad area for drawing. The interactions
with the sketch pad are recorded by the streams-gestures library and all recorded
traces are transformed into gesture objects. A fixed feature extraction process is
applied to convert the traces into instances compatible to RapidMiner example sets.
The traces are then classified to a set of gestures based on a pre-trained prediction
model. The following gestures have been used for the pre-trained model:
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Add Process Add Operator Connect Add Source Delete Element

Figure 4.28.: The gestures supported by the RapidMiner Artist.

Each of the gestures shown in Figure 4.28 is connected to an action in the standalone
editor application. This action then triggers a remote operation by calling the appro-
priate action of the RapidMiner Arts Plugin instance. As an example, the detection
of the delete object gesture triggers the delete action in the standalone application,
which results in the object, that is covered by the gestures’ area, to be removed from
the current process in the RapidMiner instance.
RapidMiner processes using the gestures defined in Section 4.2.1. The sketch pad
records gestures that are drawn by the user and maps these gestures to actions, such
as the addition of a new operator, the connection of two operators or the removal of
an operator from the process. The gestures are classified into one of the pre-defined
actions that been described in the previous section. This gesture classification is pro-
vided by an SVM model within RapidMiner. For this, the gestures are transformed
into a feature vector that is being sent to the remote RapidMiner Arts plugin. This
plugin then returns a class label for the gesture based on a previously trained model
and the appropriate action (e.g. addition of an operator) can be performed by the
RapidMiner Artist. Any modification of the process by means of a gesture is imme-
diately performed within the connected RapidMiner process via the exported remote
editor service. As a result, the modified process can directly be displayed on the
sketch pad as well. This provides an interactive editor for RapidMiner processes
using the sketch pad application.

Training Gestures within RapidMiner

A base classifier for gesture prediction is included within the RapidMiner Arts plugin.
In addition, the plugin includes operators for accessing the currently known gestures
and performing the feature extraction in the various flavours outlined in Section
4.2.1. To add new gestures, the RapidMiner Arts plugin provides a gesture trainer
that allows for extending the gesture classfication by training new custom gestures.
In addition, the base classifier can be exchanged by a new RapidMiner prediction
model. This allows for users to deploy their own classifier, train custom gestures or
adapt the classifier to their custom style of painting processes. All that is required
for the customization is reading the gestures, extracting the features and training a
new classifier. For each of these steps the RapidMiner Arts plugin includes all the
required operators. As a result, the gesture recognition can solely be extended by
re-running the training process using a RapidMiner process.
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4.3.2. The Android Streams Designer

The sketch-based modelling is perfectly geared for its deployment in combination
with a real touch-enabled device. To test the gesture detection in this setup we
implemented another prototype application for the Android platform. Figure 4.29
shows the prototype running on a Nexus 10 Android device. Similar to the Rapid-
Miner Artist, this application includes the streams-gestures library and hooks into
the touch-sensor API of the Android operating system. The touch events provided
by Android are then processed in the same way as handled in the RapidMiner Artist
application. In contrast to the RapidMiner oriented prototype, the Streams Designer
is focused on directly manipulating a streams XML document on the Android device
itself.

Figure 4.29.: The Streams Designer Android app running on a Nexus 10 tablet.

4.3.2.1. Visual Representations and Gestures

For the RapidMiner Artist, we designed the application to very closely model the
original rendering of the RapidMiner editor. Within the Streams Designer, we first
need to derive a proper visualization of the data flow elements of streams that are
best suited for use on a tablet device. This visual representation has a tight connec-
tion to the gestures that are used for editing. To recall an example, the procedural
abstraction named in the aspects of the cognitive dimensions framework (cf. Section
4.1.2) features the use of predefining partial data flow as basic building blocks. A
way to model the procedural abstraction is to provide a hierarchical level of views,
which support the zooming-in to explore the inner parts of such a building block.

In the streams framework we are faced with the fact that processors are enclosed in a
process element. The data flow within a process is fixed due to the pipelining model of
processors being executed in a process. Even though the zooming-in on a tablet seems
to be a natural interaction, this is not a very desirable representation: Modelling
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this enclosing with the aforementioned zooming-in methodology will require a lot of
switches between different levels of the resulting editor hierarchies, which in turn
makes the interaction with this visualization harder.
The representation we use in the Streams Designer is inspired by the LEGO building
block design that can be found in visual languages like LEGO NXT or the Scratch
programming language: Using brick-like tiles that will snap into each other, we can
create a pipeline of processors which by itself forms an executing process. Figure 4.30
shows the previous visualization of processes with nested elements (left-hand side)
and the brick-like pipeline representation (right-hand side).

P0 P1 P2 P0 P1 P2

Explicit nested representation Implicit queue representation

Figure 4.30.: The left-hand representation relies on an explicit nested visualization,
whereas the right-hand variant uses a flat layout.

From Visualization to Gestures

Based on the visual representation already outlined and used in Section 4.2.1 and the
adaption of visualizing processes using the implicit queue layout, we can now derive
a set of gesture primitives that are required to model a data flow for streams using
sketch interaction. The essential actions we focus on are: the creation of elements
(nodes), connecting these and the deletion of elements. The implicit flat layout of
processes further requires an adaption of gestures. Figure 4.31 shows the modifying
gestures used in the Streams Designer.
We further require gestures to modify or extend process elements, which can be
either the insertion or removal of elements from a such process. Since the elements
of a process are ordered, we need to have means to define where in the ordered list
of the process the new node needs to be inserted. As shown in Figure 4.31, there

S

ProcessStream

Create new Process

Insert Processor

Append Processor

Delete Element

Edit Element

Figure 4.31.: The core gestures that are used within the Streams Designer.
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are different gestures defined for inserting a new processor node into a process. In
addition we map the box-gesture shown on the lower part of the figure to insert a
new processor somewhere in the configuration. This implies the creation of a new
process and the insertion of the processor node into that process element.

4.3.2.2. Training Gesture Classification on Android

The gesture detection in the Android Streams Designer is also based on a pre-trained
prediction model. Reflecting the low computational power of mobile devices com-
pared to desktop computers or workstations, the application uses the MOA library
[25] for training models and applying these models for prediction. The MOA library
provides a range of resource-aware classifiers such as Hoeffding Trees [58], which aim
for high classification quality while keeping memory consumption below some bound.

Another benefit of the MOA library is its focus on online learning, which is based
on incremental updates of the prediction models. This allows for a continuous im-
provement of models as new training data is available. In the context of the Streams
Designer, this can be used to further adapt the classification model to the user in
the case, where a wrong action is being executed based on a false prediction.

With the feature extraction modelled as a streams process and the integration of
the MOA library into streams (see Section 3.4.2), we tested the classification of
different models trained with MOA. For this test we used the five gestures shown
in Figure 4.31 (edit, delete, insert, append and new process) and an additional set of
symbols representing the creation of a source element (circle gesture), the connecting
of elements (straight line) and the split and join elements discussed in Section 4.2.1.
For the evaluation we used the following streams process, which we present here in
the flat layout form, in Figure 4.32.

train

Training Data

train

Training Data

Trace Segmentation

Image Features

Angle Quantification

Train Classifier

Feature Extraction

test

Test Data

Apply Prediction

Check Performance

Feature Extraction

Figure 4.32.: Training and Evaluation of gesture classification with MOA.
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Evaluating MOA Classifiers for Gesture Prediction

With the focus on low memory usage we tested the following online classifiers that
are provided by the MOA library:

(1) Hoeffding Trees, using the Hoeffding bound to trade memory for accuracy [58],

(2) the Naive Bayes classifier, estimating probabilities by mean and standard de-
viation,

(3) the Perceptron, a simple separating hyperplane,

(4) Leveraging Bagging, as an example of an ensemble method.

The dataset for the evaluation uses 60 instances for each of the eight gesture types,
resulting in 480 examples. Within a stratified cross validation we divided these
data into folds of training and test sets using 75% of the data for training and the
remaining 25% for assessing the classification performance. The stratified sampling
ensures that each class is represented in the test/training sets in an equal share. The
GestureFold implementation provides a random split with the specified rations as
a streams data stream. The ordering of the instances in each fold is shuffled. As the
first results did not reveal any good prediction, we extended the training phase by
iterating over the training data set multiple times. Any results shown in the following
figures are obtained by a classifier training that takes five iterations of the training
data. To diminish the effect of overfitting, we cross-validated all experiments.
Table 4.5 shows the performance of the Naive Bayes classifier. The numbers in the
table are averaged over a 10-fold cross validation. The results show an acceptable
accuracy for this type of multiclass problem.

add str
eam

append node

connect

delete
edit

node

insert
node

join new
process

prepend node

sp
lit

precision 0.679 0.922 0.318 0.140 0.150 0.105 0.146 0.774 0.471 0.187

specifity 0.955 0.979 0.965 0.941 0.984 0.921 0.949 0.938 0.965 0.943

recall 0.924 0.669 0.521 0.514 0.204 0.900 0.700 1.000 1.000 1.000

accuracy 0.917 0.761 0.881 0.900 0.935 0.922 0.949 0.948 0.966 0.944

Table 4.5.: 10-fold cross-validated evaluation of a Naive Bayes classifier.

We tested all of the aforementioned classifiers on the same data set. For a compar-
ison, we computed the average accuracy for each classifier over all classes as well
as the minimum and maximum. This gives an impression on how well the classifier
performed in total (worst and best).
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minim
um

accuracy

average accuracy

maxim
um

accuracy

HoeffdingTree 0.644 0.913 0.982

NaiveBayes 0.761 0.912 0.966

Perceptron 0.064 0.813 0.982

LeveragingBagging 0.914 0.963 0.987

Table 4.6.: Gesture prediction results using the MOA online learning library.

Table 4.6 shows a summary of the the results for the classifier evaluation and includes
the lowest precision/recall over all the target classes for each classifier. As can be seen
in this table, the Perceptron produces the worst performance, whereas the Hoeffding
Tree and Naive Bayes are very close. The best performance is obtained from the
ensemble approach of the Leveraging Bagging. The bagging especially has the best
average accuracy over all validation folds, with a small margin to its best and worst
evaluations. This makes it a robust choice to be built into a tablet application for
direct user interaction.
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4.4. Summary

In this chapter we investigated the use of a sketch-based modelling level to provide a
higher level of application design to end-users. We reviewed the existing field in UI
design that focuses on sketch-based interfaces and elaborated the use of a machine
learning based gesture detection approach for a sketch-editor. Based on a predefined
set of symbols and gestures, which we discussed in the context of the data-flow design
approach for streaming applications, we investigated the use of different features and
classification methods for gesture detection.
For a more real-world oriented experience, we created two prototype applications
that we enhanced with a gesture-detection library to prove the use of our gesture
recognition in a modelling application. For the RapidMiner use-case, we limited the
number of gestures to closely match the existing editor environment provided by
RapidMiner itself. In case of the streams editor, we started with a visualization from
scratch and addressed the multi-level editing issue by the re-desgined flat-layout
of processor pipelines. This resulted in a set of different gestures for appending,
prepending and inserting processors at various places of such a pipeline.

User Feedback with Active Learning

An interesting extension to the gesture prediction problem is the incorporation of
user feedback. If the Android application is extended by providing means for user
feedback, i.e. if a gesture has wrongly been classified and triggered the wrong action,
that information could be used to identify uncertain areas in the gesture space of the
classifier. A possible form of such feedback could be the triggering of a Undo action
after a gesture.
The use of MOA classifiers and their incremental nature would then be ideal candi-
dates to learn from this misclassification and incorporate this insight into the model.
This can lead to the Streams Designer to continuously improve itself for a specific
user. However, as we were only interested in the general principle of the gesture
modelling approach, we do not further investigate this topic of an active learning
extension in this thesis.
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Chapter 5

There is a theory which states that if ever anybody discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable. There is another
theory which states that this has already happened.

– Douglas Adams

Analyzing Telescope Data

The streams framework, as described in the first part of this thesis, is geared towards
high-level data flow design. One of the aspects, which has been motivating this
endeavour intrinsicly, is the interdisciplinary gap between the application domain that
requires an analytical data flow and the implementation of a system that matches the
end-users requirements. This gap arises in modern architectures, where the efficient
deployment of an analysis chain requires in-depth expert knowledge of the execution
environment: a problem, that becomes obvious in todays Big Data infrastructures.

In this first chapter of the Applications part of the thesis, we demonstrate and discuss
the suitability of streams within the use-case of the FACT Telescope. The telescope
produces a plethora of data and requires an efficient, scalable analysis chain that may
even cover the data of other telescopes with higher resolutions in the future. Speaking
of the interdisciplinary gap, this chapter discusses the use of streams’ generic power
to provide a rapid-prototyping environment, enabling domain users (physicists) to
define and modify their data flows to incrementally test and optimize the overall
analysis process. With the abstraction layer provided by streams, this is achieved
without any knowledge of a large scale distributed environment.

On the IT expert side, we show, that this abstraction leads to a modular library-like
prototyping implementation, which can directly be mapped to Big Data execution
engines. While we discussed the mapping of streams data flow graphs to systems
like Apache Storm before, we demonstrate this here in a different environment by
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exemplarily designing Map-Reduce batch jobs with the FACT specific processors that
are implemented and used by the physicists. Following the XML specification concept
of streams, we use a similar specification approach to model data processing in the
Map-Reduce paradigm. In addition, the integration of machine learning libraries,
such as MOA [25] or WEKA [79] as described in Section 5.2.3 is of tremendous
use for the end-users, allowing for intelligent analysis steps to cope with the high-
dimensional data obtained from the telescope.

This chapter is structured as follows: In Section 5.1 we will first give an overview of
the application at hand in the gamma-ray astronomy, providing an abstract view of
the data analysis chains and possibilities to use machine-learning therein. In Section
5.2, we present the FACT-Tools, a library for reading and processing the data of
the FACT Telescope, which is completely based on the streams API. This eases the
implementation of analysis steps required by the physicists in the form of streams
processors. Based on the FACT-Tools library the complete FACT analysis chain
from data recording to analysis output can be modeled solely using the streams XML
and its runtime implementations. In Section 5.5 we summarize our approach and
provide an overview of the impact and publicity, that the FACT Tools have received
so far. In Section 5.4, we focus on the distributed execution of preprocessing jobs in
a batch manner using massive parallel processing on top of Apache Hadoop and close
the chapter with a summary.

5.1. Data Analysis Problems in Gamma-Ray Astronomy

Modern astronomy studies celestial objects (stars, nebulae or active galactic nuclei)
partly by observing high-energy beams emitted by these sources. By a spectral
analysis of their emissions, these objects can be characterized and further insight can
be derived. Plotting the energy emissions over time leads to a light curve, which
may show pulsatile behavior and other properties that lead to a classification of the
observed object. An example is the distinction of different supernova types based
on the form of their light curves [43]. The creation of a spectrum of the radiated
energy levels is therefore a key skill. A collection of different monitoring techniques
such as satelites [119], telescopes [118, 14, 94] or water tanks [17, 8] is deployed to
observe different ranges of the electromagnetic radiation produced by the sources.
A central problem in all these experiments is the distinction of the crucial gamma
events from the background noise that is produced by hadronic rays and is inevitably
recorded. This task is widely known as the gamma-hadron separation problem and
is an essential step in the analysis chain. The challenge in the separation step is the
high imbalance between signal (gamma rays) and background noise, ranging from
1:1000 up to 1:10000 and worse, which implies large amounts of data that need to
be recorded for a well-founded analysis of a source. The high sampling rate and
the growing resolution of telescope cameras further require careful consideration of
scalability aspects when building a data analysis chain for scientific experiments.
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The examination of sources in astronomy relies on the observation of emitted energy
by these sources. Unfortunately, these energy beams cannot be observed directly,
but only by an indirect measuring of the effect they are triggering in some detector
medium. In the case of Cherenkov telescopes, the atmosphere is used as detector
medium: particles interact with elements in the atmosphere and induce cascading
air showers as they pass the atmosphere. These showers emit so-called Cherenkov
light, which can be measured by telescopes like MAGIC or FACT. Figure 5.1 shows
an air shower triggered by some cosmic ray beam, emitting Cherenkov light that
can be captured by the telescope camera. The cone of light produced by the shower
is visible in the camera for a period of about 150 nanoseconds. The camera of the
telescope consists of an array of light-sensitive pixels that record the light impulse
induced by the air shower. For a fine-grained capture of the light pules, the camera
pixels are sampled at a very high rate (e.g. 2 GHz). Figure 5.1 shows the layout of
the FACT camera, which consists of 1440 pixels in hexagonal form. The high sam-
pling speed requires high-performance memory for buffering the sampled data. The
cameras usually continuously sample all the pixels into a ring-buffer and a hardware
trigger initiates a write-out to disk storage if some pixels exceed a specified threshold
(i.e. indication of shower light hitting the telescope). Upon a trigger activation, the
sampled data written to disk captures a series of camera samples which amount for
a time period of about 150 to 300 nanoseconds, called the region of interest (ROI).
This fixed-length series of consecutive camera samples produced upon a trigger is
called an event and corresponds to the light cone induced by the airshower.

γ

Atmosphere
Air Shower

Cherenkov Light

Telescope

Camera Samples (2000 MHz)

Figure 5.1.: An air shower produced by a particle beam hitting the atmosphere. The
shower emits a cone of blue light (Cherenkov light) that will hit the
telescope mirrors and is recorded in the camera. The right-hand side
shows a still image of the light cone in the telescope camera.
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5.1.1. From Raw Data Acquisition to Spectral Analysis

The raw data produced by telescopes like MAGIC or FACT consists of the sampled
voltages of the camera pixels for a given time period (ROI). Using these voltage
levels, the following steps are required in the analysis, each of which is individually
performed for each event, naturally implying a stream-lined processing:

(1) Calibration, Cleaning: Calibrate the data, determine the pixels that are part
of the light shower.

(2) Feature Extraction: Find features that best describe the data to solve the fol-
lowing steps.

(3) Signal Separation: Assess whether the event is induced by a gamma-ray (signal)
or a hadronic shower (noise).

(4) Energy Estimation: Estimate the number of protons hitting each light shower
pixel, to infer the energy of the original beam.

Based on the energy estimation derived from the number of protons (4), a histogram
of energy rates over time is used to create a spectrum of an observed source, which,
in turn, leads to the properties about that source that are subject of astronomical
research. From a data analysis point of view we can map this process to the high-level
data flow outlined in Figure 5.2. Especially the separation of signal and noise and the
energy estimation are candiates for use of machine learning. The extraction of fea-
tures for subsequent use of machine learning in steps (3) and (4) is a crucial step and
requires back-to-back fine tuning with the learning methods. The dark arrows show
additional back-to-back dependencies between the different steps. The calibration
and cleaning methods are highly domain specific and require careful consideration
by domain experts. Given, that the electronics of such telescopes are customized
prototypes, each device requires different setups that may vary with changes in the
environment (temperature). These early steps in the data processing chain usually
relate to hardware specifics and are fine-tuned in a manual way. In case of the FACT
telescope, base voltages and gains for each pixels need to be adjusted with respect
to calibration data recordings.
The signal separation and energy estimation, however, open an interesting opportu-
nity where machine learning significantly contributes. Before discussing the learning
tasks, we will first investigate the conversion of raw data into a feature representation
suitable for learning.

Calibration,
Cleaning

Feature
Extraction

Signal
Separation

Energy
Estimation

Figure 5.2.: Data processing steps from raw data acquisition to energy estimation.
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5.1.2. Signal Separation and Energy Estimation

Given domain knowledge, it is known that the gamma and hadronic particles behave
different when hitting the atmosphere. As gamma particles are uncharged, they
have strict directional energy and air showers created by gammas are expected to
be directed straight from the source as well. Hadronic particles in contrast may
be deviated by electromagnetic fields and thus will drop into the atmosphere from
any direction. In addition, the atmospheric interaction of hadronic showers tends to
degrade into much wilder cascades. Figure 5.3 shows simulated showers induced by
gamma and hadronic particles.

Gamma Shower Hadronic Shower

Figure 5.3.: Simulated air showers triggered by uncharged gamma particles and
charged particles, e.g. protons and their corresponding camera image.

5.1.2.1. Feature Extraction for Signal and Energy

A basic assumption is, that the structural differences in these showers are reflected in
the image that the Cherenkov light emitted by these showers induces in the telescope
camera. These properties are described by the so-called Hillas parameters, which
form a set of geometric features that are widely used in gamma ray astronomy [106,
56]. The features introduced by Hillas describe the orientation and size of an ellipse
fitted to the area of a shower image. The ellipse is fitted to the pixels that have
survived the previous image cleaning step, in which pixels not part of the shower
are removed. The geometric orientation of the ellipse is correlated with the angular
field of the telescope. Figure 5.4 shows a shower image after removal of non-shower
pixel and the Hillas features derived. It is obvious, that the image cleaning step, in
which the shower pixels are identified, has a direct impact on the ellipse, that will be
fitted. Apart from the size (width, length) the orientation of the ellipse (alpha) and
its offset from the origin is extracted.

In addition to these basic geometric features, other properties of shower images have
been derived, such as the fluctual distribution from shower center [40] (for the Mi-
lagrito experiment) or the surface brightness [18]. In [63] Faleiro et al proposed the
investigation of spectral statistics as discriminating features, whereas [130] evaluated
an encoding of shower images using multi-fractal wavelets.
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Figure 5.4.: Geometric Hillas features to support signal-noise separation. The image
shows an single slice of an event in the FACT camera after image cleaning
(removal of non-shower pixels).

5.1.2.2. Machine Learning for Signal Separation and Energy Estimation

The detection of gamma induced events has been investigated as a binary classifica-
tion task, widely referred to as the gamma-hadron separation. The features described
in the previous section have all been proposed and tested in combination with a
classification algorithm to achieve the best filtering of signal events from hadronic
background. As the showers are distinct events, this boils down to finding some
model

M : S → {−1,+1}

that maps a recorded shower S ∈ S represented by a set of features to one of the
two possible classes. The challenge in this classification task is the highly imbalanced
class distributions as a very small fraction of gamma rays needs to be separated from
the large amount if showers induced by hadronic particles. The expected ratio is at
the level of 1:1000 or worse, requiring a huge amount of recorded data in order to
find a meaningful collection for training a classifier.
The classifiers tested with the aforementioned features range from manual thresh-
old cuts using discriminative features [27], neural networks (combined with fractal
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features [130]) to support vector machines or decision trees. The authors in [27]
provide a study comparing various classifiers on a fixed set of features (Hillas param-
eters). Random forests [38] generally provide a robust performance and have become
a widely accepted method for the gamma-hadron separation in that domain.

Energy Estimation

Another field where machine learning contributes is the estimation of energy. The
recorded data only reflects the image of light emitted by the air shower that was
produced by the cosmic ray. Of interest to the physicists is the energy of the particles
that induced the shower. The reconstruction of the energy of the primary particle
can be seen as a regression task, finding a model

E : S → R

which predicts the energy based on features obtained from the shower image. For the
MAGIC telescope, Berger et al. investigated the energy reconstruction with random
forests, claiming that a small set of features is suitable for a robust energy estimation,
with the size parameter being the most important one [20].

5.1.2.3. Labeled Data by Probabilistic Simulation

A big problem when applying machine learning in astrophysics is, that particles ar-
riving from outer space are inherently unlabeled. Using that data for supervised
learning requires an additional step to obtain data for training a classifier: The so-
lution to the labeling problem is found in data simulations using the Monte Carlo
method. There exists a profound knowledge of the particle interaction in the atmo-
sphere: Given the energy and direction of some parent particle (gamma, proton, etc.)
its interaction can be described by a probabilistic model which gives a probability for
particle collisions, possibly resulting in secondary particles. Each of these secondary
elements may further interact with other particles of the atmosphere. This results
in a cascade of levels of interactions that form the air shower. Figure 5.5 shows the
transition of a particle and its interaction in the atmosphere. The showers previously
shown in Figure 5.1 are examples of such simulated cascades. Unfortunately, the
simulation of non-gamma showers is far more computationally extensive. Charged
particles do interact with the atmosphere much more intense, resulting in more com-
plex cascades. The simulation of atmospheric showers is performed in ray-tracing
like software systems, most popular being the CORSIKA simulator [81]. The out-
put is a simulated air shower, which needs to be run through a simulation of the
telescope and camera device to produce the same raw input data as if the shower
has been recorded using the real telescope. The simulation requires large amounts of
computing resources. Even worse, the simulation of hadronic showers, which make
up the vast majority of observed events, requires much longer computing time than
the rare gamma events (due to their extensive atmospheric interactions).
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Figure 5.5.: Synthetic data by simulation in a stochastic process. Collision probabil-
ities and generation of secondary particles are based on domain knowl-
edge.

5.1.3. The Interdisciplinary Gap in Process Development

Looking at the big picture of the data analysis in a telescope like FACT, there is
a steady development of each of the steps in progress: new features are tested for
improved separation, different classifiers are investigated. The complete process from
data recording to final energy estimation is continuously improved under the aspect
of physics, typically resulting in diverse proprietary software solutions. The ma-
chine learning and computer science community, on the other hand, has produced
a valuable collection of open-source software libraries for learning (e.g. MOA [25],
WEKA [79] or RapidMiner [110]) and stream-lined process execution (e.g. Apache
Storm, Samza). Unfortunately, the integration of these tools often requires specifi-
cally trained developers to adapt them to an application domain, which hinders the
rapid prototyping evolution of the analytical domain software.
We generally refer to this problem as the interdisciplinary gap – the difficulty to
apply sophisticated tools in a specific cross-disciplinary application domain. Over
the collaborative research center project C3, we focused on bridging this gap by
building a process design framework that provides the high-level means to define
analysis chains from an end-user point of view, while keeping the power to integrate
state-of-the-art software platforms such as the ones mentioned above.
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5.2. FACT-Tools: Processing Telescope Data with streams

After we provided a big picture of the analysis chain for Cherenkov telescopes, we
now focus on the FACT telescope as a specific example of these kind of observation
telescopes. The FACT telescope [49] is a prototype device for a new type of camera
module. FACT is an acronym for First G-APD Cherenkov Telescope and the camera
built into it features a different type of photodiods for its pixels, namely the Geiger-
mode avalanche photodiods (G-APDs). The big advantage of these new photodiods
over the photomultiplier tubes (PMTs) built into current telescopes like FACT or
HEGRA, is their lower operation voltage and higher detection efficiency. The camera
contains 1440 pixels, each of which has a diameter of about 195.24 mm2. Each pixel
is a G-APD photodiod, which is sampled at a rate of 2 GHz. The left-hand side
image in Figure 5.6 shows the mirror area of the FACT telescope. In the focal point
of the mirror area, the camera (right-hand image) is mounted.

Figure 5.6.: The FACT Telescope (mirror, left) and the camera prototype (right).

By creating a few specific data source implementations, that allow for reading the
output of the FACT telescope, we open a complete rapid prototyping field to allow
for the modelling of analysis chains by use of streams XML specifications. In addition
we provide a streams extension for the popular WEKA machine learning library, to
provide model training and application with processes defined with streams. With
this approach we tackle the interdisciplinary gap between the worlds of physics and
computer science, by allowing domain experts to model their processes on an abstract
level as outlined in Figure 5.7.

trainsource

Telescope Data

Data Calibration

Image Cleaning

Hillas Parameters

Apply Classifi
er

Feature Extraction

Figure 5.7.: Visualization of a exemplary data flow from a source of telescope data,
processed by a pipeline of processors, as known from Chapter 4.
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5.2.1. The FACT Tools Library

Building on the API provided by streams, we developed a collection of source imple-
mentations as well as specific processors, which are dedicated to the processing of
data received from the FACT telescope. This toolbox, which we named the FACT-
Tools, can be seen as a domain specific extension of the streams framework. It allows
for the physics experts to include FACT specific processors into their data flow, while
inheriting all the power that comes with the abstract nature of streams, such as code
re-usability, integration of existing processor implementations or even the option to
run the analysis chain on a different runtime environment such as Apache Storm.

streams API

FACT Tools

ReadingData Calibration

Feature ExtractionVisualization

WEKA

Model Training

Data Classification

Figure 5.8.: The FACT Tools as a library providing functions on top of the core
streams API. The tools also include a dependency to the WEKA library,
which provides machine learning functionality.

The FACT-Tools is a collection of input implementations and user-functions that is
built around the processing of telescope data. By implementing the required func-
tionality in the context of the user-functions API of streams, this allows physicists to
easily create data flows by XML specifications and benefit from other libraries that
are directly integrated on top of the streams API. An example for this is the WEKA
library integration, which we will outline in more detail in Section 5.2.3.

Reading Telescope Data

The primal data gathered by the telescope was originally encoded in the FITS file
format. The Flexible Image Transport System (FITS) is a file format proposed by
NASA [117] to store satelite images and other information in a compact, yet flexible
way as it supports a variety of basic data types that can be stored. The bulk of
data, recorded by the telescope for each event, is provided as a large array of values,
sampled from the camera pixels. Along with those samples, additional information
on the event, such as the number of the recording run, the time and high-resolution
arrival times for each pixel. The FACT-Tools provides a fact.io.FitsStream imple-
mentation that reads this data from any input stream and emits a sequence of items
(one per shower event). To compensate the large storage requirements due to the
masses of data produced, a new file format was proposed by the FACT collaboration.
This new ZFits file format encodes data in a more compact way. By providing an
implementation fact.io.ZFitsStream, which reads the new data format and pro-
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vides the same output structure as the original FitsStream implementation, both
formats are supported by the FACT Tools interchangeably.

Table 5.1 shows an excerpt of the elements provided for each item. As can be seen,
the big part of the raw data is provided as a large double array, holding 432000
values. Each of these values corresponds to a sampled value from a pixel. As the
camera consists of 1440 pixels, that array holds 300 samples for each pixel, which
corresponds to the length of the region of interest written out by the telescope.

Name (key) Type Description

EventNum Integer The event number in the stream

TriggerNum Integer The trigger number in the stream

TriggerType Integer The trigger type that caused recording of the event

NumBoards Integer The number of connected sensor boards

Errors Integer Indicates communication errors

UnixTimeUTC Integer Timestamp of the recorded event in millisecond accuracy

StartCellData Integer The cell from which the ring sampler was read

Data Double[432000] The raw data array (1440 · 300 = 432000 float values)

@id A simple identifier providing date, run and event IDs

@source The file or URL the event has been read from

Table 5.1.: The representation of a shower event as hashmap in the streams model.

The @id and @source attributes provide meta-information that is added by the
FACT-stream implementation itself, all the other attributes are provided within the
FITS data files. The @id attribute’s value is created from the EventNum and date
when the event was recorded, e.g. 2011/11/27/42/8, denoting the 8th event in run
42 on the 27th of November 2011.

User-Functions for Telescope Events

The functions provided as processors in the FACT Tools library reflect the prepro-
cessing steps that are required along the analysis chain of the telescope. The version
of the tools at the time of writing is 0.7.9-SNAPSHOT and provides a set of 111
different processors. In accordance to the general data flow outlined in Section 5.1.1,
the processors can be divided into the following categories:

Calibration Image Cleaning Feature Extraction (Classification)

The classification processors are not part of the FACT Tools package itself, but are
provided by the generic integration of WEKA using the streams-weka package that
is referenced from the FACT Tools. The calibration and image cleaning processors
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are primarily working on the raw data records, i.e. the large double array provided
with key Data. As soon as basic properties have been extracted, such as the fitting
of the ellipse, subsequent processors generally deal with more light-weight elements
like the geometric form of the ellipse, etc.
In addition to these processors, the FACT Tools package does provide an Event
Viewer, which is a processor, that can be plugged into the processing chain and
allows for a visualization of various data fields of the events, including the camera
display, voltage plots for each pixel, etc. This makes the viewer a valuable tool for
debugging the analysis chain. Figure 5.9 shows a screenshot of the FACT Tools
viewer. Besides handling the raw event data, the viewer allows for the display of
overlays, which can be produced by other processors, such as the ellipse that has
been fitted to the shower or the like.

Figure 5.9.: The FACT Viewer tool for visualizing single events. The screenshot
shows the display of slice 92 of a shower event. The red plot shows the
voltages averaged over all pixels plotted over time (slice).
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5.2.2. Defining FACT Analysis Chains

The previous section gave an overview of the FACT Tools and the type of processors
it provides. In this section we will provide some example specifications for reading
FACT data and applying various processing steps. By extending the specifications
and adding processors for the other processing steps, this allows for physicists to
define the complete analysis chain in XML.

5.2.2.1. Reading FACT Data

We start with an elementary step of creating a process that reads the FACT data
from some stream. Here, the data will be read from a GZIP-compressed FITS file.
The XML snippet in Figure 5.10 defines a simple process to read raw data from
a FITS file and apply a calibration step to transform that data into correct values
based upon previously recorded calibration parameters.

The FitsStream implements the functionality to read data from some input in FITS
format and emit that data in form of a stream of events. The implementation provides
a generic source object within the streams framework. As such, it can deal with any
URL format that is supported by the streams runtime environment, which allows to
stream the data from a file, an HTTP URL, or the like. The stream defined in Figure
5.10 is linked to a process, which will process each event emitted by the stream. As a
first crucial step, the Data attribute holding the pixel voltage samples, requires some
calibration. Due to production processes and electric effects, the different pixels
usually have slightly different offset and gain values for the voltages. By recording
data with a closed camera, the physicists capture data that should expose these
differences and allows for re-adjusting the voltage values of each pixel accordingly.

Adding the fact.ShowViewer processor to the process will instantiate the viewer
tool as soon as the first event is available. Since the viewer is intended for manual
event inspection, it will block the processing of events and offers the user with a next
button to continue to the next event from the stream.

<application>

<stream id="factData" url="file:/data/2011-09-13-004.fits.gz"

class="fact.io.FACTEventStream" />

<process input="factData">

<fact.io.DrsCalibration url="file:/data/2011-09-13-001.fits.drs.gz" />

<!-- add further processors here -->

</process>

</application>

Figure 5.10.: Process definition for reading raw FACT data. The raw voltage sam-
ples need to be calibrated according to calibration data captured be-
forehand.
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5.2.2.2. FACT Event Processors

Any of the existing core processors of the streams library can directly be applied to
data items of the FACT event stream. This already allows for general applications
such as adding data from external sources (e.g. wheather data from a database).
The special structure of the raw FACT data requires some more specific processors,
which are realized within the FACT Tools.

The Raw Event Data

Most low-level preprocessing steps need to deal with the raw event data. As men-
tioned above, this data is stored in a large double array, holding the sampled voltage
values for each pixel. Due to hardware constraints, the data in this array is organized
in a specific way:

1. The voltage values for all slices of a pixel are aligned in consecutive fields.

2. These pixel blocks are ordered by the pixels hardware ID.

Within the FACT system, there exist several ways to reference individual pixels of
the camera: The hardware ID, the software ID and the geometric position of the
pixel in x- and y-axis. The hardware ID resembles the camera electronics: 9 pixels
are grouped together and glued to a patch. Four of these patches in turn are built
onto a board and the camera as whole consists of four crates, each of which holds ten
of these boards. The software ID in contrast starts with the center pixel with ID 0
and enumerates the pixels in a spiral path with increasing radius.
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Figure 5.11.: The camera structure with highlighted patches and their corresponding
crate/board/patch number (left) and the enumeration of pixels result-
ing in the software ID (right).
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The mapping of pixels with the various identifiers is handled by a generic interface,
called PixelMapping, which allows for specific implementations, e.g. when reading
data from a different telescope camera.

Data Calibration

The early-stage processing is focusing on the calibration of the raw data values.
Calibration is required to balance the different voltage offsets and gains for the indi-
vidual pixels. For the calibration of the DRS (Domino-Ring-Sampler) chip, voltages
are recorded with the lid of the telescope camera closed (called a “calibration run”),
providing zero levels for each of the pixel voltages. The data calibration is performed
by the DrsCalibration processor. Let R be the number of samples (region of inter-
est), that are being recorded for a shower. For the slices of a pixel i, let di,s be the
value of pixel i in slice s ∈ {0, . . . , R − 1}. The calibration computes for each slice
the calibrated value as

d′i,s = C · di,s − (Bi,s + Ti,s)

Gi,s

,

where Bi,s is the mean of the baseline voltages, Ti,s holds the trigger offset mean
values and Gi,s contains the mean voltage gains. These means are extracted from
the calibration runs. The constant C = 1907.35 stems from the conversion of the
ADC counts, which are output by the sampling chip to voltages in mV unit.

The implementation of the DrsCalibration processor is closely based on the original
calibration scheme as coded in the MARS software.

Another calibration step, performed by the DrsTimeCalibration processor, handles
the timing offsets that may differ among the pixels during sampling and write-out.
With the high sampling rate of 2 GHz, the time resolution is very fine and may
easily be corrupted by eletronic effects. The telescope camera board outputs timing
information in addition to the raw data, which can be used to re-align the data.

Data Correction

As the telescope is operated outdoors it is being exposed to environmental forces
such as temperature extremes and high humidity. The long-term operation of the
telescope did bring several defects in the electronic board of the camera, leading
to broken pixels or flawed values produced by the electronics. To account for such
data flaws, different data correction processors have been implemented. As an ex-
ample, the telescope currently contains 12 broken pixels, which are interpolated by
the InterpolateBadPixel processor by simply averaging the voltage values of the
neighboring pixels.

Other data correction processors included in package fact.datacorrection are:

• PatchJumpRemoval – removes artificial effects (“jumps”) that may occur within
the data produced by the pixels of a single board.
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5. Analyzing Telescope Data

• RemoveSpikes – some events include so-called “spikes”, which are very likely
to be produced by electronics effects and need to be removed.

• CorrectSaturation – corrects the amplitudes of a saturated pulse (event)
using a pulse template.

• CorrectPixelDelay – due to effects of the electronics, the data of some pixels
may be stored with a slight time offset, which is corrected by this processor.

The need for these correction steps are shown in thorough studies and tests during
telescope operation. The processors have been implemented by various physicists of
the TU Dortmund physics group.

Additional Processors for FACT Data

The FACT-Tools library provides several domain specific processors that focus on
the handling of FACT events. The DrsCalibration processor for calibrating the
raw data has already been mentioned above.

Other processors included are more specifically addressing the image-analysis task:

• fact.data.CutSlices

This processor selects a subset of the raw data array for only a excerpt of the
region-of-interest (ROI).

• fact.data.SliceNormalization

As there is a single-valued series of floats provided for each pixel, this processor
allows for normalizing the values for the series to [0, 1].

• fact.data.MaxAmplitude

This processor extracts a float-array of length 1440, which contains the maxi-
mum amplitude for each pixel.

• fact.image.DetectCorePixel

This class implements a heuristic strategy to select the possible core-pixels of
a shower, that may be contained within the event.

In total, there exist about 100 FACT specific processor implementations (as of version
0.7.0 of the FACT-Tools library), which focus on data preprocessing, image cleaning
and feature extraction. We abstain from a detailed listing of all processors and
instead point the reader to [35] and upcoming documentation and publications of
the C3 project of the Collaborative Research Center SFB-876.

5.2.2.3. A Standard Preprocessing Chain

With the processors implemented in the FACT-Tools, the standard analysis chain of
the FACT project consists of about 70 different processors. At the current stage of the
project, this chain is in active development. It features a single streams process, which
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5.2. FACT-Tools: Processing Telescope Data with streams

aligns the single execution of various processes as indicated in Figure 5.12. This trivial
setup is used by the domain experts for exploring an optimized preprocessing for their
gamma detection analysis, but allows for a more parallelized setup by dividing the
complete processing in multiple processes at a later stage. In Section 5.3.2 we discuss
the requirements of computing resources for the different processing steps.

source

Telescope Data

Figure 5.12.: The standard analysis chain of the FACT Tools (big picture).

5.2.3. Integrating WEKA for Online Classification

As part of the abstract data flow design, we integrated the MOA and WEKA machine
learning libraries as modules into the streams framework. The streams-moa and
streams-weka packages implement wrappers that allow for directly adding learners
from each package to XML specification as if they were regular streams processors. We
discussed the integration of classifiers and the wrapping of data items into instances
in Section 3.4.2.
Though especially MOA is geared towards online learning, the setting of the telescope
data demands more for an online application of models: The data that is used for
training the models, is synthetically generated and available as a batch data set.
Typically, the size of that data is also comparably small, once the features for training
have been extracted (the majority of the data volume is embodied in the raw data).
A crucial aspect for the application of machine learning models, e.g. for the gamma-
hadron separation or the energy-estimation step, is the fact that only features, which
are extracted online are suitable for use in such models. Features that rely on an
overall property of a data set, e.g. a normalization with respect to the sum computed
over a set of instances, will not match the online application requirements.

Mapping Keys to Features by Convention

Similar to the streams-moa integration, we keep the same convention rules for map-
ping data items to training instances:

1. Only numeric and string attributes are regarded as features for learning;

2. Attributes, which have a name starting with an @ character are regarded as
special attributes and will not be used as regular features;

3. The class label of an instance is assumed to be stored in attribute @label.

The default behaviour can easily be changed in the XML specification, e.g. by using
the label parameter for a classifier, to use a label attribute different than the default.
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Training a WEKA Classifier

The two user-functions streams.weka.Train and streams.weka.Apply have been
implemented, which can be used to incorporate the training and application of
WEKA models directly within a streams data flow. This ensures, that the same
preprocessing setup can be used to feed the training of the model as well as its later
application. The Train function collects a batch of user-specified instances to build
its training data set. This is crucial as some features such as nominal type features re-
quire additional meta-data to be equal during training and model application. Upon
building the classifier, the Train function outputs the serialized model in addition to
the meta-data information about the attributes. In addition, its features parameter
allows for an easy wild-card selection of features that shall be used for building the
classifier. Figure 5.13 shows the XML setting of a process for training a random
forest classifier using WEKA within streams. In this example, all features but the
hillas:angle feature will be used for training. Using Java’s reflection API, any
options configurable for the selected classifier, are automatically mapped from the
XML attributes to the classifier instance (e.g. the numTrees option). The approach
directly supports any of the provided WEKA classifiers.

<process input="simulator:data">

<streams.weka.Train features="*,!hillas:angle"

classifier="weka.classifiers.tree.RandomForest"

numTrees="100"

output="/data/random-forest.weka" />

</process>

Figure 5.13.: Training a WEKA classifier specified in XML.

5.2.3.1. Model Application for Classification

The corresponding Apply function is shown in Figure 5.14. It requires a modelUrl

parameter that holds the location of the serialized model. The streams framework
automatically handles different URL types, such as file, http or classpath resources.
This eases the sharing of processes and their models as well as a distributed execution
of multiple instances of the analysis chain with a global, shared separation model.

<process input="telescope:data">

<fact.data.DrsCalibration calibrationFile="file:/data/calib.fits" />

<fact.image.ImageCleaning energyThreshold="2.45" />

<fact.image.features.HillasParameters />

<streams.weka.Apply modelUrl="http://sfb876.de/rforest.weka" />

</process>

Figure 5.14.: The XML correspoding to the pipeline of the previous figure.
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5.3. Data Analysis with the FACT Tools

We tested the use of WEKA within the overall processing chain of the FACT tele-
scope as modelled with the FACT-Tools. The main focus in our analysis is put to
the detection of gamma particles, i.e. the gamma-hadron separation. The data we
used in the experiments was generated by Monte Carlo simulations using the COR-
SIKA software. The dataset contains 139333 shower events, of which 100000 events
stem from gamma and 39333 events from proton (hadronic) particles. The events
are simulated in raw data format and passed through the standard cleaning and fea-
ture extraction chain using the FACT-Tools, resulting in 101 features suitable for
separation. For the experiments, we focused on the following aspects:

1. Predictive performance of the classifier for gamma-hadron separation;

2. Improvements of separation by re-organisation of the data flow;

3. Throughput performance of the overall processing chain.

5.3.1. Gamma/Hadron Separation with Machine Learning

An interesting note for the performance comparisons is the optimization criterion
used to assess the classification. Whereas the traditional machine learning community
often uses precision, recall or accuracy for grading classifier performances, the physics
field is more interested in a pure sample of gamma ray induced events. A well-
accepted measure in this area is the Q-factor defined as

Q =
εγ√
εp

with εγ =
Ndet
γ

Nγ
and εp =

Ndet
p

Np

where εγ and εp represent the gamma efficiency (number of gammas detected divided
by total number of gammas in dataset) and the proton or hadron efficiency respec-
tively. The Q-factor aims at assessing the purity of the resulting gamma events. In
addition we also provide the significance index [70].
Using the basic Hillas parameters and an additional set of features build up on
these, we tested different classifiers: Random Forests, an SVM implementation and a
Bayesian filter. Table 5.2 shows the classification performance for these approaches.
Each classifier was evaluated with a 10-fold cross validation and optimized parame-
ters: The Random Forest was trained with 300 trees with 12 features and a maximum

Classifier Q Factor Significance Accuracy Precision

Random Forest 4.796± 0.178 65.55± 0.358 0.969± 0.0021 0.959± 0.0029

SVM 4.013± 0.916 60.227± 1.859 0.953± 0.010 0.936± 0.025

Naive Bayes 2.267± 0.0609 51.65± 0.503) 0.841± 0.0048 0.864± 0.0062

Table 5.2.: Performances for gamma/hadron separation with different classifiers.
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depth of 25. The SVM used an RBF kernel with kγ = 0.014 and C = 10. The
training set in each fold was balanced. For an improved purity, the classification is
generally weighted with the confidence provided by the classifier. Those confidence
cuts are applied by physicists to obtain an even cleaner sample as is crucial for
all subsequent analysis steps. All gamma predicted elements with a confidence less
than some threshold are regarded as proton predictions. Though this increases the
number of missed gamma events, it eliminates false positives, which may tamper
with subsequent steps such as energy estimation. Figure 5.15 shows the impact in
the Q-factor and overall accuracy for confidence thresholds with a random forest
classifier.
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Figure 5.15.: Refined selection by confidence cuts, which improves the purity at the
cost of missed signals, reflected in a decreased recall, which diminishes
the accuracy.

Signal Separation with Local Models

A parameter describing the “intensity” of the shower is size, which incorporates the
area of the ellipse and the voltage levels of the covered pixels. This parameter highly
correlates with the energy of the original particle [20] and allows for a grouping
of events based on their energies. We investigated the separation performance of
Random Forests, when trained on disjoint datasets defined on a partitioning using
the log10(size) feature. As the simulation of higher energy events is computationally
more expensive, the data set provided to us did not include a uniform part of events
for each energy/size bin. The left hand part of Figure 5.16 shows the amount of
gamma and hadronic shower events for each of the bins. We therefore limitted this
experiment to bins of log10(size) which had at least 10.000 events for testing, which
left the bins from 2.0 to 2.5.

The right plot in Figure 5.16 shows the Q-Factor for models trained and evaluated
on separate bins (green) and the global model trained over data from all bins (blue)
without any confidence cuts applied. The figure provides the Q-Factor averaged over
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Figure 5.16.: Distribution of gamma and hadronic events over size range (left) and
performance of local models per bin vs. global model (right).

a 10-fold cross validation, the light green area shows the standard deviation. We
purposely did only look at the Q-Factor for this comparison, as it is the criterion
mostly used in that application domain.

5.3.2. Throughput Performance of the FACT-Tools

The FACT telescope records at a rate of 60 events per second, where each event
amounts up to 3 MB of raw data, resulting in a rate of about 180 MB/s. Figure
5.17 shows the average processing time (milliseconds) of the user-functions for the
complete analysis in a log-scale. The first two blocks of functions reflect the bulk of
raw data processing like the data calibration, correction and interpolation of broken
pixels. Ellipse fitting and other feature extractions which are input to the classifica-
tion step are shown in bright green ( ). Interesting to note is, that the bright green
processors all focus on computations or model application of trained models based
on the high-level features and not the raw data.

The improved separation by the use of local models suggests a split of the data
stream. Though the size feature is only available at a later stage in the process,
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5. Analyzing Telescope Data

it highly correlates with properties available directly after the data calibration (2nd
user function) has been applied. In combination with the local models this allows
for a massive parallelization by data stream grouping, when deploying the process in
distributed environments such as Apache Storm. The generic abstraction provided
by streams already allows for a direct mapping of the XML process specification to
a Storm topology. However, with the data provided by the FACT telescope and
the standard preprocessing chain that is currently being used, the process is able to
handle the full data rate of the telescope on a small scale Mac Mini desktop system.
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5.4. FACT in the Context of Map&Reduce

Although the analysis of telescope data is geared towards an online process, the
experiment stores its data in a large offline archive, adding about 1 TB of data to
the archive each night. This data is intended to be preserved for re-running analysis
processes at a later stage, that include different preprocessing steps based on new
insights of the data.
As part of the platform independence feature of streams, we here explore the appli-
cability of streams processor functions within large scale batch processing with the
Apache Hadoop system for Map&Reduce [54]. The overall goal is to provide an ab-
stract way of modelling data analysis processes with a full re-use of the existing set
of processors. The streams-mapred package integrates all the features of the streams
framework into an XML-based batch-job specification of Apache Hadoop jobs.
In the following, we will outline the general architecture and paradigm of Apache
Hadoop and its integration in to the streams concepts. Based on this conceptual
framework, we explore the speed-up gained from parallel processing of FITS data,
obtained from the FACT archive, on a cluster of several Apache Hadoop nodes.

5.4.1. Distributing Code to Data

The core concept of the Map&Reduce paradigm is based on a distributed storage and
processing of data. The data is stored in file blocks, which are distributed among
multiple machines. Instead of transmitting these blocks from a central computing
node for processing, the actual program code is copied to the location of the blocks
and executed locally and in parallel on each of the storage nodes. Figure 5.18 il-
lustrates this scheme of computation, by applying a function f to a collection of
blocks in parallel during the map phase. The results are sorted and reduced by some
function

∑
in the reduce phase.
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Figure 5.18.: The principle of code-to-data processing: f is transmitted to all nodes
and executed there, locally.
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Each copy of the program code computes some intermediate results on the blocks
it processes. The final outcome of the overall job then consists of the merged inter-
mediate results. This concept requires two essential components of a Map&Reduce
cluster system:

(1) A distributed storage among multiple nodes;

(2) a job scheduler to manage the execution of job copies on these nodes.

The distributed storage realizes a file system that is spanned across multiple machines
and ensures data integrity as well as tolerance over system node failures. This fault-
tolerance is achieved by maintaining multiple copies of each file block on different
machines, which allows for recovery of blocks as well as optimized routing of the
computing to the “nearest” copy of a file block. “Nearest”, in this context, can
likewise be the optimal location with regard to other, dependent blocks of a file. The
Apache Hadoop system provide the Hadoop Distributed File System (HDFS) as its
distributed storage components.

5.4.2. Storing FACT Data in HDFS

The HDFS system provides a transparent interface to a file system that may be
distributed among a huge number of nodes. The files are stored in preallocated
blocks, which typically have a size of 64 megabytes – similar to inodes of a regular
filesystem. In more recent versions of the Hadoop Filesystem, this block size can
be varied for each file. When a file is written to the HDFS, it will be split into
blocks according to the block size. Based on the replication factor, defined for the
filesystem (or the file), copies of each blocks are stored on additional nodes of the
cluster. The blocks define the smallest amount of data that can be fed to a mapper
function. In the best case, a file contains data in a format that is splittable, i.e. which
can be partitioned, and the mapper can process each of the resulting block by itself,
allowing for a maximal use of parallelism.
Figure 5.19 shows the splitting of a file into blocks and the distribution of these
blocks among the cluster node. Each block is stored with two additional copies, i.e.
A0 has copies A′0 and A′′0 on other nodes. If the file is splittable, each block can be

File A0 A1 A2

A0

A′1

Storage Node 1

A1

A′2

A′′0

A′1 A′′2 A′0 A′′1

A2

Storage Node 1 Storage Node 2 Storage Node 3 Storage Node 4

Figure 5.19.: Storage of a file in the Hadoop Distributed File System.
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processed in parallel, so that the complete file is processed by three workers. If the
file is not splittable, it can only be processed as a whole, which can be performed by
storage node 3 or 4, as only these nodes have full local access to all required blocks
of the file.

In some bad cases, no node in the cluster exists, that has access to the complete set
of blocks of an unsplittable file. In this case, the missing blocks are copied to the
node, which already has the largest subset of blocks for that file. As soon as the
blocks have been transferred, this node can start the job on this file.

5.4.2.1. The FITS Data Format in HDFS

Data recorded with the FACT telescope are stored in files using the FITS format
as described in [117]. The FITS files, that are produced by the FACT telescope,
typically range from 5 to 10 gigabytes in size, compressed using the popular gzip
compression tool. The FITS format is a header-based file format, outlined in Figure
5.20 below. Each file starts with one or more header blocks of 2880 bytes size. These
blocks define data fields and any following header blocks. The FACT data is stored
as binary table. The structure of the table is defined in the extension header, which
lists the fields and their data types, that are following the header in a large binary
chunk.

When storing a FITS data file of 5 gigabyte size to the HDFS, it will be broken into
about 80 blocks of size 64 megabytes. As the HDFS does not provide any guarantees
to ensure that any of its nodes does store all the blocks belonging to a file, processing
of the complete file is likely to require blocks to be copied over the network. This
approach is also limited to a file parallel execution of the processing, i.e. does not
speed up the processing of a single file.

Even though the general processing of the events strongly imposes a disjoint and
parallel execution, the FITS file format makes a direct storage of FACT data in
the HDFS inefficient. Two properties are hindering the FITS files to be properly
splittable for maximal parallelization: (a) the use of a file structure requiring a format
header and (b) the mandatory use of GZIP compression, which by itself prevents the
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Figure 5.20.: The structure of a FITS file used to store raw data in the FACT project.
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splitting of files.
There exist other compression algorithms, which may be used to produce splittable
files. For example, the BZIP2 [134] algorithm allows for its compressed output files
to be split at some block borders and the blocks be decompressed individually.
To exploit the maximum performance of the Apache Hadoop Map&Reduce system,
we read the FACT data using the FACT-Tools and store the events in a splittable
form in blocks of predefined sizes. The FACT events are read into streams data items,
as described in Section 5.2.1, and will be serialized into a binary form for storage
using a serializer. This results in a sequence of self-contained binary object blocks
(BOBs) which can be concatenated into files. Each of the binary blocks starts with
a magic number, i.e. the 8-byte sequence 0xdeadbeef, which makes seeking for the
next block within a file possible. Figure 5.21 outlines the conversion of FITS data to
the BOB file format.
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FITS Data File Binary Object Blocks (BOBs)

Figure 5.21.: Converting FITS data files to binary object blocks (BOBs).

The default BOB format uses the standard Java object serialization and compresses
each binary block using GZIP compression. By compressing each block individually,
the overall file format remains splittable at the block boundaries, marked with the
magic number byte sequence. The additional overhead in file size is small compared
to the original GZIP compressed FITS file, requiring about 0.36% additional space,
for a FITS file of 4 GB:

BOB File 3831.6 MB

FITS File 3817.5 MB

Different choices for the serializer implementation allows for varying the file format or
using block-wise compression. By varying the block size, we can evaluate a reasonable
trade-off of block size and number of files, which is likely to imply a startup-overhead
by the mapper processes.

5.4.3. Mapping streams Functions to Apache Hadoop

As pointed out in Section 5.4.1, the batch jobs of Map&Reduce consist of the ap-
plication of a function to multiple elements (map step), and the aggregation of the
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5.4. FACT in the Context of Map&Reduce

resulting outcomes to a final result (reduce step). Similar to the streaming engines,
surveyed in Chapter 2, the Hadoop system comes with a proprietary API to imple-
ment custom mapper and reducer classes, that are carried out during job execution
within the cluster. With the focus on code re-usability, defined as one of the key
criterions of this thesis, we aim at an embedding of the existing streaming func-
tions, implemented by the domain experts, into the concepts of the Apache Hadoop
system. Providing such a mapping, allows for the physicists to gain the power of
massive parallel batch jobs, without any re-implementation or specific knowledge of
the Map&Reduce batch execution.

Starting with the concepts already introduced for streams, we provide a Map&Reduce
job definition in XML, which follows the sample principles as outlined in Chapter
3. By the data abstraction, defined on top of the streams data items, these XML
specifications directly support the same Java implementations for streaming functions
as the original streams framework.

5.4.3.1. Embedding Streaming Functions into Mapper and Reducer

The basic idea for embedding the streams functionality into Hadoop is to define each
block as a bounded stream. Then, each mapper and reducer becomes a process,
connected to its input block. As the records passed through the mapper and reducer
are all represented by streams data items, this allows for a direct embedding of
streams processors as outline in Figure 5.22. In this figure, we see a mapper, which

Input Blocks Intermediate Results Output Blocks

processor 1

processor N

Mapper

processor 1

processor N

Reducer

Figure 5.22.: The embedding of streams into the Apache Hadoop framework by im-
plementing mappers and reducers as streams processes.

is essentially a streams process, applying inner processors to all items read from its
associated input block. Special processors, so called collectors, produce (key, item)
output for the intermediate results. These results are grouped by their key value
and a reducer process is created for each of these groups. The items for each group
are fed to this reducer, which applies its inner processors, and a collector may then
output the final results.

The key to the speed-up of Map&Reduce jobs, is the parallel instantiation and exe-
cution of the mapper, as well as the reducer (if possible): each input block in Figure
5.22 is connected to a separate instance of the depicted mapper.
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5. Analyzing Telescope Data

5.4.3.2. Defining Hadoop Jobs with streams in XML

Based on the aforementioned embedding, we use an XML specification of batch jobs
for the Map&Reduce system. The XML requires to define the inputs, an output path
and the mapper and reducer elements. These are specified in the parent job element
of the definition as shown in Figure 5.23. The job defines a mapper with domain
specific processors and a generic collector function. The reducer simply sums up all
numeric columns, grouped by the key value.

<job>

<input path="/synthetic-10k/" />

<output path="/output-synthetic-10k/" />

<mapper>

<thesis.chapter5.synthetic.DrsCalibration />

<thesis.chapter5.synthetic.ArraySum outkey="array:sum" />

<thesis.mapred.output.Collect key="%{data.day}" columns="array:sum" />

</mapper>

<reducer>

<thesis.mapred.output.Sum groupBy="key" columns="*" />

</reducer>

</job>

Figure 5.23.: A Map&Reduce job defined using the XML of streams-mapred.

In its current state, the streams-mapred project provides only a small collection of
generic collectors and aggregators. However, these already allow for combining the
output of domain specific processors, applied to a huge number of processed items.

5.4.4. Performance Evaluation of streams-mapred

We evaluated the performance of our streams-mapred approach using synthetically
generated data that closely mimics the data produced by the FACT telescope. The
evaluation environment is shown in Figure 5.24 and consists of 6 virtual servers,
each of which act as Hadoop data node and YARN node manager. The first node

HDD

HDD

cb00.virtual

cb05.virtual

HDFS Name Node
YARN Resource Manager

HDFS Data Node

YARN Node Manager

HDFS Data Node
YARN Node Manager

HDD

HDD

cb01.virtual

cb02.virtual

HDFS Data Node
YARN Node Manager

HDFS Data Node
YARN Node Manager

HDD

HDD

cb03.virtual

cb04.virtual

HDFS Data Node
YARN Node Manager

HDFS Data Node
YARN Node Manager

Figure 5.24.: Hadoop Cluster using Virtual Servers (Xen).
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additionally acts as primary namenode and YARN Resource Manager. The virtual
server instances, are each equipped with a separate real hard disk controller, with
a 1 TB disk attached to it. The basic hardware machines are older AMD Opteron
2220 CPUs, each equipped with 32 GB of main memory.

5.4.4.1. Synthetic Data and Workload

We are primarily intestered in testing the embedding of streams into the Apache
Hadoop framework. To demonstrate the performance gain, we generated a synthetic
dataset, that mimics the format of the real FACT data. The synthetic data consists
of events, each holding about 10k sampled double values. The workload defined in
the XML in Figure 5.23 is used as the base process: it applies a calibration step,
similar to the DRS Calibration outlined in Section 5.2.2.2, and computes a sum over
the resulting samples. The output is grouped by the day of the event and the overall
sums are emitted for each day. The synthetic data set consists of 100 files, each of
which contains 10000 events, and has a size of about 80 GB.

This very closely resembles the typical workload of a real physics batch-job for com-
puting histograms of extracted values from a large set of data.

Outline of a Map&Reduce Execution

For visualizing the parallelism obtained from executing the job as a Map&Reduce
batch job, we recorded the times of each individual mapper and reducer execution.
Figure 5.25 shows the alignment of the multiple instances executed on the cluster
nodes. As can be seen in this Figure, the complete processing of the 80GB synthetic

cb00.virtual

cb01.virtual

cb02.virtual

cb03.virtual

cb04.virtual

cb05.virtual

Startup Map Reduce

00:00 min 11:51 min

Figure 5.25.: Execution of the Map&Reduce Job defined in Figure 5.23.

data required about 12 minutes. Some map task are much shorter than others, which
is mainly due to data locality: depending on the distribution of the file blocks, some
blocks may need to be transferred from remote machines for completely processing
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5. Analyzing Telescope Data

a file. As we will see in the following, enlarging the block sizes leads to a tendency
of data locality, which minimizes the volume to be sent over the network.
The contrasting approach stems from the client-server idea, where a central storage
is used to provide the data and a set of computing nodes accesses the data simulta-
neously for parallel processing. Despite the tremendous increase of network I/O, this
approach is directly limited to the reading throughput of the disk controllers of the
central storage. The distributed implementation, as provided by Apache Hadoop,
clearly benefits from parallel disk access on multiple machines.

5.4.4.2. Performance Improvements with Varying Block Sizes

For an evaluation of the block sizes and the impact on data locality, we generated
the synthetic data set as described above and stored it in the HDFS system using
different block sizes. The generated data files each contain 10000 events, each event
with a number of 10240 sampled values stored as double precision floats, resulting in
file sizes of about 740 MB.
To the one extreme, a blocks of size 80 MB have been used, which results in 10 blocks
for each file. In case of the largest tested block size of 768 MB, each file only spans a
single block, which ensures that the mappers are only facing local data. Figure 5.26
shows the results of the identical workload job applied to this synthetic data with
different block sizes. As can be seen in this figure, the larger block sizes – leading
to more data locality – clearly provide better performance as the amount if I/O is
decreased.

10:00 min

5:00 min

80
M

B

128
M

B

256
M

B

512
M

B

768
M

B

Figure 5.26.: Varying block sizes of storage for an identical data set and
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5.5. Summary

In this chapter we demonstrated the use of streams in a real-world application. While
providing a stable, yet easy to handle prototyping environment to end-users, the inte-
gration aspects of external libraries such as WEKA in this case, produce a powerful
tool for a declarative data analysis process, which we aimed for in our evaluation
criterion (E.4) Extendability.

The streams Framework within the Physics World

An interesting note in this use-case is the history in development, the FACT-Tools
have undergone: We (computer science group) started the implementation of the
viewer and the input implementations for reading FITS data with streams, showing
to the physicists in parallel, how they can use streams to produce their own process-
ing chains. After a short time, the physics department started porting all existing
proprietary code to streams processors, basically switching the complete processing
to using streams. The FACT Tools have been presented at various conferences of the
Deutsche Physikalische Gesellschaft (DPG) in 2014 and 2015 as well as the Interna-
tional Cosmic Ray Conference (ICRC) in 2015. The CTA project is a joint effort to
create a collective of Cherenkov telescopes around the globe. This will require the
analysis of multiple data sources from various telescopes. The FACT Tools will be
presented as a possible analysis modelling tool for a Cherenkov telescope at the CTA
General Meeting.
The majority of the over 100 very application specific processors has been imple-
mented by physicists. Yet, by extending streams with generic modules like streams-
weka, they inherit the flexibility to incorporate machine learning methods into their
analysis without writing any code. This directly supports our evluation criteria (E.2)
Code Re-Use, and (E.3) Abstract Modelling, which we specified in Section 1.2.3.

Performance and Scalability

As the implementation of the application specific processors does not use any non-
distributable third-party dependencies, the execution of the specified data flows is
still not bound to any execution engine ((E.1) Platform Independence). We tested
this, by running FACT analysis chains on Apache Storm using our streams-storm
mapper package.
We also demonstrated the Platform Independence and Code Re-Use by providing an
XML based modeling of batch jobs for the Apache Hadoop Map&Reduce plaform.
This allows for large amounts of archived data to be processed using the already
existing domain specific streams functions without code adaption. It enables the
physicists to re-process large amounts of archived data based on new insights.
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Chapter 6

It’s not easy to juggle a pregnant wife and a troubled child,
but somehow I managed to fit in eight hours of TV a day.

– Homer Simpson

Video Stream Analysis

The modern TV landscape is in a process of fundamental change from classical broad-
casting using a synchronized radio signal, to dedicated viewership connections on the
basis of IP networks. Every popular TV station today offers portals to access and
watch the program on desktop PCs or mobile devices. In addition, IP-TV service
platforms have emerged, which capture the broadcasted signal and provide it as
transcoded live streams via their IP-TV content network. Examples for such services
are Zattoo, Magine TV, Wilmaa or Nello. Within Germany, the big telecommuni-
cation providers Deutsche Telekom, 1-und-1 or Vodafone started providing IP-TV
services, as well. The trend towards IP-based TV (IP-TV) offers selective and indi-
vidual on-demand video content for consumers, while providing a platform for highly
individualized advertisement for the marketing industry.

The whole market of TV productions and marketing is radically driven by the number
of viewers and their division into target groups, characterized by gender, age and
regional origin. For the past decades, the viewing figures for TV programs have been
determined on the basis of a small number of selected households, which were used to
extrapolate the viewing behavior of the overall population. This approach is costly
and only provides very coarse figures on a blurred timescale. The audience rates in
Germany are based on about 5000 test households, covering the viewing behavior of
approximately 10500 viewers. IP-TV platforms in contrast cover the behavior at the
individual or small-group level and provide viewing counts in real-time.

In light of this development of the technical basis for IP-TV, the so-called second-
screen has become another focus of TV broadcasters: mobile applications and social
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6. Video Stream Analysis

networks are integrated into the live-video feeds. Popular shows crossfade Twitter
hashtags to encourage discussions among the viewers in social networks or even direct
feedback with the on-going show. The coupling of sentiment analysis [39, 147] with
second-screen interactions may uncover additional insights on advertising and TV
program content.

TV Viewing Analysis

For the data analysist, this setting poses a wide range of challenges to best charac-
terize the watching crowd, find the right sub groups for advertising or recommending
upcoming shows that best fit a users preferences as reflected by the viewing data.
This behavioral data is provided as a continuous stream of low-level user events (join-
ing a channel, leaving a channel), which are associated with a timestamp and the
user identifier:

time:1394343400, user:3384, channel:ZDF, action:join

To make the best use of this data, it needs to be enriched with additional user infor-
mation, such as joining the gender and age data in accordance to the user ID. The
time and channel allows for matching electronic program guide information (EPG),
such as title, genre or actors of the show, that is being broadcasted on that channel at
the given time. Further querying databases like the internet movie database IMDB
provides actor names and user ratings for the show. Integrating this external informa-
tion is key to deriving meaningful user profiles, that may reveal favorite actors, genres
or typical times at which a user watches a particular channel. All this information
can then serve as a basis for TV recommendations and user characterizations.

Some information may then still not be present in the data: the programm guide
information is settled at the program segmentation of the schedule, providing no
indication of advertising shown to the audience. This information, in turn, is crucial
to the marketing industry, as it provides the exact number of users, which actually
watched a specific advertising spot. A fine grained segmentation of the video stream,
at the level of advertising spots, is therefore another piece of the puzzle.

Big Data Analysis using the streams Framework

This setting of different, heterogeneous high-volume streams of data (user events,
video signal), that needs to be combined with non-streamed information such as
electronic programm guide (EPG) data, poses the kind of challenges that are inher-
ent to Big Data Analytics. Within the EU project ViSTA-TV, we investigated the
combined analysis of

• real-time user behavior data,

• streaming video content, and
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• electronic program guide information,

using the streams framework as the underlying streaming platform. For the ViSTA-
TV project, especially the abstract modelling and integrative features of streams
has built the basis for a Big Data architecture in this application domain. Video
streaming data as well as viewership events have been provided by Zattoo, a provider
for IP-TV, with a collection of more than 200 video channels.
Within this chapter, we demonstrate the use of streams for processing real-time video
data using the streams-video package (Section 6.2). This allows for modelling fea-
ture extraction data-flows, which emits high-level features from low-level video data,
which, in turn, may serve for video segmentation or the identification of advertise-
ment spots, as outlined in Section 6.2.3. In Section 6.3, we focus on the aggregation
of information from multiple data streams. Based on the data-flow abstractions of
streams, we show the partitioning of the overall application into loosely coupled com-
ponents, which allows for flexible extensions of the data-flow. With the streams-esper
package, which has been a joint effort with Thomas Scharrenbach, we integrate the
complex event processing engine Esper [108] into the streams framework for rapid-
prototyping of statistical streaming queries. We summarize this chapter in Section
6.4.

6.1. Analysis of Heterogeneous Data

The combined processing of heterogeneous data sources is one of the cornerstones
of the Big Data era. Information from different sources and of different type needs
to be consolidated to extract the most valuable insight for businesses or scientists.
In addition to the different formats, sources may emit data at diverse data rates,
requiring a proper alignment of the data to produce the desired results.
A typical approach to tackle the different types of data is to find an intermediate
level of representation, that can be consumed by analysis tools or machine learning
algorithms to derive charts, reports or prediction models. We will refer to this inter-
mediate representation as the feature level. This feature level consists of a row-like
type of items, where each attribute of an item, that is of a supported type, represents
a feature that can be fed to machine learning tools. In light of the integration of
WEKA and MOA, which we described in Sections 3.4.2 and 5.2.3, this amounts to
numeric attributes and string attributes. As outlined in Chapter 5, the transfor-
mation of data into such a feature representation is one of the crucial steps for the
data analysis cycle. The resulting feature streams from different data sources need
to be combined and fed into the data analysis tools at hand. Figure 6.1 depicts this
scheme of joining features from different sources. Depending on the analysis require-
ments, this resulting representation is a stream by itself that needs to be analysed
continuously. The joint sources may be streams as well as static data, such as meta
information stored in a database.
Besides the granularity of the feature representation, their chronological progress
needs to be synchronized. A solution is the decoupling of streaming applications
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6. Video Stream Analysis

by using static databases and lookup services to merge information that arrives at
different speeds, as we will show in Section 6.3.2.

45.3 183.5 219.7 9.12

5.3 3.5 2.1 8.2 2.8 7.1

+

45.4 183.5 219.7 9.12 5.3 3.5 2.1 8.2 2.8 7.1

Joint Feature Representation

Feature Stream Feature Stream

Model
Building

Figure 6.1.: From raw data to a joint feature level representation.

6.1.1. Combining Data in IP-TV

The ViSTA-TV project is an example for the aforementioned challenges, as it relies
on the combined processing of video data, user-behavior events and static information
from external databases. Video data and user events need to be refined to a level
that allows their combined analysis in a stream. Further information on the program
from external EPG databases need to be joined to enrich the continuous stream
of behavior data. Figure 6.2 shows the streaming architecture of the ViSTA-TV
project and its connected sources of data. The basic event stream of user actions is
aligned with features from video content and enriched with data from the program
guide database, so that the user behavior can be explored in relation to editorial
video content information. In addition to the data sources, that are part of the
ViSTA-TV streaming architecture, the social media integration plays an important

Streaming Architecture

Video Stream

User Events

EPG Data

User

Shows Adverts
Realtime Recommendations

Data Enrichment

Figure 6.2.: The heterogeneous data streams and sources that need to be aggregated
for solid viewership characterization within the ViSTA-TV platform.
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role and is often referred to as the second screen. Aligning video information with
user demographics is then paired with additional features that may for instance be
extracted from Twitter messages.

6.1.2. Heterogeneous Data in Physics

Like in the ViSTA-TV use-case, the FACT project outlined in Chapter 5, bases its
overall analysis on multiple different sources. The telescope data described in the
previous chapter is the core data stream that needs to be processed. Secondary to the
raw camera data of the telescope, a stream of so-called slow-control data is recorded,
which includes operational parameters, voltage thresholds, temperatures of various
components and other information that affects the telescope, but does not change
rapidly.
Additional external information is gathered from wheather stations for cloud moni-
toring to provide crucial aspects on the data quality that affect the operation of the
telescope. As an example, different all-sky cameras have been mounted next to the
telescopes of La Palma, which provide an optical vision of the night sky background.
Automatically analysing this information to determine the cloudiness is a major step
towards improving data quality during the envisioned automatic operation of the
telescope. The screenshot in Figure 6.3 shows the image of an all-sky camera, with
a region of clouds in the upper right area. The image information is updated in in-
tervals of 1-30 seconds, whereas the camera data pushes high-volume information in
a continuous stream. The slow control data is available in various update intervals,
depending on the sensors queried.

All Sky Camera

+ +

Camera Data

Slow Control Data

Sky Camera

Combined Data Processing

Figure 6.3.: Screenshot of the FACT all-sky camera at night time.

The automatic analysis of the all-sky camera output is a complete task by itself.
The result will need to be integrated into the overall system for a fully automated
operation of the telescope.
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6. Video Stream Analysis

6.2. Processing Video Streams with streams-video

Video signals are in a natural perception provided as streaming data. Technically,
with the general format of 25 frames per seconds (fps), a video stream consists of a
sequence of still images (frames) that follows a constant rate of 25 images per second.
These images are usually encoded into a compressed form, e.g. as provided by the
MPEG (motion jpeg) standard or encodings such as H.264 [123]. These encodings
convert the series of still images into data streams with a constant rate of (partial)
frames. Figure 6.4 shows the different levels at which video content can be inspected.
The exact levels are not fixed. Shot detection, for example is performed between the
frame- and the scene-level, which makes room for an intermediary shot-level.

Bitstream Level

Frame Level

Scene Level

Program Level

Figure 6.4.: The different levels of granularity for video analysis.

6.2.1. Reading Video Streams

The streams-video package is a collection of input implementations and processors,
that allow for processing and mangling of video streams at the frame level. In addition
to the inspection of frame data, the package also provides access to the raw audio
information, if available. The streams-video library is not providing any encoding or
decoding algorithms and relies on external software to convert raw video data into
streams of decoded images and audio chunks. For decoding video streams into the
MJPEG format supported by streams-video, the open-source ffmpeg [60] tool can be
used. Figure 6.5 shows the general data-flow for reading video feeds with streams.

streams

H.264
Video Signal

Video

Decoder

Audio/Video

Stream

Figure 6.5.: Decoded MJPEG image streams can be read and processed with the
streams-video package.
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The processing builds on top of the decoded MJPEG sequence, which is output by
the video decoding. Choosing this format to interface with the external decoding tool
allows for using a variety of different decoders. The processor implementations all
work on an abstract representation of the frame data provided by the streams-video
package.

6.2.1.1. Representation of Video Frame Data

All implementations for reading audio/video data within the streams-video package
provide content on a per-frame basis as the finest grade of resolution. The frames/im-
ages are represented by a custom stream.image.ImageRGB class, which stores the
frame data in a bitmap of RGB values. This abstract representation has been chosen
as the native Java classes for image processing are non-serializable and therefore can-
not be stored in a data item. The ImageRGB class is a wrapper for an int array that
provides direct access to each pixel value of the frame. The pixel values are aligned
in row order as shown in Figure 6.6. Each int value is a standard ARGB encoded
color. In addition to the pixel values, the ImageRGB class provides the width and

Row 0 Row 1 Row 2 . . .

Array of Pixel Values

Frame Image

Row 0

Row 1

Row 2

...

x

y

Figure 6.6.: Alignment of pixel values in row order.

height of the frame, which allows for accessing the pixel at position (x, y) as

p(x, y) = y · width + x.

The choice for the raw data access via the int array is performance oriented. Often
operations like substracting or comparing two images are required, which can be
performed by simultaneously iterating over two arrays instead of calling pixel-wise
lookup functions.

To benefit from the core Java API classes for image manipulation, the ImageRGB

objects can easily be converted to Java’s BufferedImage objects, which allow for the
complete set of graphical manipulations, as shown in the following example:

// create ImageRGB object from buffered image:

ImageRGB image = new ImageRGB( bufferedImage );

// convert ImageRGB to BufferedImage:

BufferedImage buf = image.createBufferedImage();
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Reading Video-Frame Streams

Given the basic data structure for frame images provided, we focus on the reading of
frame sequences from streams. For reading frames and audio samples, the streams-
video package provides the following stream implementations:

• stream.io.MJpegImageStream

• stream.io.GifImageStream

A typical frame-based output of the decoding process is the MJPEG format. This for-
mat consists of concatenated images, each of which is encoded using the JPEG com-
pression format. The MJpegImageStream continuously reads such an MJPEG stream
from some URL and provides a data item for each frame. The GifImageStream reads
frames from a stream of concatenated GIF images. For both implementations the
resulting data items contain the decoded bitmap image in an ImageRGB with addi-
tional attributes, such as width and height stored as key-value pairs in the item.
Table 6.1 shows a data item emitted by the MJpegImageStream implementation.
Usually the dimension of the frames within one video stream is constant, thus the
width and height attributes will not change. As can be seen in the table, the item
additionally provides the raw (compressed) size of the JPEG encoded frame in key
frame:size raw.

Key Value

frame:image stream.image.ImageRGB@48f0aab8

frame:width 568

frame:height 320

frame:size raw 7675

@stream video:data

Table 6.1.: An item that is produced by an MJpegImageStream.

Reading Audio Data

Analog audio recordings are digitized using puls-code-modulation (PCM). Samples are
taken at a fixed sampling rate, which depends on the quality required and typically
ranges from 44.1 or 48 kHz for DVD quality videos, to 96 kHz or even 192 kHz for
high definition formats. The PCM sampling turns the wave signal into a fixed-rate
sequence of amplitude values, that may be stored as 4-, 8- or 16-bit values, depending
on the desired quality. The audio information (samples) of a video stream is encoded
in a separate stream within the media container that is provided by e.g. the MPEG
format. Instead of storing the raw sampled amplitude values, the data is compressed
in some form. Typical encoding formats for audio data are the Advanced Audio Codec
(AAC), Dolby Digital (AC-3) or Ogg Vorbis. They allow for a compressed storage of
the pulse-code modulated samples.
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6.2. Processing Video Streams with streams-video

The streams-video package provides the stream.io.WavStream implementation for
reading audio data, which supports reading WAVE formatted audio samples. The
samples are stored in a double array, where each value stems from the interval [0,255].
Reading audio data requires a specified chunking of the samples into a stream of
data items: Providing each sampled value in a separate item leads to a massive
computational overhead. The chunking into blocks of audio samples is required to
align the audio with the corresponding video as shown in Figure 6.7.
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Figure 6.7.: Alignment of audio sample blocks to video frames.

This alignment can be solved by reading the audio samples for the duration of a single
frame into an array and storing that array within a data item. For the standard frame
rate of 25 frames per second, this duration is 40 milliseconds. For a typical audio
sampling rate of 44100 Hz this amounts to 1764 audio samples per video frame. For
other combinations of frame rates (29.97 fps, 30 fps) and audio sampling rates (48
kHz, 96 kHz), this needs to be adjusted. Table 6.2 shows a data item produced by
the WavStream implementation for a sampling rate of 48 kHz and a framerate of 25
fps, which leads to 1920 samples per frame. The item shown in this table contains
the raw data samples in the attribute wav:samples. Other information provided is
the time offset (wav:position) for this sample from the beginning of the stream,
in this case 0.16 seconds. For convenience, the minimum, maximum, average and
variance over this small window of 1920 samples is included in the item. The audio
data in this example is a chunk of an AAC encoded audio stream, that contains a
8-Bit PCM signal.

Key Value

wav:samples [126.0, 142.0, 138.0, ...]

wav:position 0.16

wav:blocklength 1920

wav:max 170.0

wav:min 94.0

wav:avg 127.494

wav:variance 0.0315

Table 6.2.: Content of a data item obtained from a WavStream object.
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6.2.1.2. Naming Conventions for Audio/Video Attributes

Following the naming of keys as provided by the stream implementations mentioned
earlier, all processors within the streams-video package use a colon separated hier-
archical naming convention, starting with frame to store extracted information in
a data item. Figure 6.8 shows the general concept of this naming convention. Any
attributes related to audio data are likewise embedded with the prefix wav. As can be
seen in the figure, the frame:image does not have any sibblings, as this attribute – by
default – holds the raw image object within the processors provided within streams-
video. The example also shows the frame:green:average attribute that contains
the average green value for a frame, as extracted by the AverageRGB processor.

Root

wav:

wav:samples wav:min wav:max ...

frame:

frame:image frame:red frame:green frame:blue

frame:green:average

Figure 6.8.: Hierarchical structure of attribute names (keys).

This hierarchical naming is not a strict policy and it is left to the user/developer, to
choose her own naming scheme, but it aims at providing some guiding convention.
With regard to the data flow and selection of attributes by their keys, it allows for
the use of wildcard selectors, which are included in the streams API as shown in
the example in Figure 6.9 below. The wildcard pattern frame:*:average in this
example refines the data item to only those attributes, that match this pattern.

<process input="...">

<WithKeys keys="frame:*:average">

<PrintData />

</WithKeys>

</process>

Figure 6.9.: Selecting average values for all color channels using the WithKeys pro-
cessor. The inner processor PrintData is provided with a cropped item.
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6.2.1.3. Processing Video Frames

The streams-video package focuses on a per-frame processing of video streams. With
the frame-level granularity of the streams, each processor is executing its process

method for a single frame. The package provides a collection of existing processors
that are dedicating to mangling single frames and extracting features, such as average
color values for the RGB channels of a frame, cropping frames to a specified region,
or the like. The processors within streams-video are organized in two packages:

• stream.image: processors for image manipulation (crop, difference);

• stream.image.features: processors to extract features from images.

In the following, we will exemplarily describe a few of the image processors provided
in the video package. The full catalogue of processors is listed in Appendix E.

Extracting a Subimage: stream.image.Crop

In some cases, the full-fledged image is not needed for further analysis. The Crop

processor allows for extracting a specified rectangle from an image, producing a new
ImageRGB object from that subregion. The size of the rectangle is specified by its
width and height. The location is determined by the x and y coordinate parameters:

<process input="video">

<stream.image.Crop width="137" height="112" x="824" y="20" />

</process>

Figure 6.10.: Definition of a Crop image processor in XML.

The origin (0, 0) is located in the upper left corner of the original image. Figure
6.11 shows the orignal image with a specified rectangular subregion and the resulting
subimage. Selecting subregions of an image may be applicable for detecting the TV
station logos or fixed subviews for passing objects as we will see in Section 6.2.2.

(0,0)

(0,0)

Figure 6.11.: Cropping a subimage from a larger picture.
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Detecting Changes: stream.image.DiffImage

As videos are sequences of images, it is sometimes interesting to find the difference
between consecutive frames. A common technique is to substract two frames from
each other in a pixelwise manner. The DiffImage processor computes the differencce
image of the current frame and its predecessor. Figure 6.12 shows the scene of a soccer
game in the original view in the upper image and the difference image of the upper
frame image with its predecessor. The moving ball is highlighted by an red circle
and appears at the current and its previous position in the difference image. Based
on this information, the direction of the ball can be derived, which is indicated by
the arrows. Some of the players are moving more slowly, whereas the red player on
the bottom and the right-most player show more a rapid move.

Original
Image

Difference
Image

Figure 6.12.: Image and result of the DiffImage processor applied to a soccer-game
video provided at the DEBS 2013 Grand Challenge. The image is a
cropped image from the original video.

The image is a nice example for identifying moving objects from still background.
Based on the difference image, the pixels that have changed over the previous image
can be clustered and each cluster be mapped to a moving player.

The process definition in Figure 6.13 shows a process that displays the frame im-
age after the computation of the difference image. The output parameter of the
DiffImage processor is used to store the difference image in another attribute.

<process input="video">

<stream.image.DiffImage output="frame:difference" />

<stream.image.DisplayImage image="frame:difference" />

</process>

Figure 6.13.: Application of DiffImage in a process.
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6.2. Processing Video Streams with streams-video

Image Manipulation: stream.image.ColorDiscretization

The processors introduced so far, all used the full color palette of the frame images.
The colors for each pixel are encoded as RGB value with a 1-byte value for each
color channel. The discretization of color channels is an important pre-processing
step to various image related tasks, such as border detection or object classification.
The processor ColorDiscretization implements a binning of colors for each color
channel, given a user-specified number of bins (or four bins by default). Figure 6.14
shows the discretized color channels of the same frame that was shown before.

Discretized
Colors

Figure 6.14.: The DiscretizeColors processor applied the soccer-game video.

6.2.1.4. Processing Audio Data

The audio data is provided as batches of digitized samples. For the streams-video ver-
sion 0.2.5, at the time of writing of this thesis, the support for predefined audio data
processors is rather limited. With regard to the segmentation task, an interesting
feature to derive from the audio track is the volume or loudness. A low volume near
zero (pause) may be an indication for the end of a segment or advertisement spot.
The stream.audio.Volume processor implements the extraction of the volume as a
sliding window average over time. Following the naming conventions, the extracted
volume level is provided in attribute wav:volume.
Figure 6.15 shows the volume (orange line) plotted with the raw samples (green) in
the background. As can be seen in this high resolution plot, the volume level lags
behind the peaks by a few milliseconds. This effect is due to the window.

1.84 1.88 1.92 1.96 2.00 2.04 2.08 2.12 2.16 2.20 2.24
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Figure 6.15.: Extracting the volume as windowed average of the amplitude.
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6.2.2. Counting Objects in Video Streams

As a first use-case for extracting features from low-level video frame data, we explore
the counting of elements from the video of a specific, pre-defined scenario. Such a
scenario can be found in various environments: from counting of vehicles to counting
elements transported via a roll conveyor and similar applications. The elements
to count in this use-case are coffee capsules, which come in different colors for the
different flavors.

The motivation of this experiment is to define a testbed for the streams-video package,
that is built upon a controlled environment. The intention of this use case reflects
multiple aspects:

1. Demonstrate the flexible use of the streams-video package,

2. Test the video extraction on small scale devices (Raspberry PI),

3. Investigate the ease-of-use of the streams modelling of data-flows.

The task is dedicated for showing the applicability of streams-video and a number
of image processor implementations in a laboratory like environment. We further
investigate the deployment of streams on embedded computing platforms like the
Raspberry PI model. For the last aspect, we assigned this counting task to a group
of secondary school students, asking them to develop their own processors within
streams and modelling their data-flows, during a 2-day workshop at the TU Dort-
mund.

6.2.2.1. Experiment Setup

Focusing on a reproducible setup, we built a metal slide for capsules, which ensures
that the capsules pass a video camera, mounted next to the slide, at approximately
the same speed. The USB camera is connected to a Raspberry PI, continuously
recording at a fixed frame-rate of 25 fps. Figure 6.16 shows the experiment setup.

Figure 6.16.: Experimental setup of a capsule slide with mounted video camera.
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The recorded video captures the passing capsules, producing an H.264 video stream.
The stream is decoded into an MJPEG stream using the ffmpeg tool. The output
video of a single capsule is shown as a sequence of snapshots in Figure 6.17. As can
be seen in this figure, the capsule is only visible in four frames. With the frame rate
of 25 fps, this covers a time span of 160 milliseconds. The last frame in this sequence
shows the empty slide.

0ms 40ms 80ms 120ms 160ms

Figure 6.17.: Consecutive frames of a capsule sliding by the camera.

Creating Sample Videos

The task we focus on in this experiment is the correct detection of a coffee capsule
sliding through the camera view, and the correct identification of the capsule color.
The result will be a realtime counting of colored capsules. The identification and
color assessment will be based on extracted video and image features.

To evaluate the correctness of the detection methods, we create two sample videos,
which cover the sliding of 36 capsules each. The first video promotes capsules sliding
in a fixed order, whereas the second video shuffles the capsule colors. Figure 6.18
shows the ordering of capsules for the ordered and random video data set. There are
six distinct colors used within each video, with a unified distribution.

Figure 6.18.: The capsule orders for the two sample videos ordered and random.
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6.2.2.2. Extracting Features from Raw Video

A simple low-level feature that can be extracted is the average value for each of
the color channels red, green and blue. The AverageRGB processor performs this
extraction for each processed frame. The plot in Figure 6.19 shows the average
values over the course of consecutive frames. The curves show sharp declines after
about 5.7 seconds and 7.8 seconds, which stem from different capsules sliding through
the camera view. The steady levels of the average colors after the declines correlate
to the constant camera image that is shown when no objects pass through.
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128.0
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Figure 6.19.: Plot of the average red, green and blue values for each frame over time.

Object Detection from RGB Values

What is of particular interest in the local minima at the denoted times is the mixture
of red, green and blue values, as these relate to the dominant color for the frame that
captures the largest portion of the sliding capsule. The observed effect for the sliding
capsules suggests a rather trivial detection of passing objects: by search for local
minima, we can identify the key frames that provide the capsule image. We can even
use a simple threshold comparison to restrict the local minima search as shown by
the green line in Figure 6.19.

For the detection, we create a simple streams application as outlined in Figure 6.20.
The ObjectDetection processor used in this example can be found in Appendix B.1.

video

Video Data

video

Average RGB

Object Detection

Color Detection

Figure 6.20.: The streams application to process the caspule video.
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The object detection processor works as a filter. This filter only forwards items data
that belong to a detected object. If the currently processed item does not relate
to an object, the processor simply returns null, effectively stopping the processing
pipeline to continue with the next frame item of the video stream.

Color Detection as Prediction Task

After successful object detection, the elements need to be classified by their colors.
The easiest – and least general – approach to accomplish this, is a user specified
threshold comparison for each of the colors. For a more generalized approach, we
re-use the WEKA integration of streams, which we introduced in Section 5.2.3. This
allows us to review the color determination as a prediction task and train a classifier
to identify the color of the objects. Figure 6.21 shows the accuracy of an SVM
classifier using a polynomial kernel.
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Figure 6.21.: Performance of an SVM classifier, trained with WEKA.

Counting the Classified Objects

The counting in this case is a trivial task: only 6 different values need to be counted,
which easily fits into main memory. From the streaming application’s perspective,
it is more a matter of how to make these counts available while the application is
running. We discuss this here, as it affects a question in other contexts as well,
namely the anytime property of streaming algorithms.
One choice is create a new data item each time a counter has changed. This item will
then be filled with all the current count values and written to a queue, that can then
be further used by attached processes or add the current counts to the processed
data item. Another way is to use services, as this is exactly what they are intended
for: providing results in an anytime manner. A predefined StatisticsService interface
is contained in the streams-core package, which is designed for providing anytime
access to numerical data. This service provides a simple

public Map<String,Double> getStatistics();

method, that returns a hashmap, containing numerical values for a number of keys.
The CountColors class shown in Appendix B.1 implements the counting and provides
the current counts a StatisticsService.
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6.2.3. Detecting Advertising in IP-TV

In the context of video broadcasting and audience analysis, the detection of adver-
tising and corelation of specific spots with the exact number of viewers gives valu-
able insight for TV marketing. As part of the ViSTA-EV EU project, we used the
streams-video package to model a light-weight approach for detecting advertisements
for previously known brands. For this task, streams-video includes an HTTP Live
Streaming (HLS) adapter that allows for reading live video streams and decoding
of the received signal using an external decoder, such as ffmpeg. The detection of
advertising spots we explored within the ViSTA-TV project is aiming at the identi-
fication of known spots. This is different to the generic detection of advertising as
investigated in [59, 50, 53] or features built into multimedia systems like MythTV
[138].

6.2.3.1. HTTP Live Streaming

The popular IP-TV platforms distribute their video streams using the HTTP proto-
col. The basis for streaming video content via HTTP is the HTTP Live Streaming
(HLS) protocol. This content streaming is based on a chunked encoding of the video
signal (typically encoded using H.264) in a video format that is called transport
stream. For HLS, this transport stream is partitioned into chunks of encoded frames,
which are polled from the server. For processing HLS video content with streams,
we created a stream implementation TransportStream, which supports reading the
chunks of transport stream data and packaging these into streams data items. A
special DecodeVideo processor decodes the chunked data into frames by calling an
external decoder (ffmpeg). A more specific version of this TransportStream class
has been implemented for connecting to the ZAPI interface, which is the Zattoo API,
that requires a specific authentication and session management before accessing the
HLS feeds.

Transport Stream

Transport Stream
Implementation

DecodeVideo

Chunk Decoding

Frame Queue Video Frame Processing

Figure 6.22.: Decoding and processing of frames from a transport stream video
source.
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6.2.3.2. Segmentation based on Low-Level Features

There exists a variety of different approaches to the detection of commercials in
video streams, ranging from low-level bitstream features [128], the use of accoustic
information [50] or the combined analysis of video and audio signals [53, 59]. Facing
the availability of over 200 channels for the ViSTA-TV project, we implemented a
simple ad detection approach based on the detection of black frames as suggested in
[128]. This black-frame detection is based on the fact, that advertisement spots often
are separated from each other by a series of two or more completely black frames.
Figure 6.23 shows an excerpt of two hours of video, recorded from the German channel
Vox partitioned at different levels. The EPG level shows the different programs
that are shown on the channel. The last program ends at 12:00, where the next
show begins. The Ads/Trailers level shows manually annotated blocks of advertising
spots and the top level shows markers of automatically detected short blocks of
black frames. The Ads/Trailers marked in bright green refer to logo presentations or
previews by the broadcasting channel, i.e. related to self-marketing of the channel.

Mein himm-
lisches Hotel

Shopping Queen

12:00 12:15

EPG

Ads/Trailers

Black Frames

Figure 6.23.: Segmentation of advertisement spots by black frames.

With the detection of black frames, we have a simple, yet rather effective method
for segmenting videos at the advertisement level. A major benefit of this method
is, that it works on small scale video frames, significantly reducing the required
processing power. For monitoring a large amount of different channels, this becomes
an inevitable requirement. The data presented in Figure 6.23 has been produced on
a down-sampled frame size of 320× 240 pixels.
An interesting observation in all advertisements we investigated, is the fact, that
they all typically end with a still image of the product they are promoting. This still
image can be captured as the last non-black frame of a commercial and suggests a
simple image-based lookup of known spots in some kind of database.

Figure 6.24.: Still images captured as last frames before a black frame break.
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6.3. Aggregating Data Streams

In the previous section, we introduced the low-level processing of video streams using
the streams-video package. It leverages the level of information to a layer where
additional data can be combined with the extracted feature streams. The joining
of supplementary information to a progressing stream of events can be based on
either stationary or dynamic external data. Depending on the change rate of this
external sources, different approaches might be required to best add this additional
information.
Within the ViSTA-TV project, a number of different streams needs to be processed:
Video streams, streams of user events and EPG information, that changes over time
(i.e. current show on channel A). This information needs to be joined at some level,
producing a new and enriched stream with additional information.
In this Section, we outline the general architecture that we built for the ViSTA-
TV use-case. It is solely based on streams and shows a blue-print for building larger
streaming applications to combine heterogeneous streams. The basic data-flow infras-
tructure in this use-case is a simple publish-subscriber architecture, that is seamin-
gless integrating into the abstract notion of streams applications (Section 6.3.1). In
particular it allows for the partitioning of streams applications into loosely coupled
modules that can be started independently to join the global orchestra of compo-
nents. In Section 6.3.2, we discuss the joining of external data into progressing data
streams. For this, we use the service abstraction of streams, which we introduced in
3.2.4 and demonstrate its use on two inherently different examples.

6.3.1. A Simple Publish-Subscriber Architecture

The publish-subscriber principle is a well-known pattern of software design [62] and
is a specific form of the message queue principle, which we earlier discussed in Section
2.3.1. It is based on one or more producers, that send messages to a channel of a
broker, and a set of consumers, that may subscribe to any channel of this broker
to receive messages of that channel. Figure 6.25 shows the principle of the publish-
subscriber pattern using a central broker.

Broker

Topic

soccer

Producer

1

Register Topic

3

Publish Messages

Consumer

2

Subscribe

4

Receive Messages

Figure 6.25.: Principle of the publish-subscriber pattern.

The importance of the publish-subscriber idea within the large-scale Big Data envi-
ronment stems from the property to build a system based on loosely coupled com-
ponents, that all communicate via the broker. This allows for dynamically adding
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new components, scaling the system by deploying publisher/subscriber instance on
separate compute nodes or adding more instances of the publishers/subscribers. In
addition, it allows for the connection of very heterogeneous systems [87].

6.3.1.1. Orchestration of Modules with the Publish-Subscriber Pattern

The publish-subscriber pattern facilitates the loose coupling of components, that
require occasional communication. This property is of severe importance for large-
scale Big Data architectures and applications as it allows for designing applications
in a modularized way, where components can be interconnected by the messaging
infrastructure. Based on the properties of the publish-subscriber system, this inter-
connection can be implemented in a lossy or asynchronous way, possibly allowing
components to subscribe to topics at historic timestamps. Providing some inherent
buffering, components can be restarted (e.g. in case of a failure) without the need to
shutdown the other end of the topic.

In case of the ViSTA-TV project, this enables the addition of producers and con-
sumers to a running infrastructure, extending the overall application environment
with new features or new result-streams. The dark black boxes in Figure 6.26 each
represent standalone modules that subscribe to one or more topics, combine the data
and publish their results back to the broker. The broker allows to add new modules
for additional video channels, more statistics or other processes to the overall system
without restarting any of the other components.

From a development perspective, this approach also decouples the developers of dif-
ferent groups and eases the integration of the modularized architecture.

HLS

HLS

HLS

User Event Stream

IP-TV Platfom

Video Channel

Video Channel

Video Channel

Broker

vid:ch0

user:evts user+epg

ch:stats

ad:stats

User Enrichment

User Database
EPG Join EPG Database

Statistic Aggr.

Ad Statistics

Figure 6.26.: Connecting components via a central publish-subscriber service within
the ViSTA-TV project.
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6.3.1.2. Stateless Publish-Subscriber Web-Service

The simplest instance of a publish-subscriber architecture is a stateless broker, that
provides topics by some name and only buffers a limited amount of data for distribu-
tion. Using a volatile in-memory buffering, the buffer content is lost upon failure of
the broker. Such a broker is easy to implement and handles failure in a gap recovery
manner (cf. Section 2.3.2.2).

In the context of the ViSTA-TV project, we implemented a stateless web-based bro-
ker, that uses HTTP messages for receiving and publishing data items among the set
of registered components. The message format for any communication was elected
to be JSON encoded hashmaps. Registering topics was performed implicitly by pub-
lishing or subscribing new messages at a web URL. The broker is implemented by
a single Java servlet, which allows for its deployment in any standard servlet con-
tainer environment. An additional URL lists the topics that are currently available,
including some statistics.

Technically, each topic within the broker is mapped to its individual URL. For a
configured prefix (e.g. streams), a topic soccer would be bound to the URL

/streams/soccer.

Calling the URL without any topic name reveals the index page that lists all avail-
able topics. Figure 6.27 shows a screenshot of the HTML output produced by this
index. The page lists the EPG data stream (current programm information), the
user:events topic and several video feature streams of the ViSTA-TV streaming
application.

Figure 6.27.: Index view of the Broker servlet, listing the available topics, the number
of messages dispatched and the date of the last published message.
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Publishing Messages

The publishing of messages to this topic is performed by uploading JSON formatted
messages to the URL of the topic. For performance reasons, the upload is expected
to contain each message in a single line, separated by a newline character. This
allows for publishing multiple messages in a single HTTP PUT request instead of
requiring an explicit HTTP transaction for each published message. The messages
are by default dispatched to the topic that is mapped to the URL of the upload.

Following the use of special attributes, marked with a leading @ character in their
key, the @topic attribute in a message may override the name of the topic, to which
a message is dispatched.

For sending messages to the broker, a single processor is provided, which uploads any
processed data items in JSON encoded format to an HTTP URL. The JSONUploader
additionally allows for specifying a buffer size and timeout to perform a batch-wise
upload of items, as shown in Figure 6.28.

<process input="user:data">

<stream.io.JSONUploader

url="http://vista2.zattoo.com/streams/user:counts"

batchSize="10" maxWait="500ms" />

</process>

Figure 6.28.: Uploading items to a topic URL in batches of size 10. If the batch does
not fill up within 500ms, the incomplete batch is uploaded.

Subscribing to Topics

The content of topics can easily be accessed as regular data streams. By issuing a
GET request to the URL of a topic, the servlet will provide a continuous stream
of JSON messages, each separated by a newline character. As this is a regular
HTTP channel, the URL can directly be used within a streams application to open a
stream to this topic and process the resulting data. The JSONStream implementation
provided in the standard streams-core package can directly read the output provided
by the broker servlet.

<stream id="user:data" class="stream.io.JSONStream"

url="http://vista2.zattoo.com/streams/user:events" />

<process input="user:data">

<!-- process user data here -->

</process>

URL of the topic

Figure 6.29.: Subscribing to a topic using the stream.io.JSONStream class and spec-
ifying the topic’s URL.
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Simple Interaction with the Broker Servlet

The web-based design of the simple broker makes it easy to access topics with any
tool that supports the HTTP protocol. This is especially helpful when debugging a
system that is feeding several simultaneous topics.
Using standard Unix tools like curl or wget allows for uploading new messages to
topics or subscribing and continuously reading topics from the broker. The following
script in Figure 6.30 shows how to subscribe to the user:events topic using the
curl tool in a standard terminal:

# curl https://vista2.zattoo.com/streams/user:events

{timestamp=1341093616000, user:id=f21b4.., channel=svt1, user:action=join}

{timestamp=1341093616000, user:id=ada2c.., channel=direct-8, user:action=join}

{timestamp=1341093617000, user:id=14032.., channel=timm, user:action=join}

{timestamp=1341093617000, user:id=67184.., channel=b5-aktuell, user:action=join}

{timestamp=1341093617000, user:id=6b972.., channel=hr-info, user:action=join}

{timestamp=1341093618000, user:id=f6be5.., channel=3plus, user:action=join}

...

Figure 6.30.: Reading a topic using curl.

6.3.1.3. Apache Kafka as Reliable Publish-Subscriber System

For the ViSTA-TV use-case, a central aspect with the publish-subscriber system was
its synchronism with real-time. The basic data stream, that all other modules were
clocked by, is the user event stream. In case of system failures, the gap recovery
principle kicked in to restart all systems and resume processing with the current
data, instead of rewinding to the past.
In other applications, it might be more important to not loose any data and re-
sume computation on the buffered, historic data, processing faster than data arrives
and eventually being in sync with a live stream. The Apache Kafka messaging sys-
tems does provide exactly this: it is a publish-subscribe based message broker, that
inherently writes all messages to disk in a fast and fault-tolerant way, effectively
overwriting old data if disk space hits the limit. The topics within Kafka can be
resumed at any time that is still available on disk. We discussed Apache Kafka in
detail in Section 2.3.1.3.

As an alternative to the stateless web-service we introduced above, Thomas Schar-
renbach (ViSTA-TV Project, University of Zürich) tested the integration of Apache
Kafka into the streams framework in a module called streams-kafka. This package
provides subscriptions to Kafka topics with a specific data stream implementation
and seamlessly allows for connecting existing streams applications to Kafka.
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6.3.2. Joining External Data

The data provided by continuous streams typically only embrace the bare minimum
of volatile information of a system. For example, the user events within the ViSTA-
TV platform only contain a timestamp, the ID of the user and the channel the
user switches to. Data streams therefore often need to be enriched with additional
information that is available in static or slowly changing databases. In the ViSTA-
TV example, this may be additional user information, such as gender or age, that
need to be added to the user-event stream for further analysis.
Such an enrichment with external data is usually performed by a lookup query using
some identifier and can easily be modelled using the service layer of the streams frame-
work. As this is a common task in streaming applications, the streams-core packages
contains a generic LookupService, as shown in Figure 6.31. The setup consists of a
generic Lookup processor, that is added to the stream, and an implementation of the
LookupService interface. The Lookup processor is parameterized with the attribute
key that is used to call the lookup service and is initialized with the lookup service
instance based on the service injection performed by streams.

LookupService

lookup( ) Data( )

Figure 6.31.: The generic lookup service provided by streams.

The LookupService provides a single lookup call, which requires a Serializable

value and returns a full data item, if the lookup was successful. The resulting item
is then merged into the data item, which triggered the call. In case the lookup did
not reveal a record as response (i.e. returns null), then the processed item is passed
along without any data added.

6.3.2.1. Standard Database Lookups

The most common implementation of a lookup table in larger setups is the use of
a database system, that offers instant access to the required information using a
primary key attribute. For a flat database scheme, the required data can easily be
retrieved from one or more tables with a general SQL select query. The benefit of
this approach is the extensibility of the database, allowing to update the information
while the streaming application is running.
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A standard SQL-based lookup service is already provided within the streams-core
package: The stream.lookup.SQLDatabase class is a generic implementation of the
LookupService, which connects to an SQL database and performs a SELECT query
for each lookup. Figure 6.32 shows the XML configuration required to add an SQL
lookup service to an application. This generic implementation covers standard JDBC-
supported databases. The query used in the example below contains the ? character
as placeholder for the lookup key value. The Lookup processor extracts this lookup
key value from the id attribute of each data item.

<service id="extData" class="stream.lookup.SQLDatabase"

url="jdbc:mysql://localhost:3306/userdb" username="cb" password=""

query="SELECT id,name FROM users WHERE id = ?" />

<process input="user:events">

<stream.data.Lookup service="extData" key="id" />

</process>

Figure 6.32.: Setup of a lookup service that is powered by a backend SQL database.

6.3.2.2. High-Speed In-Memory Lookups

SQL databases can be quickly integrated into the stream processing. Unfortunately,
the overhead of database lookups in high-speed data streams often is a performance
killer, if the added latency by the queries does not match the rate at which data
arrives. Even though modern database systems implement various caching strategies,
they often do not scale up with the performance required. For smaller sets of data
that needs to be joined into the stream, this data can be stored in main memory,
allowing for fast key-based lookups.

The streams-core package provides two implementations of the LookupService in-
terface, which are backed by in-memory hashtables: the JSONDatabase and the
CSVDatabase classes. Each class uses an internal hashmap to provide the lookup,
they only differ in the data format they support for reading data. Figure 6.33 shows
the definition of a JSON oriented database service, that can directly replace the SQL
database definition of Figure 6.32. Upon startup of the application, the service reads
the database once and stores it in main memory. As shown in this example, the data
is read from a remote web URL. Any of the URL types supported by streams can be
used here. The key parameter identifies the key column used as index for the lookup
table. This lookup service can likewise be referenced by the Lookup processor.

<service id="extData" class="stream.lookup.JSONDatabase" key="id"

url="https://jwall.org/streams/stuff/user-database.json" />

Figure 6.33.: Definition of an in-memory lookup table, read from a JSON file.
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Using Distributed Memory

The use of local main memory for data storage is inherently limited and does not
scale with the number of nodes. Within the Big Data community, a number of
distributed memory servers have been proposed to scale and speed up applications.
Two prominent examples of such servers are memcached and Redis.

The memcached server [64, 114] bundles memory regions among multiple compute
nodes. Originally, memcached was designed as fast in-memory cache to speed up
web pages, but has evolved to a volatile storage service. It implements a key-value
object store, that allows for fast lookups of objects by an identifier. The store can
be accessed using a simple text-based protocol (UDP, TCP).

Another distributed key-value store is provided by the Redis [42] software. Redis
allows for distributing in-memory data among multiple machines in a way similar
to memcached: The different nodes within a Redis cluster each store a portion of
the overall key-space, that can be derived from the key value by a hash function.
This implements a horizontal partitioning of the data, distributed among different
machines, which is also known as sharding in database systems. This hashed parti-
tioning allows to access data directly by two hash function evaluations. Figure 6.34
shows the hash partitioning among differrent servers.

Server 0

Server 1

Server 2

h1(key)

h2(key)

Figure 6.34.: Sharding of the key value space using hash functions h1 and h2.

Another partitioning scheme supported by Redis is the partitioning by range for
numerical key values, where each server is assigned a range of the key space.

6.3.2.3. Performance Comparison with Database Lookups

For a performance comparison of different lookup service implementations, we gen-
erated a synthetic dataset of 100 000 usernames, each associated with a user-ID. The
user database is then provided as lookup service in different storage types, namely
within an SQL database, a Java hashmap and two distributed memory servers,
namely memcached and Redis.

The data stream that needs to be enriched with the user information from the dif-
ferent databases is a synthetic sequence of user-IDs in random order. Figure 6.35
shows the data rate, achieved by the different implementations, tested on a Core i7
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MacBook with 8 GB of main memory. The database used in this test is a MySQL
database running on the local machine. The Memchached and XMemcached experi-
ments test different client library implementations for accessing a memcached server
in version 1.4.7, also running locally. The local Redis server used for this test has
version 3.0.1.

Hashtable 88028.2 evts/sec

Redis 18352.0 evts/sec

XMemcache 13034.4 evts/sec

Memcache 12189.2 evts/sec

Database 5851.0 evts/sec

Figure 6.35.: Performance of different LookupService implementations, measured in
performed lookups per second.

As can be seen in this figure, the HashMap implementation clearly outperforms the
other services, as expected. However, this approach does not scale well as it is limited
by the memory available on a single machine.

The SQL database provides the best flexibility with regard to external database
updates, but has the weakest performance. The performance increases by a factor
of 2, when migrating from the SQL database to the memcached server. The Redis
server does push this even further.

Flexible Lookups

The performance comparison is not a full-fledged study, as it does not cover any dis-
tributed properties of the setup. However, it shows the easy replacement of different
implementations within the abstraction of the streams framework.

In the ViSTA-TV use-case, we used a Redis based lookup service, to enrich the user
event stream with the information of X users. The database approach was not feasible
here, as it did put too much load on the overall system.

For the processing of the DEBS 2013 soccer dataset, we face a data rate of about
900k events per second. Each item represents the sensor readings of a single player
leg sensor and provides a sensor ID, the current position of the sensor/leg and the
current acceleration. As each player is equipped with two sensors (both legs, goal
keepers have additional two sensors for their hands), a mapping of the sensors to
the players is required. This then allows for computing the required statistics for
each player, instead of each sensor. In case of the DEBS 2013 soccer challenge, the
database of player information only covers 15 players, that easily fit into a Java
hashtable. As the challenge main criterion was the maximum throughput rate, we
use a HashMap for the lookup.
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6.3.3. Aggregating Statistics using Complex Event Processing

The previous sections focused on the extraction of low-level features (e.g. color his-
tograms), deriving higher level concepts from that (e.g. capsule colors) and assess-
ing statistics about these concepts. Usually, these statistics are counts of elements,
grouped by interesting properties and determined over time windows.
For the ViSTA-TV use-case, these statistics are motivated by the marketing commu-
nity as well as the program scheduling commitees looking for shares of their programs
and advertises with respect to the viewer characteristics. Typical queries for such
statistics in the context of the IP-TV setting might be:

1. How many users did watch a specific show? What are their characteristics?

2. When did a lot of users suddenly switch away from a channel?

3. What have been the most watched channels within the last hour?

An example for the gender distribution over time of the german channel RTL is
shown in Figure 6.36. The values plotted are the relative numbers of male and
female watchers, which causes the symmetry of the plot. The segmentation of the
plot by the shaded background areas is based on the EPG schedule for that day.
As can be seen, the afternoon program is targeting a more female audience. The
timespan from 19:00 to 20:15 features two popular daily soap shows (marked in blue
box), which primarily target a female audience. The evening program, starting at
20:15, features an action oriented crime series (highlighted in orange), which attracts
a male majority of watchers.

User Statistics for Thursday, 22.3.2012

0:00
1:00

2:00
3:00

4:00
5:00

6:00
7:00

8:00
9:00

10:00
11:00

12:00
13:00

14:00
15:00

16:00
17:00

18:00
19:00

20:00
21:00

22:00
23:00

24:00

rtl:male rtl:female

Figure 6.36.: Gender distribution for channel RTL. Both curves add up to 1.0 at each
point in time.

A simple way to compute aggregated statistics is a native implementation within a
custom streams processors. Though this is a possible solution, it does not correspond
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to the high-level modelling approach of the streams framework. Looking at the field
of complex event processing, a number of engines have been proposed to extend high-
level query languages like SQL to the domain of data stream processing.

The Esper [108] project provides an open-source Java implementation of such a com-
plex event processing engine. It is based on an SQL-like query syntax and adds
keywords for specifying time windows to queries. As an example, the following query
counts the number of elements seen within a window of 30 seconds, emitting the
counts at the end of every window.

SELECT COUNT(*)

FROM stream.win:time(30 sec)

output last every 30 sec

Figure 6.37.: Example of an Esper query over a sliding time window.

6.3.3.1. Integration of Esper into streams

The streams-esper package has been developed by Thomas Scharrenbach within the
ViSTA-TV project and integrates such queries directly into the streams XML specifi-
cations using the streams.esper.Query processor. All items, that hit the processor
are fed into the Esper query and any result, produced by the query will be emitted
into a specified output queue. Figure 6.38 shows the embedding of Esper into the
concepts of streams. In this example, the results of the query are pushed to the queue
Q1, to which another process is connected.

<application>

</application>

<stream/>

<process>

<process>

<esper.Query output="Q1">

SELECT COUNT(*) ...

<esper.Query>

Q1

<queue/>

<process/>

Figure 6.38.: Embedding of the Esper engine into streams.

The big advantage of this Esper integration is the flexible specification of data flows
with high-level aggregation queries. In the ViSTA-TV project, this combination was
used to aggregate usage counts per channel and a grouping of these counts by various
user properties, such as age, gender or the like.

As an example (Figure 6.39), the following XML uses a Java processor to compute the
user:age:group feature from the enriched user stream, followed by an Esper query
to count the users grouped by this feature. This example applies a filter for refresh
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events, which are periodically sent for all active users of a channel and applies the
grouping based on the previously computed user:age:group property. The query
outputs its window counts to the queue ageCounts every 60 seconds.

<process input="user:events">

<eu.vistatv.features.AgeGroup key="user:age:group" />

<streams.esper.Query output="ageCounts">

SELECT item(’user:age:group’),item(’user:channel:name’),count(*) FROM items

WHERE item(’user:action’) = ’refresh’

GROUP BY item(’user:age:group’),item(’user:channel:name’)

OUTPUT EVERY 60 sec

</streams.esper.Query>

</process>

Figure 6.39.: Counting active users by age group and channel.

We successfully applied Esper in the ViSTA-TV project with data rates at the level
of 300 to about 10000 events per second. The use of Esper worked out well for data
streams at this rates. Within the ViSTA-TV streaming architecture, the output
of the Esper queries was sent to the publish-subscriber hub to make the numbers
available to other components of the system.

A problem with the bare Esper based queries is the timer management. The Esper
engine uses internal timers to handle periodic result output and time based windows.
This works nicely, if the input data is bound to a real-world clock as well. If the
data flow is simulated by replay from files, this may become problematic if the time
within the simulation does progress faster than a real-world clock. Time handling
can be customized within Esper, requiring the implementation of manual custom
timers, which is outside the scope of the proposed streams-esper integration.

6.3.3.2. Fast Aggregations for High-Speed Sensor Data

In case of the DEBS 2013 challenge, statistics need to be aggregated from high-speed
sensor data. The sensors are high-precision location sensors that are mounted to the
legs of soccer players. The goal keepers have two more sensors, one in each of their
gloves. An additional sensor is integrated into the ball of a soccer game. All sensors
have a location resolution of 1mm and are sampled with 200 Hz. The fast moving
ball is sampled with 2 kHz, which leads to an overall data rate of about 15000 events
per second during the soccer game recorded for the DEBS challenge.

The task of the challenge is focused on low-level event detection and aggregation of
the detected events to reveal statistics like

• ball possession of each player/team

• distance run by each player

• heat map of the player locations over field grid.
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These statistics need to be maintained over multiple sliding windows, periodically
providing the current state in given time intervals. A couple of preprocessing steps
is required before any statistics can be aggregated, such as associating of sensor
measurements with the correct player, computation of player positions based on his
related location sensors and the like. Figure 6.40 outlines data flow of TechniBall
[67].

S

Meta Data

Positioning

Aggregating

Figure 6.40.: Data flow of the TechniBall system.

The joining of meta data for mapping sensors to players as well as the assessment of
player positions is an ideal example for low-level Java processors and the high-speed
memory based lookups we demonstrated in Section 6.3.2. The aggregation step is
then expected to be faced with a much lower rate of higher level events.

Aggregations of Running Intensity

One of the simple tasks in the DEBS challenge is the aggregation of running inten-
sities. Based on the player position, the speed of each player can be computed and
mapped to a scheme of different intensity levels, such as

{stop, trot, low, medium, high, spring }.

This discretization of speed to intensity levels can easily be provided by a custom
Java processor. The resulting data contains the current intensity level of each player
event, which can further be aggregated using an Esper query as shown in Figure
6.41. The query is only evaluated for events with a player ID larger than 0, which
excludes any events of the referee. The times since the last updates are summed up
and aggregated over a window of 60 seconds, for each player.

Tracking Player Locations

A bigger challenge of the DEBS competition data is the number of different aggre-
gated values that need to be tracked for the player heatmaps. The computation of
the heatmaps is based on a grid that spans n× k cells, for different configurations of
n and k, for each of the 16 players. In addition, for each of the cells, a sliding window
needs to be maintained to obtain the heatmaps based on the last minute, the last five
minutes and the last 30 minutes. Figure 6.42 shows the heatmaps for a player, where
each cell has an additional sliding window, and an overall heatmap (right-hand side)
of a single player. As can clearly be seen in this heatmap, the player is a left-side
defensive player.
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<process input="soccer:data">

<stream.soccer.AddMetaData />

<stream.soccer.AddIntensity />

<streams.esper.Query condition="%{data.pid} @gt 0" output="R">

SELECT pid AS player,

sum(case when int=1 then distance else 0 end) as trot_distance,

sum(case when int=1 then (ts_stop-ts_start)/1000000000 else 0 end) as trot_time

FROM Data.win:time(60000 sec) GROUP BY pid

</streams.esper.Query/>

</process>

Figure 6.41.: Computing the current intensity using a Java processor and aggregating
the intensities for all players with a downstream Esper query.

Tim
e

Grid of Sliding Windows Aggregated Heatmap of Player

Figure 6.42.: Heatmap maintained for each player.

The finest grained heatmap has a grid of 64×100 cells. With 16 players this amounts
to 102400 cells that need to be tracked, each for three different window sizes. Though
in theory, this can be formulated in an Esper query, we experienced, that even the
much simpler aggregation for running distance and intensity per player did not per-
form good enough to be capable of competing: The challenging criterion in this
competition is maximum throughput.

Low-Level Customized Aggregators

With its flat abstraction layer, streams allows to easily replace components of an
application with custom implementations. Following this principle, we implemented a
Java-based CellTracker, that exploits carefully designed properties of the underlying
data model: The joint external player data associates player positions with a player
ID pid ∈ [0, . . . , 16], where pid 0 is mapped to the referee, and all other values are
mapped to players. Even pid values belong to team red, odd values are mapped to
team blue. This data is looked up using an in-memory hashmap. The player ID can
then be used to derive the player’s team and additionally serves as array index for
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a pre-allocated array of grid-cells. With this setup, the CellTracker can perform
updates of the heatmaps in O(1) time. The XML in Figure 6.43 shows the setup of
a process that adds meta-data such as Player ID, computes the player position and
updates the related grid of a 64× 100 heatmap for each player.

<process input="soccer:data">

<stream.soccer.AddMetaData />

<stream.soccer.AddPosition />

<stream.soccer.CellTracker gridx="64" gridy="100" output="R" />

</process>

Figure 6.43.: The tracking of player heatmaps using streams.

6.4. Summary

In this chapter, we elaborated the application of streams in various aspects of the
ViSTA-TV project. The flexible extension of the framework with dedicated modules
such as the streams-video package allows for defining feature extraction processes for
different application domains. The abstract notion of the data flows in streams easily
fits the decoupled architectures of publish-subscriber powered Big Data platforms.
With its declarative approach, streams has been used as the underlying design tool
for the complete ViSTA-TV streaming architecture. For scaling the processing of the
streaming data within the project, the prototype of mapping streams applications to
topologies for the Apache Storm platform has been tested successfully. The decou-
pled deployment of the streaming architecture as individual modules, defined in the
streams XML dialect, supported the easy integration of components implemented by
different partners of the project.
The achievements of the application of streams in ViSTA-TV as well as the soccer
game data analysis challenge have been documented in several project deliverables
and technical reports, as well as the participation in the DEBS data challenge (see
[67]).
The generic processors for video and image manipulation further serve as the basis for
developing a cloud detection tool for the FACT telescope, which is being investigated
by Jan Adam of the astroparticle physics departement.
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Chapter 7

Have I gone mad?

I’m afraid so. You’re entirely bonkers.
But I’ll tell you a secret. All the best people are.

– Alice in Wonderland

Summary and Conclusion

The processing and analysis of large and heterogeneous volumes of data has become
a key challenge in our Big Data era. The challenges affect two sides in this game:
computer scientists and domain experts.
In this thesis, we addressed the handling of streams of Big Data from the perspectives
of both groups. While reviewing the state-of-the-art approaches to data stream
processing, we proposed an abstract modelling framework for the design of streaming
applications. The latter addresses the need of domain experts, to gain the power of
Big Data frameworks for solving their tasks at hand. With the proposed streams
framework, we aim at bridging the interdisciplinary gap.

Focusing on bridging the interdisciplinary gap between computer science and domain
experts, this thesis has had an impact to various applications and projects. With
respect to the use-cases we investigated in Part II, we here give an overview of the
impact of this work and the lessons learnt, when applying the proposed framework
in real-world applications.
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7.1. Summary

The work on this thesis is motivated by the importance of Big Data analysis in
general and the exceeding relevance of real-time stream processing in particular. A
strong emphasis in this work is put on the applicability of the proposed concepts and
implementations in real-world contexts.

Part 1: Data Stream Processing

In Chapter 1 we embedded this work in the context of Big Data by means of the
Lambda Architecture, as proposed by Marz and Warren in [109], and identified a set
of requirements for a modelling framework for Big Data streaming applications.

As the background of our work, we provided a survey of the landscape of data stream
processing engines, that have become popular open-source projects, in Chapter 2. In
light of an outline of early academic approaches to data stream management systems,
we surveyed the requirements of streaming platforms, as initially proclaimed in [139],
and derived a set of aspects for exploring modern streaming platforms. Based on these
aspects, we focused on a more detailed description of Big Data streaming engines and
their principles.
The survey was additionally published as a technical report [30] of the collaborative
research center (SFB 876).

In Chapter 3 we introduced the streams framework, which we developed in the context
of the thesis. The streams framework is a middle layer approach, that abstracts
from the platform specific implementations and provides a high-level approach to
modelling streaming application by means of a declarative XML specification. The
abstraction step provided by streams is based on data flow graphs that are built
using components defined in a simple programming API. The graphs are defined
in XML, which is interpreted by an application builder and transformed into an
object graph instance. Using the dependency injection pattern, any parameters and
cross object references are established based on the XML definition, which allows
for a high degree of flexibility with regard to the rapid prototyping requirements in
most real-world use-cases. For the execution of these streaming applications, we
designed and implemented a reference implementation of a streams execution engine,
in form of the streams-runtime package. Proving the platform independence and
platform interoperability of streams, we also implemented adaptions for executing
streams applications on the Apache Storm platform. Further, we discussed additional
adaptions for running the same applications on Apache Samza.
We published the streams framework in a technical report [34] for the collaborative
research center (SFB 876) and a conference paper [33] on the RCOMM-2012.

With the focus on usability of the proposed streams framework, we investigated new
forms of interactively designing streaming applications using interactive surfaces,
such as provided by modern smart boards or tablet computers. Based on a review
of existing data flow visualizations and the psychology of human interface design,
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we implemented a gesture-based modelling approach for interactive data flow design.
We provided two prototypes using this gesture-based principle: one for an alternative
interface for the RapidMiner tool, and the Streams Designer application for defining
streams data flows on an Android application. As basis for these prototypes, we
investigated different machine learning approaches and feature representations for a
reliable gesture identification.

This visual modelling approach has been published in papers at the RapidMiner
conference [29] and the conference on Human Computer Interaction (HCI) [31].

Part 2: Real-world Applications

In the second part of this thesis, we demonstrated the applicability of the streams
concepts and its reference implementation in two use-cases: The development of a
rapid-prototyping environment for analysis of astrophysical data, and the design of
a streaming architecture for viewership analysis of a large IP-TV platform.

The astrophysical use-case, presented in Chapter 5, focuses on the interdisciplinary
gap between domain experts (physicists) and the computer science field of Big Data
processing. In this use-case, we used streams as a modelling tool to allow for the
physicists to define the data flow required for their analysis. The objective here was
to provide an environment to the domain experts, that offers rapid-prototyping of
streaming applications on small scale, while allowing for computer scientists to map
the applications to high-performance execution engines such as Apache Storm or
even the Apache Hadoop Map&Reduce batch processing framework. The resulting
FACT-Tools package, which extends the streams framework for processing data of the
FACT telescope, has become one of the central data processing tools for the FACT
telescope in project C3 of the collaborative research center (SFB 876).

We published the work on the FACT-Tools as an application paper [35] at the Eu-
ropean Conference on Machine Learning (ECML/PKDD) 2015.

Dealing with multiple heterogeneous sources of data is the ViSTA-TV EU-funded
project. Within this use-case, presented in Chapter 6, we focused on the analysis
of data from video- and text-based sources. The video processing was implemented
in a package streams-video, which allows for handling of video content at the frame
level. As part of the ViSTA-TV project, this was used for the implementation of a
low-level feature extraction. As use-cases in this thesis, we presented the extraction
of features from live video data, for identifying and the counting of coffee capsules.
This was performed in collaboration with senior class pupils, to test the simplicity of
using the streams approach for modelling custom data flows. Within ViSTA-TV we
investigated the use of low-level features for video segmentation, especially for the
detection and segmentation of commercial breaks.

A different source of data provided in ViSTA-TV is real-time viewership data. This
data provides behavioral information of the people, currently watching a particular
channel. Combining this information with static data, such as demographic infor-
mation or program information (EPG) at a large scale requires efficient lookups. As
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part of Chapter 6, we investigated different methods for using high-speed lookup
tables within a streaming application.

The work on this chapter was published in project deliverables to the EU. The
high-speed processing of data streams was published as a joint work solution to the
challenge of the DEBS conference in 2013 [67].

7.2. Conclusions and Impact of this Thesis

Based on the challenges posed by Big Data streaming and the requirements of stream
processing, we derived the following criteria for the development of our abstract data
stream modelling framework:

E.1

E.3

E.2 E.4

E.5

Platform Independence

Abstract Modelling

Code Re-use Extensibility

Speed/Performance

7.2.1. Conclusions

In the following, we will review the concepts we proposed in this thesis, and imple-
mented within the streams software.

E.1 – Platform Independence

We followed the basic design approach of all major streaming platforms to model
applications by their data flow graphs. The concept has been proposed in the early
years of stream oriented processing and naturally derives from the way these appli-
cations work.

Using the concept of data flow graphs, we designed a thin abstraction layer, which
captures the most important aspects for defining the data flows. This layer proved
to meet a level of abstraction that allows for mapping the resulting graph to different
execution engines. We showed this by the implementation of the streams-storm
mapper in Section 3.3.3, which allows for the execution of streams application on the
Apache Storm platform without changes of the actual code. In addition, we outlined
a concept to map the same applications to the Apache Samza streaming platform.
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Apart from the platform independence, the design and use of the basic streams ele-
ments, such as process and stream, provide a replacement of the underlying imple-
mentations to support more a platform specific configuration, if required.

E.2 – Abstract Modelling

Related to the abstraction layer defined in light of the platform independence is
the abstract modelling of streaming applications. For the modelling, we defined a
simple and intuitiv XML specification dialect, that allows for a declarative design of
applications.

The use of the XML specifications proved useful for the quick adaption of domain
experts to defining their analysis processes. This became obvious in the collaboration
with the experts of the astroparticle physics project and was especially helpful for
the integration step of the streaming architecture in the ViSTA-TV project.

On top of the XML-based specifications, we defined the sketch-layer for a visualiza-
tion and interactive design approach. This raises the abstract modelling to an even
higher level. By providing a gesture-based prototype tool for application design in
Chapter 3, we showed the applicability of our approach at even higher abstraction
levels as originally intended.

E.3 – Code Re-Use

The maximization of the Code Re-Use is closely related to the Platform Independence.
With the light-weight abstraction layer, that is defined by the streams programming
API, we foster the implementation of streaming functions that have as little platform
specific details as possible. The resulting components can therefore easily be re-used
in other platforms and contexts – even without relying on the streams-runtime.

Good examples of the Code Re-Use are the streams-video package, outlined in Section
6.2 and the Map&Reduce integration described in 5.4: The streams-video components
have found their use in the ViSTA-TV project, the coffee capsule detection workshop
with the senior level pupils, and are now being re-used by the physicists for cloud
monitoring. The embedding of streams functions into the Hadoop Map&Reduce plat-
form allows for integrating any of the existing processors, defined using the streams
API, within the definition of batch jobs.

E.4 – Extensibility

Just as the software library character of streams processors allows their comfortable
re-use within other contexts, other libraries can easily be wrapped by the concept of
the defined streaming functions. By implementing such wrappers, popular libraries
such as the WEKA and MOA machine learning toolboxes can directly be re-used.
We outlined the extension of streams with both WEKA and MOA in Sections 5.2.3
and showed their practical use within the astrophysics use-case in Chapter 5.
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E.5 – Speed/Performance

We tested the streams implementation in various use-cases, some of which had high
demands to the data rate to be processed. The abstract modelling allowed for a
flexible restructuring of data flows. The streams-runtime offers a thread-level par-
allelization that provides a manual optimization of the data flow and the process
elements for tuning the deployment of an application. This proved especially useful
for the DEBS challenge task, outlined in [67], where we tested different layouts of an
application by restructuring the components within the XML specification.

The level of streaming functions in addition allows for the grouping of I/O inten-
sive related functions into a single process, limiting the amount of data transferred
between processes. As an example, we merged the video feature extraction of the
ViSTA-TV project into a single process, only emitting the resulting feature values.

For performance requirements exceeding single node computations, the streams-storm
package allows for the distributed execution of applications by means of an Apache
Storm cluster setup.

7.2.2. Impact of this Thesis

Apart of the conclusions we made from our investigations, the streams software de-
veloped in the course of this work has found a broad application in various scientific
publications, EU projects and industrial collaborations. A number of people have
developed custom extensions to model processoes for domain specific data. Figure
7.1 shows the tree of spawned activities, projects and other works that extend or
incorporate the streams framework.

streams

streams-rapidminer

streams-weka

streams-core

streams-esper

streams-video fact-tools

Steel Produc-
tion Monitoring

FACT Telescope
SFB 876 Project C3

Realtime IP-TV Statistics

INSiGHT Project
Smart City Monitoring

Figure 7.1.: streams libraries and projects using the streams framework.
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Streaming in Astroparticle Physics

An active field of development is the physics department of the TU Dortmund Uni-
versity, which moved their complete toolchain development for the preprocessing part
of the FACT telescope to streams. As we already mentioned in the summary of Chap-
ter 5, the adaption of streams has spawned the creation of over 100 domain specific
processor implementations. The streams-video package in turn has been adopted by
the physicists for analysing their all-sky camera cloud monitoring, being developed
within project C3 of the collaborative research center project SFB 876.
The FACT-Tools, which are completely based on streams, have been presented at
various community meetings in the astrophysics field and found interest in other
physic experiments as well. The CTA project aims at real-time processing of a large
array of Cherenkov telescopes, requiring a scalable and flexible infrastructure. The
streams-cta package, which is currently under development, aims at meeting the real-
time requirements for CTA, using streams as the underlying modelling platform.

EU Projects using the streams Framework

The streams framework has been used as the modelling and execution platform for the
ViSTA-TV EU project. The viewership information and real-time event handling as
well as the video stream processing (video feature extraction,...) has been modelled
and implemented within streams. Based on the collaboration within the ViSTA-TV
project, the streams-storm adaption has been thoroughly tested and extended to
meet the project requirements. The final use-case implementation and evaluation
of ViSTA-TV used the streams-runtime as the execution engine of the ViSTA-TV
streaming architecture.

Within the EU project INSiGHT, streams has been used as an integration platform,
as it allowed for the required high-level specification of data flows. Several scientific
publications from the LS8 group used streams as the underlying data processing tool
for experiments [133, 16, 104, 105].

The streams Framework for Factory Monitoring

In a project for process monitoring within the steel production, Hendrik Blom de-
veloped a complete analysis data flow based on streams, which is deployed in the
streams-runtime engine [131, 26]. These monitoring processes handle high-speed sen-
sor data and are running in production mode for long-term, proving the robustness
of the streams reference runtime implementation.
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7.3. Outlook and Future Work

The streams framework and the abstract concepts formulated within proved to be
a successful basis for various use-cases. The applicability of streams in different
environments motivates its deployment in a variety of additional areas. We list here
a few links to interesting directions for further extensions and research.

Even Bigger Data in Astroparticle Physics

The Cherenkov Telescope Array (CTA) project pushes the observation of celestial
sources to higher limits, employing multiple telescopes with high-resolution trigger
rates. The data rate within CTA is expected to surmount the rates of existing
telescope experiments by several orders of magnitude. Providing a configurable pro-
totyping environment for the data analysis required on this data demands for a highly
scalable software system.
Based on the experience, we gained with the FACT-Tools package, we focus on the
development of a scalable streams-cta package, that allows for modelling streaming
applications for the CTA project. Here, the deployment of the modelled application
on a distributed streaming platform like Apache Storm seems to be a reasonable
choice. For meeting the real-time requirements CTA, we will require to implement
and investigate data representations and processing functions within streams.

Benchmarking Distributed Stream Processing Engines

The platform independence of streams motivates an extensive comparison of the
existing streaming platforms with a more performance oriented focus. This requires
a proper implementation of mappings from streams to additional platforms other
than Apache Storm. Interesting candidates are the Apache Samza framework, for
which we outlined a mapping in Section 3.3.3, and the Stratosphere/Apache Flink
system. Leading questions for such a comparison may be:

• Which platform achieves maximum throughput for different data streams?

• Which data characteristics are best meeting the specialties of which platform?

The streams framework does provide the abstract concepts for such comaprisons, un-
fortunately, the implementation of multiple streaming platform adaptions is beyond
the scope of this thesis. In light of the aforementioned application of the CTA project,
such studies seem crucial for a sustainable development of a high-performance anal-
ysis system for demanding projects like CTA.

Exploring the Field of Security Log Analysis

In context of the early works we published on the analysis of log data with a focus on
security aspects [37, 32], streams provides an interesting test-bed for the implemen-
tation of log monitoring systems. From a scientific aspect, this allows for exploring a
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variety of different approaches using the rapid prototyping powers of streams, while
keeping the central aspect of reproducibility of the performed experiments.

Visualization and Usability

With the abstraction layer provided by streams we already put a focus on usability
of the modelling of Big Data streaming applications. It allows end-users to design
applications by means of high-level XML without any knowledge of the underlying
execution platform.
Driving this even further, we investigated the use of interactive gesture-based sketch-
ing, to derive applications from user paintings. In Chapter 4 we investigated the use
of machine learning for detecting the gestures, providing a proof-of-concept prototype
for RapidMiner and streams.
While these prototypes investigate the technical basis for visualizing the modelling,
they did not reach the state of fully-fledged designer applications. This leaves open
space for providing a more complete application, that may further provide the basis
for studies more focusing on the human-computer interaction.
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Appendix A

Overview of Collaborative Works

Parts of this thesis are based on joint work with colleagues and other researchers,
as reflected by co-authorship of joint publications and community efforts within the
research projects. Section 1.4 already lists the publications that have been created
over the course of this thesis. In the following, we give a more detailed overview of
the external contributions with regard to the chapters of this work.

Chapter 2

This chapter is sole work of Christian Bockermann, mostly researched and written
during a stay at the University of Zürich. It has been published as technical work
A Survey of the Stream Processing Landscape (6/2014) in the collaborative research
center SFB-876.

Chapter 3

The core concepts of streams have been created and implemented by Christian Bock-
ermann in close collaboration with Hendrik Blom, who contributed bug-fixes and
performance improvements in various parts of the current software version of streams.
The text of the technical report The streams Framework (6/2012), which the chapter
is based upon is sole work of Christian Bockermann.

Chapter 4

The work on visualizations in this chapter is based on published papers that are sole
works of Christian Bockermann.

Chapter 5

The research on analysis of telescope data is a joint work with the department of
astroparticle physics of the Technische Universität Dortmund. The FACT-Tools li-
brary provides numerous processors that are specific to the telescope data and have
been implemented by various authors. The streams-mapred package that integrates
streams functions into the Apache Hadoop framework has originally been created
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by Christian Bockermann and has been extended and further investigated by Niklas
Wulf in this bachelor thesis.
The text of Chapter 5 and the associated paper has been written by Christian Bock-
ermann with some advice of co-authors related to the physical aspects.

Chapter 6

The chapter on the ViSTA-TV use-case covers different areas, which have over the
time been investigated by various people. Thomas Scharrenbach of the University
of Zürich implemented the integration of Esper into streams. The streams-video
package has originally been implemented by Christian Bockermann and has been
used and extended by Matthias Schulte in his Diploma thesis on video segmentation.
The simple web-based publish-subscriber system has been implemented by Christian
Bockermann as part of his involvement in the ViSTA-TV project.
The text of Chapter 6 has exclusively been written by Christian Bockermann.
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Sample Code

In this part of the thesis, we provide a collection of code samples, that have been
used for demonstration purposes throughout this work.

B.1. Coffee Capsule Detection

The detection of colored coffee capsule has a focus on the demonstration of streams’
concepts and served as a running example in various workshops. The example is
based on the following XML specification:

<application>

<stream id="video:data" class="stream.io.MJpegImageStream"

url="http://download.jwall.org/streams/kapseln-random.mjpeg" />

<process input="video:data" >

<stream.image.features.AverageRGB />

<thesis.chapter6.coffee.ObjectDetection/>

<streams.weka.ApplyModel model="classpath:/color-prediction.weka" />

<thesis.chapter6.coffee.CountColors key="@prediction" />

</process>

</application>

Detection of Objects by Color Thresholds

A simple method for detecting the capsules passing the video camera is a monitoring
of changes in the averaged RGB values of the overall frames. The code in listing B.1
on page B.1 shows the state-based detection of RGB values changing from below a
threshold to above a threshold and vice-versa.

Counting Service Implementation

The coffee video example uses a service to provide anytime access to the current cap-
sule counts. This service is provided by a processor instance, that does the counting
and implements the StatisticsService interface, included in the streams API.
Figure B.2 on page 229 shows the source code for this processor/service.
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package thesis.chapter6.coffee;

import stream.AbstractProcessor;

import stream.Data;

import stream.data.DataFactory;

import stream.io.Sink;

/**

* @author Christian Bockermann

*/

public class ObjectDetection extends AbstractProcessor {

// store current r/g/b minima

final double[] min = new double[] { 255.0, 255.0, 255.0 };

double threshold = 96.0;

boolean belowThreshold = false;

Sink output;

Data last = null;

public Data process(Data input) {

Double r = (Double) input.get("frame:red:average");

Double g = (Double) input.get("frame:green:average");

Double b = (Double) input.get("frame:blue:average");

if (r > threshold && g > threshold && b > threshold) {

// we are ABOVE threshold, reset all minima !!

//

if (belowThreshold) { // switching state?

if (last != null) {

Data item = DataFactory.copy(last);

item.put("min:red", min[0]);

item.put("min:green", min[1]);

item.put("min:blue", min[2]);

output.write(item);

}

Data detected = last;

// and reset everything:

belowThreshold = false;

min[0] = 255.0;

min[1] = 255.0;

min[2] = 255.0;

last = null;

return detected;

}

} else {

belowThreshold = true;

boolean newMinimum = min[0] > r || min[1] > g || min[2] > b;

if( newMinimum ){

min[0] = Math.min(min[0], r);

min[1] = Math.min(min[1], g);

min[2] = Math.min(min[2], b);

last = input.createCopy();

}

}

return null;

}

}

Figure B.1.: Implementation of a threshold-based object detection. Getter and setter
methods (e.g. for the parameter threshold) are omitted.
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package thesis.chapter6.coffee;

import java.io.Serializable;

import stream.Data;

import stream.Processor;

import stream.data.Statistics;

import stream.statistics.StatisticsService;

/**

* @author Christian Bockermann

*/

public class CountColors implements Processor, StatisticsService {

// The name of the attribute to count the values of

String label = "@prediction";

final Statistics counts = new Statistics();

/**

* @see stream.service.Service#reset()

*/

public void reset() throws Exception {

counts.clear();

}

/**

* @see stream.statistics.StatisticsService#getStatistics()

*/

public Statistics getStatistics() {

return new Statistics(counts);

}

/**

* @see stream.Processor#process(stream.Data)

*/

public Data process(Data input) {

Serializable color = input.get(label);

if (color != null) {

counts.add(color.toString(), 1.0);

}

return input;

}

public void setLabel( String label ){

this.label = label;

}

public String getLabel(){

return label;

}

}

Figure B.2.: Processor that counts values of an attribute and provides these values
via a service implementation.
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The streams Framework

An important part of the streams framework is provided by the high-level Java API for
implementing custom, domain specific elements. This section provides a description,
along with examples, for implementing core elements that may be required to use
streams in a new application domain

C.1. Extending the streams Framework

C.1.1. Implementing Custom Data Streams

The data sources in streams applications are provided by implementations of the
interface stream.io.Stream, which in turn extends the more abstract Source inter-
face. Stream implementations address the reading of data in a specific format from
some arbitrary input stream. Instead of reading from a real stream, implementations
may also generate data, based on a user define strategy.
The stream.io.Source interface defines functions for initializing the stream, reading
data from it and closing the stream, as shown in the interface definition (excerpt):

public interface Source {

public void init() throws Exception;

public Data read() throws Exception;

public void close() throws Exception;

}

The interface stream.io.Stream extends the Source type only by an additional
getLimit() methods.

Example: A Synthetic Data Stream

As a running example, we will start with the implementation of a synthetic data
stream, that generates items with a single attribute x containing a random value.
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A good class to start is the AbstractStream class, which already provides the major-
ity of method implementations and only requires use to implement the readNext()

method to retrieve the next item from our stream. Figure C.2 shows the Java code
for this simple stream.

import java.util.Random;

import stream.Data;

import stream.data.DataFactory;

public class RandomStream extends AbstractStream {

Random rnd = new Random();

public Data readNext() throws Exception {

Data item = DataFactory.create();

item.put( "x", rnd.nextDouble());

return item;

}

};

Figure C.1.: An implementation of a random stream.

Stream elements can be parameterized like any other basic element of a streams
application. For parameterization, the stream class requires get- and set- methods
for the parameters it supports.

The following extension of our RandomStream example allows for defining the at-
tribute key within the XML specification of the application. If no parameter is
defined in the XML, the default x will be used.

// imports omitted

public class RandomStream extends AbstractStream {

String key = "x"; // use x as the default

Random rnd = new Random();

public Data readNext() throws Exception {

Data item = DataFactory.create();

item.put( key, rnd.nextDouble());

return item;

}

public void setKey( String k ) {

this.key = k;

}

public String getKey() {

return key;

}

};

Figure C.2.: An implementation of a random stream.
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Example: Reading from URLs

For a more elaborate implementation, we turn our focus on the handling of URLs.
The streams framework provides a generic SourceURL class, which allows for accessing
a wide range of pre-defined URL schemata. In the following, we will give an example
for reading double precision values from a fixed binary format. We assume the input
to consist of the following form:

422

422

422

422

1.323

0.832

3.271

4.720

105.273

203.284

283.198

184.937

“type”

(Integer)

“sensor1”
(Double)

“sensor2”
(Double)

The data stream contains events, each of which has three attributes: type, sensor1
and sensor2. The type attribute is an integer value, e.g. describing some finite state,
whereas sensor1 and sensor2 contain a 64bit floating point value. The class shown
in Figure C.3 provide access to this stream by creating a single data item for each of
the events/triplets.
By using the SourceURL and the openStream() call, which returns an object of type

java.io.InputStream

the implementation can automatically be used to read this specific binary format
from any of the URLs supported by SourceURL. The following URLs can be used in
the current streams version:

Schema Description

file: File URLs

classpath: Resources in the Java classpath.

http: Resources accessible via HTTP.

tcp: Streams connectable to via TCP sockets.

tcpd: Allows for accpeting incoming tcp connections.

ssl: SSL-Encrypted tcp connections.
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// imports omitted

public class SensorStream extends AbstractStream {

SourceURL url;

DataInputStream input;

public SensorStream(SourceURL url){

super(url);

this.url = url;

}

public void init() throws Exception {

input = new DataInputStream(url.openStream());

}

public Data readNext() throws Exception {

Data item = DataFactory.create();

int type = input.readInt();

double s1 = input.readDouble();

double s2 = input.readDouble();

item.put( "type", type);

item.put( "sensor1", s1);

item.put( "sensor2", s2);

return item;

}

public void close() throws Exception {

super.close();

input.close();

}

};

Figure C.3.: A stream reading from a binary formatted input.
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C.1.2. Implementing Custom Processors

Processors in the streams framework can be plugged into the processing chain to
perform a series of operations on the data. A processor is a simple element of work
that is executed for each data item. Essentially it is a simple Java function defined
like the following:

public Data process( Data item ){

// your code here

return item;

}

The notion of a processor is captured by the Java interface stream.Processor that
simply defines the process(Data) function mentioned above:

public interface Processor {

public Data process( Data item );

}

Example: A simple custom processor

In the following, we will walk through a very simple example to show the implemen-
tation of a processor in more detail. We will start with a basic class and extend this
to have a complete processor in the end.
The main construct is a Java class within a package my.package that implements
the identity function is given as:

package my.package;

public class Multiplier implements Processor {

public Data process( Data item ){

return item;

}

}

This class implements a processor that simply passes through each data item to be
further processed by all subsequent processors. Once compiled, this simple processor
is ready to be used within a simple stream processing chain. To use it, we can directly
use the XML syntax of the streams framework to include it in to the process:

Processing data

The simple example shows the direct correspondence between the XML definition
of a container and the associated Java implemented processors. The data items
are represented as simple Hashmaps with String keys and Serializable values.
The wrapping process element reads from the connected input stream and calls the
process(Data) method with each item obtained from the stream.
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<application>

<process input="...">

<!-- simply add an XML element for the new processor -->

<my.package.Multiplier />

</process>

</application>

Figure C.4.: The processors are added to the XML process definition by simply
adding an XML element with the name of the implementing class into
the process that should contain the processor.

The code in Figure C.5 extends the empty data processor from above by checking
for the attribute with key x and adding a new attribute with key y by multiplying
x by 2. This simple multiplier relies on parsing the double value from its string
representation. If the double is available as Double object already in the item, then
we could also directly cast the value into a Double:

// directly cast the serializable value to a Double object:

Double x = (Double) item.get( "x" );

The multiplier will be created at the startup of the experiment and will be called
(i.e. the process(..) method) for each event of the data stream.

package my.package;

import stream.*;

public class Multiplier implements Processor {

public Data process( Data item ){

Serializable value = item.get( "x" );

if( value != null ){

// parse value to double

Double x = new Double( value.toString() );

// multiply+add result

data.put( "y", new Double( 2 * x ) );

}

return item;

}

}

Figure C.5.: A simple custom processor that multiplies an attribute x in each data
item by a constant factor of 2. If the attribute x is not present, this
processor will leave the data item unchanged.
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Adding Parameters to Processors

In most cases, we want to add a simple method for parameterizing our Proces-
sor implementation. This can easily be done by following the Convention-over-
Configuration paradigm: By convention, all setX(...) and getY() methods are
automatically regarded as parameters for the data processors and directly available
as XML attributes.
In the example from above, we want to add two parameters: key and factor to our
Multiplier implementation. The key parameter will be used to select the attribute
used instead of x and the factor will be a value used for multiplying (instead of the
constant 2 as above). To add these two parameters to our Multiplier, we only need
to provide corresponding getters and setters as shown in Figure C.7. After compiling
this class, we can directly use the new parameters key and factor as XML attributes.
For example, to multiply all attributes z by 3.1415, we can use the following XML
setup:

<application>

<process input="...">

<my.package.Multiplier key="z" factor="3.1415" />

</process>

</application>

Figure C.6.: Processor definition with parameters.

Upon startup, the getters and setters of the Multiplier class will be checked and if
the argument is a Double (or Integer, Float,...) it will be automatically converted
to that type. In the example of our extended Multiplier, the factor parameter
will be created to a Double object of value 3.1415 and used as argument in the
setFactor(..) method.

237



C. The streams Framework

// imports omitted

//

public class Multiplier implements Processor {

String key = "x"; // by default we still use ’x’

Double factor = 2; // by default we multiply with 2

// getter/setter for parameter "key"

//

public void setKey( String key ){

this.key = key;

}

public String getKey()(

return key;

}

// getter/setter for parameter "factor"

//

public void setFactor( Double fact ){

this.factor = fact;

}

public Double getFactor(){

return factor;

}

public Data process( Data item ) {

// omitted - see above

}

}

Figure C.7.: The Multiplier processor with added parameters.
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Appendix D

The streams-core Package

The streams framework provides a wide range of implementations for data streams
and processors. These are useful for reading application data and defining a complete
data flow.
In this section we provide a comprehensive overview of the classes and implementa-
tions already available in the streams library. These can directly be used to design
stream processes for various application domains.

D.1. The streams-core Data Streams

Reading data is usually the first step in data processing. The package stream.io

provides a set of data stream implementations for data files/resources in various
formats. All of the streams provided by this package do read from URLs, which
allows reading from files as well as from network URLs such as HTTP urls or plain
input streams (e.g. standard input).

Defining a Stream

As discussed in Section 3.3.1, a stream is defined within an application using the
XML stream element, providing a url and class attribute which determines the
source to read from and the class that should be used for reading from that source.
In addition, the definition requires a third attribute id, which assigns the stream
with an identifier. This identifier is then used to reference the stream as input to a
process.
As a simple example, the following XML snippet defines a data stream that reads
data items in CSV format from some file URL:

<stream id="csv-data" class="stream.io.CsvStream"

url="file:/tmp/example.csv" />
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D.1.1. ArffStream

This stream implementation provides access to reading ARFF files and processing
them in a stream based fashion. ARFF is a standard format for data in the machine
learning community which has its root in the WEKA project [79].

Parameter Type Description Required

id String The identifier to reference this stream in the container true

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should deliver false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Table D.1.: Parameters of class stream.io.ArffStream

D.1.2. CsvStream

This data stream source reads simple comma separated values from a file/url. Each
line is split using a separator (regular expression). Lines starting with a hash char-
acter (#) are regarded to be headers which define the names of the columns. The
default split expression is (;|,), but this can changed to whatever is required using
the separator parameter.

Parameter Type Description Required

keys String[] ?

separator String true

id String ?

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should deliver false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Figure D.1.: Parameters of class stream.io.CsvStream.
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D.1.2.1. SvmLightStream

This stream implementation provides a data stream for the SVMlight format. The
SVMlight format is a simple key:value format for compact storage of high dimen-
sional sparse labeled data. It is a line oriented format where each line is laid out
as shown below. The keys are usually indexes, but this stream implementation also
supports string keys. The # character starts a comment that can be provided to each
line.

-1.0 4:3.3 10:0.342 44:9.834 # some comment

Parameter Type Description Required

sparseKey String ?

id String The ID of this string for associating it with processes. true

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should deliver. false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Table D.2.: Parameters of class stream.io.SvmLightStream.

D.1.3. JSONStream

This data stream reads JSON objects from the source (file/url) and returns the cor-
responding Data items. The stream implementation expects each line of the file/url
to provide a single object in JSON format.

Parameter Type Description Required

id String ?

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should
deliver

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Figure D.2.: Parameters of class stream.io.JSONStream
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D.1.4. LineStream

This class provides a very flexible stream implementations that essentially reads
from a URL line-by-line. The content of the complete line is stored in the attribute
determined by the key parameter. By default the key LINE is used. It also supports
the specification of a simple format/grammar string that can be used to create a
generic parser to populate additional fields of the data item read from the stream.
The grammar is a string containing %(name) elements, where name is the name of
the attribute that should be created at that specific portion of the line. An example,
for such a simple grammar is given as follows:

%(IP) [%(DATE)] "%(URL)"

The %(name) elements are extracted from the grammar and all remaining elements
in between are regarded as boundary strings that separate the elements.
The simple grammar above will create a parser that is able to read lines in the format
of the following:

127.0.0.1 [2012/03/14 12:03:48 +0100] "http://example.com/index.html"

The outcoming data item will have four attributes LINE, IP, DATE and URL. The
attribute IP set to 127.0.0.1 and the DATE attribute set to 2012/03/14 12:03:48

+0100. The URL attribute will be set to http://example.com/index.html. The
LINE attribute will contain the complete line string.

Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

key String The name of the attribute holding the complete line, defaults to
LINE.

false

format String The format how to parse each line. Elements like %(KEY) will be
detected and automatically populated in the resulting items.

false

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should deliver false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Table D.3.: Parameters of class stream.io.LineStream
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D.1.5. SQLStream

This class implements a DataStream that reads items from a SQL database table.
The class requires a jdbc URL string, a username and password as well as a select

parameter that will select the data from the database. The following XML snippet
demonstrates the definition of a SQL stream from a database table called TEST TABLE:

<stream class="stream.io.SQLStream"

url="jdbc:mysql://localhost:3306/TestDB"

username="SA" password=""

select="SELECT * FROM TEST_TABLE" />

The database connection is established using the user SA and no password (empty
string). The above example connects to a MySQL database.
As the SQL database drivers are not part of the streams library, you will need to
provide the database driver library for your database on the class path.

Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

url String The JDBC database url to connect to. true

select String The select statement to select items from the database. true

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should deliver. false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Table D.4.: Parameters of class stream.io.SQLStream.
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D.1.6. ProcessStream

This processor executes an external process (programm/script) that produces data
and writes that data to standard output. This can be used to use external programs
that can read files and stream those files in any of the formats provided by the
stream API. The default format for external processes is expected to be CSV. In the
following example, the Unix command cat is used as an example, producing lines of
some CSV file:

<stream class="stream.io.ProcessStream" format="stream.io.CsvStream"

command="/bin/cat /tmp/test.csv" />

Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

format String The format of the input (standard input), defaults to CSV true

command String The command to execute. This command will be spawned and is
assumed to output data to standard output.

true

Table D.5.: Parameters of class stream.io.ProcessStream.

D.1.7. TimeStream

This is a very simple stream that emits a single data item upon every read. The data
item contains a single attribute @timestamp that contains the current timestamp
(time in milliseconds). The name of the attribute can be changed with the key

parameter, e.g. to obtain the timestamp in attribute @clock:

<stream class="stream.io.TimeStream" key="@clock" />

Parameter Type Description Required

id String The ID of this string for associating it with processes. true

key String The name of the attribute that should hold the timestamp, defaults
to @timestamp

false

interval String The time gap/rate at which this stream should provide items. true

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should deliver. false

Table D.6.: Parameters of class stream.io.TimeStream.
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D.2. The streams-core Queues

The notion of queues is similar to the definition of streams within the streams frame-
work. Queues provide can be attached as sources to processes while also allowing
to be fed with data items from other places. This allows for simple inter-process
communication by forwarding data items from one process to the queue that is read
by another different process.

D.2.1. BlockingQueue

The class stream.io.BlockingQueue provides a simple DataStream that items can
be enqueued into and read from. This allows inter-process communication between
multiple active processes to be designed using data items as messages.
As the name already suggests, this queue is a blocking queue, resulting in any process
that reads from this queue to block if the queue is empty. Likewise, any processor
that adds items to the queue (e.g. stream.flow.Enqueue) will be blocking if the
queue is full.
By default the size of the queue is unbounded (i.e. bound by the available memory
only), but can be fixed by using the size parameter.

Parameter Type Description Required

size Integer The maximum number of elements that can be held in the queue.

id String The ID of this queue for associating it with processes. true

password String The password for the stream URL (see username parameter) false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should deliver. false

username String The username required to connect to the stream URL (e.g web-
user, database user)

false

Table D.7.: Parameters of class stream.io.BlockingQueue.
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D.3. The streams-core Processors

The core packages of the streams framework provide a set of processor implementa-
tions that cover a lot of general stream processing tasks. These processors serve as
basic building blocks to design a stream process. A processor can simply be added to
a process by adding an XML element with the name of the processor to the process
element as shown in Figure D.3.

<process input="my-stream">

<!-- convert the string of attribute x1 to a double value -->

<stream.parser.ParseDouble key="x1" />

</process>

Figure D.3.: The processor stream.parser.ParseDouble added to a process.

Based on their purpose, the processors are organized into packages. To shorten
the XML declaration, several packages are automatically checked for when resolve
a processor. For example the stream.parser package is among the default base
packages. This allows for leaving out the package name, when adding the processor.
Thus, the XML from Figure D.3 is equivalent to the following XML snippet:

<process input="my-stream">

<!-- convert the string of attribute x1 to a double value -->

<ParseDouble key="x1" />

</process>

The default packages that are automatically checked for when resolving processor
names are:

• stream.data

• stream.flow

• stream.parser

• stream.script.
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D.3.1. Processors in Package stream.flow

The stream.flow package contains processors that allow for data flow control within
a process setup. Processors in this package are usually processor-lists, i.e. they may
provide nested processors that are executed based on conditions.
A typical example for control flow is given with the following If processor, which
executes the PrintData processor only, if the value of attribute x1 is larger than
0.5. Other flow control processors provide control of data queues such as enqueuing

<If condition="\%{data.x1} @gt 0.5">

<PrintData />

</If>

events into other processes’ queues.

D.3.1.1. Processor Delay

This simple processor puts a delay into the data processing. The delay can be
specified in various units with the simple time format being specified like “40ms” for
specifying a delay of 40 milliseconds. Other units for day, hour, minute and so on
work as well.
The units can also be combined as in 1 second 30ms.

Parameter Type Description Required

time String The time that the data flow should be delayed. true

condition String The condition parameter allows to specify a boolean expression that
is matched against each item. The processor only processes items
matching that expression.

false

Table D.8.: Parameters of class stream.flow.Delay.

D.3.1.2. Processor Enqueue

This processor will enqueue data items into specified queues. To ensure mutual access
to the data, the items are copied and copies are sent to the queues. This may lead
to a multiplication of data.
The processor is a conditioned processor, i.e. it supports the use of condition expres-
sions. As an example, the XML snippet in Figure D.4 will enqueue all events with a
color value equal to blue into the queue blue-items.
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<process ...>

<Enqueue queues="blue-items" condition="%{data.color} == blue" />

</process>

Figure D.4.: The Enqueue processor combined with a condition.

Parameter Type Description Required

queues ServiceRef[] A list of names that reference the target queues. true

condition Condition A condition that is required to evaluate to true for this processor
to be executed. If no condition is specified, then the processor is
executed for every data item.

false

Table D.9.: Parameters of class stream.data.Enqueue.

D.3.1.3. Processor Every

This processor requires a parameter n and will then execute all inner processors every
n data items, i.e. if the number of observed items modulo n equals 0.
In all other cases, the inner processors will simply be skipped.

Parameter Type Description Required

n Long ?

Table D.10.: Parameters of class stream.flow.Every.

D.3.1.4. Processor If

This processor provides conditioned execution of nested processors. By specifying a
condition, all nested processors are only executed if that condition is fulfilled.
As an example, the following will only print data items if the attribute x is larger
than 3.1415:

<If condition="%{data.x} @gt 3.1415">

<PrintData />

</If>
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Parameter Type Description Required

condition String false

Table D.11.: Parameters of class stream.flow.If.

D.3.1.5. Processor OnChange

The OnChange processor is a processor list that executes all nested processors if
some state has changed. This is similar to the If processor, but provides support for
a process state check.
In the following example, the Message processor is only executed if the context
variable status changes from green to yellow:

...

<OnChange from=‘green‘ to=‘yellow‘>

<Message message="Status change detected!" />

</OnChange>

Parameter Type Description Required

key String true

from String false

to String false

condition String false

Table D.12.: Parameters of class stream.flow.OnChange.

D.3.1.6. Processor Skip

This processor will simply skip all events matching a given condition. If no condition
is specified, the processor will skip all events.
The condition must be a bool expression created from numerical operators like @eq,
@gt, @ge, @lt or @le. In addition to those numerical tests the @rx operator followed
by a regular expression can be used.
The general syntax is

variable operator argument

For example, the following expression will check the value of attribute x1 against the
0.5 threshold:

%{data.x1} @gt 0.5
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Parameter Type Description Required

condition String The condition parameter allows to specify a boolean expression that
is matched against each item. The processor only processes items
matching that expression.

false

Table D.13.: Parameters of class stream.flow.Skip.

D.3.1.7. Processor Collect

This processor requires a count parameter and a key to be specified. The implemen-
tation will wait for a number of count data items and collect these in a list. As soon
as count items have been collected, a new, empty item will be created which holds
an array of the collected items in the attribute specified by key.
While waiting for count items to arrive, the processor will return null for each
collected data item, such that no subsequent processors will be executed in a process.
After emitting the collected data items, the counter is reset and the processor starts
collecting the next count items.

Parameter Type Description Required

key String The key (name) of the attribute into which the collection (array)
of items will be put, defaults to ’@items’

false

count Integer The number of items that should be collected before the processing
continues.

true

Table D.14.: Parameters of class stream.flow.Collect.

D.3.1.8. Processor ForEach

This class implements a processor list. It can be used if the current data item provides
an attribute that holds a collection (list, set, array) of data items, which need to be
processed.
The ForEach class extracts the nested collection of data items and applies each of
the inner processors to each data item found in the collection. The key parameter
needs to be specified to define the attribute which holds the collection of items.
If no key is specified or the data item itself does not provide a collection of items in
this key, then this processor will simply return the current data item.
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Parameter Type Description Required

key String The name of the attribute containing the collection of items that
should be processed.

false

Table D.15.: Parameters of class stream.flow.ForEach.

D.3.2. Processors in Package stream.data

This package provides processors that perform transformations or mangling of the
data items themselves. Examples for such processors are CreateID, which adds a
sequential ID attribute to each processed item or the RemoveKeys processor which
removes attributes by name.
Other useful processors provide numerical binning (NumericalBinning), setting of
values in various scopes (SetValue) and the like.

D.3.2.1. Processor AddTimestamp

This processor simply adds the current time as a UNIX timestamp to the current
data item. The default attribute/key to add is @timestamp.
The value is the number of milliseconds since the epoch date, usually 1.1.1970. Using
the key parameter, the name of the attribute to add can be changed:

<stream.data.AddTimestamp key="@current-time" />

Parameter Type Description Required

key String The key of the timestamp attribute to add false

Table D.16.: Parameters of class stream.data.AddTimestamp.

D.3.2.2. Processor WithKeys

This processor is a processor list that executes one or more inner processors. It creates
a copy of the current data item with all attributes matching the list of specified keys.
Then all nested processors are applied to that copy and the copy is merged back into
the original data item.
If any of the nested data items returns null, this processor will also return null.
The keys parameter of this processor allows for specifying a comma separated list
of keys and key-patterns using simple wildcards * and ? as shown in Figure D.5. If
the keys parameter is not provided, then the inner processors will be provided with
a complete copy of the current data item.
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<process ...>

<WithKeys keys="x1,user:*,!user:id">

<PrintData />

</WithKeys>

</process>

Figure D.5.: Selects only attribute x1, all attributes starting with user: but not at-
tribute user:id and executes the PrintData processor for this selection
of attributes.

Parameter Type Description Required

keys String[] A list of filter keys selecting the attributes that should be provided
to the inner processors.

false

merge Boolean Indicates whether the outcome of the inner processors should be
merged into the input data item, defaults to true.

false

Table D.17.: Parameters of class stream.data.WithKeys.

D.3.2.3. Processor SetValue

This processors allows for setting an attribute/ a feature to a single, constant value:

<SetValue key="attribute1" value="abc" />

Parameter Type Description Required

value String ?

key String The name of the attribute to set. true

scope String[] The scope determines where the variable will be set. Valid scopes
are process, data. The default scope is data.

false

condition String The condition parameter allows to specify a boolean expression that
is matched against each item. The processor only processes items
matching that expression.

false

Table D.18.: Parameters of class stream.data.SetValue.
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D.3.3. Processors in Package stream.parser

When processing streams of data each single data item may contain additional infor-
mation that needs to be extracted into more detailed attributes or into other value
types. The stream.parser package provides a set of parsing processors, that usually
act upon on or more keys and extract information from the attributes denoted by
those keys. For example, the ParseDouble processor will parse double values from
all strings that are denoted in its keys parameter. Other parsers in this package are
for example the ParseJSON, Timestamp or the NGrams processor.

D.3.3.1. Processor NGrams

This parser processor will create n-grams from a specified attribute of the processed
item and will add all the n-grams and their frequency to the item. By default the
processor creates n-grams of length 3.
To not overwrite any existing keys, the n-gram frequencies can be prefixed with a
user-defined string using the prefix parameter.
The following example shows an NGram processor that will create 5-grams of the
string found in key text and add their frequency to the items with a prefix of 5gram:

<stream.parser.NGrams n="5" key="text" prefix="5gram" />

Parameter Type Description Required

key String The attribute which is to be split into n-grams true

n Integer The length of the n-grams that are to be created true

prefix String An optional prefix that is to be prepended for all n-gram names
before these are added to the data item

false

Table D.19.: Parameters of class stream.parser.NGrams.

D.3.3.2. Processor ParseDouble

This simple processor parses all specified keys into double values. If a key cannot be
parsed to a double it will be replaced by Double.NaN. The processor will be applied
for all keys of an item unless the keys parameter is used to specify the keys/attributes
that should be transformed into double values.
The following example shows a ParseDouble processor that converts the attributes
x1 and x2 into double values:

<stream.parser.ParseDouble keys="x1,x2" default="0.0" />

The default parameter allows for specifying a different value than the default Dou-
ble.NaN value, as 0.0 in this case.
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Parameter Type Description Required

default Double The default value to set if parsing fails false

keys String[] The keys/attributes to perform parsing on true

Table D.20.: Parameters of class stream.parser.ParseDouble.

D.3.3.3. Processor ParseTimestamp

This processor parses the date time from an attribute using a specified format string
and stores the parsed time as a long value into the @timestamp key by default. The
processor requires at least a format and a from parameter. The format specifies a
date format to parse the time from. The from parameter determines the key attribute
from which the date is to be parsed.
The following example shows a timestamp parser that parses the DATE key using the
format yyyy-MM-dd-hh:mm:ss. The resulting timestamp (milliseconds UNIX time)
is stored under key @time:

<stream.parser.ParseTimestamp key="@time" format="yyyy-MM-dd-hh:mm:ss"

from="DATE" />

Parameter Type Description Required

key String false

format String The date format string used for parsing. true

from String The key/attribute from which the timestamp should be parsed. true

timezone String The timezone that the processed data is assumed to refer to. false

Table D.21.: Parameters of class stream.parser.ParseTimestamp.

254



D.3. The streams-core Processors

D.3.4. Processors in Package stream.script

D.3.4.1. Processor JRuby

This processor executes JRuby (Ruby) scripts using the Java ScriptingEngine inter-
face. To use this processor, the JRuby implementation needs to be available in the
classpath. The script is evaluated for each processed item and will be provided to
the script as variable $data.

Parameter Type Description Required

file File false

script BodyContent false

Table D.22.: Parameters of class stream.script.JRuby.

D.3.4.2. JavaScript

This processor can be used to execute simple JavaScript snippets using the Java-6
ECMA scripting engine. The processor binds the data item as data object to the
script context to allow for accessing the item. The following snippet prints out the
message “Test” and stores the string test with key @tag in the data object:

println( "Test" );

data.put( "@tag", "Test" );

The script can directly be embedded into the XML using the <JavaScript/> tag and
adding the script to the tag body. The processor can also be used to run JavaScript
snippets from external files, by simply specifying the file attribute:

<JavaScript file="/path/to/script.js" />

Parameter Type Description Required

file File false

script BodyContent false

Table D.23.: Parameters of class stream.script.JavaScript.
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Appendix E

The streams-video Package

The streams-video package is an example for a domain specific set of implementations
of data streams and processors, addressing the area of video signal processing. The
package is based around a central ImageRGB data structure, which provides access to
a single, decorded video frame in bitmap form.

The data stream implementations produce sequences of data items from various
inputs, where each of the output items refers to a single video frame.

E.1. The streams-video Data Streams

E.1.1. Video Stream Implementations

E.1.1.1. MJpegImageStream

This class implements a stream for sequences of JPEG images. The format is often
called mjpeg and consists of frames, each compressed to the JPEG format by itself.

The items produced by this stream contain a single attribute frame:image, contain-
ing the decoded bitmap image as object of class ImageRGB.

Parameter Type Description Required

continuous boolean ?

includeRawData boolean ?

limit Long The maximum number of items that this stream should
deliver.

false

prefix String An optional prefix string to prepend to all attribute names. false

sequenceKey String An optional key which should contain a sequence ID for each
item. If not specified, not sequence IDs will be generated.

false

id String The ID of this stream for associating it with processes. true

Table E.1.: Parameters of class stream.io.MJpegImageStream.
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E.1.2. Audio Stream Implementations

The streams-video package has limited support for audio data.

E.1.2.1. WavStream

This stream implementation provides access to WAV samples that are read from
a URL. The wav samples are read in small chunks (blocks), depending on the
blockSize parameter of this stream. Each item provided by this stream contains a
double array of blockSize values (samples).
By default the samples are stored in attribute wav:samples. Additional informa-
tion may be included in the first item of the stream, such as wav:samplerate,
wav:channels or the number of bytes per sample (wav:bytesPerSample).

Parameter Type Description Required

blockSize int The number of samples (double values) read from the
stream for each data item.

false

limit Long The maximum number of items that this stream should
deliver.

false

prefix String An optional prefix string to prepend to all attribute names. false

sequenceKey String An optional key which should contain a sequence ID for each
item. If not specified, not sequence IDs will be generated.

false

id String The ID of this stream for associating it with processes. true

Table E.2.: Parameters of class stream.io.WavStream.

E.1.2.2. SinusWave

This class generates audio samples for a sine wave of a given frequency and amplitude.
This is intended for testing and experiments.

Parameter Type Description Required

frequency Double The frequency of the sine wave. Default value is 261.63. false

sampleRate Integer The sampling rate, default is 48.000 Hz. false

blockSize int Number of samples collected in each item. Default is 48000. false

prefix String An optional prefix string to prepend to all attribute names. false

sequenceKey String An optional key which should contain a sequence ID for each
item. If not specified, not sequence IDs will be generated.

false

id String The ID of this stream for associating it with processes. true

Table E.3.: Parameters of class stream.audio.SinusWave.
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E.2. The streams-video Processors

The video processors are all located at the frame level and process items, which
contain image objects of class ImageRGB.

E.2.1. Processors in Package stream.image

E.2.1.1. Processor BorderDetection

This processor performs a border detection on the input image. A pixel is said to be
a border pixel, if its’ color differs from the color of at least one of its’ four neighboring
pixels. By increasing the tolerance, the amount of neighboring pixels that have to
have the same color value can be decreased.

Parameter Type Description Required

output String The name/key of the output image is stored. If this name
equals the name of the input image, the input image is going
to be overwritten.

false

tolerance int The number of neighboring pixels that may have a different
color value, without causing, that the actual pixel becomes
recognized as a border pixel. The higher the tolerance is,
the less border pixels will be found.

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.4.: Parameters of class stream.image.BorderDetection.

E.2.1.2. Processor ColorDiscretization

The processor discretizes the color space of the input image by discretizing each single
RGB color channel.

Parameter Type Description Required

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

bins Integer Set the number of discrete color values, each channel in
divided into.

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.5.: Parameters of class stream.image.ColorDiscretization.
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E.2.1.3. Processor ColorToGrayscale

This processor converts a color image to a grayscale image.

Parameter Type Description Required

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.6.: Parameters of class stream.image.ColorToGrayscale.

E.2.1.4. Processor Crop

This processor crops an image to a new size by cutting away parts of the image.

Parameter Type Description Required

y int y coordinate of the lower-left corder of the rectangle for
cropping, defaults to 0.

false

x int x coordinate of the lower-left corder of the rectangle for
cropping, defaults to 0.

false

output String Key/name of the attribute into which the output cropped
image is placed, default is ’frame:cropped’.

false

width int Width of the rectangle to crop, default is 10. false

height int Height of the rectangle to crop, default is 10. false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.7.: Parameters of class stream.image.Crop.
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E.2.1.5. Processor DiffImage

This processor computes the difference image of the actual image and the image
before.

Parameter Type Description Required

threshold Integer ?

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.8.: Parameters of class stream.image.DiffImage.

E.2.2. Processors in Package stream.image.features

E.2.2.1. Processor AverageRGB

This processor extracts RGB colors from a given image and computes the average
RGB values over all pixels of that image.

Parameter Type Description Required

includeRatios boolean Sets, if the processor includes the ration between the color
channels, or just the average RGB color values. Ratios are
(red/blue), (red/green), (green/blue).

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.9.: Parameters of class stream.image.features.AverageRGB.
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E.2.2.2. Processor CenterOfMass

This processor calculates the Center of Mass of one color channel of the image. You
can either ask for the absolute x- and y-coordinates of the Center of Mass or the
normalized Center of Mass (= absolute Center of Mass / the size of the image).

Parameter Type Description Required

normalized Boolean Sets, if the processor computes the normalized Center of
Mass or the absolute Center of Mass

false

colorchannel String Sets the color channel, on which the Center of Mass com-
putation is based on.

false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.10.: Parameters of class stream.image.features.CenterOfMass.

E.2.2.3. Processor ColorHistogram

This processor computes a color histogram on one color channel of an image.

Parameter Type Description Required

bins Integer Sets the number of bins the color channel is discretized into. false

colorchannel String Sets the color channel the histogram is computed for. false

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.11.: Parameters of class stream.image.features.ColorHistogram.

E.2.2.4. Processor MedianRGB

This processor extracts RGB colors from a given image and computes the median
value for each color channel.

Parameter Type Description Required

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.12.: Parameters of class stream.image.features.MedianRGB.
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E.2.2.5. Processor StandardDeviationRGB

This processor computes the standard deviation for all three RGB channels. Requires
the Average (=Mean) value for all RGB channels to be included already. This can
for example be done by using the AverageRGB processor.

Parameter Type Description Required

image String The name of the attribute that contains the byte array data
of the encoded image or the ImageRGB object (if previously
been decoded). Default value is: frame:image.

false

Table E.13.: Parameters of class stream.image.features.StandardDeviationRGB.
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