

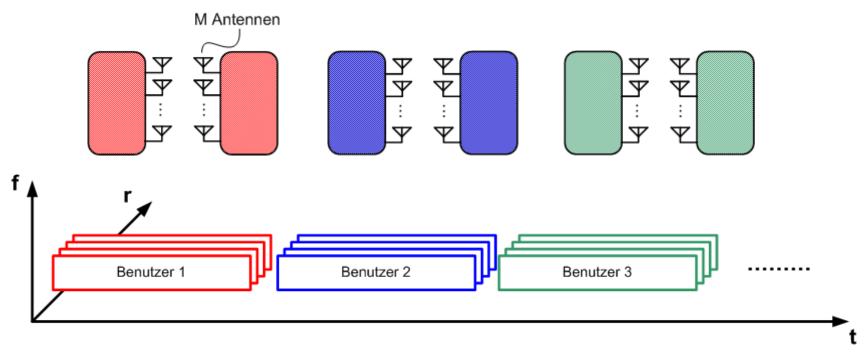
Hardwarebeschleuniger für Interference Alignment in In-House Mehrbenutzer-Kommunikationssystemen

Markus Kock, Holger Blume

ITG Workshop "Sound, Vision & Games", 22. September 2015, Hannover

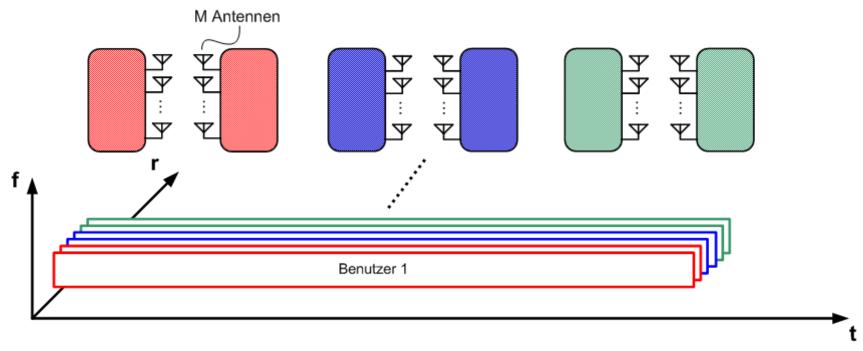
Outline

- Interference Alignment
 - increased channel capacity in multi-user scenarios
 - Physical layer technique
- MMSE Interference Alignment Algorithm
- Hardware architecture
 - Parallelization
 - Low-latency operations
- Implementation results
- Conclusion


Objectives

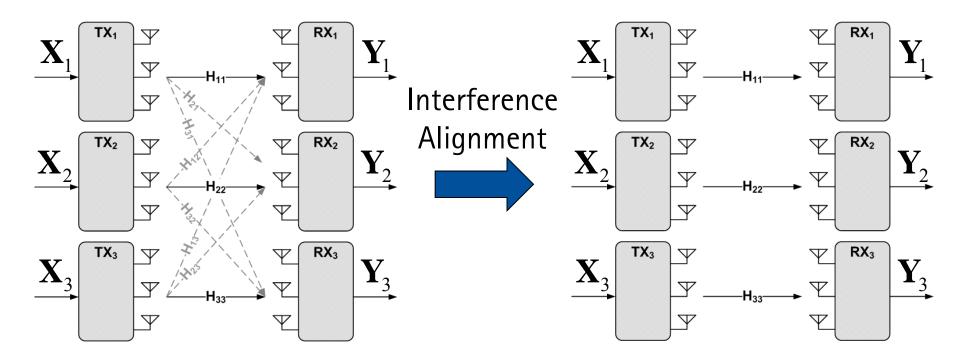
- Dedicated hardware accelerator for Minimum Mean Square Error (MMSE) Interference Alignment (IA)
- Digital baseband processing
- Low-latency real-time operation (latency < 1 ms)</p>

Multi-User MIMO Communication System, TDMA



- MIMO spatial multiplexing: multiple antennas per user, one data stream per antenna
- Channel capacity shared by all users

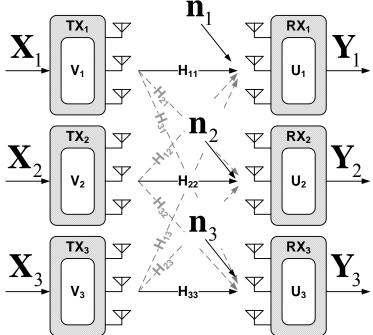
Multi-User MIMO Communication System, IA



- MIMO spatial multiplexing: multiple antennas per user, one data stream per antenna
- Channel capacity shared by all users
- Interference Alignment: simultaneously transmitting users

Multi-User MIMO System: Goal

→ Channel capacity scales with number of users K



Interference Alignment System Model

- Scenario: multi-user point-to-point communication system
- Linear precoding and decoding at TX and RX, respectively

Received signal:
$$\mathbf{Y}_k = \mathbf{U}_k^T \left(\sum_{j=1}^K \mathbf{H}_{kj} \mathbf{V}_j \mathbf{X}_j + \mathbf{n}_k \right)$$

- K: #users, d: datastreams / user
 N_t: antennas / TX, N_r: antennas / RX
- Problem formulation:
 Determine V_k and U_k for given H_{kj}
- Several approaches feasible: Max SINR, Max Sum-Rate, MMSE, ...

Fast-changing channels

- Channel coherence time depends on scenario
- Precoding matrices need to be adapted to the channel within channel coherence time
- High data throughput AND low-latency realtime computation required
- \rightarrow Low-latency computation of \mathbf{V}_k and \mathbf{U}_k (< 1 ms)
- Additional system latencies: channel estimation, transmit CSI, distribute V_k and U_k

MMSE-IA Algorithm

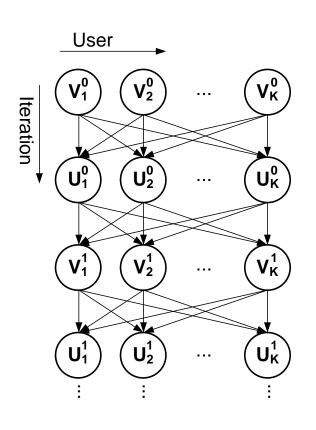
- MMSE criterion: minimize overall interference + noise Algorithm^[1]:
 - 1. Start with arbitrary V_k
 - 2. Update

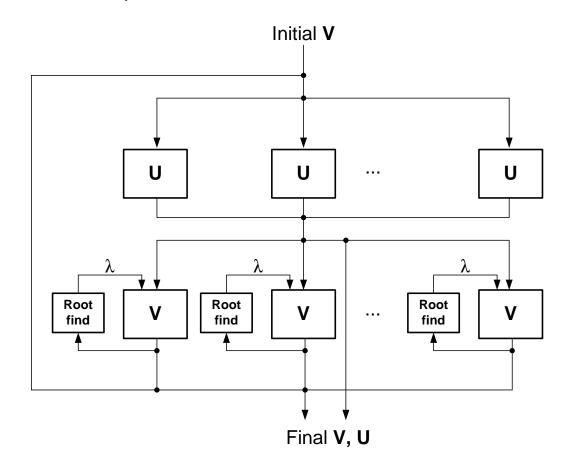
$$\mathbf{U}_{k} = \left(\sum_{j=1}^{K} \mathbf{H}_{kj} \mathbf{V}_{j} \mathbf{V}_{j}^{H} \mathbf{H}_{kj}^{H} + \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{H}_{kk} \mathbf{V}_{k}$$

$$\mathbf{V}_{k} = \left(\sum_{j=1}^{K} \mathbf{H}_{jk}^{H} \mathbf{U}_{j} \mathbf{U}_{j}^{H} \mathbf{H}_{jk} + \lambda_{k} \mathbf{I}\right)^{-1} \mathbf{H}_{kk}^{H} \mathbf{U}_{k}$$

Lagrange multiplier λ_k iteratively determined to satisfy TX power constraint $\|\mathbf{V}_k\|_F^2 \leq 1$

- Compute system MSE
- 4. Repeat steps 2 and 3 until convergence

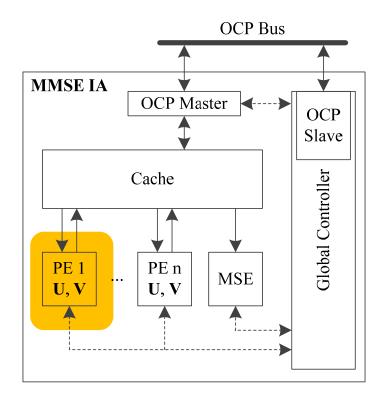

[1]: D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, "Minimum Mean Squared Error Interference Alignment", 2009



Parallelization

Inherent data dependencies limit parallelization

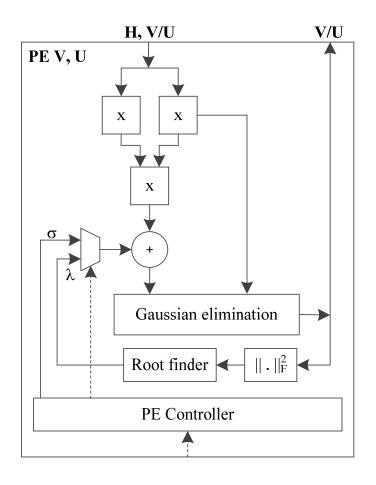
Data dependencies


Maximum parallel HW data flow

Hardware System Architecture

Dedicated accelerator for integration in SDR SoCs

Top-level


- All communication via OCP or AXI on-chip busses
- Local matrix cache (BRAM)
 - \blacksquare **H**_{ik} channels
 - \mathbf{V}_k precoders
 - \mathbf{U}_k decoders
- Variable number of processing elements (PE) for computing \mathbf{V}_k and \mathbf{U}_k
- Controller

Processing Element

- Compute V <u>or</u> U for one user at a time (mode select)
- Main complexity: Gaussian elimination, shared by V and U modes
- Mode V
 - Iterative root-finding for λ_k
- Mode U
 - No iterations required

PE detail

Low-Latency Equation System Solver

- Inner loop contains matrix inversion
 - Solve equation system instead

$$\mathbf{U}_{k} = \left(\sum_{j=1}^{K} \mathbf{H}_{kj} \mathbf{V}_{j} \mathbf{V}_{j}^{H} \mathbf{H}_{kj}^{H} + \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{H}_{kk} \mathbf{V}_{k} = \mathbf{Q}_{k}^{-1} \mathbf{B}_{k}$$

$$\mathbf{Q}_{k} \mathbf{U}_{k} = \mathbf{B}_{k}$$

- Candidates: SVD, LU, QR, ...
- Criterion: low-latency
 - → Gaussian elimination
 - Small matrix sizes → sufficient precision
 - Latency: one multiplication per eliminated unknown

Two-Step Bareiss Algorithm

- Variation of Gaussian elimination
- Integer-preserving, division-free (elimination loop)
- Eliminate two unknowns per step
- Row-wise normalization after each elimination step
- One final division required per result coefficient

$$\mathbf{Q}_k \mathbf{U}_k = \mathbf{B}_k$$

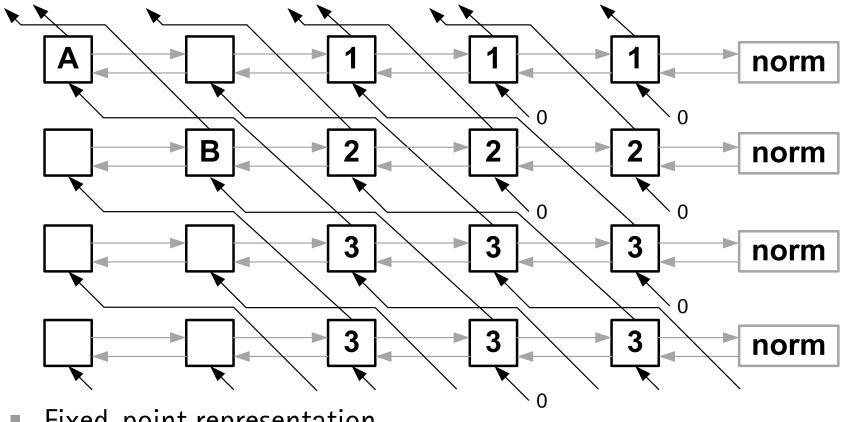
Augmented System:

$$\begin{bmatrix} \mathbf{Q}_{k} \mid \mathbf{B}_{k} \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1N} & b_{11} & \cdots & b_{1d} \\ q_{21} & q_{22} & \cdots & q_{2N} & b_{21} & \cdots & b_{2d} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ q_{N1} & q_{N2} & \cdots & q_{NN} & b_{N1} & \cdots & b_{Nd} \end{bmatrix} \xrightarrow{Bareiss} \begin{bmatrix} \mathbf{I} \mid \mathbf{U}_{k} \end{bmatrix}$$

Two-Step Bareiss Algorithm Result

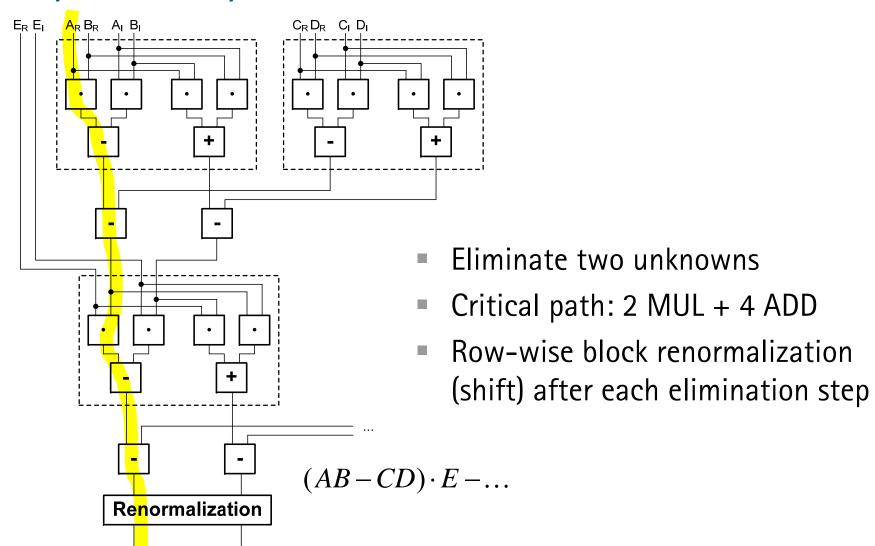
Two unknowns eliminated after one step

$$\begin{bmatrix} \tilde{q}_{11} & 0 & \cdots & \tilde{q}_{1N} & \tilde{b}_{11} & \cdots & \tilde{b}_{1d} \\ 0 & \tilde{q}_{22} & \cdots & \tilde{q}_{2N} & \tilde{b}_{21} & \cdots & \tilde{b}_{2d} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \tilde{q}_{NN} & \tilde{b}_{N1} & \cdots & \tilde{b}_{Nd} \end{bmatrix}$$
 One common factor per row
$$\Rightarrow \text{Skip multiplication}$$
 Fewer operations compared to single step elimination}


Repeat to obtain diagonal form

$$\begin{bmatrix} d_{11} & 0 & & \tilde{u}_{11} & \cdots & \tilde{u}_{1d} \\ & d_{22} & & & \tilde{u}_{21} & \cdots & \tilde{u}_{2d} \\ & & \ddots & & \vdots & \cdots & \vdots \\ & 0 & & d_{NN} & \tilde{u}_{N1} & \cdots & \tilde{u}_{Nd} \end{bmatrix} \qquad \text{Final division required for each result coefficient u}$$

Two-Step Bareiss Systolic Array Processor



- Fixed-point representation
- Only multiplications and additions/subtractions required
- Data shifted diagonally by two elements per elimination step

Systolic Array Processor Critical Path

Implementation Results

Channel capacity within 0.1% vs. floating-point MATLAB reference

FPGA synthesis

Target: Xilinx Virtex-6 XC6VLX550T-2

Software: ISE 14.7

Clock constraint: 50 MHz

• Latency 520 μ s for worst-case system (N_t = N_r = 11, K = 19)

K	$N_{t,r}$	d	n _{PE}	n _{MM}	FF		LUT		DSP48E1	
3	2	1	3	3	51531	7.50%	81560	23.73%	364	42.13%
			1		20942	3.05%	32702	9.52%	148	17.13%
				1	16585	2.41%	25682	7.47%	80	9.26%
5	3	1	1	3	32980	4.80%	56974	16,58%	330	38,19%
				1	24916	3.62%	43514	12.66%	232	26,85%

Conclusion

- Hardware acceleration required for very low-latency MMSE-IA
- Resource requirements prohibitive for large system configurations
- Worst-case processing latency < 520 μs is achievable

Thank you for your attention!

Questions?