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1 Introduction

Endogeneity of an unobservable and covariates is a frequent problem in econo-

metric modeling. An efficient way to deal with endogeneity is to use instrumental

variables (IV) in the estimation. These are variables which are independent or

mean independent of the unobservable. In the context of nonparametric estima-

tion the IV approach usually leads to ill-posed problems with unknown operator.

That means the solution ϕ of the nonparametric IV problem can be characterized

by a possible nonlinear operator equation

F(ϕ) = ψ. (1)

In some regression models ψ = 0. In other models it is a function that has to

be estimated from observations by some estimator ψ̂. The operator F : X → Y
is an integral operator between some function spaces X and Y. This operator

is not exactly known in applications. Only an estimator F̂ is available. The

inverse of the operators F or F̂ is usually not continuous. Even with an arbitrary

small variance in ψ̂ and F̂ we usually have Var(‖F̂−1ψ̂‖X) = ∞. Hence the

straightforward estimator ϕ̂ = F̂−1ψ̂ is inconsistent. We discuss specific examples

for nonparametric IV models and the related operators in Section 2.

In this paper we describe and analyze a consistent estimator for this type

of problems, when F is an operator between Hilbert spaces. The estimator is

based on the iteratively regularized Gauß-Newton method (IRGNM) with iter-

ated Tykhonov regularization defined below in (12). Details about that method

will be given in Section 2.3

This method was suggested by Bakushinskĭı (1992a). Important monographs

on this topic are Bakushinskĭı and Kokurin (2004) and Kaltenbacher et al. (2008).

To use the IRGNM for nonparametric IV problems was proposed and analyzed

by Dunker et al. (2014a) with rates for convergence in probability.

In contrast to Dunker et al. (2014a), we prove in this paper convergence rates

of the risk under a significantly different set of assumptions. Instead of varia-

tional methods as in Dunker et al. (2014a) we relay on spectral methods and a

modification of Hoeffding’s inequality. Furthermore, we use a significantly weaker

non-linearity condition for the operator F and prove faster rates when the re-

gression function is smooth enough.
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In the framework of Dunker et al. (2014a) the non-linearity is constrained by

the so called tangential cone condition. This condition is hard to check and

difficult to interpret. It can not be reduced to primitive conditions in the context

of nonparametric IV. In this paper a Lipschitz condition (18) restricts the non-

linearity of F . We will give an easy interpretation of this condition.

Dunker et al. (2014a) derived rates in terms of δ := ‖F(ϕ†) − F̂(ϕ†)‖ where

ϕ† is the exact solution to (1). In that framework no convergence faster then

Op(δ−3/4) was proven even if ϕ† is arbitrarily smooth. In this paper we show

the rate δ−3/4 under similar smoothness conditions and provide results for higher

rates for the risk when ϕ† is smooth enough. Hence, results in this paper are

complementary to results in Dunker et al. (2014a). In addition, to rates in δ we

derive rates in the sample size n and analyze adaptive estimation.

The paper is organized as follows. We discuss in Section 2 some IV models

which fit into the framework of this paper and explain the estimator. In Section

3 we analyze the error of the Gauss-Newton method applied to IV models. Using

this analysis we give convergence rate results in Section 4. Finally, we present

some numerical simulations in Section 5. All proofs are in the Appendix A.

2 Application: nonparametric instrumental vari-

ables

2.1 Nonparametric instrumental regression

Mean independence The first econometric model that combined nonpara-

metric specification and instrumental variables was a nonparametric regression

model with separable error term U and mean independent instruments Z

Y = ϕ(X) + U with E[U |Z] = 0. (2)

Here and in all following models Y and U are one-dimensional random variables.

Whereas, X and Z can be a random vectors or one-dimensional. The dimensions

of X and Z do not have to coincide. This model was proposed by Newey and

Powell (2003) and Florens (2003). It was further investigated and applied in Hall

and Horowitz (2005), Blundell et al. (2007), Chen and Reiss (2011), Horowitz
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(2011), Florens et al. (2011), Horowitz (2014), Chen and Christensen (2015), as

well as in Breunig and Johannes (2015) among others.

We can write model (2) equivalently by E[ϕ(X)|Z] = E[Y |Z]. The left hand

side of this equation is the so called conditional expectation operator. It maps a

function in X to a function in Z. If we assume that conditional on Z the variables

X and Y have densities fX|Z and fY |Z , this leads to the integral equation∫
fX|Z(x|z)ϕ(x)dx =

∫
fY |Z(y|z)dy for all z ∈ supp (Z). (3)

The conditional expectation operator is given as

(Fceϕ)(z) :=

∫
fX|Z(x|z)ϕ(x)dx.

It is a linear integral operator with integral kernel fX|Z(x|z). We denote the right

hand side of the equation by ψ(z) :=
∫
fY |Z(y|z)dy. Then model (2) is equivalent

to the operator equation

(Fceϕ)(z) = ψ(z). (4)

The integral kernel fX|Z and thereby Fce as well as the function ψ are not known

exactly in practice. They have to be estimated from a sample of Y,X,Z. An

estimator f̂X|Z gives an estimator for the operator in a natural way (F̂ceψ)(z) :=∫
f̂X|Z(x|z)ψ(x)dx.

The main focus of this paper is on non-linear operator equations. Hence, we are

not particularly interested in this problem. However, for a linear operator like

Fce the IRGNM with iterated Tykhonov regularization defined in (12) reduces to

the usual iterated Tykhonov regularization

ϕi+1 := argmin
ϕ∈X

(
‖F̂ce(ϕ)− ψ̂‖2 + α‖ϕ− ϕi‖2

)
.

This iteration starts at some initial guess ϕ0 and is stopped when i = m for some

number m. In this sens our results for the IRGNM hold for (2) with iterated

Tykhonov regularization as well. Tykhonov regularization for model (2) is well

understood and our results for the IRGNM applied to this simpler case are not

new. We use model (2) together with iterated Tykhonov regularization only as a

4



benchmark for the IRGNM applied to model (5) below.

The operator formulation (4) gives rise to an identification analysis of model (2).

The model identifies the regression function ϕ if and only if Fce is injective. This

property is usually called completeness. Detailed discussions of the identification

can be found in D’Haultfoeuille (2011), D’Haultfoeuille and Fevrier (2011), and

Andrews (2011).

Full independence In practical applications econometricians claim that some

variable Z is a good instrument when they have compelling reasons that Z is

independent of the unobservable U . It is usually not supposed that Z might be

mean independent but not fully independent of U . This motivates the regression

model

Y = ϕ(X) + U with U ⊥⊥ Z and E[U ] = 0. (5)

Here E[U |Z] = 0 is replaced by full independence U ⊥⊥ Z and E[U ] = 0. This

model was proposed in Dunker et al. (2014a). Since the new assumptions imply

E[U |Z] = 0 but not vice versa the model (5) makes stronger assumptions than

model (2). Thereby, it uses more information than model (2). Consequently,

when ever (2) identifies the solution so does (5). Furthermore, there are cases in

which (5) can identify a solution, while (2) fails. This is for example the case with

discrete instruments and continuous regressors as discussed in D’Haultfoeuille and

Fevrier (2011) and Dunker et al. (2014a).

We can translate model (5) into an operator equation as above by defining the

operator

(F̃ind(ϕ))(u, z) :=

(
P[Y − ϕ(X) ≤ u]− P[Y − ϕ(X) ≤ u|Z = z]

E[Y − ϕ(X)]

)
. (6)

When Y,X,Z have a joint density fY XZ an alternative operator is

(Find(ϕ))(u, z) :=

( ∫
fY XZ(u+ ϕ(x), x, z)− fY X(u+ ϕ(x), x)fZ(z) dx∫

ϕ(x)fx(x) dx−
∫
yfY (y) dy

)
.

(7)
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Model (5) is equivalent to the operator equations

F̃ind(ϕ) = 0 or Find(ϕ) = 0.

Note that the operators are nonlinear due to the first line of (6) or (7). Further-

more, the operators are not known exactly in practice and have to be estimated.

In particular, an estimator f̂Y XZ for the joint density gives an estimator F̂ind for

Find just by replacing fY XZ by f̂Y XZ .

By the curse of dimensionality the first line of the operator will dominate the

convergence rates. Hence, when we discus this example below we will focus on

the first component of the operator. Let us denote the integral kernel of the first

line of the operator (7) by

kind(y, x, z) := fY XZ(y, x, z)− fY X(y, x)fZ(z) or

k̂ind(y, x, z) := f̂Y XZ(y, x, z)− f̂Y X(y, x)f̂Z(z)

respectively. The first component of the operator then reads (F(ϕ))(z) =
∫
kind(ϕ(x), x, z)dx.

We will express some properties of Find and F̂ind in terms of kind and k̂ind.

Demand models We want to point out a related application in industrial or-

ganization. Some recent approaches to model demand in differentiated product

markets nonparametrically lead to similar operator equations as above. These

models characterize a structural function that explains the demand for every

product in the market by observed (and quantified) properties of the products.

Similarities to IV regression appear when Y corresponds to a specific observed

characteristic of products. X corresponds to a vector of the demand of prod-

ucts and of other observed product characteristics including the price. U is an

unobserved product characteristic. In this interpretation the function ϕ is not

a regression function. Instead, it is the demand function inverted in the unob-

servable U . Nevertheless, the mathematical structure of this problem is the same

as in a regression model. The price and the unobservable U are usually depen-

dent. This endogeneity can be treated with instrumental variables. An approach

with mean independence similar to (2) was proposed in Berry and Haile (2011)

and Berry and Haile (2014). While Dunker et al. (2014b) suggest to assume

full independence and use a model similar to (5). For more information on this
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application we additionally refer to Berry et al. (2013).

2.2 Nonparametric instrumental quantile regression and

non-separable models

Nonparametric instrumental quantile regression Another regression model

that leads to a nonlinear operator equation is the nonparametric instrumental

quantile regression proposed by Horowitz and Lee (2007). For q ∈ [0, 1] the q-th

quantile regression function ϕq is characterized by

Y = ϕq(X) + U P(U ≤ 0|Z = z) = q for all z. (8)

With the assumption that a joint density fY XZ exists, the model is equivalent to

the an operator equation Fq(ϕq) = 0 with

(Fq(ϕ))(z) :=

∫
FY XZ(ϕ(x), x, z) dx− qfZ(z). (9)

and FY XZ(y, x, z) :=
∫ y
−∞ fY XZ(ỹ, x, z) dỹ. This operator is again nonlinear.

Different estimation procedures for this model were proposed and analyzed in

Horowitz and Lee (2007), Chen and Pouzo (2012), Dunker et al. (2014a), and

Breunig (2015). Local identification properties of this and related models are

discussed in Chen et al. (2014).

In order to get a consistent notation with Section 2.1 we define an integral

kernel for the operator above by

kq(y, x, z) := FY XZ(y, x, z)− qfXZ(x, z)

and denote an estimate by k̂q. Then (Fq(ϕ))(z) =
∫
kq(ϕ(x), x, z)dx. To replace

qfZ(z) by
∫
qfXZ(x, z)dx is clearly impractical for applications. But this way of

writing the operators makes it easier to discuss (7) and (9) in a unified framework.

Non-separable model The forgoing models have in common that the unob-

servable U enters in a separable way. One model that falls in our framework

which allows for an unseparable error term was proposed in Chernozhukov et al.
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(2007). See also Chernozhukov and Hansen (2005).

Y = φ(X,U) with U ⊥⊥ Z and

φ(x, u) strictly monotonic increasing in u.
(10)

It is pointed out in Horowitz and Lee (2007), and Chernozhukov et al. (2007)

that this model is already contained in model (8). Let FU be the cumulative

distribution function of U . Renormalize Ũ := F−1
u (U) and φ̃(x, u) = φ(x, FU(u)).

Then Ũ is uniformly distributed on [0, 1]. The value of Ũ corresponds to a quantile

in model (8). This reduces (10) to model (8) with ϕq(x) = φ̃(x, q).

2.3 The estimator

In this section we introduce an abstract setup which comprises the examples

above. For this setup an estimator based on the iteratively regularized Gauß

Newton-method is introduced. In the general setup we assume that a function

ϕ† is characterized by the possibly nonlinear operator equation

F(ϕ†) = 0. (11)

Where F : B2R(ϕ0) ⊆ X → Y is an operator between Hilbert spaces. A ball

B2R(ϕ0) with radius 2R around an initial guess ϕ0 must be contained in the

domain of F . In practice, large values of R are usually possible. The operator

equation is allowed to be ill-posed in the sens that F−1 is not continuous. Fur-

thermore, the operator F is not known exactly in applications. Only a series of

estimators F̂n : B2R(ϕ0) ⊆ X→ Yn are available where n usually corresponds to

a sample size. We can allow for image spaces Yn that depend on the estimator

and might not be contained in Y. This could be a finite dimensional approxima-

tion space. The method we want to propose is based on linearizing F . Therefore,

we make the following assumption.

Assumption 1. 1. ‖ϕ† − ϕ0‖ < R

2. F and all F̂n are well defined on B2R(ϕ0).

3. F and all F̂n are Fréchet differentiable on B2R(ϕ0).
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This gives all components we need to define the iteratively regularized Gauß-

Newton method (IRGNM) with iterated Tykhonov regularization. This method

consists of two nested iterations. The outer iteration is a Newton method. It

starts with an initial guess ϕ0 and produces in the j−1-the step the estimate ϕ̂j.

In the j-th Newton iteration step the operator is linearized by

F̂(ϕ) ≈ F̂ ′n[ϕ̂j](ϕ− ϕ̂j) + F̂n(ϕ̂j).

This linearizion is used in an m-times iterated Tykhonov regularization – the

inner iteration of the method. In the following scheme the Newton iteration is

counted be j and the Tykhonov iteration by i

ϕj+1,0 := ϕ̂j

ϕj+1,i+1 := argmin
ϕ∈X

(
‖F̂ ′n[ϕ̂j](ϕ− ϕ̂j) + F̂n(ϕ̂j)‖2

Yn + αj‖ϕ− ϕj+1,i‖2
)

ϕ̂j+1 :=ϕj+1,m

stop if ‖ϕ̂j − ϕ0‖ > 2R and set ϕ̂j+1 = ϕ0.

(12)

Here αj > 0 is a regularization parameter. With a small αj the method has a

large variance. With a larger αj the variance can be controlled while some bias

is added to the estimates. We choose α0 large enough to stabilize the problem.

In every Newton step αj decays by

αj+1 = qααj with some fixed 0 < qα < 1 (13)

to reduce the bias. A second parameter that has to be chosen is the number of

inner iterations m. A large m is of advantage when ϕ† is very smooth. When

m is chosen to large or for less smooth ϕ† there is no significant effect on the

estimator. Since the inner iteration is numerically cheap a large value of m can

be taken without high costs.

An alternative formulation of the method can be obtained by using the func-

tional calculus. We denote by F̂ ′n[ϕ̂j]
∗ the adjoint operator of F̂ ′n[ϕ̂j] and we

set

gα(λ) :=
(λ+ α)m − αm

λ(λ+ α)m.
(14)
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Then

ϕ̂j+1 = ϕ0 + gαj

(
F̂ ′n[ϕ̂j]

∗F̂ ′n[ϕ̂j]
)
F̂ ′n[ϕ̂j]

∗
(
F̂ ′n[ϕ̂j](ϕ̂j − ϕ0)− F̂n(ϕ̂j)

)
stop if ‖ϕ̂j − ϕ0‖ > 2R and set ϕ̂j+1 = ϕ0.

(15)

is equivalent to (12). The function gαj is applied to the self-adjoint operator

F̂ ′n[ϕ̂j]
∗F̂ ′n[ϕ̂j] in the sens of the functional calculus. Compare Bakushinskĭı and

Kokurin (2004) p.23-24.

One crucial parameter choice has to be made for this method. The Newton

iteration has to stop at an appropriate iteration step. The size of the regular-

ization parameter is linked to the number of steps. Hence, the number of steps

corresponds to an bias variance trade of. In addition, we added some kind of

emergency stop. The iteration always ends when ‖ϕ̂j − ϕ0‖ > 2R. Finding the

right step to stop the iteration plays an important role in the convergence analysis

which is presented in the next section.

Example 2 (Fréchet differentiability). Assumption 1 is usually fulfilled in our

examples. The operators are well defined and Fréchet differentiable on the whole

space under mild integrability conditions on the joint density fY XZ . The Fréchet

derivative of the operator in (7) exists when fY XZ is partially differentiable in the

first variable. The operator in (9) is differentiable without further assumptions.

(F ′ind[ϕ]ψ)(u, z) =

( ∫ [
∂
∂y
fY XZ(u+ ϕ(x), x, z)− ∂

∂y
fY X(u+ ϕ(x), x)fZ(z)

]
ψ(x) dx∫

ψ(x)fx(x) dx

)
,

(F ′q[ϕ](ψ))(z) =

∫
fY XZ(ϕ(x), x, z)ψ(x) dx.

Note that the derivatives are linear integral operators with kernel ∂
∂y
k(ϕ(x), x, z).

3 Error analysis

To abbreviate the formulas in this section we introduce the following notations

T† := F ′[ϕ†] T̂n,j := F̂ ′n[ϕ̂j] T̂n† := F̂ ′n[ϕ†].
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This brings the iteration scheme in a more compact form

ϕ̂j+1 = ϕ0 + gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j

(
T̂n,j(ϕ̂j − ϕ0)− F̂n(ϕ̂j)

)
stop if ‖ϕ̂j − ϕ0‖ > 2R and set ϕ̂j+1 = ϕ0.

(16)

The error analysis starts with a discussion of smoothness assumptions in form

of source conditions. Then we will decompose the error ej+1 := ϕ̂j+1 − ϕ† into

different components derive estimates for each component.

3.1 Source conditions

As usual for nonparametric methods a smoothness assumption has to be imposed

on the true solution ϕ† to get convergence rates. In our setup with an ill-posed

operator equation (1) it is necessary to link the smoothness of ϕ† to the smoothing

properties of the operator F . An efficient and popular way to formulate this is a

source condition. The following definition uses the functional calculus.

Definition 3. Let Λ : [0,∞) → [0,∞) be continuous, strictly increasing with

Λ(0) = 0. A representation of the initial error

ϕ0 − ϕ† = Λ(T ∗† T†)ω , ω ∈ X (17)

is called spectral source condition and Λ is called an index function.

When T† is a linear integral operator with kernel ∂
∂y
k(ϕ†(x), x, z) as in Example

2 this definition can be interpreted in the following way. We assume for simplicity

that T† is compact. This for example the case if ∂
∂y
k(ϕ†(x), x, z) is continuous.

It is shown in Reade (1984) and Little and Reade (1984) that the singular values

of such an operator decay at least polynomially if ∂
∂y
k(ϕ†(x), x, z) belongs to a

Sobolev space, and exponentially if ∂
∂y
k(ϕ†(x), x, z) is analytic.

Let (σt, ut, vt) be the singular system of T†. The source condition (17) implies

for e0 = ϕ0 − ϕ†

ω =
∑
t∈N

〈e0, vt〉
Λ(σ2

t )
ut ∈ X and thereby

∞∑
t=1

(
〈e0, vt〉
Λ(σ2

t )

)2

<∞.

Hence, a w fulfilling (17) only exists if Λ compensates the decay of the singular

values in a way that Λ(σ2
t )
−1 = O(〈e0, vt〉). The decay of singular values describes
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the smoothing properties of the T† with respect to the singular vectors. While

the decay of 〈e0, vt〉 describes the smoothness of e0 with respect to the singular

vectors. Thus, the rate of decay for Λ(x) when x ↘ 0 compares these two

degrees of smoothness. For the examples above the source condition compares

the smoothness of fY XZ with the smoothness of the regression function ϕ†.

When σt and 〈e0, vt〉 both decay polynomially or both decay exponentially, i.e.

σt . exp(−cσt), 〈e0, vt〉 . exp(−ce0t)

with some constants cσ and ce0 , the source condition is fulfilled with Λ(x) = xµ.

Where µ > 0 is a sufficiently small constant. This is called a Hölder source

condition. This concept goes back to Lavrent′ev (1962) and Morozov (1968). For

exponential decay of σt but only polynomial decay of 〈e0, vt〉 the source condition

is true when the operator is rescaled to ‖T†‖ < 1 and Λ(x) = (− ln(x))−p with

some 0 < p. In this case the smoothing properties of T† are much stronger then

the smoothness of e0. This choice of Λ is called a logarithmic source condition.

It was proposed by Mair (1994) and Hohage (1997).

Despite the word “condition” in the name “source condition” it is rather a

relation that selects an index function. For any compact injective operator T†

and any e0 there is always an index function Λ such that a source condition is

fulfilled.

Theorem 4. Let H : X → X be a compact, injective, self adjoint, nonnegative

linear operator. For every e0 ∈ X there is a ω ∈ X and a concave index function

Λ such that (17) is true.

Proof. Mathé and Hofmann (2008) Corollary 2.

In this paper we focus on Hölder source conditions with µ ≥ 1/2. Notice,

that this implies e0 ∈ Range(F ′[ϕ†]∗). The case of µ ≤ 1/2 and exponential

source conditions was analyzed in Dunker et al. (2014a). We make the formal

assumption:

Assumption 5. The true solution ϕ† fulfills a source condition (17) with an

index function that satisfying Λ(x)x−µ = O(1) for x↘ 0 with 0 ≤ µ ≤ 1
2
.
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3.2 Lipschitz condition

Another important assumption is a restriction on the nonlinearity of the oper-

ator. We use for this purpose the following Lipschitz condition on the Fréchet

derivative.

Assumption 6. There exists L > 0 such that

‖F̂ ′n[ξ1]− F̂ ′n[ξ2]‖L(X,Y) ≤ L‖ξ1 − ξ2‖X (18)

for all ξ1, ξ2 ∈ BR(ϕ†) and large n.

The norm on the left hand side of the inequality is the operator norm for linear

operators

‖T‖L(X,Y) := sup
f∈X with ‖f‖X≤1

‖Tf‖Y.

Example 7. We discuss sufficient but not necessary conditions for the operators

(7) and (9) to fulfill (18). Assume k̂n(y, x, z) is twice differentiable in y and the

support of the instrument has finite measure µ(supp (Z)) < ∞. Then condition

(18) is implied by the boundedness of the second partial derivative

sup
y,z,w

∣∣∣∣ ∂2

∂y2
k̂n(y, z, w)

∣∣∣∣ <∞, for all sufficiently large n.

To show this, we use the fact that the operator norm of a linear integral operator

is bounded by the Hilbert-Schmidt norm. This is the L2 norm of the integral

kernel.

‖F̂ ′[ξ1]− F̂ ′n[ξ2]‖L(X,Y) ≤ ‖F̂ ′[ξ1]− F̂ ′n[ξ2]‖HS

=

√∫∫ (
∂

∂y
k̂n(ξ1(x), x, z)− ∂

∂y
k̂n(ξ2(x), x, z)

)2

dx dz

≤

√∫∫ (
sup
y,x̃

∣∣∣∣ ∂2

∂y2
k̂n(y, x̃, z)

∣∣∣∣ (ξ1(x)− ξ2(x))

)2

dx dz

= µ(supp (Z)) sup
y,x,z

∣∣∣∣ ∂2

∂y2
k̂n(y, x, z)

∣∣∣∣ ‖ξ1 − ξ2‖X

Most density estimators are strongly consistent. If k̂n is estimated by a strongly

consistent estimator, there is for every constant c ≥ 0 a N > 0 such that for all
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n > N

sup
y,x,z

∣∣∣∣ ∂2

∂y2
k̂n(y, x, z)

∣∣∣∣ ≤ sup
y,x,z

∣∣∣∣ ∂2

∂y2
k(y, x, z)

∣∣∣∣+ c.

Hence, we can set with some sufficiently large constant c

L := sup
y,x,z

∣∣∣∣ ∂2

∂y2
k(y, x, z)

∣∣∣∣+ c.

Then (18) holds as long as supy,x,z

∣∣∣ ∂2∂y2k(y, x, z)
∣∣∣ <∞. For the operators (7) and

(9) this is implied by

sup
y,x,z

∣∣∣∣ ∂2

∂y2
fY XZ(y, x, z)

∣∣∣∣ <∞ or sup
y,x,z

∣∣∣∣ ∂∂yfY XZ(y, x, z)

∣∣∣∣ <∞
respectively.

3.3 Error decomposition

The error in the j + 1-th Newton step is

ej+1 = ϕ̂j+1 − ϕ†

= ϕ0 − ϕ† + gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j

(
T̂n,j(ϕ̂j − ϕ0)− F̂n(ϕ̂j)

)
.

We decompose the error into four parts. These are an approximation error, a

propagated noise error, an error due to noise in the derivative, and a nonlinearity

error

ej+1 = eappj+1 + enoij+1 + ederj+1 + enlj+1

with the following structure.

approximation error eappj+1 := rαj(T̂
∗
n†T̂n†)Λ(T̂ ∗n†T̂n†)ω

propagated noise error enoij+1 := gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j[−F̂n(ϕ†)]

derivative noise error ederj+1 := rαj(T̂
∗
n,jT̂n,j)[Λ(T ∗† T†)− Λ(T̂ ∗n†T̂n†)]ω

nonlinearity error enlj+1 := gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j[F̂n(ϕ†)− F̂n(ϕ̂j) + T̂n,j(ϕ̂j − ϕ†)]

+[rαj(T̂
∗
n,jT̂n,j)− rαj(T̂ ∗n†T̂n†)]Λ(T̂ ∗n†T̂n†)ω

14



The function rα is defined as rα(λ) := 1− λgα(λ). In our case with gα as in (14)

we have: rα(λ) =
(

α
λ+α

)m
. A similar related decomposition without ederj+1 was

proposed in Bakushinskĭı (1992b) for the case of exactly known operators. In the

rest of the section we will analyze each error component in detail.

3.4 Approximation error

The terminology “approximation error” suggests that it is independent of the

noise and measures only the effect of the regularization on the approximation.

While this is true in the theory for non-random operators it is violated in our case

because eappj+1 := rαj(T̂
∗
n†T̂n†)Λ(T̂ ∗n†T̂n†)ω obviously depends on the estimator T̂n†.

Nevertheless, the standard way to bound the norm of this term leads to a bound

that does not dependent on T̂n† and measures only effects of the regularization.

This bound relays on the following assumption.

Assumption 8. 1. The number of iterations m of the Tykhonov regulariza-

tion is large enough such that

Λ(x)−1xm = O(1) for x↘ 0.

2. The initial regularization parameter α0 is large enough such that

α0 ≥
‖T̂ ∗n†T̂n†‖
1− qα

.

If Assumption 8 holds, there exists a constant CΛ with:

‖rαΛ‖∞ ≤ CΛΛ(α) for all α ≥ 0.

Hence, with some constant ρ ≥ ‖ω‖ the approximation error is bounded by

‖eappj+1‖ ≤ CΛΛ(αj)ρ. (19)

Furthermore, in our setting with αj := qααj−1 the following inequalities hold with

15



γapp := q−mα

‖eappj+1‖ ≤ ‖e
app
j ‖ ≤ γapp‖eappj+1‖ for j ≥ 1

and ‖eapp0 ‖ ≤ γapp‖eapp1 ‖ since α0 ≥
‖T̂ ∗n†T̂n†‖
1− qα

.
(20)

Note that the approximation error tends to 0 with increasing j because αj is

decreasing while Λ is strictly increasing and Λ(0) = 0.

3.5 Propagated noise error

The propagated noise error enoij+1 := gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j[−F̂n(ϕ†)] can be bounded

by using some standard estimates and the functional calculus. Note that there

exists a constant Cg only depending on the function gα such that for any linear

bounded operator T : X→ Y and ψ ∈ Y

‖gα(TT ∗)‖L(Y,Y) ≤ ‖gα‖∞ = sup
x≥0

(
(x+ α)m − αm

x(x+ α)m

)
≤ Cg

α
,

‖gα(TT ∗)TT ∗‖L(Y,Y) ≤ sup
x≥0
|gα(x)x| = sup

x≥0

(
(x+ α)m − αm

(x+ α)m

)
= 1 , and

‖gα(T ∗T )T ∗ψ‖2
X = 〈gα(TT ∗)ψ, gα(TT ∗)TT ∗ψ〉Y

≤ sup
x≥0
|xgα(x)|‖gα‖∞‖ψ‖2

Y ≤
Cg
α
‖ψ‖2

Y.
(21)

Hence,

‖enoij+1‖X = ‖gαj(T̂ ∗n,jT̂n,j)T̂ ∗n,jF̂n(ϕ†)‖X ≤

√
Cg
αj
‖F̂n(ϕ†)‖Y and

E
(
‖enoij+1‖2

X
)
≤ Cg
αj

E
(
‖F̂n(ϕ†)‖2

Y

)
. (22)

This bound does not depend on the noise in the derivative T̂n,j but only on the

error in the operator F̂n at ϕ†. Note that the bound grows with decreasing

regularization parameter. In contrast to the approximation error it grows with

the number of Newton steps. Thus, we have to find the right step J where ‖eappJ ‖
and ‖enoiJ ‖ are balanced such that non of them becomes large.

In addition to the risk bound of enoij a concentration inequality is needed to
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bound the risk of the Newton method. This is formulated as an assumption on

the estimator F̂n. Lemma 11 at the end of this section shows that this assumption

holds for the operators (7) and (9) of the regression models (5) and (8).

Assumption 9. There are constants c1, c2 ≥ 0 such that for all n ∈ N

P

{∣∣∣‖F̂n(ϕ†)‖Y − E‖F̂n(ϕ†)‖Y
∣∣∣ ≥√τ Var

(
‖F̂n(ϕ†)‖Y

)}
≤ c1e

−c2τ . (23)

The following example illustrates the asymptotic behavior of the risk bound

(22) for (7) and (9).

Example 10. Let Find(ϕ)(u, z) =
∫
kind(ϕ(x)+u, x, z)dx be a nonlinear integral

operator as in (7) or Fq(ϕ)(z) =
∫
kq(ϕ(x), x, z)dx as in (9). We consider the case

where these operators are maps between L2-spaces and where supp (X) ⊂ RdX ,

supp (Z) ⊂ RdZ . Assume for Find that all derivatives of degree r of the density

fY XZ exist and are bounded. For the operator in (9) we assume less smoothness.

Derivatives of degree r of FY XZ should exist and be bounded. Let the joint

density fY XZ be estimated by a kernel density estimator f̂Y XZ . With a kernel

of sufficiently high order and with a common bandwidth h. This gives naturally

estimators k̂ind and F̂ind for the regression with full independence and k̂q and F̂q
for the quantile regression.

With these smoothness assumptions, sample size n, and bandwidth h the esti-

mators k̂ind and k̂q converge in both cases with the rate

E(‖k − k̂‖2
L2) = O(n−1h−dX−dZ−1 + h2r).

The operators F̂ind and F̂q integrate k̂ over x. So the dimension of X should

not play a roll in the asymptotic convergence of the MISE of F̂ind(ϕ) and F̂q(ϕ).

Corollary 25 in the Appendix proves this fact and shows the rates

E(‖F̂ind(ϕ)−Find(ϕ)‖2
L2) = O(n−1h−dZ−1 + h2r)

= O(n
− 2r

2r+dZ+1 ) when h ∼ n
− 1

2r+dZ+1 and

E(‖F̂q(ϕ)−Fq(ϕ)‖2
L2) = O(n−1h−dZ + h2r) = O(n

− 2r
2r+dZ ) when h ∼ n

− 1
2r+dZ .
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With the bound in (22) the rate of the MISE of the propagated noise error is

E
(
‖enoij+1|2L2

)
≤ Cg
αj

E
(
‖F̂ind(ϕ†)‖2

L2

)
= O

(
α−1
j (n−1h−dZ−1 + h2r)

)
for Find,

E
(
‖enoij+1|2L2

)
≤ Cg
αj

E
(
‖F̂q(ϕ†)‖2

L2

)
= O

(
α−1
j (n−1h−dZ + h2r)

)
for Fq.

Lemma 11. Consider the operators (7) and (9) as maps into L2(U,Z) or L2(Z)

respectively. Assume that fY XZ is estimated by a kernel density estimator with

a product kernel composed of a one-dimensional kernel KY and two multivariate

kernels KX and KZ corresponding to the dimensions dim(X) = dX and dim(Z) =

dZ with joint bandwidth h. Then the following exponential inequality holds for

‖F̂n(ϕ†)‖L2

P

{∣∣∣‖F̂n(ϕ†)‖L2 − E‖F̂n(ϕ†)‖L2

∣∣∣ ≥√τ Var
(
‖F̂n(ϕ†)‖L2

)}
≤ 2e−c2τ .

The Lemma shows that Assumption 9 is true under these assumptions. Higher

order kernels are not ruled by the Lemma.

3.6 Derivative noise error

The third component in the error decomposition is the error in the approximation

of the derivative

ederj+1 := rαj(T̂
∗
n,jT̂n,j)[Λ(T ∗† T†)− Λ(T̂ ∗n†T̂n†)]ω.

The simple observation that rα(x) =
(

α
x+α

)m ≤ 1 for x ∈ [0, ∞) independent of

α or m leads to the estimate

‖ederj+1‖X ≤ ρ‖Λ(T ∗† T†)− Λ(T̂ ∗n†T̂n†)‖.

Where the norm on the right hand side of the inequality is the usual operator

norm. A way to simplify the term ‖Λ(T ∗† T†) − Λ(T̂ ∗n†T̂n†)‖ is provided by the

following lemma.

Lemma 12 (Egger (2005) Lemma 3.2.). For two linear bounded operators between
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Hilbert spaces A and B and µ ≥ 0 exists a constant cµ such that

‖(A∗A)µ − (B∗B)µ‖ ≤ cµ

‖A−B‖ (1 + ‖A‖+ ‖B‖+ | ln(‖A−B‖)|) for µ = 1
2

‖A−B‖
∣∣‖A‖ − ‖B‖∣∣µ for µ > 1

2
.

Hence, with some constant Cd

‖ederj+1‖X ≤ Cdρ

‖T̂n† − T†‖D | ln(‖T̂† − T†‖D)| for µ = 1
2

‖T̂n† − T†‖1+µ
D for µ > 1

2

(24)

The norm ‖ · ‖D on the right hand side which measures the deviation in the

derivative is either the operator norm or some norm dominating the operator

norm. In Example 14 and Lemma 15 we will choose the Hilber-Schmidt norm as

‖ · ‖D for technical reasons.

The bounds in (24) are independent of the regularization parameter α and of

the number of Newton steps j. They depend only on the noise in the Fréchet

derivative of F at ϕ†. One advantage is that this error does not need to be

balanced with the approximation error and the propagated noise error.

In addition to this estimate of ‖ederj+1‖ an exponential inequality similar to (23) is

needed to bound the tail behavior of ‖ederj+1‖. Convergence of the expected square

error will be proved later only for the case µ > 1/2. The case µ = 1/2 just allows

to show convergence in probability. Therefore we make the following assumption

just for the case µ > 1/2.

Assumption 13. There are constants c3 and c4 such that for all n ∈ N

P

[ ∣∣∣‖T̂n† − T†‖1+µ
D − E

(
‖T̂n† − T†‖1+µ

D

)∣∣∣ ≥√
τ Var

(
‖T̂n† − T†‖1+µ

D

)]
≤ c3e

−c4τ .

(25)

Where ‖ · ‖D is the operator norm ‖ · ‖L(X,Y) or some norm that dominates the

operator norm.

In the rest of the section an example illustrates how ‖ederj+1‖L2 converges for the

operators (7) and (9) of the regression problems. Afterwards, Lemma 15 show
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that Assumption 13 holds for these operators with the Hilbert-Schmidt norm.

This norms dominates the operator norm, when T is a map between L2 spaces.

Example 14. We adopt the assumptions and constructions of F̂ind, F̂q, k̂ind and

k̂q from Example 10. When Assumption 1 holds, the Fréchet derivatives have the

form

F̂ ′ind[ϕ]ψ(u, z) =

∫
∂

∂y
k̂ind(ϕ(x) + u, x, z)ψ(z) dz,

F̂ ′q[ϕ]ψ(z) =

∫
∂

∂y
k̂q(ϕ(x), x, z)ψ(z) dz.

The Hilbert-Schmidt norm bounds the operator norm from above and is in our

case the L2 norm of the integral kernels ∂
∂y
k̂ind(ϕ(x)+u, x, z) and ∂

∂y
k̂q(ϕ(x), x, z).

A more explicit representation of the kernel density estimator is needed in the

formula. Therefor, we introduce the notation κ̂n,h(u, x, z) := ∂
∂y
k̂ind(u, x, z) when

a sample of size n and the bandwidth h are used to estimate k̂ind. Accordingly,

κ̂1,1 stands for the partial derivative of the unscaled kernel and κ(u, x, z) :=
∂
∂y
kind(u, x, z).

E
(
‖ederj+1‖2

X
)
≤ CdρE

(
‖T̂n† − T†‖2(1+µ)

HS

)
= CdρE

(∫
(κ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z))2 d(u, x, z)

)1+µ

= CdρE
(∫

(κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z))2

+ (Eκ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z))2 d(u, x, z)

)1+µ

≤ 21+µCdρ

∫
E
∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)

∣∣2(1+µ)
d(u, x, z)

+ 21+µCdρ

(∫ (
Eκ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z)

)2
d(u, x, z)

)1+µ

Where Jensen’s inequality is used in the last inequality. We analyze the second

term first. Here Eκ̂n,h(ϕ(x) + u, x, z) − κ(ϕ(x) + u, x, z) is the bias of a partial

derivative of a 1 + dX + dZ-dimensional kernel density estimator. Hence,(∫ (
Eκ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z)

)2
d(u, x, z)

)1+µ

= O
(
h2(r−1)(1+µ)

)
.
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The expectation in the first term can be analyzed with the usual change in vari-

ables

E
∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)

∣∣2(1+µ)

=

∫ ∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)
∣∣2(1+µ)

fY XZ(ỹ, x̃, z̃)d(ỹ, x̃, z̃)

=
h(dX+dZ+1)

n1+µh2(1+µ)(dX+dZ+2)

∫ ∣∣κ̂1,1(ū, x̄, z̄)− Eκ̂1,1(ū, x̄, z̄)
∣∣2(1+µ)

fY XZ(y − h(ϕ(x) + ū), x+ hx̄, z + hz̄)d(ȳ, x̄, z̄)

= n−1−µh−((1+2µ)(dX+dZ+2)+1)
(
CfY XZ(y, x, z) +O(h)

)
+O(n−1−µ).

The constant C in the last line does not depend on n or h. Combining the analysis

of both terms yields

E
(
‖ederj+1‖2

X
)

= O
(
n−1−µh−((1+2µ)(dX+dZ+2)+1) + h2(r−1)(1+µ)

)
.

A similar computation can be carried out for the quantile regression problem

with (9). We can conclude that a large value of µ has a positive impact on the

convergence of E
(
‖ederj+1‖2

X
)
. Larger values of µ correspond to more smoothness

in the solution, i.e. a less ill-posed problem. We like to point out that in the

special case of a linear operator always ‖ederj+1‖2
X = 0 for all j.

Lemma 15. Consider the operators (7) and (9) as maps into L2(U,Z) or L2(Z)

respectively. Assume that k̂n is estimated by a kernel density estimator with a

product kernel composed of KY , KX , and KZ with joint bandwidth h as in Lemma

15. Then the following exponential inequality holds for ‖F̂n(ϕ†)‖L2

P

[ ∣∣∣‖T̂n† − T†‖1+µ
HS − E

(
‖T̂n† − T†‖1+µ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+µ

HS

)]
≤ 2e−c4τ .

3.7 Nonlinearity error

It is easy to check that the last part of the error decomposition

enlj+1 := gαj(T̂
∗
n,jT̂n,j)T̂

∗
n,j[F̂n(ϕ†)− F̂n(ϕ̂j) + T̂n,j(ϕ̂j − ϕ†)]

+ [rαj(T̂
∗
n,jT̂n,j)− rαj(T̂ ∗n†T̂n†)]Λ(T̂ ∗n†T̂n†)ω.

21



vanishes if the operator F̂n is linear. In contrast, it can become arbitrary large

when F̂n is nonlinear and no constraints on its nonlinearity are imposed. This is

why we call enlj+1 the nonlinearity error.

To control ‖enl‖ a restriction on the nonlinearity of F̂n is necessary. We already

introduced a suitable constraint in Assumption 6. The Lipschitz condition (18)

in Assumption 6 allows to bound the Taylor reminder of the first term in the

nonlinearity error by

‖F̂n(ϕ†)− F̂n(ϕ̂j) + T̂n,j(ϕ̂j − ϕ†)‖ ≤
L

2
‖ϕ̂j − ϕ†‖2 =

L

2
‖ej‖2.

For the norm of the second term an additional inequality is needed. It was shown

in Bakushinskĭı and Kokurin (2004) Chapter 4.1 that for every µ ≥ 1
2

there is

a constant Cµ, such that for two linear operators A,B : X→ Y between Hilbert

spaces

‖[rα(A∗A)− rα(B∗B)](B∗B)µ‖ ≤ Cµ‖A−B‖.

This yields in our case

‖[rαj(T̂ ∗n,jT̂n,j)− rαj(T̂ ∗n†T̂n†)]Λ(T̂ ∗n†T̂n†)ω‖ ≤ Cµ‖T̂n,j − T̂n†‖ρ

≤ CµρL‖ϕ̂j − ϕ†‖ = CµρL‖ej‖.

Putting both estimates together and use (21) gives

‖enlj+1‖ ≤
L
√
Cg

2
√
αj
‖ej‖2 + CµρL‖ej‖. (26)

This error bound grows quadratically and so does ‖enlj+1‖ in many cases. The

Newton iteration has to be stopped at a sufficiently small step j to control the

nonlinearity error which is similar to the propagated noise error. In fact, the non-

linearity error is bounded by the other three error components for some Newton

steps. The next Lemma computes an appropriate stopping parameter Jmax such

that ‖enlj ‖ is dominated for all j ≤ Jmax.

Lemma 16. Let Assumptions 1, 5, 6, 8 hold true with a sufficiently small ρ in

Assumption 5. Assume that B2R(ϕ0) ⊂ dom(F) and that ϕ† ∈ BR(ϕ0). Choose a

monotonically increasing function Φ such that ‖enoij + ederj ‖ ≤ Φ(j) for all j ≥ 0.
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Define

Jmax := max

{
j ∈ N :

Φ(j)
√
αj
≤ Cstop

}
with 0 < Cstop ≤ min

{
1

8L
√
Cg
,

R

4
√
α0

}
.

(27)

Then it holds for all j := 1, 2, . . . , Jmax that

‖enlj ‖ ≤ γnl
(
‖eappj ‖+ Φ(j)

)
and ϕ̂j ∈ BR(ϕ†),

with γnl := 8L
√
CgCstop ≤ 1.

The assumption that ρ is sufficiently small means that the initial guess must

be close enough to the true solution. As always for Newton type methods we

get only local convergence. In practice, the convergence radius seems to be quite

large and does usually not restrict the applicability of the method.

The lemma is formulated for a deterministic setting. For random errors the

assumption that a function Φ(j) exists with ‖enoij + ederj ‖ ≤ Φ(j) usually holds

only with a certain probability. In the next section it will be important to control

this probability. We will use the following construction for Φ.

Choose sequences δnoin , σnoin , δdern , and σdern with

δnoin ≥ E(‖F̂n(ϕ†)‖), (σnoin )2 ≥ V ar(‖F̂n(ϕ†)‖), and

δdern ≥ E(‖T̂n† − T†‖1+µ), (σdern )2 ≥ V ar(‖T̂n† − T†‖1+µ).

In addition, we choose a weight function τ(j) with

τ(j + 1)qα ≥ τ(j) (28)

and qα as in (13) for all j. We define

Φnoi
n (τ, j) :=

√
Cg
αj
δnoin + Cdρδ

der
n +

√
τ(j)

(√
Cg
αj
σnoin + Cdρσ

der
n

)
. (29)

By construction this Φnoi
n (τ, j) is monotonically increasing in j. Hence, Φnoi

n (τ, j)

fulfills the assumptions of the last lemma. The probability that ‖enoij + ederj ‖ ≤
Φnoi
n (τ, j) holds can be estimated with the concentration inequalities (23) and
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(25).

4 Convergence rates

4.1 Convergence rates with a priory parameter choice

Throughout this section it is assumed that a priory knowledge about the approx-

imation error ‖eappj ‖ is available. This information is used to choose a Newton

step where the iteration is stopped. This implicitly balances approximation error

and noise error. It is similar to a bias variance trade-off. Knowing or at least esti-

mating ‖eappj ‖ involves knowledge about the true solution ϕ† which is usually not

available in applications. A purely data driven choice of an admissible Newton

step to stop the iteration is discussed in the next subsection.

The following lemma gives convergence rates in a deterministic setting, i.e.

0 = Var(‖F̂(ϕ†)‖) = Var(‖T̂n†‖). The crucial point is to show that the maximal

stopping parameter Jmax computed in Lemma 16 is larger or equal to a suitable

stopping parameter.

Lemma 17. Suppose that the Assumptions 1, 5, 6, and 8 are fulfilled. Assume

that B2R(ϕ0) ⊂ dom(F), and that ρ is small enough as in Lemma 16. Let δ̃noin

and δ̃dern be a sequences such that δ̃noin ≥ ‖F̂n(ϕ†)‖ and

δ̃dern ≥

‖T̂n† − T†‖ | ln(‖T̂† − T†‖)| if µ = 1
2

‖T̂n† − T†‖1+µ if µ > 1
2

Set

J̃ := argmin
j∈N

(
‖eappj ‖+

√
Cg
αj
δ̃noin

)
and J := min{Jmax, J̃}.

Then there exists a constant C such that

‖ϕ̂J − ϕ†‖ ≤ C inf
j∈N

(
‖eappj ‖+

√
Cg
αj
δ̃noin + Cdρδ̃

der
n

)
.

This lemma implies convergence in probability of the estimator with the same

rate. It thereby compares to the results in (Dunker et al., 2014a). However, the

sets of assumption for the results in this paper and in (Dunker et al., 2014a) differ
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significantly. The next theorem improves Lemma 17 by proving rates for the risk

of the estimator.

Theorem 18. Let the Assumptions 9 and 13 and the conditions of Lemma 17

hold with µ > 1/2 in Assumption 5. Choose sequences δnoin , σnoin , δdern , and σdern

such that

δnoin ≥ E(‖F̂n(ϕ†)‖), (σnoin )2 ≥ Var(‖F̂n(ϕ†)‖),

δdern ≥ E(‖T̂n† − T†‖1+µ), (σdern )2 ≥ Var(‖T̂n† − T†‖1+µ).

Define the stopping index

J := argmin
j∈N

(
‖eappj ‖+

√
Cg
αj

(δnoin + σnoin )

)

and set

J∗ :=

J if ϕ̂j ∈ B2R(ϕ0) for j = 1, . . . , J

0 else.

Then, there exist constants C > 1 and δ̄noi, σ̄noi, δ̄der and σ̄der such that

√
E(‖ϕ̂J∗ − ϕ†‖2) ≤ C min

j∈N

(
‖eappj ‖+

√
Cg
αj

(δnoin + σnoin ) + Cdρ(δdern + σdern )

)

for all δnoin ∈ (0, δ̄noi], σnoin ∈ (0, σ̄noi], δdern ∈ (0, δ̄der] and σdern ∈ (0, σ̄der].

Corollary 19. If the assumptions of Theorem 18 hold true, the risk of the esti-

mator achieves the rate√
E(‖ϕ̂J∗ − ϕ†‖2) = O

(
ρ

1
2µ+1 (δnoin + σnoin )

2µ
2µ+1 + δdern + σdern

)
(30)

or similarly

E
(
‖ϕ̂J∗ − ϕ†‖2

)
= O

(
ρ

2
2µ+1

(
E(‖F̂n(ϕ†)‖2)

) 2µ
2µ+1

+ E
(
‖T̂n† − T†‖2+2µ

))
.

On first sight, δdern and σdern do not seem to play a role for the rates. The

exponent 2µ
2µ+1

slows down the convergence with respect to δnoin and σnoin . It looks

as if they dominate the convergence rate. But δdern and σdern usually correspond
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to the convergence of an estimator for the derivative of a density. In contrast,

δnoin + σnoin = E(‖F̂n(ϕ†)‖2) usually corresponds to the estimation of the density

itself. Hence, δdern +σdern often decay slower than δnoin +σnoin . Which of these terms

dominates the convergence depends on specific properties of the application, e.g.

smoothness of the density of the observables, smoothness of the true solution,

estimation procedures for F̂n, and the numbers of covariates and instruments.

This will become apparent in the next example. Furthermore, we want to mention

that the rate in (30) is known to be optimal in the very special case that F is

linear with separable noise. See for example Tautenhahn (1998).

Example 20. Let the assumptions of Examples 10 and 14 be true with r ≥ 2.

Combining the results of Corollary 19 and Examples 10 and 14 we get the rate

E(‖ϕ̂J∗ − ϕ†‖2)

= O
(
ρ

2
2µ+1 (n−1h−(dZ+1))

2µ
2µ+1 + n−1−µh−((1+2µ)(dX+dZ+2)+1) + h

4µr
2µ+1

)
.

4.2 Convergence rates for adaptive estimation with Lep-

skĭı’s principle

The convergence rates presented so far relay on a priori information about ‖eappj ‖
that is usually not available in practice. One approach to this problem is to use

an oracle for the true solution and estimate the error by an oracle inequality. In

the context of statistical inverse problems Lepskĭı’s principle is a popular way to

do this. We refer to Tsybakov (2000), Bauer and Hohage (2005), Mathé (2006),

and Bauer et al. (2009).

The next lemma shows that Lepskĭı’s principle achieves the same rate of conver-

gence in a deterministic setting as the a priori parameter choice. The convergence

is only slowed down by a constant factor.

Theorem 21. Let the assumptions of Lemma 17 hold. Define the Lepskĭı stop-

ping parameter by

JLep := min

{
j ≤ Jmax

∣∣∣∣ ‖ϕ̂i − ϕ̂j‖ ≤ 4(1 + γnl)

[√
Cg
αi
δ̃noin + Cdρδ̃

der
n

]

for all i = 1, . . . , Jmax

}
.
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Then there exists a constant C̃, such that

‖ϕ̂JLep − ϕ†‖ ≤ C̃ inf
j∈N

(
‖eappj ‖+

√
Cg
αj
δ̃noin + Cdρδ̃

der
n

)
.

This result implies convergence in probability of ‖ϕ̂JLep − ϕ†‖ with the same

rate as in Lemma 17. However, the risk of the estimator with Lepskĭı’s principle

does not always achieve the same rate as the estimator with a priori parameter

choice. Tsybakov (2000) showed for a class of linear ill-posed problems that a

Lepskĭı type adaptive estimation loses a logarithmic factor in the convergence

rate compared to the minimax rates. Nevertheless, Cavalier et al. (2002) showed

that an adaptive estimation which obtains the optimal rates, is possible for some

linear mildly ill-posed problems. It is an open question whether there is an

adaptive estimation procedure for nonlinear mildly ill-posed inverse problems

which achieves the asymptotic rates of convergence proved for a priori parameter

choice in Theorem 18. The following theorem, adapted from Bauer et al. (2009),

we prove convergence of the expected square error with Lepskĭı type parameter

choice with the loss of a logarithmic factor.

Theorem 22. Let the assumptions of Theorem 18 hold. Take in the definition

of Jmax in (27) as Φ the function

Φ̃noi
n (j) :=

√
Cg
αj

(
δnoin + ln((σnoin )−2)σnoin

)
+ Cdρ(δdern + ln((σdern )−2)σdern ).

Define the Lepskĭı stopping parameter by

JLep := min
{
j ≤ Jmax

∣∣∣‖ϕ̂i − ϕ̂j‖ ≤ 4(1 + γnl)Φ̃
noi
n (j) for all i = 1, . . . , Jmax

}
and set

J∗ :=

JLep if ϕ̂j ∈ B2R(ϕ0) for j = 1, . . . , Jmax

0 else.

Then there exist constants C > 1 and δ̄noi, σ̄noi, δ̄der and σ̄der such that

√
E(‖ϕ̂J∗ − ϕ†‖2) ≤ C min

j∈N

(
‖eappj ‖+

√
Cg
αj

(
δnoin + ln((σnoin )−1)σnoin

)
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+ Cdρ
(
δdern + ln((σdern )−1)σdern

))
for all δdern ∈ (0, δ̄der], σdern ∈ (0, σ̄der], δnoin ∈ (0, δ̄noi] and σnoin ∈ (0, σ̄noi].

Corollary 23. Let the assumptions of Theorem 22 be fulfilled. The risk of the

estimator with Lepskĭı type parameter choice achieves the rate

E
(
‖ϕ̂J∗ − ϕ†‖2

)
= O

(
ρ

1
2µ+1

(
δnoin + ln((σnoin )−1)σnoin

) 2µ
2µ+1 + δdern + ln((σdern )−1)σdern

)
.

5 Numerical examples

We implemented the estimator based on the IRGNM and tested it with simulated

data. As a test problem we chose nonparametric IV regression in accordance to

the models in (2) and (5). The covariate X and instrument Z where one dimen-

sional. This allows to compare the estimator based on model (5), on operator (7),

and on the IRGNM (12) with the estimator based on model (2), on the operator

equation (4), and on iterated Tikhonov regularization.

The regressor of the test example was generated by some function g and a

random variable V such that

X = g(Z) + V and V ⊥⊥ Z.

In addition, an exact solution ϕ† and an error term UV depending on V but not

on Z are chosen. Then Y is defined as

Y := ϕ†(X) + UV .

With this construction both models (2) and (5) identify the true solution. The

functions and probability densities that were chosen for the test example are

ϕ†(x) =
1

6
sin(2π(x+ 0, 25)),

fZ(z) =
9

7

√
z +

1

7
on the interval [0, 1],

g(z) = 0, 8z + 0, 1,
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fV (v) =
1

0, 08
√

2π
exp

(
−1

2

(
v

0, 08

)2
)
, and

fUV (y, v) =
1

0, 07
√

2π
exp

(
−1

2

(
y − 2v

0, 07

)2
)
.

The densities of V and UV are constructed with Gaussians. The expectation of

UV depends on v. The problem is solved on the domain

supp (Y )× supp (X)× supp (Z) = [−1/2, 1/2]× [0, 1]× [0, 1]

discretized by 100 × 100 × 100 nodes. Figure 1 shows the exact solution (blue

curve) compared to the solution a nonparametric regression without instrumental

variables would yield asymptotically (green curve).

Figure 1: Necessity of the instrument: A standard nonparametric regression
would asymptotically yield the green curve which is considerably different from
the true curve ϕ† in blue.

In a first step both methods were tested on this problem using the exact joint

density fY XZ instead of a density estimate. The initial guess for both meth-

ods was the constant function with the value E[Y ]. The penalty functional

was the squared H1 norm and the regularization parameters were α0 = 1 and

αn+1 = 0.9αn. The reconstructions are plotted in Figure 2. The red curve shows

the reconstruction with conditional mean assumption, the green curve the recon-

struction with full independents. The exact solution is the blue curve.
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Both methods converge to the exact solution apart from some deviations at

the boundaries. They occur since V and UV are constructed by Gaussians with

unbounded support, while the computation is carried out on a compact domain.

A small amount of probability mass gets lost at the boundaries which causes the

deformations.

Figure 2: Reconstructions using the exact density fY ZW : The blue curve shows
the exact solution ϕ†, the red curve the reconstruction with conditional mean
assumption and the blue curve is the reconstruction with independent instrument.

In a second step both methods were tested on samples of 500 and 1000 data

points. For each of the two sample sizes 1000 samples were generated. Then the

joint density fY XZ was estimated. For every sample both methods were evaluated

on the same estimate of the density. The Lepskĭı principle was used to find the

stopping parameter of the Newton iteration. For the alternative approach with

conditional mean assumption the regularization parameter α had to be chosen

instead. This was done by Lepskĭı’s principle as well. I.e. the iterated Tykhonov

regularization was computed for a large number of different α. Then one of these

approximation was chosen by Lepskĭı’s principle. Hence, both methods are fully

data driven.

The histograms in Figures 3–6 show the L2 error of the reconstructions for both

methods and different sample sizes. The values are normed by the initial error.

I.e. on this scale the initial error becomes 1. A tabular below summarizes the

means and some quantiles of the errors.
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Figure 3: L2 error of the IRGNM with the assumption U ⊥⊥ Z and sample size
n = 500

Figure 4: L2 error of the iterated Tikhonov regularization with the assumption
E[U |Z] = 0 and sample size n = 500

In Figure 3 and 4 we compare the errors of both methods for the sample size

500. Both methods produce acceptable results. The variance and the amount

of outliers of the method with independent instrument is much smaller than for

the method with the conditional mean assumption. The latter method produces

a considerable number of outliers with the same or even larger errors than the

initial guess. This can not be observed for the IRGNM. In addition, the mean

error of the IRGNM is smaller.
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Figure 5: L2 error of the IRGNM with the assumption U ⊥⊥ Z and sample size
n = 1000

Figure 6: L2 error of the Tikhonov regularization with the assumption E[U |Z] = 0
and sample size n = 1000

Similar histograms for samples of 1000 points are in Figures 5 and 6. Now

both methods perform well. The advantages of the IRGNM with less outliers

and smaller variance can be observed again. The difference in the mean error has

become smaller for the larger samples but is still obvious. The following tabular

provides the mean and some quantiles of the errors normed by the initial error.
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sample size and method mean quantiles q = 0.25 q = 0.5 q = 0.75 q = 0.9

n = 500, U ⊥⊥W 0.2535 0.2012 0.2398 0.2940 0.3495

n = 500, E[U |W ] = 0 0.4042 0.2738 0.3437 0.4475 0.6407

n = 1000, U ⊥⊥W 0.2152 0.1780 0.2064 0.2439 0.2868

n = 1000, E[U |W ] = 0 0.3067 0.2339 0.2846 0.3482 0.4325

We close this section examples of median reconstructions for both sample sizes.

They illustrate the advantage of the regression model with independent instru-

ments solved with the IRGNM as well.

Figure 7: Example for reconstructions with sample size n = 500. The blue curve
shows the exact solution, the red curve the reconstruction with the conditional
mean assumption and the green curve the reconstruction with independent in-
strument.
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Figure 8: Example for reconstructions with sample size n = 1000. The blue
curve shows the exact solution, the red curve the reconstruction with the condi-
tional mean assumption and the green curve the reconstruction with independent
instrument.

These results suggest that both methods give consistent estimators for the non-

parametric instrumental regression with clear advantages for the regression model

with independent instruments (5).
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A Appendix

A.1 Concentration inequalities

We prove Lemmas 11 and 15 with McDiamid’s extension of Hoeffding’s inequality.

Theorem 24 (McDiarmid (1989)). Let W1, . . . ,Wn be independent random vari-

ables. If f : supp (W1, . . . ,Wn)→ R satisfies for 1 ≤ i ≤ n

sup
(w1,...,wn),(w′1,...,w

′
n)

∈supp (W1,...,Wn)

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)| ≤ ci. (31)

Then

P{|f(W1, . . . ,Wn)− Ef(W1, . . . ,Wn)| ≥
√
τ} ≤ 2 exp

(
−2τ∑n
i=1 c

2
i

)
.

Proof. (of Lemma 11)

The joint density fY XZ is estimated by a kernel density estimator with kernels

KY , KX , and KZ and common bandwidth h. We write as usual

KY,h(y) =
1

h
KY

(y
h

)
, KX,h(x) =

1

hdX
KX

(x
h

)
, KZ,h(z) =

1

hdZ
KZ

(z
h

)
.

We first consider the operator (7) and show (31) with W = (Y,X,Z) and

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖F̂ind(ϕ†)(u, z)‖L2(u,z)

=

∥∥∥∥∥
∫
n−1

n∑
i=1

KY,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)dx

∥∥∥∥∥
L2(u,z)

.

In this case we have

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

= n−1
∥∥∥∫ KY,h(ϕ

†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)dx
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−
∫
KY,h(ϕ

†(x)− u− y′i)KX,h(x− x′i)KZ,h(z − z′i)dx
∥∥∥
L2(u,z)

≤ 2n−1
∥∥∥∫ KY,h(ϕ

†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)dx
∥∥∥
L2(u,z)

= 2n−1
∥∥∥∫ KY,h(ϕ

†(hx+ xi)− u− yi)KX(x)KZ,h(z − zi)dx
∥∥∥
L2(u,z)

= 2n−1

(∫ (∫
KY,h(ϕ

†(hx+ xi)− u− yi)KX(x)KZ,h(z − zi)dx
)2

d(u, z)

)1/2

≤ 2n−1

(∫
K2
X(x)

∫
K2
Y,h(ϕ

†(hx+ xi)− u− yi)K2
Z,h(z − zi)d(u, z) dx

)1/2

= 2n−1

(∫
K2
X(x)‖KY,h(u)KZ,h(z)‖2

L2(u,z)dx

)1/2

= 2n−1‖KX‖L2‖KY,h(u)KZ,h(z)‖L2(u,z)

= 2n−1h−(dZ+1)/2‖KX‖L2‖KY (u)KZ(z)‖L2(u,z).

Together with Theorem 24 this proves

P
{∣∣∣‖F̂ind(ϕ†)‖L2 − E‖F̂ind(ϕ†)‖L2

∣∣∣ ≥ √τ} ≤ 2 exp

(
−τnhdZ+1

2‖KX‖2
L2‖KY ‖2

L2‖KZ‖2
L2

)
.

(32)

This shows subgaussianity of ‖F̂ind(ϕ†)‖L2 . Hence, there exists a constant c2 > 0

such that

P

{∣∣∣‖F̂ind(ϕ†)‖L2 − E‖F̂ind(ϕ†)‖L2

∣∣∣ ≥√τ Var
(
‖F̂ind(ϕ†)‖L2

)}
≤ 2 exp (−c2τ) .

This proves the assertion for the operator in (7).

A similar argument applies to the quantile regression operator in (9). We set

K̄Y,h(y) =
∫ y
−∞KY (ỹ)dỹ and C̄Y := | supy K̄Y,h(y)−inft K̄Y,h(y)| = | supy K̄Y,1(y)−

infy K̄Y,1(y)|. Note that C̄Y does not depend on h. Theorem 24 is now applied

with

f(w1, . . . , wn) = ‖F̂q(ϕ†)‖L2

=
∥∥∥n−1

∫
K̄Y,h(ϕ

†(x)− yi)KX,h(x− xi)KZ,h(z − zi)dx− qKZ,h(z − zi)
∥∥∥
L2(z)

.
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The estimation

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

= n−1
∥∥∥∫ K̄Y,h(ϕ

†(x)− yi)KX,h(x− xi)KZ,h(z − zi)dx− qKZ,h(z − zi)

−
∫
K̄Y,h(ϕ

†(x)− y′i)KX,h(x− x′i)KZ,h(z − z′i)dx+ qKZ,h(z − z′i)
∥∥∥
L2

≤ n−1
∥∥∥C̄Y ∫ KX,h(x− xi)KZ,h(z − zi)dx

∥∥∥
L2

+ 2qn−1
∥∥∥KZ,h(z − zi)

∥∥∥
L2

= C̄Y (1 + 2q)n−1‖KZ,h‖L2

= C̄Y (1 + 2q)‖KZ‖L2n
−1hdZ/2.

proves together with Theorem 24

P
{∣∣∣‖F̂q(ϕ†)‖L2 − E‖F̂q(ϕ†)‖L2

∣∣∣ ≥ √τ} ≤ 2 exp

(
−2τnhdZ

C̄2
Y (1 + 2q)2‖KZ‖2

L2

)
. (33)

Hence, ‖F̂q(ϕ†)‖L2 is subgaussian which proves the lemma.

Corollary 25. Under the assumptions of Lemma 11

Var
(
‖F̂ind(ϕ†)‖L2

)
= O(n−1h−dZ−1) and Var

(
‖F̂q(ϕ†)‖L2

)
= O(n−1h−dZ ).

Proof. This is a direct consequence of (32) and (33).

Proof. (of Lemma 15)

We follow the same strategy as in the proof of Lemma 11 and adopt the notation

above. First, we prove the Lemma for IV regression with full independence.

Theorem 24 is applied with W = (Y,X,Z) to the operator (7) with

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖T̂n† − T†‖1+µ

HS

=

∥∥∥∥∥n−1

n∑
i=1

K ′Y,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)−

∂

∂y
fY XZ(ϕ†(x)− u, x, z)

∥∥∥∥∥
1+µ

L2
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where K ′Y,h is the derivative of KY,h. This leads to the inequality

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

≤ n−1−µ∥∥K ′Y,h(ϕ†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)

−K ′Y,h(ϕ†(x)− u− y′i)KX,h(x− x′i)KZ,h(z − z′i)
∥∥1+µ

L2

≤ 21+µn−1−µ∥∥K ′Y,h(ϕ†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)
∥∥1+µ

L2

= 21+µn−1−µ‖K ′Y,h‖
1+µ
L2
‖KX,h‖1+µ

L2
‖KZ,h‖1+µ

L2

= 21+µn−1−µh
(1+µ)(dX+dZ+3)

2 ‖K ′Y ‖
1+µ
L2
‖KX‖1+µ

L2
‖KZ‖1+µ

L2
.

Hence,

P
{∣∣∣‖T̂n† − T†‖1+µ

HS − E
(
‖T̂n† − T†‖1+µ

HS

)∣∣∣ ≥ √τ}
≤ 2 exp

(
−τn1+2µh(1+µ)(dX+dZ+3)

2‖KX‖2+2µ
L2 ‖KY ‖2+2µ

L2 ‖KZ‖2+2µ
L2

)
.

This shows that ‖T̂n†−T†‖1+µ
HS −E

(
‖T̂n† − T†‖1+µ

HS

)
is sub-Gaussian. Thus, there

exist constant a c4 such that

P

{∣∣∣‖T̂n† − T†‖1+µ
HS − E

(
‖T̂n† − T†‖1+µ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+µ

HS

)}
≤ 2 exp (−c4τ) .

A similar argument holds for the instrumental quantile regression problem.

The kernel of the Fréchet derivative of the operator Fq in (9) at ϕ† is simply

fY XZ(ϕ†(x), x, z). So Theorem 24 is applied to

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖T̂n† − T†‖1+µ

HS

=

∥∥∥∥∥n−1

n∑
i=1

KY,h(ϕ
†(x)− yi)KX,h(x− xi)KZ,h(z − zi)− fY XZ(ϕ†(x), x, z)

∥∥∥∥∥
1+µ

L2

.

Note that supy
(
KY,h(y)

)
− infy

(
KY,h(y)

)
= h−1

[
supy

(
KY (y)

)
− infy

(
KY (y)

)]
and set CY =

∣∣supy
(
KY (y)

)
− infy

(
KY (y)

)∣∣. This allows for the following esti-
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mation

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

≤ n−1−µ∥∥KY,h(ϕ
†(x)− yi)KX,h(x− xi)KZ,h(z − zi)

−KY,h(ϕ
†(x)− y′i)KX,h(x− x′i)KZ,h(z − z′i)

∥∥1+µ

L2

≤ n−1−µh−1−µCY
∥∥KX,h(x− x′i)KZ,h(z − z′i)

∥∥1+µ

L2

= n−1−µh−
(1+µ)(2+dX+dZ )

2 CY ‖KX‖1+µ
L2
‖KZ‖1+µ

L2
.

This implies

P
{∣∣∣‖T̂n† − T†‖1+µ

HS − E
(
‖T̂n† − T†‖1+µ

HS

)∣∣∣ ≥ √τ}
≤ 2 exp

(
−2τn1+2µh(1+µ)(2+dX+dZ)

C2
Y ‖KX‖2+2µ

L2
‖KZ‖2+2µ

L2

)
.

and thereby the sub-Gaussianity of ‖T̂n†−T†‖1+µ
HS . Hence, there exist a constants

c4 such that

P

{∣∣∣‖T̂n† − T†‖1+µ
HS − E

(
‖T̂n† − T†‖1+µ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+µ

HS

)}
≤ 2 exp (−c4τ) .

A.2 Nonlinearity error

Proof. (of Lemma 16)

We generalize the prove strategy of Lemma 2.2 in Bauer et al. (2009) to our

setting. The proposition follows by induction on j. We start with the induction

step. Assume that the proposition holds for j − 1 with 2 ≤ j ≤ Jmax. Since Φ is

increasing and by (20)

‖ej−1‖ ≤ (1 + γnl)
(
‖eappj−1‖+ Φ(j − 1)

)
≤ (1 + γnl)

(
γapp‖eappj ‖+ Φ(j)

)
.
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Combining this with inequality (26) and using (a+ b)2 ≤ 2a2 + 2b2 yields

‖enlj ‖ ≤ CµρL(1 + γnl)
(
γapp‖eappj ‖+ Φ(j)

)
+
L
√
Cg

√
αj

(1 + γnl)
2
(
γ2
app‖e

app
j ‖2 + Φ(j)2

)
.

(34)

If ρ ≤ γnl/(2Cµ(1 + γnl)γapp), the first line on the right hand side is bounded

by 1/2γnl
(
‖eappj ‖+ Φ(j)

)
. To bound the second line, we assume that ρ ≤

γnl/(2CΛα
µ−1/2
0 L

√
Cg(1 + γnl)

2γ2
app). It follows from (19) that

‖eappj ‖√
αj
≤ CΛρα

µ− 1
2

j ≤ CΛρα
µ− 1

2
0 ≤ γnl

2L(1 + γnl)2γ2
app

.

Thus, L/
√
αj(1 + γnl)

2γ2
app‖e

app
j ‖2 ≤ 1

2
γnl‖eappj ‖. By the definition of Jmax the

fact that γnl ≤ 1 we have

L
√
Cg

√
αj

(1 + γnl)
2Φ2(j) ≤

4L
√
Cg

√
αj

Φ2(j) ≤ 4L
√
CgCstopΦ(j) ≤ γnl

2
Φ(j).

Therefore, the second line on the right hand side of (34) is also bounded by
1
2
γnl(‖eappj ‖+ Φ(j)). Together with the estimation of the first line this gives

‖enlj ‖ ≤ γnl
(
‖eappj ‖+ Φ(j)

)
.

The base case j = 1 of the induction follows in exactly the same way, as long

as α0 is large enough. This is already contained in Assumption 8 and in (20).

Finally, we have to show that ϕ̂j ∈ BR(ϕ†). If ρ ≤ R/ (2CΛα
µ
0 (1 + γnl)), then

‖eappj ‖ ≤ CΛρα
µ
j ≤ CΛρα

µ
0 ≤

R

2(1 + γnl)
.

Moreover, the monotonicity of Φ and the definitions of Jmax, Cstop and γnl imply:

Φ(j) ≤ Φ(Jmax) ≤ Cstop
√
αJmax ≤ Cstop

√
α0 ≤

R

4
≤ R

2(1 + γnl)
.

This shows together with the first part of the proof that

‖ej‖ ≤ (1 + γnl)
(
‖eappj ‖+ Φ(j)

)
≤ R.
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Hence, ϕ̂j ∈ BR(ϕ†) ⊂ dom(F).

A.3 Convergence rates with a priory parameter choice

Proof. (of Lemma 17)

Notice that J also minimizes

argmin
j∈N

(
‖eappj ‖+

√
Cg
αj
δ̃noin + Cdρδ̃

der
n

)

because Cdρδ̃
der
n does not depend on j. Set Φ(j) :=

√
Cg/αj δ̃

noi
n + Cdρδ̃

der
n . If

J̃ ≤ Jmax, the theorem is proven by Lemma 16 with C = 1 + γnl.

If J̃ > Jmax, then J̃ ≥ Jmax + 1 and Φ(Jmax + 1)/Cstop ≥
√
αJmax+1. Hence, by

the monotonicity of Φ(
1 +

CΛρα
µ− 1

2
0

Cstop
√
qα

)(
‖eappJ ‖+ Φ(J̃)

)
≥

(
1 +

CΛρα
µ− 1

2
0

Cstop
√
qα

)
Φ(Jmax + 1)

≥ Φ(Jmax) + CΛρ
Φ(Jmax + 1)α

µ− 1
2

0

Cstop
√
qα

≥ Φ(Jmax) + CΛρ

√
αJmax+1α

µ− 1
2

0√
qα

= Φ(Jmax) + CΛρ
√
αJmaxα

µ− 1
2

0

≥ Φ(Jmax) + CΛρα
µ
Jmax

≥ Φ(Jmax) + ‖eappJmax
‖.

This proves the lemma when J̃ > Jmax with

C =

(
1 +

CΛρα
µ− 1

2
0

Cstop
√
qα

)
(1 + γnl).

Proof. (of Theorem 18)

Here and in the following two Lemmas we generalize the prove strategy of

Theorem 3.2 and Lemmas 3.3, 3.4 in Bauer et al. (2009) to our setting. Similar
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to the last proof J is also a minimizer of

J = argmin
j∈N

(
‖eappj ‖+

√
Cg
αj

(δnoin + σnoin ) + Cdρ(δdern + σdern )

)
.

The proof uses a threshold argument. The key tool is the following construction.

Define a chain of events with increasing noise level containing each other A1 ⊂
A2 ⊂ . . . ⊂ Akmax by

Ak :=
{
ϕ̂j ∈ B2R(ϕ0) and ‖enoij + ederj ‖ ≤ Φnoi

n (τk, j) for all j = 1, . . . , J
}

(35)

and

kmax := max

{⌊
ln
(
(σnoin )−2

)
c2

⌋
,

⌊
ln
(
(σdern )−2

)
c4

⌋}
.

with c2 and c4 from (23) and (25). The function Φnoi
n (τk, j) in (35) is defined as

in (29). Set τk(j) := k + ln(κ)
c2

(J − j) with some κ > 1 that is small enough to

make inequality (28) true. Consequently, Φnoi
n (τk, j) is monotonically increasing

in j as required for the application of Lemma 16. Notice that kmax is chosen in

a way such that

max
{
e−c2kmax , e−c4kmax

}
≤ max{(σnoin )2, (σdern )2}.

Lemma 16 and Lemma 27 below show that ‖enoij + ederj ‖ ≤ Φnoi
n (τk, j) implies

ϕ̂j ∈ B2R(ϕ0) when σnoin is sufficiently small. I.e. the second condition in the

definition of Ak implies the first one.

To prepare the final step of the proof we estimate the probability of Ak\Ak−1 and

the probability of the event complementary to Ak. The following computation

uses (18), (23), (25).

P (Ak\Ak−1) = P
{

Φnoi
n (τk−1, j) < ‖enoij + ederj ‖ ≤ Φnoi

n (τk, j) for all j = 1, . . . , J
}

≤ P
{

Φnoi
n (τk−1, j) < ‖enoij + ederj ‖ for all j = 1, . . . , J

}
≤

J∑
j=1

c1e
−c2τk(j) + c3e

−c4τk(j) ≤ (c1e
−c2k + c3e

−c4k)
J∑
j=1

κj−J

≤ (c1e
−c2k + c3e

−c4k)
∞∑
j=0

κj =
c1e
−c2k + c3e

−c4k

1− κ−1
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P (CAk) ≤ P
{

Φnoi
n (τk−1, j) < ‖enoij + ederj ‖ for all j = 1, . . . , J

}
≤ (c1e

−c2k + c3e
−c4k)

∞∑
j=0

κj =
c1e
−c2k + c3e

−c4k

1− κ−1
.

In every event Ak we have J = J∗. The assumptions of Lemma 16 are fulfilled in

Ak. This allows for the following error bound

‖ϕ̂J − ϕ†‖2 ≤
[
‖eappJ ‖+

√
Cg
αJ
δnoin + Cdρδ

der
n +

√
τk(J)

(√
Cg
αJ
σnoin + Cdρσ

der
n

)]2

≤ 10‖eappJ ‖
2 + 10

Cg
αJ

(δnoin )2 + 10(δdern )2C2
dρ

2 + 10k
Cg
αJ

(σnoin )2 + 10kC2
dρ

2(σdern )2

=: Ck.

By the construction of the algorithm (12) the worst case error is ‖ϕ̂J∗−ϕ†‖ ≤ 3R.

This will serve as an error bound in the event CAkmax . Putting everything together

yields

E(‖ϕ̂J∗ − ϕ†‖2) ≤ P (A1)C1 +
kmax∑
k=2

P (Ak\Ak−1)Ck + P (CAkmax)9R2

≤ 10

(
‖eappJ ‖

2 +
Cg
αJ

(δnoin )2 + (δdern )2C2
dρ

2

)
+ 10P (A1)

(
Cg
αJ

(σnoin )2 + (σdern )2C2
dρ

2

)
+

kmax∑
k=2

P (Ak\Ak−1)

(
10k

Cg
αJ

(σnoin )2 + 10k(σdern )2C2
dρ

2

)
+ P (CAkmax)9R2

≤ 10

(
‖eappJ ‖

2 +
Cg
αJ

(δnoin )2 + (δdern )2C2
dρ

2

)
+ P (CAkmax)9R2

+ 10

(
Cg
αJ

(σnoin )2 + (σdern )2C2
dρ

2

)(
2 +

kmax∑
k=3

kP (Ak\Ak−1)

)

≤ 10

(
‖eappJ ‖

2 +
Cg
αJ

(δnoin )2 + (δdern )2C2
dρ

2

)
+

(
c1e
−c2kmax + c3e

−c4kmax

1− κ−1

)
9R2

+ 10

(
Cg
αJ

(σnoin )2 + (σdern )2C2
dρ

2

)(
2 +

kmax−1∑
k=2

(k + 1)
c1e
−c2k + c3e

−c4k

1− κ−1

)
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≤ 10

(
‖eappJ ‖

2 +
Cg
αJ

(δnoin )2 + (δdern )2C2
dρ

2

)
+ (c′max{(σnoin )2, (σdern )2})9R2

+ 10

(
Cg
αJ

(σnoin )2 + (σdern )2C2
dρ

2

)(
2 +

∞∑
k=2

(k + 1)
c1e
−c2k + c3e

−c4k

1− κ−1

)

≤ 10

(
‖eappJ ‖

2 +
Cg
αJ

(δnoin )2 + (δdern )2C2
dρ

2

)
+ (c′max{(σnoin )2, (σdern )2})9R2

+ 10c′′
(
Cg
αJ

(σnoin )2 + (σdern )2C2
dρ

2

)

≤ C

(
‖eappJ ‖+

√
Cg
αJ

(δnoin + σnoin ) + Cdρ(δdern + σdern )

)2

.

We used that P (A1)+
kmax∑
k=2

P (Ak\Ak−1)+P (CAkmax) = 1 and P (A1)+P (A2\A1) ≤

1. Furthermore, c′ > 0, c′′ > 0 and C > 0 are generic constants.

The following two lemmas are needed for the proof of Theorem 18 above.

Lemma 26. Let the assumptions of Theorem 18 hold and define:

Φ̃(j) :=

√
Cg
αj

(δnoin + σnoin ) + Cdρ(δdern + σdern )

Γnoi :=

√
Cg/(qαα1)(δnoin + σnoin ) + Cdρ(δdern + σdern )√
Cg/α1(δnoin + σnoin ) + Cdρ(δdern + σdern )

Γnoi := q
− 1

2
α .

The following two bounds hold for the stopping index J in Theorem 18:

(1− Γ−1
noi)Φ̃(J) ≤ (γapp − 1)‖eappJ ‖, (36)

J ≥ sup

{
k ∈ N

∣∣∣∣‖eapp1 ‖γ1−k
app > inf

l∈N

(
CΛρ
√
αl + Φ̃(1)Γ

l−1

noi

)}
. (37)

Proof. Note that (20) implies

1 < Γnoi ≤
Φ̃(j + 1)

Φ̃(j)
≤ Γnoi, for all j ∈ N. (38)
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We start with inequality (36). Assume the opposite holds true

(1− Γ−1
noi)Φ̃

noi
n (J) > (γapp − 1)‖eappJ ‖.

It would follow from (20) and (38) that

‖eappJ−1‖+ Φ̃(J − 1) ≤ γapp‖eappJ ‖+ Γ−1
noiΦ̃(J) < ‖eappJ ‖+ Φ̃(J).

This is a contradiction to the definition of J and therefore proves (36).

In order to prove (37) assume that for some k, and some l ≥ 1

‖eapp1 ‖γ1−k
app > CΛρ

√
αl + Φ̃(1)Γ

l−1

noi .

It follows from (19), (20) and (38) that for all j ≤ k

‖eappl ‖+ Φ̃(l) ≤ CΛρ
√
αl + Φ̃(1)Γ

l−1

noi < ‖e
app
1 ‖γ1−k

app ≤ ‖e
app
k ‖ ≤ ‖e

app
j ‖

≤ ‖eappj ‖+ Φ̃(j).

As J is the minimizer for ‖eappj ‖ + Φ̃(j) this implies J > k. Taking the infimum

over l and the supremum over k gives the assertion.

Lemma 27. Let the assumptions of Theorem 18 hold true. Define Jmax as in

Lemma 16 with τk(j) := k + ln(κ)
c2

(J − j)

Jmax(k) := max

{
j ∈ N

∣∣∣∣[
√
Cg
αj
δnoin + Cdρδ

der
n

+
√
τk(j)

(√
Cg
αj
σnoin + Cdρσ

der
n

)]
α
− 1

2
j ≤ Cstop

}
.

There exist σ̄noin > 0 and σ̄dern > 0 such that for all σnoin ≤ σ̄noin and σdern ≤ σ̄dern

and for all k = 1, . . . , kmax it holds that J ≤ Jmax.

Proof. Since τk(j) fulfills inequality (28) for k ≤ kmax and j ≤ J ,

τk(J) ≤ τkmax(J) ≤ max
{

ln((σnoin )−2)/c2, ln((σdern )−2)/c4

}
.
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Hence,(√
Cg
αj
δnoin + Cdρδ

der
n +

√
τk(j)

(√
Cg
αj
σnoin + Cdρσ

der
n

))
α
− 1

2
j

≤

(√
Cg
αJ
δnoin + Cdρδ

der
n +

√
τkmax(J)

(√
Cg
αJ
σnoin + Cdρσ

der
n

))
α
− 1

2
J

≤ max


√

ln((σnoin )−2)

c2

,

√
ln((σdern )−2)

c4

 Φ̃(J)α
− 1

2
J

≤ max


√

ln((σnoin )−2)

c2

,

√
ln((σdern )−2)

c4

 γapp − 1

1− Γ−1
noi

‖eappJ ‖α
− 1

2
J

≤ C max
{√

ln((σnoin )−2),
√

ln((σdern )−2)
}
α
µ− 1

2
J

with C :=
ρCΛ(γapp − 1)

min{c2, c4}(1− Γ−1
noi)

.

Moreover, we have to take into account that in inequality (37)

inf
l∈N

(
CΛρ
√
αl + Φ̃(1)Γ

l−1

noi

)
= inf

l∈N

(
CΛρ
√
αl +

(
α
− 1

2
1 (δnoin + σnoin ) + Cdρ(δdern + σdern )

)
Γ
l−1

noi

)
decays with a polynomial rate in σnoin and σdern . Therefore, there exists a constant

b for which J ≥ −bmax{ln(σnoin ), ln(σdern )}, while lim
x→∞

xqcxα goes to 0 for every c

as qα < 1. Hence, there are σ̄noin and σ̄dern such that for all σnoin ∈ ]0, σ̄noin ] and for

all σdern ∈ ]0, σ̄dern ] it holds:

C max
{√

ln((σnoin )−2),
√

ln((σdern )−2)
}
α
µ− 1

2
J

≤ C max
{√

ln((σnoin )−2),
√

ln((σdern )−2)
}(α0

qα

)
q

max
{√

ln((σnoin )−2),
√

ln((σdern )−2)
}
b
2

(µ− 1
2

)

α

≤ Cstop.

Together with the first estimate this proves the assertion.
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A.4 Convergence rates for adaptive estimation

Proof. (of Corollary 19) The rates follow from Theorem 18 together with the

bound (19) of ‖eappj ‖.

Proof. (of Theorem 21)

The Theorem follows directly by applying Corollary 1 in Mathé (2006) to our

problem.

Proof. (of Theorem 22)

When Φ̃noi
n is used in the definition of Jmax in (27), it follows that Jmax =

O(ln((σnoin )−1) + ln((σdern )−1)). Consider the event A defined as in (35) with

τ(j) := max

{
ln
(
(σnoin )−2

)
c2

,
ln
(
(σdern )−2

)
c4

}
.

Applying the Lepskĭı principle (e.g. Corollary 1 in Mathé (2006)) in this event

gives the estimate

‖ϕ̂Lep − ϕ†‖ ≤ 6q
− 1

2
α (1 + γnl) min

j=1, ..., Jmax

(
‖eapp‖+ Φ̃noi

n

)
.

In Lemma 27 it was shown that for sufficiently small values of δnoin , σnoin , δdern and

σdern the parameter Jmax is large enough. Hence, in the asymptotics we can take

the infimum over N

‖ϕ̂Lep − ϕ†‖ ≤ 6q
− 1

2
α (1 + γnl) inf

j∈N

(
‖eapp‖+ Φ̃noi

n

)
.

In addition, we estimate the probability of the opposite event of A by

P (CA) ≤
Jmax∑
j=1

c1 exp(− ln((σnoin )−2) + c3 exp(− ln((σdern )−2)

≤ Jmax
(
c1(σnoin )2 + c3(σdern )2

)
≤ C ′max

{
ln((σnoin )−1)(σnoin )2, ln((σdern )−1)(σdern )2

}
≤ C ′′min

j∈N

(
‖eappj ‖+

√
Cg
αj

(
δnoin + ln((σnoin )−1)σnoin

)
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+ Cdρ
(
δdern + ln((σdern )−1)σdern

))
with two constants C ′ and C ′′. We used in the third row that Jmax = O(ln((σnoin )−1)+

ln((σdern )−1)) and in the fourth row that α
− 1

2
j is monotonically increasing in j.

We finish the proof with the estimation of the risk

E[‖ϕ̂Lep − ϕ†‖2] ≤ P (A)36q−1
α (1 + γnl)

2 inf
j∈N

(
‖eapp‖+ Φ̃noi

n

)2

+ P (CA)9R2

≤ C min
j∈N

(
‖eappj ‖+

√
Cg
αj

(
δnoin + ln((σnoin )−1)σnoin

)
+ Cdρ

(
δdern + ln((σdern )−1)σdern

))
.

Proof. (of Corollary 23)

The rate follows from the last theorem and the bound (19) of ‖eappj ‖.
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