BELIEF REVISION, NON-MONOTONIC REASONING AND
SECRECY FOR EPISTEMIC AGENTS

DISSERTATION

ZUR ERLANGUNG DES GRADES EINES
DOKTORS DER NATURWISSENSCHAFTEN

der Technischen Universitit Dortmund
an der Fakultit fiir Informatik

PATRICK KRUMPELMANN

Technische Universitdt Dortmund — Fakultét fiir Informatik — Dortmund, Germany — 2015

Tag der miindlichen Priifung: 20.10.2015
Dekan: Prof. Dr. Gernot A. Fink
Gutachter/Gutachterinnen: Prof. Dr. Gabriele Kern-Isberner
Prof. Dr. Christoph Beierle

Patrick Krtimpelmann: Belief Revision, Non-monotonic Reasoning and Se-
crecy for Epistemic Agents, Dissertation, Department of Computer Sci-
ence, Technische Universitit Dortmund, Germany. © 2015

ABSTRACT

Software agents are increasingly used to handle the information of in-
dividuals and companies. They also exchange this information with
other software agents and humans. This raises the need for sophis-
ticated methods of such agents to represent information, to change
it, reason with it, and to protect it. We consider these needs for com-
municating autonomous agents with incomplete information in a par-
tially observable, dynamic environment. The protection of secret in-
formation requires the agents to consider the information of agents,
and the possible inferences of these. Further, they have to keep track
of this information, and they have to anticipate the effects of their
actions. In our considered setting the preservation of secrecy is not
always possible. Consequently, an agent has to be able to evaluate
and minimize the degree of violation of secrecy. Incomplete informa-
tion calls for non-monotonic logics, which allow to draw tentative
conclusions. A dynamic environment calls for operators that change
the information of the agent when new information is received.

We develop a general framework of agents that represent their in-
formation by logical knowledge representation formalisms with the
aim to integrate and combine methods for non-monotonic reasoning,
for belief change, and methods to protect secret information. For the
integration of belief change theory, we develop new change operators
that make use of non-monotonic logic in the change process, and new
operators for non-monotonic formalisms. We formally prove their ad-
herence to the quality standards taken and adapted from belief revi-
sion theory. Based on the resulting framework we develop a formal
framework for secrecy aware agents that meet the requirements de-
scribed above. We consider different settings for secrecy and analyze
requirements to preserve secrecy. For the protection of secrecy we
elaborate on change operations and the evaluation of actions with
respect to secrecy, both declaratively and by providing constructive
approaches. We formally prove the adherence of the constructions to
the declarative specifications. Further, we develop concrete agent in-
stances of our framework building on and extending the well known
BDI agent model. We build complete secrecy aware agents that use
our extended BDI model and answer set programming for knowledge
representation and reasoning. For the implementation of our agents
we developed ANGERONA, a Java multiagent development framework.
It provides a general framework for developing epistemic agents and
implements most of the approaches presented in this thesis.

1ii

ACKNOWLEDGMENTS

First of all, I want to thank my advisor Gabriele Kern-Isberner. She
always greatly supported me. I learned countless valuable lessons in
diverse technical as well as organizational areas from her. Our discus-
sions and her advises were of great value. I want to thank Christoph
Beierle for being my second reviewer, for the interesting discussions
and helpful comments. I want to thank Heinrich Miiller and Stefan
Difsmann for participating in my dissertation committee.

I am very grateful to the Collaborative Research Center SFB 876 and
in particular to Katharina Morik, Wolfgang Rhode, Stefan Michaelis
and Jens Teubner. Being a part of the interdisciplinary Collaborative
Research Center with the joint meetings and workshops, working
groups, and its graduate school was highly inspiring and supportive.
My work in Project A5 of the SFB 876 with Gabriele Kern-Isberner,
Joachim Biskup, and Cornelia Tadros formed the basis of a big part of
my thesis. I want to thank the project leaders Gabriele Kern-Isberner
and Joachim Biskup for creating and leading the project. I am very
thankful to Joachim Biskup for his support, the intensive discussions
and the deep insights into the topic of secrecy. The joint work with
Cornelia Tadros was very enriching, productive, and pleasant. Our
perspectives and approaches often nicely complemented each other.
Organizing and supervising an internship as part of the Summer Re-
search Program of the German Academic Exchange Service (DAAD)
together was also a valuable experience. Further, we collaborated on
the implementation of our framework and approaches. With respect
to this, Tim Janus was of exceptional help working with us on the
implementation of the ANGERONA framework.

I always felt very comfortable in my working environment at the TU
Dortmund and I am very thankful to all my wonderful colleagues for
contributing to this. In particular, I want to thank Matthias Thimm.
He was my colleague from the first hour, we collaborated in several
works and projects, and we shared many research trips. I learned a
lot from him. I am also especially grateful to Daniela Huvermann
and Daan Apeldoorn with whom I shared my office, and to Thomas
Zeume. I want to thank the people from the LIDIA lab in Bahia
Blanca, Argentina for the enriching exchange in our research project,
which was funded by DAAD.

Finally, I am deeply grateful to Lisa Kruppa for her support.

If the human brain were so simple that we could understand it,
we would be so simple that we couldn’t.

— Emerson M. Pugh

CONTENTS

1

INTRODUCTION 1
1.1 Context and Motivation 1
1.2 Challenges 4
1.3 Contributions 0L 7
1.4 Outline L 11
1.5 Publications and Contributions 12
BACKGROUND 17
21 AgentModels 000 17
2.1.1 Abstract notionof agents 17
212 TheBDIModel 19
2.2 Propositional Logic 21
2.3 Deductive Argumentation 22
2.4 Answer Set Programming 25
2.5 Belief Revision Theory 27
251 BeliefSets 28
2.5.2 EpistemicStates 29
2.5.3 BeliefBases 30
2.5.4 Answer set programming and belief change . . 32
255 Summary 34
EPISTEMIC AGENT MODEL 35
3.1 Communicating Agents 37
3.2 Epistemic Components 39
3.3 EpistemicAgents, . 41
3.4 Abstract Compound Agent 46
35 BDIT Agents 50
351 Motives. o oo oo 50
3.52 Know-How 52
3.5.3 The BDI" AgentModel 54
3.5.4 Basic BDIT AgentModel 56
3.6 Belief Operators for Epistemic Agents 61
3.7 Related Work 67
3.8 Conclusion L o 69
BELIEF CHANGE OPERATIONS 71
4.1 Structure of Belief Change Operations 72
4.2 Selective Revision 75
4.2.1 Selective Multiple Base Revision 77
4.2.2 Selective Revision by Deductive Argumentation 81
4.3 Multiple Base Revision for ASP 85
4.3.1 Postulates for ASP Base Revision. 86
4.3.2 Construction of ASP Base Revision 94
4.4 Related Work 98
45 Conclusion Lo oL 101

ix

X

CONTENTS

5 AGENT-BASED SECRECY
5.1 Desiderata of Agent-based Secrecy
5.2 Abstract Agent Model for Secrecy
5.3 Properties of Change Operations and Secrecy
5.4 Characterization of Secrecy Preserving Agents
5.4.1 Local Properties for Secrecy Preserving Agents
5.4.2 Look ahead and Secrecy Preserving Agents
5.4.3 Reducing Look-ahead to Local Properties
5.4.3.1 Query-answer Protocol
5.4.3.2 Meta-Inferences and Communication .
5.5 Preferences on Options for Action and Secrecy
5.5.1 General Model for Preferences on Actions
5.5.2 Classification of actions with respect to secrecy
5.5.3 Principles for the classification of actions
5.5.4 Algorithm for the classification of actions
5.6 Secrecy BDIT Agents
5.6.1 ASP BDI Belief Change
5.6.2 Secrecy desire operator
5.6.3 Generation of Options
5.6.4 Modeling meta-inferences
5.6.5 Deliberation and secrecy preservation
5.6.6 Complete modeling of the scrn example
57 Relatedwork.
5.7.1 Runs-and-systems base secrecy
5.7.2 Controlled interaction execution
5.7.3 Secrecy preserving query answering
5.7.4 Secrecy and Agent models
58 Conclusion oo
6 THE ANGERONA FRAMEWORK
6.1 Agent Framework
6.2 Multiagent Framework
6.3 Related Work
6.4 Conclusion
7 CONCLUSION
7.1 SUMMAry
7.2 Main contributions oo Lo
7.3 Further and Future Work

A APPENDIX

A1 Proofs.
A.1.1 Proofs for Chapter3
A.1.2 Proofs for Chapter4
A.1.3 Proofs for Chapters

BIBLIOGRAPHY
LIST OF IMPORTANT SYMBOLS
INDEX

103
105
109
113
119
119
120
124
124
127
129
130
134
140
146
150
155
161
161
165
168
170
188
189
192
195
197
199
203
205
210
213
215
217
217
219
221
223
223
223
226
235

253
279
282

INTRODUCTION

In the following we motivate and introduce the topic of this thesis,
and the fields of research it is related to. Afterwards, we go into more
detail of the addressed challenges and the contributions of the au-
thor. Then, we give an overview of the structure of this document,
and describe the publications that contributed to this thesis, and the
contributions to these.

1.1 CONTEXT AND MOTIVATION

In the context of communicating agents the need to consider the
preservation of secret information arises naturally. In almost all re-
alistic scenarios agents are interested to withhold some information
while communicating with other agents. While communication is nec-
essary to achieve goals, private information should not be revealed.
For example, the political or sexual orientation should not matter in
job interviews or negotiations; medical information should only be
revealed if needed for the treatment of a patient, companies do not
want exact specifications of their products to be revealed to competi-
tors. Intelligent software systems are increasingly used to manage
information and information flows in every day life on the personal
and the professional level. Individuals and companies interact with
software agents and let them act on their behalf. Interaction and publi-
cation of personal information via social networks is rapidly growing
and generates abundant social inference opportunities [175]. This gives
rise to the necessity to be able to model and deal with real world
secrecy scenarios in multiagent systems.

We use the following example to illustrate typical aspects of such
scenarios: The employee Emma is working in a company for her boss
Beatriz. Emma wants to attend a strike committee meeting (scm) the
next day and has to ask Beatriz for a day off in order to attend. Emma
knows that Beatriz puts everyone who attends the scm on her list of
employees to be fired next. Thus, Emma wants to keep her attendance
to the scm secret from Beatriz, but has to communicate with her in
order to achieve her goal of getting the day off. Emma does not even
want Beatriz to be suspicious of her attending the scm. She also does
not want other employees that are in opposition to the strike to be-
lieve that she attends the scm. However, she considers it sufficient
that these other employees do not know for sure that she attends —
she does not care if they are suspicious. From other employees who
also want to attend the scm she does not want to keep her attendance

INTRODUCTION

secret. If Emma communicates with other agents, she has to be aware
and keep track of the information she discloses to them. Moreover,
she also has to be aware of the reasoning capabilities and behavior
of the other agents. This includes the consideration of meta-inferences,
i.e., that Beatriz might draw conclusions from Emma’s behavior. Beat-
riz might, for instance, conclude from Emma avoiding to answer the
question whether she intends to attend the scm, that Emma does in-
tend to attend. Emma has to choose her utterances taking these as-
pects into consideration. And, if Emma realizes that Beatriz overheard
her phone call with the strike committee she should reconsider her
secret.

This small scenario already illustrates well that the aspect of se-
crecy poses a plethora of challenges to the specification and imple-
mentation of secrecy preserving agents. Consider for example, that
Emma and Beatriz use calendar agents and let these automatically ne-
gotiate appointments and vacations. Secrets have to be specified with
respect to other agents and towards a, more or less credulous, reason-
ing behavior. Incomplete, subjective views on other agents have to be
represented and changed adequately upon reception or emission of a
speech act. The agent has to consider its secrets in its deliberation and
means-ends reasoning processes. It also has to be able to reconsider
and possibly modify its secrets if new information makes it necessary.

The existing work on secrecy in multiagent systems provides for-
mal methods for the formalization and the analysis of strong secrecy
guarantees with respect to an attacker that is a perfect reasoner, for
overviews see, e.g., [121, 232]. These works consider secrecy on the
theoretical level under idealized assumptions. Sophisticated construc-
tive approaches for the preservation of secrecy have been developed
for various specific scenarios, such as query answering for databases;
for an overview see, e.g., [32]. These constructive approaches are
mostly based on strong and strict notions of secrecy with respect to
attackers that are perfect reasoners. As observed by Joseph Y. Halpern
in [121] a major task for future work on secrecy is the “careful con-
sideration of how secrecy definitions can be weakened to make them
more useful in practice”.

In this thesis, we consider secrecy for practical multiagent systems
in which agents have to achieve their goals under incomplete infor-
mation in a dynamic environment. We define and consider this se-
crecy setting on different levels of abstraction, from an abstract agent
model down to concrete instances and the implementation of these.
Our work shows that the consideration of secrecy is a complex task
and has to be thoroughly incorporated into the agent model.

While in the area of secrecy preservation it is demanded that se-
crecy is always preserved, in the area of research on practical multia-
gent systems it is accepted with respect to such maintenance conditions
f that “in many cases, it is impossible for an agent to exhibit such

1.1 CONTEXT AND MOTIVATION

a high degree of control over the environment to guarantee always
f” [82]. Moreover, even if it is theoretically possible, the agent under
consideration might not have the necessary information or computa-
tional resources for it. It is argued that an agent has to have proactive
and reactive methods available to minimize violations of the main-
tenance condition [82]. We take on this perspective with respect to
secrecy and develop secrecy aware agents that do their best to avoid vi-
olations of secrecy, if that is not possible they do their best to violate
secrecy as little as viable and to restore secrecy as fast and well as
feasible. From this perspective, the strict preservation of secrecy is a
special case and obtained whenever it is possible.

Motivated by the goal to consider secrecy in practical multiagent
systems we start with the design of an agent model, and instantia-
tions of it that are apt for this task. The consideration of secrecy re-
quires an agent to be able to adequately represent information avail-
able to it, and the information available to the potential attackers of its
secrecy interests. It has to reason on the basis this information, and it
has to simulate the possible inferences of other agents. Further, it has
to adapt this representation adequately while interacting with other
agents. Hence, our approach of secrecy aware agents calls for sophis-
ticated, and yet effective, methods for reasoning under incomplete
information, and for well founded operators of belief change. The
agent model has to be general to be able to define secrecy and meth-
ods for secrecy aware agents independently from a concrete agent
architecture and knowledge representation formalism. Further, the
same model shall be used to define concrete agent architectures that
can be used to implement secrecy aware agents.

We define a notion of agents that are based on logical knowledge
representation that we call epistemic agents'. These have an epistemic
state which contains a logic-based representation of their entire knowl-
edge, e. g., their knowledge about the world, other agents, their pro-
cedural knowledge. A functional component realizes the adaption
of the epistemic state when the agent obtains new information from
its environment, and the execution of the agent’s actions, which are
determined by the epistemic state, in the environment. The epistemic
agent model shall be the basis for the combination of (non-monotonic)
logical knowledge representation and reasoning, belief change theory,
abstract agent models and compound concrete agent architectures.

We integrate non-monotonic reasoning [60] and belief change the-
ory [94] in our agent model, and we combine both. We define fam-
ilies of (non-monotonic) belief operators and define desirable prop-
erties for these. We define an order on belief operators based on the
credulity of their inferences behavior. Different operators can be used
by different agents, and for the protection of information to be kept

The term epistemic agent is also used in philosophy, see, e.g., [2], and epistemic
modal logics, see, e. g., [231] that describe reasoning agents.

INTRODUCTION

secret. We instantiate these operators for propositional logic and for
non-monotonic extension based formalisms [173], and in particular
for answer set programming [112]. For answer set programming (ASP)
many very effective solvers and several extensions are available, e. g,
[63, 108, 18, 77, 84, 88, 184], and ASP is used in several real world ap-
plications, e. g., [218, 203, 185, 110, 44, 109]. We consider belief change
operations for agents by means of, and for, non-monotonic logics. We
develop functions to decide which part of new information shall be
accepted by the agent by use of argumentation theory [28]. Moreover,
we develop new revision operations for non-monotonic formalisms
by example of answer set programming. Based on the general epis-
temic agent model we define a concrete compound agent model that
is based on the well known BDI agent model [57, 247]. It extends
the BDI model by a motivation and a know-how component that we
developed.

Having defined the epistemic agent model in detail, we develop an
agent based, subjective, notion on secrecy by use of it. We define a
formal notion of secrecy and of the preservation thereof. We consider
secrecy in different settings and elaborate on the secrecy relevant
properties of all main tasks and components of an agent with respect
to our notion of secrecy. Hereby, we distinguish between secrecy aware
agents that take secrecy into consideration in their decision processes,
and secrecy preserving agents, that preserve secrecy with respect to the
information available to them. We develop a concrete instantiation of
our secrecy agent model on the basis of our BDI" agent model and
by use of answer set programming.

Furthermore, we present a multiagent programming framework
that is based on our epistemic agent model. It is called ANGERONA and
provides a plug-in based toolbox to develop different agent models
in combination with different knowledge representation formalisms.
We used it to implement the approaches presented in this thesis, and
others, e. g., [75, 76, 152, 131, 244, 4, 229, 157, 159].

In the following we go into more detail on the motivating chal-
lenges behind the individual contributions of this thesis and after-
wards detail our contributions towards these challenges.

1.2 CHALLENGES
Within the scenario and our goals we described above, we are facing

numerous challenges. In the following we describe the most impor-
tant of these and their relation to the state of the art.

1.2.1 Gap between theoretical and practical agent models

Theoretical formalizations of agency are mostly based on modal log-
ics [42] and used to model and analyze multiagent systems [199, 64,

1.2 CHALLENGES

25, 116, 208, 89]. Some logical languages can be used to model what
is called a deductive agent in which the behavior of the agent is de-
termined entirely by deduction based on a set of logical formulae
[115, 149, 166]. Some simple variants of the logical languages with bet-
ter computational properties have been developed to specify agents
and directly execute this specification, e.g., in [195, 167, 66]. This ap-
proach is very appealing but comes with drawbacks such as compu-
tational cost or limitations of the expressivity of the used languages.
Moreover, they only model some aspects of an agent system while
“an all embracing theory is some time off” [248].

There is a gap between these abstract models of agency and the
agent models used for concrete agent architectures and multiagent
systems [248, 182]. The mostly used approach to design concrete
agents is based on a decomposition approach, determining the sub-
components of an agent and their interactions [51, 248]. It allows for a
clear and modular design of agents, and facilitates more effective de-
cision making. The Beliefs, Desires, Intentions, or BDI, model [57, 194]
is the most widely used composition step in this process. Practical
multiagent system based on such compositional approaches use very
simple forms of knowledge representation and reasoning, such as
production rules [51]. Further, each framework and system is fixed to
one logical language or to one composition of the internal state of an
agent.

We need an agent model that is abstract and can be used for the
general formulation of properties, such as the preservation of se-
crecy, and that can be used to define concrete agent models. Further,
this agent model should facilitate the use of diverse (non-monotonic)
knowledge representation formalisms and the use of sophisticated
belief change operators.

1.2.2 Using non-monotonic reasoning in multiagent systems

A variety of logical formalisms with different expressivity and com-
putational properties have been developed for knowledge representa-
tion with the agent paradigm in mind, see, e.g., [55, 234]. Especially
non-monotonic formalisms are designed to deal with incomplete in-
formation and to enable an agent to act in uncertain environments.
Yet, very little of the developed approaches are considered in practical
multiagent frameworks [51]. This is mostly due to the computational
cost of these.

For non-monotonic logics some attempts have been made to come
up with effective solvers for the formalisms. The most prominent of
these is answer set programming (ASP), where several very active
groups have worked on building effective solvers which lead to the
availability of very effective solvers today, most notably smodels [184],
DLV [165] and Potassco [108]. Implementations of formal argumenta-

INTRODUCTION

tion systems [24] are also under development and the first systems
are already available, such as DelP [105] and ASPIC [192].

Several proposals exists how to implement agents based on an-
swer set programming [182, 150, 16, 164]. However, the proposals
for the implementation have not found their way in current agent
programming platforms [51]. A general integration of different non-
monotonic reasoning formalisms for practical agents is lacking.

1.2.3 Belief revision and non-monotonic logics in multiagent systems

In the field of research on belief change, the problem of how to change
an agent’s beliefs in the light of new information has been consid-
ered for over 25 years already [94]. While there is a profound theo-
retical basis, very little of the approaches developed in this field of
research are considered in agent models or are available in practical
multiagent frameworks. First approaches have been made in the field
of belief change to develop approaches that might be applicable in
practical multiagent frameworks. One important step is the consid-
eration of operations on finite belief bases instead of infinite, deduc-
tively closed belief sets [142, 183, 122, 127, 128, 119]. These operations
are guided by the principle of cognitive realism [128], in contrast to the
assumption of a perfect reasoner. Further work to find belief change
operations for less idealized agents studies operators that focus on
relevant parts of a belief state [240]. Recently, belief change for less
expressive languages than propositional logic, mostly for Horn the-
ory, has been studied [50, 73, 70, 6]. None of these approaches has, to
our knowledge, been used in a multiagent system.

Many approaches to the revision of non-monotonic logic programs
have been proposed, but most of these are not based or related to
belief change theory. Recently, some attempts have been made to re-
late these approaches to belief change theory [87]. The results showed
that the considered postulates from belief change theory are not sat-
isfied by the considered approaches. Also, attempts have been made
to apply model-based revision operators from belief change theory
to logic programs, e.g., [68, 72, 217]. These showed that the model-
based techniques can be applied to logic programs, but it is not clear
that the results are desirable in the logic programming setting [217].
Further, also these approaches have not been used in agent systems.
Hence there is a lack of change operators that are based on belief
change theory and that are adequate for the use in practical multia-
gent systems.

1.2.4 Secrecy under incomplete information and bounded rationality

Besides non-monotonic reasoning and belief change, a third field in
research related to multiagent systems that has mostly been consid-

1.3 CONTRIBUTIONS

ered in theory under highly idealized assumptions is the one of se-
crecy in multiagent systems. Theoretical models of secrecy in multi-
agent systems have been formalized and analyzed [121]. Modal log-
ics have been developed to model secrecy [232], but more realistic
models or agent architectures are missing. More practical, and well
studied, approaches from the database community, e. g., [213, 32, 46,
38, 34] have only been started to be studied in the context of con-
crete agent architectures in [39, 222]. Especially for secrecy, rational
belief change and non-monotonic reasoning methods are important
to achieve realistic models of potential attacking agents and their rea-
soning capabilities. Secrecy from the point of view of an agent with
incomplete information, applying non-monotonic reasoning and be-
lief change operators, has not been considered.

1.2.5 A multiagent framework for epistemic agents

A variety of frameworks for the implementation of multiagent sys-
tems exist, for overviews see, e.g., [51, 1]. Most of these have fixed
agent architectures and fixed knowledge representation formalisms.
Only few feature some modularity of the knowledge representation
formalism, feature ASP based modules and allow for the develop-
ment of new ones, e. g., [186, 130, 148]. None of them features belief
change operations based on belief change theory, or the implemen-
tation of secrecy aware agents. The challenge is to design and imple-
ment a framework that facilitates the easy design and implementation
of diverse types of agents with respect to their agent architecture and
knowledge representation formalisms, including belief change oper-
ators based on belief change theory. This framework should allow
to set up systems with heterogenous agents that interact with each
other. Such a framework could be used to implement secrecy pre-
serving agents, and to evaluate different knowledge representation
formalisms and operators.

1.3 CONTRIBUTIONS

In the following we describe our contributions with respect to the
challenges described in Section 1.2.

1.3.1 General model of epistemic agents

We present a general model of epistemic agents. Epistemic agents
comprise an epistemic state and a functional component. The epis-
temic state contains a logic-based representation of the agent’s knowl-
edge. The functional component realizes the change of the epistemic
state and the execution of actions. The epistemic state and the func-
tional component might consist of epistemic components and compo-

7

INTRODUCTION

sitions of sub-functions. The novelty of our model it is that it unifies
diverse agent architectures, that it integrates the specification and the
realization of agents, and that it integrates non-monotonic knowledge
representation and belief change operators. This way it encompasses
other agent architectures from purely deductive agents with a mono-
lithic epistemic state to structured ones such as the popular Beliefs,
Desires, Intentions (BDI) model. We focus on epistemic agents that
communicate by means of speech acts. We motivate the ability of the
agents to reflect the anticipated changes of their (communication) ac-
tions in their epistemic states. To this end, we introduce a change
operator for the agent’s actions.

We develop a sub-framework of our general epistemic agent model
that extends the well known BDI model [56] by a motivation and a
know-how component. We call it BDI™ agent model. The motivation
component determines the desires of the agent on the basis of a set
of motives. Few other approaches to the integration of motivation
in agents exist [14, 170, 180] and none combines motivation with
BDI agents and know-how in a general framework. The know-how
component represents the procedural knowledge of the agent that it
uses to determine its course of action. The know-how component can
be seen as a form of a hierarchical plan library that is often used
in BDI agents [248, 51]. The difference of the know-how approach
[215, 214] is that it aims to represent the structural knowledge on a
logical basis, on the same level as the know-that of the agent, to fa-
cilitate reasoning and change operations on both in combination. We
define simplified instances of our approaches to motivation [159] and
know-how [157, 229]. We instantiate the BDI"™ model with answer
set programming (ASP) [112] as an exemplary non-monotonic knowl-
edge representation formalism and use it to develop secrecy aware
agents.

1.3.2 Non-monotonic reasoning formalisms for epistemic agents

Based on our epistemic agent framework we introduce epistemic com-
ponents as components of an epistemic state. Epistemic components
are used by a belief operator to form a belief set. We define a general
notion of belief operator families whose operators can be ordered,
e.g., based on how credulous the inference behavior is. The assump-
tions we make are general enough to capture a big variety of knowl-
edge representation formalisms and in particular those for which ef-
fective solvers are available. We define desirable properties for belief
operators and ordered families of these. Further, we consider more
concrete belief operators on the basis of the theory of formalisms
based on extension families from [173], and extend it towards families
of operators with credulity order. Finally, we instantiate and illustrate
the concepts for answer set programming.

1.3 CONTRIBUTIONS

1.3.3 Belief change operators and non-monotonic reasoning

We integrate approaches from belief change theory in our epistemic
agent model. Thereby, we also contribute to the field of belief change
theory. We build on the theory of belief base revision [122, 127, 128]
and instantiate it with and for non-monotonic reasoning formalisms
in two main aspects. Firstly, we consider selective revision operators
[96]. These decide in which form the new information shall be ac-
cepted by means of a selection function first, and then revise the belief
base with the result by means of a prioritized change operator, i.e.,
an operator that always accepts the new information. We extend this
approach for multiple revision operations and show formally that
and how the transformation function can be instantiated using the
framework of deductive argumentation [27].

Secondly, we apply the belief base change theory to non-monotonic
logics by example of ASP. We analyze base revision postulates for
non-monotonic belief bases and adapt them adequately. We consider
ASP specific change postulates from the literature, generalize them
for different notions of equivalence, analyze, and adapt these to aug-
ment our set of desirable postulates of a base revision operator for
ASP. We formally show the relation of base revision postulates to
the ASP specific postulates. Furthermore, we develop a generalized
construction for base revision operators based on a new screened con-
solidation operation. We prove a representation theorem for this con-
struction. Further we show that the resulting multiple base revision
operator satisfies all desirable properties we proposed.

1.3.4 Agent-based secrecy and secrecy aware agents

We approach the topic of secrecy in multiagent systems from the sub-
jective perspective of communicating epistemic agents. We make use
of our general epistemic agent framework to define a new, subjec-
tive notion of secrecy. For agents with incomplete information and
bounded rationality in a dynamic environment the strict preservation
of secrecy is not always possible. In case the agent violates secrecy, it
should still do its best to violate secrecy as little as possible. We call
agents secrecy aware if they take secrecy into consideration as good
as possible, and those agents of these that can be guaranteed to not
violate secrecy secrecy preserving.

We define a secrecy agent model by augmenting the epistemic state
of an agent by views on the information that is available to other
agents, and by a representation of its secrets. Hereby we consider a
symmetric system, which means that all agents have views on their
fellow agents and all agents have their individual secrets. Further, we
consider the uncertainty of such views in two dimension, the uncer-

10

INTRODUCTION

tainty of the information available to another agent and the uncer-
tainty of the view on this information.

We define a notion of secrets with different levels of strength based
on the belief operator families we develop. A secret formula is pro-
tected against inference by use of a particular belief operator from a
belief operator family. The operators of a belief operator family are
ordered, e.g., with respect to their credulity. A secret formula is pro-
tected the more strongly, the more credulous the belief operator is
with respect to which it shall be protected.

Moreover, we consider a change operator for epistemic states and
we define desirable properties with relation to secrecy. This includes
the changes of the beliefs of the agent itself, its views on other agents,
and its secrets. We develop a change operator for secrets that is ca-
pable to minimally weaken secrets if they cannot be protect with the
declared strength.

We formally prove for several settings which properties of the be-
havior of an agent are necessary and sufficient to guarantee that it
preserves secrecy. We develop a game theory based notion of epis-
temic states in which an attacking agent does not have a winning
strategy and show that the maintenance of such a state is necessary
and sufficient to preserve secrecy. We consider the evaluation of the
agent’s options for action with respect to secrecy, and with respect to
the informativity of its actions. We define five principles on how an
agent should use its available information to classify a set of actions
with respect to secrecy as fine grained as possible, while still justified.
Moreover, we develop an algorithm to classify actions and prove that
it satisfies all principles.

On the basis of the abstract model and joining the developed as-
pects of secrecy described above, we define secrecy aware agents as
an extension of our BDI™ agent model. We instantiate this model with
ASP for knowledge representation and develop ASP representations
of speech acts on the information and meta-information level. Fur-
ther, we formalize ASP based patterns of meta-inferences of potential
attacking agents. We show that and how we can use this secrecy ASP
BDI agents to construct a two-agent system that simulates our strike
committee meeting example.

1.3.5 Epistemic agent programming framework ANGERONA

We present the ANGERONA framework for the implementation of epis-
temic agents with a strong focus on flexibility, extensibility and com-
patibility with diverse formalisms for non-monotonic reasoning and
with diverse agent models. It implements the general epistemic agent
framework developed in this thesis. In contrast to other multiagent
system frameworks it has no fixed agent model, but follows a flexible
plug-in architecture and facilitates the use of diverse (non-monotonic)

1.4 OUTLINE

knowledge representation formalisms and belief change operators.
Different kinds of knowledge representation formalisms can be used
within one agent. Different agents can be based on different agent ar-
chitectures and can each use different knowledge representation for-
malisms as long as they share a common communication language.
The knowledge representation plug-ins of ANGERONA use the inter-
faces of the TWEETY library for knowledge representation [227]. The be-
lief operators and belief change operators developed in this thesis are
implemented in the TWEETY library. The BDI* agent model developed
in this thesis is implemented as a sub-framework that can be used
and extended based on operator plug-ins. ANGERONA also contains
default and extended operators to instantiate the BDI™ model. The
secrecy ASP BDI™ model and several simulations based on it are also
implemented. Furthermore, several other approaches are available in
ANGERONA, e.g., [75, 76, 152, 131, 244, 4, 229, 157, 159]. ANGERONA
features an environment plug-in for communicating agents and a ver-
satile GUI to monitor the simulation and the agents, including the dy-
namics of their epistemic states. The ANGERONA framework as well as
TWEETY are open source’.

1.4 OUTLINE

The remainder of this thesis is organized as follows. In Chapter 2
we present the necessary background for the following chapters. In
Chapter 3 we develop the general framework of epistemic agents. We
start by laying the foundations for the consideration of communicat-
ing agents and agents based on logical knowledge representation for-
malisms. By use of these foundations we then define our notion of
epistemic agents. On the basis of the general model we define the
concept of compound agent models and formalize our BDIT agent
model as an instance of the general compound model. Based on this
model we define basic instances of the operators of the BDI™ model.
Then we go into more detail on the belief operators of agents and
define belief operator families, discuss properties of these and give
exemplary instantiations.

In Chapter 4 we first develop the general structure of belief change
operations for epistemic agents. Then we elaborate on selective revi-
sion operators, extend the selective revision framework to multiple
revision operations and develop selection functions that are based on
deductive argumentation. Afterwards we elaborate on the base revi-
sion approach for non-monotonic belief bases in general and ASP in
particular.

In Chapter 5 we develop our subjective, agent-based notion of se-
crecy on the basis of our epistemic agent framework. We first intro-
duce a secrecy agent model and elaborate various aspects of agent

2 https://github.com/Angerona, http://sourceforge.net/projects/tweety/

11

https://github.com/Angerona
http://sourceforge.net/projects/tweety/

12

INTRODUCTION

models with respect to secrecy. Then we show formally for different
settings which behavior of an agent guarantees the preservation of
secrecy. Next we develop properties for the classification of actions
with respect to secrecy and devise an algorithm that adheres to these
principles. Afterwards we build on the BDI* agent model developed
in Chapter 3 to construct complete agents for secrecy preservation
and elaborate the instantiation of these by use of ASP. We develop
ASP representations for meta-information and meta-inferences and
model the strike committee meeting example from the introduction.

In Chapter 6 we present the multiagent programming framework
ANGERONA, which is based on the general agent model introduced
in Chapter 3. We describe the main ideas of the framework and how
the instances based on the results of Chapters 4 and 5 are realized. In
Chapter 7 we summarize and discuss the contributions of this thesis.

1.5 PUBLICATIONS AND CONTRIBUTIONS

Some ideas and parts of this thesis are based on previously published
work. In the following, I first specify which parts of this thesis are
based on previously published work. Then, I specify the contributions
of my co-authors in the respective works.

1.5.1 Publications that contributed to this thesis

First versions of the epistemic agent model for secrecy, belief opera-
tor families, and the definition of agent-based secrecy have been pub-
lished in [155]. All of these concepts have been substantially revised
and extended. They contributed in particular to parts of Section 3.3
and Sections 5.1 to 5.3. A first version of the consideration of secrecy
aware BDI agents based on answer set programming has been pub-
lished in [156]. It has been substantially revised and extended, and
contributed in particular to Section 5.7.

Our work on extensions of the BDI model by motivation and know-
how have been published before. In this thesis we develop a new
extended BDI model on the basis of simplified versions of the pub-
lished approaches to motivation and know-how. The work on moti-
vation for BDI agents has been published in [159]. In this thesis we
define a simplified version of the full approach developed in [159]
in Section 3.6. The work on know-how has been published in [229]
and [157]. As for motivation we define and use a basic version of
the full know-how approach in this thesis, we do this in Section 3.6.
The consideration of selective revision by means of argumentation in
Section 4.2 is based on the Publication [160]. The belief base revision
approach to ASP change operations presented in Section 4.3 is based
on a revised version of the Publication [154]. Sections 5.5.2 and 5.5.3

1.5 PUBLICATIONS AND CONTRIBUTIONS

are based on revised parts of the work published in [41]. Chapter 6 is
based on extensions of parts of the Publication [161].

1.5.2 Contributions to the publications

The publications [154, 156, 155] are the result of my own work. They
have been produced under the supervision of my supervisor Gabriele
Kern-Isberner. As such she proofread drafts of the articles, discussed
them with me and suggested further research questions.

The works [160, 161, 41] are the result of collaborations with further
research partners within two research projects in which I participated.
In the following I clarify the contributions of the respective authors
to these publications.

The work [41] was carried out as part of the Project A5 “Exchange
and Fusion of Information under Availability and Confidentiality Re-
quirements in MultiAgent Systems” of the Collaborative Research
Center SFB 876. The project leaders are Gabriele Kern-Isberner and
Joachim Biskup. As such, the general topic, the preparatory work
and project proposal are based on the work of them. This particu-
lar work originates from the elaboration of the uncertainty of the
defending agent about the state of the attacking agent, which was
mentioned briefly by myself in [155]. Starting from there, Cornelia
Tadros and myself elaborated the two resulting dimensions of uncer-
tainty, the uncertainty of the attacking agent in its view on the world
and the defending agent’s uncertainty in its view on the uncertain
world view of the attacking agent. We worked on formalizing belief
operators that deal with both dimensions of uncertainty, and on fami-
lies of such operators that differ in their credulity in both dimensions.
Then, we searched for a principled representation of the relation of
the credulity of a belief operator in both dimensions and the degree
of protection of a secret that is formulated by use of this operator.
We had a set of basic principles in mind we wanted to formulate. We
discussed our preliminary findings several times with Gabriele Kern-
Isberner and Joachim Biskup. These discussions helped us identifying
issues in our considerations and pointed us to further directions of
research. As one result we tightened our definitions of belief opera-
tors.

We continued with a more general research question. Given the un-
certainty of the defending agent, it cannot be excluded that there are
situations in which the agent cannot prevent the violation of a secret.
Our new goal was to find a principled approach to classify actions
in our considered setting. Cornelia Tadros looked into concepts from
works on normative reasoning that deal with violations of norms. In
our setting, secrecy can be seen as a norm that is induced by the se-
crecy constraints and a belief operator family with credulity order.
We connected our consideration of secrecy and action selection to the

13

14

INTRODUCTION

notion of betterness relations on actions in normative reasoning. This
led us to the specification of a classification of actions with respect to
secrecy.

I found out that the basic principles we were heading for from the
beginning cannot hold in general in our considered setting. To find a
solution, I considered the problem from a different perspective, con-
sidering the information that is available to the defending agent to
classify possible actions and considering how this information can be
used for the classification task. As a result, I developed the notion
of violation sets and two new principles for the classification of ac-
tions (Principle I.1 and I.2) with respect to secrecy. Moreover, Cornelia
Tadros came up with the idea of a minimality principle inspired by
the rational closure for conditional knowledge bases, which resulted
in Principle II. With these three principles we found a complete set of
principles for the characterization of the classification task.

We further refined Principle 1.2 as a result of discussions of Cor-
nelia Tadros, Joachim Biskup and myself on the treatment of cyclic
dependencies with respect to Principle II. Reconsidering our initial
idea of the basic principles, I looked for weaker versions of these that
are satisfiable in our setting. As a result, I came up with the Principles
III and IV. Further, I sketched a proof that shows that the satisfaction
of Principles III and IV follows from the satisfaction of Principles .1,
I.2 and II (Proposition 5.5.12). This sketch was then worked out by
Cornelia Tadros and myself. It was Joachim Biskup who pointed out
that we should show that the classification we characterized by use
of the principles can be operationalized. He proposed the focused
scenario we consider in the article, that is, the consideration of in-
form actions for a fixed point in time by a secrecy reasoner. He also
proposed the use of the concrete and simple change operator.

The search for an operationalization resulted in the definition of a
secrecy reasoner and the design of an algorithm to implement it. The
first version of the algorithm of the secrecy reasoner was developed
by myself. This algorithm was then further refined in discussions of
Cornelia Tadros, Joachim Biskup and myself. Together we also de-
vised the desired propositions with respect to the algorithm: that
it always terminates, and returns a complete classification (Proposi-
tion 5.5.15); and that it satisfies all principles (Proposition 5.5.16). The
proof of Proposition 5.5.15 and the part of the satisfaction of Princi-
ples 1.1 and 1.2 in the proof of Proposition 5.5.16 is my work. For the
satisfaction of Principle II of Proposition 5.5.16 the first draft of the
proof was my work, which was then worked out in detail by Cor-
nelia Tadros and Joachim Biskup. Preliminary versions of the article
[41] were proofread by Gabriele Kern-Isberner and Joachim Biskup.
Joachim Biskup also wrote parts of the introduction and conclusion,
and helped Cornelia Tadros and myself with the clear formulation of
our ideas.

1.5 PUBLICATIONS AND CONTRIBUTIONS

In this thesis the approach and results of the Sections 3 and 4 of the
article [41] are integrated in the framework developed in the thesis to
support the agent’s action selection. To this end, the sections have
been revised and adapted to the setting and notation of the thesis.

The ANGERONA framework that is described in the Publication [161]
was developed within the Project A5 “Exchange and Fusion of Infor-
mation under Availability and Confidentiality Requirements in Mul-
tiAgent Systems” of the Collaborative Research Center SFB 876. It
was implemented mainly by Tim Janus under my supervision as
part of his work in the As Project. He also participated in discus-
sions about the conceptualization of the implementation. Several ad-
ditional approaches that are implemented in the ANGERONA frame-
work are the result of final theses under my supervision, these are
[3, 137, 19, 52, 131, 45]. Moreover, ANGERONA was used and extended
by Daniel Dilger under the supervision of Cornelia Tadros and my-
self in an internship financed by the German Academic Exchange Ser-
vice (DAAD); a report on this work can be found in [78]. ANGERONA
was further extended by Pia Wierzoch, Stefan Roétner and Sebastian
Homann as part of their work in the A5 Project under the supervision
of Cornelia Tadros and myself.

The work on [160] was carried out within the project “Combining
belief revision and argumentation for enhancing the reasoning capa-
bilities of agents in multiagent systems”, supported by the German
Academic Exchange Service DAAD. The main idea of the Publica-
tion [160] emerged from discussions of the authors of the article. In
these discussions various ways to use argumentation in the belief re-
vision process were considered. The idea to use argumentation to
decide if and which parts of the input shall be accepted emerged.
Looking at the belief revision literature I found out, that the selec-
tive revision framework constitutes a very good basis for our work.
Matthias Thimm looked at the deductive argumentation framework.
In close collaboration Matthias Thimm and myself then extended the
selective revision framework and determined the appropriate prop-
erties for the use in combination with an argumentation approach.
We devised new postulates for the selective revision framework and
properties of the categorizer and accumulator. Then we showed the
formal results of the publication. The examples result from the col-
laboration of Alejandro Garcia and myself. All authors proofread the
publication.

The work on know-how in [229] and [157] is the result of a close col-
laboration of Matthias Thimm and myself. The work on motivation
is based on the Diploma thesis of Regina Fritsch under the super-
vision of Gabriele Kern-Isberner and myself. The original approach
has been thoroughly revised in collaboration of Matthias Thimm,
Gabriele Kern-Isberner and myself which resulted in the Publica-
tion [159].

15

BACKGROUND

In this chapter we present an overview of important background for
the following chapters. In Section 2.1 we start with an introduction to
the theory of agents and in particular to abstract agent models and
to the BDI agent architecture. Then, we introduce some knowledge
representation formalisms that might be used by the agents we de-
velop in this thesis. Propositional logic is introduced in Section 2.2,
deductive argumentation in Section 2.3 and answer set programming
in Section 2.4. In Section 2.5 we give a summary of the basics of belief
revision theory.

2.1 AGENT MODELS

The research on intelligent agents started in the 1980s and gained mo-
mentum in the 1990s. Today, the field is well developed on diverse
lines of research from the purely theoretical works to actually imple-
mented systems and applications in a variety of domains [241, 248].

An agent is an entity which is capable to act autonomously towards
its goals in its environment. The environment of an agent is usually
given by a multiagent system, which consists of a set of agents that
interact with each other and some representation of a physical envi-
ronment that the agent can observe and manipulate partially. Hence
the agent continuously receives new information from its dynamic
environment. The agent has to be able to adapt and react to these
changes while it pursues the realization of its goals. In this scenario
a plethora of challenges for the design of such an agent arises.

For the conceptualization of intelligent agents two fundamental ap-
proaches can be distinguished: the formal modeling of the behavior
of agents and multiagent systems; and the constructive, decomposi-
tional, approach leading to concrete agent architectures and systems
There is a big gap between both, the formal models can often not
be implemented in any direct way, and the concrete architectures of-
ten lack a theoretical basis. In the next two sections we describe two
typical representatives of both approaches, first an abstract notion of
agents and then a compositional approach.

2.1.1 Abstract notion of agents
We introduce common concepts of abstract agents based on the pre-

sentation in [248]. On the abstract level systems (X, Env) are formal-
ized that consist of an agent X and an environment Env. Formally,

17

18

BACKGROUND

the environment is modeled by a set of discrete environment states
E = {e,e/,...}. The environment state is transformed by the actions
of an agent from the set of possible actions Ac = {x, o’,...}. A run is
a sequence of environment states, interleaved by actions, as follows:

[%) xq %) x3 Xn—1
run:ep — €1 — €2 —e3 — ... — €n

The set of finite runs given the sets E and Ac is denoted by R, the
subset of runs that end with an action is denoted by R*¢ and the
subset of runs that end with an environment state with RE. An agent
is a function that maps runs ending with an environment state to an
action:

X:RE = Ac

The effects of actions on the environment are modeled by a state trans-
former function

tr : RAC — P(E).

Hereby P(S) denotes the power set of a set S, i. e. the set of all subsets
of S. This formalization implies that agents as well as environments
are history dependent since the next state/action is dependent on
the entire run and not only on the last action/state. The transformer
function returns a set of environment states, which models that the
effect of the agent is non-deterministic. The agent on the other hand
is assumed to be deterministic, i e. the corresponding function returns
a single action.

An environment Env is a triple Env = (E, eo,tr) with a set of en-
vironment states E, an initial environment state ep € E and a state
transformer function tr. For a system (X, Env) its set of possible runs
R(X, Env) is the set of runs of agent X in the environment Env. A run
of agent X in the environment Env = (E, ey, tr) is a sequence

(6010601611061162/“2/"-)
such that X(eg) = ®o and for alli > 0
e € tr((eo, @p,€1,001,...,€i1,-1)) and oy = X((eo, xp,...,€i1)).

Hence in this formalization of abstract agents the behavior of an agent
is represented with respect to an environment by its set of possible
runs. This allows to formalize and prove abstract properties of agents
in environments. However, it does not help with the conceptualiza-
tion and realization of agents. In the next section we present the most
popular conceptualization of rational agents.

2.1 AGENT MODELS

2.1.2 The BDI Model

There are several general approaches for realizing intelligent agents,
for an overview we refer to [248]. The most popular model for the
realization of intelligent agents is the BD/ model. It distinguishes be-
tween Beliefs, Desires, and Intentions as the main components of an
agent’s state, the interactions of which determine its behavior.

This model originates from the work of the philosopher Michael E.
Bratman [56] on practical reasoning and the role of intentions. This
led to the BDI model first described by Bratman, Israel and Pollack in
[57]. The BDI-model has been adopted by many others. Besides dif-
ferent versions for the general BDI architecture several frameworks
for agent programming are based on the BDI paradigm. The first im-
plemented and used system was the procedural reasoning system
(PRS) [117]. It was used for fault detection in the NASA space shut-
tle Discovery and was later further developed and applied in various
scenarios [117, 118]. It also forms the basis for current multiagent pro-
gramming platforms [51]. On the analytical side, there has also been
substantial work on developing logics to analyze BDI based systems
[200, 196, 201, 194, 198, 197, 199].

In the following we present an overview of the original BDI architec-
ture, on the basis of [57] and [247]. In this model the Beliefs represent
the (plausible) beliefs the agent has concerning the current situation
as well as its background information. The Desires represent what the
agent desires to achieve in general but to which it has not committed,
i.e., possible goals. Intentions are goals the agent has committed to,
they are consecutively refined by the agent and lead to the next action
the agent performs to achieve its current goals. Formally, sets of all
possible sets of beliefs L3, desires L5 and intentions £; are defined,
which are often formulae of a logical language. As already indicated
by the symbols we also refer to,e. g., the set of possible beliefs, as a
language. The current state of a BDI agent is then characterized by the
triple (8,®,7J) of its currently held beliefs 6 € L3, desires ® € Ly
and intentions J € L5. The behavior of the agent is determined by
its process of practical reasoning which is based on its mental state
(its beliefs, desires, and intentions) and the percepts it receives. This
process is realized by an agent cycle as depicted in Figure 2.1.1. The
current beliefs of the agent are revised on the basis of the current
percept p € Per by the belief revision function

brf : Loz x Per — Lsg.

On the basis of the revised belief and the current set of intentions the
current options, i.e., the desires of the agent are determined by the
function

options: Loy X L3 — L.

19

20 BACKGROUND

| sensor input
|

brf

beliefs

desires

i |
action output 3

|

{

Figure 2.1.1: Classic BDI agent cycle (adopted from [247])

The options function generates the options to refine the currently held
intentions of the agent in the light of its current beliefs. Recursively
applied, the options function determines sub-goals for realizing some
intention and then sub-goals for the newly adopted sub-goals and so
on. This way the means-ends-reasoning of the agent is realized. The
agent’s deliberation process, the process of choosing what to do, is
realized by the filter function

filter: Loy X Ly X Ly — L7.

This function selects some of the current desires as new intentions
and removes some of the former intentions of the agent to form the
current set of intentions. Intentions are to be removed if they are
successfully achieved or if they do not seem to be achievable at all or
not at a reasonable cost. Note that therefore the new set of intentions
is a subset of the union of the old intentions and the current desires.
At last, the action function

act: L3 — Act

2.2 PROPOSITIONAL LOGIC

returns an action on the basis of a set of intentions. An intention
is called an atomic intention if it can be directly satisfied by a single
action.

The general BDI architecture defines an intuitive decomposition of
the mental state and the functionality of an intelligent agent. However,
it just describes the general architecture of an agent and leaves the fur-
ther instantiation and solution of problems involved open. The belief
revision function of a BDI agent or desirable properties of it are not
specified or discussed in the original BDI literature. The means-ends
reasoning process needs some form of a plan library to determine the
sub-intentions for a given intention. It is also necessary to structure
the set of intentions by some ordering, for example a stack, or a list
of stacks. Further, the strength of commitment to an intention is an
issue. The agent has to be committed to achieve its goals but it also
has to reconsider its intentions and realize when it is worth dropping
its current intention for the sake of other intentions or when they be-
come unachievable. In most domains the options in the deliberation
process of an agent can, and should, be compared based on some no-
tion of utility. For more details on these problems see e. g.[248, 241].

We want to consider agents that use logical languages for knowl-
edge representation and reasoning. We introduce propositional logic,
which forms the basis for many other knowledge representation for-
malisms as well, in the next section.

2.2 PROPOSITIONAL LOGIC

Let At be a propositional signature, i.e. a set of propositional atoms.
Let L% be the corresponding propositional language generated by
the atoms in At and the connectives /\ (and), V' (or), = (implication),
and — (negation). To simplify the presentation, we assume some arbi-
trary total order > on the elements of £%$” which is used to enumer-
ate elements of each finite ® C £R5" in a unique way, cf. [26]. For
a finite subset ® C L%’tp the canonical enumeration of ® is the vector
($1,...,dn) such that {d1,...,dn} = ® and ¢; > ¢; for every i < j
with 1,j = 1,...,n. As > is total the canonical enumeration of every
finite subset ® C LR%P is uniquely defined.

We use the operator I to denote classical entailment, i.e., for sets
of propositional sentences @1, ®, C L5 we say that @, follows
from @1, denoted by @ - @;, if and only if @, is entailed by @
in the classical logical sense. For sentences ¢, $’ € L5P we write
¢ F ¢’ instead of {$p} - {¢p’}. We define the deductive closure CnP™P(-.)
of a set of sentences @ as

CnPP (@) ={p € LYP | D+ P}

21

22

BACKGROUND

If ® L we say that @ is inconsistent. Two sets of sentences @, @' C
LS are equivalent, denoted by ® =P @', if and only if ® - ®’ and
Q'+ .

We also use the equivalence relation =P which is defined as ® =P
@' if and only if there is a bijection 0 : ® — @’ such that for every
¢ € @ it holds that ¢ =P o(¢). This means that ® =P @’ if ® and
@' are element-wise equivalent. Note that ® =P @’ implies ® =P @’
but not vice versa. In particular, it holds that e.g. {a Ab} =P {a, b} but
{aAb} #P {a,b}. For sentences ¢, ¢’ € LL® we write ¢ = ¢’ instead
of {p} ={d'} if = {=P,=P}.

For a set S let *B(S) denote the set of multi-sets of S, i.e. the set
of all subsets of S where an element may occur more than once. To
distinguish sets from multi-sets we use brackets “(” and “)” for the
latter.

Propositional logic forms the basis for the deductive argumentation
approach that we present in the next section.

2.3 DEDUCTIVE ARGUMENTATION

Argumentation frameworks [24] allow for reasoning with inconsis-
tent information based on the notions of arguments, counterargu-
ments and their relationships. Since the seminal paper of Phan Minh
Dung [83] interest has grown in research in computational models
for argumentation. In this thesis we use the framework of deductive
argumentation as proposed by Besnard and Hunter [26] to construct se-
lection functions that decide which part of the input of a belief change
operator should be accepted. The central notion of the framework of
deductive argumentation is the notion of an argument.

Definition 2.3.1 (Argument). Let ® C L% be a set of sentences. An
argument A for a sentence « € L5%° in @ is a tuple A = (¥, x) with
Y C O that satisfies

1. YL,
2. YF o, and
3. there isno ¥/ C ¥ with ¥/ - «.

For an argument A = (¥,) we say that « is the claim of A and V¥ is
the support of A.

Thus, in an argument A = (¥, «) for «, the set ¥ is a minimal set
entailing «. Given a set ® C L% of sentences there may be multiple
arguments for «. As in [26] we are interested in arguments that are
most conservative.

2.3 DEDUCTIVE ARGUMENTATION

Definition 2.3.2 (Conservativeness). An argument A = (¥, x) is more
conservative than an argument B = (®, 3) if and only if ¥ C ® and
B F o

In other words, an argument A is more conservative than an argu-
ment B if B has an at least as large support (with respect to set inclu-
sion) and a more general conclusion than A. An argument A is strictly
more conservative than an argument B if and only if A is more conser-
vative than B but B is not more conservative than A. If ® C £R%P is

inconsistent there are arguments with contradictory claims.

Definition 2.3.3 (Undercut). An argument A = (¥,) is an undercut for
an argument B = (®,) if and only if o« = —(p1 A... A dy) for some

d)1l"'/q)ng(D'

If A is an undercut for B then we also say that A attacks B. In order to
consider only those undercuts for an argument that are most general
we restrain the notion of undercut as follows.

Definition 2.3.4 (Maximally conservative undercut). Anargument A =
(Y, o) is a maximally conservative undercut for an argument B = (@, 3)
if and only if A is an undercut of B and there is no undercut A’ for B
that is strictly more conservative than A.

Definition 2.3.5 (Canonical undercut). An argument A = (¥, —(d1 A
.../\bn)) is a canonical undercut for an argument B = (®, 3) if and
only if A is a maximally conservative undercut for B and ($1,..., dn)
is the canonical enumeration of ®.

It can be shown that it suffices to consider only the canonical under-
cuts for an argument in order to come up with a reasonable argumen-
tative evaluation of some claim « [26]. Having an undercut B for an
argument A there may also be an undercut C for B which defends A.
In order to give a proper evaluation of some argument A we have to
consider all undercuts for its undercuts as well, and so on. This leads
to the notion of an argument tree.

Definition 2.3.6 (Argument tree). Let « € L73° be some sentence and
let ® C LY be a set of sentences. An argument tree T () for « in @

is a tree where the nodes are arguments and that satisfies
1. the root is an argument for « in @,

2. for every path [(®7,x1),...,(Pn, on)] in Te () it holds that
O, O1U...UDy_1, and

3. the children By, ..., B of a node A consist of all canonical un-
dercuts for A such that condition (2) above is not violated when
these canonical undercuts are added as children.

23

24

BACKGROUND

Let F(At) be the set of all argument trees.

An argument tree is a concise representation of the relationships be-
tween different arguments that favor or reject some argument A. In
order to evaluate whether a claim « can be justified we have to con-
sider all argument trees for « and all argument trees for —«. For an
argument tree T let root(T) denote the root node of . Furthermore,
for anode A € T let ch(A) denote the children of A in T and chg(A)
denote the set of sub-trees rooted at a child of A.

Definition 2.3.7 (Argument structure). Let « € L5$” be some sentence
and let ® C L5 be a set of sentences. The argument structure I'q ()
for o with respect to @ is the tuple I'p (o) = (7,7) such that T+ is
the set of argument trees for « in ® and T~ is the set of arguments
trees for —« in @.

The argument structure I'p («) of a ax € LR5P gives a complete picture

of the reasons for and against «. The argument structure has to be
evaluated in order to determine the status of sentences. We introduce
the powerful evaluation mechanisms from [26] and give examples of
how adequate and simple instantiations can be realized.

Definition 2.3.8 (Categorizer). A categorizer vy is a functiony : F(At) —
R.

A categorizer is meant to assign a value to an argument tree T depend-
ing on how strongly this argument tree favors the root argument. In
particular, the larger the value of y(t) the better the justification of be-
lieving in the claim of the root argument. For an argument structure
Fo(x) = ({t7,..., oL {17, ..., Tn}) and a categorizer y we abbrevi-
ate

Y(F(D((X)) = (<’Y(TT)1 .. 'I’Y(TTJ:»I <Y(TT)1 .. /’Y(T;n») .

Definition 2.3.9 (Accumulator). An accumulator k is a function « : B(IR) x
PB(R) — R.

An accumulator is meant to evaluate the categorization of argument
trees for or against some sentence o.

Definition 2.3.10 (Acceptance). We say that a set of sentences ® C
L%’Ep accepts a sentence o« with respect to a categorizer y and an accu-

mulator k, denoted by
Ot o if and and only if k(y(I'p(x))) > 0

If @ does not accept o with respect to v and k (@ {/ ¢, «) we say that
@ rejects o« with respect to y and k.

Simple instances of categorizers and accumulators are defined in
the following example.

2.4 ANSWER SET PROGRAMMING

Example 2.3.11. Let T be some argument tree. The classical evaluation
of an argument tree, as ,e. g. employed in Defeasible Logic Programming
[105], is that each leaf of the tree is considered “undefeated”. An inner
node is “undefeated” if all its children are “defeated”. And an inner
node is “defeated” if there is at least one child that is “undefeated”.
This intuition can be formalized by defining the classical categorizer vy
recursively via

Yo(t) = T .
1 —max{yo(t’) | T/ € chy(root(t))} otherwise

{ 1 ch(root(t)) =0

Furthermore, a simple accumulator k¢ can be defined via

K0(<N1/---/Nn>/<M1/---/Mm>) =
Ni+...+4Nqy—M;—...— M.

For example, a set of sentences ® C L57" accepts a sentence « with
respect to yp and ko if and only if there are more argument trees for
o where the root argument is undefeated than argument trees for —«
where the root argument is undefeated. &

More examples of categorizers and accumulators can be found in [26].
Using those notions we are able to state for every sentence ¢ € @
whether ¢ is accepted in @ or not, depending on the arguments that
favor « and those that reject o.

In the next section we introduce a logic programming formalism,
which is another non-monotonic reasoning formalism. It has close
connections to argumentation theory, as was already shown in [83].

2.4 ANSWER SET PROGRAMMING

Answer set programming is based on the stable model semantics for
logic programs. Different language versions are used, the basis are
normal logic programs that feature default negation [113], extended
logic programs feature strict and default negation[114], and disjunc-
tive logic programs [112] feature disjunctions in the head of a rule. In
this work we focus on extended logic programs under the answer set
semantics based on [114].

Extended logic programs consist of rules over a set of atoms At
using strong negation — and default negation not. An atom is of the
form p(ty,...,tn) with p being a predicate of arity n and ty,...,tn
are terms. A term is a variable or a constant, no functions are allowed
in standard answer set programming. We denote constants by lower
case strings, and variables by strings that start with an upper case
letter. A literal L can be an atom A or a negated atom —A. The com-
plement of a literal L is denoted by —L and is

— Aifand only if L = —A and

25

26

BACKGROUND

— —Aif and only if L = A.
Let At be the set of all atoms and Lit the set of all literals
Lit=AtU{—A | A € At}

The set Lithot = {not L | L € Lit} denotes the set of all default negated
literals. The set of all literals and default negated literals is denoted
by £ = Lit U Litnet. A rule r is written as

L+ Ly,...,Lim,not Lins1,...,n0t Lyy.

where the head of the rule H(r) = {L} is either empty or consists of a
single literal and the body

body(r) ={Lo,...,Lin,not Liny1,...,not Ly}

is a subset of £. The body consists of a set of literals
body(r)" ={Lo,...,Lim}

and a set of default negated literals denoted by

body () ={Lm41, ..., Ln}

If body(r) = (), r is a fact and if H(r) = (), r is a constraint. A program
without default negation is a strict program. For a given program P
we define the strict sub-program for it as

PStriCt(P) =def {T cP | bOdy(T)_ = @}

The language of rules constructed over the set of atoms At is referred
to as L5 . A finite set of sentences from £5% is called an extended logic
program P C L5P.

Rules with variables are treated as rule schemata that represent the
set of grounded rules resulting from grounding the variables with
all possible combinations of constant symbols. Formally, given a pro-
gram P the Herbrand universe Up comprises all constants occurring in
P. For a given set of literals Lit we denote the set of grounded liter-
als by U(Lit). The set of ground rules for the rule schema v is given
by replacing all variables in r with all possible combinations of con-
stants from Up and denoted by ground(r). The grounded version of a
program P is given by grnd(P) = (J,cp ground(r).

The semantics of extended logic programs is defined as follows. A
state S is a set of literals that is consistent, i.e., it does not contain any
complementary literals L and —L. A state S is a model of a program P
if for all r € grnd(P)

if body(r)™ C S and body(r)” NS =0 then H(r)N'S # 0.

2.5 BELIEF REVISION THEORY

That is, a state is a model of a program if for all grounded rules, if the
positive body of the rule is contained in the state and none of the neg-
ative body literals is contained in it, then the head has a non-empty
intersection with the state. The formulation of the last condition as
the requirement that the set consisting of the head literal intersected
with the state has to be non-empty is important for the semantics of
constraints. A constraint has an empty head such that this condition
is unsatisfiable. This implies that the body of a constraint cannot be
satisfied by any model. The reduct PS of a ground program P relative
to a set S of literals is defined as

PS ={H(r) « BT (r)|r€eP, B (r)NS =0}

An answer set of a program P is a state S that is the minimal model
of grnd(P)S. The set of all answer sets of P is denoted by AS(P).

A program P is consistent if and only if AS(P) # . Note, that we
defined answer sets of a program based on a state, which does not
contain complementary literals. There are other notions of answer
sets in the literature according to which answer sets can contain com-
plementary literals. In this case the answer set is usually defined to
equal the set of all literals. It is be easy to adapt the notion of consis-
tency to such definitions.

There are different notions of equivalence for logic programs [246].
Here we introduce the most important ones. For some fixed set of
atoms At two programs P C L3P and P’ C L57F are:

strongly equivalent, P =sg P’, iff for all programs F,

AS(PUF) = AS(P' UF),

uniformly equivalent, P =y P’, iff for all sets of facts F,

AS(PUF) = AS(P'UF),

answer set equivalent, P =s¢ P/, iff AS(P) = AS(P’), i.e., F = 0.

If two programs are strongly equivalent, then they are also uniformly
and ordinarily equivalent.

Up to this point we introduced different knowledge representation
formalisms, in the following we introduce the theory of change of
beliefs represented by some knowledge representation formalism.

2.5 BELIEF REVISION THEORY

The research area of belief revision is concerned with the question of
how to change currently held beliefs in the light of new information.
Research on this topic is fundamentally influenced by the seminal
paper of Alchourrén, Gardenfors and Makinson [5]. They formalized

27

28

BACKGROUND

rationality postulates for change operations, called the AGM postu-
lates, and showed relations to constructions for change operations
for propositional logic. In the time since then, the original postulates
were discussed, modified, extended and adapted to various other set-
tings, see [94] for an overview.

In the following we introduce the original formulation [5] of the
basic set of postulates for the revision of a belief set, a deductively
closed set of formulae, by a formula. Then we introduce an alterna-
tive formulation on the basis of epistemic states, which contain more
information than belief sets. After that we describe postulates for belief
bases, which are finite sets of propositional formulae. Belief bases con-
tain more information than belief sets and can be seen as a special case
of an epistemic state. Further, we introduce some common construc-
tions of change operators, exemplarily for belief bases. Finally we give
a brief overview of the work on the principle based consideration of
change operations for logic programs.

2.5.1 Belief Sets

The AGM approach and many consequent work in the area studies
the change of a belief set, a set of propositional formulae @ that is
deductively closed, i.e., CnP™P(®) = @, by a propositional formula ¢.
Considering deductively closed belief sets allows to define rationality
postulates and change operations on the knowledge level.

If new information is acquired it has to be incorporated into the cur-
rent set of beliefs. Given a belief set ® and the new information being
represented as a sentence ¢, the operation of adding ¢ to the current
beliefs is called expansion and denoted by ® + ¢. An expansion can be
performed without problems if the new information ¢ is consistent
with @. The expansion is uniquely determined as ® +¢ = Cn(® U ¢)
given the six AGM postulates for expansion [5]. In the case of an in-
consistency of ® and ¢, conflicts arising from the addition of ¢ to the
current set of beliefs have to be resolved, which amounts to a revision
of the beliefs. This means that some of the current beliefs have to be
given up in order to obtain a consistent belief set. The AGM model
defines six basic postulates a revision operator * should satisfy:

(k*1) @ * ¢ is a belief set.

(x*2) ¢ € D .

(k*3) ©Oxd C O+ .

(x*4) f g Dxp, then D+ b C O x .
(x*5) @ ¢ is inconsistent iff ¢ is inconsistent.

(x*6) If =P P, then D xp = O * .

2.5 BELIEF REVISION THEORY

Postulate (K*1) ensures, that the result the revision of a belief set
by a formula is a belief set. Postulate (K*2) is also called the success
postulate. It demands, that the new information is prioritized over
all current beliefs such that the new information is accepted in any
case. Postulate (K*3) formalizes that the new information added by
an expansion is an upper bound for the new information added by
the revision operation. Postulate (K*4) states that if the new informa-
tion is consistent with the belief set, then the expansion is a lower
bound for the revision operation. Together Postulates (K*3) and (K*3)
imply that in case of the new information being consistent with the
current beliefs the revision should yield the same result as the expan-
sion operation. The objective of a belief revision is to remove conflicts
and to generate a consistent belief set. Postulate (K*5) demands con-
sistency of the result, unless the new information is inconsistent in
itself, in which case Postulate (K*2) does not allow for a consistent
belief set. Postulate (K*6) formulates, that the result of a revision op-
eration should be independent of the actual syntactic formulation of
new information and should lead to the same result for semantically
equivalent new information.

2.5.2 Epistemic States

A belief set represents the set of beliefs an agent is committed to at
some point in time. Belief sets lack any information on the structure of
the beliefs. A representation of this structure is necessary to perform
change operations that follow a foundational approach that consider
the dependencies of beliefs [106, 127, 65]. A general representation
is based on epistemic state that represents all information that is nec-
essary for reasoning and most importantly a representation of condi-
tional beliefs, i.e., beliefs that the agent adopts, conditioned on other
beliefs or evidence. An epistemic state is often represented by a total
pre-order on the set of interpretations of the considered propositional
language [65], or as an ordinal conditional function that assigns natural
numbers to interpretations [220, 143, 144]. In other works epistemic
states consist of sequences of propositional formulae [49], or can be
composed of different elements [43]. A common view is that a belief
set can be generated from an epistemic state X by means of a belief
operator Bel, such that the belief set is given by Bel(X). In [65] the
AGM postulates have been reformulated for epistemic states and and
a change operator o for epistemic states. There it is assumed that the
belief set is represented as a single propositional formula. The basic
postulates are as follows:

(R*1) Bel(KXop)F .
(rR*2) If Bel(X) /\ 1 is satisfiable, then Bel (X o) =P Bel(K) A .

(rR*3) If uis satisfiable, then Bel(X o i) is satisfiable.

29

30

BACKGROUND

[(r*4") If Bel(X) =P Bel(X’) and u =P pu’, then

Bel(K o) =P Bel (XK' on’)]

(R*4) X =K' and pu =P u’/, then Bel(K o u) =P Bel(K o ')

Postulate (R*1) corresponds to Postulate (K*2), Postulate (R*2) to Pos-
tulates (K*3) and (K*4), Postulate (R*3) to Postulate (K*5), and Postu-
late (R*4) and to Postulate (K*6). The Postulate (R*4) is a weakening of
Postulate (R*4") that only demands the revision results for equivalent
inputs to be equivalent if the epistemic states are identical; instead
of equivalent as demanded in the stricter formulation in Postulate
(R*4"). This difference is characteristic for the use of epistemic states:
The belief set alone does not contain sufficient information to deter-
mine the revision result, it depends on the exact epistemic state. The
Postulates (R*1) to (R*4), without (R*4"), form the basis for the revi-
sion of epistemic states and are extended by additional postulates for
iterated revision in [65].

The postulates for epistemic states are also defined on the belief set
level, but it is taken into consideration that the belief set is generated
by an epistemic state. In the next section we give an overview of the
research on belief base revision.

2.5.3 Belief Bases

In another strain of research the change of belief bases has been con-
sidered. Belief bases are finite sets of formulas. They represent more
information than belief sets since they allow to differentiate between
explicit and inferred beliefs [127]. That is, they can be seen as a special
form of epistemic states. Postulates for belief bases have been formu-
lated on the level of the belief base, and not on the belief sets that are
generated by belief bases. Belief base change theory has been mostly
developed by Sven Ove Hansson [122, 123, 124, 127], and others, e. g,
[183, 206, 119]. In the following we summarize the main postulates
and ideas for the construction of belief base change operators on the
basis of [127].

A base revision operator * changes a belief base B C Lrop by a
sentence ¢ € Lrop and returns the revised belief base B * ¢. More-
over, an expansion operator + is defined for belief bases as the non-
closing expansion operator defined as B + ¢ = B U{¢}. The basic set of
postulates demanded for a belief base revision operator is the follow-

ing:
SUCCESS: ¢ € Bx ¢

INCLUSION: Bxd C B+ ¢

vacuity: If BU{¢}is consistent, then B+ b C B x ¢

2.5 BELIEF REVISION THEORY

CONSISTENCY: If ¢ is consistent, then B x ¢ is consistent

RELEVANCE: If ¢/ € (BUP)\ (B * ¢), then there is a set H such
that Bx$p C H C BU ¢ and H is consistent but HU {¢'} is
inconsistent

UNIFORMITY: If for all B’ C B, B’ U{¢} is inconsistent if and only if
B’ U{d’'} is inconsistent, then BN (B*x p) = BN (B x ')

The Success postulate states that the new information should be part
of the revision result, i.e., it should be prioritized over the informa-
tion in the belief base. Inclusion demands that revision by some infor-
mation should not introduce more information than expansion. Vacu-
ity demands that if the new information is consistent with the belief
base then no information should be discarded. Consistency postulates
that if the new information is consistent in itself then the result of the
revision is consistent as well. Relevance states that any discarded piece
of information would have lead to inconsistency in a super set of the
revision result. Finally, Uniformity says that the effect of revision on
B is basically determined by subsets which are inconsistent with the
new information.

The construction of belief base revision operators that satisfy the
postulates specified above can be realized in the same way as be-
lief set revision operators, with only slight differences as we describe
in the following. Besides expansion and revision, contraction, denoted
by —, which removes information from a belief base B, is the third
change operation considered in classical scenarios. It is linked to be-
lieve base revision via the Levi-Identity by use of a contraction operator
— and an expansion operator +:

Brdp=(B——d)+o.

The Levi-Identity helps establishing connections between rationality
properties of the contraction and the revision operator, respectively.
A standard construction is to define a contraction B — ¢ as the inter-
section of a selection of maximal sets not containing ¢. Formally, for
a given belief base B and a sentence ¢ the set of remainder sets B L ¢
is such that X € B L ¢ if and only if:

1. X C B,
2. ¢ € CnP™P(X) and
3. there is no X’ such that X ¢ X/ € B and ¢ ¢ CnPP(X’).

Let B be a set of sentences. A function vy is a selection function for B if
and only if for all sentences ¢

1. ifBLb#Dthen#vy(B L) CB L P, and
2. if BL ¢ =0theny(B L ¢)={BL

31

32

BACKGROUND

The partial meet contraction operator is then defined as

B—y b =[)v(B L)

It has been shown that a revision operator satisfies all of the above
postulates if and only if it is constructible via the Levi-identity and a
partial meet contraction operator.

Partial meet contraction can be applied to believe sets in the same
way as for belief bases. The difference between the revision of belief
sets and belief bases results from the difference of the expansion op-
erator. For belief bases the non-closing expansion operator defined as
B+ ¢ = BU{p}is used and for belief sets the closing expansion oper-
ator B+ ¢ = CnPP(B U{d}). This slight difference has implications
for the resulting revision operator. These implications are reflected
by the corresponding postulates for the revision of belief sets [5]. The
postulates of Success and Consistency are identical and the postulates
Inclusion and Vacuity only differ in the expansion operator. In addi-
tion to these four postulates the basic six AGM postulates contain the
following two postulates:

(k*1) @ * ¢ is a belief set.
(k*6) If ¢ =P P, then @ + p = @ % .

Postulate (K*1) states that the revision result shall be a belief set, i.e.,
it shall be deductively closed. Postulate (K*6) demands for irrelevance
of syntax, that is, all logically equivalent formulae shall lead to the
same change. The (K*1) postulate is an inherent feature of the knowl-
edge level approach and is definitely not appropriate in a base change
framework. The idea of (K*6) is that the result of a revision operation
should only depend on the semantic content of the information and
not its syntactical representation. This is also desirable for belief base
operations in general as well, but is not satisfied by these.

This far we described different approaches of change operations
primarily developed for propositional logic. In the next section we
give an overview of the works that considered the comparison with
or the application of these approaches to answer set programs.

2.5.4 Answer set programming and belief change

Belief dynamics within classical logics have been studied for over 25
years now [94]. Well defined sets of rationality postulates for different
change operations have been defined. For logic programs, however,
most existing approaches to dynamics are very pragmatic and lack
a formal representation of requirements of the change process. Few
works examined the formal properties of approaches to change logic
programs. Most of these use the classic AGM postulates for the re-
vision of belief sets for logic programs. The adequate definition of a

2.5 BELIEF REVISION THEORY

belief set, a consequence relation and a notion of equality is crucial
but not at all trivial for the applicability of the classic postulates.

The most thorough account to study change operations to extended
logic programs in the light of established postulates from belief revi-
sion theory can be found in [87]. In this work an epistemic state is
represented by a sequence of logic programs P = (Py,...,Py). The
revision of a sequence P = (Py,...,Pn) by a program P results in
the sequence (P,P) = (Py,...,Pn,P). The belief set is determined by
constructing a single program P, over an extended alphabet from the
sequence. This program is called update program and resolves pos-
sible inconsistencies between the single programs giving priority to
programs with higher indices. It generalizes several approaches from
the literature that are based on the causal rejection principle [87].

The answer sets of this program, AS(Py) are then projected to the
alphabet of the programs At. For the projected answer sets the set
of rules satisfied by all answer sets is determined and resembles the
belief set for the epistemic state, i. e.:

BelP)= [{reLy?|(SNAL)isamodel of {r}}
SeAS(Py)

Based on this definition of an epistemic state and belief operator the
authors considered adopted versions of the AGM postulates, postu-
lates for belief update [141] and for iterated change [65]. The majority
of all important postulates are violated, many also for the case in
which the sequence consists of only a single program. Due to this,
ASP specific postulates for change operators have been proposed in
[87] and adopted by several authors for the evaluation of their ap-
proaches afterwards [75, 68, 74, 188].

A more successful approach of a relation to the AGM theory was
achieved by the use of monotonic SE-Models first presented in [68];
and later on extended to merge operations [71] and to update op-
erations in the style of Katsuno and Mendelson by Slota and Leite
[216, 217]. Said work makes use of the semantic characterization of
programs via SE-models and applies an adapted version of distance
based revision operators from classic belief revision. This approach
was shown to satisfy the majority of the adopted AGM postulates. It
is, however, still an open question if the semantic approach based on
SE-models is adequate for ASP. In [216] it has been pointed out that
the SE-models for the programs Py = {p., q.} and P, = {p < q., q.}
are the same and therefore also the results of the revision by the
program Q = {—q.}. It holds that the sets of answer sets for both re-
vision results are the same and have {p} as the only answer set, i.e.,
AS(P; +5F Q) = AS(P, +5E Q) = {{p}}. While for P; this is a desired
result, for P, it is not since p is not justified if q is not in the answer
set.

33

34

BACKGROUND

2.5.5 Summary

In this chapter we introduced concepts and formalisms that are im-
portant for our considerations in the following chapters. We intro-
duced the theory of agents, an abstract agent model and the BDI
agent architecture in Section 2.1. Then, we introduced three differ-
ent knowledge representation formalisms that are used in this thesis:
propositional logic in Section 2.2, deductive argumentation in Sec-
tion 2.3, and answer set programming in Section 2.4. Afterwards, in
Section 2.5, we summarized important concepts of belief change the-
ory for belief sets, epistemic states and belief bases.

EPISTEMIC AGENT MODEL

In this chapter we develop our epistemic agent model. We argued in
Section 1.2.1 that there is a need for an agent model that embraces
abstract notions of agents as well as concrete ones such as the BDI
architecture on the one hand; and one that integrates approaches to
belief change and non-monotonic reasoning on the other hand.

We presented the typical notion of abstract agents in Section 2.1.1.
It considers agents as functions that map an environment state to
an action. A state transformer function produces the set of possible
successor environment states. That is, these abstract agents do not
possess an explicit internal state and the environment is assumed to
be completely modeled and available to the agent. In contrast, the
BDI model, as introduced in Section 2.1.2, defines an agent to have
a mental state that contains representations of the agent’s current be-
liefs, desires, and intentions. The agent’s behavior is implemented by
an agent cycle comprising four functions. These resort to the agent’s
current percept and the components of the mental state, modify these,
and determine the next action. The environment is not explicitly mod-
eled and only accessible to the agent by means of percepts and ac-
tions.

The goal in this chapter is to define a general model of agents that
can be used for the abstract analysis of agents, and that captures com-
posed agent architectures such as the BDI model. Moreover, these
modeled agents shall be based on logical knowledge representation,
(non-monotonic) logical inference and belief change theory. We call
them epistemic agents and their internal state an epistemic state. An
epistemic state can consist of one or several epistemic components
that are each based on a logical formalism and have a belief operator
that determines a belief set for a given epistemic component. An epis-
temic component might be instantiated, for instance, by an extended
logic program or a set of programs, both potentially in combination
with a preference relation and a belief operator based on answer set
semantics [112, 59, 87]. It might also be instantiated by an ordinal
conditional function [220, 143], default logic [60], an argumentation
formalism [24], a propositional set of sentences or a stratified propo-
sitional epistemic component [92], to name just a few.

Epistemic agents have an incomplete and uncertain view on the
world and other agents. In particular, the state of the environment is
not accessible to the agents, i. e., they have to rely on their subjective
view on it. For each agent there is a set of percepts Per that it can
process and a set of actions Act that it can perform. For our consid-

35

36

EPISTEMIC AGENT MODEL

erations we focus our model on communication, realized by the in-
terchange of speech acts. We follow a top-down approach to develop
the structure and properties of an epistemic agent. We start with an
abstract model of an agent with a state and then gradually concretize
the components of an agent. These are then studied in more detail by
defining sub-components, and their dependencies and interactions.
This way we define an extended BDI agent model, which we call the
BDI™ model. The BDI™ model extends the BDI model by a motivation
component [159] and a know-how component [229].

We define basic instantiations of the functional component and
some of the components of the epistemic state of this model. The
resulting agent model leaves only an evaluation function for actions
and the actual knowledge representation to be instantiated. It is thus
a good basis to easily specify concrete agents on the basis of differ-
ent knowledge representation formalisms. This includes different be-
lief operators and change operators, or different evaluation functions.
We can model for instance ASP agents or agents that evaluate actions
with respect to the preservation of secrets. Along with the develop-
ment of the formal model, we continuously formalize an instance of
our model that is based on answer set programming.

Furthermore, we formalize families of belief operators that can be
ordered, for instance, by their credulity. We formalize properties of
these and consider operators for extension based formalisms. We also
consider instantiations of belief operator families for propositional
logic and answer set programming, of which we make use later on
in this thesis. The remainder of this chapter is structured as follows.
In Section 3.1 we start defining the basic notions of the agents and
multiagent systems we consider. In particular we introduce commu-
nication as a special form of percept and action. Then we define the
fundamentals of epistemic components and belief operators for our
epistemic agents in Section 3.2. In Section 3.3 we define our general
epistemic agent model. We start defining our ASP instance, which
also serves as a running example. Based on this abstract model, in
Section 3.5, we define the structure of the epistemic state and the ba-
sic functional component for a BDI*-based model. We also define a
more concrete basic BDIT agents in the same section. In Section 3.6
we elaborate on the concept of belief operators, which we introduced
in Section 3.2. We develop general families of operators for forming
beliefs in the light of incomplete information. Further, we develop
general desirable properties of such operators and families thereof.
We use the general perspective of extension-based, non-monotonic
formalisms to formulate more concrete properties. A variety of ap-
proaches to non-monotonic reasoning are directly or indirectly based
on a notion of extensions [173]. We give two concrete instantiations
of belief operator families, a propositional one, and an ASP instance
as a representative of an extension-based instance. In Section 3.7 we

3.1 COMMUNICATING AGENTS

discuss related work to the approaches presented in this chapter and
in Section 3.8 we summarize and conclude.

3.1 COMMUNICATING AGENTS

In general actions of an agent in an environment have direct and
indirect effects on the state of the environment [243]. The altered state
of the environment is then, partially, perceived by the agent. Hereby
an agent can perceive the effects of its own actions and evaluate if they
were successful or if they failed. Actions that change the environment
are called ontic actions. In contrast, epistemic actions only have an effect
on the epistemic states of agents. For a more detailed discussion of
the differences between ontic and epistemic actions see, e.g., [233].
In this thesis, we focus on communicating agents that only perform
particular epistemic actions, which are called speech acts [212].

We abstract from the physical mediation of speech acts and assume
that communication is direct and that sender, receiver, type and con-
tent are explicit. This also means, that we assume that every speech
act is always received by the intended receivers. While communica-
tion is simple from a technical point of view, from the epistemic point
of view it can be highly complex. Agents reveal information of differ-
ent levels by transmitting a speech act. Besides the explicit informa-
tional content of a speech act, represented by a logical formula, they
reveal meta-information such as the type of speech act, the sender,
and receivers. Moreover, the context of a speech act is important for
its interpretation. All of these aspects are relevant for the adequate
processing of the speech act. A speech act of an agent generally has
the effect of a change of the epistemic state of the receivers of the
speech act. These changes are, in contrast to changes induced by ontic
actions in a simulated or physical environment, not directly percepti-
ble by agents through observation of changes in the environment. In
particular, the agent performing a speech act cannot verify the suc-
cess of its action directly, by observation of the anticipated changes in
the physical environment. The agents have to be capable to reflect the
anticipated changes implied by their actions in their own epistemic
state.

Example 3.1.1. If Beatriz explains a complex and important task to
Emma, she cannot see directly if Emma really understood what she has
to do, and that she now intends to do it. Thus she cannot immediately
verify if her speech act was successful. &

We consider purely communicating agents such that each agent’s
possible actions are given by a set of speech acts. The possible per-
cepts of each agent result from the union of all possible actions of
other agents that are directed to the former agent.

37

38

EPISTEMIC AGENT MODEL

We do not require that all agents use the same knowledge repre-
sentation formalism. For the communication between agents, which
potentially use different knowledge representation formalisms, we
presuppose a common logical language Lgase, that all agents can pro-
cess. In this thesis we consider this language to consist of the set of
propositional literals Lit.

We consider multiagent systems that contain a set of interacting
agents that are identified by an agent identifier. The set of agent identi-
fiers of a system is denoted by Ag. We use a notion of speech acts that
is a simplification of the FIPA specification [100]. The general form of
the speech acts we consider is

<xS/ %T‘/ type/ d)>/

specifying the source Xs € Ag, the receivers {Yr,,...,Yr,} C Ag, the
type of speech act type € types and the informational content ¢ €
LBase. We distinguish between requesting and informative types of
speech acts. We define the type of a speech act type € types; U typesg
whereby types; = {inform, answer} is the set of informative speech acts
and typesg = {query} the set of requesting speech acts. The possible
percepts and actions of communicating agents are given by sets of
speech acts.

Definition 3.1.2 (Perceptions and Actions for Communication). The set
of possible actions of an agent X € Ag is given by the set of speech
acts

Acty ={(X, Y, type, &) | Yr € Ag\{X}, type € types, d € Lpase} U €.

That is, the possible actions of an agent are given by all speech acts in
which the respective agent is the sender. The symbol € represents the
empty action, it formally gives the agent the possibility to do nothing.
The set of possible percepts of agent X is given by the speech acts it
might perceive from other agents

Pery = {(Xs, X, type,) | Xs € Ag, type € types, ¢ € Lpase) UPe.

This is the set of speech acts in which the respective agent is one
of the receivers. The empty percept p. formally gives the agent the
possibility to not receive any speech act.

Example 3.1.3. We consider our strike committee meeting example
and the set of literals as the base language, i.e., Lpase = Lit. The
agent Beatriz sends a speech act

(Beatriz, Emma, query, attend _scm)

to agent Emma. The answer Emma should send to preserve her secret,
that she intends to attend the strike committee meeting, is

(Emma, Beatriz, answer, —attend _scm). O

3.2 EPISTEMIC COMPONENTS

Let Ag be a set of agents and Lit a set of literals. The set of all speech
acts L is defined as

Z = {<xS/xT/type/ L> | (3'1'1)
Xs, Xy € Ag, type € types, L € Lit}U{e, pel.

The symbols for the empty action e and for the empty percept pe
are added for the pure technical reason to formalize not-acting and
not-perceiving.

The sets of speech acts we consider here can be easily extended by
other types of speech acts such as, e. g., perform, justify, propose, accept,
agree. For our means this formalization is completely sufficient. In
fact, almost all types of communication can be reduced to the basic
set we consider here [248].

The logical content of a speech act has a relation to an epistemic
component and the resulting belief set of an agent. A sending agent
decides on the speech act it sends based on its relation to its beliefs,
and a receiving agent incorporates the information from the received
speech act into its epistemic component. In the next section we for-
malize epistemic components and belief operators.

3.2 EPISTEMIC COMPONENTS

We use epistemic componentsepistemic component, i. e., finite sets of sen-
tences of a logical language to formalize the knowledge represen-
tation and reasoning of an agent. An epistemic component can be
seen as an epistemic state or a belief base as we considered for be-
lief change in Section 2.5. An epistemic component forms the basis
for logical inferences of the agent. The set of inferences from an epis-
temic component results in the agent’s belief set. We aim at facilitating
the use of formalisms for non-monotonic reasoning in agent systems.
Examples we have in mind are default logics [202], argumentation
systems [24], various forms of logic programs [47], or ordinal con-
ditional functions [220]. To allow for such a variety of formalisms
for knowledge representation, we keep our concepts and notions in-
dependent of a particular formalism and make only some general
assumptions. We fix a syntactic structure that is general enough to
support a wide variety of such formalisms. All formalisms are based
on an underlying base language Lp representing the basic vocabulary.
This is typically a fragment of propositional logic. This base language
is then used to define the epistemic component language L. These two
languages might be equal or the latter is an extension of the former,
that is that the sentences of the former are, potentially, connected by
additional constructors to form the latter language.

Example 3.2.1. For the ASP case, cf. Section 2.4, the base language
are atoms and the epistemic component language are rules, which

39

40

EPISTEMIC AGENT MODEL

Le
ot :
= E

C Belief Operator

B |
b :
aSed on E
v

Lps

Figure 3.2.1: Relations of languages for Belief Bases

are formed by the rule constructor <, the strict negation — and the
default negation not. <

An epistemic component is a set of sentences of the epistemic com-
ponent language Lg. On the epistemic component a belief operator is
applied to produce the set of currently held beliefs, the belief set BS,
which is a set of sentences of the belief set language Lgs. The belief
set language is also based on the base language and potentially built
by use of some extra constructors, but usually not as rich as the epis-
temic component language. We consider agents that have incomplete
information. Thus, given an epistemic component E the agent has to
decide which sentences it believes to be true. The set of such sen-
tences forms its current belief set BS. To formalize this process we
introduce belief operators.

Definition 3.2.2 (Belief Operator). A belief operator is a function
Bel : ?(LE) — ‘.P(Lgs)
that maps an epistemic component E C L to a belief set BS C Lps.

The general relations among the languages we introduced are illus-
trated in Figure 3.2.1. We assume that an agent X has for each epis-
temic component E a belief operator Bel% assigned to it. If an agent
has just one epistemic component or if all epistemic components of
an agent are of the same type and use the same operator we write
Belx to denote the agent’s belief operator.

We illustrate this general concept by use of a basic propositional
instance and an ASP instance.

Example 3.2.3. For classical propositional logic the base language are
the propositional atoms, i.e., Lg = At. The epistemic component,
and belief set language are the language of propositional formulae,

3.3 EPISTEMIC AGENTS

i.e., Lg = Lps = LY. The belief operator is the propositional conse-

quence operator: Bel”? =;,c CnP™P. %

ASP Instance 1. The languages we just introduced are instantiated
as follows for our running ASP instance. The base language of an-
swer set programming is a set of propositional atoms £3* = At. The
epistemic component language is the language of extended logic pro-
grams Lo = L5 It is constructed on the basis of L3 by means
of the rule constructor < and the default negation not constructors
resulting in rules of the form

Lo < Ly,...L,not Lyyy1,...,not Lyy.

with L; € Lit, 0 < i < m with Lit = {-A | A € LEPULEP, as
defined in Section 2.4. Hence the belief set language is the set of
literals £3% = Lit, which is constructed from the set of atoms At by
the strict negation constructor.

An ASP belief operator is of the form Bel : P(£L5?) — Lit, for instance
defined as the skeptical operator Belgyep(P) =4s NAS(P), also called
cautious entailment, e. g., in [112].

In this and the previous section we defined the fundamentals for
the knowledge representation and interaction of our epistemic agents.
In the next section we formalize our epistemic agent model.

3.3 EPISTEMIC AGENTS

In the following we define our model of epistemic agents. Formally,
we start with a definition of an agent with state, as sketched in [248].
We refine this abstract concept and consider composed states and
functions to define our model of epistemic agents.

An agent is represented by its agent identifier. Let a multiagent sys-
tem with a set of agent identifiers Ag be given. For each point in time
the agent identifier X € Ag points to the respective current agent state
of X. An agent state comprises an epistemic state X and a functional
component . The epistemic state of an agent evolves during runtime
of the agent. Its functional component does not change. The epistemic
state is formulated in a language of epistemic states Lgs. This lan-
guage can, for instance, be the power set of an epistemic component
language L, e.g., the set of all extended logic programs for a given
set of atoms, or the set of total preorders or ordinal conditional func-
tions for a given propositional language. An agent’s epistemic state
contains the agent’s know-that, describing the agent’s beliefs about the
world, as well as its know-how, representing information about how
to achieve goals, cf. [215]. Further, it contains representations of the
agent’s goals.

Each agent starts with an initial epistemic state X°. In each agent cy-
cle an agent receives a percept p € Per. Upon reception of the speech

41

42

EPISTEMIC AGENT MODEL

act it changes its epistemic state to incorporate the new information
represented by this percept. As we argued in Section 3.1, a commu-
nicating agent has to be capable of changing its epistemic state upon
the reception of an incoming percept, which changes its view on the
system and leads to the agent’s decision for the next action; and on
the basis of the action it intends to execute, such that its view on
the system reflects the anticipated changes of the action. We model
this by use of two separate change operators. The modifications to
the epistemic state upon reception of a p are realized by the change
operator

O:LES X Per—>LE5

of the agent, i.e., the new state is given by X° o p. This new state
determines the next action of the agent. This action is produced from
the epistemic state by the function

act: Lgs — Act.

The action act(XK° o p) is executed in the environment and used as
input for the change operator for actions

0% : Lgs X Act — Lgs.

This change operator modifies the epistemic state to reflect the antic-
ipated changes of the execution of the action. Hence, an agent with
current epistemic state X has, after a complete agent cycle with percept
p , the new epistemic state

Kopo®act(Kop). (3.3.1)

The action that is executed is act(X o p). Hence, the functional com-
ponent of an agent comprises the operators o, o and act. This agent
cycle is illustrated in Figure 3.3.1.

We assume a discrete representation of time, represented by nat-
ural numbers, as in other formalizations of multiagent system, e. g,
in [89]." The agents are executed one after the other in an arbitrary
but fixed order. With each execution of an agent cycle the time is in-
creased by 1. At each point in time the state of an agent is given by
an agent!state as defined next.

Definition 3.3.1 (Agent State). Let Per be a set of percepts, Act a set of
actions and Ls a language of epistemic states. An agent state is a tu-
ple (X, &) comprising of an epistemic state X € Lgs and a functional
component & = (0,09, act) with:

o:Lgs X Per — LEs,Oa : Lgs X Act — Lgs and act : Lgg — Act.

The functional component is part of the agent state even though it
does not change over time. This way an agent is completely defined
at each point in time by reference to its agent state.

1 For a discussion on the use of a discrete formalization of time see [89].

3.3 EPISTEMIC AGENTS 43

Perception
Agent
Y
o - Epistemic State X
N
i act € === - - -
Environment
v
> Oa ol

Figure 3.3.1: Epistemic Agent Cycle

At each point in time, only one agent state changes and only one
action is performed. A multiagent cycle consist of the execution of all
agents in some order. For example, in a multiagent system with 10
agents the time increases by 10 in each multiagent cycle. The agents
are assumed to have access to a clock that always provides the current
time.

We illustrate the just described concept of a multiagent system by
use of our running example. Agents that interact with a physical envi-
ronment get percepts from the environment, starting with the percept
of the initial state of the world. In the communication setting we con-
sider here the percepts of agents result from the speech acts from
other agents. Since we defined an agent cycle to start with the recep-
tion of a percept also the very first agent to be executed has, for this
technical reason, to receive a percept even though no other agent has
yet performed a speech act. We model this by the empty percept pc, as
introduced in Definition 3.1.2.

Example 3.3.2. We model the strike committee meeting example from
Chapter 1 as a two agent system. The system contains the agent € for
Emma and the agent B for Beatriz such that

Ag ={&, B}

The initial epistemic states are 9(% and X9, the time is 0. The func-
tional components are £¢ and &3 such that the initial agent states are
(K2,%¢) and (X9, &n). Since the functional components are static,
we identify the agent states by the respective epistemic states in the
following. The complete scenario we describe here is illustrated in
Figure 3.3.2.

We assume that the order of the execution of the agents is such that
first € is executed and then B. Hence, in the first multiagent cycle €

44

EPISTEMIC AGENT MODEL

t=0/ K& K
t=1 9(16 (€, B, query, day_off) :K%
t=2 K% (B, &,query, attend_scm) _ K%
t=3 K% - (€, B, answer, —attend_scm) :K%
t=4 :K?j (B, &, answer, day_off) 7:]{%
t=5/K3 X3

Figure 3.3.2: Timeline for the scenario in Example 3.3.2.

is the first agent to be executed. For the technical reason explained
above & receives the empty percept p® such that:

Kg = K2 opg o act(Kg o p?),
Kl =x.

Now agent € asks B for the day of the strike committee meeting off. Let
this action be denoted by

al = act(iK% opg) = (&, B, query, day off).

We assume that this action results in the percept p' for B such that:
X% =K% op! o%act(Kk op),
X2 =X}

The action of agent B is then to ask € if she intends to attend the strike
committee meeting. Let this action be denoted by

a? = act(ﬂ(% op]) = (B, €, query, attend _scm).

We assume that this action results in the percept p? for agent &. The
new epistemic states are given as:

K3 =K% op? o®act(KZ op?),
K3 = K3,

This continues in the same way for the interaction illustrated in Fig-
ure 3.3.2. &

The agent’s behavior is determined by its initial epistemic state in
combination with its functional component. Hereby, the implementa-
tion of the behavior can be realized by the epistemic state and the

3.3 EPISTEMIC AGENTS

reasoning based thereupon, or by the functional component. One ex-
treme is a purely logic-based agent whose behavior is entirely de-
fined by means of logical formulae represented in its epistemic state.
The functional component of such an agent solely implements the
interface to the environment and an inference operator for the logi-
cal formalism. Examples of languages for such agents are concurrent
MetateM [97] and GOLOG [167]. As discussed in [248] such agents
can also be built on the basis of various logical languages. The behav-
ior of these agents entirely depends on the knowledge representation
in the agent’s epistemic state and a belief operator that performs the
agent’s reasoning, deliberation and means-ends reasoning. We do not
consider purely logic-based agents in detail in this work. In the fol-
lowing example we sketch a purely ASP based agent to illustrate the
idea of such an agent.

Example 3.3.3 (ASP Agent). We consider a purely logic based agent X
based on ASP. Its epistemic state consists of a single epistemic com-
ponent given by an extended logic program such that Lgs = P(L5F).
Its percepts and actions are represented as literals such that Per C Lit
and Act C Lit. The change operator is defined as PoL = P U{L.}.
The agent’s ASP belief operator Bely : P(L5F) — P(Lit) is defined as
Belx(P) = NAS(P). The action operator is defined as act(P) = a for
some uniquely determined a € Bely(P) N Act. The change operator

for actions is defined to be the identity function P o“ L = P. &

The behavior of such an ASP agent is completely defined by an
extended logic program and the belief operator. The change operator
only adds percepts to the program, the action operator only trans-
mits the determined action to the environment. The program has to
handle conflicting information induced by the addition of the new
percept. For more details on how this is done we refer to our work on
this in [152] or the approaches of others, e. g., [15, 87, 7]. The act oper-
ator extracts the next action from the belief set of the agent, which is
determined by the program and the application of the belief operator
Belx. The change operator for actions is assumed to not change any-
thing. For details on deliberation and planning with ASP we refer to
our work on this in [157], or the work of others, e.g., [236, 111, 219].

The other extreme is an agent whose behavior is determined en-
tirely by its functional component. In our model such an agent can be
seen to only store the current percept in the epistemic state by means
of the change operator and to map it to an action by the action op-
erator. Hence the behavior of the agent is entirely determined by the
action operator.

The intention of our agent model is to represent and facilitate the
design of all agents in between the just described extremes.

45

46

EPISTEMIC AGENT MODEL

3.4 ABSTRACT COMPOUND AGENT

This far we described an abstract agent model. As motivated in the
introduction of this thesis and of this section we aim at refining this
abstract model to capture agent models that are based on epistemic
states with several components and a functional component with
functions modifying these components, e. g., as in the BDI model.

If an epistemic state consists of a single component we call it mono-
lithic, and compound otherwise. Example 3.3.3 is also an example of
an agent with a monolithic epistemic state. Epistemic states generally
have to represent different types of knowledge. As mentioned above
an agent’s epistemic state typically contains the agent’s know-that, as
well as its know-how and a representation of the agent’s goals. BDI log-
ics [200, 230] for instance use different modalities for beliefs, desires
and intentions.

The most common approach for the design of agent models is to
separate the different aspects to be represented in an epistemic state
into different components. In the following we formalize a general
concept of composed epistemic states and functional components.
It generalizes the BDI model, extensions of it, and other compound
models.

The BDI model, which we described in Section 2.1.2 (Page 19), is the
most widely used agent model. It defines three separate components
for the agent’s beliefs, desires, and intentions.

Example 3.4.1. According to the BDI model epistemic states are of the
form Kgp; = (B,9,J) with the agent’s beliefs B € L, a set of desires
D € Ly, a set of intentions J € L£5. The language of BDI epistemic
states is then Lgp) = Loy X Lp X L7. &

In general a compound epistemic state is a component, which again
can either be atomic or compound. An atomic component € is an
element from the component’s language L¢, e. g., the power set of an
epistemic component language P(Lg). A compound component is a
tuple of components, C = (Cy,...,Cy). The language of a compound
component is a Cartesian product of languages: Le = L, x - - x Le,.
In particular, each component can be represented by use of a different
knowledge representation formalism.

Example 3.4.2. An example of a composed language is the language
Lepl = L3 X Lp x L5 of Example 3.4.1. These might, for example,
be instantiated with the agent’s belief being represented by logic pro-
grams, i.e.,, L3 = ?(Li\sfz), and its desires and intentions by literals,
i.e.,, Lo C P(Lit) and L5 C P(Lit). O

The interaction of the components is realized by the functional com-
ponent of the agent. In particular, for an epistemic state X € Lgs

3.4 ABSTRACT COMPOUND AGENT

Perception
Agent
8 L
° Epistemic State X
brf F=1------1 - Beliefs -5
v 1
-l !
e i
A]
) of i
filter !
""""" -»] . |
) Desires 1
Environment L H
J I !
. i 1
[NN g g g g g g Sy 1
yy options <:
N
Intentions
— act e ="
Action L.
= o¢

Figure 3.4.1: Simple BDI model as compound agent model

and a functional component & = (o,0%,act), the change operators
o:Lgs x Per = Lgs and 0% : Lggs x Act — Lgs are single functions
or compositions of functions. The action function is assumed to be
atomic. That is, we define the change operators to be realized by a
sequence of sub-functions. Each sub-function of a change operator
modifies a single component or a set of components of the epistemic
state, the next function operates on the epistemic state that results
from the modifications of the previous functions. This concept for-
malizes the idea of an agent cycle. The following example illustrates
such a composed agent cycle for the BDI model.

Example 3.4.3. Figure 3.4.1 illustrates how the BDI model can be real-
ized as a compound model. In the BDI model we introduced in Sec-
tion 2.1.2 the functions are of the following type. The current beliefs
of the agent are revised on the basis of the current percept p € Per by
the belief revision function

brf : Loz x Per — Lsg.

Then, on the basis of the revised beliefs and the current set of inten-
tions, the desires of the agent are determined by the function

options: Ly X L5 — L.

The agent’s deliberation process, the process of choosing what to do,
of a BDI agent is realized by the filter function

filter : Loy X Lo XLy — L7.

47

48

EPISTEMIC AGENT MODEL

At last, the action function
act: L5 — Act

determines the agent’s next action on the basis of a set of intentions.
The change operator for actions o is not needed in this model such
that we set to the identity function id, i.e., X o% a = X. &

As indicated in Figure 3.4.1 the functions brf, options and filter to-
gether realize the agent’s change operator o. The change operator
changes the agent’s epistemic state upon the reception of a percept.
The brf operator changes the beliefs of the agent given new informa-
tion as its input. The functions options and filter do not directly use the
incoming percept as input. The options function uses the beliefs that
have already been changed by the percept as input to generate new
desires. The filter function uses the changed beliefs and the changed
desires as input to change the set of intentions accordingly. Hence,
for the change of the epistemic state only the brf function processes
the percept by adapting the beliefs component. The functions options
and filter then realize the changes to the other components of the
epistemic state on the basis of the already changed components.

In the following we formalize our general agent model with com-
pound epistemic state and compound functional component. The gen-
eral setup is illustrated in Figure 3.4.2. Formally, a compound func-
tional component consists of a change operator that is a composition
of operators, and an action function. The change operator is defined
as

O =ef O1 *+ .. " Ok. (3.4.1)

The function composition - is defined as usual but with reversed or-
der, i.e., the functions are applied in the order of the sequence of
concatenation, formally

f-f'(x) = f'(f(x)). (3.4.2)

The composed change operator is of the type o : Lgs x Per — Lgs.
In order for this function composition to be well-defined we require
of the domains and co-domains of the sub-operations o; : D; —
coD;, 1 <1< n' that:

1. D] :LES x Per
2. CODn :LES
3. for1<i<n’—1:coD;_1 =Dj.

For the BDI model, as shown in Example 3.4.3, the domains and co-
domains of the sub-functions of the BDI model only contain those
components that are either needed as the input or that are modified

3.4 ABSTRACT COMPOUND AGENT

Perception
Agent
A
° Epistemic State X
o1 Ci
°11 e q--f------- > Coq
Environment O1n, le {--f------- | Cim,
N
On | 4-====-=-=-= > Cm
. 4
Action
act ol

Ca

Figure 3.4.2: Compound agent model

by the function. This definition of the inputs and outputs of the func-
tions is intuitive and clarifies the role of the functions. To be used
as a sub-function in a composed functional component as described
above, the domain and co-domain of the sub-functions have to be
extended such that also the components of the epistemic state that
are not modified are included in both. We denote the extended ver-
sion of a function f by f'. These extensions are always possible since
they only add components that are not modified to the domains and
co-domains.

Example 3.4.4. The functions from Example 3.4.3 should be extended
to

brfT : Lgpl X Per — Lpp| X Per,
optionsT : Lgpl X Per— Lpgp| X Per,

]c”teI’Jr :Lepr X Per — Lgpy.

With these extensions the functions satisfy the necessary conditions
specified above for the function composition such that the operator
OBDI =def brf' - options' - filter is well-defined. &

49

50

EPISTEMIC AGENT MODEL

3.5 BDIT AGENTS

In this section we define compound agents with a composition in the
style of the BDI model, which we presented in Section 2.1.2 and in
examples in Section 3.3. Here, we extend this BDI model. Basically,
we add two additional components to the epistemic state. One of
these is a set of motives as we defined in [159]. Motives take the role of
describing an agent’s personality by causing the generation of desires.
The other additional component is a know-how base on the basis of
our work in [229, 157]. It realizes a plan library as at least assumed
implicitly in most BDI architectures as in the original proposal [57]
and as made explicit by most instantiations of the BDI model, e. g,
[117, 118, 51]. However, in contrast to other approaches our approach
follows the ideas of Singh in [215] to enable the agent to reason about
its planning capabilities in the same way as it can reason about any
other of its beliefs by extending a BDI-based agent architecture to
allow the representation of procedural beliefs explicitly as part of the
agent’s logical beliefs, as we elaborated in [229, 157].

We call our BDI model with motivation and know-how a BDI*
agent model. After these conceptual extensions we instantiate our
model with basic realizations of all functions, which can easily be
extended by use of more complex operators. The purpose of this
basic instantiation is to have a concrete and versatile instantiation
of the BDI™ agent model that can be used to develop and analyze
specialized agents on this basis, e.g., secrecy preserving agents or
agents that use different forms of knowledge representation. Herein,
the components and their interaction are instantiated such that only
the actual knowledge representation is left to be instantiated.

The remainder of this section is structured as follows. In the next
sections we introduce the concepts of motives (Section 3.5.1) and
know-how (Section 3.5.2) for our BDIT agent model. Following on
this we define the BDI" model in Section 3.5.3 and concretize it
through our basic instantiations in Section 3.5.4.

3.5.1 Motives

Formal BDI models assume the desires of an agent to be given, as
agents are typically situated in some constrained environment with
limited capabilities and tasks. For a cleaner robot the two desires “I
want to clean the room” and “I want to have a high battery level” might be
completely sufficient to represent its setting. Generally, however, as-
suming desires to be given inhibits real autonomous behavior. Bring-
ing agents into more complex environments demands for mecha-
nisms that allow an agent to set its desires by itself. Looking at how
humans handle their desires, motivation theory [179] explains how a
being’s personality leads to the desires it wishes to satisfy. A motive

3.5 BDIT AGENTS

such as “benevolence” or “greed” is a basic characteristic of an agent’s
personality leads to the creation (or abandonment) of some desire.
We illustrate this intuition with a simple example.

Example 3.5.1. Given an agent competes with other agents for food,
the motive “greed” would generate the desire of acquiring as much
food as possible, while the motive “benevolence” would generate the
desire of acquiring just as much food as really needed and to help
that other agents acquire as much food as they need. Both motives
might very well be present in the agent’s personality but with differ-
ing strengths. Moreover, these strength can change over time as the
situation of the agent changes. &

In [159] we developed a formal account for the incorporation of
motivation into the BDI approach. Instead of assuming desires to
be given, we assume that an agent has some set of basic motives
that drives its behavior. Each motive of the agent is equipped with
some weight and each motive is coupled with a set of desires that
can be positively or negatively influenced by the motive. We give a
formal account on the aggregation of the weights of the motives and
these couplings in order to determine the desires the agent is moti-
vated to follow. Furthermore, using the notion of reliability [157] we
investigate how beliefs about actions (know-how) and beliefs about the
world (know-that) might influence the deliberation based on motiva-
tion. More precisely, the motivation to follow some desire is strongly
influenced by the current uncertainty of the situation of the agent.
This uncertainty is reflected by the agent’s confidence in its ability
to achieve its goals, as represented by its know-how and its view on
the world. The more uncertain the situation, the more focused is the
agent on satisfying its basic needs. We developed an approach to re-
alize this shift of focus in [159]. Here, we use belief-desire couplings as
a basic form of a motivational structure that we introduced in [159].
We also call belief-desire couplings motives in the following. By use
of this basic version we define a clear, yet powerful, framework that
can easily be extended to incorporate the full fledged approach.

A set of belief-desire couplings is denoted by My, and used to gener-
ate new desires. Formally, 9y, is a set of belief-desire couplings (d, O, 1)
that comprise a desire D = (¢, u) € Lo and a set of logical formulae
® C Lgs. A desire is a tuple with a logical formula ¢ € Lgs and
a motivation value p € [0,1]. We denote the power set of all possible
belief-desire couplings by Loy . The semantics of a belief-desire cou-
pling is that the desire (¢, 1) is only created if all formulae in ® can
be verified by the beliefs of the agent.

Example 3.5.2. The employee Emma might have the desire to take the
day of a strike committee meeting off when she is informed that there

51

52

EPISTEMIC AGENT MODEL

is a strike committee meeting. This can be formalized by the belief-
desire coupling

(day off,{scm, attend work}, 0.8). &

The other extension of the BDI model we introduce is know-how.
We introduce it in the next section, before we define the complete
BDI agents with motivation and know-how.

3.5.2 Know-How

An agent has to determine how it can satisfy its goals. In the know-
how approach we developed in [229, 157], high-level intentions are
resolved down to atomic intentions by means of structural knowledge
represented as know-how statements. An intention I is atomic if it
can be satisfied by the execution of a single action. In this process of
refinement, the set of options, i.e., the set of possible sub-intentions
for the realization of a given intention, has to be evaluated. On the
basis of this evaluation, one of the best options is to be chosen.

We define a basic version of an intention operator based on a know-
how base. A know-how base R$) consists of a set of know-how statements

(L(s1,...,sn),{c1,...,cm}) (3.5.1)

with a target goal I, a set of subgoals (s1,...,sn) and a set of con-
ditions {c1,...,cm} € Lgs. The intuition of a know-how statement
is that the intention I can be satisfied by achieving the sub-goals
(s1,...,5n) in the given order if the conditions {c1,...,cm} are sat-
isfied in the beginning.

Example 3.5.3. Imagine a cleaner robot that pursuits two goals: clean-
ing all rooms in a certain area, and maintaining a high battery level.
It is crucial for the robot that it knows how to reach the charging sta-
tion before beginning to clean the rooms at any time. Likewise, to
effectively do its task the robot should be able to consider if it can
return to the charging station in time when planning more than one
step ahead.

Suppose the robot has the desire to clean all rooms in its area which
is represented by cleaned _all. Suppose now that there are two rooms
in its area, a hallway and a lounge, and that the robot shall verify that
its battery is sufficiently charged before it starts cleaning these rooms.
This knowledge can be captured by the know-how statement

khy = (cleaned all, (cleaned hallway, cleaned lounge),
{battery high}).

3.5 BDIT AGENTS

The subgoals of this know-how statement can be further resolved by
other know-how statements, until the subgoals are atomic intentions.
Let 89 of the robot be given by &) = {khy, ..., khs}:

kh, = (cleaned hallway,(at_hallway,
vacuumed _hallway),{bag_empty})
khs = (cleaned lounge,
(ordered other robot to clean lounge),
{other robot available})
khy = (cleaned lounge,(at_lounge,
free lounge,vacuumed lounge),{})
khs = (free lounge,
(people _sent away), {at_lounge})

The know-how statement kh, states that in order to clean the hall-
way the robot has first to go to it, and then it has to do the actual
vacuuming. This statement can only be applied by the robot, if its
vacuum cleaner bag is empty. The other statements are interpreted in
the same way. Note that the robot has two alternatives for the inten-
tion clean_lounge: Given that the helper robot other_robot is present,
our robot can order another robot to do the job for it. Also note, that
the fulfillment of the intention at lounge in khys is a prerequisite for
the fulfillment of the intention free lounge in khs. The intentions

at_hallway, at_lounge, vacuumed _hallway,
vacuumed lounge, ordered other robot to clean lounge,
and people sent away

are atomic intentions that can be fulfilled by executing the corre-
sponding atomic action, e. g., a move action or an action to send away
all present persons from the place of work. &

For our basic instance of the agent model we define a basic version
of the full know-how approach in the following. It keeps the presen-
tation of the overall agent model clear and can be easily extended to
the full approach. It still is expressive enough to model and capture
many scenarios of, e. g., communicating agents.

We call a know-how statement direct if it has exactly one sub-target,
and if this is atomic. The power set of the set of all direct know-how
statements is denoted by £z v. A know-how base that consists only
of direct know-how statements is called a basic know-how base and
denoted as £9y.

Example 3.5.4. In the strike committee meeting example Emma knows
how she can respond to the question of Beatriz whether she intends to
participate in the strike committee meeting. Her basic know-how base
might be the following. Note that for simplicity of presentation we
slightly abuse notation by nesting predicates here.

53

54

EPISTEMIC AGENT MODEL

R9y, ={ (answered query(attend scm),
answered(B, attend scm), attend scm),
(answered query(attend scm),
answered(B, —attend scm), —attend scm),
(answered _query(attend scm),
answered (B, refuse), ()}

This know-how base formalizes that satisfying the intention to answer
the query for attend scm can be accomplished by either answering
attend scm, if the agent believes that attend scm holds, or by answer-
ing —attend scm, if the agent believes that —attend scm holds, or by
refusing to answer. &

In the next section we present our agent model of a BDI agent with
motivation and know-how.

3.5.3 The BDIT Agent Model

We refine the epistemic agent model to define a compound epistemic
BDI* agent model. That is, we define an epistemic state that contains
components for the beliefs, desires, intentions, motives and know-
how of the agent, and a functional component for this epistemic state.

A BDI" agent state is a tuple (Xgp+, &gpj+) with an epistemic state
of the formepistemic state! BDI'*

Kgpi+ = (B, D, T, M, RH)

with the agent’s beliefs B € L, a set of desires ® € Lo, a set of
intentions J € L3, a set of motives M € Loy, and the agent’s know-
how base &9 € Lgy. We denote the language of BDI* epistemic
states as

LBDI* :defL‘B X L@ X Lj X Lgm X L_Qf).

Given the Lgp,+ language, the functions of a functional BDIT™ compo-
nent Egpy+ = (ogp+, Ogpy+ actgpy+) have the following types:

ogpI+ - 'CBDH x Per — LBD|+,
ogpr+ - Lepi+ X Act — Lgp+ and

actBD|+ :LBD|+ — Act

Agent components of the type of 9t and £f) are usually assumed
to be static. Here, we restrict our consideration of these components
to the static case as well, our full consideration of these, including the
dynamic treatment of them can be found in [159] and [157].

We structure the change operator into several sub-operations ac-

cording to the components of the epistemic state and a set of percepts
Per:

3.5 BDIT AGENTS 55

oy : Loy X Per — Loy,
OQ:LmXLsB—)LQ and
OjZL%XL@XLjXLﬁﬁ—)Lj.

These operators can be generalized to domains and co-domains that
are supersets of the original ones, as described in Section 3.3, such
that they are defined for

Om o LBDH x Per — LBD|+ X Per,

o :LBD|+ x Per — LBD|+ x Per and

—+ Q=g

O@ . [JBD|+ x Per — LBDPL‘

The change operation can then be represented as

©BDI* =def 0; 'OTg 'Og-
That is, the state Kgp+ = (B,9,7, M, KH) is changed by a percept p
such that KBDW ogpI+ P = O%(OT@ (KBD|+ OTQ; p))

The change operator for actions o can be generalized in the same
way.

of : Ly x Act — L3,
O%:L%XL@ — Lo and
o%:L%xL3—>L3.

These operators can be generalized to domains and co-domains that
are supersets of the original ones, as described in Section 3.3, such
that they are defined for

O%’T : LBDH x Act — LBD|+ X ACt,
ngT : LBD|+ X Act — 'C‘BD|+ x Act and
O%’T . LBD|+ X Act — LBD|+.

The change operation can then be represented as

f oot

.()/)3

a _ Qa, . a,t
OgpI+ ~def O3 °3 -

That is, the state Kgp;+ = (B,9D,73,9, K9) is changed by actions Act
such that Kgp+ o8- @ = 05T (03T (Kgpy+ o a)).

The BDI* agent cycle is illustrated in Figure 3.5.1. Note, that it is a
concrete instance of the general agent cycle depicted in Figure 3.4.2
(Page 49). In the next section we conretise the agent model we just

introduced and instantiate the functional component.

56

EPISTEMIC AGENT MODEL

Perception
Agent
g Y
° Epistemic State
°B F-1------1 - Beliefs ~ [------------~ 3
“ :
H
H
h
H
H
,
. . !
v’ Motivations '
Environment °p i ek R R i
B RER H
1=~ 1
AQITOES 1
1 Desires ;
H
H
e d oo e
oy DI PR I,
Know-how
~al
Action Intentions
act -7
y
O(l

Figure 3.5.1: BDIT agent model and agent cycle - an instance of Figure 3.4.2

3.5.4 Basic BDIt Agent Model

In the following we define basic instantiations of the operators of the
functional component. This way we define fully functional agents and
only leave the knowledge representation formalism and the approach
to evaluate possible actions to be specified. We call the agent model
basic because we use basic versions of the operator specification and
use basic versions of motives and know-how and specific operators
for these. Extended versions of the operators and components can be
found in other works of ourself [159, 157].

A basic BDI' agent state is a tuple (Xgp+ 1,, &gp+ p)- The epistemic
state is of the form

Kepr+p = (B,9,7, My, KHvp)

with the agent’s beliefs B € Lg, a set of desires ® € Lo, a set of
intentions J € £, a set of basic motives My, € Lop b, and the agent’s
basic know-how base 89, € Lg¢ . We denote the language of basic
BDI* epistemic states as

Lepi+p =def L3 X Lo X Ly X Lanp X Lagb-

Given the language Lgp,+ 1, the functions of a functional basic BDI"
component &gpy+ p, = (Ogpi+,bs Ogp+ p- 3CteDI+,b) are of the following
types:

ogpi+b - LBpI+,b X Per = Lppi+ b

3.5 BDIT AGENTS

O§D|+,b : LBD|+,b x Act — LBDW,b and

aCtBD|+,b . LBD|+,b — Act.

The set of all functional components of this type is denoted by Fgp)+ 1,-

Any model of a proactive agent needs some representation of the
agent’s goals, which guide its actions. In the BDI™ model, as in all
BDI models, the goals the agent has committed to are represented as
intentions. Here, we represent these as formulae of the belief set lan-
guage such that L5 C P(Lgs). We denote the set of atomic intentions
by Atint € L5. We assume this action to be uniquely determined by
the function

o : Atint — Act. (3.5.2)

The basic change operator is formed by the following composition:

_ T i T
OBDI*,b =def °3 " °D,b " °7,b-

’ ’

The belief change operator og has to be a change operator for the
knowledge representation formalism for which the model is instan-
tiated. Since we leave the knowledge representation open here we
cannot further define it at this point and come back to these in detail
later.

In the following we instantiate the sub-operations og 1, and o3 p.
The functions o%,b and o;b denote the extended versions of the func-

tions op p, and o5 p, as in Section 3.4.

DESIRE OPERATOR 0, After the belief change operator has chan-
ged the agent’s beliefs according to the input percept the basic desire
operator op p, uses the belief-desire couplings to determine the current
set of desires in the light of the new beliefs. It is a function of the type

°®,b - Lgm,b X L% — L@.

It determines all belief-desire couplings whose condition is satisfied
in the belief set formed from the changed beliefs of the agent. For-
mally it is defined as:

09,b(Mp, B) =4 {(D, 1) | (D, ©, 1) € My, @ C Belyx (B)}
(3.53)
INTENTION OPERATOR o5 p The intention operator uses the know-
how of the agent to determine the options to satisfy the agent’s inten-

tions. We use a basic options function that uses a basic know-how base
to determine the current options. It is of the form

opt, : Ly X Ly X Lggp = L3.

57

58

EPISTEMIC AGENT MODEL

It determines all subgoals that are contained in a know-how state-
ment for the agent’s current intention, if the conditions of the respec-
tive know-how statement are satisfied. Formally it is defined as fol-
lows:

Optb(%/j/ﬁf)b) = {S ‘ (Il (S)I{C]I . 'rcm}) S %b/ (354)
I1e€3J,{cq,...,cm} C Bely(B)}.

We illustrate the basic options function in the following example.

Example 3.5.5. We consider the know-how base £, which we de-
fined in Example 3.5.4. For the set of intentions

J ={answered query(attend scm)}
and the beliefs B = {attend scm} the options given by K6y, are

Optb (%/ jl %b) =
{answered(attend scm), answered(refuse)}. &

For the evaluation of options the most common method is to assign
utilities to the options [98]. A qualitative form of utilities [98, 248] is
given by a preference relation on options =g). Determining the utili-
ty /preference of an action can be complex and dependent on multiple
criteria. Here, we assume that the set of options is finite, and that it is
evaluated with respect to the current epistemic state by the evaluation
operator. It takes the agent’s beliefs, desires and intentions, and a set
of intentions as its input and outputs a partial order on the input set
of intentions, i. e., it satisfies reflexivity, antisymmetry and transitivity.
Formally, let B be a set of beliefs, © a set of desires, J and J ’ sets of
intentions, then

eval : (%8,D,3,7") — P(3' x3").

The result of the eval operator is a preference relation on the set
of current options of the agent with respect to an epistemic state
Kepi+ = (B,9,73,M, 89), such that:

j (KBDI+"EBDI+,b) :def eval (%/ 91 j/ OPtb (%/ j/ %b)) (355)

If the options under consideration are atomic, then they directly cor-
respond to actions. Hence the evaluation of actions represents a spe-
cial case of the evaluation of options. In the case of the evaluation
of atomic intentions we identify the atomic intentions with the corre-
sponding actions. We define the preferences on atomic intentions as
options by defining preferences on the corresponding actions.

One of the maximally preferred options according to

=<
— (KXgpr- £BDI+b)

3.5 BDIT AGENTS

is selected and committed to. We define the max function to deter-
mine the maximal elements of a set X with respect to a preorder, i.e.,
a reflexive and transitive binary relation, <C P(X x X). We define the
strict order < from < as:

x <yifand only if x <y andy £ x.
The max function is defined as:

m<ax(X) =gef {x € X there is no x" € X such that x" > x} (3.5.6)
Note that if X is finite and X # (), then max<(X) # 0.

If there is more than one maximally preferred option, a decision for
one of the maximally preferred options has to be made. To this end
we assume a general selection function o that maps any nonempty set
X to one of its elements such that

o(X) € X if X # 0. (3-5.7)

Since all elements of X are maximally preferred, there is no informa-
tion that could guide this selection. Hence this selection might, e.g.,
be at random. In the following we only consider non-empty sets of
intentions.

The basic intention operator

0% : Loy X Ly X Ly X Ly — L3

determines the maximally motivated desires. To formalize the set of
maximally motivated desires we define the following function, with
< being the order on real numbers:

me(i)) Zaef (§ | (b, 1) € D, € max({p | (d, 1) € DY}

We further assume that there exists at least one belief-desire coupling
that is satisfied, such that it is guaranteed that there is at least one
maximally motivated desire. This assumption can, e.g., be guaran-
teed by defining a belief-desire coupling with an empty condition
and the desire to be idle. The agent selects one of them by the selec-
tion function o and determines the options for it. We also assume that
there exists at least one option for each desire. The agent evaluates the
options by means of the eval function, and determines the maximally
preferred options, and selects one of these. All together this results in
the definition of the intention operator as given in Procedure 3.5.1.
As stated before we assume that an agent only has one intention
at a time. Then, the act function can be defined to return the action
corresponding to this intention, i.e., 3N Atlnt = {I} and

act(Kgpy+) =aer (1) (3-5.8)

59

60

EPISTEMIC AGENT MODEL

Procedure 3.5.1 Basic intention operator og

Input: B,D,7, &9
Output: Set of new intentions J’
1: currentint := {o(max, (D))}
: options := opty, (B, currentint, K9y,)
= eval(B, D, 7, options)

2
3 j(xBDI+'E’BDI+)'
4 7' = {o(max< (options))}

(Xppy+-£gpI+)

Example 3.5.6. We continue the strike committee meeting scenario of
Example 3.5.5 and assume Emma was just asked by Beatriz if she at-
tends the scm. Her current maximally motivated desire is to answer
this question, i.e., answered(attend scm). The evaluation of the two
options from Example 3.5.5 results in a preference relation such that

answered(dont _know) =g, . answered(attend scm).

£BDIT,b

The only maximal element is thus the atomic intention
answered(attend scm)

and the action that directly satisfies this atomic intention is the speech
act

o(answered(attend scm)) = (Emma, Beatriz, answer, attend _scm).{

The belief change operator og has to be a change operator for the
formalism for which the model is instantiated. Since we do not instan-
tiate the knowledge representation here, we cannot further define it at
this point and come back to these in detail later. For our basic instan-
tiation we do not need the of and of operations since we focus on
agents with only one goal at the same time and designed the op and
oy operators such that they determine this goal in each cycle. Hence,
a basic change operator for actions comprises only a belief change
operator for actions of the type o%’T : Lgpitp X Act — Lgpj+ p:

.i.

OBDI+ =def O - (3-5.9)

The functional component £+ , we defined in this section is com-
pletely defined with the exception of the knowledge representation
specific operators og, Bely, and eval. These are dependent on the con-
sidered application domain and have to be instantiated together with
the actual knowledge representation and the domain knowledge of
the agent.

In the following section we extend on our definition of belief oper-
ators for agents and formalize belief operator families, which are sets
of belief operators with an order relation.

36 BELIEF OPERATORS FOR EPISTEMIC AGENTS

36 BELIEF OPERATORS FOR EPISTEMIC AGENTS

In Section 3.2 we introduced belief operators that determine the belief
set of a given epistemic component (Definition 3.2.2, Page 40). In this
section we extend the concept of belief operators and define families
of ordered belief operators. We present an abstract model for belief
operator families and discuss general properties for them. Then, we
concretize it for classes of non-monotonic reasoning formalisms on
the basis of extension families [173]. The belief operator determines
which plausible inferences are drawn from the incomplete informa-
tion given by an epistemic component. There are different ways to
deal with incomplete information and to determine the inferences,
which results in different belief operators. Different belief operators
can for instance be more or less credulous such as the two opera-
tors of skeptical and credulous inference which are used in several for-
malisms [55], or the diverse types of extensions used in argumenta-
tion theory [20]. In general we consider a set of belief operators that
can be ordered, e. g., by their credulity. Different agents might use the
same knowledge representation formalism but different belief opera-
tors, and each agent might use different belief operators in different
situations.

Example 3.6.1. In the strike committee meeting example Emma’s boss
Beatriz might use a very credulous belief operator with respect to
her employees attending strike committee meetings while Emma’s
colleagues use a skeptical one. This means that given the same in-
formation Beatriz might infer that Emma intend to attend the strike
committee meeting while her colleagues do not infer it. &

We formalize different types of belief operators in an ordered family
of belief operators from which an operator can be chosen.

Definition 3.6.2 (Belief Operator Family). A belief operator family is a
pair (Z, =pel) consisting of a set of belief operators = of the form Bel :
P(Le) = P(Lps) and a preorder, i. e., a reflexive and transitive binary
relation, < on =.

The definition of a family of belief operators abstracts from the un-
derlying formalism and inference mechanism. It can be applied to a
wide range of formalisms, from purely qualitative ones to quantita-
tive ones. In the following, we define properties for belief operator
families, i.e., properties on the belief operators of the belief opera-
tor family and properties of the preorder < of the belief operator
family on the belief operators.

A rich landscape of properties of (non-monotonic) inference rela-
tions has been developed in several important works, e. g., [104, 173,
43]. Some of these inference relations and formalisms are semanti-

61

62

EPISTEMIC AGENT MODEL

cally very strong in terms of the satisfaction of desirable properties.
However, these formalisms are often not used in practice and the
formalisms used in practice often do not satisfy the properties or do
meet the assumptions need to apply the properties. Examples of such
practical approaches are answer set programming [112] and struc-
tured argumentation systems [105, 192]. Hence in the following we
require weaker assumptions and generalize basic properties to allow
for a bigger variety of formalisms. A key difference of our setting
from the typically considered setting is that we do not require a be-
lief operator to satisfy categorical matching, i.e., that the domain and
co-domain are equal. That is, we allow the languages of the epistemic
component and the belief set to be different. We also do not demand
that belief sets are deductively closed. We do not intent to cover the
whole landscape of properties, but focus on the definition of a basic
set of properties and consider these with respect to a propositional
instance, and extension based formalisms in general and an ASP in-
stance in particular.

We assume two important notions to be given by the respective for-
malism under consideration. We assume an adequate consequence
operator for strict inferences from a given epistemic component, de-
noted by Cn**“*, For the formalism prop this is the deductive closure
for propositional logic CnP™P as defined in Section 2.2.

ASP Instance 2. For our ASP instance we define a strict consequence
operator for ASP as Cn?P(P) = NAS(Ps'it(P)). The strict program
with respect to a given program is given by PS¢ (P) = {r € P |
B(r)~ = 0}, as defined in Section 2.4 (Page 25). Note that strict pro-
grams have at most one answer set.

Further, we assume that a notion of consistency is defined for epis-
temic components and for belief sets. The following instantiation for
ASP shows an example of a formalism that needs two different no-
tions of consistency.

ASP Instance 3. An ASP epistemic component P C L5, a program,
is consistent if AS(P) # (). An ASP belief set S, a set of literals, is
consistent if it does not contain any complementary literals L and —L,
as defined in Section 2.4.

We define the following basic set of desirable properties of a belief
operator Bel:

CONSISTENCYg, For all consistent epistemic components E C L¢
the resulting belief set Bel(E) C L5 is consistent.

SUPRALITYge Forall E C L it holds that Cn**"*(E) C Bel(E).

RIGHT-WEAKENINGg., For all E C L it holds that if ¢ € Bel(E)
and P € CnPP(¢), then P € Bel(E).

36 BELIEF OPERATORS FOR EPISTEMIC AGENTS

RELATIVE-LEFT-ABSORPTIONR,| For all E C L it holds that
Bel(E) = CnP™P(Bel(E)) N Lgs.

Note that the last two properties are only applicable for formalisms
for which the CnP™P operator can be applied to belief sets.

The Consistencygel property is specific to our approach since it uses
two notions of consistency, one for an epistemic component and one
for a belief set. The property Supralityge is a generalization of the
property Supraclassicality [173] and coincides with the latter for propo-
sitional logic. The property Right-Weakeningg, is the same as the prop-
erty with the same name in, e.g., [173]. We just adapted it to our
notation. The property of Relative-Left-Absorptiong, is a variant of the
Left-Absorption property [173], the intersection with £gs is not present
in the latter. Both properties are equivalent if L¢ = Lgs. If Lps is a
set of literals, as is the case for ASP, then the set of propositional con-
sequences of the belief set is equal to the original belief set. This is
formalized in the following example.

Example 3.6.3. For any BS C Lgg = Lit it holds that:
CnPP(BS)N Lgs = BS. %

After the definition of properties of the belief operators, we intro-
duce a property of the relation <. In particular we formalize a set-
inclusion-based credulity property. The intuition is that a belief op-
erator Bel that is at least as credulous as another belief operator Bel’
infers all beliefs that Bel” infers, and possibly more. This is formalized
as:

CREDULITY<, , If Bel <y Bel’, then for all E € L¢ it holds that
Bel(E) C Bel’(E).

If <y satisfies Credulity<,_, we call <y a credulity order and read
Bel <pe Bel’ as Bel’ is at least as credulous as Bel.

We say that a belief operator family satisfies a property for belief op-
erators, e. g., Consistencygel, if all belief operators of the family satisfy
the respective property. We say that a belief operator family satisfies
a property for an order if its order on the belief operators satisfies it.

In the following we first define an exemplary belief operator family
based on propositional logic. Then we elaborate on belief operator
families based on extension families, and exemplify these by answer
set programming.

Propositional Instance 1. We set Lg = Lps = L5 as the standard
propositional language over a finite alphabet At, as introduced in
Section 2.2 (Page 21). We define a set of belief operators

ZPP — (Bel, | p € (0.5,1]}

63

64

EPISTEMIC AGENT MODEL

indexed by the threshold parameter p. Each operator calculates the
agent’s certainty in the truth of a formula ¢ € £ as the ratio of its
models. The operator can be seen as accepting every formula as true
that holds in at least p - 100 percent of those models (given by the
model operator Mod):

Belp (E) = {¢ € L{3" [(¢, E) > p}
_ IMod(¢) N Mod(E})|

with (¢, E) IMod(E})]

(3.6.1)

The preorder is given as

Bel, <P}° Bel,,/ if and only if p’ < p.

A propositional epistemic component E C L%%® is consistent if it has

at least one model, i.e., Mod(()E) # (). Note that the belief operators
presented here are only defined for consistent epistemic components.
A propositional belief set BS C L% is consistent if there does not
exist ¢ € BS such that ~¢ € BS. The condition for consistency of
a belief sets is weaker than the consistency condition for epistemic
components. They coincide if the belief set is deductively closed. The
propositional belief operator family we consider here produces belief
sets that are not deductively closed, but all operators satisfy Consis-

tency as the following proposition shows.

Proposition 3.6.4. The pair (ZP°P, <P0P) is a belief operator family that
satisfies the properties:

Consistencygel, Supralityge|, Right-Weakeningg., and Credulity, .

Proof. See Appendix A.1.1 on Page 223. O

In the following we consider the construction of belief operator
families on the basis of extension families as introduced in [173]. A
variety of approaches to non-monotonic reasoning are directly based
on a notion of extensions, e. g., Reiter’s default logic [202], Poole’s de-
fault logic [191], Answer Set Programming [114], Truth Maintenance
Systems [80], or argumentation formalisms [83]. Other approaches
without an explicit notion of extensions can be reformulated to fit
into the extension perspective, for details see [173].

Here, we combine the formalization of extension families from
[173] with our concept of epistemic components and belief opera-
tors, and the corresponding languages. The original formulation of
extension families is as follows:

Definition 3.6.5. [173] Suppose a ‘skeptical’ inference operation C :
P(L) — P(L) by setting C(A) = Next(A), where ext(A) is a family of
sets of propositions such that Cn(A) C e for all e € ext(A). We call
the e € ext(A) extensions of A under ext, and ext itself an extension

family function.

36 BELIEF OPERATORS FOR EPISTEMIC AGENTS

In our terminology an inference operation is a belief operator of the
form Bel : P(Lg) — P(Lps) that is applied to an epistemic compo-
nent and produces a belief set. Further, different logical formalisms
might use different epistemic component and belief set languages.
An extension e C Lps resembles one possible set of beliefs given an
E C Lps. Further, we do not demand that an extension is deductively
closed. We exemplify this definition by an instantiation for ASP.

ASP Instance 4. For our ASP instance we represent an epistemic com-
ponent as an extended logic program P C £L5P. The extension family
function is the answer set function AS, which produces the set of
answersets AS(P) C P(Lit).

In the following we define properties of extension families based on
the properties discussed in [173]. To this end, we assume an appropri-
ate union operator U for the union of an epistemic component E C L¢
with an extension e C Lgs such that EUe C Lg. For formalisms for
which Lg = Lps this operator is the standard union operator for
sets. For other formalisms this might be different; for example in the
following instantiation of it for ASP.

ASP Instance 5. For a program P and a set of literals L we define the
union operator such that it converts a set of literals into a program
comprising these literals as facts, i.e., PU*P L =4, PU{L. | 1 € L}.

The properties of extension family functions we consider in this
work are formalized as follows:

SUPRALITYey: Cn**(E) C eforall e € ext(E) and all E C L¢.

RELATIVE-LEFT-ABSORPTIONgy:: € = CnPP(e) N Lgg for all
ecext(E)and all E C L.

CLOSUREex;: € = Cn*"*(EUe) forall e € ext(E) and all E C L.

CONSISTENCYext: Each e € ext(E) is consistent for all
consistent E C L.

SEPARATIONqy: € ¢ e’ forall e, e’ € ext(E)and all E C L.

As stated in Definition 3.6.5, in [173] all extension families are as-
sumed to satisfy Supralitye. with for propositional logic, i.e., Supra-
classicality. As noted before, we do not require this in general since
this would exclude formalisms such as ASP, which do not satisfy
it. Therefore we define a version of the Suprality.. postulate that
makes use of an adequate consequence operator for the considered
formalism. For the same reason we introduce the postulate Relative-
Left-Absorptioney for extension families in the same way we did for
belief operators. We propose the Closuree,: postulate which demands
that any extension is closed under consequences from the epistemic

65

66

EPISTEMIC AGENT MODEL

component augmented by the extension under consideration. This is
a common property for many extension-based formalisms. The prop-
erties Consistenclyexs and Separatione are used in the same form in
[173] and are satisfied by most but not all formalisms. For our ASP
instance we can show the following.

Proposition 3.6.6. The ASP extension family function AS satisfies the
postulates Supralitye.t, Relative-Left-Absorptionext, Closureeyt,
Consistenclext and Separationeyt.

Proof. See Appendix A.1.1 on Page 224. O

As mentioned before, the formalization in [173] is limited to skep-
tical inference operators, i.e., the set of inferences is formed by the
intersection of all extensions. Here, we formalize that extension based
belief operators result from the application of a combination operator,
e.g., the intersection operator, comb : P(Lgs) — Lps to an exten-
sion family function ext. Given a set of combination operators I' and
a set of extension family functions € a set of belief operators can be
constructed as

=(&,T) ={ext-comb | comb € T, ext € E}.

Hereby, the operator - denotes the function composition and is de-
fined as in Equation (3.4.2) (Page 48), i.e.,

ext - comb(E) = comb(ext(E)).

For our ASP instance we use the singleton set of extension family
functions €asp =4 {AS} and the commonly considered combination
operators I' = {N, U}. These choices result in the following belief oper-
ator family.

ASP Instance 6 (ASP Belief Operator Family). The ASP belief operator

o —asp,{AS
fam;iy is given by ;?fp{ - {Belziepp, Bel2P }, BelZ" (P) = UAS(P),
Belskzp(P) = NAS(P) and
asp__ asp asp asp asp asp asp
jbel - {(Belskep’ Belcred)’ (Belskep’ Belskep)’ (Belcred’ BeIcred)}'
For short we also write =3P = E?Sp’{AS})

For the ASP belief operator family we just defined we can show
that the following properties hold.

Proposition 3.6.7. For the ASP belief operator family the following results
hold:

1. Belzlfepp satisfies Supralityge, Consistencyge and

Relative-Left-Absorptionge) .

2. Bel?®, satisfies Supralitygei, Relative-Left-Absorptiong.

3.7 RELATED WORK

3. =pel satisfies Credulity=<, .

Proof. See Appendix A.1.1 on Page 225. O

The set of extension family functions can be extended by other se-
mantics for extended logic programs [99], and extensions of it such
as preferences [59] or sequences of programs [151, 8]. Combination
operators can be build from the intersection or union of a subset of
the set of extensions. The subset of extensions to be considered can be
determined by preference information, for answer set programming
several semantics for determining the preferences on answer sets have
been developed, e.g., [58, 59, 181]. Argumentation theory is another
well developed example of extension based formalisms. It features a
particularly rich landscape of extension types [21].

3.7 RELATED WORK

The vast majority of agent models in the literature are either abstract
and for instance formulated in a modal logic, e.g., interpreted sys-
tems [136] or the theoretical formulation of BDI agents [194]; or they
are practical agent programming languages, see [51] for an overview.
The BDI model is also realized in many practical models. There is,
however, a big gap between the abstract consideration of agent mod-
els and practical systems in general, and the modal logic formulation
of BDI agents and practical BDI systems in particular, as noted for in-
stance in [200]. Several works are dedicated to narrow this gap, e. g,
[182, 164, 195]. They intend to do so by using logic programming
languages for the specification and execution of agents. Our model
can also be instantiated with logic programming languages, and in
fact we define instantiations based on answer set programming. In
contrast to those works, our model of epistemic agents is not fixed
to a BDI agent architecture or particular knowledge representation
formalisms.

The work on agent models that comes closest to our approach is
the KGP (Knowledge, Goals and Plan) model of agency [139, 140].
The internal state of KGP agents comprises a composed knowledge
base, a goals, and a plan component, analogously to the components
of the BDI model. The KGP model was motivated by the gap between
the theory and practice of the BDI model and was designed to use
logical approaches for the design of agents. A KGP knowledge base
consists of different modules to support different reasoning capabili-
ties such as planning or deliberation (called goal-decision in [139]). The
agent cycle is controlled by a context-sensitive cycle theory which de-
termines the execution order of a set of transitions. The transitions on
the KGP model correspond to the sub-functions of the functional com-
ponent in our model, the cycle theory to the composition of these. In
our case, this composition is realized by a function composition that

67

68

EPISTEMIC AGENT MODEL

does not change during runtime of an agent. The KGP model relies
on abductive logic programing, logic programming and an event cal-
culus approach to program an agent. It does not directly allow the
use of other knowledge representation formalisms, other modules of
the knowledge base, other capabilities or transitions. Thus the KGP
model can be seen as a partial instantiation of our epistemic agent
model that constraints the structure of the epistemic state and the
functional component to the KGP model. Solely the context sensitive
agent cycle cannot be modeled directly in our framework, since we
use a fixed composition of the functional component. Indirectly, a
context sensitive cycle could be realized inside the functions of the
functional component.

Another flexible agent model with a focus on the use of (non-
monotonic) knowledge representation has been proposed in [138]. It
is an abstract component based agent model that is based entirely
on argumentation theory. It is called integrated argumentation-based
agent architecture (ABA). Each component is an argumentation sys-
tem and the interaction between these components is organized by
an argumentation system as well. No other knowledge representation
formalisms are considered and also no instantiations of the abstract
framework. In our framework it is possible to instantiate all compo-
nents by argumentation formalisms as well, but the definition of an
agent cycle has to be defined in terms of a composed functional com-
ponent.

The BDI" model we presented is similar to various other BDI archi-
tectures [51]. Unique to our approach is the combination and integra-
tion of motivation and know-how, its flexibility with respect to the
possibility to add further components and that it can be instantiated
for a variety of knowledge representation formalisms.

Different types of belief operators and their properties have been
subject of various works e.g., [104, 173, 43]. The formulation and us-
age of ordered families of such operators in the generality we present
them here has, to our knowledge, not been proposed before. We have
shown that and how we can incorporate the formalization of exten-
sion families [173] in our formalization of belief operators. The propo-
sitional belief operator family we present on Page 63 is based on the
relation of the number of models in which the formula is satisfied,
to the total number of models. The same idea is used in the random
worlds approach [13] to define degrees of belief for formulae given a
knowledge base. These degrees of belief are parametrized with the
size of the world and a tolerance vector. Our definition uses a thresh-
old p for this relation to define belief operators, also we only con-
sider propositional epistemic component in contrast to the statistical
knowledge bases considered in [13].

3.8 CONCLUSION

3.8 CONCLUSION

In this chapter we developed our general model of epistemic agents.
It generalizes diverse agent architectures and combines an abstract
agent model with composed agent architectures for the realization
of agents. It can be used to capture other agent architectures from
purely deductive agents with a monolithic epistemic state to struc-
tured ones such as the beliefs, desires, intentions (BDI) model. We
stressed that a communicating agent has to have the ability to reflect
the anticipated changes of its actions in its epistemic state to perform
well and made this process explicit by the introduction of a change
operator for actions o® a part of the agent cycle. Moreover, we devel-
oped an extended BDI agent model, named BDI™ model, on the basis
of our general epistemic agent model that incorporates motivation
and know-how. We instantiated the BDI™ model with basic operators
and motivation and know-how components. This model can be fully
instantiated by fixing the knowledge representation formalism and
the evaluation function for the action selection.

In our epistemic agent framework we introduced epistemic com-
ponents of an epistemic state. Epistemic components contain the in-
formation that is used by a belief operator to form a belief set. We
elaborated on such belief operators and defined a general notion of
belief operator families whose operators can be ordered based on how
credulous the inference behavior is. The assumptions we make are
general enough to capture a big variety of knowledge representation
formalisms. We defined desirable properties for belief operators and
ordered families of these. Our main focus hereby are non-monotonic
reasoning formalisms that are based on extension families [173]. We
further instantiated the knowledge representation formalisms for our
epistemic agent model for propositional logic and answer set pro-
gramming (ASP) [112] and formally showed which properties these
instances satisfy.

The work presented in this chapter provides a framework for the
development and the analysis of epistemic agents that are based on
non-monotonic reasoning. It is general enough to consider abstract
properties of agent systems and provides instantiations for concrete
agent models. As one of these we presented our BDIT agent model
that extends BDI agent models by a motivation and a know-how com-
ponent. We presented basic versions of the operators of the model.

69

BELIEF CHANGE OPERATIONS

While we defined the composition of change operators for epistemic
states in Chapter 3 we left the details of the operators for epistemic
components unspecified. In this chapter, we develop a general con-
cept of how the percepts of an agent are processed and used to change
a particular epistemic component. We develop a model of compound
belief change operations in the spirit of our general agent model pre-
sented in Section 3. Further, we relate it to existing approaches in
belief change theory and develop new operators to match the require-
ments of our considered scenario. Hereby we extend the state-of-the-
art in belief revision theory by extending existing operations and by
combining them with non-monotonic logics in two ways; by develop-
ing operators by the use of, and for, non-monotonic logics. Moreover
we narrow the gap between operators considered in belief change the-
ory and operators that can be used in practical multiagent systems.
We do so by integrating operators from belief change theory in our
agent framework by our compound change operators, by implement-
ing a selection function that enable the agent to evaluate new infor-
mation, and by applying belief change theory to answer set programs,
which are highly effective and used in practice.

We define a compound change operator that includes in particu-
lar an operator for the evaluation of incoming information. It has to
determine if and to which degree, or in which form, the input shall
be accepted. A general framework for this two step revision process
has been presented in [96] under the name of selective revision. It de-
fines a selective revision operator (called outer revision operation in the
following) to comprise a selection function that determines the part
and form of the input that shall be accepted, and a prioritized be-
lief revision operator (called inner revision operation in the following)
that revises the epistemic component with the output of the selection
function, giving priority to the latter. This framework fits perfectly
into our agent model. However, it has not been instantiated before
we first presented our instantiation of it in [160], which forms the ba-
sis for the approach we present in the following. We generalize the
original framework to inputs consisting not only of one single sen-
tence, but consisting of a set of sentences. Operations that take sets of
sentences as input are called multiple revision operations.

The construction and many of the results we present in this chap-
ter are general for many forms of epistemic components. For more
concrete properties and constructions we have to fix a particular for-
malization of epistemic components. We consider in particular the

71

72

BELIEF CHANGE OPERATIONS

change of non-deductively closed belief bases [142, 183, 122, 127, 128,
119]. We denote an epistemic component that is a belief base by B.
Especially for resource-bounded reasoning a finite belief base repre-
sentation is essential. Moreover, belief base change theory complies
well with the intuitions on how humans represent and change their
beliefs [122, 127]. We instantiate the selective revision framework by
the use of an approach of deductive argumentation for propositional
belief bases, and apply belief base revision theory to answer set pro-
grams.

Also for the definition of change operators for answer set program-
ming a multiple revision operator for answer set programs is needed.
We apply the theory of base revision [127] to non-monotonic answer
set programs, which has not been presented before our first presen-
tation of ours in [154]. We reconsider the postulates from base re-
vision for propositional belief bases with respect to non-monotonic
belief bases in general, and answer set programming in particular.
We modify and extend the set of postulates to capture the character-
istics of non-monotonic formalisms. We compare the resulting postu-
lates with postulates that have been developed specifically for change
operations to answer set programs. Moreover, besides the declara-
tive description, we develop constructions base revision operators by
extending existing constructions for the propositional case, and we
show that our constructions satisfy all of the desirable properties we
consider.

The remainder of this chapter is structured as follows. In Section 4.1
we introduce our general composition of a change operator. In Sec-
tion 4.2 we define properties of the selection function of the change
operator and present our instantiation on the basis of the selective
revision framework and argumentation theory. In Section 4.3 we elab-
orate on the inner revision operation of the change operator for non-
monotonic logics and ASP in particular. In Section 4.4 we discuss
related work and in Section 4.5 we conclude this chapter.

4.1 STRUCTURE OF BELIEF CHANGE OPERATIONS

Classically the problem considered in belief revision is that of adapt-
ing a belief set, or an epistemic state or a belief base, by a proposi-
tional formula. In addition, it is commonly assumed that the infor-
mation represented by the input formula can be given priority over
existing information such that the latter has to be accommodated to
be consistent with the former. Such an operator is called prioritized re-
vision operator. These are a idealized situations in which a simplified
problem is considered. As the sheer amount of articles on this topic
shows, this simplified problem already exposes a variety of technical
problems and variations to explore. We want to make use of the re-
search on this problem and integrate it into change operators that can

4.1 STRUCTURE OF BELIEF CHANGE OPERATIONS

be used in agent systems. For the development of change operators
for our epistemic agents we have to come up with solutions for our
considered setting, that is:

(@) The epistemic state might be compound, not a single epistemic
component

(b) The input of the change operator is a tuple that represents a
speech act, not a propositional formula

(c) Other agents might not be credible, the input should not be
generally accepted

(d) The epistemic components are not propositional and in particu-
lar based on non-monotonic logics

To address these challenges of our considered scenario we define a
general construction of change operators for epistemic states in our
framework. Hereby, we define sub-operations that correspond to op-
erators which have been addressed theoretically in other works. This
way we are able to benefit from existing results and to build on these.

To cover aspect (a) we use compound change operators that break
the task of changing the entire epistemic state down to change oper-
ations on the individual epistemic components. For these we cover
aspect (b) by introducing interpretation functions that interpret per-
cepts and produce a set of logical formulae. Since the result of the
interpretation functions might be a set of sentences the following op-
erators have to be able to operate with these as input, which is called
multiple revision [94, 95, 103] in the literature. To cover aspect (c) we
need to use non-prioritized revision operators [126], i.e., operators
that do not give unconditional priority to the new information. In
particular we adapt the non-prioritized revision approach of selective
revision [96] for our setting. In the selective revision approach a selec-
tion function on the revision input is used to decide in which form
the input is to be accepted. While the theoretic work on this approach
presents rationality postulates it does not give any constructional ap-
proach. We elaborate actual selection functions for belief bases by
use of deductive argumentation in Section 4.2. To address aspect (d)
we consider in particular the rationality postulates for propositional
belief bases [127] and adapt them to the non-monotonic formalims.
We do this in Section 4.3 where we develop general properties for
non-monotonic formalisms based on postulates for propositional be-
lief bases, adapt and develop specific postulates for ASP, and develop
constructive approaches for which we show that they satisfy our pro-
posed properties.

We build on the general concept of compound change operator for
epistemic states as introduced in Section 3.3. There the general change
operator is defined as

© =def O1 "+« Om/.

73

74

BELIEF CHANGE OPERATIONS

The actual composition of the operator has to match the composition
of the epistemic state of the agent.

Example 4.1.1. Our considered composition of the BDI* agents lead
to a change operator as defined in Section 3.5.3 for our BDI™ agent

type:
OBD|+ :def OT% . OT© . Og.

And a change operator that modifies the epistemic state to reflect
the anticipated changes of the execution of the action:

0%: Lgs X Act — Lgs.

That is, a BDI"-epistemic-state Kgpi+ = (B,9,7, MM, &) is changed
by a percept p such that Xgp+ ogp;+ p = og(o%(fKBDH o:;3 p)). &

The further structure and properties of the particular change opera-
tors are left unspecified this far. In the following we consider the con-
struction of a change operator for an epistemic component E C P(Lg)
and a set of speech acts X. A percept might represent an act of commu-
nication between agents, as introduced in Section 3.1, and comprise
information about the sender of the information, the recipients, and
the logical content. The interpretation function has to process this
complex information into some sentence or a set of sentences in the
target language. For the interpretation of the input and interpreta-
tion in the language of the respective belief component we formally
introduce interpretation functions as

t:Z — P(Lg).

The set of sentences resulting from the interpretation of the input
speech act is then evaluated in the light of the respective belief base
and decided if and to which extent it should be accepted. This is
formalized by the explicit introduction of a selection function for an
epistemic component E C Lg that determines, on the basis of the
epistemic component, in which form an input set of sentences shall
be accepted. It is formalized as

fE : T(LE) — ‘P(LE)

The result of the selection function represents the information which
shall be accepted and thus be incorporated into the belief base with
priority over the information in the belief base. This task of incorpo-
rating new information into a belief base with priority given to new
information is exactly the task mainly studied in classic belief revision
theory. Thus, we can make use of results from this field. However, the
result of the selection function is a set of sentences such that we have
to consider multiple revision operations or generalize approaches to

4.2 SELECTIVE REVISION

the multiple revision case. The particular type of operation we are
looking for is called prioritized multiple revision and we denote such
an operator by

* ! fp(ﬁE) X fP(L]:_) — fP(LE)

That is, we slightly abuse notation by using the * symbol for priori-
tized revision operators for single sentences and for sets of sentences
as input. Hence in total, for an epistemic component E C L and a
speech act t € I the change operation is given by

Eogpt=E*fe(t(1))

The actual instantiations of the operators is highly dependent on the
used formalism and the considered set of speech acts. The concrete
set of speech acts is application-specific, such that interpretation func-
tions should be designed with an application domain in mind. Hence,
we postpone the further elaboration of the interpretation functions
and treat the selection and the multiple prioritized base revision op-
erators and their interaction in the following two sections. That is, in
the following we consider epistemic components that are belief bases.
We denote a propositional belief base by B and a belief base for an-
swer set programming by P. As we note also in the following several
formulations, constructions and results can be generalized to other
forms of epistemic components.

4.2 SELECTIVE REVISION

Selection operators have been introduced and studied in [96]. In that
work, a selective revision operator *¢, is defined by the composition

B, & =Bxfg(d) (4.2.1)

with a selection function f and a prioritized base revision operator .
We denote the selective revision operator ¢, as the outer revision op-
erator and the prioritized base revision operator * as the inner revision
operator.

In [96], diverse properties for the selection functions are introduced
and several results are proven that show how specific properties for
the selection function and the inner prioritized revision translate to
specific properties for the outer non-prioritized revision. However, no
concrete implementations of the selection function (which is called a
transformation function in [96]) are given in said work, nor in other
works.

In this section we develop a specific implementation of a selection
function that makes use of deductive argumentation [26], which we de-
scribed in Section 2.3. A deductive argumentation theory is a set of
propositional sentences and an argument for some sentence ¢ is a

75

76

BELIEF CHANGE OPERATIONS

minimal proof for ¢. If the theory is inconsistent there may also
be proofs for the complement of a sentence —¢. In order to decide
whether ¢ or —¢ is to be believed, an argumentative evaluation is
performed that compares arguments with counterarguments. We use
the framework of [26] to implement a selection function for selective
revision that decides for each individual piece of information whether
to accept it as input for the prioritized inner revision or not, based on
its argumentative evaluation. In particular, we consider the case that
revision is to be performed based on a set of pieces of information
instead of just a single piece of information. By doing so, we allow
new information to contain arguments. As a result, an agent decides
whether to accept some new information on the basis of its own eval-
uation of the information and the arguments that may be contained
in this information. Consider the following example.

Example 4.2.1. Imagine the agent Anna wants to spend her holidays
on Hawaii. She is aware of the fact that there has been some volcano
activity on Hawaii recently but is convinced there is no immediate
danger. Anna’s boss Bob doesn’t want Anna to go on vacation at this
time of the year and tells her that she has to do some work here and
should not go to Hawaii. However, Anna wants to go surfing and to
go to Hawaii instead of staying at work. As a consequence she rejects
Bob’s argument to stay and does not revise her beliefs. Consider now
that Carl, a good friend of Anna, is a vulcanologist and tells Anna that
there is actually an immediate danger of an eruption. Anna does not
have sufficient arguments to defeat Carls information, thus accepts
the new information and revises her beliefs accordingly. &

In the previous example the decisions of the agent Anna resulted
in either accepting or rejecting the new information completely. How-
ever, it may also be the case that some of the new information is
accepted and some is rejected. Consider the following example.

Example 4.2.2. Imagine Bob tells Anna that she has to stay for work
because all her colleagues are having a vacation at the same time and
she has to fill in for them. Suppose Anna knows that there is no work
to do during her planned vacation as all clients of her company are
on vacation as well. Then Anna would reject the conclusion of Bob’s
argument that she has to stay, but might very well accept that all her
colleagues will be on vacation as well. &

The approach we develop here is capable of deciding whether to
accept, reject, or partially accept some new information, based on
deductive argumentation. In order to do so we extend the notions of
selective revision to the problem of multiple base revision, i.e., the
problem of revising a belief base (instead of a belief set) by a set of
sentences in the following.

4.2 SELECTIVE REVISION

4.2.1 Selective Multiple Base Revision

We extend the approach of selective revision [96], which is formulated
for belief sets and single formulae as input, to selective multiple (base)
revision. That is, we consider the new information being represented
by sets of formulae ® C L5 instead of a single formula ¢ € L5P.
Even though we target belief base operations our formalization of the
postulates and construction of the operation, as well as the results
are equally applicable for the belief set case, unless stated differently
explicitly. This brings us to the following definition, in accordance
with [96], of a change operator *¢, : P(L55P) x P(LAT) — P(LYP)
that is a selective multiple base revision via

B kg, © =B xfp(0) (4.2.2)

with a selection function fg : P(LY5P) — P(LYP) and some priori-
tized multiple base revision * : P(L5") x P(LASP) — P(LASP). In the
following we define the general notions of a prioritized multiple base
revision (inner revision operator), a non-prioritized multiple base re-
vision (outer revision operator), and a selection function by means of
postulates based on the considerations in [96]. Then we adapt a result
of [96] showing that we obtain an outer revision operator, satisfying
all desired properties by a selective revision construction with the de-
fined inner revision and selection functions, which satisfy certain sets
of properties. For this, we consider postulates from non-prioritized
revision and the selective revision framework for the case of multiple
base revision. At the same time we slightly adapt them to the case of
multiple base revision.

The first property we consider is Extensionality, which we intro-
duced for belief sets as the (K*6) postulate in Section 2.5.1 (Page 28).
It expresses that equal inputs for the same belief base should lead to
equal results, similarly as the Uniformity postulate in belief base revi-
sion theory, as introduced in Section 2.5.3 (Page 30). As discussed in
Section 2.5, Extensionality is usually not considered for the problem
of base revision as base revision is motivated by observing syntax
and not (only) semantic contents. We include the postulate here to
be compatible with the original formulation of selective revision for
belief sets. Further we discuss and modify it to the case of multiple
base revision. We phrase Extensionality for multiple base revision as
follows:

EXTENSIONALITYp If ® =P V¥, then B« ® =P B x VY.

We denote postulates for multiple revision operations by a subscript
®. We defined two notions of equivalence for sets of propositional
formalae, =P and =P, in Section 2.2. It holds that ® =P @', if and
only if it holds that ® + @’ and @' + @. And it holds that ® =P @’
if and only if there is a bijection 0 : ® — @’ such that for every

77

78

BELIEF CHANGE OPERATIONS

¢ € @ it holds that ¢ =P o(d), i.e., if ® and @’ are element-wise
equivalent.

For the case of multiple base revision, the satisfaction of Extension-
ality imposes that B «{a, b} =P B «{a /A b} as {a,b} =P {aAb}. It has
been argued, that even for the belief set case {a, b} expresses that a
and b are two independent pieces of information while {a A b} ex-
presses that they are not. Hence, both inputs might, and should, lead
to different results, see e. g. [69] for a discussion. For our means and
the inner revision operator we define the following weakened form
of Extensionalityq.

WEAK EXTENSIONALITYq If ® =P @' then B+ ® =P B x ®’.

The property Weak extensionalitye only demands that the outcomes
of the revisions B * ® and B x @’ are equivalent if ® and @’ are
element-wise equivalent. This formulation does not have the same
problem since {a, b} £P {a A b}. All other postulates are direct gen-
eralizations of the base revision postulates introduced in Section 2.5.3
(Page 30) for a set of sentences as input:

SUCCESSgp: @ C B+ D

INCLUSIONg: Bx® C BU O

VACUITY@: If B U @ is consistent, then BU ® C B x ®©
CONSISTENCY: If ® is consistent, then B x @ is consistent

RELEVANCEg: If ®' C (BU®) \ (B * @), then there is a set H
such that B+ ® C H C B U @ and H is consistent but H U @’
is inconsistent

Given these postulates we can define the prioritized multiple base
revision operator.

Definition 4.2.3. A revision operator * is called a prioritized multiple
base revision operator if x satisfies Successq, Inclusionq, Vacuity o,
Consistency ¢, Relevanceq, and Weak extensionality g .

Having defined the inner revision operator we turn to the outer
revision operator, the non-prioritized multiple base revision operator.
For non-prioritized multiple base revision the properties Inclusiong,
Consistency ¢, Relevanceq, and Weak extensionality ¢ are desirable [126].
The Vacuity postulate is also not desirable for selective revision since
even if the new information is consistent with the belief base there
might be non-logical reasons to reject parts of it. This is not the case
for the Successq postulate since it demands to give absolute priority
to the new information. Successq and Vacuitye can be replaced by
weaker postulates, cf. [126]. Here, we consider the following two.

WEAK SUCCESSq If BU® /1 then B x¢, ® - ©.

4.2 SELECTIVE REVISION

CONSISTENT EXPANSION@ If B € B¢, @ then BU (B¢, ©) FL.

Note that Weak successq follows from Vacuityq, and that Consistent
expansion g follows from Vacuitye and Successq, as shown in [96].

Definition 4.2.4. A revision operator *¢,, is called non-prioritized multi-
ple base revision operator if ¢, satisfies Inclusiong, Consistencyq, Weak
extensionalityq, Weak successqp, and Consistent expansiong.

The last operator to be defined is the selection function. In [96]
several properties for selection functions in the context of belief set
revision are discussed. We rephrase some of them here slightly to fit
the framework of multiple base revision. Let B C £5” be consistent
and let @, ®’ C LY.

INCLUSIONt T (®) C @
WEAK INCLUSION If B U @ is consistent then fg(®) C @
EXTENSIONALITYf If ® =P @' then fg (D) =P fg (D)

CONSISTENCY PRESERVATION If ® is consistent then f (®) is
consistent

CONSISTENCY¢ fg(®) is consistent
MAXIMALITY¢ fg (D) =0

WEAK MAXIMALITY¢ If B U @ is consistent then f5 (@) = ©

In addition to the adapted postulates from [96] we also consider a
weakened version of Extensionalityy.

WEAK EXTENSIONALITY¢ If ® =P @’ then fg(®) =P fg (D)

The above properties are considered as possible properties for a selec-
tive revision operation and are not assumed to be satisfied by every
such operator. For example, the property maximality+ states that g
should not modify the set ®. Satisfaction of this property leads to
the equivalence of the selective revision operator, as defined in (4.2.2),
and the used prioritized revision operator, such that

Brgy, ©=B*xfp(D)=DBx*.

As * is meant to be a prioritized revision function we lose the possi-
bility for non-prioritized revision.

Here, we consider the postulates Inclusions, Weak extensionalityy,
consistency preservations, and Weak maximalitys as desirable for a se-
lection function. As for the multiple base revision operator, the satis-
faction of Extensionalitys is not desirable for a selection function. The
satisfaction of it would force the results for the inputs ® = {a, b} and
®’ = {a /\ b} always to be equal. This is not generally desirable since

79

8o

BELIEF CHANGE OPERATIONS

{a, b} expresses that a and b are two independent pieces of infor-
mation while {a /A b} expresses that they are not. Moreover, for the
case of selection functions another problem with the satisfaction of
Extensionalitys arises. Consider again ® = {a,b} and ®’ = {a A b}.
It follows that ® =P @' and if f3 satisfies Extensionality; this re-
sults in fg ({a,b}) =P fg({a Ab}). If f5 also satisfies Inclusion; it
follows that fg ({a ADb}) € {0,{a A b}}, i.e., that the entire input
is accepted or none of it. This might be adequate in this case. How-
ever, for {a, b} it follows that fg({a,b}) € {0,{a, b}} and surely
the options to keep at least one of the input elements should be also
considerable here. Hence, for Weak extensionalitys we demand fg (@)
and f5(®’) to be element-wise equivalent (in contrast to the prop-
erty Weak extensionality ¢ for revision).

In general, if f¢ satisfies both Inclusions and Extensionalitys it fol-
lows that either f5(®) = @) or f5(®) = @ for every ® C LN (as
® is equivalent to a @’ that consists of a single formula that is the
conjunction of the formulae in ® such that, by Inclusion¢, only the
options fg(®’) = @ or fg(P’) = @' are possible). As we are inter-
ested in a more graded approach to belief revision we want to be
able to accept or reject specific parts of @ and not just @ completely.
Consequently, we consider Weak extensionalitys as a desirable prop-
erty instead of Extensionalitys. Note that Extensionalitys implies Weak
extensionalitys as ® =P @' implies © =P @’.

In [96] several representation theorems are given that character-
ize non-prioritized belief revision by selective revision via (4.2.2) and
specific properties of * and fg. In particular, it is shown that a rea-
sonable non-prioritized belief revision operator ¢, can be character-
ized by an AGM revision * and a selection function f¢ that satisfies
Extensionality¢, Consistency preservations, and Weak maximality. We can
carry over the results of [96] to the problem of multiple base revision
and obtain the following result.

Proposition 4.2.5. Let * be a prioritized multiple base revision op-
erator and let f¢ satisfy Inclusions, Weak extensionalitys, Consistency
preservations, and Weak maximality¢. Then ¢, defined via (4.2.2) is a
non-prioritized multiple base revision operator.

Proof. See Appendix A.1.2 on Page 226. O

The Relevanceq postulate does not hold for B x¢, @ defined via
(4.2.2) in general. It is arguable if relevance should hold, it would
constrain the selection function by demanding, roughly, that it can
only refuse pieces of information that would lead to inconsistency.
However, for a selection function it makes perfect sense to reject the
entire input if only a part of it is inconsistent with the belief base.
Consider for example a set of convictions Br C B of a belief base and
the selection function f% defined via f% (@) = @ if Bgr U D is consis-

4.2 SELECTIVE REVISION

tent and f% (@) = () otherwise. The selection function f% satisfies all
properties for selection functions except Maximalitys. But it is easy to
see that B x,, @ defined via (4.2.2) using f and a prioritized multi-
ple base revision operator * fails to satisfy Relevanceq . This selection
function might be desirable in settings in which the convictions are
strongly believed and any information source that contradicts these
convictions is regarded as not credible. While such an operation is
arguably desirable in all cases, it is clearly desirable that the selective
revision framework should be able to capture such an operator.

Up to here we extended the selective revision framework and char-
acterized the operators we consider desirable. In the following, we
aim at implementing a selective multiple base revision using deduc-
tive argumentation.

4.2.2 Selective Revision by Deductive Argumentation

The deductive argumentation framework presented in Section 2.3
(Page 22) allows to decide for each sentence & € ® whether « is justifi-
able with respect to ®. Here, we use this to define selection functions.
The framework of deductive argumentation heavily depends on the
actual instances of categorizers and accumulators, which are left unin-
stantiated in Section 2.3. Here, we demand minimal requirements of
both functions to be used in a selection function.

Definition 4.2.6 (Well-behaving categorizer). Let T and T’ be argument
trees. A categorizer vy is called well-behaving if y(t) > y(1’) whenever
T consists only of one single node and T’ consists of at least two
nodes.

In other words, a categorizer vy is well-behaving if the argument tree
that has no undercuts for its root is considered the best justification
for the root.

Definition 4.2.7 (Well-behaving accumulator). Let T and T’ be argu-
ment trees. An accumulator « is called well-behaving if and only if
k((T,T7)) > 0 whenever T+ #) and T~ = ().

This means, that if there are no arguments against a claim o and at
least one argument for « in @ then « should be accepted in ®@. Both,
Yo and ko as defined in Section 2.3 are well-behaving as well as all
categorizers and accumulators considered in [26]. If @ is consistent
then every sentence o« € @ is accepted by @ with respect to every
well-behaving categorizer and well-behaving accumulator.

Let B C L5 be a consistent set of sentences, and let y be some
well-behaving categorizer and let k be some well-behaving accumula-
tor. We consider a selective revision ¢, of the form (4.2.2). In order
to determine the outcome of the non-prioritized revision B x¢,, @ for

81

82

BELIEF CHANGE OPERATIONS

some @ C L5%P we implement a selection function f that checks for
every sentence « € @ it « is accepted in B U ®. Although B is consis-
tent, the union B U @ is not necessarily consistent which gives rise to
an argumentative evaluation. We consider the following two different
selection functions based on deductive argumentation.

Definition 4.2.8 (Skeptical Selection Function). We define the skeptical
selection function S%* via

SYE (D) ={ax e ®|BUDKya}

o
for every @ C L5P.
Definition 4.2.9 (Credulous Selection Function). We define the credu-
lous selection function C%* via

CHo(@)={xe @ |BUDY\y—a}

for every @ C L5P.

In other words, the value of S%’K (@) consists of those sentences of @
that are accepted in B U @ and the value of C}"(®) consists of those
sentences of @ that are not rejected in B U @. There is a subtle, but
important, difference in the behavior of those two selection functions
as the following example shows.

Example 4.2.10. Let By = {a} and @1 = {—a}. There is exactly one
argument tree T7 for —a and one argument tree T, for a in B; U ®.
In 77 the root is the argument A = ({—a}, ~a) which has the single
canonical undercut B = ({a}, a). In T, the situation is reversed and the
root of T, is the argument B which has the single canonical undercut
A. Therefore, the argument structure for —a is given via I's o (—a) =
({t1},{T2}). We use the categorizer yo and accumulator ko we defined
in Example 2.3.11 (Page 2.3.11). It follows that yo(T1) = vo(T2) =0
and

Ko(Yo(Msuaw(a))) = ko((0,0)) = 0.

It follows that B U @ is undecided about both —a and a. Consequently,
it follows that

S (@) = 0 L (@) = (~a}.

That is, if the evaluation of a formula is undecided, the skeptical selec-
tion function rejects the formula and the credulous selection function
accepts it. &

Let * be some (prioritized) multiple base revision operator, y some
categorizer, and k some accumulator. Using the skeptical selection

4.2 SELECTIVE REVISION

function we can define the skeptical argumentative revision o' follow-
ing (4.2.2) via

Bod* @ =B xSy (D) (4.2.3)

for every ® C L5 and using the credulous selection function we

can define the credulous argumentative revision o X" via

Bol*®=BxCL"(D) (4.2.4)

prop
for every @ C L".

We exemplify these two types of argumentative revision operators
by the following simple example.

Example 4.2.11. We continue Example 4.2.10. Let * be some prioritized
multiple base revision operator. Then it follows that By ol @ =
{a} and By o ° @y ={—a}. &

Next we give a more complex example of a selective revision oper-
ation.

Example 4.2.12. We continue and formalize Examples 4.2.1 and 4.2.2.
We consider the atoms At = {s,h,1, m, f, v} with the following infor-
mal interpretations.

Anna is a surf fanatic

Anna travels to Hawaii

Anna has financial problems

Anna takes a loan

Anna has a lot of money

There is volcano activity on Hawaii

<§,—-¢—h;¥‘m

Now consider Anna’s belief base B given via
Bi={s, s=h, |, l=m m=h m=—f}.

Anna is a surf fanatic (s) and believes that a surf fanatic should travel
to Hawaii (s = h). Anna has taken a loan (1), and taking a loan means
having money available (1 = m). Having money implies she should
travel to Hawaii (m = h), and having money also implies she does
not have financial problems (m = —f). Note that By F h, i.e., from
B1 Anna concludes she should go to Hawaii.

Consider the new information ®; ={f, f = —h, v, v = —h}stem-
ming from communication with Anna’s mother. With ®; the mother
of Anna wants to convince Anna not to travel to Hawaii. In particular,
®; states that Anna has financial problems (f), that having financial
problems Anna should not travel to Hawaii (f = —h), that there is
also volcano activity on Hawaii (v), and that given volcano activity
Anna should not travel to Hawaii (v = —h).

As one can see there are several arguments for and against h in
Bi1UDq,e.g., (s,s = hnh), (ff = —h,—h). If follows that B; U D

83

84

BELIEF CHANGE OPERATIONS

accepts f = —h, but rejects f, v, and v = —h with respect to yo and
Ko. Furthermore, By U @7 accepts —f and rejects —v and —(v = —h)
with respect to yo and ko which means that both v and v = —h
are credulously accepted. Consequently, the values of S%OI’KO (@) and
C%"]’Ko(dh) are given via

S%O{KO((IH) =0 \{f,v,v=—h} and Céol"(o(dh) =0\ {f}.

Let * be some prioritized multiple base revision operator and define
02 % and o " via (4.2.3) and (4.2.4), respectively. Then some possi-
ble revisions of B with @ are given via

B O?S/OrKo(D1:{S, s=h |, l=m, m=h m= —f f=—h}
and
B] O"C/OIKO (D] :{S/ l:>m, m:>h, m:>“f, fiﬁh’viﬁh, v}.

Note that it holds that B ol**° @ - h and Bj oL @; - —h. &

For the evaluation of our approach the sophisticated algorithms
presented in [28] can be used. However, the underlying problems of
deciding whether a set of propositional formulae is consistent is NP-
complete and deciding whether it entails a given formula is co-NP-
complete [107] such that no generally effective implementation can
be expected.

For the selection functions S§* and CX%" and the resulting revision
operators o"* and ol* we can show the following results.
Proposition 4.2.13. Let v be a well-behaving categorizer and « be a
well-behaving accumulator. Then the selection functions S and C%*
satisfy Inclusion¢, Weak inclusion¢, Weak extensionalityy,

Consistency preservations and Weak maximalityy.

Proof. See Appendix A.1.2 on Page 227. O

In particular, note that both S* and CX%" do not satisfy either
Consistencys or Maximalitys in general. On the basis of the Proposi-
tions 4.2.5 and 4.2.13 the following corollary can be shown.

Corollary 4.2.14. Lety be a well-behaving categorizer and k be a well-
behaving accumulator. Then both ol and o(** are non-prioritized mul-
tiple base revision operators.

Proof. See Appendix A.1.2 on Page 228. O

Hence, we have shown that our construction of a selection function
on the basis of deductive argumentation leads to non-prioritized mul-
tiple base revision operator. In the next section we consider multiple
base revision operators for answer set programming.

4.3 MULTIPLE BASE REVISION FOR ASP

4.3 MULTIPLE BASE REVISION FOR ASP

We described the state of the art of change operations for ASP in
Section 2.5.4. While several approaches to find change operators that
satisfy the AGM Postulates for belief sets or epistemic states have
been made, there is no work on the consideration of the belief base
approach for ASP apart the first publication our approach, which we
present in the following, in [154].

We focus on the revision operation and base it on a consolidation
operation, which can be used to specify other types of change opera-
tions as well. The well developed classical base revision approach has
not been considered in the light of ASP before. In fact, we argue that
the belief base approach is the intuitive one for ASP. AGM change
operations on belief sets can be seen as operations on the knowledge
level, abstractly describing how an ideal reasoner would change its be-
liefs. This underlies the assumption of a perfect reasoner while ASP’s
main features are effective computation of finite programs with finite
answer sets. The deductive closure, a crucial property of belief sets,
is defined neither for programs nor for answer sets. Belief bases are
also more expressive; since on the knowledge level one cannot distin-
guish between inferred beliefs and fundamental, or self-supporting,
ones. While this abstraction from the fundamental beliefs and their
syntactic representation has advantages for the global picture of be-
lief change we argue that ASP is primarily a syntax based approach.
A key feature of ASP is that beliefs are formulated in form of easily
understandable rules that allow for explicit exceptions and the ex-
planation of inferences. From the base revision perspective the result
of a change operation for ASP should be founded, understandable
and close to the original syntax. As we described in Section 2.5.4 the
SE-model based approach to the revision of answer set programs in-
spired by the AGM belief set approach [72] leads to unintuitive results
from the ASP perspective. The example for this taken from [216] is as
follows. Consider the programs P; = {p., q.} and P, ={p + q., q.},
they have the same SE-models and therefore also the results of the
revision by the program Q = {—q.} are the same. It holds that the
answer sets for AS(P; *°F Q) = AS(P, +5F Q) = {{p}}. While for P;
this is a desired result, for P; it is not since p is not justified if q is not
in the answer set.

Here, we present a general exploration of the application of classic
base revision theory to change operations on ASP. We discuss ASP
specific postulates from the literature in the light of a base revision
approach, proofs of the relationships among both and formulation
of adapted postulates. Finally, we develop a new base revision con-
struction via a screened consolidation operator which is applicable
to ASP. We make use of global selection functions that lead to the

85

86

BELIEF CHANGE OPERATIONS

definition of general operator that can be used iteratively. We prove a
characterization theorem for our construction.

The remainder of this section is structured as follows. In the next
section we develop base revision postulates for ASP, discuss them and
relate them to specific postulates for change operations ASP from the
literature. After that we present our construction of multiple base
revision operators and show its applicability to ASP and the corre-
spondence to the postulates.

4.3.1 Postulates for ASP Base Revision

In contrast to postulates for the revision of belief sets the postulates
for belief base revision are formulated without the assumption of de-
ductively closed sets, or belief operators that result in such as for the
postulates for epistemic states, cf. Section 2.5. Hence they are applica-
ble to other formalisms as propositional logic, in this case, extended
logic programs. However, the crucial notion to be defined for this is
the one of consistency of a set of formulae. Further, the appropriate-
ness of the postulates for the considered formalism has to be evalu-
ated and the postulates have to be adapted and extended accordingly.

Revision aims at solving conflicts between prior beliefs and the in-
put on the basis of inconsistency. In the context of logic programs the
decisive property of inconsistency is that the state of inconsistency of
a program can change non-monotonically. While in the propositional
case any superset of an inconsistent set of formulae is inconsistent,
for an inconsistent logic program P there can be a superset Q, P C Q,
such that Q is consistent. We illustrate this in the following example.

Example 4.3.1. The program P = {a., ~a < not b.} is obviously incon-
sistent. P’ = PU{b < not c.} is consistent with AS(P’) = {{a, b}} while
P"” = P’ U{c.} is inconsistent again. &

We shall see the implications of this in the following.

We define base revision postulates for a multiple base revision oper-
ator x : P(LFT) x P(LEY) — P(LSY) for ASP. The base revision pos-
tulates given in Section 2.5.3 (Page 30) can be directly translated to
the logic programming case with + being the non-closing expansion
P+ Q = PUQ. For * being a multiple base revision operator for logic
programs we define the following postulates:

SUCCESsg: Q CPxQ
INCLUSIONQ: P*Q C P+ Q
VACUITYQ: If P + Q is consistent, then P+ Q C P x Q

CONSISTENCYQ: If Q is consistent, then P * Q is consistent.

4.3 MULTIPLE BASE REVISION FOR ASP

RELEVANCEQ: If r € (PUQ)\ (P * Q), then there is a program H
such that P+« Q € H € PU Q and H is consistent but H U {r}
is inconsistent.

FULLNEssqg: If r € (PUQ)\ (P * Q), then P x Q is consistent and
(P % Q) U{r} is inconsistent.

UNIFORMITYq: If forall P’ C P, P/ U{Q} is inconsistent if and only
if P’ U {R} is inconsistent, then PN (P * Q) = PN (P x R)

The postulate of Fullnessq is a stronger version of Relevanceg and
resembles a stronger requirement to the minimality of change.

Lemma 4.3.2. If satisties Fullnessq, then it satisfies Relevanceq.

Proof. See Appendix A.1.2 on Page 228. O

For the classical case Fullnessg is considered as too strong [127].
However for weaker logics it has also been proven to be useful, for
instance for Horn logic in [73]. For logic programing it also does not
have the same undesirable implications as we shall see later on.

Due to the non-monotonicity of inconsistency we have to adapt the
postulates that base on a notion of consistency such that the adapted
ones capture the same idea for ASP as the original ones have for the
propositional case.

The first postulate based on the notion of consistency is Vacuityq.
The idea it implements, that if the expansion is consistent then no in-
formation shall be discarded, is equally captured for non-monotonic
consistency.

The Consistencyq postulate expresses in the classical case that the
outcome of the revision shall be consistent whenever possible. For
classical propositional logic this is possible if and only if the input is
consistent. Due to the Successg postulate the inconsistent set of for-
mulae has to be part of the revised belief base. For a propositional
belief base it holds that it is inconsistent if there is a subset of it that
is inconsistent. Hence any revision with an inconsistent input is in-
consistent in the case of propositional logic. In logic programming,
however, the input can be inconsistent, the Successq postulate satis-
tied and yet the revision outcome can be consistent. This is shown by
the following example.

Example 4.3.3. Let P = {b., ~a.} and Q = {a., ma < not b.}. The
program Q is inconsistent but the revision P x Q = {b., a., ~a «
not b.} is consistent and satisfies all postulates. &

Hence we strengthen the Consistency g postulate to adequately cap-
ture non-monotonic inconsistency by use of an appropriate premise
for the possibility of consistency.

87

88

BELIEF CHANGE OPERATIONS

NM-CONSISTENCYq: If there exists some consistent X, Q € X C
P U Q, then P x Q is consistent.

The postulate NM-Consistencyq is stronger than the Consistencyg pos-
tulate as we show in the following proposition.

Proposition 4.3.4. If a revision operator * satisties NM-Consistency,
then it satisfies Consistency.

Proof. See Appendix A.1.2 on Page 88. O

The idea behind the postulates of Relevanceq and Fullnessq is to
implement a notion of minimal change to obtain consistency. Due to
the non-monotonicity of consistency, i.e., a superset of an inconsis-
tent program can be consistent, the straightforward adoption from
the classical case is not sufficient. In particular, the notion of consis-
tency we consider here does not satisfy the following property: If P
is consistent and for all r € R it holds that P U{r} is inconsistent, then
P UR is inconsistent. Here is a counterexample:

Example 4.3.5. Let P = {a <~ b,not a., a < ¢,not a., a < b,c.} and
R = {b., c¢.}. Then, PU{b.} is inconsistent and P U{c.} is inconsistent
but P UR is consistent. It follows that in this case, a revision operator
* such that R + P = P satisfies Fullnessq. Obviously, such an operator
does not comply with the intention of the Fullnessg postulate. &

This example shows that for the ASP case the consideration of sin-
gle rules inappropriate. The complete program has to be considered.
The idea of minimal change expressed in the Fullnessq postulate is
that none of the discarded information can be added without loosing
consistency. For non-monotonic notions of consistency we formulate
the following appropriate adaption of Fullnessq.

NM-FULLNESSq: If R = (PUQ)\ P Q # 0, then P x Q is consis-
tent and for all R’ C R it holds that (P * Q) U R’ is inconsistent.

The postulate NM-Fullnessq is stronger than the Fullnessg postulate
as we show in the following proposition.

Proposition 4.3.6. If a revision operator * satisfies NM-Fullnessq, then
it satisties Fullnessq and Vacuityq.

Proof. See Appendix A.1.2 on Page 228.]

The basic set of postulates for belief base revision as we introduced
them in Section 2.5 (Page 27) have been accepted as characterizations
of desirable revision operations for classical belief bases. The postu-
lates can be applied to belief bases represented as logic programs as
just shown. Next we consider further postulates for the connection of
the revision on the program level and the resulting answer sets. Such

4.3 MULTIPLE BASE REVISION FOR ASP

ASP specific postulates for change operators have been proposed in
[87] and adopted by several authors for the evaluation of their ap-
proaches afterwards [75, 68, 74, 188]. For these postulates difference
notions of equivalence of logic programs have been considered, see
Section 2.4 (Page 25) for the definition of the different notions of
equivalence. Those postulates base on the notion of ordinary equiva-
lence based on the identity of the sets of answer sets (AS) in [87]", on
strong equivalence (SE) in [68] and partially on uniform equivalence
(UE) [189] in [74]. Here, we generalize the postulates by formulating
them with the notion of equivalence as a parameter, denoted by e.
We obtain the original postulates with ¢ = AS but consider a fam-
ily of equivalences € {AS, UE, SE, P}; with =p being the syntactic
equivalence of programs, i.e., P =s¢ P’ if and only if P = P’. The
equivalences are increasingly stronger with the order given above.
More precisely, it holds that for any two programs P and P’ that:

— if P=p P’ then P =g P/,
— if P =SE P’ then P =UE P’ and
— if P=yg P/ then P =55 P’.

Thus apart from the original postulates we also consider stronger
versions of these. This family of notions of equivalence can be ex-
tended by all intermediate notions as formalized in [246].

For one of the postulates, namely the Tautology postulate, we need
to define the notion of tautological programs. For propositional logic
tautologies are defined as being true in all interpretations. Formally
a sentence ¢ is a tautology if and only if ¢+ € CnPP(()), due to
Mod(0) € Mod(¢$T). We define a tautological program as follows.

Definition 4.3.7. Let P be a program over the set of literals Lit. The
program P is tautological, denoted by P, if and only if for each state
I C Lit, for all rules r € P it holds that if body™ (r) C I and body ™ (1) N
I = () then head(r) € L

Example 4.3.8. The program P+ ={a ¢ a.} is tautological. &

Given this definition of we can formulate the generalized postulates
for ASP revision from [87]:

INITIALISATION,: 0 * P =, P
IDEMPOTENCE,: P*xP =, P
ABSORPTION,: (P*xQ)*xQ =4 PxQ

TAUTOLOGY,e: P*xPT =4 P

1 For finite alphabets.

89

90

BELIEF CHANGE OPERATIONS

DISJOINTNESS,: If P = P; UP, and P; and P, have disjoint sets of
literals, then P« Q =4 (P71 * Q) U (P2 % Q).

PARALLELISM,: If Q1 and Q; have disjoint sets of literals, then P x

(Q1UQ2) =e (PxQ1)U(PxQ2).

The implications on the equivalences given above lead to implica-
tions of the resulting postulates. Most importantly we get that if an
operator * satisfies a postulate for some notion of equivalence, then
it also satisfies the variants of the postulates for all weaker notions of
equivalence, e. g., Initialisationp implies Initialisationse , Initialisationy g
and Initialisation o 5. On the other hand, if * is shown to violate Initiali-
sationas, then it also violates Initialisationyg, Initialisationsg and Ini-
tialisationp. The same holds for all other postulates. In the following
we only show results for the strongest version of a postulate and omit
the implications of them. We obtain the following results for the con-
nection of base revision postulates and ASP change postulates:

Proposition 4.3.9. Let * be a revision operator on logic programs.

1. If * satisfies Successq and Inclusiong,
then it satisfies Initialisationp.

2. If * satisfies Successq and Inclusiong,
then it satisfies Idempotencep.

3. If * satisfies Successg, NM-Consistency g, Inclusiong and NM-
Fullnessq, then it satisfies Absorptionp.

Proof. See Appendix A.1.2 on Page 229. O

Hence, we have just shown that the first three ASP postulates fol-
low for all considered notions of equivalence from very basic base
revision postulates. This supports the adequateness of the base re-
vision approach for ASP. The remaining three ASP postulates do not
follow from the base revision postulates and are in conflict with some
of them. This might be due to the fact that they were formulated for
approaches for handling update sequences of logic programs which
were shown to “neither have update nor revision flavor” in the classi-
cal sense [87]. However, the underlying ideas of these postulates are
useful and can be adapted to the base revision setting, as we show in
the following.

The Tautologyas postulate is violated if the belief base is inconsis-
tent before and consistent after revising by a tautology, as we illus-
trate in the following example.

Example 4.3.10. Let P = {a.,—a.} and Q = {b + b.} with AS(P) =0
and AS(Q) = {0}. For any revision operator * satisfying Tautologyas
we get AS(P*Q) =0,e.g, PxQ ={a,—a.,b «+ b.}. Consistencyg on
the other hand demands changes to make the belief base consistent.

4.3 MULTIPLE BASE REVISION FOR ASP

For any revision operator *’ satisfying Consistencyqg we get AS(P «’
Q) # 0. In thiscase P+’ Q ={a.,b<+ b}orP*x'Q ={—a,b<+ b} <

Thus Tautologyas cannot be satisfied by any operator satisfying
Consistencyq because of the case in which an inconsistent belief base
is made consistent by the revision by a tautology. On the program
level, i. e., with respect to =p, the Tautologyp postulate is not compat-
ible with the Successq or the Vacuityg postulate.

Proposition 4.3.11. Let x be a revision operator on logic programs.
1. If satisfies Consistencyq, then it violates Tautologyas.
2. If * satisfies Successq, then it violates Tautologyp.

3. If * satisfies Vacuityq, then it violates Tautologyp.

Proof. See Appendix A.1.2 on Page 229.]

The Tautologyas in general addresses an important issue in ASP
revision, namely that if the belief base is consistent, the revision by
a tautology should not lead to any changes of the semantics. This is
not satisfied by many approaches to dynamics in ASP. We adapt the
Tautology A s postulate to be compatible with the Consistencyg postu-
late. It is desirable that Tautologyas is satisfied, except for the case
in which the belief base is inconsistent. To this end we introduce the
following weakening of Tautology.

CONSISTENT TAUTOLOGY,: If P is consistent, then P x P+ =, P.

The problem of the approaches not satisfying the Tautology postulate
is that they make unnecessary changes not only for tautological re-
visions. Any revision by a program that has no semantic influence
should not add any answer sets. This idea has been discussed in [9]
and [237] and formalized for dynamic logic programming as the re-
fined extension principle [9]. Here we formalize this idea in the follow-
ing postulate for all e equivalences:

CONSISTENT IRRELEVANCE,: If P is consistent and P =, P U Q,
then P x Q =, P.

Clearly Consistent Tautologye follows from Consistent Irrelevance, if
and only if for all P € P(L5"), PU Pt =, P. This holds for =as
, =UE, =sE but not for =p.

Proposition 4.3.12. If * satisfies Consistent Irrelevance, and
e € {AS, UE, SE}, then * satisfies Consistent Tautology,.

Proof. See Appendix A.1.2 on Page 230.]

91

92

BELIEF CHANGE OPERATIONS

Consistent Irrelevance, is a postulate formulating some form of min-
imal change on the semantical level. Two basic postulates for minimal
change of the base revision postulates, Inclusiong and Vacuityq, are
sufficient to guarantee Consistent Irrelevance,.

Proposition 4.3.13. If x satisfies Inclusiong and Vacuityq, then it satis-
fies Consistent Irrelevance, for e € {AS, UE, SE, P}.

Proof. See Appendix A.1.2 on Page 230. O

From the previous two proposition follows directly that Inclusiong
and Vacuityq, are sufficient to guarantee Consistent Tautology..

Corollary 4.3.14. If * satisfies Inclusiong and Vacuityg, then it satisfies
Consistent Tautology, for e € {AS, UE, SE}.

Proof. See Appendix A.1.2 on Page 230. O

These results are consistent with Proposition 4.3.11 which includes
a negative result for the e = P case of Corollary 4.3.14.

We consider Parallelismo and Disjointnesse together since the un-
derlying idea is similar. The idea of these postulates, that parts of
programs with disjoint alphabets should be independent in the re-
vision process, is generally desirable. The problem with Parallelism,
and Disjointness, is that the respective third program Q (P respec-
tively) can contain rules connecting the disjoint sets of literals such
that inconsistencies arise in combination of both sets of literals but
not based on a single one. Consider the following example which
demonstrates that Disjointnessas is in conflict with the principle of
minimal change in base revision.

Example 4.3.15. Let P = {a.,b.} such that P = P; UP, with Py = {a.}
and P, = {b.}, and Q = {—a «+ b.}. For the revision of P; x Q we
can note that there is no conflict and AS(P; U Q) = {{a.}} such that
there is no need to change anything, such that P; * Q = P; U Q seems
to be a reasonable revision. The same holds for P, x« Q with AS(P, U
Q) = {{b.}}. The Disjointnessas postulate demands that AS(P x Q) =
AS((P1*Q)U (P2 %Q)). In this case AS((P7 * Q) U (P2 % Q)) =) which
is clearly not a desirable outcome for AS(P x Q). &

We can show the following conflicts of Parallelismo and Disjointness,
with the base revision postulates.

Proposition 4.3.16. Let * be a revision operator on logic programs.

1. If x satisfies Successq, Consistencyg and Vacuityq,
then it violates Parallelismas.

2. If * satisfies Vacuityq and Consistencyq,
then it violates Disjointnessas.

4.3 MULTIPLE BASE REVISION FOR ASP

Proof. See Appendix A.1.2 on Page 230. O

Disjointnessas is in conflict with the minimal change of the revi-
sions of Py x Q and P, * Q. In order to satisfy Disjointnessas the revi-
sions of Py x Q and P; x Q have to be cautious enough to anticipate
possible inconsistencies with additional input. Here we consider that
inconsistencies with some input should be handled by a revision op-
erator applied to this input and not by a previous revision.

We weaken the postulates as follows:

WEAK DISJOINTNESS,: If P = P; UP; and P; and P, have disjoint
sets of literals A7 and A, and for each set of literals A, of
aruler € Q it holds A, NA; = 0 or A, N Ay = 0, then
PxQ =4 (P1xQ)U(P2xQ).

WEAK PARALLELISM,: If Q7 and Q; have disjoint sets of literals
A7 and Aj, and for each set of literals A, of a rule r € P it
holds A, NA; =0 or A, NAy = 0, then Px (QUQ2) =,
(P+xQq1)U(PxQ2).

These weakened versions of Disjointness, and Parallelism, still express
the idea of independence as formulated in the original postulates but
are not in conflict with the proposed set of base revision postulates.
They are also still strong enough such that they do not follow from
the base revision postulate set. Therefore we add them to our set of
desirable postulates. We show later that they are implied by a postu-
late for belief base consolidation operators.

To sum up, we have shown that all postulates for ASP revision
that are not in conflict with the base revision setting follow from the
base revision postulates. For those ASP revision postulates that are in
conflict with the base revision postulates we gave adequately weak-
ened versions. Therefore, in the next section we are looking for a con-
structive approach for an ASP multiple base revision operator defined as
follows.

Definition 4.3.17. An ASP multiple base revision operator is a multiple
base revision operator * that satisfies

Successq, Inclusiong, NM-Consistency g, Fullnessg, Uniformity g,
Weak Disjointnessp and Weak Parallelismp.

As shown above, such an operator also satisfies

Vacuity g, Consistency g, Relevanceq, Initialisation,,
Idempotence,, Absorption,, Consistent Irrelevance,

for e € {AS, UE, SE, P}, and
Consistent Tautology e

for e € {AS, UE,SE}.

93

94

BELIEF CHANGE OPERATIONS

4.3.2 Construction of ASP Base Revision

In Section 2.5.3 (Page 30) we described the well known construction
of a revision operator * by means of a contraction operator — and
an expansion operator +. It is called the Levi-Identity and formally
defined as:

Bxdp=(B——d)+o.

The direct application of this construction for answer set program-
ming does not work, because neither the negation nor the inference
of a rule is defined and inconsistency cannot be reduced to comple-
mentary literals. Even in the very restricted case of a revision of some
program P by new information Q = {L.} consisting of a single fact, it
would not be sufficient to contract such that =L ¢ NAS(P).

So we have to look for different constructions which implement the
idea of the Levi-Identity while being adequate for the ASP case. The
idea of the Levi-Identity is, that after contracting by —« the belief base
is consistent with «. That is, the belief base is made consistent with
the information to be added before adding it. This does not work
in general for the logic programming case because the dependencies
within a program are complex and cannot be anticipated without in-
cluding the input program. The inconsistency of a program P with
a new program Q can only be determined by considering P U Q, as
the interaction of rules of both programs generates the inconsistency.
Base revision constructions of this type are called external revision
since a sub-operation takes place outside of the original set. Hence the
base revision construction for logic programs has to consider P U Q
to determine inconsistency. From P U Q rules are removed such that
the resulting program is consistent with Q. This idea amounts to the
consolidation of P U Q under certain constraints. In the base revision
literature the unary operator ! is called a consolidation operator and
results in a consistent subset of the input. A consolidation operator
has been used in [125] to define semi-revision, which is defined as
B %7 0 = (BU«)!. The problem with semi-revision for our means is
that it is non-prioritized, i. e., the Successg postulate is not satisfied in
general.

We extend the idea of the semi-revision construction to be able to
define a prioritized revision operator for logic programs. To this end
we define a screened consolidation operator 'g with R being a set of core
sentences that are immune to change like in screened revision [172].
We propose the following set of postulates for a screened consolida-
tion operator:

SCREEN;: R C Plg.

SCREEN-CONSISTENCY;: If there exists some consistent X, R C X C
P then P !y is consistent.

4.3 MULTIPLE BASE REVISION FOR ASP

INCLUSION;: PIx C P

RELEVANCE;: If r € P and r ¢ P!y, then there is a set P’ such
that P!gx € P’ C P and that P’ is consistent but P’ U {r} is
inconsistent.

FULLNESS;: If r € Pand r ¢ P!y, then P!y is consistent and P!g U
{r} is inconsistent.

NM-FULLNESS: If R” = P\ P!g #), then P!y is consistent and for
all R’ C R’ it holds that P! U R’/ is inconsistent.

SCREEN-UNIFORMITY;: Let R, R’ and P be sets of rules and R and
R’ be consistent. If for all X C P, R U X is consistent iff R’ U X
is consistent, then PN (PUR)!g = PN (PUR’)!".

Note that as in the classic case satisfaction of Fullness; implies satis-
faction of Relevance.

Proposition 4.3.18. Let !r be a screened consolidation operator. If !g
satisfies Fullness, then it satisfies Relevance;.

Proof. See Appendix A.1.2 on Page 231. O

Further, as we already showed for the corresponding revision pos-
tulates, the satisfaction of NM-Fullness, implies the satisfaction of
Fullness;.

Proposition 4.3.19. Let !r be a screened consolidation operator. If !g
satisfies NM-Fullness,, then it satisfies Fullness;.

Proof. See Appendix A.1.2 on Page 231.]

We consider this as a basic set of postulates for a screened consoli-
dation operation.

Definition 4.3.20 (Screened Consolidation). An operator ! is an oper-
ator of screened consolidation if and only if it satisfies Screen, Screen-
Consistency:, Inclusion;, NM-Fullness, and Screen-Uniformity;.

As stated before, the new postulates Weak-Disjointness, and Weak-
Parallelismo do not follow from the basic set of belief base postulates.
This is also true for the postulate set for screened consolidation pre-
sented here. In the following we show that the property of fopic inde-
pendence as defined in [125] implies both postulates. The formulation
of topic independence bases on the notion of topicalizations, which we
define in the next definition.

Definition 4.3.21. [125] Let P be a set and (P) the powerset of P. A
set B C P(P) is a topicalization of P if and only if:

1. P=UB

95

96

BELIEF CHANGE OPERATIONS

2. If R C P, then R is consistent if R N B is consistent for all B € B

A topicalization B of P is hence a cover of P for which it holds
that the consistency of each subset of P is only dependent on the
consistency of its projection for each topic B € B.

TOPIC-INDEPENDENCE: [125] If 9B is a topicalization of P, then
P \ Plr = UBeg(B \ B!R)

The postulate of Topic-Independence; demands that given a topicaliza-
tion of P each rule that has been removed from P by the consolidation
operation !y is also removed from each topic B € B with r € B by
the respective consolidation of the topic and each rule removed by all
consolidations of topics of P containing it is removed from P.

Definition 4.3.22. Given a screened consolidation operator 'z we de-
fine a multiple ASP base revision operator as:

P+xQ = (PUQ)!q

We can show that this construction leads to a multiple ASP base
revision operator that satisfies all desirable properties, if !r satisfies all
desirable properties.

Proposition 4.3.23. Let * be a multiple base revision operator defined
as P+ Q = (PUQ)!q.If !g is a screened consolidation operator that
satisfies Topic-Independence;, then * satisfies

Successq, InclusionQ, Vacuity g, Consistency g, NM-Consistency g,
Relevanceq, Fullness g, NM-Fullness g, Uniformityq,
Weak-Disjointnessp and Weak-Parallelismp.

Proof. See Appendix A.1.2 on Page 231. O

We based the revision operation on a consolidation operation and
characterized the latter by a set of postulates. We need a construction
of a screened consolidation operator that is suitable for the applica-
tion to logic programs. Two constructions of consolidation operations
are available from belief base theory: partial meet and kernel consol-
idation [125]. We use a partial meet construction here. We start by
defining a screened version of remainder sets for logic programs in
which all remainder sets contain the screened set of rules.

Definition 4.3.24 (Screened Remainder Sets). For sets of sentences P
and R with R C P the set of screened consistent remainder sets of P,
denoted by P L, R is such that for each X € P L R:

1. RCXCP
2. X is consistent

3. There is no X’ such that X € X’ C P and X’ is consistent

4.3 MULTIPLE BASE REVISION FOR ASP

The definition of screened remainder sets differs from the original
formulation only in the first condition, which is X C P originally. In
contrast to the classical case, the intersection of remainder sets of logic
programs is not necessarily consistent due to the non-monotonicity of
logic programs.

Example 4.3.25. Let P = {a < b.,—a.,b., < not —a, not b.}. The set of
remainder sets with the empty screen are

PLi®d= { {a+Db., b, < not —anotb.),
{—a., b., + not —a,not b.},

{a + b., —a., < not —a, not b.}}

The intersection of the first two remainders, {b., < not —a,not b.}, is
consistent. The intersection of the first and the last remainder, {a «
b., + not —a, not b.}, is inconsistent. &

This leaves us with the option of selecting exactly one of the remain-
ders, which also has the advantage of leading implying less change.
A selection function is specific to a certain belief base. To be able to
iterate the change process we define a global selection function by
making use of a two place selection function [106] with the belief base
as a parameter.

Definition 4.3.26 (Global maxichoice selection function). Let P be a set
of sentences. The function yp is a selection function for P if and only if
for all sets of sentences R

1. If P 1y R # (), then yp(P L, R) = X for some X € P 1 R.
2. If P L, R=0, then yp(P L R) =P.

A global maxichoice selection function is a function vy such that for each
P C L, y(P,:) =vp(-) is a selection function for P. We drop the index
P if it is obvious.

A global maxichoice selection function is globally defined for all be-
lief bases. Hence, in contrast to one place selection functions, global
maxichoice selection functions are not specific to one particular be-
lief base. This makes it possible to apply the resulting consolidation
operator, and the resulting revision operator, iteratively. Moreover,
properties of consolidation operators which connect the consolida-
tion results of several dependent belief bases can only be expressed
for global maxichoice selection functions. We define a screened maxi-
choice consolidation operation based on a global maxichoice selection
function.

Definition 4.3.27. Let P and R be sets of sentences and 'y a maxichoice
selection function for P. The operation P !z such that

P!R :’Y(P J_[R)

97

98

BELIEF CHANGE OPERATIONS

is a screened maxichoice consolidation based on 7.

In the following representation theorem we show that any screened
maxichoice consolidation satisfies the set of postulates for screened
consolidation and, moreover, that any operation satisfying these pos-
tulates can be constructed as a screened maxichoice consolidation.

Proposition 4.3.28. An operation !g is an operation of screened maxi-
choice consolidation if and only if it satisfies Inclusion;,
Screen-Consistencyy, Screen;, NM-Fullness, and C-Uniformityq.

Proof. See Appendix A.1.2 on Page 234. O

Finally, we link maxichoice consolidation operation to the postulate
Topic-Independence; by a notion of monotony for selection functions.
First we define what it means for a global selection function to be mono-
tone.

Definition 4.3.29. A global selection function vy is monotone if and only if
for all P,P’ C L, if for each X € P L, 0 there exists some X' € P/ L, 0
such that P\ X =P\ X/, then P\ y(P L, ®) = P\ y(P’ L, 0).

An operator of screened consolidation is monotone if and only if it
is based on a monotone selection function.

Now we can show that monotone selection functions lead to consol-
idation operators that satisfy topic-indepence.

Proposition 4.3.30. If a screened maxichoice consolidation operator is based
on a monotone maxichoice selection function,
then it satisfies Topic-Independence,.

Proof. See Appendix A.1.2 on Page 235. O

Hence, we just completed to show that our construction of a mul-
tiple ASP base revision operator on the basis of a screened maxichoice
consolidation operator based on a monotone maxichoice selection function
satisfy all of the desired properties.

4.4 RELATED WORK

In this chapter we elaborated a general conceptualization of the struc-
ture of change operations for epistemic agents. Such a general con-
cept with a strong connection to belief change theory has, to the best
of our knowledge, not been presented previously. In any multiagent
programming framework percepts have to be interpreted and used to
change the internal state of an agent. This is usually done specifically
for the target system in each framework without following a general
concept [51]. Closest to a general formulation of an interpretation

4.4 RELATED WORK

function comes the specification of semantics of agent communica-
tion languages. Diverse languages and semantics thereof have been
developed, see [248] for an overview. For instance for the widespread
Fipa ACL communication language the rational effect of each speech
act is expressed by a logical formula of the SL language [101]. Hereby
the intended effect of a speech act is specified, but autonomous agents
cannot be guaranteed to adhere to this intended effect. That is, what
the receiving agent makes out of a received speech act is dependent of
that specific agent. This is exactly what we formalize here by means
of the structure of the change operator, the effect of the interpretation
function in combination with the selection and revision operator and
the knowledge representation and reasoning of the agent.

In terms of related work for our work on the selective revision op-
eration there are mainly two areas that are related. On the one hand,
non-prioritized belief revision and on the other hand belief revision
by argumentation. In relation to the former area we instantiated and
extended the non-prioritized revision operator of selective revision
presented in [96] towards multiple revision and to revision of belief
bases.

In [126] an overview and classification of non-prioritized revision oper-
ators is given. By this classification selective revision is one of the most
general non-prioritized revision operator of the type decision+revision .
Moreover it allows for partial acceptance of the input, in contrast to
most other approaches. Apart from decision+revision approaches there
are expansion-+consolidation approaches to non-prioritized belief revi-
sion. These perform a simple expansion by the new information, i.e.
B U@, and then apply a consolidation operator ! that restores consis-
tency, i.e. B* ® = (B U ®)!. This approach is limited to belief bases
and cannot be used for belief sets. This is the case since inconsistent
belief sets cannot be distinguished, they have to be deductively closed
and they are inconsistent, hence (ex falso quodlibet) if follows that they
consist of the entire propositional language £57° ,i.e., Cn(L) = LY.
An instantiation of such an operator that is similar to the setup used
in this section has been presented in [9o]. The considered input to
the revision consists of a set of sentences that form an explanation of
some claim in the same form as the argument definition used here.
However, as with all approaches of the type expansion+consolidation,
new and old information are completely equal to the consolidation
operator. In contrast, the approach presented here makes use of two
different mechanisms to first decide about if, and which part, of the
input shall be accepted just considering the new information, and
then performing prioritized belief revision of the old information.
Also, there are integrated choice approaches that do not feature a two
step process but a single step process applying the same technique
for the selection and revision process. Mostly these approaches need

99

100

BELIEF CHANGE OPERATIONS

some meta-information, e. g., an epistemic entrenchment relation, and
thus differ on the basic process as well as on the information needed.

While there has been some work on the revision of argumentation
systems, very little work on the application of argumentation tech-
niques for the revision process has been done so far, cf. [91]. In fact,
the work most related to the work presented here makes use of ne-
gotiation techniques for belief revision [48, 251], without argumenta-
tion. In the general setup of [48] a symmetric merging of information
from two sources is performed by means of a negotiation procedure
that determines which source has to reduce its information in each
round. The information to be given up is determined by another func-
tion. The negotiation ends when a consistent union of the information
from both sources is reached. While this can be seen as a one step pro-
cess of merging or consolidation in general, the formalism also allows
to differentiate between the information given up from the first source
and the second source. In [48], this setting is then successively biased
towards prioritizing the second source which leads to representation
theorems for operations that are equivalent to selective revision oper-
ators that satisfy Consistent expansion, and for classic AGM operators.
While those results are interesting, the negotiation framework used
in [48] is very different from the argumentation formalism used here
and also very different from the setup of selective revision. Moreover,
the functions for the negotiation and concession are left abstract.

In [251] mutual belief revision is considered where two agents re-
vise their respective belief state by information of the other agent.
Both agents agree in a negotiation on the information that is accepted
by each agent. The revisions of the agents are split into a selection
function and two iterated revision functions which leads to operators
satisfying Consistent expansion. The selection function is then a negoti-
ation function on two sets of believes that represent the sets of belief
that each agent is willing to accept from the other agent that might
obey game theoretic principles. This setting has a very different focus
as ours and also does not specify the selection function.

The majority of work on the dynamics in logic programming has
focused on the implementation of syntactic inconsistency handling in
sequences of logic programs via logic programs, e.g., [9, 75, 87, 252,
152, 151]. Most of these appraoches have not been considered in a
principled way. Some of them have been considered with respect to
the AGM postulates for belief set revision and adaptations of these
for logic programming. It was shown that they fail to satisfy most of
them in [87]. Alternative postulates were developed thereupon, e.g.,
[87, 9]. We discussed these thoroughly in our work. In terms of the
satisfaction of the AGM postulates for belief set revision semantic
approach that make use of the monotonic SE-Models of logic pro-
grams where more successful and could be shown to satisfy them

[68, 72, 30].

4.5 CONCLUSION

The closest work to a base revision approach for logic programs
is the state transition system approach presented in [163] which was
meant to satisfy base revision postulates for the revision, but no for-
mal results are shown. In [133] the problem of belief base merging
is considered for logic programs. In particular the syntactic approach
of removed sets fusion for propositional belief base merging [132] is
applied to belief bases represented by logic programs. The base revi-
sion approach and the corresponding postulates for it have not been
considered, neither the postulates for change operations on ASP pre-
sented in [87]. Approaches to belief revision in other non-monotonic
formalisms are often not based on principles and very specific to the
underlying logic [245, 29]. A principle based approach to contraction
operations in logic programs has been considered by us in [153].

4.5 CONCLUSION

In this chapter we fleshed out the general concept of a change oper-
ator, which we introduced in Chapter 3. We did so by proposing a
compound change operator, and by elaborating on its sub-operations
for belief bases in combination with non-monotonic reasoning.

The change operator for a belief base comprises an interpretation
function, a selection function and a prioritized multiple base revision
operator. The last two operators form a non-prioritized multiple base
revision operator as an instance of the selective revision scheme. We
described the functionality of the interpretation function we intro-
duced.

Then, we took up the existing research on selective revision and
combined it with deductive argumentation in order to implement se-
lection functions that only accept those parts of the new information
that are not refuted in the light of the belief base under consideration.
We took some first steps in investigating the properties of our pro-
posed construction and were able to show that the resulting operator
complies with many desirable properties for non-prioritized revision.
We discussed the performance of our operators by examples and com-
pared our approach to related work.

Following on this we turned to the elaboration of multiple base
revision operators as needed as the inner revision operator in com-
bination with a selection function to form a non-prioritized multiple
base revision. In particular, we developed a declarative description
of multiple base revision operators for answer set programming. For
this, we formalized adequate adaptions and extensions to the base re-
vision postulates for propositional belief bases for the non-monotonic
formalism of answer set programming. Further, we considered a set
of postulates specific to ASP change operations proposed in [87]. We
generalized these for different notions of equivalence of answer set
programs and adapted them to our formalization of change opera-

101

102

BELIEF CHANGE OPERATIONS

tions. We showed that our adapted set of base revision postulates
implies several of them. Moreover, we presented a novel construc-
tive approach for a prioritized multiple base revision operator on the
basis of a novel screened consolidation operation. We used a global se-
lection function leads to a general revision operator that can be used
iteratively. We proved a representation theorem for our construction.
Moreover, we showed that the property of Topic Independence that
has been formulated for propositional belief bases implies the ASP
specific postulates of Weak Disjointness and Weak Parallelism. We de-
fined a monotony property for selection functions on remainder sets
and showed that monotone selection functions lead to consolidation
operators that satisfy Topic Independence. The results we presented
show that and how the base revision approach is applicable to non-
monotonic formalisms, by example of answer set programming.

To sum up, we presented a complete view of the change process
for epistemic components of epistemic agents, which we introduced
in Chapter 3. We made use of, and extended, existing work in be-
lief revision theory for some sub-operations of our considered change
process. In particular we combined belief revision operators with non-
monotonic formalisms. We concretized the abstract theory of selective
revision by use of argumentation theory. Further, we applied the base
revision scheme to non-monotonic formalisms in general and answer
set programming in particular. We presented constructive approaches
for the change operators we considered. These can be used in combi-
nation with the existing implementations of deductive argumentation
and answer set programming. Hence these can be used in practical
multiagent systems where uncertain dynamic information has to be
handled adequately.

AGENT-BASED SECRECY

In this chapter, we present an approach to secrecy for autonomous
epistemic agents with incomplete and uncertain information in a dy-
namic environment. Existing work on secrecy in multiagent systems
is focused on the specification of strong notions of secrecy. It is based
on the assumptions that complete information about the system is
available and that agents are perfect reasoners. In addition, the no-
tions of secrecy that are defined in this setting are very strict and
cautious, which leads to high constraints on the information flow
[121, 232].

The conditions in realistic scenarios of autonomous agents in dy-
namic, uncertain environments, however, stand in stark contrast to
the assumptions of a complete view on the system and perfect rea-
soners. Furthermore, having to preserve secrecy restricts the possibil-
ities of an agent to act and thereby to achieve its other goals. Hence,
secrecy requirements that are way more cautious than necessary lead
to an unnecessary loss of performance of the agents. Ideally, agents
should be able to take secrecy into consideration and should be able
to evaluate the effects of their actions with respect to secrecy in com-
parison with their utility — they should be secrecy aware. As also ob-
served in [121] a major task for future work on secrecy is the “careful
consideration of how secrecy definitions can be weakened to make
them more useful in practice”.

While a substantial body of work on the definition of secrecy exists,
mechanisms for secrecy preservation in multiagent systems are lack-
ing. The only elaborate practical approaches to secrecy preservation
can be found in the database community, e.g., [213, 32, 46, 38, 34].
These consider the inference problem in different database settings
and also take meta-inferences of attackers into consideration. However,
these are also based on the assumption of a complete view and a
perfect attacking agent. Further, they are limited to a client-server in-
teraction in which the client poses queries to the server, to which the
server replies.

We develop a new agent-based notion of secrecy as well as a com-
plete secrecy agent model and algorithms for it. Our approach differs
largely from existing approaches to secrecy. In particular, this notion
of secrecy is based on the uncertain information of an agent with
limited reasoning capabilities. Moreover, our secrecy agent model in-
corporates secrecy into the agent’s reasoning and deliberation.

A defending agent has a view on the world-view of potential attack-
ing agents, which we call an agent-view. In contrast to other works we

103

104

AGENT-BASED SECRECY

consider a symmetric setting in which all agents might have, individ-
ual, secrets with respect to other agents. We consider two dimensions
of uncertainty for agent-views. The uncertainty of the attacking agent
about the state of the world, the uncertainty of attacker’s world-view,
and the uncertainty of the defending agent about the uncertain world-
view of the attacking agent, uncertainty of defenders agent-view. Also,
different from other approaches, we define a secret with respect to a
particular reasoning behavior. This way we declare sensitive informa-
tion, represented by a logical formula, as secret to different degrees.
That is, a secret declares a logical formula to be kept secret, and a
reasoning behavior, including meta-inferences, against which it shall
be protected. We also consider that an agent might change its secrets
during its course of action.

Based on this notion of secrets and uncertain agent-views we de-
fine a notion of a secrecy preserving agent that never performs any
secrecy violating action. Further, we go beyond this strict preservation
of secrecy and, realistically, consider agents that have to, or decide to,
violate secrecy. In practical agent systems, agents are usually not as-
sumed to have the means to maintain a state with certain properties
[82]. They have to have the means to prevent violations as good as
possible, to violate secrecy as little as possible, and to recover secrecy
as good as possible. For this, we design agents to take secrecy into
consideration in their reasoning and deliberation on all levels. We
call such agents secrecy aware agents. Secrecy preserving agents are then
a special case of secrecy aware agents.

We enable our secrecy aware agents to evaluate their options for
action with respect to secrecy not only on a binary (secrecy violating
or not) basis, but by ordering the considered options on the basis of
their potential degree of secrecy violation as fine grained as possi-
ble. We do this in a principled manner by first determining a set of
principles for such a classification of actions. Then, we develop con-
structive approach and present a classification algorithm that satisfies
the principles.

We consider general settings for secrecy and define properties of
these. In particular we consider settings in which an agent is able to
preserve secrecy and what it takes to guarantee the preservation. We
show that in general it is necessary to consider the possible future
actions of the agents by use of notions from game theory. An agent
has to act such that its attackers do not get a winning strategy to
violate its secrecy.

We consider a query-answer setting that correspond to a client-
server database scenario [213, 32, 46, 38, 34]. We show that the key
result of [213], that it is necessary to protect the disjunction of all po-
tentially secret formulae, also holds for our model in this setting. In
our setting this result is a special case of our consideration of future
actions and winning strategies of the attacker.

5.1 DESIDERATA OF AGENT-BASED SECRECY

We consider different sets of options for action that an agent con-
siders and preferences it has over alternative options based on secrecy
and informativity. These considerations amount to the consideration
of distortion strategies such as lying and refusing implemented in the lit-
erature on confidentiality in information systems [32] from an agent
based perspective.

Apart from the consideration on the general level we develop con-
crete types of agents. In particular we instantiate our general model
for the BDI paradigm as our focus for agent architectures, and ASP
and propositional logic as our foci for (non-monotonic) knowledge
representation and reasoning. We use our BDI" agent model to define
secrecy aware agents and instantiate them with ASP for the knowledge
representation. We develop an ASP based approach to model the meta-
information of speech acts and the meta-inferences of the agents. We ex-
emplify our approaches by completely modeling our strike committee
meeting example, which we introduced in Section 1. Furthermore, we
compare our approach to the relevant, most important works from
computer security, security in information systems, and multi-agent
systems.

The remainder of this chapter is structured as follows. In Section 5.1
we motivate and describe the challenges we address and the proper-
ties we demand to be satisfied in our notion of agent-based secrecy. In
Section 5.2 we formalize our notion of secrecy and secrecy preserva-
tion for epistemic agents based on the general epistemic agent frame-
work we elaborated in Chapter 3. Then, we illuminate the role of
change operations for secrecy in our setting in Section 5.3 and de-
velop properties and operators for them. In Section 5.4 we elaborate
on the possibilities and requirements for the preservation of secrecy
by defining different types of settings. We define a game-theoretic
notion of our secrecy scenario and show formal results for different
settings. In Section 5.5 we turn to the deliberation of an agent and
consider a general model of preferences on actions with respect to
secrecy preservation. We define principles for the classification of ac-
tion with respect to secrecy and devise an algorithm that satisfies all
principles. In Section 5.6 we concretize our considerations by combin-
ing the BDI* agents we defined in Chapter 3 with our secrecy model
and define concrete ASP based BDI™ agents for secrecy preservation.
We develop an ASP based representation of communication on the
information and the meta-information level. We discuss relations to
other works in Section 5.7 and conclude in Section 5.8.

5.1 DESIDERATA OF AGENT-BASED SECRECY

In this section we introduce the fundamental ideas and properties of
an agent-based notion of secrecy. We start by describing our scenario

105

106

AGENT-BASED SECRECY

and its challenges with respect to secrecy. Then, we motivate and
illustrate the main aspects of our approach by means of examples.

In our considered scenario of an autonomous agent, agents reason
under uncertainty about the state of the environment and possible
courses of action. The agent pursues its goals by performing actions
in the environment, in our case by exchanging speech acts with other
agents. On the one hand, the exchange of information with other
agents is often essential for an agent in order to achieve its goals,
especially if the agent is part of a coalition. On the other hand the
agent has a particular interested not to reveal specific pieces of infor-
mation. Restriction of communication leads to a loss in performance
of the individual agents, coalitions and the whole multiagent system.
Therefore, a good solution of the implied conflict between the agent’s
goal to preserve secrecy and its other goals is one that restricts com-
munication as little as necessary. We investigate how an agent can
preserve secrecy given its uncertainty and the dynamics of the multi-
agent system. We call an agent secrecy preserving if it never performs
an action that leads to the violation of a secret. In practice, however,
it is likely that it is not possible for an agent to protect all of its se-
crets, or that it has to violate some secrets to some degree in order to
achieve important other goals. For this it is important that the agent
takes secrecy into consideration when acting and is aware of the ef-
fects of its actions with respect to secrecy and only performs a secrecy
violating action if there is no better option for its means. In particular
the agent has to be able to distinguish between different degrees of
secrecy violation. We call such an agent secrecy aware. In this work we
elaborate on secrecy aware agents and on properties such that they are
secrecy preserving.

For the consideration of secrecy in this scenario the agent has to
be aware of, and be able to reason about, the information available
to other agents and their reasoning on the basis of this information.
The beliefs of an agent change continuously upon reception of new
information. For a secrecy aware agent this implies that, besides the
changes of the agent’s view on the world, the changes of the informa-
tion available to other agents, changes to secrets, and the adaptation
of the preferences on actions according to secrecy have to be consid-
ered. Secrets might, for instance, be changed if it is evident that they
cannot be preserved in their current form and have to be weakened,
or given up.

The fundamental questions for secrecy is the one of the definition of
secrets and the definition of the secrecy preservation. We first motivate
the requirements for the definition of secrets and for the definition
of secrecy preservation by means of our example, as introduced in
Chapter 1.

Example 5.1.1. Emma is working in a company for her boss Beatriz. She
wants to attend a strike committee meeting (scrm) next day and has to

5.1 DESIDERATA OF AGENT-BASED SECRECY

ask her boss for a day off in order to attend. It is general knowledge
that the agent Beatriz puts every agent who attends the scm on her
blacklist of employees to be fired next. Emma has to communicate
with Beatriz in order to achieve her goal of getting a day off, but
wants to keep secret from Beatriz that she wants to attend the scm.

The first aspect of secrets we want to introduce and motivate is that
they are not global, i. e., an agent has different secrets with respect to
different agents.

Example 5.1.2. In our example, Emma wants to keep her attendance
to the scm secret from Beatriz but not from other employees who also
want to attend the scm. &

Secrets are also not uniform with respect to their strength. That
is, an agent should be able to declare pieces of sensitive information,
represented by logical formulae as secret to different degrees. We rep-
resent these differences by declaring an inference behavior against
which the formula should be protected. This inference behavior can
be more or less credulous, whereby a more credulous inference be-
havior represents a higher degree of protection of the formula.

Example 5.1.3. Emma does not even want her boss Beatriz to be suspi-
cious about her attending the scm (secret with respect to a credulous
reasoner). She also does not want other employees that are against
the strike to know that she attends the scm.

However, with respect to her colleagues she considers it sufficient
that they do not know for sure that she attends the scm (secrect with
respect to a skeptical reasoner). &

These differences in the strength of secrets arise naturally from the
value of the secret information. The value of secret information de-
pends on the severeness of the negative effects, or the cost, for the
agent resulting from the disclosure of the secret information.

Secrets are also not static, they arise, change and disappear during
runtime of an agent such that it has to be able to handle these changes
adequately.

Example 5.1.4. If Emma realizes that Beatriz is suspicious about her
attending the strike committee meeting her secret, with a credulous in-
ference behavior, is violated. Then she should still try to keep Beatriz
from being sure that she attends the meeting. This can be reflected
by changing the inference behavior against which the information
shall be protected from a credulous behavior to a skeptical one. This
way her secret is weakened but not given up. If Emma gets to know that
Beatriz overheard her phone call with the strike committee, and hence
is sure that Emma attends, Emma should give up her corresponding
secret. &

107

108

AGENT-BASED SECRECY

These considerations lead to the following formulation of proper-
ties of secrets:

(s1) Secrets can be held with respect to specific agents
(s2) Secrets can vary in strength
(s3) Secrets can change over time

Having formulated properties of secrets, we continue with the for-
mulation of properties of a secrecy preserving agent. We assume a
multiagent system with a set of agents Ag . We use the agent identi-
fier X € Ag to denote an arbitrary agent. Each agent has an epistemic
state that contains a representation of the agent’s views of the view on
the world of other agents in Ag . For the presentation of the secrecy
scenario we mostly focus on the interaction in a two agent system
Ag = {X1,X2}. When we model a concrete agent it has the role of the
defending agent D and the other agent has the role of the attacking
agent A. Since we consider a symmetric scenario, in which all agents
can be seen as defending agents and the other agents as attacking
agents, we describe all agents this way. However, we formulate our
definitions for the instantiated system general for arbitrary sets of
agents. We do not explicitly consider the potential information flow
between A and other agents. We do so implicitly by our consideration
of uncertain, incomplete and changing views on other agents.

The intuitive formulation of our notion of secrecy preservation can
be formulated as:

An agent D preserves secrecy if, in all possible situations, no
secret formula ¢ that it believes to be true and that it wants to
hide from agent A is, from D’s perspective, believed by A in all
possible situations after an action of D (given that A does not
believe ¢ already).

That is, we declare secrets as potential secrets (cf. e. g., [36]). This means
that the formula contained in a secret only has to be protected if it is
believed to be true by the agent holding the secret.

The actual quality of secrecy preservation is highly dependent on
the accuracy of D’s attacker model, i.e., the view of D on agent A in-
cluding its reasoning capabilities. It also depends on D’s information
processing and adaptation of its view on A in the dynamic scenario.
This includes a model of the meta-inferences drawn by A from the
behavior of D and the background information of A. In particular, a
secrecy aware agent D should have the following properties:

(r1) Agent D is aware of the information it communicated to other
agents and the meta-information conveyed to agent A by its
actions

(r2) Agent D simulates the reasoning of agent A

5.2 ABSTRACT AGENT MODEL FOR SECRECY

(r3) Agent D considers possible meta-inferences by A from its own
behavior

A secrecy preserving agent should additionally have the following two
properties:

(r4) Agent D never performs an action that leads to secrecy violation

(r5) Agent D weakens secrets only if new percepts imply violations
of secrets and only as much as necessary to be able to preserve
secrecy

These five properties are the foundation of our notion of secrecy
preservation. As we shall see, the properties (P1) and (P5) are related
to the belief change component of D, (P2) and (P3) are related to the
way D models A , and (P4) is related to all stages of the deliberation
and means-ends reasoning behavior of D . In the remainder of this
chapter, starting top-down with an abstract model, we elaborate the
properties we describe here, formalize them, and show how they can
be satisfied.

5.2 ABSTRACT AGENT MODEL FOR SECRECY

We build on the general model of an epistemic agent of Chapter 3
and start by defining secrecy relevant aspects of an epistemic state. In
particular an epistemic state needs to contain a representation of the
information available to other agents and a representation of the se-
crets of the agent. These can be represented explicitly, as components
of the epistemic state, or implicitly as part of the information repre-
sented in a monolithic epistemic state. We capture both variants in
our model by assuming that there are mappings from the epistemic
state to epistemic components that represent certain aspects, such as
the view on another agent.

A secrecy epistemic state K, is an epistemic state such that satisfies
the following conditions: Agent D’s view on the world, its world-view,
is an epistemic component given by

Vw (X5) € Lw.

The view agent D has on the world-view of agent A, an agent-view, is
an epistemic component given by

VA(KS@) € L.
The set of secrets of the agent is given by
S(JCSD) € Lg.

The world-view language Ly, the agent-view language £ and the
language of secrets Lg are to be specified wrt. the used knowledge
representation formalism.

109

110

AGENT-BASED SECRECY

In the following, we drop the subscript D and the superscript s
from X3, since it is clear that we consider the defending agent D and
secrecy epistemic states in this chapter. The world- and agent-view
are epistemic components as introduced in Section 3.2 (Page 39). We
assume that D uses the belief operator Belp : Ly — Lps to reason
on its world-view.

Next, we detail our notion of secrets. Three aspects have to be spec-
ified. First, the information to be kept secret has to be expressed; this
is done in the belief set language £gs. Second, the agent from which
the information has to be kept secret has to be defined, as required in
(S1), which is done by means of an agent identifier X € Ag. Third, the
strength of the secret, represented by the reasoning behavior towards
which the information shall be protected, has to be expressed; as re-
quired in (52). The reasoning behavior is represented by means of be-
lief operators that are chosen from a given ordered family of belief op-
erators (=, <pel), as defined in Definition 3.6.2 (Page 61), for the agent-
view language Ly, i.e., all Bel € = are of the type Bel : Ly — Lgs.
Further, we assume that (=, <) satisfies credulity as defined in Sec-
tion 3.6 (Page 61). Hence, in our framework secrets are triples specify-
ing the information to be kept secret, the belief operator with respect
to which the information shall be kept secret and the agent towards
which the agent holds the secret.

Definition 5.2.1 (Secrets). A secret is a triple (¢, Bel, A) and consists of
a formula ¢ € Lgs, a belief operator Bel : Ly — Lgs, Bel € Zand an
agent identifier A € Ag. The set of secrets of agent D is denoted by
8(Xp). The language L is the set of all such triples.

We call a secret whose formula is believed by the agent holding the
secret an active secret. A formula is a potentially secret formula if it is
contained in a secret, and it is called a secret formula if it is contained
in a secret and it is believed by the agent holding the secret. We call a
formula sensitive if itself or its negation is contained in a secret. In the
following we assume that D beliefs all of the formulae of its secrets to
be true, i. e., all secrets are active and all formulae of secrets are secret
formulae. Further, we assume that for each formula ¢ there is at most
one secret with respect to this formula in the set of secrets.

The semantics of a secret is that if agent D has the secret (¢, Bel,
A),ie, (,Bel, A) € 8§(Kp), and it believes ¢ to be true, i.e., ¢ €
Belp (Vi (X)), then it does not want that it is possible to infer ¢
from its view on agent A by use of the belief operator Bel, i.e., ¢ ¢
Bel (Va (Xop)).

Example 5.2.2. We can formalize the secrets of Emma as S(Keuma) =
{(attend _scm, Belcred, B)} with the proposition attend scm expressing
that Emma intends to attend the strike committee meeting. &

5.2 ABSTRACT AGENT MODEL FOR SECRECY

Since the belief operator family satisfies the credulity property for
all (V4 (X)) and all Bel,Bel” € = with Bel’ <, Bel it holds that if

¢ € Bel(V4(Kp)), then ¢ € Bel’ (V4 (Kp)).

If we consider the two secrets (¢, Bel, A) and (¢, Bel’,A) such that
Bel” <y Bel, we can thus note that whenever the first one is violated,
then also the second one is violated. But not vice versa. Therefore, the
protection of the formula ¢ implemented by the secret (¢, Bel, A) is at
least as strong as the protection implemented by the secret (¢, Bel’, A),
if Bel’ <pe Bel. The choice of a more credulous belief operator repre-
sents a stronger protection of the formula than the choice of a more
skeptical belief operator.

Example 5.2.3. We formalize Example 5.1.4. We assume that Beatriz
is “suspicious” about ¢ if she infers ¢ with the credulous belief op-
erator Bel,eq, and that she “is sure” about ¢ if she infers ¢ with
the skeptical belief operator Belgyep. It holds that Belgep, =<pel Belcred-
Whether Emma has the secret (attend scm, Beleeq, B) or the secret
(attend _scm, Belgyep, B) might make a big difference. Assume that
asking to get the day of the strike committee meeting off makes Beatriz
being suspicious that Emma intends to attend the strike committee meet-
ing but not certain. That is, the first secret would be violated but not
the latter. If Emma has the first secret she can perform the action of
asking for a day of without any restriction, if she has the second secret
she cannot perform the same action without violating secrecy. Hence,
this example shows that protecting the same formula with respect to
a more credulous belief operator can lead to a stronger restriction on
the actions of Emma. O

The belief operator that is declared in a secret represents the most
credulous reasoning behavior against which the agent wants to pro-
tect the formula declared in the secret.

Observation 5.2.4. The properties (P2) and (P3) are addressed by the
use of belief operators in combination with the agent-view and the
change operators for the agent-view.

Secrecy is based on the subjective view V4 (X) agent D has on the
beliefs of agent A. If secrecy is violated or not, only depends on the
epistemic state of the defending agent. These considerations lead us
to the following definition of a safe epistemic state.

Definition 5.2.5 (Safe Epistemic State). An epistemic state X is safe if
and only if for all (¢, Bel, A) € §(K) with ¢ € Belp (Vw (X)) it holds
that ¢ &€ Bel(V4(X)).

For a given set of secrets, we call the subset of secrets whose for-
mula is believed to be true by D its active secrets. We formalize these

111

112

AGENT-BASED SECRECY

as follows: Let Viy be agent D’s world-view and § its set of secrets,
then

8’active(er 8) :def{(d)r BeI,A) €3 | q) € Bel@(vW)} (5'2'1)

is the set of active secrets with respect to Vyy .

This far, we defined an epistemic state and a notion of a safe state
for a fixed point in time. We want to define secrecy of an epistemic
agent in a dynamic environment with the intuition that an agent pre-
serves secrecy if it never performs any action that leads to an unsafe
epistemic state. Given the agent’s uncertainty about the actual state of
the world and about the actual state of other agents it might receive
percepts that reveal that a secret is in fact violated. This notion of the
preservation of secrecy is hence dependent on the subjective view of
the defending agent.

To formalize this intuition of secrecy we have to be able to make
statements about the general behavior of an agent. To this end we
define the set of possible epistemic states of an agent with respect to an
initial epistemic state of the agent and a set of possible percepts. An agent
starts with its initial state and then receives percepts as a result of the
actions of other agents. A sequence of percepts resembles the agent’s
perspective on a run of the system. The percepts the agent receives
are generated by the actions of the other agents of the multiagent
system. We abstract away from the actual system and other agents
and assume them to be represented by a set of possible percepts Per
for the agent. That is, we assume that this set contains all percepts
that the agent could receive in the system from other agents.

In a system the percepts result from the interaction of the agents
such that the sequences of percepts are determined by the behavior
and interaction of all agents in the system. All agents have the capa-
bility to execute any speech act at anytime. Consequently an agent
can receive any speech act that is in its set of percepts at any time
such that it can receive all of its possible percepts in any order. We
formalize the set of possible states of an agent with respect to a set of
possible percepts. This way we can describe properties of the behav-
ior of an agent with initial agent state, given a set of possible percepts.
These considerations result in the following definition:

Definition 5.2.6 (Possible states of an Agent). Let (X°, &) be an agent
state such that & = (o,0% act) and the types of the operators are
o:Lgs X Per — Lgg, 0% : Lgs x Act — Lgs and act : Lgs — Act. We
define the possible epistemic states of an agent with initial agent state
(X°, &) possible epistemic states Qg (XK°, Per), denoted as Qg (X°, Per)
recursively as follows:

For a single percept p € Per we define
04 (X,p) = {K}U{K op 0% act(K o p)),
for a sequence of percepts (p1,...,pn) itis

5.3 PROPERTIES OF CHANGE OPERATIONS AND SECRECY

Q&(JCI (p]/- . -/pn)) = -O-&(iKJN) U-O—&(-O—E,(:KJN)/ (pZ;- . -/pn))
and for a set of percepts

QE(:KOI Per) = U{QE(KO/ (p]w . -/pn)) | {p1/' . '/pn} - Per}-

An agent preserves secrecy if its initial agent state is such that no
unsafe epistemic state can be reached by any possible progression of
its epistemic states.

Definition 5.2.7 (Secrecy-preserving Agent). Let (X°, &) be a secrecy
agent state such that the functional component & = (0,09, act) is of
the type o : Lgs x Per — Lgs, o 1 Lgs X Act — Lgs and act :
Lgs — Act. We call an agent with an initial agent state (X°, &) secrecy
preserving if and only if for all X € Qg (XK, Per) it holds that X is safe.

Observation 5.2.8. The property (P3) is satisfied by this definition of a
secrecy preserving agent.

The definition of secrecy preservation is dependent on the epis-
temic state of the agent and the agent’s way of information process-
ing. For instance, an agent D that does not reflect on the effects of
its actions and that rejects any input information would never sub-
jectively violate secrecy, as its view on A is static, as the following
example illustrates.

Example 5.2.9. If Emma ignores that Beatriz said that she has evidence
that Emma is going to attend the strike committee meeting, then Emma
would, from her point of view, not violate secrecy. &

To exclude such irrational agents from our consideration we define
and require basic properties of the epistemic states and the functional
components of agents. As the example indicates in particular the op-
erations that change the world-view of D and the view on the world-
view of A are important to define rational secrecy aware agents.

5.3 PROPERTIES OF CHANGE OPERATIONS AND SECRECY

In this section we define desirable properties of change operators and
their effect on the resulting notion of secrecy. As defined in Section 3.3
the change operators of an agent are capable of changing the epis-
temic state of an agent on the basis of a percept, or on the basis of
an action of the agent itself. Both operations should have different
properties, which we detail in the following.

There are two causes for changes of the agent’s epistemic state, and
thus two possible causes to become unsafe: after a change caused by
a percept and after a change caused by an action of the agent. We
demand, as formulated in (P4), that an agent’s epistemic state does
not become unsafe by a change induced by its own actions. Thus, the

113

114

AGENT-BASED SECRECY

agent must not be able to preserve a safe epistemic state while acting
by modifying its secrets. We formalize this by the following property.

SECRETS ACTION INVARIANCE.a For all a € Act it holds that
§(Ko%a) =8(K)

As given by the definition of possible states, Definition 5.2.6, the ac-
tions by which an epistemic state is revised are the actions of the
agent itself. This revision realizes the agent’s consideration of the ef-
fects of its actions. The property Secrets Action Invariance,« demands
that no action of the agent should lead to a modification of the agent’s
secrets.

Example 5.3.1. When Emma considers to say to Beatriz that she intends
to attend the strike committee meeting and realizes that this would vi-
olate her secret, she should not just give up her secret to be able to
perform the action and preserve secrecy. &

The defending agent has an uncertain view on the information that
is available to an attacking agent. Further, it does not have complete
control of the information flow, i.e., there might be other sources
of information for A. Therefore, it is not possible for the defending
agent to avoid violations of secrets based on information that comes
from percepts. Hence, for the consideration of secrecy preserving
agents we define the following property, requiring that the change
of an epistemic state by a percept always results in a safe epistemic
state.

ACKNOWLEDGMENT, For all p € Per it holds that X o p is safe.

Consequently, the epistemic state of an agent with a change operator
that satisfies Acknowledgment, can only become unsafe through the
actions of the agent itself. This implies that all intermediate states, i.e.,
those after reception of a percept but before execution of an action, of
the agent cycle are safe.

To be able to define further properties for the belief change oper-
ation of an epistemic state we decompose it into sub-operations on
the epistemic state’s components. For epistemic components we use
the decomposition into sub-operations as introduced in Section 4.1.
Based on these we motivate and define properties with respect to se-
crecy preservation, which formalize and concretize the ideas given in
(P1) and (P5).

As introduced in Section 4.1 the change operation for an epistemic
component of the language L for the set of speech acts X is com-
posed by three sub-operations:

OLE,Z :deftLE,Z : fLE : *LE'

First the interpretation function t;_ s interprets a speech act which
results in a set of sentences of the language of the epistemic compo-
nent under consideration. Then the selection function f ., evaluates

5.3 PROPERTIES OF CHANGE OPERATIONS AND SECRECY

the input and produces a set of sentences to be incorporated into the
epistemic component. The latter task is carried out the by the inner
revision operator * ;.. To ease the presentation, we disregard the se-
lection function f . in the following and assume it to be part of the
inner revision operator, i.e., the inner revision operator might be a
selective revision operator as defined in Section 4.2.1 (Page 77).

We assume that for an epistemic state K the world-view Vi (X) €
Lw and the agent-views V4 (X) € Ly of the agent are epistemic com-
ponents and have epistemic component change operators *,, and
* ., respectively, assigned to them. Then we assume that there are
four interpretation functions that transform a speech act, as a per-
cept or action, into a set of sentences of the epistemic component
language of a world-view or an agent-view. In particular the interpre-
tation function tyy is for percepts for the world-view of the agent, the
function ty}, for actions for the world-view, the function ty one for
the percepts for an agent-view, and ty, for actions for an agent-view.

Secrets are changed on the basis of the agent’s changed beliefs and
views such that the update operator for secrets is dependent on these
and thereby indirectly also on the new information. Formally the se-
crets change operator has the form:

*Siﬁsxﬁwxﬁv—)ﬁs

We assume that the effect of o and o® can be expressed by means of
the component specific operators, such that

Vw(Xop) = Vw(X)*c,, tw(p), (5:3.1)
Va(Kop) = Va(X)*g, tv(p) and (5-3:2)
8(Xop), = *s(8(X), Vw(Xop), V(Kop)) (5.3:3)
and
Vw(Xo%a) = Vw(X)x*g, tiw(a), (5-3-4)
Va(Ko%a) = Va(X)*g, ty(a) and (5.3.5)
§(Ko%a) = 8(X). (5.3.6)

The changes to the set of secrets in order to achieve a safe epistemic
state should be minimal. That is, a secret should not be modified
without a reason. A reason is only given if the respective secret is
active and violated, then it should be weakened minimally such that
it is not violated anymore.

We consider weakening by replacing the belief operator of a secret
by a more skeptical belief operator. Only if there is no belief operator
that could be used as replacement in a secret such that the secret is not
violated, then the secret should be removed. The following property
formalizes these considerations.

MIN-SECRECY-WEAKENING, (5.3.7)
If (¢,Bel, A) € 8(K) and (¢, Bel, A) € S(K o p), then

115

116

AGENT-BASED SECRECY

1. @ € Bel(V4(Kop))and ¢ € Belp (Vw (K op))
2. if for some Bel’ € = it holds that
a) ¢ € Bel’(V4(Kop)) and

b) there is no Bel” € =, Bel’ < Bel”
such that ¢ ¢ Bel” (V4 (X op)),

then (¢, Bel’, A) € §(K op).

Another secrecy relevant property of belief change arises from the
changes to views of other agents. An agent should not be able to pre-
serve secrecy by ignoring the effects of its own actions on the beliefs
of potentially attacking agents. In particular the information for some
agent A contained in an action of D should be incorporated into D’s
view on A. We formalize this for Vyy/(X) and V4 (X) being belief bases
as follows:

AWARENESSqa If a € Act then ty, (a) C Vyw (XK o® a) and for each
A eAgitisty(a) C Va(Kpoa).

There might very well be actions that are not received by all agents
and therefore should also not affect the view on all agents.

Example 5.3.2. If agent D communicates privately with some agent A
it should change its view on A but not its view on other agents. <

This is achieved by use of appropriate interpretation functions that
select the relevant information for each agent. A more concrete anal-
ysis of change operations depends on the actual formalization of ac-
tions and percepts and the resulting interpretation function and their
properties. We do this when we consider instantiations of the knowl-
edge representation. This leads to the following observation.

Observation 5.3.3. The satisfaction of Min-Secrecy-Weakening, relates
to the satisfaction of property (S3) and (P5). The satisfaction of Secrets
Action Invariance,a, Acknowledgment,, and Awareness.a of the change
operator of an agent relates to the satisfaction of (P1), (P5) and (S3).

The satisfaction of the properties (P1) to (P5) are not realized by
single properties but depend on several aspects of our model, the ob-
servations above point out the most important ones. Property (P1)
is addressed by the agent-view of the agent in combination with
the change operator The meta-information part of property (P1) and
property (P3) on meta-inferences can only be concretized in instantia-
tions of the general model that feature definitions of meta-information
and meta-inference.

The Awareness,« postulate for belief bases is related to the Success ¢
postulate for multiple belief base revision operators, as defined in
Section 4.2.1 (Page 77).

5.3 PROPERTIES OF CHANGE OPERATIONS AND SECRECY

Observation 5.3.4. Let Vi (X) and V4 (K) be belief bases, let 0 be
a change operator, let x7 , 7 be multiple belief base change opera-
tors, and ty;, and t{; interpretation functions such that Equations 5.3.1
and 5.3.2 are satisfied. If 3 , 7 satisfy Successo, then o satisfies
Awarenessca.

Proof. See Appendix A.1.3, Page 235. O

In the following we consider the construction of a change opera-
tor for secrets that leads to the satisfaction of Min-Secrecy-Weakening.,
and that is independent from the used knowledge representation
formalism. As specified by the properties Secrets Action Invariancesa
and Acknowledgement, secrets are only changed upon reception of
percepts. The property Min-Secrecy-Weakening, formalizes that the se-
crets shall be modified minimally such that secrecy is preserved with
respect to the modified set of secrets, i. e., they are weakened. A secret
(¢, Bel, A) is violated in an epistemic state K if the formula ¢ is in-
ferred by the belief operator Bel from the agent-view on the attacker,
i.e,if € Bel(V4(XK)).

We weaken the secret by replacing the belief operator Bel by a max-
imally credulous belief operator operator Bel’ such that the resulting
secret is not violated. Only if there is no operator for which the secret
is not violated the secret is removed from the set of secrets. We make
use of the belief operator family (=, <pe) and the credulity order to
determine a different belief operator Bel’ by which the secret formula
cannot be inferred. The operator Bel’ cannot be more credulous than
the operator Bel since it would follow that Bel (V4 (X)) C Bel’ (V4 (X))
which implies that ¢ € Bel’(V4(X)). Hence, we determine a maxi-
mally credulous belief operator that is not as credulous as Bel that
does not violate the secret. Since this operator is not uniquely de-
fined in general, since <} need not be total, one of the maximal ones
is selected.

The set of maximal belief operators of a set of belief operators = is
given as:

ril?j((E) =g {Bel € Z| there is no Bel’ € = such that Bel <p Bel’).
The selection of an arbitrary maximal operator is realized by a selec-
tion function o as introduced in Section 3.5.4 (Page 56). Given these
considerations and the definition of max<,_ (=), we define a function
for the selection of a minimally weakened belief operator next.

Let V € Ly be an agent-view, ¢ € Lps be a secret formula and
Bel € = a belief operator. The operator maxbel(z <,) determines a
belief operator from = for the arguments V, ¢, Bel and is defined as
follows:

117

118 AGENT-BASED SECRECY

maxbel = <,)(V, b, Bel) =4 (5.3.8)
Bel if ¢ ¢ Bel(V)
o(maxx, ({Bel’ € Z| ¢ ¢ Bel'(V)})) if ¢ € Bel(V) and

. / —
exists Bel” € =

st. & ¢ Bel' (V)

1 if not exists Bel’ € =

s.t. ¢ & Bel’(V)

If there is no belief operator in = with respect to which ¢ would not
be inferred from V the dedicated symbol L is returned to indicate this
case. Otherwise, the belief operator determined by the maxbel = <,)
function is, if it is different from Bel, guaranteed to be not as credu-
lous as Bel, as we show in the following proposition.

Proposition 5.3.5. Let = be a set of belief operators, V an agent-view
and (¢, Bel, A) a secret. If Bel’” = maxbel(z <, (V, d,Bel), Bel’ £1,
then Bel 4. Bel’.

Proof. See Appendix A.1.3, Page 236. O

The change operator for secrets *g uses the maxbel =z <,) function
to determine the new belief operator for each secret and is defined as
follows. Let 8 C Lg be a set of secrets, Vi € Ly a world-view and
V € Ly be an agent-view, then

*8 (S/ VW/ V) :def{(q)/ BeI/I‘A‘) | (Cb, BE|,A) € S(K)/ (539)
Bel’ = maxbel(= <, 1(V, $, Bel),
Bel’ £1}

From Proposition 5.3.5 follows that secrets are only weakened and not
strengthened. Strengthening secrets would imply limiting the possi-
bilities of an agent to achieve its other goals more than by the declared
secrets, i.e., more than necessary.

In the next definition we show that the specification of the change
operator o as defined in this section satisfies the properties postulated
above.

Proposition 5.3.6. Let D be an agent, with o and o defined as in Equa-
tions 5.3.1 to 5.3.6 (Page 115) with *g as defined in Equation (5.3.9) on
Page 118 above and inner revision operators *,, and ., satisfying
Successq (defined in Section 2.5). The change operator o satisfies Ack-
nowledgment,, Min-Secrecy-Weakening, and the change operator for ac-
tions o satisfies Secrets Action Invarianceqa, Awarenessqa.

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS

Proof. See Appendix A.1.3, Page 236. O

In this section we elaborated on the secrecy-relevant aspects of the
change operator of an agent and gave a specification of it that is in-
dependent of the knowledge representation formalism to be used. In
the next section we continue to study secrecy relevant aspects of the
general model of epistemic agents.

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS

In this section we characterize secrecy preserving agents by means
of properties. To this end we define a notion of settings in which we
consider our agents. A setting is determined by the set of possible ini-
tial agent states and possible percepts. These parameters are chosen
to satisfy certain properties for example that the considered change
operators satisfy the properties specified in the previous section. A
setting also restricts the possible initial agent-views and thereby the
initial information available to attackers and their reasoning behavior.
We formalize such a setting as follows.

Definition 5.4.1. Let Per be a set of percepts, Act a set of actions and
Lgs alanguage of epistemic states. A setting T with respect to Per and
Act is determined by a tuple (A, F) that comprises a set of epistemic
states A C Lgs, and a set of functional components § such that each
(0,09 act) € § is of the type:

o:Lgs X Per = Lgg, 0% : Lgs X Act — Lgs and act : Lgg — Act.

The setting consists of all initial agent states with an epistemic state
from A and a functional component from § . Formally:

T=(ATF) =af AXT

In this section we consider settings with functional components
for which all change operators satisty Secrets Action Invariance,« and
Acknowledgement, and for which a sub-setting is secrecy-preserving.
A setting (A, §) is secrecy preserving, if for all (X°, &) € (A, F) an agent
with initial agent state (X°, &) is secrecy preserving. A setting (A, §) is
partially secrecy preserving, if there is some sub-setting (A/, §’) C (A, §)
that is secrecy preserving. We define properties of settings with the
aim to characterize secrecy preserving agents in these.

5.4.1 Local Properties for Secrecy Preserving Agents

We start with the consideration of a property that enables agents
that only consider their next action without consideration of future
courses of action to be secrecy preserving.

119

120

AGENT-BASED SECRECY

Definition 5.4.2. Let (A, §) be a setting such that A C Lgs and all
(0,0% act) € § are of the type o : Lgs x Per = Lgs, 0% : Lgs X Act —
Les and act : Lgs — Act.

The setting (A, §) is plain, if for all (K, &) € (A, F) for all safe epis-
temic states K € Q¢ (X, Per) it holds that for all p € Per there is some
action a € Act such that (X op) o® a is safe.

In a plain setting it hence holds that, in a safe epistemic state, there
always is a secrecy preserving action available, no matter which ac-
tions have been performed previously. This implies that the choice of
an action that results in a safe successor state does not influence the
availability of secrecy preserving actions in the following. We call an
action a safe in the context of an epistemic state X if K o® a is safe. For
plain settings we can show that a local selection of safe actions of the
functional component is sufficient to guarantee secrecy preservation.

Proposition 5.4.3. Let (A,§) be a setting such that A C Lgs and all
(0,09, act) € § are of the type o : Lgs x Per — Lgs, 0% : Lgs X Act —
Lgs and act : Lgs — Act.

If (A, §) is plain, then any agent with an initial agent state (X9,8) e
(A, F) that has a safe initial epistemic state X° and that selects a safe
action if possible, i.e., for all X € Q¢ (KO, Per) and all p € Per if there
is an a € Act such that (X op) o® a is safe, then Kop o®act(Kop) is
safe, is secrecy preserving.

Proof. See Appendix A.1.3, Page 237.]

If it is not possible for the agent to select a safe action, it cannot
preserve secrecy. In this case it should choose the action that violates
secrecy as little as possible. We show how this is can be done in Sec-
tion 5.5.2.

The requirement of a plain setting seems to be a very strong one
since it requires the existence of a safe action in any epistemic state
of the agent, no matter what the agent did previously. It is not as
strong as it seems since in many environments this is satisfied, for
instance in environments in which the empty action does not have
any secrecy violating effects. We come back to this later. In the next
section we consider secrecy preserving agents in settings that are not
plain.

5.4.2 Look ahead and Secrecy Preserving Agents

In general agent D has to be able to avoid to maneuver itself into
states in which it is left without a secrecy preserving action to choose.
To this end D has to take possible future actions of itself and other
agents into consideration when deciding on its next action. To for-
malize this, we formulate a game theoretic view on our setting on the

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS 121

D A D

Figure 5.4.1: Sketch of a game tree

basis concepts from game theory [187]. We define a two-player game
with a defending agent D and an attacking agent A. Perceptions of
the defending agent are assumed to be the actions of the attacking
agent.

Definition 5.4.4. Let Lgs be a language of epistemic states, Ko € Lgs
an epistemic state, Per a set of percepts, Act a set of actions, and
o:Lgs X Per » Lgg and 0% : Lgs x Act change operators. We define
a two-player game g ¢ %, PerAct,0,0c With a set of agents Ag, = {D, A},
a game tree T, a player function P and a set of utility functions U =
{up,ug}. The game tree T = (Lgs, E,Ko) comprises a language of
epistemic states Lgs, edges E C Lgs x Lgs and root Ko € Lgs. The
parent of a node X is given by pa(X). The player function P : L¢s —
Ag, is defined as

P(%o) = A and P(5) = {1 HP(PalX) =D (5.4.1)

D if P(pa(X)) = A

The tuple (X,X;_1) is an element of E if and only if X;_1 =K op
with p € Per and P(KX) = A, or Ki_1 = K 0o% a with a € Act and
P(X) =D.

Example 5.4.5. Figure 5.4.1 sketches a game tree with the root node
Ko and the possible actions a of agent D and the possible actions p
of agent D. The green edges indicate safe actions and the red edges
actions that violate secrecy (only marked on the last level). &

122

AGENT-BASED SECRECY

Based on this formulation of a game we introduce the notion of a
strategy of an agent and in particular the notion of a winning strategy
of the attacking agent.

A path 7 is a sequence of nodes

T[:(j(o,...,f]{)

such that (Ki,Xi;11) € E for all i € [0,k —1]. The set of paths is
denoted by W and the sequence of the first i, i < k, elements of
a sequence 7t is denoted by m[i]. The utility functions {up,us} = U
assign 0 or 1 to each path, formally ux : W — {0, 1} with up () =0
if there exists K € 7t which is not safe, else up () = 1. Itis uy(m) =
1 —uqp(m). That is, D gets a utility of 1 if it preserves secrecy with
respect to 7t and a utility of 0 if not. For agent A it is the other way
round.

A strategy for player X is a partial function sx : W — L which as-
signs to each finite path m = (Ko, ..., Xy) with P(Xy) = X, a percept
pif X=Aandp e{p’| (Kn, Knop’) € E}, and an action a if X =D
and a € {a’ | (Kn,Kno%a’) € E}L

A path m = (X, ..., Kyn) € Wis called compliant with strategy sy
if for all X; € m with 0 < i < n with P(X;) = X it is the case that,
X =D Kiyg =Kio%sp(n), and if X = A: Ki;q1 = Kijosg(m). A
strategy sy for player X is called a winning strategy in state X if for all
paths m = (Ko, ..., Kn) with Ky = X that are compliant with sy the
utility of X is ux(7t) = 1. That is, A has a winning strategy in state K
if it can, by means of a sequence of percepts for D , force D into an
unsafe state no matter what D does.

Example 5.4.6. In the game sketched in Figure 5.4.1 agent D should
not choose the lower action in Xy since A has a winning strategy
in the resulting state. The is, in that state A can choose the upper p
which results in a state in which D is left with only secrecy violating
actions (only red outgoing edges). &

Definition 5.4.7. Let Lgs be a language of epistemic states, Per a set
of percepts, Act a set of actions, and o : Lgs X Per — Lgs, and o¢ :
LEs x Act — Lgs change operators.

An epistemic state X is sound with respect to (Lgs, K, Per, Act, 0,0%)
if A does not have a winning strategy in g % Per Act,o0,0a-

To ease readability, we omit the context of a sound state, i.e.,'wrt.
(Les, K, Per,Act, 0,0%)’, in the following, if the context is obvious. We
assume in the following that initial epistemic states are sound.

The notion of a sound state generalizes the notion of a safe epis-
temic state by demanding that D should have a possibility to main-
tain a safe epistemic state, as the following lemma shows.

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS

Lemma 5.4.8. Let X € Lgs be an epistemic state, Per a set of percepts,
Act a set of actions, and o : Lgs x Per = Lgs a change operator. If K
is sound with respect to (Lgs, K, Per, Act, 0, 09), then it is safe.

Proof. See Appendix A.1.3, Page 237. O

We can show that an agent that avoids unsound states is not only
secrecy preserving but that an agent has to avoid unsound states to
be secrecy preserving. That is, maintaining a sound state is not only
sufficient, it is necessary for secrecy preservation.

Proposition 5.4.9. Let (A,J) be a setting for which A C Lgs and all
(0,0% act) € § are of the type o : Lgs x Per = Lgg, 0% : Lgs X Act —
Lgs and act : Lgs — Act. An agent with initial agent state (K0,&) e
(A,) is secrecy preserving if and only if all states X & Qg(ﬂ(o, Per)
are sound.

Proof. See Appendix A.1.3, Page 238.]

For plain settings we required that there is a secrecy preserving
option in any situation. Hence we can show that if the setting under
consideration is plain, then any safe state is sound.

Proposition 5.4.10. Let (A, §) be a setting that is plain and let (X°, &) €
(A,T) be an agent state of this setting. Any epistemic state X €
Qg(ﬂ(o, Per) that is safe, is also sound.

Proof. See Appendix A.1.3, Page 238. O

The following proposition shows that in general an agent, that al-
ways selects an action that leads to a sound state is secrecy preserving.

Proposition 5.4.11. Let (X°, &) be the initial agent state of agent X with
& = (o0,0%act), o : Lgg X Per — Lgg, 0% : Lgs X Act — Lgg and
act : Lgs — Act. If X° is sound, then if X selects sound actions, i.e.,
for all X € Q¢ (X°, Per) and all p € Per if there is some a € Act such
that (X op) 0% a is sound, then act(X o p) is such that X o act(K o p)
is sound, then X is secrecy preserving.

Proof. See Appendix A.1.3, Page 239. O

Proposition 5.4.11 shows that a secrecy preserving agent has to be
able to check whether an action it considers to execute leads to a
sound state. This is equivalent to checking whether A has a winning
strategy, which is known to be a hard problem in general [210]. Hence,
it is useful to determine cases in which the existence of a winning
strategy can be excluded easier. We do this in the following section.

123

124

AGENT-BASED SECRECY

5.4.3 Reducing Look-ahead to Local Properties

In this section we define properties of a setting whose satisfaction
imply that the setting is plain. A simple, yet important, property can
be expressed informally as not doing anything does not do any harm. We
formalize not doing anything by the empty action e and require that it
does not violate secrecy in all possible epistemic states.

Observation 5.4.12. Let (A,§) be a setting with & = (o0,0%,act), o :
Lgs X Per — Lgg, 0% : Lgs X Act — Lgs and act : Lgs — Act. Let
€ € Act be the empty action. If for all X € Q¢s(A, Per) and all p € Per
it holds that (X o p) o € is safe, then (A, §) is plain.

Proof. See Appendix A.1.3, Page 239. O

There are scenarios in which the empty action is either not available
for the defending agent by design, or the empty action does have
effects on the preservation of secrecy. The latter is the case if an agent
is expected to react in a certain way by another agent, i. e., to follow a
protocol. In these cases not reacting might reveal information which
leads to the disclosure of a secret formula. In these cases secrecy is
violated due to assumed meta-inferences of A. In the following we
consider both scenarios for communicating agents.

5.4.3.1 Query-answer Protocol

We start with a simple query-answer Protocol in which in each round
A is posing a question to D , who then responds with an answer
to it. D’s only available actions are to answer to each question with
one of the defined answer values. From the point of view of agent
theory this scenario seems to be very restricted. The defending agent
is only reacting to answers posed to it. However, from the point of
secrecy, this is already a complex task. It is the typical protocol in
database theory in which secrecy has been studied intensively, see,
e.g. [46, 38, 32].

For our consideration of D as an epistemic agent this scenario is
modeled by restricting the possible percepts and actions of D . The
set of possible percepts of D is:

PerQA = {(A, D, query, d) | ¢ € Lpase)-
And the set of possible actions of D is:
ActQ? = {(D, A, answer, ¢) | ¢ € Lpase)-

The used protocol on the basis of these actions and percepts is that a
requesting speech act (A, D, query, ¢) requests an answer of the form
(D, A, answer, ¢’) with ¢’ representing an evaluation of ¢. We also in-
dicate that a formula represents a formula with undetermined truth

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS

value by é. Formally it is ¢’ € evals(), whereby evals() is to be
specified. In the following we consider evalspeo (0) = {d, —0), repre-
senting the two truth values true and false. These possible answers
correspond to the setting of a complete database [46]. For incomplete
databases a third answer value exists which expresses undecidedness
with respect to the queried formula and is expressed by the value
unkown.

From the game theoretic perspective, this setting gives the attacker
A the possibility to ask a sequence of queries and D has to answer
with an evaluation of the respective formula. If there is no combi-
nation of answers to a sequence of queries such that the resulting
epistemic state of D is safe, then A has a winning strategy, and D
is in a hopeless situation. A secrecy preserving agent D has to make
sure that none of its actions leads to this situation.

In the database setting an important result with respect to the in-
ference problem is the following. It has been shown that, roughly
speaking, if the attacker knows which are the potentially secret for-
mulae of the defender, and that the disjunction of all of these holds,
and the defender is only allowed to answer yes or no to a question,
then the defender is in a hopeless situation [46]. More precisely, it has
been shown that the defender is in a hopeless situation if and only if
these conditions hold. Intuitively this is the case since if the attacker
knows the potential secrets of the defender and if it knows that the
disjunction of all these secret formulae holds, then it can query all
secret formulae in a sequence. The defending agent has to reply yes
or no and is not allowed to violate consistency, which is impossible
without violating secrecy if the disjunction of all secrets is known to
hold by the attacker. Consequently, to protect secrecy, the disjunction
of secrets has to be protected. If we transfer the restrictions of the
database setup to our model, we can show that the same result holds
for the resulting setting. To model the query-answer protocol as it is
given in the database scenario [46] we define a setting on the basis of
a set of restrictions to the epistemic states and functional components.

Definition 5.4.13. We define the query-answer setting TR as the set-
ting that comprises secrecy agent states and corresponding percepts,
actions and belief operators that satisfy the following conditions:

1. Alllanguages are instantiated by the standard propositional lan-

guage: Lyyv = Ly = Lgs = LRase = Lg\r?cp

2. The belief operator family (=, <pe) consists only of the proposi-
tional consequence operator:

= ={CnP°P} and <= (CnP™P, CnPror)

3. The interpretation function for the view on A is such that

125

126

AGENT-BASED SECRECY

a) queries do not have any effect: For all (A, D, query,) €
PerQA7 it is ty((A, D, query, d)) = 0

b) answers are assumed to carry only their logical content as
information: For all (D, A, answer, ¢) € ActQA it is
tv((D, A, answer, ¢)) = {d}.

4. The inner revision operator ., is a propositional belief base
change operator that satisfies Inclusion and Vacuity, as defined
in Section 2.5.

5. D only answers queries for a formula ¢ with either ¢ or —¢:
For all X € Lgs and (D, A, query,) € PerQ? it holds that

act(Ko (A, D,query, d)) € {(D, A, answer,), (D, A, answer, =)}

6. D does not give answers that lead to the violation of consistency
of the view on A :
For all X € Lgs and all p € PerQA it holds that

VA (K o%act(Kop)) is consistent.

In the database setting it is usually the case that secrets are static.
Here this follows for our considered setting from the fact that the
queries of the attacker do not lead to the violation of secrets of the
defender. This is shown by the following lemma.

Lemma 5.4.14. For each initial agent state (X°,&) € TA it holds for
all KX € Qg (K, PerQ?) that §(K) = $(K°).

Proof. See Appendix A.1.3, Page 240. O

For the setting T?” we can now show that A has a winning strategy
exactly if it believes the disjunction of all secret formulae. We use the
following notation for the set of secret formulae:

F(8(X)) =aer {& | (d, Bel, A) € 8(XK)}
Remember that we assumed all secrets to be active.

Proposition 5.4.15. For each initial agent state (X°, &) € T it holds
forall X € Qg(fKO, PerQA) that X is not sound wrt.
(Ls, XK, PerQA ActQA o, 0%} if and only if

(&) eBel(ValX)).

PEeF(8(X))
Proof. See Appendix A.1.3, Page 240. O

This result is very important for the defined scenario since it re-
duces the computation of winning strategies of attackers to the eval-
uation of a logical formula.

5.4 CHARACTERIZATION OF SECRECY PRESERVING AGENTS

Example 5.4.16. Suppose that Beatriz knows that if Emma wants to take
a day off, then she wants to either attend a strike committee meeting or
she has a job interview with another company. Both cases are secrets
of Emma. Further suppose that Beatriz asks Emma if she wants to take
a day off, and Emma is only allowed to answer with yes or no to
questions.

If Emma answers yes, then she cannot answer to the questions if she
intends to attend a strike committee meeting and if she intends to go to
a job interview without violating a secret of her, or by contradicting
the beliefs of Beatriz. Therefore, the only way to preserve secrecy for
Emma is to answer with no to the first question; hereby avoiding that
Beatriz beliefs in the disjunction of the two secret formulae. This way,
however, Emma cannot satisfy her goal of getting the day of the strike
committee meeting off. It is clear, that she has to violate one of her
secrets in order to satisfy her goal. &

Proposition 5.4.15 also implies that if we demand that agents have
to protect the disjunction of their secret formulae by making it a secret
formula itself, then we obtain a plain setting.

Corollary 5.4.17. Let ‘J'SA C TQA be the setting for which it holds
that for all (X°,&) € ‘J’SA there is some ¢ € F(S$(K°)) such that
$ =P Vper(s(xo)) ¢- The setting (J'SA is plain.

Proof. See Appendix A.1.3, Page 243. O

The result formulated in the corollary is important in the restricted
scenario of a query-answer protocol with only boolean answer values.
However, it does not hold if the restrictions of this scenario are only
slightly weakened. For the scenario in which a third answer value un-
known is allowed protecting the disjunction of secrets is still sufficient,
but not necessary [46]. For more realistic scenarios of autonomous
agents the restrictions of this scenario are way too strong such that
the result cannot be applied. In the following we consider the prob-
lem of preservation of secrets from the other side. That is, we do not
consider what is necessary to protect a secret, but what is necessary
to infer a secret for an attacking agent. We describe that if the empty
action is an option for D than, in order to infer a secret, A has to make
use of meta-inferences.

5.4.3.2 Meta-Inferences and Communication

Meta-inferences are inferences that are not based on explicit informa-
tional content of an action but on the context of its execution and
information about the context. A very good example is the empty ac-
tion, because it does has no explicit informational content and does
not directly influence anything but still its meta-information can be
used by an attacker to draw meta-inferences.

127

128

AGENT-BASED SECRECY

Example 5.4.18. Consider the situation in which Emma has asked for
a day off and is now asked by Beatriz if she intends to attend the
strike committee meeting. Further, Beatriz knows that Emma wants to
keep secret that she intends to attend the strike committee meeting, if
she does intend to attend. If Emma now does not say anything, then
Beatriz infers from Emma’s behavior that the answer is yes. That is,
Beatriz drew a meta-inference from the behavior of Emma. &

In our model the meta-information carried by actions of the de-
fending agent are interpreted by the interpretation function and rep-
resented in D’s view of A.

Example 5.4.19. Beatriz has to recognize that Emma does not answer
her question if she intends to attend the strike committee meeting. This
relates to the meta-information of the absence of an answer. Further
Beatriz has background knowledge allowing her to draw the conclu-
sion that Emma intends to attend the strike committee meeting. Emma
has to be aware of this knowledge and reasoning of Beatriz in order
to preserve secrecy. O

In Section 5.1 we formulated these aspects by means of the princi-
ples P2 (simulation) and P3 (meta-inferences). It is essential that the
modeling of the background information, reasoning methods and ca-
pabilities of the attacking agent meet reality as accurately as possible.
Both over- and underestimation of the capabilities of an attacker is
undesirable as the following example illustrates.

Example 5.4.20. Consider again the situation of Example 5.4.18. Emma
has to estimate the reasoning behavior of Beatriz. Let Emma assume
that Beatriz knows that she does not reply to any question that is re-
lated to sensitive information. That is, any question for which one of
the possible answers would violate secrecy is not replied to. For ex-
ample, Beatriz knows that if she asks whether Emma intend to attend
the strike committee meeting, she would get not answer, independent of
the fact whether Emma intends to attend or not. Under this assump-
tion Beatriz has no reason to infer that Emma intends to attend the
strike committee meeting. If this assumption of Emma is wrong, then
Beatriz will infer that Emma attends the strike committee meeting from
Emma’s refusal to answer her question. Then Emma overestimated the
reasoning of Beatriz.

If Emma answers the question by switching the topic to, e.g., the
weather, assuming that Beatriz will not notice her refusal to answer
the question, she might be underestimating the reasoning of Beatriz,
and possibly notice later that her secret is violated. &

We consider the meta-inference as they are handled in the database
setting. In the database setting meta-inferences are treated in a slightly
extended version of the query-answer protocol in which D is also al-

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

lowed to answer refuse [38]. We assume that refuse is treated as a
proposition of the used language, i.e., refuse € LPP, and modify the
assumption 5. in Section 5.4.18

5. D only answers queries for a formula ¢ with either ¢, —¢ or
refuse: For all X € Lgs and (D, A, query, d) € Per it holds that

act(X o (A, D,query, d)) €
{(D, A, answer,),
(D, A, answer, =),
(D, A, answer, refuse)}.

It is then assumed that D answers refuse whenever any other answer
would violate secrecy. That is, it satisfies: If there is a € ActQ™\
(D, A, answer, refuse) such that X o (A, D, query, d) o a) is not safe,
then

act(K o (A, D, query, d)) = (D, A, answer, refuse).

It is also assumed that A knows the exact behavior of D . It is ar-
gued that A cannot perform any meta-inference from a refusal since
it knows that D would also refuse to answer if answering truthfully
would not violate secrecy. The resulting setting is thus plain, even if
the disjunction of the secret formulae is not protected. We illustrate
this idea in our running example.

Example 5.4.21. Consider again that Emma is asked by Beatriz if she
intends to attend the strike committee meeting and Emma does not an-
swer this question. Then we assume that Beatriz knows that Emma
does not answer any question for which there exists an answer that
might violate secrecy. Given this knowledge, she does not draw any
meta-inference and does not belief that Emma is interested in attend-
ing the strike committee meeting. &

The assumption that A knows the potential secrets of D and knows
that D does not answer any sensitive queries is not very realistic. For
more general scenarios and especially without the assumption that
the attacking agent has complete knowledge about the secrets and
the decision making of the defending agent the modeling of the at-
tacker has to be specific for a given scenario and knowledge repre-
sentation formalism. Before we consider more specific instantiations
of our model we consider general preference relations on options for
action with respect to secrecy.

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

In the last sections we considered the existence of actions that do
not violate secrecy, and we formalized that an agent that performs
such actions preserves secrecy. We did not consider how an agent can

129

130

AGENT-BASED SECRECY

determine and select such actions. That is, what we do in this section.
More generally speaking, we study the deliberation problem in the
light of secrecy.

The agent has to decide on its course of action by deciding among
different options. Options result from alternative goals, subgoals, and,
ultimately, actions. We abstract from these differences and generally
speak about options, and we consider in particular atomic intentions,
that directly correspond to actions, or actions as options. We assume
that an agent chooses its options in accordance with a preference rela-
tion on (a subset of) all possible options. For instance as in the BDI™
model we introduced in Section 3.5.4. We assume that our agents
always consider the empty action as an option and, if answering a
query, they always consider the two possible answer values as op-
tions to answer the query. These are minimal requirements of the set
of options, an agent generally considers additional options as well.

The main question here is then which properties such a preference
relation has to satisfy in order to guarantee preservation of secrecy.
This is sufficient to define secrecy preserving agents, but as motivated
before our secrecy aware agents shall be able to distinguish different
levels of violation of secrecy as good as possible, given the informa-
tion available to them. To this end we formulate a set of principles
that shall be satisfied by a preference relation of a secrecy aware agent.
Moreover, we define a constructive approach to generate a preference
relation that satisfies all principles and we develop an algorithm for
it.

5.5.1 General Model for Preferences on Actions

To consider the aspects of the evaluation with respect to secrecy sepa-
rately from other aspects we employ a modular approach to the eval-
uation of options. The preferences on actions for secrecy preservation
and those from other aspects that lead to preferences on actions, such
as the current intentions of the agent, are then aggregated to form
the overall preference relation of the agent. We assume each criterion
to be independent from the others and to be reflected by a separate
preference relation j%ﬂc, ¢ that is induced by the current agent state
(X, &), for instance by means of a utility function [22]. One of these cri-
teria is the violation of secrecy and is represented by the preference
relation <7, ;. These preferences are combined by an aggregation
function to give a combined preference relation on options =(x z).
For simplicity of presentation we consider preference relations on ac-
tions in the following. These can be equally formalized for intentions.
For atomic intentions AtInt the preference relation on actions can be
directly used by considering (1) <5) x(I’), with I, 1’ € Atlnt; since
a(I) uniquely determines the action for the atomic intention. We de-
fine the overall preference relation <4 ¢)C Act x Act of the agent in

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

its current epistemic state K to be the result of the aggregation of
different preference relations by some aggregation function f,g,, such
that

= (K, &) =def fagg((jgj{,g)/ ceey j?g{/a)))- (5.5.1)
The aggregation of preference relations is studied mostly in the
field of social choice and voting e.g., in [61, 239, 54, 10, 226]. In dif-
ference to the aggregations studied in social choice, here we consider
the aggregation of preferences over actions with respect to different
criteria within one agent and not the aggregation of preferences of
many agents. Hence we do not go into details on the general issues
of preference aggregation and assume that a clear prioritization of
the preference relations is given, cf. [249, 250], such that we can use
a lexicographic aggregation function. For our means, we define a lex-
icographical agqregation function lez})fg as:
flz?g}((jgggla)/---/jFx,a))) = (552)
{(a,a’) | there exists i,1 < 1 < n such that
forallj,1 <j<i:
(a :j(j{,a) a’ or (a }J@,a) a’ and a’ %CK,&) a))

and a 5%9@&) a’

}

This aggregation function orders the actions giving priority to the
preference relations according to their order. It prefers an action a
over an action a’ if the former is preferred over the latter by one
of the relations j}x’ ¢) and none of the higher prioritized relations

jifK, g) With j <1 strictly prefers a’ over a.

We are especially interested in properties of the <{,. | relation that
represents the preferences on options with respect to secrecy, and how
these carry over to the <4 ;) relation by means of the construction
given in (5.5.1) with the lexicographic aggregation function as given
in (5.5.2). Given the results from the previous section (Definition 5.4.7,
Page 122) we know that, in order to guarantee strict secrecy preser-
vation of an agent < ¢) has to prefer actions that maintain a sound
epistemic state. We formalize this requirement in the following prop-
erty:

SOUND PREFERENCE For all p € Per and all a,a’ € Act, if it holds
that X op o® a is sound and X op o® a’ is not sound, then

a’ X(xop,e) G- (5.5.3)
For plain settings it is sufficient to maintain a safe epistemic state

(Definition 5.2.5, Page 111), which translates to the following property
of Z(x,e)-

SAFE PREFERENCE For all p € Per and all a,a’ € Act, if Kopo® ais
safe and K op o a’ is not safe, then a’ <(xop) a. (5.5.4)

131

132

AGENT-BASED SECRECY

If the =<y ;, relation satisfies sound preference, then <(y) inherits
the property if the aggregation function has the property that

if a’ <fg</£) a then for <y)= fﬂgg((jfﬂc,a)""))
it holds that a’ < ¢) a.
The lexicographical aggregation function figé apparently satisfied this
property. Note that, as follows from Proposition 5.4.10 (Page 123), for
plain settings any safe action is a sound action. In the following we
focus on plain settings, if not stated otherwise.

Apart from the secrecy preference relation we introduce and define
another preference relation as a representative for preferences origi-
nating from other criteria than secrecy. It gives preference to actions
that are more informative for the receiver. That is, we model a cooper-
ative agent that, besides protecting its own secrets aims to be as infor-
mative for other agents as possible. For an overview and discussion of
informativity and utility see, e.g., [235]. Our use of an informativity
relation in the secrecy context is similar to the concept of maximizing
the availability of information under the preservation of secrecy, as
considered in works on secrecy in information systems, see e. g., [32].
In [209] different types of lies are considered and preferences defined
for these.

For our means we define the following preferences on our con-
sidered speech acts with respect to informativity. We consider truth-
ful information most informative and untruthful information contra-
informative. Further we consider the empty action to be neutral with
respect to informativity, and querying as more informative than the
empty action. These considerations lead to the following definition of
=% Let X be an epistemic state, Bel the belief operator of agent X,
and Acty the agent’s possible actions, <% is the relation that satisfies
the following properties:

1. for all (X, Xy, type, d) € Acty with type € types;: (5.5.5)
€ j& <xr X+, type, (I)>
if b e Belx(VW(jC))

2. for all (X, Xy, type, d) € Actyx with type € types;:
(X, Xy, type, &) =% €
if ¢ ¢ Belyx(Vw (X))

3. for all (X, Xy, type,) € Acty with type € typesg:
e 2% (X, Xy, type, &)

4. =& is reflexive
5. X5 is transitive

6. =% is minimal, that is, there is no jg’{cjgc that satisfies prop-
erties 1. to 5.

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

By Condition 1. honest speech acts are preferred over the empty ac-
tion, by Condition 2. the empty action is preferred over insincere
speech acts, and by Condition 3. requesting speech acts are preferred
over the empty action. Further, the relation is reflexive, transitive,
(Conditions 4. and 5.) and minimal with respect to Conditions 1. to 5.
(Condition 6.). In the following we focus on the consideration of the
secrecy preference relation j?%&) and the informativity relation <%.
For the aggregation we use the lexicographic aggregation operator
with the order giving priority to secrecy over informativity, i.e.,

A (<8), 25)).

Hence, we know that < (4 ;) satisfies Safe Preference and that prefer-
ence is given to honest answers, if secrecy is not violated by them.

Agents normally cannot consider all possible actions Act and re-
strict their evaluation to a small subset of all actions that is depen-
dent on the current agent state of the agent Act (4 ;) C Act, e. g, those
that might lead towards the satisfaction of one of their goals. As we
showed, a secrecy preserving agent has to execute a sound action.
This demands that the considered subset of actions Act(y) has to be
such that if there is a sound action in Act, then there is a sound action
in Act{g ¢)-

Example 5.5.1. If Emma is asked if she intends to attend the strike com-
mittee meeting then she should consider lying or not answering as an
option in order be able to preserve secrecy. &

We assume that an agent, when it considers to answer a query, al-
ways at least considers to answers with all possible truth values, and
that it considers to not answer the query. In the following we consider
two possible truth values for a formula &, that it is true or false. These
are expressed as evalspeo () = {¢, ~¢}. This means that an agent al-
ways considers to respond with a lie to a query since one of the truth
values is not true; and it considers to refuse to answer by not acting.
These two options resemble the two common distortion strategies lying
and refusing that are considered in the literature on confidentiality in
information systems, see [32] for an overview. Our agents may very
well consider additional options to answer a query by answering with
other formulae or by responding to a query with another query, or
with an inform speech act.

An agent that chooses actions in accordance with a preference re-
lation that satisfies sound preference, and that always considers a set
of actions that contains a sound action is secrecy preserving.

Proposition 5.5.2. An agent with initial agent state (X0,&) € (A,F) is
secrecy preserving if for all X € Q¢ (KX°, Per) and all p € Per:

a) =(xop,¢) satisfies sound preference

133

134

AGENT-BASED SECRECY

b) if there is a sound action a € Act, then there is a sound action
a’ € Act{y ¢)

Proof. See Appendix A.1.3, Page 244.]

It might not be possible for the agent to preserve secrecy, because
there is no sound action or because it considers a set of options that
does not contain the existing sound options.

If the agent chooses its actions according to a preference relation
that does not satisfy sound or safe preference it might also prefer
to perform a secrecy violating action over a non-secrecy violating,
because the utility with respect to some goal out-ways the loss of
utility due to the violation of secrecy. A motivating example for this
scenario is the following.

Example 5.5.3. An information agent providing medical information
about patients should not reveal confidential information about a pa-
tient without a good reason. This reason is, for instance, given if the

information is crucial for the preservation of the respective patient’s
health. ¢

For these cases of, unavoidable or avoidable, violations of secrecy
the <¢, , relation should not only distinguish between actions that
violate a secret and those that do not. It should distinguish the severe-
ness of the violation due to an action as fine grained as possible. This
way it can support the agent’s decision making in these cases as good
as possible. In the following we develop a preference relation that
uses the available information as good as possible to distinguish ac-
tions with respect to secrecy. For this, in Section 5.5.2, we formalize
some relevant notions to capture the violation of secrets, concrete a
concrete change operator and a family of belief operators to be able
to illustrate the concepts. Then, we develop general principles for the
classification of actions with respect to secrecy in Section 5.5.3 and
an algorithm for the construction of a preference relation satisfying
them it in Section 5.5.4.

5.5.2 Classification of actions with respect to secrecy

We want to evaluate the effects of a given finite set of actions Act’
with respect to secrecy on the basis of an epistemic state X. We con-
sider the general case that the defending agent D has an uncertain
world-view, uncertainty of the world-view, and an uncertain view on
the uncertain world-view of A , the uncertainty of the agent-view. The
uncertainty of D about the world-view of A is represented by defin-
ing the view of D on A to consist of a set of world-views. Formally,
V4 (Kqp) is a non-empty set of world-views. We focus on the evalua-
tion of a set of actions for a given epistemic state. The effects of an

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

action are determined by the change operator o® such that we have to
consider, for each action a € Act, the resulting epistemic state K o¢ a.
Further, to evaluate the effects with respect to secrecy we need to
capture the information about the violation of secrets as good as pos-
sible. To this end we define violation sets of an action a with respect
to an epistemic state K, denoted by vioAfter(X, a), which capture the
violation of secrecy. They comprise all sets of secrets that are poten-
tially violated in conjunction after the action has been performed in
the given epistemic state.

Definition 5.5.4 (Violation Sets). Let Vyy be a world-view and § a set
of active secrets. We define the set of secrets in § that are violated for
world-view Vyy:

vio(8, Vi) ={(¢,Bel, A) € 8 | b € Bel(Vw)}.

We use the notion of violated secrets with respect to a single world-
view to define the set of combinations of secrets that are potentially vio-
lated in X after action a:

vioAfter(X, a) = {vio(8§(K o% a), Vw) | Vw € V4(K o% a)}.

As noted before, we assume that all considered sets of secrets are
sets of active secrets as defined in (5.2.1) (Page 112). We define the
comparison of actions on the basis of their violation sets for a given
epistemic state in the following. To illustrate our ideas we consider
this classification for a simple instantiation of the change operator
o and for a simplified set of actions in the following. The approach
works in the same way for general sets of actions and other change
operators.

We restrict our consideration to inform speech acts (cf. Section 3.1).
Since here the sender is always the defending agent and the receiver
is always the attacking agent we leave out the sender and receiver
identifier of the speech act and in the secrets. The set of speech acts
is represented as:

ACtinf =gef {inform(d) | ¢ € Lps}

For this set of actions we define simple instantiations of the change
operator o . We assumed before (Page 115) that the effect of o can be
expressed by means of the component specific operators, such that

Vw(Xo%a) = Vw(K)x*g,, tywl(l),
Va(Ko%a) = Va(X)sc, t4(1) and
S(Ko%a) = S(X)

135

136

AGENT-BASED SECRECY

For Actj,s we assume a change operator o such that

Viw (K ol inform(¢)) = Vaw(X),
Va(Xojginform(d)) = @&(Va(X), inform(d)),
S$(Kol¢inform(p)) = 8(XK).

That is, we reduce the change operator to a simple expansion opera-
tion of the agent-view. This operator considers the effects of an action
for all world-views in a set of world views W, which results in a
set of hypothetically evolved world-views. These are determined by the
agent-view append operator @ as follows:

S(W, inform($)) = {Vw+¢ | Viw € W} (5.5.6)

To specify the world-view append operator + we have to define the lan-
guage of world-view we consider here.

A world-view is represented as a sequence (B; ¢1, ..., dn) with two
parts: the background knowledge B as a set of sentences from a belief
base language L and observations ¢1,..., dn from the correspond-
ing belief set language ¢; € Lgs. In this sense, agent D’s agent-view
on A , denoted V4(Xp), is a non-empty set W C P(Lpg) x Lps”™
of world-views. We also write V(X) instead of V4 (Xp) in the fol-
lowing. We call this set D’s assumed world-views of A . This way, D
assumes that each Vi € W could be held by A, but that each Vy, €
(P(LpB) x Les™) \ W is not held by A. In this set, agent D might have
incorporated a priori assumptions or observations of A as having
been perceived by D.

We consider an expansion operator that appends the informational
content of the speech act, the formula ¢ € Lgs, to a sequence of for-
mulae. The belief operator then computes a consistent belief set from
this sequence. This approach to change operations is called immediate
revision in the literature [106]. The following operator which is used
by D to anticipate the effect of its actions on the world-view of A :

F:P(Le) x Lrs™ x Actinf — P(Lpp) x Lps™ with

<B/ cb]/ ceey ¢n>4‘1nf07’m(¢) def <BI d)1/ R (bn/ (b> (557)

Since here we consider this operator only in the context of D simu-
lating changes to the world-view of A , it takes the inform speech
acts as input, which are actions in this context. That is, we need
only the change operator for actions o, and not the o operator for
percepts. For clarity of presentation of our main ideas, we assume
that BU{d1,..., dn} is consistent in the following. We assume that
the belief operators of the secrets are taken from a belief operator
family (=, <pel) to be given that satisfies Consistency, Suprality and
Credulity<, , cf. Section 3.6.

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

Example 5.5.5. For the illustration of this classification we consider a
propositional instantiation of the belief base and belief set language
as the knowledge representation formalism as shown in Propositional
Instance 1 (Page 63). To adapt the propositional belief operator family
(ZProp, <P7P) to the sequence based world-views we define

MOd(<B/¢1//¢n>) :def MOd(B U{(b]l- --/d)n})

such that the belief operators are defined as follows

Belp(<B;d)1/-' '/CbTL>) :def{d) € L |T(Cbl <BI¢1//¢TL>) 2 p} (558)
with

[{(Mod(¢$) NMod(B U{d1, ..., dn})l
IMod(B U{d1,..., dn}l '

Each operator calculates the agent’s certainty of the truth of a for-
mula ¢ € LY5P as the ratio of its models. The operator can be seen as
accepting every formula as true that holds in at least p - 100 percent
of those models (given by the model operator Mod)

We consider that agent A reasons about a particular person which
can have several properties that are represented by the following set
of propositions At = {p1,...,p4,s1,s2}. Considering A’s relationship
to the person, agent D assumes that A knows whether the person has
properties p1 and p2, whereas D does not know this about the person.
Agent D assumes that A has the following background knowledge:

T(Cb/ <B/ d)1/ ceey Cbn>) :def

B ={p1 Ap2/Aps=s1, p2/A\p3=s1, prAp3=s2}. (559

The background knowledge B expresses that if the person has prop-
erties p1,p2 and p4, then it also has property s1; if it has properties
p2 and p3, then it also has property s1; and if it has properties p; and
p3, then it has property s;.

Thus, D assumes that the following world-views could be held by
A:

Vw1 = (B;p1,p2), Vwz = (B;p1,7p2),
Vws = (B;—p1,p2), Vwa = (B;—p1,p2).

Agent D considers the properties s; and s, as secret formulae and
has the following secrets towards A:

8§ ={(s1,Belo.7), (s2,Belo.6)}.

Hence, D aims to protect property s, towards a more credulous rea-
soning behavior than property si, since Belp 7 =<pel Belo.s. &

We can now simplify the definition of violation sets for the fo-
cused setting we consider here. Let § C Lg be a set of secrets, Vi €
P(Lpp) x Lps™ a world-view and a € Actjy¢ an inform speech act.

137

138

AGENT-BASED SECRECY

The secrets in § that are violated in world-view Vy, are defined as
the set

vio(8, Vw) ={($,Bel) € § | ¢ € Bel(Vw)}

As in the general case, we use this notion of violated secrets with
respect to a single world-view to define the set of combinations of se-
crets from § that are potentially violated with respect to a set of assumed
world-views 'W after action a:

vioAfter(8, W, a) = {vio(8, Vw/) | Vw € ®(W, a)}.

In words, each of these combinations, i. e., elements of the violation
set vioAfter(S, W, a) is a set of secrets that are jointly violated in the
same world-view W € W. In the context of an epistemic state K, we
often use the notation

vio(XK, V) for vio(8(XK), Vw)
and
vioAfter(X, a) for vioAfter(8(X), V(X), a).

We say that D considers a secret potentially violated after action a if the
secret occurs in at least one set in vioAfter(X, a).

Example 5.5.6. Agent D wants to decide whether to reveal that the
person has property p3, or to reveal less by saying p1 V p2 V p3, or
to intentionally lie to A about p3 by saying —p3. In the following we
determine the violation sets for the three actions.

The assumed world-views of agent A are given by Example 5.5.5
(Page 137). It thus considers one of the options

Act! ¢ = {inform(p3), inform(pq1 V p2 V p3), inform(—p3)}

to inform A, referred to as aj, a; and a3, respectively.
Agent D evaluates the effect of each of its considered actions on
the respective world-views, as defined in (5.5.6) as

®(W, inform(d)) ={Vw+o | Vw € W}

For the action a, = inform(p1 V p2V p3) and the world-view Vyy; =
(B;p1,p2) the used 4 operation, as defined in (5.5.7) (Page 136) re-
sults in:

Vwi+az = (B;p1,p2,p1 V2 Vp3)

The belief operator family is the propositional one given in Exam-
ple 5.5.5 (Page 137). We want to determine which of the secrets are
violated in the hypothetically evolved world-views. To this end we

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY 139

compute the ratios v(s, Viv + a) for all combinations of a secret for-
mula s, a world-view Vyy and an action a. The different belief opera-
tors only differ in their threshold value p.

Exemplarily we describe the computation of the ratio for the secret
formula s7 in the potential evolution of the world-view Vyy/; by action
ay. We calculate the ratio

IMod(s1) N Mod (Vw1 +asz)]
IMod (Vw1 +az)l

T(s1, VwiFaz) =

The models of the potential evolution of the world-view Vyy; by ac-
tion a, is given in the following. We represent a model of a set of
formulae by the concatenation of all propositions and denoting nega-
tive truth values by a line over the proposition.

Mod((B;p1,p2,P1 VP2V P3)) =
Mod(B U{p1,p2,p1 VP2V p3}) =

{P1P2P3P4s152, P1P2P3P4 ST 82,
P1P2P3P45S152, P1P2P3P4 5152,
P1P2P3P4S152, P1P2P3P4 ST 82,
P1P2P3P45152, P1P2P3P4S152 }

Now we consider those of the models listed above that are also mod-
els of the secret formula s7:

Mod(B U {p1,p2,p1 VP2V Pp3}) NMod(s1) =

{P1P2P3P45152, P1P2P3P4 ST 52,
P1P2P3P45S152, P1P2P3P4S152,
P1P2P3P45152, P1P2P3P4as152)

We can see that the ratio is 7v(s1, Vwi+az2) = % = % = 0.75. Con-
S1,

sequently the secret (sj,Bely) is violated since v(s1, Vwi+az) =
0.75 > 0.7 such that s7 € Bely 7(Vwi+az2).

The ratios of all the combinations of actions a; and a, with all
world-views are given in the following table. The effects of action a3
are not shown in the table since after that action no secret is poten-
tially violated. We can find the result we just calculated in the first cell.
The gray background of a cell indicates a violation of the respective
secret.

140

AGENT-BASED SECRECY

T(s1, Vwi) | T(s2, Vwi)
Vwi+az 0.75 0.625
Vwataz 0.5 0.6
Vwi+az 0.6 0.5
Vwata; 0.5 0.5

r(s1, Vwi) | r(s2, Vwi)
Vwi+a; 1 1
Vwa+aq 1 0.5
Vws+as 0.5 1
Vwa+a; 0.5 0.5

Given the complete table we can easily determine the combinations of
secrets potentially violated after each action resulting in the following
violation sets:

vioAfter(Kp, ay) = vioAfter(Kp, az) ={
{(SZI Be|0.6)/ (81 s Be|0.7)}/

{(s2,Belog)},{(s1,Belo.7)},
0}

and vioAfter(Xp, az) = {0}. &

Based on the notions we just introduced, we consider the classifica-
tion of actions by natural numbers of a given set of actions with re-
spect to secrecy. Formally, a classification is a function cl : Act/ ¢ — No
such that cl™! (0) # 0. The lower the classification rank of an action,
the lesser is the potential violation of secrecy by this action. We de-
note the set of all classifications of arbitrary finite subsets Act/ ¢ of
actions by CL. Given such a classification cl of Act/ ¢ the canonical
preference relation on Act/ ¢ based on cl is given by

=<&=aila,a’) [a,a’ € Actj¢ and cl(a) > cl(a’)}. (5.5.10)

In the next section we develop a set of principles that describes how
actions should be classified.

5.5.3 Principles for the classification of actions

In this section, we define how a defending agent D should classify a
set of actions with respect to secrecy. We introduce several principles
to this end. Before we do so, we introduce the notion of set-inclusion
maximal sets of a set X of sets which we use for several definitions, it
is denoted by

mCaxX :={S € X| thereisno S’ € X such that S ¢ S’}.

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

In the following we first give the intuition of the principles and then
the formalization.

Principle 1.1 (Avoid potential violations) intuitively expresses that the
agent, D, desires that as few secrets as possible are violated in its as-
sumed world-views. Hence, an action b should be classified higher
(worse) than another action a given an epistemic state X if after the
former action more secrets are potentially violated in combination.
Given the definition of violation sets in Definition 5.5.4, we formalize
this comparison by the T relation that is defined as follows:

vioAfter(X, b) T vioAfter(X, a) if and only if (5.5.11)

1. for all S, € vioAfter(X, a) there exists Sy, € vioAfter(X, b) such
that S; € Sy and

2. there exists some S, € maxc vioAfter(X, a) such that there exists
some Sy € vioAfter(X,b) with Sy C Sp.

Example 5.5.7. Considering Example 5.5.6, it holds that
vioAfter(Kp, aq) 3 vioAfter(KXp, az) and

vioAfter(Kp, ay) 3 vioAfter(Kp, as),

but vioAfter(Xp, a1) and vioAfter(Xp, az) are not ordered by 1. &

The T relation does also not relate two actions if it lacks the infor-
mation in X to compare combinations of secrets potentially violated
after these actions. This is the case if in X for neither of two actions
a and b the first condition for the relation 7 is satisfied. In this case,
there are secrets potentially violated after a in combination that are
not violated in combination after action b, and there is another set of
secrets that is potentially violated after b in combination, but not after
action a. In such a case, it cannot be decided which action’s execution
is better.

Example 5.5.8. The following pairs of violation sets, i.e., sets of sets
of secrets that are violated in combination, are examples that are not
ordered by —:

1. {{(s1,Belo.7)}, 0} and {{(s2, Belo.¢)}, 0}

2. {{(s1, Belo.7)}, 0} and {{(s2, Belo.), (s3, Belo.5)}, 0}.

In Case 1. the violations sets cannot be ordered even though the be-
lief operators of the secret (s1,Belp7) and (s, Belps) can be ordered
since the secret formulae are different and violations with respect
to different formulae cannot be compared. Formally, the condition 1.
of Equation (5.5.11) is violated since {(s1,Belo.7)} Z {(s2,Belo.¢)} and
{(s1,Belo.7)} Z 0.

141

142

AGENT-BASED SECRECY

In Case 2. the violation sets cannot be compared even though in
the first one only one secret is maximally violated and in the second
one two secrets are maximally violated in combination. This is due to
the fact that there is a secret in each of the violation sets that is not
contained in the other and that violations with respect to different
formulae cannot be compared. The sole number of violations is not
sufficient to order violation sets. Formally, the condition 1. of Equa-
tion (5.5.11) is violated since {(s1,Belp.7)} Z {(s2,Belo.g), (s3,Belos)}}
and {(s1,Belo.7)} Z 0, and {(s2, Belo.6)} Z {(s1,Belo.7)}. &

Principle I.2 (Confine degrees of violations) addresses that the case that
secrets might be violated to different degrees. Confining the degree
of violation means that, if a secret formula could not be protected
against inferences with Bel as desired, it should at least be protected
against inferences with operators more skeptical than Bel. To this end,
we consider actions with the same effect concerning combinations
of potentially violated secrets in an epistemic state X, i.e., actions
a,b € Act/ ¢ such that

vioAfter(X, a) ~ vioAfter(X, b) defined as
maxc vioAfter(X, a) = maxc vioAfter(X,b). (5.5.12)

Such pairs of actions are incomparable with respect to the J relation.
But they can be compared with respect to the degrees of the violations
of secrets as formalized in the following relation.

Definition 5.5.9. Let X be an epistemic state and a,b € Act; ¢ such that
vioAfter(X, a) ~ vioAfter(X,b). Action a has a lesser degree of potential
violation than b, written as a <yi, b, if the following two conditions
hold:

1. There exists S € maxc vioAfter(X, b) such that
there exist (¢, Bel;) € S and Bel; € = with Bel] <y Bel; such
that the secret (¢, Bel]) is potentially violated after action b in
X, but not after action a.

2. There are no (¢, Bely) € S and Bel € = with Bel} <, Bel; such
that the secret (¢, Bel}) is potentially violated after action a in
XK, but not after action b.

Example 5.5.10. The table in Example 5.5.6 shows that for each row
for action a; in which there are secrets violated, there exists a row
for action a; in which the same secrets are violated but with strictly
higher ratios. This does not hold the other way round. From this
follows that a; <,i, a1, but not a; <yio az.

Formally, this is the case since

vioAfter(Kp, aj) ~ vioAfter(Kp, as)

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

holds such that the precondition of Definition 5.5.9 is satisfied. There
is just one inclusion maximal violation set such that

maxc vioAfter(Xp, a1) = maxc vioAfter(Xp, D, az)
= {(s2,Belo.s), (s1,Belo.7)}.

For the secret (sz,Belog) in {(s2,Belos), (s1,Belo.7)} we obtain by re-
placing the operator Belg ¢ by the operator Bely 7 that

vioAfter({(s2, Belp.7)}, V(X), a1) = {{(s2,Belo.7)}} and
vioAfter({(s2, Belp.7)}, V(X), az) = {0}.

Hence, the Condition 1. is satisfied for the consideration of a; <yio
ai. For the other secret (s1,Bely7) in {(s2,Bely.s), (s1,Belg.7)} we ob-
tain by replacing the operator Bely 7 by the operator Bely g that

vioAfter({(s1,Belo.g)}, V(X), a1) =
vioAfter({(s1,Belpg)}, V(X), az) =

{(s1,Belp.g)}} and

Thus, there are no (¢, Bel;) € S and Bel; € = with Bel; < Belz
such that (¢, Bel}) is potentially violated after action a; in X, but not
after action aj. Hence, the Condition 2. is satisfied for the considera-
tion of as <,i, aj and the Condition 1. is falsified for the considera-
tion of a; <yio a2. &

If action a has a lesser degree of potential violation than action b it
should be classified lower than the latter. However, the relation <y,
is not acyclic such that a <,i, b can be part of a cycle, i.e.,

there are actions aj, ..., an € Act/¢ such that
a1 =Db,an, =aand a; <yio ajyq forallie{l,..., n—1}

In this case there is no justification to classify a lower than b and we
call a and b conflicting.

Principle I.2 demands that if a has a lesser degree of potential viola-
tion than b and a and b are not conflicting, then a should be classified
lower than b. If a <,i, b and a and b are conflicting, then the princi-
ple accounts for this by requiring that a should be classified at least
as low as b.

Principle II (Minimize classification) requires that the classification
should be as little restrictive as possible with regard to D’s possible
other desires such as cooperative information sharing. The lower the
classification rank of an action the less D is admonished to refrain
from executing that action. In particular, with respect to secrecy no
restriction is posed on all actions with a rank of 0.

Having described our core set of principles we now formalize these
and describe a secrecy reasoner that outputs a classification of actions
in accordance with the principles.

143

144

AGENT-BASED SECRECY

Definition 5.5.11 (Secrecy Reasoner For Action Classification). A se-
crecy reasoner is a function sr : Pgp(act) x Lgs — Cl that is parame-
terized with a family (=, <y,¢/) of belief operators satisfying credulity.
Hereby, Psn(S) denotes the set of finite subsets of S. Thus, a secrecy
reasoner takes a finite subset Act ¢ of Act;,s and an epistemic state K
as input, and outputs a classification cl of Act/ ;. Moreover, the func-
tion sr has to fulfill the following principles:

PRINCIPLE I.1: AVOID POTENTIAL VIOLATIONS
Let a,b € Act/ ¢ be actions and X an epistemic state such that

vioAfter(X, b) O vioAfter(X, a).

Further, let cl = sr(Act/ s, X) be the reasoner’s classification of
Act! ¢ in K. Then, it holds that cl(b) > cl(a).

PRINCIPLE I.2: CONFINE DEGREES OF VIOLATIONS
Let X be an epistemic state and a,b € Act! ¢ such that a <y, b,
then:

1. Conflict Free: If there do not exist actions ay, ..., an € Act/y
such that a1 = b, a, = a and a; <yio aiy1 for all i €
{1,...,n—1}, then it holds that cl(b) > cl(a) with cl =
sr(Act/ ¢, X).

2. Conflicting: Otherwise, it holds cl(b) > cl(a).

PRINCIPLE II: MINIMIZE CLASSIFICATION
Given (=, <pe) as parameter, let sr’ be another function

sr': Pin(Acting) X Lgs — CL

fulfilling Principles I.1 and 1.2

Then, for all Act] s Cgin Actins, for all X € Lgs and for all a €
Act/ ¢ it holds cl’(a) > cl(a) with cl’ = sr’(Act/;,K) and cl =
sr(Act! ¢, K).

Beside the core Principles 1.1, 1.2 and II we define two additional
principles that express interesting and desirable properties for a se-
crecy reasoner. These principles can be shown to be consequences
of the core principles. Both principles consider the cautiousness of
a secrecy reasoner in classifying an action with least violation (clas-
sification rank 0). Again, we first describe the intuitive ideas of the
principles and then formalize these.

Principle III (Be cautious towards credulous reasoners) follows the in-
tuition that the more credulous A is assumed to reason about a secret
formula, the easier that sentence might be inferred because A may
accept more propositions as true and believe them. Thus, the more
credulous the belief operator is in a secrecy constraint, the more cau-
tious agent D has to be while acting.

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

Principle IV (Be more cautious the more uncertain) bases on the gen-
eral idea that being uncertain leads to cautious behavior. Here, the
more world-views could be held by A according to the assumed
world-views, the more uncertain D is about A’s actual situation.

PRINCIPLE III: BE CAUTIOUS TOWARDS CREDULOUS REASONERS

Let K and X’ be epistemic states with equal components possi-
bly except for the sets of secrets that are of the following form:

8(X) ={(¢1,Belr), ... (¢n,Beln)},

8(K') ={(d1,Beli"), ... (¢n,Beln')}
with Bel;” <pe Bel; forallie{1,...,nk

If there exist actions a,b € Act/ ¢ such that
vioAfter(X, a) = {0} and vioAfter(K’,b) = {0},

then for the classifications cl = sr(Act/,¢, X) and
cl’ = sr(Actj¢, K') it holds that

{a € Actjy | cl(a) = 0} C {a € Actjy¢ | cl’(a) = 0}.

In this formalization two sets of secrets §(X) and 8(X’) are consid-
ered. It is assumed that both are identical up to the belief operators in
the secrets. It is further assumed that the belief operator with respect
to each secret formula in §(X) is at least as credulous as the belief
operator with respect to the same formula in $(X’). Then the case is
considered in which there exists an action for each set of secrets that
does not violate any secret. In this case all actions with classification
rank 0 do not violate any secret. In this case we can compare these
sets of actions with rank 0 for different epistemic states on the basis
of set inclusion. If there are no actions that do not violate any secret,
actions with rank 0 with respect to different epistemic states might
violate secrecy to very different degrees and cannot be related on the
basis of set inclusion to make a statement about the cautiousness of
the agent.

For the case of the existence of secrecy preserving actions, it is then
demanded that all actions that are classified with rank 0 with respect
to 8(X) are also classified with rank 0 with respect to $(X’). The
more actions are classified with rank 0 with respect to secrecy, the
less restricted is the agent in its choice of actions.

PRINCIPLE IV: BE MORE CAUTIOUS THE MORE UNCERTAIN
Let X and X’ be epistemic states with equal components except
for V(X) 2 V(X'). If there exist actions a,b € Act/ ¢ such that

vioAfter(X, a) = {0} and vioAfter(X’,b) = {0},

145

146

AGENT-BASED SECRECY

then for the classifications cl = sr(Act/ ¢, X) and
cl” = sr(Act! ¢, K’) it holds that

{a € Actl¢|cl(a) =0} C{a € Act/¢ | cl’(a) = O}

If V(X) 2O V(X') then an agent with epistemic state X' is at least as
uncertain about the world-view of A than an agent with epistemic
state K. In this setting, as for Principle III, the case is considered in
which there exists an action for each set of secrets that does not violate
any secret. The principle formalizes that in this case the set of actions
that are classified with rank 0 with respect to §(X) are also classified
with rank 0 with respect to 8(K’). As said above, the more actions are
classified with rank 0 with respect to secrecy, the less restricted is the
agent in its choice of actions.

The next proposition shows that the Principles III and IV are con-
sequences of the core principles.

Proposition 5.5.12. Any function sr : P, (Act) x Lgs — Cl that satisfies
Principles I.1, I.2 and II also satisfies Principle III and Principle IV.

Proof. See Appendix A.1.3, Page 244. O

After this declarative description of the classification task we turn
to a constructive approach in the next section.

5.5.4 Algorithm for the classification of actions

In this section we present an algorithm, in Procedure 5.5.1, that im-
plements a secrecy reasoner as defined in Definition 5.5.11. That is, it
implements a function sr : P, (act) x Lgs — Cl being parameterized
with a family (Z, <pe) of belief operators with credulity order that
takes as input a finite subset Act/ ¢ of Act;, and an epistemic state X
and outputs a classification cl of Act/;.

The main idea of the algorithm is to keep track of all not yet clas-
sified actions, denoted by unclass, while it iteratively assigns the cur-
rently considered (classification) rank to the actions of the input set
of actions Act/ . To this end, starting with a classification rank of 0,
all actions for which there is no reason not to classify them with the
current rank are assigned the current rank as their classification. In-
tuitively, a reason not to classify an action a with the current rank
is given if more secrets are potentially violated in combination after
a than after another unclassified action b (Principle I.1), or another
unclassified action b’ has a lesser degree of violation than a, without
a conflict (Principle I.2).

In addition to the definitions already introduced, the algorithm
makes use of auxiliary sets to test the preconditions of Principle 1.2,
which we define in the following. For a given epistemic state X the

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

algorithm determines the set of equivalence classes with respect to
the equivalence relation ~ defined in (5.5.12) for an inspected set of
actions A; this set is denoted by A /~. Only pairs taken from the same
equivalence class might satisfy the precondition of Principle 1.2 by
definition. Further, the algorithm has to be able to test conflict freeness
of a pair of actions a, b with a <, b. For this, all (maximal) conflict
sets conflictSets(A, X) are computed for a given equivalence class A.
Formally:

conflictSets(A, X) = maxc {A’ C A |forall a,b € A/, a # b exist
ai,...,an € A'suchthata; =a,a,=Db
and forallie{l,...,n— 1} ai <vio Qit1.}

Note, that for any pair of actions {a, b} C A’ such that
A’ € conflictSets(A, X)

for some A and X with a <,i, b the condition conflict free of Principle
I.2 is violated.

Lemma 5.5.13. Given some set of actions A and an epistemic state X.
The set conflictSets(A, K) is a partition of A, i.e.

1. |JconflictSets(A,X) = A and

2. for all CS,CS’ € conflictSets(A,X), CS # CS’ it holds that CSN
CS' =0.

Proof. See Appendix A.1.3, Page 247. O

The algorithm presented in Procedure 5.5.1 consists of two nested
repeat-until loops. The outer one determines in each execution the
set of not yet classified actions for which Principle I.1 does not give
a reason not to classify them with the currently considered classifi-
cation rank. The inner one determines in each execution the set of
actions out of the selected actions from the outer loop for which Prin-
ciple I.2 does not give a reason not to classify them with the currently
considered classification rank and classifies them.

The outer loop first determines the subset of currently unclassified
actions best whose effects are not worse concerning combinations of
potentially violated secrets than the effects of other unclassified ac-
tions (Principle I.1). Then, it constructs the auxiliary sets to check
the precondition for Principle I.2. In particular, it creates a partition-
ing eqbest of the set best consisting of the equivalence classes wrt. ~.
Then, an array rank]] is created that holds for each equivalence class
A € egbest its currently considered classification rank. Each rank[A]
is initialized in Line 9 by the minimal classification rank for which
Principle I.1 does not give a reason to classify any action of A higher
than any action that is already classified. In the for-loop from Line 11

147

148

AGENT-BASED SECRECY

Procedure 5.5.1 Secrecy Reasoner

Input: Act!, K, (Z, Zpel)

Output: Array cl of classification ranks for actions a € Act/.¢
1: unclass := Act/ ¢
2: for each a € Act] ¢ do

30 cllal:=0

4: end for

5: repeat

6: best :={a € unclass | there is no b € unclass

such that vioAfter(X, a) O vioAfter(X, b)}
eqbest := best/~
8: for each A € egbest do
9: rank[A] := max*{ cl[a] | a € Act/¢ \ unclass and @)
there is b € A such that
vioAfter(X, b) 3 vioAfter(X, a)} + 1

N

10: end for
11: for each A € egbest do

12: conflictSets := conflictSets(A, X)

13: repeat

14: classSets := ()

15: for each CS € conflictSets do

16: if there is no CS’ € conflictSets with CS’ # CS such that
a’ € CS’ and a € CS exist with a’ <,i, a then

17: cla := rank[A] for all a € CS

18: classSets := classSets U{CS}

19: end if

20: end for

21 conflictSets := conflictSets \ classSets

22 rank[A] := rank[A] + 1

23: until conflictSets = ()

24: end for
25: unclass := unclass \ best
26: until unclass = ()

(*) We define max(()) := —1, which is needed in the first iteration only.

to Line 24 each current equivalence class A is first partitioned into its
conflict sets.

The for-loop from Line 15 to Line 20 is intended to determine all
actions of the current equivalence class for which no other action in
the same equivalence class exists such that this pair satisfies the pre-
condition of Principle I.2. This is done by comparing the conflict sets
and either classifying all elements of the conflict set or none. This way
all elements of a conflict set are classified with the same classification
rank. The classified conflict sets of the currently considered equiva-
lence class are stored in classSets and removed from the current set of

5.5 PREFERENCES ON OPTIONS FOR ACTION AND SECRECY

conflict sets after the termination of the for-loop over all conflict sets
in Line 21.

If all actions in best are classified the condition in Line 23 is true
and they are removed from the set of unclassified actions in Line 25.
If all input actions are classified the condition in Line 26 is true and
the algorithm terminates.

Example 5.5.14. We consider the execution of Procedure 5.5.1 for the
running example, continuing Example 5.5.10.

Iteration 1:
Initially we have unclass := {a7, az, a3} in Line 1. As shown in Exam-
ple 5.5.6 it holds that

vioAfter(Xp, a1) = vioAfter(Xp, ay) and
vioAfter(Kp, ar) 3 vioAfter(Xp, az)

such that best := {a3} and therefore also eqbest = {{as}}.

Since Act ¢ \ unclass =) it holds for all A that rank[A] = 0. In Line 12
we get conflictSets = {{az}}. The conflict set {az} trivially satisfies the
condition in Line 16 such that clag = 0. Then {a3} is removed from
conflictSets such that conflictsSets = (). In Line 22 rank[{a3}] := 1,
which does not have any effect in this special case, and the inner
repeat-until loop terminates.

Iteration 2:
For the second execution of the outer repeat-until loop unclass =
{a7, az}. Since

vioAfter(Xp, a1) = vioAfter(Xp, az)

it follows that best := {ay, az} and eqbest = {{a;, a>}}. Then, in Line 9
we get rank[{a;, az}] == 1.

We already showed in Example 5.5.10 that it holds that a, <,io aj
and that it does not hold that a; <,i, a,. This means that a; and a»
are not in a cyclic dependency such that they are in different conflict
sets. Therefore conflictSets = {{a;},{a>}} in Line 12. The condition in
Line 16 is satisfied for {a,} but not for {a;} such that action a; is clas-
sified with cla, := 1 in Line 17. The set {a,} is added to classSets in
Line 18, and the set classSets is removed from conflictSets in Line 21.
Hence, conflictSets := {{a1}} in Line 21. In Line 22 the currently con-
sidered rank is increased such that rank[{a7, az}] := 2.

The next execution of the inner repeat-until loop begins. The only
remaining conflict set {a;} trivially satisfies the condition of Line 16
such that cla; = 2 and conflictSets :=) in Line 21. The inner repeat-
until loop terminates. In Line 25 unclass := () so that the outer repeat-
until loop and thus the algorithm terminates. The output classifica-
tion is

cla; =2, claz =1, clag =0. &

149

150

AGENT-BASED SECRECY

We can show that the proposed algorithm terminates with a com-
plete classification.

Proposition 5.5.15. If for all elementary operations of Procedure 5.5.1
algorithms that always terminate are given, then the algorithm always
terminates and returns a complete classification.

Proof. See Appendix A.1.3, Page 247. O

Further, we can show that the secrecy reasoner implemented by our
proposed algorithm satisfies the Principles I.1, I.2 and II, and thereby
also Principles III and IV.

Proposition 5.5.16. Procedure 5.5.1 satisfies the Principles 1.1, 1.2 and
II, as given in Definition 5.5.11.

Proof. See Appendix A.1.3, Page 250. O

In this and the previous two sections we developed declarative prin-
ciples and an algorithm for the classification of actions with respect
to secrecy under incomplete information. This way, we can generate
a preference relation on actions with respect to secrecy, which is then
used in combination with other preference relations that express the
preferences on actions with respect to e. g., the utility with respect to
the current goal of the agent. If the aggregation function of the prefer-
ence relations is the lexicographic one we used before, then the agent
violates secrecy only as little as possible from its perspective. Other
aggregation operators might enable the agent to weigh the violation
of secrecy of an action against the utility of it with respect to other
goals such that it decides to violate secrets.

In the next section we develop secrecy aware agents based on the
BDI model we developed in Section 3.5. The resulting agents then
make use of the results of this and the previous two sections.

5.6 SECRECY BDIT AGENTS

In this section we combine the basic BDI* agent model as defined
in Section 3.5.4 on Page 56 with the secrecy agent model presented
in Section 5.2 and instantiate the resulting basic BDI* secrecy agent
model by ASP as the knowledge representation formalism. Using ASP
we model the background knowledge and instantiate the functional
components of the communicating agents to adequately process and
reason on the basis of exchanged speech acts. Hereby we include
the representation of the meta-information of speech acts and model
meta-inferences of agents based thereupon. The interaction of beliefs,
motives and know-how is also modeled by use of ASP. Finally, we
use these ASP representations to completely model the SCM Scenario
that we used throughout this thesis.

5.6 SECRECY BDIT AGENTS

Perception
Agent
y
° Epistemic State X
op Ll N Beliefs
World Agent
) ; Secrets
View View
I’ Motivations
Environment °D b Rl EEEEEEEEE R
=
Desires
A
5 U
o1 >
Know-how
~al
Action Intentions
act e -==="""7
L4
Ca

Figure 5.6.1: BDI" secrecy agent model and agent cycle

A basic BDI" secrecy agent state is a tuple (:KSBDI*,b’ E’SBDI+,b)’ Itisa
combination of the basic BDI' state presented in Section 3.5.3 and the
secrecy state presented in Section 5.2. This means that the agent has all
BDI™ components, and its beliefs component consists of the secrecy
components, i. e., world-view, agent-views, and the set of secrets. The
BDI* secrecy agent model is illustrated in Figure 5.6.1 (Page 151), and
formalized in the following. The epistemic state is a BDI* epistemic
state

BDIT b = (B°,D,T,Mp, K<) (5.6.1)

whose beliefs component contains the secrecy components required
for a secrecy setting. That is, the agent’s beliefs are of the form B° =
(Vp,w,V,8) with the world-view of D, Vpw C Ly , a set of views
on the world-views of all other agents, agent-views V, and a set of
secrets 8. Agent views are of the form Vp x , denoting that it is the
view of agent D on the world-view of agent X. The set of agent-views
is then given by

V={Vpxely |XeAg\{D}. (5.6.2)

In the two agent scenario we use for the presentation of our approach
here, the set of agent-views has only one entry, the view of the de-
fender on the other agent, the attacker. For this singleton set {Vip 4}
we also write Vp 4 in the following, by slight abuse of notation. The
set of secrets is given by § C Ls.

We define the language of basic BDI* secrecy epistemic states as

L . A functional basic BDI™ component Espit p = (0%,0%%, act)

s
BDIt,b

151

152

AGENT-BASED SECRECY

consists of change operators o® and 0%?*, and an execute operator act
of the types

os: L3 x Per — L3

BDI*,b BDI*,b’
as . s s
oS ; LBDI*,b x Act — LBDI*,b'
. S
act : LBDﬁ/b — Act.

In Section 3.1 we already defined the speech acts for the base lan-
guage of literals, which is the base language in our ASP setting as
well. Hence, we use the same speech acts as defined in Definition 3.1.2
(Page 38) that define the possible actions and percepts of an agent
X € Ag, these are:

Acty = {(X, Xy, type, L) | Xy € Ag\ {X}, type € types, L € Lit}Ue. (5.6.3)

Pery = {(Xs, X, type, L) | type € types, L € Lit} Upe

with type € types; U typesg whereby types; = {inform, answer} is the set
of informative speech acts and typesgy = {query} the set of requesting
speech acts. The symbol e denotes the empty action and p. denotes
the empty percept. The set of all speech acts as defined in (3.1.1)
(Page 39) is:

L ={(Xs, Xy, type, L) | X5, Xy € Ag, type € types, L € Lit}U{e, pel.

Example 5.6.1. We recall our strike committee meeting example for
speech acts in Section 3.1. In this, the agent Beatriz sends a speech act

(Beatriz, Emma, query, attend _scm)
to agent Emma. The answer of Emma is

(Emma, Beatriz, answer, —attend _scm). &

An ASP basic BDI secrecy agent state (JCE’SI’fSp,ig'SI’fSP) is a basic

BDI secrecy agent state that is based on ASP. In the following we con-
sider ASPbasicBDlIsecrecyagents, hence we leave out the indices of
the components of an agent to ease readability. The agent-view and
world-view languages are the same, the one of extended logic pro-
grams:

Ly =Ly = L2,

The secrets have literals as formulae and an ASP belief operator from
the family (22, <), defined in ASP Instance 6 (Page 66) as

—asp __ asp asp
= - {Belskep’ BeIcred}’

Bel?*® (P) = UAS(P) and Bel2* (P) = NAS(P), and

cred skep

PP {(BelZ® , Bel®™P,), (BelZ , BelZ®), (Bel’P,, Bel™™,)).

—bel skep” cred skep” skep cred”’ cred

5.6 SECRECY BDIT AGENTS

In the following we determine the sets of answer sets AS(P) of a
program P as an intermediate step to determine the belief set for
one of the belief operators. If there is just one answer set, then both

operators have the same result. The belief set language is £Lps = Lit.

The possible secrets for agent X are then

Ls =P{(L,Bel,X) | L € Lit,Bel € Z*P,X € Ag\ D}).
Further, the desires are of the form

Lo © PHL W [LelLituelo1]})

and the intentions are literals £5 C P(Lit). The sets of percepts and
actions are given by Perp and Actp, respectively.

That is, in the ASP setting views are represented by extended logic
programs, and desires and intentions are represented by literals. Note
that by fixing these languages also the languages of the motivational
structures M, Section 3.5.1, and the set of possible know-how bases
19, Section 3.5.2, are defined, since they are defined on the basis of
the languages we just defined. In particular, a belief-desire coupling
(D, ®, u) comprises a desire (D, i) and a set of logical formulae ® C
Lgs. A know-how statement

(L (s1,...,8n),{c1,...,cm}) (5.6.4)

comprises a target goal I, a set of subgoals (s1,...,sn) and a set of
conditions {c1,...,c¢m} € Lgs.

We illustrate the ASP instantiation by means of our strike committee
meeting scenario in the following example.

Example 5.6.2. We start to model the scm scenario and concretize the
formulation of the multiagent system we started in Example 3.3.2
(Page 43). The system contains the agent € for Emma and the agent B
for Beatriz such that

Ag ={&, B}

The initial epistemic states are X2 and X%. We consider X9 in more
detail, it is:

K® = (Ve w, V8 5,821, 08,3%, Mg, Ke).

The superscript 0 is used to emphasize that the component is the
initial version, it represents the components at time o. The motivation
and know-how components are static and therefore do not have this
superscript.

Agent & assumes that B has the background knowledge P%g -
Vg,93:

153

154

AGENT-BASED SECRECY

Predicate Meaning

attend work | Emma has to work the next day.

day_off Emma gets the day_off by Beatriz.

attend scm | Emma intends to attend the strike
committee meeting the next day.

blacklist Emma is on the blacklist of Beatriz.

Table 5.6.1: Representation of meta-information

b
I)if = { ™
T2
T3
T4

Ts5
: blacklist

Te

: attend work

: —attend work
:day off
:day_off

blacklist

TTTTTT

not —attend _work.

day off.

—attend scm.

attend scm.

attend scm.

not day off, —attend work.}

Table 5.6.1 lists the predicates of this program and their respective
meanings. The program encodes that Emma normally goes to work
(r1) and does not go to work if she has a day off (r;). She gets the
day off only if she does not attend the strike committee meeting (r3—74).
If she attends the scm she is put on the blacklist (r5). If she is absent
without having the day_off she is also put on the blacklist (r¢). The
set of answer sets of this program is AS(Png) = {{attend _work}}.
Agent € has the following background knowledge ng C Vg,W:

ng ={ 77 :attend work
T : —attend work
T3 :attend scm.}

< not —attend _work.
< day_off.

The set of answer sets of this program is

AS(Pe) = {{attend work, attend scm}}.

The secret of Emma is given as

82 = {(attend _scm, Bel

skep”

asp B

The initial sets of desires and intentions of agent € are empty

We define the know-how base and the motives, here represented by
motive-desire couplings, of the agents later on. We can note, that
given the answer set of &’s view on the world-view of B it holds
that attend scm ¢ Bel2" (Ve 5) such that K¢ is safe. O

skep

5.6 SECRECY BDIT AGENTS

In the next sections we instantiate the functional component for
ASP. First, we define the belief change operators, then the desire op-
erator, and then the intention operator. After that, we define the com-
plete functional component and we present the knowledge represen-
tation and attacker modeling for communicating ASP agents. Then,
we show how all components play together in our model by showing
that we can completely model our strike committee meeting example.

5.6.1 ASP BDI Belief Change

As defined in Section 3.5.3 (Page 54) the basic BDI change operator is
realized by the sub-operators as illustrated in Figure 5.6.1 (Page 151).
Formally the change operator for percepts is given as

<%/ 33/ j/ mb/ Rf)b> OgDﬁ P =
(B o’ p,
Db (B p),
o8 (3, 037 p, D on (B o3P p),
My, KHv)

and the change operator for actions is given as

<%/ QI j/ Sjtb/ ﬁf.)b> OIC)l,BDFr a= <% Oils”&)B a, 91 j/ 9:n‘b/ %b>

The sub-operations o2 and o} have already been defined in Sec-
tion 3.5.4 (Page 56). We define the changes of the 03" operator to
the components of the beliefs component, in accordance with Equa-
tions (5.3.1) to (5.3.6) (Page 115). We realize the interpretation func-
tions tw, ty;, tv and t{, for our ASP instance by a single interpreta-
tion function with three arguments

t*P: Ag x Ag x I — L3P

It takes two agent identifiers from Ag and a speech act from X as input
and returns an extended logic program. The extended logic program
represents the interpretation of the speech act from the perspective of
the view of the first agent on the world-view of the second agent. If
the agent identifiers are identical the program represents the speech
act for the world-view of that agent. Hence it is

tw(p) =t*P(D, D, p), tyy (a)=1*P(D, D, a), (5.6.5)
tv(p) =t*P(D,A,p) and ty(a)=t*P(D, A, a).

We realize the change operators of the agent by sub-operations, such
that

(Vo,w, Vp,a,8) o p = (Vp,w #*P t25P(D, D, p), (5.6.6)
Vip, a4 ¥ t2P(D, A, p),
*3(8, Vp w P t2°P(D, D, p),
Vop 4 %*P t2P(D, A, p)))

155

156

AGENT-BASED SECRECY

(Vo,w, Vp,a,8) 0™ a = (Vip,w 52 12%*(D, D, a),
v@,ﬂ 3P tasp(D/ A/ a)/
8).

The xg operator is the operator defined in Equation 5.3.9 (Page 118).
The operator **P is the multiple ASP base revision operator as pre-
sented in Section 4.3, Definition 4.3.22 (Page 96). Having defined the
*2°P and the xg operators, the interpretation function tP is the only
operator that has to be instantiated to complete the instantiation of
the belief change operators 03" and 03"

Before we come to the definition of t**P, we elaborate an ASP repre-
sentation of the information conveyed by speech acts. In accordance
with (P1), it represents information on two levels: on the one hand the
actual information, that is the informational content of the speech act;
on the other hand the meta-information about the speech act that has
been performed, which includes especially the information about the
sender and the type of speech act and information revealed by these
parameters. We distinguish these two levels of information available
to the agent. The first is the information about the actual state of af-
fairs, the information-level, and the second is the information about the
communication with other agents, meta-information-level.

Example 5.6.3. The speech act
(€, B, answer, —attend _scm)

contains the information —attend _scm expressing that € does not in-
tend to attend the strike committee meeting. The meta-information of
the speech act is the information about the action itself. That is, that
€ sent an answer to B with the answer value —attend scm. The time
at which the agent executed or perceived the speech also belongs to
the meta-information of the speech act. It is not explicitly represented
in the speech act, but the agent is aware of the time when it registers
a percept and when it executes an action. &

Both levels have to be represented, evaluated and changed ade-
quately. For the representation we use a modular ASP approach in
which the representation of the information level and the meta-infor-
mation level are formalized by ASP programs. Additional rules con-
nect both levels and enable the agent to reason on the meta-information
level, with effects on the information level. The representation of the
information-level is straightforward since the base language are literals,
which can be directly transformed into facts in a program. For the rep-
resentation of the meta-information-level we introduce new literals that
can be used to represent speech acts and the communication history.
We denote the atoms for the representation of the meta-information
level, the meta-information level alphabet, by Atmeta and the literals by

5.6 SECRECY BDIT AGENTS

Litmeta. We denote the set of all other literals as the information level
alphabet Atine =gef At \ Atmeta and the literals by Litins.

The interpretation function outputs the information contained in
the considered ASP speech act on both levels. We define ASP literals
representing that a speech act of type type has been received from
some sender X with informational content L at time t. The time is
assumed to be given in form of increasing natural numbers for each
agent cycle in the multiagent system, as we introduced in Section 3.3.
We use the literal time(t) to express that t is a point in time, it is
added with the current time t to the epistemic component of the
agent in each cycle. Only one agent cycle is executed at the same time
such that the time stamp of each executed speech act is unique. We
represent the, grounded, literal L as an argument of another literal,
i. e., we reify the literals. For this we assume a function c that assigns a
new and unique constant symbol to each grounded information level
literal from U(Litinf), e.g., we can use a literal L of the information
level as an argument of the literal M of the meta-information level as
M(c(L)).

This way the agent records the history of its interaction with other
agents and takes this into consideration to draw inferences. We repre-
sent each speech act by a 4-ary literal sa(, -, -, -) such that, each speech
act of the form

(Xs, Xy, type, L)
is represented by the literal
sa(type, Xs, X, c(L), t).

Example 5.6.4. The first action in our SCM Example 3.3.2 (Page 43) at
time 1,

(€, B,query, day_off),
is thus represented by the literal
sa(query, &, c(day off), 1). O

In Table 5.6.2 we list all predicates for the representation of meta-
information. There is a crucial difference of the semantics of the literal
L depending on whether it is part of an informative or a requesting
speech act. If it is part of an informative speech act, it is a statement
that the literal L holds. If it is part of a requesting speech act, it is the
request for the evaluation of the literal L, and no statement about the
truth value of the literal is made. Hence, the interpretation of a speech
act depends on whether it is a requesting or informative speech act.
Further it depends on the fact if it is represented for the interpreting
agent’s world-view or for its view on the world-view of the other

157

158 AGENT-BASED SECRECY

’ Predicate ‘ Meaning

sa(type, Xs, Xy, c(L), t) A speech act of type type and infor-
mation L was performed by X, or
received by X,, at time t

refused(D, c(L)) D refused to answer a query wrt. L

time(t) t is a time value

at(t) the current time is t

has secret(D, c¢(L) The literal L is a secret formula of
D

holds(c(L)) Literal L holds

related(c(L), c(L")) Literals L and L’ are related

open_sens_query(A,c(L)) | A query from A wrt. the sensitive
formula L has not been answered

open_query(A,c(L)) A query from A wrt. L has not been
answered

Table 5.6.2: Representation of meta-information - Atmeta

agent. And it depends on the fact if it is received or performed by the
agent it is represented for.

The result of the interpretation function has three elements for per-
cepts that are informative speech acts, i.e., type € typesy. The first is
the representation of the meta-information about the speech act, i.e.,
the predicate sa with the arguments representing the type, sender,
literal and time of the speech act. The second element is the represen-
tation of the information-level, i. e., the literal contained in the speech
act. The third element is the representation of the current time. For
requesting speech acts, i.e., type € typesg, the second element is left
out, because a request is modeled not to contain information on the
information-level. If the speech act under consideration is an action
of D the second element is also left out for the world-view of D .
That is, D records that it sent the speech act, but does not need to
revise its world-view by its information-level content. If agent D lies,
it should know how it lied, but should not revise its own beliefs by
its lie. If an agent is not among the receivers of a speech act, then
only the representation of the current time is contained in the result
of the interpretation. If the percept is the empty percept also only
the representation of the current time is contained in the result of the
interpretation.

The following definition of an interpretation function distinguishes
these cases and generates the appropriate program for each of these.

5.6 SECRECY BDIT AGENTS

Definition 5.6.5 (Interpretation Function). Let 1 = (X, X+, type, L) and
the current time be t. The interpretation function is defined as:

1P (X, Y, 1) = { sa(type, X5, Xy, c(L), t).,
L.,
time(t).}

tasp(x/ H/ L) = { Sa(type/ xsr le C(I—)/t - 1)/

L,
time(t—1).}

tasp(xl H/ L) = { Sa(type/ xsr :X:T/ C(L)/t + 1)/

L,
time(t+1).}

t2P(X, Y, 1) = { sa(type, Xs, Xy, c(L), t).,
time(t).}

if type € types;,
X =Yand X =X,

if type € types; and
X#Yand Y = Xs

if type € types; and
X #Yand X = X

if X =Y and
(type € typesg or

(type € types; and
X =Xs)

t2P(X, Y, 1) = { sa(type, X5, Xy, c(L),t—1).,,
time(t—1).}

if type € typesg,
X#Yand Y = Xs

tasp(xl y/ L) = { sa(type/ xS/ xT‘/ C(L),t + 1)'/
time(t+1).}

if type € typesg,
X #Yand X = X5

t25P(X, Y, 1) = { time(t).} else

We call X the interpreting agent, and Y the other agent in the follow-
ing. The first case is the case of the interpretation of an informa-
tive speech act, type € types;, for the world-view of the interpreting
agent, X = Y, as a percept, X = X,. The result is a program com-
prising the representation of the meta-information about the speech
act sa(type, Xs, X+, c(L), t).,, the representation of the logical content of
the speech act L., and the representation of the current time time(t)..

The second case is also for an informative speech act, but for the
view on the world-view of the sender of the speech act, which is the
other agent since Y = X,. The difference to the first case is that the
speech act has been sent at time t — 1 by the other agent such that it
is represented with this time in the agent-view. The logical content
of the speech act is also represented, which means that the receiving
agent assumes that the sender believes the information it sent itself.
Since the sender is assumed to use a skeptical belief operator, believ-
ing a literal L means that it is in all answer sets. This is the case if the
fact L. is added to the view on the sender.

The third case is for an informative speech act that is sent by the
agent and is represented for the agent-view on the other agent as

159

160

AGENT-BASED SECRECY

a percept. The speech act is received, and represented, by the other
agent at time t + 1, and also represented with this time in the agent-
view on the other agent.

The fourth case represents three different cases which all lead to
the same representation of the speech act. All have in common that
the representation is for the world-view of the interpreting agent X,
and that the logical information of the speech act is not contained
in the representation. The logical information of a speech act is not
represented if

a) it is a requesting speech act and the interpreting agent is re-
ceiver or sender: requests do not inform about, but query for
the literal they contain.

b) it is an informative speech act and the interpreting agent is
the sender of it: an agent only keeps a record of the meta-
information of the actions it performed.

The fifth case is for a requesting speech act, sent by the other agent,
represented for the view on the other agent. As in the previous case
requesting speech acts are represented by their meta-information and
the representation of the time. The represented time is the time when
the speech act was sent.

The sixth case is for a requesting speech act sent by the agent, rep-
resented for the view on the other agent. The represented time is the
time the other agent receives the speech act.

The interpretation function still has to be defined for the empty
action and the empty percept. For the empty action € it is

{time(t).} fxX=Y
{time(t+1).} if X #Y

t*P(X, Y, e) =

and for the empty percept pe it is

{time(t).} fxX=9Y
{time(t—1).} ifX#Y

taSP(x/y/pe) -

That is, for the empty action and the empty percept the agent only
notes that the time has passed. As for before, for its view on the
world-view of the other agent the agent records the time as the other
agent records it. The next example illustrates the definition of the
interpretation function.

Example 5.6.6. Consider the speech act (£, B, query,day off) from Ex-
ample 5.6.4, which is an action of €. In the belief change process of £
it is used as input for the interpretation function for its world-view:

tyy ((€, B, query,day_off)) =1*P(E, E, (€, B, query, day_off)) =
{sa(query, &, B, c(day off),1)., time(1).}.

5.6 SECRECY BDIT AGENTS

The same speech act is also the input for the interpretation function
for the agent-view on agent B:

ty, ((€, B, query, day _off)) = t*P(&, B, (€, B, query, day_off)) =
{sa(query, &, B, c(day_off),2)., time(2).}

Agent B receives the speech act as its percept in its next agent cycle,
at time 2. The agent’s interpretation function for its world-view is
given as:

tw((&, B, query,day off)) =12P(B, B, (€, B, query, day off)) =
{sa(query, &, B, c(day off),2)., time(2).}

And for the agent-view on agent € the interpretation function is given
as:

tv((€, B, query,day off)) =t2P(B, &, (€, B, query,day off)) =
{sa(query, &, B, c(day_off),1)., time(1).}. &

Up to this point we have defined all main components of the belief
change operators of" and oy, as defined in (5.6.6). These are the
ASP revision operator ***P, the change operator for secrets *g, and
the interpretation function t**P. We now turn to the definition of the
desire operator in the next section.

5.6.2 Secrecy desire operator

The secrecy desire operator og s uses the belief-desire couplings to deter-
mine the current set of desires in the light of the new beliefs just as the
basic desire operator we defined in Equation (3.5.3) (Page 57). The only
difference in the secrecy BDI™ model is that the beliefs component of
the agent is compound, it is B = (Vp,w, Vo, 4,8). The conditions of
the belief-desire couplings have to be satisfied by the world-view of
the agent, instead of the beliefs component:

09,s(My, (Vo,w, Vp,4,8)) =af (5.6.7)
{(D/ H) ‘ (D/ q)l H) € mtb/ O - BeID(VD,W)}

Similarly the intention operator has to be adapted for the secrecy
agent model, which we do in the next section.

5.6.3 Generation of Options

We defined the intention operator in Procedure 3.5.1 (Page 60), inde-
pendently of the knowledge representation formalism. For the knowl-
edge representation specific parts of the intention operator we have
to define the set of possible intentions, the know-how of the agent

161

162

AGENT-BASED SECRECY

’ Predicate ‘ Meaning
informed (X, c(L)) Intention to inform X that L holds
answered(X, c(L)) Intention to send the answer that L holds
to X
queried(X, c(L)) Intention to send a query for L to X

sacted(type, Xr,c(L))) | Intention to perform speech act of type
type, receiver X, and information L

not acted Intention to not perform any action

Table 5.6.3: Considered intentions and their intuitive meanings

and the evaluation function. Further we have to slightly adapt the ba-
sic options operator opty,, defined in Equation (3.5.4) (Page 58), to the
secrecy BDIT model.

The basic options operator uses a basic know-how base to determine
the current options and is of the form

opty : Loy X L3 X Lﬁf),b — L7.

It determines all subgoals that are contained in a know-how state-
ment for the agent’s current intention, if the conditions of the respec-
tive know-how statement are satisfied. For the use of this operator
with respect to the secrecy BDI*™ model with a compound beliefs com-
ponent B = (Vp w, Vp,4,8) the conditions of the know-how state-
ments have to be satisfied by the world-view Vp w:

OPts(%/j/%b) = {S ‘ (Il (S)I{C]I .. -rcm}) S %b/ (568)
I € j/{(:'l/- M -/Cm} g Bel@(V'D,W)}

Having defined the opt, operator we continue with the definition
of the set of possible intentions. An intention is of the form of a goal,
which means that it characterizes a feature of a state that the agent
aspires to make true. An example of such a property of a state is
that informed(X, c) holds in its belief set, meaning that it has informed
agent X about the literal that is represented by the constant c. All in-
tentions that we consider in the following are described in Table 5.6.3.
Each intention can be instantiated for each agent identifier and for
each constant symbol representing a grounded literal from U(Litjnf),
cf. Section 2.4 (Page 25). This results in the following set of possible
intentions of an agent:

3% = {answered(X,c), informed(X, c), queried(X, c)
| X € Agand ¢ € U{c(L) | L € U(Litjnf)}}

U {sacted(type, X, c) | type € types; U typesg,
X € Agand ¢ € | J{c(L) | L € U(Litjnr)}}

U {not_ acted}

5.6 SECRECY BDIT AGENTS

The intentions of the type sacted and the intention not_acted are
atomic intentions and the corresponding actions are given by the func-
tion «, introduced in Section 3.5.3 (Page 54), as follows (assuming that
we model agent D):

«(sacted(type, X, ¢(L))) = (D, X, type, L)
a(not acted) =€

Example 5.6.7. In Equation (3.5.8) (Page 59) we defined the action func-
tion of our agents as

act(XK) =ger (1),

We consider the first cycle of agent € in Example 3.3.2 (Page 43). The
agent chooses to satisfy the atomic intention

sacted(query, B, c(day _off)),
such that its action is given by
o (sacted(query, B, c(day off))) = (&, B, query, day off). &

After defining the possible intentions of an agent, we define the
know-how of an agent on how to achieve these intentions. An agent
can have the intention that it answers a query of agent X, that it
informs X, or that it queries X with respect to a literal represented by
the constant c. For these intentions we define a basic know-how base, as
introduced in Section 3.5.2 (Page 3.5.2), as follows:

89P = { (informed (X, c(L)), (sacted(informed, X, ¢(L))),0); (5.6.9)
(informed(X, c(L)), (not _acted),);

(answered (X, c(L)),(sacted(answer, X, c(L))), 0);
(answered (X, c(L)),(sacted(informed, X, c(—L))), 0);
(answered(X, ¢(L)),(not_acted), 0);

(queried(X, c(L)), (sacted(query,X,c(L))),0);
(queried(X, c(L)), (not acted),)

(not_acted, (not_acted),)

| Le u(l—itinf) }

In the first line the know-how base expresses that the agent can in-
form agent X by performing a corresponding inform speech act. It
can do this in all situations, which is expressed by the empty set
being the condition of the know-how statement. Alternatively it can
execute the empty action.

Note that, through the evaluation of the empty action as an option
we implement a method for the reconsideration of intentions [211].

163

164

AGENT-BASED SECRECY

If the agent decides that the empty action is the best option, it can
be seen as dropping the corresponding intention. However, in the
secrecy setting we consider, “performing” the empty action can have
effects as well due to meta-infererences of A. Hence from the secrecy
perspective it is adequate to consider it as an option for action. This
also makes sense from the perspective of intention reconsideration
since the evaluation of the empty action is assumed to consider the
general utility of it in comparison to other actions, just as in other
approaches to intention reconsideration.

The know-how base gives the agent three alternatives to answer a
query for literal L. It can answer with L, it can answer with —L , or it
can perform the empty action. Note that one of the first two options
resembles a truthful answer and the other one a lie, and that the last
option resembles a refusal to answer. For the realization of the inten-
tion to query for a literal, the agent can perform the corresponding
query speech act, or it can perform the empty action.

The eval function generates and aggregates the two preference rela-
tions on actions <f,. ;) and <5. The <{,. , relation is based on a clas-
sification of actions as defined in (5.5.10) (Page 140). The classification
is generated by a secrecy reasoner (Definition 5.5.11, Page 144) that is
implemented by the algorithm presented in Procedure 25 (Page 148).
The algorithm relies on the notion of violation sets which we defined
in Definition 5.5.4, Page 135. Here, by slight abuse of notation, we
define these for the ASP instance as follows. Let § be a set of active
secrets, Vp 4 an agent-view and a an action, then

vioAfter(8, Vip 4, a) = {vio(8, Vp 4 **P t*P(D, A, a))} (5.6.10)
with
vio(8, Vw) = {(¢,Bel, A) € 8§ | ¢ € Bel(Vw)}.

The difference to the previous formulation is that we consider agent-
views here that are single world-views and not sets of world-views as
considered before. Further, we instantiated the belief change operator
for the agent-view with the ASP belief change operator for actions
that we use for our ASP BDI instance.

The other preference relation, <., is based on the informativity of
the actions as defined in (5.5.5) (Page 132). In our causes agents to be
as informative as possible while protecting their secrets. Further, it is
an example of another criterion for the evaluation of actions in our
compound preference relation on actions. For the aggregation we use
the lexicographic aggregation operator (defined in (5.5.2), Page 131)
with the order giving priority to secrecy over informativity, i.e.,

A (<5 5, 3%)).

Hence, we know that <) satisfies Safe Preference and that among
the action with the same degree of violation preference is given to
more informative actions.

5.6 SECRECY BDIT AGENTS

In the following section we model meta-inferences on the basis of
the representation of meta-information we developed in Section 5.6.1.

5.6.4 Modeling meta-inferences

We already introduced the two levels of information we model in
Section 5.6.1. The meta-information level allows the agent to keep a
record of the exchanged speech acts. This allows the agent to rea-
son about the communication and to draw meta-inferences from it.
On the information level the beliefs of the agent are expressed by
means of literals. On the meta-information level these literals are ex-
pressed as constants that are the arguments of literals that express the
meta-information. We further define rules that connect these two lev-
els by inferring beliefs of the agent from meta-information. This way
we model such patterns of meta-level reasoning for communicating
agents.

Meta-inferences allow an agent to determine conspicuous behavior
of another agent. We define ASP rules in the following that are used
to define programs that represent a specific pattern of meta-inference
and can be modularly added to a view on an attacker A. These rules
are denoted by r™ with the superscript m denoting a meta-inference
rule and the index i being a natural number.

The most common form of conspicuous behavior are refusals or
deflections.

Example 5.6.8. If Emma does not answer the query of Beatriz if she
intends to attend the strike committee meeting and starts talking about
the weather Beatriz will notice that Emma does not want to answer the
question. From this Beatriz might draw the meta-inference that Emma
does intend to attend the strike committee meeting. &

We formulate a rule with a head literal representing that an agent
D did not reply to a requesting speech act sent to it by A. For this
purpose we have to define which behavior of D is considered as
an answer to a given request. We do this by introducing the literal
related(-, -) that represents that two literals are related. Here, we use
the related predicate to determine if the literal of an answer is related
to the literal that was asked for. In our scenario valid answers to a
query are to answer that the queried literal is true or false, expressed
by sending an answer with the queried literal or with the negation
of it. Hence we consider two literals L and L’ related if and only if
they represent values for the same atom, i.e., if and only if L = —L’
orL=L"

Example 5.6.9. Answering that the weather is fine is not related to the
query if Emma intends to attend the strike committee meeting. &

165

166

AGENT-BASED SECRECY

We assume that any inform speech act containing a literal that is
related to the literal of the preceding request is seen as an answer to
that request. We model that an agent determines that the answer to
a query has been refused if it has not received an answer related to
the query within a defined response time t.s, € IN. In the following
we consider a response time of trsp = 2. That is, if A sent a query
at time t; and at time t; + tyesp it has not received an answer from
D , then A assumes that the request is not going to be answered.
This is modeled in the following rule schema in which we assume
V, V' to be variables representing constants that represent literals on
the information level, and that Ty and T, are variables representing
natural numbers that represent time. Remember that variable names
start with an upper-case letter and constants with a lower-case letter.

1" : refused(D, V) < sa(query, A, D, V, Tq),
not sa(answer, D, A, V', T,),
at(Ty), related(V, V'), T2 > T1 + tresp-

Having determined that a request has been refused by D , agent A
can base inferences on this. We call an agent A a secret aware attacker
if it knows which are the potentially secret formulae of D . That it,
A knows the formulae but not if D beliefs them or not, i.e., it does
not know which secrets are active. We represent the potentially secret
formulae by meta-level literals has secret(D,c(L)), cf. Table 5.6.2. We
define a program for a given set of secrets containing the correspond-
ing potentially secret formulae as facts. This program is formalized
as

Ps(8(Kp)) = {has_secret(D , c(L)).| (L, Bel, A) € 8(Kp)}.

We consider a secret aware attacker A that believes that D has a secret
with the potentially secret formula L. A does not know if L holds, and
recognizes that D refuses a request with respect to L. On the basis of
this behavior A infers that L holds. We formalize this meta-inference
with the help of the following rule:

T3 holds(V) < has_secret(D, V), refused(D, V).

We call an attacker that infers that a potentially secret formula holds
if a query for it has been refused refusal sensitive.

Example 5.6.10. If Beatriz realizes that Emma does not want to answer
the question if she intends to attend the strike committee meeting, then
she believes that Emma does intend to attend the strike committee meet-

ing. o

Hence, for agents with attackers that are secret aware and refusal
sensitive there are cases in which not answering violates secrecy. This

5.6 SECRECY BDIT AGENTS

means in particular that the empty action is not always secrecy pre-
serving.

We have described the knowledge representation on two levels, the
information and the meta-information level, for which we introduced
the two alphabets Atjhf and Atmeta. In the following we describe
how we connect both levels to allow for meta-inferences, i.e., to al-
low inferences on the meta-information level to lead to implications
on the information level. On the meta-information level a literal L
is represented by means of a constant symbol c(L). That this literal
holds is represented by the meta-information level literal holds(c(L)).
By means of Rule r3* the literal holds(c(L)) is inferred. This is an
inference on the meta-information level, but we want the attacking
agent to infer information on the information-level from its meta-
information. We create a connection from the meta-information level
to the information level by defining corresponding rules that form
the program Pjink. This program also formalizes the related concept
we consider here by defining two literal constants to be related if and
only if they are complements of each other or equal. The program is
formalized for a given set of information level atoms Aty as follows:

Piink (Atinf) ={ A + holds(c(A)).;
—A <+ holds(c(—A)).;
related(c(A),c(—A)). | A € Atjnf}

U {related(V’, V) + related(V,V'),;
related(V, V) + related(V, V') ,;
at(T) + time(T), not time(T"), T < T’}

The program consists of the union of two sets, the first set is gener-
ated for all given atoms, the second consists of rule schemata, i.e.,
rules with variables. With the first two rules of the program directly
connects the representation that an information level literal holds on
the meta-information level to the fact that the literal holds on the in-
formation level. The third rule adds the meta-information level literal
related(c(A),c(—A)) for all atoms of the information level. The first
two rule schemata represent the symmetric and reflexive closure of
the related concept. The last rule schema determines the current time
as the maximal time point.

We define programs based on the meta level rules and programs
defined above. We then use these defined programs to define proper-
ties of attacker models.

Definition 5.6.11. Given an ASP agent D with initial epistemic state
X9 and a given set of atoms At. We first define the following pro-
grams:

— Preta P (AL) UPs(8(XS))

S-aware

167

168

AGENT-BASED SECRECY

meta
R-sensitive

=

An attacker modeling VA(JCOD) is

— secret aware if PP C V,4(K9),

S-aware
R meta meta 0
— refusal sensitive if P§S3. UPRYE o © Va(XKy).

In the following we consider an attacking agent that is refusal sensi-
tive and secret aware and attacker models of D that reflect this. Then
D has to reply to queries for sensitive formulae from A in order to be
secrecy preserving; otherwise A infers the secret formula by means
of the meta-reasoning introduced above.

We showed how we can model meta-inference by means of ASP. In
the following we focus on the meta-inference on the basis of sensitive
queries. In particular we make the following assumptions:

1. the empty action is always safe, except the defender is expected
to answer a query with respect to some sensitive formula.

2. In the latter case lying by answering the negation of the secret
formula is safe.

These assumptions guarantee that there is always a safe action, such
that the setting we consider is plain.

In the next section we consider the generation and selection of de-
sires and options of our agents with respect to secrecy and for our
considered setting.

5.6.5 Deliberation and secrecy preservation

We have shown in Proposition 5.5.2 (Page 133) that an agent has to
consider a subset of all possible actions Act{4 ;) C Act as its options
that contains a secrecy preserving action in order to be secrecy pre-
serving. This was formalized by the following condition of Proposi-
tion 5.5.2:

2. if there is a sound action a € Act,
then there is a sound action a’ € ActffK £)-

From the assumptions 1. and 2. above follows that the agents we
consider here satisfy this condition if

a) they always consider the empty action as an option,

b) in case they have received a query with respect to a sensitive
formula they consider to answer this query for all possible eval-
uations of the formula.

5.6 SECRECY BDIT AGENTS

We show next how this can be achieved.

In general, a BDI agent performs actions that contribute towards
the satisfaction of its goals. Hence, to respond to a query with an
appropriate answer the agent has to have the goal to answer the query
and then it has to decide to satisfy the goal by means of one of the
appropriate answers. This means that secrecy has to be considered
not only in the option generation but also in the desire generation.

For our basic BDI" agents, defined in Section 3.5.4 (Page 56), this
means that the agent has to generate the desire to answer the query
by means of its motivation component. Moreover, this desire has to be
selected as the agent’s current intention such that the options for its
realization are considered. This is achieved by guaranteeing that the
desire is the one with the highest motivational value. We guarantee
this by requiring that the defending agent’s motivations contain the
following belief-desire coupling

(answered(A, V), open_sens _query(A,V), 1),

and by requiring that no other belief-desire coupling with a motiva-
tional value of 1 exists. The belief desire coupling contains the condi-
tion

open_sens query(A, V).

We define meta-inference rules from the meta-information about the
received queries in the world-view of D . It is inferred if D has re-
ceived a query with respect to a sensitive formula, and has not yet
answered it. This is realized by assuming that the world-view of D
contains the program Pg(8(X)) and the rules:

T3" :open_sens_query(A, V)< open_query(A,V),
has_secret(D, V'),
related(V, V/).

T3 :open_query(A, V) + sa(query, A,D,V,Ty),
not sa(answer, D, A, V', T,),
related(V, V'), time(T2), T; < Ts.

The body of rule r3} is satisfied if D has received a query from A ,
and has not sent an answer with a literal that is related to the queried
literal to A. Then D has an open query with respect to A and the
queried literal. The body of rule r3" is satisfied if D has on open query
with respect to A and a literal that is related to one of its potentially
secret formulae.

We assume that the motives of D contain the following motives
to answer queries containing the before mentioned motive to answer
sensitive queries, and a motive to answer queries in general:

169

170

AGENT-BASED SECRECY

Manswer =def {(answered(X, V), {open _sens_query(X,V)}, 1), (5.6.11)
(answered (X, V), {open query(X,V)},0.6)}

That is, we assume that 9 nswer € M.

By means of Manswer in combination with the rules r3* and 3 and
the assumption that no other belief-desire coupling with a motiva-
tional value of 1 exists we made sure that, in case of an open sen-
sitive query the agent has the intention to answer this query. Then,
the know-how base £6);,° provides three possible actions for the sat-
isfaction of the intention, to answer with the literal, the negation of
the literal, or to perform the empty action. Agent D then evaluates
these three options with respect to secrecy and selects one of the least
secrecy violating ones. If a secrecy preserving existing option exists
the agent will perform a secrecy preserving one. We demanded in the
Assumptions 1. and 2. that there always exists a secrecy preserving
action such that the secrecy ASP BDI"™ agents preserve secrecy, in our
considered setting.

In the next section we illustrate our complete secrecy ASP BDI*
model by means of our strike committee meeting example.

5.6.6 Complete modeling of the scm example

Example 5.6.12. We completely model the strike committee meeting ex-
ample by use of the secrecy ASP BDI™ model we developed. Hereby we
build on the partial model given in Example 5.6.2. First we define the
initial epistemic states of the two agents € for Emma and B for Beatriz,
these are

j{o = <{V(8),WIV(8),‘B/82}/©?SIjg/m8/%8>
and
K = (VS VS ¢, 8%, D%, 3%, My, 83).

We assume that the view of & on the world-view of B is accurate
and complete, such that it is the same as the world-view of B, i.e,,
Vg,B = V%,W. In Example 5.6.2 (Page 153) we defined the program
P%g and stated that P%g C Vg,%- The complete view on the world-view
of B comprises the program P%g and the meta-information level rules
defined above. The resulting program is therefore:

V= V2 y =PRUPRE . UPTR U, TIIU Prak(At) ={

R-sensitive S-aware

T7 @ attend work < not —attend work.
T2 : —attend work < day_off.

T3 :day off < —attend scm.

T4 1 day off <+ attend scm.

15 : blacklist <+ attend scm.

5.6 SECRECY BDIT AGENTS

Te : blacklist < not day off, —attend _work.
T has_secret(&, attend _scm).
1" s refused (&, V) « sa(query,B,&,V,Tq),
not sa(answer, &, B, V', T,),
at(T,), related(V, V'),
TZ P T1 + tresp~
3% : holds(V) < has_secret(&, V), refused(&, V).
T3t open_sens_query(€, V- open_query(€,V),
has secret(B,V’),
related(V, V/).
T3} :open_query(&, V) < sa(query,&,B,V,Tq),
not sa(answer, B, &, V', T;),
related(V, V'), time(T2), T; < T1.}
U Plink (At)

To keep the presentation of the programs comprehensible we do not
list the rules of P, (At). Also for the answer sets we leave out the
literals stemming from Pji,k(At), unless they are important for the
illustration of some aspect. We indicate the omission by “...”. The
set of answer sets of Vg,% is given as

AS(V%/W) = AS(Vg,.B) = {{attend _work,
has secret(&,attend scm),...}}

We now turn to the representation of the world-view of €. In Ex-
ample 5.6.2 (Page 153) we defined the program ng and stated that
Pl;:g C V(e),w- The complete view on the world-view of & comprises
the program ng and the meta-information level rules defined above:

b
Vg,W = PSg U PE]—esteansitive U P‘%n-ztv?/are U {Tzln’ TE}} U P“nk(At) = {
T7 @ attend work < not —attend work.
T, : —attend work + day off.
T3 :attend scm.

T s has_secret(€, attend scm).

1" : refused (B, V) + sa(query, &,B,V,Ty),
not sa(answer, B, &, V', T,),
at(T7), related(V, V'),
TZ = T1 + tresp-
3% holds(V) < has_secret(B, V), refused(B, V).
T3 :open_sens_query(B, V)« open_query(B,V),

has_secret(&, V'),
related(V, V’).
T3}t open_query(B,V) + sa(query,B,€&,V,Tq),
not sa(answer, &, B, V', T,),
related(V, V'), at(T2), T1 < T».}
U Pjink(At)

171

172

AGENT-BASED SECRECY

Now we define the view of B on the world-view of £. We assume
that B knows the world-view of € apart from the fact that £ intends
to attend the strike committee meeting:

V%,s = Vg,W \ {attend scm.}.
The set of answer sets of the initial view of & on the world is

AS(Vg,W) = {{attend _scm,
has_secret(&, attend scm),
attend work,...}}

and the set of answer sets of the initial view of € on the world-view
of Bis

AS(V%,S) = {{ has_secret(€, attend scm),
attend work,...}}

Agent € has the initial set of secrets

8¢ ={(attend scm, Belzisp,)},

as in Example 5.6.2. B does not have any secrets, such that
S8z =10.

The static know-how base of both agents is given by the ASP know-
how base in Equation (5.6.9) (Page 163), i.e.,

RHe = RHp = AHLT.

The set of motives of € is given by the motives to answer queries
Manswer as given in (5.6.11), £’s motive to ask for the day of the strike
committee meeting off, if it has to work that day, and the motive to not
act with the minimal motivation value.

Me —def Manswer U
{(queried(B, c(day off)), {scm, attend work},0.8),
(not_acted,,0)}

{(answered(X, V),{open sens query(X,V)}, 1),
(answered (X, V), {open query(X,V)},0.6),
(queried(B, c(day off)), {scm, attend work},0.8),
(not_acted,,0)}

The last motive lets an agent perform the empty action if there is no
other motive with a satisfied condition and higher motivation value.

The set of motives of B is given by the motives to answer queries
Manswer, the motive to ask an employee if she attends the strike com-
mittee meeting, if the employee asks for that day off, and the motive to
not act:

5.6 SECRECY BDIT AGENTS

t=0/ K& K
t=1 fK]Cw (€, B, query, day_off) JC%
t=2 Kz (B, &,query, attend_scm) s
t=3 fK% - (€, B, answer, —attend_scm) :K%
t=4 JC?: (B, &, answer, day_off) 7K%
t=5/K3 K3

Figure 5.6.2: Timeline for the scenario in Example 3.3.2.

gﬁ‘B —def EInanswer U
{(queried(&, c(attend _scm)), {open_query(&, c(day off)},0.8),
(not_acted, ,0)}

{(answered(X, V),{open sens query(X,V)}, 1),

(answered (X, V), {open query(X,V)},0.6),

(queried(€, c(attend scm)), {open query(E, c(day off)},0.8),
(not_acted, ,0)}

The initial sets of desires of € and B are initially empty;, i.e.,
D9 =9 =0.

Both agents do not have any intentions initially, such that

The belief operators of the agents are

_ — Ral?SP
Belg = Belg = Belskep.

We completely defined both initial epistemic states. They are both
safe: for K it holds that attend _scm ¢ BelZe2 (Vg 5), and K§ is safe
since §(K%) = 0.

In the following we show that and how this two agent system with
the just defined initial agent states leads to the interaction we de-
scribed in Example 3.3.2 (Page 43), which is illustrated again in Fig-
ure 5.6.2.

Before we do this we make a few notes on the way in which we
present the run of the agent system. Since at each point in time only
one of the agents is executed and since & is executed first it is Xt =
JC(;H), if t is odd; and K¢, = ﬂ(g“), if t is even. For the same reason
speech acts sent by one agent a time t are received by the other agent
at time t + 1.

173

174

AGENT-BASED SECRECY

We structure the presentation of the interaction of the two agents
by the time, i.e.,, t = 1,t = 2,..., in each time step one agent cycle
is performed. The agent cycle is illustrated in Figure 5.6.1 (Page 151).
Each agent cycle consists of the execution of the operators o, act and
09, in this order. We use paragraphs for each operator.

We use the super-script t, to denote that the epistemic state, or
components of it after the change by the incoming percept and be-
fore the change by the agent’s action. That is, for an epistemic state
Kt we denote Kt op as K(t+1)P and KE+HTIP 0@ aet(K(HH1)P) a5 KT,
and the components accordingly. The secrets, intentions and desires
are not indexed this way since they are not changed by o“. The mo-
tives and the know-how base do not change. The description of the
execution of the o operator is again structured into its sub-operations
o, op and oy, as also illustrated in Figure 5.6.1 (Page 151).

We start with the description of the agent cycle of € in time step 1.
We present the steps of the first agent cycle in detail and focus on the
relevant steps in the presentation following agent cycles, to keep the
presentation of the example clear.

t=1:
In its first agent cycle agent € does not perceive anything, represented
by the empty percept p .

X g oPe:
As defined in Section 3.5.3 (Page 54) and Section 5.6.1 the change
operator o is realized by three sub-operators, such that o = o3 -

O@ . Oj:

og: The belief change operator first changes the world-view, then
the agent-view and then the secrets, as defined in Equation (5.6.6)
(Page 155). The change operators for the views are realized by two
sub-operators, the interpretation operator for ASP 12 that interprets
a speech act and outputs an answer set program (Definition 5.6.5,
Page 158), and an ASP multiple base revision operator P that revises
the view by the program output of the interpretation operator (Defi-
nition 4.3.17, Page 93). The secrets are changed by the secrets change
operator *g that is defined in Equation 5.3.9 (Page 118).

The interpretation function for the world-view of B and for the
view of B on & leads to the following results:

t*P(E,E,pe) = {time(1).}
and
t*P(E, B, pe) = {time(0).}.

The revision operation for the world-view is thus

VE w +*P {time(1).}

5.6 SECRECY BDIT AGENTS

The +P operator satisfies Inclusion and Vacuity, which we defined in
Section 4.3.1, Page 86 as:

Inclusion: P+ Q C PUQ
Vacuity: If P U Q is consistent, then PUQ C P Q

From the satisfaction of these postulates and since Vg,w +{time(1).} =
Vg w U {time(1).} is consistent it follows that

Vi = V8 #2% {time(1).} = V§ , U {time(1).}
The same holds for £’s view on the world-view of B, such that
V;:fg = Vg,B ***P [time(0).} = Vg,B U {time(0).}.

As noted before, we determine the sets of answer sets of the epis-
temic components since they form the basis for the computation of
the belief sets for both belief operators (Belg, and Belceq, defined
in ASP Instance 6, Page 66) we consider here. If there is just one an-
swer set, then the belief sets given by both operators are equal to this
answer set, i.e., if AS(P) = {I}, then

Belgyep(P) = NAS(P) = Belcreq(P) = UAS(P) = L.

For the clear presentation of the evolution of the answer sets of the
different views we order the answer sets by first listing the literals
that are facts in the program, then the literals that are inferred. We
order both parts according to the order in which they appeared in
the answer set of the respective view. Further, we print the literals
that have already been part of the previous version of the answer
set of the considered view in gray, and those that were part of the
previous version, but are in the current version crossed out.

The sets of answer sets are:

AS(V;IJW) = {{attend scm,
has secret(&, attend scm),
time(1),

attend work,

at(1),...}}

and
AS(V;?B) = {{ has_secret(E, attend scm),
time(0),

attend work,

at(0),...}}

175

176

AGENT-BASED SECRECY

If there is just one answer set, then the belief set is equal to the answer
set for both belief operators such that the secret of € is not violated,
since

attend _scm ¢ Belyep(AS(Vy s,).

No secret is violated such that, since xg satisfies the Min-Secrecy-
Weakening, property, (5.3.7) Page 115, the set of secrets of € is not
changed by the xg operator (as defined in (5.3.9), Page 118), i.e.:

81 = 5(8°, Vi, Vely) = 8°

op: On the basis of the changed belief component, the desire op-
erator generates the current desires of the agent. The secrecy desire
operator is defined as

09,5 (Mv, (Vo,w, Vo, 4,8)) =ar

{(D/ H) | (D/q)/ H) € mb/q) c BeID(VD,W)}

in Equation (5.6.7) (Page 161).
The conditions of all belief-desire couplings in ¢ are checked,
with

Me =4er {(answered (X, V), {open_sens_query(X, V)}, 1),
(answered (X, V), {open_query(X, V)},0.6),
(queried(B, c(day off)), {scm, attend work}, 0.8),
(not_acted, 0, 0)}.

Only the conditions of the third and fourth belief-desire coupling
are satisfied, since {scm, attend work} C AS(V;T’W). Hence, the re-
sulting current set of desires is

@18 = {(queried(B, c(day_ off),0.8), (not_acted, 0)}.

o5: The intention operator is defined in Procedure 3.5.1 (Page 60),
the opt,, operator is adapted to the secrecy setting in Section 5.6.8.
The intention operator first sets a maximally motivated desire as the
agent’s current intention. Since there is only one desire this one is se-
lected, it is the unique maximally motivated desire. Then, the options
for the satisfaction of this intention are generated by the know-how
base 893" (see (5.6.9), Page 163) of the agent. The options are the
subgoals of all know-how statements whose conditions are satisfied,
these are

sacted(query, B, c(day_off)) and not_acted.

These options are evaluated by the eval function which determines
the preference relation <7, ;| with respect to secrecy and the prefer-
ence relation with respect to informativity <4 and then aggregates
these.

5.6 SECRECY BDIT AGENTS 177

For the construction of the <X, ., relation for each option a the hy-

pothetically evolved world-view Vg FB %3P 3P (D A, a) is constructed
and the violation of secrets with respect to it considered, as defined

in Equation (5.6.10) (Page 164). The currently active secrets are given

as Sactive(V;pW, 81) = 8! since attend scm € Belg (Ve w). In both

hypotheticalfy evolved world-views no active secret is violated:

vioAfter(Sactive (Ve 81, Ve,
«(sacted(query, B, c(day off)))
= vioAfter(Sactive(Vehy, 8'), Ve, ct(not _acted))

= {0}

Both options are secrecy preserving and classified with rank 0. Hence
they are equally preferred with respect to the <f,. ;) relation, i.e.,

S

o (sacted(query, B, c(day off))) =* a(not acted).

By the <% relation, as defined in (5.5.5) (Page 132), the first one is
preferred to the second one, i.e.

a(not acted) <& «(sacted(query, B, c(day off)))

For the aggregated preference relation, by the lexicographic aggrega-
tion operator,

a

= (o6,6)=ef Fage (STac,)7 =)
(cf. (5.5.2), Page 131) we thus get that

o(not_acted) =« gy (sacted(query, B, c(day_ off)))
and consequentlyis

333 = {o(max<

(x.c) (options))} = {sacted(query, B, c(day _off))}

act: As defined in Equation (3.5.8) (Page 59) the act function is
given as:

act(X) =ger x(1).

The speech act that directly satisfies the only atomic intention of the
agent is executed, this is:

o (sacted(query, B, c(day off))) = (&, B, query, day off)

iKép 0% (€, B, query,day off):

The o® operator only changes the beliefs of an ASP secrecy BDI*
agent, as defined in Equation (3.5.9) (Page 60). That is, 0% = og;.
By this operation € changes its views to reflect the changes implied
by the action it just executed.

178 AGENT-BASED SECRECY

og: The change operator for actions is defined in Equation 5.6.6 as

(VD,W/ VD,.A/ 8) Oa“éasp a = <VD,W *3SP tasp(®/ 'D/ (1),
Vp,a x*P 3P (D, A, a),
s).

The results of the interpretation function applied to the given speech
act for the world-view of € and the interpretation function for the
view of € on the world-view of B are

t*P(E, &, (€, B, query, day off))
= {sa(query, &, c(day off),1).,time(1).},
and
t*P(&, B, (€, B, query, day off))
= {sa(query, &, c(day_off),2).,time(2).}.

Both programs are consistent with the world-view of € such that

V¢ #° {sa(query, €, c(day_off), 1)., time(1).}
= V;fw U{sa(query, &, c(day_off), 1).,time(1).}
== V(%,W'

and

VT, +*%P {sa(query, €, c(day_off), 2)., time(2).}
= V.7, U{sa(query, & c(day_off), 2)., time(2).}
- V(;,,‘B'

The sets of answer sets are:

AS(V;:,W) = {{attend scm,
has_secret(&, attend scm),
time(1),
sa(query, &, c(day off), 1),

attend _work,
at(1),...}}
and
AS(V;”B) = {{ has_secret(€, attend scm),
time(0),
sa(query, &, c(day off),2),
time(2),

attend work,
open_query(&, c(day off)),
at(2),...1}.

From the agent-view of € on B it thus follows that B has an open
query with respect to € and the literal day off.

5.6 SECRECY BDIT AGENTS 179

It holds that the secret of € is not violated, since
attend scm ¢ Belskep(AS(V;;,B)).

In the following we describe only the relevant steps in the presenta-
tion of the agent cycles. In particular we leave out the detailed presen-
tation of the belief change operation. The result of the interpretation
operator results directly from its definition. The revision operation
is reduced to the union operation since the interpretation result is
always consistent with the respective view in this example. We do
list the sets of answer sets, which give a concise presentation of the
changes.

t=2:

TK% o(&,B,query,day off):

ogp: Agent B receives the query for the day off from £ and changes
its beliefs component accordingly. The resulting sets of answer sets
are:

AS(VTZ;W) = {{ has_secret(€&, attend scm),

sa(query, &, c(day off),2),

attend work,
open_query(&, c(day_ off)),
at(2),...}}
and
AS(V%‘?S) = {{ has_secret(€, attend scm),
sa(query, &, c(day off), 1),

attend work,

at(1), ...}

The belief set of the world-view of agent B now contains the literal
open_query(&, c(day off)) that denotes that B has not answered the
query for a day off from &. Since B has no secrets, no secret is vio-
lated.

op: The conditions of all belief-desire couplings in 91¢ are checked,
with

My = {(answered (X, V), {open sens query(X,V)}, 1),
(answered (X, V), {open_query(X, V)},0.6),
(queried(€&, c(attend scm)),

{open query(€&, c(day off)},0.8)
(not_acted, #,0)}.

180

AGENT-BASED SECRECY

The conditions of the second, third and fourth belief-desire coupling
are satisfied in this case, such that the desire operator generates the
following set of desires

CDZB = {(queried(&, c(attend scm)),0.8),
(answered(&, c(day off)),0.6),
(not acted, 0)}.

The intention queried(&, c(attend scm)) results from the maximally
asp

motivated desire. The options for its realization, as given by £, in
Equation (5.6.9) (Page 163), are
sacted(query, &, c(attend scm)) and not _acted.

Both options do not lead to the violation of any secrets, but, since it
is more informative, the former is preferred over the latter by the <5
relation (Equation (5.5.5), Page 132) such that

J% = {sacted(query, £, c(attend _scm))}.

act: The executed action is

o (sacted(query, €, c(attend _scm))) = (B, &, query, attend _scm).

fKZBp 0% (B, &, query, attend scm):

og: B changesits views to reflect the changes implied by the action
it just executed. The sets of answer sets of the changed world and
agent-view are:

AS(V%,W) = {{ has_secret(€, attend scm),
sa(query, &, c(day off),2),
sa(query, B, c(attend scm), 2),

attend work,
open query(E&, c(day off)),
at(2),...}}

AS(V%,S) = {{ has_secret(E, attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),

attend work,
open_query(B, c(attend scm)),
open_sens_query(B, c(attend scm)),

at(3),...}}

The belief set of the view on £ contains the new literals expressing
that € has not answered the sensitive query if it intends to attend the
strike committee meeting from B. The epistemic state is safe since there
is no secret.

5.6 SECRECY BDIT AGENTS

t=3:

K} o(B,E, query, attend scm):

o: The sets of answer sets are:

AS(V;I’W) = {{ attend scm,

has _secret(€&, attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),

attend work,
open_query(B, c(attend scm)),
open_sens_query(B, c(attend scm)),

at(3),...}}

AS(VS],JB) = {{ has_secret(E, attend scm),
sa(query, €, c(day off),2),
sa(query, B, c(attend scm), 2),

attend work,
open query(&, c(day off)),
at(2),...}}

The world-view of € contains the a new literal expressing that £ has
not answered the sensitive query if it intends to attend the strike com-
mittee meeting from B.

The secret of € is active but not violated since:

attend _scm ¢ Belgep (AS (VST’B)).

It follows that the set of secrets of € is not changed by the *g operator
(as defined in (5.3.9), Page 118), i.e.:

82 = *s(8k, Vily, Vils) = 8k
op: The conditions of the belief-desire-couplings

(answered (B, attend _scm), open sens query(B, attend scm), 1)
and

(not_acted, (), 0)

are satisfied such that

@2 = {(answered (B, attend scm), 1), (not acted, 0)}

181

182

AGENT-BASED SECRECY

oj: Agent € has the intention to answer the sensitive query. The
intention answered (B, attend scm) can be satisfied by satisfying the
atomic intentions

sacted(answer, B, c(attend _scm)), or
sacted (answer, B, c(—attend scm)), or
not acted.

All these options are evaluated with respect to secrecy. The currently
active secrets are given as Sactive(ng’W, 83) = 83 since attend scm €
Bel e (VS,W) .

For each option a the hypothetically evolved world-view ngiB 535P
t*P(D, A, a) is constructed and the violation of secrets with respect
to it considered, as defined in (5.6.10) (Page 164). We consider these
for the three options considered here in the following:

1.) «(sacted(answer, B, c(attend scm))):
The first option leads to the addition of the fact attend _scm. to szg
such that

attend scm € ﬂAS(V;f’B 3P tSP (D A, a)).

The secret is thus violated.

2.) «(sacted(answer, B, c(—attend scm))):

The second option leads to the addition of the fact —attend _scm. to
31’

Ve Py such that

—attend scm € ﬂAS(VSj’B *¥3P L3P (D A, a)).

The secret is not violated in this case.

3.) «(not_acted):
The third option leads to

t>*P(E, B, e) = {time(4).}.

Since B is refusal sensitive, Definition 5.6.11 (Page 167) secrecy is vio-
lated by this option. In particular, from the following subset of Vg/,B
follows attend scm:

{has_secret(€, c(attend scm)).

time(4).

at(4) + time(4), not time(T"),4 < T".

sa(query,B,E c(attend _scm),2).

refused(€, c(attend _scm)) < sa(query, B, €, c(attend _scm), 3),
not sa(answer,&,B,V' 4),
at(4), related(c(attend _scm), V’),
4>2+2.

5.6 SECRECY BDIT AGENTS

holds(c(attend scm)) + has_secret(&, c(attend scm)),
refused(€,c(attend _scm)).
attend scm < holds(c(attend scm)).} C Vé%,B

Agent € has not answered the query such that it holds
not sa(answer, &, B, V', 4),

with V/ € {c(attend scm), c(—attend scm)}. It follows that € has re-
fused to answer the sensitive query for attend scm, represented by
the meta-information literal refused(&, c(attend scm)). It further fol-
lows that the meta-information literal holds(c(attend scm)) holds and
is used by the linking rule to infer that attend scm holds. Therefore
it holds that

attend _scm € ﬁAS(VéI’13 x3P 3P (D, A, a)).

such that the secret is violated. That is, the third option would violate
secrecy by the meta-inference that results from not answering the
query of B for a sensitive formula of £.

The violation sets for the considered options are:

vioAfter(83, VSTB, o (sacted(answer, B, c(attend scm))))
= vioAfter(83, Vg,B/ a(not_acted))
={(attend scm, Belsisp, B)}
and
vioAfter(83, VSTB, o (sacted(answer, B, c(—attend scm))))

={0}
Hence, we get the following preferences with respect to secrecy:

«(sacted(answer, B, c(attend_scm)))
=5 ¢ ofnot_acted)
=5 ¢) ®(sacted(answer, B, c(—attend _scm)))

There is exactly one maximal element according to the <7, , rela-
tion. Since the lexicographic aggregation operator with highest prior-
ity given to the =<, ., relation is used, the maximal element of the
=(x,¢) relation is the same.

Hence the new set of intentions of € is

’Jg = {o(maxx<, ., (options))} =
{sacted(answer, B, c(—attend scm))}.

act: The action that € executes is

o (sacted(answer, B, c(—attend _scm))) =
(€, B, answer, —attend _scm).

isz 0® (&, B,answer, mattend scm):

183

184

AGENT-BASED SECRECY

&: € changesits views to reflect the changes implied by the action

¢}
it just executed. The resulting sets of answer sets are:

AS(VS,W) = {{attend scm,
has secret(€&, attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),
sa(answer, &, c(—attend _scm), 3),

attend work,

‘
7 7

at(3),...}}
and
AS(VS,B) ={{ has_secret(&,attend scm),
sa(query, €, c(day_off),2),
sa(query, B, c(attend scm),2),
sa(answer, &, c(—attend scm),4),
—attend scm,

attend—work;

open query(&,c(day off)),
day off,

—attend work,

at(4),...}}

The shown changes in the world-view of € reflect that after respond-
ing with —attend_scm to B, agent € has answered the sensitive query.
The fact —attend scm. is added to its view on agent B, such that
day off follows. From day off again —attend work follows. The re-
sulting epistemic state is safe, since the only secret is not violated.

t=4:

X% o (€,B,answer, ~attend scm):

ogp: Agent B revises its beliefs on reception of the percept. The
resulting sets of answer sets are:

AS(V;‘?W) = {{ has_secret(€&, attend scm),
sa(query, €, c(day off),2),
sa(query, B, c(attend scm), 2),
sa(answer, £, c(—attend _scm), 4),
—attend scm,

attend—work;

5.6 SECRECY BDIT AGENTS

open_query(&,c(day off)),
day off,
—attend _work,
at(4),...}}
and

AS(V%'?E) ={{ has_secret(§,attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),
sa(answer, &, c(—attend _scm), 3),
—attend scm,

attend work,

at(3),... 1}

Agent B receives the answer to its query, which adds —attend _scm. to
its world-view. From —attend scm follows day off, and from day off
follows —attend work.

-
The current belief set of B’s world-view contains

open_query(&, c(day_off)
such that the desire operator results in the set of desires:

@% = {({answered (&, c(day off)},0.6), (not_acted, 0)}

oj5:
The options for the satisfaction of the intention resulting from the
maximally motivated desire, answered (€&, c(day off), are

sacted(answer, &, c(day off)),
sacted(answer, &, c(— day_off)), and
not acted.

All three actions are secrecy preserving, since B has no secret. The
most informative, because it is honest, and therefore maximally pre-
ferred action of these according to <& is the first one:

3% = {o(max<_, ., (options))} = {sacted(answer, £, c(day_off))}

act: The action that B executes is

o (sacted(answer, €, c(day _off))) = (B, €, answer,day off).

iK%p 0% (B, &, answer,day off):

185

186 AGENT-BASED SECRECY

og: The resulting sets of answer sets are:

AS(V%,W) = {{ has_secret(€, attend scm),
sa(query, &, c(day off),2),
sa(query, B, c(attend scm), 2),
sa(answer, &, c(—attend scm), 4),
—attend scm,
sa(answer, B, c(day off),4),

open—query{Erefday—off});
day off,

—attend work,

at(4),...}}

and

AS(V%/E) ={{ has_secret(E,attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm),3),
sa(answer, &, c(—attend scm), 3),
—attend scm,
sa(answer, B, c(day off),5),
day off,

attend—work;
—attend _work,

at(5),...}).

The resulting epistemic state is safe since there is no secret.

t=>5:

in’g o (B, &, answer,day off):

os: The resulting sets of answer sets are:

AS(VST’W) = {{ attend scm,

has secret(€&, attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),
sa(answer, &, c(—attend scm), 3),
sa(answer, B, c(day_off),5),

day off,

attend work,
— attend _work,

at(5),...}).

and
AS(V‘?‘,’B) ={{ has_secret(&,attend scm),

5.6 SECRECY BDIT AGENTS 187

sa(query, &, c(day_off),2),
sa(query, B, c(attend scm),2),
sa(answer, &, c(—attend scm),4),
—attend _scm,

sa(answer, B, c(day off),4),

day off,
— attend work,
at(4),...}}

Agent € receives the answer informing it that it has the day off. Conse-
quently it follows —attend work. The resulting epistemic state is safe,
since the only secret is not violated.

o

05:

act:

op: The only belief-desire couplings whose condition is satisfied is
the one for the desire not to act, hence

Q(Sg = {(not__acted, 0)}.

The maximally motivated desire is not to act and therefore the
considered intention. The know-how of the agent defines the same
intention to be the only option to realize it:

32 = {not_ acted}.

The agent’s action is therefore

a(not_acted) =

iKip 0% e:

€.

The resulting sets of answer sets are:

and

AS(Vg,W) = {{ attend scm,

AS(VE 5) = {{

has secret(€&, attend scm),
sa(query, &, c(day off), 1),
sa(query, B, c(attend scm), 3),
sa(answer, &, c(—attend scm), 3),
sa(answer, B, c(day off),5),

day off,

— attend work,

at(5), ... }}.

has secret(&, attend scm),
sa(query, €, c(day off), 1),
sa(query, B, c(attend scm), 3),

188

AGENT-BASED SECRECY

sa(answer, &, c(—attend scm), 3),
—attend scm,

sa(answer, B, c(day off),5),

day off,

— attend work,

at(6),...}}

The resulting epistemic state is safe, the only secret is not violated.

At this point it is clear that in the following both agents continue
to exchange empty actions and that their views will not change apart
from the representation of time. Hence € has the day off and has
preserved its secrets. &

We have just shown that and how we can use our secrecy ASP BDI*
agent model to simulate the motivating example about the strike com-
mittee meeting that we introduced in the introduction and formalized
throughout this thesis. In the next section we discuss the related ap-
proaches to the work we presented in this chapter. Then we conclude.

5.7 RELATED WORK

Secrecy (also called confidentiality or privacy in other works) has been
studied intensively, foremost from a theoretical perspective on the
specification and verification of secrecy preserving computing sys-
tems. In this domain of computer security several definitions of se-
crecy properties have been proposed, e.g., [176, 177, 120, 221]. Later,
general frameworks for the formulation of such properties have been
developed, most notably the MAKS framework [174] and the runs-
and-systems framework [121]. Modal logics have also been used to
reason about secrecy, see e.g., [11, 232]. Also the runs-and-systems
framework has a modal logical interpretation on the basis of inter-
preted systems [121]. The runs-and-systems framework is the most
general framework, and the most appropriate for multi-agent sys-
tems. We elaborate on the relation of our framework to the runs-and-
systems framework in Section 5.7.1.

The works on the formal specification and verification of secrecy
do not provide constructive approaches for the design and the im-
plementation of secrecy preserving systems. Constructive approaches
to secrecy preservation in logic based systems have been developed
mainly for the problem of secrecy preserving query answering, also called
controlled query evaluation, or in a more general form controlled interac-
tion execution. The general question hereby is how an information sys-
tem or knowledge base can answer queries, being as informative as
possible, while preserving secrecy. Hereby, the inference problem [93] is

5.7 RELATED WORK

considered. In contrast to the problem of access control that demands
that the direct access to sensitive information has to be prevented, the
inference problem demands that the collection of sufficient information
to infer the sensitive information has to be prevented. In the database
setting the controlled query evaluation (CQE) framework [213] consid-
ers ways to preserve secrecy while answering queries from a user to a
database. This framework has been extensively studied and extended
by Biskup et al., see e. g., [31, 35, 39, 33, 37, 34, 38, 40], for an overview
see [32]. In a more generalized form it is called controlled interaction
execution (CIE) framework. We elaborate on the relation of the CIE
framework to our work in Section 5.7.2. We discuss other works in
the field of secrecy preserving query answering that are interesting
with respect to our work in Section 5.7.3.

Only few works on the consideration of secrecy in agent theory
have been conducted. These are focused on the consideration of the
problem of secrecy preserving query answering and secrecy in some
other specific problem areas have also been considered for agent
systems. Another concept from agent theory that is related to the
work we presented here are maintenance goals. We discuss these ap-
proaches in Section 5.7.4.

5.7.1 Runs-and-systems base secrecy

The most general and accepted framework for definitions of secrecy
in multiagent systems is the one of Halpern and O’Neill [121]. It gen-
eralizes several other notions of secrecy and forms a basis for discus-
sions of general issues of secrecy. In [36] Biskup and Tadros general-
ized the notions of Halpern and O’Neil by their policy-based notion
of secrecy. In this section we discuss the runs-and-systems framework
and notions of secrecy based on it in relation to our work.

In [121] Halpern and O’Neill base their work on secrecy on the
runs-and-systems framework [89]. A system R is a set of runs r. A run
is a sequence of global states. Global states of a system are identified
using the two dimensions of runs r and time-points m such that a
point is given by (r, m) and the corresponding global state is denoted
by r(m). A global state consists of all local states of all agents Ag =
{X1,...,Xn}, such that

T(m) = (SDC]ISDCZ/ .. -/an)-

The local state of agent X in a global state r(m) is given by ry(m).
The set of all points of a system R is denoted by PT(R). The view of
agent X € Ag at point (r, m) on the system R, called X-information set,
is defined as the set of points that it considers possible in (r,m), i.e.,
all points that are consistent with the local state of the agent:

Ko (r,m) ={(r",m’) € PT(R) | ric(m') = ry(m)}.

189

190

AGENT-BASED SECRECY

In [121] several qualitative notions of secrecy are presented which
all base on the principle that an agent*> D maintains secrecy with
respect to an agent A if and only if for all possible points (r,m) €
PT(R) agent A cannot rule out secrecy relevant information Ip of D .
The idea is that Ip describes a (secrecy-)relevant property of agent D
that needs to be protected. The strongest notion of secrecy is the one
of total secrecy in which Iy is the set of all possible local states of D .

Definition 5.7.1 (Total Secrecy [121]). Agent D maintains total secrecy
with respect to A in system R if, for all points (r,m) and (r/,m’) €
PT(R) it holds that K 4 (v, m) N Kp (r/,m’) # 0.

This notion of secrecy inhibits any information flow and, as stated
in [121], “for almost any imaginable system, it is, in fact, too strong
to be useful.”

Example 5.7.2. In our example, total secrecy would imply that Beatriz
is not allowed to believe that Emma knows her own name since all
information is declared secrecy relevant. &

Several weaker notions of secrecy are presented in [121] that restrict
the amount of relevant information Iy of agent D . In total f-secrecy
relevant information is defined by relevant values of D such that not
the entire local state is relevant. In C-secrecy an A -allowability func-
tion explicitly defines a set of points A is allowed to rule out in each
point. The most general definition of secrecy is policy-based secrecy
presented in [36]. In policy-based secrecy the relevant information of
agent D is defined by a set Jp of sets of D -information sets Ip, i.e.,
Ip ={1},..., I%D}. The construction via sets of information sets allows
for a more expressive formulation of relevant information. It can be
expressed that out of a set Iy some local states can be excluded but
not all, which allows to formulate disjunctive of information. That is,
every set of D -information sets characterizes some relevant property
and the set of all relevant properties of agent D . This is formalized
by a D -possibility policy.

Definition 5.7.3 (D -Possibility Policy [36]). A D -possibility policy policy
is a function:

PT(R) — P(P(P(PT(R))))

such that policy(r,m) := {J}D, J%D, ...} contains sets Jp of D -informa-
tion sets.

Policy-based secrecy is then defined as follows.

2 In [121] the attacking agent A is denoted by i and the defending D by j.

5.7 RELATED WORK

Definition 5.7.4 (Policy-based Secrecy [36]). If policy is a D -possibility
policy, agent D maintains policy-based secrecy with respect to agent
A in R if, for all points (r,m) € PT(R) and for all J% € policy(r, m):

Ka(r,m)N U Ip #0

I'DEJ',J‘D

That is, no property of D characterized by an J should be ruled
out by another agent. Note that each I, and each JX is dependent on
the considered point (r, m).

C-secrecy and total f-secrecy have been shown to be special cases
of policy-based secrecy in [36]. It has been shown in [121] that sepa-
rability [178] and generalized non-interference [176] are stricter than
C-secrecy and total f-secrecy, which are special cases of policy-based
secrecy. In [36] the close relation of policy-based secrecy to opaque-
ness properties of function views as defined in [134] is shown. Hence,
the most expressive definition of runs-and-systems based secrecy is
the one of policy-based secrecy. In [155] we showed that and how we
can express policy-based secrecy in an epistemic agent-based system.

There are several fundamental differences between the concept of
runs-and-systems based secrecy and ours. Most strikingly the runs-
and-systems model models the entire agent systems from a global
perspective and for all possible global states and evolutions thereof.
Our notion of agent-based secrecy is focused on the local state of
an agent. Further, in runs-and-systems based notions of secrecy the
defending agent D needs to have complete information about the at-
tacking agent A in order to satisfy runs-and-systems based notions of
secrecy. This is unrealistic in any practical multiagent system. More-
over, in practical multiagent systems it seems natural that several
agents have secrets and should be able to preserve secrecy. In partic-
ular A should be designed symmetrically and should be able to have
secrets with respect to D . Moreover, both should be able to preserve
secrecy at the same time. This is impossible if both have a complete
view on the other. In our notion of agent-based secrecy the defending
agent can have an uncertain and incomplete view on the information
available to each attacking agent and the preservation of secrecy is de-
pendent on the view D has on the attacking agents. This corresponds
to a realistic setting of an autonomous agent in a multi-agent system.

Secrecy in the runs-and-systems model is preserved if an attack-
ing agent can not exclude all states of a defined set. This resembles
a skeptical inference behavior of the attacking agent. Our notion of
agent-based secrecy is explicitly based on families of belief operators
that resemble different inference behaviors. Each secret can be pro-
tected against a different belief operator. Moreover we consider the
weakening of secrets and violations to different degrees on the basis
of the order among different belief operators.

Another difference between the notion of runs-and-systems based
secrecy and our notion of agent based secrecy is the definition of

191

192

AGENT-BASED SECRECY

secret information. The information to be kept secret in runs-and-
systems based secrecy is implicit. The relevant information is speci-
fied and does not represent secrets but information not to be ruled
out, that is, information agent A has to consider possible. In com-
parison to the notion of secrets in our framework this means that all
information is to be kept secret in which some relevant information is
ruled out. Formally, this means that if J = {I,...I;} € P(PT(R)) char-
acterizes relevant information, the set of secret information is given

by
rg) ={113r' €3,1=PT(R)\I'}.

This set of secrets in form of information-sets forms the basis for the
secrets of agent D . The formulation of secrets in policy-based secrecy
specifies the information an attacking agent shall believe. Hence if we
consider our running example we have.

Example 5.7.5. Beatriz should not be able to rule out that Emma does
not attend the strike committee meeting. Hence —attend _scm is security
relevant information. O

5.7.2 Controlled interaction execution

In the framework for controlled interaction execution (CIE) [32] a logic-
based client-server system with a confidentiality policy is considered.
The policy contains potential secrets that are formulae that should not
be inferred by an attacker if they are satisfied in the defender’s knowl-
edge base. Clients pose queries, and update-requests, to the server,
which reacts to these. A censor component inspects the potential an-
swer of the information system to a query, given the history of queries
and answers, and the client’s assumed background knowledge. In
case of secrecy violation by the original answer of the information
system the censor modifies the answer. In CIE considered options for
modifications are lying and refusing. An answer is a lie if it is an an-
swer value for the query that is inconsistent with the actual database
instance. In the case of a refusal, a refusal notification is sent as a ded-
icated answer value, e. g., refuse. Various instances of this setting have
been studied that differ in several parameters. One is the type of infor-
mation system that is considered, for instance propositional and rela-
tional, complete and incomplete databases are considered. Others pa-
rameters are the considered interaction language (e.g., open/closed
queries, update requests), the policy language (e. g., propositional or
modal logic) and the types of censor (lying, refusal, combined).

In the CIE setting several assumptions are made. One assumption
is an open design. That is, the attacker (client) is assumed to know
the potential secrets of the defender, i. e., the potentially secret formu-
lae but not whether they hold in the knowledge base of the defender.

5.7 RELATED WORK

Further, the attacker is assumed to know the particular algorithm (in-
cluding any distortion strategy) of the defender (censor / information
system). The attacker is assumed to be a skeptical reasoner with un-
limited computational power. These assumptions allow the attacker
to apply meta-inferences on the basis of the defender’s reactions. The
effectiveness of the devised censor functions depends crucially on
these assumptions.

In our approach we do not make any of these assumptions in gen-
eral. We explicitly model the information available to the attacker and
we explicitly model its reasoning capabilities. This way we capture a
more realistic and accurate attacker model. The resulting approach is
less restrictive and more flexible.

The considerations with respect to meta-inference in the CIE setting
are interesting in our setting as well. In the following we summarize
the main results for the fundamental strategies of a censor in the CIE
framework [32] and then relate them to our approach.

UNIFORM LYING The uniform lying censor returns a different an-
swer value then the actual answer value of the database if returning
the actual value would violate secrecy. For the uniform lying censor it
has been shown that, in order to avoid hopeless situations, the protec-
tion of the secret formulae is not sufficient to guarantee preservation
of secrecy; but protecting the disjunction of the secrets as well guar-
antees preservation of secrecy.

UNIFORM REFUSING The uniform refusing censor returns a notifica-
tion that the last request will not be answered if returning the correct
answer would violate secrecy. For the uniform refusing censor it has
been shown that it allows meta-inferences if it only refuses to an-
swer if the truthful answer would violate secrecy. This is due to the
assumption of an open design by which the attacker knows the cen-
soring algorithm of the defender and its potential secrets. That is, the
attacker knows that if the defender refuses to answer, then answering
truthfully would violate a secret. From this it can possibly infer that
a potential secret is actually true. It has been shown that this is not
possible if the censor refuses to answer a query whenever answering
with an answer-value could violate one of its potential secrets, inde-
pendently of whether they actually hold or not.

LYING+REFUSING A combined lying and refusal censor is also de-
vised. It combines the advantage of the uniform lying censor that
not all alternative answer values and their effect on secrecy have to
be considered (as has to be for the uniform refusing censor) with
the advantage of the uniform refusing censor that the disjunction of
potential secrets does not have to be protected (as has to be for the
uniform lying censor). It does not protect the disjunction of secret

193

194

AGENT-BASED SECRECY

formulae and lies if answering the truthful evaluation would violate
secrecy and the lie would not. If the truthful evaluation and all pos-
sible lied answer values would violate secrecy the censor refuses to
answer. Since the refusal is independent of the actual answer value,
it does not allow the meta-inference described in the context of the
uniform refusing censor.

In our approach the agents can perform arbitrary sequences of
speech acts, of which we considered the types

inform, query, and answer.

Further, they can “not act” by performing the empty action. The agent
always generates and considers a set of alternative options for action,
evaluates them and performs a maximally preferred one according to
its evaluation. It evaluates all options with respect to secrecy. Hereby
it is not restricted to answer with an evaluation of a query to a query
but might consider to send some other answer or inform action, or
respond with a query. It evaluates all options with respect to secrecy,
not only by considering an action to be secrecy violating or not but
by classifying the action with respect to secrecy. This evaluation gives
the means to minimize the violation of secrecy if it is unavoidable, or
necessary to accomplish an important goal.

The scenario of query answering and the strict preservation of se-
crecy is hence a special case of our scenario. If we model the query
answering scenario the defending agent receives a query, generates
the goal to answer this query, and then considers its possible actions
to realize this goal. We consider an answer to a query as refused if
the empty action is performed after a query has been received. We
assume that an agent always considers not to act (resembled by the
empty action) as an option. It evaluates if the empty action is prefer-
able over the other actions that are options. Our agents prefer to exe-
cute actions that violate secrecy as little as possible, and among these
it prefers actions that are as informative as possible. When consider-
ing to answer a query for the evaluation of some formula ¢ the agent
generates at least the following options to answer:

a) to answer truthfully with the evaluation of ¢,
b) to answer with any alternative evaluation of ¢,
c) to not answer by executing the empty speech act.

The first option should, in a cooperative setting, be the preferred one
by the agent, if it is not violating secrecy. The second option is a lie
and the third is seen as a refusal to answer. Hence, our agents always
consider at least all of the options that are considered in the CIE
setting. In our approach the CIE strategies are addressed as follows:

5.7 RELATED WORK

UNIFORM LYING We showed in Proposition 5.4.15 (Page 126) that
if we restrict our scenario and agent to a propositional query-answer
scenario we can prove that an agent in this scenario is secrecy pre-
serving if and only if it protects the disjunction of secrets.

UNIFORM REFUSING We do not generally assume that the attack-
ing agent has information about the potentially secret formulae of
the defending agent and its answering behavior. In our approach we
protect secrecy on the basis of the attacker model of the defending
agent. We developed attacker models on the basis of answerset pro-
gramming in Section 5.6. We showed in Section 5.6.4 that if we model
an attacker that has this information we can model meta-inferences
from a refusal with respect to questions for sensitive formulae. If we
model an attacking agent that knows that the defending agent refuses
to answer any queries with respect to sensitive formulae in any case,
then it cannot perform meta-inferences from the refusal, as for the
propositional case.

LYING+REFUSING We defined a preference relation on options in
Section 5.5 and in particular a preference order <5 based on the in-
formativity of the options in (5.5.5) (Page 132) that prefers the empty
action, i. e., refusing, over lying. If we change this relation to a relation
that prefers lying over refusing we would get an agent that shows the
same behavior as the Lying+Refusing censor.

We have illustrated how our approach of agent based secrecy re-
lates to important aspects of the CIE approach, which is the most so-
phisticated approach in the field of secrecy preserving query answering.
In the following section we consider other works on secrecy preserv-
ing query answering and interesting aspects of these.

5.7.3 Secrecy preserving query answering

In [224] the general problem of secrecy preserving query answering
with multiple querying agents that pose queries to a single knowl-
edge base is considered. The interaction of the querying agents is
modeled by a communication graph. It is assumed that an agent
shares all answers it received from the knowledge base with its di-
rect successors in the graph, but it does not share answers received
from other agents with another agent. The secrets are different for dif-
ferent agents. No background knowledge or reasoning capabilities of
the agents are modeled. Secrecy is considered under the open world
assumption and preserved by responding with unknown whenever
responding with yes or no would violate secrecy. This is realized by
constructing and maintaining a secrecy envelope. It contains for each
agent a subset of the knowledge base such that if it is removed from
the knowledge base the secret can not be inferred from the resulting

195

196

AGENT-BASED SECRECY

knowledge base. Queries are answered according to the knowledge
base from which the secrecy envelope with respect to the considered
agent is subtracted. The setup used in this work is simpler than the
one considered in our approach or in the CIE setting. The interesting
aspect of this work, that is not present in other works, is the model-
ing of the interaction of several attacking agents. The used model on
the basis of communications graphs is quite simple, but would make
a good first step towards the extension of our agents to consider the
interaction of several attacking agents.

In [79] multi-context systems are used to model a knowledge base
and a set of users with background knowledge and secrets. The se-
crets of the users define the information to be kept secret from other
agents. The authors show how a multi-context system can be con-
structed to compute privacy preserving answers to queries from users
to the knowledge base. An instance based on default logic is exem-
plarily shown. Only a one-step process of computing answers for a
given query is considered. The computed answers are guaranteed to
be privacy preserving but are not necessarily maximal. This work
considers a very simplified secrecy setting, but is interesting since it
considers a general framework for the use of non-monotonic logics in
the context of secrecy.

In [135] the authors consider the problem of privacy preserving
data publishing for answer set programming. They show how an ab-
duction framework for extended disjunctive logic programs can be
used to compute a privacy preserving version of a given program
with respect to a secrecy policy. This work considers an approach to
secrecy that is based on modifying a knowledge base such that the
resulting knowledge base can be directly used to answer any queries.
That is, it considers a preprocessing approach to secrecy, in contrast to
the dynamic approach that is considered in our approach and others.
In a preprocessing approach potentially less information is available
as in a dynamic approach for a specific query sequence. Further, it is
not applicable for complex interacting agents in a dynamic environ-
ment. The interesting aspect of this work with respect to our work
is its use of an answer set programming based approach to compute
the secrecy preserving version of a logic program. The abductive ap-
proach determines the possible options to modify a logic program
such that no secret is entailed, on the basis on a set of abducibles. In
our approach the know-how of the agent represents the options for
these modifications. As part of future work it would be interesting to
see how the abductive approach could be used to determine options
for action in the light of look ahead planning of an agent. That is, if
the agent considers sequences of actions it could perform to achieve
some goal it could determine options for these actions by means of
abductive reasoning. It would be interesting to investigate how these

5.7 RELATED WORK

approaches can be combined and to make use of the abductive ap-
proach in a dynamic setting.

5.7.4 Secrecy and Agent models

The design and implementation of secrecy aware agents has not been
considered in the general form we present here. Different forms of se-
crecy have been considered for specialized application domains only.
In the following we discuss the most relevant of these works.

Logic programming has also been considered in combination with
agents and secrecy in [171]. There, secrecy is considered in a dis-
tributed abductive logic programming system. It models agents that
have to collaboratively compute consistent answers to a query and
protect their private information at the same time. Secrecy is expressed
by means of the specification of private and askable literals which are
used in a distributed abduction algorithm. That is, the considered
problem is an access control problem rather than an inference prob-
lem. There is no attacker modeling, no considered inferences or meta-
inferences. Also, no general agent model and general actions are con-
sidered.

In [238] and [102] secrecy is considered in distributed constraint
satisfaction problems with application to distributed meeting schedul-
ing. No explicit secrets are considered, but a quantitative assessment
of privacy loss on the basis of number of possible states is defined
which can be used to define secrecy vs. efficiency tradeoffs. No agent
model is considered, but the assessment of privacy loss is somewhat
related to our concept of the classification of actions with respect to
secrecy.

The closest to the general consideration of secrecy in agent mod-
els are the works on the integration of the CIE approach, which we
discussed above, into agent models. In [39] it is proposed to use a
censor component, which is external to the agent cycle, to control the
agent’s actions prior to execution and modifying them if necessary.
While this might be adequate for censoring the answers of a database,
it is not adequate in agent theory since it contradicts the autonomy
of an agent in its decision making. Moreover, it is very restricted in
its possibilities since the censor is not involved in the deliberation or
planning of the agent. This approach is discussed for a scenario of a
negotiating agents. Moreover, the actual realization of this approach
is left open in [39].

In her dissertation, [222], Cornelia Tadros considers a defending
agent that reacts to iterated query, revision and update requests from
an attacking agent. For the definition of secrecy similar assumptions
as in the CIE setting are made, i. e., complete information and unlim-
ited computational power of the attacker. In this context she consid-
ers non-monotonic reasoning formalisms and belief change operators

197

198

AGENT-BASED SECRECY

from belief revision theory of the agents are considered. However,
also there, the CIE approach is used as an external control instance of
the agent that modifies the agent’s actions. No complete agent model
or agent-based notion of secrecy, as we consider in this work, is con-
sidered.

In contrast to these works that use a censor component to control
the agent’s behavior, we consider the design of secrecy aware agents.
That is, we integrate secrecy into the agents’ reasoning, deliberation
and means-end reasoning processes to achieve general autonomous
secrecy preserving agents apt to perform well in a dynamic setting.

Our integration of secrecy into the agent’s deliberation and means-
ends reasoning is comparable to the consideration of secrecy as a kind
of maintenance goal of the agent. A maintenance goal is represented by
a maintenance-condition, which the agent aims to keep satisfied. In
most of works in agent theory and practical systems that consider
maintenance goals only reactive maintenance goals [82] are considered.
If the maintenance-condition of a reactive maintenance goal is vio-
lated the agent starts acting towards its recovery. For instance, if the
battery level of a robot drops below a set threshold it moves to the
charging station. This approach is obviously not appropriate for the
preservation of secrecy. Proactive maintenance goals on the other hand
are taken into consideration by the agent’s reasoning and make antic-
ipation of the actions of the agent necessary to prevent the violation
of the maintenance-condition [81, 129]. This formulation seems to be
more adequate to capture the preservation of secrecy. However, only
little work on proactive maintenance goals exists. Most of these focus
on the definition and formalization of different types of maintenance
goals [17, 81, 129, 67] that can be elegantly formulated by means of
modal logics, e. g., linear temporal logic formulae [67].

Few more practical approaches to proactive maintenance goals ex-
ist. In [129] proactive maintenance goals are considered for agents
based on the agent programming language GOAL [130]. The authors
specify the semantics of a maintenance goal on the basis of an n-step
look-ahead operator which is assumed to be capable of determining the
possible next n steps of the run of the agent. The actions of the agent
are then constrained to those that maintain the condition that the
maintenance-condition is not violated in any of the possible next n
steps. Other works also rely on such a look-ahead operator, e. g., the
future operator in [82]. However, no constructive approach for such
an operator is described, it is assumed to be given.

Secrecy has not been considered as a maintenance goal and the ex-
isting approaches to maintenance goals only specify the semantics of
maintenance goals abstractly and do not address the issue of the de-
sign of agents with proactive maintenance goals. The examples used
in the literature consist of simple physical agents. As we have shown,
agent based secrecy calls for an appropriate epistemic state of the

5.8 CONCLUSION

agent that includes the specification of secrets, views of the informa-
tion available to other agents. Belief change operators, different belief
operators and an involved evaluation of options with respect to se-
crecy are needed. Moreover, in contrast to agents that perform ontic
actions considered in the literature on maintenance goals, with re-
spect to secrecy there do not generally exist actions that can be used
to “undo” other actions. For example, in the literature on mainte-
nance goals an unload action is considered that recovers from a state
in which the maximum load of a container has been exceeded, or a
charge_battery action that recovers from a state in which the battery
level is too low.

In our approach of agent based secrecy we defined secrecy aware
agents and secrecy preserving agents. The former are required to “do
their best” to preserve, and recover, secrecy and the latter are de-
manded to never violate a secret by their actions. Our definition of
a safe epistemic state can be seen as our maintenance-condition and
our semantics with respect to a strictly secrecy preserving agent is
that this condition is always satisfied. While this, agent based, defini-
tion is very weak from the point of view of the literature on secrecy it
has been deemed too strong in the literature on maintenance goals for
agents. The proposed weaker conditions, such as always eventually or
always after k steps, in the latter field have mostly also been dismissed
as being to strong in practice. In [82] it is argued that an agent should
have proactive and reactive methods for maintenance goals available
since it is highly unlikely that the proactive approach is capable of
avoiding that the maintenance-condition is violated in practice. Our
approach of secrecy aware agents captures both methods. The proac-
tive part is captured since the agent simulates the effects of its actions
before it performs them. This way the action selection of the agent
is constrained. The reactive part is captured by the classification of
action with respect to secrecy. If secrecy is violated the agent chooses
the actions that recover secrecy as good as possible. Secrecy in our ap-
proach is a dynamic maintenance goal due to the change operator for
secrets. In other works the dynamics of proactive maintenance goals
are not addressed.

5.8 CONCLUSION

In this chapter we presented an approach to secrecy from the perspec-
tive of an epistemic agent. In this perspective, the information of an
agent is uncertain and incomplete, and the agent acts in a dynamic
environment with other agents. The agent is interested in achieving
its goals, and has to take care to violate its secrets as little as possi-
ble. We call such agents secrecy aware agents. These agents are secrecy
preserving, if it is possible in their setting. This is mostly not the case
in uncertain dynamic environments. In case this is not possible, the

199

200

AGENT-BASED SECRECY

agent does its best to violates secrecy as little as possible, and it tries
to restore secrecy if that is feasible. We presented a thorough theoret-
ical, conceptional and practical account of secrecy from this perspec-
tive.

We used our general epistemic agent model, which we presented
in Chapter 3, to define an epistemic agent model for secrecy. It makes
use of non-monotonic reasoning and well founded belief change oper-
ators. We defined secrets that specify the reasoning behavior against
which a formula shall be protected, based on the families of (non-
monotonic) belief operators we introduced in Chapter 3. We used
the credulity order on belief operators to compare the strength of se-
crets, and to weaken them. We defined a notion of secrecy preserving
agents that are required to never perform a secrecy violating action.
Then we elaborated on aspects of the change operators, which we
formalized in Chapter 4, with respect to secrecy, and defined a set
of postulates for these. We further developed a change operator for
secrets that minimally weakens secrets.

We formulated the notion of a setting and a game theoretic formu-
lation of winning strategies with respect to secrecy. We defined sound
states as states in which the attacking agent does not have a winning
strategy. Based on this definition we showed that the defending agent
has to maintain a sound state in order to be secrecy preserving. We de-
fined a setting for a typical query-answer scenario used in works on
secrecy in databases. For this setting we showed that, as was shown
in the literature on secrecy in databases, an agent is secrecy preserv-
ing if and only if it protects the disjunction of its potentially secret
formulae. In our formulation of secrecy this means that, for this sce-
nario, determining if the attacker has a winning strategy is realized
by checking if the disjunction of secrets is preserved. Further, we for-
malized plain settings in which an agent does not have to consider
future actions, and considered these in the following.

We defined a preference relation on the options for action of an
agent that forms the basis for the agent’s deliberation. The relation
is constructed by an operator that aggregates several preference re-
lations with respect to different aspects. In particular, we defined
a lexicographic aggregation operator and two preference relations,
one with respect to secrecy and one with respect to informativity. We
based the preference relation with respect to secrecy on a numerical
classification of actions. For secrecy aware agents that cannot preserve
secrecy, the fine grained classification of possible actions with respect
to the violation of secrecy is essential to not violate secrecy more than
necessary. We formalized a set of principles for such a classification
with respect to two dimensions of uncertainty of the defenders view
on the attacker. One is the uncertainty of the world-view of the at-
tacker, and the other is the uncertainty of the defender’s view on
the world-view of the attacker. These principles consider the amount

5.8 CONCLUSION

of potentially simultaneously violated secrets as well as their degree
of violation on the basis of the credulity order on belief operators.
Further, we formalized principles for the intuitions that a defending
agent should be the more cautious the more uncertain it is, and the
more cautious the more credulous the reasoning behavior is against
which it protects its secret formulae. We showed that these last two
principles are implied by the first three principles. Moreover, we de-
veloped an algorithm and proved that it satisfies all principles. We
also proved that the algorithm terminates and that it produces a com-
plete classification.

We considered a complete agent model for secrecy aware agents on
the basis of the basic BDI™ agent model we presented in Chapter 3. We
instantiated this agent model by use of ASP and the ASP change op-
erator that we presented in Chapter 4. Based on ASP we elaborated a
representation of the information available to communicating agents
on two levels, the information level and the meta-information level.
Further we developed patterns of meta-inferences based on the meta-
information of the agents that lead to inferences on the information
level. In particular, we formalized the meta-inference of an attacking
agent if the defending agent does not answer a query with respect
to a sensitive literal. This meta-inference makes it necessary that the
defending agent considers to answer a query with respect to sensitive
information. To realize such a behavior the agent has to consider se-
crecy already on the level of its motives. For this, we introduced mo-
tives to answer such queries in combination with meta-information
level rules that determine if the agent has been queried for a sensi-
tive literal. Further, we showed that and how we can model our strike
committee meeting example that we introduced in the introduction and
that we used for illustration throughout the thesis.

We discussed in detail the relation of our approach to related work.
In particular, we discussed the relation to two important frameworks,
the abstract framework for secrecy in multiagent systems by Halpern
and O’Neill [121], and the work on controlled interaction execution
by Biskup et al. [32]. Moreover, we discussed the relation to other in-
teresting works on secrecy preserving query answering and pointed
out interesting aspects for further work. We also discussed other ap-
proaches to secrecy for practical agents, and work on maintenance
goals in multiagent systems.

To sum up, we developed a novel notion and framework of secrecy
in multiagent systems that is agent-based and apt for the setting of
agents with uncertain information in a dynamic environment. It for-
mulates the notion of secrecy aware agents as the adequate and nec-
essary general notion for this setting, in which agents often cannot
be guaranteed to preserve secrecy. We established a sound theoretical
basis for our framework and developed constructive approaches for
the realization of secrecy aware, and secrecy preserving, agents. As a

201

202 AGENT-BASED SECRECY

complete concrete instance we developed secrecy aware agents on the
basis of an extended BDI model and a sophisticated ASP knowledge
representation. Our work forms a substantial basis for further theo-
retical investigation as well as the implementation of secrecy aware
agents.

THE ANGERONA FRAMEWORK

In this chapter we present the ANGERONA multiagent programming
framework for the implementation of knowledge-based agents with
a strong focus on flexibility, extensibility, and compatibility with di-
verse knowledge representation formalisms. It supports the develop-
ment of epistemic agents, that is, agents based on logical formalisms
for knowledge representation and reasoning. For these it supports the
use of belief change operators based on belief change theory. More-
over, it facilitates the development of diverse agents with respect to
their architecture and knowledge representation. It allows the forma-
tion of multiagent systems comprising heterogeneous agents which
interact in a common simulated environment.

A variety of logical formalisms with different expressivity and com-
putational properties have been developed for knowledge represen-
tation with the agent paradigm in mind, for an overview see, e.g.,
[55, 234]. Especially non-monotonic formalisms are designed to deal
with incomplete information and to enable an agent to act in uncer-
tain environments. Moreover, the field of research on belief change
has been working on solutions on how to change an agent’s beliefs in
the light of new information for over 25 years already, for an overview
see, e. g., [94]. Yet, very little of the approaches developed in these two
fields of research are available in practical multiagent frameworks.
The ANGERONA framework narrows the gap between theoretical con-
siderations of knowledge representation, reasoning and belief change
on the one side, and practical multiagent frameworks on the other
side. Existing agent programming frameworks are also largely fixed
to a certain agent model and knowledge representation formalism.
The ANGERONA framework allows to easily implement many differ-
ent agent models, it provides tools to implement these from scratch,
it provides different variants and extensions of BDI agent models and
allows to easily modify, mix and extend these.

The ANGERONA framework is based on the conceptual work on the
epistemic agent model we elaborated in Chapter 3. In this model,
an agent comprises an epistemic state and a functional component
that can both be composed. This model is realized on the basis of a
plug-in architecture. The epistemic state and the functional compo-
nent are based on knowledge representation plug-ins and on oper-
ator plug-ins, and tied together by an XML based script language
and configuration files. The plug-in for the functional component
is based on the general ANGERONA operator interface and the cor-
responding operators provided by the angerona framework. For the

203

204

THE ANGERONA FRAMEWORK

knowledge representation plug-ins we build on the TweeTy library
for knowledge representation [227]. The TwEETY library contains in-
terfaces and implementations for diverse knowledge representation
formalisms with inference and change operators for them. TWEETY is
under active development, in which we participated. It currently con-
tains implementations for: first-order logic [55], ordinal conditional
functions [190, 143], relational conditional logic [146], probabilistic
conditional logic [205], relational probabilistic conditional logic [145],
Markov logic [204], epistemic logic [89], description logic [12], de-
ductive argumentation [26], structured argumentation frameworks
[228], defeasible logic programming [105], probabilistic argumenta-
tion [225], answer set programming [112, 154], and more. For a com-
prehensive overview of the TWEETY library see [227]. The TWEETY li-
brary is also open source and available at sourceforge’. ANGERONA is
open source and available at github?.

The ANGERONA agent architecture can be freely defined by specify-
ing the types of operators to be used and their order of execution. This
way ANGERONA allows to easily design different types of agents. Not
only the used language for knowledge representation can differ, but
also to which amount an agent’s functionality is logic based. It is, for
instance, easily possible to realize the agent’s deliberation and means-
ends reasoning by Java operators and simple data components, or by
simple Java operators which make use of logical formalisms, e.g.,
answer set programming (ASP) [112], ordinal conditional functions
(OCF) [220], argumentation formalisms [24], or propositional logic or
horn logic, or any other formalism from the TwEeEeTy library.

While the general ANGERONA framework allows for a high degree
of flexibility it also allows to define partially instantiated plug-ins
and default agent configurations, which represent sub-frameworks
with more predefined structure and functionality. The latter might
fix the general agent cycle by specifying the types of operators to be
used and provide different implementations for these. Hence, the sub-
frameworks provide more support for easy and rapid development of
agents. We distinguish three different roles of users in the ANGERONA
framework:

— the core developer that uses ANGERONA as a toolkit to define its
own agent types;

— the plug-in developer that uses provided agent types, instantiates
them with given plug-ins, and potentially implements its own
plug-ins or modifies existing ones;

— and the knowledge engineer that defines the background and ini-
tial knowledge, and all other initial instances of the components
of the agents.

1 http://sourceforge.net/projects/tweety/
2 https://github.com/Angerona

http://sourceforge.net/projects/tweety/
https://github.com/Angerona

6.1 AGENT FRAMEWORK

ANGERONA provides default implementations for BDI style agents and
diverse extensions that can be modularly used to build agents. These
realize the BDI" agent type presented in Section 3.5. This defines a
sub-framework for the development of knowledge based BDI* agents
in general and for those presented in this thesis in particular. We im-
plemented almost all approaches presented in this thesis, and several
others, in ANGERONA and ran simulations with them. These imple-
mentations include in particular an implementation of the BDI* agent
model presented in Chapter 3, extensions of it towards the full know-
how approach [229, 157] and the full motivation approach [159], and
of the complete secrecy agent model, and the ASP instantiation of
it we presented in Chapter 5. Also the change operators presented
in Chapter 4 are implemented, among several others. Alternative in-
stances that use propositional logic or ordinal conditional functions
for knowledge representation, reasoning and change have been imple-
mented in ANGERONA as well. Several, mostly secrecy, scenarios and
simulations are available. ANGERONA also features a plug-in interface
for different environments, with a communication environment for
agents as defined in Section 3.1 implemented. A graphical user inter-
face (GUI) allows the selection, execution, observation, and inspection
of multi-agent simulations. The GUI can be extended by plug-ins to
feature displays of specific knowledge representation formalisms, for
instance dependency graphs [4]. The angerona framework has been
used, and continually is used, and extended in several final thesis,
e.g. in [3, 137, 19, 52, 131, 244], and in an internship financed by the
German Academic Exchange Service (DAAD), see [78] for a report of
the internship.

In the next section we introduce the main theoretical concepts of
the ANGERONA framework. Following on this we describe how these
are realized in the agent framework of ANGERONA. Then we describe
the multiagent framework of ANGERONA in the following section. Af-
terwards, we describe how the secrecy aware BDI and ASP BDI agents
we developed in Section 5.6 are implemented in the ANGERONA frame-
work. Finally, we discuss our framework and its relation to other
frameworks, and conclude.

6.1 AGENT FRAMEWORK

The ANGERONA agent framework is designed to implement the gen-
eral agent model as introduced in Section 3.3. In this model an agent
has an epistemic state X and a functional component & . The epis-
temic state can be a composition of different general epistemic com-
ponents, and other components. Epistemic components are based on
a knowledge representation formalism. This formalism also specifies
the family of belief operators that can be used to infer the belief set
for the given epistemic component, and the change operator for epis-

205

206 THE ANGERONA FRAMEWORK

Perception
Agent
& \
o Epistemic State X
o1 G
o1 [q--f-=------ > Cn
Environment o1, le d--F-mmmmn- > Cim,
r
On e {-------- > Cm
. 4
Action
act ol
\ 4
o4 o
Oal
Cal

Figure 6.1.1: Compound agent model

temic components. The functional component comprises an ordered
composition of operators that operate on and change the epistemic
state of the agent. The resulting general perspective on an agent is
illustrated in Figure 6.1.1, which is the same as Figure 3.4.2 (Page 49).

ANGERONA agents consist of agent components which can be epis-
temic components, i.e., epistemic components with associated opera-
tors, and other data components, or functional components, i. e., opera-
tors used in the agent cycle. Epistemic components are based on the
epistemic plug-in. Operators for the agent cycle are based on the oper-
ator plug-in. For the realization of plug-ins in ANGERONA we use the
Java Simple Plugin Framework (JSPF) [193].

Example 6.1.1. We model for instance the BDI* agent instance from
Section 3.5.3. A BDI™ agent state is a tuple (Kgp+, &gpi+) with the
epistemic state being of the form

Kepr+ = (B, 9,73, M, RH).

This epistemic state is directly realized by means of corresponding
epistemic components from epistemic plug-ins, for instance the ASP
or the OCF plug-in. The functional component comprises the opera-

6.1 AGENT FRAMEWORK

Angerona Overview,

H|EpistemicPlugin| \ BaseOperator }—<>{OperatorPlugin

Reasoner H Epistemic State }. AgentComponent

BeliefBase

JAY

Revision

<

EnvPlugin

1

Figure 6.1.2: Simplified UML [207] class diagram of an ANGERONA agent

tors osg, 0p, 05, 0%, act. These are realized by corresponding operators
from the operator plug-in. &

The class diagram in Figure 6.1.2 illustrates the realization of the
conceptual model in the ANGERONA framework. An ANGERONA agent
contains an epistemic state and a list of operators. An epistemic state
consists of agent components. One type of agent components are epis-
temic components, which are defined via an epistemic plug-in. The
epistemic plug-in implements the interfaces of the TWeETy library, in
particular those for an epistemic component, a belief base, a formula,
a change operator and a belief operator. Different belief operators
might be available for the same formalism. Different agents might
use the same knowledge representation formalism but different be-
lief operators.

ANGERONA implements the concept of epistemic components, the
reasoning and change operators presented in this thesis. The belief
operator families with ordering we introduced in Section 3.6 are im-
plemented in ANGERONA by a belief operator family class. Several
instances are also implemented, including the ASP instance. Each be-
lief operator corresponds to the implementation of a reasoner of the
TweeTy library.

We implemented a full fledged epistemic plug-in for ASP. It is ca-
pable of using several ASP solver such as clasp [108], DLV [77, 85, 165],
DLV-Complex [62], and smodels [184]. It provides parsers for the differ-
ent language versions of ASP by means of JAVACC [147]. Different
belief operators and belief change operators are implemented and
can be used, in particular the ASP change operator presented in Sec-
tion 4.3 is implemented and an ASP and argumentation based selec-
tion function on the basis of the approach presented in Section 4.2.
Also the approaches presented in [75, 76, 152] are implemented.

Moreover, ASP-based version of know-how for hierarchical plan-
ning and reasoning about know-how as presented in [157] is im-
plemented. For the visualization of ASPs as extended dependency

207

208

THE ANGERONA FRAMEWORK

graphs and explanations graphs, based on [4], are implemented as a
GUI plug-in.

The agent cycle of an agent is realized by operators provided by
operator plug-ins. Operators in ANGERONA exist on two fundamen-
tal levels of abstraction. Operator types represent types of operators,
e.g., a change operator. By means of operator types we can define the
agent cycle for an agent type without instantiating the concrete oper-
ators to be used. An operator is a class that implements a particular
operator type, e.g., an ASP change operator. There might be several op-
erators with the same operator type implemented, e.g., ASP change
operators for the approaches [75, 76, 152, 154]. The knowledge engineer
can select which operator shall be used for which of its agents in the
respective agent configuration files.

The agent cycle of an ANGERONA agent is specified by means of the
ANGERONA Script Markup Language (ASML). ASML is an XML format,
which features operator invocation and basic control structures to de-
sign sequences of these. It also supports access to variables in a given
context, which is normally provided by the agent. For the operator in-
vocation in ASML only the operator type is specified in the ASML file,
the concrete operator instance is specified in the agent configuration
file. Listing 1 shows a simple ASML example script for a BDI-style
agent. The ASML language also features basic control structures such
as assertions, conditions and loops. For a full reference of ASML see
[162].

Listing 1: Simple BDI Agent Cycle in ASML

1||<asml-script name= >

2 <operator type= >

3 <param name= value= />
4 <param name= value= />
5 <output>beliefs</output>

6 </operation>

7

8 <operator type= >

9 <param name= value= />
10 <param name= value= />
11 <output>desires</output>

12 </operation>

13

14 <operator type= >

15 <param name= value= />
16 <param name= value= />
17 <output>intentions</output>

18 </operation>

19

20 <execute action= />

21 || </asml-script>

By use of these the BDI cycle could be modified by replacing the
simple invocation of the Intention Change operator in Listing 1 by a

6.1 AGENT FRAMEWORK 209

loop that iteratively refines the current plan until the next action is
determined.

Listing 2: Loops and Conditions in ASML

1|| <assign name= value= />

2 || <while condition= >

3

4 <operator type= >

5 <param name= value= />

6 <output>action</output>

7 </operation>

8

9 <conditional>

10 <if condition= >

11 <operator type= >
12 <param name= value= />
13 <output>running</output>

14 </operation>

15 </if>

16 <else>

17 <assign name= value= />
18 </else>

19 </conditional>

20|| </while>

The ANGERONA framework contains the implementation of the BDI™
agents we developed in Section 3.5, default operators for these, the
base versions a presented in 3.5.4, and sophisticated operators. These
operators include the full know-how approach we introduced in Sec-
tion 3.5.2 and worked out by means of answer set programming in
[157], the full motivation approach we introduced in Section 3.5.1 and
worked out in [159].

The secrecy BDI* agents and the secrecy ASP BDI* agents that we in-
troduced in Chapter 5 are also implemented in the ANGERONA frame-
work. The secrecy BDIT agent model is illustrated in Figure 6.1.3. It
refines the belief component of the BDI" agents that now consists of
the agent’s view on the world, views on the world-views of other
agents, and a representation of its secrets. The change operator then
changes all components of the beliefs. This agent model can then be
instantiated by use of different knowledge representation formalisms.
This far, we used propositional logic, ordinal conditional functions,
and answer set programming to instantiate it and run simulations.

In this scenario we make use of several of ANGERONA's particular
features. We build on the BDI sub-framework provided by ANGERONA
and refine the composition of the epistemic state. The views on other
agents are epistemic components such that for each agent a different
knowledge representation formalism and different belief operators
can be used. Changes to the views on other agents are performed
by operators from the epistemic plug-in used for the respective view.
We also implemented operators that change the secrets of an agent

210 THE ANGERONA FRAMEWORK

Perception
Agent
g A 4
° Epistemic State
op L] N Beliefs
World Agent
. ; Secrets
View View
Pl Motivations
Environment °p Bl B R Rt bbby
______ R :
T Desires
I
or >
Know-how
A
Action R Intentions
act [e---""""
y
oﬂ

Figure 6.1.3: BDI" secrecy agent model and agent cycle

in the light of new information. We used different knowledge repre-
sentation plug-ins for the agent instantiations. For the ASP instance
we build on the ASP know-how [157] implementation of the intention-
update operator in ANGERONA and extended it to take the secrets into
consideration. The report system and the GUI serve well to inspect
the evaluation process of actions with respect to secrecy since the in-
ternal, change operations can be observed. This is, for instance, very
useful to trace the temporarily considered changes to views on other
agents in the process of the evaluation of actions and their effect on
secrecy. Figure 6.2.2 shows the resource view and an example ASP
epistemic component view from the strike committee meeting secrecy
scenario.

6.2 MULTIAGENT FRAMEWORK

The multiagent framework of ANGERONA is what is commonly re-
ferred to as the middleware of agent programming frameworks. It
organizes and starts the execution of the individual agents and the
environment and implements the interaction between these. The exe-
cution order of the agents, the multiagent cycle, is flexible. The default
is the sequential execution of agents such that each agent gets the
percepts from the previous multiagent cycle, and not those created
by the execution of agents in the same cycle. This way the order of
the execution of agents does not matter.

6.2 MULTIAGENT FRAMEWORK

. Angerona - Simuiatn Monitor - Angerona - Simlation Moritor | T it

File Windows

[— Report % |

[Angerona Resourcen = [Reports
o Connea e e BT Gy o e .
B3 Dot gentimplementation) UpdateBelistsOperator Update Belcfs: Query a5 sender (na changes)

B P gent mplomentaton I3 VilatesOperator: o vioation apping he perceptionaction:Ess query Employee afend_scm »
[IntentionUpdateOperator-intal action successfull using " Boss query Employee attend_scm ' as next atomic action
[tary Agent Implementation [} UpdateBeliefsOperator: Update-Beliefs: Query as sender (no changes)
+ 7 Beliemase Gongs [} Boss: Removed plan for desire revisionRequestProcessing(1)
[Answer-Set Belef base) Boss: Removed desire: revisionRequesiProcessing(1)
[0 Boss: Acton:*Boss query Employee atend_scm > performed.

ow.

[) Dummy Belief base Implementatio|

£ Simulation Templates ¢ =2

[) SCH-2-unsafe - Knowhow || % C3Employee answers Boss attend_scm=AV_FALSE >
[UpdateBeliefsOperator: Update-Beliefs: Query as receiver (ne changes)

[) Employee: New desire: quenProcessing(2)

[IntentionUpdateOperator: No atomic step candidate found

[) Employee: New plan for desire ‘queryProcessing(2) generated.

[SubgoalGenerationOperator: Add the new action ‘Answer to the plan

[) UpdateBeliefsOperator. Update-Beliefs: Answer as sender (view)

[} violatesOperator: Confidential-Target: (Boss attend_scm,angerona.fw.logic.asp.AspReasoner({d=0.75})) of Employee’ injured by:' Employee answers Boss attend_scm=AV_TRUE —

[} strike Committee Meeting (Dummy)|
D) impiicty Secrecy without Contradict
) implict Secrecy with Contraciction
[} Blatant_Contradiction_no_secrecy
[} Courtroom Scenario - No Real Secr
[) Open Query Negative Pregicate Tes|
[} Cleaner Robot

[Courtroom Scenario - 5 Questions
[} SCH-1 - Knowhow

[} SCH-2- Knowhow

[} Biatant_Contradiction_With_Secre
[) Open Query Negative Secret Test
[} Arity-1 closed Query Test

[) Courtroom Scenario - No Winess
() strike Committee Meeting (ASP)

[5) VolstesOperator Violation o apping e Employee answers Boss atend_sc=AV_TRUE >
) UpdsteBelitsOperator Update-Bellfs: Answer 35 sender (view)
[5) ViolstesOperator: No volaton appiing the perception/action: EMployee answers B0ss atend_scri=AV_FALSE ~

[IntentianUpdateOperator: Mental action successfull, using® Employee answers Boss attend_scm=AV_FALSE »' as nextatomic action
[) UpdateBeliefsOperator: Update-Beliefs: Answer as sender (view)

[Employee: Removed plan for desire ‘queryProcessing(2)

) Employee: Removed desire: queryProcessing(2)

[Employee: Action:* Employee answers Boss atend_scm=AV_FALSE > performed.

[) Courtroom Scenario - 2 Secrets ¢ C3Boss
¢ (£ Stike Commits Heetng (4SP) [0 UpsateBelitsoperator. Answer a5 receiver (worlg
4 CBoss [intentionUpaateOpsrator: No atomic step candidate found
[world <] A Operator: No new subgoal generated 5
T L IR K L DI
x|

Load Simulation Restart

Simulation ‘Strike Committee Meeting (ASPY finished.

Figure 6.2.1: Angerona GUI - Overview

The environment in ANGERONA is formed by the set of agents in
the system and the environment behavior. The environment behav-
ior might range from a communication infrastructure that delegates
the speech acts between agents, similar to, e.g., [23], to a simulator
for physical environments [242, 243]. It is implemented in form of
an environment plug-in which allows to use external environment
simulators, or to develop new ones. The interrelation of the envi-
ronment classes is shown in Figure 6.1.2. The environment behav-
ior for communicating agents, as introduced in Section 3.1, is imple-
mented as the default behavior in ANGERONA. The actions of agents
are speech acts and are transmitted to the receiver agents as their
percept. Since different agents might use different knowledge repre-
sentation formalisms in ANGERONA a common logical language has
to be determined for which each agent has an appropriate interpre-
tation function. As a language that is appropriate for agents that use
such different formalisms as ASP and OCF we chose nested logic pro-
grams [169] as common language for the agents. It supports both,
propositional logic and its connectives as well as conditional or rule
like connectives, and default negation. However, this is only the de-
fault implementation, any other language might be used as common
communication language.

ANGERONA also features a versatile graphical user interface (GUI).
It is based on a docking panes approach which allows to display
various aspects in different panes, which tile the window. The tiling
can be changed individually. Panes can be grouped by means of tabs
or be detached from the main window to form new windows that
might be moved to a secondary screen. The plug-in architecture of
ANGERONA allows for UI plug-ins, which allow the development of
plug-ins for the specific visualization of components stemming from
plug-ins such as the representation of epistemic components specific

211

212

THE ANGERONA FRAMEWORK

[Boss d Employee - View->Boss | X
 World
v & Views All entries: 1/6 | -> | Current Tick: g 0/3 | -> | Entries in current Tick
 Employee
v & Components -attend_work:- ex(use_d. _
g Knowled attend_scm:- not medical_appointment, ask_for_excuse.
- ecrecyknowledge attend_work:~ not -attend_work.
_ ScriptingComponent blacklist:- -attend_work, not excused.
~ CommunicationHistor | blacklist:- attend_scm.
" Desires excused:- attend_scm.
“ PlanComponent exc\{sed:— mefjicaliappminlmen(.
medical_appointment:- ask_for_excuse, not attend_scm.
[Employee
_ world --- Answerset Result using: AspSkepticalReasoner
¥ [Views Answer Set 1/1
| attend_work
¥ [Components R B
“ CommunicationHistor --- Inference Result using: com.github.angerona.fw.operators.OperatorCallWrapper@303f4ca6
. attend_work
 SecrecyKnowledge
1 PlanComponent
" Desires
" ScriptingComponent

B © e of suike com e

Figure 6.2.2: Secrecy Scenario Ressources (left), ASP Belief Base UI Compo-
nent (right)

to the used formalism, potentially with alternative views such as text-
based and graph-based perspectives. For example for ASP we imple-
mented a representation based on explanation and extended depen-
dency graphs, as presented in [4].

Another important feature of the user interface is the report system
used in ANGERONA. The report defines an interface to post new report
entries and to query the existing ones. A report entry consists of the
identifier of its poster, the tick (number of multiagent cycle) and the
realtime (system time) in which it was posted, a call-stack and an op-
tional attachment in form of an epistemic component. Poster of report
entries can be the agent, one of its operators or one of its epistemic
components. The queries to the report then allow to construct a time-
line of posts with filters based on the poster, the type of attachment
and the call-stack; for instance to inspect the changes of an agent’s
beliefs during runtime. The report system is extensively used by the
GUI to allow for the inspection on the level of an agent cycle and of
a multiagent cycle. Every pane that displays the content of an epis-
temic component uses the report system to provide a timeline for its
displayed component.

Figure 6.2.1 shows the GUI after a variant of the strike committee
meeting scenario simulation has been selected and run. The window
is tiled by three docking panes, the resource pane to the left, the
workspace pane to the right and the status pane at the bottom. The
resources are displayed in a tree-view and are given by agent configu-
ration files, epistemic component configuration files, simulations tem-
plates and resources of a loaded simulation. The resources of a sim-
ulation are typically given by its agents and their components. The
workspace pane has its default tab, which views the report for the cur-
rent simulation. Resources of the resource pane are opened and dis-
played as an additional tab of the workspace pane by double-clicking

6.3 RELATED WORK

on them. The status pane displays the current status of ANGERONA
and holds buttons to load and run a simulation.

Figure 6.2.2 shows how an agent component can be selected and
inspected in the strike committee meeting scenario by example of the
view of the employee (Emma) on the world view of the boss (Beat-
riz), which is an extended logic program. The logic program of the
epistemic component is shown as well as its answer sets and the cor-
responding belief set that is produced by the selected belief operator.
The controls at the top allow for the navigation through the timeline
of the epistemic component given by the current report. It is shown
how many entries for the epistemic component exist in the entire re-
port, how many ticks the report covers, and how many entries for
the epistemic component exist in the currently selected tick. The con-
trols allow the navigation on the basis of these three parameters. The
changes to the epistemic component with respect to the previous re-
port entry for the epistemic component are shown by highlighting
new parts in green and missing parts in red. These controls and the
form of representation allows to not only inspect the epistemic com-
ponent but also to track its evolution throughout the simulation.

6.3 RELATED WORK

A multitude of multiagent programming frameworks has been pro-
posed. Most of these are rather theoretical studies and relatively few,
but still a lot, have been actually implemented and are available. A
good overview of the most prominent available frameworks is given
in [51]. An even more extensive list of such frameworks can be found
in [1]. These frameworks haven been build with very different goals
in mind and by use of very different means. In the following we sur-
vey those coming closest to the ANGERONA frameworks main features.
These are:

1. to provide a means to build agents capable of using (different)
non-monotonic knowledge representation and reasoning tech-
niques,

2. to allow for flexible agent cycles,

3. to allow multiple levels of use and customization of the frame-
work,

4. to feature the development of secrecy aware and secrecy pre-
serving agents.

We have shown in this thesis that and how we realized these goals.
In the following we discuss the existing frameworks being closest to
satisfying some of these goals.

213

214

THE ANGERONA FRAMEWORK

With respect to non-monotonic knowledge representation, to our
knowledge, the only formalism that has been used in practical mul-
tiagent systems is ASP. But most implemented works on ASP agents
treat only the planning problem independently of the rest of the
agent, e.g., in the APLAgent Manager [16] or the DLV system [86].
In the literature several proposals for the design of an agent entirely
based on ASP have been made, e. g., [164, 182]. However, for these no
implemented systems or documentation on how to implement such a
system are available. To the best of our knowledge, there are only two
complete and available multiagent programming frameworks that fa-
cilitate the use of ASP for knowledge representation, namely Jazzyk
[186] and GOAL [130, 148]. Both of them also feature a modular ap-
proach with respect to knowledge representation.

A Jazzyk agent consists of several knowledge bases, which are re-
alized by knowledge representation modules and an agent program.
The agent program consists of a set of rules of the form “when Query,
then Update”. The knowledge representation modules implement the
Query and Update methods. The semantics of the agent programs is
based on the Behavioural State Machines approach developed for Jazzyk
on the basis of abstract state machines [53]. The knowledge represen-
tation modules allow to use different knowledge representation for-
malisms, and an implemented ASP module is available. With respect
to belief operators it implements credulous and skeptical ASP query-
ing. But with respect to belief change it only supports a pure addition
of new formulae to the knowledge base and no actual belief change.
The only other existing available KR module is based on the Ruby
programming language which cannot be considered as a logic based
knowledge representation formalism.

The GOAL Framework [130, 148] also features the specification of
modules for knowledge representation and allows, in principle, for
the use of different knowledge representation formalisms. There are
general interfaces for knowledge representation, but we could not
find implementations or examples for any formalism other than Pro-
log. The agent programs used in GOAL feature a clear syntax and
semantics, but are rather inflexible with respect to the use of differ-
ent agent cycles and architectures. The structure is fixed, goals are
defined explicitly and are blindly committed to.

There are no other multiagent frameworks that consider the devel-
opment of secrecy aware and secrecy preserving agents with explic-
itly represented secrets and views on other agents, as considered in
ANGERONA. The closest implemented frameworks on the considera-
tion of privacy in multiagent systems consider rather specific prob-
lems in distributed problem solving. The DAREC? system [171] con-
siders the problem of a group of agents that have to collaboratively
compute consistent answers to a query and protect their private in-
formation at the same time. Confidentiality is expressed by means

6.4 CONCLUSION

of the specification of private and askable literals which are used in a
distributed abduction algorithm based on state passing. In [238] quan-
titative privacy loss is considered in distributed constraint satisfaction
problems.

6.4 CONCLUSION

In this chapter we presented the ANGERONA framework for the imple-
mentation of knowledge-based agents. It bases on the epistemic agent
concept we introduced in Chapter 3. It realizes the general concept by
means of a flexible plug-in architecture and an XML based scripting
language called ANGERONA Script Markup Language (ASML). Agents
comprise an epistemic state that can be composed of epistemic com-
ponents and a functional component. The epistemic components are
realized by the epistemic plug-in and the operators of the functional
component by the operator plug-in. The agent cycle in ANGERONA
is specified by means of the ASML script in combination with the
operator interface.

The distinction between operator types and their implementation
in combination with predefined agent cycles, e.g., the BDI cycle, al-
lows for multiple levels of use and customization. By means of the
operator type concept the BDI™ agent model we introduced in Chap-
ter 3 is realized as a sub-framework of ANGERONA. Furthermore the
secrecy BDI™ model we introduced in Chapter 5 is realized this way.

The epistemic plug-ins use the TWEETY library for knowledge repre-
sentation [227]. This way all knowledge representation formalisms of
TWEETY can be used for ANGERONA agents. We extended the TWEETY
library by our own plug-ins and in particular the ASP plug-in. The
ANGERONA framework ASP Plug-in supports the use of various ASP
solvers and different extensions thereof, such as DLV-complex. On the
basis of the latter a planning component on the basis of know-how
[157, 229] is implemented. ANGERONA implements the change opera-
tor concept we developed in Chapter 4. Further the selective revision
operator by deductive argumentation and the belief base change op-
erator for ASP we presented in the same chapter are implemented.
By use of the ASP Plug-in and the ASP belief base change operator,
the secrecy ASP BDI™ instantiation we developed in Chapter 5 is im-
plemented and the simulation of the strike committee meeting scenario
realized.

Moreover, many other approaches are implemented in ANGERONA.
For the ANGERONA framework, plug-ins for ASP, OCF and proposi-
tional logic can be used in several available complete simulations.
ANGERONA is open source and available at github3.

3 https://github.com/Angerona

215

https://github.com/Angerona

CONCLUSION

In the following we first summarize the content of this thesis, then
recapitulate our main contributions, and finally we discuss some fur-
ther and future work.

7.1 SUMMARY

In this thesis we contributed to and combined the fields of research
in multiagent systems, non-monotonic reasoning, belief revision and secrecy.
In a nutshell, we defined a general model of epistemic agents in Chap-
ter 3. Then we elaborated on the integration of non-monotonic reason-
ing, belief revision and secrecy on the basis of the general epistemic
agent model in Chapters 3, 4, and 5. And then, in Chapter 6 we pre-
sented a multiagent framework that implements the general concept
of epistemic agents, and that implements all concepts presented in
this thesis. In the following we summarize these chapters in more
detail.

In Chapter 3 we developed a general model of epistemic agents.
This model unifies diverse agent architectures and allows for the spec-
ification and realization of agent models. We focused on communicat-
ing agents and agents that make use of logical knowledge represen-
tation formalisms. For these we defined a set of speech acts by means
of which our agents interact. Then, we introduced epistemic compo-
nents and belief operators for the epistemic state of the agent. This
includes in particular the formalization of belief operators for (non-
monotonic) reasoning, ordered families of these and properties for
those. Further, we defined concrete instances on the basis of answer
set programming and propositional logic. We formalized the decom-
position of the agent’s epistemic state and functional component of
an agent into epistemic components and sub-functions for the realiza-
tion of compound agent models. We developed the BDI* agent model
as an instance of the general compound model. This agent model is
based on the well known BDI agent model and extends it by a mo-
tivation and a know-how component that we developed. We further
concretized this agent model by defined a basic instance of the BDI™
model.

In Chapter 4 we first developed the general structure of belief
change operations for epistemic agents. In this approach, the new
information is first interpreted by an interpretation function that re-
turns a set of sentences. This set is then evaluated in the light of the
information represented in the considered epistemic component by

217

218

CONCLUSION

means of a selection function that decides which part of the input shall
be accepted. This resulting set is then used by a prioritized revision
operator to change the epistemic component accordingly.

The operation that consists of the last two steps, i. e., selection and
revision, is called a selective revision operator in the literature. We built
on the selective revision framework and extended it to multiple re-
vision operations that take sets of sentences as input. Further, we
presented the first construction of non-trivial selection functions, and
that by use of non-monotonic deductive argumentation. We formally
proved that our selection functions satisfy a set of desirable properties
and lead to a proper selective revision operator.

With respect to the prioritized revision operator, we studied the
applicability of the base revision approach to non-monotonic belief
bases in general and ASP in particular. We developed a set of de-
sirable postulates for a multiple ASP base revision operator on the ba-
sis of the postulates for propositional base revision and ASP specific
postulates. Then we developed a constructive approach by defining
a new screened consolidation operator, which we also characterized by
a set of postulates. For this operator we defined a construction for
it on the basis of screened remainder sets and a global selection func-
tion. The latter leads to a general operator that can be iterated. We
proved a representation theorem for the resulting consolidation oper-
ator. Moreover, we showed that the ASP specific postulates of Weak
Disjointness and Weak Parallelism are implied by the property of Topic
Independence from the belief base revision literature. We also defined
the property of monotony for selection functions on remainder sets
and showed that monotone selection functions lead to consolidation
operators that satisfy Topic Independence.

In Chapter 5 we developed a novel, subjective, agent-based notion
of secrecy. For this we used and build on our epistemic agent frame-
work. We developed a notion of secrets and of secrecy preservation of
an agent. And we introduced a secrecy agent model and elaborated
various aspects of agent models with respect to secrecy. Hereby we
developed secrecy aware agents that are capable to take secrecy into
consideration and that are aware of the effect of their actions with re-
spect to secrecy. Secrecy aware agents are secrecy preserving whenever
it is feasible. If it is possible form them, in their settings these can be
shown to be secrecy preserving.

We defined properties of change operators with respect to secrecy
for the change of the world-view of an agent, the agent-view of an
agent, and the change of the secrets of an agent. Further we defined a
secrets change operator that satisfies the minimality of change prop-
erty we demand for it.

We defined properties of settings, as well as necessary and suffi-
cient properties of agents to guarantee the preservation of secrecy. As
part of this, we developed a game-theoretic formulation of the con-

7.2 MAIN CONTRIBUTIONS

sideration of future actions of the defending and the attacking agent.
In this formulation the defending agent has to ensure that the attack-
ing agent does not have a winning strategy to get to know one of its
secrets. We showed that this requirement can be ensured without the
consideration of future actions in some settings. For a query-answer
setting we showed that the attacking agent has a winning strategy
if and only if it knows that the disjunction of the potentially secret
formulas of the defender holds.

Moreover, we considered the evaluation of options for action with
respect to secrecy in detail. We defined a set of principles for the clas-
sification of actions with respect to secrecy that use the available infor-
mation as well as possible to determine a fine grained and justified
classification of the actions. This classification is needed for agents
that do not only distinguish if secrecy is violated or not, but can dis-
tinguish between degrees of violation, such as secrecy aware agents
that might have to violate secrecy. In addition to the principle based
characterization we devised an algorithm for the classification of a set
of actions that satisfies all of our declared principles.

Further, we built on our BDI™ agent model to construct complete
secrecy aware agents. We showed that and how motives and know-how
have to be considered with respect to secrecy. We elaborated the com-
plete instantiation of the basic BDI* model by use of ASP. For this,
we developed ASP representations for meta-information and meta-
inferences. We showed that and how the strike committee meeting ex-
ample from the introduction can realized by use of the secrecy ASP
BDI* agents. Finally, we discussed the relation of our notion of se-
crecy to other important works on secrecy in multiagent systems and
in information systems detail.

In Chapter 6 we presented the multiagent programming framework
ANGERONA. We described its general architecture and how it realizes
the epistemic agent model presented in Chapter 3 and the instances
based on the results of Chapters 4 and 5.

7.2 MAIN CONTRIBUTIONS

In the introduction we motivated and described several challenges
and the contributions that we make with respect to these. Picking up
the motivation and the structure of the introduction we recapitulate
main contributions of this thesis in the following.

The work in this thesis is motivated by the strike committee meeting
example and the main research question:

How can secrecy be formalized and realized for practical agents
with incomplete information in a dynamic environment?

There is a lot of thorough work on the topic of secrecy for multiagent
systems. The definitions of secrecy are very strict and are based on

219

220

CONCLUSION

strong assumptions. Further these works only consider multiagent
systems abstractly. There is also a lot of thorough work on the topic of
secrecy in information systems. It considers mostly query answering
in client-server architectures. There is, however, no work on a general
notion of secrecy for practical, knowledge-based agents.

General and flexible concept for developing epistemic agents

Hence we started from scratch to approach the topic of secrecy from
the perspective of a bounded rational agent with incomplete infor-
mation. We argued, that we need a general model of agents that is
strongly based on logical knowledge representation and reasoning,
and that can be instantiated and used to develop practical agents.
The agent needs to handle incomplete information, which calls for
non-monotonic reasoning formalisms, and it needs to change its infor-
mation adequately, which calls for belief change operators. We called
the agents satisfying these properties epistemic agents and we devel-
oped a general epistemic agent model. In this model we focused on
communicating agents and stressed that these have to have the ability
to reflect the anticipated changes of its actions in its epistemic state
to perform well. To this end, we introduced of a change operator for
actions o as a part of the agent cycle.

Non-monotonic reasoning formalisms for epistemic agents

We elaborated on (non-monotonic) belief operators and defined a gen-
eral notion of belief operator families whose operators can be ordered
based on how credulous the inference behavior is. Further, we de-
fined desirable properties for belief operators and ordered families
of these. The assumptions we made are general enough to capture a
big variety of knowledge representation formalisms. In particular we
included formalisms for which effective solvers exist, such as answer
set programming.

Belief change operators and non-monotonic reasoning

We contributed to the field of the combination of belief revision and
non-monotonic reasoning by developing change operators that use
non-monotonic reasoning in the belief revision process, and by de-
veloping belief change operations for non-monotonic formalisms. We
defined the first complex instantiation of selection functions in the
selective revision framework. To this end we used a deductive argu-
mentation framework. For the selection functions and for the result-
ing selective revision operators we formally proved the satisfaction of
a set of desirable properties

We developed a belief base approach for answer set programming.
For this we considered and adapted postulates from propositional
base revision and specific postulates for change operations of answer

7.3 FURTHER AND FUTURE WORK

set programs. Moreover, we defined a new construction based on a
screened consolidation operator and showed a representation theo-
rem for it. We could also show that an independence property for
consolidation operators implies, for our construction, the satisfaction
of ASP specific independence properties.

Agent-based secrecy and secrecy aware agents

On the basis of the epistemic agent framework we developed a theo-
retical definition of secrecy preserving agents as a special case of more
practical secrecy aware agents. We also consider the violation of secrecy
by an agent and develop a model that is capable to handle such vi-
olations. In particular we developed principles and an algorithm to
classify actions with respect to secrecy. We defined a game theoretic
formulation for our notion of secrecy and showed for a query-answer
setting the attacking agent has a winning strategy if and only if it
knows that the disjunction of the potentially secret formulas of the
defender holds. Hereby we showed that this important result from
the work on secrecy for databases [213] is a special case of our formu-
lation of winning strategies.

We elaborated on belief change, the consideration of future actions
and action selection with respect to secrecy independently of a con-
crete agent model. Additionally we built secrecy aware ASP BDI™
agents that model patterns of meta-inferences of an A . We related
our work in particular to the formulations of secrecy in the runs-
and-systems framework of Halpern and O’Neil and to the works of
Biskup et al. on controlled interaction execution. And we discussed
further related work. By our work, we showed that the consideration
of secrecy in practical agents is complex and demands for a thorough
consideration in the agent’s functioning on all levels.

Epistemic agent programming framework ANGERONA

We developed the ANGERONA' multiagent programming framework
on the basis of our epistemic agent model. It is general framework for
the implementation of autonomous agents with different agent archi-
tectures and different knowledge representation formalisms. It con-
tains implementations of virtually all approaches presented in this
thesis, and several others, e.g., [75, 76, 152, 131, 244, 4, 229, 157, 159].
Further it integrates the TWeeTY? library for knowledge representa-
tion which contains implementations of many knowledge representa-
tion formalisms.

7.3 FURTHER AND FUTURE WORK

In the presentation of our work in this thesis we, naturally, did not
consider all aspects in full detail, but focused on the aspects that are

1 https://github.com/Angerona
2 http://sourceforge.net/projects/tweety/

221

https://github.com/Angerona
http://sourceforge.net/projects/tweety/

222

CONCLUSION

most relevant for the topic of this thesis. For instance, we defined a
comprehensive, but basic instance of the BDI* model. The next step
lies in consideration of the BDI™ model instantiated with the full ap-
proaches of know-how and motivation, which we published in [157]
and [159] respectively. In particular, with respect to secrecy this allows
for the modeling and handling of more complex scenarios. The know-
how component realizes a hierarchical planning component. The thor-
ough consideration of secrecy and planning is an interesting topic for
future work in itself. We already laid the foundations for this by the
integration of the know-how approach in our BDI* agent model. Fur-
ther considerations in this direction can be found in our publication
[162] and the diploma thesis [137].

Another interesting aspect for future work is the consideration of
the communication of more than two agents and the modeling of
information flow and the implications with respect to secrecy. We
already noted in Section 5.7.3 (Page 195) that a first step would be
to integrate a communication graph of all agents as the one used in
[224].

The change operator that we introduce for our agents enables the
agents to decide if and to which extent they want to accept infor-
mation from other agents. This can be augmented by models of the
credibility of the information, as we considered in [223]. Moreover
the communication models can be combined with the credibility of
information, which we considered in [158]. Future work lies in the
inclusion of these approaches in the consideration of secrecy aware
agents.

With respect to our work on belief change operators future work
lies in the extension of the results to other formalisms, for instance the
formulation of argumentation based selection functions for answer
set programming. First results on this can be found in the master’s
thesis [131]. It would also be interesting future work to extend the
base revision approach to answer set programming we presented to
non-prioritized change operations and merge operators.

The ANGERONA framework can be used to simulate more complex
scenarios and can be extended by the implementation of new ap-
proaches. Moreover, different approaches, agent models and knowl-
edge representation formalisms can be directly compared in one mul-
tiagent system. First steps in this direction can be found in our report
[78]. ANGERONA agents that combine planning by means of our know-
how approach [157] with secrecy have been developed in the diploma
thesis [137]. In the bachelor’s thesis [52] ANGERONA has been used to
model secrecy in an e-market scenario as a possible application area
of our secrecy approach. The implementation of agents in a physical
environment in ANGERONA has been started in the bachelor’s thesis
[19]. The agents in that thesis are based on the BDI™ model with the
full motivation component as defined in our work in [159].

APPENDIX

A.1 PROOFS
A.1.1 Proofs for Chapter 3

Proposition 3.6.4. (On Page 64) The pair (ZP"P, <P"P) is a belief oper-
ator family that satisfies Consistency, Suprality, Right-Weakening and
Credulity<, ,.

Proof.

Consistency:

Let the epistemic component E C £%7" be consistent, i.e., Mod(()E) #
() and Bel, € ZP™P. For any ¢ € Bel, (E) it holds by definition of Bel,
that

IMod() N Mod(E)|
[Mod(E)|

> 0.5.

For the models of the negated formula —¢ it holds that Mod(—¢) N
Mod(E) = Mod(E) \ Mod(¢). Consequently it holds that

IMod(—d¢) N Mod(E))|
Mod®) SO

and therefore by definition of Bel,, it holds that —¢ ¢ Bel, (E). Hence
we showed that all Bel, € ZP™P satisfy Consistency.

Credulity:

Let E C LRSP be an epistemic component that is consistent, i.e.,
Mod(E) # 0, and Bel, € ZPP and Bel, € =P such that Bel, <P "
Bely,. By definition of <P7" it holds that p < p’. By definition of Bel,,
for each ¢ € Bel, (E) it holds that

IMod () 1 Mod(E)| ,
Mod(E)] ~PSP

such that ¢ € Bel,/(E) and consequently Bel,(E) C Bel,/(E), as was
to be shown.

Suprality:

Let the epistemic component E C L5(" be consistent, i.e., Mod(E) #
(. By definition of propositional consequence it holds that

CnPP(E) ={¢p € LY | Mod(E) C Mod(¢)}.

223

224

APPENDIX

This implies that for all ¢ € CnP™P(E) it holds that

IMod(d) N Mod(E)|

Mod(®) |

such that CnPP(E) = Bel, (E). It follows from the definition of <P°
and its satisfaction of credulity that for all Bel,, € ZP™P it holds that
Bel, (E) € CnP™P(E), which was to be shown.

Right-Weakening:

Let the epistemic component E C £5%° be consistent, i. e., Mod(E) # 0,
and ¢ € Bel,(E). It holds by definition of CnP™P that CnP™P(E) =
{$b € LY | Mod(E) € Mod(d)}. Hence, for all € CnPP(¢) it holds
by transitivity of C that Mod(¢) C Mod() and therefore

[Mod() N Mod(E)| _ [Mod(t) N Mod(E)|
h [Mod(E)| h IMod(E)| '

Consequently \ € Bel, (E), which proves the claim. O

Proposition 3.6.6. (On Page 66) In our ASP instance the extension fam-
ily function AS satisfies the postulates Suprality,
Relative-Left-Absorption, Closurecnase, Consistency and Separation.

Proof.

Suprality:
Let P be an extended logic program. We show that for all P C £
holds that Cn2P(P) C Bel(P).

For each answer set e € AS(P) it holds that e is the minimal model
of P¢. By definition of the reduct and the definition of PS™* it holds
that Pt C P¢. From the monotony of strict programs it follows for
the minimal model of Pstict denoted e, that es C e.

asp
At

Relative-Left-Absorption:
As already mentioned in Example 3.6.3 for any BS C £Fam = Lit it
holds that:

CnPP(BS) N LEX™ = BS.

asp __

Since L3¢ = Lit this proves that Relative-Left-Absorption is satisfied.

Closurecnase:
For each answer set e € AS(P) it holds that e is the minimal model
of P¢. This means that for each literal 1| € e there is a rule r with
head(r) = 1 and its body body(r) is satistied by e. We consider the
program P extended by facts for each literal in the minimal model of
the program:

PU*Pe=PU{l.|le e}

A.1 PROOFS

It holds that all new rules, i.e., {l. | 1 € e}, are, trivially, satisfied. For
each 1. € {l. | 1 € e} there exists a rule r € P such that head(r) = 1 and
body(r) C e. Hence the minimal model of PU{L. | | € e} is e such that
Cn2P(PUASP e) =e.

Consistency

A set of literals is consistent if it does not contain any complementary
literals L and —L. By definition (see Section 2.4) an answer set is a state.
A state is defined as a consistent set of literals. Hence any answer set
is consistent.

Separation

Suppose that for a program P there are two answer sets S, S’ € AS(P)
such that S C S’. Then by construction of a reduct it holds that ps’ -
PS. By definition of answer sets it holds that S is the minimal model
of PS, and that S’ is the minimal model of PS’. Since reducts are
strict programs they are monotonic and it follows that S’ C S, in
contradiction to the assumption.]

Proposition 3.6.7. (On Page 66) For the ASP belief operator family the
following results hold:

1. Belzizp satisfies Supralityg,, Consistencyge and

Relative-Left-Absorptionge) .
2. Bel?®, satisfies Supralitygei, Relative-Left-Absorptionge.

3. =bel satisfies Credulity~<, .

Proof. Let P be an extended logic program.

1. Supralityge:
Since AS satisfies Supralityge it holds that CnP(P) C S for all
S € AS(P). It follows directly that Cn?*P(P) C NAS(P) = BeI:Eepp.
Consistencygel:
We have shown in Proposition 3.6.6 that the extension family
function AS satisfies Consisterncyey. This means that for all con-
sistent programs P, all answer sets AS(P) do not contain any
complementary literals L and —L. It follows directly that NAS(P)
does not contain any complementary literals L and —L. Since
Belziepp = NAS(P) Consistencyg, is satisfied by Beliiepp.
Relative-Left-Absorptionge:
As already mentioned in Example 3.6.3 for any beliefset BS C
Lrm = Lit it holds that:

CnPP(BS) N LEX™ = BS.

Since L3¢ = Lit it follows that Relative-Left-Absorptiong, is satis-
fied.

225

226

APPENDIX

2. Supralityge:
Since AS satisfies Supralityey it holds that Cn®P(P) C S for all
S € AS(P). It follows directly that Cn®P(P) C UAS(P)Bel>P

cred®

Relative-Left-Absorptionge:
As already mentioned in Example 3.6.3 for any BS C £E™ = Lit
it holds that:

CnPP(BS) N LEX™ = BS.

Since £3% = Lit it follows that Relative-Left-Absorptiong, is satis-

fied.

3. Credulityge:
We show for each pair of the relation < :’Ip’b that the necessary
subset relation holds. For (Bel};2, Bel7?;) it holds for any pro-
gram P that
Bel2,P (P) = NAS(P) C UAS(P) = BelZ (P).

skep cred

For (Belzizp, Belziepp) and (BelZ®, Bel>") it clearly holds for all

programs P that

BelZ® (P) = Bel®:P (P) and Bel>" (P) = Bel>" (P).

skep skep cred cred

A.1.2 Proofs for Chapter 4

Proposition 4.2.5. (Page 80) Let * be a prioritized multiple base revi-
sion operator and let f satisfy Inclusions, Weak extensionalitys, Consis-
tency preservations, and Weak maximalitys. Then x¢,, defined via (4.2.2)
is a non-prioritized multiple base revision operator.

Proof. We have to show that x¢, satisfies Inclusiong, Consistencyq,
Weak extensionalityq, Weak successq, and Consistent expansiong:

INCLUSIONg It holds that fg(®) C ® as fg satisfies Inclusion¢.
Also, * satisfies Inclusiong and it follows B x fg (D) C B U
fe(®) C BUO.

CONSISTENCYq If @ is consistent also f (@) is consistent as fg
satisfies Consistency preservations. As * satisties Consistencyq it
follows that B * fg (®) is consistent.

WEAK EXTENSIONALITYq If ® =P @’ then fg(®) =P fg(d’) as
fg satisfies Weak extensionality¢. It follows that B * fg (D) =P
B« fp(D') as * satisfies Weak extensionality g .

A.1 PROOFS

WEAK SUCCESSq If B U @ is consistent it follows that fg (D) =
® as fg satisfies Weak maximalitys. As x satisfies Vacuityq it
follows B + ® C B « fg (D). Hence, %, satisfies vacuity as
well. As noted before and as proven in [96], the satisfaction of
Vacuity o implies the satisfaction of Weak success ¢ .

CONSISTENT EXPANSION¢ Suppose B £ B x fg(®). The * oper-
ator satisfies Consistent expansiong as * satisfies Vacuityqp and
Success g, cf. [96]. It follows that B U {B x fg (D)} is inconsis-
tent.

O]

Proposition 4.2.13. (Page 84) Let vy be a well-behaving categorizer and
k be a well-behaving accumulator. Then the selection functions SJ*
and C%’K satisfy Inclusions, Weak inclusion¢, Weak extensionality¢, Con-
sistency preservations and Weak maximality.

Proof.

INCLUSIONy Inclusiony is satisfied by definition as for « € Sy *(®)
and each o« € C3'*(®) it follows o € .

WEAK INCLUSION¢ Weak inclusion¢ follows directly from the satis-
faction of Inclusiony.

WEAK EXTENSIONALITYs Let ® =P @’ andlet 0 : ® — ®’ be a
bijection such that for every ¢ € @ it holds that ¢ =P o(d).
We extend o to B via o() = for every P € B. For ¥ C
B U @ we abbreviate

o(w) = |J {o(¥)).

pew

Let (¥, ¢) be an argument for some ¢ € @ with respect to
B U®. Then (o(¥), o(¢d)) is an argument for o(¢) in BU @’.
It follows that if T is an argument tree for (¥, ¢) in B U @ then
T’ is an argument tree for (o(¥), o(¢)) in B U @’ where 1’ is
obtained from T by replacing each sentence ¢ with o(¢). This
generalizes also to argument structures and it follows that

K(Y(Tsuo (¢))) = k(v (Tsue (a(d)))).

Hence, ¢ € SY"(®) if and only if o(¢$p) € SE"“(®’) for ev-
ery ¢ € @. It follows that SX*(®) =P SX*(®’). The same
argumentation holds for CJ%'".

CONSISTENCY PRESERVATION¢ Every subset of a consistent set of
sentences is consistent. From the satisfaction of Inclusion¢ fol-
lows that S (@) C ® and CJ (@) C ®.

227

228

APPENDIX

WEAK MAXIMALITY¢ If B U @ is consistent, then for all arguments
for a sentence « € @ there do not exist any undercuts as these
would have to entail the negation of some sentence of the ar-
gument for « which implies inconsistency of B U @. The ar-
gument structure 'y () = (T, T~) consists of one or more
single node trees T and T~ = (. As both y and « are well-
behaving it follows that k(v(I'ep (x))) > 0 for each « € ® and
therefore SX*(®) = ® and CJ " (D) = .

O]

Corollary 4.2.14. (Page 84) Let v be a well-behaving categorizer and
let k be a well-behaving accumulator. Then both o!"* and ol’* are

non-prioritized multiple base revision operators.
Proof. This follows directly from Propositions 4.2.5 and 4.2.13. O

Lemma 4.3.2. (On Page 87) If * satisfies Fullnessq, then it satisfies
Relevanceq.

Proof. If satisfies Fullnessq, then if r € (PU Q) \ (P * Q), then P x Q
is consistent and (P % Q) U {r} is inconsistent. If we set H = P % Q
it satisfies PxQ € H € PUQ and H is consistent but HU {r} is
inconsistent such that satisfies Relevanceg. O

Proposition 4.3.4. (On Page 88) If a revision operator * satisfies NM-
Consistencyq, then it satisfies Consistency.

Proof. Let x be a revision operator that satisfies NM-Consistencyg.
Consistencyq is only applicable if Q is consistent. We set X = Q, the
premise of NM-Consistency is satisfied becaus Q € X € PUQ holds
such that P x Q is consistent. Hence Consistencyq is satisfied. O

Proposition 4.3.6. (On Page 88) If a revision operator * satisfies NM-
Fullnessq, then it satisfies Fullnessg and Vacuityg.

Proof. If r € (PUQ)\ (P*Q), then (PUQ)\P*Q # 0. By NM-
Fullnessq it holds that P x Q is consistent and since {r} € (PUQ)\
P Q it holds that (P * Q) U{r} is inconsistent. Hence, Fullnessq is
satisfied.

If P+ Q is consistent, then for any P« Q withR = (PUQ)\PxQ # ()
it holds that (P * Q) UR = P 4 Q is consistent such that * violates NM-
Fullnessq. Hence NM-Fullnessg can only be satisfied by not satisfying
the precondition (PU Q) \ P Q # (. This is the case if and only
if (PUQ)\P*Q = 0 such that P+ Q = Px* Q. Hence, Vacuityq is
satisfied. O

Proposition 4.3.9. (On Page 9o) Let * be a revision operator on logic
programs.

1.

2.

3.

Proof.

1.

A.1 PROOFS

If * satisfies Successq and Inclusiong,
then it satisfies Initialisationp.

If * satisfies Successq and Inclusiong,
then it satisfies Idempotencep.

If + satisfies Successq, NM-Consistencyq, Inclusiong and NM-
Fullnessq, then it satisfies Absorptionp.

From Successqg follows P C @+ P and from Inclusiong follows
PxP CP.

From Successg follows P C P x P and from Inclusiong follows
P«P CP.

. We first show that (P+Q)+*Q C PxQ:

From Inclusiong follows that (P xQ)* Q C (P* Q) UQ and from
Successq follows that (P+ Q)UQ = P+ Q such that (PxQ)*Q C
P Q.

Now it is left to show that P+« Q C (P * Q) * Q:

Assume to the contrary that PxQ Z (P* Q) * Q. Then P+ Q\ (P *
Q) * Q # 0. By Successq it holds that P+ Q = (P* Q) U Q such
that (P« Q)UQ\ (P* Q) * Q # 0, which is the premise of NM-
Fullnessq. By NM-Fullnessq it now follows that (P x Q) x Q is
consistent and (P % Q) U Q = P % Q is inconsistent. This is a con-
tradiction to the assumption that * satisfies NM-Consistencyg
since Q C (PxQ)*xQ C PUQ and (P x Q) % Q is consistent it
follows from NM-Consistencyq that P x Q is consistent.

O]

Proposition 4.3.11. (On Page 91) Let * be a revision operator on logic
programs.

1.
2.
3.

Proof.

1.

If x satisfies Consistencyq, then it violates Tautology ass.
If * satisfies Successq, then it violates Tautologyp.

If * satisfies Vacuityq, then it violates Tautologyp.

Given a program P with AS(P) = () and a tautologic program P+
then consistency demands that AS(P * P1) # (J, in contradiction
to Tautology a s

229

230

APPENDIX

2. Given a program P and a tautologic program P+ such that
PN Pt = 0. It follows from Successq that P« Pt # P, in con-
tradiction to Tautologyp.

3. Given a program P and a tautologic program Pt such that P U
Pt is consistent. It follows from Vacuityg that PUPT C P P,
in contradiction to Tautologyp.

O]

Proposition 4.3.12. (On Page 91) Let * be a revision operator on logic
programs. If x satisfies Consistent Irrelevance, and e € {AS, UE, SE},
then x* satisfies Consistent Tautology,.

Proof. If * satisfies Consistent Irrelevancesg, then for Pt it directly
follows that P « P+ =g¢ P. O

Proposition 4.3.13. (On Page 92) Let * be a revision operator on logic
programs. If * satisfies Inclusiong and Vacuitygq, then it satisfies Con-
sistent Irrelevance, for e € {AS, UE, SE, P}.

Proof. Assume that P is consistent, i.e., AS(P) # (, P =, PU Q. Fur-
ther assume that « satisfies Inclusiong and Vacuityg. Since P is consis-
tent it follows from Vacuityg that P+ Q C P x Q, and together with
Inclusiong follows P 4+ Q = P x Q. Hence it holds that P+ Q =, P x Q
for e € {AS,UE, SE, P} and from the premise follows that P« Q =, P
such that Irrelevance, is satisfied. O

Corollary 4.3.14. (On Page 92) If * satisfies Inclusiong and Vacuityqg,
then it satisfies Consistent Tautology, for e € {AS, UE, SE}.

Proof. If x satisfies Inclusiong and Vacuityg then it satisfies Consis-
tent Irrelevance, for e € {AS, UE, SE, P} by Proposition 4.3.13. Then it
follows from Proposition 4.3.12 that * satisfies Consistent Tautology.,
for e € {AS, UE, SE}. O

Proposition 4.3.16. (On Page 92) Let * be a revision operator on logic
programs.

1. If x satisfies Successq, Consistencyq and Vacuityq,
then it violates Parallelismas.

2. If * satisfies Vacuityq and Consistencyq,
then it violates Disjointnessas.

Proof.

1. Given Q; and Q2 with disjoint sets of literals and some pro-
gram P. Assume that Q7 U P is inconsistent and Q, UP is con-
sistent and that P,Qq; and Q, are strict programs. From the

A.1 PROOFS

satisfaction of Consistencyq follows that AS(P x (Qq U Qz)) # 0.
It follows from Vacuityg that P C P * Q, and from Successg
that Q1 C P Q. For the satisfaction of Parallelismas it has to
be the case that AS(P % (Q; UQ2)) = AS((P* Q1) U (P=xQ32)).
It holds that PUQ; C (PxQq)U (P*Q2). Since PUQq is
inconsistent and P and Qi are strict programs it holds that
AS((P+Q1)U(P*Q2)) =0, in contradiction to Consistencyq.

2. Given P = P; UP; and Py and P, have disjoint sets of literals
and some program Q such that Py U Q and P, U Q are consis-
tent and P U Q is inconsistent. Assume P and Q are strict pro-
grams. It follows from Consistencyqg that AS(P % Q) # (. From
Vacuityq it follows that PyUQ C Py *Q and P, UQ C P2 xQ.
Disjointnessas demands that AS(P Q) = AS((Py * Q) U (P2 *
Q)). It holds that PUQ C (Py Q) U (P2 * Q). Since PUQ
is inconsistent and P and Q are strict programs we have that
AS((P1 % Q) U (P2 %Q)) = 0 in contradiction to Consistency.

O]

Proposition 4.3.18. (On Page 95) Let !r be a screened consolidation
operator. If !r satisfies Fullness, then it satisfies Relevance;.

Proof. Let r € P and v ¢ P!gx. We have Plg C Pl C P and from
Fullness, it follows that P!y is consistent and P!g U{r} is inconsistent
such that Relevance, is satisfied. O

Proposition 4.3.19. (On Page 95) Let !r be a screened consolidation
operator. If !r satisfies NM-Fullness;, then it satisfies Fullness:.

Proof. If r € P\ Plg, then P\ Plg # (). By NM-Fullnessq it holds that
P!k is consistent and, since {r} C P\ Plg, that P!g U{r} is inconsistent.
Hence, Fullness, is satisfied.]

Proposition 4.3.23. (On Page 96) Let * be a multiple base revision op-
erator defined as P+ Q = (PUQ)!q. If ! is a screened consolidation
operator that satisfies Topic-Independence;, then * satisfies Successq,
Inclusiong, Vacuityq, Consistencyq, NM-Consistencyq, Relevanceg,
Fullnessg, NM-Fullnessq, Uniformityq, Weak-Disjointnessp

and Weak-Parallelismp.

Proof. Screen; implies that Q C (PUQ)!q = P*Q, i.e., Successq.
From the satisfaction of Inclusion; follows that (PUQ)!q = P*Q C
PUQ, i.e., InclusionQ. From Screen-Consistency; follows that if Q is
consistent then (PUQ)!q = P * Q is consistent, i. e., Consistencyqg. The
satisfaction of NM-Fullness, implies that if r € (PUQ)\ P * Q then
P * Q is consistent and (P * Q) U {r} is inconsistent, i.e., Fullnessq is
satisfied. Note that Relevanceq follows from Fullnessq and Vacuityg
follows from Relevanceq and Inclusiong.

231

232

APPENDIX

For the proofs of Weak Disjointnessp and Weak Parallelismp we first
introduce some definitions:

Definition A.1.1. Given programs P and R such that R C P. We define
a closure operator Clp(R) of R with respect to P as the set satisfying:

1. RC Clp(R)
2. There is no rule r € P\ R such that A(r) N A(R) # 0
3. There is no set R’ C R satisfying 1. and 2.

Clearly it holds that A(Clp(R)) NP\ Clp(R) = 0.

Lemma A.1.2. Given programs R, T,P such that R C T C P and R =
Clp(R). T is consistent if and only if R is consistent and T \ R is con-
sistent.

Proof. Since A(R)NA(T) = 0 A(R) is a splitting set for T and the
lemma follows directly form the splitting set theorem [168].]

Weak Disjointnessp:

We show now that {P; U Q, P, U Q} is a topicalization of P. By defi-
nition it holds that (P; UQ) U (P, U Q) = P. We have to show that for
each R C P it holds that R is consistent if RN (P; U Q) is consistent and
RN (P7 UQ) is consistent. Now assume that RN (P; U Q) is consistent
and RN (P; UQ) is consistent. We can partition P; U Q into Clg(P1)
and (P; U Q) \ Clg(Py). From Lemma 1 follows that Clg(P;) is con-
sistent and Q1 =4 (P1 U Q) \ Clr(P1) is consistent. Analogously we
obtain Clg(P2) is consistent and Q2 =g (P2 U Q) \ Clg(P2) is consis-
tent.

For Q1 N Q2 it holds that Clr(Q1 N Q2) = Q1 N Q2 and from
Q1N Q2 C Qg follows that Q1 N Q2 is consistent. Consequently also
Clr(P1) U (Q1 N Q2) is consistent. Since R = (Clg(P1)U(Q1 N Q2)) U
Clg(P2) it follows from (Clg(P1)U (Q1 N Q2)) being consistent and
Clg(P2) being consistent by Lemma 1 that R is consistent. This proves
the claim such that {P; U Q, P, U Q} is a topicalization of P.

To proof Weak Disjointnessp we need to show that (PUQ)!q = (P1U
Q)!q U (P2UQ)!q. From the above considerations we know that (P; U
Q)!Q U(P2U Q)!Q =(PyU Q)!Q U(PrU Q)!Q since QU P, and Q U Py
are consistent and {P; U Q,P, U Q} being a topicalization of P U Q.
From Inclusion, follows that (PUQ)!q € PU Q such that we can write
(PUQ)!q = (PUQ)\ X. From Screen, follows that X C P. Applying
the same arguments to the right hand side yields

(PUQI\X=((PrUQ)\X7)U((P2UQ)\ X2)

A.1 PROOFS

and X; C P; and X; C P,. From P; and P, being disjoint follows
X7 NPy =0 and X, NPy = 0. Hence

(PrUQI\NX7)U((P2UQ)\X2) =

(PTUQ)\ (X7 UX2))U((P2UQ)\ (X3 UX3) =
(PrUQIU(P2UQN\ (X3 UXz) =
(PUQ)\ (X7 UX2).

This leaves to show that (PUQ)\ X = (PUQ) \ (X7 UX3). From Topic-
Independence it follows that (PUQ)\ (PUQ)!q = ((PUQ)\ (P71 U
Q)!o and we have that X = (PUQ)\ (PUQ)!q, X7 = (P1UQ)\
(P1UQ)!g and X3 = (P2 UQ)\ (P2 UQ)!q. Thus Weak Disjointnessp
is satisfied.

Weak Parallelismp: We define Py = P\ Clpyg,(Q2) and P, = P\
Clpug, (Q1). Clearly it holds that P = Py U P;.

Following same argumentation as for Weak Disjointnessp we can
show that {P1 U Q1, P, UQ2} is a topicalization of P U Q.

We need to show that

(PU(Q1UQ2))Q,uq, = (PUQ1)lq, U(PUQ2)!q,-

From Inclusion, follows that (P U (Q1 U Q2))!(q,uq,) S PU(Q1UQ2)
such that we can write (PU (Q1 U Q2))!(g,uq,) = (PU(Q1UQ2))\ X.
It is to show that

(PUQrUQ)\X=((PUQ\X)U((PUQ2)\X2).

We show first that (P UQ1)\ X7 = (P1UQ1)\ (X7 UX2) which holds
if and only if X, N ((P; UQ1) \ X1) = 0. From Screen, and Inclusion; it
follows that X; C P and X2 N (Q71UQ2) =0.

Hence it is left to show that X; N (P71 \ X7) = 0. Let r € X3 NP;. From
NM-Fullness; follows that for each r € X; it holds that ((PUQ2) \
X2) U{r} is inconsistent and therefore that r € Clpug((PUQ2) \ X2).
Therefore v ¢ (Py \ P2) by definition of Py and P, and consequently
re Py NP,

Therefore Xo N (P71 \ X7) = 0 if and only if X;N(PiNP2) =XonN
(P1 N P2). {(P1\ P2) UQ1,P1 NP2} is a topicalization of P; UQ; and
{(P2\P1)UQ2,P1 NP} is a topicalization of P, U Q,. From Topic-
Independence; follows that X1 N (P71 NP2) = Xz N (Py NP;). That is we
have shown that (P U Q1) \ X7 = (P UQ1)\ (X7 UX2). Analogously
follows that (P2 U Q2)\ X2 = (P2 UQ2)\ (X7 UX23).

Having shown this we can use the same argumentation from the
proof for Weak-Disjointness, yielding:

(PrUQN\X)U((P2UQ2)\Xz) =
(PrUQN\ (X3 UX2))U((P2UQ2)\ (X3 UX2) =
(PrUQ1)U(P2UQ2))\ (X3 UXz) =
(PUQ)\ (X7 UX2).

233

234

APPENDIX

This leaves to show that (PUQ)\ X = (PUQ) \ (X7 UX3). From Topic-
Independence it follows that (PUQ)\ (PUQ)!q = ((PUQq)\ (PU
Q1)lo, U((PUQ2)\ (PUQ2)!q, and we have that X = (PUQ)\ (PU
Q)lg, X1 = (P1UQ)\(PUQ1)!g, and Xz = (PUQ2)\ (PUQ2)!q,.
Thus Weak Parallelismp is satisfied. O

Proposition 4.3.28. (On Page 98) An operation ! is an operation of
screened maxichoice consolidation if and only if it satisfies Inclusion,
Screen-Consistency:, Screen;, NM-Fullness; and C-Uniformityq.

Proof. Construction to postulates:

Screeny We need to show that forall RC P, RC yp(P L R).If P L,
R = () then yp(P Ly R) = P and R C P by definition. If P L, R #) then
by definition of screened remainder sets R C X for all X € (P L, R) it
directly follows that R C yp(P L R).

Screen-Consistency; We need to show that for all R C P, if there exists
some consistent X, R € X C P then yp(P L, R) is consistent. In the
case of P L, R = () there does not exists a consistent set X, R C X C P.
In the case of P L, R # () by definition of screened remainder sets each
X € (P Ly R) is consistent and by definition y(P L, R) is consistent.

Inclusion; We need to show that for all R C P, yp(P L, R) C P. If
P 1y R =0 then yp(P Ly R) = P. If P L; R # () then by definition
of screened remainder sets for all X € (P L; R), X C P and thus by
definition y(P L, R) C P.

NM-Fullness; We need to show that for all R,if r€ Pand r € y(P L,
R) then y(P L, R) is consistent and y(P L, R) U{r} is inconsistent.
If P Ly R=(then yp(P Ly R) = P and thereisnor € Rand r ¢
vY(P L R) such that NM-Fullness; is satisfied vacuously. If P Ly R # ()
and v € y(P L R) then from y(P 1, R) = X for some X € P 1, R it
follows that X is consistent and from condition 3 of Definition 4.3.24
and X C XU{r} C P it follows that X U{r} is inconsistent such that
NM-Fullness; is satisfied.

Screen-Uniformity, We need to show that all R,R’ and P, and a se-
lection function for P it holds that if for all X C P, RU X is consistent
iff R” U X is consistent then y(P Ly R)NP = y(P L, R’)NP. If for all
X C P, RUX is consistent iff R’ U X is consistent then it follows that
P 1y R =P L, R’ and by definition of a selection function it holds
that Y(P 1, R) :Y(P 1 R/).

Postulates to construction: Let !r be an operation for P that satisfies
Screeny, Screen-Consistency:, Inclusion;, NM-Fullness;
and C-Uniformityg.

Let v be such that: v(P L, R) = P!'g We need to show that (1) vy is
a well-defined function, that (2) v is a maxichoice selection function,
and that (3) for all R, y(P L; R) = Plg.

Part (1): vy is a well-defined function if for all P 1, R =P 1, R’ it
holds that y(P Ly R) = y(P L R’). Suppose P Ly R =P L; R’ then it

A.1 PROOFS

follows from Screen-Uniformity, that P!r = P!g/. By definition of v it
follows that y(P L, R) =+vy(P L, R’).

Part (2): For v to be a maxichoice selection function we have to
show that if P L, R # () then y(P L, R) = X for some X € P 1, R and
thatif P L, R =0 theny(P L R,) =P.

If P L, R # () there exists some consistent X, R € X C P and it
follows from Screen Consistency; that P !g is consistent. From Inclusion;
follows that P! C P and from Screen, that R C P!g. To show that
Pl € P 1, R it is left to show that there is no H such that P! C
H C P and H is consistent. Let H be such that P!lx € H C P. Then
for R’ = H\ P!y it holds that R’ C P\ P!g such that it follows from
NM-Fullness; that P!gr UR’ = H is inconsistent.

If P L, R = @ then there does not exist a consistent set X, R C X C P.
Suppose to the contrary that P € P!z and let R = P\ P!g. Then it
follows from C-Screen-Fullnessq that P!y is consistent. From Screen,
it follows that R C P!k and from Inclusion, that P!l C P. This is a
contradiction. Therefore we have shown that P C Pl!x and since it
follows from inclusion that P!x € P we have P = P!y such that by
definition of ¥ we have y(P L R) = P which was to show.

Part (3): That for all R, y(P L R) = P!g follows directly from the
construction.]

Proposition 4.3.30. (On Page 98) If a screened maxichoice consolida-
tion operator is based on a monotone maxichoice selection function,
then it satisfies Topic-independence.

Proof. Let B be a topicalization of P. Then for each B € B it holds
that for each X € B L, 0 there exists some X’ € P L, () such that
B\ X = B\ X’. By monotony of vy it follows that B\ y(B L; 0) =
B\ v(P Ly 0) for each B € B. Since P = |J B it follows that P\ y(P L,
0) = Uges(B\v(B L 0)) and therefore P\ P! = [Jg.5(B \ B!) such
that Topic-Independence; is satisfied. O

A.1.3 Proofs for Chapter 5

Observation 5.3.4. (Page 117) Let Vw/(X) and V4 (XK) be belief bases, let
o® be a change operator, let x7 ,+7 ~be multiple belief base change
operators, and ty;, and t{, interpretation functions such that Equa-
tions 5.3.1 and 5.3.2 are satisfied. If 7, 7 = satisfy Success, then o
satisfies Awareness,,.

Proof. By Equations (5.3.1) and (5.3.2) (On Page 115) it is
Viv (K 0% @) = Viw (K) %8£S, ()
and

V(K 0% a) = Va(K) #§, t0 (4, a)

235

236

APPENDIX

such that ty;,(a) € Vw (K o® a) if and only if Vi (X) *gw tyy(a) and
ty(a, A) € V4(K o a) if and only if t{,(a, A) € V4(X) *2. ty (A, a).
Given that 7 ~and %7 satisfy Success it holds that

tyy(a) € Vw(X) *%W tyy(a)
and
ty(a,A) € Vy(X) *gv ty (A, a)

and therefore also ty;, (a) € V(X 0% a) and ty,(a, A) € V4 (Ko a)
such that Awareness is satisfied. O

Proposition 5.3.5. (Page 118) Let = be a set of belief operators, V an
agent-view and (¢, Bel, A) a secret. If Bel” = maxbel(z <, _(V, ,Bel),
Bel’ £, then Bel #p¢ Bel’.

Proof. Assume to the contrary that Bel’ = maxbel(z <, _1(V, $,Bel),
Bel’ # 1 and Bel < Bel’. We have to distinguish two cases:

1. If ¢ ¢ Bel(V), then Bel’ = Bel by definition of maxbel(z <,).
From the reflexivity of <} it follows that Bel Ap Bel, in con-
tradiction to the assumption.

2. If ¢ € Bel(V), then it follows from our assumption and by
credulity of <pe that Bel(V) C Bel’(V). It follows that ¢ € Bel’ (V)
in contradiction to the definition of maxbel = <,).

O]

Proposition 5.3.6. (On Page 118) Let D be an agent, with o and o4
defined as in Equations (5.3.1) to (5.3.6) (Page 115) with *g as de-
fined in Equation (5.3.9) on Page 118 above and inner revision op-
erators x5, and ., satisfying Success (defined in Section 2.5). The
change operator o satisfies Acknowledgment., Min-Secrecy-Weakening,
and the change operator for actions o, satisfies Secrets-Invariance,,
Awareness,,.

Proof. From Equation (5.3.3) (On Page 115) follows directly that for all
a € Act it holds that §(X o® a) = 8§(XK) implies that Secrets-Invariance
is satisfied. To show the satisfaction of Acknowledgement we show that
for all p € Per and for any secret (®,Bel, A) € 8§(X op) it holds that
¢ & Bel(V(X op)). By definition of *g it holds that each secret of
8(K op) is of the form

(D, maXbel(E,jbe|) (V(Xop), @,Bel), A).

By definition of maxbel= <,) it holds that if for some Bel € = it holds
that ® € V(X op), then

® ¢ maxbelz <,)(V, @, Bel)(V(Xop)).

A.1 PROOFS

It is left to show that there exists Bel € = such that ® ¢ V(X o p).
This is guaranteed by our assumption that Bely € = with Bely(E) =
(. The satisfaction of Awareness follows from the satisfaction of the
Success postulate by * and Proposition 5.3.4. O

Proposition 5.4.3. (Page 120) Let (A, §) be a setting such that A C Lgs
and all (o,0%,act) € § are of the type o : Lgs X Per — Lgs, 0% :
Les X Act — Lgs and act : Lgs — Act.

If (A, §) is plain, then any agent with an initial agent state (K9,8) e
(A, F) that has a safe initial epistemic state X° and that selects a safe
action if possible, i.e., for all X € Q¢ (KO, Per) and all p € Per if there
is an a € Act such that (X op) o® a is safe, then K op o®act(Kop) is
safe, is secrecy preserving.

Proof. We prove the proposition by induction over the construction of
K € Qg (A, Per).

Assume that (o,0%,act) with o : Lgg X Per — Lgg, 0% : Lgg X
Act — Lgs and act : Lgs — Act satisfies that K° is safe and for all
K € Qg (K°,Per) and all p € Per if there is a safe a € Act wrt. X op,
then act(X o p) is safe.

We have to show that all epistemic states in Qg (K°, Per) are safe.
By definition of the possible states, Definition 5.2.6, for each X ¢
Qa(fKO, Per) it holds that X = K° or X = K’ op o®act(XK’ op) for some
XK' € Qg (KO, Per) and p € Per. Since X° is safe by assumption that if
some K € Q¢ (A, Per) is safe, then for all p € Per, X op o®act(K op)
is safe.

Since o satisties Acknowledgement, it holds that if X € Qg (A, Per)
is safe, then for all p € Per, X o p is safe. From the setting (A, 3, Per)
being plain it follows that for all X € Qg (A,Per) C Lgs and for all
p € Per there exists some a € Act that is safe wrt. X o p.

For all X° € A it follows that X° o p 0% act(X o p) is safe and by
our assumption it follows that if X € Q (A, Per) is safe, then K op o
act(X o p)} is safe. It follows by induction that all X € Q¢ (A, Per) are
safe. O

Lemma 5.4.8. (Page 122 Let X € Lgs be an epistemic state, Per a set
of percepts, Act a set of actions, and o : Lgs x Per = Lgs a change
operator. If X is sound with respect to (Lgs, X, Per, Act, 0,0¢), then it
is safe.

Proof. Let X be a sound state wrt. some (Les, K, Per, Act, 0, 0%). For
any strategy s4 of A all paths m = (Ko,...,Kn) € W with Ky = K
that are compliant with s 4 the utility u4 () = 1, that means that all
X € m are safe. Therefore, X is safe.]

Proposition 5.4.9. (Page 123) Let (A, §) be a setting for which A C Lgs
and all (o,0%,act) € § are of the type o : Lgs x Per — Lgg, 0% :
Lgs x Act — Lgs and act : Lgs — Act. An agent with initial agent

237

238

APPENDIX

state (K°,&) € (A,J) is secrecy preserving if and only if all states
K € Qg (KO, Per) are sound.

Proof.

=: From Lemma 5.4.8 follows that if all states X € Q¢ (X°, Per) are
sound, then they are all safe and by Definition 5.2.7 it follows that
(K°, &) is secrecy preserving.

«: Let (X°, £) be secrecy preserving. Assume that there is some X' €
Q¢ (KO, Per) that is not sound wrt. (Lgs, X/, Per, Act,0,0%). Then A
has a winning strategy s4 in gg.q %’ PerActo,0c and in any path m =
(X’,...,Xn) that complies with s 4 there is some X" € 7t that is not
safe, since ug = 1.

As o satisties Acknowledgement for all X; € m with P(K;) = A it is
the case that K41 = Kj o s 4(mli]) is safe. Consequently there is some
K;i € mwith P(X;) = A such that ;1 = K; os4(mli]) is not safe.
Any such Xj; 1 is contained in Q¢ (K, Per) since it contains all
{X | K =%0poo®actp(K°opo)on ... ,po,...,pi C Per,i € Noh

Hence, there is at least one state in Q¢ (X, Per) that is not safe. Con-
sequently (X°, &) is not secrecy preserving. O

Proposition 5.4.10. (Page: 123) Let (A, §) be a setting that is plain. For
any (X9,8) € (AF) any X € QE(TKO, Per) that is safe, is sound wrt.
(LES/ j<:/ Per/ ACt/ o, oa)'

Proof. Let (X°%,&) € (A,F), K € Qs (K°, Per) and X be safe. Since
(A,) is plain for all (X°,&) € (A, %) for all epistemic states X €
Q¢ (KO, Per) that are safe it holds that for all p € Per there is some
action a € Act such that a is safe with respect to X o p. Therefore, for
any strategy s in gg.,% PerAct0,00 there is a strategy sp and a path
= (Ko,...,Kn) with Ky = X that complies with s 4 and sp and

1. for all X; € m with P(X;) = A it is the case that X;, 1 = K;o
s (m[i]) is safe since o satisfies Acknowledgement,

2. for all X; € m with P(X;) = D it is the case that X;, 1 = K;o
sp(m[i]) is safe, since the setting (A, §) is plain.

Hence, for all strategies s 4 there is a path m = (X,...,X;) that is
compliant with s4 and the utility u,4(7) = 0 such that A does not
have a winning strategy in g% PerAct0,0ec and consequently X is
sound wrt. (Lgs, K, Per, Act,0,0). O

Proposition 5.4.11. (Page 123) Let (X°, &) be an agent with & = (o, act),
o : PerUAct x Lgs — Lgg and act : Lgs — Act. If X° is sound
wrt. (Lgs, K, Per, Act, 0,0%), then if (K©, &) selects sound actions, i.e.,
for all X € Qg(X°, Per) and all p € Per if there is some a € Act such
that (Kop)o® aissound wrt. (Les, ((Kop)o®a),Per, Act,0,09), then

A.1 PROOFS

act(X op) is such that K o® act(K op) is sound wrt. (Les, Ko act(K o
p), Per, Act, 0,0%), then (X°, &) is secrecy preserving.

Proof. In Proposition 5.4.9 (Page 123) we showed that an agent with
initial epistemic state (X°, &) is secrecy preserving if all states X €
Qa(J{O,Per) are sound wrt. (Lgs, X, Per, Act,0,0%). What is left to
show is that for all X € Q¢ (X°, Per) for all p € Per there exists an ac-
tion tsuch that (KX op)o® ais sound wrt. (Lgs, (Ko® a), Per, Act,0,09).
By assumption %0 is sound wrt. (Lgs, KC, Per, Act,o,0%). We show
that if an epistemic state K is sound wrt. (Lgs, K, Per, Act,0,0%),
then there exists an action ¢ € Act such that X o a is sound wrt.
(Lgs, (KX o%a),Per,Act,0,0%).

If X is sound wrt. (Lgs, K, Per, Act,0,0%), then A does not have a
winning strategy in gc. i PerAct0,0c Which means that for all strate-
gies s 4 there exists a path

n=(K,K1,X2...,Kn) eW

that is compliant with s4 and u,4(7) = 0. Hence for each s, there
exists a path m = (K, K7,XK; ..., Kn) € W such that for some p € Per
it holds p = s4((X)) and there exists an action a € Act such that
K2 =XKq0%aand uy(m) = 0. The paths of the game g ¢ %, PerAct 0,00
are

W, :{(j{z---/xﬂ.) | (fK,thsz,,,,fKn) EW}/

further, if uy (K, XK1,K>...,Kn)) = 0 then ug((Ka..., X)) = 0.
Since, for all strategies s 4 there exists a path

= (JC,JC1,J<Z...,J<n) ew

that is compliant with s 4 and u,(71) = 0 also for all strategies s’; in
0L, Ko, Per Act000 there exists a path 7 compliant with s’; such that
uy (') = 0. Therefore, K, is sound, which was to be shown. O

Observation 5.4.12. (On Page 124) Let (A, J) be a setting with & =
(0,0%act), o : Lgg X Per — Lgs, 0% : Lgs X Act — Lgs and act :
Lgs — Act. Let € € Act be the empty action. If for all X € Qs(A, Per)
and all p € Per it holds that (X o p) o® € is safe, then (A, §) is plain.

Proof. From the definition of a plain setting in, see Definition 5.4.2
(Page 120), follows that in each possible state there exists a safe action.
Here the empty action is assumed to be always secrecy preserving,
which proofs the existence of such an action. Formally the definition
is satisfied since for all (X, &) € (A, F) for all safe epistemic states K &
Q¢ (X, Per) it holds that for all p € Per the epistemic state (K op)o® e
is safe. O

Lemma 5.4.14. (On Page 126) For each (KX, &) € T4 it holds that for
all X' € Qg (K, PerQ?) that $(K') = 8(X).

239

240

APPENDIX

Proof. For all X' € Q¢ (XK, PerQA?), K/ £ K it holds by Definition 5.2.6
that

j{l — g{// op OCL act(j{// Op)

for some K" € Qg (K,PerR?) and p € PerQ”?. Hence we use induc-
tion to show the lemma.

Apparently for X’ = X it holds that 8§(X’) = 8§(X). Now, assume
that it holds for K" € Qg (XK, PerR?) that $(X") = §(X). Since PerQ” =
{(A,{D}, query, @) | @ € Lpas} and by assumption 3.a) it holds that
tv((D,{A}, query, ®)) = () it follows from Equation (5.3.2) (On Page 115)
that

V(K" op) = V(K") xg,, 0.
By satisfaction of assumption 4. and 6. it follows that
V(K") sy, 0 =V(KYUD=V(K").

Therefore it holds for all ¢ € F(8§(X”)) that ¢ € CnPoP(V(K')) if
and only if ¢ € CnPP(V(X")). From the satisfaction of Min-Secrecy-
Weakening by o follows that §(X"” op) = §(K").

From the satisfaction of Secrets action invariance it follows that

§(X"op) =8(K" opo®act(X" op)),
which completes the proof. O

Proposition 5.4.15. (On Page 126) For each (X°, &) € TR it holds for
all X € Qg (KO, PerQA) that
X is not sound wrt. (Lgs, XK, PerQA ActQA o, 0%) if and only if

(&) eBe(Va(X)).

$eF(8(X))

Proof.

“«<": Suppose that (\/cbeF(S(ﬂC)) b) € CnPP(V,4(K)). We show that
in this setting it is a winning strategy for A to query all sensitive
formulae in a sequence of queries.

We define a change operator ® for the change of an epistemic state
X by a sequence of speech acts 0 = (LQ,,lA; ---lQ,, A,) as:

K0 = (.. (((Koig,) 0% ta,) 01g,) o tay) -+ 0 1q,) 0% ta,)

We denote the sub-sequence of a sequence o of the first i 1g, LA pairs
by oli].

We consider a speech act sequence 0sec = (1Q,,lA; ---LQn/ A,) Of
queries of A and answers of D with

(LQiI LAi) S {(<‘A/ {D}I query, d)i>/ <D/ {‘A}/ answer, Cl){>) |
$i € F(8(X)), bi € {dbi, ~di}}

A.1 PROOFS

such that the following two conditions are satisfied:

a) {(b]/ . -/(I)Tl} = F(S(:K))/

b) for all epistemic states X’ of the path generated by the action
sequence

T gec —def (:K © Osec [0]/ X Usec[]]/ oo /j< © 0'sec[n])
it holds that V(X’) is consistent.

We show that in this setting the strategy of A that always asks the
queries of the given sequence in the given order is a winning strat-
egy in the game g, g pe, QA aQA ;oo FOrmally this strategy can be
defined as sq (X7, ..., X)) = 1o, withj = (™) mod n.

For this it suffices to show that the epistemic state

XK ® 0gec 15 not safe

since we use an arbitrary sequence o of the form defined above.

By condition b) it holds for all X = K;_1 0% 14, with Xi_1 € ms_,
and (D, {A}, answer, ¢{) € 0sec that V(X) is consistent. By Equation
(5.3.2) (On Page 115)

V(Ki_1) o (D, {A},answer, p{) =
V(Ki_1) *2,, tv(A, (D, {A}, answer, d{)).

By Assumption 3.b) (On Page 125) we get that
tv (‘A/ <D/ {‘A}/ answer, d){>) = d){

and by Assumption 4. (On Page 125) and the fact that V(X;_1) U{d{}
is consistent (by condition b)) it holds that

V(Kio1) *g, & = V(Ki—1) U{di}

Therefore it holds that ¢ € V(Xi_1). By condition a) it follows that
V(K © 0sec) contains for all ¢ € F(§(K)) either ¢ or —~¢. By assump-
tion

(Vpers)) ¢) € VIK O osec).
Further, by Assumption 6. it holds that it follows that
V(XK ® 0sec) is consistent.

From the last three statements follows that for some ¢ € F(§(XK)) it
holds that

$ € CnPP(V(K ® 0sec)).
From Lemma 5.4.14 (On Page 126) follows that

8(:]{ ® Gsec) = S(:K)

241

242

APPENDIX

Hence K © 0 is not safe.

“=": Suppose X is not sound wrt. (Lgs, K, PerQA ActRA, 0,09).

From the assumption it follows by definition that there is a winning
strategy for A. Let this be s 4. We consider the finite sub-tree T’ of the
game tree of g, 5 pe,QA 21QA 4 o that contains exactly the paths that
are compliant with s 4, truncated after the first node that is not safe.
Hence all leaf nodes are not safe and all inner nodes are safe. We
show by structural induction from the leafs to the root that for all
nodes X’ of T’ it holds that (Vpers) ¢) € CnProP(V(K')).

BASIS: LEAF NODES Let X’ be a leaf node. Since X' is not safe it
holds for some ¢ € F(§(K')) that ¢ € CnPP(V(K’)). By Lemma 5.4.14
(On Page 126) it holds that 8§(X’) = §(X). If follows that

(&) ecnrv(K).

HEF(8(X))

INDUCTIVE STEP: Let X’ be an inner node. The children of X' are
denoted by ch(X’). By induction assumption it holds for all X" e
ch(X’) that (Vpersa) ¢) € CnPP(V(X")). We have to distinguish
if we are in a node in which A or D is acting. This is indicated by the
player function P as defined in Equation (5.4.1) (Page 121).

cAsE 1: P(X') = A It holds that X" = XK' o (A,{D}, query, d).
By Equation (5.3.2) (On Page 115) it is
V(X') o (A,{D}, query,) =
V(:K/) * Ly tV(‘A/ <‘AI {D}r query, (b>)
By assumption 3.a) tv (A, (A,{D}, query, ¢)) = 0. By assumption 4.
* ¢\, satisfies Inclusion and Vacuity such that, since V(X) is consistent
by condition (2), it holds that

V(K")=V(K')*g, 0 = V(K)UD.
CASE 2: P(X’) =D TItholds that X' = X' o (D, {A}, answer, ¢’).
By Equation (5.3.2)

V(K)o (D,{A}, answer, ¢') =
V(X) #cy tv (A, (D,{A}, answer, d')).

By assumption 3.b) ty (A, (D, {A}, answer, ¢')) = {¢$'}. By assump-
tion 4. ,, satisfies Inclusion and Vacuity such that, since V(X') U
{¢$ '} is consistent by condition b), it holds that

V(K) 5z, ¢ = V(K)U{d"}

A.1 PROOFS

By assumption 5. the children of X’ result from D ’s two possible
answer-values. Assume that these are {¢, =¢}. Then, taking assump-
tion 6. into consideration, V(X’) U{¢} is a child of X’ if it is consis-
tent, and V(X’) U{—¢} is a child of X' if it is consistent. Now we
consider two cases:

1. X’ has two children:
Then, there is another child X" € ch(X’), X" # X" with
K" =K' o (D,{A}, answer, ~¢d’). By the same argumentation as
for K" it follows that V(X') x5, ~¢' = V(K') U{—d'}. Since the
induction assumption holds for both children if follows that
(Vpersix)) @) € CnPP(V(K) U{dp'}
N CnPP(V(K) U{~d"})
= CnPoP(V(K")).

2. K’ has one child:
There is no other child, from which follows that

V(K') %o, ~¢" = V(K) U{=¢"}

is inconsistent. By definition of CnP™P it follows that
¢’ € CnPP(V(K")).

Consequently we have that
CnPoP(V(X')) = CnPP(V(XK) U{d}).

Since by induction assumption

\/ b eCnPPV(K) U

beF(8(K))

it follows directly that

\V e CnPoPV(K)).

$eF(8(X"))
O

Corollary 5.4.17. (On Page 127) Let ‘J’SA C TA be the setting for
which it holds that for all (X, &) € iTSA there is some ¢ € F(8(K))
such that ¢ =P (Vycr(s(x)) §)- The setting TN is plain.

Proof. We have to show that for all agents (KO, 8) € ‘J'gA for all safe
epistemic states K € Qg (K°, Per%?) it holds that for all p € PerQ”
there is some action a € Act®” such that (X o p) 0% a is safe.

Let (X°,&) € ‘.TSA and K € Qg (X°, Per®?) from Proposition 5.4.15
follows directly that if K is safe, then it is sound. By definition of a

243

244

APPENDIX

sound epistemic state (Definition 5.4.7, Page 122) follows that A does
not have a winning strategy in the game g, 4 pe,QA actQA o oa-

Assume to the contrary that for some p € PerQ? which represents
a move of A , for all actions a € Act®?, moves of D, (Kop)o®ais
unsafe. Then, any strategy of the attacker s 4 such that s4(X) =p is

a winning strategy. O]

Proposition 5.5.2. (On Page 133) Let (A, §) be a setting. An agent with
initial agent state (X°,&) € (A,T) is secrecy preserving if for all X €
Qa(iKo, Per) and all p € Per:

a) =xop satisfies sound preference

b) if there is a sound action a € Act, then there is a sound action
/ /
a’ € Acty)

Proof. By construction of Q all states X € Qg (X, Per), except for
(X, &), are successors of some other state X' € Qg (K°,Per) such
that X = XK’ op o®act(X’ o p). We proof the result by induction
over this successor relation. The initial agent state (X9, &) is sound
by assumption. That is, it is left to show that if X’ is sound, then
K’ opo®act(X’ op) is sound.
If X’ is sound, then by definition for all p € Per there is an action
a € Act such that a is sound. It follows from ii) that some a’ €
Act(y ¢ is sound. Then it, follows from i) that act(X’ o p) is sound.
O

Proposition 5.5.12. (On Page 146) Any function sr : Pg,(act) x QO — Cl
that satisfies Principles I.1, 1.2 and II also satisfies Principle III and
Principle IV.

Proof. Assume a secrecy reasoner sr which satisfies Principle 1.1, Prin-
ciple I.2 and Principle II. Let Act{,, ; be a finite set of actions and X an
epistemic state. Let cl = sr(Act{, ¢, X) be the classification determined
by sr.

We first prove the following lemma.

Lemma A.1.3. If there exists an action b € Act{,,; with vioAfter(X,b) =
{0}, then for all actions a € Actf, ¢ it holds cl(a) = 0 if and only if
vioAfter(K, a) = {0}.

Proof. “<": If vioAfter(X, a) = {0}, then cl(a) = 0:
Let a € Act/,; be an action with vioAfter(X, a) = {0}.

1. By the definitions of vioAfter and 7, there cannot exist an action
a’ € Act{,,; such that vioAfter(X, a’) C vioAfter(X, a) holds.

2. Hence, for no a’ € Act/,; the precondition of Principle L1 is
satisfied. Therefore, there does not exist an action a’ € Acti,,
such that cl(a’) < cl(a) is demanded by this principle.

A.1 PROOFS 245

3. There are no secret (¢, Bel) € §(X) and no belief operator Bel’ €

= with Bel” <y Bel such that the secret (¢, Bel’) is potentially
violated after action a.
The reason is that, if there were a potential violation of (¢, Bel g
after a, then by definition there exists Viy € V(X) & a such that
¢ € Bel’(Vyy). Since Bel” <}, Bel holds, the credulity property
of the order =, implies that Bel(Vyy) 2 Bel’ (V) > ¢. Hence,
it holds (¢, Bel) € vio(X, V) and vio(X, Vi) € vioAfter(X, a)
by Definition 5.5.4. This cannot happen since vioAfter(X, a) =
{0} holds.

4. Therefore, for each action a’ € Act{,,; the precondition of Prin-
ciple L2 cannot be satisfied so that for each action a’ € Acti,,,
the relation a’ <,i, a does hold. Hence, for no a’ € Act{,,

cl(a’) < cl(a) is demanded by this Principle I.2.

5. By Points 2 and 4, there exists a classification cl’ with cl’(a) = 0
which satisfies Principles I.1 and I.2.

6. From the assumed satisfaction of Principle II by the secrecy rea-
soner sr, it outputs a classification cl such that cl(a) = 0.

“="1f cl(a) = 0, then vioAfter(X, a) = {0}
We show the implication by contraposition. Let a € Act{,,; be an
action such that vioAfter(X, a) # {0} holds.

1. By the assumption of Lemma A.1.3 there exists b € Act{,,; with
vioAfter(X,b) = {0}.

2. Hence, it holds vioAfter(X, a) T vioAfter(X, b) by definition.

3. By Principle L1, it follows that cl(a) > cl(b) > 0.

SATISFACTION OF PRINCIPLE III
Let X and X’ be epistemic states with equal components possibly
except for the secrecy policies which are of the following form:

S(:K) = {(¢1/ Bel])I o (d)n/ Beln)}/
S(X/) = {(¢11 Bel] ,)1 cee (d)n/ Beln/)}
with Bel;” <pel Bel; forallie{1,...,nk.

Assume there exist actions a,b € Act/,,; such that vioAfter(X, a) = {0}
and vioAfter(X’,b) = {0}.

We show that for all actions ¢ € Act/, ¢, if c/(c) = 0 holds, then cl’(c) =
0 holds with cl = sr(Act{,,;, X) and cl’ = sr(Act{,,¢, K').

Let ¢ be an action ¢ € Act{,,; such that cl(c) = 0.

246

APPENDIX

1. Since by assumption action a € Act;,,; satisfies vioAfter(X, a) =
{0} it holds that vioAfter(X, c) = {0} by Lemma A.1.3.

2. From the definition of vioAfter it follows directly that for all
Vw € &(V(X),c) and for all (¢, Bel) € §(X) it holds that ¢ ¢
Bel (Vi).

3. By presupposition, the secrecy policies are of the form

8(K) ={(d1,Bely),...(dn,Beln)},
S(K,) = {(d)1/ Bel] I)/ cee (d)n/ Beln/)}
with Bel;’ <o Bel; forallie{1,...,n}.

so that for all Viy € P(Lgg) x Lps™ it holds
Bel{(VW) - Beli(VW)

by the credulity property of the order <. Hence, it follows
that for all Vi € ®(V(X),c) and for all (¢p,Bel’) € §(X’) it
holds that ¢ ¢ Bel’(Vy) by Point 2.

4. It follows that

{0} = vioAfter(8(K'), V(X), c) = vioAfter($(X'), V(K'), c).

5. Since by assumption, action b € Act/, , satisfies that
vioAfter(X’,b) = {0}

it follows that cl’(c) = 0 by Lemma A.1.3. O

SATISFACTION OF PRINCIPLE IV
Let X and X’ be epistemic states with equal components possibly
except for V4 (K) O V4(XK’). Assume there exist actions a, b € Act{, ¢
such that vioAfter(X, a) = {0} and vioAfter(X’,b) = {0}.

We show that for each ¢ € Act/, ¢ if cl(c) = 0 holds, then cl’(c) = 0
holds with cl = sr(Act{,s,K) and cI’ = sr(Act/, ;,X’). Let ¢ be an
action ¢ € Act{, ; such that cl(c) = 0.

1. Since a € Act/, ; satisfies vioAfter(X, a) = {0} it holds that
vioAfter(X, c) = {0} by Lemma A.1.3.

2. From the definition of vioAfter it follows directly that for V(X) D
V(X') it holds that

vioAfter(8(K), V(K), c) D vioAfter(8(X), V(K'),c) =
vioAfter(8(X'), V(X'), ¢).

3. It follows that vioAfter(8, V(X'), c) = {0}.

A.1 PROOFS

4. Since action b € Act{,; satisfies vioAfter(X’,b) = {0} it follows
that cl’(c) = 0 by Lemma A.1.3.

O]

Lemma 5.5.13. (On Page 147) Given some set of actions A and an
epistemic state K. The set conflictSets(A,K) is a partition of A, i.e,,
it holds that

a) |JconflictSets(A,X) = A and

b) for all CS,CS’ € conflictSets(A,XK), CS # CS’ it holds that CS N
CS’' =0.

Proof. Let A be some set of actions, X an epistemic state and
conflictSets(A, X) the set of conflict sets for A and X.

a) For each singleton set A’ = {a} with a € A it holds trivially that
foralla,be A/, a#b (A.1.1)
exist aj,...,an € A’ with a; = a, a,, =b and
forallie{l,...,n—1} ai <vio Aisi1.
Since conflictSets(A, X) is a set-inclusion maximal set of sets A’

satisfying (A.1.1) it follows that for all a € A that a € CS for
some CS € conflictSets(A). Thus | conflictSets(A, K) = A.

b) Assume to the contrary that there exist
CS, CS’ € conflictSets(A, X), CS # CS’ such that CSNCS’ # ().
Foralla € CSNCS’and allb € CSUCS’ a # b exist
ai,...,an € A'withay =a,a, =b

and for all i € {1,...,n—1}: a; <vio aiy+1., and therefore for
CSUCS’ = A’ (A.1.1) is satisfied. Therefore CS and CS’ are
not set-inclusion maximal subsets of A with respect to prop-
erty (A.1.1), in contradiction to the assumption that CS,CS’ €
conflictSets(A, XK).

O

Proposition 5.5.15. (On Page 150) If all elementary operations of Pro-
cedure 5.5.1 are computable, the algorithm always terminates and
returns a complete classification.

Proof.
Termination:
We show that all loops terminate after a finite number of steps.

1. The for loop from Line 2 to Line 4 iterates over the set of con-
sidered actions Act{,,;, which is finite by definition.

247

248

APPENDIX

2. The repeat-until loop from Line 5 to Line 26 has the termination

condition unclass = (). Before the loop, the set unclass is initial-
ized in Line 1 with the finite set of considered actions Act, ;.
Within the loop, unclass is only modified in Line 25, by setting
unclass := unclass \ best.

We show that always in Line 25 if unclass # (), then unclass N
best # (). The set best is defined in Line 6 and not modified in
any other line. Apparently it holds that best C unclass. It is left
to show that if unclass # (), then best # ().

The set best is non-empty if and only if there exists a € unclass
such that there does not exists b € unclass, and vioAfter(X, a) 3
vioAfter(X, b). We show that this is the case for all possible sets
unclass.

a) Assume to the contrary that for all a € unclass there exists
b € unclass such that vioAfter(X, a) 3 vioAfter(X, b). This is
only possible if there is a cycle with respect to 7, i. e., there
exists a sequence (aj,...,an) with {aj,...,an} = unclass
such that

vioAfter(X, a1) 3 - - - 3 vioAfter(X, a,,) O vioAfter(X, aq).

We show that this is impossible.

b) For any pair of actions ay, a, € unclass such that
vioAfter(X, ay) 3 vioAfter(X, ay)

it holds by Equation (5.5.11) Condition 2. (On Page 141)
that there exists some

Sa, € max vioAfter(X, az) and some S, € vioAfter(X, ay)
such that S,, C Sq,. This holds also for the first two ele-
ments of our considered sequence.

¢) By Equation (5.5.11) Condition 1 (On Page 141) it follows
for our considered sequence that for each pair a;, ai+1, 1 <
i < n, it holds that for all Sq,,, € vioAfter(X, aiy1) there
exists Sq; € vioAfter(X, ai) such that So,,, C Sq, and for
all Sq, € vioAfter(XK, ay) there exists Sq, € vioAfter(XK, an)
such that Sy, C Sq,,. By the transitivity of the C relation it
follows that for a; it holds that for all S4, € vioAfter(X, ay)
there exists S, € vioAfter(X, ay) such that Sq, C Sq,.

d) From Points 2b and 2c follows that there exists some S, €
maxc vioAfter(X, a;) and some S(’12 € vioAfter(X, ay) such
that Sq, C Sq, C Sq,, which cannot be the case since S,
is set-inclusion maximal.

A.1 PROOFS 249

3. The for loop from Line 8 to Line 10 is a for loop over the set of
equivalence classes of the set best C unclass. Since unclass is a
finite set, the set of equivalence classes of a subset of it is finite
as well.

4. The for loop from Line 11 to Line 24 is a for loop over the set
of equivalence classes of the set best C unclass. Since unclass is a
finite set, the set of equivalence classes of a subset of it is finite
as well.

5. The repeat-until loop from Line 13 to Line 23 terminates if
conflictSets = (). The set conflictSets is initialized before the loop
in Line 12 by conflictSets(A, X). In Line 21 it is set to

conflictSets := conflictSets \ classSets.

We have to show that if conflictSets # (), then
classSets N conflictSets # ()

in Line 21. The set classSets is initialized by the empty set in
Line 14 and only modified in Line 18 in which a conflict set from
the set conflictSets is added to it. Hence, classSets C conflictSets
such that it is left to show that classSets # ().

a) If conflictSets # () in Line 15, then the for loop in the same
line iterates over all its elements.

b) We show that for any set conflictSets there is at least one
CS € conflictSets that satisfies the condition in Line 16 such
that classSets is never empty in Line 21.

c) Consider to the contrary that for some conflictSets it holds
that for all CS there is some CS’ € conflictSets with CS’ #
CS such that a’ € CS’ and a € CS exist with a’ <, a.

d) Then, there is a sequence of conflict sets (CSy,...,CSyn) C
conflictSets and CS;; = CS; such that for each CS;, CSiy1,
1 < i < n there exist a; € CS; and af,; € CSi1 with
ai <vio (1{_H .

e) By definition of conflict sets for each pair a;, a there exists
a sequence (ai1,..., aiki) with a7 = qjy, Aix;, = ai/ and for
1 <j <k it holds that aij <vio Qi(j+1)-

f) Hence, the set
A’:{aﬂ,...,aiki;...;am,...,ankn}Q CSiuU---uUCS,

satisfies Condition A.1.1.

g) The set conflictSets is the set of set-inclusion maximal sets
A’ that satisfy A.1.1. Since CS; C CS;U---UCSy, the set
CS; cannot be set-inclusion maximal such that it follows
that CSy ¢ conflictSets, in contradiction to the assumption.

250

APPENDIX

6. The for loop from Line 15 to Line 20 iterates over the set of
conflict sets which is, as shown in Lemma 5.5.13, a partition of
an equivalence class of actions. Since the set of actions is finite,
the set of conflict sets is finite.

Complete Classification:

It is left to show that the algorithm returns a complete classifica-
tion. The set of unclassified actions unclass is initialized in Line 1,
unclass := Act/, ;. The set is only modified in Line 25, where the set
best is subtracted from it, i.e., unclass := unclass \ best. The algorithm
terminates only if unclass = (), Line 26. Therefore it suffices to show
that always in Line 25 all actions in best are classified.

1. The set best is initialized in Line 6 and not altered before it is
subtracted from unclass in Line 25.

2. The set best partitioned into the set ~ equivalence classes eqbest
in Line 7.

3. Each of these equivalence classes is partitioned, as shown in
Lemma 5.5.13, into their conflict sets conflictSets in Line 12. The
set conflictSets is only modified in Line 21 where the set classSets
is subtracted.

4. The set classSets is initialized in Line 14 by the empty set and
only modified in Line 18 by adding the set CS. All actions in CS
have been classified in Line 17. Hence, in Line 21 only sets of
classified actions are removed from conflictSets.

5. The repeat-until loop from Line 13 to 23 only terminates if
conflictSets = (), which implies, since conflictSets is a partition
of A, that all actions in A are classified. This is repeated for all
A € egbest by the for loop from Line 11 to 24 which implies that
in Line 25 all actions in best are classified.

O

Proposition 5.5.16. (On Page 150) Procedure 5.5.1 satisfies the Princi-
ples 1.1, 1.2 and II, as given in Definition 5.5.11.

Proof.

Principle L.1:

Given (Z, <pel) as parameter, let cl be the classification function as de-
fined by Algorithm 5.5.1. We prove that, for all Act{,; C Act, for all
K € Qand forall a,b € Act{,; such that vioAfter(X, b) 1 vioAfter(X, a)
it holds cl(b) > cl(a).

1. From Proposition 5.5.15 follows that for some iteration of the
repeat-until loop starting in Line 5 it is b € best in Line 6. In

A.1 PROOFS

this iteration b € unclass and there is no a’ € unclass such that
vioAfter(X,b) 3 vioAfter(X, a’).

2. Hence, in particular a ¢ unclass and consequently a ¢ best.
Since unclass = Act{,,; initially and then only classified actions
are removed from it, as shown in the proof of Proposition 5.5.15
it follows that at this point a is already classified.

3. Action b will be classified in a following iteration of Line 17
with the value of rank[A] with b € A.

4. The value of rank[A] that is determined in Line 9. By assumption
vioAfter(X,b) I vioAfter(X,a), and b € A and a € Act{, s\
unclass such that by Line g it follows that

rank[A] = cl(b) > cl(a).

Principle I.2:
Given (Z, <pe) as parameter, let cl be the classification function as
defined by Algorithm 5.5.1. We prove that, for all Act{, ; C Act, for
all X € Q and for all a,b € Act/, ; with vioAfter(X, b) ~ vioAfter(X, a)
and a <,i, b:

1. Conflict Free: If there do not exist actions aj,...,an € Act{, ¢
such that a; = b, an, = aand a; <yio air1 forallie{l,...,n—
1}, then it follows that cl(b) > cl(a).

2. Conflicting: Otherwise, it follows cl(b) > cl(a).

From the assumption vioAfter(X, b) ~ vioAfter(X, a) follows by Defini-
tion of 1 that for all ¢ € Act{, 4, if vioAfter(X, a) O vioAfter(X, ¢), then
vioAfter(X, b) O vioAfter(X, c). Therefore, if in some iteration a € best,
then also b € best according to the definition of best in Line 6.

We consider the iteration of the repeat loop starting in Line 5 for
which this is the case in the following. By definition of egbest in
Line 7 there exists A € egbest such that a € A and b € A, since

vioAfter(X,b) ~ vioAfter(X, a).

1. By definition of conflictSets in Line 12 and the satisfaction of the
condition of conflict freeness there exist

CSq, CSyp € conflictSets, CS, # CSy such that
ae CSqand b € CSy,.

From Lemma 5.5.13 follows that for all CS” € conflictSets if
CS” # CSq, then a ¢ CS”; and if CS” # CSy, then b ¢ CS”.

We consider the iteration of the repeat-until loop starting in
Line 13 and of the for loop starting in Line 15, in which a is
classified in Line 17.

251

252

APPENDIX

a) In Line 18 classSets := classSets U{CS}.

b) Action b is not classified yet in this iteration of the repeat-
until loop starting in Line 13 since the condition in Line 16
is not satisfied for the CSy, iteration of the for loop starting
in Line 15 as long as CS, € conflictSets.

¢) In the next execution of Line 21 conflictSets := conflictSets \
classSets with CS, € classSets and in Line 22 rank[A] :=
rank[A] + 1.

d) From Proposition 5.5.15 follows that b will be classified
in the following. Since b € CSy, C A it will be classified
in the same iteration of the for loop starting in Line 11
with the then current value of rank[A]. Since rank[A] is only
modified in Line 22, rank[A] := rank[A] + 1, it follows that
cl(b) > cl(a). O

2. By definition of conflictSets in Line 12 it follows that there exists
some CS € conflictSets such that a € CS and b € CS.

From Lemma 5.5.13 follows that for all CS’ € conflictSets if
CS’ #CS,thena ¢ CS"and b ¢ CS'.

From Line 17 follows that all a’ € CS are assigned the same
classification rank. Consequently cl(a) = cl(b). O

Principle II:
Given (Z, <pel) as parameter, let cl be the classification function as
defined by Algorithm 5.5.1. Further, let sr’ be another function sr’ :
Phin(Act) x Q — Cl fulfilling Principles 1.1 and I.2. We prove that,
for all Act{,,; C Act, for all X € Q and for all a € Act{, ; it holds
c’(a) = cl(a) with cI’ = sr’(Act/, , K).

We proceed by induction on the classification rank r in the range
of cl. Thus, we consider the following induction hypothesis:
For all i < r— 1 it holds for all actions a € Act{,,; with cl(a) = i that
c(a) < d’(a).

Let a € Act{, ¢ be an action with cl(a) = .

— Base case: v = 0.
By definition no lower classification rank is possible. Thus, it
follows cl(a) < cl’(a).

— Inductive case: r > 0.
1. Assume indirectly that cI’(a) < r holds.

2. Consider the classification of a by Algorithm 5.5.1. Action
a is treated in one and only one iteration of the repeat-until
loop in Line 5. Thus, for later reference, let A denote the
equivalence class with a € A and CS, C A the conflict
set of a as determined by the algorithm in this iteration.

BIBLIOGRAPHY

We distinguish two cases how the algorithm computes the
value of the classification rank of action a.

Case 1: The value is set in Line 9. Then, there exist b €
Act{,,; and ¢ € A such that

vioAfter(X, ¢) O vioAfter(X, b) and cl(b) =r—1. (A.1.2)

Since actions a,c are in the same equivalence class A, it
follows that vioAfter(X, a) ~ vioAfter(X,c). From the defi-
nitions of 7 and ~, we can show that together with (A.1.2)
the latter implies vioAfter(X, a) 3 vioAfter(X, b). Due to the
relation T and Principle I.1, it holds

c’(a) > cl’(b). (A.1.3)

Now, we apply the induction hypothesis on cl(b), since
cl(b) = r— 1 holds by (A.1.2) and obtain that cl’(b) > cl(b).
By assumption, it holds r > cl’(a) and thus cl’(b) > cl(b) =
r—1 > cl’(a). This contradicts that cl’(a) > cl’(b) must
hold by (A.1.3).

Case 2: If Case 1 does not apply, the value for the classifica-
tion of a in Line 17 is set in Line 22. Thus, there exists b € A
with cl(b) =r—1and b € CSy, C A with CSy # CS4 such
that there exists c € CS, with b <., c. More precisely, in
the previous iteration of the for loop in Line 15 the conflict
set CSp, must still be in conflictSets as one reason why a
has been not classified with r — 1, but then CSy, is removed
from conflictSets in Line 21.

Since b,c are in the same equivalence class A, it holds
vioAfter(X, c) ~ vioAfter(X, b). Further, since ¢ € CS, and
b € CSp and CS4 # CSy, by definition of conflictSets, there
do not exist actions ay,...,an € Act{, ; such that a; = ¢,
an =band foralli e {1,...,n—1}it holds a; <vio Qiy1-
Hence, the premises of Principle 1.2 are satisfied which im-
plies

c’(c) > cl’(b). (A.1.4)

Next, we argue that the fact that a € CSq and ¢ € CSq
implies cl’(a) = cl’(c). This follows from an inductive ar-
gument using the local mitigation requirement of Principle
I.2 and the definition of CS,. By (A.1.4), it holds c’(a) >
cl’(b).

Now, we apply the induction hypothesis on cl(b) = r—1
so that it follows cl’(b) > cl(b). By assumption, it holds
r > cl’(a) and thus cl’(b) > cl(b) = r—1 > cl’(a). This
contradicts that cl’(a) > cl’(b) must hold. O

O]

253

BIBLIOGRAPHY

[1] Agentprogramming.com. Last checked: 2014-09-19. Agent Plat-
forms. http://agentprogramming.com/agent-platforms/.

[2] Ahlstrom, Kristoffer. 2010. On Epistemic Agency. Ph.D. thesis, Uni-
versity of Massachusetts at Amherst.

[3] Albrecht, Ella. 2012. Abhiingigkeitsgraphen und Erklarungen fiir
die Antwortmengen Programmierung (Dependency Graphs and Expla-
nations for Answerset Programming). Bachelor’s Thesis, Computer
Science, Chair 1 - Information Engineering, Technische Universitat
Dortmund.

[4] Albrecht, Ella, Kriimpelmann, Patrick, & Kern-Isberner, Gabriele.
2014. Construction of Explanation Graphs from Extended Depen-
dency Graphs for Answer Set Programs. Pages 1-16 of: Hanus,
Michael, & Rocha, Ricardo (eds), Post-proceedings of the 27th Work-
shop on Functional and Logic Programming (WFLP 2013). LNAI, no.

8439. Springer.

[5] Alchourron, Carlos E., Gardenfors, Peter, & Makinson, David.
1985. On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions. The Journal of Symbolic Logic, 50(2), 510—

530.

[6] Alechina, Natasha, Jago, Mark, & Logan, Brian. 2008. Preference-
based belief revision for rule-based agents. Synthese, 165(2), 159—

177.

[7] Alferes, José Julio, Leite, Jodo Alexandre, Pereira, Luis Moniz,
Przymusinska, Halina, & Przymusinski, Teodor C. 1998. Dynamic
Logic Programming. Pages 98—111 of: Cohn, A., Schubert, L., &
Shapiro, S. (eds), Proceedings of the 6th International Conference on
Principles of Knowledge Representation and Reasoning (KR'98). San
Francisco: Morgan Kaufmann Publishers.

[8] Alferes, José Jalio, Banti, Federico, Brogi, Antonio, & Leite,
Jodao Alexandre. 2004. Semantics for dynamic logic programming:
A principled-based approach. In: Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’o04), vol. 1730. Springer.

[9] Alferes, José Julio, Banti, Federico, Brogi, Antonio, & Leite,
Jodao Alexandre. 2005. The Refined Extension Principle for Seman-
tics of Dynamic Logic Programming. Studia Logica: An International
Journal for Symbolic Logic, 79(1), 7-32.

255

http://agentprogramming.com/agent-platforms/

256

BIBLIOGRAPHY

[10] Arrow, Kenneth J. 2012. Social choice and individual values. Vol. 12.
Yale university press.

[11] Aucher, Guillaume, Boella, Guido, & van der Torre, Leendert.
2011. A dynamic logic for privacy compliance. Artificial Intelligence
and Law, 19, 187-231. 10.1007/510506-011-9114-3.

[12] Baader, Franz. 2003. The description logic handbook: theory, imple-
mentation, and applications. Cambridge university press.

[13] Bacchus, Fahiem, Grove, Adam]., Halpern, Joseph Y., & Koller,
Daphne. 1996. From statistical knowledge bases to degrees of belief.
Artificial Intelligence, 87, 75 — 143.

[14] Bach, Joscha. 2011. A Motivational System for Cognitive Al
Pages 232—242 of: Schmidhuber, Jiirgen, Thoérisson, Kristinn, &
Looks, Moshe (eds), Artificial General Intelligence. Lecture Notes
in Computer Science, vol. 6830. Springer Berlin / Heidelberg.

[15] Balduccini, Marcello, & Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In: P. Doherty, J. McCarthy, M.-
A. Williams (ed), Proceedings of the International Symposium on Logi-
cal Formalization of Commonsense Reasoning. AAAI 2003 Spring Sym-
posium Series.

[16] Baral, Chitta, & Gelfond, Michael. 2000. Reasoning Agents in
Dynamic Domains. Pages 257-279 of: Minker, Jack (ed), Logic-Based
Artificial Intelligence. The Springer International Series in Engineer-
ing and Computer Science, vol. 597. Springer US.

[17] Baral, Chitta, Eiter, Thomas, Bjdreland, Marcus, & Nakamura,
Mutsumi. 2008a. Maintenance goals of agents in a dynamic en-
vironment: Formulation and policy construction. Artificial Intelli-
gence, 172(12), 1429-1469.

[18] Baral, Chitta, Gelfond, Michael, & Rushton, Nelson. 2008b. Prob-
abilistic reasoning with answer sets. Theory and Practice of Logic
Programming, 12.

[19] Barbi, Manuel. 2014. Implementierung einer Motivationskomponente
fiir wissensbasierte Agenten (Implementation of a Motivation Compo-
nent for Knowledge-based Agents). Bachelor’s Thesis, Computer Sci-
ence, Chair 1 - Information Engineering, Technische Universitit
Dortmund.

[20] Baroni, Pietro, & Giacomin, Massimiliano. 2009. Skepticism rela-
tions for comparing argumentation semantics. International Journal
of Approximate Reasoning, 50(6), 854 — 866.

[21] Baroni, Pietro, Caminada, Martin, & Giacomin, Massimiliano.
2011. Review: An Introduction to Argumentation Semantics.
Knowledge Engineering Review, 26(4), 365—410.

BIBLIOGRAPHY

[22] Bell, David E., Raiffa, Howard, & Tversky, Amos (eds). 1988. De-
cision Making. Cambridge University Press. Cambridge Books On-
line.

[23] Bellifemine, Fabio, Poggi, Agostino, & Rimassa, Giovanni. 2001.
Developing Multi-agent Systems with JADE. Pages 89—103 of:
Castelfranchi, Cristiano, & Lespérance, Yves (eds), Intelligent
Agents VII Agent Theories Architectures and Languages. Lecture Notes
in Computer Science, vol. 1986. Springer Berlin Heidelberg.

[24] Bench-Capon, Trevor J. M., & Dunne, Paul E. 2007. Argumenta-
tion in artificial intelligence. Artificial Intelligence, 171(10-15), 619—
641.

[25] Benerecetti, Massimo, Giunchiglia, Fausto, & Serafini, Luciano.
1998. Model checking multiagent systems. Journal of Logic and
Computation, 8(3), 401—423.

[26] Besnard, P., & Hunter, A. 2001. A logic-based theory of deductive
arguments. Artificial Intelligence, 128(1-2), 203-235.

[27] Besnard, Philippe, & Hunter, Anthony. 2006. Knowledgebase
Compilation for Efficient Logical Argumentation. Pages 123-133 of:
Proceedings of the 10th International Conference on Knowledge Represen-
tation (KR'06). AAAI Press.

[28] Besnard, Philippe, & Hunter, Anthony. 2008. Elements of Argu-
mentation. The MIT Press.

[29] Billington, D., Antoniou, G., Governatori, G., & Maher, M. 1999.
Revising Nonmonotonic Theories: The Case of Defeasible Logic.
Pages 101-112 of: Burgard, Wolfram, Cremers, Armin, & Cristaller,
Thomas (eds), KI-99: Advances in Artificial Intelligence, vol. 1701.
Springer.

[30] Binnewies, Sebastian, Zhuang, Zhigiang, & Wang, Kewen. 2015.
Partial Meet Revision and Contraction in Logic Programs. In: Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence. AAAI
Publications.

[31] Biskup, J., & Bonatti, P.A. 2004. Controlled query evaluation for
enforcing confidentiality in complete information systems. Interna-
tional Journal of Information Security, 3(1), 14-27.

[32] Biskup, Joachim. 2010. Usability Confinement of Server Reac-
tions: Maintaining Inference-Proof Client Views by Controlled In-
teraction Execution. Pages 8o-106 of: Kikuchi, Shinji, Sachdeva,
Shelly, & Bhalla, Subhash (eds), Databases in Networked Information
Systems. Lecture Notes in Computer Science, vol. 5999. Springer
Berlin / Heidelberg.

257

258

BIBLIOGRAPHY

[33] Biskup, Joachim. 2011. History-dependent inference control of
queries by dynamic policy adaption. Pages 106—121 of: Data and
applications security and privacy XXV. Springer.

[34] Biskup, Joachim. 2012. Inference-usability confinement by main-
taining inference-proof views of an information system. Interna-
tional Journal of Computational Science and Engineering, 7(1), 17-37.

[35] Biskup, Joachim, & Bonatti, Piero. 2007. Controlled query evalua-
tion with open queries for a decidable relational submodel. Annals
of Mathematics and Artificial Intelligence, 50, 39—77. 10.1007/510472-

007-9070-5.

[36] Biskup, Joachim, & Tadros, Cornelia. 2010. Policy-Based Secrecy
in the Runs & Systems Framework and Controlled Query Evalu-
ation. Pages 60-77 of: Echizen, Isao, Kunihiro, Noboru, & Sasaki,
Rydichi (eds), Short paper of the 5th International Workshop on Secu-
rity (IWSEC’10). Information Processing Society of Japan (IPS]).

[37] Biskup, Joachim, & Tadros, Cornelia. 2012. Inference-Proof
View Update Transactions with Minimal Refusals. Pages 104-121
of: Garcia-Alfaro, Joaquin, Navarro-Arribas, Guillermo, Cuppens-
Boulahia, Nora, & De Capitani di Vimercati, Sabrina (eds), 6th Inter-
national Workshop on Data Privacy Management (DPM 2011). LNCS,
vol. 7122. Springer.

[38] Biskup, Joachim, & Weibert, Torben. 2008. Keeping Secrets in
Incomplete Databases. International Journal of Information Security,

7(3), 199-217.

[39] Biskup, Joachim, Kern-Isberner, Gabriele, & Thimm, Matthias.
2008. Towards Enforcement of Confidentiality in Agent Inter-
actions. Pages 104-112 of: Pagnucco, Maurice, & Thielscher,
Michael (eds), Proceedings of the 12th International Workshop on Non-
Monotonic Reasoning (NMR'08). Sydney, Australia: University of
New South Wales, Technical Report No. UNSW-CSE-TR-0819.

[40] Biskup, Joachim, Tadros, Cornelia, & Wiese, Lena. 2010. Towards
controlled query evaluation for incomplete first-order databases.
Pages 230—247 of: Foundations of Information and Knowledge Systems.
Springer.

[41] Biskup, Joachim, Kern-Isberner, Gabriele, Kriimpelmann,
Patrick, & Tadros, Cornelia. 2014. Reasoning on Secrecy Con-
straints under Uncertainty to Classify Possible Actions. Pages
97-116 of: Beierle, Christoph, & Meghini, Carlo (eds), 8th Proceed-
ings of the 8th International Symposium on Foundations of Information
and Knowledge Systems (FolKS2014). LNCS, vol. 8367. Springer.

[42] Blackburn, Patrick, de Rijke, Maarten, & Venema, Yde. 2001.
Modal Logic. New York, NY, USA: Cambridge University Press.

BIBLIOGRAPHY

[43] Bochman, Alexander. 2001. A Logical Theory of Nonmonotonic In-
ference and Belief Change. New York, NY, USA: Springer-Verlag New
York, Inc.

[44] Boenn, Georg, Brain, Martin, De Vos, Marina, & Ffitch, John.
2011. Automatic music composition using answer set program-
ming. Theory and practice of logic programming, 11(2-3), 397—427.

[45] Bohmer, Mirja. 2011. Evaluation von Ansitzen zur Wissensinderung
von ASP Wissensbasen (Evaluation of approaches to belief change in ASP
knowldege bases). Diplomarbeit, Computer Science, Chair 1 - Infor-
mation Engineering, Technische Universitdt Dortmund.

[46] Bonatti, P. A., Kraus, S., & Subrahmanian, V. S. 1995. Founda-
tions of secure deductive databases. IEEE Transactions on Knowledge
and Data Engineering, 7, 406—422.

[47] Bonatti, Piero, Calimeri, Francesco, Leone, Nicola, & Ricca,
Francesco. 2010. Answer Set Programming. Pages 159-182 of:
Dovier, Agostino, & Pontelli, Enrico (eds), A 25-Year Perspective on
Logic Programming. Lecture Notes in Computer Science, vol. 6125.
Springer Berlin / Heidelberg.

[48] Booth, Richard. 2001. A negotiation-style framework for non-
prioritised revision. Pages 137-150 of: Proceedings of the 8th Confer-
ence on Theoretical Aspects of Rationality and Knowledge (TARK 01).

[49] Booth, Richard, & Nittka, Alexander. 2008. Reconstructing an
Agent’s Epistemic State from Observations about its Beliefs and
Non-beliefs. The Journal of Logic Programming, 18(5), 755—782.

[50] Booth, Richard, Meyer, Thomas, & Varzinczak, Ivan José. 2009.
Next steps in propositional horn contraction. Pages 702—707 of: Pro-
ceedings of the 21st international jont conference on Artifical intelligence
(IJCAI’09). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

[51] Bordini, Rafael H., Braubach, Lars, Dastani, Mehdi, Seghrouchni,
Amal El Fallah, Gomez-Sanz, Jorge J., Leite, Joao, O'Hare, Gregory,
Pokahr, Alexander, & Ricci, Alessandro. 2006. A survey of pro-
gramming languages and platforms for multiagent systems. Infor-

matica, 30, 33—44-.

[52] Borger, Benedict. 2014. Modellierung und Evaluation von ver-
traulichkeitsbewahrenden Agenten in einem E-Markt Szenario mittels
Antwortmengenprogrammierung (Conceptualization and evaluation of
secrecy preserving agents in an E-Market scenario with answerset pro-
gramming). Bachelor’s Thesis, Computer Science, Chair 1 - Infor-
mation Engineering, Technische Universitdt Dortmund.

259

260

BIBLIOGRAPHY

[53] Borger, Egon, & Stdrk, Robert F. 2003. Abstract State Machines: A
Method for High-level System Design and Analysis. Springer.

[54] Bouyssou, Denis, Pirlot, Marc, & Vincke, Ph. 1997. A general
model of preference aggregation. Pages 120-134 of: Essays in decision
making. Springer.

[55] Brachman, Ronald J., & Levesque, Hector]. 2004. Knowledge Rep-
resentation and Reasoning. Elsevier and Morgan Kaufmann Publish-
ers.

[56] Bratman, Michael. 1987. Intention, plans, and practical reason. Har-
vard University Press (Cambridge, Mass.).

[57] Bratman, Michael E., Israel, David J., & Pollack, Martha E. 1988.
Plans and resource-bounded practical reasoning. Computational In-

telligence, 4(3), 349—355.

[58] Brewka, G., & Eiter, T. 1999a. Prioritizing default logic: Abridged
report. Festschrift on the occasion of Prof. Dr. W. Bibel’s 6oth birthday.
Kluwer, Dordrecht.

[59] Brewka, Gerhard, & Eiter, Thomas. 1999b. Preferred answer sets
for extended logic programs. Artifical Intelligence, 109(1-2), 297—356.

[60] Brewka, Gerhard, Dix, Jiirgen, & Konolige, Kurt. 1997. Nonmono-
tonic Reasoning: An Ouverview. CSLI Lecture Notes, vol. 73. CSLI
Publications, Stanford, CA.

[61] Brown, Donald J. 1975. Aggregation of preferences. The Quarterly
Journal of Economics, 456—469.

[62] Calimeri, Francesco, Cozza, Susanna, lanni, Giovambattista, &
Leone, Nicola. 2008. Computable Functions in ASP: Theory and
Implementation. Pages 407—424 of: Garcia de la Banda, Maria, &
Pontelli, Enrico (eds), Logic Programming. Lecture Notes in Com-
puter Science, vol. 5366. Springer Berlin Heidelberg.

[63] Calimeri, Francesco, lanni, Giovambattista, & Ricca, Francesco.
2014. The third open answer set programming competition. Theory
and Practice of Logic Programming, 14(01), 117-135.

[64] Cohen, Philip R, & Levesque, Hector J. 1997. Communicative
actions for artificial agents. Pages 419—436 of: Software agents. MIT
Press.

[65] Darwiche, Adnan, & Pearl, Judea. 1994. On the Logic of Iterated
Belief Revision. Pages 5—23 of: Fagin, Ronald (ed), Proceedings of
the 5th Conference on Theoretical Aspects of Reasoning about Knowledge.
Pacific Grove, CA: Morgan Kaufmann.

BIBLIOGRAPHY

[66] Dastani, Mehdi, Birna Riemsdijk, M., & Meyer, John-JulesCh.
2005. Programming Multi-Agent Systems in 3APL. Pages 39—
67 of: Bordini, RafaelH., Dastani, Mehdi, Dix, Jirgen, & Fal-
lah Seghrouchni, Amal (eds), Multi-Agent Programming. Multiagent
Systems, Artificial Societies, and Simulated Organizations, vol. 15.
Springer US.

[67] Dastani, Mehdi, van Riemsdijk, M. Birna, & Winikoff, Michael.
2011. Rich goal types in agent programming. Pages 405—412 of:
The 10th International Conference on Autonomous Agents and Multia-
gent Systems - Volume 1. AAMAS "11. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems.

[68] Delgrande, J., Schaub, T., Tompits, H., & Woltran, S. 2008. Belief
Revision of Logic Programs under Answer Set Semantics. Pages
411—421 of: Brewka, G., & Lang, J. (eds), Proceedings of the 11th In-
ternational Conference on Principles of Knowledge Representation and
Reasoning (KR'08). AAAI Press.

[69] Delgrande, James, & Jin, Yi. 2012. Parallel belief revision: Revis-
ing by sets of formulas. Artifical Intelligence, 176(1), 2223-2245.

[70] Delgrande, James, & Wassermann, Renata. 2010. Horn Clause
Contraction Functions: Belief Set and Belief Base Approaches. In:
Knowledge Representation and Reasoning Conference (KR 2010). AAAL

[71] Delgrande, James, Schaub, Torsten, Tompits, Hans, & Woltran,
Stefan. 2009a. Merging Logic Programs under Answer Set Seman-
tics. Pages 160-174 of: Proceedings of the 25th International Confer-
ence on Logic Programming (ICLP’09). ICLP "09. Berlin, Heidelberg:
Springer-Verlag.

[72] Delgrande, James, Peppas, Pavlos, & Woltran, Stefan. 2013.
AGM-Style Belief Revision of Logic Programs under Answer Set
Semantics. Pages 264—276 of: Cabalar, Pedro, & Son, TranCao (eds),
Logic Programming and Nonmonotonic Reasoning. Lecture Notes in
Computer Science, vol. 8148. Springer.

[73] Delgrande, James P. 2008. Horn Clause Belief Change: Contrac-
tion Functions. Pages 156—165 of: Brewka, Gerhard, & Lang, Jérome
(eds), Proceedings of the 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR'08). AAAI Press.

[74] Delgrande, James P. 2010. An Approach to Revising Logic Pro-
grams under the Answer Set Semantics. Proceedings of the 13th
International Workshop on Non-Monotonic Reasoning (NMR'10).

[75] Delgrande, James P., Schaub, Torsten, & Tompits, Hans. 2007. A
Preference-Based Framework for Updating Logic Programs. Pages
71-83 of: Baral, Chitta, Brewka, Gerhard, & Schlipf, John S. (eds),

261

262

BIBLIOGRAPHY

Proceedings of the gth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR'07), vol. 4483. Springer.

[76] Delgrande, James P., Schaub, Torsten, Tompits, Hans, & Woltran,
Stefan. 2009b. A general approach to belief change in an-
swer set programming. Computing Research Repository (CoRR),
abs/0912.5511.

[77] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., & Pfeifer, G. 2004.
System Description: DLV with Aggregates. Pages 326—330 of: V. Lif-
schitz, 1. Niemeld (ed), Proceedings of the 7th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMRo04).
LNAI vol. 2923. Springer.

[78] Dilger, Daniel, Kriimpelmann, Patrick, & Tadros, Cornelia. 2013.
Preserving Confidentiality in Multiagent Systems - An Internship
Project within the DAAD RISE Program. Tech. rept. 1. Technische

Universitat Dortmund.

[79] Dix, Jiirgen, Faber, Wolfgang, & Subrahmanian, VS. 2012. Pri-
vacy preservation using multi-context systems and default logic.
Pages 195—210 of: Correct Reasoning. Springer.

[80] Doyle, Jon. 1987. A truth maintenance system. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc. Pages 259—279.

[81] Duff, Simon, Harland, James, & Thangarajah, John. 2006. On
proactivity and maintenance goals. Pages 1033-1040 of: Nakashima,
Hideyuki, Wellman, Michael P., Weiss, Gerhard, & Stone, Peter
(eds), s5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12. ACM.

[82] Dulff, Simon, Thangarajah, John, & Harland, James. 2014. Main-
tenance goals in intelligent agents. Computational Intelligence, 30(1),

71-114.

[83] Dung, Phan Minh. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic Program-
ming and n-Person Games. Artificial Intelligence, 77(2), 321—358.

[84] Eiter, Thomas, Faber, Wolfgang, Leone, Nicola, & Pfeifer, Gerald.
2000a. Declarative problem-solving using the DLV system. Logic-
based artificial intelligence, 79-103.

[85] Eiter, Thomas, Faber, W., Koch, C., Leone, N., & Pfeifer, G. 2000b.
DLV - A system for declarative problem solving. In: Baral, C., &
Truszczynski, M. (eds), Proceedings of the 8th International Workshop
on Non-Monotonic Reasoning.

[86] Eiter, Thomas, Faber, Wolfgang, Leone, Nicola, Pfeifer, Gerald,
& Polleres, Axel. 2000c. Planning under incomplete knowledge.
Pages 807-821 of: Computational Logic—CL 2000. Springer.

BIBLIOGRAPHY

[87] Eiter, Thomas, Fink, Michael, Sabbatini, Giuliana, & Tompits,
Hans. 2002. On properties of update sequences based on causal
rejection. Theory and Practice of Logic Programming, 2(6), 711—767.

[88] Eiter, Thomas, Ianni, Giovambattista, Schindlauer, Roman, &
Tompits, Hans. 2006. Towards Efficient Evaluation of HEX Pro-
grams. Pages 40—46 of: Proceedings of 11th International Workshop on
Non-Monotonic Reasoning (NMR’06). Technical Report, vol. IfI-06-04.
KR Inc.

[89] Fagin, Ronald, Halpern, Joseph Y., Moses, Yoram, & Vardi,
Moshe Y. 1995. Reasoning about Knowledge. MIT Press.

[9o] Falappa, Marcelo A., Kern-Isberner, Gabriele, & Simari,
Guillermo R. 2002. Explanations, belief revision and defeasible
reasoning. Artificial Intelligence, 141(1), 1-28.

[91] Falappa, Marcelo Alejandro, Kern-Isberner, Gabriele, & Simari,
Guillermo Ricardo. 2009. Belief Revision and Argumentation
Theory. Pages 341—360 of: Argumentation in Artificial Intelligence.
Springer.

[92] Falappa, Marcelo Alejandro, Garcia, Alejandro Javier, Kern-
Isberner, Gabriele, & Simari, Guillermo Ricardo. 2013. Stratified
belief bases revision with argumentative inference. Journal of Philo-
sophical Logic, 42(1), 161-193.

[93] Farkas, C., & Jajodia, S. 2002. The inference problem: a survey.
ACM Special Interest Group on Knowledge Discovery and Data Mining
(SIGKDD) Explorations Newsletter, 4, 6-11.

[94] Fermé, Eduardo, & Hansson, Sven. 2011. AGM 25 Years. Journal
of Philosophical Logic, 40, 295-331. 10.1007/510992-011-9171-9.

[95] Fermé, Eduardo, Saez, Karina, & Sanz, Pablo. 2003. Multiple Ker-
nel Contraction. Studia Logica: An International Journal for Symbolic

Logic, 73(2), 183-195.

[96] Fermé, Eduardo L., & Hansson, Sven Ove. 1999. Selective Revi-
sion. Studia Logica, 63(3), 331-342.

[97] Fischer, M. 1994. A survey of concurrent MetateM - the language
and its applications. Pages 480-505 of: Gabey, D.M., & Ohlbach,
H.J. (eds), Proceedings of the First International Conference on Temporal
Logic. Lecture Notes in Computer Science, vol. 827. Springer.

[98] Fishburn, P.C. 1970. Utility Theory for Decision Making. Wiley,
New York.

[99] Fitting, Melvin. 2002. Fixpoint semantics for logic programming
a survey. Theoretical computer science, 278(1), 25-51.

263

264

BIBLIOGRAPHY

[100] Foundation for Intelligent Physical Agents. 2002a (12). FIPA
ACL Message Structure Specification. http://www.fipa.org/specs/
fipab0061/SCO0061G. html.

[101] Foundation for Intelligent Physical Agents. 2002b (12). FIPA
Communicative Act Library Specification. http://www.fipa.org/
specs/fipa00061/SCO0061G. html.

[102] Freuder, Eugene C, Minca, Marius, & Wallace, Richard J. 2001.
Privacy/efficiency tradeoffs in distributed meeting scheduling by
constraint-based agents. Pages 63—72 of: Proc. IJ[CAI DCR.

[103] Fuhrmann, André, & Hansson, SvenOve. 1994. A survey of
multiple contractions. Journal of Logic, Language and Information,

3(1), 39-75.

[104] Gabbay, D.M. 198s. Theoretical Foundations for Non-
Monotonic Reasoning in Expert Systems. Pages 439—457 of: Apt,
KrzysztofR. (ed), Logics and Models of Concurrent Systems. NATO
ASI Series, vol. 13. Springer Berlin Heidelberg.

[105] Garcia, A., & Simari, G. 2004. Defeasible Logic Programming;:
An Argumentative Approach. Theory and Practice of Logic Program-
ming, 4(1+2), 95-138.

[106] Géardenfors, Peter, & Rott, Hans. 1995. Belief revision. Oxford
University Press.

[107] Garey, Michael R, & Johnson, David S. 1979. Computers and
intractability. Vol. 174. Freeman New York.

[108] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub,
T., & Schneider, M. 2011. Potassco: The Potsdam Answer Set Solv-
ing Collection. AI Communications, 24(2), 105-124.

[109] Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. 2012. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan and Claypool Publishers.

[110] Gebser, Martin, Guziolowski, Carito, Ivanchev, Mihail, Schaub,
Torsten, Siegel, Anne, Thiele, Sven, & Veber, Philippe. 2010. Repair
and Prediction (under Inconsistency) in Large Biological Networks
with Answer Set Programming. In: KR.

[111] Gelfond, Michael. 2004. Answer Set Programming and the De-
sign of Deliberative Agents. Pages 19—26 of: Demoen, Bart, & Lif-
schitz, Vladimir (eds), ICLP. Lecture Notes in Computer Science,
vol. 3132. Springer.

[112] Gelfond, Michael, & Leone, Nicola. 2002. Logic programming
and knowledge representation: the A-Prolog perspective. Artificial
Intelligence, 138(1), 3—38.

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html

BIBLIOGRAPHY

[113] Gelfond, Michael, & Lifschitz, Vladimir. 1988. The Stable Model
Semantics For Logic Programming. Pages 1070-1080 of: Proceedings

of the 5th International Conference and Symposium on Logic Program-
ming (ICLP/SLP 1988). MIT Press.

[114] Gelfond, Michael, & Lifschitz, Vladimir. 1991. Classical Nega-
tion in Logic Programs and Disjunctive Databases. New Generation

Computing, 9(3/4), 365—386.

[115] Genesereth, Michael, & Nilsson, Nils. 1987a. Logical Foundations
of Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.

[116] Genesereth, Michael R, & Nilsson, Nils J. 1987b. Logical founda-
tions of artificial intelligence. Vol. 9. Morgan Kaufmann Los Altos,
CA.

[117] Georgeff, Michael P, & Lansky, Amy L. 1987. Reactive Reason-
ing and Planning. Pages 677-682 of: Forbus, Kenneth D., & Shrobe,
Howard E. (eds), AAAI. Morgan Kaufmann.

[118] Georgeff, Michael P., & Rao, Anand S. 1996. A profile of the
Australian Artificial Intelligence Institute. IEEE Expert, 11(6), 89—

92.

[119] Giusto, Paolo Di, & Governatori, Guido. 1999. A New Ap-
proach to Base Revision. Pages 327-341 of: Proceedings of the gth
Portuguese Conference on Artificial Intelligence: Progress in Artificial
Intelligence (EPIA 99). EPIA ‘99. London, UK: Springer-Verlag.

[120] Gray III, James W, & Syverson, Paul F. 1998. A logical approach
to multilevel security of probabilistic systems. Distributed Comput-

ing, 11(2), 73-90.
[121] Halpern, Joseph Y., & O’Neill, Kevin R. 2008. Secrecy in Multia-

gent Systems. ACM Transactions on Information and System Security,
12(October), 5:1-5:47.

[122] Hansson, Sven Ove. 1991. Belief base dynamics. Ph.D. thesis,
Uppsala University, Faculty of Arts.

[123] Hansson, Sven Ove. 1992. In Defense of Base Contraction. Syn-
these, 91(3), 239—245.

[124] Hansson, Sven Ove. 1994. Kernel Contraction. The Journal of
Symbolic Logic, 59(3), 845-859.

[125] Hansson, Sven Ove. 1997. Semi-Revision. Journal of Applied
Non-Classical Logics, 7(2).

[126] Hansson, Sven Ove. 1999. A Survey of Non-Prioritized Belief
Revision. Erkenntnis, 50(2-3), 413—427.

265

266

BIBLIOGRAPHY

[127] Hansson, Sven Ove. 2001. A Textbook of Belief Dynamics. Norwell,
MA, USA: Kluwer Academic Publishers.

[128] Hansson, Sven Ove. 2010. Multiple and iterated contraction
reduced to single-step single-sentence contraction. Synthese, 173(2).

[129] Hindriks, Koen, & van Riemsdijk, M. 2008. Satisfying Main-
tenance Goals. Pages 86—103 of: Baldoni, Matteo, Son, Tran, van
Riemsdijk, M., & Winikoff, Michael (eds), Declarative Agent Lan-
guages and Technologies V. Lecture Notes in Computer Science, vol.
4897. Springer Berlin / Heidelberg.

[130] Hindriks, KoenV., de Boer, FrankS., van der Hoek, Wiebe, &
Meyer, John-JulesCh. 2001. Agent Programming with Declarative
Goals. Pages 228-243 of: Castelfranchi, Cristiano, & Lespérance,
Yves (eds), Intelligent Agents VII Agent Theories Architectures and Lan-
guages. Lecture Notes in Computer Science, vol. 1986. Springer
Berlin Heidelberg.

[131] Homann, Sebastian. 2013. Arqumentationsbasierte selektive Re-
vision erweiterter logischer Programme (Argumentation based selective
revision of extended logic programs). Master’s thesis, Computer Sci-
ence, Chair 1 - Information Engineering, Technische Universitit
Dortmund.

[132] Hué, Julien, Wiirbel, Eric, & Papini, Odile. 2008. Removed Sets
Fusion: Performing Off The Shelf. Pages 94—98 of: Proceedings of the
2008 conference on ECAI 2008: 18th European Conference on Artificial
Intelligence. 10S Press.

[133] Hué, Julien, Papini, Odile, & Wiirbel, Eric. 2009. Merging Be-
lief Bases Represented by Logic Programs. Pages 371—-382 of: Sossai,
Claudio, & Chemello, Gaetano (eds), Proceedings of the 10th Euro-
pean Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU’09). Lecture Notes in Computer Sci-
ence, vol. 5590. Springer.

[134] Hughes, Dominic, & Shmatikov, Vitaly. 2004. Information hid-
ing, anonymity and privacy: a modular approach. Journal of Com-
puter Security, 12(January), 3—36.

[135] Inoue, Katsumi, Sakama, Chiaki, & Wiese, Lena. 2011.
Confidentiality-Preserving Data Publishing for Credulous Users
by Extended Abduction. Computing Research Repository (CoRR),
abs/1108.5825.

[136] Jamroga, Wojciech, & Agotnes, Thomas. 2007. Modular Inter-
preted Systems. Pages 131:1-131:8 of: Proceedings of the 6th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems.
AAMAS 'o7. New York, NY, USA: ACM.

BIBLIOGRAPHY

[137] Janus, Tim. 2013. Resource-bounded Planning of Communication
under Confidentiality Constraints for BDI Agents.

[138] Kakas, A., Amgoud, L., Kern-Isberner, G.,, Maudet, N., &
Moraitis, P. 2012. ABA: Argumentation Based Agents. Pages 9—27 of:
McBurney, Peter, Parsons, Simon, & Rahwan, Iyad (eds), Argumen-
tation in Multi-Agent Systems. Lecture Notes in Computer Science,
vol. 7543. Springer Berlin Heidelberg.

[139] Kakas, Antonis C, Mancarella, Paolo, Sadri, Fariba, Stathis,
Kostas, & Toni, Francesca. 2004. The KGP model of agency. In: Pro-
ceedings of 16th European Conference on Artificial Intelligence (ECAI).
IOS Press.

[140] Kakas, Antonis C., Mancarella, Paolo, Sadri, Fariba, Stathis,
Kostas, & Toni, Francesca. 2008. Computational Logic Foundations
of KGP Agents. Journal of Artificial Intelligence Research (JAIR), 33,

285-348.

[141] Katsuno, Hirofumi, & Mendelzon, Alberto. 1994. On the Differ-
ence Between Updating a Knowledge Base and Revising It. Pages
387-394 of: Allen, James E.,, Fikes, Richard, & Sandewall, Erik (eds),
Proceedings of the 2nd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR'91). San Mateo, California:
Morgan Kaufmann.

[142] Katsuno, Hirofumi, & Mendelzon, Alberto O. 1991. Proposi-
tional knowledge base revision and minimal change. Artifical Intel-
ligence, 52(December), 263-294.

[143] Kern-Isberner, Gabriele. 2001. Conditionals in nonmonotonic rea-
soning and belief revision: considering conditionals as agents. Berlin,
Heidelberg: Springer-Verlag.

[144] Kern-Isberner, Gabriele, & Kriimpelmann, Patrick. 2011. A con-
structive approach to independent and evidence retaining belief
revision by general information sets. Pages 937-942 of: Proceedings
of the 22nd International Joint Conference on Artificial Intelligence (I]-
CAI'11). AAAI Press.

[145] Kern-Isberner, Gabriele, & Thimm, Matthias. 2010. Novel Se-
mantical Approaches to Relational Probabilistic Conditionals. In:
Proceedings of the Twelfth International Conference on the Principles of
Knowledge Representation and Reasoning (KR 2010).

[146] Kern-Isberner, Gabriele, & Thimm, Matthias. 2012. A Rank-
ing Semantics for First-Order Conditionals. Pages 456—461 of:
L. De Raedt, C. Bessiere, D. Dubois (ed), Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI). 10S Press.

267

268

BIBLIOGRAPHY

[147] Kodaganallur, V. 2004. Incorporating language processing into
java applications: A JavaCC tutorial. Software, IEEE, 21(4), 70-77.

[148] Koen V. Hindriks, Wouter Pasman. 2014. GOAL User Manual.
Delft University of Technology.

[149] Konolige, Kurt. 1986. A Deduction Model of Belief. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

[150] Kowalski, Robert, & Sadri, Fariba. 1999. From logic program-
ming towards multi-agent systems. Annals of Mathematics and Arti-

ficial Intelligence, 25(3-4), 391—419.

[151] Kriimpelmann, Patrick. 2012. Dependency Semantics for Se-
quences of Extended Logic Programs. Logic Journal of the IGPL,

20(5), 943-966.

[152] Kriimpelmann, Patrick, & Kern-Isberner, Gabriele. 2008. Prop-
agating Credibility in Answer Set Programs. In: Schwarz, Sibylle
(ed), Proceedings of the 22nd Workshop on (Constraint) Logic Program-
ming (WLP’08). Technische Berichte. Martin-Luther-Universitat
Halle-Wittenberg, Germany.

[153] Kriimpelmann, Patrick, & Kern-Isberner, Gabriele. 2010. On be-
lief dynamics of dependency relations for extended logic programs.
In: Proceedings of the 13th International Workshop on Non-Monotonic
Reasoning (NMR’10).

[154] Kriimpelmann, Patrick, & Kern-Isberner, Gabriele. 2012a. Be-
lief Base Change Operations for Answer Set Programming. In: Pro-
ceedings of the 13th European Conference on Logics in Artificial Intelli-
gence (JELIA'12). Lecture Notes in Artificial Intelligence, vol. 7519.
Springer.

[155] Kriimpelmann, Patrick, & Kern-Isberner, Gabriele. 2012b. On
Agent-based Epistemic Secrecy. In: Rossi, Riccardo, & Woltran,
Stefan (eds), Proceedings of the 14th International Workshop on Non-
Monotonic Reasoning (NMR'12).

[156] Kriimpelmann, Patrick, & Kern-Isberner, Gabriele. 2013. Se-
crecy preserving BDI Agents based on Answerset Programming.
Pages 124—137 of: Proceedings of the 11th German Conference on Multi-
Agent System Technologies (MATES 13). Lecture Notes in Computer
Science, vol. 8076. Springer.

[157] Kriimpelmann, Patrick, & Thimm, Matthias. 2010. A Logic Pro-
gramming Framework for Reasoning about Know-How. In: Pro-
ceedings of the 13th International Workshop on Non-Monotonic Reason-
ing (NMR'10).

BIBLIOGRAPHY

[158] Kriimpelmann, Patrick, Tamargo, Luciano H., Garcia, Alejan-
dro J., & Falappa, Marcelo A. 2009. Forwarding Credible Informa-
tion in Multi-agent Systems. Pages 41—53 of: Karagiannis, Dimitris,
& Jin, Zhi (eds), Proceedings of the 3rd International Conference on
Knowledge Science, Engineering and Management (KSEM'09). Lecture
Notes in Computer Science, vol. 5914. Springer.

[159] Kriimpelmann, Patrick, Thimm, Matthias, Kern-Isberner,
Gabriele, & Fritsch, Regina. 2011. Motivating Agents in Unreli-
able Environments: A Computational Model. Pages 65—76 of: Kliigl,
Franziska, & Ossowski, Sascha (eds), Multiagent System Technologies
- 9th German Conference, (MATES 2011), Berlin, Germany, October 6-7,
2011. Proceedings. Lecture Notes in Computer Science, vol. 6973.
Springer.

[160] Kriimpelmann, Patrick, Thimm, Matthias, Falappa, Marcelo A.,
Garcia, Alejandro J., Kern-Isberner, Gabriele, & Simari,
Guillermo R. 2012. Selective Revision by Deductive Argu-
mentation. Page 281 of: Modgil, Sanjay, Oren, Nir, & Toni,
Francesca (eds), Formal Argumentation - First International Workshop
on Theory and Application, (TAFA'11), Barcelona, Spain, July 16-17,
2011, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7132. Springer.

[161] Kriimpelmann, Patrick, Janus, Tim, & Kern-Isberner, Gabriele.
2014a. Angerona - A flexible Multiagent Framework for
Knowledge-based Agents. Pages 35—50 of: Bulling, Nils (ed), Pro-
ceedings of the 12th European Conference on Multi-Agent Systems. Lec-
ture Notes in Artificial Intelligence, vol. 8953. Springer.

[162] Kriimpelmann, Patrick, Janus, Tim, & Kern-Isberner, Gabriele.
2014b. Angerona - A Multiagent Framework for Logic Based Agents.
Tech. rept. Technische Universitdt Dortmund, Department of Com-
puter Science.

[163] Kudo, Yasuo, & Murai, Tetsuya. 2004. A Method of Belief Base
Revision for Extended Logic Programs Based on State Transition
Diagrams. Pages 1079-1084 of: Negoita, Mircea, Howlett, Robert, &
Jain, Lakhmi (eds), Knowledge-Based Intelligent Information and En-
gineering Systems. Lecture Notes in Computer Science, vol. 3213.
Springer Berlin / Heidelberg.

[164] Leite, JodoAlexandre, Alferes, JoséJulio, & Pereira, LuisMoniz.
2002. MINERVA - A Dynamic Logic Programming Agent Archi-
tecture. Pages 141-157 of: Meyer, John-JulesCh., & Tambe, Milind
(eds), Intelligent Agents VIII. Lecture Notes in Computer Science,
vol. 2333. Springer Berlin Heidelberg.

[165] Leone, Nicola, Pfeifer, Gerald, Faber, Wolfgang, Eiter, Thomas,
Gottlob, Georg, Perri, Simona, & Scarcello, Francesco. 2006. The

269

270

BIBLIOGRAPHY

DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic (TOCL), 7(3), 499-562.

[166] Lespérance, Yves, Levesque, Hector J., Lin, Fangzhen, Marcu,
Daniel, Reiter, Raymond, & Scherl, Richard B. 1995. Foundations
of a Logical Approach to Agent Programming. Pages 331-346 of:
Wooldridge, Michael, Miiller, Jorg P., & Tambe, Milind (eds), ATAL.
Lecture Notes in Computer Science, vol. 1037. Springer.

[167] Levesque, Hector J., Reiter, Raymond, Lesperance, Yves, Lin,
Fangzhen, & Scherl, Richard B. 1997. GOLOG: A Logic Program-
ming Language for Dynamic Domains. Journal of Logic Program-

ming, 31(1-3), 59-83.

[168] Lifschitz, Vladimir, & Turner, Hudson. 1994. Splitting a logic
program. Pages 23—37 of: Proceedings of the 11th international confer-
ence on Logic programming. Cambridge, MA, USA: MIT Press.

[169] Lifschitz, Vladimir, Tang, Lappoon R, & Turner, Hudson. 1999.
Nested expressions in logic programs. Annals of Mathematics and
Artificial Intelligence, 25(3-4), 369—389.

[170] Luck, Michael, & d’Inverno, Mark. 1995. A Formal Framework
for Agency and Autonomy. Pages 254—260 of: Proceedings of the 1st
International Conference on Multi-Agent Systems (ICMAS’95). AAAI
Press/MIT Press.

[171] Ma, Jiefei, Russo, Alessandra, Broda, Krysia, & Lupu, Emil.
2011. Multi-agent abductive reasoning with confidentiality. In: Pro-
ceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2011). International Foundation
for Autonomous Agents and Multiagent Systems.

[172] Makinson, D. 1997. Screened Revision. Theoria, 63(1-2), 14—23.

[173] Makinson, David. 1994. General Patterns in Nonmonotonic Rea-
soning. In: Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Vol. Iii. Clarendon Press.

[174] Mantel, Heiko. 2003. A uniform framework for the formal specifica-
tion and verification of information flow security. Ph.D. thesis, Univer-
sitdt des Saarlandes.

[175] Mayer, Julia M., Schuler, Richard P., & Jones, Quentin. 2012. To-
wards an understanding of social inference opportunities in social
computing. Pages 239—248 of: Proceedings of the 17th ACM interna-
tional conference on Supporting group work. GROUP "12. New York,
NY, USA: ACM.

[176] McCullough, Daryl. 1987. Specifications for Multi-Level Secu-
rity and a Hook-Up Property. Pages 161-166 of: IEEE Symposium on
Security and Privacy. IEEEE.

BIBLIOGRAPHY

[177] McLean, John. 1992. Proving noninterference and functional
correctness using traces. Journal of Computer security, 1(1), 37-57.

[178] McLean, John. 1994. A General Theory of Composition for
Trace Sets Closed under Selective Interleaving Functions. In: Pro-
ceedings of the 1994 IEEE Symposium on Security and Privacy (SP’94).
IEEE Computer Society.

[179] Mele, A. R. 2003. Motivation and Agency. Oxford University
Press.

[180] Meneguzzi, Felipe, & Luck, Michael. 2007. Motivations as an
Abstraction of Meta-level Reasoning. Pages 204—214 of: Proceed-
ings of the 5th international Central and Eastern European conference
on Multi-Agent Systems and Applications V (CEEMAS’07). Berlin,
Heidelberg: Springer-Verlag.

[181] Modgil, S., & Prakken, H. 2011. Revisiting preferences and ar-
gumentation. Pages 1021-1026 of: Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-Volume Volume
Two. AAAI Press.

[182] Mora, Michael da Costa, Lopes, José Gabriel Pereira, Vicari,
Rosa Maria, & Coelho, Helder. 1999. BDI Models and Systems:
Bridging the Gap. Pages 11—27 of: Proceedings of the 5th International
Workshop on Intelligent Agents V, Agent Theories, Architectures, and
Languages (ATAL98). ATAL "98. London, UK, UK: Springer-Verlag.

[183] Nebel, Bernhard. 1992. Syntax-based approaches to belief re-
vision. Pages 52-88 of: Gardenfors, P. (ed), Belief Revision, vol. 29.
Cambridge, UK: Cambridge University Press.

[184] Niemeld, Ilkka, & Simons, Patrik. 1997. Smodels - An Imple-
mentation of the Stable Model and Well-Founded Semantics for
Normal LP. Pages 421—430 of: Proceedings of the 4th International
Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’g7). London, UK: Springer-Verlag.

[185] Nogueira, Monica, Balduccini, Marcello, Gelfond, Michael, Wat-
son, Richard, & Barry, Matthew. 2001. An A-Prolog decision sup-
port system for the Space Shuttle. Pages 169—183 of: Practical Aspects
of Declarative Languages. Springer.

[186] Novak, Peter. 2008. Jazzyk: A Programming Language for
Hybrid Agents with Heterogeneous Knowledge Representations.
Pages 72-87 of: Hindriks, Koen V., Pokahr, Alexander, & Sardifia,
Sebastian (eds), Programming Multi-Agent Systems, 6th International
Workshop, ProMAS 2008, Estoril, Portugal, May 13, 2008. Revised In-
vited and Selected Papers. Lecture Notes in Computer Science, vol.

5442. Springer.

271

272

BIBLIOGRAPHY

[187] Osborne, Martin J, & Rubinstein, Ariel. 1994. A course in game
theory. MIT press.

[188] Osorio, Mauricio, & Cuevas, Victor. 2007. Updates in answer set
programming: An approach based on basic structural properties.
Theory and Practice of Logic Programming, 7(4), 451—479.

[189] Palamidessi, Catuscia (ed). 2003. Uniform Equivalence of Logic
Programs under the Stable Model Semantics. Vol. 2916. Springer Berlin
/ Heidelberg.

[190] Pearl, Judea. 1990. System Z: A natural ordering of defaults
with tractable applications to nonmonotonic reasoning. Pages 121—
135 of: Proceedings of the 3rd Conference on Theoretical Aspects of Rea-
soning about Knowledge. Morgan Kaufmann Publishers Inc.

[191] Poole, D. 1988. A logical framework for default reasoning. Ar-
tificial Intelligence, 36(1), 27—47.

[192] Prakken, Henry. 2010. An abstract framework for argumenta-
tion with structured arguments. Argument and Computation, 1(2),

93-124.

[193] R. Biedert, N. Delsaux, T. Lottermann. 2012. Java Simple Plugin
Framework. http:/ /code.google.com/p/jspf/. [Online; accessed 10-
December-2012].

[194] Rao, A. S., & Georgeff, M. P. 1991a. Modeling rational agents
within a BDI-architecture. Pages 473—484 of: Principles of Knowledge
Representation and Reasoning. Proceedings of the second International
Conference. San Mateo: Morgan Kaufmann.

[195] Rao, Anand S. 1996a. AgentSpeak(L): BDI Agents Speak Out
in a Logical Computable Language. Pages 42—55 of: Agents Breaking
Away. Springer.

[196] Rao, Anand S. 1996b. Decision Procedures for Proposi-
tional Linear-Time Belief-Desire-Intention Logics. Pages 33—48 of:
Wooldridge, Michael, Miiller, Jorg P., & Tambe, Milind (eds), ATAL.
Lecture Notes in Computer Science, vol. 1037. Springer.

[197] Rao, Anand S., & Georgeff, Michael P. 1991b. Asymmetry The-
sis and Side-Effect Problems in Linear-Time and Branching-Time
Intention Logics. Pages 498—505 of: Myopoulos, John, & Reiter, Ray
(eds), Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI-91). Sydney, Australia: Morgan Kaufmann.

[198] Rao, Anand S., & Georgeff, Michael P. 1992. An Abstract Ar-
chitecture for Rational Agents. Pages 439—449 of: Nebel, Bernhard,
Rich, Charles, & Swartout, William R. (eds), Proceedings of Knowl-
edge Representation and Reasoning (KR and R-91). Morgan Kaufmann.

BIBLIOGRAPHY

[199] Rao, Anand S., & Georgeff, Michael P. 1993. A Model-Theoretic
Approach to the Verification of Situated Reasoning Systems. Pages
318-324 of: Bajcsy, Ruzena (ed), Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-93). Chambéry,
France: Morgan Kaufmann.

[200] Rao, Anand S., & Georgeff, Michael P. 1995. BDI-agents: from
theory to practice. In: Proceedings of the 1st International Conference
on Multiagent Systems (ICMAS’05). San Francisco: AAAI Press.

[201] Rao, Anand S., Georgeff, Michael P., & Sonenberg, Elizabeth A.
1992. Social Plans: A Preliminary Report (Abstract). SIGOIS Bull.,
13(3), 10—

[202] Reiter, Raymond. 1987. A logic for default reasoning. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. Pages 68-93.

[203] Ricca, Francesco, Grasso, Giovanni, Alviano, Mario, Manna,
Marco, Lio, Vincenzino, liritano, Salvatore, & Leone, Nicola. 2012.
Team-building with answer set programming in the Gioia-Tauro
seaport. Theory and Practice of Logic Programming, 12(03), 361—381.

[204] Richardson, Matthew, & Domingos, Pedro. 2006. Markov logic
networks. Machine learning, 62(1-2), 107-136.

[205] Rodder, Wilhelm. 2000. Conditional logic and the principle of
entropy. Artificial Intelligence, 117(1), 83-106.

[206] Rott, Hans. 1995. Just because. Taking belief bases very seri-
ously. Logic for a Change, 9, 106—124.

[207] Rumbaugh, James, Jacobson, Ivar, & Booch, Grady. 2004. Uni-
fied Modeling Language Reference Manual, The. Pearson Higher Edu-
cation.

[208] Russell, Stuart Jonathan, & Wefald, Eric. 1991. Do the right thing:
studies in limited rationality. MIT press.

[209] Sakama, Chiaki, Caminada, Martin, & Herzig, Andreas. 2010.
A Logical Account of Lying. Pages 286—299 of: Janhunen, Tomi, &
Niemeld, Ilkka (eds), Logics in Artificial Intelligence. Lecture Notes
in Computer Science, vol. 6341. Springer Berlin Heidelberg.

[210] Schaefer, Thomas J. 1976. Complexity of decision problems
based on finite two-person perfect-information games. Pages 41—
49 of: Proceedings of the eighth annual ACM symposium on Theory of
computing. STOC "76. New York, NY, USA: ACM.

[211] Schut, Martijn, & Wooldridge, Michael. 2001. Principles of in-
tention reconsideration. Pages 340-347 of: Proceedings of the fifth
international conference on Autonomous agents. AGENTS ‘o1. New
York, NY, USA: ACM.

273

274

BIBLIOGRAPHY

[212] Searle, John R. 1969. Speech acts: An essay in the philosophy of
language. Vol. 626. Cambridge university press.

[213] Sichermann, G. L., de Jonge, W., & van de Riet, R. P. 1983. An-
swering queries without revealing secrets. ACM Transactions on
Database Systems, 8, 41-59.

[214] Singh, Munindar P. 1991. A logic of situated know-how. Pages
343—348 of: Proceedings of the 9th National Conference on Artificial In-
telligence (AAAI'91).

[215] Singh, Munindar P. 1999. Know-how. Pages 81-104 of:
Wooldridge, M., & Rao, A. (eds), Foundations of Rational Agency.
Kluwer Academic, Dordrecht.

[216] Slota, M., & Leite, J. 2010. On Semantic Update Operators for
Answer-Set Programs. Pages 957-962 of: Coelho, H., & Wooldridge,
M. (eds), Proceedings of the 19th European Conference on Artificial In-
telligence (ECAI'10). 10S Press.

[217] Slota, Martin, & Leite, Jodo. 2012. Robust Equivalence Models
for Semantic Updates of Answer-Set Programs. In: Proceedings of the
13th International Conference on Principles of Knowledge Representation
and Reasoning (KR'12). AAAI Press.

[218] Soininen, Timo, & Niemeld, Ilkka. 1998. Developing a declara-
tive rule language for applications in product configuration. Pages
305-319 of: practical aspects of declarative languages. Springer.

[219] Son, Tran Cao, & Sakama, Chiaki. 2010. Reasoning and Plan-
ning with Cooperative Actions for Multiagents Using Answer Set
Programming. Pages 208-227 of: Proceedings of the 7th International
Conference on Declarative Agent Languages and Technologies. DALT 0g.
Berlin, Heidelberg: Springer-Verlag.

[220] Spohn, W. 1988. Ordinal conditional functions: a dynamic the-
ory of epistemic states. Pages 105-134 of: Harper, W.L., & Skyrms,
B. (eds), Causation in Decision, Belief Change, and Statistics, vol. 2.
Kluwer Academic Publishers.

[221] Sutherland, David. 1986. A model of information. Pages 175-
183 of: Proceedings of the 9th National Computer Security Conference.
DTIC Document.

[222] Tadros, Cornelia. 2014. Belief Change Operations under Confiden-
tiality Requirements in Multiagent Systems. Ph.D. thesis, Technische
Universitat Dortmund.

[223] Tamargo, Luciano H., Thimm, Matthias, Kriimpelmann,
Patrick, Garcia, Alejandro J]., Falappa, Marcelo A., Simari,
Guillermo R., & Kern-Isberner, Gabriele. 2013. Credibility-based

BIBLIOGRAPHY

Selective Revision by Deductive Argumentation in Multi-agent Sys-
tems. In: E. Ferme, D. Gabbay, G.R. Simari (ed), Trends in Belief
Revision and Argumentation Dynamics. College Publications.

[224] Tao, Jia, Slutzki, Giora, & Honavar, Vasant. 2014. A Conceptual
Framework for Secrecy-preserving Reasoning in Knowledge Bases.
ACM Trans. Comput. Logic, 16(1), 3:1-3:32.

[225] Thimm, Matthias. 2012. A Probabilistic Semantics for abstract
Argumentation. Pages 750-755 of: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012). 10S Press.

[226] Thimm, Matthias. 2013. Dynamic Preference Aggregation un-
der Preference Changes. In: Proceedings of the Fourth Workshop on
Dynamics of Knowledge and Belief (DKB'13).

[227] Thimm, Matthias. 2014. Tweety - A Comprehensive Collection
of Java Libraries for Logical Aspects of Artificial Intelligence and
Knowledge Representation. In: Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning
(KR’14). AAAI Press.

[228] Thimm, Matthias, & Garcia, Alejandro J. 2010. Classification
and strategical issues of argumentation games on structured argu-
mentation frameworks. Pages 1247-1254 of: Proceedings of the gth
International Conference on Autonomous Agents and Multiagent Sys-
tems: volume 1-Volume 1. International Foundation for Autonomous
Agents and Multiagent Systems.

[229] Thimm, Matthias, & Kriimpelmann, Patrick. 2009. Know-How
for Motivated BDI Agents (Extended Abstract). In: Decker, Sich-
man, Sierra, & Castelfranchi (eds), Proceedings of the 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’09). International Foundation for Autonomous Agents and
Multiagent Systems.

[230] Van der Hoek, W., & Wooldridge, M. 2003. Towards a logic of
rational agency. Logic Journal of IGPL, 11(2), 135-159.

[231] van der Hoek, Wiebe. 2004. Epistemic logic for Al and computer
science. Vol. 41. Cambridge University Press.

[232] van der Torre, Leendert. 2012. Logics for Security and Pri-
vacy. Pages 1—7 of: Cuppens-Boulahia, Nora, Cuppens, Frédéric, &
Garcia-Alfaro, Joaquin (eds), Data and Applications Security and Pri-
vacy XXVI. Lecture Notes in Computer Science, vol. 7371. Springer
Berlin / Heidelberg.

[233] van Ditmarsch, Hans P, & Kooi, Barteld P. 2006. Semantic re-
sults for ontic and epistemic change. arXiv preprint cs/0610093.

275

276

BIBLIOGRAPHY

[234] van Harmelen, Frank, van Harmelen, Frank, Lifschitz, Vladimir,
& Porter, Bruce. 2007. Handbook of Knowledge Representation. San
Diego, USA: Elsevier Science.

[235] van Rooy, Robert. 2004. Utility, Informativity and Protocols.
Journal of Philosophical Logic, 33(4), 389—419.

[236] Vladimir, Lifschitz. 2002. Answer set programming and plan
generation. Artificial Intelligence, 138(1-2), 39—-54.

[237] Sefrének, Jan, & Siika, Jozef. 2006. Irrelevant Updates of Non-
monotonic Knowledge Bases. Pages 771-772 of: Proceedings of the
17th European Conference on Artificial Intelligence (ECAI'06). 10S
Press.

[238] Wallace, Richard J., & Freuder, Eugene C. 2005. Constraint-
based reasoning and privacy/efficiency tradeoffs in multi-agent
problem solving. Artificial Intelligence, 161(1—2), 209 — 227.

[239] Walsh, Toby. 2007. Representing and reasoning with prefer-
ences. Al Magazine, 28(4), 59.

[240] Wassermann, Renata. 2001. Ressource-Bounded Belief Revision.
Ph.D. thesis, ILLC, University of Amsterdam.

[241] Weiss, G. (ed). 1999. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA, USA: MIT Press.

[242] Weyns, Danny, Van Dyke Parunak, H., Michel, Fabien, Holvoet,
Tom, & Ferber, Jacques. 2005. Environments for Multiagent Sys-
tems State-of-the-art and Research Challenges. Pages 1—47 of: Pro-
ceedings of the First International Conference on Environments for Multi-
Agent Systems. EAMAS’o4. Berlin, Heidelberg: Springer-Verlag.

[243] Weyns, Danny, Vizzari, Giuseppe, & Holvoet, Tom. 2006. Envi-
ronments for Situated Multi-agent Systems: Beyond Infrastructure.
Pages 1-17 of: Weyns, Danny, Dyke Parunak, H., & Michel, Fabien
(eds), Environments for Multi-Agent Systems II. Lecture Notes in
Computer Science, vol. 3830. Springer Berlin Heidelberg.

[244] Wierzoch, Pia. 2014. Aktualisierung von Wissen unter Ver-
traulichkeitsanforderungen. Bachelor’s Thesis, Computer Science,
Chair 6 - Information Systems and Security, Technische Universitat
Dortmund.

[245] Witteveen, Gees, & van der Hoek, Wiebe. 1997. A general frame-
work for revising nonmonotonic theories. Pages 258-272 of: Dix,
Jiirgen, Furbach, Ulrich, & Nerode, Anil (eds), Logic Programming
And Nonmonotonic Reasoning. Lecture Notes in Computer Science,
vol. 1265. Springer Berlin / Heidelberg.

BIBLIOGRAPHY

[246] Woltran, Stefan. 2008. A common view on strong, uniform, and
other notions of equivalence in answer-set programming. Theory
and Practice of Logic Programming, 8(2), 217—234.

[247] Wooldridge, Michael. 1999. Intelligent Agents. Chap. Intelligent
Agents of: Weiss, G. (ed), Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA, USA: MIT Press.

[248] Wooldridge, Michael J. 2009. An Introduction to MultiAgent Sys-
tems. 2 edn. Wiley.

[249] Yager, Ronald R. 2008. Prioritized aggregation operators. Inter-
national Journal of Approximate Reasoning, 48(1), 263 — 274. Special
Section: Perception Based Data Mining and Decision Support Sys-
tems.

[250] Yager, Ronald R. 2010. Lexicographic ordinal OWA aggregation
of multiple criteria. Information Fusion, 11(4), 374 — 380.

[251] Zhang, Dongmo, Foo, Norman, Meyer, Thomas, & Kwok, Rex.
2004. Negotiation as mutual belief revision. Pages 317-322 of:
Proceedings of the 19th national conference on Artifical intelligence
(AAAl'04). AAAT'04. AAAI Press.

[252] Zhang, Yan. 2006. Logic program-based updates. ACM Transac-
tions on Computational Logic (TOCL), 7(3), 421—472.

277

LIST OF IMPORTANT SYMBOLS

J{O

W@ o >

Atlnt
Ly
kh

Lag
Las0

Set of agents 38

Epistemic state of an agent 29

Initial epistemic state 41

Set of initial epistemic states 119

Set of epistemic states 112
Functional component of an agent 41

Set of functional components 57

Sction 44

Symbol representing the empty action 38
Set of actions 20

Set of inform actions 135

Percept 19

Symbol representing the empty percept 38
Set of percepts 19

Speech act 75

Set of speech acts 39

¢ has an undetermined truth value 125

Set of beliefs 19

Power set of the set of possible beliefs 19

Desire 51

Set of desires 19

Power set of the set of possible desires 19

Intention 52

Set of desires 19

Set of atomic intentions 57

Power set of the set of possible intentions 19

Know-how statement 52

Set of know-how statements 52

Power set of the set of possible know-how statements 54
Power set of the set of possible basic know-how statements 53
Set of motives 51

Motivation value 51

279

280 BIBLIOGRAPHY

Lon Power set of the set of possible motives 54
Lon b Power set of the set of possible basic motives 51
X Arbitrary agent 38

A Attacking agent 108

D Defending agent 108

T Setting 119

At Set of all atoms 21

Lit Set of literals 26

U(Lit) Set of grounded literals 26

LBase Common communication language 38
L5 Language of extended logic programs 26
L5P Language of propositional logic 21

B Belief base 30

Les Language of an epistemic state 41

Le Epistemic component language 39

Lgs Belief set language 40

Va View on the world view of agent A 109

F(§(K)) Set of secret formulae 126

Vw World view 109

W Set of world views 136

S Set of Secrets 109

Ls Language of secrets 109

e Extension 64

ext Extension family function 64

& Set of extension family functions 66

comb Combination operator for extensions 66

r Set of combination operator for extensions 66
AS Set of answer sets for a given program 27
body Body of a rule 26

not Default negation operator 26

Litnot Set of default negated literals 26

. Variable for a notion of ASP equivalence 89
head Head of a rule 89

£ Set of literals and default negated literals 26

Bel
Be|x

asp
Belcred

asp
Belskep

[

BS

7'51.

o 4+ |

*

o

[=]

CE

l’

*8

*f

BIBLIOGRAPHY

Accumulator 24

Categorizer 24

Argument tree 23

All argument trees over a set of atoms At 24
Contra argument trees 24

Pro argument trees 24

Belief operator 40

Belief operator of agent X 40
Credulous ASP belief operator 66
Skeptical ASP belief operator 66
Set of belief operators 61

Belief set 40

Epistemic component 39

Screened consolidation operator 94

Contraction operator 31

World view append operator 136

Agent view append operator 136

Prioritized change operator for epistemic components 28
Change operator for epistemic states and percepts 42
Change operator for epistemic states and actions 42
Change operator for epistemic components and percepts 75
Non-closing expansion operator 30

Closing expansion operator 32

Change operator for secrets 115

Selection function 74

Selective revision operator 75

Interpretation function for speech-acts 74

General choice function 59
Classification function 140

Classical propositional equivalence 22
Pair-wise propositional equivalence 22
Strong equivalence for ASP 27
Uniform equivalence for ASP 27

Answer set equivalence for ASP 27

281

282 BIBLIOGRAPHY

=st Syntactic equivalence for ASP 89
Function composition 48
- Classical propositional entailment 21
o4 Function returning the action for an atomic intention 57
B Set of multi sets 22
P(S) Power set of the set S 18
Psn(S) Set of all finite subsets of set S 144
Sx Strategy of agent X 122
Csin Finite subset 144
CnPP(.) Deductive consequence operator 21
Mod Model operator 64
T Ratio of models 64
=bel Preference relation on belief operators 61
fagg Aggregation function for preferences 131
f!%} Lexicographic aggregation function for preferences 131
=(%,8) Preference relation on options for action 58
=% Preference relation on options with respect to informativity 133
=lx.8) Preference relation on options with respect to secrecy 130
<vio Preference relation on actions wrt. violation of secrets 142
vio Violation set for a world view 135

vioAfter ~ Violation set for a set of world views 135

sr Secrecy reasoner 144

INDEX

BDI" agent instance, 206

BDI" agent state, 54

BDI* secrecy agent state, 151

BDI model, 19

TweETy library, 204

ANGERONA Script Markup Lan-
guage (ASML), 208

accumulator, 24
action function, 20
actions, 35
agent
component, 206
secrecy aware, 106, 108
secrecy preserving, 113
agent cycle, 42
agent identifier, 38
agent state, 41, 42
agent’s belief operator, 40
agent-based, 103
agent-view, 103, 109, 151
agent-view append operator, 136
argument, 22
argument structure, 24
argument tree, 23
ASP basic BDl secrecy agent state,
152
ASP belief operator, 41
ASP belief operator family, 66
ASP multiple base revision op-
erator, 93
assumed world-views of A , 136
atomic intention, 21
atomic intentions Atlnt, 52
attacker model, 108
availability, 132

base language, 39

basic BDI" agent state, 56

basic BDI™ secrecy agent model,
150

basic desire operator, 57

basic intention operator, 59
basic know-how base, 53, 163
basic options function, 57
basic options operator, 162
belief operator, 40

belief revision function, 19
belief set, 28, 39

belief set language, 40
belief-desire couplings, 51
beliefs, 19

canonical enumeration, 21

categorizer, 24

change operator for actions, 42

classification, 140

closing expansion operator, 32

combination operator, 66

combinations of secrets, 135, 138

common logical language Lgase,
38

Conlflict Free, 144, 251

Conflicting, 144, 251

conservativeness, 23

consistency of an answer set pro-
gram, 27

constant, 25

contraction operator, 31

controlled interaction execution
(CIE), 189

controlled query evaluation (CQE),
189

core developer, 204

credulity order, 63

deductive closure, 21

desires, 19, 51

dimensions of uncertainty, 104
direct know-how statement, 53
distortion strategies, 105, 133

empty percept, 43
epistemic

283

284

BIBLIOGRAPHY

component, 206
epistemic actions, 37
epistemic agents, 35
epistemic component, 39
epistemic component language,
39
epistemic plug-in, 206
epistemic state, 29, 35
BDIT, 54
compound, 46
initial, 41
monolithic, 46
safe, 111
sound, 122
equivalence for logic programs,
27, 89
answer set equivalence, 277
strong equivalence, 27
syntactic equivalence, 89
uniform equivalence, 27
evaluation operator, 58
expansion, 28
expansion operator, 31
extended logic program, 26
extension, 65
extension family function, 64

family of belief operators, 61
filter function, 20
formula
potentially secret, 110
secret, 110
sensitive, 110
functional components, 206

game tree, 121

general selection function, 59

global maxichoice selection func-
tion, 97

Herbrand universe, 26

hypothetically evolved world-views,

136

inference problem, 188
information level alphabet, 157
information-level, 156
informativity, 132

informativity relation, 133
inner revision operation, 71
intentions, 19
interpretation function, 74

know-how base, 52
know-how statements, 52
knowledge engineer, 204

Levi-Identity, 31

lexicographical aggregation func-
tion, 131

linear temporal logic, 198

lying, 133

maintenance goal, 198

meta-inferences, 105

meta-information, 105

meta-information level alphabet,
156

meta-information-level, 156

motivation value, 51

motive, 51

multiagent cycle, 43, 210

multiagent systems, 38

multiple base revision operator,
86

multiple revision operations, 71

nested logic programs, 211
non-closing expansion, 86
non-closing expansion operator,

30

ontic actions, 37

operator plug-in, 206
operator type, 208

options, 52

options function, 20

outer revision operation, 71

partial meet contraction, 32
partially secrecy preserving, 119
path, 122

percepts, 35

plug-in developer, 204

possible epistemic states, 112
potential secrets, 108, 192

potentially violated, 135, 138

power set P(S), 18

power set, finite, 144

preference relation on options,
58

prioritized multiple revision, 75

prioritized revision operator, 72

Proactive maintenance goals, 198

reactive maintenance goals, 198
reduct, 27

refusal sensitive, 166
refusing, 133

related literals, 165
remainder sets, 31
report, 212

report entries, 212
report system, 212
rule schema, 26

run, 18

safe actions, 120
screened consolidation operator,
94
secrecy aware agents, 3
secrecy desire operator, 161
secrecy preserving, 106
secrecy reasoner, 144
secret, 104, 110
active, 111, 135
secret aware attacker, 166
secrets change operator, 115
selection function, 74
selective revision operator, 75
set of all speech acts, 39
set of belief operators, 61
set of multi-sets, 22
set of secret formulae, 126
setting, 119
plain, 120
query-answer, 125
speech acts, 37
strategy, 122
strength of a secret, 111
strength of secrets, 107
strict program, 26
strict sub-program, 26

BIBLIOGRAPHY

success postulate, 29

tautological programs, 89
term, 25

time, 42

topic independence, 95
topicalization, 95
topicalizations, 95

two place selection function, 97

uncertainty of the agent-view,

104, 134
uncertainty of the world-view,

104, 134
undercut, 23
utility functions, 122

variable, 25
violation sets, 135

winning strategy, 122
world-view, 109, 151
world-view append operator, 136

285

	Abstract
	Acknowledgments
	Dedication
	Contents
	1 Introduction
	1.1 Context and Motivation
	1.2 Challenges
	1.2.1 Gap between theoretical and practical agent models
	1.2.2 Using non-monotonic reasoning in multiagent systems
	1.2.3 Belief revision and non-monotonic logics in multiagent systems
	1.2.4 Secrecy under incomplete information and bounded rationality
	1.2.5 A multiagent framework for epistemic agents

	1.3 Contributions
	1.3.1 General model of epistemic agents
	1.3.2 Non-monotonic reasoning formalisms for epistemic agents
	1.3.3 Belief change operators and non-monotonic reasoning
	1.3.4 Agent-based secrecy and secrecy aware agents
	1.3.5 Epistemic agent programming framework Angerona

	1.4 Outline
	Publications and Contributions
	1.5 Publications and Contributions
	1.5.1 Publications that contributed to this thesis
	1.5.2 Contributions to the publications

	2 Background
	2.1 Agent Models
	2.1.1 Abstract notion of agents
	2.1.2 The BDI Model

	2.2 Propositional Logic
	2.3 Deductive Argumentation
	2.4 Answer Set Programming
	2.5 Belief Revision Theory
	2.5.1 Belief Sets
	2.5.2 Epistemic States
	2.5.3 Belief Bases
	2.5.4 Answer set programming and belief change
	2.5.5 Summary

	3 Epistemic Agent Model
	3.1 Communicating Agents
	3.2 Epistemic Components
	3.3 Epistemic Agents
	3.4 Abstract Compound Agent
	3.5 BDI+ Agents
	3.5.1 Motives
	3.5.2 Know-How
	3.5.3 The BDI+ Agent Model
	3.5.4 Basic BDI+ Agent Model

	3.6 Belief Operators for Epistemic Agents
	3.7 Related Work
	3.8 Conclusion

	4 Belief Change Operations
	4.1 Structure of Belief Change Operations
	4.2 Selective Revision
	4.2.1 Selective Multiple Base Revision
	4.2.2 Selective Revision by Deductive Argumentation

	4.3 Multiple Base Revision for ASP
	4.3.1 Postulates for ASP Base Revision
	4.3.2 Construction of ASP Base Revision

	4.4 Related Work
	4.5 Conclusion

	5 Agent-based Secrecy
	5.1 Desiderata of Agent-based Secrecy
	5.2 Abstract Agent Model for Secrecy
	5.3 Properties of Change Operations and Secrecy
	5.4 Characterization of Secrecy Preserving Agents
	5.4.1 Local Properties for Secrecy Preserving Agents
	5.4.2 Look ahead and Secrecy Preserving Agents
	5.4.3 Reducing Look-ahead to Local Properties
	5.4.3.1 Query-answer Protocol
	5.4.3.2 Meta-Inferences and Communication

	5.5 Preferences on Options for Action and Secrecy
	5.5.1 General Model for Preferences on Actions
	5.5.2 Classification of actions with respect to secrecy
	5.5.3 Principles for the classification of actions
	5.5.4 Algorithm for the classification of actions

	5.6 Secrecy BDI+ Agents
	5.6.1 ASP BDI Belief Change
	5.6.2 Secrecy desire operator
	5.6.3 Generation of Options
	5.6.4 Modeling meta-inferences
	5.6.5 Deliberation and secrecy preservation
	5.6.6 Complete modeling of the scm example

	5.7 Related work
	5.7.1 Runs-and-systems base secrecy
	5.7.2 Controlled interaction execution
	5.7.3 Secrecy preserving query answering
	5.7.4 Secrecy and Agent models

	5.8 Conclusion

	6 The Angerona Framework
	6.1 Agent Framework
	6.2 Multiagent Framework
	6.3 Related Work
	6.4 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Main contributions
	7.3 Further and Future Work

	A Appendix
	A.1 Proofs
	A.1.1 Proofs for Chapter 3
	A.1.2 Proofs for Chapter 4
	A.1.3 Proofs for Chapter 5

	Bibliography
	List of important symbols
	Index

