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"Computer vision as a �eld is an intelletual frontier. Like anyfrontier, it is exiting and disorganised; there is often no reliableauthority to appeal to - many useful ideas have no theoretialgrounding, and some theories are useless in pratie."Forsyth and PoneAuthors from Computer Vision: A Modern Approah



AbstratIn the future, autonomous servie robots are supposed to remove the burden of monotoniand tedious tasks like pikup and delivery from people. Vision being the most importanthuman sensor and feedbak system is onsidered to play a prominent role in the futureof robotis. Robust tehniques for visual robot navigation, objet reognition and visionassisted objet manipulation are essential in servie robotis tasks. Mobile manipulationin servie robotis appliations requires the alignment of the end-e�etor with reognizedobjets of unknown pose. Image based visual servoing provides a means of model-freemanipulation of objets solely relying on 2D image information.In this thesis ontributions to the �eld of deoupled visual servoing for objet manipula-tion as well as navigation are presented. A novel approah for large view visual servoingof mobile robots is presented by deoupling the gaze and navigation ontrol via a virtualamera plane, whih enables the visual ontroller to use the same natural landmarks e�-iently over a large range of motion. In order to omplete the repertoire of reative visualbehaviors an innovative door passing behavior and an obstale avoidane behavior usingomnivision are designed. The developed visual behaviors represent a signi�ant step to-wards the model-free visual navigation paradigm relying solely on visual pereption. Anovel approah for visual servoing based on augmented image features is presented, whihhas only four o�-diagonal ouplings between the visual moments and the degrees of motion.As the visual servoing relies on unique image features, objet reognition and pose align-ment of the manipulator rely on the same representation of the objet. In many senariosthe features extrated in the referene pose are only pereivable aross a limited regionof the work spae. This neessitates the introdution of additional intermediate refereneviews of the objet and requires path planning in view spae. In this thesis a model-freeapproah for optimal large view visual servoing by swithing between referene views inorder to minimize the time to onvergene is presented.The e�ieny and robustness of the proposed visual ontrol shemes are evaluated in thevirtual reality and on the real mobile platform as well as on two di�erent manipulators. Theexperiments are performed suessfully in di�erent senarios in realisti o�e environmentswithout any prior struturing. Therefore this thesis presents a major ontribution towardsvision as the universal sensor for mobile manipulation.
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AbstraktAutonome Servieroboter sollen in Zukunft dem Menshen monotone und körperlih an-strengende Aufgaben abnehmen, indem sie beispielsweise Hol- und Bringedienste ausüben.Visuelle Wahrnehmung ist das wihtigste menshlihe Sinnesorgan und Rükkopplungs-system und wird daher eine herausragende Rolle in zukünftigen Robotikanwendungen spie-len. Robuste Verfahren für bildbasierte Navigation, Objekterkennung und Manipulationsind essentiell für Anwendungen in der Servierobotik. Die mobile Manipulation in derServierobotik erfordert die Ausrihtung des Ende�ektors zu erkannten Objekten in un-bekannter Lage. Die bildbasierte Regelung ermögliht eine modellfreie Objektmanipulationallein durh Berüksihtigung der zweidimensionalen Bildinformationen.Im Rahmen dieser Arbeit werden Beiträge zur entkoppelten bildbasierten Regelung sowohlfür die Objektmanipulation als auh für die Navigation präsentiert. Ein neuartiger Ansatzfür die bildbasierte Weitbereihsregelung mobiler Roboter wird vorgestellt. Hierbei wer-den die Blikrihtungs- und Navigationsregelung durh eine virtuelle Kameraebene entkop-pelt, was es der bildbasierten Regelung ermögliht, dieselben natürlihen Landmarken ef-�zient über einen weiten Bewegungsbereih zu verwenden. Um das Repertoire der visuellenVerhalten zu vervollständigen, werden ein innovatives Türdurhfahrtsverhalten sowie einHindernisvermeidungsverhalten basierend auf omnidirektionaler Wahrnehmung entwikelt.Die entworfenen visuellen Verhalten stellen einen wihtigen Shritt in Rihtung des Paradig-mas der reinen modellfreien visuellen Navigation dar. Ein neuartiger Ansatz basierend aufBildmerkmalen mit einer erweiterten Anzahl von Attributen wird vorgestellt, der nah einerEntkopplung der Eingangsgröÿen nur vier unerwünshte Kopplungen zwishen den Bild-momenten und den Bewegungsfreiheitsgraden aufweist. In vielen Anwendungsszenariensind die extrahierten Referenzmerkmale nur in einem begrenzten Bereih des Arbeitsraumssihtbar. Dies erfordert die Einführung zusätzliher Zwishenansihten des Objektes sowieeine Pfadplanung im zweidimensionalen Bildraum. In dieser Arbeit wird deswegen einemodellfreie Methodik für die zeitoptimale bildbasierte Weitbereihsregelung präsentiert, inder zwishen den einzelnen Referenzansihten umgeshaltet wird, um die Konvergenzzeitzu minimieren.Die E�zienz und Robustheit der vorgeshlagenen bildbasierten Regler werden sowohl in dervirtuellen Realität als auh auf der realen mobilen Plattform sowie zwei untershiedlihenManipulatoren veri�ziert. Die Experimente werden in untershiedlihen Szenarien in alltäg-lihen Büroumgebungen ohne vorherige Strukturierung durhgeführt. Diese Arbeit stellteinen wihtigen Shritt hin zu visueller Wahrnehmung als einziger und universeller Sensorfür die mobile Manipulation dar.
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Nomenlature
In the present work vetors and matries are printed in bold type. Vetors are herebydisplayed by minusule letters whereas matries are represented by apital letters, andsalars are expressed in itali style. The nomenlature is sorted as following: the �rstlassi�ation riterion is latin before greek letters, afterwards lower-ase before upper-aseletters, and �nally bold before itali type.
a ontrol ation (for appearane based visual servoing)
ah saling fator (for homography)
ai, bi distane of an interest point to its appropriate epipolar line orrespondingto the u- and v-diretion, respetively
ak pixel displaement
am, bm, cm, dm model parameters for exponential funtionA Hesse matrix
α rotation around the x-axis (roll)
αa orretion fator for the adaptive image Jaobian
αc, α̇c amera pan angle, respetively veloity
αia, βia, γia interior angles
αu, αv intrinsi amera parameter: saling fator depending on λ and pixel di-mensionsbCref

image features in the referene frame
β rotation around the y-axis (pith)
βc, β̇c amera tilt angle, respetively veloity
c performane riterion
confavg mean of the on�dene values
confseg(i,j) on�dene values in a window with the row and olumn position (i, j) ofthe ell
C,Cn, Cr absolute, normalized and relative number of feature orrespondenes be-tween the referene view and the urrent image
Cref , Cα,β, CR stati and rotated amera oordinate systems, respetively, and ameraoordinate system in the image plane
CV virtual amera oordinate system, respetively virtual amera planeCVi i-th referene view viii



dkp normalized keypoint desriptor of SIFT features
d distane
D Di�erene-of-Gaussian
∆f error between desired and atual feature loations
∆f̂ total normalized summed feature error
∆fγ orretion along γ of the averaged keypoint rotation
∆fω,∆fω predited motion of the image features aused by ∆ΘR

∆ϕ feature error between referene and urrent distortion (amera retreatproblem)
∆ΘR orientational task spae error
∆x lateral task spae error
∆z longitudinal task spae error
[e1a, e

2
a]

T epipoles from the atual image
[e1ref , e

2
ref ]

T epipoles from the desired viewE essential matrix desribing the epipolar onstraint
Ē(θ), Ē(φ), Ē(r) mean absolute error in azimuth, elevation and radius
Eu, Ev entropy along the u- and v-axis, respetively
ε residual error between model and data point (for error funtion of theM-estimator)
εd dissimilarity (residual error)
εγ estimation error for amera rotation
η1, η2 tuning variables
f urrent image features, stated depending on the ontext as fi = [ui, vi]for the i-th image feature with oordinates ui, vi, in the ontext of SIFTfeatures as fi = [ui, vi, φi, σi] with the additional attributes orienta-tion φi and sale σi, also in the ontext of image moments as f =

[fα, fβ, fγ, fx, fy, fz]
fref referene image features, also used in the ontext of image moments
fα image moment for rotation around the x-axis
fβ image moment for rotation around the y-axis
fγ image moment for rotation around the optial axis
fx image moment for translation along the x-axis
fy image moment for translation along the y-axis
fz image moment for translation along the amera axis
fzd image moment for translation along the amera axis, alternative expres-sion via the distane between point features
F ost funtionG Gaussian �lter
γ rotation around the z-axis (yaw), respetively the optial amera axis
γt angle between orientation of virtual amera plane and template plane
γV angle between the virtual amera plane and the orientation of the robot
h twie the distane between the parabola's vertex and the fous of anomnidiretional amera ix



H, Ĥ homography, estimated homography by feature orrespondenes
Hu(i) relative frequeny of features in i-th olumn
Hv(i) relative frequeny of features in i-th rowI urrent image, also denoted as I(u, v, t) in dependene of the pixel oor-dinates u, v and time t
Iref referene image
[Iu, Iv]

T spatial intensity gradient in u- and v-diretion, respetively
J visual image Jaobian
J+ pseudoinverse of the image Jaobian
Ja Jaobian for appearane based visual servoing
Je Jaobian for visual servoing on epipoles
Jvω separated Jaobian for rotational motion
Jvt separated Jaobian for translational motion
Jvξuξ

separated Jaobian for angle and axis of rotation parametrization
Jxz separated Jaobian for translational motion, redued to two degrees offreedom
Jdk robot Jaobian for di�erential kinematisJfi image Jaobian for the image moment in i, whereas i stands for x, y, z,

α, β, γ
Jfi,j image Jaobian entry for the image moment in i with a movement in

j, whereas both i and j stand for x, y, z, α, β, γ and i = j (desiredouplings)
J̃fi,j image Jaobian entry for the image moment in i with a movement in j,whereas both i and j stand for x, y, z, α, β, γ and i 6= j (undesiredouplings)
Jω separated Jaobian for rotational motion, redued to one degree of free-dom
k onstant proportional gain
ka adaptive gain
k proportional gain fatorK amera alibration matrix as a funtion of the intrinsi amera parame-ters
lk image displaementL Gaussian-blurred image
λ foal length
λe evaluated individuals of λ-CMAES
λeig eigenvalue
λi Lagrange multiplier
λp o�spring of λ-CMAES
µ ontrol parameter for Levenberg-Marquardt optimization
µ(i,j) mean of the time to ontat values in a segment with the row and olumnposition (i, j) of the ell
µp parents of λ-CMAES x



n normal vetor of a plane
n, nmin, nmax number of feature orrespondenes, respetively minimum/maximum
∇pw divergene for eah pairing window
ω rotational veloity
ωR, ωRmax

rotational veloity of non-holonomi robot, rotational veloity limit
Ω spatial neighborhood around image feature, respetively point of interestpi world pointpi point in image planepv point in virtual amera plane
π(s, a) optimal poliy (for appearane based visual servoing)
φ anonial orientation of the keypoint
ϕ, ϕref urrent and referene angle between two points forming a line relative tothe horizontal line
q robot joint angles
q̇ robot joint veloitiesQ ation value funtion (for appearane based visual servoing)
r amera position
ṙ amera veloity
rf horizontal distane from fous to parabola of an omnidiretional amera
rXY Pearson's orrelation oe�ient desribing the linear dependeny be-tween two stohasti variables X and YR rotation matrix
ρ error funtion of the M-estimator
ρ, α polar oordinates
s objet appearane (in angular olor oourrene histograms)
σ image feature sale espeially in the ontext of SIFT and SURF features,also referred to as the standard deviation of the Gaussian
σe parameter to regulate outlier suppression (for error funtion of the M-estimator)
σu, σv variane of the feature distributiont translation vetor
ttc, ttcavg time to ontat, mean time to ontat
ttcnv one of the m total time to ontat estimates omputed from the orre-sponding �ow vetorsTCα,β

CR
transformation from the amera oordinate system to the rotated ameraoordinate systemTCref

Cα,β
transformation of the rotated amera oordinate system into the statiamera oordinate systemTCV

Cref
transformation from the �xed referene frame entered at the foal pointto the virtual amera planeTCV

CR
transformation from the amera plane to the horizontal virtual ameraplane xi



xii
Text extrinsi homogeneous transformation matrix
Tint intrinsi homogeneous transformation matrix
θaz, φel, rsc referene azimuth, elevation and radius in spherial oordinates
θ̂az, φ̂el, r̂sc estimated azimuth, elevation and radius in spherial oordinates
θicp intrinsi amera parameter: angle between the axes of the retinal image
Θm model parameters (for error funtion of the M-estimator)
ΘR orientation of the robot
u pixel oordinate in x-diretion of the amera oordinate system
[u, v, 1]T homogeneous 2D image oordinates
[û, v̂, 1]T normalized 2D image oordinates
[ū, v̄]T deviation of the feature entroid from the origin
[u̇, v̇]T optial �ow
[u0, v0]

T intrinsi amera parameter: priniple point desribing intersetion of op-tial axis with image plane
[ucog, vcog, 1]

T feature entroid of urrent view
[ûcog, v̂cog, 1]

T feature entroid of goal view
[uV , vV , 1]

T 2D image oordinates in the virtual amera plane
[uvcog, vvcog] entroid of the u-, respetively v-oordinate of the urrent view expressedin the horizontal virtual amera plane after the feature rotation about

∆ΘR

[ûvcog, v̂vcog] entroid of the u-, respetively v-oordinate of the referene view ex-pressed in the horizontal virtual amera plane after the feature rotationabout ∆ΘR

uξ axis of rotation parametrizationUΛVT singular value deomposition (SVD) of a matrixv veloity
v pixel oordinate in y-diretion of the amera oordinate system
vR translational veloity of non-holonomi robot, vR is omposed of vRz

inlongitudinal diretion and vRx
in lateral diretion

vRLeft
, vRRight

ommanded veloity for the left and right wheel of the robot, respetively
vRmax

translational veloity limit
wi dynami weight for deoupling fx and fy
wi,norm normalized dynami weight (to be independent of the distane z)
w(u, v) weighting funtion, e.g. for optial �ow or Hesse matrix
x position [x, y, z] and orientation [α, β, γ] of the end-e�etor
[x, y, z, 1]T homogeneous point oordinates
[xR, zR, θR]

T state of non-holonomi robot
xi data point (for error funtion of the M-estimator)
[X, Y ]T , [X̄, Ȳ ]T stohasti variables, mean values of stohasti variables
ξ angle of rotation parametrization
zf horizontal axis of paraboli mirror
ζ onstant for gain omputation to avoid numerial instability



Chapter 1
Introdution
In the future servie robots are supposed to liberate people from the burden of monotoniand tedious tasks. Robots pereive their environment by means of fore, touh, proximityor visual feedbak with the objetive to perform omplex manipulation tasks in dynami,unstrutured environments of a omplexity that exeeds the apabilities of urrent robotimanipulators in industrial settings. Pikup and delivery tasks onstitute a novel domain ofappliation for intelligent servie robots. This development is triggered by more powerfuland a�ordable sensors, inreased omputational power and the advent of lightweight ma-nipulators. This thesis is a ontribution towards the goal of realizing mobile manipulationwith autonomous servie robots.Vision being the most important human sensor and feedbak system is onsidered to playa prominent role in the future of robotis. Mobile manipulation in servie roboti applia-tions requires loalization, navigation, objet reognition as well as objet manipulation.All these tasks are ahieved with advaned sensors suh as expensive laser sanners, af-fordable sonar as well as amera systems. Several tasks like obstale avoidane and 3Dworld modeling are easily ahieved by applying laser sensors. In order to disseminate ser-vie robots on a broad sale, their osts have to be redued. Thus, new territory has tobe entered in order to replae laser sanners in favor of ameras as a universal sensor.Camera systems o�er the major advantage that they enable the reognition of objets aswell as people inluding their gestures and mimis, in addition to their appliability forloalization and navigation. They provide high dimensional and noisy data requiring in-formation proessing and reasoning in order to ompensate for the information omplexityompared to lasers. Therefore this thesis fouses on the hallenging task to ahieve mobilemanipulation for autonomous servie robots solely through omputer vision.1



2 1.1 Mobile manipulation1.1 Mobile manipulationA general omprehensive outline of mobile manipulation is given by the Tehnial Com-mittee on Mobile Manipulation:"The ultimate goal of Autonomous Mobile Manipulation is the exeution of omplexmanipulation tasks, in unstrutured and dynami environments, in whih ooperation withhumans may be required. To ahieve this goal, several sienti� and engineeringhallenges, urrently beyond the state of the art in robotis, must be addressed." [146℄.Mobile manipulation neessitates di�erent skills suh as planning, loalization as well asdeliberative navigation and objet reognition in onjuntion with objet manipulation.The omplexity of this mission arises from the high dimensional pereptual data a�itedwith unertainties as well as system omplexity that emerges from the mobile platformitself but even more from the dynamis and ambiguities of the environment.Given a senario in whih the human instruts the mobile platform with tasks suh astable setting or pikup and delivery, the robot �rst of all has to loalize itself in its dy-nami environment as neither o�es nor households are stati. Loalization is essentialfor planning as well as mission supervision. After the problem "Where am I?" is solved,navigation is required in order to address the problem of "How to get from A to B?". Thenavigation is supposed to guide the robot towards a goal destination for example passinga door, while simultaneously avoiding ollisions. A large variety of di�erent navigationshemes is provided in literature mostly using ombinations of di�erent sensors. This the-sis follows the paradigm of purely vision-based navigation negleting other kinds of sensormerely utilizing image data. Therefore all important skills for navigation of autonomousmobile robots suh as obstale avoidane, natural landmark orientation for goal-orientednavigation as well as door passing are designed solely based on visual pereption. Theskills for navigation using vision are supposed to be e�ient to implement and robust toguarantee the safe operation of the mobile platform.One the designated goal loation is reahed the mobile platform needs to reognize andhandle daily objets in household environments. The objet reognition and manipula-tion relies on the same objet representation, whih is sparse in order to ful�ll memoryonstraints of the underlying hardware. The task of objet manipulation onsists of thealignment of the end-e�etor with reognized objets of unknown pose. Image-based visualservoing provides a means of model-free manipulation of objets solely relying on 2D imageinformation. Therefore this thesis provides a signi�ant step towards manipulation of dailyobjets relying on natural texture even if the grasp pose of the objet is outside the urrentview of the objet.Figure 1.1 shows the mobile robot equipped with amera and manipulator expliitly builtfor mobile manipulation tasks. It is based on a mobile platform from MobileRobots In.



Chapter 1 Introdution 3equipped with sonar sensors. Two amera systems, a monoular pan-tilt amera and anomnidiretional amera are mounted on the platform for loalization, navigation and objetreognition. A manipulator with a two-�nger gripper from Neuronis is installed on theplatform. The eye-in-hand amera is designated for losed-loop objet manipulation. Themanipulator redues the �eld of view of the omnidiretional amera. This imposes noonstraint on the later-on desribed navigation with the omnidiretional amera beausethe remaining �eld of view of around 300◦ still ontains all relevant environmental ontents.gripperamera forobjet graspingmanipulatoromnidiretionalamerapan-tilt amerasonar sensorsmobile platformFigure 1.1: Mobile robot.1.2 Related workThe mobile platform is provided with an Advaned Robot Interfae for Appliations(ARIA) [100℄. ARIA already inorporates ontrol of robot's veloities, odometri, sonarand laser measurements as well as ollision-free navigation due to reative behaviors basedon its sonar or laser data. In order to ahieve goal-oriented navigation additional pakagesfor map building (laser mapping and navigation pakage), ARNL (Advaned Robotis Nav-igation and Loalization System) for Markov based loalization and MobileEyes for remote



4 1.2 Related workontrol of the robot's ations, e.g. the progress of the task in the map, are at the disposalof the ustomer. The ustomer has a fully operational robot with these pakages, whihnavigates after an initial mapping stage without ollisions in a goal-oriented manner in dy-nami environments. To ahieve even more omplex tasks in the ontext of servie robotissuh as human reognition, human-mahine interation as well as objet reognition andmanipulation additional sensors for visual pereption are required. While a servie robotinherits more tedious tasks from humans, it is indispensable to redue the overall ostsespeially for the hardware in order to �nally ahieve the eonomi breakthrough in theonsumer market. Therefore the motivation arises to design the ruial apabilities suhas loalization and navigation as well as advaned skills suh as objet manipulation witha single ost-e�ient sensor system in onjuntion with highly advaned ontrol method-ologies, rather than employing multiple kinds of expensive sensors in parallel. This trendfrom hardware to software intelligene ours in many industry branhes with severe priingpressure e.g. automotive industry. Cameras represent an e�ient solution to this dilemmabeause the range of possible appliations and skills over prie is muh more advantageousompared to laser. Therefore in its �rst part this thesis aims at the objetive to ahievesimilar performane for navigation with visual pereption ompared to the already existingommerial software with laser sensors. This provides the basis for additional appliationssuh as objet manipulation, whih are treated in the seond half of this thesis.The robot ontrol is based on a hybrid arhiteture [15℄ depited in �gure 1.2, omposedof a planning layer, a oordination layer and a subordinate reative layer. The role ofthe planning layer onsists in generating the mission plan and its surveillane, inludingglobal loalization of the robot, preloaded path planning for goal-oriented navigation aswell as objet manipulation. The oordination layer ativates or deativates those reativebehaviors that are neessary for suessful realization of the plan and adequate in theurrent ontext. It is also responsible for the diagnosis of the robot's status, missionsurveillane and emergeny or fallbak strategies. The operation of the reative layerfollows the behavior based paradigm [18℄, as it abandons any abstrat representation of theenvironment but deides about the motion ommands only based on the urrent pereptionprovided by the sensors (behavior representation). A behavior is represented by a diretmap from the stimulus, for example the distane measurement, to the response, in thease of mobile robots the motor ommands. In ase of navigation an obstale avoidanebehavior guarantees the safety of the robot with respet to ollisions with surroundingobjets. Other reative behaviors e.g. onstant veloity, orridor entering, homing areprimarily useful for loal navigation. The objet manipulation requires a behavior whihtransfers the manipulator in a pre-grasping position. This thesis investigates the potentialof amera systems to replae the sensor inputs for the planning and the reative layer andompletely dispense with distane sensors suh as laser employed in ommerially availablerobot systems.Di�erent approahes for robot navigation are known from literature [15, 18, 5℄ foussingmostly on methodologies for distane sensors. In their general survey about vision for
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Figure 1.2: Hybrid three-layer model for robot ontrol with planning, oordination andreative layer, with laser and sonar as input for loalization and navigation in the planninglayer as well as for the behaviors in the reative layer.mobile robot navigation [39℄ distinguish between indoor and outdoor navigation. A om-prehensive overview for visual navigation is provided by [16℄, whih ategorizes visualnavigation as map-based navigation and mapless navigation, whereas map-based naviga-tion is subdivided into metri and topologial map-based navigation. Metri maps repre-sent the environment in relative oordinates with respet to an absolute world oordinatesystem, whereas topologial maps possess a graph-like struture with nodes and edges,representing abstrat loations and the repertoire of behaviors to transit between themwithout any geometri information [86℄. Loalization tehniques using laser sensors arewell-established [51℄. A framework for Simultaneous Loalisation And Mapping (SLAM)is provided by [147℄ by building a map from srath while ontinuously loalizing itself inthe online generated map. E�ient approahes suh as FAST-SLAM [102℄ ahieve nowa-days real-time mapping of the environment. Despite the substantial progress regardingVSLAM (Visual Simultaneous Loalisation And Mapping) [142, 36, 138℄, maps providedby VSLAM using loal feature extration are sparse and therefore not dense enough formetri navigation required by standard laser based navigation shemes. However, thesemaps are suited for robot loalization [76℄. Reent approahes [148℄ generate o�-line dense3D maps due to stereo vision with additionally integrated landmarks, nonetheless theoverall loalization is inferior to simple topologial loalization approahes using omnivi-sion suh as [55℄. In [44℄ a VSLAM sheme provides a 3D-voxel map by FAST-SLAM inonjuntion with the Kinet sensor, whih solves inherently the 3D reonstrution problemof visual senors by atively emitting strutured light [98℄. This thesis follows the topologi-



6 1.2 Related workal map-based navigation paradigm using passive visual senors, representing environmentsby a direted graph. Topologial maps require less memory and are suitable for the repre-sentation of large indoor environments. Topologial SLAM using loal feature extrationis presented in the works of [155, 3℄, whih seems to outperform appearane-based visualSLAM by global feature extration [65℄. The hoie of the loalization methodology has adiret impat on the required olletion of behaviors (referred to as mapless navigation in[16℄). Topologial map-based navigation requires visual pereption representing the visualnodes, also referred to as waypoints, as well as the visual behaviors assoiated with theedges in order to navigate between them. Depending on the degree of integration of theimage proessing systems into the hybrid ontrol arhiteture the approahes are lassi�edthroughout this work into vision-guided and visual navigation shemes. Visual naviga-tion solely uses visual information as input for the planning as well as for the reativelayer, whereas vision-guided approahes are supplemented by ative distane sensors suhas sonar or laser sensors providing further input for the reative layer.Visual reative behaviors omit metri maps for representing the environment, instead theypereive and trak objets by oupling the immediate deision about the robot movementdiretly with the visually observed appearane of the loal environment. Suh approahesare either based on loating spei� landmarks in the environment, or follow an appearanebased approah [154℄ or measure the optial �ow [4℄. The orridor entering desribed in[4℄ operates by balaning the optial �ow in the right and left hemisphere of an omnidire-tional amera system, however, it fails if texture is missing or non-uniformly distributedin the orridor environment. Vision-based navigation in unstrutured environments solelyuses natural features and strutures without adding supplementary landmarks or textureelements to failitate the navigation task. [105℄ desribes a vision-based homing behaviorwith gaze ontrol for deoupling the amera and the robot movement via a virtual ameraplane. However, in this ontext the environment is strutured systematially by plainglandmarks at seleted waypoints to support vision-based navigation.Roboti manipulation of daily-life objets in unstrutured environments is an essentialrequirement in servie roboti appliations. Image-Based (IBVS) and Position-Based Vi-sual Servoing (PBVS) grow in visibility due to their importane for roboti manipulationand grasping. Visual servoing is de�ned in the standard tutorial [70℄ as:"the use of one or more ameras and a omputer vision system to ontrol the position ofthe robot's end-e�etor relative to the work piee as required by the task".Position-based visual servoing estimates the objet's pose relative to amera, as the errorbetween the atual and the goal pose is de�ned in the Cartesian spae. The main drawbaksof position-based visual servoing are 3D model generation of objets, on-line estimation of3D pose, system instabilities beause of oarse pose estimations as well as objets leavingthe �eld of view [23℄. Image-based visual servoing solely relies on 2D image informationfor the alignment of the end-e�etor with an objet of unknown pose. The desired pose



Chapter 1 Introdution 7for grasping is demonstrated to the robot during a learning stage and a set of referenefeatures is extrated from the image. A geometri objet model or an expliit reonstrutionof the objet sene beomes obsolete for image-based visual servoing. Due to these twomajor advantages this approah is partiulary promising for mobile manipulation, namelymodel-free and easy to demonstrate for the instrutor.The ategorization of [24℄ and [25℄ for di�erent image-based visual servoing onepts ispursued and di�erent approahes in literature are ranked regarding their appliability tomobile manipulation. Jaobian based visual servoing inverts the analytial relation betweendi�erential hanges in task spae to di�erential hanges of pixel oordinates to redue theerror in the image spae between the atual and desired feature oordinates [151℄. Hybridvisual servoing de�nes the error between atual and desired pose partially in image andCartesian spae [26℄. Partitioned visual servo, respetively visual servoing with deoupledimage moments, de�nes image moments whih are related approximately in a one-to-onerelationship to their degrees of motion, resulting in a simple linear ontrol problem in theimage spae [143℄. Appearane based visual servoing [37℄ aptures the overall appearaneof an objet rather than single features and relates this appearane by an o�ine learnedinteration matrix to ontrol values to steer the end-e�etor in the referene pose. Otherapproahes for visual servoing suh as visual servoing on epipoles [120℄ or by struturedlight are negleted beause of their minor importane for servie robotis.Figure 1.3 depits a radar hart in order to ompare di�erent visual servoing oneptswith respet to various aspets. Visual servoing by image Jaobian, hybrid visual servoing,visual servoing by deoupled moments as well as appearane based visual servoing are om-pared regarding stability, alibration issues, onvergene, ompliane with servie robotispei�ations and biology inspiration. Stability is divided into global asymptoti and loalasymptoti stability as well as heuristi approahes for stability analysis e.g. onvex poly-gons. Hybrid visual servoing has the highest ranking due to its global asymptoti stability.Appearane based visual servoing has the lowest ranking as the stability analysis of the op-timal poliy (feed-forward) is not analytially feasible. On the ontrary appearane basedapproahes require in priniple no intrinsi or extrinsi amera alibration and thereforeahieve the highest ranking in this ategory. Nonetheless even if the three other approahesrequire intrinsi amera alibration, this is nowadays no severe limitation beause of thestandard tools for amera alibration [136℄. The aspet of onvergene ontains omputa-tional omplexity as well as the onvergene (behavior) of the image error, the task spaeerror in addition to the required atuating variables. Hybrid and visual servoing withdeoupled moments exhibit fast onvergene in onjuntion with low omputational om-plexity. The omputational omplexity of ourse highly depends on the feature extrationmethodology and its appliation parameters. On the ontrary appearane based visualservoing has high omputational demands for extrating appearane, whereas Jaobianbased approahes partially show slow onvergene depending on the relative pose betweenatual pose and goal pose beause of their ouplings between rotational and translationaldegrees of freedom. The term servie roboti appliations ompromises e.g. the robustness



8 1.2 Related workregarding olusion, unstrutured luttered environments with highly strutured objets aswell as hanging light onditions. Additionally objet reognition as well as visual servoingshould rely on the same objet representation in order to redue memory requirements.Appearane based visual servoing requires aurate objet segmentation to disriminatedi�erent objet poses, whih is di�ult to ahieve in textured environments. Nonethelessthis methodology diretly ful�lls the requirement for the same objet representation forreognition and positioning. Feature based approahes in literature are presented mostfrequently using simple feature primitives suh as [135℄. These features are very e�ientto implement but not realisti for servie roboti appliations beause of their low perep-tibility aross large regions of the workspae as well as their minor ability to disriminateamong di�erent objets. The potential of feature based approahes is muh more promisingthan appearane based visual servoing onerning robustness due to feature redundanyand under the assumption of solved orrespondene problem. Even if appearane basedapproahes are ranked highest in the ategory biology inspiration, these approahes aresuboptimal regarding the other ategories and are therefore not pursued in the ontext ofthis thesis. It is an interesting point that approahes adopted from nature are less robustthan purely tehnial motivated methodologies regarding mobile manipulation.Conlusively it an be stated that visual servoing with deoupled moments and hybridvisual servoing are best suited for servie roboti appliations and are further investigatedto ahieve full appliability for mobile objet manipulation. Furthermore this thesis pos-tulates visual servoing with deoupled moments, as no partial pose estimation requiringintrinsi amera alibration as well as geometri assumptions of the sene are required.Exploitation of the potential of visual servoing with deoupled image moments regardingdeoupling the translational and rotational degrees of freedom as well as ful�lling servieroboti spei�ations is a hallenging task. The authors in [117℄, however, state that:"Finding a set of visual features whih produes a deoupled interation matrix for anyamera pose seems an unreahable issue".Nonetheless a diagonal interation matrix is muh desired and therefore investigated in theontext of this thesis with the suess of �nding a resulting interation matrix with onlyfour remaining ouplings independent of the amera pose.In many senarios the features extrated in the referene pose are only pereivable arossa limited region of the work spae. Di�erent terminologies are reported in literature forvisual servoing aross several intermediate referene views of the objet in order to navigatetowards the �nal referene pose. Path planning in image spae [97℄, visual servoing due tovisual memory [123℄ as well large view visual servoing [105℄ are oneptualized for globalvisual servoing. Notie that loal visual servoing is de�ned by the visual servoing towardsa single referene image, whereas global visual servoing is onerned with the navigationand ontrol in a set of onneted, partially overlapping referene images, respetively inthe overall image spae. Ahieving a model-free and time-optimal onvergene towards
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Figure 1.3: Charateristis of di�erent visual servoing onepts regarding stability, onver-gene, servie roboti spei�ations and biology inspiration.the desired pose by swithing between referene views is the ultimate goal of the itedapproahes. Global visual servoing is a hallenging task, whih is imperative to ahievemobile manipulation independent of the objet's initial view in the amera image.
1.3 Objetive of this thesisThis thesis provides a ontribution towards mobile manipulation in unstrutured environ-ments with the ambitious goal to aomplish all skills and tasks exlusively by means ofvisual pereption. In order to ahieve mobile manipulation solely relying on visual perep-tion this work yields new insights in two major domains namely visual navigation in the�rst part and visual servoing for objet manipulation in the seond part.For visual navigation the following questions are addressed:



10 1.3 Objetive of this thesis
• How to ahieve time-optimal visual homing for mobile robots dealing with naturaltexture in dynami environments with amera systems with limited �eld of viewrequiring gaze and position ontrol in parallel?
• How to design ollision-free navigation using omnivision onsidering noisy imagemeasurements and sparsely textured o�e environments?
• How to aomplish door detetion, door traking and door passing in a oherentpurely vision-based framework with losed-loop door traversing?
• How to design visual navigation in unstrutured o�e environments with math-able performane in omparison to state-of-the-art approahes using sonar and lasersensors?Visual servoing for objet manipulation is mainly onerned with the following hallenges:
• How to ahieve markerless and deoupled visual servoing for optimal onvergene intask spae in the ontext of objet manipulation of daily objets?
• How to realize time-optimal visual positioning of the gripper relative to an objeteven if the desired grasping position is outside the urrent �eld of view of the amera?
• Whih strategy is better? A look-then-move strategy in onjuntion with loal visualservoing lose to the referene pose or visual servoing over several referene imagesin the ontext of servie robot appliations?This thesis is organized as follows: Chapter 2 provides the state of the art of omputervision as well as the visual servoing in order to keep this thesis self-ontained. The hapter3 is dediated to the progress from vision-guided navigation with laser based stimuli topurely vision-based navigation by relying solely on visual stimuli. Global visual homingbased on visual servoing with an omnidiretional in onjuntion with a pan-tilt amerais introdued in hapter 4. A omparison of vision-guided and visual navigation is addi-tionally provided at the end of hapter 4. In order to aomplish mobile manipulationhapter 5 demonstrates a novel approah for markerless and deoupled visual servoing toalign the robot end-e�etor with reognized objets of unknown pose. Conventional pointfeatures are augmented by additional attributes like sale and orientation, whih establisha one-to-one orrespondene between the individual image moment and its orrespond-ing degrees of freedom. The limited visibility of features neessitates the introdution ofadditional intermediate referene views of the objet and requires path planning in viewspae. Therefore a new methodology for global (large view) visual servoing is introduedin hapter 6. The path planning in the image spae is �exible as the deoupled visualservoing relies on a dynami set of feature orrespondenes rather than a stati set of indi-vidual features. This property allows the online seletion of optimal referene views duringservoing to the goal view resulting in time-optimal ontrol. Finally this thesis onludeswith a summary and outlook on future work in hapter 7, in whih the major develop-ments onerning the hallenges and open questions raised here and the major results andinsights are summarized.



Chapter 2
State of the art of omputer vision andvisual servoing
This hapter provides the basis for omputer vision and visual servoing, the required ter-minology for the omprehension of this thesis as well as the lassi�ation of this thesis intothe sienti� ontext. This hapter is organized as follows: Image formation is desribedin setion 2.1 for perspetive and multiple ameras as well as for omnivision. Image under-standing by robust feature detetion for objet reognition is treated in setion 2.2. Thetwo major topis visual navigation and image based visual servoing are desribed in detailin setions 2.3 and 2.4, respetively, as well as the experimental systems in setion 2.5.2.1 Perspetive amera, multiple-view geometry and om-nivisionThe general perspetive projetion model desribes the relation between a homogeneouspoint pc(x, y, z, 1) in the 3D amera spae oordinate system and its projetion onto the2D image oordinate system in homogeneous oordinates p(u, v, 1), whereas λ denotes thefoal length:
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. (2.1)The image point p(u, v, 1) on the retinal image is transformed to the normalized imageplane aording to equation 2.2. This transformation yields the normalized pixel oor-dinates [û, v̂, 1]T independent of the intrinsi amera parameters, i.e. enabling the diret11



12 2.1 Perspetive amera, multiple-view geometry and omnivisionomparison of images originating from di�erent amera systems:
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 . (2.2)The intrinsi amera parameters αu and αv desribe the saling fators depending on λ andthe pixel dimensions. The intersetion of the optial axis with the image plane is desribedby the priniple point [u0, v0]
T . Due to manufaturing imperfetions of an atual amera,the angle θicp between the axes of the retinal image may not be equal to 90◦. The extrinsiamera parameters onsider the position and orientation of the amera oordinate systemrelative to the world oordinate system. To express this relation, the rotation matrix Rand the translation vetor t are ombined in a homogeneous transformation matrix Text:
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T with Tint = (K0). (2.3)Intrinsi amera parameters as well as radial distortions of the pixel oordinates u and vaused by lens imperfetions are determined by a amera alibration proess [136℄. Theradial distortion is orreted by a polynomial funtion of the squared distane betweenthe optial enter of the image and the given pixel oordinates (f. hapter 3.3 in [50℄).Detailed information about the omplete amera system layout and the image formationproess an be found in [67℄, whereas standard referenes [50℄, [78℄ mainly fous on theimage analysis from low level to high level vision.Multiple view geometry is onerned with partial or full 3D reonstrution, respetively,of the environment based on multiple views of a sene. The essential and fundamentalmatries desribe the epipolar onstraint for alibrated and unalibrated amera systemswhih relates a point in one image to a line in the other independent of the sene's geometry[90℄. The essential matrix is stated as:
E = [Tx]R, (2.4)where the vetor t is expressed as a skew-symmetri matrix Tx so that t×x = [Tx]x. Theessential matrix degenerates for small translations, rendering it unsuitable for automationtrol engineering topis suh as visual servoing or image-based osillation measurements.The homography H, however, desribes a point-to-point transformation between two per-spetive views of a plane:

ah [û2, v̂2, 1]
T = H [û1, v̂1, 1]

T with H = R+
nT

d
t, (2.5)whereas R and t are de�ned by the rotation and translation between the optial ameraenters. n is the normal vetor of the plane and d the distane between the optial enterof the �rst amera and the plane. Contrary to the essential matrix the homography matrixdoes not degenerate beause t is additive.



Chapter 2 State of the art of omputer vision and visual servoing 13The homography is estimated from at least four orresponding features loated on a om-mon plane, assuming that the saling fator ĥ33 = 1, via:p2 = Ĥp1 ⇔
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 , (2.6)where Ĥ is, apart from a saling fator ah, idential to the atual homography matrix H.The estimated homography Ĥ is deomposed via singular-value deomposition into theunknowns rotation matrix, saled diretion vetor as well as the normal vetor [47℄:Ĥ = UΛVT ⇔ Λ = UT ĤV ⇔ Λ = UT (dR+ tnT )V. (2.7)As the deomposition of the homography yields ambiguous solutions, the orret solutionis obtained by taking into aount only the physially plausible solutions and a subsequentomparison of the estimated with the assumed normal vetor. Multiple view geometry forpartial or omplete real world reonstrution e.g. homography is treated extensively in theworks of [60℄ and [134℄.Conventional monoular ameras have a limited �eld of view. In order to overome thisonstraint, omnidiretional ameras, also referred to as atadioptri ameras, onsist of aombination of lenses (refrative, i.e. dioptri) and mirrors (re�etive, i.e. atoptri) toenlarge the �eld of view. The most important design objetive for atadioptri sensors isto ahieve a single e�etive viewpoint, whih allows the reonstrution of perspetive viewsand panorami images with arbitrary orientations. A detailed overview of single viewpointatadioptri sensors and the image formation proess is provided by [8, 53℄.a) b) )spheri mirrorvertexparabolimirrorfous
pc2

pc1

p1 p2Figure 2.1: a) Omnidiretional amera; b) Geometry of a paraboli omnidiretional amera;) Omnidiretional image.The omnidiretional sensor used in this thesis onsists of a amera DFK-31AF03 fromImaging Soure and a D40 opti from RemoteReality. It has a �eld of view of 360◦ in



14 2.2 Robust point feature detetion for reognitionazimuth and approximately 60◦ in elevation. Figure 2.1 depits the omnidiretional amera(a), a shemati view of the projetion geometry (b) as well as an omniview () referredto in the following as omnivision. The atadioptri sensor onsists of a paraboli mirror inonjuntion with a spheri mirror and a perspetive lens system. Paraboli mirrors havean orthographi projetion, whih guarantees that the light rays from the environment arere�eted parallel towards the spheri mirror. The spheri mirror also satis�es the singleviewpoint onstraint, whereas the enter of projetion lies in the enter of the sphere. Asharp single viewpoint image is obtained as the enter of the sphere oinides with the foalpoint of the perspetive lens system. Figure 2.1 b) shows the geometry of suh a paraboliomnidiretional amera. The world points p1 and p2 are orthographially re�eted tothe points p1 and p2 in the image plane. The vertex of the parabola has the distane h/2to the fous whih is the single viewpoint of the parabola. The parameter h is also theradius rf at zp = 0. Thus, the expression for the re�eting surfae follows as:
zp =

h2 − r2f
2h

. (2.8)In �gure 2.1 ) the omniview is presented whih shows the blind spot in the enter, ananalogy to the human eye, originating from a pin in the enter of the spheri mirror toprevent multiple re�etions.Omnivision is well suited for mobile robot appliations as it aptures the entire surrounding,whih failitates robot loalization as well as robot navigation. Furthermore, due to theirlarge �eld of view, omnidiretional amera systems are optimal for work spae surveillaneof produt assistants [141℄.2.2 Robust point feature detetion for reognitionFor developing vision-based ontrol onepts for mobile manipulation in unstrutured en-vironments unambiguous and reognizable features have to be extrated from the ameraimages. Contrary to the industrial ontext where markers or labels are imprinted on ob-jets and in the surrounding environments, for servie roboti tasks this approah is notfeasible. Thus, the algorithms employed in this thesis have to reognize the features inthe amera image if the amera-objet distane hanges (saling invariane), the lightingonditions vary, the amera rotates around its optial axis or is subjet to a�ne transforma-tions. Assoiating the same feature in di�erent perspetives is referred to as orrespondeneproblem.In the following, two prominent and useful algorithms from literature for loal featureextration and for solving the orrespondene problem are presented in detail. PrimarilyGood Features To Trak (GFTT) [135℄, whih is implemented e.g. in the OpenCV library[71℄, is desribed as it already ontains all signi�ant steps required for robust feature



Chapter 2 State of the art of omputer vision and visual servoing 15extration and mathing. Based on this e�ient implementation, a sophistiated methodfor feature extration, Sale Invariant Feature Transformation (SIFT), is desribed whihis utilized within the sope of this work.GFTT onsists of an edge detetion in order to loalize interest points and subsequentlytrak the same feature over onseutive images. Strong orners in the image are detetedwith the Hesse matrix aording to the ideas of the Harris edge detetor [59℄:A =
∑
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, (2.9)with the image derivatives Iu and Iv in u- and v-diretion, respetively, and the isotropiweighting w(u, v) suh as a Gaussian kernel. The two eigenvalues λeig1 and λeig2 are ex-trated from A. If λeig1 ,λeig2 are lose to zero then the image region is homogeneous. If oneof the two eigenvalues is muh greater than the other the image region ontains an edge.A orner is deteted only if both eigenvalues have large positive values and satisfy theonstraint min(λeig1,λeig2) larger than a threshold. The orner represents an interest pointwhih is traked in onseutive images by a small window Ωs assuming purely translationalmotion. In order to avoid false traking of features the dissimilarity is measured for a largewindow Ωl as follows:
εd =

∫∫

Ωl[I2(Rpr + t)− I1]2dpr. (2.10)If the residual error εd exeeds a ertain threshold the feature is lassi�ed as lost and istherefore rejeted. GFTT are well suited for loal feature traking and are therefore notsuited for advaned servie roboti appliations. Of ourse sale-invariane an also beahieved by a sale-independent Harris edge detetion using a Gaussian pyramid, nonethe-less the feature extration desribed in the following has a better representation of thefeatures suited for reognition even under large displaement and rotations as well ashanges in lighting onditions.Sale Invariant Feature Transformation introdued by Lowe [93℄ is an approah to detetand extrat loal features from an image with similar methodology as GFTT but withsuperior performane in terms of reognition, beause of ombinations of the progress inimage proessing sine the �rst presentation of GFTT. They demonstrate invariane withrespet to sale, orientation and illumination. SIFT features are onveniently mathedaross similar views of the same sene. The utilization of spei� markers in vision-basedappliations beomes obsolete as the environment and textured objets naturally ontainsuitable SIFT features. SIFT features are distinguishable as their assoiated keypoint de-sriptor inludes a ompat, albeit spei� representation of the surrounding image region.These properties make them partiularly suitable for vision-based loalization, visual ser-voing, objet reognition and pose estimation. As their properties are essential for the lateron introdued visual ontrollers, the four major omputation stages are brie�y desribed.(1) Sale-spae extrema detetion: Interest points in the image for SIFT featuresare the ones whih orrespond to loal extrema of Di�erene-of-Gaussian (DoG) �lters at



16 2.2 Robust point feature detetion for reognitiondi�erent sales. The sale of the SIFT feature is de�ned by σ. The di�erene of Gaussiansis alulated from the di�erene of onvoluted images at neighboring sales σ, respetively
kσ. Given a Gaussian-blurred image LL(u, v, σ) = G(u, v, σ) ∗ I(u, v) where G(ui, vi, σi) =

1
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(
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) (2.11)is a variable sale Gaussian, I denotes the image to be proessed and ∗ is the onvolutionoperator. The onvolution of an image with a DoG �lter is de�ned byD(u, v, σ) = (G(u, v, kσ)−G(u, v, σ)) ∗ I(u, v) = L(u, v, kσ)− L(u, v, σ). (2.12)The onverted images are grouped by otaves whih orrespond to doubling the value of
σ, resulting in a pyramid of DoG images with di�erent sale.(2) Keypoint loalization: The interest points in the image are referred to as keypoints.They are identi�ed either by their loal maxima or minima of the DoG images aross thesales. Every pixel in the DoG image is heked for its andidate validity by omparing itwith its eight neighbors at the same sale and also with its nine orresponding neighborsat neighboring sales. If the pixel exhibits either a loal maximum or loal minimumit is seleted as a andidate keypoint. Every andidate keypoint needs interpolation toaurately determine its position. Keypoints with low ontrast values are removed andresponses along the edges are also eliminated. One the positions of the keypoints areassigned their orientation an be determined.(3) Orientation assignment: Orientation of the keypoint is determined using a gradientorientation histogram in the neighborhood of the keypoint. The ontribution of eahneighboring pixel is weighted by the gradient magnitude and a Gaussian window with awidth σ that is 1.5 times the sale of the keypoint. Peaks in the histogram orrespondto dominant orientations. A separate keypoint is reated for the diretion orrespondingto the histogram maximum and any other diretion within 80% of the maximum value.The properties of the keypoints are all desribed relative to the keypoint orientation toaomplish orientation invariane.(4) Keypoint desriptor: With the information about the keypoint orientation, a key-point desriptor is onstruted whih is a set of orientation histograms on the neighboring4 by 4 pixels. The histograms are expressed with respet to the keypoint orientation. Thehistogram has eight bins and eah desriptor has an array of four histograms around itskeypoint. Eah SIFT feature onsists of a normalized keypoint desriptor dkp with 4 by 4by 8 = 128 elements.Mathing of SIFT features: Mathing of SIFT features involves the determination oforresponding features in two views of the same sene. Therefore the SIFT features areextrated in both views and the similarity of their keypoint desriptor is alulated. Thesimilarity is de�ned by the Eulidian distane between the two keypoint desriptors of



Chapter 2 State of the art of omputer vision and visual servoing 17length 128. In order to make the mathing even more robust the relative rather than theabsolute similarity is evaluated using the relationship between the highest and the seondhighest value of similarity whih is required to exeed a spei�ed threshold.The presented ontrol onepts an be realized identially with SURF (SpeededUpRobustFeatures) [13, 12℄ beause they also ontribute additional attributes as sale and orientationof the features. Other methods for loal feature extration suh as GLOH (GradientLoation and Orientation Histogram) [99℄, HOG (Histogram of Oriented Gradients) [34℄or its signi�ant extension GF-HOG (Gradient Field-Histogram of Oriented Gradients)[68℄ only di�er in the methodology to apture the loal appearane of the feature desriptor.[127℄ reently introdued ORB (Oriented FAST and Rotated BRIEF), whih ombines inan e�ient way the keypoint detetor FAST [125℄ with the e�ient feature desriptorBRIEF [21℄. FAST extrats keypoints even faster than GFTT or SIFT. However, as thesemethods do not o�er any major improvement apart from faster omputational time e.g.based on disretization by integral images like SURF, they are not onsidered further.Literature reports two distint approahes to solve the pose estimation problem. Modelbased methods rely on the extration of spei� geometri features in the image suh asorners and edges. Robust features like SIFT, GFTT or SURF are mandatory for model-based objet reognition and pose estimation. Clusters of robust image features are utilizedin the �rst step to reognize the objet. Afterwards the extrated features are omparedand related to a known geometri model of the objet. E�ient and reliable approahes formodel based pose estimation with known orrespondenes have been proposed by [38, 115℄.The drawbak of these methods like any other model based approahes is the requirementof an a-priori geometri model of the objet, an exat amera alibration as well as thesolution of the orrespondene problem, whih beomes inherently more di�ult in aseof olusion and ambiguous features. Following the model based paradigm, [56℄ thereforedesribes an approah for the onstrution of 3D metri models from multiple images takenwith an unalibrated handheld amera for augmented reality appliations.In ontrast, global appearane based methods apture the overall visual appearane of anobjet, e.g. the multidimensional reeptive �elds introdued by [132℄. Neither do they de-pend on the extration of individual features nor do they fae the orrespondene problem.The basi idea is to apture the appearane by statistial representations suh as histogramsin order to alulate a probability of the objet's presene in the urrent image view, an ideawhih is inherent to almost every appearane based approah. The methodology onsistsroughly of three steps, primarily low-dimensional loal feature desriptors are alulatedon a regular grid on the image, these desriptors are then quantized and aggregated inmulti-dimensional histograms and �nally ompared to stored histograms of known objetsexploiting the Bayes rule. The major di�erene between objet reognition by lusters ofSIFT features and by means of multidimensional reeptive �elds an be summarized asfollows: SIFT features extrat solely keypoints representing orner points and thereby as-sured textured image regions from whih a highly distinguishable high-dimensional feature



18 2.3 Visual navigationdesriptor an be determined, thereby exploiting all image information available. Multidi-mensional reeptive �elds on the ontrary alulate a low-dimensional feature desriptor ona regular grid, thereby giving away information in textured highly distinguishable imageregions and additionally sampling homogeneous regions with less information for the his-tograms as well. [22℄ propose distane olor oourrene histograms for objet reognitionof multi-olored, textured objets, emphasizing the onservation of geometri informationas the major advantage of olor oourrene histograms ompared to regular olor his-tograms. Based on this fundamental idea, [43℄ propose olor oourrene histograms forobjet reognition as well as 1 DOF pose estimation. The angular extension of olor oo-urrene histograms is suggested by [106℄ in the ontext of pose estimation of robot players(AIBOs) as well as for 2 DOF pose estimation of multi-olored, textured objets [107℄.[104℄ introdue a method that ombines appearane and geometri objet models in orderto ahieve robust and fast objet detetion as well as 2 DOF pose estimation. Their majorontribution is the integration of the known 3D geometry of the objet during mathingand pose estimation by a statistial analysis of the distribution of feature appearanes inthe view spae. Nonetheless their approah requires a 3D model of the objet, whih isdi�ult to generate for objets of omplex shape and therefore the inherent problem of allmodel based approahes.Image-based visual servoing presented in setion 2.4 provides the means for model-freeobjet manipulation for servie robot appliations without prior pose estimation requiringonly an objet reognition with e.g. lusters of GFTT or SIFT features and a subsequentontrol in the image spae towards the desired loations of the features in the image plane.This approah leads to a high position auray, but nonetheless ahieves only loal on-vergene due to viewpoint limitations. Therefore an initial pose estimation is again mostlymandatory as the urrent objet view does not neessarily ontain the features lose to themanipulation position. Global visual servoing introdued in hapter 6 overomes the abovestated limitations, thereby onstituting a promising and more e�ient approah omparedto model and appearane based objet reognition and pose estimation, negleting anymodel knowledge but still inorporating the high position auray.2.3 Visual navigationThe haraterization of the di�erent visual navigation onepts leads to the appraisal oftopologial map-based navigation with reative visual behaviors as stated in setion 1.3.Visual navigation draws its inspiration from biology whih provides numerous examples ofvisual behaviors of insets and birds. It is hallenging to design behaviors that are not basedon distane sensors but on visual stimuli onsidering the burden of high omputationalomplexity and noisy data. The authors in [1℄ extrat the elements of early vision byde�ning the so-alled plenopti funtion whih desribes the visual information availableto an observer at any point in spae and time. Analyzing the plenopti funtion yields the



Chapter 2 State of the art of omputer vision and visual servoing 19de�nition of only four fundamental visual primitives, namely olor, texture, disparity andoptial �ow to be utilized for designing visual behaviors.Color orresponds to the di�erent wavelengths in the visible range of the light spetrum.It requires model knowledge about the surrounding world e.g. the olor information ofobjets like doors and side walls. Additionally the problem of olor onstany is not solvedyet, assigning always the same olor to a homogeneous monohromati area in spite ofdi�erent illuminating onditions as desribed by the Dihromati Re�etion Model [82℄.Therefore olor is not suited for the navigation in unstrutured environments. "Texture isa phenomenon that is widespread, easy to reognise and hard to de�ne" [50℄. Texture isunderstood by two similar but distint meanings.(1) Texture is de�ned as repeated patterns like arpet, hair or grass whih have a spei�response in the frequeny domain, thereby extratable and distinguishable by �lterbanks as Garbor �lters.(2) Texture is de�ned as any di�erene to homogeneous regions exhibiting the samewavelength. Thus texture inludes simple white spots in a blak environment as wellas paintings with a lot of unique strutures and shapes maybe expressed by a set ofwidespread olors. The texture from de�nition 1 is a subspae of de�nition 2. Neitherkind of texture is aused by shadowing, surfae shape or other lighting e�ets.Texture aordingly to de�nition (1) requires also model knowledge like arpet patternsabout the surrounding world and is therefore not suited for mobile manipulation, e.g.navigation in unstrutured environments. Texture from de�nition (2) is required for visualnavigation to extrat primitives like disparity and optial �ow or advaned information suhas visual landmarks. Notie that texture from de�nition (1) hinders the robust optial�ow extration thereby requiring more sophistiated algorithms to deal with repeatingambiguous patterns. Therefore texture is understood aording to de�nition (2) throughoutthis thesis. Disparity is a brilliant lue as it diretly leads to distane measurements, whihallows mimiking of distane-based behavior. The determination of disparity requires aseond extrinsially alibrated monoular amera and the solution of the orrespondeneproblem, but is subjet to the same shortomings as optial �ow as it neessitates thepresene of texture in the environment. Optial �ow is de�ned by the pixel motion betweentwo images in the image spae aused by the egomotion of the observer or moving objetsin the �eld of view. The methods for alulation of optial �ow an be lassi�ed intothree groups: di�erential, frequeny-based and mathing [10℄. A lassi�ation in terms ofauray and density of the �ow �eld is given by [11℄. In this work di�erential methods areused for the sake of omputational e�ieny whih ompute veloities from spatio-temporalderivatives of image intensities. This is equivalent to the integration of veloities normalto the loal intensity struture into full veloities either loally by least-square alulation[94℄ or globally via regularization [66℄. Di�erential methods are based on the 2D motion



20 2.3 Visual navigationonstraint equation:
∇I(u, v, t)v = −

∂I(u, v, t)
∂t

⇔ [Iu, Iv][u̇, v̇]
T = −It(u, v, t), (2.13)where [Iu, Iv] is the spatial intensity gradient of the image I(u, v, t) and the image veloityv, respetively the optial �ow [u̇, v̇] at the pixel [u, v] at time t. The Luas and Kanadealgorithm [94℄ uses a weighted least-squares �t of loal �rst-order onstraints to a onstantmodel for the image veloity in a small spatial neighborhood Ω by minimizing:

∑

u,v∈Ω
w2(u, v)[[Iu, Iv][u̇, v̇]

T + It(u, v, t)]
2 (2.14)with the weighting funtion w(u, v) giving more in�uene to onstraints at the neigh-borhood's enter than at its periphery. These methods provide a dense optial �ow �eld,nonetheless the motion diretion is not estimated aurately enough, beause homogeneousimage regions ause ambiguous solutions of the orrespondene problem and large �ow isnot observable due to phase restrition. The limitations of this algorithm are overomeby the Luas Kanade pyramid algorithm [17℄ by reating a Gaussian image pyramid ofthe two images and alulating the optial �ow iteratively at every level, thus providingthe input for the next level. As the optial �ow is determined only for quali�ed strongorners indiated by the Harris orner detetor [59℄, the optial �ow �eld is in omparisonwith other di�erential, intensity based methods sparse but therefore more aurate, evenfor large optial �ow. Beause of these advantages this method is used in the sope of thiswork for the estimation of the optial �ow.Therefore only texture and optial �ow are required for the design of visual behaviors inunstrutured indoor environments. Visual behaviors for a perspetive amera as visualhoming, ollision avoidane and obstale avoidane are introdued by [27℄. The approahrelies on fast image segmentation by template mathing of arpet pathes to detet freespae in front of the robot and is therefore not suited for unstrutured environments asit requires a huge amount of model knowledge. Their method is nonetheless at the sametime point of departure as well as inspiration for sophistiated and more general visualbehaviors.Visual door passing: Robust and reliable door passing is feasible with laser range san-ners as demonstrated by the reative door passing behavior in [114℄. However 2D laserrange sanners are not suitable for the detetion of losed or partially opened doors [75℄.The robust visual detetion and loalization of doors still remains a hallenging task despitea number of suessful implementations in the past [42, 153, 140℄.The authors in [140, 101℄detet doors by means of a monoular amera in onjuntion with sonar, with the maindisadvantage that the �nal door detetion at lose range relies on sonar information only.The seond approah [101℄ relies on the assumption that the robot already faes the door,whih exludes more realisti senarios in whih the robot travels along a orridor parallelto the doors. The door traversal approah by [42℄ is robust with respet to individual



Chapter 2 State of the art of omputer vision and visual servoing 21pose errors, sene omplexity and lighting onditions as door hypotheses are �ltered andveri�ed for onsisteny aross multiple views. The door detetion relies on a binoularpan-tilt amera system whereas the proposed approah uses an omnidiretional amera.Visual obstale avoidane and orridor entering: In order to ahieve obstaleavoidane in indoor environments the authors in [31℄ determine the time to ontat (ttc)in driving diretion based on the divergene of the optial �ow. The optial �ow is apowerful image lue used for egomotion estimation [19℄, struture from motion [139℄ andfor visual behaviors like orridor entering, wandering and target point following [32, 41℄.[29℄ employ a monoular amera in onjuntion with a lidar system in order to estimateobstale veloities by a Kalman �lter to avoid moving obstales, whereas [28℄ integrate alaser based obstale avoidane into the visual navigation.Visual homing: Literature reports several distint approahes for a visual homing be-havior. Appearane-based homing of a non-holonomi robot is presented in [35℄. Otherapproahes prefer feature-based navigation, e.g. in [46℄ a Eulidean reonstrution is per-formed based on a homography matrix relating the visual feedbak to the position andorientation of the mobile robot in a loal oordinate system. [57℄ presents a promisingapproah for merging the desired movements with the feasible motor ommands of thenon-holonomi robot. The robot uses a monoular vision system in onjuntion with aJaobian and geometry-based ontroller. In [20℄ a spherial image projetion is applied inorder to overome the numerially ill-onditioned system equations for large pan angles.Their system uses natural landmarks whih are either seleted manually or automatially[83℄ and are deteted by region-based image orrelation. [14℄ introdue visual servoing onepipoles with visual memory. The stored trajetory of the epipoles in image spae is learntduring a demonstration stage, whih represents the desired robot trajetory.2.4 Image-based visual servoingA lassi�ation of visual servoing onepts is introdued by [129℄. Therein two questionsare addressed, primarily whether visual servo ontrol diretly drives the joints (diret visualservoing) or provides the input for an underlying joint ontroller (look-and-move). Mostvisual servoing implementations employ the look-and-move struture with underlying jointontrollers, with the intention of deoupling kinemati and visual singularities, suppress-ing kinemati singularities by standard joint ontrollers, using di�erent bandwidths forimage proessing and joint ontrol as well as standard roboti interfaes with setpoints forCartesian veloity and inremental movements. In this thesis look-and-move struturesare used exlusively. Seondly, visual servoing is lassi�ed into position or image-basedvisual servoing, depending on whether the ontrol input onsists of a pose estimation ofthe end-e�etor with respet to the work piee or a diret alulation of the error signal inthe image spae. Position-based visual servoing (PBVS) issues model generation for every



22 2.4 Image-based visual servoingobjet to be manipulated, solving the orrespondene problem and pose estimation as wellas an intrinsi and extrinsi amera alibration. In addition to errors in the model genera-tion aused e.g. by imperfet intrinsi and extrinsi amera alibration, deviations in theinverse kinematis also ontribute to ontrol deviation. PBVS is therefore well suited forroboti manipulators in industrial settings with prede�ned and preditable systems but notfor servie robot appliations, whih inorporate high unertainty about the environment.This thesis advoates in the following image-based visual servoing (IBVS). Image-basedvisual servoing o�ers the advantages that amera alibration and robot's kinematis errorsdo not result in a ontrol deviation and that it does not require any objet model.The visual information is provided either by amera systems �xed in the workspae observ-ing the robot's motion or by a so-alled eye-in-hand on�guration, in whih the amerais attahed diretly to the robot and thereby exhibiting the robot's motion in the taskspae. Eye-in-hand on�gurations are onvenient for mobile robots in unstrutured envi-ronments due to their omplete awareness of the surrounding. Additionally they providehigh position auray lose to the goal pose beause of their projetion sale, thereforevisual servoing in this thesis postulates eye-in-hand on�gurations. Figure 2.2 illustratesthe image-based visual servoing employing a look-and-move struture for eye-in-hand ob-jet manipulation. The visual referene features fref are de�ned diretly in the 2D imageplane, making a geometri model or reonstrution of the environment obsolete. The taskspae veloities and the orresponding joint veloities of the manipulator are alulatedaording to the error ∆f between the desired fref and the atual feature loations f . Therobot and the amera motion regulate the feature error, whih vanishes as the urrentand referene pose oinide. A known shortoming of image-based visual ontrollers is the

ontrol joints joint ontrolimage proessingf

fref ∆f = fref − f q̇set q̇i
+-

Figure 2.2: Image-based visual servoing (IBVS) in a look-and-move struture for eye-in-hand visual objet manipulation.



Chapter 2 State of the art of omputer vision and visual servoing 23amera retreat problem. The problem is onstituted by the fat that optimal trajetoriesin the image spae might result in singularities or infeasible trajetories in task spae. Theimage-based ontroller minimizes the image error linearly in the image spae. If the am-era is only rotated by 180◦ ompared to the goal pose, instead of the appropriate motionin task spae, namely a ounter-rotation of the amera around the optial axis of about180◦, the amera retreats from the sene in order to minimize the error linearly. As theamera retreats from the sene the feature points travel to the image enter and end up ina singularity. A possible solution for manipulators to deouple the translational and rota-tional veloities is proposed in [33℄. Based on perspetive projetion an angular riterionis developed, whih takes into aount the trapezoidal distortion of a square based on arotation around one of the axes spanning the image plane. The presented prerequisite forimage-based visual servoing follows the lassi�ation of [24, 25℄ for the di�erent approahesin literature and summarizes the pros and ons for servie roboti appliations.Visual servoing with (adaptive) image Jaobian: Visual servoing based on the imageJaobian J inverts the analytial relation between di�erential hanges in task spae todi�erential hanges of pixel oordinates to redue ∆f [151℄. The simple proportional ontrollaw is given by:
ṙ = −kJ+(r)(fref − f), (2.15)where J+ is the pseudoinverse of the image Jaobian J and k a onstant gain fator. kensures an exponential derease of the error as ∆ḟ = −k∆f . The image Jaobian J alsoreferred to as interation or sensitivity matrix is derived in [70℄:
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. (2.16)As the analytial determination of J requires the knowledge of z for eah point feature,di�erent approahes for the determination are stated in literature. J is determined with thedistane z∗ at the goal pose and remains stati during visual ontrol. A better performanein terms of onvergene is ahieved by determining J via the algebrai mean of z in theurrent and z∗ in the goal on�guration [24℄. As an alternative an adaptive approah isintrodued by [77℄ in whih the image Jaobian J is estimated by the predited featuremotion due to the motion of the amera ∆r and the observed motion ∆f (optial �ow)aording to:
Jk+1 = Jk + αa

(∆f − Jk∆r)∆rT

∆rT∆r
. (2.17)

αa denotes the orretion fator for the adaptive image Jaobian. As no knowledge ofthe distane z is required this approah seems partiulary interesting for servie robotappliations. As the ontrol by the image Jaobian assumes a linear model between thepixel and amera motion, a trust region ontrol [137℄ is espeially suitable to guaranteestritly linear ontrol:̇
r = −kaJ

+(r)∆f with ka = min

(

1,
ak
lk

)

. (2.18)



24 2.4 Image-based visual servoingThe onstant proportional gain k is replaed by an adaptive gain ka, whih is determinedby the boundary of the pixel displaement ak and the predition of the image displaement
lk = J∆r. ak ompromises a large ontrol variable for fast onvergene with linear regimeof J. Nonetheless for eye-in-hand on�guration the promising onept of adaptive imageJaobian and trust region ontrol proves to be inappliable as a translational motion in
x (respetively y) is di�ult to distinguish from a rotational movement around the y-axis(respetively x-axis), resulting in an almost idential optial �ow. In onjuntion withsmall image noise the result is false onvergene of the adaptive Jaobian and loal minimain ontrol. In order to overome theses disadvantages [118℄ presents a ompletive studybetween analytial and adaptive Jaobian in 3DOF, inorporating additionally the epipolaronstraint in the adaptation. [130℄ propose a alibration-free Jaobian by re-expressing andonline adaptation of foal length and sale in eah ontrol yle. The onept of adaptiveimage Jaobian is well suited for �xed amera systems observing the robot's motion and theobjet or appliations with redued degrees of motion of the amera, but has no pratialimportane for mobile robots.Hybrid visual servoing: In order to improve visual servoing [26℄ propose two and one-half-dimensional visual servoing in order to exploit the advantages of IBVS and PBVS.
21
2
D visual servoing deouples rotational and translational veloity ontrol by primarilyestimating the rotation between the urrent and desired objet view, e.g. from deompo-sition of the homography H (f. setion 2.1). The ontrol for the rotational motions isexpressed as:

ω = −kξuξ, (2.19)whereas ξ and uξ orrespond to the angle and axis of the rotation parametrization, respe-tively. Contrary to the rotational motions the translational error is orreted diretly inthe image spae:
v = −J+

vt(k∆ft + Jvωω), (2.20)
Jvt and Jvω orrespond to separated Jaobians for the translational and rotational motionsand Jvξuξ

is the separated Jaobian for angle and axis of rotation parametrization. ∆ftis de�ned by the error in the image spae aused by a translational deviation from thedesired view. The ontrol law is de�ned analogous to equation 2.15 as follows:
ṙ = −kJ+∆f with ∆f = (ft, ξuξ) and J =

[

Jvt Jvω

0 Jvξuξ

]

. (2.21)Note that Jvt and Jvω are expressed similar to the general J with the major advantagethat the distane z to the objet is expressed in terms of the ratio t
d
obtained by thehomography deomposition. Image-based visual servoing based on Jaobian shows loalasymptoti stability, whereas 21

2
D visual servoing ahieves even global asymptoti stability.Visual servoing with deoupled image moments: This is referred to as "partitionedvisual servo" in the lassi�ation from [25℄. Visual servoing by image moments is investi-gated by [45, 69℄ using the distane between two image points as well as their orientation.



Chapter 2 State of the art of omputer vision and visual servoing 25Moments of higher order based on projeted image regions are introdued by [151℄. Themotivation for deoupled image moments is to �nd an interation matrix, whih establishesa one-to-one relationship between image moments and their degrees of motion, resultingin a simple linear ontrol problem. Analogous to the hybrid visual servoing the rotationaland translational degrees of freedom should be ompletely deoupled resulting in a smoothonvergene in the 3D task spae. [143℄ desribes image moments using oplanar losedontours, whih enable a deoupled ontrol sheme if the objet is orientated parallel tothe image plane. Reently these ideas where extended by [145℄ showing a dependene ofthe few remaining o�-diagonal ouplings with the objet shape. [9℄ presents visual servoingby photometri moments desribing the global appearane. The authors in [116℄ employvisual servoing with deoupled image moments for ontrolling the position and orientationof a quadrotor relative to observed landmarks on the ground.Visual servoing on epipoles: Visual servoing based on epipolar geometry is �rst intro-dued by [124℄. Using the epipolar onstraint the error is de�ned as the distane of aninterest point to its appropriate epipolar line in terms of ai and bi, orresponding to the u-and v-diretion, respetively. The ontrol law is de�ned as:
ṙ = −KJe

+∆f with Je = [ai, bi]J. (2.22)[120℄ extends this idea by employing multi-view visual servoing diretly on the epipoles,whih bene�ts from three images taken during a training stage. The set of referene imagesonsists of a desired image and two additional referene views taken from two distintvantage points. The visual servoing ontrol law de�nes the error in terms of the di�erenebetween the epipoles from the desired view [e1ref , e
2
ref ]

T and the epipoles [e1a, e2a]T from theatual image onto the two additional referene views (projetion of the optial enter ofthe �rst amera onto the seond amera). Therefore two essential matries E are estimatedduring eah ontrol yle. Nonetheless the ontrol ompletely deouples translational androtational motions, in whih the rotational ontrol is primarily used to keep the features inthe �eld of view. This approah is less promising regarding servie robotis beause threereferene images are required in onjuntion with sequential estimations of E.Appearane based visual servoing: Appearane based visual servoing (diret visualservoing) is lassi�ed as an image-based visual servoing method, whereas the appearaneof the objet (f. setion 2.2) is diretly provided as input to the ontroller instead ofextrated point features. An approah based on angular olor oourrene histograms inonjuntion with reinforement learning satisfying the ontinuous ation and state spaerequirement is suessfully demonstrated by [80℄. An agent learns online the optimal poliy
π(s, a) whih is de�ned as: π(s, a) = argmaxaQ(s, a), whereas the ation value funtionQ(s, a) ontains the mapping from objet appearanes s (angular olor oourrene his-tograms) to the ontrol ation a in order to reah the grasping pose. [37℄ aptures theappearane of an objet by a PCA (Priniple Component Analysis) in order to reduethe high dimensionality of the intensity image followed by an o�ine training stage for theinteration matrix. These methods initially require an objet reognition step as well as a



26 2.4 Image-based visual servoingontinually aurate objet segmentation during visual servoing for objet manipulation.The latter is di�ult to ahieve in textured environments. A novel approah referred to asluminane based visual servoing is presented in [30℄, performing the visual servoing diretlyon the image intensities. The error ∆f is thereby de�ned by the di�erene of all intensitiesbetween the urrent image I and the referene image Iref while the interation matrix Jais determined in terms of the 2D motion onstraint from equation 2.13:
∂I(u, t)

∂t
= −∇I(u, t)v ⇒ Ja = −(∇IuJ(u̇) + Iv∇J(v̇)). (2.23)By reformulating the visual servoing as an optimization problem, the ontrol law using theLevenberg-Marquardt optimization algorithm is de�ned as follows:

ṙ = −k(Ja
TJa + µ diag(Ja

TJa))
−1Ja

T (I− Iref ), (2.24)where the parameter µ is hosen in dependene of the ost funtion in order to swithbetween steepest desent and Gauss-Newton optimization. Although luminane basedvisual servoing is quite promising, it requires objet reognition and segmentation. Thisrenders the approah solely suitable for mobile navigation. Nonetheless appearane basedvisual servoing is a novel reently emerging branh within the �eld of visual ontrol e.g.for miropositioning of miroeletromehanial strutures [144℄ and is a promising avenueas it is presumably lose to human objet reognition and manipulation.Visual servoing with strutured light: Visual servoing with strutured light ratherdesribes the exploitation of ative visual sensors than atually representing novel visualservoing onepts. The authors in [117℄ propose a amera setup with four laser pointers(strutured light) for visual servoing relative to planar objets. The strutured light notonly eases the feature extration stage, enabling the ontrol also for objets with homo-geneous surfaes, but additionally allows for deoupled visual servoing lose to the goalposition by image moments resulting in a good task-spae trajetory. This methodologytherefore falls under the ategory of visual servoing with deoupled image moments. Thetask of automati seam �lling in the ontext of airraft onstrution is solved by [63℄ witha hybrid visual servoing sheme with strutured light. Hybrid ontrol with strutured lightombines position-based visual servoing, whih loally reonstruts the pose between tooland workpiee to regulate the robot perpendiularly to the workpiee's surfae, with image-based visual servoing used for entering and traking the seams to be �lled. The oneptof enforing texture by strutured light onto homogeneous objet regions is promising, asit transforms the passive sensor amera into an ative sensor system. Utilizing struturedlight in the visible range is questionable for servie robotis and therefore not followed inthe ontext of this thesis. Time-of-Flight (ToF) [84℄ ameras additionally provide depthinformation for the 2D image plane, but at the ost of low amera resolution and highpower onsumption. Beause of the low resolution and the 3D information these amerasare suited for low demanding PBVS [122℄ and might have their main appliation area inautonomous navigation.



Chapter 2 State of the art of omputer vision and visual servoing 27The haraterization of the di�erent visual servoing onepts leads to the appraisal of visualservoing onepts stated in setion 1.3 and summarized in �gure 1.3. Visual servoing withdeoupled image moments exellently omplies with the servie roboti spei�ations. Thethree-stage design methodology for vision and ontrol appliations presented in [113℄ isapplied for systematially development of visual servoing with deoupled image moments,whih is onform with design methodology for mehatroni systems [150℄.2.5 Experimental systems for visual servoing, naviga-tion and loalizationThis setion desribes the fundamentals and the set-ups of the di�erent experimental sys-tems used in this thesis. The mobile platform Pioneer 3-DX from MobileRobots In. inonjuntion with a 5 DOF manipulator Katana 6M from Neuronis is used to ahieve mo-bile manipulation in indoor o�e environments. To evaluate the visual objet manipulationin 6 DOF, the proposed visual servoing shemes are applied to an industrial manipulatorRV 20-16 from Reis whih is introdued as well.A mobile platform of the type Pioneer 3-DX is employed in the ourse of this thesis forthe transition of vision guided to visual navigation as presented in hapters 3 and 4. Itpossesses a ring of eight forward and rear sonar sensors, beause sonar is a�ordable androbust. These sensors are indispensable as a bak-up sensor in the ase that the visualpereption fails. The experimental set-up is equipped with a Sik Laser ranger LMS 200(f. �gure 2.3). The robot is additionally equipped with the Pan-Tilt-Zoom amera (PTZamera) VC-C4 from Canon as well as an omnidiretional amera system onsisting of aamera DFK-31AF03 from Imaging Soure and a D40 opti. The platform Pioneer 3-DX isa two-wheel di�erential-drive robot with an additional astor wheel for stabilization. Therobot kinematis is non-holonomi as it possesses fewer loal degrees of freedom than itsglobal state spae. The motion of the di�erential drive robot is restrited to translationalong its urrent heading and rotations around the vertial axis, but it is unable to movesideways. The robot state is de�ned by [xR, zR, θR]
T in order to omply with the usualamera oordinate frame. The z-axis is along the robot's diretion of motion, the x-axis ishorizontally orientated and the y-axis of robot and amera rotation is vertially orientated.The di�erential drive robot motion is desribed by a veloity motion model as

x(k + 1)R = x(k)R + vR∆t sin(θR) (2.25)
z(k + 1)R = z(k)R + vR∆t cos(θR)

θ(k + 1)R = θ(k)R + ωR∆t,where vR and ωR denote the translational and rotational veloity of the robot. Alternativelyan odometry motion model is applied in this thesis, whih uses the odometer measurementsin order to ompute the robot's pose.



28 2.5 Experimental systemsa) b) )

Figure 2.3: a) Mobile Platform equipped with sonar rings, laser range �nder, omnidire-tional and PTZ amera; b) Katana 6M from Neuronis; ) RV 20-16 from Reis.The robot arm Katana 6M is employed in this thesis for developing a novel visual servo on-troller for objet manipulation. It is a �ve degree of freedom (DOF) serial-link manipulatoras shown in �gure 2.3 b). The arm is equipped with a two-�nger gripper at the end-e�etorwith �ve integrated infrared (IR) proximity sensors and fore sensors. The forward kine-matis, whih determines the position and orientation x of the end-e�etor as a funtionof the joint angles q is de�ned as: x = k(q). x is de�ned as [x, y, z, α, β, γ], whereas
[x, y, z] desribes the pose in Cartesian oordinates and [α, β, γ] the rotation around the x,
y and z axes (roll, pith, yaw). The inverse kinematis onsists of the determination ofthe appropriate joint angles to a spei�ed end-e�etor position: q = k−1(x). As most ofthe thesis is onerned with visual servoing, whih implies veloities in the task spae, thedi�erential kinematis are essentially de�ned by: ẋ = Jdk(q)q̇. The implemented forward,inverse as well as the di�erential kinematis inluding a ollision detetion are state of theart and therefore assumed to be known. These funtionalities and terms are used in thethesis without further explanations.The industrial robot RV20-16 from Reis is a six degree of freedom manipulator with amaximum payload of 16 kg. The absolute positioning error is about one to two mmand the repeatability is spei�ed with 0.05 mm. The RV20-16 is depited in �gure 2.3). The Katana 6M as well as the industrial robot RV20-16 are used for visual servoingfor objet gripper alignment as desribed in hapter 5 and 6. Additionally the graspingand manipulation of daily objets with the Katana 6M for servie roboti appliations isdesribed in [81℄ using the presented ontrol shemes.



Chapter 3
From vision guided to visual navigationof mobile robots
This hapter investigates the possibility to represent the set of required behaviors for topo-logial navigation in unstrutured indoor environments solely due to an omnidiretionalamera. Starting point for the investigations is the vision guided navigation sheme basedon sonar and laser presented in [114℄ with a topologial map without prior struturingof the environment. As a replaement for the distane sensors the omnidiretional imageprovides the stimuli for a novel obstale avoidane by means of several reonstruted per-spetive views, from whih a on�dene rated time to ontat is extrated [112℄. A visualdoor passing behavior is treated in a oherent purely vision-based framework [121℄.Examples and an overview for visual behaviors are provided in setion 2.3. Inspirationalfor the following investigations is the fundamental work by [27℄ of implementing visualbehaviors based on a monoular amera. The target of the following investigations is torepresent as far as possible all required visual behaviors for indoor o�e navigation solelyby omnivision (f. setion 2.1) due to its inherent advantages suh as its 360◦ �eld ofview ontrary to other approahes e.g. [29, 28℄. Additionally the design of the behaviorsis mandatory to be model-free to operate in unstrutured environments. Using a moresophistiated amera system a omplete framework for visual navigation is provided in thefollowing requiring no arti�ial struturing of the environment.This hapter is organized as follows: Vision guided navigation is introdued as a startingpoint in setion 3.1 with topologial loalization using omnivision and reative behaviorswith distane sensors. The door passing behavior is desribed in setion 3.2. Visualbehaviors for obstale avoidane and orridor entering using omnivision are desribed insetion 3.3 and investigated during an experimental evaluation.29



30 3.1 Vision-guided navigation3.1 Vision-guided navigationVision-guided navigation pursues a learning by demonstration sheme for the topologialnavigation. Aording to the hybrid ontrol arhiteture depited in �gure 1.2 the stimulifor the reative layer is provided by range sensors, whereas the planning layer pereivesits loal environment by means of an omnidiretional amera. The experimental platformis a Pioneer 3DX mobile robot equipped with a 2D laser sanner, an omnidiretionalamera system and a ring of sonar sensors (f. �gure 2.3 a)). The distane sensors (laser,sonar) apture the loal environment of the robot and provide the stimuli for the obstaleavoidane, the orridor entering, the door detetion and the door passing behavior. Therobot loalizes itself within a topologial map based on deteted orrespondenes betweenomnidiretional views.3.1.1 PlanningThe presented method for vision-guided navigation requires a learning phase in whih agraph is reated o�ine (�gure 3.1). A topologial map represented by a direted graphforms the basis of path planning and navigation. In this representation of the o�e en-vironment nodes in the graph onstitute waypoints and are assoiated with distintivevisual features. The visual features are later reognized in the urrent amera image andenable a unique assoiation with nodes in the topologial map by �nding orrespondeneswith stored features. During the learning phase the robot is guided manually through theenvironment, and at relevant loations for navigation the orresponding SIFT features areextrated and added as nodes to the topologial map. Neighboring nodes are onnetedvia edges in the graph. It is assumed that navigation between onneted waypoints doesnot require loalization but is entirely aomplished by means of reative behaviors suhas orridor following and door passing. Depending on the type of neighboring relationshipthe planning layer engages the ombination of reative behaviors that is suitable in theurrent ontext, e.g. door passing and obstale avoidane for a pair of waypoints onnetedthrough a door. Topologial path planning is redued to graph searh, whih is solved bythe ommon Dijkstra algorithm [40℄. The ontext of an edge depends on the type of on-netion between waypoints, and the oordination layer, depending on the ontext providedby the planning layer, ativates the following subsets of reative behaviors:
• Corridor: obstale avoidane, onstant veloity and orridor entering
• Door passing: obstale avoidane, onstant veloity, door passing and homing
• Open spaes (in analogy to orridor): obstale avoidane, onstant veloity and, ifrequired, homing
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Figure 3.1: Vision-guided navigation: learning by demonstration o�ine (white bakground)and ontext dependent hoie of behavior online (grey bakground).3.1.2 Topologial loalizationIn order to generate a topologial map the robot is guided through its environment in ademonstration while referene images of the loal surroundings are aptured at distintiveloations suh as doors or juntions. Waypoints are unambiguously desribed by the SIFTfeatures deteted in the omnidiretional image of the orresponding environment similarto [2℄. Figure 3.2 depits an omnidiretional image with the orresponding deteted SIFTfeatures. Neighboring waypoints in the image are assoiated with nodes onneted viaedges in the graph. Loalization in the topologial map is ahieved by similarity of theurrent view with the referene images aptured during demonstration. The high density ofSIFT features in natural environments allows to introdue waypoints at arbitrary loationsin the desired density without expliit referene to spei� landmarks. The SIFT featuresdeteted in the urrent view are ompared with those stored in the database. The measureof similarity between two loations is expressed by the relative frequeny of orrespondingSIFT features in the urrent and referene image. To ativate a node, ten topologially nextneighbors of the last traversed node are ompared with the SIFT features of the urrentamera image. This neighbor searh enables a ontinuing loalization, even if the next node
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Figure 3.2: Omnidiretional amera image with blind spot and extrated SIFT features.aording to the plan is not identi�ed or missed. However, this rare non-identi�ation of atopologial node in pratie only ours if a large majority of the features is oluded at thewaypoint. The method is also suited without restrition for global loalization of the robot,whereas the omputing time for initial omparison of the urrent view with all stored viewsin the database inreases aordingly. The measure of similarity between SIFT features isobtained as explained in hapter 2.2. A waypoint is reognized if at least 20% of the featuresin the urrent view are in agreement with those of a referene view in the database. Ifseveral topologial nodes exeed this threshold at the same time, the node with the highestorrelation is seleted. Simultaneous exeeding of this threshold value only ours in ase ofvery small distanes of the nodes, i.e. below 30 m. If the orrespondene is larger than 10%but smaller than 20%, a node is reognized if the similarity of the node with the highestorrelation is at least twie as high as the one with the seond highest orrelation. Inorder to evaluate the performane and robustness of the proposed sheme the robot travelsalong a orridor passing ten previously demonstrated waypoints as depited in �gure 3.3.The waypoints are distributed in front of the doors in order to ativate the door passingbehavior if the appropriate door to be passed aording to the plan is reahed. The nodesare sequentially ativated in the right order, indiated by the �lled out dots in �gure 3.3b), ) and d), during a navigation through the orridor under di�erent light onditions.The loal resolution of the loalization is obviously based on the high ativation level ofthe nodes only in the viinity of the waypoints. The robustness of the method is evident,as all passed waypoints are reognized reliably while the orresponding door hypothesesare reated.
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1.00.80.60.40.20) 1.00.80.60.40.20d) 1.00.80.60.40.20 0 5 10 15 20 25distane [m℄. .Figure 3.3: Spei�ity of SIFT features for varying illumination and surroundings: a)Metri map of the orridor with waypoints in front of the doors; b) Node ativation foridential illumination onditions; ) Node ativation for di�erent illumination onditionsand lateral distane to the apture point of one fourth of the orridor width; d) Nodeativation for strongly hanged illumination onditions (di�erent time of day, losed doors).Reative behaviors with distane sensors: A set of on�gurable fuzzy behaviors isdesigned aording to [128℄. The goal-oriented navigation results from the interation ofonstant veloity, homing, orridor entering, obstale avoidane and door passing behav-ior. Details of the fuzzy behavior representation of these behaviors an be found in [61℄ aswell as the behavior oordination. The design of a reative door passing behavior as wellas a detailed desription of the performane and robustness of vision-guided navigationis disussed in [114℄. A video of the experimental evaluation of vision-guided navigationinluding loalization, reative behavior oordination and door passing an be downloadedfrom the website of the department [126℄. The transition from vision-guided to vision-based navigation is subjet of the following hapter in whih the behaviors are represented



34 3.2 Visual behavior for door passinginstead of distane measurements solely by means of visual pereption primitives suh asoptial �ow and texture.3.2 Visual behavior for door passingVisual door traversal is a vital skill for autonomous mobile robots operating in indoorenvironments. An omnidiretional view o�ers the advantage that an initial san of the en-vironment for doors by rotating the robot base beomes obsolete. In addition the omniviewguarantees that the door remains visible throughout the entire door traversal whereas witha onventional perspetive amera the door eventually leaves the �eld of the view suh thatthe �nal stage of door traversal is performed in open loop ontrol. The omniview also o�ersan advantage in senarios with semi open doors in whih the robot still detets the doorin the rear view after it has passed the door leaf. The objetive of the approah presentedin [121℄ is to provide a robust solution of the entire door detetion and navigation problemrelying on omnidiretional vision only. The vision-based door reognition and traversalproblem is strutured into the three steps of door detetion (a), door loalization andtraking (b) and door traversal () as shown in �gure 3.4, whih are shortly summarized.
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m b) Door traking. ) Door passing.Figure 3.4: Visual door passing behavior [121℄.a) Door detetion: Images ontain a large amount of information whih neessitatesthe �ltering, extration and interpretation of those image features that are relevant to thevisual door detetion. The door detetion is omposed of three subsequent fundamentalsteps: image proessing, line proessing and door frame reognition. The image proessinginvolves edge detetion, thinning, gap bridging, pruning and edge linking. Afterwardsthe line proessing aggregates individual edge segments into ategorized lines by means ofline approximation, line segmentation, horizontal and vertial line seletion as well as linemerging. Similar to other approahes in the past the door detetion sheme relies on adoor frame model omposed of two vertial door posts in onjuntion with a horizontal topsegment. The �nal step in the door detetion omprehends the mathing between plausible



Chapter 3 Visual navigation of mobile robots 35ombinations of vertial and horizontal lines with multiple potential door frame patterns.These door patterns are inspired by the work of [103℄, whih de�nes simple and doubledoor frames.b) Door loalization and traking: Door loalization estimates the robot's urrent pose
(xR, zR, θR) with respet to the door oordinate system. In ase of monoular ameras therobot pose is usually reovered by triangulation of features aross multiple aptures takenfrom di�erent viewpoints. In the literature this loalization sheme is known as bearingonly loalization. The built-in odometry estimates the relative robot motion betweenonseutive viewpoints. Sine both the measurement and the motion are subjet to noiseand errors, the robot position with respet to the door is estimated with an ExtendedKalman Filter (EKF) [152℄. The state predition of the EKF relies on the odometrymotion model, whih desribes the relative robot motion between two onseutive poses[147℄. The initial two onseutive door detetions are used to initialize the states andovarianes of the Kalman �lter. Afterwards the door loalization is based on sequentialpredition and update steps.) Door passing: Typially the door is �rst deteted in the image one the robot is abouttwo to three meters away from the door. The door is traked ontinuously by means of theKalman �lter and the robot ontinues its motion parallel to the orridor until the robotis loated laterally with respet to the door enter. At this instane the robot stops andturns 90◦ towards the door, ontinuously traking its relative orientation. Before initiatingthe traversal the open door state is veri�ed from a sequene of images by extration of thetime to ontat and the texture. A homogeneous texture indiates a losed door, whereasrandom texture implies an open door. A large time to ontat guarantees safe traversal.The robot traverses the door at onstant veloity by entering itself with respet to theontinuously traked door posts. The visual servoing ontrols the robot's turn rate suhthat both door posts remain equilateral in the omnidiretional view. The Kalman �lter isno longer applied as the depth information beomes unreliable at lose range and is notneeded for guiding the robot through the door.The algorithm is tested on 1000 manually labeled images taken from video sequenesaptured in the o�e environment of the department. Most images ontain multiple doors,suh as the senario in �gure 3.4 with three suessfully deteted and validated doors. Falsepositives in single images for doors amount to 3%, false negatives our 5% of the time[121℄. To render the detetion algorithm even more robust, the door frames are trakedover onseutive images during the motion. Initial false positives are eventually rejetedin subsequent aptures. This validation step is of partiular importane for the Kalman�lter loalization.



36 3.3 Visual behaviors for ollision-free navigation3.3 Visual behaviors for ollision-free navigation3.3.1 Corridor enteringCorridor entering behavior has a strong resemblane with the visual-motor behavior ofhoney bees. Bees �y by balaning the optial �ow generated in the lateral portion of theopti array of both eyes. This strategy enables them to �y exatly in the enter of a tunnel.The orridor following behavior balanes the magnitude of the optial �ow generated onboth the left and right hemisphere of the omnidiretional amera to drive the robot towardsthe enter of the orridor [32℄. A simple but robust ontrol law results from the omparisonof the magnitude (its maximum) of the optial �ow in the left and right hemisphere [u̇, v̇]Tleftand [u̇, v̇]Tright, respetively:
∆ΘR = k(max([u̇, v̇]Tleft)−max([u̇, v̇]Tright)). (3.1)It is based on the assumption that the region whih generates a larger optial �ow on-tains objets in loser proximity to the robot than the opposite side. In equation 3.1 ΘRdesribes the rotation and k is a proportional gain fator. The orridor following with theomnidiretional amera detets the optial �ow aross an angular region of 45◦ to 135◦ onboth sides of the translation diretion for balaning.3.3.2 Obstale avoidane by optial �owTo avoid obstales in front of the robot the time to ontat is estimated from the diver-gene of the optial �ow onto an image grid from the reonstruted perspetive frontalview. Time to ontat estimates are fused with the on�dene in the respetive visualinformation, namely the loal variane of optial �ow and statistial analysis [112℄. Bothtogether determine the desirability and safety of traveling in the orresponding diretion.Osillatory movements of the robot are prevented by reonstrution of two additional pe-ripheral views for whih the time to ontat is measured solely by optial quantities, e.g.the objet's viewing angle and its derivative. A general overview of methods for optial�ow extration based on a time sequene of images is given in hapter 2.3. Aording tothe performane evaluation of optial �ow tehniques for indoor navigation with a mobilerobot, the approah from Luas and Kanade ahieves the best results in terms of auray,e�ieny and robustness [96℄. Therefore the Luas-Kanade pyramid algorithm from [17℄is used whih provides a sparse but more aurate optial �ow �eld ompared to otherdi�erential, intensity based methods, even for large optial �ow.The obstale avoidane behavior guides the robot reliably towards obstale-free regions andirumnavigates objets in the viinity of the robot or regions a�ited with unertaintyonerning visual pereption. Figure 3.5 a) shows the omnidiretional amera view of a



Chapter 3 Visual navigation of mobile robots 37orridor. In the ase of obstale avoidane as well as turn around behavior to avoid un-ertain and potentially ritial spaes initially three perspetive views are reonstruted asshown in �gure 3.5 b) [119℄. The frontal view aomplishes ollision avoidane with objetsin front of the robot, whereas the peripheral views ontribute to the general stabilizationof the robot's motion. The opening angle of the omnidiretional amera for perspetiveonstrution is approximately 75◦. The resolution of the reonstruted frontal view is 200by 90 pixels. The �eld of view is partitioned into a grid of 10 by 5 windows orrespondingto di�erent viewing diretions of the robot (f. �gure 3.5 b). The upper number in the ellview orresponds to the time to ontat estimates in seonds and the lower number is theon�dene into the time to ontat estimate.. .
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preferenes deision0.7 2.21 3.37 3.67 3.31 0 0 0 0 0 0 0. .Figure 3.5: a) Omnidiretional image; b) Reonstruted perspetive views and orientationpreferenes based on the time to ontat (ttc) and on�dene.The stimulus of the obstale avoidane behavior is the time to ontat (ttc), whih isestimated from the optial �ow vetors in the image. From the divergene of the optial�ow �eld the time to ontat is derived [31℄ aording to:
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with ∇( ˙̂u, ˙̂v) =

∂ ˙̂u

∂û
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∂v̂
. (3.2)This equation indiates that estimating the time to ontat only depends on the optial�ow, but requires no knowledge or estimation of the sene depth z and vRz

. [31℄ usesdi�erent symmetrial divergene templates to alulate the divergene of the optial �ow fora dense optial �ow �eld. This method fails when the optial �ow �eld is not dense enoughto alulate the derivative along the normal diretion. Contrary to the analysis above, theproposed approah does not assume that the divergene is determined for the projetionenter, but that the lateral hange of motion is small ompared to the depth of the sene,thus allowing for the image-segmented estimation of the divergene and onsequently thetime to ontat as well. A derivation of equation 3.2 for these spei�ations is found in



38 3.3 Visual behaviors for ollision-free navigationappendix A. Hene, an approah for sparse optial �ow �elds is proposed where all theoptial �ow pairs found within a on�ned neighborhood ontribute to the alulation ofthe divergene of the partiular �ow vetor under onsideration. The neighborhood arounda single �ow vetor is de�ned by a window of �nite size formally referred to as a pairingwindow. The pairing window approah involves estimation of divergene of an optial �owvetor by alulating the average divergene aross all individual �ow �eld vetors withina neighborhood window. The size of the pairing window and the density of the �ow �elddetermine the auray of the divergene estimate. A pairing window orresponds to onesingle image region depited in �gure 3.5 b). Equation 3.3 omputes the divergene foreah pairing window ∇pw, indiated by the subsript pw:
∇pw(u̇, v̇) =

1

(n− 1)!

(n−1)!
∑

i=1

(

∂u̇i

∂ui
+

∂v̇i
∂vi

)

=
1

n

n−1
∑

i=1

n
∑

j=i+1

(

u̇i − u̇j

∆uij
+

v̇i − v̇j
∆vij

)

. (3.3)
n is de�ned by the number of optial �ow vetors, resulting in (n − 1)! di�erent pairingsto be onsidered. For eah pair the individual divergene is alulated and aggregated intothe divergene of the pairing window ∇pw. The individual divergene is alulated fromnormal optial �ow vetors u̇i, v̇i and u̇j, v̇j along their respetive diretions u and v.For the peripheral view (�gure 3.5) the time to ontat is estimated in a di�erent way, asthe fous of expansion lies outside the peripheral view. Therefore the alternative approahinspired by [87℄ determines the time to ontat based on the temporal evolution of thediretion of the optial �ow. The advantages of this approah onsist on the one hand inthe estimation of the time to ontat solely via optial quantities suh as the angle andits temporal derivative. On the other hand the work spae is omplementary to determinethe time to ontat by means of the divergene of the optial �ow. The time to ontatis derived by di�erentiating the geometri relation: d = z tan(φ), in whih φ denotes theorientation of the obstale in roboentri oordinates, z the distane omponent to theobstale in driving diretion of the robot and d the distane omponent perpendiular tothe driving diretion. The temporal derivative yields d/dt(d) = zφ̇ cos−2(φ)+ ż tan(φ) = 0.Thus, the time to ontat for obstales in both peripheral �elds of view is given by:

ttc =
cosφ sinφ

φ̇
. (3.4)[92℄ employs the same de�nition to detet obstales, to obtain their range and to modelthe environment by means of orners in the perspetive amera image.The information ontent and the reliability of the pure time to ontat is inreased byestimating the on�dene of the urrent pereption. For eah single ell of the grid a degreeof on�dene is determined by means of the variane of the individual measurements ofthe optial �ow within a window aording to:

confseg(i,j) =
1

n

m
∑

nv=1

{

1− 1
σ
abs(ttcnv − µ(i,j)) , if (ttcnv − µ(i,j)) < σ

0 otherwise . (3.5)



Chapter 3 Visual navigation of mobile robots 39Here ttcnv orresponds to one of the m total time to ontat estimates that are omputedfrom the orresponding �ow vetors in the window confseg(i,j) with the row and olumnposition (i, j) of the ell. µ(i,j) designates the mean of the time to ontat values in asegment and σ is the standard deviation of the data set. If there are no time to ontatvalues or optial �ow in the ell under onsideration, then the time to ontat is assignedto zero. Grids with a time to ontat value equal to the mean time to ontat are alsogiven zero on�dene, implying the absolute on�dene about the presene of an obstale.Due to the adaptive �tting of σ homogeneous �elds obtain distintly more on�dene thaninhomogeneous ells. For a homogeneous �eld of onsistent measurements the on�denetends to one, whereas for the opposite ase of large and spurious values, representing noise,it tends to zero. If ttcnv−µ(i,j) < σ is not valid, the on�dene of the orresponding windowis redued to zero.The time to ontat and its orresponding on�dene values are fused within the gridolumns representing the driving diretions. From these aggregated information �rst pref-erenes for obstale-free diretions are reated and from these the turn rate and transla-tional veloity of the robot are omputed. Furthermore, the �nal reommendation for thediretion ΘRk
is in�uened by the angular aeleration ompared to the previous rotation

∆ΘRk−1
in order to guarantee a smooth rotation by averaging:

ΘRk
= argmaxj

(

ttcavgjconfavgj −∆ΘRk−1

)

, (3.6)in whih ∆ΘRk−1
denotes the di�erene between the new diretion and the robot's urrentheading, ttcavgj and confavgj are de�ned as the mean of the time to ontat and on�-dene values, respetively, of the j-th olumn. Apart from saling, the time to ontat isalulated in the same way for the peripheral views.The turn around behavior is responsible for the detetion of dead end situations, in whihthe robot annot irumnavigate the obstale but has to trak bak. This behavior initiatesa 180◦ turn in dead ends or so-alled triky orners for whih the optial pereption indiatesno save passage. This situation is reognized by an inonsistent or nonexistent �eld of �owwith low on�dene. On the other hand this behavior assumes the robot's ontrol in ase oflarge-area objets without texture, beause the optial �ow does not provide informationdue to the lak of ontrast. Planes without texture are abstrated as obstales and storedin a loal spatial memory until visual stimuli evaluated with su�ient on�dene reemergefor this region.3.3.3 Experimental results: Navigation with omnivisionThe behavior oordination involves ativation of the orret behavior at the right instane.Behavior seletion strongly depends on the urrent ontext of the robot [18℄. In this asea subsumption arhiteture is employed. The main reason is that the visual information is



40 3.3 Visual behaviors for ollision-free navigationnot as reliable as the distane measurements. In textureless environments it is di�ult toassess the distane of obstales from visual measurements. The subsumption arhitetureshown in �gure 3.6 has a layered struture, in whih eah layer is assoiated with a spei�behavior. The higher layers have the authority to subsume (indiated by s) and inhibitbehaviors in the lower layer. turn around
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?motorsFigure 3.6: Subsumption arhiteture with orridor following, obstale avoidane and turnaround behavior. Supplementary visual behaviors are indiated by dashed bloks.The most basi behavior is the orridor entering behavior in the lowest layer. It omparesthe optial �ow magnitude of the left and right hemisphere of the omnidiretional amera.This behavior maintains a onstant translational veloity and only hanges the turningdiretion. The intermediate layer onsists of the obstale avoidane behavior whih isativated if the time to ontat falls short of a threshold. The obstale avoidane behaviorommands a turning diretion and a translational veloity. The translational veloity isproportional to the time to ontat. One the obstale avoidane triggers, it subsumes thelower layer and overrides its output with its translational and rotational veloities vR and

ωR. The input for the motor ommands is replaed by the reommendations of the obstaleavoidane. The turn around behavior has the highest priority. This behavior responds toorners whih represent dead ends of the orridor or textureless wall segments and initiatesa 180◦ turn with a subsequent wandering into a new diretion. Furthermore, this behavior



Chapter 3 Visual navigation of mobile robots 41inludes a remember-sidewall omponent that remembers side walls or obstales detetedat previous instanes and avoids them over the next n ontrol yles. The turn aroundbehavior is based on the same measurements as the obstale avoidane layer. If a trikyorner (i.e. a textureless region �lling the omplete �eld of view) is deteted, it bloksthe output of obstale avoidane from reahing the motors and suppresses the output oforridor following. One major advantage of the subsumption arhiteture is the ease ofintegrating supplementary visual behaviors suh as door passing and visual homing asshown later on indiated by the additional dashed blok in �gure 3.6.
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42 3.3 Visual behaviors for ollision-free navigationlose to the right wall of the orridor at a distane of 2m in front of a pillar whih is situatedin driving diretion, thus bloking a part of the orridor, as depited in �gure 3.7 a) whihshows the environment and the atual path traveled by the robot (a1-a6). The images onthe left side of the robot are the perspetive peripheral images from one side of the travelingdiretion (for sake of larity only the left side is shown). The robot suessfully evades theobstale without olliding with the orridor wall or the pillar. Figure 3.7 b) additionallyshows the frontal visual pereption of the robot with the diretion reommendation for thetwo loations a3 and a5. The entire frontal image view is partitioned into grids of size
20 by 20 pixels in whih eah grid estimates an average time to ontat (upper value in�gure 3.7 b) and an assoiated on�dene (lower value, aording to equation 3.5). Forevery olumn the average of the time to ontat and on�dene is omputed. Finally, thegains of the two lateral planes on the left and the right ontribute towards the �nal gainwhih provides the deision variables for turning. The robot turns in the diretion of theregion with the highest overall gain value. At the waypoint a3 in �gure 3.7 the turn aroundbehavior inhibits the output of the obstale avoidane behavior, as on�dene in the fourright olumns is low due to the lak of texture of the orridor wall. In ase more thanthree olumns on one side exhibit a on�dene of zero, the presene of a side wall or awall without texture is signalled. This proedure ompletely immunes the optial �ow onthe right side thereby avoiding the side wall and the pillar with the neighborhood regionaround it. The reommendations of the two neighboring olumns are also set to zero, sothat only the remaining diretions of the left hemisphere in�uene the �nal seletion ofthe heading diretion. From the set of andidate headings the fourth olumn of the lefthas the highest preferene, ausing a subsequent evasive maneuver of the robot to theorridor enter. At the waypoint a5 all diretions possess su�ient on�dene in visualinformation, so that again the obstale avoidane behavior obtains sole ontrol over therobot. It advoates its maximal reommendation for the third olumn to the right withthe highest time to ontat, in roboentri view pointing towards the free orridor forthe urrent alignment of the robot. The orridor entering behavior is sensitive towardsinhomogeneous texture distribution in the right and left lateral �eld of view whih maylead to a lateral displaement of the robot ompared to the enter of the orridor, resultingin an osillation of the robot motion around the orridor enter. The stability of theorridor entering behavior an be improved by appropriate ontroller design to suppressdisturbanes aused by varying texture. Furthermore not all possible senarios for regionswith low texture an be ontrolled robustly by the turn around behavior.In this hapter visual behaviors via an omnidiretional amera for mobile robot navigationin unstrutured environments are introdued. The next hapter desribes visual homing inorder to omplete the transition from vision guided to goal-orientated visual navigation.



Chapter 4
Global visual homing by visual servoing
As visual homing in a topologial map is muh more omplex than homing in a metri mapwith distane sensors this hapter espeially fousses on the design of visual homing toomplete the visual navigation. The homing behavior with deoupled navigation and gazeontrol with a virtual amera plane is �rst presented in [105℄. The topologial loalizationfrom setion 3.1 is extended to automatially selet optimal referene images for the visualhoming behavior. Thereby the advantages of visual input from a pan-tilt in onjuntionwith an omnidiretional amera are ombined for global visual homing. The time-optimalreferene feature and image seletion is provided by the omnidiretional amera system[108℄ using the information from the topologial map, whereas loal pose onvergene isahieved by the pan-tilt amera.The presented work obeys the paradigm of topologial map-based navigation by a diretedgraph. Visual homing follows approahes from visual servoing presented in setion 2.4 withthe major di�erene that global onvergene towards the referene image is required evenif the features from the referene view are far away from the atual pose of the robot.Espeially the deoupling strategy for navigation and gaze ontrol as well as the synergyof omnidiretional and monoular amera are milestones for global visual homing for o�eenvironments with minimal texture o�ering additional freedom for visual homing omparedto the shemes ited in setion 2.3.This hapter is organized as follows: The general onept for visual homing is desribedin setion 4.1 motivating the advantages of a deoupled navigation and gaze ontrol bythe virtual amera plane. The virtual amera plane is desribed in setion 4.2 and thedi�erene between a vertial and horizontal virtual amera plane is pointed out. In orderto utilize the virtual amera plane, the required gaze ontrol is summarized in setion 4.3.Di�erent approahes for visual navigation ontrol as well as their experimental evaluationare desribed in setion 4.4. The visual navigation behavior emerging from the individualvisual behaviors is presented in setion 4.5, whih onludes with an omparison of vision-43



44 4.1 General oneptguided and vision-based navigation.4.1 General oneptFigure 4.1 depits the sheme of visual homing behavior as well as the integration in thehybrid ontrol arhiteture (f. �gure 1.2). The visual homing for the subordinate reativelayer is later on integrated in the subsumption arhiteture from �gure 3.6 for fully visualnavigation of mobile robots. The major omponents of the visual homing behavior by largedata base
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Figure 4.1: Large view visual servoing integrated in the hybrid ontrol arhiteture.view visual servoing are: gaze ontrol, virtual amera plane, visual navigation ontrol aswell as the ommand fusion. The gaze ontrol guarantees that the image features remainin the amera's �eld of view. The virtual amera plane represents the mutual ontrol spaethereby deoupling gaze from navigation ontrol. As gaze is ontrolled independently of therobot motion and the features are de�ned in a virtual amera plane, the visual ontrolleruses the same landmarks over a larger range of motion. Therefore, fewer visual landmarksare required to desribe a smooth path through the environment. The optimal exploitationof landmarks even enables visual navigation in environments with little texture e.g. o�eenvironments and onsequently only few natural landmarks.



Chapter 4 Visual navigation of mobile robots 45Figure 4.2 demonstrates the advantages of a swiveling versus a �xed amera for visualnavigation. In �gure 4.2 a) the standard senario from literature is depited, where theamera is �xed relative to the robot motion, restriting the �eld of view whih results ina limited onvergene area of a landmark. In this ase this limitation is resolved by theindependent gaze and navigation ontrol resulting in a larger onvergene area of the samelandmark as depited in �gure 4.2 b) and ). An additional extension of this approahompared to standard approahes enables the robot to navigate towards (�gure 4.2 b))as well as parallel to a landmark (�gure 4.2 )) whih is partiularly useful for traversingon�ned indoor spaes suh as orridors. In order to ontrol the robot motion independentlyof the gaze the observed features are transformed from image into virtual amera plane.a) b) )goal pose
urrent pose urrentpose goalposerobot orientationamera orientationFigure 4.2: Visual servoing for navigation of mobile robots: a) Fixed amera; b) Deoupledgaze and navigation ontrol for navigation towards a landmark using a swiveling amera;) Deoupled ontrol for navigation parallel to a landmark.Three di�erent approahes for navigation ontrol on the virtual amera plane are inves-tigated: (a) image Jaobian, (b) image moments and () a ombination of partial senereonstrution in onjuntion with image moments. These approahes di�er by the strat-egy to deouple rotational and translational veloity omponents. As the �rst approah(a) was originally intended as ase study for visual homing, arti�ial landmarks in theheight of the robot's amera neessitate a vertial virtual amera plane. The seond (b)and third approah () rely on natural landmarks, thus using a horizontal virtual ameraplane as desribed in the following. The optimal referene images are traked and seletedby the omnidiretional amera as depited in �gure 1.2 using the features for topologialloalization from setion 3.1. Optimality of a referene image is de�ned by the numberof visual features as well as in terms of their traeability in the required workspae. Vi-sual homing with omnidiretional ameras using reti�ation of omnivision, SIFT and asale based image Jaobian is presented for room nodes [88℄. Nonetheless our experimentsindiate that an omnidiretional amera alone is not suited for visual homing espeiallyin narrow orridor environments, as feature reognition over a large area is attenuated byimage distortion, thus the pan-tilt amera is additionally required for global visual homing.



46 4.2 Virtual amera plane4.2 Virtual amera planeAs the amera has two degrees of freedom (pan αc, tilt βc) the referene image is notuniquely related to the robot's pose but depends on the amera orientation as well. Thereare two ways to properly apture and de�ne referene features for vision-based navigationwith a rotating amera. The straightforward solution is to apture an entire set of refereneimages at di�erent amera orientations αc, βc for a partiular pose. In addition to thelarge memory requirements this approah is not feasible as for most amera orientationsthe atual referene features are not visible in the aptured image but rather need to beomputed based on a geometri reonstrution of the sene.A better solution is to de�ne a transformation from the amera image to a virtual ameraplane that is independent of the amera's atual pan and tilt. This methodology hasthe advantage that only a single referene image at a single amera orientation needs tobe aptured. The features are projeted onto a virtual amera plane, thus allowing fororrespondene between image features in the urrent pose of the robot and the referenepose independently of the amera's viewing diretion. In priniple it is possible to transformfeatures either onto a vertial or a horizontal virtual amera plane. [105℄ presents a planarrobot motion deoupled from gaze ontrol via transformation of the image points onto avertial virtual amera plane with image Jaobian (a), while in [108℄ a horizontal virtualamera plane is mostly preferred for approah (b) and (). The transformation to thevirtual plane assumes a alibrated amera system and undistorted image features, therebylarge radial distortions of the image are the major soure of disrepanies between thetheoretial feature oordinates in the virtual amera plane and the alulated ones. Inorder to transform features from the real image to the virtual amera plane, the followingassumptions are made:
• Assumption 1: The rotation axes of the amera for the pan and tilt angle oinidewith the foal point of the amera.
• Assumption 2: The rotation axis of the robot along the vertial axis oinides withthe virtual amera axis normal to the horizontal virtual amera plane or in the aseof the vertial amera plane with its oplanar vertial axis.Assumption 1 might be onsidered too restritive as the preise alignment of the rotationalaxis of the amera with its foal point is di�ult to ahieve. Nonetheless this assumptionallows for rendering the transformation of the urrent amera plane to the virtual ameraplane (equation 4.3) solely as a funtion of the known foal length λ, pan αc and tilt βc.In the vertial virtual amera plane, the optial �ow u̇, v̇ in the image is aused bythe robot's translatory motion vRx

and vRz
and its rotation ωR. The image Jaobian forpoint features in equation 4.1 not only depends on the pixel oordinates of the features uiand vi, but also on their unknown depth zi and the amera's foal length λ. Therefore the



Chapter 4 Visual navigation of mobile robots 47ontrolled variables are highly oupled and non-linear in zi, whih additionally varies witheah individual feature and the robot's pose relative to the feature 3D oordinates:
u̇i =

λ

zi
vRx

+
−ui

zi
vRz

+
−λ2 − vi

2

λ
ωR,

v̇i = 0 +
−vi
zi

vRz
+
−uivi
λ

ωR. (4.1)The oupling is redued by the de�nition of a horizontal virtual amera plane ratherthan a vertial. For indoor appliations the mobile robot is restrited to planar movements.For vision-based navigation with the vertial amera plane, the orientation of the refereneplane depends on the type of waypoint and the loation of the features relative to thedesignated robot path. The referene feature plane is either perpendiular to the robot'sheading or parallel to it, depending on whether the robot is supposed to approah or topass by the waypoint. The horizontal amera plane and the plane in whih the robot movesare oplanar, and the orientation of the horizontal plane is solely de�ned by the referenepose independent of the robot's designated path. The optial �ow in the horizontal ameraplane is related to the robot movement aording to:
u̇i =

λ

zi
vRz
− viωR = kivRz

− viωR,

v̇i =
λ

zi
vRx

+ uiωR = kivRx
+ uiωR. (4.2)This detrimental oupling of feature motions in the vertial plane is avoided in the hori-zontal virtual amera plane if one onsiders the following observations and assumptions:

• The distane of the feature points is invariant to the robot motion vRx
, vRz

andthereby onstant.
• The depth of the sene is small ompared to the distane of the foal point to thefeatures, yielding a weak perspetive amera model.The depth zi of features no longer depends on the planar robot motion and is replaed bya onstant ki.The transformation from the atual to the virtual amera plane is stated as:

[uV , vV , 0, 1]
T = TCV

CR
(λ, αc, βc) [u, v, 0, 1]

T , (4.3)where u and v denote the pixel oordinates in the urrent amera plane and uV and vV thosein the virtual amera plane. In ase the �rst assumption is violated, the transformationTCV

CR
also depends on the extrinsi amera parameters and the oordinates of the featurepoint in the world frame, thus making the transformation infeasible. The features fromthe referene as well as from the urrent view are transformed to the virtual amera planeaording to equation 4.3 in order to alulate the ontrol error in the image spae.



48 4.2 Virtual amera plane
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Figure 4.3: Transformation of the real amera images onto the virtual amera plane.The shematis of the transformation from the image plane to the virtual amera plane (inthis ase horizontal) is depited in �gure 4.3. The detailed transformation TCV

CR
from theamera plane to the horizontal virtual amera plane is as follows:
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CR
from the amera oordinate system CR to the oordinate system

Cα,β as well as the transformation TCV

Cref
from the �xed referene frame Cref entered at thefoal point to the virtual amera plane CV only depend on the foal length λ. The omplete
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CR
is therefore onstruted from equations 4.4, 4.5 and 4.6 where bCrefrepresents the image features in the referene frame. Thus, a point pi in the image planeis transformed onto a point pv in the virtual amera plane as depited in �gure 4.3 viathe following steps: First pi is transformed from the amera oordinate system CR to arotated amera oordinate system Cα,β via TCα,β

CR
solely by translation with λ, then thisrotated amera oordinate system Cα,β is rotated around the foal point with TCref

Cα,β
intothe stati amera oordinate system Cref . The intersetion point of bCref

with the virtualamera plane is determined by means of the theorem of interseting lines: The ratio between
λ|bCref

|/(−bCref
zV ) and λ is equal to the ratio of |bCref

| and bCref
(−zV ) (i.e. the omponentof bCref

in diretion of −zV ), resulting in the fator λ/(−bCref
zV ) given in equation 4.5. Asthe intersetion point is expressed in the stati amera oordinate system Cref , in a �nalstep it is transformed to the virtual amera oordinate system CV via TCV

Cref
.Whether the features are transformed to the vertial or horizontal virtual amera planehighly depends on the feature 3D oordinates. In ase the feature templates are at thesame height as the robot's amera only a transformation to the vertial virtual ameraplane makes sense e.g. approah (a) as the pixel oordinates beome in�nite for a trans-formation to the horizontal plane. The 3D plaement of the arti�ial landmarks above therobot enables the transformation to the horizontal virtual amera plane, but poses higheromputational burden on the landmark detetion due to large a�ne distortions of the land-marks in the amera view. Beause of the transition from arti�ial to natural landmarksthe a�ne distortions are handled by the feature extration (e.g. SIFT) and pose therebyno restritions to the orientation of the virtual amera plane. In man-made environmentsthe texture is normally on vertial planes, espeially in the height of the view of humans.Thus a transformation to the horizontal is preferred due to the 3D loations of the textureand the previously explained advantages of the horizontal virtual amera plane. Finally itis stated that for a limit above 45◦ of the pan angle the horizontal virtual amera planeis numerially preferred whereas below this threshold a vertial amera plane is desirable.The transformation demands a amera gaze ontrol in order to enter the image features.4.3 Camera gaze ontrolThe objetive of the amera gaze ontrol is to regulate the amera orientation independentof the robot's motion in order to trak a landmark or features and to enter them in theimage. Standard amera systems have a limited �eld of view of about 60◦ in the horizontalplane and about 40◦ in the vertial plane. This �eld of view is extended by a pan-tilt unitin onjuntion with a gaze ontroller for traking the feature points. The gaze ontrol is theonneting step between the proposed virtual amera plane and the navigation ontrol inthe virtual amera plane as desribed in the following. Di�erent approahes are known forgaze ontrol. As the gaze ontrol is only a tool for the navigation with the virtual ameraplane, a desription of gaze ontrol using the virtual amera plane and homography is



50 4.3 Camera gaze ontroldepited in �gure 4.4 and used for the approah (b) with image moments and () with aombination of partial sene reonstrution in onjuntion with image moments.Gaze ontrol is omposed of a feed-forward path that predits the feature motion in thevirtual amera plane based on the known robot motion ommand. The feedbak ontrolbased on a virtual entroid ompensates disturbanes. The feedbak ontrol projets thefeature entroid of referene features into the urrent view aording to the homographyH, referred to as the virtual entroid. The transformation of the entroid of the featuresfrom the goal view ûcog, v̂cog into the urrent view ucog, vcog is ahieved via:
[ucog, vcog, 1]

T = TCV

CR
(λ, αc, βc)HTCR

CV
(λ̂, α̂c, β̂c) [ûcog, v̂cog, 1]

T . (4.7)The angular errors of the required amera rotations ∆αc and ∆βc of the PTZ amera aregiven by:
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. (4.8)The struture for the gaze ontrol for the approah (a) with image Jaobian is similar to thefeedforward
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Figure 4.4: Gaze ontrol.gaze ontrol in �gure 4.4 onsisting of a feedforward and a feedbak part. Nonetheless theutilization of arti�ial landmarks simpli�es the design of the gaze ontrol as the templates inthe 3D task spae are loated at the same height as the amera and in addition the unknown



Chapter 4 Visual navigation of mobile robots 51depth of the features is estimated using projetive geometry based on the knowledge of theintrinsi amera parameters and the known dimensions of the retangular arrangement ofthe templates. The optial motion of the pixel oordinates in the image plane is preditedbased on the known motion ation of the robot using image Jaobian and the appropriateounter rotations of the amera α̇c, β̇c that anel the optial �ow by robot motion isalulated. Further details for gaze ontrol with image Jaobian are desribed in [105℄.4.4 Visual navigation ontrol4.4.1 Control by image JaobianThe ontrol objetive is to regulate the robot's turn rate based on visual feedbak in suhway that the robot maintains the same orientation and distane to the feature plane as inthe demonstrated referene pose. The task spae error is onstituted by the lateral ∆x,longitudinal∆z and orientational error ∆ΘR. The visual servo ontroller design relates thetask spae errors ∆z,∆x,∆ΘR with the feature errors in the image. γV de�nes the anglebetween the virtual amera plane and the orientation of the robot ΘR. The approah fordeoupling rotational ωR and lateral motion vR meaningfully transfers the onept from[33℄ by de�ning an angular riterion in the virtual plane. Considering the desired taskspae motion a trapezoidal distortion is spei�ed with the referene angle ϕref betweenthe horizontal line and the straight line de�ned by the two upper features of the arti�ialtemplate. The feature error between the referene ϕref and urrent distortion ϕ is denotedas ∆ϕ. For small errors ∆ϕ no rotation of the robot is needed and the longitudinalmotion alone redues the image error as the robot moves towards the referene pose.For the orridor landmarks the virtual plane is oriented parallel to the template plane.As long as the robot is oriented parallel to the feature plane the error ∆ϕ disappearsindependent of the lateral error and does therefore not ontribute to the robot ontrol ωR.The independene of the angular feature error from the lateral displaement is only ful�lledif the virtual and the template plane are ollinear (γt = 90◦). For angles that di�er from
γt = 90◦ the angular error ∆ϕ varies with the lateral error as well, whih substantiallyompliates the design of a visual servoing ontroller. This property suggests to designthe ontroller for a virtual image plane at γt = 90◦. From geometri onsiderations itis intuitive that for the referene pose the virtual plane and template plane should beparallel, as the trapezoidal distortion only results from the rotation but not from thetranslation. The visual ontrol sheme takes advantage of the deoupling between rotationand translation. The angular riterion expressed by the distortion error ∆ϕ determinesthe rotational omponent of ontrol. A rotational omponent diretly omputed fromthe feature position error auses the robot to head diretly towards the feature plane.The translational omponent is alulated based on the residual positional feature error,orreted by feature motion aused by the antiipated rotation.



52 4.4 Visual navigation ontrolTable 4.1: Control sheme for visual navigation on virtual amera plane by Jaobian.1. Deoupling of the rotational omponent of the image Jaobian Jω from the trans-lational Jxz-omponent.2. Computation of the distortion error ∆ϕ based on the di�erene ϕref − ϕ in thevirtual image plane.3. Computation of the gain:
k =

1

1 + ( ϕ0

|∆ϕ|+ζ
)2
. (4.9)4. Computation of the rotational ontrol:

ωϕ = −k∆ϕ. (4.10)5. Predition of the motion of image features ∆fω:
∆fω = Jωωϕ. (4.11)6. Translational veloity ontrol:

(

ẋC

żC

)

= J+
xz(fref − f −∆fω). (4.12)Transformation of the ontrol ommands from the virtual amera plane into therobot's loal referene frame:

vRx
= cos(γV )ẋC + sin(γV )żC ,

vRz
= cos(γV )żC − sin(γV )ẋC . (4.13)7. Motor ommand fusion using the onstants η1 and η2, the gains k1, k2 = 1

1+
|vRx

|

η2and k3 =
η1

1+
|vRz

|

η2

:
vR = k1vRz

, ωR = k2ωϕ + k3vRx
. (4.14)8. Control saturation:

|vR| = min(|vmax|, |vR|), |ωR| = min(|ωmax|, |ωR|). (4.15)The overall ontrol sheme for the visual navigation is detailed in table 4.1. The ontroltakes plae in the vertial virtual amera plane, therefore the feature error fref − f betweenthe desired fref and the urrent image features f is alulated aordingly in the virtualamera plane. In the �rst step the image Jaobian J is deomposed into its rotational andtranslational omponent Jω and Jxz, in order to deouple the orresponding ontrols forthe robot motion. The distortion error ∆ϕ re�ets the robot's heading error and modulatesthe magnitude and sign of the rotational motion. The gain for the rotational omponent k



Chapter 4 Visual navigation of mobile robots 53in equation 4.9 is redued for small distortion errors ∆ϕ in the virtual amera plane withthe tuning parameter ϕ0 = 0.01. The gain k for the orientation orretion varies smoothlyfrom 0 to 1 with inreasing distortion error ∆ϕ. The term ζ avoids numerial instabilityaused by the division by zero. In addition the sign of the distortion error determineswhether the robot turns towards or away from the feature. The ommanded rotationalveloity ωϕ is proportional to the gain and the angular error ∆ϕ, thus stabilizing thetrapezoidal distortion in the image. The translational omponent regulates the residualpositional feature error not yet ompensated by the rotation. Therefore, the feature erroris orreted by the predited motion of the image features ∆fω due to the rotationalveloity ommand. Prior to the alulation of the translational ontrol this predition
∆fω is subtrated from the observed image error f aording to equation 4.12 to obtain theresidual error. Based on the image Jaobian Jxz the translational veloities for lateral andlongitudinal motion are alulated using its pseudoinverse. This alulation inludes thetransformation from the virtual amera frame bak to the robot's loal referene frame.In ase of an omnidiretional drive robot with three loal degrees of freedom the ontrol
vRx

, vRz
and ωR is diretly onverted into appropriate motor ontrols. However, as therobot pioneer 3DX is a non-holonomi robot with only two degrees of mobility the lateralomponent vRx

and rotational omponent ωR are fused into a single turn rate ωR. Theapproah for merging the motion ommands proposed in [57℄ is adapted here. In orderto determine the amount of vRx
, vRz

and ωR to the �nal motor ommands the designparameters k1, η1 and η2 are determined empirially. Finally the motor ommands vR and
ωR are restrited to the veloity limits vRmax

and ωRmax
, whih depend on the frame rate ofthe visual servoing loop. A ontrol saturation is partiularly required for the longitudinalomponent as initial feature errors are large. Due to the ontrol saturation the robot movesat onstant translational veloity for large longitudinal errors and �nally slows down asit approahes the referene pose. One the residual feature error falls below a threshold,the supervisory ontroller swithes to the referene image of the next landmark. Theontrol sheme distinguishes between landmarks suh as the doking station whih therobot approahes head on and landmarks (2-5 in �gure 4.7) whih the robot passes parallelto the feature plane. Based on the hoie of γV the robot navigates towards or parallel tothe template plane. In �oor setions γV is set either to 90◦ or to -90◦ depending on thenavigation diretion. In order to reah the harging station the robot moves toward thetemplate plane in the diretion of the virtual amera axis (γV= 0◦).4.4.2 Control with image moments and primitive visual behaviorsThe image oordinates of the urrent view [u, v, 1]T are transformed onto the virtual imageplane [uV , vV , 1]

T aording to equation 4.3. A transformation onto the horizontal ameraplane is pursued in the following as it establishes a one-to-one orrespondene between theplanar robot motion and feature veloities, whih failitates the visual ontroller design.The transformed feature oordinates [uV , vV , 1]
T are ontrol variables of the robot motion



54 4.4 Visual navigation ontrolTable 4.2: Control sheme for visual navigation on virtual amera plane by image moments.1. Estimation of homography Ĥ on the horizontal virtual amera plane and deom-position of Ĥ (f. equation 2.7) into rotation R and robot rotation ∆ΘR.2. Alignment of the image features on the the horizontal virtual amera plane
[uV , vV , 1]

T with the image features in the referene view aording to:
[

uV

vV

]

=

[

cos(∆ΘR) − sin(∆ΘR)

sin(∆ΘR) cos(∆ΘR)

] [

uV
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]

. (4.16)3. Calulation of image moments for
fx =

∑n
i=1 uV (i)

n
, fz =

∑n
i=1 vV (i)

n
. (4.17)4. De�nition of image error for

∆fΘ = ∆ΘR, ∆fx = frefx − fx, ∆fz = frefz − fz. (4.18)5. Calulation of behavior output:B1 Behavior for longitudinal alignment
vRLeftB1

= vRRightB1

= ∆fz
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. (4.19)B2 Behavior for orientational alignment
vRLeftB2

= −∆fΘ

∣

∣

∣

∣

∆fΘ
∆fx∆fx

∣

∣

∣

∣

, vRRightB2

= −vRLeftB2

. (4.20)B3 Behavior for lateral alignment
vRLeftB3

= vRRightB3

= −
∆fx∆fΘ
|∆fz∆fz|

. (4.21)B4 Behavior for lateral alignment
vRLeftB4

= −sign(fz)
∆fx
∆fΘ

∣

∣

∣

∣

∆fx
∆fΘ

∣

∣

∣

∣

, vRRightB4

= −vRLeftB4

. (4.22)6. Motor ommand fusion vRLeft,Right
=

∑4
i=1 vRLeft,RightBi

.ontroller as well as the gaze ontroller. The overall ontrol sheme for visual navigation ona virtual amera plane by image moments is detailed in table 4.2. The rotation ∆ΘR of the



Chapter 4 Visual navigation of mobile robots 55robot around its vertial axis between the referene view and the urrent view is estimatedby the deomposition of the homography Ĥ. Furthermore, this deomposition also yieldsthe diretion vetor between the views. However, this information is not su�ient forimage-based ontrol of the robot motion, as the diretion vetor is only de�ned up to asale. First the urrent virtual amera plane is bak rotated by ∆ΘR. The entroid isalulated by means of the rotation orreted pixel oordinates, whih are linearly relatedto the longitudinal and lateral displaement of the robot relative to the goal pose. Theimage moments fx and fz are desribed by the entroid omponents. The image errors
∆fΘ,∆fx,∆fz are de�ned by equation 4.18. The deoupled image moments alulatedfrom orresponding features in the urrent and referene view and the orresponding imageerrors ontrol the motion of the robot in three degrees of freedom. The transformation ofthe free motion onto the two loal degrees of motion of the robot is realized by fusion ofthe motor ommands issued by four onurrent behaviors. The behavior representationas well as the navigation behavior resulting from the fusion of the individual behaviors isdesigned to �rst eliminate the error of the lateral position. The ommanded wheel veloities
vRLeft

, vRRight
are omputed by the aggregated reommendations of the behaviors. Figure

behavior B1 behavior B2 behavior B3 behavior B4Figure 4.5: Situational behaviors for visual servoing. Dark areas and thik lines orrespondto robot on�gurations with dominant behavior ativation. White arrows indiate the or-responding ation proposed by the behaviors in the respetive on�guration. The intensityof the grey values indiate the level of ativity aording to longitudinal and lateral o�set.4.5 illustrates the operation mode of the four situational behaviors for visual servoing of anon-holonomi robot. Behavior B1 ompensates the longitudinal error assuming that thelateral and angular errors have been ompensated beforehand. The orresponding visualfeature ∆fz for the longitudinal motion is saled by the inverse gain ∆fx∆fΘ. For smallresidual errors in ∆fx and ∆fΘ the robot approahes the goal position straight on asindiated in the left image for behavior B1 of �gure 4.5. In priniple the robot ould alsodrive bakwards to the goal position. The seond behavior B2 regulates the orientationand thereby the wheel veloities of the robot as a funtion of the rotational and lateralerror. It orrets the orientation of the robot in situations in whih the lateral error isalready ompensated. Behaviors B3 and B4 are for ompensating the lateral error. Thethird behavior triggers in ase of a lateral displaement and remains dominant as long asthe longitudinal error remains small. Behavior B4 turns the robot in order to ompensate



56 4.4 Visual navigation ontrolthe lateral error. This is essential as the robot annot drive towards the goal position if itsurrent orientation oinides with the goal diretion in ase of a lateral displaement. Theresponses of the four behaviors are aggregated into a total response in order to obtain thewheel veloities. If the ommanded wheel veloities are outside the admissible range, theveloities are redued in a proportional manner.4.4.3 Control with homographyAnother promising approah for the navigation ontrol instead of using primitive visualbehaviors based on image moments is the estimation and deomposition of the homography(f. hapter 2.1) between the features in the virtual horizontal amera plane, i.e. in thereferene view as well as in the urrent view. The redued degrees of freedom of themobile robot simplify the deomposition of the homography onsiderably as the estimatedhomography obeys additional onstraints. The overall ontrol sheme for visual navigationon a virtual amera plane by homography is detailed in table 4.3. The linear ontrol lawis expressed as a funtion of the polar oordinates ρ and α as well as the orientation error
∆ΘR of the robot between the urrent and goal position whih is diretly extrated fromthe partial pose estimation of the homography. As the homography deomposition yieldsa saled translation vetor whih beomes unreliable for ρ = 0, ρ is saled by a deviationfrom the pixel oordinates in the atual and referene view. tx and tz are the elements ofthe translation vetor t = [tx, tz]

T from the deomposition of the homography. ûvcog and
uvcog denote the entroid of the u-oordinates of the referene and urrent view expressedin the horizontal virtual amera plane after the feature rotation about ∆ΘR. Similarly,the entroid of the v-oordinates is denoted by v̂vcog and vvcog. The motor ommand fusionfrom equation 4.14 is adapted to the information extrated from the homography in thehorizontal virtual amera plane. The stability for the ontrol is guaranteed by a properhoie of the proportional ontrol parameters aording to [6℄.4.4.4 Experimental results(a) Large view visual servoing with a pan amera: In the experiments the non-holonomi robot navigates between rooms in order to reah a harging station as it traksa sequene of properly loated visual landmarks. To ahieve this task, the robot has toexit the initial room, travel along the orridor and �nally enter the room with the dokingstation as shown in �gures 4.6 and 4.7. Governed by the visual servoing sheme the realrobot suessfully ompletes the mission in several experiments. The robot doks to thebattery harger unit with a lateral auray of less than two entimeters, whih is aurateenough to establish eletrial ontat between the robot's and the harger's ontats. Thesame mission is ompleted with two di�erent amera on�gurations and ontrol shemes.The �rst experiment runs with a standard visual servo ontroller and a stati amera



Chapter 4 Visual navigation of mobile robots 57Table 4.3: Control sheme for visual navigation on virtual amera plane by homography.1. Estimation of homography Ĥ on the horizontal virtual amera plane and deom-position of Ĥ (f. equation 2.7) into rotation R and translation T.2. Calulation of the rotational ontrol by extrating the rotation of the robot aroundits vertial axis ∆ΘR from R.3. Calulation of polar oordinate α :
α = arctan(tz/tx). (4.23)4. Calulation of saled polar oordinate ρ :

ρ =
√

(tx(ûvcog − uvcog))2 + (tz(v̂vcog − vvcog))2. (4.24)5. Motor ommand fusion using the the gains k1, k2 and k3:
vR = k1ρ, ωR = k2∆ΘR + k3α. (4.25)aligned with the diretion of motion. The seond experiment takes advantage of the gazeontrol of the pan-tilt amera and relies on the visual navigation on the virtual ameraplane by Jaobian. The same mission is aomplished with fewer landmarks that are moreonveniently mounted to the orridor walls and a smoother trajetory. Figure 4.6 shows theposition and orientation of visual landmarks and the path followed with the standard visualservo ontroller desribed by [70℄. As the translational and rotational veloities are oupledand, more important, amera and robot heading are aligned, the robot is only able to movediretly towards a visual landmark at an angle of 90◦ between feature plane and ameraaxis. The mission is aomplished with seven properly distributed landmarks but partiularin the orridor setion for landmarks 2-5 the resulting path is jagged and suboptimal. Inorder to traverse the orridor it is neessary to install extra boards inside the orridor toaommodate landmarks three and �ve. For servie roboti tasks suh manipulation ofthe environment is not aeptable as visual navigation should be only based on landmarksthat our naturally in the environment. Figure 4.7 shows the landmark loations androbot path for the visual ontroller with gaze ontrol. With only six landmarks the robottravels along the shortest path in the enter of the orridor. In ontrast to the �xed amerasenario, additional landmarks along the orridor beome obsolete. The amera ontrolswithes to the next landmark one the visual ontrol onverges to the previous refereneimage. Figure 4.7 depits the referene positions for landmark three and four, referred toas referene position three and four. Although landmark four is longitudinally ahead ofthe robot's start pose (referene position three), the landmark four is behind the refereneposition four, whih is ahieved by a wide-angle amera traking of the landmark. Furtherresults regarding the positioning performane are provided in [105℄.Even though these experiments are based on arti�ial templates, the following major ad-
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Figure 4.6: Suboptimal robot trajetory due to the limited �eld of view and inonvenientloation of landmarks.vantages of the visual servoing sheme with virtual amera plane are proven:
• Visual paths require fewer landmarks, espeially useful for sparse textured areas.
• Redued risk of loosing features during ontrol.
• Motion parallel with respet to the feature plane is feasible.(b) and () Large view visual servoing with a pan-tilt amera and omnivision:In order to ahieve visual navigation in unstrutured environments, the navigation ontrolon the virtual amera plane by image moments and by homography is applied to real worldrequirements. Therefore features and referene views are extrated from the texture of theo�e environment and integrated into the topologial map from setion 3.1. Contrary tomany approahes in literature the proposed sheme requires no onnetivity of the perspe-tive referene views, but solely the onnetivity of the features in the omnidiretional views.This proedure is more �exible and robust, as omnidiretional pereption guarantees thevisibility of existing texture aross a large region of the workspae.The planning layer automatially generates a topologial map in form of a direted graphfrom omnidiretional views aptured during the demonstration run. This map subsequentlyserves for loalization and path planning as well as for dynamial seletion of the urrentoptimal referene view for image-based navigation. Eah node ontains apart from theomnidiretional view also the monoular referene image for loal navigation. The planninglayer generates a sequene of referene views with overlapping ombinations of features inthe omnidiretional views, leading from the urrent to the goal view in the image andworkspae. During navigation, in ase of su�ient feature visibility of the next waypoint,the image-based ontrol swithes to the next monoular referene view, thus allowing forglobal navigation of the robot. The dynami swithing to the subsequent visible monoularreferene view is ahieved by the orresponding features stored in the omnidiretional
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refereneposition 3 refereneposition 4Figure 4.7: Desirable robot trajetory by e�ient exploitation of visual landmarks.view from whih also the initial angle for the PTZ amera is alulated. The image-based navigation and loalization operates with distint spei� SIFT features. Figure4.8 illustrates the evolution of the quality of features in several referene views for a loalsetion of the navigation graph. The quality of a monoular referene view is determinedby the number of available features as well as their ontinuing visibility along a longerpath. The dynami seletion of the most favorable referene view for the urrent situationis arried out by means of the two spei�ed riteria.Figure 4.9 shows the harateristis of visual navigation on horizontal virtual amera planefor the referene views CV3 and CV8 that are extrated by means of the feature distributionin �gure 4.8. The initial ompensation of the lateral error and the subsequent alignmentof the robot by means of the ontext depending behaviors is evident. Initially the robotis disloated by an o�set of 50 m laterally and 3m longitudinally to the goal position.After 2m the next set of features is deteted in the omnidiretional view and the ontrolswithes to the next referene image. The residual position error is about 5 m along bothspatial diretions. The approahes for visual homing (b) and () on the virtual horizontalamera plane exhibits a similar performane as the approah introdued beforehand withnavigation on a vertial virtual amera plane with Jaobian. The insights for visual homingas the results of this work under the assumption of planar surfaes in o�e environmentsan be summarized as follows: The virtual amera plane allows for deoupled navigationand gaze ontrol. E�ient exploitation of existing texture by omnidiretional preseletionof monoular referene views in onjuntion with the virtual amera plane enables visualhoming within unstrutured environments with minimal texture without the urge of 3Dmodelling. The limited �eld of view of the pan-tilt is ompensated by the omnidiretionalamera, whereas the low resolution of the omnidiretional is avoided by the pan-tilt amera.Dynami environments with natural texture are dealt with by generi representation ofmoments as well as loal feature extration suh as SIFT, ORB or SURF (f. setion 2.2).
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Figure 4.8: Quality of referene views generated from traked feature entroids over partof the sequene of omnidiretional image navigation nodes.4.5 Comparison of vision guided and visual navigationVisual reative behaviors for homing, entering, door passing and obstale avoidane aresuessfully designed and implemented equivalently to behaviors based on distane in-formation. In order to ahieve goal-oriented visual navigation in an o�e environmentthe visual behaviors door passing and visual homing are integrated into the subsumptionarhiteture as previously desribed in �gure 3.6.Figure 4.10 details the image-based navigation with the topologial map of the depart-ment's o�e environment inluding the visual nodes and edges of the graph in the upperhalf and the de�nition of the three di�erent types of visual nodes in the lower half. Thetopologial representation is analogous to �gure 3.1 and the desription in setion 3.1, how-ever, with the important di�erene that the stimuli for the reative behaviors are solelyprovided by the visual pereption. The lower layers of the subsumption arhiteture areadapted aording to the type of the next node instruted by the planning layer. Aord-ingly for the orridor node the behaviors are ordered in priority from the highest layer tothe lowest: turn around, obstale avoidane, visual homing and orridor entering, thusallowing for traversal of the orridor regions with minimal texture as the orridor enteringrequires signi�antly less texture than the visual homing. In the standard orridor senariothe robot is driven by visual homing, whih subsumes the orridor entering, as long as the
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Figure 4.9: Visual homing for referene views CV3 and CV8 from �gure 4.8.obstale avoidane is not ativated by nearby objets in front of the robot (f. �gure 3.6).The loalization with omnivision runs parallel in order to monitor the exeution of theplan by the oordination layer. For reahing the door node, only the door passing as wellas a modi�ed obstale avoidane behavior are required. The modi�ation of the obstaleavoidane for the door node is mandatory, suh that the door posts represent no obstalesfor the robot. The third visual node handles room senarios, whih require turn around,obstale avoidane and visual homing, stated again from the highest to the lowest layerof the subsumption arhiteture. As expeted from the individual evaluation of the visualbehaviors, visual navigation suessfully ful�lls its objetives during the experiments in theo�e environment.In regions with su�ient visual lues both stimuli, vision and distane, demonstrate asimilar performane. Nonetheless the overall visual navigation is subjet to the sameshortomings as desribed in setion 3.3.3 aused by textureless environments whih provideno stimulus for obstale avoidane and turn around behavior. Compared to the results insetion 3.3.3 the orridors are now traversed on a straight line in the same manner as shownin �gure 4.7 beause the homing behavior subsumes the orridor entering. The ritialsituations suh as stati (potentially textureless) obstales and triky orner situationshandled by the turn around behavior and imposed on the robot in the experiments in theprevious setions do not our during the experiment as the goal-oriented navigation avoidsthese situations beforehand during the graph generation. The experiments larify thatvisual stimuli alone are not su�ient to apture all relevant aspets of the environment forrobust navigation mainly due to large textureless o�e regions. These regions are identi�edby means of the on�dene in the optial �ow and avoided by the turn-around behavioreven if they are traversable. Therefore the vision guided navigation outperforms the visualnavigation in these partiular ases. Nonetheless a proper fusion of visual stimuli with sonar



62 4.5 Comparison of vision guided and visual navigationmeasurements onstitute an eonomi alternative to laser sensors for robot navigation.The visual stimuli of the turn around behavior are replaed by sonar measurements or arediretly fused with the on�dene rated time to ontat.

a) Navigation overview with room, door and orridor nodes.
b) Room node: loalization obstale avoidane visual homing.
) Door node: door passing obstale avoidane.
d) Corridor node: loalization obstale avoidane orridor entering visual homing.Figure 4.10: Image-based navigation (analogous to �gure 3.1, but with vision as stimuli).



Chapter 5
Loal visual servoing with generi imagemoments
This hapter introdues a novel 6 DOF visual servoing sheme for end-e�etor to objetalignment that relies on the pixel oordinates, sale and orientation of augmented pointfeatures suh as SIFT. The visual servoing sheme for augmented features enables the use ofa large variety of loal feature extrations suh as ORF, SURF, or GLOH (f. setion 2.2).The ontrol is based on geometri moments omputed over a dynami set of redundantaugmented feature orrespondenes between the urrent and the referene view [64℄. Themethod is generi as it does not depend on a geometri objet model but automatiallyextrats augmented features from images of the objet. The foundation of visual servoingon generi augmented features renders the method robust with respet to loss of redundantfeatures aused by olusion or hanges in viewpoint. The moment based representationestablishes an approximate one-to-one relationship between image moments and degreesof motion [109℄. This property is exploited in the design of a deoupled ontroller thatdemonstrates superior performane in terms of onvergene and robustness ompared withan inverse image Jaobian ontroller.The presented work follows the paradigm of deoupled image moments extending the ideaspresented in [143℄ to overome the known shortomings of visual servoing shemes statedin setion 2.4, f. [24, 70℄. Visual servoing with deoupled image moments falls into theategory of "partitioned visual servo" aording to the nomenlature of [25℄. The proposedapproah guarantees a sensitivity matrix with fewer o�-diagonal ouplings as shown in [143℄or [145℄ for unalibrated visual servoing, even for markerless visual servoing by expliitlyexploiting the additional information ontained in augmented features suh as SIFT. Usingexpliitly the omplete information of the feature extration for the �rst time the proposedsolution for deoupled visual servoing di�ers also signi�antly from other known approahes[26, 33, 120℄ explained in detail in setion 2.4.63



64 5.1 Augmented point featuresThe hapter is organized as follows: Setion 5.1 de�nes augmented point features, whihinlude the pixel oordinates ui and vi, the anonial orientation of the keypoint φi andsale σi for a single feature fi. The automati feature identi�ation is essential for properonvergene of the visual ontrol towards the referene view. Setion 5.2 explains theaggregation of the augmented point features into image moments for visual servoing. Aorrelation analysis between the image moments and degrees of motion based on the orre-sponding image Jaobian is provided to establish their approximate one-to-one relationship.Setion 5.3 presents visual servoing in 4 DOF and setion 5.4 in 6 DOF with augmentedpoint features. In setion 5.5 visual servoing on a virtual amera plane is desribed as analternative. The hapter is summarized with an evaluation and onlusion in setion 5.6.
5.1 Augmented point featuresA single augmented point feature fi suh as SIFT ontains four attributes, namely thepixel oordinates ui and vi, the anonial orientation of the keypoint φi and its sale σi.In the following, the desired appearane of augmented features in the referene position isdenoted by frefi = [urefi, vrefi, φrefi , σrefi] and the urrent augmented features are denotedby fi = [ui, vi, φi, σi]. Sale and keypoint orientation are ideal to ontrol the distane tothe objet and the rotation around the amera axis as they are at large insensitive totranslation and rotation along the other axes [64℄.In the following the auray of the rotation estimate and its robustness is analyzed withrespet to hanges in viewpoints aused by amera rotations along the other axes usingSIFT as augmented point features. The amera is rotated around the optial axis overthe entire range -180◦ to 180◦. The distribution of the error between the estimated meanomputed over all SIFT features and the true rotation is shown in �gure 5.1. The graphshows the distribution of the error εγ aross the 128 rotation steps. The mean absolute erroramounts to |εγ| = 0.52◦ and the standard deviation σγ of the error distribution εγ is about0.4◦. Notie, that the absolute error in the estimated orientation is smaller for rotationslose to the referene orientation whih eventually determines the residual orientation errorfor the visual ontrol. This auray in orientation is on�rmed in the losed-loop ontrolvisual servoing experiments. The average keypoint orientation oinides with the ameraorientation, whih guarantees a unique minimum and the stability of visual ontrol of
γ. Even if the image and feature plane are not parallel the perspetive distortion of theSIFT feature aused by a amera rotation along an orthogonal axis hardly deterioratesthe rotation estimate whih still aurately aptures the amera orientation. Table 5.1shows that orthogonal rotations along α only have a minor e�et. Rotations of more than
30◦ ause a�ne deformations for whih the SIFT keypoint desriptors in di�erent viewsare no longer ompliant. For rotations of up to 30◦ the mean absolute error inreases to
|εγ| = 1.13◦ whih is still aurate enough for the appliation at hand.
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Figure 5.1: Estimation error for γ aross absolute orientations from -180◦ to 180◦.Table 5.1: Error of the rotation estimate as a funtion of amera rotation ∆α along theorthogonal axis. (All units in ◦.)
∆α 0 5 10 15 20 25 30
|εγ| 0.52 0.26 0.36 1.05 0.88 0.92 1.13
σ 1.13 1.50 1.10 2.60 3.11 3.44 4.59Figure 5.2 depits the variation of sale σ for typial SIFT features as a funtion of thedistane z between the objet and the amera. The sale of SIFT features is given by k

z
.The onstant gain k depends on the foal length of the amera multiplied by the initialsale of the feature.SIFT features in the urrent image are mathed with their orresponding referene fea-tures in the goal image by omparison of their distintive keypoint desriptors. Keypointdesriptors of the same feature in di�erent views are, although similar, not exatly iden-tial, whih might result in false orrespondenes between features. In addition a SIFTfeature present in the referene image might not appear in the urrent image and vieversa. Therefore, the objetive of the automati feature seletion is to establish reliableorrespondenes between the same features that are robust aross di�erent views in orderto avoid false orrespondenes. Candidates for stable and unambiguous SIFT features areidenti�ed aording to the following riteria:

• similarity
• angular riterion
• epipolar onstraintThe list of andidate referene features is omposed of all features originally deteted in thegoal image. Feature seletion proeeds in three stages, of whih the �rst two stages operateo�ine and rejet features in the referene image, whereas the last online stage analyzes
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Figure 5.2: Sale versus distane.the features in the urrent image. The �rst stage only ompares SIFT features in thereferene image with eah other. Similar SIFT features that strongly resemble eah otherare immediately rejeted to avoid later onfusion among them. In the seond stage SIFTfeatures are mathed aross multiple views taken from di�erent amera poses distributedaross the entire workspae. In this ase those referene keypoints are rejeted for whihthe mathed keypoint violates the angular riterion and the epipolar onstraint. In thethird online stage, the angular riterion is applied one more to the features deteted in theurrent image. Only those features that pass all of the above tests are �nally onsideredwithin the visual ontrol sheme.
5.2 Generi moments5.2.1 Moments for rotationA amera rotation around its optial axis by γ indues an inverse rotation of equal mag-nitude of the keypoint orientations φi. The averaged keypoint rotation fγ regulates the
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fγ =

1

n

n
∑

i=1

φi. (5.1)The point features ui, vi are �rst aligned with the amera orientation in the refereneview aording to the observed feature fγ. The orretion along γ is therefore de�ned as
∆fγ = frefγ − fγ . The visual features are rotated by ∆fγ suh that the urrent featureloations ui and vi are aligned with the amera orientation in the referene view. The newfeature loations u′

i and v′i are determined as follows:
[

u′
i

v′i

]

=

[

cos(∆fγ) − sin(∆fγ)

sin(∆fγ) cos(∆fγ)

] [

ui

vi

]

. (5.2)In the following the orreted pixel oordinates u′
i and v′i are used for the omputation ofthe remaining image moments and for better omprehensibility are denoted as ui and vi. Inorder to ontrol the rotations around α and β two additional image moments orrespondingto the rotations about the x- and y-axis, fα and fβ, are de�ned. The image moments fαand fβ apture the perspetive distortions of lines onneting pairs of features aused byrotations:
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∥
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, (5.3)
fβ =
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∑
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∑
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(−urefi − urefj )
∥
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∥

∥

∑n
k=1
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. (5.4)The term ∥

∥pj − pi

∥

∥ denotes the length of the line onneting the two pixels:
∥

∥pj − pi

∥

∥ =
√

(ui − uj)2 + (vi − vj)2, (5.5)whih are weighted by the fator (−vrefi−vrefj). Its sign indiates whether the line is aboveor below the u-san line through the amera's prinipal point. The absolute magnitude ofthe weight inreases with the vertial distane from the image enter. The image moment
fβ represents the equivalent e�et of dilations and ompressions of lines aused by rotationsalong the y-axis. Figure 5.3 illustrates the e�et for a square on�guration of four featurepoints that form six lines. Figure 5.3 a) depits the image of the square for parallel featureand image plane, whereas in �gure 5.3 b) the image with the amera is tilted around the x-axis and the shift along the y-diretion is ompensated. The distortion inreases the lengthof line 1 and simultaneously dereases the length of line 3. This dilation and ompressionof lines is aptured by the equation 5.3.
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Figure 5.3: Perspetive distortion aused by amera tilt α aptured by the image moment
fα.5.2.2 Moments for translationThe translation along the amera axis is governed by the image moment fz de�ned as theaverage sale of the augmented features:

fz =
1

n

n
∑

i=1

σi. (5.6)Alternatively fz an be expressed as the distane between point features aording to:
fzd =

∑n
i=1

∑n
j=i+1

√

(ui − uj)2 + (vi − vj)2

n
2
(n− 1)

, (5.7)that aptures the average sale of the sene in a similar manner. Nonetheless omputingthe image moment for z from the distane between point features fzd is not invariant withrespet to perspetive distortions aused by rotations along the other two axes. There-fore, the inherent sale of augmented features de�ned by fz is preferred to the alternativede�nition fzd.The moment based ontroller in [64℄ operates with the geometri entroid of point featuresfor regulating translations along the x- and y-axis. The image moments are de�ned by theentroid of mathed features aording to:
fx =

1

n

n
∑

i=1

ui, fy =
1

n

n
∑

i=1

vi. (5.8)However, the geometri entroid primarily aptures the horizontal translation of the am-era, but su�ers from a sensitivity to motions along the remaining degrees of freedom,espeially from motions in z, α and β.



Chapter 5 Loal visual servoing with generi image moments 69In the following the image Jaobian Jfx,fy under the assumption of prior bakrotationaround the optial axis is derived in order to analyze the remaining ouplings (f. appendixB). The entroid feature [fx, fy]T behaves similar to a virtual point feature and the Jaobianis obtained by averaging the individual point feature Jaobians stated in [70℄:Jfx,fy =
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, (5.9)in whih λ denotes the foal length and z denotes the distane between the amera andthe feature plane. The main di�erene with respet to a point feature is the simplifyingassumption that all augmented features share approximately the same depth z. Thisassumption is reasonable as long as the depth of the sene is small ompared to the distaneto the amera (weak perspetive projetion).The visual features fx and fy apturing translations along the x- and y-axis are expressedas the weighted aggregation of the mathed feature loations [109℄:

fx =

n
∑

i=1

wiui, fy =

n
∑

i=1

wivi. (5.10)By proper seletion of the weights wi attributed to individual point features [ui, vi] it ispossible to deouple fx, fy from the remaining degrees of freedom. With this objetive inmind the image moments fx and fy are supposed to only depend on vx and vy, respetively.Deoupling for 4 DOF: The following analysis for the proper dynami weight fouses onthe element J̃fx,z related to the u-omponent. J̃fx,z de�nes the non-linear oupling of thefeature motion in dependene on task spae motions in z. Notie, that for the deouplingof the visual feature fy the same methodology is applied only using vi instead of ui. Theundesired o�-diagonal element of the sensitivity matrix J̃fx,z is eliminated if the dynamiweights wi satisfy the onstraint:
J̃fx,z =

n
∑

i=1

wi
−ui

z
= 0. (5.11)For an arbitrary set of point features [ui, vi], this onstraint is violated for the geometrientroid alulation with equal weights wi = 1/n. In order to maintain the similarity withthe onventional entroid a minimal variation∆wi of the original weights wi = 1/n+∆wi isendeavored that satis�es the onstraint. This optimal variation is obtained by minimizingthe following ost funtion in onjuntion with a Lagrange multiplier λ1:
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wiui. (5.12)



70 5.2 Generi momentsIn order to solve the optimization problem the partial derivative of equation 5.12 withrespet to wi and the Lagrange multiplier λ1 are omputed as:
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wiui = 0, (5.13)whih in turn yields the least squares solution:
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n
. (5.14)Intuitively, the weight of features whose pixels possess the opposite sign as the geometrientroid ū =

∑

i ui/n is inreased, whereas those with the same sign are down-weighted.Notie, that by de�nition the weighted entroid is always loated at the origin of theurrent image, thus fx = fy = 0. However, the referene features frefx =
∑

i wiurefi and
frefy =

∑

iwivrefi are no longer onstant, but depend indiretly on the urrent image viathe dynami weights wi and are therefore impliitly suseptible to motions along multipledegrees of freedom. In order to verify the deoupling of the weighted visual features fx and
fy from a motion vz, it is neessary to show that the weights for an idential set of featurepoints remain indeed independent of the distane z. The following onsiderations assumethat the image plane is oriented parallel to the feature plane. The perspetive projetionof a world point on the image plane is given by ui = xi

λ
z
, whereas the same point displaedby ∆z is projeted to ui,∆z = xi

λ
z+∆z

. Assuming that the weights wi ful�ll the onstraint
n
∑

i=1

uiwi, the weighted sum of the feature points u′
i at distane z +∆z is thus given by:
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ui,∆zwi =
z

z +∆z

n
∑

i=1

uiwi = 0. (5.15)Due to fat that z
z+∆z

is a proportional fator ommon to all features, the optimal weightsfor the �rst set of feature points also transform the virtual entroid of the seond set offeature points to zero. Nonetheless, the weights are e�etively down-saled by the fator
z

z+∆z
. In order to render the weights themselves and not only the entroid independent ofthe distane z, the weights are normalized aording to:

wi,norm = wi
1

n

n
∑

k=1

|wk|. (5.16)Assuming that the weighted sum of the feature points is initially zero for the refereneview, the weights wi,norm transform the virtual entroid of every other view to the imageenter independent of the distane z (f. [109℄). Figure 5.4 depits two projetions of the



Chapter 5 Loal visual servoing with generi image moments 71same features, in whih the orresponding viewpoints di�er by a displaement ∆z. Theweights wi are optimized aording to the �rst set of feature points, but are also applied toweight the seond set. Both virtual entroids are loated in the image enter even thoughthe weighted feature points for the two sets di�er. The example demonstrates that neitherthe weights nor the visual features fx and fy hange with a amera motion along z. Notie,that in the weighted sheme the role of urrent and referene features is reversed. Typially,the referene features are onstant and the urrent features hange with the motion of theamera. However, in the weighted sheme the urrent entroid (fx = 0, fy = 0) is onstantper de�nition and always oinides with the prinipal point due to equation 5.11. Insteadthe referene features frefx , frefy hange over time as the weights wi hange with the urrentview, even though the point features urefi, vrefi themselves are onstant.
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Figure 5.4: Virtual entroid for two sets of feature points at di�erent distanes betweenamera and feature plane.Figure 5.5 depits the image projetions of the onventional and weighted entroid u-omponents' view as a funtion of the lateral task spae error ∆x. The two horizontallines orrespond to the onstant onventional referene entroid and the onstant weightedurrent entroid u-omponents. In this example, the referene image is deliberately hosensuh that the majority of features is loated in the right half plane. Therefore, the onven-tional entroid is shifted along the u-omponent by 120 units from the prinipal point. Theurrent onventional entroid depends linearly on the lateral error and intersets the refer-ene entroid for a zero lateral error ∆x = 0. However, the o�set and slope depend on thelongitudinal distane between amera and feature plane. Current and referene featuresinterhange their role for the weighted sheme, in that the former remains onstant andthe later hanges with the lateral error in a non-linear fashion. In this ase the dependenyof the entroid on the lateral error remains the same independent of the longitudinal poseerror in z. Again, the referene and urrent entroid interset for zero lateral error. Even



72 5.2 Generi momentsthough the slopes for the weighted and onventional entroid exhibit opposite signs, theatual image error frefx − fx has the same sign for both shemes. Figure 5.5 also reveals aslight asymmetry of the weighted referene entroid for positive and negative lateral errors.For large positive lateral errors the image error even inreases slightly with dereasing lat-eral error. This asymmetry is aused by the inhomogeneous distribution of point features
ui, whih in turn e�ets the adaptation of the weight fators through equation 5.14. Itshould be noted, that the asymmetry and slope inversion do not e�et the stability oronvergene of the visual ontrol and only our if the point feature distribution in thereferene image is signi�antly skewed.
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Figure 5.5: Centroid u-omponent as a funtion of the lateral error for the onventionaland weighted entroid in the urrent and referene view.Deoupling for 6 DOF: The aim is to extend the deoupling to visual servoing for 6DOF. This requires that the features fx and fy do not only beome independent on themotion vz but also on the rotations ωα and ωβ. Again, the onstraints emerge from ananalysis of the Jaobian in equation B.1. The optimization problem for deoupling thevisual feature fx from the motions vz and ωα aording to the Jaobian in equation 5.3 isstated as follows:
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wiuivi. (5.17)Theoretially, it is possible to anel the omponent n
∑
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wi (λ
2 + u2

i ) of the Jaobian re-lated to the motion ωβ as well. If this additional onstraint is inluded, the minimizationproblem in equation 5.17 is algebraially still solvable (f. appendix B). Unfortunately,the inlusion of this onstraint substantially redues the sensitivity of the feature fx withits assoiated motion vx, resulting in a deterioration of the visual ontrol. Therefore, the



Chapter 5 Loal visual servoing with generi image moments 73weight optimization problem only inludes onstraints for the anelation of elements J̃fxαand J̃fyβ in the sensitivity matrix based on the image Jaobian in equation 5.21. The ostfuntion F is partially di�erentiated with respet to wi and the Lagrangian multipliers λi:
∂F

∂wi
= wi −

1

n
+ λ1ui + λ2uivi,

∂F

∂λ1

=
n

∑

i=1

wiui,
∂F

∂λ2

=
n

∑

i=1

wiuivi. (5.18)Changing to vetor notation by substituting k = [ 1
n
, . . . , 1

n
], u = [u1, . . . , un] and p =

[u1v1, . . . , unvn] a set of linear equations is obtained: w+λ1u+λ2p = k, with the onstraints
wuT = 0, wpT = 0. In order to determine the Lagrangian multipliers, the weights w areeliminated by multiplying with the transpose of u and p. This results in a system of linearequations, whih an be solved in losed form:

[

uTu uTp

pTu pTp

] [

λ1

λ2

]

=

[

uTk

pTk

]

. (5.19)The orresponding weights of the point features are determined as w = k−λ1u−λ2p andare subsequently normalized aording to equation 5.16.5.2.3 Coupling analysis of the sensitivity matrixThe image Jaobian for the visual feature fα is given byJfα =

∑n
i=1

∑n
j=i+1

pijvrefijλ√
8z2

[

0 0 −2λ
z
−vij +uij

]

∑n
k=1

∑n
l=i+1 ‖pk − pl‖

, (5.20)in whih vij = (vi−vj)/2, uij = (ui−uj)/2 , vrefij = (vrefi +vrefj )/2, urefij = (urefi +urefj )/2and the length pij = ‖pi − pj‖. In the Jaobian for the analogous visual feature fβ the u-and v-omponents are interhanged. The resulting full 6 DOF Jaobian matrix (sensitivity)exhibits the following blok struture:
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ḟy
ḟz
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. (5.21)
However, some residual ouplings remain through the non-zero o�-diagonal elements (J̃fx,β,
J̃fy,α, J̃fα,β, J̃fβ ,α) in the Jaobian. These terms apture the e�et of a rotation α alongthe x-axis on the motion of the v-omponents of point features, and vie versa a rotation βalong the y-axis on the u-omponent. The omplete analysis of the sensitivity matrix is inappendix B and a summary of visual servoing with generi image moments in table B.1.



74 5.3 Positioning in 4 DOF with augmented point features5.3 Positioning in 4 DOF with augmented point featuresDetermining optimal ontrol parameters for the image-based ontroller is not so easy to a-omplish with onventional methods of ontroller generation suh as LQR design due to thelak of an objet model, model unertainties of image proessing and non-linearities of theontrol path. A su�iently exat model of the losed-loop ontrol, onsisting of robot andimage proessing and onsidering dynamial properties of the manipulator, alibrations,variable lateny time and pixel noise as well as the non-linear dependene of the image fea-tures on the amera pose, an only be generated with large e�ort and results in a omplexand domain-omprehensive model. Thus, an approah for automati hardware-in-the-loop(HIL) optimization of the image-based ontroller gains by evolutionary optimization is in-trodued. In the following �rst the determination of ontrol parameters and suessivelythe experimental results are presented.5.3.1 Controller optimizationThe moments for rotation and translation along the amera axis for 4 DOF visual servoingorrespond to the image moments introdued in equation 5.1, 5.6 and 5.8. Notie that inthe �rst step the oupled image moments fx and fy are employed as this is the most omplexase resulting in the following sensitivity matrix given in equation 5.22. For 6 DOF visualservoing with deoupled image moments only four o�-diagonal ouplings remain. Later onthe optimal ontrol parameters for the deoupled moments in 6 DOF using the de�nitionin equation 5.10 are determined in the same manner.
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(5.22)The losed-loop ontrol system onsists of the oupling of four deoupled PD ontrollers:
[vx, vy, vz, ωγ]

T = [kx, ky, kz, kγ]
T [∆fx,∆fy,∆fz,∆fγ]

T + (5.23)
[kDx, kDy, kDz, kDγ]

T [∆ḟx,∆ḟy,∆ḟz,∆ḟγ ]
T ,whereas kDx, kDy, kDz and kDγ denote the gains of the D (di�erential) parts. An integralpart in the ontrol path is omitted due to the integrating nature of the plant.The ontrol quality and stability of the image-based ontrol as well as the harateristisof the image features are determined by the seletion of the ontrol parameters of the PDontroller. The initial ontrol parameters are obtained manually or by means of simpli-fying dynami �rst order models. Subsequently an automati hardware-in-the-loop (HIL)



Chapter 5 Loal visual servoing with generi image moments 75optimization of the image-based ontroller is performed by evolutionary optimization tak-ing into aount several performane riteria. The term "evolving hardware" denotes amethodology onneting evolutionary algorithms with the design and optimization of me-hani and eletroni systems [89℄. In the ontext of HIL optimization of image-basedontrollers time-onsuming evaluation of ontrollers on the experimental system proves tobe problemati, as they need to onsult several motions from initially di�erent robot posesin order to guarantee su�ient robustness for overing the omplete workspae. If evolu-tionary optimization proedures are applied in this ontext, the available time frame forthe �tness evaluations has to be exploited as e�iently as possible.Thus, the proposed approah utilizes a model-based evolution strategy whih initially eval-uates all generated o�spring by means of an online-learned �tness model [62℄, suh thatonly the most promising andidates aording to the estimated �tness are subjet to theatual �tness evaluation on the real robot. Aording to the model-assisted evolutionstrategy (MAES) out of the λp o�spring reated within a generation only the estimated λemost promising andidates undergo the real test [149℄. From those the µp best solutionsare seleted as parents. The ahievable progress by MAES within the evolutionary opti-mization does not strongly depend on the atual model error but more on the apabilityof prediting orretly the ranking order of the population during pre-seletion. ThereforeMAES already o�ers advantages if the model-based pre-seletion is better than a purelyrandom hoie in terms of ranking. λ-CMAES (ontrolled MAES) improves the MAESas the number of atually evaluated individuals λe is �tted dynamially with the qualityof the �tness model in order to guarantee a onstant seletion quality. λ-CMAES from[62℄ is employed for the HIL optimization of the visual ontroller beause the evolutionaryprogress by means of the number of atual �tness evaluations is superior ompared to stan-dard evolution strategies. In the following the results of the evolutionary HIL optimizationof the image-based ontroller by means of λ-CMAES (λp = 30, λe ∈ [6, 15], µp = 5) arepresented. The ost funtion minimizes the quadrati image error
F =

4
∑

i=1

∫ T

0

∆f 2
i (t)dt (5.24)without an expliit penalty of the ontrol e�ort. The veloities v proposed by the ontrollerare limited by the saturation of the atuating variable during transfer to the robot ontrol.The ontrol behavior is observed for a T = 15 s ontrol deviation and evaluated by means ofthe quadrati ontrol error. To guarantee a robust performane, eah ontroller is evaluatedfor four di�erent initial displaements of the robot arm and the mean for the osts of allfour runs is alulated. Altogether, one HIL quality evaluation of a ontroller requires oneminute on a 1.8GHz Pentium4 system.Before the atual optimization of the ontroller on the real robot the robustness and e�-ieny of the method is analyzed in a simulated virtual reality. Optimization in a virtualenvironment o�ers the advantage of exatly reproduible behavior whih is not subjet todisturbanes due to variable illumination, dynamial onstraints and variable lateny as



76 5.3 Positioning in 4 DOF with augmented point featuresan be observed in the real system. The gain fators of an image-based ontroller for a�exible amera are optimized by means of the ost funtion in equation 5.24.
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Figure 5.6: a) Development of the mean and best �tness for evolutionary optimization ofthe image-based ontroller in virtual reality ompared to the empirially tuned ontroller;b) Evolutionary HIL optimization of the image-based ontroller on the target system.Figure 5.6 a) depits the development of the mean and best �tness within a progress of 20generations. The optimization results in a signi�ant improvement of the quadrati imageerror of a fator �ve ompared to the empirially tuned ontroller. The intermittent inreaseof the mean �tness towards the end of the evolution is aused by individual unstableontrollers with extremely bad quality, whih however do not in�uene the development ofthe best individuals.The HIL optimization on the target system shown in �gure 5.6 b) proeeds over nine



Chapter 5 Loal visual servoing with generi image moments 77generations in total, orresponding to an expenditure of time of about 3.5 hours. By using
λ-CMAES the �tness evaluation time is redued by 20%.For omparison the empirially tuned ontroller is tested during the ontinuing optimiza-tion under the same onditions as the urrent generation. The quality variations of up to20% during the evolution in spite of idential ontrol parameters illustrate the in�ueneof external disturbanes on the ontrol behavior. The trend of this in�uene is re�etedin a similar manner for the empirially tuned ontroller in the �tness progress of the bestontroller of one generation. It beomes apparent that the optimized ontroller exhibitsa onsistently better behavior and the quadrati image error is redued towards the endof the evolution in average of approximately ten units ompared to the empirially tunedontroller.
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Figure 5.7: Comparison of the error evolution in the work spae for the empirially tuned(a) and evolutionary optimized (b) ontroller.Figure 5.7 ompares the empirially tuned PD ontroller with the evolutionary optimizedontroller in terms of regulation of the task error. For the degrees of freedom x, y and γ



78 5.3 Positioning in 4 DOF with augmented point featuresthe integrated quadrati ontrol error and overshoot are redued, whereas the regulation ofthe z-omponent is inferior. The quadrati ontrol error of the empirially tuned ontrolleris redued from F = 32 to F = 23 aording to equation 5.24 by means of the HILoptimization. The slower onvergene is partly due to the oupling of the features forthe x and y-omponent with motions in z-diretion. The perspetive amera projetionauses a magni�ation of the image with approahing amera and therefore a simultaneousinrease of the feature errors fx and fy. As the total osts depend on the aggregation ofthe individual errors, a slower onvergene along the z-axis still leads to a redued totalquadrati ontrol error.5.3.2 Simulation and experimental resultsThe optimized 4 DOF visual ontroller is evaluated for a free moving amera in virtualreality and in experiments on a 5 DOF KATANA manipulator with an eye-in-hand on�g-uration. For the evaluation of the deoupled visual features for 4 DOF visual servoing, themanipulator is disloated from the referene pose by an initial displaement ∆x = 20mm,
∆z = 40mm and ∆γ = 25◦. Substantially larger displaements are not feasible in theexperiments due to the restrited workspae of the KATANA manipulator and the eye-in-hand onstraint of keeping the objet in view of the amera. Figure 5.8 ompares theevolution of the task spae error and the image error for the original oupled ontroller(a, b) and the deoupled ontroller (, d). In ase of the oupled ontroller the z-errorintrodues a dynami shift of the urrent feature fx. Although the image error itself isompensated after 12 iterations, the orresponding residual task spae error in x remainsuntil omplete regulation of ∆z after about 25 iterations. The deoupled ontroller elim-inates the impat of vz on the feature fx suh that image and task spae error in the
x-omponent onverge simultaneously after 12 iterations. Even though there is no initialdisplaement along the y-axis, the inherent oupling with vz indues an undesired motion intask spae of ∆y ≈ 5mm. Again, the deoupled ontroller eliminates this disturbane and
∆y is not e�eted by the motions vx or vz. The residual task spae error of the deoupledontroller is less than 0.5mm for the position and 0.5◦ for the rotation.The potential of deoupled visual servoing in the ontext of objet manipulation in theontext of servie robotis is investigated by [81℄, whih utilizes the proposed visual servoingfor gripper-objet alignment in onjuntion with a subsequent grasping stage. The objetmanipulation is realized by a two-stage approah, in whih the objet-gripper alignment isahieved by the proposed visual servoing and subsequently a two-�nger grasping strategyis applied in order to manipulate the objet without slippage and damage. The approahis advantageous for servie robot manipulation as it neessitates only one referene imageof the pre-grasping pose and an approximate estimate of the objet's weight. In order todemonstrate the e�etiveness of the approah a textured objet is suessfully piked up,moved and released at a novel position and orientation in twenty onseutive trials withouthuman intervention.
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Figure 5.8: Image error (a) and position and angular error in task spae (b) for visualservoing in 4 DOF; Image error () and position and angular error in task spae (d) fordeoupled visual servoing in 4 DOF.5.4 Positioning in simulations in 6 DOF with augmentedpoint featuresFigure 5.9 shows the task spae error for visual servoing for 6 DOF in a virtual realitysimulation. Notie the substantial oupling among the degrees of freedom in the task spaefor the onventional ontroller (a). The translational motions in x, y and z demonstrate asigni�ant overshoot aused by the ouplings of the onventional entroids fx, fy with Tz, ωαand ωβ. The task spae errors in x and z initially inrease and only start to onverge afterstabilization of the other errors. For the weighted entroid ontrol (b) with the partiallydeoupled Jaobian the disturbanes are signi�antly redued and the six task spae errorsonverge smoothly and largely independent of eah other. The residual overshoot in the
x- and y-omponents is aused by the remaining oupling with ωβ and ωα, respetively.The results learly demonstrate that the weighted features result in a more favorable taskspae motion of the amera.
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Figure 5.9: a) Position and angular error in task spae for visual servoing in 6 DOF; b)Position and angular error in task spae for deoupled visual servoing.Experimental results are provided in the following setion in a ompetitive analysis withan alternative approah. F5.5 Alternative: Visual servoing on a virtual ameraplaneThe onept of a virtual amera plane is inspired by the reti�ation stage in stereovision.The virtual amera plane was �rst introdued by [105℄ in order to ontrol the motion ofa mobile robot independent of its gaze as explained in setion 4.2. The main idea is totransform the features in the urrent view onto a virtual amera view, whih is oplanarwith the referene view in ombination with the deoupling from setion 5.2, f. [113℄.Figure 5.10 illustrates the geometri relationship between the referene, atual and virtualamera plane. The urrent amera frame exhibits a translational and rotational o�set withrespet to the referene amera frame. The origin of the virtual frame oinides with theurrent view, whereas its orientation is idential to the referene frame. The features in theurrent view are bak-rotated onto the virtual amera plane, thus allowing the unbiasedobservation of the visual feature errors reeptive to amera translations independent of theamera's orientation.The ontrol sheme for visual servoing on a virtual amera plane is detailed in table 5.2.The rotation between the atual view and the referene view is estimated by the properdeomposition of a homography into a rotational and translational part. The homographyestablishes a point to point transformation between two amera views for a set of featuresthat lie on a plane aording to equation 2.5. The estimation of the homography requires atleast four feature orrespondenes, whereas for the sake of robustness and auray a two-
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Figure 5.10: a) Camera on�guration; b) Transformation of the atual image oordinatesonto the virtual amera plane.stage estimation proess is applied for elimination of outliers by means of the RANdomSAmple Consensus algorithm (RANSAC) [49℄ and a subsequent least squares estimation.The homography is deomposed into the rotation matrix R, the ratio t/d and the normalvetor n. It is assumed that the normal vetor n of the feature plane in the referene on-�guration is roughly known in order to resolve the ambiguity of multiple possible solutionsto equation 2.5. The rotational part of the image Jaobian only depends on the intrinsiamera parameters and is therefore independent of the amera pose. This property enablesthe homogeneous transformation of features from the atual to the virtual amera plane(step 2 in table 5.2) without e�eting the feature error. As the virtual and referene frameare oplanar the residual feature error is solely attributed to the translational error in taskspae.The estimated rotation onstitutes the feedbak signal to regulate the robot orientation intask spae. The translational degrees of freedom are regulated by image moments similar tosetion 5.2. The third step onsists of determining the moments fx and fy by the weightedentroid aording to equation 5.10. The homogeneous transformation already aountsfor the dependeny on rotations around the x- and y-axis, respetively. The ost funtion
F only ontains a single Lagrange multiplier to ahieve deoupling of the z-omponent:

F =
1

2

n
∑

i=1

(

wi −
1

n

)2

+ λi

n
∑

i=1

wiûvi. (5.25)Note that equation 5.25 di�ers from the ost funtion introdued in equation 5.12 byreplaing ui by ûvi, thus allowing for ompletely deoupled visual servoing in 6 DOF. Theost funtion F is again minimized by omputing the partial derivative of equation 5.25with respet to wi and the Lagrange multiplier λi, whih yields the least squares solutionstated in step 3 of the ontrol sheme. In the fourth step the moment fz is based upon the



82 5.5 Alternative: Visual servoing on a virtual amera planeaverage distane between two point features in order to regulate translations along z . The�fth step is optional as it is arried out only one for a amera manipulator setup in orderto determine the optimal ontrol parameters. Finally the ontroller setpoint is determinedby means of the image moments fx, fy, fz and the estimated rotations.Table 5.2: Visual servoing on a virtual amera plane.1. Estimation and deomposition of the homography into rotation and translation:Ĥ = UΛVT ⇔ Λ = UT (dR+ tnT )V (cf. section 2.1).2. Homogeneous transformation of the atual image oordinates onto the virtualamera plane similar to equation 4.3 with an additional Text equal to the estimatedrotation matrix R via:
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 .3. Determination of the image moments fx and fy onto the virtual amera planeaording to:
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∑
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(cf. equation 5.10 to 5.14).4. Determination of the image moments fz onto the virtual amera plane aordingto:
fz =

(n
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(n− 1)

)−1
n

∑

i=1

n
∑

j=i+1

||pj−pi|| with pi,j = [ûvi v̂vi ] (cf. equation 5.7).(5.) Singular omputation of the gains: HIL optimization of the ontroller by λ-CMAES (f. setion 5.3.1).6. Determination of ontroller setpoint by means of the image moments fx, fy, fzand the estimated rotations.Figure 5.11 ompares the image loation of features for a amera atually aligned with thevirtual frame and the estimated loation of features in the virtual image plane aordingto the urrent view. Despite the substantial translational and rotational displaementbetween both frames the estimated features bak-rotated onto the virtual amera plane



Chapter 5 Loal visual servoing with generi image moments 83only deviate from their atual positions by a small error of 1.6 pixel in the u-oordinateand of 1.4 pixel in the v-oordinate.
∆x 100 m
∆y 30 m
∆z 50 m
∆α 15◦
∆β 10◦
∆γ 20◦
∆u 1.61 pixel
∆v 1.38 pixelFigure 5.11: Virtual amera plane: White irles orrespond to the original view, whih isdisplaed but oplanar with the referene view. The blak markers indiate the featurestransformed from the urrent view to the virtual plane by bak-rotation by means of theestimated homography.The visual servoing sheme on a virtual amera plane as well as the visual servoing withimage moments using SIFT are evaluated in virtual reality and in experiments on a 6DOF Reis manipulator with an eye-in-hand on�guration. For the omparison of the twoontrol designs the manipulator is disloated from the referene pose in the virtual realityby an initial displaement ∆x = 40 m, ∆y = 80 m, ∆z = 60 m, ∆α = 5◦, ∆β = 30◦,

∆γ = −30◦. Figure 5.12 ompares the evolution of the task spae error for the originalontroller via image moments and the alternative ontroller based on the virtual ameraplane. The undesired oupling of the visual moment fx with the error in β results in aninitial inrease of the position error in x for visual servoing with image moments. Basedon the remaining ouplings the pose errors onverge to zero under the ondition that theother position errors are already eliminated. The results learly demonstrate that the visualservoing with a virtual amera plane results in an even more favorable task spae motion.The onvergene is muh faster as eah error omponent onverges independent of eahother. Therefore the gains are tuned separately for eah DOF, enabling a more e�ient HILoptimization. The residual task spae error of the visual ontrol with the virtual ameraplane is less than 0.5mm for position and 0.05◦ for rotation, whih is approximately oneorder of magnitude smaller than the visual servo ontrol with image moments.Notie, that the potentially inorret orrespondenes are deteted online for the visualservoing with deoupled image moments based upon the onsisteny of the main orientationof the individual SIFT features. In the ase of the virtual amera plane, false and noisyorrespondenes are eliminated based on the robust estimation of the homography withRANSAC. The prie for the inrease in performane of the visual ontroller with the virtual



84 5.5 Alternative: Visual servoing on a virtual amera planeamera plane is the additional e�ort to properly alibrate the amera model. The shemedepends in partiular on an aurate estimate of the transformation from the tool enterpoint to the foal point.
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Figure 5.12: a) Task spae error for visual servoing with image moments; b) Task spaeerror for visual servoing using the virtual amera plane. The task spae error in the virtualreality is determined by the feed-forward kinematis from the alulated joint angles.Figure 5.13 ompares the evolution of the task spae error for both visual servoing on-trollers during experiments on the 6 DOF industrial robot. Notie, that the �nal auraywhih is ahieved by the deoupled image moments using SIFT is superior to the visualservoing with the virtual amera plane. The larger residual error is due to the imperfetalibration of the transformation between the robot's tool enter point and the ameraframe whose origin is loated in the foal point. However, the rate of onvergene of thevisual servoing on the virtual amera plane is substantially higher than for the ontrollerwith image moments. Ahieving the level of auray demonstrated in the virtual realityon the real system requires a muh more advaned and preise alibration.



Chapter 5 Loal visual servoing with generi image moments 855.6 Analysis and onlusionThis hapter presents a novel approah for visual servoing based on deoupled image mo-ments using augmented point features suh as SIFT features. The properties of loalfeatures render the approah universally appliable for manipulation of daily-life objetsthat exhibit texture. Loal feature extration (e.g. SIFT, ORB, SURF, GLOH, GF-HOG)for visual servoing appliations o�er the further advantage that objet reognition and posealignment of the manipulator rely on the same objet representation. For 4 DOF visualservoing a set of ompletely deoupled image moments is derived that results in robust andindependent onvergene of the orresponding task spae errors. Problems of the lassialJaobian based visual servoing sheme suh as the amera retreat problem and loal min-ima are resolved. A novel sensitivity matrix for 6 DOF visual servoing is introdued, whihhas only four o�-diagonal oupled omponents between the visual features and the degreeof motion. The visual ontrol with the proposed methodology auses the pose errors toonverge largely independent of eah other resulting in a smoother task spae motion ofthe amera. As an alternative to visual servoing based on deoupled image moments, theidea of the virtual amera plane for deoupled navigation and gaze ontrol introdued insetion 4 is transferred to the domain of visual servoing for objet manipulation, named"visual servoing on a virtual amera plane".Table 5.3 summarizes the main harateristis of the two ontroller designs. Contrary tovisual servoing on a virtual amera plane, visual servoing with image moments requiresneither an intrinsi nor an extrinsi alibration for transformation between the robot'stool enter point and the amera frame. Additionally, for ahieving its high performane,visual servoing on a virtual amera plane partially reonstruts the sene by means ofthe homography, whereas the estimation of the rotation matrix neessitates the knowledgeof the normal vetor n on the objet's surfae in the referene view. This method hasthe advantage that no o�-diagonal ouplings between the visual features and the degreeof motion remain. Four non-ollinear features are required to estimate the homography.Visual servoing with image moments needs only three features that span a large area aroundthe foal point. Visual servoing on a virtual amera plane slightly outperforms visualservoing with image moments in terms of position auray and onvergene, however,under the ondition of proper intrinsi, extrinsi alibration and deomposition of theestimated homography. As the performane inrease is not justi�ed by the additionale�ort, visual servoing with image moments is preferable due to its model- and alibration-free design and its e�ient implementation. Following this argumentation, the objetmanipulation with the Katana arm presented in [81℄ utilizes the proposed visual servoingwith deoupled image moments for gripper-objet alignment.The next hapter desribes global visual servoing. Due to the limited visibility and per-eptibility of features aross di�erent views, it beomes neessary to introdue additionalintermediate referene views to navigate aross the entire view hemisphere.



86 5.6 Analysis and onlusionTable 5.3: Charateristis of the two di�erent visual servoing ontrollers, visual servoingon a virtual amera plane (f. table 5.2) versus image moments (f. table B.1).Visual servoing with Visual servoing on aimage moments virtual amera planeintrinsi alibration - requiredextrinsi alibration - essential for performanemodel knowledge - normal vetor nremaining ouplings 4 0minimal number of features 3 4performane very good exellent
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Figure 5.13: a) Task spae error for visual servoing with image moments during experimentson a 6 DOF industrial robot; b) Task spae error for visual servoing using the virtualamera plane. The task spae error for the 6 DOF industrial robot is determined by thefeed-forward kinematis from the measured joint angles.



Chapter 6
Global visual servoing with dynamifeature sets
This hapter presents a novel approah to global visual servoing in the ontext of objetmanipulation, also stated as large view visual servoing in [110℄. In many senarios thefeatures extrated in the referene pose are only pereivable aross a limited region of thework spae. The limited visibility of features neessitates the introdution of additionalintermediate referene views of the objet and requires path planning in view spae. Figure6.1 depits exemplarily suh a senario in whih the features from the urrent pose and thereferene pose do not interset. The visual ontrol is based on deoupled image momentsusing augmented point features suh as SIFT features [109, 64℄ as de�ned in setion 5.2.The approah is generi in the sense that the ontrol operates with a dynami set of featureorrespondenes rather than a stati set of geometri features. The additional �exibility ofdynami feature sets enables �exible path planning in the image spae and online seletionof optimal referene views during servoing to the goal view. The time to onvergene to thegoal view is estimated by a neural network onsidering the residual feature error and thequality of the feature distribution. The transition among referene views ours on the basisof this estimated ost whih is evaluated online based on the urrent set of visible features.The dynami swithing sheme ahieves robust and nearly time-optimal onvergene of thevisual ontrol aross the entire task spae. The e�etiveness and robustness of the shemeis on�rmed in a virtual reality simulation and on two di�erent experimental setups onindustrial robot manipulators with an eye-in-hand on�guration [85℄.Following the model-free paradigm of this thesis already perused in visual servoing withdeoupled image moments as well as visual navigation, the global visual servoing shemeis designed without any objet models ontrary to e.g. [142℄. Optimal motion ontrol forvisual servoing to a stati referene view has been disussed in hapter 5, whereas thishapter addresses the issue of global visual servoing with extration and mathing of dy-nami sets of SIFT features. The view spae is partitioned by an entire set of intermediate,87



88 6.1 Stability analysis depending on the feature distribution

Figure 6.1: Appliation example for global visual servoing: start on�guration (left); Dis-juntive feature distribution in urrent and referene view (entered); Goal pose (right).partially overlapping referene views of the objet. The authors in [97℄ integrate a pathplanner in the image spae with a visual ontroller based on potential �elds in order to ob-tain visual navigation for large displaements. The work in [123℄ extends these onepts byqualitative visual servoing based on objetive funtions that apture the progression alongthe path, the feature visibility and amera orientation. This hapter provides a ontribu-tion to optimal path planning in the image spae onsidering the residual feature error inonjuntion with the quality of the feature distributions in alternative referene views. Theadditional �exibility of dynami feature sets allows for adaptive online swithing amongreferene views while navigating towards the goal view.The hapter is organized as follows: Setion 6.1 provides a stability analysis motivated bythe feature distribution in the image spae. Due to the limited feature visibility arossdi�erent views it is neessary to introdue intermediate referene views. Time-optimalreferene seletion to aomplish global visual servoing is introdued in setion 6.2. Navi-gation in image spae is desribed in setion 6.3. Setion 6.4 demonstrates simulations invirtual reality on a sphere as well as on industrial robot arms and analyzes the onvergenebehavior of alternative swithing strategies. An alternative to global visual servoing is in-trodued in setion 6.5. Within a two-stage approah �rst a model-free pose estimationwith viewpoint interpolation for a look-then-move strategy is applied, followed by loalvisual servoing lose to goal pose. The hapter onludes with a summary in setion 6.6.6.1 Stability analysis depending on feature distributionThe loal stability of the visual ontrol loop requires that the feature error has a uniqueminimum at the referene pose. Even though a single SIFT feature su�es in priniple



Chapter 6 Global visual servoing with dynami feature sets 89for oupled 4 DOF visual servoing, the omputation of weighted entroids requires at leasttwo non-oinident point features for deoupled 4 DOF visual servoing. Visual servoing in6 DOF depends on at least three non-ollinear features. Convergene of the ontrol to thereferene pose is ahieved under the assumption of ontinuous visibility and pereptibilityof this minimum number of orrespondenes. As stated in [48℄, three feature points whihideally form a large-area triangle enlosing the origin are optimal for visual ontrol. Threefeatures are minimal as the distortion in features fα and fβ is observed relative to theaverage length between the points. However, not all on�gurations of three feature pointsare suitable for ontrol. Stable visual ontrol of the rotations requires that the three featuresare widespread and that the formed triangle enloses the origin. A too small separation ofthe three point features auses a hange of sign in the moments fα and fβ resulting in anunstable ontrol. Figure 6.2 illustrates this phenomenon as it shows the point distributionsfor �ve triangular sets of di�erent separation (�gure 6.2 a) and the orresponding variationof the moment fα for the �ve sets with respet to rotation about the x-axis (�gure 6.2b). In ase of the widespread feature set the feature error fα has a unique root at theorigin [111℄. However, the feature set losest to the origin indues two roots of fα withnon-zero rotational error to the left and right of the origin. These additional roots ausethe visual ontrol to onverge to an equilibrium state that di�ers from the referene pose.Figure 6.3 shows the development of the feature moment fx during a lateral movement for
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90 6.1 Stability analysis depending on the feature distributionwhile the features at a distane of 75 m are projeted onto a normalized image plane.The �gure demonstrates the impat of feature olusions on the visual moment. Thetwo envelopes marked by triangles and retangles orrespond to the extreme, but highlyunlikely senario in whih all features in either the left or right half-plane are oludedresulting in a highly asymmetri on�guration. The dotted lines orrespond to randomfeature olusions. In all ases the unique equilibrium point is globally stable. In ase ofthe two extreme distributions the weighted feature moment does not evolve monotoniallywith the lateral displaement, due to the e�et of skewed weights whih inrease in absolutemagnitude with the asymmetry of the feature distribution. Even though this phenomenone�ets the rate of onvergene global stability is still guaranteed.
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Chapter 6 Global visual servoing with dynami feature sets 91with partially shared features among neighboring images. The objetive of this thesis is togenerate a time-optimal and robust visual ontrol aross the entire task spae by properswithing among neighboring referene images. For that purpose, the ost of the urrentview is ompared with respet to all overlapping referene images, and the ontrol swithesto the referene image with minimal ost. A ruial step is to estimate the ost in termsof the time to reah the referene pose from the feature error and geometri on�gurationof features. Based on the estimated ost the optimal path is determined by shortest pathgraph searh.6.2 Optimal referene image seletionFor global visual servoing intermediate views are de�ned to navigate aross the entire viewhemisphere. It beomes desirable to swith between intermediate views in a stable, robustand time-optimal manner. The ost in terms of number of ontrol yles to onverge fromthe urrent view to the referene image is estimated in order to ompute the optimal path.Cruial for this purpose is the proper de�nition of performane riteria for approximationof the ost funtion and the analysis of their orrelation with the ost [110, 111℄. In thisase, an arti�ial neural network learns the relationship between ontrol riteria and ostsin a supervised manner. The training data is obtained from observations of the atualnumber of ontrol yles required for transitions between neighboring referene views.6.2.1 Control riteriaFeature error: The overall feature error ∆f(I)=[∆fx, ∆fy, ∆fz, ∆fα, ∆fβ, ∆fγ ℄ on-stitutes the most signi�ant performane riterion for the estimation of the ost. A singlefeature error alone does not provide a good estimate of ost, beause the atual time toonvergene depends on the feature error with the slowest task spae motion, usually as-soiated with the translational degrees of freedom. The rotational errors are bounded bythe visibility onstraint and are usually stabilized within a few ontrol steps. Eah elementof ∆f(I) is normalized to the interval [0, 1] aording to its maximum range. The totalfeature error is the sum of normalized errors
∆f̂(I) =
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. (6.1)The feature error already attributes to a substantial amount of variation in the ost, nev-ertheless the ost estimate is improved by inlusion of additional riteria that apture thequality and robustness of visual ontrol.Number of orrespondenes: The robustness and the ontrol performane inreasesigni�antly if more than the minimal number of orrespondenes is established. The



92 6.2 Optimal referene image seletionredundany of multiple features redues the noise level and ontributes to the bene�ialwidespread dispersion of features in the image spae. A small number of features mightause a ompat distribution of point features, whih auses poor or even unstable ontrolin the image spae as shown in setion 6.1. The number of mathed features also provides anestimate of the geometri distane of the urrent view to the referene pose. Distant posesonly share a subset of mutually visible features, whereas the number of orrespondenesnaturally inreases with the proximity of both viewpoints. The riterion C(I) = n isde�ned as the absolute number of feature orrespondenes between the urrent and thereferene view. The riterion
Cn(I) =







0 n < nmin
n

nmax
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1 nmax < n
(6.2)normalizes C(I) as it requires a minimal number of features nmin and saturates at the upperlimit nmax = 40 at whih no further improvement of the ontrol performane is observed.The parameter nmax is independent of the objet and not ruial for approximate ostestimation. The absolute number of visible features alone is not a unique indiator of theexpeted ost as it also depends on the distribution of these features de�ned in terms oftheir entropy and variane around the entroid.Entropy: Entropy measures the order or disorder in a distribution. Therefore two ontrolriteria are introdued, whereas Eu(i) and Ev(i) apture the distribution along the twoaxes of the image oordinate. The image is partitioned into N = 10 vertial and horizontalequally spaed olumns and rows. The entropy along the two axes is alulated as

Eu(I) = −

N
∑
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Hu(i) logN (Hu(i)) (6.3)
Ev(I) = −

N
∑

i=1

Hv(i) logN (Hv(i)) (6.4)in whih Hu(i) and Hv(i) denote the relative frequeny of features in the i-th olumn,respetively row. The entropy assumes a value in the interval [0, 1], in whih a high entropyindiates a uniform distribution. A low entropy reveals an inhomogeneous distribution,whih harms the robustness and speed of onvergene of visual servoing.Centroid loation: A onentration of the feature points at the image borders bears theinherent risk of loss of features for small amera rotations. The visual features fα and fβrequire a distribution uniformly entered around the prinipal point in order to apturethe distortion of line segments. The deviation of the feature entroid from the origin isexpressed by
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Chapter 6 Global visual servoing with dynami feature sets 93in whih low values represent desirable feature distributions.Variane of the feature distribution: The variane of the feature positions provides anadditional estimate of the quality of the feature distribution. A low variane in partiularin onjuntion with a disloated entroid re�ets a feature distribution that is suboptimalfor visual ontrol and delays the onvergene to the referene image. The varianes areomputed as
σu =
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n
. (6.6)Notie, that entropy re�ets the geometri homogeneity of the feature set, whereas varianeaptures its width.Correlation between performane riteria and time to onvergene: Controlexperiments from 150 initial positions randomly distributed over the task spae are reordedin order to evaluate the orrelation between the performane indiators and the time toonvergene. Eah ontrol step of the individual runs onstitutes a training sample forsupervisory learning of the neural network. A ontrol run is onsidered as suessfullyonverged to the referene image if all image errors are redued to within 10% of theiraverage initial value. The orrelation between the performane riteria and the atualtime to onvergene provides insight into the in�uene and relevane of the individualindiators. The linear dependeny between two stohasti variables X and Y is omputedaording to Pearson's orrelation oe�ient:
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, (6.7)whih assumes values in the interval [−1, 1]. X̄ and Ȳ are the �rst-order moments ofthe stohasti variables. Large absolute values indiate strong orrelation between thetwo quantities. However, a orrelation oe�ient value of zero would demonstrate thatno predition of the osts based on the hosen ontrol riteria an be done. Table 6.1spei�es the orrelations between the performane indiators and the ost in terms of timeto onvergene.Table 6.1: Pearson orrelation between performane riteria and time to onvergene.

∆fx ∆fy ∆fz ∆fα ∆fβ ∆fγ f̂
rXY 0.30 0.14 0.17 0.14 0.13 0.13 0.63

C(I) Cn(I) Eu(I) Ev(I) |ū| |v̄| σu σv

rXY -0.66 -0.72 -0.66 -0.72 0.44 0.32 -0.64 -0.62



94 6.3 Navigation in the image spaeTable 6.2: Training and test set error for neural network trained with feature error f(I)only and with feature error and performane riteria f(I), c(I). RMSE stands for rootmean square error. RMSE train RMSE test orrelation
f(I) 0.0149 0.0297 0.75
f(I), c(I) 0.0072 0.0092 0.96The individual feature errors are only slightly orrelated with the ost, whereas the normal-ized summed feature error f̂ is indeed a proper indiator for the distane to the referenepose. Notie, that the relative number of mathed features Cn(I) orrelates even more withthe ost than the summed absolute errors f̂ . The salar summed error ontains less infor-mation than the entire error vetor f(I). This is expliable, as the feature errors related tothe translational degrees of freedom onverge at a slower rate.In order to predit the time to onvergene two neural networks with di�erent input fea-tures are trained with the data aquired during the 150 experimental runs. The multi-layerpereptrons are omposed of 16 neurons in the hidden layer and are trained with the stan-dard bak-propagation algorithm. The �rst network only uses the six-dimensional featureerror f(I) as input, whereas the seond network in addition has aess to the performaneriteria c(I) = [Cn(I), Eu(I), Ev(i), ū, v̄, σu, σv]. Figure 6.4 depits the relation between theestimated osts on the x-axis and the true osts for the full input network. It also showsthe linear regression for the partially and fully informed network. The neural network onlytrained with the feature error f(I) ahieves a orrelation of 0.75 between estimated andtrue ost. This orrelation is substantially improved by inorporation of the additionalperformane riteria to a degree of 0.96. The improvement in predition auray of thefully informed network error ompared to the pure feature error based network is on�rmedby the redued training and test set error shown in table 6.2. This demonstrates that adistane metri to the goal view in the image spae has a signi�antly lower orrelationwith the osts than f(I) in onjuntion with the image distribution indiators c(I). Thisobservation on�rms the onvergene analysis in setion 6.1, namely that the feature distri-bution ruially a�ets the ontrol performane. Furthermore the ontrol features |ū| and

|v̄| only have a small leverage in order to improve the orrelation between ontrol riteriaand osts. Finally a orrelation of 0.96 is obtained using all de�ned ontrol riteria.6.3 Navigation in the image spaeThe approah neither requires a geometri model of the objet nor is it aware of the spatialrelationship between the referene views, nor does it perform path planning in the task
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96 6.3 Navigation in the image spaein whih referene views are aptured aross the work spae and is performed o�-line inadvane.Current ost estimation and hoie of optimal urrent referene view: Thefeatures extrated from the urrent view (CV) are ontinuously ompared to those ofgoal view (GV)
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osts CV-RV3-GVostsCV-RV4Figure 6.5: Referene-, goal- and urrent view represented by a graph.overlapping referene views in order to identify the optimal urrent referene view onlineduring ontrol. For the potential referene views the time to onvergene is estimated inthe same way as for the initial generation of the graph. The total osts for reahing aspei� referene view plus the already estimated ost for the shortest path from that nodeto the goal view are ompared among all feasible views. The node with minimal ost isseleted as the next referene view to be inluded into the shortest path to the goal. Theview evaluation is only performed every �fth ontrol yle in order to redue the amount ofonline omputations. Figure 6.5 depits a setion of a graph generated from a set of imageswith four intermediate referene views RV1, . . . , RV4, a goal view GV and the urrent view
CV . The images assoiated with a view are visualized by retangles, the hathed areas



Chapter 6 Global visual servoing with dynami feature sets 97represent the overlap between neighboring images whih ontain ommon SIFT features.The ost of the transition from the urrent view to the two feasible referene views RV3and RV4 depends on the number and quality of ommon features in the grey areas. Theurrent view has no onnetion to the referene views RV1 and RV2 beause the subset ofommon features is empty, as indiated by the dotted line. A hysteresis in the swithingsheme avoids the risk of the visual ontroller getting trapped in a limit yle around theoptimal swithing point due to unertainties in the ost estimate or �utuations in themathed features. The initially estimated osts of the optimal path from the urrent viewto the goal are weighted by the number of intermediate nodes from the andidate refereneviews to the goal node. That way, swithing to a referene view whose node is loser to thegoal node beomes more attrative, whereas the reverse swithing to a more distant nodeis suppressed even if its estimated ost seems more attrative. A transition to a lower ostreferene view is only initiated if its superiority is on�rmed in two onseutive iterations,thereby gaining additional robustness with respet to yli swithing.
6.4 Experimental resultsThe evaluation of global visual servoing is pursued in experiments within a virtual realityenvironment and on a real 5 DOF roboti arm with an eye-in-hand on�guration [110℄, aswell as on a 6 DOF industrial manipulator [85℄.
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98 6.4 Experimental resultsIn both experimental setups the performane of the ost estimation based swithing shemeis ompared with two alternative methods. The �rst method, in ontrast to the proposedsheme, assumes that the geometri distane in task spae between referene views isknown. One the minimal number of visual features is pereived, it swithes to the refereneview losest to the goal pose. This swithing strategy ignores the pereptibility and qualityof the set of mathed features and is not su�iently robust from a ontrol point of view.Nevertheless for the purpose of omparison it provides an upper performane limit. Theseond method omputes an optimal stati path that onnets the start to the goal nodebased on the stati osts. It is not opportunisti as it does not reestimate the osts online,or replans if other referene views not originally inluded in the plan suddenly appearmore attrative. It swithes to the next view outlined in the plan upon onvergene of thefeature error to a urrent referene view. This method, although suboptimal, is robust froma ontrol point of view, but ould still be improved by relaxing the onvergene riterionwithout sari�ing robustness.
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Chapter 6 Global visual servoing with dynami feature sets 996.4.1 Navigation aross a sphere within the virtual realityA virtual reality simulation of a free moving amera allows the veri�ation of the globalvisual servoing sheme without being onstrained by the robot kinematis or workspae.The amera navigates in 6 DOF around a sphere textured with a shemati map of theglobe. The referene views are equidistantly loated along longitudes and latitudes. Thetask is to guide the amera visually from the north to the south pole. Figure 6.6 depitsthe distribution of referene views together with the path pursued by the three methodsunder omparison. Even though the amera is initially loated above the north pole, allshemes immediately transit to an initial referene view that is already loser to the goal.The distane-based method piks a di�erent large irle route than the other two shemesas it ignores the issue of feature quality. A better rationale is to selet the great irleroute whih guarantees pereptibility of a su�ient number of features for stable traverseto the south pole. This e�et is termed the Pai� problem, as for the globe example, theequal-distant path either moving over Ameria or Afria ontains more features due to thetexture and text on the ontinents than rossing the Pai� with sparse features. The rightpart of �gure 6.6 ompares the sequene and progression of referene views followed by thethree alternative methods. Figure 6.7 shows the evolution of the task spae error in termsof translation and rotation. The number of iterations until onvergene is approximatelythe same for the optimal image-based and the distane-based navigation method. For theformer the goal pose is reahed within 300 iterations, for the later in about 290 iterations,whereas the stati sheme with omplete onvergene takes about 560 iterations.
6.4.2 Navigation aross a semi ylinder with a 5 DOF manipulatorThe sheme is also evaluated in an experiment on a 5 DOF Katana robot with an eye-in-hand amera on�guration. As the workspae of the manipulator is rather limited, theamera navigates aross the inner surfae of a semi ylinder with a irumferene of 1.8mand a height of 0.4m. The inside of the semi ylinder is textured with a panorami photoof the TU Dortmund ampus shown in �gure 6.8. This ylindri on�guration is optimalwith respet to the workspae of the robot as it allows a maximal number of su�ientlydistint referene views. The referene views form a 15× 6 grid, horizontally separated by10◦, vertially by 5 m. The kinematis of the spei� robot limit the amera motion to 5DOF. At the start pose the amera points at the upper left part of the image and the goal isloated in the lower right orner of the ylinder. As shown in �gure 6.9, all methods followat large a similar view sequene. The only signi�ant deviation ours halfway throughthe path in a region whih mostly ontains sky and ground and therefore few distintivefeatures. The optimal swithing sheme takes a small vertial detour in order to exploitthe higher onentration of features in the textured band between sky and ground.



100 6.4 Experimental results

Figure 6.8: Experimental setup for visual servoing in 5 DOF on a semi ylinder.
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Figure 6.10: Relative task-spae error for optimal referene view seletion (ORVS, a) and�xed onvergene referene view seletion (FCRVS, b).This observation is on�rmed by an analysis of the evolution of the relative task spae errorwith respet to the intermediate referene views shown in �gure 6.10. Figure 6.10 a) depitsthe progression of task spae error and swithing sequene for the proposed sheme, �gure6.10 b) for the stati sheme. The stati sheme wastes iterations in situations in whihthe feature error is already low but not yet fully onverged. The optimal ost based shemeavoids delayed transition to the next referene view, as it already swithes for substantiallylarger residual errors without ompromising the stability of the ontrol.6.4.3 Navigation aross a uboid with a 6 DOF manipulatorThe results of the experimental realization of image-based visual servoing for a 6-axialindustrial robot are presented in the following. A omparison proedure serves for eval-uating the time-optimal swithing riterion by adjusting the goal position by means of a�xed sequene of referene images and a onstant swithing threshold. Initially, the statisequene is also generated by the optimal path planning. Figure 6.1 shows the experi-mental setup onsisting of the industrial robot with an eye-in-hand amera on�guration.



102 6.4 Experimental resultsThe robot drives from start to goal position relatively to the objet via referene viewsarranged on a hemisphere around the objet. Figure 6.11 shows the temporal devolutionof the position error for both proedures. The sequenes of referene views utilized in bothases are depited in �gure 6.12, on the left the spatial distribution and on the right thehosen swithing points. The graphs in �gure 6.12 larify that the initial path planning ismodi�ed by the dynamial hoie of referenes, thus allowing for reahing the goal positionearlier. Therefore the ontrol using the stati swithing riterion is slower: in spite of atime-optimal hosen sequene (and therefore redued number of referene images) the goalposition is only reahed after 125 iterations, whereas the time-optimal ontrol onvergesafter around 100 iterations. The ontrol is performed over three referene views, respe-tively, together overing an elevation angle of around 90◦, whereas the dynamial proedureswithes faster to the next view. Hereby the slightly di�erent path planning is aused bythe varying ost estimation of the dynamial hoie of referenes. In the ideal ase thetime-optimal sequene orresponds to that with the shortest path in the work spae. How-ever, views with unfavorable on�gurations of features are avoided as they in�uene therobustness of the ontrol and thus its veloity in a negative manner.
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Figure 6.12: Chosen referene images and their pose in the task spae and temporal de-pendene.6.5 Alternative: Model-free pose estimation with loalvisual servoingAs an alternative to the presented global visual servoing a more human-like strategy foramera objet alignment in the ase of limited feature visibility is investigated. It onsistsof two stages: Initial pose estimation for pre-alignment of the amera relative to the objetto speed up the positioning (open loop / look-then-move strategy) and subsequently are�nement by visual servoing using only one referene image instead of a graph of interme-diate referene views. A di�erene to similar approahes in the literature is that these twostages rely on the same objet representation. The plenopti funtion is already sampledfor the set of referene views required for the global visual servoing. This sheme followsthe appearane based paradigm [58, 133, 43℄, suh that there is no need for a geometrimodel and its image orrespondenes [38℄. The approah employs an instane base learningsheme [7℄ in whih the objet pose is predited based on the similarity of the urrent viewwith a set of referene views of known pose. Referene views are represented by a set ofSIFT features extrated from the orresponding image. Primarily the similarity betweenreferene views and the urrent view is established based on the frequeny of SIFT fea-tures mathed between both images. The pose is estimated by weighted averaging of thereferene poses [θazi, φeli] aross the N most similar neighbor views so that the estimatedazimuth θ̂az and elevation φ̂el are omputed aording to:
θ̂az =

N
∑

i=1

Cr(Ii)θazi
∑N

j=1Cr(Ij)
, φ̂az =

N
∑

i=1

Cr(Ii)φazi
∑N

j=1Cr(Ij)
(6.8)in whih the similarity Cr(Ii) is de�ned in terms of the absolute number of feature orre-spondenes C(Ii) between the referene view and the urrent image divided by the absolute



104 6.5 Model-free pose estimation in onjuntion with visual servoingnumber of SIFT features in the referene view.Pose estimation by viewpoint interpolation: Figure 6.13 a) shows a test objet in atop referene view and urrent view, together with the set of extrated SIFT features. Fig-ure 6.13 b) depits the relative frequeny Cr(Ii) of mathed features between the urrentpose indiated by an open irle and the referene views. The four most similar referenesa)
b)

x [mm℄ y [mm℄z

[mm℄
500-50-100-150-200-250-300 -200 -100 0 100 200 300 100012001400Figure 6.13: a) Confusion of SIFT features between frontal and the top view of the objetaused by repetitive texture; b) Similarity based pose estimation aording to the relativefrequeny Cr(Ii) of mathed features. Only those referene views for whih more than 15%of features are mathed are labeled.math between 40-50 out of the 100 features in the query view. This ratio drops withinreasing distane of viewpoints on the hemisphere from the urrent viewpoint. Notie,that there is a seond region of signi�ant mathes at the north pole. These mathesoriginate from a repliation of the advertisement text on the frontal and top fae of thetoothpaste pakage shown in �gure 6.13 a). In order to improve the pose estimation, theinitial estimate is re�ned by inspetion of the relative loation of mathed features aross



Chapter 6 Global visual servoing with dynami feature sets 105the urrent view and two neighboring views. Features are grouped into approximatelyequilateral triangles. Figure 6.14 depits the interpolation sheme for the azimuth esti-mation. The following omputations are restrited to the intersetion of features mathedaross the urrent and the three referene views. These features are grouped into subsetsof three features that form a triangle whih is haraterized by its interior angles. As theamera perspetive hanges with the viewpoint, the features move aordingly resultingin a variation of the interior angles with the pose. Figure 6.14 illustrates the variationa) b)
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. .Figure 6.14: a) Current pose and the two nearest neighbors; b) Referene images of thetwo nearest neighbors form the database; ) Current image; d) Interpolated azimuth dueto the interior angles of the triangle.of the three interior angles αia, βia, γia between two neighboring referene views with ap-proximate azimuths θaz1 = −98◦ and θaz2 = −107◦. This variation provides the basis fora loal orretion of the estimated pose. The relationship between variation in pose andvariation of the interior angles is assumed to be linear. The interior angles αiaq , βiaq , γiaqin the query view fall in between those of the two referene view triangles. The azimuths



106 6.5 Model-free pose estimation in onjuntion with visual servoingpredited from linear regression with respet to the interior angles are omputed as
θ̂az(αia) = θaz1 + (θaz2 − θaz1)

αiaq − αia1

αia2 − αia1

,

θ̂az(βia) = θaz1 + (θaz2 − θaz1)
βiaq − βia1

βia2 − βia1

,

θ̂az(γia) = θaz1 + (θaz2 − θaz1)
γiaq − γia1
γia2 − γia1

. (6.9)The interpolation is performed aross multiple triangles, and the orret pose is preditedwith an M-estimator that is robust with respet to outliers. The error funtion of theM-estimator is de�ned by:
n

∑

i=1

ρ(εi(xi,Θm), σe) (6.10)in whih Θm denotes the model parameters and εi is the residual error between the modeland the data point xi. The parameter σe regulates the suppression of outliers and isadapted iteratively to the residual error distribution. The error funtion
ρ(xi,Θm) =

(xi −Θm)
2

σ2
e + (xi −Θm)2

(6.11)is quadrati for small residual errors but �attens out for large residual errors thus reduingthe impat of outliers. The method provides aurate estimates of azimuth and elevationunder the assumption that the urrent view is aptured from the same hemisphere as thereferene views, at a nominal �xed distane between amera and objet. Under the as-sumption that the objet is always entered in the image, the objet distane in additionto the azimuth and elevation is su�ient to reonstrut the full 6 DOF pose between theobjet and the amera. As the distane hanges obviously also the triangles are distorted.In order to ahieve sale invariane the relationship between interior angles and distane rscis modeled by an exponential funtion of the form αia(rsc) = am exp (bmrsc)+cm exp (dmrsc)with four unknown parameters [am, bm, cm, dm] , respetively for βia(rsc) and γia(rsc). Thebest �t parameters are omputed from referene images of the same azimuth and elevationat four di�erent radii. In ontrast to the ase of onstant sale azimuth and elevationestimation in equation 6.9, eah interior angle αia, βia or γia is now related to an entiremanifold of azimuth, elevation and radius. An observation of an interior angle onstraintsthe feasible solution set to a two-dimensional manifold in the three-dimensional azimuth,elevation and radius pose spae. For a triplet of interior angles αia, βia, γia the three mani-folds ideally interset in isolated unique solutions. As the dataset ontains disrete samples
{[αia, βia, γia], [θaz, φel, rsc]} it is di�ult to ompute the intersetion of the underlying mani-folds. In pratie the problem is transformed into an optimization problem whih minimizesthe quadrati error between the observed interior angles [αiaq , βiaq , γiaq ] and the manifolds
αia(θaz, φel, rsc), βia(θaz, φel, rsc) and γia(θaz, φel, rsc) aross the parameters azimuth, elevation
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[θ̂az, φ̂el, r̂sc] = argminθaz,φel,rsc

((αiaq − αia(θaz, φel, rsc))
2 + (6.12)

+ (βiaq − βia(θaz, φel, rsc))
2 + (γiaq − γia(θaz, φel, rsc))

2).In between the disrete sample points, the manifolds are approximated by equation 6.9along rsc and a linear funtion in [θaz, φel]. Only those parameters [θaz, φel] are onsideredin the minimization that belong to the spherial region spanned by the three nearestneighbors. The estimates θ̂azi, φ̂eli, r̂sci are aggregated over the entire set of triangles by theM-estimator.Experimental results: In order to evaluate the performane and auray of the pro-posed pose estimation sheme, two types of experiments are onduted. In the �rst exper-iment data sets are generated arti�ially by mapping a set of 3D points in a virtual seneperspetively onto a normalized image plane. The purpose is to evaluate the theoretiallimitations of the method, negleting the negative impat of SIFT feature detetion, limitedpixel resolution, lens distortion and inherent pose unertainty of the referene views. Thedistane between the objet and the amera ranges from 100mm to 700mm. The seondexperiment is based on realisti views of the objet depited in �gures 6.13 and 6.14. Thereferene and test images are aptured with a roboti arm that moves the amera arossthe view hemisphere. This data set allows it to assess the auray of pose estimationunder real world onditions. Due to the limited dexterous workspae of the robot arm,objet-amera distanes are restrited to the range from 180mm to 290mm. At loserdistanes the objet is only partially visible. Due to the limited range, the distane in-terpolation with four parameters is replaed by a two parameter regression model givenby αia(rsc) = m exp (bmrsc). The referene data set ontains 517 referene views taken atthree hemispheres of radius 180mm, 235mm and 290mm. The test set ontains 672 im-ages, taken at twelve di�erent radii with 56 images per radius. On average referene imagesontain between 700 to 1500 SIFT features. In order to aelerate the mathing proess,initially only the �rst hundred SIFT features are onsidered for mathing. The preliminarysearh is su�ient to identify the nearest neighbor andidates. The loal viinity of theseandidates is then searhed for the nearest neighbor with the omplete set of extratedfeatures. Table 6.3 summarizes the results of the simulated data as well as the realistidata set for four di�erent methods, namely single nearest neighbor (SNN), weighted aver-age among three nearest neighbors (WANN), interpolation of azimuth and elevation at a�xed sale (FSI) and sale invariant interpolation of azimuth, elevation and radius (SII).For the interpolation sheme with adaptive sale, the mean error of the radius estimationis reported as well. Three di�erent experiments are performed in order to observe thee�ets of unalibrated amera systems ompared to alibrated amera systems as well asthe improvement ahieved by the neighborhood orretion step. Compared to the simu-lated ase of the ideal perspetive projetion the auray of all methods is expeted todeteriorate on the real world data set. In the nearest neighbor ases the auray in thereal experiment exeeds the simulated ideal errors. This over-performane is explainedby the fat that the simulated reognition rate of SIFT features drops more rapidly with



108 6.5 Model-free pose estimation in onjuntion with visual servoingTable 6.3: Mean absolute error in azimuth and elevation in simulations and experiments.The di�erent results demonstrate the e�ets of unalibrated ompared to alibrated amerasystems as well as the improvement ahieved by the neighborhood orretion step.simulation experiment1 experiment 2 experiment 3unalibrated alibrated orretion step
Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r)SNN 3.0◦ 2.4◦ 3.8◦ 2.7◦ 3.7◦ 2.9◦ 2.2◦ 1.7◦WANN 2.4◦ 1.6◦ 2.8◦ 2.6◦ 3.2◦ 2.5◦ 1.7◦ 1.6◦FSI 2.0◦ 1.7◦ 7.4◦ 4.6◦ 6.9◦ 3.9◦ 4.0◦ 1.9◦SII 0.82◦ 0.26◦ 20mm 2.7◦ 2.1◦ 55mm 2.4◦ 1.7◦ 57mm 1.3◦ 1.0◦ 39mmhange in viewpoint than in the ase of the atual objet. As the experimental estimatesare based on more samples they tend to be more robust. In the ase of nearest neighborsthe auray between simulated and experimental data is omparable. In ase of non-saleinterpolation small errors in feature loations might result in substantial pose errors, whihexplains the poor performane on real images a�ited with noise. The large azimuth erroris partially explained by the fat that some of the nearest neighbor referene views sharetoo few ommon features. This in turn auses poor onvergene of the M-estimator andinlusion of outliers in the estimate.The sale invariant interpolation sheme in experiment 1 tends to be more robust, but stilldoes not ahieve the theoretially possible auray on unalibrated real world data. It onlyprovides a slight improvement ompared to the basi N nearest neighbor sheme. Possibleexplanations that the sheme falls short of the expeted auray are limited pixel resolu-tion of feature loations, as the simulated projeted images operate with subpixel auray,and radial lens distortion. Therefore the seond experiment is performed with alibratedamera images that already demonstrates a minor improvement ompared to the unali-brated experiment. The large estimation error is aused by inorret nearest neighbors. Inthese ases the interpolation sheme interpolates the wrong neighboring views that do notenlose the true view. In order to prevent false neighbors the interpolation result is veri�edwhether it falls inside the region spanned by the assumed nearest neighbor views. If theinterpolated view lies outside the span a new triangle is formed enlosing the extrapolatedviewpoint. The results for the third experiment with false neighbor rejetion in ase of SIIare superior to the pure nearest neighbor methods and in reasonable agreement with theideal simulated errors. SII with orretion step only provides a mean angular error of 1.3◦in azimuth and 1.0◦ in elevation and 3.9 m for amera-objet distane.The full 6 DOF estimation of the relative pose between objet and amera requires addi-tional information. First of all the objet should always be entered in the image, withthe amera axis interseting the objet enter. In the ase of objet manipulation this re-strition is ahieved by a amera gaze ontrol pointing the amera axis towards the objet.Camera gaze ontrol is naturally required in order to keep the objet in view. Finally the



Chapter 6 Global visual servoing with dynami feature sets 109rotation of the amera around its optial axis is reonstruted from the keypoint orien-tation of SIFT features as shown in setion 5.1. Under these assumptions the azimuth,elevation and distane estimates are su�ient to reonstrut the full 6 DOF pose betweenthe objet and the amera.6.6 Evaluation and onlusionThis hapter presents a novel approah for optimal global visual servoing based on deou-pled image moments with augmented point features in the ontext of objet manipulationonsidering that the features in the referene image for grasping are not visible in the ur-rent objet view. It is proven that model-free navigation in image spae an be realizedby means of a set of overlapping referene views in order to navigate from an arbitrary,unknown start into the goal pose. The swithing between referene views ours on thebasis of the estimated time to onvergene taken the quality of mathed features into a-ount. The ost of referene views is evaluated online throughout progression to the goalview, suh that the sheme opportunistially selets the referene view that is optimal inthe urrent ontext. In priniple the work spae is arbitrarily extensible under the on-dition of onnetivity of the referene views in image spae. The experimental results invirtual reality and on the real robot demonstrate that the approah minimizes the time toonvergene without sari�ing the robustness and thereby stability of the visual ontrol.As an alternative to the global visual servoing an appearane-based pose estimation inonjuntion with loal visual servoing is arried out with the same experimental setup asdesribed in setion 6.4.3 for a 6-axial industrial robot. The fundamental idea of initiallyapplying a look-then-move strategy is to ahieve even faster onvergene to the goal viewrelying on the same sparse objet representation as the global visual servoing. In priniplethe same auray in the referene pose as for the large view visual servoing is ahievedas the �nal step for �ne alignment onsists of the same visual ontrol sheme. Neverthe-less the objet representation for initial pose estimation has to be signi�antly extendedrequiring a substantially higher amount of omputational and memory resoures. There-fore it is �nally stated that the major advantages of the global visual servoing omparedto the look-then-move strategy are �rstly that a sparse overlapping objet representationsampling the plenopti funtion on one radius of the hemisphere is su�ient, seondly thatno estimation of the objet distane is required, rather the ontrol by the referene imagesguarantees an equidistane to the objet, resulting thirdly in a kind of gaze ontrol keepingthe objet always entered in the image.



110 6.6 Evaluation and onlusion



Chapter 7
Conlusions and future work
The objetive of this thesis is to advane the development of solely vision-based navigationand manipulation in the ontext of autonomous servie robots.This thesis demonstrates and emphasizes the potential of visual reative behaviors forvisual navigation in unstrutured indoor environments. Primarily a vision-guided navi-gation of a mobile robot is implemented with reative behaviors using distane sensors forloal motion ontrol and omnivision for loalization, whih provides onseutively the refer-ene for a purely visual navigation. The vision-guided navigation is suessfully veri�ed inroboti experiments within o�e environments ahieving the navigation task without olli-sions. Visual navigation is distinguished from vision-guided navigation by solely relying onthe eonomi vision systems with the ambitious goal to ahieve mathable performane inomparison to laser sanners. Thus a set of visual reative behaviors is designed and imple-mented equivalently to the behaviors based on proximity information from range sensors.The visual navigation synergizes the omprehensive pereption of the loal environmentof omnivision for loalization, obstale avoidane, optimal referene image seletion, et.with the high preision of a monoular amera in order to design a preise time-optimalhoming through several non-overlapping referene images.Visual homing is ahieved by a large view visual servoing sheme omprehending severaladvantages ompared to previous approahes. The onept of a horizontal virtual ameraplane allows for deoupled navigation and gaze ontrol and failitates the derivation ofgeneri moments. Generi moments ope with dynami environments and lighting ondi-tions and are designed to ahieve a diret relationship between image and work spae. Inaddition to loalization, the extrated features furthermore provide the seletion of refer-ene images for time-optimal visual homing, thereby solving the problem of the limited�eld of view of the monoular amera and environments with sparse texture.The set of reative visual behaviors is ompleted by a novel obstale avoidane and turnaround behavior by means of several reonstruted perspetive views, from whih a on�-111



112 7 Conlusions and future workdene rated time to ontat is extrated. The onept of alulating the time to ontatfor di�erent traveling diretions based on sparse optial �ow is introdued as the pairingwindow approah, enabling di�erent alternatives for robot navigation. The major lueis the additional on�dene evaluation of the visual measurements as it allows travelingtowards diretions that are pereived as obstale-free.Door detetion, door loalization and door traversal are treated for the �rst time in aoherent purely vision-based framework using omnivision to navigate between rooms andorridors. Notie that due to the overall awareness of the omnivision the door posts re-main visible in the omnidiretional view during the door passage whih thereby allows alosed-loop ontrol with equidistant passage between the door posts.Vision-based and visual navigation ahieve a similar performane in unstrutured o�e en-vironments with regular texture. The two major advantages of visual navigation onsist oflow osts and high dimensional data spae of ameras allowing for other appliations suhas person or objet reognition. Nonetheless homogeneous o�e spaes require advanedamera systems suh as ToF (Time-of-Flight) ameras [84℄, whih reonstrut for a entral�eld of view additional depth information from time of �ight measurements.Future researh is dediated to learning-by-demonstration, whih enables the robot to a-quire a behavior or skill through imitation of ations demonstrated by a teaher [131℄. Thisapproah allows non-professionals to instrut the robot intuitively without the neessity toprogram the desired task expliitly. It is su�ient for the teaher to be able to perform therequired task. The learning approah extrats the underlying relation between pereptionand ation from the demonstration. The straight forward methodology is a learning-by-demonstration sheme similar to the evolutionary optimized navigation behaviors in orderto determine the reommendation of individual behaviors and the overall aggregation.The future of visual navigation is losely related to ameras with strutured light suh asthe eonomi Kineti from Mirosoft Cooperation [98℄, whih reonstruts the depth of thesene by a pattern of infrared light points that are invisible to the human eye. An evenmore promising approah is to fuse omnivision with visual distane information obtainedfrom ToF or triangulation of emitted infrared light, respetively, in order to apture in asingle frame the visual pereption as well as the depth of the loal sene. This leads to3D VSLAM with salable abstration of the map, inluding maps with dense depth rep-resentation, distintive 3D visual features for instant loalization as well as CAD modelsof the omplete environment inluding objets and texture. Suh representations simplifysene understanding, a still unsolved key ability for mobile manipulation, whih requiresfurther researh in the next deade. The urban hallenge also demonstrated that seneunderstanding is essential to solve omplex tra� situations, whereas the lose relation be-tween mobile navigation and advaned driver assist systems yields a domination of robotiteams in the lassi�ation.In the seond part of this thesis a novel methodology for image-based visual servoing bydeoupled image moments for model-free objet manipulation solely relying on 2Dimage information is introdued. It relies on the pixel oordinates, sale and orientation of



Chapter 7 Conlusions and future work 113augmented point features suh as SIFT features. The ontrol is based on deoupled imagemoments, whih are generi in the sense that the ontrol operates with a dynami set offeature orrespondenes rather than a stati set of geometri features. The foundation ofvisual servoing on generi SIFT features renders the method robust with respet to loss ofredundant features aused by olusion or hanges in viewpoint. For 4 DOF visual servoinga set of ompletely deoupled visual features is introdued, that results in robust andindependent onvergene of the orresponding task spae errors. Problems of the lassialJaobian based visual servoing sheme suh as the amera retreat problem and loal minimaare resolved. A novel sensitivity matrix for 6 DOF visual servoing is introdued, whihpossesses only four o�-diagonal ouplings between the visual features and the degrees ofmotion assuming a valid weak perspetive projetion model. The visual ontrol with thenovel sensitivity matrix auses the pose errors to onverge largely independent of eahother resulting in a smoother task spae motion of the amera. The ontrol parametersof the visual ontrol are automatially tuned in a HIL optimization by a ontrolled modelassisted evolutionary strategy for real time appliability.Global visual servoing based on deoupled image moments is suessfully introdued. Theworkspae is partitioned into a set of overlapping referene views in order to navigatevisually from a start to a goal pose. The swithing between referene views ours on thebasis of the time to onvergene estimated from the quality and distribution of mathedfeatures. The ost of referene views is evaluated online throughout progression to the goalview, suh that the sheme opportunistially selets the referene view that is optimal in theurrent ontext. The omputational demands of SIFT feature extration, path planningand time-optimal referene seletion enable real time visual ontrol. The experimentalresults in virtual reality and on the real robot demonstrate that the approah minimizesthe time to onvergene without sari�ing the robustness and thereby stability of thevisual ontrol.As an alternative a look-then-move strategy in onjuntion with loal visual servoing loseto the referene pose is suessfully implemented and tested for objet manipulation, but itis inferior in terms of onvergene time and robustness ompared to optimal global visualservoing over multiple referene images.Future researh fouses on the development of a heuristi swithing sheme for global vi-sual servoing, that is independent of the objet and does not require an o�ine explorationof the view spae for prior ost estimation. An appropriate feature metri aptures thedistane in view spae of features in the urrent view to the referene view based on thenumber of intermediate views (degree of separation) and the similarity of keypoint desrip-tors. Based on the feature distane metri the heuristi selets a referene view with thesubset of mathed features that is losest to the goal view. The bene�t is a robust andontinuous navigation in image spae without dereasing veloities based on loal onver-gene. Another interesting avenue for visual servoing is to ontrol one agent by multipleameras [79℄ or multiple agents by visual servoing [91℄ similar to ooperative manipulatorsin industrial manufaturing. To employ the proposed servoing based on deoupled imagemoments in this ontext is an interesting topi for future researh beause of its ease of



114 7 Conlusions and future workimplementation and model-free approah.In order to ahieve purely vision-based mobile manipulation the presented objet ma-nipulation via optimal global visual servoing with dynami feature sets only has to beintegrated as an additional behavior into the hybrid ontrol arhiteture ontaining the setof behaviors for visual navigation. In analogy to AUTOSAR (AUTomotive Open SystemARhiteture) in the automotive industry, whih provides a framework for the eonomireuse of software, [52℄ reently introdued ROS (Robot Operating System), whih onsistsof an open soure framework and onstrution kit for mobile manipulation appliations.The adaptation and integration of the onepts for visual navigation and manipulationpresented in this thesis into the ROS framework aording to the example from [95℄ on-tributes to the ambitious goal of the roboti ommunity to make servie robots ommonlya�ordable. In analogy to the well-known ISO26262 [73℄ for funtional safety for road ve-hiles, a safety standard for mobile servie robot appliations is reently drafted for the�rst time as the ISO13482 [72℄, requiring additional safety validations to ful�ll the spe-i�ations. The presented methods for obstale avoidane have to be tested against thesespei�ations e.g. as presented in [74℄.Conlusively it an be stated that a purely vision-based navigation using omni and mono-ular vision is feasible. Experimental validations in an unstrutured dynami indoor envi-ronment show the enormous potential of visual navigation. This work demonstrates thatit is possible to replae laser sensors by amera systems in the reative layer. Nonethelesssonar sensors are required as a bak-up, whih indeed are ost-e�ient and light-weightompared to laser sensors. Following the purely vision-based paradigm, it beomes possibleto design a�ordable servie robots. As an additional feature, manipulation of daily objetsis presented, relying on natural ourring features and onverging towards the graspingpose even if these features are not in the urrent view of the objet. Visual navigation inonjuntion with global visual servoing for objet manipulation ahieve the goal of vision-based mobile manipulation outlined in the introdution of this thesis.



Appendix AAnalysis of the grid-based time toontat from optial �ow
The derivation of the grid-based time to ontat for non-holonomi systems is inspiredby [31℄. The point of origin for determining the grid-based time to ontat (ttc) is theimage Jaobian J, whih relates di�erential hanges in the amera position ṙ to di�erentialhanges in the image feature positions ḟ aording to ḟ = Jṙ. Replaing ḟ by the timederivative of the image oordinates u, v (whih orresponds to the measured optial �ow)and ṙ by the translational vx, vy, vz and rotational veloities ωα, ωβ, ωγ, one obtains:
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. (A.1)
As the robot motion is planar and the robot is non-holonomi, the veloities vy, ωα and
ωγ are equal to zero, thereby equation A.1 simpli�es to:
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 . (A.2)Assuming a alibrated amera system and therefore normalized image oordinates û, v̂with foal length λ = 1, equation A.2 is expressed as:
˙̂u =

1

z
(−vRx

+ ûvRz
)− (1 + û2)ωR, (A.3)

˙̂v =
1

z
v̂vRz

− ûv̂ωR.115



116 Analysis of the grid-based time to ontatThe rotational part of the optial �ow is orreted based on the known egorotation of therobot. The egomotion an be estimated by the integrated wheel enoders or using diretlythe optial �ow by projeting the �ow �eld onto a sphere and optimizing a ost funtion[54℄. By additionally substituting 1
z
by ρ a set of linear equations is obtained. For reasonsof larity ˙̂u is substituted by ˙̂u + (1 + û2)ωR and ˙̂v by ˙̂v + ûv̂ωR, thus the rotational part

ωR is purged from the measured optial �ow:
˙̂u = ρ (−vRx

+ ûvRz
) , (A.4)

˙̂v = ρv̂vRz
.The divergene of the optial �ow is de�ned by the sum of the partial derivatives:
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. (A.5)The partial derivatives are alulated aording to:
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.Substituting equation A.6 into A.5 yields:
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. (A.7)Due to the non-holonomi onstraint vRx
an be assumed to be zero as the robot annotmove sidewise during small time steps, therefore equation A.7 simpli�es to:
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. (A.8)Solving equation A.8 regarding the time to ontat yields:
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an be negleted for small values of û and v̂ resulting in alimited frontal �eld of view of 75◦ and the small hanges in distane between two onseutiveimage frames. Therefore the same expression is obtained, but with ompletely di�erentspei�ations as the authors in [31℄. Equation A.10 indiates that the determination of ttcinvolves only the knowledge of the optial �ow �eld vetor divergene, whereas no modelknowledge or estimation of z and vRz

is required:
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Appendix A Analysis of the grid-based time to ontat 117The authors in [31℄ develop the time to ontat around the optial enter [û, v̂] = [0, 0] asoperating point and determine a single ttc in driving diretion using divergene templates.They require a dense optial �ow, whih is not suited for indoor environments. Contraryto their approah ttcs are needed for di�erent image regions in order to have alternativeourse of ations for the robot. Note that their approah is invariant against rotations(responding rotational terms are negleted due to [û, v̂] = [0, 0]) whereas the optial �owaused by rotation has to be orreted prior to alulating ttc.Conlusively three major di�erenes to [31℄ an be stated:+ ttc for di�erent image regions and headings of the robot+ no dense optial �ow �eld required- rotational parts have to be orreted a-prioriDuring an experimental evaluation of ttc alulation for sparse optial �ow �elds the robotmoves toward a wall while apturing sonar and image snapshots as well as the egomotion.Figure A.1 demonstrates the exellent aordane between the ttcmeasured by a monoular
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120100806040200 . .Figure A.1: a) Time to ontat as a funtion of time for a monoular amera versus timeto ontat due to sonar measurements and known egomotion; b) Sequene of images withsparse optial �ow taken during forward motion of the robot.amera and ttc alulated by the division of distane measurements of the robot's sonarby the known egomotion of the robot.
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Appendix BAnalysis of the sensitivity matrix
In order to determine the oupling for the hoie of moments, i.e. the sensitivity of themoments towards another diretion than the intended diretion of motion, the image Ja-obian is di�erentiated with respet to these moments. For the moments fx and fy thismerely signi�es to alulate the mean value of the known Jaobian for eah feature. Asa simplifying assumption all features should have a similar depth, i.e. approximately thesame distane to the image plane. This assumption is valid as long as the depth di�er-ene is small ompared to the distane of the amera to the objet. In servie robotiappliations the above assumption is ful�lled, yielding a valid weak perspetive projetionmodel. Jfx,fy =
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] (B.1)Deoupling fx,y aording to equations 5.10 and 5.19 yieldsJfx,fy =
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. (B.2)To determine the Jaobian for the moments fα and fβ, �rst the feature parameter is trans-formed and then di�erentiated with respet to the time in order to obtain the dependeneof the hange of the feature parameter on the amera veloities [vx, vy, vz, ωα, ωβ]
T . As therotation around γ is already ompensated as desribed in equation 5.2, ωγ does not haveto be onsidered further here. The alulation of Jfα for fα (f. equations 5.3 to 5.5) isnow exempli�ed but is also valid analogously for fβ.
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(B.3)Aording to the onnetion between the loation in the image and the loation of pointsin real spae resulting from the image geometry v and u are replaed by ui = λxi/z and119



120 Analysis of the sensitivity matrixaordingly for uj, vi and vj. Therefore the moment fα is expressed as:
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. (B.4)The transformed moment is di�erentiated with respet to the time. For sake of larity onlyone sum term (mα) is onsidered here:
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]3 .In analogy to the derivation of the lassial image Jaobian J in [70℄, due to ẋj − ẋi =

−ωz(yj − yi) and ẏj − ẏi = ωz(xj − xi) the expression (xi − xj)(ẋi − ẋj)+(yi − yj)(ẏi − ẏj)beomes zero, thus only the �rst term in equation B.5 remains. Now the variables xi, xj ,
yi and yj are bak transformed aording to xi,j = ui,jz/λ and yi,j = vi,jz/λ, resulting in:
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. (B.6)Furthermore, inserting ż = vz + ωxy − ωyx with x = (xi + xj)/2 and y = (yi + yj)/2aording to [70℄ yields:
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Appendix B Analysis of the sensitivity matrix 121The dependenies of the moments of α and β on motions in z-diretion are not ompletelyresolved but an be assumed to be nearly zero (−2λ
z
).For the image moment fzd de�ned in equation 5.7 again for sake of larity only one sumterm (mz) is onsidered here:
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||pi − pj ||2. (B.11)Again, ż = vz + ωxy − ωyx with x = (xi + xj)/2 and y = (yi + yj)/2 is inserted, leading tothe total sum:

ḟzd =
1

n
2
(n− 1)

n
∑

i=1

n
∑

j=i+1

||pi − pj ||2

(

−
1

z
vz −

1

2λ
(vi + vj)ωx +

1

2λ
(ui + uj)ωy

)

. (B.12)Thus, the image Jaobian for z is given by
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. (B.13)In order to redue the ouplings furthermore fz is now replaed by the saled version
fz,σ. Therefore the sensitivity matrix has the following struture whereas all non-diagonalelements are onsidered as undesired ouplings:
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The ontrol sheme for visual servoing with generi image moments in 6 DOF is summarizedin table B.1 taking into aount the deviation from hapter 5.2 to 5.5 as well as thesensitivity matrix above.



122 Analysis of the sensitivity matrixTable B.1: Visual servoing with generi image moments in 6 DOF.(1.) Automati feature seletion for the referene view of the objet (f. setion 5.1).2. Extration of augmented point features in the urrent view frefi =
[urefi, vrefi, φrefi , σrefi] like SIFT/SURF.3. Determination of the amera rotation ∆fγ (f. equation 5.1) by

∆fγ = frefγ − fγ with fγ =
1

n

n
∑
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φi.4. Alignment of ui and vi with the image features in the referene view (f. equation5.2)
[

u′
i

v′i

]

=

[

cos(∆fγ) − sin(∆fγ)

sin(∆fγ) cos(∆fγ)

] [

ui

vi

]

.Rede�nition of ui equal to u′
i, respetively vi equal to v′i.5. Calulation of image moments for amera rotation around α and β (f. equations5.3 and 5.4)
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.6. Determination of image moment for regulating translation along amera axis (f.equation 5.6)
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σi.7. Determination of image moments for x and y (f. equation 5.10)
fx =

n
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i=1

wiui, fy =
n

∑
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wivi.

wi is determined by minimizing the optimization problem F (f. equation 5.17)through a set of linear equations (f. equation 5.19).(8.) Singular omputation of the gains: HIL optimization of the ontroller by λ-CMAES (f. setion 5.3.1).9. Determination of ontroller setpoint by overall feature error ∆f(I)=[∆fx, ∆fy,
∆fz , ∆fα, ∆fβ, ∆fγ ]

T aording to image moments fx, fy, fz, fα, fβ and fγ:
[vx, vy, vz, ωγ, ωα, ωβ]

T = [kx, ky, kz, kγ, kα, kβ]
T [∆fx,∆fy,∆fz,∆fγ ,∆fα,∆fβ]

T

+[kDx, kDy, kDz, kDγ, kDα, kDβ]
T [∆ḟx,∆ḟy,∆ḟz,∆ḟγ ,∆ḟα,∆ḟβ]

T .
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