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"Computer vision as a field is an intellectual frontier. Like any
frontier, it is exciting and disorganised; there is often no reliable
authority to appeal to - many useful ideas have no theoretical
grounding, and some theories are useless in practice."

Forsyth and Ponce
Authors from Computer Vision: A Modern Approach



Abstract

In the future, autonomous service robots are supposed to remove the burden of monotonic
and tedious tasks like pickup and delivery from people. Vision being the most important
human sensor and feedback system is considered to play a prominent role in the future
of robotics. Robust techniques for visual robot navigation, object recognition and vision
assisted object manipulation are essential in service robotics tasks. Mobile manipulation
in service robotics applications requires the alignment of the end-effector with recognized
objects of unknown pose. Image based visual servoing provides a means of model-free
manipulation of objects solely relying on 2D image information.

In this thesis contributions to the field of decoupled visual servoing for object manipula-
tion as well as navigation are presented. A novel approach for large view visual servoing
of mobile robots is presented by decoupling the gaze and navigation control via a virtual
camera plane, which enables the visual controller to use the same natural landmarks effi-
ciently over a large range of motion. In order to complete the repertoire of reactive visual
behaviors an innovative door passing behavior and an obstacle avoidance behavior using
omnivision are designed. The developed visual behaviors represent a significant step to-
wards the model-free visual navigation paradigm relying solely on visual perception. A
novel approach for visual servoing based on augmented image features is presented, which
has only four off-diagonal couplings between the visual moments and the degrees of motion.
As the visual servoing relies on unique image features, object recognition and pose align-
ment of the manipulator rely on the same representation of the object. In many scenarios
the features extracted in the reference pose are only perceivable across a limited region
of the work space. This necessitates the introduction of additional intermediate reference
views of the object and requires path planning in view space. In this thesis a model-free
approach for optimal large view visual servoing by switching between reference views in
order to minimize the time to convergence is presented.

The efficiency and robustness of the proposed visual control schemes are evaluated in the
virtual reality and on the real mobile platform as well as on two different manipulators. The
experiments are performed successfully in different scenarios in realistic office environments
without any prior structuring. Therefore this thesis presents a major contribution towards
vision as the universal sensor for mobile manipulation.



Abstrakt

Autonome Serviceroboter sollen in Zukunft dem Menschen monotone und korperlich an-
strengende Aufgaben abnehmen, indem sie beispielsweise Hol- und Bringedienste ausiiben.
Visuelle Wahrnehmung ist das wichtigste menschliche Sinnesorgan und Riickkopplungs-
system und wird daher eine herausragende Rolle in zukiinftigen Robotikanwendungen spie-
len. Robuste Verfahren fiir bildbasierte Navigation, Objekterkennung und Manipulation
sind essentiell fiir Anwendungen in der Servicerobotik. Die mobile Manipulation in der
Servicerobotik erfordert die Ausrichtung des Endeffektors zu erkannten Objekten in un-
bekannter Lage. Die bildbasierte Regelung ermdglicht eine modellfreie Objektmanipulation
allein durch Beriicksichtigung der zweidimensionalen Bildinformationen.

Im Rahmen dieser Arbeit werden Beitrige zur entkoppelten bildbasierten Regelung sowohl
fiir die Objektmanipulation als auch fiir die Navigation prasentiert. Ein neuartiger Ansatz
fiir die bildbasierte Weitbereichsregelung mobiler Roboter wird vorgestellt. Hierbei wer-
den die Blickrichtungs- und Navigationsregelung durch eine virtuelle Kameraebene entkop-
pelt, was es der bildbasierten Regelung ermdoglicht, dieselben natiirlichen Landmarken ef-
fizient iiber einen weiten Bewegungsbereich zu verwenden. Um das Repertoire der visuellen
Verhalten zu vervollstiandigen, werden ein innovatives Tiirdurchfahrtsverhalten sowie ein
Hindernisvermeidungsverhalten basierend auf omnidirektionaler Wahrnehmung entwickelt.
Die entworfenen visuellen Verhalten stellen einen wichtigen Schritt in Richtung des Paradig-
mas der reinen modellfreien visuellen Navigation dar. Ein neuartiger Ansatz basierend auf
Bildmerkmalen mit einer erweiterten Anzahl von Attributen wird vorgestellt, der nach einer
Entkopplung der Eingangsgrofsen nur vier unerwiinschte Kopplungen zwischen den Bild-
momenten und den Bewegungsfreiheitsgraden aufweist. In vielen Anwendungsszenarien
sind die extrahierten Referenzmerkmale nur in einem begrenzten Bereich des Arbeitsraums
sichtbar. Dies erfordert die Einfiihrung zusatzlicher Zwischenansichten des Objektes sowie
eine Pfadplanung im zweidimensionalen Bildraum. In dieser Arbeit wird deswegen eine
modellfreie Methodik fiir die zeitoptimale bildbasierte Weitbereichsregelung prasentiert, in
der zwischen den einzelnen Referenzansichten umgeschaltet wird, um die Konvergenzzeit
zu minimieren.

Die Effizienz und Robustheit der vorgeschlagenen bildbasierten Regler werden sowohl in der
virtuellen Realitédt als auch auf der realen mobilen Plattform sowie zwei unterschiedlichen
Manipulatoren verifiziert. Die Experimente werden in unterschiedlichen Szenarien in alltag-
lichen Biiroumgebungen ohne vorherige Strukturierung durchgefiihrt. Diese Arbeit stellt
einen wichtigen Schritt hin zu visueller Wahrnehmung als einziger und universeller Sensor
fiir die mobile Manipulation dar.
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List of abbreviations

The abbreviations used within the scope of this work are ordered alphabetically in the
following.

ARIA Advanced Robot Interface for Applications
ARNL Advanced Robotics Navigation and Localization system
a.u. arbitrary units

AUTOSAR AUTomotive Open System ARchitecture
BRIEF Binary Robust Independent Elementary Features
CAD Computer-Aided Design

CMAES Controlled Model-Assisted Evolution Strategy
CV Current View

DBRVS Distance-Based Reference View Selection

DOF Degree Of Freedom

DoG Difference of Gaussian

EKF Extended Kalman Filter

FAST Features from Accelerated Segment Test
FCRVS Fixed Convergence Reference View Selection
FSI Fixed Scale Interpolation

GFTT Good Features To Track

GF-HOG Gradient Field-Histogram of Oriented Gradients
GLOH Gradient Location and Orientation Histogram
GV Goal View

HIL Hardware In the Loop

HOG Histogram of Oriented Gradients

IBVS Image-Based Visual Servoing

IR InfraRed

LQR Linear Quadratic Regulator

MAES Model-Assisted Evolution Strategy

NN Neural Network

ORB Oriented FAST and Rotated BRIEF

ORVS Optimal Reference View Selection

PBVS Position-Based Visual Servoing
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PCA
PD

PTZ
RANSAC
RMSE
ROS

RV
SIET
SII
SLAM
SNN
SURF
ToF

tte
VSLAM
WANN

Principle Component Analysis

Proportional Differential

Pan Tilt Zoom

RANdom SAmple Consensus algorithm

Root Mean Square Error

Robot Operating System

Reference View

Scale Invariant Feature Transformation

Scale Invariant Interpolation

Simultaneous Localization And Mapping

Single Nearest Neighbor

Speeded Up Robust Features

Time of Flight

time to contact

Visual Simultaneous Localization And Mapping
Weighted Average among three Nearest Neighbors
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Nomenclature

In the present work vectors and matrices are printed in bold type. Vectors are hereby
displayed by minuscule letters whereas matrices are represented by capital letters, and
scalars are expressed in italic style. The nomenclature is sorted as following: the first
classification criterion is latin before greek letters, afterwards lower-case before upper-case
letters, and finally bold before italic type.
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ref

confyg
confeg (i )

C,Cy, C,
Cref7 Ca,ﬁa CR

Cv
CVi

control action (for appearance based visual servoing)

scaling factor (for homography)

distance of an interest point to its appropriate epipolar line corresponding
to the u- and v-direction, respectively

pixel displacement

model parameters for exponential function

Hesse matrix

rotation around the z-axis (roll)

correction factor for the adaptive image Jacobian

camera pan angle, respectively velocity

interior angles

intrinsic camera parameter: scaling factor depending on A and pixel di-
mensions

image features in the reference frame

rotation around the y-axis (pitch)

camera tilt angle, respectively velocity

performance criterion

mean of the confidence values

confidence values in a window with the row and column position (7, j) of
the cell

absolute, normalized and relative number of feature correspondences be-
tween the reference view and the current image

static and rotated camera coordinate systems, respectively, and camera
coordinate system in the image plane

virtual camera coordinate system, respectively virtual camera plane
1-th reference view
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normalized keypoint descriptor of SIFT features

distance

Difference-of-Gaussian

error between desired and actual feature locations

total normalized summed feature error

correction along ~ of the averaged keypoint rotation

predicted motion of the image features caused by AGg

feature error between reference and current distortion (camera retreat
problem)

orientational task space error

lateral task space error

longitudinal task space error

epipoles from the actual image

epipoles from the desired view

essential matrix describing the epipolar constraint

mean absolute error in azimuth, elevation and radius

entropy along the u- and v-axis, respectively

residual error between model and data point (for error function of the
M-estimator)

dissimilarity (residual error)

estimation error for camera rotation

tuning variables

current image features, stated depending on the context as f; = [u;, v;]
for the ¢-th image feature with coordinates u;, v;, in the context of SIFT
features as f; = [u;,v;, ¢y, 0;] with the additional attributes orienta-
tion ¢; and scale o;, also in the context of image moments as f =
[fav fﬁv f’w fﬂca fyv fz]

reference image features, also used in the context of image moments
image moment for rotation around the x-axis

image moment for rotation around the y-axis

image moment for rotation around the optical axis

image moment for translation along the x-axis

image moment for translation along the y-axis

image moment for translation along the camera axis

image moment for translation along the camera axis, alternative expres-
sion via the distance between point features

cost function

Gaussian filter

rotation around the z-axis (yaw), respectively the optical camera axis
angle between orientation of virtual camera plane and template plane
angle between the virtual camera plane and the orientation of the robot
twice the distance between the parabola’s vertex and the focus of an
omnidirectional camera
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homography, estimated homography by feature correspondences
relative frequency of features in i-th column

relative frequency of features in i-th row

current image, also denoted as I(u,v,t) in dependence of the pixel coor-
dinates u, v and time ¢

reference image

spatial intensity gradient in u- and v-direction, respectively

visual image Jacobian

pseudoinverse of the image Jacobian

Jacobian for appearance based visual servoing

Jacobian for visual servoing on epipoles

separated Jacobian for rotational motion

separated Jacobian for translational motion

separated Jacobian for angle and axis of rotation parametrization
separated Jacobian for translational motion, reduced to two degrees of
freedom

robot Jacobian for differential kinematics

image Jacobian for the image moment in i, whereas ¢ stands for x, y, 2,
a, B, v

image Jacobian entry for the image moment in ¢ with a movement in
j, whereas both ¢ and j stand for x, y, 2z, a, 5, v and i = j (desired
couplings)

image Jacobian entry for the image moment in ¢ with a movement in 7,
whereas both i and j stand for z, vy, 2z, o, B, v and ¢ # j (undesired
couplings)

separated Jacobian for rotational motion, reduced to one degree of free-
dom

constant proportional gain

adaptive gain

proportional gain factor

camera calibration matrix as a function of the intrinsic camera parame-
ters

image displacement

Gaussian-blurred image

focal length

evaluated individuals of A-CMAES

eigenvalue

Lagrange multiplier

offspring of A-CMAES

control parameter for Levenberg-Marquardt optimization

mean of the time to contact values in a segment with the row and column
position (7, j) of the cell

parents of A-CMAES
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robot joint angles
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camera position
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horizontal distance from focus to parabola of an omnidirectional camera
Pearson’s correlation coefficient describing the linear dependency be-
tween two stochastic variables X and Y

rotation matrix

error function of the M-estimator

polar coordinates

object appearance (in angular color cooccurrence histograms)

image feature scale especially in the context of SIFT and SURF features,
also referred to as the standard deviation of the Gaussian

parameter to regulate outlier suppression (for error function of the M-
estimator)

variance of the feature distribution

translation vector

time to contact, mean time to contact

one of the m total time to contact estimates computed from the corre-
sponding flow vectors
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feature centroid of goal view

2D image coordinates in the virtual camera plane

centroid of the u-, respectively v-coordinate of the current view expressed
in the horizontal virtual camera plane after the feature rotation about
AOg

centroid of the u-, respectively v-coordinate of the reference view ex-
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axis of rotation parametrization

singular value decomposition (SVD) of a matrix
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pixel coordinate in y-direction of the camera coordinate system
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Chapter 1

Introduction

In the future service robots are supposed to liberate people from the burden of monotonic
and tedious tasks. Robots perceive their environment by means of force, touch, proximity
or visual feedback with the objective to perform complex manipulation tasks in dynamic,
unstructured environments of a complexity that exceeds the capabilities of current robotic
manipulators in industrial settings. Pickup and delivery tasks constitute a novel domain of
application for intelligent service robots. This development is triggered by more powerful
and affordable sensors, increased computational power and the advent of lightweight ma-
nipulators. This thesis is a contribution towards the goal of realizing mobile manipulation
with autonomous service robots.

Vision being the most important human sensor and feedback system is considered to play
a prominent role in the future of robotics. Mobile manipulation in service robotic applica-
tions requires localization, navigation, object recognition as well as object manipulation.
All these tasks are achieved with advanced sensors such as expensive laser scanners, af-
fordable sonar as well as camera systems. Several tasks like obstacle avoidance and 3D
world modeling are easily achieved by applying laser sensors. In order to disseminate ser-
vice robots on a broad scale, their costs have to be reduced. Thus, new territory has to
be entered in order to replace laser scanners in favor of cameras as a universal sensor.
Camera systems offer the major advantage that they enable the recognition of objects as
well as people including their gestures and mimics, in addition to their applicability for
localization and navigation. They provide high dimensional and noisy data requiring in-
formation processing and reasoning in order to compensate for the information complexity
compared to lasers. Therefore this thesis focuses on the challenging task to achieve mobile
manipulation for autonomous service robots solely through computer vision.



2 1.1 Mobile manipulation
1.1 Mobile manipulation

A general comprehensive outline of mobile manipulation is given by the Technical Com-
mittee on Mobile Manipulation:

"The ultimate goal of Autonomous Mobile Manipulation is the execution of complex
manipulation tasks, in unstructured and dynamic environments, in which cooperation with
humans may be required. To achieve this goal, several scientific and engineering
challenges, currently beyond the state of the art in robotics, must be addressed." [146].

Mobile manipulation necessitates different skills such as planning, localization as well as
deliberative navigation and object recognition in conjunction with object manipulation.
The complexity of this mission arises from the high dimensional perceptual data afflicted
with uncertainties as well as system complexity that emerges from the mobile platform
itself but even more from the dynamics and ambiguities of the environment.

Given a scenario in which the human instructs the mobile platform with tasks such as
table setting or pickup and delivery, the robot first of all has to localize itself in its dy-
namic environment as neither offices nor households are static. Localization is essential
for planning as well as mission supervision. After the problem "Where am I7" is solved,
navigation is required in order to address the problem of "How to get from A to B?". The
navigation is supposed to guide the robot towards a goal destination for example passing
a door, while simultaneously avoiding collisions. A large variety of different navigation
schemes is provided in literature mostly using combinations of different sensors. This the-
sis follows the paradigm of purely vision-based navigation neglecting other kinds of sensor
merely utilizing image data. Therefore all important skills for navigation of autonomous
mobile robots such as obstacle avoidance, natural landmark orientation for goal-oriented
navigation as well as door passing are designed solely based on visual perception. The
skills for navigation using vision are supposed to be efficient to implement and robust to
guarantee the safe operation of the mobile platform.

Once the designated goal location is reached the mobile platform needs to recognize and
handle daily objects in household environments. The object recognition and manipula-
tion relies on the same object representation, which is sparse in order to fulfill memory
constraints of the underlying hardware. The task of object manipulation consists of the
alignment of the end-effector with recognized objects of unknown pose. Image-based visual
servoing provides a means of model-free manipulation of objects solely relying on 2D image
information. Therefore this thesis provides a significant step towards manipulation of daily
objects relying on natural texture even if the grasp pose of the object is outside the current
view of the object.

Figure 1.1 shows the mobile robot equipped with camera and manipulator explicitly built
for mobile manipulation tasks. It is based on a mobile platform from MobileRobots Inc.
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equipped with sonar sensors. Two camera systems, a monocular pan-tilt camera and an
omnidirectional camera are mounted on the platform for localization, navigation and object
recognition. A manipulator with a two-finger gripper from Neuronics is installed on the
platform. The eye-in-hand camera is designated for closed-loop object manipulation. The
manipulator reduces the field of view of the omnidirectional camera. This imposes no
constraint on the later-on described navigation with the omnidirectional camera because
the remaining field of view of around 300° still contains all relevant environmental contents.

gripper

camera for
object grasping

manipulator

omnidirectional
camera

pan-tilt camera

sonar sensors

mobile platform

Figure 1.1: Mobile robot.

1.2 Related work

The mobile platform is provided with an Advanced Robot Interface for Applications
(ARIA) [100]. ARIA already incorporates control of robot’s velocities, odometric, sonar
and laser measurements as well as collision-free navigation due to reactive behaviors based
on its sonar or laser data. In order to achieve goal-oriented navigation additional packages
for map building (laser mapping and navigation package), ARNL (Advanced Robotics Nav-
igation and Localization System) for Markov based localization and MobileEyes for remote



4 1.2 Related work

control of the robot’s actions, e.g. the progress of the task in the map, are at the disposal
of the customer. The customer has a fully operational robot with these packages, which
navigates after an initial mapping stage without collisions in a goal-oriented manner in dy-
namic environments. To achieve even more complex tasks in the context of service robotics
such as human recognition, human-machine interaction as well as object recognition and
manipulation additional sensors for visual perception are required. While a service robot
inherits more tedious tasks from humans, it is indispensable to reduce the overall costs
especially for the hardware in order to finally achieve the economic breakthrough in the
consumer market. Therefore the motivation arises to design the crucial capabilities such
as localization and navigation as well as advanced skills such as object manipulation with
a single cost-efficient sensor system in conjunction with highly advanced control method-
ologies, rather than employing multiple kinds of expensive sensors in parallel. This trend
from hardware to software intelligence occurs in many industry branches with severe pricing
pressure e.g. automotive industry. Cameras represent an efficient solution to this dilemma
because the range of possible applications and skills over price is much more advantageous
compared to laser. Therefore in its first part this thesis aims at the objective to achieve
similar performance for navigation with visual perception compared to the already existing
commercial software with laser sensors. This provides the basis for additional applications
such as object manipulation, which are treated in the second half of this thesis.

The robot control is based on a hybrid architecture [15] depicted in figure 1.2, composed
of a planning layer, a coordination layer and a subordinate reactive layer. The role of
the planning layer consists in generating the mission plan and its surveillance, including
global localization of the robot, preloaded path planning for goal-oriented navigation as
well as object manipulation. The coordination layer activates or deactivates those reactive
behaviors that are necessary for successful realization of the plan and adequate in the
current context. It is also responsible for the diagnosis of the robot’s status, mission
surveillance and emergency or fallback strategies. The operation of the reactive layer
follows the behavior based paradigm [18], as it abandons any abstract representation of the
environment but decides about the motion commands only based on the current perception
provided by the sensors (behavior representation). A behavior is represented by a direct
map from the stimulus, for example the distance measurement, to the response, in the
case of mobile robots the motor commands. In case of navigation an obstacle avoidance
behavior guarantees the safety of the robot with respect to collisions with surrounding
objects. Other reactive behaviors e.g. constant velocity, corridor centering, homing are
primarily useful for local navigation. The object manipulation requires a behavior which
transfers the manipulator in a pre-grasping position. This thesis investigates the potential
of camera systems to replace the sensor inputs for the planning and the reactive layer and
completely dispense with distance sensors such as laser employed in commercially available
robot systems.

Different approaches for robot navigation are known from literature [15, 18, 5| focussing
mostly on methodologies for distance sensors. In their general survey about vision for
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sensor planning layer localization |
1

sonar, ~I mission planning navigation |
|

laser object manipulation |
|

| path planning

!

trajectory generation|

[ -
[behavior adaption] coordination layer

—| coordination, optimization, management
)

diagnosis and surveillance ——
X ™ system monitoring |

| behavior selection |

_{ emergency strategies|
1

sensor reactive layer
sonar, > control, stabilization — actuators
laser

| behavior representation| | behavior coordination |

Figure 1.2: Hybrid three-layer model for robot control with planning, coordination and
reactive layer, with laser and sonar as input for localization and navigation in the planning
layer as well as for the behaviors in the reactive layer.

mobile robot navigation [39] distinguish between indoor and outdoor navigation. A com-
prehensive overview for visual navigation is provided by |16], which categorizes visual
navigation as map-based navigation and mapless navigation, whereas map-based naviga-
tion is subdivided into metric and topological map-based navigation. Metric maps repre-
sent the environment in relative coordinates with respect to an absolute world coordinate
system, whereas topological maps possess a graph-like structure with nodes and edges,
representing abstract locations and the repertoire of behaviors to transit between them
without any geometric information [86]. Localization techniques using laser sensors are
well-established [51|. A framework for Simultaneous Localisation And Mapping (SLAM)
is provided by [147] by building a map from scratch while continuously localizing itself in
the online generated map. Efficient approaches such as FAST-SLAM [102| achieve nowa-
days real-time mapping of the environment. Despite the substantial progress regarding
VSLAM (Visual Simultaneous Localisation And Mapping) [142, 36, 138|, maps provided
by VSLAM using local feature extraction are sparse and therefore not dense enough for
metric navigation required by standard laser based navigation schemes. However, these
maps are suited for robot localization [76]. Recent approaches [148]| generate off-line dense
3D maps due to stereo vision with additionally integrated landmarks, nonetheless the
overall localization is inferior to simple topological localization approaches using omnivi-
sion such as [55]. In [44] a VSLAM scheme provides a 3D-voxel map by FAST-SLAM in
conjunction with the Kinect sensor, which solves inherently the 3D reconstruction problem
of visual senors by actively emitting structured light [98]. This thesis follows the topologi-
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cal map-based navigation paradigm using passive visual senors, representing environments
by a directed graph. Topological maps require less memory and are suitable for the repre-
sentation of large indoor environments. Topological SLAM using local feature extraction
is presented in the works of [155, 3|, which seems to outperform appearance-based visual
SLAM by global feature extraction [65]. The choice of the localization methodology has a
direct impact on the required collection of behaviors (referred to as mapless navigation in
[16]). Topological map-based navigation requires visual perception representing the visual
nodes, also referred to as waypoints, as well as the visual behaviors associated with the
edges in order to navigate between them. Depending on the degree of integration of the
image processing systems into the hybrid control architecture the approaches are classified
throughout this work into vision-guided and visual navigation schemes. Visual naviga-
tion solely uses visual information as input for the planning as well as for the reactive
layer, whereas vision-guided approaches are supplemented by active distance sensors such
as sonar or laser sensors providing further input for the reactive layer.

Visual reactive behaviors omit metric maps for representing the environment, instead they
perceive and track objects by coupling the immediate decision about the robot movement
directly with the visually observed appearance of the local environment. Such approaches
are either based on locating specific landmarks in the environment, or follow an appearance
based approach [154] or measure the optical flow [4]. The corridor centering described in
[4] operates by balancing the optical flow in the right and left hemisphere of an omnidirec-
tional camera system, however, it fails if texture is missing or non-uniformly distributed
in the corridor environment. Vision-based navigation in unstructured environments solely
uses natural features and structures without adding supplementary landmarks or texture
elements to facilitate the navigation task. [105] describes a vision-based homing behavior
with gaze control for decoupling the camera and the robot movement via a virtual camera
plane. However, in this context the environment is structured systematically by placing
landmarks at selected waypoints to support vision-based navigation.

Robotic manipulation of daily-life objects in unstructured environments is an essential
requirement in service robotic applications. Image-Based (IBVS) and Position-Based Vi-
sual Servoing (PBVS) grow in visibility due to their importance for robotic manipulation
and grasping. Visual servoing is defined in the standard tutorial |70] as:

"the use of one or more cameras and a computer vision system to control the position of
the robot’s end-effector relative to the work piece as required by the task".

Position-based visual servoing estimates the object’s pose relative to camera, as the error
between the actual and the goal pose is defined in the Cartesian space. The main drawbacks
of position-based visual servoing are 3D model generation of objects, on-line estimation of
3D pose, system instabilities because of coarse pose estimations as well as objects leaving
the field of view [23|. Image-based visual servoing solely relies on 2D image information
for the alignment of the end-effector with an object of unknown pose. The desired pose
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for grasping is demonstrated to the robot during a learning stage and a set of reference
features is extracted from the image. A geometric object model or an explicit reconstruction
of the object scene becomes obsolete for image-based visual servoing. Due to these two
major advantages this approach is particulary promising for mobile manipulation, namely
model-free and easy to demonstrate for the instructor.

The categorization of [24] and [25] for different image-based visual servoing concepts is
pursued and different approaches in literature are ranked regarding their applicability to
mobile manipulation. Jacobian based visual servoing inverts the analytical relation between
differential changes in task space to differential changes of pixel coordinates to reduce the
error in the image space between the actual and desired feature coordinates [151]. Hybrid
visual servoing defines the error between actual and desired pose partially in image and
Cartesian space [26]. Partitioned visual servo, respectively visual servoing with decoupled
image moments, defines image moments which are related approximately in a one-to-one
relationship to their degrees of motion, resulting in a simple linear control problem in the
image space [143]. Appearance based visual servoing [37]| captures the overall appearance
of an object rather than single features and relates this appearance by an offline learned
interaction matrix to control values to steer the end-effector in the reference pose. Other
approaches for visual servoing such as visual servoing on epipoles [120] or by structured
light are neglected because of their minor importance for service robotics.

Figure 1.3 depicts a radar chart in order to compare different visual servoing concepts
with respect to various aspects. Visual servoing by image Jacobian, hybrid visual servoing,
visual servoing by decoupled moments as well as appearance based visual servoing are com-
pared regarding stability, calibration issues, convergence, compliance with service robotic
specifications and biology inspiration. Stability is divided into global asymptotic and local
asymptotic stability as well as heuristic approaches for stability analysis e.g. convex poly-
gons. Hybrid visual servoing has the highest ranking due to its global asymptotic stability.
Appearance based visual servoing has the lowest ranking as the stability analysis of the op-
timal policy (feed-forward) is not analytically feasible. On the contrary appearance based
approaches require in principle no intrinsic or extrinsic camera calibration and therefore
achieve the highest ranking in this category. Nonetheless even if the three other approaches
require intrinsic camera calibration, this is nowadays no severe limitation because of the
standard tools for camera calibration [136]. The aspect of convergence contains computa-
tional complexity as well as the convergence (behavior) of the image error, the task space
error in addition to the required actuating variables. Hybrid and visual servoing with
decoupled moments exhibit fast convergence in conjunction with low computational com-
plexity. The computational complexity of course highly depends on the feature extraction
methodology and its application parameters. On the contrary appearance based visual
servoing has high computational demands for extracting appearance, whereas Jacobian
based approaches partially show slow convergence depending on the relative pose between
actual pose and goal pose because of their couplings between rotational and translational
degrees of freedom. The term service robotic applications compromises e.g. the robustness
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regarding occlusion, unstructured cluttered environments with highly structured objects as
well as changing light conditions. Additionally object recognition as well as visual servoing
should rely on the same object representation in order to reduce memory requirements.
Appearance based visual servoing requires accurate object segmentation to discriminate
different object poses, which is difficult to achieve in textured environments. Nonetheless
this methodology directly fulfills the requirement for the same object representation for
recognition and positioning. Feature based approaches in literature are presented most
frequently using simple feature primitives such as [135]. These features are very efficient
to implement but not realistic for service robotic applications because of their low percep-
tibility across large regions of the workspace as well as their minor ability to discriminate
among different objects. The potential of feature based approaches is much more promising
than appearance based visual servoing concerning robustness due to feature redundancy
and under the assumption of solved correspondence problem. Even if appearance based
approaches are ranked highest in the category biology inspiration, these approaches are
suboptimal regarding the other categories and are therefore not pursued in the context of
this thesis. It is an interesting point that approaches adopted from nature are less robust
than purely technical motivated methodologies regarding mobile manipulation.

Conclusively it can be stated that visual servoing with decoupled moments and hybrid
visual servoing are best suited for service robotic applications and are further investigated
to achieve full applicability for mobile object manipulation. Furthermore this thesis pos-
tulates visual servoing with decoupled moments, as no partial pose estimation requiring
intrinsic camera calibration as well as geometric assumptions of the scene are required.
Exploitation of the potential of visual servoing with decoupled image moments regarding
decoupling the translational and rotational degrees of freedom as well as fulfilling service
robotic specifications is a challenging task. The authors in [117|, however, state that:

"Finding a set of visual features which produces a decoupled interaction matriz for any
camera pose seems an unreachable issue".

Nonetheless a diagonal interaction matrix is much desired and therefore investigated in the
context of this thesis with the success of finding a resulting interaction matrix with only
four remaining couplings independent of the camera pose.

In many scenarios the features extracted in the reference pose are only perceivable across
a limited region of the work space. Different terminologies are reported in literature for
visual servoing across several intermediate reference views of the object in order to navigate
towards the final reference pose. Path planning in image space [97|, visual servoing due to
visual memory [123] as well large view visual servoing [105] are conceptualized for global
visual servoing. Notice that local visual servoing is defined by the visual servoing towards
a single reference image, whereas global visual servoing is concerned with the navigation
and control in a set of connected, partially overlapping reference images, respectively in
the overall image space. Achieving a model-free and time-optimal convergence towards
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Figure 1.3: Characteristics of different visual servoing concepts regarding stability, conver-
gence, service robotic specifications and biology inspiration.

the desired pose by switching between reference views is the ultimate goal of the cited
approaches. Global visual servoing is a challenging task, which is imperative to achieve
mobile manipulation independent of the object’s initial view in the camera image.

1.3 Objective of this thesis

This thesis provides a contribution towards mobile manipulation in unstructured environ-
ments with the ambitious goal to accomplish all skills and tasks exclusively by means of
visual perception. In order to achieve mobile manipulation solely relying on visual percep-
tion this work yields new insights in two major domains namely visual navigation in the
first part and visual servoing for object manipulation in the second part.

For visual navigation the following questions are addressed:
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e How to achieve time-optimal visual homing for mobile robots dealing with natural
texture in dynamic environments with camera systems with limited field of view
requiring gaze and position control in parallel?

e How to design collision-free navigation using omnivision considering noisy image
measurements and sparsely textured office environments?

e How to accomplish door detection, door tracking and door passing in a coherent
purely vision-based framework with closed-loop door traversing?

e How to design visual navigation in unstructured office environments with match-
able performance in comparison to state-of-the-art approaches using sonar and laser
sensors?

Visual servoing for object manipulation is mainly concerned with the following challenges:

e How to achieve markerless and decoupled visual servoing for optimal convergence in
task space in the context of object manipulation of daily objects?

e How to realize time-optimal visual positioning of the gripper relative to an object
even if the desired grasping position is outside the current field of view of the camera?

e Which strategy is better? A look-then-move strategy in conjunction with local visual
servoing close to the reference pose or visual servoing over several reference images
in the context of service robot applications?

This thesis is organized as follows: Chapter 2 provides the state of the art of computer
vision as well as the visual servoing in order to keep this thesis self-contained. The chapter
3 is dedicated to the progress from vision-guided navigation with laser based stimuli to
purely vision-based navigation by relying solely on visual stimuli. Global visual homing
based on visual servoing with an omnidirectional in conjunction with a pan-tilt camera
is introduced in chapter 4. A comparison of vision-guided and visual navigation is addi-
tionally provided at the end of chapter 4. In order to accomplish mobile manipulation
chapter 5 demonstrates a novel approach for markerless and decoupled visual servoing to
align the robot end-effector with recognized objects of unknown pose. Conventional point
features are augmented by additional attributes like scale and orientation, which establish
a one-to-one correspondence between the individual image moment and its correspond-
ing degrees of freedom. The limited visibility of features necessitates the introduction of
additional intermediate reference views of the object and requires path planning in view
space. Therefore a new methodology for global (large view) visual servoing is introduced
in chapter 6. The path planning in the image space is flexible as the decoupled visual
servoing relies on a dynamic set of feature correspondences rather than a static set of indi-
vidual features. This property allows the online selection of optimal reference views during
servoing to the goal view resulting in time-optimal control. Finally this thesis concludes
with a summary and outlook on future work in chapter 7, in which the major develop-
ments concerning the challenges and open questions raised here and the major results and
insights are summarized.



Chapter 2

State of the art of computer vision and
visual servoing

This chapter provides the basis for computer vision and visual servoing, the required ter-
minology for the comprehension of this thesis as well as the classification of this thesis into
the scientific context. This chapter is organized as follows: Image formation is described
in section 2.1 for perspective and multiple cameras as well as for omnivision. Image under-
standing by robust feature detection for object recognition is treated in section 2.2. The
two major topics visual navigation and image based visual servoing are described in detail
in sections 2.3 and 2.4, respectively, as well as the experimental systems in section 2.5.

2.1 Perspective camera, multiple-view geometry and om-
nivision

The general perspective projection model describes the relation between a homogeneous
point p.(x,y, z,1) in the 3D camera space coordinate system and its projection onto the
2D image coordinate system in homogeneous coordinates p(u, v, 1), whereas A denotes the
focal length:
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The image point p(u,v,1) on the retinal image is transformed to the normalized image
plane according to equation 2.2. This transformation yields the normalized pixel coor-
dinates [, 0, 1]7 independent of the intrinsic camera parameters, i.e. enabling the direct

11
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comparison of images originating from different camera systems:
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The intrinsic camera parameters «,, and «, describe the scaling factors depending on A and
the pixel dimensions. The intersection of the optical axis with the image plane is described
by the principle point [uq, ’U()]T. Due to manufacturing imperfections of an actual camera,
the angle 0., between the axes of the retinal image may not be equal to 90°. The extrinsic
camera parameters consider the position and orientation of the camera coordinate system
relative to the world coordinate system. To express this relation, the rotation matrix R
and the translation vector t are combined in a homogeneous transformation matrix Te:

1
[u,0,1]" = —TiText [2,y, 2, 1] with Ty = (K O0). (2.3)
VA

Intrinsic camera parameters as well as radial distortions of the pixel coordinates v and v
caused by lens imperfections are determined by a camera calibration process [136]. The
radial distortion is corrected by a polynomial function of the squared distance between
the optical center of the image and the given pixel coordinates (cf. chapter 3.3 in [50]).
Detailed information about the complete camera system layout and the image formation
process can be found in [67], whereas standard references [50], [78] mainly focus on the
image analysis from low level to high level vision.

Multiple view geometry is concerned with partial or full 3D reconstruction, respectively,
of the environment based on multiple views of a scene. The essential and fundamental
matrices describe the epipolar constraint for calibrated and uncalibrated camera systems
which relates a point in one image to a line in the other independent of the scene’s geometry
[90]. The essential matrix is stated as:

E = [T,R, (2.4)

where the vector t is expressed as a skew-symmetric matrix T, so that t x x = [T,|x. The
essential matrix degenerates for small translations, rendering it unsuitable for automatic
control engineering topics such as visual servoing or image-based oscillation measurements.
The homography H, however, describes a point-to-point transformation between two per-
spective views of a plane:

T
n
ap [Gig, 02, 1)" = H[dy,91,1]7 with H=R+ —t, (2.5)
whereas R and t are defined by the rotation and translation between the optical camera
centers. n is the normal vector of the plane and d the distance between the optical center
of the first camera and the plane. Contrary to the essential matrix the homography matrix
does not degenerate because t is additive.
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The homography is estimated from at least four corresponding features located on a com-
mon plane, assuming that the scaling factor hsz = 1, via:

R Us @11 @12 @13 Uy
p,=Hp, & Uy | = @21 }}22 }}23 01 |, (2.6)
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where H is, apart from a scaling factor aj, identical to the actual homography matrix H.
The estimated homography H is decomposed via singular-value decomposition into the
unknowns rotation matrix, scaled direction vector as well as the normal vector [47]:

H=UAV' & A=U'HV & A=U"UdR+tn")V. (2.7)

As the decomposition of the homography yields ambiguous solutions, the correct solution
is obtained by taking into account only the physically plausible solutions and a subsequent
comparison of the estimated with the assumed normal vector. Multiple view geometry for
partial or complete real world reconstruction e.g. homography is treated extensively in the
works of [60] and |134].

Conventional monocular cameras have a limited field of view. In order to overcome this
constraint, omnidirectional cameras, also referred to as catadioptric cameras, consist of a
combination of lenses (refractive, i.e. dioptric) and mirrors (reflective, i.e. catoptric) to
enlarge the field of view. The most important design objective for catadioptric sensors is
to achieve a single effective viewpoint, which allows the reconstruction of perspective views
and panoramic images with arbitrary orientations. A detailed overview of single viewpoint
catadioptric sensors and the image formation process is provided by |8, 53].

a) b) c)

spheric mirror

vertex !

parabolic
mirror

Figure 2.1: a) Omnidirectional camera; b) Geometry of a parabolic omnidirectional camera;
¢) Omnidirectional image.

The omnidirectional sensor used in this thesis consists of a camera DFK-31AF03 from
Imaging Source and a D40 optic from RemoteReality. It has a field of view of 360° in
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azimuth and approximately 60° in elevation. Figure 2.1 depicts the omnidirectional camera
(a), a schematic view of the projection geometry (b) as well as an omniview (c) referred
to in the following as omnivision. The catadioptric sensor consists of a parabolic mirror in
conjunction with a spheric mirror and a perspective lens system. Parabolic mirrors have
an orthographic projection, which guarantees that the light rays from the environment are
reflected parallel towards the spheric mirror. The spheric mirror also satisfies the single
viewpoint constraint, whereas the center of projection lies in the center of the sphere. A
sharp single viewpoint image is obtained as the center of the sphere coincides with the focal
point of the perspective lens system. Figure 2.1 b) shows the geometry of such a parabolic
omnidirectional camera. The world points p.; and p., are orthographically reflected to
the points p; and p, in the image plane. The vertex of the parabola has the distance h/2
to the focus which is the single viewpoint of the parabola. The parameter h is also the
radius 7 at 2, = 0. Thus, the expression for the reflecting surface follows as:

h* —r?
2h

2p = (2.8)
In figure 2.1 ¢) the omniview is presented which shows the blind spot in the center, an
analogy to the human eye, originating from a pin in the center of the spheric mirror to
prevent multiple reflections.

Omnivision is well suited for mobile robot applications as it captures the entire surrounding,
which facilitates robot localization as well as robot navigation. Furthermore, due to their
large field of view, omnidirectional camera systems are optimal for work space surveillance
of product assistants [141].

2.2 Robust point feature detection for recognition

For developing vision-based control concepts for mobile manipulation in unstructured en-
vironments unambiguous and recognizable features have to be extracted from the camera
images. Contrary to the industrial context where markers or labels are imprinted on ob-
jects and in the surrounding environments, for service robotic tasks this approach is not
feasible. Thus, the algorithms employed in this thesis have to recognize the features in
the camera image if the camera-object distance changes (scaling invariance), the lighting
conditions vary, the camera rotates around its optical axis or is subject to affine transforma-
tions. Associating the same feature in different perspectives is referred to as correspondence
problem.

In the following, two prominent and useful algorithms from literature for local feature
extraction and for solving the correspondence problem are presented in detail. Primarily
Good Features To Track (GFTT) |135], which is implemented e.g. in the OpenCYV library
[71], is described as it already contains all significant steps required for robust feature
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extraction and matching. Based on this efficient implementation, a sophisticated method
for feature extraction, Scale Invariant Feature Transformation (SIFT), is described which
is utilized within the scope of this work.

GFTT consists of an edge detection in order to localize interest points and subsequently
track the same feature over consecutive images. Strong corners in the image are detected
with the Hesse matrix according to the ideas of the Harris edge detector [59]:

2,
A= ZZW(U,U) [u[v [2 ’ (29)

with the image derivatives [, and [, in u- and v-direction, respectively, and the isotropic
weighting w(u,v) such as a Gaussian kernel. The two eigenvalues Acig, and Agg, are ex-
tracted from A. If Mgz ,Aeig, are close to zero then the image region is homogeneous. If one
of the two eigenvalues is much greater than the other the image region contains an edge.
A corner is detected only if both eigenvalues have large positive values and satisfy the
constraint min()\oigl,)\cig2) larger than a threshold. The corner represents an interest point
which is tracked in consecutive images by a small window €24 assuming purely translational
motion. In order to avoid false tracking of features the dissimilarity is measured for a large
window €2; as follows:

€4 = //QI[IQ(RpT +t) — L)%dp,. (2.10)

If the residual error £4 exceeds a certain threshold the feature is classified as lost and is
therefore rejected. GFTT are well suited for local feature tracking and are therefore not
suited for advanced service robotic applications. Of course scale-invariance can also be
achieved by a scale-independent Harris edge detection using a Gaussian pyramid, nonethe-
less the feature extraction described in the following has a better representation of the
features suited for recognition even under large displacement and rotations as well as
changes in lighting conditions.

Scale Invariant Feature Transformation introduced by Lowe [93| is an approach to detect
and extract local features from an image with similar methodology as GFTT but with
superior performance in terms of recognition, because of combinations of the progress in
image processing since the first presentation of GF'TT. They demonstrate invariance with
respect to scale, orientation and illumination. SIFT features are conveniently matched
across similar views of the same scene. The utilization of specific markers in vision-based
applications becomes obsolete as the environment and textured objects naturally contain
suitable SIFT features. SIF'T features are distinguishable as their associated keypoint de-
scriptor includes a compact, albeit specific representation of the surrounding image region.
These properties make them particularly suitable for vision-based localization, visual ser-
voing, object recognition and pose estimation. As their properties are essential for the later
on introduced visual controllers, the four major computation stages are briefly described.

(1) Scale-space extrema detection: Interest points in the image for SIFT features
are the ones which correspond to local extrema of Difference-of-Gaussian (DoG) filters at
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different scales. The scale of the SIF'T feature is defined by o. The difference of Gaussians
is calculated from the difference of convoluted images at neighboring scales o, respectively
ko. Given a Gaussian-blurred image L

1 —(u? 4+ v?
L(u,v,0) = G(u,v,0) * I(u,v) where G(u;,v;,0;) = —— exp (M) (2.11)

2 2
2mo; o;

is a variable scale Gaussian, I denotes the image to be processed and * is the convolution
operator. The convolution of an image with a DoG filter is defined by

D(u,v,0) = (G(u,v, ko) — G(u,v,0)) * I(u,v) = L(u,v, ko) — L(u, v, o). (2.12)

The converted images are grouped by octaves which correspond to doubling the value of
o, resulting in a pyramid of DoG images with different scale.

(2) Keypoint localization: The interest points in the image are referred to as keypoints.
They are identified either by their local maxima or minima of the DoG images across the
scales. Every pixel in the DoG image is checked for its candidate validity by comparing it
with its eight neighbors at the same scale and also with its nine corresponding neighbors
at neighboring scales. If the pixel exhibits either a local maximum or local minimum
it is selected as a candidate keypoint. Every candidate keypoint needs interpolation to
accurately determine its position. Keypoints with low contrast values are removed and
responses along the edges are also eliminated. Once the positions of the keypoints are
assigned their orientation can be determined.

(3) Orientation assignment: Orientation of the keypoint is determined using a gradient
orientation histogram in the neighborhood of the keypoint. The contribution of each
neighboring pixel is weighted by the gradient magnitude and a Gaussian window with a
width o that is 1.5 times the scale of the keypoint. Peaks in the histogram correspond
to dominant orientations. A separate keypoint is created for the direction corresponding
to the histogram maximum and any other direction within 80% of the maximum value.
The properties of the keypoints are all described relative to the keypoint orientation to
accomplish orientation invariance.

(4) Keypoint descriptor: With the information about the keypoint orientation, a key-
point descriptor is constructed which is a set of orientation histograms on the neighboring
4 by 4 pixels. The histograms are expressed with respect to the keypoint orientation. The
histogram has eight bins and each descriptor has an array of four histograms around its
keypoint. Each SIF'T feature consists of a normalized keypoint descriptor dy, with 4 by 4
by 8 = 128 elements.

Matching of SIFT features: Matching of SIFT features involves the determination of
corresponding features in two views of the same scene. Therefore the SIFT features are
extracted in both views and the similarity of their keypoint descriptor is calculated. The
similarity is defined by the Euclidian distance between the two keypoint descriptors of
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length 128. In order to make the matching even more robust the relative rather than the
absolute similarity is evaluated using the relationship between the highest and the second
highest value of similarity which is required to exceed a specified threshold.

The presented control concepts can be realized identically with SURF (Speeded Up Robust
Features) [13, 12] because they also contribute additional attributes as scale and orientation
of the features. Other methods for local feature extraction such as GLOH (Gradient
Location and Orientation Histogram) [99], HOG (Histogram of Oriented Gradients) [34]
or its significant extension GF-HOG (Gradient Field-Histogram of Oriented Gradients)
|68] only differ in the methodology to capture the local appearance of the feature descriptor.
[127] recently introduced ORB (Oriented FAST and Rotated BRIEF), which combines in
an efficient way the keypoint detector FAST [125] with the efficient feature descriptor
BRIEF [21]. FAST extracts keypoints even faster than GFTT or SIFT. However, as these
methods do not offer any major improvement apart from faster computational time e.g.
based on discretization by integral images like SURF, they are not considered further.

Literature reports two distinct approaches to solve the pose estimation problem. Model
based methods rely on the extraction of specific geometric features in the image such as
corners and edges. Robust features like SIFT, GFTT or SURF are mandatory for model-
based object recognition and pose estimation. Clusters of robust image features are utilized
in the first step to recognize the object. Afterwards the extracted features are compared
and related to a known geometric model of the object. Efficient and reliable approaches for
model based pose estimation with known correspondences have been proposed by [38, 115].
The drawback of these methods like any other model based approaches is the requirement
of an a-priori geometric model of the object, an exact camera calibration as well as the
solution of the correspondence problem, which becomes inherently more difficult in case
of occlusion and ambiguous features. Following the model based paradigm, [56| therefore
describes an approach for the construction of 3D metric models from multiple images taken
with an uncalibrated handheld camera for augmented reality applications.

In contrast, global appearance based methods capture the overall visual appearance of an
object, e.g. the multidimensional receptive fields introduced by [132]|. Neither do they de-
pend on the extraction of individual features nor do they face the correspondence problem:.
The basic idea is to capture the appearance by statistical representations such as histograms
in order to calculate a probability of the object’s presence in the current image view, an idea
which is inherent to almost every appearance based approach. The methodology consists
roughly of three steps, primarily low-dimensional local feature descriptors are calculated
on a regular grid on the image, these descriptors are then quantized and aggregated in
multi-dimensional histograms and finally compared to stored histograms of known objects
exploiting the Bayes rule. The major difference between object recognition by clusters of
SIFT features and by means of multidimensional receptive fields can be summarized as
follows: SIFT features extract solely keypoints representing corner points and thereby as-
sured textured image regions from which a highly distinguishable high-dimensional feature
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descriptor can be determined, thereby exploiting all image information available. Multidi-
mensional receptive fields on the contrary calculate a low-dimensional feature descriptor on
a regular grid, thereby giving away information in textured highly distinguishable image
regions and additionally sampling homogeneous regions with less information for the his-
tograms as well. |22] propose distance color cooccurrence histograms for object recognition
of multi-colored, textured objects, emphasizing the conservation of geometric information
as the major advantage of color cooccurrence histograms compared to regular color his-
tograms. Based on this fundamental idea, [43| propose color cooccurrence histograms for
object recognition as well as 1 DOF pose estimation. The angular extension of color cooc-
currence histograms is suggested by [106| in the context of pose estimation of robot players
(AIBOs) as well as for 2 DOF pose estimation of multi-colored, textured objects [107].
[104] introduce a method that combines appearance and geometric object models in order
to achieve robust and fast object detection as well as 2 DOF pose estimation. Their major
contribution is the integration of the known 3D geometry of the object during matching
and pose estimation by a statistical analysis of the distribution of feature appearances in
the view space. Nonetheless their approach requires a 3D model of the object, which is
difficult to generate for objects of complex shape and therefore the inherent problem of all
model based approaches.

Image-based visual servoing presented in section 2.4 provides the means for model-free
object manipulation for service robot applications without prior pose estimation requiring
only an object recognition with e.g. clusters of GE'T'T or SIFT features and a subsequent
control in the image space towards the desired locations of the features in the image plane.
This approach leads to a high position accuracy, but nonetheless achieves only local con-
vergence due to viewpoint limitations. Therefore an initial pose estimation is again mostly
mandatory as the current object view does not necessarily contain the features close to the
manipulation position. Global visual servoing introduced in chapter 6 overcomes the above
stated limitations, thereby constituting a promising and more efficient approach compared
to model and appearance based object recognition and pose estimation, neglecting any
model knowledge but still incorporating the high position accuracy.

2.3 Visual navigation

The characterization of the different visual navigation concepts leads to the appraisal of
topological map-based navigation with reactive visual behaviors as stated in section 1.3.
Visual navigation draws its inspiration from biology which provides numerous examples of
visual behaviors of insects and birds. It is challenging to design behaviors that are not based
on distance sensors but on visual stimuli considering the burden of high computational
complexity and noisy data. The authors in [1] extract the elements of early vision by
defining the so-called plenoptic function which describes the visual information available
to an observer at any point in space and time. Analyzing the plenoptic function yields the
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definition of only four fundamental visual primitives, namely color, texture, disparity and
optical flow to be utilized for designing visual behaviors.

Color corresponds to the different wavelengths in the visible range of the light spectrum.
It requires model knowledge about the surrounding world e.g. the color information of
objects like doors and side walls. Additionally the problem of color constancy is not solved
yet, assigning always the same color to a homogeneous monochromatic area in spite of
different illuminating conditions as described by the Dichromatic Reflection Model [82].
Therefore color is not suited for the navigation in unstructured environments. " Texture is
a phenomenon that is widespread, easy to recognise and hard to define" |50|. Texture is
understood by two similar but distinct meanings.

(1) Texture is defined as repeated patterns like carpet, hair or grass which have a specific
response in the frequency domain, thereby extractable and distinguishable by filter
banks as Garbor filters.

(2) Texture is defined as any difference to homogeneous regions exhibiting the same
wavelength. Thus texture includes simple white spots in a black environment as well
as paintings with a lot of unique structures and shapes maybe expressed by a set of
widespread colors. The texture from definition 1 is a subspace of definition 2. Neither
kind of texture is caused by shadowing, surface shape or other lighting effects.

Texture accordingly to definition (1) requires also model knowledge like carpet patterns
about the surrounding world and is therefore not suited for mobile manipulation, e.g.
navigation in unstructured environments. Texture from definition (2) is required for visual
navigation to extract primitives like disparity and optical flow or advanced information such
as visual landmarks. Notice that texture from definition (1) hinders the robust optical
flow extraction thereby requiring more sophisticated algorithms to deal with repeating
ambiguous patterns. Therefore texture is understood according to definition (2) throughout
this thesis. Disparity is a brilliant clue as it directly leads to distance measurements, which
allows mimicking of distance-based behavior. The determination of disparity requires a
second extrinsically calibrated monocular camera and the solution of the correspondence
problem, but is subject to the same shortcomings as optical flow as it necessitates the
presence of texture in the environment. Optical flow is defined by the pixel motion between
two images in the image space caused by the egomotion of the observer or moving objects
in the field of view. The methods for calculation of optical flow can be classified into
three groups: differential, frequency-based and matching [10]. A classification in terms of
accuracy and density of the flow field is given by [11]. In this work differential methods are
used for the sake of computational efficiency which compute velocities from spatio-temporal
derivatives of image intensities. This is equivalent to the integration of velocities normal
to the local intensity structure into full velocities either locally by least-square calculation
[94] or globally via regularization [66]. Differential methods are based on the 2D motion
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constraint equation:

OL(u,v,t)
ot

where [I,, I, is the spatial intensity gradient of the image I(u, v,t) and the image velocity
v, respectively the optical flow [@, 0] at the pixel [u,v] at time ¢. The Lucas and Kanade
algorithm [94] uses a weighted least-squares fit of local first-order constraints to a constant
model for the image velocity in a small spatial neighborhood €2 by minimizing;:

> w?(u,v)[[L, L][i, 0] + I(u, v, 1)) (2.14)
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with the weighting function w(u,v) giving more influence to constraints at the neigh-
borhood’s center than at its periphery. These methods provide a dense optical flow field,
nonetheless the motion direction is not estimated accurately enough, because homogeneous
image regions cause ambiguous solutions of the correspondence problem and large flow is
not observable due to phase restriction. The limitations of this algorithm are overcome
by the Lucas Kanade pyramid algorithm [17| by creating a Gaussian image pyramid of
the two images and calculating the optical flow iteratively at every level, thus providing
the input for the next level. As the optical flow is determined only for qualified strong
corners indicated by the Harris corner detector [59], the optical flow field is in comparison
with other differential, intensity based methods sparse but therefore more accurate, even
for large optical flow. Because of these advantages this method is used in the scope of this
work for the estimation of the optical flow.

Therefore only texture and optical flow are required for the design of visual behaviors in
unstructured indoor environments. Visual behaviors for a perspective camera as visual
homing, collision avoidance and obstacle avoidance are introduced by |27]. The approach
relies on fast image segmentation by template matching of carpet patches to detect free
space in front of the robot and is therefore not suited for unstructured environments as
it requires a huge amount of model knowledge. Their method is nonetheless at the same
time point of departure as well as inspiration for sophisticated and more general visual
behaviors.

Visual door passing: Robust and reliable door passing is feasible with laser range scan-
ners as demonstrated by the reactive door passing behavior in [114]. However 2D laser
range scanners are not suitable for the detection of closed or partially opened doors |75].
The robust visual detection and localization of doors still remains a challenging task despite
a number of successful implementations in the past [42, 153, 140].The authors in [140, 101]
detect doors by means of a monocular camera in conjunction with sonar, with the main
disadvantage that the final door detection at close range relies on sonar information only.
The second approach [101] relies on the assumption that the robot already faces the door,
which excludes more realistic scenarios in which the robot travels along a corridor parallel
to the doors. The door traversal approach by [42] is robust with respect to individual
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pose errors, scene complexity and lighting conditions as door hypotheses are filtered and
verified for consistency across multiple views. The door detection relies on a binocular
pan-tilt camera system whereas the proposed approach uses an omnidirectional camera.

Visual obstacle avoidance and corridor centering: In order to achieve obstacle
avoidance in indoor environments the authors in [31] determine the time to contact (ttc)
in driving direction based on the divergence of the optical flow. The optical flow is a
powerful image clue used for egomotion estimation [19], structure from motion [139] and
for visual behaviors like corridor centering, wandering and target point following |32, 41].
[29] employ a monocular camera in conjunction with a lidar system in order to estimate
obstacle velocities by a Kalman filter to avoid moving obstacles, whereas [28| integrate a
laser based obstacle avoidance into the visual navigation.

Visual homing: Literature reports several distinct approaches for a visual homing be-
havior. Appearance-based homing of a non-holonomic robot is presented in [35]. Other
approaches prefer feature-based navigation, e.g. in [46] a Euclidean reconstruction is per-
formed based on a homography matrix relating the visual feedback to the position and
orientation of the mobile robot in a local coordinate system. [57] presents a promising
approach for merging the desired movements with the feasible motor commands of the
non-holonomic robot. The robot uses a monocular vision system in conjunction with a
Jacobian and geometry-based controller. In |20] a spherical image projection is applied in
order to overcome the numerically ill-conditioned system equations for large pan angles.
Their system uses natural landmarks which are either selected manually or automatically
[83] and are detected by region-based image correlation. [14] introduce visual servoing on
epipoles with visual memory. The stored trajectory of the epipoles in image space is learnt
during a demonstration stage, which represents the desired robot trajectory.

2.4 Image-based visual servoing

A classification of visual servoing concepts is introduced by [129]. Therein two questions
are addressed, primarily whether visual servo control directly drives the joints (direct visual
servoing) or provides the input for an underlying joint controller (look-and-move). Most
visual servoing implementations employ the look-and-move structure with underlying joint
controllers, with the intention of decoupling kinematic and visual singularities, suppress-
ing kinematic singularities by standard joint controllers, using different bandwidths for
image processing and joint control as well as standard robotic interfaces with setpoints for
Cartesian velocity and incremental movements. In this thesis look-and-move structures
are used exclusively. Secondly, visual servoing is classified into position or image-based
visual servoing, depending on whether the control input consists of a pose estimation of
the end-effector with respect to the work piece or a direct calculation of the error signal in
the image space. Position-based visual servoing (PBVS) issues model generation for every
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object to be manipulated, solving the correspondence problem and pose estimation as well
as an intrinsic and extrinsic camera calibration. In addition to errors in the model genera-
tion caused e.g. by imperfect intrinsic and extrinsic camera calibration, deviations in the
inverse kinematics also contribute to control deviation. PBVS is therefore well suited for
robotic manipulators in industrial settings with predefined and predictable systems but not
for service robot applications, which incorporate high uncertainty about the environment.
This thesis advocates in the following image-based visual servoing (IBVS). Image-based
visual servoing offers the advantages that camera calibration and robot’s kinematics errors
do not result in a control deviation and that it does not require any object model.

The visual information is provided either by camera systems fixed in the workspace observ-
ing the robot’s motion or by a so-called eye-in-hand configuration, in which the camera
is attached directly to the robot and thereby exhibiting the robot’s motion in the task
space. Eye-in-hand configurations are convenient for mobile robots in unstructured envi-
ronments due to their complete awareness of the surrounding. Additionally they provide
high position accuracy close to the goal pose because of their projection scale, therefore
visual servoing in this thesis postulates eye-in-hand configurations. Figure 2.2 illustrates
the image-based visual servoing employing a look-and-move structure for eye-in-hand ob-
ject manipulation. The visual reference features fo¢ are defined directly in the 2D image
plane, making a geometric model or reconstruction of the environment obsolete. The task
space velocities and the corresponding joint velocities of the manipulator are calculated
according to the error Af between the desired f,f and the actual feature locations f. The
robot and the camera motion regulate the feature error, which vanishes as the current
and reference pose coincide. A known shortcoming of image-based visual controllers is the
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Figure 2.2: Image-based visual servoing (IBVS) in a look-and-move structure for eye-in-
hand visual object manipulation.
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camera retreat problem. The problem is constituted by the fact that optimal trajectories
in the image space might result in singularities or infeasible trajectories in task space. The
image-based controller minimizes the image error linearly in the image space. If the cam-
era is only rotated by 180° compared to the goal pose, instead of the appropriate motion
in task space, namely a counter-rotation of the camera around the optical axis of about
180°, the camera retreats from the scene in order to minimize the error linearly. As the
camera retreats from the scene the feature points travel to the image center and end up in
a singularity. A possible solution for manipulators to decouple the translational and rota-
tional velocities is proposed in [33|. Based on perspective projection an angular criterion
is developed, which takes into account the trapezoidal distortion of a square based on a
rotation around one of the axes spanning the image plane. The presented prerequisite for
image-based visual servoing follows the classification of |24, 25] for the different approaches
in literature and summarizes the pros and cons for service robotic applications.

Visual servoing with (adaptive) image Jacobian: Visual servoing based on the image
Jacobian J inverts the analytical relation between differential changes in task space to
differential changes of pixel coordinates to reduce Af [151]. The simple proportional control
law is given by:

= —kJT(r)(fer — ), (2.15)
where J* is the pseudoinverse of the image Jacobian J and k a constant gain factor. k
ensures an exponential decrease of the error as Af = —kAf. The image Jacobian J also
referred to as interaction or sensitivity matrix is derived in [70]:
A u uv —A\2_q?
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As the analytical determination of J requires the knowledge of z for each point feature,
different approaches for the determination are stated in literature. J is determined with the
distance z* at the goal pose and remains static during visual control. A better performance
in terms of convergence is achieved by determining J via the algebraic mean of z in the
current and z* in the goal configuration [24]. As an alternative an adaptive approach is
introduced by [77| in which the image Jacobian J is estimated by the predicted feature
motion due to the motion of the camera Ar and the observed motion Af (optical flow)
according to:

(Af — JpAr)ArT

ArT Ar

a, denotes the correction factor for the adaptive image Jacobian. As no knowledge of
the distance z is required this approach seems particulary interesting for service robot
applications. As the control by the image Jacobian assumes a linear model between the
pixel and camera motion, a trust region control [137] is especially suitable to guarantee
strictly linear control:

Jiir=Jr+a, (2.17)

i = —k,J*(r)Af with k, = min (1, %) . (2.18)
k
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The constant proportional gain k is replaced by an adaptive gain k,, which is determined
by the boundary of the pixel displacement a; and the prediction of the image displacement
lx = JAr. aj compromises a large control variable for fast convergence with linear regime
of J. Nonetheless for eye-in-hand configuration the promising concept of adaptive image
Jacobian and trust region control proves to be inapplicable as a translational motion in
x (respectively y) is difficult to distinguish from a rotational movement around the y-axis
(respectively z-axis), resulting in an almost identical optical flow. In conjunction with
small image noise the result is false convergence of the adaptive Jacobian and local minima
in control. In order to overcome theses disadvantages |[118| presents a completive study
between analytical and adaptive Jacobian in 3DOF, incorporating additionally the epipolar
constraint in the adaptation. [130] propose a calibration-free Jacobian by re-expressing and
online adaptation of focal length and scale in each control cycle. The concept of adaptive
image Jacobian is well suited for fixed camera systems observing the robot’s motion and the
object or applications with reduced degrees of motion of the camera, but has no practical
importance for mobile robots.

Hybrid visual servoing: In order to improve visual servoing [26| propose two and one-
half-dimensional visual servoing in order to exploit the advantages of IBVS and PBVS.
Q%D visual servoing decouples rotational and translational velocity control by primarily
estimating the rotation between the current and desired object view, e.g. from decompo-
sition of the homography H (cf. section 2.1). The control for the rotational motions is
expressed as:

w = —k&ug, (2.19)

whereas £ and ug correspond to the angle and axis of the rotation parametrization, respec-
tively. Contrary to the rotational motions the translational error is corrected directly in
the image space:

v = —J5(KAL, + Juw), (2.20)

J.+ and J,,, correspond to separated Jacobians for the translational and rotational motions
and ngué is the separated Jacobian for angle and axis of rotation parametrization. Af;
is defined by the error in the image space caused by a translational deviation from the
desired view. The control law is defined analogous to equation 2.15 as follows:

Jvt va
0 Jogue |

Note that J,; and J,, are expressed similar to the general J with the major advantage

that the distance z to the object is expressed in terms of the ratio é obtained by the

homography decomposition. Image-based visual servoing based on Jacobian shows local
asymptotic stability, whereas Q%D visual servoing achieves even global asymptotic stability.

r=—kJTAf with Af=(f,fus) and J= { (2.21)

Visual servoing with decoupled image moments: This is referred to as "partitioned
visual servo" in the classification from [25]. Visual servoing by image moments is investi-
gated by [45, 69] using the distance between two image points as well as their orientation.
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Moments of higher order based on projected image regions are introduced by [151]. The
motivation for decoupled image moments is to find an interaction matrix, which establishes
a one-to-one relationship between image moments and their degrees of motion, resulting
in a simple linear control problem. Analogous to the hybrid visual servoing the rotational
and translational degrees of freedom should be completely decoupled resulting in a smooth
convergence in the 3D task space. [143] describes image moments using coplanar closed
contours, which enable a decoupled control scheme if the object is orientated parallel to
the image plane. Recently these ideas where extended by [145] showing a dependence of
the few remaining off-diagonal couplings with the object shape. |9] presents visual servoing
by photometric moments describing the global appearance. The authors in [116] employ
visual servoing with decoupled image moments for controlling the position and orientation
of a quadrotor relative to observed landmarks on the ground.

Visual servoing on epipoles: Visual servoing based on epipolar geometry is first intro-
duced by [124]. Using the epipolar constraint the error is defined as the distance of an
interest point to its appropriate epipolar line in terms of a; and b;, corresponding to the u-
and v-direction, respectively. The control law is defined as:

P=—KJJSAf with Jo = [a;, ). (2.22)

[120] extends this idea by employing multi-view visual servoing directly on the epipoles,
which benefits from three images taken during a training stage. The set of reference images
consists of a desired image and two additional reference views taken from two distinct
vantage points. The visual servoing control law defines the error in terms of the difference
between the epipoles from the desired view [el, e2]7 and the epipoles [el, e?]” from the
actual image onto the two additional reference views (projection of the optical center of
the first camera onto the second camera). Therefore two essential matrices E are estimated
during each control cycle. Nonetheless the control completely decouples translational and
rotational motions, in which the rotational control is primarily used to keep the features in
the field of view. This approach is less promising regarding service robotics because three

reference images are required in conjunction with sequential estimations of E.

Appearance based visual servoing: Appearance based visual servoing (direct visual
servoing) is classified as an image-based visual servoing method, whereas the appearance
of the object (cf. section 2.2) is directly provided as input to the controller instead of
extracted point features. An approach based on angular color cooccurrence histograms in
conjunction with reinforcement learning satisfying the continuous action and state space
requirement is successfully demonstrated by [80]. An agent learns online the optimal policy
7(s,a) which is defined as: 7(s,a) = argmax,Q(s, a), whereas the action value function
Q(s, a) contains the mapping from object appearances s (angular color cooccurrence his-
tograms) to the control action a in order to reach the grasping pose. [37| captures the
appearance of an object by a PCA (Principle Component Analysis) in order to reduce
the high dimensionality of the intensity image followed by an offline training stage for the
interaction matrix. These methods initially require an object recognition step as well as a
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continually accurate object segmentation during visual servoing for object manipulation.
The latter is difficult to achieve in textured environments. A novel approach referred to as
luminance based visual servoing is presented in 30|, performing the visual servoing directly
on the image intensities. The error Af is thereby defined by the difference of all intensities
between the current image I and the reference image I.o¢ while the interaction matrix J,
is determined in terms of the 2D motion constraint from equation 2.13:

Ol(u,t)
ot

= VI, t)v = Ja=—(VLJ{W) + L, VI[)). (2.23)

By reformulating the visual servoing as an optimization problem, the control law using the
Levenberg-Marquardt optimization algorithm is defined as follows:

= k(I Ja + pdiag(J."Ja) T (1 — Let), (2.24)

where the parameter p is chosen in dependence of the cost function in order to switch
between steepest descent and Gauss-Newton optimization. Although luminance based
visual servoing is quite promising, it requires object recognition and segmentation. This
renders the approach solely suitable for mobile navigation. Nonetheless appearance based
visual servoing is a novel recently emerging branch within the field of visual control e.g.
for micropositioning of microelectromechanical structures [144] and is a promising avenue
as it is presumably close to human object recognition and manipulation.

Visual servoing with structured light: Visual servoing with structured light rather
describes the exploitation of active visual sensors than actually representing novel visual
servoing concepts. The authors in [117] propose a camera setup with four laser pointers
(structured light) for visual servoing relative to planar objects. The structured light not
only eases the feature extraction stage, enabling the control also for objects with homo-
geneous surfaces, but additionally allows for decoupled visual servoing close to the goal
position by image moments resulting in a good task-space trajectory. This methodology
therefore falls under the category of visual servoing with decoupled image moments. The
task of automatic seam filling in the context of aircraft construction is solved by |63] with
a hybrid visual servoing scheme with structured light. Hybrid control with structured light
combines position-based visual servoing, which locally reconstructs the pose between tool
and workpiece to regulate the robot perpendicularly to the workpiece’s surface, with image-
based visual servoing used for centering and tracking the seams to be filled. The concept
of enforcing texture by structured light onto homogeneous object regions is promising, as
it transforms the passive sensor camera into an active sensor system. Utilizing structured
light in the visible range is questionable for service robotics and therefore not followed in
the context of this thesis. Time-of-Flight (ToF) [84] cameras additionally provide depth
information for the 2D image plane, but at the cost of low camera resolution and high
power consumption. Because of the low resolution and the 3D information these cameras
are suited for low demanding PBVS [122] and might have their main application area in
autonomous navigation.
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The characterization of the different visual servoing concepts leads to the appraisal of visual
servoing concepts stated in section 1.3 and summarized in figure 1.3. Visual servoing with
decoupled image moments excellently complies with the service robotic specifications. The
three-stage design methodology for vision and control applications presented in [113] is
applied for systematically development of visual servoing with decoupled image moments,
which is conform with design methodology for mechatronic systems [150].

2.5 Experimental systems for visual servoing, naviga-
tion and localization

This section describes the fundamentals and the set-ups of the different experimental sys-
tems used in this thesis. The mobile platform Pioneer 3-DX from MobileRobots Inc. in
conjunction with a 5 DOF manipulator Katana 6M from Neuronics is used to achieve mo-
bile manipulation in indoor office environments. To evaluate the visual object manipulation
in 6 DOF, the proposed visual servoing schemes are applied to an industrial manipulator
RV 20-16 from Reis which is introduced as well.

A mobile platform of the type Pioneer 3-DX is employed in the course of this thesis for
the transition of vision guided to visual navigation as presented in chapters 3 and 4. It
possesses a ring of eight forward and rear sonar sensors, because sonar is affordable and
robust. These sensors are indispensable as a back-up sensor in the case that the visual
perception fails. The experimental set-up is equipped with a Sick Laser ranger LMS 200
(cf. figure 2.3). The robot is additionally equipped with the Pan-Tilt-Zoom camera (PTZ
camera) VC-C4 from Canon as well as an omnidirectional camera system consisting of a
camera DFK-31AF03 from Imaging Source and a D40 optic. The platform Pioneer 3-DX is
a two-wheel differential-drive robot with an additional castor wheel for stabilization. The
robot kinematics is non-holonomic as it possesses fewer local degrees of freedom than its
global state space. The motion of the differential drive robot is restricted to translation
along its current heading and rotations around the vertical axis, but it is unable to move
sideways. The robot state is defined by [zg,zr,0r]|7 in order to comply with the usual
camera coordinate frame. The z-axis is along the robot’s direction of motion, the x-axis is
horizontally orientated and the y-axis of robot and camera rotation is vertically orientated.
The differential drive robot motion is described by a velocity motion model as

z(k+1)r = z(k)r+ vrAtsin(fg) (2.25)
2(k+1)gp = z(k)r+ vrAtcos(br)
9(k5+1)R = Q(k)R+wRAt,

where vg and wg denote the translational and rotational velocity of the robot. Alternatively

an odometry motion model is applied in this thesis, which uses the odometer measurements
in order to compute the robot’s pose.
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Figure 2.3: a) Mobile Platform equipped with sonar rings, laser range finder, omnidirec-
tional and PTZ camera; b) Katana 6M from Neuronics; ¢) RV 20-16 from Reis.

The robot arm Katana 6M is employed in this thesis for developing a novel visual servo con-
troller for object manipulation. It is a five degree of freedom (DOF) serial-link manipulator
as shown in figure 2.3 b). The arm is equipped with a two-finger gripper at the end-effector
with five integrated infrared (IR) proximity sensors and force sensors. The forward kine-
matics, which determines the position and orientation x of the end-effector as a function
of the joint angles q is defined as: x = k(q). x is defined as [z,y, z,«, 3,7], whereas
[z, y, z] describes the pose in Cartesian coordinates and [«, 3, 7] the rotation around the z,
y and z axes (roll, pitch, yaw). The inverse kinematics consists of the determination of
the appropriate joint angles to a specified end-effector position: q = k™!(x). As most of
the thesis is concerned with visual servoing, which implies velocities in the task space, the
differential kinematics are essentially defined by: X = Jqi(q)q. The implemented forward,
inverse as well as the differential kinematics including a collision detection are state of the
art and therefore assumed to be known. These functionalities and terms are used in the
thesis without further explanations.

The industrial robot RV20-16 from Reis is a six degree of freedom manipulator with a
maximum payload of 16 kg. The absolute positioning error is about one to two mm
and the repeatability is specified with 0.05 mm. The RV20-16 is depicted in figure 2.3
¢). The Katana 6M as well as the industrial robot RV20-16 are used for visual servoing
for object gripper alignment as described in chapter 5 and 6. Additionally the grasping
and manipulation of daily objects with the Katana 6M for service robotic applications is
described in [81] using the presented control schemes.



Chapter 3

From vision guided to visual navigation
of mobile robots

This chapter investigates the possibility to represent the set of required behaviors for topo-
logical navigation in unstructured indoor environments solely due to an omnidirectional
camera. Starting point for the investigations is the vision guided navigation scheme based
on sonar and laser presented in [114] with a topological map without prior structuring
of the environment. As a replacement for the distance sensors the omnidirectional image
provides the stimuli for a novel obstacle avoidance by means of several reconstructed per-
spective views, from which a confidence rated time to contact is extracted [112]. A visual
door passing behavior is treated in a coherent purely vision-based framework [121].

Examples and an overview for visual behaviors are provided in section 2.3. Inspirational
for the following investigations is the fundamental work by [27] of implementing visual
behaviors based on a monocular camera. The target of the following investigations is to
represent as far as possible all required visual behaviors for indoor office navigation solely
by omnivision (cf. section 2.1) due to its inherent advantages such as its 360° field of
view contrary to other approaches e.g. [29, 28|. Additionally the design of the behaviors
is mandatory to be model-free to operate in unstructured environments. Using a more
sophisticated camera system a complete framework for visual navigation is provided in the
following requiring no artificial structuring of the environment.

This chapter is organized as follows: Vision guided navigation is introduced as a starting
point in section 3.1 with topological localization using omnivision and reactive behaviors
with distance sensors. The door passing behavior is described in section 3.2. Visual
behaviors for obstacle avoidance and corridor centering using omnivision are described in
section 3.3 and investigated during an experimental evaluation.

29
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3.1 Vision-guided navigation

Vision-guided navigation pursues a learning by demonstration scheme for the topological
navigation. According to the hybrid control architecture depicted in figure 1.2 the stimuli
for the reactive layer is provided by range sensors, whereas the planning layer perceives
its local environment by means of an omnidirectional camera. The experimental platform
is a Pioneer 3DX mobile robot equipped with a 2D laser scanner, an omnidirectional
camera system and a ring of sonar sensors (cf. figure 2.3 a)). The distance sensors (laser,
sonar) capture the local environment of the robot and provide the stimuli for the obstacle
avoidance, the corridor centering, the door detection and the door passing behavior. The
robot localizes itself within a topological map based on detected correspondences between
omnidirectional views.

3.1.1 Planning

The presented method for vision-guided navigation requires a learning phase in which a
graph is created offline (figure 3.1). A topological map represented by a directed graph
forms the basis of path planning and navigation. In this representation of the office en-
vironment nodes in the graph constitute waypoints and are associated with distinctive
visual features. The visual features are later recognized in the current camera image and
enable a unique association with nodes in the topological map by finding correspondences
with stored features. During the learning phase the robot is guided manually through the
environment, and at relevant locations for navigation the corresponding SIF'T features are
extracted and added as nodes to the topological map. Neighboring nodes are connected
via edges in the graph. It is assumed that navigation between connected waypoints does
not require localization but is entirely accomplished by means of reactive behaviors such
as corridor following and door passing. Depending on the type of neighboring relationship
the planning layer engages the combination of reactive behaviors that is suitable in the
current context, e.g. door passing and obstacle avoidance for a pair of waypoints connected
through a door. Topological path planning is reduced to graph search, which is solved by
the common Dijkstra algorithm [40]. The context of an edge depends on the type of con-
nection between waypoints, and the coordination layer, depending on the context provided
by the planning layer, activates the following subsets of reactive behaviors:

e Corridor: obstacle avoidance, constant velocity and corridor centering

e Door passing: obstacle avoidance, constant velocity, door passing and homing

e Open spaces (in analogy to corridor): obstacle avoidance, constant velocity and, if
required, homing
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Figure 3.1: Vision-guided navigation: learning by demonstration offline (white background)
and context dependent choice of behavior online (grey background).

3.1.2 Topological localization

In order to generate a topological map the robot is guided through its environment in a
demonstration while reference images of the local surroundings are captured at distinctive
locations such as doors or junctions. Waypoints are unambiguously described by the SIFT
features detected in the omnidirectional image of the corresponding environment similar
to [2|. Figure 3.2 depicts an omnidirectional image with the corresponding detected SIFT
features. Neighboring waypoints in the image are associated with nodes connected via
edges in the graph. Localization in the topological map is achieved by similarity of the
current view with the reference images captured during demonstration. The high density of
SIFT features in natural environments allows to introduce waypoints at arbitrary locations
in the desired density without explicit reference to specific landmarks. The SIFT features
detected in the current view are compared with those stored in the database. The measure
of similarity between two locations is expressed by the relative frequency of corresponding
SIFT features in the current and reference image. To activate a node, ten topologically next
neighbors of the last traversed node are compared with the SIFT features of the current
camera image. This neighbor search enables a continuing localization, even if the next node
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Figure 3.2: Omnidirectional camera image with blind spot and extracted SIF'T features.

according to the plan is not identified or missed. However, this rare non-identification of a
topological node in practice only occurs if a large majority of the features is occluded at the
waypoint. The method is also suited without restriction for global localization of the robot,
whereas the computing time for initial comparison of the current view with all stored views
in the database increases accordingly. The measure of similarity between SIFT features is
obtained as explained in chapter 2.2. A waypoint is recognized if at least 20% of the features
in the current view are in agreement with those of a reference view in the database. If
several topological nodes exceed this threshold at the same time, the node with the highest
correlation is selected. Simultaneous exceeding of this threshold value only occurs in case of
very small distances of the nodes, i.e. below 30 cm. If the correspondence is larger than 10%
but smaller than 20%, a node is recognized if the similarity of the node with the highest
correlation is at least twice as high as the one with the second highest correlation. In
order to evaluate the performance and robustness of the proposed scheme the robot travels
along a corridor passing ten previously demonstrated waypoints as depicted in figure 3.3.
The waypoints are distributed in front of the doors in order to activate the door passing
behavior if the appropriate door to be passed according to the plan is reached. The nodes
are sequentially activated in the right order, indicated by the filled out dots in figure 3.3
b), ¢) and d), during a navigation through the corridor under different light conditions.
The local resolution of the localization is obviously based on the high activation level of
the nodes only in the vicinity of the waypoints. The robustness of the method is evident,
as all passed waypoints are recognized reliably while the corresponding door hypotheses
are created.
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Figure 3.3: Specificity of SIFT features for varying illumination and surroundings: a)
Metric map of the corridor with waypoints in front of the doors; b) Node activation for
identical illumination conditions; ¢) Node activation for different illumination conditions
and lateral distance to the capture point of one fourth of the corridor width; d) Node
activation for strongly changed illumination conditions (different time of day, closed doors).

Reactive behaviors with distance sensors: A set of configurable fuzzy behaviors is
designed according to |128]. The goal-oriented navigation results from the interaction of
constant velocity, homing, corridor centering, obstacle avoidance and door passing behav-
ior. Details of the fuzzy behavior representation of these behaviors can be found in [61] as
well as the behavior coordination. The design of a reactive door passing behavior as well
as a detailed description of the performance and robustness of vision-guided navigation
is discussed in [114|. A video of the experimental evaluation of vision-guided navigation
including localization, reactive behavior coordination and door passing can be downloaded
from the website of the department |[126]. The transition from vision-guided to vision-
based navigation is subject of the following chapter in which the behaviors are represented
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instead of distance measurements solely by means of visual perception primitives such as
optical flow and texture.

3.2 Visual behavior for door passing

Visual door traversal is a vital skill for autonomous mobile robots operating in indoor
environments. An omnidirectional view offers the advantage that an initial scan of the en-
vironment for doors by rotating the robot base becomes obsolete. In addition the omniview
guarantees that the door remains visible throughout the entire door traversal whereas with
a conventional perspective camera the door eventually leaves the field of the view such that
the final stage of door traversal is performed in open loop control. The omniview also offers
an advantage in scenarios with semi open doors in which the robot still detects the door
in the rear view after it has passed the door leaf. The objective of the approach presented
in [121] is to provide a robust solution of the entire door detection and navigation problem
relying on omnidirectional vision only. The vision-based door recognition and traversal
problem is structured into the three steps of door detection (a), door localization and
tracking (b) and door traversal (¢) as shown in figure 3.4, which are shortly summarized.

a) Door detection. b) Door tracking. ¢) Door passing.

Figure 3.4: Visual door passing behavior [121].

a) Door detection: Images contain a large amount of information which necessitates
the filtering, extraction and interpretation of those image features that are relevant to the
visual door detection. The door detection is composed of three subsequent fundamental
steps: image processing, line processing and door frame recognition. The image processing
involves edge detection, thinning, gap bridging, pruning and edge linking. Afterwards
the line processing aggregates individual edge segments into categorized lines by means of
line approximation, line segmentation, horizontal and vertical line selection as well as line
merging. Similar to other approaches in the past the door detection scheme relies on a
door frame model composed of two vertical door posts in conjunction with a horizontal top
segment. The final step in the door detection comprehends the matching between plausible
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combinations of vertical and horizontal lines with multiple potential door frame patterns.
These door patterns are inspired by the work of [103]|, which defines simple and double
door frames.

b) Door localization and tracking: Door localization estimates the robot’s current pose
(xR, zr, Or) with respect to the door coordinate system. In case of monocular cameras the
robot pose is usually recovered by triangulation of features across multiple captures taken
from different viewpoints. In the literature this localization scheme is known as bearing
only localization. The built-in odometry estimates the relative robot motion between
consecutive viewpoints. Since both the measurement and the motion are subject to noise
and errors, the robot position with respect to the door is estimated with an Extended
Kalman Filter (EKF) [152|. The state prediction of the EKF relies on the odometry
motion model, which describes the relative robot motion between two consecutive poses
[147]. The initial two consecutive door detections are used to initialize the states and
covariances of the Kalman filter. Afterwards the door localization is based on sequential
prediction and update steps.

c) Door passing: Typically the door is first detected in the image once the robot is about
two to three meters away from the door. The door is tracked continuously by means of the
Kalman filter and the robot continues its motion parallel to the corridor until the robot
is located laterally with respect to the door center. At this instance the robot stops and
turns 90° towards the door, continuously tracking its relative orientation. Before initiating
the traversal the open door state is verified from a sequence of images by extraction of the
time to contact and the texture. A homogeneous texture indicates a closed door, whereas
random texture implies an open door. A large time to contact guarantees safe traversal.
The robot traverses the door at constant velocity by centering itself with respect to the
continuously tracked door posts. The visual servoing controls the robot’s turn rate such
that both door posts remain equilateral in the omnidirectional view. The Kalman filter is
no longer applied as the depth information becomes unreliable at close range and is not
needed for guiding the robot through the door.

The algorithm is tested on 1000 manually labeled images taken from video sequences
captured in the office environment of the department. Most images contain multiple doors,
such as the scenario in figure 3.4 with three successfully detected and validated doors. False
positives in single images for doors amount to 3%, false negatives occur 5% of the time
[121]. To render the detection algorithm even more robust, the door frames are tracked
over consecutive images during the motion. Initial false positives are eventually rejected
in subsequent captures. This validation step is of particular importance for the Kalman
filter localization.
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3.3 Visual behaviors for collision-free navigation

3.3.1 Corridor centering

Corridor centering behavior has a strong resemblance with the visual-motor behavior of
honey bees. Bees fly by balancing the optical flow generated in the lateral portion of the
optic array of both eyes. This strategy enables them to fly exactly in the center of a tunnel.
The corridor following behavior balances the magnitude of the optical flow generated on
both the left and right hemisphere of the omnidirectional camera to drive the robot towards
the center of the corridor [32]. A simple but robust control law results from the comparison
of the magnitude (its maximum) of the optical flow in the left and right hemisphere [u, v]L
and [1, V][, respectively:

AR = k(max([it, Vi) — max([i, V]ig))- (3.1)

It is based on the assumption that the region which generates a larger optical flow con-
tains objects in closer proximity to the robot than the opposite side. In equation 3.1 Og
describes the rotation and £ is a proportional gain factor. The corridor following with the
omnidirectional camera detects the optical flow across an angular region of 45° to 135° on
both sides of the translation direction for balancing.

3.3.2 Obstacle avoidance by optical flow

To avoid obstacles in front of the robot the time to contact is estimated from the diver-
gence of the optical flow onto an image grid from the reconstructed perspective frontal
view. Time to contact estimates are fused with the confidence in the respective visual
information, namely the local variance of optical flow and statistical analysis [112]. Both
together determine the desirability and safety of traveling in the corresponding direction.
Oscillatory movements of the robot are prevented by reconstruction of two additional pe-
ripheral views for which the time to contact is measured solely by optical quantities, e.g.
the object’s viewing angle and its derivative. A general overview of methods for optical
flow extraction based on a time sequence of images is given in chapter 2.3. According to
the performance evaluation of optical flow techniques for indoor navigation with a mobile
robot, the approach from Lucas and Kanade achieves the best results in terms of accuracy,
efficiency and robustness |96]. Therefore the Lucas-Kanade pyramid algorithm from [17]
is used which provides a sparse but more accurate optical flow field compared to other
differential, intensity based methods, even for large optical flow.

The obstacle avoidance behavior guides the robot reliably towards obstacle-free regions and
circumnavigates objects in the vicinity of the robot or regions afflicted with uncertainty
concerning visual perception. Figure 3.5 a) shows the omnidirectional camera view of a
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corridor. In the case of obstacle avoidance as well as turn around behavior to avoid un-
certain and potentially critical spaces initially three perspective views are reconstructed as
shown in figure 3.5 b) [119]. The frontal view accomplishes collision avoidance with objects
in front of the robot, whereas the peripheral views contribute to the general stabilization
of the robot’s motion. The opening angle of the omnidirectional camera for perspective
construction is approximately 75°. The resolution of the reconstructed frontal view is 200
by 90 pixels. The field of view is partitioned into a grid of 10 by 5 windows corresponding
to different viewing directions of the robot (cf. figure 3.5 b). The upper number in the cell
view corresponds to the time to contact estimates in seconds and the lower number is the
confidence into the time to contact estimate.

a) ‘ frontal view peri- b) optical flow
I?heerl}é] p&gle;ll . image regions
view | with confidence

0.7 221 3.37 BB 3.31
preferences  decision

0

Figure 3.5: a) Omnidirectional image; b) Reconstructed perspective views and orientation
preferences based on the time to contact (ttc) and confidence.

The stimulus of the obstacle avoidance behavior is the time to contact (ttc), which is
estimated from the optical flow vectors in the image. From the divergence of the optical
flow field the time to contact is derived [31]| according to:

2 ... Ou 0
tte=—=—"— with V(i,9) = —+ —.
vr.  V(u,?) (49) ou 0

(3.2)

This equation indicates that estimating the time to contact only depends on the optical
flow, but requires no knowledge or estimation of the scene depth z and wvg,. [31] uses
different symmetrical divergence templates to calculate the divergence of the optical flow for
a dense optical flow field. This method fails when the optical flow field is not dense enough
to calculate the derivative along the normal direction. Contrary to the analysis above, the
proposed approach does not assume that the divergence is determined for the projection
center, but that the lateral change of motion is small compared to the depth of the scene,
thus allowing for the image-segmented estimation of the divergence and consequently the
time to contact as well. A derivation of equation 3.2 for these specifications is found in
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appendix A. Hence, an approach for sparse optical flow fields is proposed where all the
optical flow pairs found within a confined neighborhood contribute to the calculation of
the divergence of the particular flow vector under consideration. The neighborhood around
a single flow vector is defined by a window of finite size formally referred to as a pairing
window. The pairing window approach involves estimation of divergence of an optical flow
vector by calculating the average divergence across all individual flow field vectors within
a neighborhood window. The size of the pairing window and the density of the flow field
determine the accuracy of the divergence estimate. A pairing window corresponds to one
single image region depicted in figure 3.5 b). Equation 3.3 computes the divergence for
each pairing window pr, indicated by the subscript pw:

Von(i8) = Z (8“2 )= ISy (i) e

zl] i+1

n is defined by the number of optical flow vectors, resulting in (n — 1)! different pairings
to be considered. For each pair the individual divergence is calculated and aggregated into
the divergence of the pairing window V. The individual divergence is calculated from
normal optical flow vectors 1u;, v; and ;, ¥; along their respective directions u and v.

For the peripheral view (figure 3.5) the time to contact is estimated in a different way, as
the focus of expansion lies outside the peripheral view. Therefore the alternative approach
inspired by [87] determines the time to contact based on the temporal evolution of the
direction of the optical flow. The advantages of this approach consist on the one hand in
the estimation of the time to contact solely via optical quantities such as the angle and
its temporal derivative. On the other hand the work space is complementary to determine
the time to contact by means of the divergence of the optical flow. The time to contact
is derived by differentiating the geometric relation: d = ztan(¢), in which ¢ denotes the
orientation of the obstacle in robocentric coordinates, z the distance component to the
obstacle in driving direction of the robot and d the distance component perpendicular to
the driving direction. The temporal derivative yields d/dt(d) = z¢ cos 2(¢) + % tan(¢) = 0.
Thus, the time to contact for obstacles in both peripheral fields of view is given by:

po o S8 Sing

(3.4)
[92] employs the same definition to detect obstacles, to obtain their range and to model
the environment by means of corners in the perspective camera image.

The information content and the reliability of the pure time to contact is increased by
estimating the confidence of the current perception. For each single cell of the grid a degree
of confidence is determined by means of the variance of the individual measurements of
the optical flow within a window according to:

1 - 1— %abs(ttcnv — H(,9) ) if (ttCm; ’u(Z])) i
confyeg (i j) = i 2_:1 { 0 otherwise . (3.5)
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Here ttc,, corresponds to one of the m total time to contact estimates that are computed
from the corresponding flow vectors in the window confy(; ;) with the row and column
position (¢,7) of the cell. p; ;) designates the mean of the time to contact values in a
segment and o is the standard deviation of the data set. If there are no time to contact
values or optical flow in the cell under consideration, then the time to contact is assigned
to zero. Grids with a time to contact value equal to the mean time to contact are also
given zero confidence, implying the absolute confidence about the presence of an obstacle.
Due to the adaptive fitting of o homogeneous fields obtain distinctly more confidence than
inhomogeneous cells. For a homogeneous field of consistent measurements the confidence
tends to one, whereas for the opposite case of large and spurious values, representing noise,
it tends to zero. If ttc,, — ¢ ;) < o is not valid, the confidence of the corresponding window
is reduced to zero.

The time to contact and its corresponding confidence values are fused within the grid
columns representing the driving directions. From these aggregated information first pref-
erences for obstacle-free directions are created and from these the turn rate and transla-
tional velocity of the robot are computed. Furthermore, the final recommendation for the
direction Op, is influenced by the angular acceleration compared to the previous rotation
AOpg, , in order to guarantee a smooth rotation by averaging:

O, = argmax; <ttcavgjconfavgj — A@qu) , (3.6)

in which A©p, , denotes the difference between the new direction and the robot’s current
heading, ttcavgj and confavgj are defined as the mean of the time to contact and confi-
dence values, respectively, of the j-th column. Apart from scaling, the time to contact is
calculated in the same way for the peripheral views.

The turn around behavior is responsible for the detection of dead end situations, in which
the robot cannot circumnavigate the obstacle but has to track back. This behavior initiates
a 180° turn in dead ends or so-called tricky corners for which the optical perception indicates
no save passage. This situation is recognized by an inconsistent or nonexistent field of flow
with low confidence. On the other hand this behavior assumes the robot’s control in case of
large-area objects without texture, because the optical flow does not provide information
due to the lack of contrast. Planes without texture are abstracted as obstacles and stored
in a local spatial memory until visual stimuli evaluated with sufficient confidence reemerge
for this region.

3.3.3 Experimental results: Navigation with omnivision

The behavior coordination involves activation of the correct behavior at the right instance.
Behavior selection strongly depends on the current context of the robot [18|. In this case
a subsumption architecture is employed. The main reason is that the visual information is
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not as reliable as the distance measurements. In textureless environments it is difficult to
assess the distance of obstacles from visual measurements. The subsumption architecture
shown in figure 3.6 has a layered structure, in which each layer is associated with a specific
behavior. The higher layers have the authority to subsume (indicated by s) and inhibit
behaviors in the lower layer.

turn around

tricky corners? calculate new found
—  textureless turning angle 6 critical
side walls? and velocity v situation
obstacle avoidance g
capture image extraction calculate ttc calculate new avoid
and set initial of optical and confidence turning angle 6 critical
velocity flow in frontal view and velocity v situation
supplementary behavior @E
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corridor following
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L—{ left and right

new turning

peripheral ttc angle 6
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Figure 3.6: Subsumption architecture with corridor following, obstacle avoidance and turn
around behavior. Supplementary visual behaviors are indicated by dashed blocks.

The most basic behavior is the corridor centering behavior in the lowest layer. It compares
the optical flow magnitude of the left and right hemisphere of the omnidirectional camera.
This behavior maintains a constant translational velocity and only changes the turning
direction. The intermediate layer consists of the obstacle avoidance behavior which is
activated if the time to contact falls short of a threshold. The obstacle avoidance behavior
commands a turning direction and a translational velocity. The translational velocity is
proportional to the time to contact. Once the obstacle avoidance triggers, it subsumes the
lower layer and overrides its output with its translational and rotational velocities vz and
wgr. The input for the motor commands is replaced by the recommendations of the obstacle
avoidance. The turn around behavior has the highest priority. This behavior responds to
corners which represent dead ends of the corridor or textureless wall segments and initiates
a 180° turn with a subsequent wandering into a new direction. Furthermore, this behavior
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includes a remember-sidewall component that remembers side walls or obstacles detected
at previous instances and avoids them over the next n control cycles. The turn around
behavior is based on the same measurements as the obstacle avoidance layer. If a tricky
corner (i.e. a textureless region filling the complete field of view) is detected, it blocks
the output of obstacle avoidance from reaching the motors and suppresses the output of
corridor following. One major advantage of the subsumption architecture is the ease of
integrating supplementary visual behaviors such as door passing and visual homing as
shown later on indicated by the additional dashed block in figure 3.6.
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Figure 3.7: a) Obstacle avoidance: trajectory traversed by the robot; b) ttc and confidence
grids with final decision.

The experimental evaluation of the visual navigation is carried out with the same robot
configuration and in same locations as in the experiments described in section 3.1 for vision-
guided navigation (cf. also [114]). In the following a prototypical scenario is presented
which points out the operation of obstacle avoidance (cf. figure 3.7) by means of difficult
situations imposed on the robot. At the beginning of the experiment the robot is located
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close to the right wall of the corridor at a distance of 2m in front of a pillar which is situated
in driving direction, thus blocking a part of the corridor, as depicted in figure 3.7 a) which
shows the environment and the actual path traveled by the robot (al-a6). The images on
the left side of the robot are the perspective peripheral images from one side of the traveling
direction (for sake of clarity only the left side is shown). The robot successfully evades the
obstacle without colliding with the corridor wall or the pillar. Figure 3.7 b) additionally
shows the frontal visual perception of the robot with the direction recommendation for the
two locations a3 and ad. The entire frontal image view is partitioned into grids of size
20 by 20 pixels in which each grid estimates an average time to contact (upper value in
figure 3.7 b) and an associated confidence (lower value, according to equation 3.5). For
every column the average of the time to contact and confidence is computed. Finally, the
gains of the two lateral planes on the left and the right contribute towards the final gain
which provides the decision variables for turning. The robot turns in the direction of the
region with the highest overall gain value. At the waypoint a3 in figure 3.7 the turn around
behavior inhibits the output of the obstacle avoidance behavior, as confidence in the four
right columns is low due to the lack of texture of the corridor wall. In case more than
three columns on one side exhibit a confidence of zero, the presence of a side wall or a
wall without texture is signalled. This procedure completely immunes the optical flow on
the right side thereby avoiding the side wall and the pillar with the neighborhood region
around it. The recommendations of the two neighboring columns are also set to zero, so
that only the remaining directions of the left hemisphere influence the final selection of
the heading direction. From the set of candidate headings the fourth column of the left
has the highest preference, causing a subsequent evasive maneuver of the robot to the
corridor center. At the waypoint ad all directions possess sufficient confidence in visual
information, so that again the obstacle avoidance behavior obtains sole control over the
robot. It advocates its maximal recommendation for the third column to the right with
the highest time to contact, in robocentric view pointing towards the free corridor for
the current alignment of the robot. The corridor centering behavior is sensitive towards
inhomogeneous texture distribution in the right and left lateral field of view which may
lead to a lateral displacement of the robot compared to the center of the corridor, resulting
in an oscillation of the robot motion around the corridor center. The stability of the
corridor centering behavior can be improved by appropriate controller design to suppress
disturbances caused by varying texture. Furthermore not all possible scenarios for regions
with low texture can be controlled robustly by the turn around behavior.

In this chapter visual behaviors via an omnidirectional camera for mobile robot navigation
in unstructured environments are introduced. The next chapter describes visual homing in
order to complete the transition from vision guided to goal-orientated visual navigation.



Chapter 4

Global visual homing by visual servoing

As visual homing in a topological map is much more complex than homing in a metric map
with distance sensors this chapter especially focusses on the design of visual homing to
complete the visual navigation. The homing behavior with decoupled navigation and gaze
control with a virtual camera plane is first presented in [105]. The topological localization
from section 3.1 is extended to automatically select optimal reference images for the visual
homing behavior. Thereby the advantages of visual input from a pan-tilt in conjunction
with an omnidirectional camera are combined for global visual homing. The time-optimal
reference feature and image selection is provided by the omnidirectional camera system
[108| using the information from the topological map, whereas local pose convergence is
achieved by the pan-tilt camera.

The presented work obeys the paradigm of topological map-based navigation by a directed
graph. Visual homing follows approaches from visual servoing presented in section 2.4 with
the major difference that global convergence towards the reference image is required even
if the features from the reference view are far away from the actual pose of the robot.
Especially the decoupling strategy for navigation and gaze control as well as the synergy
of omnidirectional and monocular camera are milestones for global visual homing for office
environments with minimal texture offering additional freedom for visual homing compared
to the schemes cited in section 2.3.

This chapter is organized as follows: The general concept for visual homing is described
in section 4.1 motivating the advantages of a decoupled navigation and gaze control by
the virtual camera plane. The virtual camera plane is described in section 4.2 and the
difference between a vertical and horizontal virtual camera plane is pointed out. In order
to utilize the virtual camera plane, the required gaze control is summarized in section 4.3.
Different approaches for visual navigation control as well as their experimental evaluation
are described in section 4.4. The visual navigation behavior emerging from the individual
visual behaviors is presented in section 4.5, which concludes with an comparison of vision-
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guided and vision-based navigation.

4.1 General concept

Figure 4.1 depicts the scheme of visual homing behavior as well as the integration in the
hybrid control architecture (cf. figure 1.2). The visual homing for the subordinate reactive
layer is later on integrated in the subsumption architecture from figure 3.6 for fully visual
navigation of mobile robots. The major components of the visual homing behavior by large
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Figure 4.1: Large view visual servoing integrated in the hybrid control architecture.

view visual servoing are: gaze control, virtual camera plane, visual navigation control as
well as the command fusion. The gaze control guarantees that the image features remain
in the camera’s field of view. The virtual camera plane represents the mutual control space
thereby decoupling gaze from navigation control. As gaze is controlled independently of the
robot motion and the features are defined in a virtual camera plane, the visual controller
uses the same landmarks over a larger range of motion. Therefore, fewer visual landmarks
are required to describe a smooth path through the environment. The optimal exploitation
of landmarks even enables visual navigation in environments with little texture e.g. office
environments and consequently only few natural landmarks.
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Figure 4.2 demonstrates the advantages of a swiveling versus a fixed camera for visual
navigation. In figure 4.2 a) the standard scenario from literature is depicted, where the
camera is fixed relative to the robot motion, restricting the field of view which results in
a limited convergence area of a landmark. In this case this limitation is resolved by the
independent gaze and navigation control resulting in a larger convergence area of the same
landmark as depicted in figure 4.2 b) and c¢). An additional extension of this approach
compared to standard approaches enables the robot to navigate towards (figure 4.2 b))
as well as parallel to a landmark (figure 4.2 ¢)) which is particularly useful for traversing
confined indoor spaces such as corridors. In order to control the robot motion independently
of the gaze the observed features are transformed from image into virtual camera plane.
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Figure 4.2: Visual servoing for navigation of mobile robots: a) Fixed camera; b) Decoupled
gaze and navigation control for navigation towards a landmark using a swiveling camera;
c¢) Decoupled control for navigation parallel to a landmark.

Three different approaches for navigation control on the virtual camera plane are inves-
tigated: (a) image Jacobian, (b) image moments and (¢) a combination of partial scene
reconstruction in conjunction with image moments. These approaches differ by the strat-
egy to decouple rotational and translational velocity components. As the first approach
(a) was originally intended as case study for visual homing, artificial landmarks in the
height of the robot’s camera necessitate a vertical virtual camera plane. The second (b)
and third approach (c¢) rely on natural landmarks, thus using a horizontal virtual camera
plane as described in the following. The optimal reference images are tracked and selected
by the omnidirectional camera as depicted in figure 1.2 using the features for topological
localization from section 3.1. Optimality of a reference image is defined by the number
of visual features as well as in terms of their traceability in the required workspace. Vi-
sual homing with omnidirectional cameras using rectification of omnivision, SIF'T and a
scale based image Jacobian is presented for room nodes [88]. Nonetheless our experiments
indicate that an omnidirectional camera alone is not suited for visual homing especially
in narrow corridor environments, as feature recognition over a large area is attenuated by
image distortion, thus the pan-tilt camera is additionally required for global visual homing.
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4.2 Virtual camera plane

As the camera has two degrees of freedom (pan «a., tilt 8.) the reference image is not
uniquely related to the robot’s pose but depends on the camera orientation as well. There
are two ways to properly capture and define reference features for vision-based navigation
with a rotating camera. The straightforward solution is to capture an entire set of reference
images at different camera orientations a., 8. for a particular pose. In addition to the
large memory requirements this approach is not feasible as for most camera orientations
the actual reference features are not visible in the captured image but rather need to be
computed based on a geometric reconstruction of the scene.

A better solution is to define a transformation from the camera image to a virtual camera
plane that is independent of the camera’s actual pan and tilt. This methodology has
the advantage that only a single reference image at a single camera orientation needs to
be captured. The features are projected onto a virtual camera plane, thus allowing for
correspondence between image features in the current pose of the robot and the reference
pose independently of the camera’s viewing direction. In principle it is possible to transform
features either onto a vertical or a horizontal virtual camera plane. |105] presents a planar
robot motion decoupled from gaze control via transformation of the image points onto a
vertical virtual camera plane with image Jacobian (a), while in [108]| a horizontal virtual
camera plane is mostly preferred for approach (b) and (c). The transformation to the
virtual plane assumes a calibrated camera system and undistorted image features, thereby
large radial distortions of the image are the major source of discrepancies between the
theoretical feature coordinates in the virtual camera plane and the calculated ones. In
order to transform features from the real image to the virtual camera plane, the following
assumptions are made:

e Assumption 1: The rotation axes of the camera for the pan and tilt angle coincide
with the focal point of the camera.

e Assumption 2: The rotation axis of the robot along the vertical axis coincides with
the virtual camera axis normal to the horizontal virtual camera plane or in the case
of the vertical camera plane with its coplanar vertical axis.

Assumption 1 might be considered too restrictive as the precise alignment of the rotational
axis of the camera with its focal point is difficult to achieve. Nonetheless this assumption
allows for rendering the transformation of the current camera plane to the virtual camera
plane (equation 4.3) solely as a function of the known focal length A, pan «. and tilt 5.

In the vertical virtual camera plane, the optical flow @, o in the image is caused by
the robot’s translatory motion vg, and vg, and its rotation wg. The image Jacobian for
point features in equation 4.1 not only depends on the pixel coordinates of the features u;
and v;, but also on their unknown depth z; and the camera’s focal length A. Therefore the
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controlled variables are highly coupled and non-linear in z;, which additionally varies with
each individual feature and the robot’s pose relative to the feature 3D coordinates:

. >\ —Uy; —)\2—’112‘2
u; = —UR, + VR, + WR;
2 Z; A
—U; —UiV;
v, = 0 + VR, + WR. 4.1
2 VR N WR (4.1)

The coupling is reduced by the definition of a horizontal virtual camera plane rather
than a vertical. For indoor applications the mobile robot is restricted to planar movements.
For vision-based navigation with the vertical camera plane, the orientation of the reference
plane depends on the type of waypoint and the location of the features relative to the
designated robot path. The reference feature plane is either perpendicular to the robot’s
heading or parallel to it, depending on whether the robot is supposed to approach or to
pass by the waypoint. The horizontal camera plane and the plane in which the robot moves
are coplanar, and the orientation of the horizontal plane is solely defined by the reference
pose independent of the robot’s designated path. The optical flow in the horizontal camera
plane is related to the robot movement according to:

) A
U; = —Ug, —Vwr = kivr, — VW,
7
) A
v, = —UR, T UijWR = ]{Jisz + U;WR. (42)
<

This detrimental coupling of feature motions in the vertical plane is avoided in the hori-
zontal virtual camera plane if one considers the following observations and assumptions:

e The distance of the feature points is invariant to the robot motion vy , vg, and
thereby constant.

e The depth of the scene is small compared to the distance of the focal point to the
features, yielding a weak perspective camera model.

The depth z; of features no longer depends on the planar robot motion and is replaced by
a constant k;.

The transformation from the actual to the virtual camera plane is stated as:
[uy, vy, 0, 1]T = Tg; (A, ae, Be) [u, v, 0, 1]T, (4.3)

where u and v denote the pixel coordinates in the current camera plane and uy and vy those
in the virtual camera plane. In case the first assumption is violated, the transformation
Tg; also depends on the extrinsic camera parameters and the coordinates of the feature
point in the world frame, thus making the transformation infeasible. The features from
the reference as well as from the current view are transformed to the virtual camera plane
according to equation 4.3 in order to calculate the control error in the image space.
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Figure 4.3: Transformation of the real camera images onto the virtual camera plane.

The schematics of the transformation from the image plane to the virtual camera plane (in
this case horizontal) is depicted in figure 4.3. The detailed transformation ng from the
camera plane to the horizontal virtual camera plane is as follows:

A
C re a
[uy,vy,0,1]" =T o bcmfZVTCQfBT ? u,v,0,1]" (4.4)
with o
bcrcf = Tg;eig TC;:B [u7 /U7 07 1]T (45)
and
1 000 cos f3.. 0 sin (3, 0
Ce TCV _ 10100 Cror _ sinaesin B, cosa, —sina,cos .
CR Cret 00 1 X[’ Cap —cosae.sin B, sina, cosa.cosfB. 0
0001 0 0 0 1
(4.6)

The transformations TC“’B from the camera coordinate system Cg to the coordinate system

Co p as well as the transformatlon T Cv from the fixed reference frame Clo centered at the
focal point to the virtual camera plane CV only depend on the focal length A\. The complete
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transformation Tg; is therefore constructed from equations 4.4, 4.5 and 4.6 where b,
represents the image features in the reference frame. Thus, a point p; in the image plane
is transformed onto a point p, in the virtual camera plane as depicted in figure 4.3 via
the following steps: First p; is transformed from the camera coordinate system Cg to a
rotated camera coordinate system C, g via TCC“’B solely by translation with A, then this

rotated camera coordinate system C, g is rotated around the focal point with TCrefﬁ into
the static camera coordinate system Cle. The intersection point of be, , with the virtual
camera plane is determined by means of the theorem of intersecting lines: The ratio between
Albe.,|/(=be,..zv) and A is equal to the ratio of |b¢, | and be,, (—2zy) (i.e. the component
of be,, in direction of —zy), resulting in the factor A/(—bc, 2y ) given in equation 4.5. As
the intersection point is expressed in the static camera coordinate system Clf, in a final
step it is transformed to the virtual camera coordinate system Cy, via Tgr‘/cf

Whether the features are transformed to the vertical or horizontal virtual camera plane
highly depends on the feature 3D coordinates. In case the feature templates are at the
same height as the robot’s camera only a transformation to the vertical virtual camera
plane makes sense e.g. approach (a) as the pixel coordinates become infinite for a trans-
formation to the horizontal plane. The 3D placement of the artificial landmarks above the
robot enables the transformation to the horizontal virtual camera plane, but poses higher
computational burden on the landmark detection due to large affine distortions of the land-
marks in the camera view. Because of the transition from artificial to natural landmarks
the affine distortions are handled by the feature extraction (e.g. SIFT) and pose thereby
no restrictions to the orientation of the virtual camera plane. In man-made environments
the texture is normally on vertical planes, especially in the height of the view of humans.
Thus a transformation to the horizontal is preferred due to the 3D locations of the texture
and the previously explained advantages of the horizontal virtual camera plane. Finally it
is stated that for a limit above 45° of the pan angle the horizontal virtual camera plane
is numerically preferred whereas below this threshold a vertical camera plane is desirable.
The transformation demands a camera gaze control in order to center the image features.

4.3 Camera gaze control

The objective of the camera gaze control is to regulate the camera orientation independent
of the robot’s motion in order to track a landmark or features and to center them in the
image. Standard camera systems have a limited field of view of about 60° in the horizontal
plane and about 40° in the vertical plane. This field of view is extended by a pan-tilt unit
in conjunction with a gaze controller for tracking the feature points. The gaze control is the
connecting step between the proposed virtual camera plane and the navigation control in
the virtual camera plane as described in the following. Different approaches are known for
gaze control. As the gaze control is only a tool for the navigation with the virtual camera
plane, a description of gaze control using the virtual camera plane and homography is
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depicted in figure 4.4 and used for the approach (b) with image moments and (c) with a
combination of partial scene reconstruction in conjunction with image moments.

Gaze control is composed of a feed-forward path that predicts the feature motion in the
virtual camera plane based on the known robot motion command. The feedback control
based on a virtual centroid compensates disturbances. The feedback control projects the
feature centroid of reference features into the current view according to the homography
H, referred to as the virtual centroid. The transformation of the centroid of the features
from the goal view ticog, Ucog into the current view teog, Veog is achieved via:

[tcog, Veog, 1] = TEY (A, e, B)HTEE (N, di, Be) [deogs Deogs 1] - (4.7)

The angular errors of the required camera rotations Aa,. and Ap. of the PTZ camera are

given by:
AUcog

Algog
Aa, = Sy Aﬁc——T-

The structure for the gaze control for the approach (a) with image Jacobian is similar to the

(4.8)
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Figure 4.4: Gaze control.

gaze control in figure 4.4 consisting of a feedforward and a feedback part. Nonetheless the
utilization of artificial landmarks simplifies the design of the gaze control as the templates in
the 3D task space are located at the same height as the camera and in addition the unknown
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depth of the features is estimated using projective geometry based on the knowledge of the
intrinsic camera parameters and the known dimensions of the rectangular arrangement of
the templates. The optical motion of the pixel coordinates in the image plane is predicted
based on the known motion action of the robot using image Jacobian and the appropriate
counter rotations of the camera d, Bc that cancel the optical flow by robot motion is
calculated. Further details for gaze control with image Jacobian are described in [105].

4.4 Visual navigation control

4.4.1 Control by image Jacobian

The control objective is to regulate the robot’s turn rate based on visual feedback in such
way that the robot maintains the same orientation and distance to the feature plane as in
the demonstrated reference pose. The task space error is constituted by the lateral Ax,
longitudinal Az and orientational error A©g. The visual servo controller design relates the
task space errors Az, Ax, AOg with the feature errors in the image. vy, defines the angle
between the virtual camera plane and the orientation of the robot ©g. The approach for
decoupling rotational wgr and lateral motion vy meaningfully transfers the concept from
[33] by defining an angular criterion in the virtual plane. Considering the desired task
space motion a trapezoidal distortion is specified with the reference angle ¢..s between
the horizontal line and the straight line defined by the two upper features of the artificial
template. The feature error between the reference ¢ and current distortion ¢ is denoted
as Ap. For small errors Ay no rotation of the robot is needed and the longitudinal
motion alone reduces the image error as the robot moves towards the reference pose.
For the corridor landmarks the virtual plane is oriented parallel to the template plane.
As long as the robot is oriented parallel to the feature plane the error Ay disappears
independent of the lateral error and does therefore not contribute to the robot control wg.
The independence of the angular feature error from the lateral displacement is only fulfilled
if the virtual and the template plane are collinear (y; = 90°). For angles that differ from
v = 90° the angular error Ay varies with the lateral error as well, which substantially
complicates the design of a visual servoing controller. This property suggests to design
the controller for a virtual image plane at 7, = 90°. From geometric considerations it
is intuitive that for the reference pose the virtual plane and template plane should be
parallel, as the trapezoidal distortion only results from the rotation but not from the
translation. The visual control scheme takes advantage of the decoupling between rotation
and translation. The angular criterion expressed by the distortion error Ay determines
the rotational component of control. A rotational component directly computed from
the feature position error causes the robot to head directly towards the feature plane.
The translational component is calculated based on the residual positional feature error,
corrected by feature motion caused by the anticipated rotation.
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Table 4.1: Control scheme for visual navigation on virtual camera plane by Jacobian.

1.

Decoupling of the rotational component of the image Jacobian J,, from the trans-
lational J,.,-component.

Computation of the distortion error Ay based on the difference prr — ¢ in the
virtual tmage plane.

Computation of the gain:

1
k= — = (4.9)
L+ (mgire)?
Computation of the rotational control:
w, = —kAp. (4.10)

Prediction of the motion of image features Af,,:

Afy = Jow,. (4.11)
Translational velocity control:
To n
( . ) =J) (fer — £ — AL,). (4.12)
Zc

Transformation of the control commands from the virtual camera plane into the
robot’s local reference frame:

VR, = cos(yv)Tc + sin(yv) e,

Vg, = cos(yv)zZc — sin(yy)dc. (4.13)
Motor command fusion using the constants ny and ns, the gains ki, ko = T
t o
and ks = T@ :
n2

VR = k’lsz, WR = k‘gng -+ k’g’URx. (414)

Control saturation:
|UR‘ = min(|vmax|7 |UR|)7 ‘WR‘ = min(‘wmax‘u ‘WRD‘ (415)

The overall control scheme for the visual navigation is detailed in table 4.1. The control
takes place in the vertical virtual camera plane, therefore the feature error f,of — f between
the desired f,o; and the current image features f is calculated accordingly in the virtual
camera plane. In the first step the image Jacobian J is decomposed into its rotational and
translational component .J,, and J,,, in order to decouple the corresponding controls for
the robot motion. The distortion error Ay reflects the robot’s heading error and modulates
the magnitude and sign of the rotational motion. The gain for the rotational component k
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in equation 4.9 is reduced for small distortion errors Ay in the virtual camera plane with
the tuning parameter ¢y = 0.01. The gain £ for the orientation correction varies smoothly
from 0 to 1 with increasing distortion error Ay. The term ( avoids numerical instability
caused by the division by zero. In addition the sign of the distortion error determines
whether the robot turns towards or away from the feature. The commanded rotational
velocity w, is proportional to the gain and the angular error Ay, thus stabilizing the
trapezoidal distortion in the image. The translational component regulates the residual
positional feature error not yet compensated by the rotation. Therefore, the feature error
is corrected by the predicted motion of the image features Af, due to the rotational
velocity command. Prior to the calculation of the translational control this prediction
Af, is subtracted from the observed image error f according to equation 4.12 to obtain the
residual error. Based on the image Jacobian J,, the translational velocities for lateral and
longitudinal motion are calculated using its pseudoinverse. This calculation includes the
transformation from the virtual camera frame back to the robot’s local reference frame.
In case of an omnidirectional drive robot with three local degrees of freedom the control
UR,, Vr. and wg is directly converted into appropriate motor controls. However, as the
robot pioneer 3DX is a non-holonomic robot with only two degrees of mobility the lateral
component vy, and rotational component wp are fused into a single turn rate wgr. The
approach for merging the motion commands proposed in [57| is adapted here. In order
to determine the amount of vg,, vg, and wg to the final motor commands the design
parameters ky, 1, and 7, are determined empirically. Finally the motor commands vg and
wpg are restricted to the velocity limits vg_ . and wg_ . , which depend on the frame rate of
the visual servoing loop. A control saturation is particularly required for the longitudinal
component as initial feature errors are large. Due to the control saturation the robot moves
at constant translational velocity for large longitudinal errors and finally slows down as
it approaches the reference pose. Once the residual feature error falls below a threshold,
the supervisory controller switches to the reference image of the next landmark. The
control scheme distinguishes between landmarks such as the docking station which the
robot approaches head on and landmarks (2-5 in figure 4.7) which the robot passes parallel
to the feature plane. Based on the choice of vy the robot navigates towards or parallel to
the template plane. In floor sections 7y is set either to 90° or to -90° depending on the
navigation direction. In order to reach the charging station the robot moves toward the
template plane in the direction of the virtual camera axis (= 0°).

4.4.2 Control with image moments and primitive visual behaviors

The image coordinates of the current view [u, v, 1]7 are transformed onto the virtual image
plane [uy, vy, 1]7 according to equation 4.3. A transformation onto the horizontal camera
plane is pursued in the following as it establishes a one-to-one correspondence between the
planar robot motion and feature velocities, which facilitates the visual controller design.
The transformed feature coordinates [uy, vy, 1]7 are control variables of the robot motion
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Table 4.2: Control scheme for visual navigation on virtual camera plane by image moments.

1.

. 4
6. Motor command fusion Vgy g pie = D i URy ot might . -
1

Estimation of homography H on the horizontal virtual camera plane and decom-
position of H (cf. equation 2.7) into rotation R and robot rotation AOg.
Alignment of the image features on the the horizontal virtual camera plane
[uy, vy, 1T with the image features in the reference view according to:

Rt et vl ol RS

Calculation of image moments for

fgc — Z?:l UV(Z) ’ fz — Z?:l vv (Z) ) (417)

n n
Definition of image error for
A.f@ :A@Ra Afx:frefx _fxa Afz:frefz _fz (418)

Calculation of behavior output:

B1 Behavior for longitudinal alignment

Af
vRLeftgl = ,URRightsl =Af, Afof_@ . (4.19)
B2 Behavior for orientational alignment
Afe
URLesip, = —Afe Afo ) URRightB2 = _URchtB2' (4.20)
B3 Behavior for lateral alignment
A.f:cAf@
URen, = URnighip, — TTIALAL (4.21)
B4 Behavior for lateral alignment
: Afy |Afs
URLesip, = —sign(/f>) Afo | Afol’ URRightp, = ~ VRLesip, - (4.22)

controller as well as the gaze controller. The overall control scheme for visual navigation on
a virtual camera plane by image moments is detailed in table 4.2. The rotation A©g of the
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robot around its vertical axis between the reference view and the current view is estimated
by the decomposition of the homography H. Furthermore, this decomposition also yields
the direction vector between the views. However, this information is not sufficient for
image-based control of the robot motion, as the direction vector is only defined up to a
scale. First the current virtual camera plane is back rotated by A©g. The centroid is
calculated by means of the rotation corrected pixel coordinates, which are linearly related
to the longitudinal and lateral displacement of the robot relative to the goal pose. The
image moments f, and f, are described by the centroid components. The image errors
Afo,Af., Af, are defined by equation 4.18. The decoupled image moments calculated
from corresponding features in the current and reference view and the corresponding image
errors control the motion of the robot in three degrees of freedom. The transformation of
the free motion onto the two local degrees of motion of the robot is realized by fusion of
the motor commands issued by four concurrent behaviors. The behavior representation
as well as the navigation behavior resulting from the fusion of the individual behaviors is
designed to first eliminate the error of the lateral position. The commanded wheel velocities
URp o> URpigne @T€ computed by the aggregated recommendations of the behaviors. Figure

||!

behavior B behavior B, behavior Bs behavior B,

Figure 4.5: Situational behaviors for visual servoing. Dark areas and thick lines correspond
to robot configurations with dominant behavior activation. White arrows indicate the cor-
responding action proposed by the behaviors in the respective configuration. The intensity
of the grey values indicate the level of activity according to longitudinal and lateral offset.

4.5 illustrates the operation mode of the four situational behaviors for visual servoing of a
non-holonomic robot. Behavior B, compensates the longitudinal error assuming that the
lateral and angular errors have been compensated beforehand. The corresponding visual
feature Af, for the longitudinal motion is scaled by the inverse gain Af,Afg. For small
residual errors in Af, and Afe the robot approaches the goal position straight on as
indicated in the left image for behavior B; of figure 4.5. In principle the robot could also
drive backwards to the goal position. The second behavior By regulates the orientation
and thereby the wheel velocities of the robot as a function of the rotational and lateral
error. It corrects the orientation of the robot in situations in which the lateral error is
already compensated. Behaviors B3 and B, are for compensating the lateral error. The
third behavior triggers in case of a lateral displacement and remains dominant as long as
the longitudinal error remains small. Behavior B, turns the robot in order to compensate
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the lateral error. This is essential as the robot cannot drive towards the goal position if its
current orientation coincides with the goal direction in case of a lateral displacement. The
responses of the four behaviors are aggregated into a total response in order to obtain the
wheel velocities. If the commanded wheel velocities are outside the admissible range, the
velocities are reduced in a proportional manner.

4.4.3 Control with homography

Another promising approach for the navigation control instead of using primitive visual
behaviors based on image moments is the estimation and decomposition of the homography
(cf. chapter 2.1) between the features in the virtual horizontal camera plane, i.e. in the
reference view as well as in the current view. The reduced degrees of freedom of the
mobile robot simplify the decomposition of the homography considerably as the estimated
homography obeys additional constraints. The overall control scheme for visual navigation
on a virtual camera plane by homography is detailed in table 4.3. The linear control law
is expressed as a function of the polar coordinates p and « as well as the orientation error
ABOp of the robot between the current and goal position which is directly extracted from
the partial pose estimation of the homography. As the homography decomposition yields
a scaled translation vector which becomes unreliable for p = 0, p is scaled by a deviation
from the pixel coordinates in the actual and reference view. t, and ¢, are the elements of
the translation vector t = [t,,t.]” from the decomposition of the homography. iy, and
Uycog denote the centroid of the u-coordinates of the reference and current view expressed
in the horizontal virtual camera plane after the feature rotation about A©g. Similarly,
the centroid of the v-coordinates is denoted by Uycog and vyeeg. The motor command fusion
from equation 4.14 is adapted to the information extracted from the homography in the
horizontal virtual camera plane. The stability for the control is guaranteed by a proper
choice of the proportional control parameters according to [6].

4.4.4 Experimental results

(a) Large view visual servoing with a pan camera: In the experiments the non-
holonomic robot navigates between rooms in order to reach a charging station as it tracks
a sequence of properly located visual landmarks. To achieve this task, the robot has to
exit the initial room, travel along the corridor and finally enter the room with the docking
station as shown in figures 4.6 and 4.7. Governed by the visual servoing scheme the real
robot successfully completes the mission in several experiments. The robot docks to the
battery charger unit with a lateral accuracy of less than two centimeters, which is accurate
enough to establish electrical contact between the robot’s and the charger’s contacts. The
same mission is completed with two different camera configurations and control schemes.
The first experiment runs with a standard visual servo controller and a static camera
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Table 4.3: Control scheme for visual navigation on virtual camera plane by homography.

1. Estimation of homography H on the horizontal virtual camera plane and decom-
position of H (cf. equation 2.7) into rotation R and translation T.

2. Calculation of the rotational control by extracting the rotation of the robot around
its vertical axis AOg from R.

3. Calculation of polar coordinate o :

a = arctan(t, /t,). (4.23)

4. Calculation of scaled polar coordinate p :

p = \/(tx(avcog - uvcog))2 + (tz(@vcog - chog)>2- (424)

5. Motor command fusion using the the gains ki, ko and ks:

VR = ]{le, WR = ]{ZQA@R + ]ngé. (425)

aligned with the direction of motion. The second experiment takes advantage of the gaze
control of the pan-tilt camera and relies on the visual navigation on the virtual camera
plane by Jacobian. The same mission is accomplished with fewer landmarks that are more
conveniently mounted to the corridor walls and a smoother trajectory. Figure 4.6 shows the
position and orientation of visual landmarks and the path followed with the standard visual
servo controller described by [70]. As the translational and rotational velocities are coupled
and, more important, camera and robot heading are aligned, the robot is only able to move
directly towards a visual landmark at an angle of 90° between feature plane and camera
axis. The mission is accomplished with seven properly distributed landmarks but particular
in the corridor section for landmarks 2-5 the resulting path is jagged and suboptimal. In
order to traverse the corridor it is necessary to install extra boards inside the corridor to
accommodate landmarks three and five. For service robotic tasks such manipulation of
the environment is not acceptable as visual navigation should be only based on landmarks
that occur naturally in the environment. Figure 4.7 shows the landmark locations and
robot path for the visual controller with gaze control. With only six landmarks the robot
travels along the shortest path in the center of the corridor. In contrast to the fixed camera
scenario, additional landmarks along the corridor become obsolete. The camera control
switches to the next landmark once the visual control converges to the previous reference
image. Figure 4.7 depicts the reference positions for landmark three and four, referred to
as reference position three and four. Although landmark four is longitudinally ahead of
the robot’s start pose (reference position three), the landmark four is behind the reference
position four, which is achieved by a wide-angle camera tracking of the landmark. Further
results regarding the positioning performance are provided in [105].

Even though these experiments are based on artificial templates, the following major ad-
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Figure 4.6: Suboptimal robot trajectory due to the limited field of view and inconvenient
location of landmarks.

vantages of the visual servoing scheme with virtual camera plane are proven:

e Visual paths require fewer landmarks, especially useful for sparse textured areas.
e Reduced risk of loosing features during control.
e Motion parallel with respect to the feature plane is feasible.

(b) and (c) Large view visual servoing with a pan-tilt camera and omnivision:
In order to achieve visual navigation in unstructured environments, the navigation control
on the virtual camera plane by image moments and by homography is applied to real world
requirements. Therefore features and reference views are extracted from the texture of the
office environment and integrated into the topological map from section 3.1. Contrary to
many approaches in literature the proposed scheme requires no connectivity of the perspec-
tive reference views, but solely the connectivity of the features in the omnidirectional views.
This procedure is more flexible and robust, as omnidirectional perception guarantees the
visibility of existing texture across a large region of the workspace.

The planning layer automatically generates a topological map in form of a directed graph
from omnidirectional views captured during the demonstration run. This map subsequently
serves for localization and path planning as well as for dynamical selection of the current
optimal reference view for image-based navigation. Each node contains apart from the
omnidirectional view also the monocular reference image for local navigation. The planning
layer generates a sequence of reference views with overlapping combinations of features in
the omnidirectional views, leading from the current to the goal view in the image and
workspace. During navigation, in case of sufficient feature visibility of the next waypoint,
the image-based control switches to the next monocular reference view, thus allowing for
global navigation of the robot. The dynamic switching to the subsequent visible monocular
reference view is achieved by the corresponding features stored in the omnidirectional
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Figure 4.7: Desirable robot trajectory by efficient exploitation of visual landmarks.

view from which also the initial angle for the PTZ camera is calculated. The image-
based navigation and localization operates with distinct specific SIFT features. Figure
4.8 illustrates the evolution of the quality of features in several reference views for a local
section of the navigation graph. The quality of a monocular reference view is determined
by the number of available features as well as their continuing visibility along a longer
path. The dynamic selection of the most favorable reference view for the current situation
is carried out by means of the two specified criteria.

Figure 4.9 shows the characteristics of visual navigation on horizontal virtual camera plane
for the reference views CV3 and CV8 that are extracted by means of the feature distribution
in figure 4.8. The initial compensation of the lateral error and the subsequent alignment
of the robot by means of the context depending behaviors is evident. Initially the robot
is dislocated by an offset of 50 cm laterally and 3 m longitudinally to the goal position.
After 2m the next set of features is detected in the omnidirectional view and the control
switches to the next reference image. The residual position error is about 5 cm along both
spatial directions. The approaches for visual homing (b) and (c¢) on the virtual horizontal
camera plane exhibits a similar performance as the approach introduced beforehand with
navigation on a vertical virtual camera plane with Jacobian. The insights for visual homing
as the results of this work under the assumption of planar surfaces in office environments
can be summarized as follows: The virtual camera plane allows for decoupled navigation
and gaze control. Efficient exploitation of existing texture by omnidirectional preselection
of monocular reference views in conjunction with the virtual camera plane enables visual
homing within unstructured environments with minimal texture without the urge of 3D
modelling. The limited field of view of the pan-tilt is compensated by the omnidirectional
camera, whereas the low resolution of the omnidirectional is avoided by the pan-tilt camera.
Dynamic environments with natural texture are dealt with by generic representation of
moments as well as local feature extraction such as SIFT, ORB or SURF (cf. section 2.2).
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Figure 4.8: Quality of reference views generated from tracked feature centroids over part
of the sequence of omnidirectional image navigation nodes.

4.5 Comparison of vision guided and visual navigation

Visual reactive behaviors for homing, centering, door passing and obstacle avoidance are
successfully designed and implemented equivalently to behaviors based on distance in-
formation. In order to achieve goal-oriented visual navigation in an office environment
the visual behaviors door passing and visual homing are integrated into the subsumption
architecture as previously described in figure 3.6.

Figure 4.10 details the image-based navigation with the topological map of the depart-
ment’s office environment including the visual nodes and edges of the graph in the upper
half and the definition of the three different types of visual nodes in the lower half. The
topological representation is analogous to figure 3.1 and the description in section 3.1, how-
ever, with the important difference that the stimuli for the reactive behaviors are solely
provided by the visual perception. The lower layers of the subsumption architecture are
adapted according to the type of the next node instructed by the planning layer. Accord-
ingly for the corridor node the behaviors are ordered in priority from the highest layer to
the lowest: turn around, obstacle avoidance, visual homing and corridor centering, thus
allowing for traversal of the corridor regions with minimal texture as the corridor centering
requires significantly less texture than the visual homing. In the standard corridor scenario
the robot is driven by visual homing, which subsumes the corridor centering, as long as the
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Figure 4.9: Visual homing for reference views CV3 and CV8 from figure 4.8.

obstacle avoidance is not activated by nearby objects in front of the robot (cf. figure 3.6).
The localization with omnivision runs parallel in order to monitor the execution of the
plan by the coordination layer. For reaching the door node, only the door passing as well
as a modified obstacle avoidance behavior are required. The modification of the obstacle
avoidance for the door node is mandatory, such that the door posts represent no obstacles
for the robot. The third visual node handles room scenarios, which require turn around,
obstacle avoidance and visual homing, stated again from the highest to the lowest layer
of the subsumption architecture. As expected from the individual evaluation of the visual
behaviors, visual navigation successfully fulfills its objectives during the experiments in the
office environment.

In regions with sufficient visual clues both stimuli, vision and distance, demonstrate a
similar performance. Nonetheless the overall visual navigation is subject to the same
shortcomings as described in section 3.3.3 caused by textureless environments which provide
no stimulus for obstacle avoidance and turn around behavior. Compared to the results in
section 3.3.3 the corridors are now traversed on a straight line in the same manner as shown
in figure 4.7 because the homing behavior subsumes the corridor centering. The critical
situations such as static (potentially textureless) obstacles and tricky corner situations
handled by the turn around behavior and imposed on the robot in the experiments in the
previous sections do not occur during the experiment as the goal-oriented navigation avoids
these situations beforehand during the graph generation. The experiments clarify that
visual stimuli alone are not sufficient to capture all relevant aspects of the environment for
robust navigation mainly due to large textureless office regions. These regions are identified
by means of the confidence in the optical flow and avoided by the turn-around behavior
even if they are traversable. Therefore the vision guided navigation outperforms the visual
navigation in these particular cases. Nonetheless a proper fusion of visual stimuli with sonar
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measurements constitute an economic alternative to laser sensors for robot navigation.
The visual stimuli of the turn around behavior are replaced by sonar measurements or are
directly fused with the confidence rated time to contact.

b
%

a) Navigation overview with room, door and corridor nodes.

b) Room node: localization obstacle avoidance  visual homing.
AN %
¢) Door node: door passing

o 1 d
4

d) Corridor node: localization obstacle avoidance  corridor centering  visual homing.

Figure 4.10: Image-based navigation (analogous to figure 3.1, but with vision as stimuli).



Chapter 5

Local visual servoing with generic image
moments

This chapter introduces a novel 6 DOF visual servoing scheme for end-effector to object
alignment that relies on the pixel coordinates, scale and orientation of augmented point
features such as SIFT. The visual servoing scheme for augmented features enables the use of
a large variety of local feature extractions such as ORF, SURF, or GLOH (cf. section 2.2).
The control is based on geometric moments computed over a dynamic set of redundant
augmented feature correspondences between the current and the reference view [64]. The
method is generic as it does not depend on a geometric object model but automatically
extracts augmented features from images of the object. The foundation of visual servoing
on generic augmented features renders the method robust with respect to loss of redundant
features caused by occlusion or changes in viewpoint. The moment based representation
establishes an approximate one-to-one relationship between image moments and degrees
of motion [109]. This property is exploited in the design of a decoupled controller that
demonstrates superior performance in terms of convergence and robustness compared with
an inverse image Jacobian controller.

The presented work follows the paradigm of decoupled image moments extending the ideas
presented in [143| to overcome the known shortcomings of visual servoing schemes stated
in section 2.4, cf. |24, 70]. Visual servoing with decoupled image moments falls into the
category of "partitioned visual servo" according to the nomenclature of [25]. The proposed
approach guarantees a sensitivity matrix with fewer off-diagonal couplings as shown in [143]
or [145] for uncalibrated visual servoing, even for markerless visual servoing by explicitly
exploiting the additional information contained in augmented features such as SIFT. Using
explicitly the complete information of the feature extraction for the first time the proposed
solution for decoupled visual servoing differs also significantly from other known approaches
[26, 33, 120] explained in detail in section 2.4.

63
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The chapter is organized as follows: Section 5.1 defines augmented point features, which
include the pixel coordinates u; and v;, the canonical orientation of the keypoint ¢; and
scale o; for a single feature f;. The automatic feature identification is essential for proper
convergence of the visual control towards the reference view. Section 5.2 explains the
aggregation of the augmented point features into image moments for visual servoing. A
correlation analysis between the image moments and degrees of motion based on the corre-
sponding image Jacobian is provided to establish their approximate one-to-one relationship.
Section 5.3 presents visual servoing in 4 DOF and section 5.4 in 6 DOF with augmented
point features. In section 5.5 visual servoing on a virtual camera plane is described as an
alternative. The chapter is summarized with an evaluation and conclusion in section 5.6.

5.1 Augmented point features

A single augmented point feature f; such as SIFT contains four attributes, namely the
pixel coordinates u; and v;, the canonical orientation of the keypoint ¢; and its scale o;.
In the following, the desired appearance of augmented features in the reference position is
denoted by fref, = [Uret,, Uref;, Pref, s Orer;] and the current augmented features are denoted
by f; = [u;, v;, i, 04]. Scale and keypoint orientation are ideal to control the distance to
the object and the rotation around the camera axis as they are at large insensitive to
translation and rotation along the other axes [64].

In the following the accuracy of the rotation estimate and its robustness is analyzed with
respect to changes in viewpoints caused by camera rotations along the other axes using
SIFT as augmented point features. The camera is rotated around the optical axis over
the entire range -180° to 180°. The distribution of the error between the estimated mean
computed over all SIFT features and the true rotation is shown in figure 5.1. The graph
shows the distribution of the error e, across the 128 rotation steps. The mean absolute error
amounts to |e,| = 0.52° and the standard deviation o, of the error distribution e, is about
0.4°. Notice, that the absolute error in the estimated orientation is smaller for rotations
close to the reference orientation which eventually determines the residual orientation error
for the visual control. This accuracy in orientation is confirmed in the closed-loop control
visual servoing experiments. The average keypoint orientation coincides with the camera
orientation, which guarantees a unique minimum and the stability of visual control of
~. Even if the image and feature plane are not parallel the perspective distortion of the
SIFT feature caused by a camera rotation along an orthogonal axis hardly deteriorates
the rotation estimate which still accurately captures the camera orientation. Table 5.1
shows that orthogonal rotations along a only have a minor effect. Rotations of more than
30° cause affine deformations for which the SIFT keypoint descriptors in different views
are no longer compliant. For rotations of up to 30° the mean absolute error increases to
ley| = 1.13° which is still accurate enough for the application at hand.
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Figure 5.1: Estimation error for v across absolute orientations from -180° to 180°.

Table 5.1: Error of the rotation estimate as a function of camera rotation A« along the
orthogonal axis. (All units in °.)

(Ao 0 | 5 |10 [ 15 [ 20 | 25 | 30 |
] [ 052 ]0.26 [ 0.36 [ 1.05]0.88]0.92 | 1.13
o [ 1.13]1.50[1.10]2.60 | 3.11 [ 3.44 | 4.59

Figure 5.2 depicts the variation of scale o for typical SIFT features as a function of the
distance z between the object and the camera. The scale of SIFT features is given by f
The constant gain k depends on the focal length of the camera multiplied by the initial
scale of the feature.

SIFT features in the current image are matched with their corresponding reference fea-
tures in the goal image by comparison of their distinctive keypoint descriptors. Keypoint
descriptors of the same feature in different views are, although similar, not exactly iden-
tical, which might result in false correspondences between features. In addition a SIFT
feature present in the reference image might not appear in the current image and vice
versa. Therefore, the objective of the automatic feature selection is to establish reliable
correspondences between the same features that are robust across different views in order
to avoid false correspondences. Candidates for stable and unambiguous SIF'T features are
identified according to the following criteria:

e similarity
e angular criterion
e epipolar constraint

The list of candidate reference features is composed of all features originally detected in the
goal image. Feature selection proceeds in three stages, of which the first two stages operate
offline and reject features in the reference image, whereas the last online stage analyzes
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Figure 5.2: Scale versus distance.

the features in the current image. The first stage only compares SIFT features in the
reference image with each other. Similar SIFT features that strongly resemble each other
are immediately rejected to avoid later confusion among them. In the second stage SIF'T
features are matched across multiple views taken from different camera poses distributed
across the entire workspace. In this case those reference keypoints are rejected for which
the matched keypoint violates the angular criterion and the epipolar constraint. In the
third online stage, the angular criterion is applied once more to the features detected in the
current image. Only those features that pass all of the above tests are finally considered
within the visual control scheme.

5.2 Generic moments

5.2.1 Moments for rotation

A camera rotation around its optical axis by v induces an inverse rotation of equal mag-
nitude of the keypoint orientations ¢;. The averaged keypoint rotation f, regulates the
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camera rotation:

1 n
f'y: Ez_;gbz (51)

The point features u;,v; are first aligned with the camera orientation in the reference
view according to the observed feature f,. The correction along 7 is therefore defined as
Afy = fret, — fy. The visual features are rotated by Af, such that the current feature
locations u; and v; are aligned with the camera orientation in the reference view. The new
feature locations u and v, are determined as follows:

E

In the following the corrected pixel coordinates u; and v, are used for the computation of
the remaining image moments and for better comprehensibility are denoted as u; and v;. In
order to control the rotations around « and S two additional image moments corresponding
to the rotations about the z- and y-axis, f, and fs, are defined. The image moments f,
and fg capture the perspective distortions of lines connecting pairs of features caused by
rotations:
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The term Hpj — pZH denotes the length of the line connecting the two pixels:

D = Bl = /(s — 1) + (v — )2, (5.5)

which are weighted by the factor (—u.f, —vmfj). Its sign indicates whether the line is above
or below the u-scan line through the camera’s principal point. The absolute magnitude of
the weight increases with the vertical distance from the image center. The image moment
fs represents the equivalent effect of dilations and compressions of lines caused by rotations
along the y-axis. Figure 5.3 illustrates the effect for a square configuration of four feature
points that form six lines. Figure 5.3 a) depicts the image of the square for parallel feature
and image plane, whereas in figure 5.3 b) the image with the camera is tilted around the z-
axis and the shift along the y-direction is compensated. The distortion increases the length
of line 1 and simultaneously decreases the length of line 3. This dilation and compression
of lines is captured by the equation 5.3.
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Figure 5.3: Perspective distortion caused by camera tilt o captured by the image moment
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5.2.2 Moments for translation

The translation along the camera axis is governed by the image moment f, defined as the
average scale of the augmented features:

1 n
[z = gZUi- (5.6)
=1
Alternatively f. can be expressed as the distance between point features according to:

Doict D jmi V(s — ) + (v — v;)?
3(n—1) ’

fra = (5.7)

that captures the average scale of the scene in a similar manner. Nonetheless computing
the image moment for 2z from the distance between point features f,; is not invariant with
respect to perspective distortions caused by rotations along the other two axes. There-
fore, the inherent scale of augmented features defined by f, is preferred to the alternative
definition f.4.

The moment based controller in [64] operates with the geometric centroid of point features
for regulating translations along the z- and y-axis. The image moments are defined by the
centroid of matched features according to:

n

1 — 1

i=1

However, the geometric centroid primarily captures the horizontal translation of the cam-
era, but suffers from a sensitivity to motions along the remaining degrees of freedom,
especially from motions in z, o and f.
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In the following the image Jacobian Jy, r under the assumption of prior backrotation
around the optical axis is derived in order to analyze the remaining couplings (cf. appendix
B). The centroid feature [f, f,]* behaves similar to a virtual point feature and the Jacobian
is obtained by averaging the individual point feature Jacobians stated in [70]:

A ) W —Uiv; At
n A —ui ZUi;
1 z z A A
Itoty = > : (5.9)
=1 0 2 —u N7
z z A A

in which A denotes the focal length and z denotes the distance between the camera and
the feature plane. The main difference with respect to a point feature is the simplifying
assumption that all augmented features share approximately the same depth z. This
assumption is reasonable as long as the depth of the scene is small compared to the distance
to the camera (weak perspective projection).

The visual features f, and f, capturing translations along the z- and y-axis are expressed
as the weighted aggregation of the matched feature locations [109]:

fo = iwiuia fy = iwivi- (5.10)
i=1 i=1

By proper selection of the weights w; attributed to individual point features [u;,v;] it is
possible to decouple f,, f, from the remaining degrees of freedom. With this objective in
mind the image moments f, and f, are supposed to only depend on v, and v,, respectively.

Decoupling for 4 DOF': The following analysis for the proper dynamic weight focuses on
the element J;, . related to the u-component. J;, . defines the non-linear coupling of the
feature motion in dependence on task space motions in z. Notice, that for the decoupling
of the visual feature f, the same methodology is applied only using v; instead of w;. The
undesired off-diagonal element of the sensitivity matrix J .- is eliminated if the dynamic
weights w; satisfy the constraint:

n
Tho=> wi— = 0. 5.11
e = 2 (5.11)
For an arbitrary set of point features [u;, v;], this constraint is violated for the geometric
centroid calculation with equal weights w; = 1/n. In order to maintain the similarity with
the conventional centroid a minimal variation Aw; of the original weights w; = 1/n+ Aw; is
endeavored that satisfies the constraint. This optimal variation is obtained by minimizing
the following cost function in conjunction with a Lagrange multiplier A;:

n

1 1\ .
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In order to solve the optimization problem the partial derivative of equation 5.12 with
respect to w; and the Lagrange multiplier \; are computed as:

F 1
8 = (wi——)+)\1ui:0
n

8’[[12'
OF -
=1

which in turn yields the least squares solution:

(5.14)

Wi = — — n u=
2
n Zi:l u’i i=1

Intuitively, the weight of features whose pixels possess the opposite sign as the geometric
centroid @ = ), u;/n is increased, whereas those with the same sign are down-weighted.
Notice, that by definition the weighted centroid is always located at the origin of the
current image, thus f, = f, = 0. However, the reference features fior, = >, Wiy, and
Jret, = > Witret, are no longer constant, but depend indirectly on the current image via
the dynamic weights w; and are therefore implicitly susceptible to motions along multiple
degrees of freedom. In order to verify the decoupling of the weighted visual features f, and
fy from a motion v,, it is necessary to show that the weights for an identical set of feature
points remain indeed independent of the distance z. The following considerations assume
that the image plane is oriented parallel to the feature plane. The perspective projection
of a world point on the image plane is given by u; = xi%, whereas the same point displaced

by Az is projected to u;a, = ziT)\A,z“' Assuming that the weights w; fulfill the constraint

n
> ujw;, the weighted sum of the feature points u} at distance z + Az is thus given by:
i=1

n Z n
i, Az W; = aw; = 0. 5.15
;qu z+Az;uw ( )

Due to fact that —*; is a proportional factor common to all features, the optimal weights

for the first set of feature points also transform the virtual centroid of the second set of
feature points to zero. Nonetheless, the weights are effectively down-scaled by the factor
A~ In order to render the weights themselves and not only the centroid independent of
the distance z, the weights are normalized according to:

n

1
Wi norm = W;— E |wk| (516)
n
k=1

Assuming that the weighted sum of the feature points is initially zero for the reference
view, the weights w; norm transform the virtual centroid of every other view to the image
center independent of the distance z (cf. [109]). Figure 5.4 depicts two projections of the
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same features, in which the corresponding viewpoints differ by a displacement Az. The
weights w; are optimized according to the first set of feature points, but are also applied to
weight the second set. Both virtual centroids are located in the image center even though
the weighted feature points for the two sets differ. The example demonstrates that neither
the weights nor the visual features f, and f, change with a camera motion along z. Notice,
that in the weighted scheme the role of current and reference features is reversed. Typically,
the reference features are constant and the current features change with the motion of the
camera. However, in the weighted scheme the current centroid (f, = 0, f, = 0) is constant
per definition and always coincides with the principal point due to equation 5.11. Instead
the reference features frr,, fref, change over time as the weights w; change with the current
view, even though the point features wu,.s,, vyef, themselves are constant.
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Figure 5.4: Virtual centroid for two sets of feature points at different distances between
camera and feature plane.

Figure 5.5 depicts the image projections of the conventional and weighted centroid wu-
components’ view as a function of the lateral task space error Ax. The two horizontal
lines correspond to the constant conventional reference centroid and the constant weighted
current centroid u-components. In this example, the reference image is deliberately chosen
such that the majority of features is located in the right half plane. Therefore, the conven-
tional centroid is shifted along the u-component by 120 units from the principal point. The
current conventional centroid depends linearly on the lateral error and intersects the refer-
ence centroid for a zero lateral error Ax = 0. However, the offset and slope depend on the
longitudinal distance between camera and feature plane. Current and reference features
interchange their role for the weighted scheme, in that the former remains constant and
the later changes with the lateral error in a non-linear fashion. In this case the dependency
of the centroid on the lateral error remains the same independent of the longitudinal pose
error in z. Again, the reference and current centroid intersect for zero lateral error. Even
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though the slopes for the weighted and conventional centroid exhibit opposite signs, the
actual image error fof, — f; has the same sign for both schemes. Figure 5.5 also reveals a
slight asymmetry of the weighted reference centroid for positive and negative lateral errors.
For large positive lateral errors the image error even increases slightly with decreasing lat-
eral error. This asymmetry is caused by the inhomogeneous distribution of point features
u;, which in turn effects the adaptation of the weight factors through equation 5.14. It
should be noted, that the asymmetry and slope inversion do not effect the stability or
convergence of the visual control and only occur if the point feature distribution in the
reference image is significantly skewed.
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Figure 5.5: Centroid u-component as a function of the lateral error for the conventional
and weighted centroid in the current and reference view.

Decoupling for 6 DOF: The aim is to extend the decoupling to visual servoing for 6
DOF. This requires that the features f, and f, do not only become independent on the
motion v, but also on the rotations w, and wg. Again, the constraints emerge from an
analysis of the Jacobian in equation B.1. The optimization problem for decoupling the
visual feature f, from the motions v, and w, according to the Jacobian in equation 5.3 is
stated as follows:

n 2 n n

n
Theoretically, it is possible to cancel the component > w; (A\* + u?) of the Jacobian re-
i=1
lated to the motion wg as well. If this additional constraint is included, the minimization
problem in equation 5.17 is algebraically still solvable (cf. appendix B). Unfortunately,
the inclusion of this constraint substantially reduces the sensitivity of the feature f, with

its associated motion v,, resulting in a deterioration of the visual control. Therefore, the
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weight optimization problem only includes constraints for the cancelation of elements J foar
and Jy g in the sensitivity matrix based on the image Jacobian in equation 5.21. The cost
function F' is partially differentiated with respect to w; and the Lagrangian multipliers \;:

OF

8’[[}' = Ww; — E + )\1Ui + )\guivi,
oF & OF
O i=1 Oy i=1

Changing to vector notation by substituting k = [%, . %], u = [u,...,u,] and p =

[ugv, . .., u,v,] a set of linear equations is obtained: w+Aju+Ap = k, with the constraints
wu’ = 0, wp? = 0. In order to determine the Lagrangian multipliers, the weights w are
eliminated by multiplying with the transpose of u and p. This results in a system of linear
equations, which can be solved in closed form:

T T T
uu u A k
Lora o) 0] = Lok 619
pupp]||h p k
The corresponding weights of the point features are determined as w = k — A\yu— A\op and
are subsequently normalized according to equation 5.16.

5.2.3 Coupling analysis of the sensitivity matrix

The image Jacobian for the visual feature f, is given by

J Z?:l Z;'in+1 p”\z/)rng;g [ 0 0 —% _Uij +u2‘j :|
f pu—
’ ZZ:I Zln:i—i-l IPx — il ’

in which Vij = (Ui _'Uj)/27 Ui = (uz —U])/2 ) Urefij - ('Urefi +Urefj)/27 urefij - (urefi +urefj)/2
and the length p;; = ||[p; — pj||. In the Jacobian for the analogous visual feature fz the u-
and v-components are interchanged. The resulting full 6 DOF Jacobian matrix (sensitivity)
exhibits the following block structure:

(5.20)

fa [ J. 0 0 0 J.s O T,
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o] 0 0 e 00 0 T (5.21)
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However, some residual couplings remain through the non-zero off-diagonal elements (j o8
jf%a, Jt. 6, jfﬁ,a) in the Jacobian. These terms capture the effect of a rotation a along
the z-axis on the motion of the v-components of point features, and vice versa a rotation (3
along the y-axis on the u-component. The complete analysis of the sensitivity matrix is in
appendix B and a summary of visual servoing with generic image moments in table B.1.
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5.3 Positioning in 4 DOF with augmented point features

Determining optimal control parameters for the image-based controller is not so easy to ac-
complish with conventional methods of controller generation such as LQR design due to the
lack of an object model, model uncertainties of image processing and non-linearities of the
control path. A sufficiently exact model of the closed-loop control, consisting of robot and
image processing and considering dynamical properties of the manipulator, calibrations,
variable latency time and pixel noise as well as the non-linear dependence of the image fea-
tures on the camera pose, can only be generated with large effort and results in a complex
and domain-comprehensive model. Thus, an approach for automatic hardware-in-the-loop
(HIL) optimization of the image-based controller gains by evolutionary optimization is in-
troduced. In the following first the determination of control parameters and successively
the experimental results are presented.

5.3.1 Controller optimization

The moments for rotation and translation along the camera axis for 4 DOF visual servoing
correspond to the image moments introduced in equation 5.1, 5.6 and 5.8. Notice that in
the first step the coupled image moments f, and f, are employed as this is the most complex
case resulting in the following sensitivity matrix given in equation 5.22. For 6 DOF visual
servoing with decoupled image moments only four off-diagonal couplings remain. Later on
the optimal control parameters for the decoupled moments in 6 DOF using the definition
in equation 5.10 are determined in the same manner.

fa e 0 Jn. 0 T,
vl | 0 J, Jp. O T,
ELT] o 0 gL oo T, (5.22)
fy 00 0 Jpyd LWy

The closed-loop control system consists of the coupling of four decoupled PD controllers:

[U:cavyavmwv]T = [kxakyakzakv]T[AfxaAfyaAfz‘aAfy]T“" (5.23)
[kDmakDyaszakD'y]T[AfmuAfyuAfszf’y]Tv

whereas kpg, kpy, kp. and kp, denote the gains of the D (differential) parts. An integral
part in the control path is omitted due to the integrating nature of the plant.

The control quality and stability of the image-based control as well as the characteristics
of the image features are determined by the selection of the control parameters of the PD
controller. The initial control parameters are obtained manually or by means of simpli-
fying dynamic first order models. Subsequently an automatic hardware-in-the-loop (HIL)
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optimization of the image-based controller is performed by evolutionary optimization tak-
ing into account several performance criteria. The term "evolving hardware" denotes a
methodology connecting evolutionary algorithms with the design and optimization of me-
chanic and electronic systems [89]. In the context of HIL optimization of image-based
controllers time-consuming evaluation of controllers on the experimental system proves to
be problematic, as they need to consult several motions from initially different robot poses
in order to guarantee sufficient robustness for covering the complete workspace. If evolu-
tionary optimization procedures are applied in this context, the available time frame for
the fitness evaluations has to be exploited as efficiently as possible.

Thus, the proposed approach utilizes a model-based evolution strategy which initially eval-
uates all generated offspring by means of an online-learned fitness model 62|, such that
only the most promising candidates according to the estimated fitness are subject to the
actual fitness evaluation on the real robot. According to the model-assisted evolution
strategy (MAES) out of the A, offspring created within a generation only the estimated A,
most promising candidates undergo the real test [149]. From those the p, best solutions
are selected as parents. The achievable progress by MAES within the evolutionary opti-
mization does not strongly depend on the actual model error but more on the capability
of predicting correctly the ranking order of the population during pre-selection. Therefore
MAES already offers advantages if the model-based pre-selection is better than a purely
random choice in terms of ranking. A-CMAES (controlled MAES) improves the MAES
as the number of actually evaluated individuals A, is fitted dynamically with the quality
of the fitness model in order to guarantee a constant selection quality. A\-CMAES from
[62] is employed for the HIL optimization of the visual controller because the evolutionary
progress by means of the number of actual fitness evaluations is superior compared to stan-
dard evolution strategies. In the following the results of the evolutionary HIL optimization
of the image-based controller by means of A-CMAES (), = 30, A, € [6,15], p, = 5) are
presented. The cost function minimizes the quadratic image error

Fe ﬁ; /0 N (5.24)

without an explicit penalty of the control effort. The velocities v proposed by the controller
are limited by the saturation of the actuating variable during transfer to the robot control.
The control behavior is observed for a T' = 15 s control deviation and evaluated by means of
the quadratic control error. To guarantee a robust performance, each controller is evaluated
for four different initial displacements of the robot arm and the mean for the costs of all
four runs is calculated. Altogether, one HIL quality evaluation of a controller requires one
minute on a 1.8 GHz Pentium 4 system.

Before the actual optimization of the controller on the real robot the robustness and effi-
ciency of the method is analyzed in a simulated virtual reality. Optimization in a virtual
environment offers the advantage of exactly reproducible behavior which is not subject to
disturbances due to variable illumination, dynamical constraints and variable latency as
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can be observed in the real system. The gain factors of an image-based controller for a
flexible camera are optimized by means of the cost function in equation 5.24.
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Figure 5.6: a) Development of the mean and best fitness for evolutionary optimization of
the image-based controller in virtual reality compared to the empirically tuned controller;
b) Evolutionary HIL optimization of the image-based controller on the target system.

Figure 5.6 a) depicts the development of the mean and best fitness within a progress of 20
generations. The optimization results in a significant improvement of the quadratic image
error of a factor five compared to the empirically tuned controller. The intermittent increase
of the mean fitness towards the end of the evolution is caused by individual unstable
controllers with extremely bad quality, which however do not influence the development of

the best individuals.

The HIL optimization on the target system shown in figure 5.6 b) proceeds over nine
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generations in total, corresponding to an expenditure of time of about 3.5 hours. By using
A-CMAES the fitness evaluation time is reduced by 20%.

For comparison the empirically tuned controller is tested during the continuing optimiza-
tion under the same conditions as the current generation. The quality variations of up to
20% during the evolution in spite of identical control parameters illustrate the influence
of external disturbances on the control behavior. The trend of this influence is reflected
in a similar manner for the empirically tuned controller in the fitness progress of the best
controller of one generation. It becomes apparent that the optimized controller exhibits
a consistently better behavior and the quadratic image error is reduced towards the end
of the evolution in average of approximately ten units compared to the empirically tuned
controller.
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Figure 5.7: Comparison of the error evolution in the work space for the empirically tuned
(a) and evolutionary optimized (b) controller.

Figure 5.7 compares the empirically tuned PD controller with the evolutionary optimized
controller in terms of regulation of the task error. For the degrees of freedom z, y and
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the integrated quadratic control error and overshoot are reduced, whereas the regulation of
the z-component is inferior. The quadratic control error of the empirically tuned controller
is reduced from F' = 32 to F' = 23 according to equation 5.24 by means of the HIL
optimization. The slower convergence is partly due to the coupling of the features for
the x and y-component with motions in z-direction. The perspective camera projection
causes a magnification of the image with approaching camera and therefore a simultaneous
increase of the feature errors f, and f,. As the total costs depend on the aggregation of
the individual errors, a slower convergence along the z-axis still leads to a reduced total
quadratic control error.

5.3.2 Simulation and experimental results

The optimized 4 DOF visual controller is evaluated for a free moving camera in virtual
reality and in experiments on a 5 DOF KATANA manipulator with an eye-in-hand config-
uration. For the evaluation of the decoupled visual features for 4 DOF visual servoing, the
manipulator is dislocated from the reference pose by an initial displacement Az = 20 mm,
Az = 40mm and A~ = 25°. Substantially larger displacements are not feasible in the
experiments due to the restricted workspace of the KATANA manipulator and the eye-
in-hand constraint of keeping the object in view of the camera. Figure 5.8 compares the
evolution of the task space error and the image error for the original coupled controller
(a, b) and the decoupled controller (¢, d). In case of the coupled controller the z-error
introduces a dynamic shift of the current feature f,. Although the image error itself is
compensated after 12 iterations, the corresponding residual task space error in x remains
until complete regulation of Az after about 25 iterations. The decoupled controller elim-
inates the impact of v, on the feature f, such that image and task space error in the
x-component converge simultaneously after 12 iterations. Even though there is no initial
displacement along the y-axis, the inherent coupling with v, induces an undesired motion in
task space of Ay ~ 5mm. Again, the decoupled controller eliminates this disturbance and
Ay is not effected by the motions v, or v,. The residual task space error of the decoupled
controller is less than 0.5 mm for the position and 0.5° for the rotation.

The potential of decoupled visual servoing in the context of object manipulation in the
context of service robotics is investigated by [81], which utilizes the proposed visual servoing
for gripper-object alignment in conjunction with a subsequent grasping stage. The object
manipulation is realized by a two-stage approach, in which the object-gripper alignment is
achieved by the proposed visual servoing and subsequently a two-finger grasping strategy
is applied in order to manipulate the object without slippage and damage. The approach
is advantageous for service robot manipulation as it necessitates only one reference image
of the pre-grasping pose and an approximate estimate of the object’s weight. In order to
demonstrate the effectiveness of the approach a textured object is successfully picked up,
moved and released at a novel position and orientation in twenty consecutive trials without
human intervention.
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Figure 5.8: Image error (a) and position and angular error in task space (b) for visual
servoing in 4 DOF; Image error (c) and position and angular error in task space (d) for
decoupled visual servoing in 4 DOF.

5.4 Positioning in simulations in 6 DOF with augmented
point features

Figure 5.9 shows the task space error for visual servoing for 6 DOF in a virtual reality
simulation. Notice the substantial coupling among the degrees of freedom in the task space
for the conventional controller (a). The translational motions in x, y and z demonstrate a
significant overshoot caused by the couplings of the conventional centroids f,, f, with 7%, w,
and wg. The task space errors in x and z initially increase and only start to converge after
stabilization of the other errors. For the weighted centroid control (b) with the partially
decoupled Jacobian the disturbances are significantly reduced and the six task space errors
converge smoothly and largely independent of each other. The residual overshoot in the
x- and y-components is caused by the remaining coupling with wg and w,, respectively.
The results clearly demonstrate that the weighted features result in a more favorable task
space motion of the camera.
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Figure 5.9: a) Position and angular error in task space for visual servoing in 6 DOF; b)
Position and angular error in task space for decoupled visual servoing.

Experimental results are provided in the following section in a competitive analysis with
an alternative approach. F

5.5 Alternative: Visual servoing on a virtual camera
plane

The concept of a virtual camera plane is inspired by the rectification stage in stereovision.
The virtual camera plane was first introduced by [105] in order to control the motion of
a mobile robot independent of its gaze as explained in section 4.2. The main idea is to
transform the features in the current view onto a virtual camera view, which is coplanar
with the reference view in combination with the decoupling from section 5.2, cf. [113].
Figure 5.10 illustrates the geometric relationship between the reference, actual and virtual
camera plane. The current camera frame exhibits a translational and rotational offset with
respect to the reference camera frame. The origin of the virtual frame coincides with the
current view, whereas its orientation is identical to the reference frame. The features in the
current view are back-rotated onto the virtual camera plane, thus allowing the unbiased
observation of the visual feature errors receptive to camera translations independent of the
camera’s orientation.

The control scheme for visual servoing on a virtual camera plane is detailed in table 5.2.
The rotation between the actual view and the reference view is estimated by the proper
decomposition of a homography into a rotational and translational part. The homography
establishes a point to point transformation between two camera views for a set of features
that lie on a plane according to equation 2.5. The estimation of the homography requires at
least four feature correspondences, whereas for the sake of robustness and accuracy a two-
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Figure 5.10: a) Camera configuration; b) Transformation of the actual image coordinates
onto the virtual camera plane.

stage estimation process is applied for elimination of outliers by means of the RANdom
SAmple Consensus algorithm (RANSAC) [49] and a subsequent least squares estimation.
The homography is decomposed into the rotation matrix R, the ratio t/d and the normal
vector n. It is assumed that the normal vector n of the feature plane in the reference con-
figuration is roughly known in order to resolve the ambiguity of multiple possible solutions
to equation 2.5. The rotational part of the image Jacobian only depends on the intrinsic
camera parameters and is therefore independent of the camera pose. This property enables
the homogeneous transformation of features from the actual to the virtual camera plane
(step 2 in table 5.2) without effecting the feature error. As the virtual and reference frame
are coplanar the residual feature error is solely attributed to the translational error in task
space.

The estimated rotation constitutes the feedback signal to regulate the robot orientation in
task space. The translational degrees of freedom are regulated by image moments similar to
section 5.2. The third step consists of determining the moments f, and f, by the weighted
centroid according to equation 5.10. The homogeneous transformation already accounts
for the dependency on rotations around the z- and y-axis, respectively. The cost function
F only contains a single Lagrange multiplier to achieve decoupling of the z-component:

1 1\’ S
F= ; (wz n) + A ;wu (5.25)
Note that equation 5.25 differs from the cost function introduced in equation 5.12 by
replacing u; by ,,, thus allowing for completely decoupled visual servoing in 6 DOF. The
cost function F' is again minimized by computing the partial derivative of equation 5.25
with respect to w; and the Lagrange multiplier \;, which yields the least squares solution
stated in step 3 of the control scheme. In the fourth step the moment f, is based upon the
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average distance between two point features in order to regulate translations along z . The
fifth step is optional as it is carried out only once for a camera manipulator setup in order
to determine the optimal control parameters. Finally the controller setpoint is determined
by means of the image moments f,, f,, f. and the estimated rotations.

Table 5.2: Visual servoing on a virtual camera plane.

1.

2.

Estimation and decomposition of the homography into rotation and translation:
H=UAV' & A=U"dR+tn?")V (cf. section 2.1).

Homogeneous transformation of the actual image coordinates onto the virtual
camera plane similar to equation 4.3 with an additional Tey equal to the estimated
rotation matriz R via:
g” "[RO
Yl 01

1

— S

Determination of the image moments f, and f, onto the virtual camera plane
according to:

. 1 Uiy, Ty
fo = wil,, with w;, = — — =——,
2 ST
fy = Zwivvi with w; = — — =——— (cf. equation 5.10 to 5.14).

i—1 n Zi:l (@Ui>2

Determination of the image moments f, onto the virtual camera plane according
to:

n 1 n n ‘ A . ‘
f. = <§(n - 1)) Z Z llpj—pill with  p;; = [y, 0y,] (cf. equation 5.7).

i=1 j=i+1

Singular computation of the gains: HIL optimization of the controller by -
CMAES (cf. section 5.3.1).
Determination of controller setpoint by means of the image moments f,, fy,, f-
and the estimated rotations.

Figure 5.11 compares the image location of features for a camera actually aligned with the
virtual frame and the estimated location of features in the virtual image plane according
to the current view. Despite the substantial translational and rotational displacement
between both frames the estimated features back-rotated onto the virtual camera plane
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only deviate from their actual positions by a small error of 1.6 pixel in the u-coordinate
and of 1.4 pixel in the v-coordinate.

Ax 100 cm
Ay 30 cm
Az 50 cm
A« 15°
Ap 10°
A~y 20°
Au || 1.61 pixel
Av || 1.38 pixel

Figure 5.11: Virtual camera plane: White circles correspond to the original view, which is
displaced but coplanar with the reference view. The black markers indicate the features
transformed from the current view to the virtual plane by back-rotation by means of the
estimated homography.

The visual servoing scheme on a virtual camera plane as well as the visual servoing with
image moments using SIF'T are evaluated in virtual reality and in experiments on a 6
DOF Reis manipulator with an eye-in-hand configuration. For the comparison of the two
control designs the manipulator is dislocated from the reference pose in the virtual reality
by an initial displacement Az = 40cm, Ay = 80c¢m, Az = 60cm, Aa = 5°, A = 30°,
A~y = —30°. Figure 5.12 compares the evolution of the task space error for the original
controller via image moments and the alternative controller based on the virtual camera
plane. The undesired coupling of the visual moment f, with the error in 3 results in an
initial increase of the position error in x for visual servoing with image moments. Based
on the remaining couplings the pose errors converge to zero under the condition that the
other position errors are already eliminated. The results clearly demonstrate that the visual
servoing with a virtual camera plane results in an even more favorable task space motion.
The convergence is much faster as each error component converges independent of each
other. Therefore the gains are tuned separately for each DOF, enabling a more efficient HIL
optimization. The residual task space error of the visual control with the virtual camera
plane is less than 0.5 mm for position and 0.05° for rotation, which is approximately one
order of magnitude smaller than the visual servo control with image moments.

Notice, that the potentially incorrect correspondences are detected online for the visual
servoing with decoupled image moments based upon the consistency of the main orientation
of the individual SIFT features. In the case of the virtual camera plane, false and noisy
correspondences are eliminated based on the robust estimation of the homography with
RANSAC. The price for the increase in performance of the visual controller with the virtual
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camera plane is the additional effort to properly calibrate the camera model. The scheme
depends in particular on an accurate estimate of the transformation from the tool center
point to the focal point.
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Figure 5.12: a) Task space error for visual servoing with image moments; b) Task space
error for visual servoing using the virtual camera plane. The task space error in the virtual
reality is determined by the feed-forward kinematics from the calculated joint angles.

Figure 5.13 compares the evolution of the task space error for both visual servoing con-
trollers during experiments on the 6 DOF industrial robot. Notice, that the final accuracy
which is achieved by the decoupled image moments using SIFT is superior to the visual
servoing with the virtual camera plane. The larger residual error is due to the imperfect
calibration of the transformation between the robot’s tool center point and the camera
frame whose origin is located in the focal point. However, the rate of convergence of the
visual servoing on the virtual camera plane is substantially higher than for the controller
with image moments. Achieving the level of accuracy demonstrated in the virtual reality
on the real system requires a much more advanced and precise calibration.
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5.6 Analysis and conclusion

This chapter presents a novel approach for visual servoing based on decoupled image mo-
ments using augmented point features such as SIFT features. The properties of local
features render the approach universally applicable for manipulation of daily-life objects
that exhibit texture. Local feature extraction (e.g. SIFT, ORB, SURF, GLOH, GF-HOG)
for visual servoing applications offer the further advantage that object recognition and pose
alignment of the manipulator rely on the same object representation. For 4 DOF visual
servoing a set of completely decoupled image moments is derived that results in robust and
independent convergence of the corresponding task space errors. Problems of the classical
Jacobian based visual servoing scheme such as the camera retreat problem and local min-
ima are resolved. A novel sensitivity matrix for 6 DOF visual servoing is introduced, which
has only four off-diagonal coupled components between the visual features and the degree
of motion. The visual control with the proposed methodology causes the pose errors to
converge largely independent of each other resulting in a smoother task space motion of
the camera. As an alternative to visual servoing based on decoupled image moments, the
idea of the virtual camera plane for decoupled navigation and gaze control introduced in
section 4 is transferred to the domain of visual servoing for object manipulation, named
"visual servoing on a virtual camera plane".

Table 5.3 summarizes the main characteristics of the two controller designs. Contrary to
visual servoing on a virtual camera plane, visual servoing with image moments requires
neither an intrinsic nor an extrinsic calibration for transformation between the robot’s
tool center point and the camera frame. Additionally, for achieving its high performance,
visual servoing on a virtual camera plane partially reconstructs the scene by means of
the homography, whereas the estimation of the rotation matrix necessitates the knowledge
of the normal vector n on the object’s surface in the reference view. This method has
the advantage that no off-diagonal couplings between the visual features and the degree
of motion remain. Four non-collinear features are required to estimate the homography.
Visual servoing with image moments needs only three features that span a large area around
the focal point. Visual servoing on a virtual camera plane slightly outperforms visual
servoing with image moments in terms of position accuracy and convergence, however,
under the condition of proper intrinsic, extrinsic calibration and decomposition of the
estimated homography. As the performance increase is not justified by the additional
effort, visual servoing with image moments is preferable due to its model- and calibration-
free design and its efficient implementation. Following this argumentation, the object
manipulation with the Katana arm presented in [81| utilizes the proposed visual servoing
with decoupled image moments for gripper-object alignment.

The next chapter describes global visual servoing. Due to the limited visibility and per-
ceptibility of features across different views, it becomes necessary to introduce additional
intermediate reference views to navigate across the entire view hemisphere.
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Table 5.3: Characteristics of the two different visual servoing controllers, visual servoing
on a virtual camera plane (cf. table 5.2) versus image moments (cf. table B.1).

Visual servoing with
image moments

Visual servoing on a
virtual camera plane

intrinsic calibration -

required

extrinsic calibration -
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Figure 5.13: a) Task space error for visual servoing with image moments during experiments
on a 6 DOF industrial robot; b) Task space error for visual servoing using the virtual
camera plane. The task space error for the 6 DOF industrial robot is determined by the
feed-forward kinematics from the measured joint angles.



Chapter 6

Global visual servoing with dynamic
feature sets

This chapter presents a novel approach to global visual servoing in the context of object
manipulation, also stated as large view visual servoing in [110]. In many scenarios the
features extracted in the reference pose are only perceivable across a limited region of the
work space. The limited visibility of features necessitates the introduction of additional
intermediate reference views of the object and requires path planning in view space. Figure
6.1 depicts exemplarily such a scenario in which the features from the current pose and the
reference pose do not intersect. The visual control is based on decoupled image moments
using augmented point features such as SIFT features [109, 64| as defined in section 5.2.
The approach is generic in the sense that the control operates with a dynamic set of feature
correspondences rather than a static set of geometric features. The additional flexibility of
dynamic feature sets enables flexible path planning in the image space and online selection
of optimal reference views during servoing to the goal view. The time to convergence to the
goal view is estimated by a neural network considering the residual feature error and the
quality of the feature distribution. The transition among reference views occurs on the basis
of this estimated cost which is evaluated online based on the current set of visible features.
The dynamic switching scheme achieves robust and nearly time-optimal convergence of the
visual control across the entire task space. The effectiveness and robustness of the scheme
is confirmed in a virtual reality simulation and on two different experimental setups on
industrial robot manipulators with an eye-in-hand configuration [85|.

Following the model-free paradigm of this thesis already perused in visual servoing with
decoupled image moments as well as visual navigation, the global visual servoing scheme
is designed without any object models contrary to e.g. [142|. Optimal motion control for
visual servoing to a static reference view has been discussed in chapter 5, whereas this
chapter addresses the issue of global visual servoing with extraction and matching of dy-
namic sets of SIF'T features. The view space is partitioned by an entire set of intermediate,

87
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Figure 6.1: Application example for global visual servoing: start configuration (left); Dis-
junctive feature distribution in current and reference view (centered); Goal pose (right).

partially overlapping reference views of the object. The authors in [97] integrate a path
planner in the image space with a visual controller based on potential fields in order to ob-
tain visual navigation for large displacements. The work in [123]| extends these concepts by
qualitative visual servoing based on objective functions that capture the progression along
the path, the feature visibility and camera orientation. This chapter provides a contribu-
tion to optimal path planning in the image space considering the residual feature error in
conjunction with the quality of the feature distributions in alternative reference views. The
additional flexibility of dynamic feature sets allows for adaptive online switching among
reference views while navigating towards the goal view.

The chapter is organized as follows: Section 6.1 provides a stability analysis motivated by
the feature distribution in the image space. Due to the limited feature visibility across
different views it is necessary to introduce intermediate reference views. Time-optimal
reference selection to accomplish global visual servoing is introduced in section 6.2. Navi-
gation in image space is described in section 6.3. Section 6.4 demonstrates simulations in
virtual reality on a sphere as well as on industrial robot arms and analyzes the convergence
behavior of alternative switching strategies. An alternative to global visual servoing is in-
troduced in section 6.5. Within a two-stage approach first a model-free pose estimation
with viewpoint interpolation for a look-then-move strategy is applied, followed by local
visual servoing close to goal pose. The chapter concludes with a summary in section 6.6.

6.1 Stability analysis depending on feature distribution

The local stability of the visual control loop requires that the feature error has a unique
minimum at the reference pose. Even though a single SIF'T feature suffices in principle
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for coupled 4 DOF visual servoing, the computation of weighted centroids requires at least
two non-coincident point features for decoupled 4 DOF visual servoing. Visual servoing in
6 DOF depends on at least three non-collinear features. Convergence of the control to the
reference pose is achieved under the assumption of continuous visibility and perceptibility
of this minimum number of correspondences. As stated in [48|, three feature points which
ideally form a large-area triangle enclosing the origin are optimal for visual control. Three
features are minimal as the distortion in features f, and fz is observed relative to the
average length between the points. However, not all configurations of three feature points
are suitable for control. Stable visual control of the rotations requires that the three features
are widespread and that the formed triangle encloses the origin. A too small separation of
the three point features causes a change of sign in the moments f, and fz resulting in an
unstable control. Figure 6.2 illustrates this phenomenon as it shows the point distributions
for five triangular sets of different separation (figure 6.2 a) and the corresponding variation
of the moment f, for the five sets with respect to rotation about the z-axis (figure 6.2
b). In case of the widespread feature set the feature error f, has a unique root at the
origin [111]. However, the feature set closest to the origin induces two roots of f, with
non-zero rotational error to the left and right of the origin. These additional roots cause
the visual control to converge to an equilibrium state that differs from the reference pose.
Figure 6.3 shows the development of the feature moment f, during a lateral movement for
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Figure 6.2: Feature distribution in image plane (a) and impact on rotation moments (b).

a randomly chosen subset of features. The feature configurations depicted in the insets
of the figure demonstrate the effect of an extreme feature occlusion on the calculated
moment. The configurations that are used for all other displayed moment developments
represent feature occlusions with a randomly changing distribution in the image plane as
well as in the number of features. The camera is laterally displaced by -40 cm to +40cm
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while the features at a distance of 75cm are projected onto a normalized image plane.
The figure demonstrates the impact of feature occlusions on the visual moment. The
two envelopes marked by triangles and rectangles correspond to the extreme, but highly
unlikely scenario in which all features in either the left or right half-plane are occluded
resulting in a highly asymmetric configuration. The dotted lines correspond to random
feature occlusions. In all cases the unique equilibrium point is globally stable. In case of
the two extreme distributions the weighted feature moment does not evolve monotonically
with the lateral displacement, due to the effect of skewed weights which increase in absolute
magnitude with the asymmetry of the feature distribution. Even though this phenomenon
effects the rate of convergence global stability is still guaranteed.
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Figure 6.3: Feature distribution in image plane (insets) and impact on rotation moments.

In contrast to [48| the presented approach does not select the subset of optimal features
online, but rather utilizes all available features matched between the current and the refer-
ence view in order to maximize robustness and accuracy. The general definition of visual
features in terms of statistical moments renders the scheme robust with respect to occlusion
or partial loss of perceptibility of features. Notice, that the reference features are recom-
puted online with respect to the subset of matched features. Typically, the number of
matched features varies between 5 and 40, depending on the camera pose and the amount
of useful texture in the current image. The visibility of individual features is limited by
the camera’s field of view, occlusion by the object and changes in perspective. Therefore,
global visual servoing requires multiple reference images in order for the camera to navigate
across the entire view hemisphere. Intermediate reference images are captured across the
entire work space in z-, y- and z-direction. It is assumed that the object always remains
in view of the camera, which naturally restricts the orientation of the camera along the
x- and y-axis. The point of departure is a set of overlapping intermediate reference views
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with partially shared features among neighboring images. The objective of this thesis is to
generate a time-optimal and robust visual control across the entire task space by proper
switching among neighboring reference images. For that purpose, the cost of the current
view is compared with respect to all overlapping reference images, and the control switches
to the reference image with minimal cost. A crucial step is to estimate the cost in terms
of the time to reach the reference pose from the feature error and geometric configuration
of features. Based on the estimated cost the optimal path is determined by shortest path
graph search.

6.2 Optimal reference image selection

For global visual servoing intermediate views are defined to navigate across the entire view
hemisphere. It becomes desirable to switch between intermediate views in a stable, robust
and time-optimal manner. The cost in terms of number of control cycles to converge from
the current view to the reference image is estimated in order to compute the optimal path.
Crucial for this purpose is the proper definition of performance criteria for approximation
of the cost function and the analysis of their correlation with the cost [110, 111|. In this
case, an artificial neural network learns the relationship between control criteria and costs
in a supervised manner. The training data is obtained from observations of the actual
number of control cycles required for transitions between neighboring reference views.

6.2.1 Control criteria

Feature error: The overall feature error Af(I)=[Af,, Af,, Af., Afa, Afs, Af,] con-
stitutes the most significant performance criterion for the estimation of the cost. A single
feature error alone does not provide a good estimate of cost, because the actual time to
convergence depends on the feature error with the slowest task space motion, usually as-
sociated with the translational degrees of freedom. The rotational errors are bounded by
the visibility constraint and are usually stabilized within a few control steps. Each element
of Af(I) is normalized to the interval [0, 1] according to its maximum range. The total
feature error is the sum of normalized errors

AF(T) = i ‘Aﬁ-(I)‘. (6.1)

The feature error already attributes to a substantial amount of variation in the cost, nev-
ertheless the cost estimate is improved by inclusion of additional criteria that capture the
quality and robustness of visual control.

Number of correspondences: The robustness and the control performance increase
significantly if more than the minimal number of correspondences is established. The
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redundancy of multiple features reduces the noise level and contributes to the beneficial
widespread dispersion of features in the image space. A small number of features might
cause a compact distribution of point features, which causes poor or even unstable control
in the image space as shown in section 6.1. The number of matched features also provides an
estimate of the geometric distance of the current view to the reference pose. Distant poses
only share a subset of mutually visible features, whereas the number of correspondences
naturally increases with the proximity of both viewpoints. The criterion C(I) = n is
defined as the absolute number of feature correspondences between the current and the
reference view. The criterion

0 1 < Npmin
Co() = 72— Nmin <N < Niax (6.2)
1 Nmax < T

normalizes C'(I) as it requires a minimal number of features n,,;, and saturates at the upper
limit Ny, = 40 at which no further improvement of the control performance is observed.
The parameter n,., is independent of the object and not crucial for approximate cost
estimation. The absolute number of visible features alone is not a unique indicator of the
expected cost as it also depends on the distribution of these features defined in terms of
their entropy and variance around the centroid.

Entropy: Entropy measures the order or disorder in a distribution. Therefore two control
criteria are introduced, whereas E, (i) and FE,(i) capture the distribution along the two
axes of the image coordinate. The image is partitioned into N = 10 vertical and horizontal
equally spaced columns and rows. The entropy along the two axes is calculated as

N

Eu(I) = —ZHU(Z') logy (Hu(7)) (6-3)

By(I) = — 3" Hy(i) logy (H, (i) (6.4)

1=1

in which H, (i) and H,(i) denote the relative frequency of features in the i-th column,
respectively row. The entropy assumes a value in the interval [0, 1], in which a high entropy
indicates a uniform distribution. A low entropy reveals an inhomogeneous distribution,
which harms the robustness and speed of convergence of visual servoing.

Centroid location: A concentration of the feature points at the image borders bears the
inherent risk of loss of features for small camera rotations. The visual features f, and f3
require a distribution uniformly centered around the principal point in order to capture
the distortion of line segments. The deviation of the feature centroid from the origin is
expressed by

Ui_uol |—| _
n v U=

-

[l =2, = (6.5)

i=1
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in which low values represent desirable feature distributions.

Variance of the feature distribution: The variance of the feature positions provides an
additional estimate of the quality of the feature distribution. A low variance in particular
in conjunction with a dislocated centroid reflects a feature distribution that is suboptimal
for visual control and delays the convergence to the reference image. The variances are

computed as
n

Uu:z@, UU:ZW%,

i=1 =1

(6.6)

Notice, that entropy reflects the geometric homogeneity of the feature set, whereas variance
captures its width.

Correlation between performance criteria and time to convergence: Control
experiments from 150 initial positions randomly distributed over the task space are recorded
in order to evaluate the correlation between the performance indicators and the time to
convergence. Each control step of the individual runs constitutes a training sample for
supervisory learning of the neural network. A control run is considered as successfully
converged to the reference image if all image errors are reduced to within 10% of their
average initial value. The correlation between the performance criteria and the actual
time to convergence provides insight into the influence and relevance of the individual
indicators. The linear dependency between two stochastic variables X and Y is computed
according to Pearson’s correlation coefficient:

é(xi ~X)(Yi-7)

rxy = — — s (67)
¢z (X = X2 /3 (1 - ¥

which assumes values in the interval [—1,1]. X and Y are the first-order moments of
the stochastic variables. Large absolute values indicate strong correlation between the
two quantities. However, a correlation coefficient value of zero would demonstrate that
no prediction of the costs based on the chosen control criteria can be done. Table 6.1
specifies the correlations between the performance indicators and the cost in terms of time
to convergence.

Table 6.1: Pearson correlation between performance criteria and time to convergence.

Afe |Afy |Af. |Afa |[Afs |Af S
rxy || 0.30 [0.14 [017 [0.14 [0.13]0.13]0.63
ci) | Cul) | Bud) | E(T) | Ju] | [0] |ou |0y
rxy | -0.66 [-0.72 [-0.66 | -0.72 | 0.44 ] 0.32[-0.64 [ -0.62
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Table 6.2: Training and test set error for neural network trained with feature error f(I)
only and with feature error and performance criteria f(I),c(I). RMSE stands for root
mean square error.

RMSE train | RMSE test | correlation
f(I) 0.0149 0.0297 0.75
f(I), c(I) 0.0072 0.0092 0.96

The individual feature errors are only slightly correlated with the cost, whereas the normal-
ized summed feature error f is indeed a proper indicator for the distance to the reference
pose. Notice, that the relative number of matched features C,,(I) correlates even more with
the cost than the summed absolute errors f . The scalar summed error contains less infor-
mation than the entire error vector f(I). This is explicable, as the feature errors related to
the translational degrees of freedom converge at a slower rate.

In order to predict the time to convergence two neural networks with different input fea-
tures are trained with the data acquired during the 150 experimental runs. The multi-layer
perceptrons are composed of 16 neurons in the hidden layer and are trained with the stan-
dard back-propagation algorithm. The first network only uses the six-dimensional feature
error f(I) as input, whereas the second network in addition has access to the performance
criteria c(I) = [C,, (1), Eu(1), E, (i), @, v, 0y, 0. Figure 6.4 depicts the relation between the
estimated costs on the z-axis and the true costs for the full input network. It also shows
the linear regression for the partially and fully informed network. The neural network only
trained with the feature error f(I) achieves a correlation of 0.75 between estimated and
true cost. This correlation is substantially improved by incorporation of the additional
performance criteria to a degree of 0.96. The improvement in prediction accuracy of the
fully informed network error compared to the pure feature error based network is confirmed
by the reduced training and test set error shown in table 6.2. This demonstrates that a
distance metric to the goal view in the image space has a significantly lower correlation
with the costs than f(I) in conjunction with the image distribution indicators c(I). This
observation confirms the convergence analysis in section 6.1, namely that the feature distri-
bution crucially affects the control performance. Furthermore the control features |u| and
|| only have a small leverage in order to improve the correlation between control criteria
and costs. Finally a correlation of 0.96 is obtained using all defined control criteria.

6.3 Navigation in the image space

The approach neither requires a geometric model of the object nor is it aware of the spatial
relationship between the reference views, nor does it perform path planning in the task
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correlation coefficient rxy = 0.9557
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Figure 6.4: Neural network (NN) estimate versus true cost (+) and regression lines for the
neural network with f(I) as input (grey dashed line) and (f(I), c(I)) as input (black dashed
line).

space. The optimal path is planned online in the image space rather than in the task space.
For that purpose each reference view (RV) represents a node in an undirected graph, in
which edges define neighborhood relationships between overlapping views. The cost of an
edge connecting two views reflects the transition time between the views expressed in terms
of number of iterations to converge from the initial view to the neighboring view. The graph
supports the global initial path planning from the start view to the desired goal view, but
it also forms the basis for the decision when to switch to the next reference view. The cost
estimation within the path planning consists of two major steps, an off-line computation
of graph costs between the reference view and an online computation of the cost from the
current view to the overlapping reference views. The planner switches between reference
views based on a comparison of the accumulated costs of currently feasible reference views.

Initial path planning and cost estimation: The initial cost estimation is based upon
the graph constructed from the complete set of reference views which form its nodes. The
number of matching features is computed for every possible pair of reference views. An edge
is generated between two overlapping views if they share five or more common features.
The cost of an edge is estimated by evaluating the set of corresponding features with the
neural network described in the previous section. The optimal path from every reference
view to the goal view is calculated with the well-known Dijkstra algorithm [40| for finding
the shortest path in a weighted graph. This calculation is part of the teach-in-process
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in which reference views are captured across the work space and is performed off-line in
advance.

Current cost estimation and choice of optimal current reference view: The
features extracted from the current view (CV) are continuously compared to those of

goal view (GV)
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Figure 6.5: Reference-, goal- and current view represented by a graph.

overlapping reference views in order to identify the optimal current reference view online
during control. For the potential reference views the time to convergence is estimated in
the same way as for the initial generation of the graph. The total costs for reaching a
specific reference view plus the already estimated cost for the shortest path from that node
to the goal view are compared among all feasible views. The node with minimal cost is
selected as the next reference view to be included into the shortest path to the goal. The
view evaluation is only performed every fifth control cycle in order to reduce the amount of
online computations. Figure 6.5 depicts a section of a graph generated from a set of images
with four intermediate reference views RV, ..., RV}, a goal view GV and the current view
CV. The images associated with a view are visualized by rectangles, the hatched areas
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represent the overlap between neighboring images which contain common SIF'T features.
The cost of the transition from the current view to the two feasible reference views RV3
and RV}, depends on the number and quality of common features in the grey areas. The
current view has no connection to the reference views RV, and RV5 because the subset of
common features is empty, as indicated by the dotted line. A hysteresis in the switching
scheme avoids the risk of the visual controller getting trapped in a limit cycle around the
optimal switching point due to uncertainties in the cost estimate or fluctuations in the
matched features. The initially estimated costs of the optimal path from the current view
to the goal are weighted by the number of intermediate nodes from the candidate reference
views to the goal node. That way, switching to a reference view whose node is closer to the
goal node becomes more attractive, whereas the reverse switching to a more distant node
is suppressed even if its estimated cost seems more attractive. A transition to a lower cost
reference view is only initiated if its superiority is confirmed in two consecutive iterations,
thereby gaining additional robustness with respect to cyclic switching.

6.4 Experimental results

The evaluation of global visual servoing is pursued in experiments within a virtual reality
environment and on a real 5 DOF robotic arm with an eye-in-hand configuration [110], as
well as on a 6 DOF industrial manipulator [85].
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Figure 6.6: Alignment of reference views (RV) - a comparison of chosen sequences from
pole to pole on a sphere (a) and as a function of iterations (b) for optimal (ORVS), fixed
convergence (FCRVS) and distance-based reference view selection (DBRVS).
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In both experimental setups the performance of the cost estimation based switching scheme
is compared with two alternative methods. The first method, in contrast to the proposed
scheme, assumes that the geometric distance in task space between reference views is
known. Once the minimal number of visual features is perceived, it switches to the reference
view closest to the goal pose. This switching strategy ignores the perceptibility and quality
of the set of matched features and is not sufficiently robust from a control point of view.
Nevertheless for the purpose of comparison it provides an upper performance limit. The
second method computes an optimal static path that connects the start to the goal node
based on the static costs. It is not opportunistic as it does not reestimate the costs online,
or replans if other reference views not originally included in the plan suddenly appear
more attractive. It switches to the next view outlined in the plan upon convergence of the
feature error to a current reference view. This method, although suboptimal, is robust from
a control point of view, but could still be improved by relaxing the convergence criterion
without sacrificing robustness.
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Figure 6.7: Pole to pole trajectories of the compared methods with respect to position (a)
and orientation (b) for optimal (ORVS), fixed convergence (FCRVS) and distance-based
reference view selection (DBRVS).
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6.4.1 Navigation across a sphere within the virtual reality

A virtual reality simulation of a free moving camera allows the verification of the global
visual servoing scheme without being constrained by the robot kinematics or workspace.
The camera navigates in 6 DOF around a sphere textured with a schematic map of the
globe. The reference views are equidistantly located along longitudes and latitudes. The
task is to guide the camera visually from the north to the south pole. Figure 6.6 depicts
the distribution of reference views together with the path pursued by the three methods
under comparison. Even though the camera is initially located above the north pole, all
schemes immediately transit to an initial reference view that is already closer to the goal.
The distance-based method picks a different large circle route than the other two schemes
as it ignores the issue of feature quality. A better rationale is to select the great circle
route which guarantees perceptibility of a sufficient number of features for stable traverse
to the south pole. This effect is termed the Pacific problem, as for the globe example, the
equal-distant path either moving over America or Africa contains more features due to the
texture and text on the continents than crossing the Pacific with sparse features. The right
part of figure 6.6 compares the sequence and progression of reference views followed by the
three alternative methods. Figure 6.7 shows the evolution of the task space error in terms
of translation and rotation. The number of iterations until convergence is approximately
the same for the optimal image-based and the distance-based navigation method. For the
former the goal pose is reached within 300 iterations, for the later in about 290 iterations,
whereas the static scheme with complete convergence takes about 560 iterations.

6.4.2 Navigation across a semi cylinder with a 5 DOF manipulator

The scheme is also evaluated in an experiment on a 5 DOF Katana robot with an eye-
in-hand camera configuration. As the workspace of the manipulator is rather limited, the
camera navigates across the inner surface of a semi cylinder with a circumference of 1.8 m
and a height of 0.4 m. The inside of the semi cylinder is textured with a panoramic photo
of the TU Dortmund campus shown in figure 6.8. This cylindric configuration is optimal
with respect to the workspace of the robot as it allows a maximal number of sufficiently
distinct reference views. The reference views form a 15 x 6 grid, horizontally separated by
10°, vertically by 5 cm. The kinematics of the specific robot limit the camera motion to 5
DOF. At the start pose the camera points at the upper left part of the image and the goal is
located in the lower right corner of the cylinder. As shown in figure 6.9, all methods follow
at large a similar view sequence. The only significant deviation occurs halfway through
the path in a region which mostly contains sky and ground and therefore few distinctive
features. The optimal switching scheme takes a small vertical detour in order to exploit
the higher concentration of features in the textured band between sky and ground.
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Figure 6.8: Experimental setup for visual servoing in 5 DOF on a semi cylinder.
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Figure 6.9: Alignment of reference views with the chosen sequences in space (a) and chosen
sequences as a function of iterations (b) for optimal (ORVS), fixed convergence (FCRVS)
and distance-based reference view selection (DBRVS).

The number of iterations until final convergence is about 300 for the optimal method, 400
for the distance-based approach and 600 for the fixed-convergence method. The difference
in time to convergence results from the fact that the two other methods require a much
longer time to traverse the region of sparse features as the visual control tends to become
unstable due to the poorer quality of feature distributions.
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Figure 6.10: Relative task-space error for optimal reference view selection (ORVS, a) and
fixed convergence reference view selection (FCRVS, b).

This observation is confirmed by an analysis of the evolution of the relative task space error
with respect to the intermediate reference views shown in figure 6.10. Figure 6.10 a) depicts
the progression of task space error and switching sequence for the proposed scheme, figure
6.10 b) for the static scheme. The static scheme wastes iterations in situations in which
the feature error is already low but not yet fully converged. The optimal cost based scheme
avoids delayed transition to the next reference view, as it already switches for substantially
larger residual errors without compromising the stability of the control.

6.4.3 Nayvigation across a cuboid with a 6 DOF manipulator

The results of the experimental realization of image-based visual servoing for a 6-axial
industrial robot are presented in the following. A comparison procedure serves for eval-
uating the time-optimal switching criterion by adjusting the goal position by means of a
fixed sequence of reference images and a constant switching threshold. Initially, the static
sequence is also generated by the optimal path planning. Figure 6.1 shows the experi-
mental setup consisting of the industrial robot with an eye-in-hand camera configuration.
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The robot drives from start to goal position relatively to the object via reference views
arranged on a hemisphere around the object. Figure 6.11 shows the temporal devolution
of the position error for both procedures. The sequences of reference views utilized in both
cases are depicted in figure 6.12, on the left the spatial distribution and on the right the
chosen switching points. The graphs in figure 6.12 clarify that the initial path planning is
modified by the dynamical choice of references, thus allowing for reaching the goal position
earlier. Therefore the control using the static switching criterion is slower: in spite of a
time-optimal chosen sequence (and therefore reduced number of reference images) the goal
position is only reached after 125 iterations, whereas the time-optimal control converges
after around 100 iterations. The control is performed over three reference views, respec-
tively, together covering an elevation angle of around 90°, whereas the dynamical procedure
switches faster to the next view. Hereby the slightly different path planning is caused by
the varying cost estimation of the dynamical choice of references. In the ideal case the
time-optimal sequence corresponds to that with the shortest path in the work space. How-
ever, views with unfavorable configurations of features are avoided as they influence the
robustness of the control and thus its velocity in a negative manner.
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Figure 6.11: Comparison of the trajectories for time-optimized (ORVS, a) and static switch-
ing criterion (FCRVS, b).
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Figure 6.12: Chosen reference images and their pose in the task space and temporal de-
pendence.

6.5 Alternative: Model-free pose estimation with local
visual servoing

As an alternative to the presented global visual servoing a more human-like strategy for
camera object alignment in the case of limited feature visibility is investigated. It consists
of two stages: Initial pose estimation for pre-alignment of the camera relative to the object
to speed up the positioning (open loop / look-then-move strategy) and subsequently a
refinement by visual servoing using only one reference image instead of a graph of interme-
diate reference views. A difference to similar approaches in the literature is that these two
stages rely on the same object representation. The plenoptic function is already sampled
for the set of reference views required for the global visual servoing. This scheme follows
the appearance based paradigm [58, 133, 43|, such that there is no need for a geometric
model and its image correspondences [38|. The approach employs an instance base learning
scheme |7] in which the object pose is predicted based on the similarity of the current view
with a set of reference views of known pose. Reference views are represented by a set of
SIFT features extracted from the corresponding image. Primarily the similarity between
reference views and the current view is established based on the frequency of SIFT fea-
tures matched between both images. The pose is estimated by weighted averaging of the
reference poses [0az,;» Pa,] across the N most similar neighbor views so that the estimated
azimuth Gaz and elevation ¢01 are computed according to:

N
z azL n Cr(Ii)¢azi
I 69
Zj 10 ( ) i=1 Zj:l CT’(Ij)
in which the similarity C,(I;) is defined in terms of the absolute number of feature corre-
spondences C(I;) between the reference view and the current image divided by the absolute
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number of SIFT features in the reference view.

Pose estimation by viewpoint interpolation: Figure 6.13 a) shows a test object in a
top reference view and current view, together with the set of extracted SIFT features. Fig-
ure 6.13 b) depicts the relative frequency C,(I;) of matched features between the current
pose indicated by an open circle and the reference views. The four most similar references
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Figure 6.13: a) Confusion of SIFT features between frontal and the top view of the object
caused by repetitive texture; b) Similarity based pose estimation according to the relative
frequency C,.(1;) of matched features. Only those reference views for which more than 15%
of features are matched are labeled.

match between 40-50 out of the 100 features in the query view. This ratio drops with
increasing distance of viewpoints on the hemisphere from the current viewpoint. Notice,
that there is a second region of significant matches at the north pole. These matches
originate from a replication of the advertisement text on the frontal and top face of the
toothpaste package shown in figure 6.13 a). In order to improve the pose estimation, the
initial estimate is refined by inspection of the relative location of matched features across
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the current view and two neighboring views. Features are grouped into approximately
equilateral triangles. Figure 6.14 depicts the interpolation scheme for the azimuth esti-
mation. The following computations are restricted to the intersection of features matched
across the current and the three reference views. These features are grouped into subsets
of three features that form a triangle which is characterized by its interior angles. As the
camera perspective changes with the viewpoint, the features move accordingly resulting
in a variation of the interior angles with the pose. Figure 6.14 illustrates the variation
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Figure 6.14: a) Current pose and the two nearest neighbors; b) Reference images of the
two nearest neighbors form the database; ¢) Current image; d) Interpolated azimuth due
to the interior angles of the triangle.

of the three interior angles ., [ia, 7Via between two neighboring reference views with ap-
proximate azimuths 6,,, = —98° and 0,,, = —107°. This variation provides the basis for
a local correction of the estimated pose. The relationship between variation in pose and
variation of the interior angles is assumed to be linear. The interior angles cja,, Bia,: Via,
in the query view fall in between those of the two reference view triangles. The azimuths
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predicted from linear regression with respect to the interior angles are computed as

éaz(aia) - Hazl + (eazg - Hazl) %%Zjal’
N ﬁia - 6ia1
Haz ﬁia - Hazl + eazg - Hazl qia
( ) ( ) 61212 - ﬁial
Ous(a) = Ouan + By — o) (6.9)

iag 71a1

The interpolation is performed across multiple triangles, and the correct pose is predicted
with an M-estimator that is robust with respect to outliers. The error function of the
M-estimator is defined by:

Z p(ei(xi, On), 00) (6.10)

in which ©,, denotes the model parameters and ; is the residual error between the model
and the data point x;. The parameter o, regulates the suppression of outliers and is
adapted iteratively to the residual error distribution. The error function

(25 — @m)2
O'g -+ (1172 — @m>2

p(xi, On) = (6.11)

is quadratic for small residual errors but flattens out for large residual errors thus reducing
the impact of outliers. The method provides accurate estimates of azimuth and elevation
under the assumption that the current view is captured from the same hemisphere as the
reference views, at a nominal fixed distance between camera and object. Under the as-
sumption that the object is always centered in the image, the object distance in addition
to the azimuth and elevation is sufficient to reconstruct the full 6 DOF pose between the
object and the camera. As the distance changes obviously also the triangles are distorted.
In order to achieve scale invariance the relationship between interior angles and distance 7.
is modeled by an exponential function of the form @, (rsc) = @ €xp (binTse) + Cm €Xp (dpnTse)
with four unknown parameters [a,,, by, Cm, d] 5 respectively for 5, (rs) and i, (rs). The
best fit parameters are computed from reference images of the same azimuth and elevation
at four different radii. In contrast to the case of constant scale azimuth and elevation
estimation in equation 6.9, each interior angle aj,, Bia Or i, is now related to an entire
manifold of azimuth, elevation and radius. An observation of an interior angle constraints
the feasible solution set to a two-dimensional manifold in the three-dimensional azimuth,
elevation and radius pose space. For a triplet of interior angles «a, [ia, Via the three mani-
folds ideally intersect in isolated unique solutions. As the dataset contains discrete samples
{[ia, Bias Vial, [Pazs Gels Tsc| } it is difficult to compute the intersection of the underlying mani-
folds. In practice the problem is transformed into an optimization problem which minimizes
the quadratic error between the observed interior angles [oziaq, Biags %aq] and the manifolds
Qia(Oazs Gels Tse)s Bia(Oazs Gels Tse) and Yia(Oaz, Gel, Tsc) across the parameters azimuth, elevation
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and radius:

[éazv ngla fsc] = argmingaZ7¢el7rsc ((aiaq - aia(eaza Gel, Tsc))2 + (612)
+ (Biaq - Bia(‘gazu ¢017 TSC))2 + (f)/iaq - Via(eazv ¢017 Tsc)>2)-

In between the discrete sample points, the manifolds are approximated by equation 6.9
along 7. and a linear function in [0, ¢a]. Only those parameters [0,,, ¢o| are considered
in the minimization that belong to the spherical region spanned by the three nearest
neighbors. The estimates éazi, (]3012., Tsc, are aggregated over the entire set of triangles by the
M-estimator.

Experimental results: In order to evaluate the performance and accuracy of the pro-
posed pose estimation scheme, two types of experiments are conducted. In the first exper-
iment data sets are generated artificially by mapping a set of 3D points in a virtual scene
perspectively onto a normalized image plane. The purpose is to evaluate the theoretical
limitations of the method, neglecting the negative impact of SIF'T feature detection, limited
pixel resolution, lens distortion and inherent pose uncertainty of the reference views. The
distance between the object and the camera ranges from 100 mm to 700 mm. The second
experiment is based on realistic views of the object depicted in figures 6.13 and 6.14. The
reference and test images are captured with a robotic arm that moves the camera across
the view hemisphere. This data set allows it to assess the accuracy of pose estimation
under real world conditions. Due to the limited dexterous workspace of the robot arm,
object-camera distances are restricted to the range from 180 mm to 290 mm. At closer
distances the object is only partially visible. Due to the limited range, the distance in-
terpolation with four parameters is replaced by a two parameter regression model given
by a(rse) = mexp (by,7se). The reference data set contains 517 reference views taken at
three hemispheres of radius 180 mm, 235 mm and 290 mm. The test set contains 672 im-
ages, taken at twelve different radii with 56 images per radius. On average reference images
contain between 700 to 1500 SIF'T features. In order to accelerate the matching process,
initially only the first hundred SIF'T features are considered for matching. The preliminary
search is sufficient to identify the nearest neighbor candidates. The local vicinity of these
candidates is then searched for the nearest neighbor with the complete set of extracted
features. Table 6.3 summarizes the results of the simulated data as well as the realistic
data set for four different methods, namely single nearest neighbor (SNN), weighted aver-
age among three nearest neighbors (WANN), interpolation of azimuth and elevation at a
fixed scale (FSI) and scale invariant interpolation of azimuth, elevation and radius (SII).
For the interpolation scheme with adaptive scale, the mean error of the radius estimation
is reported as well. Three different experiments are performed in order to observe the
effects of uncalibrated camera systems compared to calibrated camera systems as well as
the improvement achieved by the neighborhood correction step. Compared to the simu-
lated case of the ideal perspective projection the accuracy of all methods is expected to
deteriorate on the real world data set. In the nearest neighbor cases the accuracy in the
real experiment exceeds the simulated ideal errors. This over-performance is explained
by the fact that the simulated recognition rate of SIF'T features drops more rapidly with
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Table 6.3: Mean absolute error in azimuth and elevation in simulations and experiments.
The different results demonstrate the effects of uncalibrated compared to calibrated camera
systems as well as the improvement achieved by the neighborhood correction step.

simulation experiment1 experiment 2 experiment 3
uncalibrated calibrated correction step
E®)] E)] E(r) | EO)] B@)] E(r) | E©)] E@)] Etr) | BO)] E@)] Br)
SNN 3.0° | 2.4° 3.8° | 2.7° 3.7° | 2.9° 2.2° | 1.7°
WANN || 2.4° | 1.6° 2.8° | 2.6° 3.2° | 2.5° 1.7° | 1.6°
FSI 2.0° | 1.7° 7.4° | 4.6° 6.9° | 3.9° 4.0° | 1.9°
SII 0.82° 0.26°| 20mm| 2.7° | 2.1° | 55mm| 2.4° | 1.7° | 57mm| 1.3° | 1.0° | 39 mm

change in viewpoint than in the case of the actual object. As the experimental estimates
are based on more samples they tend to be more robust. In the case of nearest neighbors
the accuracy between simulated and experimental data is comparable. In case of non-scale
interpolation small errors in feature locations might result in substantial pose errors, which
explains the poor performance on real images afflicted with noise. The large azimuth error
is partially explained by the fact that some of the nearest neighbor reference views share
too few common features. This in turn causes poor convergence of the M-estimator and
inclusion of outliers in the estimate.

The scale invariant interpolation scheme in experiment 1 tends to be more robust, but still
does not achieve the theoretically possible accuracy on uncalibrated real world data. It only
provides a slight improvement compared to the basic /N nearest neighbor scheme. Possible
explanations that the scheme falls short of the expected accuracy are limited pixel resolu-
tion of feature locations, as the simulated projected images operate with subpixel accuracy,
and radial lens distortion. Therefore the second experiment is performed with calibrated
camera images that already demonstrates a minor improvement compared to the uncali-
brated experiment. The large estimation error is caused by incorrect nearest neighbors. In
these cases the interpolation scheme interpolates the wrong neighboring views that do not
enclose the true view. In order to prevent false neighbors the interpolation result is verified
whether it falls inside the region spanned by the assumed nearest neighbor views. If the
interpolated view lies outside the span a new triangle is formed enclosing the extrapolated
viewpoint. The results for the third experiment with false neighbor rejection in case of SII
are superior to the pure nearest neighbor methods and in reasonable agreement with the
ideal simulated errors. SII with correction step only provides a mean angular error of 1.3°
in azimuth and 1.0° in elevation and 3.9 cm for camera-object distance.

The full 6 DOF estimation of the relative pose between object and camera requires addi-
tional information. First of all the object should always be centered in the image, with
the camera axis intersecting the object center. In the case of object manipulation this re-
striction is achieved by a camera gaze control pointing the camera axis towards the object.
Camera gaze control is naturally required in order to keep the object in view. Finally the
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rotation of the camera around its optical axis is reconstructed from the keypoint orien-
tation of SIFT features as shown in section 5.1. Under these assumptions the azimuth,
elevation and distance estimates are sufficient to reconstruct the full 6 DOF pose between
the object and the camera.

6.6 Evaluation and conclusion

This chapter presents a novel approach for optimal global visual servoing based on decou-
pled image moments with augmented point features in the context of object manipulation
considering that the features in the reference image for grasping are not visible in the cur-
rent object view. It is proven that model-free navigation in image space can be realized
by means of a set of overlapping reference views in order to navigate from an arbitrary,
unknown start into the goal pose. The switching between reference views occurs on the
basis of the estimated time to convergence taken the quality of matched features into ac-
count. The cost of reference views is evaluated online throughout progression to the goal
view, such that the scheme opportunistically selects the reference view that is optimal in
the current context. In principle the work space is arbitrarily extensible under the con-
dition of connectivity of the reference views in image space. The experimental results in
virtual reality and on the real robot demonstrate that the approach minimizes the time to
convergence without sacrificing the robustness and thereby stability of the visual control.
As an alternative to the global visual servoing an appearance-based pose estimation in
conjunction with local visual servoing is carried out with the same experimental setup as
described in section 6.4.3 for a 6-axial industrial robot. The fundamental idea of initially
applying a look-then-move strategy is to achieve even faster convergence to the goal view
relying on the same sparse object representation as the global visual servoing. In principle
the same accuracy in the reference pose as for the large view visual servoing is achieved
as the final step for fine alignment consists of the same visual control scheme. Neverthe-
less the object representation for initial pose estimation has to be significantly extended
requiring a substantially higher amount of computational and memory resources. There-
fore it is finally stated that the major advantages of the global visual servoing compared
to the look-then-move strategy are firstly that a sparse overlapping object representation
sampling the plenoptic function on one radius of the hemisphere is sufficient, secondly that
no estimation of the object distance is required, rather the control by the reference images
guarantees an equidistance to the object, resulting thirdly in a kind of gaze control keeping
the object always centered in the image.
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Chapter 7

Conclusions and future work

The objective of this thesis is to advance the development of solely vision-based navigation
and manipulation in the context of autonomous service robots.

This thesis demonstrates and emphasizes the potential of visual reactive behaviors for
visual navigation in unstructured indoor environments. Primarily a vision-guided navi-
gation of a mobile robot is implemented with reactive behaviors using distance sensors for
local motion control and omnivision for localization, which provides consecutively the refer-
ence for a purely visual navigation. The vision-guided navigation is successfully verified in
robotic experiments within office environments achieving the navigation task without colli-
sions. Visual navigation is distinguished from vision-guided navigation by solely relying on
the economic vision systems with the ambitious goal to achieve matchable performance in
comparison to laser scanners. Thus a set of visual reactive behaviors is designed and imple-
mented equivalently to the behaviors based on proximity information from range sensors.
The visual navigation synergizes the comprehensive perception of the local environment
of omnivision for localization, obstacle avoidance, optimal reference image selection, etc.
with the high precision of a monocular camera in order to design a precise time-optimal
homing through several non-overlapping reference images.

Visual homing is achieved by a large view visual servoing scheme comprehending several
advantages compared to previous approaches. The concept of a horizontal virtual camera
plane allows for decoupled navigation and gaze control and facilitates the derivation of
generic moments. Generic moments cope with dynamic environments and lighting condi-
tions and are designed to achieve a direct relationship between image and work space. In
addition to localization, the extracted features furthermore provide the selection of refer-
ence images for time-optimal visual homing, thereby solving the problem of the limited
field of view of the monocular camera and environments with sparse texture.

The set of reactive visual behaviors is completed by a novel obstacle avoidance and turn
around behavior by means of several reconstructed perspective views, from which a confi-
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dence rated time to contact is extracted. The concept of calculating the time to contact
for different traveling directions based on sparse optical flow is introduced as the pairing
window approach, enabling different alternatives for robot navigation. The major clue
is the additional confidence evaluation of the visual measurements as it allows traveling
towards directions that are perceived as obstacle-free.

Door detection, door localization and door traversal are treated for the first time in a
coherent purely vision-based framework using omnivision to navigate between rooms and
corridors. Notice that due to the overall awareness of the omnivision the door posts re-
main visible in the omnidirectional view during the door passage which thereby allows a
closed-loop control with equidistant passage between the door posts.

Vision-based and visual navigation achieve a similar performance in unstructured office en-
vironments with regular texture. The two major advantages of visual navigation consist of
low costs and high dimensional data space of cameras allowing for other applications such
as person or object recognition. Nonetheless homogeneous office spaces require advanced
camera systems such as ToF (Time-of-Flight) cameras |84], which reconstruct for a central
field of view additional depth information from time of flight measurements.

Future research is dedicated to learning-by-demonstration, which enables the robot to ac-
quire a behavior or skill through imitation of actions demonstrated by a teacher [131]. This
approach allows non-professionals to instruct the robot intuitively without the necessity to
program the desired task explicitly. It is sufficient for the teacher to be able to perform the
required task. The learning approach extracts the underlying relation between perception
and action from the demonstration. The straight forward methodology is a learning-by-
demonstration scheme similar to the evolutionary optimized navigation behaviors in order
to determine the recommendation of individual behaviors and the overall aggregation.
The future of visual navigation is closely related to cameras with structured light such as
the economic Kinetic from Microsoft Cooperation [98], which reconstructs the depth of the
scene by a pattern of infrared light points that are invisible to the human eye. An even
more promising approach is to fuse omnivision with visual distance information obtained
from ToF or triangulation of emitted infrared light, respectively, in order to capture in a
single frame the visual perception as well as the depth of the local scene. This leads to
3D VSLAM with scalable abstraction of the map, including maps with dense depth rep-
resentation, distinctive 3D visual features for instant localization as well as CAD models
of the complete environment including objects and texture. Such representations simplify
scene understanding, a still unsolved key ability for mobile manipulation, which requires
further research in the next decade. The urban challenge also demonstrated that scene
understanding is essential to solve complex traffic situations, whereas the close relation be-
tween mobile navigation and advanced driver assist systems yields a domination of robotic
teams in the classification.

In the second part of this thesis a novel methodology for image-based visual servoing by
decoupled image moments for model-free object manipulation solely relying on 2D
image information is introduced. It relies on the pixel coordinates, scale and orientation of
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augmented point features such as SIF'T features. The control is based on decoupled image
moments, which are generic in the sense that the control operates with a dynamic set of
feature correspondences rather than a static set of geometric features. The foundation of
visual servoing on generic SIFT features renders the method robust with respect to loss of
redundant features caused by occlusion or changes in viewpoint. For 4 DOF visual servoing
a set of completely decoupled visual features is introduced, that results in robust and
independent convergence of the corresponding task space errors. Problems of the classical
Jacobian based visual servoing scheme such as the camera retreat problem and local minima
are resolved. A novel sensitivity matrix for 6 DOF visual servoing is introduced, which
possesses only four off-diagonal couplings between the visual features and the degrees of
motion assuming a valid weak perspective projection model. The visual control with the
novel sensitivity matrix causes the pose errors to converge largely independent of each
other resulting in a smoother task space motion of the camera. The control parameters
of the visual control are automatically tuned in a HIL optimization by a controlled model
assisted evolutionary strategy for real time applicability.

Global visual servoing based on decoupled image moments is successfully introduced. The
workspace is partitioned into a set of overlapping reference views in order to navigate
visually from a start to a goal pose. The switching between reference views occurs on the
basis of the time to convergence estimated from the quality and distribution of matched
features. The cost of reference views is evaluated online throughout progression to the goal
view, such that the scheme opportunistically selects the reference view that is optimal in the
current context. The computational demands of SIFT feature extraction, path planning
and time-optimal reference selection enable real time visual control. The experimental
results in virtual reality and on the real robot demonstrate that the approach minimizes
the time to convergence without sacrificing the robustness and thereby stability of the
visual control.

As an alternative a look-then-move strategy in conjunction with local visual servoing close
to the reference pose is successfully implemented and tested for object manipulation, but it
is inferior in terms of convergence time and robustness compared to optimal global visual
servoing over multiple reference images.

Future research focuses on the development of a heuristic switching scheme for global vi-
sual servoing, that is independent of the object and does not require an offline exploration
of the view space for prior cost estimation. An appropriate feature metric captures the
distance in view space of features in the current view to the reference view based on the
number of intermediate views (degree of separation) and the similarity of keypoint descrip-
tors. Based on the feature distance metric the heuristic selects a reference view with the
subset of matched features that is closest to the goal view. The benefit is a robust and
continuous navigation in image space without decreasing velocities based on local conver-
gence. Another interesting avenue for visual servoing is to control one agent by multiple
cameras [79] or multiple agents by visual servoing [91| similar to cooperative manipulators
in industrial manufacturing. To employ the proposed servoing based on decoupled image
moments in this context is an interesting topic for future research because of its ease of
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implementation and model-free approach.

In order to achieve purely vision-based mobile manipulation the presented object ma-
nipulation via optimal global visual servoing with dynamic feature sets only has to be
integrated as an additional behavior into the hybrid control architecture containing the set
of behaviors for visual navigation. In analogy to AUTOSAR (AUTomotive Open System
ARchitecture) in the automotive industry, which provides a framework for the economic
reuse of software, [52] recently introduced ROS (Robot Operating System), which consists
of an open source framework and construction kit for mobile manipulation applications.
The adaptation and integration of the concepts for visual navigation and manipulation
presented in this thesis into the ROS framework according to the example from [95]| con-
tributes to the ambitious goal of the robotic community to make service robots commonly
affordable. In analogy to the well-known 1SO26262 [73| for functional safety for road ve-
hicles, a safety standard for mobile service robot applications is recently drafted for the
first time as the ISO13482 [72|, requiring additional safety validations to fulfill the spec-
ifications. The presented methods for obstacle avoidance have to be tested against these
specifications e.g. as presented in [74].

Conclusively it can be stated that a purely vision-based navigation using omni and monoc-
ular vision is feasible. Experimental validations in an unstructured dynamic indoor envi-
ronment show the enormous potential of visual navigation. This work demonstrates that
it is possible to replace laser sensors by camera systems in the reactive layer. Nonetheless
sonar sensors are required as a back-up, which indeed are cost-efficient and light-weight
compared to laser sensors. Following the purely vision-based paradigm, it becomes possible
to design affordable service robots. As an additional feature, manipulation of daily objects
is presented, relying on natural occurring features and converging towards the grasping
pose even if these features are not in the current view of the object. Visual navigation in
conjunction with global visual servoing for object manipulation achieve the goal of vision-
based mobile manipulation outlined in the introduction of this thesis.



Appendix A

Analysis of the grid-based time to
contact from optical flow

The derivation of the grid-based time to contact for non-holonomic systems is inspired
by [31]. The point of origin for determining the grid-based time to contact (ttc) is the
image Jacobian J, which relates differential changes in the camera position I to differential
changes in the image feature positions f according to f = Jr. Replacing f by the time
derivative of the image coordinates u, v (which corresponds to the measured optical flow)
and 1 by the translational v,, vy, v, and rotational velocities w,,wg,w,, one obtains:
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As the robot motion is planar and the robot is non-holonomic, the velocities v,, w, and
w, are equal to zero, thereby equation A.1 simplifies to:
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Assuming a calibrated camera system and therefore normalized image coordinates 4, ©
with focal length A = 1, equation A.2 is expressed as:

i = —(—vp, +wg.) — (1 +0>)ws, (A.3)
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The rotational part of the optical flow is corrected based on the known egorotation of the
robot. The egomotion can be estimated by the integrated wheel encoders or using directly
the optical flow by projecting the ﬂow field onto a sphere and optimizing a cost function
[54]. By addltlonally substltutlng by p a set of hnear equatlons is obtained. For reasons
of clarity @ is substituted by @ + (1 + 42)wg and O by 0 + Gdwg, thus the rotational part
wp is purged from the measured optical flow:

=%
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The divergence of the optical flow is defined by the sum of the partial derivatives:

.. du | Ob
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The partial derivatives are calculated according to:
o 0
5o = ge(vm +ivR) + pun., (A.6)
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Substituting equation A.6 into A.5 yields:
. B
V(i 8) = 2pvp, + L(—vg, +awvg,) + Livg,. (A7)

ou 00
Due to the non-holonomic constraint vy, can be assumed to be zero as the robot cannot
move sidewise during small time steps, therefore equation A.7 simplifies to:

V(4,8) = 2pvp, + a{’asz a{’@sz (A.8)

Solving equation A.8 regarding the time to contact yields:

oo (A.9)

The terms %@ as well as %@ can be neglected for small values of @ and © resulting in a

limited frontal field of view of 75° and the small changes in distance between two consecutive
image frames. Therefore the same expression is obtained, but with completely different
specifications as the authors in [31]. Equation A.10 indicates that the determination of ttc
involves only the knowledge of the optical flow field vector divergence, whereas no model
knowledge or estimation of z and wvg_ is required:

z 2
ttc = — = —.
vr,  V(u,0)

(A.10)
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The authors in [31] develop the time to contact around the optical center [@, 0] = [0, 0] as
operating point and determine a single ¢¢c in driving direction using divergence templates.
They require a dense optical flow, which is not suited for indoor environments. Contrary
to their approach ttcs are needed for different image regions in order to have alternative
course of actions for the robot. Note that their approach is invariant against rotations
(responding rotational terms are neglected due to [4, 0] = [0, 0]) whereas the optical flow
caused by rotation has to be corrected prior to calculating ttc.

Conclusively three major differences to [31] can be stated:

+ ttc for different image regions and headings of the robot
+ no dense optical flow field required
- rotational parts have to be corrected a-priori

During an experimental evaluation of ¢¢c calculation for sparse optical flow fields the robot
moves toward a wall while capturing sonar and image snapshots as well as the egomotion.
Figure A.1 demonstrates the excellent accordance between the ttc measured by a monocular
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Figure A.1: a) Time to contact as a function of time for a monocular camera versus time
to contact due to sonar measurements and known egomotion; b) Sequence of images with
sparse optical flow taken during forward motion of the robot.

camera and ttc calculated by the division of distance measurements of the robot’s sonar
by the known egomotion of the robot.
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Appendix B

Analysis of the sensitivity matrix

In order to determine the coupling for the choice of moments, i.e. the sensitivity of the
moments towards another direction than the intended direction of motion, the image Ja-
cobian is differentiated with respect to these moments. For the moments f, and f, this
merely signifies to calculate the mean value of the known Jacobian for each feature. As
a simplifying assumption all features should have a similar depth, i.e. approximately the
same distance to the image plane. This assumption is valid as long as the depth differ-
ence is small compared to the distance of the camera to the object. In service robotic
applications the above assumption is fulfilled, yielding a valid weak perspective projection

model.
1 & A o Zw N2t
Ten =320 0y S ohe w (B.1)
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Decoupling f,, according to equations 5.10 and 5.19 yields
I~[2 00 o 2
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To determine the Jacobian for the moments f, and f3, first the feature parameter is trans-
formed and then differentiated with respect to the time in order to obtain the dependence
of the change of the feature parameter on the camera velocities [v,, vy, V., Wa, wpg]”. As the
rotation around 7 is already compensated as described in equation 5.2, w, does not have
to be considered further here. The calculation of Jy, for f, (cf. equations 5.3 to 5.5) is
now exemplified but is also valid analogously for fs.
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According to the connection between the location in the image and the location of points
in real space resulting from the image geometry v and w are replaced by u; = Az;/z and
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accordingly for u;, v; and v;. Therefore the moment f, is expressed as:

_ é E?:l Z;L:Hl(yrofi + yrofj)\/(xi —75)% + (yi — y;)?
< ZZ:1 Z?:k—i-l \/(Ik - fl)z + (yk - yl)2

The transformed moment is differentiated with respect to the time. For sake of clarity only
one sum term (m,) is considered here:
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In analogy to the derivation of the classical image Jacobian J in |70|, due to &; — 4; =
—w:(yj — i) and g; — g; = w.(x; — x;) the expression (z; — x;)(&; — ;) +(yi — v;) (% — U;)

becomes zero, thus only the first term in equation B.5 remains. Now the variables z;, z;,
y; and y; are back transformed according to z; ; = u; 2/ and y; ; = v; j2/A, resulting in:

V(i — u;)? 4 (v; — v;)? ‘
Dbt Dot V(e — w)? + (v — 0p)?

Furthermore, inserting 2 = v, + w,y — wyx with = (z; + z;)/2 and y = (y; + y;)/2
according to [70] yields:

(B.6)
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Thus, the image Jacobian for « is given by
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and the image Jacobian for (3 is expressed accordingly as
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The dependencies of the moments of o and S on motions in z-direction are not completely

resolved but can be assumed to be nearly zero (—2).

For the image moment f.; defined in equation 5.7 again for sake of clarity only one sum
term (m,) is considered here:

i = & (e nr ) (B.10)
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This expression is again simplified because of the relation #; — &; = —w,(y; — ;) and

U; — Ui = wy(x; —x;), and the back transformation of z; ; = u; j2/\ and y; ; = v; j2/\ leads
to:
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Again, 2 = v, + w,y —wy,r with © = (z; + x;)/2 and y = (y; + y;)/2 is inserted, leading to
the total sum:
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Thus, the image Jacobian for z is given by
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In order to reduce the couplings furthermore f, is now replaced by the scaled version
f2.0. Therefore the sensitivity matrix has the following structure whereas all non-diagonal
elements are considered as undesired couplings:

[ .f:c ] [ fo,x 0 0 0 jfx,ﬁ 0 1T T, T
fy 0 Jyy 0 Jya 00 T,
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The control scheme for visual servoing with generic image moments in 6 DOF is summarized
in table B.1 taking into account the deviation from chapter 5.2 to 5.5 as well as the
sensitivity matrix above.
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Analysis of the sensitivity matrix

Table B.1: Visual servoing with generic image moments in 6 DOF.

(1)

2.

Automatic feature selection for the reference view of the object (cf. section 5.1).
Extraction of augmented point features in the current view fo =
[urefia Uref; ¢ref¢> Urefi] like SIFT/SURF

Determination of the camera rotation Af., (cf. equation 5.1) by
. IR
Afy=fu, = f;  with — fy==3 on
i=1
Alignment of u; and v; with the image features in the reference view (cf. equation
5.2)
[ ul } B { cos(Af,) —sin(Af,) } { u; }

v; sin(Af,) cos(Af,) v;

/
1
Redefinition of u; equal to u;, respectively v; equal to v).
Calculation of image moments for camera rotation around o and f (cf. equations

5.3 and 5.4)

o - (—Vret; — Urefj)\/(ui —u;)? + (v — v;)?
Jo ;j;l ZZ:1 Zln:k-i-l \/(uk —u)? + (vp — vp)? ’

s s (e, = Uer )/ (i — uy)? + (v — ;)2
fﬁ iz:;jzzi-i:-l ZZ:I Zln:k.H \/(Uk — ul)2 -+ (Uk — Ul)2 ’

Determination of image moment for requlating translation along camera axis (cf.

equation 5.6)
1 n
fo== 0
i=1

Determination of image moments for x and y (cf. equation 5.10)

n n
fz= Zwiuiu fy = Zwﬂ)i-
i=1 i=1

w; 1s determined by minimizing the optimization problem F (cf. equation 5.17)
through a set of linear equations (cf. equation 5.19).

Singular computation of the gains: HIL optimization of the controller by -
CMAES (cf. section 5.3.1).

Determination of controller setpoint by overall feature error Af(I)=[Af,, Afy,
Af., Afo, Afs, Af]T according to image moments fo, fy, fx, fa, fo and fy:

[U:m Uyu Uz, w'\/v Was wﬁ]T = [kwu ky7 km k”{v kav kﬁ]T[Af:m A.fyv A.fzu A.f“ﬂ A.fou AfB]T
+[kaa kDya sza kD’ya kDOca kDB]T[A.fxa A.fya A.fm Af'w Afon AfB]T'




Bibliography

1]

2]

3]

4]

[5]
(6]

17l

8]

9]

[10]

E. H. Adelson and J. R. Bergen. The Plenoptic Function and the Elements of Early
Vision. In M. Landy and J. A. Movshon, editors, Computational Models of Visual
Processing. MIT Press, 1991.

H. Andreasson and T. Duckett. Topological Localization for Mobile Robots using
Omni-directional Vision and Local Features. In Proceedings of the 5th Symposium
on Intelligent Autonomous Vehicles (IAV), 2004.

A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat. Visual topological slam and
global localization. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 4300-4305, 2009.

A. A. Argyros, D. P. Tsakiris, and C. Groyer. Biomimetic Centering Behavior. I[EEE
Robotics € Automation Magazine, pages 21-30, 2004.

R. C. Arkin. Behavior Based Robotics. MIT Press, Cambridge, Massachusetts, 1998.

A. Astolfi. Exponential stabilization of a mobile robot. In Proceedings of the Third
European Control Conference (ECC), pages 181-191, 1995.

C. G. Atkeson, A. Moore, and S. Schaal. Locally weighted learning for control.
Artificial Intelligence Review, 11(1-5):75-113, 1997.

S. Baker and S. K. Nayar. A Theory of Catadioptric Image Formation. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pages 35-42,
1998.

M. Bakthavatchalam, F. Chaumette, and E. Marchand. Photometric moments: New
promising candidates for visual servoing. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 5521-5526, 2013.

J. L. Barron, S. S. Beauchemin, and D. J. Fleet. On Optical Flow. In Proceedings of
the 6th International Conference on Artificial Intelligence and Information-Control
Systems of Robots (AIICSR), pages 3-14, 1998.

123



124 Bibliography

[11] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. Performance of
Optical Flow Techniques. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages 236-242, 1992.

[12] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF: Speeded Up Robust Features.
In Computer Vision and Image Understanding (CVIU), volume 110, pages 346-359,
2008.

[13] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded Up Robust Features. In
Proceedings of the 9th European Conference on Computer Vision (ECCYV), pages
404-417, 2006.

[14] H. Becerra, J. Courbon, Y. Mezouar, and C. Sagues. Wheeled mobile robots nav-
igation from a visual memory using wide field of view cameras. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5693-5699, 2010.

[15] G. A. Bekey. Autonomous robots - From Biological Inspiration to Implementation
and Control. MIT Press, 2005.

|16] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual Navigation for Mobile Robots: A
Survey. Journal of Intelligent and Robotic Systems, 53:263-296, 2008.

[17] J.-Y. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker -
Description of the Algorithm. Technical report, Inter Corporation, Microprocessor
Research Labs, 1999.

[18] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2:14-23, 1986.

[19] A. R. Bruss and B. K. P. Horn. Passive navigation. Computer Graphics and Image
Processing, 21:3-20, 1983.

[20] D. Burschka and G. Hager. Vision-Based Control of Mobile Robots. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
1707-1713, 2001.

[21] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: binary robust independent
elementary features. In Proceedings of the 11th European Conference on Computer
Vision (ECCV), pages 778-792, 2010.

[22| P. Chang and J. Krumm. Object Recognition with Color Cooccurrence Histograms.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 498-504, 1999.



Bibliography 125

23]

[24]

125]

26]

27]

28]

29]

130]

[31]

32]

133]

[34]

F. Chaumette. Potential problems of stability and convergence in image-based and
position-based visual servoing. In D. Kriegman, G. Hager, and A. S. Morse, editors,
The Confluence of Vision and Control, number 237, pages 66-78. LNCIS Series,
Springer, 1998.

F. Chaumette and S. Hutchinson. Visual servo control, Part I: Basic approaches.
IEEE Robotics and Automation Magazine, 13(4):82-90, 2006.

F. Chaumette and S. Hutchinson. Visual servo control, Part I1: Advanced approaches.
IEEE Robotics and Automation Magazine, 14(1):109-118, 2007.

F. Chaumette and E. Malis. 2 1/2 D Visual Servoing: A Possible Solution to Im-
prove Image-Based and Position-Based Visual Servoings. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 630-635, 2000.

G. Cheng and A. Zelinsky. Real-Time Visual Behaviours for Navigating a Mobile
Robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 973-980, 1996.

A. Cherubini and F. Chaumette. Visual navigation of a mobile robot with laser-based
collision avoidance. International Journal of Robotic Research, 32(2):189-205, 2013.

A. Cherubini, B. Grechanichenko, F. Spindler, and F. Chaumette. Avoiding Mov-
ing Obstacles During Visual Navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 5227-5232, 2013.

C. Collewet, E. Marchand, and F. Chaumette. Visual servoing set free from image
processing. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 81-86, 2008.

D. Coombs, M. Herman, T.-H. Hong, and M. Nashman. Real-Time Obstacle Avoid-
ance Using Central Flow Divergence and Peripheral Flow. [EEE Transactions on
Robotics and Automation, 14:49-59, 1998.

D. Coombs and K. Roberts. Centering Behavior Using Peripheral Vision. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 440-445, 1993.

P. I. Corke and S. A. Hutchinson. A new partitioned approach to Image-Based Visual
Servo Control. IEEE Transactions on Robotics and Automation, 17(4):507-515, 2001.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 886-893, 2005.



126 Bibliography

[35] A. Dame and E. Marchand. A new information theoretic approach for appearance-
based navigation of non-holonomic vehicle. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 24592464, 2011.

[36] A. Davison. Real-Time Simultaneous Localisation and Mapping with a Single Cam-
era. In Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pages 1403-1410, 2003.

|37] K. Deguchi. A Direct Interpretation of Dynamic Images with Camera and Object
Motions for Vision Guided Robot Control. International Journal of Computer Vision,
37(1):7-20, 2000.

[38] D. Dementhon and L. Davis. Model-Based Object Pose in 25 Lines of Code. Inter-
national Journal of Computer Vision, 15(1):123-141, 1995.

[39] G. N. DeSouza and A. C. Kak. Vision for Mobile Robot Navigation: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(2):237-267, 2002.

[40] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

[41] A. P. Duchon, W. H. Warren, and L. P. Kaelbling. Ecological Robotics. In Adaptive
Behavior, pages 473-507, 1995.

[42] C. Eberst, M. Andersson, and H. I. Christensen. Vision-based door-traversal for au-
tonomous mobile robots. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), volume 1, pages 620-625, 2000.

[43] S. Ekvall, D. Kragic, and F. Hoffmann. Object Recognition and Pose Estimation
using Color Cooccurrence Histograms and Geometric Modelling. Image and Vision
computing, 23(11):943-955, 2005.

[44] T. Emter and A. Stein. Simultaneous localization and mapping with the kinect sensor.
In Proceedings of the 7th German Conference on Robotics (ROBOTIK), pages 1-6,
2012.

[45] C. Fagerer, D. Dickmanns, and E. D. Dickmanns. Visual grasping with long delay
time of a free floating object in orbit. Autonomous Robots, 1:53-68, 1995.

[46] Y. Fang, W. E. Dixon, D. M. Dawson, and P. Chawda. Homography-based visual
servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cyber-
netics (SMC) - Part B: Cybernetics, 35(5):1041-1050, 2005.

[47] O. D. Faugeras and F. Lustman. Motion and Structure from Motion in a Piecewise
Planar Environment. Pattern Recognition and Artificial Intelligence (PRAI), 2:485—
508, 1988.



Bibliography 127

48]

49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

J. T. Feddema, C. S. G. Lee, and O. R. Mitchell. Weighted selection of image
features for resolved rate visual feedback control. IEEE Transactions on Robotics
and Automation, 7(1):31-47, 1991.

M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Commu-
nications of the ACM, 24(6):381-395, 1981.

D. A. Forsyth and J. Ponce. Computer Vision - A Modern Approach. Prentice Hall,
Pearson Education, New Jersey, 2003.

D. Fox. Markov Localization: A Probabilistic Framework for Mobile Robot Localiza-
tion and Navigation. PhD thesis, University of Bonn, 1998.

B. Gerkey. Building Blocks for Mobile Manipulation. In Simulation, Modeling, and
Programming for Autonomous Robots, volume 6472, pages 1-1. 2010.

C. Geyer and K. Daniilidis. Catadioptric Projective Geometry. International Journal
of Computer Vision, 4(3):223-243, 2001.

J. Gluckman and S. K. Nayar. Mobile Ego-Motion and Omnidirectional Cameras.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 999-1005, 1998.

T. Goedemé, M. Nuttin, T. Tuytelaars, and L. V. Gool. Omnidirectional vision-based
Topological Navigation. International Journal of Computer Vision, 74:219-236, 2007.

[. Gordon and D. Lowe. What and Where: 3D Object Recognition with accurate
Pose. In C. S. J. Ponce, M. Hebert and A. Zisserman, editors, Toward Category-Level
Object Recognition, pages 67-82. Springer, 2006.

G. Hager, D. Kriegman, A. Georghiades, and O. Ben-Shahar. Toward domain-
independent navigation: Dynamic vision and control. In Proceedings of the IEEE
Conference on Decision and Control, pages 3257-3262, 1998.

D. Hall, V. de Verdiere, and J. Crowley. Object Recognition Using Coloured Re-
ceptive Fields. In Proceedings of the 6th European Conference of Computer Vision
(ECCV), pages 164-178, 2000.

C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of
the 4th Alvey Vision Conference, pages 147151, 1988.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2008.

F. Hoffmann. Fuzzy Behavior Coordination for Robot Learning from Demonstra-
tion. In Proceedings of the North American Fuzzy Information Processing Society
(NAFIPS), volume 1, pages 157-162, 2004.



128 Bibliography

[62] F. Hoffmann and S. Holemann. Controlled Model Assisted Evolution Strategy with
Adaptive Preselection. In Proceedings of the IEEE International Symposium on
Evolving Fuzzy Systems, pages 182-187, 2006.

[63] F. Hoffmann, T. Nierobisch, T. Bertram, M. Castrillon, and H. Apmann. Hybride
bildbasierte Regelung mit strukturiertem Licht. In Sensoren und Mefsysteme 2008,
14. Fachtagung Ludwigsburg, VDI-Berichte Nr. 2011, Disseldorf: VDI-Verlag, pages
23-32, 2008.

|64] F. Hoffmann, T. Nierobisch, T. Seyffarth, and G. Rudolph. Visual Servoing with
Moments of SIF'T Features. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 4262-4267, 2006.

[65] M. Hofmeister, P. Vorst, and A. Zell. A comparison of efficient global image features
for localizing small mobile robots. In Proceedings of the Joint Conference of the
41st International Symposium on Robotics (ISR) and the 6th German Conference on
Robotics (ROBOTIK), pages 1-8, 2010.

|66] B. K. P. Horn and B. G. Schunck. Determining optical flow. In Shape recovery, pages
389-407, 1992.

|67] A. Hornberg. Handbook of Machine Vision. Wiley-VCH, Weinheim, 2006.

[68] R. Hu, M. Barnard, and J. P. Collomosse. Gradient field descriptor for sketch based
retrieval and localization. In Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 1025-1028, 2010.

|69] T.S. Huang and A. N. Netravali. Motion and structure from feature correspondences:
A review. Proceedings of the IEEE, 82(2):252-268, 1994.

[70] S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation, 12(5):651-670, 1996.

|71| Intel Corporation. Open Source Computer Vision Library Reference Manual. Tech-
nical report, 2001.

|72 ISO/TC184/SC2/WGT. Robots and robotic devices; Safety requirements for non-
industrial robots; Non-medical personal care robot (Draft), 2012.

|73] ISO/TC22/SC3/WG16. Road vehicles Functional safety, 2011.

[74] T. Jacobs, U. Reiser, M. Haegele, and A. Verl. Development of validation methods
for the safety of mobile service robots with manipulator. In Proceedings of the 7th
German Conference on Robotics (ROBOTIK), pages 1-5, 2012.

|75] P. Jensfelt. Approaches to Mobile Robot Localization in Indoor Environments. PhD
thesis, KTH Stockholm, 2001.



Bibliography 129

[76]

7]

78]
79]

[80]

[81]

82]

[83]

[84]

[85]

136]

187]

P. Jensfelt, D. Kragic, J. Folkesson, and M. Bjorkman. A Framework for vision based
Bearing Only 3D SLAM. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2006.

M. Jagersand. Visual Servoing using Trust Region Methods and Estimation of the
Full Coupled. In IASTED Applications of Control and Robotics, Department of
Computer Science, University of Rochester, NY 14627, pages 105-108, 1996.

B. Jahne. Digitale Bildverarbeitung. Springer Berlin Heidelberg, 2002.

O. Kermorgant and F. Chaumette. Multi-sensor data fusion in sensor-based control:
Application to multi-camera visual servoing. In Proceedings of the IEEFE International
Conference on Robotics and Automation (ICRA), pages 4518-4523, 2011.

U. Khan, L. A. Khan, and S. Z. Hussain. Reinforcement learning for appearance based
visual servoing in robotic manipulation. In Proceedings of the §th World Scientific and
Engineering Academy and Society (WSEAS) International Conference on Robotics,
Control and Manufacturing Technology (ROCOM), pages 161-168, 2008.

U. Khan, T. Nierobisch, and F. Hoffmann. Two-Finger Grasping for Vision Assisted
Object Manipulation. In K. Kozlowski, editor, Robot and Motion Control, Lecture
Notes In Control and Information Sciences, volume 360, pages 89-98. Springer, 2007.

G. Klinker, S. Shafer, and T. Kanade. A physical approach to color image under-
standing. International Journal of Computer Vision, 4:7-38, 1990.

M. Knapek, R. S. Oropeza, and D. Kriegman. Selecting promising landmarks. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 3771-3777, 2000.

A. Kolb, E. Barth, and R. Koch. ToF Sensors: New Dimensions for Realism and
Interactivity. In Proceedings of the Workshop on Time-of-Flight-based Computer
Vision (TOF-CV) of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2008.

J. Krettek, T. Nierobisch, F. Hoffmann, and T. Bertram. Zeitoptimale bildbasierte
Weitbereichsregelung zur Positionierung eines Industrieroboters. In GMA-Kongress:
Automation im gesamten Lebenszyklus, Kongress Baden-Baden, VDI-Berichte Nr.

1980. Diisseldorf: VDI-Verlag, pages 297-307, 2007.

B. Kuipers and Y.-T. Byun. A Robot Exploration and Mapping Strategy Based on a
Semantic Hierarchy of Spatial Representations. Journal of Robotics and Autonomous
Systems, 8:47-63, 1991.

D. N. Lee. The optic flow field. Philosophical Transactions of the Royal Society of
London, Series B, Biological Sciences, pages 169—-178, 1980.



130

83

189]

[90]

191]

192]

193]

[94]

195]

196]

197]

98]

[99]

[100]
[101]

Bibliography

M. Liu, C. Pradalier, F. Pomerleau, and R. Siegwart. Scale-only visual homing from
an omnidirectional camera. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3944-3949, 2012.

J.D. Lohn and G. S. Hornby. Evolvable hardware: Using evolutionary computation to
design and optimize hardware systems. I[EFEE Computational Intelligence Magazine,
1(1):19-27, 2006.

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133-135, 1981.

G. Lopez-Nicolas, Y. Mezouar, and C. Sagues. Homography-based multi-robot con-
trol with a flying camera. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 4492-4497, 2011.

T. Low and G. Wyeth. Obstacle detection using optical flow. In Proceedings of the
Australasian Conference on Robotics and Automation (ACRA), 2005.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91-110, 2004.

B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence, pages 674-679, 1981.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The Office
Marathon: Robust Navigation in an Indoor Office Environment. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA ), pages 300-307,
2010.

C. McCarthy and N. Barnes. Performance of optical flow techniques for indoor
navigation with a mobile robot. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 5093-5098, 2004.

Y. Mezouar and F. Chaumette. Path planning for robust image-based control. [EEE
Transactions on Robotics and Automation, 18(4):534-549, 2002.

Microsoft Corporation, Xbox Kinetic, 2013. http://www.xbox.com/de-DE/
Xbox360/Accessories/kinect/Home.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis € Machine Intelligence, 27(10):1615-1630, 2005.

MobileRobots Inc, 2013. http://robots.mobilerobots.com/.

[. Monasterio, E. Lazkano, I. Rano, and B. Sierra. Learning to traverse doors us-
ing visual information. Transactions of Mathematics and Computers in Simulation,
60:347-356, 2002.



Bibliography 131

102]

103

1104]

[105]

[106]

107]

108

[109]

[110]

111

[112]

M. Montemerlo and S. Thrun. FastSLAM: A Scalable Method for the Simultaneous
Localization and Mapping Problem in Robotics. Springer, 2007.

R. Munoz-Salinas, E. Aguirre, M. Garcia-Silvente, and A. Gonzalez. Door-detection
using computer vision and fuzzy logic. World Scientific and Engineering Academy
and Society (WSEAS) Transactions on Systems, 10(3):3047-3052, 2004.

H. Najafi, Y. Genc, and N. Navab. Fusion of 3D and Appearance Models for Fast
Object Detection and Pose Estimation. In Proceedings of the Asian Conference on
Computer Vision, pages 415-426, 2006.

T. Nierobisch, W. Fischer, and F. Hoffmann. Large view visual servoing of a mo-
bile robot with a pan-tilt camera. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3307-3312, 2006.

T. Nierobisch and F. Hoffmann. Appearance Based Pose Estimation of AIBO’s.
In Proceedings of the International IEEE Conference Mechatronics € Robotics, vol-
ume 3, pages 942-947, 2004.

T. Nierobisch and F. Hoffmann. 2DOF Pose Estimation of Textured Objects with
Angular Color Cooccurrence Histograms. In Proceedings of the 2nd International

Conference on Computer Vision Theory and Applications (VISAPP), pages 52-59,
2007.

T. Nierobisch, F. Hoffmann, J. Krettek, and T. Bertram. Bildbasierte Naviga-
tion eines mobilen Roboters mittels omnidirektionaler und schwenkbarer Kamera.
In 20. Fachgesprich Autonome Mobile Systeme, (Informatik Aktuell), pages 75-81.
Springer, 2007.

T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Weighted moments of SIF'T
Features for decoupled visual servoing in 6DOF. In Proceedings of the IEEE Confer-
ence on Advances in Cybernetic Systems (AICS), pages 193-198, 2006.

T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Optimal Large View Vi-
sual Servoing with Sets of SIF'T' Features. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2092-2097, 2007.

T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Time-Optimal Large View
Visual Servoing with Dynamic Sets of SIF'T. Technical Report Reihe Computational
Intelligence, CI 227/07, SFB 531, Universitat Dortmund, 2007.

T. Nierobisch, K. K. Narayanan, F. Hoffmann, and T. Bertram. Bildbasierte Nav-
igation mobiler Roboter mittels omnidirektionaler Wahrnehmung. In Mechatronik
2007, Innovative Produktentwicklung, Tagung Wiesloch, VDI-Berichte Nr. 1971,
pages 435-446. VDI-Verlag Diisseldorf, 2007.



132

[113]

114]

|115]

116]

117]

|118]

|119]

[120]

[121]

[122]

|123]

Bibliography

T. Nierobisch, K. Patel, J. Malzahn, F. Hoffmann, and T. Bertram. Rapid Pro-
totyping of Visual Servoing Controllers with Virtual Reality. In Proceedings of the

6th Polish-German Mechatronic Workshop 2007: System Integration, Ilmenau, pages
109-120, 2007.

T. Nierobisch, T. Schleginski, and F. Hoffmann. Reactive behaviours for visual topo-
logical navigation of a mobile robot. In Proceedings of the 10th International Con-
ference on Optimisation of Electrical and Electronic Equipment (OPTIM), volume 3,
pages 113-118, 2006.

D. Nister. An efficient solution to the five-point relative pose problem. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 195-202, 2003.

R. Ozawa and F. Chaumette. Dynamic visual servoing with image moments for a
quadrotor using a virtual spring approach. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 5670-5676, 2011.

J. Pagés, C. Collewet, F. Chaumette, and J. Salvi. Optimizing plane-to-plane posi-
tioning tasks by image-based visual servoing and structured light. IEEE Transactions
on Robotics, 22(5):1000-1010, 2006.

L. Pari, J. Sebastian, A. Traslosheros, and L. Angel. A comparative study between
analytic and estimated image jacobian by using a stereoscopic system of cameras.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6208-6215, 2010.

V. N. Peri and S. Nayar. Real Generation of Perspective and Panoramic Video
from Omnidirectional Video. In Proceedings of the DARPA Image Understanding
Workshop, pages 243-245, 1997.

J. Piazzi and N. J. Cowan. Multi-View Visual Servoing using Epipoles. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 674679, 2004.

L. F. Posada, T. Nierobisch, F. Hoffmann, and T. Bertram. Image Signal Processing
for Visual Door Passing with an Omnidirectional Camera. In Proceedings of the
International Conference on Computer Vision Theory and Applications (VISSAPP),
pages 472-479, 2009.

U. Reiser and J. Kubacki. Using a 3D Time-Of-Flight Range Camera for visual
tracking. In Proceedings of the 6th IFAC Symposium on Intelligent Autonomous
Vehicles, 2007.

A. Remagzeilles, F. Chaumette, and P. Gros. 3D navigation based on a visual memory.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2719-2725, 2006.



Bibliography 133

[124] P. Rives. Visual servoing based on epipolar geometry. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol-
ume 1, pages 602-607, 2000.

[125] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning
approach to corner detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):105-119, 2010.

[126] RST Webpage, 2013.  http://www.rst.e-technik.tu-dortmund.de/cms/de/
Forschung/Schwerpunkte/Robotik/Bildbasierte_Navigation/index.html#
Navigation.

[127] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to
SIF'T or SURF. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2564-2571, 2011.

[128] A. Saffiotti, K. Konolige, and E. Ruspini. A multivalued-logic approach to integrating
planning and control. Artificial Intelligence, 76(1-2):481-526, 1995.

[129] A. C. Sanderson and L. E. Weiss. Image-based visual servo control using relational
graph error signals. In Proceedings of the IEEFE International Conference on Robotics
and Automation (ICRA), pages 1074-1077, 1980.

[130] A. Santamaria-Navarro and J. Andrade-Cetto. Uncalibrated Image-Based Visual
Servoing. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 5227-5232, 2013.

[131] S. Schaal. Learning from demonstration. In Advances in Neural Information Pro-
cessing Systems, volume 9, pages 1040-1046. MIT Press, 1997.

[132| B. Schiele and J. L. Crowley. Recognition without correspondence using multidi-
mensional receptive field histograms. In International Journal of Computer Vision,
volume 36, pages 31-52, 2000.

[133] B. Schiele and A. Pentland. Probabilistic object recognition and localization. In
Proceedings of the International Conference on Computer Vision (ICCV), pages 177—
182, 1999.

[134| O. Schreer. Stereoanalyse und Bildsynthese. Springer Berlin Heidelberg, 2005.

[135] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
593-600, 1994.

[136] C. Shu. Automatic Grid Finding in Calibration Patterns using Delaunay Triangula-
tion. Technical Report NRC-46497/ERB-1104, 2003.



134

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

|145]

[146]

[147]

|148]

Bibliography

N. T. Siebel, O. Lang, F. Wirth, and A. Graser. Robust Positioning of a Robot by
Visual Servoing using a Trust-Region Method. In Forschungsbericht der Deutschen

Forschungsvereinigung fiir Mef-, Regelungs- und Systemtechnik (DFMRS) e. V., vol-
ume 1, pages 23-29, 1999.

R. Sim, P. Elinas, and M. Griffin. Vision-based SLAM using the rao-blackwellised
particle filter. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI) - Workshop on Reasoning with Uncertainty in Robotics, pages
9-16, 2005.

S. Soatto and R. Brocket. Optimal and Suboptimal Structure from Motion. In
Proceedings of the International Conference on Computer Vision (ICCV), pages 282—
288, 1997.

S. A. Stoeter, F. Le Mauff, and N. P. Papanikolopoulos. Real-time door detection
in cluttered environments. In Proceedings of the IEEE International Symposium on
Intelligent Control, pages 187-192, 2000.

A. Stopp, T. Baldauf, S. Horstmann, and S. Kristensen. Ein Sicherheitskonzept
fiir Roboterassistenten in der Fertigung. Automatisierungstechnische Praxis 2/2005,
pages 69-73, 2005.

H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale drift-aware large scale
monocular slam. In Proceedings of Robotics: Science and Systems (RSS), 2010.

O. Tahri and F. Chaumette. Point-based and region-based image moments for vi-
sual servoing of planar objects. IEEE Transactions on Robotics and Automation,
21(6):1116-1127, 2005.

B. Tamadazte, G. Duceux, N.-F. Piat, and E. Marchand. Highly precise microp-
ositioning task using a direct visual servoing scheme. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 5689-5694,
2011.

A.Y. Tamtsia, O. Tahri, Y. Mezouar, and E. Tonye. New Results in Image Moments-
Based Visual Servoing. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 5251-5256, 2013.

Technical Committee on Mobile Manipulation, 2013. http://mobilemanipulation.
org/.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). MIT Press, 2005.

M. Tomono. 3D localization based on visual odometry and landmark recognition
using image edge points. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5953-5959, 2010.



Bibliography 135

[149] H. Ulmer, F. Streichert, and A. Zell. Model-assisted steady-state evolution strategies.
Genetic and Evolutionary Computation (GECCO), LNCS, 2723:610-621, 2003.

[150] VDI. VDI-Richtlinie: Entwicklungsmethodik fiir mechatronische Systeme. VDI 2206,
2004.

[151] L. Weiss, A. C. Sanderson, and C. P. Neuman. Dynamic Sensor-Based Control of
Robots with Visual Feedback. IEEE Journal on Robotics and Automation, RA-
3(1):404-417, 1987.

[152] G. Welch and G. Bishop. An Introduction to the Kalman Filter. Technical report,
1995.

[153| S. Wenxia and J. Samarabandu. Investigating the Performance of Corridor and Door
Detection Algorithms in Different Environments. In Proceedings of the International
Conference on Information and Automation (ICIA), pages 206-211, 2006.

[154] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor. Omni-directional Vision for
Robot Navigation. In Proceedings of the IEEE Workshop on Omnidirectional Vision
(Ommnivis), pages 21-28, 2000.

[155] H. Zhang, B. Li, and D. Yang. Keyframe detection for appearance-based visual slam.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2071-2076, 2010.



Previously published contents of this
thesis

Parts of the material presented in this thesis has been originally published in conferences
and journals by the author. In the following these publications are ordered by chapter.
The papers with the major contributions for the scientific community are also cited in the
bibliography.

Chapter 3

e F. Hoffmann and T. Nierobisch. Bildgestiitzte Navigation von mobilen Robotern
mit einem omnidirektionalen Kamerasystem. 40. Regelungstechnisches Kolloquium,
Kurzfassung der Beitrdige, Boppard, pages 34-35, 2006.

e T. Nierobisch, T. Schleginski, and F. Hoffmann. Reactive behaviours for visual topo-
logical navigation of a mobile robot. In Proceedings of the 10th International Confer-
ence on Optimisation of Electrical and Electronic Equipment (OPTIM “06), Brasov,
Rumania, volume 3, pages 113-118, 2006.

Chapter 4

e T. Nierobisch, F. Hoffmann, J. Krettek, and T. Bertram. Bildbasierte Navigation
eines mobilen Roboters mittels omnidirektionaler und schwenkbarer Kamera. 20.
Fachgesprich Autonome Mobile Systeme, Kaiserslautern, Springer, (Informatik Ak-
tuell), pages 75-81, 2007.

e T. Nierobisch, K. K. Narayanan, F. Hoffmann, and T. Bertram. Bildbasierte Navi-
gation mobiler Roboter mittels omnidirektionaler Wahrnehmung. Mechatronik 2007,
Innovative Produktentwicklung, Tagung Wiesloch. VDI-Berichte Nr. 1971. Diissel-
dorf: VDI-Verlag, pages 435-446, 2007.

e T. Nierobisch, W. Fischer, and F. Hoffmann. Large view visual servoing of a mo-
bile robot with a pan-tilt camera. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, pages
3307-3312, 2006.

136



Previously published contents of this thesis 137

e L.-F. Posada, T. Nierobisch, F. Hoffmann, and T. Bertram. Image Signal Processing
for Visual Door Passing with an Omnidirectional Camera. In Proceedings of the
International Conference on Computer Vision Theory and Applications (VISSAPP),
pages 472-479, 2009.

Chapter 5

e T. Nierobisch, K. V. Patel, J. Malzahn, F. Hoffmann, and T. Bertram. Rapid Proto-
typing of Visual Servoing Controllers with Virtual Reality. In Proceedings of the 6th
Polish-German Mechatronic Workshop 2007 "System Integration”, Ilmenau, pages
109-120, 2007.

e T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Weighted moments of SIF'T
Features for decoupled visual servoing in 6DOF. In Proceedings of the IEEE Confer-
ence on Advances in Cybernetic Systems (AICS2006), Sheffield Hallam University,
United Kingdom, pages 193-198, 2006.

e F. Hoffmann, T. Nierobisch, T. Seyffarth, and G. Rudolph. Visual Servoing with
Moments of SIFT Features. In Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics (SMC 2006), Taipeh, Taiwan, pages 4262-4267,
2006.

e U. Khan, T. Nierobisch, F. Hoffmann, and T. Bertram. Evolutionire Hardware-
in-the-Loop Optimierung bildbasierter Regler. In J. Gausemeier, F. Rammig, W.
Schéfer, A. Trachtler and J. Wallaschek, editors, 5. Paderborner Workshop Entwurf
mechatronischer Systeme, HNI-Verlagsschriftenreihe Band 210, pages 81-97, 2007.

Chapter 6

e T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Optimal Large View Vi-
sual Servoing with Sets of SIF'T' Features. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2092-2097, 2007.

e T. Nierobisch, J. Krettek, U. Khan, and F. Hoffmann. Time-Optimal Large View
Visual Servoing with Dynamic Sets of SIFT. Reihe Computational Intelligence, CI
227/07, SFB 531, Universitit Dortmund, 2007.

e J. Krettek, T. Nierobisch, F. Hoffmann, and T. Bertram. Zeitoptimale bildbasierte
Weitbereichsregelung zur Positionierung eines Industrieroboters. GMA-Kongress
2007, Automation im gesamten Lebenszyklus, Kongress Baden-Baden. VDI-Berichte
Nr. 1980. Diisseldorf: VDI-Verlag, pages 297-307, 2007.



Acknowledgements

This thesis results from my activity at the chair for Control and Systems Engineering
(Regelungssystemtechnik) at the Technische Universitdt Dortmund. First of all I would
like to thank my supervisors Univ.-Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram and
apl. Prof. Dr. rer. nat. Frank Hoffmann for offering me the opportunity to work in their
group and for their encouragement and expertise. I would like to express my gratitude
to Mr. Hoffmann for inspiring me to pursue research in the first place and his extensive
support and many invaluable discussions. I especially thank Univ.-Prof. Dr.-Ing. Bernd
Tibken for taking the time to act as the second examiner for my thesis.

Thank you René Franke und Jorn Malzahn for the critical reading of the manuscript. I
am grateful for the discussions about science and general life issues with my former office
colleague Johannes Krettek. I would like to thank Jiirgen Limhoff for his invaluable tech-
nical support and the ability to endure my fast-paced ideas. I am also greatly indebted
to a large amount of students who contributed with their work results in the context
of project groups, student research projects and diploma and master theses to parts of
this manuscript, especially Krishna Kumar Narayanan and Luis Felipe Posada Aristiza-
bal. Thank you Mareike and Gaby for your support and sometimes inconspicuous help,
which had nonetheless a great effect on my work. Furthermore, I would like to thank all
other people from RST which are not named explicitly here for the wonderful working
atmosphere.

Special thanks go to my wife Dr. Simone Streit-Nierobisch for her love, support and
understanding during the thesis, especially in the last time-consuming weeks (or years) of
finishing this work. To my son Tom Vinzenz for his critical comments during the writing
even though I didn’'t completely understand them. Finally, I would like to dedicate this
thesis to my parents Renate and Dr. Horst Nierobisch as well as my sister Anne Franziska
who have always supported me throughout my life. I am deeply indebted to my mom
Renate for the extensive babysitting of Tom at the final stages of this thesis.

Dortmund, December 2, 2015 Thomas Nierobisch

138



