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"Computer vision as a �eld is an intelle
tual frontier. Like anyfrontier, it is ex
iting and disorganised; there is often no reliableauthority to appeal to - many useful ideas have no theoreti
algrounding, and some theories are useless in pra
ti
e."Forsyth and Pon
eAuthors from Computer Vision: A Modern Approa
h



Abstra
tIn the future, autonomous servi
e robots are supposed to remove the burden of monotoni
and tedious tasks like pi
kup and delivery from people. Vision being the most importanthuman sensor and feedba
k system is 
onsidered to play a prominent role in the futureof roboti
s. Robust te
hniques for visual robot navigation, obje
t re
ognition and visionassisted obje
t manipulation are essential in servi
e roboti
s tasks. Mobile manipulationin servi
e roboti
s appli
ations requires the alignment of the end-e�e
tor with re
ognizedobje
ts of unknown pose. Image based visual servoing provides a means of model-freemanipulation of obje
ts solely relying on 2D image information.In this thesis 
ontributions to the �eld of de
oupled visual servoing for obje
t manipula-tion as well as navigation are presented. A novel approa
h for large view visual servoingof mobile robots is presented by de
oupling the gaze and navigation 
ontrol via a virtual
amera plane, whi
h enables the visual 
ontroller to use the same natural landmarks e�-
iently over a large range of motion. In order to 
omplete the repertoire of rea
tive visualbehaviors an innovative door passing behavior and an obsta
le avoidan
e behavior usingomnivision are designed. The developed visual behaviors represent a signi�
ant step to-wards the model-free visual navigation paradigm relying solely on visual per
eption. Anovel approa
h for visual servoing based on augmented image features is presented, whi
hhas only four o�-diagonal 
ouplings between the visual moments and the degrees of motion.As the visual servoing relies on unique image features, obje
t re
ognition and pose align-ment of the manipulator rely on the same representation of the obje
t. In many s
enariosthe features extra
ted in the referen
e pose are only per
eivable a
ross a limited regionof the work spa
e. This ne
essitates the introdu
tion of additional intermediate referen
eviews of the obje
t and requires path planning in view spa
e. In this thesis a model-freeapproa
h for optimal large view visual servoing by swit
hing between referen
e views inorder to minimize the time to 
onvergen
e is presented.The e�
ien
y and robustness of the proposed visual 
ontrol s
hemes are evaluated in thevirtual reality and on the real mobile platform as well as on two di�erent manipulators. Theexperiments are performed su

essfully in di�erent s
enarios in realisti
 o�
e environmentswithout any prior stru
turing. Therefore this thesis presents a major 
ontribution towardsvision as the universal sensor for mobile manipulation.
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AbstraktAutonome Servi
eroboter sollen in Zukunft dem Mens
hen monotone und körperli
h an-strengende Aufgaben abnehmen, indem sie beispielsweise Hol- und Bringedienste ausüben.Visuelle Wahrnehmung ist das wi
htigste mens
hli
he Sinnesorgan und Rü
kkopplungs-system und wird daher eine herausragende Rolle in zukünftigen Robotikanwendungen spie-len. Robuste Verfahren für bildbasierte Navigation, Objekterkennung und Manipulationsind essentiell für Anwendungen in der Servi
erobotik. Die mobile Manipulation in derServi
erobotik erfordert die Ausri
htung des Ende�ektors zu erkannten Objekten in un-bekannter Lage. Die bildbasierte Regelung ermögli
ht eine modellfreie Objektmanipulationallein dur
h Berü
ksi
htigung der zweidimensionalen Bildinformationen.Im Rahmen dieser Arbeit werden Beiträge zur entkoppelten bildbasierten Regelung sowohlfür die Objektmanipulation als au
h für die Navigation präsentiert. Ein neuartiger Ansatzfür die bildbasierte Weitberei
hsregelung mobiler Roboter wird vorgestellt. Hierbei wer-den die Bli
kri
htungs- und Navigationsregelung dur
h eine virtuelle Kameraebene entkop-pelt, was es der bildbasierten Regelung ermögli
ht, dieselben natürli
hen Landmarken ef-�zient über einen weiten Bewegungsberei
h zu verwenden. Um das Repertoire der visuellenVerhalten zu vervollständigen, werden ein innovatives Türdur
hfahrtsverhalten sowie einHindernisvermeidungsverhalten basierend auf omnidirektionaler Wahrnehmung entwi
kelt.Die entworfenen visuellen Verhalten stellen einen wi
htigen S
hritt in Ri
htung des Paradig-mas der reinen modellfreien visuellen Navigation dar. Ein neuartiger Ansatz basierend aufBildmerkmalen mit einer erweiterten Anzahl von Attributen wird vorgestellt, der na
h einerEntkopplung der Eingangsgröÿen nur vier unerwüns
hte Kopplungen zwis
hen den Bild-momenten und den Bewegungsfreiheitsgraden aufweist. In vielen Anwendungsszenariensind die extrahierten Referenzmerkmale nur in einem begrenzten Berei
h des Arbeitsraumssi
htbar. Dies erfordert die Einführung zusätzli
her Zwis
henansi
hten des Objektes sowieeine Pfadplanung im zweidimensionalen Bildraum. In dieser Arbeit wird deswegen einemodellfreie Methodik für die zeitoptimale bildbasierte Weitberei
hsregelung präsentiert, inder zwis
hen den einzelnen Referenzansi
hten umges
haltet wird, um die Konvergenzzeitzu minimieren.Die E�zienz und Robustheit der vorges
hlagenen bildbasierten Regler werden sowohl in dervirtuellen Realität als au
h auf der realen mobilen Plattform sowie zwei unters
hiedli
henManipulatoren veri�ziert. Die Experimente werden in unters
hiedli
hen Szenarien in alltäg-li
hen Büroumgebungen ohne vorherige Strukturierung dur
hgeführt. Diese Arbeit stellteinen wi
htigen S
hritt hin zu visueller Wahrnehmung als einziger und universeller Sensorfür die mobile Manipulation dar.
ii
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Nomen
lature
In the present work ve
tors and matri
es are printed in bold type. Ve
tors are herebydisplayed by minus
ule letters whereas matri
es are represented by 
apital letters, ands
alars are expressed in itali
 style. The nomen
lature is sorted as following: the �rst
lassi�
ation 
riterion is latin before greek letters, afterwards lower-
ase before upper-
aseletters, and �nally bold before itali
 type.
a 
ontrol a
tion (for appearan
e based visual servoing)
ah s
aling fa
tor (for homography)
ai, bi distan
e of an interest point to its appropriate epipolar line 
orrespondingto the u- and v-dire
tion, respe
tively
ak pixel displa
ement
am, bm, cm, dm model parameters for exponential fun
tionA Hesse matrix
α rotation around the x-axis (roll)
αa 
orre
tion fa
tor for the adaptive image Ja
obian
αc, α̇c 
amera pan angle, respe
tively velo
ity
αia, βia, γia interior angles
αu, αv intrinsi
 
amera parameter: s
aling fa
tor depending on λ and pixel di-mensionsbCref

image features in the referen
e frame
β rotation around the y-axis (pit
h)
βc, β̇c 
amera tilt angle, respe
tively velo
ity
c performan
e 
riterion
confavg mean of the 
on�den
e values
confseg(i,j) 
on�den
e values in a window with the row and 
olumn position (i, j) ofthe 
ell
C,Cn, Cr absolute, normalized and relative number of feature 
orresponden
es be-tween the referen
e view and the 
urrent image
Cref , Cα,β, CR stati
 and rotated 
amera 
oordinate systems, respe
tively, and 
amera
oordinate system in the image plane
CV virtual 
amera 
oordinate system, respe
tively virtual 
amera planeCVi i-th referen
e view viii



dkp normalized keypoint des
riptor of SIFT features
d distan
e
D Di�eren
e-of-Gaussian
∆f error between desired and a
tual feature lo
ations
∆f̂ total normalized summed feature error
∆fγ 
orre
tion along γ of the averaged keypoint rotation
∆fω,∆fω predi
ted motion of the image features 
aused by ∆ΘR

∆ϕ feature error between referen
e and 
urrent distortion (
amera retreatproblem)
∆ΘR orientational task spa
e error
∆x lateral task spa
e error
∆z longitudinal task spa
e error
[e1a, e

2
a]

T epipoles from the a
tual image
[e1ref , e

2
ref ]

T epipoles from the desired viewE essential matrix des
ribing the epipolar 
onstraint
Ē(θ), Ē(φ), Ē(r) mean absolute error in azimuth, elevation and radius
Eu, Ev entropy along the u- and v-axis, respe
tively
ε residual error between model and data point (for error fun
tion of theM-estimator)
εd dissimilarity (residual error)
εγ estimation error for 
amera rotation
η1, η2 tuning variables
f 
urrent image features, stated depending on the 
ontext as fi = [ui, vi]for the i-th image feature with 
oordinates ui, vi, in the 
ontext of SIFTfeatures as fi = [ui, vi, φi, σi] with the additional attributes orienta-tion φi and s
ale σi, also in the 
ontext of image moments as f =

[fα, fβ, fγ, fx, fy, fz]
fref referen
e image features, also used in the 
ontext of image moments
fα image moment for rotation around the x-axis
fβ image moment for rotation around the y-axis
fγ image moment for rotation around the opti
al axis
fx image moment for translation along the x-axis
fy image moment for translation along the y-axis
fz image moment for translation along the 
amera axis
fzd image moment for translation along the 
amera axis, alternative expres-sion via the distan
e between point features
F 
ost fun
tionG Gaussian �lter
γ rotation around the z-axis (yaw), respe
tively the opti
al 
amera axis
γt angle between orientation of virtual 
amera plane and template plane
γV angle between the virtual 
amera plane and the orientation of the robot
h twi
e the distan
e between the parabola's vertex and the fo
us of anomnidire
tional 
amera ix



H, Ĥ homography, estimated homography by feature 
orresponden
es
Hu(i) relative frequen
y of features in i-th 
olumn
Hv(i) relative frequen
y of features in i-th rowI 
urrent image, also denoted as I(u, v, t) in dependen
e of the pixel 
oor-dinates u, v and time t
Iref referen
e image
[Iu, Iv]

T spatial intensity gradient in u- and v-dire
tion, respe
tively
J visual image Ja
obian
J+ pseudoinverse of the image Ja
obian
Ja Ja
obian for appearan
e based visual servoing
Je Ja
obian for visual servoing on epipoles
Jvω separated Ja
obian for rotational motion
Jvt separated Ja
obian for translational motion
Jvξuξ

separated Ja
obian for angle and axis of rotation parametrization
Jxz separated Ja
obian for translational motion, redu
ed to two degrees offreedom
Jdk robot Ja
obian for di�erential kinemati
sJfi image Ja
obian for the image moment in i, whereas i stands for x, y, z,

α, β, γ
Jfi,j image Ja
obian entry for the image moment in i with a movement in

j, whereas both i and j stand for x, y, z, α, β, γ and i = j (desired
ouplings)
J̃fi,j image Ja
obian entry for the image moment in i with a movement in j,whereas both i and j stand for x, y, z, α, β, γ and i 6= j (undesired
ouplings)
Jω separated Ja
obian for rotational motion, redu
ed to one degree of free-dom
k 
onstant proportional gain
ka adaptive gain
k proportional gain fa
torK 
amera 
alibration matrix as a fun
tion of the intrinsi
 
amera parame-ters
lk image displa
ementL Gaussian-blurred image
λ fo
al length
λe evaluated individuals of λ-CMAES
λeig eigenvalue
λi Lagrange multiplier
λp o�spring of λ-CMAES
µ 
ontrol parameter for Levenberg-Marquardt optimization
µ(i,j) mean of the time to 
onta
t values in a segment with the row and 
olumnposition (i, j) of the 
ell
µp parents of λ-CMAES x



n normal ve
tor of a plane
n, nmin, nmax number of feature 
orresponden
es, respe
tively minimum/maximum
∇pw divergen
e for ea
h pairing window
ω rotational velo
ity
ωR, ωRmax

rotational velo
ity of non-holonomi
 robot, rotational velo
ity limit
Ω spatial neighborhood around image feature, respe
tively point of interestp
i world pointpi point in image planepv point in virtual 
amera plane
π(s, a) optimal poli
y (for appearan
e based visual servoing)
φ 
anoni
al orientation of the keypoint
ϕ, ϕref 
urrent and referen
e angle between two points forming a line relative tothe horizontal line
q robot joint angles
q̇ robot joint velo
itiesQ a
tion value fun
tion (for appearan
e based visual servoing)
r 
amera position
ṙ 
amera velo
ity
rf horizontal distan
e from fo
us to parabola of an omnidire
tional 
amera
rXY Pearson's 
orrelation 
oe�
ient des
ribing the linear dependen
y be-tween two sto
hasti
 variables X and YR rotation matrix
ρ error fun
tion of the M-estimator
ρ, α polar 
oordinates
s obje
t appearan
e (in angular 
olor 
oo

urren
e histograms)
σ image feature s
ale espe
ially in the 
ontext of SIFT and SURF features,also referred to as the standard deviation of the Gaussian
σe parameter to regulate outlier suppression (for error fun
tion of the M-estimator)
σu, σv varian
e of the feature distributiont translation ve
tor
ttc, ttcavg time to 
onta
t, mean time to 
onta
t
ttcnv one of the m total time to 
onta
t estimates 
omputed from the 
orre-sponding �ow ve
torsTCα,β

CR
transformation from the 
amera 
oordinate system to the rotated 
amera
oordinate systemTCref

Cα,β
transformation of the rotated 
amera 
oordinate system into the stati

amera 
oordinate systemTCV

Cref
transformation from the �xed referen
e frame 
entered at the fo
al pointto the virtual 
amera planeTCV

CR
transformation from the 
amera plane to the horizontal virtual 
ameraplane xi



xii
Text extrinsi
 homogeneous transformation matrix
Tint intrinsi
 homogeneous transformation matrix
θaz, φel, rsc referen
e azimuth, elevation and radius in spheri
al 
oordinates
θ̂az, φ̂el, r̂sc estimated azimuth, elevation and radius in spheri
al 
oordinates
θicp intrinsi
 
amera parameter: angle between the axes of the retinal image
Θm model parameters (for error fun
tion of the M-estimator)
ΘR orientation of the robot
u pixel 
oordinate in x-dire
tion of the 
amera 
oordinate system
[u, v, 1]T homogeneous 2D image 
oordinates
[û, v̂, 1]T normalized 2D image 
oordinates
[ū, v̄]T deviation of the feature 
entroid from the origin
[u̇, v̇]T opti
al �ow
[u0, v0]

T intrinsi
 
amera parameter: prin
iple point des
ribing interse
tion of op-ti
al axis with image plane
[ucog, vcog, 1]

T feature 
entroid of 
urrent view
[ûcog, v̂cog, 1]

T feature 
entroid of goal view
[uV , vV , 1]

T 2D image 
oordinates in the virtual 
amera plane
[uvcog, vvcog] 
entroid of the u-, respe
tively v-
oordinate of the 
urrent view expressedin the horizontal virtual 
amera plane after the feature rotation about

∆ΘR

[ûvcog, v̂vcog] 
entroid of the u-, respe
tively v-
oordinate of the referen
e view ex-pressed in the horizontal virtual 
amera plane after the feature rotationabout ∆ΘR

uξ axis of rotation parametrizationUΛVT singular value de
omposition (SVD) of a matrixv velo
ity
v pixel 
oordinate in y-dire
tion of the 
amera 
oordinate system
vR translational velo
ity of non-holonomi
 robot, vR is 
omposed of vRz

inlongitudinal dire
tion and vRx
in lateral dire
tion

vRLeft
, vRRight


ommanded velo
ity for the left and right wheel of the robot, respe
tively
vRmax

translational velo
ity limit
wi dynami
 weight for de
oupling fx and fy
wi,norm normalized dynami
 weight (to be independent of the distan
e z)
w(u, v) weighting fun
tion, e.g. for opti
al �ow or Hesse matrix
x position [x, y, z] and orientation [α, β, γ] of the end-e�e
tor
[x, y, z, 1]T homogeneous point 
oordinates
[xR, zR, θR]

T state of non-holonomi
 robot
xi data point (for error fun
tion of the M-estimator)
[X, Y ]T , [X̄, Ȳ ]T sto
hasti
 variables, mean values of sto
hasti
 variables
ξ angle of rotation parametrization
zf horizontal axis of paraboli
 mirror
ζ 
onstant for gain 
omputation to avoid numeri
al instability



Chapter 1
Introdu
tion
In the future servi
e robots are supposed to liberate people from the burden of monotoni
and tedious tasks. Robots per
eive their environment by means of for
e, tou
h, proximityor visual feedba
k with the obje
tive to perform 
omplex manipulation tasks in dynami
,unstru
tured environments of a 
omplexity that ex
eeds the 
apabilities of 
urrent roboti
manipulators in industrial settings. Pi
kup and delivery tasks 
onstitute a novel domain ofappli
ation for intelligent servi
e robots. This development is triggered by more powerfuland a�ordable sensors, in
reased 
omputational power and the advent of lightweight ma-nipulators. This thesis is a 
ontribution towards the goal of realizing mobile manipulationwith autonomous servi
e robots.Vision being the most important human sensor and feedba
k system is 
onsidered to playa prominent role in the future of roboti
s. Mobile manipulation in servi
e roboti
 appli
a-tions requires lo
alization, navigation, obje
t re
ognition as well as obje
t manipulation.All these tasks are a
hieved with advan
ed sensors su
h as expensive laser s
anners, af-fordable sonar as well as 
amera systems. Several tasks like obsta
le avoidan
e and 3Dworld modeling are easily a
hieved by applying laser sensors. In order to disseminate ser-vi
e robots on a broad s
ale, their 
osts have to be redu
ed. Thus, new territory has tobe entered in order to repla
e laser s
anners in favor of 
ameras as a universal sensor.Camera systems o�er the major advantage that they enable the re
ognition of obje
ts aswell as people in
luding their gestures and mimi
s, in addition to their appli
ability forlo
alization and navigation. They provide high dimensional and noisy data requiring in-formation pro
essing and reasoning in order to 
ompensate for the information 
omplexity
ompared to lasers. Therefore this thesis fo
uses on the 
hallenging task to a
hieve mobilemanipulation for autonomous servi
e robots solely through 
omputer vision.1



2 1.1 Mobile manipulation1.1 Mobile manipulationA general 
omprehensive outline of mobile manipulation is given by the Te
hni
al Com-mittee on Mobile Manipulation:"The ultimate goal of Autonomous Mobile Manipulation is the exe
ution of 
omplexmanipulation tasks, in unstru
tured and dynami
 environments, in whi
h 
ooperation withhumans may be required. To a
hieve this goal, several s
ienti�
 and engineering
hallenges, 
urrently beyond the state of the art in roboti
s, must be addressed." [146℄.Mobile manipulation ne
essitates di�erent skills su
h as planning, lo
alization as well asdeliberative navigation and obje
t re
ognition in 
onjun
tion with obje
t manipulation.The 
omplexity of this mission arises from the high dimensional per
eptual data a�i
tedwith un
ertainties as well as system 
omplexity that emerges from the mobile platformitself but even more from the dynami
s and ambiguities of the environment.Given a s
enario in whi
h the human instru
ts the mobile platform with tasks su
h astable setting or pi
kup and delivery, the robot �rst of all has to lo
alize itself in its dy-nami
 environment as neither o�
es nor households are stati
. Lo
alization is essentialfor planning as well as mission supervision. After the problem "Where am I?" is solved,navigation is required in order to address the problem of "How to get from A to B?". Thenavigation is supposed to guide the robot towards a goal destination for example passinga door, while simultaneously avoiding 
ollisions. A large variety of di�erent navigations
hemes is provided in literature mostly using 
ombinations of di�erent sensors. This the-sis follows the paradigm of purely vision-based navigation negle
ting other kinds of sensormerely utilizing image data. Therefore all important skills for navigation of autonomousmobile robots su
h as obsta
le avoidan
e, natural landmark orientation for goal-orientednavigation as well as door passing are designed solely based on visual per
eption. Theskills for navigation using vision are supposed to be e�
ient to implement and robust toguarantee the safe operation of the mobile platform.On
e the designated goal lo
ation is rea
hed the mobile platform needs to re
ognize andhandle daily obje
ts in household environments. The obje
t re
ognition and manipula-tion relies on the same obje
t representation, whi
h is sparse in order to ful�ll memory
onstraints of the underlying hardware. The task of obje
t manipulation 
onsists of thealignment of the end-e�e
tor with re
ognized obje
ts of unknown pose. Image-based visualservoing provides a means of model-free manipulation of obje
ts solely relying on 2D imageinformation. Therefore this thesis provides a signi�
ant step towards manipulation of dailyobje
ts relying on natural texture even if the grasp pose of the obje
t is outside the 
urrentview of the obje
t.Figure 1.1 shows the mobile robot equipped with 
amera and manipulator expli
itly builtfor mobile manipulation tasks. It is based on a mobile platform from MobileRobots In
.



Chapter 1 Introdu
tion 3equipped with sonar sensors. Two 
amera systems, a mono
ular pan-tilt 
amera and anomnidire
tional 
amera are mounted on the platform for lo
alization, navigation and obje
tre
ognition. A manipulator with a two-�nger gripper from Neuroni
s is installed on theplatform. The eye-in-hand 
amera is designated for 
losed-loop obje
t manipulation. Themanipulator redu
es the �eld of view of the omnidire
tional 
amera. This imposes no
onstraint on the later-on des
ribed navigation with the omnidire
tional 
amera be
ausethe remaining �eld of view of around 300◦ still 
ontains all relevant environmental 
ontents.gripper
amera forobje
t graspingmanipulatoromnidire
tional
amerapan-tilt 
amerasonar sensorsmobile platformFigure 1.1: Mobile robot.1.2 Related workThe mobile platform is provided with an Advan
ed Robot Interfa
e for Appli
ations(ARIA) [100℄. ARIA already in
orporates 
ontrol of robot's velo
ities, odometri
, sonarand laser measurements as well as 
ollision-free navigation due to rea
tive behaviors basedon its sonar or laser data. In order to a
hieve goal-oriented navigation additional pa
kagesfor map building (laser mapping and navigation pa
kage), ARNL (Advan
ed Roboti
s Nav-igation and Lo
alization System) for Markov based lo
alization and MobileEyes for remote
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ontrol of the robot's a
tions, e.g. the progress of the task in the map, are at the disposalof the 
ustomer. The 
ustomer has a fully operational robot with these pa
kages, whi
hnavigates after an initial mapping stage without 
ollisions in a goal-oriented manner in dy-nami
 environments. To a
hieve even more 
omplex tasks in the 
ontext of servi
e roboti
ssu
h as human re
ognition, human-ma
hine intera
tion as well as obje
t re
ognition andmanipulation additional sensors for visual per
eption are required. While a servi
e robotinherits more tedious tasks from humans, it is indispensable to redu
e the overall 
ostsespe
ially for the hardware in order to �nally a
hieve the e
onomi
 breakthrough in the
onsumer market. Therefore the motivation arises to design the 
ru
ial 
apabilities su
has lo
alization and navigation as well as advan
ed skills su
h as obje
t manipulation witha single 
ost-e�
ient sensor system in 
onjun
tion with highly advan
ed 
ontrol method-ologies, rather than employing multiple kinds of expensive sensors in parallel. This trendfrom hardware to software intelligen
e o

urs in many industry bran
hes with severe pri
ingpressure e.g. automotive industry. Cameras represent an e�
ient solution to this dilemmabe
ause the range of possible appli
ations and skills over pri
e is mu
h more advantageous
ompared to laser. Therefore in its �rst part this thesis aims at the obje
tive to a
hievesimilar performan
e for navigation with visual per
eption 
ompared to the already existing
ommer
ial software with laser sensors. This provides the basis for additional appli
ationssu
h as obje
t manipulation, whi
h are treated in the se
ond half of this thesis.The robot 
ontrol is based on a hybrid ar
hite
ture [15℄ depi
ted in �gure 1.2, 
omposedof a planning layer, a 
oordination layer and a subordinate rea
tive layer. The role ofthe planning layer 
onsists in generating the mission plan and its surveillan
e, in
ludingglobal lo
alization of the robot, preloaded path planning for goal-oriented navigation aswell as obje
t manipulation. The 
oordination layer a
tivates or dea
tivates those rea
tivebehaviors that are ne
essary for su

essful realization of the plan and adequate in the
urrent 
ontext. It is also responsible for the diagnosis of the robot's status, missionsurveillan
e and emergen
y or fallba
k strategies. The operation of the rea
tive layerfollows the behavior based paradigm [18℄, as it abandons any abstra
t representation of theenvironment but de
ides about the motion 
ommands only based on the 
urrent per
eptionprovided by the sensors (behavior representation). A behavior is represented by a dire
tmap from the stimulus, for example the distan
e measurement, to the response, in the
ase of mobile robots the motor 
ommands. In 
ase of navigation an obsta
le avoidan
ebehavior guarantees the safety of the robot with respe
t to 
ollisions with surroundingobje
ts. Other rea
tive behaviors e.g. 
onstant velo
ity, 
orridor 
entering, homing areprimarily useful for lo
al navigation. The obje
t manipulation requires a behavior whi
htransfers the manipulator in a pre-grasping position. This thesis investigates the potentialof 
amera systems to repla
e the sensor inputs for the planning and the rea
tive layer and
ompletely dispense with distan
e sensors su
h as laser employed in 
ommer
ially availablerobot systems.Di�erent approa
hes for robot navigation are known from literature [15, 18, 5℄ fo
ussingmostly on methodologies for distan
e sensors. In their general survey about vision for
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oordination layer

rea
tive layer
path planning
oordination, optimization, managementdiagnosis and surveillan
e
ontrol, stabilization

sensorsonar,laserbehavior adaptionbehavior sele
tion
sensorsonar,laser behavior representation behavior 
oordination a
tuators

emergen
y strategiessystem monitoring
traje
tory generationlo
alizationnavigationobje
t manipulationmission planning

Figure 1.2: Hybrid three-layer model for robot 
ontrol with planning, 
oordination andrea
tive layer, with laser and sonar as input for lo
alization and navigation in the planninglayer as well as for the behaviors in the rea
tive layer.mobile robot navigation [39℄ distinguish between indoor and outdoor navigation. A 
om-prehensive overview for visual navigation is provided by [16℄, whi
h 
ategorizes visualnavigation as map-based navigation and mapless navigation, whereas map-based naviga-tion is subdivided into metri
 and topologi
al map-based navigation. Metri
 maps repre-sent the environment in relative 
oordinates with respe
t to an absolute world 
oordinatesystem, whereas topologi
al maps possess a graph-like stru
ture with nodes and edges,representing abstra
t lo
ations and the repertoire of behaviors to transit between themwithout any geometri
 information [86℄. Lo
alization te
hniques using laser sensors arewell-established [51℄. A framework for Simultaneous Lo
alisation And Mapping (SLAM)is provided by [147℄ by building a map from s
rat
h while 
ontinuously lo
alizing itself inthe online generated map. E�
ient approa
hes su
h as FAST-SLAM [102℄ a
hieve nowa-days real-time mapping of the environment. Despite the substantial progress regardingVSLAM (Visual Simultaneous Lo
alisation And Mapping) [142, 36, 138℄, maps providedby VSLAM using lo
al feature extra
tion are sparse and therefore not dense enough formetri
 navigation required by standard laser based navigation s
hemes. However, thesemaps are suited for robot lo
alization [76℄. Re
ent approa
hes [148℄ generate o�-line dense3D maps due to stereo vision with additionally integrated landmarks, nonetheless theoverall lo
alization is inferior to simple topologi
al lo
alization approa
hes using omnivi-sion su
h as [55℄. In [44℄ a VSLAM s
heme provides a 3D-voxel map by FAST-SLAM in
onjun
tion with the Kine
t sensor, whi
h solves inherently the 3D re
onstru
tion problemof visual senors by a
tively emitting stru
tured light [98℄. This thesis follows the topologi-
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al map-based navigation paradigm using passive visual senors, representing environmentsby a dire
ted graph. Topologi
al maps require less memory and are suitable for the repre-sentation of large indoor environments. Topologi
al SLAM using lo
al feature extra
tionis presented in the works of [155, 3℄, whi
h seems to outperform appearan
e-based visualSLAM by global feature extra
tion [65℄. The 
hoi
e of the lo
alization methodology has adire
t impa
t on the required 
olle
tion of behaviors (referred to as mapless navigation in[16℄). Topologi
al map-based navigation requires visual per
eption representing the visualnodes, also referred to as waypoints, as well as the visual behaviors asso
iated with theedges in order to navigate between them. Depending on the degree of integration of theimage pro
essing systems into the hybrid 
ontrol ar
hite
ture the approa
hes are 
lassi�edthroughout this work into vision-guided and visual navigation s
hemes. Visual naviga-tion solely uses visual information as input for the planning as well as for the rea
tivelayer, whereas vision-guided approa
hes are supplemented by a
tive distan
e sensors su
has sonar or laser sensors providing further input for the rea
tive layer.Visual rea
tive behaviors omit metri
 maps for representing the environment, instead theyper
eive and tra
k obje
ts by 
oupling the immediate de
ision about the robot movementdire
tly with the visually observed appearan
e of the lo
al environment. Su
h approa
hesare either based on lo
ating spe
i�
 landmarks in the environment, or follow an appearan
ebased approa
h [154℄ or measure the opti
al �ow [4℄. The 
orridor 
entering des
ribed in[4℄ operates by balan
ing the opti
al �ow in the right and left hemisphere of an omnidire
-tional 
amera system, however, it fails if texture is missing or non-uniformly distributedin the 
orridor environment. Vision-based navigation in unstru
tured environments solelyuses natural features and stru
tures without adding supplementary landmarks or textureelements to fa
ilitate the navigation task. [105℄ des
ribes a vision-based homing behaviorwith gaze 
ontrol for de
oupling the 
amera and the robot movement via a virtual 
ameraplane. However, in this 
ontext the environment is stru
tured systemati
ally by pla
inglandmarks at sele
ted waypoints to support vision-based navigation.Roboti
 manipulation of daily-life obje
ts in unstru
tured environments is an essentialrequirement in servi
e roboti
 appli
ations. Image-Based (IBVS) and Position-Based Vi-sual Servoing (PBVS) grow in visibility due to their importan
e for roboti
 manipulationand grasping. Visual servoing is de�ned in the standard tutorial [70℄ as:"the use of one or more 
ameras and a 
omputer vision system to 
ontrol the position ofthe robot's end-e�e
tor relative to the work pie
e as required by the task".Position-based visual servoing estimates the obje
t's pose relative to 
amera, as the errorbetween the a
tual and the goal pose is de�ned in the Cartesian spa
e. The main drawba
ksof position-based visual servoing are 3D model generation of obje
ts, on-line estimation of3D pose, system instabilities be
ause of 
oarse pose estimations as well as obje
ts leavingthe �eld of view [23℄. Image-based visual servoing solely relies on 2D image informationfor the alignment of the end-e�e
tor with an obje
t of unknown pose. The desired pose
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tion 7for grasping is demonstrated to the robot during a learning stage and a set of referen
efeatures is extra
ted from the image. A geometri
 obje
t model or an expli
it re
onstru
tionof the obje
t s
ene be
omes obsolete for image-based visual servoing. Due to these twomajor advantages this approa
h is parti
ulary promising for mobile manipulation, namelymodel-free and easy to demonstrate for the instru
tor.The 
ategorization of [24℄ and [25℄ for di�erent image-based visual servoing 
on
epts ispursued and di�erent approa
hes in literature are ranked regarding their appli
ability tomobile manipulation. Ja
obian based visual servoing inverts the analyti
al relation betweendi�erential 
hanges in task spa
e to di�erential 
hanges of pixel 
oordinates to redu
e theerror in the image spa
e between the a
tual and desired feature 
oordinates [151℄. Hybridvisual servoing de�nes the error between a
tual and desired pose partially in image andCartesian spa
e [26℄. Partitioned visual servo, respe
tively visual servoing with de
oupledimage moments, de�nes image moments whi
h are related approximately in a one-to-onerelationship to their degrees of motion, resulting in a simple linear 
ontrol problem in theimage spa
e [143℄. Appearan
e based visual servoing [37℄ 
aptures the overall appearan
eof an obje
t rather than single features and relates this appearan
e by an o�ine learnedintera
tion matrix to 
ontrol values to steer the end-e�e
tor in the referen
e pose. Otherapproa
hes for visual servoing su
h as visual servoing on epipoles [120℄ or by stru
turedlight are negle
ted be
ause of their minor importan
e for servi
e roboti
s.Figure 1.3 depi
ts a radar 
hart in order to 
ompare di�erent visual servoing 
on
eptswith respe
t to various aspe
ts. Visual servoing by image Ja
obian, hybrid visual servoing,visual servoing by de
oupled moments as well as appearan
e based visual servoing are 
om-pared regarding stability, 
alibration issues, 
onvergen
e, 
omplian
e with servi
e roboti
spe
i�
ations and biology inspiration. Stability is divided into global asymptoti
 and lo
alasymptoti
 stability as well as heuristi
 approa
hes for stability analysis e.g. 
onvex poly-gons. Hybrid visual servoing has the highest ranking due to its global asymptoti
 stability.Appearan
e based visual servoing has the lowest ranking as the stability analysis of the op-timal poli
y (feed-forward) is not analyti
ally feasible. On the 
ontrary appearan
e basedapproa
hes require in prin
iple no intrinsi
 or extrinsi
 
amera 
alibration and thereforea
hieve the highest ranking in this 
ategory. Nonetheless even if the three other approa
hesrequire intrinsi
 
amera 
alibration, this is nowadays no severe limitation be
ause of thestandard tools for 
amera 
alibration [136℄. The aspe
t of 
onvergen
e 
ontains 
omputa-tional 
omplexity as well as the 
onvergen
e (behavior) of the image error, the task spa
eerror in addition to the required a
tuating variables. Hybrid and visual servoing withde
oupled moments exhibit fast 
onvergen
e in 
onjun
tion with low 
omputational 
om-plexity. The 
omputational 
omplexity of 
ourse highly depends on the feature extra
tionmethodology and its appli
ation parameters. On the 
ontrary appearan
e based visualservoing has high 
omputational demands for extra
ting appearan
e, whereas Ja
obianbased approa
hes partially show slow 
onvergen
e depending on the relative pose betweena
tual pose and goal pose be
ause of their 
ouplings between rotational and translationaldegrees of freedom. The term servi
e roboti
 appli
ations 
ompromises e.g. the robustness
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lusion, unstru
tured 
luttered environments with highly stru
tured obje
ts aswell as 
hanging light 
onditions. Additionally obje
t re
ognition as well as visual servoingshould rely on the same obje
t representation in order to redu
e memory requirements.Appearan
e based visual servoing requires a

urate obje
t segmentation to dis
riminatedi�erent obje
t poses, whi
h is di�
ult to a
hieve in textured environments. Nonethelessthis methodology dire
tly ful�lls the requirement for the same obje
t representation forre
ognition and positioning. Feature based approa
hes in literature are presented mostfrequently using simple feature primitives su
h as [135℄. These features are very e�
ientto implement but not realisti
 for servi
e roboti
 appli
ations be
ause of their low per
ep-tibility a
ross large regions of the workspa
e as well as their minor ability to dis
riminateamong di�erent obje
ts. The potential of feature based approa
hes is mu
h more promisingthan appearan
e based visual servoing 
on
erning robustness due to feature redundan
yand under the assumption of solved 
orresponden
e problem. Even if appearan
e basedapproa
hes are ranked highest in the 
ategory biology inspiration, these approa
hes aresuboptimal regarding the other 
ategories and are therefore not pursued in the 
ontext ofthis thesis. It is an interesting point that approa
hes adopted from nature are less robustthan purely te
hni
al motivated methodologies regarding mobile manipulation.Con
lusively it 
an be stated that visual servoing with de
oupled moments and hybridvisual servoing are best suited for servi
e roboti
 appli
ations and are further investigatedto a
hieve full appli
ability for mobile obje
t manipulation. Furthermore this thesis pos-tulates visual servoing with de
oupled moments, as no partial pose estimation requiringintrinsi
 
amera 
alibration as well as geometri
 assumptions of the s
ene are required.Exploitation of the potential of visual servoing with de
oupled image moments regardingde
oupling the translational and rotational degrees of freedom as well as ful�lling servi
eroboti
 spe
i�
ations is a 
hallenging task. The authors in [117℄, however, state that:"Finding a set of visual features whi
h produ
es a de
oupled intera
tion matrix for any
amera pose seems an unrea
hable issue".Nonetheless a diagonal intera
tion matrix is mu
h desired and therefore investigated in the
ontext of this thesis with the su

ess of �nding a resulting intera
tion matrix with onlyfour remaining 
ouplings independent of the 
amera pose.In many s
enarios the features extra
ted in the referen
e pose are only per
eivable a
rossa limited region of the work spa
e. Di�erent terminologies are reported in literature forvisual servoing a
ross several intermediate referen
e views of the obje
t in order to navigatetowards the �nal referen
e pose. Path planning in image spa
e [97℄, visual servoing due tovisual memory [123℄ as well large view visual servoing [105℄ are 
on
eptualized for globalvisual servoing. Noti
e that lo
al visual servoing is de�ned by the visual servoing towardsa single referen
e image, whereas global visual servoing is 
on
erned with the navigationand 
ontrol in a set of 
onne
ted, partially overlapping referen
e images, respe
tively inthe overall image spa
e. A
hieving a model-free and time-optimal 
onvergen
e towards
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Figure 1.3: Chara
teristi
s of di�erent visual servoing 
on
epts regarding stability, 
onver-gen
e, servi
e roboti
 spe
i�
ations and biology inspiration.the desired pose by swit
hing between referen
e views is the ultimate goal of the 
itedapproa
hes. Global visual servoing is a 
hallenging task, whi
h is imperative to a
hievemobile manipulation independent of the obje
t's initial view in the 
amera image.
1.3 Obje
tive of this thesisThis thesis provides a 
ontribution towards mobile manipulation in unstru
tured environ-ments with the ambitious goal to a

omplish all skills and tasks ex
lusively by means ofvisual per
eption. In order to a
hieve mobile manipulation solely relying on visual per
ep-tion this work yields new insights in two major domains namely visual navigation in the�rst part and visual servoing for obje
t manipulation in the se
ond part.For visual navigation the following questions are addressed:
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tive of this thesis
• How to a
hieve time-optimal visual homing for mobile robots dealing with naturaltexture in dynami
 environments with 
amera systems with limited �eld of viewrequiring gaze and position 
ontrol in parallel?
• How to design 
ollision-free navigation using omnivision 
onsidering noisy imagemeasurements and sparsely textured o�
e environments?
• How to a

omplish door dete
tion, door tra
king and door passing in a 
oherentpurely vision-based framework with 
losed-loop door traversing?
• How to design visual navigation in unstru
tured o�
e environments with mat
h-able performan
e in 
omparison to state-of-the-art approa
hes using sonar and lasersensors?Visual servoing for obje
t manipulation is mainly 
on
erned with the following 
hallenges:
• How to a
hieve markerless and de
oupled visual servoing for optimal 
onvergen
e intask spa
e in the 
ontext of obje
t manipulation of daily obje
ts?
• How to realize time-optimal visual positioning of the gripper relative to an obje
teven if the desired grasping position is outside the 
urrent �eld of view of the 
amera?
• Whi
h strategy is better? A look-then-move strategy in 
onjun
tion with lo
al visualservoing 
lose to the referen
e pose or visual servoing over several referen
e imagesin the 
ontext of servi
e robot appli
ations?This thesis is organized as follows: Chapter 2 provides the state of the art of 
omputervision as well as the visual servoing in order to keep this thesis self-
ontained. The 
hapter3 is dedi
ated to the progress from vision-guided navigation with laser based stimuli topurely vision-based navigation by relying solely on visual stimuli. Global visual homingbased on visual servoing with an omnidire
tional in 
onjun
tion with a pan-tilt 
amerais introdu
ed in 
hapter 4. A 
omparison of vision-guided and visual navigation is addi-tionally provided at the end of 
hapter 4. In order to a

omplish mobile manipulation
hapter 5 demonstrates a novel approa
h for markerless and de
oupled visual servoing toalign the robot end-e�e
tor with re
ognized obje
ts of unknown pose. Conventional pointfeatures are augmented by additional attributes like s
ale and orientation, whi
h establisha one-to-one 
orresponden
e between the individual image moment and its 
orrespond-ing degrees of freedom. The limited visibility of features ne
essitates the introdu
tion ofadditional intermediate referen
e views of the obje
t and requires path planning in viewspa
e. Therefore a new methodology for global (large view) visual servoing is introdu
edin 
hapter 6. The path planning in the image spa
e is �exible as the de
oupled visualservoing relies on a dynami
 set of feature 
orresponden
es rather than a stati
 set of indi-vidual features. This property allows the online sele
tion of optimal referen
e views duringservoing to the goal view resulting in time-optimal 
ontrol. Finally this thesis 
on
ludeswith a summary and outlook on future work in 
hapter 7, in whi
h the major develop-ments 
on
erning the 
hallenges and open questions raised here and the major results andinsights are summarized.



Chapter 2
State of the art of 
omputer vision andvisual servoing
This 
hapter provides the basis for 
omputer vision and visual servoing, the required ter-minology for the 
omprehension of this thesis as well as the 
lassi�
ation of this thesis intothe s
ienti�
 
ontext. This 
hapter is organized as follows: Image formation is des
ribedin se
tion 2.1 for perspe
tive and multiple 
ameras as well as for omnivision. Image under-standing by robust feature dete
tion for obje
t re
ognition is treated in se
tion 2.2. Thetwo major topi
s visual navigation and image based visual servoing are des
ribed in detailin se
tions 2.3 and 2.4, respe
tively, as well as the experimental systems in se
tion 2.5.2.1 Perspe
tive 
amera, multiple-view geometry and om-nivisionThe general perspe
tive proje
tion model des
ribes the relation between a homogeneouspoint pc(x, y, z, 1) in the 3D 
amera spa
e 
oordinate system and its proje
tion onto the2D image 
oordinate system in homogeneous 
oordinates p(u, v, 1), whereas λ denotes thefo
al length:
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. (2.1)The image point p(u, v, 1) on the retinal image is transformed to the normalized imageplane a

ording to equation 2.2. This transformation yields the normalized pixel 
oor-dinates [û, v̂, 1]T independent of the intrinsi
 
amera parameters, i.e. enabling the dire
t11



12 2.1 Perspe
tive 
amera, multiple-view geometry and omnivision
omparison of images originating from di�erent 
amera systems:
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amera parameters αu and αv des
ribe the s
aling fa
tors depending on λ andthe pixel dimensions. The interse
tion of the opti
al axis with the image plane is des
ribedby the prin
iple point [u0, v0]
T . Due to manufa
turing imperfe
tions of an a
tual 
amera,the angle θicp between the axes of the retinal image may not be equal to 90◦. The extrinsi

amera parameters 
onsider the position and orientation of the 
amera 
oordinate systemrelative to the world 
oordinate system. To express this relation, the rotation matrix Rand the translation ve
tor t are 
ombined in a homogeneous transformation matrix Text:

[u, v, 1]T =
1

z
TintText [x, y, z, 1]

T with Tint = (K0). (2.3)Intrinsi
 
amera parameters as well as radial distortions of the pixel 
oordinates u and v
aused by lens imperfe
tions are determined by a 
amera 
alibration pro
ess [136℄. Theradial distortion is 
orre
ted by a polynomial fun
tion of the squared distan
e betweenthe opti
al 
enter of the image and the given pixel 
oordinates (
f. 
hapter 3.3 in [50℄).Detailed information about the 
omplete 
amera system layout and the image formationpro
ess 
an be found in [67℄, whereas standard referen
es [50℄, [78℄ mainly fo
us on theimage analysis from low level to high level vision.Multiple view geometry is 
on
erned with partial or full 3D re
onstru
tion, respe
tively,of the environment based on multiple views of a s
ene. The essential and fundamentalmatri
es des
ribe the epipolar 
onstraint for 
alibrated and un
alibrated 
amera systemswhi
h relates a point in one image to a line in the other independent of the s
ene's geometry[90℄. The essential matrix is stated as:
E = [Tx]R, (2.4)where the ve
tor t is expressed as a skew-symmetri
 matrix Tx so that t×x = [Tx]x. Theessential matrix degenerates for small translations, rendering it unsuitable for automati

ontrol engineering topi
s su
h as visual servoing or image-based os
illation measurements.The homography H, however, des
ribes a point-to-point transformation between two per-spe
tive views of a plane:

ah [û2, v̂2, 1]
T = H [û1, v̂1, 1]

T with H = R+
nT

d
t, (2.5)whereas R and t are de�ned by the rotation and translation between the opti
al 
amera
enters. n is the normal ve
tor of the plane and d the distan
e between the opti
al 
enterof the �rst 
amera and the plane. Contrary to the essential matrix the homography matrixdoes not degenerate be
ause t is additive.
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orresponding features lo
ated on a 
om-mon plane, assuming that the s
aling fa
tor ĥ33 = 1, via:p2 = Ĥp1 ⇔





û2

v̂2
1



 =





ĥ11 ĥ12 ĥ13

ĥ21 ĥ22 ĥ23

ĥ31 ĥ32 ĥ33









û1

v̂1
1



 , (2.6)where Ĥ is, apart from a s
aling fa
tor ah, identi
al to the a
tual homography matrix H.The estimated homography Ĥ is de
omposed via singular-value de
omposition into theunknowns rotation matrix, s
aled dire
tion ve
tor as well as the normal ve
tor [47℄:Ĥ = UΛVT ⇔ Λ = UT ĤV ⇔ Λ = UT (dR+ tnT )V. (2.7)As the de
omposition of the homography yields ambiguous solutions, the 
orre
t solutionis obtained by taking into a

ount only the physi
ally plausible solutions and a subsequent
omparison of the estimated with the assumed normal ve
tor. Multiple view geometry forpartial or 
omplete real world re
onstru
tion e.g. homography is treated extensively in theworks of [60℄ and [134℄.Conventional mono
ular 
ameras have a limited �eld of view. In order to over
ome this
onstraint, omnidire
tional 
ameras, also referred to as 
atadioptri
 
ameras, 
onsist of a
ombination of lenses (refra
tive, i.e. dioptri
) and mirrors (re�e
tive, i.e. 
atoptri
) toenlarge the �eld of view. The most important design obje
tive for 
atadioptri
 sensors isto a
hieve a single e�e
tive viewpoint, whi
h allows the re
onstru
tion of perspe
tive viewsand panorami
 images with arbitrary orientations. A detailed overview of single viewpoint
atadioptri
 sensors and the image formation pro
ess is provided by [8, 53℄.a) b) 
)spheri
 mirrorvertexparaboli
mirrorfo
us
pc2

pc1

p1 p2Figure 2.1: a) Omnidire
tional 
amera; b) Geometry of a paraboli
 omnidire
tional 
amera;
) Omnidire
tional image.The omnidire
tional sensor used in this thesis 
onsists of a 
amera DFK-31AF03 fromImaging Sour
e and a D40 opti
 from RemoteReality. It has a �eld of view of 360◦ in
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tion for re
ognitionazimuth and approximately 60◦ in elevation. Figure 2.1 depi
ts the omnidire
tional 
amera(a), a s
hemati
 view of the proje
tion geometry (b) as well as an omniview (
) referredto in the following as omnivision. The 
atadioptri
 sensor 
onsists of a paraboli
 mirror in
onjun
tion with a spheri
 mirror and a perspe
tive lens system. Paraboli
 mirrors havean orthographi
 proje
tion, whi
h guarantees that the light rays from the environment arere�e
ted parallel towards the spheri
 mirror. The spheri
 mirror also satis�es the singleviewpoint 
onstraint, whereas the 
enter of proje
tion lies in the 
enter of the sphere. Asharp single viewpoint image is obtained as the 
enter of the sphere 
oin
ides with the fo
alpoint of the perspe
tive lens system. Figure 2.1 b) shows the geometry of su
h a paraboli
omnidire
tional 
amera. The world points p
1 and p
2 are orthographi
ally re�e
ted tothe points p1 and p2 in the image plane. The vertex of the parabola has the distan
e h/2to the fo
us whi
h is the single viewpoint of the parabola. The parameter h is also theradius rf at zp = 0. Thus, the expression for the re�e
ting surfa
e follows as:
zp =

h2 − r2f
2h

. (2.8)In �gure 2.1 
) the omniview is presented whi
h shows the blind spot in the 
enter, ananalogy to the human eye, originating from a pin in the 
enter of the spheri
 mirror toprevent multiple re�e
tions.Omnivision is well suited for mobile robot appli
ations as it 
aptures the entire surrounding,whi
h fa
ilitates robot lo
alization as well as robot navigation. Furthermore, due to theirlarge �eld of view, omnidire
tional 
amera systems are optimal for work spa
e surveillan
eof produ
t assistants [141℄.2.2 Robust point feature dete
tion for re
ognitionFor developing vision-based 
ontrol 
on
epts for mobile manipulation in unstru
tured en-vironments unambiguous and re
ognizable features have to be extra
ted from the 
ameraimages. Contrary to the industrial 
ontext where markers or labels are imprinted on ob-je
ts and in the surrounding environments, for servi
e roboti
 tasks this approa
h is notfeasible. Thus, the algorithms employed in this thesis have to re
ognize the features inthe 
amera image if the 
amera-obje
t distan
e 
hanges (s
aling invarian
e), the lighting
onditions vary, the 
amera rotates around its opti
al axis or is subje
t to a�ne transforma-tions. Asso
iating the same feature in di�erent perspe
tives is referred to as 
orresponden
eproblem.In the following, two prominent and useful algorithms from literature for lo
al featureextra
tion and for solving the 
orresponden
e problem are presented in detail. PrimarilyGood Features To Tra
k (GFTT) [135℄, whi
h is implemented e.g. in the OpenCV library[71℄, is des
ribed as it already 
ontains all signi�
ant steps required for robust feature
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tion and mat
hing. Based on this e�
ient implementation, a sophisti
ated methodfor feature extra
tion, S
ale Invariant Feature Transformation (SIFT), is des
ribed whi
his utilized within the s
ope of this work.GFTT 
onsists of an edge dete
tion in order to lo
alize interest points and subsequentlytra
k the same feature over 
onse
utive images. Strong 
orners in the image are dete
tedwith the Hesse matrix a

ording to the ideas of the Harris edge dete
tor [59℄:A =
∑

u

∑

v

w(u, v)

[

I2u IuIv
IuIv I2v

]

, (2.9)with the image derivatives Iu and Iv in u- and v-dire
tion, respe
tively, and the isotropi
weighting w(u, v) su
h as a Gaussian kernel. The two eigenvalues λeig1 and λeig2 are ex-tra
ted from A. If λeig1 ,λeig2 are 
lose to zero then the image region is homogeneous. If oneof the two eigenvalues is mu
h greater than the other the image region 
ontains an edge.A 
orner is dete
ted only if both eigenvalues have large positive values and satisfy the
onstraint min(λeig1,λeig2) larger than a threshold. The 
orner represents an interest pointwhi
h is tra
ked in 
onse
utive images by a small window Ωs assuming purely translationalmotion. In order to avoid false tra
king of features the dissimilarity is measured for a largewindow Ωl as follows:
εd =

∫∫

Ωl[I2(Rpr + t)− I1]2dpr. (2.10)If the residual error εd ex
eeds a 
ertain threshold the feature is 
lassi�ed as lost and istherefore reje
ted. GFTT are well suited for lo
al feature tra
king and are therefore notsuited for advan
ed servi
e roboti
 appli
ations. Of 
ourse s
ale-invarian
e 
an also bea
hieved by a s
ale-independent Harris edge dete
tion using a Gaussian pyramid, nonethe-less the feature extra
tion des
ribed in the following has a better representation of thefeatures suited for re
ognition even under large displa
ement and rotations as well as
hanges in lighting 
onditions.S
ale Invariant Feature Transformation introdu
ed by Lowe [93℄ is an approa
h to dete
tand extra
t lo
al features from an image with similar methodology as GFTT but withsuperior performan
e in terms of re
ognition, be
ause of 
ombinations of the progress inimage pro
essing sin
e the �rst presentation of GFTT. They demonstrate invarian
e withrespe
t to s
ale, orientation and illumination. SIFT features are 
onveniently mat
heda
ross similar views of the same s
ene. The utilization of spe
i�
 markers in vision-basedappli
ations be
omes obsolete as the environment and textured obje
ts naturally 
ontainsuitable SIFT features. SIFT features are distinguishable as their asso
iated keypoint de-s
riptor in
ludes a 
ompa
t, albeit spe
i�
 representation of the surrounding image region.These properties make them parti
ularly suitable for vision-based lo
alization, visual ser-voing, obje
t re
ognition and pose estimation. As their properties are essential for the lateron introdu
ed visual 
ontrollers, the four major 
omputation stages are brie�y des
ribed.(1) S
ale-spa
e extrema dete
tion: Interest points in the image for SIFT featuresare the ones whi
h 
orrespond to lo
al extrema of Di�eren
e-of-Gaussian (DoG) �lters at
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tion for re
ognitiondi�erent s
ales. The s
ale of the SIFT feature is de�ned by σ. The di�eren
e of Gaussiansis 
al
ulated from the di�eren
e of 
onvoluted images at neighboring s
ales σ, respe
tively
kσ. Given a Gaussian-blurred image LL(u, v, σ) = G(u, v, σ) ∗ I(u, v) where G(ui, vi, σi) =

1

2πσ2
i

exp

(

−(u2
i + v2i )

σ2
i

) (2.11)is a variable s
ale Gaussian, I denotes the image to be pro
essed and ∗ is the 
onvolutionoperator. The 
onvolution of an image with a DoG �lter is de�ned byD(u, v, σ) = (G(u, v, kσ)−G(u, v, σ)) ∗ I(u, v) = L(u, v, kσ)− L(u, v, σ). (2.12)The 
onverted images are grouped by o
taves whi
h 
orrespond to doubling the value of
σ, resulting in a pyramid of DoG images with di�erent s
ale.(2) Keypoint lo
alization: The interest points in the image are referred to as keypoints.They are identi�ed either by their lo
al maxima or minima of the DoG images a
ross thes
ales. Every pixel in the DoG image is 
he
ked for its 
andidate validity by 
omparing itwith its eight neighbors at the same s
ale and also with its nine 
orresponding neighborsat neighboring s
ales. If the pixel exhibits either a lo
al maximum or lo
al minimumit is sele
ted as a 
andidate keypoint. Every 
andidate keypoint needs interpolation toa

urately determine its position. Keypoints with low 
ontrast values are removed andresponses along the edges are also eliminated. On
e the positions of the keypoints areassigned their orientation 
an be determined.(3) Orientation assignment: Orientation of the keypoint is determined using a gradientorientation histogram in the neighborhood of the keypoint. The 
ontribution of ea
hneighboring pixel is weighted by the gradient magnitude and a Gaussian window with awidth σ that is 1.5 times the s
ale of the keypoint. Peaks in the histogram 
orrespondto dominant orientations. A separate keypoint is 
reated for the dire
tion 
orrespondingto the histogram maximum and any other dire
tion within 80% of the maximum value.The properties of the keypoints are all des
ribed relative to the keypoint orientation toa

omplish orientation invarian
e.(4) Keypoint des
riptor: With the information about the keypoint orientation, a key-point des
riptor is 
onstru
ted whi
h is a set of orientation histograms on the neighboring4 by 4 pixels. The histograms are expressed with respe
t to the keypoint orientation. Thehistogram has eight bins and ea
h des
riptor has an array of four histograms around itskeypoint. Ea
h SIFT feature 
onsists of a normalized keypoint des
riptor dkp with 4 by 4by 8 = 128 elements.Mat
hing of SIFT features: Mat
hing of SIFT features involves the determination of
orresponding features in two views of the same s
ene. Therefore the SIFT features areextra
ted in both views and the similarity of their keypoint des
riptor is 
al
ulated. Thesimilarity is de�ned by the Eu
lidian distan
e between the two keypoint des
riptors of
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hing even more robust the relative rather than theabsolute similarity is evaluated using the relationship between the highest and the se
ondhighest value of similarity whi
h is required to ex
eed a spe
i�ed threshold.The presented 
ontrol 
on
epts 
an be realized identi
ally with SURF (SpeededUpRobustFeatures) [13, 12℄ be
ause they also 
ontribute additional attributes as s
ale and orientationof the features. Other methods for lo
al feature extra
tion su
h as GLOH (GradientLo
ation and Orientation Histogram) [99℄, HOG (Histogram of Oriented Gradients) [34℄or its signi�
ant extension GF-HOG (Gradient Field-Histogram of Oriented Gradients)[68℄ only di�er in the methodology to 
apture the lo
al appearan
e of the feature des
riptor.[127℄ re
ently introdu
ed ORB (Oriented FAST and Rotated BRIEF), whi
h 
ombines inan e�
ient way the keypoint dete
tor FAST [125℄ with the e�
ient feature des
riptorBRIEF [21℄. FAST extra
ts keypoints even faster than GFTT or SIFT. However, as thesemethods do not o�er any major improvement apart from faster 
omputational time e.g.based on dis
retization by integral images like SURF, they are not 
onsidered further.Literature reports two distin
t approa
hes to solve the pose estimation problem. Modelbased methods rely on the extra
tion of spe
i�
 geometri
 features in the image su
h as
orners and edges. Robust features like SIFT, GFTT or SURF are mandatory for model-based obje
t re
ognition and pose estimation. Clusters of robust image features are utilizedin the �rst step to re
ognize the obje
t. Afterwards the extra
ted features are 
omparedand related to a known geometri
 model of the obje
t. E�
ient and reliable approa
hes formodel based pose estimation with known 
orresponden
es have been proposed by [38, 115℄.The drawba
k of these methods like any other model based approa
hes is the requirementof an a-priori geometri
 model of the obje
t, an exa
t 
amera 
alibration as well as thesolution of the 
orresponden
e problem, whi
h be
omes inherently more di�
ult in 
aseof o

lusion and ambiguous features. Following the model based paradigm, [56℄ thereforedes
ribes an approa
h for the 
onstru
tion of 3D metri
 models from multiple images takenwith an un
alibrated handheld 
amera for augmented reality appli
ations.In 
ontrast, global appearan
e based methods 
apture the overall visual appearan
e of anobje
t, e.g. the multidimensional re
eptive �elds introdu
ed by [132℄. Neither do they de-pend on the extra
tion of individual features nor do they fa
e the 
orresponden
e problem.The basi
 idea is to 
apture the appearan
e by statisti
al representations su
h as histogramsin order to 
al
ulate a probability of the obje
t's presen
e in the 
urrent image view, an ideawhi
h is inherent to almost every appearan
e based approa
h. The methodology 
onsistsroughly of three steps, primarily low-dimensional lo
al feature des
riptors are 
al
ulatedon a regular grid on the image, these des
riptors are then quantized and aggregated inmulti-dimensional histograms and �nally 
ompared to stored histograms of known obje
tsexploiting the Bayes rule. The major di�eren
e between obje
t re
ognition by 
lusters ofSIFT features and by means of multidimensional re
eptive �elds 
an be summarized asfollows: SIFT features extra
t solely keypoints representing 
orner points and thereby as-sured textured image regions from whi
h a highly distinguishable high-dimensional feature
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riptor 
an be determined, thereby exploiting all image information available. Multidi-mensional re
eptive �elds on the 
ontrary 
al
ulate a low-dimensional feature des
riptor ona regular grid, thereby giving away information in textured highly distinguishable imageregions and additionally sampling homogeneous regions with less information for the his-tograms as well. [22℄ propose distan
e 
olor 
oo

urren
e histograms for obje
t re
ognitionof multi-
olored, textured obje
ts, emphasizing the 
onservation of geometri
 informationas the major advantage of 
olor 
oo

urren
e histograms 
ompared to regular 
olor his-tograms. Based on this fundamental idea, [43℄ propose 
olor 
oo

urren
e histograms forobje
t re
ognition as well as 1 DOF pose estimation. The angular extension of 
olor 
oo
-
urren
e histograms is suggested by [106℄ in the 
ontext of pose estimation of robot players(AIBOs) as well as for 2 DOF pose estimation of multi-
olored, textured obje
ts [107℄.[104℄ introdu
e a method that 
ombines appearan
e and geometri
 obje
t models in orderto a
hieve robust and fast obje
t dete
tion as well as 2 DOF pose estimation. Their major
ontribution is the integration of the known 3D geometry of the obje
t during mat
hingand pose estimation by a statisti
al analysis of the distribution of feature appearan
es inthe view spa
e. Nonetheless their approa
h requires a 3D model of the obje
t, whi
h isdi�
ult to generate for obje
ts of 
omplex shape and therefore the inherent problem of allmodel based approa
hes.Image-based visual servoing presented in se
tion 2.4 provides the means for model-freeobje
t manipulation for servi
e robot appli
ations without prior pose estimation requiringonly an obje
t re
ognition with e.g. 
lusters of GFTT or SIFT features and a subsequent
ontrol in the image spa
e towards the desired lo
ations of the features in the image plane.This approa
h leads to a high position a

ura
y, but nonetheless a
hieves only lo
al 
on-vergen
e due to viewpoint limitations. Therefore an initial pose estimation is again mostlymandatory as the 
urrent obje
t view does not ne
essarily 
ontain the features 
lose to themanipulation position. Global visual servoing introdu
ed in 
hapter 6 over
omes the abovestated limitations, thereby 
onstituting a promising and more e�
ient approa
h 
omparedto model and appearan
e based obje
t re
ognition and pose estimation, negle
ting anymodel knowledge but still in
orporating the high position a

ura
y.2.3 Visual navigationThe 
hara
terization of the di�erent visual navigation 
on
epts leads to the appraisal oftopologi
al map-based navigation with rea
tive visual behaviors as stated in se
tion 1.3.Visual navigation draws its inspiration from biology whi
h provides numerous examples ofvisual behaviors of inse
ts and birds. It is 
hallenging to design behaviors that are not basedon distan
e sensors but on visual stimuli 
onsidering the burden of high 
omputational
omplexity and noisy data. The authors in [1℄ extra
t the elements of early vision byde�ning the so-
alled plenopti
 fun
tion whi
h des
ribes the visual information availableto an observer at any point in spa
e and time. Analyzing the plenopti
 fun
tion yields the
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olor, texture, disparity andopti
al �ow to be utilized for designing visual behaviors.Color 
orresponds to the di�erent wavelengths in the visible range of the light spe
trum.It requires model knowledge about the surrounding world e.g. the 
olor information ofobje
ts like doors and side walls. Additionally the problem of 
olor 
onstan
y is not solvedyet, assigning always the same 
olor to a homogeneous mono
hromati
 area in spite ofdi�erent illuminating 
onditions as des
ribed by the Di
hromati
 Re�e
tion Model [82℄.Therefore 
olor is not suited for the navigation in unstru
tured environments. "Texture isa phenomenon that is widespread, easy to re
ognise and hard to de�ne" [50℄. Texture isunderstood by two similar but distin
t meanings.(1) Texture is de�ned as repeated patterns like 
arpet, hair or grass whi
h have a spe
i�
response in the frequen
y domain, thereby extra
table and distinguishable by �lterbanks as Garbor �lters.(2) Texture is de�ned as any di�eren
e to homogeneous regions exhibiting the samewavelength. Thus texture in
ludes simple white spots in a bla
k environment as wellas paintings with a lot of unique stru
tures and shapes maybe expressed by a set ofwidespread 
olors. The texture from de�nition 1 is a subspa
e of de�nition 2. Neitherkind of texture is 
aused by shadowing, surfa
e shape or other lighting e�e
ts.Texture a

ordingly to de�nition (1) requires also model knowledge like 
arpet patternsabout the surrounding world and is therefore not suited for mobile manipulation, e.g.navigation in unstru
tured environments. Texture from de�nition (2) is required for visualnavigation to extra
t primitives like disparity and opti
al �ow or advan
ed information su
has visual landmarks. Noti
e that texture from de�nition (1) hinders the robust opti
al�ow extra
tion thereby requiring more sophisti
ated algorithms to deal with repeatingambiguous patterns. Therefore texture is understood a

ording to de�nition (2) throughoutthis thesis. Disparity is a brilliant 
lue as it dire
tly leads to distan
e measurements, whi
hallows mimi
king of distan
e-based behavior. The determination of disparity requires ase
ond extrinsi
ally 
alibrated mono
ular 
amera and the solution of the 
orresponden
eproblem, but is subje
t to the same short
omings as opti
al �ow as it ne
essitates thepresen
e of texture in the environment. Opti
al �ow is de�ned by the pixel motion betweentwo images in the image spa
e 
aused by the egomotion of the observer or moving obje
tsin the �eld of view. The methods for 
al
ulation of opti
al �ow 
an be 
lassi�ed intothree groups: di�erential, frequen
y-based and mat
hing [10℄. A 
lassi�
ation in terms ofa

ura
y and density of the �ow �eld is given by [11℄. In this work di�erential methods areused for the sake of 
omputational e�
ien
y whi
h 
ompute velo
ities from spatio-temporalderivatives of image intensities. This is equivalent to the integration of velo
ities normalto the lo
al intensity stru
ture into full velo
ities either lo
ally by least-square 
al
ulation[94℄ or globally via regularization [66℄. Di�erential methods are based on the 2D motion
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onstraint equation:
∇I(u, v, t)v = −

∂I(u, v, t)
∂t

⇔ [Iu, Iv][u̇, v̇]
T = −It(u, v, t), (2.13)where [Iu, Iv] is the spatial intensity gradient of the image I(u, v, t) and the image velo
ityv, respe
tively the opti
al �ow [u̇, v̇] at the pixel [u, v] at time t. The Lu
as and Kanadealgorithm [94℄ uses a weighted least-squares �t of lo
al �rst-order 
onstraints to a 
onstantmodel for the image velo
ity in a small spatial neighborhood Ω by minimizing:

∑

u,v∈Ω
w2(u, v)[[Iu, Iv][u̇, v̇]

T + It(u, v, t)]
2 (2.14)with the weighting fun
tion w(u, v) giving more in�uen
e to 
onstraints at the neigh-borhood's 
enter than at its periphery. These methods provide a dense opti
al �ow �eld,nonetheless the motion dire
tion is not estimated a

urately enough, be
ause homogeneousimage regions 
ause ambiguous solutions of the 
orresponden
e problem and large �ow isnot observable due to phase restri
tion. The limitations of this algorithm are over
omeby the Lu
as Kanade pyramid algorithm [17℄ by 
reating a Gaussian image pyramid ofthe two images and 
al
ulating the opti
al �ow iteratively at every level, thus providingthe input for the next level. As the opti
al �ow is determined only for quali�ed strong
orners indi
ated by the Harris 
orner dete
tor [59℄, the opti
al �ow �eld is in 
omparisonwith other di�erential, intensity based methods sparse but therefore more a

urate, evenfor large opti
al �ow. Be
ause of these advantages this method is used in the s
ope of thiswork for the estimation of the opti
al �ow.Therefore only texture and opti
al �ow are required for the design of visual behaviors inunstru
tured indoor environments. Visual behaviors for a perspe
tive 
amera as visualhoming, 
ollision avoidan
e and obsta
le avoidan
e are introdu
ed by [27℄. The approa
hrelies on fast image segmentation by template mat
hing of 
arpet pat
hes to dete
t freespa
e in front of the robot and is therefore not suited for unstru
tured environments asit requires a huge amount of model knowledge. Their method is nonetheless at the sametime point of departure as well as inspiration for sophisti
ated and more general visualbehaviors.Visual door passing: Robust and reliable door passing is feasible with laser range s
an-ners as demonstrated by the rea
tive door passing behavior in [114℄. However 2D laserrange s
anners are not suitable for the dete
tion of 
losed or partially opened doors [75℄.The robust visual dete
tion and lo
alization of doors still remains a 
hallenging task despitea number of su

essful implementations in the past [42, 153, 140℄.The authors in [140, 101℄dete
t doors by means of a mono
ular 
amera in 
onjun
tion with sonar, with the maindisadvantage that the �nal door dete
tion at 
lose range relies on sonar information only.The se
ond approa
h [101℄ relies on the assumption that the robot already fa
es the door,whi
h ex
ludes more realisti
 s
enarios in whi
h the robot travels along a 
orridor parallelto the doors. The door traversal approa
h by [42℄ is robust with respe
t to individual
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ene 
omplexity and lighting 
onditions as door hypotheses are �ltered andveri�ed for 
onsisten
y a
ross multiple views. The door dete
tion relies on a bino
ularpan-tilt 
amera system whereas the proposed approa
h uses an omnidire
tional 
amera.Visual obsta
le avoidan
e and 
orridor 
entering: In order to a
hieve obsta
leavoidan
e in indoor environments the authors in [31℄ determine the time to 
onta
t (ttc)in driving dire
tion based on the divergen
e of the opti
al �ow. The opti
al �ow is apowerful image 
lue used for egomotion estimation [19℄, stru
ture from motion [139℄ andfor visual behaviors like 
orridor 
entering, wandering and target point following [32, 41℄.[29℄ employ a mono
ular 
amera in 
onjun
tion with a lidar system in order to estimateobsta
le velo
ities by a Kalman �lter to avoid moving obsta
les, whereas [28℄ integrate alaser based obsta
le avoidan
e into the visual navigation.Visual homing: Literature reports several distin
t approa
hes for a visual homing be-havior. Appearan
e-based homing of a non-holonomi
 robot is presented in [35℄. Otherapproa
hes prefer feature-based navigation, e.g. in [46℄ a Eu
lidean re
onstru
tion is per-formed based on a homography matrix relating the visual feedba
k to the position andorientation of the mobile robot in a lo
al 
oordinate system. [57℄ presents a promisingapproa
h for merging the desired movements with the feasible motor 
ommands of thenon-holonomi
 robot. The robot uses a mono
ular vision system in 
onjun
tion with aJa
obian and geometry-based 
ontroller. In [20℄ a spheri
al image proje
tion is applied inorder to over
ome the numeri
ally ill-
onditioned system equations for large pan angles.Their system uses natural landmarks whi
h are either sele
ted manually or automati
ally[83℄ and are dete
ted by region-based image 
orrelation. [14℄ introdu
e visual servoing onepipoles with visual memory. The stored traje
tory of the epipoles in image spa
e is learntduring a demonstration stage, whi
h represents the desired robot traje
tory.2.4 Image-based visual servoingA 
lassi�
ation of visual servoing 
on
epts is introdu
ed by [129℄. Therein two questionsare addressed, primarily whether visual servo 
ontrol dire
tly drives the joints (dire
t visualservoing) or provides the input for an underlying joint 
ontroller (look-and-move). Mostvisual servoing implementations employ the look-and-move stru
ture with underlying joint
ontrollers, with the intention of de
oupling kinemati
 and visual singularities, suppress-ing kinemati
 singularities by standard joint 
ontrollers, using di�erent bandwidths forimage pro
essing and joint 
ontrol as well as standard roboti
 interfa
es with setpoints forCartesian velo
ity and in
remental movements. In this thesis look-and-move stru
turesare used ex
lusively. Se
ondly, visual servoing is 
lassi�ed into position or image-basedvisual servoing, depending on whether the 
ontrol input 
onsists of a pose estimation ofthe end-e�e
tor with respe
t to the work pie
e or a dire
t 
al
ulation of the error signal inthe image spa
e. Position-based visual servoing (PBVS) issues model generation for every
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t to be manipulated, solving the 
orresponden
e problem and pose estimation as wellas an intrinsi
 and extrinsi
 
amera 
alibration. In addition to errors in the model genera-tion 
aused e.g. by imperfe
t intrinsi
 and extrinsi
 
amera 
alibration, deviations in theinverse kinemati
s also 
ontribute to 
ontrol deviation. PBVS is therefore well suited forroboti
 manipulators in industrial settings with prede�ned and predi
table systems but notfor servi
e robot appli
ations, whi
h in
orporate high un
ertainty about the environment.This thesis advo
ates in the following image-based visual servoing (IBVS). Image-basedvisual servoing o�ers the advantages that 
amera 
alibration and robot's kinemati
s errorsdo not result in a 
ontrol deviation and that it does not require any obje
t model.The visual information is provided either by 
amera systems �xed in the workspa
e observ-ing the robot's motion or by a so-
alled eye-in-hand 
on�guration, in whi
h the 
amerais atta
hed dire
tly to the robot and thereby exhibiting the robot's motion in the taskspa
e. Eye-in-hand 
on�gurations are 
onvenient for mobile robots in unstru
tured envi-ronments due to their 
omplete awareness of the surrounding. Additionally they providehigh position a

ura
y 
lose to the goal pose be
ause of their proje
tion s
ale, thereforevisual servoing in this thesis postulates eye-in-hand 
on�gurations. Figure 2.2 illustratesthe image-based visual servoing employing a look-and-move stru
ture for eye-in-hand ob-je
t manipulation. The visual referen
e features fref are de�ned dire
tly in the 2D imageplane, making a geometri
 model or re
onstru
tion of the environment obsolete. The taskspa
e velo
ities and the 
orresponding joint velo
ities of the manipulator are 
al
ulateda

ording to the error ∆f between the desired fref and the a
tual feature lo
ations f . Therobot and the 
amera motion regulate the feature error, whi
h vanishes as the 
urrentand referen
e pose 
oin
ide. A known short
oming of image-based visual 
ontrollers is the


ontrol joints joint 
ontrolimage pro
essingf

fref ∆f = fref − f q̇set q̇i
+-

Figure 2.2: Image-based visual servoing (IBVS) in a look-and-move stru
ture for eye-in-hand visual obje
t manipulation.
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amera retreat problem. The problem is 
onstituted by the fa
t that optimal traje
toriesin the image spa
e might result in singularities or infeasible traje
tories in task spa
e. Theimage-based 
ontroller minimizes the image error linearly in the image spa
e. If the 
am-era is only rotated by 180◦ 
ompared to the goal pose, instead of the appropriate motionin task spa
e, namely a 
ounter-rotation of the 
amera around the opti
al axis of about180◦, the 
amera retreats from the s
ene in order to minimize the error linearly. As the
amera retreats from the s
ene the feature points travel to the image 
enter and end up ina singularity. A possible solution for manipulators to de
ouple the translational and rota-tional velo
ities is proposed in [33℄. Based on perspe
tive proje
tion an angular 
riterionis developed, whi
h takes into a

ount the trapezoidal distortion of a square based on arotation around one of the axes spanning the image plane. The presented prerequisite forimage-based visual servoing follows the 
lassi�
ation of [24, 25℄ for the di�erent approa
hesin literature and summarizes the pros and 
ons for servi
e roboti
 appli
ations.Visual servoing with (adaptive) image Ja
obian: Visual servoing based on the imageJa
obian J inverts the analyti
al relation between di�erential 
hanges in task spa
e todi�erential 
hanges of pixel 
oordinates to redu
e ∆f [151℄. The simple proportional 
ontrollaw is given by:
ṙ = −kJ+(r)(fref − f), (2.15)where J+ is the pseudoinverse of the image Ja
obian J and k a 
onstant gain fa
tor. kensures an exponential de
rease of the error as ∆ḟ = −k∆f . The image Ja
obian J alsoreferred to as intera
tion or sensitivity matrix is derived in [70℄:

J =

[

−λ
z

0 u
z

uv
λ

−λ2−u2
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0 −λ
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v
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λ
−uv
λ
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]

. (2.16)As the analyti
al determination of J requires the knowledge of z for ea
h point feature,di�erent approa
hes for the determination are stated in literature. J is determined with thedistan
e z∗ at the goal pose and remains stati
 during visual 
ontrol. A better performan
ein terms of 
onvergen
e is a
hieved by determining J via the algebrai
 mean of z in the
urrent and z∗ in the goal 
on�guration [24℄. As an alternative an adaptive approa
h isintrodu
ed by [77℄ in whi
h the image Ja
obian J is estimated by the predi
ted featuremotion due to the motion of the 
amera ∆r and the observed motion ∆f (opti
al �ow)a

ording to:
Jk+1 = Jk + αa

(∆f − Jk∆r)∆rT

∆rT∆r
. (2.17)

αa denotes the 
orre
tion fa
tor for the adaptive image Ja
obian. As no knowledge ofthe distan
e z is required this approa
h seems parti
ulary interesting for servi
e robotappli
ations. As the 
ontrol by the image Ja
obian assumes a linear model between thepixel and 
amera motion, a trust region 
ontrol [137℄ is espe
ially suitable to guaranteestri
tly linear 
ontrol:̇
r = −kaJ

+(r)∆f with ka = min

(

1,
ak
lk

)

. (2.18)
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onstant proportional gain k is repla
ed by an adaptive gain ka, whi
h is determinedby the boundary of the pixel displa
ement ak and the predi
tion of the image displa
ement
lk = J∆r. ak 
ompromises a large 
ontrol variable for fast 
onvergen
e with linear regimeof J. Nonetheless for eye-in-hand 
on�guration the promising 
on
ept of adaptive imageJa
obian and trust region 
ontrol proves to be inappli
able as a translational motion in
x (respe
tively y) is di�
ult to distinguish from a rotational movement around the y-axis(respe
tively x-axis), resulting in an almost identi
al opti
al �ow. In 
onjun
tion withsmall image noise the result is false 
onvergen
e of the adaptive Ja
obian and lo
al minimain 
ontrol. In order to over
ome theses disadvantages [118℄ presents a 
ompletive studybetween analyti
al and adaptive Ja
obian in 3DOF, in
orporating additionally the epipolar
onstraint in the adaptation. [130℄ propose a 
alibration-free Ja
obian by re-expressing andonline adaptation of fo
al length and s
ale in ea
h 
ontrol 
y
le. The 
on
ept of adaptiveimage Ja
obian is well suited for �xed 
amera systems observing the robot's motion and theobje
t or appli
ations with redu
ed degrees of motion of the 
amera, but has no pra
ti
alimportan
e for mobile robots.Hybrid visual servoing: In order to improve visual servoing [26℄ propose two and one-half-dimensional visual servoing in order to exploit the advantages of IBVS and PBVS.
21
2
D visual servoing de
ouples rotational and translational velo
ity 
ontrol by primarilyestimating the rotation between the 
urrent and desired obje
t view, e.g. from de
ompo-sition of the homography H (
f. se
tion 2.1). The 
ontrol for the rotational motions isexpressed as:

ω = −kξuξ, (2.19)whereas ξ and uξ 
orrespond to the angle and axis of the rotation parametrization, respe
-tively. Contrary to the rotational motions the translational error is 
orre
ted dire
tly inthe image spa
e:
v = −J+

vt(k∆ft + Jvωω), (2.20)
Jvt and Jvω 
orrespond to separated Ja
obians for the translational and rotational motionsand Jvξuξ

is the separated Ja
obian for angle and axis of rotation parametrization. ∆ftis de�ned by the error in the image spa
e 
aused by a translational deviation from thedesired view. The 
ontrol law is de�ned analogous to equation 2.15 as follows:
ṙ = −kJ+∆f with ∆f = (ft, ξuξ) and J =

[

Jvt Jvω

0 Jvξuξ

]

. (2.21)Note that Jvt and Jvω are expressed similar to the general J with the major advantagethat the distan
e z to the obje
t is expressed in terms of the ratio t
d
obtained by thehomography de
omposition. Image-based visual servoing based on Ja
obian shows lo
alasymptoti
 stability, whereas 21

2
D visual servoing a
hieves even global asymptoti
 stability.Visual servoing with de
oupled image moments: This is referred to as "partitionedvisual servo" in the 
lassi�
ation from [25℄. Visual servoing by image moments is investi-gated by [45, 69℄ using the distan
e between two image points as well as their orientation.
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ted image regions are introdu
ed by [151℄. Themotivation for de
oupled image moments is to �nd an intera
tion matrix, whi
h establishesa one-to-one relationship between image moments and their degrees of motion, resultingin a simple linear 
ontrol problem. Analogous to the hybrid visual servoing the rotationaland translational degrees of freedom should be 
ompletely de
oupled resulting in a smooth
onvergen
e in the 3D task spa
e. [143℄ des
ribes image moments using 
oplanar 
losed
ontours, whi
h enable a de
oupled 
ontrol s
heme if the obje
t is orientated parallel tothe image plane. Re
ently these ideas where extended by [145℄ showing a dependen
e ofthe few remaining o�-diagonal 
ouplings with the obje
t shape. [9℄ presents visual servoingby photometri
 moments des
ribing the global appearan
e. The authors in [116℄ employvisual servoing with de
oupled image moments for 
ontrolling the position and orientationof a quadrotor relative to observed landmarks on the ground.Visual servoing on epipoles: Visual servoing based on epipolar geometry is �rst intro-du
ed by [124℄. Using the epipolar 
onstraint the error is de�ned as the distan
e of aninterest point to its appropriate epipolar line in terms of ai and bi, 
orresponding to the u-and v-dire
tion, respe
tively. The 
ontrol law is de�ned as:
ṙ = −KJe

+∆f with Je = [ai, bi]J. (2.22)[120℄ extends this idea by employing multi-view visual servoing dire
tly on the epipoles,whi
h bene�ts from three images taken during a training stage. The set of referen
e images
onsists of a desired image and two additional referen
e views taken from two distin
tvantage points. The visual servoing 
ontrol law de�nes the error in terms of the di�eren
ebetween the epipoles from the desired view [e1ref , e
2
ref ]

T and the epipoles [e1a, e2a]T from thea
tual image onto the two additional referen
e views (proje
tion of the opti
al 
enter ofthe �rst 
amera onto the se
ond 
amera). Therefore two essential matri
es E are estimatedduring ea
h 
ontrol 
y
le. Nonetheless the 
ontrol 
ompletely de
ouples translational androtational motions, in whi
h the rotational 
ontrol is primarily used to keep the features inthe �eld of view. This approa
h is less promising regarding servi
e roboti
s be
ause threereferen
e images are required in 
onjun
tion with sequential estimations of E.Appearan
e based visual servoing: Appearan
e based visual servoing (dire
t visualservoing) is 
lassi�ed as an image-based visual servoing method, whereas the appearan
eof the obje
t (
f. se
tion 2.2) is dire
tly provided as input to the 
ontroller instead ofextra
ted point features. An approa
h based on angular 
olor 
oo

urren
e histograms in
onjun
tion with reinfor
ement learning satisfying the 
ontinuous a
tion and state spa
erequirement is su

essfully demonstrated by [80℄. An agent learns online the optimal poli
y
π(s, a) whi
h is de�ned as: π(s, a) = argmaxaQ(s, a), whereas the a
tion value fun
tionQ(s, a) 
ontains the mapping from obje
t appearan
es s (angular 
olor 
oo

urren
e his-tograms) to the 
ontrol a
tion a in order to rea
h the grasping pose. [37℄ 
aptures theappearan
e of an obje
t by a PCA (Prin
iple Component Analysis) in order to redu
ethe high dimensionality of the intensity image followed by an o�ine training stage for theintera
tion matrix. These methods initially require an obje
t re
ognition step as well as a
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ontinually a

urate obje
t segmentation during visual servoing for obje
t manipulation.The latter is di�
ult to a
hieve in textured environments. A novel approa
h referred to asluminan
e based visual servoing is presented in [30℄, performing the visual servoing dire
tlyon the image intensities. The error ∆f is thereby de�ned by the di�eren
e of all intensitiesbetween the 
urrent image I and the referen
e image Iref while the intera
tion matrix Jais determined in terms of the 2D motion 
onstraint from equation 2.13:
∂I(u, t)

∂t
= −∇I(u, t)v ⇒ Ja = −(∇IuJ(u̇) + Iv∇J(v̇)). (2.23)By reformulating the visual servoing as an optimization problem, the 
ontrol law using theLevenberg-Marquardt optimization algorithm is de�ned as follows:

ṙ = −k(Ja
TJa + µ diag(Ja

TJa))
−1Ja

T (I− Iref ), (2.24)where the parameter µ is 
hosen in dependen
e of the 
ost fun
tion in order to swit
hbetween steepest des
ent and Gauss-Newton optimization. Although luminan
e basedvisual servoing is quite promising, it requires obje
t re
ognition and segmentation. Thisrenders the approa
h solely suitable for mobile navigation. Nonetheless appearan
e basedvisual servoing is a novel re
ently emerging bran
h within the �eld of visual 
ontrol e.g.for mi
ropositioning of mi
roele
trome
hani
al stru
tures [144℄ and is a promising avenueas it is presumably 
lose to human obje
t re
ognition and manipulation.Visual servoing with stru
tured light: Visual servoing with stru
tured light ratherdes
ribes the exploitation of a
tive visual sensors than a
tually representing novel visualservoing 
on
epts. The authors in [117℄ propose a 
amera setup with four laser pointers(stru
tured light) for visual servoing relative to planar obje
ts. The stru
tured light notonly eases the feature extra
tion stage, enabling the 
ontrol also for obje
ts with homo-geneous surfa
es, but additionally allows for de
oupled visual servoing 
lose to the goalposition by image moments resulting in a good task-spa
e traje
tory. This methodologytherefore falls under the 
ategory of visual servoing with de
oupled image moments. Thetask of automati
 seam �lling in the 
ontext of air
raft 
onstru
tion is solved by [63℄ witha hybrid visual servoing s
heme with stru
tured light. Hybrid 
ontrol with stru
tured light
ombines position-based visual servoing, whi
h lo
ally re
onstru
ts the pose between tooland workpie
e to regulate the robot perpendi
ularly to the workpie
e's surfa
e, with image-based visual servoing used for 
entering and tra
king the seams to be �lled. The 
on
eptof enfor
ing texture by stru
tured light onto homogeneous obje
t regions is promising, asit transforms the passive sensor 
amera into an a
tive sensor system. Utilizing stru
turedlight in the visible range is questionable for servi
e roboti
s and therefore not followed inthe 
ontext of this thesis. Time-of-Flight (ToF) [84℄ 
ameras additionally provide depthinformation for the 2D image plane, but at the 
ost of low 
amera resolution and highpower 
onsumption. Be
ause of the low resolution and the 3D information these 
amerasare suited for low demanding PBVS [122℄ and might have their main appli
ation area inautonomous navigation.
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hara
terization of the di�erent visual servoing 
on
epts leads to the appraisal of visualservoing 
on
epts stated in se
tion 1.3 and summarized in �gure 1.3. Visual servoing withde
oupled image moments ex
ellently 
omplies with the servi
e roboti
 spe
i�
ations. Thethree-stage design methodology for vision and 
ontrol appli
ations presented in [113℄ isapplied for systemati
ally development of visual servoing with de
oupled image moments,whi
h is 
onform with design methodology for me
hatroni
 systems [150℄.2.5 Experimental systems for visual servoing, naviga-tion and lo
alizationThis se
tion des
ribes the fundamentals and the set-ups of the di�erent experimental sys-tems used in this thesis. The mobile platform Pioneer 3-DX from MobileRobots In
. in
onjun
tion with a 5 DOF manipulator Katana 6M from Neuroni
s is used to a
hieve mo-bile manipulation in indoor o�
e environments. To evaluate the visual obje
t manipulationin 6 DOF, the proposed visual servoing s
hemes are applied to an industrial manipulatorRV 20-16 from Reis whi
h is introdu
ed as well.A mobile platform of the type Pioneer 3-DX is employed in the 
ourse of this thesis forthe transition of vision guided to visual navigation as presented in 
hapters 3 and 4. Itpossesses a ring of eight forward and rear sonar sensors, be
ause sonar is a�ordable androbust. These sensors are indispensable as a ba
k-up sensor in the 
ase that the visualper
eption fails. The experimental set-up is equipped with a Si
k Laser ranger LMS 200(
f. �gure 2.3). The robot is additionally equipped with the Pan-Tilt-Zoom 
amera (PTZ
amera) VC-C4 from Canon as well as an omnidire
tional 
amera system 
onsisting of a
amera DFK-31AF03 from Imaging Sour
e and a D40 opti
. The platform Pioneer 3-DX isa two-wheel di�erential-drive robot with an additional 
astor wheel for stabilization. Therobot kinemati
s is non-holonomi
 as it possesses fewer lo
al degrees of freedom than itsglobal state spa
e. The motion of the di�erential drive robot is restri
ted to translationalong its 
urrent heading and rotations around the verti
al axis, but it is unable to movesideways. The robot state is de�ned by [xR, zR, θR]
T in order to 
omply with the usual
amera 
oordinate frame. The z-axis is along the robot's dire
tion of motion, the x-axis ishorizontally orientated and the y-axis of robot and 
amera rotation is verti
ally orientated.The di�erential drive robot motion is des
ribed by a velo
ity motion model as

x(k + 1)R = x(k)R + vR∆t sin(θR) (2.25)
z(k + 1)R = z(k)R + vR∆t cos(θR)

θ(k + 1)R = θ(k)R + ωR∆t,where vR and ωR denote the translational and rotational velo
ity of the robot. Alternativelyan odometry motion model is applied in this thesis, whi
h uses the odometer measurementsin order to 
ompute the robot's pose.
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)

Figure 2.3: a) Mobile Platform equipped with sonar rings, laser range �nder, omnidire
-tional and PTZ 
amera; b) Katana 6M from Neuroni
s; 
) RV 20-16 from Reis.The robot arm Katana 6M is employed in this thesis for developing a novel visual servo 
on-troller for obje
t manipulation. It is a �ve degree of freedom (DOF) serial-link manipulatoras shown in �gure 2.3 b). The arm is equipped with a two-�nger gripper at the end-e�e
torwith �ve integrated infrared (IR) proximity sensors and for
e sensors. The forward kine-mati
s, whi
h determines the position and orientation x of the end-e�e
tor as a fun
tionof the joint angles q is de�ned as: x = k(q). x is de�ned as [x, y, z, α, β, γ], whereas
[x, y, z] des
ribes the pose in Cartesian 
oordinates and [α, β, γ] the rotation around the x,
y and z axes (roll, pit
h, yaw). The inverse kinemati
s 
onsists of the determination ofthe appropriate joint angles to a spe
i�ed end-e�e
tor position: q = k−1(x). As most ofthe thesis is 
on
erned with visual servoing, whi
h implies velo
ities in the task spa
e, thedi�erential kinemati
s are essentially de�ned by: ẋ = Jdk(q)q̇. The implemented forward,inverse as well as the di�erential kinemati
s in
luding a 
ollision dete
tion are state of theart and therefore assumed to be known. These fun
tionalities and terms are used in thethesis without further explanations.The industrial robot RV20-16 from Reis is a six degree of freedom manipulator with amaximum payload of 16 kg. The absolute positioning error is about one to two mmand the repeatability is spe
i�ed with 0.05 mm. The RV20-16 is depi
ted in �gure 2.3
). The Katana 6M as well as the industrial robot RV20-16 are used for visual servoingfor obje
t gripper alignment as des
ribed in 
hapter 5 and 6. Additionally the graspingand manipulation of daily obje
ts with the Katana 6M for servi
e roboti
 appli
ations isdes
ribed in [81℄ using the presented 
ontrol s
hemes.



Chapter 3
From vision guided to visual navigationof mobile robots
This 
hapter investigates the possibility to represent the set of required behaviors for topo-logi
al navigation in unstru
tured indoor environments solely due to an omnidire
tional
amera. Starting point for the investigations is the vision guided navigation s
heme basedon sonar and laser presented in [114℄ with a topologi
al map without prior stru
turingof the environment. As a repla
ement for the distan
e sensors the omnidire
tional imageprovides the stimuli for a novel obsta
le avoidan
e by means of several re
onstru
ted per-spe
tive views, from whi
h a 
on�den
e rated time to 
onta
t is extra
ted [112℄. A visualdoor passing behavior is treated in a 
oherent purely vision-based framework [121℄.Examples and an overview for visual behaviors are provided in se
tion 2.3. Inspirationalfor the following investigations is the fundamental work by [27℄ of implementing visualbehaviors based on a mono
ular 
amera. The target of the following investigations is torepresent as far as possible all required visual behaviors for indoor o�
e navigation solelyby omnivision (
f. se
tion 2.1) due to its inherent advantages su
h as its 360◦ �eld ofview 
ontrary to other approa
hes e.g. [29, 28℄. Additionally the design of the behaviorsis mandatory to be model-free to operate in unstru
tured environments. Using a moresophisti
ated 
amera system a 
omplete framework for visual navigation is provided in thefollowing requiring no arti�
ial stru
turing of the environment.This 
hapter is organized as follows: Vision guided navigation is introdu
ed as a startingpoint in se
tion 3.1 with topologi
al lo
alization using omnivision and rea
tive behaviorswith distan
e sensors. The door passing behavior is des
ribed in se
tion 3.2. Visualbehaviors for obsta
le avoidan
e and 
orridor 
entering using omnivision are des
ribed inse
tion 3.3 and investigated during an experimental evaluation.29



30 3.1 Vision-guided navigation3.1 Vision-guided navigationVision-guided navigation pursues a learning by demonstration s
heme for the topologi
alnavigation. A

ording to the hybrid 
ontrol ar
hite
ture depi
ted in �gure 1.2 the stimulifor the rea
tive layer is provided by range sensors, whereas the planning layer per
eivesits lo
al environment by means of an omnidire
tional 
amera. The experimental platformis a Pioneer 3DX mobile robot equipped with a 2D laser s
anner, an omnidire
tional
amera system and a ring of sonar sensors (
f. �gure 2.3 a)). The distan
e sensors (laser,sonar) 
apture the lo
al environment of the robot and provide the stimuli for the obsta
leavoidan
e, the 
orridor 
entering, the door dete
tion and the door passing behavior. Therobot lo
alizes itself within a topologi
al map based on dete
ted 
orresponden
es betweenomnidire
tional views.3.1.1 PlanningThe presented method for vision-guided navigation requires a learning phase in whi
h agraph is 
reated o�ine (�gure 3.1). A topologi
al map represented by a dire
ted graphforms the basis of path planning and navigation. In this representation of the o�
e en-vironment nodes in the graph 
onstitute waypoints and are asso
iated with distin
tivevisual features. The visual features are later re
ognized in the 
urrent 
amera image andenable a unique asso
iation with nodes in the topologi
al map by �nding 
orresponden
eswith stored features. During the learning phase the robot is guided manually through theenvironment, and at relevant lo
ations for navigation the 
orresponding SIFT features areextra
ted and added as nodes to the topologi
al map. Neighboring nodes are 
onne
tedvia edges in the graph. It is assumed that navigation between 
onne
ted waypoints doesnot require lo
alization but is entirely a

omplished by means of rea
tive behaviors su
has 
orridor following and door passing. Depending on the type of neighboring relationshipthe planning layer engages the 
ombination of rea
tive behaviors that is suitable in the
urrent 
ontext, e.g. door passing and obsta
le avoidan
e for a pair of waypoints 
onne
tedthrough a door. Topologi
al path planning is redu
ed to graph sear
h, whi
h is solved bythe 
ommon Dijkstra algorithm [40℄. The 
ontext of an edge depends on the type of 
on-ne
tion between waypoints, and the 
oordination layer, depending on the 
ontext providedby the planning layer, a
tivates the following subsets of rea
tive behaviors:
• Corridor: obsta
le avoidan
e, 
onstant velo
ity and 
orridor 
entering
• Door passing: obsta
le avoidan
e, 
onstant velo
ity, door passing and homing
• Open spa
es (in analogy to 
orridor): obsta
le avoidan
e, 
onstant velo
ity and, ifrequired, homing
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Figure 3.1: Vision-guided navigation: learning by demonstration o�ine (white ba
kground)and 
ontext dependent 
hoi
e of behavior online (grey ba
kground).3.1.2 Topologi
al lo
alizationIn order to generate a topologi
al map the robot is guided through its environment in ademonstration while referen
e images of the lo
al surroundings are 
aptured at distin
tivelo
ations su
h as doors or jun
tions. Waypoints are unambiguously des
ribed by the SIFTfeatures dete
ted in the omnidire
tional image of the 
orresponding environment similarto [2℄. Figure 3.2 depi
ts an omnidire
tional image with the 
orresponding dete
ted SIFTfeatures. Neighboring waypoints in the image are asso
iated with nodes 
onne
ted viaedges in the graph. Lo
alization in the topologi
al map is a
hieved by similarity of the
urrent view with the referen
e images 
aptured during demonstration. The high density ofSIFT features in natural environments allows to introdu
e waypoints at arbitrary lo
ationsin the desired density without expli
it referen
e to spe
i�
 landmarks. The SIFT featuresdete
ted in the 
urrent view are 
ompared with those stored in the database. The measureof similarity between two lo
ations is expressed by the relative frequen
y of 
orrespondingSIFT features in the 
urrent and referen
e image. To a
tivate a node, ten topologi
ally nextneighbors of the last traversed node are 
ompared with the SIFT features of the 
urrent
amera image. This neighbor sear
h enables a 
ontinuing lo
alization, even if the next node
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Figure 3.2: Omnidire
tional 
amera image with blind spot and extra
ted SIFT features.a

ording to the plan is not identi�ed or missed. However, this rare non-identi�
ation of atopologi
al node in pra
ti
e only o

urs if a large majority of the features is o

luded at thewaypoint. The method is also suited without restri
tion for global lo
alization of the robot,whereas the 
omputing time for initial 
omparison of the 
urrent view with all stored viewsin the database in
reases a

ordingly. The measure of similarity between SIFT features isobtained as explained in 
hapter 2.2. A waypoint is re
ognized if at least 20% of the featuresin the 
urrent view are in agreement with those of a referen
e view in the database. Ifseveral topologi
al nodes ex
eed this threshold at the same time, the node with the highest
orrelation is sele
ted. Simultaneous ex
eeding of this threshold value only o

urs in 
ase ofvery small distan
es of the nodes, i.e. below 30 
m. If the 
orresponden
e is larger than 10%but smaller than 20%, a node is re
ognized if the similarity of the node with the highest
orrelation is at least twi
e as high as the one with the se
ond highest 
orrelation. Inorder to evaluate the performan
e and robustness of the proposed s
heme the robot travelsalong a 
orridor passing ten previously demonstrated waypoints as depi
ted in �gure 3.3.The waypoints are distributed in front of the doors in order to a
tivate the door passingbehavior if the appropriate door to be passed a

ording to the plan is rea
hed. The nodesare sequentially a
tivated in the right order, indi
ated by the �lled out dots in �gure 3.3b), 
) and d), during a navigation through the 
orridor under di�erent light 
onditions.The lo
al resolution of the lo
alization is obviously based on the high a
tivation level ofthe nodes only in the vi
inity of the waypoints. The robustness of the method is evident,as all passed waypoints are re
ognized reliably while the 
orresponding door hypothesesare 
reated.
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e [m℄. .Figure 3.3: Spe
i�
ity of SIFT features for varying illumination and surroundings: a)Metri
 map of the 
orridor with waypoints in front of the doors; b) Node a
tivation foridenti
al illumination 
onditions; 
) Node a
tivation for di�erent illumination 
onditionsand lateral distan
e to the 
apture point of one fourth of the 
orridor width; d) Nodea
tivation for strongly 
hanged illumination 
onditions (di�erent time of day, 
losed doors).Rea
tive behaviors with distan
e sensors: A set of 
on�gurable fuzzy behaviors isdesigned a

ording to [128℄. The goal-oriented navigation results from the intera
tion of
onstant velo
ity, homing, 
orridor 
entering, obsta
le avoidan
e and door passing behav-ior. Details of the fuzzy behavior representation of these behaviors 
an be found in [61℄ aswell as the behavior 
oordination. The design of a rea
tive door passing behavior as wellas a detailed des
ription of the performan
e and robustness of vision-guided navigationis dis
ussed in [114℄. A video of the experimental evaluation of vision-guided navigationin
luding lo
alization, rea
tive behavior 
oordination and door passing 
an be downloadedfrom the website of the department [126℄. The transition from vision-guided to vision-based navigation is subje
t of the following 
hapter in whi
h the behaviors are represented



34 3.2 Visual behavior for door passinginstead of distan
e measurements solely by means of visual per
eption primitives su
h asopti
al �ow and texture.3.2 Visual behavior for door passingVisual door traversal is a vital skill for autonomous mobile robots operating in indoorenvironments. An omnidire
tional view o�ers the advantage that an initial s
an of the en-vironment for doors by rotating the robot base be
omes obsolete. In addition the omniviewguarantees that the door remains visible throughout the entire door traversal whereas witha 
onventional perspe
tive 
amera the door eventually leaves the �eld of the view su
h thatthe �nal stage of door traversal is performed in open loop 
ontrol. The omniview also o�ersan advantage in s
enarios with semi open doors in whi
h the robot still dete
ts the doorin the rear view after it has passed the door leaf. The obje
tive of the approa
h presentedin [121℄ is to provide a robust solution of the entire door dete
tion and navigation problemrelying on omnidire
tional vision only. The vision-based door re
ognition and traversalproblem is stru
tured into the three steps of door dete
tion (a), door lo
alization andtra
king (b) and door traversal (
) as shown in �gure 3.4, whi
h are shortly summarized.
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king. 
) Door passing.Figure 3.4: Visual door passing behavior [121℄.a) Door dete
tion: Images 
ontain a large amount of information whi
h ne
essitatesthe �ltering, extra
tion and interpretation of those image features that are relevant to thevisual door dete
tion. The door dete
tion is 
omposed of three subsequent fundamentalsteps: image pro
essing, line pro
essing and door frame re
ognition. The image pro
essinginvolves edge dete
tion, thinning, gap bridging, pruning and edge linking. Afterwardsthe line pro
essing aggregates individual edge segments into 
ategorized lines by means ofline approximation, line segmentation, horizontal and verti
al line sele
tion as well as linemerging. Similar to other approa
hes in the past the door dete
tion s
heme relies on adoor frame model 
omposed of two verti
al door posts in 
onjun
tion with a horizontal topsegment. The �nal step in the door dete
tion 
omprehends the mat
hing between plausible
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ombinations of verti
al and horizontal lines with multiple potential door frame patterns.These door patterns are inspired by the work of [103℄, whi
h de�nes simple and doubledoor frames.b) Door lo
alization and tra
king: Door lo
alization estimates the robot's 
urrent pose
(xR, zR, θR) with respe
t to the door 
oordinate system. In 
ase of mono
ular 
ameras therobot pose is usually re
overed by triangulation of features a
ross multiple 
aptures takenfrom di�erent viewpoints. In the literature this lo
alization s
heme is known as bearingonly lo
alization. The built-in odometry estimates the relative robot motion between
onse
utive viewpoints. Sin
e both the measurement and the motion are subje
t to noiseand errors, the robot position with respe
t to the door is estimated with an ExtendedKalman Filter (EKF) [152℄. The state predi
tion of the EKF relies on the odometrymotion model, whi
h des
ribes the relative robot motion between two 
onse
utive poses[147℄. The initial two 
onse
utive door dete
tions are used to initialize the states and
ovarian
es of the Kalman �lter. Afterwards the door lo
alization is based on sequentialpredi
tion and update steps.
) Door passing: Typi
ally the door is �rst dete
ted in the image on
e the robot is abouttwo to three meters away from the door. The door is tra
ked 
ontinuously by means of theKalman �lter and the robot 
ontinues its motion parallel to the 
orridor until the robotis lo
ated laterally with respe
t to the door 
enter. At this instan
e the robot stops andturns 90◦ towards the door, 
ontinuously tra
king its relative orientation. Before initiatingthe traversal the open door state is veri�ed from a sequen
e of images by extra
tion of thetime to 
onta
t and the texture. A homogeneous texture indi
ates a 
losed door, whereasrandom texture implies an open door. A large time to 
onta
t guarantees safe traversal.The robot traverses the door at 
onstant velo
ity by 
entering itself with respe
t to the
ontinuously tra
ked door posts. The visual servoing 
ontrols the robot's turn rate su
hthat both door posts remain equilateral in the omnidire
tional view. The Kalman �lter isno longer applied as the depth information be
omes unreliable at 
lose range and is notneeded for guiding the robot through the door.The algorithm is tested on 1000 manually labeled images taken from video sequen
es
aptured in the o�
e environment of the department. Most images 
ontain multiple doors,su
h as the s
enario in �gure 3.4 with three su

essfully dete
ted and validated doors. Falsepositives in single images for doors amount to 3%, false negatives o

ur 5% of the time[121℄. To render the dete
tion algorithm even more robust, the door frames are tra
kedover 
onse
utive images during the motion. Initial false positives are eventually reje
tedin subsequent 
aptures. This validation step is of parti
ular importan
e for the Kalman�lter lo
alization.



36 3.3 Visual behaviors for 
ollision-free navigation3.3 Visual behaviors for 
ollision-free navigation3.3.1 Corridor 
enteringCorridor 
entering behavior has a strong resemblan
e with the visual-motor behavior ofhoney bees. Bees �y by balan
ing the opti
al �ow generated in the lateral portion of theopti
 array of both eyes. This strategy enables them to �y exa
tly in the 
enter of a tunnel.The 
orridor following behavior balan
es the magnitude of the opti
al �ow generated onboth the left and right hemisphere of the omnidire
tional 
amera to drive the robot towardsthe 
enter of the 
orridor [32℄. A simple but robust 
ontrol law results from the 
omparisonof the magnitude (its maximum) of the opti
al �ow in the left and right hemisphere [u̇, v̇]Tleftand [u̇, v̇]Tright, respe
tively:
∆ΘR = k(max([u̇, v̇]Tleft)−max([u̇, v̇]Tright)). (3.1)It is based on the assumption that the region whi
h generates a larger opti
al �ow 
on-tains obje
ts in 
loser proximity to the robot than the opposite side. In equation 3.1 ΘRdes
ribes the rotation and k is a proportional gain fa
tor. The 
orridor following with theomnidire
tional 
amera dete
ts the opti
al �ow a
ross an angular region of 45◦ to 135◦ onboth sides of the translation dire
tion for balan
ing.3.3.2 Obsta
le avoidan
e by opti
al �owTo avoid obsta
les in front of the robot the time to 
onta
t is estimated from the diver-gen
e of the opti
al �ow onto an image grid from the re
onstru
ted perspe
tive frontalview. Time to 
onta
t estimates are fused with the 
on�den
e in the respe
tive visualinformation, namely the lo
al varian
e of opti
al �ow and statisti
al analysis [112℄. Bothtogether determine the desirability and safety of traveling in the 
orresponding dire
tion.Os
illatory movements of the robot are prevented by re
onstru
tion of two additional pe-ripheral views for whi
h the time to 
onta
t is measured solely by opti
al quantities, e.g.the obje
t's viewing angle and its derivative. A general overview of methods for opti
al�ow extra
tion based on a time sequen
e of images is given in 
hapter 2.3. A

ording tothe performan
e evaluation of opti
al �ow te
hniques for indoor navigation with a mobilerobot, the approa
h from Lu
as and Kanade a
hieves the best results in terms of a

ura
y,e�
ien
y and robustness [96℄. Therefore the Lu
as-Kanade pyramid algorithm from [17℄is used whi
h provides a sparse but more a

urate opti
al �ow �eld 
ompared to otherdi�erential, intensity based methods, even for large opti
al �ow.The obsta
le avoidan
e behavior guides the robot reliably towards obsta
le-free regions and
ir
umnavigates obje
ts in the vi
inity of the robot or regions a�i
ted with un
ertainty
on
erning visual per
eption. Figure 3.5 a) shows the omnidire
tional 
amera view of a
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orridor. In the 
ase of obsta
le avoidan
e as well as turn around behavior to avoid un-
ertain and potentially 
riti
al spa
es initially three perspe
tive views are re
onstru
ted asshown in �gure 3.5 b) [119℄. The frontal view a

omplishes 
ollision avoidan
e with obje
tsin front of the robot, whereas the peripheral views 
ontribute to the general stabilizationof the robot's motion. The opening angle of the omnidire
tional 
amera for perspe
tive
onstru
tion is approximately 75◦. The resolution of the re
onstru
ted frontal view is 200by 90 pixels. The �eld of view is partitioned into a grid of 10 by 5 windows 
orrespondingto di�erent viewing dire
tions of the robot (
f. �gure 3.5 b). The upper number in the 
ellview 
orresponds to the time to 
onta
t estimates in se
onds and the lower number is the
on�den
e into the time to 
onta
t estimate.. .
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a) b)peri-pheralview frontal view peri-pheralview opti
al �ow image regionswith 
on�den
e
ttc
onf ttc
onf

preferen
es de
ision0.7 2.21 3.37 3.67 3.31 0 0 0 0 0 0 0. .Figure 3.5: a) Omnidire
tional image; b) Re
onstru
ted perspe
tive views and orientationpreferen
es based on the time to 
onta
t (ttc) and 
on�den
e.The stimulus of the obsta
le avoidan
e behavior is the time to 
onta
t (ttc), whi
h isestimated from the opti
al �ow ve
tors in the image. From the divergen
e of the opti
al�ow �eld the time to 
onta
t is derived [31℄ a

ording to:
ttc =

z

vRz

=
2

∇( ˙̂u, ˙̂v)
with ∇( ˙̂u, ˙̂v) =

∂ ˙̂u

∂û
+

∂ ˙̂v

∂v̂
. (3.2)This equation indi
ates that estimating the time to 
onta
t only depends on the opti
al�ow, but requires no knowledge or estimation of the s
ene depth z and vRz

. [31℄ usesdi�erent symmetri
al divergen
e templates to 
al
ulate the divergen
e of the opti
al �ow fora dense opti
al �ow �eld. This method fails when the opti
al �ow �eld is not dense enoughto 
al
ulate the derivative along the normal dire
tion. Contrary to the analysis above, theproposed approa
h does not assume that the divergen
e is determined for the proje
tion
enter, but that the lateral 
hange of motion is small 
ompared to the depth of the s
ene,thus allowing for the image-segmented estimation of the divergen
e and 
onsequently thetime to 
onta
t as well. A derivation of equation 3.2 for these spe
i�
ations is found in
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ollision-free navigationappendix A. Hen
e, an approa
h for sparse opti
al �ow �elds is proposed where all theopti
al �ow pairs found within a 
on�ned neighborhood 
ontribute to the 
al
ulation ofthe divergen
e of the parti
ular �ow ve
tor under 
onsideration. The neighborhood arounda single �ow ve
tor is de�ned by a window of �nite size formally referred to as a pairingwindow. The pairing window approa
h involves estimation of divergen
e of an opti
al �owve
tor by 
al
ulating the average divergen
e a
ross all individual �ow �eld ve
tors withina neighborhood window. The size of the pairing window and the density of the �ow �elddetermine the a

ura
y of the divergen
e estimate. A pairing window 
orresponds to onesingle image region depi
ted in �gure 3.5 b). Equation 3.3 
omputes the divergen
e forea
h pairing window ∇pw, indi
ated by the subs
ript pw:
∇pw(u̇, v̇) =

1

(n− 1)!

(n−1)!
∑

i=1

(

∂u̇i

∂ui
+

∂v̇i
∂vi

)

=
1

n

n−1
∑

i=1

n
∑

j=i+1

(

u̇i − u̇j

∆uij
+

v̇i − v̇j
∆vij

)

. (3.3)
n is de�ned by the number of opti
al �ow ve
tors, resulting in (n − 1)! di�erent pairingsto be 
onsidered. For ea
h pair the individual divergen
e is 
al
ulated and aggregated intothe divergen
e of the pairing window ∇pw. The individual divergen
e is 
al
ulated fromnormal opti
al �ow ve
tors u̇i, v̇i and u̇j, v̇j along their respe
tive dire
tions u and v.For the peripheral view (�gure 3.5) the time to 
onta
t is estimated in a di�erent way, asthe fo
us of expansion lies outside the peripheral view. Therefore the alternative approa
hinspired by [87℄ determines the time to 
onta
t based on the temporal evolution of thedire
tion of the opti
al �ow. The advantages of this approa
h 
onsist on the one hand inthe estimation of the time to 
onta
t solely via opti
al quantities su
h as the angle andits temporal derivative. On the other hand the work spa
e is 
omplementary to determinethe time to 
onta
t by means of the divergen
e of the opti
al �ow. The time to 
onta
tis derived by di�erentiating the geometri
 relation: d = z tan(φ), in whi
h φ denotes theorientation of the obsta
le in robo
entri
 
oordinates, z the distan
e 
omponent to theobsta
le in driving dire
tion of the robot and d the distan
e 
omponent perpendi
ular tothe driving dire
tion. The temporal derivative yields d/dt(d) = zφ̇ cos−2(φ)+ ż tan(φ) = 0.Thus, the time to 
onta
t for obsta
les in both peripheral �elds of view is given by:

ttc =
cosφ sinφ

φ̇
. (3.4)[92℄ employs the same de�nition to dete
t obsta
les, to obtain their range and to modelthe environment by means of 
orners in the perspe
tive 
amera image.The information 
ontent and the reliability of the pure time to 
onta
t is in
reased byestimating the 
on�den
e of the 
urrent per
eption. For ea
h single 
ell of the grid a degreeof 
on�den
e is determined by means of the varian
e of the individual measurements ofthe opti
al �ow within a window a

ording to:

confseg(i,j) =
1

n

m
∑

nv=1

{

1− 1
σ
abs(ttcnv − µ(i,j)) , if (ttcnv − µ(i,j)) < σ

0 otherwise . (3.5)



Chapter 3 Visual navigation of mobile robots 39Here ttcnv 
orresponds to one of the m total time to 
onta
t estimates that are 
omputedfrom the 
orresponding �ow ve
tors in the window confseg(i,j) with the row and 
olumnposition (i, j) of the 
ell. µ(i,j) designates the mean of the time to 
onta
t values in asegment and σ is the standard deviation of the data set. If there are no time to 
onta
tvalues or opti
al �ow in the 
ell under 
onsideration, then the time to 
onta
t is assignedto zero. Grids with a time to 
onta
t value equal to the mean time to 
onta
t are alsogiven zero 
on�den
e, implying the absolute 
on�den
e about the presen
e of an obsta
le.Due to the adaptive �tting of σ homogeneous �elds obtain distin
tly more 
on�den
e thaninhomogeneous 
ells. For a homogeneous �eld of 
onsistent measurements the 
on�den
etends to one, whereas for the opposite 
ase of large and spurious values, representing noise,it tends to zero. If ttcnv−µ(i,j) < σ is not valid, the 
on�den
e of the 
orresponding windowis redu
ed to zero.The time to 
onta
t and its 
orresponding 
on�den
e values are fused within the grid
olumns representing the driving dire
tions. From these aggregated information �rst pref-eren
es for obsta
le-free dire
tions are 
reated and from these the turn rate and transla-tional velo
ity of the robot are 
omputed. Furthermore, the �nal re
ommendation for thedire
tion ΘRk
is in�uen
ed by the angular a

eleration 
ompared to the previous rotation

∆ΘRk−1
in order to guarantee a smooth rotation by averaging:

ΘRk
= argmaxj

(

ttcavgjconfavgj −∆ΘRk−1

)

, (3.6)in whi
h ∆ΘRk−1
denotes the di�eren
e between the new dire
tion and the robot's 
urrentheading, ttcavgj and confavgj are de�ned as the mean of the time to 
onta
t and 
on�-den
e values, respe
tively, of the j-th 
olumn. Apart from s
aling, the time to 
onta
t is
al
ulated in the same way for the peripheral views.The turn around behavior is responsible for the dete
tion of dead end situations, in whi
hthe robot 
annot 
ir
umnavigate the obsta
le but has to tra
k ba
k. This behavior initiatesa 180◦ turn in dead ends or so-
alled tri
ky 
orners for whi
h the opti
al per
eption indi
atesno save passage. This situation is re
ognized by an in
onsistent or nonexistent �eld of �owwith low 
on�den
e. On the other hand this behavior assumes the robot's 
ontrol in 
ase oflarge-area obje
ts without texture, be
ause the opti
al �ow does not provide informationdue to the la
k of 
ontrast. Planes without texture are abstra
ted as obsta
les and storedin a lo
al spatial memory until visual stimuli evaluated with su�
ient 
on�den
e reemergefor this region.3.3.3 Experimental results: Navigation with omnivisionThe behavior 
oordination involves a
tivation of the 
orre
t behavior at the right instan
e.Behavior sele
tion strongly depends on the 
urrent 
ontext of the robot [18℄. In this 
asea subsumption ar
hite
ture is employed. The main reason is that the visual information is



40 3.3 Visual behaviors for 
ollision-free navigationnot as reliable as the distan
e measurements. In textureless environments it is di�
ult toassess the distan
e of obsta
les from visual measurements. The subsumption ar
hite
tureshown in �gure 3.6 has a layered stru
ture, in whi
h ea
h layer is asso
iated with a spe
i�
behavior. The higher layers have the authority to subsume (indi
ated by s) and inhibitbehaviors in the lower layer. turn around
-

�
�

tri
ky 
orners?texturelessside walls? -


al
ulate newturning angle θand velo
ity v

-

found
riti
alsituation
?isobsta
le avoidan
e
apture imageand set initialvelo
ity -

extra
tionof opti
al�ow -


al
ulate ttcand 
on�den
ein frontal view -

- 
al
ulate newturning angle θand velo
ity v

-

avoid
riti
alsituation
?issupplementary behavior

-

extra
tionof visualinformation -

e.g.dete
t doorsor visual nodes -


al
ulate newturning angle θand velo
ity v

-

e.g.door passingor homing
orridor following
-


ompareleft and rightperipheral ttc -


al
ulatenew turningangle θ

-
?is
?motorsFigure 3.6: Subsumption ar
hite
ture with 
orridor following, obsta
le avoidan
e and turnaround behavior. Supplementary visual behaviors are indi
ated by dashed blo
ks.The most basi
 behavior is the 
orridor 
entering behavior in the lowest layer. It 
omparesthe opti
al �ow magnitude of the left and right hemisphere of the omnidire
tional 
amera.This behavior maintains a 
onstant translational velo
ity and only 
hanges the turningdire
tion. The intermediate layer 
onsists of the obsta
le avoidan
e behavior whi
h isa
tivated if the time to 
onta
t falls short of a threshold. The obsta
le avoidan
e behavior
ommands a turning dire
tion and a translational velo
ity. The translational velo
ity isproportional to the time to 
onta
t. On
e the obsta
le avoidan
e triggers, it subsumes thelower layer and overrides its output with its translational and rotational velo
ities vR and

ωR. The input for the motor 
ommands is repla
ed by the re
ommendations of the obsta
leavoidan
e. The turn around behavior has the highest priority. This behavior responds to
orners whi
h represent dead ends of the 
orridor or textureless wall segments and initiatesa 180◦ turn with a subsequent wandering into a new dire
tion. Furthermore, this behavior
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ludes a remember-sidewall 
omponent that remembers side walls or obsta
les dete
tedat previous instan
es and avoids them over the next n 
ontrol 
y
les. The turn aroundbehavior is based on the same measurements as the obsta
le avoidan
e layer. If a tri
ky
orner (i.e. a textureless region �lling the 
omplete �eld of view) is dete
ted, it blo
ksthe output of obsta
le avoidan
e from rea
hing the motors and suppresses the output of
orridor following. One major advantage of the subsumption ar
hite
ture is the ease ofintegrating supplementary visual behaviors su
h as door passing and visual homing asshown later on indi
ated by the additional dashed blo
k in �gure 3.6.
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le avoidan
e: traje
tory traversed by the robot; b) ttc and 
on�den
egrids with �nal de
ision.The experimental evaluation of the visual navigation is 
arried out with the same robot
on�guration and in same lo
ations as in the experiments des
ribed in se
tion 3.1 for vision-guided navigation (
f. also [114℄). In the following a prototypi
al s
enario is presentedwhi
h points out the operation of obsta
le avoidan
e (
f. �gure 3.7) by means of di�
ultsituations imposed on the robot. At the beginning of the experiment the robot is lo
ated
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ollision-free navigation
lose to the right wall of the 
orridor at a distan
e of 2m in front of a pillar whi
h is situatedin driving dire
tion, thus blo
king a part of the 
orridor, as depi
ted in �gure 3.7 a) whi
hshows the environment and the a
tual path traveled by the robot (a1-a6). The images onthe left side of the robot are the perspe
tive peripheral images from one side of the travelingdire
tion (for sake of 
larity only the left side is shown). The robot su

essfully evades theobsta
le without 
olliding with the 
orridor wall or the pillar. Figure 3.7 b) additionallyshows the frontal visual per
eption of the robot with the dire
tion re
ommendation for thetwo lo
ations a3 and a5. The entire frontal image view is partitioned into grids of size
20 by 20 pixels in whi
h ea
h grid estimates an average time to 
onta
t (upper value in�gure 3.7 b) and an asso
iated 
on�den
e (lower value, a

ording to equation 3.5). Forevery 
olumn the average of the time to 
onta
t and 
on�den
e is 
omputed. Finally, thegains of the two lateral planes on the left and the right 
ontribute towards the �nal gainwhi
h provides the de
ision variables for turning. The robot turns in the dire
tion of theregion with the highest overall gain value. At the waypoint a3 in �gure 3.7 the turn aroundbehavior inhibits the output of the obsta
le avoidan
e behavior, as 
on�den
e in the fourright 
olumns is low due to the la
k of texture of the 
orridor wall. In 
ase more thanthree 
olumns on one side exhibit a 
on�den
e of zero, the presen
e of a side wall or awall without texture is signalled. This pro
edure 
ompletely immunes the opti
al �ow onthe right side thereby avoiding the side wall and the pillar with the neighborhood regionaround it. The re
ommendations of the two neighboring 
olumns are also set to zero, sothat only the remaining dire
tions of the left hemisphere in�uen
e the �nal sele
tion ofthe heading dire
tion. From the set of 
andidate headings the fourth 
olumn of the lefthas the highest preferen
e, 
ausing a subsequent evasive maneuver of the robot to the
orridor 
enter. At the waypoint a5 all dire
tions possess su�
ient 
on�den
e in visualinformation, so that again the obsta
le avoidan
e behavior obtains sole 
ontrol over therobot. It advo
ates its maximal re
ommendation for the third 
olumn to the right withthe highest time to 
onta
t, in robo
entri
 view pointing towards the free 
orridor forthe 
urrent alignment of the robot. The 
orridor 
entering behavior is sensitive towardsinhomogeneous texture distribution in the right and left lateral �eld of view whi
h maylead to a lateral displa
ement of the robot 
ompared to the 
enter of the 
orridor, resultingin an os
illation of the robot motion around the 
orridor 
enter. The stability of the
orridor 
entering behavior 
an be improved by appropriate 
ontroller design to suppressdisturban
es 
aused by varying texture. Furthermore not all possible s
enarios for regionswith low texture 
an be 
ontrolled robustly by the turn around behavior.In this 
hapter visual behaviors via an omnidire
tional 
amera for mobile robot navigationin unstru
tured environments are introdu
ed. The next 
hapter des
ribes visual homing inorder to 
omplete the transition from vision guided to goal-orientated visual navigation.



Chapter 4
Global visual homing by visual servoing
As visual homing in a topologi
al map is mu
h more 
omplex than homing in a metri
 mapwith distan
e sensors this 
hapter espe
ially fo
usses on the design of visual homing to
omplete the visual navigation. The homing behavior with de
oupled navigation and gaze
ontrol with a virtual 
amera plane is �rst presented in [105℄. The topologi
al lo
alizationfrom se
tion 3.1 is extended to automati
ally sele
t optimal referen
e images for the visualhoming behavior. Thereby the advantages of visual input from a pan-tilt in 
onjun
tionwith an omnidire
tional 
amera are 
ombined for global visual homing. The time-optimalreferen
e feature and image sele
tion is provided by the omnidire
tional 
amera system[108℄ using the information from the topologi
al map, whereas lo
al pose 
onvergen
e isa
hieved by the pan-tilt 
amera.The presented work obeys the paradigm of topologi
al map-based navigation by a dire
tedgraph. Visual homing follows approa
hes from visual servoing presented in se
tion 2.4 withthe major di�eren
e that global 
onvergen
e towards the referen
e image is required evenif the features from the referen
e view are far away from the a
tual pose of the robot.Espe
ially the de
oupling strategy for navigation and gaze 
ontrol as well as the synergyof omnidire
tional and mono
ular 
amera are milestones for global visual homing for o�
eenvironments with minimal texture o�ering additional freedom for visual homing 
omparedto the s
hemes 
ited in se
tion 2.3.This 
hapter is organized as follows: The general 
on
ept for visual homing is des
ribedin se
tion 4.1 motivating the advantages of a de
oupled navigation and gaze 
ontrol bythe virtual 
amera plane. The virtual 
amera plane is des
ribed in se
tion 4.2 and thedi�eren
e between a verti
al and horizontal virtual 
amera plane is pointed out. In orderto utilize the virtual 
amera plane, the required gaze 
ontrol is summarized in se
tion 4.3.Di�erent approa
hes for visual navigation 
ontrol as well as their experimental evaluationare des
ribed in se
tion 4.4. The visual navigation behavior emerging from the individualvisual behaviors is presented in se
tion 4.5, whi
h 
on
ludes with an 
omparison of vision-43



44 4.1 General 
on
eptguided and vision-based navigation.4.1 General 
on
eptFigure 4.1 depi
ts the s
heme of visual homing behavior as well as the integration in thehybrid 
ontrol ar
hite
ture (
f. �gure 1.2). The visual homing for the subordinate rea
tivelayer is later on integrated in the subsumption ar
hite
ture from �gure 3.6 for fully visualnavigation of mobile robots. The major 
omponents of the visual homing behavior by largedata base
optimalreferen
esele
tion
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Figure 4.1: Large view visual servoing integrated in the hybrid 
ontrol ar
hite
ture.view visual servoing are: gaze 
ontrol, virtual 
amera plane, visual navigation 
ontrol aswell as the 
ommand fusion. The gaze 
ontrol guarantees that the image features remainin the 
amera's �eld of view. The virtual 
amera plane represents the mutual 
ontrol spa
ethereby de
oupling gaze from navigation 
ontrol. As gaze is 
ontrolled independently of therobot motion and the features are de�ned in a virtual 
amera plane, the visual 
ontrolleruses the same landmarks over a larger range of motion. Therefore, fewer visual landmarksare required to des
ribe a smooth path through the environment. The optimal exploitationof landmarks even enables visual navigation in environments with little texture e.g. o�
eenvironments and 
onsequently only few natural landmarks.



Chapter 4 Visual navigation of mobile robots 45Figure 4.2 demonstrates the advantages of a swiveling versus a �xed 
amera for visualnavigation. In �gure 4.2 a) the standard s
enario from literature is depi
ted, where the
amera is �xed relative to the robot motion, restri
ting the �eld of view whi
h results ina limited 
onvergen
e area of a landmark. In this 
ase this limitation is resolved by theindependent gaze and navigation 
ontrol resulting in a larger 
onvergen
e area of the samelandmark as depi
ted in �gure 4.2 b) and 
). An additional extension of this approa
h
ompared to standard approa
hes enables the robot to navigate towards (�gure 4.2 b))as well as parallel to a landmark (�gure 4.2 
)) whi
h is parti
ularly useful for traversing
on�ned indoor spa
es su
h as 
orridors. In order to 
ontrol the robot motion independentlyof the gaze the observed features are transformed from image into virtual 
amera plane.a) b) 
)goal pose

urrent pose 
urrentpose goalposerobot orientation
amera orientationFigure 4.2: Visual servoing for navigation of mobile robots: a) Fixed 
amera; b) De
oupledgaze and navigation 
ontrol for navigation towards a landmark using a swiveling 
amera;
) De
oupled 
ontrol for navigation parallel to a landmark.Three di�erent approa
hes for navigation 
ontrol on the virtual 
amera plane are inves-tigated: (a) image Ja
obian, (b) image moments and (
) a 
ombination of partial s
enere
onstru
tion in 
onjun
tion with image moments. These approa
hes di�er by the strat-egy to de
ouple rotational and translational velo
ity 
omponents. As the �rst approa
h(a) was originally intended as 
ase study for visual homing, arti�
ial landmarks in theheight of the robot's 
amera ne
essitate a verti
al virtual 
amera plane. The se
ond (b)and third approa
h (
) rely on natural landmarks, thus using a horizontal virtual 
ameraplane as des
ribed in the following. The optimal referen
e images are tra
ked and sele
tedby the omnidire
tional 
amera as depi
ted in �gure 1.2 using the features for topologi
allo
alization from se
tion 3.1. Optimality of a referen
e image is de�ned by the numberof visual features as well as in terms of their tra
eability in the required workspa
e. Vi-sual homing with omnidire
tional 
ameras using re
ti�
ation of omnivision, SIFT and as
ale based image Ja
obian is presented for room nodes [88℄. Nonetheless our experimentsindi
ate that an omnidire
tional 
amera alone is not suited for visual homing espe
iallyin narrow 
orridor environments, as feature re
ognition over a large area is attenuated byimage distortion, thus the pan-tilt 
amera is additionally required for global visual homing.



46 4.2 Virtual 
amera plane4.2 Virtual 
amera planeAs the 
amera has two degrees of freedom (pan αc, tilt βc) the referen
e image is notuniquely related to the robot's pose but depends on the 
amera orientation as well. Thereare two ways to properly 
apture and de�ne referen
e features for vision-based navigationwith a rotating 
amera. The straightforward solution is to 
apture an entire set of referen
eimages at di�erent 
amera orientations αc, βc for a parti
ular pose. In addition to thelarge memory requirements this approa
h is not feasible as for most 
amera orientationsthe a
tual referen
e features are not visible in the 
aptured image but rather need to be
omputed based on a geometri
 re
onstru
tion of the s
ene.A better solution is to de�ne a transformation from the 
amera image to a virtual 
ameraplane that is independent of the 
amera's a
tual pan and tilt. This methodology hasthe advantage that only a single referen
e image at a single 
amera orientation needs tobe 
aptured. The features are proje
ted onto a virtual 
amera plane, thus allowing for
orresponden
e between image features in the 
urrent pose of the robot and the referen
epose independently of the 
amera's viewing dire
tion. In prin
iple it is possible to transformfeatures either onto a verti
al or a horizontal virtual 
amera plane. [105℄ presents a planarrobot motion de
oupled from gaze 
ontrol via transformation of the image points onto averti
al virtual 
amera plane with image Ja
obian (a), while in [108℄ a horizontal virtual
amera plane is mostly preferred for approa
h (b) and (
). The transformation to thevirtual plane assumes a 
alibrated 
amera system and undistorted image features, therebylarge radial distortions of the image are the major sour
e of dis
repan
ies between thetheoreti
al feature 
oordinates in the virtual 
amera plane and the 
al
ulated ones. Inorder to transform features from the real image to the virtual 
amera plane, the followingassumptions are made:
• Assumption 1: The rotation axes of the 
amera for the pan and tilt angle 
oin
idewith the fo
al point of the 
amera.
• Assumption 2: The rotation axis of the robot along the verti
al axis 
oin
ides withthe virtual 
amera axis normal to the horizontal virtual 
amera plane or in the 
aseof the verti
al 
amera plane with its 
oplanar verti
al axis.Assumption 1 might be 
onsidered too restri
tive as the pre
ise alignment of the rotationalaxis of the 
amera with its fo
al point is di�
ult to a
hieve. Nonetheless this assumptionallows for rendering the transformation of the 
urrent 
amera plane to the virtual 
ameraplane (equation 4.3) solely as a fun
tion of the known fo
al length λ, pan αc and tilt βc.In the verti
al virtual 
amera plane, the opti
al �ow u̇, v̇ in the image is 
aused bythe robot's translatory motion vRx

and vRz
and its rotation ωR. The image Ja
obian forpoint features in equation 4.1 not only depends on the pixel 
oordinates of the features uiand vi, but also on their unknown depth zi and the 
amera's fo
al length λ. Therefore the
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ontrolled variables are highly 
oupled and non-linear in zi, whi
h additionally varies withea
h individual feature and the robot's pose relative to the feature 3D 
oordinates:
u̇i =

λ

zi
vRx

+
−ui

zi
vRz

+
−λ2 − vi

2

λ
ωR,

v̇i = 0 +
−vi
zi

vRz
+
−uivi
λ

ωR. (4.1)The 
oupling is redu
ed by the de�nition of a horizontal virtual 
amera plane ratherthan a verti
al. For indoor appli
ations the mobile robot is restri
ted to planar movements.For vision-based navigation with the verti
al 
amera plane, the orientation of the referen
eplane depends on the type of waypoint and the lo
ation of the features relative to thedesignated robot path. The referen
e feature plane is either perpendi
ular to the robot'sheading or parallel to it, depending on whether the robot is supposed to approa
h or topass by the waypoint. The horizontal 
amera plane and the plane in whi
h the robot movesare 
oplanar, and the orientation of the horizontal plane is solely de�ned by the referen
epose independent of the robot's designated path. The opti
al �ow in the horizontal 
ameraplane is related to the robot movement a

ording to:
u̇i =

λ

zi
vRz
− viωR = kivRz

− viωR,

v̇i =
λ

zi
vRx

+ uiωR = kivRx
+ uiωR. (4.2)This detrimental 
oupling of feature motions in the verti
al plane is avoided in the hori-zontal virtual 
amera plane if one 
onsiders the following observations and assumptions:

• The distan
e of the feature points is invariant to the robot motion vRx
, vRz

andthereby 
onstant.
• The depth of the s
ene is small 
ompared to the distan
e of the fo
al point to thefeatures, yielding a weak perspe
tive 
amera model.The depth zi of features no longer depends on the planar robot motion and is repla
ed bya 
onstant ki.The transformation from the a
tual to the virtual 
amera plane is stated as:

[uV , vV , 0, 1]
T = TCV

CR
(λ, αc, βc) [u, v, 0, 1]

T , (4.3)where u and v denote the pixel 
oordinates in the 
urrent 
amera plane and uV and vV thosein the virtual 
amera plane. In 
ase the �rst assumption is violated, the transformationTCV

CR
also depends on the extrinsi
 
amera parameters and the 
oordinates of the featurepoint in the world frame, thus making the transformation infeasible. The features fromthe referen
e as well as from the 
urrent view are transformed to the virtual 
amera planea

ording to equation 4.3 in order to 
al
ulate the 
ontrol error in the image spa
e.
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Figure 4.3: Transformation of the real 
amera images onto the virtual 
amera plane.The s
hemati
s of the transformation from the image plane to the virtual 
amera plane (inthis 
ase horizontal) is depi
ted in �gure 4.3. The detailed transformation TCV

CR
from the
amera plane to the horizontal virtual 
amera plane is as follows:

[uV , vV , 0, 1]
T = TCV

Cref

λ

−bCref
zV TCref

Cα,β
TCα,β

CR
[u, v, 0, 1]T , (4.4)with bCref

= TCref

Cα,β
TCα,β

CR
[u, v, 0, 1]T (4.5)andTCα,β

CR
= TCV

Cref
=









1 0 0 0
0 1 0 0
0 0 1 λ
0 0 0 1









, TCref

Cα,β
=









cos βc 0 sin βc 0
sinαc sin βc cosαc − sinαc cos βc 0
− cosαc sin βc sinαc cosαc cos βc 0

0 0 0 1









.(4.6)The transformationsTCα,β

CR
from the 
amera 
oordinate system CR to the 
oordinate system

Cα,β as well as the transformation TCV

Cref
from the �xed referen
e frame Cref 
entered at thefo
al point to the virtual 
amera plane CV only depend on the fo
al length λ. The 
omplete
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CR
is therefore 
onstru
ted from equations 4.4, 4.5 and 4.6 where bCrefrepresents the image features in the referen
e frame. Thus, a point pi in the image planeis transformed onto a point pv in the virtual 
amera plane as depi
ted in �gure 4.3 viathe following steps: First pi is transformed from the 
amera 
oordinate system CR to arotated 
amera 
oordinate system Cα,β via TCα,β

CR
solely by translation with λ, then thisrotated 
amera 
oordinate system Cα,β is rotated around the fo
al point with TCref

Cα,β
intothe stati
 
amera 
oordinate system Cref . The interse
tion point of bCref

with the virtual
amera plane is determined by means of the theorem of interse
ting lines: The ratio between
λ|bCref

|/(−bCref
zV ) and λ is equal to the ratio of |bCref

| and bCref
(−zV ) (i.e. the 
omponentof bCref

in dire
tion of −zV ), resulting in the fa
tor λ/(−bCref
zV ) given in equation 4.5. Asthe interse
tion point is expressed in the stati
 
amera 
oordinate system Cref , in a �nalstep it is transformed to the virtual 
amera 
oordinate system CV via TCV

Cref
.Whether the features are transformed to the verti
al or horizontal virtual 
amera planehighly depends on the feature 3D 
oordinates. In 
ase the feature templates are at thesame height as the robot's 
amera only a transformation to the verti
al virtual 
ameraplane makes sense e.g. approa
h (a) as the pixel 
oordinates be
ome in�nite for a trans-formation to the horizontal plane. The 3D pla
ement of the arti�
ial landmarks above therobot enables the transformation to the horizontal virtual 
amera plane, but poses higher
omputational burden on the landmark dete
tion due to large a�ne distortions of the land-marks in the 
amera view. Be
ause of the transition from arti�
ial to natural landmarksthe a�ne distortions are handled by the feature extra
tion (e.g. SIFT) and pose therebyno restri
tions to the orientation of the virtual 
amera plane. In man-made environmentsthe texture is normally on verti
al planes, espe
ially in the height of the view of humans.Thus a transformation to the horizontal is preferred due to the 3D lo
ations of the textureand the previously explained advantages of the horizontal virtual 
amera plane. Finally itis stated that for a limit above 45◦ of the pan angle the horizontal virtual 
amera planeis numeri
ally preferred whereas below this threshold a verti
al 
amera plane is desirable.The transformation demands a 
amera gaze 
ontrol in order to 
enter the image features.4.3 Camera gaze 
ontrolThe obje
tive of the 
amera gaze 
ontrol is to regulate the 
amera orientation independentof the robot's motion in order to tra
k a landmark or features and to 
enter them in theimage. Standard 
amera systems have a limited �eld of view of about 60◦ in the horizontalplane and about 40◦ in the verti
al plane. This �eld of view is extended by a pan-tilt unitin 
onjun
tion with a gaze 
ontroller for tra
king the feature points. The gaze 
ontrol is the
onne
ting step between the proposed virtual 
amera plane and the navigation 
ontrol inthe virtual 
amera plane as des
ribed in the following. Di�erent approa
hes are known forgaze 
ontrol. As the gaze 
ontrol is only a tool for the navigation with the virtual 
ameraplane, a des
ription of gaze 
ontrol using the virtual 
amera plane and homography is
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ontroldepi
ted in �gure 4.4 and used for the approa
h (b) with image moments and (
) with a
ombination of partial s
ene re
onstru
tion in 
onjun
tion with image moments.Gaze 
ontrol is 
omposed of a feed-forward path that predi
ts the feature motion in thevirtual 
amera plane based on the known robot motion 
ommand. The feedba
k 
ontrolbased on a virtual 
entroid 
ompensates disturban
es. The feedba
k 
ontrol proje
ts thefeature 
entroid of referen
e features into the 
urrent view a

ording to the homographyH, referred to as the virtual 
entroid. The transformation of the 
entroid of the featuresfrom the goal view ûcog, v̂cog into the 
urrent view ucog, vcog is a
hieved via:
[ucog, vcog, 1]

T = TCV

CR
(λ, αc, βc)HTCR

CV
(λ̂, α̂c, β̂c) [ûcog, v̂cog, 1]

T . (4.7)The angular errors of the required 
amera rotations ∆αc and ∆βc of the PTZ 
amera aregiven by:
∆αc = −

∆vcog
λ

, ∆βc = −
∆ucog

λ
. (4.8)The stru
ture for the gaze 
ontrol for the approa
h (a) with image Ja
obian is similar to thefeedforward
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Figure 4.4: Gaze 
ontrol.gaze 
ontrol in �gure 4.4 
onsisting of a feedforward and a feedba
k part. Nonetheless theutilization of arti�
ial landmarks simpli�es the design of the gaze 
ontrol as the templates inthe 3D task spa
e are lo
ated at the same height as the 
amera and in addition the unknown



Chapter 4 Visual navigation of mobile robots 51depth of the features is estimated using proje
tive geometry based on the knowledge of theintrinsi
 
amera parameters and the known dimensions of the re
tangular arrangement ofthe templates. The opti
al motion of the pixel 
oordinates in the image plane is predi
tedbased on the known motion a
tion of the robot using image Ja
obian and the appropriate
ounter rotations of the 
amera α̇c, β̇c that 
an
el the opti
al �ow by robot motion is
al
ulated. Further details for gaze 
ontrol with image Ja
obian are des
ribed in [105℄.4.4 Visual navigation 
ontrol4.4.1 Control by image Ja
obianThe 
ontrol obje
tive is to regulate the robot's turn rate based on visual feedba
k in su
hway that the robot maintains the same orientation and distan
e to the feature plane as inthe demonstrated referen
e pose. The task spa
e error is 
onstituted by the lateral ∆x,longitudinal∆z and orientational error ∆ΘR. The visual servo 
ontroller design relates thetask spa
e errors ∆z,∆x,∆ΘR with the feature errors in the image. γV de�nes the anglebetween the virtual 
amera plane and the orientation of the robot ΘR. The approa
h forde
oupling rotational ωR and lateral motion vR meaningfully transfers the 
on
ept from[33℄ by de�ning an angular 
riterion in the virtual plane. Considering the desired taskspa
e motion a trapezoidal distortion is spe
i�ed with the referen
e angle ϕref betweenthe horizontal line and the straight line de�ned by the two upper features of the arti�
ialtemplate. The feature error between the referen
e ϕref and 
urrent distortion ϕ is denotedas ∆ϕ. For small errors ∆ϕ no rotation of the robot is needed and the longitudinalmotion alone redu
es the image error as the robot moves towards the referen
e pose.For the 
orridor landmarks the virtual plane is oriented parallel to the template plane.As long as the robot is oriented parallel to the feature plane the error ∆ϕ disappearsindependent of the lateral error and does therefore not 
ontribute to the robot 
ontrol ωR.The independen
e of the angular feature error from the lateral displa
ement is only ful�lledif the virtual and the template plane are 
ollinear (γt = 90◦). For angles that di�er from
γt = 90◦ the angular error ∆ϕ varies with the lateral error as well, whi
h substantially
ompli
ates the design of a visual servoing 
ontroller. This property suggests to designthe 
ontroller for a virtual image plane at γt = 90◦. From geometri
 
onsiderations itis intuitive that for the referen
e pose the virtual plane and template plane should beparallel, as the trapezoidal distortion only results from the rotation but not from thetranslation. The visual 
ontrol s
heme takes advantage of the de
oupling between rotationand translation. The angular 
riterion expressed by the distortion error ∆ϕ determinesthe rotational 
omponent of 
ontrol. A rotational 
omponent dire
tly 
omputed fromthe feature position error 
auses the robot to head dire
tly towards the feature plane.The translational 
omponent is 
al
ulated based on the residual positional feature error,
orre
ted by feature motion 
aused by the anti
ipated rotation.
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ontrolTable 4.1: Control s
heme for visual navigation on virtual 
amera plane by Ja
obian.1. De
oupling of the rotational 
omponent of the image Ja
obian Jω from the trans-lational Jxz-
omponent.2. Computation of the distortion error ∆ϕ based on the di�eren
e ϕref − ϕ in thevirtual image plane.3. Computation of the gain:
k =

1

1 + ( ϕ0

|∆ϕ|+ζ
)2
. (4.9)4. Computation of the rotational 
ontrol:

ωϕ = −k∆ϕ. (4.10)5. Predi
tion of the motion of image features ∆fω:
∆fω = Jωωϕ. (4.11)6. Translational velo
ity 
ontrol:

(

ẋC

żC

)

= J+
xz(fref − f −∆fω). (4.12)Transformation of the 
ontrol 
ommands from the virtual 
amera plane into therobot's lo
al referen
e frame:

vRx
= cos(γV )ẋC + sin(γV )żC ,

vRz
= cos(γV )żC − sin(γV )ẋC . (4.13)7. Motor 
ommand fusion using the 
onstants η1 and η2, the gains k1, k2 = 1

1+
|vRx

|

η2and k3 =
η1

1+
|vRz

|

η2

:
vR = k1vRz

, ωR = k2ωϕ + k3vRx
. (4.14)8. Control saturation:

|vR| = min(|vmax|, |vR|), |ωR| = min(|ωmax|, |ωR|). (4.15)The overall 
ontrol s
heme for the visual navigation is detailed in table 4.1. The 
ontroltakes pla
e in the verti
al virtual 
amera plane, therefore the feature error fref − f betweenthe desired fref and the 
urrent image features f is 
al
ulated a

ordingly in the virtual
amera plane. In the �rst step the image Ja
obian J is de
omposed into its rotational andtranslational 
omponent Jω and Jxz, in order to de
ouple the 
orresponding 
ontrols forthe robot motion. The distortion error ∆ϕ re�e
ts the robot's heading error and modulatesthe magnitude and sign of the rotational motion. The gain for the rotational 
omponent k
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ed for small distortion errors ∆ϕ in the virtual 
amera plane withthe tuning parameter ϕ0 = 0.01. The gain k for the orientation 
orre
tion varies smoothlyfrom 0 to 1 with in
reasing distortion error ∆ϕ. The term ζ avoids numeri
al instability
aused by the division by zero. In addition the sign of the distortion error determineswhether the robot turns towards or away from the feature. The 
ommanded rotationalvelo
ity ωϕ is proportional to the gain and the angular error ∆ϕ, thus stabilizing thetrapezoidal distortion in the image. The translational 
omponent regulates the residualpositional feature error not yet 
ompensated by the rotation. Therefore, the feature erroris 
orre
ted by the predi
ted motion of the image features ∆fω due to the rotationalvelo
ity 
ommand. Prior to the 
al
ulation of the translational 
ontrol this predi
tion
∆fω is subtra
ted from the observed image error f a

ording to equation 4.12 to obtain theresidual error. Based on the image Ja
obian Jxz the translational velo
ities for lateral andlongitudinal motion are 
al
ulated using its pseudoinverse. This 
al
ulation in
ludes thetransformation from the virtual 
amera frame ba
k to the robot's lo
al referen
e frame.In 
ase of an omnidire
tional drive robot with three lo
al degrees of freedom the 
ontrol
vRx

, vRz
and ωR is dire
tly 
onverted into appropriate motor 
ontrols. However, as therobot pioneer 3DX is a non-holonomi
 robot with only two degrees of mobility the lateral
omponent vRx

and rotational 
omponent ωR are fused into a single turn rate ωR. Theapproa
h for merging the motion 
ommands proposed in [57℄ is adapted here. In orderto determine the amount of vRx
, vRz

and ωR to the �nal motor 
ommands the designparameters k1, η1 and η2 are determined empiri
ally. Finally the motor 
ommands vR and
ωR are restri
ted to the velo
ity limits vRmax

and ωRmax
, whi
h depend on the frame rate ofthe visual servoing loop. A 
ontrol saturation is parti
ularly required for the longitudinal
omponent as initial feature errors are large. Due to the 
ontrol saturation the robot movesat 
onstant translational velo
ity for large longitudinal errors and �nally slows down asit approa
hes the referen
e pose. On
e the residual feature error falls below a threshold,the supervisory 
ontroller swit
hes to the referen
e image of the next landmark. The
ontrol s
heme distinguishes between landmarks su
h as the do
king station whi
h therobot approa
hes head on and landmarks (2-5 in �gure 4.7) whi
h the robot passes parallelto the feature plane. Based on the 
hoi
e of γV the robot navigates towards or parallel tothe template plane. In �oor se
tions γV is set either to 90◦ or to -90◦ depending on thenavigation dire
tion. In order to rea
h the 
harging station the robot moves toward thetemplate plane in the dire
tion of the virtual 
amera axis (γV= 0◦).4.4.2 Control with image moments and primitive visual behaviorsThe image 
oordinates of the 
urrent view [u, v, 1]T are transformed onto the virtual imageplane [uV , vV , 1]

T a

ording to equation 4.3. A transformation onto the horizontal 
ameraplane is pursued in the following as it establishes a one-to-one 
orresponden
e between theplanar robot motion and feature velo
ities, whi
h fa
ilitates the visual 
ontroller design.The transformed feature 
oordinates [uV , vV , 1]
T are 
ontrol variables of the robot motion
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ontrolTable 4.2: Control s
heme for visual navigation on virtual 
amera plane by image moments.1. Estimation of homography Ĥ on the horizontal virtual 
amera plane and de
om-position of Ĥ (
f. equation 2.7) into rotation R and robot rotation ∆ΘR.2. Alignment of the image features on the the horizontal virtual 
amera plane
[uV , vV , 1]

T with the image features in the referen
e view a

ording to:
[

uV

vV

]

=

[

cos(∆ΘR) − sin(∆ΘR)

sin(∆ΘR) cos(∆ΘR)

] [

uV

vV

]

. (4.16)3. Cal
ulation of image moments for
fx =

∑n
i=1 uV (i)

n
, fz =

∑n
i=1 vV (i)

n
. (4.17)4. De�nition of image error for

∆fΘ = ∆ΘR, ∆fx = frefx − fx, ∆fz = frefz − fz. (4.18)5. Cal
ulation of behavior output:B1 Behavior for longitudinal alignment
vRLeftB1

= vRRightB1

= ∆fz

∣

∣

∣

∣

∆fz
∆fx∆fΘ

∣

∣

∣

∣

. (4.19)B2 Behavior for orientational alignment
vRLeftB2

= −∆fΘ

∣

∣

∣

∣

∆fΘ
∆fx∆fx

∣

∣

∣

∣

, vRRightB2

= −vRLeftB2

. (4.20)B3 Behavior for lateral alignment
vRLeftB3

= vRRightB3

= −
∆fx∆fΘ
|∆fz∆fz|

. (4.21)B4 Behavior for lateral alignment
vRLeftB4

= −sign(fz)
∆fx
∆fΘ

∣

∣

∣

∣

∆fx
∆fΘ

∣

∣

∣

∣

, vRRightB4

= −vRLeftB4

. (4.22)6. Motor 
ommand fusion vRLeft,Right
=

∑4
i=1 vRLeft,RightBi

.
ontroller as well as the gaze 
ontroller. The overall 
ontrol s
heme for visual navigation ona virtual 
amera plane by image moments is detailed in table 4.2. The rotation ∆ΘR of the
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al axis between the referen
e view and the 
urrent view is estimatedby the de
omposition of the homography Ĥ. Furthermore, this de
omposition also yieldsthe dire
tion ve
tor between the views. However, this information is not su�
ient forimage-based 
ontrol of the robot motion, as the dire
tion ve
tor is only de�ned up to as
ale. First the 
urrent virtual 
amera plane is ba
k rotated by ∆ΘR. The 
entroid is
al
ulated by means of the rotation 
orre
ted pixel 
oordinates, whi
h are linearly relatedto the longitudinal and lateral displa
ement of the robot relative to the goal pose. Theimage moments fx and fz are des
ribed by the 
entroid 
omponents. The image errors
∆fΘ,∆fx,∆fz are de�ned by equation 4.18. The de
oupled image moments 
al
ulatedfrom 
orresponding features in the 
urrent and referen
e view and the 
orresponding imageerrors 
ontrol the motion of the robot in three degrees of freedom. The transformation ofthe free motion onto the two lo
al degrees of motion of the robot is realized by fusion ofthe motor 
ommands issued by four 
on
urrent behaviors. The behavior representationas well as the navigation behavior resulting from the fusion of the individual behaviors isdesigned to �rst eliminate the error of the lateral position. The 
ommanded wheel velo
ities
vRLeft

, vRRight
are 
omputed by the aggregated re
ommendations of the behaviors. Figure

behavior B1 behavior B2 behavior B3 behavior B4Figure 4.5: Situational behaviors for visual servoing. Dark areas and thi
k lines 
orrespondto robot 
on�gurations with dominant behavior a
tivation. White arrows indi
ate the 
or-responding a
tion proposed by the behaviors in the respe
tive 
on�guration. The intensityof the grey values indi
ate the level of a
tivity a

ording to longitudinal and lateral o�set.4.5 illustrates the operation mode of the four situational behaviors for visual servoing of anon-holonomi
 robot. Behavior B1 
ompensates the longitudinal error assuming that thelateral and angular errors have been 
ompensated beforehand. The 
orresponding visualfeature ∆fz for the longitudinal motion is s
aled by the inverse gain ∆fx∆fΘ. For smallresidual errors in ∆fx and ∆fΘ the robot approa
hes the goal position straight on asindi
ated in the left image for behavior B1 of �gure 4.5. In prin
iple the robot 
ould alsodrive ba
kwards to the goal position. The se
ond behavior B2 regulates the orientationand thereby the wheel velo
ities of the robot as a fun
tion of the rotational and lateralerror. It 
orre
ts the orientation of the robot in situations in whi
h the lateral error isalready 
ompensated. Behaviors B3 and B4 are for 
ompensating the lateral error. Thethird behavior triggers in 
ase of a lateral displa
ement and remains dominant as long asthe longitudinal error remains small. Behavior B4 turns the robot in order to 
ompensate
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ontrolthe lateral error. This is essential as the robot 
annot drive towards the goal position if its
urrent orientation 
oin
ides with the goal dire
tion in 
ase of a lateral displa
ement. Theresponses of the four behaviors are aggregated into a total response in order to obtain thewheel velo
ities. If the 
ommanded wheel velo
ities are outside the admissible range, thevelo
ities are redu
ed in a proportional manner.4.4.3 Control with homographyAnother promising approa
h for the navigation 
ontrol instead of using primitive visualbehaviors based on image moments is the estimation and de
omposition of the homography(
f. 
hapter 2.1) between the features in the virtual horizontal 
amera plane, i.e. in thereferen
e view as well as in the 
urrent view. The redu
ed degrees of freedom of themobile robot simplify the de
omposition of the homography 
onsiderably as the estimatedhomography obeys additional 
onstraints. The overall 
ontrol s
heme for visual navigationon a virtual 
amera plane by homography is detailed in table 4.3. The linear 
ontrol lawis expressed as a fun
tion of the polar 
oordinates ρ and α as well as the orientation error
∆ΘR of the robot between the 
urrent and goal position whi
h is dire
tly extra
ted fromthe partial pose estimation of the homography. As the homography de
omposition yieldsa s
aled translation ve
tor whi
h be
omes unreliable for ρ = 0, ρ is s
aled by a deviationfrom the pixel 
oordinates in the a
tual and referen
e view. tx and tz are the elements ofthe translation ve
tor t = [tx, tz]

T from the de
omposition of the homography. ûvcog and
uvcog denote the 
entroid of the u-
oordinates of the referen
e and 
urrent view expressedin the horizontal virtual 
amera plane after the feature rotation about ∆ΘR. Similarly,the 
entroid of the v-
oordinates is denoted by v̂vcog and vvcog. The motor 
ommand fusionfrom equation 4.14 is adapted to the information extra
ted from the homography in thehorizontal virtual 
amera plane. The stability for the 
ontrol is guaranteed by a proper
hoi
e of the proportional 
ontrol parameters a

ording to [6℄.4.4.4 Experimental results(a) Large view visual servoing with a pan 
amera: In the experiments the non-holonomi
 robot navigates between rooms in order to rea
h a 
harging station as it tra
ksa sequen
e of properly lo
ated visual landmarks. To a
hieve this task, the robot has toexit the initial room, travel along the 
orridor and �nally enter the room with the do
kingstation as shown in �gures 4.6 and 4.7. Governed by the visual servoing s
heme the realrobot su

essfully 
ompletes the mission in several experiments. The robot do
ks to thebattery 
harger unit with a lateral a

ura
y of less than two 
entimeters, whi
h is a

urateenough to establish ele
tri
al 
onta
t between the robot's and the 
harger's 
onta
ts. Thesame mission is 
ompleted with two di�erent 
amera 
on�gurations and 
ontrol s
hemes.The �rst experiment runs with a standard visual servo 
ontroller and a stati
 
amera
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heme for visual navigation on virtual 
amera plane by homography.1. Estimation of homography Ĥ on the horizontal virtual 
amera plane and de
om-position of Ĥ (
f. equation 2.7) into rotation R and translation T.2. Cal
ulation of the rotational 
ontrol by extra
ting the rotation of the robot aroundits verti
al axis ∆ΘR from R.3. Cal
ulation of polar 
oordinate α :
α = arctan(tz/tx). (4.23)4. Cal
ulation of s
aled polar 
oordinate ρ :

ρ =
√

(tx(ûvcog − uvcog))2 + (tz(v̂vcog − vvcog))2. (4.24)5. Motor 
ommand fusion using the the gains k1, k2 and k3:
vR = k1ρ, ωR = k2∆ΘR + k3α. (4.25)aligned with the dire
tion of motion. The se
ond experiment takes advantage of the gaze
ontrol of the pan-tilt 
amera and relies on the visual navigation on the virtual 
ameraplane by Ja
obian. The same mission is a

omplished with fewer landmarks that are more
onveniently mounted to the 
orridor walls and a smoother traje
tory. Figure 4.6 shows theposition and orientation of visual landmarks and the path followed with the standard visualservo 
ontroller des
ribed by [70℄. As the translational and rotational velo
ities are 
oupledand, more important, 
amera and robot heading are aligned, the robot is only able to movedire
tly towards a visual landmark at an angle of 90◦ between feature plane and 
ameraaxis. The mission is a

omplished with seven properly distributed landmarks but parti
ularin the 
orridor se
tion for landmarks 2-5 the resulting path is jagged and suboptimal. Inorder to traverse the 
orridor it is ne
essary to install extra boards inside the 
orridor toa

ommodate landmarks three and �ve. For servi
e roboti
 tasks su
h manipulation ofthe environment is not a

eptable as visual navigation should be only based on landmarksthat o

ur naturally in the environment. Figure 4.7 shows the landmark lo
ations androbot path for the visual 
ontroller with gaze 
ontrol. With only six landmarks the robottravels along the shortest path in the 
enter of the 
orridor. In 
ontrast to the �xed 
ameras
enario, additional landmarks along the 
orridor be
ome obsolete. The 
amera 
ontrolswit
hes to the next landmark on
e the visual 
ontrol 
onverges to the previous referen
eimage. Figure 4.7 depi
ts the referen
e positions for landmark three and four, referred toas referen
e position three and four. Although landmark four is longitudinally ahead ofthe robot's start pose (referen
e position three), the landmark four is behind the referen
eposition four, whi
h is a
hieved by a wide-angle 
amera tra
king of the landmark. Furtherresults regarding the positioning performan
e are provided in [105℄.Even though these experiments are based on arti�
ial templates, the following major ad-
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Figure 4.6: Suboptimal robot traje
tory due to the limited �eld of view and in
onvenientlo
ation of landmarks.vantages of the visual servoing s
heme with virtual 
amera plane are proven:
• Visual paths require fewer landmarks, espe
ially useful for sparse textured areas.
• Redu
ed risk of loosing features during 
ontrol.
• Motion parallel with respe
t to the feature plane is feasible.(b) and (
) Large view visual servoing with a pan-tilt 
amera and omnivision:In order to a
hieve visual navigation in unstru
tured environments, the navigation 
ontrolon the virtual 
amera plane by image moments and by homography is applied to real worldrequirements. Therefore features and referen
e views are extra
ted from the texture of theo�
e environment and integrated into the topologi
al map from se
tion 3.1. Contrary tomany approa
hes in literature the proposed s
heme requires no 
onne
tivity of the perspe
-tive referen
e views, but solely the 
onne
tivity of the features in the omnidire
tional views.This pro
edure is more �exible and robust, as omnidire
tional per
eption guarantees thevisibility of existing texture a
ross a large region of the workspa
e.The planning layer automati
ally generates a topologi
al map in form of a dire
ted graphfrom omnidire
tional views 
aptured during the demonstration run. This map subsequentlyserves for lo
alization and path planning as well as for dynami
al sele
tion of the 
urrentoptimal referen
e view for image-based navigation. Ea
h node 
ontains apart from theomnidire
tional view also the mono
ular referen
e image for lo
al navigation. The planninglayer generates a sequen
e of referen
e views with overlapping 
ombinations of features inthe omnidire
tional views, leading from the 
urrent to the goal view in the image andworkspa
e. During navigation, in 
ase of su�
ient feature visibility of the next waypoint,the image-based 
ontrol swit
hes to the next mono
ular referen
e view, thus allowing forglobal navigation of the robot. The dynami
 swit
hing to the subsequent visible mono
ularreferen
e view is a
hieved by the 
orresponding features stored in the omnidire
tional



Chapter 4 Visual navigation of mobile robots 59
start 
hargingstation1

2
3

4 5

6
referen
eposition 3 referen
eposition 4Figure 4.7: Desirable robot traje
tory by e�
ient exploitation of visual landmarks.view from whi
h also the initial angle for the PTZ 
amera is 
al
ulated. The image-based navigation and lo
alization operates with distin
t spe
i�
 SIFT features. Figure4.8 illustrates the evolution of the quality of features in several referen
e views for a lo
alse
tion of the navigation graph. The quality of a mono
ular referen
e view is determinedby the number of available features as well as their 
ontinuing visibility along a longerpath. The dynami
 sele
tion of the most favorable referen
e view for the 
urrent situationis 
arried out by means of the two spe
i�ed 
riteria.Figure 4.9 shows the 
hara
teristi
s of visual navigation on horizontal virtual 
amera planefor the referen
e views CV3 and CV8 that are extra
ted by means of the feature distributionin �gure 4.8. The initial 
ompensation of the lateral error and the subsequent alignmentof the robot by means of the 
ontext depending behaviors is evident. Initially the robotis dislo
ated by an o�set of 50 
m laterally and 3m longitudinally to the goal position.After 2m the next set of features is dete
ted in the omnidire
tional view and the 
ontrolswit
hes to the next referen
e image. The residual position error is about 5 
m along bothspatial dire
tions. The approa
hes for visual homing (b) and (
) on the virtual horizontal
amera plane exhibits a similar performan
e as the approa
h introdu
ed beforehand withnavigation on a verti
al virtual 
amera plane with Ja
obian. The insights for visual homingas the results of this work under the assumption of planar surfa
es in o�
e environments
an be summarized as follows: The virtual 
amera plane allows for de
oupled navigationand gaze 
ontrol. E�
ient exploitation of existing texture by omnidire
tional presele
tionof mono
ular referen
e views in 
onjun
tion with the virtual 
amera plane enables visualhoming within unstru
tured environments with minimal texture without the urge of 3Dmodelling. The limited �eld of view of the pan-tilt is 
ompensated by the omnidire
tional
amera, whereas the low resolution of the omnidire
tional is avoided by the pan-tilt 
amera.Dynami
 environments with natural texture are dealt with by generi
 representation ofmoments as well as lo
al feature extra
tion su
h as SIFT, ORB or SURF (
f. se
tion 2.2).
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Figure 4.8: Quality of referen
e views generated from tra
ked feature 
entroids over partof the sequen
e of omnidire
tional image navigation nodes.4.5 Comparison of vision guided and visual navigationVisual rea
tive behaviors for homing, 
entering, door passing and obsta
le avoidan
e aresu

essfully designed and implemented equivalently to behaviors based on distan
e in-formation. In order to a
hieve goal-oriented visual navigation in an o�
e environmentthe visual behaviors door passing and visual homing are integrated into the subsumptionar
hite
ture as previously des
ribed in �gure 3.6.Figure 4.10 details the image-based navigation with the topologi
al map of the depart-ment's o�
e environment in
luding the visual nodes and edges of the graph in the upperhalf and the de�nition of the three di�erent types of visual nodes in the lower half. Thetopologi
al representation is analogous to �gure 3.1 and the des
ription in se
tion 3.1, how-ever, with the important di�eren
e that the stimuli for the rea
tive behaviors are solelyprovided by the visual per
eption. The lower layers of the subsumption ar
hite
ture areadapted a

ording to the type of the next node instru
ted by the planning layer. A

ord-ingly for the 
orridor node the behaviors are ordered in priority from the highest layer tothe lowest: turn around, obsta
le avoidan
e, visual homing and 
orridor 
entering, thusallowing for traversal of the 
orridor regions with minimal texture as the 
orridor 
enteringrequires signi�
antly less texture than the visual homing. In the standard 
orridor s
enariothe robot is driven by visual homing, whi
h subsumes the 
orridor 
entering, as long as the
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Figure 4.9: Visual homing for referen
e views CV3 and CV8 from �gure 4.8.obsta
le avoidan
e is not a
tivated by nearby obje
ts in front of the robot (
f. �gure 3.6).The lo
alization with omnivision runs parallel in order to monitor the exe
ution of theplan by the 
oordination layer. For rea
hing the door node, only the door passing as wellas a modi�ed obsta
le avoidan
e behavior are required. The modi�
ation of the obsta
leavoidan
e for the door node is mandatory, su
h that the door posts represent no obsta
lesfor the robot. The third visual node handles room s
enarios, whi
h require turn around,obsta
le avoidan
e and visual homing, stated again from the highest to the lowest layerof the subsumption ar
hite
ture. As expe
ted from the individual evaluation of the visualbehaviors, visual navigation su

essfully ful�lls its obje
tives during the experiments in theo�
e environment.In regions with su�
ient visual 
lues both stimuli, vision and distan
e, demonstrate asimilar performan
e. Nonetheless the overall visual navigation is subje
t to the sameshort
omings as des
ribed in se
tion 3.3.3 
aused by textureless environments whi
h provideno stimulus for obsta
le avoidan
e and turn around behavior. Compared to the results inse
tion 3.3.3 the 
orridors are now traversed on a straight line in the same manner as shownin �gure 4.7 be
ause the homing behavior subsumes the 
orridor 
entering. The 
riti
alsituations su
h as stati
 (potentially textureless) obsta
les and tri
ky 
orner situationshandled by the turn around behavior and imposed on the robot in the experiments in theprevious se
tions do not o

ur during the experiment as the goal-oriented navigation avoidsthese situations beforehand during the graph generation. The experiments 
larify thatvisual stimuli alone are not su�
ient to 
apture all relevant aspe
ts of the environment forrobust navigation mainly due to large textureless o�
e regions. These regions are identi�edby means of the 
on�den
e in the opti
al �ow and avoided by the turn-around behavioreven if they are traversable. Therefore the vision guided navigation outperforms the visualnavigation in these parti
ular 
ases. Nonetheless a proper fusion of visual stimuli with sonar
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onstitute an e
onomi
 alternative to laser sensors for robot navigation.The visual stimuli of the turn around behavior are repla
ed by sonar measurements or aredire
tly fused with the 
on�den
e rated time to 
onta
t.

a) Navigation overview with room, door and 
orridor nodes.
b) Room node: lo
alization obsta
le avoidan
e visual homing.

) Door node: door passing obsta
le avoidan
e.
d) Corridor node: lo
alization obsta
le avoidan
e 
orridor 
entering visual homing.Figure 4.10: Image-based navigation (analogous to �gure 3.1, but with vision as stimuli).



Chapter 5
Lo
al visual servoing with generi
 imagemoments
This 
hapter introdu
es a novel 6 DOF visual servoing s
heme for end-e�e
tor to obje
talignment that relies on the pixel 
oordinates, s
ale and orientation of augmented pointfeatures su
h as SIFT. The visual servoing s
heme for augmented features enables the use ofa large variety of lo
al feature extra
tions su
h as ORF, SURF, or GLOH (
f. se
tion 2.2).The 
ontrol is based on geometri
 moments 
omputed over a dynami
 set of redundantaugmented feature 
orresponden
es between the 
urrent and the referen
e view [64℄. Themethod is generi
 as it does not depend on a geometri
 obje
t model but automati
allyextra
ts augmented features from images of the obje
t. The foundation of visual servoingon generi
 augmented features renders the method robust with respe
t to loss of redundantfeatures 
aused by o

lusion or 
hanges in viewpoint. The moment based representationestablishes an approximate one-to-one relationship between image moments and degreesof motion [109℄. This property is exploited in the design of a de
oupled 
ontroller thatdemonstrates superior performan
e in terms of 
onvergen
e and robustness 
ompared withan inverse image Ja
obian 
ontroller.The presented work follows the paradigm of de
oupled image moments extending the ideaspresented in [143℄ to over
ome the known short
omings of visual servoing s
hemes statedin se
tion 2.4, 
f. [24, 70℄. Visual servoing with de
oupled image moments falls into the
ategory of "partitioned visual servo" a

ording to the nomen
lature of [25℄. The proposedapproa
h guarantees a sensitivity matrix with fewer o�-diagonal 
ouplings as shown in [143℄or [145℄ for un
alibrated visual servoing, even for markerless visual servoing by expli
itlyexploiting the additional information 
ontained in augmented features su
h as SIFT. Usingexpli
itly the 
omplete information of the feature extra
tion for the �rst time the proposedsolution for de
oupled visual servoing di�ers also signi�
antly from other known approa
hes[26, 33, 120℄ explained in detail in se
tion 2.4.63



64 5.1 Augmented point featuresThe 
hapter is organized as follows: Se
tion 5.1 de�nes augmented point features, whi
hin
lude the pixel 
oordinates ui and vi, the 
anoni
al orientation of the keypoint φi ands
ale σi for a single feature fi. The automati
 feature identi�
ation is essential for proper
onvergen
e of the visual 
ontrol towards the referen
e view. Se
tion 5.2 explains theaggregation of the augmented point features into image moments for visual servoing. A
orrelation analysis between the image moments and degrees of motion based on the 
orre-sponding image Ja
obian is provided to establish their approximate one-to-one relationship.Se
tion 5.3 presents visual servoing in 4 DOF and se
tion 5.4 in 6 DOF with augmentedpoint features. In se
tion 5.5 visual servoing on a virtual 
amera plane is des
ribed as analternative. The 
hapter is summarized with an evaluation and 
on
lusion in se
tion 5.6.
5.1 Augmented point featuresA single augmented point feature fi su
h as SIFT 
ontains four attributes, namely thepixel 
oordinates ui and vi, the 
anoni
al orientation of the keypoint φi and its s
ale σi.In the following, the desired appearan
e of augmented features in the referen
e position isdenoted by frefi = [urefi, vrefi, φrefi , σrefi] and the 
urrent augmented features are denotedby fi = [ui, vi, φi, σi]. S
ale and keypoint orientation are ideal to 
ontrol the distan
e tothe obje
t and the rotation around the 
amera axis as they are at large insensitive totranslation and rotation along the other axes [64℄.In the following the a

ura
y of the rotation estimate and its robustness is analyzed withrespe
t to 
hanges in viewpoints 
aused by 
amera rotations along the other axes usingSIFT as augmented point features. The 
amera is rotated around the opti
al axis overthe entire range -180◦ to 180◦. The distribution of the error between the estimated mean
omputed over all SIFT features and the true rotation is shown in �gure 5.1. The graphshows the distribution of the error εγ a
ross the 128 rotation steps. The mean absolute erroramounts to |εγ| = 0.52◦ and the standard deviation σγ of the error distribution εγ is about0.4◦. Noti
e, that the absolute error in the estimated orientation is smaller for rotations
lose to the referen
e orientation whi
h eventually determines the residual orientation errorfor the visual 
ontrol. This a

ura
y in orientation is 
on�rmed in the 
losed-loop 
ontrolvisual servoing experiments. The average keypoint orientation 
oin
ides with the 
ameraorientation, whi
h guarantees a unique minimum and the stability of visual 
ontrol of
γ. Even if the image and feature plane are not parallel the perspe
tive distortion of theSIFT feature 
aused by a 
amera rotation along an orthogonal axis hardly deterioratesthe rotation estimate whi
h still a

urately 
aptures the 
amera orientation. Table 5.1shows that orthogonal rotations along α only have a minor e�e
t. Rotations of more than
30◦ 
ause a�ne deformations for whi
h the SIFT keypoint des
riptors in di�erent viewsare no longer 
ompliant. For rotations of up to 30◦ the mean absolute error in
reases to
|εγ| = 1.13◦ whi
h is still a

urate enough for the appli
ation at hand.
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Figure 5.1: Estimation error for γ a
ross absolute orientations from -180◦ to 180◦.Table 5.1: Error of the rotation estimate as a fun
tion of 
amera rotation ∆α along theorthogonal axis. (All units in ◦.)
∆α 0 5 10 15 20 25 30
|εγ| 0.52 0.26 0.36 1.05 0.88 0.92 1.13
σ 1.13 1.50 1.10 2.60 3.11 3.44 4.59Figure 5.2 depi
ts the variation of s
ale σ for typi
al SIFT features as a fun
tion of thedistan
e z between the obje
t and the 
amera. The s
ale of SIFT features is given by k

z
.The 
onstant gain k depends on the fo
al length of the 
amera multiplied by the initials
ale of the feature.SIFT features in the 
urrent image are mat
hed with their 
orresponding referen
e fea-tures in the goal image by 
omparison of their distin
tive keypoint des
riptors. Keypointdes
riptors of the same feature in di�erent views are, although similar, not exa
tly iden-ti
al, whi
h might result in false 
orresponden
es between features. In addition a SIFTfeature present in the referen
e image might not appear in the 
urrent image and vi
eversa. Therefore, the obje
tive of the automati
 feature sele
tion is to establish reliable
orresponden
es between the same features that are robust a
ross di�erent views in orderto avoid false 
orresponden
es. Candidates for stable and unambiguous SIFT features areidenti�ed a

ording to the following 
riteria:

• similarity
• angular 
riterion
• epipolar 
onstraintThe list of 
andidate referen
e features is 
omposed of all features originally dete
ted in thegoal image. Feature sele
tion pro
eeds in three stages, of whi
h the �rst two stages operateo�ine and reje
t features in the referen
e image, whereas the last online stage analyzes
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Figure 5.2: S
ale versus distan
e.the features in the 
urrent image. The �rst stage only 
ompares SIFT features in thereferen
e image with ea
h other. Similar SIFT features that strongly resemble ea
h otherare immediately reje
ted to avoid later 
onfusion among them. In the se
ond stage SIFTfeatures are mat
hed a
ross multiple views taken from di�erent 
amera poses distributeda
ross the entire workspa
e. In this 
ase those referen
e keypoints are reje
ted for whi
hthe mat
hed keypoint violates the angular 
riterion and the epipolar 
onstraint. In thethird online stage, the angular 
riterion is applied on
e more to the features dete
ted in the
urrent image. Only those features that pass all of the above tests are �nally 
onsideredwithin the visual 
ontrol s
heme.
5.2 Generi
 moments5.2.1 Moments for rotationA 
amera rotation around its opti
al axis by γ indu
es an inverse rotation of equal mag-nitude of the keypoint orientations φi. The averaged keypoint rotation fγ regulates the
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amera rotation:
fγ =

1

n

n
∑

i=1

φi. (5.1)The point features ui, vi are �rst aligned with the 
amera orientation in the referen
eview a

ording to the observed feature fγ. The 
orre
tion along γ is therefore de�ned as
∆fγ = frefγ − fγ . The visual features are rotated by ∆fγ su
h that the 
urrent featurelo
ations ui and vi are aligned with the 
amera orientation in the referen
e view. The newfeature lo
ations u′

i and v′i are determined as follows:
[

u′
i

v′i

]

=

[

cos(∆fγ) − sin(∆fγ)

sin(∆fγ) cos(∆fγ)

] [

ui

vi

]

. (5.2)In the following the 
orre
ted pixel 
oordinates u′
i and v′i are used for the 
omputation ofthe remaining image moments and for better 
omprehensibility are denoted as ui and vi. Inorder to 
ontrol the rotations around α and β two additional image moments 
orrespondingto the rotations about the x- and y-axis, fα and fβ, are de�ned. The image moments fαand fβ 
apture the perspe
tive distortions of lines 
onne
ting pairs of features 
aused byrotations:

fα =
n

∑

i=1

n
∑

j=i+1

(−vrefi − vrefj )
∥

∥pj − pi

∥

∥

∑n
k=1

∑n
l=k+1 ‖pk − pl‖

, (5.3)
fβ =

n
∑

i=1

n
∑

j=i+1

(−urefi − urefj )
∥

∥pj − pi

∥

∥

∑n
k=1

∑n
l=k+1 ‖pk − pl‖

. (5.4)The term ∥

∥pj − pi

∥

∥ denotes the length of the line 
onne
ting the two pixels:
∥

∥pj − pi

∥

∥ =
√

(ui − uj)2 + (vi − vj)2, (5.5)whi
h are weighted by the fa
tor (−vrefi−vrefj). Its sign indi
ates whether the line is aboveor below the u-s
an line through the 
amera's prin
ipal point. The absolute magnitude ofthe weight in
reases with the verti
al distan
e from the image 
enter. The image moment
fβ represents the equivalent e�e
t of dilations and 
ompressions of lines 
aused by rotationsalong the y-axis. Figure 5.3 illustrates the e�e
t for a square 
on�guration of four featurepoints that form six lines. Figure 5.3 a) depi
ts the image of the square for parallel featureand image plane, whereas in �gure 5.3 b) the image with the 
amera is tilted around the x-axis and the shift along the y-dire
tion is 
ompensated. The distortion in
reases the lengthof line 1 and simultaneously de
reases the length of line 3. This dilation and 
ompressionof lines is 
aptured by the equation 5.3.
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Figure 5.3: Perspe
tive distortion 
aused by 
amera tilt α 
aptured by the image moment
fα.5.2.2 Moments for translationThe translation along the 
amera axis is governed by the image moment fz de�ned as theaverage s
ale of the augmented features:

fz =
1

n

n
∑

i=1

σi. (5.6)Alternatively fz 
an be expressed as the distan
e between point features a

ording to:
fzd =

∑n
i=1

∑n
j=i+1

√

(ui − uj)2 + (vi − vj)2

n
2
(n− 1)

, (5.7)that 
aptures the average s
ale of the s
ene in a similar manner. Nonetheless 
omputingthe image moment for z from the distan
e between point features fzd is not invariant withrespe
t to perspe
tive distortions 
aused by rotations along the other two axes. There-fore, the inherent s
ale of augmented features de�ned by fz is preferred to the alternativede�nition fzd.The moment based 
ontroller in [64℄ operates with the geometri
 
entroid of point featuresfor regulating translations along the x- and y-axis. The image moments are de�ned by the
entroid of mat
hed features a

ording to:
fx =

1

n

n
∑

i=1

ui, fy =
1

n

n
∑

i=1

vi. (5.8)However, the geometri
 
entroid primarily 
aptures the horizontal translation of the 
am-era, but su�ers from a sensitivity to motions along the remaining degrees of freedom,espe
ially from motions in z, α and β.
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al visual servoing with generi
 image moments 69In the following the image Ja
obian Jfx,fy under the assumption of prior ba
krotationaround the opti
al axis is derived in order to analyze the remaining 
ouplings (
f. appendixB). The 
entroid feature [fx, fy]T behaves similar to a virtual point feature and the Ja
obianis obtained by averaging the individual point feature Ja
obians stated in [70℄:Jfx,fy =
1

n

n
∑

i=1







λ
z

0 −ui

z
−uivi

λ

λ2+u2
i

λ.
0 λ

z
−vi
z

−λ2−v2i
λ

uivi
λ






, (5.9)in whi
h λ denotes the fo
al length and z denotes the distan
e between the 
amera andthe feature plane. The main di�eren
e with respe
t to a point feature is the simplifyingassumption that all augmented features share approximately the same depth z. Thisassumption is reasonable as long as the depth of the s
ene is small 
ompared to the distan
eto the 
amera (weak perspe
tive proje
tion).The visual features fx and fy 
apturing translations along the x- and y-axis are expressedas the weighted aggregation of the mat
hed feature lo
ations [109℄:

fx =

n
∑

i=1

wiui, fy =

n
∑

i=1

wivi. (5.10)By proper sele
tion of the weights wi attributed to individual point features [ui, vi] it ispossible to de
ouple fx, fy from the remaining degrees of freedom. With this obje
tive inmind the image moments fx and fy are supposed to only depend on vx and vy, respe
tively.De
oupling for 4 DOF: The following analysis for the proper dynami
 weight fo
uses onthe element J̃fx,z related to the u-
omponent. J̃fx,z de�nes the non-linear 
oupling of thefeature motion in dependen
e on task spa
e motions in z. Noti
e, that for the de
ouplingof the visual feature fy the same methodology is applied only using vi instead of ui. Theundesired o�-diagonal element of the sensitivity matrix J̃fx,z is eliminated if the dynami
weights wi satisfy the 
onstraint:
J̃fx,z =

n
∑

i=1

wi
−ui

z
= 0. (5.11)For an arbitrary set of point features [ui, vi], this 
onstraint is violated for the geometri

entroid 
al
ulation with equal weights wi = 1/n. In order to maintain the similarity withthe 
onventional 
entroid a minimal variation∆wi of the original weights wi = 1/n+∆wi isendeavored that satis�es the 
onstraint. This optimal variation is obtained by minimizingthe following 
ost fun
tion in 
onjun
tion with a Lagrange multiplier λ1:

F =
1

2

n
∑

i=1

(

wi −
1

n

)2

+ λ1

n
∑

i=1

wiui. (5.12)
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 momentsIn order to solve the optimization problem the partial derivative of equation 5.12 withrespe
t to wi and the Lagrange multiplier λ1 are 
omputed as:
∂F

∂wi

=

(

wi −
1

n

)

+ λ1ui = 0

∂F

∂λ1

=
n

∑

i=1

wiui = 0, (5.13)whi
h in turn yields the least squares solution:
wi =

1

n
−

uiū
∑n

i=1 u
2
i

, ū =
n

∑

i=1

ui

n
. (5.14)Intuitively, the weight of features whose pixels possess the opposite sign as the geometri

entroid ū =

∑

i ui/n is in
reased, whereas those with the same sign are down-weighted.Noti
e, that by de�nition the weighted 
entroid is always lo
ated at the origin of the
urrent image, thus fx = fy = 0. However, the referen
e features frefx =
∑

i wiurefi and
frefy =

∑

iwivrefi are no longer 
onstant, but depend indire
tly on the 
urrent image viathe dynami
 weights wi and are therefore impli
itly sus
eptible to motions along multipledegrees of freedom. In order to verify the de
oupling of the weighted visual features fx and
fy from a motion vz, it is ne
essary to show that the weights for an identi
al set of featurepoints remain indeed independent of the distan
e z. The following 
onsiderations assumethat the image plane is oriented parallel to the feature plane. The perspe
tive proje
tionof a world point on the image plane is given by ui = xi

λ
z
, whereas the same point displa
edby ∆z is proje
ted to ui,∆z = xi

λ
z+∆z

. Assuming that the weights wi ful�ll the 
onstraint
n
∑

i=1

uiwi, the weighted sum of the feature points u′
i at distan
e z +∆z is thus given by:

n
∑

i=1

ui,∆zwi =
z

z +∆z

n
∑

i=1

uiwi = 0. (5.15)Due to fa
t that z
z+∆z

is a proportional fa
tor 
ommon to all features, the optimal weightsfor the �rst set of feature points also transform the virtual 
entroid of the se
ond set offeature points to zero. Nonetheless, the weights are e�e
tively down-s
aled by the fa
tor
z

z+∆z
. In order to render the weights themselves and not only the 
entroid independent ofthe distan
e z, the weights are normalized a

ording to:

wi,norm = wi
1

n

n
∑

k=1

|wk|. (5.16)Assuming that the weighted sum of the feature points is initially zero for the referen
eview, the weights wi,norm transform the virtual 
entroid of every other view to the image
enter independent of the distan
e z (
f. [109℄). Figure 5.4 depi
ts two proje
tions of the
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 image moments 71same features, in whi
h the 
orresponding viewpoints di�er by a displa
ement ∆z. Theweights wi are optimized a

ording to the �rst set of feature points, but are also applied toweight the se
ond set. Both virtual 
entroids are lo
ated in the image 
enter even thoughthe weighted feature points for the two sets di�er. The example demonstrates that neitherthe weights nor the visual features fx and fy 
hange with a 
amera motion along z. Noti
e,that in the weighted s
heme the role of 
urrent and referen
e features is reversed. Typi
ally,the referen
e features are 
onstant and the 
urrent features 
hange with the motion of the
amera. However, in the weighted s
heme the 
urrent 
entroid (fx = 0, fy = 0) is 
onstantper de�nition and always 
oin
ides with the prin
ipal point due to equation 5.11. Insteadthe referen
e features frefx , frefy 
hange over time as the weights wi 
hange with the 
urrentview, even though the point features urefi, vrefi themselves are 
onstant.
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Figure 5.4: Virtual 
entroid for two sets of feature points at di�erent distan
es between
amera and feature plane.Figure 5.5 depi
ts the image proje
tions of the 
onventional and weighted 
entroid u-
omponents' view as a fun
tion of the lateral task spa
e error ∆x. The two horizontallines 
orrespond to the 
onstant 
onventional referen
e 
entroid and the 
onstant weighted
urrent 
entroid u-
omponents. In this example, the referen
e image is deliberately 
hosensu
h that the majority of features is lo
ated in the right half plane. Therefore, the 
onven-tional 
entroid is shifted along the u-
omponent by 120 units from the prin
ipal point. The
urrent 
onventional 
entroid depends linearly on the lateral error and interse
ts the refer-en
e 
entroid for a zero lateral error ∆x = 0. However, the o�set and slope depend on thelongitudinal distan
e between 
amera and feature plane. Current and referen
e featuresinter
hange their role for the weighted s
heme, in that the former remains 
onstant andthe later 
hanges with the lateral error in a non-linear fashion. In this 
ase the dependen
yof the 
entroid on the lateral error remains the same independent of the longitudinal poseerror in z. Again, the referen
e and 
urrent 
entroid interse
t for zero lateral error. Even



72 5.2 Generi
 momentsthough the slopes for the weighted and 
onventional 
entroid exhibit opposite signs, thea
tual image error frefx − fx has the same sign for both s
hemes. Figure 5.5 also reveals aslight asymmetry of the weighted referen
e 
entroid for positive and negative lateral errors.For large positive lateral errors the image error even in
reases slightly with de
reasing lat-eral error. This asymmetry is 
aused by the inhomogeneous distribution of point features
ui, whi
h in turn e�e
ts the adaptation of the weight fa
tors through equation 5.14. Itshould be noted, that the asymmetry and slope inversion do not e�e
t the stability or
onvergen
e of the visual 
ontrol and only o

ur if the point feature distribution in thereferen
e image is signi�
antly skewed.
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Figure 5.5: Centroid u-
omponent as a fun
tion of the lateral error for the 
onventionaland weighted 
entroid in the 
urrent and referen
e view.De
oupling for 6 DOF: The aim is to extend the de
oupling to visual servoing for 6DOF. This requires that the features fx and fy do not only be
ome independent on themotion vz but also on the rotations ωα and ωβ. Again, the 
onstraints emerge from ananalysis of the Ja
obian in equation B.1. The optimization problem for de
oupling thevisual feature fx from the motions vz and ωα a

ording to the Ja
obian in equation 5.3 isstated as follows:
F =

1

2

n
∑

i=1

(

wi −
1

n

)2

+ λ1

n
∑

i=1

wiui + λ2

n
∑

i=1

wiuivi. (5.17)Theoreti
ally, it is possible to 
an
el the 
omponent n
∑

i=1

wi (λ
2 + u2

i ) of the Ja
obian re-lated to the motion ωβ as well. If this additional 
onstraint is in
luded, the minimizationproblem in equation 5.17 is algebrai
ally still solvable (
f. appendix B). Unfortunately,the in
lusion of this 
onstraint substantially redu
es the sensitivity of the feature fx withits asso
iated motion vx, resulting in a deterioration of the visual 
ontrol. Therefore, the
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al visual servoing with generi
 image moments 73weight optimization problem only in
ludes 
onstraints for the 
an
elation of elements J̃fxαand J̃fyβ in the sensitivity matrix based on the image Ja
obian in equation 5.21. The 
ostfun
tion F is partially di�erentiated with respe
t to wi and the Lagrangian multipliers λi:
∂F

∂wi
= wi −

1

n
+ λ1ui + λ2uivi,

∂F

∂λ1

=
n

∑

i=1

wiui,
∂F

∂λ2

=
n

∑

i=1

wiuivi. (5.18)Changing to ve
tor notation by substituting k = [ 1
n
, . . . , 1

n
], u = [u1, . . . , un] and p =

[u1v1, . . . , unvn] a set of linear equations is obtained: w+λ1u+λ2p = k, with the 
onstraints
wuT = 0, wpT = 0. In order to determine the Lagrangian multipliers, the weights w areeliminated by multiplying with the transpose of u and p. This results in a system of linearequations, whi
h 
an be solved in 
losed form:

[

uTu uTp

pTu pTp

] [

λ1

λ2

]

=

[

uTk

pTk

]

. (5.19)The 
orresponding weights of the point features are determined as w = k−λ1u−λ2p andare subsequently normalized a

ording to equation 5.16.5.2.3 Coupling analysis of the sensitivity matrixThe image Ja
obian for the visual feature fα is given byJfα =

∑n
i=1

∑n
j=i+1

pijvrefijλ√
8z2

[

0 0 −2λ
z
−vij +uij

]

∑n
k=1

∑n
l=i+1 ‖pk − pl‖

, (5.20)in whi
h vij = (vi−vj)/2, uij = (ui−uj)/2 , vrefij = (vrefi +vrefj )/2, urefij = (urefi +urefj )/2and the length pij = ‖pi − pj‖. In the Ja
obian for the analogous visual feature fβ the u-and v-
omponents are inter
hanged. The resulting full 6 DOF Ja
obian matrix (sensitivity)exhibits the following blo
k stru
ture:
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. (5.21)
However, some residual 
ouplings remain through the non-zero o�-diagonal elements (J̃fx,β,
J̃fy,α, J̃fα,β, J̃fβ ,α) in the Ja
obian. These terms 
apture the e�e
t of a rotation α alongthe x-axis on the motion of the v-
omponents of point features, and vi
e versa a rotation βalong the y-axis on the u-
omponent. The 
omplete analysis of the sensitivity matrix is inappendix B and a summary of visual servoing with generi
 image moments in table B.1.



74 5.3 Positioning in 4 DOF with augmented point features5.3 Positioning in 4 DOF with augmented point featuresDetermining optimal 
ontrol parameters for the image-based 
ontroller is not so easy to a
-
omplish with 
onventional methods of 
ontroller generation su
h as LQR design due to thela
k of an obje
t model, model un
ertainties of image pro
essing and non-linearities of the
ontrol path. A su�
iently exa
t model of the 
losed-loop 
ontrol, 
onsisting of robot andimage pro
essing and 
onsidering dynami
al properties of the manipulator, 
alibrations,variable laten
y time and pixel noise as well as the non-linear dependen
e of the image fea-tures on the 
amera pose, 
an only be generated with large e�ort and results in a 
omplexand domain-
omprehensive model. Thus, an approa
h for automati
 hardware-in-the-loop(HIL) optimization of the image-based 
ontroller gains by evolutionary optimization is in-trodu
ed. In the following �rst the determination of 
ontrol parameters and su

essivelythe experimental results are presented.5.3.1 Controller optimizationThe moments for rotation and translation along the 
amera axis for 4 DOF visual servoing
orrespond to the image moments introdu
ed in equation 5.1, 5.6 and 5.8. Noti
e that inthe �rst step the 
oupled image moments fx and fy are employed as this is the most 
omplex
ase resulting in the following sensitivity matrix given in equation 5.22. For 6 DOF visualservoing with de
oupled image moments only four o�-diagonal 
ouplings remain. Later onthe optimal 
ontrol parameters for the de
oupled moments in 6 DOF using the de�nitionin equation 5.10 are determined in the same manner.

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







(5.22)The 
losed-loop 
ontrol system 
onsists of the 
oupling of four de
oupled PD 
ontrollers:
[vx, vy, vz, ωγ]

T = [kx, ky, kz, kγ]
T [∆fx,∆fy,∆fz,∆fγ]

T + (5.23)
[kDx, kDy, kDz, kDγ]

T [∆ḟx,∆ḟy,∆ḟz,∆ḟγ ]
T ,whereas kDx, kDy, kDz and kDγ denote the gains of the D (di�erential) parts. An integralpart in the 
ontrol path is omitted due to the integrating nature of the plant.The 
ontrol quality and stability of the image-based 
ontrol as well as the 
hara
teristi
sof the image features are determined by the sele
tion of the 
ontrol parameters of the PD
ontroller. The initial 
ontrol parameters are obtained manually or by means of simpli-fying dynami
 �rst order models. Subsequently an automati
 hardware-in-the-loop (HIL)
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al visual servoing with generi
 image moments 75optimization of the image-based 
ontroller is performed by evolutionary optimization tak-ing into a

ount several performan
e 
riteria. The term "evolving hardware" denotes amethodology 
onne
ting evolutionary algorithms with the design and optimization of me-
hani
 and ele
troni
 systems [89℄. In the 
ontext of HIL optimization of image-based
ontrollers time-
onsuming evaluation of 
ontrollers on the experimental system proves tobe problemati
, as they need to 
onsult several motions from initially di�erent robot posesin order to guarantee su�
ient robustness for 
overing the 
omplete workspa
e. If evolu-tionary optimization pro
edures are applied in this 
ontext, the available time frame forthe �tness evaluations has to be exploited as e�
iently as possible.Thus, the proposed approa
h utilizes a model-based evolution strategy whi
h initially eval-uates all generated o�spring by means of an online-learned �tness model [62℄, su
h thatonly the most promising 
andidates a

ording to the estimated �tness are subje
t to thea
tual �tness evaluation on the real robot. A

ording to the model-assisted evolutionstrategy (MAES) out of the λp o�spring 
reated within a generation only the estimated λemost promising 
andidates undergo the real test [149℄. From those the µp best solutionsare sele
ted as parents. The a
hievable progress by MAES within the evolutionary opti-mization does not strongly depend on the a
tual model error but more on the 
apabilityof predi
ting 
orre
tly the ranking order of the population during pre-sele
tion. ThereforeMAES already o�ers advantages if the model-based pre-sele
tion is better than a purelyrandom 
hoi
e in terms of ranking. λ-CMAES (
ontrolled MAES) improves the MAESas the number of a
tually evaluated individuals λe is �tted dynami
ally with the qualityof the �tness model in order to guarantee a 
onstant sele
tion quality. λ-CMAES from[62℄ is employed for the HIL optimization of the visual 
ontroller be
ause the evolutionaryprogress by means of the number of a
tual �tness evaluations is superior 
ompared to stan-dard evolution strategies. In the following the results of the evolutionary HIL optimizationof the image-based 
ontroller by means of λ-CMAES (λp = 30, λe ∈ [6, 15], µp = 5) arepresented. The 
ost fun
tion minimizes the quadrati
 image error
F =

4
∑

i=1

∫ T

0

∆f 2
i (t)dt (5.24)without an expli
it penalty of the 
ontrol e�ort. The velo
ities v proposed by the 
ontrollerare limited by the saturation of the a
tuating variable during transfer to the robot 
ontrol.The 
ontrol behavior is observed for a T = 15 s 
ontrol deviation and evaluated by means ofthe quadrati
 
ontrol error. To guarantee a robust performan
e, ea
h 
ontroller is evaluatedfor four di�erent initial displa
ements of the robot arm and the mean for the 
osts of allfour runs is 
al
ulated. Altogether, one HIL quality evaluation of a 
ontroller requires oneminute on a 1.8GHz Pentium4 system.Before the a
tual optimization of the 
ontroller on the real robot the robustness and e�-
ien
y of the method is analyzed in a simulated virtual reality. Optimization in a virtualenvironment o�ers the advantage of exa
tly reprodu
ible behavior whi
h is not subje
t todisturban
es due to variable illumination, dynami
al 
onstraints and variable laten
y as
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an be observed in the real system. The gain fa
tors of an image-based 
ontroller for a�exible 
amera are optimized by means of the 
ost fun
tion in equation 5.24.
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Figure 5.6: a) Development of the mean and best �tness for evolutionary optimization ofthe image-based 
ontroller in virtual reality 
ompared to the empiri
ally tuned 
ontroller;b) Evolutionary HIL optimization of the image-based 
ontroller on the target system.Figure 5.6 a) depi
ts the development of the mean and best �tness within a progress of 20generations. The optimization results in a signi�
ant improvement of the quadrati
 imageerror of a fa
tor �ve 
ompared to the empiri
ally tuned 
ontroller. The intermittent in
reaseof the mean �tness towards the end of the evolution is 
aused by individual unstable
ontrollers with extremely bad quality, whi
h however do not in�uen
e the development ofthe best individuals.The HIL optimization on the target system shown in �gure 5.6 b) pro
eeds over nine
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 image moments 77generations in total, 
orresponding to an expenditure of time of about 3.5 hours. By using
λ-CMAES the �tness evaluation time is redu
ed by 20%.For 
omparison the empiri
ally tuned 
ontroller is tested during the 
ontinuing optimiza-tion under the same 
onditions as the 
urrent generation. The quality variations of up to20% during the evolution in spite of identi
al 
ontrol parameters illustrate the in�uen
eof external disturban
es on the 
ontrol behavior. The trend of this in�uen
e is re�e
tedin a similar manner for the empiri
ally tuned 
ontroller in the �tness progress of the best
ontroller of one generation. It be
omes apparent that the optimized 
ontroller exhibitsa 
onsistently better behavior and the quadrati
 image error is redu
ed towards the endof the evolution in average of approximately ten units 
ompared to the empiri
ally tuned
ontroller.
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Figure 5.7: Comparison of the error evolution in the work spa
e for the empiri
ally tuned(a) and evolutionary optimized (b) 
ontroller.Figure 5.7 
ompares the empiri
ally tuned PD 
ontroller with the evolutionary optimized
ontroller in terms of regulation of the task error. For the degrees of freedom x, y and γ
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ontrol error and overshoot are redu
ed, whereas the regulation ofthe z-
omponent is inferior. The quadrati
 
ontrol error of the empiri
ally tuned 
ontrolleris redu
ed from F = 32 to F = 23 a

ording to equation 5.24 by means of the HILoptimization. The slower 
onvergen
e is partly due to the 
oupling of the features forthe x and y-
omponent with motions in z-dire
tion. The perspe
tive 
amera proje
tion
auses a magni�
ation of the image with approa
hing 
amera and therefore a simultaneousin
rease of the feature errors fx and fy. As the total 
osts depend on the aggregation ofthe individual errors, a slower 
onvergen
e along the z-axis still leads to a redu
ed totalquadrati
 
ontrol error.5.3.2 Simulation and experimental resultsThe optimized 4 DOF visual 
ontroller is evaluated for a free moving 
amera in virtualreality and in experiments on a 5 DOF KATANA manipulator with an eye-in-hand 
on�g-uration. For the evaluation of the de
oupled visual features for 4 DOF visual servoing, themanipulator is dislo
ated from the referen
e pose by an initial displa
ement ∆x = 20mm,
∆z = 40mm and ∆γ = 25◦. Substantially larger displa
ements are not feasible in theexperiments due to the restri
ted workspa
e of the KATANA manipulator and the eye-in-hand 
onstraint of keeping the obje
t in view of the 
amera. Figure 5.8 
ompares theevolution of the task spa
e error and the image error for the original 
oupled 
ontroller(a, b) and the de
oupled 
ontroller (
, d). In 
ase of the 
oupled 
ontroller the z-errorintrodu
es a dynami
 shift of the 
urrent feature fx. Although the image error itself is
ompensated after 12 iterations, the 
orresponding residual task spa
e error in x remainsuntil 
omplete regulation of ∆z after about 25 iterations. The de
oupled 
ontroller elim-inates the impa
t of vz on the feature fx su
h that image and task spa
e error in the
x-
omponent 
onverge simultaneously after 12 iterations. Even though there is no initialdispla
ement along the y-axis, the inherent 
oupling with vz indu
es an undesired motion intask spa
e of ∆y ≈ 5mm. Again, the de
oupled 
ontroller eliminates this disturban
e and
∆y is not e�e
ted by the motions vx or vz. The residual task spa
e error of the de
oupled
ontroller is less than 0.5mm for the position and 0.5◦ for the rotation.The potential of de
oupled visual servoing in the 
ontext of obje
t manipulation in the
ontext of servi
e roboti
s is investigated by [81℄, whi
h utilizes the proposed visual servoingfor gripper-obje
t alignment in 
onjun
tion with a subsequent grasping stage. The obje
tmanipulation is realized by a two-stage approa
h, in whi
h the obje
t-gripper alignment isa
hieved by the proposed visual servoing and subsequently a two-�nger grasping strategyis applied in order to manipulate the obje
t without slippage and damage. The approa
his advantageous for servi
e robot manipulation as it ne
essitates only one referen
e imageof the pre-grasping pose and an approximate estimate of the obje
t's weight. In order todemonstrate the e�e
tiveness of the approa
h a textured obje
t is su

essfully pi
ked up,moved and released at a novel position and orientation in twenty 
onse
utive trials withouthuman intervention.
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Figure 5.8: Image error (a) and position and angular error in task spa
e (b) for visualservoing in 4 DOF; Image error (
) and position and angular error in task spa
e (d) forde
oupled visual servoing in 4 DOF.5.4 Positioning in simulations in 6 DOF with augmentedpoint featuresFigure 5.9 shows the task spa
e error for visual servoing for 6 DOF in a virtual realitysimulation. Noti
e the substantial 
oupling among the degrees of freedom in the task spa
efor the 
onventional 
ontroller (a). The translational motions in x, y and z demonstrate asigni�
ant overshoot 
aused by the 
ouplings of the 
onventional 
entroids fx, fy with Tz, ωαand ωβ. The task spa
e errors in x and z initially in
rease and only start to 
onverge afterstabilization of the other errors. For the weighted 
entroid 
ontrol (b) with the partiallyde
oupled Ja
obian the disturban
es are signi�
antly redu
ed and the six task spa
e errors
onverge smoothly and largely independent of ea
h other. The residual overshoot in the
x- and y-
omponents is 
aused by the remaining 
oupling with ωβ and ωα, respe
tively.The results 
learly demonstrate that the weighted features result in a more favorable taskspa
e motion of the 
amera.
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Figure 5.9: a) Position and angular error in task spa
e for visual servoing in 6 DOF; b)Position and angular error in task spa
e for de
oupled visual servoing.Experimental results are provided in the following se
tion in a 
ompetitive analysis withan alternative approa
h. F5.5 Alternative: Visual servoing on a virtual 
ameraplaneThe 
on
ept of a virtual 
amera plane is inspired by the re
ti�
ation stage in stereovision.The virtual 
amera plane was �rst introdu
ed by [105℄ in order to 
ontrol the motion ofa mobile robot independent of its gaze as explained in se
tion 4.2. The main idea is totransform the features in the 
urrent view onto a virtual 
amera view, whi
h is 
oplanarwith the referen
e view in 
ombination with the de
oupling from se
tion 5.2, 
f. [113℄.Figure 5.10 illustrates the geometri
 relationship between the referen
e, a
tual and virtual
amera plane. The 
urrent 
amera frame exhibits a translational and rotational o�set withrespe
t to the referen
e 
amera frame. The origin of the virtual frame 
oin
ides with the
urrent view, whereas its orientation is identi
al to the referen
e frame. The features in the
urrent view are ba
k-rotated onto the virtual 
amera plane, thus allowing the unbiasedobservation of the visual feature errors re
eptive to 
amera translations independent of the
amera's orientation.The 
ontrol s
heme for visual servoing on a virtual 
amera plane is detailed in table 5.2.The rotation between the a
tual view and the referen
e view is estimated by the properde
omposition of a homography into a rotational and translational part. The homographyestablishes a point to point transformation between two 
amera views for a set of featuresthat lie on a plane a

ording to equation 2.5. The estimation of the homography requires atleast four feature 
orresponden
es, whereas for the sake of robustness and a

ura
y a two-
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Figure 5.10: a) Camera 
on�guration; b) Transformation of the a
tual image 
oordinatesonto the virtual 
amera plane.stage estimation pro
ess is applied for elimination of outliers by means of the RANdomSAmple Consensus algorithm (RANSAC) [49℄ and a subsequent least squares estimation.The homography is de
omposed into the rotation matrix R, the ratio t/d and the normalve
tor n. It is assumed that the normal ve
tor n of the feature plane in the referen
e 
on-�guration is roughly known in order to resolve the ambiguity of multiple possible solutionsto equation 2.5. The rotational part of the image Ja
obian only depends on the intrinsi

amera parameters and is therefore independent of the 
amera pose. This property enablesthe homogeneous transformation of features from the a
tual to the virtual 
amera plane(step 2 in table 5.2) without e�e
ting the feature error. As the virtual and referen
e frameare 
oplanar the residual feature error is solely attributed to the translational error in taskspa
e.The estimated rotation 
onstitutes the feedba
k signal to regulate the robot orientation intask spa
e. The translational degrees of freedom are regulated by image moments similar tose
tion 5.2. The third step 
onsists of determining the moments fx and fy by the weighted
entroid a

ording to equation 5.10. The homogeneous transformation already a

ountsfor the dependen
y on rotations around the x- and y-axis, respe
tively. The 
ost fun
tion
F only 
ontains a single Lagrange multiplier to a
hieve de
oupling of the z-
omponent:

F =
1

2

n
∑

i=1

(

wi −
1

n

)2

+ λi

n
∑

i=1

wiûvi. (5.25)Note that equation 5.25 di�ers from the 
ost fun
tion introdu
ed in equation 5.12 byrepla
ing ui by ûvi, thus allowing for 
ompletely de
oupled visual servoing in 6 DOF. The
ost fun
tion F is again minimized by 
omputing the partial derivative of equation 5.25with respe
t to wi and the Lagrange multiplier λi, whi
h yields the least squares solutionstated in step 3 of the 
ontrol s
heme. In the fourth step the moment fz is based upon the



82 5.5 Alternative: Visual servoing on a virtual 
amera planeaverage distan
e between two point features in order to regulate translations along z . The�fth step is optional as it is 
arried out only on
e for a 
amera manipulator setup in orderto determine the optimal 
ontrol parameters. Finally the 
ontroller setpoint is determinedby means of the image moments fx, fy, fz and the estimated rotations.Table 5.2: Visual servoing on a virtual 
amera plane.1. Estimation and de
omposition of the homography into rotation and translation:Ĥ = UΛVT ⇔ Λ = UT (dR+ tnT )V (cf. section 2.1).2. Homogeneous transformation of the a
tual image 
oordinates onto the virtual
amera plane similar to equation 4.3 with an additional Text equal to the estimatedrotation matrix R via:




ûv

v̂v
1



 =

[ R 0
0 1

]





û
v̂
1



 .3. Determination of the image moments fx and fy onto the virtual 
amera planea

ording to:
fx =

n
∑

i=1

wiûvi with wi =
1

n
−

ûviûv
∑n

i=1(ûvi)
2
,

fy =
n

∑

i=1

wiv̂vi with wi =
1

n
−

v̂vi v̂v
∑n

i=1(v̂vi)
2

(cf. equation 5.10 to 5.14).4. Determination of the image moments fz onto the virtual 
amera plane a

ordingto:
fz =

(n

2
(n− 1)

)−1
n

∑

i=1

n
∑

j=i+1

||pj−pi|| with pi,j = [ûvi v̂vi ] (cf. equation 5.7).(5.) Singular 
omputation of the gains: HIL optimization of the 
ontroller by λ-CMAES (
f. se
tion 5.3.1).6. Determination of 
ontroller setpoint by means of the image moments fx, fy, fzand the estimated rotations.Figure 5.11 
ompares the image lo
ation of features for a 
amera a
tually aligned with thevirtual frame and the estimated lo
ation of features in the virtual image plane a

ordingto the 
urrent view. Despite the substantial translational and rotational displa
ementbetween both frames the estimated features ba
k-rotated onto the virtual 
amera plane
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 image moments 83only deviate from their a
tual positions by a small error of 1.6 pixel in the u-
oordinateand of 1.4 pixel in the v-
oordinate.
∆x 100 
m
∆y 30 
m
∆z 50 
m
∆α 15◦
∆β 10◦
∆γ 20◦
∆u 1.61 pixel
∆v 1.38 pixelFigure 5.11: Virtual 
amera plane: White 
ir
les 
orrespond to the original view, whi
h isdispla
ed but 
oplanar with the referen
e view. The bla
k markers indi
ate the featurestransformed from the 
urrent view to the virtual plane by ba
k-rotation by means of theestimated homography.The visual servoing s
heme on a virtual 
amera plane as well as the visual servoing withimage moments using SIFT are evaluated in virtual reality and in experiments on a 6DOF Reis manipulator with an eye-in-hand 
on�guration. For the 
omparison of the two
ontrol designs the manipulator is dislo
ated from the referen
e pose in the virtual realityby an initial displa
ement ∆x = 40 
m, ∆y = 80 
m, ∆z = 60 
m, ∆α = 5◦, ∆β = 30◦,

∆γ = −30◦. Figure 5.12 
ompares the evolution of the task spa
e error for the original
ontroller via image moments and the alternative 
ontroller based on the virtual 
ameraplane. The undesired 
oupling of the visual moment fx with the error in β results in aninitial in
rease of the position error in x for visual servoing with image moments. Basedon the remaining 
ouplings the pose errors 
onverge to zero under the 
ondition that theother position errors are already eliminated. The results 
learly demonstrate that the visualservoing with a virtual 
amera plane results in an even more favorable task spa
e motion.The 
onvergen
e is mu
h faster as ea
h error 
omponent 
onverges independent of ea
hother. Therefore the gains are tuned separately for ea
h DOF, enabling a more e�
ient HILoptimization. The residual task spa
e error of the visual 
ontrol with the virtual 
ameraplane is less than 0.5mm for position and 0.05◦ for rotation, whi
h is approximately oneorder of magnitude smaller than the visual servo 
ontrol with image moments.Noti
e, that the potentially in
orre
t 
orresponden
es are dete
ted online for the visualservoing with de
oupled image moments based upon the 
onsisten
y of the main orientationof the individual SIFT features. In the 
ase of the virtual 
amera plane, false and noisy
orresponden
es are eliminated based on the robust estimation of the homography withRANSAC. The pri
e for the in
rease in performan
e of the visual 
ontroller with the virtual
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amera plane
amera plane is the additional e�ort to properly 
alibrate the 
amera model. The s
hemedepends in parti
ular on an a

urate estimate of the transformation from the tool 
enterpoint to the fo
al point.
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Figure 5.12: a) Task spa
e error for visual servoing with image moments; b) Task spa
eerror for visual servoing using the virtual 
amera plane. The task spa
e error in the virtualreality is determined by the feed-forward kinemati
s from the 
al
ulated joint angles.Figure 5.13 
ompares the evolution of the task spa
e error for both visual servoing 
on-trollers during experiments on the 6 DOF industrial robot. Noti
e, that the �nal a

ura
ywhi
h is a
hieved by the de
oupled image moments using SIFT is superior to the visualservoing with the virtual 
amera plane. The larger residual error is due to the imperfe
t
alibration of the transformation between the robot's tool 
enter point and the 
ameraframe whose origin is lo
ated in the fo
al point. However, the rate of 
onvergen
e of thevisual servoing on the virtual 
amera plane is substantially higher than for the 
ontrollerwith image moments. A
hieving the level of a

ura
y demonstrated in the virtual realityon the real system requires a mu
h more advan
ed and pre
ise 
alibration.
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 image moments 855.6 Analysis and 
on
lusionThis 
hapter presents a novel approa
h for visual servoing based on de
oupled image mo-ments using augmented point features su
h as SIFT features. The properties of lo
alfeatures render the approa
h universally appli
able for manipulation of daily-life obje
tsthat exhibit texture. Lo
al feature extra
tion (e.g. SIFT, ORB, SURF, GLOH, GF-HOG)for visual servoing appli
ations o�er the further advantage that obje
t re
ognition and posealignment of the manipulator rely on the same obje
t representation. For 4 DOF visualservoing a set of 
ompletely de
oupled image moments is derived that results in robust andindependent 
onvergen
e of the 
orresponding task spa
e errors. Problems of the 
lassi
alJa
obian based visual servoing s
heme su
h as the 
amera retreat problem and lo
al min-ima are resolved. A novel sensitivity matrix for 6 DOF visual servoing is introdu
ed, whi
hhas only four o�-diagonal 
oupled 
omponents between the visual features and the degreeof motion. The visual 
ontrol with the proposed methodology 
auses the pose errors to
onverge largely independent of ea
h other resulting in a smoother task spa
e motion ofthe 
amera. As an alternative to visual servoing based on de
oupled image moments, theidea of the virtual 
amera plane for de
oupled navigation and gaze 
ontrol introdu
ed inse
tion 4 is transferred to the domain of visual servoing for obje
t manipulation, named"visual servoing on a virtual 
amera plane".Table 5.3 summarizes the main 
hara
teristi
s of the two 
ontroller designs. Contrary tovisual servoing on a virtual 
amera plane, visual servoing with image moments requiresneither an intrinsi
 nor an extrinsi
 
alibration for transformation between the robot'stool 
enter point and the 
amera frame. Additionally, for a
hieving its high performan
e,visual servoing on a virtual 
amera plane partially re
onstru
ts the s
ene by means ofthe homography, whereas the estimation of the rotation matrix ne
essitates the knowledgeof the normal ve
tor n on the obje
t's surfa
e in the referen
e view. This method hasthe advantage that no o�-diagonal 
ouplings between the visual features and the degreeof motion remain. Four non-
ollinear features are required to estimate the homography.Visual servoing with image moments needs only three features that span a large area aroundthe fo
al point. Visual servoing on a virtual 
amera plane slightly outperforms visualservoing with image moments in terms of position a

ura
y and 
onvergen
e, however,under the 
ondition of proper intrinsi
, extrinsi
 
alibration and de
omposition of theestimated homography. As the performan
e in
rease is not justi�ed by the additionale�ort, visual servoing with image moments is preferable due to its model- and 
alibration-free design and its e�
ient implementation. Following this argumentation, the obje
tmanipulation with the Katana arm presented in [81℄ utilizes the proposed visual servoingwith de
oupled image moments for gripper-obje
t alignment.The next 
hapter des
ribes global visual servoing. Due to the limited visibility and per-
eptibility of features a
ross di�erent views, it be
omes ne
essary to introdu
e additionalintermediate referen
e views to navigate a
ross the entire view hemisphere.



86 5.6 Analysis and 
on
lusionTable 5.3: Chara
teristi
s of the two di�erent visual servoing 
ontrollers, visual servoingon a virtual 
amera plane (
f. table 5.2) versus image moments (
f. table B.1).Visual servoing with Visual servoing on aimage moments virtual 
amera planeintrinsi
 
alibration - requiredextrinsi
 
alibration - essential for performan
emodel knowledge - normal ve
tor nremaining 
ouplings 4 0minimal number of features 3 4performan
e very good ex
ellent
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Figure 5.13: a) Task spa
e error for visual servoing with image moments during experimentson a 6 DOF industrial robot; b) Task spa
e error for visual servoing using the virtual
amera plane. The task spa
e error for the 6 DOF industrial robot is determined by thefeed-forward kinemati
s from the measured joint angles.



Chapter 6
Global visual servoing with dynami
feature sets
This 
hapter presents a novel approa
h to global visual servoing in the 
ontext of obje
tmanipulation, also stated as large view visual servoing in [110℄. In many s
enarios thefeatures extra
ted in the referen
e pose are only per
eivable a
ross a limited region of thework spa
e. The limited visibility of features ne
essitates the introdu
tion of additionalintermediate referen
e views of the obje
t and requires path planning in view spa
e. Figure6.1 depi
ts exemplarily su
h a s
enario in whi
h the features from the 
urrent pose and thereferen
e pose do not interse
t. The visual 
ontrol is based on de
oupled image momentsusing augmented point features su
h as SIFT features [109, 64℄ as de�ned in se
tion 5.2.The approa
h is generi
 in the sense that the 
ontrol operates with a dynami
 set of feature
orresponden
es rather than a stati
 set of geometri
 features. The additional �exibility ofdynami
 feature sets enables �exible path planning in the image spa
e and online sele
tionof optimal referen
e views during servoing to the goal view. The time to 
onvergen
e to thegoal view is estimated by a neural network 
onsidering the residual feature error and thequality of the feature distribution. The transition among referen
e views o

urs on the basisof this estimated 
ost whi
h is evaluated online based on the 
urrent set of visible features.The dynami
 swit
hing s
heme a
hieves robust and nearly time-optimal 
onvergen
e of thevisual 
ontrol a
ross the entire task spa
e. The e�e
tiveness and robustness of the s
hemeis 
on�rmed in a virtual reality simulation and on two di�erent experimental setups onindustrial robot manipulators with an eye-in-hand 
on�guration [85℄.Following the model-free paradigm of this thesis already perused in visual servoing withde
oupled image moments as well as visual navigation, the global visual servoing s
hemeis designed without any obje
t models 
ontrary to e.g. [142℄. Optimal motion 
ontrol forvisual servoing to a stati
 referen
e view has been dis
ussed in 
hapter 5, whereas this
hapter addresses the issue of global visual servoing with extra
tion and mat
hing of dy-nami
 sets of SIFT features. The view spa
e is partitioned by an entire set of intermediate,87



88 6.1 Stability analysis depending on the feature distribution

Figure 6.1: Appli
ation example for global visual servoing: start 
on�guration (left); Dis-jun
tive feature distribution in 
urrent and referen
e view (
entered); Goal pose (right).partially overlapping referen
e views of the obje
t. The authors in [97℄ integrate a pathplanner in the image spa
e with a visual 
ontroller based on potential �elds in order to ob-tain visual navigation for large displa
ements. The work in [123℄ extends these 
on
epts byqualitative visual servoing based on obje
tive fun
tions that 
apture the progression alongthe path, the feature visibility and 
amera orientation. This 
hapter provides a 
ontribu-tion to optimal path planning in the image spa
e 
onsidering the residual feature error in
onjun
tion with the quality of the feature distributions in alternative referen
e views. Theadditional �exibility of dynami
 feature sets allows for adaptive online swit
hing amongreferen
e views while navigating towards the goal view.The 
hapter is organized as follows: Se
tion 6.1 provides a stability analysis motivated bythe feature distribution in the image spa
e. Due to the limited feature visibility a
rossdi�erent views it is ne
essary to introdu
e intermediate referen
e views. Time-optimalreferen
e sele
tion to a

omplish global visual servoing is introdu
ed in se
tion 6.2. Navi-gation in image spa
e is des
ribed in se
tion 6.3. Se
tion 6.4 demonstrates simulations invirtual reality on a sphere as well as on industrial robot arms and analyzes the 
onvergen
ebehavior of alternative swit
hing strategies. An alternative to global visual servoing is in-trodu
ed in se
tion 6.5. Within a two-stage approa
h �rst a model-free pose estimationwith viewpoint interpolation for a look-then-move strategy is applied, followed by lo
alvisual servoing 
lose to goal pose. The 
hapter 
on
ludes with a summary in se
tion 6.6.6.1 Stability analysis depending on feature distributionThe lo
al stability of the visual 
ontrol loop requires that the feature error has a uniqueminimum at the referen
e pose. Even though a single SIFT feature su�
es in prin
iple
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 feature sets 89for 
oupled 4 DOF visual servoing, the 
omputation of weighted 
entroids requires at leasttwo non-
oin
ident point features for de
oupled 4 DOF visual servoing. Visual servoing in6 DOF depends on at least three non-
ollinear features. Convergen
e of the 
ontrol to thereferen
e pose is a
hieved under the assumption of 
ontinuous visibility and per
eptibilityof this minimum number of 
orresponden
es. As stated in [48℄, three feature points whi
hideally form a large-area triangle en
losing the origin are optimal for visual 
ontrol. Threefeatures are minimal as the distortion in features fα and fβ is observed relative to theaverage length between the points. However, not all 
on�gurations of three feature pointsare suitable for 
ontrol. Stable visual 
ontrol of the rotations requires that the three featuresare widespread and that the formed triangle en
loses the origin. A too small separation ofthe three point features 
auses a 
hange of sign in the moments fα and fβ resulting in anunstable 
ontrol. Figure 6.2 illustrates this phenomenon as it shows the point distributionsfor �ve triangular sets of di�erent separation (�gure 6.2 a) and the 
orresponding variationof the moment fα for the �ve sets with respe
t to rotation about the x-axis (�gure 6.2b). In 
ase of the widespread feature set the feature error fα has a unique root at theorigin [111℄. However, the feature set 
losest to the origin indu
es two roots of fα withnon-zero rotational error to the left and right of the origin. These additional roots 
ausethe visual 
ontrol to 
onverge to an equilibrium state that di�ers from the referen
e pose.Figure 6.3 shows the development of the feature moment fx during a lateral movement for
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0.080.060.040.020-0.02-0.04-0.06-0.08-0.10Figure 6.2: Feature distribution in image plane (a) and impa
t on rotation moments (b).a randomly 
hosen subset of features. The feature 
on�gurations depi
ted in the insetsof the �gure demonstrate the e�e
t of an extreme feature o

lusion on the 
al
ulatedmoment. The 
on�gurations that are used for all other displayed moment developmentsrepresent feature o

lusions with a randomly 
hanging distribution in the image plane aswell as in the number of features. The 
amera is laterally displa
ed by -40 
m to +40 
m



90 6.1 Stability analysis depending on the feature distributionwhile the features at a distan
e of 75 
m are proje
ted onto a normalized image plane.The �gure demonstrates the impa
t of feature o

lusions on the visual moment. Thetwo envelopes marked by triangles and re
tangles 
orrespond to the extreme, but highlyunlikely s
enario in whi
h all features in either the left or right half-plane are o

ludedresulting in a highly asymmetri
 
on�guration. The dotted lines 
orrespond to randomfeature o

lusions. In all 
ases the unique equilibrium point is globally stable. In 
ase ofthe two extreme distributions the weighted feature moment does not evolve monotoni
allywith the lateral displa
ement, due to the e�e
t of skewed weights whi
h in
rease in absolutemagnitude with the asymmetry of the feature distribution. Even though this phenomenone�e
ts the rate of 
onvergen
e global stability is still guaranteed.
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Figure 6.3: Feature distribution in image plane (insets) and impa
t on rotation moments.In 
ontrast to [48℄ the presented approa
h does not sele
t the subset of optimal featuresonline, but rather utilizes all available features mat
hed between the 
urrent and the refer-en
e view in order to maximize robustness and a

ura
y. The general de�nition of visualfeatures in terms of statisti
al moments renders the s
heme robust with respe
t to o

lusionor partial loss of per
eptibility of features. Noti
e, that the referen
e features are re
om-puted online with respe
t to the subset of mat
hed features. Typi
ally, the number ofmat
hed features varies between 5 and 40, depending on the 
amera pose and the amountof useful texture in the 
urrent image. The visibility of individual features is limited bythe 
amera's �eld of view, o

lusion by the obje
t and 
hanges in perspe
tive. Therefore,global visual servoing requires multiple referen
e images in order for the 
amera to navigatea
ross the entire view hemisphere. Intermediate referen
e images are 
aptured a
ross theentire work spa
e in x-, y- and z-dire
tion. It is assumed that the obje
t always remainsin view of the 
amera, whi
h naturally restri
ts the orientation of the 
amera along the
x- and y-axis. The point of departure is a set of overlapping intermediate referen
e views



Chapter 6 Global visual servoing with dynami
 feature sets 91with partially shared features among neighboring images. The obje
tive of this thesis is togenerate a time-optimal and robust visual 
ontrol a
ross the entire task spa
e by properswit
hing among neighboring referen
e images. For that purpose, the 
ost of the 
urrentview is 
ompared with respe
t to all overlapping referen
e images, and the 
ontrol swit
hesto the referen
e image with minimal 
ost. A 
ru
ial step is to estimate the 
ost in termsof the time to rea
h the referen
e pose from the feature error and geometri
 
on�gurationof features. Based on the estimated 
ost the optimal path is determined by shortest pathgraph sear
h.6.2 Optimal referen
e image sele
tionFor global visual servoing intermediate views are de�ned to navigate a
ross the entire viewhemisphere. It be
omes desirable to swit
h between intermediate views in a stable, robustand time-optimal manner. The 
ost in terms of number of 
ontrol 
y
les to 
onverge fromthe 
urrent view to the referen
e image is estimated in order to 
ompute the optimal path.Cru
ial for this purpose is the proper de�nition of performan
e 
riteria for approximationof the 
ost fun
tion and the analysis of their 
orrelation with the 
ost [110, 111℄. In this
ase, an arti�
ial neural network learns the relationship between 
ontrol 
riteria and 
ostsin a supervised manner. The training data is obtained from observations of the a
tualnumber of 
ontrol 
y
les required for transitions between neighboring referen
e views.6.2.1 Control 
riteriaFeature error: The overall feature error ∆f(I)=[∆fx, ∆fy, ∆fz, ∆fα, ∆fβ, ∆fγ ℄ 
on-stitutes the most signi�
ant performan
e 
riterion for the estimation of the 
ost. A singlefeature error alone does not provide a good estimate of 
ost, be
ause the a
tual time to
onvergen
e depends on the feature error with the slowest task spa
e motion, usually as-so
iated with the translational degrees of freedom. The rotational errors are bounded bythe visibility 
onstraint and are usually stabilized within a few 
ontrol steps. Ea
h elementof ∆f(I) is normalized to the interval [0, 1] a

ording to its maximum range. The totalfeature error is the sum of normalized errors
∆f̂(I) =

6
∑

i=1

∣

∣

∣
∆f̂i(I)

∣

∣

∣
. (6.1)The feature error already attributes to a substantial amount of variation in the 
ost, nev-ertheless the 
ost estimate is improved by in
lusion of additional 
riteria that 
apture thequality and robustness of visual 
ontrol.Number of 
orresponden
es: The robustness and the 
ontrol performan
e in
reasesigni�
antly if more than the minimal number of 
orresponden
es is established. The



92 6.2 Optimal referen
e image sele
tionredundan
y of multiple features redu
es the noise level and 
ontributes to the bene�
ialwidespread dispersion of features in the image spa
e. A small number of features might
ause a 
ompa
t distribution of point features, whi
h 
auses poor or even unstable 
ontrolin the image spa
e as shown in se
tion 6.1. The number of mat
hed features also provides anestimate of the geometri
 distan
e of the 
urrent view to the referen
e pose. Distant posesonly share a subset of mutually visible features, whereas the number of 
orresponden
esnaturally in
reases with the proximity of both viewpoints. The 
riterion C(I) = n isde�ned as the absolute number of feature 
orresponden
es between the 
urrent and thereferen
e view. The 
riterion
Cn(I) =







0 n < nmin
n

nmax
nmin < n < nmax

1 nmax < n
(6.2)normalizes C(I) as it requires a minimal number of features nmin and saturates at the upperlimit nmax = 40 at whi
h no further improvement of the 
ontrol performan
e is observed.The parameter nmax is independent of the obje
t and not 
ru
ial for approximate 
ostestimation. The absolute number of visible features alone is not a unique indi
ator of theexpe
ted 
ost as it also depends on the distribution of these features de�ned in terms oftheir entropy and varian
e around the 
entroid.Entropy: Entropy measures the order or disorder in a distribution. Therefore two 
ontrol
riteria are introdu
ed, whereas Eu(i) and Ev(i) 
apture the distribution along the twoaxes of the image 
oordinate. The image is partitioned into N = 10 verti
al and horizontalequally spa
ed 
olumns and rows. The entropy along the two axes is 
al
ulated as

Eu(I) = −

N
∑

i=1

Hu(i) logN (Hu(i)) (6.3)
Ev(I) = −

N
∑

i=1

Hv(i) logN (Hv(i)) (6.4)in whi
h Hu(i) and Hv(i) denote the relative frequen
y of features in the i-th 
olumn,respe
tively row. The entropy assumes a value in the interval [0, 1], in whi
h a high entropyindi
ates a uniform distribution. A low entropy reveals an inhomogeneous distribution,whi
h harms the robustness and speed of 
onvergen
e of visual servoing.Centroid lo
ation: A 
on
entration of the feature points at the image borders bears theinherent risk of loss of features for small 
amera rotations. The visual features fα and fβrequire a distribution uniformly 
entered around the prin
ipal point in order to 
apturethe distortion of line segments. The deviation of the feature 
entroid from the origin isexpressed by
|ū| =

n
∑

i=1

|ui−u0

n
|, |v̄| =

n
∑

i=1

| vi−v0
n
| (6.5)
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h low values represent desirable feature distributions.Varian
e of the feature distribution: The varian
e of the feature positions provides anadditional estimate of the quality of the feature distribution. A low varian
e in parti
ularin 
onjun
tion with a dislo
ated 
entroid re�e
ts a feature distribution that is suboptimalfor visual 
ontrol and delays the 
onvergen
e to the referen
e image. The varian
es are
omputed as
σu =

n
∑

i=1

(ui − ū)2

n
, σv =

n
∑

i=1

(vi − v̄)2

n
. (6.6)Noti
e, that entropy re�e
ts the geometri
 homogeneity of the feature set, whereas varian
e
aptures its width.Correlation between performan
e 
riteria and time to 
onvergen
e: Controlexperiments from 150 initial positions randomly distributed over the task spa
e are re
ordedin order to evaluate the 
orrelation between the performan
e indi
ators and the time to
onvergen
e. Ea
h 
ontrol step of the individual runs 
onstitutes a training sample forsupervisory learning of the neural network. A 
ontrol run is 
onsidered as su

essfully
onverged to the referen
e image if all image errors are redu
ed to within 10% of theiraverage initial value. The 
orrelation between the performan
e 
riteria and the a
tualtime to 
onvergen
e provides insight into the in�uen
e and relevan
e of the individualindi
ators. The linear dependen
y between two sto
hasti
 variables X and Y is 
omputeda

ording to Pearson's 
orrelation 
oe�
ient:

rXY =

n
∑

i=1

(Xi − X̄)(Yi − Ȳ )

√

n
∑

i=1

(Xi − X̄)2
√

n
∑

i=1

(Yi − Ȳ )2
, (6.7)whi
h assumes values in the interval [−1, 1]. X̄ and Ȳ are the �rst-order moments ofthe sto
hasti
 variables. Large absolute values indi
ate strong 
orrelation between thetwo quantities. However, a 
orrelation 
oe�
ient value of zero would demonstrate thatno predi
tion of the 
osts based on the 
hosen 
ontrol 
riteria 
an be done. Table 6.1spe
i�es the 
orrelations between the performan
e indi
ators and the 
ost in terms of timeto 
onvergen
e.Table 6.1: Pearson 
orrelation between performan
e 
riteria and time to 
onvergen
e.

∆fx ∆fy ∆fz ∆fα ∆fβ ∆fγ f̂
rXY 0.30 0.14 0.17 0.14 0.13 0.13 0.63

C(I) Cn(I) Eu(I) Ev(I) |ū| |v̄| σu σv

rXY -0.66 -0.72 -0.66 -0.72 0.44 0.32 -0.64 -0.62



94 6.3 Navigation in the image spa
eTable 6.2: Training and test set error for neural network trained with feature error f(I)only and with feature error and performan
e 
riteria f(I), c(I). RMSE stands for rootmean square error. RMSE train RMSE test 
orrelation
f(I) 0.0149 0.0297 0.75
f(I), c(I) 0.0072 0.0092 0.96The individual feature errors are only slightly 
orrelated with the 
ost, whereas the normal-ized summed feature error f̂ is indeed a proper indi
ator for the distan
e to the referen
epose. Noti
e, that the relative number of mat
hed features Cn(I) 
orrelates even more withthe 
ost than the summed absolute errors f̂ . The s
alar summed error 
ontains less infor-mation than the entire error ve
tor f(I). This is expli
able, as the feature errors related tothe translational degrees of freedom 
onverge at a slower rate.In order to predi
t the time to 
onvergen
e two neural networks with di�erent input fea-tures are trained with the data a
quired during the 150 experimental runs. The multi-layerper
eptrons are 
omposed of 16 neurons in the hidden layer and are trained with the stan-dard ba
k-propagation algorithm. The �rst network only uses the six-dimensional featureerror f(I) as input, whereas the se
ond network in addition has a

ess to the performan
e
riteria c(I) = [Cn(I), Eu(I), Ev(i), ū, v̄, σu, σv]. Figure 6.4 depi
ts the relation between theestimated 
osts on the x-axis and the true 
osts for the full input network. It also showsthe linear regression for the partially and fully informed network. The neural network onlytrained with the feature error f(I) a
hieves a 
orrelation of 0.75 between estimated andtrue 
ost. This 
orrelation is substantially improved by in
orporation of the additionalperforman
e 
riteria to a degree of 0.96. The improvement in predi
tion a

ura
y of thefully informed network error 
ompared to the pure feature error based network is 
on�rmedby the redu
ed training and test set error shown in table 6.2. This demonstrates that adistan
e metri
 to the goal view in the image spa
e has a signi�
antly lower 
orrelationwith the 
osts than f(I) in 
onjun
tion with the image distribution indi
ators c(I). Thisobservation 
on�rms the 
onvergen
e analysis in se
tion 6.1, namely that the feature distri-bution 
ru
ially a�e
ts the 
ontrol performan
e. Furthermore the 
ontrol features |ū| and

|v̄| only have a small leverage in order to improve the 
orrelation between 
ontrol 
riteriaand 
osts. Finally a 
orrelation of 0.96 is obtained using all de�ned 
ontrol 
riteria.6.3 Navigation in the image spa
eThe approa
h neither requires a geometri
 model of the obje
t nor is it aware of the spatialrelationship between the referen
e views, nor does it perform path planning in the task



Chapter 6 Global visual servoing with dynami
 feature sets 95

PSfrag repla
ements

estimated 
osts (
omplete neural network)
real
osts


orrelation 
oe�
ient rXY = 0.9557


orrelated data

regression based on image-spa
e errorregression of 
omplete neural networkmean of estimated 
ostsmean of real 
osts
orrelated data

00.10.20.30.40.50.60.70.80.91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

00.10.20.30.40.50.60.70.80.91
00.2

0.40.6
0.81

Figure 6.4: Neural network (NN) estimate versus true 
ost (+) and regression lines for theneural network with f(I) as input (grey dashed line) and (f(I), c(I)) as input (bla
k dashedline).spa
e. The optimal path is planned online in the image spa
e rather than in the task spa
e.For that purpose ea
h referen
e view (RV) represents a node in an undire
ted graph, inwhi
h edges de�ne neighborhood relationships between overlapping views. The 
ost of anedge 
onne
ting two views re�e
ts the transition time between the views expressed in termsof number of iterations to 
onverge from the initial view to the neighboring view. The graphsupports the global initial path planning from the start view to the desired goal view, butit also forms the basis for the de
ision when to swit
h to the next referen
e view. The 
ostestimation within the path planning 
onsists of two major steps, an o�-line 
omputationof graph 
osts between the referen
e view and an online 
omputation of the 
ost from the
urrent view to the overlapping referen
e views. The planner swit
hes between referen
eviews based on a 
omparison of the a

umulated 
osts of 
urrently feasible referen
e views.Initial path planning and 
ost estimation: The initial 
ost estimation is based uponthe graph 
onstru
ted from the 
omplete set of referen
e views whi
h form its nodes. Thenumber of mat
hing features is 
omputed for every possible pair of referen
e views. An edgeis generated between two overlapping views if they share �ve or more 
ommon features.The 
ost of an edge is estimated by evaluating the set of 
orresponding features with theneural network des
ribed in the previous se
tion. The optimal path from every referen
eview to the goal view is 
al
ulated with the well-known Dijkstra algorithm [40℄ for �ndingthe shortest path in a weighted graph. This 
al
ulation is part of the tea
h-in-pro
ess



96 6.3 Navigation in the image spa
ein whi
h referen
e views are 
aptured a
ross the work spa
e and is performed o�-line inadvan
e.Current 
ost estimation and 
hoi
e of optimal 
urrent referen
e view: Thefeatures extra
ted from the 
urrent view (CV) are 
ontinuously 
ompared to those ofgoal view (GV)


urrent view (CV)
no 
orrespondingfeatures

RV1 RV2

RV3 RV4


ostsRV1-GV 
ostsRV2-GV

ostsRV1-RV3


ostsRV3-RV4


osts CV-RV3-GV
ostsCV-RV4Figure 6.5: Referen
e-, goal- and 
urrent view represented by a graph.overlapping referen
e views in order to identify the optimal 
urrent referen
e view onlineduring 
ontrol. For the potential referen
e views the time to 
onvergen
e is estimated inthe same way as for the initial generation of the graph. The total 
osts for rea
hing aspe
i�
 referen
e view plus the already estimated 
ost for the shortest path from that nodeto the goal view are 
ompared among all feasible views. The node with minimal 
ost issele
ted as the next referen
e view to be in
luded into the shortest path to the goal. Theview evaluation is only performed every �fth 
ontrol 
y
le in order to redu
e the amount ofonline 
omputations. Figure 6.5 depi
ts a se
tion of a graph generated from a set of imageswith four intermediate referen
e views RV1, . . . , RV4, a goal view GV and the 
urrent view
CV . The images asso
iated with a view are visualized by re
tangles, the hat
hed areas
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 feature sets 97represent the overlap between neighboring images whi
h 
ontain 
ommon SIFT features.The 
ost of the transition from the 
urrent view to the two feasible referen
e views RV3and RV4 depends on the number and quality of 
ommon features in the grey areas. The
urrent view has no 
onne
tion to the referen
e views RV1 and RV2 be
ause the subset of
ommon features is empty, as indi
ated by the dotted line. A hysteresis in the swit
hings
heme avoids the risk of the visual 
ontroller getting trapped in a limit 
y
le around theoptimal swit
hing point due to un
ertainties in the 
ost estimate or �u
tuations in themat
hed features. The initially estimated 
osts of the optimal path from the 
urrent viewto the goal are weighted by the number of intermediate nodes from the 
andidate referen
eviews to the goal node. That way, swit
hing to a referen
e view whose node is 
loser to thegoal node be
omes more attra
tive, whereas the reverse swit
hing to a more distant nodeis suppressed even if its estimated 
ost seems more attra
tive. A transition to a lower 
ostreferen
e view is only initiated if its superiority is 
on�rmed in two 
onse
utive iterations,thereby gaining additional robustness with respe
t to 
y
li
 swit
hing.
6.4 Experimental resultsThe evaluation of global visual servoing is pursued in experiments within a virtual realityenvironment and on a real 5 DOF roboti
 arm with an eye-in-hand 
on�guration [110℄, aswell as on a 6 DOF industrial manipulator [85℄.
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98 6.4 Experimental resultsIn both experimental setups the performan
e of the 
ost estimation based swit
hing s
hemeis 
ompared with two alternative methods. The �rst method, in 
ontrast to the proposeds
heme, assumes that the geometri
 distan
e in task spa
e between referen
e views isknown. On
e the minimal number of visual features is per
eived, it swit
hes to the referen
eview 
losest to the goal pose. This swit
hing strategy ignores the per
eptibility and qualityof the set of mat
hed features and is not su�
iently robust from a 
ontrol point of view.Nevertheless for the purpose of 
omparison it provides an upper performan
e limit. These
ond method 
omputes an optimal stati
 path that 
onne
ts the start to the goal nodebased on the stati
 
osts. It is not opportunisti
 as it does not reestimate the 
osts online,or replans if other referen
e views not originally in
luded in the plan suddenly appearmore attra
tive. It swit
hes to the next view outlined in the plan upon 
onvergen
e of thefeature error to a 
urrent referen
e view. This method, although suboptimal, is robust froma 
ontrol point of view, but 
ould still be improved by relaxing the 
onvergen
e 
riterionwithout sa
ri�
ing robustness.
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 feature sets 996.4.1 Navigation a
ross a sphere within the virtual realityA virtual reality simulation of a free moving 
amera allows the veri�
ation of the globalvisual servoing s
heme without being 
onstrained by the robot kinemati
s or workspa
e.The 
amera navigates in 6 DOF around a sphere textured with a s
hemati
 map of theglobe. The referen
e views are equidistantly lo
ated along longitudes and latitudes. Thetask is to guide the 
amera visually from the north to the south pole. Figure 6.6 depi
tsthe distribution of referen
e views together with the path pursued by the three methodsunder 
omparison. Even though the 
amera is initially lo
ated above the north pole, alls
hemes immediately transit to an initial referen
e view that is already 
loser to the goal.The distan
e-based method pi
ks a di�erent large 
ir
le route than the other two s
hemesas it ignores the issue of feature quality. A better rationale is to sele
t the great 
ir
leroute whi
h guarantees per
eptibility of a su�
ient number of features for stable traverseto the south pole. This e�e
t is termed the Pa
i�
 problem, as for the globe example, theequal-distant path either moving over Ameri
a or Afri
a 
ontains more features due to thetexture and text on the 
ontinents than 
rossing the Pa
i�
 with sparse features. The rightpart of �gure 6.6 
ompares the sequen
e and progression of referen
e views followed by thethree alternative methods. Figure 6.7 shows the evolution of the task spa
e error in termsof translation and rotation. The number of iterations until 
onvergen
e is approximatelythe same for the optimal image-based and the distan
e-based navigation method. For theformer the goal pose is rea
hed within 300 iterations, for the later in about 290 iterations,whereas the stati
 s
heme with 
omplete 
onvergen
e takes about 560 iterations.
6.4.2 Navigation a
ross a semi 
ylinder with a 5 DOF manipulatorThe s
heme is also evaluated in an experiment on a 5 DOF Katana robot with an eye-in-hand 
amera 
on�guration. As the workspa
e of the manipulator is rather limited, the
amera navigates a
ross the inner surfa
e of a semi 
ylinder with a 
ir
umferen
e of 1.8mand a height of 0.4m. The inside of the semi 
ylinder is textured with a panorami
 photoof the TU Dortmund 
ampus shown in �gure 6.8. This 
ylindri
 
on�guration is optimalwith respe
t to the workspa
e of the robot as it allows a maximal number of su�
ientlydistin
t referen
e views. The referen
e views form a 15× 6 grid, horizontally separated by10◦, verti
ally by 5 
m. The kinemati
s of the spe
i�
 robot limit the 
amera motion to 5DOF. At the start pose the 
amera points at the upper left part of the image and the goal islo
ated in the lower right 
orner of the 
ylinder. As shown in �gure 6.9, all methods followat large a similar view sequen
e. The only signi�
ant deviation o

urs halfway throughthe path in a region whi
h mostly 
ontains sky and ground and therefore few distin
tivefeatures. The optimal swit
hing s
heme takes a small verti
al detour in order to exploitthe higher 
on
entration of features in the textured band between sky and ground.
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Figure 6.8: Experimental setup for visual servoing in 5 DOF on a semi 
ylinder.

PSfrag repla
ements

x [mm℄y [mm℄
z[mm℄

goal-view position

referen
e views (RV)start positiongoal-view positiona)
a)00.20.40.60.81

0 500
00.20.40.60.81

-1000100200-5000
500

PSfrag repla
ements

iterations
urrentrefer
en
eview

DBRVS

ORVSFCRVSDBRVSb)
b)00.20.40.60.81

0 200 400 600
00.20.40.60.81 020

4060
80

Figure 6.9: Alignment of referen
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hosen sequen
es in spa
e (a) and 
hosensequen
es as a fun
tion of iterations (b) for optimal (ORVS), �xed 
onvergen
e (FCRVS)and distan
e-based referen
e view sele
tion (DBRVS).The number of iterations until �nal 
onvergen
e is about 300 for the optimal method, 400for the distan
e-based approa
h and 600 for the �xed-
onvergen
e method. The di�eren
ein time to 
onvergen
e results from the fa
t that the two other methods require a mu
hlonger time to traverse the region of sparse features as the visual 
ontrol tends to be
omeunstable due to the poorer quality of feature distributions.
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Figure 6.10: Relative task-spa
e error for optimal referen
e view sele
tion (ORVS, a) and�xed 
onvergen
e referen
e view sele
tion (FCRVS, b).This observation is 
on�rmed by an analysis of the evolution of the relative task spa
e errorwith respe
t to the intermediate referen
e views shown in �gure 6.10. Figure 6.10 a) depi
tsthe progression of task spa
e error and swit
hing sequen
e for the proposed s
heme, �gure6.10 b) for the stati
 s
heme. The stati
 s
heme wastes iterations in situations in whi
hthe feature error is already low but not yet fully 
onverged. The optimal 
ost based s
hemeavoids delayed transition to the next referen
e view, as it already swit
hes for substantiallylarger residual errors without 
ompromising the stability of the 
ontrol.6.4.3 Navigation a
ross a 
uboid with a 6 DOF manipulatorThe results of the experimental realization of image-based visual servoing for a 6-axialindustrial robot are presented in the following. A 
omparison pro
edure serves for eval-uating the time-optimal swit
hing 
riterion by adjusting the goal position by means of a�xed sequen
e of referen
e images and a 
onstant swit
hing threshold. Initially, the stati
sequen
e is also generated by the optimal path planning. Figure 6.1 shows the experi-mental setup 
onsisting of the industrial robot with an eye-in-hand 
amera 
on�guration.



102 6.4 Experimental resultsThe robot drives from start to goal position relatively to the obje
t via referen
e viewsarranged on a hemisphere around the obje
t. Figure 6.11 shows the temporal devolutionof the position error for both pro
edures. The sequen
es of referen
e views utilized in both
ases are depi
ted in �gure 6.12, on the left the spatial distribution and on the right the
hosen swit
hing points. The graphs in �gure 6.12 
larify that the initial path planning ismodi�ed by the dynami
al 
hoi
e of referen
es, thus allowing for rea
hing the goal positionearlier. Therefore the 
ontrol using the stati
 swit
hing 
riterion is slower: in spite of atime-optimal 
hosen sequen
e (and therefore redu
ed number of referen
e images) the goalposition is only rea
hed after 125 iterations, whereas the time-optimal 
ontrol 
onvergesafter around 100 iterations. The 
ontrol is performed over three referen
e views, respe
-tively, together 
overing an elevation angle of around 90◦, whereas the dynami
al pro
edureswit
hes faster to the next view. Hereby the slightly di�erent path planning is 
aused bythe varying 
ost estimation of the dynami
al 
hoi
e of referen
es. In the ideal 
ase thetime-optimal sequen
e 
orresponds to that with the shortest path in the work spa
e. How-ever, views with unfavorable 
on�gurations of features are avoided as they in�uen
e therobustness of the 
ontrol and thus its velo
ity in a negative manner.
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Figure 6.12: Chosen referen
e images and their pose in the task spa
e and temporal de-penden
e.6.5 Alternative: Model-free pose estimation with lo
alvisual servoingAs an alternative to the presented global visual servoing a more human-like strategy for
amera obje
t alignment in the 
ase of limited feature visibility is investigated. It 
onsistsof two stages: Initial pose estimation for pre-alignment of the 
amera relative to the obje
tto speed up the positioning (open loop / look-then-move strategy) and subsequently are�nement by visual servoing using only one referen
e image instead of a graph of interme-diate referen
e views. A di�eren
e to similar approa
hes in the literature is that these twostages rely on the same obje
t representation. The plenopti
 fun
tion is already sampledfor the set of referen
e views required for the global visual servoing. This s
heme followsthe appearan
e based paradigm [58, 133, 43℄, su
h that there is no need for a geometri
model and its image 
orresponden
es [38℄. The approa
h employs an instan
e base learnings
heme [7℄ in whi
h the obje
t pose is predi
ted based on the similarity of the 
urrent viewwith a set of referen
e views of known pose. Referen
e views are represented by a set ofSIFT features extra
ted from the 
orresponding image. Primarily the similarity betweenreferen
e views and the 
urrent view is established based on the frequen
y of SIFT fea-tures mat
hed between both images. The pose is estimated by weighted averaging of thereferen
e poses [θazi, φeli] a
ross the N most similar neighbor views so that the estimatedazimuth θ̂az and elevation φ̂el are 
omputed a

ording to:
θ̂az =

N
∑

i=1

Cr(Ii)θazi
∑N

j=1Cr(Ij)
, φ̂az =

N
∑

i=1

Cr(Ii)φazi
∑N

j=1Cr(Ij)
(6.8)in whi
h the similarity Cr(Ii) is de�ned in terms of the absolute number of feature 
orre-sponden
es C(Ii) between the referen
e view and the 
urrent image divided by the absolute



104 6.5 Model-free pose estimation in 
onjun
tion with visual servoingnumber of SIFT features in the referen
e view.Pose estimation by viewpoint interpolation: Figure 6.13 a) shows a test obje
t in atop referen
e view and 
urrent view, together with the set of extra
ted SIFT features. Fig-ure 6.13 b) depi
ts the relative frequen
y Cr(Ii) of mat
hed features between the 
urrentpose indi
ated by an open 
ir
le and the referen
e views. The four most similar referen
esa)
b)

x [mm℄ y [mm℄z

[mm℄
500-50-100-150-200-250-300 -200 -100 0 100 200 300 100012001400Figure 6.13: a) Confusion of SIFT features between frontal and the top view of the obje
t
aused by repetitive texture; b) Similarity based pose estimation a

ording to the relativefrequen
y Cr(Ii) of mat
hed features. Only those referen
e views for whi
h more than 15%of features are mat
hed are labeled.mat
h between 40-50 out of the 100 features in the query view. This ratio drops within
reasing distan
e of viewpoints on the hemisphere from the 
urrent viewpoint. Noti
e,that there is a se
ond region of signi�
ant mat
hes at the north pole. These mat
hesoriginate from a repli
ation of the advertisement text on the frontal and top fa
e of thetoothpaste pa
kage shown in �gure 6.13 a). In order to improve the pose estimation, theinitial estimate is re�ned by inspe
tion of the relative lo
ation of mat
hed features a
ross
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urrent view and two neighboring views. Features are grouped into approximatelyequilateral triangles. Figure 6.14 depi
ts the interpolation s
heme for the azimuth esti-mation. The following 
omputations are restri
ted to the interse
tion of features mat
heda
ross the 
urrent and the three referen
e views. These features are grouped into subsetsof three features that form a triangle whi
h is 
hara
terized by its interior angles. As the
amera perspe
tive 
hanges with the viewpoint, the features move a

ordingly resultingin a variation of the interior angles with the pose. Figure 6.14 illustrates the variationa) b)


) d)

�rst nearestneighbor:azimuth: -98.4◦
se
ond nearestneighbor:azimuth: -107.2◦
true azimuthestimation by αia

estimation by βia

estimation by γia

•
αia1

•βia1

•
γia1

•αia2

•βia2

•γia2


urrentimageazimuth:-103.0◦estimateazimuth:-102.5◦ interiorangles
[◦ ℄ 90807060504030 azimuth θaz [◦℄-108 -106 -104 -102 -100 -98

z[mm℄ x [mm℄ y [mm℄
2901450 0-145-290-290 -145 0 145 290

. .Figure 6.14: a) Current pose and the two nearest neighbors; b) Referen
e images of thetwo nearest neighbors form the database; 
) Current image; d) Interpolated azimuth dueto the interior angles of the triangle.of the three interior angles αia, βia, γia between two neighboring referen
e views with ap-proximate azimuths θaz1 = −98◦ and θaz2 = −107◦. This variation provides the basis fora lo
al 
orre
tion of the estimated pose. The relationship between variation in pose andvariation of the interior angles is assumed to be linear. The interior angles αiaq , βiaq , γiaqin the query view fall in between those of the two referen
e view triangles. The azimuths
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onjun
tion with visual servoingpredi
ted from linear regression with respe
t to the interior angles are 
omputed as
θ̂az(αia) = θaz1 + (θaz2 − θaz1)

αiaq − αia1

αia2 − αia1

,

θ̂az(βia) = θaz1 + (θaz2 − θaz1)
βiaq − βia1

βia2 − βia1

,

θ̂az(γia) = θaz1 + (θaz2 − θaz1)
γiaq − γia1
γia2 − γia1

. (6.9)The interpolation is performed a
ross multiple triangles, and the 
orre
t pose is predi
tedwith an M-estimator that is robust with respe
t to outliers. The error fun
tion of theM-estimator is de�ned by:
n

∑

i=1

ρ(εi(xi,Θm), σe) (6.10)in whi
h Θm denotes the model parameters and εi is the residual error between the modeland the data point xi. The parameter σe regulates the suppression of outliers and isadapted iteratively to the residual error distribution. The error fun
tion
ρ(xi,Θm) =

(xi −Θm)
2

σ2
e + (xi −Θm)2

(6.11)is quadrati
 for small residual errors but �attens out for large residual errors thus redu
ingthe impa
t of outliers. The method provides a

urate estimates of azimuth and elevationunder the assumption that the 
urrent view is 
aptured from the same hemisphere as thereferen
e views, at a nominal �xed distan
e between 
amera and obje
t. Under the as-sumption that the obje
t is always 
entered in the image, the obje
t distan
e in additionto the azimuth and elevation is su�
ient to re
onstru
t the full 6 DOF pose between theobje
t and the 
amera. As the distan
e 
hanges obviously also the triangles are distorted.In order to a
hieve s
ale invarian
e the relationship between interior angles and distan
e rscis modeled by an exponential fun
tion of the form αia(rsc) = am exp (bmrsc)+cm exp (dmrsc)with four unknown parameters [am, bm, cm, dm] , respe
tively for βia(rsc) and γia(rsc). Thebest �t parameters are 
omputed from referen
e images of the same azimuth and elevationat four di�erent radii. In 
ontrast to the 
ase of 
onstant s
ale azimuth and elevationestimation in equation 6.9, ea
h interior angle αia, βia or γia is now related to an entiremanifold of azimuth, elevation and radius. An observation of an interior angle 
onstraintsthe feasible solution set to a two-dimensional manifold in the three-dimensional azimuth,elevation and radius pose spa
e. For a triplet of interior angles αia, βia, γia the three mani-folds ideally interse
t in isolated unique solutions. As the dataset 
ontains dis
rete samples
{[αia, βia, γia], [θaz, φel, rsc]} it is di�
ult to 
ompute the interse
tion of the underlying mani-folds. In pra
ti
e the problem is transformed into an optimization problem whi
h minimizesthe quadrati
 error between the observed interior angles [αiaq , βiaq , γiaq ] and the manifolds
αia(θaz, φel, rsc), βia(θaz, φel, rsc) and γia(θaz, φel, rsc) a
ross the parameters azimuth, elevation
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[θ̂az, φ̂el, r̂sc] = argminθaz,φel,rsc

((αiaq − αia(θaz, φel, rsc))
2 + (6.12)

+ (βiaq − βia(θaz, φel, rsc))
2 + (γiaq − γia(θaz, φel, rsc))

2).In between the dis
rete sample points, the manifolds are approximated by equation 6.9along rsc and a linear fun
tion in [θaz, φel]. Only those parameters [θaz, φel] are 
onsideredin the minimization that belong to the spheri
al region spanned by the three nearestneighbors. The estimates θ̂azi, φ̂eli, r̂sci are aggregated over the entire set of triangles by theM-estimator.Experimental results: In order to evaluate the performan
e and a

ura
y of the pro-posed pose estimation s
heme, two types of experiments are 
ondu
ted. In the �rst exper-iment data sets are generated arti�
ially by mapping a set of 3D points in a virtual s
eneperspe
tively onto a normalized image plane. The purpose is to evaluate the theoreti
allimitations of the method, negle
ting the negative impa
t of SIFT feature dete
tion, limitedpixel resolution, lens distortion and inherent pose un
ertainty of the referen
e views. Thedistan
e between the obje
t and the 
amera ranges from 100mm to 700mm. The se
ondexperiment is based on realisti
 views of the obje
t depi
ted in �gures 6.13 and 6.14. Thereferen
e and test images are 
aptured with a roboti
 arm that moves the 
amera a
rossthe view hemisphere. This data set allows it to assess the a

ura
y of pose estimationunder real world 
onditions. Due to the limited dexterous workspa
e of the robot arm,obje
t-
amera distan
es are restri
ted to the range from 180mm to 290mm. At 
loserdistan
es the obje
t is only partially visible. Due to the limited range, the distan
e in-terpolation with four parameters is repla
ed by a two parameter regression model givenby αia(rsc) = m exp (bmrsc). The referen
e data set 
ontains 517 referen
e views taken atthree hemispheres of radius 180mm, 235mm and 290mm. The test set 
ontains 672 im-ages, taken at twelve di�erent radii with 56 images per radius. On average referen
e images
ontain between 700 to 1500 SIFT features. In order to a

elerate the mat
hing pro
ess,initially only the �rst hundred SIFT features are 
onsidered for mat
hing. The preliminarysear
h is su�
ient to identify the nearest neighbor 
andidates. The lo
al vi
inity of these
andidates is then sear
hed for the nearest neighbor with the 
omplete set of extra
tedfeatures. Table 6.3 summarizes the results of the simulated data as well as the realisti
data set for four di�erent methods, namely single nearest neighbor (SNN), weighted aver-age among three nearest neighbors (WANN), interpolation of azimuth and elevation at a�xed s
ale (FSI) and s
ale invariant interpolation of azimuth, elevation and radius (SII).For the interpolation s
heme with adaptive s
ale, the mean error of the radius estimationis reported as well. Three di�erent experiments are performed in order to observe thee�e
ts of un
alibrated 
amera systems 
ompared to 
alibrated 
amera systems as well asthe improvement a
hieved by the neighborhood 
orre
tion step. Compared to the simu-lated 
ase of the ideal perspe
tive proje
tion the a

ura
y of all methods is expe
ted todeteriorate on the real world data set. In the nearest neighbor 
ases the a

ura
y in thereal experiment ex
eeds the simulated ideal errors. This over-performan
e is explainedby the fa
t that the simulated re
ognition rate of SIFT features drops more rapidly with
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onjun
tion with visual servoingTable 6.3: Mean absolute error in azimuth and elevation in simulations and experiments.The di�erent results demonstrate the e�e
ts of un
alibrated 
ompared to 
alibrated 
amerasystems as well as the improvement a
hieved by the neighborhood 
orre
tion step.simulation experiment1 experiment 2 experiment 3un
alibrated 
alibrated 
orre
tion step
Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r) Ē(θ) Ē(φ) Ē(r)SNN 3.0◦ 2.4◦ 3.8◦ 2.7◦ 3.7◦ 2.9◦ 2.2◦ 1.7◦WANN 2.4◦ 1.6◦ 2.8◦ 2.6◦ 3.2◦ 2.5◦ 1.7◦ 1.6◦FSI 2.0◦ 1.7◦ 7.4◦ 4.6◦ 6.9◦ 3.9◦ 4.0◦ 1.9◦SII 0.82◦ 0.26◦ 20mm 2.7◦ 2.1◦ 55mm 2.4◦ 1.7◦ 57mm 1.3◦ 1.0◦ 39mm
hange in viewpoint than in the 
ase of the a
tual obje
t. As the experimental estimatesare based on more samples they tend to be more robust. In the 
ase of nearest neighborsthe a

ura
y between simulated and experimental data is 
omparable. In 
ase of non-s
aleinterpolation small errors in feature lo
ations might result in substantial pose errors, whi
hexplains the poor performan
e on real images a�i
ted with noise. The large azimuth erroris partially explained by the fa
t that some of the nearest neighbor referen
e views sharetoo few 
ommon features. This in turn 
auses poor 
onvergen
e of the M-estimator andin
lusion of outliers in the estimate.The s
ale invariant interpolation s
heme in experiment 1 tends to be more robust, but stilldoes not a
hieve the theoreti
ally possible a

ura
y on un
alibrated real world data. It onlyprovides a slight improvement 
ompared to the basi
 N nearest neighbor s
heme. Possibleexplanations that the s
heme falls short of the expe
ted a

ura
y are limited pixel resolu-tion of feature lo
ations, as the simulated proje
ted images operate with subpixel a

ura
y,and radial lens distortion. Therefore the se
ond experiment is performed with 
alibrated
amera images that already demonstrates a minor improvement 
ompared to the un
ali-brated experiment. The large estimation error is 
aused by in
orre
t nearest neighbors. Inthese 
ases the interpolation s
heme interpolates the wrong neighboring views that do noten
lose the true view. In order to prevent false neighbors the interpolation result is veri�edwhether it falls inside the region spanned by the assumed nearest neighbor views. If theinterpolated view lies outside the span a new triangle is formed en
losing the extrapolatedviewpoint. The results for the third experiment with false neighbor reje
tion in 
ase of SIIare superior to the pure nearest neighbor methods and in reasonable agreement with theideal simulated errors. SII with 
orre
tion step only provides a mean angular error of 1.3◦in azimuth and 1.0◦ in elevation and 3.9 
m for 
amera-obje
t distan
e.The full 6 DOF estimation of the relative pose between obje
t and 
amera requires addi-tional information. First of all the obje
t should always be 
entered in the image, withthe 
amera axis interse
ting the obje
t 
enter. In the 
ase of obje
t manipulation this re-stri
tion is a
hieved by a 
amera gaze 
ontrol pointing the 
amera axis towards the obje
t.Camera gaze 
ontrol is naturally required in order to keep the obje
t in view. Finally the
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amera around its opti
al axis is re
onstru
ted from the keypoint orien-tation of SIFT features as shown in se
tion 5.1. Under these assumptions the azimuth,elevation and distan
e estimates are su�
ient to re
onstru
t the full 6 DOF pose betweenthe obje
t and the 
amera.6.6 Evaluation and 
on
lusionThis 
hapter presents a novel approa
h for optimal global visual servoing based on de
ou-pled image moments with augmented point features in the 
ontext of obje
t manipulation
onsidering that the features in the referen
e image for grasping are not visible in the 
ur-rent obje
t view. It is proven that model-free navigation in image spa
e 
an be realizedby means of a set of overlapping referen
e views in order to navigate from an arbitrary,unknown start into the goal pose. The swit
hing between referen
e views o

urs on thebasis of the estimated time to 
onvergen
e taken the quality of mat
hed features into a
-
ount. The 
ost of referen
e views is evaluated online throughout progression to the goalview, su
h that the s
heme opportunisti
ally sele
ts the referen
e view that is optimal inthe 
urrent 
ontext. In prin
iple the work spa
e is arbitrarily extensible under the 
on-dition of 
onne
tivity of the referen
e views in image spa
e. The experimental results invirtual reality and on the real robot demonstrate that the approa
h minimizes the time to
onvergen
e without sa
ri�
ing the robustness and thereby stability of the visual 
ontrol.As an alternative to the global visual servoing an appearan
e-based pose estimation in
onjun
tion with lo
al visual servoing is 
arried out with the same experimental setup asdes
ribed in se
tion 6.4.3 for a 6-axial industrial robot. The fundamental idea of initiallyapplying a look-then-move strategy is to a
hieve even faster 
onvergen
e to the goal viewrelying on the same sparse obje
t representation as the global visual servoing. In prin
iplethe same a

ura
y in the referen
e pose as for the large view visual servoing is a
hievedas the �nal step for �ne alignment 
onsists of the same visual 
ontrol s
heme. Neverthe-less the obje
t representation for initial pose estimation has to be signi�
antly extendedrequiring a substantially higher amount of 
omputational and memory resour
es. There-fore it is �nally stated that the major advantages of the global visual servoing 
omparedto the look-then-move strategy are �rstly that a sparse overlapping obje
t representationsampling the plenopti
 fun
tion on one radius of the hemisphere is su�
ient, se
ondly thatno estimation of the obje
t distan
e is required, rather the 
ontrol by the referen
e imagesguarantees an equidistan
e to the obje
t, resulting thirdly in a kind of gaze 
ontrol keepingthe obje
t always 
entered in the image.
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Chapter 7
Con
lusions and future work
The obje
tive of this thesis is to advan
e the development of solely vision-based navigationand manipulation in the 
ontext of autonomous servi
e robots.This thesis demonstrates and emphasizes the potential of visual rea
tive behaviors forvisual navigation in unstru
tured indoor environments. Primarily a vision-guided navi-gation of a mobile robot is implemented with rea
tive behaviors using distan
e sensors forlo
al motion 
ontrol and omnivision for lo
alization, whi
h provides 
onse
utively the refer-en
e for a purely visual navigation. The vision-guided navigation is su

essfully veri�ed inroboti
 experiments within o�
e environments a
hieving the navigation task without 
olli-sions. Visual navigation is distinguished from vision-guided navigation by solely relying onthe e
onomi
 vision systems with the ambitious goal to a
hieve mat
hable performan
e in
omparison to laser s
anners. Thus a set of visual rea
tive behaviors is designed and imple-mented equivalently to the behaviors based on proximity information from range sensors.The visual navigation synergizes the 
omprehensive per
eption of the lo
al environmentof omnivision for lo
alization, obsta
le avoidan
e, optimal referen
e image sele
tion, et
.with the high pre
ision of a mono
ular 
amera in order to design a pre
ise time-optimalhoming through several non-overlapping referen
e images.Visual homing is a
hieved by a large view visual servoing s
heme 
omprehending severaladvantages 
ompared to previous approa
hes. The 
on
ept of a horizontal virtual 
ameraplane allows for de
oupled navigation and gaze 
ontrol and fa
ilitates the derivation ofgeneri
 moments. Generi
 moments 
ope with dynami
 environments and lighting 
ondi-tions and are designed to a
hieve a dire
t relationship between image and work spa
e. Inaddition to lo
alization, the extra
ted features furthermore provide the sele
tion of refer-en
e images for time-optimal visual homing, thereby solving the problem of the limited�eld of view of the mono
ular 
amera and environments with sparse texture.The set of rea
tive visual behaviors is 
ompleted by a novel obsta
le avoidan
e and turnaround behavior by means of several re
onstru
ted perspe
tive views, from whi
h a 
on�-111



112 7 Con
lusions and future workden
e rated time to 
onta
t is extra
ted. The 
on
ept of 
al
ulating the time to 
onta
tfor di�erent traveling dire
tions based on sparse opti
al �ow is introdu
ed as the pairingwindow approa
h, enabling di�erent alternatives for robot navigation. The major 
lueis the additional 
on�den
e evaluation of the visual measurements as it allows travelingtowards dire
tions that are per
eived as obsta
le-free.Door dete
tion, door lo
alization and door traversal are treated for the �rst time in a
oherent purely vision-based framework using omnivision to navigate between rooms and
orridors. Noti
e that due to the overall awareness of the omnivision the door posts re-main visible in the omnidire
tional view during the door passage whi
h thereby allows a
losed-loop 
ontrol with equidistant passage between the door posts.Vision-based and visual navigation a
hieve a similar performan
e in unstru
tured o�
e en-vironments with regular texture. The two major advantages of visual navigation 
onsist oflow 
osts and high dimensional data spa
e of 
ameras allowing for other appli
ations su
has person or obje
t re
ognition. Nonetheless homogeneous o�
e spa
es require advan
ed
amera systems su
h as ToF (Time-of-Flight) 
ameras [84℄, whi
h re
onstru
t for a 
entral�eld of view additional depth information from time of �ight measurements.Future resear
h is dedi
ated to learning-by-demonstration, whi
h enables the robot to a
-quire a behavior or skill through imitation of a
tions demonstrated by a tea
her [131℄. Thisapproa
h allows non-professionals to instru
t the robot intuitively without the ne
essity toprogram the desired task expli
itly. It is su�
ient for the tea
her to be able to perform therequired task. The learning approa
h extra
ts the underlying relation between per
eptionand a
tion from the demonstration. The straight forward methodology is a learning-by-demonstration s
heme similar to the evolutionary optimized navigation behaviors in orderto determine the re
ommendation of individual behaviors and the overall aggregation.The future of visual navigation is 
losely related to 
ameras with stru
tured light su
h asthe e
onomi
 Kineti
 from Mi
rosoft Cooperation [98℄, whi
h re
onstru
ts the depth of thes
ene by a pattern of infrared light points that are invisible to the human eye. An evenmore promising approa
h is to fuse omnivision with visual distan
e information obtainedfrom ToF or triangulation of emitted infrared light, respe
tively, in order to 
apture in asingle frame the visual per
eption as well as the depth of the lo
al s
ene. This leads to3D VSLAM with s
alable abstra
tion of the map, in
luding maps with dense depth rep-resentation, distin
tive 3D visual features for instant lo
alization as well as CAD modelsof the 
omplete environment in
luding obje
ts and texture. Su
h representations simplifys
ene understanding, a still unsolved key ability for mobile manipulation, whi
h requiresfurther resear
h in the next de
ade. The urban 
hallenge also demonstrated that s
eneunderstanding is essential to solve 
omplex tra�
 situations, whereas the 
lose relation be-tween mobile navigation and advan
ed driver assist systems yields a domination of roboti
teams in the 
lassi�
ation.In the se
ond part of this thesis a novel methodology for image-based visual servoing byde
oupled image moments for model-free obje
t manipulation solely relying on 2Dimage information is introdu
ed. It relies on the pixel 
oordinates, s
ale and orientation of
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lusions and future work 113augmented point features su
h as SIFT features. The 
ontrol is based on de
oupled imagemoments, whi
h are generi
 in the sense that the 
ontrol operates with a dynami
 set offeature 
orresponden
es rather than a stati
 set of geometri
 features. The foundation ofvisual servoing on generi
 SIFT features renders the method robust with respe
t to loss ofredundant features 
aused by o

lusion or 
hanges in viewpoint. For 4 DOF visual servoinga set of 
ompletely de
oupled visual features is introdu
ed, that results in robust andindependent 
onvergen
e of the 
orresponding task spa
e errors. Problems of the 
lassi
alJa
obian based visual servoing s
heme su
h as the 
amera retreat problem and lo
al minimaare resolved. A novel sensitivity matrix for 6 DOF visual servoing is introdu
ed, whi
hpossesses only four o�-diagonal 
ouplings between the visual features and the degrees ofmotion assuming a valid weak perspe
tive proje
tion model. The visual 
ontrol with thenovel sensitivity matrix 
auses the pose errors to 
onverge largely independent of ea
hother resulting in a smoother task spa
e motion of the 
amera. The 
ontrol parametersof the visual 
ontrol are automati
ally tuned in a HIL optimization by a 
ontrolled modelassisted evolutionary strategy for real time appli
ability.Global visual servoing based on de
oupled image moments is su

essfully introdu
ed. Theworkspa
e is partitioned into a set of overlapping referen
e views in order to navigatevisually from a start to a goal pose. The swit
hing between referen
e views o

urs on thebasis of the time to 
onvergen
e estimated from the quality and distribution of mat
hedfeatures. The 
ost of referen
e views is evaluated online throughout progression to the goalview, su
h that the s
heme opportunisti
ally sele
ts the referen
e view that is optimal in the
urrent 
ontext. The 
omputational demands of SIFT feature extra
tion, path planningand time-optimal referen
e sele
tion enable real time visual 
ontrol. The experimentalresults in virtual reality and on the real robot demonstrate that the approa
h minimizesthe time to 
onvergen
e without sa
ri�
ing the robustness and thereby stability of thevisual 
ontrol.As an alternative a look-then-move strategy in 
onjun
tion with lo
al visual servoing 
loseto the referen
e pose is su

essfully implemented and tested for obje
t manipulation, but itis inferior in terms of 
onvergen
e time and robustness 
ompared to optimal global visualservoing over multiple referen
e images.Future resear
h fo
uses on the development of a heuristi
 swit
hing s
heme for global vi-sual servoing, that is independent of the obje
t and does not require an o�ine explorationof the view spa
e for prior 
ost estimation. An appropriate feature metri
 
aptures thedistan
e in view spa
e of features in the 
urrent view to the referen
e view based on thenumber of intermediate views (degree of separation) and the similarity of keypoint des
rip-tors. Based on the feature distan
e metri
 the heuristi
 sele
ts a referen
e view with thesubset of mat
hed features that is 
losest to the goal view. The bene�t is a robust and
ontinuous navigation in image spa
e without de
reasing velo
ities based on lo
al 
onver-gen
e. Another interesting avenue for visual servoing is to 
ontrol one agent by multiple
ameras [79℄ or multiple agents by visual servoing [91℄ similar to 
ooperative manipulatorsin industrial manufa
turing. To employ the proposed servoing based on de
oupled imagemoments in this 
ontext is an interesting topi
 for future resear
h be
ause of its ease of
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lusions and future workimplementation and model-free approa
h.In order to a
hieve purely vision-based mobile manipulation the presented obje
t ma-nipulation via optimal global visual servoing with dynami
 feature sets only has to beintegrated as an additional behavior into the hybrid 
ontrol ar
hite
ture 
ontaining the setof behaviors for visual navigation. In analogy to AUTOSAR (AUTomotive Open SystemAR
hite
ture) in the automotive industry, whi
h provides a framework for the e
onomi
reuse of software, [52℄ re
ently introdu
ed ROS (Robot Operating System), whi
h 
onsistsof an open sour
e framework and 
onstru
tion kit for mobile manipulation appli
ations.The adaptation and integration of the 
on
epts for visual navigation and manipulationpresented in this thesis into the ROS framework a

ording to the example from [95℄ 
on-tributes to the ambitious goal of the roboti
 
ommunity to make servi
e robots 
ommonlya�ordable. In analogy to the well-known ISO26262 [73℄ for fun
tional safety for road ve-hi
les, a safety standard for mobile servi
e robot appli
ations is re
ently drafted for the�rst time as the ISO13482 [72℄, requiring additional safety validations to ful�ll the spe
-i�
ations. The presented methods for obsta
le avoidan
e have to be tested against thesespe
i�
ations e.g. as presented in [74℄.Con
lusively it 
an be stated that a purely vision-based navigation using omni and mono
-ular vision is feasible. Experimental validations in an unstru
tured dynami
 indoor envi-ronment show the enormous potential of visual navigation. This work demonstrates thatit is possible to repla
e laser sensors by 
amera systems in the rea
tive layer. Nonethelesssonar sensors are required as a ba
k-up, whi
h indeed are 
ost-e�
ient and light-weight
ompared to laser sensors. Following the purely vision-based paradigm, it be
omes possibleto design a�ordable servi
e robots. As an additional feature, manipulation of daily obje
tsis presented, relying on natural o

urring features and 
onverging towards the graspingpose even if these features are not in the 
urrent view of the obje
t. Visual navigation in
onjun
tion with global visual servoing for obje
t manipulation a
hieve the goal of vision-based mobile manipulation outlined in the introdu
tion of this thesis.



Appendix AAnalysis of the grid-based time to
onta
t from opti
al �ow
The derivation of the grid-based time to 
onta
t for non-holonomi
 systems is inspiredby [31℄. The point of origin for determining the grid-based time to 
onta
t (ttc) is theimage Ja
obian J, whi
h relates di�erential 
hanges in the 
amera position ṙ to di�erential
hanges in the image feature positions ḟ a

ording to ḟ = Jṙ. Repla
ing ḟ by the timederivative of the image 
oordinates u, v (whi
h 
orresponds to the measured opti
al �ow)and ṙ by the translational vx, vy, vz and rotational velo
ities ωα, ωβ, ωγ, one obtains:

[

u̇
v̇

]

=

[

−λ
z

0 u
z

uv
λ

−λ2−u2

λ
v

0 −λ
z

v
z

λ2+v2

λ
−uv
λ

−u

]

















vx
vy
vz
ωα

ωβ

ωγ

















. (A.1)
As the robot motion is planar and the robot is non-holonomi
, the velo
ities vy, ωα and
ωγ are equal to zero, thereby equation A.1 simpli�es to:

[

u̇
v̇

]

=

[

−λ
z

u
z

−λ2−u2

λ

0 v
z

−uiv
λ

]





vRx

vRz

ωR



 . (A.2)Assuming a 
alibrated 
amera system and therefore normalized image 
oordinates û, v̂with fo
al length λ = 1, equation A.2 is expressed as:
˙̂u =

1

z
(−vRx

+ ûvRz
)− (1 + û2)ωR, (A.3)

˙̂v =
1

z
v̂vRz

− ûv̂ωR.115



116 Analysis of the grid-based time to 
onta
tThe rotational part of the opti
al �ow is 
orre
ted based on the known egorotation of therobot. The egomotion 
an be estimated by the integrated wheel en
oders or using dire
tlythe opti
al �ow by proje
ting the �ow �eld onto a sphere and optimizing a 
ost fun
tion[54℄. By additionally substituting 1
z
by ρ a set of linear equations is obtained. For reasonsof 
larity ˙̂u is substituted by ˙̂u + (1 + û2)ωR and ˙̂v by ˙̂v + ûv̂ωR, thus the rotational part

ωR is purged from the measured opti
al �ow:
˙̂u = ρ (−vRx

+ ûvRz
) , (A.4)

˙̂v = ρv̂vRz
.The divergen
e of the opti
al �ow is de�ned by the sum of the partial derivatives:

∇( ˙̂u, ˙̂v) =
∂ ˙̂u

∂û
+

∂ ˙̂v

∂v̂
. (A.5)The partial derivatives are 
al
ulated a

ording to:

∂ ˙̂u

∂û
=

∂ρ

∂û
(−vRx

+ ûvRz
) + ρvRz

, (A.6)
∂ ˙̂v

∂v̂
=

∂ρ

∂v̂
v̂vRz

+ ρvRz
.Substituting equation A.6 into A.5 yields:

∇( ˙̂u, ˙̂v) = 2ρvRz
+

∂ρ

∂û
(−vRx

+ ûvRz
) +

∂ρ

∂v̂
v̂vRz

. (A.7)Due to the non-holonomi
 
onstraint vRx

an be assumed to be zero as the robot 
annotmove sidewise during small time steps, therefore equation A.7 simpli�es to:

∇( ˙̂u, ˙̂v) = 2ρvRz
+

∂ρ

∂û
ûvRz

+
∂ρ

∂v̂
v̂vRz

. (A.8)Solving equation A.8 regarding the time to 
onta
t yields:
ttc =

z

vRz

=
2 + ∂ρ

∂û
û
ρ
+ ∂ρ

∂v̂
v̂
ρ

∇( ˙̂u, ˙̂v)
. (A.9)The terms ∂ρ

∂û
û
ρ
as well as ∂ρ

∂v̂
v̂
ρ

an be negle
ted for small values of û and v̂ resulting in alimited frontal �eld of view of 75◦ and the small 
hanges in distan
e between two 
onse
utiveimage frames. Therefore the same expression is obtained, but with 
ompletely di�erentspe
i�
ations as the authors in [31℄. Equation A.10 indi
ates that the determination of ttcinvolves only the knowledge of the opti
al �ow �eld ve
tor divergen
e, whereas no modelknowledge or estimation of z and vRz

is required:
ttc =

z

vRz

=
2

∇( ˙̂u, ˙̂v)
. (A.10)



Appendix A Analysis of the grid-based time to 
onta
t 117The authors in [31℄ develop the time to 
onta
t around the opti
al 
enter [û, v̂] = [0, 0] asoperating point and determine a single ttc in driving dire
tion using divergen
e templates.They require a dense opti
al �ow, whi
h is not suited for indoor environments. Contraryto their approa
h ttcs are needed for di�erent image regions in order to have alternative
ourse of a
tions for the robot. Note that their approa
h is invariant against rotations(responding rotational terms are negle
ted due to [û, v̂] = [0, 0]) whereas the opti
al �ow
aused by rotation has to be 
orre
ted prior to 
al
ulating ttc.Con
lusively three major di�eren
es to [31℄ 
an be stated:+ ttc for di�erent image regions and headings of the robot+ no dense opti
al �ow �eld required- rotational parts have to be 
orre
ted a-prioriDuring an experimental evaluation of ttc 
al
ulation for sparse opti
al �ow �elds the robotmoves toward a wall while 
apturing sonar and image snapshots as well as the egomotion.Figure A.1 demonstrates the ex
ellent a

ordan
e between the ttcmeasured by a mono
ular

. .

a) b)

timeto
ont
a
t[s℄

time [s℄

opti
al �owsonar

0 10 15 20 25 30 35 40

120100806040200 . .Figure A.1: a) Time to 
onta
t as a fun
tion of time for a mono
ular 
amera versus timeto 
onta
t due to sonar measurements and known egomotion; b) Sequen
e of images withsparse opti
al �ow taken during forward motion of the robot.
amera and ttc 
al
ulated by the division of distan
e measurements of the robot's sonarby the known egomotion of the robot.
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Appendix BAnalysis of the sensitivity matrix
In order to determine the 
oupling for the 
hoi
e of moments, i.e. the sensitivity of themoments towards another dire
tion than the intended dire
tion of motion, the image Ja-
obian is di�erentiated with respe
t to these moments. For the moments fx and fy thismerely signi�es to 
al
ulate the mean value of the known Ja
obian for ea
h feature. Asa simplifying assumption all features should have a similar depth, i.e. approximately thesame distan
e to the image plane. This assumption is valid as long as the depth di�er-en
e is small 
ompared to the distan
e of the 
amera to the obje
t. In servi
e roboti
appli
ations the above assumption is ful�lled, yielding a valid weak perspe
tive proje
tionmodel. Jfx,fy =

1

n

n
∑

i=1

[

λ
z

0 −ui

z
−uivi

λ

λ2+u2
i

λ

0 λ
z

−vi
z

−λ2−v2i
λ

uivi
λ

] (B.1)De
oupling fx,y a

ording to equations 5.10 and 5.19 yieldsJfx,fy =
1

n

n
∑

i=1

[

λ
z

0 0 0
λ2+u2

i

λ

0 λ
z

0
−λ2−v2i

λ
0

]

. (B.2)To determine the Ja
obian for the moments fα and fβ, �rst the feature parameter is trans-formed and then di�erentiated with respe
t to the time in order to obtain the dependen
eof the 
hange of the feature parameter on the 
amera velo
ities [vx, vy, vz, ωα, ωβ]
T . As therotation around γ is already 
ompensated as des
ribed in equation 5.2, ωγ does not haveto be 
onsidered further here. The 
al
ulation of Jfα for fα (
f. equations 5.3 to 5.5) isnow exempli�ed but is also valid analogously for fβ.

fα =

n
∑

i=1

n
∑

j=i+1

(−vrefi − vrefj )
∥

∥pj − pi

∥

∥

∑n
k=1

∑n
l=k+1 ‖pk − pl‖

(B.3)A

ording to the 
onne
tion between the lo
ation in the image and the lo
ation of pointsin real spa
e resulting from the image geometry v and u are repla
ed by ui = λxi/z and119



120 Analysis of the sensitivity matrixa

ordingly for uj, vi and vj. Therefore the moment fα is expressed as:
fα =

λ

z

∑n
i=1

∑n
j=i+1(yrefi + yrefj)

√

(xi − xj)2 + (yi − yj)2
∑n

k=1

∑n
l=k+1

√

(xk − xl)2 + (yk − yl)2
. (B.4)The transformed moment is di�erentiated with respe
t to the time. For sake of 
larity onlyone sum term (mα) is 
onsidered here:

ṁα = −
λ

z2
ż(yrefi + yrefj)

√

(xi − xj)2 + (yi − yj)2
∑n

k=1

∑n
l=k+1

√

(xk − xl)2 + (yk − yl)2
+ (B.5)

+
λ

z
(yrefi + yrefj)

[(xi − xj)
2 + (yi − yj)

2]−1/2[(xi − xj)(ẋi − ẋj) + (yi − yj)(ẏi − ẏj)]
∑n

k=1

∑n
l=k+1

√

(xk − xl)2 + (yk − yl)2
+

−
λ

z
(yrefi + yrefj)

√

(xi − xj)2 + (yi − yj)2

∑n
k=1

∑n
l=k+1[(xk − xl)(ẋk − ẋl) + (yk − yl)(ẏk − ẏl)]

[

∑n
k=1

∑n
l=k+1

√

(xk − xl)2 + (yk − yl)2
]3 .In analogy to the derivation of the 
lassi
al image Ja
obian J in [70℄, due to ẋj − ẋi =

−ωz(yj − yi) and ẏj − ẏi = ωz(xj − xi) the expression (xi − xj)(ẋi − ẋj)+(yi − yj)(ẏi − ẏj)be
omes zero, thus only the �rst term in equation B.5 remains. Now the variables xi, xj ,
yi and yj are ba
k transformed a

ording to xi,j = ui,jz/λ and yi,j = vi,jz/λ, resulting in:

ṁα = −
1

z
ż(vrefi + vrefj )

√

(ui − uj)2 + (vi − vj)2
∑n

k=1

∑n
l=k+1

√

(uk − ul)2 + (vk − vl)2
. (B.6)Furthermore, inserting ż = vz + ωxy − ωyx with x = (xi + xj)/2 and y = (yi + yj)/2a

ording to [70℄ yields:

ṁα =
1

2λ
(vrefi + vrefj )

(

−
2λ

z
vz − ωx(vi + vj) + ωy(ui + uj)

)

· (B.7)
·

√

(ui − uj)2 + (vi − vj)2
∑n

k=1

∑n
l=k+1

√

(uk − ul)2 + (vk − vl)2
.Thus, the image Ja
obian for α is given byJfα =

∑n
i=1,

j=i+1

pijvrefijλ√
8z2

[

0 0 −2λ
z
−vij +uij

]

∑n
k=1

∑n
l=i+1 ‖pk − pl‖

, (B.8)and the image Ja
obian for β is expressed a

ordingly asJfα =

∑n
i=1,

j=i+1

pijurefij
λ

√
8z2

[

0 0 −2λ
z
−uij +vij

]

∑n
k=1

∑n
l=i+1 ‖pk − pl‖

. (B.9)



Appendix B Analysis of the sensitivity matrix 121The dependen
ies of the moments of α and β on motions in z-dire
tion are not 
ompletelyresolved but 
an be assumed to be nearly zero (−2λ
z
).For the image moment fzd de�ned in equation 5.7 again for sake of 
larity only one sumterm (mz) is 
onsidered here:

ṁz =
d

dt

(

λ

z

√

(xi − xj)2 + (yi − yj)2
) (B.10)

= −
λ

z2
ż
√

(xi − xj)2 + (yi − yj)2 +
λ

z

(xi − xj)(ẋi − ẋj) + (yi − yj)(ẏi − ẏj)
√

(xi − xj)2 + (yi − yj)2
.This expression is again simpli�ed be
ause of the relation ẋj − ẋi = −ωz(yj − yi) and

ẏj − ẏi = ωz(xj −xi), and the ba
k transformation of xi,j = ui,jz/λ and yi,j = vi,jz/λ leadsto:
ṁz = −

ż

z

√

(ui − uj)2 + (vi − vj)2 = −
ż

z
||pi − pj ||2. (B.11)Again, ż = vz + ωxy − ωyx with x = (xi + xj)/2 and y = (yi + yj)/2 is inserted, leading tothe total sum:

ḟzd =
1

n
2
(n− 1)

n
∑

i=1

n
∑

j=i+1

||pi − pj ||2

(

−
1

z
vz −

1

2λ
(vi + vj)ωx +

1

2λ
(ui + uj)ωy

)

. (B.12)Thus, the image Ja
obian for z is given by
Jfzd =

1
n
2
(n− 1)

n
∑

i=1

n
∑

j=i+1

||pi − pj||2
[

0 0 −1
z
− 1

2λ
(vi + vj)

1
2λ
(ui + uj)

]

. (B.13)In order to redu
e the 
ouplings furthermore fz is now repla
ed by the s
aled version
fz,σ. Therefore the sensitivity matrix has the following stru
ture whereas all non-diagonalelements are 
onsidered as undesired 
ouplings:
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. (B.14)
The 
ontrol s
heme for visual servoing with generi
 image moments in 6 DOF is summarizedin table B.1 taking into a

ount the deviation from 
hapter 5.2 to 5.5 as well as thesensitivity matrix above.



122 Analysis of the sensitivity matrixTable B.1: Visual servoing with generi
 image moments in 6 DOF.(1.) Automati
 feature sele
tion for the referen
e view of the obje
t (
f. se
tion 5.1).2. Extra
tion of augmented point features in the 
urrent view frefi =
[urefi, vrefi, φrefi , σrefi] like SIFT/SURF.3. Determination of the 
amera rotation ∆fγ (
f. equation 5.1) by

∆fγ = frefγ − fγ with fγ =
1

n

n
∑

i=1

φi.4. Alignment of ui and vi with the image features in the referen
e view (
f. equation5.2)
[

u′
i

v′i

]

=

[

cos(∆fγ) − sin(∆fγ)

sin(∆fγ) cos(∆fγ)

] [

ui

vi

]

.Rede�nition of ui equal to u′
i, respe
tively vi equal to v′i.5. Cal
ulation of image moments for 
amera rotation around α and β (
f. equations5.3 and 5.4)

fα =

n
∑

i=1

n
∑

j=i+1

(−vrefi − vrefj)
√

(ui − uj)2 + (vi − vj)2
∑n

k=1

∑n
l=k+1

√

(uk − ul)2 + (vk − vl)2
,

fβ =
n

∑

i=1

n
∑

j=i+1

(−urefi − urefj )
√

(ui − uj)2 + (vi − vj)2
∑n

k=1

∑n
l=k+1

√

(uk − ul)2 + (vk − vl)2
.6. Determination of image moment for regulating translation along 
amera axis (
f.equation 5.6)

fz =
1

n

n
∑

i=1

σi.7. Determination of image moments for x and y (
f. equation 5.10)
fx =

n
∑

i=1

wiui, fy =
n

∑

i=1

wivi.

wi is determined by minimizing the optimization problem F (
f. equation 5.17)through a set of linear equations (
f. equation 5.19).(8.) Singular 
omputation of the gains: HIL optimization of the 
ontroller by λ-CMAES (
f. se
tion 5.3.1).9. Determination of 
ontroller setpoint by overall feature error ∆f(I)=[∆fx, ∆fy,
∆fz , ∆fα, ∆fβ, ∆fγ ]

T a

ording to image moments fx, fy, fz, fα, fβ and fγ:
[vx, vy, vz, ωγ, ωα, ωβ]

T = [kx, ky, kz, kγ, kα, kβ]
T [∆fx,∆fy,∆fz,∆fγ ,∆fα,∆fβ]

T

+[kDx, kDy, kDz, kDγ, kDα, kDβ]
T [∆ḟx,∆ḟy,∆ḟz,∆ḟγ ,∆ḟα,∆ḟβ]

T .
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