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Abstract

In this paper we consider the problem of constructing T -optimal discriminating designs
for Fourier regression models. We provide explicit solutions of the optimal design problem for
discriminating between two Fourier regression models, which differ by at most three trigono-
metric functions. In general, the T -optimal discriminating design depends in a complicated
way on the parameters of the larger model, and for special configurations of the parameters
T -optimal discriminating designs can be found analytically. Moreover, we also study this
dependence in the remaining cases by calculating the optimal designs numerically. In par-
ticular, it is demonstrated that D- and Ds-optimal designs have rather low efficiencies with
respect to the T -optimality criterion.

Keywords and Phrases: T -optimal design; model discrimination; linear optimality criteria; Cheby-
shev polynomial, trigonometric models
AMS subject classification: 62K05

1 Introduction

The problem of identifying an appropriate regression model in a class of competing candidate
models is one of the most important problems in applied regression analysis. Nowadays it is well
known that a well designed experiment can improve the performance of model discrimination
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substantially, and several authors have addressed the problem of constructing optimal designs
for this purpose. The literature on designs for model discrimination can roughly be divided into
two parts. Hunter and Reiner (1965), Stigler (1971) considered two nested models, where the
extended model reduces to the “smaller” model for a specific choice of a subset of the parameters.
The optimal discriminating designs are then constructed such that these parameters are estimated
most precisely. Since these fundamental papers several authors have investigated this approach
in various regression models [see Hill (1978), Studden (1982), Spruill (1990), Dette (1994, 1995),
Dette and Haller (1998), Song and Wong (1999), Zen and Tsai (2004), Biedermann et al. (2009)
among many others]. The second line of research was initialized in a fundamental paper of Atkinson
and Fedorov (1975a), who introduced the T -optimality criterion for discriminating between two
competing regression models. Since the introduction of this criterion, the problem of determining
T -optimal discriminating designs has been considered by numerous authors [see Atkinson and
Fedorov (1975b), Ucinski and Bogacka (2005), Dette and Titoff (2009), Atkinson (2010), Tommasi
and López-Fidalgo (2010) or Wiens (2009, 2010) among others]. The T -optimal design problem is
essentially a minimax problem, and – except for very simple models – the corresponding optimal
designs are not easy to find and have to be determined numerically in most cases of practical
interest. On the other hand, analytical solutions are helpful for a better understanding of the
optimization problem and can also be used to validate numerical procedures for the construction
of optimal designs. Some explicit solutions of the T -optimal design problem for discriminating
between two polynomial regression models can be found in Dette et al. (2012), but to our best
knowledge no other analytical solutions are available in the literature.
In the present paper we consider the problem of constructing T -optimal discriminating designs for
Fourier regression models, which are widely used to describe periodic phenomena [see for example
Lestrel (1997)]. Optimal designs for estimating all parameters of the Fourier regression model
have been discussed by numerous authors [see e.g. Karlin and Studden (1966), page 347, Lau
and Studden (1985), Kitsos et al. (1988), Riccomagno et al. (1997) and Dette and Melas (2003)
among others]. Discriminating design problems in the spirit of Hunter and Reiner (1965), Stigler
(1971) have been discussed by Biedermann et al. (2009), Zen and Tsai (2004) among others, but
T -optimal designs for Fourier regression models, have not been investigated in the literature so far.
In Section 2 we introduce the problem and provide a characterization of T -optimal discriminating
designs in terms of a classical approximation problem. Explicit solutions of the T -optimal design
problem for Fourier regression models are discussed in Section 3. Finally, in Section 4 we provide
some numerical results of these challenging optimization problems. In particular, we demonstrate
that the structure (more precisely the number of support points) of the T -optimal discriminating
design depends sensitively on the location of the parameters.
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2 T -optimal discriminating designs

Consider the classical regression model

y = η(x) + ε, (2.1)

where the explanatory variable x varies in a compact design space, say X , and observations
at different locations, say x and x′, are assumed to be independent. In (2.1) the quantity ε

denotes a random variable with mean 0 and variance σ2, and η(x) is a function, which is called
regression function in the literature [see Seber and Wild (1989)]. We assume that the experimenter
has two parametric models, say η1(x, θ1) and η2(x, θ2), for this function in mind to describe the
relation between predictor and response, and that the first goal of the experiment is to identify the
appropriate model from these two candidates. In order to find “good” designs for discriminating
between the models η1 and η2 we consider approximate designs in the sense of Kiefer (1974),
which are probability measures on the design space X with finite support. The support points,
say x1, . . . , xs, of an (approximate) design ξ define the locations where observations are taken,
while the weights denote the corresponding relative proportions of total observations to be taken
at these points. If the design ξ has masses ωi > 0 at the different points xi (i = 1, . . . , s)

and n observations can be made, the quantities ωin are rounded to integers, say ni, satisfying∑s
i=1 ni = n, and the experimenter takes ni observations at each location xi (i = 1, . . . , s) [see for

example Pukelsheim and Rieder (1992)].
For the construction of a good design for discriminating between the models η1 and η2 Atkinson
and Fedorov (1975a) proposed in a seminal paper to fix one model, say η2, and to determine
the discriminating design such that the minimal deviation between the model η2 and the class of
models defined by η1 is maximized. More precisely, a T -optimal design is defined ξ∗ by

ξ∗ = argmax
ξ

∫
χ

(
η2(x, θ2)− η1(x, θ̂1)

)2
ξ(dx),

where the parameter θ̂1 minimizes the expression

θ̂1 = argmin
θ1

∫
χ

(η2(x, θ2)− η1(x, θ1))2 ξ(dx).

Note that the T -optimality criterion is a local optimality criterion in the sense of Chernoff (1953),
because it requires knowledge of the parameter θ2. Bayesian versions of this criterion have recently
been investigated by Dette et al. (2013) and Dette et al. (2015a).
In the present work we consider cases, where the competing regression functions are given by two
Fourier regression models of different order, that is

η1(x, θ1) = q0 +

k1∑
i=1

q2i−1 sin(ix) +

k2∑
i=1

q2i cos(ix) (2.2)

3



and

η2(x, θ2) = q̃0 +

k1∑
i=1

q̃2i−1 sin(ix) +

k2∑
i=1

q̃2i cos(ix) (2.3)

+
m∑

i=k1+1

b2(i−k1)−1 sin(ix) +
m∑

i=k2+1

b2(i−k2) cos(ix),

where

θ1 = (q0, q2, . . . , q2k2 , q1, . . . , q2k1−1)

θ2 = (q̃0, . . . , q̃2k2 , q̃1, . . . , q̃2k−1, b2, . . . , b2m, b1, . . . , b2m−1)

are the parameter vectors in model η1 and η2, respectively. Fourier regression models are widely
used to describe periodic phenomena [see e.g. Mardia (1972), or Lestrel (1997)] and the problem
of designing experiments for Fourier regression models has been discussed by several authors
[see the cited references in the introduction]. However, the problem of constructing T -optimal
discriminating designs for these models has not been addressed in the literature so far.
We assume that the design space is given by the interval χ = [0, 2π] and denote the difference
η2(x, θ2)− η1(x, θ1) by

η(x, q, b) = q0 +

k1∑
i=1

q2i−1 sin(ix) +

k2∑
i=1

q2i cos(ix) (2.4)

+
m∑

i=k1+1

b2(i−k1)−1 sin(ix) +
m∑

i=k2+1

b2(i−k2) cos(ix),

where q = (q0, q1, . . . , q2k1−1, q2, . . . , q2k2), qi = q̃i−qi and b = (b1, b3, . . . , b2(m−k1)−1, b2, b4, . . . , b2(m−k2))
T

denotes the vector of “additional” parameters in model (2.3). With these notations the T -
optimality criterion reduces to

T (ξ, b) = min
q

∫ 2π

0

η2(x, q, b)ξ(dx),

and a T -optimal design for discriminating between the models (2.2) and (2.3) maximizes T (ξ, b),
that is

ξ∗ = argmax
ξ
T (ξ, b).

The following result provides a characterization of T -optimal designs and is known in the literature
as the equivalence theorem for T -optimality [see, for instance, Theorem 2.2 in Dette and Titoff
(2009)].

Theorem 2.1 For a fixed vector b the following conditions are equivalent:
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(1) The design

ξ∗ =

(
x∗1 . . . x∗n
ω1 . . . ωn

)
, xi ∈ [0, 2π], i = 1, . . . , n.

is a T -optimal for discriminating designs for the models η1 and η2.

(2) There exists a vector θ∗ and a positive constant h such, that the function ψ∗(x) = η(x, θ∗, b)

satisfies the following conditions

(i) |ψ∗(x)| ≤ h, for all x ∈ [0, 2π],

(ii) |ψ∗(xi)| = h, for all i = 1, 2, . . . , n.

(iii) The support points x∗i and weights ωi of the design ξ∗ satisfy the conditions

n∑
i=1

ψ∗(x∗i )
∂η(x∗i , θ, b)

∂θj
ωi

∣∣∣
θ=θ∗

= 0, j = 0, . . . , k1 + k2. (2.5)

Note that Theorem 2.1 is not restricted to Fourier regression models but holds in general for linear
models. A detailed discussion can be found in Dette and Titoff (2009). As pointed out in the
introduction, the explicit determination of T -optimal discriminating designs is a very challenging
problem. The complexity of the problem depends on the dimension of the vector b. In the
following Sections 3 and 4 we provide explicit and numerical solutions of this difficult optimal
design problem for Fourier regression models. In particular, we will demonstrate that the structure
of the T -discriminating design (such as the number of support points) depends on the location of
the vector b in the (2m− k1 − k2)-dimensional Euclidean space.

3 Explicit solutions

In this section we give some explicit T -optimal discriminating designs for Fourier regression models.
In particular we consider the problem of constructing T -optimal discriminating designs for the
models (2.2) and (2.3), where

k1 = k2 = m− 1, (3.1)

k1 = m− 1, k2 = m− 2, (3.2)

k1 = m− 2, k2 = m− 1. (3.3)

We give an explicit solution for the case (3.1), while for the case (3.2) explicit results are provided
in Section 3.2 for specific values of the parameters b` in model (2.4). Corresponding results for the
case (3.3) are briefly mentioned in Remark 3.1. In general the solution of the T -optimal design
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problem depends in a complicated way on the parameters b, and we demonstrate numerically in
Section 4 that the number of support points of the T -optimal discriminating design changes if the
vector b is located in different areas of the space R2.

3.1 Discriminating designs for k1 = k2 = m− 1

Throughout this section we assume that k1 = k2 = m− 1 and rewrite the function in (2.4) as

η(x, q, b) = q0 +
m−1∑
i=1

q2i−1 sin(ix) +
m−1∑
i=1

q2i cos(ix) + b1 sin(mx) + b2 cos(mx).

Our first result gives an explicit solution of the T -optimal design problem in the case b1, b2 6= 0.

Theorem 3.1 Consider the Fourier regression models (2.2) and (2.3) with k1 = k2 = m− 1. Let
b1, b2 6= 0, then the design

ξ∗ =

(
1
m
arctan(1

b
) 1

m
arctan(1

b
) + π

m
. . . 1

m
arctan(1

b
) + (2m−1)π

m
1
2m

1
2m

. . . 1
2m

)
(3.4)

is a T -optimal discriminating design, where b = b2/b1.

Proof. We consider the function

ψ∗(x) = η(x, 0, b) = b1 sin(mx) + b2 cos(mx)

and prove that this function and the weights ω∗i =
1
2m

and support points x∗i =
1
m
arctan(1

b
)+ (i−1)

m
π

of the design ξ∗ defined in (3.4) satisfy the conditions of Theorem 2.1.
Direct calculations show for the support points of the design ξ∗ the identities

ψ∗(x∗i ) = (−1)i−1
√
b21 + b22, i = 1, . . . , 2m.

Consequently, the function ψ∗ satisfies conditions (i)-(ii) for h =
√
b21 + b22, and it remains to show

that the equations in (2.5) hold. In other words, we have to check that the equalities

n∑
i=1

(−1)i sin(jx∗i ) = 0,
n∑
i=1

(−1)i cos(jx∗i ) = 0, j = 0, . . . ,m− 1, (3.5)

are satisfied. Observing the identities sin(α+ β) = sin(α) cos(β) + cos(α) sin(β) and cos(α+ β) =

cos(α) cos(β)− sin(α) sin(β) we can rewrite (3.5) as

2m∑
i=1

(−1)i sin
(
j
(i− 1)π

m

)
= 0,

2m∑
i=1

(−1)i cos
(
j
(i− 1)π

m

)
= 0, j = 0, . . . ,m− 1.
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These equalities are a consequence of the identity

2m−1∑
`=0

e
iπ`j
m (−1)` = 0 j = 1, . . . ,m− 1

(here i =
√
−1 and the case j = 0 has to be considered separately), and the assertion of Theorem

3.1 now follows from Theorem 2.1. �

Corollary 3.1 Consider the Fourier regression models (2.2) and (2.3) with k1 = k2 = m− 1. If
b1 = 0, then the design

ξ∗ =

(
0 π

m
. . . (2m−1)π

m
1
2m

1
2m

. . . 1
2m

)
is a T -optimal discriminating design. If b2 = 0, then the design

ξ∗ =

(
π
2m

3π
2m

. . . (4m−1)π
2m

1
2m

1
2m

. . . 1
2m

)
is a T -optimal discriminating design.

Figure 1: The function ψ∗ of Theorem 2.1 for the two Fourier regression models (3.6) and (3.7)
(b1 = b2 = 1).

Example 3.1 Suppose that m = 3, b1 = b2 = 1 and k1=k2=2, then if follows from Theorem 3.1
that the design with equal masses at the six points 1

12
π, 5

12
π, 3

4
π, 13

12
π, 17

12
π and 7

4
π is a T -optimal

discriminating design for the two Fourier regression models

q0 + q1 sinx+ q2 cosx+ q3 sin(2x) + q4 cos(2x) (3.6)

q0 + q̃1 sinx+ q̃2 cosx+ q̃3 sin(2x) + q̃4 cos(2x) + b1 sin(3x) + b2 cos(3x). (3.7)

The function ψ∗ of Theorem 2.1 for this design is depicted in Figure 1.
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3.2 Discriminating designs for k1 = m− 1, k2 = m− 2

Throughout this section we determine T -optimal discriminating designs for the trigonometric
regression models

η1(x, θ1) = = q0 +
m−1∑
i=1

q2i−1 sin(ix) +
m−2∑
i=1

q2i cos(ix) (3.8)

η2(x, θ2) = q̃0 +
m−1∑
i=1

q̃2i−1 sin(ix) +
m−2∑
i=1

q̃2i cos(ix) (3.9)

+ b0 cos((m− 1)x) + b1 sin(mx) + b2 cos(mx).

Note that the two regression models in (2.2) and (2.3) now differ by three functions, that is
k1 = m − 1, k2 = m − 2. In general, T -optimal discriminating designs for this case have to
be determined numerically, and we will provide numerical results for m = 2 and m = 3 in the
following Section 4. However, for some special configurations of the parameters, the T -optimal
discriminating designs can also be found explicitly, and these cases will be discussed in the present
section.
If k1 = m− 1, k2 = m− 2 the function η in (2.4) has the representation

η(x, q, b) = q0 +
m−1∑
i=1

q2i−1 sin(ix) +
m−2∑
i=1

q2i cos(ix) + b0 cos((m− 1)x) + b1 sin(mx) + b2 cos(mx).

We may assume without loss of generality that b0 = 1. Indeed, if b0 = 0, the optimal designs can
be obtained from Theorem 3.1. Moreover, if b0 6= 0, the T -optimal discriminating design does not
depend on the particular value of b0, since we can divide all coefficients by this parameter. After
normalizing we therefore obtain

η(x, q, b) = q0 +
m−1∑
i=1

q2i−1 sin(ix) +
m−2∑
i=1

q2i cos(ix) + cos((m− 1)x) (3.10)

+b1 sin(mx) + b2 cos(mx).

We now concentrate on two special cases: b1 = 0, b2 6= 0 and b2 = 0, b1 6= 0, for which we
can provide an explicit solution of the T -optimal design problem if the absolute value of the non-
vanishing parameter is sufficiently large. For this purpose we define support points and weights
as follows

x∗i (b) = arccos
(
−
(
1 +

1

2m|b|

)
cos
((m− i+ 1)π

m

)
− 1

2m|b|

)
, (3.11)

ω∗i =
1

m
cos2

((i− 1)π

2m

)
, i = 1, . . . ,m. (3.12)

Our next result gives an explicit solution of the T -optimal design problem in the case b1 = 0, b2 6=
0.
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Theorem 3.2 Consider the Fourier regression models (3.8) and (3.9) with b0 = 1, b1 = 0, b2 6= 0.

(a) If b2 > 0, |b2| ≥ 1
2m

cot2
(
π
2m

)
, then the design

ξ∗1 =

(
x∗1(b2) . . . x∗m(b2) 2π − x∗m(b2) . . . 2π − x∗2(b2)
ω∗1 . . . ω∗m ω∗m . . . ω∗2

)
(3.13)

is a T -optimal discriminating design, where the support points and weights are defined in
(3.11) and (3.12), respectively.

(b) If b2 < 0, |b2| ≥ 1
2m

cot2
(
π
2m

)
, then the design

ξ∗2 =

(
π − x∗m(b2) . . . π − x∗1(b2) π + x∗2(b2) . . . π + x∗m(b2)

ω∗m . . . ω∗1 ω∗2 . . . ω∗m

)
, (3.14)

is a T -optimal discriminating design, where the support points and weights are defined in
(3.11) and (3.12), respectively.

Proof. We only consider the case b2 ≥ 1
2m

cot2( π
2m

) > 0 and note that the other case follows by
similar arguments. We will use Theorem 2.1 and prove the existence of a vector θ∗, such that
the function ψ∗(x) = η(x, θ∗, b) satisfies conditions (i) - (iii) in this theorem. For this purpose let
Tm(x) = cos(m arccosx) denote the mth Chebyshev polynomial of the first kind, then it is follows
by a straightforward calculation that there exists a vector θ∗ such that the function

ψ∗(x) = η(x, θ∗, b) = (−1)m|b2|
(
1 +

1

2m|b2|

)m
Tm

(− cos(x)− 1
2m|b2|

1 + 1
2m|b2|

)
,

is a trigonometric polynomial of degree m with leading term |b2| cos(mx) [note that the leading
term of Tm(x) is given by 2m−1xm and that 2m−1(cosx)m = cos(mx) + m cos((m − 2)x) + . . .].
Direct calculations show that the points x∗i (b2) defined in (3.11) are the extremal points of this
function, that is

ψ∗(x∗i (b2)) = (−1)i−1|b2|
(
1 +

1

2m|b2|

)m
, i = 1, . . . ,m. (3.15)

Consequently, ψ∗ satisfies conditions (i) and (ii) of Theorem 2.1. Finally, we prove the third
condition (2.5). The corresponding equalities reduce to

m∑
i=1

ω∗iψ
∗(x∗i (b2)) cos(jx

∗
i (b2)) +

m∑
i=2

ω∗iψ
∗(2π − x∗i (b2)) cos

(
j(2π − x∗i (b2))

)
= 0 (3.16)

(j = 0, . . . ,m− 2), and
m∑
i=1

ω∗iψ
∗(x∗i (b2)) sin(jx

∗
i (b2)) +

m∑
i=2

ω∗iψ
∗(2π − x∗i (b2)) sin

(
j(2π − x∗i (b2)

)
= 0 (3.17)
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(j = 1, . . . ,m − 1). Observing (3.15), x∗1(b2) = 0 and the identity ψ∗(x) = ψ∗(2π − x) we can
rewrite the left hand side of (3.17) as

m∑
i=2

ω∗i
(
sin(jx∗i (b2)) + sin(j(2π − x∗i (b2)))

)
=

m∑
i=2

ω∗i
(
sin(jx∗i (b2))− sin(jx∗i (b2))

)
(j = 1, . . . ,m− 1). Consequently (3.17) is obviously satisfied. Similarly, we obtain for (3.16)

m∑
i=1

ωi(−1)i cos(jx∗i (b2)) = 0, j = 0, . . . ,m− 2, (3.18)

where we use the notations ω1 =
ω∗
1

2
, ωi = ω∗i , i = 0, . . . ,m− 2 in (3.18). Defining ti = cos(x∗i (b2))

we obtain for the left hand side of (3.18)

m∑
i=1

ωi(−1)i cos(jx∗i (b2)) =
m∑
i=1

m−2∑
p=0

ωi(−1)iaptpi =
m−2∑
p=0

ap

m∑
i=1

ωi(−1)itpi

for some coefficients ap. It is proved in Appendix A.1 of Dette et al. (2012) that

m∑
i=1

ωi(−1)itpi = 0, p = 0, . . . ,m− 2

which implies (3.16). The T -optimality of the design ξ∗1 now directly follows from Theorem 2.1.
�

The next theorem considers the case b1 6= 0, b2 = 0, which is substantially harder. Here we are
able to determine the T -optimal discriminating designs explicitly if the degree m of the Fourier
regression model is odd.

Theorem 3.3 Consider the Fourier regression models (3.8) and (3.9) with b0 = 1, b1 6= 0, b2 = 0,
where m is odd. For ` = 1, 2 let t(ξ`)i and ω(ξ`)

i , denote the support points and weights of the designs
ξ∗1 and ξ∗2 defined in (3.13) and (3.14) and define

t
(`)
i = t

(ξ`)
i +

π

2
mod 2π; ` = 1, 2.

(a) If b1 ≥ 1
2m

cot2
(
π
2m

)
, then the design

ξ̃∗1 =

(
t
(1)
1 . . . t

(1)
2m−1

ω
(ξ1)
1 . . . ω

(ξ1)
2m−1

)
(3.19)

is a T -optimal discriminating design.
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(b) If b1 < 0, |b1| ≥ 1
2m

cot2
(
π
2m

)
, then the design

ξ̃∗2 =

(
t
(2)
1 . . . t

(2)
2m−1

ω
(ξ2)
1 . . . ω

(ξ2)
2m−1

)
(3.20)

is a T -optimal discriminating design.

Proof. The proof is similar to the proof of Theorem 3.2, where we use the function

ψ∗(x) = η(x, θ∗, b) = (−1)
m+1

2 |b1|
(
1 +

1

2m|b1|

)m
Tm

(− sin(x)− 1
2m|b1|

1 + 1
2m|b1|

)
,

in Theorem 2.1 The fact that this function is of the form

q0 +
2d−2∑
i=1

q2i−1 sin(ix) +
2d−3∑
i=1

q2i cos(ix) + cos((2d− 2)x) + b1 sin((2d− 1)x)

and satisfies the assumptions of Theorem 2.1 follows from the identity

cos
(
(2d− 1) arccos(t)

)
≡ (−1)d−1 sin

(
(2d− 1) arcsin(t)

)
, t ∈ [−1, 1], d = 1, 2, . . . , (3.21)

which can be used in the case m = 2d− 1. The details are omitted for the sake of brevity. �

Example 3.2 Consider the case m = 5, b1 = 0, b2 = 2 and k1 = 4, k2 = 3. The T -optimal
discriminating design can be obtained from Theorem 3.2 and is given by

ξ∗1 =

(
0 0.65 1.29 1.95 2.69 3.59 4.33 4.99 5.64

0.20 0.18 0.13 0.07 0.02 0.02 0.07 0.13 0.18

)
Similarly, if b1 = 2, b2 = 0 the T -optimal discriminating design is given by

ξ̃∗1 =

(
1.57 2.21 2.86 3.52 4.26 5.16 5.9 0.28 0.93

0.20 0.18 0.13 0.07 0.02 0.02 0.07 0.13 0.18

)

Note that the design ξ̃∗1 is obtained from the design ξ∗1 by the transformation x→ x+ π
2
. In Figure

2 we display the function ψ∗ in the equivalence Theorem 2.1 for both cases.

Remark 3.1 In the case k1 = m − 2, k2 = m − 1 explicit solutions can be obtained by similar
arguments as given in the proof of Theorem 3.2 and 3.3. If m = 2d is even and b1 = 0 the function
η is given by

η(x, q, b) = q0 +
2d−2∑
i=1

q2i−1 sin(ix) +
2d−1∑
i=1

q2i cos(ix) + sin((2d− 1)x) + b2 cos(2dx) . (3.22)
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Figure 2: The function ψ∗ of Theorem 2.1 for two Fourier regression models of the form (3.8) and
(3.9) with m = 5. Left part: design ξ∗1 of Theorem 3.2 (b0 = 1, b1 = 0, b2 = 2), right part: design
ξ̃∗1 of Theorem 3.3 (b0 = 1, b1 = 2, b2 = 0).

If b2 ≥ 1
2m

cot( π
2m

), the T -optimal discriminating design for the Fourier regression models (2.2)
and (2.3) with k1 = m− 2 and k2 = m− 1 is given by the design (3.19), where the support points
and weights are defined by

t
(1)
i = t

(ξ1)
i +

3π

2
mod 2π; i = 1, 2, . . . , 2m− 1 ,

ω
(1)
i = ω

(ξ1)
i ; i = 1, 2, . . . , 2m− 1 ,

respectively, and t(ξ1)i and ω(ξ1)
i ; are the support points of the design ξ∗1 in (3.13). The extremal

polynomial ψ∗ in Theorem 2.1 is given by

ψ∗(x) = η(x, θ∗, b) = (−1)
m
2 |b1|

(
1 +

1

2m|b1|

)m
Tm

(− sin(x) + 1
2m|b1|

1 + 1
2m|b1|

)
,

where the fact that ψ∗ can be represented in the form (3.22) follows from (3.21). A similar result is
available in the case b2 < 0, |b2| ≥ 1

2m
cot( π

2m
) and the details are omitted for the sake of brevity.

4 Some numerical results

The results of Section 3.2 are only correct if the module of b1 or b2 is larger or equal to some
threshold. Otherwise T -optimal designs have a more complicated structure and have to be found
numerically [see Dette et al. (2015b) for some algorithms]. In this section we provide some more
insight in the structure of T -optimal discriminating designs in cases, where an analytical determi-
nation of the optimal design is not possible. For this purpose we consider the Fourier regression
models (3.8) and (3.9), where b0 = 1 and b1, b2 6= 0. Recalling the representation (3.10) for the
function η in (2.4), we see that the support points and weights of the optimal T -discriminating
designs depend on the two parameters b1, b2 of the extended model. Moreover, the structure of
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the optimal design changes and depends on the location of the point (b1, b2). We have calculated
T -optimal discriminating designs for the Fourier regression models (3.8) and (3.9) for m = 2 and
m = 3.
If m = 2 the T -optimal designs have either 2 or 3 support points, and the corresponding areas for
the point (b1, b2) are depicted in the left part of Figure 3. For example, if b1 = 0 and |b2| ≥ 0.25 the
locally T -optimal discriminating design has 3 support points (which coincides with the results of
Theorem 3.2), while in the opposite case the optimal design is supported at only two points. This
pattern does not change if b1 6= 0, but the threshold is slightly increasing. Numerical calculations
show that the threshold converges to

√
2
4

as b1 →∞.

Figure 3: The number of support points of the T -optimal design for the Fourier regression models
(3.8) and (3.9). Left part: m = 2, right part: m = 3.

The right part of Figure 3 shows corresponding results for the casem = 3, and we see that the plane
is separated into five parts. Four of them correspond to parameter configurations, where the T -
optimal discriminating design is supported at 5 points. Additionally, there exists one component,
where a 4-point design is T -optimal for discriminating between the two Fourier regression models.
Consider for example the situation, where b2 = 1 and b1 varies in the interval [0, 3]. In this case
there exist two values, say bmin1 and bmax1 , where the line through the point (0, 1) in the direction
(1, 0) intersects the boundary of the fourth region [see the right part of Figure 3]. If b1 ∈ [0, bmin1 ]

the T -optimal discriminating design has 5 support points, while it has only 4 support points if
b1 ∈ [bmin1 , bmax1 ]. Finally, on the interval [bmax1 , 3] the T -optimal discriminating design has again
5 support points. The support points and corresponding weights of the T -optimal discriminating
design are shown in Figure 4 [for the Fourier regression models (3.8) and (3.9)] as a function of
the parameter b1 ∈ [0, 3] where b2 = 1.

13



Figure 4: The support points and weights of the T -optimal discriminating design for the Fourier
regression models (3.8) and (3.9), where m = 3, b0 = 1, b2 = 1, and b1 ∈ [0, 3].

We conclude this section investigating the T -efficiency

EffT (ξ, b) =
T (ξ, b)

maxη T (η, b)

of some commonly used designs in this context. The first design is the D-optimal design for the
extended model (2.3). The design can be found in Pukelsheim (2006) and is given by

ξ∗D =

0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8


The second design is a discriminating design in the sense of Stigler (1971). This design provides a
most accurate estimation of the three highest coefficients b0, b1 and b2 in model (3.9) and can be
obtained from the results of Lau and Studden (1985). The design is given by

ξ∗D3
=

 0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

3
20

1
10

3
20

1
10

3
20

1
10

3
20

1
10


and will be called D3-optimal design throughout this section. The corresponding efficiencies are
shown in Figure 5 for various values of b2, where the parameter b1 varies in the interval [0, 5].
Both designs have rather similar T -efficiencies which are always smaller than 60%. This similarity
can be explained by the fact that the D- and D3-optimal design have the same support and only
differ with respect to their weights. The efficiencies are decreasing with the parameter b2. For
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Figure 5: The T -efficiency of the D-optimal design (left part) and D3-optimal design (right
part) for discriminating between the Fourier regression models (3.8) and (3.9), where m = 3,
b2 = 0, 0.5, 1, 2, 3, 5, b1 ∈ [0, 5].

larger values of b2 the efficiencies of the D-and D3-optimal design are very low. For fixed b2 and
larger values of b1 the efficiencies do not change substantially.
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