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Abstract

Nonlinear regression models addressing both efficacy and toxicity outcomes are in-
creasingly used in dose-finding trials, such as in pharmaceutical drug development.
However, research on related experimental design problems for corresponding active
controlled trials is still scarce. In this paper we derive optimal designs to estimate ef-
ficacy and toxicity in an active controlled clinical dose finding trial when the bivariate
continuous outcomes are modeled either by polynomials up to degree 2, the Michaelis-
Menten model, the Emax model, or a combination thereof. We determine upper bounds
on the number of different doses levels required for the optimal design and provide con-
ditions under which the boundary points of the design space are included in the optimal
design. We also provide an analytical description of the minimally supported D-optimal
designs and show that they do not depend on the correlation between the bivariate out-
comes. We illustrate the proposed methods with numerical examples and demonstrate
the advantages of the D-optimal design for a trial, which has recently been considered
in the literature.

Keywords and Phrases: Active controlled trials, dose finding, optimal design, admissible
design, Emax model, Equivalence theorem, Particle swarm optimization, Tchebycheff system.
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1. Introduction

There is a vast literature on optimal design of experiments, with applications ranging across
many disciplines. Atkinson (1996) showed the usefulness of optimal designs for real ap-
plications using examples from agriculture, animal breeding studies, accelerated life-testing
experiments and computer experiments. Berger and Wong (2005) gave examples of the var-
ied disciplines that increasingly use optimal design ideas for scientific investigations. Most
of the literature focuses on optimal designs for models with a univariate outcome. In prac-
tice, however, drug trials are often conducted to measure multiple outcomes that are likely
to be correlated. For instance, pharmaceutical dose-finding trials invariably have bivariate
outcomes involving efficacy and toxicity. As a motivating example consider a randomized
controlled clinical trials for hypertensive patients treated with an angiotensin-converting-
enzyme (ACE) inhibitor. In such trials change from baseline in the sitting blood pressure is
a frequent efficacy outcome. However, patients starting on an ACE inhibitor usually have
a modest reduction in glomerular filtration rate (GFR) that stabilizes after several days.
Because this decrease may be significant in conditions of decreased renal perfusion, the renal
function should be closely monitored over the first few days in those patients [see Sidorenkov
and Navis (2014) and Tao et al. (2015)]. Thus, the amount of decrease in GFR from baseline
is a common outcome to assess unwanted side effects.
Several papers have addressed design problems that incorporate both efficacy and toxicity
of a drug. Fan and Chaloner (2004) proposed using a continuous ratio model for a trinomial
outcome, where the outcome of a patient may be classified as “no reaction” when neither
toxicity nor efficacy occurs, “efficacy” for efficacy without toxicity, and “adverse reaction”
for toxicity. Heise and Myers (1996) used the Gumbel bivariate binary quantal response
model to study efficacy and toxicity. In their example, patients were continuously monitored
whether they experienced a toxicity event or a treatment benefit. The authors investigated
locally D- and Q-optimal designs, where D-optimal designs were constructed for estimating
all model parameters and Q-optimal designs were obtained by maximizing the probability of
efficacy without toxicity at a selected dose level. More recently, Magnusdottir (2013) applied
c-optimal designs to the bivariate Emax model for continuous efficacy and toxicity outcomes.
The author determined the dose level providing the best possible combination of efficacy and
toxicity, based on a pre-specified clinical utility index [see Carrothers (2011)].
Adaptive dose finding trials incorporating both efficacy and safety have been investigated as
well. For example, Thall and Cook (2004) and Dragalin and Fedorov (2006) found adaptive
designs for dose-finding based on efficacy-toxicity outcome using a Gumbel bivariate logis-
tic regression or a Cox bivariate model. Dragalin et al. (2008) proposed new designs for
selecting drug combinations for a bivariate Probit correlated model based on an efficacy-
toxicity outcome profile of a drug using Bayesian, minimax and adaptive methods. More
recently, Tao et al. (2013) considered a joint model with mixed correlated toxicity and ef-
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ficacy outcomes, with one discrete and the other continuous. Using outcomes constructed
with Archimedean Copula, they extended the continual reassessment method to find the
optimal dose for Phase III trials based on both efficacy and toxicity considerations. Some
advantages and disadvantages of adaptive designs have been discussed in Dette et al. (2013).
Recently, the use of active controls instead of placebo in clinical trials has received consider-
able attention in the literature [see for example Temple and Ellenberg (2000), Splawinski and
Kuzniar (2004), Helms et al. (2015a,b) among many others], and design issues for univariate
outcomes have been discussed in Dette et al. (2014, 2015). To our best knowledge, the prob-
lem of determining optimal designs for active controlled trials with bivariate mean outcomes
has not been considered in the literature so far. In the present paper we derive optimal de-
signs when the bivariate outcomes are efficacy and toxicity measures and are modeled using
combinations of the linear, quadratic, Michaelis-Menten and Emax model as possible mean
functions. We note that the Emax model is especially flexible in its shape and commonly
applied in dose-finding trials. In particular, the Emax model can be justified through the re-
lationship of drug-receptor interactions and therefore deduced from the chemical equilibrium
equation [see e.g. Boroujerdi (2002)].
In Section 2 we introduce the model and provide some technical background. In Section
3 we consider various models for efficacy and toxicity outcomes without an active control
and provide upper bounds on the required number of doses for each combination of the
possible mean functions in the bivariate model. We also state sufficient conditions under
which the boundary points of the design space are included as support points of the optimal
design and determine the minimally supported optimal designs analytically. In Section 4 we
apply these results to design active-controlled dose finding trials. In Section 5 we report the
optimal designs for a real trial with bivariate outcome using particle swarm optimization.
We conclude with a discussion in Section 6 and provide the technical proofs for our main
results in Section 7.

2. Optimal designs for bivariate outcome

We consider a dose-finding trial investigating both the efficacy and toxicity of a new drug
under investigation. Our goal is to find an optimal design for collecting data for the two
outcomes at different dose levels. Given a statistical model defined on a given dose interval
of interest, say D = [L,R] ⊂ R+

0 , and a given design criterion, the design problem is to
determine the optimal number of doses, k, the dose levels d1, . . . , dk from the dose interval
D, and the number of patients assigned to each dose. In practice, the total sample size, say
n1, is determined either by standard power considerations or by requirements on the precision
of estimating the dose-response curves. That is, for a given value of n1, the optimal design
needs to specify the number of patients n1i at each dose level di subject to

∑k
i=1 n1i = n1.

Note that we use the index “1” here in the notation (i.e. n1, n1i, . . .) since in later sections
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we consider active controlled clinical trials with a second sample denoted by the index “2”.
Let Yij be the two-dimensional outcome variable at dose level di from subject j and assume
that

Yij = (Y e
ij, Y

t
ij)

T ∼ N2(η1(di, θ1),Σ1), j = 1, . . . , n1i, i = 1, . . . , k. (2.1)

The regression function

η1(d, θ1) = (ηe1(d, θ
e
1), η

t
1(d, θ

t
1))

T ∈ R2

describes the expected efficacy (ηe1) and toxicity (ηt1) at dose level d ∈ D, where the (se1 + 1)-
and (st1 + 1)-dimensional vectors θe1 and θt1 define the parameters of the model ηe1 and ηt1,
respectively. The parameter θ1 = ((θe1)

T , (θt1)
T )T varies in a compact parameter space, say

Θ1 ⊂ Rs1 , where s1 = se1 + st1 + 2. The unknown covariance matrix is

Σ1 = Cov(Y ) =

(
σ2
e ρσeσt

ρσeσt σ2
t

)
,

where −1 < ρ < 1 denotes the correlation between the two outcome variables and the
variances of the random variables Y e

ij and Y t
ij are given by σ2

e and σ2
t , respectively. We

assume that η1 is continuously differentiable with respect to the parameter θ1 and denote by

fe(d) =
∂

∂θe1
ηe1(d, θ1) = (f e0 (d), . . . , f ese1(d))T , ft(d) =

∂

∂θt1
ηt1(d, θ1) = (f t0(d), . . . , f tst1(d))T

the gradients of the two mean responses with respect to θe1 and θt1, respectively. Following
Fahrmeir and Tutz (2001), the Fisher information matrix is given by the s1 × s1-matrix

I1(d, θ1) = ( ∂
∂θ1
η1(d, θ1))

TΣ−11 ( ∂
∂θ1
η1(d, θ1)) =

(
fe(d) 0se1+1

0st1+1 ft(d)

)
Σ−11

(
fTe (d) 0T

st1+1

0Tse1+1 fTt (d)

)
=

1

σ2
eσ

2
t (1− ρ2)

F (d).

Here, 0d is the d-dimensional vector with all entries equal to 0 and

F (d) =
1

σ2
eσ

2
t (1− ρ2)

(
σ2
tF1 −ρσeσtF2

−ρσeσtFT2 σ2
eF3

)
(2.2)

is defined through

F1 = fe(d)fTe (d) ∈ Rse1+1×se1+1, F3 = ft(d)fTt (d) ∈ Rst1+1×st1+1,

F2 = fe(d)fTt (d) ∈ Rse1+1×st1+1.
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Note that we have suppressed the dependency of the matrices F , F1, F2 and F3 on the
parameter θ1 in our notation.
Throughout this paper we consider approximate designs in the sense of Kiefer (1974), which
are defined as probability measures with finite support on the design space D. If an ap-
proximate design ξ has k support points, say d1, . . . , dk, with corresponding positive weights
ω1, . . . , ωk, such that

∑k
i=1 ωi = 1, and n1 observations can be taken, a rounding procedure

is applied to obtain integers n1i, i = 1, . . . , k, from the possibly rational numbers ωin1 [see
Pukelsheim and Rieder (1992)]. The information matrix M1(ξ, θ1) of a design ξ is defined
by the s1 × s1 matrix

M1(ξ, θ1) =

∫
D
I1(d, θ1)dξ(d) =

k∑
i=1

ωi
σ2
eσ

2
t (1− ρ2)

F (di), (2.3)

where the matrix F (d) is defined in (2.2).
If observations are taken according to an approximate design ξ it can be shown that, un-
der standard regularity conditions, the maximum likelihood estimator θ̂1 is asymptotically
normally distributed, that is

√
n1(θ̂1 − θ1)

D−→ Ns1(0,M−1
1 (ξ, θ1)),

as n1 →∞, where the symbol D−→ means convergence in distribution. Consequently designs
that make the information matrix M1(ξ, θ1) large in some sense are appropriate. There are
several design criteria used in practice. An important example is Kiefer’s φp-criterion [see
Kiefer (1974)]. To be precise, let p ∈ [−∞, 1) and let K ∈ Rs1×m be a given matrix of full
column rank. A design ξ∗ is called locally φp-optimal for estimating the linear combination
KT θ1 if it maximizes the concave functional

φp(ξ) =
( 1

m
tr(KTM−

1 (ξ, θ1)K)−p
) 1

p

among all designs ξ satisfying Range(K) ⊂ Range(M1(ξ, θ1)), i.e. KT θ1 is estimable by the
design ξ. Here, tr(A) and A− denote the trace and a generalized inverse of the matrix A,
respectively.
One key advantage of working with approximate designs is that convex optimization theory
can be applied if the design criterion is a concave functional. As a consequence, a general
equivalence theorem is available to verify whether a design is optimal among all designs.
Any concave functional has its own equivalence theorem but collectively they all have a
similar form. For each member of Kiefer’s φp-criterion, a direct application of Theorem 7.14
in Pukelsheim (2006) yields the following result.

Theorem 2.1 Let K be a s1×m matrix of full column rank. If p ∈ (−∞, 1), a design ξ∗ with
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Range(K) ⊂ Range(M1(ξ
∗, θ1)) is locally φp-optimal for estimating the linear combination

KT θ1 if and only if there exists a generalized inverse G of the information matrix M1(ξ
∗, θ1),

such that
tr
(
I1(d, θ1)GK(CK(ξ∗))p+1KTGT

)
− tr(CK(ξ∗))p ≤ 0 (2.4)

holds for all d ∈ D, where CK(ξ∗) = (KTM−
1 (ξ∗, θ1)K)−1. If p = −∞, a design ξ∗ with

Range(K) ⊂ Range(M1(ξ
∗, θ1)) is locally φ−∞-optimal for estimating the linear combination

KT θ1 if and only if there exists a generalized inverse G of the information matrix M1(ξ
∗, θ1)

and a non-negative definite matrix E ∈ Rm×m with tr(E) = 1, such that

tr
(
I1(d, θ1)GKCK(ξ∗)ECK(ξ∗)KTGT

)
− λmin(CK(ξ∗)) ≤ 0. (2.5)

holds for all d ∈ D. Moreover, if the design ξ∗ is φp-optimal, there is equality in the above
inequalities.

The function on the left hand side of (2.4) or (2.5) is a function of the dose d and is sometimes
called the sensitivity function of the design ξ∗. In practice, one plots the sensitivity function
over the entire dose range and checks whether it is bounded above by zero. If it does, the
design ξ∗ is optimal; otherwise it is not. In addition, the sensitivity function, along with the
equivalence theorem, can be used to provide a lower bound on the efficiency of any design.
For example, if p > −∞, one can show that the φp-efficiency of a design ξ can be bounded
from below, that is

effp(ξ) =
φp(ξ)

supη φp(η)
≥ tr(CK(ξ))p

maxd∈D tr(I1(d, θ1)GK(CK(ξ))p+1KTGT )
(2.6)

[see Dette (1996)]. Moreover, characterizations of the type (2.4) or (2.5) are also useful to
find optimal designs analytically if the model is not too complicated. However, regression
models with multivariate outcome are complex and in practice optimal designs have to be
found numerically [see Chang (1997), Atashgah and Seifi (2007) or Sagnol (2011) among
others].
For such calculations, sharp bounds on the number of support points of the optimal designs
are useful, because they can substantially reduce the complexity of the optimization problem.
In order to derive such upper bounds we follow Karlin and Studden (1966) and call a design
ξ1 admissible if there does not exist a design ξ2, such that M1(ξ1, θ1) 6= M1(ξ2, θ1) and

M1(ξ1, θ1) ≤M1(ξ2, θ1)

with respect to the Loewner ordering. In other words, the information matrix of an admis-
sible design cannot be improved and numerical optimization can be restricted to the class
of admissible designs. The characterization of the number of support points of admissible
designs has found considerable attention in the recent literature [see Yang and Stufken (2009,

6



2012), Yang (2010), Dette and Melas (2011) or Dette and Schorning (2013)]. These authors
obtained substantially smaller bounds on the number of support points of optimal designs
than provided by the classical approach using Caratheodory’s theorem [see Pukelsheim (2006)
for example].
In the following we demonstrate that the results in the above references can in fact be proved
under weaker assumptions than usually made in the literature. For this purpose we will make
use of the theory of Tchebycheff systems [see Karlin and Studden (1966)]. A set of k + 1

continuous functions u0, . . . , uk : [L,R] → R is called a Tchebycheff system on the interval
[L,R] if the inequality det(ui(dj))

k
i,j=0 > 0 holds for all L ≤ d0 < d1 < . . . < dk ≤ R. We

define the index I(ξ) of a design ξ on the interval [L,R] as the number of support points,
where interior support points are counted by one and the support points at the boundary of
the interval [L,R] are counted by one half.
Note that we can rewrite the information matrix M1(ξ, θ1) in the form

M1(ξ, θ1) =


∫ R
L
ψ11(d)dξ(d) . . .

∫ R
L
ψ1s1(d)dξ(d)

...
...∫ R

L
ψs11(d)dξ(d) . . .

∫ R
L
ψs1s1(d)dξ(d)

 , (2.7)

where we ignore the dependence of the functions ψij on the parameter θ1. We now define
ψ0(d) ≡ 1 and choose a basis, say {ψ0, . . . , ψk}, for the space span({ψij|1 ≤ i, j ≤ s1}∪{1}).
We further assume that ψk is one of the diagonal elements of the matrix M1(ξ, θ1), does not
coincide with any of the other elements ψij and that {ψ0, . . . , ψk−1} is a basis of the space

span
(
{ψij | i, j ∈ {1, . . . , s1}; ψij 6= ψk} ∪ {1}

)
.

Our next result, Theorem 2.2, is a more general version of Theorem 3.1 in Dette and Melas
(2011) that is specific to our problem here. The proof is quite similar to the one given in
this reference and is omitted for the sake of brevity. Theorem 2.2 yields better bounds on
the number of support points of optimal designs obtained from the current literature; an
example is given at the end of Section 7.1.
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Theorem 2.2

(A) If {ψ0, ψ1, . . . , ψk−1} and {ψ0, ψ1, . . . , ψk} are Tchebycheff systems on the interval D,
then for any design ξ there exists a design ξ+ with at most k+2

2
support points, such

that M1(ξ
+, θ1) ≥ M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) < k

2
, then the

design ξ+ is uniquely determined in the class of all designs η satisfying∫ R

L

ψi(d)dη(d) =

∫ R

L

ψi(d)dξ(d), i = 0, . . . , k − 1 (2.8)

and coincides with the design ξ. Otherwise, in the case I(ξ) ≥ k
2
, the following two

assertions are valid.

(A1) If k is odd, then ξ+ has at most k+1
2

support points and ξ+ can be chosen such
that its support contains the point R.

(A2) If k is even, then ξ+ has at most k
2

+ 1 support points and ξ+ can be chosen such
that its support contains the points L and R.

(B) If {ψ0, ψ1, . . . , ψk−1} and {ψ0, ψ1, . . . ,−ψk} are Tchebycheff systems, then for any de-
sign ξ there exists a design ξ− with at most k+2

2
support points, such that M1(ξ

−, θ1) ≥
M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) < k

2
then the design ξ− is uniquely

determined in the class of all designs η satisfying (2.8) and coincides with the design
ξ. Otherwise, in the case I(ξ) ≥ k

2
, the following two assertions are valid.

(B1) If k is odd, then ξ− has at most k+1
2

support points and ξ− can be chosen such
that its support contains the point L.

(B2) If k is even, then ξ− has at most k
2

+ 1 support points.

We note that Theorem 2.2 provides information about the admissible designs. For example,
consider the case (A2) with k = 2m for some m ∈ N. Any design ξ with index I(ξ) ≥ m can
be improved with respect to the Loewner ordering by a design with at most m+ 1 support
points that includes the boundary points L and R. It follows that admissible designs are
designs with index < m and designs with m + 1 support points that include the boundary
points L and R of the design space.

3. Optimal designs for placebo-controlled dose finding
trials

In this section we study optimal designs for several nonlinear regression models which are
commonly used in placebo-controlled dose-finding trials with joint efficacy-toxicity outcomes.
In particular we use Theorem 2.2 to derive bounds on the number of support points of optimal
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designs and explicit expressions for minimally supported designs. The proofs of the results
presented here can be found in the Appendix.

3.1 Bounds on the number of support points

In order to determine bounds for the number of support points of optimal designs we note
that the mapping M → (KTM−K)−1 is increasing with respect to the Loewner ordering on
the set of all s1 × s1-matrices satisfying Range(K) ⊂ Range(M) [see Pukelsheim (2006)].
That is, if

M1 ≥M2 ⇒ (KTM−
1 K)−1 ≥ (KTM−

2 K)−1,

for all matrices M1,M2 satisfying the range inclusion. It therefore follows that the infor-
mation matrix (KTM−(ξ, θ1)K)−1 of a non-admissible design can be improved with respect
to the Loewner ordering. Because the φp-criteria are monotone, we have φp(ξ) ≤ φp(ξ

∗) for
any design ξ, where ξ∗ is either ξ+ or ξ− as given in Theorem 2.2. This conclusion is true,
whenever the assumptions of Theorem 2.2 are satisfied. The following results show that this
is in fact the case for many of the commonly used dose response models with a bivariate
outcome and give upper bounds on the number of support points of such designs.

Theorem 3.1 Assume that the model for efficacy is given by ηe1(d, θ1) = ϑe0 + ϑe1d and that
ξ is an arbitrary design on the dose range D = [L,R].

(a) If ηt1(d, θ1) = ϑt0 + ϑt1d, there exists a design ξ∗ with at most two support points, such
that M1(ξ

∗, θ1) ≥ M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 1, ξ∗ can be
chosen such that the support of ξ∗ contains the points L and R.

(b) If ηt1(d, θ1) = ϑt0 +ϑt1d+ϑt2d
2, there exists a design ξ∗ with at most three support points,

such that M1(ξ
∗, θ1) ≥M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 2, ξ∗ can

be chosen such that the support of ξ∗ contains the points L and R.

(c) If ηt1(d, θ1) is given by a Michaelis-Menten model, that is ηt1(d, θ1) =
ϑt1d

ϑt2+d
, there exists

a design ξ∗ with at most four support points, such that M1(ξ
∗, θ1) ≥ M1(ξ, θ1). If the

index of the design ξ satisfies I(ξ) ≥ 3, ξ∗ can be chosen such that the support of ξ∗

contains the points L and R.

(d) If ηt1(d, θ1) is given by an Emax-model, that is ηt1(d, θ1) = ϑt0 +
ϑt1d

ϑt2+d
, there exists a

design ξ∗ with at most four support points, such that M1(ξ
∗, θ1) ≥ M1(ξ, θ1). If the

index of the design ξ satisfies I(ξ) ≥ 3, ξ∗ can be chosen such that the support of ξ∗

contains the points L and R.

Remark 3.1 Note that the bounds provided by Theorem 3.1 are not necessarily sharp. For
example, if ηt1 is the Emax and ηe1 is the linear model, then by the first part of Theorem 3.1(d)
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one does not decrease the information (with respect to the Loewner ordering) by considering
only designs with at most four support points. Any design with four support points or three
support points in the interior of the dose range has index ≥ 3 and can therefore be further
improved by a design with at most four support points including the boundary points L and
R. As one requires at least three different dose levels to estimate the parameters in the Emax
model, it follows that one can restrict the search of optimal designs to three point designs
with at least one boundary point as support point (as the index should be smaller than or
equal to 5/2) or to four point designs containing both boundary points in its support.

Theorem 3.2 Assume that the model for efficacy is given by ηe1(d, θ1) = ϑe0 + ϑe1d + ϑe2d
2

and let ξ denote an arbitrary design on the dose range D = [L,R].

(a) If ηt1(d, θ1) = ϑt0 +ϑt1d+ϑt2d
2, there exists a design ξ∗ with at most three support points,

such that M1(ξ
∗, θ1) ≥M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 2, ξ∗ can

be chosen such that the support of ξ∗ contains the points L and R.

(b) If ηt1(d, θ1) =
ϑt1d

ϑt2+d
, there exists a design ξ∗ with at most five support points, such that

M1(ξ
∗, θ1) ≥M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 4, ξ∗ can be chosen

such that the support of ξ∗ contains the points L and R.

(c) If ηt1(d, θ1) = ϑt0 +
ϑt1d

ϑt2+d
, there exists a design ξ∗ with at most five support points, such

that M1(ξ
∗, θ1) ≥ M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 4, ξ∗ can be

chosen such that the support of ξ∗ contains the points L and R.

Theorem 3.3 Assume that the model for efficacy is given by ηe1(d, θ1) =
ϑe1d

ϑe2+d
and let ξ

denote an arbitrary design on the dose range D = [L,R].

(a) If ηt1(d, θ1) =
ϑt1d

ϑt2+d
with ϑe2 6= ϑt2, there exists a design ξ∗ with at most five support

points, such that M1(ξ
∗, θ1) ≥M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 4,

ξ∗ can be chosen such that the support of ξ∗ contains the point R.

(b) If ηt1(d, θ1) = ϑt0 +
ϑt1d

ϑt2+d
with ϑe2 6= ϑt2, there exists a design ξ∗ with at most five support

points, such that M1(ξ
∗, θ1) ≥M1(ξ, θ1). If the index of the design ξ satisfies I(ξ) ≥ 4,

ξ∗ can be chosen such that the support of ξ∗ contains the points L and R.

Theorem 3.4 Assume that the model for efficacy is given by ηe1(d, θ1) = ϑe0 +
ϑe1d

ϑe2+d
and let ξ

denote an arbitrary design on the dose range D = [L,R]. If ηt1(d, θ1) = ϑt0+
ϑe1d

ϑe2+d
with ϑe2 6= ϑt2,

there exists a design ξ∗ with at most five support points, such that M1(ξ
∗, θ1) ≥ M1(ξ, θ1).

If the index of the design ξ satisfies I(ξ) ≥ 4, ξ∗ can be chosen such that the support of ξ∗

contains the points L and R.
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Remark 3.2 The remaining cases can be obtained by interchanging the roles of ηe and
ηt in Theorem 3.1 - 3.4. For example, consider the case, where ηe1(d, θ1) is the Emax and
ηt1(d, θ1) the Michaelis-Menten model with ϑe2 6= ϑt2. Then it follows from Theorem 3.3(b)
that for any design ξ there exists a design ξ∗ with at most five support points, such that
M1(ξ

∗, θ1) ≥M1(ξ, θ1). Moreover, if the index of the design ξ satisfies I(ξ) ≥ 4, then ξ∗ can
be chosen such that the support of ξ∗ contains L and R. The other cases are obtained in the
same way.

3.2 Minimally supported D-optimal designs

For a design ξ let # supp(ξ) be the number of its support points and let

m∗ = min{# supp(η) | det(M1(η, θ1)) > 0, η design on D}

be the minimal number of support points required for a design with a non-singular informa-
tion matrix in model (2.1). A design ξ is called minimally supported if det(M1(ξ, θ1)) > 0

and the number of support points is given by m∗. Minimally supported designs are useful
if, for example, a drug under investigation may be only available at few dose levels.
In general, the optimal designs have to be found numerically for complex models and even
then many of the current algorithms may not work well. However, if one restricts the search
to minimally supported designs, the optimization problem can be greatly simplified which
may then allow us to determine locally D-optimal designs. In some cases these minimally
supported optimal designs may not be optimal among all designs [see Section 5 below for
some examples] so that an equivalence theorem must be used to confirm its optimality among
all designs or its efficiency should be evaluated using the estimate (2.6). Before we present
analytically derived minimally supported designs for model (2.1) for different efficacy-toxicity
regression models, we give a result about the general structure of these designs.

Theorem 3.5 If the number of parameters in the mean function of the efficacy model is the
same as the number of parameters in the mean function of the toxicity model, i.e. se1 = st1, the
minimally supported locally D-optimal design for model (2.1) is a uniform design. Moreover,
its support points do not depend on the entries in the covariance matrix Σ1.

The following result provides minimally supported D-optimal designs for several commonly
used dose-response models. Its proof makes use of Theorem 3.5, which reduces the optimiza-
tion problem to the determination of the support points.

Theorem 3.6

(1) Assume that the model for efficacy is given by ηe1(d, θ1) = ϑe0 + ϑe1d.

(1a) If ηt1(d, θ1) = ϑt0 + ϑt1d, the minimally supported D-optimal design is a two-point
design with equal masses at the points L and R.
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(1b) If ηt1(d, θ1) =
ϑt1d

ϑt2+d
, the minimally supported D-optimal design is a two-point design

with equal masses at the points L ∨ 1
2
(
√
R2 + 10Rϑt2 + 9(ϑt2)

2 −R− 3ϑt2) and R.

(2) Assume that the model for efficacy is given by ηe1(d, θ1) = ϑt0 + ϑt1d+ ϑt2d
2.

(2a) If ηt1(d, θ1) = ϑt0 + ϑt1d + ϑt2d
2, the minimally supported D-optimal design is a

three-point design with equal masses at the points L, L+R
2

and R.

(2b) If ηt1(d, θ1) = ϑt0 +
ϑt1d

ϑt2+d
, the minimally supported D-optimal design is a three-point

design with equal masses at the points L,
√

(L+ ϑt2)(R + ϑt2)− ϑt2 and R.

(3) Assume that the model for efficacy is given by ηe1(d, θ1) =
ϑe1d

ϑe2+d
.

(3a) If ηt1(d, θ1) = ϑt0 + ϑt1d, the minimally supported D-optimal design is a two-point
design with equal masses at the points L ∨ 1

2
(
√
R2 + 10Rϑe2 + 9(ϑe2)

2 − R − 3ϑe2)

and R.

(3b) If ηt1(d, θ1) =
ϑt1d

ϑt2+d
, the minimally supported D-optimal design is a two-point design

with equal masses at the optimal points L ∨
√
Rϑe2ϑ

t
2(R+ϑe2+ϑ

t
2)+(ϑe2ϑ

t
2)

2−ϑe2ϑt2
(R+ϑe2+ϑ

t
2)

and R.

(4) Assume that the model for efficacy is given by ηe1(d, θ1) = ϑe0 +
ϑe1d

ϑe2+d
.

(4a) If ηt1(d, θ1) = ϑt0 + ϑt1d + ϑt2d
2, the minimally supported D-optimal design is a

three-point design with equal masses at the points L,
√

(L+ ϑe2)(R + ϑe2)−ϑe2 and
R.

(4b) If ηt1(d, θ1) = ϑt0 +
ϑt1d

ϑt2+d
, the minimally supported D-optimal design is a three-point

design with equal masses at the points L,
√

(L+ϑe2)(L+ϑ
t
2)(R+ϑe2)(R+ϑt2)+LR−ϑe2ϑt2
L+R+ϑe2+ϑ

t
2

and
R.

4. Active-controlled dose-finding trials

The use of active controls instead of placebo in clinical trials has received considerable
attention in the literature [see Temple and Ellenberg (2000) and Splawinski and Kuzniar
(2004) among many others]. In active controlled dose-finding trials patients are randomized
to receive either one of several doses of the new drug or an active control (a marketed
drug administered at a specific dose level). Inference issues for active-controlled dose-finding
trials were investigated only more recently [see, for example, Helms et al. (2015a,b)]. Dette
et al. (2014, 2015) investigated optimal design problems for such trials by determining the
optimal number of different dose levels, the individual dose levels within the dose range under
investigation and the allocation ratios of patients at each dose level and the active control.
Despite the increasing importance of such trials [see Hasselblad and Kong (2001)], there is
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virtually no work on developing optimal designs for active-controlled dose-finding trials with
efficacy-toxicity outcomes, especially given the fact that designs for placebo controlled trials
do not extend directly to active-controlled trials [see Dette et al. (2014)].
Our goal in this section is to design an active-controlled dose-finding trial with a pre-
determined total number of patients N by determining the optimal number k of different
dose levels for the new drug, their individual dose levels d1, . . . , dk, and the optimal number
n1 of patients to be assigned to the new drug, along with the allocation scheme across the
recommended doses. The remaining number n2 = N − n1 of patients are assigned to the
the active control, which is assumed to be available at a fixed dose level C. In terms of
approximate designs, we have designs of the form

ξ̃ =

(
(d1, 0) . . . (dk, 0) (C, 1)

ω̃1 . . . ω̃k ω̃k+1

)
, (4.1)

where ω̃i denotes the proportion of patients assigned treated at the ith dose level of the new
drug, i = 1, . . . , k and ω̃k+1 the proportion of patients treated with the active control, that
is n2 ≈ ω̃k+1N . Here the second component of a design points in (4.1) specifies if patients
receive the new drug (“0”) or the active control (“1”). Note that the approximate design ξ̃
induces an approximate design of the form

ξ =

(
d1 . . . dk
ω1 . . . ωk

)
, (4.2)

for the new drug defining ωi = ω̃i/(1 − ω̃k+1). Extending the statistical model from Dette
et al. (2014) to the efficacy-toxicity outcomes considered here, we have

Yij = (Y e
ij, Y

t
ij)

T ∼ N2(η1(di, θ1),Σ1) ; j = 1, . . . , n1i, (4.3)

Zj = (Ze
j , Z

t
j)
T ∼ N2(η2(θ2),Σ2) ; j = 1, . . . , n2, (4.4)

where Yij denotes the outcome from the jth patient treated with the new drug at dose
level di, and Zj the outcome from the jth patient treated with the active control. The
two-dimensional vector η2(θ2) is the expected outcome, and θ2 a parameter which varies in
a compact parameter space, say Θ2, and Σ2 is a 2 × 2 covariance matrix. The function
η2 : Θ2 → R2 is assumed to be continuously differentiable. Assuming that all observations
are independent, it can be shown that the information matrix of a design ξ̃ defined in (4.1)
has a block-structure of the form

M(ξ̃, θ) =

(
(1− ω̃k+1)M1(ξ, θ1) 0

0 ω̃k+1I2(θ2)

)
, (4.5)
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where θ = (θT1 , θ
T
2 )T and

I2(θ2) = ( ∂
∂θ2
η2(θ2))

TΣ−12 ( ∂
∂θ2
η2(θ2))

is the Fisher information matrix corresponding to the active control. Following Dette et al.
(2015) locally optimal designs for active-controlled dose-finding trials can be obtained from
locally optimal designs for ordinary dose-finding trials. We extend this result to the class of
admissible designs in Theorem 4.1, whose proof can be found in the Appendix.

Theorem 4.1 If ξ is an admissible design of the form (4.2) in model (2.1) and ω̃k+1 ∈ (0, 1),
the design ξ̃ defined in (4.1) is an admissible design for the model (4.3) with an active control
(4.4).

We now characterize admissible designs for various regression functions in the model (4.3)
with an active control. For this purpose we apply Theorem 4.1 to the results from Section 3.
We illustrate the methodology in an example with the Michaelis-Menten and Emax model.
The other models discussed in Section 3 can be considered in a similar way.

Example 4.1 Suppose that the mean outcome for toxicity is given by an Emax model. We
consider two situations, where the efficacy outcome is first modeled by an Emax model and
in the second case, is modeled by the Michaelis-Menten model. For the first case, it follows
from Theorem 3.4 (d) that admissible designs in trials without an active control have at
most five support points. By Theorem 4.1, we conclude that admissible designs in active-
controlled trials are of the form (4.1) with at most six support points and a positive weight
ω̃6 ∈ (0, 1) for the active control. Similarly, for the second case, it follows from Theorem
3.3 (b) that there exists an admissible design for the corresponding active-controlled trial
with at most six support points with a positive weight ω̃6 ∈ (0, 1) for the active control.
Moreover, the dose levels for the new drug include the boundary points L and R of the dose
range.

In a similar way, φp-optimal designs for active-controlled trials with efficacy-toxicity outcomes
can be obtained. For this purpose we state the following result which can be proved in a
similar way as Theorem 1 in Dette et al. (2015) using the block-structure of the matrix
M(ξ̃, θ) in (4.5).

Proposition 4.1 Let ξ∗ denote the locally φp-optimal design of the form (4.2) in the dose-
response model (4.3) with masses w∗1, . . . , w∗k, at the points d∗1, . . . , d∗k, respectively. The design
ξ̃∗ with masses w̃∗1 = ρp(1 + ρp)

−1w∗1, . . . , w̃
∗
k = ρp(1 + ρp)

−1w∗k, and w̃∗k+1 = (1 + ρp)
−1 at the

points (d∗1, 0), . . . , (d∗k, 0) and (C, 1), respectively, is locally φp-optimal in the dose-response
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model (4.3) with an active control (4.4), where

ρp =


(tr[{I−1

2 (θ2)}−p])1/(p−1)

(tr[{M−1
1 (ξ̃∗,θ1)}−p])1/(p−1) if p ∈ (−∞, 1) \ {0}

s1
2

if p = 0
λmin(I2(θ2))

λmin(M1(ξ̃∗,θ1))
if p = −∞

. (4.6)

We note that Proposition 4.1 can be extended to construct minimally supported designs.
In particular, any minimally supported φp-optimal design of the form (4.2) for the dose
response model (4.3) yields a minimally supported φp-optimal design for the dose response
model (4.3) with an active control (4.4) by the transformation described in Proposition 4.1.
We conclude this section by constructing minimally supported D-optimal designs for some
of the models considered in Section 3.2.

Example 4.2 Assume that the effect of the drug on efficacy and toxicity are both studied
using Emax models. The minimally supported D-optimal design for model (4.3) with an
active control (4.4) can be obtained from Theorem 3.6 part (4b) and Proposition 4.1. We set
s1 = 6 and Theorem 3.6 provides the support points of the minimally supported D-optimal
design for the dose-response model (4.3). Proposition 4.1 yields ω̃∗4 = 1/4 for the proportion
of patients treated with the active control. Additionally, the minimally supported D-optimal
design for model (4.3) with an active control (4.4) allocates the rest of the patients equally
to the new drug at 3 dose levels given by

L,

√
(L+ ϑe2)(L+ ϑt2)(R + ϑe2)(R + ϑt2) + LR− ϑe2ϑt2

L+R + ϑe2 + ϑt2
and R.

In a similar manner explicit results for the other models considered in Section 3.2 can be
obtained (and are omitted for space considerations).

5. Examples

We now apply our results from previous sections and construct optimal designs for active
controlled trials for three examples. In the first one we determine the locally D-optimal
design for a particular scenario of the motivating example in the introduction. The second
example compares the D-optimal design with the E-optimal design, which is another type
of optimal design sometimes used for making inference on the model parameters. The third
example contrasts D-optimal designs with minimally supported D-optimal designs with rec-
ommendations on their use in practice from a statistical viewpoint.
If the optimal designs are not minimally supported they usually have to be determined
numerically and several algorithms have been proposed in the literature for this purpose.
The optimal designs presented in this section are found using particle swarm optimization
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Figure 1: Fit of an Emax (efficacy) and a quadratic model to the data generated by a model
discussed in Tao et al. (2015).

(PSO), which is a prominent member of the class of nature-inspired metaheuristic algorithms.
PSO has been widely used to solve hard and large dimensional optimization problems in
engineering and computer science, and it has only been used recently to find optimal designs
[see Kim and Li (2011), Chen et al. (2015) or Phoa et al. (2015)]. For space consideration,
we omit details on PSO and refer the interested reader to Qiu et al. (2014) and Wong et al.
(2015) for details and illustrations.

Example 5.1 Tao et al. (2015) used an Emax-model with parameters θe1 = (2.5, 14.5, 0.2)T

for the mean efficacy outcome and an exponential model ηt1(d, θt1) = 0.163 + 0.037e(3.3 log(6)d)

to model the toxicity effects [see Table 1 in this reference]. As described in Section 3.3.1
of Tao et al. (2015), they used a uniform design to allocate patients to the dose levels 0,
0.05, 0.2, 0.4, 0.6, 0.8, and 1, respectively. For the error distribution in model (2.1) they
assumed a two dimensional centered normal distribution with parameters ρ = 0.4, σe = 7

and σt = 8. We simulated data according to model (2.1) with sample sizes n1 = 350 for the
new drug and fitted an Emax and the quadratic model for efficacy and toxicity, respectively.
The quadratic model was used, because it yields a similar shape as the exponential model
and minimally supported designs are explicitly available for the combinations of the Emax
and a quadratic model. The fits of both regression models to the simulated data are shown
in Figure 1. The estimates for the parameters are given by θ̂e1 = (2.588, 15.64, 0.26) and
θ̂t1 = (0.24,−11.632, 25.11) for the Emax and quadratic model, while the estimates for the
covariance are obtained as ρ̂ = 0.387, σ̂e = 7.272 and σ̂t = 8.311. We used this information
to determine a locally D-optimal design for the active controlled trial. Note that we do
not require information from the model for the active control for this purpose as we are
calculating D-optimal designs [see Proposition 4.1].
By Theorem 3.2(c) and Theorem 4.1, we only need to consider designs with at most six
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D-optimal design minimally supported D-optimal design
(0, 0) (0.18, 0) (0.49, 0) (1, 0) (C, 1)
0.09 0.16 0.16 0.09 0.5

(0, 0) (0.31, 0) (1, 0) (C, 1)
0.25 0.25 0.25 0.25

Table 1: Locally D-optimal design and minimally supported D-optimal design for a situation
discussed in Tao et al. (2015). The efficacy is modeled by an Emax model and the toxicity
by a quadratic model.

support points. We first used the PSO algorithm to generate the locally D-optimal design
for model (2.1) and in the second step, applied Proposition 4.1 to determine the locally
optimal design for the model with an active control. The results are shown in Table 1. The
locally D-optimal design has five support points and is therefore not minimally supported.
The minimally supported D-optimal design can be obtained from Theorem 3.6 (4a) and is
shown in the right part of Table 1. The optimality of the design for the new drug was
checked by Theorem 2.1. Figure 2 displays the sensitivity function of the locally D-optimal
and the minimally supported D-optimal design. The results confirm its optimality and its
non-optimality, respectively. The D-efficiency of the minimally supported designs is given by
0.9886. We note that the lower bound (2.6) for the D-efficiency of the minimally supported
optimal design does not need the knowledge of the locally D-optimal design and is given by
0.9532.
The good performance of the minimally supported design is also confirmed by calculating the
D-efficiency of the uniform design used in Tao et al. (2015) relative to our locally D-optimal
design and the minimally supported D-optimal design. These relative efficiencies are 0.575

and 0.581, respectively, showing that the performance of the design implemented by Tao
et al. (2015) could be substantially improved by using locally D-optimal designs.

0.2 0.4 0.6 0.8 1.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 2: The sensitivity functions of the locally D-optimal design and the minimally sup-
ported D-optimal design for an active-controlled trial. The designs are given in Table 1. The
efficacy is modeled by an Emax model and the toxicity by a quadratic model.

Example 5.2 Consider a situation where the efficacy outcome is described by an Emax
model and a Michaelis-Menten model is used for the toxicity outcome. The nominal param-
eter values are θ1 = (0, 0.466, 25, 300, 50)T , and the dose interval is D = [0, 150]. We chose
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ρ D-optimal design E-optimal design

0.1
(0, 0) (23.84, 0) (150, 0) (C, 1)
0.16 0.31 0.31 0.22

(0, 0) (19.08, 0) (150, 0) (C, 1)
0.22 0.47 0.25 0.06

0.5
(0, 0) (23.84, 0) (150, 0) (C, 1)
0.16 0.31 0.31 0.22

(0, 0) (19.37, 0) (150, 0) (C, 1)
0.15 0.49 0.31 0.05

0.8
(0, 0) (23.84, 0) (150, 0) (C, 1)
0.16 0.31 0.31 0.22

(0, 0) (18.65, 0) (150, 0) (C, 1)
0.11 0.51 0.33 0.05

Table 2: Locally D- and E-optimal designs for an active-controlled trial, where the efficacy is
modeled by an Emax model and the toxicity by a Michaelis-Menten model. The parameters in
the two models are θe1 = (0, 0.466, 25)T , θt1 = (300, 50)T , σe = 0.2, σt = 20, σACe = 0.2, σACt =
29.8 and ρ ∈ {0.1, 0.5, 0.8}.

σe = 0.2, σt = 20 and various values for the correlation in the covariance matrix are consid-
ered. By Theorem 3.3(b) and Theorem 4.1, we only need to consider designs with at most
six support points. We applied the PSO algorithm to generate the locally D- and E-optimal
designs for model (2.1) and Proposition 4.1 to determine the locally optimal designs for the
dose finding trial with an active control. The results are shown in Table 2 for various values
of the correlation ρ. By definition, an E-optimal design minimizes the maximum eigenvalue
of the inverse of the information matrix, whereas a D-optimal design minimizes the volume
of the confidence ellipsoid for the parameter. The locally D- and E-optimal designs for the
active controlled trial have four support points and are therefore minimally supported. Con-
sequently, the support points of the D-optimal designs do not depend on the elements of the
covariance matrix Σ1, as predicted by Theorem 3.5. On the other hand, the interior support
points of the E-optimal design are slightly changing with the correlation ρ. The optimality
of both designs was checked by Theorem 2.1 and Figure 3 displays the sensitivity functions
of the designs that confirm their optimality for ρ = 0.1.

50 100 150

-2.0

-1.5

-1.0

-0.5

50 100 150

-0.00006

-0.00004

-0.00002

Figure 3: The sensitivity function of the locally D-optimal design (left) and the locally E-
optimal design (right) confirm the optimality of the PSO-generated designs. The efficacy is
modeled by an Emax and the toxicity is modeled by a Michaelis-Menten model, where the
correlation between efficacy and toxicity is given by ρ = 0.1.
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ρ optimal minimally supported D-optimal

0.1
(0, 0) (0.86, 0) (3.58, 0) (7, 0) (C, 1)
0.225 0.15 0.15 0.225 0.25

(0, 0) (1.94, 0) (7, 0) (C, 1)
0.25 0.25 0.25 0.25

0.5
(0, 0) (0.8, 0) (3.73, 0) (7, 0) (C, 1)
0.2175 0.1575 0.1575 0.2175 0.25

(0, 0) (1.94, 0) (7, 0) (C, 1)
0.25 0.25 0.25 0.25

0.9
(0, 0) (0.7, 0) (3.99, 0) (7, 0) (C, 1)
0.21 0.165 0.165 0.21 0.25

(0, 0) (1.94, 0) (7, 0) (C, 1)
0.25 0.25 0.25 0.25

Table 3: Locally D-optimal design (left) and the minimally supported D-optimal designs
(right). The efficacy and toxicity are modeled by a quadratic model with parameter θe1 =
(0.5, 0.01, 0.1)T and Emax-model with parameter θt1 = (0.1, 2.4, 1.2)T , respectively. The ele-
ments in the covariance matrix are σe = 0.1, σt = 0.4 and various correlation values.

Example 5.3 Assume that the efficacy outcome is described by a quadratic model and the
toxicity outcome by an Emax-model, where the nominal values of the model parameters
are given by θ1 = (0.5, 0.01, 0.1, 0.1, 2.4, 1.2)T . The dose interval is D = [0, 7] and we chose
σe = 0.1 and σt = 0.4. It follows from Theorem 3.2(d) and Theorem 4.1 that only designs
with at most six support points have to be considered. The locally D-optimal designs are
determined in the same way as described in Example 5.1 and 5.2 and the results are listed in
the left part of Table 3 for different values of the correlation. Note that theD-optimal designs
are not minimally supported and the support points and weights depend on the correlation.
The minimally supported D-optimal designs can be found by an application of Theorem 3.6
and do not depend on ρ [see the right part of Table 3]. The optimality of the numerically
calculated D-optimal designs was checked by Theorem 2.1 and the corresponding sensitivity
functions are displayed in Figure 4 for different values of the correlation, that is ρ = 0.1, 0.5

and 0.9. We observe that all designs calculated by the metaheuristic PSO-algorithm are in
fact D-optimal. Moreover, the efficiencies of the minimally supported designs are given by
0.96, 0.81 and 0.34 for the case ρ = 0.1, 0.5, and 0.9, respectively. From the efficiencies we see
that the minimally supported designs are only efficient if the efficacy and toxicity outcomes
are nearly uncorrelated. For a strong correlation between efficacy and toxicity minimally
supported designs cannot be recommended. Finally, we note that the values of the lower
bounds in (2.6) for these 3 minimally supported optimal designs are 0.87, 0.67 and 0.18.

6. Conclusions and further research

In this paper we investigated the optimal design problem for active controlled trials with
bivariate outcomes. Upper bounds on the number of support points of locally optimal have
been derived, which are used to reduce the dimensionality of the corresponding optimiza-
tion problems. We also determined minimally supported D-optimal designs explicitly for
specific combinations of models for the efficacy and toxicity and note that in general the op-
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Figure 4: The sensitivity functions of the locally D-optimal design in Table 3 confirm their
optimality.

timal designs for active controlled clinical trials with bivariate outcomes are not minimally
supported. Nevertheless, it is demonstrated that for the models under consideration the
minimally supported D-optimal designs are rather efficient, provided that the correlation
between efficacy and toxicity is weak. Our results demonstrate that statistical inference in
clinical trials with bivariate outcomes can be improved substantially by the appropriate use
of efficient designs.
This paper discusses locally optimal designs, which require a-priori information about the
unknown model parameters if they appear in the model in a nonlinear way [see Chernoff
(1953)]. When preliminary knowledge regarding the unknown parameters of a nonlinear
model is available, and the application of locally optimal designs is well justified [see for
example Dette et al. (2008)]. Locally optimal designs are typically used as benchmarks for
commonly used designs [see the discussion in Example 5.1]. Additionally, locally optimal
designs serve as basis for constructing optimal designs with respect to more sophisticated
optimality criteria, which are robust against a misspecification of the unknown parameters;
see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995), Dette (1997) among
others. An interesting direction for future research is to further develop the methodology
introduced in the present paper to address uncertainty in the preliminary information for
the unknown parameters.
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7. Appendix

7.1 Proof of Theorems 3.1, 3.2, 3.3 and 3.4

We present the proof of Theorem 3.4 only for the case, where the effect of the drug on efficacy
and toxicity is modeled by an Emax model. In this case the gradient of the outcome with
respect to the parameter is given by

∂

∂θ1
η1(d, θ1) =

(
1 d

ϑe2+d
− ϑe1d

(ϑe2+d)
2 0 0 0

0 0 0 1 d
ϑt2+d

− ϑt1d

(ϑt2+d)
2

)
.

It is easy to see that there exists a full column rank matrix L ∈ R6×10 which does not depend
on the variable d such that

∂

∂θ1
η1(d, θ1) =

(
νT (d) 0

0 νT (d)

)
LT ,

where the vector ν(d) is defined by the linearly independent functions in the gradient, i.e.

ν(d) = (1, 1
ϑe2+d

, 1
(ϑe2+d)

2 ,
1

ϑt2+d
, 1
(ϑt2+d)

2 )T ∈ R5.

Consequently, we obtain for the information matrix in (2.3) the representation

M1(ξ, θ1) = L

∫
D

(
ν(d)νT (d) 0

0 ν(d)νT (d)

)
dξ(d)LT , (7.1)

where the matrix 0 denotes a 5× 5 square matrix with all entries 0 and

ν(d)νT (d) =



1 1
ϑe2+d

1
(ϑe2+d)

2
1

ϑt2+d
1

(ϑt2+d)
2

1
ϑe2+d

1
(ϑe2+d)

2
1

(ϑe2+d)
3

1
(ϑe2+d)(ϑ

t
2+d)

1
(ϑe2+d)(ϑ

t
2+d)

2

1
(ϑe2+d)

2
1

(ϑe2+d)
3

1
(ϑe2+d)

4
1

(ϑe2+d)
2(ϑt2+d)

1
(ϑe2+d)

2(ϑt2+d)
2

1
ϑt2+d

1
(ϑe2+d)(ϑ

t
2+d)

1
(ϑe2+d)

2(ϑt2+d)
1

(ϑt2+d)
2

1
(ϑt2+d)

3

1
(ϑt2+d)

2
1

(ϑe2+d)(ϑ
t
2+d)

2
1

(ϑe2+d)
2(ϑt2+d)

2
1

(ϑt2+d)
3

1
(ϑt2+d)

4


. (7.2)

Now Theorem 14.2.9 in Harville (1997) shows that an improvement with respect to the
Loewner ordering can be obtained by improving the common block∫

D
ν(d)νT (d)dξ(d)
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in the matrix (7.1). For this purpose we now use Theorem 2.2. The functions ψ0(d) = 1 and

ψ1(d) = 1
ϑe2+d

, ψ2(d) = 1
(ϑe2+d)

2 , ψ3(d) = 1
(ϑe2+d)

3 , ψ4(d) = 1
(ϑe2+d)

4 ,

ψ5(d) = 1
ϑt2+d

, ψ6(d) = 1
(ϑt2+d)

2 , ψ7(d) = 1
(ϑt2+d)

3 , ψ8(d) = 1
(ϑt2+d)

4 .

fulfill the conditions specified in the paragraph before Theorem 2.2. It follows by an applica-
tion of Theorem 1.1 in Chapter IX of Karlin and Studden (1966) that the sets {ψ0, . . . , ψ7}
and {ψ0, . . . , ψ8} are Tchebycheff systems and Theorem 2.2 is applicable with k = 8. Part
(A2) of this result yields that there exists a design ξ∗ with at most five support points
including L and R such that∫

D
ν(d)νT (d)dξ(d) ≤

∫
D
ν(d)νT (d)dξ∗(d),

and the assertion follows. We note that an application of Theorem 3.1 in Dette and Melas
(2011) is not possible because the different functions from matrix (7.2) do not form a Tcheby-
cheff system.

�

7.2 Proof of Theorem 3.5

Let ξ be a minimally supported design of the form (4.2). As se1 = st1 we have k = st1 + 1.
Considering the Cholesky decomposition Σ−11 = Σ̃Σ̃T of the inverse of the covariance matrix
Σ1 we obtain for the information matrix M1(ξ, θ1) the representation

M1(ξ, θ1) =
k∑
i=1

ωi(
∂
∂θ1
η1(di, θ1))

T Σ̃Σ̃T ( ∂
∂θ1
η1(di, θ1))

= GTDiag(ω1, ω1, . . . ωk, ωk)G, (7.3)

where the matrix G is defined by

G =

Σ̃T ( ∂
∂θ1
η1(d1, θ1))
...

Σ̃T ( ∂
∂θ1
η1(dk, θ1))

 = (Ik ⊗ Σ̃T )

( ∂
∂θ1
η1(d1, θ1))

...
( ∂
∂θ1
η1(dk, θ1))

 ∈ R2k×2k. (7.4)

and A⊗B denotes the Kroecker product of the matrices A and B. Now

det(M1(ξ, θ1)) = (detG)2
k∏
i=1

w2
i
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and consequently, the minimally supportedD-optimal design must have equal weights. More-
over, the representation

det(G) =
(

det(Σ̃)
)k

det
((

∂
∂θ1
η1(dj, θ1)

)
j=1,...,k

)
shows that the support points of the minimally supported D-optimal design do not depend
on the elements of the matrix Σ1. This completes the proof of Theorem 3.5. �

7.3 Proof of Theorem 3.6

We show only the proof of part 1(b) as the proofs for other cases are similar. If a linear
and a Michaelis-Menten model are used to describe the effect of the drug on efficacy and
toxicity, at least two support points, say d1, d2, are necessary to guarantee invertibility of
the information matrix. From Theorem 3.5 it follows ω∗1 = ω∗2 = 1

2
. Consider now the

determinant of the information matrix of a design ξ with equal weights at the points d1 and
d2, then it follows by a straightforward calculation that

det(M1(ξ, θ1)) =
ϑt1

2
d21d

2
2(d1 − d2)4

16 (ρ2 − 1)2 σ4
eσ

4
t (ϑ

t
2 + d1)4(ϑt2 + d2)4

. (7.5)

If we assume w.l.o.g. that d1 < d2, then the right hand side of (7.5) is a monotone function
of d2. Consequently the right boundary point R is one of the optimal support points, that
is d2 = R. Maximizing the remaining expression with respect to the point d1 in the interval
[L,R] gives

d1 = L ∨ 1

2
(
√
R2 + 10Rϑt2 + 9(ϑt2)

2 −R− 3ϑt2),

which proves the result. �

7.4 Proof of Theorem 4.1

Assume that ξ̃ is not admissible, that is there exists a design

η̃ =

(
(d1, 0) . . . (dl, 0) (C, 1)

ω1 . . . ωl ωl+1

)

such that M(η̃, θ1) 6= M(ξ̃, θ1) and M(η̃, θ1) ≥ M(ξ̃, θ1). This yields immediately ωl+1 ≥
ω̃k+1 and

(1− ωl+1)M1(η, θ1) ≥ (1− ω̃k+1)M1(ξ, θ1),
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where η denotes the design with masses ω1

1−ωl+1
, . . . , ωl

1−ωl+1
at the points d1, . . . , dl, respec-

tively. Therefore we obtain

(1− ωl+1)M1(η, θ1) ≥ (1− ω̃k+1)M1(ξ̃, θ1) ≥ (1− ωl+1)M1(ξ, θ1).

Because the design ξ is admissible we have M1(η, θ1) = M1(ξ, θ1). Using the block structure
of the information matrix and the assumption that the design ξ̃ is not admissible it follows
that

(ωl+1 − ω̃k+1)M1(ξ, θ1) ≤ 0 and (ω̃k+1 − ωl+1)I(θ2) ≤ 0.

This yields ωl+1 = ω̃k+1 andM(η̃, θ1) = M(ξ̃, θ1), which is a contradiction to the assumption
that the design ξ̃ is not admissible. The desired result follows. �
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