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1ThyssenKrupp Rothe Erde GmbH, Tremoniastraße 5-11, 44137 Dort-
mund, Germany

christian.eggert@thyssenkrupp.com

2Schniewindt GmbH & Co. KG, Schöntaler Weg 46, 58809 Neuenrade,
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Abstract. In the present note we provide the general solution of a question con-
cerning non-symmetric AC star circuits that came up in a practical application:
Given a non-symmetric AC star circuit, we need the quantities of the line volt-
ages. For technical reasons these quantities cannot be measured directly but the
phase-to-phase voltages can be. In this text we present a way to compute the
needed quantities from the measured ones. We translate this problem in electrical
metrology to a geometric one and present in detail a general solution that is well
adapted to the practical problem. Furthermore, we solve the generalization of the
problem that discusses the non-symmetric, non-balanced star circuit. In addition,
we give some further remarks on the mathematical side of the initial problem.
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1 Introducing the initial problem

1.1 The technical problem

We consider the situation as drawn in the circuit diagram in Figure 1, i.e. a star circuit.
The well known symmetric situation is as follows: Between the points Ai and M we have

Figure 1: The basic circuit
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AC voltages with same amplitudes but phase differences of ψ = 120◦. Then the voltages
can be described in terms of harmonic oscillations in the following way:3

U ′1 = Û ′1 cos(ωt+ ψ1) = Û ′1<
(
eiωt+iψ1

)
,

U ′2 = Û ′2 cos(ωt+ ψ2) = Û ′2<
(
eiωt+iψ2

)
,

U ′3 = Û ′3 cos(ωt+ ψ3) = Û ′3<
(
eiωt+iψ3

)
,

with Û ′1 = Û ′2 = Û ′3 = Û and ψ1 = ψ,ψ2 = 0, ψ3 = 2ψ. The voltage U3 between the
points A1 and A2 is given by the difference of the two voltages U ′1 and U ′2, i.e.

U3 = Û cos(ωt+ ψ2)− Û cos(ωt+ ψ1) = Û<
(
eiωt+ψ2 − eiωt+ψ1

)
= 2Û sin

ψ1 − ψ2

2
cos
(
ωt+

ψ1 + ψ2

2
− 90◦

)
.

Due to the symmetric situation, |ψi −ψj | ∼ 120◦, Û ′i = Û ′j , the amplitudes of U1, U2, and
U3 are given by

Û1 = Û2 = Û3 = 2Û sin 60◦ =
√

3 Û . (1)

Using the relation between complex numbers and plane geometry, where addition and
multiplication are replaced by vector addition and dilatation rotation, we may translate

3By <(z) we denote the real part of the complex number z, i.e. <(z) = 1
2

(z + z∗).

2
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Figure 2: The basic circuit translated to the plane
Seite 1 von 1Qt SVG Document

04.02.2015file:///C:/Users/Frank/Work/inArbeit/Fermat-Punkt/TEMP-Grafiken/Untitled.svg

Û ′
1
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Û1

ψ

2

1

the above circuit into the plane and get the situation from Figure 2. Such diagrams
related to AC calculations are called phasor diagrams and a basic introduction can be
found in [1, 2], for example. In Figure 2 we only draw the amplitudes of the voltages. To
see the vector character note that U ′1, U

′
2, and U ′3 point outwards such that, for example,

U3 points south-east. Now you will find the phase shift of ψ
2 − 90◦ ∼ ψ

2 + 270◦ = 330◦ as

the angle between the horizontal and Û3 measured in the upper point and counter clock
wise.

We consider a non symmetric variant of the circuit from Figure 1 in the following way:
The phase differences of the primed voltages remain 120◦ but the amplitudes differ.

Problem 1. We start with the star circuit as given in Figure 1 with non-symmetric
line voltages (primed). The configuration of our system only allows to measure the
phase-to-phase voltages (non-primed). Because we need the primed quantities, we are
looking for a way to compute them from the non-primed ones.

The question above came up during the testing of high voltage generators. The electrical
test-resistances that have been used are not constant but independently deviate in time
due to warming of the components and the result is a non-symmetry in the voltages. The
schematic setup of such test resitances are shown in Figure 3.

1.2 The geometric setup

Given three rays starting from one point M that pairwise form an angle of 120◦. Fur-
thermore, given three points A,B,C each lying on one ray. These point form a triangle
4(ABC) of which none of its angles α, β, γ reach 120◦. This is because the angle between
one edge of the triangle and a corresponding ray does not reach 60◦, see Figure 4.

3
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Figure 3: Schematic setup of a testing-resistance

Figure 4: The geometric setup
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Proposition 2. Given a triangle 4(ABC) with all angles less than 120◦. Then there is
a unique point M in the interior for which the lines from M to the corners form equal
angles of 120◦. It can be constructed in the following way:

1. Over each edge of the triangle 4(ABC) draw an equilateral triangle: 4(ARB),
4(BPC) and 4(ACQ).

2. Draw straight lines BQ,AP and CR.

3. These lines intersect in one point, namely M .

We will recall an elementary geometric proof of this statement in Section 5.1. Unfortunately,
this geometric proof does not give the position of the Point M explicitly. Therefore, we
will use other techniques to get a solution of Problem 1 in Sections 2 and 3.

4
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Figure 5: Construction of the point M Seite 1 von 1Qt SVG Document
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1.3 The geometrized problem

We already discussed the geometric properties of Problem 1 before, see Figure 2 and 4.
Now we reformulate it in the following way:

Problem 3. Starting from the ray configuration as presented in Figure 4 and given the
lengths of the three edges a = |BC|, b = |AC|, c = |AB| of the triangle, we like to know
the lengths a′, b′, c′ of the segments MA, MB, MC.

2 The solution of the geometrized problem

In this section we will give a proof of Proposition 2 that makes use of the tools from linear
algebra. We will calculate the coordinates of the point M by using its construction. We
will then show in Section 3 how formulas for a′, b′, c′ can be obtained that are symmetric
as functions of a, b, c. This solves our initial Problem 1.

We consider the situation as outlined in Figure 6 where the Point C is the origin of
the plane. Before starting the calculations we recall some basic facts of vectors of the
euclidean plane.1 In particular, we introduce additional vectors denoted by ⊥ in Figure
6. For more details on basics in linear algebra see [3], for example.

1In the formulation of the facts we always assume the two vectors to be non-vanishing.

5
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Figure 6: The vector formulation
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1• Consider the two plane vectors ~v =

v1

v2

 and ~w =

w1

w2

 drawing an angle

φ = ](~v, ~w).2 The angle φ between ~v and ~w obeys

cosφ =
〈~v, ~w〉
‖~v‖‖~w‖ (2)

with
〈~v, ~w〉 = v1w1 + v2w2 (3)

and

‖~v‖ =
√
〈~v,~v〉 =

√
v2

1 + v2
2 . (4)

In particular the value cosφ is independent of the oriented angle.

• The inner product (3) obeys the Cauchy-Schwarz inequality

|〈~v, ~w〉| ≤ ‖~v‖‖~w‖ (5)

with equality if and only if the two vectors are linearly dependent.

2By ](~v, ~w) we will always mean the oriented angle 0◦ ≤ φ < 360◦ that goes from ~v in counterclockwise
direction to ~w. The angle between ~w and ~v is then ](~w,~v) = 360◦ − φ if φ 6= 0◦ and ](~w,~v) = 0◦ if
φ = 0◦. If we don’t want to emphasize the orientation we write e.g. ](~v, ~w) ∼ 45◦, i.e. ](~v, ~w) = 45◦ or
315◦.

6
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• For later purposes the following observation on three non-vanishing plane vectors
~u,~v, ~w with equal lengths r turns out to be useful.

On the one hand, consider ~u + ~v + ~w = 0. This yields ‖~w‖2 = ‖~u + ~v‖2 =
‖~u‖2 + ‖~v‖2 + 2〈~u,~v〉, i.e r2 = 2r2 + 2〈~u,~v〉 or 〈~u,~v〉 = − 1

2r
2. Interchanging the

roles of the vectors yields 〈~u, ~w〉 = 〈~v, ~w〉 = − 1
2r

2, too. On the other hand, consider
〈~u,~v〉 = 〈~u, ~w〉 = 〈~v, ~w〉 = − 1

2r
2. This yields ‖~u+ ~v + ~w‖2 = ‖~u‖2 + ‖~v‖2 + ‖~w‖2 +

2〈~u,~v〉+ 2〈~u, ~w〉+ 2〈~v, ~w〉 = 3r2 + 2 · 3 · (− 1
2r

2) = 0, i.e. ~u+ ~v + ~w = 0.

This shows that for all ‖~u‖ = ‖~v‖ = ‖~w‖ = r 6= 0 we have

~u+ ~v + ~w = 0 ⇐⇒ 〈~u,~v〉 = 〈~u, ~w〉 = 〈~v, ~w〉 = − 1
2r

2

⇐⇒ ](~v, ~w) = ](~u,~v) = ](~u, ~w) ∼ 120◦ .
(6)

• For any vector ~v =

(
v1

v2

)
there exists a unique vector ~v⊥ =

(
v⊥1
v⊥2

)
that satisfies

〈~v,~v⊥〉 = 0 and v1v
⊥
2 − v2v

⊥
1 = ‖~v‖2 > 0 . (7)

This is given by v⊥1 = −v2 and v⊥2 = v1, i.e.

~v⊥ =

(
−v2

v1

)
. (8)

The first condition in (7) fixes the line that is spanned by ~v⊥ to be perpendicular
to the one spanned by ~v. The second condition fixes the orientation and the length
of ~v⊥ to ](~v,~v⊥) = 90◦ and ‖~v⊥‖ = ‖~v‖, respectively.

• For all vectors ~v, ~w and real numbers α the map ~v 7→ ~v⊥ obeys(
~v⊥
)⊥

= −~v , (α~v + ~w)⊥ = α~v⊥ + ~w⊥ . (9)

In particular ~v 7→ ~v⊥ is a linear map with minimal polynomial p(x) = x2 + 1.

• For any two vectors ~v, ~w with φ = ](~v, ~w) we have φ′ = ](~v, ~w⊥) = φ + 90◦.
Furthermore,

〈~v⊥, ~w⊥〉 = 〈~v, ~w〉 , (10)

〈~v⊥, ~w〉 = −〈~w⊥, ~v〉 , (11)

sinφ = − cosφ′ = − 〈~v, ~w
⊥〉

‖~v‖||~w|| =
〈~v⊥, ~w〉
‖~v‖||~w|| . (12)

• Due to the fact that in our situation ~v and ~w are linearly independent ~v⊥ and ~w⊥

can be expressed as linear combinations of ~v and ~w. The approach ~v⊥ = α~v + β ~w
yields

〈~v⊥, ~w⊥〉 = α〈~v, ~w⊥〉 =⇒ α =
〈~v, ~w〉
〈w⊥, ~v〉 , (13)

7
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〈~v⊥, ~v⊥〉 = β〈~w,~v⊥〉 =⇒ β =
‖~v‖2
〈~v⊥, ~w〉 , (14)

such that

~v⊥ =
〈~v, ~w〉
〈~w⊥, ~v〉~v −

‖~v‖2
〈~w⊥, ~v〉 ~w , (15)

and, analogously,

~w⊥ =
〈~v, ~w〉
〈~v⊥, ~w〉 ~w −

‖~w‖2
〈~v⊥, ~w〉~v . (16)

Let us turn to our situation from Figure 6 and include the additional perpendicular
vectors ~a⊥ and ~b⊥ into our discussion. Then we can describe the position vectors ~p and ~q
of P and Q as follows: We note that the lengths hP and hQ of the two heights of the
equilateral triangles are given by

hP =

√
3

2
a and hQ =

√
3

2
b . (17)

This yields

~p =
1

2
~a−
√

3

2
~a⊥ =

〈~b⊥,~a〉 −
√

3〈~a,~b〉
2〈~b⊥,~a〉

~a+

√
3a2

2〈~b⊥,~a〉
~b , (18)

~q =
1

2
~b+

√
3

2
~b⊥ =

〈~b⊥,~a〉 −
√

3〈~a,~b〉
2〈~b⊥,~a〉

~b+

√
3b2

2〈~b⊥,~a〉
~a . (19)

Therefore, the lines `AP and `BQ that contain the segments AP and BQ are given by

`AP (τ) = ~b+ τ(~p−~b) =
(

1− τ +

√
3a2

2〈~b⊥,~a〉
τ
)
~b+
〈~b⊥,~a〉 −

√
3〈~a,~b〉

2〈~b⊥,~a〉
τ ~a , (20)

and

`BQ(σ) = ~a+ σ(~q − ~a) =
(

1− σ +

√
3b2

2〈~b⊥,~a〉
σ
)
~a+
〈~b⊥,~a〉 −

√
3〈~a,~b〉

2〈~b⊥,~a〉
σ~b , (21)

with real parameters τ and σ.

The intersection point of `AP and `BQ is determined by the solution (τ0, σ0) of the
equation `AP (τ) = `BQ(σ). We have

`AP (τ) = `BQ(σ)

⇐⇒
(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

2〈~b⊥,~a〉
τ −

(
1− σ +

√
3b2

2〈~b⊥,~a〉
σ
))

~a

8
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=

(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

2〈~b⊥,~a〉
σ −

(
1− τ +

√
3a2

2〈~b⊥,~a〉
τ
))

~b

⇐⇒
((
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)
τ − 2〈~b⊥,~a〉+

(
2〈~b⊥,~a〉 −

√
3b2
)
σ
)
~a

=
((
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)
σ − 2〈~b⊥,~a〉+

(
2〈~b⊥,~a〉 −

√
3a2
)
τ
)
~b

⇐⇒


(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)
τ +

(
2〈~b⊥,~a〉 −

√
3b2
)
σ = 2〈~b⊥,~a〉(

2〈~b⊥,~a〉 −
√

3a2
)
τ +

(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)
σ = 2〈~b⊥,~a〉

⇐⇒

〈~b⊥,~a〉 − √3〈~a,~b〉 2〈~b⊥,~a〉 −
√

3b2

2〈~b⊥,~a〉 −
√

3a2 〈~b⊥,~a〉 −
√

3〈~a,~b〉


︸ ︷︷ ︸

= Ω

τ
σ

 = 〈~b⊥,~a〉

1

1



The determinant of the coefficient matrix is

det Ω =
(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)(
〈~b⊥,~a〉 −

√
3〈~a,~b〉

)
−
(
2〈~b⊥,~a〉 −

√
3b2
)(

2〈~b⊥,~a〉 −
√

3a2
)

= − 3〈~b⊥,~a〉2 − 3 (a2b2 − 〈~a,~b〉2)︸ ︷︷ ︸
=〈~b⊥,~a〉2

+2
√

3〈~b⊥,~a〉
(
a2 + b2 − 〈~a,~b〉

)
= − 6〈~b⊥,~a〉2 + 2

√
3〈~b⊥,~a〉

(
a2 + b2 − 〈~a,~b〉

)
. (22)

Therefore, the solution (τ0, σ0) is given byτ0
σ0

 =
2〈~b⊥,~a〉
det Ω

〈~b⊥,~a〉 − √3〈~a,~b〉 −2〈~b⊥,~a〉+
√

3b2

−2〈~b⊥,~a〉+
√

3a2 〈~b⊥,~a〉 −
√

3〈~a,~b〉

1

1



=


√

3
(
b2 − 〈~a,~b〉

)
− 〈~b⊥,~a〉

√
3
(
a2 + b2 − 〈~a,~b〉

)
− 3〈~b⊥,~a〉√

3
(
a2 − 〈~a,~b〉

)
− 〈~b⊥,~a〉

√
3
(
a2 + b2 − 〈~a,~b〉

)
− 3〈~b⊥,~a〉

 . (23)

We introduce the angle φ = ](~a,~b) and recall 〈~a,~b〉 = ab cosφ and 〈~b⊥,~a〉 = −ab sinφ.

Due to sin 60◦ =
√

3
2 and cos 60◦ = 1

2 we get

τ0
σ0

 =


√

3 b2 − 2ab
(

sin 60◦ cosφ− cos 60◦ sinφ
)

√
3
(
a2 + b2

)
− 2
√

3 ab
(

cos 60◦ cosφ− sin 60◦ sinφ
)

√
3 a2 − 2ab

(
sin 60◦ cosφ− cos 60◦ sinφ

)
√

3
(
a2 + b2

)
− 2
√

3 ab
(

cos 60◦ cosφ− sin 60◦ sinφ
)


9
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=


√

3 b2 + 2ab sin(φ− 60◦)√
3
(
a2 + b2

)
− 2
√

3 ab cos(φ+ 60◦)√
3 a2 + 2ab sin(φ− 60◦)√

3
(
a2 + b2

)
− 2
√

3 ab cos(φ+ 60◦)

 (24)

We use this result to calculate the position vector ~m of the intersection point M in the
situation of Figure 6.

~m = `AP (τ0) = `BQ(σ0) = (1− τ0)~b+ τ0~p = (1− σ0)~a+ σ0~q . (25)

We use

〈~b, ~p〉 =
1

2
〈~b,~a〉 −

√
3

2
〈~b,~a⊥〉 = ab cos(φ+ 60◦) , (26)

〈~a, ~q〉 =
1

2
〈~a,~b〉+

√
3

2
〈~a,~b⊥〉 = ab cos(φ+ 60◦) , (27)

such that in terms of τ0

(c′)2 = |CM |2 = ‖~m‖2 = (1− τ0)2b2 + τ2
0 ‖~p‖2 + 2τ0(1− τ0)〈~b, ~p〉

= (1− τ0)2b2 + τ2
0 a

2 + 2τ0(1− τ0)ab cos(φ+ 60◦) (28)

or in terms of σ0

(c′)2 = (1− σ0)2a2 + σ2
0‖~q‖2 + 2σ0(1− σ0)〈~a, ~q〉

= (1− σ0)2a2 + σ2
0b

2 + 2σ0(1− σ0)ab cos(φ+ 60◦) . (29)

Furthermore, we get

(a′)2 = |AM |2 = ‖~b− ~m‖2 = τ2
0 ‖~b− ~p‖2 = τ2

0

(
a2 + ‖~p‖2 − 2〈~b, ~p〉

)
= τ2

0

(
a2 + b2 − 2ab cos(φ+ 60◦)

)
, (30)

and

(b′)2 = |BM |2 = ‖~a− ~m‖2 = σ2
0‖~a− ~q‖2 = σ2

0

(
a2 + ‖~q‖2 − 2〈~a, ~q〉

)
= σ2

0

(
a2 + b2 − 2ab cos(φ+ 60◦)

)
. (31)

3 The symmetrization of the result

Starting from (28)-(31), we will provide the solution of Problem 3 in this Section, see
Proposition 5, below. To get formulas for a′, b′, and c′ that are symmetric with respect
to a, b, and c we recall the cosine-theorem that states

2ab cosφ = a2 + b2 − c2 . (32)

10
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In the same way the expression 2ab sinφ enters into the discussion. Therefore, we give a
formula in terms of a, b, c alone. We have

4a2b2 sin2 φ = 4a2b2(1− cos2 φ)

= 4a2b2 − (a2 + b2 − c2)2

= −
(
a4 + c4 + b4 − 2a2c2 − 2a2b2 − 2b2c2

)
= (c+ a+ b)(a+ c− b)(b+ c− a)(a+ b− c) .

We see that this result is totally invariant under relabeling the three edges of the triangle
and we will use the abbreviation

Θ2 =
√

(c+ a+ b)(a+ c− b)(b+ c− a)(a+ b− c) . (33)

Remark 4. Formula (33) yields the famous Heron formula that gives the area of an
triangle in terms of its three edges. In fact, the quantity a sinφ gives the length of the
height of the triangle spanned by a, b and φ when b is the hypotenuse. Then the area is
given by

Area
(
4(ABC)

)
=

1

2
ba sinφ =

1

4
Θ2 .

One important ingredient in the calculation of a′, b′, and c′ is the denominator of τ0 and
σ0, that is up to a factor of 3 the denominator of a′, b′, and c′. It can be rewritten in the
following way.

a2 + b2 − 2ab cos(φ+ 60◦) = a2 + b2 − ab cos(φ) +
√

3ab sinφ

= a2 + b2 − 1

2
(a2 + b2 − c2) +

√
3

2
Θ2

=
1

2
(a2 + b2 + c2) +

√
3

2
Θ2 .

Next we rewrite the numerator of a′ that is given by the numerator of τ2
0 . It differs from

that of b′ or σ2
0 only by interchanging a and b. We have(√

3b2 + 2ab sin(φ− 60◦)
)2

=
(√

3b2 + ab sin(φ)−
√

3ab cosφ
)2

=
(√

3b2 +
1

2
Θ2 −

√
3

2

(
a2 + b2 − c2

) )2

=
1

4

(√
3(b2 + c2 − a2) + Θ2

)2

.

We insert these expressions into (30) and (31) and get expressions for a′ and b′. A similar
but more lengthy calculation yields the remaining length c′ from (28). The results of
the calculations from Section 2 and their symmetric reformulations are collected in the
following Proposition.

11
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Proposition 5. Given a triangle 4(ABC) and the point M as given in Figure 4. Then
a′, b′, and c′ are given in terms of a, b, and c by

(a′)2 =
1

6
·
(√

3(b2 + c2 − a2) + Θ2
)2

a2 + b2 + c2 +
√

3Θ2
(34)

(b′)2 =
1

6
·
(√

3(a2 + c2 − b2) + Θ2
)2

a2 + b2 + c2 +
√

3Θ2
(35)

and

(c′)2 =
1

6
·
(√

3(a2 + b2 − c2) + Θ2
)2

a2 + b2 + c2 +
√

3Θ2
(36)

Example 6. As a first example and also a first check of our result we consider a = b = c,
i.e. an equilateral triangle. In this case we have Θ2 =

√
3a2 and a′ = b′ = c′ = 1√

3
a which

is exactly the result from (1). In particular ~m = 1
3 (~a +~b) is the position vector of the

geometric center of the triangle.

Remark 7. We could go a step further and do some more calculations.

• We can first show that M lies on the line that connects the origin and R, i.e. there

exists λ0 such that ~m = `CR(λ0) = λ0~r = λ0

2

(
~a+~b+

√
3(~a⊥ −~b⊥)

)
.

• Then we can show that the angles ](~p − ~a, ~q −~b), ](~m, ~p − ~a), and ](~m, ~q −~b)
coincide and, therefore, are given by 120◦.

That would complete a proof of Proposition 2 that also provides explicit values for the
involved terms.

4 A generalization: the non-balanced star circuit

We consider a 3-phase AC star circuit with non-balanced star point, i.e. the line between
the null potential N of the generator and the star point M of the circuit is missing, see
Figure 7. The generator provides three voltages U10, U20, U30 of equal amplitude, say
1√
3
Û , and a phase difference of ψ = 120◦. Then U1, U2, U3 have an amplitude of Û and a

phase difference of 120◦, too.

The non-balanced configuration typically yields Û ′1 6= Û ′2 6= Û ′3 and is reflected in the
phasor diagram in such a way that the star point is displaced in the equilateral triangle
defined by U1, U2, U2, see Figure 8. Such non-balanced star circuits have been considered
in [13], but for special almost symmetric configurations only, e.g. Û ′1 = Û ′2.

We now ask a question that is similar to Problem 1 we answered before: Known the
phase-to-phase voltages we want to recover the primed voltages. Of course, the phase to

12
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Figure 7: The non-balanced star circuit
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Figure 8: The phasor diagram of the non-balanced star circuit
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1

phase voltages alone do not contain enough information to obtain a solution. But also in
the case of Problem 1 we had more information: We knew the amplitudes and we knew
about the phase differences of the primed voltages. Therefore, the question is as follows:

Problem 8. Given the phase-to-phase-voltages U1, U2, U3 with Û1 = Û2 = Û3 = Û
and phase difference 120◦ as well as the phase-differences ψ1, ψ2, ψ3 of the primed line
voltages1: What are the values of Û ′1, Û

′
2, and Û ′3?

We will not address this question but consider the completely non-symmetric situation
that covers Problem 1 and Problem 8. The geometric version can be formulated as follows.

Problem 9. Given a plane triangle 4(ABC) which lengths a, b, c of its edges. Further-
more, given a point X in the interior of 4(ABC) and the angles ψa, ψb: What are the
lengths of the connecting edges a′ = |AX|, b′ = |BX|, and c′ = |CX|?

So we consider the general situation from Figure 8 and translate it to Figure 9. We added
a few more objects that we describe next:

1We note that the angle ψ3 is fixed by ψ3 = 360◦ − ψ1 − ψ2.

13
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• Due to the inscribed angle Theorem 11 below, all points X that draw an angle
ψb with the endpoints of the segment AC lie on a circle with center S. Suppose
ψb ≥ 90◦ then S lies on the opposite side of AC than X and the central angle is
given by 2 · (180◦ − ψb) = 360◦ − 2ψb.

• If the angle ψa obeys the restriction ψa ≥ 90◦, too, the point X is the intersection
of the two circles with centers R and S that contain the two chords AC and BC,
respectively.

• The restriction on the two angles ψa, ψb before is actually no restriction, because due
to ψa, ψb, ψc < 180◦ at least two of the three angles ψa, ψb, and ψc = 360◦−ψa−ψb
are of this form. Therefore, Figure 9 describes the general situation, at least after
renaming the points and edges of the triangle.

Figure 9: The general geometric Situation

X

A

BC

S

R

ψb

ψa

~a

~b

~r

~s

a′

c′
b′

hR

hS

ρa

ρb

ψb−90◦

360◦−2ψb

180◦−ψa
ψa−90◦

>

>

>

>

1

First we collect some facts on the geometric quantities given in Figure 9:

• ρa =
a

2 cos(ψa − 90◦)
=

a

2 sinψa
=

a

2

√
1 + cot2 ψa and ρb =

b

2 sinψb
=

b

2

√
1 + cot2 ψb.

• hR =
a

2
tan(ψa − 90◦) = −a

2
cotψa and hS = − b

2
cotψb.

14
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• ~r =
1

2
~a− hR

a
~a⊥ =

1

2
~a+

1

2
cotψa ~a

⊥ and ~s =
1

2
~b− 1

2
cotψb~b

⊥.

We will calculate the position vector ~x of X whose length is given by c′. For this, we
write ~x as a linear combination of the two vectors that span the triangle:

~x =
1

2
α~a+

1

2
β~b .

X is given as an intersection point of the two circles{
~y
∣∣∣ ∥∥~y − ~r∥∥2

= ρ2
a

}
,
{
~y
∣∣∣ ∥∥~y − ~s∥∥2

= ρ2
b

}
such that the coefficients of ~x obey{∥∥(α− 1)~a− cotψa ~a

⊥ + β~b
∥∥2

= a2(1 + cot2 ψa)∥∥(β − 1)~b+ cotψb~b
⊥ + α~a

∥∥2
= b2(1 + cot2 ψb)

⇔
{

0 = α2a2 + β2b2 + 2αβ〈~a,~b〉 − 2αa2 − 2β〈~a,~b〉 − 2β cotψa〈~a⊥,~b〉
0 = α2a2 + β2b2 + 2αβ〈~a,~b〉 − 2βb2 − 2α〈~a,~b〉 − 2α cotψb〈~a⊥,~b〉

We subtract the two equations and get

α
(
a2 − 〈~a,~b〉 − cotψb〈~a⊥,~b〉

)
− β

(
b2 − 〈~a,~b〉 − cotψa〈~a⊥,~b〉

)
= 0 .

We write this as β = tα with t = a2−〈~a,~b〉−cotψb〈~a⊥,~b〉
b2−〈~a,~b〉−cotψa〈~a⊥,~b〉

. We introduce the length of the third

edge of the triangle, c = ‖~a−~b‖, and use 2〈~a,~b〉 = a2 + b2 − c2 as well as 2〈~a⊥,~b〉 = Θ2,
see (32) and (33), and write

t =
c2 + a2 − b2 − cotψbΘ

2

c2 + b2 − a2 − cotψaΘ2
, t∗ =

c2 + b2 − a2 − cotψaΘ
2

c2 + a2 − b2 − cotψbΘ2
. (37)

We insert this into the quadratic equations and get for α, β 6= 0

α =
2a2 + t(a2 + b2 − c2) + t cot(ψa)Θ2

a2 + t2b2 + t(a2 + b2 − c2)
,

β =
2b2 + t∗(a

2 + b2 − c2) + t∗ cot(ψb)Θ
2

a2 + t2∗(a, b, c)b
2 + t∗(a2 + b2 − c2)

.

(38)

The length

(c′)2 = ‖~x‖2 =
1

4

(
α2a2 + β2b2 + 2αβ〈~a,~b〉

)
=

1

4

(
α2a2 + β2b2 + αβ(a2 + b2 − c2)

)
is now obtained by a lengthy calculation. In particular, we use

1− cotψa cotψb = − cot(ψa + ψb)(cotψa + cotψb) = cotψc(cotψa + cotψb) .

The result is formulated in the next Proposition.
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Proposition 10. We consider the situation from Problem 9. Then the length c′ of the
connecting edge is given by

(c′)2 =
1
4

(
(1− cotψa cotψb)Θ

2 − (cotψa + cotψb)(a
2 + b2 − c2)

)2(
c2 + a2 cot2 ψa + b2 cot2 ψb

)
+ cotψa cotψb(a2 + b2 − c2)− (cotψa + cotψb)Θ2

(39)

=
1
4

(
cotψa + cotψb

)2(
(a2 + b2 − c2)−Θ2 cotψc

)2
a2(1 + cot2 ψa) + b2(1 + cot2 ψb)− (cotψa + cotψb)

(
(a2 + b2 − c2) cotψc + Θ2

) .
(40)

By interchanging the roles of a, b, and c we get the analogues results for a′ and b′, see
the summarizing Section 6. To end up this section we will check our result by discussing
some special examples:

• The equilateral triangle: a = b = c yields Θ2 =
√

3a2 and

c′ =
a

2
· (1− cotψa cotψb)

√
3− (cotψa + cotψb)√

1 + cot2 ψa + cot2 ψb + cotψa cotψb −
√

3(cotψa + cotψb)

=
a

2
· (cotψa + cotψb)(

√
3 cotψc − 1)√

2 + cot2 ψa + cot2 ψb − (cotψa + cotψb)
(

cotψc +
√

3
) .

This solves Problem 8.

• The situation of our initial Problem 1: ψa = ψb = 120◦, cotψa = −
√

3
3

(c′)2 =
1
6

(
Θ2 +

√
3(a2 + b2 − c2)

)2
c2 + a2 + b2 +

√
3Θ2

which is exactly the result we obtained in (36).

• The isosceles triangle: a = b, ψa = ψb, Θ
2 = c

√
4a2 − c2. This is the case mainly

discussed in [13]. In this case the formulas for a′ and b′ analog to (39) coincide such
that a′ = b′. Moreover, we have

c′ =
c

2
· (1− cot2 ψa)Θ2 − 2 cotψa(2a2 − c2)

c2 −Θ2 cotψa
.

The limiting situation c′ = 0 is obtained if and only if cot2 ψa+ 2(2a2−c2)
Θ2 cotψa−1 =

0. For the angle to be 180◦ > ψa ≥ 90◦ we have cotψa ≤ 0 such that we may
exclude the positive solution of this quadratic equation. The remaining negative
solution is

cotψa = −Θ2

c2
= −
√

4a2 − c
c

= −hc
c/2

.
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where hc is length of 4(ABC) over its edge c. If we denote by φ half the angle of
4(ABC) at C then cotφ = hc

c/2 such that ψa = 180◦ − φ. As expected, we see that

in the limiting case ψa coincides with the angle between the lines extending a and
hc. Moreover, again as expected, ψc = 2φ and a′ = b′ = a.

5 Two further aspects of the initial problem

In this section we will present some further interesting facts on the point M that is related
to our initial Problem 1 and that is the topic of Proposition 2. This special point M is
called Fermat-Point of the triangle 4(ABC).

Beyond that, we will also recall the formulation of one important tool that entered in the
discussion of Problem 9, namely Proposition 11.

5.1 The proof for the existence of the Fermat point

In this first section we will present a very elementary proof of Proposition 2. The only
things that are used are basic geometric ideas such as congruences of triangles and equality
of certain angles. This is the proof presented by Evangelista Torricelli, see [4]. It is also
published briefly in the English Wikipedia1 and mentioned in [5].

We recall the main tool for the proof: the inscribed angle Theorem.

Proposition 11 (Inscribed Angle Theorem). 1. Let K be a circle with five distin-
guised points A1, A2, B1, B

′
1, B2 and center O. Two of the points, say A1, A2 build

a chord of the circle and the two points B1, B
′
1 lie on the same side of the chord as

O, whereas B2 lays on the opposite side. For the angles in Figure 10 we have

β1 = β′1 = 180◦ − β2 = 1
2ρ .

2. On the other hand, given a convex quadrilateral of which the two opposite angles
add up to 180◦ then there exists a circle that contains all four vertices.

For a proof of the inscribed angle Theorem see [6], for example.

Remark 12. A special case of the inscribed angle Theorem is given when the chord is a
diameter of the circle. Then all inscribed angles are right angles, which is the content of
the famous Thales’ Theorem.

Proof. (Proposition 2). We consider the situation from Figure 11 and make use of the
notation introduced there. The first observation we make is that the red and blues
triangles 4(APC) and 4(QBC) are congruent: the one is obtained from the other by

1http://en.wikipedia.org/wiki/Fermat point.
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Figure 10: The interior angle theorem
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1
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ρ

β′
1

β1
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1

a rotation by 60◦ about the center C . Therefore, the angles denoted by α at B and P
coincide and the same for the angles denoted by α′ at A and Q.

We consider the green circumcircle K of the equilateral triangle 4(BPC). Then the
two angles α at P and B are inscribed angles for K subject to the chord CM such that
K contains M , too. Next, we consider the chord BC of K, instead, and the inscribed
angle ψ at M . It lies on the opposite side compared to P such that it is given by
ψ = 180◦ − 60◦ = 120◦.

The same arguments hold for the angles α′, ψ′ in the blue circumcircle K ′ of 4(CQA).

Therefore, from ψ + ψ′ + ψ′′ = 360◦ we get ψ = ψ′ = ψ′′ = 120◦. The construction also
yields that M is the intersection of the lines AP and BQ.

From the second part of the inscribed angle theorem applied to ψ′′ = 120◦ and the angle
60◦ at R we get that M also lies on the black circumcircle K ′′ of the 4(ARB). Therefore,
the angle β at M indeed coincide with the angle 60◦ at A as inscribed angles over the
chord BR. From β + ψ = 180◦ we get that CM ∪MR is a straight line, too.

This observation completes the proof of Proposition 2.

Remark 13. From part 2. of Proposition 11 we also get that M is the intersection point
of all three circumcircles K, K ′, and K ′′.

5.2 The Fermat point as the solution of a minimizing problem

In this section we will present a minimizing property of the Fermat point that is not so
obvious although there is a very short geometric proof. In addition we present an analytic

18
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Figure 11: The proof of Proposition 2
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description of this property that makes use of our results from Proposition 5.

The formulation of the result is as follows:

Proposition 14. For the Fermat point M the sum of the distances to the vertices of
the triangle 4(ABC) attains its minimum.

For a historical survey of the geometric treatment of this problem see [7] and the wonderful
books [8, 9]. In [8, 9] and in [10] the authors also explain the mechanical content of the
minimizing property that describes the Fermat point as a point of equilibrium, see also
Example 6 for the special situation of an equilateral triangle.

As promised, we will first present a short, purely geometric proof. We will use the notation
from Figure 12 and show that a′ + b′ + c′ ≤ |AX|+ |BX|+CX| for all points X. Indeed,
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Figure 12: Minimum property of the Fermat point I
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×
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1

for all ~x we have by the Cauchy-Schwarz inequality (5)

a′ =
〈
~a ′,

~a ′

a′

〉
=
〈
~a ′ − ~x, ~a

′

a′

〉
+
〈
~x,
~a ′

a′

〉
≤ ‖~a ′ − ~x‖+

〈
~x,
~a ′

a′

〉
and the same for ~b′ and ~c ′. Indeed, summing up the three relations yields

a′ + b′ + c′ ≤ ‖~a ′ − ~x‖+ ‖~b′ − ~x‖+ ‖~c ′ − ~x‖+
〈
~x,
~a ′

a′
+
~b ′

b′
+
~c ′

c′︸ ︷︷ ︸
=0 , see (6)

〉

and, therefore, proves Proposition 14 due to |AX| = ‖~a ′ − ~x‖, |BX| = ‖~b′ − ~x‖, and
|CX| = ‖~c ′ − ~x‖.
We will next show how the minimum property from Proposition 14 can be formulated in
a analytic way. Therefore, we consider Figure 13 and consider the function f : R5 → R
that is given by f(x, y, z, φ, ψ) = x+ y + z. We look for critical points of this function

Figure 13: Minimum property of the Fermat point II
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subject to the three constraints1

g1(x, y, z, φ, ψ) = y2 + z2 − 2yz cosφ− a2 = 0 ,

g2(x, y, z, φ, ψ) = x2 + z2 − 2xz cosψ − b2 = 0 , (41)

g3(x, y, z, φ, ψ) = x2 + y2 − 2xy cos(φ+ ψ)− c2 = 0 .

We introduce three Lagrange multipliers λ1, λ2, λ3 to combine f, g1, g2, g3 to the Lagrange
function L = f + λ1g1 + λ2g2 + λ3g3, i.e.

L(x, y, z, φ, ψ, λ1, λ2, λ3) = x+ y + z + λ1

(
y2 + z2 − 2yz cosφ− a2

)
+ λ2

(
x2 + z2 − 2xz cosψ − b2

)
+ λ3

(
x2 + y2 − 2xy cos η − c2

)
.

The critical points of f subject to g1 = g2 = g3 = 0 are given by the critical points of L,
see [11], for example. Therefore, we have to solve the system

∂L

∂x
=
∂L

∂y
=
∂L

∂z
=
∂L

∂φ
=
∂L

∂ψ
=

∂L

∂λ1
=

∂L

∂λ2
=

∂L

∂λ3
= 0 (42)

which is

0 = 1 + 2λ2

(
x− z cosψ

)
+ 2λ3

(
x− y cos(φ+ ψ)

)
0 = 1 + 2λ1

(
y − z cosφ

)
+ 2λ3

(
y − x cos(φ+ ψ)

)
0 = 1 + 2λ1

(
z − y cosφ

)
+ 2λ2

(
z − x cosψ

)
0 = 2λ1yz sinφ+ 2λ3xy sin(φ+ ψ)

0 = 2λ2xz sinψ + 2λ3xy sin(φ+ ψ)

0 = a2 − y2 − z2 + 2yz cosφ

0 = b2 − x2 − z2 + 2xz cosψ

0 = c2 − x2 − y2 + 2xy cos(φ+ ψ) .

Among these equations the last three are most hard to solve. In fact, there are many
points that solve these equations. Fortunately, we did this work in our calculations in
Sections 2 and 3. In fact, g1 = g2 = g3 = 0 are given by the cosine theorem in the triangles
4(XBC),4(XCA), and 4(XAB). Now we have to convince ourself that a solution of
the whole system is provided by (x, y, z, φ, ψ) = (a′, b′, c′, 120◦, 120◦) for suitable values
of λ1, λ2, λ3.

We plug in φ = ψ = 120◦ into the first five equations. This yields

0 = 1 + λ2(2x+ z) + λ3(2x+ y)

0 = 1 + λ1(2y + z) + λ3(2y + x)

0 = 1 + λ1(2z + y) + λ2(2z + x)

1Strictly speaking, we have one additional angle variable η with corresponding constrained η+φ+ψ =
360◦. This constraint has been erased and inserted into the third one of (41).
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0 = λ1z − λ3x

0 = λ2z − λ3y

such that in particular λ1 = λ3
x
z and λ2 = λ3

y
z . This reduces the first three equations to

a single one, namely

0 = z + 2λ3(xy + yz + xz) ,

such that

λ1 = − x

2(xy + yz + xz)
, λ2 = − y

2(xy + yz + xz)
, λ3 = − z

2(xy + yz + xz)
. (43)

Thus, if we restrict to φ = ψ = 120◦ any choice of (x, y, z) yields unique solutions
λ1, λ2, λ3 such that the first five equations of (42) are fulfilled. Therefore, our choice
(x, y, z, φ, ψ) = (a′, b′, c′, 120◦, 120◦) is a solution of the initial system with λ1, λ2, λ3 given
by (43) with (x, y, z) replaced by (a′, b′, c′).

We have to check if this critical value is indeed a minimum. This can be done by using

the Hessian HL =

(
Hf + λHg Dg

Dgt

)
of the Lagrange function L evaluated at the critical

point. It is given by

HL =



−2(b′ + c′)

Σ
−
c′

Σ
−
b′

Σ

√
3b′c′

Σ
0 0 2a′ + c′ 2a′ + b′

−
c′

Σ

−2(a′ + c′)

Σ
−
a′

Σ
0

√
3a′c′

Σ
2b′ + c′ 0 2b′ + a′

−
b′

Σ

a′

Σ

−2(a′ + b′)

Σ
−
√

3a′b′

Σ
−
√

3a′b′

Σ
2c′ + b′ 2c′ + a′ 0

√
3b′c′

Σ
0 −

√
3a′b′

Σ

2a′b′c′

Σ

a′b′c′

Σ

√
3 b′c′ 0 −

√
3 a′b′

0

√
3a′c′

Σ
−
√

3a′b′

Σ

a′b′c′

Σ

2a′b′c′

Σ
0

√
3 a′c′ −

√
3 a′b′

0 2b′ + c′ 2c′ + b′
√

3b′c′ 0 0 0 0

2a′ + c′ 0 2c′ + a′ 0
√

3a′c′ 0 0 0

2a′ + b′ 2b′ + a′ 0 −
√

3a′b′ −
√

3a′b′ 0 0 0


where we used Σ := 2(a′b′ + a′c′ + b′c′). We have to check the sign of the determinant of
certain matrices associated to HL. If we denote by HL(µ) the matrix obtained from HL
by erasing the first µ rows and columns we have to consider

det HL(0) = det HL = −9a′b′c′(a′ + b′ + c′)Σ2 ,

det HL(1) = −3a′b′c′(a′b′ + a′c′ + 4b′c′)Σ2 ,

det HL(2) = −9a′2b′2c′2Σ2 .

All give the same sign, namely (−1)3 where 3 is the number of constraints. Therefore,
the point under consideration is indeed a minimum. See [12] for a detailed explanation of
this sufficient condition.
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6 Conclusion: The solutions of Problems 1 and 9

• The technical formulation of the solution of the general Problem 9 is as follows:
Given a non-symmetric, non-balanced star circuit according to Figure 7 with phase
differences ψ1, ψ2, ψ3 = 360◦ − ψ1 − ψ2 and phase-to-phase voltages U1, U2, U3 then
the line voltages U ′1, U

′
2, U

′
3 are given by1

U ′1 =
1

2
·

∣∣( cotψ2 + cotψ3

)(
U2

2 + U2
3 − U2

1 −Θ2 cotψ1

)∣∣√
U2

2 (1 + cot2 ψ2) + U2
3 (1 + cot2 ψ3)− (cotψ2 + cotψ3)

(
(U2

2 + U2
3 − U2

1 ) cotψ1 + Θ2
)

U ′2 =
1

2
·

∣∣( cotψ1 + cotψ3

)(
U2

1 + U2
3 − U2

2 −Θ2 cotψ2

)∣∣√
U2

1 (1 + cot2 ψ1) + U2
3 (1 + cot2 ψ3)− (cotψ1 + cotψ3)

(
(U2

1 + U2
3 − U2

2 ) cotψ2 + Θ2
)

U ′3 =
1

2
·

∣∣( cotψ1 + cotψ2

)(
U2

1 + U2
2 − U2

3 −Θ2 cotψ3

)∣∣√
U2

1 (1 + cot2 ψ1) + U2
2 (1 + cot2 ψ2)− (cotψ1 + cotψ2)

(
(U2

1 + U2
2 − U2

3 ) cotψ3 + Θ2
)

• As a special – but more manageable – case we consider the situation from our
initial Problem 1: Given a non-symmetric star circuit according to Figure 1 with
phase differences 120◦ and phase-to-phase voltages U1, U2, U3 then the line voltages
U ′1, U

′
2, U

′
3 are given by

U ′1 =
1√
6
·
√

3
(
U2

2 + U2
3 − U2

1

)
+ Θ2√

U2
1 + U2

2 + U2
3 +
√

3Θ2

U ′2 =
1√
6
·
√

3
(
U2

1 + U2
3 − U2

2

)
+ Θ2√

U2
1 + U2

2 + U2
3 +
√

3Θ2

U ′3 =
1√
6
·
√

3
(
U2

1 + U2
2 − U2

3

)
+ Θ2√

U2
1 + U2

2 + U2
3 +
√

3Θ2

Here we used the the abbreviation

Θ2 =
√(

U1 + U2 + U3

)(
U2 + U3 − U1

)(
U1 + U3 − U2

)(
U1 + U2 − U3

)
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