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Abstract

Walking for most humans and animals is an easy task due to the inherent robustness and the
natural dynamics of the walking mechanism. Walking, however, for humanoid robots is not
that easy because of its nonlinearity, high dimensionality, and natural instability.

Effective use of humanoid robots in unstructured environments for human beings requires
that they have autonomous and reliable locomotion capability. Locomotion for humanoid
robots can take many forms. This thesis covers motion plan and control of humanoid walking
robots.

Five consecutive stages are addressed from the perspective of stable dynamic walking.
Firstly, a natural and efficient walking pattern is designed on the basis of the insight gained
from human walking. The walking pattern involves the configuration with stretched knees.
Secondly, in view of the modeling error, as well as the environment uncertainty such as
the unevenness and inclination of the surface, a posture controller which online controls the
orientation of the upper body of the robot is developed from the viewpoint of stability.
Walking stability of the robot is improved through the control scheme. In the third stage, a
gait controller which online controls the swing-leg is developed. Fast and precise trajectory
tracking of the swing-leg is achieved which enables humanoid robots to quickly swing the
swing-leg so that fast walking can be realized. In the fourth stage, a controller with the
purpose of decreasing the landing force and improving the walking stability by means of force
control is developed. In the final stage, strategies for restoring equilibrium in the presence of
external disturbances to maintain upright standing posture are analyzed. Simple models are
introduced to exploit boundaries that determine the strategies used for preventing a fall.

Simulation and experiments were performed with the humanoid robot NAO developed
at Aldebaran Robotics in France. Using the walking system, NAO achieved dynamic stable
walking and reached a maximum walking speed of 0.24 m/s in experiments. Besides, with
the presented walking pattern NAO could walk stably with almost stretched knees at a lower
speed, e.g. 0.10 m/s, so that the corresponding energy consumption was lower since the robot
did not bend the knees all the time, which means that the robot is able to walk for a longer
time without battery charging and has less heating problem.

Thesis Supervisor: Uwe Schwiegelshohn
Title: Professor, Department of Electrical Engineering and Information Technology, Technis-
che Universität Dortmund
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1 Introduction

A humanoid robot, generally having a torso, a head, two arms, and two legs, is a robot with its
body shape built to resemble that of the human body. During the past three decades research
and development in robotics have expanded from traditional industrial robot manipulators
to autonomous, wheeled or legged robots. Bipedal humanoid robots essentially differ from
other kinds of robots such as industrial ones in that their movements are human-like using
biped gait. One of the key issues for humanoid robots is autonomous and reliable bipedal
locomotion. Types of bipedal locomotion include walking, running, or hopping. Among these,
bipedal walking has been studied extensively for better understanding and rehabilitating
human locomotion, as well as replicating human locomotion in machines. Except for passive
dynamic walking [76] explored by McGeer which utilizes the robot natural dynamic, e.g. link
lengths, link masses, joint damping, walking surface slope, foot shape, to maintain stability,
bipedal walking is generally mentioned as powered bipedal walking. The most common issues
related to powered biped walking are calculating theoretically stable walking patterns either
online or offline, and designing the appropriate online controllers in order to achieve stable
walking.

This thesis focuses on planning human-inspired bipedal walking motion, and controlling
posture and gait of a biped humanoid robot. The goal of this thesis is to realize stable
dynamic walking of the biped humanoid robot by means of both position control and force
control approaches.

1.1 Motivation

Research on humanoid robots is one of the topics that catch comprehensive attention. Hu-
manoid robots are being developed nowadays to further understand human locomotion, to
coexist and collaborate with humans or subsitute humans to perform tasks, to assist in the
welfare or medical field, and to provide entertainment.

Being as a Research Tool

Building and controlling humanoid walking robots can help us understand how humans walk.
The walking process of humans was first studied as far back as the Second World War in
the effort of developing artificial legs for disabled soldiers. Despite continuous research on the
subject since then, we have not yet fully understood the underlying basic principles of human
walking due to the high complexity of human musculo-skeletal system [71]. The symbiosis
between controlling robots and understanding humans can be achieved by using a robot to
test theories on how humans walk, to further understand the biomechanics of both robots

1



2 1 Introduction

and humans, to discover limitations to walking in both humans and robots, and to suggest
testable hypotheses on how humans control walking [97].

Performing Human Tasks

Biped humanoid robots are able to well locomote on various terrains such as uneven surfaces
or stairs. So they have better adaptability to the environment where humans live. They
are capable of sharing the same space with humans and require no changes to the existing
infrastructure. Since humanoid robots have the capability to use tools and operate equipments
designed for human beings, they could theoretically perform any task a human being can.
Humanoid robots could be used for missions too dangerous or difficult for human beings like
disaster relief, bomb disarming, planetary exploration.

Besides, because of the anthropomorphic appearance and movement, humanoid robots
enhance the chances of acceptance by human beings and simplify human-machine commu-
nication. Therefore, they have great potential in the service area, for example, providing
assistance and companion to the sick, the handicapped and the elderly.

Assisting in the Welfare or Medical Field

The aging population is growing dramatically in America and Japan in recent years, and the
trends are similar in other countries in developed regions of the world. A significant percentage
of the current aging population suffer from lower-limb disabilities [28, 85]. Biped humanoid
robots can be used as a tool to establish a human walking model in order to facilitate the
development of welfare and rehabilitation instruments such as walking machines for assistance
or training, and estimate the effectiveness of such machines.

In addition, one of the aims of humanoid research is to build better orthosis and prosthesis
for human beings. Robotic bipedal systems can be simulated as a means to understand cause-
effect relationships between neuromuscular control mechanisms and the resulting movement
in human models, and to optimize orthotic and prosthetic designs in order to enhance their
performance and interaction with the user.

Providing Entertainment

Humanoid robots are becoming increasingly popular in the entertainment industry, as shown
in Figure 1.1. Ursula1, an entertainment robot developed by Florida Robotics to amuse crowds
at Universal Studios, is a remote-controlled full-size female robot that can walk, dance, play
music and speak to her audiences. Sony has developed small but remarkable robots called
SDR-4X2 and SDR-4X II2 that can dance and sing for the entertainment purpose.

Besides the anticipated demand for humanoid robots, recent technology advances such as
autonomous task-level planning and control systems, the development of sophisticated non-
linear control algorithms and the development of a new class of actuators, also make the
investigation of control of humanoid machines possible.

1Copyright©: Florida Robotics.
2Copyright©: Sony Corporation.
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(a) Ursula (b) SDR-4X (c) SDR-4X II

Figure 1.1: Humanoid robots for the purpose of entertainment. Sources: (a) Ursula. http:

//www.floridarobotics.com/ursula.htm; (b) and (c) Product & Technology Milestones -
Robot. http://www.sony.net/SonyInfo/CorporateInfo/History/sonyhistory-j.html.

1.2 Problem Statement

Biped humanoid walking, when viewed as a general dynamical system, is difficult.

First, a humanoid is a high-dimensional, nonlinear and hybrid system. A humanoid robot
has multiple articulated joints, and therefore, has a large number of degrees of freedom (DoFs).
For example, the humanoid robot used in this thesis has 25 DoFs. Apart from this, dynamics
of a humanoid are highly nonlinear and tightly coupled. Furthermore, a humanoid is a hybrid
system. The dynamic equations are not continuous since the dynamics change as the humanoid
robot interchanges between the single support and double support, whereas physical walking
variables such as the joint trajectory, the position and velocity of the center of mass, are
continuous with respect to time. As a result, it is challenging to implement accurate control
on a humanoid robot.

Second, bipedal humanoid robots are regarded as one of the two types of legged robots that
are most prone to instabilities3[16]. A humanoid robot is inherently unstable since the center
of mass is high compared with the limited size of the base of support, and is therefore very
sensitive to external disturbances. So the overall system is likely to tip over about one of the
foot edges, especially in the single support phase, small external disturbances are sometimes
sufficient to make a robot fall.

Third, a humanoid robot realizes walking via joints and links, while a human being walks
by means of muscles, bones and joints. The joint of a humanoid robot is composed of motors
and gears and has mechanical limitations. The hip and ankle joints of the humanoid robot
used in this thesis can deliver a maximum continuous torque of 16.1 mNm. It is insufficient
to recover the robot from perturbations by using hip or/and ankle joints. By contrast, the
hip torque a human being utilizes to recover from perturbations while standing or walking is
about 40 Nm to 50 Nm [75, 125]. Therefore, the dynamic performance of a humanoid robot
is limited.

In a word, it is challenging to control a humanoid robot to achieve stable dynamic walking
especially in the presence of external disturbances, such as upper body motions, unevenness

3The other type is monopods.

http://www.floridarobotics.com/ursula.htm
http://www.floridarobotics.com/ursula.htm
http://www.sony.net/SonyInfo/CorporateInfo/History/sonyhistory-j.html
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of the surface, external forces, etc.

1.3 Control Types

There have been many approaches to the problem of controlling humanoid robots. Two of the
most common approaches can generally be described as position control and force control,
resulting in distinct design of humanoid robots and separate style of control. Advantages and
disadvantages of these two approaches are analyzed below.

1.3.1 Position Control

Benjamin Stephens in his PhD thesis [106] pointed out that robots with position control,
such as the one depicted in Figure 1.2, are generally constructed using electric motors with
high gear ratios. This allows for smaller, cheaper motors to operate efficiently while providing
enough torque. Controllers for these systems generally exploit this feature by creating walking
patterns that can be tracked very accurately. This effectively simplifies walking control to
footstep planning, for example.

The high reflected inertia and friction created by the gearbox creates a high impedance
which can be useful for rejecting small disturbances. However, the performance of force control
which is useful for handling larger disturbances is poor due to the high joint impedance and
low control bandwidth; besides, the interaction between the robot and the environment is not
sufficiently considered in the position control approach.

High-level 
Commands 

Pattern 
Generator 

Desired 
Motion Controller 

θ d θ

(Dynamic Model) (e.g. PID controller) (Motion Planner) (e.g. Walk Forward) −
Robot 

Figure 1.2: Position control.

1.3.2 Force Control

Force control was originally studied for the precise control of industrial robot manipulators.
The concept of force control is that the end-effector of a robot manipulator is expected to have
a suitable compliant behavior in the workspace (e.g. Cartesian space) in the situation where
the environment continuously exerts a dynamic or kinematic constraint on the manipulator’s
motion. As opposed to position-controlled robots which have high stiffness, robots with force
control have lower stiffness, and are compliant and robust to force disturbances.

The dynamic robot-environment interaction of bipedal walking is realized through the
robot foot. Thus the biped locomotion, if viewed the foot as the end-effector, is essentially
equivalent to the robot manipulators in a sense of force control. For control purposes the
entire dynamics of the humanoid robot and the environment should be treated as a whole.
Methodologies aiming at pure joint trajectory control or pure position control are not appro-
priate for such a system. Rather, control methods governing not only foot motion but contact
forces between the foot and the ground should be used for precisely controlling this type of
system even when there are uncertainties and variations.
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Two approaches have been suggested for assuring compliant motion [55]. The first approach
is with the aim of controlling the force/torque and position/orientation in a non-conflicting
way. Hybrid position/force control proposed by Railbert and Craig [11, 98] decomposes
the task space into two subspaces, position-controlled subspace and force-controlled subspace
(as illustrated in Figure 1.3). A selection matrix S is used to determine which degrees of free-
dom are to be position-controlled, and which are to be force-controlled. Afterwards, Khatib
proposed hybrid position/force control in Cartesian space [57] by using the appropriate trans-
formation and describing the manipulator dynamics in Cartesian space. Hybrid position/force
control is a straightforward approach to the problem of controlling the force and position si-
multaneously.

xd Position 
Control  

fd Force 
Control 

Robot 

x

f

τ

−

−

+ τ x

τ f

+

+

S

S
+

xe

fe

J −1

JT

qe

τ e

Force 
Sensors 

q

Kinematics 

f

Figure 1.3: Hybrid position/force control, as proposed in [11]. J is the Jacobian matrix, S, S
denote respectively the selection matrices for position and force controlled degrees of freedom, xd
is the desired motion trajectory, x is the task-space position, fd is the desired force trajectory and
f denotes the contact force.

The second approach is aimed at developing a relationship between the interaction force
and end-effector position. Impedance control put forward by Hogan [29] regulates the end-
effector position and its dynamic relationship with the force, rather than controlling these
variables separately. Therefore, impedance control provides a unified approach for both free
motion and constrained motion. A more detailed review of impedance control can be found
in [72].

Force control approach is in general implemented on force/torque-controllable robots. The
disadvantage of force control, however, is that designing such a controller can be difficult
given the complex dynamics of the robot.

This thesis combines the advantages of both position control and force control. The robot
can precisely track the reference walking pattern when the leg is in swing phase. It can also
appear compliance while interacting with the ground.

1.4 Humanoid Robot Platform

NAO (Figure 1.4(a)), an integrated, programmable, medium-sized humanoid robot developed
by Aldebaran Robotics4 in France, has been used in this thesis as the research platform to

4Company Website for the Robot NAO. http://www.aldebaran.com, 2014.

http://www. aldebaran.com
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study motion planning and develop control algorithms for humanoid walking robots.

(a) (b)

Figure 1.4: Humanoid robot NAO: (a) photograph (b) joint structure [2].

1.4.1 Specifications

The version of NAO we worked on is H25 v4.0. It has five kinematic chains (head, two arms
and two legs). Its height and weight are 57.3 cm and 5.2 kg, respectively. It has in all 25 DoFs,
five for each leg, five for each arm, one for each hand, one for the pelvis, and two for the head.
Each joint is actuated by a brushed DC coreless motor with a reduction gear. Encoders on
all servos record the actual values of all joints in real time. More basic technical data of NAO
is listed in Appendix A.

1.4.2 Ranges of Motion

Figure 1.4(b) illustrates the joint structure of NAO. Table 1.1 shows the ranges of motion
(ROMs) of the joints of NAO and a standard human being. It is worth noting that NAO does
not have a waist joint. Indeed, the waist joint plays an important role in planning motion and
improving stability of a humanoid robot. The two-DoF waist joint enables HRP-2 to get up
itself [50]. HRP-2 is also able to crawl on hands and knees using the waist joint. The moment
generated about the yaw axis can be compensated by using waist motion of a humanoid
robot [127], therefore, the walking stability is improved. In addition, Huang et al. utilized the
waist joint of a biped robot to enlarge the stability margin [32]. The extra DoFs in the upper
body can also make the walking gait smoother [51]. Furthermore, the waist joint allows to
increase step length and provides more mobility for lateral motions [122], as well as extends
the working space of arms.
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Table 1.1: ROMs of joints of NAO and a standard human being.

Joint Human Being [1, 18] NAO

Head
Pitch −55◦ to (70◦ ∼ 90◦) −38.5◦ to 29.5◦

Roll −45◦ to 45◦ no existence
Yaw −70◦ to 70◦ −119.5◦ to 119.5◦

Right Arm

Shoulder
Pitch −90◦ to 140◦ −119.5◦ to 119.5◦

Roll −180◦ to 50◦ −76◦ to 18◦

Yaw −45◦ to 130◦ no existence

Elbow
Roll 0◦ to 140◦ 2◦ to 88.5◦

Yaw −90◦ to 90◦ −119.5◦ to 119.5◦

Wrist
Pitch −60◦ to 60◦ no existence
Yaw (−30◦ ∼−50◦) to 20◦ −104.5◦ to 104.5◦

Right Hand open and close open and close

Waist
Pitch −30◦ to 75◦ no existence
Roll −35◦ to 35◦ no existence
Yaw −30◦ to 30◦ no existence

Right Leg

Hip
Pitch −120◦ to 30◦ −101.54◦ to 27.82◦

Roll (−45◦ ∼ −50◦) to (20◦ ∼ 30◦) −42.30◦ to 23.76◦

Yaw −40◦ to 45◦ no existence
Knee Pitch 0◦ to 150◦ −5.90◦ to 121.47◦

Ankle
Pitch −20◦ to 50◦ −67.97◦ to 53.40◦

Roll no existence −45.03◦ to 22.27◦

Yaw −20◦ to 30◦ no existence
1 The convention of the moving direction of the revolute joints is in accordance with that in NAO

system.
2 NAO has two HipYawPitch joints that are controlled by one motor.

1.5 Thesis Contributions

The contributions of this thesis are:

1. The design of a natural, human-like walking pattern on a level surface.

2. The development, in simulation and in experiments, of postural control algorithms which
realize stable dynamic walking of a humanoid robot on a level surface.

3. The realization, in simulation, of adaptive control in precise trajectory tracking and
dynamic parameter estimate of the swing-leg of the robot.

4. The proposal of a force control approach to decrease the landing impact force.

5. The analysis of the strategies for restoring balance in the presence of external distur-
bances.

The outcome of this research shows the significant effect of adding upward and downward
motion of the upper body of the robot in the sagittal plane on reducing the energy con-
sumption when the robot walks at a lower speed. It verifies the effectiveness of the posture
controller in maintaining a constant upper body posture against environment uncertainty and
thus achieving stable dynamic walking of the robot. It also demonstrates the advantage of
adaptive control over the proportional-derivative (PD) control in accurate trajectory tracking.
This research paves the way toward a better understanding of robot walking and balance.
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1.6 Thesis Outline

This thesis proceeds as follows:
Chapter 2 gives background for this thesis, consisting of providing the stability criteria

which are used to judge whether the walking system is stable or not, and surveying the related
works with regard to bipedal humanoid robots.

Chapter 3 proposes a motion generation method for humanoid robots motivated by
biomechanical studies on human walking. The proposed walking pattern involves a three-
dimensional motion of the upper body of the robot which is more natural and human-like.

Chapter 4 proposes two control methods to manipulate the upper body orientation of
humanoid robots aiming at stable dynamic walking. A torso pitch/roll controller utilizes
internal joints to stabilize the robot based on sensory feedback. A yaw moment controller
counteracts yaw moment about the support foot using arm movement.

Chapter 5 presents the application of adaptive control to precise trajectory tracking and
dynamic parameter estimate of the swing-leg of a humanoid robot. Simulation based on both
Matlab/SimMechanics and Open Dynamics Engine (ODE(1))5 is implemented.

Chapter 6 proposes a control method based on the force control approach in order for
decreasing the landing force and improving the stability of the walking system.

Chapter 7 analyzes strategies for restoring equilibrium and maintaining upright standing
posture in the presence of external disturbances. Simple models are introduced to exploit
boundaries that determine the strategy used for preventing a fall.

Chapter 8 concludes the thesis and puts forward suggestions for future research.
Appendix A gives the basic technical data of the humanoid robot used in this thesis.
Appendix B gives the forward kinematics of the five chains of the robot. The forward

kinematics, which is used to online calculate the walking distance of the robot in Chapter 4,
is also given.

Appendix C derives the dynamic equations of the three-link leg which are used for the
adaptive control method in Chapter 5.

Appendix D gives the Jacobian matrix for the force control in Chapter 6.

5http://www.ode.org/.



2 Background

In this chapter we review the existing stability criteria for system stability analysis, the
simplified models that can generally describe humanoid dynamics, as well as the previous
related works on humanoid robots.

Stability criteria, reviewed in Section 2.1, are notions used to ensure the dynamic stability
of a walking robot. Simplified models, reviewed in Section 2.2, simplify humanoid dynamics
and facilitate motion design and control of a humanoid robot. There are many biped humanoid
robots, some of which will be reviewed in Section 2.3. The existence of these robots and some
of their control techniques have motivated much of the work and the approach followed in
this thesis.

2.1 Stability Criteria

The concept of support pattern (support polygon), first put forward by Hildebrand [25], is a
convenient way to show each step of a gait cycle. The support polygon is defined as the area
on the ground which creates a bounding box around all of the contacts between the feet and
the ground.

Locomotion researchers distinguish between gaits that are statically stable and gaits that
are dynamically stable.

A biped robot gait is said to be statically stable and a human posture is said to be balanced
if the ground projection of its center of mass (GCoM) falls within the support polygon [16].
Early biped walking of robots involved static walking [52, 53, 115]. The step time was over
10 seconds per step and the balance control strategy was based on control of the center of
gravity (CoG). The disadvantage of static walking is that the motion is slow. For example,
one walking cycle of the biped robot WAP-3 on level ground required about 1 minute and 30
seconds [52].

Researchers thus began to focus on dynamic walking of biped robots. It is fast walking
and the step time is less than 1 second per step. However, if the inertial forces generated
from the acceleration of the robot body are not suitably controlled, a biped robot easily falls
down [59].

Several notions are introduced in order to control inertial forces and verify system dy-
namic stability. They are the Zero-Moment Point (ZMP) [123], Foot-Rotation Indicator (FRI)
point [16], Centroidal Moment Pivot (CMP) [95] or Zero Rate of change of Angular Momen-
tum (ZRAM) point [17], Valid Stable Region [34], respectively.

9
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2.1.1 Zero-Moment Point

Vukobratović et al. in [123] give an interpretation of ZMP concept. ZMP is defined as that
point on the ground at which the net moment of the inertial forces and the gravity forces has
no component along the horizontal axes. ZMP notion considers the locomotion mechanism in
the single support phase, with the whole foot being on the ground.

In [123], to facilitate the analysis, the part of the mechanism above the ankle of the support
foot (point A) can be neglected and its influence can be replaced by the force FA and moment
MA (refer to Figure 2.1). The weight of the foot itself acts at its gravity center (point G).
The foot also experiences the ground reaction force at point P . In general, the total ground
reaction consists of the force R (Rx, Ry, Rz) and moment M (Mx, My, Mz). The necessary
and sufficient condition in dynamic equilibrium is that for the point P on the sole, Mx = 0 and
My = 0. Since both components relevant to the realization of dynamic balance are equal to
zero, the point P is Zero-Moment Point. The static equilibrium equations for the supporting
foot are as follows:


R+ FA +msg = 0

−−→
OP ×R+

−−→
OG×msg +MA +MZ +

−→
OA× FA = 0

(2.1)

where
−−→
OP ,

−−→
OG and

−→
OA are radius vectors from the origin of the coordinate system Oxyz to

the point P , point G, and ankle joint point A, respectively, while the foot mass is ms and g
is the gravity acceleration.

(Rx, Ry, Rz )

p

p

Figure 2.1: Zero-Moment Point notion from [123].

If the robot is treated with detailed information of body segment dynamics, the interpre-
tation can be expressed as

( n∑
i=1

(pi − pzmp)×miai +

n∑
i=1

d(Iiωi)

dt

)
horizontal

=

( n∑
i=1

(pi − pzmp)×mig

)
horizontal

(2.2)
where
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pi = [xi, yi, zi]
T the center of mass (CoM) position of the ith segment

pzmp = [xzmp, yzmp, zzmp]
T position of the ZMP

ai = [ẍi, ÿi, z̈i]
T acceleration of the CoM of the ith segment

Ii inertial tensor of the ith segment about the segment’s CoM
ωi angular velocity of the ith segment
g gravity acceleration
n total number of body segments

From Eq.(2.2), the position of the point p(xzmp, yzmp, zzmp) can be computed analytically
by computing the cross product, based on the state and acceleration of the robot’s articulated
links and joints. Note that in the conventional definition of ZMP, zzmp = 0.

xzmp =

n∑
i=1

mi(z̈i + g)xi −
n∑

i=1

miẍizi −
[ n∑

i=1

d(Iiωi)

dt

]
Y

n∑
i=1

mi(z̈i + g)

yzmp =

n∑
i=1

mi(z̈i + g)yi −
n∑

i=1

miÿizi +

[ n∑
i=1

d(Iiωi)

dt

]
X

n∑
i=1

mi(z̈i + g)

(2.3)

If the robot is treated as a point mass concentrated on the CoM, Eq.(2.2) becomes(
(pG − pzmp)×MaG + L̇G

)
horizontal

=
(

(pG − pzmp)×Mg
)
horizontal

(2.4)

where

pG = [xG, yG, zG]T trajectory of the CoG
M total weight of humanoid robot
aG = [ẍG, ÿG, z̈G]T acceleration of the CoG
LG = [LGx , LGy , LGz ]T angular momentum of the robot about the CoG
g = [0, 0,−g]T gravity acceleration

Computing the cross product in Eq. (2.4), the ZMP can be expressed as a function of the
CoG position, the CoG acceleration and net moment about the CoG:

xzmp =
M [xG(z̈G + g)− (zG − zzmp)ẍG]− L̇Gy

M(z̈G + g)

yzmp =
M [yG(z̈G + g)− (zG − zzmp)ÿG] + L̇Gx

M(z̈G + g)

(2.5)

Another method to obtain the position of the point p is with the aid of force sensors. For
the application of dynamically balanced gait, the center of pressure (CoP) and the ZMP are
equal. The CoP is the point where the resultant of the normal forces acts. Due to the nature
of the force sensors only the normal forces are measured, no information about tangential
forces are available. Let fni be the measured normal force at the force sensor i, pi be the
position of sensor i in the robot coordinate system, Rn =

∑
fni be the force resultant at the
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CoP, and n be the number of force sensors in the feet. Then the position of the CoP Pcop can
be calculated as:

Pcop =
1

Rn

n∑
i=1

fni ∗ pi

The ZMP stability criterion is that if the computed acting point of the ground reaction
force (GRF) p is within the support polygon, p is ZMP, the system is in dynamic equilibrium.
Therefore, in order to ensure dynamic equilibrium, the computed point p must be within the
support polygon. Else, if the computed point p is outside the support polygon, p is called
a fictitious ZMP. In this case the GRF acting point is on the support polygon border. The
unbalanced moment arouses the mechanism rotation about the edge of the support polygon,
as a result the system is likely to tip over. The intensity of the unbalanced moment depends
on the distance from the support polygon edge to the fictitious ZMP (FZMP).

The first practical application of ZMP was in the realization of the complete dynamic
walking of the biped walking robot WL-10RD at Waseda University in Japan in 1984 [123],
takanishi et al. used ZMP to discern the stability of each state of the dynamic walking of
the robot [115]. Since then, a number of successful biped humanoid robots have applied the
ZMP concept to their walking pattern generation and control.

However, ZMP notion has limitations. First, the key prerequisite with this notion is that
the support foot rests fully on the floor. Actually the foot of a robot is not generally in
perfect contact with the ground. Moreover, humans do not use ZMP stability criterion. We
allow our feet to roll, for example, toe-off and heel-strike. Second, the ZMP notion cannot
describe robots with point feet, for example, robots walking on stilts. Third, ZMP is used
to determine the dynamic stability of a legged robot in the case that the robot walks on
a horizontal plane. But a robot may walk on stairs or a rough terrain, or manipulate an
object using two hands as well as two legs. Therefore, considering the contact points between
the robot and the environment in three-dimensional space, the virtual horizontal plane was
constructed [113] and the enhanced ZMP was proposed [41]. Besides, in order to incorporate
hand interaction forces, the conventional definition of ZMP was augmented [20]. Fourth, once
the ZMP is at the very edge of the foot envelope, additional rotational dynamics of the foot,
such as different rates of rotational acceleration, are no longer discernible using the ZMP [95].
The FRI point solves the problem by quantifying the rotation of the stance foot during the
single support phase.

2.1.2 Foot-Rotation Indicator Point

The FRI point is a point on the foot/ground surface, within or outside the support polygon,
where the net ground reaction force would have to act to keep the foot stationary. FRI point
is a useful quantity for determining whether the foot will roll [28].

The equation for rotational dynamic equilibrium is obtained by noting that the sum of
the external moments on the robot is equal to the sum of the rates of change of angular
momentum of the individual segments about the same point. As shown in Figure 2.2, taking
moments at the origin O, and treating the stance foot as the focus of attention, the dynamics
of the rest of the robot can be represented by Eq.(2.6).

M +OP ×R+OG1 ×m1g − τ 1 −OO1 ×R1 = ḢG1 +OG1 ×m1a1 (2.6)

where
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Figure 2.2: Foot Rotation Indicator point from [16].

M ground reaction torques
R GRF
m1 the mass of the stance foot
G1 the CoM location of the stance foot
−R1 ankle force exerted by the rest of the robot
−τ 1 ankle torque exerted by the rest of the robot
P CoP
a1 the CoM linear acceleration of the stance foot

ḢG1 the torque about the stance foot

The equations for static equilibrium of the foot are obtained by setting the dynamic terms
in Eq.(2.6) to zero.

M +OP ×R+OG1 ×m1g − τ 1 −OO1 ×R1 = 0 (2.7)

We can always find a point F , when taking the point F as the reference point to com-
pute the moments, and considering only the tangential (XY) vector components of Eq.(2.7),
Eq.(2.8) is satisfied. (

τ 1 + FO1 ×R1 − FG1 ×m1g
)
t

= 0 (2.8)

The subscript t implies the tangential components. Then the FRI point F is defined as the
point on the foot/ground contact surface, within or outside the convex hull of the foot-support
area, at which the resultant moment of the force/torque impressed on the foot is normal to
the surface [16].

When viewing the robot minus the foot as a system, the dynamics of this system at point
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F can be presented. If only the tangential components are considered, we have(
τ 1 + FO1 ×R1 +

n∑
i=2

FGi ×mig

)
t

=

( n∑
i=2

ḢGi +

n∑
i=2

FGi ×miai

)
t

(2.9)

Using Eq.(2.8) and Eq.(2.9), we get(
FG1 ×m1g +

n∑
i=2

FGi ×mi(g − ai)
)

t

=

( n∑
i=2

ḢGi

)
t

Explicit expressions for the coordinates of F , OF (OFx, OFy, OFz = 0) can be then
obtained. To ensure no foot rotation, the FRI point must remain within the support polygon.
If the calculated FRI point is outside the support polygon, there will be an uncompensated
moment which causes the foot to rotate.

Though FRI point concept is applicable only during the single support phase of a biped, it
can additionally perform the role of measuring the instability of a biped (see Eq.(2.6), where
HG1 contains information on angular acceleration of the stance foot).

Hofmann applied the FRI point to the balance control of bipedal walking in his PhD
thesis [28]. According to the torque balance equation of FRI, the torque in the system was
divided into three parts, the orbital torque, the spin torque and the ankle torque.

2.1.3 Centroidal Moment Pivot

CMP notion is based on a fundamental law of nature that the angular momentum of a system
about its CoM is conserved in the absence of external torques or the external torques sum up
to zero. This is expressed as Eq.(2.10). Conversely, a non-constant angular momentum due to
external forces/torques gives rise to a non-zero torque about CoM and consequently implies
the tendency of the robot to tip forward, as formulated by Eq.(2.11).

HG = k

ḢG = 0
(2.10)

τCoM = ḢG (2.11)

where

HG the angular momentum about the CoM
k a constant vector

The rotational stability criterion of CMP point analyzes the moment equation of the robot
(refer to Figure 2.3) with the foot assumed to be on planar support surface. The torque about
the CoM can be expressed as:

τCoM = GP ×R (2.12)

where

τCoM the torque about the CoM
G the position of CoG of the robot
R resultant GRF
P CoP where R is acting
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Combining Eq.(2.11) and Eq.(2.12), we have

τCoM = ḢG = GP ×R

ḢG = 0 implies GP is parallel to R. This also means the GRF passes through the CoM and
consequently generates a zero moment and the robot is rotationally stable (see Figure 2.3(a)).
In this case P is the CMP. ḢG 6= 0 indicates that GRF does not pass through the CoM thus
generating a net clockwise or counterclockwise moment around the CoM (In the situation
shown in Figure 2.3(b), the moment is clockwise.). In this situation the robot is rotationally
unstable and has the tendency of tipping forward. However, we can find a point A in order
for the GRF vector to pass through the CoM, and point A is named the CMP.

(a) (b)

Figure 2.3: The essence of stability analysis based on ḢG from [17].

The CMP is defined as the point where a line parallel to the GRF, passing through the
CoM, intersects with the external contact surface [95]. The CMP is not necessarily inside
the support polygon, where the ZMP would have to be. CMP is valid during both the single
and double support phases of walking. We get insight from the CMP of developing the robot
controller by attempting to make ḢG = 0 or HG = constant.

Goswami and Kallem proposed the same point called the Zero Rate of change of Angular
Momentum (ZRAM) point. In [17] they proposed three control strategies in order for ḢG = 0
to recapture balance, including enlarging the size of support polygon, changing the position
of the CoG, and changing the direction of GRF by centroidal acceleration.

By expressing the dynamic stability in terms of linear and angular momentum, Kajita et
al. applied the Resolved Momentum Control method [44] to planning motion of a humanoid
robot. The generated kick motion and walking motion were evaluated on the humanoid robot
HRP-2.

Measures of biped robot stability that are manifested as a point on the ground surface are
ZMP, FRI point and CMP (ZRAM point). Popovic et al. pointed out that when the stance
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foot is at rest during single support, and when there is zero moment about the CoM, the
ZMP, FRI, and CMP coincide [95].

2.1.4 Valid Stable Region

Valid stable region is defined as the area of the ZMP with a stability margin larger than the
change of the ZMP position due to environmental disturbances. The valid stable region Ω is
denoted by the following equation:

Ω = {(xzmp, yzmp)|ds(xzmp) ≥ df (xzmp), ds(yzmp) ≥ df (yzmp)}

where ds(xzmp), ds(yzmp) denote minimum distances from the ZMP to the boundary of the
stable region; df (xzmp), df (yzmp) denote the change of the ZMP position due to disturbances
in the x-axis and y-axis, respectively, and dzmp indicates the stability margin with respect to
the current position of the ZMP (see Figure 2.4).

Stable region

Valid stable region

( )f zmpd x

( )f zmpd y

ZMP

         : Stability marginzmpd

Figure 2.4: Valid stable region.

df (xzmp) and df (yzmp) can be calculated analytically [34]. When the ZMP is inside the
valid stable region, the system will be stable even if affected by disturbances. In this case,
the system can execute tasks even without control for stability. When the ZMP is inside the
stable region but outside the valid stable region, the system will probably become unstable
in the presence of disturbances. It is, therefore, necessary in this case to control the system
for stability and task execution.

In [32], Huang et al. proposed a method of designing the hip trajectory of a biped robot
with the purpose of maximizing the stability margin. The concept of valid stable region was
adopted in [34] for motion planning of a manipulator.

Among the above notions, ZMP concept has gained extensive recognition and at present is
the main method in robotics to analyze, predict, and control postural balance in biped robots.
This thesis is based on the ZMP concept.
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2.2 Simplified Models

Before jumping into bipedal walking algorithms, let’s start by examining simplified models of
bipedal walking. The models are enlightening so that we can draw intuition from them. We
start with a simple inverted pendulum and progress to more detailed models.

2.2.1 Inverted Pendulum Model

Pratt demonstrated the similarity between human walking and an inverted pendulum [97].
So understanding the dynamics of an inverted pendulum will help us understand the dynamics
of walking. Figure 2.5(a) shows an inverted pendulum of length ` with a point mass, m, at its
end. g is the standard gravity on the surface of the Earth, and θ is the angular displacement
measured from the equilibrium position. Then we have an analogical model of bipedal walking,
that mass corresponds to the body mass of a bipedal robot and the pendulum is equivalent
to its leg.

θ

m

ℓ

g

(a)

x

y

yH

0

lm
(slope:   ) k

(b)

x

y

zc

0

z
m

(c)

Figure 2.5: Inverted pendulum models. (a) inverted pendulum model (b) LIPM (c) 3D-LIPM

The torque due to gravity is
τ = mg` sin θ (2.13)

The change in angular momentum about the pivot is

τ = Iθ̈ = m`2θ̈ (2.14)

where I is the moment of inertia for the point mass.
We get the equations of motion of the pendulum:

θ̈ =
g

`
sin θ (2.15)

The insight we can draw from the inverted pendulum model is that, suppose the mass is
traveling from left to right, if the mass is on the left of the pivot point, it will slow down as
it rises, converting kinetic energy into gravitational potential energy; if it is on the right of
the pivot point it will speed up, converting gravitational potential energy back into kinetic
energy [97]. This model can be used to explain the reason why in human walking human body
must slow down and then speed up during each step. Accordingly, each step is divided into
speed up phase, constant velocity phase and slow down phase while designing the walking
pattern of the robot in Chapter 3.
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2.2.2 Linear Inverted Pendulum Mode

In 1991 Kajita et al. proposed the concept of the Linear Inverted Pendulum Mode (LIPM)
for the design and control of dynamic walking motion of a biped robot [48]. As shown in
Figure 2.5(b), it is a planar inverted pendulum model with two constraints. One constraint
keeps the CoG of the body to move on a straight line which has the slope of k and intersects
with y-axis at yH . The other keeps the rotation rate of the body constant.

The motion equation for the model is

m(yẍ− xÿ) + Iθ̈ = τ +mgx (2.16)

where τ is the ankle torque of the support leg.
The two constraints are

y = kx+ yH
θ̇ = ωc (ωc is constant.)

(2.17)

Differentiating Eq. (2.17), the constraints in terms of acceleration are:

ÿ = kẍ

θ̈ = 0
(2.18)

Substituting Eq. (2.17) and Eq. (2.18) into Eq. (2.16), a simple linear dynamics can be
expressed in Eq.(2.19).

ẍ =
g

yH
x+

1

myH
τ (2.19)

The insight we can draw from the LIPM is as follows. The differential equation of motion
of an inverted pendulum is linear in the Cartesian coordinate frame, and it does not depend
on neither the structure of a leg nor the constraint parameters (except yH). These make the
design of biped locomotion simplified.

Kajita et al. then extended LIPM to 3D Linear Inverted Pendulum Mode (3D-LIPM) by
applying a constraint control to an inverted pendulum such that the mass moves along an
arbitrary defined plane [43], as illustrated in Figure 2.5(c). Especially, if the constraint plane
is horizontal, the dynamic equations of motion are given by

ẍ =
g

zc
x+

1

mzc
τy (2.20)

ÿ =
g

zc
y − 1

mzc
τx (2.21)

where τx, τy are the torques around x-axis and y-axis, respectively.
The dynamic equations of motion become linear and decoupled so that the motion of the

robot can be obtained analytically.

2.2.3 Angular Momentum Inducing Inverted Pendulum Model

Komura et al. proposed an Angular Momentum inducing inverted Pendulum Model (AMPM)
to counteract the increased angular momentum due to external perturbations [63].

In the AMPM, the ZMP is allowed to move over the ground, and its position must be
linearly dependent on that of the CoM. The horizontal component of the ground force vector
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Figure 2.6: Angular momentum inducing inverted pendulum model.

is allowed to change, by an amount which must be linearly dependent on the CoM. As shown
in Figure 2.6, the position of the CoM is (x,H), the position of the ZMP is (cx + d, 0), and
the vector of the ground force is parallel to the vector (a(x− zmp) + b, g) where a, b, c, d are
constants, m is the mass of the system and g is the acceleration of gravity. Then the increased
angular momentum between time t1 and t2 can be quantificationally obtained:

ωt1,t2 =

[
m(1− c)(aH − g)√

a− ac

(
− C1e

−(
√
a−ac)t + C2e

(
√
a−ac)t

)
+mgt(

b

a
)

]∣∣∣∣∣
t2

t1

+ ω1 (2.22)

where ω1 is the angular momentum at t = t1, and C1, C2 are constant values which can be
determined by initial conditions at t = 0. More detailed calculation can be found in [63].

In [63] the increased angular momentum was offset to zero by adjusting the direction of the
GRF vector so that the GRF pass through the CoM again. This is realized by accelerating the
CoM during the double support phase. The idea is in accordance with the concept of CMP
or ZRAM in which HG should be constant. The method is similar to the hip strategy used
by human beings to maintain balance against perturbations while keeping upright standing
posture. AMPM is considered as an extension of Kajita and Tani’s LIPM, because besides
the linear momentum the former model incorporates the centroidal angular momentum to
control the robot.

2.3 Related Works

Many research groups have developed their own humanoid robot platforms in order to re-
alize robots that can coexist with humans and perform a variety of tasks. For example, as
shown in Figure 2.7, a HONDA research group has developed the humanoid robots P2, P3,
and ASIMO. Waseda University has developed the WABIAN series. The Japanese National
Institute of Advanced Industrial Science and Technology (AIST) and Kawada Industries, Inc.
have developed HRP series. The University of Tokyo has built the H6 and H7. The Korea
Advanced Institute of Science and Technology (KAIST) has developed KHR and HUBO.
The Technical University of Munich has developed Johnnie and Lola. These are the most
advanced and well-known biped humanoid robots in the world. Actually, there is a large and
growing body of ongoing research on humanoid and legged robots. Due to the very large
number of publications in this field, only the work considered to be the most relevant for this
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thesis is summarized briefly in the following. In particular, only work on fully actuated, three
dimensional humanoid robots is considered.

(a) P3 (b) ASIMO (c) WABIAN-2R (d) HRP-4

(e) H7 (f) HUBO2 (g) JOHNNIE from [73] (h) LOLA

Figure 2.7: Well-known biped humanoid robots. Sources: (a) http://asimo.honda.

com/ASIMO_DCTM/News/images/highres/21_P3.jpg; (b) http://asimo.honda.com/

ASIMO_DCTM/News/images/highres/ASIMOatFIRST3.jpg; (c) http://www.takanishi.

mech.waseda.ac.jp/top/research/wabian/index.htm; (d) http://www.aist.go.jp/

aist_j/press_release/pr2010/pr20100915/pr20100915.html; (e) http://www.jsk.t.

u-tokyo.ac.jp/research/h6/H7_05.jpg; (f) http://hubolab.kaist.ac.kr/p_hubo2p;
(h) http://www.amm.mw.tum.de/index.php?id=93.

http://asimo.honda.com/ASIMO_DCTM/News/images/highres/21_P3.jpg
http://asimo.honda.com/ASIMO_DCTM/News/images/highres/21_P3.jpg
http://asimo.honda.com/ASIMO_DCTM/News/images/highres/ASIMOatFIRST3.jpg
http://asimo.honda.com/ASIMO_DCTM/News/images/highres/ASIMOatFIRST3.jpg
http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/index.htm
http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/index.htm
http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100915/pr20100915.html
http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100915/pr20100915.html
http://www.jsk.t.u-tokyo.ac.jp/research/h6/H7_05.jpg
http://www.jsk.t.u-tokyo.ac.jp/research/h6/H7_05.jpg
http://hubolab.kaist.ac.kr/p_hubo2p
http://www.amm.mw.tum.de/index.php?id=93
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2.3.1 Honda Motor

Honda in Japan has exhibited bipedal walking robots P1, P2, P31 from 1993 to 1997 [30]. P1,
with a height of 1915 mm and a weight of 175 kg, was mainly used for fundamental research
on bipedal walking mechanism.

Honda developed its own first humanoid walking robot P2 in 1996 [27]. P2 is a self-
contained humanoid robot. It is 1820 mm tall and weighs 210 kg. The whole body has a
total of 30 DoFs. Possessing two arms and two legs, P2 has more humanoid characteristics
than P1. The essence of the posture control is similar to the CMP concept introduced in
Section 2.1. P2 could walk at the speed of 3 km/h. However, it is too tall and heavy to work
in practice. Besides, the power expenditure while walking was high. In December 1997, the
company brought forth the humanoid robot P3, which is similar to P2 but much smaller and
lighter, with a height of 1600 mm and a weight of 130 kg. The performance and walking
ability were improved as well. P3 has realized dynamic walking on a plane and stairway [27].

ASIMO1, showed up in 2000, is 1200 mm in height, 52 kg in weight and has in total 26
DoFs. Walking speed can range from 0 to 1.6 km/h [100]. ASIMO can walk and turn fluidly, go
up and down stairs, walk on a slope, adjust walking speed through altering walking frequency
and step, operate switches and knobs, and even dance. ASIMO takes advantage of the ‘i-
WALK’ technology [30], which embeds a control system that can predict the future motion
online, thus making locomotion much smoother and more natural. The second generation of
ASIMO is 1.3 m tall and weights 54 kg with 34 DoFs. The posture control algorithm and
highly responsive hardware improved the walking speed to 2.7 km/h and enabled ASIMO to
run at 6 km/h. A three-mass model was used as an approximate dynamics model to generate
the walking pattern [117]. The all-new ASIMO being developed has the same height as the
second generation, but decreases 6 kg in weight. The robot has in all 57 DoFs. Running speed
can achieve 9km/h.

The great success of HONDA humanoid robots triggered the world’s research on humanoid
robots. Since the second prototype HONDA humanoid robot P2 was revealed in 1996, many
biped humanoid robots have been developed in the world.

2.3.2 Waseda University

Researchers at Waseda University Japan have been studying on bipedal walking robots since
1969. In 1969, late Prof. Kato initiated modern research on biped walking robots at the
Waseda University by constructing an anthropomorphic pneumatically activated pedipulator
WAP-1 [52]. In 1972, WL-5 accomplished automatic biped walking by computer control for
the first time in the world [115]. In 1973, WABOT-1, which is known as the world’s first full-
scale anthropomorphic robot, was developed by Kato et al. [53]. Up to present, researchers
at the Waseda University have built a series of bipedal walking robots and bipedal humanoid
robots.

Research Achievements on WL series

Since the year 1969, WL series bipedal walking robots have gone through the experience from
statically stable walking, quasi-dynamic walking to complete dynamically stable walking.
During the period of development, four main achievements have been accomplished.

1Copyright©: Honda.
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1. The development of the control method which takes advantage of three-DoF trunk
motion to compensate for the three-axis moment given an arbitrary planned ZMP. Before
walking, desired lower limb and ZMP trajectories were preset. The balancing motion of the
trunk was computed by iteratively solving the approximate equations of motion using the
desired lower limb and ZMP trajectories. During walking, these precalculated trajectories
were played back with the program control. With this method, dynamic biped walking was
achieved. It was reported that the three-axis trunk motion improved the stability of the robot
and allowed WL-12 RV to walk 50% faster than with two-axis trunk motion [127] .

2. Dynamic walking was realized under an unknown external force [116]. Online control was
added to compute the trunk motion which was altered in real time from the preset trajectory
to maintain the trajectories of preset stance leg and ZMP. The landing points of the swing
leg was changed to return the trunk motion to the preset trajectory within three steps. A
learning method was implemented and the compensative trunk motion was optimized [68].

3. The compliant foot mechanism was developed to absorb impact and contact forces between
the foot and the ground using elastic pads [128]. Virtual compliance control with variant
compliance parameters for the sake of reducing the virtual stiffness of the swing foot was also
studied to decrease the impact forces [110].

4. Parallel mechanisms WL-15, WL-16 and WL-16R [110] were developed for the application
in the medical and welfare field.

WABIAN series

Based on the studies on biped walking robots, the research on humanoid robots WABIAN
series began in 1996 as the second stage of robot studies.

WABIAN [126] is a 35-DoF humanoid bipedal walking robot with an anthropomorphic
body. The walking control method implemented on biped walking robots was further ex-
tended by using arm trajectories. Trajectories of the arm and leg joints as well as ZMP were
predetermined. Compensatory motions of the trunk are then computed not only by the de-
sired lower limb motion and ZMP trajectories but also by the desired upper limb motion.
WABIAN can walk dynamically, dance in place, and carry load using its arms.

An impedance control method for WABIAN-RIII was created to absorb the impact/contact
forces generated between the landing foot and the ground, which can adjust impedance like
the relaxed and hardened motion of muscles of a human [70]. An online locomotion pattern
generation was developed for a biped humanoid robot having a trunk, which is based on visual
and auditory sensors [69].

WABIAN-2/LL was developed as the lower limb mechanism of the bipedal humanoid robot
WABIAN-2. By predetermining the knee joint pattern, the singularity problem using inverse
kinematics to creat knee-stretched walking was solved [86]. Compared with conventional walk-
ing with constant waist height, knee-stretched walking realizes lower energy consumption in
knee actuators. Dynamic walking was achieved at the walking speed of 0.96 s/step with 0.35
m step length on a flat floor.

WABIAN-2 [85] is a full scale humanoid robot by mounting a new upper body mechanism
which has a 2 DoFs trunk and a 2 DoFs waist on WABIAN-2/LL. WABIAN-2 has 41 DoFs
with the height of 1.53 m and the weight of 64.5 kg. It was designed as a human motion
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simulator and was used in the medical field to simulate the elderly and handicapped to push
walk-assist machine. There are two characteristics in mechanical design. One is that both
trunk and waist have 2 DoFs. The joint configuration of the trunk and waist makes the robot
enable to imitate the human trunk motion. The other is that the arms can hold robot’s weight
while it leans against on a walk-assist machine.

Up to now, the latest version of the humanoid robot in the Waseda University is WABIAN-
2R2. It is 1480 mm in height, and 63.8 kg in weight. Each ankle is mounted a 6-axis force/-
torque sensor. In order to mimic human movements, the robot has 41 DoFs and joint ranges
of motion were designed in reference to a human being. Knee-stretched walking has been
realized since the 2 DoFs waist provides a redundant DoF (waist rolling motion) which solves
the singularity problem in inverse kinematics. WABIAN-2R is capable of adaptive walking
depending on the ground condition. The robot prefers either knee-stretched fast walking on
even floor or knee-bend walking on uneven terrain. The improvement on foot mechanism was
the emphasis of the robot mechanical design. First, knee-stretched walking with heel-contact
and toe-off motion was accomplished indoors and outdoors by adding a passive toe joint on
the foot. Second, an arch-like structure observed in human foot was added on the foot [23].
The arch structure absorbed the generated impact when the sole fully contacted the ground.
Third, the foot mechanism was improved from 4-point contact mode to 3-point contact mode
which makes the robot more adaptive to the unstructured environment. WABIAN-2R with
3-point contact mode was able to walk with larger stability margin and less foot slipping prob-
lem. Besides, WABIAN-2R was used as a human motion simulator and emulated a disabled
person’s gait [64]. Turning motion based on human motion by utilizing the slip between the
feet and the ground was realized by PD controlling the roll axis angle of the ankle joint [24].
By applying stabilization algorithms to the single support phase and double support phase,
the robot succeeded walking on the soft ground [22]. Jumping motion on the moon gravity
was studied in the simulation level [90].

In summary, the humanoid robots at Waseda University are human-like, not only in the
appearance and mechanical structure, but in walking behaviors and capabilities. From WL
series to WABIAN series, we can see that the development of humanoid walking robots at
Waseda University is oriented towards the goal of coexisting and cooperating with humans.

2.3.3 AIST and Kawada Industries

AIST has developed a number of sophisticated humanoid robots together with Kawada In-
dustries. Development started with the “humanoid robotics project” (1998 to 2002) funded
by the Japanese Ministry of Economy, Trade and Industry (METI).

HRP-2P, the prototype humanoid robotics platform for HRP-2, is a 30 DoFs humanoid
robot that is 1.54 m tall and weights 58 kg. It is reported to be the first human-size humanoid
robot that can lie down to the floor and get up from the floor using static and dynamic
motions [50]. The stability of the dynamic motion is ensured by tracking the desired ZMP
trajectory via controlling the hip pitch joint. In addition, a walking control and pattern
generation method called preview control realized the dynamic walking of HRP-2P by solving
an infinite horizon linear quadratic regulator (LQR) problem [43]. Using waist motion to
compensate the moment around the yaw axis of the robot, 2.5 km/h walk was achieved by
HRP-2.

2Copyright©: Takanishi Laboratory.
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HRP-3 [51] has a larger size than HRP-2P with the height of 1.6 m and the weight of 68 kg.
The number of driven joints increases to 42. The mechanical configuration of the waist and hip
joints of HRP-3 inherits from HRP-2. The difference lies in that HRP-3 has a 3-fingered hand
which improves the manipulation capability of the robot. The distributed control system of
the HRP-3 is based on Controller Area Network (CAN), while HRP-3P is based on real-time
Ethernet. In addition, HRP-3 was designed for outdoors. The robot was capable of walking
on an unexpected slippery floor with low friction by adopting feedback control with a slip
observer.

HRP-4C is a life-size humanoid robot which was developed for the entertainment purpose
by AIST. Its dimensions are designed referring to a database of Japanese women of 20-year-
old [114].

The newest robot HRP-43 [54] is developed for the purpose of coexisting with humans
and doing safer collaborative works with humans. The concept of mechanical design includes
an increase in the degree of freedom of both arms which is essential to handle objects while
achieving a smaller and lighter-weight body in comparison to conventional HRP series. The
robot can hold an object with a 5-fingered hand. The real-time motion control system is
developed by AIST.

2.3.4 University of Tokyo

H5, H6 and H7 humanoid robots were developed at the University of Tokyo.

H5 is a child size humanoid robot developed as a research platform of dynamic bipedal
locomotion. Dynamic balanced trajectory generation has been studied on this platform.

H6 [84] is 1.37 m in height and 55 kg in weight, and has a total of 35 DoFs. It has
been developed for an integration of vision, tactile, motion planning and dynamic bipedal
locomotion. Aircraft technologies which lead to a strong and light structure were applied
to the body frame. The desired walking pattern of H6 is generated online by constructing
typical stepping patterns offline in advance and then mixturing and connecting these patterns
online [83].

H74 [42] was improved over H6 by attaching six-axis force sensors, hand pressure sensors
and toe joints to the robot. An online walking pattern generation method [82] makes the
dynamic walking follow the desired ZMP trajectory by modifying horizontal torso trajectory
via iterative calculation when the initial trajectory is given. H6 and H7 can walk up and down
25 cm high steps and can also recognize preentered human faces by a computer vision system.

2.3.5 KAIST

KAIST developed several humanoid robots. KHR-2 [58, 59], developed in 2003 was made
to resemble a child-sized human with the weight of 56 kg and the height of 1.2 m. It has
total 41 DoFs. The soles are flat without toe joints. The robot is equipped with six-axis
force/torque sensors on the feet and wrists and an inertial measurement unit (IMU) in the
upper body. The walking pattern was desiged offline based on the inverted pendulum model.
A cosine function was used for planning the lateral trajectory of the pelvis. The trajectory in
the forward direction was generated by mixing the cosine and linear function. Trajectories of

3Copyright©: National Institute of Advanced Industrial Science and Technology (AIST) and KAWADA
INDUSTRIES, INC.

4Copyright©: JSK Laboratory, University of Tokyo.
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both feet were depicted by a cycloid function. Several online controllers based on the sensory
feedback were used for stabilizing the posture of the robot according to the walking stages.
With this system, KHR-2 realized dynamic walking not only on flat floor with the speed of 1
km/h, but on uneven and inclined floor with local or global inclination of ±2◦.

KHR-3 HUBO [91] was upgraded directly from KHR-2, and therefore, has the same me-
chanical configuration as KHR-2. The walking pattern of HUBO was online generated by
using a cycloid function for the ankle trajectory and a 3rd order polynomial interpolation for
the pelvis trajectory. The control methods remained similar to KHR-2. The walking speed
is up to 1.25 km/h. Using offline generated trajectories and online controllers, the robot can
run at a speed of 3.24 km/h [9].

Albert HUBO [89] is an android type humanoid robot by combining the HUBO platform
and a head which is capable of expressing facial expressions.

The latest version of the HUBO series is HUBO25 [35]. This robot was developed in 2009.
It is 1.25 m in height, 45 kg in weight and has in all 40 DoFs. The main goal of the HUBO2
design is to achieve the lightest human-size humanoid robot in the world. HUBO2 can walk
at a speed of 1.5 km/h and run at a maximum speed of 3.6 km/h. Moreover, the new walking
algorithm permitted stretched leg walking of the robot, making HUBO2 different from the
previous robots in the series.

2.3.6 Technical University Munich

The researchers in the Institute of Applied Mechanics, Technische Universität München de-
veloped humanoid robots Johnnie and its successor Lola.

The biped robot Johnnie6 [73] with vision system is 1.8 m in height and 40 kg in weight.
The robot has 12 DoFs in the lower body and 5 DoFs in the upper body. The shoulder
joints compensate for the overall moment of momentum. Six-axis force/torque sensors in the
feet and an IMU in the upper body are used for stability control. The horizontal walking
pattern of the CoG was designed based on a lumped mass model. The disadvantage of the
model is that the robot walks with unnatural bending knees. The CoG trajectory is planned
using a fifth-order polynomial in the sagittal plane. Torque control with disturbance observers
regulates the torque of the stance foot as well as that of the remaining 15 joints in order to
track the reference trajectories. Since the robot with the torque control method could not
achieve high speed walking in experiments, a different control method focusing on the overall
system stability was applied. Balance is achieved by controlling the orientation of the upper
body via regulating the torques at the ankle joints. Besides, impedance control is used to
reduce the impact when the swing foot hits the ground. With this control method the robot
was able to walk stably with a speed of 2.4 km/h and step length of 55 cm.

The humanoid robot Lola6 [8] was constructed in 2006 for the purpose of fast, human-like
and autonomous walking motion. The height is the same as Johnnie, but 15 kg heavier in
weight. The mechanical and kinematic structure of Lola was improved over Johnnie from the
biological point of view. In comparison to Johnnie, Lola has eight more DoFs - one DoF active
toe joint in each foot, one DoF in each elbow, three DoFs camera head and one more DoF
about roll axis in the pelvis. Additional degrees of freedom allow for more flexible and natural
gait patterns. A three-point-mass model is used for real-time planning. The walking pattern
is generated online by connecting the smooth and stable CoM trajectory for the next steps to

5Copyright©: HuboLab-KAIST.
6Copyright©: TUM Technische Universität München.
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the current trajectory. Hybrid position/force control method in the task space is used with an
inner joint position control loop, and an outer contact force control loop to provide inertial
stabilization. The maximum forward walking speed of Lola was 3.34 km/h and Lola was able
to walk sideways at a speed of 0.7 km/h [7]. With a computer vision system, Lola has the
capability to autonomously navigate among obstacles.

2.4 Chapter Summary

This chapter provides insight for dynamic control of a biped humanoid robot.
Understanding the stability criteria presented in this chapter not only help us to under-

stand the algorithms used in future chapters, but also the control strategies that have been
discovered that humans employ. For example, humans seem to use a variety of control strate-
gies in order to maintain balance in the presence of sudden horizontal perturbations while
standing [31, 75, 77, 125]. These are referred to as the “ankle strategy”, defined as torque
about the ankle joint only, and the “hip strategy” defined as using hip flexors or extensors to
generate shear forces at the feet that act to decelerate the CoM, and the “stepping strategy”
defined as stepping out in order to reconfigure the support polygon.

These strategies are quite understandable in view of the stability criteria presented above.
For smaller perturbations, the ankle strategy moves the location of the CoP and the balance
is regained. When the perturbations are larger or when the support surface is narrow, the hip
strategy lunges the body inertia in order to make the CoM accelerate in the opposite direction
so that the GRF passes through the CoM again which indicates ḢG = 0. A combination of
pure ankle and hip strategy is also possible. The last resort-strategy is elicited when the CoM
of the body passes outside the limits of the base of support, stepping strategy keeps the CoP
inside the support polygon by enlarging the size of the support polygon.

In Chapter 4, “ankle strategy” and “hip strategy” that utilize ankle and hip joints are
employed to control the body posture of the walking robot based on the orientation and
angular velocity of the upper body. The location of the ZMP on the foot is indirectly regulated.



3 Walking Pattern Generation

This chapter presents the motion generation method for biped humanoid robots. The ba-
sic objective is to generate a natural, human-like and efficient walking motion. Motivated
by biomechanical studies on human walking, we model the walking pattern with continu-
ous and differentiable mathematical functions. For stable walking of the robot, we design
a pattern generator based on the ZMP criterion. The presented walking pattern involves a
three-dimensional motion of the upper body instead of restricting the upper body motion to
a flat surface (Figure 3.1). The advantages of the three-dimensional upper body motion lie in
that (i) a natural and human-like walking pattern is achieved; (ii) since the robot does not
always bend its legs, energy consumption to support the body weight will be small at knee
joints. The comparison of energy consumption between the conventional walking pattern and
the presented walking pattern will be made in Chapter 4. Moreover, the presented method
needs lower calculation costs compared with the method based on the precise knowledge of
robot dynamics.

Figure 3.2 illustrates the scheme of the walking system which is composed of an offline
motion generator and an online control system. The offline motion generator calculates the
reference walking pattern and the real-time control system aims at realizing stable, efficient
and fast walking based on sensory feedback. The real-time control system that refers to
position control and force control will be presented in Chapter 4, Chapter 5 and Chapter 6,
respectively.

2D waist motion  3D waist motion  

Figure 3.1: Two-dimensional waist motion vs. three-dimensional waist motion.

27



28 3 Walking Pattern Generation

Walking(pa*ern(
generatorO

ffl
in
e(

M
o2

on
(g
en

er
at
or Walking(parameters(se5ng

Reference(walking(pa*ern

Torso(
pitch/roll(
control

Yaw(
moment(
control

Body(posture(control

PD(
controller

Robot(and(
environment

IMU((angle(posi2on(&(angular(velocity)

Swinging(leg(
trajectory(
tracking

Landing(
impact(
control

Gait(control

Adap2ve(
controller

Impedance(
controller

FSRs((forces(exerted)

+
+

Motor(
torque

O
nl
in
e

Po
st
ur
e(
&
(g
ai
t(c
on

tr
ol

+

Arm(
mo2on

Figure 3.2: Overview of the walking control system.

3.1 Introduction

In the biped robotics research field, a gait pattern is a set of trajectories for the desired ZMP,
the feet and the upper body. Planning the walking pattern is one of the most important
parts in realizing the stable motion of a biped robot since a well-designed walking pattern
can guarantee the motion stability.

3.1.1 Background and Related Works

Many different schemes for generating gait pattern of walking bipeds have been implemented
during the past 30 years. The approaches can be summarized as follows.

Precise Dynamics vs. Approximated Model

From the viewpoint of control and walking pattern generation, research dedicated to biped
walking pattern generation can be classified into two categories.

The first approach models the robot as a rigid multibody system which requires precise
knowledge of robot dynamics, e.g. mass, location of center of mass and inertia of each link,
to design walking patterns [32, 44, 116, 126, 127]. Therefore, it mainly relies on the accuracy
of the models. Let us call this the ZMP-based approach since they often use the ZMP for
pattern generation and walking control. The approach can derive a precise walking pattern
that satisfies the desired ZMP trajectory, but it is hard to generate the walking pattern in
real-time due to the large calculation burden. Further, if the mathematical model is different
from the real robot, the performance is diminished.
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On the contrary, the second approach uses limited knowledge of dynamics, e.g. location of
total center of mass, total angular momentum, etc. The walking pattern is designed based on
the limited information of a simple model [10, 43, 45, 58, 117]. We can call this the model-
based approach, since it frequently uses a model. Since the controller knows little about the
system structure, this approach greatly relies on feedback control. During walking, many
kinds of online controllers are activated to compensate the walking motion through the use of
various sensory feedback data. This approach can easily generate the walking pattern online.
However, it depends strongly on the sensory feedback, hence the walking ability is confined
to the performance of sensors and requires considerable experimental hand tuning.

Bending-knee Walking vs. Stretched-knee Walking

If we took the whole dynamic parameters of a humanoid robot into consideration to generate
the proper walking pattern, more accurate results could be obtained. However, full dynamics
need complicated and tedious computations and require a lot of time. For reducing computa-
tional difficulty, simplified humanoid robot models are used. Many researchers have employed
the 3D-LIPM as the humanoid robot model.

By constraining the CoM motion on a horizontal plane, the dynamic equations of motion
of the 3D-LIPM becomes linear and decoupled. This facilitates the walking motion design.
However, as a result of the constant height of the CoM, robots employing this approach walk
with unnatural bending knees. Consequently, the walking is less efficient since the energy
consumption to support the body weight is higher in the knee joints during walking. In
addition, it is hard to realize fast walking because the load is concentrated in the knee actuator.
The advantage of bending-knee walking is that by lowering the CoM and thus decreasing the
landing impact the stability can be easily achieved.

The other reason of walking with bending knees is that the extended knee configuration
is in fact a singularity of inverse kinematics. Under conventional control, a humanoid robot
cannot handle the singularity because an extremely large joint velocity would be generated
which is beyond the bearable range of the mechanical joints [87]. Hence, these humanoid
robots have always to bend the knees to avoid such a singularity.

Many studies which have achieved great success in realizing dynamic stable walking [10,
39, 43, 45, 58, 73, 91] involved walking patterns with bending knees.

Indeed, the knee of the support leg is not bent very much during the support phases in
human walk [102]; stretched-knee motion is also produced when the heel contacts on the
ground [87]. The advantages in walking with stretched knees and lifted waist are (1) Human-
like natural walking motion is achieved; (2) Energy efficiency is improved since required torque
and energy consumption to support the body weight become small at knee joints [66]. Hence
the ability to walk with stretched knees is an important quality that a humanoid robot should
possess in order for it to mimic human motion [88].

A few research studies have accomplished bipedal walking with stretched knees. Ogura
et al. proposed a redundant mechanism with predetermined knee joint trajectories as initial
walking parameters [86, 87]. Morisawa et al. proposed a pattern generation method with
the CoG motion constrained on a parametric surface [79]. The feature of this method is that
the walking pattern is divided into a time part and a spatial part. Kurazume et al. proposed
a method of generating straight legged walking pattern by controlling the height of the CoG
trajectory according to the state of the ZMP controller [66]. Sekiguchi et al. have so far
proposed the Singularity Consistent approach which can handle singularities with stable con-
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trol. In [101], they presented a walking pattern generation method through the neighborhood
of the singularity by using ankle control based on the spherical inverted pendulum model.
Kim et al. considered the knee joint fully stretched while designing the hip trajectory in the
sagittal plane [60]. Handharu et al. solved the singularity problem in gait pattern genera-
tion by adding an extra joint in the heel in order to obtain another degree of freedom during
knee stretch motion [19]. Park et al. also proposed a method to generate natural locomotion
trajectory without bending knees [92].

Online vs. Offline

Trajectory generation method can be divided into two major schemes: online trajectory gen-
eration and offline trajectory generation.

The online trajectory generation method generates the walking pattern in real time, feeding
back the present state of the system in accordance with the pre-provided goal of the motion.
In this method, specific trajectories, precision, and repeatability are not important factors
and the motion can be different in each step [5]. Planning and control are unified in this
method [113].

Over the past decade, studies on real-time planning of a humanoid robot’s gait have been
published. In addition to “i-WALK” by Honda, Kajita et al. generated the real-time walk-
ing pattern for a biped robot with telescopic legs based on the 3D-LIPM [46]. In [43], they
proposed a CoM trajectory generation method using the preview controller which involved
the future ZMP reference trajectory to minimize the objective function. Lim et al. considered
smoothly connecting the newly generated patterns to the current ones [69]. Nishiwaki et
al. realized online generation of the desired walking pattern for the humanoid robot H6 by
constructing typical stepping patterns offline in advance and then mixturing and connecting
these patterns online [83]. For the humanoid robot H7, they proposed a method in which
the horizontal position of the upper body trajectory is modified online to follow the desired
ZMP trajectory. The walking pattern was updated by means of connecting the newly cal-
culated trajectories to the current ones [82]. Sugihara et al. generated the ZMP and CoG
trajectories online that track the desired trajectories by solving quadratic programming (QP)
problem [112]. In [113], they realized online motion generation by controlling the CoG via
indirect manipulation of the ZMP. Dimitrov et al. proposed a scheme for online walking pat-
tern generation by solving a receding horizon LQR problem, i.e. QP problem [14]. Harada
et al. proposed real-time and quasi real-time trajectory connection methods [21]. The smooth
connection was realized by setting the ZMP parameters of the new trajectories as unknown
constants in order for the continuity of the velocity of the CoG. Planning a humanoid robot’s
gait in real-time allows humanoid robots to better adapt to the environment.

Offline trajectory generation method generally generates a set of dynamic stable trajecto-
ries in advance and then tracks these pre-computed reference trajectories. It divides motion
generation of humanoids into two subproblems, planning and control.

The offline trajectory generation method has been adopted mostly using the ZMP stablity
criterion. Takanishi et al. in 1972 realized the complete dynamic walking of the biped walk-
ing robot WL-10RD on a flat floor [115]. In the single support phase, the control method was
program control using preset walking pattern; in the double support phase, dynamic walking
was achieved by sequence control using the predefined torque and mechanical impedance of
both ankles. Kagami et al. proposed a walking pattern generation method by discretizing
the ZMP equation as a trinomial expression. The torso trajectory was generated by iterative



3.1 Introduction 31

calculation until the ZMP error was within the preset threshold [40]. Nagasaka et al. pro-
posed the optimal gradient method to robot’s gait planning [80]. Besides, the central pattern
generator (CPG) [38, 62] and energy consumption optimization have also been proposed to
plan the walking pattern of humanoid robots.

The motion plan in this thesis is offline, based on a point mass model, aims at natural and
human-like walking patterns of humanoid robots.

3.1.2 Clues from Human Walking

Locomotion is the act of moving from place to place by means of one’s own mechanisms or
power. Locomotion in human beings is the result of the action of the body levers propelling
the body. Walking is accomplished by the alternating action of the two lower extremities. It
is an example of translatory motion of the body as a whole brought about by rotary motion
of some of its parts [18].

Nature has solved efficiently the problem of biped locomotion during the long evolution of
human specie. Therefore, the analysis of basic anthropomorphic walking may be a source of
information to tackle the question of biped humanoid walking. Human walking has been widely
studied and described in the literature. We do not recall all the issues of human walking, but
describe the main walking principles that are the base of our method of planning the walking
pattern in this thesis. Characteristics in human walking are as follows.

Characteristic A

Human walking is a periodic process. During this process, four different situations arise in
sequence which can be depicted by a state machine [12] in Figure 3.3: (1) the statically stable
double-support phase (DSP) in which the mechanism is supported on both feet simultaneously.
The DSP starts as soon as the swinging leg meets the ground and ends when the support
leg leaves the ground. In human walking cycle, the period of this phase is considered to be
10-20 % of the whole cycle [99]; (2) The pre-swing phase in which the heel of the rear foot
is lifting from the floor but the toes of this foot are still on the floor; (3) Statically unstable
single-support phase (SSP) in which only one foot of the mechanism is in contact with the
ground while the other is being transferred from the back to front positions; and (4) the
post-swing phase in which the toe of the front foot is declining towards the floor and the heel
of this foot is contacting the floor.

Characteristic B [99]

In human walking, human body must slow down and then speed up again during each step
because the support provided by the legs does not remain directly under the body at all times.
Human walking has been partitioned into three distinct stages, as shown in Figure 3.4(a): 1)
Development stage (from rest to some velocity); 2) Rhythmic stage (some constant average
velocity); and 3) Decay stage (coming back to rest).

Characteristic C [99]

In normal walking, the CoM describes a smooth sinusoidal curve when projected on the plane
of progression. The summits of these oscillations appear at about the middle of the stance
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Figure 3.3: A state machine depicting periodic process of human walking.
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Figure 3.4: Movement of the CoM during human walking from [99]. (a) Three stages of the CoM
during human walking. (b) Displacements of the CoM in three planes of space during single stride.
A: Lateral displacement; B: Vertical displacement; C: Combined displacements of A and B.

phase of the supporting limb. The opposite limb is at this time in the middle of its swing
phase. The CoM falls to its lowest level during the middle of double weight-bearing, when
both feet are in contact with the ground. The CoM of the body moves also laterally in the
horizontal plane. In this plane it describes a sinusoidal curve as well, but at one-half the
frequency of the vertical displacement (Figure 3.4(b)).

3.2 Robot Model and Assumptions

In this thesis, we model the robot as one point mass concentrated on the position of the robot
waist. Therefore, the walking related dynamics of the humanoid robot can be simplified as
the equations of motion of the point mass, as shown in Figure 3.5.

The trajectories of the robot are defined in terms of cartesian coordinates. The global
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Figure 3.5: Dynamic walking model.

coordinate system OXYZ (see Figure 3.6(a)) fixed on the ground indicates the absolute po-
sitions of the waist and the two feet. The Z-axis is vertical, and the X-axis stands for the
walking direction of the robot. The X-axis and Y-axis form a plane which is parallel to that
of the floor. The local coordinate frame oxyz is attached on the waist, so it is used to indicate
the relative positions of the two feet with respect to the waist. Figure 3.6(b) demonstrates
anatomical reference planes of NAO. XY plane and XZ plane are called the transverse plane
and the sagittal plane, respectively. The lateral movements of the waist lie in the transverse
plane and the waist moves up and down within the sagittal plane.
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Figure 3.6: (a) Coordinate systems and (b) anatomical reference planes of NAO1.

For simplicity, the following assumptions are made.

1Copyright©: Aldebaran Robotics.
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(1) The floor for walking is rigid and cannot be moved by any forces and moments.

(2) The robot walks straight forward, so that the distance of two feet to their midline
(symbolized by d0) is a constant.

(3) Humanoid walking is a cyclic process with body movements repeated over and over.
So we only need to describe the walking pattern in the course of one walking cycle, namely
one stride.

(4) The contact region between the foot and the floor is a set of points.

Based on the assumption (3), supposing that the period necessary for one walking stride
(see Figure 3.11) is Tstride, the time for the kth stride walking is from kTstride to (k+1)Tstride,
k = 0, 1, 2, 3, . . . . To simplify the analysis, we define that the kth walking stride begins with
the beginning of a SSP, when the right foot starts leaving the ground at t = kTstride while
the left foot is stationary on the ground. The right foot swings from the rear to the front, and
touches down onto the ground when a DSP is formed. Then the left foot lifts up and moves
forward while the right foot is in contact with the ground. The kth walking stride ends at
t = (k + 1)Tstride with the end of the DSP when the right foot starts lifting up again.

3.3 Waist Reference Trajectory Generation

To generate a smooth trajectory, it is essential that the functions used for designing the
walking pattern be differentiable and their second derivative be continuous. For this purpose,
polynomial and cosine functions are used here. pw(t) = [pwx(t), pwy(t), pwz(t)] is used to
describe the desired waist trajectory, where pwx(t), pwy(t) and pwz(t) stand for the waist
motion in the forward direction, in the transverse plane and in the sagittal plane, respectively.

3.3.1 Trajectory in the Forward Direction

We describe each step in the rhythmic phase of human walking using a mathematical model
(Figure 3.7). The model contains three phases of the waist motion in one step: speed-up
phase, constant velocity phase and slow-down phase. The maximum velocity of the waist
during one step is Vmax and the minimum velocity is Vmin. The forward walking speed for
one step Vwx r(t) can be formulated by Eq.(3.1).
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Figure 3.7: Mathematical model of one step mimicking the rhythmic phase in human walking.
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Vwx r(t) =


0.5(Vmax − Vmin)(1− cos πtTs

) + Vmin (0 ≤ t < Ts)

Vmax (Ts ≤ t < Td)

0.5(Vmax − Vmin)(1− cos
π(t− Td − Ts)

Ts
) + Vmin (Td ≤ t < Tstep)

(3.1)

where Ts and Td are the start time and ending time of the DSP respectively; Tstep is the time
for one walking step, Tstep = 0.5Tstride = Ts+Td. If we use double support ratio τdsp to denote
the portion of the double-support phase in a walking cycle, then Ts = 0.5Tstep(1− τdsp) and
Td = Tstepτdsp +Ts. t is the system time, and the subscript “wx r” indicates a certain physical
quantity of the waist in the rhythmic phase along the X-axis (in the forward direction).

If we set Am = π(Vmax − Vmin)/2Ts , then Am is the maximum acceleration. The corre-
sponding acceleration in the process of one walking step awx r(t) is

awx r(t) =


Am sin πtTs

(0 ≤ t < Ts)

0 (Ts ≤ t < Td)

Am sin
π(t− Td − Ts)

Ts
(Td ≤ t < Tstep)

(3.2)

Based on Eq.(3.1), the absolute position of the waist pwx r(t) in one walking step in the
rhythmic phase can be obtained through integration,

pwx r(t) =

∫ Tstep

0
Vwx r(t)dt (3.3)

Then we have,

pwx r(t) =



0.5(Vmin + Vmax)t− (Vmax − Vmin)Ts
2π

sin
πt

Ts
(0 ≤ t < Ts)

0.5(Vmin + Vmax)Ts + Vmax(t− Ts) (Ts ≤ t < Td)

0.5(Vmax − Vmin)(Td − Ts) + 0.5(Vmin + Vmax)t

−(Vmax − Vmin)Ts
2π

sin
π(t− Td − Ts)

Ts
(Td ≤ t < Tstep)

(3.4)

We use a 4th order polynomial function to describe the waist trajectory of the robot in
order to imitate the development phase and decay phase in human walking:

Vwx d
(t) =

4∑
i=0

ait
i (3.5)

where the subscript “wx d” indicates a certain physical quantity of the waist in the devel-
opment phase along the X-axis (in the forward direction); ai(i = 0, 1, 2, 3, 4) are polynomial
coefficients which are determined by boundary conditions. For example, for the first step of
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the development phase of the robot the boundary conditions can be written as

Vwx d
|t=0 = 0;

Vwx d
|t=Tstep = Vmin2;

V̇wx d
|t=0 = 0; 2

V̇wx d
|t=Tstep = 0; 2

V̈wx d
|t=Tstep =

A′mπ

Ts
.3

(3.6)

where A′m =
π(Vmax2 − Vmin2)

2Ts
, Vmin2 and Vmax2 are the velocities shown in Figure 3.7.

Hence the waist position pwx d
(t) in the development phase and decay phase can be obtained

through integration.
Figure 3.8 shows the waist velocity of the generated walking pattern in the forward direc-

tion.
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Figure 3.8: Waist velocity of the generated walking pattern in the forward direction. The horizontal
axis indicates the time of the whole walking process. Before the robot walks, the posture of the
robot will first change from squatting to standing. To make sure that the robot starts walking
from being stationary, the robot will keep the standing posture for 4 seconds. So the data was
recorded from the end of the fourth second.

3.3.2 Lateral Trajectory in the Transverse Plane

As illustrated in Figure 3.9, compared with the other walking steps, the first walking step
(OABC) of the robot is a special process in step length and lateral swing amplitude since

2It is desirable that in the development phase the gradients of the tangent lines of the function at time
t = 0, t = Tstep, t = 2Tstep (the points like a, b and c in Figure 3.7) are zero.

3To generate a trajectory that smoothly connects the development phase and rhythmic phase, it is essential
that the second derivative of the functions be continuous. Differentiating Eq. (3.2) in the rhythmic phase, we

get ȧwx r |t=0 =
Amπ

Ts
. Therefore, in the development phase V̈wx d |t=Tstep must be

Amπ

Ts
. Here we use A′

m, it

depends on how many steps the robot uses in the development phase to reach the rhythmic phase.
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the robot accelerates from being stationary to some speed in this walking step. Similarly, the
robot decelerates to stop walking in the last walking step. The lateral swing motion of the
waist is essential to move the ZMP to each sole during walking. In order to guarantee the
ZMP at the sole area of the support foot (here, right foot), the robot must lean to the right
side at the beginning of walking from point O to point A.

We use a 3rd order polynomial function to describe the waist trajectory for the first step
in the transverse plane.

pwy(t) =
3∑

i=0

ait
i (0 ≤ t < Tstep) (3.7)

where ai(i = 0, 1, 2, 3) are polynomial coefficients which are determined by the boundary
conditions as follows: 

pwy |t=0 = 0;

pwy |t=Tstep = Al;

ṗwy |t=Tstep = 0;

p̈wy |t=Tstep = −ω2Al.
4

(3.8)

with ω being the frequency of the function that describes the lateral walking trajectory of
the waist for the succeeding steps, and Al being the lateral swing amplitude.

From pwy |t=0 = 0 we obtain a0 = 0. The boundary conditions in Eq. (3.8) can be expressed
by a linear system equation

Ax = b

with a solution x = A−1b, where

A =

 Tstep
3 Tstep

2 Tstep
3Tstep

2 2Tstep 1
6Tstep 2 0

 , x =

 a3
a2
a1

 and b =

 Al

0
−ω2Al

 .

Figure 3.10 illustrates the lateral trajectory of the waist for the first step in the transverse
plane.

The lateral path of the waist for the succeeding walking steps can be described by the
following cosine function.

pwy(t) = Al cosω(t− t0) (t ≥ Tstep, t0 = Tstep) (3.9)

3.3.3 Trajectory in the Sagittal Plane

The trajectory for the upward and downward waist motion in the sagittal plane is generated
using a cosine function with its frequency being twice as that in the lateral plane (see Charac-
teristic C). In the speed-up phase, the robot descends gradually from the summit zmax until
the DSP starts. In the constant velocity phase, the robot maintains the lowest level zmin. In

4It is also possible to describe the waist trajectory of the first step in the transverse plane by using a 4th order
polynomial function. Besides the boundary conditions in Eq. (3.8), another boundary condition ṗwy |t=0 = c
(c is a constant) is needed. Note that in order to make the robot lean to the right side at the beginning of
walking from point O to point A, c should be a negative value. However, the 4th order polynomial function
has been verified neither through simulation nor through experiments on the real robot.
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Figure 3.9: Lateral waist path.
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Figure 3.10: Lateral waist trajectory for the first step in the transverse plane. Parameters for
plotting: Al = 0.035 m, Tstride = 0.88 s.

the slow-down phase, the robot rises to the peak height zmax again (refer to Figure 3.11).
The upward and downward motion of the waist in the sagittal plane can be formulated by
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Eq.(3.10).

pwz(t) =


0.5(zmax − zmin)(1− cos

π(t− Ts)
Ts

) + zmin (0 ≤ t < Ts)

zmin (Ts ≤ t < Td)

0.5(zmax − zmin)(1− cos
π(t− Td)

Ts
) + zmin (Td ≤ t < Tstep)

(3.10)

As = 0.5(zmax − zmin) is defined as sagittal oscillation amplitude.
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Figure 3.11: Waist motion in the sagittal plane.

3.4 Foot Reference Trajectory Generation

We use a cycloid function to describe the trajectory of the swinging foot because the cycloid
function describes a path of a certain point on the circumference of a circle during circling,
which is similar to the human ankle circling the tiptoe [58]. pf (t) = [pfx(t), pfy(t), pfz(t)]
represents the reference foot trajectory in the global coordinate system.

Take the left foot as an example, the trajectory of the foot is


pfx(t) = α[ψ(t)− sin(ψ(t))]

pfy(t) = const.

pfz(t) = δ · α[1− cos(ψ(t))]

(3.11)

where ψ(t) = 2πt/Tssd (Tssd = 2Ts is the single support duration in one step), 0 ≤ ψ(t) ≤ 2π.
δ is a variable that keeps the maximum elevation of the foot (Hfoot) fixed, here δ = Hfoot/2α.
α is a synchronization parameter which will be discussed in the following section.

The right foot trajectory is the same as the left foot trajectory except for a Tstep delay.
Figure 3.12 shows the trajectories of both feet in the sagittal plane.
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Figure 3.12: Foot trajectories using cycloid function.

3.5 Simultaneous Planning of Waist and Foot Motion

The fundamental idea for synchronizing the motion of the waist and the two feet is that

pwx(t) = pfx1(t) = pfx2(t) (3.12)

holds at all t = jTstep, j = 0, 1, 2, 3, . . ., where pfx1(t) and pfx2(t) are the foot positions in the
forward direction.

Eq.(3.12) can be written as

pwx |(t=jTstep) = pfx1 |(t=jTstep) = pfx2 |(t=jTstep) (3.13)

The synchronization parameter α can be calculated. For example, in the rhythmic phase
Eq. 3.13 can be rewritten as

j(VmaxTd + VminTs) = jπα, j = 1, 2, 3, . . . (3.14)

Then we obtain

α =
VmaxTd + VminTs

π
(3.15)

3.6 ZMP Trajectory

ZMP is used to evaluate the stability of the generated walking pattern. We use Eq.(2.5) in
Section 2.1 to calculate the position of the ZMP. We assume that the rate of the change in
angular momentum around the CoG during walking is negligible since it is small compared
with the influence of the motion of the CoG. Then in Eq.(2.5), L̇wx = 0 and L̇wy = 0. Hence
the position of ZMP pzmp(xzmp, yzmp, zzmp) in the global coordinate frame can be expressed
as 

xzmp = pwx −
(pwz − zzmp)
p̈wz + g p̈wx

yzmp = pwy −
(pwz − zzmp)
p̈wz + g p̈wy

(3.16)
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Here, we assume that the robot walks on an ideal horizontal surface, then zzmp = 0. Note
that since the waist motion is not constrained on a two-dimensional surface but follows a
three-dimensional curved surface, p̈wz is not equal to zero.

Up to now, we have the trajectories of the waist and the two feet in the global coordinate
system. The relative trajectories of both feet with respect to the waist p̃f (t) are derived
following the relationships:

p̃f (t) = pf (t)− pw(t)

Then the reference trajectory of each joint is calculated by solving the inverse kinematics5 at
an interval of 10 ms (100 Hz). The reference joint positions are controlled by local PID joint
controllers. Figure 3.13 shows the outline of the walking pattern generation process, where
p̃left and p̃right denote the relative positions of the left foot and the right foot with respect to
the waist, respectively.

Walking(
Pattern(
Generator 

Inverse(
Kinematics 

Joint(
Controllers 

!pleft θLHipRoll

θLHipPitch

θRAnkleRoll


Main%Computer%(100%Hz)%

Robot(!pright

Figure 3.13: The process of generating the walking pattern.

Figure 3.14 shows the three-dimensional trajectory of the waist following the curved sur-
face. Compared with the walking patterns based on 3D-LIPM, the waist has upward and
downward motion in the vertical direction. Trajectories of the waist and both feet in the
forward direction are plotted in Figure 3.15. Figure 3.16 illustrates the waist and ZMP tra-
jectories in the transverse and sagittal planes. The waist trajectory in the sagittal plane has
twice the frequency of that in the transverse plane, which is similar to the mechanism of
human walking. Figure 3.17 shows the pitch angle trajectories of the knee joints of both legs.
We can see that the minimum pitch angles are close to zero. Compared with the conventional
walking patterns which need the humanoid robots to bend the knees all the time, the walking
pattern proposed in this thesis is more natural. The stick diagrams6 of the presented walking
pattern for both legs are shown in Figure 3.18.

3.7 Software Simulation

3.7.1 Software Overview

When working with robots, the usage of simulation is often of significant importance. On the
one hand, executing robot programs in a simulator offers the possibility of directly debugging

5For the details of the inverse kinematics of the robot NAO, refer to [56].
6The stick diagram is used to illustrate the trajectories of the hip, the knee and the ankle of the robot, as

well as to depict the configurations of the leg at a certain time interval throughout the process of walking.
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Figure 3.14: Waist trajectory following three-dimensional curved surface. Walking parameters for
plotting: Al = 0.025m, Vmin2 = 0.01 m/s, Vmax2 = 0.02 m/s, Vmin1 = 0.03 m/s, Vmax1 = 0.04
m/s, Vmin = 0.09 m/s, Vmax = 0.10 m/s, zmin = 0.330 m, zmax = 0.332 m, Hfoot = 0.026 m
and Tstride = 1.16 s. In the development phase of the walk, the forward velocity of the waist of the
robot is gradually increased (refer to Fig. 3.7 (left)). The ascending velocities in the development
phase are represented by Vmin2, Vmax2, Vmin1, Vmax1, respectively. In the steady phase of the
walk, the velocities are denoted by Vmin and Vmax.

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time [sec]

D
is

p
la

c
e
m

e
n
t 
[m

]

 

 

waist trajectory

Left foot trajectory

Right foot trajectory

Figure 3.15: Waist and foot trajectories in the forward direction.

and testing the programs. On the other hand, it supports the process of software development
by providing an replacement for robots. For example, developing and verifying various control
algorithms using a software simulator before using a real robot could avoid damages to the
real robot.
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Figure 3.16: Waist motion and ZMP trajectory in the transverse and sagittal planes. Parameters
for plotting: Vmin = 0.23 m/s, Vmax = 0.24 m/s, Al = 0.025 m, Tstride = 1.16 s.
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Figure 3.17: Knee pitch angles for the left and right legs.

To examine the feasibility of the presented walking pattern and verify the validity of the
control algorithms in this thesis, the simulation software SimRobot was used (see Figure 3.19).
SimRobot [67] is a kinematic robotics simulator developed in Bremen, Germany which utilizes
the ODE(1) to approximate solid state physics. It is an open source which allows to adapt
the code for respective software developments. In addition, SimRobot provides a convenient
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Figure 3.18: Stick diagrams of the walking pattern. (top) Left leg (bottom) Right leg.

way for software development because it can directly connect to the robot and implement
online debugging. By using update steps of up to 1 kHz for the physics engine, the simulated
walking closely matches the gait of the real robot [118].

3.7.2 Simulation Results

Figure 3.20 shows the snapshots of the forward walking in the simulator. In simulation, the
robot increased the velocity from a stationary state at the beginning of the walk. During
steady walking, the minimum velocity in one walking step was Vmin= 0.22 m/s and the
maximum velocity was Vmax= 0.23 m/s. After steady walking with a stride of 0.1059 m,
the robot reduced the velocity and stopped again. Total simulation time was 22.5 seconds.
Several computer simulations demonstrated the stable walking of the robot in the simulator
and indicated the feasibility of applying the presented walking pattern to the real robot.

3.8 Walking Experiments

Software simulation has indicated the feasibility of applying the presented walking pattern to
the real robot. To further test the dynamic stability of the walking pattern fulfilled on the real
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Figure 3.19: Walking simulation in SimRobot.

robot, we carried out walking experiments on the humanoid robot NAO. The robot walked on
a flat and noninclined floor but with local unevenness. In the experiments, the robot walked
in all 61 steps in 15 seconds.

We have taken a large number of experiments with different sets of walking parameters
(Tstride, τdsp, Al, zmin, zmax, Hfoot, Vmin and Vmax). For each experiment we adjusted these
parameters within the reasonable ranges. The experiments showed that with the presented
walking pattern, the robot could walk; however, the walks with various sets of walking pa-
rameters were all unstable. The problem was that the upper body of the robot swayed back
and forth during walking, and the amplitude of the oscillation became larger as the robot
walked. After a few steps the robot fell down. Figure 3.21 illustrates the inclination of the
upper body of the robot in the course of a walk which is the output of the walking pattern
generator without any feedback control. It is found that the inclinations of the upper body
about the Y-axis (pitch angles) are several times larger than 0.4 rad and the maximum pitch
angle of the upper body is more than 1.0 rad. It is sufficient to make the robot fall down
and thus the walking was unstable. Therefore, in view of the environment uncertainty such
as the unevenness and inclination of the surface that may cause the walking unstable, a pos-
ture control method to compensate for the body inclination of the humanoid robot aiming at
stable dynamic walking is necessary, and will be presented in Chapter 4.

3.9 Discussion

3.9.1 CoM Calculation

The CoM corresponds to the weighted average location of all the mass in the body. From a
physics point of view, the body (even if oddly-shaped) could be represented by a point mass
located at the CoM. Knowledge of the CoM is important to postural and stability control of
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Figure 3.20: Snapshots of forward walking in SimRobot simulator.
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Figure 3.21: Body inclination without feedback control.

humanoid robots.

The robot consists of a group of connected parts, e.g. joints and the corresponding links.
Each part has its own known mass and its own CoM (local CoM) at a known static position.
During walking, the position of the CoM changes as the joint configuration of the robot
changes. For any given configuration of the robot, forward kinematics can be used to locate
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the exact position of the CoM of each part relative to the reference point by setting the
position of the local CoM to be the end-effector.

Then the position of the CoM of the whole body can be calculated by Eq.(3.17).

pCoM =

∑n
i=1 pimi∑n
i=1mi

(3.17)

where n is the number of parts; pi is the location of the CoM of each part relative to the
reference point, as for NAO, the reference point is the origin of the local coordinate frame,
namely the waist; mi is the mass of each part, and pCoM is the position of the CoM of the
whole body.

3.9.2 Equivalence of the Waist and CoM in Designing the Walking Pattern

In this thesis, we investigated the walking pattern of a humanoid robot that involves the three-
dimensional motion of the waist. The presented walking pattern generation approach takes
the waist of the robot as the reference point. In most cases, motion planning of a humanoid
robot is based on the CoM or CoG of the robot [10, 43, 45, 66, 73, 79]. As a matter of fact, the
waist and the CoM of a robot do not overlap during walking since the robot waist is a fixed
point (refer to Figure 3.6) whereas the CoM of the robot changes as the joint configuration
of the robot changes. We found that designing the walking pattern of a humanoid robot can
base either on the waist or on the CoM.
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Figure 3.22: Spatial position of the CoM in the local coordinate frame. Parameters are Tstride =
0.88 s, Al = 0.04 m, zmin = 0.325 m, zmax = 0.328 m, Vmin = 0.24 m/s and Vmax = 0.25 m/s.

Figure 3.22 plots the spatial trace of the actual CoM in the local coordinate system during
walking. In order to facilitate the analysis of influence of the CoM position on the generated
walking pattern, the spatial trace is decomposed into trajectories in x, y and z directions,
as demonstrated in Figure 3.23. We can see that similar to the periodic motion of the waist,
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the CoM movement is also periodic, and the position of the CoM during walking deviates
from the waist. The CoM ranges from −2 mm to 8 mm in the x direction, and therefore has
a slight effect on the forward motion of the generated walking pattern. The CoM oscillates
laterally within ±1.0 cm, and in the sagittal plane −5.1 cm to −5.6 cm. Therefore, though the
waist in most of the time does not overlap with the CoM of the robot, generating a walking
pattern based on the motion of the waist is equivalent to that based on the motion of the CoM
providing the walking parameters such as Al, zmin and zmax are appropriately determined.
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Figure 3.23: CoM position in x, y and z directions.

3.10 Chapter Summary

In this chapter, a walking pattern generation method based on the studies on human walking
with the aim of achieving natural and efficient biped walking is presented. The walking pat-
tern of a bipedal humanoid robot is modeled with continuous and differentiable mathematical
functions. Then a pattern generator satisfying the ZMP criterion is designed. Compared with
the walking pattern that restricts the motion of the upper body to a horizontal plane, the pre-
sented walking pattern involves three-dimensional upper body motions and leg configurations
with almost stretched knees. The advantages of stretched-knee walking are that (i) a natural
and human-like walking pattern is achieved, and (ii) since the robot does not always bend its
legs, energy consumption to support the body weight is small at knee joints. The comparison
of energy consumption between the conventional walking pattern and the presented walking
pattern will be made in Chapter 4. Moreover, the presented method needs lower calculation
costs compared with the method based on precise knowledge of robot dynamics. The software
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simulation demonstrated the stable walking of the robot in the simulator and indicated the
feasibility of applying the presented walking pattern to the real robot.



4 Posture Control

4.1 Introduction

Although the designed walking pattern ensures the dynamic stability of a humanoid robot,
the robot may tip over during walking as the actual ZMP trajectory is different from the
reference ZMP trajectory due to the modeling error, the environment uncertainty such as the
unevenness of the surface, as well as disturbances. A loss of stability might result in a fall
which may bring about serious consequence for the robot. Therefore, stability control is of
great importance for the overall performance of the humanoid robot.

This chapter presents body posture control methods aiming at stable dynamic walking. The
body posture control consists of two parts. One is online torso pitch/roll control which is based
on sensory feedback and modifies the reference trajectories in real time in order to stabilize
the robot. The other is yaw moment control which compensates the yaw moment around the
support foot during walking by using arm movement. The control methods presented in this
chapter have been applied to NAO both in simulation and in experiments.

The scheme of the overall walking control system is illustrated in Figure 3.2. The control
system consists of a posture controller for the upper body, a position controller for the swinging
leg, and a force controller for the landing leg. They are enumerated as follows:

• Body posture control

• Swing-leg trajectory tracking

• Landing impact control

Swing-leg trajectory tracking and landing impact control will be presented in Chapter 5
and Chapter 6, respectively. The online control system is generally applicable across the
spectrum of bipedal humanoid robots.

4.2 Background and Related Works

From biological point of view, posture describes the orientation of any body segment relative to
the gravitational vector. It is an angular measure from the vertical [125]. An anthropomorphic
system is said to have postural stability if it possesses some regulating system which does not
allow the ZMP to run away from the stable region under external perturbations [124].

50
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4.2.1 Clues from Human Walking

The law of conservation of angular momentum states that the angular momentum is a con-
served physical quantity for isolated systems when no external moments act on the body’s
CoM. In the case of legged locomotion, there is no a priori reason for the law to hold since
the body interacts with the environment. However, biomechanical studies on human walking
have revealed that the angular momentum is highly regulated by the central nervous system
throughout a movement cycle [94] and remains small during steady-state human walking. The
central nervous system manages to keep the large inertial load of head, arms and trunk erect
within ±1.5◦ [125].

4.2.2 Related Works

Many research studies have addressed the control strategy of body posture stabilization of
humanoid robots. Löffler et al. controlled the orientation and rotational velocity of the
upper body of a biped robot by regulating contact torques at the robot feet [73]. Huang
et al. controlled the body posture of a humanoid robot constant by using reflex action of
hip joints [33], whereas Sugahara et al. implemented a different strategy on a parallel leg
mechanism by rotating the whole body around the foot via resolving inverse kinematics of the
leg [110]. Kim et al. managed an upright robot posture by PI controlling the ankle joints of a
robot that walks on uneven/inclined floors [59]. Stephens et al. achieved posture control by
applying a virtual torque to the torso of a humanoid robot. The virtual torque is realized by
full body joint torques calculated by means of dynamic balance force control method [108]. It
is also possible to accelerate the upper body horizontally or to vary the step length to keep an
upright posture [73]. In addition, some researchers stabilized walking robots by considering
the angular momentum [44, 63, 78].

Being inspired by human walking as well as from the viewpoint of stability, it is desirable
that the body posture is constant especially when the humanoid robot has no waist joint.
The body posture controller in this thesis is composed of a torso pitch/roll controller and a
yaw moment controller, which online controls the actual body posture of the robot upright
(desired body posture) all the time.

4.3 Torso Pitch/Roll Control

4.3.1 Posture Detection

The real-time information on the upper body posture, i.e. the actual body orientation and
angular velocity, is provided by the IMU which is a combination of two gyrometers and one
accelerometer located in the torso. Table 4.1 shows the details of the IMU.

Table 4.1: IMU information of NAO.

IMU Axis Number Precision Position

Accelerometer 3-axis 1 1% (acceleration: ∼2g) robot torso
Gyrometer 1-axis 2 5% (angular speed: ∼500◦/s) robot torso
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When the robot stands still, the angular velocity of the torso measured by the gyrometers
is around −18◦/s whereas the actual value should be around 0◦/s. So the data from the
gyrometers needs to be calibrated. The calibration algorithm is as follows:

Cx := (1− α) · Cx + α · θ̇m (4.1)

Cy := (1− α) · Cy + α · φ̇m (4.2)

θ̇c = θ̇m − Cx (4.3)

φ̇c = φ̇m − Cy (4.4)

where (Cx, Cy) represent calibration angular velocities and they are updated in real time
during the walk of the robot. (θ̇m, φ̇m) are raw measurement data obtained from gyrometers.
α is a weight value. It determines to what extend the updated output samples (Cx, Cy) are
dependent on the input measurement samples (θ̇m, φ̇m) and the preceding outputs. Here α =
0.001, which means the preceding outputs contribute more to the updated calibration angular
velocities while the measurements are not trustable and thus contribute less. (θ̇c, φ̇c) denote
the calibrated angular velocities about X- and Y-axis.

4.3.2 Posture Estimation

Accurate estimation of the upper body state (e.g. orientation and angular velocity) is im-
portant for posture control. The estimates of unknown variables provided by the method of
Kalman filter [49] tend to be more precise than those based on a single measurement alone
since a Kalman filter operates recursively on streams of noisy input data in order for producing
a statistically optimal estimate of the underlying system state.

State Estimator

The dynamics of the upper body can be written as a discrete linear system in state space
form

xk+1 = Axk +Buk (4.5)

where xk = [θpitch φroll θ̇pitch φ̇roll]
T is the state vector at time step k, indicating the

orientation and angular velocity of the robot body about the Y- and X-axis, respectively.
Since there is no control superimposed on the upper body, the control input uk = 0 at time
step k. The matrix A in Eq.(4.5) is given by

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (4.6)

where T is the time step.

A linear measurement model is also assumed to have the form,

yk = Cxk (4.7)

where yk is a vector of measurements. The structure of C depends on the type of sensor
modalities and state description.
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In the case of body posture estimate of the robot NAO,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


So we have yk = xk.

It is possible to form a state estimator and implement a Kalman filter by combining this
measurement model with the dynamics given by Eq.(4.5) and Eq.(4.6) and assuming noisy
process and measurement models for the system{

xk+1 = Axk +Buk + w
yk = Cxk + v

where w and v are vectors representing the standard process and measurement noise variables
respectively which are assumed to be Gaussian processes with covariances given by Q and R,

w ∼ N(0, Q)

v ∼ N(0, R)

Kalman Filter Algorithm

Kalman filter is often conceptualized as two distinct phases: predict and update. The predict
phase uses the state estimate from the previous time step to produce an estimate of the
state at the current time step. This predicted state estimate is also known as the a priori
state estimate because, although it is an estimate of the state at the current time step, it
does not include observation information from the current time step. In the update phase,
the current a priori prediction is combined with current observation information to refine the
state estimate. This improved estimate is termed the a posteriori state estimate. The five core
regression formulae of Kalman filter algorithm are as follows:
Predict

Predicted (a priori) state estimate x̂k|k−1 = Akx̂k−1|k−1 +Bkuk−1
Predicted (a priori) estimate covariance Pk|k−1 = AkPk−1|k−1A

T
k +Qk

Update
Optimal Kalman gain Kk = Pk|k−1C

T
k (CkPk|k−1C

T
k +Rk)−1

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1)
Updated (a posteriori) estimate covariance Pk|k = (I −KkCk)Pk|k−1

As presented above in the last section, A and C are constant matrices and the control
input uk = 0. We assume that Q and R are also constant matrices, so the above formulae can
be simplified as

1. x̂k|k−1 = Ax̂k−1|k−1
2. Pk|k−1 = APk−1|k−1A

T +Q

3. Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1

4. x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1)
5. Pk|k = (I −KkC)Pk|k−1
The starting state of the upper body is initialized x̂0|0 = [0 0 0 0]T and
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P0|0 =


L 0 0 0
0 L 0 0
0 0 L 0
0 0 0 L


where L is a number. Before the robot walks, the posture of the robot will first change from
squatting to standing. The initial standing posture of the robot will be slightly different each
time due to the difference in zero positions of the joints. Therefore, L should be a suitably
large number. Here L is determined to be L = 1000.

Covariance matrices Q and R

The covariance matrices Q and R need to be known for implementing a Kalman filter. How-
ever, it is difficult to obtain the exact covariance matrices. Yet covariance matrices can be
estimated, and to what extend the estimation of the covariance matrices match the real sys-
tem affects the quality of the state estimation of a Kalman filter. Therefore, getting good
estimates of the noise covariance matrices Q and R is important in practical implementation
of the Kalman filter.

To determine the estimates of the covariance matrices Q and R, and achieve better per-
formance of the Kalman filter, walking experiments with the same set of walking parameters
were carried out on the real robot NAO. Table 4.2 shows the walking pattern parameters.
The state estimator took the data from the IMU as inputs. The performance of various state
estimators in the presence of different covariance matrices Q and R is compared, as shown
in Figure 4.1 and Figure 4.2. When the matrix R is fixed, increasing the values of the terms
in the matrix Q will decrease the estimate errors of the upper body orientation. On the con-
trary, the estimate errors of the upper body orientation will reduce as the values of the terms
in R are lowered when Q is fixed. Eventually, the noise covariance matrices Q and R are
determined as Q = diag[10−1 10−1 10−5 10−5] and R = diag[10−4 10−4 10−3 10−3]
for estimating the orientation and angular velocity of the upper body of the robot.

Table 4.2: Parameters used in the walking experiments for determination of the covariance ma-
trices Q and R.

Symbol Description Value

Tstride Walking period 0.50 s
τdsp Double support ratio 0.01
Hfoot Maximum elevation of foot 0.032 m
zmin Lowest level of the waist 0.321 m
zmax Peak height of the waist 0.323 m
Al Lateral swing amplitude of the waist 0.005 m
v̄ Average walking speed 0.169 m/s

Lstep Average step length 0.055 m

4.3.3 Pitch/Roll Controller

Two strategies are described here:
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Figure 4.1: Various state estimator performances in the presence of different covariance matrices
Q when the covariance matrix R is fixed, R = diag[10−3 10−3 10−3 10−3].

• Hip Strategy: hip joints are used to control the body posture.

• Ankle Strategy: ankle joints are utilized to control the body posture.
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Figure 4.2: Various state estimator performances in the presence of different covariance matrices
R when the covariance matrix Q is fixed, Q = diag[10−1 10−1 10−5 10−5].

4.3.3.1 Hip Strategy

We first consider utilizing hip joints to control the body posture of the robot when the
walking floor is flat (see Figure 4.3(a)). The other reason is that the hip joints are near the
body, therefore the most effective way to keep the desired body posture is to control the hip
joints.

We introduce a body posture controller to correct the inclination of the torso of the robot.
The correct angles (∆θhip, ∆φhip) are expressed in a PD (Proportional-Derivative) manner
and then added to the reference trajectories of the hip joints.

∆θhip = Kp1(θ
torso
des − θtorsom ) +Kd1(θ̇

torso
des − θ̇torsom ) (4.8)

∆φhip = Kp2(φ
torso
des − φtorsom ) +Kd2(φ̇

torso
des − φ̇torsom ) (4.9)

ϑhipmod = ϑhipref + ∆θhip (4.10)

ϕhip
mod = ϕhip

ref + ∆φhip (4.11)

where Kp and Kd are the proportional and derivative gains of PD controller; (θtorsodes , φtorsodes ) are
the desired torso inclination about the Y- and X- axis, (θ̇torsodes , φ̇torsodes ) stand for the desired



4.3 Torso Pitch/Roll Control 57

angular velocity of the torso about the Y- and X- axis; (θtorsom , φtorsom ) and (θ̇torsom , φ̇torsom )
represent the measured orientation and angular velocity of the torso, and they are estimated
by a Kalman filter; (ϑhipref , ϕhip

ref ) denote the reference trajectories of the hip/ankle joints about

the Y-axis and X-axis; (ϑhipmod, ϕhip
mod) are the modified angles sent to the robot servomotor.

This control method is performed on both left and right hip joints during the walking process.

4.3.3.2 Ankle Strategy

Next let us consider the inclination of the torso is corrected by using ankle joints (refer to
Figure 4.3(b)). The correct angles (∆θankle, ∆φankle) are expressed in a PD manner and then
added to the reference trajectories of the ankle joints. The meaning of the symbols here is
the same as that used in the hip strategy.

∆θankle = Kp1(θ
torso
des − θtorsom ) +Kd1(θ̇

torso
des − θ̇torsom ) (4.12)

∆φankle = Kp2(φ
torso
des − φtorsom ) +Kd2(φ̇

torso
des − φ̇torsom ) (4.13)

ϑanklemod = ϑankleref + ∆θankle (4.14)

ϕankle
mod = ϕankle

ref + ∆φankle (4.15)

Then (θanklemod , φanklemod ) are the modified ankle angles and sent to the robot servomotor. Ankle
strategy is also executed on both ankle joints during walking.

4.3.4 Experimental Results

Dynamic walking experiments were performed to verify the presented walking pattern gener-
ation method and body posture control method using the humanoid robot NAO.

4.3.4.1 Experimental System Description

Figure 4.4 shows the leg configuration of NAO. The proposed walking system is implemented
as shown in Figure 4.5. Reference joint trajectories are calculated by inverse kinematics given
the relative positions of both feet with respect to the waist (indicated by p̃left and p̃right)
which are planned by the walking pattern generator. During walking, the legs of the robot
are controlled by local PID controllers to follow the reference trajectory. The online torso
pitch/roll controller modifies the reference trajectories in real time based on the sensor feed-
back in order to keep the upper body posture of the robot constant and thus to stabilize the
robot. A Kalman filter is implemented to accurately estimate the state of the upper body
because the measured data from IMU contains noises.

4.3.4.2 Dynamic Bipedal Walking

The parameters for the standard forward walking are given in Table 4.3. The lateral swing
amplitude of the waist is preset to a small value, e.g. 1 mm, since the interchange of the
SSP and DSP arouses the natural oscillation of the upper body of the robot in the frontal
plane. Experiments also showed that with a shorter walking period the walking performance
of the robot went worse as the robot moved laterally with a bigger amplitude because the
inclination of the upper body about the X-axis was larger. As a result, the walking was less
stable or even unstable. Note that in normal human walking the lateral swing amplitude tends
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Figure 4.3: Analysis of (a) hip strategy (b) ankle strategy in sagittal plane view.

to decrease as the walking speed increases [99]. Therefore, when the robot walks faster, this
value is reduced to 0.5 mm. The sagittal oscillation amplitude is 2 mm. While standing still,
the distance between the centers of two feet is 100 mm. So d0 is preset to 50 mm during
walking. The walking period is set to 0.5 s in order to overcome the landing impact force. We
set the double support ratio in a walking cycle to be 1% because the humanoid robot NAO
has neither toe joints nor heel joints. The step height during walking is 26 mm.

Hip strategy and ankle strategy were verified, respectively, through experiments. In all
experiments, the robot walked 61 steps in 15 seconds on a flat and noninclined floor with local
unevenness. Several sets of experiments were taken on the same robot, but under different
walking speed, step length and waist height.

1) Walking Experiments Without Posture Control: Figure 3.21 illustrates the inclination
of the upper body of the robot in the course of a walk which is the output of the walking
pattern generator without considering torso pitch/roll control. The maximum value of the
pitch angles about the Y-axis is more than 1.0 rad. It is sufficient to make the robot fall
down, so the walking was unstable.
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Figure 4.5: Torso pitch/roll control of NAO.

2) Walking Experiments With Hip Strategy: In the second experiment, the body posture
of the robot was adjusted in real time by using hip joints. Three sets of experiments were
carried out.

First, the validity of the control method was proved as the robot took a stable walking1

at a lower speed. The walking parameters were Al = 0.001 m, zmin = 0.327 m, zmax = 0.329
m. The robot walked 1.2912 m in 15 seconds2. Therefore, the average walking speed was
v̄ = 0.0861 m/s with the average step length of Lstep = 0.0212 m. The gains used for the
torso pitch/roll controller were Kp = 0.35, Kd = −0.053. Figure 4.6 demonstrates the walking
performances. Figure 4.6(a) shows the reference and modified angles of the hip joints of both
legs. The measured inclination of the upper body of the robot during walking is plotted in

1Literature [17] gives an understanding of stability, that a locomotion mode is understood to be stable if it
is sustainable without a fall, and if it allows a safe return to a statically stable configuration.

2The walking distance is calculated by implementing the forward kinematics between the two legs in real
time. The forward kinematics of the robot is given in Appendix B.

3For both hip strategy and ankle strategy, the used proportional gain Kp and derivative gain Kd of the PD
controller were hand-tuned via a large number of experiments and proved to be the best values.
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Table 4.3: Parameters of the forward walking pattern.

Symbol Description Value

Al Lateral swing amplitude of waist 1 (mm)
As Sagittal oscillation amplitude of waist 2 (mm)
d0 Foot collision avoidance distance 50 (mm)

Tstride Walking period (stride time) 0.5 (s)
Tstep Step time 0.25 (s)
τdsp Double support ratio 0.01 (1%)
Tssp Single-support time Tstep × (1− τdsp)
Tdsp Double-support time Tstep × τdsp
Hfoot Maximum elevation of foot 26 (mm)

Figure 4.6(b). Figure 4.6(c) illustrates the reference and actual velocities of the waist in the
forward direction from the start to the end of the walk. Measured ZMP trajectories in the
global coordinate system are shown in Figure 4.6(d).

Then the hip strategy was verified at a medium walking speed. In the experiment displayed
by Figure 4.7, the walking parameters were Al = 0.001 m, zmin = 0.323 m, zmax = 0.325
m. The walking distance of the robot was 2.8794 m. So the average walking speed was v̄ =
0.1920 m/s and the average step length was Lstep = 0.0472 m. The parameters used for the
torso pitch/roll were Kp = 0.40 and Kd = −0.05, respectively.

Figure 4.8 demonstrates walking performances of a stable walking when the robot walked
at a higher speed. The walking parameters were Al = 0.0005 m, zmin = 0.313 m, zmax = 0.315
m. The robot travelled 3.5469 m in 15 seconds. The average walking speed was v̄ = 0.2365
m/s and the average step length was Lstep = 0.0581 m. The proportional and derivative gains
Kp and Kd were 0.4 and −0.05, respectively. Due to the robot inertia, the stop of the walking
causes a summit in the inclination about the Y-axis at the end of the walking, as shown in
Figure 4.8(b). In Figure 4.8(c), the velocity of the robot is gradually increased step by step
from being stationary at the beginning of walking since the sudden start of walking with
a high speed can make the robot unstable. This process mimicks the development phase in
human walking.

Before the robot walks, the posture of the robot will first change from squatting to standing.
To make sure that the robot starts walking from being stationary, the robot will keep the
standing posture for 4 seconds. So the data was recorded from the end of the fourth second. As
the walking speed increased, the waist height was decreased to ensure the dynamic stability
of the robot.

Experiments have indicated that as the proportional gain Kp rises, the upper body of the
robot will lean backwards. Leaning slightly backwards, to some extend, is beneficial to higher
speed walking. However, the upper body of the robot appears to oscillate when Kp is greater
than 0.05, and consequently the walking becomes unstable. Besides, the derivative gain is a
negative value. When it reduces to or less than −0.06 the robot body will shake.

The experiments have shown that the dynamic stable walking can be achieved through the
proposed walking system with the hip strategy. Figure 4.9 shows the snapshots of the walking
experiment using hip strategy with the robot NAO.

3) Walking Experiments With Ankle Strategy: In the third experiment, the ankle strategy



4.3 Torso Pitch/Roll Control 61

0 5 10 15 20 25
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

L
H

ip
P

it
c
h
 [
ra

d
]

 

 

reference

modified

0 5 10 15 20 25
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Time [s]

R
H

ip
P

it
c
h
 [
ra

d
]

 

 

reference

modified

(a) reference and modified angles of hip joints.
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Figure 4.6: Walking performance using the hip strategy at a lower speed. The walking parameters
were Al = 0.001 m, zmin = 0.327 m, zmax = 0.329 m. The robot travelled 1.2912 m in 15 seconds.
The parameters for the PD controller were Kp = 0.35, Kd = −0.05.
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(d) ZMP trajectories.

Figure 4.7: Walking performance using the hip strategy at a medium speed. The walking param-
eters were Al = 0.001 m, zmin = 0.323 m, zmax = 0.325 m. The walking distance was 2.8794 m
in 15 seconds. The parameters for the PD controller were Kp = 0.40, Kd = −0.05.
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(a) reference and modified angle of hip joints.

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

 

 

measured pitch

measured roll

(b) measured upper body inclination.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 

experiment

reference

(c) Waist velocity.
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(d) ZMP trajectories.

Figure 4.8: Walking performance using the hip strategy at a higher speed. The walking parameters
were Al = 0.0005 m, zmin = 0.313 m, zmax = 0.315 m. The robot walked 3.5469 m in 15 seconds.
The parameters for the PD controller were Kp = 0.40, Kd = −0.05.
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(a) t = 0 (b) t = 0.125 s (c) t = 0.25 s (d) t = 0.375 s (e) t = 0.5 s

(f) t = 0.625 s (g) t = 0.75 s (h) t = 0.875 s (i) t = 1.0 s (j) t = 1.125 s

(k) t = 1.25 s (l) t = 1.375 s (m) t = 1.5 s (n) t = 1.625 s (o) t = 1.75 s

Figure 4.9: Snapshots of forward walking using the hip strategy.

was employed to keep the body posture of the robot upright in real time. Three sets of
experiments were taken.

Similarly, we first let the robot walk at a low speed and experimental results are demon-
strated in Figure 4.10. The walking parameters were Al = 0.001 m, zmin = 0.327 m, zmax

= 0.329 m. The robot walked 1.1654 m in 15 seconds. The average walking speed was v̄ =
0.0777 m/s and the average step length was Lstep = 0.0191 m. The parameters of the torso
pitch/roll controller were Kp = 0.30, Kd = −0.05.

Then the robot accomplished stable walking at a medium speed, as shown in Figure 4.11.
The walking parameters were Al = 0.001 m, zmin = 0.323 m, zmax = 0.325 m. The walking
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(a) reference and modified angle of ankle joints.
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(c) Waist velocity.
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(d) ZMP trajectories.

Figure 4.10: Walking performance using the ankle strategy at a lower speed. The walking pa-
rameters were Al = 0.001 m, zmin = 0.327 m, zmax = 0.329 m. The robot walked 1.1654 m in
15 seconds. The parameters for the PD controller were Kp = 0.30, Kd = −0.05.
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(a) reference and modified angle of ankle joints.
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(c) Waist velocity.
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(d) ZMP trajectories.

Figure 4.11: Walking performance using the ankle strategy at a medium speed. The walking
parameters were Al = 0.001 m, zmin = 0.323 m, zmax = 0.325 m. The robot travelled 2.6119 m
in 15 seconds. The parameters for the PD controller were Kp = 0.28, Kd = −0.06.
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distance was 2.6119 m in 15 seconds. Therefore, the average walking speed was v̄ = 0.1741
m/s with the average step length Lstep = 0.0428 m. The parameters of the pitch/roll controller
were Kp = 0.28, Kd = −0.06.

The validity of the ankle strategy was also confirmed through walking experiments at a
higher speed. The walking parameters were Al = 0.0005 m, zmin = 0.313 m, zmax = 0.315
m. Figure 4.12 demonstrates the walking performances of the stable walking using the ankle
strategy. Figure 4.12(a) shows the reference and modified angles of the ankle joints. The
measured inclination of the upper body during walking is plotted in Figure 4.12(b). Due to
the robot inertia, a summit in the inclination about the Y-axis is caused by the stop of the
walking at the end. Figure 4.12(c) illustrates the reference and actual velocities of the waist
in the forward direction from the start to the end of the walk, and the ZMP trajectories in the
global coordinate system are shown in Figure 4.12(d). In the experiment, the robot travelled
3.5035 m in 15 seconds. The average walking speed was v̄ = 0.2336 m/s and the average step
length was Lstep = 0.0574 m. The proportional and derivative gains Kp and Kd used for the
torso pitch/roll controller were 0.28 and −0.06, respectively.

Since the ankle joints are farther away from the torso of the robot than the hip joints, the
small adjustment in the ankle joints will arouse larger correction in the attitude of the upper
body. The value of proportional gain used in the ankle strategy is therefore smaller than that
used in the hip strategy.

Experiments have shown the validity of controlling the upper body posture by means of
the ankle strategy, although the ankle joints are farther away from the upper body than the
hip joints and are normally considered not effective in controlling the body posture.

In conclusion, the presented walking pattern generation method and body posture control
method using hip strategy and ankle strategy are valid and effective in stabilizing the robot.

4.3.4.3 Energy Consumption Comparison

Chapter 3 presents a walking pattern generation method aiming at realizing human-like
stretched-knee walking of a humanoid robot. The ability to walk with stretched knees is im-
perative for a humanoid robot to rehabilitate human motion. Besides, walking with stretched
knees is also the requirement for an efficient bipedal gait. To elucidate the gait efficiency of
the presented walking pattern in this thesis, we investigated the energy consumption of the
actuators in the knee joint during the walking process of a robot that fulfills the presented
walking pattern and conventional walking pattern respectively.

Experiments

To investigate the energy consumption of the knee joint actuators between the conventional
bending-knee walking pattern [119] with the upper body motion constrained on a horizontal
plane and the presented walking pattern in this thesis, experiments were carried out by using
NAO with current sensors. The experiments were carried out on the same robot at four various
walking speeds, approximately 0.05 m/s, 0.10 m/s, 0.15 m/s and 0.20 m/s, respectively. For
each speed, the robot walked 20 seconds and the experiment was repeated 30 times. Then
average walking speed and energy consumption were calculated.

All the walks in the experiments were stable. The walking parameters of the presented and
conventional walking patterns are shown in Table 4.4 and Table 4.5, respectively.
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(a) reference and modified angle of ankle joints.
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(d) ZMP trajectories.

Figure 4.12: Walking performance using the ankle strategy at a higher speed. The walking
parameters were Al = 0.0005 m, zmin = 0.313 m, zmax = 0.315 m. The robot walked 3.5035 m
in 15 seconds. The parameters for the PD controller were Kp = 0.28, Kd = −0.06.
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Table 4.4: Walking experiment parameters of the presented walking pattern.

Speed (cm/s)4 5.21±0.23 9.91±0.69 16.39±0.53 20.04±0.58

Duration (s) 20 20 20 20
Times 30 30 30 30
Step height (cm) 2.0 2.0 2.4 2.4
Waist height zmin (m) 0.331 0.331 0.326 0.321
Waist height zmax (m) 0.332 0.332 0.327 0.322

Table 4.5: Walking experiment parameters of the conventional walking pattern.

Speed (cm/s)4 5.17±0.17 10.29±0.53 15.28±0.72 20.20±0.95

Duration (s) 20 20 20 20
Times 30 30 30 30
Step height (cm) 2.0 2.0 2.0 2.0
Waist height z (m) 0.318 0.318 0.318 0.318

Calculation of the Average Energy Consumption

Wi is used to represent the electrical work in the circuit in the process of the ith walk, then
Wi can be expressed as

Wi =
2000∑
j=1

(UjIj∆tj) = U(
2000∑
j=1

Ij)∆t (4.16)

with U denoting the voltage in the armature circuit, I being the current in the armature
circuit, and ∆t denoting the sampling interval. In the calculation, the nominal voltage U =
21.6 V ; the current data is provided by the in-built current sensors; the sampling interval is
∆t = 10 ms. Since the time for each walk is 20 seconds, there are in all 2000 samples.

Then the mean value of the energy consumption after n times of walking is

W =
W1 +W2 + · · ·+Wn

n
(4.17)

with n = 30 in the experiment.

Experimental Results

Figure 4.13 shows an example of the measured current of the knee joint actuators from the
start to the end of a walk. Energy consumption of the two kinds of walking patterns is
illustrated in Figure 4.14 and Figure 4.15. In both figures, the minimum, the maximum and
the average values of the energy consumption of the left and right knees under four different

4To show data distribution, we use ‘mean ± standard deviation’ to express the value of each speed. Standard

deviation formula: σ =

√√√√ 1

N

n∑
i=1

(xi − x̄)2 with σ denoting standard deviation, xi denoting each value of

dataset, x̄ being the arithmetic mean of the data, and N the total number of data points.
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walking speeds are indicated. In the calculation, the nominal voltage in the armature circuit
is 21.6 V .
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Figure 4.13: Measurement of knee joint current while the robot walks at 0.10 m/s.
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Figure 4.14: Energy consumption of knee joints with the presented walking pattern at different
walking speeds.

Analysis

It is found that when the robot walks at a lower speed, e.g. 0.05 m/s and 0.10 m/s, the
presented walking pattern outperforms the conventional walking pattern saving 15% and
20% energy, respectively. However, when the walking speed is higher, e.g. 0.15 m/s and 0.20
m/s, the knee actuators with the conventional walking pattern consumed less energy.
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Figure 4.15: Energy consumption of knee joints with the conventional walking pattern at different
walking speeds.

Instead of restricting the upper body motion to a flat surface, the presented walking
pattern involves an upward and downward upper body motion. The vertical motion of the
upper body results in an inertial force in the vertical direction which poses a challenge to
the walking stability of the robot. Especially at a higher walking speed, the robot fulfilling
the presented walking pattern needs to lower its waist height in order to ensure the dynamic
stability. Moreover, to avoid walking backwards the robot has to increase the elevation of the
step height. As a result, the robot walks with more bent knees, and more energy is consumed
at the knee joints.

When the robot walks at a lower speed, the presented walking pattern clearly outperforms
the conventional walking pattern in energy consumption since the robot can walk stably at a
higher waist height with almost stretched knees. Figure 4.16 shows the comparison of the knee
joint motion between the conventional walking pattern and the presented walking pattern at
the walking speed of 0.05 m/s and 0.10 m/s, respectively. With the presented walking pattern,
the pitch angles of the knee joint of the leg are close to zero when this leg is in support phase
and the other leg swings forward. Hence, the walking of the robot that fulfills the presented
walking pattern includes configurations with almost stretched knees.

Regarding the conventional walking pattern, the waist height and the step height are fixed
at different walking speeds, so the energy consumption of the knee joint actuators basically
remains the same.

To conclude, the presented walking pattern is more efficient at a lower walking speed,
which means the robot fulfilling the proposed walking pattern is able to walk for a longer
time without battery charging and has less heating problem.

4.4 Yaw Moment Control

During the walking of the robot, a moment around the yaw-axis of the support foot is gener-
ated by the acceleration and deceleration of the swing-leg. Normally this moment is balanced
by the frictional moment between the floor and the support foot. However, as the walking



72 4 Posture Control

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.2

0.4

0.6

0.8

1

Time [s]

K
n
e
e
 p

it
c
h
 a

n
g
le

 [
ra

d
]

 

 

proposed walking pattern

conventional walking pattern

(a) v = 0.05m/s

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.2

0.4

0.6

0.8

1

Time [s]

K
n
e
e
 p

it
c
h
 a

n
g
le

 [
ra

d
]

 

 

conventional walking pattern

proposed walking pattern

(b) v = 0.10m/s

Figure 4.16: Knee joint motion at different walking speeds.

speed increases the moment becomes larger. If it is beyond the frictional moment that the
floor can provide, the support foot will rotate and slip, then the robot might lose its balance
and fall down. Therefore, it is essential to compensate and decrease the moment especially
for the fast walking of the robot.

4.4.1 Clues from Human Walking

Human beings compensate not only for the pitch and roll-axis moment but also for the yaw-
axis moment by swinging both arms and rotating the waist to maintain the total stability of
walking [127]. Perry et al. pointed out that a reciprocal arm motion provides a purposeful
counterforce to minimize the rotatory displacement of the body by the locomotor mechanics
of the legs [93].
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4.4.2 Related Works

Humanoid robot LOLA used arm motion to avoid foot slipping. Ulbrich et al. argued that
introducing elbow joints is advantageous for fast walking, since they permit translational arm
swing which is more effective than a purely rotational motion [122]. Biped walking robot WL-
12RV takes advantage of three-DoF waist motion to compensate for the yaw-axis moment as
the robot walked faster [127]. Hirabayashi et al. proposed to compensate the yaw moment
by rotating the waist joint of a biped robot [26]. Nagasaka et al. proposed optimal gradient
method for yaw moment compensation of the humanoid robot H5 [80].

4.4.3 Arm Motion

The yaw moment in this thesis is compensated by arm motion since the humanoid robot NAO
does not have waist joint.

First, we analyze the moment around the support leg as the robot walks (refer to Fig-
ure 4.17). We discuss the moment around the point O, which is the center of the support
foot sole. The robot is regarded as a 4-mass point model consisting of an upper body, a
swinging leg and two arms. The masses of the upper body and the swing-leg are mb and ms,
respectively, and the masses of the left and right arms are mal and mar, respectively.

The distance between the CoM of the upper body and the support leg is d, and between
the two legs is 2d0, which is a constant (refer to Figure 3.9). The distance between the two
arms is symbolized by 2d1. We set the body acceleration ẍb(t) in the opposite direction of
the swing-leg acceleration ẍs(t) and assume that both arms of the robot swing at the same
acceleration ẍa(t).

Swing leg

Support leg y

x

z

Left arm

Right arm

Moment caused by acceleration of the swing leg

Moment caused by acceleration of the upper body

Moment caused by acceleration of both arms

)(txs!!

)(txa!!

)(txa!!

)(txb!!

0d 0d

1d

sm

lm
arm

alm

bm

:)(tTa

:)(tTb

:)(tTs

)(tTa

)(tTb
)(tTs

O

d

1d

Figure 4.17: Moments around the support leg during walking.
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The moment Ts(t) around the point O caused by the swing-leg acceleration ẍs(t) is

Ts(t) = msẍs(t)(2d0)

The moment Tb(t) around the point O caused by the acceleration of the upper body ẍb(t)
is

Tb(t) = −mbẍb(t)d

The moment Ta(t) around the point O caused by the acceleration of the both arms ẍa(t)
is

Ta(t) = −marẍa(t)(d0 + d1)−malẍa(t)(d1 − d0)

Then the amount of the moment T (t) around the point O is calculated by Eq.(4.18).

T (t) = Ts(t) + Tb(t) + Ta(t) (4.18)

= 2msd0ẍs(t)−mbẍb(t)d−marẍa(t)(d0 + d1)−malẍa(t)(d1 − d0)

It is desirable to keep the moment T (t) zero during the walking. By setting T (t) = 0 in
Eq.(4.18), ẍa(t) is calculated as follows

ẍa(t) =
2msd0ẍs(t)−mbẍb(t)d

mal(d1 − d0) +mar(d0 + d1)
(4.19)

This is the desired acceleration of arms for compensating the yaw moment. The upper
body acceleration is negligible because ẍs(t) � ẍb(t). By integrating Eq.(4.19) twice, and
with the initial conditions xa(0) = xs(0) = 0, ẋa(0) = ẋs(0) = 0, we obtain the position of
arms:

xa(t) =
2msd0

mal(d1 − d0) +mar(d0 + d1)
xs(t) (4.20)

Eq.(4.20) shows that the robot is expected to swing the arms based on the trajectories of
the swing-leg in the single support phase. In this thesis, the arm motion used for compensating
the yaw moment is realized by the pitch joint in the shoulder. Since the position of the CoM
of both arms can be calculated in real time, the shoulder pitch angle can be expressed in
terms of arcsin function.

θshoulderpitch (t) = arcsin
xa(t)

da
(4.21)

where da is the distance between the CoM of the arm and the shoulder joint. θshoulderpitch is sent
to the servomotor as reference trajectories of the shoulder joints of the robot.

4.4.4 Simulation and Experiments

Figure 4.18 shows the compensatory shoulder pitch angles at three different walking speeds
both in simulation and in experiments. When the robot walks faster, arm motion with larger
swing amplitude is needed. Seen from the results, the shoulder pitch angles for yaw moment
compensation are bigger in experiments than in simulation. The reason is that, under the
same walking parameters the walking speed is higher in experiments, which leads to larger
step length and thus larger shoulder angles according to Eq.(4.20).

Currently, the walking period of the robot is 0.5 s in order to avoid oscillation and re-
bounding of the landing foot brought about by the big landing impact force. As a result, the
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Figure 4.18: Comparison of compensation angles in simulation and experiments. The robot walks
81 steps in 20 seconds. Tstride = 0.50 s, Al = 0.001 m. The average walking speed v̄ is (top)
0.1095 m/s (middle) 0.1571 m/s (bottom) 0.1940 m/s, respectively. The average step length L̄
is (top) 0.0270 m (middle) 0.0388 m (bottom) 0.0479 m, respectively.

robot has to swing its arms very rapidly. The upper body of the robot appears to vibrate
due to the fast movement of the arms. The walking is consequently unstable. Extending the
walking period can make the arm movement slower. The problem, however, caused by the
landing impact force will arise again. Chapter 6 focuses on decreasing the landing impact
force by using force control approach.
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4.5 Chapter Summary

In this chapter, a posture control method to compensate for the upper body inclination
of a humanoid robot with the purpose of stable dynamic walking is presented. The online
posture controller is based on sensory feedback and modifies the reference trajectories in
real time in order to stabilize the robot. The presented control algorithm does not require
complex dynamic equations and parameter adjustment. Experiments have shown the validity
of controlling the upper body posture by means of both hip strategy and ankle strategy.
NAO achieved stable dynamic walking and reached a maximum walking speed of 0.24 m/s in
experiments.

Experiments have also demonstrated the efficiency of the walking pattern presented in this
thesis which involves three-dimensional upper body motion. Compared with the conventional
walking pattern, the knee joints of the presented walking pattern consume less energy when
the robot walks at a lower speed since the robot can walk stably with almost stretched knees.

In order to maintain the total walking stability, this chapter also presents a control method
to compensate the yaw moment around the support foot by using arm motion. Experiments
verified that larger swing amplitude of the arms is needed when the robot walks faster.
However, adding the arm motion made the walking unstable. One possible solution is to
prolong the walking period to slow the arm movement. But this would bring about oscillation
and rebounding of the landing foot caused by the big landing impact force, which would still
result in ustable walking. A force control scheme aiming at reducing the landing impact force
will be presented in Chapter 6.
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5.1 Introduction

From this chapter onward, the control methods that regulate the motion of the lower ex-
tremities of the robot are presented. In the course of walking, there are two distinct modes
for the lower extremities, free space motion and constrained motion. When the lower extrem-
ity is in swing phase, its motion is free since it has no interaction with the environment.
Position control with properly tuned gains should be used for free space motion. While the
lower extremity is in stance phase, its motion is constrained because of the interaction with
the environment. Especially, a transient phenomenon of landing impact forces occurs during
transition from the free space motion to constrained motion. Force control approach should
be used to control the impact forces and to track forces once stable contact with the ground
has been established.

In this chapter, adaptive control is applied to controlling the free space motion of the robot
leg in order to achieve fast and precise tracking of the reference walking pattern. The robot
can quickly swing the swing-leg so that fast walking can be achieved. The adaptive control is
based on the dynamic model of the swing-leg and compensates the modeling inaccuracies. The
model is updated and the performance of the adaptive controller is improved as adaptation
goes on. The control method presented in this chapter has been verified in simulation based
on both Matlab/SimMechanics and the ODE(1).

5.2 Equations of Motion

In Appendix C, we derive the dynamic equations of motion for the swing-leg. These equations
can be written as

H(q)q̈ + C(q, q̇)q̇ + ~g(q) = τ

where q ∈ Rn is a vector of joint positions, τ ∈ Rn is the generalized joint torque vector,
H(q) ∈ Rn×n is the inertia matrix and it is symmetric, C(q, q̇)q̇ ∈ Rn represents the centrifugal
and Coriolis terms, and ~g(q) ∈ Rn is the gravitational vector, and n is the number of the joints.

5.3 Adaptive Control

Adaptive control is one of the two major and complementary approaches to dealing with model
uncertainty1. We use the adaptive control approach put forward by Slotine and Li [103].

1The other approach is robust control.

77
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The design of an adaptive controller usually involves the following three steps:

• choose a control law containing variable parameters for the actuator torques

• derive an adaptation law for those unknown parameters of the model such that the
system output q(t) closely tracks the desired trajectory qd(t)

• analyze the convergence properties of the resulting control system

Figure 5.1 shows the control diagram using the adaptive controller. The model under the
adaptive control is updated online, based on the measured performance.

Λ DK
Forward 

Dynamics
τs

Γ

+
−dq −

+ +
− q

Adaptation LawAdaptive Controller

−
+

TY

1−

Ydu
dt

a!̂

â

q~

dq!

rq! q!!
τ̂

∫

∫ ∫
q!

transpose

Figure 5.1: Control diagram of adaptive control.

Control Law

Taking the control law to be

τ = τ̂ −KDs (5.1)

which includes a feedforward term τ̂ in addition to a feedback PD term KDs, where

τ̂ = Ĥ(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) (5.2)

Let us define q̃ = q − qd as the tracking error, and q̇r = q̇d − Λq̃ as the reference velocity
vector which is formed by shifting the desired velocities q̇d according to the position error q̃.
Λ is a symmetric positive definite matrix. Let us define the vector s = ˙̃q + Λq̃, then from the
definitions of q̃ and q̇r we have

s = q̇ − q̇r (5.3)

Here s can be interpreted as a velocity error term, as shown in Figure 5.1.
Assuming bounded initial conditions, showing the boundedness of s also shows the bound-

edness of q̃ and ˙̃q, and therefore of q and q̇ ; similarly, if s tends to 0 as t tends to infinity, so
do the vectors q̃ and ˙̃q.

We use the reparametrization technique to linearize Eq.(5.2). There exists a known matrix
Y = Y (q, q̇, q̇r, q̈r) such that
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H(q)q̈r + C(q, q̇)q̇r + g(q) = Y (q, q̇, q̇r, q̈r)a (5.4)

where a is the constant vector of unknown parameters describing the system’s equivalent mass
and inertia properties. Matrix Y is derived in Appendix C given the definition of the vector
a.

Then

τ̂ = Y â (5.5)

where â is the estimate of a.

Adaptation Law

The adaptation law

˙̂a = −ΓY T s (5.6)

is chosen to update the parameter estimates â according to the correlation integrals. Γ is a
symmetric positive definite matrix of adaptation weights.

Global Stability Validation

To prove convergence of both error and the dynamic parameters, we use the following Lya-
punov function candidate:

V (t) =
1

2

[
sTHs+ ãTΓ−1ã

]
(5.7)

where ã = â− a, defined as the parameter estimation error.

Differentiating Eq.(5.7),

V̇ (t) = sTHṡ+
1

2
sT Ḣs+ ˙̂aTΓ−1ã (5.8)
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Note on Eq. (5.8)

If a vector x = x(t) = [x1(t), x2(t), · · · , xn(t)]T and a symmetric matrix
A = A(t) = (A(ij)(t))(n×n) are differentiable, then the first-order derivative of the
quadratic form xTAx with respect to the variable t is

d

dt
(xTAx) = xT Ȧx+ 2xTAẋ.

Proof:

d

dt
(xTAx) =

[ d

dt
(xT )

]
Ax+ xT

d

dt
(Ax)

=
[ d

dt
(xT )

]
Ax+ xT Ȧx+ xTAẋ

Also [
d

dt
(xT )Ax

]T
= xTAT ẋ = xTAẋ

Since
[ d

dt
(xT )

]
Ax is a scalar, it is equal to its transpose. So

[ d

dt
(xT )

]
Ax = xTAẋ.

Therefore, we obtain
d

dt
(xTAx) = xT Ȧx+ 2xTAẋ.

Combining Eq.(5.3) results in

V̇ (t) = sT (Hq̈ −Hq̈r) +
1

2
sT Ḣs+ ˙̂aTΓ−1ã (5.9)

Substituting Hq̈ from the system dynamics Hq̈ = τ − Cq̇ − g = τ − C(s+ q̇r)− g yields

V̇ (t) = sT (τ −Hq̈r − Cq̇r − g)− sTCs+
1

2
sT Ḣs+ ˙̂aTΓ−1ã

= sT (τ −Hq̈r − Cq̇r − g) + ˙̂aTΓ−1ã (5.10)

Since components of C are derived using Eq.(C.14), the matrix (Ḣ−2C) is skew-symmetric2.

Therefore, for a given vector s, sT (
1

2
Ḣ − C)s = 0.

2In mathematics, particularly in linear algebra, a skew-symmetric matrix is a square matrix A whose
transpose is also its negative; that is, it satisfies the condition −A = AT .
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Note on Eq. (5.10)

The quadratic function associated with a skew-symmetric matrix is always zero.

Proof: let M be a n × n skew-symmetric matrix and x an arbitrary n × 1 vector.
Then the definition of a skew-symmetric matrix implies that

xTMx = −xTMTx

Since xTMTx is a scalar, the right-hand side of the above equation can be replaced by its
transpose. Therefore,

xTMx = −xTMx

This shows that
∀x, xTMx = 0

Substituting Eq.(5.1) results in

V̇ (t) = sT (τ̂ −KDs−Hq̈r − Cq̇r − g) + ˙̂aTΓ−1ã (5.11)

Substituting Eq.(5.4) and Eq.(5.5) yields

V̇ (t) = sT (Y â− Y a)− sTKDs+ ˙̂aTΓ−1ã

= sTY ã− sTKDs+ ˙̂aTΓ−1ã (5.12)

Using Eq.(5.6), we get

V̇ (t) = −sTKDs ≤ 0 (5.13)

Therefore, both global stability of the system and convergence of the tracking error are
guaranteed by the above adaptive controller.

5.4 Simulation Results

As shown in Figure 5.1, the adaptive controller produces the applied joint actuators torques.
Given the specified torques, the resulting joint accelerations are to be determined, that is
τ =⇒ q̈. This is known as the forward dynamics problem. Forward dynamics is required for
robot simulation [15]. Then by integrating these accelerations, the simulated plant state, i.e.
the velocities and positions of joints, is updated as functions of time.

5.4.1 Simulation Based on Matlab/SimMechanics

Matlab/SimMechanics3 provides a multibody simulation environment for 3D mechanical sys-
tems including robots. The multibody system is modeled using blocks representing bodies,
joints, constraints, and force elements, and then SimMechanics formulates and solves the
equations of motion for the complete mechanical system [120]. SimMechanics also enables us
to use blocks from the Simulink environment. In this way, it is possible to design a mechanical
model in SimMechanics and, simultaneously, incorporate a control part of Simulink into the
unified environment.

3The Mathworks, Inc., Natick, MA, USA.
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SimMechanics software provides an intuitive, less time-consuming and less effort-requiring
way of solving the forward dynamics of the simulated mechanical system. In the forward
dynamics mode, a SimMechanics simulation uses the Simulink suite of ordinary differential
equation (ODE(2)) solvers to solve Newton’s equations and obtain the resulting motions [121].

To implement the model-based adaptive contol and compare the tracking performance
of adaptive control with PD control, we use the simulation and analysis tools provided by
SimMechanics to simulate the forward dynamics of the swing-leg of the robot. We start with
the simple planar model of the swing-leg to test ideas, then we extend the planar model
to a three-dimensional model. In simulation, we take the masses, the positions of the CoM
and the inertia tensors of the leg segments of the real robot as the model parameters. The
adaptive/PD control and forward dynamics were implemented in Matlab/Simulink R2012b
with the solver ode15s.

5.4.1.1 Planar Model Simulation

Step Response

The robot leg, initially at rest at [q1 q2 q3] = [0 0 0], is step-commanded to a desired
configuration, for example, [qd1 qd2 qd3] = [−60◦ 45◦ − 30◦]. The actual parameters of
the leg model4 used in the simulation (left leg, refer to Figure C.1) are

m1 = 0.3897 kg m2 = 0.2914 kg m3 = 0.1618 kg

I1 = 0.00159107278 kg ·m2 I2 = 0.00112865226 kg ·m2 I3 = 0.00064434250 kg ·m2

l1 = 0.1 m l2 = 0.1029 m l3 = 0.04519 m

b1 = 0.05373 m b2 = 0.04936 m b3 = 0.03239 m

leading to

a = [a1 a2 a3 a4 a5 a6 a7 a8 a9]
T

= [0.00725 0.0031 0.00355 0.000539 0.000814 0.000524 0.650 0.3044 0.0514]T .5

The corresponding tracking results, tracking errors6 and control torques using adaptive
control are plotted in Figure 5.2, starting without any a priori information (â(0) = 0), with
Γ = diag[0.5 0.1 0.1 0.3 0.08 0.04 9 15 6], Λ = 200I and KD = 100I. The
parameters of the adaptive controller were chosen empirically7.

4The parameters of the leg model used in the simulation, such as the mass, the position of the CoM and
the inertia, are derived from the technical data of the real robot provided by Aldebaran Robotics.

5The definition of the vector a for the planar model can be found in Appendix C.
6Tracking error is a measure of how closely the system response q follows the reference input qd. In this

chapter, tracking error is denoted as q̃ and defined as q̃ = q − qd.
7In this chapter, to determine the parameters of an adaptive controller, such as Γ, Λ and KD, a large

number of simulations were implemented. The preferred parameters were proved to be the best in view of the
performance of the controller. Once the parameters of the controller were determined, the simulation results,
such as the tracking results, tracking errors, control torques and dynamic parameter estimates can be obtained
theoretically via only one simulation given the mechanical system, the initial conditions of the system and
the desired input signal. Since SimMechanics is a numerical solver, the same numerical solutions (simulation
results) will be obtained at each instant of time when the mechanical system, the contoller and the input
signals are specified.
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The top graph of Figure 5.3 shows adaptation of the first 6 parameters which represent
the dynamic inertial terms, within 2.5 seconds. The bottom graph of Figure 5.3 shows adap-
tation of the gravitational terms within 500 seconds. The parameters converge resulting in
the following values

a = [a1 a2 a3 a4 a5 a6 a7 a8 a9]
T

= [−0.0260 − 0.0185 0.0105 0.0078 − 0.0021 − 0.0046 0.6552 0.3391 0.0944]T .
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Figure 5.2: Tracking performance (top), tracking errors (middle) and control torques (bottom)
with adaptive control implemented on the planar model using step function as input.

For comparison, we also use a PD controller to control the swing-leg for the same desired
joint position. The control law used for the PD controller is

τ = −KP q̃ −KD q̇ (5.14)

where KP and KD are constant diagonal positive matrices, and they are chosen to be equiv-
alent to the feedback PD term −KDs in the adaptive controller. According to the definition
of the vector s (s := ˙̃q + Λq̃),

−KDs = −KD( ˙̃q + Λq̃) = −ΛKD q̃ −KD
˙̃q (5.15)

For the adaptive controller, the used parameters are Λ = 200I and KD = 100I. Therefore,
the equivalent gains for the PD controller are KD = KD = 100I and KP = ΛKD = 200KD.
Figure 5.4 shows the tracking errors and control torques using the PD controller.
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Figure 5.3: Inertial parameter estimates (top) and gravitational parameter estimates (bottom) of
the planar model under step response with adaptive control.

Trajectory Tracking

We now consider the case when the swing-leg is actually required to follow a desired trajectory,
rather than merely reach a desired position. To compare the real-time tracking performances
of adaptive control and PD control, we used three signals, each consisting of a large amplitude,
low frequency, sine wave and a low amplitude, high frequency, sine wave, as desired trajectories
of the hip, knee and ankle joints.

qd1 = 0.8 sin(2π(0.05)t) + 0.25 sin(2π(1.0)t)

qd2 = qd1 + 0.4 sin(2π(0.03)t) + 0.15 sin(2π(1.5)t)

qd3 = qd2 + 0.6 sin(2π(0.04)t) + 0.1 sin(2π(2)t)

The parameters used for adaptive control are Γ = diag[0.001 0.002 0.002 0.001
0.001 0.001 2 0.8 0.06], Λ = 500I and KD = 100I. For PD control, the equivalent
parameters are KD = 100I and KP = ΛKD = 500KD. All the parameters here were chosen
empirically.

Figure 5.5 shows the tracking results and the tracking errors using adaptive control and
PD control, respectively. We see that tracking is poor when the dynamic parameters are
all at zero. When adaptation turns on, the tracking becomes better and good tracking is
achieved. Therefore, the adaptive control handles the dynamic demands of trajectory tracking
more effectively than the PD control. The top graph of 5.6 shows adaptation of the first 6
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Figure 5.4: Tracking performance (top), tracking errors (middle) and control torques (bottom)
with PD control on the planar model using step function as input.

parameters which represent the dynamic inertial terms, within 20 seconds. The bottom graph
of Figure 5.6 shows adaptation of the gravitational terms within 300 seconds.

5.4.1.2 3D Model Simulation

Then we extend the 2D planar model of the swing-leg to the 3D model by adding two joints,
the hip roll joint and ankle roll joint to the frontal plane (refer to Figure C.2). The adaptive
control approach to fast and precise tracking of the reference walking pattern of the swing-
leg is further verified through simulations on the 3D model. Figure 5.7 shows the simulation
diagram to solve the forward dynamics of the 3D model of the swing-leg using SimMechanics
in Matlab/Simulink.

Step Response

The robot leg, initially at rest at [q1 q2 q3 q4 q5] = [0 0 0 0 0], is step-commanded
to a desired configuration, for example, [qd1 qd2 qd3 qd4 qd5] = [−18◦ −30◦ +30◦ −
45◦ − 20◦]. The actual parameters used in the simulation, such as the masses, the positions
of the CoM and the inertia tensors of the leg segments (left leg), are derived from the technical
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Figure 5.5: Tracking performance comparison using adaptive control (left column) and PD control
(right column) on the planar model taking dynamic sine waves as input signal.

data of the real robot provided by Aldebaran Robotics, which are listed as follows:

m1 = 0.3897 kg m2 = 0.2914 kg m3 = 0.1618 kg

Ixx1 = 0.00163671962 kg ·m2 Ixx2 = 0.00118207967 kg ·m2 Ixx3 = 0.00026944182 kg ·m2

Iyy1 = 0.00159107278 kg ·m2 Iyy2 = 0.00112865226 kg ·m2 Iyy3 = 0.00064434250 kg ·m2

l1 = 0.1 m l2 = 0.1029 m l3 = 0.04519 m

b1 = 0.0538 m b2 = 0.0496 m b3 = 0.0413 m
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Figure 5.6: Dynamic estimates of inertial parameters (top) and gravitational parameters (bottom)
of the planar model for trajectory tracking under adaptive control.

leading to

a = [a1 a2 a3 · · · a15 a16 a17]
T

= [0.0011 0.000717 0.0029 0.000276 0.0016 0.0017 0.000668 0.000688 0.0031

0.0028 0.0002694 0.0016 0.0011 0.000644 0.65 0.305 0.0656]T .8

The corresponding tracking performance, tracking errors and control torques using adap-
tive control are plotted in Figure 5.8, starting without any a priori information (â(0) =
0), with Γ = diag[0.05 0.01 0.01 0.03 0.08 0.04 0.05 0.01 0.01 0.03 0.08
0.04 0.01 0.03 9 15 6], Λ = 700I and KD = 100I. The parameters here were chosen
empirically.

8The definition of the vector a for the 3D model of the swing-leg can be found in Appendix C.
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Figure 5.7: Simulation diagram to solve the forward dynamics of the 3D model of the swing-leg
using SimMechanics in Matlab/Simulink .

The top graph of Figure 5.9 shows adaptation of the first 14 parameters, which represent the
dynamic inertial terms, within 1 seconds. The bottom graph of Figure 5.9 shows adaptation of
the gravitational terms within 500 seconds. The parameters converge resulting in the following
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Figure 5.8: Tracking performance, tracking errors and control torques using adaptive control on
the 3D swing-leg model, taking step function as input.

values

a = [a1 a2 a3 · · · a15 a16 a17]
T

= [0.0026 0.0121 0.0005 0.0026 0.0042 0.0484 − 0.0243 0.0015 − 0.0037

− 0.0268 − 0.0006 0.0394 0.0210 0.0045 0.6927 0.1369 0.0929]T .

Trajectory Tracking

The swing-leg is now required to follow a desired trajectory. The signals we used as the desired
trajectories of the hip, knee and ankle joints were extracted from the offline walking pattern
generated by the method presented in Chapter 3.

The parameters used for adaptive control are Γ = diag[0.02 0.08 0.05 0.01 0.02
0.06 0.01 0.05 0.07 0.03 0.01 0.04 0.05 0.05 9 15 6], Λ = 500I and KD

= 100I. For PD control, the equivalent parameters are KD = 100I and KP = ΛKD = 500KD.
All the parameters here were chosen empirically.

The tracking results and tracking errors using adaptive control and PD control are plotted
in Figure 5.10. We see that the tracking becomes significantly better with adaptive control
in comparison to that with PD control. Simulation results show that, the adaptive control
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Figure 5.9: Inertial parameter estimates (top) and gravitational parameter estimates (bottom)
under step response implementing adaptive control on the 3D swing-leg model.

outperforms PD control in handling the dynamic demands of trajectory tracking. Figure 5.11
shows the results of parameter estimates with adaptive control.

5.4.2 Simulation Based on the ODE(1)

To further verify the advantage of the adaptive control in dynamic trajectory tracking over
the PD control, software simulation was carried out in a robot simulator. The simulator is
programmed by C/C++ and is built using the ODE(1) physics engine. Table 5.1 lists the
parameters of the robot model in the simulator. Figure 5.12 shows the snapshots of the
forward walking in the simulator. The walking parameters used for generating the reference
walking pattern are listed in Table 5.2.

Adaptive control and PD control were implemented in the ODE(1) simulator. Figure 5.13
and Figure 5.14 show the zoomed-in views of the trajectory tracking performance for both
legs under multiple sets of parameters of the adaptive controller and PD controller. In the
adaptive control, Γ = diag[0.002 0.008 0.005 0.001 0.002 0.006 0.001 0.005
0.007 0.003 0.001 0.004 0.005 0.005 0.09 0.015 0.06].

Seen from the simulation results, there is no clear evidence that the adaptive control
outperforms the PD control in dynamic trajectory tracking using the 3D model of the swing-
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Figure 5.10: Tracking performance comparison by implementing adaptive control (left) and PD
control (right) on the 3D swing-leg model taking reference walking pattern as input.
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Figure 5.11: Dynamic estimates of inertial parameters (top) and gravitational parameters (bot-
tom) for the 3D swing-leg model under adaptive control using reference walking pattern as input.

leg in the ODE(1) simulator. The reason is that the robot in the simulator is indeed not a
torque-control robot; only very small control torques can be as input, or else the robot will
collapse. On the other hand, the adaptive controller and PD controller need to output large
torques to achieve precise trajectory tracking. Therefore, the limitation on the magnitude of
the control torque with the ODE(1) simulator reduces the accuracy of the position control.
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Table 5.1: Parameters of the robot model in the ODE(1) simulator.

Links Lengths (m) Masses (kg)

Thigh 0.1 0.533
Tibia 0.1 0.423
Foot 0.046 0.158
Upper Body 2.118

Table 5.2: Walking parameters for the ODE(1) simulator.

Walking Parameters Symbol Value

Lateral swing amplitude of waist Al 0.03 (m)
Sagittal oscillation amplitude of waist As 0.001 (m)
Foot collision avoidance distance d0 0.05 (m)
Walking period (stride time) Tstride 0.80 (s)
Double-support ratio τdsp 0.1 (10%)
Maximum elevation of foot Hfoot 0.024 (m)
Average Walking Speed v̄ 0.277 (m/s)
Average Step Length Lstep 0.112 (m)
Total Simulation Time Ttotal 32 (s)

(a) t=0s (b) t=0.5s (c) t=0.95s (d) t=1.3s (e) t=1.7s

(f) t=2.0s (g) t=2.4s (h) t=2.75s (i) t=3.15s (j) t=3.5s

Figure 5.12: Snapshots of forward walking in the ODE(1) simulator.
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Figure 5.13: Zoomed-in view of the trajectory tracking of the left leg for multiple sets of param-
eters of the adaptive controller and PD controller.
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Figure 5.14: Zoomed-in view of the trajectory tracking of the right leg for multiple sets of
parameters of the adaptive controller and PD controller.
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5.5 Chapter Summary

In this chapter, the adaptive control method applied to the swing-leg of the humanoid robot
for fast and precise trajectory tracking and dynamic parameter estimate is presented. Fast
walking of the robot can be realized. First, the planar model of the swing-leg is establised.
Then by adding two extra joints in the frontal plane, 3D model of the swing-leg is set up.
Simulation based on both Matlab/SimMechanics and ODE(1) physics engine was carried out.

The effectiveness of the adaptive control in handling the dynamic demands of trajectory
tracking is compared with the PD control. The advantage of the adaptive control in precise
dynamic trajectory tracking over the PD control is well confirmed on the planar model and
3D model of the swing-leg by using the simulator based on Matlab/SimMechanics. However,
the superiority is not obvious when the adaptive control and PD control are applied to the 3D
model of the swing-leg in the ODE(1) simulator. The reason is that the robot in the simulator
is not a torque-control robot in a real sense, only very small control torques can be input, or
else the robot will collapse; the adaptive control needs nevertheless large torques to achieve
precise trajectory tracking. Therefore, the limitation on the magnitude of the control torque
with the ODE(1) simulator reduces the accuracy of the position control.



6 Landing Impact Control

6.1 Introduction

Switching from free space motion to constrained motion will experience transient impact force
caused by transfer of body weight in an extremely short time. Human beings reduce the full
intensity of the impact by shock-absorbing reactions of the muscles at the ankle, knee and
hip [93]. The heel contact plays an essential role in reducing the force of limb loading.

As the humanoid NAO has no heels, the soles are always parallel to the ground during
walking. As a result, the whole sole of the foot will abruptly land on the ground at the
beginning of the double support phase. This will bring about a large impact force which may
cause oscillation and rebounding of the landing foot, and consequently the walking of the
humanoid robot might become unstable. A control method to decrease the landing force and
increase the stability of the walking system is therefore required. Figure 6.1 illustrates the
force distribution of the robot NAO in the process of a walk. In this thesis, impedance control
is applied to moderating the landing impact force.

Figure 6.1: Force distribution during walking of the robot NAO.
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6.2 Related Works

Yamaguchi used passive shock absorbing mechanism with shock absorbing material against
the impacts [128]. Kim et al. modeled the robot’s foot and the ground as an one-port network
system and alleviated the landing force by modifying the desired height of the landing foot
according to the calculated energy of the network [61]. The method does not need knowledge
of robot dynamics. Kajita et al. controlled the impact force by lifting the landing foot at a
certain speed during the landing phase [47]. Besides, some biped walking robots and biped
humanoids have applied impedance control to reducing the landing impact force. Lim et al.
employed impedance control with large damping during the landing phase of a humanoid
robot [70]. Sugahara et al. reduced the landing impact of a biped locomotor by using
variable compliance parameters which depend on the walking phase [110]. Löffler also
used an impedance-control-based method to absorb the landing impact [73].

6.3 Force Detection

The contact force can be sensed typically by force sensors that are mounted on the sole of the
foot. As shown in Figure 6.2, each foot of NAO is equipped with four Force Sensitive Resistors
(FSRs) on the sole which measure a resistance change according to the pressure applied. The
working range of each FSR is from 0 N to 25 N. Normally, a filter, e.g. low-pass filter, is used
to get reliable force value because the measured value from FSR sensors have high-frequency
noises.

Left foot Right foot 

Ankle 
position 

Ankle 
position 

y

x

y

x

Figure 6.2: FSR locations on the foot.

6.4 Model of Dynamics

There are many methods for generating the dynamic equations of a mechanical system. All
methods generate equivalent sets of equations, but different forms of the equations may be
better suited for computation or analysis.

In this section, we give a global characterization of the dynamics of a rigid body subject to
external forces and torques. First, the well-known form of the Newton–Euler equations based
on body linear momentum and angular momentum laws is used to describe the dynamics of a
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rigid body. Then Lagrangian equations, which rely on the energy properties of a mechanical
system are used to describe the dynamics of the system.

Newton-Euler Equations (When the Robot is Viewed as a Rigid Body)

Computation of the motion of a rigid body consists of solving a set of ODEs(2). The most
common way to describe the motion of a rigid body is by means of the Newton-Euler equations,
which define the time derivatives of the linear momentum, P , and angular momentum, L,
as a function of external force, F = [fx fy fz]

T , and torque (principal moment), T =
[T1 T2 T3]

T :

F (t) = Ṗ (t) = mr̈(t)

T (t) = L̇(t) = I · ω̇(t) + ω(t)× (I · ω(t))
(6.1)

where m is the mass of the body, r̈ = [ẍ ÿ z̈]T represents the linear acceleration of the
CoM, ω = [ω1 ω2 ω3]

T denotes the angular velocity about the principal axes, and I is the
inertia tensor of the body taking the principal axes as the body axes and it has the diagonal
form

I =

I1 0 0
0 I2 0
0 0 I3


The scalar form of a body dynamics equations can be written as

mẍ = fx
mÿ = fy
mz̈ = fz

(6.2)

and 
I1ω̇1 + (I3 − I2)ω2ω3 = T1
I2ω̇2 + (I1 − I3)ω3ω1 = T2
I3ω̇3 + (I2 − I1)ω1ω2 = T3

(6.3)

Lagrange’s Equations (When Viewed as an Open-chain Robot)

We rely on a Lagrangian derivation of the dynamics. This technique has the advantage of
requiring only the kinetic and potential energies of the system to be computed. In Appendix C,
we derive the dynamic equations of motion of a system without constraints (the swing-leg).

The dynamic equations of motion for the constrained system using Lagrange’s equations
can be written as

H(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ + J(θ)T f (6.4)

with θ ∈ Rn being the joint angles for the open-chain robot, H(θ) ∈ Rn×n denoting the
symmetric inertia matrix, C(θ, θ̇)θ̇ representing the Coriolis and centrifugal force terms, g(θ) ∈
Rn being the gravity term, τ ∈ Rn denoting the applied joint torques, and f being the
constraint forces and moments. The effect of the external force and moment is given by
J(θ)T f , J(θ) represents the Jacobian matrix of the robot. The calculation of Jacobian matrix
for force control is presented in Appendix D.
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Full Nonlinear Dynamic Equations of Motion

Equations of motion can be formalized in a number of different coordinate systems. m inde-
pendent coordinates are necessary to describe the motion of a system having m DoFs. Any
set of m independent coordinates is called generalized coordinates (e.g. q1, q2, . . . qm).

Combining Eq. (6.1) and Eq. (6.4), we get the full nonlinear dynamic equations of motion
for the constrained system

M(q)q̈ +N(q, q̇) = Sτ + JT (q)F (6.5)

where q ∈ Rn+6 is the set of generalized coordinates, and it is the configuration vector
that includes n joint angles and six absolute position and orientation of the robot. M(q) ∈
R(n+6)×(n+6) is the inertia matrix, N(q, q̇) ∈ Rn+6 is a vector of nonlinear gravitational,
centrifugal and Coriolis terms. S ∈ R(n+6)×n maps the n joint torques τ to the appropriate
rows of Eq.(6.5); generally, these equations are written such that S = [0, I]T . F represents
the generalized forces including the external forces and moments.

Equations of Motion in the Cartesian Space

Taking Eq.(6.4), we have

H(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ + τ e (6.6)

where τ ∈ Rn×1 is the joint input torque vector and τ e ∈ Rn×1 denotes the generalized vector
of joint torques exerted by the environment on the end-effector.

According to the definition of Jacobian matrix in robotics, the relationship between trans-
lational and rotational velocities of the end-effector in Cartesian space and joint velocities in
the joint space can be described with a linear equation:

ẋ = J(θ)θ̇ (6.7)

Then
θ̇ = J(θ)−1ẋ (6.8)

Differentiating Eq. (6.7) results in

ẍ = J̇(θ)θ̇ + J(θ)θ̈ (6.9)

Then we get
θ̈ = J(θ)−1ẍ− J(θ)−1J̇(θ)θ̇ (6.10)

Taking Eq. (6.8) and Eq. (6.10) into Eq.(6.6), it is possible to derive the dynamics equations
of motion in the Cartesian space:

Hx(x)ẍ+ Cx(x, ẋ)ẋ+ gx(x) + h(x, ẋ) = f + f e (6.11)

with
Hx(x) = J(θ)−TH(θ)J(θ)−1

Cx(x, ẋ) = J(θ)−TC(θ, θ̇)J(θ)−1

gx(x) = J(θ)−Tg(θ)

h(x, ẋ) = −Hx(x)J̇(θ)J(θ)−1ẋ

(6.12)

where f is a vector of applied control force, f = J(θ)−Tτ ; f e = J(θ)−Tτ e represents the
generalized vector of forces exerted by the ground on the foot.
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6.5 Impedance Control

Let a second-order impedance model be given by

fe = M(ẍ− ẍd) +B(ẋ− ẋd) +K(x− xd) (6.13)

where xd, ẋd and ẍd are the desired position, velocity and acceleration of the end-effector,
respectively. M , B and K are diagonal positive definite matrices representing the virtual
inertia, damping and stiffness of the system.

The reference acceleration of the end-effector is then given by

ẍ = ẍd −M−1
[
B(ẋ− ẋd) +K(x− xd)− fe

]
(6.14)

Taking Eq.(6.14) into Eq.(6.11) yields

τ = J(θ)THx(x)

[
ẍd −M−1

[
B(ẋ− ẋd) +K(x− xd)− fe

]]
(6.15)

+ J(θ)TCx(x, ẋ)ẋ+ J(θ)Tgx(x) + J(θ)Th(x, ẋ)− J(θ)T fe

Taking Eq. (6.12) into Eq. (6.15), the impedance control law is obtained,

τ = J(θ)THx(x)

[
ẍd −M−1

[
B(ẋ− ẋd) +K(x− xd)− fe

]]
(6.16)

+ C(θ, θ̇)θ̇ + g(θ)−H(θ)J(θ)−1J̇(θ)θ̇ − J(θ)T fe

The terms that compensate for velocity dependent forces and gravity (C(θ, θ̇)θ̇ + g(θ) −
H(θ)J(θ)−1J̇(θ)θ̇) can be considered as feedforward terms.

The foot of the robot is desired to achieve stable landing on the ground without bounding
and oscillatory behavior, so ẍd = 0. Eq.(6.16) can be simplified by assuming that Hx(x) = M .
Moreover, it is possible to consider the impedance control law in the quasi-static condition
which means that the velocity ẋ ≈ 0, and thus θ̇ ≈ 0. The approximation is reasonable
since force control tasks are generally executed at a low speed. Then Eq.(6.16) can be further
simplified by neglecting the terms containing θ̇1. Hence, the following simplified impedance
control law is obtained:

τ = J(θ)T
(
B(ẋd − ẋ) +K(xd − x)

)
+ g(θ) (6.17)

This control scheme is equivalent to a PD control law with gravity compensation. It indi-
cates that the force between the robot and the environment is controlled via regulating the
position (x) and velocity (ẋ) of the robot foot in the Cartesian space. When in contact with
a stiff environment, the position of the environment can be set as the origin x = 0; also,

1The velocity ẋ in the Cartesian space in the control law cannot be neglected since ẋ is proportional to
the sum of the individual joint angular velocities, as well as to the square of the sum of the individual joint

angular velocities. Namely, ẋ ∝
[∑n

i=1 θ̇i + (
∑n

i=1 θ̇i)
2

]
, n is the number of the joints of the leg. The related

derivation can be found in Appendix C.
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the desired velocity is usually zero ẋd = 0. The equilibrium state and the global asymptotic
stability of the system with the control law formulated in Eq.(6.17) are discussed in [6].

Once the stable landing is achieved, the robot should be able to keep walking according
to the originally planned walking pattern. Kim et al. recovered the CoG motion to follow the
original trajectory by means of PD control [61]. Lim et al. adopted polynomial interpolation
in the subsequent stance phase in order to recover the preset walking pattern which was
changed by the impedance control in the landing phase [70].

6.6 Chapter Summary

This chapter provided a control method with the aim of decreasing the landing impact force
by means of compliant force control approach. The control algorithm is given in the quasi-
static condition. A specific representation of the model’s dynamic components will permit a
better understanding of the interaction between the robot and the environment.



7 Balance Maintenance

Balance maintenance plays an important role with regard to safe and successful coexistence
of humanoid robots with humans. This chapter presents balance recovery strategies in the
presence of external perturbations in order for the robot to maintain an upright posture.
Simple dynamic models are described that can generally represent humanoid balance. The
dynamics are analyzed to determine recovery strategies and predict their stability.

The strategies for restoring balance of a humanoid robot presented in this chapter are as
follows:

• Ankle strategy

• Hip strategy

• Combined strategy

7.1 Introduction

From biological point of view, balance is a generic term describing the dynamics of body
posture to prevent falling. It is related to the inertial forces acting on the body and the
inertial characteristics of body segments [125].

7.1.1 Clues from Human Locomotion

Biomechanical studies on human balance [31, 75, 77, 125] have revealed that humans use a
variety of control strategies in order to maintain balance in the presence of sudden horizontal
perturbations. The most appropriate strategy is selected according to the size of the postural
challenge as well as the current feedback information provided by the sensory systems of
the human body. Figure 7.1 illustrates four basic strategies that human beings apply to
compensate for external perturbations. For smaller perturbations, torque about the ankle
joints is used to restore equilibrium by moving the body CoM forward and backward, and
the posture of the rest body remains unchanged. This is termed “ankle strategy”. When the
perturbations are larger or when the support surface is narrow, the use of the hip flexors
or extensors is involved to generate shear forces at the feet that act to decelerate the CoM,
this is so called “hip strategy”. A combination of pure ankle and hip strategy is also possible
which is so called “combined strategy”. The last resort-strategy is elicited when the CoM of
the body passes outside the limits of base of support (BoS), in this case human beings will
step out in order to reconfigure the BoS, which is called “stepping strategy”.
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Quiet standing Ankle strategy Hip Strategy Combined Strategy Stepping Strategy

Figure 7.1: Four basic strategies against external perturbations from [125].

7.1.2 Related Works

Many researchers have studied biped balance control. Unification of models and strategies
was used for analysis of humanoid balance [105, 111]. Kuo used a Linear Quadratic Gaus-
sian (LQG) controller to model human central nervous system behavior of selecting ankle
and/or hip strategy [65]. Taking linear and angular momentum into account, Macchietto
et al. proposed an optimization method for balance recovery which controlled and tracked the
trajectories of the CoM and CoP simultaneously [74]. Hofmann in his PhD thesis studied
standing balance with regard to the spin angular momentum [28]. Azevedo et al. realized
balance control for a seven-actuated-joint planar biped in simulation by solving quadratic
optimization problem with balance objective and constraints [4]. Stephens mimicked the
ankle and hip strategies by regulating the CoP position and meanwhile keeping the robot
posture upright using an integral controller [107]. Furthermore, ankle and hip strategies were
realized on real humanoid robots by meas of either a unified dynamic model [37] or seperate
dynamic models [81]. Pratt et al. added a flywheel to the LIPM for analyzing hip strategy
and defining stable footstep locations of a biped system, known as Capture Region [96]. Step-
ping strategy was achieved on humanoid robots by stabilizing the GCoM within the support
polygon, and this was realized through planning the trajectories of the CoM and the swing
foot solving the QP problem and then tracking the trajectories [109], or through directly
controlling the CoM using force control, meanwhile online planning and tracking the swing
foot trajectory [36].

7.2 State Estimation

A good estimate of the CoM position and velocity is important for choosing strategies. As we
have discussed in Chapter 4, if the state estimator has the following form{

xk+1 = Axk +Buk + w
yk = Cxk + v
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where w and v are vectors representing the standard process and measurement noise variables
respectively which feature Gaussian processes with covariance given by Q and R,

w ∼ N(0, Q)

v ∼ N(0, R)

then it is possible to implement Kalman filter and obtain the estimated state of the CoM.
We choose 3D-LIPM which is based on the CoM dynamics by assuming the height of the

CoM is constant and the angular momentum around the CoM is zero.{
ẍ = ω2(x− xzmp)
ÿ = ω2(y − yzmp)

(7.1)

where ω =

√
g

z0
, z0 is the constant height of the CoM, (x, y) is the position of the CoM, and

(xzmp, yzmp) is the position of the ZMP.
Let xk = [x ẋ xzmp y ẏ yzmp]

T be the state vector and uk = [ẋzmp ẏzmp]
T be the

input at time step k. Eq.(7.1) can be written as a discrete linear system in state space form,

xk+1 = Axk +Buk (7.2)

The matrices in Eq.(7.2) are given by

A =



1 T 0 0 0 0
ω2T 1 −ω2T 0 0 0

0 0 1 0 0 0
0 0 0 1 T 0
0 0 0 ω2T 1 −ω2T
0 0 0 0 0 1

 (7.3)

and

B =



0 0
0 0
T 0
0 0
0 0
0 T

 (7.4)

where T is the time step.
Assuming a linear measurement model

yk = Cxk

where yk is a vector of measurements. The structure of C depends on the type of sensor
modalities and state description.

For example, if

C =



1 0 0 0 0 0
0 0 1 0 0 0

mω2 0 −mω2 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 mω2 0 −mω2
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then yk = [x xzmp fx y yzmp fy]T , where f = [fx fy] is the total horizontal force on
the CoM.

Therefore, Kalman filter as shown in Figure 7.2 can be implemented and the state of the
CoM can be estimated.

Torso 
Gyroscope 

Torso 
Accelerometer 

FSRs 

Joint 
Kinematics 

Kalman Filter CoM State 
Estimation 

Figure 7.2: CoM state estimation using Kalman filter.

7.3 Ankle Strategy

Ankle strategy is a reaction to small perturbations using torque exerted by the stance ankle
to generate a force on the CoM. Since the GRF passes through the CoM, the moment about
the CoM is zero. From the robotics point of view, the ankle strategy turns the body into an
inverted pendulum, balanced upright using ankle torque [3].

BOS

aτ

rF
→

ZMP

cmz

cmx!!
CoM

Figure 7.3: Schematic diagram of ankle strategy.
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7.3.1 Open Loop

Applying the torque equilibrium condition to the model shown in Figure 7.3, we have

τa +mẍcmzcm −mz̈cmxcm = mgxcm (7.5)

where τa is the torque executed on the ankle joint, xcm and zcm are the horizontal and
vertical CoM positions, m is the mass of the CoM. If the angle between the stance link and
the vertical axis is small, or if movements are relatively slow, then in a small neighborhood
area the vertical CoM position can be considered a constant value, namely zcm= k (k is a
constant). Hofmann also argues that controlling horizontal movement of the CoM is more
important for maintaining balance [28]. Then

z̈cm = 0 (7.6)

Eq.(7.5) becomes

τa +mẍcmzcm = mgxcm (7.7)

In humanoids, the location of the ZMP is roughly proportional to the magnitude of the
torque at the ankle. It can be formulated as [107]:

xzmp =
τa

Fnormal
(7.8)

with Fnormal denoting the normal force which cancels the weight and downward acceleration
of the CoM, so Fnormal = m(z̈cm + g). Therefore,

τa = m(z̈cm + g)xzmp (7.9)

Taking Eq.(7.6) into it,
τa = mgxzmp (7.10)

Substituting Eq.(7.10) into Eq.(7.7) and rearranging, we get

ẍcm −
g

zcm
xcm +

gxzmp

zcm
= 0 (7.11)

Let ω2 =
g

zcm
, f = −gxzmp

zcm
, Eq.(7.11) becomes ẍcm−ω2xcm = f with the initial conditions

x(0) = x0 and ẋ(0) = ẋ0. The solution of the equation is

xcm(t) = (
f

ω2
+ x0) cosh(ωt) +

ẋ0
ω

sinh(ωt)− f

ω2
(7.12)

Since sinhx =
ex − e−x

2
and coshx =

ex + e−x

2
, if the exerted ankle torque can make the

system recover from perturbations, xcm(t) definitely has a convergent value. Therefore, the
sufficient and necessary condition is

f

ω2
+ x0 = − ẋ0

ω

Namely

x0 +
ẋ0
ω

= xzmp (7.13)
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The convergent trajectory of xcm(t) is

xcm(t) = (
f

ω2
+ x0)e

−ωt − f

ω2
(7.14)

lim
n→∞

xcm(t) = − f

ω2

The first order derivative of Eq.(7.12) is

ẋcm(t)

ω
= (

f

ω2
+ x0) sinh(ωt) +

ẋ0
ω

cosh(ωt) (7.15)

Using Eq.(7.12) and Eq.(7.15),

xcm(t) +
ẋcm(t)

ω
= − f

ω2

Note that from Eq.(7.13), the boundary situations emerge when the ankle torque is sat-
urated with the ZMP at the edge of the BoS, that is xzmp = xzmp max or xzmp = xzmp min,
where xzmp max and xzmp min are the front and back borders of the BoS.

If the initial state of the CoM of the humanoid robot is inside the area xzmp min ≤ x0+
ẋ0
ω
≤

xzmp max, the system can potentially recover from the perturbations using ankle strategy. The
convergent value of xcm(t) is formulated by Eq.(7.14).

Otherwise, if x0 +
ẋ0
ω
> xzmp max or x0 +

ẋ0
ω
< xzmp min, the ankle torque alone cannot

restore balance and either a different balance strategy is needed or a step should be initiated
to prevent falling. Under the circumstances, the values of xcm(t) are divergent.

Algorithm 1 shows calculation of potential recovery trajectories of the CoM given different
initial conditions using ankle strategy. Figure 7.4 demonstrates the calculated trajectories.
Two bold green lines indicate the critical boundaries of using ankle strategy for restoring
equilibrium in the presence of perturbations. The region between these two lines is the po-
tentially stable region. All trajectories that start within the region are potentially stable and
all that start outside the region will fall.

7.3.2 Closed Loop

Now we consider that the CoM is PD controlled. The control law is

ẍcm = kp(xset − xcm) + kd(ẋset − ẋcm)

= kp(xset − xcm)− kdẋcm (7.16)

where kp and kd are the proportional gain and derivative gain, respectively.

Rearranging Eq.(7.16), we get

ẍcm + kdẋcm + kpxcm = kpxset

Solutions of the second-order non-homogeneous linear differential equation with constant
coefficients depend on the values of kp and kd.
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Algorithm 1 Calculate xcm(t) using ankle strategy given initial conditions

1: Let fmax = −gxzmp max/zcm and fmin = −gxzmp min/zcm
2: Initial Conditions: x0, ẋ0, f = −ωẋ0 − ω2x0
3: if f ≥ fmax and f ≤ fmin then

4: xcm(t) = (
f

ω2
+ x0)e

−ωt − f

ω2

5: end if
6: if f ≥ fmin then
7: f ⇐ fmin

8: xcm(t) = (
fmin

ω2
+ x0) cosh(ωt) +

ẋ0
ω

sinh(ωt)− fmin

ω2

9: limt→∞

[
xcm(t)− ẋcm(t)

ω

]
= −fmin

ω2

10: end if
11: if f ≤ fmax then
12: f ⇐ fmax

13: xcm(t) = (
fmax

ω2
+ x0) cosh(ωt) +

ẋ0
ω

sinh(ωt)− fmax

ω2

14: limt→∞

[
xcm(t)− ẋcm(t)

ω

]
= −fmax

ω2

15: end if
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Figure 7.4: Potentially stable region (green) and unstable region (red) given by different initial
conditions. Parameters are g =9.81 m/s2, zcm = 0.32 m, xzmp max = 0.103 m, xzmp min =
−0.056 m.

Next, we focus on the stability of the system by analyzing the controllability and conver-
gency of the system. Assuming that z̈cm = 0, the ZMP equation is as follows:

xzmp = xcm −
ẍcmzcm

g
(7.17)



110 7 Balance Maintenance

Taking Eq.(7.16) into Eq.(7.17)

xzmp = xcm − [kp(xset − xcm)− kdẋcm]
zcm
g

= (1 +
kpzcm
g

)xcm +
kdzcm
g

ẋcm −
kpzcm
g

xset (7.18)

The ZMP constraint is
xzmp min ≤ xzmp ≤ xzmp max (7.19)

Taking Eq.(7.18) into Eq.(7.19) and rearrange,

xzmp min +
kpzcm
g

xset ≤ (1 +
kpzcm
g

)xcm +
kdzcm
g

ẋcm ≤ xzmp max +
kpzcm
g

xset (7.20)

Let k1 =
kdzcm
g

, k2 = 1 +
kpzcm
g

Then Eq.(7.20) becomes

xzmp min + (k2 − 1)xset ≤ k1ẋcm + k2xcm ≤ xzmp max + (k2 − 1)xset

Now we have four straight lines representing the critical boundaries of the open-loop control
(l1, l2) and close-loop control (a, b) of the CoM using ankle strategy for balance recovery. The
intersection points among the lines can be calculated (see Figure 7.5).

l1 : ẋcm = −ωxcm + ωxzmp max

l2 : ẋcm = −ωxcm + ωxzmp min

a : ẋcm = −k2
k1
xcm +

xzmp max + (k2 − 1)xset
k1

b : ẋcm = −k2
k1
xcm +

xzmp min + (k2 − 1)xset
k1

As illustrated in Figure 7.6, if the state variables (xcm, ẋcm) are inside the boundary region
between a and b, (xcm, ẋcm) are potentially controllable, and how they are convergent to the
set point depends on the proportional gain kp and derivative gain kd because the values of kp
and kd decide the root distribution of the characteristic equation; or else, the state variables
are uncontrollable. When the CoM state (xcm, ẋcm) is in the region surrounded by the lines
l1, l2 and (xcm, ẋcm) trajectories which pass the point A and point D, (xcm, ẋcm) either stably
converges to the reference or rests in the potentially stable region. Figure 7.7 displays the
ZMP trajectories and corresponding required ankle torques by PD controlling the CoM given
different initial conditions using ankle strategy during balance recovery. The former two are
potentially stable cases with convergent trajectories, and the latter two are unstable because
the ZMP trajectories and ankle torques appear a trend of divergence.

7.4 Hip Strategy

Pure hip strategy involves the application of hip torque to generate horizontal ground forces
which keep the CoM over the foot. The ankle in pure hip strategy is unactuated. Note that
in this case the GRF doesn’t pass through the CoM any more, so there is a moment about
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Figure 7.5: Four straight lines a, b, l1, l2. The green lines are l1 and l2, the blue lines are a and
b. A, B, C and D are the four intersection points between l1, l2 and a, b. Parameters are g =9.81
m/s2, zcm = 0.32 m, xzmp max = 0.103 m, xzmp min = −0.056 m, kp = 10 and kd = 10.

the CoM. A useful quantity for representing this situation is the CMP (refer to Section 2.1).
Using hip strategy, the angular stability will be temporarily sacrificed in order to gain greater
horizontal force on the CoM. Figure 7.8 exhibits the model of hip strategy.

BOS

ZMP

hτ

θ

rF
→

CMPxF
→

yF
→

cmz

cmx!!
CoM

Figure 7.8: Schematic diagram of hip strategy.

Applying the torque equilibrium condition into this model, we have

τh +mẍcmzcm −mz̈cmxcm = mgxcm (7.21)

where τh is the torque that the hip joint provides, τh = Iθ̈. I is the rotational inertia of the
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(b) kp=72, kd=12
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(c) kp=80.08, kd=20

Figure 7.6: Feedback trajectories created by PD controller using different proportional and deriva-
tive gains. In (c), no intersection points since lines are parallel.
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Figure 7.7: ZMP trajectories (green) and required ankle torques (blue) during balance recovery
by PD controlling the CoM. kp = 72 and kd = 12. The initial conditions are (a, b) (x0, ẋ0) =
(−0.4 m, 2.3 m/s); (c, d) (x0, ẋ0) = (0.42 m, −2.3 m/s); (e, f) (x0, ẋ0) = (−0.32 m, 2.3 m/s)
and (g, h) (x0, ẋ0) = (0.37 m, −2.3 m/s), respectively.
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head, arm and trunk (HAT) . I = mHAT ·d2, where d is the distance between the CoM of HAT
and the hip joint. m is the total mass of the robot. Here, we ignore the vertical movement of
CoM, thus z̈cm=0.

Rearranging Eq.(7.21), we get

ẍcm −
g

zcm
xcm = − 1

mzcm
τh (7.22)

Let ω2 =
g

zcm
and f = − 1

mzcm
τh, then ẍcm − ω2xcm = f with the initial conditions

x(0) = x0 and ẋ(0) = ẋ0. The solution of Eq.(7.22) is

xcm(t) = (
f

ω2
+ x0) cosh(ωt) +

ẋ0
ω

sinh(ωt)− f

ω2
(7.23)

Suppose the robot is moving at ẋ0, the upper body is rotating at θ̇0 and has an angle of
θ0 with respect to vertical. We wish to find a hip torque profile that will bring the robot to
rest over its foot with no forward velocity or angular velocity. We use the torque profile [96]
proposed by Pratt et al., which provides the most influence on velocity by accelerating the
HAT as hard as possible in one direction and then decelerates it, bringing it to a stop at the
maximum angle θmax.

τh(t) = τnu(t)− 2τnu(t− t1) + τnu(t− t2) (7.24)

where τn is the nominal torque that the hip joint of the robot provides. u(t − T ) is the unit
step function that satisfies

u(t− T ) =

{
0 if t < T
1 if t ≥ T

t1 is the time at which the HAT stops accelerating and starts decelerating and t2 is the time
at which the HAT comes to a stop.

The controller using the above torque profile is known in control theory as a bang–bang
controller, which is a feedback controller that switches abruptly between two states. They are
often used to control a plant that accepts a binary input.

Substituting Eq.(7.24) into Eq.(7.23) and rearranging, the trajectory of the CoM is ob-
tained.

xcm(t) = x0 cosh(ωt) +
ẋ0
ω

sinh(ωt)− τn
mg

[(cosh(ωt)− 1)u(t)−

2(cosh(ω(t− t1))− 1)u(t− t1) + (cosh(ω(t− t2))− 1)u(t− t2)]

ẋcm(t) = ωx0 sinh(ωt) + ẋ0 cosh(ωt)− τn
mg

[ω sinh(ωt)u(t) + (cosh(ωt)− 1)δ(t)−

2ω sinh(ω(t− t1))u(t− t1)− 2(cosh(ω(t− t1))− 1)δ(t− t1) +

ω sinh(ω(t− t2))u(t− t2) + (cosh(ω(t− t2))− 1)δ(t− t2)]

If the exerted hip strategy can make the system recover from perturbations, xcm(t) con-
verges as t→∞. The necessary and sufficient condition is

x0 +
ẋ0
ω
− τn
mg

(1− 2e−ωt1 + e−ωt2) = 0 (7.25)
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Since τh = Iθ̈, given the torque profile in Eq.(7.24), the HAT angular velocity and position
will be

θ̇(t) = θ̇0 +
τn
I

(t · u(t)− 2(t− t1) · u(t− t1) + (t− t2) · u(t− t2)) (7.26)

θ(t) = θ0 + θ̇0t+
τn
I

(
1

2
t2 · u(t)− (t− t1)2 · u(t− t1) +

1

2
(t− t2)2 · u(t− t2)) (7.27)

At time t = t2 we want θ̇(t2) = 0, solving Eq.(7.26) we get

0 = θ̇0 +
τn
I

(t2 − 2(t2 − t1)) = θ̇0 +
τn
I

(2t1 − t2)

So

t2 = 2t1 +
I

τn
θ̇0 (7.28)

In particular, if θ̇0 = 0, then t2 = 2t1.
Substituting Eq.(7.28) into Eq.(7.25) and rearranging, we get

t1 = − 1

ω
ln

[
e

ωI

τn
θ̇0
± e

ωI

2τn
θ̇0

√√√√mg

τn
(x0 +

ẋ0
ω

) + e

ωI

τn
θ̇0
− 1

]
Note that here the sign ‘±’, the negative value ‘−’ should be chosen in order for t1 ≥ 0,

namely

t1 = − 1

ω
ln

[
e

ωI

τn
θ̇0
− e

ωI

2τn
θ̇0

√√√√mg

τn
(x0 +

ẋ0
ω

) + e

ωI

τn
θ̇0
− 1

]
with the constraint for the square root that

1

τn
(x0 +

ẋ0
ω

) ≥ 1

mg
(1− e

ωI

τn
θ̇0

)

t2 can be solved by Eq.(7.28). Having the torque τn and the time t1, t2, the trajectories of
xcm(t) and ẋcm(t) can be obtained.

Now we consider the critical boundaries for applying the pure hip strategy. Assuming that
the hip pitch joints of the robot reach the ROM limit at t = t2, from Eq.(7.27) we get

θ(t2) = θmax = θ0 + θ̇0t2 +
τn
I

(
1

2
t22 − (t2 − t1)2) (7.29)

Substituting Eq.(7.28) into Eq.(7.29) and rearranging, we get a quadratic equation of
variable t1

τn
I
t21 + 2θ̇0t1 + (

I

2τn
θ̇20 + θ0 − θmax) = 0

with the solution t1 = − I

τn
θ̇0 ±

I

τn

√
θ̇0
2
− τn

I
(θ0 − θmax)

Because t1 > 0, the constraint for the square root is
1

2
θ̇20 −

τn
I

(θ0 − θmax) ≥ θ̇20, namely

1

2
θ̇20 +

τn
I

(θ0 − θmax) ≤ 0. If (θ0, θ̇0) satisfy the inequility,
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t1 = − I

τn
θ̇0 +

I

τn

√
θ̇20
2
− τn

I
(θ0 − θmax)

t2 = − I

τn
θ̇0 +

2I

τn

√
θ̇20
2
− τn

I
(θ0 − θmax)

We use τn f and τn b, θmax f and θmax b, tf and tb to respectively denote the maximum
torques the hip joints of the robot can apply, the ROM limits of hip pitch joints, and the
acceleration and deceleration time in the forward and backward directions. From Eq.(7.25),
the critical boundaries for applying the pure hip strategy to maintain the balance are

x0 +
ẋ0
ω
−
τn f

mg
(1− 2e−ωt1 f + e−ωt2 f ) = 0

x0 +
ẋ0
ω
− τn b

mg
(1− 2e−ωt1 b + e−ωt2 b) = 0

Therefore, if the initial state of the robot (x0, ẋ0) satisfies the inequality (7.30), then
the robot can potentially recover from the perturbation by executing the pure hip strategy.
Or else, the robot cannot restore equilibrium using pure hip strategy only. Other strategies
should be taken under the circumstance, such as combined ankle and hip strategy or stepping
strategy. Calculation of the trajectories of the CoM given different initial conditions using
pure hip strategy is shown in Algorithm 2. Figure 7.9 exhibits the calculated results.

τn b

mg
(1− 2e−ωt1 b + e−ωt2 b) ≤ x0 +

ẋ0
ω
≤
τn f

mg
(1− 2e−ωt1 f + e−ωt2 f ) (7.30)

where

t1 f/b = − I

τn f/b
θ̇0 +

I

τn f/b

√
θ̇20
2
−
τn f/b

I
(θ0 − θmax f/b)

t2 f/b = − I

τn f/b
θ̇0 +

2I

τn f/b

√
θ̇20
2
−
τn f/b

I
(θ0 − θmax f/b)

7.5 Combined Strategy

Combined strategy applies both ankle strategy and hip strategy to safeguard equilibrium of
the system against external perturbations.

Applying the torque equilibrium condition into the model shown in Figure 7.10, we have

τh + τa +mẍcmzcm −mz̈cmxcm = mgxcm (7.31)

where τh and τa are the torques that the hip joint and the ankle joint provide respectively.
τa ∼= mgxzmp and τh = Iθ̈. I is the rotational inertia of the HAT. I = mHAT · d2, where d is
the distance between the CoM of HAT and the hip joint. m is the mass of the robot. Here,
we ignore the vertical movement of CoM, thus z̈cm = 0. Then Eq.(7.31) becomes

τh + τa +mẍcmzcm = mgxcm (7.32)
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Algorithm 2 Calculate xcm(t) using pure hip strategy given initial conditions

1: Given τn f , τn b

2: Initial Conditions: x0, ẋ0, θ0 = θ̇0 = 0,

3: if x0 +
ẋ0
ω
≤
τn f

mg
(1− 2e−ωt1 f + e−ωt2 f ) and x0 +

ẋ0
ω
≥ 0 then

4: t1 f = − 1

ω
ln

[
1−

√
mg

τn f
(x0 +

ẋ0
ω

)

]
, t2 f = 2t1 f

5: xcm(t) = f(x0, ẋ0, t1 f , t2 f , τn f )

6: else if x0 +
ẋ0
ω
≥ τn b

mg
(1− 2e−ωt1 b + e−ωt2 b) and x0 +

ẋ0
ω
≤ 0 then

7: t1 b = − 1

ω
ln

[
1−

√
mg

τn b
(x0 +

ẋ0
ω

)

]
, t2 b = 2t1 b

8: xcm(t) = f(x0, ẋ0, t1 b, t2 b, τn b)

9: else if x0 +
ẋ0
ω
>
τn f

mg
(1− 2e−ωt1 f + e−ωt2 f ) then

10: t1 ⇐ t1 f , t2 ⇐ t2 f

11: xcm(t) = f(x0, ẋ0, t1, t2, τn f )

12: else if x0 +
ẋ0
ω
<
τn b

mg
(1− 2e−ωt1 b + e−ωt2 b) then

13: t1 ⇐ t1 b, t2 ⇐ t2 b

14: xcm(t) = f(x0, ẋ0, t1, t2, τn b)
15: end if

Rearranging Eq.(7.32), we get

ẍcm −
g

zcm
xcm = − 1

mzcm
(τh + τa)

= − 1

mzcm
τh −

g

zcm
xzmp (7.33)

Let ω2 =
g

zcm
, and f = − 1

mzcm
τh −

g

zcm
xzmp, then Eq.(7.33) becomes ẍcm − ω2xcm = f

with the initial conditions x(0) = x0 and ẋ(0) = ẋ0. The solution of the equation is

xcm(t) = (
f

ω2
+ x0) cosh(ωt) +

ẋ0
ω

sinh(ωt)− f

ω2
(7.34)

7.5.1 Bang-Bang Control

We apply the torque profile adopted in the pure hip strategy

τh(t) = τhu(t)− 2τhu(t− t1) + τhu(t− t2) (7.35)

where τh is the torque that the hip joint can apply. t1 is the time when the HAT stops
accelerating and starts decelerating and t2 is the time when the HAT comes to a stop.

Substituting Eq.(7.35) into Eq.(7.34), we get the solution for the trajectory of CoM

xcm(t) = (x0 − xzmp) cosh(ωt) +
ẋ0
ω

sinh(ωt) + xzmp −
τh
mg

[(cosh(ωt)− 1)u(t)−

2(cosh(ω(t− t1))− 1)u(t− t1) + (cosh(ω(t− t2))− 1)u(t− t2)]
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Figure 7.9: Trajectories using angular momentum of the hip joints to safeguard balance. (Top)
CoM trajectories. The trajectories which start inside the pure hip strategy boundaries (x0, ẋ0) =
(−0.1 m, 0.7 m/s) and (x0, ẋ0) = (0.1 m, −0.6 m/s) are potentially stable; On the contrary,
the ones starting outside the area (x0, ẋ0) = (0 m, −0.55 m/s) and (x0, ẋ0) = (0 m, 0.8 m/s)
cannot restore equilibrium. The figure is plotted using parameters of θ0 = 0 rad, θ̇0 = 0 rad/s,
I= 0.1 kgm2, τn f = 16 Nm, τn b = −16 Nm, θmax f = 1.772308 rad and θmax b = −0.485624
rad; (Bottom) corresponding hip joint angle, angular velocity and hip torque.
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Figure 7.10: Schematic diagram of combined strategy.

The necessary and sufficient condition that xcm(t) converges as t→∞ is,

(x0 − xzmp) +
ẋ0
ω
− τh
mg

(1− 2e−ωt1 + e−ωt2) = 0 (7.36)

Using Eq.(7.26), the angular velocity of the hip pitch joint can be calculated. For simplicity,
suppose θ̇0 = 0, then t2 = 2t1 from Eq.(7.28). Let t1 = T , Eq.(7.36) becomes

(x0 − xzmp) +
ẋ0
ω
− τh
mg

(1− e−ωT )2 = 0

The time T can be analytical solved.

T = − 1

ω
ln

[
1−

√
mg

τh
(x0 +

ẋ0
ω
− xzmp)

]
The critical boundaries for applying the combined hip strategy to maintain the balance

are

(x0 − xzmp max) +
ẋ0
ω
−
τh f

mg
(1− e−ωt1 f )2 = 0

(x0 − xzmp min) +
ẋ0
ω
− τh b

mg
(1− e−ωt1 b)2 = 0

t1 f/b =

√
I

τmax f/b
(θmax f/b − θ0)

t2 f/b = 2t1 f/b =

√
4I

τmax f/b
(θmax f/b − θ0)

Therefore, if the initial state of the robot satisfies the inequality (7.37), the system can
potentially stabilize by executing the combined strategy and recover from the perturbations.
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Or else, the system will fall down or it has to take a step to avoid falling down. Figure 7.11
demonstrates the calculated results.

xzmp min +
τh b

mg
(1− e−ωt1 b)2 ≤ x0 +

ẋ0
ω
≤ xzmp max +

τh f

mg
(1− e−ωt1 f )2 (7.37)
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Figure 7.11: Trajectories of CoM using combined strategy to safeguard balance. The trajecotries
start with initial conditions (x0, ẋ0) = (0 m, 0.8 m/s) (green) and (x0, ẋ0) = (0 m, 1.1 m/s)
(red), respectively.

7.5.2 LQR Control

We apply the LQR optimal control to drive the system back to the origin after an initial
impulse disturbance gives a non-zero velocity of the CoM.

The equations of motion can be transformed into a first-order system with system dynamics{
ẋ = Ax+Bu
y = Cx+Du

(7.38)

with x ∈ Rn being the state vector, u ∈ Rm denoting the input of the system, and y denoting
the output of the system.

Let x = [xcm θ ẋcm θ̇]T . Combining Eq.(7.33), Eq.(7.38) can be written as
ẋcm
θ̇
ẍcm
θ̈

 =


0 0 1 0
0 0 0 1
ω2 0 0 0
0 0 0 0




xcm
θ
ẋcm
θ̇

+


0 0
0 0
−ω2 −(mzcm)−1

0 I−1

( xzmp

τh

)
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y =


xcm
θ
ẋcm
θ̇

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




xcm
θ
ẋcm
θ̇

+


0 0
0 0
0 0
0 0

( xzmp

τh

)

The quadratic cost function for the infinite horizon is

J =
1

2

∫ ∞
0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (7.39)

where Q is an n × n symmetric positive semidefinite matrix and R is an m ×m symmetric
positive definite matrix. It has been shown in classical optimal control theory that for a
continuous time system, to minimize the above quadratic cost function, the LQR optimal
control has the feedback form

u(t) = −K(t)x(t)

where K(t) is a properly dimensioned matrix, given as K(t) = R−1BTS, and S is the solution
of the algebraic Riccati equation which is given as:

0 = −SA−ATS + SBR−1BTS −Q

We implemented the optimal control in Matlab/Simulink R2012b. Using syntax [K, S, e]
= LQR(A, B, Q, R) in Matlab, the state-feedback gain K and the solution of the algebraic
Riccati equation S can be obtained for continuous-time models with dynamics ẋ = Ax+Bu.
Figure 7.12 demonstrates the simulation model in MATLAB/Simulink.

x ' = Ax + Bu
y = Cx + Du
!
!

simout!simout1!

Control!Inputs!

State!Vector!Linearized!
Dynamics!

9K*u!

LQR!Gain!

Figure 7.12: LQR optimal control diagram in Matlab/simulink.
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Figure 7.13 and Figure 7.14 show simulation results of the optimal control, where the
manually adjusted parameters are

Q = diag[2000 500 1 10];

R = diag[4500000 100].

Q and R were determined empirically.
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7.6 Chapter Summary

This chapter theoretically analyzes several simple models for rescue strategies applied to
restoring balance while original equilibrium of the system is disturbed by unexpected external
disturbances. Using these simple models, we developed analytic boundaries that are functions
of the CoM and CoP that can be measured or calculated easily for both robots and humans.
The boundaries predict whether or not a fall is inevitable. We explore three strategies for
recovery: 1) using ankle torques (CoP balancing), 2) using hip joints (CMP balancing), and
3) using both ankle torques and hip joints. These models can be used in robot controllers or
in analysis of human balance and locomotion.



8 Conclusions

Bipedal humanoid robots have great potential in the service area. Because of their anthropo-
morphic appearance and motion, they enhance the chances of acceptance by human beings
and simplify human-machine communication. In addition, bipedal humanoid robots are able
to well locomote on various terrains such as uneven surfaces or stairs. So they have better
adaptability to the environment where human beings live and require no changes to the exist-
ing infrastructure. One of the most basic requirements for such robots is autonomous, reliable
and fast biped locomotion. The preceding chapters of this thesis have presented a framework
for realizing stable and efficient locomotion of humanoid robots both in simulation and in
experiments. A brief summary of key ideas and contributions is given in the following section.
The final section outlines suggestions for future research on biped locomotion.

8.1 Summary

Motivated by biomechanical studies on human locomotion, this thesis covers motion genera-
tion and control of biped walking robots.

In the first part, a new method for designing a natural and efficient walking pattern of
humanoid robots was presented. We use a simplification of the walking related dynamics of
the humanoid robot by applying the equations of motion to a point mass concentrated on
the position of the robot waist. Inspired by the walking patterns occurring in human beings,
we model the walking pattern of a bipedal humanoid robot by continuous and differentiable
mathematical functions. The walking pattern satisfies the ZMP stability criterion. The pro-
posed walking pattern involves upward and downward motion of the upper body of the robot.
In comparison to the walking pattern that restricts the upper body motion to a flat plane, the
proposed walking pattern involves three-dimensional upper body motion which is more natu-
ral and human-like. Besides, the walking pattern generation method needs lower calculation
cost compared with that based on precise knowledge of robot dynamics.

The second part of this thesis presents a real-time walking control system aiming at fast,
stable and autonomous biped walking. Several controllers for stabilizing biped walking were
developed, including a torso pitch/roll controller, a yaw moment controller, a swing-leg trajec-
tory tracking controller and a landing impact controller. Based on sensory feedback, the torso
pitch/roll controller utilizes hip/ankle joints and modifies the reference joint trajectories in
real time in order to keep an upright posture of the upper body of the robot during walking.
The yaw moment controller uses arm motion to compensate for the yaw moment generated
on the support foot caused by the acceleration and deceleration of the swing-leg. The swing-
leg trajectory tracking controller realizes fast and precise tracking of the reference walking
pattern of the swing-leg using adaptive control approach in order to achieve fast walking of
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the robot. The landing impact controller employs compliant force control approach with the
purpose of decreasing the impact force.

Using this system, NAO achieved dynamic stable walking and reached a maximum walking
speed of 0.24 m/s in experiments. In addition, NAO could walk with almost stretched knees
while the walking speed was lower, e.g. 0.10 m/s, so that the efficient walking was realized
since the knee joints consumed less energy compared with the conventional walking pattern.

The last part presents the balance recovery strategies in the presence of external pertur-
bations in order for the robot to maintain an upright standing posture. Using simple models
that biomechanists and roboticists used previously to explain humanoid balance and control,
human-like rescue strategies are theoretically analyzed. The analysis paves the way toward
building controllers that ensure a humanoid can withstand disturbances.

8.2 Future Work

From the experience gained during this thesis, suggestions for future research on the humanoid
robot NAO are put forward.

Increasing Walking Speed

Using the walking system presented in this thesis, NAO reached a maximum walking speed
of 0.24 m/s in experiments. This speed exceeds the “maximum walking speed” given by
Aldebaran in an earlier specification1. However, the walking speed is still moderate. Increasing
the walking speed, and at the same time maintaining the dynamic walking stability should
be one of the objectives for future research. Improvement of the current walking pattern and
control algorithms for the purpose of fast walking is suggested. For example, instead of cycloid
function an optimizational foot trajectory with the aim of decreasing the landing impact force
and better synchronizing with the motion of the upper body can be designed.

Landing Impact Control

Since NAO is not force-controllable, the impedance control method presented in Chapter 6 to
decrease the landing impact force cannot be implemented on the robot. Currently, oscillation
and rebounding of the foot brought about by the impact force are counteracted by shortening
the walking period to about half second. The rapid movement of the legs results in fast arm
motion for compensating the yaw moment (proposed in Chapter 4), which causes vibration
of the upper body of the robot and consequently unstable walking.

Not only stable landing of the foot on the ground but also compensatory arm motion can be
achieved through reducing the landing impact force. Landing impact control is, therefore, of
great importance for the overall stability of the walking system. The future work is suggested
to involve the realization of the landing impact control algorithm, based either on the position
control approach or on the force control approach, on the real robot.

1In this earlier specification, the maximum walking speed of NAO was up to 0.14 m/s. Source: Release notes
- 1.12/What’s new 1.12/Motion/Faster Walk. http://doc.aldebaran.com/1-14/news/1.12/whatsnew.html.

http://doc.aldebaran.com/1-14/news/1.12/whatsnew.html
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Balance Recovering While Standing

Simple models for balance recovery strategies against unexpected external disturbances have
been theoretically analyzed in Chapter 7. The robot controller that is inspired by human
balance strategies and responsible for regulating the location of CoP to ensure that a humanoid
can stand with its feet flat on the ground and withstand disturbances is recommended to be
developed for the future work.

For humanoid robots, following suggestions are made.

Application in Human-living Environment

One of the most useful applications of humanoid robots is in dangerous or otherwise un-
reachable scenarios, for example disaster relief, bomb disarming, planetary exploration or
anti-terrorism action. These tasks require robust and efficient systems. However, there are
currently few examples of humanoid robots performing tasks outside of the research labora-
tory. Not only humanoid robot controllers but also the hardware and system integration need
to be improved to allow robots capable of real world application.

Application in Being as a Research Tool

One of the applications of building and controlling humanoid robots is to help us understand
how humans locomote. The design of humanoid robot hardware and control can benefit from
existing biomechanical models and observations of humans. However, conversely there is little
effort to use these results to test biomechanical models of humans. A greater efforts on such
bidirectional cooperation will lead to accelerated development of robust human-like control
for robots, and new tools and devices for evaluating and assisting humans.
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A NAO’s Basic Technical Data

Table A.1 summarizes the degrees of freedom and dimensions of NAO H25 v 4.0 which is used
as the research platform in the thesis. Figure A.1 shows the detailed dimensions of NAO.

Table A.1: Degrees of freedom and dimensions of NAO.

Head Neck (pitch & yaw) 2 DoFs
Arm Shoulder (pitch & roll) 2 DoFs × 2 = 4 DoFs

Elbow (roll & yaw) 2 DoFs × 2 = 4 DoFs
Wrist (yaw) 1 DoF × 2 = 2 DoFs
Hand (open/close) 1 DoF × 2 = 2 DoFs

Torso Pelvis (yaw/pitch) 1 DoF
Leg Hip (pitch & roll) 2 DoFs × 2 = 4 DoFs

Knee (pitch) 1 DoF × 2 = 2 DoFs
Ankle (pitch & roll) 2 DoFs × 2 = 4 DoFs

Total 25 DoFs

Dimensions (mm) Height 573
Width (shoulder to shoulder) 275
Depth (hand to back (with arm level to ground)) 311
NeckOffsetZ 126.50
ShoulderOffsetY 98.00
ElbowOffsetY 15.00
UpperArmLength 105.00
LowerArmLength 55.95
HandOffsetX 57.75
HandOffsetZ 12.31
HipOffsetZ 85.00
HipOffsetY 50.00
ThighLength 100.00
TibiaLength 102.90
FootHeight 45.19
Length of the sole 160
Width of the sole 91

Weight (kg) 5.183
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573 mm 

275 mm 

311 mm 

Figure A.1: Length overview of NAO1.

1Sources: http://doc.aldebaran.com/2-1/family/robots/links_robot.html and http://doc.

aldebaran.com/2-1/family/robots/dimensions_robot.html, Copyright©: Aldebaran Robotics.
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B Forward Kinematics

For the humanoid robot NAO, the conventional base coordinate system is attached either
on the robot waist or on the robot foot. We call the former the Robot Coordinate System
(RCS), and the latter the Foot Coordinate System (FCS). Figure B.2 shows the conventional
coordinate systems of NAO. In this appendix, we derive the position and orientation of the
end-effector in the RCS and in the FCS using forward kinematics.

The joint space reveals very little information about the position and orientation of the
end-effector of the kinematic chain. The forward kinematics defines a mapping from the joint
space to the three-dimensional Cartesian space. Given a kinematic chain with m joints and
a set of joint angles (θ1, θ2, . . . , θm), the forward kinematics can find the position (px, py,
pz) and the orientation (ax, ay, az) of the end-effector of the kinematic chain in the three-
dimensional x-y-z space. Forward kinematics is a domain-independent problem and can be
solved for any simple or complex kinematic chain yielding a closed-form, analytical solution.

The importance of solving the forward kinematics problem for NAO is threefold: apart
from the ability to locate the exact position and orientation of any end-effector of the robot,
it provides the means to calculate the center of mass of the robot for the current configuration,
which is indispensible for balancing. It also provides a way of calculating the walking distance
or walking speed of the robot in real time by accumulating the distance between two feet in
the DSP. In addition, solution to the inverse kinematics problem would be intractable without
solving the forward kinematics problem first.

Translation Matrix

Translation in Cartesian space is a function that translates every point by a fixed distance in
a specified direction. We can describe a translation in the three-dimensional space with a 4
× 4 homogeneous transformation matrix of the following form:

Trans(dx, dy, dz) =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1


where dx, dy, and dz define the distance of translation along the x, y and z axis, respectively.

Rotation Matrix

In the three-dimensional Cartesian space there are three distinct rotation matrices, each one
of them performing a rotation of θ about the x, y and z axis respectively, assuming a right-
handed coordinate system, the rotations can be described in the three-dimensional space with
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4 × 4 homogeneous transformation matrices,

Rot(x, θ) =


1 0 0 0
0 cθ −sθ 0
0 sθ cθ 0
0 0 0 1

 , Rot(y, θ) =


cθ 0 sθ 0
0 1 0 0
−sθ 0 cθ 0

0 0 0 1

 , Rot(z, θ) =


cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1


henceforth cθ = cos(θ) and sθ = sin(θ).

Denavit-Hartenberg (D-H) Parameters

Denavit and Hartenberg have proposed a way of creating a homogeneous transformation
matrix that describes the position and orientation of the ith coordinate frame, which is at-
tached to the joint at one end of the link, in the (i − 1)th coordinate frame that is fixed to
the joint at the other end of the link, as a function of the joint state [13]. They concluded
that this transformation matrix can be fully described using only four parameters, known as
Denavit-Hartenberg (D-H) parameters: ai, αi, di, and θi. Before we explain these parameters
we first establish the reference frame of each joint with respect to the reference frame of its
previous joint (refer to Figure B.1):

θi

θi−1

θi+1

JiJi−1 Ji+1

Li

Li−1
Li+1

ai

ai−1
di

α iα i−1

S

θi

ais
ai−1s

Zi−1

Yi−1
Xi−1

Zi

Xi

YiOi

Oi−1

Figure B.1: D-H parameters.
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• The origin is located at the intersection of the common perpendicular to axes zi−1 and
zi, and joint axis zi.

• The zi-axis is set to the direction of the joint axis.

• The xi-axis lies along the common perpendicular to axes zi−1 and zi, and is oriented
from zi−1 to zi.

• The yi-axis follows from the xi and zi axes to form a right-handed coordinate system.

The D-H parameters are described as follows:

• ai: the length of the common perpendicular to axes zi−1 and zi. ai length is also known
as link length.

• αi: the angle around xi that makes the vector zi codirectional with the vector zi−1. The
angle is also called link twist.

• di: the algebraic distance along axis zi−1 to the point where the common perpendicular
to axis zi is located. In the bibliography this parameter is also called link offset.

• θi: the angle around zi that makes the common perpendicular codirectional with the
vector xi−1. The angle around zi is called joint angle.

Now, we can move from the base reference frame of a certain joint to the transformed
reference frame of this joint using the transformation matrix i−1Ti, which consists of two
translations and two rotations parametrized by the D-H parameters of the joint:

i−1Ti = Rot(x, αi)Trans(ai, 0, 0)Rot(z, θi)Trans(0, 0, di)

The analytical form of the resulting matrix from the above composition is the following

i−1Ti =


cosθi −sinθi 0 ai

sinθicosαi cosθicosαi −sinαi −disinαi

sinθisinαi cosθisinαi cosαi dicosαi

0 0 0 1

 (B.1)

The transformation matrix i−1Ti can also be formulated as

i−1Ti = Rot(z, θi)Trans(0, 0, di)Trans(ai, 0, 0)Rot(x, αi)

Then the corresponding analytical form of the D-H matrix is expressed as follows

i−1Ti =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

 (B.2)
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Table B.1: D-H parameters for the head of NAO.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, 0, NeckOffsetZ)

1 0 0 0 θ1

2 −π
2

0 0 θ2 −
π

2

Rotation Rot(x,
π

2
)Rot(y,

π

2
)

Head Forward Kinematics in the RCS

Table B.1 lists the D-H parameters for the head of NAO. In the table, θ1 and θ2 indicate the
joint angles of HeadYaw and HeadPitch, respectively. According to (B.1), D-H matrices for
the head are

0T1 =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

 , 1T2 =


c(θ2 −

π

2
) −s(θ2 −

π

2
) 0 0

0 0 1 0

−s(θ2 −
π

2
) −c(θ2 −

π

2
) 0 0

0 0 0 1


Hence, the forward kinematics of the chain for head in the RCS can be expressed as

BaseTEnd = BaseT0 · 0T1 · 1T2 ·Rx(
π

2
) ·Ry(

π

2
)

Arm Forward Kinematics in the RCS

Table B.2 lists the D-H parameters for both arms. In the table, the value of the symbol ‘sign’
is prescribed. For the right arm, sign = 1. On the contrary, sign = −1 represents the left
arm. θ1, θ2, θ3, θ4 and θ5 indicate the joint angles of ShoulderPitch, ShoulderRoll, ElbowYaw,
ElbowRoll and WristYaw respectively.

According to (B.1), D-H matrices for the arms of NAO are

0T1 =


cθ1 −sθ1 0 0
0 0 1 0
−sθ1 −cθ1 0 0

0 0 0 1

 , 1T2 =


c(θ2 +

π

2
) −s(θ2 +

π

2
) 0 0

0 0 −1 0

s(θ2 +
π

2
) c(θ2 +

π

2
) 0 0

0 0 0 1

 ,

2T3 =


cθ3 −sθ3 0 0
0 0 −1 −dul
sθ3 cθ3 0 0
0 0 0 1

 , 3T4 =


cθ4 −sθ4 0 0
0 0 1 0
−sθ4 −cθ4 0 0

0 0 0 1

 ,

4T5 =


cθ5 −sθ5 0 0
0 0 −1 −dll
sθ5 cθ5 0 0
0 0 0 1

 .
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Table B.2: D-H parameters for the arms of NAO.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, -sign·(ShoulderOffsetY+ElbowOffsetY), ShoulderOffsetZ)

1 −π
2

0 0 θ1

2
π

2
0 0 θ2 +

π

2

3
π

2
0 UpperArmLength θ3

4 −π
2

0 0 θ4

5
π

2
0 LowerArmLength θ5

Rotation Rot(y,−π
2

)Rot(x,−π
2

)

End-effector 5TEnd=Trans(HandOffsetX, 0, 0)

where dul = UpperArmLength and dll = LowerArmLength. The forward kinematics of the
chains for both arms in the RCS can be expressed as

BaseTEnd = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 ·Ry(−π
2

) ·Rx(−π
2

) · 5TEnd

Leg Forward Kinematics in the RCS

We numbered the revolute joints of both legs in Table B.3. Table B.4 and Table B.5 list the
D-H parameters of both legs in the RCS.

Table B.3: Numbering of the revolute joints for both legs (refer to Figure B.2).

Leg Joint Rotation Angle

Left Leg

Hip
YawPitch θ1

Roll θ2
Pitch θ3

Knee Pitch θ4

Ankle
Pitch θ5
Roll θ6

Right Leg

Hip
YawPitch θ7

Roll θ8
Pitch θ9

Knee Pitch θ10

Ankle
Pitch θ11
Roll θ12
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Table B.4: D-H parameters for the left leg of NAO in the RCS.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, HipOffsetY, −HipOffsetZ)

1 −3π

4
0 0 θ1 −

π

2

2 −π
2

0 0 θ2 +
π

4

3
π

2
0 0 θ3

4 0 −ThighLength 0 θ4

5 0 −TibiaLength 0 θ5

6 −π
2

0 0 θ6

End-effector 6TEnd=Rot(z, π)Rot(y,−π
2

)Trans(0, 0, −FootHeight)

According to (B.1), D-H matrices for the left leg of the robot NAO in the RCS are

0T1 =


sθ1 cθ1 0 0√
2

2
cθ1 −

√
2

2
sθ1

√
2

2
0

√
2

2
cθ1 −

√
2

2
sθ1 −

√
2

2
0

0 0 0 1

 , 1T2 =


c(θ2 +

π

4
) −s(θ2 +

π

4
) 0 0

0 0 1 0

−s(θ2 +
π

4
) −c(θ2 +

π

4
) 0 0

0 0 0 1

 ,

2T3 =


cθ3 −sθ3 0 0
0 0 −1 0
sθ3 cθ3 0 0
0 0 0 1

 , 3T4 =


cθ4 −sθ4 0 a4
sθ4 cθ4 0 0
0 0 1 0
0 0 0 1

 , 4T5 =


cθ5 −sθ5 0 a5
sθ5 cθ5 0 0
0 0 1 0
0 0 0 1

 ,

5T6 =


cθ6 −sθ6 0 0
0 0 1 0
−sθ6 −cθ6 0 0

0 0 0 1

 .

The forward kinematics of the left leg chain in the RCS can be expressed as

BaseTEnd = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 · 6TEnd

146



Table B.5: D-H parameters for the right leg of NAO in the RCS.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, −HipOffsetY, −HipOffsetZ)

7 −π
4

0 0 θ7 −
π

2

8 −π
2

0 0 θ8 −
π

4

9
π

2
0 0 θ9

10 0 −ThighLength 0 θ10

11 0 −TibiaLength 0 θ11

12 −π
2

0 0 θ12

End-effector 12TEnd=Rot(z, π)Rot(y,−π
2

)Trans(0, 0, −FootHeight)

Similarly, the D-H matrices for the right leg of the robot NAO are

0T7 =


sθ7 cθ7 0 0

−
√

2

2
cθ7

√
2

2
sθ7

√
2

2
0

√
2

2
cθ7 −

√
2

2
sθ7

√
2

2
0

0 0 0 1

 , 7T8 =


c(θ8 −

π

4
) −s(θ8 −

π

4
) 0 0

0 0 1 0

−s(θ8 −
π

4
) −c(θ8 −

π

4
) 0 0

0 0 0 1

 ,

8T9 =


cθ9 −sθ9 0 0
0 0 −1 0
sθ9 cθ9 0 0
0 0 0 1

 , 9T10 =


cθ10 −sθ10 0 a10
sθ10 cθ10 0 0

0 0 1 0
0 0 0 1

 , 10T11 =


cθ11 −sθ11 0 a11
sθ11 cθ11 0 0

0 0 1 0
0 0 0 1

 ,

11T12 =


cθ12 −sθ12 0 0

0 0 1 0
−sθ12 −cθ12 0 0

0 0 0 1

 .

The forward kinematics of the right leg chain in the RCS can be expressed as

BaseTEnd = BaseT0 · 0T7 · 7T8 · 8T9 · 9T10 · 10T11 · 11T12 · 12TEnd
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Table B.6: D-H parameters for the left leg of NAO in the FCS.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, 0, FootHeight)Rot(z, π)Rot(y,−π
2

)

1 0 0 0 θ6

2
π

2
0 0 θ5

3 0 TibiaLength 0 θ4

4 0 ThighLength 0 θ3

5 −π
2

0 0 θ2

6
π

2
0 0 θ1 −

π

4

End-effector 6TEnd=Rot(z,
π

2
)Rot(x,

3π

4
)Trans(0, −HipOffsetY, HipOffsetZ)

Leg Forward Kinematics in the FCS

Table B.6 and Table B.7 list the D-H parameters of both legs in the FCS. D-H matrices for
the left leg of the robot NAO are

0T1 =


cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

 , 1T2 =


cθ5 −sθ5 0 0
0 0 −1 0
sθ5 cθ5 0 0
0 0 0 1

 , 2T3 =


cθ4 −sθ4 0 a5
sθ4 cθ4 0 0
0 0 1 0
0 0 0 1

 ,

3T4 =


cθ3 −sθ3 0 a4
sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

 , 4T5 =


cθ2 −sθ2 0 0
0 0 1 0
−sθ2 −cθ2 0 0

0 0 0 1

 ,

5T6 =


c(θ1 −

π

4
) 0 s(θ1 −

π

4
) 0

s(θ1 −
π

4
) 0 −c(θ1 −

π

4
) 0

0 1 0 0
0 0 0 1

 .

The forward kinematics for the left leg chain in the FCS can be expressed as

BaseTEnd = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 · 6TEnd
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Table B.7: D-H parameters for the right leg of NAO in the FCS.

i αi−1 ai−1 di θi

Base BaseT0=Trans(0, 0, FootHeight)Rot(z, π)Rot(y,−π
2

)

1 0 0 0 θ12

2
π

2
0 0 θ11

3 0 TibiaLength 0 θ10

4 0 ThighLength 0 θ9

5 −π
2

0 0 θ8

6
π

2
0 0 θ7 +

π

4

End-effector 6TEnd=Rot(z,
π

2
)Rot(x,

π

4
)Trans(0, HipOffsetY, HipOffsetZ)

D-H matrices for the right leg of NAO are

0T7 =


cθ12 −sθ12 0 0
sθ12 cθ12 0 0

0 0 1 0
0 0 0 1

 , 7T8 =


cθ11 −sθ11 0 0

0 0 −1 0
sθ11 cθ11 0 0

0 0 0 1

 , 8T9 =


cθ10 −sθ10 0 a11
sθ10 cθ10 0 0

0 0 1 0
0 0 0 1

 ,

9T10 =


cθ9 −sθ9 0 a10
sθ9 cθ9 0 0
0 0 1 0
0 0 0 1

 , 10T11 =


cθ8 −sθ8 0 0
0 0 1 0
−sθ8 −cθ8 0 0

0 0 0 1

 ,

11T12 =


c(θ7 +

π

4
) 0 s(θ7 +

π

4
) 0

s(θ7 +
π

4
) 0 −c(θ7 +

π

4
) 0

0 1 0 0
0 0 0 1

 .

The forward kinematics for the right leg chain in the FCS can be expressed as

BaseTEnd = BaseT0 · 0T7 · 7T8 · 8T9 · 9T10 · 10T11 · 11T12 · 12TEnd

Due to the different definitions of the joint rotational direction between the robot NAO
and D-H matrix, the signs of the joint data, e.g. LHipRoll joint and LAnkleRoll joint, which
is obtained from the joint position sensor (magnetic rotary encoder) should be changed to the
opposite when applied to forward kinematics of the leg in the RCS. Besides, since in the FCS
the base frame is the foot and the end-effector is the waist, all the signs of the joint angles
used for forward kinematics in the FCS should be opposite to those used in the RCS (refer
to Table B.8).
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Table B.8: Signs of the joint angles for the forward kinematics of the leg in the RCS and FCS.

Forward Kinematics (left leg)

Joint Data RCS FCS

θ1 θ1 −θ1
θ2 −θ2 θ2
θ3 θ3 −θ3
θ4 θ4 −θ4
θ5 θ5 −θ5
θ6 −θ6 θ6

Forward Kinematics (right leg)

Joint Data RCS FCS

θ7 θ7 −θ7
θ8 θ8 −θ8
θ9 θ9 −θ9
θ10 θ10 −θ10
θ11 θ11 −θ11
θ12 θ12 −θ12
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Figure B.2: Conventional coordinate systems.
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C Equations of Motion

In this appendix, we derive the equations of motion of the swing-leg, which are used in
Chapter 5 for trajectory tracking and parameter estimate of the swing-leg.

We start with the simple planar model to test ideas, then extend to the three-dimensional
model.

Planar Model of the Swing-leg

Let us first consider a planar three-link model of the swing-leg comprising the thigh, tibia
and foot. Figure C.1 shows the three-link model from the sagittal plane view. We assume that
the rest of the robot is not accelerating and hence plays no role in the dynamics. l1, l2 and
l3 are respectively the thigh length, the tibia length and the foot height. b1, b2 and b3 are
the distances to the center of mass of the links. m1, m2, m3, I1, I2 and I3 are the mass and
inertia parameters. θ1, θ2 and θ3 are pitch joint angles of the hip, the knee and the ankle,
respectively. θ1 is the angle of the thigh from vertical; θ2 is the angle of the tibia with respect
to the thigh and θ3 is the angle of the foot with respect to the tibia.
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Figure C.1: Dynamic planar model of the swing-leg.
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The equations of motion can be computed using Lagrange’s method. The kinetic energy,
K is

K = K1 +K2 +K3

K1 =
1

2
m1v1

2 +
1

2
I1ω1

2

K2 =
1

2
m2v2

2 +
1

2
I2ω2

2

K3 =
1

2
m3v3

2 +
1

2
I3ω3

2

(C.1)

where v1, v2 and v3 are the linear velocities of the center of mass of the upper link (thigh),
the lower link (tibia) and the foot link. ω1 , ω2 and ω3 are the angular velocities of the links,
all with respect to the fixed global coordinate frame. We have

v1
2 = (b1θ̇1)

2 (C.2)

x2 = l1 sin θ1 + b2 sin(θ1 + θ2)

z2 = −l1 cos θ1 − b2 cos(θ1 + θ2)
(C.3)

ẋ2 = l1 cos(θ1)θ̇1 + b2 cos(θ1 + θ2)(θ̇1 + θ̇2)

ż2 = l1 sin(θ1)θ̇1 + b2 sin(θ1 + θ2)(θ̇1 + θ̇2)
(C.4)

v2
2 = ẋ22 + ż22 = (l1θ̇1)

2 + (b2(θ̇1 + θ̇2))
2 + 2l1θ̇1b2(θ̇1 + θ̇2) cos θ2 (C.5)

x3 = l1 sin θ1 + l2 sin(θ1 + θ2) + b3 sin(θ1 + θ2 + θ3)

z3 = −l1 cos θ1 − l2 cos(θ1 + θ2)− b3 cos(θ1 + θ2 + θ3)
(C.6)

ẋ3 = l1 cos(θ1)θ̇1 + l2 cos(θ1 + θ2)(θ̇1 + θ̇2) + b3 cos(θ1 + θ2 + θ3)(θ̇1 + θ̇2 + θ̇3)

ż3 = l1 sin(θ1)θ̇1 + l2 sin(θ1 + θ2)(θ̇1 + θ̇2) + b3 sin(θ1 + θ2 + θ3)(θ̇1 + θ̇2 + θ̇3)
(C.7)

v3
2 = ẋ23 + ż23

= (l1θ̇1)
2 + (l2(θ̇1 + θ̇2))

2 + (b3(θ̇1 + θ̇2 + θ̇3))
2 + 2l1θ̇1l2(θ̇1 + θ̇2) cos θ2

+ 2l1θ̇1b3(θ̇1 + θ̇2 + θ̇3) cos(θ2 + θ3) + 2l2(θ̇1 + θ̇2)b3(θ̇1 + θ̇2 + θ̇3) cos(θ3) (C.8)

ω2
1 = θ̇21

ω2
2 = (θ̇1 + θ̇2)

2

ω2
3 = (θ̇1 + θ̇2 + θ̇3)

2

(C.9)

153



The potential energy P is

P = P1 + P2 + P3

P1 = m1gz1 = −m1gb1 cos θ1

P2 = m2gz2 = −m2g(l1 cos θ1 + b2 cos(θ1 + θ2))

P3 = m3gz3 = −m3g(l1 cos θ1 + l2 cos(θ1 + θ2) + b3 cos(θ1 + θ2 + θ3))

(C.10)

We can simplify the equations by substituting the following inertial groups:

J1 = m1b
2
1 + I1 +m2l

2
1 +m3l

2
1

J2 = m2l1b2 +m3l1l2

J3 = m2b
2
2 + I2 +m3l

2
2

J4 = m3l2b3

J5 = m3b
2
3 + I3

J6 = m3l1b3

G1 = (m1b1 +m2l1 +m3l1)g

G2 = (m2b2 +m3l2)g

G3 = m3b3g

The kinetic energy and the gravitational potential energy can now be written as

K = (
1

2
J1 + J2 cos θ2 +

1

2
J3 + J4 cos θ3 +

1

2
J5 + J6 cos(θ2 + θ3))θ̇

2
1

+ (
1

2
J3 + J4 cos θ3 +

1

2
J5)θ̇

2
2 +

1

2
J5θ̇

2
3

+ (J2 cos θ2 + J3 + 2J4 cos θ3 + J5 + J6 cos(θ2 + θ3))θ̇1θ̇2

+ (J4 cos θ3 + J5)θ̇2θ̇3 + (J4 cos θ3 + J5 + J6 cos(θ2 + θ3))θ̇1θ̇3

P = −G1 cos θ1 −G2 cos(θ1 + θ2)−G3 cos(θ1 + θ2 + θ3)

The Lagrangian is L = K − P . Lagranges equations are

d

dt

[
∂L

∂θ̇

]
− ∂L

∂θ
= τ (C.11)

Let q = [q1 q2 q3]
T be the joint angles of the robot NAO, then q1 = θ1, q2 = θ2 and

q3 = θ3.

Using Lagrange’s method yields the equations of motion in the following form:

H(q)q̈ + b(q, q̇) + ~g(q) = τ (C.12)

where τ = [τ1, τ2, τ3]
T are the applied joint torques, H(q) ∈ R3×3 is the symmetric inertia

matrix, b(q, q̇) ∈ R3 represents the centrifugal and Coriolis terms, and ~g(q) ∈ R3 is the gravity
term.
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The calculated terms in the matrices are as follows:

H11 = J1 + 2J2 cos(q2) + J3 + 2J4 cos(q3) + J5 + 2J6 cos(q2 + q3)

H12 = J2 cos(q2) + J3 + 2J4 cos(q3) + J5 + J6 cos(q2 + q3)

H13 = J4 cos(q3) + J5 + J6 cos(q2 + q3)

H21 = J2 cos(q2) + J3 + 2J4 cos(q3) + J5 + J6 cos(q2 + q3)

H22 = J3 + 2J4 cos(q3) + J5

H23 = J4 cos(q3) + J5

H31 = J4 cos(q3) + J5 + J6 cos(q2 + q3)

H32 = J4 cos(q3) + J5

H33 = J5

b11 =− (2J2 sin(q2) + 2J6 sin(q2 + q3))q̇1q̇2 − (2J4 sin(q3) + 2J6 sin(q2 + q3))q̇2q̇3

− (2J4 sin(q3) + 2J6 sin(q2 + q3))q̇1q̇3 − (J2 sin(q2) + J6 sin(q2 + q3))q̇
2
2

− (J4 sin(q3) + J6 sin(q2 + q3))q̇
2
3

b21 =(J2 sin(q2) + J6 sin(q2 + q3))q̇
2
1 − J4 sin(q3)q̇

2
3 − 2J4 sin(q3)q̇1q̇3

− 2J4 sin(q3)q̇2q̇3

b31 =(J4 sin(q3) + J6 sin(q2 + q3))q̇
2
1 + J4 sin(q3)q̇

2
2 + 2J4 sin(q3)q̇1q̇2

g11 = G1 sin(q1) +G2 sin(q1 + q2) +G3 sin(q1 + q2 + q3)

g21 = G2 sin(q1 + q2) +G3 sin(q1 + q2 + q3)

g31 = G3 sin(q1 + q2 + q3)

Let

b(q, q̇) = C(q, q̇)q̇ (C.13)

There are many choices of C that can realize the decomposition in (C.13). If a particular
choice of matrix C is defined by

Cij =
1

2

3∑
k=1

∂Hij

∂qk
q̇k +

1

2

3∑
k=1

(
∂Hik

∂qj
−
∂Hjk

∂qi
)q̇k (C.14)

then the system dynamics in the sagittal plane can be rewritten as

H(q)q̈ + C(q, q̇)q̇ + ~g(q) = τ (C.15)
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where

C11 = (−J2 sin(q2)− J6 sin(q2 + q3))q̇2 + (−J4 sin(q3)− J6 sin(q2 + q3))q̇3

C12 = (−J2 sin(q2)− J6 sin(q2 + q3))q̇1 + (−J2 sin(q2)− J6 sin(q2 + q3))q̇2

+(−J4 sin(q3)− J6 sin(q2 + q3))q̇3

C13 = (−J4 sin(q3)− J6 sin(q2 + q3))(q̇1 + q̇2 + q̇3)

C21 = (J2 sin(q2) + J6 sin(q2 + q3))q̇1 − J4 sin(q3)q̇3

C22 = −J4 sin(q3)q̇3

C23 = −J4 sin(q3)(q̇1 + q̇2 + q̇3)

C31 = (J4 sin(q3) + J6 sin(q2 + q3))q̇1 + J4 sin(q3)q̇2

C32 = J4 sin(q3)(q̇1 + q̇2)

C33 = 0

With this particular definition of C (see Eq.(C.14)), the matrix Ḣ−2C is skew-symmetric.
According to the definition of the skew-symmetric matrix, it means Ḣ − 2C = −(Ḣ − 2C)T .
Since H, and therefore Ḣ, are symmetric matrices, the skew-symmetry of the matrix Ḣ − 2C
can also be written as Ḣ = C + CT .

Let us define J1 = a1, J2 = a2, J3 = a3, J4 = a4, J5 = a5, J6 = a6, G1 = a7, G2 = a8 and
G3 = a9, then the vector of unknown parameters a = [a1 a2 a3 · · · a9]T .

The 3× 9 matrix Y can be obtained according to Eq.(5.4).

Y =

 Y11 Y12 · · · Y19
Y21 Y22 · · · Y29
Y31 Y32 · · · Y39


in which

Y11 = q̈r1, Y12 = cos(q2)(2q̈r1+ q̈r2)−sin(q2)(q̇2q̇r1+ q̇1q̇r2+ q̇2q̇r2), Y13 = q̈r1+ q̈r2,

Y14 = cos(q3)(2q̈r1 + 2q̈r2 + q̈r3)− sin(q3)q̇3(q̇r1 + q̇r2)− sin(q3)(q̇1 + q̇2 + q̇3)q̇r3,

Y15 = q̈r1 + q̈r2 + q̈r3,

Y16 = cos(q2+q3)(2q̈r1+q̈r2+q̈r3)−sin(q2+q3)(q̇2+q̇3)q̇r1−sin(q2+q3)(q̇1+q̇2+q̇3)(q̇r2+q̇r3),

Y17 = sin(q1), Y18 = sin(q1 +q2), Y19 = sin(q1 +q2 +q3),

Y21 = 0, Y22 = cos(q2)q̈r1 +sin(q2)q̇1q̇r1, Y23 = q̈r1 + q̈r2,

Y24 = cos(q3)(2q̈r1 + 2q̈r2 + q̈r3)− sin(q3)q̇3(q̇r1 + q̇r2)− sin(q3)(q̇1 + q̇2 + q̇3)q̇r3,

Y25 = q̈r1 + q̈r2 + q̈r3, Y26 = cos(q2 +q3)q̈r1 +sin(q2 +q3)q̇1q̇r1,

Y27 = 0, Y28 = sin(q1+q2), Y29 = sin(q1+q2+q3), Y31 = Y32 = Y33 = 0,

Y34 = cos(q3)(q̈r1 + q̈r2)+sin(q3)(q̇1 + q̇2)(q̇r1 + q̇r2), Y35 = q̈r1 + q̈r2 + q̈r3,

Y36 = cos(q2+q3)q̈r1+sin(q2+q3)q̇1q̇r1, Y37 = Y38 = 0, Y39 = sin(q1+q2+q3).

Then the adaptive control can be implemented on the planar model for trajectory tracking
and parameter estimate.

3D Model of the Swing-leg

Next, we consider the three-link model of the swing-leg in three dimensions, as shown in
Figure C.2. Apart from the dynamics in the sagittal plane, dynamics in the frontal plane are
added. Since the knee joint cannot roll due to the mechanical design, α1 and α2 are used to
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indicate the roll angles of the hip joint and the ankle joint, respectively. α1 is the angle of the
thigh from vertical; α2 is the angle of the foot with respect to the thigh and tibia. Ixx1 , Ixx2 ,
Ixx3 represent the moments of inertia of the thigh, the tibia and the foot about the x-axis
respectively, and Iyy1 , Iyy2 , Iyy3 are the moments of inertia of the thigh, the tibia and the
foot about the y-axis, respectively. The meanings of the rest symbols are the same as those
defined on the planar model.
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Figure C.2: Dynamic three-dimensional model of the swing-leg.

x1 = b1 cosα1 sin θ1

y1 = b1 sinα1

z1 = −b1 cosα1 cos θ1

(C.16)

v21 = ẋ21 + ẏ21 + ż21 = b21
[
(α̇1)

2 + (cosα1)
2(θ̇1)

2
]

(C.17)

x2 = l1 cosα1 sin θ1 + b2 sin(θ1 + θ2) cosα1

y2 = l1 sinα1 + b2 sinα1

z2 = −l1 cosα1 cos θ1 − b2 cos(θ1 + θ2) cosα1

(C.18)

v22 = ẋ22 + ẏ22 + ż22

= l21(α̇1)
2 + l21(cosα1)

2(θ̇1)
2 + b22(θ̇1 + θ̇2)

2(cosα1)
2 + b22(α̇1)

2

+ 2l1b2(cosα1)
2(α̇1)

2 + 2l1b2α̇1θ̇2 sinα1 cosα1 sin θ2

+ 2l1b2(cosα1)
2(θ̇1)(θ̇1 + θ̇2) cos θ2 + 2l1b2(sinα1)

2(α̇1)
2 cos θ2 (C.19)
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x3 = l1 cosα1 sin θ1 + l2 sin(θ1 + θ2) cosα1 + b3 cos(α1 + α2) sin(θ1 + θ2 + θ3)

y3 = (l1 + l2) sinα1 + b3 sin(α1 + α2)

z3 = −l1 cosα1 cos θ1 − l2 cos(θ1 + θ2) cosα1 − b3 cos(α1 + α2) cos(θ1 + θ2 + θ3)

(C.20)

v23 = ẋ23 + ẏ23 + ż23

= l21(α̇1)
2 + l22(α̇1)

2 + l21(cosα1)
2(θ̇1)

2 + l22(θ̇1 + θ̇2)
2(cosα1)

2+

b23
(

cos(α1 + α2)
)2

(θ̇1 + θ̇2 + θ̇3)
2 + 2l1l2(cosα1)

2(α̇1)
2 + b23(α̇1 + α̇2)

2+

2l1l2(sinα1 sin θ2 cosα1)α̇1θ̇2 + 2l1l2(α̇1)
2(sinα1)

2 cos θ2+

2l1b3(sinα1)α̇1 sin(α1 + α2)(α̇1 + α̇2) cos(θ2 + θ3)+

2l1b3(sinα1)α̇1 cos(α1 + α2)(θ̇1 + θ̇2 + θ̇3) sin(θ2 + θ3)+

2l1l2(cosα1)
2θ̇1(θ̇1 + θ̇2) cos θ2−

2l1b3(cosα1)θ̇1 sin(α1 + α2)(α̇1 + α̇2) sin(θ1 + θ2)+

2l1b3(cosα1)θ̇1 cos(α1 + α2)(θ̇1 + θ̇2 + θ̇3) cos(θ2 + θ3)−
2l2b3(θ̇1 + θ̇2) cosα1 sin(α1 + α2)(α̇1 + α̇2) sin(θ3)+

2l2b3 cosα1 cos θ3 cos(α1 + α2)(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)+

2l2b3 sinα1 cos θ3 sin(α1 + α2)α̇1(α̇1 + α̇2)+

2l2b3 sinα1 sin θ3 cos(α1 + α2)α̇1(θ̇1 + θ̇2 + θ̇3)+

2(l1 + l2)b3 cosα1 cos(α1 + α2)α̇1(α̇1 + α̇2) (C.21)

The kinetic energy, K is

K = K1 +K2 +K3

K1 =
1

2
m1v1

2 +
1

2
Iyy1 θ̇

2
1 +

1

2
Ixx1α̇

2
1

K2 =
1

2
m2v2

2 +
1

2
Iyy2(θ̇1 + θ̇2)

2 +
1

2
Ixx2α̇

2
1

K3 =
1

2
m3v3

2 +
1

2
Iyy3(θ̇1 + θ̇2 + θ̇3)

2 +
1

2
Ixx3(α̇1 + α̇2)

2

(C.22)

The potential energy P is

P = P1 + P2 + P3

P1 = −m1gb1 cosα1 cos θ1

P2 = −m2g
(
l1 cosα1 cos θ1 + b2 cosα1 cos(θ1 + θ2)

)
P3 = −m3g

(
l1 cosα1 cos θ1 + l2 cosα1 cos(θ1 + θ2) + b3 cos(α1 + α2) cos(θ1 + θ2 + θ3)

)
(C.23)

We can simplify the equations by substituting the following inertial groups:
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J1 = m1b
2
1, J2 = m2b

2
2, J3 = m2l

2
1

J4 = m3b
2
3, J5 = m3l

2
1, J6 = m3l

2
2

J7 = m3b3l1, J8 = m3b3l2, J9 = m2l1b2 +m3l1l2

J10 = Ixx1 + Ixx2 , J11 = Ixx3 , J12 = Iyy1

J13 = Iyy2 , J14 = Iyy3 , J15 = (m1b1 +m2l1 +m3l1)g

J16 = (m2b2 +m3l2)g, J17 = m3b3g

The kinetic energy and the gravitational potential energy can now be written as

K =
[1
2

(J12 + J13 + J14) +
1

2
(J2 + J3)(cosα1)

2 + J9(cosα1)
2 cos(θ2)+

1

2
J4(cos(α1 + α2))

2 +
1

2
(J5 + J6)(cosα1)

2 + J7 cos(α1 + α2) cos(α1) cos(θ2 + θ3)+

J8 cos(α1 + α2) cos(α1) cos(θ3) +
1

2
J1(cosα1)

2
]
θ̇21+[1

2
(J13 + J14) +

1

2
J4(cos(α1 + α2))

2 +
1

2
(J2 + J6)(cosα1)

2+

J8 cos(α1 + α2) cos(α1) cos(θ3)
]
θ̇22 +

[1
2
J14 +

1

2
J4(cos(α1 + α2))

2
]
θ̇23+[

J13 + J14 + J4(cos(α1 + α2))
2 + J7 cos(α1 + α2) cos(α1) cos(θ2 + θ3)+

2J8 cos(α1 + α2) cos(α1) cos(θ3) + J9(cosα1)
2 cos(θ2) + (J2 + J6)(cosα1)

2
]
θ̇1θ̇2+[

J14 + J4(cos(α1 + α2))
2 + cos(α1 + α2) cos(α1)(J7 cos(θ2 + θ3) + J8 cos(θ3))

]
θ̇1θ̇3+[

J14 + J4(cos(α1 + α2))
2 + J8 cos(α1 + α2) cos(α1) cos(θ3)

]
θ̇2θ̇3−[

J7 sin(α2) sin(θ2 + θ3) + J8 sin(α2) sin(θ3)
]
θ̇1α̇1−[

sin(α1 + α2) cos(α1)(J7 sin(θ2 + θ3) + J8 sin(θ3))
]
θ̇1α̇2+[

J7 cos(α1 + α2) sin(α1) sin(θ2 + θ3)− J8 sin(θ3) sin(α2)+

J9 cos(α1) sin(α1) sin(θ2)
]
α̇1θ̇2 −

[
J8 sin(α1 + α2) cos(α1) sin(θ3)

]
θ̇2α̇2+[

cos(α1 + α2) sin(α1)(J7 sin(θ2 + θ3) + J8 sin(θ3))
]
α̇1θ̇3+[

J4 + J11 + (J7 + J8) cos(α1 + α2) cos(α1) + J7 sin(α1) sin(α1 + α2) cos(θ2 + θ3)+

J8 sin(α1) sin(α1 + α2) cos(θ3)
]
α̇1α̇2+[1

2
(J2 + J3 + J4 + J5 + J6 + J10 + J11) + J9(cosα1)

2 + J9(sinα1)
2 cos(θ2)+

J7 sin(α1 + α2) sinα1 cos(θ2 + θ3) + J8 sin(α1 + α2) sinα1 cos θ3+

(J7 + J8) cos(α1 + α2) cosα1 +
1

2
J1
]
α̇2
1+

1

2
(J4 + J11)α̇

2
2

P = −J15 cos(α1) cos(θ1)− J16 cos(θ1 + θ2) cos(α1)− J17 cos(α1 + α2) cos(θ1 + θ2 + θ3)

The Lagrangian is L = K − P . Let q = [q1 q2 q3 q4 q5]
T be the joint angles of the

leg of the robot NAO, then q1 = α1, q2 = θ1, q3 = θ2, q4 = θ3 and q5 = α2. Thus Lagranges
equations can be written in the form
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H(q)q̈ + C(q, q̇)q̇ + ~g(q) = τ (C.24)

According to the method in [104], the terms in the matrices H, C and g can be calculated.
Appendix D introduces an algorithm for calculating the terms in the matrices H, C and g
using Matlab.

Let us define J1 = a1, J2 = a2, J3 = a3, J4 = a4, J5 = a5, J6 = a6, J7 = a7, J8 = a8, J9 =
a9, J10 = a10, J11 = a11, J12 = a12, J13 = a13, J14 = a14, J15 = a15, J16 = a16, and J17 = a17,
then a = [a1 a2 a3 · · · a17]T . The 5× 17 matrix Y can be obtained which has the following
form.

Y =


Y11 Y12 · · · Y116 Y117
Y21 Y22 · · · Y216 Y217
Y31 Y32 · · · Y316 Y317
Y41 Y42 · · · Y416 Y417
Y51 Y52 · · · Y516 Y517


Having the equations of motion as well as the matrix Y , we can apply the adaptive control

to the 3D model of the swing-leg for trajectory tracking and parameter estimate.
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D Jacobian Matrix

In this appendix, we derive the Jacobian matrix, which is used in Chapter 6 for compliant
force control.

Jacobian matrix describes a relationship between joint angle rate of change in the joint
space and the translational and rotational velocities of the end-effector in Cartesian space.

ẋ = J(θ)θ̇ (D.1)

In (D.1), J(θ) is the Jacobian matrix, ẋ = [v,ω]T is the linear translational and rotational
velocity of the end-effector, θ̇ = [θ̇1, θ̇2, · · · , θ̇n] is the vector of joint angular velocity, and n
is the number of the joints.

Jacobian matrix also provides a relationship between joint torques and the resultant force
and torque applied by the end-effector.

τ = JT (θ)F (D.2)

where F = [f ,n]T is the generalized force vector, f and n are the force and torque vectors
in Cartesian space respectively, τ = [τ1, τ2, · · · , τn]T are the applied force or torque vector in
the joint space, and n is the number of the joints.

Expressed in the Base Coordinate System

If the upper and lower halves of the Jacobian are denoted as Jv and Jω respectively, the
Jacobian can be written as

JBase =

[
Jv
Jω

]
(D.3)

Then (D.1) can be expressed as

vBase = Jv θ̇

ωBase = Jω θ̇
(D.4)

For the revolute joint, the lower half of the Jacobian Jω is given as

Jω = [zBase
1 , zBase

2 , · · · , zBase
n ] (D.5)

where
zBase
i = RBase

i k (D.6)

k is the unit coordinate vector [0, 0, 1]T , and RBase
i is the rotational transformation matrix

in BaseTi.
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Let Basexp = [x, y, z]T denote the position vector of the end-effector in the base coordinate
system, then matrix Jv can be obtained by directly differentiating Basexp.

v = Baseẋp =

 ẋ
ẏ
ż

 =
∂Basexp
∂θ1

· θ̇1 +
∂Basexp
∂θ2

· θ̇2 + · · ·+ ∂Basexp
∂θn

· θ̇n (D.7)

Jv =

[
∂Basexp
∂θ1

∂Basexp
∂θ2

· · · ∂Basexp
∂θn

]
(D.8)

The other method to compute Jv is as follows:

If the upper half of the Jacobian Jv is given as Jv = [Jv1, Jv2 , · · · , Jvn ], then for the revolute
joint i, the ith column Jvi is

Jvi = zBase
i × (OBase

n −OBase
i ) (D.9)

where OBase
n and OBase

i represent the positions of the end-effector and the ith joint in the
base coordinate frame, respectively.

Expressed in the End-Effector Coordinate System

Jacobian matrix at the end-effector can be calculated by using the differential transform
method, as shown in Figure D.1. If the Jacobian for an n-joint leg is of the form J =
[J1, J2, · · · , Jn], the ith column of the Jacobian Ji can be derived given the transformation
matrix i−1Tn from each link to the end-effector. When the joint is revolute,

Ji =



(p× n)z
(p× o)z
(p× a)z
nz
oz
az

 (D.10)

where n, o, a and p are the column vectors of the matrix i−1Tn, respectively.

0T1 
1T2 

2T3 
3T4 

4T5 
5T6 

5T6 
4T6 

3T6 
2T6 

1T6 

0T6 

J6 
J5 
J4 
J3 
J2 
J1 

Figure D.1: Jacobian matrix calculation.
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NAO’s Jacobian in the RCS

We take the robot coordinate system as the base coordinate system. Let dy = HipOff-
setY, dz = HipOffsetZ and dfh = FootHeight, the Jacobian in the base coordinate sys-
tem for the left leg is calculated as follows. Refer to Table B.3 for the representation of
θ = [θ1 θ2 · · · θ6 θ7 θ8 · · · θ12].

BaseT1 = BaseT0 · 0T1 =

zBase
1

sθ1 cθ1 0 0√
2

2
cθ1 −

√
2

2
sθ1

√
2

2
dy√

2

2
cθ1 −

√
2

2
sθ1 −

√
2

2
−dz

0 0 0 1



BaseT2 = BaseT0 · 0T1 · 1T2 =

zBase
2

× × cθ1 0

× × −
√

2

2
sθ1 dy

× × −
√

2

2
sθ1 −dz

0 0 0 1



BaseT3 = BaseT0 · 0T1 · 1T2 · 2T3 =

zBase
3

× ×
√

2

2
sθ1(sθ2 + cθ2) 0

× × 1

2
((1 + cθ1)cθ2 + (cθ1 − 1)sθ2) dy

× × 1

2
((1 + cθ1)sθ2 + (cθ1 − 1)cθ2) −dz

0 0 0 1



BaseT4 = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 =

zBase
4

× ×
√

2

2
sθ1(sθ2 + cθ2) ×

× × 1

2
((1 + cθ1)cθ2 + (cθ1 − 1)sθ2) ×

× × 1

2
((1 + cθ1)sθ2 + (cθ1 − 1)cθ2) ×

0 0 0 1



BaseT5 = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 =

zBase
5

× ×
√

2

2
sθ1(sθ2 + cθ2) ×

× × 1

2
((1 + cθ1)cθ2 + (cθ1 − 1)sθ2) ×

× × 1

2
((1 + cθ1)sθ2 + (cθ1 − 1)cθ2) ×

0 0 0 1
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BaseT6 = BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 =

zBase
6

× × i13 ×
× × i23 ×
× × i33 ×
0 0 0 1


where

i13 = cθ1c(θ3 + θ4 + θ5)− c(π/4 + θ2)sθ1s(θ3 + θ4 + θ5)

i23 =
1

2
((1 + cθ1)sθ2 + (1− cθ1)cθ2)s(θ3 + θ4 + θ5)−

√
2

2
sθ1c(θ3 + θ4 + θ5)

i33 = − 1

2
((1− cθ1)sθ2 + (1 + cθ1)cθ2)s(θ3 + θ4 + θ5)−

√
2

2
sθ1c(θ3 + θ4 + θ5)

If the position of the left foot in the RCS is expressed as Basexlp = [x y z], Basexlp can be
calculated by means of forward kinematics.

BaseTEnd =BaseT0 · 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 · 6TEnd =

Basexlp
× × × x
× × × y
× × × z
0 0 0 1


where

x = − (cθ1cθ3 −
√

2

2
sθ1sθ3(cθ2 − sθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+

√
2

2
dfhsθ1sθ6(cθ2 + sθ2) + (cθ1sθ3 +

√
2

2
sθ1cθ3(cθ2 − sθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

y = (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6

− a5sθ4) + dfh
1

2
sθ6((cθ1 + 1)cθ2 + (cθ1 − 1)sθ2) + (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 + 1)sθ2

+ (cθ1 − 1)cθ2))(dfhsθ4sθ5cθ6 − dfhcθ4cθ5cθ6 + a5cθ4 + a4) + dy

z = (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6

− a5sθ4) +
1

2
dfhsθ6((cθ1 − 1)cθ2 + (cθ1 + 1)sθ2) + (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 − 1)sθ2

+ (cθ1 + 1)cθ2))(dfhsθ4sθ5cθ6 − dfhcθ4cθ5cθ6 + a5cθ4 + a4)− dz
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Therefore,

∂x

∂θ1
= (sθ1cθ3 +

√
2

2
cθ1sθ3(cθ2 − sθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+ dfh

√
2

2
cθ1sθ6(cθ2 + sθ2) + (−sθ1sθ3 +

√
2

2
cθ1cθ3(cθ2 − sθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂x

∂θ2
= −

√
2

2
sθ1sθ3(cθ2 + sθ2)(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+ dfh

√
2

2
sθ1sθ6(cθ2 − sθ2)−

√
2

2
sθ1cθ3(cθ2 + sθ2)(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂x

∂θ3
= (cθ1sθ3 +

√
2

2
sθ1cθ3(cθ2 − sθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+ (cθ1cθ3 −
√

2

2
sθ1sθ3(cθ2 − sθ2))(dfhsθ4sθ5cθ6 − dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂x

∂θ4
= − (cθ1cθ3 −

√
2

2
sθ1sθ3(cθ2 − sθ2))(−dfhsθ4sθ5cθ6 + dfhcθ4cθ5cθ6 − a5cθ4)

+ (cθ1sθ3 +

√
2

2
sθ1cθ3(cθ2 − sθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

∂x

∂θ5
= − (cθ1cθ3 −

√
2

2
sθ1sθ3(cθ2 − sθ2))(dfhcθ4cθ5cθ6 − dfhsθ4sθ5cθ6)

+ (cθ1sθ3 +

√
2

2
sθ1cθ3(cθ2 − sθ2))(dfhsθ4cθ5cθ6 + dfhcθ4sθ5cθ6)

∂x

∂θ6
= (cθ1cθ3 −

√
2

2
sθ1sθ3(sθ2 + cθ2))(dfhcθ4sθ5sθ6 + dfhsθ4cθ5sθ6)

− dfh
√

2

2
sθ1cθ6(cθ2 − sθ2) + (cθ1sθ3 +

√
2

2
sθ1cθ3(sθ2 + cθ2))(−dfhsθ4sθ5sθ6

+ dfhcθ4cθ5sθ6)

∂y

∂θ1
= (

√
2

2
cθ1cθ3 +

1

2
sθ1sθ3(sθ2 − cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

− 1

2
dfhsθ1sθ6(sθ2 + cθ2)− (

√
2

2
cθ1sθ3 +

1

2
sθ1cθ3(sθ2 − cθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂y

∂θ2
=

1

2
sθ3(−(cθ1 + 1)cθ2 − (cθ1 − 1)sθ2)(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+
1

2
dfhsθ6(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2)−

1

2
cθ3((cθ1 + 1)cθ2

+ (cθ1 − 1)sθ2)(dfhsθ4sθ5cθ6 − dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂y

∂θ3
= (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6

− a5sθ4)− (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)
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∂y

∂θ4
= (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(−dfhsθ4sθ5cθ6 + dfhcθ4cθ5cθ6

− a5cθ4) + (−
√

2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhcθ4sθ5cθ6

+ dfhsθ4cθ5cθ6 − a5sθ4)
∂y

∂θ5
= (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhcθ4cθ5cθ6 − dfhsθ4sθ5cθ6)

+ (−
√

2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhsθ4cθ5cθ6 + dfhcθ4sθ5cθ6)

∂y

∂θ6
= − (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 + 1)sθ2 + (cθ1 − 1)cθ2))(dfhcθ4sθ5sθ6 + dfhsθ4cθ5sθ6)

+
1

2
dfhcθ6((cθ1 + 1)cθ2 + (cθ1 − 1)sθ2) + (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 + 1)sθ2

+ (cθ1 − 1)cθ2))(−dfhsθ4sθ5sθ6 + dfhcθ4cθ5sθ6)

∂z

∂θ1
= (

√
2

2
cθ1cθ3 +

1

2
sθ1sθ3(sθ2 − cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

− 1

2
dfhsθ1sθ6(sθ2 + cθ2) + (−

√
2

2
cθ1sθ3 +

1

2
sθ1cθ3(sθ2 − cθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂z

∂θ2
= − 1

2
sθ3((cθ1 − 1)cθ2 + (cθ1 + 1)sθ2)(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6 − a5sθ4)

+
1

2
dfhsθ6(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2)−

1

2
cθ3((cθ1 − 1)cθ2

+ (cθ1 + 1)sθ2)(dfhsθ4sθ5cθ6 − dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂z

∂θ3
= (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhcθ4sθ5cθ6 + dfhsθ4cθ5cθ6

− a5sθ4)− (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhsθ4sθ5cθ6

− dfhcθ4cθ5cθ6 + a5cθ4 + a4)

∂z

∂θ4
= (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(−dfhsθ4sθ5cθ6 + dfhcθ4cθ5cθ6

− a5cθ4) + (−
√

2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhcθ4sθ5cθ6

+ dfhsθ4cθ5cθ6 − a5sθ4)
∂z

∂θ5
= (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhcθ4cθ5cθ6 − dfhsθ4sθ5cθ6)

+ (−
√

2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhsθ4cθ5cθ6 + dfhcθ4sθ5cθ6)

∂z

∂θ6
= − (

√
2

2
sθ1cθ3 +

1

2
sθ3(−(cθ1 − 1)sθ2 + (cθ1 + 1)cθ2))(dfhcθ4sθ5sθ6 + dfhsθ4cθ5sθ6)

+
1

2
dfhcθ6((cθ1 − 1)cθ2 + (cθ1 + 1)sθ2) + (−

√
2

2
sθ1sθ3 +

1

2
cθ3(−(cθ1 − 1)sθ2

+ (cθ1 + 1)cθ2))(−dfhsθ4sθ5sθ6 + dfhcθ4cθ5sθ6)
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Combining the angular and linear Jacobians, we get the Jacobian for the left leg

JBase
left =



∂x

∂θ1

∂x

∂θ2

∂x

∂θ3

∂x

∂θ4

∂x

∂θ5

∂x

∂θ6

∂y

∂θ1

∂y

∂θ2

∂y

∂θ3

∂y

∂θ4

∂y

∂θ5

∂y

∂θ6

∂z

∂θ1

∂z

∂θ2

∂z

∂θ3

∂z

∂θ4

∂z

∂θ5

∂z

∂θ6

zBase
1 zBase

2 zBase
3 zBase

4 zBase
5 zBase

6


(D.11)

The position of the end-effector of the right leg in the base coordinate frame is expressed
as Basexrp = [x, y, z]T , where

x = − (cθ7cθ9 −
√

2

2
sθ7sθ9(cθ8 + sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+

√
2

2
dfhsθ7sθ12(sθ8 − cθ8) + (cθ7sθ9 +

√
2

2
sθ7cθ9(sθ8 + cθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

y = − (

√
2

2
sθ7cθ9 −

1

2
sθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12

− a11sθ10) +
1

2
dfhsθ12((cθ7 + 1)cθ8 + (1− cθ7)sθ8) + (

√
2

2
sθ7sθ9 +

1

2
cθ9((1− cθ7)cθ8

− (cθ7 + 1)sθ8))(dfhsθ10sθ11cθ12 − dfhcθ10cθ11cθ12 + a11cθ10 + a10)− dy

z = (

√
2

2
sθ7cθ9 +

1

2
sθ9((cθ7 + 1)cθ8 + (cθ7 − 1)sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12

− a11sθ10) +
1

2
dfhsθ12((1− cθ7)cθ8 + (cθ7 + 1)sθ8) + (−

√
2

2
sθ7sθ9 +

1

2
cθ9((cθ7 − 1)sθ8

+ (cθ7 + 1)cθ8))(dfhsθ10sθ11cθ12 − dfhcθ10cθ11cθ12 + a11cθ10 + a10)− dz

The Jacobian for the right leg is as follows:

JBase
right =



∂x

∂θ7

∂x

∂θ8

∂x

∂θ9

∂x

∂θ10

∂x

∂θ11

∂x

∂θ12

∂y

∂θ7

∂y

∂θ8

∂y

∂θ9

∂y

∂θ10

∂y

∂θ11

∂y

∂θ12

∂z

∂θ7

∂z

∂θ8

∂z

∂θ9

∂z

∂θ10

∂z

∂θ11

∂z

∂θ12

zBase
7 zBase

8 zBase
9 zBase

10 zBase
11 zBase

12


(D.12)
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where

∂x

∂θ7
= (sθ7cθ9 +

√
2

2
cθ7sθ9(cθ8 + sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+

√
2

2
dfhcθ7sθ12(sθ8 − cθ8) + (−sθ7sθ9 +

√
2

2
cθ7cθ9(cθ8 + sθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂x

∂θ8
=

√
2

2
sθ7sθ9(cθ8 − sθ8)(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+

√
2

2
dfhsθ7sθ12(cθ8 + sθ8) +

√
2

2
sθ7cθ9(cθ8 − sθ8)(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂x

∂θ9
= (cθ7sθ9 +

√
2

2
sθ7cθ9(cθ8 + sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+ (cθ7cθ9 −
√

2

2
sθ7sθ9(cθ8 + sθ8))(dfhsθ10sθ11cθ12 − dfhcθ10cθ11cθ12 + a11cθ10

+ a10)

∂x

∂θ10
= − (cθ7cθ9 −

√
2

2
sθ7sθ9(cθ8 + sθ8))(−dfhsθ10sθ11cθ12 + dfhcθ10cθ11cθ12 − a11cθ10)

+ (cθ7sθ9 +

√
2

2
sθ7cθ9(cθ8 + sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

∂x

∂θ11
= − (cθ7cθ9 −

√
2

2
sθ7sθ9(cθ8 + sθ8))(dfhcθ10cθ11cθ12 − dfhsθ10sθ11cθ12)

+ (cθ7sθ9 +

√
2

2
sθ7cθ9(cθ8 + sθ8))(dfhsθ10cθ11cθ12 + dfhcθ10sθ11cθ12)

∂x

∂θ12
= (cθ7cθ9 −

√
2

2
sθ7sθ9(cθ8 + sθ8))(dfhcθ10sθ11sθ12 + dfhsθ10cθ11sθ12)

+

√
2

2
dfhsθ7cθ12(sθ8 − cθ8) + (cθ7sθ9 +

√
2

2
sθ7cθ9(sθ8 + cθ8))(−dfhsθ10sθ11sθ12

+ dfhcθ10cθ11sθ12)

∂y

∂θ7
= (−

√
2

2
cθ7cθ9 +

1

2
sθ7sθ9(sθ8 + cθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

− 1

2
dfhsθ7sθ12(cθ8 − sθ8) + (

√
2

2
cθ7sθ9 +

1

2
sθ7cθ9(sθ8 + cθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂y

∂θ8
=

1

2
sθ9((cθ7 − 1)sθ8 − (cθ7 + 1)cθ8)(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+
1

2
dfhsθ12(−(cθ7 + 1)sθ8 + (1− cθ7)cθ8) +

1

2
cθ9((cθ7 − 1)sθ8

− (cθ7 + 1)cθ8))(dfhsθ10sθ11cθ12 − dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂y

∂θ9
= (

√
2

2
sθ7sθ9 +

1

2
cθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12

− a11sθ10) + (

√
2

2
sθ7cθ9 −

1

2
sθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10) 168



∂y

∂θ10
= − (

√
2

2
sθ7cθ9 −

1

2
sθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(−dfhsθ10sθ11cθ12 + dfhcθ10cθ11cθ12

− a11cθ10) + (

√
2

2
sθ7sθ9 +

1

2
cθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhcθ10sθ11cθ12

+ dfhsθ10cθ11cθ12 − a11sθ10)
∂y

∂θ11
= − (

√
2

2
sθ7cθ9 −

1

2
sθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhcθ10cθ11cθ12 − dfhsθ10sθ11cθ12)

+ (

√
2

2
sθ7sθ9 +

1

2
cθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhsθ10cθ11cθ12 + dfhcθ10sθ11cθ12)

∂y

∂θ12
= (

√
2

2
sθ7cθ9 −

1

2
sθ9((1− cθ7)cθ8 − (cθ7 + 1)sθ8))(dfhcθ10sθ11sθ12 + dfhsθ10cθ11sθ12)

+
1

2
dfhcθ12((cθ7 + 1)cθ8 + (1− cθ7)sθ8) + (

√
2

2
sθ7sθ9 +

1

2
cθ9((1− cθ7)cθ8

− (cθ7 + 1)sθ8))(−dfhsθ10sθ11sθ12 + dfhcθ10cθ11sθ12)

∂z

∂θ7
= (

√
2

2
cθ7cθ9 −

1

2
sθ7sθ9(sθ8 + cθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+
1

2
dfhsθ7sθ12(cθ8 − sθ8)− (

√
2

2
cθ7sθ9 +

1

2
sθ7cθ9(cθ8 + sθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂z

∂θ8
=

1

2
sθ9((cθ7 − 1)cθ8 − (cθ7 + 1)sθ8)(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12 − a11sθ10)

+
1

2
dfhsθ12((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8) +

1

2
cθ9((cθ7 − 1)cθ8

− (cθ7 + 1)sθ8))(dfhsθ10sθ11cθ12 − dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂z

∂θ9
= (−

√
2

2
sθ7sθ9 +

1

2
cθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhcθ10sθ11cθ12 + dfhsθ10cθ11cθ12

− a11sθ10)− (

√
2

2
sθ7cθ9 +

1

2
sθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhsθ10sθ11cθ12

− dfhcθ10cθ11cθ12 + a11cθ10 + a10)

∂z

∂θ10
= (

√
2

2
sθ7cθ9 +

1

2
sθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(−dfhsθ10sθ11cθ12 + dfhcθ10cθ11cθ12

− a11cθ10) + (−
√

2

2
sθ7sθ9 +

1

2
cθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhcθ10sθ11cθ12

+ dfhsθ10cθ11cθ12 − a11sθ10)
∂z

∂θ11
= (

√
2

2
sθ7cθ9 +

1

2
sθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhcθ10cθ11cθ12 − dfhsθ10sθ11cθ12)

+ (−
√

2

2
sθ7sθ9 +

1

2
cθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhsθ10cθ11cθ12 + dfhcθ10sθ11cθ12)

∂z

∂θ12
= − (

√
2

2
sθ7cθ9 +

1

2
sθ9((cθ7 − 1)sθ8 + (cθ7 + 1)cθ8))(dfhcθ10sθ11sθ12 + dfhsθ10cθ11sθ12)

+
1

2
dfhcθ12((1− cθ7)cθ8 + (cθ7 + 1)sθ8) + (−

√
2

2
sθ7sθ9 +

1

2
cθ9((cθ7 − 1)sθ8

+ (cθ7 + 1)cθ8))(−dfhsθ10sθ11sθ12 + dfhcθ10cθ11sθ12)
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zBase
7 =


0√
2

2√
2

2

 zBase
8 =


cθ7√
2

2
sθ7√

2

2
sθ7



zBase
9 = zBase

10 = zBase
11 =


√

2

2
sθ7(sθ8 − cθ8)

1

2
((1 + cθ7)cθ8 + (1− cθ7)sθ8)

1

2
((1− cθ7)cθ8 + (1 + cθ7)sθ8)



zBase
12 =


cθ7c(θ9 + θ10 + θ11)− sθ7c(θ8 − π/4)s(θ9 + θ10 + θ11)√

2

2
sθ7c(θ9 + θ10 + θ11) +

1

2
((1 + cθ7)sθ8 + (cθ7 − 1)cθ8)s(θ9 + θ10 + θ11)

−
√

2

2
sθ7c(θ9 + θ10 + θ11) +

1

2
((1− cθ7)sθ8 − (cθ7 + 1)cθ8)s(θ9 + θ10 + θ11)


Note that if the configuration of the leg obtained from joint position sensors during walking
is θ = [θ1 θ2 · · · θ6 θ7 θ8 · · · θ12], the joint angles used for D-H matrices are θ =
[θ1 − θ2 · · · − θ6 θ7 θ8 · · · θ12] due to the different definitions of joint rotational
direction between the robot NAO and D-H parameters.

NAO’s Jacobian in the FCS

We now calculate the Jacobian matrix for the left leg J(θ) = [J1, J2, · · · , J6] in the foot
coordinate system. According to (D.10), we have

5TEnd = 5T6
6TEnd =


0 sθ6 cθ6 −dfhcθ6
1 0 0 0
0 cθ6 −sθ6 dfhsθ6
0 0 0 1

 , J6 =



−dfhcθ6
0
0
0
cθ6
−sθ6



4TEnd = 4T5
5TEnd =


−sθ5 cθ5sθ6 cθ5cθ6 a5 − dfhcθ5cθ6
cθ5 sθ5sθ6 sθ5cθ6 −dfhsθ5cθ6
0 cθ6 −sθ6 dfhsθ6
0 0 0 1

 , J5 =



a5cθ5 − dfhcθ6
a5sθ5sθ6
a5sθ5cθ6

0
cθ6
−sθ6
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Likewise,

3TEnd = 3T4
4TEnd, J4 =



a4c(θ4 + θ5) + a5cθ5 − dfhcθ6
sθ6(a5sθ5 + a4s(θ4 + θ5))
cθ6(a5sθ5 + a4s(θ4 + θ5))

0
cθ6
−sθ6



2TEnd = 2T3
3TEnd, J3 =



−dfhsθ6s(θ3 + θ4 + θ5)
dfhc(θ3 + θ4 + θ5)− a5cθ6c(θ3 + θ4)− a4cθ3cθ6

a5sθ6c(θ3 + θ4) + a4cθ3sθ6
c(θ3 + θ4 + θ5)

sθ6s(θ3 + θ4 + θ5)
cθ6s(θ3 + θ4 + θ5)



1TEnd = 1T2
2TEnd, J2 =



J21
J22
J23
J24
J25
J26


where

J21 =

√
2

2
(cθ2 − sθ2)(a5cθ5 + a4c(θ4 + θ5)− dfhcθ6) +

√
2

2
dfhsθ6(cθ2 + sθ2)c(θ3 + θ4 + θ5)

J22 =

√
2

2
(cθ2 + sθ2)(dfhs(θ3 + θ4 + θ5)− cθ6(a5s(θ3 + θ4) + a4sθ3))

+

√
2

2
(cθ2 − sθ2)sθ6(a5sθ5 + a4s(θ4 + θ5))

J23 =

√
2

2
(cθ2 − sθ2)cθ6(a4s(θ4 + θ5) + a5sθ5) +

√
2

2
(cθ2 + sθ2)sθ6(a5s(θ3 + θ4) + a4sθ3)

J24 =

√
2

2
(cθ2 + sθ2)s(θ3 + θ4 + θ5)

J25 =

√
2

2
cθ6(cθ2 − sθ2)−

√
2

2
sθ6(cθ2 + sθ2)c(θ3 + θ4 + θ5)

J26 = −
√

2

2
sθ6(cθ2 − sθ2)−

√
2

2
cθ6(cθ2 + sθ2)c(θ3 + θ4 + θ5)

0TEnd = 0T1
1TEnd, J1 =



J11
J12
J13
J14
J15
J16
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where

J11 = sθ2s(θ3 + θ4 + θ5)(a5s(θ3 + θ4) + a4sθ3)− dfhsθ2cθ6
+ c(θ3 + θ4 + θ5)(a5sθ2c(θ3 + θ4) + a4sθ2cθ3 − dfhcθ2sθ6)

J12 = (cθ2cθ6 − sθ2sθ6c(θ3 + θ4 + θ5))(a5s(θ3 + θ4) + a4sθ3)

+ s(θ3 + θ4 + θ5)(a5sθ2sθ6c(θ3 + θ4) + a4sθ2cθ3sθ6 − dfhcθ2)
J13 = − (cθ2sθ6 + sθ2cθ6c(θ3 + θ4 + θ5))(a5s(θ3 + θ4) + a4sθ3)

+ sθ2cθ6s(θ3 + θ4 + θ5)(a5c(θ3 + θ4) + a4cθ3)

J14 = − 1

2
((1 + cθ1)cθ2 + (1− cθ1)sθ2)s(θ3 + θ4 + θ5)−

√
2

2
sθ1c(θ3 + θ4 + θ5)

J15 = sθ6(
1

2
((1 + cθ1)cθ2 + (1− cθ1)sθ2)c(θ3 + θ4 + θ5)−

√
2

2
sθ1s(θ3 + θ4 + θ5))

− 1

2
cθ6((1− cθ1)cθ2 − (1 + cθ1)sθ2)

J16 = cθ6(
1

2
((1 + cθ1)cθ2 + (1− cθ1)sθ2)c(θ3 + θ4 + θ5)−

√
2

2
sθ1s(θ3 + θ4 + θ5))

+
1

2
sθ6((1− cθ1)cθ2 − (1 + cθ1)sθ2)

The Jacobian matrix for the right leg J(θ) = [J1, J2, · · · , J6] in the foot coordinate system
is

J6 =



−dfhcθ12
0
0
0
cθ12
−sθ12

 , J5 =



a11cθ11 − dfhcθ12
a11sθ11sθ12
a11sθ11cθ12

0
cθ12
−sθ12

 , J4 =



a10c(θ10 + θ11) + a11cθ11 − dfhcθ12
sθ12(a11sθ11 + a10s(θ10 + θ11))
cθ12(a11sθ11 + a10s(θ10 + θ11))

0
cθ12
−sθ12



J3 =



−dfhsθ12s(θ9 + θ10 + θ11)
dfhc(θ9 + θ10 + θ11)− a11cθ12c(θ9 + θ10)− a10cθ9cθ12

a11sθ12c(θ9 + θ10) + a10cθ9sθ12
c(θ9 + θ10 + θ11)

sθ12s(θ9 + θ10 + θ11)
cθ12s(θ9 + θ10 + θ11)

 , J2 =



J21
J22
J23
J24
J25
J26


where

J21 = c(θ8 − π/4)(a11cθ11 + a10c(θ10 + θ11)− dfhcθ12) + dfhs(θ8 − π/4)sθ12c(θ9 + θ10 + θ11)

J22 = dfhs(θ8 − π/4)s(θ9 + θ10 + θ11) + sθ12c(θ8 − π/4)(a11sθ11 + a10s(θ10 + θ11))

− cθ12s(θ8 − π/4)(a10sθ9 + a11s(θ9 + θ10))

J23 = c(θ8 − π/4)cθ12(a11sθ11 + a10s(θ10 + θ11)) + s(θ8 − π/4)sθ12(a10sθ9 + a11s(θ9 + θ10))

J24 = s(θ8 − π/4)s(θ9 + θ10 + θ11)

J25 = c(θ8 − π/4)cθ12 − s(θ8 − π/4)sθ12c(θ9 + θ10 + θ11)

J26 = − sθ12c(θ8 − π/4)− cθ12s(θ8 − π/4)c(θ9 + θ10 + θ11)
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J1 =



J11
J12
J13
J14
J15
J16


where

J11 = sθ8s(θ9 + θ10 + θ11)(a11s(θ9 + θ10) + a10sθ9)− dfhsθ8cθ12
+ c(θ9 + θ10 + θ11)(a11sθ8c(θ9 + θ10) + a10sθ8cθ9 − dfhcθ8sθ12)

J12 = (cθ8cθ12 − sθ8sθ12c(θ9 + θ10 + θ11))(a11s(θ9 + θ10) + a10sθ9)

+ s(θ9 + θ10 + θ11)(a11sθ8sθ12c(θ9 + θ10) + a10sθ8cθ9sθ12 − dfhcθ8)
J13 = − (cθ8sθ12 + sθ8cθ12c(θ9 + θ10 + θ11))(a11s(θ9 + θ10) + a10sθ9)

+ sθ8cθ12s(θ9 + θ10 + θ11)(a11c(θ9 + θ10) + a10cθ9)

J14 =
1

2
((1− cθ7)sθ8 − (1 + cθ7)cθ8)s(θ9 + θ10 + θ11)−

√
2

2
sθ7c(θ9 + θ10 + θ11)

J15 = − sθ12(
1

2
((1− cθ7)sθ8 − (1 + cθ7)cθ8)c(θ9 + θ10 + θ11) +

√
2

2
sθ7s(θ9 + θ10 + θ11))

+
1

2
cθ12((1− cθ7)cθ8 + (1 + cθ7)sθ8)

J16 = − cθ12(
1

2
((1− cθ7)sθ8 − (1 + cθ7)cθ8)c(θ9 + θ10 + θ11) +

√
2

2
sθ7s(θ9 + θ10 + θ11))

− 1

2
sθ12((1 + cθ7)sθ8 + (1− cθ7)cθ8)

θ1 and θ7 are the angles of the HipYawPitch joints of the left leg and right leg. They are
actuated by the same motor. In both simulation and real-world walking of NAO, we set
θ1 = θ7 = 0, so θ1 = θ7 = 0 while calculating the Jacobian matrices for both legs.

Full Body Humanoid Model

Figure D.2 shows the seven-link model of the robot during the SSP. Here we give the algorithm
in m-code to calculate the terms in the matrices H, C, G, B and J in the full body dynamic
equations of motion which has the form

H(q)q̈ + C(q, q̇)q̇ +G(q) = Bτ + JT fe (D.13)

1 % Copyright (c) 2014 by Jing Liu. This code may be freely used for
2 % noncommercial ends. If use of this code in part or in whole results in
3 % publication, proper citation must be included in that publication.
4 % This code comes with no guarantees or support.
5 %
6 % A MATLAB script to generate the equations of motion for a 7-link,
7 % 3D, kneed, biped walker using the method of Lagrange.
8 %

173



9 % The notation used for the equation of motions are as in Robot Dynamics
10 % and Control by Spong and Vidyasagar (1st edition, 1989), page 142,
11 % Eq. (6.3.12). The algorithm for calculating the matrices H(q), C(q, dq)
12 % and G(q) refers to Eq. (6.3.3)- Eq. (6.3.13) on pages 141-143, as well as
13 % Eric R. Westervelt's method which can be found at
14 % http://web.eecs.umich.edu/¬grizzle/westervelt thesis/code/
15 %
16 % H(q)ddq + C(q, dq) * dq + G(q) = B * tau + E2 * f e
17 %
18 % where f e = [f x; f y; f z], E2 = JˆT, and J is the Jacobian matrix.
19 %
20 % Note the following convention
21 %
22 % 1 = stance leg, 2 = swing leg
23 %
24 % Jing Liu, Thursday June 5th 2014
25

26 clear
27

28 % -----------------------------------------------------------------
29 %
30 % Model variables
31 %
32 % -----------------------------------------------------------------
33

34 % joint angles and velocities
35

36 syms q torso pitch dq torso pitch real
37 syms q torso roll dq torso roll real
38 syms q hip roll1 dq hip roll1 real
39 syms q hip pitch1 dq hip pitch1 real
40 syms q knee1 dq knee1 real
41 syms q ankle pitch1 dq ankle pitch1 real
42 syms q ankle roll1 dq ankle roll1 real
43 syms q hip roll2 dq hip roll2 real
44 syms q hip pitch2 dq hip pitch2 real
45 syms q knee2 dq knee2 real
46 syms q ankle pitch2 dq ankle pitch2 real
47 syms q ankle roll2 dq ankle roll2 real
48

49 q = [q ankle roll1; q ankle pitch1; q knee1; q hip pitch1; q hip roll1; ...
50 q hip roll2; q hip pitch2; q knee2; q ankle pitch2; q ankle roll2; ...
51 q torso pitch; q torso roll];
52 % The angles are relative to the last link.
53 dq = [dq ankle roll1; dq ankle pitch1; dq knee1; dq hip pitch1; ...
54 dq hip roll1; dq hip roll2; dq hip pitch2; dq knee2; dq ankle pitch2;...
55 dq ankle roll2; dq torso pitch; dq torso roll];
56

57 % gravity
58 syms g real
59

60 % link lengths
61 syms L torso real
62 syms L thigh real
63 syms L tibia real
64 syms L foot real
65
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66 % link masses
67 syms M torso real
68 syms M thigh1 M thigh2 real
69 syms M tibia1 M tibia2 real
70 syms M foot1 M foot2 real
71

72 % link inertias
73 syms I torso xx I torso yy real
74 syms I thigh xx1 I thigh yy1 I thigh xx2 I thigh yy2 real
75 syms I tibia xx1 I tibia yy1 I tibia xx2 I tibia yy2 real
76 syms I foot xx1 I foot yy1 I foot xx2 I foot yy2 real
77

78 % center of mass offsets
79 syms c torso real
80 syms c thigh1 b thigh2 real
81 syms c tibia1 b tibia2 real
82 syms c foot1 b foot2 real
83

84 % -----------------------------------------------------------------
85 %
86 % Calculate kinetic energy
87 %
88 % -----------------------------------------------------------------
89

90 % positions of links, the reference point is the foot of the stance leg
91

92 p CoMfoot1 = c foot1 * [sin(q ankle pitch1 + q knee1 + q hip pitch1) * ...
93 cos(q ankle roll1 + q hip roll1); -sin(q ankle roll1 + ...
94 q hip roll1); cos(q ankle pitch1 + q knee1 + q hip pitch1) * ...
95 cos(q ankle roll1 + q hip roll1)];
96

97 p ankle1 = L foot * [sin(q ankle pitch1 + q knee1 + q hip pitch1) * ...
98 cos(q ankle roll1 + q hip roll1); -sin(q ankle roll1 + ...
99 q hip roll1); cos(q ankle pitch1 + q knee1 + q hip pitch1) * ...

100 cos(q ankle roll1 + q hip roll1)];
101

102 p CoMtibia1 = p ankle1 + c tibia1 * [sin(q knee1 + q hip pitch1) * ...
103 cos(q hip roll1); -sin(q hip roll1); cos(q knee1 + ...
104 q hip pitch1) * cos(q hip roll1)];
105

106 p knee1 = p ankle1 + L tibia * [sin(q knee1 + q hip pitch1) * ...
107 cos(q hip roll1); -sin(q hip roll1); cos(q knee1 + ...
108 q hip pitch1) * cos(q hip roll1)];
109

110 p CoMthigh1 = p knee1 + c thigh1 * [sin(q hip pitch1) * cos(q hip roll1); ...
111 -sin(q hip roll1); cos(q hip pitch1) * cos(q hip roll1)];
112

113 p hip = p knee1 + L thigh * [sin(q hip pitch1) * cos(q hip roll1); ...
114 -sin(q hip roll1); cos(q hip pitch1) * cos(q hip roll1)];
115

116 p CoMtorso = p hip + c torso * [sin(q torso pitch) * cos(q torso roll); ...
117 sin(q torso roll); cos(q torso pitch) * cos(q torso roll)];
118

119 p CoMthigh2 = p hip + b thigh2 * [sin(q hip pitch2) * cos(q hip roll2); ...
120 -sin(q hip roll2); -cos(q hip pitch2) * cos(q hip roll2)];
121

122 p knee2 = p hip + L thigh * [sin(q hip pitch2) * cos(q hip roll2); ...
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123 -sin(q hip roll2); -cos(q hip pitch2) * cos(q hip roll2)];
124

125 p CoMtibia2 = p knee2 + b tibia2 * [sin(q hip pitch2 + q knee2) * ...
126 cos(q hip roll2); -sin(q hip roll2); -cos(q hip pitch2 + ...
127 q knee2) * cos((q hip roll2))];
128

129 p ankle2 = p knee2 + L tibia * [sin(q hip pitch2 + q knee2) * ...
130 cos(q hip roll2); -sin(q hip roll2); -cos(q hip pitch2 + ...
131 q knee2) * cos((q hip roll2))];
132

133 p CoMfoot2 = p ankle2 + b foot2 * [sin(q hip pitch2 + q knee2 + ...
134 q ankle pitch2) * cos(q hip roll2 + q ankle roll2); ...
135 -sin(q hip roll2 + q ankle roll2); -cos(q hip pitch2 + ...
136 q knee2 + q ankle pitch2) * cos(q hip roll2 + q ankle roll2)];
137

138 p foot2 = p ankle2 + L foot * [sin(q hip pitch2 + q knee2 + ...
139 q ankle pitch2) * cos(q hip roll2 + q ankle roll2); ...
140 -sin(q hip roll2 + q ankle roll2); -cos(q hip pitch2 + ...
141 q knee2 + q ankle pitch2) * cos(q hip roll2 + q ankle roll2)];
142

143 % velocities of links
144

145 v CoMfoot1 = jacobian(p CoMfoot1, q) * dq;
146 v CoMtibia1 = jacobian(p CoMtibia1, q) * dq;
147 v CoMthigh1 = jacobian(p CoMthigh1, q) * dq;
148 v hip = jacobian(p hip, q) * dq;
149 v CoMtorso = jacobian(p CoMtorso, q) * dq;
150 v CoMthigh2 = jacobian(p CoMthigh2, q) * dq;
151 v CoMtibia2 = jacobian(p CoMtibia2, q) * dq;
152 v CoMfoot2 = jacobian(p CoMfoot2, q) * dq;
153

154 % kinetic energy of links, KE = KE translation + KE rotation
155

156 KE foot1 = (1/2) * M foot1 * v CoMfoot1.' * v CoMfoot1 + ...
157 (1/2) * I foot yy1 * (dq ankle pitch1 + dq knee1 + ...
158 dq hip pitch1)ˆ2 + (1/2) * I foot xx1 * (dq ankle roll1 + ...
159 dq hip roll1)ˆ2;
160 KE tibia1 = (1/2) * M tibia1 * v CoMtibia1.' * v CoMtibia1 + ...
161 (1/2) * I tibia yy1 * (dq knee1 + dq hip pitch1)ˆ2 +...
162 (1/2) * I tibia xx1 * (dq hip roll1)ˆ2;
163 KE thigh1 = (1/2) * M thigh1 * v CoMthigh1.' * v CoMthigh1 + ...
164 (1/2) * I thigh yy1 * dq hip pitch1ˆ2 + ...
165 (1/2) * I thigh xx1 * dq hip roll1ˆ2;
166 KE torso = (1/2) * M torso * v CoMtorso.' * v CoMtorso + ...
167 (1/2) * I torso yy * dq torso pitchˆ2 + ...
168 (1/2) * I torso xx * dq torso rollˆ2;
169 KE thigh2 = (1/2) * M thigh2 * v CoMthigh2.' * v CoMthigh2 + ...
170 (1/2) * I thigh yy2 * dq hip pitch2ˆ2 + ...
171 (1/2) * I thigh xx2 * dq hip roll2ˆ2;
172 KE tibia2 = (1/2) * M tibia2 * v CoMtibia2.' * v CoMtibia2 + ...
173 (1/2) * I tibia yy2 * (dq hip pitch2 + dq knee2)ˆ2 + ...
174 (1/2) * I tibia xx2 * (dq hip roll2)ˆ2;
175 KE foot2 = (1/2) * M foot2 * v CoMfoot2.' * v CoMfoot2 + ...
176 (1/2) * I foot yy2 * (dq hip pitch2 + dq knee2 + ...
177 dq ankle pitch2)ˆ2 + (1/2) * I foot xx2 * (dq hip roll2 + ...
178 dq ankle roll2)ˆ2;
179
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180 % total kinetic energy
181

182 KE = KE thigh1 + KE tibia1 + KE foot1 + KE torso + KE thigh2 + ...
183 KE tibia2 + KE foot2;
184 KE = simple(KE);
185

186 % -----------------------------------------------------------------
187 %
188 % Calculate potential energy
189 %
190 % -----------------------------------------------------------------
191

192 % positions of various members
193

194 PE thigh1 = M thigh1 * g * p CoMthigh1(3);
195 PE tibia1 = M tibia1 * g * p CoMtibia1(3);
196 PE foot1 = M foot1 * g * p CoMfoot1(3);
197 PE torso = M torso * g * p CoMtorso(3);
198 PE thigh2 = M thigh2 * g * p CoMthigh2(3);
199 PE tibia2 = M tibia2 * g * p CoMtibia2(3);
200 PE foot2 = M foot2 * g * p CoMfoot2(3);
201

202 % total potential energy
203

204 PE = PE thigh1 + PE tibia1 + PE foot1 + PE torso + PE thigh2 + ...
205 PE tibia2 + PE foot2;
206 PE = simple(PE);
207

208 % -----------------------------------------------------------------
209 %
210 % Calculate model matrices
211 %
212 % -----------------------------------------------------------------
213

214 L = KE - PE;
215 L = simple(L);
216

217 % gravity vector
218

219 G = jacobian(PE, q).';
220 G = simple(G);
221

222 % mass-inertial matrix
223

224 H = simple(jacobian(KE, dq).');
225 H = simple(jacobian(H, dq));
226

227 % Coriolis and centrifugal matrix
228

229 syms C real
230 n = max(size(q));
231 for k = 1 : n
232 for j = 1 : n
233 C(k,j) = 0 * g;
234 for i = 1 : n
235 C(k, j) = C(k,j) + 1/2 * (diff(H(k,j), q(i)) + ...
236 diff(H(k,i), q(j)) - ...
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237 diff(H(i,j), q(k))) * dq(i);
238 end
239 end
240 end
241

242 C = simple(C);
243

244 % input matrix, Phi 0 is the actual joint angles for NAO, q torso = 0
245

246 Phi 0 = [q ankle roll1;
247 q ankle pitch1;
248 q knee1;
249 q hip pitch1 + q torso pitch; % to be confirmed
250 q hip roll1 - q torso roll; % to be confirmed
251 q hip roll2 + q torso roll; % to be confirmed
252 q hip pitch2 + q torso pitch; % to be confirmed
253 q knee2;
254 q ankle pitch2;
255 q ankle roll2;
256 q torso pitch;
257 q torso roll];
258 B = jacobian(Phi 0, q);
259 B = B.' * [eye(10, 10); zeros(2, 10)];
260

261 % swing foot force input matrix
262

263 Phi 1 = p foot2;
264 E2 = jacobian(Phi 1, q).'; % E2 = JˆT
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Figure D.2: Dynamic seven-link model of the robot during the SSP. (a) Sagittal plane view (b)
Frontal plane view.
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