
SFB 
823 

Risk aversion, macro factors 
and non-fundamental 
components in Euro area yield 
spreads: A macro-financial 
analysis 

D
iscussion P

aper 

 
Fabian Herrmann 
 
 

 
Nr. 4/2016 

 
 
 
 
 
 
 
 



 



Risk Aversion, Macro Factors and
non-fundamental Components in Euro Area
Yield Spreads: A Macro-Financial Analysis

Fabian Herrmann1

TU Dortmund University

Version: January 22, 2016

Abstract

This paper investigates the effects of economic fun-
damentals and a common risk factor that is not ac-
counted for by Euro area fundamentals on Euro area
yield spreads. In particular, it seeks to disentangle the
effects of changes in risk aversion and the common risk
factor. For this purpose, I use a multi-country macro-
finance model of the term structure, where changes in
risk-aversion are captured by one single variable. This
risk aversion variable is identified from restrictions on
the pricing kernel to be the single source of time vari-
ation in the prices of risk. The model is applied to
yield data of French, German, Italian and Spanish gov-
ernment bonds and the estimation is conducted using
Bayesian estimation techniques. The results show that
although economic fundamentals were the most domi-
nant driver of Euro area yield spreads, the common risk
factor accounts for a non-negligible part in Euro area
yield spreads. Notably, the contribution of common risk
factor shocks to the yield spreads increased from 2012
onwards. Among the economic factors, changes in risk
aversion were the most important source for variations
in yield spreads.
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1 Introduction

From the start of the European Economic and Monetary Union (EMU), a

convergence process between the sovereign bond yields of Euro area coun-

tries has been observed, despite large differences in fiscal position among those

countries. Though interest rate differentials did not vanish completely, they

stabilized around a remarkably low level, indicating that country-specific fac-

tors did only play a minor role in this period. This convergence is widely

referred to the elimination of exchange rate risk and the gradually reduction

of inflation risk in Euro area sovereign yields by the introduction of common

currency. However, since the onset of the European debt crisis in late 2009, a

dramatic surge in the yield spreads of bonds of Euro area sovereigns vis-à-vis

German government bonds did occur.

The rise in yield spreads was accompanied by an increase in sovereign debt

of several Euro area countries. However, not did only the spreads of sovereign

yields of highly indebted countries vis-à-vis Germany rose, but also the spreads

of countries with solid fiscal fundamentals (cf. ECB, 2014, p. 75), indicating

that also other factors than only credit risk accounted for the rise in yield

spreads.

In particular at the beginning of the European debt crisis, in addition to

credit risk, the effects of changes in risk aversion are found to be an important

component in yield spreads (cf. Haugh et al. 2009, Barrios et al. 2009, Oliviera

et al. 2010, Caceres et al., 2010, or Favero et al. 2010). However, recent

evidence by e.g. Di Cesare et al. (2012), Hördahl and Tristani (2013), De Santis

(2015) or Dewachter et al. (2015) suggests that the surge in sovereign spreads

of Euro-area countries cannot be fully explained by changes in fundamentals

and country-specific fiscal factors. These authors conclude that also contagion

or redenomination risk have played a non-negligible role for the dynamics of

yield spreads during the European debt crisis.

This paper investigates the effects of economic fundamentals and a common

factor that is unrelated to economic fundamentals on Euro area yield spreads

using a macro-finance model of the term structure. Specifically, this paper

seeks to disentangle the effects of changes in risk aversion and this common

risk factor to quantify their respective contribution to yield spreads of Euro
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area sovereigns vis-à-vis Germany while taking account for country-specific

fiscal variables, the European business cycle, and monetary policy and their

dynamics and interactions. In contrast to the existing literature, the risk

aversion measure used in this work is directly derived from Euro area bond

market within the macro-finance model.

The results show that the common risk factor played a non-negligible role

for yield spreads, accounting for a substantial increase in yield spreads during

for the financial crisis and the European debt crisis. Notably, the contribu-

tion of common risk factor shocks to the yield spreads increased from 2012

onwards. However, the most dominant drivers of yield spreads have been eco-

nomic shocks. Among the economic shocks, changes in the risk aversion vari-

able were the most important source for variation in sovereign yield spreads,

revealing the importance of measuring risk aversion in Euro area bond markets

adequately.

Studying the driver of yields and yield spreads is of interest to practition-

ers and researchers alike. Not do only play sovereign bonds an important

role for asset pricing, sovereign yields are also used as reference rates for key

interest rates. Moreover, understanding the determinants of yields is impor-

tant for understanding the transmission of monetary policy. Likewise, spreads

between Euro area sovereign yields may indicate impairments of the transmis-

sion process of monetary policy (cf. ECB, 2014). In addition, higher sovereign

yields lead to higher marginal (re-) funding costs of governments and thus have

the potential to increase the debt burden of a country.

Since the beginning of the EMU, a large empirical literature analyzes Euro

area sovereign yields. Traditionally, the literature focuses on a set of variables

describing credit risk, investors’ risk aversion, and liquidity risk (cf. ECB,

2014). Most of those studies use reduced-form regressions of yield spreads

of Euro area countries vis-à-vis Germany at a specific maturity on different

determinants. In contrast, a small but growing literature relies on affi ne term

structure models to explore the determinants of Euro area sovereign yields (e.g.

Geyer et al., 2004, Borgy et al. 2011, Hördahl and Tristani, 2013, Monfort

and Renne, 2011, or Dewachter et al., 2015). By cross-section restrictions

derived from no-arbitrage assumptions, these models tie the movements of

yields across maturities closely together. They allow to employ information
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from the cross-section and are suitable to capture the interaction and dynamics

of macro variables and the prices of risk. In the empirical literature, investors’

risk aversion is usually proxied by US corporate bond spreads or a US stock

market volatility index (e.g. Codogno et al. 2003, Attinasi et al., 2010, Favero

et al., 2010, Favero and Missale, 2011, or Bernoth et al., 2012). Although

the correlation between these both variables seems to be high, this measure is

unable to infer the underlying determinants that drive risk aversion as noted by

Manganelli and Wolswijk (2009).2 Section (2) is dedicated to a more detailed

literature review of the determinants of yields.

In order to assess the effect of different determinants on the evolution of

sovereign yield spreads I use a multi-country macro-finance model. The model

features a unique pricing kernel reflecting the integration of financial markets

in a currency union while it still allows for country-specific variables to affect

one country’s yield curve. Specifically, the yield curve of a country is driven

by common variables capturing the European business cycle, a unified mone-

tary policy, the common risk variable, time-varying risk aversion, and also a

country-specific fiscal variable capturing default risk.

The common risk factor is meant to capture dynamics in Euro area yield

spreads that are unrelated to dynamics in the common economic fundamen-

tals, i.e. a part in Euro area yield spreads that cannot be accounted for by

macroeconomic variables. This factor is identified from information contained

in cross-country yield curves. Gathering these information requires estimating

the term structure of sovereign yields of different European sovereigns jointly.

As in Hördahl and Tristani (2013), the common risk factor is modeled as an

unobservable variable and is, by construction, unrelated to the economic funda-

mentals. Therefore, it might be a proxy for contagion effects or redenomination

risk.

Changes in risk aversion are measured by a risk aversion variable. Specifi-

cally, following Dewachter et al. (2014) and Ireland (2015), by imposing restric-

2Manganelli and Wolswijk (2009) instead suggest to use the risk-free short-term interest
rate as a proxy for risk aversion. While indeed evidence by Manganelli and Wolswijk (2009)
or Bekaert et al. (2013) indicate an inverse relationship between the short-term interest
rate and risk aversion, risk aversion should potentially also respond to other macroeconomic
developments (see e.g. Dewachter et al. 2014) and this response does not have to coincide
with those of the monetary policy authority to macroeconomic developments. Therefore, in
this work, the short-term interest rate is, together with other Euro area-wide factors, one
potential driver of changes in risk aversion.
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tions on the stochastic discount factor, this risk aversion variable is identified

from the term structure of default-free government bonds as the only driver

of time variation in the prices of risk. But while Dewachter et al. (2014) and

Ireland (2015) use this variable to analyze term premia movements, in this

paper the risk aversion variable is used to explore the effects of changes in risk

aversion on yield spreads. The risk aversion variable does not only respond

to distortions in economic fundamentals and the common risk factor but also

exhibits an exogenous dynamic. Thus, it also allows risk aversion to alter ex-

ogenously and enables the analysis of changes in risk aversion that are not

related to economic developments.

The affi ne term structure model can be cast into a state-space representa-

tion. The effects of fundamental shocks on different state variables are iden-

tified, similar to VAR models, by timing restrictions. Monetary policy is de-

scribed by a monetary policy rule in the spirit of Taylor (1993). In addition

to the standard macro variables, monetary policy potentially also responds to

movements in the risk aversion variable as in Ireland (2015). To the extent

that monetary policy responds on movements in the risk aversion variable, in-

cluding this channel is required to capture expected monetary policy properly

and thus for separating changes of risk aversion from changes in expected fu-

ture short rates. Indeed, as shown by Ireland (2015) for the US and Herrmann

(2015) for the EU, the respective central bank does respond to movements of

this risk aversion variable.

In addition to the Euro area business cycle variables, the country-specific

fiscal variable, the risk aversion variable and the common risk factor, a time-

varying long-run trend component in inflation, interpreted as the central bank’s

inflation target around which inflation is stabilized, is employed. The long-run

trend component helps to shape the expectation of long-term bond yields.

The model is estimated by Bayesian estimation techniques. The posterior

function is evaluated using an Adaptive Metropolis (AM) algorithm in the

lines of Haario, Saksman and Tamminen (2001).
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2 Literature review

A broad literature investigates the determinants of Euro area sovereign yield

spreads. Traditionally, these determinants are referred to credit risk, liquid-

ity risk, and global risk aversion. More recently, also redenomination risk or

systemic risk as drivers of Euro area yield spreads are considered. The credit

risk or default risk, measuring a countries creditworthiness, is typically prox-

ied by variables describing the fiscal position of a country (debt-to-GDP ratio,

deficit-to-GDP ratio, the debt maturity, or interest expenditure-to-GDP, etc.).

Instead of using historical values of the fiscal fundamentals, often the expected

fiscal variables are used in order to capture the forward-lookingness of finan-

cial markets (cf. Laubach, 2009, Borgy et al. 2012, or Hördahl and Tristani,

2013). The literature finds that the importance of credit risk in sovereign bond

spreads increased since the start of the financial crisis and even more since the

European sovereign debt crisis (see e.g. Barrios et al., 2009, or Attinasi et

al., 2010). Liquidity risk measures the liquidity of sovereign bonds of a spe-

cific country. Typically, liquidity risk is proxied by the bid-ask spreads, the

amount of outstanding public debt of a country, trading volumes or turn-over

ratios. Global risk aversion is typically proxied by the spread of U.S.-Corporate

Bonds over U.S. treasury bonds or a volatility index of US stock markets (e.g.

Codogno et al. 2003, Attinasi et al., 2010, Favero et al., 2010, Favero and

Missale, 2011, or Bernoth et al., 2012).

Although a broad spectrum of different modeling approaches is used, the

literature on the determinants of yield spreads can be roughly categorized into

two strands. The first strand regresses sovereign bond yields or sovereign bond

yield spreads at different maturities on different sets of explanatory variables,

representing macro fundamentals, credit risk, liquidity risk and global risk

aversion (e.g. Barrios et al., 2009 Beber et al, 2009, Attinasi et al., 2010,

Favero et al. 2010, Manganelli and Wolswijk, 2009, Schuknecht et al., 2011,

Bernoth et al., 2012, or Di Cesare et al. 2013). The second strand of the

literature uses no-arbitrage term structure models in order to examine the

determinants of euro area sovereign yield spreads. Among these authors are

Geyer et al. (2004), Ang and Longstaff (2013), Battestini et al. (2013), Borgy

et al. (2012), Hördahl and Tristani (2013), and Dewachter et al. (2015). While
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Geyer et al. (2004) employ a purely latent factor model, Borgy et al. (2012)

investigate the determinants of yield spreads using only macro variables as

factors. Focusing on the effects of fiscal variables on spreads, they find that

the importance of fiscal variables for euro area yield spreads increased since

the beginning of the financial crisis. Notably, among those papers Hördahl and

Tristani (2013) are the only one whose model accounts for non-linear effects of

fiscal fundamentals on sovereign yield spreads. Instead of relying on an affi ne

term structure model, they employ a quadratic, no-arbitrage term structure

model. They argue that the non-linear model helps to explain the surge in

Euro area yield spreads during the European debt crisis.

While the importance of credit risk and global risk aversion, not only during

but also before the onset of the European debt crisis, seems to be unambiguous

(e.g. Codogno et al, 2003, Geyer et al., 2004, Manganelli and Wolswijk, 2009,

Favero et al., 2010, Attinasi et al., 2010, Laubach, 2011, Schuknecht et al.,

2011, or Bernoth et al., 2012), the evidence for the relevance of liquidity risks

for sovereign bond yields seems to be less striking. Beber et al (2009), using

intra-day European bond quotes from the beginning of 2003 until the end

of 2004, or Haugh (2009), using a panel regression including an interaction

term between their proxy for risk aversion and their liquidity proxy, stress the

importance of liquidity, in particular for smaller European economies, and in

particular in times of high market distress. Meanwhile, other authors find no

or only less explanatory power of liquidity for sovereign yield spreads (e.g.

Codogno et al., 2003, Geyer et al., 2004, Pagano and von Thadden, 2004,

Favero et al., 2010, or Bernoth et al., 2012). Bernoth et al. (2012) find that

liquidity played only a role in European sovereign bond yields before the start

of the EMU, but not after the start of the EMU. Moreover, while Beber et

al. (2009) and Manganelli and Wolswijk (2009) find a positive relationship

between their proxy for risk aversion and between their proxy for liquidity,

meaning that in times of market stress investors value liquidity more than in

“normal”times, Favero et al. (2010) found exactly the opposite relation. The

different results may arise due to their different measures for risk. Favero et

al. (2010) use a risk measure derived from the U.S. bond markets to proxy

aggregate risk. Manganelli and Wolswijk (2009), instead, employ a Euro-area

risk-free short-term interest rate, as a proxy for international (Euro area) risk
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aversion. In contrast, Beber et al. (2009) controls only for country-specify risk

factors and not for a aggregate risk factor.

Evidence by Geyer et al. (2004), Caceres et al. (2010), Amisano and Tris-

tani (2013), Ang and Longstaff (2013), Hördahl and Tristani (2013), De Santis

(2014,2015), Di Cesare et al. (2013), Giordano et al. (2013), or Dewachter et

al. (2015) suggests that also systemic risk or redenomination risk and financial

contagion effects may be drivers of Euro area sovereign yield spreads. Geyer et

al. (2004) find evidence for a common factor in yield spreads which they inter-

pret as “systematic risk”. They conclude that systematic risk arises from is a

“small but positive probability of a general failure of the EMU”. Caceres et al.

(2010) use a GARCH model to investigate the effects of changes in global risk

aversion and country-specific risk, via fundamentals and or contagion, on euro

area sovereign yield spreads. They find evidence for contagion in euro area

yield spreads and that the source of contagion changed over time. Amisano

and Tristani (2013) use a Markov switching VAR to examine contagion in euro

area sovereign bond spreads. Considering a normal and a crisis regime, they

find that the risk of falling into the crisis regime depends on macroeconomic

fundamentals, on risk aversion, and on the other countries regime dynamics.

Ang and Longstaff (2013) investigate the effects of country-specific shocks and

systemic shock on the CDS spreads of states of the U.S. and euro area coun-

tries. Using CDS spreads in a multifactor affi ne framework, they find a stronger

impact of systemic risk in the euro area than in the U.S. states. Di Cesare

et al. (2013) show that the surge in euro area sovereign yield spreads during

the debt crisis cannot be fully explained by country-specific fiscal variables

and macroeconomic fundamentals, but by a common non-fundamental factor.

They argue that this common factor is the perceived risk of a break-up in the

euro area. De Santis (2014) analyzes spill-over effects and contagion in the euro

area sovereign bond market using a VAR model. Employing a sample from the

beginning of 2006 until the end of 2012, he finds that country-specific fiscal

variables and spill-over effects from Greece contribute to the developments in

sovereign yield spreads. Giordano et al. (2013) categorize contagion into differ-

ent types of contagion. Using a dynamic panel approach, in contrast to other

authors, they do not find evidence for pure contagion, that is, a contagion that

is completely unrelated fundamentals in euro area bond markets during the
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debt crisis. Hördahl and Tristani (2013) construct a quadratic, no-arbitrage

term structure model for defaultable sovereign bonds. Using yield spreads

of five different Euro area countries vis-à-vis German yields at corresponding

maturities, they find that economic fundamentals, but also an unobservable

non-fundamental factor contribute significantly to the surge in spreads of most

of the considered Euro area countries. De Santis (2015) proposes a measure for

redenomination risk in the euro area using CDS spread data. He finds that re-

denomination risk shocks adversely affect euro area yield spreads. He also finds

evidence for spill-over effects of redenomination shocks, concluding that these

effects are a source of systemic risk. Finally, Dewachter et al. (2015) use a

multi-issuer, no-arbitrage affi ne term-structure model with unspanned macro

factors. Their findings show that economic fundamentals are the dominant

drivers of euro area sovereign bond spreads. However, also shocks unrelated

to economic fundamentals have played an important role during the European

debt crisis.

3 The model

This section develops a multi-country no-arbitrage affi ne term structure model

for the Eurozone. The model is a multi-country extension of the affi ne term

structure model proposed by Ireland (2015).

The model section is structured as follows. The first part describes the

structural macroeconomic dynamics and casts the macro part into its state

representation. The state variables are then used as pricing factors in the term

structure model in the second subsection. Cross-equation restrictions, based

on the assumption of no-arbitrage, are employed to tie the movements of yields

closely together. The risk aversion variable is identified from restrictions on

the prices of risk. Finally, the last subsection discusses the properties of the

risk aversion variable. In particular, this subsection demonstrates that the

risk aversion variable is the only driver of the term premium of the default-free

government bonds.
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3.1 The State Equation

The model contains nine variables, six of them are observable, and three are

unobservable. The observables are the short-term interest rate rt, the output

gap gyt , the inflation rate πt, and the fiscal variables of the three sovereigns

whose sovereign bonds might face credit risk or markets consider them to

be subject to credit risk. The latent variables are the common time-varying

central bank’s inflation target π∗t , the risk aversion variable vt (which captures

all movements in the prices of risk, as in Dewachter and Iania, 2012, Dewachter

et al., 2014, and Ireland, 2015), and a common risk factor Ct. This common

risk factor is meant to capture non-fundamental risks, i.e. the part of the

spread between yields of a potentially defaultable government bond and of a

non-defaultable reference bond of the same maturity that cannot be justified

by country-specific economic factors and euro area economic fundamentals.

The analysis focuses only on countries belonging to the Euro area. Therefore,

monetary policy for all countries is conducted by a single central bank. I

follow Ireland (2015) closely in the specification of the dynamics of the Euro-

area variables while the specification of the country-specific variables is based

on Borgy et al. (2012).

The central bank’s policy is depicted as choosing an inflation rate target

and adjusting the short-term interest rate accordingly. The incorporation of

an unobservable time-varying inflation target is a common approach in the

recent macro-finance term structure literature (as in e.g. Dewachter and Lyrio,

2006, Hördahl et al., 2006, Rudebusch and Wu, 2008, or Hördahl and Tristani,

2012, Ireland, 2015). It allows, on the one hand, for some variation in the

conduction of monetary policy, and it helps, on the other hand, to capture

movements in long-term nominal government bond yields which arise due to

changes in central bank’s inflation target. In fact, Barr and Campbell (1997)

for the UK and Gürkaynak et al. (2005) for the US find that movements in

long-term interest rates occur mainly due to changes in expected inflation. In

practice, the central bank’s inflation target is supposed to follow at stationary

AR(1) process. Specifically,

π∗t = (1− ρπ∗) π∗ + ρπ∗π
∗
t−1 + σπ∗επ∗t, (1)

where π∗ is the steady state level of the inflation target, ρπ∗ ∈ [0, 1), σπ∗ > 0
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and the shock επ∗t is standard normally distributed. As in Hördahl et al.

(2006), Rudebusch and Wu (2008), Hördahl and Tristani (2012), or Ireland

(2015), this restriction is imposed to ensure stationarity of the inflation target

process. A non-stationary inflation target leads to non-stationary inflation and

non-stationary nominal short-term interest rate. As shown by Campbell, Lo,

and MacKinley (1997 p. 433) or Spencer (2008) for models with homoscedas-

tic shocks, a unit root in the nominal short-term interest rate translates in

undefined asymptotic long-term bond yields. Thus, imposing stationarity of

the inflation target process ensures that the term structure part of the model

is well-behaved.

By defining the inflation gap, and the interest rate gap, as in Ireland (2015),

the notation is simplified. Specifically, the inflation rate gap is defined as the

deviation of the inflation rate from central bank’s inflation target,

gπt ≡ πt − π∗t ,

and the interest rate gap is defined as the deviation of the interest rate from

the inflation target,

grt ≡ rt − π∗t .

The central bank’s policy rule for the short term nominal interest rate can

then be specified in terms of the interest rate gap, the inflation gap and the

output gap. Specifically, the central bank sets the interest rate according to

the following interest rate rule in the spirit of Taylor (1993),

grt − gr = ρr
(
grt−1 − gr

)
+ (1− ρr)

[
ρπg

π
t + ρy (gyt − gy) + ρvvt

]
+ σrεrt, (2)

where ρr, ρr ∈ (0, 1), is the interest rate smoothing parameter, ρπ, ρπ > 0,

ρy, ρy > 0, and ρv are the central bank’s response parameters on inflation, the

output gap and the variation in the term premium variable, respectively, σr,

σr > 0, is a volatility parameter, and gr and gy are the steady state values

of grt and g
y
t , respectively. The shock εrt is supposed to be standard normally

distributed and represents the interest rate policy shock. The notation of the

policy rule incorporates the assumption that the central bank is on average

able to implement its inflation target. Thus, in the steady state, the actual

inflation rate equals the central bank’s target rate. While the response para-

meter ρπ and ρy are restricted to be non-negative, the response parameter ρv,
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is unconstrained. As demonstrated in Section (3.3), the risk aversion variable

is identified as the only source for fluctuations in term premia. Thus, a positive

value of ρv implies that the central bank tends to tighten monetary policy in

response to a rise in term premia. Goodfriend (1993) and McCallum (2005)

argue that this should be the case if the central bank regards an increase in

premia as an indicator of “inflation scares” or as an indicator of policy lax-

ity.3 In contrast, Bernanke (2006) argues that, to the extent that aggregate

demand also depends on long-term interest rates, a rise in the term premium

requires the central bank to lower the short-term interest rate in order to offset

the effects of the decline in premia and to retain the economic condition, all

else being equal. Thus, the coeffi cient ρv should be negative. This so called

practitioner view, as labeled and discussed by Rudebusch, Sack, and Swanson

(2007), states that optimal monetary policy should account for movements in

premia by adjusting the interest rate contrary to the directions of the pre-

mia movements. Apparently, if ρv is zero, the central bank does not react on

changes in term premia at all.

To the extent that the central bank does respond on term premia move-

ments, including this response parameter is important for modeling the expec-

tation of future short-term interest rates. Therefore, it is crucial for separating

the yield of risk-free bonds into expectation part and term premium part, and

thus for identifying movements in risk aversion. In fact, Herrmann (2015) for

the Euro Area and Ireland (2015) for the US find that there is a systematic

response of the respective central bank on term premia movements.

The dynamics of the output gap and the inflation gap are modeled as in

more conventional structural VAR models. While this specification allows for

a fairly high degree of flexibility, restrictions on the contemporaneous relation-

ship of these variables are imposed to ensure identification of the structural

model.

Specifically, the output gap depends on its own lags, on lags of the interest

3To be precise, McCallum (2005) suggests that the central bank should tighten monetary
policy if the interest rate spread between long-term bond yields and the short-term rate
increases, given that the expectation hypothesis holds and that the premium follows an
AR(1) process. A rise in the long-short rate spread might be due to two reasons: an
increase in future expected short rates or an increase in the term structure premium. In
McCallum’s specification of the interest rate rule, the central bank reacts on the long-short
spread, and with it, in general, on fluctuations in the term premium. However, the cause
for the rise in the spread is not identified.
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rate gap, on lags of the inflation gap and on lags of the term premium variable,

on the innovations of the inflation target επ?t, on the innovations of inflation

επt, and on its own innovations εyt,

gyt − gy = ρyr
(
grt−1 − gr

)
+

3∑
i=1

ρiyπg
π
t−i +

3∑
i=1

ρiyy
(
gyt−i − gy

)
(3)

+ρyvvt−1 + σyπσπεπt + σyπ?σπ?επ?t + σyεyt,

where the volatility parameter σy is non-negative, and εyt is supposed to be

standard normally distributed. The evolution of the inflation gap depends on

own lags, on lags of the interest rate gap, on lags of the output gap, on lags of

the term premium variable, on innovations of the inflation target επ?t, and on

its own innovations επt,

gπt = ρπr
(
grt−1 − gr

)
+

3∑
i=1

ρiππg
π
t−i +

3∑
i=1

ρiπy
(
gyt−i − gy

)
(4)

+ρπvvt−1 + σππ?σπ?επ?t + σπεπt,

where the volatility parameter σπ is non-negative and επt is standard normally

distributed.

The fiscal variable of a country is given by the change in the change in the

debt-to-GDP ratio of the respective country. In the choice of the change of

the debt-to-GDP ratio as the measure of fiscal sustainability, I follow Borgy

et al. (2012) and Dewachter et al. (2015). Specifically, similar to Borgy et al.

(2012), the dynamics of the fiscal variables are modeled by an AR(1) process,

dit = ρidd
i
t−1 + σidε

i
dt ∀i ∈ fr, it, es (5)

where dit denotes the fiscal variable of a country i, ρ
i
d ∈ [0, 1) is the persistence

parameter and σid > 0 is the volatility parameter. The shock εidt is standard

normally distributed. For parsimonious reasons, the specification supposes

that the debt-to-GDP growth rate is exogenous from the other state variables.

Omitting feedback effects from the European business cycle to the national

fiscal variables helps to reduce the number of parameters in an already highly

parameterized model.

The model features a latent common risk aversion variable which can affect

the yield spreads of the Euro area sovereigns. . This factor potentially cap-

tures the effects of redenomination risk or contagion on yield spreads. Similar
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to Hördahl and Tristani (2013), the common risk variable is supposed to be

unrelated to economic fundamentals, but is allowed to exhibits an endogenous

dynamic through a feedback effect ρC and a structural shock εCt developments.

Specifically, the dynamic of the common risk variable is given by the following

AR(1) process

Ct = ρCCt−1 + σCεCt, (6)

where ρC < |1|, σC > 0 and the shock εCt is standard normally distributed.

The risk aversion variable is supposed to be the most endogenous variable

in the economy. It is identified from the time variation in the prices of risk in

the stochastic discount factor. By construction, all movements in the prices of

risk are attributed to the risk aversion variable (see Section (3.2)). Movements

in the prices of risk are in turn identified from the default-free reference term

structure. Specifically, the evolution of the risk aversion variable is given by

vt = ρvvvt−1 + σvrσrεrt + σvπσπεπt + σvyσyεyt + σvπ?σπ?επ?t (7)

+σvCσCεCt + σfrvdσ
ft
d ε

fr
dt + σesvdσ

es
d ε

es
dt + σitvdσ

it
d ε

it
dt + σvεvt,

where the volatility parameter σv is non-negative, and εvt is standard normally

distributed.

Though the specification of the risk aversion variable follows Ireland (2015),

the interpretation of this variable is more closely related to the return fore-

casting factor of Dewachter and Iania (2012) and Dewachter et al. (2014a):

It allows for endogenous dynamics, through a feedback effect (ρvv) and a risk

aversion shock (εvt). This shock is meant to account for not macro related

shifts in risk aversion. In addition, the common macro variables are allowed to

affect the risk aversion variable directly by the contemporaneous effect of their

structural shocks (εrt, επt, εyt, επ?t, εCt). Moreover, the country-specific fiscal

variables are also allowed to affect the risk aversion variable. This specification

potentially allows the model to account for flight-to-safety motives.

The chosen structure imposes restrictions in order to identify the struc-

tural model. As in Ireland (2015), shocks to the inflation target επ∗t affect the

interest rate gap, the inflation gap, the output gap and the risk aversion vari-

able only contemporaneously. All further effects of fluctuations in the central

bank’s inflation target affect the economy only if the change in the inflation

gap and interest rate gap are not fully offset by a proportional adjustment
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of the interest rate and the inflation rate. This specification imposes a form

of long-run monetary neutrality (see Ireland, 2015). To disentangle the ef-

fects of different fundamental disturbances on the economy’s variables, the

following restrictions on the contemporaneous relationship of these variables

are imposed.

The central bank responds immediately to changes in the risk aversion

variable while the risk aversion variable only responds to interest rate shocks.

While the interest rate responds immediately on fluctuations of the output gap

and the inflation gap, changes in the short term interest rate do not affect the

output gap and the inflation gap immediately, but with one period lag. The

output gap shock εyt does only affect the inflation gap with a lag of one period,

while a shock to the inflation gap affects the output gap contemporaneously.

Moreover, the fiscal variables are modeled by an autoregressive process, as

already discussed above. In addition, as in Borgy et al. (2012) and Hördahl

and Tristani (2013), direct feedbacks from the national fiscal variables back to

the Euro area business cycle are omitted. However, through their effects on

vt, they can affect the economy.

Define the vectors Xt and εt containing the state variables and the struc-

tural disturbances, respectively, by

Xt =
[
rt gyt gyt−1 gyt−2 gπt gπt−1 gπt−2 π∗t Ct vt dfrt ditt dest

]′
and

εt =
[
εrt εyt 0 0 επt 0 0 επ?t εCt εvt εfrd εitd εesd

]′
,

then eq., (1) - (6) can be expressed as

P0Xt = µ0 + P1Xt−1 + Σ0εt. (8)

For the specific form of the matrices P0, P1, µ0, and Σ0 see Appendix (A.1).

Eq. (8) displays the structural form of the model. Multiplying by P−10 yields

the reduced form representation of the state equation,

Xt = µ+ PXt−1 + Σεt, (9)

where

µ = P−10 µ0,

P = P−10 P1
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and

Σ = P−10 Σ0.

3.2 The Term Structure Model

Affi ne term structure models, as developed by Duffi e and Kan (1996) and Dai

and Singleton (2000), are a particular class of term structure models where

the time t yield y(τ)t of τ−period zero coupon bond is modeled as an affi ne
function of the state vector Xt ,

y
(τ)
t = Aτ +B

′

τXt,

where both coeffi cientsAτ andBτ depend on the maturity τ . Though yields are

linear affi ne in the state vector Xt, Aτ and B
′
τ are highly non-linear functions

of the parameters of the state vector and of the prices of risk. The particular

functional form of these coeffi cients is derived from cross-equation restrictions,

which in turn stem from the assumption of the absence of arbitrage opportu-

nities.

The outlined model follows the discrete-time version by Ang and Piazzesi

(2003). Restrictions on the prices of risk similar to those in Dewachter and

Iania (2012), Dewachter et al. (2014) and Ireland (2015) are imposed to permit

the risk aversion variable vt to be the only source of fluctuations in the prices of

risk and with it in the term premium. In order to study the role of default risk

in this affi ne set-up, I employ the extension of affi ne term structure models to

defaultable bond as proposed by Duffi e and Singleton (1999). This subsection

is structured as follows: the first part derives the default-risk-free bond prices

and discusses the restrictions on the prices of risk. The second part derives

the prices of defaultable bonds.

3.2.1 Default risk-free bond pricing and the prices of risk

The short-end of the yield curve, the nominal short-term risk-free interest rate,

is modeled as an affi ne function of the state vector Xt. The short-term interest

rate equation is given by

rt = δ0 + δ
′

1Xt, (10)

where δ0 is a scalar, and δ
′

1 is a 1x13 selection vector indicating the position

of grt and τ t in Xt. The short-term rate, and thus the short-end of the yield
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curve, is from eq. (2) under the control of the central bank. The coeffi cients

δ0 and δ1 are restricted to ensure consistency between the macro part and the

term structure part of the model. This requires δ0 = 0, and

δ
′

1 =
[

1 0 0 0 0 0 0 0 0 1 0 0 0
]
,

so that eq. (10) corresponds to the definition of the interest rate gap.

The prices of government bonds are supposed to be arbitrage free. As

shown in Harrison and Kreps (1979) or Duffi e (2001, pp. 108) the assumption

of the absence of arbitrage opportunities guarantees for the existence of a

positive stochastic discount factor. Following, among many others, Ang and

Piazzesi (2003), the stochastic discount factor which is used to price all bonds

in the economy is given by the following log-normal process

mt+1 = exp

(
−rt −

1

2
λ
′

tλt − λ
′

tεt+1

)
, (11)

where λt are the time-varying prices of risk. If all elements in λt are equal to

zero, investors are risk neutral. The prices of risk are supposed to be affi ne

functions of the state variables, taking the functional form

λt = λ0 + Λ1Xt, (12)

where λ0 is a 13× 1 vector and Λ1 is a 13× 13 matrix.

In the following, restrictions on the matrix λ1 are imposed. First, in order

to identify the risk aversion variable vt as the only source for time-variation

in the prices of risk, all elements in Λ1, except the 10th column, are restricted

to be equal to zero. This restriction is in the spirit of Cochrane and Piazzesi

(2005,2008) who found that one single factor - a linear combination of the

spot rate and four forward rates - accounts for most of the variation in term

premia. But instead of using an observable combination of interest rates, the

risk aversion variable is modeled as a latent variable (as in Dewachter and

Iania, 2012, Dewachter et al. 2014, and Ireland, 2015). Second, I assume that

only contemporaneous state variables can be priced. Finally, as in Ireland

(2015), the risk aversion variable itself is not a source for priced risk. After
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applying the restrictions on the matrix Λ1, Λ1 reads

Λ1 =



0 0 0 0 0 0 0 0 0 Λr 0 0 0

0 0 0 0 0 0 0 0 0 Λy 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Λπ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Λπ∗ 0 0 0

0 0 0 0 0 0 0 0 0 ΛC 0 0 0

0 0 0 0 0 0 0 0 0 Λv 0 0 0

0 0 0 0 0 0 0 0 0 Λdfr 0 0 0

0 0 0 0 0 0 0 0 0 Λdes 0 0 0

0 0 0 0 0 0 0 0 0 Λdit 0 0 0



,

and the corresponding vector λ0 reads

λ′0 =
[
λr0 λy0 0 0 λπ0 0 0 λπ

∗

0 λC0 λv0 λdfr0 λdes0 λdit0

]
.

From eq. (12) these restrictions work to attribute all movements in the prices

of risk λt to the variable that is ordered at the 10th position in Xt, that is, the

risk aversion variable vt. As demonstrated in section (3.3), from the restricted

form of Λ1 also all time-variation in term premia are attributed to the risk

aversion variable.

Let P τ+1
t denote the price of a risk-free zero-coupon bond maturing at time

t + τ , then, given the no-arbitrage assumption, the pricing kernel mt+1, and

the affi ne prices of risk λt, from the no-arbitrage condition

P τ+1
t = Et

(
mt+1P

τ
t+1

)
,

it can be shown that the bond price P τ+1
t can be written as an exponentially

affi ne function of the state vector Xt. Specifically, the price of a t + τ -period

risk-free zero-coupon bond P τ+1
t at period t is given by

P τ+1
t = exp

(
Āτ+1 + B̄′τ+1Xt

)
. (13)

The coeffi cients Āτ+1 and B̄τ+1 can be computed by the standard recursive

formulas as provided by Ang and Piazzesi (2003).
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3.2.2 Pricing of defaultable bonds

Following Duffi e and Singleton (1999), the no-arbitrage affi ne term structure

model can be extended to price also defaultable bonds. Duffi e and Singleton

(1999) show that under the assumption that the recovery value of a defaulting

bond is a fraction of the bond’s value conditional on no default would occur (the

so-called “recovery of market value”assumption), there exists some recovery-

adjusted default intensity process sj,t (see Appendix (A.2)). Defaultable bonds

can then be priced using the same formulas, simply by replacing the risk-free

short-term interest rate rt by the default-adjusted short-term interest rate

r∗j,t+1 = rt + sj,t+1, Then, bond prices can be expressed by

P̃ τ+1
j,t = Et

(
exp

(
−r∗j,t+1 −

1

2
λ
′

tλt − λ
′

tεt+1

)
P̃ τ
j,t+1

)
,

where P̃ τ+1
j,t denotes the time-t price of a τ + 1-period defaultable bond of

country j. If the “recovery-adjusted default intensities”(see e.g. Monfort and

Renne, 2011) sj,t of a country j is also an affi ne function of the state vector,

sj,t = ψj,0 + ψj,1Xt,

then one can proceed as in standard valuation models for default-risk free

bonds and bond prices can be computed by applying the standard recursive

formulas. Hence, the price of a zero-coupon defaultable bond can be expressed

by

P̃ τ+1
j,t = exp

(
Āj,τ+1 + B̄′j,τ+1Xt

)
(14)

where the specific solution of the pricing matrices Āj,τ+1 and B̄′j,τ+1 can be

computed by the standard recursive formulas. However, these formulas come

along with an intense computational cost since the pricing matrices have to

be calculated for each period τ = 1, ..., 60, each country j and each evaluation

of the log-posterior function. Therefore, in practice, I apply an algorithm

based by Borgy et al. (2012). Instead of computing the pricing matrices

Āj,τ+1 and B̄′j,τ+1 recursively, this algorithm computes only selected nested

bond maturities and concatenate country-specific pricing matrices, so as to

compute parts of the pricing matrices for all countries simultaneously. As

demonstrated by Borgy et al. (2012) this algorithm reduces computation time

considerably. The solution for the pricing matrices Āj,τ+1 and B̄′j,τ+1and the

algorithm are discussed in Appendix (A.3).

19



Finally, the dependence of the adjusted default intensities of a country

j on the state variables, that is, the elements in the vector ψj,1 need to be

specified. Instead of estimating all elements in ψj,1, I follow, among others,

Borgy et al. (2012) and impose restrictions on ψj,1. This helps to conserve

the number of parameters that need to be estimated. First, the German term

structure is supposed to be free of default risk, thus ψger,1 = 013x1. Noteworthy,

in this case, the solution of Āger,τ+1 and B̄′ger,τ+1 reduces to the solution for

pricing matrices of the risk-free bonds Āτ+1 and B̄τ+1, respectively. Thus, the

German term structure is the reference structure. It is used to identify the

time variation in the prices of risk. Second, as in Borgy et al. (2012) and

Dewachter et al. (2015), the spread between risk-free and defaultable bonds

depends on common and country-specific factors. In particular, the spread

between the yield on a defaultable bond of country j and the yield of a risk-

free bond with the same maturity is assumed to depend on the common, euro

area economic fundamental, the common risk factor, and the country-specific

fiscal variable of country j. However, it does not depend on the fiscal variables

of the other countries. Finally, only contemporaneous variables are allowed to

affect spreads.

3.2.3 Bond yields

The continuously compounded bond yields y(τ)j,t are defined by

y
(τ)
ger,t = −

log
(
P τ+1
t

)
τ

,

and

y
(τ)
j,t = −

log
(
P̃ τ+1
j,t

)
τ

∀j 6= ger.

Given the bond prices P τ+1
t and P̃ τ+1

j,t from eq. (13) and eq. (14), the yields

are given by

y
(τ)
ger,t = Aτ+1 +B′τ+1Xt, (15)

and

y
(τ)
j,t = Aj,τ+1 +B′j,τ+1Xt ∀j 6= ger, (16)

respectively, where Aτ+1 = −Āτ+1/τ , B′τ+1 = −B̄′τ+1/τ , Aj,τ+1 = −Āj,τ+1/τ
and B′j,τ+1 = −B̄′j,τ+1/τ .

20



3.3 Term Premia

It remains to show how the restrictions applied on the prices of risk in section

(3.2) work. It can be shown that all movements in term premia can be to at-

tribute to the risk aversion variable vt. Term structure premia can be captured

in different forms (see e.g. Cochrane and Piazzesi, 2008, or Joslin et al., 2014).

Similar to Dewachter and Iania (2012) I focus in this analysis on the return

premium (as classified by Cochrane and Piazzesi, 2008).

The return premium is defined as the expected excess holding period return

(or short expected excess return). It is the expected return from buying a long

term bond in period t + i and selling it in the subsequent period t + i + 1 in

excess of the expected return from buying a one-period bond. Formally, the

i+ 1-period return premium is defined as

Et

(
hprx

(τ)
t+i+1

)
= Et

(
hpr

(τ)
t+i+1 − y

(1)
t+i

)
where hpr(τ)t+1 is the holding period return defined by

hpr
(τ)
t+i+1 ≡ p

(τ−1)
t+i+1 − p

(τ)
t+i,

where p(τ)t is the log price of a zero-coupon bond maturing in t + τ periods,

p
(τ)
t ≡ log

(
P
(τ)
t

)
and y

(1)
t+i is the yield of a one-period bond. The holding

period return hpr(τ)t+1 is the return from buying a bond at time t that matures

in t+ τ periods and selling this bond the period after.

To bring the return premium in a computationally more tractable form the

expected holding period return and the expected short rate have to be calcu-

lated. The expected future short rates are given from eq. (10) by Et (rt+j) =

δ′1Et (Xt+j). To calculate the expected future short-term interest, it proves to

be helpful to demean the state equation, eq. (9). Let µ̄ be the unconditional

mean of the state vector, then from eq. (9) µ̄ is given by µ̄ = (I − P )−1 µ and

the demeaned state equation reads Xt+1− µ̄ = P (Xt − µ̄) + Σεt+1. Then, the

time-t conditional expected future short rate for period t + j, ∀j > 0, can be

computed by

Et (rt+j) = δ′1
(
I − δ′P j

)
µ̄+ δ′1P

jXt.

The expected holding period return can be calculated by plugging the model

implied log prices, p(τ)t = Āτ + B̄′τXt, into the definition of the i + 1-period
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holding period return: Thus plugging the expected short-term interest rate

and the expected holding period return into the definition of the i + 1-period

return premium and rearranging terms (see Appendix (A.4)) yields,

Et

(
hprx

(τ)
t+i+1

)
= B̄′τ−1Σ

[
λ0 + Λ1

(
I − P i

)
µ̄+ Λ1P

iXt

]
(17)

−1

2
B̄′τ−1ΣΣ′B̄τ−1

If i = 0, then eq. (17) is the one-period return premium. Precisely, the

one-period return premium of a bond with maturity τ is given by

Et

(
hprx

(τ)
t+1

)
= B̄′τ−1Σ (λ0 + Λ1Xt)−

1

2
B̄′τ−1ΣΣ′B̄τ−1. (18)

Due to the restricted form of Λ1 the only source of variation in Et
(
hprx

(τ)
t+1

)
is

the variable that is ordered at the 10th position in Xt, that is, the risk aversion

variable vt. Thus, eq. (18) reveals that all variation over time in one-period

return premia arises solely from fluctuations in vt for all bond maturities. If

all elements in the matrix Λ1 are equal to zero, then the one-period return

premium is constant. Likewise, if vt is constant over time, the return premium

is constant.

4 Estimation

4.1 Data

My sample contains monthly data on the Euro area from the Beginning of

2000 until the End of 2014. I consider government bonds from the four biggest

economies in the Euro area: Germany, France, Italy and Spain. The German

term structure is taken as the reference term structure and considered to be

free of default risk. As noted by De Santis (2015), the expected probability

of a credit event in Germany is considered to be negligible. Not only is the

country relatively large and plays a central role in the Euro area, but also, as

shown by De Santis (2014) does the German Bund yield comove with the OIS

rate. The sample contains data for the country-specific fiscal variables, the

Euro area business cycle, and the risk-free short-term interest rate.

The model requires zero-coupon yield data. However, government bonds

with maturities of more than one year usually do pay coupons. The zero-

coupon yield data need to be constructed from these data. All zero-coupon
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yields are constructed using the same method to ensure the comparability of

yields across countries. Specifically, the zero-coupon bond yields are estimated

from the prices of government bonds of each of the four countries using the

Nelson-Siegel (1987) model. The data for the end-of-month government bond

prices of each country is taken from Datastream. Appendix (A.5) describes

the data selection and the estimation of the zero-coupon yields in more detail.

After constructing the zero-coupon yield data, for the subsequent estimation,

yields with maturities of 3 months, and 1, 2, 3, 4, and 5 years for the German

term structure are selected and yield with maturities of 1 and 5 years for the

French, Italian and Spanish term structure are selected. Figure (1) and (2)

depict the estimated one-year and five-year yields of the government bonds of

France, Germany, Italy and Spain.

The Euro-area variables are the inflation rate, the output gap, and the

short-term interest rate. While the first two variables capture the European

business cycle, the latter captures monetary policy. The inflation rate is mea-

sured by the annual rate of change of the seasonally adjusted HICP of the

euro area. The output gap is defined as the percentage (logarithmic) deviation

of actual output from trend output. Since GDP data is only available at a

quarterly frequency, I use the seasonally adjusted industrial production index

of the Euro area as a proxy for output (as e.g. Clarida, Galí and Gertler, 1998,

or Favero, 2006). Trend output is constructed using the one-sided HP filter

with a smoothing parameter equal to 14,400. The euro-area-wide, risk-free

monetary policy rate is proxied by the 3-month rate of zero-coupon German

government bonds. In choosing the 3-month rate as the rate with the shortest

maturity, I follow the practice of the Bundesbank (cf. Schich, 1997).4

The fiscal variable of a country is measured by the change in the debt-to-

GDP ratio of the respective country. The data for the debt-to-GDP ratio is

taken from Datastream. Since the debt-to-GDP ratio is only available on a

quarterly basis, the missing observations need to be constructed. Instead of

simply interpolating the data, I follow Hördahl and Tristani (2013) and suppose

4The trading volume of government bonds decreases considerably for short residual ma-
turities so that their prices seem to be significantly influenced by low liquidity (see BIS,
2005, p.9). Therefore, prices of bonds with residual maturities shorter than three months
are excluded. Thus, the estimation of zero-coupon yields with residual maturities shorter
than three months is basically an out-of-sample forecast.
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an autoregressive law of motion for the debt-to-GDP ratio. Specifically, in a

preceding step, by presuming the autoregressive law of motion the time-path

of the missing observations is constructed by the Kalman filter. Finally, I

suppose that the long-run mean of the change in the debt to GDP ratio is zero

(as in Borgy et al., 2012).

4.2 The state space system

The macro part and the affi ne term structure model form a state-space system.

The state equation, given by eq. (9), describes the dynamic of the state vector,

while the observables - output gap, inflation, the short-term interest, the fiscal

variables and the long-term government bond yields - are linked to the state

vector by measurement equations.

For the estimation, a version of the state-state space model without con-

stant terms is employed. By dropping the constant terms appearing in eq.

(9), (15) and(16), and using demeaned data the estimation is simplified. In

particular, under the assumption that the central bank is able - on average

- to implement its target inflation rate, so that the average of the actual in-

flation rate equals the average target inflation rate, the steady state values of

gr, τ , and gy can be calibrated to match the data averages of the short-term

interest rate, the output gap, the fiscal variables and inflation. More precisely,

by setting the steady-state inflation target equal to the steady-state value of

the inflation target, the steady-state value of the interest rate gap gr can be

calculated from the average of the short-term interest rate net the average of

the inflation rate. The steady state value of the output gap is set equal to the

sample mean of the output gap. The fiscal factors are assumed to have a mean

of zero. As in Borgy et al. (2012), this implies that the debt-to-GDP ratio of

each country is stationary. Moreover, as demonstrated in Ireland (2015), the

values of the elements in λ0 can be calibrated so that the steady state values

of yields match the average yields. The state equation then reads

Xt = PXt−1 + Σεt,

and the measurement equation can then be written by

Zt = UXt + V ηt,
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where Zt is a vector of observables, U is a matrix connecting the observ-

ables to the state vector, ηt is a vector of i.i.d. distributed errors and V is

a matrix capturing the volatility parameters of these errors. The vector of

observables Zt consists of the government bond yields of the four countries,

the country-specific fiscal variables and the three observables capturing the

European business cycle and monetary policy. To simplify notation, define the

vector containing all yields of country i by yit =
[
y12i,t y24i,t y36i,t y48i,t y60i,t

]′
for country i = ger and yit =

[
y12i,t y60i,t

]′
for country i 6= ger, then the vector

of observables reads

Zt ≡



ygert

yfrt

yitt

yest

dfrt

dfrt

dfrt

rt

gyt

πt



.

The matrix U is given by

U ≡
[
B′ B′fr B′es B′it U f

fr U f
it U f

es U r Uy Uπ
]′
,

where the B−matrices are

B =
[
B′12 B′24 B′36 B′48 B′60

]
,

Bfr =
[
B′fr,12 B′fr,60

]
,

Bes =
[
B′es,12 B′es,60

]
,

Bit =
[
B′it,12 B′it,60

]
.
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The remaining elements in the U−matrix are given by

U f
fr =

[
0 0 0 0 0 0 0 0 0 0 1 0 0

]
,

U f
fr =

[
0 0 0 0 0 0 0 0 0 0 0 1 0

]
,

U f
fr =

[
0 0 0 0 0 0 0 0 0 0 0 0 1

]
,

U r =
[

1 0 0 0 0 0 0 1 0 0 0 0 0
]
,

Uy =
[

0 1 0 0 0 0 0 0 0 0 0 0 0
]
,

Uπ =
[

0 0 0 0 0 0 0 0 0 0 1 0 0
]
.

The matrix V contains the volatility parameters of the yield errors. The errors

are attached to avoid stochastic singularity. The problem of stochastic singu-

larity arises in macro-finance term structure models because a high dimensional

vector of observables (the yield data and the observable macro variables) is fit-

ted to a lower dimensional state vector. Instead of attaching errors to some

selected yields, I assume that all yields are affected by error terms, as in Chib

and Ergashev (2009). The last columns of V are equal to zero, reflecting that

the short-term interest rate, the output gap, the inflation rate and the changes

of the debt-to-GDP ratios of the three countries are not measured with errors.

4.3 Estimation method

The model captures the effect of national fiscal variables, investors’risk aver-

sion, the European business cycle, a time-varying inflation target and a com-

mon non-fundamental risk factor in sovereign yields. Changes in risk aversion

are identified from the default-free term structure. The non-fundamental risk

aversion variable is given by the part of sovereign yields that cannot be ac-

counted for by European fundamentals and country-specific fiscal factors. Due

to the interaction of risk aversion and the non-fundamental risk factor it is not

possible to split the estimation into separate steps (e.g. estimating first the

risk-free term structure and the macro dynamics together and then the term

structure of each of the other counties separately). Instead, the term struc-

tures of the four countries under consideration need to be jointly estimated.

This complicates the estimation considerably.

To estimate the state space model, I apply Bayesian estimation techniques.
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As often noted in the literature, even the estimation of pure affi ne term struc-

ture model is computationally challenging and time-consuming (see e.g. Chris-

tensen et al., 2011, or Chib and Ergashev, 2009). Adding the macro-dynamics

enhances these diffi culties due to the complexity of the macroeconomic inter-

actions with the term structure and vice versa (see also Rudebusch and Wu,

2008). The parameters in the Bj,τ matrices of the observation equations are

highly non-linear functions of the underlying parameters of the state equations

and the prices of risk. This non-linearity, as demonstrated by Chib and Erga-

shev (2009), can produce multimodal likelihood functions. Applying Bayesian

estimation techniques allow employing a priori information which helps to

down-weight regions of the parameter space which are not economically rea-

sonable and help to rule out economically implausible parameter values. As a

result, the posterior distribution can be smoother than the likelihood function

(see Chib and Ergashev, 2009). Moreover, the usage of prior information is

helpful when dealing with short data sets.

4.3.1 Posterior and Likelihood function

Formally, let Z denotes the data set, Z = (Z1, ..., ZT )′, where T is the number

of total observations, and let θ denotes the vector of all parameters contained

in the matrices P , Σ, Λ and V , then from Bayes rule, the joint posterior

distribution of θ, π (θ|X), is obtained by combining the likelihood function of

the observables, the prior distribution of the parameter vector and a norming

constant, thus,

π (θ|Z) ∝ L (Z|θ) p (θ) ,

where L (Z|θ) is the likelihood function, and p (θ) is the prior distribution.

Denote by Zt−1 all available information of the observable variables at time t−
1, Zt−1 ≡ (Z1, ..., Zt−1)

′. If the initial state X0 and the innovations {εt, ηt}
T
t=1

are multivariate Gaussians, then the conditional distribution of the observables

Zt on Zt−1 is also Gaussian (see Hamilton, 1994, p. 385)

Zt|Zt−1 ∼ N
(
UXt|t−1, Rt|t−1

)
,

where Xt|t−1 denotes the one step ahead forecast, Xt|t−1 ≡ E [Xt|Zt−1, θ], and
Rt|t−1 denotes the conditional variance, Rt|t−1 ≡ V ar (Zt|Zt−1, θ).5 Since two

5See Appendix (A.6) for the explicit expressions of the prediction and updating equations
of the mean and the variance.
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of the state variables are latent, the likelihood L (Z|θ) is constructed using the
standard Kalman filter recursions (see Harvey, 1991). Hence, the joint density

of the date set Z given θ can be written as

L (Z|θ) =

T∏
t=1

(2π)−
T
2
[
det
(
Rt|t−1

)]− 1
2

× exp

(
−1

2

(
Zt − UXt|t−1

)′ (
Rt|r−1

)−1 (
Zt − UXt|t−1

))
.

At the start of the recursions, the initial matrix of the variance of the forecast

errors is set equal to the unconditional variance of the state variables.

Since the posterior density is, in general, not known in closed form, I ap-

ply Markov Chain Monte Carlo (MCMC) methods (the Adaptive-Metropolis

algorithm) to simulate draws from the joint posterior distribution.

4.3.2 MCMC Method

The choice of the proposal density of the Metropolis-Hastings algorithm is

crucial for the speed of the convergence of the chain (cf. Rosenthal, 2010).

The scaling of the posterior distribution is often done by trial and error. But

not only is the scaling of the proposal density “by hand” in general time-

consuming, improving the proposal distribution manually also becomes very

hard, if not infeasible, in high-dimensional problems. Therefore, I employ the

Adaptive Metropolis (AM) algorithm as introduced by Haario et al. (2001) to

evaluate the posterior. The main idea of the AM algorithm is to run a chain

that alters its proposal distribution by using all information about the posterior

cumulated so far. Thus, the algorithm improves on the fly. Precisely, the

covariance of the proposal distribution is updated each step using all available

information. Apart from the updating scheme, the algorithm is identical to

the standard random walk Metropolis-Hastings algorithm. Due to the adaptive

nature of the algorithm, it is non-Markovian, but Haario et al. (2001) show

that it still has the correct ergodic properties.

Let θ0, ..., θj−1, denote the sampled parameters until j − 1 iterations,

where θ0 is the initial set of parameters. I follow Haario et al. (2001) and

let the proposal distribution, denoted by q (·|θ0, ..., θj−1), be a multivariate
Gaussian distribution with the mean at the current value of the parameter

vector θj−1 and a covariance matrix Ct. The algorithm starts with a pre-
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specified strictly positive proposal distribution covariance C0. After an initial

period n0 the adaption takes place by updating the covariance of the proposal

distribution according to Cj = sdCov (θ0, ...θj)+sdεId, where sd is a parameter

that depends only on the dimension d of the parameter vector θ and ε > 0 is

a (very small) constant employed to prevent Cj from becoming singular. In

practice, the calculation of the covariance Cj is simplified using the following

recursion formula (see Haario et al., 2001):

Cj+1 =
j − 1

j
Cj +

sd
j

(
θ̄j−1θ̄

′

j−1 − (j + 1) θ̄j θ̄
′

j + θjθ
′

j + εId

)
.

where θ̄j = 1
j+1

Σj
i=0θi.

The AM algorithm is given by the following steps:

1. Set the number of total iterations n and specify the initial period n0

(n0 < n) after which the adaption starts. Chose an (arbitrary) positive

definite initial covariance matrix C0 and specify the initial parameter

vector θ0. Set Cj = C0 and θj−1 = θ0.

2. Draw a candidate θ∗j from q (·|θj−1, Cj)

3. Compute α
(
θ∗j , θj−1

)
= min

[
1,

π(θ∗j |·)
π(θj−1|·)

]
.

4. Set θj = θ∗j with probability α
(
θ∗j , θj−1

)
and set θj = θj−1 with probability 1− α

(
θ∗j , θj−1

)
.

5. Update Cj+1 =

{
C0, j ≤ n0

sdCov (θ0, ..., θj) + sdεI, j > n0
.

6. Repeat step 2-5 until j = n.

Haario et al. (2001) note that the choice of an appropriate initial covariance

C0 helps to speed up the algorithm and thus to increase effi ciency. Therefore,

I use a scaled down version of the inverse of the Hessian matrix computed at

the posterior mode for the initial covariance matrix. The initial parameter

vector is set to the parameter values at the mode. For the choice of the scaling

parameter sd I follow Haario et al. (2001) (whose choice, in turn, is based

on Gelman et al. (1996)) and set sd = (2.4)2 /d. The initial period is set to

n0 = 20, 000 and the number of draws is set to n = 1, 500, 000.
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As noted by Chib and Ergashev (2009), the mode of the posterior can in

general not be found using Newton-like optimization methods. Therefore, I

employ the Covariance Matrix Adaption Evolution Strategy (CMA-ES) algo-

rithm. The CMA-ES is a stochastic method for numerical parameter optimiza-

tion of non-linear, non-convex functions with many local optima. It belongs

to the class of evolutionary optimization algorithms (Hansen and Ostermeier,

2001). The computation of the mode is conducted by the software package

Dynare (Adjemian et al., 2011).

4.4 Parameter Restrictions and Prior Distributions

4.4.1 Parameter Restrictions

For the estimation, restrictions are imposed to ensure either the stationarity of

the macro dynamics, the stability of the arbitrage recursions, or the identifica-

tion of the model. Stationarity of the state dynamics requires the eigenvalues

of the matrix P to be less than unity in absolute value, |eig (P )| < 1. A simi-

lar restriction has to be imposed to guarantee the stability of the no-arbitrage

recursions (see e.g. Dai and Singleton, 2001). Specifically, the eigenvalues of

P − ΣΛ have to be less than unity in absolute value, |eig (P − ΣΛ)| < 1. For

identification purposes, the scaling of the latent variable vt and Ct have to be

pinned down, since multiplicative transformations of the latent factor lead to

observationally equivalent systems. To pin down the scale of the latent vari-

ables, the scaling parameters of these variables are set equal to σv = 0.01 and

σC = 0.01. In the same spirit, the direction in which an increase in the risk

aversion variable vt moves the prices of risk, needs to be specified. Following

Ireland (2015), without loss of generality, the constraint Λπ ≤ 0 is imposed.

Finally, similar to Dewachter et al. (2014a) and Ireland (2015), to guarantee

that vt only moves the prices of risk associated with the other four state vari-

able, the restriction Λv = 0 is imposed. This imposes that the risk aversion

variable is not itself a sourced for priced risk.

4.4.2 Prior Distribution

Using prior information from previous studies and restricting parameters to lie

in an economically reasonable region helps to reduce the complexity of the max-

imization problem by down-weighting economically non-meaningful regions of
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the parameter space (see Chib and Ergashev, 2009, for a more detailed dis-

cussion). The first part of the table (1) displays the prior distributions of the

parameters of the monetary policy rule and the parameters associated with

the endogenous dynamic of the other state variables. I follow closely Smets

and Wouters (2003) for the choice of the priors for the Taylor rule coeffi cients.

Since the parameter capturing the degree of interest rate smoothing ρr is sup-

posed to be in the interval between 0 and 1, it is assumed that ρr is Beta

distributed. I set the prior mean equal to 0.8 and the standard deviation

equal to 0.05, assuming a high degree of interest rate inertia. The parameter

governing central bank’s reaction to the deviation of the actual inflation rate

from its target rate is assumed to be Gamma distributed with a mean of 1.5

and a standard deviation of 0.25. I employ the Gamma distribution to ensure

that the parameter ρπ cannot be negative. The prior mean satisfies the Taylor

principle. Likewise, I also suppose that the prior for the parameter of central

bank’s reaction to deviation from the output gap is Gamma distributed. The

prior mean is chosen to correspond to the Taylor rule coeffi cient of 0.5. Finally,

the coeffi cient of central bank’s response to movements in term premia ρv is

assumed to be Normal distributed with a mean of 0 and a standard deviation

of 0.25. The choice of the prior means implies that monetary policy is, a priori,

characterized by a standard Taylor rule.

The choice of the priors of the parameters describing the dynamics of the

macroeconomy is also displayed in the first part of table (1). As described

in Section (3.1), these dynamics are modeled as in a structural VAR model.

The priors for the VAR part (eq. 2 - 7) are chosen in the spirit of Minnesota

(see Litterman, 1986) by assuming that almost all coeffi cients are normal dis-

tributed and by setting the prior means of most of the coeffi cients equal to

zero except for these coeffi cients corresponding to the first own lags of the

dependent variables. These coeffi cients are set equal to 0.9 as suggested by

Koop and Korobilis (2010). The choice of the prior means reflects the as-

sumption that these variables exhibit a high degree of persistence, but do not

follow a unit root process. The standard deviation of the prior distribution

of the parameters is weighted by the lag length, implying that with increas-

ing lag length the coeffi cients are shrunk towards zero. As in Dewachter et

al. (2014a), I set the standard deviations for the coeffi cients on the first lags
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equal to 0.15. Departing from Minnesota and following Dewachter and Iania

(2011) and Dewachter et al. (2014a), I choose a negative prior mean for the

parameters ρ1yr and ρ
1
πr. These choices capture beliefs that an increase in the

interest rate dampens economic activity. For the parameters ρyv and ρπv I

choose a relatively uninformative prior. Precisely, I set the prior mean equal

to zero and the standard deviation equal to 0.25, assuming that movements in

the term premium do not affect output and inflation a priori. The coeffi cient

of the inflation target process is Beta distributed with a mean of 0.9 and a

standard deviation of 0.1. Employing the Beta distribution guarantees that

the process of the inflation target is stationary while avoiding that the central

bank’s inflation target jumps erratically. Finally, the persistence parameters

of the common factor ρC and the persistence parameters of the change in the

debt-to-GDP ratios ρid of country i, ∀i ∈ {fr, es, it}, are also assumed to be
Beta distributed with a mean of 0.9 and a standard deviation of 0.1. The

overall choice of these priors satisfies the stationarity of the macro dynamics.

The second part of table (1) presents the prior distributions of the volatil-

ity parameters associated with the structural shocks, the yield errors, and the

prior distributions of the co-movement parameters. The prior distributions

of the volatility parameters corresponding to the structural shocks and the

yield errors follow, similar to Dewachter (2008), the Inverse Gamma distri-

bution with a mean of 0.01 and 0.0001, respectively, and a standard devia-

tion of 0.2 and 0.001, respectively, corresponding to a mean of 1 percentage

point of the structural shocks and a mean of 0.01 percentage points of the

yield errors. This specification captures the beliefs that this errors should be

rather small. I employ the Inverse Gamma distribution to prevent the volatil-

ity parameter from being negative or equal to 0. It is worth pointing out

that the table (1) displays a reparameterized version of the volatility parame-

ters of the yield errors. A reparameterization is performed since the Inverse-

Gamma distribution (the traditional distribution for variances) is not very flex-

ible in dealing with very small numbers, as discussed by Chib and Ergashev

(2010). Therefore, the transformation σ∗j ≡ s ∗ σj, ∀j ∈ {12, 24, 36, 48, 60},
and σi∗k ≡ s ∗ σik, ∀k ∈ {12, 60} and ∀i ∈ {fr, es, it}, is performed, where s is
given by s = 1000. The prior distributions for the co-movement parameters

follow a Normal distribution with a mean of 0 and a standard deviation of
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2. Noteworthy, the choice of the priors satisfies the stationarity condition and

the stability condition of the no-arbitrage recursions. Hence, under the chosen

prior specification|eig (P )| < 1 and |eig (P − Σλ1)| < 1 hold.

For the elements in the vectors ψes, ψfr, and ψit I use relatively uninformed

priors. In particular, the elements in the vectors ψes, ψfr, and ψit are supposed

to be Normal distributed with the mean equal to 0 and the standard deviation

equal to 2. Finally, for the choice of the prior distributions of the parameters

in Λ1 (the elements in the matrix of the prices of risk), I follow Dewachter and

Iania (2011) and Dewachter et al. (2014). The last part of table (1) presents

the priors for the prices of risk. I use relatively uninformative priors, reflected

by the choice of large standard deviations. More precisely, each element in the

matrix of the prices of risk is assumed to be Normal distributed with a mean

of 0 and a standard deviation of 25.

5 Results

This section presents the results of the estimation. Table (2) - (4) list the

estimated parameters. The tables report the posterior modes, the posterior

means, and the 90% highest posterior density (HPD) interval of the estimated

parameters. While the posterior mode is obtained by maximizing the (log-)

posterior distribution, the latter results are obtained by using the Adaptive

Metropolis algorithm outlined in Section (4.3.3). In this model, a part of the

spreads is explained by a common risk factor. Figure (3) displays the time

path of the common risk factor. The common risk factor has been above its

steady state level during the financial crisis and the European debt crisis.

In the literature of macro-finance term structure models, the standard devi-

ations of the yield errors are used to evaluate the fit of the model. The bottom

part of table (4) presents the standard deviations of these errors. With stan-

dard deviations of these errors around 8 and 11 basis points for French bond

yields, around 26 and 33 basis points for Spanish bonds yields and around 4

and 28 basis points for Italian bond yields, the fit of the yield curves is reason-

ably good (cf. Borgy et al., 2012, or Hördahl and Tristani, 2013). The model’s

fit of the German term structure is remarkably good.

The estimates of the interest rate rule parameters are given in the first

33



four rows in table (2). Notably, all four parameter estimates are significantly

different from zero, including the ECB’s response parameter to movements

in the risk aversion variable ρv. The posterior mean of ρv is significantly

different from zero and negative, ρv = −0.2565. Using a macro-finance model

and an index of Euro-area government bonds, Herrmann (2015) also finds a

negative coeffi cient. Since from eq. (18) term premia are a proportional to

the risk aversion variable, this implies that the ECB lowered the interest rate

in response to a rise in term premia. In line with the practitioner view (see

Rudebusch et al., 2007), this indicates that the central bank counteracted

changes in term premia.6

The estimated values of the other three parameters of the interest rate

rule are similar to those from studies using a more standard interest rate rules

specification for the Euro Area (e.g. Andrés et al., 2006, or Smets andWouters,

2003). The estimate of the interest rate inertia ρr = 0.8188 reflects a high

degree of interest rate smoothing. The estimate of the coeffi cient measuring

central bank’s response to changes in the output gap is ρy = 0.1198. The

estimated coeffi cient of the central bank’s response to a change in inflation is

larger than one, ρπ = 1.3197, satisfying the Taylor principle.

In the following, rather than interpreting each of the remaining estimates

separately, I describe the results of the parameter estimation jointly by com-

puting impulse response functions (IRFs) of the yield spreads to selected shocks

of the economy, by decomposing the forecast error variance of the yield spreads

and by performing a historical shock decomposition of yield spreads. These

methods help to examine the dynamic of yield spreads, to describe the prop-

agation of different shocks and to reveal the relevance of different shocks for

variation in the yield spreads. All yield spreads are calculated with respect to

Germany.

5.1 Impulse Response Functions

Each of the following figures shows the impulse response of the yield spreads to

a particular shock. Each shock is of a size of one-standard-deviation. The first

row of each figure gives the graphs of the impulse responses of the one-year

6In contrast, Ireland (2015), who estimated the same parameter, but for the Fed with
US data, finds a significantly positive coeffi cient.
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spreads of France (y12t,fr−y12t,ger), Spain (y12t,es−y12t,ger), and Italy (y12t,it−y12t,ger). The
second row contains the graphs of the impulse responses of the five-year yield

spreads of France (y60t,fr − y60t,ger), Spain (y60t,es − y60t,ger), and Italy (y60t,it − y60t,ger).
The last row contains the graph of the impulse response of the risk aversion

variable vt. The gray shaded areas cover the 90 percentage HPD interval. The

IRF (displayed by the blue line) is computed as the mean impulse response.

The yield spreads are shown in annualized percentage points. One period

corresponds to one month.

First, I display the impulse responses of the yield spreads to some selected

economic shocks. The impulse responses to the risk aversion shock εvt are

presented in figure (4). The yields spreads of both maturities of all countries

rise significantly on impact. Over a horizon of five years, the impulse responses

of the yield spreads converge slowly back to their steady state. The magnitude

of the impact responses to the risk aversion shock is significantly larger for the

spreads of Italy (around 30 basis points) and Spain (around 25 basis points)

than the magnitude of the impact response of French yield spreads (around

five basis points). Trivially, the risk aversion variable rises on impact and

converges than back to its steady state.

Figure (5) displays the impulse responses to a rise in the French debt-to-

GDP growth rate. The figure highlights that only the one-year yield spread

and the five-year yield spread of France are affected by an increase the debt-

to-GDP growth rate of France. The respond of all other spreads is not sig-

nificantly different from zero. The same applies for a shock to the change in

the debt-to-GDP ratio of Italy and Spain. Figure (6) and (7) shows that each

shock does only affect the yield spread of the respective country vis-à-vis Ger-

many. All other spreads do not respond significantly. Thus, the results provide

no evidence for flight-to-safety effects running from the country-specific fiscal

variable to the other countries of the EMU.

Finally, figure (8) shows the impulse responses of the yield spreads and

the risk aversion variable to the common risk factor shock. The yield spreads

of all countries rise significantly and persistently. The increase in the yield

spreads is of stronger magnitude for Spain and even stronger for Italy, than

for France. While all spreads rise, the risk aversion variable drops, implying

that investors require a negative term premium.
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5.2 Variance decomposition

To identify the main drivers of movements in bond yield spreads and to as-

sess the relative importance of different shocks for the variability of the yield

spreads, I compute the forecast error variance decomposition (FEVD). The

FEVD helps to quantify the contribution of each of the structural shocks to

the forecast error variance of the different yield spreads. Formally, the fraction

of the forecast error variance of variable i due shock j for horizon h, denoted

by φi,,j (h), is defined by

φi,,j (h) =
ωi,,j (h)

Ωi (h)
,

where ωi,,j (h) is the forecast error variance of variable i due to shock j at

horizon h and Ωi (h) is the total error forecast variance of variable i at horizon

h.

Similar to Dewachter et al. (2015), I divide the contribution of the differ-

ent shocks into three groups: economic factors, the idiosyncratic shocks, and

the common risk factor. Economic factors are those variables that concern

the economic environment of the countries in the Euro area and the country-

specific fiscal variable. These variables are the Euro area-wide inflation rate,

the euro area output gap, the global risk aversion variable, the monetary policy

rate, the central bank’s inflation target rate and the change in debt-to-GDP

ratio. For the illustration purposes, the economic factors in table (5) exclude

the risk aversion variable. This variable is reported separably in table (5). The

idiosyncratic shocks cover all country-specific variation in the yield spread that

cannot be explained by the models’variables. They are given by the errors

of the yields of the sovereign under consideration.7 The common risk factor

is given by the common factor Ct. This factor captures common dynamics in

yield spreads that are not related to the other global economic factors. The

FEVD is performed for the yield spreads of one- and five-year maturity for

different horizons. Table (5) display the FEVD of the yield spreads.

Both, economic factors and the common risk factor are important drivers

of Euro area sovereign yield spreads. Within the group of economic factors,

7Notably, the errors attached to the German government bond yields play only a ne-
glectable role in the forecast error variance of all yield spreads. Thus, the idiosyncratic
shocks reflect the yield-specific shocks of the respective country whose yield spread with
respect to German bond yields is under consideration.
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the risk aversion variable takes a pronounced role. For intermediate forecast

horizons (from one year up to three years), it accounts for around 39 and 43

percent of the forecast error variance in the one-year yield spreads of France

and for between 46 and 62 percent of the forecast error variance in the five-year

yield spreads of France. Risk aversion shocks are also important for the yield

spreads of Spain and Italy. They account for between 55 and 68 percent, and

51 and 68 percent in the variability of the Spanish one-year yield spread and

the Spanish five-year yield, respectively, on an intermediate forecast horizon.

For the Italian yield spreads, the risk aversion variable accounts for between

45 and 64 percent and between 43 and 70 percent in the one-year yield spread

and the five-year yield spread, respectively, both on an intermediate forecast

horizon. Notably, risk aversion shocks are more pronounced for shorter forecast

horizons, while their importance in yields spreads of all maturities decreases

with the horizon.

Also common risk factor shocks contribute substantially to the variability

of sovereign yield spreads. The effects of variation in the common risk factor

are more pronounced for longer forecast horizons. In fact, for longer forecast

horizons, common risk factor shocks are the main source for variations in the

yield spreads, accounting for between 65 and 77 percent of the variations in

yield spreads on a 10-year forecast horizon. But also for intermediate horizons,

shocks to the common risk factor play a non-negligible role. For the one-year

yield spread of French government bonds, shocks to the common risk factor

account for between 23 and 41 percent in the forecast error variance, and for the

five-year yield spread, they account for between 9 and 28 percent in the forecast

error variance, both for an intermediate forecast horizon. The same holds true

for Spanish and Italian yield spreads. Between 7 and 23 percent of all variation

in the one-year yield spread of Spanish government bonds and between 19 and

40 percent of all variations in the one-year yield spread of Italian government

bonds are attributable to shocks to the common risk factor. The common

risk factor shocks also account for sizeable movements in the five-year yield

spread of both countries. It accounts for between 42 and 65 percent in the

Spanish five-year yield spread and between 32 and 59 percent in the Italian

five-year yield spread. Idiosyncratic shocks, however, play only a role for short

horizons. They do not contribute substantially for the forecast error variance
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of yield spreads for longer forecast horizons.

5.3 Historical Shock Decomposition

The historical shock decomposition of the yield spreads is performed to iden-

tify the contribution over time of each group of factors to bond yield spreads.

Figure (9) - (11) presents the historical decomposition of the five-year yield

spreads for government bonds of France, Italy, and Spain with respect to the

German bond yield of the same maturity. Each of the figures contains four

panels. Each panel shows the historical values of the yield spread and the

contribution of a variable or a group of factors to the respective yield spread.

The first panel in each figure displays the contribution over time of economic

shocks (including shocks of the risk aversion variable) to the respective yield

spread, the second panel in each figure shows the contribution over time of

idiosyncratic shocks, and the third panel depicts the contribution over time of

the common risk factor to the yield spread. The last panel displays the con-

tribution of risk aversion shocks separated from the contribution of the other

economic factors to the yield spreads. This helps to visualize the importance

of risk aversion shocks for the yields spreads.

In all of the three yield spreads, economic shocks have played the most

important role for their evolution. Within the group of economic factors,

shocks to the risk aversion variable are the most important drivers, accounting

for a substantial part in this group. For the Spanish and Italian five-year

yield spreads, shocks to the risk aversion variable explain most of the spread

between 2010 and the Beginning of 2012. From 2012 onwards until 2014,

the importance of shocks to the risk aversion variable for the yield spread

decreases slowly. Shocks to the risk aversion variable also explain a large part

in the French yield spread though their contribution for the spread is not as

pronounced as for the Spanish and the Italian yield spread. Notably, within

the group of economic factors, shocks to the short-term interest rate had a

negative contribution to the yield spreads, indicating that monetary policy

worked to reduce spreads.

Shocks to the common risk factor also had a substantial impact on yield

spreads. In particular, during the financial crisis and the intensification of the

European debt crisis in late 2011, common risk factor shocks had a positive
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contribution to the yield spreads of all three countries. The absolute contribu-

tion of common risk factor shocks to the yield spreads is larger for the Spanish

and the Italian yield spread. For example, in mid-2013, the common risk fac-

tor shock explains 117 basis points in the Spanish yield spread and 177 basis

points in the Italian yield spread, highlighting that spreads of Euro-area coun-

tries cannot be fully justified by economic and country-specific factors only.

These results are in line with the findings of previous studies (see Di Cesare

et al., 2012, Hördahl and Tristani, 2013, De Santis, 2015, and Dewachter et

al., 2015).8 Moreover, for the yield spreads of all three countries, the positive

contribution of the common risk factor shocks increases from 2011 onwards,

partially offsetting the effects of the decrease of the contribution of shocks to

the risk aversion variable to the yield spreads.

Over the whole sample period, idiosyncratic shocks had only a small con-

tribution to yield spreads. Only during the debt crisis, their contribution to

the yield spreads increases. Specifically, at the Beginning of 2012, idiosyn-

cratic shocks contributed significantly to the French five-year yield spread,

and between 2012 and 2013 to the Spanish five-year yield spread. For the Ital-

ian five-year yield spread, however, the contribution of idiosyncratic shocks is

negligible.

From this findings follows that though the common risk factor played a

non-negligible role for yield spreads, accounting for a substantial increase in

yield spreads during for the financial crisis and the European debt crisis, the

most important drivers of yield spreads have been economic shocks. In partic-

ular shocks to the risk-aversion variable had a huge impact on yield spreads,

revealing the importance of measuring risk aversion in Euro area bond markets

adequately.

6 Conclusion

In this work, I evaluated the effects of economic fundamentals and a com-

mon risk factor on Euro area yield spreads. Specifically, using a multi-country

8However, while Dewachter et al. (2015) find that common non-fundamental shocks (i.e.
the part of the spread that cannot be explained by country-specific and euro area economic
fundamentals, and international influences), are in particular important for yield spreads
around the End of 2011, my findings show that the yield spreads of Italy and Spain before
2012 are largely explained by exogenous changes in risk aversion.
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macro-finance model of the term structure, where changes in risk-aversion are

captured by one single variable, I am interested in disentangling the effects

of changes in risk aversion and the common risk factor in Euro area yield

spreads. In contrast, to the existing literature on Euro area yield spreads, the

risk aversion measure used in this work is directly derived from the pricing

kernel. By restricting the prices of risk in the pricing kernel, one single vari-

able is identified to account for all time-variation in the prices of risk. This

risk aversion variable responds contemporaneously to distortions of the econ-

omy, but also exhibits an autonomous dynamic. The common risk factor is

identified as a common factor in Euro area yield spreads that is not related

to Euro area economic fundamentals, i.e. the part of the spread that cannot

be accounted for by common Euro area economic fundamentals. This com-

mon risk factor potentially captures contagion effects or redenomination risk.

Furthermore, exclusion restrictions on the state process, similar to those from

more conventional VARs, are entailed to identify structural shocks.

In line with the results of Di Cesare et al. (2013), De Santis (2015), or

Dewachter et al. (2015), a non-negligible part of the Euro area yield spreads

cannot be explained by economic fundamentals, but is accounted for by the

common risk factor. Although the contribution of the common risk factor has

been important for yield spreads, the substantial part of the yield spreads is

explained by economic fundamentals. Within in the group of economic factors,

shocks to the risk aversion variable are the most important driver of yield

spreads. This finding underlines the importance of measuring risk aversion in

Euro area bond markets adequately.

I like to emphasize two aspects of my findings. First, until the end of 2011,

shocks to the risk aversion variable are able to explain spreads very well. In

fact, for the Spanish and Italian five-year yield spreads with respect to the yield

of German government bonds of the same maturity, shocks to the risk aversion

variable explain large parts of the spreads between 2010 and the Beginning of

2012. Shocks to the risk aversion variable also explain a large part of the French

yield spread though their contribution for the spread is not as pronounced as

for the Spanish and the Italian yield spread. However, from 2012 onwards until

2014 the importance of shocks to the risk aversion variable for the yield spread

decreases, although they remain a dominant driver of yield spreads. Second,
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common risk factor shocks had, in particular, during the financial crisis and

the intensification of the European debt crisis in 2012, a positive contribution

to the yield spreads of France, Italy, and Spain. Moreover, the importance of

the common risk factor shocks increased from 2011 onwards until the end of

my sample in December 2014.
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A Appendix

A.1 Parameter Matrices

The matrix P0 is given by

P0 =



1 ρ̄y 0 0 ρ̄π 0 0 0 0 ρ̄v 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1



,

where ρ̄y = − (1− ρr) ρy, ρ̄π = − (1− ρr) ρπ and ρ̄v = − (1− ρr) ρv. The
matrix P1 is given by

P1 =



ρr 0 0 0 0 0 0 0 0 0 0 0 0

ρyr ρ1yy ρ2yy ρ3yy ρ1yπ ρ2yπ ρ3yπ 0 0 ρyv 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

ρπr ρ1πy ρ2πy ρ3πy ρ1ππ ρ2ππ ρ3ππ 0 0 ρπv 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ρπ∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 ρC 0 0 0 0

0 0 0 0 0 0 0 0 0 ρvv 0 0 0

0 0 0 0 0 0 0 0 0 0 ρfrd 0 0

0 0 0 0 0 0 0 0 0 0 0 ρesd 0

0 0 0 0 0 0 0 0 0 0 0 0 ρitd



,
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and the matrix Σ0 is given by

Σ0 =
[

Σ1
0 Σ2

0

]
,

where the sub-matrices Σ1
0 and Σ2

0 are given by

Σ1
0 =



σr 0 0 0 0 0 0 0

0 σy 0 0 σyπσπ 0 0 σyπ∗σπ∗

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 σπ 0 0 σππ∗σπ∗

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σπ∗

0 0 0 0 0 0 0 0

σvrσr σvyσy 0 0 σvπσπ 0 0 σvπ?σπ?

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


and

Σ2
0 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

σC 0 0 0 0

σvCσC σv σfrvdσ
fr
d σesvdσ

es
d σitvdσ

it
d

0 0 σfrd 0 0

0 0 0 σesd 0

0 0 0 0 σitd



.

Finally, the vector µ0 is given by
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µ0 =



(1− ρr)
(
gr − ρygy

)
−ρπrgr −

(
ρ1πy + ρ2πy + ρ3πy

)
gy

0

0(
1−

(
ρ1yy + ρ2yy + ρ3yy

))
gy − ρyrgr

0

0

(1− ρπ∗)π?

0

0

0

0

0



.

A.2 Pricing of Defaultable Bonds

Consider the time t price of a defaultable zero-coupon bond P̃ τ
j,t issued by the

sovereign of country j maturing in τ−periods that promises to pay a certain
amount at maturity. If no default has occurred until time t, the value of this

bond is given by the present value of the recovery payment in the case of

default between period t and t + 1 plus the present value of the bond if no

default occurred,

P̃ τ
j,t = Et

(
mt+1P̃

τ−1
j,t+1 | Dj,t+1 = 0

)
+ Et

(
mt+1P̃

τ−1
j,t+1 | Dj,t+1 = 1

)
(19)

where Dj,t is a default indicator variable taking the values 0 in the event of

no-default prior to time t and 1 in the event of default at/or prior to time

t. Duffi e and Singleton (1999) assume that the recovery value of the bond is

equal to a fraction ω of what the bond would have been worth in the event of

no-default (the so-called “recovery to market value assumption”).

Simplify the notation by defining the expected value of the bond in t + 1

in the case of no default by

Et

(
exp (−s̃j,t+1)mt+1P̃

τ−1
j,t+1

)
≡ Et

(
mt+1P̃

τ−1
j,t+1 | Dj,t+1 = 1

)
,

where s̃j,t+1 is the time t conditional default probability of issuer j that it
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survives until t + 1.9 Then, the present market value of the bond in the case

of default in period t+ 1 can be written by

Et

(
mt+1P̃

τ−1
j,t+1 | Dj,t+1 = 0

)
= Et

(
(1− exp (−s̃j,t+1))mt+1ωP̃

τ−1
j,t+1

)
,

and the present value of the bond is given by

P̃ τ
j,t = Et

(
(1− exp (−s̃j,t+1))mt+1ωP̃

τ−1
j,t+1 + exp (−s̃j,t+1)mt+1P̃

τ−1
j,t+1

)
= Et

(
(1− exp (−s̃j,t+1))ω + exp (−s̃j,t+1)mt+1P̃

τ−1
j,t+1

)
.

Finally, define the “recovery-adjusted default intensities”sj,t (see e.g. Monfort

and Renne, 2011) by

exp (−sj,t+1) ≡ (1− exp (−s̃j,t+1))ω + exp (−s̃j,t+1) ,

then the market value of the bond is given by

P̃ τ
j,t = Et

(
exp (−sj,t+1)mt+1P̃

τ−1
j,t+1

)
.

Note, that if the recovery rate is equal to zero (ω = 0), then the recovery-

adjusted default intensity sj,t would be equal to the default probability s̃j,t+1.

However, since the recovery rate is, in general, larger than zero, sj,t reflects the

adjusted default intensity of country j, rather than actual default intensities.

A.3 Pricing Matrices

Borgy et al. (2012) depart from the standard formulas to compute the matrices

Āi,τ and B̄i,τ in eq. (14), as provided by Ang and Piazzesi (2003) and suggest an

improved algorithm to compute the pricing matrices different countries with a

high data frequency. Instead of computing each of the pricing matrices Āi,τ and

B̄i,τ ∀τ = 1, ..., 60 recursively, the idea behind their algorithm is to compute

only selected nested bond maturities and to concatenate. As demonstrated

by Borgy et al. (2012), this algorithm reduces computation time significantly,

in particular for increasing numbers of yield curves and a high frequency of

data. Starting from the no-arbitrager condition, pricing of defaultable bonds

of a country i under the risk-neutral measure is given by

P̄ τ+1
i,t = EQ

t

(
exp

(
−rt − sit+1

)
P̄ τ
i,t+1

)
.

9Thus, the time t survival probability of an issuer j until time t + 1 is given by
Et (exp (−s̃j,t+1)) .
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By iterating, we get

P̄ τ+1
i,t = EQ

t

(
exp

(
−rt − sit+1...− rt+τ − sit+τ+1

))
.

Now remember that the short term interest rate rt and the default intensities

sit+1 both are affi ne in Xt,

rt = δ1Xt

and

sit+1 = ψ0 + ψi1Xt+1.

Moreover, it can be shown (see e.g. Gourieroux., 2003) that the pricing factors

Xt (under the risk-neutral measure) follow the autoregressive process

Xt = µ∗ + P ∗Xt−1 + Σε∗t ,

where ε∗t˜N (0, I) and

µ∗ = µ− Σλ0,

P ∗ = (P − ΣΛ1) .

Thus,

P̄ τ+1
i,t = EQ

t

(
exp

(
−δ1Xt −

(
ψi0 + ψi1Xt+1

)
− δ1Xt+1

−
(
ψi0 + ψi1Xt+2

)
...− δ1Xt+τ −

(
ψi0 + ψi1Xt+τ+1

) ))
= exp

(
−τψi0

)
EQ
t

(
exp

(
−δ1Xt − ψ̃

i

1 (Xt+1 + ...+Xt+τ )− ψi1Xt+τ+1

))
where ψ̃

i

1 is defined by

ψ̃
i

1 = ψi1 + δ1.

Now, define

F (i)t,t+τ ≡ −δ1Xt − ψ̃
i

1 (Xt+1 + ...+Xt+τ )− ψi1Xt+τ+1

and note that if Xt+1, ..., Xt+τ are Gaussian under the risk-neutral measure,

then also Ft,t+τ is Gaussian under the risk neutral measure. More precisely,

let F (i)t,t+τ be Gaussian distributed

F (i)t,t+τ ˜NQ
(
χi0,τ+1 + χi1,τ+1Xt,Ωi,t

)
,
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then, one can express the price of an defaultable government bond of country

i with maturity τ by P̄ τ
i,t = exp

(
Āi,τ+1 + B̄i,τ+1Xt

)
, where from

P̄ τ+1
i,t = exp

(
−τψi0

)
EQ
t

(
exp

(
F (i)t,t+τ+1

))
= exp

(
−τψi0 + χi0,τ+1 +

1

2
Ωi,t + χi1,τ+1Xt

)
the coeffi cients Āi,τ+1 and B̄i,τ+1 are given by

Āi,τ+1 = χi0,τ+1 +
1

2
Ωi,t, (20)

B̄i,τ+1 = χi1,τ+1. (21)

Finally, in order to calculate the coeffi cients Āi,τ+1 and B̄i,τ+1 it remains to

compute χi0,τ , χ1,τ and Ωi,t. However, since I employ a version of the model

without constant terms, it is only necessary to calculate χi1,τ+1. Computation

of the conditional expectation of F (i)t,t+τ is done by

EQ
t

(
F (i)t,t+τ

)
= EQ

t

(
−δ1Xt − ψ̃

i

1 [Xt+1 + ...+Xt+τ ]− ψi1Xt+τ+1

)
= EQ

t

 −ψ̃i1 [µ∗ + P ∗Xt + ...+
∑j−1

k=0 µ
∗ (P ∗)k + (P ∗)τ Xt

]
−δ1Xt − ψi1 (P ∗)τ+1Xt


+EQ

t

 −ψ̃i1 [Σεt + ...+
∑τ−1

j=0 (P ∗1 )j Σεt

]
−ψi1

∑τ
j=0 (P ∗1 )j Σεt


= −δ1Xt − ψ̃

i

1

[
τI + (τ − 1)P + (τ − 2)P 2 + ...+ P τ−1]µ∗

−ψ̃i1 [P ∗ + ...+ (P ∗)τ ]Xt − ψi1 (P ∗)τ+1Xt

= −ψ̃i1
[
P ∗ [(P ∗)τ − I] [I − (P ∗)]−1 − τI

]
[I − (P ∗)]−1 µ∗

−
[
δ1 + ψ̃

i

1P
∗ [(P ∗)τ − I] [I − (P ∗)]−1 + ψi1 (P ∗)τ+1

]
Xt

where I used in the second equality that EQ
t Xt+j = EQ

t

[∑j−1
k=0 µ

∗ (P ∗)k
]

+

EQ
t

[
(P ∗1 )j Xt +

∑j−1
k=0 (P ∗1 )k Σεt

]
and in the fourth equality that[

τI + (τ − 1)P + (τ − 2)P 2 + ...+ P τ−1]µ∗
=

[
P ∗ [(P ∗)τ − I] [I − (P ∗)]−1 − τI

]
[I − (P ∗)]−1 µ∗

and

P ∗ + ...+ (P ∗)τ = P ∗ [(P ∗)τ − I] [I − (P ∗)]−1 .
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Thus,

EQ
t

(
F (i)t,t+τ

)
= χi0,τ+1 + χi1,τ+1Xt

where

χi1,τ+1 = −
[
δ1 + ψ̃

i

1P
∗ [(P ∗)τ − I] [(P ∗)− I]−1 + ψi1 (P ∗)τ+1

]
, (22)

χi0,τ+1 = −ψ̃i1
[
P ∗ [(P ∗)τ − I] [I − (P ∗)]−1 − τI

]
[I − (P ∗)]−1 µ∗. (23)

Note that the terms P ∗ [(P ∗)τ − I] [(P ∗)− I]−1 and (P ∗)τ+1 in eq. (22) do not

depend on the debtor, thus, these terms do not need to be calculated for each

debtor separately.

A.4 Computation of the i+ 1-period return premium

The return premium is given by (for τ > i)

Et

(
hprx

(τ)
t+i+1

)
= Et

(
hpr

(τ)
t+i+1

)
− Et

(
y
(1)
t+i.
)
.

= Et

(
p
(τ−1)
t+i+1 − p

(τ)
t+i

)
− Et

(
y
(1)
t+i.
)

Plugging the log prices and the expected short rate into the equation above

yields

Et

(
hprx

(τ)
t+i+1

)
= Ā(τ−1)+B̄

′
(τ−1)EtXt+i+1−Ā(τ)−B̄′(τ)EtXt+i−δ′µ̄−δ′P i (Xt − µ̄)

Next, it is well known that the pricing matrices Āt and B̄τ can be expressed

recursively by

Āτ+1 = Āτ + B̄′τ (µ− Σλ0) +
1

2
B̄′τΣΣ′B̄τ − δ0, (24)

B̄′τ+1 = B̄′τ (P − Σλ1)− δ′1, (25)

with initial conditions for Āτ and B̄τ are given by Ā1 = δ0 = 0, and B̄′1 = −δ′1
(see, amongst many others, Ang and Piazzesi, 2003).

Using EtXt+j = µ̄+P j (Xt − µ̄), µ = (I − P ) µ̄, eq. (24), rearranging, and
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collecting terms yields

Et

(
hprx

(τ)
t+i+1

)
= −B̄′(τ−1) (µ− Σλ0)−

1

2
B̄′(τ−1)ΣΣ′B̄τ−1 + B̄′(τ−1)EtXt+i+1

−B̄′(τ)EtXt+i − δ′µ̄− δ′P i (Xt − µ̄)

= −B̄′(τ−1) (µ− Σλ0)−
1

2
B̄′(τ−1)ΣΣ′B̄τ−1 + B̄′(τ−1)µ̄

−B̄′(τ−1)P i+1µ̄− B̄′(τ)µ̄+ B̄′(τ)P
iµ̄− δ′µ̄+ δ′P iµ̄

+B̄′(τ−1)P
i+1Xt − B̄′(τ)P iXt − δ′P iXt

= c+
[
B̄′(τ−1)P

i+1 − B̄′(τ)P i − δ′1P i
]
Xt

where c is defined by

c ≡ −B̄′(τ−1) (µ− Σλ0)−
1

2
B̄′(τ−1)ΣΣ′B̄τ−1 − B̄′(τ−1)P i+1µ̄

+B̄′(τ−1)µ̄− B̄′(τ)µ̄− δ′µ̄+ δ′P iµ̄+ B̄′(τ)P
iµ̄

= B̄′(τ−1)Σλ0 −
1

2
B̄′(τ−1)ΣΣ′B̄′(τ−1)

+
[
B̄′(τ−1)

(
P − P i+1

)
− δ′1 + δ′1P

i − B̄′(τ) + B̄′(τ)P
i
]
µ̄

Now use eq. (25) to see that

c = B̄′(τ−1)Σλ0 −
1

2
B̄′τ−1ΣΣ′B̄(τ−1) +

[
B̄′(τ−1)

(
P − P i+1

)
− δ′1 + δ′1P

i
]
µ̄

−
[[
B̄′(τ−1) (P − Σλ1)− δ′1

]
+
[
B̄′(τ−1) (P − Σλ1)− δ′1

]
P
]i
µ̄

= B̄′(τ−1)Σ
[
λ0 + λ1

(
I − P i

)
µ̄
]
− 1

2
B̄′(τ−1)ΣΣ′B̄(τ−1).

and

Et

(
hprx

(τ)
t+i+1

)
= c+ B̄τ−1Σλ1P

iXt.

Hence,

Et

(
hprx

(τ)
t+i+1

)
= B̄′τ−1Σ

[
λ0 + λ1

[(
I − P i

)
µ̄+ P iXt

]]
− 1

2
B̄′τ−1ΣΣ′B̄τ−1

Note that the i+1-period return premium depends on the state of the economy

only due to the term λ1P
iXt. As long as not only the elements in the last

columns of P i but also other elements in the columns in P i are different from

zero and P i 6= I, all variation in the variables in Xt affect Et
(
hprx

(τ)
t+i+1

)
. For

i = 0 follows P i = I so that the 1-period return premium reads

Et

(
hprx

(τ)
t+1

)
= B̄′τ−1Σλ0 −

1

2
B̄′τ−1ΣΣ′B̄′τ−1 + B̄τ−1Σλ1Xt

= B̄′τ−1Σ [λ0 + λ1Xt]−
1

2
B̄′τ−1ΣΣ′B̄′τ−1.
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Due to the restricted form of λ1 the only source of variation in Et
(
hprx

(τ)
t+1

)
is the variable that is ordered at the last position in Xt.

A.5 Zero-Coupon Yield Data

The model uses yields data of zero-coupon government bonds from four Eu-

ropean countries (France, Germany, Italy, and Spain). However, usually most

bond bear indeed coupon payments, in particular, those issued with a maturity

of more than one year. Thus, a method to extract zero coupon rates from the

prices of coupon-bearing bonds is needed. In order to construct zero-coupon

bond data different methods are in used in practice (BIS, 2005), which can be

broadly categorized into parametric and spline-based approaches.

Following Gürkaynak, Sack, and Wright (2005), I will use a parametric

model. The basic idea of parametric models is to specify a single function

defined over the entire maturity domain. In particular, following Borgy et al.

(2012), I choose the Nelson-Siegel model as proposed by Nelson and Siegel

(1987). In the following, I will briefly discuss the Nelson-Siegel model and the

estimation approach.

The Nelson-Siegel function for the instantaneous forward rates f at a given

point in time t is defined by

f τt (θ) = β0 + β1 exp

(
− τ

τ 1

)
+ β2

τ

τ 1
exp

(
− τ

τ 1

)
,

where τ denotes the time to maturity, and θ =
(
β0, β1, βt,2,τ t

)′
denotes the

parameters of the Nelson-Siegel Function. It can be shown that to the corre-

sponding spot rate function for a given point in time t is given by

yτt (θ) = β0 + (β1 + β2)

(
1− exp

(
− τ

τ 1

))
− β2

(
− τ

τ 1

)
n

where β0 can be interpreted as the instantaneous asymptotic rate and the term

(β0 + β1) as the asymptotic spot rate.

Consider one particular coupon bearing bond at time t that matures in

τ periods. The present value of a coupon-bearing bond is calculated as the

discounted sum of coupon payments and the bond’s repayment on maturity.

Thus, the price of a coupon-bearing bond will be equal to

Pt,τ =

τ∑
i=1

dt,iC + dt,τV, (26)
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where C denotes the coupon payment, V is the bond’s repayment on maturity,

and the discount function which gives the price of a zero-coupon bond paying

one Euro at maturity is defined by

dt,i = exp
(
−yit (θ) i

)
.

For given parameters from the discount function together with eq. (26) model

based bond prices can be computed. Hence, in the estimation process, the

parameters of the Nelson-Siegel spot rate function are chosen as to minimize

the distance between the observed bond prices at time t and the calculated

bond prices. Specifically, the minimization problem is given by

θ̂t = arg min
θ

N∑
j=1

wj

(
P j
t − P̂ j

t

)2
where N is the total number of observed dirty bond prices at date t, P j

t denotes

the observed dirty prices of coupon bonds with different maturity at time t,

P̂ j
t denotes the model-implied prices of coupon bonds, and wj is a weighting

factor. Another approach would seek to minimize the sum of squared yield

errors (as opposed to minimizing the sum of squared pricing errors). However,

minimizing the sum of yield errors is computationally more time consuming

since it requires to solve additionally for the yields after calculating bond prices.

As noted by Svensson (1995) minimizing the squared sum of pricing errors

(instead of minimizing the sum of squared yield errors) leads to an unsatis-

factory fit of yields of bonds relatively short residual maturity.10 In order to

correct for this shortcoming, different weights are chosen for different residual

maturities. In particular, I set the optimization weight, following the practice

of e.g. the Belgian central bank or the Spanish central bank (BIS, 2005) equal

to the inverse of the modified duration times the observed dirty price.

The data for the prices of coupon government bonds is taken from Datas-

tream. In order to calculate the bonds’cash flows accrued interest and the

respective day-count conventions are taken into account. In the spirit Gürkay-

nak et al. (2005) and following the practice of the ECB (ECB, 2008) different

10Intuitively, the smaller (modified) duration (which is the elasticity of bond prices to
changes in yield to maturity changes) of bonds with shorter/longer residual maturities makes
their prices more/less sensitive to yield changes. Choosing equal weights would lead to an
overfitting of the long-end of the yield curve at the expense of the fit of the short-end of the
yield curve.
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filters on the bond date are applied in order to detect and remove outliers that

would bias the estimation results. In particular, I exclude all bonds from the

estimation that are issued before 1990, and prices of bonds with a residual

maturity less than 1 month. In order to prevent noise from the yield estima-

tion outliers are traced separately for a number of residual maturity brackets.

Specifically, bond yields that deviate more than two standard deviations from

the average yield in this bracket are considered as outliers and excluded. The

procedure is iterated in order to account for potentially large outliers in the

first round that would distort the average yield and the standard deviation.

For the size of each maturity bracket, I follow the specification of the ECB.

Finally, due to the absence of information on the trading volume of bonds,

for each point in time at which the estimation has been conducted the yields

are checked manually. Since the trading volume of bonds usually decreases

considerably for shorter maturities, this may lead to large outliers at the short

end of the yield curve. Moreover, in some maturity brackets may not be

enough bond yields to apply the outliers removal algorithm. This approach

helps to eliminate outliers that would otherwise result into unrealistic high or

low short-term rates (e.g. short term rates above 50 percentage points).

A.6 The Likelihood Function

The likelihood function reads

L (Z|θ) =
T∏
t=1

(2π)−
T
2
[
det
(
Rt|t−1

)]− 1
2

× exp

(
−1

2

(
Zt − UXt|t−1

)′ (
Rt|r−1

)−1 (
Zt − UXt|t−1

))
.

whereRt|t−1 denotes the conditional variance,

Rt|t−1 ≡ V ar (Zt|Zt−1, θ) = UΞt|t−1U
′ + V V ′

Xt|t−1 denotes the one step ahead forecast,

Xt|t−1 ≡ E [Xt|Zt−1, θ] = PXt−1|t−1

with

Xt|t ≡ Xt|t−1 + Ξt|t−1U
(
U ′Ξt|t−1U + V V ′

)−1 (
Zt − UXt|t−1

)
,
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and Ξt+1|t denotes the mean squared error of the forecasts

Ξt+1|t ≡ E
[(
Xt+1 −Xt|t

) (
Xt+1 −Xt+1|t

)′]
= P

(
Ξt|t−1 − Ξt|t−1U

(
U ′Ξt|t−1U + V V ′

)−1
U ′Ξt|t−1

)
P ′ + ΣΣ′.

The Kalman filter is implemented by iterating on Xt|t−1 andΞt|t−1for given

initial values Ξ1|0 and X1|t.
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Table 1: Summary of the prior distribution

Taylor Rule and Persistence Parameter
Param. type mean std. dev. Parameter type mean std. dev.
ρr B 0.80 0.050 ρ1yπ N 0.00 0.150
ρπ G 1.50 0.250 ρ2yπ N 0.00 0.075
ρy G 0.5 0.150 ρ3yπ N 0.00 0.050
ρv B 0.00 0.250 ρ1yy N 0.90 0.150
ρπr N -0.20 0.150 ρ2yy N 0.00 0.075
ρ1ππ N 0.90 0.150 ρ3yy N 0.00 0.050
ρ2ππ N 0.00 0.075 ρid B 0.90 0.100
ρ3ππ N 0.00 0.050 ρC B 0.90 0.100
ρ1πy N 0.00 0.150 ρπ∗ B 0.90 0.100
ρ2πy N 0.00 0.075 ρyv N 0.00 0.250
ρ3πy N 0.00 0.050 ρπv N 0.00 0.250
ρyr N -0.20 0.150

Volatility and co-movement Parameters
Param. type mean std. dev. Parameter type mean std. dev.
σvr N 0.00 2.00 σy IG 0.01 0.200
σvπ N 0.00 2.00 σπ∗ IG 0.01 0.200
σvy N 0.00 2.00 σfrd IG 0.01 0.200
σvπ∗ N 0.00 2.00 σesd IG 0.01 0.200
σvC N 0.00 2.00 σitd IG 0.01 0.200
σfrvd N 0.00 2.00 σ∗12 IG 0.1 1.000
σesvd N 0.00 2.00 σ∗24 IG 0.1 1.000
σitvd N 0.00 2.00 σ∗36 IG 0.1 1.000
σyπ N 0.00 2.00 σ∗48 IG 0.1 1.000
σyτ N 0.00 2.00 σ∗60 IG 0.1 1.000
σπτ N 0.00 2.00 σi∗12 IG 0.1 1.000
σr IG 0.01 0.20 σi∗60 IG 0.1 1.000
σπ IG 0.01 0.20

Prices of Risk and Spread Parameters
Param. type mean std. dev. Parameter type mean std. dev.
ψid N 0.00 2.00 Λr N 0.00 25.00
ψigy N 0.00 2.00 Λπ∗ N 0.00 25.00
ψiπ N 0.00 2.00 ΛC N 0.00 25.00
ψir N 0.00 2.00 Λπ N 0.00 25.00
ψiv N 0.00 2.00 Λy N 0.00 25.00
ψiC N 0.00 2.00 Λd,i N 0.00 25.00
ψiπ∗ N 0.00 2.00

Summary of the prior distributions of the Parameters. Type of the dis-
tribution is either N , B, G, or IG where N denotes the Normal distri-
bution, B the Beta distribution, G the Gamma distribution, and IG the
Inverse-Gamma distribution. The prior distribution holds for all countries
i, ∀i = fr, es, it. 62



Table 2: Results: Posterior Distribution (Part I)

Param. Prior Mean Post. Mode Post. Mean 90% HPD Interval Prior
ρr 0.800 0.8055 0.8188 0.7838 0.8525 B
ρπ 1.500 1.2295 1.3197 0.9305 1.7182 G
ρy 0.500 0.1026 0.1198 0.0977 0.1416 G
ρv 0.000 -0.1871 -0.2565 -0.3361 -0.1671 N
ρvv 0.900 0.9876 0.9767 0.9572 0.9981 B
ρπ∗ 0.900 0.9847 0.9849 0.9823 0.9872 B
ρC 0.900 0.9990 0.9987 0.9977 0.9997 B
ρfrd 0.900 0.9951 0.9899 0.9805 0.9999 B
ρesd 0.900 0.9938 0.9907 0.9828 0.9997 B
ρitd 0.900 0.9967 0.9916 0.9839 0.9999 B
ρπv 0.000 0.0094 0.0141 0.0086 0.0202 N
ρyv 0.000 -0.0280 -0.0354 -0.0688 -0.0060 N
ρπr -0.200 -0.0222 -0.0081 -0.0277 0.0109 N
ρ1ππ 0.900 0.8738 0.8588 0.7818 0.9340 N
ρ2ππ 0.000 -0.0302 -0.0354 -0.1142 0.0462 N
ρ3ππ 0.000 -0.0013 0.0106 -0.0274 0.0480 N
ρ1πy 0.000 0.0041 0.0078 -0.0105 0.0271 N
ρ2πy 0.000 -0.0159 -0.0209 -0.0438 0.0003 N
ρ3πy 0.000 0.0160 0.0142 0.0052 0.0248 N
ρyr -0.200 -0.5834 -0.6308 -0.7576 -0.4989 N
ρ1yπ 0.000 -0.1792 -0.1786 -0.3785 0.0310 N
ρ2yπ 0.000 -0.0504 -0.0446 -0.1597 0.0658 N
ρ3yπ 0.000 -0.0169 -0.0191 -0.1009 0.0632 N
ρ1yy 0.900 1.0921 1.0561 0.9628 1.1373 N
ρ2yy 0.000 0.0760 0.0686 -0.0147 0.1520 N
ρ3yy 0.000 -0.1232 -0.0831 -0.1537 -0.0121 N
Summary of the posterior distributions of the Parameters. Type of the
distribution is either N , B, G, or IG where N denotes the Normal distri-
bution, B the Beta distribution, G the Gamma distribution, and IG the
Inverse-Gamma distribution.
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Table 3: Results: Posterior Distribution (Part II)

Param. Prior Mean Post. Mode Post. Mean 90% HPD Interval Prior
ψfrd 0.000 0.0063 0.0046 0.0024 0.0067 N
ψesd 0.000 0.0118 0.0110 0.0074 0.0145 N
ψitd 0.000 0.0312 0.0282 0.0145 0.0418 N
ψfrC 0.000 0.1300 0.1050 0.0789 0.1284 N
ψesC 0.000 0.6110 0.5188 0.3963 0.6299 N
ψitC 0.000 0.7499 0.6337 0.4945 0.7637 N
ψfrv 0.000 0.0373 0.0297 0.0158 0.0423 N
ψesv 0.000 0.1986 0.1779 0.1345 0.2220 N
ψitv 0.000 0.2590 0.2386 0.1882 0.2871 N
ψfrr 0.000 -0.1345 -0.1354 -0.1918 -0.0731 N
ψesr 0.000 -0.7454 -0.7367 -0.9402 -0.4979 N
ψitr 0.000 -0.8329 -0.8058 -1.0896 -0.5077 N
ψfrgy 0.000 0.0461 0.0390 0.0247 0.0526 N
ψesgy 0.000 0.2257 0.2082 0.1478 0.2729 N
ψitgy 0.000 0.2630 0.2370 0.1553 0.3152 N
ψfrπ 0.000 -0.2272 -0.2062 -0.3041 -0.0984 N
ψesπ 0.000 -0.9888 -0.8829 -1.2403 -0.4902 N
ψitπ 0.000 -1.6730 -1.5219 -2.0060 -1.0702 N
ψfrπ∗ 0.000 0.1314 0.1123 0.0631 0.1611 N
ψesπ∗ 0.000 0.5193 0.4525 0.2188 0.6706 N
ψitπ∗ 0.000 0.6256 0.5334 0.2421 0.8267 N
Λr 0.000 -1.2197 -0.5040 -1.8484 0.9038 N
Λπ 0.000 -2.3014 -1.7231 -3.3438 -0.0038 N
Λy 0.000 -4.4859 -3.3326 -6.9010 -0.0715 N
Λπ∗ 0.000 2.7985 1.6422 -0.4218 3.7850 N
ΛC 0.000 0.1624 -1.1453 -2.3036 0.0408 N
Λd,fr 0.000 -5.2790 -16.2097 -25.1001 -6.7510 N
Λd,es 0.000 3.1854 1.6828 -3.3680 6.7816 N
Λd,it 0.000 -0.7113 5.7761 -0.2233 11.7661 N
Summary of the posterior distributions of the Parameters. Type of the
distribution is either N , B, G, or IG where N denotes the Normal distri-
bution, B the Beta distribution, G the Gamma distribution, and IG the
Inverse-Gamma distribution.
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Table 4: Results: Posterior Distribution (Part III)

Param. Prior Mean Post. Mode Post. Mean 90% HPD Interval Prior
σr 0.010 0.0027 0.0027 0.0025 0.0030 IG
σπ 0.010 0.0021 0.0022 0.0020 0.0024 IG
σy 0.010 0.0104 0.0115 0.0100 0.0129 IG
σπ∗ 0.010 0.0022 0.0021 0.0019 0.0023 IG
σfrd 0.010 0.0111 0.0110 0.0100 0.0121 IG
σesd 0.010 0.0058 0.0059 0.0054 0.0064 IG
σitd 0.010 0.0198 0.0199 0.0181 0.0215 IG
σππ∗ 0.100 -0.3849 -0.4003 -0.5581 -0.2461 N
σπy 0.000 2.7227 2.4750 1.5677 3.2642 N
σyπ∗ 0.000 -2.6588 -2.0921 -3.0013 -1.0745 N
σvr 0.000 1.3138 1.6533 0.6604 2.6566 N
σvπ 0.000 4.2305 4.4241 3.1736 5.7097 N
σvy 0.000 -0.7412 -0.4990 -0.8098 -0.1899 N
σvπ∗ 0.000 -2.7101 -2.9299 -4.1029 -1.7058 N
σvC 0.000 -2.1047 -1.6241 -2.1521 -1.0935 N
σfrvd 0.000 -0.0895 -0.0895 -0.5162 0.4048 N
σesvd 0.000 -0.1842 -0.2508 -0.6153 0.1196 N
σitvd 0.000 -1.0895 -0.2804 -2.3436 2.1357 N
σ∗12 0.100 0.0784 0.0793 0.0715 0.0876 IG
σ∗24 0.100 0.0192 0.0199 0.0157 0.0241 IG
σ∗36 0.100 0.0349 0.0353 0.0318 0.0386 IG
σ∗48 0.100 0.0170 0.0174 0.0140 0.0204 IG
σ∗60 0.100 0.0935 0.0954 0.0864 0.1048 IG
σfr∗12 0.100 1.1125 1.1305 1.0213 1.2519 IG
σfr∗60 0.100 0.8722 0.8996 0.8075 0.9933 IG
σes∗12 0.100 2.6575 2.7167 2.4883 2.9544 IG
σes∗60 0.100 3.3813 3.4152 3.1168 3.7130 IG
σit∗12 0.100 2.8446 2.8613 2.6307 3.0933 IG
σit∗60 0.100 0.0459 0.0881 0.0229 0.1591 IG
Summary of the posterior distributions of the Parameters. Type of the
distribution is either N , B, G, or IG where N denotes the Normal distri-
bution, B the Beta distribution, G the Gamma distribution, and IG the
Inverse-Gamma distribution.
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Table 5: Variance Decomposition

1-year yield spread 5-year yield spread
France
h Eco RA Idio C Eco RA Idio C
3 months 12.90 34.57 34.22 18.31 11.89 56.39 25.69 6.03
1 year 12.26 43.11 21.53 23.10 13.86 62.04 14.87 9.23
3 years 11.85 39.19 7.97 40.99 21.14 46.17 04.86 27.83
5 years 13.19 25.46 04.05 57.30 21.03 30.43 02.52 46.02
10 years 9.63 11.40 01.53 77.44 14.10 14.13 00.99 70.78
Spain
h Eco RA Idio C Eco RA Idio C
3 months 20.82 60.48 11.55 7.15 16.13 64.90 17.38 1.59
1 year 17.97 67.56 6.49 7.98 18.50 68.60 09.68 3.22
3 years 19.25 55.97 02.22 22.56 26.38 51.38 03.21 19.03
5 years 20.34 36.52 01.13 42.01 25.56 34.92 01.72 37.80
10 years 13.90 16.37 00.43 69.30 16.70 16.63 00.69 65.98
Italy
h Eco RA Idio C Eco RA Idio C
3 months 13.25 61.64 10.08 15.03 13.00 75.68 00.00 11.32
1 year 11.40 63.92 05.47 19.21 14.25 70.31 00.00 15.44
3 years 13.10 45.85 01.70 39.35 20.23 43.68 00.00 36.09
5 years 14.38 28.30 00.83 56.49 19.20 27.67 00.00 53.13
10 years 10.10 12.39 00.31 77.20 12.42 12.64 00.00 74.94

Eco, RA, Idio, and C denote the contribution to the FEVD of the economic
shocks (excluding risk aversion shocks) , risk aversion shocks, yield errors
and the common risk factor, respectively
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Figure 1: One-year bond yields of Euro area sovereigns
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Figure 2: Five-year bond yields of Euro area sovereigns
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Figure 3: Estimated time path of the common risk factor

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 20152015
­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

Common risk factor C

68



Figure 4: IRFs to a one-standard-deviation risk aversion shock

yfr
12 ­ y ger12

10 20 30 40 50 60

0.01

0.02

0.03

0.04

0.05

yes12 ­ y ger12

10 20 30 40 50 60

0.05

0.1

0.15

0.2

0.25

0.3

yit
12 ­ y ger12

10 20 30 40 50 60

0.1

0.2

0.3

yfr
60 ­ y ger60

10 20 30 40 50 60

0.01

0.02

0.03

0.04

0.05

0.06

yes60 ­ y ger60

10 20 30 40 50 60

0.05

0.1

0.15

0.2

0.25

0.3

yit
60 ­ y ger60

10 20 30 40 50 60

0.1

0.2

0.3

v

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

All yield spreads are calculated with respect to the yield of German govern-
ment bonds of the same maturity. The yield spreads are shown in annualized
percentage points. The grey shaded areas cover the 90 percent HPD interval.
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All yield spreads are calculated with respect to the yield of German govern-
ment bonds of the same maturity. The yield spreads are shown in annualized
percentage points. The grey shaded areas cover the 90 percent HPD interval.
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Figure 6: IRFs to a one-standard-deviation shock to dest
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All yield spreads are calculated with respect to the yield of German govern-
ment bonds of the same maturity. The yield spreads are shown in annualized
percentage points. The grey shaded areas cover the 90 percent HPD interval.

Figure 7: IRFs to a one-standard-deviation shock to ditt
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All yield spreads are calculated with respect to the yield of German govern-
ment bonds of the same maturity. The yield spreads are shown in annualized
percentage points. The grey shaded areas cover the 90 percent HPD interval.
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Figure 8: IRFs to a one-standard-deviation common risk factor shock
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All yield spreads are calculated with respect to the yield of German govern-
ment bonds of the same maturity. The yield spreads are shown in annualized
percentage points. The grey shaded areas cover the 90 percent HPD interval.
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Figure 9: Historical Shock Decomposition of the five-year yield spread of
France
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The spread is shown in annualized percentage points. The figure presents the
historical decomposition of the five-year French yield spread with respect to
Germany. Economic factors contain country-specific and Euro area wide eco-
nomic fundamentals (including risk aversion shocks); C denotes the common
risk factor shock; idiosyncratic shocks are given by the yield errors; the last
row depicts the risk aversion shocks separately from the other economic factors.
The initial values are not displayed.
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Figure 10: Historical Shock Decomposition of the five-year yield spread of
Spain
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The spread is shown in annualized percentage points. The figure presents the
historical decomposition of the five-year Spanish yield spread with respect to
Germany. Economic factors contain country-specific and Euro area wide eco-
nomic fundamentals (including risk aversion shocks); C denotes the common
risk factor shock; idiosyncratic shocks are given by the yield errors; the last
row depicts the risk aversion shocks separately from the other economic factors.
The initial values are not displayed.
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Figure 11: Historical Shock Decomposition of the five-year yield spread of Italy
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The spread is shown in annualized percentage points. The figure presents the
historical decomposition of the five-year Italian yield spread with respect to
Germany. Economic factors contain country-specific and Euro area wide eco-
nomic fundamentals (including risk aversion shocks); C denotes the common
risk factor shock; idiosyncratic shocks are given by the yield errors; the last
row depicts the risk aversion shocks separately from the other economic factors.
The initial values are not displayed.
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