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We present and discuss a stochastic model describing the wear process of cylin-
der liners in a marine diesel engine. The model is based on a stochastic differential
equation and Bayesian inference is illustrated. Corrosive action and measurement
error, both quite negligible, are modeled with a Wiener process whereas a jump
process is used to describe the contribution of soot particles to the wear process.
The model can be used to forecast the wear process and, consequently, plan condi-
tion based maintenance activities. In the paper, we provide a critical illustration
of the mathematical and computational aspects of the model. We propose a strat-
egy that, implemented for simulated and real data, allows for stable parameter
estimation and forecasts.

Keywords: Bayesian inference; Condition based maintenance; Markov chain Monte Carlo;
Stochastic differential equations.

1 Introduction

Data from a leading Italian ship company are available about the wear process of liners
protecting cylinders in marine diesel engines; the thickness of the liner walls is 100 millimeters.
The wear process is kept under control through measurements performed using a micrometer
in a place, called Top Dead Center, in the top region of the cylinder liner where the maximum
wear usually occurs because of high thermomechanical and tribological stresses. Excessively
worn cylinder liners are among the major causes of failures of heavy-duty diesel engines; in
fact, almost all failures occur once the wear exceeds a specified threshold. The wear is mostly
caused by abrasive particles (soot) on the piston surface, produced by the combustion of
heavy fuels and oil degradation. Such wear occurs when the lubricant film thickness is less
than the soot particle size, so that the soot is involved in a three-body abrasive action with
the piston surface on one side and the liner metal surface on the other. The wear occurs
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because the soot particles are harder than the corresponding engine parts. In addition to the
abrasive wear, there is a corrosive one due to sulphuric acid, nitrous/nitric acids and water.

The paper presents a stochastic model of the wear process, describing the time evolution
of the thickness of the liner at the Top Dead Center. The model is based on a stochastic
differential equation which accounts for both abrupt changes in thickness due to abrasive wear
and minor ones due to corrosive wear; the former will be considered through a jump process
whereas the latter will be modeled with a Wiener process, accounting also for measurement
errors.

The major interest for the ship company is in performing a condition based maintenance,
aimed to replace liners before the wear exceeds the threshold (4 millimeters) for which the
warranty clauses make the ship owner responsible, in lieu of the liner manufacturer, for the
costs due to cylinder failures. Other relevant economic aspects are involved, like the costs
of stopping ships for inspection and changing liners (approximately 10 meters high). It is
therefore important to find a procedure which reduces the number of inspections and avoids
early replacements of liners. The stochastic model can be useful in deciding to inspect the
ship to check the actual wear when the predicted probability of exceeding the threshold wear
at a future time t will be above a fixed value.

Inference on the jump diffusion process will be performed using a Bayesian approach. Full
details are provided on the choice of the prior distributions and the Markov chain Monte Carlo
(MCMC) scheme which allows computation of posterior quantities of interest and forecasts.
In Section 2 we review some of the models used in literature to analyze the data, whereas
we discuss the assumptions behind the proposed model in Section 3 and perform a Bayesian
analysis in Section 4. Data are analyzed in Section 5 where issues about the choice of prior
distributions are discussed and presented also through simulated data. Final remarks and
pointers for future research are finally presented in Section 6.

2 Previous works

Bocchetti et al. (2006) consider two possible causes of failures in the cylinder liners: the
internal wear and the external thermal crack. The wear is caused by the high quantity of
abrasive particles on the piston surface, generated by soot due to the combustion of heavy
fuels and oil degradation. The thermal crack of the liner is caused by fatigue cracking due to
repeated thermal shocks. A thermal shock is caused by abrupt changes in the temperature
of the cooling fluid used for the external surface of the liner and is often aggravated by an
inadequate chemical treatment of the cooling water. These changes occur mainly during
the maneuver operations when it is hard to keep constant the cooling temperature. As a
consequence of such shocks, a small crack can arise in the external surface of the liner and
then, as the age increases, it propagates towards the inside. Bocchetti et al. (2006) consider
a competing risk model to describe the failure process of a cylinder liner under the realistic
hypotheses that (a) the liner fails when the first of the competing failure mechanisms reaches
a failure state, and (b) the failure mechanisms proceed independently of each other. The wear
process is described through a stochastic process for which the passage time to a boundary
(e.g. the warranty wear limit) is considered as a degradation failure, whereas the failure time
due to the thermal crack is modeled via a Weibull distribution. Their study showed that the
thermal crack is the dominant failure mode during the first 5000 hours, whereas the wear
mechanism dominates from there onward. As a consequence, only wear mechanism is to be
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considered when ships are operated for a significantly longer time, as in our case.
In Giorgio et al. (2007) the wearing process of a cylinder liner is described by means of a

cumulative damage model, where the wearing process is depicted as the accumulation of suc-
cessive (randomly occurring) isolated injuries. This model is subsequently used for estimating
liner reliability (i.e. the probability that the wear will exceed a prefixed threshold), and for
developing a condition-based maintenance strategy for the cylinder liners. In particular, they
assume that the wear of a cylinder liner at a given age t is the accumulation of isolated injuries
(elementary wear) of equal magnitude occurring up to age t. Furthermore, they suppose that
the wearing events occur at random time instants, and the probability that an injury occurs
in a given time interval is independent of the number of injuries already accumulated. There-
fore, wearing events are described by means of a nonhomogeneous Poisson process, namely a
Power Law process.

Giorgio et al. (2010) introduced a time and state space discretization to obtain the like-
lihood function of the observed data, considering transition probabilities between process
states dependent on the current system state. A step further is taken in Giorgio et al. (2011)
where the transition probabilities depend not only on the current system state but also on
its age. The same authors propose a more sophisticated model based on transformed gamma
processes in Giorgio et al. (2015a) and apply it in Giorgio et al. (2015b) where they formalize
and model the optimal maintenance policy in a Decision Analysis framework.

Finally, Moraes et al. (2014) considered a multiscale indirect inference methodology for
state-dependent Markovian pure jump processes.

The current research is inspired by the work by D’Ippoliti and Ruggeri (2009) who proposed
a slightly more complex model but were unable to cope with some computational issues and
show the utility of the approach. They considered a jump diffusion process where the Wiener
process was mimicking the corrosive wear whereas the abrasive wear was modeled by the
jump process. The proposed MCMC algorithm was strongly dependent on the assumption of
knowing the number of jumps and their individual sizes between two observed measurements,
treating the former as if they were parameters and were generated at each step of the MCMC
algorithm. The model had identifiability problems which are addressed in the current paper,
first of all considering the jump size as fixed, although unknown, and then developing a
strategy based on MCMC chains obtained from many starting points and the removal of
those leading to unrealistic values of the parameters.

3 Assumptions

Empirical studies of the wear and the physical properties of the liner lead previous studies,
e.g., Bocchetti et al. (2006), to observe that the wear increment decreases as a function of
wear. As a consequence, the thickness decrement of the cylinder liner also decreases along
with thickness. From a physical viewpoint it is known that the background activity of tiny
particles leads to almost negligible thickness decrements, whereas large soot particles are
responsible for the most relevant thickness decrements. The proposed model stems from such
physical properties.

From a mathematical viewpoint, we consider a stochastic differential equation (SDE) dXt =
f(Xt) to relate the evolution of the thickness Xt over time and its influence on the thickness
decrement dXt. Furthermore, additive accumulation of wear as a sequence of small normally
distributed effects, due, e.g., to the tiny particles or corrosion, makes reasonable the choice
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of a Brownian motion with drift, where the latter is the mean value of the process. Finally,
we consider thickness decrement jumps due, possibly, to large particles, i.e. the soot, and we
model them using a jump process in the SDE.

Based on the latter assumptions on the model, we suppose that the evolution of the thick-
ness process Xt can be described by

dXt = Xt{φdt+ γ dWt + θ dNt}, (1)

with some constant initial value x0 and the assumptions γ > 0 and φ, θ < 0. Therefore
the decrease in thickness is determined by the negative values of the drift φ and the jump
process which counts the number of jumps of negative size θ, whereas γ should be quite
small to avoid unrealistic increments of thickness but, at the same time, take in account both
corrosive actions and measurement errors.

For θ > −1 the SDE in (1) has a unique strong solution given by

Xt = x0 · exp

(
φt− γ2

2
t+ γWt + log(1 + θ)Nt

)
. (2)

This can be seen by direct calculation using Itô’s formula for noncontinuous semimartingales
and the result is employed, for example, in Øksendal and Sulem (2005), p. 7 in example 1.15.
As a consequence, it is important that the jump size is constrained to −1 < θ < 0 so that a
solution of the SDE exists and thickness will decrease over time.

A formula similar to (2) was obtained by D’Ippoliti and Ruggeri about wear at time t
during their previously mentioned research. The problem they faced was that the solution at
any time t was proportional to the initial wear, i.e. zero. Therefore D’Ippoliti and Ruggeri
(2009) considered thickness instead of wear in their model and we are going to do the same
in the current paper, although we will sometimes refer to wear in the text.

4 Model and Bayesian analysis

We suppose the thickness of a liner is measured at times t1 < . . . < tn, providing the obser-
vations Xt1 , . . . , Xtn . As a consequence of (2), we have that

log(Xti)|Nti , φ, γ
2, θ ∼ N (log(x0) + (φ− γ2

2
)ti + log(1 + θ)Nti , γ

2ti), (3)

for i = 1, . . . , n.
We propose a Bayesian approach where the prior distributions on the parameters in (3) are

given by

Nti ∼ P(λti), i = 1, ..., n (4)

φ ∼ N (mφ, vφ)

γ2 ∼ IG(aγ , bγ)

θ̃ := log(1 + θ) ∼ N (mθ, vθ)

λ ∼ G(aλ, bλ).

Here P,N , IG and G denote Poisson, normal, inverse gamma and gamma distributions,
respectively.
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It is worth mentioning that Nti , the number of jumps up to time ti, for i = 1, . . . , n, is
unobserved and treated as a parameter and, accordingly, generated at each step of the MCMC
algorithm. The presence of such parameter will make the computations more complex, as well
as posing an identifiability problem that we will address in the next sections.

For the partial data vector η = (φ, θ̃, γ2), (3) leads to a multivariate normal likelihood for
the logarithms

(log(Xt1), ..., log(Xtn))| η,Nt1 , ..., Ntn ∼ N (µn(η), γ2Tn),

where µn(η) = log(x0) · 1n + (φ− γ2

2 ) · (t1, ..., tn) + θ̃ · (Nt1 , ..., Ntn), Tn = (min(ti, tj))i,j=1,...,n

and 1n = (1, ..., 1) ∈ Rn. In the following, we denote with t(n) the vector (t1, ..., tn), with
log(X)(n) the vector (log(Xt1), ..., log(Xtn)), and with N(n) the vector (Nt1 , ..., Ntn).

Earlier we mentioned that it is important to have −1 < θ < 0 but the choice of a normal
prior in (4) for θ̃ := log(1 + θ) seems to be in contradiction with such request since it allows
for positive values of θ̃. Like in other papers, here we exploit the ease of computation induced
by the normal distribution and limit the corresponding drawback by an appropriate choice of
its parameters so that the probability of positive values is negligible.

Estimation of φ and θ̃ is in fact simplified since the normal prior is conjugate with respect
to the multivariate normal likelihood. The full conditional posterior for φ is given by

φ| log(X)(n), N(n), θ̃, γ
2 ∼ N (mpost

φ , vpostφ ), with

vpostφ =

(
1

γ2
t(n)T

−1
n tT(n) +

1

vφ

)−1
and

mpost
φ = vpostφ

{
mφ

vφ
+

1

γ2
t(n)T

−1
n

(
log(X)(n) − log(x0)1n +

γ2

2
t(n) − θ̃N(n)

)T}
,

whereas for θ̃ it is given by

θ̃| log(X)(n), N(n), φ, γ
2 ∼ N (mpost

θ , vpostθ ), with

vpostθ =

(
1

γ2
N(n)T

−1
n NT

(n) +
1

vθ

)−1
and

mpost
θ = vpostθ ·

{
mθ

vθ
+

1

γ2
N(n)T

−1
n

(
log(X)(n) − log(x0)1n − (φ− γ2

2
)t(n)

)T}
.

Following from the choice of an inverse gamma prior density

p(γ2) =
bγ
G(aγ)(γ

2)−aγ−1 exp
(
− bγ
γ2

)
, we compute the full conditional posterior density for

γ2 as

p(γ2| log(X)(n), N(n), φ, θ̃)

∝(γ2)−(
n
2
+aγ)−1·

exp

(
− 1

γ2

{
1

2
(log(X)(n) − µn(η))T−1n (log(X)(n) − µn(η))T + bγ

})
.

Since µn(η) depends also on γ2, the posterior distribution of the latter is not an inverse
gamma distribution. In this case we can perform a Metropolis-Hastings (MH) step within
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the Gibbs sampler and use the inverse gamma as proposal density. With µ
n,φ,θ̃

(γ2) := µn(η),
we define the proposal density

q(γ2|γ̃2, φ, θ̃) = (γ2)−(
n
2
+aγ)−1

· exp

(
− 1

γ2

{
1

2
(log(X)(n) − µn,φ,θ̃(γ̃

2))T−1n (log(X)(n) − µn,φ,θ̃(γ̃
2))T + bγ

})
,

which is proportional to an inverse gamma density on γ2 dependent on γ̃2. In the next we
use the star (∗) to denote values of the parameters sampled during the MCMC iterations,
including the starting values. The MH step in the kth iteration of the MCMC begins with
drawing a candidate value γ2cand from the proposal density

γ2cand ∼ q(γ2|γ2∗k−1, φ∗k, θ̃∗k),

which is accepted with probability

min

{
1,

p(γ2cand| log(X)(n), N(n), φ
∗
k, θ̃
∗
k)q(γ

2∗
k−1|γ2cand, φ∗k, θ̃∗k)

p(γ2∗k−1| log(X)(n), N(n), φ
∗
k, θ̃
∗
k)q(γ

2
cand|γ2∗k−1, φ∗k, θ̃∗k)

}

= min

{
1, exp

(
1

2

(
1

γ2∗k−1
+

1

γ2cand

)

·
(

(γ2∗k−1 − γ2cand)t(n)T
−1
n CTn +

1

4
((γ2∗k−1)

2 − (γ2cand)2)t(n)T
−1
n tT(n)

))}
with Cn := log(X)(n) − log(x0)1n − φ∗kt(n) − θ̃∗kN(n).

The full calculation can be seen in Hermann et al. (2016).
Because of the gamma conjugate prior for λ, it follows that λ|N(n) ∼ G(aλ+Ntn−Nt0 , bλ+

tn − t0).
All full conditional posteriors depend on the vector N(n) from the Poisson process. In many

applications, including our own, this process is not observed. Therefore, this variable has to
be generated from the actual observations within the Gibbs sampler. Since multivariate
sampling is always a challenge, we will reduce the problem to sampling the independent
differences ∆Ni = Nti+1 −Nti ∼ P(λ∆ti), given ∆ti = ti+1 − ti. It is

∆ log(X)i := log(Xti+1)− log(Xti)|∆Ni, φ, γ
2, θ̃

∼ N
((

φ− γ2

2

)
∆ti + θ̃∆Ni, γ

2∆ti

)
.

Therefore, the posterior density for ∆Ni is given by

p(∆Ni|∆ log(X)i, φ, γ
2, θ̃, λ)

∝exp(−λ∆ti)

(∆Ni)!

1√
2πγ2∆ti

·

exp

(
− 1

2γ2∆ti

(
∆ log(X)i −

(
φ− γ2

2

)
∆ti − θ̃∆Ni

)2

+ ∆Ni log(λ∆ti)

)
,

which is not recognized as a member of a known distribution family. We propose the following
sampling procedure for the kth iteration:
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• for all i = 1, ..., n− 1, choose R ∈ N (large enough) for the candidate set {0, ..., R}

• calculate the posterior probabilities p0, p1, ..., pR with

pj = p(j|∆ log(X)i, φ
∗
k−1, γ

2∗
k−1, θ̃

∗
k−1, λ

∗
k), j = 0, 1, ..., R

• draw u ∼ U(0,
∑R

j=0 pj = 1) and calculate m = min{r :
∑r

j=0 pj ≥ u}

• set ∆Nk
i = m.

Additionally, set Nk
(n) = (0,∆Nk

1 , ...,
∑n

i=1 ∆Nk
i ).

All the distributions involved in the Gibbs sampler can be summarized as follows, for each
iteration k = 1, ...,K:

Nk
(n) ∼ p(N(n)| log(X)(n), φ

∗
k−1, γ

2∗
k−1, θ̃

∗
k−1, λ

∗
k−1) (5)

λ∗k ∼ p(λ| Nk
(n))

φ∗k ∼ p(φ| log(X)(n), N
k
(n), θ̃

∗
k−1, γ

2∗
k−1)

θ̃∗k ∼ p(θ̃| log(X)(n), N
k
(n), φ

∗
k, γ

2∗
k−1)

γ2∗k ∼ p(γ2| log(X)(n), N
k
(n), φ

∗
k, θ̃
∗
k).

5 Some critical issues about model and choice of priors

From

E[log(Xt)|φ, γ2, θ̃, λ] = log(x0) +

(
φ− γ2

2

)
t+ θ̃λt (6)

= log(x0) +

(
(φ+ θ̃λ)− γ2

2

)
t

it can be seen that there is a potential identifiability problem due to θ̃ and λ, related to size
and number of jumps, respectively. Such issue cannot be resolved joining the two parameters
since the resulting stochastic process would be intractable, taking values only on multiples
of the unknown quantity θ̃. Inference for a simulated series will give a good overview of
the resulting consequences and will provide a way to manage the issue, which will be used
successfully later to analyze the cylinder liner data.

Simulation

In the real data set of the cylinder liners, we observe the wear process in several independent
series, corresponding to measurements over time in 30 cylinders. We assume them to be
realizations of the same process in (2) so that the likelihood is obtained by multiplying the
likelihoods for all 30 cylinders, which share the same parameters. No information is provided
about possible different behaviors of the cylinders (e.g., in a freight or in a passenger ship)
so that we can assume their wear processes can be modeled with the same SDE, similarly to
the other papers using those data. The use of data from 30 cylinders compensate also the
scarcity of observations for each of them (ranging from 1 to 4).
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Therefore, we simulate 10 series of the process (2) in t0 = 0, ..., t101 = 5, i.e. at points
equispaced by 0.05, with φ = −0.05, θ̃ = −0.2, γ2 = 0.052 and λ = 2. We consider the
simulated data as coming from the same model and we construct a likelihood function based
on all of them. We repeated the simulation study with different values and the findings were
similar to the ones reported here.

We present first the simulation study and then the analysis of the real data. The choice
of the prior distributions will be the same in both cases, to make them similar as much as
possible. Since no expert knowledge is available for eliciting the parameters, diffuse priors
will be used. We take

mφ = 0, vφ = 1,mθ = 0, vθ = 1,

so that the prior means and the variances of φ and θ̃ will be 0 and 1, respectively. We take

aγ = 2 + 10−10, bγ = 10−5, aλ = 1, bλ = 0.1,

so that E[γ2] =
bγ

aγ−1 = 10−5

1+10−10 ≈ 10−5 and

V ar(γ2) =
b2γ

(aγ − 1)2(aγ − 2)
=

10−10

(1 + 10−10)2 · 10−10
=

1

(1 + 10−10)2
≈ 1,

whereas E[λ] = aλ
bλ

= 10 and V ar(λ) = aλ
b2λ

= 100.

The choice of means equal, or close, to 0 for φ, θ̃ and γ, denotes that, a priori, we give a
negligible value to the drift of the process, the size of the jumps due to the soot particles and
the contribution by the corrosive action modeled via the Wiener process. We believe such
choices are somehow justified by the physical process where corrosion and contribution by a
single soot particle are minimally affecting the wear and we should expect a very negligible
trend. At the same time we expect quite a number of interactions between soot particles and
liner so that the expected value of the jump process is quite away from 0. Although we start
from those prior means, we strongly attenuate our assessments by considering large variances,
allowing for posterior estimates, e.g. means, to be mostly driven by data.

We would like to study the influence of the starting points on estimation and prediction,
considering two scenarios, representative of many simulations we did. First, we consider
significantly perturbed starting values, with respect to the actual ones, multiplying the latter
ones by 5, so that

φ∗0 = 5 · φ, θ̃∗0 = 5 · θ̃, γ2∗0 = 5 · γ2, λ∗0 = 5 · λ. (7)

Later, we start from the right values of φ and γ2 but we significantly perturb θ̃ (multiplying
the real value by 5) and λ (dividing it by 5). In this way we have different values with
respect to the original ones but their product is unchanged. This choice allows us to see the
consequences of the identifiability problem posed by (6). Therefore, we take

φ∗0 = φ, θ̃∗0 =
1

5
· θ̃, γ2∗0 = γ2, λ∗0 = 5 · λ (8)

and we look for the estimates, especially of θ̃ and λ, to see if they differ from the original
values, denoting possible local maxima of the posterior distribution.
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We will find out that the identifiability issue is affecting estimation, whereas it is no more
a problem when considering predictions.

Starting from the values in (7), we can see the chains resulting from the Gibbs sampler
presented in (5) in Figure 1, where the red lines mark the true values. Although the starting
values are quite far from the true ones, the chains move quickly to a stationary distribution
that provides estimates of the parameters very close to the real ones, with just a small
underestimation for λ.
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Figure 1: Markov chains for the simulated series with starting values (7), compared with the
true parameter values (red lines).

Therefore, this procedure works in the case of starting values significantly away from the
right ones, even with diffuse prior specification. As mentioned before, with regard to the
identifiability problem posed by (6), we should investigate what happens if we start the
algorithm from the values in (8). In Figure 2 we can see the Markov chains from the Gibbs
sampler which run into a local optimum where we get stationary chains. In Figure 3, we
compare the posterior densities with the two different sets of starting values. We can notice
no remarkable difference for φ and γ2 whereas θ̃ and λ are quite far apart, although their
product is not changing much.

We can state that the algorithm is sensitive against the choice of starting values. Further
examples were done by the authors, even with priors with true parameters as means and
standard deviations equal to their absolute value. It is worth mentioning here that, in the case
of prior means equal to the values in (8), prior standard deviation equal to the corresponding
absolute values and starting values in (7), we still obtained biased estimations. We saw that
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Figure 2: Markov chains for the simulated series with prior mean equal to the true values and
starting values as in (8).

no significant change was induced by considering less diffuse priors, so that our estimation
is not affected by the lack of information which is driving our decision of considering diffuse
priors for the real data, as discussed earlier.

In many applications, one is not only interested in the estimation of model parameters but
also in predictions about future experiments. The predictive distribution for the process at a
future time t∗ can be calculated as follows:

p(log(Xt∗)| log(X)(n)) =

∫
p(log(Xt∗)|Nt∗ , φ, θ̃, γ

2)· (9)

p(Nt∗ , φ, θ̃, γ
2| log(X)(n)) d(Nt∗ , φ, θ̃, γ

2)

≈ 1

K

K∑
k=1

p(log(Xt∗)|Nk
t∗ , φ

∗
k, θ̃
∗
k, γ

2∗
k )

with

Nk
t∗ ∼ p(Nt∗ | log(X)(n)) =

∫
p(Nt∗ |λ)p(λ| log(X)(n)) dλ

≈ 1

K

K∑
k=1

p(Nt∗ |λ∗k),
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Figure 3: Posterior densities resulting from the MCMC started with (7) (black solid lines)
and (8) (dotted lines), compared with the true parameters (red).

where φ∗k, θ̃
∗
k, γ

2∗
k and λ∗k are samples from the posterior distribution resulting from the Gibbs

sampler (5). Sampling from (9) yields to the (1- α)-prediction interval on Xt∗ by taking the
α
2 - and (1-α2 )-quantiles as lower and upper bounds.

Figure 4 displays the prediction results based on the Markov chains in Figures 1 and 2,
each with a burn-in phase of the first 500 samples. The solid red lines show the pointwise
95% prediction intervals based on arbitrarily chosen starting values (7) (see Figure 1), which
are larger than the dotted red lines which mark the prediction intervals based on the starting
values chosen as in (8), see Figure 2. On average, 98% of the prediction intervals based on
the samples in Figure 1 cover the corresponding simulated data point. In comparison, only
80% of the other (dotted) prediction intervals cover the true points.

Hence, the prediction result is a good classification quantity to decide between different
starting values. We could base the analysis of the wear data on this finding, but we prefer
a more sound approach stemming from all the findings from the simulated data, which will
lead to satisfactory results, as shown in the next section.

Given that we found out from our simulations that estimation was not significantly affected
by the choice of the priors but mostly by the starting values, especially those of θ̃ and λ, we
have been looking for a strategy allowing us to cope with the identifiability problem in (6).
We propose a method which considers a broad grid of starting points, performs the Bayesian
analysis through the Gibbs sampler presented in (5) and then considers the credible intervals
obtained from all the chains, removes those containing unacceptable values (i.e. positive ones

11



0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

t

X
data
starting values (7)
starting values (8)

Figure 4: Comparison of the 95% prediction intervals with starting values (7) (solid) and (8)
(dotted).

for φ and θ̃) and estimates the parameters.

Application to the thickness data

As mentioned earlier, wrong starting values and wrong informative prior specifications can
lead to biased estimations. Since no expert knowledge is available about the parameters, we
use the same diffuse prior specification as in the previous simulation study:

mφ = 0, vφ = 1,mθ = 0, vθ = 1, aγ = 2 + 10−10, bγ = 10−5, aλ = 1, bλ = 0.1.

As we have seen in the simulation, the algorithm is sensitive against the starting values.
Therefore, we have to investigate the behavior of the Gibbs sampler under different starting
values. We take four values for each parameter:

φ∗0 ∈ {−10−5,−10−4,−10−3,−10−2}, θ̃∗0 ∈ {−10−5,−10−4,−10−3,−10−2},
γ2∗0 ∈ {5 · 10−7, 10−6, 10−5, 10−4}, λ∗0 ∈ {0.25, 1, 5, 10}

and expand a four-dimensional grid, which has 256 sets of starting values. For each of them,
the Gibbs sampler is implemented and an example of the corresponding chains can be seen
in Figure 5.

In Figure 6, we see (in black) the 256 resulting 95% credible intervals, calculated by the
0.975 and 0.025 quantiles of Markov chain samples of size 1,000, obtained after drawing 6,500
iterations with a burn-in phase of 1,500 and a thinning rate of 5; the points mark the medians
of each posterior distribution. The corresponding starting values are presented in red. It is
evident that there is a lot of stability in the obtained credible intervals, despite the broad
range of starting values.

Because of the thickness problem at hand, we know that φ and θ̃ have to be negative.
Therefore, we rule out the chains which lead to a positive 0.975 quantile for any of such

12
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Figure 5: Example of Markov chains for a starting point: φ∗0 = −10−5, θ̃∗0 = −10−5, γ2∗0 =
5 · 10−7, λ∗0 = 0.25.

parameters, and we get the corresponding picture in Figure 7. The first credible interval in
Figure 7 corresponds to the chains presented in Figure 5. Most of the 238 remaining chains
lead to very similar credible intervals, where the minor deviation can be the result of the
approximation by a sample of size 1,000. There are a few outliers among the intervals for
λ and θ̃ which will equalize each other in the predictive distribution. Thus, we put all the
remaining chains together one after another. These 238 × 1000 samples approximate the
posterior distribution and lead to the following estimates of the posterior means:

φ̂ = −2.12 · 10−3,
̂̃
θ = −2.96 · 10−3, γ̂2 = 1.06 · 10−6, λ̂ = 2.55. (10)

Looking at the expected value of log(Xt) in (6) and plugging in the estimates in (10), it

can be seen that
̂̃
θλ̂ is the most influential term, as expected, since it is the result of the wear

due to soot particles whereas the corrosive activity, represented by γ̂2, is quite negligible.
The estimated parameters in (10) are used to calculate the predictive distribution in (9).

The 0.025- and 0.975- quantiles provide pointwise 95% prediction intervals. In Figure 8 we
see the 95% prediction intervals for the data set: only three points are not covered, which
yields a coverage rate of 0.948 which is approximately 95%.

The 95% prediction interval in Figure 8 is based on data from 30 cylinders and it can be
used to assess a maintenance policy for a cylinder with a new liner. Upon installation of the

13
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Figure 6: Credible intervals for 256 different starting values (in red).

new liner, the ship owner might decide to set some thresholds (e.g. 98 or 97 millimeters)
when maintenance should be performed. A conservative procedure would be to perform
maintenance as soon as the credible interval contains such values (here approximately at 1.2
and 1.8, respectively).

The maintenance policy for a cylinder in which wear has already been measured in the past
is just slightly different: prediction of the wear behavior is still possible using the posterior
distribution of the parameters but the initial thickness will not be 100 millimeters but the last
measured value. We performed such analysis for two cylinders, namely the first and the fifth
in the data, whose thickness was measured at three different times. To check the predictive
performance, we considered thickness and time at which the second measurement was taken,
i.e., 98.7 millimeters at time 1.468 for the first cylinder and 97.75 millimeters at time 1.87 for
the fifth cylinder. Then we considered the predictive intervals (using green for first and blue
for fifth cylinder) for the future behavior of the thickness in Figure 9 and we showed that
the third, actual measurements are well inside the intervals. As before, maintenance could
be performed as soon as the prediction interval contains a threshold value. In alternative,
maintenance could be performed at a time τ when the probability of thickness below a given
threshold ρ gets larger than a fixed value α, i. P (Xτ ≤ ρ) ≥ α. As an example about
the considered cylinders, we have that the probability of getting a thickness smaller than 97
millimeters at time 3 is 0.298 for the first cylinder and 0.704 for the fifth one, showing a more
critical situation for the latter.

These findings are useful for our future research about optimal maintenance policies.
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Figure 7: Credible intervals for starting values leading to nonpositive 95% prediction intervals.

In Figure 10 we compare the observed data with simulated ones generated from the posterior
means. We can see that the data show a moderate nonlinear, convex behavior which can be
observed only slightly in the simulations.

An extension that could provide more evident convex trajectories might be obtained consid-
ering Nt as a nonhomogeneous Poisson process (NHPP) with intensity function λ(t) = ae−bt,
a, b > 0. This NHPP would allow us to model even better the decrease of the wear incre-
ment with respect to the wear, allowing for less and less jumps. The possible improvement
in forecasting trajectories comes at the price of an ever larger computational complexity. We
decided that the use of a homogeneous Poisson process (HPP) represents a good trade-off
between computational complexity and accurate estimation/forecast.

6 Discussion

The paper proposes a model, based on a jump diffusion process, whose mathematical aspects
can find a physical justification in the analysis of the wear of cylinder liners in a marine diesel
engine. The model could be applied for other wear degradation cases, as well. Different issues,
like identifiability of parameters, are raised when using the model and a simulation study has
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Figure 8: 95% prediction interval (red lines) for the wear data compared with actual data
(black).

been performed to better understand them and propose a method which works satisfactorily
when applied to real data. A different approach could have been taken; it is based on how well
the estimated model can forecast the actual data, choosing the estimated parameters which
lead to predictive intervals covering the largest number of observed data. We are willing to
pursue research in such direction in the future, but, for the moment, we found that our current
strategy is quite robust with respect to different choices of priors and starting points in the
MCMC simulation and leads to satisfactory results, in terms of estimation and forecast.

Further work will be devoted to consider jumps modeled with nonhomogeneous Poisson
processes since their number might be decreasing over time, as a consequence of the reduction
in thickness decrease. The research should face the increased computational complexity.

Finally, the model will be used to develop optimal maintenance policy taking in account
also the costs of inspection, missed liner replacement, stop of ship, etc.
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