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1 Abstracts 

 Zusammenfassung 

Der selektive Transport von Ionen durch Membranen ist eine bekannte Eigenschaft von 

biologischen sowie synthetischen Poren, die bis heute trotz einer Vielzahl an existierenden 

theoretischen und praktischen Studien an verschiedensten Porensystemen nicht vollständig 

aufgeklärt wurde.1–3 Ein tieferes Verständnis von Ionenselektivität würde die Behandlung von 

damit verbunden Krankheitsbildern erleichtern und wäre in den technischen Bereichen der 

Wasseraufbereitung, Biosensorik und im Bereich des Proteindesigns von großem Nutzen. Aus 

diesen Gründen steht die theoretische Erforschung der thermodynamischen und kinetischen 

Ionenselektivität von biologischen tetrameren und pentameren sowie synthetischen Kanalsystemen 

im Fokus dieser Arbeit. Hierzu wurde in einem ersten Ansatz ein Homologiemodell des kleinen 

viralen tertrameren Ionenkanals KcvATCV-1 erstellt und in Molekulardynamik-Simulationen mit 

verschiedenen Ionenlösungen untersucht.4 Anhand simulationsbasierter symmetrischer Strukturen 

dieses biologischen Kanals wurde eine thermodynamische Analysemethodik in Kombination mit 

einer Integralgleichungstheorie etabliert und verifiziert. Um die kinetischen Aspekte der 

Ionenselektivität zu untersuchen wurden theoretische Leitfähigkeiten auf Basis von 

Molekulardynamik-Simulationen sowie Ergebnissen von Integralgleichungsberechnungen unter 

Verwendung der Vorarbeiten von Hummer et al.5 berechnet. Für diese vergleichenden Arbeiten 

wurde ein geeignetes hydrophobes synthetisches Porensystem von Gong et al. ausgewählt, welches 

die Annahmen von Referenz 5 erfüllen.5–7 Das Ergebnis dieser Untersuchung zeigte eine 

qualitative Übereinstimmung der Leitfähigkeiten zwischen beiden Methoden, welche im Fall 

dieser Pore eine starke Anionen-Selektivität nachwiesen. Auf Grund seiner hydrophoben und 

gleichzeitig biologischen Eigenschaften wurde die etablierte Analysemethodik abschließend auf 

den putativen pentameren Ionenkanal Phospholamban angewandt. Hierbei konnte eine mit 

experimentellen Ergebnissen von Smeazzetto et al. übereinstimmende Kationen-über-Anionen 

Selektivität nachgewiesen werden, welche zusätzlich die richtige Inter-Kationen-Leitfähigkeiten 

reproduzierte. Durch die thermodynamische Analyse wurde eine hydrophobe Engstelle als 

mögliches Selektivitätselement identifiziert. Durch die Formulierung eines thermodynamischen 

Kreisprozess wurden der lokale und globale Einfluss von Solvatationsbeiträgen im Hinblick auf 

Ihren Einfluss auf die Kationen-über-Anionen-Selektivität und Inter-Kationen-Selektivität 
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untersucht. Diese Studien zeigten eine große Abhängigkeit beider Selektivitäten von 

Solvatationseffekten. Zusammengefasst konnte in dieser Arbeit der Einfluss des Solvens auf die 

thermodynamische und kinetische Selektivität von polaren und hydrophoben Ionenkanälen gezeigt 

werden. 

 Abstract 

The selective transport of ions through membranes is a known feature of biological and synthetic 

pores, which remains still not fully understood despite a variety of existing experimental and 

theoretical investigations with different pore systems.1–3 A deeper understanding of ion selectivity 

would be desirable for the treatment of related diseases and would have an application in the 

technical fields of water purification, biosensoric and protein design. For this reason a focus was 

laid on the theoretical basis of the thermodynamic and kinetic ion selectivity of tetrameric and 

pentameric ion channels as well as on synthetic channel systems. In a first approach a homology 

model system for the small viral potassium channel KcvATCV-1 was created and investigated in 

molecular dynamics simulations with various ion solutions.4 Averaged channel structures, obtained 

from these simulations, were used to establish and verify a new thermodynamic analysis approach 

in combination with an integral equation theory. To tackle the kinetic aspects of ion selectivity, 

theoretical conductances were obtained from molecular dynamics simulations and also calculated 

from integral equation theory, by making use of previous work of Hummer et al.5 A synthetic 

hydrophobic pore system of Gong et al.6 was supposed to be appropriate for this investigation, as 

it fulfilled the assumptions made by Hummer et al.5 The calculated conductances from the 

independent methods showed a qualitative agreement between them and revealed an anion 

selectivity of this pore system. The established thermodynamic and kinetic analysis techniques 

were also used to shed light on the putative pentameric ion channel phospholamban, as it is a 

biological membrane protein with a hydrophobic character. Compared to experimentally measured 

conductances by Smeazzetto et al. the calculated conductances could reproduce the observed cation 

over anion selectivity as well as the inter-cationic selectivity order. In the course of this 

investigation a hydrophobic restriction was identified to play a significant role for the ion 

selectivity as identified by the thermodynamic analysis of phospholamban. Formulation of a 

thermodynamic cycle permitted the investigation of single solvation free energy contributions to 

the cation over anion selectivity and the inter-cationic selectivity. This investigations identified 

strong global and local solvation effects to control the observed selectivity. In this work, the 
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influence of the solvent on thermodynamic and kinetic selectivity in polar and hydrophobic ion 

channels has been revealed. 

2 Introduction 

 Biological background on ion channels  

Ion channels are transmembrane proteins, fulfilling the selective transport of ion species through a 

lipid bilayer with turnover rates of (108 s-1) which is near their diffusion limit in the bulk.1–3 

Eukaryotic and prokaryotic cells use this functionality to establish a membrane potential by distinct 

regulation of the inner and outer ion concentrations. Besides their important functionality in 

maintaining the cell homeostasis, ion channels are key regulators for the action potential firing, 

intercellular signaling and hormone release,.8,9 In consequence of their universality, malfunctions 

and aberrations of ion channels cause many disease patterns for example the long and short QT 

syndrome as well as epilepsy.10–12 In the historical context the electrophysiological experiments on 

huge squid axons of Hodgkin and Huxley in 1952 were an important step for the field of ion channel 

research. Their measurements showed different currents, which was related correctly to signals of 

permeating potassium (K+) and sodium (Na+) ions transported over the membran.13–15 Furthermore 

they identified the propagation of electric potentials in a membrane, finally describing the process 

nowaday well known as the neuronal action potential.16 By subsequent tracer experiments with 

radioactive potassium ions in 1955 Hodgkin and Keynes were capable to observe ion transitions in 

squid axons, leading to the first postulation for the existence of “channels”.17 This theory was 

supported by supplementing ion size experiments of Hille, identifying the minimum radius for 

permeation through the supposed channels.18–21 Revelation of channel type specific blockers like 

the small tetraethylammonium (TEA) ion, the puffer fish toxin tertrodotoxin (TTX) and even the 

divalent ion Ba2+ became supplemental tools for the identification of ion channel functionality by 

prohibiting the ion permeation.16,22–25 By application of TEA in a series of electrophysiological 

experiments an internal (cytosolic) and external (extra cellular) blocking site were identified by 

Armstrong et al.23 These blocking studies confirmed the existence of separate channels for each 

ion species and were further used to relate the ion species to measured current profiles.2 Altogether 

these results gave reason to define ion selectivity as the passive transport of specific ion species 

along their electrochemical activity gradient through biological pores.2 In this context the existence 
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of a biochemical selectivity element was implicitly given. At this point this hypothesis remained 

experimentally uncorroborated.  

Further advancements in the field of electrophysiology led to the development of the important 

gigaseal patch and whole-cell techniques by Bert Sackmann and Erwin Neher in 1975, which allow 

for measurements of currents of a whole cell as well as those of single ion channels with high 

resolution.14 These methods improved the search and characterization of new potassium, sodium, 

chloride and calcium ion channels until today.2 Measured current profiles showed alternating 

periods of impermeability and conductivity, which were related to the process that is today known 

as gating. A detailed view showed that the channel can exhibit “open”, “closed” or “inactivated” 

states. The latter is distinguished from a closed state by a fast transition from conductive into a 

non-conductive state.2 Trying to explain the phenomenon of gating, cytosolic protease experiments 

with voltage sensitive potassium channels by Armstrong et al. related the process of inactivation 

to a ball like structure attached to the cytosolic N-terminus, often referred to as the “ball and chain” 

model.26  

High permeation rates of > 106 ions per seconds became a striking criterion to distinguish ion 

selective pores from slower and stoichiometrically controlled transporter systems like the 

Na+/K+-Pump.2 Besides the clarity in the reviewed results of Armstrong, Hille, Huxley and 

Hodgkin, their results identified a voltage, concentration and temperature dependency of the 

measured currents, which emphasized and foreshadowed the complexity of a potential 

structure-selectivity relation in channels. Trying to explain this structure-selectivity relation 

became even more difficult considering its tight assignment with the gating functionality. 

Nonetheless their outstanding results and techniques improved the understanding of selectivity and 

lifted the whole field of ion channel research to the next level.  

A focus is laid in the following discussion on potassium ion channels, due to their importance in 

the field of ion channel research. Progress in molecular biology and the development of genetic 

techniques, like the invention of the site-directed mutagenesis and improved sequencing 

techniques, helped to rapidly identify new channels from eukaryotic and prokaryotic organisms as 

well as from viruses.16,27–29 In benefit of these inventions a common mutation in drosophila spec., 

described by a strong “shaking” phenotype, could be related to a mutation in gene encoding of a 

potassium channel of the family Kv1, also known as the “Shaker” family. The amino acid sequence 
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of the Shaker type potassium channel was the first to be revealed completely, allowing speculations 

about its exhibited spatial structure in the context of the existing gating and selectivity 

hypothesis.27,30–33 Constant growth of available ion channel sequences gave access to comparative 

gene alignments, which led to the confirmation of a highly conserved consensus sequence, 

comprised of the amino acids Thr-X-Gly-Phe-Gly (one letter: TXGYG). Because of its global 

presence in known as well as designated ion channels, this “signature sequence” was assumed to 

be of functional importance, which led to the proposal of a selectivity “filter” domain by 

Heginbotham et al. in 1994.34  

The prokaryotic, tetrameric potassium (K+) ion channel KcsA was the first structure to be revealed 

completely by X-ray experiments of Doyle et al.35 In accordance with the measured densities the 

previously identified signal sequence formed a narrow structural funnel domain with four potential 

ion binding sites, which are occupied by K+ ions with a probability of 1/2.35–37 For this reason, the 

ion channel was assumed to be populated by two K+ ions in average. This discovery indicated the 

existence of a structural selectivity element. Revelation of the KcsA structure motivated the first 

ion selectivity hypothesis based on the rigid filter geometry. It assumed the carbonyl oxygens to 

function as a surrogate for the water molecules of an ions hydration shell.8 According to the KcsA 

structure, the filter provided an ideal distance for the coordination of K+ with an ion radius of 1.3 Å, 

whereas the same geometry would be less favorable for the coordination of the smaller Na+ with 

the radius of 0.9 Å.8,35,38 In agreement with these investigations the K+ over Na+ selectivity could 

be explained by the “snug fit” of potassium ions inside the binding sites. In consequence, selectivity 

was linked to the provided filter geometry only. In spite of the flexible nature of proteins, the “snug 

fit” theory required necessarily a precise positioning of the filter backbone carbonyl groups on a 

sub-Ångström level, which could be provided by a rigid structure only.  

Due to the known spatial conformation of KcsA, computational methods and analysis became of 

more importance, as they can characterize experimentally mostly inaccessible energetic details. 

Computational experiments allowed to tackle the thermodynamic and kinetic contributions to ion 

selectivity seperatly.39 A feasible technique is the molecular dynamics (MD) simulation, which 

allows to study the motions of channels on nano- to microsecond time scales.40–42 By accessing the 

free energies for the ion transfer from bulk into the filter with  MD simulations, Roux et al. 

identified a preference for K+ over Na+ inside a flexible filter structure of KcsA on a thermodynamic 
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basis, which could be inverted by artificially turning off the electrostatic carbonyl-carbonyl 

interactions.38 However the repelling effect of the carbonyl-carbonyl interactions had only little 

effect on the overall filter structure in comparison with the ion-carbonyl interaction energies of K+ 

(150 kcal mol-1) and Na+ (170 kcal mol-1). These results indicated carbonyl-carbonyl interactions 

to establish a pure “thermodynamic selectivity”, while the average filter structure was controlled 

by the ion-carbonyl interaction. Roux et al. concluded that selectivity would not necessarily 

demand distinct topology on Ångström-scale in the filter as required by the “snug fit” model. 

Instead a flexible filter model was assumed to be more appropriate, considering the constant 

thermal fluctuations happening in proteins.38,43–52 This flexible filter and selectivity model was 

supported by further MD simulations with different ion channels. However investigations of the 

KcsA filter and reduced structure models by Kast and Kloss revealed a strong competition between 

in plane Na+ with K+ ions in binding sites to be necessary for ion selectivity.53 This result argues 

for the importance of kinetic influences on the selectivity, due to the contribution of multiple ions. 

The identified ion selectivity in fixed structures by the calculations of Kast and Kloss do also query 

the necessity for an flexible filter as a requirement for selectivity.53 

The possibilities of computational methods and the new view on ion selectivity led to the creation 

of reduced “toy system” by Noskov and Roux to investigate it in greater detail.38 Thus free energy 

simulations were used to characterize model systems comprised of isolated binding sites as well as 

experiments using N-methylacetamide (NMA) as an peptide mimetic to study ion coordination in 

comparison to their situation in the filter.38 Their results support the thermodynamic selectivity of 

the filter and revealed eight carbonyls to be mandatory for a K+ over Na+ selectivity.38 However 

intensive theoretical studies of the thermodynamic K+ over Na+ selectivity in the cyclic depsipeptid 

Valinomycin by Rempe et al. revealed an intercationic selectivity optimum in this ionophore, 

establishing ion coordination by six carbonyl atoms.54 Additionally provided coordination partners 

like water molecules had a destabilizing effect on the coordination and diminished thereby the 

selectivity.54 

Connected to the selectivity, the ion permeation process through the filter by estimation of the free 

energy, became also a focus of research in addition to further exploration of structure-selectivity 

relations. Investigation of the energy barriers between separate filter binding sites of KcsA revealed 

only insignificant barriers, which in principle allow for smooth transitions of ions between 



14 
 

them.43,55,56 This picture of ion transfer was comprehensible considering the requirement to 

stabilize ions inside the channel at binding sites and at the same time permit a further propagation.43 

However computational investigations revealed suitable binding sites also for Na+ in between the 

carbonyl cages.53,57 Propagation of ions through the filter was assumed to occur in “single file”, 

based on observations in early electrophysiological experiments and the confirmation of the KcsA 

filter population itself.15,20,35,53 This process could finally be observed directly in MD 

simulations.56,58–60 Particularly the filter was occupied only by two K+ ions at the time, which were 

alternated by water molecules. A third ion entering the filter initiated the single file transfer of the 

two residing ions inside the filter. This mechanism was termed the “smooth knock on” and was 

widely accepted. Results of DeGroot et al. questioned this water-ion single filing mechanism by 

identification of direct ion-ion interactions that propagate the ion permeation.61 However a “hard 

knock on” mechanism, assuming a filter structure populated with 3 K+ ions pushed by a fourth, is 

recently under discussion.62  

Notably free energy calculations for single ions did deliberately neglect the kinetic aspects 

occurring inside the filter.43,57,63 In consequence, investigations of the free energy surfaces of 

multiple ions  were conducted to estimate the influence of kinetic aspects.56,57,64,65 This results 

showed that kinetic contributions play also a role in ion selectivity in addition to the previously 

described thermodynamic aspects.57  

To gain a deeper understanding of ion selectivity and the gating process non-biological pores, like 

single walled carbon nanotubes (SWCNT), synthetic pores or technically created etched 

polyethylene terephthalate (PET) pores were scrutinized as mimetics for biological pores.66,67 

These differ from their biological analogues, as they can provide ion selectivity without having 

filter elements. Computational investigations by Corry et al. showed that water and ion selectivity 

is an intrinsic and radius dependent feature of SWCNT (see chapter 2.3 and 5.0 for details).68 In 

addition, synthetic hydrophobic PET pores with a radius of 20 Å permitted the conduction of K+ 

ions.69 The measured ion currents where thereby depending on the applied pH value, emphasizing 

the complexity of ion selectivity in hydrophobic pores. Efforts in the field of synthetic chemistry 

have fruitfully established a portfolio of nanoscale molecules with ion channel properties. Amongst 

these is a recently synthesized self-assembling, cation selective, hydrophobic pore, which is 

investigated in detail in chapter 5 of this work.6,70 The feature of hydrophobic cation or anion 
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selectivity can also be found in biological ligand gated ion channels (pLGIC).71 Members of this 

family were investigated in respect to their gating properties. From these investigations originated 

the concept of “hydrophobic gating”.71–73 This concept assumes water to vaporize in narrow parts 

of the pore and create thereby energetic barriers due to “dewetting”. However the origin of this 

effect is not fully understood and remains experimentally inaccessible  as well as its occurrence in 

other channels is not fully clarified yet.72  

 

Figure 2.1.1: Influences on selectivity. The scheme illustrates the dependency of ion selectivity on thermodynamic 

and kinetic aspects, which are connected to the process of gating, to structural changes and the ion filter itself.  

 

Still computational and experimental studies of ion channel features pointed out the complexity of 

ion selectivity, ion permeation and gating mechanisms, by showing their dependency on each other. 

An example was given by the gating mechanism of the KcsA channel, called C-terminal gating, 

where changes in the filter geometry are supposed to happen due to conformational changes at the 

distant C-terminus.63 In addition this example emphasizes the difficulty of an isolated view of the 

gating and selectivity process, as those might be coupled (Fig. 2.1.1). Furthermore protein-lipid 

interactions in the bacterial inward rectifier channel KirBac1.1 were revealed to perform 

conformational changes, which influence the gating and ion permeation process.74 This emphasizes 

the importance of the often neglected membrane environment. Varying in their total size and 
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architecture, ion channels might have developed different mechanisms for gating, which makes the 

derivation of a general gating principle an unsolved task.75 This is exemplified by the existing 

models of C-terminal, N-terminal gating as well as the occurring “bundle crossing” in members of 

the KirBac family.76 Yet none of these known gating mechanisms is fully understood, especially 

in respect to their transitions between open, closed and inactive states.  

Furthermore small viral potassium channels (Kcv) were revealed to perform full gating and 

selectivity functionality with a minimalistic set of amino acids, ruled out that gating, selectivity 

and structural interaction are coupled, even without the existence of huge cytosolic domains. 28,29,77–

81Amongst the members of the Kcv family, variability in even the highly conserved TVGYG filter 

sequence occurred with preserved potassium selectivity.29 

Taken together, experimental and computational investigations were capable to establish models 

of ion selectivity, permeation and gating mechanisms in polar as well as hydrophobic biological, 

synthetic and artificial toy systems.45,55,62,68,75,82–96 However after years of intense experimental and 

theoretical research of the structural, conformational and chemical natures of ion channels, no 

principles or patterns could be derived with global generality, explaining the remarkable ion 

selectivity features or the process of gating. In this work a selection of different channel types 

including (i) small viral potassium channels, (ii) hydrophobic synthetic pores and (iii) pentameric 

ligand gated ion channels (pLGIC) will be examined by MD simulations and the reference 

interaction site model (RISM) integral equation theory, to shed new light onto the dynamic, 

thermodynamic and kinetic aspects. The background of these channels and pore systems will be 

introduced in the following subchapters. 

 Tetrameric potassium ion channels  

The basic structure of tetrameric K+ channels is the canonical 2TM/P architecture, which is 

described by two transmembrane domains (TM) connected by a pore loop (P) (fig. 2.2.1).8 This 

pore loop carries the amino acids forming the conserved signature sequence TXGXG (X = variable 

amino acid) of the essential selectivity filter.35 Demonstrated in the K+ inward rectifier KirBac1.1, 

potassium channels can possess proteinogenic receptor domains at their cytosolic termini.97 An 

example for a 2TM/P architecture is the bacterial KcsA channel.35 Modifications of this channel 

blueprint lead to three further classes, denoted as 6TM/P, 4TM/2P, 8TM/2P.8 The predominant 
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6TM/P class is characterized by six preceding TM domains, enabling the channel to respond to 

changes in the membrane potential, leading to a voltage dependent gating, which is exemplified in 

the Shaker type channels.31,32,96,98,99  

 

Figure 2.2.1: Illustration of the 2TM/P potassium channel architecture. A single monomer of a 2TM/P class K+ ion 

channels is represented, showing the two TM segments TM1 and TM2 connected by the pore loop P, which inherits 

the filter sequence motive. The monomer is embedded in a lipid bilayer (orange sphere with black tails) with its termini 

reaching into the cytosol. The graphic was adapted from Choe et al.8  

 

The association into a fully functional tetrameric complex creates new elements besides the 

described secondary structure features. Complexation leads to the precise positioning of pore loop 

elements, finally creating the selectivity filter, which is characterized by distinct spatial 

conformation of the backbone oxygen atoms (Fig. 2.2.2).8 Besides the filter, a water filled void is 

created by oligomerisation, the so called cavity that extends to the mouth region. According to the 

previous discussion, the mouth region undergoes conformational changes, which are supposed to 

be related to the context of gating.75,76 Despite their known core architecture and their sequence 

homology, K+ channels exhibit a huge variety in their total size and in their realization of functional 

features.1,8,77,80,100,101 The latter retards the understanding of their structure-function relation until 

today.  

Double stranded DNA plant viruses (Phycoviridae), were identified to express small K+ channels 

comprised of 94 amino acids or even less.1,28,29,77 Exhibiting full channel functionality while their 

structure is reduced to the maximum established them as model systems for experimental and 

theoretical investigations.28,53,59,78–81,102,103  
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Figure 2.2.2: Tetrameric potassium channels. Cartoon representation of the bacterial K+ channel KcsA (PDB code: 

1K4C) (a) and the viral K+ channel KcvPBCV-1 (b). For clarification only two of the four monomers are shown. The 

filter motive is illustrated as ball and sticks without hydrogen atoms. The backbone elements oxygen, nitrogen and 

carbon are colored in red, blue and black. A detailed excerpt of the filter structure is given in c. Populating potassium 

ions (dark red) are placed at the filter positions S1-S4 to exemplify possible population modes. The structure of 

KcvPBCV-1 (b) is based on a homology model of Tayefeh et al.59  

 

In the biological context, Phycoviridae transfer these channels to the membrane of their primary 

host, which are different species of the salt and fresh water algae Chlorella, to disturb the local 

membrane potential and inject the virus DNA accompanied by its associated transcription 

machinery.77,101,104 Amongst the exhibited variety of K+ channels observed in the family of 

Phycoviridae, the KcvPBCV-1and its near relative KcvATCV-1 are prominent examples, as their 

remarkably compact 2TM/P structure still endows aspects of gating and ion selectivity. While the 

KcvPBCV-1 channel was subject to intense experimental and theoretical studies, only little is known 

from the theoretical point of view about the later identified KcvATCV-1. The KcvATCV-1 channel, with 

a total of 82 amino acids per monomer is significantly reduced by 8 amino acids in comparison to 

the already small KcvPBCV-1 (94 amino acids). Furthermore the research on KcvPBCV-1 has already 

pointed out differences in its realization of gating and ion selectivity when compared to other 

bacterial channels, like the prominent KcsA channel.83,102,103 Those aspects further encourages the 

research in the field of small potassium channels from plant viruses.53,80 Therefore the KcvATCV-1 

channel was suggested as a valuable target for theoretical studies, characterizing its structure and 

thermodynamic aspects. The details of these studies are given in chapter 4. 

Still it would be desirable to fully understand the structural and chemical details of the ion 

selectivity and the entangled process of gating, to enable the rational design of proteins with distinct 
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properties. These could find direct application in biosensors, water purification and in advance help 

to find new treatments for related illnesses.  

In the presented work a focus was laid on two aspects, which were emphasized equally: (i) 

homology model creation for the closed state KcvATCV-1 followed by an opening attempt of the ion 

channel; (ii) establishment of new thermodynamic tools and their application to tetrameric ion 

channels. Thereby a conceivable way to transfer a closed state modeled structure of the KcvATCV-1 

ion channel by combination of homology modelling (HM), molecular dynamics (MD) simulations, 

Gaussian network model (GNM) analysis and anisotropic network modelling (ANM) into an 

potentially open state, was demonstrated. Furthermore investigation with the reference interaction 

site model (RISM) as an application of the classical density functional theory results in a thorough 

thermodynamic analysis of the ion channel structure under physiological equilibrium conditions, 

characterizing the possible open and closed states. 

 Synthetic pores   

The controlled creation of biological pores with distinct selectivity features on a sub-nanometer 

scale was a main goal for several technical as well as chemical approaches.66,67,105–111 State of the 

art techniques like electron-beam lithography and etching approaches can produce pores with sizes 

of 1 or 2 nm.85,110,112–116 An experimentally well characterized example for an etched pore is 

provided by the polyethylene terephthalate (PET) pores of Siwy et al., which are cation selective 

and pH sensitive.113,117,118 However currently reached scales are just scratching the sub nanometer 

range, which is at most relevant for the modulation of ion selectivity.6,115 A related problem occurs 

when it comes to controlled shapes.114 On bigger scales, various controlled shapes could be 

realized, but on the sub nanometer scale this challenge remains unobtainable. Also most of the 

technical approaches work only with non-biological materials.  

The domain of synthetic chemistry and biology tryies to create and design pores with distinct 

features, as they can modify already existing biological modules or use the wide spectrum of 

chemistry to design completely new scaffolds.66,67 Successful mutation and modification of 

biological channels has already created pores which adapted a photo controlled gating 

mechanism.119 Also exchange of sensing domains between existing channels and the formation of 

chimeras, by e.g. the assembly of tetrameric ion channels with unequal monomers, were successful 
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in exhibiting new ion channel characteristics.66,67 While most of the biological approaches are 

primarily focused on modification of currently existing channels, chemically synthesized pores are 

not restricted to these scaffolds. In the last years, several chemical structures with cation or anion 

ion selectivity were revealed. Single walled carbon nanotubes (SWNT) are an example for such a 

promising target. SWNTs have been studied intensively by theoretical approaches, revealing their 

capability for selective water and ion transport as a function of artificial charges and SWNT 

radii.68,85,87–91,111,115,120–127 Besides these successes of in silico SWNT studies, the spectrum for 

possible experimental modifications is still restricted and limits the use of SWNT as a suitable 

model system.128,129 Their results will be discussed in further detail in chapter 3. In addition to the 

before mentioned approaches, a variety of computational models and methods were established for 

the description and scrutinizing of nanopore systems.128–131 The diversity of these methods reaches 

from explicit coarse grained pore models up to completely implicit pores, defined by potentials 

only.132–142  

Still a noteworthy accomplishment was reached by the group of Gong et al., which realized the 

synthesis of a chemical ring structure that self organizes into a multimeric, ion selective pore which 

adopts distinct open and closed states in electrophysiological experiments.6,67 These pores are of 

great interest as they self-assemble into biological membranes in vitro and even more so create ion 

selectivity without any obvious selectivity domains, in contrast to the usually needed filter motif 

of tetrameric channels.143 The key feature of selective ion permeation remains yet unsolved for 

rather simple pores as well as for more complex mulitmeric channels. For those reasons, this new 

pore is the main subject of theoretical investigations in chapter 5. 

 Pentameric ion channels 

This chapter is subdivided into subsections explaining the biological and structural background of 

the pentameric membrane protein phospholamban (PLN) and the pentameric ligand gated ion 

channels (pLGIC). This shall provide an introduction to the class of biological hydrophobic ion 

channels, as a designated ion channel functionality will be the focus of chapters 6 and 7.  

2.4.1 Phospholamban  

Phospholamban is a small integral membrane protein, which is involved in the contractility of 

cardiac muscles by regulating the sarco/endoplasmic CaATPase (SERCA).144 In its biological 
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context, the primary regulatory function of PLN is the inhibition of the calcium Ca2+ transport of 

SERCA, which is modulated by a phosphorylation/dephosphorylated process of PLN at its 

N-terminal domains. SERCA inhibition is released by phosphorylation of PLN allowing for the 

pumping activity of Ca2+.144  The protein structure of PLN exists in an equilibrium between a 

monomeric (6KDa) and a pentameric form (30KDa).145 Two common structure models of PLN 

namely pinwheel (PDB code: 1XNU) and bellflower (PDB code: 1ZLL) are known to form stable 

mono pentameric complexes in membranes (fig. 2.4.1).146–148 While 1XNU is a multi-structure 

model from various sources, 1ZLL was originated by NMR experiments  

 

Figure 2.4.1: Different conformations of PLN. Cartoon representation of the pentameric complex of PLN in the 

pinwheel (PDB code: 1XNU) (a) and the bellflower (PDB code: 1ZLL) (b) conformation. The principle axis is 

indicated by a blue arrow. 

 

In addition to its identified regulatory role as a monomer, the physiological role of the pentameric 

complex is still under discussion. One hypothesis suggests that the complex is a simple storage 

form for the monomers and thereby a possible control mechanism for the free PLN monomer 

concentration level. Also the PLN pentamer could be acting as an ion channel in order to keep the 

electro-neutrality of the sarcoplasmic reticulum (SR) intact.147,149 The ion channel hypothesis is 

supported by previous experimental results and corresponding studies.147,150–154 In addition a 

present hydrophobic ring motive inside the transmembrane segment (TM) of PLN could be an ion 

selective element as known from the similar pentameric ligand gated ion channels (pLGICs) (see 

following chapter).73,94,155 However recent findings revealed phosphorylated PLN can adopt an 
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overall pinwheel like structure in lipid membranes, which is supposed to be incapable of any ion 

channel functionality.156–158 Still PLN was object to several MD simulations, revealing a high 

flexibility of the cytosolic domain, which would finally allow a transition between the bellflower 

and the pinwheel structure.159 It has been shown by MD simulations at pH 7 in 0.3 M KCl that this 

flexibility is even preserved in phosphorylated monomeric and pentameric PLN structures as 

well.160 To shed light on the designated ion channel functionality of PLN, this channel is scrutinized 

in chapter 6 in comparison with the pLGICs, which are introduced in the following subchapter 

2.4.2. 

2.4.2 Pentameric ligand gated ion channels (pLGICs) 

The super family of pLGICs is comprised of pentameric receptor ion channels which play a role in 

the regulation of excitatory signaling. All members have a huge cylindrical extracellular receptor 

domain as well as four transmembrane helices (M1-M4) per monomer, creating a pore lining inside 

the membrane.161 The pLGIC family includes members with known cationic selective channel 

function like the nicotinic acetylcholin receptor (nAChR), the Gloebacter violaceus LIC (GLIC), 

the Erwinia chysanthemi LIC (ELIC) and the serotonin receptor channel 5-hydroxytryptamine 

type 3 (5-HT3R), as well as the anion conductive pLGICs like glutamin-gated chloride channel α 

(GluCl), and the γ-aminobutyric acid receptor (GABAA).162–165 The focus in the following 

discussion is laid on 5-HT3R and GluCl due to their influence on this work (chapter 6). The increase 

of recently revealed high resolution structures of pLGICs in their open and closed states allow a 

detailed reinvestigation of their pore structure.161,162 In this context, negative charged rings formed 

by glutamic acid residues were identified in all cation selective channels (nAChR, GLIC, ELIC 

and 5-HT3R), localized at the intra and extra cellular channel entrances (M2).166 Flanking the pore 

entrances, these residues are supposed to discriminate anions over cations and also regulate the ion 

permeation in 5-HT3R.5,92,161 This was reasoned by an ion selectivity inversion experiment with 

5-HT3R by Gunthorpe.167 Thereby an inversion of the cation selectivity in the 5-HT3R channel 

could be realized by two mutations E1A, V13T and introduction of a new prolin residue adjacent 

to the E1A mutation, analog to previous experiments of Keramidas et al. with nAChR.167,168 The 

core of the 5-HT3R pentamer funnel is lined by uncharged amino acids, forming a restriction of 

4.6 Å diameter at the position of Leu9, which exhibits a proposed ion selectivity function.92,161 This 

restriction formed by Leu9 was called the hydrophobic girdle by White and Cohen and is also 

reasoned to be involved in the cation selectivity of nAChR.169  The influence of restrictions on ion 
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selectivity was identified by a diminished cation selectivity in the E1A mutant of the GLIC channel, 

which is related to a restriction formed at the intra cellular mouth.165 The influence of a negative 

charge at positon E1 in GLIC channels was revealed to play a role in ion selectivity, as Brownian 

dynamics (BD) simulations of Corry et al. observed an anion selectivity in calculations without 

charges for the residue E1.170 In addition to its assumed functionality in the control of ion 

selectivity, BD and MD simulations estimated the influence of the hydrophobic girdle on the 

mechanism of gating.171–173 These studies revealed a major influence of the hydrophobic girdle on 

the gating functionality.71,172,174,175 

The glutamic acid residues present in cation selective pores at both entrances are substituted by 

positively charged residue like arginine at the equivalent positions.92 In case of anion selective 

pLGICs an hydrophobic restriction, equivalent to the ”girdle”, was identified at the pore center and 

described to be an control element of selectivity and ion permeation.162,176 In comparison to their 

cation selective relatives, significant differences arise in the pore radius before and after this 

hydrophobic restriction, as these regions are much wider in anion selective pLGICs like GluCl and 

GABAA in accordance to the currently available structures.164,176 Experimental as well as in silico 

mutation of alanine residues against negatively charged glutamic acid residues in the hydrophobic 

restriction of GlyR inverted its anion selectivity, emphasizing its relation to ion selectivity.168,171 

The influence of the hydrophobic girdle as well as charge are investigated in the context of PLN in 

chapter 6.  

 

3 Methods 

 Molecular dynamics (MD) simulations  

MD simulations allow to calculate the time resolved progression of a system by sampling the phase 

space at distinct points.177,178 The set of obtained configurations at distinct phase space points 

comprise the so called trajectory, which is the primary result of an MD simulation. Particles are 

typically treated in a classical way and parametrized by empirical force fields (FF), neglecting 

quantum mechanical electronic effects.179,180  
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In today’s MD simulation codes the intermolecular potential Vinter is a sum over all dispersion and 

electrostatic interactions, which are often described by the Lennard-Jones- (VLJ) and 

Coulomb-potential (Velec). VLJ is described by  
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with the well depth ij , the distance |rij| and the parameter σij, which is connected to the minimum 

distance rij,min. by 21/6σij = rij,min. The Coulomb potential has the form of 
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with the vacuum permittivity 0 , the relative dielectric constant r (usually set to 1), the charges qi 

and qj the distance |rij| of particles i and j. Electrostatic interactions are treated by the particle mesh 

Ewald method, a numerical implementation for the computation of the Ewald sum, which is a 

possible way to treat the long range nature of electrostatics efficiently.181,182 

The parameters σij and ij are calculated by using mixing rules of Lorentz-Berthelot  

)(
2

1
jjiiij   , [3.1.3] 

)( jjiiij   . [3.1.4] 

In accordance to both potentials VLJ and Velec, the particles are commonly represented as penetrable 

spheres with a single point charge.  
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Figure 3.1.1: Illustration of force field potentials. Schematic depiction of an atomic bond (a), a corresponding bond 

angle (b) between three atoms and a dihedral angle (c) composed of four interaction sites. Atomic elements are 

symbolized by blue spheres, connected by bonds (gray sticks). The characteristic bond length r, the bond angle in  

and the dihedral angle  are indicated.Graphic was adopted from Phillips et al.183 

 

Molecular features of bending, stretching and kinking are described by formulation of 

intramolecular harmonic potentials (fig. 3.1.1) for bonds, angles and dihedrals, leading to an 

internal potential Vintra comprised of Vbond, Vangle and Vdihedral of the form183 
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The spring constant for a single bond b with bond length rb or an bond angle a with angle a is 

denoted by ka. For each dihedral d the multiplicity is described by nd, the current angle is given by 

d and the corresponding equilibrium angle is denoted as d.  

The full potential V(ri) permits the calculation of the force vector Fi for each particle i using  

)( ii V rF  . [3.1.8] 
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With Fi the acceleration ai estimated by Newton’s second law of motion 
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For the integration over time the configurations are stepwise approximated by the so called 

integrator algorithms. The Verlet integrator  
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as one of the most widely used integrators, is based on a Taylor expansion around the current 

position ri(t) obtaining an expression for the advancing step ri(t+t) and a step in the past ri(t-t) 

 2)(
2

1
)()()( ttttttt iiii  avrr  [3.1.11] 

and 
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Addition of equation 3.1.11 and 3.1.12 leads to the described Verlet algorithm 3.1.10. The 

velocities cancel in this approximation due to the opposite signs in eq. 3.1.11 and 3.1.12. The 

obtained Verlet algorithm (eq. 3.1.10) allows the approximation of the new position ri(t+t) by 

using information about the acceleration ai , the old position ri(t-t) and the current position ri(t). 

The acceleration ai is derived from the potential V(ri), which depends on several parameters 

(eq. 3.1.1-3.1.7). The required numerical parameters (see eq. 3.1.1-3.1.7) for the calculation of V(ri) 

are stored in so called force fields (FF), which are parametrized by various approximations. 

Besides the advantages of MD simulations, some limitations should be pointed out. Initially 

defined bonds, angles and dihedrals are immutable in the here presented form of MD simulations, 

due to the choice of a harmonic description of their potentials. In association charges are neither 

polarizable nor a function of the sphere surface, in the here presented approximations. Features of 

polarization and bond breaking are desirable, in particular for chemical reactions, but likewise, they 

are computationally time consuming and yet nonstandard in the field of protein simulations. 
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Another issue regards the parametrization of the peptide ,  angles, which is already difficult for 

simple poly-alanin-helices.184 Force fields like CHARMM22* apply corrections, known as the 

cmap extension (indicated by the asterisk), to tackle these problems.184–186 In addition to the correct 

description of the solute, respectively the protein, the parameters and models applied for the solvent 

are of importance, as most simulation settings consist of just a few solutes and many more solvent 

particles. Amongst the available explicit water models, TIP3P, TIP4P and “extended single point 

charge” (SPC/E) are currently the most prominent and commonly used.187,188 While TIP3P and 

SPC/E models are described by three charge interaction sites, an additional fourth charge center is 

defined in TIP4P models. The corresponding force field parameters were adjusted to reproduce 

experimental densities, radial distribution functions (rdf), phase transitions and many more. But, 

comparison to experiments revealed that none of the mentioned models is capable to reflect all 

macroscopic properties of liquid water. While the SPC/E water model reproduces the dielectric 

constant and diffusion coefficient of water appropriately, oxygen-oxygen rdf functions are very 

well described by TIP4P, properly matching the first and second shoulder. Free energy simulations 

of TIP4P obtained a value of -6.1 ± 0.3 kcal mol-1 for the solvation of a water molecule in water, 

which reproduces the experimental value of -6.3 kcal mol-1.184,189 The TIP3P model has not the 

quality of the TIP4P or SPC/E models, but it is still widely used due to its performance with protein 

force fields. As we used the TIP3P model in this work, complementary ion parameters of Beglov 

and Roux were chosen, due to their optimization for the CHARMM22* and CHARMM27 force 

fields (see Appendix).190,191  
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 Global mode Analysis  

The ability to describe and predict biological functionality on a structural basis is the most striking 

feature of NMA, which explains the increasing relevance over the last decade, especially in 

combination with coarse graining (CG) techniques. In the process of coarse graining, chemical 

details of the structure are neglected in consequence and reformulated into a mass-spring-network, 

where the network nodes are connected by springs, in analogy to harmonic potential functions. The 

validity of this so called elastic network model (ENM) approach was verified by many examples, 

demonstrating the insensitivity of global modes to chemical detail.192–196 ENM takes advantage of 

the CG network representation (fig. 3.2.1), but neglects the detail of a full molecular potential, 

which accelerates the calculations in comparison to a full atomistic NMA model. Two prominent 

applications for the realization of ENM calculations are the Gaussian network model (GNM) and 

the anisotropic network model (ANM). According to its name GNM expects structural fluctuations 

to be distributed in a Gaussian shape around an equilibrium situation, while ANM analysis assumes 

harmonic fluctuation. In opposite to NMA techniques, GNM and ANM analysis define the given 

structure to be in a local minimum. The methodological details of GNM and ANM are presented 

following the publications of Bahar et al. and Karimi et al.192,197–201 Both methods are used during 

the opening process of the KCVATCV-1 described in chapter 4. 

3.2.1 GNM 

Assuming the investigation of a protein structure, the nodes forming the network for the GNM 

analysis are commonly defined by the C backbone positons. To consider the influence of 

non-boned interactions on the protein fluctuations, all interaction sites within a cutoff radius rc 

around a specific node position Ri are connected with it by harmonic springs. A schematic 

illustration of the network is given in figure 3.2.1. The connections between the total numbers of 

nodes N are organized in an N x N Kirchhoff matrix of the form  
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with the nodes i, j and the separation vectors sij between the instantaneous node positions Ri and 

Rj. By the definition of 3.1.2 , the diagonal element ii corresponds to the sum of contacts for node 

Rii, while the off-diagonal entries reflect the sole contacts contributing to ii.  

 

Figure 3.2.1: Schematic illustration of the structural changes. The displacement for two particles (blue spheres) with 

equilibrium positions Ri
0 and Rj

0 are described by the vectors ∆Ri and ∆Rj, leading to the new positions Ri and Rj. The 

connections sij
0 (green, solid line) and sij (gray, dashed line) between the two particles represents the structural details. 

The graphic is reproduced from Bahar et al.192 

 

The potential of the whole conformation can be defined as  

 RR  T

2


V  [3.2.2] 

with the N-dimensional vector ∆R consisting of the single fluctuation vectors ∆Ri and the force 

constant γ, which is usually the same for all springs in GNM. Equation 3.2.2 connects the 

configurational partition function Z by random Gaussian network models to 202,203  

  )exp( T
RRKZ , [3.2.3] 

where K is a constant. The mean correlation between two fluctuation vectors Ri and Rj for the 

nodes i and j can be derived from the configurational partition function by 
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with the temperature T, the Boltzmann constant kB, the force constant γij and the ijth element of the 

inverse Kirchhoff matrix [-1]ij. The mean fluctuation correlation ∆Ri· ∆Rj  for a single atom 

follows the form  
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The mean fluctuation ∆Ri· ∆Rj  results from contributions of N-1 modes k and can thereby be 

formulated as  
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The modes k and its corresponding eigenvectors uk and eigenvalues k can be accessed by 

decomposition of the invers Kirchhoff matrix 
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The sum over k starts at 2 as the first eigenvalue equals zero. As the eigenvalue k is related to the 

frequency and the eigenvector uk describes the mode as a function of the residue fluctuation, 

equation 3.2.7 obtains the variability of each investigated residue without providing spatial 

information. This gap is closed by ANM analysis, which permits the derivation of directional 

information of the fluctuations. 

3.2.2 ANM 

In analogy to GNM, molecular structures are also coarse grained in ANM, formulating a network 

of nodes, which are interconnected by harmonic spring potentials of the form  
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with the force constant γij , the instantaneous and equilibrium distances sij and sij
0 for the nodes i 

and j and their spatial distance components xj-xi, yj-yi and zj-zi. For the first and second derivative 

of V in dependency of the x direction follows 
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Defining the molecular structure as an equilibrium, expressed by sij
 =  sij

0 , equation 3.2.9 simplifies 

to 
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For the second cross-derivation follows  
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The equivalent to the Kirchhoff matrix in GNM Analysis is the N x N Hessian matrixH in ANM 

analyses, taking the form of  
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The single elements Hij are 3N x 3N   
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The information about the frequencies and shapes of the superimposed modes are accessible by 

decomposition of H 

 T
UUΛH  . [3.2.14] 

where  is an diagonal matrix containing the eigenvalues i  and U is an orthogonal matrix whose 

columns are the eigenvectors ui. A total of 3N -6 non-zero eigenvalues and 3N-6 eigenvectors can 

thereby be obtained, accessing the vibrational direction and amplitude of the different ANM modes. 

In a concluding comparison GNM and ANM depend both on the quality of the initial structure, as 

an energetic minimum is assumed. The use of a uniform global spring constant γij might be 

questioned. Still the invariance between an individual γij and a single global γ was verified by Tirion 

et al.204 This result was confirmed by studies proofing that the protein shape controls predominantly 

the global modes.193,205,206 Furthermore environmental effects, e.g. explicitly placed water 

molecules, were revealed to play a minor role for the ENM results.192  

 Reference interaction site model (RISM) 

In contrast to full atomistic and explicit solvent models, RISM describes the solvent implicitly and 

with refined granularity via distribution functions. Thereby RISM calculations access the local 

density of aqueous solutions around a given solute (e.g. protein)  

)()( , rr iii g  , [3.3.1] 

where i, is the density of the bulk phase and gi(r) represents the pair distribution function in three 

dimensional form. gi(r) is connected to the so-called total correlation function hi(r) by 
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.1)()(  rr ii gh  The total correlation function h(r) is the key quantity obtained by solving the RISM 

equation in its three dimensional form (3D RISM)  

  
j

ijjii ch )()( rr  , [3.3.2] 

with the solvent density , the direct correlation function c and the solvent susceptibility χij for the 

interaction sites i and all other interaction sites j (also including i). Equation 3.3.3 can be solved by 

using a further relation between c and h, which is provided in the form of the so-called closure  

  1)()()()(exp)(  rrrrr Buchh iiii  , [3.3.3] 

which connects the information of the local densities 3.3.1 with the solvent-solute interaction 

potential ui . The closure 3.3.3 includes also the bridge function, which is set to zero for the 

hypernetted chain closure (HNC) approximation 

  1)()()(exp)(  rrrr iiii uchh  . [3.3.4] 

A Taylor series expansion of the HNC closure leads to the partial series expansion (PSE-k)207  
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where k defines the order of the expansion. The established system of equations is solved iteratively 

and gains thereby access to g(r), which is related to the potential of mean force w(r) by the 

reversible work theorem  

))(exp()( rr wg  . [3.3.6] 

The quantity of w(r) is the reversible work needed for moving one particle from infinity to a given 

distance. Using a constant particle number (N), temperature (T) and volume (V), w(r) describes the 

Helmholtz free energy for the mentioned process.208,209  
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Chandler and Anderson introduced the intramolecular distribution function210 

 
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
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l

lr
r


  [3.3.7] 

which describes a molecule by its internal distances lγ  between the interaction sites  and γ, the 

distance r and the Dirac delta function (x). The resulting functions of eq. 3.3.7 are organized in a 

matrix v. This formulation was used to describe the molecular geometry in the 1D reference 

interaction site model (1D RISM). Assuming the solute to be a part of the solvent, which is referred 

as the Percus trick, leads to the definition of the pure solvent total correlation function in 

1D RISM-vv 

vvvvvvvvvvvv
hρcωωcωh ****  , [3.3.8] 

where * indicates a convolution. Eq. 3.3.8 can be solved iteratively in combination with a closure 

function, which further demands calculation of the potential ui. Values for the solvent density 

v=(γ)
v, the permittivity and the temperature must also be provided. To include further solutes e.g 

ions to the solvent, equation 3.3.8 can be extended to  

uvvuvuvuvuuv
hρcωωcωh ****  , [3.3.9] 

assuming an infinite dilution of the solute in the solvent. The solvent susceptibilitymatrix  for the 

solution of the 3D RISM equation 3.3.2 can be derived by  

)1( vvvvvv
hρωχ  . [3.3.10] 

In case of an ion consisting solution the DRISM correction from Pettit and Perkyns must be applied 

for dielectric consistence.211 

The applicability of RISM in the field of ion channel research was confirmed by examples of Kast 

et al. and Hirata et al., which scrutinized complete channel structures as well as toy systems with 

3D RISM.53,80,102,212,213 In spite of these examples it shall be pointed out, that the application of 3D 

RISM in combination with ion solutions are still non-standard today and not always successful. Ion 
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containing solutions were used in all parts of this work. As RISM calculations consider internal 

interactions of the solvent, possible cooperative effects can be observed. Concentration dependent 

changes can also be reflected in 3D RISM by calculation of corresponding solvent susceptibilities 

with 1D-vv RISM, which will play a role during the investigation of the synthetic pore in chapter 5. 

 Computation of thermodynamic quantities 

Parts of the following approach are based on the previous work of Kloss et al.214 Distribution 

functions g(r), obtained from 3D RISM-uv calculations, contain the information about the 

distribution for a particle i and thereby allow the formulation of the mass action law in form of

 


Ch

)(1

ch

ch

ch,

bulk,

ch,

,
V

uv

i

i

i

i

i

ic dgV
V

N

c

c
K rr


 [3.3.11] 

by integration over the spatial coordinates r, the channel Volume VCh, the particle densityi and 

the concentrations in bulk cbulk and inside a channel cch. The particle number Nch,i can be obtained 

by  

 
ch

)(ch,
V

uv

iii dgN rr . [3.3.12] 

Assuming the activities as the values for the concentrations, Kc corresponds to the partition 

coefficient.  
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describes the evaluation of the integral, which is computed on a grid from the position Zmin to Zmax. 

The accessible volume VCh and the corresponding inner radius for each position z is gained by 

sampling with the program HOLE. 215 The area corresponding to a given z position is denoted as 

Q(z) and is thereby connected to the free channel volume by 
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A local concentration ci(z) is connected to the partition coefficient Kc by  
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and can be evaluated as  
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The pmf as a key quantity for estimating ion permeabilities to first order can be defined in various 

ways based on 3D RISM calculations. According to Hummer et al.216 we compute the one-

dimensional probability density along the z axis by 
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)1( zQzcNzp ii 
 [3.3.17] 

and the corresponding pmf w(z) normalized to a reference area at z0 from 
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where TkB/1  with the Boltzmann constant kB and temperature T , 
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Equation 3.3.19 reflects a one dimensional pmf wi(z), which can be used to characterize energetic 

barriers exhibited during an ion transfer through a pore. Due to its origin from multi ionic 

calculation’s, the pmf includes inter-ionic contributions which influence the exhibited energies. 

wi(z) was obtained by stepwise integration of the gi(r) function inside small cylindrical elements 

along a predefined path. In case of nanopore systems, this path was defined by sampling of the 

accessible surface area by the software HOLE.215 Assuming an idealized cylindrical form the 

reference area Q(z0) was computed by Q(z0) = π· r(z0)². This normalization is conversely discussed 

by others.217 The normalization of gi(z) is necessary to be independent of the chosen total system 

volume, while g(r) would elsewise not reach zero in the bulk phase in the limit of an infinite box.5  
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 Conductance calculation  

As the selectivity of ion channels can be characterized by their conductance values, a theoretical 

approach for calculation of those was established based on the mean field approach of Hummer et 

al.5 According to them a conductance γi for an ion species i can be estimated by 
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with the ion specific diffusion coefficient D(z), the bulk density ρ the ionic charge q, temperature 

T, the reference area Q(z0) at the cartesian position z and the Boltzmann constant kB.5 Equation 

3.3.20 therefore allows the theoretical calculation of ion transport through pores with certain 

properties. The calculated ion conductances correspond to an external potential of zero and are 

interpreted as a first order perturbation, due to the derivation of eq. 3.3.20 from linear response 

theory. A requirement for the correct calculation of conductances with equation 3.3.20 is therefore, 

that ion transitions occur independent from others. Considering the “single file” mechanism in 

tetrameric potassium channels, eq. 3.3.20 could not be applied to them. For those reasons eq. 3.3.20 

will be used in this work to investigate hydrophobic pore systems. A constant D(z) value was used 

for the theoretical calculation of ion conductances, as changes in D(z) remain experimentally 

inaccessible (see chapter 5 and 6).218 To quantify the effect of an confined environment on D(z), 

control calculations with spatial dependent diffusion coefficients are performed in chapter 6, by a 

Fick-Jacobs related approach of Rubi and Reguera.219 
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4 The plant virus potassium ion channel KcvATCV-1  

 

 Introduction 

To shed light onto the functionality of hydrophilic ion channels, potassium channels comprised 

only of a minimalistic aa set are exclusively investigated. These were identified and studied in 

dsDNA plant viruses of the family Phycodnaviridae of the genus Chlorovirus.101 Hence those 

viruses infect different species of the fresh and salt water green algea Chlorella living 

predominantly symbiotic as Zoochlorella.101 Among the smallest and most prominent K+ channels 

with only 94 or rather 82 aa are those expressed by the Paramecium bursaria chlorella virus 

(KcvPBCV-1) or chlorella virus (KcvATCV-1).
4,28,29 Reduced to the minimum, their ion selectivity and 

gating functionality was verified in various electrophysiological experiments.28 In spite of their 

small size the KcvATCV-1 differentiates not only by its vast open probability of 90 % from KcvPBCV-1 

but also structurally by absence of a N-terminal slide helix.28 Notably this slide helix modulates 

crucial conformational changes related in the gating process due to formation of salt bridges in 

KcvPBCV-1.
102 So this difference is a demonstration for the variety realized in topology and 

functionality quiet in spite of their genetic similarity and their strong reduction. This statement still 

emphasizes the difficulty of understanding structure related ion selectivity. Yet this matter is still 

not finally clarified and thereby evokes the need for additional investigations and thus new analysis 

methods to gain further insights.  

The huge structural diversity in the family of potassium ion channels exhibits a broad variety of 

architectures mediating the fulfillment of various tasks.77 Still the above mentioned studies helped 

to identify common structural domains (see chapter 2.2), which comprise the potassium ion 

channels. Due to its minimalist nature, the KcvATCV-1 channel is supposed to carry only essential 

domains to achieve its purpose.80 In detail one monomer of this viral, hydrophilic channel is 

comprised of two transmembrane (TM) domains linked by a loop which is intersected by the filter 

domain with the amino acid consensus motive TVGTGD and a short pore helix (p-helix) in between 

(fig. 4.1a-c). While the outer TM domain (TM1) mediates mostly the anchoring by hydrophilic 

interactions, the water filled inner cavity region is formed by the topology of the inner TM helix 

(TM2).80 The linking loop region allows the distinct formation of the carbonyl groups of the filter 
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amino acids, to create the filter positions S0 - S4 (fig. 4.1c), which was proven to be at most 

important for the selectivity functionality in previous work.53  

 

 

Figure 4.1: KcvATCV-1 features and simulation overview diagram. Cartoon representation of the KcvATCV-1 homology 

model structure (a). Only two monomers are shown for clarification. Different domains of TM1, TM2, filter, pore 

helix, cavity, loops as well as the N- (green) and C-termini (pink) are labeled. K+ ions (red) are shown as spheres, while 

water is represented as licorice. The corresponding one letter sequence was marked alike (b). For clear assignment of 

the filter positions S0-S4 a detailed representation is given (c). An overview off the complete process is shown as a 

diagram (d). Subsequent stages are connected by arrows. MD simulation steps are distinguished from others by solid 

box lines. Structures are visualized with VMD-1.9.1.220 

 

In case of the KcvATCV-1 channel no experimental spatial structure is currently available. To 

overcome this hurdle, creation of homology models is a feasible approach. The applicability of 

homology models in combination with small viral potassium channels was confirmed by the work 

of Kast and Tayefeh, which created a model of the KCVPBCV-1 channel on basis of the KirBac1.1 

channel.59,103 Following their approach the three dimensional (3D) structure for the KcvATCV-1 

channel was also created on basis of this bacterial inward rectifier. The created structure was used 

as the initial basis for investigation by MD simulations. Therefore a simulation system was created 

comprised of the tetrameric ion channel model embedded in a 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) lipid double layer, dissolved in a 100 mM KCl solution in analogue to 

physiological conditions. Afterwards an averaged structure was derived based on this equilibrium 

simulation results and its properties were further scrutinized by GNM and ANM analysis alike to 
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previous work by others.103,199,221 Identification of an possible corresponding opening ANM mode, 

enabled the formulation of appropriate restrains for MD simulations, leading to an most likely open 

state of the KcvATCV-1. However the accessible time scales of MD simulations are limited. To close 

this gap and investigate thermodynamic properties under equilibrium conditions, we inspected 

averaged structures from the here conducted MD simulations with a classical density functional 

method, namely the reference interaction site model (RISM) in its three dimensional form (3D 

RISM), according to the chapters 3.3 to 3.5.222 

A possible way to obtain a complementary characterization of thermodynamic properties is 

presented by application of the described 3D RISM methodology to MD based average structures. 

The advantage of this novel combination permits access to scrutinize ion channels under 

equilibrium conditions.  

Application to our new homology model verifies the asset of this method as well as the possibility 

to obtain open averaged structures of the KcvATCV-1 resulting from MD simulations. To verify the 

generality of this approach a representative selection of four tetrameric potassium channels is 

processed identically. 

 Methods 

4.2.1 Homology model 

As a required template structure the closed KirBac1.1 (pdb code: 1P7B) was chosen and processed 

in analogy to model creation of the KcvPBCV-1 by Tayefeh et al.3 Deletion of the huge cytosolic 

domain resulted in a truncated KirBac1.1 tertiary structure sharing the same total amount of 82 aa 

as the KcvATCV-1. The full KirBac1.1 tetramer was reconstructed based on one monomer by using 

VMD in version 1.9.1 and the rotation information included the PDB file.220 In addition to the 

structural preparations, an amino acid alignment between the truncated template structure 

(neglecting the huge cytosolic domains) and the known KcvATCV-1 sequence was prepared with 

CLUSTAL (version 2.1).223 The sequence alignment between the KcvATCV-1 and the ion channel 

part of the KirBac1.1 structure 
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KirBac MDLYYWALKVSWPVFFASLAALFVVNNTLFALLYQLGDAPIANQSPPGFVGAFFFSVETL 60 

ATCV-1 -------------MLLLIIHIIILI---VFTAIYKMLPGGMFSNTDPTWVDCLYFSASTH 44 

                        :::  :  ::::   :*: :*::  . : .:: * :*..::**..*  

KirBac ATVGYGDMHPQTVYAHAIATLEIFVG----MSGIALST 94 

ATCV-1 TTVGYGDLTPKSPVAKLTATAHMLIVFAIVISGFTFPW 82 

                      :******: *::  *:  ** .:::     :**:::. 

obtained a total score of 21.95 %. This result was transformed into a required input alignment for 

the homology software (see Appendix). All homology models were created using the software 

MODELLER in version 9.10 with default optimization cycles.224,225 Occurring huge gaps in the 

alignment introduced unreasoned helix breaks. To circumvent this issue, the residues 10 - 15 (aa 

sequence: SWPVF) and 75 - 82 (aa sequence ISGFTFPW) were restrained to an alpha helical 

structure during the model creation. The energetically most favored model out of ten was identified 

by DOPE score and post processed.225 By addition of hydrogen atoms with CHARMM HBUILD 

all titrable residues remained in their standard protonation state equivalent to pH 7. C-terminal 

residues remained deprotonated while the N-terminus was protonated. Histidine residues were 

protonated at their delta nitrogen. The model was minimized in awareness of two ions and two 

water molecules, which were introduced into the filter positions of the model by modification of 

the available information from the KirBac1.1 structure.59 As there are four potassium ions available 

inside the filter of the KirBac1.1 structure 1P7B, the two potassium ions at the S1 and S3 binding 

site were exchanged against water molecules therefore. To evaluate the created homology model 

PROCHECK was utilized in its online version (http://www.ebi.ac.uk/pdbsum/).226 Hydrogen atoms 

were neglected to gain a meaningful result.  

4.2.2 Equilibration MD simulation 

The KirBac1.1 based homology model of the ATCV-1hom was introduced into a pre-equilibrated 

double bilayer membrane of DMPC utilizing the CHARMM-GUI tools.227 Protein embedding was 

realized by formation of a superposition followed by deletion of colliding lipids with any protein 

residues within a sharp radius of 0.5 Å of the protein. The membrane was comprised of 192 lipids 

in total, distributed into 90 lipids inside the upper and 102 in the lower layer. Asymmetric 

distribution was forced by the overall conic geometry of the protein. A total of 16726 water 

molecules (TIP3P model) were added to solvate the system. Misplaced water inside the membrane 

was deleted. By random exchange of 60 water molecules 31 Cl- and 29 K+ ions were introduced 

into the bulk solution creating a concentration of 100 mM KCl. However two potassium ions were 

already located inside the filter structure of ATCV-1hom, sustaining the electro neutrality of the 
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whole system. The system dimensions reached 90 Å x 90 Å x 115 Å for the x, y and z dimensions 

of the core box. Periodic boundary conditions were used. Long electrostatics were treated with the 

particle mesh ewald algorithm on a grid of size 90 x 90 x 120 points using a spacing of 0.1 Å 

between grid points. The temperature was set to 320 K for production runs, controlled by a 

Langevin thermostat with a dumping coefficient of 1 ps-1. A pressure of 1.01325 bar was controlled 

by a Langevin-Piston Nose-Hoover barostat. The CHARMM22* force field for proteins and 

CHARMM27 for lipids were used throughout the simulations (see Appendix) .186,190 NAMD was 

used for all simulation.183,228–230 

4.2.3 GNM/ANM analysis and correlation  

The created average structure model ATCV-1avg,hom
 was superimposed by its filter backbone 

positions with the last frame of the MD simulation of the closed structure for later applicability. 

The structure was scrutinized in a GNM analysis using the Webserver of Bahar et al. with a cutoff 

of 10 Å.194,199,231,232 Inspection of the calculated mean square fluctuation profiles revealed a 

possible opening transition due to significant hinge around Gly77 in mode 8, which was present in 

each monomer. The neglected spatial information of the GNM mode was completed by a 

subsequent ANM analysis.194,199,231,232 Computation of the Euclidian norm  
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was conducted for the Eigenvectors u, where k describes the mode, i the residues and the x,y and z 

the coordinate dimension. The 20 ANM eigenvectors with the lowest frequency were evaluated 

and finally compared to the corresponding GNM norm of the selected leading mode 
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by calculation of the scalar product  
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The computed cosine of the angle φ between the two vectors has possible values in the range of 0 

and 1, where the latter was associated with a perfect match of the GNM and ANM vectors. Through 
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this correlation procedure a single ANM vector with an agreement of 90.75 % was identified 

(mode 4), describing the spatial transition process into a designated open state. This allowed the 

extraction of putative open state coordinates. Those positions were used in subsequent MD 

simulations to successively transfer the closed into the open state (see open mode MD simulation). 

4.2.4 Restrained MD simulations 

Initial starting point was the last frame of the previous equilibrium simulation. Cα positions of and 

identified opening mode structure ATCV-1ANM
 were used as target coordinates for opening attempt 

simulations. The restraints were applied by additional harmonic potentials with spring constants of 

1 kcal mol-1 to all concerned Cα atoms. In MDdisp,77-82 only Cα atoms of residues 77-82 were 

restrained, whereas all 82 residues were restrained in MDdisp,1-82. The following simulation steps 

were carried out alike in simulations with the restrained homology model, denoted by the subscript 

“disp” for displacement. A minimization of 1000 steps was followed by simulations with constant 

pressure, particle number and temperature (NpT) using the described additional restraining 

potentials for 181 ns in case of MDdisp,77-82 and 51 ns for MDdisp,1-82 (fig. 4.12). To enable the 

adaptation to conformational changes inside the filter, the two K+ ions and their coordinated water 

were flexible. After this equilibration phase, unrestrained production runs for 80 ns were conducted 

for both approaches. Continuing from the last conformation of the unrestrained homology model 

simulation MDhom the system volume, temperature and pressure in MDdisp,77-82 and MDdisp,1-82 were 

kept identical to those of MDhom.  

4.2.5 MD Analysis  

By post processing of the calculated trajectories, all systems were moved to the system origin by 

the geometric center of the protein. To avoid artifacts due to periodic boundary condition effects, 

displaced protein monomers were also moved back. The root mean square deviation (RMSD) was 

calculated with VMD-1.9.1 using only the backbone atoms for the initial alignment with a reference 

structure.220 The first structure of the trajectory was thereby used as the reference. The STRIDE 

algorithm was applied in its implemented form in VMD-1.9.1 to estimate the degree of helicity of 

the ion channel.220 Z positions over time are given in respect to the membrane position to avoid 

artificial drift translation effects. Therefore the z position of the membrane’s geometric center was 

subtracted from the corresponding center position of the ion channel. Evaluation of the mouth 

radius occurred each 1 ns. The therefore extracted snapshots were superimposed with the filter 
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backbone atoms to a reference structure. Information about the radius were calculated by sampling 

with HOLE.215 The minimum radius of ATCV-1avg,hom was identified at z position -10.5 Å. 

Investigation of the current mouth radius were conducted accordingly at this reference position. 

For calculation of water molecules inside the cavity the trajectory was processed in 1 ns steps. All 

conformations were aligned by their filter motive. The water density was assessed in a volume of 

18 x 18 x 16 Å3 which considers the distance between the last filter residue THR45 and the C-

terminal TRP82. An illustration of it is provided in the attachment (fig. A4.1) 

4.2.6 3D RISM 

Structure preparation 

The protein structures of the potassium ion channels KcsA (PDB code 1K4C) and NaK (PDB code 

2AHZ) were completed to symmetric tetrameric structures based on the information provided in 

the corresponding PDB file.36,233 In case of KB-Kcv and KcvPBCV-1 refined homology models were 

used.29,103 According to Tayefeh et al. the KB-KcV represents a truncated KcvPBCV-1 model on basis 

of the bacterial inward rectifier channel KirBac1.1.59 Each structure was minimized in the presence 

of two potassium ions and water molecules using MODELLER V9.10.224,225 Ions and water were 

deleted afterwards. All structures remained their titratable residues in the standard ionization state. 

Structures were aligned by their filter sequence with VMD V1.9.1.220 For creation of corresponding 

protein structure files (PSF), the CHARMM22* force field for proteins and CHARMM27 for lipids 

were used (parameters are listed in Appendix).186,190 

Computational details for RISM 

To yield the solvent susceptibility χ individual 1D RISM calculations were carried out on a grid 

ranging from 5.9810-3 Å to 164.02 Å with a total of 512 points. Temperature was set to 298.15 K. 

The HNC approximation was used for the closure. Implicit solvents were calculated for 0.1 M KCl, 

NaCl and CsCl using the densities 0.0333295 Å-3 (pure water), 0.033236 Å-3 (KCl), 0.033270 Å-3 

(NaCl), 0.033236 Å-3 (CsCl) according to a pressure of 1 bar. For water, NaCl and KCl solutions 

a permittivity of 78.4 was applied, while a permittivity of 75.8 was chosen for CsCl. 3D RISM 

calculations were done on a 160 x 160 x 160 grid for ATCV-1Avg,Closed, ATCV-1Avg,1-82 and 

ATCV-1Avg,77-82 (table 4.1), while the bigger channels of KcsA, KB-Kcv, NaK and KcvPBCV-1 were 

computed on 200 x 200 x 200 grid points (table 4.1). A grid point distance of 0.6 Å was chosen 

throughout all calculations. The partial series expansion (PSE) of order 4 was applied for all 
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3D RISM calculations. Atom parameters were taken from the  CHARMM22* force field (see 

Appendix).186,190 

Table 4.1: System and analysis overview for 3D RISM calculations 

Ion channel 
grid dimension 

(x,y,z) 

grid space 

(x,y,z) 
closure 

lower 

border 

upper 

border 
VCh Å³ 

ATCV-1Avg,Closed 160 x 160 x 160 0.6 Å PSE-4 -26.7 27.9 4165.4 

ATCV-1Avg,1-82 160 x 160 x 160 0.6 Å PSE-4 -24.3 27.9 3493.5 

ATCV-1Avg,77-82 160 x 160 x 160 0.6 Å PSE-4 -26.7 27.9 3147.5 

NaK  200 x 200 x 200 0.6 Å PSE-4 -21.3 28.5 1622.8 

KcsA  200 x 200 x 200 0.6 Å PSE-4 -33.9 25.5 1789.4 

KB-KcV 200 x 200 x 200 0.6 Å PSE-4 -29.7 24.9 3051.7 

KcV 200 x 200 x 200 0.6 Å PSE-4 -29.1 29.7 6872.0 

x,y,z identifies spatial grid coordinates. 

lower and upper border designate the z position used for the calculation of Kc and Q0(z). 

The accessible volume between the lower and upper border is denoted by VCh. 

 

 Results  

4.3.1 Model creation 

Due to the absence of an available three dimensional configuration for the KcvATCV-1 structure, a 

homology model was created using the satisfaction of spatial restraints method implemented in the 

software MODELLER (see methods).224,225 However the creation of a homology model requires a 

template structure of known configuration. Yet neither crystal nor NMR structures of comparable 

viral potassium ion channel proteins are available. In case of the KcvATCV-1 homologue KcvPBCV-1
 

the closed structure of the KirBac1.1 channel was a suitable template for the successful model 

creation.59 Therefore KirBac1.1 was considered as a possible template for the KcvATCV-1. 

Calculation of a local sequence alignment with Blastp between the KirBac1.1 and the KcvATCV-1 

revealed a total of 17 identical residues (see Appendix).234 The overall agreement was estimated to 

be 54 %, which was considered to be appropriate enough for a homology template. While the 

KirBac1.1 was available in its closed state the gained model for the KcvATCV-1 was considered to 

be initially in a closed state. The calculated homology model will be denoted as ATCV-1hom
 in the 

following.   
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4.3.2 Structure evaluation 

Protein configurations created by homology modelling need to be reviewed appropriately. For this 

reason a variety of tools already exists.225,226,235 However most of these programs are intended to 

be used in the context of soluble proteins. So their computed score is most likely obtained as a 

combination of results from different methods, including for e.g. hydrophobic surface criteria, 

which are not necessarily directly applicable to the here investigated transmembrane proteins. 

Nevertheless the accurate configuration of amino acid residues in transmembrane segments can be 

used as an indicator for a correct structure, especially those of the alpha helices. For this reason 

investigation by a Ramachandran plot (fig. 4.2) was selected as the most meaningful descriptor to 

assess the residue localization in the context of their secondary and tertiary structure. Investigation 

of the full tetramer revealed the reliability of the model by placing 321 of the 328 residues in the 

most favored and allowed regions. However in several monomers misplacement of LEU21, THR32 

and VAL58 occurred. Still all of these three residues are placed at a helix-loop or loop-helix 

change. Nonetheless the correct placement of 321 residues supported the applicability of the here 

created model. 

 

Figure 4.2: Ramachandran diagram of 

ATCV-1hom. Depiction of the ψ and φ 

angles of the backbone. Values are 

shown as black dots. Residue ψ and φ 

angles are labeled by black squares. Red 

and yellow colored areas mark regions 

of commonly found protein structure ψ 

and φ angle combinations, while white 

areas identify unusual ones. The latter 

are additionally highlighted by red font 

and red squares. 
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4.3.3 Simulation of the ATCV-1hom
 model 

The homology model of ATCV-1hom
 was used as the basis for the assembly of the MD simulation 

system. The structure was embedded directly into a DMPC membrane, which was solvated with 

explicit water molecules and ions in a subsequent step, equivalent to a concentration of 100 mM 

KCl in total (see methods for details).81,236  

For the MD simulation (MDhom) of this system, established simulation schemes were adapted and 

realized stepwise.40,42,237,238 To avoid initial clashes and misplaced geometries a minimization was 

performed for a total of 1000 steps. All residues corresponding to the filter (HTTVGTGD) as well 

as the associated ions and water molecules inside the filter were excluded from the minimization 

steps. Despite the fact that the here used bilayer of DMPC was already pre-equilibrated the insertion 

of the protein as well as the process of solvation in an ion solution introduces a huge disturbance. 

To diminish these effects, a simulation over 0.2 ns was conducted with constrained phospholipid 

head groups, protein backbone, complete filter structure (including the water and ions) and the 

solvent, to allow only the lipid tails and the protein residues to adapt to the temperature and to each 

other. A pressure of 1.01325 bar was introduced to the system at this point. To permit a slow 

adaptation, additional harmonic potentials were applied to all backbone atoms, which were 

stepwise slowly released over 0.2 ns. The filter motive as well as the corresponding water 

molecules and ions were highly restrained (10 kcal mol-1 Å-2) during this process, allowing only 

slight adaptions. The NpT simulation with a now fully unconstrained protein backbone of the 

ATCV-1hom
 was continued after these 0.2 ns for further 5.6 ns to allow additional adjustment. In 

the next 5 ns the complete filter with both water molecules and ions was set free. This completely 

flexible system was simulated for 74.63 ns, leading to a complete simulation time of 85.43 ns.  

  

Figure 4.3: Equilibration simulation overview. Diagram of the homology model equilibrium simulation MDhom. The 

individual simulation steps are shown in rectangles. Related stages are connected by arrows, pointing in the following 

direction. Volume, temperature and pressure details are provided in the method section. 

 

By visual control of the simulation results (fig. 4.4), the ion channel seems to tighten up around the 

mouth region, leading to an interrupted exchange between the bulk phase and the water enclosed 
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in the cavity. Interruption of the cavity-bulk transition foreshadows a nonconductive state of the 

structure.  

 

Figure 4.4: Illustration of MDhom. Visualization of the difference between the MDhom simulation after 25 ns and 85 ns. 

The protein is shown in blue as cartoon, while the lipids are drawn as gray lines whitout hydrogen atoms. The phosphate 

of their headgroups is represented by yellow spheres. Water is illustrated as a blue lines, while potassium (red) and 

chloride (green) ions are drawn as spheres. Two monomers and several lipids are hidden for clarification. 

 

The unrestrained simulation parts (74.63 ns) were scrutinized for the characterization of the ion 

channel behavior. As descriptor for the simulation stability the root mean square deviation (RMSD) 

was estimated over the last 74.63 ns (fig. 4.5). A first period of equilibration over the first 30 ns is 

revealed and characterized by soft and steady increase of the RMSD. All values fluctuate at a 

normal extent with no significant deviations. A plateau is reached after these first 30 ns indicating 

a stable conformation of the ion channel. Detailed investigation of the filter motive (aa 44-50), the 

inner pore helix (aa 33-43) and the transmembrane helices TM1 (aa 4-22) and TM2 (aa 59-82) 

revealed noteworthy changes in only one monomer. While the outer TM1, the filter region and the 

pore helix show a nearly indistinguishable progress of the RMSD for all four monomers, this single 
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monomer deviates after 20 ns significantly in its TM2 helix. The reason is a slight distortion of a 

single TM2 domain into the pore cavity (fig 4.5f). The mouth region area around the C-terminus is 

effected and tightened during this process. This conformational change is comprehensibly induced 

by the initially closed template structure of KirBac1.1 channel. However the individual movement 

of a single monomer was rather unpredicted.  

Known opening mechanisms are usually described by a concerted movement of two or four 

monomers fulfilling similar bending, swivel or kinking motions. Such is the case for the bundle 

crossing in KirBac1.1 or the bending of the TM2 domain in KcsA.83,238,239 Of course the here 

observed individual movement of a single monomer in ATCV-1hom
 might exclude an opening 

mechanism analogue to those of KcsA or KirBac1.1 for the here investigated ATCV-1hom, but in 

contrast these mechanisms are possibly specific for their channel families and cannot be directly 

assigned to the KcvATCV-1 channel family. Furthermore the concerted movement of four monomers 

has yet not been observed and is unlikely in comparison to the individual movement of a single 

monomer. Considering the strong diversity between the two close relatives KcvATCV-1 and 

KcvPBCV-1 involvement of a novel and specific opening or gating mechanism should not be 

disregarded.  

A further characterization of the protein stability was performed by the analysis of the helical 

fraction (fig. 4.6), obtaining a quantity for the characterization of the secondary structure stability 

of proteins in MD simulations.59 In this context a rigid topology is described by a predominantly 

constant value. Such is the case for each of the here analyzed monomers of the ATCV-1hom model 

during the MDhom, also corroborating their individual and structural stability.  
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Figure 4.5: Representation of the computed RMSD. The RMSD value is shown for the complete tetramer (a). The 

RMSD values for the filter (b), the pore helix (c), TM1 (d), TM2 (e) of ATCV-1hom are shown for each individual 

monomer (monomer 1-4: blue, orange, brown, red). A cartoon representation of the ATCV-1hom monomer 

configurations after 25 ns are shown (f). Monomers colors are in correspondence with to those of the RMSD plots. 
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Figure 4.6: Helical fraction of ATCV-1hom in MDhom. The time resolved progression of the total helical fraction is 

represented for each monomer independent. The four monomers are colored (first to last) by the colors red, blue, green 

and orange. Only data from free runs were scrutinized. 

 

As stability of a transmembrane protein is directly connected to its membrane environment, a 

suitable incorporation and steady anchoring can be confirmed by its movement behavior along the 

membrane normal vector. To describe the vertical movement of the ATCV-1hom channel inside the 

DMPC membrane, the z position of the protein was normalized to the geometric center of the 

membrane (see methods). In this context the results of the analysis corroborate a stable 

incorporation of the tetrameric complex as shown by small movements of the center inside the 

membrane (fig. 4.7a), whereas instability would be correlated with rapid fluctuations. The steady 

global behavior is elicited in detail by the associated stability of the four individual monomers as 

shown in fig. 4.7b. The entire results indicate a suitable incorporation of the ATCV-1hom model 

inside the DMPC membrane.   
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Figure 4.7: z coordinate of the geometric center of the complete ATCV-1hom tetramer (a) and the depiction of the 

separate four monomers (b). Color code from monomer 1 to 4: red, blue, green, orange. 

 

4.3.4 Creation of the average structure from MD simulation  

The conducted MD simulation offered the opportunity to calculate an average structure model for 

the ATCV-1hom which in return creates a reliable mean over the dynamic. The creation of mean 

structures of homology model based simulations (last 74. 64 ns) seemed beneficial and was verified 

by previous work as well as by others.59,240  To distinguish the averaged  ATCV-1hom structure 

clearly from the initial homology model an additional subscript was added denoting the average 

model as ATCV-1avg,hom. The creation of the average ATCV-1avg,hom structure utilized the already 

applied schedule for the KcvPBCV-1 and published by Tayefeh.59 This method computes the mean 

distance of all heavy atoms over the simulation time and sets harmonic restraints for all Cα pair 

distances as well as for all other heavy atoms within a cutoff radius of 11 Å. For direct Cα - Cα 

interactions restraints of 10 kcal mol-1 Å-2 were applied, while a force constant of 0.1 kcal mol-1 Å-2 

was used for all others. The estimated mean distances are used to reweight the initial harmonic 

restraints to consider the individual fluctuations occurring during the simulation. Refinement of the 

structure is achieved by a series of 100 steps steepest descent and 50 steps of adopted-basis 

Newton-Raphson minimizations and simulated annealing. Symmetrizing annealing procedures are 

used to find a local minimum of the structure.103 By this process a rotationally symmetric, 

tetrameric ion channel structure was obtained, including the influence of its interactions with the 

environment. Also the thereby gained model is far from being a simple geometric mean. It also 

abolishes probable local disturbances in single monomers that exist only on a short timescale and 

vanish by this procedure. 
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4.3.5 Evaluation of the mean structure ATCV-1avg,hom 

An influential feature for the characteristics of ion transport and the channel state is the radius 

profile along its central axis. Radius profiles allow to identify steric impermeabilities and passable 

gates in dependency of a given structure. To analyze these features in the average structure 

ATCV-1avg,hom radius profiles were calculated (fig. 4.8a) as well as a Ramachandran plot (fig. 4.8a). 

The averaging process diminished the number of unfavorably residue confirmations, according to 

the results of the Ramachandran plot, with only THR32 as an significant outlier (fig. 4.8b). 

Regarding the open state, the radius around the mouth region is crucial for the ion exchange 

between cavity and bulk solution. Unsurprisingly the region around the filter residues is one of the 

most constricted parts localized between 2 to 15 Å (aa 64-50; TVGTGD) in the case of 

ATCV-1avg,hom. Examination of the radius revealed a wider structure in comparison to the analogue 

KB-Kcv and KcvPBCV-1 channel (fig. 4.8a).  Extending into the direction of the C-terminus the 

radius becomes wider forming the water filled cavity volume. The mouth region at a z position 

of -20 Å (relative to the filter S4 position) was identified with a mean radius of 4-5 Å, which is not 

highly constricted and still permeable for ions and water. By their influence on the local ion 

concentrations, exhibited constrictions influence the channel permittivity through formation of 

steric barriers.  

To investigate these aspects in greater detail, 3D RISM calculations with 100 mM NaCl, KCl and 

CsCl in presence of ATCV-1avg,hom were conducted. Subsequent analysis yields the concentration 

distributions c(z) at equilibrium (fig. 4.9). All concentrations were normalized to their bulk 

concentration c0. An important point concerns the calculation of the concentration, which occurred 

only at positions of accessible channel volume generated by HOLE.215 The algorithm was stopped 

if a radius greater than 15 Å was reached. Usually the concentrations at these points were still 

slightly different from the pure bulk phase due to their adjacency to the protein. This explains bulk 

values deviating from 1.0 at the borders. Inspection of the concentration profiles revealed an overall 

enrichment of all three cations Na+, K+ and Cs+ while the anion Cl- was nearly completely depleted. 

In accordance to these 3D RISM results, the ATCV-1avg,hom structure is capable to select cations 

from anions. Among the intra cation concentration an enrichment order of Na+ over K+ to Cs+ was 

obtained ranging from the mouth region up to the S4 filter side. 
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Figure 4.8: Radius profile and Ramachandran plot of ATCV-1avg,hom.The radius profile (a) was calculated along the 

accessible central channel axis of the ATCV-1avg,hom (black line) as well as for related KcvPBCV-1
 and the KB-Kcv (see 

next subchapter for details). An cartoon representation of ATCV-1avg,hom was aligned to the radius profile for structural 

assignment.The radius information was generated by HOLE.215 The Ramachandran plot (b) for ATCV-1avg,hom was 

obtained in accordance to Figure 4.2.  

 

Scrutinizing the concentration profile at the filter region reveals a tight but very distinct pattern, 

which can be related to the different binding positions created by the backbone. Further clear peaks 

in dependency of the ion species are recognized representing the individual binding affinities. The 

binding positions are formed by carbonyl and oxygen atoms of the backbone. Complexation of ions 

can occur in between the eight oxygen atoms or alternatively “in plane” with four oxygen atoms. 

Looking at the binding positions of K+ and Cs+ they populate the filter positons S1 to S4 in 

accordance with their corresponding enriched concentrations. The concentration peaks of Cs+ and 

K+ are localized at the same positions in ATCV-1avg,hom, with a finally higher population of K+ than 

Cs+ at the binding site positions. This implicates a Cs+ over K+ selectivity which is also found in 

electrophysiological experiments. In contrast to K+ and Cs+ the cation with the smallest radius Na+ 

populates the transitions, predominantly the positions in between S2 and S3. Such a behavior was 

already studied and described for a reduced filter motive of the tetratmeric potassium ion channel 

KcsA by Kloss and Kast.53 At this point it should be noted, that in addition to the four filter binding 

sites a fifth concentration hotspot was revealed at the transition from S4 to cavity at z = 0 Å. Beside 
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the strong accumulations inside the filter, an anticipated enrichment of the positively charged 

cations at the negatively charged C-terminus was identified at z = -23 Å. Besides the situation in 

the filter, Cs+ is the most abundant ion in terms of concentrations, particularly in the cavity region. 

To investigate the ion selectivity in greater detail, the calculated concentration information were 

integrated to compute partition coefficients Kc. This procedure anticipates selectivity as an 

accumulation of ion concentrations. Thus a significant criteria for selectivity of an ion channel can 

be achieved by integration along the principle axis and weighting by the passed through volume. 

Referring to the structure of ATCV-1avg,hom 
 Kc values of 3.32, 3.75 and 3.78 were identified for 

Na+, K+ and Cs+ instating a cation selectivity series identical with the previous concentration order. 

By this examination the meaning of Kc as a quantity for selectivity was further verified. It further 

demonstrates the direct influence of the concentration distribution to the selectivity. In contrast to 

the cations, ATCV-1avg,hom was recognized to be nearly impermeable for the anion Cl- as shown by 

Kc values of 0.67, 0.59, 0.57 for ClNa, ClK and ClCs (corresponding cation as subscript). In addition 

these results reveal a slight counter ion dependency of the Cl- selectivity, further demonstrating that 

all interactions of solvent partners are considered. This is one of the advantages of the here applied 

3D-RISM solvent model. 

 

Figure 4.9: Depiction of analysis results for ATCV-1avg,hom. The concentration profile is shown in full extent (a) and 

as an excerpt (b) for greater detail. Also the corresponding Kc profile (c) and pmf (d) are presented. The pmf was 

normalized to a reference area Q(z0). Cations are shown in orange (Na+), purple (K+) and gray (Cs+) while anions are 

green (Cl-). Dashed lines distinguish the different anions. All profiles were calculated along the central axis of the 

tetrameric ATCV-1avg,hom channel structure. 
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To explore the previously stated ion selectivity of ATCV-1avg,hom the free energy profile was 

examined through calculation of the pmf along the central axis. The calculation along a predestined 

1D path can be interpreted as a reaction coordinate, identifying low barriers as well as regions of 

energetic preference. Since the one dimensional pmf was calculated from information of the three 

dimensional pair distribution, interactions between all solvent components are still considered. 

Barriers are defined as the energy change of w(z) between two z positions. Investigation of the pmf 

profile (fig. 4.9) revealed high barriers for the anion Cl-. Expectedly the highest barriers are 

localized at the filter positons exhibiting energies of 4 kcal mol-1 and higher. Interestingly these 

barriers support a strong influence of the counter cation. In case of Na+ the barriers for Cl- are 

significantly lower than in the case of K+ or Cs+. Nonetheless based on the presented pmf results 

the anion permeability would be nearly excluded at room temperature. In opposite the cations are 

energetically favored as indicated by pmf values below zero especially at the filter positions. As 

previously stated the energetically most favored region for the small cation Na+ was found between 

the S2 and S3. Remarkably the pmf results are also consistent with the previously observed 

concentration profiles, drawing a reliable picture of a cation selective channel in combination with 

the Kc information. 

4.3.6 Proof of principle: Tetrameric ion channels 

To validate the general applicability of the here presented method in combination with potassium 

ion channels, an additional selection of comparable ion channels was treated alike. 3D RISM was  

therefore applied to a set of tetrameric ion channels including the potassium ion channel KcsA, the 

potassium/sodium selective channel NaK, a homology model of KcvPBCV-1 as well as a truncated 

structure of the KirBac1.1 channel KB-Kcv.36,59,103,233 The results for solutions of 0.1 M KCl, NaCl 

and CsCl are depicted in fig. 4.10. In general, potassium ion channels are known to have increased 

concentrations of K+ inside their inner cavity region as well as in their selectivity filter. As a result 

of these 3D RISM calculations, high K+ concentrations in the selectivity filter could be observed 

for each of the four ion channels. Focusing on the anion, Cl- is strongly excluded from the inner 

core of the protein and accumulates most likely at the positively charged, accessible residues on 

the outside, e.g. the N-terminal regions. In the case of NaK, KB-Kcv and KcvPBCV-1 even the inner 

cavity K+ concentration is significantly higher in respect to the bulk phase. In addition a strong 

cation over anion selectivity (fig. 4.10) was found in all four channels by investigation of the Kc. 

Investigation of the pmf profiles reveal barriers (Fig 4.10c) for cations as well as anions of over 20 
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kcal mol-1 at the mouth regions and inside the cavity of the KB-Kcv, NaK and KcsA channel. These 

barriers are caused by strong concentration depletions (Fig 4.10a) and are assumed to permit the 

ion permeation in these configuration. A comparison between the ATCV-1avg,hom pmf (fig. 4.9) and 

the here investigated channels revealed significantly lower barriers for all ions in the filter, cavity 

and mouth region of the ATCV-1. This observation could possibly contribute to the experimentally 

confirmed high open probability of the KCVATCV-1. In sum these results support the applicability 

of 3D RISM calculations tetrameric potassium ion channels.  

   

Figure 4.10: Thermodynmic anylsis of  the tetrameric ion channel set. Depiction of the concentration (left row), Kc 

(middle) and pmf profile (right row) for the tetrameric ion channels KcsA, NaK, KB-Kcv, KcvPBCV-1. Abbreviations 

indicate the investigated channel. The partition coefficient Kc values are normalized to the individual, accessible 

channel volume. Cations are color coded in orange (Na+), purple (K+) and gray (Cs+) while anions are represented in 

green (Cl-). Dashed lines distinguish the different anions. All profiles were calculated along the corresponding central 

axis. Concentration and pmf profiles are restricted for clarification. 
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4.3.7 GNM/ANM opening strategy 

Until today no standard approach for transferring a closed state channel into its open structure is 

established. This circumstance is related to the lack of experimentally available structures as well 

as on the fact that different channel types realize their open to close transition with individual 

solutions. The latter explains the ongoing research issue of finding a general pattern that suits to 

all ion channels at the same time. Still for the structure of KirBac3.1 an opening strategy was 

created by combination of experiments and theoretical studies, successfully gaining a designated 

open structure by bundle crossing.83 Characterization of the open state was defined via the radius 

profile, originated from a crystalized S129 mutant, with experimentally higher activity. In case of 

KcsA Sansom et al. created an open state model by stepwise increasing a van der Waals sphere 

inside the mouth region during an MD simulation.239  The combined effects of increased amounts 

of cavity water and significantly wider radius at the mouth after conducted relaxing simulations 

were considered as criteria for an open state. However this outstanding examples presented specific 

solutions for the KirBac3.1 and KcsA channel cases.83,239 To overcome the time intensive and often 

unsuitable way of searching for individual opening strategies, Bahar et al. targeted this problem in 

a more general and exclusively theoretical way by utilization of network models. By application of 

this coarse graining method a transition between two states was calculated for a selection of 

tetrameric ion channels, gaining a suggested transition mode and also yielding the final coordinates 

for the new state. We adapted the overall principle to calculate an open-state structure for 

ATCV-1avg,hom. First a Gaussian network model (GNM) analysis was carried out, returning 

different modes on basis of the averaged structure input. GNM models calculated in such a way 

characterize the global fluctuation on the basis of all Cα atoms inherited in the protein, but neglect 

the 3D information of the structure movement. Due to a focus on global protein motions, the 

slowest modes were of greatest interest. Among these a mode with a significant fluctuation around 

glycine residue (aa 77) was identified. This is remarkable, because the crucial function of glycine 

77 was previously revealed by mutation experiments in KCVATCV-1.
28 Furthermore an analogue 

bending motion induced by a flexible glycine has been confirmed to open the prominent potassium 

channel KcsA (Gly-99) and KirBac1.1 (Gly-134).238,239,241 Still the selected GNM mode contains 

primarily the fluctuation information and neglects the spatial movement. To obtain the required 3D 

transition an anisotropic network model (ANM) analysis was also conducted with the same 

structure. Correlation of the twenty slowest ANM modes with the previously selected GNM was 
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used to identify the best match. Until this point the here presented strategy followed the 

successfully verified and established work of Bahar et al.. Now a new potentially open structure 

further denoted as ATCV-1ANM (fig. 4.11) could be derived, due to the availability of a 

complementary ANM mode and its Eigenvectors. The thereby gained Cα atom coordinates of 

ATCV-1ANM were used in subsequent MD simulations to open the closed state ATCV-1hom 

stepwise by application of harmonic potential. Visual control of ATCV-1ANM revealed the positive 

displacement direction of the eigenvector as feasible, due to widening of the mouth region. This 

was quantified by the calculation of the displacement |∆r| between the C positions of residue 82 

of ATCV-1avg,hom and ATCV-1ANM. The displacement was estimated to be 5.5 Å. 

 

Figure 4.11: Representation of the ATCV-1hom, ATCV-1avg,hom and the ANM based ATCV-1ANM structure. A cartoon 

representation was chosen for the presented structures of ATCV-1hom (left) and ATCV-1avg,hom (middle), while a tube 

depiction was chosen ATCV-1ANM structure. Cα position are shown for clarification in ATCV-1ANM
 as yellow spheres. 

Only two oposing monomers are shown. 

 

The extracted coordinates from the identified open ANM mode allowed the conduction of opening 

attempts by subsequent MD simulations. For this purpose additional harmonic potentials were 

applied to transfer the ATCV-1hom into a designated open state. As a consequence, force constants 

were defined to pull the corresponding backbone C-α atoms towards their new position. Structural 

disruption was avoided by slow increase of those harmonic restraints. Thus the ATCV-1hom 

structure was transferred gradually into an open configuration (see methods for simulation details). 

Two different opening strategies were done in parallel, which are presented in the following. The 

first attempt translates only the channel residues 77 to 82 along the open mode leaving the rest of 

the protein completely free. In the second approach all residues were slowly transferred into the 

derived open configuration, generating the ANM derived equivalent. To clearly distinguish 
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between these simulations, the first will be denoted as MDdisp,77-82
 and the second approach as 

MDdisp,1-82 in accordance to the restrained residues and their displacement during the simulation. 

The reason for a dual opening strategy shall be reasoned in more detail. Considering the results of 

the identified GNM and ANM mode, the channel was supposed to adopt a conductive topology 

due to a bending movement at position Gly77. To introduce the least global disturbance by 

execution of this transition MDdisp,77-82 was the most promising approach. However even starting 

with a well equilibrated structure and carefully introducing the opening motion, the finally adopted 

displaced topology could possibly have introduced disturbance in the residues 1-76. A consequence 

might be an adopted stable, but nonconductive tetramer complex. Due to these possible issues 

MDdisp,1-82 was carried out transferring all residues of the equilibrated closed channel conformation 

slowly into the corresponding open positions. Another difference between both approaches regards 

the lipid membrane. While most of the ATCV-1hom domains can adapt completely free and 

individually per monomer in MDdisp,77-82 the related changes in the DMPC membrane as well as 

vice versa influence can lead to a different result, than it is the case for MDdisp,1-82.  

  

Figure 4.12: Restrained simulation overview. Diagram of the restrained simulations MDdisp,1-82 (a) and MDdisp,77-82 (b). 

The individual simulation steps are shown in rounded rectangles. Subsequent stages are connected by arrows. Volume, 

temperature and pressure details are provided in the method section. 

 

In accordance with the analysis of MDhom
 the z coordinate, RMSD and the helicity were also 

scrutinized for MDdisp,1-82 and MD disp,77-82. Again the RMSD and the helicity values are observables 

for the overall stability of the protein, whereas the z coordinate describes the positioning and 

movement in respect to the DMPC membrane. The analysis only the last 80 ns run results were 

used (fig. 4.12). As a descriptor for the stability, the here presented RMSD values support for a 

robust configuration of the protein over the free simulation time of 80 ns (fig. 4.13a). Both systems 

are considered to be equilibrated already after 20 ns due to the plateau of the RMSD. In detail the 
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protein domains TM1 and the pore helix occupy a very stable topology in respect to the RMSD, 

while the filter region is only steady in three out of the four monomers (fig. 4.14b). But significant 

fluctuations caused by a deviating monomer are limited to the first nanoseconds, before a stable 

topology is found. These filter fluctuations are found in both approaches, but with different 

monomers involved. Still for MDdisp,77-82 all major transitions of the fluctuating filter monomer end 

after 30 ns. In the case of MDdisp,1-82 a stable state of the filter configuration is settled after 70 ns. 

Independently of the simulation system TM2 performs huge changes in its TM2 domain, which 

can be explained in referring to changes introduced to the system.  

Independent of the chosen opening approach, analysis of the helical fraction confirmed the 

structural stability of the simulated KcvATCV-1 (fig. 4.13) structure. The successful outcome of this 

analysis does additionally support the applicability of both approaches.  
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Figure 4.13: RMSD results of the restrained simulations MDdisp,1-82 and MDdisp,77-82. Illustration of the complete (a) 

RMSD and the domain specific RMSD for the filter (b), pore helix (c), TM1 (d) and TM2 (e). Monomers are colorized 

in red, blue, green and orange in accordance to MDhom. 
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Figure 4.14: Helical fraction of KcvATCV-1. Time resolved total helical fraction in simulations MDdisp,1-82 and 

MDdisp,77-82. The helical fraction is represented for each monomer independently. The four monomers are colored (first 

to last) by the colors red, blue, green and orange.  

 

4.3.8 Filter ions 

To describe the dynamic situation of the filter ions during the conducted equilibrium and opening 

attempt simulations, their movements along the z-axis were investigated (fig. 4.16). The geometric 

center of the filter, defined by the residues TTVGYGD (residues 45 to 51), was subtracted from 

the ion current ions position for normalization. 
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Figure 4.16: Filter ion dynamics. The permeation of potassium filter ions (orange, blue and red), described by their 

change in z position, are represetend for MDhom (a), MDdisp,1-82 (c) and MDdisp,77-82 (d). An illsutration of the final state 

(b) of MDhom shows the coordination inside the filter. 

 

At the beginning of the flexible MDhom
 simulation, two potassium ions were coordinated inside the 

filter. After 7.6 ns, a third ion entered the filter from the exterior site of the filter (Fig 4.16a), 

inducing a single file event. The three ions are stabilized over a total simulation time of 74.63 ns, 

occupying the S2, S3 and cytosolic binding site S4 in their final configuration (fig. 4.16b). In the 

following opening attempt simulations MDdisp,1-82
 and MDdisp,77-82 the filter got depleted (fig. 

4.16c,d). In case of MD1-82 the K+ of at the S2 binding site left the filter in the first ns, whereas the 

remaining ions began to switch places at the cavity until the end of the simulation. In MDdisp,77-82 

the K+ coordinated at the S4 site exited through the cavity after 48.0 ns, followed by a permeation 

of the S2 occupying K+ into the exterior. The remaining K+ ion lasted inside the whole simulation 

time 

4.3.9 Open or closed? 

Beyond doubt the transition of ions through a channel is the clearest evidence for a conductive ion 

channel structure. Throughout the here conducted MD opening approaches no ion transition or 

even single file events occurred. According to the experimental open probabilities for KcvATCV-1 

ion transition should occur each 1 ns. However the adopted conformations are stable for over 
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80.0 ns in unrestrained production runs. Perhaps these nonconductive conformations might 

correspond to an open but impermeable topology thus representing a resting or intermediate state. 

Possible reasons for the adoption of such states can be water depletion as well as steric restraints 

around the mouth region. To quantify these hypotheses an analysis of the radius around the mouth 

region as well as the total number of cavity water was conducted (see methods). Both descriptors 

were investigated by their progress over time. Beginning with the radius the restrained simulation 

of MDdisp,1-82 presents a wider mouth region, when compared with the initial MDhom results (fig. 

4.15). Further the unrestrained parts of MDdisp,1-82 are affected by fast radii changes in the range 

from 0.5 Å (closed) to 2.0 Å (potentially open). The fast fluctuations might explain the missing ion 

transitions in the MDdisp,1-82 simulation. Tracking the same radius development in MDdisp,77-82 

revealed a nearly linear convergence against a tight radius of 0.5 Å comparable to those found in 

the closed MDhom, thereby proposing an impermeable and rather closed than open configuration of 

KcvATCV-1 in MDdisp,77-82. Besides the mechanical restraining through residues at the mouth region, 

also the amount of water kept in the cavity controls the ion permeability of an ion channel and can 

also prohibit the exchange between cavity and bulk completely. For those reasons the amount of 

water molecules inside the cavity were observed and compared with the closed state situation in 

MDhom (see Appendix). For the closed structure of MDhom a fast influx of water molecules into the 

cavity was observed gaining a stable population of at least 25 water molecules through the complete 

91 ns. Branching from this point the restraint simulations of MDdisp,1-82 and MDdisp,77-82 exhibit a 

further water influx due to their potentially opened structure. However lifting the restraints in the 

production runs causes a constant water depletion in both opening simulations. Finally the total 

local water density in the cavity drops two times below bulk water concentration (fig. 4.15b,c; 

green line). In context of water depletion it is worth noting that radii below 1.4 are considered as 

impermeable for water molecules.242 Under this criteria an exchange between bulk phase and cavity 

water molecules would only be possible for the ATCV-1 channel in MDdisp,1-82, but are affected 

due to the fluctuations. Considering the amount of water inside the cavity as an indicator to decide 

between closed and open states, MDhom might be already in an open state, in which case the further 

displacement of this geometry (MD1-82, MD77-82) might have introduced intolerable disturbances. 

From this point of view, no clear decision could be made whether the channels are in an open or in 

a closed state. In spite of its high stability and nearly stable population of cavity waters, MDhom is 

the most suitable and putatively open configuration.  
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Figure 4.15: Mouth radius and water density. Depiction of the radius (left row) at z = -10.5 Å over time for the initial 

equilibrium simulation MDhom and the subsequently conducted opening approaches MDdisp,1-82 and MDdisp,77-82. The 

positon of -10.5  Å corresponds to the minimum radius of ATCV-1avg,hom. The radius was sampled with Hole. The 

water density in the cavity is plotted as a function of time. Bulk water density for the given volume is shown as the 

green line. A blue line indicates the moment of full flexebility in the simulation. Data points were assessed in 1 ns 

steps. 

 

4.3.10 3D RISM results of the average structures from the MDdisp,77-82 

and MDdisp,1-82 

On the basis of these simulation results, two new average structures were calculated (fig. 4.16), 

further denoted as ATCV-1avg,1-82 and ATCVavg,77-82 to investigate their thermodynamic properties 

in comparison to the closed ATCV-1avg,hom. The new structures were thermodynamically inspected 

by 3D RISM computations with solutions of NaCl, KCl and CsCl in concentrations of 100 mM. 



67 
 

  

Figure 4.17: Comparison of average structures. Cartoon representation of the mean structures ATCV-1avg,1-82 

(turquoise) and ATCV-1avg,77-82 (dark blue), as well as an superposition overlay. Two monomers are shown for 

clarification. 

 

From the c(z) profiles an enriched concentration for all cations can be stated in the filter region 

while the concentration in the cavity reflected the situation in bulk. Still the anion Cl- is completely 

discriminated or depleted. In difference to ATCV-1avg,77-82 the filter positions S0-S4 are clearly 

defined due to stronger depletion and enrichment alternations in the profile between the transitions 

in ATCV-1avg,1-82. The partition coefficient profiles are stating a clear cation over anion selectivity 

for both averaged channel structures. In detail only a small deviation in selectivity is observed for 

Na+, while Cs+ and K+ are nearly undistinguishable. However the selectivity for K+ and Na+ arises 

at the beginning of the filter positions S4.Focusing on the total selectivity for both averaged 

structures, the greatest deviation in selectivity occurs in the case of Na+, represented by the ratio 

K+/Na+ of 1.17 for ATCV-1avg,77-82 and 1.08 forATCV-1avg,1-82. Notably the S0 and S1 filter 

positions are distorted in ATCV-1avg,77-82 in comparison to ATCV-1avg,1-82 (fig. 4.18), which had an 

influence on the concentration profile and might therefore also have an influence on the partition 

coefficient. Besides the mentioned common features in their selectivity the comparison of the 

corresponding pmf profiles reveals some differences. Speaking of cations the ATCV-1avg,1-82 free 

energy profile is characterized by a smoothly increasing barrier beginning at the mouth region and 

reaching its maximum inside the cavity around z position -8 Å, which is then followed by a long 

decrease. For ATCV-1avg,77-82
 the same progression is observed, but with a much longer and higher 

extend, forming a barrier of about 2 kcal mol-1 at the internal filter position S4. Exhibited barriers 

at the mouth interface are in accordance with the described constant radius decrease, which 

influences also the calculated mean structures. However both structures are suggested to be cation 

selective and in principle ion conductive according to the surmountable barriers. 
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Figure 4.18: Analysis of the 3D RISM results for ATCV-1avg,1-82 and ATCV-1avg,77-82. Depiction of the full (a) 

concentration and partition coefficient profiles (c), as well as the illustration of the pmf (d) normalized to a reference 

area Q(z0). Concentration profile excerpts are provided for detailed resolution in (b). Color code: K+ (purple), Na+ 

(orange), Cs+ (gray) and Cl- (green).  
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 Conclusion 

Supported by the here exhibited results and analysis, the homology modelling approach of 

KcvATCV-1 on the basis of KirBac1.1 was proved to be reasonable and successful. The created model 

was demonstrated to form a stable closed structure in MD simulations. Considering the chosen 

DMPC membrane the investigated ion channel models were well suited inside the membrane 

environment which is in agreement with laboratory experiments.28 The adopted tight geometries of 

the displaced channels MDdisp,1-82 and Mdisp,77-82 were identified to be rigid in respect to their 

monomeric aspects as well as in their tetrameric structures. Both structures adopt a very stable 

unrestrained conformation with a rigid filter structures over a significant simulation time. Their 

capability to coordinate free ions and water molecules over long time scales confirms a reasonable 

filter conformation with inherited potential to conduct ions. Analysis of their unrestrained MD 

simulations revealed a water depletion and radius tightening of the ion channels prohibiting the 

essential K+ transfer. So the observed ion channel conformations might be in a resting or 

intermediate state, which is also considered as a reasonable result for a homology model based 

approach. Still the thermodynamic characterization of the mean channel structures by 3D RISM 

confirmed an existing low energy path for an ion transition through the given average structure by 

the evaluation of pmf. Also the partition coefficient analysis of the 3D RISM outcomes reproduce 

the a cation selectivity order of K+ > Cs+ > Na+ measured in electrophysiological experiments.28 

However all of the yielded structures from the here presented opening attempts are compromised 

with slight issues. No single file events, which are suggested to be the clearest criteria for a 

conductive state, occurred neither in MDdisp,1-82 nor in Mdisp,77-82.  

In general a complete workflow created from scratch for the structure and system creation of the 

potassium ion channel KcvATCV-1 was presented in this work. Furthermore the applied analysis 

strategy demonstrated the complementary character of the here applied different computational 

techniques as well as their extent. In particular the combination of new 3D RISM analysis features 

in combination with MD simulations gained novel insights into the ion channel free energy 

landscape in equilibrium state, which is inaccessible on the short time scales by MD simulations. 

This also accentuates the synergetic strength of 3D RISM in combination with MD simulations.   
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5 A synthetic ion transporter  

 

 Introduction 

The field of synthetic chemistry targets the challenge to design and realize synthetic pore 

equivalents for biological ion channels, by using etching techniques and electron-beam 

lithography.85,110,112–115 Those methods allow for the creation of pores with a controlled size ≥ 

5-10 nm.243 Nonetheless the creation of nanopores with a diameter scale below 2 nm is still a 

challenging task.6,115 Unfortunately these small scales exhibit the most interesting features and are 

thus of most interest. Furthermore, the abiotic nature of such created pores prohibits their direct 

application in cellular systems.  

Continuous progress in the field of synthetic ion channels has achieved the realization of pores 

with distinct features.66,67,244 A novel, simple monomeric ring structure (fig. 5.1, left) based on 

m-oligophenylethynyl (OPE) forming stable pores in membrane “bilayers” with a diameter of 8 Å 

was recently revealed by the group of Gong et al.6,7 The fully functional pore of Gong et al. is 

achieved by the self-assembly of 10 monomers in total (fig. 5.1, middle, right), stabilized via π-π 

interactions, providing a distinct and controlled hydrophobic topology along its central axis. In 

contrast to other π-stacking synthetic ion channels like the guanosine based G-quartet, the OPE 

framework used by Gong et al. facilitates a high rigidity through π-π interactions.6,67,245 Its stability 

was also verified in molecular dynamics simulations (MD).6 However the atoms of the pore had 

no charges during their simulations, according to their provided system data. Investigations with 

4 M concentrations of KCl in large unilamelar vesicles (LUV) and electrophysiological 

experiments revealed a cation selectivity with a small conductance of 5.8 pS observed for K+ in 

conjunction with distinct open and closed states.6 Still concentrations of 4 M are far from the 

physiological in vivo concentrations of plants or animals. Furthermore the currents were not 

observed directly In opposite no conductance was found for the anion Cl-. Such behavior indicates 

the capability of this outstanding pore to be an ion channel.  
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Figure 5.1: Illustration of the synthetic pore of Gong et al.6 The chemical nature of the monomer (left) allows for the 

adaption of a stacked conformation (middle, right) forming a self-assembling pore with a total of 10 monomers (right) 

in accordance to analysis of the Hill coefficient.6 A stick representation is given from a top (middle) and side (right) 

viewpoint. Color code for the chemical elements: C (black); H (white); O (red); and N (blue).  

 

Considering the small size of the complete pore with its co-occurring ion selectivity and gating 

properties, the pore is supposed to be a valuable target for ion channel studies. Therefore we 

investigated the synthetic channel with MD simulations and supplemented the gained results by a 

thermodynamic analysis using RISM. At first, the pore will be investigated with a restrained pore 

conformation (fig. 5.1) allowing the calculation of the concentration profile c(z), the partition 

coefficient Kc and the potential of mean force (pmf) w(z) for each solvent species, which are used 

to study the hydrophobic pore in greater detail. In addition ion conductances were obtained for both 

methods, MD and RISM, in dependency of concentrations. 

In the second part the influence of motion is emphasized by prolonging the existing MD 

simulations without restraints. These trajectories allow the extraction of time resolved pore 

geometries which are investigated by RISM. This complementary approach helps to overcome the 

non-equilibrium situation in MD simulations and vice versa allows studying changes due to 

dynamic aspects in RISM.  
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 Methods 

5.2.1 Structure preparations 

In accordance to the Hill slope results in the supporting information of Gong et al. the in vitro pore 

is comprised by a stack of 10 monomers.6 A corresponding pore with 10 monomers provided by 

the authors was used throughout all MD simulations and RISM calculations. Charges for the pore 

were added, as the provided system carried no charges for the pore. An internal net uncharged pore 

was guaranteed by calculation of counter charges, distributed over corresponding residues, using 

the group concept of CHARMM force fields.246 The charges were calculated using the AM1-BCC 

method. Parameters for a single monomer are provided in the Appendix (table A5.1). The provided 

system from the authors had an unequal distribution of lipids between the two monolayers. The 

difference of 6 lipids was preserved in the here simulated work for reasons of comparability with 

results of Gong et al (for details see following section MD simulation) .6  

Average structures were generated by calculation of the mean geometric positons using 30 

snapshots (1 per nanosecond), extracted from unrestrained MD simulation runs with KCl 

concentrations of 1 M and external potentials of 1 V and 0.1 V. The computation of the direct 

geometric mean was feasible in case of the pore system of Gong, as the only small structural 

derivations occurred during the unrestrained MD simulations. To avoid misinterpretation, the here 

performed calculation of a geometric average structure must clearly be distinguished from the 

previously applied averaging process used for the KcvATCV-1 ion channel. VMD in version 1.9.1 

was used for all structure preparations.220  

5.2.2 1D and 3D RISM computational details 

Solvent susceptibilities χij for KCl solutions for concentrations of 0.1 M, 1 M, 2 M and 4 M were 

gained by conducted 1D RISM calculations with the adapted permittivity and densities listed in 

table 5.1.247,248 The solvent permittivity for pure water was set to 78.4, while the corresponding 

density was set to 0.0333295 Å-3. The values for water and in table 5.1 are equivalent to a pressure 

of 1 bar. The closure function was approximated by the hyper netted chain (HNC) relation. The 

temperature was set to 298.15 K. 
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Table 5.1 KCl 1D RISM parameter 

c / mol  L-1  / Å3  
0.1 M 0.0332356 78.4 

1 M 0.0323666 68.5 

2 M 0.0313470 58.5 

4 M 0.0291598 45.7 

c designates the KCl concentration 

 describes the permittivity,  represents the density 

 

Integral equations were solved in subsequent 3D RISM calculations on a 120 x 120 x 120 Å³ grid 

with a mesh spacing of 0.6 Å. The partial series expansion (PSE) of fourth order was applied as 

the closure approximation. Calculations were accomplished with in house codes and scripts. Atom 

parameters were taken from CHARMM22* and CHARMM27 (see Appendix).186,190 Calculations 

of the restrained pore embedded in a membrane extended the system dimension to 160³ Å³.  

5.2.3 Conductance calculation from MD simulation and RISM calculation 

A series of 30 structures was extracted from MD simulations with an unrestrained pore under 

conditions of 1 M KCl solution and applied external fields of 0.1 V and 1 V. The geometric mean 

was calculated by implemented functions in VMD in version 1.9.1 and investigated by 3D RISM 

calculations, obtaining a single conductance value γavg for each of the two structures.220  3D RISM 

calculations were carried out for each of the 30 structures extracted from unrestrained MD 

simulations. The resulting mean conductance γmean was realized by the calculation of the arithmetic 

mean over all single γ values. 

As the conductance corresponds to the amount of transferred elementary charges over time, it can 

be calculated on the basis of MD simulations by 

 
MD

Field
MD

t

eVni 
  [5.1] 

with the amount of occurring ion transition n for the ion species i, the external field strength Vfield, 

the elementary charge e and the simulation time tMD. Ions passing the distance between z -20.0 Å 

to 20.0 Å were counted as a full transition. As an exception, an entering Cl- ion was counted as an 

partial transition after the visual control of the unrestrained MD simulation with 1 M KCl and 

external potential of 0.1 V. 
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5.2.4 MD Simulations 

The simulated MD system consists of 44789 atoms with dimensions of 75.03 x 92.26 x 91.243 Å3. 

The pore was embedded inside a membrane bilayer consisting of 137 lipids, distributed unequally 

into 66 lipids in the upper leaflet and 71 for the lower leaflet, due to the original setup provided by 

Gong et al.6 The solvated system inherited a total of 8209 water molecules. Introduction of 83, 166 

or 332 cations and anion occurred randomly in exchange against water molecules to gain final 

concentrations of 1 M (83), 2 M (166) and 4 M (332). Each system was minimized for 1000 steps 

and equilibrated by simulation in the NpT ensemble for more than 10 ns at 1 bar and 310 K. 

Temperatures near body temperature provide a higher membrane fluidity and were successfully 

used in simulations with a restraint McsL channel of Elmore and Doughtery.249 A mean volume 

was calculated using the last 5 ns. The least deviating system geometry in accordance to this mean 

volume of the NpT ensemble was thereby identified and used as the restart geometry for 

subsequently performed simulations with constant volume (NVT). For simulations with an 

electrical field of 1 V or 100 mV, external fields of 0.2562283 V· Å-1 or 0.02562283 V· Å-1 were 

applied in the z-dimension. All simulations were realized with the combination of VMD (system 

creation and manipulation) and NAMD.183,220 The minimized structure was used in simulation runs 

with restrained topologies. The subscript “free” and “fix” will be used in the following to 

distinguish simulations with restraints (“fix”) from those without (“free”). 

Extraction of the RMSD and z positions for the pore were done with VMD in version 1.9.1. 

Minimized structures were used as reference for the RMSD calculation.220 The complete pore, 

including all hydrogen atoms, were considered for the RMSD calculation. The z position was 

obtained by extraction of the current spatial z coordinate of the pore’s geometric center. To exclude 

movement, induced by the membrane translation, the geometric center of the membrane was 

calculated and subtracted. The membrane center was defined by its phosphate atoms inherited in 

the lipid head groups.  
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5.2.5 Validation of the reference area Q(z0) 

All conductances in this work were normalized to a reference area Q(z0) in accordance to equation 

3.3.20. The change of γ in dependency of the chosen Q(z0) was previously estimated and is shown 

in table 5.2. In case of the synthetic pore, the default radius for the lower border was estimated to 

be 15.9 Å. The average structure obtained from simulations of 1 M concentrations of KCl and an 

external potential of 1 V was chosen as the test system. The results represent an insignificant 

influence. 

Table 5.2 Variation of the reference area Q(z0) 

  z position K+ Cl- 

γavg,struct / pS 15.3 101.1 356.1 

γavg,struct / pS 15.9 99.4 351.8 

γavg,struct / pS 16.5 97.2 345.5 

 γavg,struct denotes the conductance value of the average structure  

5.2.6 Membrane influence 

To exhibit the effect of a membrane to the calculated ion conductances, 3D RISM calculations with 

a POPC membrane were performed, using the restrained pore applied to concentrations of 0.1 Mfix 

and 1 Mfix KCl. The addition of the membrane was accompanied by small changes in the 

conductances for the Cl- and K+ ions. Still the observed effects are rather insignificant, not 

interfering with the major anion over cation selectivity (table 5.3). 

Table 5.3 Membrane influence 

  Concentration system K+ Cl- 

γ / pS 

0.1 M KCl 
pore 18.39 74.12 

pore + POPC 23.31 55.81 

1 M KCl 
pore 171.92 440.07 

pore + POPC 183.67 405.04 
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 Results  

5.3.1 Studies of the synthetic pore geometry by MDfix simulations and 3D 

RISM 

To study the properties of this new pore created by Gong et al. MD simulations in varying 

concentrations of KCl solutions (fig. 5.2 and fig. 5.3) were conducted. In accordance to descriptions 

in the work of Gong et al. an initial concentration of 4 M KCl was chosen (fig. 5.2 and fig. 5.3). 

The created system was minimized for 1000 steps and simulated at 1 bar and 310 K for 20 ns with 

a restrained pore structure (fig. 5.2). Simulations in the NVT ensemble were branched from the 

results of this simulation using a mean volume that corresponds to the NpT pressure (Fig 5.2). 

 

Figure 5.2: Diagram for MD simulations with the pore of Gong et al.6 Depiction of the deductive MD simulation 

process. Each box represents a single MD simulation. The calculated mean volume according to the pressure (1 bar) 

of the prior NpT simulation was used for the NVT simulations.  
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In these subsequent simulations the influence of the restrained and unrestrained pore geometries 

were examined as well as the changes to an applied external field. Still concentrations of 4 M KCl 

are barely physiological and nearly inaccessible in the laboratory. In addition solutions for 4 M 

KCl concentrations could not be accessed by 1D RISM, due to convergence problems. Thus MD 

simulations with lower concentrations of 1 M and 2 M were conducted in addition (fig. 5.2 and fig. 

5.3). The setup for simulations with 1 M and 2 M concentrations of KCl were branched from the 4 

M simulations in the NVT ensemble (fig. 5.2). Again, for these simulations the influence of 

dynamics and an applied external potential was studied. To assure clarification for the reader the 

results of the restrained pore will be discussed first, followed by the according discussion of the 

dynamic systems.  

 

Figure 5.3: Restrained pore MDfix simulation systems. Representation of the hydrophobic pore (golden) embedded in 

the lipid POPC bilayer (black) for the KCl concentrations 1 M (left), 2 M (middle), 4 M (right). Ions are shown as red 

(K+) and green (Cl-) spheres, water as transparent blue ball and sticks. Only one half of the system is shown for 

clarification. 

 

Insights regarding the ion selectivity were derived by the analysis of MD simulations with a 

restrained pore topology. Ion transitions did not occur in any of the restrained simulations without 

an additional external field.  
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Figure 5.4: Illustration of the external field induced ion transfer in restrained MDfix simulations. Depiction of all anions 

(upper line) and cations (lower line) is shown for MDfix simulations with 1 M (left), 2 M (middle), 4 M (right). The 

z position of each ion is shown as a single point. The unfilled middle belongs to the membrane slab. Occurring dotted 

lines are interpreted as transitions through the pore (table 5.3).  

 

In contrast, charge transfer events through the perfectly arranged pore could be observed after 

addition of an external field with a potential corresponding to 1 V (fig. 5.4). Surprisingly not a 

single K+ transition event was recognized in simulations with concentrations of 1 M, 2 M and 4 M 

(fig. 5.4a). In contrast, ascending with higher concentrations 14, 23 and 29 Cl- transitions through 

the same pore occurred (fig. 5.4b). The unexpectedly high frequency of ion transitions lead to 

theoretical conductance values of 74.8 pS, 122.8 pS, and 154.9 pS (table 5.4). As those values are 

based on counting of complete single ion transitions, its absolute value increases in distinct steps. 

Illustrating this relation, a single ion transition occurring within a simulation time of 30 ns changes 

the conductance by 5.3 pS, assuming an external potential of 1 V in this instance. This example 

demonstrates the sensitivity of the conductance to ion transitions. Higher concentrations are 

considered in the conductance calculation indirectly by an increased chance for occurring ion 

events. The cation channel activity observed by Gong et al. is in contrast to the here calculated high 

Cl- conductances.6  
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A summary of all obtained conductances in this chapter is provided in table 5.4. 

 Table 5.4 Conductance result for MD and 3D RISM. 

System pore γMD /pS γRISM /pS γavg,struct  /pS γ  /pS 

  K+ Cl- K+ Cl- K+ Cl- K+ Cl- 

0.1 M  fix - - 18.4 74.1 - - - - 

1 M  fix - - 171.9 440.1 - - - - 

1 M, 1 V fix 0.0 74.8 - - - - - - 

1 M, 0.1 V free 0.0 2.7 - - 101.4 349.1 105.3 331.6 

1 M, 1 V free 0.0 21.4 - - 99.4 351.8 106.3 336.6 

2 M  fix - - 252.9 596.2 - - - - 

2 M, 1 V fix 0.0 122.8 - - - - - - 

4 M fix - - - - - - - - 

4 M,1 V fix 0.0 154.9  - - - - - - 
γMD the conductance from MD simulation. 

γRISM describes the conductance values obtained from 3D RISM results. 

γavg,struct denotes the conductance based on a single average structure. 

γ describes the mean over 30 single structure conductances.(see section mean conductance) 

Results obtained with restraint pores are indicated by “fix” in opposite to “free”. 

 
 

5.3.2 Thermodynamic analysis of the restrained pore geometry 

To conduct 3D RISM calculations with the hydrophobic pore, solvent files for the concentrations 

of 1 M and 2 M KCl were obtained for direct comparison with the MD simulation results, as well 

as an additional 0.1 M concentration, due to its physiological relevance. Solvent susceptibilities of 

higher concentrations could not be achieved due to convergence issues. Each of the described KCl 

concentrations (0.1 M, 1 M, 2 M) was applied to the restrained hydrophobic pore in individual 3D 

RISM calculations. The thermodynamic properties were characterized by calculation of their c(z) 

profile, Kc profile and w(z) profile (fig. 5.5). 
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Figure 5.5: Thermodynamic profiles obtained by 3D RISM analyis with the restrained pore. Representation of the 

radius profile r(z) a and the c(z) b, w(z) c, Kc d profiles for the restrained pore in concentrations of 0.1 M, 1 M and 

2 M KCl. The ions are represented in purple (K+) und green (Cl-). Water (oxygen: red; hydrogen: blue) is shown only 

in the c(z) and Kc.  

 

Inspection of these results reveals also an anion selectivity in accordance to the here observed 

enrichment of Cl- over K+ represented in the c(z) (fig. 5.5b). This result is consistently established 

in all studied concentrations. Still an effect of higher concentrations is characterized by gradually 

stronger depletion of ion species, while water is further enriched over the complete pore. The 

observed lower K+ and Cl- peaks in the c(z) for 1 M and 2 M KCl solutions are explained by their 

higher bulk concentration. But the detected concentration shrinking describes the effect of a 

beginning saturation, which is plausible at concentrations of 1 M and 2 M. The c(z) profiles reveal  
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a super positioning for K+ and Cl- as well as water, with an enrichment predominantly occurring 

between two monomers, while positions inside monomers are evaded. This can be inspected in 

comparison to the radius profile r(z) (fig. 5.5a) and by illustration of the solvent distribution 

functions (fig. 5.6). Also the c(z) profiles show a huge increase of water inside the pore for all 

concentration values. Thus the hydrophobic pore is suggested to possess a predominant permittivity 

for water, as corroborated by the vesicular experiments of Gong et al.6 Examination of the free 

energy profile for ion transitions through the pore by w(z) reveals only insignificant barriers with 

energies below 2 kcal mol-1 (fig. 5.5c), which allow for ion conductance and ion flow through the 

pore in principle. Notably w(z) implies an eased permeation for the anion due to the lower barriers 

for Cl-. In comparison to the r(z) the occurring barriers can be related to the restriction when passing 

through a monomer (fig. 5.5a). As the partition coefficients Kc are calculated by integration of the 

c(z) profiles, their final value represent the accumulated amount of a solvent species along the 

accessible volume of the pore. Thus the overall high concentration of Cl- and the discrimination of 

K+ is represented by the higher final values found in all investigated concentrations (fig. 5.5d), 

while in analogy the corresponding values for water confirm its broad enrichment. The final Kc 

Cl-/K+ ratios of 4.37, 2.80 and 2.57 for the concentrations of 0.1 M, 1 M and 2 M quantify the 

decreasing Cl- selectivity of the pore at higher concentrations. Finally the combination of 

surmountable barriers identified in the w(z) profile, the small restrictions in the r(z) profile and the 

concentration enrichment agreement between c(z) and Kc give reasons to propose an anion over 

cation selectivity for the investigated pore. The identified anion over cation selectivity of the 

hydrophobic pore is further supplemented by the independently gained MD results for the 

restrained pore. The anion selectivity of the restrained pore geometry is further supported, as they 

were obtained from independent techniques with a different theoretical background.  

5.3.3 Restrained pore conductance  

Combination of the calculated w(z) and the equation 3.3.20 of Hummer et al. enables the calculation 

of conductance rates.5 Conductance values of 18.4 pS (0.1 M), 171.9 pS (1 M) and 252.9 pS (2 M) 

were calculated by the application of equation 5.2 to the presented 3D RISM results (table 5.2). 

Corresponding values of 74.1 pS (0.1 M), 440.1 pS (1 M), and 596.2 pS (2 M) were stated for 

Cl- (table 5.4). A subscript notation was introduced to properly distinguish between the 

conductances γMD and γRISM obtained from MD and 3D RISM respectively. 
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As foreshadowed by the analysis of the 3D RISM results, the calculated γRISM confirms the anion 

over cation selectivity of the fixed pore topology. In addition γRISM increases with the concentration. 

This trend is also stated by the results of the MD simulations with an applied external potential of 

1 V. Comparison of γRISM and γMD reveals significantly higher values for conductances based on 

the 3D RISM results. The disparity between γMD and γRISM results could be related by artifacts of 

the 3D RISM calculations. A visualization of the solvent distribution is provided by fig. 5.6 to 

illustrate the 3D density function g(r). 

 

Figure 5.6: Density profiles for KCl in the restrained pore case. Representation of the g(r) function around the fixed 

structure of the pore for concentrations of 0.1 M, 1 M and 2 M KCl. The densities are shown for K+ (purple) and Cl- 

(green) separately in subpanels a and b at an isovalue of 1.15. Clipping planes were used to truncate the densities in 

the fore- and background, gaining a focus on the concentrations around and inside the pore.  

 

Artificial effects due to the absence of a membrane for the presented 3D RISM results were 

excluded by test calculations performed with a POPC membrane (see methods). Their results 

revealed that γRISM is invariant with regard to the use of a membrane (table 5.3). Furthermore 

equation 3.3.20 assumes ion transition without disturbing or auxiliary influences of other ions, 
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which is only guaranteed by low ion concentrations. The constant value for the diffusion coefficient 

D(z), as used in equation 3.3.20 of Hummer et al., might also be criticized, as this quantity changes 

in association with local restrictions (see next chapter for detailed discussion).5 However both 

methods, 3D RISM and MD simulation, are in agreement about the anion selectivity of the here 

investigated hydrophobic pore.  

5.3.4 Dynamic pore studies  

To investigate the results observed in the restrained case, further studies focused on the dynamic 

aspects onto the pore. Thus additional MDfree simulations were conducted with flexible pore 

monomers. A focus was laid on KCl solutions of 1 M concentration as those was the most 

physiological important one with observed ion transitions. External fields were again applied 

during these MDfree simulations, as permeation occurred only with an external field in the restrained 

case. Fields with a strength corresponding to 1 V Å-1 and 0.1 V Å-1 were chosen. These were applied 

to estimate the dynamics under physiological conditions (0.1 V Å-1) as well as to gain a result 

directly comparable to the restrained case (1 V Å-1). 

 

Figure 5.7: RMSD and z position of the unrestrained pore. Representation of the RMSD (left) for the MDfree 

simulations in 1 M KCl with a free pore geometry under external field conditions of 1 V Å-1 (purple) and 0.1 V Å-1 

(light blue). The movement of the geometric center along the z position is also shown (right) for both conditions with 

the same color code. z positions were normalized in respect to the membranes geometric center. 

 

The stability of the synthetic pore was quantified by its root mean square deviation (RMSD) and 

the movement of its geometric center in z direction (fig. 5.7). The smooth progression of the RMSD 

(fig. 5.7, left) supports the stability of the simulation. Still in the first nanoseconds of the simulation 

an adaption of the system to the applied voltage can be observed. As the z positions are normalized 

to the geometric center of the membrane, the RMSD analysis points out translational movements 
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of the pore inside the membrane. Nonetheless the pore is suitably incorporated in the membrane in 

accordance to the shifts of ±3 Å in z.  

In accordance to the restrained case, ion transitions were investigated for the conducted MDfree 

simulations of 0.1 V and 1 V (fig. 5.8) in KCl concentrations of 1 M. In analogy to the restrained 

case, only transitions of anions were observed, while cation transitions did not appear. In addition 

the anion transitions occurred with a much lesser frequency in comparison to the restrained case 

(table 5.4). A total of 4 Cl- transitions happen with a field of the 1 V Å-1. With an even lower field 

of 0.1 V Å-1 only two Cl- ions were found to enter the pore after 20-27 ns. As the latter of both 

entering Cl- ions crosses half of the pore before it returned back into the bulk phase, this event was 

counted as a transition with a value of 0.5. The deduced conductances calculated on the basis of 4 

and 0.5 Cl- correspond to values of 21.4 pS and 2.7 pS. Conductances for K+ are again 0.0 pS in 

both simulations, as no cation transitions occurred (fig. 5.8, b). A flexibility of the synthetic pore 

is accompanied by a diminished transition rate, expressed via reduction from 74.8 pS to 21.4 pS 

(table 5.4), in the restrained simulation at 1 M and 1 V. 

 

Figure 5.8: Illustration of ion transfer under dynamic conditions. A depiction of all anions (a) and cations (b) is shown 

for MD simulations with 1 M concentrations of KCl and an external field of 0.1 V Å-1 (left) or 1 V Å-1 (right). The z 

position of each ion is shown as a point. The unfilled middle belongs to the membrane slab. Occurring dotted lines (a) 

are interpreted as transitions through the pore. Each ion is colored individually. 
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An illustration of adopted structures induced by changes happening during the unrestrained 

simulations in the presence of 0.1 V Å-1 and 1 V Å-1 external fields is given in Fig 5.9. For this 

purpose pore structures were extracted in a step size of 1 ns. Thereby a representative set of 30 

different structures was created. The collection of snapshots clarifies the stability of the synthetic 

pore, as corroborated by the always connected monomers due to their π-π stacking interaction.6 Sill 

individual monomers are shifted in the x, y plane slightly, leading to a narrowing of the inner radius. 

This observation might be related to a possible gating mechanism revealed by the measurements 

of Gong et al.6 

 

 

Figure 5.9: Pore structures of the unrestrained simulations MDfree. Visualization of the synthetic pore extracted from 

the 1M, 1V and 1 M, 0.1 V trajectories. The pore configurations are shown as licorice models for the times steps of 1 

ns, 5 ns, 10 ns, 15 ns, 20 ns, 25 ns and 30 ns (left to right).  

 

5.3.5 Investigation of the geometric average structure 

To condense the information of all snapshots in a single structure, an geometric average structure 

was calculated for each of the MDfree simulations with different external fields (fig. 5.10). The 

average structures are based on 30 structures taken from simulations of 1 M, 1 V or 1 M and 0.1 V.  

The obtained structures will be denoted as MDfree,avg for clarification. As discussed in the methods 

section, the here conducted averaging process distinguishes from the calculated average structure 

of the KcvATCV-1, due to its calculation of a simple geometric mean. Nevertheless calculation of a 

direct mean is only possible, if the structure is stable and vice versa does not deviate to much from 
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its origin. This is the case for the pore of Gong et al., as confirmed by the obtained RMSD values 

for the corresponding MDfree simulations (fig. 5.7 and fig. 5.9). Comparison of the original structure 

with the calculated average structures by calculation of the RMSD between them, showed values 

of 1.34 Å for the 0.1 M, 1 V case and 1.40 Å for 1 M, 1 V. Besides their similarities small 

differences are recognized by the inspection of the accessible volume and the associated radius 

profile (fig. 5.10). The pore volume inside the restrained pore can be described as an approximated 

cylinder, whereas bending and wiggling motions occur at the lower parts (negative z position) for 

the here investigated average structures. 

 

Figure 5.10: Comparison of the average structures. Licorice representation of the restrained pore (left column) and the 

generated average structures from unrestrained 1 M KCl MD simulations with external potentials of 0.1 V (middle) 

and 1 V (right). Overlay with the accessible volume (blue) is shown in row b. Corresponding radius profiles are shown 

in c. 

 

The generated average structures allow for additional investigations with 3D RISM to get a 

complemental thermodynamic characterization for both structures (fig. 5.11). Thus both structures 
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were analyzed with 3D RISM calculations using a solvent concentration of 1 M. Investigation of 

the results state again an anion over cation selectivity, confirmed by the Cl- over K+ enrichment, 

described by the corresponding Kc and c(z) profiles (fig. 5.11) as well as by their calculated 

conductances γavg of 101.4 pS and 349.1 pS for K+ and Cl- in the case of 0.1 V and 99.4 pS and 

351.8 pS for the average structure originated at 1 V (table 5.4). However K+ and Cl- are depleted 

over wide parts of the pore while water is still enriched. So considering the influence of motion 

due to averaging over structures obtained from unrestrained MDfree simulations still confirms the 

anion over cation selectivity with also a high permittivity for water. In comparison with the rigid 

pore results (fig. 5.6) differences can be recognized for the profiles for c(z), Kc and w(z) (fig. 5.11) 

localized at z positions below -5 Å. These can be explained in respect to the previously described 

wiggling and bending motions found in the accessible volume (fig. 5.10).  
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Figure 5.11: Thermodynamic investigation of the average structures. Representation of the c(z) (a), w(z) (b), Kc (c) 

profiles for the average structures from unrestrained 1 M KCl MDfree simulations with external potentials of 0.1 V (left) 

and 1 V (right). The ions are represented in purple (K+) und green (Cl-). Water (oxygen: red; hydrogen: blue) is shown 

in the c(z), Kc plots only. 

 

Figure 5.12: Ion density profiles. Visualization of the g(r) of K+ (purple) (a) and Cl- (green) (b) at an isovalue of 1.15. 

The concentration around the dynamic pore is illustrated for the average structures gained from simulations with 

external fields of 0.1 V and 1 V. Clipping planes were used to truncate the densities in the fore- and background, 

providing an illustraion of the concentrations around and inside the pore. VMD-1.9.1 was used for this procedure.220 

 

5.3.6 Mean conductance  

In addition to the analyzed average structures a simple mean conductance was calculated as further 

verification of the approach. The 30 topologies used for the calculation of the geometric mean were 

investigated by individual 3D RISM calculations, with a corresponding solvent concentrations of 

1 M KCl. Thereby a total of 30 conductance values were created for each investigated MDfree 
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simulation (1 M, 0.1 V and 1 M, 1 V). The calculated single conductances was average to a  mean 

conductance γ, exhibiting values of 105.3 pS and 331.6 pS for K+ and Cl- in the 1 M, 0.1 V case 

and values of 106.3 pS and 336.6 pS for the corresponding K+ and Cl- calculations at 1 V (table 

5.4). Due to the agreement of these conductances (table 5.4) with those of the earlier described 

averaged structures, the accuracy of the approach is further secured. However a difference between 

the RISM based conductances and those obtained from MD simulations still exists. 

 Conclusion 

By the conducted investigations of the synthetic, hydrophobic pore with the presented dual 

approach of MD simulation and 3D RISM, a significant anion over cation permeability could be 

identified. This result is different from the cation selectivity reported by the authors Gong et al.6 

Notably the here presented anion selectivity was observed in an MD simulation system 

corresponding to those of Gong et al., with exception for the pore charges. The here presented 

results revealed an anion selectivity in restrained as well as unrestrained MD simulations with 

concentrations of 1 M, 2 M and 4 M KCl. An effect of the bulk concentrations on the ion selectivity 

could be identified, as increasing concentrations diminished the anion over cation selectivity ratio 

of the pore. This was also identified by thermodynamic analysis of 3D RISM calculations with ion 

solutions. An accompanied effect of saturation was also represented by the corresponding partition 

coefficient and concentration profiles. Derivation of the pmf with 3D RISM allowed the calculation 

of conductances in accordance to the theory of Hummer et al.5 In comparison with MD simulations, 

pmf based conductances were significantly higher, but at the same time supported the anion 

selectivity of pore in all investigated geometries. The differences in the absolute values of  γRISM 

and γMD could be related to artifacts in 3D RISM or due to the limitations of the eq. 3.3.20 of 

Hummer, as those assumes ion transitions to occur independent.5 Such might not be the case at 

high concentration. Also high concentrations are known to affect the diffusion coefficient, which 

was not considered by the here applied constant D(z) in eq. 3.3.20. Influences of the neglected 

membrane in the 3D RISM calculations could be excluded. Dynamic influences, investigated by 

unrestraint MDfree simulations with applied fields and characterization of the corresponding average 

structures in 3D RISM, were revealed to diminish the ion conductance, confirmed by both methods. 

Our results are in agreement with in silico observations for carbon nanotubes (CNT) by the group 

of Aluru et al., which also observed a Cl- over K+ selectivity at an equivalent CNT radius.91 Ion 
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permeation studies in the β barrel like pore protein VDAC32 confirm the here observed 

concentration effects and obtain also a Cl- over K+ selectivity.  

Still the here presented results and investigations confirmed the complemental character between 

MD simulations and 3D RISM. While MD simulations allow access to time scales that are often 

far from equilibrium, RISM allows to pass this shortcoming by sustaining the same ion selectivity. 

Notably the here presented generation of averages presented an application procedure for studying 

dynamic influences by 3D RISM in combination with the equations of Hummer.5   
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6 The putative ion channel phospholamban  

 Introduction 

Recent experimental data of Smeazetto et al. (unpublished; private communication) reveal a cation 

selectivity for PLN, which is still under debate.150,151,157,158 To shed light on the designated ion 

channel functionality of PLN, the structures 1ZLL and 1XNU were therefore thermodynamically 

and kinetically investigated by computational studies. The previously used parameter sets of Joung 

and Cheatham (JC) was applied for comparison with the parameter set from the CHARMM force 

field (CHA) for the investigation of PLN.190,250 In the context of hydrophobic selectivity, two 

truncated versions of 1ZLL were also studied to evaluate the influence of the N-terminal cytosolic 

domain. As common representatives of the super family of pLGICs the cation selective receptor 

channel 5-HT3R and the anionic selective GluCl channel were also tackled by 3D RISM for 

comparison with the results for PLN.161,164 The influence of charge effects was scrutinized in all 

channels by artificial removing of charges, leading to pure hydrophobic pores.  

 Methods 

6.2.1 Model preparation and numerical calculations 

The protein structures 1ZLL, 1XNU, GluCl (pdb code: 4TWN) and 5-HT3R (pdb code: 4PIR) were 

obtained from the protein data bank (PDB).161,164 Only the M2 domain forming residues (given in 

brackets) were considered during the 3D RISM calculations of GluCl (aa 241-268) and 5-HT3R 

(aa 247-271), as those form the core pore inside the membrane. Missing protons were added for 

GluCl and 5-HT3R by PSFGEN in combination with the CHARMM force field.190 All systems 

were aligned along the z axis by VMD-1.9.1 and remained their titratable residues in the standard 

ionization state.220  

6.2.2 Computational details for RISM 

To obtain solvent susceptibilities the 1D RISM equations were solved on a logarithmic grid ranging 

from 5.9810-3 Å to 164.02 Å with a total of 512 points, using a modified inversion of iterative 

subspace (MDIIS)251 and a temperature of 298.15 K.211  Densities were chosen according to the 1D 

RISM parameters of chapter 4. 247,252 In contrast to chapter 5, a permittivity of 78.4 was used for 

all ion solutions as well as pure water. While using the parameters of the CHARMM force field  



92 
 

we applied the HNC closure, whereas the PSE closure in order 4 was applied in case of the 

Cheatham & Joung parameter set during the 1D RISM calculations.190,250  

3D RISM equations were solved using the MDIIS to a tolerance of 10-4 on a grid of 130x130x180 

points with a distance of 0.6 Å. A larger grid was chosen in case of 5-HT3R and GluCl 3D RISM 

with dimensions of 160 x 160 x 160 and a point spacing of 0.6 Å. A PSE closure of order 3 was 

used during the 3D RISM calculations for 5-HT3R and order 4 for GluCl. A benchmark of the 

closure relations is provided in the Appendix (fig. A9.2, A9.3). Electrostatics were computed using 

Ewald summation under conducting boundary conditions.253 Net-charged systems were treated 

with a special renormalization procedure.207 All accessible internal volumes were sampled by 

HOLE.215 Integration of the distribution functions gi(r) within this corresponding HOLE volumes 

was used to compute 1D concentration profiles along the channel axis according to chapter 3.4.53 

Equilibrium constants were obtained by integration of concentration profiles and normalization to 

the core volume (table 6.1). One-dimensional pmfs w(r) were obtained according to equation 3.3.20 

on basis of the calculated c(z) profiles.  

Table 6.1: System and analysis overview for 3D RISM calculations  

Ion 

channel 

grid dimension 

(x,y,z) 

grid space 

(x,y,z) 
closure 

lower 

border 

upper 

border 

volume 

Å³ 
qsys / qno /e 

1ZLL 130 x 130x 180 0.6 Å PSE-4 -33.3 31.5 1066.17 20/0 

1XNU 130 x 130x 180 0.6 Å PSE-4 -35.1 24.9 700.90 15/0 

 1ZLL∆1-27 130 x 130x 180 0.6 Å PSE-4 -33.3 9.9 1066.17 -5/0 

1ZLL∆1-23 130 x 130x 180 0.6 Å PSE-4 -33.3 5.1 1066.17 5/0 

5-HT3R 200 x 200 x 200 0.6 Å PSE-3 -23.1 20.7 2038.4 -5/0 

GluCl 200 x 200 x 200 0.6 Å PSE-4 22.5 -23.7 3283.0 5/0 
qsys describes the total charge of the protein. 

qsys denotes the total charge of the protein the uncharged case. 

The given volume was used for the Kc normalization. 

Upper and lower border values were used for the later calculation of the conductance γ. 
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 Results 

6.3.1 Experimental conductance 

To investigate the designated ion channel functionality of PLN, electrophysiological measurements 

were carried out by Serena Smeazzetto, provided in private communication, using an established 

two chamber system.254 The PLN pentamers were therefore reconstructed in planar lipid bilayers 

of diphytanoylphosphatidylcholine (DPhPC) allowing in vitro measurements for solutions of NaCl, 

KCl, and CsCl in symmetric concentrations of 0.1 M. A linear fit model with zero intercept was 

used to obtain the experimental conductances, leading to the final models of  

I/pA = 0,0091 (± 0.0002)· x/mV , I/pA = 0.0164 (± 0.0001)· x/mV and I/pA = 0.0371 (± 0.0004)· 

x/mV  for the laboratory results of NaCl, KCl and CsCl. The intercept was restrained to the origin 

in all regressions. The results reveal a clear cation conductance with a selectivity order of Cs+ > K+ 

> Na+ (fig 6.1) according to their conductances in table 6.2. Considering the bigger ion radius it is 

unusual for Cs+ to be favored over the smaller cations Na+ and K+. During the single channel 

recordings effects of opening and closing events occurred (fig 6.1, bottom insert), indicating a 

gating-like functionality. The observation of gating processes supports the ion channel hypothesis 

as well as it excludes membrane defects as possible errors. Further control experiments with 

TRIS-P and TRIS/Cl were carried out by Smeazzetto (fig 6.1, left inset), eliminating anionic 

influences on the measured cation conductances. Despite the obtained cation selectivity no 

significant conductance for Cl- was stated. Based on the experimental results of Smeazzetto, PLN 

pentamers are suggested to form cation selective hydrophobic pores. 
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Figure 6.1: Experimental and theoretical conductances. Electrophysiological results of Na+ (orange), K+ (purple), and 

Cs+ (Gray) with corresponding standard errors. Solid lines correspond to the experimental fit. Theoretical conductances 

are shown in dashed lines. Corresponding single channel currents are shown in the lower right inset, while conductance 

results in TRIS-P (black) and TRIS/Cl (green) with corresponding standard error bars are shown in the upper left inset. 

 

6.3.2 Structure analysis of PLN 

The observed ion channel functionality of pentameric PLN raised the question about the origin of 

a general cation over anion selectivity and the inter-cationic order. This was addressed by 

combination of theoretical approaches starting with an investigation of 1ZLL and 1XNU.146–148 

Both structures are comprised of 52 amino acids (aa) providing a charge of +3 for 1XNU and +4 

in 1ZLL per monomer (table 6.1).  

   Figure 6.2: One letter sequences of 1ZLL and 1XNU. Differences are shown in bold format. 

 

The charge difference is explained by a difference in residue 27 (fig. 6.2), which is a Lysine in 

1ZLL and an Asparagine in 1XNU. By accumulation of the positive charges in the N-terminal 

1ZLL: MEKVQYLTRSAIRRASTIEMPQQARQKLQNLFINFCLILICLLLICIIVMLL 

1XNU:  MEKVQYLTRSAIRRASTIEMPQQARQNLQNLFINFCLILICLLLICIIVMLL 
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amphiphylic helices a strong dipol moment is created. The stability of the pentameric complex is 

provided by an isoleucin/leucin (aa Ile33 – Leu51) zipper motive inside their transmembrane (TM) 

helices ranging from -33,3 Å to -0.3 Å for 1ZLL and -35.1 Å to  -0.3 Å for 1XNU.146 Through the 

nonpolar nature of this TM residues a hydrophobic funnel is created containing restrictions with 

radius 1.30 Å for pinwheel (1XNU) and 2.00 Å for the bellflower (1ZLL) at their narrowest points. 

Experimental quantification by Smeazzetto et al. identified a radius of 2.2 Å for the restriction of 

PLN, which is in agreement with the structure of 1ZLL.151 Such restrictions are commonly 

identified to exhibit unsurmountable entropic barriers.73,158 Nonetheless MD simulations of anionic 

single walled carbo nanotubes (ANT) with radii  < 2 Å were permeable to water, according to the 

results of Sumikama et al.120 Aspects of the restriction in context of entropic barriers are 

investigated in chapter 7 in detail. The accessible inner core volume was estimated ranging from 

the C-terminus up to the beginning of the cytosolic domains (Fig 6.3 arrows) yielding 1066.17 Å3 

for the bellflower configuration. The significant lower volume of 700.90 Å3 in the pinwheel 

structure is related to its much tighter tertiary TM structure caused by its flattened cytosolic helices 

perpendicular to the membrane normal. In contrast, the conformation of the outer cytosolic helices 

in bellflower induces a stronger bent in its TM helices leading to a constant broadening of the 

funnel radius from the restriction up to the cytosolic N-terminus (fig 6.3).  

6.3.3 Thermodynamic properties of PLN 

3D RISM uv results permit the observation of local equilibriums concentrations c(z) along the pores 

z-axis, describing depletion and enrichment in comparison to the bulk concentration c0 

(chapter 3.3). By subsequently integration over c(z) (table 6.1) and normalization to the channel 

volume VCh, partition constants Kc are derived, which are an criteria for the quantification of 

thermodynamic ion selectivity. Energetic barriers are characterized by the one dimensional pmf 

w(z), which is acquired by stepwise integration of the g(r) function inside small cylindrical 

elements and normalization to reference area. This pmf permits access to the calculation of 

theoretical conductances in accordance to Hummer et al. and allows to study kinetic influences on 

the process of ion selectivity.5  
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Figure 6.3: Selectivity profiles of 1ZLL(CHA) and 1ZLL(JC). a Cartoon depiction of the 1ZLL structure overlayed 

with its accessible core volume (blue). The resulting radius profile is shown in b. Outer arrows frame borders of the 

core volume. Subfigures c, d and e depict the concentration profile, the partition coefficient profile and the pmf for 

1ZLL(CHA) (left) and 1ZLL(JC) (left). The arrow points at the constriction position. The volume was sampled by 

HOLE. Results for the cations Na+ (orange), K+ (purple), and Cs+ (gray) are depicted. Their corresponding Cl- data are 

shown as dotted (CsCl), long dashed (NaCl) and short dashed lines (KCl). 
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Results from 3D RISM calculations with concentrations of 0.1 M NaCl, KCl and CsCl using the 

ion parameters of the CHARMM22 force field or Joung and Cheatham reveal charge driven 

accumulations of cations at the C-termini and corresponding Cl- accumulated at the N-termini (fig 

6.3).190,250 Regarding the two different parameter sets, no significant differences between the 

concentration profiles of 1ZLL(JC) and 1ZLL could be identified (fig. 6.3), further supporting the 

equivalence of both sets. The evaluated cations show no significant influence on the 

Cl- concentration (fig 6.3). Contrary to the ions, water is distinctly distributed inside 1ZLL(JC) and 

1ZLL, characterized by alternated depletion and increase over the whole funnel (fig. 6.3).  

A single Kc value at a given z position reflects the accumulated concentration till then. In case of 

1ZLL and 1XNU, the hydrophobic funnel extends from a lower border (table 6.1) to the exterior 

transition, localized at z = -0.3 Å. Interpretation of the calculated Kc values at this position show a 

distinct cation selectivity of order Cs+ > K+ > Na+ for the bellflower (fig 6.3) as well as for the 

pinwheel (fig. 6.4), reflecting the same order as the conductance measurements of Smeazzetto 

(table 6.2). In spite of that, both parameter sets have the same cation selectivity order, the 

experimentally predominant selectivity for Cs+ is slightly better reproduced in 1ZLL(JC) than in 

1ZLL (table 6.3). In comparison the partition coefficient in 1ZLL is characterized by a smooth 

progression (fig. 6.3), while a stepwise increase of the selectivity can be observed in 1XNU (fig. 

6.4). In 1ZLL the ion selectivity is already exhibited slightly before the geometric constriction and 

is than preserved over the complete hydrophobic volume of the TM pore (fig 6.3d). Selectivity 

elements like the common filter motive of tetrameric ion channels are absent in these channels, 

elsewise sudden changes would occur in the Kc profile. Focusing on the anion, Cl- reveals a similar 

selectivity in comparison to Na+ as indicated by their partition coefficients at z position -0.3 Å. 

Still, the experiments of Smeazzetto et al. excluded a permittivity of Cl- (fig. 6.1) in PLN. As Kc 

values reflect accumulated concentrations, the calculated Cl- selectivity can be explained by the 

increasing anion concentrations at the exterior mouth, which is partially included due to chosen 

z position of -0.3 Å (fig. 6.3). This demonstrates the dependency of the Kc value on the chosen z 

position and might hereby have a limited significance as a selectivity predictor.  

In addition to the thermodynamic investigation of the full 1ZLL and 1XNU structures, two deletion 

mutants were generated on the basis of 1ZLL by removing the first 23 (1ZLL∆23) or 27 (1ZLL∆27) 

amino acids. Truncation of the N-terminus results in a lower total charge of the proteins (table 6.1). 
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In consequence the strong dipole of the wild type is diminished in these toy systems, while the 

funnel forming transmembrane helices are still present. The previously observed accumulation of 

Cl- at the N-terminus of the wildtype 1ZLL is nearly absent in both truncated structures, according 

to their c(z) profiles. As the truncated mutants still consist of the membrane embedded pore, the Kc 

transition According to the obtained Kc values for 1ZLL∆23 and 1ZLL∆27 the wildtype ion selectivity 

order Cs+ > K+ > Na+ is maintained in both deletion mutants. 

Table 6.2 Thermodynamic and kinetic data 

 Ion   Na/ClNaCl K/ClKCl Cs/ClCsCl 

γexp [pS] PLN  9.1 ± 0.0002/n.a  16.4 ± 0.0001/n.a.  37.0 ± 0.0004/n.a.  

γtheo [pS]  

1ZLL CHA 14.88/16.70 28.23/16.08 38.81/16.40 
1ZLL CHA,uncharged 16.05/22.93 36.35/22.93 57.48/22.93 

1ZLL JC 13.95/10.79 28.25/10.81 42.80/11.79 

1ZLL JC,uncharged 16.6/13.92 39.38/14.69 67.22/16.46 
1ZLL∆27 CHA 20.92/13.67 40.70/13.31 56.56/13.68 

1ZLL∆27 CHA,uncharged 16.57/23.26 36.88/24.50 59.37/26.07 
1ZLL∆23 CHA 15.64/16.53 30.13/15.94 42.21/16.24 

1ZLL∆23 CHA,uncharged 16.61/23.28 36.97/24.51 59.44/26.12 

1XNU CHA 0.68/0.00 0.60/0.00 0.00/0.00 
1XNU CHA,uncharged 0.91/0.00 1.19/0.00 0.00/0.00 

5HT3R CHA 41.74/17.99 56.06/10.59 7.77/6.64 
5HT3R CHA,uncharged 16.61/27.19 34.53/28.63 55.66/30.07 

GluCl CHA 15.41/69.54 25.27/63.68 34.67/61.67 
GluCl CHA,uncharged 28.12/51.25 52.10/53.22 80.27/57.41 

γtheo,FJ [pS] 1ZLL CHA,FJ 15.26/17.11 28.91/16.48 39.63/16.54 

Kc (-0.3 Å) 

1ZLL CHA,charged 0.97/1.07 1.21/1.07 1.66/1.09 
1ZLL CHA,uncharged 0.04/0.05 0.05/0.04 0.08/0.04 

1ZLL JC,charged 0.94/0.85 1.23/0.85 1.77/0.89 
1ZLL JC,uncharged 0.04/0.03 0.06/0.03 0.09/0.03 

 1ZLL∆27 CHA,charged 0.99/0.99 1.23/1.00 1.69/1.02 

1ZLL∆27 CHA,uncharged 0.23/0.23 0.29/0.24 0.43/0.25 
1ZLL∆23 CHA,charged 1.16/0.64 1.44/0.65 1.96/0.67 

1ZLL∆23 CHA,uncharged 0.23/0.23 0.29/0.24 0.43/0.25 
1XNU CHA,charged 1.97/0.82 2.35/0.82 3.30/0.84 

1XNU CHA,uncharged 0.12/0.10  0.10/0.09  0.24/0.10  

5HT3R CHA,charged 1.96/0.35 1.77/0.40 1.58/0.56 
5HT3R CHA,uncharged 0.38/0.39 0.40/0.37 0.56/0.42 

GluCl CHA,charged 0.11/1.64 0.09/1.67 0.10/1.70 
GluCl CHA,uncharged 0.26/0.28 0.29/0.29 0.40/0.31 

D(z) [m² s-1]   1.33·10-9 /2.30·10-9  1.96·10-9 /2.30·10-9  2.05·10-9 /2.30·10-9  

Kc (-0.3 Å) denotes the Kc value obtained at position z = -0.3 Å. 

γexp identifies the experimental values provided by Smeazzetto et al. 

γtheo is the calculated conductance. 

CHA and JC assign the parameter set of CHARMM or Joung & Cheatham. 

“charged” and “uncharged” indicate the polarization status of the protein. 

1ZLL and 1XNU assign the PLN structures. 

∆27 and ∆23 describe truncated mutants.  
5-HT3R and GluCl designate abbreviations for Cys-Loop channels. 

D(z) denotes the diffusion constant.218 

γtheo,FJ  denotes the a calculated conductance with a varied local D(z).219 
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6.3.4 Effect of net charges 

The structure of 1ZLL is characterized by a strong dipole moment due to the accumulated charges 

at cytosolic N-terminus. For this reason, calculations without charges were carried out and analyzed 

alike to their charged variants. By artificially neglecting charges, the channel could be assumed to 

be completely hydrophobic. The derived c(z) profiles for 1ZLL(CHA,uncharged) and 

1ZLL(JC,uncharged) (dig. 6.5) are clearly distinguished by alternations of increasing and 

decreasing concentrations over the whole channel. Artifacts due to the chosen parameter set could 

be excluded, as the revealed changes were the same in 1ZLL(JC,uncharged) as in 

1ZLL(CHA,uncharged). Nevertheless the increasing and decreasing alternations were more intense 

in calculations with the parameters of Joung and Cheatham. Despite the changes in the c(z) profile, 

the corresponding Kc values preserved the same inter-cationic selectivity order and anion 

discrimination as in the wildtype 1ZLL (table 6.2, fig. 6.3). 

 

Figure 6.5: Variation of charge in 1ZLL(CHA,uncharged) and 1ZLL(JC,uncharged). a Depiction of the c(z), w(z) and 

Kc profiles for 1ZLL(CHA,uncharged). Analogue results using the parameter set JC are given in b, c. Colors follow 

and line types follow fig. 6.3. 
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6.3.5 Kinetic selectivity: Conductances  

In analogy to the investigations of the synthetic pore in chapter 5, the here obtained one dimensional 

pmfs were used for the calculation of the theoretical conductance γtheo by application of equation 

3.3.20. An overview of all data is provided in table 6.2. In accordance to the identified 

surmountable barriers in the w(z) profiles of 1ZLL, 1ZLL∆23 and 1ZLL∆27 (fig. 6.3, fig. 6.4) a cation 

selectivity order Cs+ > K+ > Na+ is reflected in the calculated conductances. This is supported by 

the observed surmountable barriers of 4 kcal mol-1 in 1ZLL and 1ZLL(JC). While a significant 

discrimination of the anion Cl- occurs in comparison to K+ and Cs+, it competes with the 

conductance of Na+ in the case of 1ZLLand 1ZLL∆23. This result is confirmed by both applied 

parameter sets. The difference between the calculated Cl- conductances and the measured 

experimental values might be related to artifacts in 3D RISM, as presented for the ion solutions at 

graphene sheets by Urban which overestimates the Cl- concentration in comparison to MD 

simulations,.255 An elevated conductance for all ions, except for K+ and Na+ in the case of 

1ZLL∆27was obtained in the completely uncharged systems. Analysis of the conductance of the 

tighter 1XNUand 1XNU(CHA,uncharged) system revealed an impermeability for all ions in this 

structure. The calculated conductance γ reproduce the experimentally measured ion selectivity 

significantly better in comparison with the corresponding thermodynamic Kc values (table 6.2). 

This result argues for an importance role of the kinetic aspects in ion selectivity, while 

thermodynamic properties might play a lesser role. Nonetheless the calculated conductances 

overestimate the measured conductances by nearly 20 %, as the least square fit between the 

experimental and calculated conductances derives a scaling factor of 0.8.  

Reguera and Rubi presented a feasible way to include local constriction effects to the diffusion 

coefficient, by calculating a weighting factor for D(z), using the theory of Fick-Jacobs.219 Their 

approach considers local constrictions by computation of the first derivation of the radius profile 

and weights it the bulk diffusion coefficient.219Application of this method to 1ZLL yielded D(z) 

that are influenced by the local constrictions (fig. 6.7). Analysis of the D(z) progressions reveals 

an nearly insignificant influence of the restrictions, according to fig. 6.7. Calculation of ion 

conductances with these local D(z) values derived the same magnitude of conductance as in the 

wildtype (table 6.2). 
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  Figure 6.7: The radius dependent D(z) profile for 1ZLL normalized to the bulk. 

6.3.6 Pentameric ligand gated ion channels 

As they share an pentameric structure as well as an ion channel functionality, two members of the 

pentameric LGIC family are investigated to verify the results for PLN. The anion selective GluCl 

and the cation selective 5-HT3R channel are characterized by a extracellular receptor domain (M2) 

as well as five transmembrane helices lining a cylindrical pore inside the membrane, which was 

revealed to be essential for their ion selectivity.1 In addition to those similarities with PLN, an 

hydrophobic restriction inside this M2 domain is identified in both channels. Due to these structural 

features the funnel forming TM parts of GluCl and 5-HT3R were reasonable structure motives for 

a comparative analysis with PLN.  

Calculations for the anion selective channel GluClreveal an strong conductance for Cl- (table 6.2). 

Conductances of the cations follow the order of Cs+ > K+ > Na+ with a lower conductance in 

relation to the high values for Cl- (table 6.2). This result is in agreement with the obtained Kc 

profiles (fig. 6.4, table 6.2) for GluCl. A cation over anion selectivity was confirmed for 5-HT3R, 

in accordance to the obtained Kc (fig. 6.4) values and the established cation selectivity of 

K+ > Na+ > Cs+ (table 6.2).   

An inversion of the anion over cation selectivity occurs in the fully hydrophobic 

GluCl(CHA,uncharged), reflected by a cation conductance exceeding those of Cl-. Notably the Cl- 

conductances remained uninfluenced in GluCl(CHA,uncharged) in comparison with the charged 

GluCl situations (table 6.2). In contrast to the selectivity inversion in GluCl(CHA,uncharged), 

investigations of the uncharged 5-HT3R(CHA,uncharged) revealed a different behavior (table 6.2). 

A cation over anion selectivity is observed for K+ and Cs+, due to a change of the inter-cationic 

selectivity order to Cs+ > K+ > Na+ (table 6.2).  
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6.3.7 Conclusion 

The presented approach demonstrates a feasible way to investigate the thermodynamic and kinetic 

aspects of pore systems in combination with 3D RISM.  The performed investigations support the 

cation selectivity and channel functionality of the hydrophobic pentamer PLN in its bellflower 

conformation, while the spatial structure of the pinwheel is supposed to be ion impermeable, in 

accordance to the calculated γtheo values, which reproduced the provided in vivo conductances from 

Smeazzetto et al. successfully independent of the parameter set. Even so, the absolute calculated 

ion conductances overestimate the experimental values by 20 %. Calculations with a radius 

dependent D(z) value suggest an insignificant effect of restraints on the conductance, as reflected 

by the results obtained by the Fick-Jackobs approach of Rubi and Reguera.219 The good agreement 

between experimental and in silico conductances argues for a strong influence of kinetic aspects 

on the ion selectivity in 1ZLL. Investigation of the partition coefficient profiles Kc identified a 

limited significance of this accumulative property, due to its dependency on the chosen z position. 

Nonetheless Kc predicts the ion selectivity qualitatively and allows identification of characteristic 

positions of the selectivity progression. Investigation of artificially uncharged systems demonstrate 

the possible variability of the overall approach to toy systems as well as it supports the cation 

selectivity to be preserved in a fully hydrophobic 1ZLL(CHA,unhcarged) channel. Scrutinized 

deletion mutants 1ZLL∆23 and 1ZLL∆27 suggest that the charged  N-terminus plays a minor role for 

the establishment of the cation over anion selectivity, as the results indicated the same cation 

selectivity as in the full 1ZLL.  

Reproduction of the correct ion selectivity for GluCl and 5-HT3R supports the applicability of the 

thermodynamic and kinetic analysis of biological, hydrophobic pores with 3D RISM. The obtained 

ion selectivity inversion in GluCl(CHA,uncharged) illustrates the potential application of this 

approach in the field of computer aided design. The observed cation-anion selectivity inversion in 

5-HT3R(CHA, uncharged) is in agreement with the experimental 5-HT3R mutation created by 

Gunthorpe et al., where an exchange of two of five charged residues per monomer at the mouth 

regions introduced an inversion of the ion selectivity (see chapter 2.4.2).167 Data of Urban revealed 

a radius dependency of ion selectivity in a hard channel pore (HCP) system, which supports the 

observations in 1ZLL.255 
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7 Ion Selectivity in Phospholamban 

 

 

 Introduction 

Despite the hydrophobic chemistry and tight geometry inside the transmembrane funnel of the 

pentameric PLN, a significant ion conducting property and cation selectivity were revealed in the 

previous chapter 6. While the focus of the last chapter was laid on the description of PLN and its 

context of conductance, the exhibited selectivity remained mostly unexplained. Still a hint leading 

to a possible explanation was provided by the study of the hydrophobic pore system of Gong et al. 

(chapter 5) and the results of PLN (chapter 6).6 Both argued that the capability to separate ions 

could be a function of the pore radius. In addition the hydrophobic girdles known from pLGICs are 

importance elements for ion selectivity and areas of high restriction.165,169,171–173 In this context 

narrow hydrophobic structures might hold the key to understand and establish ion selectivity. 

To shed light on the selectivity in 1ZLL a thermodynamic cycle is established, describing the 

transfer of an ion from bulk to the restriction of PLN. Through this thermodynamic approach, 

information about local and global free energies are accessed for the monovalent ions Na+, K+, Cs+ 

and Cl-. In addition, the calculation of radial distribution functions g(r) facilitate the description of 

hydration shells and coordination numbers, which are also discussed in their contribution to 

solvation.  

The established thermodynamic cycle includes contributions of the pmf w(z), which will be 

accessed by a new, approximatively approach that allows for a free energy decomposition into 

contributions of the entropy –T∆S, the internal energy U. This approximation provides values for 

these thermodynamic properties inside the restriction of PLN, which are experimentally 

inacessable.  
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 Methods 

The thermodynamic aspects of ion selectivity in PLN are investigated by the construction of a 

corresponding thermodynamic cycle (fig. 7.1), describing the transfer process of a single ion from 

bulk to a defined z position on the central axis of the bellflower structure of 1ZLL. In accordance 

with the previous results of chapter 6, z is chosen at z = -19.5 Å in the restriction of PLN, assuming 

that the ion permittivity and selectivity dependent on the narrowest part. 

                       

Figure 7.1: Illustration of the thermodynamic cycle. Depiction of the ion transfer from bulk to the restriction of the 

pore.  

 

According to the transfer process in fig. 7.1, the free solvation energy difference of the ion-pore 

complex poreion

solv

G  can be described as  
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The single energies required for the calculation of poreion

solv

G  (eq. 7.1) are derived from individual 

approaches. The free energy of solvation for an ion ion

solvG  is accessed directly by 3D RISM 

calculations containing a single explicit ion in ion solution. The free energy of solvation for the 

pore pore

solvG  is obtained accordingly from 3D RISM calculations with the PLN structure 1ZLL. A 

different approach was chosen to derive the pmf w(z). Here, we estimate w(z) by the relation 
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with the free energy A(z) of the regarded ion at the restriction position z. The partition function Z 

can be defined as 
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with the inverse temperature  and the reference area )( 0zQ . Inside the restriction of the pore the 

distribution function g(x,y;z) is approximatily assumed to follow the shape of an normal 

distribution. Consequently an exponential 2D harmonic oscillator in the form of 
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was applied to fit the logarithmized solvent distribution function g(x,y;z), which is related to an 

approximate pmf wfit(x,y;z) by definition. Further is the minimum w0(x0,y0;z), k the force constant 

and x0 and y0 are fit parameters in close correspondence to the minimum of pmf position. For better 

clarity we redefine the minimum of the w0(x0,y0;z)  w0(z) and our overall approach as w(z)  A(z) 

 wfit(z). A quadratic function for the pmf at position z is chosen due to its analytic integrability for 

which   
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, [7.5] 

follows for the chosen approximated pmf. The therefore calculated wfit(z) is an harmonic 

approximation to the global pmf w(z) introduced in chapter 6 (see eq. 3.3.20). Our analytical 

approach allows for further decomposition in important thermodynamic contributions as the 

internal energy 

 
T
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and the entropy  
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that we address as 

 )()()( zSTzUzw vv  . [7.8] 

The superscript v indicates the solvent mediated influence on Sv and Uv. Inserting these definition 

in equation 7.3 leads to  

 
RTzwzU v  )()( 0  [7.9] 

and  
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It is worth mentioning that the calculated thermodynamic quantities are not estimated as absolute 

values. Instead the changes (∆) in the thermodynamic properties are obtained, which describes the 

free energy difference needed to transfer a particle from a reference state to the current position. 

This reference state is connected to the bulk concentration by the solute distribution function. The 

free energy of binding in vacuum binding

vacG can be defined as 

 )(

)()()()()()(

poreion

poreionporeionporeionbindingbinding
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zuzuzuzuzuzuG
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, [7.11] 

with the interaction vacuum potentials of the ion uion(z), pore upore(z) and ion+pore complex 

uion+pore(z). In analogy to equation 7.3 ∆ubinding(z) was obtained by 

 
))(ln()( vac

binding zZRTzu 
 [7.12] 

with 



109 
 

 

 
yx

zQ
zZ

x

x

y

y

zyxu
dde

)(

1
)(

;,-

0

vac
vacfit,

 











, [7.13] 

where ufit,vac(x,y;z) was approximated by    
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with the fit minimum u0(x0,y0;z). The positions x0 and y0 were set to zero, due to convergence 

problems in several unrestrained anion cases. From equations 7.11 and 7.14 follows 

 
);,(vacfit,

binding

vac zyxuG 
. [7.15] 

For clarification, one might consider the possibility of calculating poreion

solv

G  directly by tackling an 

pore with an ion inside (ion+pore complex) with 3D RISM, by explicit placement of an ion in the 

restriction site of PLN. Whereas the here presented decomposition (eq 7.1) considers the energy 

contribution inside the (x,y;z) plane, this direct approach would have neglected the lateral degrees 

of freedom in the x,y-plane and a sophisticated sampling would be needed. 

7.2.1 Technical details of the approximations 

The restriction at z = -19.5 Å of the PLN structure 1ZLL was identified by the radius analysis 

conducted in chapter 6. All values of g(r) in a square of 6² Å² around the center of this z position 

were considered for the exponential approximations of wfit(z) in accordance to equation 7.5. The 

information about the potential u(r) was obtained from 3D RISM interaction potential calculations 

without solvent influence.  

7.2.2 Computation of coordination numbers 

As a descriptor for the amount of adjacent atoms around a central atom, coordination numbers Ni(r) 

can be utilized for the determination of solvent molecules forming the first, second etc. solvent 

shell. They are connected to the radial pair distribution function and can be obtained by an altered 

spherical integration. The radial integral of the form 
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with angles  and , the distance r and the solvent distribution function ),,( rgi , with 

r = | r - rion |. Integration over the angular parts gives  

 rdrrgrN

r

ii
  ²)(4π )(

0

Bulk , [7.17] 

with the radially averaged distribution function gi (r) and the bulk density Bulk. The number of 

atoms as a function of r is the direct result of equation 7.17. The integration is accomplished in 

accordance with the method of Lebedev and Laikow.256 All coordination numbers for the ion 

species of Na+, K+, Cs+ and Cl- are collected in table 7.2. The corresponding 3D RISM calculations 

were performed with explicit ions (see next section for technical detail). 

7.2.3 Computational details for 3D RISM 

Individual spatial distribution functions g(r) and the potentials u(r) were obtained from the 

previously conducted calculations with the pentameric structure of phospholamban (PDB code: 

1ZLL) (see chapter 6 for details). The results originated with the parameter set of CHARMM 

(1ZLLCHA) and of Joung & Cheatham (1ZLLJC) were investigated. Additional 3D RISM 

calculations on a 1803 Å3 grid, with a spacing of 0.6 Å were conducted, which were used to access 

the radial distribution function g(r) around the pmf minimum w0(z) in 0.1 M solutions of NaCl, 

KCl and CsCl.256 Regarding calculations with explicit ions for obtainment of the coordination 

number, the positioning of the ions occurred according to their approximated minimum pmf 

positions w0(-19.5 Å). Other parameters were kept intentionally at their values according to the 

descriptions in the methods section of chapter 6. 
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 Results 

7.3.1 Thermodynamic investigation of the hydrophobic restriction in PLN 

Evaluation of the exponential fit permitted access to structure related thermodynamic quantities. 

The results of the fit are visualized in Figure 7.1. Due to their relation, high values of g(r) 

correspond to low values of the pmf, which are identified by low barriers. Thus the minimum 

position w0 describes the lowest barrier in the chosen x,y-plane. The point of the lowest energy w0 

is also a meaningful indicator in the context of ion permeation, as high barriers are supposed to 

inhibit the transfer and thereby influence the conduction process. The entropy is reflected by the 

width of the fit result. In this context, smaller -T∆S(z) or -T∆Sv(z) values (table 7.1) allow for more 

realizations of possible ion permeations (fig. 7.1, 7.2). The peak height is directly proportional to 

the concentration.  

As the here presented model approach is based on an approximation, the validity needed to be 

assessed (table 7.1). The equivalence between the approximated pmf wfit(z) and its previously 

introduced counterpart w(z) form chapter 6 is shown (table 7.1, last row), confirming the here 

presented approach. 

Investigation of the restriction (z = -19.5 Å) in aqueous solutions of NaCl, KCl and CsCl reveals 

the selectivity order Na+ < K+ < Cl- < Cs+ in respect to the quantity w0(z) (table 7.1). This order is 

well established in both applied parameter sets, 1ZLLJC and 1ZLLCHA and suggests a Cl- over Na+ 

and K+ selectivity. Still the observed inter cationic order is in agreement with the experimental and 

the calculated conductances (see chapter 6). The obtained barriers are of several kcal mol-1 suggest 

a possible ion permeation for all ions. However the quantity w0(z) reflects only a single point inside 

the chosen x,y-plane that characterizes the least needed energy to pass through. The information 

about the chemical and structural detail is in contrast better reflect by wfit(z) (eq 7.3). Calculation 

of w(z) yielded ion sequence orders of K+ < Na+ < Cs+ < Cl- for 1ZLLCHA and 

K+ < Cs+  Na+ < Cl- for 1ZLLJC, revealing a preference of cations over Cl- (table 7.1), but with an 

inter-cationic order deviating from the experimental results (chapter 6). According to the pure 

entropy -T∆Sv(z) at a temperature of 298.15 K, an ion selectivity order of Cl- < Cs+ < K+ < Na+ for 

1ZLLCHA and 1ZLLJC is established, which is inverse to the cation trend of wfit(z). Thus the entropy 

shows a sensitivity in close correspondence to the radius of the ion at hydrophobic barrier. The 

contrary ion selectivity behavior between -T∆Sv(z) and the wfit(z) excludes an entropy controlled 
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mechanism as a mono-causal explanation for the established inter-cationic selectivity insight the 

hydrophobic restriction. 

 

Figure 7.1: Visualization of the exponential fit for 1ZLLJC and 1ZLLCHA in solution. The fit result (blue) is shown in 

overlay with the original data points (yellow dots) in panels a, c for Na+, K+ and Cs+ and in b, d  for the corresponding 

Cl-. The displayed fit was applied to all g(x,y;z) values inside a plane at position z = -19.5 Å spanning a range from -2 

to 2 for x and y borders.  

 

 

In solution 
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 Table 7.1 Thermodynamic quantities of 1ZLLCHA/1ZLLJC  

 z = -19.5 Å in solution  

Property Na+ K+ Cs+ ClNaCl
 ClKCl ClCsCl 

w0 -0.38/-0.33 -0.56/-0.58 -1.21/-1.28 -0.96/-0.81 -2.09/-1.94 -0.99/-1.64 

wfit(z) 1.87/1.87 1.68/1.65 1.96/1.81 2.39/2.61 1.77/1.89 2.35/2.11 

∆Uv(z) 0.22/0.26 0.03/0.01 -0.61/-0.69 -0.36/-0.21 -1.50/-1.35 -0.40/-1.05 

-T∆Sv(z) 1.65/1.61 1.66/1.64 2.58/2.49 2.75/2.83 3.26/3.24 2.75/3.16 

 z = -19.5 Å in vacuum 

u0 92.37/92.25 94.96/93.56 94.02/92.60 -95.06/-93.92 -95.06/-93.92 -95.06/-93.92 

ufit,vac(z) 95.45/95.44 98.56/97.20 97.85/96.42 -91.00/-89.84 -91.00/-89.84 -91.00/-89.84 

 Free energies of the thermodynamic cycle 1ZLLCHA/1ZLLJC 

ion

solvG  -85.18/-81.96 -67.27/-66.71 -54.39/-56.62 -94.15/-86.92 -94.33/-86.80 -94.25/-86.67 

pore

solvG  -3454.70/ -3464.28 -3456.21/-3443.58 -3427.76/-3422.11 -3454.70/-3464.28 -3456.21/-3443.58 -3427.76/-3422.11 

poreion

solv

G  -3633.49/-3639.81 -3620.34/-3605.82 -3578.18/-3573.48 -3455.58/-3458.83 -3457.28/-3438.02 -3428.78/-3416.47 

binding

vacG  95.45/95.44 98.56/97.20 97.85/96.42 -91.00/-89.84 -91.00/-89.84 -91.00/-89.84 

 z = -19.5 Å in solvation 

w(z) 1.85/1.87 1.70/1.67 1.83/1.66 2.26/2.53 2.25/2.52 2.22/2.46 

All values are provided in units of  kcal mol-1. 

wfit(z) represent the full pmf in solvation, with the fit minimum w0. 

ufit,vac(z) represent the vacuum potential, with the fit minimum u0(z). 

w(z) designates the pmf obtained in chapter 6. 

-T∆Sv(z) describes the entropy of the free energy in solvation. 

∆Uv(z) denotes the internal energy. 
ion

solvG ,
pore

solvG , 
poreion

solv

G and 
binding

vacG designate the free energies. 

1ZLLCHA and 1ZLLJC identify the different parameter sets of CHARMM and Joung & Cheatham. 

 

To investigate the influence of the solvent, the participated vacuum energies were estimated inside 

the restriction, by approximation in analogy to Ansatz (eq. 7.13, 7.14). Analysis of ufit,vac(z) inside 

the restriction reveals a difference of 100 kcal mol-1, demonstrating an strong influence of the 

solvents. Regarding to ufit,vac(z), anions are revealed to be energetically favored, while the cations 

face an unsurmountable barrier. The opposing anion and cation selectivity in wfit(z) and ufit,vac(z) 

(table 7.1) reflects that this selectivity is influenced by solvation effects at the restriction. According 

to the described differences between wfit(z) and ufit,vac(z) (table 7.1), a change from a simple size 

selective restriction under vacuum to an cation vs anion discrimination element in solution is 

performed by the solvent. Considering the limitation of the obtained data to local chemical and 

topological aspects at the restriction as well as the discovered influence of the solvent on the 

selectivity, global aspects of solvation attracted attention. Therefore further thermodynamic 
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analysis regarding the process of solvation were investigated in more detail and are discussed in 

the next subchapter.  

 

Figure 7.2: Interaction potential u(r) 
in overly with ufit,vac(z) at position z = -19.5 Å in 1ZLLJC and 1ZLLCHA. A,C: 

For the cations (Na+, orange; K+, purple; Cs+, grey) the u(r) 
(brown) and the corresponding fit (blue) are shown as 

surfaces. B, D: Representation of u(r) equal result for ClNaCl, ClKCl, ClCsCl (subscript denotes the associated ion 

solution). The fit was restrained with x0 = y0 = 0. 
 

  

In vacuum 
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7.3.2 Thermodynamic effects of solvation 

According to fig. 7.1 a thermodynamic cycle was established. Potential energetic effects of a 

membrane are not tackled, as their contributions vanish by cancelation in the here defined cycle.  

 

 

Figurge 7.3: Thermodynamic cycle of 1ZLLJC and 1ZLLCHA at  z = -19.5 Å. Depiction of the contributing energies 

comprising the wfit(z) inside the restriction of 1ZLLJC (upper panel) and 1ZLLCHA (lower panel). Desolvation of the 

pore and ion is described by 
ion

solvG  (dashed arrows left) and
pore

desolvG  (solid arrows left). Interaction of the 

pore and the ion in vacuum is denoted as
binding

vacG  (connecting solid arrow) and in solution
poreion

solv

G  (dashed arrow 

right). Energies and arrows for Na+, K+, Cs+, Cl- are color coded in orange, purple, gray and green. Energy values 

shown adjacent to the corresponding arrow. Arrow length for 
pore

solvG  and 
poreion

solv

G  is truncated by 

3300 kcal mol-1. Particular differences are marked by black bars. 

 

 
binding

vacG

poreion

solv

G

ion

solvG

pore

solvG

ion

solvG

pore

solvG

binding

vacG

poreion

solv

G
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Beginning with pore

solvG  as a descriptor for the transfer of 1ZLL from solution to vacuum, a strong 

dependence of the chosen ion solution for both parameter cases (fig.7.3) was revealed. For instance 

an energy difference of 20 kcal mol-1 is provided between CsCl and KCl as well as between NaCl 

and KCl for 1ZLLJC. The  desolvation process of 1ZLLCHA is energetically equivalent in NaCl and 

KCl, while the desolvation from CsCl is favoured by 30 kcal mol-1. Interpretation of this energetic 

difference establishes a higher solubility for the pore in NaCl than in KCl or even CsCl. A similar 

disparity occurs in the process of ion desolvation ion

solvG in fig. 7.3. Again a difference of 10 to 

26 kcal mol-1 between Cs+, K+, and Na+ occurs in the process of desolvation from their 

corresponding solutions in case of 1ZLLJC. A analogue effect was obtained with the CHARMM 

parameter set where differences of 13 and 18 kcal mol-1 occur between Na+, K+ and Cs+. This result 

implicates that a desolvation of Cs+ solved in CsCl is energetically favoured over a desolvation of 

K+ from KCl or Na+ form NaCl. This result is important for the interpretation of ion selectivity, as 

a lower desolvation energy supports the permeation from bulk into the hydrophobic pore. Thus Cs+ 

is favoured over K+ and Na+ in accordance to their ion

solvG values. In addition, the calculated ion 

desolvation energies follow the experimental inter-cationic selectivity, emphasizing the importance 

of ion

solvG . In contrast the desolvation process for a Cl- anion is identified to be independent of the 

solution and is highly unfavored in comparison to the cations. This solvent specific cooperative 

effects did not occur according to the nearly equal ion

solvG  values of the anions. The constantly 

higher ion

solvG values for Cl- in comparison to the cations imply a penalization for the anion 

desolvation process. Together pore

desolvG  and ion

desolvG exhibit an energetic difference of 

67.50 kcal mol-1 between Cs+ and Na+ and 36 kcal mol-1 for Cs+ and K+ in 1ZLLJC and a difference 

of 57.70 kcal mol-1 and 16.40 kcal mol-1 in 1ZLLCHA. Calculation of the coordination number (CN) 

for cations and anions in bulk and inside 1ZLL (see following result section) confirmt this result, 

as Cs+ strips off 2.73/2.69  water molecules in dependence of the parameter sets of CHARMM/JC, 

where Na+ and K+ lose only 1.05/0.90 and 1.83/1.67 water molecules (table 7.2). The identified 

energetic inequalities amongst the cations are responsible for the finally obtained inter-cationic 

order. Due to the overall positive charge of the protein, the transfer of an anion to the restriction is 

favoured in comparison to a positive cation. A difference of 180 to 190 kcal mol-1 in binding

vacG was 

obtained between cations and anions in dependency of the chosen parameter set (table 7.2). 

Insignificant deviations in binding

vacG were quantified focusing on the comparison amongst the 
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individual cation species, leading to basically equal values. With those results for binding

vacG , the 

previously stated desolvation advantages and penalties reasoned by ion

solvG  and pore

solvG  are nearly 

completely compensated, but do not fully vanish. Thus the observed penalization of the cation-pore 

complexation in vacuum is overcompensated by the previously introduced energies of solvation, 

in particular poreion

solv

G . In consequence of the gained results an inter-cationic selectivity inside the 

pore of Na+ < K+ < Cs+ is established by a combination of the local solvent effects, namely ion

solvG

and pore

solvG . The presented results argue that inter-cation selectivity is established by a 

combination of huge contributing energies, finally cancelling to distinct small differences. In this 

regard, the inter-cationic ion selectivity is of course sensitive to the applied force field, as revealed 

by here presented approach with CHARMM and Joung and Cheatham. 

The final resolvation process of the ion-complex is described by the property of poreion

solv

G . 

Independent of the chosen cation, poreion

solv

G has an compensating effect, reducing the huge vacuum 

energies to the low energetic barriers of w(z). An equivalent compensation occurrs also in the anion 

case. For clarification the global property of poreion

solv

G  reduces the accumulated vacuum energies 

accurately to small, distinct energies, which in consequence revealed poreion

solv

G as the driving reason 

for the determination of the cation versus anion selectivity. According to these remarkable results 

the energy connected to the process of resolvation of the ion+pore complex poreion

solv

G is supposed 

to be the key modulator of anion versus cation selectivity. A possible explanation might be deduced 

by using the formula of Born, which can be used to approximate the change in the free energy of 

solvation
solvG .257 The Born equation  

 










1
1

8 0

A

22

solv

NeZ
G , [7.16] 

describes the energy difference between the process of charging a single spherical particle with 

radius  up to a total change of Z in solvent. In equation 7.16  and 0 are the permittivity of the 

solvent and vacuum, while NA describes the Avogadro constant and e is the elementary 

charge. Assuming the protein 1ZLL and an incorporated ion to be a macro particle, the model of 

Born is applicable. For a correct model approach the ion was assumed to be buried inside the 

protein and therefore screened from the solvent, omitting any interaction with it. In the picture of 
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the thermodynamic cycle, the calculated 
solvG (eq. 7.16) is connected to the solvation energy of 

the ion-pore complex poreion

solv

G . As the charge is squared in equation 7.16, the Born approximation 

can provide information about the cation-anion selectivity difference. In dependency on the chosen 

ion charge (+1 for cations; -1 for anions) the total charge of a constructed 1ZLL-ion macro particle 

elevates from +20 to a total of +21 (cation+channel) or diminishes to +19 (anion+channel). 

Evaluation of equation 7.16 with the described macro ion charges of +19 (anion+channel) and +21 

(cation+channel) would gain a lower
solvG  for the cation case, due to the higher total charge of the 

ion-pore complex (fig. 7.4), assuming all other parameters to be equal. Thus solving 1ZLL with an 

additional buried cation is favoured over the corresponding process with an anion. In accordance 

to this argument the discrimination between anions and cations could be related to global solvation 

effects regarding poreion

solv

G in the thermodynamic cycle.  

7.3.3 Coordination numbers 

To investigate hydration effects in greater detail, coordination numbers (CN) were obtain from by 

spherical integration of the spatial distribution functions g(r). 

Table 7.2 Coordination of 1ZLLJC/1ZLLCHA 

 Ion  Na+ K+ Cs+ ClNaCl ClKCl ClCsCl 

CN in ionic 

solutions 

Owater 4.27/4.15 5.18/4.99 6.41/6.30 10.08/10.01 10.02/9.95 10.04/9.95 
Hwater 7.15/6.81 9.53/9.23 12.26/12.27 2.18/2.19 2.22/2.22 2.24/2.23 

roxy 3.14/3.08 3.50/3.44 3.82/3.83 4.32/4.28 4.32/4.28 4.32/4.28 
rhyd 3.96/3.89 4.36/3.44 4.73/4.75 2.66/2.59 2.66/2.59 2.66/2.59 

CN inside 

1ZLLJC 

/1ZLLCHA 

Owater 3.22/3.25 3.35/3.32 3.68/3.61 4.61/4.60 4.59/4.58 4.58/4.56 
Hwater 4.04/3.81 4.80/4.72 5.85/5.74 1.82/1.84 1.83/1.85 1.84/1.85 

roxy 3.17/3.12 3.48/3.43 3.83/3.83 4.28/4.23 4.28/4.23 4.28/4.23 
rhyd 4.09/3.96 4.51/4.48 5.00/5.00 2.70/2.64 2.70/2.64 2.70/2.64 

change 
∆Owater 1.05/0.90 1.83/1.67 2.73/2.69 5.47/5.41 5.43/5.37 5.46/5.39 
∆Hwater 3.11/3.00 4.73/4.51 6.41/6.53 0.36/0.35 0.39/0.37 0.40/0.38 

Owater and Hwater designate the CN of water oxygen and hydrogen atoms around the corresponding ion species. 

roxy and rhyd identifies the minimum position after the first solvation shell in g(r) 

CN in ionic solutions: analogous CN of the ion species in 0.1 M ion solutions. 

CN inside 1ZLLCHA: CN inside the restriction of 1ZLLJC/1ZLLCHA. 

The change in CN between solution and the inside is given in the last two rows 

 

A focus was laid on changes in the first solvation shell occurring due to transition of an ion from 

bulk phase (fig. 7.5) to the hydrophobic restriction (fig. 7.6). Using solutions of 0.1 M NaCl, KCl 

and CsCl, CN values for ions in bulk phase and correspondingly positioned at the restriction w0 of 

1ZLL (z = -19.5 Å) were calculated. As a descriptor for the solvation and interaction of the ions 

with the water oxygen (Owater) and hydrogen (Hwater) CNs were estimated (table 7.2), where (Owater) 
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was used as a substitutional for the complete water molecule. Based on these calculations, the first 

solvation shell in the bulk phase for Cl- is comprised of 10 to 9 water molecules in dependency of 

the chosen parameter set, where Na+, K+ and Cs+ have 6, 5 and 4 water molecules in their first 

solvation shell in the mean. Mimicking the transition into the most restricted position of the 

hydrophobic funnel in 1ZLL resulted in Owater CNs of 3.25, 3.32 and 3.61 for the cations Na+, K+ 

and Cs+, implicating a loss of 1 to 3 water molecules in the first shell. For the same transition, 

Cl- needs to strip off 5 to 6 water molecules to a total CN for Owater of 4 to 5. 

 

Figure 7.5: Distribution function g(r) in ionic bulk solution for the parameter sets of Cheatham and CHARMM. a, 

b: Representation of the radial distribution function for oxygen (red) and hydrogen (blue) with Na+, K+, Cs+ in bulk 

solutions of 0.1 M concentration. The cumulative integration over g(r) is shown for oxygen and hydrogen in dashed 

lines. c, d: Depiction of the spherical distribution function between Cl- and oxygen (red) or hydrogen (blue) in solutions 

of 0.1 M NaCl, KCl and CsCl. Dashed lines indicate the integration of the distribution function resulting in N(r). 
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Figure 7.6: Distribution function inside the restriction of 1ZLLJC and 1ZLLCHA. a, b: Depiction of the radial pair 

distribution function g(r) for the cations (Na+, K+, Cs+) localized inside the restriction (z =-19.5 Å) and hydrogen 

(blue) or oxygen (red). c, d: Distribution function of hydrogen and oxygen with the anions of NaCl, KCl and CsCl. 

The dashed lines indicate the increasing integration over the distribution function N(r) 

 

 Conclusion 

Due to a novel combination of 3D RISM results and approximations for the pmf, solvation effects 

are revealed to be of importance in the establishment of the inter-cationic order as well as for the 

general cation-anion selectivity in the hydrophobic pentamer PLN. Local investigations of the 

hydrophobic constriction revealed the influence of solvent effects on the cation-anion selectivity, 

considering the compensation of the opposing anion selectivity in vacuum, described by ufit,vac(z) 

(table 7.1). According to the inter-cation changes in the pmf between vacuum (ufit,vac(z)) and 

solution (wfit(z)), solvent effects are also involved in the inter-cation selectivity.  

Investigation of the free energies contributing to the thermodynamic cycle, that describes the 

ion-to-restriction transfer in PLN, permitted a further detailed explanation for the established 

inter-cationic order and provide a possible reason for the anion discrimination. In particular the 

process of ion solvation ( ion

solvG ) was pointed out to be the driving force behind the inter-cationic 

selectivity, while the discrimination of anions was identified to be dependent on the solvation 
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process of the ion+pore complex ( poreion

solv

G ). According to these results the inter-cationic 

selectivity order is predominantly controlled by the local property of ion and pore solvation  

( ion

solvG , pore

solvG ) as supported by the corresponding coordination numbers, while the anion over 

cation selectivity depends on global solvation effects ( poreion

solv

G ). Contributions of a membrane 

would cancel in consequence of the established thermodynamic cycle (fig. 7.1).  

Besides explaining the selectivity of PLN, the information derived from the established 

thermodynamic cycle emphasizes the pmf to be the result of drastic energy cancellation that in the 

end leads to surmountable barriers. This circumstance emphasizes the obtained sensitivity of ion 

selectivity on the parameter set. As the pmf is the determining quantity for ion permeation, the 

conductivity is affected by the revealed cancelation of the solvent free energy with the vacuum 

contributions. 

A sensitivity of the ion conduction on the different force field parameters is also emphasized by 

deviations in wfit(z) between 1ZLLCHA and 1ZLLJC (table 7.1). 

The experimentally stated cation selectivity of the hydrophobic pentamer PLN is supported by the 

here presented results, gained from a novel combination of in silico experiments. Finally we shed 

light on the solvation mechanism for ion transport and the selectivity in hydrophobic channels 

without a specialized filter and cavity structure, by revealing the small pmf barriers to be the result 

of huge energy cancellations, which controls the conductivity and ion selectivity of the channel. 
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8 Conclusion 

The subject of this work was the thermodynamic and kinetic characterization of the ion selectivity 

of three different nanopore systems and the associated establishment of the required analysis tools, 

using a computational multiscale approach. A brief summary of the most important results shall be 

given in the following paragraphs. 

In a first approach the small ion channel KcvATCV-1 from the Acanthocystis turfacea virus was 

investigated on an atomistic scale by MD simulations. Due to the absence of any spatial structural 

information, a homology model was successfully created on the basis of the closed structure of 

KirBac1.1. The calculated model was shown to be stable over several 100 ns of unrestrained MD 

simulations in which it kept its secondary structure and coordinated cations in its filter region. An 

average structural model of the minimalistic KcvATCV-1 channel was generated from these 

simulations which forms the basis for further mutant models that are currently examined 

experimentally. It was not possible at this point to characterize this structure as open or closed, 

although the stability and the ion distribution features hint at a possible open form. Calculation of 

the solvent distribution by 3D RISM for this structure and evaluation of the accessible inner volume 

allowed for the determination of characteristic profiles of local concentrations, partition 

coefficients and potentials of mean force, all relevant for understanding solvation effects on 

permeation pathways, which is experimentally difficult or impossible to access. Cooperative 

effects of the solvent were considered in all studies, which is a remarkable advantage of the 3D 

RISM implicit solvent model in contrast to simpler continuum electrostatics approaches. Applied 

to the KcvATCV-1 channel, the results support the cation selectivity of this structure. In particular, 

the potential of mean force near the filter and the mouth region properly reveal the ion coordination 

by the protein and a possible aromatic gate.  

In contrast to the polar tetrameric channels with a highly conserved protein architecture, the 

recently synthesized hydrophobic nanopore of Gong et al. attracted further attention as a model 

system to apply 3D RISM theory, as it presumably inherits a strong ion selectivity even in 

biological membranes with an also stated gating activitiy.6 By investigations with the established 

thermodynamic tool chain for the analysis of 3D RISM results, this pore was revealed to be 

predominantly anion-selective, independent of the applied concentrations, and in contrast to 
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experimentally claimed behavior. As a novel development, ion conductance was computed from a 

mean-field theory5 based on 3D RISM pmfs, which is possible in this case due to the low overall 

occupancy. The results support the anion selectivity of this pore in agreement with MD simulations 

also conducted in order to examine the validity of the RISM-based conductance estimation 

approach. This promising evidence together with earlier data obtained for KcvATCV-1 allowed for 

further application of the 3D RISM methodology to the hydrophobic phospholamban channel. 

Investigation of this pore confirmed theoretically the experimentally observed cation channel 

conductance with a selectivity order of Na+ < K+ < Cs+ in the conducting state. Truncation 

mutations showed the insignificance of the cytosolic domain in the context of ion conductance 

while a supposedly closed form was indeed found to be impermeable to ions. Clear evidence was 

found for an intrinsic dependence of the ionic selectivity of hydrophobic channels on their internal 

radius, validated by comparison with ligand gated ion channels with known discrimination 

capabilities. Detailed thermodynamic analysis of the hydrophobic constriction of phospholamban 

allowed for a decomposition of the total pmf into local energetic and entropic contributions and a 

thermodynamic cycle containing individual solvation free energies of the pore and the ions. The 

results uncovered a size selectivity of the restriction under vacuum conditions which is inverted by 

overcompensating solvation effects. In particular, the differences in the solvation free energies of 

the ions are decisive for the inter-cation order. In contrast, the cation-over-anion selectivity is 

exhibited by global aspects, specifically by the reduced solubility of the ion-pore complex for 

anions in comparison with cations. 

In summary, this work showed that ionic selectivity is a complex feature which depends on subtle 

individual structural, energetic and dynamical properties of the nanopore under investigation. The 

combination of various computational methods on varying scales and theoretical levels is essential 

to understand experimental features.  
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9 Appendix 

 

Figure A9.1: Water selection volume. Representation of the defined volume (red box) inside the ATCV-1 (blue) 

cavity. The overlay is shown for the top, side and bottom view. Only two monomers are shown for clarification in the 

side view. The protein is represented as a transparent cartoon.  

 

Results of the Blastp local alignment 

Blastp was used to estimate the homology between the closed KirBac1.1 and ATCV-1hom structure. 

The local alignment of the Kirbac1.1 with KcvATCV-1 amino acid sequence follows: 

KirBac 29  LFALLYQLGDAPIANQSPPGFVGAFFFSVETLATVGYGDMHPQTVYAHAIATLEIFV 85 

           +F  +Y++    + + + P +V   +FS  T  TVGYGD+ P++  A   AT  + + 

ATCV-1 13  VFTAIYKMLPGGMFSNTDPTWVDCLYFSASTHTTVGYGDLTPKSPVAKLTATAHMLI 69 

 

Thereby a Score of 37.0 bits (84) by an identity of 30 % was stated. Also 31 of the 57 (54%) 

residues are positive. Blastp was used in version 2.2.31.234,258 
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Alignment for Modeller 

Initial input alignment for the creation of the ATCV-1hom homology model 

>P1;kirbac1_1_only.pdb 

structure:kirbac1_1_only.pdb:1:A:94:D:::: 

MDLYYWALKVSWPVFFASLAALFVVNNTLFALLYQLGDAPIANQSPP 

GFVGAFFFSVETLATVGYGDMHPQTVYAHAIATLEIFVGMSGIALST 

----/ 

MDLYYWALKVSWPVFFASLAALFVVNNTLFALLYQLGDAPIANQSPP 

GFVGAFFFSVETLATVGYGDMHPQTVYAHAIATLEIFVGMSGIALST 

----/ 

MDLYYWALKVSWPVFFASLAALFVVNNTLFALLYQLGDAPIANQSPP 

GFVGAFFFSVETLATVGYGDMHPQTVYAHAIATLEIFVGMSGIALST 

----/ 

MDLYYWALKVSWPVFFASLAALFVVNNTLFALLYQLGDAPIANQSPP 

GFVGAFFFSVETLATVGYGDMHPQTVYAHAIATLEIFVGMSGIALST 

----/* 

 

 

>P1;atcv1 

sequence:atcv1:::::::0.00:0.00 

-------------MLLLIIHIIILI---VFTAIYKMLPGGMFSNTDP 

TWVDCLYFSASTHTTVGYGDLTPKSPVAKLTATAHMLIVFAIVISGF 

TFPW/ 

-------------MLLLIIHIIILI---VFTAIYKMLPGGMFSNTDP 

TWVDCLYFSASTHTTVGYGDLTPKSPVAKLTATAHMLIVFAIVISGF 

TFPW/ 

-------------MLLLIIHIIILI---VFTAIYKMLPGGMFSNTDP 

TWVDCLYFSASTHTTVGYGDLTPKSPVAKLTATAHMLIVFAIVISGF 

TFPW/ 

-------------MLLLIIHIIILI---VFTAIYKMLPGGMFSNTDP 

TWVDCLYFSASTHTTVGYGDLTPKSPVAKLTATAHMLIVFAIVISGF 

TFPW/* 
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1D RISM and 3D RISM parameters  

Table A9.1: 1D RISM parameters overview in dependency on the chapter 

 chapter 4 chapter 5,6 and 7 

Solution ρ / Å εr ρ / Å εr 

NaCl 55.246 78.4 55.246 78.4 

KCl 55.189 78.4 55.189 78.4 

CsCl 55.189 75.8 55.189 78.4 

εr describes the permittivity 

ρ denotes the solvent density 

 

Table A9.2: 3D RISM: CHARMM186,190 and JC250 force fields parameter  

 CHARMM Joung and Cheatham 

Element σ / Å ε / kcal mol-1 charge σ / Å ε / kcal mol-1 charge 

O 3.151 0.152 -0.834 3.151 0.152 -0.834 

H 0.400 0.046 0.417 0.400 0.046 0.417 

Na+ 2.430 0.047 1.000 2.439 0.087 1.000 

K+ 3.143 0.087 1.000 3.038 0.194 1.000 

Cs+ 3.742 0.190 1.000 3.530 0.407 1.000 

Cl- 4.045 0.150 -1.000 4.478 0.036 -1.000 

σ and ε parameters and charges from CHARMM or JC (Joung and Cheatham) force fields used in 3D RISM. 
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Pore monomer partial charges 

Partial charges of a single monomor for the pore of Gong et al.6 are provided in table A9.3 

Table A9.3: Monormer structure  

Index atom  type q Index atom  type q Index atom  type q 

1 C01 CA -0.067035 39 O02 O -0.5978 77 H22 H 0.15713 

2 H01 H 0.15096 40 O51 O -0.5978 78 C30 CA -0.062035 

3 C07 C -0.096535 41 O52 O -0.5978 79 H3 H 0.15713 

4 C09 CA 0.016465 42 O53 O -0.5978 80 C38 CA -0.067035 

5 C15 C -0.096535 43 O54 O -0.5978 81 H38 H 0.15096 

6 C17 CA 0.016465 44 O56 O -0.5978 82 C46 CA -0.067035 

7 C23 C -0.096535 45 C03 CA -0.062035 83 H46 H 0.15096 

8 C25 CA 0.016465 46 H03 H 0.15713 84 N06 N -0.57194 

9 C31 C -0.096535 47 C11 CA -0.14364 85 C54 C 0.077932 

10 C33 CA 0.016465 48 C19 CA 0.016465 86 H541 HA 0.046773 

11 C39 C -0.096535 49 C27 CA 0.016465 87 H542 HA 0.046665 

12 C41 CA 0.016465 50 C35 CA -0.14364 88 H543 HA 0.046665 

13 C47 C -0.096535 51 C43 CA -0.14364 89 C57 C 0.077932 

14 C49 CD 0.66933 52 N03 N -0.57194 90 H571 HA 0.046665 

15 C50 CD 0.66933 53 C04 CA -0.14364 91 H572 HA 0.046665 

16 C51 CD 0.66933 54 C12 CA -0.062035 92 H573 HA 0.046665 

17 C52 CD 0.66933 55 H1 H 0.15713 93 C59 C 0.077932 

18 C53 CD 0.66933 56 C20 CA -0.062035 94 H591 HA 0.046665 

19 C55 CD 0.66933 57 H20 H 0.15713 95 H592 HA 0.046665 

20 N01 N -0.57194 58 C28 CA -0.062035 96 H593 HA 0.046665 

21 C02 CA 0.016465 59 H28 H 0.15713 97 C61 C 0.077932 

22 C08 C -0.096535 60 C36 CA -0.062035 98 H611 HA 0.046665 

23 C10 CA -0.062035 61 H36 H 0.15713 99 H612 HA 0.046665 

24 H10 H 0.15713 62 C44 CA -0.062035 100 H613 HA 0.046665 

25 C16 C -0.096535 63 H44 H 0.15713 101 C63 C 0.077932 

26 C18 CA -0.067035 64 N04 N -0.57194 102 H631 HA 0.046665 

27 H18 H 0.15096 65 C05 CA -0.062035 103 H632 HA 0.046665 

28 C24 C -0.096535 66 H2 H 0.15713 104 H633 HA 0.046665 

29 C26 CA -0.067035 67 C13 CA 0.016465 105 C65 C 0.077932 

30 H26 H 0.15096 68 C21 CA -0.14364 106 H651 HA 0.046665 

31 C32 C -0.096535 69 C29 CA -0.14364 107 H652 HA 0.046665 

32 C34 CA -0.062035 70 C37 CA 0.016465 108 H653 HA 0.046665 

33 H34 H 0.15713 71 C45 CA 0.016465 109 H05 H 0.31213 

34 C40 C -0.096535 72 N05 N -0.57194 110 H07 H 0.31213 

35 C42 CA -0.062035 73 C06 CA 0.016465 111 H09 H 0.31213 

36 H42 H 0.15713 74 C14 CA -0.067035 112 H11 H 0.31213 

37 C48 C -0.096535 75 H3 H 0.15096 113 H12 H 0.31213 

38 N02 N -0.57194 76 C22 CA -0.062035 114 H14 H 0.31213 

q denotes the partial charger in elementary units. 

Type defines the CHARMM like “atomtype” name.  
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Grid size dependency 

The influence of the applied grid size in and the point spacing in chapter 5 was also evaluated. A 

grid size of 120³ Å³ was chosen with a grid spacing of 0.6 Å. Control calculations were conducted 

varying the grid size and spacing parameters (table A9.4). The restrained hydrophobic pore used 

in MDfix was chosen as the test case, treated with 1 M concentrations of KCl. Smaller grid sizes 

have a slight effect on the absolute value (table A9.4). Still several 3D RISM calculations failed to 

converge for smaller grid spacing. The similar γRISM between the smaller 100³ Å³ and the slightly 

bigger 120³ Å³ grid confirm the size of the core box to be suitable. 

Table A9.4 Grid size variation in 1 M KCl with restrained pore geometry 

  grid size / spacing K+ Cl- 

γRISM / pS 

150³ Å³ / 0.4 Å 180.90 461.60 

100³ Å³ / 0.6 Å 171.82 440.17 

120³ Å³ / 0.6 Å 171.92 440.07 

γRISM denotes the calculated conductance value. 

Bold font indicates the standard used in this work. 
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Benchmark studies for chapter 6 

The influence of the closure was evaluated by calculations for 1ZLL(CHA) and 

1ZLL(CHA,uncharged), which is in focus of this work (fig. A9.2). The systems 1ZLL(CHA) and 

1ZLL(CHA,uncharged) were applied in 3D RISM uv calculations using the HNC, PSE-4 and 

PSE-3 closure. While results obtained with a PSE-3 closure overestimate the influence of the cation 

(fig. A9.2a, left) in charged systems, the PSE-4 closure underestimates the same in uncharged 

systems (fig. A9.2a, right).  

 

 

Figure  A9.2: Closure validation. Results for only the KCl c(z) (a), w(z) (b), KC (c) and profiles for 1ZLL(CHA)  and  

1ZLL(CHA,uncharged) applying the closures PSE-3 (dotted), PSE-4 (solid line) and HNC (dashed). A salt 

concentration of 0.1 M was chosen for K+ (purple) and Cl- (green). The parameter set of CHARMM was applied. 
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For 3D RISM uv calculations with the pentameric ion channel 5-HT3R, PSE-3 was the only feasible 

closure relation. A corresponding benchmark study is provided in fig. A9.3. 

 

Figure A9.3: Benchmark studies of 1ZLL and  Comparison of 3D RISM uv calculation results using a PSE-4 and a 

HNC closure for 0.1 M solutions of 1ZLL(CHA) (a). Depicted are the concentration profiles (solid lines) and partition 

constants (dashed lines) obtained by 3D RISM uv calculations with PSE-4 (light blue) and HNC (light red) for 0.1 M 

solutions of KCl (only K+ is shown) in 1ZLL. Compare of order PSE-4 (light blue) and PSE-3 (light red) closures 

applied to 5HT3R depicted for 0.1 M KCl solutions (only K is shown, Line style follows a) (b). Influence of grid size 

(c-d). Computation of the CsCl (Cs+: gray; Cl-: green) pmf with a grid size of 0.4 Å (dashed) for 1ZLL c in overlay 

with results from 0.6 Å (solid). Excerpts are shown for clarification d. 
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Full panel of all approximated thermodynamic values in chapter 7 

Part I: cations 

 Property position Na+ K+ Cs+  parameter set 

w0(z) [kcal/mol] z=-19.5 -0.38/-0.33 -0.56/-0.58 -1.21/-1.28 (1ZLLCHA/1ZLLJC) 
Z(z)   z=-19.5 0.04/0.04 0.06/0.06 0.04/0.05 (1ZLLCHA/1ZLLJC) 
wfit(z) [kcal/mol] z=-19.5 1.87/1.87 1.68/1.65 1.96/1.81 (1ZLLCHA/1ZLLJC) 
Uv(z) [kcal/mol] z=-19.5 0.22/0.26 0.03/0.01 -0.61/-0.69 (1ZLLCHA/1ZLLJC) 
Sv(z) [cal/mol K] z=-19.5 -0.01/-5.40 -0.01/-5.51 -0.01/-8.36 (1ZLLCHA/1ZLLJC) 
-T∆Sv(z) [kcal/mol] z=-19.5 1.65/1.61 1.66/1.64 2.58/2.49 (1ZLLCHA/1ZLLJC) 
k [kcal/mol Å²] z=-19.5 2.98/2.79 3.01/2.95 14.26/12.35 (1ZLLCHA/1ZLLJC) 

u0 [kcal/mol] z=-19.5 92.37/92.25 94.96/93.56 94.02/92.60 (1ZLLCHA/1ZLLJC) 
Z(z)vac  z=-19.5 399.38/0.00 412.38/0.00 409.41/0.00 (1ZLLCHA/1ZLLJC) 
u(z)fit,vac [kcal/mol] z=-19.5 95.45/95.44 98.56/97.20 97.85/96.42 (1ZLLCHA/1ZLLJC) 
U(z)vac [kcal/mol] z=-19.5 92.97/92.84 95.55/94.15 94.61/93.19 (1ZLLCHA/1ZLLJC) 
S(z)vac[cal/mol K] z=-19.5 -8.34/-8.74 -10.08/-10.24 -10.86/-10.82 (1ZLLCHA/1ZLLJC) 
-T∆S(z)vac [kcal/mol] z=-19.5 2.49/2.61 3.01/3.05 3.24/3.23 (1ZLLCHA/1ZLLJC) 
kvac [kcal/mol Å²] z=-19.5 12.25/14.98 29.46/31.91 43.51/42.60 (1ZLLCHA/1ZLLJC) 

w0(z) [kcal/mol] z=-18.9 -0.32/0.01 -0.68/-0.48 -4.50/-3.25 (1ZLLCHA/1ZLLJC) 
Z(z)  z=-18.9 0.04/0.02 0.06/0.04 1.76/0.03 (1ZLLCHA/1ZLLJC) 
wfit(z) [kcal/mol] z=-18.9 1.97/2.23 1.70/1.92 0.33/0.63 (1ZLLCHA/1ZLLJC) 
Uv(z) [kcal/mol] z=-18.9 0.27/0.59 -0.09/0.11 -3.91/-2.66 (1ZLLCHA/1ZLLJC) 
Sv(z) [cal/mol K] z=-18.9 -5.72/-5.52 5.99/-6.07 -12.00/11.04 (1ZLLCHA/1ZLLJC) 
-T∆Sv(z) [kcal/mol] z=-18.9 1.71/1.65 1.79/1.81 3.58/3.29 (1ZLLCHA/1ZLLJC) 
k [kcal/mol Å²] z=-18.9 3.28/2.97 3.75/3.90 77.30/47.78 (1ZLLCHA/1ZLLJC) 

u0 [kcal/mol] z=-18.9 93.15/93.27 95.68/95.57 98.52/97.03 (1ZLLCHA/1ZLLJC) 
Z(z)vac  z=-18.9 0.00/0.00 0.00/0.00 0.00/0.00 (1ZLLCHA/1ZLLJC) 
u(z)fit,vac [kcal/mol] z=-18.9 96.59/96.74 99.43/99.36 102.59/101.08 (1ZLLCHA/1ZLLJC) 
U(z)vac [kcal/mol] z=-18.9 93.75/93.86 96.27/96.17 99.12/97.62 (1ZLLCHA/1ZLLJC) 
S(z)vac[cal/mol K] z=-18.9 9.53/-9.68 -10.60/-10.72 -11.64/-11.59 (1ZLLCHA/1ZLLJC) 
-T∆S(z)vac [kcal/mol] z=-18.9 2.84/2.88 3.16/3.20 3.47/3.46 (1ZLLCHA/1ZLLJC) 
kvac [kcal/mol Å²] z=-18.9 22.26/23.99 38.12/40.52 64.47/63.00 (1ZLLCHA/1ZLLJC) 

ion

solvG  z=-19.5 -85.18/-81.96 -67.27/-66.71 -54.39/-56.62 (1ZLLCHA/1ZLLJC) 
pore

solvG  z=-19.5 -3,454.70/-3,464.28 -3,456.21/-3,443.58 -3,427.76/-3,422.11 (1ZLLCHA/1ZLLJC) 
poreion

solv

G  z=-19.5 -3,633.49/-3,639.81 -3,620.34/-3,605.82 -3,578.18/-3,573.48 (1ZLLCHA/1ZLLJC) 
binding

vacG  z=-19.5 95.45/95.44 98.56/97.20 97.85/96.42 (1ZLLCHA/1ZLLJC) 

Subscript vac designates vacuum energies. 

wfit(z) represent the full pmf in solvation, with the fit minimum w0. 

ufit,vac(z) represent the vacuum potential, with the fit minimum u0(z). 

w(z) designates the pmf obtained in chapter 6. 

-T∆Sv(z) describes the entropy of the free energy in solvation. 

Uv(z) and denotes the internal energy. 

The partition sum is denoted as Z(z). 
ion

solvG ,
pore

solvG , 
poreion

solv

G and 
binding

vacG designate the free energies. 

k is the calculated force constant. 
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Part II: anions 

Property Position ClNaCl ClKCl ClCsCl parameter set 

w0(z) [kcal/mol] z=-19.5 -0.96/-0.81 -2.09/-1.94 -0.99/-1.64 (1ZLLCHA/1ZLLJC) 

Z(z)   z=-19.5 0.02/0.01 0.05/0.04 0.02/0.03 (1ZLLCHA/1ZLLJC) 

wfit(z) [kcal/mol] z=-19.5 2.39/2.61 1.77/1.89 2.35/2.11 (1ZLLCHA/1ZLLJC) 

Uv(z) [kcal/mol] z=-19.5 -0.36/-0.21 -1.50/-1.35 -0.40/-1.05 (1ZLLCHA/1ZLLJC) 

Sv(z) [cal/mol K] z=-19.5 -0.01/-9.48 -0.01/-10.88 -0.01/-10.60 (1ZLLCHA/1ZLLJC) 

-T∆Sv(z) [kcal/mol] z=-19.5 2.75/2.83 3.26/3.24 2.75/3.16 (1ZLLCHA/1ZLLJC) 

k [kcal/mol Å²] z=-19.5 19.19/21.77 45.51/43.95 19.10/38.20 (1ZLLCHA/1ZLLJC) 

u0 [kcal/mol] z=-19.5 -95.06/-93.92 -95.06/-93.92 -95.06/-93.92 (1ZLLCHA/1ZLLJC) 

Z(z)vac  z=-19.5 -380.76/7.22704E+65 -380.76/7.22704E+65 -380.76/7.22704E+65 (1ZLLCHA/1ZLLJC) 

u(z)fit,vac [kcal/mol] z=-19.5 -91.00/-89.84 -91.00/-89.84 -91.00/-89.84 (1ZLLCHA/1ZLLJC) 

U(z)vac [kcal/mol] z=-19.5 -94.47/-93.33 -94.47/-93.33 -94.47/-93.33 (1ZLLCHA/1ZLLJC) 

S(z)vac[cal/mol K] z=-19.5 -11.61/-11.69 -11.61/-11.69 -11.61/-11.69 (1ZLLCHA/1ZLLJC) 

-T∆S(z)vac [kcal/mol] z=-19.5 3.46/3.49 3.46/3.49 3.46/3.49 (1ZLLCHA/1ZLLJC) 

kvac [kcal/mol Å²] z=-19.5 63.45/66.06 63.45/66.06 63.45/66.06 (1ZLLCHA/1ZLLJC) 

w0(z) [kcal/mol] z=-18.9 -7.18/-1.53 -1.75/-1.37 -1.96/-1.74 (1ZLLCHA/1ZLLJC) 

Z(z)  z=-18.9 94.97/0.06 0.08/0.06 0.12/0.08 (1ZLLCHA/1ZLLJC) 

wfit(z) [kcal/mol] z=-18.9 -2.70/1.66 1.48/1.71 1.27/1.51 (1ZLLCHA/1ZLLJC) 

Uv(z) [kcal/mol] z=-18.9 -6.65/-0.94 -1.16/-0.78 -1.37/-1.15 (1ZLLCHA/1ZLLJC) 

Sv(z) [cal/mol K] z=-18.9 13.27/-8.71 -8.88/-8.34 -8.79/-8.92 (1ZLLCHA/1ZLLJC) 

-T∆Sv(z) [kcal/mol] z=-18.9 3.96/2.60 2.65/2.49 2.64/2.66 (1ZLLCHA/1ZLLJC) 

k [kcal/mol Å²] z=-18.9 146.37/14.74 16.06/12.27 15.74/16.40 (1ZLLCHA/1ZLLJC) 

u0 [kcal/mol] z=-18.9 -107.04/-104.91 -107.04/-104.91 -107.04/-104.91 (1ZLLCHA/1ZLLJC) 

Z(z)vac  z=-18.9 1.89191E+75/0.00 1.89191E+75/0.00 1.89191E+75/0.00 (1ZLLCHA/1ZLLJC) 

u(z)fit,vac [kcal/mol] z=-18.9 -102.69/-100.55 -102.69/-100.55 -102.69/-100.55 (1ZLLCHA/1ZLLJC) 

U(z)vac [kcal/mol] z=-18.9 -106.44/-104.31 -106.44/-104.31 -106.44/-104.31 (1ZLLCHA/1ZLLJC) 

S(z)vac[cal/mol K] z=-18.9 -12.59/-12.63 -12.59/-12.63 -12.59/-12.63 (1ZLLCHA/1ZLLJC) 

-T∆S(z)vac [kcal/mol] z=-18.9 3.75/3.76 3.75/3.76 3.75/3.76 (1ZLLCHA/1ZLLJC) 

kvac [kcal/mol Å²] z=-18.9 103.96/105.87 103.96/105.87 103.96/105.87 (1ZLLCHA/1ZLLJC) 

ion

solvG  z=-19.5 
-94.47/-93.33 -94.47/-93.33 -94.47/-93.33 

(1ZLLCHA/1ZLLJC) 

pore

solvG  z=-19.5 -11.61/-11.69 -11.61/-11.69 -11.61/-11.69 
(1ZLLCHA/1ZLLJC) 

poreion

solv

G  z=-19.5 
3.46/3.49 3.46/3.49 3.46/3.49 

(1ZLLCHA/1ZLLJC) 

binding

vacG  z=-19.5 63.45/66.06 63.45/66.06 63.45/66.06 
(1ZLLCHA/1ZLLJC) 

Subscript vac designates vacuum energies. 

wfit(z) represent the full pmf in solvation, with the fit minimum w0. 

ufit,vac(z) represent the vacuum potential, with the fit minimum u0(z). 

w(z) designates the pmf obtained in chapter 6. 

-T∆Sv(z) describes the entropy of the free energy in solvation. 

Uv(z) and denotes the internal energy. 

The partition sum is denoted as Z(z). 
ion

solvG ,
pore

solvG , 
poreion

solv

G and 
binding

vacG designate the free energies. 

k is the calculated force constant. 
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