
Learning Vision based Mobile Robot
Behaviors from Demonstration

Faculty of Electrical Engineering and Information Technology
TU Dortmund University

DISSERTATION

submitted in partial fulfillment
of the requirements for the degree

Doktor Ingenieur
(Doctor of Engineering)

by

M.Sc. Krishna Kumar Narayanan
Dortmund, Germany

Date of submission: 15th February, 2015

First examiner: Univ.-Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten
Bertram
Second examiner: Univ.-Prof. Dr.-Ing. Martin Mönnigmann

Date of approval: 2nd November, 2015

Contents

Acknowledgments vii

Abstract ix

Abbreviations xi

Nomenclature xiii

1. Introduction 1
1.1. Goal and contribution of the thesis . 2
1.2. Thesis outline . 5

2. Background 7
2.1. Learning in robotics . 10
2.2. Learning from demonstration . 12

3. Visual features for robot navigation 15
3.1. Free floor segmentation . 16
3.2. Visual features . 17

3.2.1. Spatial features . 18
3.2.2. Image moments . 19
3.2.3. Shape features . 20

3.3. Feature generation . 23
3.4. Feature selection . 26

3.4.1. Performance metric . 27
3.4.2. Cross-validation . 28
3.4.3. Wrapper approach . 29

3.5. Application example . 29
3.6. Related work . 31
3.7. Summary . 32

4. Teaching modalities for mobile robot demonstrations 35
4.1. Mapping problem . 36
4.2. Teaching modalities and Human-Machine interfaces 37

4.2.1. Remote teleoperation . 38
4.2.2. Joystick control . 38

iii

Contents

4.2.3. Gesture based control . 39
4.3. Demonstration tasks . 41

4.3.1. Experimental setup . 42
4.3.2. Performance measures . 43

4.4. Validation and user study . 43
4.5. Related work . 45
4.6. Summary . 46

5. Scenario and context specific visual behavior learning 49
5.1. Scenario classification and validation . 50

5.1.1. Visual features . 52
5.1.2. Principal components . 55
5.1.3. Experimental validation . 61

5.2. Context classification using perceptual trace 64
5.3. Scenario modeling . 68
5.4. Experimental results . 69
5.5. Related work . 71
5.6. Summary . 72

6. Supervised learning of behaviors with artificial neural networks 75
6.1. Visual behavioral features . 75
6.2. Static mapping . 78

6.2.1. Corridor following . 78
6.2.2. Obstacle avoidance . 82
6.2.3. Homing . 85

6.3. Dynamic mapping . 88
6.4. Experimental results . 91

6.4.1. Artificial neural network . 91
6.4.2. Recurrent neural network . 92

6.5. Automatic feature selection . 94
6.5.1. Principal component extraction . 94
6.5.2. Experimental results . 97
6.5.3. Behavior classification . 97

6.6. Summary . 99

7. Supervised learning of behavioral dynamics and behavior fusion 103
7.1. Stable estimator of dynamical systems . 104

7.1.1. Behavior learning . 104
7.1.2. Experimental results . 108

7.2. Learning behavior fusion . 110
7.2.1. Instance based learner . 111
7.2.2. Artificial neural networks . 115
7.2.3. Discussion . 118

8. Reinforcement learning of behaviors 121
8.1. Reinforcement learning using a model . 121

8.1.1. Building up the initial behavior model 124

iv

Contents

8.1.2. Value iteration algorithm with Gaussian mixture model 125
8.1.3. One shot learning . 131

8.2. Learning from scratch . 135
8.3. Learning time . 137
8.4. Experimental results . 138
8.5. Related work . 139
8.6. Summary . 142

9. Conclusions 145
9.1. Outlook . 147

A. Questionnaire on demonstration modes 149

B. Software architecture 151
B.0.1. Robot simulation . 152

C. Scenario classification 155
C.1. Scenario classification with probabilistic neural networks 155
C.2. Extended experimental validation . 155

C.2.1. Extended experimental results . 158

D. Supervised learning of visual behaviors 163
D.1. Artificial neural networks . 163
D.2. Homing . 167
D.3. Gaussian mixture models . 168

D.3.1. Number of Gaussians . 168
D.3.2. Modeling translational velocity . 168

E. Image based door detection 175

Bibliography 179

v

Acknowledgements

This work would not have come to fruition without the guidance and support of my
academic peers, family and friends. First of all, I would like to thank Univ.-Prof. Dr.-Ing.
Prof.h.c. Dr.h.c. Torsten Bertram for providing me with the opportunity to work in his
department and be a part of the RST family. Through his timely advice and guidance
at appropriate situations, he has helped me to stay on the right track and allowed me
to mature both as a researcher and as a person. I would like to thank apl.Prof. Dr.
rer. nat. Frank Hoffmann for his constant support and help through out my tenure
at the department. His innumerable ideas and his extensive knowledge has helped me
tremendously in formulating this work. For that, i owe my immense gratitude and thanks.
I would like to thank all the members of our department who have always been ready to
discuss and give suggestions in need. I would like to thank especially Felipe Posada for
his inspiring discussions and friendly suggestions. His company has provided me the extra
energy, motivation and drive to continue working during the long wee hours at the lab.
Special thanks also to Jürgen Limhoff for all the help with the hardware and construction
of the mobile robot. Many thanks to my office colleagues and friends, Jörn Mahlzahn and
Anh Son Phung for their numerous suggestions and friendly support all through the stay.
I would also like to thank the contribution of all the students who through their decision
to do master thesis with me have provided numerous insight and understanding for the
completion of this work.
My heartfelt thanks to my parents, brother and my partner who have been there in all my
moments of good and bad. With out their well wishes and moral support, this research
could not have been possible. A big thanks to everyone.

vii

Abstract

Autonomous service robots that are scalable and flexible to learn, accommodate new tasks
and thereby assist humans is one of the long term vision of robotics and artificial intel-
ligence. Out of the multitude of skills that we desire from mobile robots, the ability to
navigate autonomously is an important task. Behavior based control is an approach to
realize this vision where the robot action is divided into independent primitive motion
substrates called as behaviors. Manual design and programming of such behaviors require
an astute understanding of the environment and its effect on behavioral response. Fur-
thermore, if the perceptual sensor is vision based, the task is more challenging because of
the complexity of the visual information. Learning from Demonstration (LfD) is one ap-
proach that alleviates this process, where a teacher demonstrates examples of behavioral
perceptual states action pairs which are then transferred to a behavioral policy without
any explicit programming. Despite the ever progressive research in this area, many de-
sign decisions to achieve a successful LfD architecture for learning vision based mobile
robot behaviors are yet not completely answered. This thesis addresses these issues and
proposes a framework to learn visual robotic indoor behaviors from demonstration ex-
amples. Demonstrations are performed by a human teacher to a robot mounted with an
omnidirectional camera as its main navigational sensor. Design and analysis of different
intuitive demonstration modes to realize an innate, flexible and user-friendly interface are
presented. The fidelity of the generated demonstration data from the different teaching
modes are evaluated. Situated learning of the robotic behaviors is accomplished by learn-
ing scenario specific behaviors. Classifying the environment into three scenarios, behavior
fusion within each scenario is achieved by identifying the inherent context of operation.
Other behavior modularities such as learning individual behavioral representations are
also addressed. The performance and efficiency of the different representations together
with their influence on the emerging final behavior are shown. Besides the supervised
behavior learning models, an architecture for self-learning vision based robot behaviors
within a LfD framework is also proposed. Starting with a limited knowledge, the ability
of the framework to update its initial behavioral policy by learning its value function is
shown. Successful solutions to challenging problems such as one-shot learning and learn-
ing from scratch are accomplished. The goal of the thesis is to present the reader to the
potentials of LfD for vision based mobile robot behaviors and propose the necessary steps
and design decisions to build such a framework.

ix

Abbreviations

AIC Akaike Information Criterion
ALVINN An Autonomous Land Vehicle in a Neural Network
ANN Artificial Neural Networks

BIC Bayesian Information Criterion

CCD Charge-coupled device

DAMN Distributed Architecture for Mobile Navigation
DE Context label: Dead end
DTW Dynamic Time Warping

EM Expectation Maximization

GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression

HOG Histogram of Oriented Gradients
HRI Human-Robot-Interaction
HSV Hue-Saturation-Value

IRL Inverse Reinforcement Learning

L Context label: Left turn to align in a corridor
LCSS Longest Common Subsequence
LDA Linear Discriminant Analysis
LfD Learning from demonstration
LWR Locally Weighted Regression

mRMR minimal-redundancy-maximal-relevance
MSE Mean Squared Error

NB Naive Bayes
NMSE Normalized Mean Squared Error
NRMSE Normalized Root Mean Squared Error

xi

Abbreviations

NUI Natural User Interface

OL Context label: Left turn to avoid an obstacle
OR Context label: Right turn to avoid an obstacle

PCA Principal Component Analysis
PCR Principal Component Regression
PMD Photonic Mixture Device
PNN Probabilistic Neural Networks

QDA Quadratic Discriminant Analysis

R Context label: Right turn to align in a corridor
RANSAC Random Sample Consensus
RBF Radial Basis Function
RF Random Forest
RG Regression Trees
RGB Red-Green-Blue
RL Reinforcement Learning
RMS Root Mean Squared
RMSE Root Mean Squared Error
RNN Recurrent Neural Network

S Context label: Carry on straight
SEDS Stable Estimator of Dynamic Systems
SIFT Scale Invariant Feature Transforms
SLAM Simulatenous Localization And Mapping
SNR signal-to-noise Ratio
SOM Self-Organizing Map
SSE Sum of Squared Error
SURF Speeded Up Robust Features
SVD Singular Value Decomposition

xii

Nomenclature

A(BB) Area of the rectangular bounding box of the shape
As Area of shape
Bc Bending energy of a curvature
D (xi,xq) Manhattan distance between the query input and neighboring ith input
Dcs Cauchy-Schwarz divergence
I(x, y) Image intensity at pixel locations x and y
P (r, θ) Similarity P at locations r and θ
P ass′ State transition probability of reaching state s′ from state s with an action a
Q∗ Optimal action value function
Qπ Action value function of a policy π
Rt Long term discounted reward over t time steps
Rfnf Ratio of floor to no floor regions
Tc Curve temperature
V ∗ Optimal state value function
V pi State value function of a policy π
Wmax Maximum width of the free floor region
∆x Lateral distance to the corridor center
α Lateral offset angle
αg Angular direction of the goal point
β Orientation angle
βg Orientation error at the goal point
Db Boundary distances of the shape to the shape centroid
Dc Mean distance of the boundary points to shape centroid
κs Curvature of the shape
Zm Principal Component number m
γ Discount factor
γ1 Skewness
γ2 Kurtosis
ˆyti ith predicted target output of the training data
κ Robot path curvature
(Sx,0,Sy,0) Center of mass of the segmented shape
F Mapping between the image and its extracted features
L Log likelihood of the data for the model parameters
x∗ Equilibrium attractor state
µk Mean of the kth Gaussian

xiii

Nomenclature

ω Rotational velocity
φ Elliptical tilt after an elliptical approximation of the free floor space
ρs Circularity of shape
ρmax Maximum plausible measurable distance to the goal point
ρg Pixel distance to the goal point
ρmax Maximum plausible distance to goal point in the image
σ Standard deviation of the data
σd Standard deviation of the boundary distances to the shape centroid
σk Covariance of the kth Gaussian
σyt Standard deviation of the training data output
θs Orientation of the principal axis
θc Critical angle
θmin Orientation of the closest obstacle
θsafe Next traversable free floor direction
dc Critical distance
dmin Distance to the closest obstacle
do Distance to the nearest obstacle along the current path curvature
ehand Mean horizontal pixel error of the left and right hand (eleft, eright)
fn False Negatives
fp Histogram count of the pixel values
hs Perimeter of the shape convex hull
mpq (p+ q)th order image moment
nk Number of parameters of the Gaussian Mixture Model
ps Perimeter of shape
tn False Positives
tp True Positives
tc Time to collision
ts Time to collision
v Translational velocity
xc Centroid of image from its moments
xti ith input of the training data
xtq Query input
yti ith target output of the training data
||S|| Euclidean norm of a shape
||SC || Centroid size of the shape
||SM || Mean size of the shape
||SRMS || Root mean square size of the shape

a Semi major axis

b Semi minor axis

xiv

1
Introduction

It is not my aim to surprise or shock you - but the simplest way I can summarize
is to say that there are now in the world machines that think, that learn and that
create. Moreover, their ability to do things is going to increase rapidly until - in
a visible future - the range of problems they can handle will be coextensive with
the range to which the human mind has been applied.

– Herbert Simon, Heuristic problem solving: the next advance in operations research

Robot behaviors are the fundamental building block for accomplishing a successful au-
tonomous mobile robot navigation. Behavior based systems takes its inspiration from
ecology and biological systems. The reactive behavioral traits found in animals and hu-
mans arises from the oldest regions in the brain. Typically called as the reptilian brain,
the midbrain section of this stem is concerned with the interpretation of the environ-
mental perception to appropriate reflexive behavioral traits. The modern human brain
builds on the instinctive traits of the reptilian brain and moderates with its newer coun-
terparts to generate highly complex behaviors that are based on situation, context and
experience. Imbibing similar traits on a machine is a highly challenging process as it
needs a profound understanding of the principle behind the workings of the human brain,
break them down into rules and transfer it individually to the machine processing unit.
Behavior based robotics [Ark98] attempts to build the initial steps towards realizing this
biological paradigm by using the software design perspective to modularize the complex
behavioral traits to simple behavioral primitives.
Animal behavior in its purest form is reactive and has been the inspiration for behavior
based robotics. Reactive control in a robot directly exhibits a very tight coupling between
the sensing and action executed in terms of motor action. The stimulus is generated by
sensor observation of the environment whose input is interpreted to an appropriate motion
action response by the behavior. Conventional mobile robotic research today have had as-
tounding success with autonomous navigation [HBFT03]; [TBF05]; [Alt03]; [MEBFGK10]
which work with proximity sensors to sense the environment. Proximity sensors like sonar
have a very low resolution and are limited in size whereas laser range sensors provide a
better resolution but are expensive and need more power to operate. Computer vision
systems on the other hand are getting more cheaper and increasing in performance by the
day. Vision is rapidly creating more interest within the robotic community to be consid-
ered as the primary navigation sensor either alone or in conjunction with the proximity
sensors [DK02]; [BFOO08]. The design of a robust reactive vision based robot behaviors

1

1. Visual Features for Robot Navigation

faces multiple problems in understanding images [NPHB09] such as the lack of depth in-
formation to construct 3D scenes, preprocessing large amount of information and thereby
requiring high data aggregation, the dynamic nature of indoor environments which vary
substantially in geometry, appearance and to lighting conditions and the highly context
dependent nature of the different image features such as texture, intensity or optical flow.
These problems aggravate the conventional behavior based approach to identify proto-
typical scenarios and to design context specific albeit general reactive behaviors for them.
Multiple works in the area of pure vision based navigation have been done ranging from
path following [NFH06] to obstacle avoidance [LBG97]. Despite the relative successes of
the works, visual navigation is still trying to establish an acceptable benchmark mainly
due to the characteristics and appearance of the environment which irreverently needs a
manual parameter tuning from the developer. This is where learning can occur within
the framework of behavior based systems. Learning from demonstration (LfD) is a policy
development technique with a potential straight forward solution for non-trivial robotic
tasks [Arg09]. In LfD, a teacher first demonstrates the policy to the robot and generates
a list of perception-action pairs. The robot then generalizes these perception-action pairs
to learn a mapping, derive a policy and navigate by itself. It is an indirect or a supervised
method of learning behaviors compared to the conventional direct mode of programming.
This dissertation addresses these challenges and proposes a framework for learning vision
based indoor robotic behaviors from demonstrations. The work focuses on learning the
primitive building blocks of robot navigation, where the visual sensorimotor pairs of lower
level behaviors are modeled. The behaviors are analyzed and learned in modular fashion
so that it can augment and enrich a higher level operation (eg. Simultaneous Localiza-
tion and Mapping, path planning, exploration) without any interdependency issues. The
learned behaviors have no prior information about the environment. The thesis takes
inspirations and grazes many interdisciplinary fields such as computer vision, image fea-
ture extraction, machine learning and human-robot interaction but always maintaining
the spirit of behavior based robotics. Four prototypical behaviors, namely corridor or
wall following, obstacle avoidance, door passing and homing or goal point reaching are
learned.

1.1. Goal and contribution of the thesis
The principal objective of the thesis is to present the potential of a LfD framework for
scalable, flexible and intuitive vision based robotic behaviors. The dissertation tries to
answer the following questions:

• How does a human teacher demonstrate navigational skills to a mobile robot in an
efficient and intuitive manner?

• How does one transfer these demonstrations from the teacher to the robot working
with a different sensor modality?

• What are the different behavioral representations and how do they differ in perfor-
mance during learning?

• What are the relevant image features that characterize the working principle of
different behaviors?

2

1.1. Goal and contribution of the thesis

• How to determine scenario, context and behavior specific features?

• Can a learned behavior be improved by introducing new knowledge?

This thesis covers diverse aspects of progressing towards building a behavior learning sys-
tem. The contributions of the thesis are the following:

Designing intuitive demonstration interfaces
Novel demonstration modes are designed and investigated for flexibility in commanding a
mobile robot [NPHB12]. Taking the inspiration from the different kinesthetic modes avail-
able to demonstrate a humanoid or a manipulator robots [Cal09]; [SAMB12], this work
extends the concept to mobile robots to generate examples that are noise free, flexible and
easy to use. Three teleoperation modes for commanding a mobile robot are designed and
analyzed. Direct teleoperation with a joystick possess an advantage in that it is extremely
fast to generate examples, but exhibits high signal-to-noise ratio with the data [KFD95];
[LD06]. Thus, other alternative modes using graphical and natural user interface are
explored. Remote teleoperation is with graphical user interface where the user sits and
controls the robot remotely using a steering wheel by looking at the robots camera view
projected onto a screen. The user here directly controls from the robots perspective in
that there exists no differences in sensor modality. The third mode uses a Natural User
Interface (NUI) based framework where motion gestures are used to command the robot
from behind. Microsoft Kinect is used to capture naturally occurring teacher gestures
and encode them to motion commands. With the Kinect based demonstration mode, the
teacher assumes turning a hypothetical steering wheel whose angles are interpreted as
turn rates. The translational motion corresponds to the distance between the teacher and
the robot. Experiments and a case study is performed with different participants with
diverse knowledge of robotics to judge the ease and flexibility of the demonstration modes.

Visual features for robotic behaviors
The first step towards designing a robot behavior is to identify the features that are
characteristic of the behavior. An exhaustive overview of different image based features
that are relevant for a robotic behavior is presented. An omnidirectional camera pointed
towards the floor with a 360◦ horizontal field of view is used as the primary sensor. The
acquired omnidirectional image is first segmented using an ensemble of experts segmenta-
tion scheme [PNHB10]; [PNHB11] to obtain floor and non-floor regions. Various features
from the segmented image that reflect the shape and moment of the floor together with
more behavior specific features such as proximity of the obstacles to the robot are ex-
tracted. The extracted features are then reduced to relevant feature subset for different
behaviors using wrapper based feature selection approach. The fidelity of the subset is
established by cross-validating them against unseen examples.

Scenario and context specific learning
Learning robot behaviors needs a good understanding of the tight coupling between the
behavior and the environment. This aspect of the dependency is called as the situat-
edness of a behavior [Mat01]. We capture this aspect through visual features relevant
to individual scenarios which are extracted, identified and learned to generate a multi-

3

1. Visual Features for Robot Navigation

ple model autonomous navigation [NPHB11a]; [NPHB11b]. Scenario corresponds to the
robots local environment described through the geometry and the spatial structure of the
floor. Supervised examples of three indoor scenarios (corridor, open room and cluttered)
are generated manually by driving the robot in these environments and a semantic classi-
fication of the scenarios are performed to identify the current scenario the robot is in. We
also examine unsupervised semantic classification using self-organizing maps to analyze
the significance of the data in determining the scenario. The detected scenarios are com-
pared with the hand labeled semantic labels to see if manual intuition concurs with that
of the data. Once the scenario is identified, the context of operation within the scenario is
also learned. A context is expressed through a short-term perceptual trace of the robots
recent history. The correct context of operation is found by matching the memory trace of
the robots recent history with demonstrated examples recorded in the different contexts.
Two time series trajectory matching techniques, namely Dynamic Time Warping (DTW)
and Longest Common Subsequence (LCSS) are tested and their individual pros and cons
discussed. As an alternative, behavior fusion within an entire scenario are modeled and
trained with Artificial Neural Networks. The generalization of these models against un-
seen data and scenarios are exhaustively validated and tested.

Supervised learning of behaviors
In contrast to learning scenario specific behaviors, learning individual behaviors are ex-
plored. This is an another method of modularizing behavior fusion, where instead of
learning the environmental dependence, the perception-action mapping of every behavior
is learned. The learned behaviors thus represent the smallest subunit of the visuo-motor
mapping architecture. Behaviors such as corridor following, obstacle avoidance and hom-
ing are learned through static and dynamic mapping architectures. Feed forward and
recurrent neural networks are trained to learn the different behaviors. The performance
of the behaviors using static and dynamic mapping are exhaustively tested and validated
in unseen environments for robust performance. Another interesting behavioral repre-
sentation is discussed in [SDE95]; [Bic00]; [FWTPK03]; [War06], where they represent
robotic behaviors as dynamic systems emerging from their interaction with the environ-
ment. The behavioral dynamics are expressed by a vector field with attractors and re-
pellers in the cross-space of perceptual variables and robot action. Attractors correspond
to regions that correspond to stable states and repellers correspond to regions that need
to be avoided. The dynamics of corridor following, obstacle avoidance and homing are
learned using Gaussian mixture models by ensuring asymptotic stability using the Stable
Estimator of Dynamic Systems algorithm [KZB11]. The acquired behavior dynamics are
tested exhaustively in different environments and their differences to a neural representa-
tion are discussed. The learned behaviors are also tested experimentally on the robot in
an indoor office environment. Results of behavior coordination through arbitration and
command fusion as well a behavior classification architecture is proposed [NPHB13].

Learning behavior fusion
The key challenges involved in learning a monolithic model of behavior fusion across all
scenarios in contrast the other presented representations are further analyzed. The dif-
ficulty involved in selecting the relevant feature set that expresses all the characteristics
of the behaviors is discussed. A feed forward neural network [NPHB10] and an instance

4

1.2. Thesis outline

LEARNING FROM DEMONSTRATION

Robotic behavior

demonstrations

DATABASE
Perceptual trace

Motion trajectory

Demonstrated action

FILTERING AND MATCHING

Image segmentation

Dimensionality reduction

Environment

classification

ROBOT

Perceptual trace

Motion trajectory

Q
u
er

y

T
ra

in
in

g

PREDICTION AND ACTION SELECTION

Instance based Feedforward Networks

Recurrent Networks Gaussian Mixture Models

Action hypotheses

A
ct

io
n

LEARNING FROM CRITIC

Value function

Policy update

Policy

S
ta

te
s,

 r
ew

a
rd

s

Learning

behaviors

Learning
behavior fusion

Context

matching

Scenario specific

behavior model

- Joystick

- Remote teleoperation

- Gesture based

Figure 1.1.: System architecture of learning from demonstration framework for visual behaviors.

based model [NPHB09] are trained to learn the behavior fusion. The core differences in
its approach compared to learning individual behaviors are presented and their results
correspondingly analyzed.

Reinforcement learning of visual behaviors
Finally, Reinforcement Learning (RL) within the framework of LfD for learning visual
robot behaviors are presented. Starting from basic knowledge about the task provided by
the teacher, we present a framework where a visual corridor following behavior improves
its policy by learning and optimizing the value function. Behavior dynamics learned from
Gaussian Mixture Model (GMM) is used as the initial model which is iteratively improved
and optimized. Two different reward functions, namely dense and spare rewards are de-
signed and tested. The framework is tested for potentially challenging problems such as
one shot learning and learning from scratch. The iterative policy improvement for the
different problems together with the final model performance both in simulation and on
the real robot are tested.

1.2. Thesis outline
The system architecture of this thesis follows a bottom-up architecture where we focus
on the individual ideas through the chapters to generate a bigger vision (Fig. 1.1). Each
chapter of the thesis can be independently read which is introduced with the necessary
background, motivation and its corresponding state of the art. Chapter 2 gives a brief
overview of the different fundamental concepts presented in the thesis ranging from be-
havior based robotic architecture to the principles of learning from demonstration. This
is followed by Chapter 3, where the extraction of different visual features are explained.
The chapter also explains how to select the optimal feature set for a behavior and presents
an application example at the end. Chapter 4 presents three demonstration modes for
instructing a mobile robot. Direct and remote teleoperation together with NUI based
demonstration method are presented and their performance are compared against each

5

1. Visual Features for Robot Navigation

other. Scenario and context based behavior modeling is addressed in detail in Chapter 5.
Learning individual scenarios using artificial neural network representation is discussed in
Chapter 6. Static and dynamic neural network representation with manually extracted
visual features and automatically generated principal components are explained. Chap-
ter 7 explores learning behaviors expressed as dynamic systems using Gaussian mixture
models. In the second part of the chapter, learning behavior fusion across all scenarios
and their disadvantages to the modularized learning are presented. In Chapter 8, the in-
tegration of reinforcement learning with LfD framework to learn visual corridor following
behavior is dealt in detail. Chapter 9 closes the dissertation with a summary and gives
an outlook into future works in this field.

6

2
Background

Behavior based robotics proposed by Brooks in [Bro86], was a revolutionary concept at its
time to describe robot motion behaviors. According to behavior based control, the whole
sensor-motor relationship can be broken down into simple primitive substrates called be-
haviors which are then further sequenced and coordinated to solve complex problems. This
methodology paved the way to realize the fundamental necessities for intelligent robotics,
namely situatedness and modularity [Alt03]. Situatedness means that the sensors used
to perceive the environment and the motors that execute an action on the robot are
tightly coupled. A brilliant example of such a system is illustrated with the Braitenberg
vehicle [Bra86]. Functional modularity on the other hand defines the ability of accom-
plishing complex movements through simple and independent modules. The significance
and origin of functional modularity in biological systems and its application in robotics is
discussed in [CNPW98]. Following a think the way you act biological paradigm, behavior
based system follows a bottom up approach, where the survival behavioral primitives are
placed in the lower level hierarchy with complex behaviors placed above them. The higher
behaviors then typically influence the lower level behaviors to subsume and override their
inputs. Also called as subsumption architecture [Bro86], it allows scalability in adding
more behaviors thereby achieving complex capabilities. A broad review of these concepts
is presented in [Bro86]; [Ark98]. The behavior based control left many desirable properties
such as a planning module. The planning module carries a disadvantage in that it comes
at the price of the fast execution time realized by a pure behavior based control but allows
designing complex movements. Hence, with the reactive control as the basis, a hybrid
deliberative-reactive architecture is developed with a planning or a reasoning module to
steer the robot [Ark98]. This type of organization called as the Plan-Sense-Act approach
[Mur00], allowed complex tasks such as localization, path planning to be accomplished
with reactive behaviors. An impressive implementation of this architecture is the museum
tour-guide robot developed by [BCFHLSST99]. Behavior based systems differ from hy-
brid deliberative-reactive systems in that they do not need a centralized planner to make
a decision. Behavior based systems can store different representations in a distributed
fashion, thereby requiring no centralized arbiter [Mat01]. The network of intercommuni-
cating behaviors thereby achieves the same performance with less computational overhead
as required by a centralized planner.
A robotic behavior is nothing but the functional mapping β of a stimulus or a percept
s ∈ S, where S is the stimulus domain to a response r ∈ R, where R is all the range of
possible responses. A behavior is thus indicated by the triplet (S,R, β) with the mapping

7

2. Background

β : S → R [Ark98]. For every behavioral mapping β, one can establish the desired stimu-
lus variables that trigger a specific action. For example, the presence or the distance of an
obstacle is the required stimulus for an obstacle avoidance behavior whereas the location
of the docking station is the stimulus for a homing behavior. In a system with multiple
behaviors each with different stimulus strengths, the appropriate action to be acquired is
determined by coordinating the behaviors.

Behavior Coordination
Behavior coordination problem directly translates to an action selection problem [Pir99].
[Mae89] defined the action selection problem as following:

How can an agent select the most appropriate or the most relevant next
action to take at a particular moment, when facing a particular situation?

In order to choose the most appropriate action, a behavior coordinator or an arbiter
module is required which works similar to the planning module in a hybrid architecture.
Given multiple behaviors with different stimulus strengths, the arbiter has to decide the
right action to be applied to the robot actuators. Given a stimuli si for each behavior i at
a given time t, gi indicating the relative strength of each active behavior, ri denoting the
response of the behavior and the coordination function C [Ark98], the final response ρ is
given by ρ = C(G ∗ R) where, ∗ indicates the scaling operation of every behavioral gain
gi belonging to the set of behavioral gains G and the corresponding behavioral response
ri in the behavioral response set R.
The coordination schemes are divided into two types, namely arbitration and command
fusion. Arbitration corresponds to a competitive method where the behavior with the
highest gain is given control (See Fig. 2.1(a) for a suppression network for three indoor
behaviors). It is a winner take all approach where the single response of the winning
behavior is executed on the robot. Subsumption architecture is a typical example of an
arbitration approach. Each higher level behavior carry larger priority towards the final
motor action. The higher behaviors can suppress or inhibit the lower level behaviors
depending on the set sensor conditions. In contrast to the priority based arbitration,
[Ros97] proposed a more democratic alternative called as the Distributed Architecture for
Mobile Navigation (DAMN) where each behavior votes for a particular actions thereby
the action that receives most votes is chosen. For such a system, the robot velocity
actions are discretized to predefined responses and the behaviors vote for a corresponding
steering action. Another formalism in contrast to the priority based arbitration is the state
based arbitration using finite state machines proposed by [KCB97]. Behavior selection
is triggered using a state transition where a certain event changes the current state of
the robot thereby requiring a new behavior. One interesting example of the use of finite
state machines is the work of [KIOIN02] who use it for development and evaluation of an
interactive Human-Robot communication.
Command fusion is a cooperative approach to action selection where the final output is
a fusion of the behaviors. The fusion methods typically fall into three major categories,
namely voting, fuzzy and superposition. Action voting proposed by [HB95] follows a sim-
ilar approach as with arbitration only that here the behaviors in addition to voting for
one action also possess the possibility of inhibiting conflicting actions. The votes and in-
hibition are summed for each action and the action with the highest cumulative vote wins

8

Obstacle avoidance

Homing

Corridor following

Priority-based
Coordination

Response
of highest
active
behaviorP

er
ce

p
ti

o
n
s

Obstacle avoidance

Homing

Corridor following

Fused
behavior
responseSP

er
ce

p
ti

o
n
s

(a) (b)

S

S

Figure 2.1.: Behavior coordination schemes. (a) Priority based coordination. The S indicates the suppres-
sion or inhibition of lower level behaviors by higher priority behaviors. (b) Fusion with vector summation
[Ark98].

[Pir99]. With fuzzy approaches, each behavior defines a membership function over the
possible set of actions, whose outputs are then combined using an appropriate operator
(e.g. max operator). The defuzzification is then performed on the fuzzy set to obtain the
final crisp action for robot control [Saf97]. The third method is the superposition prin-
ciple, which is by far the most straight forward method to find an appropriate output.
Each behaviors relative strength or gain is directly used and multiplied with its behavioral
action whose outputs are then summed. Fig. 2.1(b) illustrates this process. This method
has a disadvantage in that two behaviors with equal gain but with diametrically opposite
outputs tend to cancel out. This is overcome by the inhibition voting schemes of [HB95]
explained before.

Dynamic System Approach to Behavior Based Robotics
Behavioral dynamics proposed by [SDE95] is based on the theory of non-linear dynamical
systems. Any robot behavior because of its situated nature exhibits a tight coupling with
the environment and through this interaction behavioral patterns
emerge [Mat01]. The behavior and the environment resonate together as a mutually
paired dynamical system with a stable attractor in the space of its behavioral variables.
Behavioral variables are the variables that can describe a particular behavior and typically
define the dimensions along which the behavior can change [Bic00]. Thus, a behavioral
state is defined by a point in the cross-space of the behavioral variables. A behavior
expressed in terms of differential equations, the persistent behavior patterns correspond
to attractor equilibrium states of the behavior dynamics. Starting from any initial config-
uration in the behavioral state space, the resulting trajectories of the behavior dynamics
converge them to their attractors. Attractors are constant solutions of the dynamical sys-
tems where the system does not change in time. Conversely repellers states correspond to
unstable state spaces which repel the behavior trajectory away. The design requirements
for behavioral variables are given [Bic00]; [Alt03] as follows,

• at any point, the behavior must be completely expressible with its behavioral vari-
ables,

• the values of the behavioral variable must be independent of the current value,

• it must be possible to express the same values using another on board sensor or
some internal world model and

• it must be possible to derive the dynamics of these variables thereby impose on the
actuator system of the robot.

9

2. Background

The examples in [SDE95] illustrate the design reasons behind the selection of behavioral
variables by considering a movement of an autonomous vehicle in a plane. The movement
of such a robot must be controlled in that the location of obstacles typically need to be
avoided and desired target locations (if any) must be reached. In this case, the heading
direction φ and the translational velocity v are deemed to be sufficient behavioral vari-
ables. The heading direction at any point can be used to define the angular location of
the obstacle and the target, the value of these locations are independent of the current
heading of the robot and the time derivative φ̇ can be directly controlled on most of
the platforms. Application of behavioral dynamics to mobile robot navigation has been
studied in [Bic00]; [Alt03]. In [Alt03], the individual behavioral dynamics are designed
based on sonar sensor information and the coordination between the different behaviors is
done through competitive dynamics by assigning weights for each behavior. Performed in
indoor environment they discuss go to, obstacle avoidance, corridor following, wall avoid-
ance and door passing. In this thesis, the dynamic representation for a visual robotic
behavior is discussed in chapter 7.

2.1. Learning in robotics
Machines that can learn is one area that has been vigorously explored during the last few
years. Starting from the iconic first line of Alan Turing in [Tur50] where he asks, Can
machines think? and following through history with a computer (Deep Blue) beating the
world chess champion [CHJH02] to natural language processing wonder called Watson
[Fer11], machine intelligence has been on an exponential increase in awe and attention
throughout the world. Robots that can learn, be taught concepts, motor skills and teach
how to use their sensors are all excellent footsteps towards artificial intelligence. [Ark98]
presents a definition of learning from the perspective of robotics;

Learning produces changes within an agent that over time enable it to perform
more effectively within its environment.

Within this operational definition of learning and adaptation, the hardest task is to choose
the right techniques to learn. The mode of learning and the type of task to perform dic-
tates the learning algorithm. For an industrial robot performing only repetitive motions,
it is sufficient to learn this action as accurately as possible. It may never need any new
information regarding the motion. But for a navigating mobile robot, learning new infor-
mation is paramount to the execution of a task. Learning can also occur in other situa-
tions where it is impossible to provide precise information about the environment [Gro01].
These are typically scenarios where robots are used where a human cannot venture. In
these cases, learning in robots as with humans can happen over the entire life time and is
duly named as Lifelong learning [Thr96]. In such environments where the characteristics
constantly change, determining the relevance of sensor information and composing them
to behavioral action is the foremost aspect to be figured out. Some of the mechanisms
where a robot system can be made to learn behaviors are through supervised learning,
reinforcement learning, evolutionary learning and learning from demonstration.

10

2.1. Learning in robotics

Supervised Learning
Supervised learning refers to learning the mapping function from a set of labeled training
data. Each example is given as a pair of input and its corresponding output. Artificial
Neural Networks (ANN) are one such suited supervised algorithm, where the learning is
achieved as a result of alteration in the synaptic weights of the networks. The output
of such a network is first evaluated against potentially unseen data and if unsatisfactory,
the weights are correspondingly updated and trained again. [Pom89] presented one of the
earliest examples of neural network for autonomous navigation. [Thr96] introduces life-
long learning using explanation based neural network through knowledge transfer across
multiple learning tasks. ANN models used today are just rudimentary products of the
inspiration acquired from human brain. One main disadvantages of the method is that
the structure of the ANN is fixed before learning. The ability of ANN to extend and adapt
to newer data remains a challenge. New attempts to learn layered models of inputs are
the deep neural networks [Sch92]; [HOT06], where multiple layers of the neural network
can be first pre-trained one layer at a time in an unsupervised manner. The weights are
then used to further train a supervised neural network for fine-tuning. Powerful artificial
reasoning systems like Watson [Fer11] use deep learning to achieve highly complex infer-
ences. In this dissertation, ANN as tool for supervised learning of visual behaviors are
examined in detail in chapter 6.

Reinforcement Learning
RL refers to techniques that uses a critic to guide the development of a policy by giving
rewards and penalties for an action. Also called as learning from critic [SB98], the ap-
proach gets a feedback from the critic for every state within the environment. This allows
the robot to start without any prior knowledge of the environment. The goal of RL is
to device a mapping from perceptual states to appropriate actions such that the policy
maximizes the long term reward. Thus, the reward function determines the quality of
the behavioral response. The challenging part of the design is the reward or the credit
assignment problem [Ark98]. The authors of [SPK02] use dense and sparse rewards to
learn robotic behaviors on a mobile robot. The work puts a few open questions regarding
the complexity of behaviors that can be achieved when working with only sparse reward
function and how long does the training take in such cases. We inspect these issues in
Chapter 8, where using a sparse reward function design for a corridor following behavior,
the behavioral policy is iteratively improved.

Evolutionary Learning
Evolutionary learning refers to unsupervised learning methods where a behavior is evolved
over generations from a population of candidate controllers [Ark98]. Drawing inspiration
from natural evolution, evolutionary learning uses genetic algorithms where, the initial
population consists of a set of solutions. By performing a cross-over to select the best fit
individuals from the population, they are further combined to produce new population of
controllers for the next generation. At every generation, the quality of the population is
evaluated to make sure that the current generation is fitter than the previous generation.
[Hof97] presents a genetic algorithm method to learn a mobile robot wall following behav-
ior. The problems with evolutionary learning is that it is computationally expensive to
evaluate entire populations and to mutate. In addition, the design of the fitness function

11

2. Background

also plays a big role in deciding the quality of the final solution.

2.2. Learning from demonstration
LfD or imitation learning is one approach which is gaining increasing attention in the
robotics community [ACVB09]; [BCDS]. Typically speaking, all of the different learning
algorithms presented above can be integrated into the LfD framework. It involves a hu-
man demonstrating a behavior to the robot during which the robot observes and records
the corresponding perceptions and actions. From the observations, any of the appropri-
ate machine learning algorithms can be utilized to generate a policy mapping between
the perceptions and motor actions. This allows a behavior demonstrated in one sensor
modality to be transferred to a potentially different sensor modality. The key issues in
LfD are [ND01] as following,

• Which aspect of demonstration must be imitated?

• What is the evaluation metric? or How the skill should be encoded?

• How to compute correspondence between the teachers and the robot?

• How to identify the teacher and accomplish knowledge transfer through an intu-
itively designed demonstration interface?

LfD has been in extensive research field for a range of robotic tasks ranging from using mo-
tion primitives to learn trajectories [SMI07]; [Cal09], gesture learning in humanoid robots
[LY96]; [Cal09], object recognition [RSGB09], robotic navigation [LZ00]; [NCJOF08] to
learning body schema and percept for imitation [ACH05]. In all of the above mentioned
cases except autonomous robotic navigation, the configuration or the joint space is known
to the robot manipulator. For a mobile robot assumed to be in horizontal plane, the task
space is the group of all possible positions and orientations in the plane. This space is a
Lie Group in two dimensions [Nof99]. The presence of obstacles create blocks or holes in
the task space thereby inversely generating a set of configurations for a collision free path
for the robot. In the event of no knowledge of the current traversing environment, the
generation of the list of configurations for the robot becomes impossible as the number
of task space configurations go to infinite. The authors of [WZ98] back in 1998, used
Fuzzy Associative Matrix to acquire a mapping between the sonar sensor readings to the
plausible trajectories of the robot to learn trajectory velocities. This enabled the robot
to acquire object avoidance, wall following and goal seeking behaviors simultaneously.
They repeatedly select new trajectories at random and imitate them until a collision is
detected. The downside of this approach is that it prolongs the learning time and has lim-
ited generalization ability in narrow passages. Another development is the use of neural
approaches to behavior learning introduced by [TN99]. An online learning scheme using
a mixture of recurrent neural networks as experts are used to account for the different
sensory-motor flow. The network because of its recurrent nature also learns the associated
context. For behavior LfD, the goal is to generate a controller that enables the robot to
repeat a demonstrated behavior from a set of demonstrated examples. Nevertheless, a
conception of what is a satisfactory repetition? is not clear. [BH10] present a formalism

12

2.2. Learning from demonstration

Figure 2.2.: Modes of learning in LfD [Bil13]. (a) Batch learning, (b) self-improvement learning and (c)
interactive learning. Human demonstrates examples of a behavioral policy Πh whose correspondences are
solved and encoded in the task space coordinates of the robot using the operator φr. These representative
features are evaluated to improve the performance metric (M) to update the model (U). Using again the
operator φy the final learned behavior policy Πr is deployed on the robot.

of LfD where two interpretations to this question are provided. One form of imitation is
the so called action-level imitation where the job of the robot is to imitate exactly the
actions shown during demonstration. Typical example here is a pick and place robot in
a controlled industrial environment. Squared error as an evaluation metric here captures
the accuracy of the learned policy quite robustly. The second case is called as functional
imitation, where the capability of the robot to generalize situations unseen using only
demonstration knowledge is evaluated. Here, the imitation trajectory path becomes sec-
ondary and the perceptual state-action pairs are judged. In addition to squared error, a
metric of similarity of the trajectory between the demonstrated and the learned policy
is important [Bil13]. A further distinction of generalization is achieved by the mode of
learning achieved. [Bil13] presents batch learning, self-improvement learning and interac-
tive learning as the three modes of LfD architectures (Fig. 2.2). In batch learning, the
demonstration data collected are learned offline and the policy is then used during repro-
duction. This invariantly involves the teacher to take care in generating sufficient samples
with a lot of initial positions. A major part of this thesis from Chapter 5 - 7 performs
batch learning of behaviors. Self-improvement learning builds from the policy learned
from batch learning with a possibility to improve the policy on acquiring new data. The
new samples generated from the batch learning process is then iteratively updated using
RL [GHCB07]. Chapter 8 of this thesis explores this aspect of learning for a corridor fol-
lowing behavior with RL. In Interactive learning [Che09], the teacher is actively involved
in the self-improvement cycle. The teacher provides examples to the robot as and when
it is needed. This means, a flexible and fast demonstration interface between the teacher
and the robot is an utmost necessity. The demonstration modes explained in Chapter 4
can be considered for an eventual interactive-learning of navigational behaviors.

13

3
Visual Features for Robot Navigation

The same meaning can be expressed in many different ways, and the same ex-
pression can express many different meanings.

– Halevy, Norvig and Pereira, The Unreasonable Effectiveness of Data

Given a sequence of perceived images, the first step towards designing visual naviga-
tional behaviors is to understand the scene captured. Images offer us a large amount
of information about the environment, nevertheless the challenge remains in interpreting
this enormous amount of data into effective usable information. Following an initial pre-
processing step to enhance the clarity of the image, extraction of generic features that
reflect the information numerically is done. The role of feature extraction is to express
the image through a set of relevant and appropriate cues that are both rational and com-
putationally efficient. By expressing the pixel intensity of an image at location (x, y) as
I(x, y), [Cor96] offers a description of the visual features as image functionals given by,

f =
∫ ∫

Image
F (x, y, I(x, y)) dxdy (3.0.1)

where, F is a linear or non-linear mapping between the image and its extracted features.
Two classes of features are addressed. First, the features are extracted through human
intuition deciding on the apparent relevance of them to successfully describe the scene
captured. This is accomplished using a blend of existing computational methods of im-
age understanding. The advantage of the first approach is that the features arising from
human input carry relevance and information that are rational and easier to interpret
in relation to the task demonstrated. The disadvantage is that it needs an expert input
to carefully focus on the imagery and decipher their correlation for a better functional
description. This is a time consuming task and tends to miss some aspects that may
be hidden or not obvious to the human eye. Very often, features originating in the la-
tent space of the image also carry substantial information about the scene. Principal
Component Analysis (PCA) and Principal Component Regression (PCR) are methods to
extract latent space feature descriptors. We term the second set of features as automat-
ically generated features because of the mode of extraction. This chapter discusses the
identification and extraction of both the family of features relevant for the purpose of
indoor robotic visual navigation. It introduces the fundamental step in building behavior
models for LfD with mobile robots where the robots perception is broken down into small
behavioral descriptors.

15

3. Visual features for robot navigation

3.1. Free floor segmentation
Feature extraction begins with whole scene understanding from an image by partitioning it
into relevant and meaningful segments. Design of vision based robotic behaviors requires
a scene understanding that is robust to the variations of geometry and appearance of the
environment. The performance of existing indoor segmentation schemes suffers from lack
of depth information, augmented by substantial variations in geometry, texture and visual
appearances of an indoor environment. One approach is to construct a 3D model of the
environment using laser scanners and then perform a semantic classification [MMSB05].
However, it is prone to ignore information in the image that might be useful to improve the
navigational capabilities of the robot as a vision system in contrast to proximity sensors
is able to distinguish between objects such as obstacles, walls, doors or a docking station.
Furthermore, the ultimate objective of vision based navigation is to achieve autonomous
behaviors that rely purely on image rather than the geometric reconstruction from range
sensors. This motivates our experimental setup where a Photonic Mixture Device (PMD)
camera [Pla06], delivering 3D range data is fused with an omnidirectional camera. The
PMD camera has a 204× 204 pixel resolution across a 40◦ × 40◦ field of view and the
omnidirectional camera consists of a Charge-coupled devive (CCD) camera with a hyper-
bolic mirror with a vertical field of view of 75◦ of which 15◦ is above the horizon. The
mirror is directed towards the floor thereby capturing the 360◦ view of the robots local
environment. The PMD camera provides depth information in addition to an intensity
and amplitude image, thus does not require texture or contrast information. The depth
information is first used to detect the different semantic entities to the front of the robot.
An initial 3D scan of the frontal region by the camera is segmented into different planar
surfaces that belong to walls, floor and obstacles by means of Random Sample Consensus
(RANSAC) [FB81] algorithm. One of the drawbacks of the 3D camera is the limited field
of view and a low resolution making it unusable for robust navigational schemes. Hence,
in order to overcome this limitation an omnidirectional camera is utilized together with
the 3D camera. This setup allows it to fuse depth and high resolution intensity images
of the environment. Fig. 3.1 shows the experimental setup of an omnidirectional camera
and a 3D PMD camera mounted on the pioneer 3DX mobile robot. The advantage of this
integrated 2.5D camera system is exploited by transferring the identified planar segment
points onto the omnidirectional camera by a homography obtained from the intrinsic
camera parameters. The projected points on the omnidirectional camera act as seeds
or markers for multiple 2D segmentation algorithms such as watershed, region growing,
histogram backprojection and graphcut [CJSW01]; [SB91]. The quality of marker based
segmentation depends on the initial seeds, the texture and illumination of the environ-
ment. No segmentation algorithm performs robust across all conditions and situations.
Every algorithm exhibits contrasting performance in different scenarios. Hence, an en-
semble of experts [Pol06] image segmentation scheme is performed where multiple naive
Bayes classifiers are trained on features extracted from the outputs of the different 2D
segmentation algorithms together with other topological image features. By maintaining
different appearance models and seeds for floor and obstacle regions derived from the
ground truth 3D data, the final segmentation is obtained by fusing the heterogeneous
classifier outputs to label an individual image pixel as either floor or obstacle. Fig. 3.2
shows the system architecture of the ensemble of experts segmentation scheme. One has

16

3.2. Visual features

Pioneer 3DX
mobile robot

(a) (b) (c)

(d) (e) (f)

Figure 3.1.: Omnidirectional and PMD camera mounted on Pioneer 3DX mobile robot. (a) Omnidirec-
tional camera with a hyperbolic mirror, (b) robot mounted with an omnidirectional camera in a corridor,
(c) corresponding omnidirectional camera image, (d) PMD camera, (e) monocular image of a scene viewed
by the PMD camera and (f) the corresponding depth image from PMD camera.

Omnidirectional
image

Omnidirectional
image

PMD Depth
image

3D Segmentation

Omni projection
Ground

Truth Data
generation

Train classifier

Feature
extraction

Geometric

2D segmentation
features

Multiple naive
Bayes classifiers

Ensemble of
experts classifier

combination

Output:
segmented free

floor image

TRAINING

RUNTIME

Figure 3.2.: System architecture: Ensemble of experts based free floor segmentation [PNHB11].

to notice here that the depth information from the PMD camera is used only for training
the floor and obstacle models and are not used during runtime. Fig. 3.3 shows the input
omnidirectional camera image and the corresponding segmentation output. Ensemble of
experts is currently an active area of research and for more details refer to the works of
[PNHB10]; [PNHB11].

3.2. Visual features
Training examples are generated by demonstrating different behaviors to the robot during
which, the camera image and the action are recorded. This section explains the identifi-
cation and extraction of visual features from the segmentation examples.

17

3. Visual features for robot navigation

(a) (b)

Figure 3.3.: Segmentation Images. (a) Omnidirectional camera image and (b) Ensemble of experts seg-
mentation image.

3.2.1. Spatial features
The segmented image presents itself as a similarity map P where each pixel value rep-
resents floor similarity. The location of the pixel in the image is described in cylindrical
coordinates by a radial distance r and angular orientation θ. This similarity map P (r, θ)
is filtered to remove all the pixels that are below the threshold of 0.7 to generate a binary
segmentation image. Thus, the pixels with value 1 denote floor and 0 denotes obstacles
or walls. The binary image is discretized into sectors defined by an angular range and
radial intervals. The sector partition is uniform with 16 bins in angular direction and
each partition is further divided to segments using 20 uniform bins along radial direction.
A segment is labeled as occupied in case the fraction of non-floor pixels exceeds a given
threshold. In each sector, the closest obstacle distance (dmin) is given by the radius of the
first non floor segment in radial direction. Thereby, we extract a list of visual range fea-
tures that directly correlate to the nearest obstacles in the immediate vicinity of the robot.
Fig. 3.4 shows the mapping between the segmentation and the distance to obstacles for
different angular resolutions. By limiting only to the front of the robot in the angular
range of [−90◦, 90◦], the proximity and direction of the closest obstacle is expressed with
the inverse of the closest distance 1

dmin
and its angular location (θmin). Additionally, a

critical zone of [−30◦, 30◦] is defined in the immediate front to identify obstacles that pre-
dominantly trigger obstacle evasion. The inverse of the critical distance (dc) and critical
orientation (θc) are also registered. Furthermore, the bearing of the safe direction (θsafe)
with a minimum separation of D that is closest to the current robot heading is also com-
puted. θsafe is computed such that the robot always maintains a sufficient separation
to the obstacles on either side. In the event of the nearest obstacle emerging within the
robots critical zone, both critical point and the nearest obstacle point contain the same
information. Fig. 3.5 shows the aforementioned parameters on the omnidirectional and
the segmented image. To ensure continuity of avoiding motions in corners or dead end
situations and to promote continuation of turns, a flag that indicates the previous turning
direction is also recorded. It attains a value of -1 and 1 for left and right turns and 0
in the event of no turn respectively. The distribution of the obstacle distances around
the robot is analyzed by projecting them down to the perspective panoramic view of the
omnidirectional image. Fig. 3.6 shows the projection of 8 sector partition on one such
panoramic image in which the height of the shaded columns indicates the extension of free
space along that direction. Furthermore, the relative difference of floor area in opposite

18

3.2. Visual features

(a) (b) (c) (d)

Figure 3.4.: Scan lines represent the distance to the closest obstacle in a considered sector. (a) Omni-
directional image and (b),(c) and (d) free floor scan with a resolution of 8 sectors, 16 sectors and 360
sectors.

Critical point

Nearest point

Safe heading X

Y
0°

-90° 90°

Figure 3.5.: Nearest point, critical point and safe heading features.

column pairs (1-8, 2-7, 3-6, 4-5) which indicate the lateral alignment and orientation with
respect to the floor are also registered. Similarly global features that capture the total
area of the floor, obstacles, ratio of floor to non-floor (Rfnf), maximum width of free
floor region (Wmax) in the binary segmented image and the slope and intercept of the line
fitting the two extreme columns in the panoramic image are computed.

3.2.2. Image moments
Image moments use statistical image features to express the spatial characteristics of a
segmented image. For a binary segmentation image, where the intensity of the pixels take
either a 0 or 1 as its value, the (p+ q)th order moment for a digital image (mpq) can be

Figure 3.6.: Panoramic image features. (a) Height and amount of floor segment in every column, polyno-
mial line fit, ratio of the floor area between column pairs 1-8, 2-7, 3-6, 4-5 and (b) free floor segmentation
on panoramic image and the ratio of the floor area between the right and left sides.

19

3. Visual features for robot navigation

�x

�y
XR

YR

β

corridor
center

(a) (b)

X

Y

Current robot
orientation

Corridor
center

�

�

a

b

� A

d

�

�

x ,yc c

Figure 3.7.: (a) Image moment features in the omnidirectional view of a corridor and (b) the feature
interpretation from the robot pose.

expressed using the formal description given in 3.0.1 as,

mpq =
∑
x

∑
y
I (x, y)xpyq. (3.2.1)

The summation is done over all the x and y image pixels. The zeroth moment (m00) of
the binary image effectively computes the area of the segmented area. Correspondingly
from the first moments (m01,m10), the centroid of the image (xc) is computed directly.

Centroid of the region: xc =
m10
m00

, yc =
m01
m00

. (3.2.2)

Furthermore, by calculating the perimeter (ps) derived from the zeroth moment, a simple
metric about the circularity (ρs) of the floor is determined using 3.2.3.

ρs =
4πm00
p2
s

. (3.2.3)

The zeroth and first order moments are variants to translation and thus are not able
to determine the orientation of the shape. The second order moments or the geometric
central moments are invariant to translation and rotation [FZS09], and can be used to
determine the principal axis orientation θs by,

tan (2θs) =
2m11

m20 −m02
. (3.2.4)

To get the second order moments on the segmented free-floor region on the omnidirectional
camera, the distribution of the free space is approximated with an ellipse with an elliptical
tilt of φ. Considering a look ahead point A on the major axis at a distance (2m) from the
centroid, the angles α and β are extracted. In a corridor, α represents the lateral offset
angle or a measure of robot alignment within the corridor and β represents the alignment
of the robot to the corridor center. Fig. 3.7 shows these features on the omnidirectional
image of a corridor and the corresponding robot pose within the corridor.

3.2.3. Shape features
Computational shape analysis on the segmented image allows to derive pure geometry
or shape based descriptors. These descriptors are either boundary based or region based

20

3.2. Visual features

features. The requirement is to uniquely characterize the shape from the descriptor vector
that is invariant to translation, scale and rotation [CC00]. It is legit to note here that some
of the spatial and image moment features described in the previous section already explain
away some geometrical characteristics of the shape. These are typically the features
arising from shape statistics namely mean, median, maximum and minimum width of the
floor, their ratios and metric descriptors such as perimeter, area, centroid, maximum-,
minimum- and mean- distance of the boundary points to the centroid and diameter. The
following shape features dig a little deeper into the realm of shape features to extract
more abstract descriptors.

Curvature-based descriptors
While the curvature by itself qualifies as an image feature, typically these vectors are
too long, redundant and are computationally expensive to process them [CC00]. This is
overcome by breaking down the curvature to specific descriptors listed below.
Curvature statistics: The mean, median, variance, standard deviation, maxima, minima
and the corresponding inflection points of the curvature.
Bending energy: Bending energy of a curvature (Bc) is defined as the integral of the
squared curvature over the length of the curve given by [CC00],

bending energy Bc =
1
Pc

∫
κ (t)2 dt. (3.2.5)

Pc is the perimeter of the curve and κ (t) is the curvature of a parametric curve c(t) =
(x(t), y(t)). x and y are the coordinates of the point evolving over time t to obtain the
curve c(t). The curvature κs (t) is given by,

κs =
x′y′′ − y′x′′(
x′2 + y′2

)3/2 (3.2.6)

differentiated with respect to time t. In other words, bending energy expresses the amount
of energy needed to reshape the closed curvature of the shape into a circle without changing
the perimeter of the shape [MIJ08].

Shape statistics
From the shape statistics descriptors such as mean and median distances of the boundary
points to the centroid of the shape; higher order moment features such as skewness and
kurtosis of this distribution is analyzed. Skewness of the distribution measures the asym-
metry of the distribution around the sample mean. The skewness (γ1) of the boundary
distances Db to the centroid is the third standardized moment given by,

γ1 = Σ
[

Db −Dc
σ3
d

]
(3.2.7)

where, Dc is the mean distance of the boundary points to the centroid and σd is the
standard deviation of Db. The skewness of the shape is denoted by a negative value,
when the spread of the distances is to the left of the centroid and vice versa. For a
perfectly symmetric distribution, the skewness is zero.

21

3. Visual features for robot navigation

Kurtosis (γ2) is a measure of how outlier-prone the boundary distances of the shape to
the mean distance to the centroid are. This is computed by measuring the degree of
peakedness of the distribution, given by the fourth standardized moment:

γ2 =
Σ(Db −Dc)4

(Σ(Db −Dc)2)
2 . (3.2.8)

Complexity descriptors
Different shape descriptors [CC00] are formulated from perimeter ps and area As as fol-
lowing:

• Thinness ratio defined as 4πAs

p2
s
.

• Area to perimeter ratio defined as As
ps
.

• Rectangularity of the shape given by As
A(BB) , where A(BB) is the area of the rect-

angular bounding box of the shape.

• Temperature of the contour as a measure of the smoothness of the contour [DKM86].
The authors extend this thermodynamic formalism to study plane curves and define
it as

(
log2

(
2ps

ps−hs

))−1
, where hs is the perimeter of the shape convex hull.

• Entropy of the segmented image in the front half plane given by −∑ (fp log2(fp)),
where fp is the histogram count of the pixel values. Thus, the entropy tells if the
floor to the front is clear or cluttered with obstacles.

Shape metrics
Bilateral symmetry is a measure of the shape symmetry with respect to its principle major
axis. Fig. 3.8(a) shows the bilateral symmetry of segmented corridor image. To compute
the symmetry, first the original segmented image is superimposed with its reflected image
to generate a grayscale image. If nf denotes the number of foreground pixels (pixels with
value of 1 or 2) and mo denotes the overlapping pixels (pixels with value of 1), then the
bilateral symmetry of the segmented geometry is given by mo/n.
Norm features: By using nl landmark points to approximate the shape of the segmented
floor, the Euclidean norm ||S|| is computed as,

‖S‖ =

√√√√ nl∑
i=1

Sx,i
2 +

nl∑
i=1

Sy,i
2. (3.2.9)

‖S‖ is the 2-n Euclidean norm of the shape and (Sx,i,Sy,i) are the landmark coordinates.
Fig. 3.8(b) shows one instance of the landmark points. Considering an angular resolution
of 22.5◦, the minimum distance point in each segment is computed as described in section
3.2.1. These extremum points are set as landmarks and the 2-n euclidean norm thus
computes the shape metric for the polygon constructed by connecting the landmark points.
Since the coordinates in 3.2.9 are the absolute coordinate values, the measure varies with
respect to translation within the image. In order to make this translation invariant, the
center of mass of the shape is shifted to the origin (Sx,0,Sy,0) first and then the 2-n

22

3.3. Feature generation

Bilateral symmetry = 0.6384

(a) (b)

Figure 3.8.: (a) Bilateral symmetry of a segmented image of a corridor. Shown are the original and
the mirrored image overlaid on one another. (b) Landmark points and the enclosing polygon used for
computing shape metrics.

Euclidean norm is computed. Other similar metrics are root mean square size ||SRMS ||,
mean size ||SM || and centroid size ||SC || of the shape given by,

‖SRMS‖ =

√√√√√√
nl∑
i=1

(Sx,i − Sx,0)
2 +

nl∑
i=1

(
Sy,i

2 − Sy,0
)2

2nl
, (3.2.10)

‖SM‖ =
nl∑
i=1

√√√√(Sx,i − Sx,0)
2 + (Sy,i − Sy,0)

2

nl
and (3.2.11)

‖SC‖ =

√√√√ nl∑
i=1

(
(Sx,i − Sx,0)

2 + (Sy,i − Sy,0)
2). (3.2.12)

3.3. Feature generation
PCA is a statistical technique predominantly used for dimensionality reduction and feature
extraction [Jol02]. In PCA, the higher dimensional data points are projected onto a
lower dimensional subspace called as the principal subspace such that the diversity of
information in the original dataset is preserved. The dimensionality of the data set is
thereby reduced where a set of observations in the original data set that are possibly
correlated are converted to a set of values in a lower dimensional latent space that are
linearly independent. These set of values in lower dimensional subspace are called the
principal components. The principal components are selected in a way such that the first
component explains the largest variance of the original data set, the second component the
next largest and so on. Conventional computation of the principal components starts with
the assumption of a zero mean data set availability and computing its covariance matrix.
The corresponding eigenvector and eigenvalues of the covariance matrix are computed
from which the eigenvector with the highest eigenvalue is chosen as the first principal
component. Our segmented free floor image denoted by A has a resolution of 310 ×
310 pixels, the covariance matrix of which is of dimension 96100 × 96100, making it

23

3. Visual features for robot navigation

computationally infeasible to compute the principal components. One easier workaround
is to use Singular Value Decomposition (SVD) applied to eigenvalue decomposition of the
training images. Eigenvalue decomposition of the image makes a key assumption that the
eigenvectors are not linearly independent such that there exists X−1 to express the image
A as,

A = XΛX−1. (3.3.1)
X is a n× n matrix whose jth column is the eigenvector xj of the image A and Λ is
a n× n diagonal matrix with the corresponding eigenvalues λj in the diagonal. For a
non-square image matrix (m× n), X is not invertible for which we compute the SVD
given by,

A = UΣVT .
U is a m×m and V is a n× n orthogonal left and right singular matrices. Σ is a m× n
diagonal matrix with non-negative singular values. This implies,

ATA = VΣTUTUΣVT = VΣTΣVT .

ΣTΣ being a diagonal matrix now holds the squared singular values σ2
j . Comparing this

decomposition with the eigenvalue decomposition shown in 3.3.1 we can conclude that

ΣTΣ = Λ and V = X.

The singular values of the SVD represent now the square root of the eigenvalues λ. For
more details of the derivation refer to the works of [WRR03]. Fig. 3.9 shows an instance
of the mean image and the first four eigenvectors (Eigenimages) generated from five seg-
mentation images in a corridor. The training images are generated from a single corridor
following navigation behavior demonstration and taking five representative images span-
ning the length of the demonstration. The eigenimages explain the percentage variation
in the training images compared to its mean image. Fig. 3.10(a) shows the percentage
of variance explained by the first four components. In this case, just four components
are enough to explain 100% of the original training data. For a larger training data set,
four components is typically not enough to reflect all the characteristics of the input set.
In such cases, more components need to be extracted and correspondingly a component
selection is to be carried out to determine the number of relevant components that re-
flect the task appropriately without running into the curse of dimensionality [Bis06]. One
strategy to analyze the number of relevant components is by examining the singular val-
ues for the principal components using the so called scree plot as shown in Fig. 3.10(b).
The plot directly correlates to the relative magnitude of the singular values, the analysis
of which provides a direct insight on the number of relevant characteristic components
required to approximate the original data. Scree test provides a rule of thumb to deter-
mine the number of components to be retained for analysis. The test proposes to stop the
analysis at the point where singular value stops descending precipitously. This point nor-
mally corresponds to the largest change in slope of the singular values or the percentage
explained creating an elbow in the plot. For this example, all the four components deem
as relevant. Fig. 3.11 presents a much larger data set generated from fourteen corridor
following behavior demonstrations. Five representative images for every demonstration
are considered thereby resulting in a total of seventy images. The subset of images con-
tain initial configurations with a large heading error as well the final configurations in

24

3.3. Feature generation

Omnidirectional images

Segmented images for PCA

Mean image
1

Eigenvector

st 2
Eigenvector

nd 3
Eigenvector

rd 4
Eigenvector

th

Figure 3.9.: (Top) Five omnidirectional images spanning the length of a single corridor following demon-
stration; (Middle) the corresponding free-floor segmentation and (Bottom) mean vector along with the
four dominant PCA eigenvectors.

which the robot is centered and aligned with the corridor. The corresponding percentage
variance and the scree plot for the components are shown in Fig. 3.12. From the plot, it
can be observed that the curve tends to flatten out between ten and sixteen components.
The scree plot thereby provides only a guideline to the number of appropriate components
but not necessarily the most optimal number of components. It is true that by choosing
more components, the performance of the PCA based model can be improved but only
at the cost of additional and diverse data spanning the entire input space. The trade-off
between the number of components and required training data depends on the desired
performance metric of the corresponding task.
Principal Component Regression
PCR is an extension of PCA where a regression analysis on the principal components
against the output variable is performed to determine the individual component impor-
tance. Given a training data set {xtiC , yti}Ni=1, where N is the number of input examples,
C is the number of data points in one input example, yti are the elements in the vector of
target outputs YT for inputs XT = {xti1,xti2, . . . ,xtiC}; PCA reduces this to m prin-
cipal components denoted by Zm. The top principal components are listed starting from
the most informative principal component (corresponding to the largest singular value) to
the least informative principal component. The approach does not consider the relevance
of the individual principal component with respect to the output y. PCR attempts to
solve this by regressing the target y on the principal components Zm. The output of this
regression ˆyti

pcr is the sum of the univariate regressions [HTF01],

ˆyti
pcr

= r0 +
m∑
j=1

rjZij+εi, i = 1, 2 . . . N (3.3.2)

where, r0,1...m are the regression parameters and εi is the error term which captures all

25

3. Visual features for robot navigation

1 2 3 4
0

20

40

60

80

100

Principal Component Principal Component

V
ar

ia
n
ce

 E
x
p
la

in
ed

 [
%

]

S
in

g
u
la

r
v
al

u
e

1 2 3 4
40

50

60

70

80

90

100

110

4

-

fa

c
t
o
r

s
o
lu

t
io

n

(a) (b)

Figure 3.10.: (a) Percentage variance explained by the individual principal components and (b) Scree plot
of the singular values for the first 4 components.

other influences on the output not interpreted by the regression coefficients. Zij are
the principal components projections of the training data. This method goes by the as-
sumption that low variance principal component may also be important in defining the
behavioral action of a robot. Fig. 3.13 shows the correlation coefficient of the principal
components against the target variable. The target variable in our example is the cur-
vature traversed by the robot expressed as a ratio of rotational to translational velocity.
The figure shows that the top correlating components are not necessarily the components
that reflect high variance in the data. The components that are collinear or redundant
are eliminated using PCR thereby retaining only the relevant components. This raises
the obvious question, what are the number of relevant components and which are them?

3.4. Feature selection
Feature selection selects a subset of characteristic relevant features and eliminates the rest
from building a model. Feature selection (also known as input variable selection, subset
selection, pattern discovery) aims to address three aspects to model building: improve
the prediction accuracy of the model, provide a better understanding of the underlying
working principle of the model in that influence of different factors to the model are
comprehensible and to have cost- and computationally efficient task predictors. Feature
selection is broadly classified into three types of algorithms namely wrapper, embedded
and filter algorithms [KJ97]. Wrapper approach takes the feature selection problem to an
optimization of the model performance. This requires searching through all the possible
combinations of features to select the one which possesses the best generalization capabil-
ity to data that are not seen by the model during training. Embedded approach is directly
incorporated in the model where the weights of the model parameters are modified for op-
timal generalization performance. Standard shrinkage methods for regression algorithms
and weight decay for neural network models [HTF01] are typical examples of embedded
feature selection approach. Both, wrapper and embedded approach are model based or in
other words the algorithm to build the model is already known. Filter based method on
the other hand, is a model free feature selection which utilizes statistical inference of the

26

3.4. Feature selection

Mean 1st Eigenvector 2nd Eigenvector

3rd Eigenvector 4th Eigenvector 5th Eigenvector

Demonstration

1…5
6…10

66…70

Images

Figure 3.11.: Five images per demonstration spanning the entire length for fourteen demonstrations.
Thus, a total of seventy training images are used for computing the principal components. The mean
vector along with the five dominant PCA eigenvectors are shown.

input data to select the most relevant features. This is typically done either by checking
the correlation of the input variables to the target or by minimizing the information en-
tropy or using mutual information [KJ97]; [RGH11]. The influence of the input feature
set is judged using a metric of performance which reflects the measure of fit of the model.

3.4.1. Performance metric
Given N training examples with j input features XT j and target yt, the most common
performance measure is the Mean Squared Error (MSE) given by,

MSE =

N∑
i=1

(yti − ŷti)
2

N
(3.4.1)

where, ŶT is the predicted output of the model. In spite of the simplicity and intuition
of MSE, it still carries a few imperfections. MSE is independent of temporal and spatial
relationships between the original and the predicted data-set such that reordering the
data does not change the MSE [WB09]. The interpretation of MSE to different scaling
of data also throws in some challenges. One way to alleviate this is by computing the
Normalized Mean Squared Error (NMSE) between the prediction and the actual target.
NMSE interprets the residual variance of the predicted output by dividing the MSE by
the variance (σyt2) of the target given by,

NMSE =
MSE
σyt2

. (3.4.2)

27

3. Visual features for robot navigation

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Principal Component Principal Component

V
ar

ia
n
ce

 E
x
p
la

in
ed

 [
%

]

0 10 20 30 40 50 60 70
0

50

100

150

200

250

1
6

-

fa

c
t
o
r

s
o
lu

t
io

n

1
0

-

fa

c
t
o
r

s
o
lu

t
io

n

(a) (b)

S
in

gu
la

r
v
al

u
e

Figure 3.12.: (a) Percentage variance explained by the individual principal components. Only 95% of the
cumulative distribution is shown and (b) scree plot of the singular values for the first 70 components.

Principal Components

C
o
rr

el
at

io
n

co
ef

fi
ci

en
t

0
0

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70

4

9
276

5

Figure 3.13.: Correlation coefficients of principal components against the behavior outputs.

3.4.2. Cross-validation
Cross-validation is the statistical method to test the generalization ability of a model.
It is done by partitioning the data set into two subsets, a training set and a test set to
validate the performance of the model. The most common cross-validation technique is
the k-fold cross-validation where the available data set is split into k roughly equally sized
parts first. The cross-validation is then carried out k times where for each iteration k− 1
data groups are used to train a model and then evaluated on the remaining one. The final
cross-validation error is then computed by averaging the generalization error registered at
every fold or iteration. A simpler version of this technique is the hold-out cross-validation
where the data set is split into only two sets namely one for training and the other for
testing. In spite of the simplicity and ease in performing hold-out cross-validation, it is
ambiguous if the validation set is small. Hence, it is preferable to perform both the cross-
validation methods for arriving at a quantitative conclusion about the model. Another
approach used typically when data is plentiful is to split the data set into three sets, where
the first data set is used as training set and is validated against the second set called the
validation set. Based on the model performance on the validation set, the complexity
model parameters are optimized until a satisfactory generalization error on the validation
set is obtained. The final performance is then determined by testing the model against the
third data set called the testing set. While performing a feature selection routine, every
feature subset based model need to be thoroughly cross-validated before being selected.

28

3.5. Application example

3.4.3. Wrapper approach
Wrapper approach is used to select the relevant subset of features from the input training
data set that improves the overall generalization performance of the model. The subset
selection algorithm exists as a wrapper around the machine learning algorithm, hence
the name [KJ97]. In this approach, the precision and accuracy of every feature subset
is checked on the induction algorithm using the different performance metrics mentioned
before. The method then searches for the most practical set for which the accuracy is the
highest. The generalization accuracy of the different subsets is computed with either a
k-fold or a hold-out cross-validation on the test set. There are two selection techniques
to arrive at the feature subset namely, forward chaining and backward chaining. Forward
chaining counters the selection procedure by starting with an empty set of features and
start adding features to the subset until the generalization error no more improves. Back-
ward chaining or elimination starts with the full set of features and iteratively eliminates
the least useful feature. Forward chaining enjoys the advantage that it is computationally
efficient as it is fast to build models with fewer number of features whereas backward
chaining captures the interactive nature of the individual features but still suffers with
the computational inefficiency [KJ97]. Fig. 3.14 shows the evolution of the MSE and
NMSE on unseen test set output for the example dataset presented in Fig. 3.11. The top
seventy principal components are extracted from the entire demonstration data to obtain
a training data-set of dimension 2100× 70. Using forward chaining the top principal com-
ponents for PCR that best generalize the unseen test-data is identified. Cross-validation is
performed by both hold-out cross-validation where 60% of the data set is used for training
and the remaining 40% is used for testing and a 5-fold cross-validation.

3.5. Application example
We illustrate the use of feature selection for identifying the relevant principal compo-
nents for modeling a visual navigation behavior using the corridor following example
presented in Fig. 3.11. Fourteen demonstrations each of length 150 sample units are
generated. For every demonstration examples, the top 70 principal components are ex-
tracted thereby generating a total of 2100× 70 training examples. The demonstrated
robot action is transcoded into path curvatures in terms of the ratio between rotational
and translational velocity. Fig. 3.15 shows a pictogram of some of the demonstrated
corridor following behavior. Wrapper approach with forward chaining is performed on
the demonstration examples to find the optimal subset that minimizes the generalization
error. Fig. 3.14 shows the evolution of the generalization error with increasing number
of features. The generalization errors: MSE and NMSE are plotted for both hold-out
and 5-fold cross-validation. Hold-out cross-validation is done by training on 60% and
testing on the remaining 40% of the data. Conventionally in machine learning, cross-
validation is performed by randomly selecting the training and test examples. In our
case, the examples are related trajectories of a behavior execution, hence the training is
performed on 60% of the fourteen trajectories (8 trajectories) and testing done on the
remaining 40% (6 trajectories). For a 5-fold cross-validation, each fold has 3 trajectories,
thereby training is done on 11 trajectories and tested on the remaining 3 trajectories for
every fold. By setting a feasible tolerance on the allowable increase in the generalization

29

3. Visual features for robot navigation

0 10 20 30 40 50 60 70
0

1

2

3

x 10
-4

Number of Components

m
ea

n
 s

q
u
ar

ed
 e

rr
o
r

[d
eg

/
m

m
]2

hold-out

k-fold

Number of Components

n
o
rm

al
iz

ed
 m

ea
n
 s

q
u
ar

ed
 e

rr
o
r

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hold-out

k-fold
1
0

s
e
le

c
t
e
d

fe

a
t
u
r
e
s

1
0

s
e
le

c
t
e
d

fe

a
t
u
r
e
s

2
4

s
e
le

c
t
e
d

fe

a
t
u
r
e
s

2
4

s
e
le

c
t
e
d

fe

a
t
u
r
e
s

Figure 3.14.: Forward chaining error evolution for PCR with hold-out and k-fold cross-validation. (Left)
Mean squared error and (Right) normalized mean squared error. The cross-validation of the two subsets
of features are shown in Table 3.2.

Y
 [
m

m
]

X [mm]
-3500

-1000

1000

0

0

(a)

[d
eg

]
�

[deg]� -100-50 0 50 100-20
0

20

-20

0

20

[deg]�
[deg]

�

�
[d

eg
/s

]

(c)

-80 -40 0 40 80

-10

0

10
(b)

Figure 3.15.: Pictographic representation of corridor following behavior demonstration.

error between two subsequent subspace to prevent a local optimum, one ends up with
two different subsets. From the plot, one can observe that with 5-fold cross-validation
the error does not show any significant improvement by adding more than 10 features,
whereas for hold-out cross-validation, the error is rather fluctuating and flattens out with
24 features. The figure also shows the pros of k-fold cross-validation against hold-out in
having a more accurate and consistent tend in generalization error. The bobbing error
from hold-out cross-validation points at the drawback in that the error heavily relies on
the kind of split performed for selecting the training and testing trajectories. Table 3.1
shows the selected features generated from hold-out and 5-fold cross-validation. Table
3.2 tabulates the cross-validation MSE and NMSE for the two subsets of features. Please
note that the values in Table 3.2 only partially correspond to the error values from Fig.
3.14. During forward chaining, we cross-validate on seventy components using hold-out
and k-fold to arrive at 24 and 10 relevant components. Table 3.2 shows the generalization
error of cross-validating the two selected subsets using hold-out and 5-fold.
Fig. 3.16 shows the performance of PCR for both the subsets on the target κ for selected

Table 3.1.: Selected features

Cross-validation Component number
hold-out 4,12,7,25,54,8,42,6,49,19,21,60,31,10,2,67,34,68,58,20,9,11,35,23
5-fold 4,8,6,2,9,11,5,7,30,10

30

3.6. Related work

Table 3.2.: Cross-validation error for the selected set of features

Cross-validation 10 feature set 24 feature set
MSE NMSE MSE NMSE

×10−5[deg/mm]2 ×10−5[deg/mm]2

hold-out 1.690 0.040 0.867 0.0268
5-fold 1.901 0.0614 5.464 0.047

Demonstrated target k-fold PCR prediction hold-out PCR prediction

0 50 100 150

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 50 100 150

-0.06

-0.04

-0.02

0

0.02

0 50 100 150

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

�
r
[m

m
/d

eg
]

�
r
[m

m
/d

eg
]

iterations

iterations

0 50 100 150

-0.06

-0.04

-0.02

0

0.02

Demo 1 Demo 2 Demo 3 Demo 4

0 50 100 150

0

0.05

0.1

0.15

0 50 100 150

0

0.02

0.04

0.06

0.08

0 50 100 150

-0.02

-0.01

0

0.01

0 50 100 150

0

0.02

0.04

0.06

0.08

Demo 12Demo 11Demo 10Demo 9

0 50 100 150

-0.15

-0.1

-0.05

0

0.05

0 50 100 150

-0.15

-0.1

-0.05

0

0.05

Demo 8Demo 7

0 50 100 150

0

0.01

0.02

0.03

0.04

0 50 100 150

0

0.02

0.04

0.06

0.08

0.1

0.12

Demo 6Demo 5

Figure 3.16.: PCR prediction with the different feature subset for all the demonstration trajectories.
k-fold and hold-out predictions are performed using 10 and 24 components respectively.

demonstration trajectories. The figure shows that both the subsets approximates the
target robot curvature pretty good for all the demonstrations. Interestingly, regression of
10 selected principal components performs equally good to regression over 24 components.
This validates the terminating condition of forward chaining and the reasoning behind
that conclusion (Fig. 3.14). Hence, for this application example of learning visual corridor
following behavior, ten principal components shown in Table 3.1 deem as characteristic
features to model the behavior.

3.6. Related work
The potential of using vision for mobile robot navigation has grown leaps and bounds
over the last decade [BFOO08]; [DK02]. The advent of faster computational capability
has allowed the exploration of the realms of image understanding using multitude of fea-
tures to capture various associated aspects such as motion detection [Cam95] and objects
recognition [Low99]. Image features such as Scale Invariant Feature Transforms (SIFT)
[Low99], Speeded Up Robust Features (SURF) [BTVG06] and more recently Histogram
of Oriented Gradients (HOG) [DT05] are popular local descriptors that extracts interest-
ing cue points about the environment. By computing these local descriptors on a single
reference image, they can be queried visually with any other target image for recognition.
The authors of [SLL01] use a trinocular stereo system on whose images SIFT features are
extracted and matched to identify robust 3D landmarks. The landmarks are then further

31

3. Visual features for robot navigation

used for generating a 3D map of the environment. In [CC13], a visual path following using
a monocular camera is performed by matching the current robot perception with the key
images of the environment used earlier. They use visual keypoint based localization shown
by [RLDL07], who match Harris corners detected between the query and target image.
With the visual path following in the upper layer, a laser based collision avoidance works
as the primitive navigational behavior. These approaches require a domain knowledge of
the environment in that the key images are extracted first during the training phase and
are matched during runtime for localizing the position and the underlying robotic behav-
iors are based proximity sensors. Our method attempts to learn a purely vision based
robotic behavior without any a priori information about the environment. Other similar
feature matching based navigation schemes have been proposed by [JAC97]; [RC01].
The works of [Pom89]; [Kni02] show different approaches to achieve purely vision based
navigation. The famous ALVINN land vehicle of [Pom89] predicts the heading of the
vehicle to follow the road based on a list of local and global road features, whereas [Kni02]
uses stereo vision for robot navigation. In our case, the robot must learn different robotic
behaviors whose characteristics depend strongly on the environment it traverses. Hence
both the geometrical and textural characteristics together with features that are inherent
to robot navigation need to be extracted. Global descriptors that analyze the shape
and the contour [ZL01]; [Fre10] of the segmented patch need to be extracted to acquire
further knowledge about the image. Shape and contour analysis has been historically
used for diverse areas of research involving optics ranging from medical imaging [NS02]
to biometric gender classification [DW11]. All these features require expert inputs from
the programmer and draw conclusions on its relevance. PCA presents an insight into the
latent feature space of the image which is generally overseen by the human. In [VBK01],
panoramic omnidirectional image is projected onto its principal components to extract
features for localization. The works of [AMW05] use Hidden Markov Models to extract
indoor office features to identify scenarios associated. PCR in the context of environment
modeling is used by [VK99]. The principal components of a supervised set of robot
positions are regressed against high dimensional sensor measurements to perform robot
localization.

3.7. Summary
This chapter presented the methodology to tackle the problem of generating and aggre-
gating meaningful representative visual behavior features to map relevant relationships
between the perception and action. The perception is a fusion of 3D PMD and a 2D
omnidirectional camera system mounted on a robot. Given a set of diverse training ex-
amples of a behavior execution, the perception is first segmented for floor and non-floor
region. A mixture of experts segmentation scheme fusing heterogeneous classifier outputs
trained on multiple 2D segmentation algorithms is utilized to obtain a segmentation im-
age of floor and non-floor pixels. Using standard image processing algorithm together
with manual intervention, several features that express a range of aspects such as rela-
tive proximity and location of obstacles with respect to the robot, geometry and shape
characteristics of the floor through image moments and computational shape analysis are
extracted. A second approach explores the latent space of the recorded demonstration

32

3.7. Summary

images to determine if there are hidden variations that can be mapped to the demon-
strated behavior output. Using PCA, the eigenvectors of the different training images
are identified and are listed down in decreasing order of the data variance explained in
its eigenspace. Conventionally, the top principal components are directly selected as the
most relevant features for the data presented. From a machine learning perspective, they
fail to reflect the influence of the different individual components to the presented target
output. We address the problem, where the recorded target robot action is also consid-
ered into the training process by regressing the extracted principal components to it. All
the principal components irrespective of their order of variance explained are checked for
relevance. Once the feature extraction is done, the most characteristic subset for mapping
is selected through a feature selection algorithm. Using a forward chaining wrapper ap-
proach, the list of relevant features are increased sequentially by carefully observing their
cross-validation generalization error against both seen and unseen examples. This aspect
is examined in detail through an application example for selecting the most relevant sub-
set of principal components for an indoor corridor following behavior. It was shown that
based on the chosen mode of cross-validation and the desired performance metric, differ-
ent sets of characteristic features are obtained. The generalization error of the different
subsets to unseen data set was tabulated. This chapter outlined the different approaches
to breakdown enormous amount of image information into representative visual cues that
could describe the demonstration. The choice of the number of features for a descriptive
subset can become highly subjective depending on the mode of feature selection and more
importantly on the learning algorithm used to model these subsets. In other words, a
feature that presents itself as highly relevant working with a certain modeling algorithm
might completely fall out of contention when dealing with a different learning algorithm.
Hence, a careful selection of the subset with pretext to the behavior modeling technique
is imperative.

33

4
Teaching modalities for mobile robot

demonstrations

The object of teaching is to enable the student to get along without a teacher.
– Elbert Hubbard

Personal service robots capable of performing multiple tasks being accessible to the larger
population is becoming a realistic vision. Mobile robotics here is one such important sub
genre. The mobile robots available today in the market and also in research rely mainly
on manual programming to decipher the perception-action mapping. The programmer is
typically an expert who requires a profound understanding of the task and its interaction
within the confines of the environment. For a vision based system, this corresponds
to mapping images to actions. Images are broken down to multiple features which can
reflect the different changes within the environment [War06]. A major hurdle is the
difference in the perception modality between the human and the robot. LfD [ACVB09]
solves this challenge where human based demonstrations are observed and generalized to
a skill. Machine learning algorithms are used to identify patterns and learn the ulterior
perception-action mapping exhibited by the human. The approach does not restrict the
robot instruction to only experts, but also allows non-experts to interact with the robot
in an intuitive manner. The bottleneck of this process lies in the fidelity of the data
recorded from demonstration of the teacher. Mostly, therein lies a correlation between
the quality of the data and the generalization of the task learned. Data quality irrespective
of the learning method used is of ultimate importance. Cross-validation, feature and data
selection are some of the methods used to compensate this deficiency. In the context of
LfD, this amounts to the quality of observing or interpreting the human demonstrations.
One of the ways to assure good data interpretation is to ensure efficient and comfortable
demonstration modes to record the perception-action pair. In this chapter, three interfaces
for demonstrating mobile robot navigation skills are investigated [NPHB12]. The pros and
cons of a demonstration mode, its complexity and the user friendliness to both experts
and non-experts are surveyed. Behavioral tasks such as line following, corridor centering,
obstacle avoidance, door passing and homing are chosen for evaluating the performance
of the demonstrations. Performance evaluation metrics include the average time and
number of commands taken for a demonstration together with the smoothness of the
recorded actions across multiple demonstrations.

35

4. Teaching modalities

4.1. Mapping problem
Flexible handling of industrial manipulators have been the driving force behind the devel-
opment of intuitive user interfaces over the years. Augmenting from textual programming,
teach-pendants are hand-held control/programming units which allow to move and teach
the robot. The robot is manually sent to goal position through a set of desired intermedi-
ate positions which are recorded and reproduced in the same way during imitation. The
desired motion is specific to the workpiece under observation and lacks generalization.
Teaching attributed in LfD, attempts to teach the essence of the task with regards to its
sensor perception and executed action. Conventional teaching method is the kinesthetic
mode where the human directly moves the arm of a manipulator or a humanoid robot
and performs an example demonstration of the task [Cal09]; [INS02]. The sensor mea-
surements and the joint positions are recorded during the demonstration. Adept transfer
of information between the teacher and the robot depends in matching the sensing and
interpretation of the environment by both. This is called as the correspondence or the
mapping problem [DN02]. The authors in [ACVB09], partition the correspondences within
LfD into two types namely, record and embodiment mapping which are drawn according
to the differences in the perception of the states experienced by the teacher and the robot.
Fig. 4.1 shows the intersections of record and embodiment mappings. Record mapping
refers to the mapping between the perception of the teacher during demonstration and the
data recorded. Embodiment mapping on the other hand refers to the mapping between
the recorded data to a format understandable and executable by the learner. The former
is generally associated with the demonstration phase while generating data and the latter
performed during model building and imitation phase. For a mobile robot, an equivalent
kinesthetic teaching is to drive the robot manually similar to an automobile. [ACG10]
present a similar idea of a robot driving interface for children. The scalability of this de-
sign for all users in an indoor environment is a big challenge. In this chapter, we address
this challenge by presenting different pure vision based robot command interfaces. The
following conditions are carefully considered before their design, namely

1. establishing the perceptual ability of the task to capture task relevant information,

2. design of an intuitive interface for the teacher and

3. user friendliness of the interface.

Three modes of demonstration interfaces are discussed namely: joystick control, gesture
based command and remote teleoperation with a steering wheel. In joystick and gesture
based control, the human leads from behind and walks the robot through the environ-
ment. The commanded turn rate is based on the humans own vision. With the steering
wheel control, the teacher controls the velocities of the robot remotely by perceiving the
environment through robots vision. With the first two approaches, the instructed human
actions might depend on perceptual information that is seen by the human and not by
the robots camera. This ambiguity of mapping is avoided in the third mode, where the
robots view functions as the only perceptual input to instruct. On the contrary to the
advantage offered, the live streaming of robot camera lacks depth information making it
more difficult for the human to estimate distances and velocities. The robot in our case

36

4.2. Teaching modalities and Human-Machine interfaces

Environment

Field of view

R
ob

ot
T
ea

ch
er

R
ec

o
rd

m
ap

p
in

g

Embodiment mapping

Teleoperation
Teachers

with
sensor

External
Observation

Shadowing

Demonstration Imitation

Determine
demonstration
tasks

line following,

corridor centering.

avoid obstacles,

door traversing,

docking ...

from the perspective

of both teacher and

robot

expert and

non-expert / lay

user friendly

Intuitive
interface

User
interface

DEMONSTRATION MODE DESIGN

(a) (b) (c)

Figure 4.1.: The mapping problem. (a) A coarse example of the difference in the perception and field
of view of the teacher and robot, (b) representation of the different record and embodiment mapping
together with their expression in demonstration and imitation phase [ACVB09] and (c) three building
blocks for a sound design of a robot demonstration mode.

Figure 4.2.: The different user interfaces for human-machine interaction.

is equipped with an omnidirectional camera. The human is provided with two visualiza-
tions of the environment: the original omnidirectional image of the camera or a mapped
birds-eye view. The aim of this chapter is to analyze the teaching modes which enable
a non-expert user to guide the robot through the environment with little or no training.
We study this through the above mentioned three modes, starting from command line
interface through graphical user interface to natural user interface. The distinction of the
three interfaces is shown in Fig. 4.2.

4.2. Teaching modalities and Human-Machine interfaces
The experimental setup consists of a Pioneer 3DX mobile robot mounted with an omni-
directional camera and a 3D Kinect camera facing the rear side. The Kinect offers an
advantage against the PMD camera in that the resolution of the acquired depth image al-
lowing robust tracking of the teacher. As for the perceptual sensor, the difference between
the sensor modality of human and the robot is mainly the field-of-view. An omnidirec-
tional camera with a 360◦ horizontal field-of-view can close this gap and is thus used to
reduce this difference. The availability of depth information from the Kinect allows it
to track skeletons thus can be extended to track the teachers gestures. In essence, all
the three demonstration modes are different forms of teleoperation. The modes and the
mobile robot with the cameras used for the demonstration is shown in Fig. 4.3.

37

4. Teaching modalities

TELEOPERATION DEMONSTRATION MODES

Joystick
D

ir
ec

t
re

co
rd

m
ap

p
in

g
Gesture based

S
h
ad

ow
in

g

Steering wheel

F
ir

st
 p

er
so

n
d
em

on
st

ra
ti

o
n

Omnidirectional
camera

Kinect camera

Figure 4.3.: Overview of the different teleoperation based demonstration modes and the mobile robot
experimental setup.

4.2.1. Remote teleoperation
An automobile accessory set comprising a steering wheel together with an accelerator
and break pedal is used to control the robot remotely by perceiving the environment
through an omnidirectional camera. The catadioptric image is generally conceived incon-
venient for humans used to perspective projection. One option would be to perform the
demonstration with a monocular camera. Nevertheless, monocular cameras have a very
limited field of view thereby rendering them less appropriate to demonstration navigation
behaviors. This being said, the lack of depth perception in the omnidirectional image
accentuates the uncertainty in executing the navigation decisions. To help the user with
a sense of robots proximity to nearby obstacles, the sonar readings from the robot are
also displayed. Additionally, a birds-eye view image obtained through radial correction
around the image center [WGLSv00] is also provided as an alternative vantage point.
The birds-eye view is obtained from the omnidirectional image corrected for distortion
and then unwrapped. The geometric consistency between the image and the real world
eases the task (for example, corridors appear as image bands of constant width). The GUI
allows the user to switch between omnidirectional and birds-eye view at any time. The
heading is controlled by turning the steering wheel with the translational velocity set by
pushing the accelerator pedal. A 60◦ steering angle is transformed to maximum rotational
velocity and a minimum of 5◦ steering angle is required to start turning. A sonar based
stop behavior works as a safety measure when the robot gets too close to obstacles. In
the case of imminent collision this behavior overrides the user commanded velocity. In-
formation exchange between the teacher and robot is established using TCP/IP protocol
with a client-server communication. In the event of communication loss, the robot stops.
Fig. 4.4 shows the technical setup of the steering wheel demonstration mode.

4.2.2. Joystick control
Joystick control provides a direct interface to the robot. It provides an identity record
mapping between the teacher and robot. The teacher passively controls while the robot
records the data. We use an USB connected Logitech wingman joystick with a throttle
trigger to indicate start and stop of demonstration activity. Since no fixed translational
speed or turn rate can be set, both need to be explicitly controlled by the teacher. As
an alternative, one can also use the joystick only for controlling the turn rate whereas

38

4.2. Teaching modalities and Human-Machine interfaces

Teleoperation user GUI
Robot

Steering
wheel

Steering angle

Rotational
velocity

Figure 4.4.: Steering wheel based teleoperation.

the translational speed is set via a simple sonar based stop behavior. To maintain the
flexibility of this mode to be used with different joysticks and hand held controllers, a
direct transfer of the command from the joystick to the robot is performed. Thus the
controller commands are unfiltered and react directly on the robot motors.

4.2.3. Gesture based control
Gesture based control interprets the teachers instructional gestures as motion commands.
The method exploits the advantages of a Natural User Interface (NUI) by using body
gestures for instructions and thereby eliminating intermediate control devices. NUI al-
lows even a non-expert user to intuitively interact with the robot. Fig. 4.5 shows the
working principle of the designed gesture based interface. The Kinect camera is inte-
grated such that it looks to the rear of the robot. The teacher demonstrates from behind
using gestures similar to driving a hypothetical automobile steering wheel. Open source
framework for natural interfaces openni-tracker [Ope]; [SSKFFBCM13] is used within
a ROS [QCGFFLWN09] framework to track the skeletal joints (Head, neck, torso, left and
right hand) of the teacher. The obtained Cartesian coordinates (xjoint, yjoint, zjoint) of
the joints are transformed to its corresponding image coordinates (ujoint, vjoint) using the
Kinect camera model. The camera gaze is controlled to place the teacher always directly
in the center of its field of view. A desired region of interest along the center of the
image is defined whose deviation is aptly corrected through camera gaze. The gaze is
controlled using a pan servo motor over which the Kinect camera rests. The horizontal
pixel error of both the hands (eleft and eright) beyond the demarcation zone is determined.

eleft =

duleft − uleft, if uleft < duleft|uleft > duright

0, otherwise

39

4. Teaching modalities

Joint
tracking

Gaze correction

Track
unique user

Compute steering
angle

Compute
translational

velocity

Compute
rotational
velocity

Disparity

Image
u

v

Figure 4.5.: Architecture of gesture based demonstration

Figure 4.6.: Pan and tilt correction. (a) Camera gaze correction with a pan servo motor in action during
a door traversing maneuver and (b) user image before and after tilt adjustment done during calibration.

eright =

duright − uright, if uright > duright|uright < duleft

0, otherwise

ehand =
eleft + eright

2 (4.2.1)

The error of the left and right hand (ehand) beyond the demarcation of the region of
interest (duleft,duright) is used to control the gaze. An image based visual servoing scheme
is performed to minimize the average of the right and left hand deviations (ehand) to zero.
Fig. 4.6 (a) shows this active during a trial to demonstrate a door passing behavior from
a corridor.
To trigger forward motion of the robot, the teacher starts moving closer to the robot
at normal walking speed. On recognizing the teacher, the initial distance between the
robot and teacher (duser) is set as reference and translational velocity is controlled to
maintain this distance. A proportional feedback control loop where the error between
the current user distance and the reference user distance is fed as the control variable.
The controller determines the change in velocity to the current translational velocity to

40

4.3. Demonstration tasks

Figure 4.7.: psi pose and the steering angle poses for left and right turn

adapt to the moving user. Experiments show the optimal operating range for robust
tracking and control for the Kinect is between 1.5− 3.5 meters. The robot stops when
the distance is too close (below 30% of the control distance) or when the tracking loses the
user. The steering angle of the hypothetical steering wheel rotation gesture is transformed
to rotational velocity. The angle is computed between the up-down line connecting the
head, neck and torso and the horizontal line connecting the left and right hand. The
user needs a minimum steering angle to trigger the robot turn rate. Typically, set to
5◦ it avoids the robot to be over sensitive to small unintentional changes in the steering
angle. Similarly, the steering angle also has an upper bound. Angles greater than this
upper bound are correspondingly interpreted as maximum rotational velocity. A running
average of the last five instructions determines the final rotational velocity. The initial
calibration performed through a psi-pose [Ope] serves as the reference pose relative to
which the steering angles are determined. Fig. 4.7 shows the initial pose and the relative
steering angle gestures for a left and right turn. During the initial calibration, the tilt
of the Kinect is also calibrated to have the optimal field of view of the body skeleton of
the user. This is achieved by computing the ratio of the teachers body or the teachers
height during calibration. By setting a desired ratio of the users height in the cameras
field of view, the tilt angle is set to have maximum coverage of the users skeleton. From
the distance of the teacher and the ratio of teachers skeleton in the field-of-view of the
camera, the tilt is computed through triangulation. Fig. 4.6 (b) shows the calibration of
the user before and after tilt correction. The sonar sensor readings delivered are merged
and used for a base-line safety mechanism by reducing the speed when getting closer to
near by obstacles. This is to prevent any deliberate or accidental attempt to collide. From
the distance do to the nearest obstacle along the current path curvature of the robot, an
equivalent time to collision tc is computed. The current velocity (vc) is not subsumed
until the time to collision gets less than ts = 2 seconds (see (4.2.2)).

v = min
{
vc,

do
ts

}
. (4.2.2)

4.3. Demonstration tasks
The different demonstration modalities are compared and tested for precision and the
level of difficulty in executing a demonstration. Behavioral tasks namely, driving the
robot along straight and curved line, avoiding an isolated obstacle, passing a door from

41

4. Teaching modalities

Straight line

door

Curved line

Corridor center

Obstacle 1

Obstacle 2

Direction
of
demonstration

Slalom

Docking markers

Final
orientation

Figure 4.8.: Overview of the scenarios used for line following (straight and curved line), navigational
behaviors (corridor following, obstacle avoidance, slalom, door passing and homing).

different angles of approach, guiding the robot to a docking point and a slalom motion are
experimented. The experiments are designed to cover a variety of robot maneuvers. The
trials start with line following experiments, where the start and the end point of the trial is
predetermined. This is followed by behavior executions, where the aim is to demonstrate
a motion policy and not a pre-determined trajectory. Corridor following demonstrations
start from different misaligned robot configurations with the aim to drive the robot to the
center of the corridor. For obstacle avoidance, distinct obstacles are placed in front of the
robot to be evaded. The goal of door passing behavior is to guide the robot through a
door such that the robot passes between the door sills perpendicularly. Slalom behavior
fuses the obstacle avoidance and corridor following together. Two obstacles are placed
along the center of the corridor. The robot, also positioned along the corridor center is
to be guided from one end of the obstacle course to the other end of the obstacle course.
The goal of the task is to maintain the robot orientation along the corridor center and
divert the straight line motion only on encountering obstacles. Goal point reaching or
homing is performed by guiding the robot to a specified target area indicated either by
two red or green colored markers placed one meter apart. The goal point is the center
point of the line connecting the two markers. Fig. 4.8 shows the scenarios associated with
the mentioned experiments.

4.3.1. Experimental setup
A user study with fifteen participants with varying associations with robotics is carried
out by asking them to perform the above mentioned tasks. An introduction of the task
together with an example task demonstration is performed by an expert and each partici-
pant is allowed ten minutes to get acquainted with the three modes. Failure in finishing a
task is also recorded and with an opportunity try again upon request and curiosity. A cau-
tious preview of the test conditions such as day-light, number of doors open or frequency
of people moving in the corridor are done by the expert to maintain data consistency
across all users.

42

4.4. Validation and user study

Gesture based demo
Joystick

Steering wheel

0

20

40

60

80

Straight
line

Curved
line

D
em

o
n
st

ra
ti

o
n

ti
m

e
[s

]

Slalom Corridor
following

Obstacle
avoidance

Door
passing

Homing Gesture based
demo

Joystick Steering
wheel

0

20

40

60

80

Figure 4.9.: Bar and box plot of the average demonstration times of the three modes across all scenarios.
The box plot shows the median, 25 and 75 percentile edges.

4.3.2. Performance measures
The performance of a demonstration in different modality is measured using diverse in-
dicators namely; duration of the task, total number of velocity commands used, average
translational velocity of the robot, average curvature of the executed trajectory and the
variance of the distribution of curvature. The total time of demonstration is computed
from the first command until the final command issued by the user. With a joystick;
pressing and release of the trigger switch indicates the start and end of a demonstration.
In gesture based mode, the explicit stop demonstration gesture is used whereas in steering
wheel based remote teleoperation the user presses the stop demo push button in the GUI.
The number of velocity gradient changes are also recorded from the number of different
rotational velocity commands. The number of commands is an useful measure to interpret
the user difficulty together with the sensitivity of the demonstration mode. The number
of extraneous and corresponding correctional commands is also be determined for more
insight. Curvature is computed as the ratio of commanded rotational velocity to transla-
tional velocity. The variance of these curvatures indicate the degree of continuity during
the demonstration. Smoothness of the demonstration is computed from the measure of
dispersion of the curvature through signal-to-noise Ratio (SNR). SNR is computed by
taking the ratio of mean of the recorded curvature to its standard deviation, thus giving
a measure of dispersion of the data. This interpretation decouples the robot motion from
the dynamics thereby allowing to compare slow and fast motions against each other. The
pedagogical aspect of instructive learning of a robot is collected with a questionnaire filled
by the users at the end where the different demonstration modes are rated with respect to
their relative degree of difficulty, fun and the amount of time needed to expert the mode
(See Appendix A).

4.4. Validation and user study
The results from the user studies indicate that joystick based demonstration which re-
quired the least preparation time has also the fastest average execution time with a median
value of 19.16 seconds followed by gesture based demonstration with 25.95 seconds. Re-
mote teleoperation with steering wheel required longest acquaintance time (median of
48.14 seconds) mainly due to the apparent lack of visual feedback about the robots po-
sition within the environment. Fig. 4.9 shows the bar plot of the demonstration time
required for different tasks together with a box plot of the average demonstration time
for the three different modes. The figure shows that for medium complexity tasks such as

43

4. Teaching modalities

Figure 4.10.: Bar and box plot of the Number of commands used for the three modes across all scenarios.
The box plot shows the median, 25 and 75 percentile edges.

Figure 4.11.: Bar and box plot of the smoothness of the recorded curvatures expressed as SNR of the
data. The box plot shows the median, 25 and 75 percentile edges.

obstacle avoidance, homing and door passing, remote based teleoperation requires more
time to complete the task compared to the other modes. Demonstrating a slalom task re-
motely presented as the most challenging of the tasks. Despite the distance measurement
given by the sonar readings, the participants were very careful of the robots safety which
eventually reflected in a slower demonstration time and with relatively higher corrective
actions. On an average, participants needed 240 seconds to complete the slalom tasks
remotely compared to 50 seconds with gesture based mode and a mere 26 seconds with
the joystick. Similar trend is also seen with door passing behavior demonstration remotely
(joystick - 16 seconds, gesture based - 26 seconds and steering wheel - 85 seconds) and
homing (joystick and gesture based - 24 seconds and steering wheel - 48 seconds). The
number of commands needed to demonstrate a slalom behavior correlates with the total
demonstration time needed. On an average of 50 commands were needed for steering
wheel based remote demonstration whereas joystick and gesture based demonstration re-
quired only 8 and 14.5 commands for slalom. Tasks with relatively lesser complexity such
as obstacle avoidance (joystick - 9.5, gesture based - 10.0 and steering wheel - 10.5) and
corridor following (joystick - 8.8, gesture based - 11.5 and steering wheel - 9) needed rel-
atively same number of commands. From the experiments, one could notice that gesture
based control performs consistently well across all scenarios and also with non-experts.
All the tasks experimented had a specific demonstration start and end location except
for corridor following where the users decide themselves to end the demonstration once
they deem the robot is centered and aligned in the corridor. This difference is reflected
in the relatively short completion time of the corridor following behavior demonstration
(joystick - 11.9 sec, gesture based - 6 sec and steering wheel - 9.4 sec). Fig. 4.11 shows the
smoothness of the tasks except for straight line following and homing determined from

44

4.5. Related work

the SNR of the curvature. SNR interprets the dispersion of the curvature data along a
demonstration. Thus, a smaller value indicates higher dispersion and larger value indi-
cates a lower dispersion or a smoother trajectory. From the figure, one can notice that
gesture based demonstration mode generates less noisy demonstrations compared to the
other schemes. Joystick based demonstration data on the other hand has more noisy
nature attributed mainly to the haptic properties while controlling both translational and
rotational velocities together. Even though, handling joystick to control a robot is the
most easiest to get accustomed to, the sensitivity of the movement and maintenance of
a coherent relationship between the translational velocity and turn rate needs a larger
preparation time.
After completing the tasks, the participants are asked to survey the difficulty and the ease
of the different modes (See Appendix A). The user opinions confirm the intuition in that
joystick is the easiest and fastest to get acquainted whereas gesture based demonstration
is the most intuitive to generate relevant and smoother examples coupled with a better
fun factor to keep the user engaged. The steering wheel based teleoperation on the other
hand needed less preparation time than gesture based mode, nevertheless the lack of depth
perception from an image makes the demonstration relatively harder to master. With a
longer preparation time, the users are able to generate more smoother trajectories. The
findings of the results suggest that NUI based demonstration is more intuitive, less noisy
and reaches out to all users of diverse backgrounds. Joysticks are extremely fast and easy
to get started but the nature of demonstration tends to produce more outliers. From the
perspective of the data, this falls behind the other two but starts a clear favorite from a
user’s perspective. Steering wheel based teleoperation based on mounted omnidirectional
camera performs less satisfactorily on comfort. Nevertheless, the potential of this mode
of teaching increases the mobile robot flexibility to learn new tasks even when the teacher
and the robot are very far apart.

4.5. Related work
The rationale to have easier and intuitive interface for both experts and non-experts
to handle and teach navigational skills to a mobile robot has been the basis for many
research in LfD and Human-Robot-Interaction (HRI). The approaches distinguish them-
selves mainly with respect to the demonstration platform and the mode of interaction
between the teacher and the robot for information transfer. Kinesthetic teaching by
demonstrating directly on a manipulator is the most popular mode of generating exam-
ples [Cal09]; [KNCC11]. For a mobile robot, this modulation needs extra sensory cues to
generate relevant and situation-aware training data. In [NM01], the robot learns the skills
by observing and following a teacher. This modality also allows transfer of underlying be-
haviors between two robots. To extend this to learn navigational behaviors, one way is to
observe the skill through an external camera and follow the same example to generate its
own data. But this poses considerable challenge in that, accurate positioning and local-
ization of the human together with the interpretation of the skill set performed first needs
to be done even before the data could be changed to an understandable format for the
robot. [DH02] provide an insight into an active mode of learning by letting the robot fol-
low the teacher. Both the teacher and robot share identical platform thereby overcoming

45

4. Teaching modalities

the embodiment mapping. For learning visual navigational behaviors, following a teacher
is also not a practical approach as it needs relevant features that capture the local frontal
environment. Thus in our approach, the teacher walks behind the robot and instructs
the robot with a joystick or a specific gesture. Other sensory inputs such as auditor cues
[KTM10] and with corrective feedback from the robot [Che09] have been discussed for
improving the quality of the demonstration. In [KTM10], a mutual exchange between the
teacher and the robot is carried out using audio messages. Other mode of people tracking
with a potential for robot instruction can be seen [CD04]. The authors use a thermal
camera and fuse it with color images captured by a pan-tilt monocular camera to detect
people in the images. With the advent of 3D cameras, the need for multiple cameras
to acquire the depth and location of the human is made easy. [CBB03] present another
interesting aspect of teaching where the people movement trajectories are observed and
modeled on the robot. The data is recorded using laser-range finders and similar tra-
jectories that characterize human motions are clustered. In [Che09], the confidence on
the quality of the policy deems the robot to request for new corrective demonstration
to augment the low confidence policy. Proper interpretation of the teachers instructions
depends on the transfer of the modality differences and thereby solve the correspondence
problem to map human onto relevant robot actions. Natural body movements for robot
instruction and guiding are presented in [MSG10], where the user points a goal location
with a finger. We utilize this aspect in a similar NUI fashion using body gestures to
command velocities. Teleoperating a robot using a live video stream is also presented in
[GL96]. In this contribution, this mode is also considered as one alternative by providing
video sequences of omnidirectional camera mounted on the robot and using a steering
wheel and accelerator pedal to control the robot velocity and turn rate.

4.6. Summary
This chapter presented a comparative analysis of three modes of demonstrating naviga-
tional behaviors to a mobile robot in an indoor environment. The approach tries to tackle
the problem of generating outlier free and relevant training data in the context of LfD
for mobile robot. Further motivation stems from the need to design an easy and intuitive
approach for all kinds of users with different knowledge of robotics. Three teleoperation
modes with different modality are designed and tested. Joystick represented the haptic
mode of direct mapping between the robot and the user. There is an identity record
mapping as the actions are transferred by directly controlling the motor velocities of the
robot. The depth information of Kinect camera is used in the second mode of teleoper-
ated demonstration, where user gestures are interpreted as robot motion commands. The
NUI based framework used body postures to extract turn rate whereas the rate of change
of distance between the user and the robot presents the translational velocity. Remote
teleoperation using a steering wheel and accelerator pedal is considered as the third mode
where a continuous video stream of the mounted omnidirectional camera is used by the
user to guide the robot through the environment. To enhance the information, additional
information such as nearest obstacles detected by sonar and a birds eye view generated
from the omnidirectional camera is also provided. To test the flexibility of the three
approaches, user studies are performed with volunteers from diverse backgrounds. The

46

4.6. Summary

studies show that using gestures to command a robot allows even a lay user to generate
smooth trajectories and at the same time providing an intuitive interface. Joystick is
the easiest and fastest to master, but suffers from the haptic sensitivity which requires
additional preparation time. Remote teleoperation presents difficulty to most of the users
mainly due to the unfamiliar first person view of the environment. The lack of depth
information aggravates the difficulty and the loss of perspective view of the environment
makes the mode very challenging. The demonstration time is generally longer operating
remote, but presents a high potential to generate new demonstration examples especially
in situations where it is difficult for a human teacher to interact with the robot physically.
With adequate acquaintance time, the survey shows that the performance of the demon-
stration and the fidelity of the training data improves. Suggestive improvements for this
approach are using alternative teleoperation modes such as a gamepad control where indi-
vidual buttons for specific motion commands. This might improve the fidelity of the data
compared to a joystick in that constant velocities can be directly controlled from the user
interface and allows a fast interchange between semi-automatic and fully manual control.
With the advent of short range depth cameras such as PMD nano [Nan13], more advanced
natural motions such as finger motions can be used to direct the robot more faster and
with more control. The presented demonstration methodologies here, give an insight into
identifying and designing individual components required for building a comfortable and
complete human-robot interaction.

47

5
Scenario and context specific visual

behavior learning

Our senses were made for the environment, there is nothing else of which they
can be aware. So the problem of environmental awareness is the general problem
of sensory awareness.

– Mark Terry, The Abundance of Environmental Educators

Programming navigational behaviors from demonstrations needs to counter two impor-
tant design decisions, namely how to perceive an environment and what decisions are
appropriate for those perceptions? The first question deals with understanding the sce-
nario the robot finds itself in. In other words, it requires capturing and understanding
the characteristic aspects of the world around the robot through image features that are
similar to demonstration examples. The second question addresses the execution of right
action within this scenario.
A reactive robotic behavior is highly situated in nature in that it correlates directly to
the immediate nature of the environment. A heuristic for design and development of
such a system is presented in [Ark98], who proposes to modularize the global behavior
policy into sub-behavior control agents. The essence is to have a network of task specific
behaviors communicating with each other thereby emerging a global control policy. Such
a policy requires an agent to arbitrate or fuse the individual behavior policies. One
way to avoid a centralized planner is to modularize the behavior emergence in accord
to the environmental scenario the robot encounters. An anti-thesis to this heuristic is
to attempt and build a general, monolithic model of the relation between individual
perceptions and actions across arbitrary scenarios. Such a model is difficult to design due
to the immense variance in the appearance of the environment and correspondingly the
need of an enormous demonstration data to cover this diversity.
This chapter addresses the above issue by introducing a two level matching scheme where
both the scenario and context of operation are considered. Formally, we define the two
terms as following,

• A scenario describes the robots local surrounding based on the type of geometry by
giving it a semantic class. Scenario is not to be confused with place recognition where
a specific location is recognized but identifying similar geometry of environments
seen before. For example, a robot in building A corridor perceives a similar scenario
as a robot in building B corridor.

49

5. Scenario and context specific visual behavior learning

• A context describes the current situation of the robot based on its recent perceptual
history. For example a robot turning right to avoid a static obstacle to its left has
the same context as a robot turning right to avoid a person standing to the robot
immediate left.

In the proposed navigation scheme, first a classification of the traversing scenario based
on the distribution and shape of free floor space segmented on the omnidirectional image
captured by the robot is done. Upon the classification of the current scenario, a second
level identifies the current context within the scenario similar to the examples presented
during demonstrations. Scenario classification is vision based matching whereas context
identification is akin to matching time series trajectories. As an alternative to identifying
the context, all the perception-action pairs within a certain scenario is learned using an
artificial neural network. Decisions in individual scenarios depend on different aspects,
e.g. obstacle avoidance relies on the angular distribution of the local free space, whereas
corridor following relies on the robots lateral and angular displacement with respect to the
corridor walls. Within each scenario the relevant subset of features that best generalizes
unseen data are extracted and selected. This mapping between the geometric feature
set and the robot action is learned and cross-validated for both bias and unseen data.
Exhaustive tests on the generalization capability of both the schemes against trained and
untrained environment across all different scenarios are performed. The acquired policies
are validated on the robot to assess the performance. The robot behavior is learned
from a partially teleoperated behavior demonstration. In the demonstrated behavior, the
human operator controls the robots turn rate with a joystick whereas similar to cruise
control the translational velocity is automatically controlled based on the proximity to
the sonar detected nearest obstacle. The framework is equally applicable to the other
demonstration modes presented in chapter 4.

5.1. Scenario classification and validation
The proposed matching architecture shown in Fig. 5.1 accounts for the situatedness of the
behavior by first classifying the scenario and then select action on the basis of the context
or of its specific model. Identifying a scenario deals with the classification of an image
in an indoor environment into a topological scenario class. A semantic classification of
the environment enables the mobile robot to efficiently utilize only the features that are
relevant for the specific scenario. To illustrate this, we consider a robot in two different
indoor environments namely a corridor and a foyer. Assuming the robot has no goal and
is only wandering the environment, the robot in a corridor needs to know about its lateral
orientation within the corridor with respect to the walls to position itself along the center
of the pathway, whereas the robot in a spacious foyer needs to keep going straight until it
encounters an obstacle or an eventual change in the environment which triggers another
action. The lateral orientation of the robot in a foyer brings little to no information about
the next action to be executed thus lacks relevance. Thus, it becomes highly important to
first identify the scenario to arrive at correct motion commands. Fig. 5.2 shows a sample
geometric map of an indoor office environment and the corresponding omnidirectional
images. A typical indoor environment can be coarsely distinguished into three locations,
namely a pathway or a corridor, an open space or room and a dynamic or cluttered envi-

50

5.1. Scenario classification and validation

Figure 5.1.: The proposed two-level feature matching architecture

ronment. Supervised classification of the scenarios is performed by labeling them as C, O
and L respectively. A total of 1831 examples are collected, of which 617 are from corridor,
584 from open spaces and 630 from cluttered environment. The corridors are approxi-
mately 2.5 m wide with pillars partially blocking the corridor. The images are recorded
at different environments which differ in texture and appearance of the floor as well as
the geometry and locations of walls and obstacles. Fig. 5.3 shows some snapshots of the
environments used for training. Open room examples are performed in a hall or foyer with
an isolated obstacle in the middle to trigger an obstacle avoidance behavior. The aim here
is to keep going straight until the robot encounters an obstacle. The evading direction
depends on the location of the obstacle with respect to the approaching direction of the
robot. For instances where the obstacles are exactly in front, the robot is turned in the di-
rection of maximum free floor distribution. The inherent situational awareness of humans
to look ahead and foresee obstacles in executing motor decisions play a predominant role
in deciding these direction of evasion. The segmentation image presents itself as a binary
image of the robots omnidirectional camera perspective of the environment. From the
segmentation image, fifty-four visual features introduced in chapter 3 are extracted. The
relevant feature subset that classifies the three labeled scenario classes are identified using
a feature selection routine. Classification is then performed with different learning algo-
rithms such as Naive Bayes (NB), Regression Trees (RG), Probabilistic Neural Networks
(PNN) and an ensemble learning with Random Forest (RF). Besides the fifty-four visual
features, classification using the principal components of the segmented images is also
analyzed. Cross-validation and generalization with PCA are compared with the previous
result. The scenarios conceived relevant for robot navigation are labeled manually and
arise from logical regression of possible environments that a robot might encounter. We
establish this manual hypothesis of the number of relevant scenarios by performing un-
supervised classification of the acquired training data with Self-Organizing Map (SOM).
Fig. 5.4 shows the system architecture of the scenario classification framework.

51

5. Scenario and context specific visual behavior learning

Figure 5.2.: Geometric map of an indoor environment with corridor, open spaces and cluttered offices.
The corresponding omnidirectional images are shown together with their semantic label.

Figure 5.3.: Examples of training scenarios used for demonstration

5.1.1. Visual features
As a prerogative to any machine learning algorithm, the most characteristic features for
the classification task are identified through a wrapper approach by convolving it with
different classifiers. Following the paradigm, that the best m features are not the m best
features, a minimal-redundancy-maximal-relevance (mRMR) feature selection technique
[PLD05] is employed to identify features that demonstrate a strong dependency on the
target class and at the same time exhibit minimal redundancy. mRMR is filter based
where the features are selected based on preset conditions such as mutual information
and correlation between the input and target class. The optimal set of features are
then determined by convolving the features with different classification algorithms such
as NB, RG and PNN. Table 5.1 shows the top 15 features identified by mRMR. Fig.
5.5 shows the nature of distribution of the two such selected features across the three
scenarios. The scatter plot shows that there exists a good distinction between the three
scenarios, nevertheless with an ambiguity at the transition region between corridor and
open room. The 15 proposed features from mRMR are filter based and does not give

52

5.1. Scenario classification and validation

FEATURE EXTRACTION

Visual features

Principal Components

- shape features,
- moment features
- proximity features ...

SCENARIO DATA

Corridor

Open room

Cluttered

FEATURE SELECTION AND CROSS-VALIDATION

F
or

w
ar

d
C

ha
in

in
g

minimum Redundancy
Maximum Relevance

top Principal
Components

Naive Bayes

Regression trees

Probabilistic Neural
Networks

Random Forest

Self-organizing map

Figure 5.4.: Scenario classification architecture

Figure 5.5.: (Left) Features: Ratio of floor and non-floor vs ratio of the principal axis of the scenario data.
The numbered points are the vertices of the closest relevant grid points of the point scatter. (Right) The
corresponding omnidirectional scenario training images and the segmented free floor images.

the optimal set of features based on classification accuracy. This is found by a wrapper
approach. A 10-fold cross-validation is performed to compute the classification accuracy
of the feature set in every iteration. Fig. 5.6 shows the classification error rates of the
different classifiers using forward chaining. The figure shows that RG outperforms the
others by almost 2%. PNN has relatively higher classification error and the error tends
to saturate with 12 features whereas NB and RG needs 15 features. Table 5.2 tabulates
10-fold cross-validation classification errors. The confusion matrix together with the bias
precision and recall errors for the three classifiers are tabulated in Table 5.3 and 5.4. In a
classification algorithm, bias precision error gives the proportion of true positives among
the predicted values, whereas recall error gives the proportion of actual true positives
among the total available positive predictions. Recall error is the statistical equivalent
of measuring the sensitivity of a classification algorithm. By visualizing the performance
of the classification algorithm with a confusion matrix, where the columns of the matrix
represent the predicted classes and the rows represent the actual class, the bias precision
and recall errors are [OD08],

Precision =
tp

tp + fp
; Recall = tp

tp + fn
, (5.1.1)

where tp and fn correspond to true positives and false negatives respectively. From the
cross-validation and the confusion matrix, we can see that both RG and PNN perform
equally good and exhibit a better performance against NB. The performance of PNN
strongly depends on the standard deviation value or the spread of the Radial Basis Func-
tion (RBF) used to determine the distances in the hidden layer of the neural net. The

53

5. Scenario and context specific visual behavior learning

Table 5.1.: Top 15 features for classification using mRMR feature selection technique.

Feature Feature name
number

27 Area of shape
47 Ratio of floor and non-floor regions
53 Image entropy
54 Entropy of robot front half plane
37 Multiscale Statistics (Standard deviation of second level

scaled down image)
17 Skewness of distribution of boundary point distances to the shape centroid
36 Multiscale Statistics (Standard deviation of first level

scaled down image)
8 Ratio of the principle major and minor axis
33 Temperature of shape contour
21 Mean size of shape
25 Bilateral symmetry
29 Thinness ratio
18 Kurtosis of the distribution of boundary point distances

to the shape centroid
30 Area to perimeter ratio
32 Rectangularity of the shape

Table 5.2.: 10 fold cross-validation error using the feature subset selected from forward chaining. See
Table 5.1 for the features used.

Classifier Number of Features Misclassification rate
Naive Bayes 15 0.04
Regression Trees 15 0.03
Probabilistic Neural Networks 12 0.06

optimal value of the Gaussian standard deviation is determined by cross-validating the
PNN for all values between zero and one. Tests show that a spread of 0.5 generalizes best
to unseen data and therefore is selected for future validations (See Appendix C.1). In
addition to the mRMR based feature subset used for classification, an ensemble learning
method of classification using RF is also tested. RF operate by constructing multitude of
classification decision trees. Each tree is built using random m features. The training of
the tree is done by cross-validating the data by bootstrapping two-thirds of the examples.
The out of bag or the cross-validation error is computed on the remaining one-thirds of
data. Thus, RF has an advantage in that the cross-validation is inherent to the algorithm
itself. RF can also be used to perform feature selection in a natural way. The feature
importance of every input variable can be computed by determining the increase in the
MSE by omitting the feature to compute the decision tree. Thus the features those in-
dicate a higher increase in the MSE correspond to features with higher importance for
the classification. A total of 100 random trees are generated and the out-of-bag classifi-
cation error for these trees together with their feature importance are shown in Fig. 5.7.
It shows the loss curve for the generalization error for the number of trees grown. The

54

5.1. Scenario classification and validation

Figure 5.6.: 10 fold cross-validation error during forward chaining on mRMR selected features.

Table 5.3.: Confusion matrix of bias test with (left) Naive Bayes, (middle) Regression Trees and (right)
Probabilistic Neural Networks using the selected feature sets. See Table 5.1 and 5.2 for the feature details.

Naive Bayes
C O L

C 563 35 19
O 12 568 0
L 9 0 625

Regression Trees
C O L

C 614 2 1
O 7 573 0
L 3 1 630

Probabilistic Neural Networks
C O L

C 616 1 0
O 0 580 0
L 1 0 633

classification error saturates to approximately 4% for twenty and more trees. The plot on
the right shows the importance of the features obtained by omitting them and computing
the corresponding increase in the generalization error. By setting cut-off at 0.8, the 10
most relevant features are identified as shown in Table 5.5.

5.1.2. Principal components
One of the advantages of PCA is its ability to capture the direction of variation in a
data set. This direction defined by the Principal Components allow to describe large data
sets with few components thereby implicitly identifying the latent features describing this
variability. The segmentation images of the three scenarios shows that there is a visually
recognizable variation in the spread and shape of the free floor across them. PCA captures
this variation and allows to be presented with lesser dimensions. Forty five images each
from corridor, open room and cluttered environment examples are selected as the training
set. Taking the entire 1831 training examples for computing the principal components
with SVD is computationally expensive. Hence forty five examples from each scenario

Table 5.4.: Bias errors: Precision and recall errors for the scenario classifiers.

Classifier Precision Recall
C O L C O L

Naive Bayes 0.964 0.941 0.97 0.912 0.979 0.985
Regression Trees 0.983 0.994 0.998 0.995 0.987 0.993
Probabilistic Neural Networks 0.998 0.998 1 0.998 1 0.998

55

5. Scenario and context specific visual behavior learning

Figure 5.7.: Random forest based scenario classification. (Left) Out-Of-bag cross-validation error and
(Right) Feature importance.

Table 5.5.: Top 10 features obtained by RF

Feature Feature name
number

2 Y-coordinate of the shape centroid
8 Ratio of the principle major and minor axis
9 Maximum distance of shape boundary to the centroid
19 2-n Euclidean norm
21 Mean size of the shape
32 Rectangularity of the shape
34 Multiscale statistic (Entropy of first level scaled down image)
36 Multiscale statistic (Standard deviation of first level scaled down image)
48 Distance of the critical point to the robot
51 Ratio of the floor to the right and left of the robot

that capture the diverse texture, geometry and the essence of the scenario are used. Fig.
5.8 shows the segmented images used for extracting the principal components together
with the mean and the top five principal components registered. Fig. 5.9 shows the scree
plot of the computed components and the variance explained by each of the components.
The figure shows that with twenty components the singular values flatten out but does
not provide an exact number of sufficient relevant components. Although there are 135
possible components to explain 100% of the variance; it would require a huge training
data set to cover this high dimensionality. Thus, the relevant components are identified
by incrementally checking for the improvement in classification accuracy on unseen test-
ing data by convolving it with different classification algorithms. The entire 1831 training
examples are projected down to 135 components and are cross-validated to find the best
component subset for classification accuracy. The nature of the principal components in
distinguishing the scenarios on the collected data is shown in Fig. 5.10. From the figure,
one can observe that the first component captures the circularity of the floor region and
the second component captures the entropy or the total area of the segmented floor to the
front of the robot. Fig. 5.11 shows the misclassification rates of the different classifiers
using forward chaining. The 10-fold cross-validation error for the components show that
both NB and PNN achieve a 94% classification accuracy (See Table 5.6). Nevertheless,

56

5.1. Scenario classification and validation

Training images

C

L

O

Mean 1st Eigenvector 2nd Eigenvector

3rd Eigenvector 4th Eigenvector 5th Eigenvector

Figure 5.8.: Training images used for extracting the principal components and the mean vector together
with the top five components.

NB needs 15 components to achieve this performance whereas PNN captures the distinc-
tion with only 6 components. RG in contrast achieves only a maximum classification
accuracy of 90.08% with 5 components. Table 5.7 also shows the bias performance of
the algorithms and one can observe that majority of the misclassification occurs because
of the ambiguity between few corridor and open room images (example: image 20 and
21 in Fig. 5.10). The precision and recall errors of the three algorithms are shown in
Table 5.8. All the three classification algorithms show a classification accuracy of over
ninety percent with PNN exhibiting the best performance across all the three scenar-
ios. Nevertheless, the performance of the classification lies in the generalization ability
to unseen and completely unknown test examples. In addition to the cross-validation

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Principal component Principal component

V
ar

ia
n
ce

 E
x
p
la

in
ed

 (
%

)

S
in

gu
la

r
v
al

u
e

0 20 40 60 80 100 120
0

40

80

120

160

(a) (b)

Figure 5.9.: (a) Percentage variance explained by the first 10 principal components and (b) Scree plot of
the singular values for the first 130 components.

57

5. Scenario and context specific visual behavior learning

Table 5.6.: 10-fold cross-validation error using principal components for scenario classification.

Classifier Number of Features Misclassification rate
Naive Bayes 15 0.06
Regression Trees 5 0.09
Probabilistic Neural Networks 6 0.06

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

First principal component

S
ec

o
n
d
 p

ri
n
ci

p
al

 c
o
m

p
o
n
en

t

1
2 3

4 5 6

7 8 9

10 11 12

13

16 17 18

19 20 21

22 23
24

14 15

Corridor
Open room

Cluttered

1

4

7

10

2

5

8

3

6

9

1

4

7

2

5

8

3

6

9

11 12 10 11 12

13

16

19

22

14

17

20

23

15

18

21

24

13

16

19

22

14

17

20

23

15

18

21

24

Figure 5.10.: (Left) The first two principal components of the scenario data recorded. The numbered
points are the vertices of the closest relevant grid points of the point scatter. (Right) The corresponding
omnidirectional training images and the segmented free floor images.

error shown in Table 5.6, experimental results on different environments are described
later to establish the robustness and the performance of all the algorithms. Similar to
the classification with visual features, principal component based data is also classified
with RF. The ensemble of experts approach of RF should augment the performance fur-
ther compared to individual classifiers. Fig. 5.12 shows the out-of-bag cross-validation
error registered while growing the number of trees to learn the classification boundary.
RF shows an improved performance compared to the previous three classifiers however
does not better the classification accuracy achieved with visual features. The figure also
shows the top eight components whose feature importance is higher than the cut-off of 0.8

Table 5.7.: Confusion matrix of bias test with (left) Naive Bayes, (middle) Regression Trees and (right)
Probabilistic Neural Networks using principal components.

Naive Bayes
C O L

C 585 19 13
O 51 530 3
L 4 21 605

Regression Trees
C O L

C 597 13 7
O 53 532 0
L 6 0 624

Probabilistic Neural Networks
C O L

C 602 14 1
O 50 534 0
L 0 1 629

58

5.1. Scenario classification and validation

0 20 40 60 80 100 120
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Principal components

m
is

cl
as

si
fi
ca

ti
o
n
 r

at
e

N
B

1
5

fe

a
t
u
r
e
s

R
G

:
5

a
n
d

P

N
N

:
6

fe
a
t
u
r
e
s

Naive Bayes

Regression Trees

Probabilistic Neural Networks

Figure 5.11.: 10 fold cross-validation error on the number of principal components for scenario classifica-
tion

Table 5.8.: Bias errors: Precision and recall errors for the PCA based scenario classifier

Classifier Precision Recall
C O L C O L

Naive Bayes 0.914 0.929 0.97 0.948 0.907 0.96
Regression Trees 0.911 0.976 0.988 0.967 0.910 0.990
Probabilistic Neural Networks 0.923 0.972 0.998 0.975 0.914 0.998

(See Table 5.9). A bias generalization accuracy of 96.4% is obtained using the top eight
components. Table 5.9 also shows the registered confusion matrix for bias prediction.
In summary, both visual features based classification and the principal component based
classification acquire very high classification performance between the three hypothesized
scenarios deemed relevant to learn navigation. Nevertheless, only the false positive rate of
the classifiers in unseen environments would establish the robustness of the method. This
is addressed in the section 5.1.3 where the discussed classifiers are tested experimentally
in new indoor environments.

Unsupervised Self-Organizing Maps

SOM is a data visualization technique and an unsupervised classification algorithm which
works by reducing a higher dimensional data and representing it in lower dimensional

Table 5.9.: (Left) Components with feature importance of more than 0.8 and (Right) Confusion matrix
of bias test with RF on principal components

Top components
1 2 3 4 5 6 10 15

Random forest
C O L

C 584 33 0
O 31 553 0
L 0 0 630

59

5. Scenario and context specific visual behavior learning

0 10 20 30 40 50 60 70 80 90 100

0.1

0.05

0.2

0.3

0.4

0.5

Number of Grown Trees

C
ro

ss
-v

al
id

at
io

n
 e

rr
o
r

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Feature Number

F
ea

tu
re

 i
m

p
o
rt

an
ce

Figure 5.12.: Random forest based scenario classification using principal components. (Left) Out-Of-bag
cross-validation error and (Right) component importance.

Number of training images : 135
3 neurons

4 neurons

5 neurons

Number of training images : 1831
3 neurons

4 neurons

5 neurons

Figure 5.13.: Learned weights of SOM network with 3,4 and 5 neurons for both 135 and 1831 training
images.

map, typically of 2 or 3 dimensions. SOM takes its inspiration from the organization and
the evolution of neurons in the human brain where, particular sensory events triggers one
or more neurons in a specific neural location [BB11] associated with similar or related
events. A higher dimensional visual or sensory input is in theory mapped down to two
or three dimensional neural location in the brain [BB11]. SOM also called as Kohonen
map attempts this realization using i prototypes or neurons (P) lying in a one or two
dimensional manifold to self-organize and associate itself to specific patterns in the data.
The association here is done by finding the closest neuron to the given input and then
move the neuron and its neighbors towards the input via an update. The similarity
measure between the input and the neuron is usually a Euclidean distance measure. The
best matching prototype (Pc) for a given input x is the closest unit given by [KH07],

‖x− Pc‖ = mini {‖x− Pi‖} (5.1.2)

The weight of a prototype (mi) is then updated given by,

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] (5.1.3)

where, t is the time and hci is the neighborhood function around the closest prototype
mc. For scenario classification, we use an one-dimensional manifold with three to five
neurons, each to represent prospective scenarios. The goal of this approach is for the
data to self-discover different scenarios. The neurons in SOM are placed evenly on the
principal component plane of the input vectors and correspondingly bends the plane to

60

5.1. Scenario classification and validation

approximate the data points. The segmented free-floor images from demonstration are
used as input vectors after sampling them down to 20× 20 pixels. We utilize two separate
sets of input namely, one with all the 1831 segmentation images and other only with
the 135 segmentation images used to compute the principal components based supervised
classification used in the previous section. Fig. 5.13 shows the learned SOM neuron
weights as images for 3,4 and 5 neurons. The neuron weights thus represents the different
identified scenarios. From the images, one can see that for three neurons with only 135
training images the clustered classes concur to the manual scenario labels of open room,
corridor and cluttered. With 1831 training images, the open room scenario clearly distin-
guishes itself whereas the other two classes represent sub-scenarios or different contextual
situations. Notice the three classes identified by training SOM with 1831 images. The
third cluster corresponds to an open room, whereas the first two classes express the two
obstacle evasion contexts where the obstacle is on the left and the free floor extends to
the right and vice versa. Looking at the segmentation images one can also infer them
to be two sub-scenarios outside of an open room environment. With four or more neu-
rons, open room and corridor environments form a class by themselves and the different
contexts form the remaining classes. For SOM with only 135 examples, the separation
of the scenarios happens within the cluttered environment. Training with 135 images
with 4 neurons show that apart from corridor and open room examples, the cluttered
environment is further split into approaching obstacle and very close to obstacle scenarios.
With more neurons, more complex sub-scenarios begin to emerge such as misaligned in
the corridor on the left or right side, in the corridor center or evading obstacles on the
left or right side in a cluttered environment etc. Fig. 5.14 shows the classified scenarios
by SOM using a scatter plot of the first two principal components. Note here that for
training SOM, the raw segmentation image is used as input. The principal components
of the training set is used only for visualization. The figure also shows omnidirectional
images and its corresponding segmentation images for selected points in the component
space. Fig. 5.15 shows the scatter plot of the classified classes trained with 1831 input
data.

5.1.3. Experimental validation
The scenario classification models are tested on the robot in different unseen environments.
The robot mounted with an omnidirectional camera is allowed to wander around the
environment for more than sixty minutes using a simple sonar based wandering behavior.
During the trials, omnidirectional camera images are recorded together with the robots
global position. Sonar based localization using particle filter is used to track the robots
position in the map. Fig. 5.16 shows the path followed by the robot in the corridor of the
department together with the classifier results trained with visual features. Multiple runs
along the corridor from different starting positions are carried out along with separate
trials to enter three rooms along the corridor. From the figure one can see that NB
is more sensitive to perturbations in the environment such as open doors in a corridor.
PNN and RG exhibit similar performance and consistency in classifying places. RF on
the other hand is more intuitive than the rest in classifying the open room and cluttered
environments. This can be specifically observed at nodes A, B and C detailed in Fig.
5.17. Node A corresponds to entering a computer lab with free space along the center,

61

5. Scenario and context specific visual behavior learning

-2 -1 0 1

-1

0

1

2
S
ec

o
n
d
 p

ri
n
ci

p
al

co
m

p
o
n
en

t

First principal component
-2 -1 0 1 -2 -1 0 1

7

Class 1
(a) (b) (c)

Class 2 Class 3 Class 4 Class 5

1

2

3

4 5

6 7

8
9
10

11
12

1

2

3

4 5

6 7

8
9
10

11
12

1

2

3

4 5

6 7

8
9
10

11
12

Omnidirectional
images

1

4

7

10

2

5

8

11

3

6

9

12

Segmentation
images

1

4

7

2

5

8

3

6

9

10 1211

Figure 5.14.: Scatter plot of first two principal components projected down to all the demonstration data.
The scenario labels are classified with SOM with (a) 3 neurons, (b) 4 neurons and (c) 5 neurons. Number
of training data used: 135.

-2 -1 0 1

-1

0

1

2

-2 -1 0 1

S
ec

o
n
d
 p

ri
n
ci

p
al

co
m

p
o
n
en

t

Class 1

(a) (b) (c)

Class 2 Class 3 Class 4 Class 5

-2 -1 0 1
First principal component

Figure 5.15.: Scatter plot of first two principal components projected down to all the demonstration data.
The scenario labels are classified using SOM with (a) 3 neurons, (b) 4 neurons and (c) 5 neurons. Number
of training data used: 1831.

node B corresponds to entering a narrow floor way to enter the kitchen and the node C is
where the robot encounters the corridor end. At node A and B, while entering the room,
NB, PNN and RG tend to classify the scenario as corridor until the door post is seen.
From the context of semantic classification for map building, this is appropriate but for
arriving at a decision as to which scenario model is appropriate for navigation, it can be
argued that the classification is probably not optimal. In other words, NB, PNN and RG
are rotationally invariant to the corridor alignment whereas RF is rotationally sensitive in
that the orientation of the corridor plays a role during classification. The figure also shows
approaching corridor dead end where RF identifies the dead end earlier and classifies it as
cluttered compared to the others, which classify relatively late into the approach. Fig.
5.18 shows the classified scenarios predicted by the PCA based classifiers. In contrast
to classifiers trained with visual features, PCA based classifiers are sensitive to image
rotations. The image shows that all the four classifiers discriminate entering a room or a
doorway and going along the corridor as two distinct scenarios. Visual features extracted
from the segmented free floor image in the previous experiment are invariant to rotation

62

5.1. Scenario classification and validation

Figure 5.16.: Path traced by the robot wandering an office corridor environment and the corresponding
scenario classified by the different algorithms trained on visual features.

in that they describe the geometry or shape of the extracted free floor with only a few
features that capture the orientation of the robot within the environment. PCA on the
other hand computes the principal components directly from the segmentation images.
Conversely, visual features possess an advantage in that they are robust and consistent
against image and environment noise, like opening a door or a dynamic obstacle.
Finally, the experiment is validated with the three and four class SOM trained on both
135 and 1831 images. Fig. C.2 shows the traced path along with the corresponding
class. Trained with only few examples, the SOM generalizes even slight variations of
environment along the corridor as scenario 3, which corresponds to cluttered environ-
ment. Trained with four classes, the cluttered classification is further divided into two
subclasses corresponding to approaching and at critical distance to an obstacle. Trained
over 1831 examples, both 3 and 4 class SOM distinguishes contextual scenarios rather
than geometrical variations. As seen in Fig. C.2 with 4 classes, the corridor classification
is more robust and consistent than its counter part. The intuitive nature of this classifi-
cation and others are further validated in two unseen and untrained foyer and open space
environment in Appendix C.
In summary, both visual features and principal components based classifiers generalize
unknown and unseen scenarios good with little variations between them. Visual feature
based classifiers are invariant to rotations, or in other words to the orientation of the
robot within specified scenario whereas, principal component based classifiers are not. It
is an objective decision to conclude what is more preferable as, one is more relevant with
reference to navigational behaviors in contrast to classification of the scenario geometry
irrespective of how the robot is positioned. Unsupervised classification of the recorded
demonstration data establish that the logic in selecting relevant indoor scenarios is satis-
factory with a search for more clusters revealing interesting contextual aspects within the
environment. Among the classifiers PNN and RF exhibit consistency and perform robust
against noise and perturbations in the environment with RG.

63

5. Scenario and context specific visual behavior learning

Figure 5.17.: (Left) Node A: entering the lab from corridor, (middle) node B: entering into kitchen from
corridor and (right) node C: encountering a dead end in a corridor.

5.2. Context classification using perceptual trace
Post classifying the scenario, the demonstration context most similar to the current is
identified and the corresponding action is imitated. A context within a scenario is defined
by a perceptual trace of the features current history. This perceptual trace contains more
information than a potentially ambiguous single perception and thereby constitutes a
fingerprint of the context as well as the robots current state. In every scenario, different
maneuvers behavioral contexts within multiple indoor scenarios are demonstrated and the
examples are labeled accordingly. The labels are OR/OL for a right/left turn to avoid
an obstacle, R/L for a right/left turn to center or align the robot, S for straight motion
or stop action and DE for a turn within a dead end situation. The recent robots path
curvature is also registered thereby attaining a pseudo-time series data that characterizes
sub paths of persistent robot maneuvers. The path curvatures are transcoded as the ratio
between rotational and translational velocities. Table 5.10 lists the features recorded for
different contexts in each scenario. It is worth noting that the orientation error (β) which
is considered for corridor scenario is omitted in the other two scenarios as it predominantly
influences the corridor centering behavior and bears no relation with sequences of motion
open room or cluttered environments. A total of 49 trajectories (10 OL, 11 OR, 10 L, 7
R, 8 S and 3 DE) in corridor, 29 trajectories (9 OL, 10 OR, 5 S, 5 DE) in open room and
25 trajectories (9 OL, 9 OR, 2 S , 5 DE) in cluttered environment are generated using
manually controlling the robot with a joystick. The trajectory sequences are matched
with two algorithms namely DTW and LCSS. Given two sequences of trajectory, DTW
[BC94]; [SC90] measures similarity between the two and allows elastic shifting of the
time axis or allows extension and contraction of the trajectories along the time axis. The
algorithm takes account of the difference in lengths of the two trajectories and takes

64

5.2. Context classification using perceptual trace

Figure 5.18.: Path traced by the robot wandering an office corridor environment and the corresponding
scenario classified by the different algorithms trained on principal components.

Table 5.10.: Selected features for trajectory matching

Feature # Feature C O L
17 Critical distance 1/rc x x x
18 Critical angle θc x x x
7 Orientation error β x - -
- Curvature x x x

account of the nonlinear nature of them. Alignment of the two trajectories is performed
by arranging the two trajectories on either sides of a grid with each grid cell containing a
distance measure (typically an euclidean distance measure) between the two corresponding
elements of the sequences. The best match is then computed by searching for the optimal
path through the grid that minimizes the total distances between them. LCSS takes its
inspiration from DTW which finds the longest common subsequence matching the two
trajectories. The idea is similar to DTW in which both allow stretching and contraction
of the trajectories along the time axis with an exception which allows some elements to
be unmatched [VKG05]. This makes LCSS more robust to outliers and exhibits efficient
computation of the optimal path. Fig. 5.19 shows one such working principle result
obtained by comparing two perceptual traces of β recorded within a OL context. Each
element of the context examples are characterized by the perceptual feature vector as
well as the path curvature at the specific time instance. Cross-validation of the trajectory
matching between a given query trajectory with the reference trajectory is carried out
by a novel add one more cross-validation method. At first a single instance of the query
trajectory is matched to the reference trajectories. This situation is equivalent to the start
of a run where the robot has no memory of any previous traversals. New elements of the
query sequence are added and matched until the entire query sequence is mapped onto a
reference trajectory. Two such cross-validation results are shown in Fig. 5.20 and 5.21. A
left turn in a corridor (27 instances) to avoid an obstacle and a dead end (80 instances).
The figures show the selected context together with a box plot of the results obtained

65

5. Scenario and context specific visual behavior learning

Dynamic Time Warping. Unnormalized distance : 25.1 units

D
istan

ce
0

46
1
39

233
326

4 8

20
1
0

0

5 10 15 20 25 30 35
0

8

Reference samples

Q
u
ery

 sam
p
les

A
m

p

5 10 15 20 25 30 35

1

2

3

4

5

6

7

8

Samples

Samples
A

m
p
li
tu

d
e

10 20 30

1

2

3

4

5

6

7

8

Samples

A
m

p
li
tu

d
e

Reference trajectory

Reference trajectory

Query trajectory

Query trajectory

Longest common subsequence matching

Longest common subsequence (LCSS) = 19

Similarity = 0.7037

0 5 10 15 20 25 30 35

Figure 5.19.: Working principal behind DTW and LCSS on two perceptual traces of orientation angle (β)
within OL context.

by other trajectory context comparisons. In our experiments, we restrict the length of
maximum perceptual trace memory to 20 elements. With LCSS, the first few instances are
matched incorrectly, as the robot possess no memory of the previous trajectory elements.
However by adding more instances the trajectory matching results converge to the correct
context. For trajectory matching with DTW, we utilize the minimum distance between
the trajectories to classify the context. In the experiments, we observe that with fewer
memory traces typically in the order of 10-15, DTW performs good but with traces
longer than 15, the context classification tends to ameliorate. Fig. 5.21 visualizes the
best matched results with the two experiments performed with a perceptual trace of
20. LCSS searches for a common sub-sequence and does not require a complete match
of trajectory sequences. Thus even with a longer perceptual trace, LCSS converges to
the right context. The results shown here only visualizes the matched context label
whereas the process also predicts the exact matched trajectory and a history of its point-
to-point correspondence. Once the point correspondence is established, the next single
step curvature is predicted. By considering the different context examples across the
three scenarios as a pseudo-time series sequences, a Recurrent Neural Network (RNN)
[Elm90] is trained for the one step prediction. Recurrent neural network with hidden
and context units provide an internal representation of the previous states being visited.
The inputs are provided to the network like a standard feedforward network and the
weights of the hidden layers are updated in a single backpropagation cycle. Upon the
introduction of further elements of the input sequence, the recurrent connection between
the hidden and the context layer allow the context unit to preserve the previous state
or values of the hidden unit. This information exchange between the hidden and the
context units allow the network to maintain the previous state of the hidden unit forming
a kind of memory unit. Even though the RNN possess the capability to represent the
complete dynamics of the perception variables to its action and thus provide a multi-step
prognosis, we limit ourselves to a simplistic requirement of only a single step prediction.
Separate networks are trained for the different contexts across all the three scenarios.

The context data set is fed as input to the neural network with the curvature as the

66

5.2. Context classification using perceptual trace

Dead end

Turn left
0.1

0.3

0.5

0.7

0.9

R

L
L

L
L

L
L

L L L
L

L L
L L L L L L L L L L L

L OL

Length of perceptual trace

S
im

il
ar

it
y

2 4 6 8 10 12 14 16 18 20 22 24 26

0.2

0.4

0.6

0.8

1 DE

DE DE

DE

DE

DE
DE DE

DE DE
DE

DE

DE
DE L L

a

10 20 30 40 50 60 70

S
im

il
ar

it
y

Length of perceptual trace

DE

Figure 5.20.: Trajectory matching cross-validation with LCSS. Turn left (OL) in corridor (top) and dead
end (DE) in corridor (bottom).

Table 5.11.: Cross-validation: MSE on validating on the test trajectories

Context Test MSE ×10−3[deg/mm]2

OL 5.2
L 1.8
OR 2.7
R 1.1
S 0.27
DE 1.2

output to be predicted. Recurrent neural network is trained with Levenberg-Marquardt
backpropagation algorithm. The training and validation of the network rests upon hold-
out cross-validation with 60% of the presented trajectories are used for training, 20%
for validation and the remaining 20% for testing. Table 5.11 shows the test MSE for
the contexts. From the table, one can observe that straight line motion (S) is a trivial
context to identify and predict followed by dead end (DE) and obstacle evading actions (L
and R). Fig. 5.22 shows the original and predicted values for some of the test trajectories
whose validation errors were shown in Table 5.11. The plots present a different perspective
into the generalization. The generalization errors of OR and OL contexts from the table
might tend to present a mediocre performance but in reality the essence of the motion is
correctly predicted. Presenting RNN with multiple and different sequences of executing in
a context approximates the different motions to generate a behavior instead of accurately
imitating every demonstration example presented. The advantage of learning the sequence
with RNN is that it captures the continuation of the previously matched sequence or

67

5. Scenario and context specific visual behavior learning

D
T

W
 t

ra
je

ct
o
ry

 d
is

ta
n
ce

Length of perceptual trace

Length of perceptual trace

5 10 15 20 25
80

120

160

200

OL

OL
OL

OL OL
OL OL OL

OL

Minimum distance trajectory contextDTW distance of all trajectories

0

1.0

2.0

3.0

5 10 15 20 25

x 103

0

0.5

1

1.5

2

2.5

x 104

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 10 20 30 40 50 60 700
1.0

3.0

5.0

7.0

OL
L

L

L

L

L

OR

OR

OR

DE

DE

DE DE DE DE DE

x 103

Figure 5.21.: Trajectory matching cross-validation with DTW. Turn left (OL) in corridor (top) and dead
end (DE) in corridor (bottom)

�
r
[d

eg
/m

m
]

Demonstrated target RNN prediction

length of perceptual trace

length of perceptual trace
0 20 40 60 80

-0.1
0

0.1
0.2 DE

0 5 15 25 35
-0.08

-0.04

0

S

0 5 10 15 20
0

0.2
OL

5 15 25 35

0

0.2

0 5 15 25

0

0.2 OR

0 5 15 25

0

0.1

0 5 15 25

-0.1

0.1LLOL

OR

0 5 15 25 35
-0.3

-0.1R

0 5 15 25

-0.1

0

0 10 20 30 40 50
-0.15

0.05

R

Figure 5.22.: RNN based one-step curvature prediction for test trajectories in different contexts.

subsequence to predict the next best curvature. This predicted curvature in conjunction
with current translational velocity is then mapped into its appropriate turn rate.

5.3. Scenario modeling
As an alternative to perceptual tracing and prediction, we also investigate an approach in
which the perception action relation is represented by a set of multiple ANNs trained on
data from separate scenarios. Similar to the previous approach, a wrapper method with
forward chaining identifies the subset of features that achieves the best generalization.
Notice, that in contrast to the previous approach the problem is no longer a classification
task but a regression problem. Feature selection and 5-fold cross-validation validation
is performed with respect to multilayer feedforward network trained with Levenberg-
Marquardt backpropogation. With forward chaining, candidate features are incrementally
included in the input representation, until the MSE of the trained model on unseen test
data no longer decreases with additional features. For every feature subset analyzed by
forward chaining, tests are performed with different number of neurons and the one with
the minimum MSE is registered. Table 5.12 shows the selected features for corridor,
open room and cluttered scenarios. The training and validation rests upon hold-out cross

68

5.4. Experimental results

validation with 60% of the data used for training, 20% for validation and the remaining
20% for testing. The training, validation, testing and the NMSE between prediction and
the true curvature for ANN are listed in Table 5.13. From the table we can observe that
corridor and open room model generalize the best achieving a considerable improvement
in the residual variance of the prediction by almost 35% and 27%. The generalization
of the cluttered room examples is marginally inferior to corridor or open room mainly
attributed to the large variance of the data. The generalization capability of the ANN
models across different scenarios are also validated as listed in Table 5.14. The inter-
scenario validation by definition, tests the ability of the learner to generalize training in
one scenario onto a fundamentally different scenario. From the table, one can observe that
the generalization error between potentially different scenarios is relatively larger than the
intra-scenario validation (Table 5.13) predominantly due to the lack of similar examples.
The increasing error trend in generalization between scenarios can be intuitively coupled
to the complexity of the traversing and the testing environment. Open room being the
least complex of the three scenarios as it encounters only isolated obstacles, finds hard
to generalize with cluttered or corridor examples which necessitates a persistent motor
correction to either avoid an obstacle or center in an corridor. Similarly, generalization
error by testing open room examples with corridor and cluttered environment model is
marginally inferior to their counterparts, nevertheless one has to consider that a right or
a left turn in an open room instead of a go straight motor action might be detrimental to
the generalization error but is still deemed acceptable as long as it avoids the imminent
obstacles. In addition to the generalization capability, the false positive rate in predicting
the correct curvature would establish a foolproof robustness of the model. This aspect is
addressed in the next section where the robot is tested on seen and unseen scenarios and
environments.

5.4. Experimental results
The scenario and context based visual navigation scheme is tested on the mobile robot in
different indoor environments. Different combination of classifiers and trajectory matching
schemes are tested. Experiments are run on a pioneer 3DX mobile robot in multiple
indoor environments with different texture and geometry. In this section, we highlight
the interesting results that establish and provide a proof of concept for the navigation
architecture. The robustness of the schemes are determined by allowing the robot to
wander for longer duration with frequent start with different initial configurations. The
experimental validation of scenario classification in section 5.1.3 showed the performance
of the different classifiers to unseen indoor environments. This section deploys the entire
scenario based visual navigation scheme for test. Fig. 5.23 shows a prototypical scenario
within a corridor. Starting from a misaligned position, the robot is tested with RF based
scenario classifier working with LCSS based trajectory matching. The next action within
the matched context is predicted by the context specific RNN. Starting from a similar
position, the navigation scheme is also tested with the ANN scenario models. Both the
schemes identify the scenario quite robustly and traverse along the center of the corridor.
The classified scenarios in the experiment are shown with corresponding color code as
seen in the figure. The scenario initially is classified correctly as corridor with a cluttered

69

5. Scenario and context specific visual behavior learning

Table 5.12.: Selected features for individual scenario modeling with ANN.

Feature C O L
X-coordinate of elliptical centroid x - -
Y-coordinate of elliptical centroid - - x
Orientation error (beta) x - -
Floor-no-floor ratio x x -
Nearest distance x - -
Nearest angle - x -
Bilateral symmetry x x x
Next Safe free floor direction x - -
Ratio of the principle major and minor axis x x x
Critical distance x - -
Critical angle x - x
Semi major axis - - x
Semi minor axis x x -
Multiscale entropy - x -
X-coordinate of the mid pt of Wmax - x x
Kurtosis - - x
Area-perimeter ratio - - x
Thinness circularity ratio - - -
Rectangularity - x x

Table 5.13.: Intra-scenario cross-validation with scenario specific ANN

Scenario Training MSE Validation MSE Testing MSE NMSE Bias
×10−3[deg/cm]2 ×10−3[deg/cm]2 ×10−3[deg/cm]2 MSE

C 6.7 8.3 6.1 0.65 6.9
O 12 14 10 0.73 14.3
L 9.7 7.7 7.6 0.85 8.6

Monolithic 11.1 11.4 8.5 0.87 10.7

classification at the end mainly due to the open room seen on either side of the robot. The
figure also shows the context classified by LCSS. At the beginning the context is classified
as OL, set to turn left to avoid the door posts at the starting configuration (See experiment
(a) in Fig. 5.23), followed by smaller corrective actions to keep the robot aligned along
the corridor center. Scenario specific ANN is also tested along the same corridor but from
the adjacent side. The scenario classification is quite robust and the corresponding ANN
model aligns the robot smoothly concurring well to the cross-validation performance. The
second experiment is an extended scenario of the first experiment where the robot needs a
smart interplay between corridor and cluttered scenario. Fig. 5.24(a) shows the scenario
within a corridor environment. For this experiment we perform scenario classification
using the RG and the robot curvature predicted by the ANN scenario model. The robot
in Fig. 5.24(a) starts in the corridor little misaligned and has two door blocking the path
way further down the corridor. The robot circumnavigates the obstacle course successfully.
The two open doors at the end change the nature of the segmented floor there by changing
the scenario classification to adapt. The figure also shows the recorded omnidirectional

70

5.5. Related work

Table 5.14.: Inter-scenario cross-validation with scenario specific ANN

Training C C L L O O
Testing O L C O L C

MSE ×10−3[deg/cm]2 13 14.4 13.5 11.2 10.7 19.7

(a)
(b)

(a) (b)

OL

Iterations

OR

R

L

S

Corridor Cluttered

Trajectory matching

Figure 5.23.: Scenario: Untrained corridor. Starting from misaligned configurations, scenario classifica-
tion is performed using RF and one-step curvature predicted using (a) context based RNN based on
the trajectory matching results from LCSS and (b) scenario specific ANN. The context identified from
matching the trajectories using LCSS is shown on the right.

image and the corresponding segmentation image at particular nodes. The classifier at
node 1 identifies the scenario to be corridor but because of the open door to the left, the
segmentation changes between open room and cluttered before steadying down. After
getting past node 2, the segmentation image captures the door and changes the scenario
classification to open room. The performance of the model within a cluttered environment
is shown in Fig. 5.24(b) where the robot starts in a room cluttered with boards and
obstacles. The robot classifies the environment to be open room until enough obstacles
are segmented in the omnidirectional image. The correct classification of the impending
scenario helps the robot to evade the obstacles and traverse the obstacle course smoothly.
Furthermore experiments are performed in different environment with equally successful
results. In summary, the experiments establish the performance the proposed architecture
for navigation by adapting the behavior with respect to the traversing scenario. The test
runs are validated with classifiers trained on visual features whose output determine the
necessary model to deploy. The experiments can be equally tested with classifiers trained
on principal components and also the model arising from unsupervised SOM network. The
results also show that classifying the context within the scenario and using the information
for making a decision is successful nevertheless, the scenario specific ANN exhibiting more
robustness to noise in the environment. For more experiments and extended results check
Appendix C.2.1

5.5. Related work
Augmenting geometric maps with semantic information has been an active research in
computer vision and robotics for quite some time. The authors of [BS02] use virtual
sensor as a combination of sonar and odometry information to identify rooms within an
indoor environment. They perceive the identification of geometrical entities within an
indoor environment as an open problem to be solved. This was alleviated by the works of
[MMB06]; [MRTJB07] where topological maps from geometric maps are obtained using
laser range sensor. Typical patterns of range sensor readings in indoor environments

71

5. Scenario and context specific visual behavior learning

are learned using Adaboost thereby classifying every point to a semantic class. Typical
classification of the environment was done between a corridor, room and a doorway.
Another similar work is from [NH08] where the authors use a combination of RANSAC
and Iterative closest point algorithm to extract planes from 3D laser range data and label
them. Our work broadens the spectrum by using only visual information to classify the
environment. By segmenting the free floor in the immediate surroundings of the robot
captured using an omnidirectional camera, patterns within different indoor scenarios are
learned. The works mentioned above deal generally with Simulatenous Localization and
Mapping (SLAM) or mapping task and are not with the behavioral navigation of the
robot. In our case, the scenario classification is done from the perspective of the robot
to navigate and wander within an unknown environment. Self-identification of places
from images is described in [ZBK07], where the captured images are clustered on the
fly to identify the different distinctive scenarios. Similar approach is done here with
SOM with different classes to identify classes from the recorded data. The challenge in
learning appropriate robot actions for different indoor scenarios is first to identify the
underlying scenario and next to understand the context to execute the most appropriate
action within the scenario. One approach involves matching previous memory traces with
the current ones and identifying the contexts. DTW [BC94] has been the state of the
art in matching time series data over the years. Nevertheless, when the two time series
are translated, skewed and have missing data between the two trajectories then DTW
performs poorly. One alternative is taken from string matching in computer science where
the longest common subsequence is searched between the two trajectories. In [VKG05],
a non-metric similarity function between two trajectory sequences are identified from the
length of the common subsequences between them. This allows stretching, contraction of
the trajectories and also handles missing data robustly. [HWSK09] use it for a long term
vehicle motion prediction. The rotationally invariant metric allows a combined trajectory
classification and a particle filter framework for a 3 seconds trajectory prediction into
the future. Navigation for a robot within a highly dynamic environment without any
a priori knowledge of the map does not need a long term prediction but a more deeper
understanding of the context. For more experimental results with different classifiers in
more diverse environments refer to Appendix C.2.1.

5.6. Summary
This chapter presented a new framework for acquiring visual navigational behaviors from
demonstrations. The approach tackles the problem by identifying features that classifying
the underlying indoor scenario the robot currently traverses and makes the appropriate
motion decision pertaining to the scenario. Omnidirectional image acquired by the robot
during demonstration are segmented for free floor regions. The binary segmentation im-
age thus forms the starting point towards scene understanding. Diverse set of classifiers
such as NB, RG, PNN and RF are tested for their accuracy against different represen-
tation of the segmented image. Computational image features that reflect the proximity
of the obstacles around the robot, shape features that extract the geometry of the envi-
ronment and statistical image moment features are all extracted and the most optimal
combination for classifying an indoor scenario is tested. As an alternative, principal com-

72

5.6. Summary

1

2
3

RG and ANN

C

O
L

1
2

3

C

O
L

1
2

3

4

3 4

1

2

3 4

RG and ANN

(a)

(b)

Figure 5.24.: Scenario: Untrained corridor and cluttered environment. (a) Blocked corridor scenario and
(b) cluttered scenario. In both the experiments, scenario classification is done with RG with scenario
specific ANN for predicting the robot curvature. Exhibited on the marked nodes are the captured
omnidirectional image and the corresponding segmentation image.

ponents of the segmentation images are also modeled and tested. The experiments give
an intuitive insight into the performance difference between the different classifiers and
features. Furthermore, similar contexts within a scenario are also identified by compar-
ing the visual perceptual trace of the robot with the demonstrated trajectories. Artificial
neural networks to model individual scenarios are also analyzed whose generalization abil-
ity to seen and unseen environments are exhaustively tested and compared to trajectory
matching. Experimental results demonstrate the ability of both trajectory matching and
scenario based neural network model in unknown scenarios and transition between two
environments.
The ultimate aim of mobile robots in service environments is to achieve a vibrant in-
teractive environment for both human and the robots. Human-robot interaction is an
active domain [FSM09] in modern robotics and human-aware motion-planning of mobile
robots is one area which promises a lot of potential [SMUAS07]; [KPAK13]. The ideas
from a situation aware navigation can serve as a foundation for further proximic robotic
behaviors [MM11]. In addition to their basic capability to move autonomously in dynamic
environments, socially competent robot should demonstrate a navigational behavior that
appears natural to humans.

73

6
Supervised learning of behaviors with

artificial neural networks

The apparent complexity of our behavior over time is largely a reflection of the
complexity of the environment in which we find ourselves.

– Herbert A. Simon, The Sciences of the Artificial

The previous chapter addressed learning robot behaviors by modularizing robot motion
to different indoor scenarios and the context of operation. The emerging behaviors learn
a fusion of multiple behaviors within the scenarios and context. This chapter focuses on
the alternative aspect of modularizing robot motions by decoupling the scenario depen-
dence and learn the behaviors directly. From the perspective of behavior learning with
demonstrations, we attempt to answer two quintessential questions namely,

1. What is an efficient policy? and

2. How many demonstrations suffice to generate an efficient policy?

The first question tries to acquire an understanding to how to define an efficient policy?
This is an open ended question. The answers typically tend to be highly subjective and
opinionated. For example, a path following robot is considered efficient if it imitates a
demonstrated trajectory exactly as shown. Precision and accuracy of imitation are of
paramount importance for such tasks. In a behavior based framework, an efficient policy
is one which can handle noise and unknown or unseen data sturdily. Generalization and
robustness of imitation are of paramount importance in these tasks. We use the machine
learning tools for policy evaluation together with the spirit of behavior based robotics to
answer this question. The second question shapes itself from the first, where the number
and type of demonstration needed for an efficient policy are confronted.

6.1. Visual behavioral features
Three behaviors namely corridor following, obstacle avoidance and homing are demon-
strated. They are generated by guiding the robot from different starting positions using
a joystick. Data acquisition and model validation are first performed in simulation before
testing it on the real environment. The simulation framework offers a flexible platform
to test the robot across diverse environmental configurations at ease. For details about

75

6. Supervised learning of behaviors with artificial neural networks

(a) (b) (c) (d)

�x

�y
XR

YR

corridor
center

�

�

�

X

Y
Robot

orientation

Corridor

center

�

a

b

� A

d

�
x ,yc c

X

Y

Goal

point �
g

�goal

�g

Y

X

Safe

heading

�min

�safe

d
m

in

Figure 6.1.: Visual behaviors. (a) Corridor following features from image moments, (b) robot pose within
a corridor, (c) obstacle avoidance features and (d) homing features

the simulation environment check appendix B.0.1. For training individual behaviors, the
behavior features are manually selected. By carefully considering the nature of the be-
haviors, the relevant features are identified through human intuition. Fig. 6.1 shows the
typical scenarios associated with the three behaviors from the perspective of the robot.
The objective of corridor following is to drive the robot to the corridor center. It goes by
the rationale that within a corridor environment in the event of no obstacles, the most
optimal path for a robot is along the corridor center. This is similar to a wall following
behavior where the robot needs to maintain a constant distance to the right or left walls.
For a corridor following behavior, the objective is thus to maintain a constant distance to
both the adjacent walls thereby driving the robot to the corridor center. Visualized from
a birds eye perspective as seen in Fig. 6.1 (b), the behavior agent needs to control the
rotational velocity of the robot such that the lateral distance to corridor center (∆x) and
the orientation angle (β) is zero. On an omnidirectional segmented image, these variables
are extracted by determining the image moments of the free floor region as described
in chapter 3.2.2. The lateral offset angle (α) gives an equivalent measure of ∆x and
the final orientation is equivalently obtained from the measure β. Thus, the perceptual
state [α, β] = [0◦, 0◦] constitutes the desired goal state with the ω at the goal state also
converging to zero.
For an obstacle avoidance behavior, three features to the immediate front of the robot
namely; nearest obstacle distance (dmin), nearest obstacle bearing (θmin) and next safe
traversable direction (θsafe) are extracted. θsafe is computed by searching radially out-
ward from the robot front for a free floor direction whose traversable area extends a speci-
fied thresholdD. The sine- and cosine- functions of these variables are utilized to fulfill the
periodicity requirements for the heading direction thereby obtaining the perceptual fea-
tures sin(θsafe) and cos(θmin) 1

dmin
. The goal of the behavior is to converge the perceptual

variables to zero. From a behavioral perspective this means to maintain a safe straight
direction (θsafe = 0◦) and keep the obstacles away from the robots path (θmin = 90◦).
The inverse of the minimum distance is taken to give more emphasis to obstacles that are
closer. The rotational velocity ω, thus at [sin(θsafe), cos(θmin) 1

dmin
] = [0, 0] is also zero.

A typical visual homing scenario is depicted in Fig. 6.1(d). The homing landmarks are
indicated by two distinctive red and green markers, whose mid point of the straight line
connecting them is the final goal location. The two markers are placed on the floor ap-
proximately 2 meters apart. The homing behavior is a pure vision based behavior and
the robot possesses no prior knowledge of the map or the location of the markers in the

76

6.1. Visual behavioral features

Figure 6.2.: Illustration of the steps involved with the goal point extraction.

map. At every time instance, the omnidirectional image is searched for landmarks and
on identifying them, the angular direction of the goal point αg is computed. Considering
a line perpendicular to the one connecting the two markers, the angle between this per-
pendicular line and the one connecting the robot to the goal point βg is computed. βg is
computed assuming that the final goal orientation is perpendicular to the line connecting
the goal markers.
Additionally, the distance to the goal (ρg) is also considered. The aim of the behavior is
to reduce ρg and αg initially and then correct the orientation error βg on close approach.
The angles are transformed proportional to the normalized value of the distance measure
to get two features namely,

αgt = αg
ρg

ρmax

βgt = βg
ρg

ρmax
,where ρmax =

√
xc2 + yc2

where xc and yc are image center points and ρmax is the maximum plausible distance of a
goal point that can be detected. Prior to the feature extraction, the goal markers from the
omnidirectional image are extracted. The Red-Green-Blue (RGB) image is first converted
to Hue-Saturation-Value (HSV) color space. By setting thresholds for the red and green
blobs, two binary images with segmented red and green marker are obtained. Unwanted
pixels in the image are then morphologically removed with an eroding process. The rest of
the available pixels are then clustered to find the final position of the markers. In order to
avoid false correspondences between the two color clusters, a distance constraint is set on
the detected red and green clusters such that only the closest cluster group is considered.
Fig. 6.2 illustrates this process. Within a simulation, the position of the markers are
known which are correspondingly back-projected on the corresponding omnidirectional
image of the scene.

77

6. Supervised learning of behaviors with artificial neural networks

Y
 [
m

m
]

X [mm]
-3500

-1000

1000

0

0

(a)

[d
eg

]
�

[deg]� -100-50 0 50 100-20
0

20

-20

0

20

[deg]�
[deg]

�

�
[d

eg
/
s]

(c)

-80 -40 0 40 80

-10

0

10
(b)

Figure 6.3.: Corridor following demonstrations in simulation. (a) Demonstration trajectories in a proto-
typical corridor, (b) the recorded perception variables (α vs β) and (c) perception variables vs recorded
rotational velocity ω. The starting point of the demonstrations are indicated by a cross.

6.2. Static mapping
The outputs of a static or direct mapping depends only on the input presented and
possess no memory. For a robotic behavior, this means that every state has one fixed
action. A feedforward neural network with backpropagation (ANN) is one example of a
static network.

6.2.1. Corridor following
A set of twenty demonstrations are generated using a joystick in simulation. The robot
is placed at different misaligned configurations along the corridor and then driven to
the corridor center. The configurations are set such that they cover majority of the
state space spanned by the three variables (ω,α, β). Typically the demonstrations are
performed on one side of the corridor and the examples mirrored to generate identical
examples on either side of the corridor. For mirroring, all the three perceptual variables are
simply multiplied with -1. Fig. 6.3 shows the pictographic representation of the behavior
demonstration together with the registered variables. The performance validation of the
ANN are performed by checking its training, validation and testing errors (MSE and
NMSE). The generalization ability of the ANN against known and unknown data is done
to establish the robustness of the model. Different variations of training data are used
for designing the ANN. Various situations with different number of training trajectories
are trained (See Appendix D.1). Tests show that by training on two examples with each
from either side and the periphery of the corridor, the learned model generalizes well in
driving the robot away from the walls but deteriorates when starting misaligned but close
to the corridor center (See Fig. D.3).
This is alleviated a little bit in the next experiment, where four demonstrations; two
from either side of the corridor are presented for training. Fig. 6.4 shows the selected
trajectories for training. Training is again performed for different number of hidden
neurons and it was found that with three neurons a NMSE of 0.44 on the training and
0.66 on the testing data is achieved. The selected training trajectories here reflect the two
extremes robot misalignments. Starting at an orientation of −80◦ facing the wall and an
orientation of +80◦ facing towards the corridor center. The generalization error on the
testing set shows this, where a 34% improvement in the residual variance of the predicted
test data is gained. Fig. 6.5 visualizes the generalization performance of the model
against all the training and testing trajectories. Experiments show that more trajectories
brings a pronounced improvement. But it does not answer the question to how many

78

6.2. Static mapping

Figure 6.4.: (a) Four training trajectory demonstrations used and (b) the corresponding perceptual trace.
Dark lines correspond to the training data.

demonstrations are adequate to learn the policy in a robust fashion. Hence, a one shot
learning of the problem is addressed where only a single trajectory is used for modeling
the policy. Fig. 6.6 shows the trajectory of the demonstration used for demonstration
together with its perceptual trace. A single demonstration of traversing to the corridor
center from the periphery is used. The reasoning behind the selection of this particular
trajectory pertains to the logic that learning actions that avoids the corridor boundaries
are more sensible and safer than the precision of reaching the corridor center. In other
words, the essence of the behavior should repel the robot away from the corridor walls as
soon as possible and drive the robot to the center. Out of the different number of hidden
neurons, the model with two neurons exhibited the minimum NMSE of 0.822 against
the unseen nineteen examples and 0.0669 against the single demonstration example. The
MSE on the untrained examples show 6.67 deg/sec deviation from the target rotational
velocity. Fig. 6.7 shows the trajectory predicted for some of the demonstrations. In
terms of generalization of the model against unseen data, the one shot model exhibited
similar testing performance as the model trained with two trajectories from the same side
of the corridor (See Appendix D.1). Interesting to note here is that the generalization
NMSE against unseen data is 3% better than the model with two training trajectories.
This goes to show that theoretically one demonstration is enough to capture the essence
of the corridor following behavior. But, the generalization ability of the model against
novel unseen data suffers. Table 6.1 summarizes the training and testing errors of the
three models. Important to note here is that the generalization errors arise from the MSE
recorded between the predicted rotational velocity for the recorded perceptual state from
demonstration. The influence of an error at one time step does not cumulate forward to
the next step prediction. This is shown in Fig. 6.8, where the three models are deployed in
the simulation for exact starting configurations recorded during the demonstration. The
translational velocity is set constant (150 mm/s). The simulation results shows that all the
three models mostly align with the corridor center quite well. The one shot learned model
counters most of the presented situations very well except for the starting configuration
positioned very close to the untrained section of the corridor. Interesting to note is that
the ANN model trained with four demonstration examples minimizes the lateral offset
error to the corridor center quite rapidly compared to the other model, but does not align
perfectly to the center of the corridor. Both the one shot and 2 trajectory model, despite

79

6. Supervised learning of behaviors with artificial neural networks

Figure 6.5.: ANN prediction for all the corridor following demonstration trajectories. The boxed trajecto-
ries are the training trajectories and the remaining sixteen trajectories are used for testing generalization.

Table 6.1.: Training and testing errors for the three different corridor following ANN models

Number of Number of Training Testing
Training Hidden MSE [deg/sec]2 NMSE MSE [deg/sec]2 NMSE

trajectories Neurons
Two Five 2.54 0.05 6.37 0.89
Four Three 10.1 0.44 8.04 0.66
One Two 3.25 0.066 6.67 0.85

the periphery data provided as one training example, still gets precariously close to the
walls before correcting itself. This behavior can be referred with a Hinton diagram of
the network weights show in Fig. 6.9. Hinton diagrams helps to visualize the weights
of the input and hidden layer of the network thereby giving an insight into the relative
importance given to the perceptrons. The size of the blocks represent the magnitude of
the perceptron weight and the color represents the sign of the weight. Positive weight is
represented with a black block and negative weight with a gray box. The ANN trained
with four trajectories interprets the input by giving very large weights to the orientation
error relative to the lateral offset error, nevertheless the very low magnitude of the layer
weights reverse the importance towards the lateral offset angle. Given the four trajectories
for training, the network powered with the backpropagation algorithm settled down to
weights, where accuracy in the lateral offset angle carries more importance than the final
orientation angle. This configuration achieves the lowest MSE during training and model
validation. The network weights of the other two models show a relatively larger weight
given to the orientation angle both in layer 1 and layer 2. The simulation results of the
experiment shown in Fig. 6.8 validated the model against unseen starting configurations

80

6.2. Static mapping

Figure 6.6.: (a) One shot learning training trajectory and (b) the corresponding perceptual trace. Dark
lines correspond to the training data.

0 100 200
-20

0

20

0 100 200

0

10

20

0 100 200
-20

0

20

0 100 200
-20

0

0 100 200
-20

-10

0

10

�
[°
/s

ec
]

0 100 200
-10

0

10

20

0 100 200
-10

-5

0

5

10

0 100 200
-20

-10

0

10

20

0 100 200
-10

0

10

20

0 100 200
-20

-10

0

10

�
[°
/s

ec
]

iterations

iterations

Training trajectory Demonstrated target ANN prediction

Figure 6.7.: ANN prediction shown for selected demonstrated corridor following trajectories. The boxed
trajectory is used for training and the remaining trajectories are used for testing generalization.

albeit in a similar environment. The generalization of the model in completely different
corridor scenarios is shown in Fig. 6.10. In the first scenario the hallway has varying width
and orientation. The second scenario is a square path hallway with perpendicular corners.
The third environment attempts to simulate the real world by using a distorted corridor.
In the first two scenarios, the robot starts with an orientation of 0◦ whereas in the third
scenario the initial orientation of the robot is 45◦ facing away from the corridor center.
The results show that all the three models perform quite robustly to variations in the
environment with slight difference in the motion pattern. Models trained with only one
or two trajectories tend to react quick to a change in the environment. This is specially
seen along the wall corners where the alignment of the corridor changes suddenly. The
path traversed by the robot deployed with the neural network trained with only one or
two trajectories drives too close to the corner whereas the model with more training data
stays along the corridor center longer and maintains a safe distance during 90◦ turns. In a
rugged corridor shown in Fig. 6.10(c), all the three models traverse the corridor in robust
fashion; again with the neural network model trained with less trajectories reaching faster
than the other. In summary, ANN generalizes the corridor following in quite a robust

81

6. Supervised learning of behaviors with artificial neural networks

Figure 6.8.: Simulation results of the three models from the demonstrated configurations. The dark
trajectory indicates the configuration on which the model is trained.

Figure 6.9.: Hinton diagram of the network weights. Shown are the weights of ANN trained with (a) four
, (b) one and (c) two trajectories.

fashion. Because of the symmetric nature of the behavior, few demonstrations suffice
to capture the essence of the behavior. Experiments show that single demonstration is
enough to generate a corridor following policy. The downside of policies generated with
very few trajectories tend to be very sensitive to changes in the environment. Training
with more example trajectories drives the robot along the corridor center longer and keeps
a safe distance to the wall all through out the experiments. The experimental results of
the behaviors in real indoor corridor environment is presented in section 6.4.

6.2.2. Obstacle avoidance
Two sets of demonstration are performed in conjunction to obstacle avoidance. The first
set of demonstrations focuses on the rotational velocity of the robot while evading obsta-
cles. Different configurations of obstacles are placed in front of the robot and the user
deviates it away from the hindrance. Eight demonstrations of obstacle avoidance behav-
ior are generated. The second second of demonstrations correspond to a stop behavior
also performed with a joystick. Fig. 6.11 shows the obstacle avoidance demonstrations.
The recorded robots rotational velocity are also transcoded to their corresponding path
curvatures κ. The advantage of learning curvature over rotational velocity is that for
different maximum velocities, the turn rate from curvature does not under or overshoot
the intended path. The stop behavior demonstrations are done with the robot starting at
a safe distance to the obstacle in front and moving forward to slowly reduces the speed on
closer proximity. The slowing down distance and the stopping distance is not previously
set. Two demonstrations of the stopping behavior is thus generated.
We focus on two scenarios used to learn the turn rate of the robot. Two training trajec-
tories one for left and right turn to evade an obstacle are presented first followed by, four

82

6.2. Static mapping

Figure 6.10.: Model reproductions in unknown and noisy corridor scenarios.

Y
[m

m
]

X [mm] -0.8 -0.4 0 0.4
0

0.05

0.1

0.15

0.2

sin()�safe

co
s(

)
1

�
o
b
s

m
in

.
/
d

�

co
s(

)
1

�
o
b
s

m
in

.
/
d

sin(
)

�
safe

-1
-0.5

0
0.5

1-10 -5 0 5 10

0.05

0.1

0.15

0.2

0.25

Figure 6.11.: Obstacle avoidance demonstrations. (a) Pictorial representation of some of the demon-
strations shown, (b) the recorded perception variables cos(θmin)

1
dmin

and sin(θsafe) and (c) perception
variables vs recorded rotational velocity ω. The starting point of the demonstrations are indicated by a
dark circle and the arrows show the direction of the trajectory.

training demonstrations of turns in only one direction. For each training set, different
number of neurons ranging from one to five are used build the model and are tested for
generalization against the rest of unseen trajectories. The one with the minimum test
NMSE is picked as the best. The ANN is trained for both output cases of predicting ω
and κ. Table 6.2 shows the bias and the test errors of the network. For details into the
selection of the appropriate number of neurons for the model, refer to the Appendix D.1.
The table shows that given two trajectories, the network is able to generalize well with the
other unseen starting configurations. The generalization error of the model trained with
four trajectories with all performing a right turn, is very poor on demonstrations that
require a left turn. Fig. 6.12 shows the rotational velocity prediction on both seen and
unseen demonstration trajectory with the first model. From the figure one can see that

iterations
0 100 200

-5

0

5

10

0 100 200
-5

0

5

10

0 100 200
-15

-10

-5

0

5

0 100 200
-15

-10

-5

0

5

0 100 200
-15

-10

-5

0

0 100 200
-20

-15

-10

-5

0

5

0 100 200
-5

0

5

10

15

0 100 200
-5

0

5

10

�
[°
/s

ec
]

Training trajectories Demonstrated target ANN prediction

Figure 6.12.: ANN prediction of the rotational velocity for all the obstacle avoidance demonstration trajec-
tories. The boxed trajectories are used for training and the remaining are used for testing generalization.

83

6. Supervised learning of behaviors with artificial neural networks

Table 6.2.: Obstacle avoidance: Training and testing errors for the different ANN models

Predicted output: rotational velocity ω
Number of Number of Training Testing
Training Hidden MSE NMSE MSE NMSE

trajectories Neurons [deg/sec]2 [deg/sec]2
Two Three 2.46 0.09 7.33 0.16
Four Four 2.12 0.15 21.3 4.01

Predicted output: curvature κ
Number of Number of Training Testing
Training Hidden MSE×10−5 NMSE MSE×10−5 NMSE

trajectories Neurons [deg/mm]2 [deg/mm]2

Two Four 5.89 0.048 32.5 0.16
Four Five 11.1 0.20 1620 5.56

with the knowledge of one right and one left turn suffices to generalize the other scenarios
used in the demonstrations quite robustly. For learning the translational velocity of a
stop behavior, the critical distance (dc) to the obstacle is used. The translational velocity
recorded during the demonstration is normalized to its maximum velocity (vop = v

vmax
)

and used as the output of the model. From the two demonstrations, one is used for
training and the other for testing. The relationship between the critical distance and the
normalized translational velocity can be easily inferred and programmed as linear. This is
a relatively simple problem, in that with only one explanatory variable a linear regression
or a perceptron network would suffice. Nevertheless, when controlling a stop behavior
with a joystick, humans do not maintain a well laid out linear pattern. The braking dis-
tance and the stopping distance differs between the users. Fig. 6.13 shows the recorded
and the predicted velocity output for both perceptron network and a linear regression
model. Table 6.3 shows the training and the testing error for both the models. From the
errors one can infer that both the methods approximate very similarly and thus either can
be used. Hence, for further experiments we choose to work with the ANN model. Fig.
6.14 shows the architecture of the obstacle avoidance behavior and trajectory traversed
by the robot starting from the same initial configuration as the demonstrations. The ex-
periments are performed with two maximum translational velocities of 150 mm/s and 60
mm/s. By maintaining the same maximum translational velocity limit of 150 mm/s used
in demonstrations, the ANN model predicting the rotational velocity evades the obstacle
very fast and robust. Nevertheless, when the velocity constraints are changed, there re-
mains a disconnect between the speed at which the robot traverses and the rate at which
the robot turns. This is overcome when the model outputs curvature, where the current
and the maximum translational velocity constraints can be directly used to compute the
appropriate rotational velocity. Fig. 6.15 shows different ad novel environments used
for validating the robustness of obstacle avoidance. The first scenario is modeled in a
corridor where an obstacle and a dead end scenario is simulated. Both the curvature
and rotational velocity models trained on simple evading maneuvers in an open space
environment counter the obstacles quite robustly with the model predicting rotational ve-
locity slightly faster than the one predicting the path curvature. The second scenario is a
room cluttered with obstacles. The size and shape of the obstacles are intentionally made

84

6.2. Static mapping

iterations

Demonstrated target ANN prediction Regression

n
o
rm

al
iz

ed
tr

an
sl

at
io

n
al

v
el

o
ci

ty

0 50 100

0

0.2

0.4

0.6

0.8
1

0 50 100

0

0.2

0.4

0.6

0.8
1

Training trajectory Testing trajectory

Figure 6.13.: Obstacle avoidance translational velocity predictions on the training and testing demonstra-
tions.

Table 6.3.: Translational velocity training and testing errors of ANN and regression model

Fitting method Training Testing
MSE ×10−3 NMSE MSE NMSE

ANN 0.14 0.0012 0.0193 0.16
Regression 1.3 0.0108 0.0197 0.16

much smaller than that of demonstration. In spite of the good performance by both the
models, there is one marked difference with the curvature based ANN model operating
with 150 mm/s maximum velocity. After the first successful evasion of the obstacle, the
model takes relatively longer time to counter sharp turns around the obstacles around the
corner (especially the top right, bottom left and top left obstacles). This is due to the
relatively higher approach velocity of the robot to the corner during which the predicted
curvature is still a straight line path. Getting closer, the ANN model evades the obstacle
with a sharp turn which takes longer duration to complete. The experimental results of
the behaviors on the real robot within dynamic indoor scenarios are shown in section 6.4.

6.2.3. Homing
Eighteen demonstrations of different lengths are used for demonstrating homing behavior.
Starting from different configurations, the teacher guides the robot to the center of the

Figure 6.14.: (a) Obstacle avoidance architecture and (b) trajectory traced during imitation starting from
the same initial configuration as demonstration.

85

6. Supervised learning of behaviors with artificial neural networks

Figure 6.15.: Obstacle avoidance: Cross validation in an unseen environments.

-5000 -3000 -1000 1000

-4000

-2000

0

2000

4000

Y
 [
m

m
]

X [mm]

Goal

Marker

Marker

-60 -40 -20 0 20 40
-25

-20

-15

-10

-5

0

5

10

15

20

[deg]�

[d
eg

]
�

Figure 6.16.: Homing demonstrations in simulation. (Left) trajectories demonstration and (Right) the
corresponding perceptual variables

line connecting the docking markers. Fig. 6.16 shows the recorded trajectories and the
corresponding perceptual angles αg and βg. The behavior needs to capture two modes of
approach to the homing area. First, the initial approach to the markers and then the final
approach to align correctly. The first phase typically minimizes the distance to the goal
(ρg) and the aligning the goal point direction (αg) to zero. Closer to the homing area,
the final alignment error is adjusted. The translational velocity of the robot is reduced
linearly to ρg. The translational velocity is executed with the same model as in obstacle
avoidance except that the critical distance to the obstacle is replaced with the distance
to the goal. As with the previous behaviors, different sets of training trajectories are
analyzed for generalization. Two models are discussed here. The rest of the different
combinations of the trajectories used for training can be found in appendix D.2. The
first set consists of taking all the input trajectories for training. The second set is with
demonstrations starting from the farthest point to the goal. Different number of neurons
ranging from one to nine are tested on the training data and the ANN with seven neurons
was found to have the least NMSE validation error. Similarly, for the second data set
the best generalization is achieved with five neurons. Table 6.4 shows the recorded MSE
and NMSE obtained during training. The table shows that training MSE with all the
trajectories is higher than the one trained on only two trajectories. This is because of the
larger number of training examples with the first model compared to very few examples
with the second one. Nevertheless, the test NMSE with the two trajectory model shows
a poorer generalization. This is seen in Fig. 6.17 where both the models are tested
in simulation from the demonstration starting configurations. The imitation trajectories
show that both the model drive the robot to the goal with the path taken clearly indicative

86

6.2. Static mapping

Table 6.4.: Training and testing errors of ANN

Number of Number of Training Testing
Training neurons MSE [deg/sec]2 NMSE MSE [deg/sec]2 NMSE

trajectories
18 7 8.93 0.42 - -
2 5 0.4093 0.024 19.85 1.3

-6000 -4000 -2000 0

-4000

-2000

0

2000

4000

X [mm]

Y
 [
m

m
]

-6000 -4000 -2000 0

-4000

-2000

0

2000

4000

X [mm]

Y
 [
m

m
]

Training : all Training : two

Figure 6.17.: Homing imitation results of the two models from all the initial configuration shown during
demonstrations. The dark trajectory indicates the configuration on which the model is trained.

of the knowledge acquired from training. Training with all the trajectory, the first model
quickly compensates the bearing angle αg and then corrects the orientation error βg. This
is quite clearly learned from the abundant training trajectories provided. The second
model does not possess this knowledge in that only two trajectories starting farthest from
the goal are demonstrated. This is evident from the trajectories traced where the robot
orientation error is first corrected and then driven to the goal. Each of the simulation is
executed for longer duration to allow enough time for the model to reach the goal. Table
6.5 shows the average feature errors at the end of the imitation together with the absolute
angular errors recorded. The model trained with all the trajectories reaches the target
location with approximately one degree precision in bearing and orientation and clearly
outperforms the model trained with only two trajectories. In spite of the performance
differences, the performance of the two trajectory model still can be deemed satisfactory.
The robustness of the models is tested further in the next experiment where the robot is
along the periphery of a circle around the goal point. The initial configuration of all the
positions are set to zero degrees. The positions to the right of the goal point specifically
here correspond to scenarios not shown in the demonstration to either of the two models
in that they simulate situations where the goal point is behind the robot. Fig. 6.18 shows

Table 6.5.: Average feature and orientation errors of the imitation

Number of Average angular errors Average feature errors
Training trajectories αg [deg] βg [deg] αg

ρ
ρmax

[deg] βg
ρ

ρmax
[deg]

all -1.02 0.95 -0.06 0.04
2 2.78 -3.24 0.17 -0.20

87

6. Supervised learning of behaviors with artificial neural networks

-2000 0 2000 4000-4000

-3000

-2000

-1000

0

1000

2000

3000

X [mm]

Y
[m

m
]

Y
[m

m
]

-2000 0 2000 4000
-5000

-3000

-2000

-1000

0

1000

2000

3000

X [mm]

Training : all Training : two

Figure 6.18.: Homing Imitation: Path traced by the robot when starting from positions placed along a
circle around the goal point.

From From
Input

Layer 1

L
ay

er
2

L
ay

er
 1

T
o

�g �g
N

eu
ro

n

1
2
3
4
5
6
7

(a)

�g �g

1

2
3

4

5

Input

L
ay

er
2

L
ay

er
 1

T
o

Layer 1

N
eu

ro
n

(b)

Figure 6.19.: Hinton diagram of the network weights. (a) ANN model trained with all demonstration
trajectories and (b) ANN model trained with two demonstration trajectories.

the path traced by both the models. The path show that all the trajectories go towards
the goal in a smooth fashion. Some of the interesting characteristics of the results here
are; starting from a very flat angle, the model trained on only two trajectories typically
overshoots the center line before aligning itself to the center, whereas the fully trained
model does an about turn and approaches the goal robustly. The initial turning direction
of both the models when starting from the right side of the goal is also curious in the sense,
the model trained on all the trajectory always turns left to approach towards the goal.
This is mainly because of the model characteristic where the bearing angle is first reduced
followed by the orientation angle. This apparent difference between the two models can
be seen in the Hinton diagram of the network weights (Fig. 6.19). Please note that the
proportion of input weights assigned by each neuron to the feature is either subsumed
or shot up with the layer weights. For the second model on the right side, one can see
that neuron three and four has big positive and negative weights on αg, nevertheless the
corresponding layer weights are very small that it subsumes the high impact of these
neurons. Correspondingly, the layer weights of neuron one and five are big whose input
neurons give higher weights to βg explaining this behavior.

6.3. Dynamic mapping
In dynamic mapping, the model output depends on the input presented while also pre-
serving a memory of the previous internal states visited. Recurrent neural networks are

88

6.3. Dynamic mapping

Figure 6.20.: Demonstration set used for corridor following. (a) The demonstrated trajectory used for
training is shown in dark and (b) the corresponding perceptual trace.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

N
M

S
E

N
M

S
E

Input sequence length

Input sequence length
(a)

(b)

1 2 3 4 5 6 7 8 9

1

3

5

7

Figure 6.21.: Testing errors recorded for RNN trained with different input sequence lengths. (a) Corridor
following and (b) Obstacle avoidance.

a type of dynamic networks where the neurons in hidden layer are connected with each
other thereby creating an internal state which preserves the dynamic temporal behavior of
the data presented. The training data are given as a multiple pseudo time-series data and
the sequences are fed to the network concurrently at each time step. The RNN consists
of two layers with a tangent sigmoid activation function in the first hidden layer and a
linear activation function for the output layer.

Corridor following

We use the same demonstrations as in feedforward ANN. Two demonstration trajectories
presented from either sides of the corridor are used for training. Fig. 6.20 shows the
demonstration trajectories used together with the perceptual trace. RNN is setup with
one hidden layer with 20 neurons and trained using conjugate gradient backpropagation
algorithm. The network is tested for different input sequence lengths and the most optimal
is chosen based on the cross-validation error registered on unseen examples. Fig. 6.21
shows the registered NMSE for different sequence lengths ranging from 1 to 20. From
the figure we can see that for a sequence length of 16, the NMSE is the lowest. By
providing an input sequence the context of operation of reaching the current state is also
considered during training. The trained model is cross-validated for generalization against
trajectories not shown during demonstration. Table 6.6 shows the mean MSE and NMSE
recorded for unseen data. From the errors one can notice an improvement in the test

89

6. Supervised learning of behaviors with artificial neural networks

Table 6.6.: RNN training and testing errors recorded.

Behavior Training Testing
MSE NMSE MSE NMSE

CF 0.011 [deg/sec]2 0.003 0.27 [deg/sec]2 0.25
OA 2.1 ×10−4[deg/mm]2 0.02 0.0017 [deg/mm]2 0.48

Figure 6.22.: RNN model reproduction in unknown and noisy corridor scenarios

data generalization compared to static mapping with feed forward network. With the
addition of more trajectories into training, this performance further improves. Fig. 6.22
shows the successful imitation trajectory in unseen corridor scenarios.

Obstacle avoidance

Three demonstration trajectories are used for training obstacle avoidance behavior. The
demonstrations correspond to two left turns and one right turn. For stopping behavior
demonstrations, we use the same model as ANN. Based on the observations before, we
learn the path curvature for determining the turn rate of the behavior. Similar to corridor
following, the optimal sequence length to train the network is found by testing the network
at every iteration against the untrained examples. The NMSE of the process is shown in
Fig. 6.21(b). From the figure one can see that for a sequence length of 5, the network
generalizes the unseen trajectories with a NMSE of 0.48. The small sequence length needed
is understandable since obstacle avoidance is a highly dynamic behavior where only the
immediate past is of importance. Table 6.6 shows the training and the testing errors for
RNN with a sequence input length of 5. Fig. 6.23 shows the trajectory traced by the
obstacle avoidance RNN in unseen environments. The model generally performs well to

(a)

(b)

Figure 6.23.: RNN model reproduction in unknown obstacle avoidance scenarios in (a) corridor and (b)
cluttered environment.

90

6.4. Experimental results

avoid obstacles in a robust fashion but suffers at narrow passages. This can be seen in Fig.
6.23 where the robot does not come out of the passage and loops around. The direction
of approach and the next safe direction detected by the robot coming out of the dead
end always points away from the passage exit thereby looping the robot back to the same
place it visited. The set of demonstrations shown for training did not contain situations
replicating this exact situation thereby making the network ignorant of such maneuvers. A
static network such as ANN learns a direct mapping of a single feature set to the output
and does not care about the previous perceptual trace, whereas a recurrent dynamic
network places an attractor at places that concur to the perceptual traces shown during
demonstration. In a more complex cluttered scenario but devoid of such corners, the
network wanders quite robustly by avoiding all the obstacles encountered. Experimental
results of the learned recurrent network is discussed later in the chapter.

6.4. Experimental results
Inferring from the simulation results, realistic experiments for the different behavior rep-
resentative models are performed on the Pioneer 3DX mobile robot. Sixteen demonstra-
tions of corridor following, fourteen demonstrations of homing and twelve demonstrations
of obstacle avoidance are recorded.

6.4.1. Artificial neural network
Fig. 6.24 shows a corridor scenario where the robot is starts with a small lateral off-
set and a larger orientation error. The translational velocity is set constant here to 60
mm/sec. The maximum rotational velocity is limited to 10 deg/sec. The figure shows
that the model drives the robot quite robustly to the corridor center. The evolution of
the perceptual variables together with the predicted action is also shown where one can
see the values going to zero indicating the robot has reached the center of the corridor.
Two scenarios for obstacle avoidance are shown in the figure. The first situation is a
corridor dead end scenario and the second scenario is a typical narrow corridor scenario.
In the second scenario, the path way of the robot is blocked by an open door on the
left followed by a pillar immediately thereby needing the robot to avoid both as a slalom
obstacle avoidance. In both the cases, the robot successfully evades the obstacles in a
robust fashion. The associated omnidirectional images are also shown in the figure to
visualize the perception of the robot more clearly. In the first case, the robot proceeds
straight until the dead end is detected via the segmentation result. The translational
velocity is correspondingly reduced and the robot performs an about turn to avoid and
proceed further. The second experiment similarly detects the door first triggering a large
turn to the right and on detecting the wall turns left to the center of the floor.
Homing behavior is tested from different configurations from the goal point. The markers
for the experiment are placed in an elevated position compared to the demonstration
where they are placed on the floor. For the learned behavior this change should not make
any difference. The behavior can be extended to any different kind of markers as long
as there exists a method to extract the position of the homing markers on the image.
The experiments exhibit a good performance of the behavior to approach the goal point.
The figure shows two such instances of experiments. The first experiment starts from

91

6. Supervised learning of behaviors with artificial neural networks

Corridor following

Obstacle avoidance

Homing

Iterations
0 20 40

0

5

10

�
[d

eg
/s

]

�
[d

eg
/
s]

�
[d

eg
/s

]

0 20 40
-60

-40

-20

0

20

�
[d

eg
]

�
[d

eg
]

0 20 40
-4

0

4

Dead end Scenario 2

0 5 10 15 20 25 30
-12

-8

-4

0

4

Iterations
0 5 10152025303540

-4

0

4

8

Iterations

Markers Markers

Figure 6.24.: Experimental validation of learned visual behavior using feed forward ANN. (Top) Corridor
following, (middle) obstacle avoidance and (bottom) homing.

a very flat angle from the left of the goal and the second experiment starts straight in
front of the goal but misaligned by almost 90◦. In both the cases, the bearing angle is
first compensated before the final orientation angle is adjusted closer to the goal point.
The translational velocity of the robot is controlled in accordance to the distance to the
goal point. Note, that all the features here are extracted purely from the images thereby
annulling any requirements of the Cartesian position of the robot in the environment.
The experimental results performed with learned ANN models show that robot is able
to generalize to dynamic and diverse scenarios not presented during training. With any
of the conventional or learned behavior coordination schemes, the three behaviors can be
robustly coordinated for autonomous navigation. Some of the coordination experiments
are explained later in the chapter.

6.4.2. Recurrent neural network
Corridor following is performed at a constant translational velocity of 60mm/sec. Fig.
6.25 shows the two experiments performed with the corridor following RNN. Corridor
following is performed with a total input sequence length of 16 as explained in section
6.3. The experiments are started with the initial state offset angle and orientation er-
ror of [α, β] = [−42◦, 10◦] and [53◦,−6◦]. The figure also shows the evolution of the

92

6.4. Experimental results

(a)

(a) (b)

(b)

0 5 10 15 20 25 30 35 40
-40
-20

0
20
40

-10
0
10

�
[d

eg
]

�
[d

eg
]

�
[d

eg
]

�
[d

eg
]

iterations iterations
0 5 10 1520 2530 35

-80
-40

0
40
80

-10
-5
0
5
10

� �

Figure 6.25.: Experimental validation of learned corridor following using RNN. (a) Initial configuration
of the robot with [α,β] = [−42◦, 10◦] and (b) with [α,β] = [53◦,−6◦]. Shown are also the evolution of
the perceptual variables during the experiment.

(a)

(a) (b)

(b)

(a)(b)

0 5 10 15 20 25 30 35 40
0

0.04

0.08

0.12

0 5 10 15 20 25 30 35 40
-0.4

-0.2

0

0.2

si
n
(

)
�

sa
fe

sin()�safe

co
s(

)1
/

�
m

in
m

in
d

si
n
(

)
�

sa
fe

co
s(

)1
/

�
m

in
m

in
d

cos()1/�min mind

0 5 10 15 20 25 30 35 40
0

0.04

0.08

0.12

-0.8

-0.4

0

0.4

iterationsiterations

Figure 6.26.: Experimental validation of learned obstacle avoidance using RNN. Shown are also the
evolution of the perceptual variables during the experiment.

perceptual variables α and β during the experiment and can see them being driven to
zero corresponding to the corridor center. Obstacle avoidance is tested on the same sce-
nario but this time with big box placed along the corridor acting as an obstacle. The
obstacle is positioned directly in front of the robots path thereby making a forced evasion
to the right and pass the narrow way leading further to the corridor. Fig. 6.26 shows
the obstacle avoidance experimental result together with the evolution of the perceptual
variables sin(θsafe) and cos(θmin)1/dmin. Omnidirectional image of the scenario is also
shown in the figure. The translational velocity of the robot is controlled directly by the
corresponding RNN whose output decides the turn rate based on the path curvature pre-
dicted by the second RNN. Multiple experiments are conducted in different corridors and
configurations of obstacles for a longer duration and successful results are recorded. The
curvature output of the model depends highly on the segmentation input provided. If
the data obtained from the segmentation is noisy, the generalization performance of the
model tends to deteriorate irrespective of the prowess of the algorithm. The presence of
a context layer and an internal memory overcomes this in that the sensitivity to abrupt
changes or noise in the data is handled better compared to static networks. The experi-
mental verification with the real robot in an actual dynamic environment establishes thus
the capability of a dynamic RNN in learning visual navigation behaviors with no a priori
knowledge of the environment.

93

6. Supervised learning of behaviors with artificial neural networks

6.5. Automatic feature selection
The previous approach used the visual features which are manually identified and ra-
tionalized from a single snapshot. These features typically arise out of human intuition
examining the scene and uses the teachers expertise to identify typical patterns in nav-
igational behaviors. Crudely speaking, the realm of learning for demonstration is where
the human is only used to generate demonstrations and the features that relate to the
exhibited behaviors are extracted automatically. This way the human is further detached
from the reasoning about the feature relevance during the feature extraction process. We
address this aspect in the following section where features are automatically extracted
using PCA. However, PCA only finds the independent features most relevant from the
input data presented but does not take the executed robot action into account. Hence,
through PCR the principal components with high correlation to the output robot action
are extracted. From the identified components, the perception-action mapping is then
learned with a ANN.

6.5.1. Principal component extraction
The principal components of the demonstration images are determined as described in
chapter 3.3. In order to handle to the computational complexity of PCA, the total num-
ber of training instances are sub-sampled to five representative images per demonstration.
For corridor following, this subset of images covers both initial misaligned configuration
and the final aligned configurations. The corridor following demonstration images and
the principal components correspond to the application example presented in chapter 3.5.
Fig. 3.11 shows the recorded images along with the five dominant eigenvectors. Obstacle
avoidance, on the other hand does not depend on the entire local environment but mostly
on the proximity of the obstacles ahead. Thus, only a rectangular region in the front half
of the image is analyzed and projected onto its principal components. The demonstra-
tion data spans the complete scenario starting from the variations of different obstacle
positions in front of the robot to homogeneous floor regions at the end of the demonstra-
tion. Fig. 6.27 shows the segmented images used for computing the principal components
along with the five dominant eigenvectors for obstacle avoidance. The obstacle avoidance
demonstrations are projected onto 75 principal components. Thus, a total of 2100× 70
training examples for corridor following and 1885× 75 training examples of obstacle avoid-
ance are generated. The percentage of variance explained by the individual components
together with their singular value for the two behaviors are visualized with a scree plot
shown in Fig. 6.28. From the figure, one can see that the graph tends to flatten out at
around four components for corridor following and five components for obstacle avoid-
ance. The perception-action mapping between the selected components and the recorded
robot action is trained with an ANN. Network training and validation is performed on
a multi-layered feedforward network with Levenberg-Marquardt backpropagation. Using
60% of the data used for training, 20% used for validation and the remaining 20% for
testing, the generalization errors are recorded for both the behaviors (Table 6.7). The
errors clearly show that corridor following is easier to generalize than obstacle avoidance
and the selection of components are performed unsupervised independent of the desired
output.

94

6.5. Automatic feature selection

Demonstration

3rd Eigenvector 4th Eigenvector 5th Eigenvector

Mean 1st Eigenvector 2nd Eigenvector

Figure 6.27.: Five images per demonstration spanning the entire length of obstacle avoidance demonstra-
tions. A total of seventy five training images are used for computing the principal components. The
mean vector along with the five dominant PCA eigenvectors are shown.

number of components

P
er

ce
n
ta

ge
ex

p
la

in
ed

 (
%

)

0
0

5 10

10

15 20

20

25

30

40

S
in

gu
la

r
v
al

u
es

 (
S
)

0
0

5

5

10

10
15
20
25
30

15 20 25 30

Corridor following

Obstacle avoidance

Figure 6.28.: Percentage variance explained by each component and the scree plot of the singular values
for the top components.

This is overcome with PCR which is an extension of PCA, where the correlation of the
projected components with the output variable is also considered. Fig. 6.29 shows the top
individual feature correlations against the target. The coefficients provide an immediate
inference in that the components of corridor following which are influenced by the shape
of the environment have a predominantly a high correlation to the robot motion, whereas
for obstacle avoidance, the top correlation coefficient is only 0.35. Nevertheless, the
individual component correlation does not capture the mutual interaction between the
different latent variables to help emerge a policy. Hence, a wrapper approach with forward
chaining is then performed on the principal components to identify the best subset of
correlating components. During forward chaining for every feature subset, PCR finds
the subset by regressing the principal components against the target. The generalization
errors: MSE and NMSE are recorded for a 5-fold cross-validation within the feature
selection process (Fig. 6.29). Thus, for every fold of cross-validation the training is done
on 11 trajectories and tested on the remaining 3 trajectories. The evolution of the feature
selection errors in the figure show that for corridor following, addition of more principal

95

6. Supervised learning of behaviors with artificial neural networks

Table 6.7.: Training, validation and testing errors for ANN trained with principal components. Cf -
Corridor following, Oa - Obstacle avoidance.

Behavior Training Validation Testing
MSE NMSE MSE NMSE MSE NMSE

[deg/mm]2 [deg/mm]2 [deg/mm]2

Cf 0.11× 10−4 0.019 0.08× 10−4 0.02 0.18× 10−4 0.3
Oa 0.007 0.44 0.009 0.57 0.008 0.49

Corridor following Obstacle avoidance

Principal
components

C
o
rr

el
at

io
n

0
0

0.2

0.4

0.6

0.8

10 20 30 40 50 60

4

9
276

5

N
M

S
E

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

Number of
principal components

0

0.1

0.2

0.3

10 20 30 40 506070

3

4
232 19

N
M

S
E

0 10 20 30 40 50 60 70

0.8
1.0
1.2
1.4
1.6

C
o
rr

el
at

io
n

Principal
components

Number of
principal components

Figure 6.29.: Correlation coefficients and the forward chaining error evolution with PCR with 5-fold
cross-validation shown for both the behaviors.

components reduces the errors and tends to saturate around 10 features. For obstacle
avoidance, the cross-validation error is the lowest for 18 components (See Table 6.8 for
the features). Addition of more features tends to worsen the generalization. This is mainly
due to the fact that obstacle avoidance is mostly correlated with the context of situation
rather than the geometry of the scenario. Addition of more principal components brings
in more details about the scenario geometry which, considering the variety of different
scenarios generates ambiguity and correspondingly poorer generalization. Table 6.9 also
tabulates the cross-validation errors of both the behaviors.
The PCR generalization of obstacle avoidance shows that there exists a non-linear re-
lationship which is difficult to model. Hence, the selected components from PCR are
trained with a feedforward ANN. The generalization with ANN shows a huge improve-
ment compared to a direct regression (See Table 6.10). Corridor following on the other
hand exhibited good generalization even with PCR, hence we avoid ANN. Fig. 6.30
shows the performance of ANN trained on PCR based features selected for all the ob-
stacle avoidance demonstration trajectories. The performance of PCR on all corridor
following demonstration trajectories can be referred in Chapter 3 (Fig. 3.16).
Fig. 6.31 shows the corridor following reproduction trajectories registered in different
corridor environments. The top principal component based ANN model and the top
correlating PCR model are compared in the same environment and starting configurations.
Both the models traverse the scenarios quite robustly with the PCR based model handling
the narrower corridors better than PCA based model. With broader corridors as shown in

Table 6.8.: Components selected using PCR based forward chaining.

Behavior Selected components
Corridor following 4,8,6,2,9,11,5,7,30,10
Obstacle avoidance 4,3,38,5,41,35,36,42,37,29,1,44,13,39,28,17,18,57

96

6.5. Automatic feature selection

Table 6.9.: 5-fold Cross-validation error for the selected set of principal components for learning the
behaviors

Behavior Testing error
MSE NMSE

[deg/mm]2

Corridor following 1.901× 10−5 0.0614
Obstacle avoidance 0.0107 0.76

Table 6.10.: Training, validation and testing errors for obstacle avoidance ANN

Training Validation Testing
MSE×10−4 NMSE MSE×10−4 NMSE MSE×10−4 NMSE
[deg/mm]2 [deg/mm]2 [deg/mm]2

1.47 0.009 3.76 0.02 4.61 0.03

Fig. 6.31(c), the PCA based model performs marginally better than the other counterpart.
For obstacle avoidance, ANNmodeled on PCA and PCR are compared in unseen and novel
environments as shown in Fig. 6.32.

6.5.2. Experimental results
Realistic experiments with the Pioneer 3DX mobile robot are carried out with both the
models. Fig. 6.33 shows the two corridor following experimental scenarios. The figure
also shows the segmented omnidirectional image and the principal component reconstruc-
tion using the top four components for PCA and the selected ten components for PCR.
Both the models perform good. The principal components of corridor examples capture
the misalignment and generally correlate well with the output. The challenge with ob-
stacle avoidance is more where the principal components now become independent of the
geometry of the environment but on the position of the obstacles. Fig. 6.34 shows two
runs of obstacle avoidance carried out on a corridor. Similar to the previous setups, the
robot starts in front of a pillar in a corridor followed by a door by the far end blocking the
way. The result show that both evade the obstacles with different trajectories. With the
first pillar as an obstacle both the models evade them well, with the PCR model making
a larger turn. This happens at every obstacle where sharper and prolonged evasions are
done. The PCA based model is relatively smoother and sometimes gets close to the ob-
stacles but does not crash. The top 5 components from obstacle avoidance even if they
do not have a high correlation with the output, they still manage to capture the essence
of the behavior quite well.

6.5.3. Behavior classification
In order to accomplish navigation we require an arbitration mechanism in which switch-
ing among behaviors is also learned from data. In our case, the local environment and
behavior are classified according to its appearance. The classifier rests on the training
data acquired for the two behaviors and labeled as C for corridor following and O for ob-
stacle avoidance. The relevant features for classification are identified using the mRMR

97

6. Supervised learning of behaviors with artificial neural networks

iterations

�
[m

m
/
d
eg

]
�
[m

m
/d

eg
]

0 50 100 150
-0.4

-0.2

0

0.2

0.4

0 50
-0.2

-0.15

-0.1

-0.05

0

Demo 8Demo 7

0 50
-0.05

0

0.05

0.1

0.15

0 50
-0.3

-0.2

-0.1

0

0.1

0 50 100
-0.4

-0.2

0

0.2

0.4

0 50 100 150
-0.4

-0.2

0

0.2

0.4
Demo 12Demo 11Demo 10Demo 9

Demonstrated target ANN prediction

0 50
-0.1

0

0.1

0.2

0 50 100 150
-0.2

-0.1

0

0.1

0.2

0 50 100 150
-0.4

-0.2

0

0.2

0.4

0 50 100 150
-0.4

-0.2

0

0.2

0.4Demo 1 Demo 2 Demo 3 Demo 4

0 50 100 150
-0.3

-0.2

-0.1

0

0.1

0 50 100 150
-0.2

-0.1

0

0.1

0.2

Demo 6Demo 5

Figure 6.30.: ANN prediction with the features selected using PCR for obstacle avoidance. Curvature
prediction shown for some of the demonstration trajectories.

Figure 6.31.: Corridor following reproduction with principal components as features. (a) Trained corridor,
(b) noisy corridor scenario, (c) unknown square corridor scenario and (d) corridor with changing widths.

[PLD05] by convolving the principal components with different classifiers such as NB,
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and RG.
Forward chaining is performed on these features and the feature set is expanded incre-
mentally until the classification error no longer improves. Table 6.11 tabulates the 5-fold
cross validation performance of the different algorithms along with their optimal num-
ber of features to achieve the best classification accuracy. The table reveals that all the
classification algorithms achieve a high rate of accuracy ranging from 90% for QDA to
99% accuracy with RG. By considering both the classification performance and the num-
ber of features it is clear that RG outperforms others by approximately 9% and utilizes
considerable less number of features thereby reducing the complexity of the model. The
selected features for RG based behavior classification are components 1,2,7 and 11. Fig.
6.35 shows the confusion matrix of RG validated on 40% of unseen data and also the
performance on all the data together.
The complete navigational framework with PCA based ANN model for both the behaviors
together with the behavior classification scheme is tested in several environments. Fig.
6.36 shows the robot path for one such experiment with PCA based ANN as it navigates
the corridor. The RG based behavior classification adapts well to the variations and
disturbances caused by the processing of real world images compared to the training data
except for certain areas in which the incorrect obstacle avoidance behavior is selected
instead of corridor following (see A1 in the figure). This is largely attributed to the

98

6.6. Summary

Figure 6.32.: Obstacle avoidance reproduction in unseen environments. Robot action is predicted by
ANN model based on the principal components of the demonstration images. Shown are the reproduction
trajectories of both PCA based ANN model and PCR based ANN model.

Corridor following scenario 1 Corridor following scenario 1
PCA based ANN PCR based ANN

Corridor following scenario 2 Corridor following scenario 2

Figure 6.33.: Corridor following with PCA and PCR based ANN model. Shown are also the segmented
free-floor image and its corresponding principal component based reconstruction.

false positives generated by the segmentation algorithm which requires an update of the
internal floor model on a regular basis. Once the model is adapted to the new conditions
the quality of the segmentation image improves thereby improving the performance of
the behavior as well. At A2, the robot encounters a narrow passage due to an open door
blocking the corridor on one side. The arbitration switches to obstacle avoidance due to
the change in the corridor geometry and thereby avoids the obstacle and traverses the
passage. At the dead end of the corridor, the robot turns 180◦ until the floor to the front
of the robot is again free of obstacles.

6.6. Summary
Throughout this chapter, the individual behaviors are modeled using neural networks to
answer two inherent questions that we asked at the start of the chapter namely, what is
an efficient policy and how many demonstrations suffice for generating an efficient policy?

99

6. Supervised learning of behaviors with artificial neural networks

PCA based ANN PCR based ANN

Figure 6.34.: Obstacle avoidance with PCA and PCR based ANN model. Shown are also the segmented
free-floor image and its corresponding principal component based reconstruction.

Table 6.11.: Behavior classification: 5-fold cross validation

Classifier Number of Misclassification
features rate

NB 13 0.075
LDA 12 0.112
QDA 6 0.1015
RG 4 0.011

The networks were trained with diverse set of demonstrations and their performances are
compared in both seen and unseen environments. The performance efficiency of every
model is checked two fold. First, the training and the testing errors of the model against
seen and unseen demonstration data are computed. Second, the model is deployed in
simulation in ad novel environments where the robustness and sensitivity of behaviors are
further tested. All the way through the training process, we aimed at learning the essence
of the behavioral policy rather than attempt to replicate the demonstration trajectories
accurately. From a conventional machine learning point of view, this typically indicates a
higher generalization error during cross-validation and considered sub-optimal but from
the behaviors perspective it can be termed acceptable as long as the corrective action
executed proceeds to a successful completion of the task at hand. Static mapping with
feed forward neural networks possess no memory and learns a direct mapping of percep-
tions to its corresponding actions. Experiments with corridor following and homing show
that the static network is capable of learning the policy even with one or two examples.
For a more complex behavior such as obstacle avoidance, the quality of the demonstra-
tion is of paramount importance than the quantity of demonstrations. Results showed
that even with very few demonstrations, but performed on either side of the obstacle is
sufficient for the network to learn policy mapping that eventually can traverse much com-
plex unseen cluttered environments. Recurrent neural networks are examples of dynamic
networks with feed back connections between the layers thereby possessing an internal
memory allowing them to handle input sequences. Perceptual traces of inputs are fed to
RNN. With corridor following, the model shows very similar performance to feed forward
network managing to learn the behavior with just two demonstrations. In spite of the
successful training of obstacle avoidance with RNN, the generalization error was inferior
than feed forward neural network. This is counter intuitive in the sense that it is natural
to expect a system with memory to perform better than a reactive snapshot model. More
evident to notice is the performance of the model in unseen environments where the robot

100

6.6. Summary

T
R

U
E

 C
L
A

S
S
E

S

PREDICTED CLASSES

Corridor
following

Obstacle
avoidance

Corridor
following

667 9

Obstacle
avoidance

8 744

Tested on 40% unseen data Tested on entire data

T
R

U
E

 C
L
A

S
S
E

S

PREDICTED CLASSES

Corridor
following

Obstacle
avoidance

Corridor
following

1679 11

Obstacle
avoidance

8 1872

Figure 6.35.: Confusion matrix of RG behavior classification with 60-40 hold-out cross-validation and on
the entire training data.

a

a

b

b

c

c

d

d e

e

Corridor following Obstacle avoidance
A1 A2

Figure 6.36.: Complete framework with behavior classification and PCA based ANN models.

falls into a local minimum. This problem directly correlates to the difficulty involved in
training a RNN, where a network trained on one set of temporal dependencies of input
features finds it very hard to generalize when presented with another set that are slightly
different. Arriving to this conclusion raises another question: is memory really required
for robotic behaviors? The characteristics of RNN to preserve context of operation is
of high promise for mobile robots as already presented for context based operation in
chapter 5, but for behaviors which can spread over different geometry and appearance
of environments, this necessitates a thorough study. The author in [Sut13] discuss the
inherent difficult of training RNN and present a wide range of solutions to counter this
issue. Another dynamic network worth testing is Echo State Network [Jae01]; [Jae07],
where the hidden layer neurons are only sparsely connected and provides a linear out-
put. As an alternative approach to using visual features, automatic feature extraction
through the principal components of behavior specific perceptions are also tested. Behav-
ior representative features are identified and selected using PCA and PCR and provide
the foundation to supervised learning of a behavior in terms of an ANN. With conclusions
derived from model validation and testing, experimental validation is carried out on the
Pioneer 3DX robot mounted with an omnidirectional camera. The results establish the
robustness of the different models along with the fundamental differences in interpreting
and executing a behavior.

101

7
Supervised learning of behavioral

dynamics and behavior fusion

This chapter is divided into two subsections. In the first part, learning behavior repre-
sentation emerging from the dynamics between perception and action is presented. The
authors of [SDE95] presented a perspective of the interaction between behavior and the
environment as a mutual pair of dynamical systems. For a mobile robot behavior, the
perception-action cycle describes this interaction. The features that sense the environ-
ment are called as behavior variables and they evolve according to their own behavioral
dynamics. In this chapter, the visual behavioral dynamics are learned from demonstrated
data. Considering the behavioral variables x as state variables, the dynamics are then
described by a set of time continuous difference equations:

ẋ = f(x,ψ) + η (7.0.1)

where, f is a non-linear differentiable function with parameters ψ and additive zero mean
Gaussian noise η. As per the representation, the behavioral dynamics thereby possess an
attractor at the equilibrium state x∗ with f(x∗) = 0. We define the mapping function f
here in terms of GMM, whose parameters ψ consists of the Gaussian priors, means and
covariances. The demonstration examples modeled with GMM is further enhanced by
the asymptotic stability at the equilibrium state criteria of Stable Estimator of Dynamic
Systems (SEDS) proposed by [KZB11].
The second part of the chapter delves into learning a monolithic behavior fusion model
across all scenarios. Throughout the chapters, the emergent behavior is distinguished
either at the environmental perception level (scenario) or at the behavior level. Its been
consistently argumented that learning a monolithic model that learns the behavior fusion
across all the scenarios is a difficult task. We address the key challenges involved, namely
the matching of visual perceptions, the complexity reduction of visual information and the
generalization of actions from demonstrations onto novel scenarios. A feedforward neural
network and an instance based model [Mit97] is trained on the subset of the recorded
perception action pairs.

103

7. Supervised learning of behavioral dynamics and behavior fusion

7.1. Stable estimator of dynamical systems

When xTn,N
t=0,n=1 denote the action and perceptual features of dimension D recorded during

N distinct demonstrations of the task of length Tn, the demonstrated trajectories approx-
imated by a GMM with K Gaussians represented by the prior probabilities (πk), mean
(µk) and covariance matrices (σk) is shown in equation (7.1.1).

P (x) =
K∑
k=1

πk
1√

(2π)D |σk|
e
− 1

2

(
(x−µk)

T
σ−1

k (x−µk)
)

(7.1.1)

The mean and the covariance matrix of the kth Gaussian is represented as,

µk =

(
µx,k
µẋ,k

)
, σk =

(
σx,k σxẋ,k
σẋx,k σẋ,k

)
. (7.1.2)

Taking the posterior mean estimate of P (ẋ|x), the estimate of the function f in (7.1.1)
is expressed as a non-linear sum of linear dynamical systems [KZB11]:

ẋ =
K∑
k=1

hk (x) (Akx + Bk) (7.1.3)

where, Ak = σẋx,k (σx,k)
−1 , Bk = µẋ,k −Akµx,k and hk (x) =

P(x;µx,k,σx,k)∑K
k=1 P(x;µx,k,σx,k)

.
Under sufficient conditions, SEDS learns parameters of the GMM such that it guarantees
asymptotic stability at the equilibrium x∗ = 0. Imitation trajectories are sampled from
the learned GMM via Gaussian Mixture Regression (GMR) [Cal09]. GMR samples the
controls ẋ from the current input state x. Given a current state xt at time t , GMR
predicts ẋt, from which the next action to be executed is computed using the sample time
dt and the previous state. The number of appropriate Gaussians for the mixture model
is determined by computing the Bayesian Information Criterion (BIC). The BIC is given
by,

BIC = −2L+ (logN) np (7.1.4)

where L is the log likelihood of the data for the model parameters, N is the number
of data points and np denotes the number of parameters of the GMM. The first term
describes the accuracy of the model and the second term the complexity of the model
in relationship to the amount of data available. Thus, the model with minimum BIC
exhibits the highest posterior probability. The following section analyzes the results of
learning the dynamics of the three visual behaviors using GMM. The behavioral variables
are the same as presented before. The goal state or the potential equilibrium state for all
the three behaviors is at (0, 0, 0). Thus, the behavior triplet used for corridor following
is (ω,α, β) and for obstacle avoidance is (ω, sin(θsafe), cos(θmin)1/dmin) and (ω,αg, βg)
for homing.

7.1.1. Behavior learning
The optimal number of Gaussians for the demonstrated data are obtained by computing
BIC by varying the number of Gaussians between one and ten (see Appendix D.3.1).

104

7.1. Stable estimator of dynamical systems

(e) (f)(d)

(a)

�
[d

eg
]

2010
-10-20-50

0

50
-5

5

0

[deg/s]�
(b)

-50
-5

0

0

5
0

50

� [deg]
[deg]

�

�
[d

eg
/
s] �0 = 0

�
[d

eg
]

-20

-40

-20

0

20

40

-10 0 10 20
� [deg/s]

-20-5 0 20

� [deg]
0

5

-10

10

0

� [deg]
(c)

�
[d

eg
/
s]

�
0 = 20

-50
-5

0 0
50

� [deg]

-10

10

0

5
� [deg]

�
[d

eg
/
s]

�0
= 5

-5

5

-20

-8

-4

0

4

8

-10 0 10 20
� [deg/s]

�
[d

eg
]

Figure 7.1.: Corridor following behavioral dynamics. (a) Reproduction of the demonstrated trajectories,
(b) stream lines of novel trajectories with initial rotational velocity ω0 = 0, (c) stream lines of novel
trajectories with initial lateral offset to the corridor α0 = 20◦, (d) stream lines of the novel trajectory
with initial orientation error to the center of the corridor β0 = 5◦, (e) and (f) projection of the vector ẋ .

Figure 7.2.: Corridor following reproductions of the GMM. (a) Trained corridor, (b) noisy corridor sce-
nario, (c) unknown square corridor scenario and (d) corridor with changing widths.

All the demonstrated data are used to arrive at the mixture model. Fig. 7.1(a) shows
the reproduction of the GMM starting from the same initial configuration as demonstra-
tion used for corridor following. The figure also shows the behavioral space trajectories
recorded for different starting conditions. Fig. 7.1 (b)-(d) correlates to different start-
ing configurations spanning most of the state space and the corresponding generalization
abilities. The trajectories show that even from state spaces not presented during training,
the GMM model drives the robot robustly to the single attractor state at (0, 0, 0). Fig.
7.1 (e)-(f) shows this basins of attraction where the vector field ẋ(α, β,ω) is projected
on a two dimensional subspace. The streamlines show that with higher misalignment
and lateral offset angular error, the magnitude of ω̇ is larger. Fig. 7.2 shows the cross-
validation of the model from both seen and unseen environments. The first experiment
starts from the same initial configurations within the corridor as demonstrations and the
second experiments puts the robot in a completely unseen scenario. The testing scenarios
are the same as introduced in the previous sections. Starting from the same starting posi-
tions as in the demonstrations, the learned GMM model works good in driving the robot
to the center of the corridor. The robustness of the model is further validated against
unseen scenarios (Fig. 7.2(b)-(d)). Noisiness in the data is replicated by distorting the

105

7. Supervised learning of behavioral dynamics and behavior fusion

�[deg/s]

co
s(

).
1
/

�
m

in
m

in
d

-10

0.1

0.3

0.5

0.7

10 -0.5
0.500

00.2
0.6

1.0

-1.0
0

1.0

-1.0
0

�0
= 0

�
[d

eg
/
s]

(a) (b)

(e)

-0.4

-0.2

0.2

0.4

0

-10 0 10

si
n
(

)
�

sa
fe

��� �deg/s

co
s(

).
1
/

�
o
b
s

m
in

d

(f)

-0.2

0.2

0.4

0.6

0

� �[deg/s
-10 0 10

0
0.2

0.4

-10

10

0

-0.5
0

0.5

�
[d

eg
/s

]

(d)

-0.20.10.30.50.7
-10

0

10

0
0.2

sin() = 0.5
�

safe�
safe = 30°

(c)

�
[d

eg
/
s]

cos(
).1/

�
min

min

d

cos(
).1/

�
min

min
d

cos().1/�
min

mind

cos(
).1/

d

= 0.4
�obs

min

Figure 7.3.: Obstacle avoidance behavioral dynamics. (a) Reproduction of the demonstrated trajectories,
(b) stream lines of novel trajectories with initial rotational velocity ω0 = 0, (c) stream lines of novel tra-
jectories with initial safe direction at 30◦, (d) stream lines of the novel trajectory with cos(θmin).1/dmin,
(e) and (f) projection of the vector ẋ .

Figure 7.4.: Cross-validation in unseen environments with GMM

environment followed by two fundamentally different hallway environments. In all the
cases, the GMM model encounters the environment in a robust fashion thereby further
confirming the presence of asymptotically stable attractor along the corridor center.
The rotational velocity (ω), of obstacle avoidance is modeled by capturing the safe di-
rection (θsafe) and the closest obstacle (dmin, θmin) to the robot. We take as previously
sin(θsafe) and cos(θmin).1/dmin as perceptual variables, thereby positioning the attractor
at the origin which corresponds to the safe direction lying straight ahead and the closest
obstacle is at an lateral angle of 90◦ to the robot. The dynamics of the learned obsta-
cle avoidance GMM models is shown in Fig. 7.3. The figure shows that starting from
different configurations, the behavioral dynamics converge to the equilibrium state. For
completeness, the translational velocity of the behavior is also modeled from the demon-
strated data. The linear relationship between the deceleration and the critical distance
makes it quite straight forward to model. Please refer to the appendix D.3.2 to check for
the details. Validation of the model to unseen scenarios is shown in Fig. 7.4. The biased

106

7.1. Stable estimator of dynamical systems

(b)

(e) (f)

-50
0

50
0

-20

0

-20

�
[d

e
g

/s
]

�
g[deg]

�0
= 0

� [deg/s]

(c) -50
0

50

�
[d

e
g

/s
]

-20

20

0

-20

20
0

-20

0

20

(d) -50
0

50

�
[d

e
g

/s
]

-20

20
0

�g
[deg]

�
g[deg]

-20 -10 0 10 20

-40

-20

0

20

40

� [deg/s]
-10 0 10-20

-10

0

10

20

(a)
� [deg/s]

-10 0 10 -50
0

50
-10

0
10

�g
[deg]

�g
[deg]

�
g[deg]

�
g
[d

eg
]

�
g
[d

eg
]

�
g
[d

eg
]

�g [d
eg

]

Figure 7.5.: Homing behavioral dynamics. (a) Reproduction of the demonstrated trajectories, (b) stream
lines of novel trajectories with initial rotational velocity ω0 = 0 deg/s, (c) stream lines of novel trajectories
with starting αg = −10 deg, (d) stream lines of the novel trajectory with starting βg = 10 deg, (e) and
(f) projection of the vector ẋ .

nature and fundamental different in the representation of GMM to ANN can be seen in
Fig. 7.4(a). The obstacle avoidance dynamics learned from simple evasion maneuvers
encounters a narrow passage whose perceptual readings do not correspond to any of the
examples shown. The robot thereby gets stuck in a local minima not able to get out of
the passage. In a cluttered environment this is also partially visible nevertheless not as
explicit as the previous experiment.
Homing behavior is modeled along the same lines as the two behavior mentioned before.
The translational velocity is controlled with respect to the distance of the goal point to the
robot and the rotational velocity is predicted with bearing angle and the final orientation
angular error as features. Fig. 7.5 shows the learned behavior dynamics of the homing
behavior. The single attractor of the dynamics is clearly seen in the figure, with the policy
converging to its equilibrium point [αg, βg] = [0, 0] from all over the state space. Fig. 7.6
shows the imitation trajectories of the homing behavior in the simulation using both the
translational and rotational velocity models. Starting from the same initial configurations
as in demonstration, the learned dynamics successfully drives the robot to the goal point.
The average absolute final bearing and orientation errors are 10◦ and 5◦. The figure also
shows the path traversed by the robot starting from different point along a circle around
the goal point. As in the previous experiment, the initial orientation is always set to zero.
In both the cases, the model drives the robot to the center. Nevertheless, one can notice
a wobble in the path at the beginning which also clearly correlates to the streamlines
shown in Fig. 7.5 (e) and (f). This is because of the fact that usually only one or very few
Gaussians are used to model all the variations of motions recorded when starting from
different initial configurations during demonstration, potentially revealing the inherent
biased nature of GMM compared to ANN. Nevertheless, the learned dynamics after the
initial curved path drives to the behavior equilibrium point also from unseen state spaces.

107

7. Supervised learning of behavioral dynamics and behavior fusion

-6000 -4000 -2000 0

-4000

-2000

0

2000

4000

X [mm]

Y
 [
m

m
]

-2000 0 2000 4000-4000

-3000

-2000

-1000

0

1000

2000

3000

X [mm]

Y
[m

m
]

(a) (b)

Figure 7.6.: Cross-validation in (a) from known configurations as shown in demonstrations and (b) starting
along a circle around the goal point.

7.1.2. Experimental results
The reproduction of the modeled behavior are shown in Fig. 7.7. The translational
velocity for corridor following is kept constant. In the case of obstacle avoidance the
velocity is linearly reduced according to the learned velocity model and similarly for
homing, the translational velocity is linearly reduced with respect to the model based
on the distance to the obstacle. Corridor following is first tested by starting the robot
along the corridor at different initial configurations of (α, β) = (51◦, 5◦), (−56◦, 2◦) and
(51◦, 12◦). In all the three cases, the learned behavior successfully returns and aligns the
robot to the corridor center. Obstacle avoidance is tested on three prototypical scenarios.
The first scene is a typical avoid an obstacle on the left scenario; the second scene contains
two obstacles next to each other followed by a small gap to traverse. The third scenario
mimics a dead end scenario by blocking the corridor with a large obstacle. The robot turns
around until the free space is again found which extends beyond the critical distance. In
all the cases, the interaction of the behavioral variables with the environment results in
a successful passage of the gap. Fig. 7.8 shows the recorded perception variables for the
experimental run together with the executed rotational velocity. The homing behavior
is activated whenever the markers are detected in the image. Thus the behavior only
triggers in the perceptual vicinity of the homing markers. Three such approaches of the
homing behaviors are shown in the figure. One of the advantage of modularizing behaviors
is the scalability of them. This is illustrated in the homing scenario II, where the acquired
behavior is transferred and reused for a door traversing behavior. In this case, the homing
markers are placed at the door posts to indicate the presence of a door. Given any door
detection methodology and with the knowledge of the door posts in the omnidirectional
image, the learned behavior can be directly transferred and extended. One such proposed
door detection method is described in Appendix E for future works.

Behavior coordination

The overall behavior dynamics is obtained by coordinating the behaviors via arbitration
or alternatively from the weighted fusion of the individual behaviors. For coordination, we
use here the conventional coordination approach. The main objective of the experimental
verification is so illustrate the ability of the learned behaviors to traverse and cooperate
complex and dynamic novel situations. The behavioral gains are ascertained through two

108

7.1. Stable estimator of dynamical systems

Corridor following

II IIII

Obstacle avoidance

WALL

WALL

II IIII

Homing
I IIIII

Figure 7.7.: Scenes from the experimental validation of corridor following, obstacle avoidance and homing
with learned GMM behavior dynamics.

IterationsIII III

50

150

250

20 100

�
g

-80

80

0

20 100

40

-40
5 15 25

0

�
[d

eg
]

�
[d

eg
]

0
-4
-8

5 15 25 10
-0.4

0.4
0

50 90

si
n
(

)
�

sa
fe

10

0.1

0.3

50 90co
s(

).

1
/

�
m

in

m
in

d

Corridor following Obstacle avoidance Homing

�
g

Figure 7.8.: Evolution of the perception variables recorded during the experiments shown in Figure 7.7.

behavioral variables namely, the distance to the closest obstacle (dmin) and the distance
to the goal (ρg). Two thresholds for safe and critical distances to obstacle are set to change
the gains of the behavior. The coordination of homing behavior relies on three thresholds
namely far, close and near. The thresholds close and near are set so that the homing
behavior is not subsumed by the other behaviors when the robot is close to the goal point
but still in the vicinity of an obstacle. Such typical situations are encountered when the
goal is close to a wall or an object to trigger an obstacle avoidance behavior. Fig. 7.9
shows the designed gains. The weights of the individual behaviors are computed by taking
the product of the two gains and then normalizing it with the gains of the other behaviors.
Both competitive (subsumption architecture) and a cooperative coordination (weighted
summation) schemes are tested. With subsumption architecture, the most appropriate
behavior is determined from the behavior with the highest gain:

ωo = ωb with weight wb = max(wc,wob,wh)

where, ωo is the commanded rotational velocity, b is the behavior with the maximum gain
among the three behaviors (c,ob and h) and ωb is the corresponding behavioral rotational
velocity. For the cooperative behavior fusion, the overall behavioral dynamics is obtained
from the weighted aggregation of the individual behavioral responses:

ω̇ =
∑
b

wbfb(xb)

where xb is the behavioral triplet.
The three behaviors are coordinated and tested in an office environment where the robot
is supposed to navigate a corridor cluttered with obstacles, traverse a door indicated by
homing landmarks and reach the final target pose. In theory, the robot is allowed to
wander in the environment with the homing behavior getting activated on the first identi-
fication of homing markers in the omnidirectional image. Fig. 7.10 shows the path traced

109

7. Supervised learning of behavioral dynamics and behavior fusion

Closest distance to obstacle Distance to goal

G
ai

n

0
0 near nearclose closenear far farfar

1 Corridor
following

Obstacle
avoidance

HomingG
ai

n

0
0 0 0dcrit dcritdsafe dsafe

1
Corridor
following

Obstacle
avoidance

Homing

dcrit dsafe

Figure 7.9.: Behavior gains based on perceptual variables

with both arbitration and command fusion behavior coordination. The interesting regions
of the experiment are indicated by A1, A2 and A3. The registered behavioral gains for be-
havior arbitration is shown in the middle column of the figure. The omnidirectional image
of the scene and the corresponding free floor segmentation of the free space at locations
denoted by node 1 to 5 are also shown. Situation 1 shows the interplay between corridor
following and obstacle avoidance behavior. The design of the gains are more apparent
here where the robot on encountering the obstacle, corridor following is subsumed by
obstacle avoidance. This allows a successful circumnavigation of the obstacle. Situation
A2 exhibits a similar switching between the two behaviors where the corridor is narrowed
down by two obstacles. The corridor is first partially blocked by an open door (node 2)
and then two obstacles obstruct the passage further at node 3. A3 shows the execution
of homing as a door traversal behavior. Even though the approach to the target pose in
between the door posts occurs from a at angle the homing behavior successfully guides
the robot through the open door (nodes 4 and 5) by a coordinated interplay of homing
and obstacle avoidance. Once entering the room, the omnidirectional camera again picks
up the target markers thereby executing the homing behavioral dynamics to successfully
maneuver the robot to the target pose. The entire experiment is also performed using
command fusion behavior coordination starting from the same initial configuration as in
arbitration. Both the coordination schemes circumnavigate the obstacles and reach the
goal point.

7.2. Learning behavior fusion
In the second part of this chapter we focus on learning behavior fusion of corridor following
and obstacle avoidance algorithm. Demonstrations for behavior fusion are generated from
a sonar based behavior coordination thus enabling to fuse emergent behaviors learning
from a completely different sensor modality. The realization of the proposed integrated
learning framework needs to counter two important challenges namely, the extraction of
the relevant subset of features that capture the fusion of both the behaviors appropri-
ately and how the model derived from the features can generalize to novel environments.
Training examples are generated in five different indoor scenarios, two scenarios with dif-
ferent corridors and three scenarios in an open room and foyer environments with isolated
obstacles to emphasize obstacle avoidance. Thus a total of 8876 training examples are
generated. In each scenario, the examples are gathered while the robot powered by the
sonar based wandering behavior is executed for a time span of 10-15 minutes. The di-
versity of the data is increased by starting demonstrations at regular time intervals from
different random heading directions. In other words, the wandering behavior is temporar-

110

7.2. Learning behavior fusion

Figure 7.10.: Behavior coordination with GMM. Shown are the trajectories traced by both arbitration
and command fusion schemes. The evolution of the gains of the three behaviors at three nodes A1, A2
and A3 are shown in the middle together with omnidirectional camera image and segmentation image at
five node locations Node 1 through Node 5.

ily interrupted, a random heading direction is executed before the wandering behavior
resumes control over the robot. Without these disturbances the training set would be
dominated by perceptual states in which the robot is already aligned and centered with
respect to the corridor. The experimental setup here is further augmented by using a
monocular camera in conjunction with the PMD camera calibrated with each other. A
floor segmentation on the monocular image is performed triggered by floor points identi-
fied by the PMD camera in addition to the omnidirectional image segmentation. Similar
to the panoramic features as shown in Fig. 3.6, 12 additional column features from the
monocular image are also computed. Instance based model and feed forward ANN are
trained separately and their performance analyzed.

7.2.1. Instance based learner
From every demonstration instance, 53 visual features are extracted. The best subset
of the 53 features are determined using an wrapper approach and forward chaining in
conjunction with an instance based learning algorithm. Instance based learner is a memory
based technique, where once queried with an input data, the model predicts the output
by locally interpolating the neighbors of the query corresponding to a distance measure
[BBB99]. This is often termed as a lazy learning technique, where the generalization
beyond the training data is delayed until the query is asked. In other words, generalization

111

7. Supervised learning of behavioral dynamics and behavior fusion

occurs only at query time. This carries an inherent disadvantage in that the training data
should be saved and is always used during prediction. The local neighbors of the query
input are determined either through Manhattan distance given by,

D (xti,xtq) =
∑m
j=1W(j)

∣∣∣xti(j) − xtq(j)∣∣∣∑m
j=1W(j)

, (7.2.1)

where Wj , xtti(j) and xtq(j) denote the jth components of vectors W [m, 1] weights, ith
input example xti and query point xtq. The scaling factor indicates the relative weight
of the features to the distance function. The scaling factors are set inversely proportional
to the squared distance between the maximum and minimum feature value. Thus, the
distribution of feature values in the training set is also considered. Forward chaining
is performed by validating the training data in different scenarios against each other to
identify the best feature subset. We refer to these validations as inter- and intra- scenario
validation. Fig. 7.11 shows the recorded MSE of the selected features for both scaled and
unscaled model during forward chaining. From the graph it is apparent that the constant
model for unscaled distance outperforms the linear instance based model. The reason
for the inferior performance of the linear model is due to the relatively sparse density of
training examples within a high dimensional feature space. The prediction ytq for the
query point with a constant model is given by,

ytq =
∑k

1 D (xti, xtq) yi∑k
1 D (xti, xtq)

,

where k is the number of nearest neighbors for the query point xq, xi is the ith input ex-
ample, yi is the corresponding output and D (xti, xtq) is the Manhattan distance shown
in Eq. 7.2.1. With a set of twenty features and only about few thousands of training
instances a local linear model is subject to overfitting, in particular as the training in-
stances within a demonstration tend to be correlated. Hence, further feature selection
is only performed with respect to the constant instance based model. From the figure it
is also apparent that the distance scaled model presents is more robust with respect to
inclusion of additional features compared to the unscaled constant model for which the
generalization error is less robust. The lower generalization error is attributed to the fact
that features with a large data range contribute possess more influence than features with
low variation. Hence, the results of the scaled model are used for forward chained feature
selection. The inclusion of additional features terminates once the generalization error
increases by more than 0.001 deg/cm or if the number of selected features exceeds twenty.
Training on open room data and validating on corridor following data exhibits substan-
tially larger generalization error and terminates within only 3-4 features. This failure
to generalize from one scenario onto another is explained by the fundamentally different
structure or open rooms and corridors. In the former the robot circumnavigates isolated
obstacles, thus avoiding proximity to objects, whereas in the later the robot balances
proximity by alignment and centering with respect to the corridor. The futile attempt to
generalize isolated obstacle avoidance to corridor following results in an overly aggressive
behavior that merely bounces the robot between left and right wall. Fig. 7.12 illus-
trates the selected features for the three aforementioned scenarios. Those features that
are selected at least in two out of three scenarios are included in the final feature set for

112

7.2. Learning behavior fusion

0 10 20 30 40 50
0

5

10

15

Corridor 1 vs 2

Corridor 2 vs 1

0 10 20 30 40 50
15

20

25

30
Corridors vs. open room

Scaled weighted
constant model

Unscaled instance model Unweighted instance model

Scaled weighted
constant model

Constant model
Linear model
Termination

30 40 500 10 20 30 40 500 10 20 30 40 500 10 20
3

4

5

6

7

8

9

x 10-3

x 10-3

x 10-3

x 10-3

x 10-3

Corridor 1 vs. 2

m
se

 [
°/

cm
]2

m
se

 [
°/

cm
]2

4

6

8

10

12

14

Number of features

Number of features

18

20

22
16
18

Corridor 2 vs. Corridor 1

24
Corridors vs. Open room

Unscaled instance model

Figure 7.11.: Forward chaining error evolution. (Top left) Unscaled instance based model. Training:
corridor 1, validation: corridor 2, (Top middle) Training: corridor 2, validation: corridor 1, (Top right)
Training: corridor 1 and 2, validation: open room. (Bottom left) scaled constant model. Training
and validation between corridor 1 and 2 and vice versa and (Bottom right) Training: corridor 1 and 2,
validation: open room. Total number of training instances: 8876. Corridor 1: 3312 instances, corridor 2:
2302 instances and open room: 3326 instances.

learning. The black squares in the plot correspond to the thirteen finally selected features
listed in Table 7.1. The aggregated image features (1,2,10,11,13) that provide information
about the robots global perceptual space represent almost half of all the features. The
remaining features capture local properties such as direct or relative proximity between
symmetrically opposite headings. A subset of diverse, but carefully selected features are
sufficient to generalize a visual control from the demonstrated behavior even though it
relies on completely different sensor modality. The selected feature set represents a bal-
anced mixture of monocular and panoramic image features emphasizing the importance
of both coarse and detailed image features. The generalized behavior selected is validated
for its robustness in the following section.
The generalization capability of the learned behavior is validated using k-fold validation
and an inter-scenario testing. The number of nearest neighbors are varied between one
and fifteen. The validation of the training set is performed on the unseen subset data.
The inter-scenario validation tests the ability to generalize from training in one corridor
onto performance in the second unseen and geometrically similar corridor with albeit
different texture. The scenario analysis also investigates as to whether the learner is able
to generalize from the two corridor scenarios onto the fundamentally different open room
scenario. Since the final features for training are in fact generated using generalization
error with forward chaining, the combination of scenario specific image features for the
entire data set would further establish the final robustness of the training set.
Table 7.2 shows the validation results of k-fold, inter-scenario and inter-behavioral testing.
The generalization Root Mean Squared Error (RMSE) between corridor 1 and 2 (C1 and
C2 in Table 7.2) is robust, due to the similarity of training and test instances. This char-

113

7. Supervised learning of behavioral dynamics and behavior fusion

T
es

ti
n
g:

V
al

id
at

io
n
:
C

o
rr

id
o
r

1
C

o
rr

id
o
r

2
C

o
rr

id
o
r

2
C

o
rr

id
o
r

1

C
o
rr

id
o
r

1
,2

O
p
en

ro
o
m

5 10 15 20 25 30 35 40 45 50
Feature Number

Final selected features
Top scenario based features

Figure 7.12.: Table of selected features in individual inter- and intra- scenario validation and the final
selection of features.

acteristic robustness of the training data is also seen from the 4-fold validation between
the two corridor data where the kth block of C1 is tested against the entire C2 dataset and
vice versa. The validation error between the corridor following and obstacle avoidance
(OA in Table 7.2) and vice versa is substantially larger mainly attributing to the lack of
similar examples. In LfD, the training examples exhibit a substantial amount of ambiguity
of the actions as well as the perceptions. This is particularly true for mobile robots with
complex visual perceptions in unstructured environments. This perceptual aliasing is first
compensated by clustering the nearest neighbors of the output curvature. Regression is
then limited to those subsets of neighbors that form the largest cluster in order to achieve
robustness. It also helps to resolve problems arising from ambiguous training instances
and noise. This clustering in output space improves the robustness of the acquired be-
haviors even though it increases the mean regression error from a machine learning point
of view. However, from the perspective of robotic behaviors, the compromise action is
often inadequate. With the clustering, matching of queries with training instances occurs
in two stages. Clustering identifies the general similar scenario, e.g. passing left or right,
and regression the most similar instances within the same situation.

Experimental results

A variety of experiments are performed to validate the performance and robustness of
acquired behaviors. The experimental platform is a Pioneer 3DX mobile robot equipped
with a 3D-2D camera rig and an omnidirectional camera. Fig. 7.13(a) and (b) show
a prototypical experimental scenario. The robots ability to avoid obstacles within a
corridor is tested in corridors C1 and C2 with different floor texture and illumination.
In both cases the robot is positioned in front of a pillar alongside the left wall of the
corridor. The depicted trajectories show that the robot successfully evades the obstacle
and centers itself in the corridor. The experiment is repeated in the second corridor.
The general emerging behavior is similar and confirms the ability to generalize behaviors
across different visual appearances of geometrically similar environment. Fig. 7.14 shows
another test scenario in which the robot starts in a confined space with a frontal obstacle

114

7.2. Learning behavior fusion

Table 7.1.: Relevant features selected for training with scaled constant instance based model

S.No Category Feature
1 Monocular Percentage of wall
2 Monocular Height of column 1
3 Monocular Ratio of floor to the left and right
4,5,6 Monocular Difference of floor area column pair 1-12,2-11,3-

10
7,8 Panoramic Height of column 1,2
9 Panoramic Amount of floor in column 8
10 Panoramic Slope of the line
11 Panoramic Intercept of the line
12 Panoramic Difference of floor area column pair 2-7
13 Robot cen-

tric
Previous turn flag

Table 7.2.: Inter-scenario and inter-behavioral validation

Training Testing RMSE Maximum squared error
scenario scenario [deg/cm] [deg/cm]2

kth block set rest k− 1 sets 0.0858 0.6028
k-fold C1 C2 0.0695 0.2350
k-fold C2 C1 0.0845 0.2422

C1 C2 0.0736 0.2785
C2 C1 0.0728 0.3183

C1&C2 OA 0.1407 1.07
OA C1&C2 0.0958 0.5264

adjacent to the wall. This configuration represents a dead end or a narrow passage
situation. The traversed trajectory shows that the learned behavior is robust enough to
cope with corrupted segmentation that results from the occlusion of floor seed points by
the nearby wall and obstacle. The robustness of the acquired behavior is validated by
having the robot wandering in the environment over a prolonged period of about one
hour. During that period the robot successfully avoided static obstacles and people that
intruded the corridor. The narrow passages and corridor dead end situations are resolved
by maintaining the initial turning direction until again the robot is heading towards the
free corridor space.

7.2.2. Artificial neural networks
For the following examples we use only the moment and the proximity features for learning
the behavior fusion. Table 7.3 shows the top correlating features between the input and
the curvature output of the robot. This provides an insight into the relative importance

115

7. Supervised learning of behavioral dynamics and behavior fusion

Scenario : Corridor C1

(a)

Monocular image

Panoramic image

Omni-Image

Scenario : Corridor C2

(b)

Monocular image

Panoramic image

Omni-Image

Figure 7.13.: Behavior fusion experimental scenario 1.

Figure 7.14.: Behavior fusion: Corner scenario

of the individual features but unfortunately does not provide any more information about
the optimal feature set. This is identified using the wrapper approach. For forward
chaining, we use a combination of Locally Weighted Regression (LWR) and ANN to
determine the feature set. LWR [AMS97] is a nonlinear function approximation model
in higher dimensions. At the core of the approximation lies piecewise local linear models
in a computed region of validity defined by a weighting kernel. Given a query point
xq, we employ a Gaussian kernel centered at xq and perform regression. The identified
features are then modeled with ANN for predicting the curvature. With an eager learning
method such as ANN, the target function is approximated globally during training, thus
requiring less memory and runtime for prediction than lazy learning methods. Table 7.3
also shown the selected features from LWR. It is interesting to note here that the centroid
feature which possess high correlation to the output has fallen out during forward chaining
whereas the rest of the features are selected. In order to confirm this confounding factor,
we try combinations of these four variables with ANN and check for their generalization
ability. The training, validation and testing errors (Normalized Root Mean Squared Error
(NRMSE)) for ANN are shown in Table 7.4.
From the table one can see that the combination 15, 17, 15, 16, 17 and 3, 17 generalize bet-
ter than the remaining combinations by showing an improvement in the residual variance
of the prediction by almost 25− 30%. The errors also show that feature 16 has little or no
improvement in the error compared to the other two. Hence, we restrict the subsequent

116

7.2. Learning behavior fusion

Table 7.3.: Top correlating features and selected features

Feature# Feature Regression Correlating Selected
coefficient feature feature

17 Previous turn direction 0.71 x x
3 X-coordinate of the elliptical centroid 0.40 x -
15 Angle between major axis 0.35 x x

and current robot heading(β)
16 Ratio of the elliptical axis - - x

Table 7.4.: Feature combination and validation using ANN

Features Training RMSE Testing RMSE NRMSE
[deg/cm] [deg/cm]

3 15 16 17 0.027 0.038 0.84
3 15 0.041 0.043 0.95

3 15 16 0.042 0.041 0.91
3 15 17 0.029 0.034 0.76
15 16 0.040 0.040 0.97
15 17 0.030 0.033 0.74

15 16 17 0.031 0.034 0.76
3 17 0.034 0.027 0.60

analysis to 3, 17 and 15, 17. With the selected feature set, we test their combinations
with the closest obstacle features (1/dmin, θmin) obtained through different frontal half
partitioning of two, four or eight uniform segments (See Fig. 3.4). The generalization of
ANN in inter- and intra- scenario cross-validation is shown in Table 7.5. From the table
one can infer that the generalization between the two corridors is robust. This is mainly
because of the similarity of the training and testing examples albeit different corridor
geometries. With the visual sonar proximity information, the model performs better.

Experimental results

Two simple experiments are performed with the feature set 15, 17 together with four
frontal proximity information governed by curvature predicting ANN. Two scenarios for
corridor following and obstacle avoidance are shown here. Experiments are performed for
a prolonged duration in the corridor with random starting configurations. Sometimes in
the event of bad segmentation or navigating through narrow environment the behavior
fails. Fig. 7.15 shows the overlaid runs of two experiments. In the first experiment
the robot is positioned in front of a pillar and misaligned thereby triggering a fusion
of obstacle avoidance at the beginning followed corridor following. The second scenario
places the robot at completely misaligned configuration along a corridor with a wall to
the front to trigger an obstacle avoidance maneuver. As a comparison, the trajectories
from sonar based wandering behavior is also shown. As one can see, the learned behavior

117

7. Supervised learning of behavioral dynamics and behavior fusion

Table 7.5.: Feature sets 15, 17 and 3, 17. Locally weighted regression (LWR) and Artificial Neural Net-
works (ANN)

Feature set Training Testing # sector Training RMSE Testing RMSE
[deg/cm] [deg/cm]

15, 17 CO1 CO2 - 0.0318 0.0285
15, 17 CO1 CO2 2 0.0303 0.0295
15, 17 CO1 CO2 4 0.0266 0.0335
15, 17 CO1 CO2 8 0.0288 0.0264
15, 17 CO OR - 0.0315 0.0409
15, 17 CO OR 2 0.0308 0.0440
15, 17 CO OR 4 0.0272 0.0436
15, 17 CO OR 8 0.0233 0.0440
15, 17 Full Full - 0.0416 0.0449
15, 17 Full Full 2 0.0321 0.0398
15, 17 Full Full 4 0.0313 0.0352
15, 17 Full Full 8 0.0313 0.0302
3, 17 CO1 CO2 - 0.0320 0.0322
3, 17 CO1 CO2 2 0.0326 0.0266
3, 17 CO1 CO2 4 0.0254 0.0350
3, 17 CO1 CO2 8 0.0257 0.0224
3, 17 CO OR - 0.0349 0.0427
3, 17 CO OR 2 0.0284 0.0435
3, 17 CO OR 4 0.0294 0.0441
3, 17 CO OR 8 0.0236 0.0442
3, 17 Full Full - 0.0326 0.0355
3, 17 Full Full 2 0.0332 0.0344
3, 17 Full Full 4 0.0350 0.0315
3, 17 Full Full 8 0.0278 0.0345

initiates a turn earlier than the demonstrated behavior. In the first experiment the learned
behavior turns right much earlier compared to the sonar behavior which turns only on
detecting an obstacle. Similarly in the second experiment, a similar trend can be observed
where the learned ANN robustly aligns itself to the corridor center much quickly than the
demonstrated behavior.

7.2.3. Discussion
The experimental results show that both with instance based learning and ANN, the
learned model counters prototypical scenarios quite robustly. Nevertheless, they run into
problems especially when the environment is dynamic or noisy. Furthermore training a
robust monolithic model requires a lot of expertise and training data to cover the diver-
sity. By adding more behaviors to the system, the model complexity grows exponentially
requires lots of training data to prevent under fit. A mobile robot behavior is highly
situated, in that there is a strong coupling between the behaviors and the environment.

118

7.2. Learning behavior fusion

Figure 7.15.: Demonstrated vs. learned behavior. (a) Obstacle avoidance scenario and (b) misalignment
in a corridor.

With a monolithic model, the individual behavioral interactions with the environment
is either forgotten or lost in the curse of dimensionality. An effective alternative is to
identify the most appropriate modularization of the navigation policy. Two of the modu-
larization are discussed in Chapter 5, 6 and in the first half of this chapter. ANN models
typically requires loads of data and proper parametrization of the neuron weights to learn
multiple behaviors at the same time. Hinton and co in [HOT06], propose a deep neural
network where the network pre-trains itself through unsupervised learning and then using
backpropagation learning for fine tuning the weights. Nevertheless, pre-training such a
network needs abundant information to learn the variations in the data. With increasing
number of behaviors, this becomes extremely complex to train and manage. Another
alternative is to design an adaptive behavior which learns on-line with exploration. Re-
inforcement learning within the framework of LfD promises a lot of potential in that the
learning can start with reasonable a priori knowledge. This is discussed in detail in the
next chapter where a proof of concept RL framework is presented to learn a corridor
following behavior using minimal demonstrations.

119

8
Reinforcement learning of behaviors

Bellmann’s Principle of Optimality: An optimal policy has the property that
whatever the initial state and decision are, the remaining decisions must consti-
tute an optimal policy with regard to the state resulting from the first decision.

– Richard Bellmann, Dynamic Programming, 1957.

The supervised learning of behavior approaches discussed until now, learns a policy solely
from demonstration examples. This goes with the assumption that the teacher is an expert
who is well versed with the task and its successful execution. In the previous chapters we
also saw that in the event of erroneous demonstrations or few demonstrations, generalizing
a policy to diverse scenarios becomes a challenging task. In most cases, the essence of the
learned policy succeeds in executing the demonstrated tasks but the optimality of task
execution is not always unquestioned. Reinforcement learning (RL) [SB98] provides an
approach to learn without an external teacher, deal with not so deterministic scenarios
and rewards the most optimal state-action pair. This chapter introduces a reinforcement
learning approach to learn situated robot behavior within the framework of learning from
demonstration. RL for robotic behavior presents a clear challenge in that the state and
action pairs are continuous and the features number of such pairs are very large. For
every state, searching through all possible actions to find the optimal long term policy
is an expensive process computationally. This problem is partially alleviated using an
initial behavior model derived from demonstration examples. Using this initial model,
an optimal behavior model is derived from it using RL. As a proof of concept for this
approach we present RL of corridor following behavior in this chapter. As an initial
behavior model, we use the corridor following policy learned with GMM. Using the learned
behavior dynamics, the state-value function is computed and the policy then iteratively
improved using RL. The parameters of the GMM are adapted through RL trying to
search for the policy with the highest long term reward. The potential of the framework
for challenging problems such as one-shot learning and learning from scratch are analyzed,
tested and finally validated on the robot. Fig. 8.1 shows the system architecture of the
proposed RL scheme for learning corridor following.

8.1. Reinforcement learning using a model
Reinforcement learning is a machine learning paradigm that finds the optimal policy for a
task by searching for the prescribed set of states S the optimal action from the available set

121

8. Reinforcement learning of behaviors

Figure 8.1.: System architecture of the proposed reinforcement learning of corridor following within the
framework of learning from demonstration.

of actions A. For every state st at time t, the RL agent considers different actions at that
can be executed. For every such state-action pair, the agent receives a reward rt+1 ∈ <
indicating how good the action is with regards to the task. For a visual corridor following
behavior, two types of reward functions are used, namely a dense reward function and a
sparse reward function. Dense reward function as the name suggests, assigns a non-zero
reward for every state-action pair available. In the context of corridor following, the state
variables considered are the offset angle (α) and the orientation error to the corridor center
(β) with the rotational velocity (ω) acting as the action variable. The design of the reward
function is thus designed such that the agent receives a maximum reward at the corridor
center where [α, β,ω] =[0 deg/s, 0 deg, 0 deg] and reduces correspondingly when moving
away. For designing the reward function, the perceptual variables are first normalized
(α/αmax, β/βmax,ω/ωmax) where αmax = 90 deg, βmax = 10 deg and ωmax = 15 deg/s,
so that the total reward given never exceeds 1. The reward is then computed as,

R = Kω
1

ω+ 1 + Kα
1

α+ 1 + Kβ
1

β + 1, (8.1.1)

where Kω = 0.1, Kα = 0.2 and Kβ = 0.7 are the weights associated with ω, α and β.
Sparse reward is highly goal oriented and easier to design in that only the goal state is
rewarded and all other states are equally penalized. For corridor following, the goal area
is around the corridor center (abs(α) ≤ 5 deg, abs(β) ≤ 0.5 deg, abs(ω) ≤ 1 deg/s) which
receives a reward of 0 and all other state-action combinations get a penalty of -1. Fig. 8.2
shows both the reward design for corridor following behavior. The goal of the agent is to
find the policy that maximizes the long term discounted reward. The long term reward

122

8.1. Reinforcement learning using a model

0 0

0

1

1

0

0 080-80 -80
-10 -10

10 10

��� �deg ��� �deg

�
��

�
d
eg

�
��

�
d
eg

-1

0

80

(a) (b)

-1
0

Figure 8.2.: Reward functions for different perceptual states with the action ω set to 0. (a) Dense reward
and (b) sparse reward. Shown are also the pictograph of the reward with respect to the corridor.

is computed by summing the reward of T future time steps given by,

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .+ γT−1rt+T =
T∑
k=1

γk−1rk+1. (8.1.2)

γ is the discount factor and is set to 0.99.
The state value function (V Π) of a policy Π starting from a state s is given by,

V Π (s) =
∑
a

Π (s, a)
∑
s′
P ass′

[
Ra
ss′ + γV Π

(
s′
)]

. (8.1.3)

Equation 8.1.3 is often referred to as the Bellman equation [Bel57] which gives the value
of the optimal policy in terms of the optimal action taken at the current state and then
proceed to take optimal actions for the foreseeable future. The optimal policy is then
required to learn the optimal state value V ∗ given by,

V ∗(s) = max
Π

V Π(s). (8.1.4)

The action value function computes the expected future rewards based on the action to
be executed while at a certain state s. The action value or the Q optimal value function
is given by [SB98]; [SPK02],

QΠ (s, a) = EΠ

[
R(s, a) + γmax

a′
Q∗

(
s′, a′

)]
(8.1.5)

where s′ is the next state reached on performing an action a at state s. The above equation
gives the value function of taking an action a at state s and then acting optimally further
on for T future time steps. Here, the selection of the action is not implicit. To learn the
optimal policy, the optimal action value function Q∗ need to be learned, given by,

Q∗(s, a) = max
Π

QΠ(s, a). (8.1.6)

Bellman optimality equation says that the value of being in a state and following an
optimal policy must be the same as the value of choosing the best action while being in
that state [SB98]. This allows to write the optimal value V ∗ as,

V ∗(s) = max
a

∑
s′
P ass′

[
Ra
ss′ + γV ∗

(
s′
)]

(8.1.7)

123

8. Reinforcement learning of behaviors

where, P ass′ gives the state transition probability of reaching state s′ from state s with an
action a. Equation 8.1.7 can also be written as,

V ∗(s) = max
a

R(s, a) + γ
∑
s′∈S

P ass′V
∗
(
s′
) . (8.1.8)

Fig. 8.3 shows one example of the value function computed for the rewards acquired
by following an initial corridor following GMM. The figure shows the value function for
different values of the perceptual variables α and β when the action variable ω = 0. This
corresponds to the robot always going straight for all misalignment and orientation errors
along a corridor. The following section gives an insight into building the initial corridor
following GMM.

Figure 8.3.: Value function computed with (a) dense reward and (b) sparse reward.

8.1.1. Building up the initial behavior model
Visual corridor following dynamics is modeled using GMM as mentioned in chapter 7.1.1.
In the previous chapter, we saw that optimizing the parameters of GMM using SEDS
showed promising results in that it ensures the presence of one global attractor at the
goal position. The non-linearity of behavioral dynamics is expressed as a sum of linear
dynamical systems (See 7.1.3). During imitation, the prediction is done using GMR by
regressing the GMM on the inputs. The limitations of GMM are the bias of the learned
dynamics with the demonstration data and the corresponding necessity to present diverse
set of demonstrations covering all the possible perceptual state space to learn the complete
behavior dynamics. This aspect can be seen in Fig. 8.4 where training and reproduction
of two GMM’s, one trained with four demonstration examples and an another trained on
a single demonstration example (dashed trajectory) are shown. From the figure, one can
see that not all the demonstrations are perfectly executed. The end of the demonstration
does not necessarily correspond to the corridor center. This aspect is typically seen in
the reproduction of the GMM trained on four trajectories where the model in theory
learns the essence of the behavior and moves towards the corridor center but not with
the shortest and smoothest path. For model trained with only one trajectory, this is very

124

8.1. Reinforcement learning using a model

Figure 8.4.: Corridor following demonstrations and reproductions. (a) Trajectories used for demonstra-
tion, (b) reproduction from unknown starting positions with GMM trained on four demonstrations and
(c) reproduction from unknown starting positions with GMM trained on single (dashed) demonstration.

apparent and the number to demonstrations does not suffice for generalizing the behavior
from different unseen starting configurations.

8.1.2. Value iteration algorithm with Gaussian mixture model
The optimal policy with the GMM is determined by finding the optimal value function
using value iteration algorithm [SPK02]. The value iteration algorithm for policy im-
provement is shown in Algorithm 1.

Data: Generate an initial GMM from demonstration examples.
while Cauchy-Schwarz divergence between current GMM and previous GMM < 1 do

for all starting test configurations do
for all possible actions a ∈ A at current state s compute Q(s, a) for n time steps
(n× dt seconds) using current GMM behavior dynamics do

Q-value function: Q(s, a) := R(s, a) + γ
∑
s∈S

P ass′VkΠ(s′)

end
Vk+1Π(s) := maxaQ(s, a) ;
if Final reward of policy Π > 0.55 then

Add trajectory from policy Π from state s for future training;
else

Reject trajectory and continue;
end

end
Improve policy with new training trajectories;

end
Algorithm 1: Value Iteration Algorithm using GMM

Assuming the robot starts from state S1 = [ω1,α, β], the breakdown of the steps involved
in arriving at the best appropriate action for the state using RL is shown in Fig. 8.5.
Details of the individual steps are explained below.
Step 1 : Looping over a discrete set of actions
For the current perceptual state (α, β) and the action ω executed to arrive at the state,
vary the next executable action around the current value to determine the optimal action
for the state. Note, that the number of rotational velocities that can be executed at any
specific state for a mobile robot is continuous and a very large value. It becomes compu-
tationally very expensive to check the optimal value function for all possible actions for
every state. Hence, only the neighborhood of the current rotational velocity is checked to

125

8. Reinforcement learning of behaviors

Fi
gu

re
8.
5.
:S

ch
em

at
ic

of
va
lu
e
ite

ra
tio

n
al
go
rit

hm
w
ith

an
in
iti
al

G
M
M

fo
r
le
ar
ni
ng

co
rr
id
or

fo
llo

w
in
g
be

ha
vi
or
.

126

8.1. Reinforcement learning using a model

find the optimal action. Anything outside the neighborhood indicates an evasive behavior
which is fundamentally not desirable for a mobile robot behavior. Therefore, rotational
velocity states within 3 [deg/sec] of the current state with a resolution of 1 [deg/sec] are
searched. Varying ω around the current states gives us,[

ω1 ω2 ω3 ω4 ω5 ω6 ω7
]
=
[
ω ω− 3 ω− 2 ω− 1 ω+ 3 ω+ 2 ω+ 1

]
corresponding to the set of states S1 . . . S7 ∈ S.

S =

ω1 ω2 ω3 ω4 ω5 ω6 ω7
α α α α α α α

β β β β β β β

 .

Please note that one can vary the number of neighborhood actions depending on the
specificity of task and the computational complexity of the search and the method would
be equally applicable.
Step 2 : Determine the next state
For every state, apply GMR to obtain the next state. The learned dynamic model predicts
the next state dynamics in terms of angular acceleration ω̇ and the rate of change of
perceptual variables α̇ and β̇. The conditional expectation of the output ω̇ from the
perceptual input states (α̇, β̇) can be approximated by a single Gaussian distribution
N (ξ̂, Σ̂) with a mean centered around the output ξ̂ and covariance Σ̂ given by [Cal09],

ξ̂ =
K∑
k=1

hkξ̂k, Σ̂ =
K∑
k=1

h2
kΣ̂k (8.1.9)

where hk is the probability that the Gaussian k is responsible for the input ξI . For the
computed dynamic states Ṡ1 . . . Ṡ7, the next state is computed as,

S′i = Ṡidt+ Si, where i = 1 . . . 7.

Here, dt is the time period used for recording the behavioral dynamics. For a state action
pair the corresponding sparse or dense reward R(s, a) is computed here.
Step 3 : Compute transitional probability
Transitional probability P ass′ involves computing the probability of reaching the state s′
from current state s on performing an action a. This probability reflects the stochastic
nature of performing an action. Transitional probability hence in a way describes the
dynamics of the world. It is quite difficult to give a specific value to the transitional
probability, but since the dynamics is described in terms of Gaussian, we sample 10
random samples from the distribution to represent the stochasticity. Thus for every
state, one gets additional states thereby increasing the total number of states to 77. From
the computed transitional probabilities, the corresponding value function can now be
computed directly.
Step 4: Compute the Q-value
This is continued into the future for n time steps. We limit ourselves to 40 future time
steps for sparse reward and 25 future time steps for dense reward. Working with a dt
of 0.3 seconds, this corresponds to looking 12 seconds into the future for sparse reward
and 7.5 seconds for dense reward. Experiments reveal that with dense reward function

127

8. Reinforcement learning of behaviors

Figure 8.6.: The fourteen different configurations used for RL.

fewer steps suffice compared to working sparse rewards. Thus, the Q-value for each of the
initial states are computed as in 8.1.10.

Q(s, a) = R(s, a) + γ
∑
s′∈S

P ass′V
Π
k (s′). (8.1.10)

Step 5 : Select best action
The best action for the current state is thus determined from the highest Q-value.

V Π
k+1(s) = max

a
Q(s, a).

The above mentioned steps described the methodology used to select the most appropriate
action for one state s. We perform this for 14 different starting configurations in the
corridor. The configurations are , ω

α

β

 =

 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 −45 0 45 −45 0 45 −45 45 −45 0 45 −45 0
−8 −8 −6 −4 −4 −4 0 0 4 4 4 8 8 8

 .

From every starting configuration, value iteration is performed to collect the optimal
trajectory data in simulation for 60 time steps. We agree that there exists many starting
configurations that can be used to generate the data to test RL, but we choose the above
14 manually since they cover the majority of the behavioral state space. Fig. 8.6 visualizes
these starting configuration within a standard corridor design used in simulation. The
trajectories generated from RL based on the learned GMM is then used to update the
policy. Two approaches are used to update the policy.

Policy Update and Improvement

The trajectory data generated from RL value iteration starting from the 14 configurations
are used for improving the model. Two alternatives for policy improvement are tested:

1. New model: Build a completely new model from the collected data or

2. Optimized model: The mean and covariance of the previous model is used to
initialize and optimize GMM model with new trajectories.

128

8.1. Reinforcement learning using a model

The difference between the two is in the initialization of the mean and covariance of the
Gaussian. With a new model, the mean and covariance are computed through clustering
the training data to set the Gaussian parameters using Expectation Maximization (EM)
algorithm [Cal09] and learn the dynamics from SEDS. For optimizing the model, the first
step is skipped and the parameters of the already existing GMM is used to initialize and
update.
Stopping condition
The termination criteria to stop updating the GMM is done by computing the Cauchy
Schwarz divergence (Dcs) between the two mixture of Gaussians [KHP11]. Dcs computes
the difference between two probability distribution functions given by,

Dcs(q, p) = − log
 ∫

q(x)p(x)dx√∫
q(x)2dx

∫
p(x)2dx

 (8.1.11)

where, p and q are two mixture of Gaussian distributions. This measurement is symmetric
and obtains a value of zero only if q(x) = p(x). The divergence value is similar to
the established Kullback-Leibler divergence [KL51] but carries an advantage that it is
computationally efficient and can handle high dimensions easily. By comparing the two
adjacent GMMs emerging from RL the relative change in the model is detected. We
set a Dcs threshold of 1 to establish no further significant change in the models and
correspondingly no improvements in the model reproduction.
We establish the principle of RL on the model shown in Fig. 8.4(b). Trained on four
demonstrations on a corridor, the imitation trajectories are not optimal and overshoot
the corridor center initially. This GMM is subject to RL value-iteration algorithm on
the fourteen test configurations with dense rewards. The trajectories generated from
the value iteration algorithm are then used as training data for updating the policy.
Imitation trajectories of the policy in simulation are shown compared to their preceding
model imitation in Fig. 8.7. At every iteration, the Dcs value between the current GMM
and the previous GMM is computed to check for the termination condition. Table 8.1
tabulates the Dcs values at every iteration of RL. The values and the imitation show that
optimized policy is slower in driving the robot the corridor center. With a new model,
the convergence is very quick mainly due to the elimination of the parameter bias of the
previous GMM to the initial training data. For policy development with a new model,
the parameters of the initial corridor following model is used only for the first iteration
whereas for an optimized policy update, the bias of the initial model is still retained to
adapt to the new data. The Q-value of the new model and optimized model is compared
with the original model for a trajectory (Initial configuration [ω,α, β] =[0 deg/s, 45 deg,
-0.5 deg]) shown during training and iteration can be seen in Fig. 8.8. From the figure
one can observe that the Q-value of the updated model rises up quite fast indicating an
execution of a policy that promises a long time positive reward.
The effect of RL with a sparse reward function where only the goal point is rewarded with
0 and the rest of the states are penalized with a -1 is tested next. Fig. 8.9 shows the
traced trajectories in simulation working with sparse reward on an initial model trained
on the same four trajectories. The figure shows the trajectories traced for a new GMR
model. From the figure one can notice, that with a sparse trajectory the total time
needed to reach the corridor center might be a little longer than the model learned with
dense reward, nevertheless still generates very smooth trajectories. Only three iterations

129

8. Reinforcement learning of behaviors

Figure 8.7.: Number of demonstrations: 4, reward function: dense. (Left) Trajectories traced during
value-iteration algorithm and (Right) trajectories traced by the updated corridor following model trained
on the trajectories generated from value-iteration algorithm.

suffice here to learn the behavior (See Table 8.2) and the Q-values for the initial and the
final GMM is shown in Fig. 8.10. The Q-values in the figure clearly show the lack of
the initial GMM model to execute the most optimal action. With a sparse reward, the
path which is the shortest and fastest to the corridor center gets the highest long time
reward. The improvement in the Q-value attained is immediately apparent during the
first iteration of RL where the maximum Q-value is attained in approximately 17 seconds.
The final model after the third iteration shows the best policy performance and attains
the maximum Q-value in 12 seconds. The generalization ability of the final model is tested
in two unknown environments. Fig. 8.11 shows two new environments not used either
for demonstration or RL. The first scenario changes the corridor width and the second
corridor has different width as that of demonstration corridor and changes the direction
of alignment in the midway. The original GMM model together with the reinforcement
learned GMM model for both sparse and dense trajectory is shown. Both the models
perform much smoother than the original model at the beginning, with the optimized
model taking relatively longer to reach the corridor center. This confirms and lays the
conceptual basis in making RL work for visual corridor following behavior. The limits
of this algorithm are pushed a little further with one shot learning where only a single

130

8.1. Reinforcement learning using a model

Table 8.1.: Number of demonstrations: 4, reward function: dense. Dcs values between the GMMs at
every iteration. Initially 4 trajectories are used for training and value-iteration is done with a dense
reward function.

Iteration Dcs

New model Optimized model
0-1 8.7403 8.8897
1-2 1.2985 1.8624
2-3 1.1634 2.0187
3-4 0.4650 0.8582

Figure 8.8.: Q-value recorded for the trajectory starting with an initial perceptual state and action of
α = 45 deg, β = −0.5 deg and ω = 0 deg/sec.The Q-values for 60 sec imitation done with the initial
GMM, RL of the initial GMM and the final GMM. The final GMM in (a) is a new GMM and in (b) is
the optimized GMM.

demonstration is used to teach the behavior.

8.1.3. One shot learning
One shot learning focuses on learning the behavioral essence with just a single demon-
stration. The demonstration trajectory shown in Fig. 8.4(c) is used here. Taking this
model as the initial policy for corridor following, RL is performed with both dense and
sparse reward function to check for its feasibility. The lack of information in the initial
model does not guarantee a successful RL trial. In other words, the sub-optimal nature
of the initial model more often tends to predict the next state which inevitably leads the
robot out of the corridor. Hence, we perform a two level filter of trajectories where the
quality of the trajectories are tested. At every iteration, if the attained final reward of
the trajectory is less than a threshold of 0.55, we neglect it. In the event where none of
the trajectories from the fourteen starting configurations qualify for the next iteration,

Table 8.2.: Number of demonstrations: 4, reward function: sparse. Dcs values between the GMMs at
every iteration. Initially 4 trajectories are used for training and value-iteration is done with a sparse
reward function.

Iteration Dcs New model
0-1 5.4289
1-2 1.1465
2-3 0.6193

131

8. Reinforcement learning of behaviors

Figure 8.9.: Number of demonstrations: 4, reward function: sparse. (Left) Trajectories traced during
value-iteration algorithm using a sparse reward function and (Right) trajectories traced by the updated
corridor following model trained on the trajectories generated from value-iteration algorithm.

Figure 8.10.: Q-value recorded for the trajectory starting with an initial perceptual state and action of
α = 45 deg, β = −0.5 deg and ω = 0 deg/sec.The Q-values for 60 seconds imitation done with the
initial GMM, RL of the initial GMM and the final GMM. The final GMM is a new GMM modeled on
the trajectories from RL.

ten new configuration which are intentionally set closer to the corridor center are tested.
Being set closer to the corridor center means at least one or two trajectories would end up
closer to the corridor center. This work around ensures that we do not run out of trajec-
tory training data to bring knowledge to the model. The ten new starting configurations
are,  ω

α

β

 =

 0 0 0 0 0 0 0 0 0 0
10 −10 20 −20 30 −30 20 −20 10 −10
−4 −4 −1 −1 0 0 1 1 4 4

 .

We show here the results of policy improvement carried out by generating a new model
from the RL trajectories. The methodology is equally applicable for policy update through
optimized parameters. From Fig. 8.12, one can immediately infer that not all the con-
figuration starting positions perform good and thereby considered for the next iteration.
With the initial model, seven out of the fourteen standard tests fail and are further tested

132

8.1. Reinforcement learning using a model

Figure 8.11.: Number of demonstrations: 4. Trajectory reproductions in unknown environments using
the different models trained on four corridor following demonstrations.

Table 8.3.: One shot learning with dense rewards. Dcs values between the GMMs at every iteration. Also
shown are the number of successful RL trajectories at every iteration.

Iteration Dcs(old, new) Successful trajectories Successful trajectories
out of 14 configurations out of 10 additional configurations

0-1 9.0475 7 7
1-2 2.8127 3 8
2-3 3.6857 14 0
3-4 1.1079 14 0
4-5 1.0308 14 0
5-6 0.9998 14 0

on the ten new configuration on which again only seven out of the ten pass. The second
iteration again rejects eleven trajectories nevertheless the remaining data collected possess
good quality in that the third iteration almost immediately achieves a high generalization.
Table 8.3 tabulates the Dcs and the number of qualified trajectories in every iteration. A
total of six iterations are done to generate the final model. Fig. 8.13 shows the policy
improvement reflected through the Q-value of the reproduction. Q-values of two experi-
mental runs, one starting from a known configuration [ω,α, β] = [0 deg/s, 45 deg, 4 deg]
and the second one from unknown configuration with a very large misalignment angle
[ω,α, β] = [0 deg/s, 85 deg, 3 deg] are shown. The Q-value for the initial model remains
between 16 and 18 without any big improvement over the course of time. The model after
just one iteration already shows a better performance but still exhibits oscillations. The
final model outperforms the other two courtesy RL and the exhibits a stable behavior
in terms of the optimal action chosen for the visited perceptual states. The difference is
more apparent for the second test starting from an initial configuration not shown during
demonstration. The value function of the initial model drops precipitously due to the
lack of training data. The final RL model confirms the optimality with a steady increase
in the Q-value and exhibits stability in performance.
With a sparse reward function, learning takes longer and in that not all the starting
configurations are considered to improve the model until the fourth iteration. Fig. 8.14
shows the qualified trajectories used for training at the first, second and final iteration.
Check Table 8.4 for the corresponding Dcs for the new model in every iteration. The
figure shows that with just a sparse reward function and with only one demonstration
of the behavior, the proposed learning architecture with RL learns the essence of the
behavior quite robustly. Fig. 8.15 shows the corresponding Q-values registered for a
simulation run within a corridor with one known and one unknown starting configuration
similar to the one with dense reward. With the initial model, the value function shows

133

8. Reinforcement learning of behaviors

Figure 8.12.: The trajectories traced for the different initial configuration during one-shot RL with dense
reward function. (Left) Trajectories traced during value-iteration algorithm using a dense reward func-
tion and (Right) trajectories traced by the updated corridor following model trained on the trajectories
generated from value-iteration algorithm.

little to no improvement for both the starting configurations. This is obvious in that the
reproductions of the initial model never drive the robot to the corridor center thereby only
accumulating more penalties. With the RL model, the Q-value is quickly improved and
reduces to zero indicating no long term penalties. The one-shot learned models are tested
in two unseen environment as shown in Fig. 8.16. The performance of the original model
is as predicted very poor with the model exhibiting no characteristic of the behavior. The
nature of the reward function used to learn the behavior is also seen in that the GMR
model learned with sparse rewards requires longer time to reach the corridor center than
the model learned with dense reward. Nevertheless, both the models traverse smooth
trajectories and exhibit robustness in novel environments.

Table 8.4.: One shot learning with sparse rewards. Dcs values between the GMMs at every iteration.
Also shown are the number of successful RL trajectories at every iteration.

Iteration Dcs(old, new) Successful trajectories Successful trajectories
out of 14 configurations out of 10 additional configurations

0-1 8.9556 7 6
1-2 1.2355 9 8
2-3 1.8160 9 8
3-4 1.6793 14 0
4-5 0.4150 14 0

134

8.2. Learning from scratch

Figure 8.13.: One shot learning with dense rewards. Q-value recorded for the trajectory starting with an
initial perceptual state and action of (a) α = −30 deg, β = −3 deg and ω = 0 deg/sec and (b) α = −85
deg, β = 3 deg and ω = 0 deg/sec. The Q-values for 60 seconds imitation done with the initial GMM,
RL of the initial GMM and the final GMM.

8.2. Learning from scratch
Learning from scratch deals with the problem of acquiring knowledge about a task with
no prior information available. This is a daunting task as there are no example demon-
strations of the task provided. Nevertheless, the available reward information makes this
problem a trial and error learning of the value function. A dummy initial GMM of cor-
ridor following behavior is generated using a blind demonstration. The model as such
does not contain any meaningful information about the behavior. The trajectory used
and the corresponding reproduction along with the Gaussians are shown in Fig. 8.17.
The RL iterations are shown in Fig. 8.18. From the figure one can see that the initial
model drives the robot simply straight irrespective of the orientation of the robot. The
RL trajectories in the first iteration thus only slightly varies and thus only the trajectories
that are within the corridor premises are considered for training and updating the policy.
With more iterations, more trajectories move towards the corridor center with the sixth
iteration successfully converging all the fourteen trajectories. The termination conditions
at every iteration are shown in Table 8.5. The Dcs value during the third iteration fall
below the threshold of 1, but the training is continued since not all of the fourteen test
configurations qualified for policy update.
Learning a policy with no prior knowledge and with only a sparse reward presents the
toughest challenge until now. The RL trajectories confirm this (See Fig. 8.19). In the first
iteration, all the trajectories fail and have a low Q-value of -33.1028. Since none of the
tested trajectories pass the qualification, we are forced to take all the failed trajectories to
generate a new model. At this instance, the model is literally presented only with failed
examples. The second iteration also does not succeed with any of the trajectories but the
policy drives three trajectories forward which get a little better Q-value. After this point,
every iteration improves from the previous one and the behavior is successfully learned
during the seventh iteration where all the starting configurations drive to the corridor
center (See also Table 8.6). Starting with absolutely no knowledge of the behavior and
starting from almost inconsequential demonstration, RL exhibits significant success in

135

8. Reinforcement learning of behaviors

Figure 8.14.: The trajectories traced for the different initial configuration during one-shot RL with sparse
reward function. (Left) Trajectories traced during value-iteration algorithm using a sparse reward func-
tion and (Right) trajectories traced by the updated corridor following model trained on the trajectories
generated from value-iteration algorithm.

Figure 8.15.: One shot learning with sparse rewards. Q-value recorded for the trajectory starting with an
initial perceptual state and action of (a) α = −30 deg, β = −3 deg and ω = 0 deg/sec and (b) α = −85
deg, β = 3 deg and ω = 0 deg/sec. The Q-values for 60 seconds imitation done with the initial GMM,
RL of the initial GMM and the final GMM.

Figure 8.16.: One shot RL reproductions in unknown corridor environments.

136

8.3. Learning time

Figure 8.17.: The demonstration and the initial model used for the first iteration of learning from scratch.
(a) Demonstration trajectory and (b) reproductions from different initial configurations.

Table 8.5.: Learning from scratch with dense rewards. Dcs values between the GMMs at every iteration.
Also shown are the number of successful RL trajectories at every iteration.

Iteration Dcs(old, new) Successful trajectories Successful trajectories
out of 14 configurations out of 10 additional configurations

0-1 7.9473 3 5
1-2 6.8063 6 8
2-3 0.8722 10 10
3-4 1.6151 14 0
4-5 1.2892 14 0
5-6 0.9957 14 0

learning the corridor following behavior. Fig. 8.20 establishes the robustness of the new
model further through the two successful tests in unknown environments.

8.3. Learning time
Value-iteration and policy update is performed offline with Matlab. Irrespective of the
software specific performance measures, the training times presented here give a general
outlook into the complexity of the learning process. Table 8.7 gives the list of durations
recorded for training different corridor following models. As expected, the nature of
reward function and the number of demonstrations used for the initial model plays a
significant role in determining the total training time. One shot learning and learning
from scratch required the highest amount of training time. Learning from scratch with a
sparse reward function took the most training time of around 93 minutes. The presented
table are the time registered to build a new model at every iteration rather than optimizing
the model.

137

8. Reinforcement learning of behaviors

Figure 8.18.: The trajectories traced for the different initial configuration during learning from scratch
RL with dense reward function. (Left) Trajectories traced during value-iteration algorithm using a dense
reward function and (Right) trajectories traced by the updated corridor following model trained on the
trajectories generated from value-iteration algorithm.

8.4. Experimental results
The models discussed above are tested on the real robot in a corridor environment. The
translational velocity for the experiments are kept constant at 60 mm/s. The demon-
strated trajectories for these experiments are the same one as shown in Fig. 8.4. Ex-
periments are first performed for different starting configurations on the policy trained
initially with four demonstrations with optimized GMM and a new GMM. Fig. 8.21
shows the overlay of the traced robot trajectory for the different models with two initial
configurations [ω,α, β] = [0 deg/s, 45 deg, 5 deg] and [0 deg/s,−45 deg,−5 deg]. Work-
ing with the initial GMM, the robot oscillates around the corridor center by alternatively
predicting the maximum and minimum angular velocity (See Fig. 8.21). The RL models
with both dense and sparse rewards drive the robot quite robustly to the center. The
optimized GMM takes a longer path to reach the corridor center than the new model.
A significant difference in the performance is with the next experiments with one shot
and learning from scratch model. Fig. 8.22 shows the reproduction of the original GMM
trained on only one trajectory which fails to counter the environment and crashes on the
adjacent walls. The reproduction of the final model using both dense and sparse reward
show a very good performance and drives the robot robustly to the corridor center. Shown
in the figure are also the registered state-action variables. Similar results are also seen
with learning from scratch models. Starting from the same initial configuration (See Fig.
8.23), the original GMM model does not possess any prior knowledge about angular ve-

138

8.5. Related work

Figure 8.19.: The trajectories traced for the different initial configuration during learning from scratch RL
with sparse reward function. (Left) Trajectories traced during value-iteration algorithm using a sparse
reward function and (Right) trajectories traced by the updated corridor following model trained on the
trajectories generated from value-iteration algorithm.

locity resulting in crash. The sparse and the dense model on the other hand traverse the
corridor quite successfully.

8.5. Related work
Reinforcement learning for mobile robotics and autonomous vehicles has been of constant
interest over the last decade [For02]; [RPB09]; [Kob12]; [KBP13]. The most famous work
in this area is published by [SPK02], where two robotic behavior policies namely corridor
following and obstacle avoidance are learned through value function approximation. The
learning is divided into two phases. In the first phase, while the robot is being driven with
a controller or a joystick, the learning system passively observes the states, actions and
rewards and uses them to approximate the value function. The second phase starts when
the value function is complete enough to control the robot effectively. The authors use
an instance based algorithm based on Locally Weighted Regression algorithm [SPK00] to
approximate the value function. Another related work in this area is the work of [CP07],
where the authors use RL to determine an optimal path from a given initial position to a
goal position in an indoor environment. Using a supervisor table, human demonstrations
are recorded for action-state pairs. With just four actions: stop, move forward, turn left

139

8. Reinforcement learning of behaviors

Table 8.6.: Learning from scratch with sparse rewards. Dcs values between the GMMs at every iteration.
Also shown are the number of successful RL trajectories at every iteration.

Iteration Dcs(old, new) Successful trajectories Successful trajectories
out of 14 configurations out of 10 additional configurations

0-1 21.097 14 10
1-2 5.2371 1 2
2-3 4.9908 1 3
3-4 5.5152 1 4
4-5 2.2305 6 0
5-6 1.2413 14 0
6-7 0.9906 14 0

Figure 8.20.: Learning from scratch with RL reproductions in unknown corridor environments.

and turn right, the Q-value of the demonstrations are saved. Further work in RL used in
mobile robotics are [MMD05]; [JLMMD06] who use it for an image based visual servoing
framework working on a docking behavior. For using RL in a continuous state space as in
a perception-action state space for a mobile robot, solutions such as classical grid methods
to save the Q-value function at every step becomes impossible [SB98]. We alleviate this
problem by using a non-parametric probabilistic method such as GMM to build a policy.
The general challenge of learning with function approximation with Gaussian kernels is the
estimation of the number of mean centers and widths of the Gaussians [KBP13]. By using
LfD, these data can be determined using the demonstration examples collected prior to
the RL. This approach has been used by [GHCB07] for an open-loop reaching movement
and for a closed-loop cart-pole swingup task by [DR11]. Our approach is similar to the
works of [GHCB07] in that both learn a Gaussian model of the task dynamics from the

Table 8.7.: Training times when using different demonstration trajectories.

Number of Reward Number of Total training
demonstrations function iterations time [min]

14 Dense 2 12
6 Dense 5 30
4 Dense 4 24
4 Sparse 3 27
1 Dense 6 44
1 Sparse 5 63

scratch Dense 6 48
scratch Sparse 7 93

140

8.5. Related work

Figure 8.21.: GMM trained with four demonstrations. (a),(I) Reproduction of the initial model starting
from [ω,α,β] =[0 deg/s, 45 deg, 5 deg] and [0 deg/s, -45 deg, -5 deg], (b),(II) Reproduction of new GMM
trained with dense reward, (c),(III) reproduction of optimized GMM trained with dense reward and (d),
(IV) reproduction of new GMM trained with sparse reward.

demonstration data. In [GHCB07], the trajectory is generated using a dynamical system
modulated by a velocity profile from demonstrations on a humanoid robot. We express
the robot motion patterns through behavioral dynamics, where the relationship between
the dynamics of the perceptual variable and the robot velocity is modeled using a GMM.
The authors of [DR11] propose a PILCO (Probabilistic Interference for Learning Control)
algorithm which uses Gaussian Processes to successfully learn from scratch. In [RK03],
the learning task with RL and GMM in a continuous state space is accomplished using the
policy iteration algorithm for the mountain car problem. They model the value function
is modeled with a GMM and it is believed the generalization properties and the ease in
manipulating the GMM parameters make them ideal for the corresponding task.
Another influential aspect affecting the performance of RL is the design of reward function.
[TB06] analyze this aspect where a human feedback is used to add more information into
learning not only from past executed actions but also to provide rewards directed to future
subsequent actions that can be taken from the current state. Human feedback within a
learning from demonstration framework for policy update is employed by [ABV07], where
the robot on encountering novel environments with low confidence values turns towards
the teacher to provide extra demonstrations. This way the policy is updated in areas of
state spaces not seen during demonstration. For a mobile robot performing a corridor
following behavior, we design the reward function in two ways. With a dense reward, a
high human input is necessitated in that a non-zero reward is given to all state-action

141

8. Reinforcement learning of behaviors

Figure 8.22.: One shot learning. (a),(I) Reproduction of the initial model starting from [ω,α,β] =[0
deg/s, 45 deg, 5 deg] and [0 deg/s, -45 deg, -5 deg], (b),(II) Reproduction of new GMM trained with
dense reward, and (c), (III) reproduction of new GMM trained with sparse reward.

combinations. The alternative is the sparse reward where only the goal locations are
awarded with a reward of 0 and rest of the state space is penalized with -1. Working with
a sparse reward function with no prior knowledge of the task is extremely challenging
task. The above works mentioned counter this problem using the LfD framework to gather
knowledge through examples. In this chapter, we countered this problem by generating a
dummy model with no behavioral knowledge and use this template model to explore and
exploit the reward function to learn the behavior essence.

8.6. Summary
In this chapter, we have presented a reinforcement learning framework for learning corridor
following behavior dynamics. Prior knowledge about the behavior is provided via GMM
learned from teacher demonstrations. Demonstrations are performed on the real robot
controlled with a joystick. Two modes of reward function R(s, a) are designed. Dense re-
ward functions gives more information and are manually tuned. Sparse reward functions
corresponds to a reward only at the goal point, which for corridor following is around the
corridor center. A reward of 0 is given at states closer and at corridor center and a penalty
of -1 is given to other regions. The Q-value Q(s, a) of the demonstrated policy is learned
using Value-iteration algorithm with the GMM updated at every iteration. The value
function of the policy is evaluated on fourteen different starting configurations in simu-
lation from which the successful trajectories are used for model update. The framework
is first evaluated with a corridor following policy modeled on four demonstrations. The

142

8.6. Summary

Figure 8.23.: Learning from scratch. (a),(I) Reproduction of the initial model starting from [ω,α,β] =[0
deg/s, 45 deg, 5 deg] and [0 deg/s,-45 deg,-5 deg], (b),(II) Reproduction of new GMM trained with dense
reward, and (c), (III) reproduction of new GMM trained with sparse reward.

model emerging from final iteration of value iteration achieved very good generalization
and presents no instabilities and traces a smooth trajectory. The generalization capabil-
ity of the model is further established successfully by testing it in two unseen simulation
environments where the model always converges the robot to the corridor center fast and
smooth. More challenging tasks such as one shot learning and learning from scratch are
also successfully learned and their results show that the robot starting with no informa-
tion about the behavior is able to successfully learn the inherent value function using a
sparse reward. The proposed framework was finally tested successfully on the real robot
in a dynamic corridor environment.
From this chapter, it is clear that reinforcement learning for mobile robot navigation
is not necessarily a straight forward autonomous task. Many design decisions such as
the structure of reward functions, appropriate feature representation of the behavior and
the number of demonstrations needed to build prior information need to be determined.
The design of reward functions is the fulcrum around which the complete performance of
value-iteration algorithm depends. For higher level behaviors such as obstacle avoidance,
homing and door traversing, it is imperative to arrive at a reasonable reward function.
This in turn requires identifying the right feature representation of the behavior. A
promising alternative is the inverse reinforcement learning algorithm [AN04]. Also known
as inverse optimal control, Inverse Reinforcement Learning (IRL) identifies the hidden
reward functions associated directly from expert demonstrations and is further used to
derive the policy. One inspiring research along this direction is the work of [HVFF10], who
use IRL to learn navigation rewards to observe human motions in a crowded environment.

143

9
Conclusions

This thesis contributed a framework for learning vision based robotic behaviors from
demonstration examples. It tackles several core issues of using LfD for robotic behavior
such as flexibility of demonstration modes, the appropriate behavioral representation for
learning and the potential of self-learning behaviors. The main contributions of this thesis
are the following,

1. Natural user interface demonstrations show promising results for demon-
strating a mobile robot: Comparative analysis of three modes of demonstration
are designed and tested for demonstrating motion patterns to a mobile robot. Joy-
stick represented the haptic mode which had a direct mapping between the user and
the robot. A remote teleoperation with a steering wheel is considered for a demon-
stration mode performed directly with the perception of the robot. It provided a
continuous stream of omnidirectional camera images mounted on the robot and the
user uses the image to guide the robot through the monitor. Natural user interface
is considered as the third mode where body gestures are used to command robot
motions. User studies are performed with participants with diverse backgrounds
and the results showed that using natural user interface for demonstrating a robot
allowed even a non-expert user to generate smoother and intuitive trajectories. Joy-
stick being the direct command tool is the fastest to generate demonstrations but
the haptic nature of the command mode has a relatively higher signal to noise ra-
tio. Typical difficulty arises from remote demonstrations since they do not provide
any depth information. The loss of perspective view also accentuated the diffi-
culty, making it a highly challenging interface. Nevertheless, the ability to remotely
demonstrate a robot new capabilities definitely is of high promise for future research.
The study showed that given adequate time, the performance of the demonstration
and correspondingly the fidelity of the recorded data improved significantly.

2. Visual feature extraction and selection: After segmenting the omnidirectional
image into floor and non floor regions, several manually extracted visual features
appropriate for robotic behaviors that reflect the geometry of the environment and
the proximity of obstacles around the robot are extracted. In addition to the man-
ual features, the principal components of the segmented image in different indoor
environments are also found. The selection of the most relevant features for the be-
havior to be learned are determined using a wrapper approach of forward chaining.
Feature selection was a recurrent topic in this thesis where forward chaining was

145

9. Conclusions

used for multiple behavior learning tasks. Selection of an appropriate feature set is
always performed through cross-validation on unseen demonstration examples.

3. Learning behaviors that are specific to a scenario and context is an effec-
tive approach to model situatedness: Robotic behaviors are highly situated.
Their performance and action are directly dictated by the characteristics of the en-
vironment. A new two tier framework is proposed here, where in the first level the
current indoor scenario is first classified and in the second level the context within
the scenario is matched and the next action predicted. Visual features pertaining
to individual scenarios that exhibit robust geometric and scenario distinction are
selected and trained on a variety of different classifiers. Three scenarios, namely cor-
ridor, open room and cluttered are considered for classification. The accuracy of the
classification scheme is exhaustively validated against unseen data achieving some-
time more than 98% accuracy. The successful models are subject to rigorous tests
in different indoor environments where their classification results are further ana-
lyzed. Contexts within a scenario correspond to the current situation of the robot
using the recent perceptual memory trace of the behavior variables. The perceptual
trace is compared and matched for similarity using time series trajectory matching
techniques. Alternatively, artificial neural networks which are used to model entire
scenarios are also presented. The experimental results of the complete framework
show that both the schemes perform good in unseen environments with context
based model little sensitive to outliers. ANN based scenario model on the other
hand exhibits robust performance to noise. By modeling situatedness through sce-
nario and context, the behavior coordination problem is inherently integrated into
the learning framework.

4. Learning neural and dynamic representations of a behavior: Instead of
modularizing behavior fusion in terms of the structure of the environment, learning
individual behaviors using demonstration examples are presented. Three behaviors,
namely corridor following, obstacle avoidance and homing are used consistently for
different schemes. A neural network representation and a dynamic system repre-
sentation of the behaviors are considered. Two core issues of behavior learning are
discussed, namely how to define a good learned behavior policy? and how many
demonstration suffice to generate a good behavior policy? With neural approaches,
we find that the quality of the demonstration play a huge role in policy building
than the quantity of demonstrations. The performance of every learned model is
tested in simulation first on ad novel scenarios. Experiments show that learned
with only one or two examples, which capture the core of the behavior, suffice to
generate a model that can traverse complex environments. Naturally, this arises
the question: how does the teacher determine which demonstrations are the best.
One rule of thumb here is to generate examples that are diverse and quite possibly
use demonstrations that start from extremities of the behavioral state space. Both
static and dynamic neural networks are trained and tested on the real robot. Apart
from the behavioral level distinction, feature level difference with the learned behav-
iors are also presented. Both, manually extracted visual features and the principal
components are used to train the neural network.
Compared to neural network representation, the thesis also shows that a coordi-

146

9.1. Outlook

nated behavior based system can be learned by representing individual behaviors
as attractor dynamical systems. The behavior variables are selected on the image
space of the robots perception. Attractors that represent stable behavior solutions
are modeled using GMM and their dynamics learned. The results show a robust
performance of the learned dynamics to deal with unseen environments. Compared
to neural approaches, GMM needs relatively more demonstrations to shake off the
biased nature of reproductions. By using conventional coordination scheme, three
behaviors are evaluated on the real robot to execute challenging pure vision based
wandering.

5. Monolithic behavior fusion models are impractical: Learning a monolithic
behavior fusion model across all the scenarios is a highly difficult learning prob-
lem. The diversity of the training data in such cases need to be large and the
learning algorithm should be capable of handling such diversity. Neural network
and nearest neighbor approaches are tested to learn behavior fusion. Experiments
show that the high model complexity necessitates a large number of features thus
leading to dimensionality problem. The lack of modularization of the policy is also
reflected in experimental results where the learned behavior was sensitive to noise
and perturbations.

6. Learning with a critic exhibits promising future: A new framework for self-
learning a robotic behavior using RL is presented. As a proof of concept, visual
corridor following behavior is learned. A prior knowledge model, the behavior is
first learned with GMM whose parameters are iteratively optimized and thereby
the policy improved. The successful performance of the framework to learn behav-
iors with both a dense and sparse reward function is presented. The robustness of
the framework is tested further with one-shot learning and learning from scratch.
Provided with just one demonstration example and with a sparse reward function,
the framework exhibited the capability of recovering the optimal value function of
a behavior. Reinforcement learning with scratch presents a problem where no rea-
sonable demonstration knowledge is provided. Working with only a sparse reward
function, the RL framework is able to recover the value function and generate an op-
timal corridor following policy. The final policies are tested on the real environment
and their successful evaluation were documented.

9.1. Outlook
The work presented in this dissertation provided an insight into the potential of learning
within a behavior based framework. The behavioral performance of the robot working on
purely vision based input has a direct correlation to the quality of the features provided.
As discussed throughout the thesis, the selection of the relevant features for the appropri-
ate behaviors is a time consuming and sometimes frustrating process. Evolutionary feature
selection and deep architectures offer a lot of promise in this area. Evolutionary robotics
is population based artificial evolution algorithms [Hol92], where the autonomous robot
controllers evolve to acquire some kind of intelligent decision making. With the handful
of image features, evolutionary robotics selects a random subset of candidate controllers

147

9. Conclusions

as the initial population. Every individual controller can be any of the different behavior
representations discussed such as ANN or RNN or GMM. During every generation, the
evolutionary algorithms is supposed to design the vision based system by extracting the
relevant features for the behavior controllers. The advantage of such a system is that the
algorithm can produce controllers which might be capable of handling and functioning in
environments that even humans might find it complex. The drawback of evolutionary al-
gorithms is the computational complexity involved in repeating and evaluating the fitness
of every individual controller in the population for multiple generations till the optimal
controller is found. Deep learning architectures here provide an alternative methodology
which models a higher level abstraction of data using multiple non-linear transformations.
A deep learning architecture for a neural network would here involve training multiple
hidden layers of neurons achieve complex non-linear relationship between input and out-
put. Using a combination of unsupervised and supervised learning, the weights of the
hidden layers are trained to find patterns within the input in a fast and effective manner.
Learning behavioral representation using deep neural networks can be done by first pre-
senting all the demonstration example images to the network to assign the weights and
thereby bias the neurons to the data in an unsupervised manner. With these weights, the
network is then further trained with the corresponding label in a supervised fashion.
Another promising area is in the field of robot proxemics. It deals with the design and
implementation of robot behaviors that not only makes the robot move collision free but
also execute a legitimate and socially acceptable trajectory. By observing the patterns
exhibited by humans dealing complex indoor environments, the inherent behavioral co-
ordination can be learned. Typical coordination tasks here would be the observation
of humans performing lateral passing within a narrow environment and the astuteness
shown in handling intersection scenarios. Typical extension here would be also to learn
human-machine interactive formations and response.
Outside of robotics, these principles are equally applicable to design and development of
autonomous driving cars. Autonomous cars or driver less cars are pushing the capabilities
of a traditional car to sense the environment and make navigation decisions without
any human input. The pioneering goal of autonomous vehicles is to develop a system
that exhibits the capabilities of a human driver. Extending LfD to autonomous driving
can provide very useful insight into human driving characteristics thereby augmenting
important driving controls such as lane keeping and navigation in safety critical situations.

148

A
Questionnaire on demonstration modes

Please use this questionnaire to provide feedback about the demonstration modes and
your experiments with it.
Enter 1 - closest, 2 - somewhat close, 3 - very far.

Q.No Question Joystick Gesture Steering
based wheel

1 Which one of the mode did you find it the easiest
to demonstrate to the robot?

2 Which one is the most fun to operate and
demonstrate?

3 Which one required a longer preparation time?

Additional comments

149

B
Software architecture

The software architecture of the navigation framework is designed in a hierarchical fashion
as shown in Fig. B.1. The bottom layer represents the driver level which represents
the different sensors used. This layer is concerned with the acquisition of sensor data,
synchronization of multiple camera systems which are then passed to the pre-processing
interface. The omnidirectional camera uses IEEE 1394 bus standard to provide the raw
images at the rate of 15 frames per second. The monocular, PMD camera and laser have
an USB interface and have a frame-rate of 30 frames per second. Sonar data are acquired
either through a serial or an USB interface. The data from the sensors are processed
in the platform layer which contains implementation based on the configuration of the
camera and the robot. The raw sensor data is thus pre-processed and down-sampled
which is then used for the segmentation routine. The segmented image is thus fed used
as input to extract meaningful image based features. Thus the raw image from the sensor
is converted to visual features upon which higher level algorithms are executed. The
algorithmic layer consists of all the higher level decision and control algorithms for the
robotic system. This consists of the different behavior learning algorithms which are
further used for behavior execution at runtime. This layer also consists of the localization
module which tracks the robot location in the map. The localization module is used
only for validation and visualization of the behavior performance and does not share any
information with the behavior or other modules in the system. The user interface layer
provides all the interaction between the robot and the teacher. This includes interface
hardware such as joystick, Microsoft Kinect and an external PC for remote teleoperation.

Omnidirectional
camera

Monocular

camera

PMD
camera

Sonar Laser

Image
segmentation

Behavior
execution

Behavior
learning

Localization

Joystick
Gesture
control

Remote
teleoperation

Sensor layer

Platform layer

Algorithmic layer

User interface Visualization

Feature
extraction

Figure B.1.: Software architecture used for the robotic navigation framework.

151

B. Software architecture

Figure B.2.: (a) Overview of the simulation architecture and (b) robot in a corridor environment with
and without obstacle together with its corresponding segmentation image and robot with homing area in
the vicinity indicated by two red markers 1m apart.

The user interface is predominantly used during the demonstration phase and is decoupled
during the autonomous navigation phase.

B.0.1. Robot simulation
The simulation environment is created with MATLAB and is used to visualize and build
personalized environment configurations with multiple obstacles. The kinematics of Pio-
neer 3DX mobile robot is determined by directly using its Proprietary simulation software
MobileSim distributed with the development kit ARIA [Mob]. ARIA is a C++ library
to dynamically control the robot and access the integrated proximity sensors. Matlab-
Aria interface developed by [Pos], uses MEX binaries to access the robot functionality via
MATLAB. The simulation starts with the user positioning the robot within the designed
environment, along with MobileSim. The velocity or motion commands from Matlab are
first sent to Mobilesim. The updated new position from Mobilesim is then read and is
correspondingly used to set the next robot position in the simulation. The simulation is
visualized with a birds eye view of the robot and its environment to the user. A segmented
omnidirectional image of the virtual world is provided by projecting the floor and the ob-
stacle points from the map onto camera coordinates using the omnidirectional camera
model. Calibration and camera parameter estimation is done using the calibration tool-

152

box of [SMS06]. The simulation facilitates changes to the geometry of the environment
and addition and reconfiguration of obstacles. The reprojected segmented image provides
the basis on which the robot local environment is segmented into floor and obstacles.
The motion of the simulated robot is based on the kinematic model of a Pioneer 3DX
mobile robot equipped with an omnidirectional camera with a 75◦ field of view directed
towards the floor. Figure B.2 shows overview of the simulation architecture along with
the different environmental configurations and manual design of obstacles within these
configurations.

153

C
Scenario classification

C.1. Scenario classification with probabilistic neural
networks

In the hidden layer; centered on every training instance, a Gaussian is used to determine
the influence of the neighboring points on the determination of the class in the pat-
tern/summation layer. Presented with an input, the distances of the input to the training
inputs are computed in the first layer and applies a radial basis function kernel using
the spread or the standard deviation. For scenario classification using PNN, the optimal
value of the Gaussian standard deviation is done by varying it from 0.1 to 1. For every
spread values, a 10-fold cross-validation is performed and one with the lowest test mis-
classification error is identified as the optimal value. Fig. C.1 shows the cross-validation
error recorded for different values of standard deviation.

C.2. Extended experimental validation
Section 5.1.3 presented the classification performance of the different scenario classifica-
tion models in an indoor corridor environment. The extended experimental validation of
the scenario classifiers in other diverse indoor environments are presented here. Fig. C.3
shows the results of scenario classified while wandering an open foyer. The central foyer
is rightly classified as open room by PNN, RG and RF, with the connecting pathways
as corridors. At every pathways and its dead ends, the scenario classification follows the

Figure C.1.: 10-fold cross-validation error on different values of spread (Gaussian standard deviation)
with a PNN.

155

C. Scenario classification

Figure C.2.: Path traced by the robot wandering an office corridor environment and the corresponding
scenario classified by SOM.

Figure C.3.: Path traced by the robot wandering an open space foyer environment and the corresponding
scenario classified by the different algorithms trained on visual features.

156

C.2. Extended experimental validation

Figure C.4.: Path traced by the robot wandering the an open space foyer environment and the corre-
sponding scenario classified by the different algorithms trained on principal components.

same pattern as with the corridor environment, thus exhibiting consistency across diverse
indoor environment. The experiment also shows the robustness of the classifiers against
different texture and lighting conditions as foyer in contrast to the corridor environment
is illuminated with sunlight. Similar to the performance in the corridor, PNN and RF
show the best performance followed by RG and NB. Fig. C.4 shows the scenario clas-
sified by the second group of classifiers trained with their principal components. In an
open environment, where the variations in geometry are not frequent, PCA based sce-
nario classification outperforms the visual features based classifiers. In contrast to the
performance in corridor environment, a foyer environment does not present scenarios like
going through a door way where the orientation of the robot plays a role in scenario
identification. All the four classifiers are quite consistent with principal components in
a foyer environment. Scenario classification with SOM exhibits good performance with
both three and four premonitions. Clustering with four classes is more evident here,
where entering and exiting the path way are considered as different scenarios. From the
image one can see that by training on all the available demonstration data, the classifi-
cation accuracy is more consistent and robust than its other counterpart. A final run is
evaluated in a relatively smaller foyer environment. The environment is less illuminated
and has presents a different texture and appearance to the other two. The experimental
results with visual features, principal components and SOM are shown in Fig. C.6 and
C.7. The performance of the classifiers follow the same trend as in other scenarios with

157

C. Scenario classification

Figure C.5.: Path traced by the robot wandering the an open space foyer environment and the corre-
sponding scenario classified by SOM.

PNN and RF at the top. For completeness, Fig. C.7 shows the classification with three
and four classes identified from the data by SOM. Interesting to note is that with four
class SOM trained on 135 images, the foyer is predominantly classified as scenario three
and four and not scenario two which resembles the open room scenario. Compared with
the classification results of a larger foyer, we can notice that SOM is able to distinguish
the difference in the lack of geometry against a standard open room scenario. Evaluation
results with classes 3 and 4 for SOM trained with all the data correspond well to the
scenario clustering.

C.2.1. Extended experimental results
This section presents more extended experimental results carried out using the scenario
and context specific models [NPHB11a]. Fig. C.8(I) shows an instance of a prototypical
obstacle avoidance scenario in the corridor. Two schemes are shown. In both the cases,
the first level scenario classification is performed by RG whereas the action selection is
first tested with a scenario specific ANN and then with LCSS based context matching.
Starting from an identical initial pose, both schemes successfully circumnavigate the ob-
stacle with minor variations in the exact trajectory. Executing with ANN, the robot turns
sharply right at the beginning and overshoots the center line because of the detected free

158

C.2. Extended experimental validation

Figure C.6.: Path traced by the robot wandering a narrower foyer environment and the corresponding
scenarios classified based on visual features and principal components.

Figure C.7.: Path traced by the robot wandering a narrower foyer environment and the corresponding
scenarios clustered by SOM.

159

C. Scenario classification

Iterations
C
O
L

Sc
en

ar
io

(b)

S
R

OR
OL

LC
on

te
xt

(a)

C
O
L

Iterations

Iterations

ANN

Context
Matching

I II III

(a)

C
O
L

Iterations

C
O
L

Iterations

(b)

S
R

OR
OL
L

Iterations

ANN
Context
Matching

(a)

C
O
L

Iterations

C
O
L

Iterations

(b)

S
R

OR
OL
L

Iterations

ANN
Context
Matching

Figure C.8.: (I) Scenario 1: Known corridor. (a) Artificial neural networks and (b) context matching and
prediction, (II) Scenario 2: Unknown corridor. (a) Artificial neural networks and (b) context matching
and prediction, (III) Scenario 4: Cluttered environment. (a) Artificial neural networks and (b) context
matching and prediction

1

4

5

1

2

4

3

5

3

4

54
Part II Part III

C

O

L

Iterations

Sc
en

ar
io

1 2

3

Part I

C

O

L

Iterations

Sc
en

ar
io

Figure C.9.: Scenario 3: Unknown foyer scenario with artificial neural networks

space on the right hand side courtesy of the open door. This is directly correlated to the
initial incorrect and misleading scenario classification as open room or cluttered environ-
ment. Nevertheless the associated trained behaviors in spite of the proposed suboptimal
actions still avoid collisions. With trajectory matching and prediction, the robot traverses
relatively smoothly in avoiding the obstacle with a consistently correct classified scenario
and thus correct selection of the best matching subsequence of reference trajectories. Sim-
ilar performance is seen when testing it in an unseen corridor where no training examples
exist (Fig. C.8(II)). From the figure it is apparent that both methods are able to gener-
alize successfully to the new corridor but exhibit a higher scenario misclassification rate.
This misclassification is due to the similarity in color and intensity between the floor and
the obstacles resulting in less accurate free space segmentation. Nevertheless the scheme
is robust enough to avoid the obstacle. Fig. C.9 shows one such successful traversal in a
foyer environment not presented during training under control of the ANN. The foyer is
insofar challenging for action prediction as it contains a mixture of corridor, open room
and cluttered geometries. From the figure it is apparent that the starting pose is classi-
fied as a corridor (Part I) and the associated acquired behavior guides the robot towards
the corridor center. Upon reaching the center of the foyer (position 3), the classification
switches between cluttered and open room environment (Part II). On encountering a cor-
ner between position 4 and 5, an obstacle avoidance behavior dominates that returns the
robot to the foyer center.
To further ascertain the performance of the learned behaviors, two more experimental re-

160

C.2. Extended experimental validation

CORRIDOR 1 CORRIDOR 2
TRANSITION

CORRIDOR 2

CORRIDOR 1

L

O

C

Sc
en

ar
io

 l
ab

el
Iterations

Figure C.10.: Scenario 5: Crossing corridors with artificial neural networks

sults are analyzed. Fig. C.8(III) shows the responses of the ANN and trajectory matching
scheme in an environment cluttered with boards and obstacles. Both methods success-
fully circumnavigate the obstacles, nevertheless with trajectory matching the robot passes
the obstacles at close range whereas the ANN based behavior maintains a safer distance.
The stability of the ANN based model is further tested by traversing from one corridor
to another corridor. Generally because of the abrupt changes in texture and appearance
among the corridor, the segmentation first deteriorates in the transition zone as it re-
quires an update of the internal floor model for segmentation. Once the model histogram
is adapted to the new texture and color the segmentation error drops. Fig. C.10 shows
one such traversal between two corridors.

161

D
Supervised learning of visual behaviors

D.1. Artificial neural networks

Corridor Following

Chapter 6 presented a detailed analysis of modeling corridor following using ANN. Of the
twenty available corridor following demonstrations, different subsets of trajectories are
used to generate a policy. To illustrate the procedure used to train and test a corridor
following, we consider the situation where only two trajectories; one from either side of
the corridor are available (Fig. D.1). The demonstration examples only partially cover
the perceptual state space and thus permits a detailed testing on unseen data. ANN
is trained with different number of hidden neurons ranging from 1 to 9. Every model
trained is further tested against the remaining eighteen unseen trajectories. Both the
training and test MSE and NMSE are shown in Fig. D.2. The plot shows that training
errors incrementally improve with more neurons. The low training NMSE suggests that
the model has clearly overfitted the training data. This can be seen from the poorer
testing errors. With five neurons, the ANN achieves the minimum MSE and second
lowest NMSE on the test data. Nevertheless, a NMSE of 0.85 and 0.89 are still high
which indicates only a moderate reproduction of the demonstrated policy indicated by
the 10− 15% improvement in the residual variance of the prediction. Fig. D.3 shows the
predicted rotational velocity against the actual targets for all the twenty demonstrations.

Figure D.1.: (a) Two training trajectory demonstrations recorded from either side of the corridor and (b)
the corresponding perceptual trace. Dark lines correspond to the training data.

163

D. Supervised learning of visual behaviors

Figure D.2.: Two training trajectories: Training and testing errors recorded for different number of hidden
neurons. (a) Training MSE and NMSE and (b) testing MSE and NMSE. Boxed errors correspond to the
lowest errors.

For each of the trajectories the corresponding robot trajectory recorded in the simulation
are also shown. The plots show that the generalization deteriorates for the trajectories
for starting poses very close to the corridor center and with orientation error β. This is
mainly attributed to the lack of information in the training data set.
Figure D.4 shows the different sets of training data used. Each training data is assigned
a label which is further cross-referenced for the remaining of this chapter. Every set of
training data is checked for the appropriate number of neurons starting from 1 till 9. The
NMSE recorded on the unseen trajectories is used to gauge the best model. Table D.1
shows the testing errors recorded for the different number of neurons across all the trained
models. One can notice from the errors that a low MSE does not mean that the policy
reproduction is better. This can arise from the type and the number of trajectory used for
testing. Demonstrations starting close to the corridor center need only a small rotational
velocity to get to the center whereas the ones starting at the periphery of the corridor need
a larger rotational velocity at the beginning to reach the goal faster. These differences
can give MSE that can be easily misinterpreted. Hence, we use NMSE to determine the
quality of the model against unseen data. Minimum NMSE on the test data set is used
to pick the appropriate number of neurons for the corresponding training data set used.
Figure D.5 shows the trajectory traversed by the different ANN models. The starting
configuration on which the model is trained is shown with a darker trajectory. The figure
shows that models trained with trajectories that provide knowledge about both hard and
soft turn to the corridor center perform the best. Models that learn either one of the
turn maneuvers perform poorly to the unseen examples. This shows that it is not the
number of trajectories that is important rather the quality in the diversity of the training
trajectories that define the robustness of the model and thereby the behavior policy.

164

D.1. Artificial neural networks

Figure D.3.: ANN prediction for all the corridor following demonstrations. The boxed trajectories are
used for training and the remaining for testing generalization.

Obstacle avoidance

Obstacle avoidance is accomplished by controlling both the translational and rotational
velocity. The translational velocity is demonstrated by slowing the robot approaching the
obstacle. ANN is trained on the data with different set of neurons ranging from one and
five to pick the model with the lowest NMSE against the unseen trajectory. The input to
the model is the recorded critical distance dcrit and the output is the velocity of the robot
normalized to its maximum vop = v/vmax. Table D.2 shows the recorded training and test
MSE and NMSE. In addition to the neural network, a linear regression fit of the training
data is also analyzed. The table also shows the generalization training and testing errors.
A linear second order polynomial is fit to the data to compute the three parameters. The
input data is standardized for zero mean first and then fitted. For an input x, the fitted
result takes the form: f(x) = p1.x2 + p2.x+ p3, where p1 = −0.0688, p2 = 0.3453 and
p3 = 0.6291 are the regression coefficients. The turn rate of the robot is computed for both
model predicting the rotational velocity and conversely predicting the path curvature. As
in the case of corridor following, different sets of trajectories are used for training. Four
left turns (2 soft and 2 hard left turns) and four right turn maneuvers (2 soft and 2
hard right turns) for obstacle avoidance are demonstrated. The different training sets are
compiled together for training are,

• I : Two training trajectories: one hard left and one hard right turns,

165

D. Supervised learning of visual behaviors

Figure D.4.: Summary of the different demonstration sets used for learning corridor following

Figure D.5.: Reproductions of all the models. The training configurations are indicated with darker color.
The labels correspond to the demonstration subset introduced in Figure D.4

• II: Four training trajectories: all left turns,

• III: Four training trajectories: all right turns and

• IV: Two training trajectories: one soft left and one soft right turn.

The following table D.3 shows the recorded error encountered for the different number
of neurons during training. The MSE and NMSE on the training and the test data
are correspondingly tabulated. The errors show that with only two trajectories with
each an example of a left and right side obstacle avoidance, the model is quite good
in generalization. We achieve an improvement in the error residual variance of almost
84 − 85% for data sets I and II. Similar trend is also seen in models predicting path
curvature instead of the rotational velocity. For models that are only trained on a single
sided turn, behave poorly on the unseen data.

166

D.2. Homing

Figure D.6.: Summary of the different demonstration sets used for learning homing

D.2. Homing
The goal of homing behavior is to approach the goal or the target location. In a priori
known environment, this would account to searching the state space for an optimal path
with minimum cost. In our case, there is no a priori information neither about the
environment the robot traverses nor about the location of the goal point. The goal point
behavior is activated only on detecting the presence of the goal point markers. Thus
the behavioral action to reach the goal point is done purely based on the perceptual
information. A total of eighteen demonstration are generated to test the homing behavior
(See Figure 6.16). Different sets of training trajectories used for learning the homing
behavior is shown in the figure D.6. The idea here is to find out how many and what
examples suffice for capturing the essence of the behavior. Table D.4 shows the training
and test errors recorded for different number of neurons for all the training subsets.
Compared to previous two behaviors, the NMSE on the test set is quite high for almost
all the different subsets used for training. This is mainly due to the dynamics nature of the
policy in taking the corrective action very path thereby taking the shortest route to the
goal rather than follow the trend of paths shown in demonstration. Human demonstrations
of goal point behaviors tend to drive the robot straight and slowly increase the path
curvature to approach the goal. The policy on the other hand reacts to the error in the
perceptual variables immediately to move towards the goal. This is seen in from the
validation of the learned model on unseen starting positions or typically starting from an
untrained state space location. Figure D.7 shows the reproduction trajectory of all the
trained models. This concurs to the previous argument in that all the model drive the
robot to the goal quite robustly. The high generalization error is mainly attributed to the

167

D. Supervised learning of visual behaviors

Figure D.7.: Reproduction of the different ANN homing models.

Figure D.8.: BIC values for different number of Gaussians for the learning the behavioral dynamics of
corridor following, obstacle avoidance and homing using GMM and SEDS.

biased path taken by the robot starting from unknown starting configurations.

D.3. Gaussian mixture models

D.3.1. Number of Gaussians
The disadvantage of Gaussian mixture models and Expectation Maximization is that the
number of Gaussians needed to model the data is not known. BIC computes the log
likelihood of the data for the model parameters and thereby describes the accuracy and
the complexity of the model. BIC is given by,

BIC = −2L+ (logN) np

where L is the log likelihood of the data for the model parameters, N is the number of
data points and np denotes the number of parameters of the GMM. For the three visual
behaviors the number of Gaussians are varied between one and ten and the optimal
number of Gaussians are determined. Fig. D.8 shows the BIC values for the different
number of Gaussians for the three behaviors. The figure shows, nine Gaussians for corridor
following, eight for obstacle avoidance and ten for homing have the lowest BIC value.

D.3.2. Modeling translational velocity
The translational velocity for obstacle avoidance behavior is demonstrated through a
stop behavior. The robot starting at a safe distance from the obstacle is moved forward
while the teacher slows the speed of the robot when reaching closer. The robot is then
eventually stopped at a critical distance in front of the obstacle. The minimum distance

168

D.3. Gaussian mixture models

Figure D.9.: GMM modeled on the translational velocity demonstrations. Shown are also the reproduc-
tions generated using GMR

to the obstacle dmin computed from the segmented image is used to learn the translational
velocity. The original translational velocity is normalized with the maximum and modeled
with GMM. Two such demonstrations are used as training data and the corresponding
Gaussian fit is shown in Fig. D.9. The reproduction trajectory is generated by regressing
the GMM by using dmin as the input variable.

169

D. Supervised learning of visual behaviors

Table
D
.1.:Training

and
testing

errors
recorded

for
the

different
num

ber
ofneurons

for
allthe

training
subsets

ofcorridor
follow

ing
behavior

D
em

o
Set

Training
M
SE

[◦/sec] 2
Testing

M
SE

[◦/sec] 2
N
um

ber
ofneurons

N
um

ber
ofneurons

1
2

3
4

5
6

7
8

9
1

2
3

4
5

6
7

8
9

I
1.43

1.1
0.29

0.90
0.39

0.26
0.17

0.15
0.18

15.3
25.9

92.7
37.0

194.7
59.2

161.3
196.7

39.8
II

4.03
3.51

2.26
2.50

2.18
1.54

2.22
2.21

2.04
7.74

14.06
29.48

11.2
151.6

128.6
44.4

24.6
14.5

III
6.47

6.46
6.38

5.82
5.66

5.64
5.04

4.97
5.48

2.92
2.73

3.07
3.35

4.25
3.78

4.41
3.25

2.97
IV

5.64
3.05

10.1
5.42

4.02
2.95

2.82
2.86

4.57
6.18

11.3
8.04

6.60
7.48

11.14
12.33

15.59
9.69

V
2.81

2.94
2.72

1.03
2.54

1.39
0.99

1.84
1.37

6.42
6.60

6.75
8.42

6.37
51.7

16.16
17.01

19.82
V
I

4.31
2.48

2.17
1.18

0.78
0.78

1.40
0.70

0.64
305

12.7
426

15.7
18.7

50.8
901

90.8
158

V
II

5.41
3.25

1.82
1.09

1.17
0.75

0.81
0.78

0.78
21

6.6
77.5

14.96
8.50

244
28.1

47.9
36.9

D
em

o
Set

Training
N
M
SE

Testing
N
M
SE

N
um

ber
ofneurons

N
um

ber
ofneurons

1
2

3
4

5
6

7
8

9
1

2
3

4
5

6
7

8
9

I
0.82

0.77
0.29

0.48
0.36

0.25
0.13

0.13
0.21

0.66
1.19

4.97
1.65

9.91
3.03

8.36
10.2

2.0
II

1.6
1.12

0.73
0.66

0.86
0.54

0.82
0.91

0.69
0.35

0.70
1.20

0.63
6.99

4.94
2.27

0.91
0.79

III
0.35

0.34
0.34

0.31
0.31

0.29
0.27

0.28
0.29

3.81
3.54

4.1
4.3

5.6
4.56

5.5
3.73

3.54
IV

0.30
0.14

0.44
0.27

0.19
0.13

0.13
0.14

0.23
0.94

0.98
0.66

0.90
0.98

0.94
1.03

1.16
1.04

V
0.05

0.05
0.05

0.02
0.05

0.02
0.02

0.03
0.02

0.85
0.93

0.96
1.12

0.89
4.76

1.42
1.72

1.58
V
I

0.21
0.10

0.09
0.04

0.02
0.02

0.04
0.02

0.01
8.2

0.82
31

1.19
1.17

3.77
35

5.39
7.63

V
II

0.11
0.06

0.03
0.02

0.02
0.01

0.01
0.01

0.01
2.5

0.85
4.4

1.1
1.04

12
1.7

2.6
2.13

170

D.3. Gaussian mixture models

Ta
bl
e
D
.2
.:
Tr

ai
ni
ng

an
d
te
st
in
g
er
ro
rs

re
co
rd
ed

fo
r
th
e
di
ffe

re
nt

nu
m
be

r
of

ne
ur
on

s
fo
r
al
lt

he
tr
ai
ni
ng

su
bs
et
s
of

st
op

be
ha

vi
or

an
d
th
e
re
gr
es
sio

n
er
ro
rs
.

M
od

el
Tr

ai
ni
ng

M
SE
×

10
−

4
Te

st
in
g
M
SE

N
um

be
r
of

ne
ur
on

s
N
um

be
r
of

ne
ur
on

s
1

2
3

4
5

1
2

3
4

5
A
N
N

7.
04

1.
43

0.
46

0.
26

0.
09

0.
01
9

0.
01
9

0.
02

0.
02

0.
02

R
eg
re
ss
io
n

0.
00
13

0.
01
97

M
od

el
Tr

ai
ni
ng

N
M
SE

Te
st
in
g
N
M
SE

N
um

be
r
of

ne
ur
on

s
N
um

be
r
of

ne
ur
on

s
1

2
3

4
5

1
2

3
4

5
A
N
N

0.
00
59

0.
00
12

0.
00
04

0.
00
02

0.
00
01

0.
16
1

0.
15
9

0.
16
7

0.
16
7

0.
16
7

R
eg
re
ss
io
n

0.
01
08

0.
16
3

171

D. Supervised learning of visual behaviors

Table D.3.: Training and testing errors recorded for the different number of neurons for all the training
subsets. Both models predicting the rotational velocity and curvature are shown.

Predicted output: rotational velocity ω[◦/sec]
Demo Set Training MSE [◦/mm]2 Testing MSE [◦/mm]2

Number of neurons Number of neurons
1 2 3 4 5 1 2 3 4 5

I 3.66 1.45 2.46 1.32 1.17 6.62 6.80 7.33 8.09 8.71
II 2.39 2.15 2.01 1.62 1.87 35.8 38.2 33.8 22.6 39.8
III 2.7 2.75 2.60 2.12 1.53 29.0 46.9 59.7 21.3 151
IV 2.98 0.91 3.14 0.68 2.45 4.77 4.91 5.17 4.76 4.35

Demo Set Training NMSE Testing NMSE
Number of neurons Number of neurons

1 2 3 4 5 1 2 3 4 5
I 0.14 0.05 0.09 0.05 0.04 0.18 0.17 0.16 0.18 0.19
II 0.25 0.22 0.19 0.15 0.19 > 1 > 1 > 1 > 1 > 1
III 0.21 0.23 0.2 0.16 0.11 > 1 > 1 > 1 > 1 > 1
IV 0.11 0.03 0.12 0.02 0.09 0.18 0.13 0.20 0.14 0.15

Predicted output: curvature κ[◦/mm]

Demo Set Training MSE ×10−5[◦/mm]2 Testing MSE ×10−5[◦/mm]2

Number of neurons Number of neurons
1 2 3 4 5 1 2 3 4 5

I 17 5.8 12 5.8 5.6 25 35 70 32 45
II 10 9.7 14 8.07 9.17 160 170 170 140 160
III 12 11 11 9.3 11 130 250 310 160 162
IV 12 4.2 7.3 4.2 4.8 22 22 17 40 30

Demo Set Training NMSE Testing NMSE
Number of neurons Number of neurons

1 2 3 4 5 1 2 3 4 5
I 0.15 0.04 0.10 0.04 0.04 0.17 0.18 0.26 0.16 0.19
II 0.27 0.23 0.70 0.18 0.22 > 1 > 1 > 1 > 1 > 1
III 0.22 0.2 0.23 0.15 0.20 > 1 > 1 > 1 > 1 > 1
IV 0.10 0.03 0.06 0.03 0.03 0.19 0.14 0.13 0.20 0.16

172

D.3. Gaussian mixture models

Ta
bl
e
D
.4
.:
Tr

ai
ni
ng

an
d
te
st
in
g
er
ro
rs

re
co
rd
ed

fo
r
th
e
di
ffe

re
nt

nu
m
be

r
of

ne
ur
on

s
fo
r
al
lt

he
tr
ai
ni
ng

su
bs
et
s
of

ho
m
in
g
be

ha
vi
or

D
em

o
Se
t

Tr
ai
ni
ng

M
SE

[◦
/

se
c]

2
Te

st
in
g
M
SE

[◦
/

se
c]

2

N
um

be
r
of

ne
ur
on

s
N
um

be
r
of

ne
ur
on

s
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
I

15
.5

15
.3

10
.2

9.
4

9.
9

9.
7

8.
9

9.
94

12
.1

-
-

-
-

-
-

-
-

-
II

4.
24

3.
38

3.
15

1.
93

1.
85

1.
60

1.
77

2.
14

1.
72

52
.1

64
.1

52
.3

34
.8

34
.8

34
.3

44
.0
4

88
.0

72
.6

II
I

17
.2

10
.6

17
.2

4.
52

4.
3

4.
4

4.
3

4.
04

3.
99

16
.9
5

23
.1

20
.0

25
.8

30
.2

27
.2

30
.4

76
.4

10
3.
7

IV
13
.7

13
.2

9.
8

9.
32

6.
82

8.
60

8.
73

11
.9
1

9.
17

44
.4

26
.1
9

12
9.
6

31
.5

41
.3

39
7

11
4

22
.2

16
9

V
14
.4

15
.7

14
.8

7.
7

7.
4

3.
3

6.
1

10
.7

4.
1

49
54

>
1k

30
38

63
60

70
10
9

V
I

2.
25

1.
62

1.
07

0.
66

0.
4

1.
04

0.
36

0.
6

0.
28

39
76

23
50

19
.8

25
.4

10
9

24
.4

35
.1

D
em

o
Se
t

Tr
ai
ni
ng

N
M
SE

Te
st
in
g
N
M
SE

N
um

be
r
of

ne
ur
on

s
N
um

be
r
of

ne
ur
on

s
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
I

0.
99

0.
94

0.
55

0.
57

0.
53

0.
54

0.
42

0.
56

0.
60

-
-

-
-

-
-

-
-

-
II

0.
49

0.
43

0.
38

0.
22

0.
21

0.
18

0.
21

0.
25

0.
18

2.
6

2.
9

2.
5

1.
5

1.
8

1.
9

2.
06

4.
0

2.
48

II
I

0.
80

0.
43

0.
91

0.
17

0.
12

0.
11

0.
13

0.
13

0.
10

2.
33

2.
23

2.
8

2.
14

2.
63

2.
30

2.
68

10
.7

12
.7

IV
0.
22

0.
21

0.
16

0.
15

0.
11

0.
14

0.
15

0.
19

0.
11

5.
7

3.
0

20
2.
90

4.
2

79
18

2.
3

29
V

0.
18

0.
20

0.
19

0.
10

0.
09

0.
04

0.
07

0.
13

0.
05

6.
1

6.
4

36
2.
6

3.
7

6.
1

4.
7

7.
4

13
.5
4

V
I

0.
08

0.
05

0.
03

0.
02

0.
01

0.
03

0.
01

0.
02

0.
01

2.
5

4.
06

1.
72

2.
44

1.
3

1.
9

5.
2

1.
55

2.
2

173

E
Image based door detection

We present one approach to detect and model doors within an indoor environment. There
exists many approaches [AKPT04]; [HBB09] in literature over the recent years where the
authors fuse the information from a laser and a panoramic camera to build models of
doors. Trained on visual and proximity features of positive and negative examples of a
door, the model is used to predict the presence of a door within an image. Another pure
visual approach can be read in [PNHB09], where templates of typical door panels within
an omnidirectional image are matched to detect the door. The extracted door panels are
then used to execute a door passing behavior. The presented method here is a mixture of
both the above works. Our experimental setup consists of only an omnidirectional camera
facing upwards with a 360 ◦ perspective. The omnidirectional image is converted into a
panoramic view to obtain a perspective, undistorted image. Positive and negative door
examples are collected from panoramic images and global HOG descriptors are extracted.
Fig. E.1 shows one omnidirectional image with its corresponding panoramic image. Shown
are also two prototypical positive and one negative door examples.
We use HOG descriptors to extract door features from the training data. HOG [DT05] is
a feature extractor that counts the number of gradient orientations in localised portions
of an image. The method involves decomposing the image into small square segments and
compute the histogram of oriented gradients in each cell. Depending on the resolution
of the descriptors needed, the cell size can be varied. With higher cell resolution, HOG
captures finer details and presents accurate information about the image. Nevertheless,
this backfires when we match two histograms even with smallest amount of noise. Large

Figure E.1.: (a) Omnidirectional image of a corridor, (b) the corresponding panoramic view of the view,
(c) positive examples of door and (d) negative example of a door.

175

E. Image based door detection

Figure E.2.: (a) A door image and (b) the corresponding HOG descriptor with cell size of 8.

Figure E.3.: (Left) Feature importance of RF door classifier and (Right) bias confusion matrix of the
classifier.

cell resolution also looses far too many details thereby making detection unstable. A cell
size of 8 is used to compute the histogram. Fig. E.2 shows a door image and visualizes
the standard extracted HOG on them. A total of 46 door and 41 non-door examples
used to generate the training data for learning a RF classifier. With 100 trees to learn the
classification, RF achieves a misclassification rate of 0.022%. Fig. E.3 plots the individual
feature importance of the HOG descriptors together with the bias confusion matrix.

Figure E.4.: Two examples of door detection. Shown are the panoramic image overlaid with the cumulative
door probability predicted by RF and the final door regions obtained after thresholding.

The learned model is tested on the omnidirectional image to test for the door detector’s
performance. The model is tested on several images taken of different doors. The om-
nidirectional image is first converted to panoramic image and a mask of the same size
as training door image is sled over it. The probability of the image window containing
the door is cumulatively added and all regions with a probability of higher than 0.7 are
considered to contain the floor. Fig. E.4 shows one example of the door detection per-
formance. The successful performance of the classifier makes it a strong candidate to be

176

implemented for a door passing behavior in the future. With in the framework of LfD, the
mentioned methods in this thesis can be successfully extended to a door passing behavior
as well.

177

Bibliography

References
Parts of the material presented in this work has been originally published in conferences
and journals. These publications as well as the resources by other researchers are sum-
marized in the following list:

[ABV07] B. D. Argall, B. Browning, and M. Veloso. “Learning by demonstration
with critique from a human teacher”. In: ACM/IEEE international
conference on Human-robot interaction. ACM. 2007, pp. 57–64.

[ACG10] S. K. Agrawal, X. Chen, and J. C. Galloway. “Training special needs
infants to drive mobile robots using force-feedback joystick”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2010,
pp. 4797–4802.

[ACH05] C. A. Acosta-Calderon and H. Hu. “Robot imitation: Body schema
and body percept”. In: Applied Bionics and Biomechanics 2.3 (2005),
pp. 131–148.

[ACVB09] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. “A survey
of robot learning from demonstration”. In: Robot. Auton. Syst. 57.5
(2009), pp. 469–483.

[AKPT04] D. Anguelov, D. Koller, E. Parker, and S. Thrun. “Detecting and Mod-
eling Doors with Mobile Robots”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2004, pp. 3777–3784.

[Alt03] P. Althaus. “Indoor navigation for mobile robots: Control and repre-
sentations”. PhD thesis. KTH, 2003.

[AMS97] C. G. Atkeson, A. W. Moore, and S. Schaal. “Locally weighted learning
for control”. In: Artificial intelligence review 11.1-5 (1997), pp. 75–113.

[AMW05] O. Aycard, J-F. Mari, and R. Washington. “Learning to automatically
detect features for mobile robots using second-order Hidden Markov
Models”. In: arXiv preprint cs/0501068 (2005).

[AN04] P. Abbeel and A. Y. Ng. “Apprenticeship learning via inverse rein-
forcement learning”. In: International conference on Machine learning
(ICML). ICML ’04. Banff, Alberta, Canada, 2004.

179

E. Image based door detection

[Arg09] B. D. Argall. “Learning mobile robot motion control from demon-
stration and corrective feedback”. PhD thesis. University of Southern
California, 2009.

[Ark98] R.C. Arkin. Behavior-based robotics. 1998.
[BB11] R. Battiti and M. Brunato. Reactive Business Intelligence. From Data

to Models to Insight. Via della Stazione 27, I-38123 Trento - Italy:
Reactive Search Srl, Feb. 2011.

[BBB99] G. Bontempi, M. Birattari, and H. Bersini. “Lazy learning for local
modelling and control design”. In: International Journal of Control
72.7-8 (1999), pp. 643–658.

[BC94] D. J. Berndt and J. Clifford. “Using Dynamic Time Warping to Find
Patterns in Time Series”. In: KDD Workshop’94. 1994, pp. 359–370.

[BCDS] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Handbook of Robotics
Chapter 59: Robot Programming by Demonstration.

[BCFHLSST99] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D.
Schulz, W. Steiner, and S. Thrun. “Experiences with an interactive
museum tour-guide robot”. In: Artificial intelligence 114.1 (1999),
pp. 3–55.

[Bel57] R. Bellman.Dynamic Programming. 1st ed. Princeton, NJ, USA: Prince-
ton University Press, 1957.

[BFOO08] F. Bonin-Font, A. Ortiz, and G. Oliver. “Visual Navigation for Mo-
bile Robots: A Survey”. In: J. Intell. Robotics Syst. 53.3 (Nov. 2008),
pp. 263–296.

[BH10] E. A. Billing and T. Hellström. “A formalism for learning from demon-
stration”. In: Paladyn 1.1 (2010), pp. 1–13.

[Bic00] E. Bicho. “Dynamic Approach to Behavior-Based Robotics: design,
specification, analysis, simulation and implementation”. PhD thesis.
2000.

[Bil13] A. Billard. “Formalism for Learning from Demonstration”. In: Schol-
arpedia (2013).

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006. isbn: 0387310738.

[Bra86] V. Braitenberg. Vehicles: Experiments in synthetic psychology. MIT
press, 1986.

[Bro86] R. A. Brooks. “A Robust Layered Control System for a Mobile Robot”.
In: IEEE Journal of Robotics and Automation 2.1 (1986), pp. 14–23.

[BS02] P. Buschka and A. Saffiotti. “A virtual sensor for room detection”. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Vol. 1. 2002, 637–642 vol.1.

180

References

[BTVG06] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust
features”. In: Computer Vision, (ECCV). Springer, 2006, pp. 404–417.

[Cal09] S. Calinon. Robot Programming by Demonstration: A Probabilistic Ap-
proach. EPFL/CRC Press, 2009.

[Cam95] T. Camus. Real-Time Optical Flow. Tech. rep. MINNEAPOLIS MIN-
NESOTA, 1995.

[CBB03] G. Cielniak, M. Bennewitz, and W. Burgard. “Where is...? learning
and utilizing motion patterns of persons with mobile robots”. In: IJ-
CAI. 2003, pp. 909–914.

[CC00] L. F. Costa and R. M. Cesar Jr. Shape Analysis and Classification:
Theory and Practice. 1st. Boca Raton, FL, USA: CRC Press, Inc.,
2000.

[CC13] A. Cherubini and F. Chaumette. “Visual navigation of a mobile robot
with laser-based collision avoidance”. In: The International Journal of
Robotics Research 32.2 (2013), pp. 189–205.

[CD04] G. Cielniak and T. Duckett. “People recognition by mobile robots”.
In: Journal of Intelligent and Fuzzy Systems 15.1 (2004), pp. 21–27.

[Che09] S. Chernova. “Confidence-based robot policy learning from demon-
stration”. AAI3358060. PhD thesis. Pittsburgh, PA, USA, 2009.

[CHJH02] M. Campbell, A. J. Hoane Jr, and F. Hsu. “Deep blue”. In: Artificial
intelligence 134.1 (2002), pp. 57–83.

[CJSW01] H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang. “Color image segmen-
tation: advances and prospects”. In: Pattern Recognition 34.12 (Dec.
2001), pp. 2259–2281.

[CNPW98] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner. “Emergence
of functional modularity in robots”. In: From animals to animats 5
(1998), pp. 497–504.

[Cor96] P. Corke. Visual Control of Robots: High-Performance visual servoing.
Vol. 2. Mechatronics. Research Studies Press (John Wiley), 1996.

[CP07] K. Conn and R. A. Peters. “Reinforcement Learning with a Supervisor
for a Mobile Robot in a Real-world Environment”. In: International
Symposium on Computational Intelligence in Robotics and Automa-
tion (CIRA). 2007, pp. 73–78.

[DH02] J. Demiris and G. M. Hayes. “Imitation in animals and artifacts”. In:
ed. by K. Dautenhahn and C. L. Nehaniv. Cambridge, MA, USA: MIT
Press, 2002. Chap. Imitation as a dual-route process featuring predic-
tive and learning components: a biologically plausible computational
model, pp. 327–361.

[DK02] G. N. DeSouza and A. C. Kak. “Vision for mobile robot navigation: A
survey”. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 24.2 (2002), pp. 237–267.

181

E. Image based door detection

[DKM86] Y. Dupain, T. Kamae, and M. Mendés. “Can one measure the tem-
perature of a curve?” In: Archive for Rational Mechanics and Analysis
94 (2 1986), pp. 155–163.

[DN02] K. Dautenhahn and C. L. Nehaniv. “The correspondence problem”.
In: Imitation in Animals and Artifacts. Cambridge, MA, USA: MIT
Press, 2002.

[DR11] M. Deisenroth and C. E. Rasmussen. “PILCO: A model-based and
data-efficient approach to policy search”. In: International Conference
on Machine Learning (ICML). 2011, pp. 465–472.

[DT05] N. Dalal and B. Triggs. “Histograms of oriented gradients for human
detection”. In: IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Vol. 1. IEEE. 2005, pp. 886–
893.

[DW11] Y. Dong and D. L. Woodard. “Eyebrow shape-based features for bio-
metric recognition and gender classification: A feasibility study”. In:
International Joint Conference on Biometrics (IJCB). IEEE. 2011,
pp. 1–8.

[Elm90] J. L. Elman. “Finding structure in time”. In: Cognitive Science 14.2
(1990), pp. 179–211.

[FB81] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography”. In: Commununications of the ACM 24.6 (June 1981),
pp. 381–395.

[Fer11] D. A. Ferrucci. “IBM’s Watson/DeepQA”. In: SIGARCH Comput.
Archit. News 39.3 (June 2011).

[For02] J. R. N. Forbes. “Reinforcement learning for autonomous vehicles”.
PhD thesis. UNIVERSITY of CALIFORNIA, 2002.

[Fre10] D. Frejlichowski. “An experimental comparison of seven shape descrip-
tors in the general shape analysis problem”. In: Image Analysis and
Recognition. Springer, 2010, pp. 294–305.

[FSM09] D. J. Feil-Seifer and M. J. Matarić. “Human-Robot Interaction”. In:
ed. by Robert A. Meyers. Springer New York, 2009, pp. 4643–4659.

[FWTPK03] B. R. Fajen, W. H. Warren, S. Temizer, and L. Pack Kaelbling. “A
dynamical model of visually-guided steering, obstacle avoidance, and
route selection”. In: International Journal of Computer Vision 54.1-3
(2003), pp. 13–34.

[FZS09] J. Flusser, B. Zitova, and T. Suk. Moments and Moment Invariants
in Pattern Recognition. Wiley Publishing, 2009. isbn: 0470699876,
9780470699874.

[GHCB07] F. Guenter, M. Hersch, S. Calinon, and A. Billard. “Reinforcement
learning for imitating constrained reaching movements”. In: Advanced
Robotics 21.13 (2007), pp. 1521–1544.

182

References

[GL96] G. Z. Grudic and P. D. Lawrence. “Human-to-robot skill transfer using
the SPORE approximation”. In: IEEE International Conference on
Robotics and Automation (ICRA). Vol. 4. Apr. 1996, 2962 –2967 vol.4.

[Gro01] A. Großmann. “Continual learning for mobile robots”. PhD thesis.
PhD thesis, School, 2001.

[HB95] J. Hoff and G. Bekey. “An architecture for behaviour coordination
learning”. In: IEEE International Conference on Neural Networks.
Vol. 5. IEEE. 1995, pp. 2375–2380.

[HBB09] J. Hensler, M. Blaich, and O. Bittel. “Real-Time Door Detection Based
on AdaBoost Learning Algorithm.” In: Eurobot Conference. Ed. by A.
Gottscheber, D. ObdrzÃąlek, and C. T. Schmidt. Vol. 82. Communi-
cations in Computer and Information Science. Springer, 2009, pp. 61–
73.

[HBFT03] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. “A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale envi-
ronments from raw laser range measurements”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2003.

[Hof97] F. Hoffmann. “Evolutionary learning of mobile robot behaviors”. In:
the First Workshop on Frontiers in Evolutionary Algorithms FEA.
Vol. 97. Citeseer. 1997.

[Hol92] J. H. Holland. Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[HOT06] G. E. Hinton, S. Osindero, and Y-W. Teh. “A fast learning algorithm
for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–
1554.

[HTF01] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statisti-
cal learning: data mining, inference, and prediction: with 200 full-color
illustrations. New York: Springer-Verlag, 2001, p. 533.

[HVFF10] P. Henry, C. Vollmer, B. Ferris, and D. Fox. “Learning to navigate
through crowded environments”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2010, pp. 981–986.

[HWSK09] C. Hermes, C. Wohler, K. Schenk, and F. Kummert. “Long-term ve-
hicle motion prediction”. In: IEEE Intelligent Vehicles Symposium.
2009, pp. 652–657.

[INS02] A. K. Ijspeert, J. Nakanishi, and S. Schaal. “Learning Attractor Land-
scapes for Learning Motor Primitives”. In: NIPS. 2002, pp. 1523–1530.

[JAC97] S. D Jones, C. Andresen, and J. L. Crowley. “Appearance based pro-
cess for visual navigation”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Vol. 2. IEEE. 1997, pp. 551–
557.

183

E. Image based door detection

[Jae01] H. Jaeger. “The" echo state" approach to analysing and training re-
current neural networks-with an erratum note’”. In: Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report 148 (2001).

[Jae07] H. Jaeger. “Echo state network”. In: Scholarpedia 2.9 (2007), p. 2330.
[JLMMD06] L. Jun, A. Lilienthal, T. Martinez-Marin, and T. Duckett. “Q-RAN:

A Constructive Reinforcement Learning Approach for Robot Behav-
ior Learning”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2006, pp. 2656–2662.

[Jol02] I. T. Jolliffe. Principal Component Analysis. Second. Springer, Oct.
2002.

[KBP13] J. Kober, D. Bagnell, and J. Peters. “Reinforcement Learning in Robotics:
A Survey”. In: (2013).

[KCB97] J. Košecká, H. I. Christensen, and R. Bajcsy. “Experiments in behav-
ior composition”. In: Robotics and Autonomous systems 19.3 (1997),
pp. 287–298.

[KFD95] M. Kaiser, H. Friedrich, and R. Dillmann. “Obtaining Good Perfor-
mance From A Bad Teacher”. In: International Conference On Ma-
chine Learning, Workshop On Programming By Demonstration. 1995.

[KH07] T. Kohonen and T. Honkela. “Kohonen network”. In: Scholarpedia 1
(2007), p. 1568.

[KHP11] K. Kampa, E. Hasanbelliu, and J. C. Principe. “Closed-form cauchy-
schwarz PDF divergence for mixture of Gaussians”. In: International
Joint Conference on Neural Networks (IJCNN). 2011, pp. 2578–2585.

[KIOIN02] R. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu. “Devel-
opment and evaluation of an interactive humanoid robot”. In: IEEE
International Conference on Robotics and Automation (ICRA). Vol. 2.
IEEE. 2002, pp. 1848–1855.

[KJ97] R. Kohavi and G. H. John. “Wrappers for Feature Subset Selection”.
In: Artificial Intelligence 97.1-2 (1997), pp. 273–324.

[KL51] S. Kullback and R. A. Leibler. “On information and sufficiency”. In:
The Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

[KNCC11] P. Kormushev, D. N. Nenchev, S. Calinon, and D. G. Caldwell. “Upper-
body Kinesthetic Teaching of a Free-standing Humanoid Robot”. In:
IEEE Conf. on Robotics and Automation (ICRA). Shanghai, China,
May 2011, pp. 3970–3975.

[Kni02] J. Knight. “Towards fully autonomous visual navigation”. PhD thesis.
Department of Engineering Science, University of Oxford, 2002.

[Kob12] J. Kober. “Learning Motor Skills: From Algorithms to Robot Experi-
ments”. In: (2012).

184

References

[KPAK13] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. “Human-aware
robot navigation: A survey”. In: Robotics and Autonomous Systems
(2013). issn: 0921-8890.

[KTM10] N. P. Koenig, L. Takayama, and M. J. Mataric. “Communication
and knowledge sharing in human-robot interaction and learning from
demonstration”. In: Neural Networks 23.8-9 (2010), pp. 1104–1112.

[KZB11] S. M. Khansari-Zadeh and A. Billard. “Learning Stable Non-Linear
Dynamical Systems with Gaussian Mixture Models”. In: IEEE Trans-
action on Robotics 27.5 (2011), pp. 943–957.

[LBG97] L. M. Lorigo, R. Brooks, and W. Grimsou. “Visually-guided obstacle
avoidance in unstructured environments”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Vol. 1. IEEE.
1997, pp. 373–379.

[LD06] J. Li and T. Duckett. “Growing RBF networks for learning reactive
behaviours in mobile robotics”. In: International journal of vehicle
autonomous systems 4.2 (2006), pp. 285–307.

[Low99] D. G. Lowe. “Object Recognition from Local Scale-Invariant Fea-
tures”. In: International Conference on Computer Vision. Vol. 2. ICCV
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 1150–
1157.

[LY96] C. Lee and X. Yangsheng. “Online, interactive learning of gestures
for human/robot interfaces”. In: IEEE International Conference on
Robotics and Automation (ICRA). Vol. 4. 1996, 2982–2987 vol.4.

[LZ00] K-J. Lee and H-T. Zhang. “Learning robot behaviors by evolving ge-
netic programs”. In: 26th Annual Confjerence of the IEEE Industrial
Electronics Society (IECON). Vol. 4. IEEE. 2000, pp. 2867–2872.

[Mae89] P. Maes. “How to do the right thing”. In: Connection Science Journal
1.3 (1989), pp. 291–323.

[Mat01] M. J. Matarić. “Learning in behavior-based multi-robot systems: poli-
cies, models, and other agents”. In: Cognitive Systems Research 2.1
(Apr. 2001), pp. 81–93. issn: 1389-0417.

[MEBFGK10] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige.
“The Office Marathon: Robust Navigation in an Indoor Office Envi-
ronment”. In: International Conference on Robotics and Automation
(ICRA). 2010.

[MIJ08] Y. Mingqiang, K. K. Idiyo, and R. Joseph. “A Survey of Shape Feature
Extraction Techniques”. In: Pattern Recognition, Peng-Yeng Yin (Ed.)
(2008) 43-90 (Nov. 2008). Ed. by Peng-Yeng Yin, pp. 43–90.

[Mit97] T. M. Mitchell.Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 1997. isbn: 0070428077, 9780070428072.

185

E. Image based door detection

[MM11] J. Mumm and B. Mutlu. “Human-robot proxemics: physical and psy-
chological distancing in human-robot interaction”. In: International
conference on Human-robot interaction. HRI ’11. Lausanne, Switzer-
land: ACM, 2011, pp. 331–338. isbn: 978-1-4503-0561-7.

[MMB06] O. Martínez Mozos and W. Burgard. “Supervised learning of topolog-
ical maps using semantic information extracted from range data”. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2006, pp. 2772–2777.

[MMD05] T. Martinez-Marin and T. Duckett. “Fast Reinforcement Learning for
Vision-guided Mobile Robots”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2005, pp. 4170–4175.

[MMSB05] O. Martínez Mozos, C. Stachniss, and W. Burgard. “Supervised Learn-
ing of Places from Range Data using Adaboost”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2005, pp. 1742–
1747.

[Mob] Adept MobileRobots. Pioneer Robots Software Development Kit. url:
http://www.mobilerobots.com/Software.aspx.

[MRTJB07] O. M. Mozos, A. Rottmann, R. Triebel, P. Jensfelt, and W. Burgard.
“Supervised semantic labeling of places using information extracted
from sensor data”. In: Robotics and Autonomous Systems 55 (2007),
pp. 391–402.

[MSG10] C. Martin, F. F. Steege, and H. M. Gross. “Estimation of pointing
poses for visually instructing mobile robots under real world condi-
tions”. In: Robotics and Autonomous Systems 58.2 (2010), pp. 174–
185.

[Mur00] R. R. Murphy. Introduction to AI Robotics. 1st. Cambridge, MA, USA:
MIT Press, 2000.

[Nan13] PMD[Vision] CamBoard Nano. Spec Sheet CamBoardNano. 2013. url:
http://www.pmdtec.com/html/pdf/flyer_camboard_nano.pdf.

[NCJOF08] M. Nicolescu, O. Chadwicke Jenkins, A. Olenderski, and E. Fritzinger.
“Learning behavior fusion from demonstration”. In: Interaction Stud-
ies 9.2 (2008), pp. 319–352.

[ND01] C. L. Nehaniv and K. Dautenhahn. “Like me?-measures of correspon-
dence and imitation”. In: Cybernetics & Systems 32.1-2 (2001), pp. 11–
51.

[NFH06] T. Nierobisch, W. Fischer, and F. Hoffmann. “Large View Visual Ser-
voing of a Mobile Robot with a Pan-Tilt Camera”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
2006, pp. 3307–3312.

[NH08] A. Nüchter and J. Hertzberg. “Towards semantic maps for mobile
robots”. In: Robot. Auton. Syst. 56.11 (Nov. 2008), pp. 915–926. issn:
0921-8890.

186

http://www.mobilerobots.com/Software.aspx
http://www.pmdtec.com/html/pdf/flyer_camboard_nano.pdf

References

[NM01] M. Nicolescu and M. J. Matarić. “Experience-based representation
construction: learning from human and robot teachers”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2001,
pp. 740 –745.

[Nof99] S. Y. Nof. Handbook of industrial robotics. Vol. 1. John Wiley & Sons,
1999.

[NPHB09] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Imi-
tation Learning for Visual Robotic Behaviors”. In: Proceedings of the
19. Workshop Computational Intelligence. Dortmund, 2009, pp. 221–
236.

[NPHB10] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Robot
programming by demonstration”. In: Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer, 2010, pp. 288–299.

[NPHB11a] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Sce-
nario and context specific visual robot behavior learning”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2011,
pp. 1180–1185.

[NPHB11b] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Sit-
uated learning of visual robot behaviors”. In: Intelligent Robotics and
Applications. Springer, 2011, pp. 172–182.

[NPHB12] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Human-
Machine Interfaces for Intuitive and Effective Demonstrations of Mo-
bile Robot Behaviors”. In: Proceedings of the 22. Workshop Computa-
tional Intelligence. Dortmund, 2012, pp. 427–441.

[NPHB13] K. K. Narayanan, L. F. Posada, F. Hoffmann, and T. Bertram. “Acqui-
sition of Behavioral Dynamics for Vision Based Mobile Robot Naviga-
tion from Demonstrations”. In: Mechatronic Systems. 1. 2013, pp. 37–
44.

[NS02] R. Nafe andW. Schlote. “Methods for shape analysis of two-dimensional
closed contoursâĂŤa biologically important, but widely neglected field
in histopathology”. In: Electronic Journal of Pathology and Histology
8.2 (2002).

[OD08] D. L. Olson and D. Delen. Advanced Data Mining Techniques. 1st.
Springer Publishing Company, Incorporated, 2008.

[Ope] OpenNI User Guide. OpenNI organization. Nov. 2010. url: http :
//www.openni.org/documentation.

[Pir99] P. Pirjanian. Behavior Coordination Mechanisms - State-of-the-art.
Tech. rep. IRIS-99-375. Institute for Robotics and Intelligent Systems,
1999.

[Pla06] M. Plaue. Technical Report: Analysis of the PMD Imaging System.
Tech. rep. Interdisciplinary Center for Scientific Computing,University
of Heidelberg, Dec. 2006.

187

http://www.openni.org/documentation
http://www.openni.org/documentation

E. Image based door detection

[PLD05] H. Peng, F. Long, and C. Ding. “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 27.8 (Aug. 2005), pp. 1226–1238.

[PNHB09] L. F. Posada, T. Nierobisch, F. Hoffmann, and T. Bertram. “Image
Signal Processing for Visual Door Passing with an Omnidirectional
Camera”. In: VISAPP (1). 2009, pp. 472–479.

[PNHB10] L. F. Posada, K. K. Narayanan, F. Hoffmann, and T. Bertram. “Floor
segmentation of omnidirectional images for mobile robot visual navi-
gation”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Oct. 2010, pp. 804 –809.

[PNHB11] L. F. Posada, K. K. Narayanan, F. Hoffmann, and T. Bertram. “En-
semble of experts for robust floor-obstacle segmentation of omnidirec-
tional images for mobile robot visual navigation”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). May 2011,
pp. 439 –444.

[Pol06] R. Polikar. “Ensemble Based Systems in Decision Making”. In: IEEE
Circuits and Systems Magazine 6.3 (2006), pp. 21–45.

[Pom89] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. Tech. rep. DTIC Document, 1989.

[Pos] L. F. Posada. Matlab-Aria Interface. Tech. rep. Institute of Control
Theory and Systems Engineering, Technische Universität Dortmund,
Germany.

[QCGFFLWN09] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. “ROS: an open-source Robot Operating
System”. In: ICRA Workshop on Open Source Software. 2009.

[RC01] A. Rizzi and R. Cassinis. “A robot self-localization system based on
omnidirectional color images”. In: Robotics and Autonomous Systems
34.1 (2001), pp. 23–38.

[RGH11] May R., Dandy G., and Maier H. “Review of Input Variable Selec-
tion Methods for Artificial Neural Networks”. In: Artificial Neural
Networks-Methodological Advances and Biomedical Applications. Ed.
by K. Suzuki. Intech, 2011.

[RK03] C. E. Rasmussen and M. Kuss. “Gaussian Processes in Reinforcement
Learning”. In: NIPS. 2003, pp. 751–759.

[RLDL07] E. Royer, M. Lhuillier, M. Dhome, and J-M. Lavest. “Monocular vi-
sion for mobile robot localization and autonomous navigation”. In:
International Journal of Computer Vision 74.3 (2007), pp. 237–260.

[Ros97] J. K. Rosenblatt. “DAMN: A distributed architecture for mobile nav-
igation”. In: Journal of Experimental & Theoretical Artificial Intelli-
gence 9.2-3 (1997), pp. 339–360.

188

References

[RPB09] R. Roberts, C. Pippin, and T. Balch. “Learning outdoor mobile robot
behaviors by example”. In: Journal of Field Robotics 26.2 (2009),
pp. 176–195.

[RSGB09] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard. “Unsupervised
learning of 3d object models from partial views”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2009,
pp. 801–806.

[Saf97] A. Saffiotti. “The uses of fuzzy logic in autonomous robot navigation”.
In: Soft Computing 1.4 (1997), pp. 180–197.

[SAMB12] E. L. Sauser, B. D. Argall, G. Metta, and A. G Billard. “Iterative
learning of grasp adaptation through human corrections”. In: Robotics
and Autonomous Systems 60.1 (2012), pp. 55–71.

[SB91] M. J. Swain and D. H. Ballard. “Color indexing”. In: International
Journal of Computer Vision 7.1 (Nov. 1991), pp. 11–32.

[SB98] Richard S. S. and Andrew G. B. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[SC90] H. Sakoe and S. Chiba. “Readings in speech recognition”. In: ed. by
Alex Waibel and Kai-Fu Lee. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1990. Chap. Dynamic programming algorithm
optimization for spoken word recognition, pp. 159–165.

[Sch92] J. Schmidhuber. “Learning complex, extended sequences using the
principle of history compression”. In: Neural Computation 4.2 (1992),
pp. 234–242.

[SDE95] G. Schöner, M. Dose, and C. Engels. “Dynamics of behavior: The-
ory and applications for autonomous robot architectures”. In: Robot.
Auton. Syst. 16.2-4 (1995), pp. 213–245.

[SLL01] S. Se, D. G. Lowe, and J. Little. “Vision-based mobile robot localiza-
tion and mapping using scale-invariant features”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Vol. 2. IEEE.
2001, pp. 2051–2058.

[SMI07] S. Schaal, P. Mohajerian, and A. K. Ijspeert. “Dynamics systems vs.
optimal controlâĂŤa unifying view”. In: Progress in brain research 165
(2007), pp. 425–445.

[SMS06] D. Scaramuzza, A. Martinelli, and R. Siegwart. “A Toolbox for Easy
Calibrating Omnidirectional Cameras”. In: IEEE International Con-
ference on Intelligent Robots and Systems (IROS). 2006.

[SMUAS07] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. “A Hu-
man Aware Mobile Robot Motion Planner”. In: IEEE Transactions
on Robotics 23.5 (2007), pp. 874–883. issn: 1552-3098.

[SPK00] W. D. Smart and L. Pack Kaelbling. “Practical Reinforcement Learn-
ing in Continuous Spaces”. In: Morgan Kaufmann, 2000, pp. 903–910.

189

E. Image based door detection

[SPK02] W. D. Smart and L. Pack Kaelbling. “Effective reinforcement learning
for mobile robots”. In: IEEE International Conference on Robotics and
Automation (ICRA). Vol. 4. IEEE. 2002, pp. 3404–3410.

[SSKFFBCM13] J. Shotton, R. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A.
Blake, M. Cook, and R. Moore. “Real-time human pose recognition in
parts from single depth images”. In: Commun. ACM 56.1 (Jan. 2013),
pp. 116–124. issn: 0001-0782.

[Sut13] I. Sutskever. “Training Recurrent Neural Networks”. PhD thesis. Uni-
versity of Toronto, 2013.

[TB06] A. L. Thomaz and C. Breazeal. “Reinforcement learning with hu-
man teachers: Evidence of feedback and guidance with implications
for learning performance”. In: AAAI. Vol. 8. 1. 2006, pp. 8–6.

[TBF05] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. Vol. 1. MIT
press Cambridge, 2005.

[Thr96] S. Thrun. Explanation-Based Neural Network Learning. Springer, 1996.
[TN99] J. Tani and S. Nolfi. “Learning to perceive the world as articulated:

an approach for hierarchical learning in sensory-motor systems”. In:
Neural Networks 12.7 (1999), pp. 1131–1141.

[Tur50] A. M. Turing. “Computing machinery and intelligence”. In: Mind
59.236 (1950), pp. 433–460.

[VBK01] N. Vlassis, R. Bunschoten, and B. Krose. “Learning task-relevant fea-
tures from robot data”. In: IEEE International Conference on Robotics
and Automation (ICRA). Vol. 1. 2001, 499–504 vol.1.

[VK99] N. A. Vlassis and B. J. A. Kröse. “Robot environment modeling via
principal component regression”. In: IROS. 1999, pp. 677–682.

[VKG05] M. Vlachos, G. Kollios, and D. Gunopulos. “Elastic Translation In-
variant Matching of Trajectories”. In:Machine Learning 58.2-3 (2005),
pp. 301–334.

[War06] W. H. Warren. “The dynamics of perception and action.” In: Psycho-
logical Review 113.2 (2006), pp. 358–389.

[WB09] Z. Wang and A. C. Bovik. “Mean squared error: Love it or leave it?
A new look at Signal Fidelity Measures”. In: IEEE Signal Processing
Magazine 26.1 (Jan. 2009), pp. 98 –117.

[WGLSv00] N. Winters, J. Gaspar, G. Lacey, and J. Santos-victor. “Omni-directional
vision for robot navigation”. In: IEEE Workshop on Omnidirectional
Vision. 2000, pp. 21–28.

[WRR03] M. E. Wall, A. Rechtsteiner, and L. M. Rocha. “Singular value decom-
position and principal component analysis”. In: A Practical Approach
to Microarray Data Analysis (2003), pp. 91–109.

190

References

[WZ98] K. Ward and A. Zelinsky. “Acquiring mobile robot behaviors by learn-
ing trajectory velocities with multiple FAM matrices”. In: IEEE In-
ternational Conference on Robotics and Automation (ICRA). Vol. 1.
IEEE. 1998, pp. 668–673.

[ZBK07] Z. Zivkovic, O. Booij, and B. Kröse. “From images to rooms”. In:
Robot. Auton. Syst. 55.5 (May 2007), pp. 411–418. issn: 0921-8890.

[ZL01] D. Zhang and G. Lu. “A comparative study on shape retrieval us-
ing Fourier descriptors with different shape signatures”. In: Inter-
national conference on intelligent multimedia and distance education
(ICIMADE). 2001, pp. 1–9.

191

	Acknowledgments
	Abstract
	Abbreviations
	Nomenclature
	Introduction
	Goal and contribution of the thesis
	Thesis outline

	Background
	Learning in robotics
	Learning from demonstration

	Visual features for robot navigation
	Free floor segmentation
	Visual features
	Spatial features
	Image moments
	Shape features

	Feature generation
	Feature selection
	Performance metric
	Cross-validation
	Wrapper approach

	Application example
	Related work
	Summary

	Teaching modalities for mobile robot demonstrations
	Mapping problem
	Teaching modalities and Human-Machine interfaces
	Remote teleoperation
	Joystick control
	Gesture based control

	Demonstration tasks
	Experimental setup
	Performance measures

	Validation and user study
	Related work
	Summary

	Scenario and context specific visual behavior learning
	Scenario classification and validation
	Visual features
	Principal components
	Experimental validation

	Context classification using perceptual trace
	Scenario modeling
	Experimental results
	Related work
	Summary

	Supervised learning of behaviors with artificial neural networks
	Visual behavioral features
	Static mapping
	Corridor following
	Obstacle avoidance
	Homing

	Dynamic mapping
	Experimental results
	Artificial neural network
	Recurrent neural network

	Automatic feature selection
	Principal component extraction
	Experimental results
	Behavior classification

	Summary

	Supervised learning of behavioral dynamics and behavior fusion
	Stable estimator of dynamical systems
	Behavior learning
	Experimental results

	Learning behavior fusion
	Instance based learner
	Artificial neural networks
	Discussion

	Reinforcement learning of behaviors
	Reinforcement learning using a model
	Building up the initial behavior model
	Value iteration algorithm with Gaussian mixture model
	One shot learning

	Learning from scratch
	Learning time
	Experimental results
	Related work
	Summary

	Conclusions
	Outlook

	Questionnaire on demonstration modes
	Software architecture
	Robot simulation

	Scenario classification
	Scenario classification with probabilistic neural networks
	Extended experimental validation
	Extended experimental results

	Supervised learning of visual behaviors
	Artificial neural networks
	Homing
	Gaussian mixture models
	Number of Gaussians
	Modeling translational velocity

	Image based door detection
	Bibliography

