GENIEL 2 **JORTMUNDER MODELL BAUWESEN**

Guido Heeke

Untersuchungen zur Ermüdungsfestigkeit von Betonstahl und Spannstahl im Zeit- und Dauerfestigkeitsbereich mit sehr hohen Lastwechselzahlen

TECHNISCHE UNIVERSITÄT DORTMUND SCHRIFTENREIHE BETONBAU Herausgeber: Professor Dr.-Ing. Reinhard Maurer

HEFT 9 2016 Guido Heeke

Untersuchungen zur Ermüdungsfestigkeit von Betonstahl und Spannstahl im Zeit- und Dauerfestigkeitsbereich mit sehr hohen Lastwechselzahlen Die *Schriftenreihe Betonbau* der Technischen Universität Dortmund – Fakultät Architektur und Bauingenieurwesen umfasst Veröffentlichungen des Lehrstuhls Betonbau in den Bereichen Lehre, Forschung und Praxis.

Herausgeber

Univ. Prof. Dr.-Ing. Reinhard Maurer Lehrstuhl Betonbau Technische Universität Dortmund August-Schmidt-Str. 8 44227 Dortmund

Eigenverlag der TU Dortmund, Fachbereich Architektur und Bauingenieurwesen Heft 9 der Schriftenreihe Betonbau Druck und Herstellung: Hitzegrad Print Medien & Service

ISBN 978-3-921823-72-9

ISSN 1867 - 7886

© 2016 Lehrstuhl Betonbau der Technischen Universität Dortmund – Fakultät Architektur und Bauingenieurwesen Alle Rechte vorbehalten

Vorwort des Herausgebers

Aus zyklischen Einwirkungen auf Bauteile und Tragwerke, beispielsweise infolge von Verkehrslasten, Wind- und Wellenbelastungen, kann Versagen infolge Materialermüdung deutlich unterhalb ihrer statischen Festigkeit lange nach der Herstellung und Inbetriebnahme resultieren. Die damit im Zusammenhang stehenden Fragestellungen sind derzeit von großer Aktualität, da z.B. bestehende ältere Stahlbetonund Spannbetonbrücken oder neuartige Konstruktionen wie Windenergieanlagen für extrem große Lastwechselzahlen beurteilt bzw. ausgelegt werden müssen. So können bei Brücken während einer Nutzungsdauer von 100 Jahren bis zu 10⁸ und bei Windenergieanlagen in 25 Jahren bis zu 10⁹ Lastwechsel auftreten. Bei den Beton- und Spannstählen wird im Rahmen der Konformitätsprüfungen lediglich für 2x10⁶ Lastwechsel eine ertragbare Schwingbreite freischwingend ermittelt und als Dauerermüdungsfestigkeit angegeben. Für den Nachweis gegen Ermüdung von Bauteilen und Tragwerken werden allerdings Bemessungswöhlerlinien für den einbetonierten Zustand benötigt, für die jedoch aufgrund des sehr hohen experimentellen Aufwands bei ihrer Bestimmung bisher nur einige wenige Versuchsergebnisse im Bereich sehr hoher Lastwechselzahlen bis 10⁸ vorliegen. Daher wurden sie für die derzeit gültigen Betonbaunormen in diesem Bereich eher hypothetisch festgelegt.

Speziell für die älteren bestehenden Spannbetonbrücken, mit Baujahr bis etwa 1980, ergeben sich Fragen im Hinblick auf eine ausreichende Ermüdungsfestigkeit, da sie entsprechend dem seinerzeitigen Stand der Technik nicht auf Ermüdung nachgewiesen normalen wurden. Man ging anfangs bei den Spannbetonbrücken unter Nutzungsbedingungen vom ungerissenen Zustand I aus, bei dem die ermüdungswirksamen Spannungsschwingbreiten im Stahl vernachlässigbar klein sind. Wie die Erfahrungen mit diesen Bauwerken jedoch zeigten, stellte sich diese Annahme in zahlreichen Fällen als Trugschluss heraus. Gleichzeitig ist der Schwerverkehr nach Anzahl und Gesamtgewicht der LKWs sehr stark angestiegen und wird nach allen derzeitigen Prognosen auch künftig weiterhin ansteigen, was mit einer signifikanten Zunahme der ermüdungswirksamen Beanspruchungen einhergeht. Daher sind verbesserte Grundlagenkenntnisse der Ermüdungsfestigkeit von Betonstahl und Spannstahl besonders im Dauerfestigkeitsbereich sowohl von großem praktischen als auch wirtschaftlichen Interesse.

Hier setzt die Arbeit von Herrn Heeke an. Den Schwerpunkt seiner wissenschaftlichen Abhandlung bilden sehr umfangreiche eigene experimentelle Untersuchungen zur Materialermüdung von Betonstahl und Spannstahl, sowohl freischwingend als auch im einbetonierten Zustand, unter sehr hohen Lastwechselzahlen. Dabei wurde erstmals von ihm der Bereich bis zu 10⁸ Lastwechseln für den einbetonierten Spannstahl experimentell untersucht. Hier bestand eine wesentliche Aufgabe darin, diese besonders aufwändigen Versuche mit einbetoniertem Spannstahl mit dem Ziel einer möglichst hohen Prüffrequenz zu optimieren. Bei diesen Versuchen hat er sowohl einen historischen Spannstahl, der aus einem Abbruchbauwerk aus den 1950er Jahren gewonnen wurde, als auch einen gleichartigen Spannstahl aus heutiger Produktion untersucht.

Desweitern hat Herr Heeke auf Basis der gewonnenen zunehmend umfangreicheren Versuchsdaten mit mathematisch statistischen Methoden ein Prognoseverfahren zur Abschätzung der Lebensdauer von vorgespannten Versuchsbalken für beliebige Spannungsschwingbreiten entwickelt. Damit können diese sehr aufwändigen Versuche besser geplant und hinsichtlich ihrer Ergebnisse innerhalb des prognostizierten Streubands beurteilt werden. Als Indikator für den Schädigungsprozess benutzt er dabei die gemessene Rissbreite im Beton, die sich dafür als sehr geeignet erwiesen hat. Es ist denkbar, dieses Verfahren in Verbindung mit einem Monitoring bei bestehenden Bauwerken einzusetzen.

Zusätzlich konnte er durch eine umfangreiche Literaturrecherche gut dokumentierter älterer Ermüdungsversuche zeigen, dass die Ermüdungsfestigkeit dieser historischen Stähle mit den Wöhlerlinien nach aktuell gültiger Norm für den Betonbau DIN EN 1992-1-1 bzw. DIN EN 1992-2 zutreffend abgebildet werden.

Herr Heeke hat mit seinen Untersuchungen sehr wertvolle Erkenntnisse und unmittelbar praktisch verwertbare Grundlagen für die Bemessung von Neubauten gegen Ermüdung sowie für die Bewertung bestehender älterer Tragwerke hinsichtlich eines Versagens durch Materialermüdung gewonnen.

Prof. Dr.-Ing. Reinhard Maurer

Februar 2016

Untersuchungen zur Ermüdungsfestigkeit von Betonstahl und Spannstahl im Zeit- und Dauerfestigkeitsbereich mit sehr hohen Lastwechselzahlen

Von der Fakultät Architektur und Bauingenieurwesen der Technischen Universität Dortmund genehmigte

Dissertation

zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Dipl.-Ing. Guido Heeke

Prüfungs	komm	iss	ion	•
FIUIUIIgs	NOTITI	1122	IUII	•

Vorsitzende:	UnivProf. DrIng. habil. Jeanette Orlowsky
1. Gutachter:	UnivProf. DrIng. Reinhard Maurer
2. Gutachter:	UnivProf. DrIng. habil. DrIng. E. h. Konrad Zilch
3. Gutachter:	PD DrIng. Klaus Block

Tag der mündlichen Prüfung: 04. Februar 2016

Dortmund 2016

Vorwort des Autors

Die vorliegende Arbeit entstand in meiner Zeit als wissenschaftlicher Mitarbeiter am Lehrstuhl Betonbau der Technischen Universität Dortmund, unter der Leitung von Prof. Dr.-Ing. Reinhard Maurer.

Durch ihn erhielt ich das Privileg, mich neben der Lehrtätigkeit fast ausschließlich mit experimentellen und theoretischen Forschungsprojekten zum Thema Ermüdung beschäftigen und in diesem Bereich forschen zu dürfen.

Diese Forschungsprojekte umfassten neben den, in dieser Arbeit aufgeführten Groß- und Materialversuchen an Spannstahl und Betonstahl, auch zahlreiche Ermüdungsversuche und Untersuchungen an Lärmschutzwandelementen für Hochgeschwindigkeitsstrecken der Bahn [47].

Die Ermüdung von Baukonstruktionen stellt ein komplexes Themenfeld dar, welches in der heutigen Zeit immer mehr in den Fokus rückt. Oftmals können die Erkenntnisse aus Materialversuchen nicht auf die Gesamtsysteme unserer Bauwerke übertragen werden, da hier zahlreiche Einflussfaktoren aufeinander treffen.

Ermüdungsversuche sind meist sehr zeitintensiv und dadurch auch kostenintensiv, wodurch oftmals detaillierte Erkenntnisse aus Großversuchen fehlen.

Die Tatsache, dass bei den Spannstahlermüdungsversuchen dieser Arbeit die reine Versuchslaufzeit im Prüfstand der neun Großversuche bei etwa 360 Tagen und die aller freischwingend untersuchten Spannstahlproben bei etwa 117 Tagen lag, macht den enormen Zeitaufwand deutlich. Die Zeit der Herstellung, des Ein- und Ausbaus sowie die nachträgliche Analyse des Materials bzw. der Versuchskörper sind darin noch nicht enthalten.

An dieser Stelle danke ich meinem Betreuer Prof. Dr.-Ing. Reinhard Maurer für das mir entgegengebrachte Vertrauen, die Bereitschaft zur Diskussion, die wertvollen Ratschläge und die vielen Freiheiten, die er mir bei der Durchführung meiner forscherischen Tätigkeiten zugestanden hat.

Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Konrad Zilch und PD Dr.-Ing. Klaus Block möchte ich für die Übernahme der Koreferate danken, da ich ihr Fachwissen und ihre Arbeiten sehr zu schätzen weiß.

Frau Univ.-Prof. Dr.-Ing. habil. Jeanette Orlowsky danke ich ganz herzlich für den Vorsitz der Prüfungskommission.

Dank gilt auch meinen Kolleginnen und Kollegen am Lehrstuhl Betonbau sowie am Institut für Bauforschung für die gute Zusammenarbeit, die Unterstützung und die zahlreichen freundschaftlichen Gespräche. Weiter danke ich den Kolleginnen und Kollegen vom "Fachgebiet Werkstoffprüftechnik' der Fakultät Maschinenbau und des Lehrstuhls "Werkstoffe des Bauwesens" für den Zugang zur Labortechnik der Metallographie und Mikroskopie.

Besonders möchte ich mich bei Dipl.-Ing. Christoph Rempe für seine unerschöpflichen Ideen und Hilfen bei der Umsetzung großer Versuchsaufbauten danken. Die *Hertzsche Pressung* wird mir immer in Erinnerung bleiben. Dr.-Ing. Friedrich Dreier danke ich für die zahlreichen guten Gespräche, für seine kritisch hinterfragende Art und dass er mich in vielen Dingen an seinem Wissen hat teilhaben lassen. Ebenso danke ich M. Sc. Nadja Kutscher, die mich während ihres Studiums als Hilfskraft bei der Durchführung zahlreicher Versuche immer sehr zuverlässig und tatkräftig unterstützt hat.

Ein großer Dank gilt meinen Eltern und der gesamten Familie, die mich immer in meinen Zielen unterstützt haben.

Nicht zuletzt danke ich besonders meiner Frau Verena und meiner Tochter Lina für die aufgebrachte Geduld, das Verständnis und den nötigen Rückhalt, um meine Ziele zu erreichen.

<u>||</u>_____

Inhaltsverzeichnis

1	Einleit	ung	1
	1.1	Ausgangslage	1
	1.2	Ziele und Aufbau der Arbeit	1
	1.3	Abgrenzung	2
2	Ermüd	ung	5
	2.1	Phänomen Materialermüdung	5
	2.1.1	Ablauf des Ermüdungsprozesses im Material	5
	2.2	Beschleunigende Einflussfaktoren auf den Ermüdungsprozess	8
	2.2.1	Einflussfaktoren aus Herstellung, Transport, Lagerung und Einbau	8
	2.2.2	Reibermüdung / Reibkorrosion	9
	2.2.3	Einfluss der Spannungsniveaus	12
	2.2.4	Einnuss der Belastungsrrequenz	13
	2.3 2.2.1	Dauerschwingversuch	14 11
	2.3.1	Beanspruchungsbereiche	14
	2.3.3	Darstellung der Wöhlerlinien	16
	2.4	Zeitfestigkeitsschaubild	17
	2.4.1	Wöhlerlinie / SN-Kurve	17
	2.4.2	Gaßnerlinie	18
	2.4.3	Modifizierte Form des Dauerfestigkeitsbereichs nach Haibach	19
	2.5	Dauerfestigkeitsschaubilder	19
	2.5.1	Smith Diagramm (Dauerfestigkeitsschaubild)	20 20
	2.5.3	Haigh Diagramm (Dauerfestigkeitsschaubild)	20
	2.6	Interaktives Verfahren	21
	2.7	Zusammenfassung	23
3	Histori	scher Rückblick	25
	3.1	Zeitliche Entwicklung der Ermüdungsnachweise	26
	3.2	Dokumentierte Ermüdungsversuche mit Betonstahl	30
	3.2.1	Betonstahl – Vergleich mit der heutigen char. Wöhlerlinie	39
	3.3	Dokumentierte Ermüdungsversuche mit Spannstahl	41
	3.3.1	Spannstahl - freischwingend	42
	3.3.2	Spannstahl - sofortiger Verbund	43
	3.3.3	Spannstahl - Nachtraglicher Verbund	45 52
	3.3.4		J2
Д	Versuc	he zur Betonstahlermüdung	55
-	1 1	Matorial	55
	4.1 4.2	Nidterial	55
	ч.2 Д Э		دد
	ч.5 Д २ 1	Ouasi-statische Zugversuche	50 57
	4.3.2	Dauerschwingversuche	58
	4.4	Auswertung der Ermüdungsversuche	58
	4.4.1	Versuche im nicht einbetonierten Zustand	58

	4.4.2	Versuche im einbetonierten Zustand	61
	4.5	Vergleich des einbetonierten und nicht einbetonierten Zustands	63
	4.5.1	Teilsicherheitsbeiwerte für beide Zustände	64
	4.6	Zusammenfassung	66
5	Unters	uchungen mit Spannstahllitzen	67
-	5 1	Intersuchtes Snannstahlmaterial	67
	5.1	Alter" Spannstahl	07
	512	"Alter Spannstahl	07
	5.1.3	Notation für die weitere Probenbezeichnung	71
	5 2	Materialversuche am Spannstahl	
	J.Z	Drüfkörner und Versuchsstand	72
	5.2.1	Statischer Zugversuch zur Bestimmung der Materialkonnwerte	/ 2
	522	Freischwingend durchgeführte Ermüdungsversuche	75
	5.2.4	Metallografie und Mikrobereichsanalyse des Spannstahls	, 85
	5 3	Versuche an vorgesnannten Balken	01
	521	Allgomoinos	01
	532	Aligemeines	91 20
	533	Beschreibung des Versuchsstandes	98
	5.3.4	Messsensorik zur Kraft- und Verformungsmessung	100
	5.3.5	Körperschall- und Impulsmessung zur Bestimmung des Bruchzeitpunktes	104
	5.3.6	Versuchsprogramm der Ermüdungsversuche	106
	5.3.7	Verifikation der vorhandenen Vorspannkräfte zu Versuchsbeginn	107
	5.3.8	Überprüfung der Kraft-/Spannungsschwingbreite	108
	5.3.9	Litzenausbau und Analyse der Drahtbrüche	113
	5.3.10	Auswertung der Drahtbrüche und der Rissweitenzunahme	116
	5.3.11	Wertung der Versuchsergebnisse	119
	5.3.12	Vorschlag zur Korrektur der charakteristischen Wöhlerlinie	120
	5.3.13	Ubertragen der Erkenntnisse auf bestenende Bauwerke	121
	5.3.14		121
	5.4	Zusammenfassung	122
6	Simula	tionsrechnungen zur Lebensdauerabschätzung von Versuchen mit sehr hoher	
	Lastwe	cnseizani	125
	6.1	Zunahme der Rissweite als Indikator für den fortschreitenden Schädigungsprozess	125
	6.1.1	Einleitung	125
	6.1.2	Grundlage zur Berechnung der Rissweite	126
	6.1.3	Anpassung der rechnerisch bestimmten Rissbreite infolge einzelner Drahtbrüche	128
	6.1.4	Vergieich mit den nachgerechneten eigenen Versuchen	130
	6.2	Rechensimulationen zur Prognose der Rissentwicklung	133
	6.2.1	Analyse der vorhandenen Datenmenge der Versuchsergebnisse	133
	6.2.2	Bestimmung der Mittelwertfunktion und Prognoseintervallgrenzen	134
	6.2.3	Bestatigung normalverteilter Versuchswerte	136
	o.2.4	Berucksichligung ansteigender schwingbreiten bis zum Drantbruch im Jeweiligen Restauerschnitt	127
	625	Simulationsrechnung für heljehige Ausgangsnarameter	120
	6.2.6	Simulationsrechnungen für laufende Versuche	
	6.3	Zusammenfassung	146
7	7.16200	menfassung und Aushlick	1/7
, 0			14/
õ	Literat	ur ver zeichfills	121

AN	LAGEN		157
A1	Datenb	ank recherchierter historischer Arbeiten	158
	A1.1	Betonstahl	. 158
	A1.1.1	freischwingend durchgeführte Untersuchungen	. 158
	A1.1.2	Untersuchungen im einbetonierten Zustand	. 164
	A1.2	Spannstahl	. 166
	A1.2.1	freischwingend durchgeführte Untersuchungen	. 166
	A1.2.2	Großversuche mit nachträglichem Verbund	. 171
	A1.2.3	Kleinkörperversuche mit nachträglichem Verbund	. 175
	A1.2.4	Großversuche mit sofortigem Verbund	. 176
A2	Eigenei	n Betonstahluntersuchungen	178
	A2.1	Angaben zur Baustoffeigenschaften	. 178
	A2.1.1	Betonstahl	. 178
	A2.1.2	Beton des einbetonierten Betonstahls	. 178
	A2.1.3	Prüfergebnisse der eigenen Dauerschwingversuche	. 179
A3	Eigenei	n Spannstahluntersuchungen	182
	A3.1	Angaben zur Baustoffeigenschaften	. 182
	A3.1.1	Spannstahl	. 182
	A3.1.2	Beton und Einpressmörtel	. 183
	A3.2	freischwingend untersuchte Spannstähle	. 187
	A3.2.1	Messergebnisse	. 187
	A3.2.2	Bilder und Parameter der freischwingend untersuchten Spannstahlproben	. 189
	A3.3	Großversuche mit Spannstahl im nachträglichen Verbund	. 217
	A3.3.1	Messdaten	. 217
	A3.3.2	Bilder, Parameter und Ergebnisse der einzelnen Versuchsträger	. 220
A4	Durchg	eführte Simulationsrechnungen	238

Zeichenerläuterung

Griechische Buchstaben

Wichtungsfaktor der Einwirkungsseite α_E Wichtungsfaktor der Widerstandsseite α_R β Zuverlässigkeitsindex Zugfestigkeit des Spannstahls nach DIN 4227 β_Z ε Dehnung Mittlere Betondehnung ε_{cm} Gesamtdehnung (auch A_{qt}) ε_u Mittlere Spannstahldehnung ε_{pm} Mittelwert der Einwirkungsseite μ_E Mittelwert der Widerstandsseite μ_R ξ Faktor zur Berücksichtigung der Verbundfestigkeit Teilsicherheitsbeiwert γ Teilsicherheitsbeiwert des Materials Υm Teilsicherheitsbeiwert für eine Bauteileigenschaft unter Berücksichtigung von Modellun-Υм sicherheiten und Größenabweichungen Teilsicherheitsbeiwert zur Berücksichtigung der Modellunsicherheiten des Widerstands- γ_{Rd} modells Spannung σ Spannung im Spannstahl σ_p maximale Spannung im Spannstahl $\sigma_{p,max}$ minimale Spannung im Spannstahl $\sigma_{p,min}$ $\hat{\sigma}$ Standardabweichung einer Spannung Amplitude σ_a Mittelspannung σ_m Oberspannung σ_{o} Spannstahlspannung aus Vorspannung σ_{pm0} Schwellfestigkeit (mit $\sigma_u = 0$; $\sigma_m = \frac{\sigma_{Sch}}{2}$) - größte dauernd ertragbare Schwingbreite σ_{Sch} Unterspannung σ_u Wechselfestigkeit (mit $\sigma_m = 0$) - größte dauernd ertragbare Spannungsamplitude σ_W $\Delta \sigma$ Spannungsschwingbreite $\Delta \sigma_D$ Spannungsschwingbreite des Dauerermüdungswiderstandes $\Delta \sigma_1$ Spannungsschwingbreite des niederzyklischen Widerstandes p-Quantil einer Spannungsschwingbreite $\Delta \sigma$ $\Delta \sigma_{p\%}$

$\Delta \sigma_p$	Spannstahldifferenzspannung
$\Delta \sigma_{Rsk}$	Spannungsschwingbreite für N^st Lastzyklen der char. Ermüdungsfestigkeitskurve
$\Delta \bar{\sigma}$	Bestimmter Mittelwert einer Stichprobe einer Spannungsschwingbreite
$\Delta \hat{\sigma}$	Standardabweichung einer Stichprobe einer Spannungsschwingbreite
$ au_{bm}$	Verbundspannung des Betonstahls
$\phi_{p, { m \ddot{a}} q u}$	äquivalenter Durchmesser

Lateinische Großbuchstaben

- A Bruchdehnung (Berechnung der Messlänge mit Proportionalitätsfaktor $k=5,65 früher A_5$)
- A_{11.3} Bruchdehnung (Berechnung der Messlänge mit Proportionalitätsfaktor k=11,3 früher A₁₀)
- A_{gt} Gesamte Extensometer-Dehnung bei Höchstkraft, F_m
- A_p Spannstahlfläche
- D Druckkraft
- *E* Elastizitätsmodul
- *E_d* Bemessungswert der Einwirkungsseite
- *F_m* Höchstkraft im Zugversuch
- $F_{p0,1k}$ Kraft für 0,1% Dehnung, nicht proportionale Verlängerung
- $F_{p0,2k}$ Kraft für 0,2% Dehnung, nicht proportionale Verlängerung
- *F_{OL}* Obere Kraftgrenze einer Schwingbreite im Versuch
- *F_{UL}* Untere Kraftgrenze einer Schwingbreite im Versuch
- *F_M* Mittlere Kraft einer Schwingbreite im Versuch
- *F_{amp}* Kraftamplitude im Versuch
- *R* Spannungsverhältnis $\frac{\sigma_u}{\sigma_o}$
- *R*_d Bemessungswert der Widerstandsseite
- *R_{eH}* Obere Streckgrenze
- *R_{eL}* Untere Streckgrenze
- *R_m* Zugfestigkeit
- S_n Nenn-Querschnittsfläche der Probe
- *M*_{OL} Obere Grenze des Biegemomentes im Versuch
- *M_{UL}* Untere Grenze des Biegemomentes im Versuch
- N Grenzschwingspielzahl
- N^* Schwingspielzahl zur Spannungsschwingbreite $\Delta \sigma_{Rsk}$
- ΔN_i Differenz an Schwingspielen zwischen zwei Drahtbrüchen
- V Variationskoeffizient
- Z Zugkraft

Lateinische Kleinbuchstaben

а	positive, dimensionslose Zahl mit $a < 0$
a ₀ , a _l	Parameter der Regressionsfunktion
b	positive, dimensionslose Zahl
b _l	Parameter der Regressionsfunktion
d	Durchmesser
е	Lastausmitte (Exzentrizität)
f_c	einaxiale Betondruckfestigkeit
$f_{cm,cube}$	Mittelwert aus mehreren, einaxialen Betonwürfeldruckfestigkeiten
f _{ck}	charakteristische Zylinderdruckfestigkeit des Betons nach 28 Tagen
$f_{ck,cube}$	charakteristische Würfeldruckfestigkeit des Betons nach 28 Tagen
f_{cm}	Mittelwert der Zylinderdruckfestigkeit des Betons
$f_{cm,cube}$	Mittelwert der Würfeldruckfestigkeit des Betons
f _{ctk}	charakteristischer Wert der zentrischen Betonzugfestigkeit
f _{ctm}	Mittelwert der zentrischen Zugfestigkeit des Betons
$f_{Konf,\alpha}$	Konfidenzfunktion mit einer $lpha$ -prozentigen Sicherheit
f_p	Zugfestigkeit des Spannstahls
$f_{p0,1}$	0,1 % Dehngrenze des Spannstahls
$f_{p0,2}$	0,2 % Dehngrenze des Spannstahls
$f_{Prog, \alpha}$	Prognosefunktion mit einer $lpha$ -prozentigen Sicherheit
f_t	Zugfestigkeit des Betonstahls
f_y	Streckgrenze des Betonstahls
g_{mod}	Faktor zur Gewichtung einzelner Drahtbrüche bei einer direkten Nachrechnung
$h_{0,mod}$	Korrekturfaktor für den ersten Drahtbruch innerhalb der Simulationsrechnung
k_1/k_2	Steigungsfaktoren der charakteristischen Wöhlerlinien
k _n	p-Quantilfaktor zur Berücksichtigung der Aussagewahrscheinlichkeit und der Anzahl der Versuche
k _t	Völligkeitsbeiwert zur Modifikation der Verbundfestigkeit
l_t	Verbundlänge
n	Anzahl n von Stichproben
t	Zeitpunkt
t_0	Zeitpunkt des Belastungsbeginns des Betons
u_v	wirksamer Verbundumfang
W	Rissweite
x	Höhe der Druckzone
\bar{x}	Mittelwert

- z Hebelarm der inneren Kräfte
- z_{OL} rechnerisch ermittelter Hebelarm der inneren Kräfte durch obere Kraftgrenze F_{OL}
- z_{UL} rechnerisch ermittelter Hebelarm der inneren Kräfte durch untere Kraftgrenze F_{UL}

Abkürzungen

- abZ allgemeine bauaufsichtlichen Zulassung
 DD1 Dehungsaufnehmer
 DMS Dehnmessstreifen
 EDX Energie-Dispersive-Röntgenspektroskopie
- FORM First Order Reliability Method
- KMD Kraftmessdose
- REM Rasterelektronenmikroskop
- WA induktiver Wegaufnehmer

Verwendete Software

Adobe Photoshop CS4 Allplan, Nemetschek Allplan GmbH Citavi HBM Messsoftware Helicon Focus Microsoft Excel Microsoft Word Microsoft Visual Basic for Applications ZEN 2012, Carl Zeiss Microscopy GmbH ZWAX, RIB Software AG

1 Einleitung

1.1 Ausgangslage

In der heutigen Zeit steht neben dem wirtschaftlichen Neubau ebenso der Erhalt der bestehenden Bauwerke im Vordergrund. Die Anforderungen an Bauwerke sind über die Jahre immer komplexer und anspruchsvoller geworden. So sollen diese sowohl dauerhaft und robust als auch wirtschaftlich, anpassungsfähig und ästhetisch sein.

Zudem sind die Einwirkungen auf die heutigen Bauwerke immer umfangreicher und komplexer geworden.

Eine spezielle Einwirkungsart ist die häufige zyklische Belastung der Tragwerke, wodurch es zur Ermüdung von Materialien im Gesamtsystem kommen kann.

Diese Auswirkungen dieser Einwirkungsart werden in dieser Arbeit behandelt.

Eine häufig wiederholt zyklische Belastung kann bei einer Vielzahl von Bauwerken, wie Offshore-Bauwerken, Windkraftanlagen, Türmen, Hochhäusern, Brücken, Lärmschutzwänden an Hochgeschwindigkeitsstrecken der Bahn oder in Bauteilen, welche durch Maschinen zyklisch belastet werden, auftreten. So können heutzutage in der Lebensdauer eines Bauwerks im Extremfall bis zu 10⁹ Lastwechsel auftreten.

Werden ältere Brückenbauwerke betrachtet, so stammen diese Spannbeton- und Stahlbetonbauwerke zu einem Großteil aus dem Ende der 1950er bis Anfang der 1980er Jahre und sind nach dem 2. Weltkrieg im Zuge des wirtschaftlichen Aufschwungs gebaut worden. Viele dieser Brücken haben somit inzwischen ein Alter von etwa 35 bis 55 Jahren und sind zum Teil instandsetzungsbedürftig.

Die Materialermüdung musste in den alten Bauwerken zum Zeitpunkt der Errichtung, im Gegensatz zu heute, nicht rechnerisch nachgewiesen werden. Daher stellt sich zudem die Frage, inwieweit die alten verbauten Stähle, zum Beispiel im Zuge einer Nachrechnung, mit den heutigen hinsichtlich ihrer Ermüdungsfestigkeit vergleichbar sind.

Parallel kam es in den vergangen Jahrzehnten in Deutschland zu einem starken Wachstum des Schwerverkehrs auf den Straßen, was die Anzahl der Fahrzeuge und deren Gesamtgewicht betrifft. Dieser Effekt führte dazu, dass neben den höheren Belastungen auch die Anzahl der Lastschwingspiele stark angestiegen ist. Daher sind auch solche Brückenbauwerke inzwischen während ihrer Lebensdauer 10⁷ bis 10⁸ Lastwechseln mit zum Teil nur kleinen Schwingbreiten ausgesetzt.

Speziell beim Spannbeton im nachträglichen Verbund im Stahlhüllrohr besteht Forschungsbedarf, um das Verhalten unter niedrigen Schwingbreiten und sehr hohen Lastwechseln zu verifizieren, da hierzu abgesicherte Forschungsergebnisse fehlen.

Das Fehlen entsprechender Versuchsergebnisse begründet sich dadurch, dass diese Großversuche oft extrem lange Versuchsdauern mit sich bringen. Somit sind diese sehr zeit- und kostenintensiv. Ein solcher Versuch läuft in der Regel mehrere Wochen, zum Teil Monate, bis Ergebnisse vorliegen.

1.2 Ziele und Aufbau der Arbeit

Ziel der Arbeit ist es, speziell für den Spannstahl im nachträglichen Verbund im Stahlhüllrohr die vorhandenen Erkenntnisse über die Ermüdung durch eigene Großversuche und Materialversuche zu ergänzen. Bei den Großversuchen liegt ein besonderer Fokus auf den Beanspruchungen durch sehr kleine Spannungsschwingbreiten in Verbindung mit sehr extrem hohen Lastwechselzahlen im Spannstahl, da hier die Ansätze der europäischen Normen experimentell nicht umfassend abgesichert sind. Aktuell laufen zu diesem Thema ebenfalls Untersuchungen an der TU Braunschweig [31].

In der eigenen Arbeit wird zudem versucht, den Versuchsstand sowie den Versuchsträger zu optimieren, um die Großversuche mit einer höheren Prüffrequenz durchführen zu können ohne dabei

die Versuchsergebnisse wesentlich zu beeinflussen. Eine höhere Prüffrequenz würde zu einer Reduzierung der extrem langen Versuchsdauern führen. Wünschenswert wären zudem rechnerische, statistisch begründete Prognosen der ermüdungsbedingten Schädigungsentwicklung mit zunehmender Lastwechselzahl.

Da sich im Zuge des Rückbaus einer Autobahnbrücke die Möglichkeit ergab alte Spannstähle zu entnehmen, wird auch ein möglicher Unterschied im Ermüdungsverhalten zwischen "altem" (1957) und "neuem" Spannstahl untersucht.

Weiter gilt es Unterschiede im freischwingend untersuchten Zustand, dem Materialverhalten und dem einbetonierten Zustand, dem Systemverhalten, zu identifizieren. Diesbezüglich wird neben dem Spannstahl auch der Betonstahl betrachtet.

Im Kapitel 2 wird einleitend das Phänomen der Materialermüdung mit seinen beeinflussenden Faktoren und den gebräuchlichen Darstellungsformen in Zeit- und Dauerfestigkeitsschaubildern für Materialien und Gesamtsysteme erläutert. Weiter erfolgt eine kurze Erläuterung des "interaktiven Verfahrens", nach dem hier durchgeführte Versuche durchgeführt und ausgewertet werden.

Danach erfolgt in Kapitel 3 ein Überblick über die historische Entwicklung der Ermüdungsnachweise. Wesentliche Forschungsarbeiten zu Ermüdungsversuchen an Betonstahl sowie Spannstahl der letzten Jahrzehnte werden diskutiert und mit den für die Bemessung gültigen charakteristischen Wöhlerlinien der DIN EN 1992 (+NA) [19–22] verglichen. Recherchierte Versuchsdaten werden in einer aufbereiteten Datenbank als Anlage A1 angefügt.

Anschließend erfolgt in Kapitel 4 ein kurzer Vergleich von eigenen Ermüdungsversuchen mit Betonstahl im einbetonierten und nicht einbetonierten Zustand, um die Unterschiede darzulegen. In Anlehnung an interaktive Verfahren erfolgen zum Teil die weiteren Versuchsdurchführungen und Versuchsauswertungen.

Kapitel 5 enthält eine Beschreibung und Analyse der eigenen umfangreichen Ermüdungsversuche mit "altem" (1957) und "neuem" Spannstahl im nicht einbetonierten Zustand (freischwingend) sowie im einbetonierten Zustand in Großversuchen. Bei den Großversuchen, mit den Abmessungen 4,5m x 1m x 0,3m, kommen Spannlitzen im gekrümmten Stahlhüllrohr im nachträglichen Verbund zum Einsatz. Einzelne Drahtbrüche im laufenden Versuch werden durch Körperschallmessungen identifiziert.

Im Anschluss daran wird in Kapitel 6 der Schädigungsprozess der durchgeführten Großversuche über eine physikalisch-mechanisch basierte Beziehung für die Rissweitenzunahme beschrieben und nachvollzogen. Durch die so kalibrierte Funktion werden dann auf der Datenbasis der bereits durchgeführten Versuche bzw. des laufenden Versuchs Simulationsrechnungen durchgeführt, um beispielsweise für Versuche mit anderen Schwingbreiten den theoretischen Schädigungsprozess zu prognostizieren.

Damit lassen sich Versuche gleichen Typs simulieren oder während eines laufenden Versuchs sein weiterer Verlauf prognostizieren.

Abschließend folgt eine Zusammenfassung mit Schlussfolgerungen.

1.3 Abgrenzung

Die Ermüdung ist ein sehr komplexes und weit reichendes Thema. Eine Vielzahl von Faktoren auf der Widerstands- sowie Einwirkungsseite beeinflussen maßgeblich das Ermüdungsverhalten. Einflüsse auf der Einwirkungsseite werden in dieser Arbeit nicht behandelt. Im Vordergrund steht die Ermüdungsfestigkeit. Im Spannbetonbau gibt es unterschiedliche Arten der Vorspannung. Im Fokus dieser Arbeit steht ausschließlich die des Spannstahls im gekrümmten Stahlhüllrohr mit nachträglichem Verbund. Betonstahl wird ebenfalls untersucht, da alte Spannbetontragwerke zusätzlich mit Betonstahl bewehrt sind. Eine kombinierte Betrachtung von Spannstahl und Betonstahl erfolgt allerdings nicht.

Einwirkungen, welche durch die Massenbeschleunigung eine dynamische Bauteilantwort hervorrufen, werden hier ebenfalls nicht betrachtet.

2 Ermüdung

2.1 Phänomen Materialermüdung

Werden Materialien eines Bauteils einer schwingenden Beanspruchung unterzogen, kann diese auch deutlich unterhalb der statischen Materialfestigkeit zu einem Versagen führen. Dieses Phänomen wird als Materialermüdung bezeichnet. Oftmals handelt es sich hierbei um einen langsam fortschreitenden Prozess im Materialgefüge. Wird dies nicht erkannt, kann es im schlimmsten Fall eine Gefahr für Mensch und Umwelt zur Folge haben. Ebenso ist der daraus entstehende wirtschaftliche Schaden in den meisten Fällen nicht unbedeutend. Daher ist es bei der Bemessung häufig zyklisch beanspruchter Bauteile notwendig, die wechselnde Beanspruchung während der angesetzten Lebensdauer des Bauteils ausreichend genau zu kennen.

Auf der Materialseite findet sich eine Vielzahl prozessauslösender Faktoren. Diese können schon bei der Herstellung durch Walzprozesse, mikroskopisch kleiner Einschlüsse von Fremdmetallen oder Eigenspannungen im Material entstehen. Ebenso sind Kleinstschädigungen, die während der Lagerung, des Transports und des Einbaus entstehen können, denkbar. Im eingebauten Zustand spielen letztendlich neben der Belastung die Umwelt- und mechanischen Einflüsse eine entscheidende Rolle. Durch die heutige, wirtschaftlich optimierte Bemessung von Tragwerken und Bauteilen kommt es oft zu einer hohen Ausnutzung des Materials. Daher ist es umso wichtiger, ermüdungsbeanspruchte Materialien sorgfältig herzustellen und zu verarbeiten, um die Dauerhaftigkeit während der planmäßigen Nutzungsphase zu garantieren.

2.1.1 Ablauf des Ermüdungsprozesses im Material

Ursprung des Ermüdungsprozesses bei **Stahl** ist im Allgemeinen eine submikroskopische Schadstelle im Material, an der es durch plastische Verformungen zu irreversiblen Abgleitungen infolge von Versetzungsbewegungen kommt. Bei diesen Ausgangspunkten handelt es sich um Formkerben durch Walzprozesse, Poren bzw. Einschlüssen im Material, mechanische Beschädigungen oder auch chemische Veränderungen wie Korrosionsnarben. An diesen örtlichen Spannungsspitzen bilden sich in Richtung der maximalen Schubspannung Ermüdungsgleitbänder, welche somit üblicherweise in einem Winkel von 45° zur einwirkenden Hauptnormalspannung auftreten. Die Gleitbänder äußern sich durch Extrusionen oder Intrusionen in der Oberfläche (Bild 2-1 a). Verschiebt sich ein Gleitband innerhalb einer Intrusion soweit, dass die Korngröße überschritten wird, entsteht daraus ein wachstumsfähiger Mikroriss (Bild 2-1 b).

a) "Entstehung von Ermüdungsgleitbändern und Risskeimbildung" aus Läpple [56, S.248]

Bild 2-1: Risskeimbildung und Risswachstum

 b) "Stabiles Risswachstum und Restgewaltbruch" aus Läpple [56, S.249]

Der mikroskopisch feine Riss wächst mit anhaltender zyklischer Belastung weiter und geht in einen makroskopischen Riss über. In diesem Stadium entwickelt sich der makroskopische Riss senkrecht zur zyklisch wirkenden Hauptzugspannung σ . Hat der Riss eine entsprechende Fläche des Materials getrennt, kommt es letztendlich zu einem Gewaltbruch der Restquerschnittsfläche des Stahls. Typisch für einen Ermüdungsbruch sind erkennbare Rastlinien bzw. Schwingungsstreifen, welche sich während des Rissfortschritts im Material einstellen und sich oftmals radial von der Schadstelle aus ausbreiten. Die Risslänge im Material wächst unter der zyklischen Belastung bis zum Versagen exponentiell an (Bild 2-2).

Bild 2-2: Wachstumsphasen eines Ermüdungsrisses (Neu gezeichnet nach Taylor [84], RILEM [82])

Bild 2-3 zeigt die Vergrößerung der Bruchfläche eines 3mm dicken Drahtes aus einer 7-drähtigen Spannstahllitze. Es ist deutlich, rechts unten im Bild, die typische Ermüdungsbruchfläche zu erkennen. Im Laufe der zyklischen Beanspruchung ist diese radial vom Rissentstehungspunkt angewachsen. Durch das Fortschreiten des Risses reduziert sich die Restfläche des Materials, bis es zu einem Überschreiten der maximal aufnehmbaren Zugspannungen kommt und der Gewaltbruch eintritt.

Bild 2-3: Bruchfläche eines 3mm dicken Spannstahldrahtes einer 7-drähtigen Litze

Da der Beton- und Spannstahl immer im Verbund mit dem Beton wirkt, wird im Folgenden kurz auf das abweichende Ermüdungsverhalten des Betons eingegangen.

Der Ermüdungsprozess im **Beton** verhält sich aufgrund des inhomogenen Materialgefüges etwas anders als bei Stahl. Hier können sich die Ausgangspunkte der Ermüdungsrisse an unterschiedlichen Stellen befinden. Mikrorisse, welche durch die Erstarrung des Zements entstehen, können wie auch Luftporen, schlechter Verbund zwischen Zement und Gesteinskörung oder Fehlstellen im Beton (schlecht verdichtet, unzureichend abgebundener Zement, Kiesnester, etc.) als Ausgangspunkte dienen. Die Erhärtung des Zementleims beruht auf dem Hydratationsprozess des Zements. Die Reaktionsgeschwindigkeit bestimmt mitunter die endgültigen Eigenschaften des Betons. Je schneller dieser Prozess abläuft, desto größer sind auch die im erhärteten Material entstehenden Eigenspannungen, wodurch sich Mikrorisse und lokale Spannungskonzentrationen einstellen.

Wird nun anschließend eine zyklische Beanspruchung auf den Beton aufgebracht, kommt es an den genannten Stellen lokal zu einer Überschreitung der ertragbaren Zugspannung des Zementgefüges und somit zu einer ansteigenden Rissbildung. Dieses geschieht zunächst an mehreren Stellen auf der Mikroebene, welche anschließend zu Makrorissen zusammenwachsen, bis es dann durch die Ausbildung von Bruchflächen zu einem Versagen des Betons kommt.

Hinzu kommt, dass im Gegensatz zum Stahl, auch ein Ermüdungsversagen unter einer schwellenden Druckbeanspruchung entsteht. Diese Möglichkeit des Versagens ist auf die innere Struktur des Betons und des daraus resultierenden Spannungsverlaufs unter einer Belastung zurückzuführen. Erläutern lässt sich dieser Schädigungsprozess mit einem einfachen Kugelmodell der Betonstruktur, welches Lusche [57] 1972 vorstellte. Somit kommt es bei einer Druckschwellbelastung im Beton zwischen den einzelnen Gesteinskörnern zwangsläufig zu einer Zugspannung orthogonal zur einwirkenden Kraft (Bild 2-4 A).

Bild 2-4: Zeitliche Rissentwicklung im Beton abhängig von der Beanspruchung

Übersteigt diese Zugspannung auf der Mikroebene die ertragbare Zugfestigkeit des Betons, führt dieses zu einer Rissentwicklung im Zementstein parallel zur einwirkenden Kraft. Unterliegt der Beton einer Zugschwellbeanspruchung, so führt dieses im Zementstein zu einem Risswachstum orthogonal zur Zugkraft(Bild 2-4 B).

Werden die Druck- und Zugschwellbelastung nun zu einer Wechselbeanspruchung überlagert, so führt dieses zu einer Schädigung parallel und orthogonal zur Lastachse und somit zu einer wesentlich stärkeren Baustoffermüdung (Bild 2-4 C).

Somit hängt die Ermüdungsfestigkeit des Betons von der Zugfestigkeit der Zementsteinmatrix und der Haftzugfestigkeit zwischen Zuschlagskorn und Matrix ab.

2.2 Beschleunigende Einflussfaktoren auf den Ermüdungsprozess

Der Begriff Ermüdung bezeichnet eine fortschreitende, irreversible Schädigung in der mikroskopischen Struktur eines Materials. Die durch eine zyklische äußere Belastung hervorgerufenen Spannungsänderungen führen zu einem Schädigungswachstum im Material bis zum endgültigen Versagen.

Zusätzliche Einflussfaktoren führen zu einer Beschleunigung des Ermüdungsprozesses. Im Gegensatz zur reinen Materialermüdung kommt es speziell in Systemen durch das Zusammenwirken mehrerer Komponenten in der Regel zu einer Reduzierung der Schwingfestigkeit. Oftmals entstehen in Systemen konstruktionsbedingt weitere Kraftkomponenten, welche sich ebenfalls negativ auswirken. Im Bild 2-5 sind zentrale Einflussfaktoren aufgeführt und anschließend beschrieben. Durch Überschneidungen in einigen Bereichen (z.B. Material- und Konstruktionseigenspannungen) werden gewisse Punkte zusammengefasst.

Bild 2-5: Einflussfaktoren auf die Ermüdungsfestigkeit von Beton- und Spannstahl (*neu gezeichnet und ergänzt nach Läpple* [56])

2.2.1 Einflussfaktoren aus Herstellung, Transport, Lagerung und Einbau

Grundsätzlich können bereits von der Herstellung des einzelnen Baustoffs (Betonstahl oder Spannstahl) bis hin zur Prüfung oder dem Einbau in ein Bauwerk einige Faktoren die Ermüdungsfestigkeit des Materials beeinflussen.

So kann die *chemische Zusammensetzung* des Metalls, bei gleichem Baustoff, je nach Hersteller oder Herstellungsregion, leicht variieren. Beispielsweise ist bei Betonstahl bekannt, dass es durch die Zugabe von Schrottanteilen bei der Herstellung zu *mikroskopischen Einschlüssen* von Fremdmetallen

kommen kann. Gerade in der heutigen Zeit wird aufgrund von Rohstoffknappheit ein gewisser Anteil an Stahlschrott der Produktion beigemischt. Diese Anteile können zu Gefügestörungen des kristallinen Gitters führen. Dadurch wird die statische Festigkeit des Materials zwar nicht direkt beeinflusst, die Ermüdungsfestigkeit kann allerdings abnehmen. Infolge einer zyklischen Belastung kommt es an einer solchen Stelle zu einer Rissinitiierung, welche anschließend den Ausgangspunkt eines Ermüdungsbruchs darstellt.

Ebenso können durch den Herstellungsprozess an der Oberfläche *Eigenspannungen* entstehen, welche durch ungleichmäßig verteilte und bleibende Formänderungen hervorgerufen werden. Diese entstehen üblicherweise durch das Walzen oder Aufprägen einer Rippung bei der Herstellung und verbleiben im Material. Bei Spannlitzen sind, durch das maschinelle Schlagen der einzelnen Drähte im Herstellungsprozess, ebenso ungleichmäßige Spannungen in der späteren Litze denkbar.

Unter einer zusätzlichen äußeren zyklischen Lastspannung überlagert sich diese mit den Eigenspannungen und es kann durch Überschreiten der Fließspannung des Materials zu einer Schädigung führen. Durch das duktile Materialverhalten von Beton- und Spannstahl ist, bedingt durch ein zyklisches Überschreiten der Fließgrenze, oftmals auch ein Abbau der vorhandenen Oberflächeneigenspannung durch örtliches Plastifizieren möglich.

Die durch die Herstellung beschriebenen Faktoren äußern sich zudem in einem *Größeneinfluss* des Bauteiles. Mit zunehmendem Durchmesser eines Bewehrungsstabes beispielsweise steigt mit zunehmendem Umfang somit auch statistisch die Wahrscheinlichkeit von oberflächennahen Fehlstellen. Somit haben Stähle mit einem kleineren Durchmesser tendenziell eine höhere Schwingfestigkeit als Stähle mit großen Durchmessern [56].

Mikroskopisch feine *Oberflächenschäden* können Auslöser eines Ermüdungsanrisses sein. So werden Spannlitzen nach der Herstellung in Hüllrohre eingeschoben. Bei diesem Vorgang kann es schon zu einer Schädigung durch Reibung mit dem Blechhüllrohr oder einem anderen bereits eingeschobenen Spannstahl kommen. Weitere Schädigungen, bei Lagerung, Transport und Einbau, bis zur endgültigen Lage im Bauwerk, sind denkbar.

2.2.2 Reibermüdung / Reibkorrosion

Bei der Reibermüdung wird durch Materialkontakt zu einem Reibpartner die Entstehung eines Initialrisses durch eine zusätzliche mechanische Materialbeanspruchung beschleunigt. Dadurch verkürzen sich drastisch die Phase der Rissentstehung und somit auch die Lebensdauer des Materials. Einen Einfluss auf die Entstehungsgeschwindigkeit des Initialrisses hat hier die Materialeigenschaft und Oberflächenbeschaffenheit des Reibpartners sowie dessen Anpressdruck.

Gerade bei Spannlitzen, welche an Umlenkstellen durch Querpressungen beansprucht werden, hat dieser Effekt einen großen Einfluss auf die Ermüdungsfestigkeit des Systems. Voraussetzung ist in vielen Systemen allerdings die vorherige Überschreitung des Dekompressionsniveaus in Verbindung mit einer Rissbildung, da es andernfalls zu keinen nennenswerten Relativverschiebungen und Spannungsschwingbreiten kommt.

Unter sehr großen Spannungsschwingbreiten ist der Versagenseinfluss aus einer Reibbeanspruchung, im Vergleich zum Einfluss der im Material einwirkenden Spannung, trotz großem Schlupf deutlich geringer. Hier kommt es allein durch die vorherrschende Spannungsschwingbreite zu einem schnellen Versagen. Bei kleinen Spannungsschwingbreiten wird der Reibermüdungseinfluss deutlich größer. Die ohne Reibpartner eigentlich lange Phase bis zur ersten Anrissbildung wird plötzlich extrem verkürzt. Daher ist es fraglich, ob unter dem Einfluss der Reibermüdung eine echte Dauerfestigkeit zu finden ist. Die Reibkorrosion beschreibt analog zur Reibermüdung einen Verschleißmechanismus im Kontaktbereich beider Reibpartner und wird somit oftmals als Synonym zur Reibermüdung genannt. An dieser Stelle kommt es durch physikalische und chemische Wechselwirkung schließlich zu Stoff- und Formänderungen. Die Größe des Verschleißes ist sowohl von der Struktur als auch vom Beanspruchungskollektiv abhängig. Partikel reagieren zu oxydischen Abriebprodukten wodurch es zur Bezeichnung der Reibkorrosion kommt. "Reibung und Verschleiß sind keine Materialeigenschaften und können nicht durch einfache Werkstoffkenndaten (wie etwa Härte oder Elastizitätsmodul) gekennzeichnet werden. Reibung und Verschleiß sind "Systemeigenschaften". Sie erfordern stets die Analyse und Berücksichtigung der vielfältigen Parameter und Einflussgrößen des betreffenden tribologischen Systems." [16, S.8]

Der zentrale Begriff der Tribologie (griechisch tribein: reiben) beschreibt die Wissenschaft der Reibungslehre und beschäftigt sich mit der Reibung, Schmierung und dem Verschleiß sich gegeneinander bewegender Teile.

Es können vier grundlegende Verschleißmechanismen durch eine tribologische Beanspruchung beschrieben werden. Hierbei handelt es sich um den möglichen Verschleiß durch eine Oberflächenzerrüttung, eine Abrasion, eine Adhäsion oder einer tribochemische Reaktion. Die einzelnen Mechanismen werden von Czichos und Habig [16] umfangreich beschrieben und im Folgenden zur Verdeutlichung der möglichen Prozesse kurz erläutert (Bild 2-6).

Bild 2-6: Grundlegende Verschleißmechanismen, (neu gezeichnet, nach Czichos [16])

Oberflächenzerrüttung

An der Kontaktfläche beider Reibpartner kommt es durch zyklische Beanspruchung aus einer gegenseitigen Relativverschiebung zu ständig wechselnden Zug- und Druckspannungen im Bereich der Grenzschichten. Diese wechselnden mechanischen Spannungen führen letztendlich an der Kontaktoberfläche zu einer Ermüdung und Rissbildung im Material. Partikel werden herausgelöst, Löcher und Unebenheiten entstehen. Diese wachsen im Weiteren zu einer größeren Schadstelle im Mikrogefüge an.

Abrasion (lat.: abrasio: abschaben/abkratzen)

Trifft ein härteres Material unter einer Relativverschiebung auf ein weicheres Material, kann es auf der Mikroebene zu Verschleißprozessen in Form von Mikropflügen, Mikrospanen, Mikrobrechen oder Mikroermüden kommen (Bild 2-7). Diese Einzelprozesse können sich ebenfalls überlagern.

Das *Mikropflügen* tritt ein, wenn sich das weichere Material durch ein abrasiv wirkendes Teilchen stark plastisch verformt und es zu einer Furchenbildung kommt. Bei dem Prozess des *Mikrospanens* wird durch das härtere Teilchen ein Mikrospan aus dem weicheren Material herausgetrennt.

Bild 2-7: Schädigungen (Neu gezeichnet nach Zum Gahr [101], Czichos [16])

Ein *Mikrobrechen* tritt ein, wenn es bei spröden Materialien oberhalb der kritischen Belastung erst zu einer Mikrorissbildung und im Weiteren zu Materialausbrüchen kommt.

Die *Mikroermüdung* erfolgt bei einem wiederholten Prozess des Mikropflügens, indem das Material an der Oberfläche durch mehrfaches Verformen zu den Furchungsrändern ermüdet und kann auch als Teilprozess der Oberflächenzerrüttung angesehen werden.

Adhäsion (lat.: adhaerere: anhaften)

Bei der Adhäsion kommt es auf atomarer Ebene an der Kontaktstelle zweier metallischer Reibpartner zu einer Kaltverschweißung. Diese entsteht durch lokal sehr hohe Pressungen. Durch die vorhandene Relativverschiebung beider Reibpartner zueinander kommt es im Laufe der Zeit zu einem einseitigen Herausreißen des verschweißten Bereichs, wodurch diese Materialbestandteile auf den anderen Partner übergehen. Diese zuvor kaltverschweißten Partikel können deutlich härter ausfallen als das zuvor vorhandene Grundmaterial. Durch anhaltende zyklische Relativschiebungen führt dieses nun zusätzlich zu einer Abrasion, die die Schädigung stärker fortschreiten lässt.

Tribochemische Reaktion / Tribooxidation

Durch eine tribochemische Reaktion verändert sich die Eigenschaft der Grenzschicht zwischen beiden Reibpartnern. Bei metallischen Reibpartnern entstehen in der Regel Oxidationsprodukte. Durch diese Partikel steigt der Verschleiß stark an und es kommt in der Metalloberfläche zu Gitterfehlern und Änderungen der Festigkeitseigenschaften an den Oberflächen beider Reibpartner. An der Kontaktstelle beider Reibpartner entsteht eine Oxidinsel, an denen die mechanisch auftretenden Spannungen nur schlecht durch plastische Verformungen abgebaut werden können. Neben dem gebildeten Oxidationsprodukt kommt es zu einem spröden Ausbrechen von Teilchen, welche den Verschleißprozess (z.B. durch zusätzliche Abrasion) zusätzlich beschleunigen. Es ist ebenfalls möglich, dass durch das gebildete Oxidationsprodukt zwischen beiden Reibpartnern der Verschleißprozess infolge eine stark schädigenden Adhäsion vermindert wird.

2.2.3 Einfluss der Spannungsniveaus

Die Höhe des vorherrschenden Spannungsniveaus hat einen Einfluss auf die Ermüdungsfestigkeit des Stahls. Mit steigender Zugmittelspannung reduziert sich, bei gleicher Spannungsschwingbreite, die dauernd ertragbare Spannungsamplitude. Vereinfacht lässt sich dieses Verhalten bei Stahl dadurch erklären, dass es durch eine höhere Mittelspannung auch zu höheren Spannungen in den Gleitebenen (Bild 2-1 a) kommt. Dieses führt zu einer schnelleren Risskeimbildung, verbunden mit einem stärkeren Risswachstum. Der Effekt ist bei Stählen mit einer hohen Werkstofffestigkeit (Spannstahl) ausgeprägter als bei Stählen einer geringeren Festigkeit (Betonstahl). Zudem unterliegen spröde Werkstoffe einer höheren Mittelspannungsempfindlichkeit als Werkstoffe mit einem duktilen Materialverhalten. Duktilen Materialien ist es möglich, durch lokales Plastifizieren Spannungsspitzen umzulagern und abzubauen.

Demzufolge haben übliche Spannstähle zwar eine höhere Mittelspannungsempfindlichkeit ($M\approx0,5$) gegenüber Betonstählen ($M\approx0,1$), dieses hat aber durch das duktile Materialverhalten beider Stähle für die betrachteten Anwendungen, im Gegensatz zum spröden Werkstoff Beton, einen untergeordneten Einfluss auf die Ermüdungstragfähigkeit.

Stärker ist der Einfluss eines höheren Spannungsniveaus bei Spannstählen im gekrümmten, eingebauten Zustand. Spannstahl unterliegt durch die Vorspannkraft einer sehr großen Querpressung an den Umlenkstellen. Die Querpressung hat einen entscheidenden Einfluss auf die Ermüdungstragfähigkeit und verstärkt den Effekt der Reibermüdung. Betonstahl ist von diesem Effekt in der Praxis aufgrund seiner schlaffen Verlegung üblicherweise nicht betroffen.

Funk [42], [43] hat zum Einfluss der Querpressung bereits 1966 Ermüdungsversuche an Flachstahlproben aus gewalztem Bandmaterial der Güte CK 35 V durchgeführt und festgestellt, dass mit einer zunehmenden Querpressung die Ermüdungstragfähigkeit stark abnimmt (Bild 2-8). Später zeigte Cordes [12] in seinen Versuchen den negativen Einfluss der Querpressung auf die Ermüdungstragfähigkeit an vergüteten Spannstählen ø12,2mm (St 1420/1570), kaltgezogenen Spannstählen ø7mm (St 1420/1570) (Bild 2-9, rechts) und 7-drähtigen Litzen mit einem Durchmesser von ø15,3mm (St 1570/1770) (Bild 2-9, links).

"Einfluß der Flächenpressung auf die Schädigung der Dauerhaltbarkeit von Flachproben aus CK 35 V durch Reibkorrosion, Schlupf = 10µm = const." [42, S.76]

Bild 2-8: Versuchsergebnisse von Funk [42]

"Einfluß des Schlupfes auf die Schädigung der Dauerhaltbarkeit von Flachproben aus CK 35 V durch Reibkorrosion (Flächenpressung = 5 kp/mm² = const.)" [42, S.79]

"Wöhlerlinien für den kaltgezogenen Spannstahl ø7 mm" [12, S.77]

Bild 2-9: Versuchsergebnisse von Cordes[12, S.78]

Zusammenfassend zeigt sich, dass mit zunehmender Reibdauerbeanspruchung infolge Querpressung und Schlupf die Ermüdungstragfähigkeit stark abnimmt. Dieses äußert sich ebenso in der Steigung (k) der Wöhlerlinie, welche mit zunehmender Beanspruchung steiler wird.

2.2.4 Einfluss der Belastungsfrequenz

Zum Einfluss der Belastungsfrequenz in einem Ermüdungsversuch gibt es widersprüchliche Aussagen und Forschungsergebnisse. So schreiben Radaj und Vormwald [79] unter dem Verweis auf Literaturstellen, dass der Einfluss der Schwingfrequenz auf die Schwingfestigkeit vielfach untersucht worden ist. "Die Schwingfrequenz f ist bei Stahl im Bereich $1 \le f \le 10^3$ Hz von nur geringem Einfluß auf die Schwingfestigkeit, vorausgesetzt Korrosion, erhöhte Temperatur und Annäherung an die Fließgrenze werden vermieden." [79, S.21]

Eine der dort zitierten Literaturstellen verweist beispielsweise auf Heimbach [50]. Heimbach untersuchte vier normalisierte und einen vergüteten Feinkornbaustahl unter Belastungsfrequenzen zwischen 0,3Hz und 200Hz in einer Umlaufbiegemaschine ohne zusätzliche ermüdungswirksame Einflüsse wie z.B. Reibung. Er stellte in seinen Untersuchungen fest, dass die Dauer- und Zeitfestigkeiten bis zu einer Belastungsfrequenz von etwa 33Hz um etwa 10% ansteigen. Oberhalb von 33Hz konnte Heimbach für den Dauerfestigkeitsbereich keine zunehmende Änderung feststellen, während im Bereich der Zeitfestigkeit die ertragbaren Bruchlastspielzahlen in seinen Versuchen wieder abnahmen.

Endo et al. [33], [34], [35] untersuchten in zahlreichen Versuchen über mehrere Jahre an der Kyoto University den Einfluss der Prüffrequenz auf Stahlproben unter verschiedensten Randbedingungen wie z.B. zusätzlicher Reibungseinflüsse oder korrosiver Umgebung.

Sie prüften in den Reibermüdungsversuchen an Flachstählen [33] den Einfluss der Belastungsfrequenzen im Bereich von 170Cycl./min. bis 3000Cycl./Min. (2,8Hz-50Hz). Es zeigte sich, dass mit zunehmender Belastungsfrequenz auch die Ermüdungstragfähigkeit ansteigt (Bild 2-10).

Abschließend ist festzustellen, dass widersprüchliche Aussagen zum Einfluss der Belastungsfrequenz auf die Ermüdungsfestigkeit vorliegen. Es ist allerdings nachvollziehbar, dass schnellere Belastungsänderungen einen Einfluss haben müssen, wenn diese beispielsweise zu einem deutlichen Temperaturanstieg im Gefüge führen.

Reibermüdungsversuche (Biegeversuch) unter verschiedenen Belastungsfrequenzen (2,8Hz, 30Hz) [33, S.1302]

Reibermüdungsversuche (Verdrehversuch) unter verschiedenen Belastungsfrequenzen (2,8-50Hz) [33, S.1302]

Bild 2-10: Einfluss der Belastungsfrequenz auf Ermüdungsversuche unter Reibdauerbeanspruchung für Flachstahlproben mit erhöhtem Kohlenstoffanteil, Endo et al. [33]

Daher ist es ratsam, in Ermüdungsversuchen die Prüffrequenz nicht zu hoch zu wählen. Die Prüfnormen für Betonstahl (DIN EN ISO 15630-1 [23]) und Spannstahl (DIN EN ISO 15630-3 [24]) begrenzen die einwirkende Belastungsfrequenz im axialen Dauerschwingversuch. So soll die Belastungsfrequenz für Bewehrungsstäbe ohne Verbund (freischwingend) zwischen 1Hz und 200Hz liegen. Spanndraht bzw. Spannstäbe ohne Verbund (freischwingend) sollen eine Prüffrequenz von 120Hz sowie Spannlitzen eine von 20Hz nicht überschreiten.

2.3 Dauerschwingversuch

2.3.1 Begriffe und Bezeichnungen

Allgemeine Begriffe, Bezeichnungen und Formelzeichen werden in der DIN 50100: Feb. 1978 [17] definiert und geregelt. Dieses grundlegende Regelwerk führt allerdings auch zu Diskussionsbedarf. Da diese Norm seit inzwischen 35 Jahren Gültigkeit hat, führte dieses im Laufe der Zeit dazu, dass andere, neuere Normen entsprechend gleiche Formelzeichen mit anderen Bedeutungen einführten, ohne sich auf traditionell begründete oder international gültige Abkürzungen zu berufen [45]. Nachfolgend zwei Zitate:

"Diese ältere Norm entspricht jedoch in vielen Punkten nicht mehr dem heutigen Stand von Forschung und Anwendung. Den Vorgaben der Norm wird daher nur teilweise gefolgt. Die grundlegenden Begriffe und Bezeichnungen werden in der genannten Norm ausgehend von der Spannungs-Wöhler-Linie gebracht. Sie sind auf die Dehnungs-Wöhler-Linie sowie auf Problemstellungen der Betriebsfestigkeit oder des Rißfortschritts (Bruchmechanik) sinngemäß übertragbar." [79, S.15]

"Leider ist aber im technischen Sprachgebrauch eine stete Tendenz zur Verwässerung einmal getroffener Begriffsbestimmungen zu vermerken. Für die anzuwendenden Formelzeichen ist eine mehr als unbefriedigende Situation zu verzeichnen. Derzeitige Festlegungen erlauben weder eine eindeutige Formelsprache, noch kommen sie heutigen Belangen der Textverarbeitung oder der Rechneranwendung entgegen." [45, S.17]

Zur Erläuterung der grundsätzlichen Begriffe wird nun im Folgenden die DIN 50100 [17] herangezogen.

Bild 2-11: Spannungs-Zeit-Schaubild im Dauerschwingversuch (neu gez. nach DIN 50100 [17])

In der Darstellung (Bild 2-11) sind die wesentlichen Grundbegriffe eines einstufigen Dauerschwingversuchs beschrieben. Ein Schwingspiel definiert sich in erster Linie aus mindestens zwei bekannten Spannungsgrößen, aus denen sich die übrigen fünf bestimmen lassen, da alle im Bezug zueinander stehen.

Die Oberspannung σ_o definiert die größte Spannung und die Unterspannung σ_u die kleinste Spannung im Schwingspiel. Die Spannungsdifferenz aus Ober- und Unterspannung ergibt ein Schwingspiel mit der Schwingbreite $\Delta \sigma$. Die Amplitude σ_a ist definiert als halbe Schwingbreite und führt somit, ausgehend von der Mittelspannung, zum Erreichen der Ober- und Unterspannung. Das Spannungsverhältnis definiert sich nach DIN 50100 [17] mit dem Zeichen S und beschreibt den Beanspruchungsbereich im Dauerschwingversuch. Es sei darauf hingewiesen, dass in der heutigen Zeit das Spannungsverhältnis entgegengesetzt der Norm mit R beschrieben wird. Daher wird diese Schreibweise im Folgenden übernommen.

Für die einzelnen Spannungsgrößen gelten folgende Beziehungen:

$$\sigma_o = \sigma_m + \sigma_a = \sigma_u + \Delta \sigma \tag{2.1}$$

$$\sigma_u = \sigma_m - \sigma_a = \sigma_o - \Delta \sigma \tag{2.2}$$

$$\sigma_m = \frac{(\sigma_o + \sigma_u)}{2} \tag{2.3}$$

$$\sigma_a = \frac{(\sigma_o - \sigma_u)}{2} \tag{2.4}$$

$$\Delta \sigma = \sigma_o - \sigma_u \tag{2.5}$$

$$R = \frac{o_u}{\sigma_o}$$
(2.6)

2.3.2 Beanspruchungsbereiche

Ausgehend von dem Spannungsverhältnis oder der Mittelspannung im Zusammenhang mit der Spannungsschwingbreite können verschiedene Beanspruchungsbereiche definiert werden. Diese unterteilen sich im Groben in einen Druckschwellbereich, einen Wechselbereich und in einen Zugschwellbereich. Im Feineren werden in den einzelnen Bereichen entsprechende Grenzbereiche unterschieden ($\sigma_o = 0$, $\sigma_u = 0$ bzw. $\sigma_m = 0$). Diese lassen sich durch das Spannungsverhältnis zwischen Ober- und Unterspannung beschreiben. Liegt das Spannungsverhältnis im Bereich von 0 < R < 1, so handelt es sich um eine Zugschwellbeanspruchung. Im Bereich von $-\infty < R < 0$ liegt eine Wechselbeanspruchung vor und im Bereich von $1 > R > \infty$ handelt es sich um einen Druckschwellbereich. Spezielle Bereiche zeichnen sich mit den Spannungsverhältnissen $R = \infty$ und R = 0 ab, bei denen die Ober- bzw. Unterspannung bei null liegt. Bei betragsmäßig gleichem Größenverhältnis der Ober- und Unterspannung liegt das Spannungsverhältnis bei R = -1.

Bild 2-12: Beanspruchung abhängig vom Spannungsverhältnis

Bild 2-13: Bereiche der Schwingbeanspruchung (gez. nach DIN 50100 [17])

2.3.3 Darstellung der Wöhlerlinien

In der heutigen Zeit gibt es unterschiedliche Möglichkeiten und Vorschläge, experimentell in Einstufenversuchen ermittelte Wöhler-Linien abzubilden. Die DIN 50100 empfiehlt zur Vergleichbarkeit, dass "… ermittelten Wertepaare Dauerbeanspruchung - Bruch-Schwingspielzahl […] in ein Schaubild mit logarithmisch geteilter Abszisse (Schwingspielzahl) und arithmetisch (metrisch) geteilter Ordinate (Dauerbeanspruchung) eingetragen" [17, S.6] werden sollen. Nachteilig ist diese

Darstellung im direkten Vergleich zweier Diagramme, wenn die logarithmisch dargestellte Abszisse in den jeweiligen Diagrammen in unterschiedlichen Maßstäben aufgetragen ist.

Haibach äußert sich in seinem Buch folgendermaßen: "In den letzten Jahren hat sich mehr und mehr eine Auftragung der Wöhlerlinien im doppellogarithmischen Netz durchgesetzt, wohl nicht zuletzt im Hinblick auf praktische Vorteile, die sich dabei aus der Möglichkeit einer geradlinigen Annäherung der Zeitfestigkeitslinie entsprechend der Basquin'schen Gleichung und ganz allgemein aus den Eigenschaften eines logarithmischen Beanspruchungsmaßstabs auch auf die Ordinate ergeben. Um an der Zeitfestigkeitslinie eine befriedigende Ablesegenauigkeit zu erreichen, empfiehlt es sich, zu dem logarithmischen Abszissen-Maßstab der Schwingspielzahlen für die Ordinate einen logarithmischen Beanspruchungsmaßstab mit zwei- bis vierfach größerer Dekadenlänge zu wählen." [45]

Es zeigt sich, dass es im Bereich der Darstellung von Wöhlerlinien keine einheitliche Vorgehensweise gibt und jede für sich Vor- und Nachteile mit sich bringt.

Neben der üblichen Angabe der Spannungsschwingbreite $\Delta \sigma$ auf der Ordinate existieren ebenso Diagramme, in denen an dieser Stelle die Spannungsamplitude σ_a oder auch eine normierte Darstellung der Spannungen zu finden ist. Diese Normierung der Spannung erfolgt im Allgemeinen auf den Knickpunkt zur Dauerfestigkeit oder auf die Zugfestigkeit des Materials.

2.4 Zeitfestigkeitsschaubild

Wöhlerkurven beschreiben für ein Material die Anzahl der ertragbaren Lastwechsel (N) unter einer bestimmten Spannungsschwingbreite (S). Daher wird auch die Bezeichnung SN-Kurve verwendet. Diese werden aus experimentellen Untersuchungen am Material gewonnen. In einigen Fällen beschreiben diese Kurven auch das Verhalten eines Gesamtsystems unter einer zyklischen Beanspruchung.

2.4.1 Wöhlerlinie / SN-Kurve

Die Wöhler-Linie gliedert sich in drei wesentliche Bereiche. Diese beschreiben die Bereiche der statischen Materialfestigkeit, der Zeitfestigkeit und der Dauerfestigkeit (Bild 2-14). Die Wöhler-Linie wird in der Regel S-förmig oder als trilineare Näherungsgerade beschrieben.

Die statische Festigkeit grenzt die Wöhlerlinie nach oben hin ab, da ein Material keine größeren Spannungen ertragen kann, als es die eigene Materialzugfestigkeit zulässt. Im Bereich von etwa N=10²-10⁴ Schwingspielen geht bei üblichen Betonstählen die **Kurzzeitfestigkeit** über in den Zeitfestigkeitsbereich.

Bild 2-14: Zusammenhänge und Bereichsdefinition einen Stahls unter Schwellbeanspruchung (Haibach [45])
Die Spanne dieses Übergangsbereichs richtet sich bei Stahl nach dem Materialverhalten des Werkstoffs zwischen Fließgrenze und Erreichen der Zugfestigkeit, da in dieser Spannungsgröße plastische Materialverformungen zusätzlich Einfluss nehmen können.

Anschließend geht die Wöhlerlinie über in den Bereich der Zeitfestigkeit, in dem es bei einer entsprechenden Anzahl zyklischer Belastungen zu einem Ermüdungsversagen kommt. Je geringer die Spannungsamplitude ausfällt, desto größer sind die ertragbaren Lastwechsel. Ab einer gewissen Größe der Spannungsamplitude geht die Zeitfestigkeit schließlich in die technische Dauerfestigkeit über. Diese besagt, dass ein Material unterhalb dieses Grenzwertes einer Spannungsamplitude eine zyklische Beanspruchung unendlich oft ertragen kann ohne zu brechen.

Der Bereich der Dauerfestigkeit wird seit langem stark diskutiert, da es sich hier um einen horizontalen Ast der Wöhlerlinie handelt. Oftmals wird, nicht zuletzt wegen der langen Versuchsdauern, der Bereich nach Erreichen von ca. 10⁶ - 10⁷ Lastwechseln als technische Dauerfestigkeit des Materials bezeichnet und der Versuch abgebrochen.

Wöhlerlinien sind ein gutes Mittel, um die Lebensdauer eines Werkstoffs unter einwirkenden Spannungsschwingbreiten in den Bereichen der Zeit- und Dauerfestigkeit abzuschätzen bzw. nachzuweisen. Eine vollständige Wöhlerlinie erstreckt sich von der Zugfestigkeit (Kurzzeitfestigkeit) über den Bereich der Zeitfestigkeit bis hin zur Dauerfestigkeit. Der Bereich der Kurzzeitfestigkeit ist für die Werkstoffnachweise im Bauwesen durch Wöhlerlinien weniger von Bedeutung. Das Material befindet sich dort im Bereich der Formdehngrenze. Die zugehörigen Spannungen liegen, im Hinblick auf die gewünschte rechnerische Lebensdauer des Materials in einem Bauwerks, in der Regel weit über dem rechnerisch einwirkenden Spannungsniveau.

Um eine Wöhlerlinie für einen entsprechenden Werkstoff zu erstellen, wird bei gleichbleibender Unter- oder Mittelspannung eine Vielzahl von Versuchen mit jeweils unterschiedlichen Spannungsschwingbreiten durchgeführt. Die Belastung erfolgt sinusförmig und endet mit dem Ermüdungsbruch der Probe oder bei Erreichen einer definierten Schwingspielgrenze.

Werden Gesamtsysteme oder Bauteile mit unterschiedlichen Werkstoffen getestet, wird auch von Bauteil-Wöhlerlinie gesprochen.

2.4.2 Gaßnerlinie

Die Gaßnerlinie stellt eine zur Wöhlerlinie analoge Linie dar (Bild 2-15).

Muss ein Bauteil die maximale Last im Betrieb nicht so häufig ertragen, so kann eine betriebsfeste Bauteilauslegung erfolgen. Dieses Verfahren geht auf Ernst Gaßner zurück und ergibt eine Lebensdauerlinie des Bauteils.

Zur Ermittlung der Gaßnerlinie werden die Proben im Versuch Beanspruchungen auf Basis eines Normkollektives unterworfen, die der realen Belastung entsprechen. Üblicherweise wird der Maximalwert eines Kollektivs als Größe für die Darstellung verwendet.

Bild 2-15: Vergleich zwischen Wöhler- und Gaßnerlinie

Somit erträgt eine Probe in der Gaßnerlinie immer mehr Lastwechsel als eine Probe gleicher Schwingbreite in der Wöhlerlinie, da durch das Normkollektiv auch ein großer Anteil an kleineren Schwingbreiten mit geringerer Schädigung einwirkt.

Wird ein Lastkollektiv mit annähernd gleich großen Spannungsdifferenzen zur Ermittlung der Gaßnerlinie verwendet, so gleicht sich diese der Wöhlerlinie an.

Ist eine passende Gaßnerlinie bekannt, kann der direkte Vergleich mit dem aktuellen Spannungskollektiv die Schadensakkumulationsrechnung ersetzen.

2.4.3 Modifizierte Form des Dauerfestigkeitsbereichs nach Haibach

Spannungszyklen mit Beanspruchungsamplituden unterhalb der Dauerfestigkeit S_D (bzw. $\Delta \sigma_D$) bewirken nach der Palmgren-Miner-Hypothese keine Schädigungen, selbst wenn diese mit größeren Beanspruchungsamplituden in einem gemeinsamen Kollektiv auftreten.

Durch eine Vorschädigung der Stähle, infolge zuvor einwirkender höherer Beanspruchungsamplituden, wird die Dauerfestigkeit allerdings herabgesetzt.

Zur Berücksichtigung solcher Vorschädigungen wurde von Haibach [45] eine fiktive Fortsetzung der Wöhlerlinie als modifizierte Form des Dauerfestigkeitsbereichs angegeben (Bild 2-16).

Üblicherweise wird in den heutigen Normen die Zeitfestigkeitsgerade mit dem Spannungsexponent k_1 und die fiktive Fortsetzung mit dem Spannungsexponent k_2 beschrieben (siehe auch Bild 3-1).

Somit wird nach Haibach [45] der Verlauf am Knickpunkt zur Dauerfestigkeit nicht horizontal weitergeführt, sondern knickt mit dem Spannungsexponent $k_2 = 2k_1 - 1$ ab.

Diese Festlegung hat in den heutigen Normen des Betonbaus seine Anwendung gefunden.

2.5 Dauerfestigkeitsschaubilder

Im Gegensatz zur Wöhlerlinie lassen sich mit Dauerfestigkeitsschaubildern keine Zeitfestigkeiten bestimmen. Sie gelten jeweils für eine definierte Grenzschwingspielzahl. Der Vorteil liegt darin, dass der Zusammenhang zwischen Mittelspannung und dauernd ertragbarer Spannungsamplitude (Diagramme nach Smith, Haigh) bzw. Unterspannung und dauernd ertragbarer Oberspannung (Diagramme nach Goodman) leicht erkennbar ist. Somit bestehen Dauerfestigkeitsschaubilder quasi aus einer Vielzahl von einzelnen Wöhlerlinien eines Werkstoffs.

Aus dieser Tatsache lässt sich erkennen, dass das Generieren von Dauerfestigkeitsschaubildern mit sehr hohem experimentellem, zeitlichem und finanziellem Aufwand verbunden ist, um statistisch abgesicherte Ergebnisse zu erhalten. Werden Dauerfestigkeitsschaubilder für weitere oder andere Grenzschwingspielzahlen benötigt, um Zeitfestigkeitsschaubilder oder Schaubilder für höhere Grenzschwingspielzahlen zu generieren, vervielfältigt sich der Aufwand schnell. Daher existieren nur wenige Diagramme dieser Art für Werkstoffe. Schaubilder von Smith und Haigh findet man hauptsächlich im Stahlbau. Im Betonbau und speziell für Werkstoffe mit einer ausgeprägten Mittelspannungsabhängigkeit (wie Beton) werden häufig Goodman Diagramme verwendet.

2.5.1 Smith Diagramm (Dauerfestigkeitsschaubild)

Eine große Bedeutung kann dem Dauerfestigkeitsschaubild nach Smith vor allem in der früheren Zeit in Deutschland zugeschrieben werden. Zu dieser Zeit war es für den Maschinenbau und die Werkstoffprüfung von großer Wichtigkeit. Es hat gegenüber anderen Schaubildern den großen Vorteil, dass dem Schaubild der zeitliche Spannungsverlauf direkt zugeordnet werden kann. Dargestellt wird im Smithdiagramm auf der Abszisse die Mittelspannung σ_m und im gleichen Maßstab auf der Ordinate die Unterspannung σ_u und Oberspannung σ_o als zugehörige Grenzlinien. Aus dem Diagramm lässt sich zu einer Mittelspannung die zugehörige, dauerhaft ertragbare Unter- und Oberspannung bzw. die daraus resultierende Schwingbreite eines Werkstoffs ermitteln.

2.5.2 Goodman Diagramm (Dauerfestigkeitsschaubild)

Der wesentliche Unterschied im Goodman Diagramm zum Diagramm von Smith liegt in den aufgetragenen Werten. In dieser Darstellung werden auf der Ordinate die ertragbaren Oberspannungen σ_o über den auf der Abszisse liegenden Unterspannungen σ_u abgebildet. Diese Art der Darstellung ist im Allgemeinen auch als Spannungshäuschen bekannt und wird im Betonbau üblicherweise für die Angabe der Ermüdungsfestigkeit von Beton verwendet.

Bild 2-18: Goodman Diagramm aus den Anfängen des 20. Jh. (links) und übliche heutige Darstellung (rechts)

2.5.3 Haigh Diagramm (Dauerfestigkeitsschaubild)

Das Haigh-Diagramm zeigt die dauernd ertragbare Spannungsaplitude σ_a eines Materials in Abhängigkeit einer vorhandenen Mittelspannung σ_m .

In Bild 2-19 ist vornehmlich der Bereich der Wechsel- und Zugschwellbeanspruchung schematisch dargestellt. Hier wird deutlich, dass mit steigernder Mittelspannung in einem Material die dauernd ertragbare Spannungsamplitude abnimmt. Dieser Effekt wurde bereits in Kapitel 2.2.3 im Rahmen der Mittelspannungsempfindlichkeit M näher beschrieben. Das Haigh Diagramm findet im Betonbau üblicherweise keine Anwendung.

Bild 2-19: Dauerfestigkeitsschaubild nach Haigh

2.6 Interaktives Verfahren

Durch das interaktive Verfahren nach Block/Dreier [8; 9] können experimentelle Untersuchungen unter einer zyklischen Beanspruchung mit vergleichbar geringem Aufwand und hohem Informationsgewinn durchgeführt werden.

Im Unterschied zu üblichen Verfahren erfolgt die Prüfung und Auswertung mit unterschiedlichen Schwingbreiten. Im Gegensatz zu anderen Verfahren erfolgt die Auswertung der statistischen Verteilung im Dauerschwingfestigkeitsbereich durch vertikal betrachtete Schnitte (Bild 2-21), da ansonsten die Quantilfunktionen nur schwer erfasst werden können (Bild 2-20).

Bild 2-20: Verteilungsdichten der Logarithmen der Schwingspielzahl in unterschiedlichen horizontalen Schnitten (neu gezeichnet nach [63])

Bild 2-22: Verlauf und die Bereiche der Wöhlerlinie (neu gezeichnet nach [62])

Dadurch kann eine vollständige Funktion (Gleichung (2-7)) des Ermüdungswiderstandes bestimmt werden (Bild 2-22), wodurch die charakteristischen Widerstände zuverlässig bestimmt werden können.

Dem interaktiven Verfahren liegt folgende Funktion für die Beschreibung der Wöhlerlinie zu Grunde:

(2-7)

$$\Delta \sigma = \Delta \sigma_{\rm D} + (\Delta \sigma_1 - \Delta \sigma_{\rm D}) \cdot a^{(lgN)^{b}}$$

Δσ:	Spannungsschwingbreite des Ermüdungswiderstandes
$\Delta \sigma_D$:	Spannungsschwingbreite des Dauerermüdungswiderstandes
$\Delta \sigma_1$:	Spannungsschwingbreite des niederzyklischen Widerstandes
N:	Anzahl der Schwingspiele unter $\Delta\sigma$
a:	positive, dimensionslose Zahl mit $a < 1,0$
b:	positive, dimensionslose Zahl
	$\begin{array}{l} \Delta \sigma: \\ \Delta \sigma_{\rm D}: \\ \Delta \sigma_{\rm 1}: \\ N: \\ a: \\ b: \end{array}$

Die Spannungsschwingbreite $\Delta \sigma_1$ des niederzyklischen Widerstandes kann aus der statistisch ausgewerteten Zugfestigkeit R_m der quasi-statischen Versuche durch Subtraktion der in den Versuchen angesetzten konstanten Unterspannung (σ_u) bestimmt werden (Gleichung (2-8)). Dadurch ergibt sich quasi die maximale Schwingbreite für ein Schwingspiel.

$$\Delta \sigma_1 = R_m - \sigma_u \tag{2-8}$$

Basierend auf iterativen Rechenprozessen wird eine rechnergestützte Regressionsanalyse zur Bestimmung der unbekannten Größen a, b und $\Delta \sigma_D$ durchgeführt. Dazu können Solver-VBA-Funktionen von Excel verwendet werden, um diese unbekannten Variablen zu bestimmen. Diese folgt dem Prinzip der Summe der kleinsten Fehlerquadrate zu den im Versuch gewonnenen Versuchsergebnissen. Daher kann durch eine Interaktion zwischen dem laufenden Versuchsprogramm und der ständigen Analyse neuer Versuchsdaten frühzeitig ein optimales Ergebnis erzielt werden. Die Funktion entspricht letztendlich der Mittellinie der Ermüdungsfestigkeit und wird mit steigender Anzahl an Versuchsergebnissen zunehmend genauer.

Anschließend werden mit der gewonnenen Mittelwertfunktion die Quantilwerte nach Gleichung (2-9) bestimmt, welche auf einer Normalverteilung basieren.

 $\Delta \sigma_{p\%} = \Delta \bar{\sigma} \pm k_n \cdot \Delta \hat{\sigma}$

mit:	$\Delta \sigma_{p\%}$:	p-Quantil von $\Delta\sigma$
	$\Delta \overline{\sigma}$:	Bestimmter Mittelwert der Stichprobe
	k _n :	p-Ouantilfaktor zur Berücksichtigung der Aussagewahrscheinlichkeit und
		der Anzahl n der Versuchswerte
	Δδ:	Standardabweichung der lokalen Stichprobe vom Umfang n _{loc}

Die Quantilwerte werden nun von einer Anzahl n_{loc} (*loc* = *local*) lokal nebeneinander liegenden Versuchsergebnissen bestimmt, wobei n_{loc} von der Streuung der einzelnen Ergebnisse abhängt. Nach Block/Dreier [8] werden bei einer Verteilungen mit einem Variationskoeffizient bis etwa 12% durch n_{loc} =3 bereits zufriedenstellende Ergebnisse erzielt. Bei größeren Streuungen der Versuchswerte ist es angebracht n_{loc} zu vergrößern, z.B. n_{loc} =5. Anschließend erhält man den berechneten 5%-Quantilwert der n_{loc} Versuchswerte zur ermittelten Mittelwertfunktion der Ermüdungsfestigkeit.

Der benötige Ouantilfaktor k_n beruht auf einer zugrunde gelegten Normalverteilung. Dieser wird bestimmt durch die Anzahl aller Proben n, dem Vertrauensniveau (1- α) sowie dem p-Quantilwert.

Für übliche Bauteile wird im Bauwesen zur Bestimmung des 5%-Quantil des Bauteilwiderstandes ein Vertrauensniveau von 90% zugrunde gelegt. In Abhängigkeit der Sicherheitsrelevanz des Bauteils kann das Vertrauensniveau im Einzelfall auch höher oder niedriger ausfallen.

Mit wachsender Anzahl der Versuchsproben reduziert sich der k_n-Wert. Dadurch rücken die berechneten 5%-Quantilwerte mit steigender Versuchsanzahl näher an die Mittelwertfunktion, wodurch auch das Streuband genauer wird. Die k_n-Werte können zum entsprechenden p-Quantilwert und geforderten Vertrauensniveau Tafelwerken (z.B. [72]) entnommen werden. Ein Auszug zu k_n-Werten ist in der Anlage A2, Tabelle A 2-7 zu finden.

Anschließend erfolgt eine zweite iterative, rechnergestützte Regressionsanalyse zu den berechneten Quantilwerten, um die zugehörige Quantilfunktion daraus zu gewinnen.

2.7 Zusammenfassung

In diesem Kapitel wird das Phänomen der Materialermüdung, im Wesentlichen für Beton- und Spannstahl, grundlegend erläutert. Es wird beschrieben, dass viele Einflussfaktoren von der Produktion bis zur Prüfung- bzw. dem Einbau eines Materials den Ermüdungsprozess frühzeitig auslösen und beschleunigen können.

Weiter wird der Begriff des Dauerschwingversuchs erläutert und die hiermit im Zusammenhang stehenden Begrifflichkeiten und mögliche Belastungsformen.

Im Anschluss werden Darstellungsformen, der aus Dauerschwingversuchen stammenden Ergebnisse, vorgestellt. Diese können sich in Zeitfestigkeitskurven wie Wöhlerlinien (bzw. SN-Kurven) oder auch Dauerfestigkeitsschaubildern (Goodman-, Smith-, Haigh-Diagramme) präsentieren.

Die Existenz einer echten Dauerfestigkeit wird heutzutage als nicht gesichert angesehen.

Abschließend erfolgt eine Vorstellung des "interaktiven Verfahrens", welches in den durchgeführten Versuchen angewandt wird.

(2-9)

3 Historischer Rückblick

Allgemeines

Dieses Kapitel befasst sich mit der historischen Entwicklung der Nachweise gegen Ermüdung und den Forschungsarbeiten speziell hinsichtlich der Materialermüdung von Betonstahl und Spannstahl.

Der erste Abschnitt umfasst einen groben Überblick über die zeitliche Entwicklung der Ermüdungsnachweise seit 1904. Im Fokus steht dabei ausschließlich der rechnerische Nachweis gegen Material- oder Bauteilermüdung, um aufzuzeigen, seit wann und in welcher Form dieser in die Normung Einzug gehalten hat und wie er berücksichtigt wurde.

Im zweiten Abschnitt erfolgt ein historischer Rückblick über einige wesentliche Material- und Bauteilermüdungsversuche der letzten Jahrzehnte. Zum einen bietet dieser einen Einblick in die Art und Weise der Versuchsdurchführung sowie der dabei untersuchten Materialien, zum anderen werden die seinerzeitigen Ergebnisse den heutigen charakteristischen Wöhlerlinien gegenübergestellt. Hierdurch kann eine Einschätzung der Ermüdungsfestigkeit der damals verwendeten Materialien im Hinblick auf die aktuell gültigen charakteristischen Wöhlerlinien erfolgen. Diese Recherche wurde im Rahmen eines Forschungsprojekts der BASt [65] mit dem Titel "Nachrechnung von Betonbrücken zur Bewertung der Tragfähigkeit bestehender Bauwerke" (FE 15.0490/2010/FRB) durchgeführt und wird im Folgenden weitergehend betrieben.

Differenziert behandelt werden müssen dabei zum einen die Ermüdungsversuche mit Betonstahl und zum anderen diejenigen mit Spannstahl. Bei beiden Materialien wird zwischen dem reinen Materialversuch und dem Versuch im eingebauten Zustand an einem Gesamtsystem, in der Regel Stahlbeton- oder Spannbetonträger, unterschieden, da im Gesamtsystem weitere maßgebliche Einflussparameter wirksam sein können. Durch diese können die Material- und Systemwöhlerlinien stark beeinflusst werden.

Oftmals wird in den einzelnen Arbeiten ein spezieller Einflussparameter untersucht und nicht das Ermüdungsverhalten im Gesamtsystem. Daher ist ein direkter Vergleich der Versuchsergebnisse untereinander nicht immer möglich, da in den jeweiligen Untersuchungen nicht immer die gleichen Randbedingungen vorherrschten.

Die Bedeutung unterschiedlicher Einflussfaktoren auf die Materialermüdung wurde bereits im vorherigen Kapitel beschrieben.

3.1 Zeitliche Entwicklung der Ermüdungsnachweise

Bis 1953 wurden für eine häufige, wiederkehrende zyklische Beanspruchung in den gültigen Normen und Richtlinien für den Betonbau keine Nachweise gefordert. Im Folgenden wird ein kurzer Überblick über die zeitliche Entwicklung der Bemessung gegen Bauteilermüdung ab 1953 gegeben.

1953 Es erfolgte die Erstausgabe der Richtlinie DIN 4227 "Spannbetonbau".

Ein rechnerischer Ermüdungsnachweis wurde hier noch nicht explizit gefordert.

Es bestand allerdings die Forderung, dass nur Spannstähle mit entsprechender Ermüdungsfestigkeit gemäß den Anforderungen der Zulassung eingebaut werden dürfen.

Hierzu gab es eine zusätzliche "Vorläufige Richtlinie für die Prüfungen bei Zulassung und Abnahme" (Okt. 1954).

Hierin heißt es im Abschnitt 7.37 zur Prüfung von Spannstahl im Dauerschwingversuch: "Die Dauerschwingversuche sind nach DIN 50100 mit einer Grenz-Lastspielzahl von $2 \cdot 10^6$ so durchzuführen, daß das Dauerfestigkeitsschaubild nach Smith für Oberspannungen zwischen der zul. Beanspruchung nach DIN 4227 und der 0,2-Grenze mit ausreichender Genauigkeit festgelegt werden kann."

Für Verankerungen der Spannglieder durch Ankerkörper galt im Abschnitt 10.3 für die Prüfung des Spannverfahrens unter schwingender Belastung:

"Die Spannglieder und ihre Verankerung werden für diese Prüfung zweckmäßig in kurze, etwa 2m lange Betonbalken … eingebaut. … Bei den Schwingversuchen ist der Schwingbereich festzustellen, der 2·10⁶ Lastspiele erträgt."

Parallel erschien zu dieser Norm die Prüfnorm DIN 50100 "Dauerschwingversuche".

1972 DIN 1045 "Beton- und Stahlbetonbau, Bemessung und Ausführung" erschien vollständig und grundlegend überarbeitet.

Hier bestand die Forderung für Betonstähle die Stahlspannungen unter Gebrauchslasten bei nicht vorwiegend ruhender Belastung zu beschränken. Zudem mussten solche Betonstähle einen Eignungsnachweis erbringen. Die Schwingbreite der Stahlspannung durfte beispielsweise bei einem BSt 42/50 (III) unter Gebrauchslast bei einem geraden Stab 1800kp/cm² (180MPa) nicht überschreiten. Zudem durfte auch ein vereinfachter Nachweis geführt werden, indem nachgewiesen wird, dass der durch häufige Lastwechsel verursachte Momentenanteil (Δ M) bei geraden Stäben 75% des Größtmomentes nicht überschreitet. Diese Norm wurde 1978 aktualisiert, enthielt hinsichtlich der Ermüdung allerdings keine relevanten Änderungen.

- 1977 Es erfolgte ein Änderungsbescheid für die allgemeinen bauaufsichtliche Zulassungen der Spannverfahren als Sofortmaßnahme infolge des 1976 aufgetretenen Schadensfalls an der Spannbetonbrücke "Hochstraße Prinzenallee" in Düsseldorf. Hier war es in einer Koppelfuge zu Ermüdungsbrüchen einiger Spannstähle gekommen. Wie sich zeigte, lag eine wesentliche Ursache in der bislang rechnerisch nicht berücksichtigten ungleichmäßigen Erwärmung durch Sonneneinstrahlung (linearer Temperaturunterschied ΔT_M). Dieses führte zu einem Aufreißen der Koppelfugenbereiche, wodurch es zu einem starken Ansteigen der Schwingbreite in der Bewehrung und Spanngliedkopplung kam. Durch diesen Änderungsbescheid der abZ musste ein Dauerschwingfestigkeitsnachweis für die Spanngliedkopplung der Spannverfahren erbracht werden.
- **1979** Es erschien die neu überarbeitete DIN 4227 "Spannbeton" in der die zuvor festgelegten Nachweise und Regelungen des Änderungsbescheides von 1977 einflossen. Der allgemeine rechnerische Nachweis der Schwingbreite für Betonstahl und Spannstahl war hiernach noch nicht erforderlich. Lediglich Endverankerungs- und

Kopplungsbereiche musste im Zustand II nachgewiesen werden. Hierbei waren für den Nachweis der lineare Temperaturunterschied und erhöhte Verluste der Vorspannkraft durch Kriechen und Schwinden im Bereich der Spanngliedkopplungen zu berücksichtigen.

- 1980 Weitere Verbesserungen zur Koppelfugenproblematik brachten die "Zusätzlichen Technischen Vorschriften für Kunstbauten" (ZTV-K-80), welche vom Bundesverkehrsministerium eingeführt wurden. Nach diesen Vorschriften mussten mindestens 30% der Spannglieder in jedem Querschnitt ohne Kopplung durchlaufen. Diese Konstruktionsmaßnahmen führten zu einer deutlichen Verbesserung des Spannungszustands infolge Vorspannung in diesem Bereich.
- 1981 Es erschien eine Neuausgabe der DIN 1075 "Betonbrücken Bemessung und Ausführung". Nach dieser Norm waren Nachweise für Stahlbetonbauteile unter nicht vorwiegend ruhenden Beanspruchungen zu führen, bei denen die Differenz aus Grenzschnittgrößen der Verkehrsregellasten mehr als 25% der absolut größten Schnittgröße des Lastfall H betrug. Die aus diesen Grenzschnittgrößen ermittelte Spannungsschwingbreite im Betonstahl musste den zulässigen Werten der seinerzeit gültigen DIN 1045 gegenüber gestellt werden.
- **1988** Die letzten Ausgaben der DIN 1045 "Beton- und Stahlbetonbau" und DIN 4227 "Spannbeton" erschienen ohne wesentlichen Änderungen hinsichtlich der Ermüdung
- Aufgrund des schwierigen und langwierigen Unterfangens ein europäisches Regelwerk für den Betonbau (Eurocode 2) einzuführen (ursprünglich bereits für Anfang der 1990er Jahre geplant), erfolgte 2001 die Zusammenfassung der DIN 1045 für Stahlbeton und DIN 4227 für Spannbeton zu der gemeinsamen Norm DIN 1045-1 "Beton, Stahlbeton und Spannbeton" auf Basis des Model Code 90 und Eurocode 2, um dem Stand der Technik gerecht zu werden.
 In dieser Übergangsnorm wurde neben dem vereinfachten Nachweis der Dauerschwingfestigkeit sowie dem Nachweis der schädigungsäquivalenten

2003 Zeitgleich entstanden parallel auf Grundlage der europäischen Vornormen die DIN Fachberichte speziell für Brückenbauwerke (z.B. DIN FB 102 für Betonbrücken).

Parameter der Wöhlerlinie für die Bemessung explizit vorgegeben.

- 2008 Eine überarbeitete Ausgabe der DIN 1045 erschien, welche bereits in großen Teilen der deutschen Version des wenige Jahre später eingeführten Eurocode 2 entsprach. Hinsichtlich der Ermüdung erfolgte im Wesentlichen eine Korrektur der charakteristischen Wöhlerlinien für Betonstahl. Bis auf den Spannungsexponent k₂ für gerade Spannglieder im nachträglichen Verbund, wodurch der zweite Ast steiler anzusetzen war, änderten sich die Parameter für den Spannstahl nicht. Entscheidender war allerdings die Tatsache, dass die angegebenen Werte den eingebauten Zustand der Spannstähle beschreiben.
- 2012 Seit Mitte 2012 gilt der Eurocode 2 alleine für die Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken.
 Die nationale Anwendung erfolgt dabei immer in Verbindung mit dem zugehörigen nationalen Anhang.

Da in den Jahren zuvor bereits viele Nachweise und Nachweisformate des Eurocode 2 im Bereich der Ermüdung Bestandteil der DIN 1045-1 bzw. des DIN FB 102 gewesen waren, ergaben sich hierdurch keine wesentlichen Änderungen.

Ein neu aufgenommener Punkt im deutschen nationalen Anhang entstand allerdings bei den Parametern der Ermüdungsfestigkeitskurve für Spannstahl. Die Spannstähle werden nun in 2 Klassen eingeteilt. Die dort angegebenen höheren Werte für Spannstähle der Klasse 1 sind durch eine allgemeine bauaufsichtliche Zulassung nachzuweisen.

Der Hintergrund ist, dass heute einige Spannstähle die Anforderungen des Eurocode 2 nicht erfüllen.

Bis 1953 waren also in den Regelwerken für die Bemessung im Betonbau keine Nachweise gegen Ermüdung enthalten.

Grundsätzlich sind zwei Arten von Nachweisformen für die Ermüdungsfestigkeit zu unterscheiden. Zum einen die Konformitätsnachweise der Hersteller, bei denen die Anforderungen an das Material überprüft werden, indem diese i.d.R. freischwingend bis $2 \cdot 10^6$ Lastwechsel eine bestimmte Schwingbreite $\Delta \sigma$ ertragen müssen und zum anderen die Ermüdungsnachweise zur Bemessung von Tragwerken. Hier erfolgt der Nachweis über charakteristische Wöhlerlinien, wie sie in den heutigen Normen zu finden sind.

Es zeigt sich, dass die Betrachtung der Ermüdung erst ab 1953 wirklich Einzug in die Normen gehalten hat, indem für die verwendeten Spannstähle und Verankerungen, basierend auf der parallel eingeführten Prüfnorm DIN 50100, durch nachgewiesene Dauerschwingversuche (bis N=2·10⁶) im Sinne eines Konformitätsnachweises die Anforderungen an das Material nachgewiesen werden mussten. Rechnerische Ermüdungsnachweise für Spannbetonbrücken erfolgten nicht, da man vom ungerissenen Zustand I unter Gebrauchslast ausging. Dies änderte sich erst durch den Schadensfall an der "Hochstraße Prinzenallee" (1976), als in der Folge Nachweise einer ausreichenden Ermüdungsfestigkeit für die Kopplungsfuge geführt werden mussten. Diese Forderung war auf die Koppelfugenbereiche begrenzt und erstreckte sich nicht über die übrigen Bereiche der Brückenüberbauten. Der rechnerische Nachweis erfolgte bis 2001 nur über die Begrenzung der Spannungen auf die Dauerschwingfestigkeit. Erst seit 2001 bzw. 2003 ist mit DIN 1045-1 bzw. DIN Fachbericht 102 ein dreistufiger Nachweis gegen Ermüdung zu führen und zwar ganz allgemein in allen Nachweisschnitten.

Aktuelle Wöhlerlinien für die Bemessung nach DIN EN 1992-1-1 (+NA) und DIN EN 1992-2 (+NA)

Derzeit beschreibt die aktuell gültige DIN EN 1992-2 [21], aufbauend auf der DIN EN 1992-1-1 [19], für den Betriebsfestigkeitsnachweis von Beton- und Spannstahl die charakteristische Ermüdungsfestigkeitskurve (Bild 3-1) mithilfe der Steigungen k1 im Zeitfestigkeitsbereich und k₂ im Dauerfestigkeitsbereich sowie dem Übergangspunkt zwischen beiden Bereichen ($\Delta \sigma_{Rsk}$; N^{*}). Die hierzu festgesetzten Werte unter Berücksichtigung des nationalen deutschen Anhangs [20; 22] sind für Betonstahl der Tabelle 3-1 und für Spannstahl der Tabelle 3-2 zu entnehmen.

Bild 3-1: Form der charakteristischen Ermüdungsfestigkeitskurve nach DIN EN 1992-1-1 [19] und DIN EN 1992-2 [21]

In Wesentlichen ändern sich die Parameter der Wöhlerlinie in Abhängigkeit von Bauweise, konstruktiver Durchbildung, verwendeten Materialien sowie ggf. möglicher Einwirkungen aus korrosiven Umgebungsbedingungen. Wie bereits im vorherigen Kapitel beschrieben, können speziell letztere die Ermüdungsfestigkeit deutlich absenken.

Tabelle 3-1: Parameter der Ermüdungsfestigkeitskurven (Wöhlerlinien) für Betonstahl, Tabelle 6.3DE [20; 22]

Art der Bewehrung		N^{\star}	Spannungsexponent		Δσ _{Rsk} bei <i>N</i> * Zyklen				
			<i>k</i> ₁	k ₂	N/mm²				
ge	rade und gebogene Stäbe ª	10 ⁶	5	9 °	175				
geschweißte Stäbe und Betonstahlmatten ^b		10 ⁶	4	5	85				
a	^a Für gebogene Stäbe mit D < 25φ ist Δσ _{Rak} mit dem Reduktionsfaktor ζ ₁ = 0,35 + 0,026 D / φ zu multiplizieren. Für Stäbe φ > 28 mm ist Δσ _{Rak} = 145 N/mm ² (gilt nur für hochduktile Betonstähle). Dabei ist D der Biegerollendurchmesser; φ der Stabdurchmesser.								
b	Sofern nicht andere Wöhlerlinien durch eine allgemeine bauaufsichtliche Zulassung oder Zustimmung im Einzelfall festgelegt werden.								
c	In korrosiven Umgebungsbedingungen (XC2, XC3, X keine genaueren Erkenntnisse vorliegen, ist für k2 ein	korrosiven Umgebungsbedingungen (XC2, XC3, XC4, XS, XD) sind weitere Überlegungen zur Wöhlerlinie anzustellen. We sine genaueren Erkenntnisse vorliegen, ist für k_2 ein reduzierter Wert $5 \le k_2 < 9$ anzusetzen.							

Mit dem deutschen nationalen Anhang DIN EN 1992-1-1/NA [20] für den Hochbau und DIN EN 1992-2/NA [22] für den Brückenbau wurden für die Spannstähle, die nicht explizit andere Wöhlerlinien für den eingebauten Zustand durch Zulassungen aufweisen, 2 Klassen eingeführt (Tabelle 3-2). Alle Werte gelten für den eingebauten Zustand. Um die höheren Werte der Klasse 1 anwenden zu dürfen, ist diese Eignung durch die allgemeine bauaufsichtliche Zulassung (abZ) des zu verwendenden Spannstahls nachzuweisen. Andernfalls ist die Klasse 2 anzuwenden.

Tabelle 3-2: Parameter der Ermüdungsfestigkeitskurven (Wöhlerlinien) für Spannstahl, Tabelle 6.4DE [20; 22]

Spannstahl ^a		N*	Spannungs- exponent		Δσ _{Rsk} bei <i>N</i> * Zyklen ^b N/mm²			
			<i>k</i> ₁	<i>k</i> ₂	Klasse 1	Klasse 2		
im sofortigen Verbund			5	9	185	120		
im nachträglichen Verbund								
	Einzellitzen in Kunststoffhüllrohren	10 ⁶	5	9	185	120		
-	gerade Spannglieder, gekrümmte Spannglieder in Kunststoffhüllrohren	10 ⁶	5	9	150	95		
-	gekrümmte Spannglieder in Stahlhüllrohren	10 ⁶	3	7	120	75		
^a Sofern nicht andere Wöhlerlinien durch eine Zulassung oder Zustimmung im Einzelfall für den eingebauten Zustand festgelegt werden.								
^b Werte im eingebauten Zustand. Die Spannstähle werden in 2 Klassen eingeteilt. Die Werte für Klasse 1 sind durch eine allgemeine bauaufsichtliche Zulassung für den Spannstähl nachzuweisen. Die Werte für Nachweise des Verankerungsbereichs von Spannelideren sind immer der allecemeinen bauaufsichtlichen Zulassung zu entrehmen.								

3.2 Dokumentierte Ermüdungsversuche mit Betonstahl

Zur Ermüdungsfestigkeit von Betonstählen wurden in der Vergangenheit bereits zahlreiche Untersuchungen mit zyklischen Beanspruchungen i.d.R. als sogenannte Einstufenversuche durchgeführt. Wesentliche Studien der letzten 50 Jahre liegen hierzu u.a. von *Wascheidt* [96], *Rußwurm et al.* [59], *Tilly et al.* [89], *Vogel et al.* [39], *Rehm* [80], *Canteli et al.* [11] vor. Die Ergebnisse in Form der Wertepaare aus den einwirkenden Spannungsschwingbreiten mit den zugehörigen ertragenen Lastwechselzahlen wurden, soweit möglich, aus den angegebenen Quellen in neue Diagramme übertragen. Die Daten hierzu können der Anlage A1 entnommen werden.

Um eine Aussage zur Vergleichbarkeit mit den heutigen Betonstählen treffen zu können, wurde, sofern eine Übertragung der Ergebnisse nicht möglich war, die aktuell gültige char. Wöhlerlinien nach DIN EN 1992-2 [21] unter Berücksichtigung des NA [22] im Originaldiagramm ergänzt.

Wascheidt (1965)

Bereits 1965 wurden von *Wascheidt* [96] Versuche an glatten Rundstählen und Rippenstählen durchgeführt. Er untersuchte Betonstähle unterschiedlicher Herstellung mit einem Durchmesser von 16mm, welcher damals in Deutschland als üblicher Mittelwert von verwendeten Rippenstählen galt (Bild 3-2). Diese hatten einen üblichen Abmessungsbereich von d=6-26mm. Zur Bestimmung des Dickeneinflusses erfolgten von *Wascheidt* zusätzlich Versuche mit Stählen d=26mm. Die Untersuchung aller Proben erfolgte sowohl im freischwingenden als auch im einbetonierten Zustand. Während die Versuche meist gleichbleibend mit einer Unterspannung von $\sigma_u = 60MPa$ angesetzt wurden, erfolgte eine stetige Veränderung der Oberspannung. Um einen möglichen Einfluss aus der Unterspannung festzustellen, wurden in einigen Versuchen auch diese verändert. Als Dauerschwingfestigkeit wurde die Schwingbreite zugrunde gelegt, die bei 2·10⁶ Lastwechseln noch ertragen wurde.

Die *freischwingenden Versuche* an Stäben mit einem Durchmesser von 16mm unterlagen einer Prüffrequenz von 14Hz (840/min), Stäbe mit dem Durchmesser von 26mm einer reduzierten von 11,1Hz (666/min). Die hierbei verwendeten Proben waren an beiden Stabenden mit einer Schicht aus Kunstharz versehen und insgesamt 400mm lang. Die Kunstharzschicht wurde nach der Aushärtung auf die erforderlichen Abmessungen der Rundbacken abgedreht.

Die einbetonierten Kleinkörperversuche erfolgten unter Verwendung eines 80x80x500mm³ großen Betonprismas. Bei einem Stabdurchmesser von 16mm ergab sich hierdurch eine allseitige Betondeckung von 32mm (Bild 3-3). Um eine gleichmäßige Verteilung der Zugspannung zu erreichen, erfolgte bei diesen Versuchen die Kraftübertragung auf den Stab über den umgebenden Beton. Die Prüffrequenz betrug hierbei 10,7Hz (640/min).

Zum Vergleich erfolgten weitere Versuche, bei denen die Stäbe in 80x80x130mm³ große Betonprismen eingebettet wurden und die Kraftübertragung direkt über den Stab und nicht über den Beton erfolgte. In diesen Versuchen wurde die Prüffrequenz auf 13,8Hz (830/min) erhöht. Zudem wurden Balken mit einer Länge von 1,8m und einem eingebauten Längsbewehrungsstahl untersucht. Die Belastung erfolgte durch zwei Einzellasten unter einer Prüffrequenz von 10,7Hz (640/min).

In den nachfolgenden Diagrammen sind die so aufgebrachten Schwingbreiten mit den zugehörigen ertragenen Lastwechseln aus den beschriebenen Versuchen eingetragen. Die Ergebnisse der Versuche im einbetonierten und nicht einbetonierten Zustand mit glattem Rundstahl aus Betonstahl I und Betonstahl II sind Bild 3-5 zu entnehmen. Die Versuchsergebnisse der gerippten Betonstähle (BSt III, BSt IV) im nicht einbetonierten Zustand sind dem Bild 3-6, die im einbetonierten Zustand dem Bild 3-7 zu entnehmen. Hierbei wird deutlich, dass nahezu alle gebrochenen Proben von 1965 oberhalb der heutigen charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] liegen.

Bild 3-3: Versuchskörper von Wascheidt [96, S.20] für Dauerschwingfestigkeitsuntersuchungen an einbetonierten Betonstählen

Bild 3-4: Versuchskörper von Wascheidt [96, S.32] für grade einbetonierte Stäbe

Bild 3-5: Versuchsergebnisse Wascheidt [96], glatter Betonrundstahl ø16mm, BSt I u. BSt II

Bild 3-6: Versuchsergebnisse Wascheidt [96], gerippter Betonstahl, nicht einbetonierter Zustand

Bild 3-7: Versuchsergebnisse Wascheidt [96], gerippter Betonstahl, einbetonierter Zustand

Rußwurm / Martin (1968)

Rußwurm et al. [59] führten 1968 Dauerschwingversuche an sogenanntem "KARIstahl" durch. Hierbei handelte es sich um kaltgewalzten Betonrippstahl, welcher bei den Proben einen jeweiligen Durchmesser von 4, 6, 8, 10 und 12mm hatte. Als Dauerschwingfestigkeit wurde die Schwingbreite zugrunde gelegt, die bei 2·10⁶ Lastwechseln noch ertragen wurde. Der Stahl erfüllt die damaligen Güteanforderungen an den Betonstahl IVb.

Die *freischwingenden Versuche* wurden mithilfe eines Hochfrequenzpulsator unter einer Prüffrequenz von ca. 110Hz und einer Oberspannung von $0.8 \cdot \sigma_s = 445 MPa$ durchgeführt.

Im *einbetonierten Zustand* wurden Stäbe mit der Oberspannung σ_o des 0,8-fachen Wertes der für Stahl III garantierten Streckgrenze ($\sigma_o = 338MPa$) und 3 weitere Stäbe mit einer Oberspannung σ_o des 0,8-fachen Wertes der tatsächlichen Streckgrenze ($\sigma_o = 480MPa$) belastet. Durch Bleche wurden in den geraden Bereichen des Betonstahls Risse vordefiniert (Bild 3-8). In den 9 verwendeten Proben ist während der Versuche nur eine Probe aufgrund von Ermüdung gebrochen. Daher wurde für diese Versuchsreihe keine Wöhlerkurve gezeichnet. Die Abkrümmung der Stäbe betrug $15 \cdot d$.

Die Versuchsergebnisse sind in die nachfolgenden Diagramme aufgetragen. Im Bild 3-9 sind die freischwingend durchgeführten Versuchsergebnisse des KARI-Stahls IVb dargestellt.

Bild 3-10 zeigt die Ergebnisse der einbetonierten Proben. Hierbei wurde $\Delta\sigma_{Rsk}$ durch den Reduktionsfaktor ζ_1 nach DIN EN 1992-2/NA [22] angepasst. Abkrümmungen, welche kleiner waren als $D < 25 \cdot \emptyset$, wurden dadurch berücksichtigt. Sowohl bei den Ergebnissen der freischwingenden als auch bei denen der einbetonierten Proben ist deutlich erkennbar, dass diese oberhalb der charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] liegen. Versuchskörper für 12 mm-Stäbe gebogen um D = 15 d

Bild 3-8: Versuchskörper von Rußwurm et al. [59] für einbetonierte Stäbe mit 15⋅d Abkrümmung

Bild 3-9: Versuchsergebnisse Rußwurm et al. [59], KARI-Stahl IVb, nicht einbetonierter Zustand

Bild 3-10: Versuchsergebnisse Rußwurm et al. [59], KARI-Stahl IVb, mit Abkrümmung, einbetonierter Zustand

Tilly / Moss (1980)

Ende der 1970er und Anfang der 1980er Jahre führten *Tilly* und *Moss* [87], [68], [89], [88] Dauerschwingversuche an Betonstählen durch. Es handelte sich bei den untersuchten Proben um tordierte, warmgewalzte und kaltverformte Betonstähle mit einer garantierten charakteristischen Streckgrenze von 460 MPa (Bild 3-11). Bei den verschiedenen Typen handelte es sich um kaltverformten Torstahl (Typ A) und kaltverformten "Square-twisted" Stahl (Typ B).

Weiter untersuchten sie warmgewalzten Stahl (Typ C und E), auch in einem stark verrosteten Zustand (Typ E) und gewalztes Material mit Schrottbestandteilen und hohen einem Kohlenstoffanteil (Typ F). Die Prüffrequenz der freischwingend getesteten Stähle betrug bei Spannungsschwingbreiten bis 200MPa etwa 45Hz. Höhere Schwingbreiten wurden in einer hydraulischen Maschine im Bereich von 11-25Hz getestet. In einer Magnet-Resonanz-Prüfmaschine wurden zudem weitere Versuche mit einer Prüffrequenz von bis zu 150Hz durchgeführt.

Die Einspannung der Proben in die Versuchsmaschine erfolgte durch ein speziell angefertigtes Aufnahmestück (Bild 3-12). Hierin wurden die Betonstähle zentriert und anschließend der verbleibende Hohlraum durch ein Metall mit einem niedrigen Schmelzpunkt vergossen.

Bild 3-11: Untersuchte Betonstähle von Moss [68, S.19–23]

Um die Versuchsergebnisse mit den heutigen Betonstählen vergleichbar zu machen, wurde in die Diagramme von *Tilly / Moss* nachträglich die heutige charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] maßstäblich eingezeichnet, da die Rohdaten nicht als Werte vorliegen (Bild 3-13, Bild 3-14). Hierbei wurde sichtbar, dass die Stähle mit einem Durchmesser von 16mm deutlich über der heutigen char. Wöhlerlinie liegen.

Der Grund für den Einfluss des Stabdurchmessers liegt in der größeren Oberfläche bzw. dem größeren Materialvolumen. Je größer der Durchmesser, desto größer ist die statistische Wahrscheinlichkeit, dass es zu Fehlstellen im Gefüge kommt. Diese Fehlstellen stellen dann den Ausgangspunkt für eine mögliche Anrissbildung und einen daraus entstehenden Ermüdungsbruch dar.

Bild 3-12: Versuchseinspannung von *Moss* [68, S.28]

Es zeigt sich jedoch, dass auch die Versuchsergebnisse der Proben mit Durchmesser 32 und 40mm oberhalb der heutigen charakteristischen Wöhlerlinie liegen. Für größere Durchmesser ($\phi_s \ge 28$ mm) muss nach DIN EN 1992-2/NA [22] der Knickpunkt $\Delta \sigma_{Rsk}$ auf 145 MPa abgesenkt werden (Bild 3-14).

Bild 3-13: Versuchsergebnisse von *Tilly* [88], freischwingend getesteter Betonstahl 16mm, mit nachträglich ergänzter char. Wöhlerlinie nach DIN EN 1992–2/NA [22]

Bild 3-14: Versuchsergebnisse von *Tilly* [88], freischwingend getesteter Betonstahl 32mm und 40mm, mit nachträglich ergänzter char. Wöhlerlinie nach DIN EN 1992–2/NA [22]

Canteli / Esslinger / Thürlimann (1980)

An der ETH Zürich wurden 1984 Versuche zur Ermüdungsfestigkeit von Bewehrungsstählen freischwingend durchgeführt. Die hierfür verwendeten Proben wurden 1980 und 1981 in Schweizer Werken gefertigt. Es handelte sich hierbei um Betonstahl IIIb (kaltverformt) und Betonstahl Illa (naturhart. interne Bezeichnung B-D, Serie 7) (Bild 3-15). Untersucht wurden speziell die Auswirkungen der Einflussfaktoren ,Fabrikat' (Geometrie, Herstellungsverfahren, Werkstoff), ,Spannungsniveau' und ,Durchmesser'.

Bild 3-15: Untersuchte Betonstähle [11]

Die Versuche wurden in hydraulischen Pulsatoren mit einer Prüffrequenz von 6Hz als Einstufenversuche durchgeführt. Alle Proben, die eine Lastwechselzahl von mindestens $2 \cdot 10^6$ erreichten, wurden als Durchläufer angesehen. Mit Ausnahme einer Vergleichsserie wurden alle Versuche mit einer konstanten Oberspannung von 80% der 0,2%-Dehngrenze ($\sigma_o = 0.8 \cdot 490 = 392MPa$) angesetzt.

Die Betonstähle hatten eine Länge von 700mm und einen Durchmesser von 20mm. Um die Einflüsse von Länge und Durchmesser der Stähle auf deren Ermüdungsfestigkeit zu untersuchen, wurden zu Vergleichszwecken an zwei Serien die Maße variiert (10mm mit 500mm Länge sowie 30mm mit 970mm Länge).

Anhand der Versuchsergebnisse ließ sich erkennen, dass die auf einer konstanten Oberspannung ($\sigma_o = 392MPa$) basierenden Versuche im Vergleich zu denen mit konstanter Unterspannung ($\sigma_u = 10MPa$) durchgeführten keine nennenswerten Unterschiede im Bereich der Zeitfestigkeit aufweisen. Im Dauerfestigkeitsbereich hingegen reduzierte sich bei den 20mm Betonstählen die Ermüdungsfestigkeit unter der konstanten Oberspannung hingegen um ca. 20%.

Auch zeigte sich bei diesen Versuchen, dass kleinere Durchmesser eine höhere Ermüdungsfestigkeit aufweisen als größere Durchmesser. Im Nachfolgenden sind die Versuchswerte getrennt für Betonstahl IIIa (Bild 3-17) und Betonstahl IIIb (Bild 3-16) aufgetragen und der heutigen charakteristischen Wöhlerlinie als Grundlage für die Bemessung nach DIN EN 1992-2/NA [22] gegenübergestellt.

Auch wenn für Stähle mit einem Durchmesser von 30mm eine herabgesetzte charakteristischen Wöhlerlinie anzusetzen ist ($\Delta \sigma_{Rsk} = 145 MPa$), wurden die Versuchswerte aufgrund ihrer geringen Anzahl mit in das Diagramm (Bild 3-16) aufgenommen.

In beiden Fällen zeigt sich, dass die getesteten Proben von 1980/81 deutlich über der heutigen charakteristischen Wöhlerlinie liegen.

Bild 3-16: Versuchsergebnisse Canteli et al. [11], Betonstahl III b, nicht einbetonierter Zustand

Bild 3-17: Versuchsergebnisse Canteli et al. [11], Betonstahl III a, nicht einbetonierter Zustand

Rehm

Im Rahmen von Konformitätsprüfungen wurden in den letzten Jahren an der "Prüfstelle für Betonstahl" in München umfangreiche Dauerschwingversuche an BSt 500 S (ø10mm bis ø40mm) und Ringmaterial WR/KR (ø8mm bis ø16mm) durchgeführt. Um herauszufinden, in welchem Maße sich die Rippengeometrie, Überwalzungen, Narben oder Risse bzw. mechanischen Beschädigungen auf die Lebensdauer des Prüfkörpers auswirken, werden in einem ausführlichen Beitrag von Rehm zahlreiche Bruchflächen einer genaueren Überprüfung unterzogen.

In allen Versuchen betrug die Oberspannung einheitlich 300 MPa. Die Steckgrenze lag zwischen 525 und 560 MPa, die Zugfestigkeit zwischen 650 und 690 MPa.

Im Bild 3-18 sind die Versuchsergebnisse aus mehreren Testreihen aus den Jahren 2005 bis 2007 für ein Ringmaterial BSt 500 WR mit Durchmessern von 10-16mm aufgetragen. Zudem wurde in das Diagramm die heutige charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] maßstäblich eingetragen, da die Ergebnisse nicht tabellarisch als Zahlenwerte vorlagen. Auch hier liegen alle Versuchswerte oberhalb der heutigen charakteristischen Wöhlerlinie. Auffallend ist der extrem große Steubereich.

Im Bild 3-19 und Bild 3-20 sind ausgewählte Proben dargestellt, deren Fokus speziell auf den bruchauslösenden Parametern lag und zu denen die Schwingbreiten und Lastwechsel dem Bericht entnommen werden konnten. Auch hier ist ein früheres Versagen von Betonstählen mit größerem Durchmesser zu erkennen. Nach DIN EN 1992-2/NA [22] ist ab einem Bewehrungsdurchmesser von $\emptyset \ge 28$ mm der Knickpunkt $\Delta \sigma_{Rsk}$ daher auf 145 MPa abzusenken (Bild 3-20). Mit Ausnahme einiger Werte vom Durchmesser 25mm liegen die ausgewählten Proben über bzw. knapp auf der charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22]

Bild 3-18: Versuchsergebnisse von *Rehm et al.* [80], BSt 500 WR im nicht einbetoniertem Zustand, mit nachträglich eingezeichneter charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22]

Bild 3-19: Versuchsergebnisse Rehm et al. [80], BSt 500 S, < Ø28mm, nicht einbetonierter Zustand

Bild 3-20: Versuchsergebnisse Rehm et al. [80], BSt 500 S, ≥ Ø28mm, nicht einbetonierter Zustand

DAfStb - Heft 525

Im Heft 525 [48] des DAfStb sind im Beitrag von Zilch et al. zu Abschnitt 10.8 zahlreiche Versuchsergebnisse dargestellt (Bild 3-21). Bei diesen Versuchen wurden Proben von 1203 Betonstabstählen (ø6≤d₅≤ø28mm) und 518 Betonstählen aus Ringmaterial (ø6≤d₅≤ø14mm) untersucht. Bei den Betonstabstählen handelte es sich um die Güten BSt 420 (III) und BSt 500 (IV). Im Heft 525 [48] heißt es, dass die Charakteristika des BSt 500 auch auf den BSt 420 übertragen werden können.

Um die Lage der Probenbrüche mit den heutigen Anforderungen vergleichen zu können, wurde im Diagramm ebenfalls nachträglich die charakteristische Wöhlerlinie nach DIN EN 1992-2/NA [22] ergänzt. Zusätzlich wurde die "alte" charakteristische Wöhlerlinie von DIN FB 102 [28], Ausgabe 2003 mit dem Knickpunkt bei $\Delta\sigma_{Rsk}$ = 195MPa dargestellt.

Bild 3-21: Versuchsergebnisse aus Heft 525 [48], Versuche an Betonstabstahl d_s<28mm und Betonstahl in Ringen mit nachträglich ergänzter charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22]

Da im Rahmen der Konformitätsprüfungen festzustellen war, dass neuere Betonstähle die Anforderungen an die bis dahin gültigen Wöhlerlinien für die Bemessung nicht durchgängig erfüllten, wurde in der späteren Neuauflage der DIN 1045-1 [26] im Jahr 2008 sowie des DIN FB 102 im Jahr 2009 [29] die Absenkung des Knickpunktes auf $\Delta\sigma_{Rsk}$ = 175MPa erforderlich. Auch hier liegen die Versuchsergebnisse eindeutig oberhalb der abgesenkten charakteristischen Wöhlerlinie.

Vogel/Fehlmann (2008-2012)

Fehlmann [38] und Vogel [39] führten an der ETH Zürich zyklische Versuche an freischwingenden Betonstahlproben aus abgebrochenen 1950er Brücken der Jahre sowie zu neu Vergleichszwecken an produzierten Betonstahlproben von Ring- und Stabmaterial der Betonstahlsorte B 500 B durch (Bild 3-22). Ziel der Untersuchungen war die Antwort auf die Fragestellung, ob die Ermüdungsfestigkeit von alten Betonstählen von derjenigen der heute gebräuchlichen wesentlich abweicht. In vielen Versuchen wurden die Proben aufgrund langer Prüfzeiten nicht mehr als 2.106 Spannungswechsel ausgesetzt.

Bild 3-22: Verwendetet Stähle von Vogel et al. [39]

Bei den aus den abgebrochenen Brücken gewonnenen Proben handelte es sich um Betonstahl der Sorte BOX (Brückenbaujahr 1952) mit den Durchmessern ø12mm und ø16mm sowie Torstahl 40 (Brückenbaujahr 1955) mit dem Durchmesser ø10mm. Diese wurden freischwingend untersucht.

Die Versuche wurden parallel in zwei Prüfmaschinen mit einer Prüffrequenz von jeweils 6Hz durchgeführt. Die Unterspannung betrug in allen Versuchen σ_u =50MPa. Die Probenlänge betrug bei allen Stäben ca. 1m.

Durch die Versuche konnte festgestellt werden, dass bei den alten Stahlsorten die Streuung größer ist als bei den neuen. *Vogel et al.* vermuten, dass diese hauptsächlich auf Korrosionsnarben und sonstigen Kerben (durch Ein- bzw. Ausbau) zurückzuführen ist. Von Vogel/Fehlmann wird darauf hingewiesen, dass bei einigen Stäben Brüche auch noch zwischen $2 \cdot 10^6$ und $3 \cdot 10^6$ Spannungswechseln aufgetreten sind.

Bild 3-23: Resultate *Vogel et. al* [39] im Vergleich mit nachträglich eingezeichneter char. Wöhlerlinie nach DIN EN 1992-2/NA [22]

Bild 3-24: Resultate *Vogel et. al* [39] und *Canteli et al.* [11] im Vergleich mit nachträglich eingezeichneter char. Wöhlerlinie nach DIN EN 1992-2/NA [22]

Vogel et al. stellten durch ihre Untersuchungen fest, dass die Wöhlerlinie der Schweizer Norm SIA 262 auf der sicheren Seite liegt. Bei Vorhandensein eines Betonstahls mit einer bezüglich Ermüdung "gutmütigen" Rippengeometrie (z.B. Glattstahl oder Torstahl) sind die Werte der Schweizer Norm eher konservativ. Da die Versuchsdaten der einzelnen Versuche dem Bericht nicht entnommen werden konnten, wurde in die Diagramme von *Vogel et al.* nachträglich die char. Wöhlerlinie nach DIN EN 1992-2/NA [22] maßstäblich eingetragen (Bild 3-23, Bild 3-24).

Bild 3-23 zeigt die Ergebnisse von *Vogel et al.* der untersuchten Stäbe. Im Bild 3-24 sind zusätzlich die im vorherigen Abschnitt aufgeführten Ergebnisse von *Canteli et al.* mit angegeben. Im Bezug zur heutigen charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] zeigt sich in den Diagrammen, dass sowohl die Versuchswerte der alten Bewehrungsstähle von 1952 und 1955 sowie die der neuen von 2008 oberhalb der char. Wöhlerlinie liegen.

3.2.1 Betonstahl - Vergleich mit der heutigen char. Wöhlerlinie

Bereits *Vogel et al.* [39] stellten in ihren Untersuchungen (siehe auch Kapitel 3.2) bei dem abschließenden Vergleich von Betonstahlproben aus dem Jahre 1952/55 sowie 2008 fest, dass im Hinblick auf die Ermüdungsfestigkeit die Qualität der untersuchten älteren Betonstähle keinesfalls schlechter ist als die einer heutige Produktion.

Die Versuchsergebnisse einiger älteren Proben werden im nachfolgenden Bild 3-25 mit denen von neueren Proben verglichen und der heutigen char. Wöhlerlinie nach DIN EN 1992-2/NA [22] gegenübergestellt.

Es handelt sich um die zuvor beschriebenen Proben von *Wascheidt et al.* (1965), *Rußwurm et al.* (1968), *Canteli et al.* (1980/81) sowie eigenen Versuchsergebnissen von Betonstählen aus dem Jahr 2008 (*Maurer et al.*). Es muss beim Betrachten des Diagramms berücksichtigt werden, dass es sich bei der Gesamtheit der aufgetragenen Proben oft um unterschiedliche Typen von Betonstählen aus unterschiedlichen Grundgesamtheiten handelt. Wie zu erkennen ist, wurde eine Vielzahl von Versuchen nach Erreichen oder Überschreiten der oftmals üblichen Grenze von 2·10⁶ Schwingspielen (definierte Dauerschwingfestigkeitsgrenze nach DIN 50100) ohne Probenbruch abgebrochen.

Beim chronologischen Vergleich der Ergebnisse von *Rußwurm* (1968), *Canteli* (1980) und *Maurer* (2008) zeigt sich tendenziell eine geringere Ermüdungsfestigkeit im unteren Bereich des Streubandes bei den neuen Betonstählen gegenüber den älteren.

Bild 3-25: Ergebnisvergleich Wascheidt et al. [96], Rußwurm et al. [59], Canteli et al. [11] und Maurer et al. [64]

Bei Hinzunahme der aus dem Jahr 1965 stammenden Versuchswerte von *Wascheidt* ist allerdings zu erkennen, dass teilweise auch die älteren Versuchsergebnisse im unteren Streubereich der Gesamtdarstellung zu liegen kommen. Daraus kann nicht eindeutig festgestellt werden, dass ältere Betonstähle gegenüber neuen generell eine höhere Ermüdungsfestigkeit aufweisen.

Es scheint so, als würden die aufgetragen Versuchswerte der einzelnen Wissenschaftler erheblichen Streuungen unterliegen. Hier darf man sich im Gesamteindruck nicht fehlleiten lassen, da es sich in der Gesamtheit zum Teil um unterschiedliche Betonstahltypen (z.B. in der Walzung) handelt.

Die vergleichbar geringe Streuung der eigenen Versuchswerte basiert auf der Verwendung von Betonstählen eines einzigen Herstellers.

Wie die durchgeführten experimentellen Untersuchungen in [96], [59], [11], [80], [64] und [39] gezeigt haben, besteht beim Betonstahl kein signifikanter Einfluss der unterschiedlichen Art der Materialprüfung. Somit weichen die Ergebnisse im einbetonierten Zustand nur geringfügig von den Ergebnissen im freischwingend getesteten Zustand ab.

Der Grund hierfür liegt vermutlich in der eingeprägten Rippung des Betonstahls sowie der Bauweise. Im Gegensatz zum Spannstahl wird der Betonstahl im Bauteil nicht umgelenkt (keine Querpressung), vorgespannt oder ist sonstigen stark einwirkenden Reibeffekten ausgesetzt. Somit werden die Kerben aus aufgewalzten Rippen in erster Linie der Ausgangspunkt für Ermüdungsanrisse, auch im einbetonierten Zustand, sein.

Beim Spannstahl hingegen sind es im einbetonierten Zustand üblicherweise zusätzliche Effekte aus Reibung, welche die Ermüdungstragfähigkeit im Gegensatz zum freischwingend getesteten Spannstahl deutlich herabsetzten.

Wascheidt stellte in seinen Untersuchungen ebenfalls fest, dass die bezogene Rippenfläche einen Einfluss auf die Dauerschwingfestigkeit eines Bewehrungsstabes hat. Da die in Deutschland damals geltende "Vorläufige Richtlinie für Quergerippte Betonformstähle" [97] einen Mindestwert von 0,065 vorschreibt, konnte *Wascheidt* folgenden Schluss ziehen: "Die Dauerschwingfestigkeitswerte von geraden in Dehnkörper einbetonierten Rippenstählen, die den Richtlinien…" [97] ".. entsprechen, liegen genau so hoch wie die der nicht einbetonierten Stähle".

Grundsätzlich lässt sich anhand von Bild 3-25 und den übrigen Forschungsergebnissen aus diesem Kapitel feststellen, dass die Ermüdungsfestigkeiten der hier dargestellten Betonstahlproben oberhalb der heutigen charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] liegen.

3.3 Dokumentierte Ermüdungsversuche mit Spannstahl

Zur Ermüdungsfestigkeit von Spannstahl sind bis heute zahlreiche Versuche durchgeführt worden. *Magnel* [58] hat 1950 vermutlich die ersten Spannbetonträger (Bild 3-26) einer zyklischen Belastung ausgesetzt. Das im nachträglich vermörtelten Spannkanal liegende Spannglied bestand aus 24 profilierten Einzeldrähten mit jeweils einem Durchmesser von 5mm.

1956 führten Birkenmaier und Jacobson [7] an der EMPA Zürich ebenfalls einen Versuch mit einem 8m langen Spannbetonträger als Plattenbalken (Bild 3-27). durch Die Untersuchungen standen im Zusammenhang mit dem Bau der Weidelandbrücke bei Zürich. Der Balken wurde unterschiedlich hohen Prüflasten mit einer Lastwechselfrequenz von 4,2Hz unterworfen. Das im Versuchsbalken eingebaute Spannglied bestand aus 42 profilierten Einzeldrähten mit jeweils 6mm Durchmesser.

Bild 3-26: Spannbetonträger von Magnel [58]

Bild 3-27: Versuchsträger von Birkenmaier [7]

Wie auch bei *Magnel* wurde die Belastung stufenweise gesteigert. Bei konstant gehaltener Unterlast wurden die Schwingspiele mit mehreren Millionen Lastwechseln aufgebracht, bis der Träger durch eine Folge von Ermüdungsbrüchen einzelner Spanndrähte endgültig aufgrund von Ermüdung versagte. Mit dem Einsetzen der Untersuchungen zu zyklisch belasteten Bauteilen begannen dann etwa 1951 in Lüttich *Abeles et al.* [4] eine Reihe von teilweise vorgespannten Spannbettträgern unter zyklischen Einwirkungen, bis in die 1970er Jahre, zu untersuchen. Sie berichten in diesem Zeitraum von etwa 50 untersuchten Spannbetonträgern [6].

Im Rahmen der durchgeführten Recherchen stellte sich heraus, dass in dem Zeitraum von 1950 bis etwa 1980 nur vereinzelt Versuche an Spannbetonträgern mit *nachträglichem Verbund* durchgeführt worden sind. Untersuchungen an *freischwingend* geprüftem Spannstahl sowie *Spannbettträgern* unter zyklischer Belastung sind dagegen vielfach zu finden.

Versuche an Spannstahl im *sofortigen Verbund* wurden ab etwa 1955 vorwiegend in den USA durchgeführt.

Untersuchungen mit zyklischen Beanspruchungen an Spannstahl im nachträglichen Verbund sind im Wesentlichen erst seit etwa Anfang der 1980er Jahre bis heute von *Cordes et al.* (1984) [14], *Müller* (1985) [70], *Ringon et al.* (1985) [81], *Oertle et al.* (1987) [74], *Koch* (1988) [53], *Wollmann et al.* (1988) [98], *Bökamp* (1991) [10], *Voß et al.* (1993) [91], *Abel et al.* (1996) [2] und *Eskola* (1996) [36] durchgeführt und veröffentlicht worden.

Zusätzlich wurden an der TU Dortmund seit 2009 eigene Untersuchungen an alten und neuen Spannstählen durchgeführt, welche in dieser Arbeit dokumentiert sind.

3.3.1 Spannstahl - freischwingend

1983 erstellten Paulson et al. [78] eine Datenbank mit 12 Versuchsreihen aus der Literatur aus dem Zeitraum von 1956 bis 1981 sowie mit eigenen Versuchsergebnissen. Bei den dort aufgeführten Versuchsreihen handelte es sich um 7-drähtige Litzen, welche freischwingend getestet wurden. In den einzelnen Arbeiten wurden unterschiedliche Durchmesser (3/8", 7/16", 0,5", 0,6") und Spannstahlgüten untersucht. Oft glichen die Versuchsaufbauten dem Versuchsstand von Lane und Ekberg (Bild 3-28). Diese Datenbank wurde im Rahmen der hier durchgeführten Recherche neu aufgearbeitet (Bild 3-29) und basiert auf den Daten der Arbeiten [83; 55; 40; 94; 52; 86; 85; 15; 30; 71; 41].

Bild 3-28: Versuchsstand Lane/Ekberg [nach Fig.9 aus 55, S.13; 78]

Bild 3-29: Versuchsergebnisse verschiedener Wissenschaftler für Spannstahl, freischwingend getestet, im Zeitraum von 1956-1983 (Daten aus [78])

Da die charakteristischen Wöhlerlinien als Grundlage für die Bemessung in DIN EN 1992-2 für einbetonierte Spannstähle angegeben sind, ist ein direkter Vergleich mit freischwingend ermittelten Ermüdungsfestigkeiten nicht sinnvoll. Freischwingend geprüfter Spannstahl liefert im Allgemeinen signifikant höhere Ermüdungsfestigkeiten als Versuche an einbetoniertem Spannstahl. Freischwingende Versuche werden in erster Linie im Rahmen von Konformitätsnachweisen für die Materialeigenschaften von Spannstahl durchgeführt.

Lediglich zur Orientierung ist daher die eingezeichnete charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22] für eingebaute Spannstähle der Klasse 1 sowie Klasse 2 im sofortigen Verbund den freischwingend ermittelten Versuchsergebnissen gegenübergestellt. Auffallend sind die extrem großen Streuungen. Die Wöhlerlinie der Klasse 1 ist heutzutage für Spannstähle mit entsprechendem Eignungsnachweis vorgesehen. Die abgesenkte Linie der Klasse 2 deckt die übrigen Spannstähle ab. Es zeigt sich deutlich, dass die freischwingend bestimmten Versuchswerte bis auf ganz wenige Ausnahmen oberhalb der charakteristischen Wöhlerlinie für die Klasse 1 liegen.

3.3.2 Spannstahl - sofortiger Verbund

Einen Überblick diverser Arbeiten zu zyklisch belasteten Spannbettbalken mit gerade verlaufenden Spannstählen bieten Overman et al. [76]. Es wird neben eigenen 11 Großversuchen an Spannbettbindern (Kap. 3.3.2) von 17 Arbeiten zu Ermüdungsversuchen im Zeitraum von 1954 bis 1982 im einbetonierten Zustand mit sofortigem Verbund berichtet. Hierbei handelt es sich im Allgemeinen um Träger mit Rechteckquerschnitt und Träger mit I-förmigem Querschnitt. Die Längen der Versuchsbalken lagen zwischen 3m und 15m. Wesentliche Arbeiten mit umfangreichen Untersuchungen waren dabei die von Abeles et al. [4; 6; 5], Ozell et al. [77], Warner et al. [95], Hanson et al. [46]. Diese sind im Bild 3-30 als Datenpunkte eingetragen und wurden mit der von Paulson et al. [78] ermittelten Regression (Model A-1L) zu den freischwingend untersuchten Proben (s. a. Bild 3-29) verglichen.

Bild 3-30: Vergleich von Overman et al. [76, S.50] zu freischwingend und einbetoniert geprüften Spannstählen mit nachgetragenen Ergänzungen

Hierzu wurden die jeweils berechneten zugehörigen Regressionsgeraden betrachtet. Overman et al. stellten fest, dass unterhalb von 26 ksi (~179MPa) die Ermüdungsfestigkeit von Spannstahl im einbetonierten Zustand geringer ist als die von freischwingend getestetem Spannstahl.

Weiter stellten sie durch die Auswertung der Versuchsergebnisse fest, dass bei den einbetonierten Spannstählen im sofortigen Verbund nichts auf eine vorhandene Dauerfestigkeit hinweist [76, S.49]. Es zeichnet sich kein Spannungsbereich als Dauerfestigkeitsbereich ab, unterhalb dessen keine Ermüdungsbrüche auftreten.

Overman / Breen / Frank (1984)

Overman et al. [76] untersuchten in den 80er Jahren 11 Spannbettbinder mit einer Länge von ~14,6m (48 Feet) und einer Höhe von ~1m unter zyklischer Belastung. Die Träger hatten einen I-förmigen Querschnitt und wurden durch eine Ortbetonplatte in der Druckzone ergänzt (Bild 3-31). Die Belastung erfolgte im Versuch durch zwei Einzellasten. Im Versuchsprogramm wurden 7 Träger mit gerader Spannstahlführung sowie 4 Träger mit gerader und zusätzlich umgelenkter Spannstahlführung untersucht. Die Spannstähle bestanden jeweils aus 7-drähtigen Litzen.

Bild 3-31: Versuchsträger Overman et al. [76]

Die Träger mit einer geraden Spanngliedführung enthielten 16 Litzen mit einem Querschnitt von 0,5" und einer Güte von 270ksi (1862Mpa). Ein weiterer Träger wurde mit den gleichen Litzen ausgestattet, von denen 10 Litzen gerade verliefen und 4 Litzen umgelenkt wurden. Die restlichen drei Träger enthielten jeweils 22 Litzen mit einem Querschnitt von 7/16" und einer Güte von 250ksi (1724Mpa). Auch bei diesen Trägern wurden 12 Litzen gerade geführt und 10 Litzen umgelenkt.

Die Träger wurden unter einer zyklischen Prüflast in Einstufenversuchen mit konstanter Schwingbreite und einer Prüffrequenz von 2,5 Hz und 3 Hz getestet. Die Versuche wurden mehrfach gestoppt um statische Belastungstests durchzuführen.

Overman et al. konnten keine wirkliche Dauerfestigkeit feststellen. Nach Ansicht von *Overman et al.* scheint es so, als seien Schwingbreiten unter 5ksi (~35MPa) vernachlässigbar [76, S.336]. Weiter stellten sie fest, dass sich eine eng liegende, nicht vorgespannte Betonstahlbewehrung günstig auf das Ermüdungsverhalten des Trägers auswirkt. Bei den 11 getesteten Trägern konnten zudem keine signifikanten Unterschiede hinsichtlich der Lebensdauer zwischen den verschiedenen Typen festgestellt werden [76, S.337].

In ihren Forschungsempfehlungen [76, S.339] weisen sie bereits auf die Notwendigkeit hin, dass die Ermüdungsfestigkeit bei Spanngliedern im Verbund weitergehend untersucht werden sollte. Andere Untersuchungen aus der damaligen Zeit zeigten bereits, dass Bauteile mit Spannstahl im nachträglichen Verbund deutlich geringere Ermüdungsfestigkeiten aufweisen als Bauteile mit Spannstahl im sofortigen Verbund.

Speziell unter geringen Spannungsschwingbreiten und extrem hohen Lastwechseln sollte nach [76, S.339] freischwingender Spannstahl und einbetonierter Spannstahl untersucht und verglichen werden, um eine Dauerfestigkeit von Spannbetonträgern zu bestimmen. Dies sollte insbesondere unter der Erkenntnis erfolgen, dass die Ermüdungsfestigkeit im einbetonierten Zustand geringer ausfällt (siehe auch Bild 3-30), im nachträglichen Verbund gegenüber dem sofortigen Verbund nochmals reduziert wird und bei den Versuchen keine wirkliche Dauerfestigkeit für Bauteile mit Spannstahl im sofortigen Verbund festgestellt werden konnte.

Bökamp (1991)

Da Forschungsarbeiten zu dieser Zeit im Wesentlichen aus dem englischen Sprachraum bekannt waren, führte *Bökamp* [10] im Anschluss an seine Versuche mit Spannstahl im nachträglichen Verbund (Kap. 0) zusätzlich 3 Versuche mit 4,8m langen Spannbetonbalken mit sofortigem Verbund durch. Die hierzu verwendeten Spannstähle entsprachen einer Güte St 1420/1570 mit einem Durchmesser von 7,2mm, welche ohne Umlenkung eingebaut wurden.

Er baute zusätzlich künstliche Reibstellen zwischen Spannstahl und Bügelbewehrung ein, um eventuelle Reibermüdungsvorgänge zu untersuchen. Als Grenzschwingspielzahl üblichen 2·10⁶ Lastwechsel wurden die zugrunde gelegt. Drahtbrüche traten stets im Rissquerschnitt auf. Ein Einfluss der künstlich geschaffenen Reibstellen konnte nicht festgestellt werden, vermutlich da hierzu die erforderliche Querpressung (z.B. durch eine Umlenkung) fehlte. Zudem stellte Bökamp nur geringfügige Abweichung eine zu den freischwingend geprüften Stählen fest.

Bild 3-32: Spannbettbinder von Bökamp [10]

Muller / Dux (1992)

Muller und *Dux* [69] führten Anfang der 90er Jahre zyklisch belastete Versuche mit Spannbettbalken durch. Sie stellten 15 Balken mit gerader Spanngliedführung sowie 22 Balken mit einer umgelenkten Spanngliedführung im sofortigen Verbund her. Verwendet wurden Spannstähle mit 7,9mm (Bild 3-33) und 12,7mm (Bild 3-34) Durchmesser. Die Lagen der Umlenkpunkte, durch die eine Umlenkpressung entsteht, wurde in den Versuchen ebenfalls variiert, um einen Einfluss feststellen zu können. Die Versuche wurden mit einer Prüffrequenz von 5 Hz durchgeführt.

Muller et al. stellten eine deutlich geringere Ermüdungsfestigkeit bei umgelenkter Spanngliedführung fest. An den Umlenkstellen der Spannstähle im sofortigen Verbund ist es in den meisten Fällen zu einem Ermüdungsbruch mit dem Einfluss aus der Reibkorrosion bzw. Reibdauerbeanspruchung gekommen.

Bild 3-33: Versuchsträger von *Muller et al.* [69] mit Spannstählen Ø7,9mm

Bild 3-34: Versuchsträger von Muller et al. [69] mit Spannstählen ø12,7mm

3.3.3 Spannstahl - nachträglicher Verbund

Systematische Untersuchungen hinsichtlich des Ermüdungsverhaltens von Spannstahl in gekrümmten Stahlhüllrohren im einbetonierten Zustand wurden erst seit Anfang der 1980er Jahre durchgeführt. Vor 1980 existieren nur vereinzelt Untersuchungen an gesamten Systemen, da der Spannstahl üblicherweise im Rahmen reiner Materialuntersuchungen i.d.R. freischwingend untersucht wurde. Aus den Erkenntnissen aus freischwingenden Untersuchungen (z.B. [11]) entstanden dann oft in Folgeprogrammen Untersuchungen an Gesamtsystemen bestehend aus Betonbalken mit gekrümmtem Spannglied im einbetonierten Zustand (z.B. [81]).

Cordes / Lapp-Emden (1984)

Cordes und *Lapp-Emden* [14], [12] führten 1984 in Aachen Untersuchungen mittels Kleinmodellversuchskörper mit einem Reibpartner an verschiedenen runden, glatten Spannstählen ohne Verbund durch (Bild 3-35). Einige Versuche liefen parallel zu den von *Müller* [70] an der TU München durchgeführten Großversuchen, zum Teil unter Verwendung von gemeinsam beschafftem Spannstahl.

Ziel war es unter Anderem, praxisgerechte Kurzzeitversuche gegenüber aufwändigen und teuren Großversuchen zu entwickeln.

Sie untersuchten Spanndrähte der Güte St 1420/1570, ø 12,2mm und St 1470/1670, ø 7mm sowie 7-drähtigen Litzen St 1570/1770, ø 15,3mm.

Die einzelnen Spannstahlproben wurden in einer Klemmverbindung mit einem Stück Hüllrohr als Reibpartner und Einpressmörtel eingebaut und getestet. Als Dauerschwingfestigkeit wurde die übliche Schwingbreite zugrunde gelegt, die bei 2·10⁶ Lastspielen noch ertragen wurde.

Durchgeführt wurden die Versuche in einem Pulsator unter einer Prüffrequenz von 12,5 Hz und einer konstanten Oberspannung von $\sigma_p^{o} = 0,55 \cdot \beta_z$ ($\beta_z = Zugfestigkeit des Spannstahls$).

Müller [70] beschäftigte sich an der TU München, ebenso wie *Cordes* und *Lapp-Emden* [14] in Aachen, mit verschiedenen Spannstahlsorten und führte freischwingende sowie Balkenversuche mit einbetonierten Spanngliedern durch, zum Teil mit gleichem Spannstahl (Bild 3-36).

In den Untersuchungen [70] wurden Bündelspannglieder aus drei Litzen St 1570/1770 ø 15,3 mm, Bündelspannglieder aus drei glatten, vergüteten Drähten St 1420/1570, ø 12,2 mm und Einzelspannglieder aus geripptem Gewindestahl St 1080/1230, ø 26,5 mm verwendet.

Die Verlegung der Spannglieder erfolgte jeweils mit dem kleinsten zulässigen Krümmungsradius. Die Vorspannung wurde so eingestellt, dass die Oberspannung bei etwa $\sigma_0=0,55\cdot\beta_z$ und die Unterspannung oberhalb des Dekompressionsniveaus lag.

Als schlaffe Bewehrung wurden 2ø8 in der Zugzone vorgesehen, um deren Einfluss gering zu halten. Ein definierter Riss wurde nicht vorgegeben.

Auch der unterschiedliche Einfluss von Stahlund Kunststoffhüllrohren, eingesetzt mit und ohne Mörtelfüllung, wurde untersucht. Als Dauerschwingfestigkeit galt auch hier noch die Schwingbreite, welche bei 2·10⁶ Lastwechseln noch ertragen wurde.

Bild 3-36: Versuchsträger von Müller [70]

Rigon / Thürlimann (1985)

Rigon et al. [81] untersuchten 1985 an der ETH Zürich 7 Balken mit einbetonierten Spanngliedern aus Spannlitzen und 8 Balken mit einbetonierten Spanngliedern aus Spanndrähten. Hergestellt wurden T-Träger mit einer Länge von 6,70m (Bild 3-37, Bild 3-38). Bei den Spannlitzen wurden je Versuchsträger 4 Litzen mit einem Durchmesser von 0,6" verwendet. Die Spannglieder mit Spanndrähten enthielten jeweils 16 Drähte mit einem Durchmesser von 7mm. Ein Balken jeder Versuchsserie wurde mit einem Kunststoffhüllrohr ausgestattet. Alle übrigen Versuche wurden mit Stahlhüllrohren ausgeführt.

Um den Einfluss der Bewehrung auf die Schwingbreite im Spannstahl gering zu halten, lag die Bewehrungsmenge in fast allen Versuchen bei 2,25cm². Ein Versuch erhielt zu Vergleichszwecken 14,3 cm². Der exakte Rissquerschnitt wurde nicht vorgegeben.

Bild 3-37: Balkenlängsschnitt von Rigon et al. [81]

Bild 3-38: Balkenquerschnitt von Rigon et al. [81]

Die Lastschwingbreite wurde in den Versuchen mit jedem Drahtbruch angepasst. Hierzu wurde die untere Lastgrenze der einwirkenden Maschinenkraft konstant bei 20kN gehalten und die obere Kraftgrenze nach jedem Drahtbruch reduziert.

Die Prüffrequenz der kraftgeregelten Versuche lag bei 4Hz. Als Abbruchkriterium der Versuche wurde der Zeitpunkt gewählt, zudem die Hälfte der Drähte gebrochen war.

Neben den Großversuchen führten sie weitere Versuche an freischwingendem Spannstahl desselben Materials durch.

In ihren Versuchen stellten sie fest, dass die Dauerschwingfestigkeit freischwingend getesteter Spannstähle deutlich höher liegt als bei eingebauten Spannstählen in einem Balken. Begründet haben sie dieses durch die Reibung zwischen den Spanndrähten und dem Hüllrohr sowie der Litzendrähte jeweils untereinander. In Kunststoffhüllrohren war dieser Effekt nicht so stark feststellbar, da hier der wesentliche Effekt der Hüllrohrreibung (Metall-Metall) durch das Kunststoffmaterial (Metall-Kunststoff) nicht gegeben war.

Oertle / Thürlimann / Esslinger (1987)

Oertle et al. [74] führten an der ETH Zürich, im Anschluss an *Rigon et al.* [81], Anfang 1985 weiterführende Untersuchungen an 4 Balken (Bild 3-39) unter zyklischer Beanspruchung durch. 2 Balken enthielten 16 Paralleldrähte mit einem Durchmesser von 7mm und die zwei übrigen 0,6" Litzen. Auch in diesen Versuchen wurde die schlaffe Bewehrung im Träger gering gehalten, um eine möglichst genaue Schwingbreite zu bekommen. Eine Rissvorgabe erfolgte in den Großversuchen nicht. Alle Versuchsbalken waren baugleich und entsprachen in Balkenform und Abmessung denen von *Rigon et al.* [81]. Auch hier kamen Stahl- und Kunststoffhüllrohre zum Einsatz. Die Prüffrequenz betrug 5Hz und es erfolgte nach jedem registrierten Drahtbruch eine Anpassung der einwirkenden Maschinenkraft, um das Spannungsniveau im Spannstahl nahezu konstant zu halten. Im Gegensatz zu *Rigon et al.* [81] erfolgte auch eine Anpassung der unteren Maschinenkraft. Die Spannungsschwingbreiten lagen oberhalb von 100MPa.

Bild 3-39: Versuchsträger von Oertle et al. [74]

A - A

Neben den Balkenversuchen wurden auch zahlreiche Kleinkörperversuche (Bild 3-40) mit denselben Paralleldrähten und Litzen unter einer zyklischen Last untersucht. Hier lag die Belastungsfrequenz in den Versuchen bei 8Hz und die Spannungsschwingbreite zwischen 150 MPa und 250 MPa. Die Durchführung erfolgte, analog zu den Großversuchen, mit konstant bleibenden Spannungsniveaus.

Koch (1988)

Koch [53] führte 1988 einen Dauerschwingversuch an einem mit 14 Spanndrähten Ø7mm (St 1470/1670) vorgespannten, 8m langen Balken durch. Zusätzlich waren in der Zugzone 6 Betonstähle mit einem Durchmesser von 14mm eingebaut (Bild 3-41, Bild 3-42, Bild 3-43). Die zyklische Belastung erfolgte durch zwei Einzellasten, welche mit einer Prüffrequenz von etwa 2,2 Hz aufgebracht wurden. Eine exakte Aussage zur einwirkenden Schwingbreite im Spannstahl ist nicht möglich, da in dem Versuch das Dekompressionsniveau während der Lastzyklen durchfahren wurde. Dazu kam, dass die Zugzone mit 6ø14 sowie der Stegbereich mit weiteren 6ø10 recht viel schlaffe Bewehrung aufwies. Rechnerisch lag die Schwingbreite im Spannstahl bei 89MPa. Ober- und Unterlast wurden als feste Größe angesetzt. Nachdem der Versuchsträger 5·10⁶ Lastwechsel ohne äußere Schädigung erreicht hatte, wurde dieser im Anschluss statisch bis zum Bruch belastet. Nach Versuchsende wurden die Spanndrähte näher untersucht. Es zeigte sich, dass drei Spanndrähte deutliche Anrisse durch eine ermüdungsbedingte Reibkorrosion zeigten.

Bild 3-41: Versuchsstand von Koch [53]

Bild 3-42: Trägerlängsschnitt von Koch [53]

Bild 3-43: Trägerquerschnitt von Koch [53]

Wollmann / Yates / Breen / Kreger (1988)

Inspiriert durch europäischen Studien zu einer reduzierten Lebensdauer von Spannbetonbauteilen im gerissenen Zustand führten 1988 *Wollmann et al.* [98] an der University of Texas unter Verwendung von 7-drähtigen Litzen mit einem Durchmesser von 0,5", 8 Versuche mit zyklischer Belastung durch.

Die Spannstähle entsprachen den Spezifikationen des ASTM A416 Standard und wurden im einbetonierten Zustand in ca. 1,8m langen und ca. 20cm breiten, speziellen Kleinkörpermodellen getestet (Bild 3-44). Als Reibpartner wurden Hüllrohre mit Krümmung eingebaut. Diese bestanden in 2 Trägern aus Kunststoff und in den übrigen 6 Trägern aus Stahl. Alle Träger wurden mit einer konstanten Wechsellast bis zu einem eindeutig feststellbaren Steifigkeitsabfall zyklisch belastet.

Wollmann et al. kamen ebenfalls zu der Erkenntnis, dass im Wesentlichen die Reibung mit dem Hüllrohr den Ermüdungsprozess begünstigt, dass allerdings auch die Reibung der Drähte untereinander nach einem Drahtbruch nicht zu vernachlässigen sei.

Weiteren Forschungsbedarf sahen sie seinerzeit in den wichtigen Einflussparametern der Reibermüdung wie Schlupf, Anpressdruck und Belastungsgeschichte.

Bild 3-44: Prüfkörper von Wollmann et al. [98]

Bökamp (1991)

Bökamp [10] führte 1990 an der RWTH Aachen an teilweise vorgespannten Plattenbalken Versuche mit zyklischer Belastung durch (Bild 3-45).

Der Untersuchungsschwerpunkt lag bei den Auswirkungen von Langzeiteinflüssen auf die Reibermüdung. In die Versuchskörper waren gekrümmt verlaufende Spannglieder in nachträglichem Verbund eingebaut. Das umgebende Hüllrohr bestand aus längsgeschweißtem, spiralgefalztem Stahlblech in dem jeweils 3 Litzen mit einem Durchmesser von 0,6" lagen. Diese entsprachen der Güte St 1570/1770.

Bild 3-45: Versuchsträger von Bökamp [10], nachträglicher Verbund

Als schlaffe Bewehrung wurden in der Zugzone 2ø12 vorgesehen, welche im Versuch nicht durchtrennt wurden. Eine Rissvorgabe erfolgte in den Versuchen nicht.

Die Dauerschwingfestigkeit wurde bei Erreichen von $2 \cdot 10^6$ Lastspielen definiert, das Versuchsende bei $5 \cdot 10^6$. Die Belastung erfolgte durch eine auf den Versuchsbalken zyklisch einwirkende Einzellast. Zur zyklischen Beanspruchung erfolgte in Wechselwirkung eine künstliche Bewitterung. Die niedrigste Spannungsschwingbreite im Spannstahl betrug bei in zwei Trägern 120 MPa.

Unter gleichbleibender Ober- und Unterspannung wurden die Versuche oberhalb des jeweiligen Dekompressionsniveaus durchgeführt.

Bökamp stellte fest, dass die künstliche Bewitterung bei gleicher Spannungsschwingbreite zu zeitlich später erfolgenden Ermüdungsbrüchen führt [10, S.135], wodurch er die Prüfung unter trockener Bedingung als maßgeblich ansah.

Bei der Spannungsschwingbreite von 120 MPa wurden erst nach Überschreiten der 2·10⁶ Lastwechsel vereinzelt Brüche festgestellt, welche allerdings bis zum Versuchsabbruch bei 5·10⁶ nicht zu einem vollständigen Ermüdungsversagen des ganzen Trägers führten.

Voß (1993)

An der TU Braunschweig führte Voß [91] 1993 Dauerschwingversuche an Balken in zwei Serien durch. Diese wurden mit glatten Spannstählen im nachträglichen Verbund teilweise vorgespannt (Bild 3-47). Im Vordergrund der Versuche stand das Zusammenwirken einer Biegezugbewehrung aus Betonstahl und Spannstahl im Dauerschwingversuch. Daher wurden unterschiedliche Bewehrungsmengen untersucht (Bild 3-47). Die eine Balkenserie enthielt ein Einzelspannglied mit einem Durchmesser von 26mm, die andere Serie enthielt ein Spannglied mit 9 Spanndrähten von jeweils 7mm Durchmesser. Die Einzelspannglieder erfüllten die Anforderung der Stahlgüte St 835/1030, die Bündelspannglieder die der Stahlgüte St 1470/1670. Geführt wurden diese in einem Stahlhüllrohr. Ein Balken jeder Versuchsserie wurde nicht verpresst.

Bild 3-46: Versuchsträger von Voß [91]

Bild 3-47: Im Balken schlaffe Bewehrung [91]

Es wurden maximal $2\cdot 10^6$ Lastwechsel aufgebracht, da diese seinerzeit als Dauerschwingfestigkeit definiert wurde. Die Schwingbreiten lagen bei den Einzelspanngliedern zwischen 110 MPa und 130 MPa, bei den Bündelspanngliedern zwischen 120 MPa und 160 MPa und wurden nach Zustand II ohne Berücksichtigung möglicher Spannungsumlagerungen als "obere Grenze" bestimmt. Die Durchführung erfolgte jeweils oberhalb der Dekompression. Zur Durchführung dieser Untersuchungen wurde eine konstante Oberspannung angesetzt. *Voß* kam nach seinen Untersuchungen zu dem Ergebnis, dass die ihm vorliegenden Ergebnisse zu den Bündelspanngliedern keine signifikanten Unterschiede zu den Litzenspanngliedern aufweisen.

Daher sei aufgrund fehlender Erkenntnisse aus Versuchen zusätzlich eine ausreichende Absicherung im Bereich sehr hoher Lastwechsel (N>4·10⁶) erforderlich. Die einzelnen Versuche wurden mit Lastwechseln oberhalb der Dekompression mit Schwingbreiten zwischen 110 und 130Mpa bei den Einzelspanngliedern und zwischen 120 und 160Mpa bei den Bündelspanngliedern durchgeführt.

Bild 3-48: Versuchsaufbau von Voß [91]

Abel et al. (1996)

Mitte der 1990er Jahre führte *Abel* [2] zusammen mit *Cordes* und *Hegger* [3] an der RWTH Aachen Versuche an 11 vorgespannten Plattenbalken durch. Ziel war in erster Linie, den Einfluss der Hüllrohrart (Kunststoff / Bandstahl) auf die Reibermüdung und Dauerhaftigkeit zu untersuchen. Die Versuchsträger (Bild 3-50) entsprachen vom Aufbau her denen von *Bökamp* [10] und sollten weiterführende Ergebnisse liefern. In 4 dieser Versuchskörper befanden sich kaltgezogene Drähte aus St 1470/1670 mit einem Durchmesser von 7mm. 3 Balken enthielten 9 Drähte in einem Stahlhüllrohr und ein Balken 11 Drähte in einem Kunststoffhüllrohr. In den übrigen Versuchskörpern wurden jeweils drei 7-drähtige Litzen mit einem Durchmesser von 0,6" in einem Kunststoffhüllrohr verwendet. Als schlaffe Bewehrung wurden auch hier 2ø12 eingebaut.

In den Versuchen wurden diese, nach dem ersten Ermüdungsbruch eines Betonstahls, in allen Rissen durchtrennt. In den drei Versuchen mit einem Hüllrohr aus Bandstahl erfolgte keine Trennung, da es hier zu keinem Ermüdungsbruch des Betonstahls kam. Die Spannungsschwingbreiten im Spannstahl lagen in den einzelnen Versuchen zwischen 100 MPa und 210 MPa. Erzeugt wurde diese Schwingbreite durch eine mit 3 Hz angreifende Einzellast in Feldmitte.

Der längste Versuch (Kunststoffhüllrohr) wurde, bei einer Schwingbreite von 125 MPa, etwa 20 Mio. Schwingspielen unterworfen. Der erste Drahtbruch trat in diesem Träger bei etwa 17 Mio. Lastwechseln auf. Die übrigen Träger liefen bis maximal etwa 7 Mio. Lastwechsel.

Abel verglich seine 3 Ergebnisse und 8 weitere von *Bökamp* [10] mit den char. Wöhlerlinien in der Vornorm des Eurocode 2 (Okt. 1995) [37] sowie dem Model Code 90 [66].

Bild 3-49: Auswertung nach Abel [3] für Spannstahl im nachtäglichen Verbund mit Stahlhüllrohr

Abel formulierte auf der Grundlage dieser Ergebnisse einen Bemessungsvorschlag. Die heutige charakteristische Wöhlerlinie für Spannstahl der Klasse 1 in gekrümmten Stahlhüllrohren entspricht noch der im Bild nach 3-49 eingezeichneten Linie EC2 (Okt. 1995) [37] und Model Code 90 [66]. Abel empfahl, anstelle der normgemäßen Steigung k₂=7 im Bereich des zweiten Astes (N>10⁶) eine Steigung von k₂=5 anzusetzen. Dadurch würde die charakteristische Wöhlerlinie in diesem Bereich etwa den gleichen Abstand zu den Versuchsergebnissen haben wie im Lastwechselbereich N<10⁶.

Später wurden diese Untersuchungen durch *Hegger, Cordes* und *Neuser* [49], [13] weitergeführt.

Bild 3-50: Versuchsträger von Abel [3]

Eskola (1996)

1996 wurden an der ETH Zürich durch *Eskola* [36] 4 Versuche an Plattenbalken durchgeführt. In diesen Versuchsträgern wurden lediglich die Hüllrohrmaterialien durch Stahl und Kunststoff variiert. Als Spannglied wurden VSL Mehrlitzenspannglieder verwendet. Das im unteren Teil der Balken gekrümmt geführte Hauptspannglied bestand aus 19 Litzen mit einem jeweiligen Litzendurchmesser von 0,6" (Bild 3-52). Im oberen Teil des Balkens lagen 2 zusätzliche Spannglieder mit jeweils 4 Litzen und ebenfalls einem Durchmesser von 0,6".

Als schlaffe Bewehrung wurden 4ø26 in der Zugzone verbaut, welche im späteren Versuch nicht durchtrennt wurden und somit auch der ermüdungswirksamen Belastung ausgesetzt waren.

Die Ober- und Unterspannung wurde in allen vier Versuchen in gleicher Größe angesetzt. ergab sich eine rechnerische Daraus Spannungsdifferenz im Spannstahl von 200 MPa. Bei der Berechnung der Spannungen wurden die unterschiedlichen Verbundeigenschaften von Beton- und Spannstahl allerdings nicht berücksichtigt, woraus Unsicherheiten resultieren. Die Belastung der 7,8m langen Versuchsträger erfolgte durch zwei hydraulische Pressen (Bild 3-51). Die Regelung der Versuche erfolgte kraftgeregelt unter einer Prüffrequenz von 0,45Hz bis 0,7Hz. Eskola konnte zeigen, dass Träger mit Kunststoffhüllrohren hinsichtlich des Ermüdungstragverhaltens langlebiger sind. In den Stahlhüllrohren brachen die Litzen vorwiegend an den Kontaktstellen zum Hüllrohr, während die Brüche der Litzen im Kunststoffhüllrohr gleichmäßig verteilt waren.

Bild 3-51: Versuchsaufbau von Eskola [36]

3.3.4 Spannstahl - Vergleich mit den heutigen charakteristischen Wöhlerlinien

Abel [3] verglich in seiner Arbeit von 1996 recherchierte Versuche mit der damals gültigen charakteristischen Wöhlerlinie aus dem EC2 (Okt. 1995) [37] und Model Code 90 [66]. Er unterschied in seinen Diagrammen zwischen Hüllrohren aus Bandstahl und Kunststoff, da diese in seiner Arbeit von vorrangigem Interesse waren. Er konnte zeigen, dass die recherchierten Versuchsergebnisse fast ausnahmslos über den damals gültigen charakteristischen Wöhlerlinien für Spannstähle in Kunststoffund Stahlhüllrohren lagen.

Im Rahmen eines Forschungsvorhabens verglichen *Empelmann et al.* [32] 2010 an der TU Braunschweig in der Literatur dokumentierte experimentelle Untersuchungen hinsichtlich der in den Großversuchen angesetzten Randparameter.

Sie stellten ebenfalls fest, dass einige Arbeiten mit Unsicherheiten hinsichtlich der einwirkenden Schwingbreite und Lastwechselzahlen behaftet sind, da während dieser zyklischen Versuche das Dekompressionsniveau durchfahren wurde, wodurch der innere Hebelarm variierte.

Ebenso zeigten sich in einigen Arbeiten Unsicherheiten aufgrund der gemischten Bewehrung mit unterschiedlich steifem Verbund von Betonstahl und Spannstahl.

In den nachfolgenden Diagrammen sind die Ergebnisse von einigen der zuvor beschriebenen Forschungsarbeiten aus Kapitel 3.3.2 und 3.3.3 den charakteristischen Wöhlerlinien nach DIN EN 1992-2/NA [22] gegenübergestellt. Analog zu den Auswertungen von *Abel* [2] zeigt sich, dass für gerade Spannglieder im sofortigen Verbund (Bild 3-53) und Spannstähle im nachträglichen Verbund mit Stahlhüllrohren (Bild 3-54) die Versuchswerte fast ausnahmslos oberhalb der aktuell gültigen charakteristischen Wöhlerlinien liegen.

Bild 3-53: Vergleich der Versuchsergebnisse (sofortiger Verbund – Spannbettträger) mit der charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22], Model Code 2010 [67]

Die untersuchten Spannstähle im nachträglichen Verbund in gekrümmten Stahlhüllrohren liegen bis auf 2 Ausnahmen oberhalb der charakteristischen Wöhlerlinie für die Klasse 1. Die flache erste Steigung aus dem Model Code 2010 [67] mit k_1 =5 ist im Hinblick auf diese Versuchsergebnisse nicht begründbar.

Der Vorschlag von Abel [2], basierend auf den Ergebnissen der Aachener, wonach der zweite Ast der charakteristischen Wöhlerlinie mit k₂=5 anzusetzen ist, erscheint bei Betrachtung der Versuchswerte plausibel.

Es ist jedoch festzustellen, dass speziell im Bereich sehr geringer Spannungsschwingbreiten (<120MPa) keine verwertbaren Ergebnisse vorliegen. Oftmals war dieses in den Arbeiten auch nicht im vordergründigen Interesse. Vielmehr waren es meist die Einflussfaktoren oder verschiedene Materialien, welche im Fokus standen.

Bild 3-54: Vergleich der Versuchsergebnisse (nachträglicher Verbund, gekrümmte Stahlhüllrohre) mit der charakteristischen Wöhlerlinie nach DIN EN 1992-2/NA [22], Model Code 2010 [67] und Vorschlag *Abel* [2]

Werden beispielsweise nur die Versuchswerte von *Bökamp* [10] und *Abel* [2] zugrunde gelegt (siehe auch Bild 3-49), so ist hieraus noch kein Abknicken der Wöhlerlinie hin zu einer Dauerfestigkeit erkennbar. Es könnte genauso gut im gesamten Diagramm auch nur eine Gerade mit einer Steigung, ohne einen Übergang zu einer Dauerfestigkeit, eingezeichnet werden.

Auch Overman et al. [76] zweifelten 1985 bereits durch den Vergleich zwischen freischwingenden und einbetonierten Spannstählen im sofortigen Verbund die Existenz einer Dauerfestigkeit im einbetonierten Zustand an, da diese aus den ihnen vorliegenden Versuchsergebnissen nicht erkennbar ist (siehe auch Kap. 3.3.2).

Somit erscheint eine Diskussion hinsichtlich der Steigung des zweiten Astes (k_2), ohne weitere Versuchsergebnisse in diesem Bereich, rein hypothetisch und spekulativ.

In vielen älteren Arbeiten fällt auf, dass i.d.R. die Definition der Dauerschwingfestigkeit bei 2·10⁶ liegt und der jeweilige Versuch nach Erreichen oder Überschreiten abgebrochen wurde. Einige Arbeiten erweiterten diese Abbruchgrenze des Versuchs auf 5·10⁶.

Wie bereits *Voß* [91] 1993 anmerkte, fehlen Erkenntnisse im Bereich extrem hoher Lastwechselzahlen bis 10⁸ mit entsprechend kleinen Schwingbreiten.

Daher bedarf dieser Bereich, trotz sehr langer Versuchslaufzeiten, einer Untersuchung durch Großversuche, um eine realitätsnahe Aussage zu diesem Bereich treffen zu können.

Oft treten bei heutigen Ingenieurbauwerken (Brücken, Offshorebauwerke, Windkraftanlagen etc.) sehr hohe Lastwechselzahlen im Bereich bis 10⁸ und mehr auf.

Von daher ist es von großem Interesse, einen Großversuch ohne Ermüdungsbruch unterhalb dieser Lastwechselzahlen nicht vorzeitig zu stoppen.
3.4 Zusammenfassung

Im ersten Abschnitt dieses Kapitels wurde die historische Entwicklung der Bemessung gegen Materialermüdung für Beton- und Spannstahl aufgezeigt. Es zeigte sich, dass erst ab Mitte der 1950er Jahre der Nachweis einer angemessenen Ermüdungsfestigkeit als Materialeigenschaft des Spannstahls, im Rahmen der Zulassungsprüfung für Spannstähle im Dauerschwingversuch, gefordert wurde. Hierbei musste die Spannungsschwingbreite bestimmt werden, bei welcher der Spannstahl N=2·10⁶ Lastwechsel noch ertragen konnte.

Ein rechnerischer Nachweis im Rahmen der Bemessung von Spannbetonbauwerken unter nicht vorwiegend ruhender Belastung wurde zu der Zeit allerdings noch nicht gefordert. Dieser ist erst Ende der 1970er Jahre durch Spannungsbegrenzungen auf die Dauerschwingfestigkeit hinzugekommen, da zu dieser Zeit durch einen Schadensfall die Koppelfugenproblematik erkannt wurde. Erst ab 2001 wurde mit der DIN 1045-1 bzw. ab 2003 mit dem DIN Fachbericht 102 ein 3 stufiger expliziter Nachweis eingeführt.

In den nachfolgenden Abschnitten wurden Versuchsergebnisse für Beton- und Spannstähle recherchiert und mit den aktuell gültigen charakteristischen Wöhlerlinien nach DIN EN 1992-2/NA [22] verglichen.

Für die Betonstähle zeigte sich, dass die heutigen charakteristischen Wöhlerlinien auch für den Nachweis älterer Stabstähle herangezogen und diese damit abgedeckt werden können. Dabei ist festzustellen, dass die meisten Versuche mit Schwingbreiten größer $\Delta\sigma_{Rsk}$, also im Zeitfestigkeitsbereich, durchgeführt wurden.

Ältere Spannstähle im sofortigen Verbund sowie im nachträglichen Verbund in Kunststoff- oder Stahlhüllrohren werden ebenfalls durch die heutigen charakteristischen Wöhlerlinien nach DIN EN 1992-2/NA [22] gut erfasst.

In den vorgestellten Arbeiten wurden teilweise auch Einflussparameter, wie Querpressung, Litzenanordnung oder Bewitterung, hinsichtlich ihrer Auswirkung auf die Ermüdung untersucht. Beim Spannstahl waren es seit Anfang der 1980er Jahre oft Versuche mit Kunststoffhüllrohren, wodurch der Einfluss der Reibung reduziert werden konnte.

Abschließend konnte festgestellt werden, dass speziell bei den Spannstählen im einbetonierten Zustand (Großversuch) entsprechende Versuchsergebnisse für niedrige Schwingbreiten und extrem hohe Lastwechselzahlen fehlen. Hier lagen die gefundenen Versuchsergebnisse fast ausschließlich oberhalb einer Schwingbreite von 100 MPa. Begründet ist dieses sicher durch die sehr langen Versuchszeiten und den damit verbundenen Kosten.

Auch scheint sich an der historisch bedingten Dauerschwingfestigkeitsgrenze von 2·10⁶ in den letzten 60 Jahren zumindest im Rahmen der Konformitätsprüfungen nichts geändert zu haben, sodass Versuche oft nach Überschreiten dieser Grenze abgebrochen werden. Der Verlauf der charakteristischen Wöhlerlinie kann daher beispielsweise für gekrümmte Spannglieder im Stahlhüllrohr (nachträglicher Verbund) unterhalb von 100 MPa nur hypothetisch angenommen werden.

Dieses ist angesichts der sehr hohen Lastwechselzahlen im Bereich von 10⁷ bis 10⁸ und mehr, denen heutzutage Ingenieurbauwerke ausgesetzt sind, sehr unbefriedigend. Daher sind dringend weitere Untersuchungen zur Absicherung des Verlaufs der Wöhlerlinie in diesen Lastwechselbereichen erforderlich.

4 Versuche zur Betonstahlermüdung

Die in diesem Kapitel beschriebenen Versuche entstanden durch jeweils ein Forschungsvorhaben der BASt [60] und des DIBt [63], welche aufeinander abgestimmt waren.

Die Versuchsdaten werden basierend auf dem interaktiven Verfahren [8] (siehe auch Kapitel 2.6), wie es auch bei den späteren Spannstahlversuchen Anwendung findet, im Folgenden erneut ausgewertet und bewertet.

Im Fokus stehen Betonstahlproben im einbetonierten und nicht einbetonierten Zustand unter zyklischer Beanspruchung. Die Ergebnisse werden untereinander verglichen, um den Einfluss auf die Ermüdungsfestigkeit (Wöhlerlinien) aus den unterschiedlichen Bedingungen beim nicht einbetonierten Zustand (Materialbetrachtung) und beim einbetonierten Zustand (Systembetrachtung) zu bestimmen. Der Übergang vom Zeitfestigkeits- zum Dauerfestigkeitsbereich wird relativ genau bestimmt. Zudem erfolgt die Gegenüberstellung der Versuchsergebnisse mit der gültigen charakteristischen Wöhlerlinie nach DIN EN 1992-1-1/NA [20] bzw. DIN EN 1992-2/NA [22].

4.1 Material

Bei dem für die Ermüdungsversuche verwendeten Betonstahl handelte es sich um einen üblichen B500 B mit einem Durchmesser von 20mm eines Herstellers. Die Materialproben wurden aus einer Grundgesamtheit einer Kaliberstandzeit gewählt. Hierbei trugen zur Streuung nicht nur zufällige Einflüsse, sondern auch die zwischen den Chargen abweichenden messbaren Faktoren, wie die chemische Zusammensetzung des Stahls sowie die durch den Walzverschleiß abhängige Geometrie und Oberflächenstruktur der Rippung, bei. Die Entnahme der Betonstahlproben erfolgte letztendlich aus fünf Chargen. Die chemische Zusammensetzung des Betonstahlmaterials kann der Tabelle A 2-3 in der Anlage A2 entnommen werden.

Für die freischwingend getesteten Betonstähle wurden aus jeder der fünf Chargen fünf Materialproben für die Dauerschwingversuche sowie jeweils eine Probe für den quasi-statischen Zugversuch entnommen.

Aus vier Chargen konnten jeweils fünf Materialproben für die Dauerschwingversuche im einbetonierten Zustand gewonnen werden.

4.2 Prüfkörper und Versuchsstand

Die Durchführung aller Versuche erfolgte in einer Viersäulen-Prüfmaschine mit einer maximalen statischen Prüfkraft von ±630kN und einer maximalen dynamischen Prüfkraft von ±504kN.

Die nichteinbetonierten Betonstähle wurden in Anlehnung an die DIN EN ISO 15630-1 [23] mit einer unbehandelten freien Länge von $14 \cdot d_s$ =280mm hergestellt (Bild 4-1). Um eine gleichmäßige Krafteinleitung in den Bewehrungsstahl durch die Einspannung der Maschine zu gewährleisten, wurden die Enden der Probe mit Stahlrohren verstärkt. Diese Rohre waren zudem länger als die eigentliche Klemmlänge der Maschine, so dass im möglichen Ermüdungsbruchbereich keine Querspannungen auftreten konnten.

Die Betonstähle im einbetonierten Zustand wurden so konzipiert, dass die relativen Verschiebungen im Verbundbereich infolge wiederholten Be- und Entlastungen aktiviert werden konnten. Hierzu wurden die Enden der Betonstahlproben jeweils zentrisch in hierfür angefertigte Stahlrohre mit einem Durchmesser von 139,7mm und einer Wandstärke von t=4mm einbetoniert (Bild 4-2).

Der Spalt zwischen den beiden Rohren, welcher den Riss simuliert, betrug 4mm. Durch diesen Abstand konnte sichergestellt werden, dass die abgetragenen Betonpartikel den Riss nicht verschließen. Das war wichtig, damit der Betonstahl die volle Kraftschwingbreite aus der äußeren Belastung aufnehmen musste. An den Enden der Stahlrohre wurden die Kräfte durch eine gelenkig an einen Zugstab angeschlossene, passgenaue Stahlplatte gleichmäßig eingeleitet. Dadurch verhielt sich das gesamte Prüfsystem im eingebauten Zustand wie ein Pendelstab.

Bild 4-1: Versuchsaufbau der nicht einbetonierten Betonstahlprobe [64]

Bild 4-2: Versuchsaufbau der einbetonierten Betonstahlprobe [64]

In dieser Weise wurden vier Versuchsreihen mit jeweils fünf Prüfkörpern hergestellt. Um ebenfalls den Einfluss der Betonfestigkeit zu überprüfen, erfolgte die Herstellung jeder Reihe in eigener Betongüte. Da sich bei dem ersten Probekörper unter einer hohen Schwingbreite zeigte, dass die gewählte Verbundlänge von $10 \cdot d_s$ =200mm nicht ausreicht, wurde zur Verbesserung der Krafteinleitung aus dem Beton in den Betonstahl an den Enden der Betonstahlproben zusätzliche Endanker aufgeschweißt. Hierdurch ließ sich das unverschiebliche Verhalten eines Bewehrungsstabes in der Mitte zwischen zwei Rissen simulieren.

4.3 Durchführung der Versuche

Üblicherweise werden axiale Dauerschwingversuche nach DIN EN ISO 15630—1 [23] mit einer konstanten Oberspannung σ_0 (hier: 300MPa) geprüft. Dieses Vorgehen hat allerdings entscheidende Nachteile. Durch die Begrenzung der oberen Spannung kann die Wöhlerlinie im Zeitfestigkeitsbereich physikalisch nicht vollständig erfasst werden. Somit werden die Widerstände oberhalb dieser Oberspannung nicht erfasst.

Weiter entspricht diese Art der Prüfung nicht der üblichen, ermüdungswirksamen Beanspruchung in einem realen Bauteil. Hier liegt in der Regel durch eine ständige, vorwiegend ruhende Beanspruchung eine konstante Unterlast (z.B. durch Eigengewicht) vor. Eine nichtruhende, zyklische Beanspruchung (z.B. durch Fahrzeuge, Maschinen, etc.) erzeugt dann üblicherweise eine additive Last.

Aus diesen Gründen wurde in den eigenen Untersuchungen mit einer konstanten Unterlast geprüft. Gemäß DIN EN 1992/NA [20; 22] sowie altem DIN FB 102 [29] beträgt die char. Schwingbreite $\Delta\sigma_{Rsk}$ =175MPa. Ausgehend von der Oberspannung 300MPa, erhält man so die einwirkende Unterlast F_U mit einer konstanten Unterspannung σ_u =125Mpa (300–175=125).

4.3.1 Quasi-statische Zugversuche

Aus jeder der fünf Chargen wurde eine Probe für quasi-statische Zugversuche gewonnen, um vorab die Widerstandswerte des Materials bestimmen zu können. Diese Zugversuche sind für den Aufbau der vollständigen Wöhlerlinie nötig.

Hierzu wurden die Proben in einem ersten Schritt bis zur Höhe der im zyklischen Versuch vorgesehenen Unterspannung von σ_u =125MPa belastet. Dieser Vorgang erfolgte in Kraftregelung der Maschine. Anschließend wurde die Maschinenkraft in fünf Etappen gesteigert, wobei zwischen den einzelnen Etappen wieder eine Entlastung bis zur Unterspannung σ_u erfolgte (Bild 4-3). Somit konnten erste Kraftumlagerungen im System stattfinden. Der E-Modul der Proben wurde über den fünften ansteigenden Ast, durch eine Regression der Messdaten, bestimmt. Nach Erreichen des fünften Etappenpunktes wurde die Maschine in Wegregelung versetzt und die Probe weiter bis zum vollständigen Versagen belastet.

Neben Maschinenkraft der und dem Maschinenweg wurde bei diesen Versuchen Sensoren an der Oberfläche des Stahls angebracht, um die Dehnungen messen zu Alle Aufdzeichnungen können. erfolgten kontinuierlich bis zum Materialversagen.

- Bild 4-3: schematischer Belastungsablauf im quasi-statischen Zugversuch der Betonstahlproben
- Tabelle 4-1:
 Widerstandswerte
 des
 Betonstahls

 unter quasi-statischer Belastung

	R _{eH} bzw. f y	R _{eL}	R _m bzw. f t
	[MPa]	[MPa]	[MPa]
Mittelwerte	570,6	559,4	681,5
5%-Quantil	546,7	522,0	644,6
95%-Quantil	594,5	596,8	718,3

Die in den fünf Versuchen bestimmten Messwerte der Zugproben können der Tabelle A 2-2 der Anlage A2 entnommen werden. Aus den so ermittelten Versuchswerten lassen sich über eine statistische Auswertung die 5% und 95%-Quantilwerte nach Gleichung (4-1) bestimmen.

$$\sigma_{n\%} = \bar{x} \pm k_n \cdot \hat{\sigma}$$

(4-1)

Dieses geschieht durch Addition bzw. Subtraktion der mit dem k_n -Wert multiplizierten Standardabweichung der gemessenen Werte. Der k_n -Wert berücksichtigt die Anzahl der auszuwertenden Versuchswerte innerhalb der Stichprobe, den zu berechnenden p-Quantilwert sowie das Vertrauensniveau (1- α) und kann Tafelwerken (z.B. [72]) entnommen werden. In der Tabelle A 2-7 der Anlage A2 ist ein Auszug entsprechender k_n -Werte zu finden. Im vorliegenden Fall ergibt sich für ein Vertrauensniveau von 90% und einem 5%-Quantilwert der k_n -Wert der fünf Proben zu 3,4. Die Standardabweichung $\hat{\sigma}$ zum Mittelwert \bar{x} wird durch die Formel (4-2) berechnet.

Die Mittel- und 5%/95%-Quantilwerte der Betonstahlproben sind in der Tabelle 4-1 angegeben.

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} 1(\bar{x} - x_i)}{(n-1)}}$$
(4-2)

4.3.2 Dauerschwingversuche

In den Dauerschwingversuchen wurde, wie zuvor erläutert, eine konstante Unterspannung σ_u =125Mpa durch eine konstante Unterlast F_U auf die Betonstahlproben aufgebracht. Das grundsätzliche Vorgehen war bei den einbetonierten und nicht einbetonierten Materialproben identisch.

Der übliche Belastungsablauf ist im Bild 4-4 grafisch dargestellt. Unter einer Dauermessung erfolgte in einem ersten Schritt das Aufbringen der Mittellast F_M . Hierbei befand sich die Maschine in einem kraftgeregelten Zustand. Dieser Vorgang endete innerhalb von 3 Sekunden und es folgten darauf die ersten 10 Lastwechsel unter einer Prüffrequenz von 0,1Hz und einem sinusförmigen Kraftverlauf.

Nach Ablauf dieser Zyklen wurde die Dauermessung gestoppt und es folgte eine periodische Messung unter der gewünschten Prüffrequenz. Diese lag bei allen zyklischen Versuchen, abhängig von der Größe der vorgesehenen Schwingbreite, zwischen 8 und 20Hz. Die Messintervalle wurden ebenso abhängig von dieser Größe gewählt und lagen zwischen 60 Sekunden und 1200 Sekunden.

Die in jedem Versuch unterschiedlichen Oberlasten F_o wurden in den jeweiligen Versuchen nach dem Konzept des interaktiven Verfahrens [8; 9] aufgebracht, um gleichmäßige Ergebnisse entlang der Wöhlerlinie zu erhalten.

Bild 4-4: Prüf- und Messablauf der kraftkontrollierten Probenbeanspruchung

4.4 Auswertung der Ermüdungsversuche

Die Auswertung der Versuchsergebnisse erfolgte parallel zu den Versuchen nach dem interaktiven Verfahren [8; 9], um frühzeitig aussagekräftige Ergebnisse zu gewinnen (siehe auch Kapitel 2.6).

4.4.1 Versuche im nicht einbetonierten Zustand

Die Untersuchung der 25 Materialproben fand im nicht einbetonierten Zustand (freischwingend) statt. Die exakten Versuchsergebnisse aus Schwingbreiten und Schwingspielzahlen der einzelnen Proben sind in der Anlage A2, Tabelle A 2-6 enthalten.

Bild 4-5 zeigt exemplarisch für alle untersuchten Proben, dass die Ermüdungsbrüche immer in der freien Länge der Betonstahlproben auftraten und mehr als 2·d_s vom Rand der Einspannung entfernt lagen.

	<── einspannfreier Bereich ──>	
	CALL AND AN AN AN AN AN AN AN AN	-
	Las vieres and a second	
	CANALD CANADADADADADAD	
	BOUCCOUP SUBJECTIONALIE	
	BULLINININAN THANK?	
	an and an and a second second	
-		
-	I AFARARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

Bild 4-5: einige der gebrochenen Proben [60]

Bild 4-6: Versuchsergebnisse des freischwingend untersuchten Betonstahls mit ermitteltem Streuband der Widerstandsfunktion (halblogarithmischer Maßstab)

Bei der Durchführung der freischwingend untersuchten Betonstahlversuche überschritten 3 Proben ohne Bruch die zuvor festgesetzte Grenzschwingspielzahl (Bild 4-6). Um zu testen, ob diese Proben als echte Durchläufer gewertet werden können, wurden diese auf einem höheren Niveau erneut getestet. Läuft eine solche Probe unter einer höheren Schwingbreite in das Streuband der übrigen Versuchsergebnisse, so kann diese Probe als echter Durchläufer angesehen werden.

Versagt die Probe bereits vor dem Erreichen des Streubandes, so muss von einer Vorschädigung durch die Schwingbreite aus dem ersten zyklischen Belastungsversuch ausgegangen werden. Von den 3 ungebrochenen Proben erreichten zwei das Streuband und konnten somit im ersten Versuch jeweils als Durchläufer gewertet werden. Wie im Bild 4-6 zu erkennen ist, versagte eine Probe deutlich vor dem Streuband. Daraus lässt sich schließen, dass diese unter der ersten Belastungsschwingbreite bereits eine Schädigung gehabt haben muss und in absehbarer Zeit gebrochen wäre. Daher kann diese in den Auswertungen als gebrochene Probe angesehen werden.

Bild 4-6 zeigt die gewonnenen Versuchsergebnisse des freischwingend untersuchten Betonstahls und dem daraus rechnerisch bestimmten Streubandes der Widerstandsfunktion.

Dieses basiert auf einem Vertrauensniveau von 90% und wurde auf Basis der berechneten und eingezeichneten 5%-Quantilwerte generiert.

Um für praktische Anwendungen plastische Materialverformungen auszuschließen, ist im Bild 4-6 die Wöhlerlinie durch die aus den quasi-statischen Zugversuchen gewonnene untere Streckgrenze (R_{eL}) begrenzt worden, indem von den statistisch bestimmten Werten der unteren Streckgrenze (Tabelle 4-1) jeweils die in den Versuchen angesetzte konstante Unterspannung σ_u =125MPa subtrahiert wurde.

Dadurch begrenzte sich die Mittelwertfunktion wie folgt:

$$R_{eL,MW} - \sigma_u = (559MPa - 125MPa) = 434MPa$$
(4-3)

Die Begrenzung der 5% Quantilfunktion ergab sich zu:

$$R_{eL,5\%} - \sigma_u = (522MPa - 125MPa) = 397MPa$$
(4-4)

Bild 4-7: Aus Versuchswerten bestimmter charakteristischer Ermüdungswiderstand des freischwingend getesteten Betonstahls (doppellogarithmischer Maßstab)

Die angegebene Bemessungsgrenzfunktion basiert auf den Werten der 5%-Quantilfunktion, dividiert durch den Materialsicherheitsfaktor $\gamma_{s,fat} = 1,15$. Um dieses Ergebnis mit der charakteristischen Wöhlerlinie der gültigen DIN EN 1992-1-1/NA [19; 20] bzw. DIN EN 1992-2/NA [21; 22] vergleichen zu können, wird das Diagramm in einem doppeltlogarithmischen Maßstab dargestellt (Bild 4-7). Der charakteristische Ermüdungswiderstand wird auch hier nach oben durch die charakteristische Streckgrenze begrenzt. Ausgehend von dieser Grenze und dem Schnittpunkt mit der 5%-Quantilfunktion wird eine Gerade als Tangente an die 5%-Quantilfunktion gelegt. Hieraus ergibt sich für den Zeitfestigkeitsbereich die auf den Versuchswerten basierende Steigung k₁. Ab dem Schnittpunkt mit dem charakteristischen 5%-Quantilwert der Dauerschwingfestigkeit wird die Steigung nach dem Ansatz von Haibach [45] mit k₂ = 2·k₁ - 1 hypothetisch fortgeführt, um Schädigungen unterhalb der Dauerschwingfestigkeit zu erfassen. Diese treten dann auf, wenn zuvor oberhalb der Dauerschwingfestigkeitsgrenze des Materials ermüdungswirksame Beanspruchungen, die zu einer Vorschädigung führen, aufgetreten sind. Nach Auswertung der Versuchsdaten ergeben sich für die freischwingend geprüften Betonstähle somit die gerundeten Steigungsfaktoren k₁=3,6 und k₂=6,3.

4.4.2 Versuche im einbetonierten Zustand

Im einbetonierten Zustand wurden insgesamt 20 Versuchskörper unter einer zyklischen Beanspruchung untersucht. Gewonnene Bruchschwingspiele zu den aufgebrachten Schwingbreiten der einzelnen im einbetonierten Zustand untersuchten Proben können der Anlage A2, Tabelle A 2-5 entnommen werden. Bild 4-8 zeigt exemplarisch 5 untere Bruchkörperhälften einer Versuchsreihe. Im Bild 4-9 ist eine Nahaufnahme einer Ermüdungsbruchfläche abgebildet. In diesem Fall ist erkennbar, dass der Ausgangspunkt der Ermüdungsbruchfläche seinen Ursprung an einer Querrippe des Betonstahls hat. Dieses ist nicht unüblich, da es an diesen Stellen infolge der geometrischen Diskontinuität in der Regel zu hohen Kerbspannungen kommt.

Bild 4-8: exemplarisch dargestellte untere Bruchkörper eine Versuchsreihe

In einer anderen Versuchsreihe kam es bei einem der Langläufer, bedingt durch die niedrige Betonfestigkeit (f_{c,cube}=20,9MPa) in diesem Probekörper, zu einem Verbundversagen zwischen dem Beton und dem Bewehrungsstab nach ca. 2,5 Mio. Schwingspielen. Der Betonstahl zeigte augenscheinlich keine erkennbaren Schädigungen. Die Probe konnte in diesem Zustand keiner zweiten, höheren Belastung unterzogen werden, um eine eventuell bereits eingetretene Schädigung im ungebrochenen Stab festzustellen. Daher wurde der Zeitpunkt des Verbundversagens dieser Probe in der weiteren Auswertung als untere Grenze eines **Betonstahlbruchs** gewertet.

Proben der Drei weitere gesamten Versuchsserie konnten nach Überschreiten einer Grenzschwingspielzahl einer zweiten Belastung auf einem höheren Niveau unterzogen werden. Der Ermüdungsbruch trat bei allen Proben innerhalb des Streubandes nahe der Mittelwertfunktion auf. Somit konnten diese Proben in ihrer Erstbelastung bei der Auswertung der Versuche als echte Durchläufer gewertet werden.

Bild 4-9: Nahaufnahme einer Ermüdungsbruchfläche

Bild 4-10: Versuchsergebnisse des im einbetonierten Zustand untersuchten Betonstahls mit ermitteltem Streuband der Widerstandsfunktion (halblogarithmischer Maßstab)

Bild 4-10 zeigt die aus den Versuchswerten iterativ berechnete Mittelwertfunktion, die berechneten 5%-Quantilwerte und die daraus iterativ berechneten Quantilfunktionen. Analog zu den freischwingend getesteten Betonstählen wurden auch hier die einzelnen Funktionen nach oben durch die untere Streckgrenze (R_{eL}) begrenzt.

Um für den charakteristischen Ermüdungswiderstand die Steigung k_1 im Zeitfestigkeitsbereich zu bestimmen, wird bei diesen Versuchen ebenfalls, ausgehend vom Schnittpunkt der charakteristischen Streckgrenze mit der 5%-Quantilfunktion, die Tangente an diese Quantilfunktion angelegt. Ab dem Schnittpunkt der Tangente mit der charakteristischen Dauerschwingfestigkeitsgrenze wird, wie auch bei den freischwingend untersuchten Betonstählen, die Steigung k_2 nach dem Ansatz von Haibach [45] weitergeführt. Es ergeben sich die gerundeten Steigungen $k_1=4,1$ und $k_2=7,2$.

Bild 4-11: Aus Versuchswerten bestimmter charakteristischer Ermüdungswiderstand des im einbetonierten Zustand untersuchten Betonstahls (doppellogarithmischer Maßstab)

Einfluss der Betonfestigkeit

In den vier Reihen wurden verschiedene Betongüten (f_{c,cube}=20,9/30,5/38,3/70MPa) vorgesehen, um den Einfluss auf die Ermüdungstragfähigkeit festzustellen. Es zeigte sich in den Versuchen, dass es bei einer zu geringen Betondruckfestigkeit zu einem Verbundversagen kommt. Unter der einwirkenden zyklischen Beanspruchung wuchs bei einer zu niedrigen Betondruckfestigkeit mit jedem Belastungszyklus die äquivalente verbundfreie Länge im Bereich des Risses. Dadurch kam es in einigen Versuchen sogar zum vollständigen Verbundverlust zwischen dem Beton und der Betonstahlprobe. Mit dem Anwachsen der äquivalenten verbundfreien Länge steigt auch die Wahrscheinlichkeit eines Ermüdungsversagens.

4.5 Vergleich des einbetonierten und nicht einbetonierten Zustands

Im direkten Vergleich der Streubänder zeigt sich für die einbetonierten und nicht einbetonierten Betonstähle, dass die Ermüdungsfestigkeit im Bereich der Dauerschwingfestigkeit bei den einbetonierten Proben höhen liegt (Bild 4-12).

Die Mittelwertfunktion liegt in diesem Bereich um ca. 14% und die 5%-Quantilfunktion um ca. 13% höher. Ebenso führt die im Zeitfestigkeitsbereich verlaufende flachere Steigung des einbetonierten Betonstahls bereits zu einer Erhöhung der Ermüdungstragfähigkeit im Gegensatz zu den freischwingend untersuchten Betonstählen.

Begründet werden kann dieses Verhalten vermutlich dadurch, dass sich durch die zyklische Belastung des Systems ein Zustand zwischen Beton und Betonstahl einstellt, in dem die Kräfte gleichmäßig übertragen werden. Somit kommt es zu einer gleichmäßigeren Spannungsverteilung im Betonstahl.

Positiv wirkt sich vermutlich auch der kurze, verbundfreie Rissbereich im einbetonierten Zustand aus. Während beim freischwingend untersuchten Betonstahl in der gesamten Probenlänge nahezu gleichbleibende Spannungen vorherrschen, liegen vergleichbar hohe Spannungen (unter gleicher äußerer Belastung) im einbetonierten Betonstahl nur in einem kurzen Bereich des Risses vor. Dort überträgt der Betonstahl alleine die einwirkenden Kräfte. Somit ist, im Gegensatz zur gesamten freien Länge des nicht einbetonierten Betonstahls, die Wahrscheinlichkeit einer zum Ermüdungsriss benötigten Initialkerbe in diesem Bereich des einbetonierten Zustands geringer.

Bild 4-12 zeigt zusätzlich die nach DIN EN 1992+NA [20] [22] anzusetzende charakteristischen Wöhlerlinie. Beide Streubänder liegen oberhalb dieser Linie. Damit liegt die Normkurve, bezogen auf die untersuchten Proben eines bestimmten Herstellers, auf der sicheren Seite.

Bild 4-12: Vergleich der Ermüdungsfestigkeiten des freischw. und einbetoniert untersuchten Betonstahls

4.5.1 Teilsicherheitsbeiwerte für beide Zustände

Allgemeines zu Teilsicherheitsbeiwerten

Die rechnerische Ermittlung der Teilsicherheitsbeiwerte erfolgt im Allgemeinen gemäß DIN EN 1990 [18] durch die Zuverlässigkeitstheorie erster Ordnung (FORM – First Order Reliability Method). Die praktische Anwendung von FORM liefert im konstruktiven Ingenieurbau Ergebnisse in Abhängigkeit der Streuung der Basisvariablen.

Der Nachweis zur Einhaltung der geforderten Sicherheit erfolgt über den Vergleich von Bemessungswerten der Beanspruchung E_d und des Widerstandes R_d (Bild 4-13). Diese werden durch stochastisch voneinander unabhängige Normalverteilungen beschrieben, welche jeweils durch den Mittelwert μ und die Standardabweichung $\hat{\sigma}$ charakterisiert sind.

Charakteristische Werte werden über eine Unter- und Überschreitungswahrscheinlichkeit als Quantilwerte definiert.

Bild 4-13: Zuverlässigkeitsverfahren nach DIN EN 1990 (aus: [61] bzw. [9])

Die Entkopplung der Einwirkungs- und Widerstandsseite erfolgt durch die Wichtungsfaktoren α_E und α_R . Durch diese wird der jeweilige Anteil beider Seiten an der Versagenswahrscheinlichkeit beschrieben. Für die Bestimmung der Teilsicherheitsbeiwerte werden in den Eurocodes die Werte $\alpha_E = 0,7$ und $\alpha_R = 0,8$ angesetzt. Für die Definition der erforderlichen Zuverlässigkeit von Tragwerken wird, abhängig von der Bemessungssituation, ein Zielwert für den Zuverlässigkeitsindex β festgelegt. Dieser liegt nach DIN EN 1990 [18] für den Nachweis der Ermüdung zwischen 1,5 und 3,8. In den weiteren Betrachtungen wird der höchste Zuverlässigkeitsindex von 3,8 angesetzt.

$$\mu_E + \beta \alpha_E \hat{\sigma}_E = E_d \leq R_d = \mu_R - \beta \alpha_R \hat{\sigma}_R$$
(4-5)

Über die Verteilungsfunktion der Normalverteilung ergibt sich mit den Werten $\alpha_R = 0.8$ und $\beta = 3.8$ der Bemessungswert R_d als 0.118%-Quantilwert.

Aus dieser Bedingung kann der Bemessungswert einer Stichprobe mit einer Anzahl von n Werten errechnet werden. Hierzu benötigte k_n Quantilfaktoren können Tafelwerken [72] entnommen bzw. daraus generiert werden. Somit ergibt sich der Teilsicherheitsbeiwert γ_m einer Stichprobe mit n Werten auf Grundlage einer Normalverteilung nach Formel (4-6) und kann in Abhängigkeit zum Variationskoeffizienten (V_R) angegeben werden.

$$\gamma_m = \frac{R_k}{R_d} = \frac{\mu_R - k_{n,p\%} \hat{\sigma}_R}{\mu_R - k_{n,0.118\%} \hat{\sigma}_R} = \frac{\mu_R - k_{n,p\%} \mu_R V_R}{\mu_R - k_{n,0.118\%} \mu_R V_R} = \frac{1 - k_{n,p\%} V_R}{1 - k_{n,0.118\%} V_R}$$
(4-6)

- mit: $k_{n,p\%}$: p% Quantilfaktor zum Vertrauensniveau (1- α) und der Anzahl n an Versuchswerten einer Stichprobe
 - $k_{n,0.118\%}$: 0,118% Quantilfaktor ($\alpha_R = 0.8$; $\beta = 3.8$) zur Anzahl n an Versuchs werten einer Stichprobe und dem Vertrauensniveau (1- α)

Wird eine logarithmische Normalverteilung zu Grunde gelegt, ergibt sich für γ_m die Formel (4-7).

$$\gamma_m = \frac{R_k}{R_d} = \frac{e^{\mu_R - k_{n,p\%}\hat{\sigma}_R}}{e^{\mu_R - k_{n,0.118\%}\hat{\sigma}_R}} = e^{V_R \cdot (k_{n,0.118\%} - k_{n,p\%})}$$
(4-7)

In Bild 4-14 kann für unterschiedliche Variationskoeffizienten der Teilsicherheitsbeiwert einiger exemplarisch angegebener Stichprobengrößen n abgelesen werden. Diese Kurven basieren auf einer Normalverteilung nach Formel (4-6) und einem Vertrauensniveau von 90%. Bild 4-15 zeigt analog die Kurven auf Basis einer logarithmischen Normalverteilung nach Formel (4-7). Es ist in beiden Bildern zu erkennen, dass mit steigendem Umfang der Stichprobe (n) der Wert γ sinkt.

Bild 4-14: Zusammenhang zwischen Variationskoeffizient und Teilsicherheitsbeiwert für unterschiedliche Anzahlen n an Versuchswerten einer Stichprobe (normalverteilt)

Übertragung auf die eigenen Versuchsergebnisse

Bei Betrachtung der durchgeführten Versuche zeigte sich, dass der Variationskoeffizient der nicht einbetonierten Betonstähle zwischen 6-7% und der der einbetonierten zwischen 7-8% lag.

Unter dem Ansatz einer normalverteilten Stichprobe, wie es sich in den Versuchen zeigte, können die zugehörigen γ Werte berechnet werden.

Es ergeben sich die ausschließlich statistisch begründeten Teilsicherheitsbeiwerte im Bereich hoher Lastwechselzahlen (N>10⁶) durch die gewonnenen Variationskoeffizienten für den freischwingenden Betonstahl zu $\gamma_{m,frei} = 1,13$ und für den einbetonierten Zustand zu $\gamma_{m,einb.} = 1,16$. Damit werden ausschließlich die Unsicherheiten aus den Streuungen abgedeckt.

Bild 4-15: Zusammenhang zwischen Variationskoeffizient und Teilsicherheitsbeiwert für unterschiedliche Anzahlen n an Versuchswerten einer Stichprobe (lognormalverteilt)

Bild 4-16: Verhalten des Variationskoeffizienten entlang der experimentell ermittelten Wöhlerlinie der einbetonierten und nicht einbetonierten Versuche

Die so ermittelten Teilsicherheitsbeiwerte γ_m erreichen durch ihre Größe nahezu alleine bereits den in der Norm verankerten Wert von $\gamma_M = \gamma_m \cdot \gamma_{Rd} = 1,15$ für den einbetonierten Zustand, welcher die Unsicherheiten aus den Streuungen der Baustoffeigenschaften (γ_m) und die Modellunsicherheiten bei den Bauwerkswiderständen (γ_{Rd}) abdeckt. Dadurch beträgt hier der Teilsicherheitsbeiwert $\gamma_{Rd} \approx 1,0$. Aus den Versuchen ist ebenfalls ersichtlich, dass die charakteristische 5%-Quantilgrenze im Dauerschwingfestigkeitsbereich im einbetonierten Zustand höher liegt als im nicht einbetonierten Zustand. Wird dieser Aspekt bei der Bestimmung des Teilsicherheitsbeiwertes speziell bei den hier durchgeführten Versuchen berücksichtig, kann γ_{Rd} abgeschätzt werden. Nach DIN EN 1992-2/NA [21; 22] ergibt sich $\Delta\sigma_{Rsd}$ zu:

$$\Delta \sigma_{Rsd} = \frac{\Delta \sigma_{Rsk}}{\gamma_M} = \frac{175MPa}{1,15} = 152MPa \tag{4-8}$$

Für den einbetonierten Zustand wurde in den Versuchen $\Delta \sigma_{Rsk,einb.} = 195 MPa$ und $\gamma_{m,einb.} = 1,16$ ermittelt. Aus der Beziehung zur Gleichung (4-8) ergibt sich durch Umformen nun γ_{Rd} .

$$\Delta \sigma_{Rsd} = \frac{\Delta \sigma_{Rsk,einb.}}{\gamma_{m,einb.} \cdot \gamma_{Rd}} \longrightarrow \gamma_{Rd} = \frac{\Delta \sigma_{Rsk,einb.}}{\gamma_{m,einb.} \cdot \Delta \sigma_{Rsd}} = \frac{195MPa}{1,16 \cdot 152MPa} = 1,10$$
(4-9)

Damit verbleibt für die Modellunsicherheit bei den Bauwerkswiderständen ein Teilsicherheitsbeiwert von $\gamma_{Rd} = 1,10$.

Es ist zu erwarten, dass Betonstähle anderer Hersteller, Chargen oder Durchmesser aufgrund der anfangs genannten Unterschiede und Einflussfaktoren andere Ergebnisse liefern werden.

4.6 Zusammenfassung

Untersucht wurden aus einer Grundgesamtheit eines Betonstahls B500 fünf Materialproben im quasistatischen Zugversuch, 25 Proben im nicht einbetonierten Zustand sowie 20 Proben im einbetonierten Zustand.

Aus diesen Proben wurden zwei vollständige, charakteristische Wöhlerlinien für den einbetonierten und nicht einbetonierten Zustand aufgebaut. Bei den einbetonierten Proben wurde die Betongüte des verwendeten Betons variiert, um dessen Einfluss zu bestimmen. Bei zu niedrigen Betongüten kommt es zu einem Ermüdungsversagen des Verbundes zwischen Beton und Betonstahl durch die einwirkende zyklische Belastung.

Zu erkennen ist, dass es bei der Betrachtung eines Systems (einbetonierter Zustand), im Gegensatz zum reinen Materialversuch (nicht einbetoniert), Unterschiede in den Versuchsergebnissen der Ermüdungsfestigkeit gibt. Diese Systemeinflüsse wirken sich im vorliegenden Fall positiv durch das Zusammenspiel der Materialien Beton und Betonstahl aus.

Der Vergleich beider gewonnenen Streubänder der Ermüdungsfestigkeit zeigt, dass die im einbetonierten Zustand untersuchten Proben im Bereich der Dauerschwingfestigkeit eine um ca. 13% höhere charakteristische Ermüdungstragfähigkeit der 5%-Quantilfunktion für den nicht einbetonierten Zustand aufweisen.

Alle gewonnenen Versuchswerte liegen oberhalb der nach DIN EN 1992-1-1/NA [19; 20] bzw. DIN EN 1992-2/NA [21; 22] angegebenen charakteristischen Wöhlerlinie.

Der Teilsicherheitsbeiwert $\gamma_{M,fat} = 1,15$ ist nahezu in voller Größe für die Abdeckung der Unsicherheiten aus der Streuung erforderlich, so dass kein nennenswerter Anteil für die Abdeckung der Modellunsicherheiten verbleibt.

Bei Anwendung der Vorgehensweise auf Betonstähle anderer Hersteller sind abweichende Ergebnisse zu erwarten.

5 Untersuchungen mit Spannstahllitzen

Die nachfolgend beschriebenen Untersuchungen erfolgten im Rahmen eines Forschungsvorhabens von Straßen.NRW sowie des durch die DFG geförderten Teilprojektes B5 innerhalb des Sonderforschungsbereichs 823 (SFB 823).

Bei dem von Straßen.NRW mit der Forschungsnummer FE 00 08 5001 finanzierten Forschungsvorhaben wurden Spannstahlproben aus einem Abbruchbauwerk einer Autobahnbrücke gewonnen, mit denen 5 Großversuche hinsichtlich ihres Ermüdungsverhaltens durchgeführt wurden. Weitere Versuche wurden im Rahmen des SFB 823, "Statistik nichtlinearer dynamischer Prozesse", im Teilprojekt B5, "Statistische Methoden für Schädigungsprozesse unter zyklischer Beanspruchung", durchgeführt.

Der SFB 823 bot die Möglichkeit, mit entsprechenden "neuen" Spannlitzen heutiger Produktion sechs weitere Großversuche hinsichtlich des Ermüdungsverhaltens, analog zu den Versuchsträgern mit den "alten" Litzen, herzustellen und u.a. die Versuchsergebnisse unmittelbar miteinander zu vergleichen. Zusätzlich konnten in diesem Rahmen Proben für freischwingende Spannstahlermüdungsversuche der "alten" sowie "neuen" Litzen geprüft und ausgewertet werden.

Untersucht wird in diesem Kapitel ein alter Spannstahl von 1957, entnommen aus einem Abbruchbauwerk, und dem gegenübergestellt ein vergleichbarer Spannstahl (Material und Geometrie) aus heutiger Produktion. Das Hauptaugenmerk liegt auf den Ermüdungseigenschaften beider Materialien sowie den Systemeigenschaften im einbetonierten Zustand. Hierzu wurden die Spannstähle freischwingend und im einbetonierten Zustand untersucht.

5.1 Untersuchtes Spannstahlmaterial

Im Rahmen des Abbruchs von alten Spannbetonbrücken besteht die Möglichkeit, "alte" Spannstahlproben für Ermüdungsversuche zu gewinnen. Konkret ergab sich die Möglichkeit beim Abbruch der Autobahnbrücke BW 67, Bhf. Westhofen, an der BAB A1 bei Hagen, südlich von Dortmund (Bild 5-1).

Um die Vergleichbarkeit mit den "alten" Litzen sicherzustellen, wurden bei den "neuen" Litzen ebenfalls 3/8" Litzen mit jeweils 7 Drähten und einer gleichwertigen Spannstahlgüte St 1570/1770 gewählt. Beide Spannstahllitzen bestanden somit jeweils aus 7 Drähten und konnten, wie die nachfolgenden Untersuchungen zeigen, eindeutig in die Spannstahlgüte St1570/1770 eingestuft werden. Die Querschnittsfläche beider Litzen betrug jeweils 52mm².

Bei den "neuen" Spannstahllitzen wurde sichergestellt, dass diese von einem Coil und somit aus einer Charge und Schmelze stammen, um für die Versuche bezüglich des Materials die gleichen Ausgangsbedingungen zu erzielen.

5.1.1 "Alter" Spannstahl

Im Brückenbauwerk aus dem Jahr 1957 waren seinerzeit 3 verschiedene Spannstahlsorten zur Anwendung gekommen. Zu diesem Bauwerk lagen Pläne und statische Berechnungen aus der Bauzeit vor. Diese ermöglichten eine Identifizierung der verwendeten Spannverfahren. Es war ersichtlich, dass im Bauwerk für die Längsvorspannung das System Baur Leonhardt und für die Quervorspannung LEOBA Spannglieder eingesetzt worden waren. Das System Baur Leonhardt besteht aus einer Vielzahl von im Bauwerk konzentriert angeordneten Spannlitzen oder Spanndrähten. Diese wurden in einem größeren Blechkasten geführt und mit zementösem Füllgut verpresst. Später entstand aus diesem System, zur Vorspannung mit kleineren Spanngliedern, das LEOBA System.

Die konkrete Litzenauswahl wurde erst beim Abbruch vor Ort endgültig festgelegt. Die gewählten Spannlitzen stammten alle aus einem Blechhüllkasten eines damals üblichen LEOBA-Spanngliedes. Hieraus wurden für die freischwingenden Versuche und die einbetonierten Versuche mehrere 11 m lange Spannstahlproben gewonnen.

Bild 5-1: Brückenabbrucharbeiten der Autobahnbrücke Bahnhof Westhofen

Entnahme und Litzenvorbereitung

Bei dem Abbruch des Brückenbauwerks zeigte sich, dass große Teile nicht vollständig verpresst waren. Somit lag ein großer Teil der Spannlitzen unverpresst im Blechkasten, wie es im Bild 5-3 zu erkennen ist. Durch den fehlenden Verbund kann davon ausgegangen werden, dass die Litzen im Bauwerk keine wesentlichen ermüdungswirksamen Beanspruchungen erfahren haben.

Die Ursache für den fehlenden Verpressmörtel liegt in der extrem hohen Anzahl von konzentriert und eng aneinander liegenden Gegebenheit Spannlitzen. Diese dürfte vermutlich das Verpressen der Blechkästen erschwert bzw. unmöglich gemacht haben. Trotz des fehlenden Korrosionsschutzes in den unverpressten Bereichen deuteten die Spannlitzen bei der ersten Begutachtung auf einen gut erhaltenen Zustand hin.

Es wurde daher von der Abbruchfirma ein ca. 11 m langes Kastenspannglied freigelegt. Hieraus sind 35 Spannlitzen mit einer Länge von jeweils ca. 5,00 m entnommen worden. Diese Litzen wurden im Anschluss zur weiteren Prüfung und Untersuchung die an TU Dortmund geliefert. Parallel erfolgte zur Einstufung eine erste Ermittlung der Zugfestigkeit der Spannstahllitzen durch eine Fachfirma für Litzenspannsysteme. Diese war zudem beauftragt, passende Ankerkörper für diese Litzen bereitzustellen.

Bild 5-2: Spannbetonträger mit Kastenspannglied

Bild 5-3: Spannlitzen im Kastenspannglied nach Abbruch

Material- und Geometrieeigenschaften der "alten" Spannlitzen

Bei den entnommenen Spannlitzen handelt es sich um 3/8" Litzen, deren Querschnitt aus 7 Drähten besteht. Der Durchmesser der einzelnen Drähte beträgt ca. 3,05 mm. Hieraus ergeben sich der Nenndurchmesser der Litzen zu 9,3 mm und der Nennquerschnitt zu 0,52 cm².

Zur ersten Einstufung des verwendeten Spannstahls wurden an 3 Proben mit einer Länge von 62 cm Zugversuche durch die Fachfirma für Litzenspannsysteme durchgeführt (Tabelle 5-1). Die Brüche erfolgten bei allen Proben im Bereich der freien Länge. Unter der Annahme, dass es sich bei der vorliegenden Litze um die Güte St 1570/1770 entsprechend heutiger Bezeichnung handelt, konnte unter Verwendung der genannten Verankerungselemente ein mittlerer Wirkungsgrad von 99,4 % der rechnerischen Zugfestigkeit erreicht werden. Später erfolgte im Rahmen von eigenen Materialuntersuchungen ebenfalls die Bestimmung der Materialeigenschaften an der TU Dortmund.

Probe	σ _{p,actual} [N/mm ²]	σ _{pk} [N/mm²]	F _{p,actual} [kN]	F _{pk} [kN]	Wirkungsgrad [%]
1	1.755	1.770	91,24	92,00	99,2
2	1.759	1.770	91,45	92,00	99,4
3	1.762	1.770	91,63	92,00	99,6

Tabelle 5-1: Zugversuche der Fachfirma an den entnommenen Spannstahlproben (A_p = 0,52cm²)

Säubern und Kontrolle hinsichtlich einer Vorschädigung

Die aus dem Bauwerk entnommenen Spannlitzen wurden zur genaueren Analyse und Begutachtung an der TU Dortmund nebeneinander ausgebreitet und einzeln untersucht (Bild 5-4).

a) vor der Säuberung

b) nach der Säuberung

c) nach der Selektion

Dem ersten Augenschein nach wiesen die Spannstähle (Bild 5-5) einen guten Zustand ohne nennenswerte Korrosionsschäden auf. Erkennbar waren ein leichter Flugrostbefall sowie zum Teil Verunreinigungen durch Zementschlämme. Zur Aufbereitung der Litzen wurden diese einzeln mit einer weichen Bürste gesäubert (Bild 5-6). Dieser Vorgang erlaubte zudem eine visuelle Kontrolle der einzelnen Spannlitzen über die gesamte Länge, um etwaige mechanische Beschädigungen an der Oberfläche zu erkennen. Wie im Bild 5-7 zu erkennen ist, konnten an der Oberfläche einiger Drähte der Litzen geringfügige mechanische Schädigungen in Form von Abriebspuren oder Riefen festgestellt werden. Diese dürften aufgrund ihres Erscheinungsbildes auf die Abbrucharbeiten der Brücke zurückzuführen sein. Es kann davon ausgegangen werden, dass diese Beschädigungen im eingebauten Zustand noch nicht vorhanden waren.

Durch eingehende Kontrolle jeder einzelnen Spannlitze war es möglich, alle durch den Abbruch beschädigten Litzen auszusortieren.

Bild 5-5: "alte" Spannlitzen nach der Anlieferung

Bild 5-6: "alte" Spannlitzen nach dem Säubern

Für die Spannbetonversuche konnten 5 intakte Litzenbündel zu je 5 Spannlitzen gewonnen werden (Bild 5-4c). Die im rechten Teil des Bildes sichtbaren Litzen wurden für die Großversuche vorerst aussortiert, da von diesen etwa die Hälfte die beschriebenen Beschädigungen aufwiesen (Bild 5-7). Aus den unbeschädigten Bereichen der aussortierten Litzen konnten anschließend Spannstahlproben für Ermüdungsversuche an freischwingenden Spannstahlproben gewonnen werden.

a) Materialbeschädigung

b) Abriebspuren

Bild 5-7: Geringfügige Materialbeschädigungen und Abriebspuren

5.1.2 "Neuer" Spannstahl

Der neue Spannstahl wurde, zur unmittelbaren Vergleichbarkeit der Versuchsergebnisse zum alten Spannstahl, hinsichtlich der Geometrieund Materialeigenschaften analog zu diesem gewählt. Daher wurden hier ebenfalls 3/8" Litzen der Güte St1570/1770 aus heutiger Produktion gewählt (Bild 5-8).

 -4-
σ

Bild 5-8: "neue" 7-drähtigen Spannlitze, ø9,3mm

Die verwendeten Litzen stammten alle von einem Coil und somit aus einer Produktion und einer Schmelze. Visuell waren keine etwaigen Vorschädigungen an den Spannstahllitzen erkennbar. Neben der allgemeinen bauaufsichtlichen Zulassung des Spannstahls wurde ebenfalls das Herstellerzertifikat mitgeliefert. Aus den Angaben des Herstellerzertifikates konnten die Daten der chemischen Analyse der Schmelze des Spannstahls entnommen werden. Diese sind der nachfolgenden Tabelle 5-2 zu entnehmen.

Tabelle 5-2: Chemische Analyse des neuer	n Spannstahls	(Herstellerangaben)
--	---------------	---------------------

C	Mn	Si	Р	S	N
(Kohlenstoff)	(Mangan)	(Silicium)	(Phosphor)	(Schwefel)	(Stickstoff)
[%]	[%]	[%]	[%]	[%]	[%]
0,826	0,671	0,220	0,012	0,012	0,003

Nach der allgemeinen bauaufsichtlichen Zulassung (abZ) des Spannstahls entspricht dieser hinsichtlich des Nachweises gegen Ermüdung einem Spannstahl der Klasse 1. $\Delta\sigma_{Rsk}$ wird bei diesem Spannstahl, für gekrümmte Spannglieder in Stahlhüllrohren im nachträglichen Verbund, mit 120 N/mm² bei N^{*}=10⁶ Zyklen für den eingebauten Zustand angegeben. Die zugehörigen Spannungsexponenten werden mit k₁=3 und k₂=7 angegeben.

Für gerade Spannlitzen im sofortigen Verbund sowie Einzellitzen in Kunststoffhüllrohren im nachträglichen Verbund kann lt. abZ für den eingebauten Zustand $\Delta\sigma_{Rsk} = 185 \text{ N/mm}^2$ bei N^{*}=10⁶ Zyklen angesetzt werden. Spannungsexponenten sind hierbei mit k₁=5 und k₂=9 anzusetzen.

5.1.3 Notation für die weitere Probenbezeichnung

Die in den Versuchen verwendeten Materialproben des "alten" und "neuen" Spannstahls werden in den weiteren Diagrammen und Tabellen oft durch Kurzbezeichnungen angegeben. Die Aufschlüsselung dieser Bezeichnung wird hier kurz erläutert und enthält in der Regel drei durch einen Bindestrich getrennte Teile (*z.B. "SPN-D-06"*):

Somit wäre beispielsweise "SPN-D-06" die sechste Probe im Dauerschwingversuch des "neuen" Spannstahls. Bei den Großversuchen entspricht die Versuchskörperbezeichnung TR dem "alten" Spannstahl und die Bezeichnung SB dem "neuen" Spannstahl.

5.2 Materialversuche am Spannstahl

5.2.1 Prüfkörper und Versuchsstand

Prüfkörper

Die einzelnen Prüfkörper des "alten" und "neuen" Spannstahl wurden für die freischwingenden und statischen Versuche in gleicher Weise hergestellt.

Maßgeblich für die Prüfung der Spannlitzen war, dass diese an den Einspannstellen zur Maschine möglichst durch den Klemmdruck nicht gequetscht oder verformt werden. Durch eine verformte Litze würde die Zugkraft nicht gleichmäßig eingeleitet und somit das Ergebnis für die Ermüdungstragfähigkeit verfälscht.

Hintergrund Vor diesem wurden die Spannstahlproben in eigens hierfür hergestellte Ankerröhrchen mit einem Durchmesser von 20mm eingeklebt (Bild 5-9). Die Röhrchen hatten eine Wandstärke von 3mm und eine Länge von jeweils 150mm. Die Länge des Röhrchens ergab sich aus der Klemmlänge einer Maschinenspannbacke (115mm) und einem zusätzlichen Überstand vom 35mm in Probenrichtung (Bild 5-10). Dieser Überstand schafft eine gleichmäßigere Krafteinleitung vom Ende der Klemmhalterung der Maschine bis in die Spannstahlprobe.

Bild 5-9: Kraftübertragung Spannbacke - Litze

Zusätzlich ergab sich durch den Überstand die Möglichkeit, über eine Klemmhalterung Messtechnik in Form von induktiven Wegaufnehmern anzubringen. Die aus Stahl bestehenden Ankerröhrchen wurden von innen zusätzlich mit einem Gewindeschnitt versehen, um die Kraftübertragung in den Kleber zu begünstigen. Die Krafteinleitung sollte in erster Linie durch Formschluss zwischen dem Gewindeschnitt, Kleber und der in sich gewundenen Litze erfolgen. Deformationen und vorzeitige Ermüdungsbrüche des Spannstahls im Klemmbereich konnten somit vermieden werden.

Bild 5-10: Prinzipskizze der eingespannten Spannstahlprobe mit schematisch dargestellten Spannbacken

Als Kleber wurde ein chemischer Verbundmörtel auf 2-Komponentenbasis verwendet, welcher sich in den anschließenden Versuchen als extrem zuverlässig zeigte.

Aufgrund der begrenzten Anzahl der "alten" Spannlitzen wurde die freie Probenlänge in Anlehnung an die DIN EN ISO 15630-3 [24], axiale Dauerschwingversuche, mit 2 Schlaglängen der 3/8" Litze gewählt. Daraus ergibt sich bei einer vorliegenden Schlaglänge von ca. 140mm der Litze eine freie Länge zwischen den Klebungen von 280mm. Die Probe wies letztendlich eine Gesamtlänge von 58cm auf (Bild 5-10).

Das Bild 5-11 zeigt im linken Bild die Probe aus der Planungsphase als 3D CAD Modell. Im rechten Teil des Bildes ist der daraus umgesetzte Prüfkörper mit angebrachter Messtechnik zu sehen

Bild 5-11: 3D-Modell aus CAD Planungsphase (links) und daraus umgesetzter Prüfkörper (rechts)

Herstellung der Prüfkörper

Die Spannstahlproben wurden aus den "alten" und "neuen" Litzensträngen herausgetrennt. Um einem Aufspleißen der Spannlitze beim Durchtrennen der Litze entgegenzuwirken, wurden die Bereiche unmittelbar vor und hinter der Trennstelle zuvor mit Draht fixiert.

Anschließend wurden die Litzenstücke, zur Vorbereitung auf den folgenden Klebevorgang, an den Enden gesäubert und entfettet.

Eine eigens für den Klebevorgang hergestellte Zentriervorrichtung (Bild 5-12) half die Spannlitzenproben während der Aushärtephase des Klebers zentrisch in dem Ankerröhrchen zu halten. Dieses ist wichtig, um später im Versuch eine zentrische Krafteinleitung zu gewährleisten. Andernfalls kommt es zu einer unerwünschten, ungleichmäßigen Belastung im Material. Pro Klebevorgang konnten 5 Proben hergestellt werden. Zuerst erfolgte eine exakte Ausrichtung der Spannstähle innerhalb der Zentriervorrichtung und Ankerröhrchen. Anschließend wurde der chemische 2-Komponentenklebstoff vollständig in die Ankerröhrchen injiziert.

Bild 5-12: Zentriervorrichtung mit Spannlitzen und Ankerröhrchen vor dem Verkleben

Bild 5-13 zeigt exemplarisch einen Spannstahlprobekörper nach dem Aushärten des Klebers im Gesamten sowie im Bereich des Ankerröhrchens. Es ist gut zu erkennen, dass die Spannstahllitze zentrisch im Ankerröhrchen eingebettet ist und vollständig vom Kleber umschlossen wird.

Bild 5-13: Spannstahlprobe nach erfolgtem Klebevorgang und ausgehärtetem Kleber

Versuchsstand

Durchgeführt wurden Materialversuche in einer Schenck Viersäulen-Prüfmaschine mit einer maximalen statischen Prüfkraft von ± 630kN und einer maximalen dynamischen Prüfkraft von ± 504kN. Diese zulässige dynamische Prüfkraft wurde in den nachfolgenden Versuchen lediglich zu etwa 20% ausgenutzt, um einen optimalen Betrieb zu garantieren.

Unter eingeschalteter Hydraulik entsteht Druck im Hydrauliksystem und der Zylinder wird durch die Maschinenregelung, im Hydrauliköl "schwimmend", in seiner Position gehalten. In diesem Zustand ist der Kolben des Zylinders samt Spannzeug frei drehbar. Für einteilige, gleichmäßige Probenquerschnitte ist im Versuch diese frei drehbare Lagerung in der Regel kein Problem. Spannlitzen sind allerdings durch mehrere Drähte ineinander gewunden. Unter einer Zugbeanspruchung versuchen sich die einzelnen Drähte wieder gerade zu ziehen und aus der Litze zu entwinden. Damit würde in diesem Fall die Spannbacke am Zylinder zusätzlich einer nicht gewünschten Drehbewegung folgen.

Um diesem Effekt entgegen zu wirken, wurde für die Maschine zusätzlich eine Torsionshalterung entworfen (Bild 5-14). Diese ist an der frei drehbaren Spannbacke fest angebracht und kann durch Abstützen gegen die äußeren Säulen der Maschine der Drehbewegung entgegenwirken. Zur Vermeidung einer Gleitreibung an den Kontaktstellen zu der Säule wurden hier leichtgängige Schwerlastrollen platziert.

Bild 5-14: 3D-Modell aus CAD Planungsphase (links u. Mitte) und daraus umgesetzter Versuchsstand (rechts)

5.2.2 Statischer Zugversuch zur Bestimmung der Materialkennwerte

Zur Bestimmung der Materialkenngrößen wurden Zugversuche an den vorliegenden Spannstahllitzen nach DIN EN ISO 15630-3 [24] sowie DIN EN ISO 6892-1 [25] durchgeführt. So können aus der Spannungs-Dehnungs-Beziehung der Elastizitätsmodul, die Zugkraft der bleibenden 0,1% und 0,2% Dehnung und die maximale Höchstkraft mit zugehöriger Dehnung ermittelt werden.

Da es zum Schutz der Messtechnik nicht möglich war die Dehnungsmessung bis zum Bruch der Probe durchzuführen, wurde die aufgesetzte Dehnungsmesstechnik nach Überschreiten der 0,2% Dehnung von der Probe entfernt. Ab diesem Zeitpunkt wurde die weitere Dehnung bis zum Probenbruch durch die prozentuale Zunahme des Maschinenweges ermittelt und hinzuaddiert. An der Probe wurden gegenüberliegend

jeweils ein Dehnungsaufnehmer (DD1) platziert (Bild 5-15).

Bild 5-15: Zugversuch mit angesetzten DD1 vor und nach der Durchführung

Die Messlänge betrug 140mm und richtete sich nach der Schlaglänge der Spannlitze. Somit wurde die Dehnung eines Drahtes innerhalb der Litze exakt erfasst. Der Elastizitätsmodul wird nach DIN EN ISO 15630-3 [24] durch nachstehende Formel (5-1) bestimmt. Die Ermittlung erfolgt im linearelastischen Bereich zwischen 5% und 70% der gemessenen Höchstkraft F_m im Zugversuch und wird auf die Netto-Querschnittsfläche S_n der Spannstahlprobe bezogen.

$$E = \frac{0.7 \cdot F_m - 0.05 \cdot F_m}{S_n \cdot (\varepsilon_{0,7 \cdot F_m} - \varepsilon_{0,05 \cdot F_m})}$$
(5-1)

Die Bestimmung des E-Moduls erfolgt durch eine lineare Regression zwischen den genannten Punkten. Hierzu wurden zur Auswertung die kontinuierlich in einer Datei aufgezeichneten Messdaten anschließend in ein Tabellenkalkulationsprogramm eingelesen. Die Bestimmung der Regressionsgeraden und aller daraus folgenden Parameter erfolgten durch ein eigens hierfür programmiertes VBA Makro. Exemplarisch ist die Auswertung für die Probe SP-S-01 im Bild 5-16 dargestellt. Die gemittelten Werte aller durchgeführten "alten" des Zugproben und "neuen" Spannstahls könne der Tabelle 5-3 entnommen werden. Die Werte und Dehnungsverläufe der einzelnen Versuchsproben sind der Anlage A3.1.1 zu entnehmen.

Bild 5-16: Messung und Auswertung (SP-S-01)

	0,1%	0,2%	Zugfestigkeit	Gesamtdehnung	E-Modul	
Spannstahl	f _{p0,1}	f _{p0,2}	f _p bzw. R _m	ε _u bzw. A _{gt}	Ep	
	[MPa]	[MPa]	[MPa]	[%]	[MPa]	
"alter" (SP)	1.519	1.595	1.816	7,7	193.665	
"neuer" (SPN)	1.707	1.761	2.029	7,4	199.359	

Tabelle 5-3: Auswertung (Mittelwerte) der durchgeführten Zugversuche an Spannstählen

Untersucht wurden drei "alte" und vier "neue" Spannstahlproben. Wie in der Tabelle 5-3 zu erkennen, liegen die gemittelten Zugspannungen des "neuen" Spannstahls etwa 200 MPa über denen des "alten" Spannstahls. Beide Spannstähle können mit diesen Werten einem Spannstahl der Klasse St 1570/1770 zugeordnet werden.

Ebenso weicht der E-Modul beider Stähle weniger als 3% voneinander ab und liegt im Bereich der zu erwartenden normgemäßen Größe von E_{cal} = 195.000 MPa.

Die Streuung zwischen den einzelnen Versuchsproben einer Spannstahlsorte ist sehr gering und kann in der Anlage A3.1.1 verglichen werden.

Es fällt auf, dass der "alte" Spannstahl mit den gemessenen Werten eher im unteren Bereich des zulässigen Streubandes, zur Einstufung in die Güteklasse St 1570/1770, liegt.

Bild 5-17: Exemplarischer Vergleich des "alten" und "neuen" Spannstahls

Ebenso ist es erstaunlich, dass die einzelnen Zugproben des "alten" Spannstahls kaum streuen. Diese wurden willkürlich aus unterschiedlichen Bereichen entnommen. Aufgrund der langen Verweildauer im eingebauten Zustand und der zum Teil vorgefundenen, unverpressten Bereiche, wäre eine größere Abweichung der Werte untereinander eher zu erwarten gewesen.

Der "neue" Spannstahl hingegen liegt, im Vergleich mit seiner allgemeinen bauaufsichtlichen Zulassung, am oberen Rand des zulässigen Streubereichs.

Auf Basis der gemessenen Versuchswerte kann der "neue" Spannstahl auch in die Güteklasse St 1660/1860 eingruppiert werden.

Wertung

Die Streuung der einzelnen Versuchswerte einer Spannstahlsorte fiel bei den statischen Zugversuchen sehr gering aus. Nach Auswertung der im Zugversuch bestimmten Messgrößen zeigte sich, dass sich der "alte" und "neue" Spannstahl in die Güteklasse St 1570/1770 eingruppieren lassen und übliche Werte aufweisen. Die Festigkeit des neuen Spannstahls erfüllt auch die Anforderungen eines St 1660/1860.

5.2.3 Freischwingend durchgeführte Ermüdungsversuche

allgemeine Versuchsaufbau Der der Ermüdungsversuche wurde bereits im Kapitel 5.2.1 beschrieben. Zur Erfassung der Wegzunahme während des Versuchs wurden links und rechts neben der Spannstahlprobe induktive Wegaufnehmer angebracht (Bild 5-18). Diese lagen in einer Flucht mit dem Spannstahl. Zum Schutz der Messtechnik sind zwischen Probe und Wegaufnehmer jeweils Aluminiumplatten berührungsfrei angebracht worden. Dadurch konnte eine Beschädigung beim Bruch der gespannten Litzendrähte vermieden werden.

Zusätzlich wurde neben der Maschinenkraft auch der Maschinenweg aufgezeichnet.

Die freischwingenden Versuche wurden in Anlehnung an die DIN 50100 [17] und DIN EN ISO 15630-3 [24] durchgeführt.

Bild 5-18: Spannstahl vor nach der Durchführung des Ermüdungsversuchs

Als Grenzschwingspielzahl wurden, entgegen der im Rahmen der Konformitätsprüfungen üblichen $2 \cdot 10^6$ Lastwechsel, in den Versuchen 10^7 Lastwechsel angesetzt. Die Proben wurden nicht exakt bei Erreichen der 10^7 Lastwechsel maschinell gestoppt. Der Versuchsstopp erfolgte manuell nach Überschreiten der festgesetzten Grenzschwingspielzahl.

Alle Versuche wurden kraftgeregelt durchgeführt.

Die untere Kraftgrenze (F_{UL}) wurde in allen Versuchen konstant bei 46,8kN gehalten. Das entspricht einer Spannung im Spannstahl von 900 MPa bei voller Querschnittsfläche. Dadurch liegt diese in etwa bei der seinerzeit zulässigen Spannstahlspannungen nach DIN 4227 (Okt.1953) [27], welche beim Einbau der "alten" Spannstähle gültig war:

$$0,55 \cdot \beta_z = 0,55 \cdot 1700 \, MPa = 935 \, Mpa \tag{5-2}$$

Nach der damals gültigen "Vorläufigen Richtlinie für die Prüfung bei Zulassungen und Abnahmen" (Okt. 1954) [1] sollten Dauerschwingversuche nach DIN 50100 [17] so durchgeführt werden, "dass das Dauerfestigkeits-Schaubild nach Smith für Oberspannungen zwischen der zul. Beanspruchung nach DIN 4227 und der 0,2-Grenze mit ausreichender Genauigkeit festgelegt werden kann" [1, S.742–743].

Da bei einer Ermüdungsbeanspruchung für bestehende ältere Spannbetonbrücken, die nicht im Zustand II auf Ermüdung bemessen wurden, davon auszugehen ist, dass es durch eine von außen einwirkende Kraft zu einem Spannungszuwachs im Spannstahl zur bereits vorhandenen Spannung kommt, wurde in den Versuchen die Spannung von 900 MPa als Unterspannung (σ_u) angesetzt und die zusätzliche Spannung als Schwingbreite ($\Delta \sigma$) aufgesattelt.

Eine Ermüdungsbeanspruchung tritt erst auf, wenn es zu einer Rissbildung im Beton kommt bzw. dieser durch die vorhandene Spannkraft nicht mehr überdrückt wird. Aus diesem Grund erfolgte die leichte Reduzierung von der in Gleichung (5-2) zulässigen Spannung auf die angesetzte Unterspannung (σ_u), wobei von größeren Spannkraftverlusten infolge Reibung, Kriechen und Schwinden des Betons und Relaxation des Spannstahls einmal abgesehen wurde.

Jeder Versuch startet mit einer Dauermessung bei kontinuierlicher Aufzeichnung der Messdaten. Der allgemeine Versuchsablauf ist im Bild 5-19 exemplarisch abgebildet. Hierzu wurde innerhalb von 3 Sekunden die mittlere Kraft (F_m) angefahren. Anschließend erfolgten 10 Lastwechsel mit einer Belastungsgeschwindigkeit von 1 Lastwechsel in 10 Sekunden (0,1 Hz).

Nach erfolgten Lastwechseln wurde die Dauermessung gestoppt und es begann eine periodische Messung unter der gewünschten Prüffrequenz. Die Prüffrequenz wurde in Anlehnung an DIN EN ISO 15630-3 [24] für die Litzen auf maximal 20 Hz begrenzt, um Temperatureinflüsse aus Reibung der einzelnen Litzendrähte untereinander auszuschließen. Eine relevante Erwärmung konnte im Nachhinein während der Versuche nicht festgestellt werden.

Das Messintervall zwischen den einzelnen Messaufzeichnungen wurde in Abhängigkeit von der Kraftamplitude (F_m) gewählt. Lag die daraus resultierende Spannungsschwingbreite eher im oberen Spannungsschwingbereich der Zeitfestigkeit, so wurde ein kurzes Intervall von 30 Sekunden gewählt.

Bild 5-19: Prüf- und Messablauf der kraftkontrollierten Probenbeanspruchung

Waren die Versuchsergebnisse eher im üblichen Zeitfestigkeitsbereich zu erwarten, wurde das Messintervall auf 60 Sekunden erhöht. 120 Sekunden wurden für Versuche im Bereich der Dauerfestigkeitsgrenze gewählt. Begründet war dies erstens darin, dass die Brüche bei Spannstahlproben unter hohen Schwingbreiten schneller aufeinander folgen als bei Proben unter kleinen Schwingbreiten und zweitens, dass bei sehr hohen zu prüfenden Schwingbreiten die Prüffrequenz reduziert wurde. Es besteht in den Versuchen die Problematik, dass mit hoher Lastschwingbreite sich ebenfalls die Maschinenwege, bedingt durch die Dehnungen der Probe, deutlich vergrößern. Daher ist es bei Versuchen mit großen Dehnwegen aus technischer Sicht nicht sinnvoll und oft auch nicht möglich, die hydraulisch geregelte Maschine mit einer hohen Sinusprüffrequenz zu regeln.

Der Hintergrund der kurzen Messintervalle lag darin, den jeweils ersten und gegebenenfalls die folgenden Drahtbrüche in der 7-drähtigen Litze zu erkennen. Der einzelne Versuch wurde daher nicht nach dem ersten Drahtbruch gestoppt. Da eine Dauermessung zu einer unerwünschten Datenflut geführt hätte, der erste Drahtbruch allerdings registriert werden sollte, erfolgte die periodische Messung mit kurzen Messintervallen auf Basis der genannten Abstufung. Somit konnten die einzelnen Litzendrahtbrüche mit einer sehr guten Genauigkeit, bezogen auf die Gesamtlaufleistung unter der entsprechenden Schwingbreite, identifiziert werden.

Nach Überschreiten von 10⁷ Schwingspielen ohne Drahtbrüche wurde der jeweilige Versuch abgebrochen und die Spannstahlprobe in einem zweiten Versuch mit einer höheren Spannungsschwingbreite erneut zyklisch belastet.

Versagten diese Proben im Streuband der übrigen Versuche, so konnte davon ausgegangen werden, dass im vorherigen Versuch der Spannstahl keine Schädigung durch das einwirkende Belastungsniveau erlitten hatte und als echter Durchläufer gewertet werden konnte.

5.2.3.1 "Alter" Spannstahl

Untersucht wurden unter einer zyklischen Beanspruchung insgesamt 27 "alte" Spannstahlproben des abgebrochenen Brückenbauwerks aus dem Jahre 1957. Das Vorgehen der Durchführung und Auswertung basierte auf dem interaktiven Verfahren (siehe Kapitel 2.6). Die Vorgehensweise des Verfahrens wurde im Kapitel 4 der unter zyklischer Belastung untersuchten Betonstähle erläutert.

Bild 5-20 zeigt die untersuchten "alten" Spannstahlproben nach erfolgtem Versuch. Die Ermüdungsbrüche in den Drähten traten in den einzelnen Proben innerhalb der freien Länge der Spannlitzen auf und lagen mehr als 2·d von der Einspannung entfernt. Üblicherweise erfolgte die zyklische Belastung bis zum vollständigen Versagen aller Drähte. Das führte ab einer entsprechenden Spannungsüberschreitung in den verbleibenden Drähten zu einem Gewaltbruch.

Die aufgebrachten Spannungsschwingbreiten lagen zwischen 260MPa und 850MPa und gingen von einer Unterspannung σ_u =900MPa aus.

Bild 5-20: Spannstahlproben des "alten" Spannstahls nach Versuchsdurchführung

Aufgezeichnet wurden die Schwingspiele zum ersten Drahtbruch sowie die Schwingspiele beim vollständigen Versagen der Spannlitze. Unter hohen Spannungsschwingbreiten führte der erste Ermüdungsbruch eines Drahtes meistens direkt zu einem vollständigen Versagen der restlichen sechs Drähte.

Bei niedrigen Schwingbreiten zeigte sich, dass die verbleibenden Drähte nach dem ersten Bruch eines Drahtes noch einer Vielzahl von Lastwechsel standhielten. Wie Gleichung (5-3) zeigt, ist das Fortführen eines Versuches nach spätestens dem dritten Drahtbruch unter den aufgebrachten Schwingbreiten nicht mehr möglich, da in den verbleibenden vier Drähten bereits unter der kleinsten aufgebrachten Spannungsschwingbreite (260MPa) die maximal aufnehmbare Zugspannung im Restquerschnitt überschritten ist.

$$(900MPa + 260MPa) \cdot \frac{7}{4} = 2030MPa > 1808MPa = f_m$$
(5-3)

Daher wurde bei der Auswertung dieser Versuche der erste Drahtbruch als Versagenspunkt definiert. Um den geringen Unterschied in der Auswertung des ersten Drahtbruchs und des vollständigen Versagens der Litze darzulegen, wurden zur Verdeutlichung die aus den Versuchsdaten gewonnenen Streubänder in Bild 5-21 übereinandergelegt.

Da lediglich vereinzelte Versuche der einwirkenden Belastung geringfügig länger standhielten, veränderte sich die Mittelwertfunktion nur unwesentlich. Das führte zu einem Nachrücken der 5%-Quantilfunktion. Die Neigung beider Funktionen änderte sich im vorliegenden Fall nur unwesentlich. Für die weiteren Auswertungen wurde daher das auf der sicheren Seite liegende Streuband des ersten Drahtbruchs betrachtet.

Bild 5-21: Vergleich der Streubänder des 1. Drahtbruchs einer Litze und des vollständigen Litzenversagens

Bild 5-22 zeigt die Versuchsergebnisse zum ersten Drahtbruch des "alten" Spannstahls. Weiter sind die durch eine Regressionsanalyse iterativ bestimmte Mittelwertfunktion, die daraus berechneten 5%-Quantilwerte und die wiederum daraus iterativ gewonnene 5%-Quantilfunktion abgebildet. Aus den Versuchsergebnissen ergab sich so das zugehörige Streuband der Widerstandsfunktion. Auf der Ordinate wurden die Funktionen nach oben hin durch die in den Zugversuchen gemessene 0,2% Dehngrenze des Spannstahls, sowie den zugehörigen 5% Quantilwert, begrenzt.

Dadurch begrenzte sich die Mittelwertfunktion wie folgt:

Bild 5-22: Versuchsergebnisse zum ersten Drahtbruch des "alten" Spannstahls mit dem daraus gewonnenen Streuband der Widerstandsfunktion (halblogarithmischer Maßstab)

Die Begrenzung der 5% Quantilfunktion ergab sich zu:

$$f_{p,0,2,5\%} - \sigma_u = (1553MPa - 900MPa) = 653MPa$$
(5-5)

Fünf der Versuche überschritten die Grenzschwingspielzahl und wurden in einem zweiten Versuch unter einer höheren Schwingbreite erneut geprüft. Diese Versuche liefen ausnahmslos in das Streuband der übrigen Versuche, so dass deren vorheriger Versuch als echter Durchläufer gewertet werden konnte.

Im Bereich der Dauerschwingfestigkeit kam es zum Teil unter ähnlichen Spannungsschwingbreiten zu starken Differenzen in der Schwingspielzahl. Dieses Verhalten zeigt sich auch in den Ergebnissen einiger anderer Forschungsarbeiten (siehe Kapitel 3.3.1).

Unter der vorhandenen Querpressung zwischen den einzelnen Drähten ist eine Reibdauerbeanspruchung durch Oberflächenunebenheiten oder anhaftende Fremdpartikel während der zyklischen Beanspruchung denkbar. Somit kann es in einzelnen Litzen zu einer früheren Anrissbildung und damit schnellerem Versagen kommen. Unter dem Einwirken kleinerer Schwingbreiten macht sich dieses Verhalten dann durch stark variierende Schwingspiele im Bereich der Dauerschwingfestigkeit bemerkbar.

Um die aus den Versuchsdaten gewonnenen Steigungen im Zeit- und Dauerfestigkeitsbereich nach dem Ansatz von Haibach [45] abzubilden und der charakteristischen Wöhlerlinie nach DIN EN 1992-1-1/NA [22] bzw. DIN EN 1992-2/NA [20] vergleichend gegenüber zu stellen, wurde das Diagramm im doppeltlogarithmischen Maßstab dargestellt (Bild 5-23). Da diese Normen lediglich Wöhlerlinien für den einbetonierten Zustand angeben, wurde hier für den Vergleich die Wöhlerlinie für gerade Spannlitzen im sofortigen Verbund (bzw. im nachträglichen Verbund im Kunststoffhüllrohr) der Klasse 1 gewählt. Bei diesen wird bei 1.Mio Schwingspiele der Knickpunkt der Spannungsschwingbreite $\Delta\sigma_{Rsk}$ am höchsten angesetzt. Es ergaben sich durch die Auswertung der 5%-Quantilfunktion die charakteristische Dauerschwingfestigkeitsgrenze des "alten" Spannstahls zu 243MPa sowie die Steigungen k₁=2,6 und k₂=4,2.

Die Ergebnisse liegen im Vergleich zur Normkurve des gerade geführten Spannstahls im einbetonierten Zustand deutlich oberhalb dieser Werte.

Bild 5-23: Versuchsergebnisse zum ersten Drahtbruch des "alten" Spannstahls mit dem daraus gewonnenen Streuband der Widerstandsfunktion (doppellogarithmischer Maßstab)

5.2.3.2 "Neuer" Spannstahl

Die insgesamt 29 zyklisch beanspruchten Proben des Spannstahls einer "neuen" Produktion wurden nach dem interaktive Verfahren (siehe auch Kapitel 2.6) untersucht und ausgewertet. Bild 5-24 zeigt die "neuen" Spannstahlproben nach Versuchsdurchführung.

Bild 5-24: Spannstahlproben des "neuen" Spannstahls nach Versuchsdurchführung

Wie bei den "alten" Spannstahlproben traten auch hier die Ermüdungsbrüche der Drähte innerhalb der freien Länge der Spannlitzen auf. Da auch in diesen Versuchen die zyklische Belastung bis zum vollständigen Versagen aller Drähte durchgeführt wurde, kam es auch hier ab Überschreiten einer entsprechenden Spannung zu einem Gewaltbruch der verbleibenden Drähte.

Die Spannungsschwingbreiten in dieser Versuchsserie lagen zwischen 260MPa und 1050MPa. Um die Vergleichbarkeit zur Versuchsserie der "alten" Spannstähle herzustellen, wurde die Unterspannung mit σ_u =900MPa angesetzt.

In zwei Proben (SPN-D-01, SPN-D-08) löste sich direkt unter der ersten zyklischen Belastung der Verbund zwischen Spannstahl und Kleber im Ankerröhrchen, so dass keine weitere Untersuchung möglich war (siehe Bild 5-24).

Die Versuchsergebnisse wiesen im Bereich der Dauerschwingfestigkeit eine ungewöhnlich hohe Streuung auf, wodurch die statistische Auswertung der Ergebnisse erschwert wurde.

Nachdem die ersten unerwarteten Ergebnisse auftraten, erfolgten eine Überprüfung des Maschinenregelsystems, der Messtechnik sowie eine Kontrolle der Proben auf eventuelle Beschädigungen an der Materialoberfläche. Keine dieser überprüften Möglichkeiten als Ursache führte zu einer Erklärung des Phänomens. Ebenso zeigte ein Vergleich im Verhalten der zyklischen Systemsteifigkeit, dass der Verlauf zweier in der Schwingspielzahl stark abweichender Versuchsergebnisse nahezu identisch war (Bild 5-25).

Die zyklische Systemsteifigkeit ergibt sich aus der Kraftdifferenz zwischen Oberund Unterkraft, dividiert durch die Differenz zwischen dem gemessenen maximalen und minimalen Weg. Dadurch konnte eine ungleichmäßige Belastung in den siebendrähtigen Litzen oder ein übermäßiger Verbundverlust im Ankerbereich ausgeschlossen werden. Im Bild 5-25 sind exemplarisch die Wegzunahmen und die zyklischen Systemsteifigkeiten zweier Proben unter einer nahezu identisch einwirkenden Kraftschwingbreite aufgetragen.

Die Probe SPN-D-06 versagte nach ca. 5,3Mio. Schwingspielen, während die Probe SPN-D-06 bereits nach ca. 92.000 Schwingspielen dem ersten Drahtbruch unterlag. Beide Proben wiesen ein grundsätzlich gleiches Verhalten auf. Zwei Proben, die auf einem Niveau der Spannungsschwingbreiten die Grenzschwingspielzahl überschritten, erreichten im Zweitversuch das Streuband und konnten somit als echter Durchläufer gewertet werden.

Da dieses Verhalten eher zufällig auftrat und auch nicht einzelnen Teilstücken des Coils oder einer Serie eines Klebevorgangs der Ankerröhrchen zugeordnet werden konnte, erfolgten zur Ursachenforschung zusätzliche Materialuntersuchungen. Diese sind Kapitel 5.2.4 näher beschrieben.

Im Bild 5-26 wurden die Versuchsergebnisse des "neuen" Spannstahls zum erfolgten ersten Drahtbruch dargestellt. Wie bereits anhand der Ergebnisse des "alten" Spannstahls erläutert, änderten sich auch hier die Ergebnisse bei Betrachtung bis zum vollständigen Litzenversagen nur geringfügig. Daher wurden diese hier nicht weiter betrachtet.

Bild 5-26: Versuchsergebnisse zum ersten Drahtbruch des "neuen" Spannstahls mit dem daraus gewonnenen Streuband der Widerstandsfunktion (halblogarithmischer Maßstab)

Fünf der Proben überschritten die angesetzte Grenzschwingspielzahl und wurden in einem zweiten Versuch auf einem höheren Niveau erneut getestet. Diese Versuche liefen im Zweitversuch bis in das Streuband der übrigen Versuche, wodurch der jeweilige Erstversuch als echter Durchläufer gewertet werden konnte. Ebenso gab es Proben, die unter geringen Spannungsschwingbreiten im Bereich der angesetzten Grenzschwingspielzahl brachen. Es gab auch Proben, die sich unter relativ hohen Spannungsschwingbreiten der angesetzten Grenzschwingspielzahl stark näherten.

Aus den Versuchsergebnissen konnte die Steigung im Bereich der Zeit- und Dauerschwingfestigkeit nach dem Ansatz von Haibach [45] bestimmt werden. Die gewonnenen Steigungen k_1 =3,4 und k_2 =5,7 sowie die charakteristische 5%-Quantil Dauerschwingfestigkeitsgrenze von 255MPa des "neuen" Spannstahls wurden ebenfalls zum Vergleich mit der Wöhlerlinie der Norm für gerade Litzen gegenübergestellt (Bild 5-27).

Auch diese Ergebnisse lagen im Vergleich zur Normkurve für einbetonierten Spannstahl über deren normgemäßen Werten.

Bild 5-27: Versuchsergebnisse zum ersten Drahtbruch des "neuen" Spannstahls mit dem daraus gewonnenen Streuband der Widerstandsfunktion (doppellogarithmischer Maßstab)

5.2.3.3 Wertung der Ergebnisse

Im Vergleich der durch die Versuche gewonnenen Streubänder des "alten" und "neuen" Spannstahls weist der "neue" Spannstahl einen etwas höheren Ermüdungswiderstand auf (Bild 5-28).

Im Bereich der Zeitfestigkeit führt dieser Unterschied zu größeren Schwingspielzahlen unter gleicher Spannungsschwingbreite.

Aufgrund der im Vergleich zum "alten" Spannstahl relativ starken Streuung des "neuen" Spannstahls im Bereich der Dauerschwingfestigkeit kommt es zwar zu einem starken Anheben der Mittelwertfunktion, allerdings nur zu einer geringfügig höher liegenden 5%-Quantilfunktion. Die ausgewerteten Steigungen weisen im Zeitfestigkeitsbereich vergleichbare Größen auf.

Bild 5-28: Vergleich "alter" und "neuer" Spannstahl (doppellogarithmischer Maßstab)

5.2.4 Metallografie und Mikrobereichsanalyse des Spannstahls

Im Vergleich zum "alten" Spannstahl streute der "neue" Spannstahl mit seinen Versuchsergebnissen im Bereich der Dauerfestigkeit deutlich stärker. Grundsätzlich ist es nicht ungewöhnlich, dass die eine oder andere Probe deutlich länger einer einwirkenden Schwingbreite standhält oder gar frühzeitig versagt. Ungewöhnlich in diesen Versuchen erscheint hingegen die Häufigkeit, in der dies bei den getesteten Proben des "neuen" Spannstahls unter kleinen Schwingbreiten vorkam.

Für ein solches Verhalten kann es verschiedene Gründe geben, die oft im Versuchsstand, in der Probenherstellung oder im Material der Probe zu finden sind.

Um einen möglichen Defekt in der Mess- oder gar Regeltechnik der Maschine auszuschließen, wurde noch während der laufenden Versuchsserie die Prüfmaschine samt Messtechnik untersucht. Da in den Messaufzeichnungen bereits durchgeführter Proben keine Auffälligkeiten hinsichtlich der einwirkenden Kraft oder dem zugehörigen Maschinenweg zu erkennen war, bestand weiter die Überlegung einer eventuellen Verstimmung zwischen Maschine und aufzeichnender Messtechnik. Daher wurde die regelnde Kraftmessdose der Maschine anhand einer zweiten Kraftmessdose hinsichtlich Auffälligkeiten oder Abweichungen überprüft. Hier konnte keine Fehlfunktion festgestellt werden. Ebenso standen die zusätzlich angeschlossenen externen Wegaufnehmer im Einklang zum Maschinenweg.

Es kam die Frage auf, ob es Unterschiede in der Herstellung der Probekörper gab. In der Regel wurden immer fünf Probekörper gleichzeitig geklebt. Die Art und Weise der Probenherstellung des "neuen" Spannstahls hatte sich gegenüber der des "alten" Spannstahls in keiner Weise geändert. Ankerröhrchen, Klebstoff sowie die Vorgehensweise vom Heraustrennen aus dem Litzenstrang bis hin zum Einkleben waren identisch. Es wurde ebenso festgestellt, dass auffällige Proben meist aus unterschiedlichen Klebevorgängen abstammten. Daher konnte auch hier für das streuende Verhalten keine Begründung gefunden werden.

Aus diesen Gründen erfolgen weitergehende Untersuchungen am Spannstahl selbst.

5.2.4.1 Mikroskopie der Bruchflächen

Die Bruchflächen der Drähte des "alten" und "neuen" Spannstahls wurden mikroskopisch untersucht und fotografiert, um die jeweilige Bruchursache zu erkennen und zu bestimmen. Dieses war nicht in allen Fällen möglich. Exemplarisch zeigt Bild 5-29 die Ermüdungsbruchfläche eines Litzendrahtes. Weitere Aufnahmen können der Anlage A3.2.2 entnommen werden. Brachen Drähte in der Nähe des Ankerröhrchens, konnte diese Bruchfläche aus technischen Gründen nicht ohne weiteres unter dem Mikroskop untersucht werden. An den Bruchflächen war in den meisten Fällen nichts Außergewöhnliches zu erkennen.

Bei dem "alten" Spannstahl zeigten sich gelegentlich kleine Korrosionsnarben, welche als Bruchauslöser identifiziert werden konnten (z.B. Probe SP-D-04-O1).

Auffällig war, dass es nicht wenige Proben gab, bei denen fünf bis sechs der sieben Drähte Ermüdungsbruchflächen aufwiesen (z.B. SP-D-24 oder SPN-D-09). Dieses galt für beide Spannstahlserien und war unabhängig von der Größe der einwirkenden Schwingbreite.

Bei diesen ergab es sich, dass nach dem Ermüdungsbruch der ersten zwei Drähte die Restlichen schlagartig durch Überlastung brachen. Solche Gewaltbruchstellen entstanden dann meist an den bereits durch Materialermüdung angerissenen Querschnitten und konnten als ,vorzeitiger Gewaltbruch mit Ermüdungsbeginn' gekennzeichnet werden. Reine Gewaltbrüche zeichneten sich durch die typische, kreisförmige Einschnürung des Stahls aus. Eine Erklärung für die Streuung der Versuchsergebnisse (z.B. durch Schadstellen) konnte auf diesem Wege jedoch nicht gefunden werden.

5.2.4.2 Mikroskopie von Querschliffen sowie REM Aufnahmen

Auszuschließen war, dass es sich um unterschiedliche Materialproben des getesteten Spannstahls handelte, da alle Proben vom selben Coil stammten. Durch eine augenscheinliche Betrachtung der betroffenen Proben konnten ebenso keine nennenswerten Vorschädigungen an der Oberfläche festgestellt werden. Es kam die Überlegung auf, dass eventuell einige längere Bereiche der verwendeten Spannlitze Schädigungen oder Materialveränderungen in Teilbereichen aufwiesen. Durch eine Zuordnung der betroffenen Proben der entsprechenden Entnahmestellen innerhalb des Litzenstrangs zeigte sich, dass diese nicht zusammenhängend waren und willkürlich innerhalb der gesamten Litze lagen. Daraufhin wurden alle Bruchflächen der Proben, soweit möglich, mikroskopisch betrachtet, um eventuelle Vorschädigungen aufzudecken oder Erklärungen im Bruchverhalten der einzelnen Drähte zu erkennen. Diese Bilder sind in der Anlage A3.2.2 enthalten.

Da keine wirkliche Erklärung vorlag, erfolgte eine detaillierte Untersuchung des Materials. Hierzu wurden zum Vergleich Proben des "alten" und "neuen" Spannstahls in Harz eingebettet, geschliffen und poliert, um Querschliffe des Materials zu gewinnen.

Bild 5-30: Mikroskopaufnahme der geschliffenen "alten" Spannstahlprobe (1000 μm)

Bild 5-31: Mikroskopaufnahme der geschliffenen "alten" Spannstahlprobe (50 μm)

Bild 5-32: Mikroskopaufnahme der geschliffenen "neuen" Spannstahlprobe (1000 μm)

Bild 5-33: Mikroskopaufnahme der geschliffenen "neuen" Spannstahlprobe (50 μm)

Anhand der Schliffe konnten leichte Unterschiede in der Randstruktur beider Spannstähle festgestellt werden. Bild 5-30 bis Bild 5-33 zeigen Mikroskopaufnahmen des "alten" und "neuen" Spannstahls. Der "alte" Spannstahl von 1957 zeigte im Randbereich eine etwas ausgeprägtere Zunderschicht sowie zum Teil anhaftende Oberflächenrückstände. Die anhaftenden Rückstände an der Oberfläche können auf den zuvor eingebauten Zustand der Litzen zurückgeführt werden und sind nicht von vorrangiger Bedeutung. Zunder ist ein Oxidationsprodukt aus dem Herstellungsprozess. Er bildet sich unter hohen Temperaturen durch Einwirken von Sauerstoff oder anderen Gasen an der Oberfläche eines Metalls und zeigt sich im Allgemeinen als grauschwarze Schicht auf der Oberfläche des Materials. Die weniger ausgeprägte Zunderschicht des "neuen" Spannstahls kann vermutlich durch die in den letzten knapp 60 Jahren verbesserten und weiterentwickelten Prozessen in der Spannstahlherstellung erklärt werden.

Der "neue" Spannstahl hingegen weist kaum Zunder auf. Größere Einschlüsse durch Fremdmetalle oder Fehlstellen waren in beiden Proben anhand der Schliffe nicht zu erkennen. Eine Erklärung der Versuchsstreuung konnte anhand dieser Schliffe nicht gefunden werden.

In einem zweiten Vorgang wurden die Oberflächen angeätzt. Dadurch konnten die Rand- und Oberflächenstrukturen des Metallgefüges sichtbar gemacht werden. Der "alte" Spannstahl zeigte eine annähernd gleichmäßige Beschaffenheit in den angeätzen Flächen. Der "neue" Spannstahl hingegen wies an vereinzelten Stellen einiger Drähte im Randbereich entkohlte Stellen auf. Diese sind durch weiß-gräuliche Bereiche erkennbar. Bild 5-34 und Bild 5-35 zeigen den "alten", Bild 5-36 und Bild 5-37 den "neuen" Spannstahl. Auf den Bildern des "alten" Spannstahls ist im rechten Teil des Bildes der Randbereich eines Drahtes und dessen Gefügestruktur zu erkennen. Auf diese Weise zeigten sich die gesamten Randbereiche der Litze im angeätzten Querschliff. Auf den Bildern des "neuen" Spannstahls sind im oberen und unteren Bildbereich zwei benachbarte Drähte zu erkennen.

Bild 5-34: Mikroskopaufnahme der geätzten "alten" Spannstahlprobe (100 μm)

Bild 5-35: Mikroskopaufnahme der geätzten "alten" Spannstahlprobe (50 μm)

Bild 5-36: Mikroskopaufnahme der geätzten "neuen" Spannstahlprobe (100 μm)

Bild 5-37: Mikroskopaufnahme der geätzten "neuen" Spannstahlprobe (50 μm)

Hierbei wurde speziell eine Stelle der Litze mit einem entkohlten Bereich fokussiert. An diesen Drähten sind deutlich einige helle Randbereiche zu erkennen. Diese zeigen sich auf dem oberen Draht stärker als am unteren Draht. Solche Stellen waren vereinzelt und unregelmäßig an den Außenseiten des "neuen" Spannstahls zu finden.

Eine Randentkohlung entsteht üblicherweise, wenn der vorhandene Sauerstoff der Luft dem noch glühenden Material im Randbereich den Kohlenstoff entzieht. Das äußert sich anschließend durch einen höheren Anteil an Ferritbestandteilen. Das Gefüge zeichnet sich dann aufgrund einer geringeren Ätzwirkung an diesen Stellen als hellere Flächen ab. Solche Bereiche weisen im Gegensatz zur restlichen Materialfläche ein weicheres Materialgefüge auf.

Diese Tatsache kann eine mögliche Erklärung der zum Teil stark streuenden Versuchsergebnisse des "neuen" Spannstahls sein. Unter einer zyklischen Beanspruchung könnte es an einer solchen Stelle zu lokalen Spannungsspitzen am Übergangsbereich zum härteren, kohlenstoffreicheren Material kommen. Damit wäre eine frühzeitige Rissinitiierung an betroffenen Drähten denkbar. Da diese Stellen zudem nur vereinzelt an Drähten der "neuen" Litze feststellbar waren, wäre es ebenso denkbar, dass gewisse Proben fast keine oder eine geringe, gleichmäßig verteilte Randentkohlung aufweisen. Bei diesen würde es dann zu einer späteren Rissinitiierung kommen.

Die Betrachtung der Oberflächenstruktur beider Proben im Rasterelektronenmikroskop (REM) zeigte keine Auffälligkeiten in der Gefügestruktur (Bild 5-38, Bild 5-39). Beide Stähle zeigten in ihrer Beschaffenheit ein typisches Bild.

Bild 5-38: REM Bild des "alten" Spannstahls

Bild 5-39: REM Bild des "neuen" Spannstahls

5.2.4.3 Härteprüfung im Randbereich der Querschliffe

Um eventuelle Unterschiede in der Materialfestigkeit im Bereich der Randzone beider Spannstähle zu identifizieren, wurde im Mikrobereich eine Härteprüfung nach Vickers durchgeführt.

Hierbei wird auf mikroskopischer Ebene eine in ihrer Form vorgegebene Diamantpyramide unter einer definierten Prüfkraft und -zeit in das Material eingedrückt. Der sich so ergebende Abdruck im Material kann dann in einem zweiten Schritt unter dem Mikroskop vermessen werden. Aus der vermessenen Fläche des Härteeindrucks sowie der angesetzten Prüfkraft errechnet sich die Vickershärte.

Bild 5-40 und Bild 5-41 zeigen in einer Dunkelfeldaufnahme jeweils die Härteeindrücke der durchgeführten Prüfung nach Vickers (HV 0,01) im Randbereich beider Spannstähle. Die Prüfung erfolgte ausgehend vom ersten Prüfpunkt am jeweiligen Probenrand (oben im Bild) hin zum Inneren der Probe (unten im Bild). Der jeweilige Abstand untereinander betrug 30µm. Die gemessenen Vickershärten sind in der Tabelle 5-4 angegeben. Wie der erste Messpunkt am "alten" Spannstahl zeigte, erwies es sich als nicht vernünftig durchführbar direkt am unmittelbaren Probenrand eine Härteprüfung vorzunehmen und auszumessen. Damit war es nicht möglich, direkt im entkohlten Bereich zu messen. Anhand der gemessenen Werte konnten keine gravierenden Unterschiede zwischen beiden Proben festgestellt werden.

Bild 5-40: Härteeindrücke im Randbereich des "alten" Spannstahls (HV 0.01)

Bild 5-41: Härteeindrücke im Randbereich des "neuen" Spannstahls (HV 0.01)

	Randbereich		\rightarrow	Prober	ninnere
Prüfpunkt	1	2	3	4	5
"alter" Spannstahl	532 ¹⁾	619	601	619	566
"neuer" Spannstahl	601	619	643	585	603

Tabelle 5-4: gemessene Vickershärte (HV 0,01) beider Spannstähle

¹⁾ Härteeindruck war schlecht ausmessbarer

5.2.4.4 EDX Elementanalyse

Zur weiteren Analyse wurden beide Spannstahlproben durch eine Energie-Dispersive-Röntgenspektroskopie (EDX) hinsichtlich bestimmter Elemente untersucht, um hier eventuelle Abweichungen in der Zusammensetzung zu bestimmen.

Bei dieser Analyse werden die Atome in der Probe durch einen sehr fein gebündelten Strahl energiereicher Elektronen mit einheitlicher Energie angeregt. Dabei senden die Atome eine für das Element charakteristische Röntgenstrahlung aus. Diese gibt dann Aufschluss über die Elementzusammensetzung der Probe, so dass quantitativ die Konzentration einzelner Elemente in der Probe bestimmt werden kann. Für chemische Elemente einer Ordnungszahl von etwa kleiner 8 (Kohlenstoff, Sauerstoff, etc.) ist der Nachweis von kleinen Konzentrationen in der Probe allerdings schwierig und quantitativ unsicher. Grund hierfür ist, dass leichte Elemente nur sehr wenig Röntgenenergie emittieren, welche zudem auch noch von schwereren Elementen zum Großteil absorbiert werden.

Neben den gemessenen Spektren (Bild 5-42, Bild 5-43) sind die Ergebnisse der Elementanalysen des "alten" und "neuen" Spannstahls in der Tabelle 5-5 aufgeführt.

Bild 5-42: Spektrum "alter" Spannstahl

Bild 5-43: Spektrum "neuer" Spannstahl

Tabelle 5-5: FDX Flementanal	vse beider S	pannstähle	sowie Schmelz	analyse des .	.neuen" S	pannstahls
Tabelle 3 3. EDA Elementaria	yse belaci s	parinistanic.		unaryse acs,	, neuch J	Juninstanns

		"alter" Spannstahl	"neuer" Spannstahl		nnstahl
		EDX Analyse	EDX Analyse		Schmelzanalyse Hersteller
		[%]	[%]		[%]
Fe	(Eisen)	98.94	98.98		(nicht angegeben)
Mn	(Mangan)	0.70	0.76		0.671
S	(Schwefel)	0.03	0.04		0.012
Р	(Phosphor)	0.03	0.03		0.012
Si	(Silicium)	0.29	0.19		0.220
C	(Kohlenstoff)	(nicht angegeben)	(nicht angegeben)		0.826

In der Tabelle ist ebenfalls die Schmelzanalyse des "neuen" Spannstahls abgedruckt, welche bei der Produktion durch den Hersteller erstellt wurde. Die Stückanalyse (hier die EDX Analyse) darf von der Schmelzanalyse abweichen, da es durch unvermeidbare Seigerungen beim Erstarren des Materials zu Konzentrationsunterschieden kommen kann.

Die einzelnen Elemente in einem Material können in höheren oder geringeren Konzentrationen Auswirkungen auf die Materialeigenschaften haben. So erhöht beispielsweise ein höherer Mangangehalt die Streckgrenze sowie Festigkeit des Materials. Der Phosphorgehalt erhöht die Zugfestigkeit, Härte und Korrosionsbeständigkeit. Zugleich führt ein höherer Gehalt an Phosphor allerdings ebenso zu einer Versprödung. Durch einen höheren Siliziumanteil kann die Festigkeit und Verschleißfestigkeit gesteigert werden.

Qualitativ zeigt sich anhand beider EDX-Analysen, dass die Stähle hinsichtlich der analysierten Elemente nahezu ähnlich zusammengesetzt sind und nur geringfügig voneinander abweichen. Daher lassen sich auch die gewonnenen Spektren beider Probenanalysen (Bild 5-42, Bild 5-43) kaum voneinander unterscheiden und wirken im ersten Augenschein identisch.

Anhand der vorliegenden Ergebnisse kann somit lediglich vermutet werden, dass im "alten" Spannstahl geringfügig mehr Silicium vorhanden ist als im "neuen" Spannstahl.

5.2.4.5 Wertung der Ergebnisse

Ein stichhaltiger Grund für die starke Streuung des "neuen" Spannstahls im Bereich der Dauerschwingfestigkeit konnte abschließend nicht gefunden werden.

Mögliche Ursachen, bedingt durch die Probenherstellung, Probenbeschaffenheit oder in der Mess- und Regeltechnik, konnten nach Überprüfung ausgeschlossen werden.

Auch umfangreiche Material- und Metallanalysen zeigten lediglich die einzige Auffälligkeit, dass vereinzelte Randbereiche des "neuen" Spannstahls entkohlte Stellen aufweisen und damit weicher sind. Dies verbleibt als einzige mögliche Erklärung für die Streuungen in den durchgeführten Versuchen unter zyklischer Belastung.

5.3 Versuche an vorgespannten Balken

5.3.1 Allgemeines

Im Versuchskörper wurde das Hüllrohr aus Stahl mit einem Mindestradius von r=5m gekrümmt eingebaut.

Der Versuchskörper wurde so konzipiert, dass die vorhandenen Spannungen im Spannstahl ziemlich genau bestimmt werden konnten. Es ist problematisch, Dehnmessstreifen auf den Spannstählen zu applizieren, ohne dass diese während des Spannvorgangs beschädigt werden. Zusätzliche Schutzapplikationen aus Kunstharzen führen, neben dem auch vorhandenen Messkabel, wiederum zu Änderungen in dem lokalen Verbundverhalten zwischen Spannstahl und Mörtel. Zusätzlich kann es zu einer Beeinflussung der Versuchsergebnisse durch diese Applikationen kommen. Aus diesen Gründen wurde auf Dehnmessstreifen auf den Spannstahllitzen verzichtet und nach einer einfachen, alternativen Lösung gesucht.

Die erste Überlegung war, dass im Bereich des Risses im Beton keine zusätzliche Bewehrung mit anderen Verbundeigenschaften vorhanden sein sollte, welche die Zugkräfte hätte anteilig aufnehmen können. Somit kreuzten lediglich die Spannstahllitzen in Trägermitte die gerissene Zugzone. Dadurch konnten Unsicherheiten bezüglich der im Spannstahl vorhandenen Schwingbreiten durch eine zusätzlich vorhandene Betonstahlbewehrung ausgeschlossen werden.

Eine zweite Überlegung war, den inneren Hebelarm im Versuchsträger unter der zyklischen Last nahezu konstant zu halten. Daher wurde eine kreisförmige Aussparung in Feldmitte vorgesehen, welche ein wesentliches Merkmal der Versuchskörper war.

Im Gegensatz zu einem Vollquerschnitt bleibt dadurch der innere Hebelarm im gesamten Beanspruchungsbereich nahezu konstant, sobald das Bauteil in den gerissenen Zustand übergegangen ist. Bei einem Rechteckquerschnitt verändert sich der innere Hebelarm, wenn eine zyklischen Last im Bereich des Zustand II aufgebracht wird. Dieses resultiert aus der sich verändernden Druckzonenhöhe und Lage der Druckkraftresultierenden.

Zur Verdeutlichung wurde eine Vergleichsrechnung durchgeführt (Bild 5-44). Wird der Spannungszuwachs im Spannstahl über dem aufgebrachten Moment aufgetragen, so lässt sich der Unterschied zwischen einem Vollquerschnitt (VQS) und dem Querschnitt mit Aussparung (LQS) deutlich erkennen.

Durch die in den Versuchsträgern vorgesehene Öffnung sind der innere Hebelarm und damit die Größe der Schwingbreite unter jeder Lastintensität eindeutig bestimmbar. Nennenswerte Unsicherheiten aus der veränderlichen Größe des inneren Hebelarms entfallen in diesem System. Reißt dagegen ein Vollquerschnitt auf, so folgt die Momenten-Spannungs-Beziehung einem gekrümmten Verlauf. Dieses Verhalten ist fast durchgehend über den gesamten Beanspruchungsbereich zu beobachten. Erst bei größeren Biegemomenten kann ein linearer Zusammenhang zwischen M und σ_P festgestellt werden.

Bild 5-44: Abhängigkeit der Spannstahlspannung σ_P vom aufgebrachten Biegemoment

Dieses Verhalten tritt bei dem Querschnitt mit Aussparung nur dann auf, wenn der Querschnittsteil unterhalb der Öffnung gerade aufreißt und der Riss nach oben wandert. Nach dem vollständigen

Aufreißen des unteren Querschnittsbereichs folgt die Momenten-Spannungs-Beziehung einem nahezu linearen Verlauf. Somit ist selbst bei einem verschobenen ΔM die Spannungsschwingbreite $\Delta \sigma_{LQS}$ nahezu gleich groß (Bild 5-44). Daher sind hier bei wechselnder Beanspruchung nur minimale Veränderungen des inneren Hebelarms vorhanden, welche aus sehr kleinen Verlagerungen der Druckresultierenden herrühren. Eine größere Verlagerung der Druckresultierenden und somit des inneren Hebelarms erfolgt nur dann, wenn sich der Nulldurchgang der Spannungsverteilung dem Teilquerschnitt oberhalb der Öffnung nähert und dieser ebenfalls beginnt aufzureißen.

Aus dieser konstruktiven Vorgabe des Trägerquerschnitts ist der innere Hebelarm für die Berechnung der aufgebrachten Spannungsschwingbreite $\Delta \sigma_P$, im Gegensatz zum Rechteckquerschnitt, relativ genau bekannt.

Vor diesem Hintergrund wurde in den Versuchsbalken die kreisförmige Aussparung vorgesehen.

Zudem wurde das statische System so angepasst, dass der Spannstahl mit dem Mindestradius in einem querkraftfreien Bereich geführt wurde.

wurde ein zyklischer Daher 4-Punkt-Biegeversuch angesetzt, welcher zudem so aufgebaut wurde, dass die zahlenmäßige Größe der Auflagerkräfte zugleich der Größe des Biegemomentes in Trägermitte entspricht. Zusätzlich mussten geometrische Randbedingungen der Spanngliedführung berücksichtigt werden. Der untere Teilquerschnitt musste so beschaffen sein, dass die auftretenden Umlenkkräfte des Spanngliedes abgetragen werden konnten, ohne dass dies zu einem Nachgeben des Bereichs unterhalb der Öffnung geführt hätte. Um den Verbund des Hüllwellrohres zu gewährleisten, war ebenfalls Mindestquerschnitt ein gewisser gewährleisten. Aus diesen Randbedingungen ergab sich für den unteren Teilquerschnitt eine Höhe von 25cm.

Bild 5-45: statisches System

Der obere Teilquerschnitt wurde anhand der errechneten maximal auftretenden Spannungsverteilung so dimensioniert, dass die zulässige Betondruckkraft nicht überschritten wurde. Ebenso sollte ein Aufreißen des oberen Querschnittes vermieden werden.

Die Druckzone wurde in den ersten Versuchsträgern, mit dem "alten" Spannstahl, noch als durchlaufender Betonquerschnitt ausgeführt. Um in diesen Versuchen die Dehnungen am oberen Teilquerschnitt zu messen, wurden am Beton sowie am mittig liegenden Betonstahl Dehnmessstreifen angebracht. Über die Dehnungsverteilung konnten Rückschlüsse zur Lage der Druckkraftresultierenden gewonnen werden.

Wie König/Danielewicz [54] zu entnehmen ist, besteht durchaus die Gefahr, dass es bei nicht ausreichend dimensionierter Druckzone unter hohen Schwingbreiten zu Betonabplatzungen an der Oberseite eines Trägers kommen kann. Um dem entgegenzuwirken, wurde der Druckbereich oberhalb der Öffnung des Trägers stärker bewehrt und eng verbügelt.

Die vorab geführten Kontrollrechnungen ermöglichten es, die Schwingbreite so einzustellen, dass es weder zu einem Schließen des Risses im unteren Querschnitt noch zu einem Aufreißen des oberen

Querschnitts kam. Somit lag die Spannungsschwingbreite immer eindeutig oberhalb des gekrümmten Teils der Spannungs-Momenten-Kurve (Bild 5-44).

Später wurden bei der Durchführung der Versuche mit dem "neuen" Spannstahl die Versuchsträger noch einmal modifiziert und optimiert.

Hierzu wurde im Bereich der Druckzone anstelle des durchlaufenden Betons ein speziell hierfür entwickeltes Stahldruckgelenk (siehe auch Kap. 5.3.2 und 5.3.4) hergestellt und eingebaut. Dadurch war die Lage der Druckresultierenden ebenfalls eindeutig. Zudem ist das Gelenk so entwickelt worden, dass es zu jedem Zeitpunkt durch eine Kraftmessdose (KMD) ersetzt werden kann. Somit musste die KMD nicht während der gesamten Prüfdauer im Versuchskörper verbleiben und unnötig zyklische Belastungen ertragen.

5.3.2 Beschreibung der Versuchskörper

Die Abmessungen der Versuchsbalken betrugen l/h/b = 4,5/1,0/0,3 m. Die Enden der Balken wurden zur Vereinfachung der Spanngliedverankerungen abgeschrägt.

Die Versuchsträger zur Untersuchung des "alten" und "neuen" Spannstahls sind nahezu identisch. Bei den Trägern mit den "neuen" Spannlitzen wurden leichte Verbesserungen durchgeführt. Hier wurde später ein Stahlgelenk in der Druckzone des Versuchsträgers vorgesehen. Schlaffe Bewehrung, Spanngliedführung und Betongüte waren identisch.

Spanngliedführung

Entsprechend den üblichen Verhältnissen bei älteren Spannbetonbrücken wurde zum Einbau der Spannlitzen ein Hüllwellrohr aus Stahlblech verwendet. Eingebaut wurde ein Hüllrohr mit den Abmessungen d_i/d_a=45/52mm und einer Blechstärke von 0,35mm. Das Spannglied wurde auf einer Länge von 2m mit konstantem Krümmungsradius geführt, um die Einflüsse aus der Reibung zwischen Spannlitze und Hüllrohr zu berücksichtigen. Der Radius des Kreisbogens betrug 5,0m und entsprach dem damals üblichen Mindestkrümmungsradius. Dieser bildete somit für die Reibbeanspruchung möglichst ungünstige Verhältnisse ab. In den übrigen Bereichen verlief das Spannglied gerade.

Bewehrungsführung

Im unteren Teil des Versuchsbalkens wurde keine durchlaufende Biegezugbewehrung aus Betonstahl eingebaut. Damit wurde erreicht, dass außer den Spannlitzen keine weitere Bewehrung Zugkräfte aufnahm, sobald der Querschnitt unterhalb der Öffnung gerissen war. Die untere Bewehrung wurde daher lediglich bis zur Mitte geführt, zurückgebogen und verankert. Die Bereiche links und rechts der Sollbruchstelle wurden verstärkt bewehrt, damit auch nach Rissbildung die lokal auftretenden Umlenkkräfte des Spannstahls einwandfrei aufgenommen werden konnten.

Zur Erzielung eines eindeutigen Rissverlaufs im Bereich der Sollbruchstelle wurde in dem Querschnitt unterhalb der Öffnung ein sechseck Drahtgeflecht eingebaut (Bild 5-47), um den Riss im Bauteil bei seiner Entstehung zu führen. Da nach dem Aushärten in der Schalung noch kein Spannstahl im Versuchsträger für eine Druckkraft sorgte, wurden im unteren Bereich der Aussparung zwei konstruktive Bewehrungsstäbe einbetoniert. Somit konnte ein vorzeitiges Aufreißen des Betons, z.B. beim Ausheben aus der Schalung, vermieden werden.

In den Versuchskörpern der ersten Versuchsreihe, in denen der "alte" Spannstahl eingebaut wurde, ist im Querschnitt oberhalb der Öffnung in der durchlaufenden Betondruckzone eine erhöhte Druckbewehrung eingebaut (Bild 5-48). Diese sollte einem Betonversagen während der Versuche im Bereich des geringen Druckquerschnitts zusätzlich entgegenwirken. Hierzu wurden an der Ober- und Unterseite des Druckquerschnitts jeweils 3 ø 20 eingebaut. Mittig erfolgte der Einbau von 2 ø 28, welche zusätzlich mit Dehnmessstreifen bestückt wurden. Dadurch war es anschließend möglich, die Lage der Biegedruckkraft relativ genau zu bestimmen. Der Bereich der Druckzone wurde zudem eng verbügelt.

Die Versuchsträger für die Versuchsreihe mit dem "neuen" Spannstahl wurden in der Druckzone durch ein Stahlgelenk modifiziert (Bild 5-49). Bis auf die zwei mit DMS bestückten Bewehrungsstäbe blieb die übrige Bewehrung nahezu identisch, um den Versuchskörper nicht zu ändern. Die durchlaufende Längsbewehrung wurde im oberen Teil des Trägers lediglich im Mittelbereich gekappt, mit Steckbügeln versehen, so dass das Stahlgelenk eingebaut werden konnte.

Bild 5-47: Drahtgeflecht zur Rissführung

Bild 5-48: Druckbewehrung Versuchsträger mit "altem" Spannstahl

Bild 5-49: Druckzone der Versuchsträger mit "neuem" Spanstahl

Das Stahlgelenk wurde durch eine Hilfsverschraubung planparallel eingebaut.

Zusätzlich sind zwei Leerrohre in Trägerlängsrichtung einbetoniert worden. Diese liefen zentrisch durch das Druckgelenk. Dadurch war es im ausgehärteten Zustand des Versuchsträgers möglich, Gewindestangen durch das Gelenk zu ziehen, um diese dann an den Stirnseiten des Trägers zu verspannen. Somit konnte das Gelenk, z.B. beim Transport oder Einbau, auch unplanmäßige Zugkräfte aufnehmen. Ebenso konnten diese jederzeit wieder entfernt werden.

Auf die Funktionsweise des Stahlgelenks, speziell mit der Möglichkeit der Druckkraftmessung, wird im Kapitel der Messtechnik weiter eingegangen.

In Bild 5-50 ist die Bewehrung aus Betonstahl und dem gekrümmten Spannglied abgebildet.

Bild 5-50: Bewehrung der Versuchsträger aus Betonstahl und Spannglied (hier Serie TR ohne Gelenk)

Herstellung

Das Herstellen der Schalung, der Bewehrungskörbe und des Betons für die Versuchskörper erfolgte in der Betonwerkstatt der TU-Dortmund. Unmittelbar vor dem Betonieren erfolgte eine abschließende Überprüfung der eingebauten Messtechnik bzw. des Gelenks sowie der exakten Lage und Führung des Hüllwellrohrs. Die Versuchskörper wurden auf der Seite liegend hergestellt und der eingebrachte Beton sorgfältig und vollständig verdichtet. Parallel wurden aus jeder gefüllten Betonbombe jeweils 3 Probewürfel hergestellt, um hierüber später eine Aussage zu der Festigkeit und der Festigkeitsentwicklung des Betons gewinnen zu können.

Um die Einflüsse aus Kriechen und Schwinden auf die Verluste der Vorspannkraft gering zu halten, wurden immer nur 2 Versuchsbalken hergestellt, da die einzelnen zyklischen Versuche sich zum Teil über mehrere Wochen hinzogen.

Bild 5-51: Bewehrung und Spannglied

Bild 5-52: Herstellung des Balkens

Vorspannen und Verpressen

Die Spannanker, Hüllwellrohre und das erforderliche Zubehör wurden von einer Fachfirma geliefert, welche auch das Vorspannen und Verpressen der Versuchsbalken übernahm. Der Vorgang des Vorspannens erfolgte mit größter Sorgfalt (Bild 5-53). Unter zusätzlicher Kontrolle des Dehnweges wurde die Vorspannkraft aufgebracht. Die Verluste aus Reibung, Schwinden und Kriechen wurden bei der Bestimmung der rechnerischen Vorspannkräfte berücksichtigt. Wie auch schon bei den freischwingenden Litzen, sollten die später folgenden Ermüdungsversuche mit einer Unterspannung durchgeführt werden, die etwas unterhalb der seinerzeit für die "alten" Spannlitzen zulässigen Spannstahlspannungen von $0.55 \cdot \beta_z$ nach DIN 4227 (Okt.1953) [27] lag. In der Tabelle 5-6 sind die vorgesehenen Vorspannkräfte angegeben sowie die rechnerisch ermittelten verbleibenden Kräfte nach der Berücksichtigung von Kriechen und Schwinden.

Unmittelbar nach dem Vorspannen (Bild 5-54) erfolgte das Verpressen der vorgespannten Versuchsträger.

Der Einpressmörtel bestand aus einem CEM I 42,5R mit einem Wasserzementwert von etwa 0,40, welchem zusätzlich 1% Tricosal 181 als Einpresshilfe zugegeben wurde. Nach erfolgter Tauchzeitmessung wurde dieser unter Druck an einer Seite des Versuchskörpers in den Verpresskanal eingebracht.

Zur Ermittlung der Raumänderung des Einpressmörtels wurden von den Verpressmischungen jeweils Proben in 3 Probendosen zur Tiefenmaßmessung abgefüllt (Bild 5-55). Nach erfolgter Nullmessung wurde eine weitere Messung nach 24 Stunden durchgeführt, um das Quellmaß zu bestimmen. Es zeigte sich, dass der Mörtel bei allen Versuchsträgern ausreichend an Volumen zugenommen hatte.

Die Zusammensetzung, Eigenschaften und das Raumänderungsverhalten des Einpressmörtels können der Tabelle A 3-18 und Tabelle A 3-19 der Anlage A3.1.2 entnommen werden.

Tabelle 5-6: rechnerische Vorspannkräfte

Probe	Spann- stahl	Vorspann- kraft [kN]	nach Kriechen u. Schwinden [kN]	
TR01 - TR02	"alter"	179,3	167,3	
TR03 - TR05	"alter"	234,0	210,6	
SB01 - SB04	"neuer"	234,0	210,6	

Bild 5-53: Vorspannen der Versuchsträger

Bild 5-54: Träger nach dem Vorspannen

Bild 5-55: Probennahme vom Verpressmörtel

Beendet wurde der Vorgang, nachdem die geforderte Konsistenz blasenfrei und gleichmäßig am Auslaufstutzen an der gegenüberliegenden Seite ausströmte (Bild 5-56).

Der Einbau der Versuchsbalken in den Versuchstand erfolgte erst nach einer ausreichenden Erhärtungsphase des Verpressmörtels von mindestens 28 Tagen.

Materialkennwerte

Die Materialeigenschaften des eingebauten Spannstahls können dem Kapitel 5.2.2 entnommen werden.

Bei allen Versuchskörpern wurde ein Beton der Festigkeitsklasse C 45/55 angestrebt. Zur Herstellung wurde ein CEM I 43,5R verwendet sowie ein Zuschlag aus dem Sieblinienbereich zwischen A16 und B16. Der Beton besaß eine Regelkonsistenz KP und einen W/Z-Wert von 0,39. Die genaue Betonzusammensetzung der einzelnen Träger ist in der Anlage A3.1.2, Tabelle A 3-10 angegeben.

jedem Versuchskörper Es wurden zu Betonwürfel und Betonzylinder hergestellt. Diese dienten zur Bestimmung der Festigkeitsentwicklung, der Druckfestigkeit und des E-Moduls des Betons. Zudem wurde die Spaltzugfestigkeit des Trägerserie SB gemessen. Es lag eine dem Zement übliche Beton Festigkeitsentwicklung vor. Der erreichte bereits nach 7 Tage etwa 80-90% seiner Endfestigkeit.

Bild 5-56: Verpressvorgang

Bild 5-57: Druckfestigkeitsprüfung am Würfel

Bild 5-58: E-Modulprüfung des Betons

Der gemessene E-Modul der Träger TR01-TR05 lag im Mittel bei 30.150 MPa und die Träger SB01-SB04 erreichten einen mittleren Wert von 32.940 MPa. Die gemessenen Daten sind ebenfalls in Tabelle A 3-11 bis Tabelle A 3-19 der Anlage A3.1.2 enthalten.

5.3.3 Beschreibung des Versuchsstandes

Aufgrund des zum Teil komplexen Versuchsstandes und dem somit verbundenen geringen Spielraum zwischen einigen Bauteilen erfolgte die Planung des Versuchsaufbaus rechnergestützt am 3D CAD Modell (Bild 5-59).

Im Vordergrund stand bei der Planung des Versuchsstandes eine zwängungsfreie Auflagerung der Versuchskörper und ebenso zwängungsfreie Krafteinleitung aus der Maschinenpresse. Zudem sollten die Auflagerkräfte gemessen werden, um eventuelle Verluste feststellen zu können.

Im gesamten Versuchsstand wurde bei Zugverbindungen, soweit möglich, auf Schweißnähte verzichtet, da diese ebenfalls der ermüdungswirksamen Belastung ausgesetzt sind. An diesen Stellen wurden vorgespannte Schraubverbindungen vorgesehen.

Bild 5-59: 3D CAD Modell des Versuchsstands

Mit Beginn der Versuchsreihe der "neuen" Spannstähle (Serie SB) wurden der Versuchsstand, sowie Versuchskörper, nochmals optimiert, um höhere Prüffrequenzen zu erzielen, da das Gesamtverhalten des Versuchsstandes mit dem eingebauten Versuchskörper entscheidenden Einfluss auf die Regeltechnik der Maschine hat.

Die Optimierung des Versuchsstandes erfolgt in erster Linie an den hochgehängten Auflagerpunkten (Schaukeln).

Bild 5-60 zeigt den Versuchskörper SB01 im eingebauten und prüfbereiten Zustand.

Bild 5-60: Versuchsträger im Versuchsstand

Krafteinleitung

Die Pressenkraft wurde über einen Einleitungsbock in zwei einwirkende Lasten aufgeteilt. Die Geometrie ergab sich aus den möglichen Randbedingungen. Die Lage der auf den Versuchsbalken einwirkenden Kräfte lag vor und die Höhe des Bockes ergab sich aus der zu erwartenden Höhenlage der Balkenoberkante sowie der höchstmöglichen Position des Querhauptes der Presse.

Zwischen Presse und Bock wurden zwei ballige Lastknöpfe nebeneinander eingebaut, um diesen Punkt als Linienkippgelenk auszubilden.

Vom Bock ausgehend werden die Lasten auf den Versuchskörper über Rollenlager übertragen. Somit ist eine Kippung um die Rollenachse möglich und es können keine nennenswerten Horizontalkräfte übertragen werden. Die Rolle wurde aus einem Vergütungsstahl 42CrMo4 gefertigt und lief zwischen zwei gehärteten Stahlplatten, welche wiederum in Lastverteilungsplatten aus Stahl eingebettet wurden. Um die Hertzsche Pressung und zugehörige Deformationen im Hinblick auf den Rollwiderstand möglichst gering zu halten, wurde ein großer Rollendurchmesser gewählt.

Auflagerkonstruktion

Die ankommende Last aus dem Träger wurde über eine Halbrolle an die Auflagerkonstruktionen abgegeben und über eine Schaukelkonstruktion mittels Gewindestangen (M36) bis über die Trägeroberkante an einen Querträger hochgehängt. Somit war die Lagerung am Fußpunkt des Trägers, bedingt durch den sehr großen Schaukelradius, horizontal sehr leicht verschieblich und dadurch zwängungsfrei. Das Bestreben einer Schaukel, sich unter einer Horizontalauslenkung entlang der Kreisbahn ebenfalls nach oben bewegen zu wollen, wurde durch diesen sehr großen Radius ebenfalls vernachlässigbar klein gehalten.

Vom Querträger aus wurde die Last über Kraftmessdosen wieder in die Druckstützen der Auflagerkonstruktion geleitet. Die KMDn bildeten zugleich mit ihren balligen Lastknöpfen die Rotationsachse der Schaukelkonstruktion.

In den späteren Versuchen der Serie SB wurde jeweils um die Gewindestangen der Hängekonstruktion ein Druckrohr gestülpt, um diese zwischen Lagerbalken und Querbalken vorspannen zu können. Somit konnte der Auflagerpunkt noch steifer ausgebildet werden, ohne an Funktionalität zu verlieren. Zusätzlich wurden dadurch ermüdungswirksame Belastungen in den Gewindestangen nahezu eliminiert.

Links und rechts des Balkens wurden im Auflagerbereich justierbare Stahlplatten vorgesehen. Diese sollten als Anschlagfläche im Falle eines unerwarteten Wegknickens oder Wegkippens des Trägers dienen (z.B. beim Bruch) und diesen auch an einem seitlichen "Wandern" infolge der zyklischen Last hindern. Bei den ersten Versuchen wurden zwischen Platte und Versuchsträger zusätzlich Gleitfolien mit PTFE-Einlage vorgesehen. Da in diesen Versuchen kein Kontakt zwischen Träger und Platte festgestellt werden konnte, wurde in späteren Versuchen lediglich etwa ein Millimeter Luft gelassen und auf die Gleitfolie verzichtet.

Die Platten erwiesen sich allerdings im Nachhinein, durch ihre Justierbarkeit mit Hilfe der angebrachten Schauben, als gute Einbauhilfe beim exakten Ausrichten der Versuchskörper.

Bild 5-61: Kraftfluss und Bauteilbezeichnung der Auflagerkonstruktion

Sekundäre Halterungen

Da das Gesamtsystem, bedingt durch die verschiebliche Auflagerung sowie die Krafteinleitung über Rollen, grundsätzlich als kinematisch anzusehen ist, wurden zur horizontalen Halterung der Versuchskörper Gewindestangen angebracht (siehe auch Bild 5-60). Diese hatten ihren gelenkigen Festpunkt an der Auflagerkonstruktion und wurden im Bereich der Aussparung des Versuchskörpers je Auflagerseite untereinander gekoppelt. Diese Stangen befanden sich während der gesamten Versuche in einem lockeren Zustand. Sie waren so eingebaut, dass sie sich bei einer Verformung des jeweiligen Trägers durch Rissbildung sogar geringfügig weiter entspannten.

Weiter wurden im Bereich der Lasteinleitung vertikale Gewindestangen vorgesehen. Diese koppelten den Lasteinleitungsbock über eine Stahlplatte und ein Elastomerlager an die Unterseite der Versuchsträger. Auch diese Gewindestangen waren nur händisch festgezogen und nicht angespannt. Grundsätzlich stemmt sich der Versuchsträger, bedingt durch die innere Vorspannung, gegen die einwirkende Maschinenkraft. Bei einem Drahtbruch kommt es allerdings zu einem schlagartigen Steifigkeitsverlust und somit einem Nachgeben des Versuchsträgers. Durch die geringfügige Kopplung der Trägerunterseite mit der Maschine ist die Regeltechnik schneller und besser in der Lage, auch bei großen, abrupten Steifigkeitsverlusten, die einwirkende Kraft nach zu regeln ohne dadurch negativ beeinflusst zu werden.

Zusätzlich bietet diese Vorrichtung den Vorteil, dass der Träger im Falle eines Totalversagens an der Maschine hängen bleibt und nicht herabfällt.

Auch diese Halterung erwies sich im Nachhinein beim Trägereinbau als zusätzliche Hilfe, da hierüber der Träger zur Ausrichtung leicht angehoben werden konnte.

5.3.4 Messsensorik zur Kraft- und Verformungsmessung

Die angebrachten Messsensoren können Bild 5-62 entnommen werden.

Durch die zum Teil über mehrere Wochen andauernden Ermüdungsversuche wurde die Messung in periodischen Abständen durchgeführt und die Daten vom Messrechner gespeichert. Diese Messung erfasste alle am Versuch installierten Verformungs- und Kraftsensoren.

Bild 5-62: Lage der Messtechnik

Um während der Messpausen zwischen zwei periodischen Messungen ebenso die Anzahl von auftretenden Drahtbrüchen zu identifizieren und diesen exakte Schwingspielzahlen zuordnen zu können, wurde ein weiteres, getriggertes Messsystem parallel installiert. Dieses bestand aus einem Mikrofon und einem Beschleunigungsaufnehmer und zeichnete bei Überschreiten eines Grenzwertes des Messsignals letzteres auf. Näheres hierzu ist im Abschnitt 5.3.5 beschrieben.

Kraftmessung

Zwischen der Presse und dem Krafteinleitungsbock wurde über eine Kraftmessdose die einwirkende Maschinenkraft gemessen. Zudem erfolgte über diese KMD die Regelung der Kraftsteuerung im Regelkreis des Versuchsstands.

Zur Überprüfung der in die Versuchskörper eingeleiteten Kräfte sind an beiden Auflagerpunkten durch jeweils zwei Kraftmessdosen die Auflagerkräfte gemessen worden (Bild 5-63).

Diese wurden am oberen Punkt der Auflagerkonstruktion angebracht und dienten über ihre balligen Druckpunkte als Rotationsachse der Schaukel. Durch die Bildung der Summe der einzelnen 4 Auflagerkräfte konnte überprüft werden, ob die durch die Presse eingebrachten Kräfte auch am Auflager vorlagen. Andernfalls konnten dadurch unerwünschte Verluste, z.B. durch Reibungskräfte, aufgedeckt werden. Ebenso ließen sich durch die Anordnung mögliche, ungewollte Exzentrizitäten feststellen.

Bild 5-63: Kraftmessdosen am Auflagerbereich

Verformungsmessung

Neben dem aufgezeichneten Maschinenweg erfolgten zusätzliche vertikale Verformungsmessungen während der Versuche in Feldmitte im Bereich des Risses sowie an den Auflagerpunkten. Diese Messungen erfolgten durch induktive Wegaufnehmer und dienten in den späteren Versuchen in erster Linie zur allgemeinen Kontrolle.

Es zeigte sich bereits nach dem ersten Versuch, dass der Prozess der Systemermüdung des jeweiligen Versuchsträgers deutlich besser über die Zunahme in der Rissweitenmessung bestimmt werden konnte.

Messungen in der Druckzone der Versuchsträger

Die Druckzone der Versuchsträger wurde in den ersten Versuchsträgern der Serie TR, bei der Prüfung der "alten" Spannstähle, mit Dehnungsmesstechnik bestückt. Diese dienten zur Bestimmung der genauen Lage der Druckkraftresultierenden. In der darauf folgenden Versuchsserie SB mit den "neuen" Spannstählen wurde die Druckzone durch ein in der Höhenlage definiertes Stahlgelenk modifiziert, welches jederzeit durch eine Kraftmessdose getauscht werden konnte. Dadurch war die genaue Lage der Druckkraftresultierenden bekannt.

Es zeigte sich zudem bei der Durchführung, dass die Regeltechnik der Maschine durch diese Maßnahme deutlich stabiler arbeiten konnte, so dass dadurch höhere Prüffrequenzen möglich waren.

Betondehnung

Die Messung der Betondehnungen erfolgte bei der Serie TR am oberen Teilquerschnitt des Versuchskörpers. Hierzu wurden an der Oberund Unterseite der Betondruckzone Dehnmessstreifen aufgeklebt. Zusätzlich wurden als redundantes System induktive Wegaufnehmer (DD1) angebracht.

Stahldehnung

Zur Ermittlung der Stahldehnungen im Bereich der Betondruckzone wurden an zwei zentrisch eingebauten Bewehrungsstählen mit einem Durchmesser von 30mm Dehnmessstreifen aufgeklebt (Bild 5-65). Hierzu wurden die Stähle auf einer kurzen Länge auf einer Drehbank abgedreht. Dadurch wurde ein exakter Durchmesser zur Bestimmung des E-Moduls und eine entsprechende Grundfläche zum Aufbringen des Messstreifens geschaffen. Vor dem Einbau der Bewehrungsstähle erfolgte in einer gesonderten Versuchseinrichtung die Kalibrierung der aufgeklebten DMS.

Bild 5-64: Dehnungsmessung an der Unterseite der Druckzone

Bild 5-65: DMS auf Betonstahl

Stahlgelenk mit Kraftmessdose

Durch das Stahlgelenk konnten die Versuchsträger weiter verbessert werden. Somit war die Lage der Druckresultierende eindeutig und brauchte nicht zusätzlich durch DMS bestimmt werden.

Dieses Stahlgelenk (Bild 5-66) wurde so konstruiert, dass es problemlos zu jedem Zeitpunkt durch eine zuvor exakt kalibrierte Kraftmessdose (KMD) ausgetauscht werden konnte, um die Druckkräfte zu messen (Bild 5-67). Somit muss die KMD nicht während des gesamten zyklischen Belastungsversuchs in den Versuchsträgern verbleiben und wird keinem unnötigen Verschleiß unterzogen. Alle Einzelbauteile des Stahlgelenks wurden planparallel gefräst und in diesem Zustand exakt einbetoniert. Im eingebauten Zustand war es nun möglich, die KMD von der Trägeroberseite in das Gelenk einzulassen (Bild 5-68 (2)). Auf einer Plattenseite erfolgte die Zentrierung der KMD durch eine dort eingefräste Nut, in die das Achsialgelenklager der KMD exakt eingelassen werden konnte.

Bild 5-66: Druckzone mit Stahlgelenk

Bild 5-67: Druckzone mit Kraftmessdose

Bild 5-68: schematische Darstellung des Wechselvorgangs zwischen Stahlgelenk und Kraftmessdose

Die Zentrierung des gegenüberliegenden balligen Druckbolzens der KMD wurde beim Einbau durch eine zusätzliche Zentrierschablone gewährleistet. Dieser Druckbolzen war mit einem Feingewinde versehen und konnte über eine speziell angefertigte Mutter aus der KMD herausgedreht werden. Somit war es möglich, durch Drehen der Mutter die Druckkraft vom Stahlgelenk in die KMD zu übertragen. Nachdem das erfolgt war, ließen sich die nun drucklosen Stahlgelenke, durch seitliches herausführen aus ihren Nuten, entfernen (Bild 5-68 (3)).

Messung der Rissweite in der Zugzone

Zur Messung der Rissweite wurden in der Versuchsserie TR induktive Wegaufnehmer verwendet. Um dem mechanischen Verschleiß der Messtechnik auch hier entgegenzuwirken, wurden in der nachfolgenden Versuchsserie der Träger SB die induktiven Wegaufnehmer durch sehr präzise Lasersensoren getauscht. Beide Systeme messen mit einer Genauigkeit von wenigen Tausendsteln Millimetern.

Diese dienten als sehr guter Indikatoren für erfolgte Drahtbrüche. Bei einem Drahtbruch kam es üblicherweise zu einem sprungartigen Anstieg der Rissweite.

Wegaufnehmer (Versuchsserie TR, "alter" Spannstahl)

Die induktiven Wegaufnehmer wurden in der Serie TR links und rechts des Trägers in Feldmitte platziert. Die Höhenlage entsprach der eingebauten Spannlitzenlage. Die Wegaufnehmer wurden bereits vor der Risserzeugung angebracht. Da der exakte Verlauf des sich einstellenden Risses nicht genau bekannt war, wurden die Messpunkte auf jeder Seite mit etwas Distanz angebaut. Somit war es möglich, bereits den Initialriss zu erfassen.

Bild 5-69: induktiver Wegaufnehmer der Serie TR

Lasersensoren (Versuchsserie SB, "neuer" Spannstahl)

Nach Durchführung der Serie TR zeigte sich, dass die induktiven Wegaufnehmer leichte mechanische Verschleißerscheinungen zeigten. Daher wurden in der nachfolgenden Serie SB Lasersensoren zur Messung der Rissweitenänderung genutzt. Diese basieren bei der Distanzmessung auf dem Triangulationsprinzip und eignen sich durch ihrer hohen Auflösung sehr gut für berührungslose, präzise Abstandsmessungen. Dadurch ist eine Messung ohne mechanischen Verschleiß möglich.

Bild 5-70: Lasersensor der Serie SB

Der Laserstrahl trifft hierbei als kleiner Punkt auf die Messoberfläche und wird vom Empfänger detektiert. Die Distanzberechnung erfolgt aus der sich so ergebenen Winkelbeziehung.

5.3.5 Körperschall- und Impulsmessung zur Bestimmung des Bruchzeitpunktes

Zur Erfassung des Bruchzeitpunktes bzw. der Lastwechselzahl beim Bruch und zur Definition eines eindeutigen Drahtbruchs wurden ein Mikrofon sowie ein Beschleunigungssensor an den Ankerkörpern des Spanngliedes angebracht. Das Mikrofon diente zur Aufzeichnung des Körperschalls bei einem Drahtbruch. Durch den Beschleunigungsaufnehmer wurde der Impuls des Drahtbruchs aufgezeichnet. Es wurden redundant beide Systeme verwendet.

An einer Seite des Versuchskörpers wurde an der Spannankerbüchse das Mikrofon formschlüssig in eine vorab hergestellte Gewindebohrung eingeschraubt (Bild 5-72). An der gegenüberliegenden Ankerbüchse erfolgte auf gleiche Weise die Befestigung des Beschleunigungssensors (Bild 5-73).

Das hierzu verwendete Mikrofon wurde am Lehrstuhl Betonbau hergestellt. Hierzu wurde ein Stahlkörper gefertigt. Dieser hohlgedrehte Stahlkörper hatte an der einen Seite zusätzlich ein Außengewinde, um ihn an die Ankerbüchse anschrauben. In diesen Stahlzylinder wurde eine Mikrofonkapsel blasenfrei eingeklebt. Zwischen Messrechner und Mikrofonkapsel wurden zusätzlich ein Vorverstärker und ein Mischpult geschaltet. Durch das Mischpult konnten gewisse Störfrequenzen minimiert werden.

Aufgrund der lang andauernden Versuche war es nicht sinnvoll, alle Messdaten kontinuierlich zu speichern. Dieses hätte zu einer zu großen Datenmenge geführt. Aus diesem Grund erfolgte die Datenaufzeichnung der Messtechnik in periodischen Abständen (Bild 5-71). Um nun zwischen zwei periodischen Messungen, also in der Messpause, ebenfalls Drahtbrüche zu detektieren, wurden die Mikrofonsignale mittels einer Triggerregelung aufgezeichnet.

Bild 5-72: Mikrofon am Ankerkörper

Bild 5-73: Beschleunigungssensor am Ankerkörper

Bild 5-71: Messprinzip

Dabei wird bei Überschreiten eines vorab definierten Signalpegels des Mikrofons die Messung ausgelöst und das auslösende Messsignal des Mikrofons sowie des Beschleunigungssensors aufgezeichnet. Im Anschluss stoppt die Messung bis zum nächsten Ereignis. Bei jeder Aufzeichnung wird ebenfalls die Zeit mit erfasst. Somit ist es möglich, nach einem erfolgten Drahtbruch, ausgehend von der letzten periodischen Messung, die exakten Lastwechsel zum Bruchzeitpunkt über die Beziehung in Gleichung (5-6) zu berechnen (siehe auch Bild 5-71).

$$Lastwechsel N_{t_{i+1}} + (t_{Br1} - t_{i+1})[sec] \cdot Pr\ddot{u}ffrequenz [Hz]$$
(5-6)

Weiter kann über diese Aufzeichnungsmethode auch die Anzahl der Drahtbrüche, innerhalb einer Messpause der periodischen Messung, bestimmt werden.

Fehlmessungen, bedingt durch externe Störquellen (z.B. Lärm in der Versuchshalle), unterschieden sich deutlich im Messsignal. Ebenso zeigten die Messdaten des Beschleunigungssensors bei einem Drahtbruch üblicherweise ein ähnliches Spektrum im Messsignal, welches sich ansonsten bei Fehlmessungen deutlich unterschied. Die Mikrofonaufzeichnung erwies sich letztendlich als guter Indikator zur Erkennung einzelner Drahtbrüche.

Zur Verdeutlichung eines üblichen Drahtbruches sind die Aufzeichnungen des 3. Drahtbruchs vom Versuchsträgers SB01 dargestellt. Es zeigt sich sowohl bei der Mikrofonaufzeichnung (Bild 5-74) als auch bei der Aufzeichnung des Beschleunigungssensors (Bild 5-75) ein starker Ausschlag. Ebenso weisen beide Aufzeichnungen im zeitlichen Verlauf ein übereinstimmendes Bild auf.

Beide Sensoren parallel zu nutzen erwies sich als sehr sinnvoll. Dadurch konnten die Aufzeichnungen wesentlich besser interpretiert und eventuelle Fehlmessungen aussortiert werden. Üblicherweise zeigten Fehlmessungen ein ganz anderes Signalspektrum. Es zeigten sich aber durchaus Mikrofonaufzeichnungen, welche als Bruch hätten identifiziert werden können.

Im Bild 5-76 ist eine solche Fehlmessung dargestellt. Im oberen Teil des Bildes zeigt das Mikrofonsignal das übliche Spektrum eines Drahtbruches. Im unteren Teil des Bildes ist das dazugehörige Messsignal des Beschleunigungssensors dargestellt. Durch die zusätzliche Auswertung des parallel aufgezeichneten Signals des Beschleunigungssensors konnte ein Drahtbruch in solchen Fällen ausgeschlossen werden. Bei diesen Messaufzeichnungen fehlt durch die externe Störquelle der Körperschallimpuls.

Bild 5-76: Messaufzeichnung einer Störquelle ohne Drahtbruch

Damit ergeben sich auch keine relevanten Signalveränderungen in der Messreihe des Sensors.

Durch die sehr hohe Abtastrate der Messtechnik war es ebenfalls möglich, nahezu zeitgleiche Drahtbrüche zu identifizieren. Im Bild 5-77 ist dieses für zwei Drahtbrüche des Versuchskörpers SB03 dargestellt. In diesem Fall erfolgen in einem zeitlichen Abstand von einer zehntel Sekunde zwei Drahtbrüche. Auch hier spiegelt sich das Mikrofonsignal im Signal des Beschleunigungssensors wider.

Bild 5-77: Messaufzeichnung von zwei nahezu zeitgleichen Drahtbrüchen

Den Beschleunigungssensor alleine zu nutzen hätte, ohne die zusätzliche Information aus der Mikrofonaufzeichnung vorliegen zu haben, ebenfalls in einigen Situationen nicht zu einer eindeutigen Interpretation des Signals geführt.

Besonders nachdem im jeweiligen Versuchsträger bereits einige Drahtbrüche erfolgt waren, beginnt das Signal des Beschleunigungssensors zum Teil "unscharf" zu werden. Dieses Verhalten zeigt sich ebenfalls im Bild 5-77. Nur durch das Signal des Beschleunigungssensors wäre es in diesem Fall schwierig zu beurteilen, ob ein, zwei oder eventuell sogar drei Drahtbrüche entstanden sind. Ebenso könnte es sich auch um eine Fehlmessung handeln.

Beide Sensoren zusammen dienten als guter Indikator für die Anzahl der zwischen zwei regulären Messperioden erfolgten Drahtbrüche und der dazugehörigen Bruchzeiten. Somit ließen sich daraus die exakten Schwingspiele berechnen.

5.3.6 Versuchsprogramm der Ermüdungsversuche

Die Vorgehensweise in der Versuchsdurchführung war bei den fünf Versuchen der Serie TR ("alter" Spannstahl) und den vier Versuchen der Serie SB ("neuer" Spannstahl) grundsätzlich identisch. Anfangs wurden nach Einbau des jeweiligen Versuchskörpers die beiden Betonstahleisen zur Transportsicherung innerhalb der Aussparung herausgetrennt.

Die Spannungsschwingbreiten wurden jeweils erst unmittelbar vor jedem Versuch, unter Bezugnahme der gewonnenen Erkenntnisse aus den vorherigen Versuchen, exakt festgelegt.

Als erstes erfolgte bei den Versuchsträgern eine Dauermessung, wobei alle Sensoren bis auf das Mikrofon und der Beschleunigungsaufnehmer aufgezeichnet wurden (Bild 5-78). Durch die Maschine wurde die Belastung auf dem Versuchsträger in Wegregelung gesteigert, bis sich der Initialriss vollständig in Feldmitte unterhalb der Aussparung einstellte.

Anschließend wurde die Belastung wieder komplett zurückgenommen. Die Maschine wurde in Kraftregelung umgestellt und es erfolgte in einer Zeitspanne von 60 Sekunden die Belastung bis zur vorgesehenen oberen Versuchskraft des Dauerschwingversuchs. Weiter wurde in 5 Sekunden der Mittelwert der Kraftschwingbreite angeregelt. Ausgehend von diesem Mittelwert wurden durch den Sinusfunktionsgenerator der Regeltechnik die ersten 50 Lastwechsel mit der vorgesehenen Kraftamplitude aufgebracht um ein abgeschlossenes Rissbild zu erhalten. Die Belastungsfrequenz lag hier bei 0,1 Hz. Soweit nicht zusätzliche Messungen durchgeführt werden sollten, wurde anschließend die Dauermessung gestoppt und in eine periodische Messung umgestellt (Bild 5-79). Die periodische und getriggerte Messung startete nun parallel, sobald die Maschine die vorgesehene Prüffrequenz und Kraftamplitude angeregelt hatte.

Die Prüffrequenz der ersten Versuchsträger (Serie TR, "alter" Spannstahl) lag bei den Trägern TR01-TR04 bei 1,5 Hz. Bei dem Versuchsträger TR05 konnte aufgrund der geringen Kraftamplitude die Prüffrequenz auf 2,0 Hz gesteigert werden. Die reine Versuchsdauer in der Prüfmaschine lag bei diesen Versuchen bei 184 Tagen.

Im Anschluss an diese Versuche konnten im Rahmen des SFB 823 weitere Versuche mit "neuem" Spannstahl durchgeführt werden. Da bei dieser Versuchen (Serie SB, "neuer" Spannstahl) in erster Linie sehr geringe Schwingbreiten geplant waren, bestand das Bestreben, diese Serie mit höheren Prüffrequenzen durchzuführen. Hierzu sind geringfügige Modifikationen durchgeführt worden (siehe auch Kap. 5.3.2 und 5.3.3), ohne den Versuch hinsichtlich seiner Vergleichbarkeit zu verändern.

Die Prüffrequenz lag bei den Versuchsträgern SB01 bei 3 Hz, SB02 bei 6 Hz sowie SB03-SB04 bei 10 Hz. Nun waren auch sehr hohe Lastwechselzahlen in halbwegs akzeptablen Zeiträumen möglich.

5.3.7 Verifikation der vorhandenen Vorspannkräfte zu Versuchsbeginn

Die vorhandenen Vorspannkräfte der einzelnen Versuchsträger wurden nach den Versuchen durch die gewonnenen Messdaten aus der Dauermessung zu Versuchsbeginn bestimmt.

Am Beispiel des Trägers TR04 wird im Folgenden gezeigt, wie die im Träger vorhandene Vorspannkraft zu Versuchsbeginn ermittelt wird. Werte der übrigen Versuchsträger können den Tabellen der Anlage A3.3.1 entnommen werden.

Wie zuvor beschrieben, wurden die ersten Belastungen mit der Maschine in Wegregelung durchgeführt. Der Belastungsablauf kann im Bild 5-80 durch die blauen Pfeile ausgehend vom Nullpunkt nachvollzogen werden. Zu Beginn wurde ein Initialriss durch Steigerung der äußeren Belastung im Träger erzeugt. Am Beispiel des Trägers TR04 entstand dieser Riss bei einer äußeren Maschinenkraft von 424 kN. Das entspricht einem Biegemoment von M_{cr} = 212 kNm.

Anschließend wurde der Versuchskörper wieder entlastet und in einem zweiten Schritt neu belastet. Ab einer gewissen äußeren Belastung überschreiten die inneren Kräfte langsam die im Versuchskörper vorhandene Vorspannkraft.

Ist die Vorspannkraft vollständig überschritten, befindet sich der Körper im reinen Zustand II. Dieser Übergangspunkt kann daher zur ausreichend genauen Bestimmung der Vorspannkraft herangezogen werden.

Am Beispiel des Trägers TR04 befand sich dieser Punkt bei einer Maschinenkraft von etwa 228 kN, bzw. einem Biegemoment von etwa 114 kNm.

Bild 5-80: Bestimmung der vorh. Vorspannkraft (hier exemplarisch am TR04)

Durch einen zum Zeitpunkt der Dekompression bei den Versuchsträgern der Serie TR angenommenen inneren Hebelarm von 81,5 cm, welcher später in der Serie SB durch das Stahlgelenk exakt war, und dem im Materialversuch bestimmten E-Modul des "alten" Spannstahls von E_{P,TR} = 193.665 MPa, kann die Vorspannkraft sowie die Vordehnung bestimmt werden.

$$P_{D,TR01} = \frac{0.114MNm}{0.815m} = 0.140 MN \tag{5-7}$$

$$\varepsilon_{P,D,TR01} = \frac{0.140MN}{260mm^2 \cdot 193.665MPa} \cdot 10^6 = 2.78\%_0$$
(5-8)

Die aus den Versuchen bestimmten Vorspannkräfte der Versuchsträger und die zugehörigen Diagramme sind in der Anlage A3.3.1 und A3.3.2 abgedruckt.

5.3.8 Überprüfung der Kraft-/Spannungsschwingbreite

Serie TR ("alter" Spannstahl)

Die Spannungsschwingbreiten wurden jeweils erst unmittelbar vor jedem Versuch, unter Bezugnahme der gewonnenen Erkenntnisse aus den vorherigen Versuchen, exakt festgelegt.

Hierzu wurden vor Versuchsbeginn Querschnittsberechnungen nach Zustand II ohne Berücksichtigung von Spannungsumlagerungen durchgeführt. Bei dieser Berechnung wurde ein linear-elastisches Verhalten der Baustoffe zugrunde gelegt. Das Mitwirken des Betons auf Zug oder ein Verbundverlust zwischen Stahl und Beton wurde nicht berücksichtigt.

Mit den zuvor gemessenen Materialkennwerten konnte dadurch der rechnerische innere Hebelarm bestimmt werden. Daraus ließ sich dann die erforderliche maximale und minimale Maschinenkraft für den jeweiligen zyklischen Versuch rückrechnen.

Die Spannungsschwingbreite wurde in allen Versuchen so gewählt, dass diese deutlich oberhalb des Dekompressionsniveaus liegt und der Riss damit den unteren Querschnittsteil des Versuchsträgers durchläuft. Ebenso wurde darauf geachtet, dass der oberer Druckzonenbereich der Träger auch unter sehr hohen Schwingbreiten vollständig überdrückt bleibt. Somit liegt der Nulldurchgang innerhalb der Aussparung.

Exemplarisch ergab sich für den Versuchsträger TR04 der innerer Hebelarm für die untere Spannung zu $z_0=0,846m$ und für die obere Spannung zu $z_0=0,850m$.

Daraus ergeben sich die obere und untere Maschinenkraft sowie die Schwingbreite wie folgt:

$$F_{OL} = 2 \cdot \sigma_{P,O} \cdot z_O \cdot A_P = 2 \cdot 1032 \, MPa \cdot 0.850m \cdot 260mm^2 \cdot 10^{-6} = 456 \, kN \tag{5-9}$$

$$F_{UL} = 2 \cdot \sigma_{P,U} \cdot z_U \cdot A_P = 2 \cdot 882 \, MPa \cdot 0.846m \cdot 260mm^2 \cdot 10^{-6} = 388 \, kN \tag{5-10}$$

$$\Delta \sigma_P = \sigma_{P,Q} - \sigma_{P,U} = 1032 - 882 = 150 \, MPa \tag{5-11}$$

Nach Durchführung der Versuche wurde über die gewonnenen Messdaten der in der Druckzone angebrachten Betondehnmessstreifen (DMS) die Lage der Druckresultierenden bestimmt. Somit konnte der zuvor rechnerisch ermittelte innere Hebelarm zusätzlich überprüft werden.

Nachfolgend wird exemplarisch gezeigt, wie anhand der Versuche der Randabstand a der Druckkraftresultierenden F im Beton aus den Versuchsergebnissen ermittelt wurde. Hierzu wurde auf die während des Versuchs gemessenen Dehnungen ε_o und ε_u im oberen Querschnitt des Versuchsträgers zurückgegriffen (Bild 5-81).

Bild 5-81: Bestimmung der Lage der Druckresultierenden aus den gemessenen Betondehnungen

Die am Betonrand gemessenen Dehnungen zur maximalen und minimalen Pressenkraft einer Schwingung sind bekannt. In keinem Versuch wurden Betonrandspannung über $\varepsilon_0 = 0,4\%$ gemessen. Geht man nun von einem linearen Dehnungsverlauf zwischen dem oberen und unteren Querschnittsrand aus, so kann man die Lage der Kraftresultierenden F im Beton unter der Annahme einer linearen Spannungsverteilung rechnerisch ermitteln. Dabei wurden zwei Fälle unterschieden. Lag im unteren Teil eine positive Dehnung ($\varepsilon_u \ge 0$) vor, so wurde dieser Teil rechnerisch als gerissen angesehen. Lag eine Stauchung ($\varepsilon_u < 0$) vor, in der Regel der übliche Fall, so war der Teilquerschnitt vollständig überdrückt im Zustand I.

Im Folgenden sind hier wieder die Ergebnisse des Versuchsträgers TR04 exemplarisch dargestellt. Die Werte der übrigen Versuchsträger können der Anlage A3.3.1 entnommen werde.

$$a_{UL,TR04} = \frac{15cm}{3} \cdot \frac{(-0,1884) + 2 \cdot (-0,0005)}{(-0,1884) + (-0,0005)} = 5,01cm$$
(5-12)

$$a_{OL,TR04} = \frac{15cm}{3} \cdot \frac{(-0,2261)}{(-0,2261) - (+0,0034)} = 4,93cm$$
(5-13)

Versuchsträger TR04	Werte aus			
			Unterlast	Oberlast
Biegemoment Feld	М	[kNm]	193,9	227,3
Dehnung oben	εο	[‰]	-0,1884	-0,2261
Dehnung unten	ευ	[‰]	-0,0005	0,0034
Lage Druckres.	а	[cm]	5,01	4,93
Innerer Hebelarm	z	[m]	0,840	0,841
Druckkraft Betonstahl	Fs	[kN]	-58,8	-69,4
Druckkraft Beton	Fc	[kN]	-172,0	-200,9
Zugkraft Spannstahl	Fp	[kN]	230,8	270,4
Spannung Spannstahl	σΡ	[Mpa]	888	1.040
Schwingbreite	[Mpa]	15	52	

Tabelle 5-7: Ermittlung der Spannstahlspannung

Bild 5-82: Ermittlung des inneren Hebelarms z

Bei bekanntem Randabstand der Betondruckkraft kann aufgrund der festliegenden Spannstahllage unter Berücksichtigung der Exzentrizität im Hüllrohr, der Lage der Druckbewehrung und der Trägerhöhe der innere Hebelarm z bestimmt werden.

Die in der Tabelle 5-7 angegebenen Dehnungen sind die zur Ober- bzw. Unterlast gemessenen Dehnungen einer frei gewählten Schwingung aus dem zyklischen Belastungsversuch des Versuchsträgers TR04. Es wurde allerdings ein Zeitpunkt gewählt, zu dem noch keine Drähte gebrochen waren. Daher kann die volle Spannstahlfläche von A_P = 2,6 cm² angesetzt werden.

Aus den ermittelten Spannstahlspannungen σ_P kann nun auch durch Subtraktion die Spannungsschwingbreite $\Delta\sigma_P$ ermittelt werden. Diese liegt mit einem Fehler von etwa 1,3% im Rahmen der zuvor angesetzten Schwingbreite von $\Delta\sigma_{P,cal}$ = 150 MPa.

Wie Tabelle 5-8 zeigt, weichen die vorhandenen Schwingbreiten von den zuvor rechnerisch ermittelten Schwingbreiten in der Serie TR nur geringfügig ab. Die gemessenen Dehnungen und Kräfte der einzelnen Versuchsträger können der Anlage A3.3.1 entnommen werden.

Tabelle 5-8: Abweichungen der rechnerischen zur vorhandenen Schwingbreite	

		TR01	TR02	TR03	TR04	TR05
rechnerisch $\Delta \sigma_P$	[MPa]	200	451	199	150	98
vorhanden $\Delta \sigma_P$	[MPa]	199	452	198	152	96
Differenz	[%]	-0,5	+0,2	-0,5	+1,3	-2,0

Serie SB ("neuer" Spannstahl)

In der Versuchsserie der "neuen" Spannstähle (Serie SB) entfiel die Betondruckzone und damit auch die aufwendigere Ermittlung des exakten inneren Hebelarms. Hier wurde nun ein Stahlgelenk eingesetzt, wodurch ein exakter innerer Hebelarm von 81,5cm vorlag. Durch diese Konstruktion waren nun auch höhere Prüffrequenzen möglich.

Zusätzlich wurde überprüft, ob während des laufenden Versuchs die durch die Maschine unter hohen Prüffrequenzen aufgebrachten Kräfte in Feldmitte wirksam sind. Da alle geometrischen Größen bekannt sind, müssen durch das statisch bestimmte System die einwirkenden Kräfte aus der Maschine im Versuchsträger als Zug- und Druckkraft eindeutig durch Messung bestimmbar sein (Bild 5-83).

Bild 5-83: vereinfachte Darstellung des Kräftegleichgewichts im Versuchsstand

Entscheidend ist, dass beide Auflagerpunkte des Versuchsbalkens keine Horizontalkräfte aufnehmen können. Der Träger lagert an diesen Stellen jeweils auf einer sehr leichtgängigen Schaukel mit einem Radius von ca. 1,1m, welche die Auflagerkraft über vorgespannte Gewindestangen hochhängt.

Grundsätzlich besteht allerdings die Möglichkeit, dass durch eine Verkantung, ungewollte Reibungskräfte im Versuchsstand oder durch Massenträgheitseffekte während der zyklischen Belastung sich die Kräfte anders verteilen und dadurch die rechnerisch gewünschte Kraft in Feldmitte nicht in voller Größe wirksam ist. Durch Kontrolle der Auflagerkräfte und Überprüfung der Druckkraft in Feldmitte sollen diese Effekte ausgeschlossen werden. In allen Versuchen konnte gezeigt werden, dass die einwirkende Maschinenkraft vollständig als vertikale Auflagerreaktion vorhanden ist. Das ist ein eindeutiger Hinweis, dass keine Kräfte im Gesamtsystem durch etwa Reibung im Versuchsstand verloren gehen.

In den folgenden Diagrammen sieht man exemplarisch hierzu eine Auswertung von Messdaten. Vergleichend sind hier die auf das System einwirkende Maschinenkraft und die am Auflager vorliegende Summe der Auflagerkräfte aufgetragen. Die Auflagerkraft ergibt sich aus der Summe der einzelnen Messwerte der vier Kraftmessdosen im Auflagerbereich. Hier wurden je Auflagerseite, links und rechts der installierten Schaukeln, Kraftmessdosen angebracht, welche während der gesamten Prüfdauer Messungen durchführten.

Im Bild 5-84 ist der kraftgeregelte Vorgang der Initialbelastung zu Beginn des Versuchs mit den anschließenden ersten 50 Lastwechseln dargestellt. Das Bild 5-85 zeigt eine periodische während Messung des nachfolgenden Schwingversuchs nach ca. 3000 Lastwechseln. Die Prüffrequenz lag in diesem Versuch bei 10Hz, so dass die Aufzeichnung eine Schwingung innerhalb einer zehntel Sekunde abbildet. Somit zeigt sich auch unter hoher Prüffrequenz, dass die Kräfte an den Auflagern wirksam sind.

Dadurch können Reibungsverluste oder Massenträgheitseffekte im System ausgeschlossen werden.

Um die inneren Kräfte zusätzlich durch Messungen zu bestätigen, wurde in einige Versuchskörper ein spezielles Stahlgelenk im Druckzonenbereich in Feldmitte eingebaut.

Bild 5-86 zeigt die als Pendelstab eingebaute KMD in der Druckzone eines Versuchsträgers nach Entfernen des zuvor eingebauten Stahlgelenks. In diesem Zustand erfolgte die Einprägung des Initialrisses in der Zugzone des Betons.

Anschließend wurden zur Überprüfung der inneren Kräfte die Ober-, Unter- und Mittellast des im Anschluss folgenden zyklischen Versuchs mit der Maschine angefahren, um die rechnerisch bestimmten Kräfte in der Druckzone mit den real gemessenen zu überprüfen.

Damit dynamische Einflüsse aus Massenbeschleunigungseffekten unter der im Ermüdungsversuch eingestellten Prüffrequenz ausgeschlossen werden können, wurden auch die Kräfte unter dieser Belastungsfrequenz gemessen und kontrolliert.

Bild 5-84: statisch angefahrene Oberlast mit anschließenden 50 LW bei 0,1Hz

Bild 5-85: einwirkende Maschinenkraft und Summe der KMD am Auflager bei einer Prüffrequenz von 10Hz

Bild 5-86: Kraftmessdose im eingebauten Zustand in der Druckzone des Versuchsträgers

Exemplarisch werden im Folgenden die Messdaten des Versuchsträgers SB03 vorgestellt.

Rechnerische Ermittlung:

Im Versuch SB03 war beabsichtigt, eine Spannungsschwingbreite von 60N/mm² im Spannstahl zu erhalten. Durch die festgelegte Unterspannung von 900N/mm² lassen sich die einzustellenden Maschinenlasten rechnerisch bestimmen. Durch den eindeutigen inneren Hebelarm von 0,815m ergeben sich die Maschinenkräfte zu:

untere Maschinenkraft:

$$F_{UL} = 900 \frac{N}{mm^2} \cdot 260mm^2 \cdot \frac{0.815m \cdot 2}{1m \cdot 10^3} = 381.4kN$$
(5-14)

obere Maschinenkraft:

$$F_{OL} = (900 + 60) \frac{N}{mm^2} \cdot 260mm^2 \cdot \frac{0.815m \cdot 2}{1m \cdot 10^3} = 406.8kN$$
(5-15)

Die daraus einwirkenden Kräfte in der Druck- und Zugzone des Versuchsträgers ergeben sich zu:

untere Druck-/Zugkraft:

$$D_u = Z_u = 900 \frac{N}{mm^2} \cdot \frac{260mm^2}{10^3} = 234,0kN$$
(5-16)

obere Druck-/Zugkraft:

$$D_o = Z_o = 960 \frac{N}{mm^2} \cdot \frac{260mm^2}{10^3} = 249,6kN$$
(5-17)

Alternativ lässt sich die Druckkraft auch in Abhängigkeit der aktuellen Maschinenkraft berechnen:

$$D_{akt.} = Z_{akt.} = \frac{F}{2} \cdot \frac{1m}{0.815m} \ [kN]$$
(5-18)

Um zu zeigen, dass es während der Versuchsdurchführung zu keinem ungewollten Kraftverlust kommt, müssen diese rechnerisch ermittelten Kräfte mit den gemessenen Kräften der KMD übereinstimmen.

Bild 5-87 zeigt mit der gestrichelten Linie die rechnerisch ermittelte Druckkraft nach Formel (5-18) in Feldmitte. Diese wird aus der gemessenen, einwirkenden Maschinenkraft bestimmt. Demgegenüber gestellt ist die mit der KMD gemessene Druckkraft. In einem ersten Schritt wurde die für den Versuch bestimmte untere Kraft (D_U) kraftgeregelt angefahren. Nach Erreichen dieser Last wurde die obere Kraft (D_O) angefahren und im Weiteren die mittlere Kraft (D_M). Anschließend erfolgte eine zyklische Belastung des Versuchsträgers in Form von 10 Sinuswellen mit einer Belastungsgeschwindigkeit von 0,1Hz.

Es zeigte sich, dass das Rechnerische mit dem Gemessenen sehr gut übereinstimmt.

In einem weiteren Schritt wurden die Kräfte unter der Belastungsgeschwindigkeit von 10Hz gemessen und den rechnerisch ermittelten gegenübergestellt. Auch hier erfolgte die Belastung des Versuchsträgers kraftgeregelt. Bild 5-88 zeigt die Messaufzeichnung einer zehntel Sekunde.

Auch hier ist eindeutig zu erkennen, dass die gemessenen Werten sehr gut mit den rechnerischen Werten übereinstimmen.

Abschließend lässt sich sagen, dass sich bei den Versuchen die rechnerisch bestimmten Werte auch tatsächlich im System bei einer Frequenz von 10Hz einstellen. Somit werden die rechnerisch ermittelten Kräfte in keiner Weise durch Reibungseinflüsse im Versuchsstand oder etwa Massenträgheitseffekte während des zyklischen Versuchs verfälscht.

5.3.9 Litzenausbau und Analyse der Drahtbrüche

Nach Beendigung eines Versuches wurde der jeweilige Versuchsträger aus dem Versuchsstand ausgebaut und das Hüllwellrohr im Bereich des Risses auf einer Länge von etwa 60cm vorsichtig freigelegt. Anschließend ist auch das Hüllwellrohr herausgetrennt und geöffnet (Bild 5-89, Bild 5-90) worden.

Alle Hüllwellrohre wiesen nach der Entnahme einen sichtbaren Riss im Blech auf. Dieser reichte in den einzelnen Versuchen von einem bis zur Hälfte eingerissenen lediglich Hüllwellrohr (z.B. TR05) bis hin zu zwei komplett umlaufenden Trennrissen (SB01, Bild 5-92). Dieser Riss lag nicht immer zwingend exakt in der Symmetrieachse des jeweiligen Versuchsträgers. In Bild 5-92 ist die Symmetrieachse beispielsweise durch die Beschriftung "3+" auf dem Hüllwellrohr zu erkennen. In diesem Fall lag der erste Riss ca. 3cm und der zweite Riss ca. 7cm von der Symmetrieachse entfernt. Ob der Riss bereits unter der anfänglichen Initialbelastung zur Einprägung eines Betonrisses im Hüllrohr entstand konnte hier zwar nicht geklärt werden, ist aber eher nicht zu erwarten

Bild 5-89: Versuchsträger im Rissbereich vor dem Öffnen, hier: SB01

Bild 5-90: Versuchsträger nach Wegstemmen des Betons und Entfernen der Bewehrung; hier: SB01

Bild 5-91: Entnommenes Spannglied, Aufsicht, hier: SB01

Ein Riss im Hüllrohr stellt sich vermutlich erst nach einigen Drahtbrüchen infolge der zunehmenden Relativverschiebungen ein. Ausgangspunkt war in der Regel der Rand der zusammen gepressten Falze des Bleches.

Im Bauwerk stellen Risse im Beton eine Unterbrechung des Korrosionsschutzes dar. Das Hüllrohr stellt dabei eine zusätzliche Barriere gegen das Vordringen von Schadstoffen zur Spannstahloberfläche dar.

Kann daher bei vorhandenen Betonrissen im Bereich von Spanngliedern nicht zwangsläufig von einem unbeschädigten Hüllrohr ausgegangen werden, stellt dies eine weitere Schwächung des Korrosionsschutzes für den Spannstahl dar.

Um beim Auftrennen und Öffnen des Spanngliedes möglichst keine Schäden im unmittelbaren Verbundbereich der Spannlitzen herbeizuführen, wurde in der Serie TR das Hüllwellrohr nach dem Freilegen auf der Unterseite durch einen Längsschnitt aufgetrennt. Anschließend wurde dieses durch Aufbiegen vom Verpressmörtel getrennt und abgenommen.

Es zeigte sich dabei, dass diese Vorsichtsmaßnahme nicht erforderlich war. Daher wurden in der später folgenden Serie SB die Hüllwellrohre durch zwei seitliche Längsschnitte geöffnet. Dadurch konnte das Hüllwellrohr ohne Verformungen problemlos und einfach vom Einpressmörtel abgehoben werden.

Nach Entfernen des Hüllwellrohrs zeigte sich in allen Versuchen, dass der Verpressmörtel im Bereich des Risses und der Drahtbrüche oft nur in bröseligem Zustand vorlag.

Dieses ist deutlich in Bild 5-91 und Bild 5-93 zu erkennen. Somit war der Verbund zwischen Mörtel und Spannstahl in diesem Bereich quasi nicht mehr vorhanden.

Bild 5-92: Risse im Hüllwellrohr, hier: SB01

Bild 5-93: Entnommenes Spannglied im Bereich des Betonrisses, hier: SB01

Bild 5-94: freigelegte Litzen; hier: SB01

Üblicherweise erstreckte sich dieser Bereich in den entnommenen Spanngliedern auf einer Länge von etwa 5-10cm um den jeweiligen Riss im Hüllwellrohr.

In beiden Versuchsserien zeigten sich die typischen Spuren einer Reibkorrosion an den Spannstählen sowie am Hüllwellrohr. Diese waren deutlich an den Stellen zu erkennen, an denen die Spannlitzen punktuell durch die geometrisch erzwungene Umlenkung mit Anpressdruck an den Sicken des Hüllwellrohrs anlagen (Bild 5-91 bis Bild 5-94).

Bild 5-95: Ermüdungsbruch an Kontaktstelle, hier: SB01

Diese Stellen zeigten sich auffällig durch eine rostbraune Verfärbung und entstehen durch die dortige tribochemische Reaktion bzw. Tribooxidation zwischen beiden Reibpartnern. Drahtbrüche infolge Ermüdung waren in allen Spanngliedern lediglich im Bereich von ca. ±10cm des entstandenen Bauteilrisses entfernt zu finden. Oft waren die Reibkorrosionsstellen der Ausgangspunkt für daraus folgende Ermüdungsbrüche. Dieses ist in Bild 5-95 deutlich zu erkennen. Hier ist exemplarisch ein Ermüdungsbruch dargestellt, welcher seinen Ausgangspunkt am Rand einer Kontaktstelle zum Hüllrohr fand. Durch die Entspannung der zuvor vorgespannten Drähte kommt es durch den Bruch zu dem deutlich sichtbaren Versatz der beiden Bruchflächen.

Ebenso fanden sich Ermüdungsbrüche, die nicht ihren Ausgangspunkt an einer solchen Stelle hatten. Am Rand dieser Brüche waren meist Reibspuren der Drähte untereinander zu erkennen.

Zusätzlich entstandene Gewaltbrüche zeigten sich in der Regel durch die typische Einschnürung des Materials im Bruchbereich des Drahtes. Diese kamen meist durch Überlastung der Drahtquerschnitte zum Ende eines Versuchs zustande.

Weitere Aufnahmen entnommener Spannglieder der übrigen Versuchsträger sind in der Anlage A3.3.2 enthalten.

Diese Bilder zeigen deutlich, dass in einem Gesamtsystem zusätzliche Einflussfaktoren die Ermüdungstragfähigkeit eines Materials beeinflussen. Sie sind daher ein klares Signal dafür, dass Materialuntersuchungen allein nicht maßgebend sein können, um die Ermüdungstragfähigkeit eines Gesamtsystem zu beurteilen.

5.3.10 Auswertung der Drahtbrüche und der Rissweitenzunahme

Die Zunahme der Rissweite zeigte sich in den Versuchen als guter Indikator für erfolgte Drahtbrüche.

Nach erfolgter Risseinprägung herrschen in den einzelnen Versuchsträgern zu Versuchsbeginn üblicherweise leicht unterschiedliche Rissweiten vor. Aus diesem Grund ist es sinnvoll, den Risszuwachs auf die jeweilige Ausgangsrissweite zu normieren. Dadurch wird nur der jeweilige Zuwachs zur Lastwechselzahl n betrachtet und die Versuchskurven bleiben untereinander vergleichbar. Die Rissweitenänderung ergibt sich somit zu:

$$\Delta w(n) = w(n) - w(0) \tag{5-19}$$

Innerhalb der ersten Zyklen zeigt sich zunächst in den Versuchskurven ein deutliches Ansteigen der Rissweite. Diese Zunahme erklärt sich durch den anfänglichen Verbundverlust unter der zyklischen Beanspruchung nach erfolgtem Initialriss. Nach einer gewissen Anzahl von Lastwechseln stabilisiert sich das System und die Rissweite wächst nur noch minimal weiter an. Erfolgt der erste Spanndrahtbruch, so ist dieses durch eine deutlich erkennbare Zunahme in der Rissweite feststellbar. Dieser führt jedoch nicht zu einem schlagartigen Tragverlust des Systems. Jeder weitere Drahtbruch folgt nun ebenso als Sprung in der gemessenen Rissweite, wodurch ein treppenartiger Verlauf entsteht.

Da die von außen einwirkenden Lasten konstant gehalten werden und sich mit jedem Drahtbruch die Querschnittsfläche des Spannstahls reduziert, wächst dadurch die Spannung im verbleibenden Restquerschnitt an. Mit zunehmender Anzahl an Drahtbrüchen wächst somit auch jeweils die Intensität der Rissweitenzunahme. In den Versuchskurven ist vergleichbares Schädigungsverhalten ein erkennbar, welches sich in Abschnitte einteilt. Bild 5-96 ist der Versagensprozess Im exemplarisch an Versuchsdaten abgebildet.

Bild 5-96: Versagensablauf / Rissweitenänderung

In einem ersten Bereich erfolgt die stabile Zunahme der Schädigung des Gesamtbauteils bis zum Versagenspunkt (1). Dieser Punkt definiert den Übergang vom stabilen Risswachstum zu einem instabilen Risswachstum.

In einem zweiten Bereich erfolgt nun, bedingt durch das instabile Fortschreiten der einzelnen Ermüdungsbrüche, ein rasantes Anwachsen der Rissbreite bis zum Erreichen des Übergangspunktes (2). Ab hier wird das vollständige Versagen des Versuchsträgers eingeleitet und es kommt zu einem extrem instabilen Wachstum. Es treten vermehrt Gewaltbrüche in den verbleibenden Spanndrähten auf, da in diesen die aufnehmbaren Zugspannungen schlagartig überschritten werden.

In der Tabelle 5-9 sind die zugehörigen Lastwechsel der einzelnen Drahtbrüche der Versuchsträger aufgetragen. Die Versuchsträger TR04 und TR05 wurden aufgrund der langen Versuchsdauern (TR05: 17 Wochen) nach einiger Zeit gestoppt. Dieses lag in der Serie TR an der geringen Prüffrequenz. Aus diesem Grund sind hier nur wenige Drahtbrüche in den Ergebnissen vorhanden.

Durch die deutlich gesteigerte Prüffrequenz in der Serie SB konnten diese Versuchsträger, in vertretbaren Zeiträumen, wesentlich mehr Lastwechsel ausgesetzt werden.

Die gemessenen Rissweitenänderungen aller Versuchsträger sind in der Anlage A3.3.2 enthalten.

Es stellt sich die Frage, welche Stelle als Versagenspunkt des Gesamtsystems anzusehen ist. Die in der Literatur gefundenen Versuchsauswertungen definieren in der Regel den auf der sicheren Seite liegenden Zeitpunkt des ersten Drahtbruches als Versagenspunkt. Es zeigt sich in den eigenen Versuchen allerdings, dass die ersten Drahtbrüche noch nicht zum Versagen des Gesamtsystems führen oder dieses dadurch entscheidend geschwächt wird.

In der Tabelle 5-10 sind die zuvor definierten Versagenspunkte (1) und (2) sowie der erste Drahtbruch der untersuchten Versuchsträger aufgeführt. Durchschnittlich hat sich in den eigenen Versuchen nach etwa 5,8 Drahtbrüchen der so definierte Versagenspunkt (1) des Spannglieds auf Ermüdung eingestellt.

		"0	alter" Spann	stahl	"neuer" Spannstahl				
	TR-01	TR-02	TR-03	TR-04	TR-05	SB01	SB02	SB03	SB04
Δσ _P [Mpa]	200	455	200	150	98	200	100	60	80
Bruch-Nr.		l	Lastwechsel	[N]			Lastwe	chsel [N]	
1	1.027.503	107.843	906.628	2.441.109	4.222.271	931.621	3.075.717	36.175.800	1.459.836
2	1.578.840	152.965	1.393.054	2.719.061	4.528.578	3.025.086	3.690.445	41.260.915	2.451.337
3	1.795.037	159.282	1.584.372	3.111.626	7.379.030	3.557.278	4.230.917	46.733.668	2.740.193
4	2.458.458	164.245	2.015.290	4.964.423	15.069.990	4.169.559	6.822.967	46.733.668	3.697.775
5	2.617.902	173.270	2.573.001	5.017.658	Stopp	4.684.395	8.573.257	48.407.145	3.888.152
6	2.667.899	185.002	2.664.148	5.205.332		4.687.997	10.654.973	50.048.716	4.515.851
7	2.731.406	198.087	2.935.333	5.465.189		5.127.595	11.288.906	63.883.817	5.264.613
8	2.861.124	203.051	3.034.603	Stopp		5.128.236	12.037.602	67.755.818	10.530.903
9	3.013.814	206.209	3.247.580			5.128.252	13.629.690	70.199.508	10.793.535
10	3.128.667		3.314.813			5.128.325	13.744.239	72.749.676	11.683.017
11	3.207.039		3.331.059			5.128.441	13.744.240	79.188.127	11.827.965
12	3.239.469		3.473.643			5.293.144	14.061.662	80.447.984	11.943.217
13	3.323.244					5.552.588	14.154.861	81.013.476	12.915.753
14	3.366.516					5.577.574	14.968.901	81.672.283	12.990.632
15	3.388.136					5.602.802	15.790.498	82.728.100	18.498.472
16						5.614.542	15.991.643	83.239.491	19.514.991
17						5.657.301	16.107.585	83.970.354	20.010.837
18							16.193.259	85.157.449	21.447.212
19									21.621.101
20									21.625.421

Tabelle 5-9: Drahtbrüche der Versuchsträger des "alten" (Serie TR) und "neuen" (Serie SB) Spannstahls

Tabelle 5-10: 1. Drahtbruch und Versagenspunkte der Versuchsträger TR und SB

Versuchs-	Schwing-	1. Drahtbruch	Versagenspunkt ①		Versagens	spunkt (2)
träger	breite	Anzahl der	Anzahl der	Anzahl der	Anzahl der	Anzahl der
	[Mpa]	Lastwechsel	Lastwechsel	Drahtbrüche	Lastwechsel	Drahtbrüche
TR01	200	1.027.503	2.617.902	5	3.323.244	13
TR02	455	107.843	159.282	3	203.051	8
TR03	200	906.628	2.664.148	6	3.314.813	10
TR04	150	2.441.109	4.964.423	4	-	-
TR05	98	4.222.271	15.069.990 ^{*)}	≥ 4	-	-
SB01	200	931.621	4.684.395	5	5.552.588	13
SB02	100	3.075.717	11.288.906	7	15.790.498	15
SB03	60	36.175.800	70.199.508	9	81.013.476	13
SB04	80	1.459.836	10.793.535	9	19.514.991	16
*) theoretischer Punkt, da letzter Drahtbruch vor Versuchsabbruch			Ø 5.8		Ø 12.6	

Geht man auf der sicheren Seite liegend von 5 Drahtbrüchen aus, nach denen die anschließenden Drahtbrüche zu einem instabilen Schädigungsfortschritt führen, entsprechen diese, bezogen auf die gesamte Anzahl der Litzen (35 Drähte), gut 14% des Gesamtspannstahlquerschnitts.

Der Versagenspunkt ② stellte sich im Durchschnitt nach 12 Drahtbrüchen ein. Das entspricht gut 34% des Gesamtspannstahlquerschnitts.

Es sei allerdings angemerkt, dass diese prozentualen Größen hier nur als sehr grobe Durchschnittsrichtwerte angesehen werden können. Denn die Anzahl der Lastwechsel bis zum ersten Drahtbruch oder bis zum Versagenspunkt ① hängt sehr stark von der im Spannstahl einwirkenden Schwingbreite sowie der Lage der daraus resultierenden Drahtbrüche ab. Unter hohen Schwingbreiten steigen die Schwingbreiten nach einem Drahtbruch in den verbleibenden Drähten stark an, so dass der erste Versagenspunkt schon nach wenigen Drahtbrüchen erreicht wird. Bei geringerer Schwingbreite dauert dieser Prozess hingegen länger an.

Ebenso treten die Drahtbrüche nicht nur in einem zweidimensionalen Querschnittsbereich des Spanngliedes auf, sondern verteilen sich auch kurz vor und hinter dem sichtbaren Betonriss. Dadurch können sich die Spannungen im günstigen Fall über den Verbund umlagern.

Wie aus der Tabelle 5-10 ersichtlich ist, zeigen Versuche mit gleichen oder ähnlichen Schwingbreiten (z.B. TR01, TR03 u. SB01) die gleichen Tendenzen hinsichtlich des ersten Drahtbruchs sowie der so definierten Versagenspunkte.

Im folgenden Bild 5-97 ist die Entwicklung der Rissweitenänderung der Versuchsträger zu erkennen.

Bild 5-97: Zuwachs der Rissweite der Versuchsträger im Vergleich (logarithmisch)

Der Einfluss der einwirkenden Schwingbreite $\Delta \sigma_P$ auf die Lebensdauer und der damit verbundenen Rissweitenzunahme eines Versuchsträgers ist deutlich zu erkennen. Die Versuchskurven in Bild 5-97 zeigen, dass Versuchsträger mit gleichen Schwingbreiten untereinander ein ähnliches Ermüdungstragverhalten aufzeigen (TR01, TR03 und SB02). So verhalten sich die Versuchsträger TR01 und TR03 aus der Serie TR des "alten" Spannstahls bei gleicher Schwingbreite nahezu ähnlich. Der Unterschied in diesen zwei Versuchen lag in der im Versuchsträger TR01 aufgebrachten geringeren Vorspannkraft. Das zeigt, dass eine leichte Änderung in der Vorspannkraft zwar in der Größe der Rissweitenzunahme Δw erkennbar ist, sich das Ergebnis hinsichtlich der Ermüdungstragfähigkeit allerdings nicht entscheidend ändert.

Genauso unterlag aus der Serie SB des "neuen" Spannstahls der Versuchsträger SB02 einer einwirkenden Schwingbreite von $\Delta \sigma_P$ =200MPa und wies ebenfalls ein vergleichbares Verhalten zu den Trägern TR01 und TR02 auf. Auch dieser bildete nach ca. 1 Mio. Lastwechsel den ersten Drahtbruch, konnte im Gegensatz zu den anderen beiden Trägern der einwirkenden ermüdungswirksamen Schwingbreite allerdings länger standhalten. Dieses ist vermutlich auf den "neuen" Spannstahl zurückzuführen, da dieser altersbedingt weniger Vorschädigungen aufwies.

Die Versuchsträger TR05 und SB02 unterlagen einer vergleichbaren einwirkenden Schwingbreite von ca. $\Delta \sigma_P$ =100MPa. Bei diesen Versuchen zeigte sich in den ersten knapp 9 Mio. Lastwechseln ein weitgehend ähnliches Ermüdungstragverhalten des untersuchten Gesamtsystems durch entstehende Drahtbrüche und der daraus resultierenden Rissweitenänderung.

Da der Versuch TR05 aus Zeitgründen nach 15 Mio. Lastwechseln gestoppt wurde, ist eine abschließende Aussage nicht möglich. Es ist allerdings in diesem Fall zu erkennen, dass der Versuchsträger TR05 mit dem "alten" Spannstahl eine höhere Ermüdungssystemtragfähigkeit aufwies, da bei vergleichbarer Lastwechselzahl von 15 Mio. im Versuchsträger SB02 bereits 14 Drähte gebrochen waren.

In der Serie mit dem "alten" sowie "neuen" Spannstahl ist jeweils ein Versuch zu finden, welcher zeigt, dass auch ein unerwartetes frühzeitiges Auftreten von Drahtbrüchen möglich ist.

Dieses Verhalten zeigen die Versuchsträger TR04 und SB04. Beide unterlagen verschiedenen Schwingbreiten. Trotz des Eintretens frühzeitiger, erster Drahtbrüche in diesen Versuchskörpern, stabilisierte sich der Versagensprozess nach einigen erfolgten Drahtbrüchen wieder. Damit zeigten die Versuchskurven hinsichtlich der Rissweitenänderung wieder das Bestreben in den zu erwartenden Lastwechselzahlenbereich hineinzulaufen.

Die zur sprunghaften Rissweitenänderung führenden einzelnen Drahtbrüche sind zur Visualisierung als Wertepaare ($\Delta \sigma_P$, N) im nachfolgenden, doppellogarithmischen Bild 5-98 eingetragen.

Bild 5-98: Drahtbrüche der Serie TR ("alter" Spannstahl) und SB ("neuer" Spannstahl)

5.3.11 Wertung der Versuchsergebnisse

Wie bereits im Bild 5-98 zu erkennen, ist eine gute Deckung der insgesamt 9 Versuchsergebnisse beider Versuchsreihen untereinander zu erkennen. In diesem Bild wurden zur Unterscheidung die Datenpunkte der Versuchsserie TR des "alten" Spannstahls in schwarz gehalten, die der Serie SB des "neuen" Spannstahls in blau. Versuche mit ähnlichen Spannungsschwingbreiten liegen, deutlich zu erkennen, in einem vergleichbaren Streubereich. Das zeigt, dass sich der über 55 Jahre ältere Spannstahl im eingebauten Gesamtsystem eines Ermüdungsversuchs durchaus mit einem Spannstahl einer heutigen Produktion vergleichen lässt.

Die Ergebnisse des ersten Drahtbruchs sowie des ersten Versagenspunktes sind im Bild 5-99 als Wertepaare (Δσ_P,N) zusammen mit der charakteristischen Wöhlerlinie für gekrümmte Spannglieder im Blechhüllrohren der Klasse 1 nach DIN EN 1992-1-1/NA [20] bzw. DIN EN 1992-2/NA [22] eingetragen.

Zudem wurden die charakteristischen Wöhlerlinien aus dem Model Code 1990, dem Model Code 2010 sowie dem Eurocode EN 1992 ergänzt. Aus den gewonnenen Versuchswerten des ersten Drahtbruchs und des definierten ersten Versagenspunktes sind die zugehörigen Mittelwertregressionsgeraden eingezeichnet. Diese weisen in ihrer Steigung tendenziell eine vergleichbare Größenordnung wie die Steigung k₁ nach gültiger deutscher Norm auf.

Die experimentell ermittelten Werte liegen im Bereich kleiner Schwingbreiten nicht mehr oberhalb dieser normgemäßen charakteristischen Wöhlerlinie. In den eigenen Versuchen lag die niedrigste Schwingbreite bei 60MPa. Der Knickpunkt bzw. das Abflachen der charakteristischen Wöhlerlinie, bei einem charakteristischen Wert von $\Delta \sigma_P$ =120MPa, spiegelt sich in den Versuchen nicht wieder. Eine echte Dauerschwingfestigkeit oder eine Tendenz zu einer Solchen konnte in den eigenen Versuchen nicht festgestellt werden.

Aufgrund eines niedrig angesetzten Versuchs mit einer Spannungsschwingbreite von $\Delta\sigma_P$ =100MPa schlug Abel [2] in seiner Arbeit bereits vor, den zweiten Steigungsast von k₂=7 auf k₂=5 abzumindern. Sein Versuchsergebnis lag knapp oberhalb der Normwöhlerlinie. Durch seinen Vorschlag wollte er so mehr Sicherheit gewinnen. Die drei Versuchsergebnisse von Abel [2] sowie weitere von Bökamp [10] wurden im Bild 5-99 mit abgebildet.

Versuche mit kleineren Schwingbreiten unterhalb von Δσ_P=100MPa konnten in der Literatur für Spannstähle im nachträglichen Verbund in gekrümmten Stahlhüllrohren nicht gefunden werden.

Bild 5-99: Eigene Versuchsergebnisse sowie Ergebnisse von Abel [2] und Bökamp [10] im Vergleich mit den charakteristischen Normkurven

5.3.12 Vorschlag zur Korrektur der charakteristischen Wöhlerlinie

Für den ersten Ast wird vorgeschlagen, die Steigung $k_1=3$, wie sie in DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA sowie im Model Code 1990 angegeben ist, beizubehalten (siehe auch Bild 5-99). Somit verläuft diese Steigung nahezu parallel zu den im Versuch gewonnenen Regressionsgeraden des ersten Drahtbruchs und des ersten Versagenspunktes.

Ein flacherer Ansatz mit einer Steigung $k_1=5$, wie nach EN 1992 oder Model Code 2010 ist nicht notwendig. Dieses zeigten ebenfalls die im Kapitel 3.3.3 recherchierten Ergebnisse anderer Arbeiten.

Auf Grundlage der eigenen Versuche mit sehr hohen Lastwechselzahlen müsste k_2 statt 7 eher in einem Bereich zwischen 4 und 5 liegen. Wie sich zeigt, bietet der Vorschlag, den zweiten Steigungsast auf k_2 =5 statt 7 zu setzten, gerade noch Sicherheit gegenüber den gewonnenen Versuchsergebnissen.

Daher wird vorerst vorgeschlagen, den zweiten Ast mit einer steileren Steigung von k₂=5, analog zum Ansatz von Haibach [45], anzusetzen und den normgemäßen Knickpunkt bei 1 Mio. Schwingspielen und einer Spannungsschwingbreite von $\Delta\sigma_{Rsk}$ =120MPa zu belassen.

$$k_2 = 2 \cdot k_1 - 1 = 2 \cdot 3 - 1 = 5 \tag{5-20}$$

Der Knickpunkt $\Delta \sigma_{Rsk}$ beschreibt üblicherweise in etwa den Übergang zu einer Dauerschwingfestigkeit. Daher ist es natürlich widersprüchlich, diesen an einer Stelle zu belassen, ohne ihn in den Versuchen überhaupt identifiziert zu haben.

Für einen endgültigen Vorschlag sind allerdings noch weitere Versuche im Bereich niedriger Schwingbreiten erforderlich, um hier eine abgesicherte Aussage treffen zu können. Aus diesem Grund wird vorgeschlagen, diesen Knickpunkt aufgrund der bisherigen Ergebnisse nicht zu verändern.

5.3.13 Übertragen der Erkenntnisse auf bestehende Bauwerke

Wie die Versuchsergebnisse mit Spannstahllitzen nahelegen, erscheint aufgrund der Versuchswerte eine Anpassung der charakteristischen Wöhlerlinie für Spannstahl im nachträglichen Verbund im gekrümmten Stahlhüllrohr im Bereich geringer Spannungsschwingbreiten erforderlich (k₂=5 statt 7).

Aus der Tatsache, dass bei Spannlitzen im Stahlhüllrohr bislang nur wenige Ermüdungsschäden in den bestehenden Bauwerken aufgetreten sind, müssen noch versteckte Reserven gegenüber den normgemäßen Nachweisen vorhanden sein. Diese können auf der Einwirkungs- sowie auf der Widerstandsseite liegen.

Auf der Widerstandsseite sind es sicher zwei wesentliche Faktoren. Durch die Bauweise "Spannbeton" liegt der Spannstahl häufig im ungerissenen und überdrückten Bereich und erfährt somit unter den wirksamen Verkehrslasten keine ermüdungswirksamen Spannungsschwingbreiten. Dieses wäre erst nach einer Rissbildung der Fall, sobald das Dekompressionsniveau auch infolge eines ausreichend großen Grundmoments unter Berücksichtigung der Zwangsmomente aus Temperatur (ΔT_M) überschritten wird. So ein Fall wäre bei alten Bauwerken unter stark gestiegenen Verkehrslasten denkbar. Weiter kann davon ausgegangen werden, dass der erste Drahtbruch eines Litzenbündels nicht zu einem unmittelbaren Verlust der Tragfähigkeit eines Bauwerks führt. Dieses zeigte sich auch in den eigenen Versuchen und wurde dort durch die Versagenspunkte (1) und (2) definiert. Im gesamten Mittel mussten in den Versuchen ca. 14% der 35 Drähte brechen, bis dass der Versagenspunkt (1) erreicht wurde und es zu einem instabilen Versagensfortschritt kam. Unter kleinen Schwingbreiten ist dieser prozentuale Wert tendenziell höher.

Ein nicht unwesentlicher Punkt ist vermutlich auch auf der Einwirkungsseite zu finden, da die bei der Bemessung rechnerisch angesetzten Einwirkungen oft in Größe und Häufigkeit im späteren Bauwerk nicht auftreten. Dies gilt nicht nur für die Verkehrslasten sondern beispielsweise auch für die Zwangsschnittgrößen infolge von Temperatureinwirkungen ΔT_M . Da der Zusammenhang zwischen den Spannstahlspannungen und der Momentenbeanspruchung nichtlinear ist, spielt das Grundmoment eine entscheidende Rolle.

5.3.14 Vergleich einbetoniert / freischwingend

Vergleicht man die freischwingend getesteten Materialversuche mit den Systemversuchen im einbetonierten Zustand, so ist ein deutlicher Unterschied zu erkennen. Wie zu erwarten, weisen die Versuche im einbetonierten Zustand im Bereich niedriger Spannungsschwingbreiten eine deutlich geringere Ermüdungsfestigkeit auf. Ebenso ist bei den Versuchen im einbetonierten Zustand kein wirkliches Abknicken, hin zu einem Dauerfestigkeitsbereich, zu erkennen (siehe auch Bild 5-98). Bezogen auf den Knickpunkt $\Delta \sigma_{Rsk}$ nach DIN EN 1992-2/NA für Spannstahl im nachträglichen Verbund im gekrümmten Blechhüllrohr, zeigt Bild 5-100 den prozentualen Abfall der Ermüdungsfestigkeit des freischwingend getesteten "alten" und "neuen" Spannstahls.

Bild 5-100: Ermüdungsfestigkeitsabfall der freischwingend getesteten Spannstähle im Vergleich zur char. Normkurve nach DIN EN 1992/NA bzw. der durch die eigenen Versuche modifizierten Kurve

Mittelt man beide Werte (-48% und -31%), so fällt die Ermüdungsfestigkeit im einbetonierten Zustand um etwa 40% ab.

Dieses kann auf die zahlreichen zusätzlichen Einflussfaktoren im Gesamtsystem zurückgeführt werden. Hierbei handelt es sich im Wesentlichen um Reibeinflüsse sowie korrosive Prozesse, die im Gegensatz zum freischwingend getesteten Materialversuch die Ermüdungstragfähigkeit des Gesamtsystems negativ beeinflussen und damit stark herabsetzen. Bei den Einflüssen aus Reibung handelt es sich nicht nur um die Reibung zwischen Spannstahl und Hüllwellrohr. Es zeigte sich in den Versuchen, dass durchaus auch die Reibung der Drähte untereinander einen Einfluss mit sich bringt. Bei der Betrachtung des bröseligen Verpressmörtels im Rissbereich (siehe auch Bild 5-93) ist hierdurch ebenso ein gewisser Reibeinfluss vorstellbar.

5.4 Zusammenfassung

In diesem Kapitel wurden "alte" Spannstahllitzen aus einem Abbruchbauwerk von 1957 und "neue" Spannstahllitzen einer aktuellen Produktion im freischwingenden und einbetonierten Versuch geprüft und untersucht. Im einbetonierten Zustand wurden diese im nachträglichen Verbund in einem gekrümmten Stahlhüllrohr eines Versuchsträgers eingebaut. In der Oberflächenbeschaffenheit zeigten sich bei dem "alten" Spannstahl leichte, altersbedingte Unterschiede. Während die "neuen" Litzen eine annähernd gleichmäßige und nahezu glatte Oberfläche aufwiesen, zeigten die "alten" Litzen an einigen Stellen einen leichten Flugrostbefall sowie Verunreinigungen durch Zementschlämme. Litzen mit mechanischen Beschädigungen wurden für die weiteren Versuche aussortiert.

In einem ersten Schritt wurden neben statischen Zugversuchen insgesamt 27 "alte" Spannstahlproben und 29 Spannstahlproben einer "neuen" Produktion freischwingend unter einer zyklischen Belastung untersucht und in Anlehnung an das interaktive Verfahren ausgewertet. Alle Versuche wurden mit einer konstanten Unterspannung $\sigma_u = 900MPa$ zum Versuchsstart angesetzt. Dieses entsprach etwa den seinerzeit zulässigen Spannungen nach DIN 4227, welche beim Einbau der "alten" Spannlitzen gültig war.

Es zeigte sich, dass die "neuen" Spannstahlproben speziell im Bereich der Dauerschwingfestigkeit vergleichsweise große Streuungen in den Versuchsergebnissen aufwiesen. Um dieses Phänomen zu ergründen, wurde der Versuchsstand überprüft und die Spannstähle näher metallografisch und

mikroskopisch untersucht. Eine stichfeste Erklärung konnte abschließend nicht gefunden werden. Die einzige Auffälligkeit ergab sich in einer Metallanalyse. Hier wies der "neue" Spannstahl im Randbereich vereinzelt entkohlte Stellen auf. Durch einen höheren Ferritbestandteil in diesen Bereichen wäre das Materialgefüge hier weicher und könnte als Unstetigkeitsstelle im Querschnitt als rissinitiierend wirksam sein. Durch das vereinzelte Auftreten wäre dann die Streuung der Versuchsergebnisse erklärbar.

Zur Absicherung dieser Vermutung sowie des exakten Grunds der Streuungen wären allerdings weiterer Untersuchungen erforderlich.

Aufgrund der großen Streuung wies der "neue" Spannstahl nach der Auswertung aller Versuchsergebnisse im Gegensatz zum "alten" Spannstahl eine nur geringfügig höhere 5%-Quantilgrenze der Dauerschwingfestigkeit auf.

Im Bereich der Zeitfestigkeit zeigten beide Spannstähle tendenziell ähnliche Größen in der ausgewerteten Steigung im doppeltlogarithmischen Maßstab.

Im gesamten Bild wies der "neue" Spannstahl hinsichtlich des Ermüdungswiderstandes somit nur geringfügig bessere Werte auf als der "alte" Spannstahl von 1957.

Im Vergleich zur gültigen Normkurve nach DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA, welche allerdings nur Werte für den einbetonierten Zustand gerader Litzen angibt, lagen alle Versuchswerte deutlich über diesen Werten.

In einem zweiten Schritt wurden die Spannstähle im einbetonierten Zustand im gekrümmten Stahlhüllrohr untersucht, um die Effekte des Gesamtsystems zu berücksichtigen. Hier wurden jeweils 5 Litzen á 7 Drähte in einem Versuchsträger mit einer Länge von 4,5m, einer Höhe von 1m und einer Breite von 30cm eingebaut. Hergestellt wurden 5 Träger mit "alten" und 4 Träger mit "neuen" Spannlitzen. Diese sind dann jeweils in einem zyklischen Großversuch unter geringen Schwingbreiten untersucht und analysiert worden.

Es galt zu prüfen, ob im Bereich geringer Schwingbreiten ein Übergang zu einer Dauerschwingfestigkeit zu erkennen ist, wie er in der aktuellen Norm angesetzt wird.

Weiter sollte das Bruchverhalten der einzelnen Drähte der eingebauten Litzen erkannt und untersucht werden.

Hierzu wurden Mikrofon und Impulsmessungen am Ankerkopf durchgeführt, um die exakten Bruchzeitpunkte in den zum Teil über mehrere Monate laufenden Versuchen zu identifizieren.

Aus den Versuchsergebnissen ist ersichtlich, dass der erste Drahtbruch erwartungsgemäß noch nicht zu einer nennenswerten Schwächung des Gesamtsystems führt. Aus allen Versuchen ergab sich, dass ca. 14% der 35 Drähte brechen mussten, bis es zu einem instabilen Fortschritt der Schädigung kam. Dieser Wert kann aber vermutlich nicht pauschal auf eine andere Anzahl von Drähten oder ein anderes Spannverfahren übertragen werden. Ebenso war anhand der Ergebnisse ersichtlich, dass selbst unter der geringsten einwirkenden Schwingbreite von $\Delta \sigma_P = 60MPa$ noch kein eindeutiges und deutlich erkennbares Abknicken zu einer Dauerschwingfestigkeit erkennbar war und zahlreiche Drahtbrüche noch vor Erreichen der charakteristischen Wöhlerlinie nach DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA auftraten.

Daher wird vorgeschlagen, den zweiten Steigungsast deutlich steiler zu wählen und diesen mit k₂=5 anzusetzen.

Auch wenn Großversuche sehr zeit- und kostenintensiv sind, müssen aufgrund der gewonnenen Ergebnisse in jedem Fall weitere Untersuchungen mit Spannstahl im nachträglichen Verbund in gekrümmten Stahlhüllrohen unter niedrigen Spannungsschwingbreiten durchgeführt werden, um diesen Bereich weiter abzusichern.

6 Simulationsrechnungen zur Lebensdauerabschätzung von Versuchen mit sehr hoher Lastwechselzahl

6.1 Zunahme der Rissweite als Indikator für den fortschreitenden Schädigungsprozess

6.1.1 Einleitung

Der in den Versuchen gemessene Verlauf der Rissweitenänderung dient als guter Indikator für Drahtbrüche und kann durch Berechnung der Rissweite abgebildet werden. Grundlage bietet hierzu die Rissformel zur Ermittlung der Rissbreite eines Einzelrisses.

Die im vorherigen Kapitel beschriebenen Versuchskörper haben bei der rechnerischen Bestimmung der Rissbreite den positiven Effekt, dass im gerissenen Zustand in der Zugzone nur der Spannstahl vorhanden ist. Daher muss zur Dehnungsermittlung lediglich dieser und keine weitere Bewehrung mit unterschiedlicher Verbundsteifigkeit herangezogen werden. Weiter kann, bedingt durch die Geometrie der Versuchsträger, von einer Einzelrissbildung ausgegangen werden, wie es sich auch in den Versuchen zeigte.

Die Rissöffnung *w* entspricht genau dem Integral des Dehnungsunterschieds zwischen dem betroffenen Spannstahl und der umgebenen Betonfaser/Mörtelfaser innerhalb der Verbundlänge des Risses. In diesem Bereich werden die Zugspannungen aus dem ungestörten Gesamtquerschnitt in den Stahl übertragen, bis diese letztendlich im Riss nur noch im Stahl vorhanden sind. Diese Länge umfasst beide Seiten des Risses. Durch die Bestimmung der mittleren Dehnung und der Risseinzugslänge kann daraus die Rissbreite ermittelt werden.

In einem zyklischen Belastungsversuch fallen durch die Ermüdung des Spannstahls im Laufe der Zeit nach und nach vereinzelt Drähte aus. Da in den Versuchen die äußere Belastungsschwingbreite durch die Kraftregelung der Maschine konstant gehalten wurde, stiegen mit jedem Drahtbruch die Spannungen in den übrigen Spannstahldrähten an. Diese Querschnittsminderung findet in der nachfolgenden Berechnung ihre Berücksichtigung.

Bild 6-1: Dehnungen von Spannstahl und Beton im Versuchskörper
6.1.2 Grundlage zur Berechnung der Rissweite

Spannlitzen unterscheiden sich gegenüber Betonstahl nicht grundlegend in ihren Verbundeigenschaften. Durch die Verwendung mehrerer Litzen in einem Spannglied stoßen diese in Teilbereichen aneinander. An diesen Stellen kann keine Verbundkraft zwischen Spannstahl und Beton/Mörtel übertragen werden. Daher muss eine Reduzierung der Spannstahlverbundfläche auf eine wirksame Verbundfläche erfolgen (Bild 6-1,Querschnitt', bzw. Bild 6-2). Hierzu kann bei Litzenbündelspanngliedern ein äquivalenter Durchmesser eines Ersatzstabes angesetzt werden. Die äquivalente Fläche eines theoretisch runden Spannstahls ergibt sich in Abhängigkeit des Durchmessers zu:

$$A_p = \pi \cdot \left(\frac{\phi_p}{2}\right)^2 = \phi_p^2 \cdot \frac{\pi}{4} \tag{6-1}$$

Der Durchmesser errechnet sich in Abhängigkeit der Fläche wiederum zu:

$$\phi_p = \sqrt{\frac{A_p \cdot 4}{\pi}} = 1,13 \cdot \sqrt{A_p} \tag{6-2}$$

Daraus lässt sich ebenfalls allgemein der Umfang angeben:

$$u_i = \phi_p \cdot \pi = 1.13 \cdot \sqrt{A_p} \cdot \pi \tag{6-3}$$

Da der Umfang einer Litze bzw. eines Litzenbündelspanngliedes aus mehreren Kreissegmenten zusammengesetzt ist und keiner reinen Kreisform entspricht, muss mit einem effektiv wirksamen Umfang und Durchmesser gerechnet werden. Hierzu hat Trost [90] 1980 Untersuchungen durchgeführt und gezeigt, dass es ausreichend ist "… den wirksamen Verbundumfang eines Bündelspanngliedes mit der Formel $u_v = \eta \cdot u_i$ zu berechnen, wobei vereinfachend $\eta = 1,4$ angenommen wird." [90, S.13]

Damit ergibt sich für den wirksamen Verbundumfang:

$$u_{\nu} = 1.4 \cdot 1.13 \cdot \pi \cdot \sqrt{A_p} \approx 1.6 \cdot \pi \cdot \sqrt{A_p} \tag{6-4}$$

Der wirksame, äquivalente Durchmesser folgt daraus zu:

$$\phi_{p,aqu} = 1,6 \cdot \sqrt{A_p}$$
(6-5)

LKZ

erbundumfang uv

Bild 6-2: wirksamer Verbundumfang der Spannlitzen

Wird ein einzelner Riss betrachtet, dann herrschen an den Enden der Lasteinleitungslängen l_t wieder die gleichen Dehnungen im Spannstahl und Beton/Mörtel (Bild 6-1 ,Dehnungen'). Unter der Annahme einer konstanten Verbundspannung muss die im Spannstahl zusätzlich eingebrachte Spannung über diese Lasteinleitungslänge bis zum ungestörten Bereich eingeleitet werden.

Der normativ angesetzte Wert au_{bm} der Verbundspannung bezieht sich auf die Verbundeigenschaften von Betonrippenstahl. Das Verhältnis der Verbundfestigkeit von im Verbund liegenden Spanngliedern zur Verbundfestigkeit von Betonrippenstahl im Beton wird näherungsweise durch den Faktor ξ modifiziert. Dieser Parameter wurde ebenfalls bereits von Trost [90] untersucht und kann heutzutage nach DIN EN 1992-1-1 [19] für Litzen im nachträglichen Verbund und einer Betonfestigkeitsklasse \leq C50/60 mit $\xi = 0,5$ angesetzt werden.

Aus diesen Zusammenhängen lässt sich die nachfolgende Gleichgewichtsbeziehung (6-6) aufstellen Bestimmung und zur der Lasteinleitungslänge (6-7) umstellen. Hierbei entspricht $\Delta \sigma_{pr}$ der Differenz aus der max. Spannstahlspannung $\sigma_{p,max}$ im Riss abzüglich der vorhandenen Vorspannung σ_{pm0} im Spannstahl.

Diese Differenzspannung über muss Verbundspannungen in den Beton eingeleitet werden, so dass sich daraus die benötigte Verbundlänge berechnen lässt.

Bild 6-3: Zusammenhang der Spannungen

$$\Delta \sigma_{pr} \cdot A_p = \xi \cdot \tau_{bm} \cdot l_t \cdot u_v \tag{6-6}$$

folgt:

mit:

$$l_t = \frac{\Delta \sigma_{pr} \cdot A_p}{\xi \cdot \tau_{bm} \cdot u_v} \tag{6-7}$$

 $\Delta \sigma_{pr} = \sigma_{p,max} - \sigma_{pm0}$ (vergl. Bild 6-3) mit:

Das Verbundverhalten wird durch eine Vielzahl von Einflüssen bestimmt. Daher gibt es kein allgemeingültiges Verbundgesetz, welches alle Randbedingungen gleichermaßen gut abdeckt. Die Größe der Verbundspannung ist insbesondere von der Relativverschiebung zwischen Stahl und Beton abhängig. Aus Versuchsauswertungen anderer Arbeiten kann vereinfachend das 1,8-fache des Mittelwertes der zentrischen Betonzugfestigkeit als mittlere konstante Verbundspannung angesetzt werden.

Werden diese Ansätze und der wirksame Verbundumfang in der Gleichung (6-7) berücksichtigt, ergibt sich für die Lasteinzugslänge:

$$l_t = \frac{\Delta \sigma_{pr} \cdot A_p}{1,44 \cdot \pi \cdot f_{ctm} \cdot \sqrt{A_p}}$$
(6-8)

Bei Einzelrissen entspricht die Integrationslänge der doppelten Einleitungslänge (Bild 6-1 ,Dehnungen'), wodurch sich für die Rissweite w folgende Beziehung ergibt:

$$w = 2 \cdot l_t \cdot (\varepsilon_{pm} - \varepsilon_{cm})$$

$$\underline{mit:} \qquad \varepsilon_{pm} - \varepsilon_{cm} = \varepsilon_{p,max} - k_t \cdot (\varepsilon_{p,max} - \varepsilon_{pm0}) - k_t \cdot \varepsilon_c$$
(6-9)

Unter Vernachlässigung der Betondehnungen ($\varepsilon_c = \varepsilon_{pm0} \approx 0$) ergibt sich daraus für die Differenzdehnung:

$$\varepsilon_{pm} - \varepsilon_{cm} = (1 - k_t) \cdot \Delta \varepsilon_{pr} = (1 - k_t) \cdot \frac{\Delta \sigma_{pr}}{E_p}$$
(6-10)

Die Belastungsart und Belastungsdauer haben einen zeitlichen Einfluss auf die Verbundsteifigkeit. Dieser Einfluss wird durch den Völligkeitsbeiwert k_t geregelt. Wie Versuche zeigten, kann für kurzzeitige Belastungen der Wert k_t als gute Näherung zu 0,6 angesetzt werden. Durch eine zyklische oder langandauernde Belastung nimmt die Verbundfestigkeit ab. Es kommt zu einem Verbundkriechen bzw. Steifigkeitsabfall durch die zyklische Beanspruchung zwischen Spannstahl und Beton/Mörtel und somit zu einer Vergrößerung der Rissbreite. Dieser Effekt nimmt im Laufe der Zeit ab und kann sich bei langandauernden oder zyklischen Belastungen bis auf etwa $k_t=0,4$ reduzieren. Das entspricht 2/3 der Ausgangsgröße.

Durch Einsetzten der Gleichungen (6-10) und (6-8) in die Gleichung (6-9) errechnet sich für die Versuchsträger die Rissbreite zu:

$$w = 2 \cdot \frac{\Delta \sigma_{pr} \cdot A_p}{1,44 \cdot \pi \cdot f_{ctm} \cdot \sqrt{A_p}} \cdot (1 - k_t) \cdot \frac{\Delta \sigma_{pr}}{E_p}$$
(6-11)

$$w = (1 - k_t) \cdot \frac{\left(\Delta \sigma_{pr}\right)^2 \cdot A_p}{0.72 \cdot \pi \cdot f_{ctm} \cdot E_p \cdot \sqrt{A_p}}$$
(6-12)

<u>mit:</u>

$$k_t$$
: Völligkeitsbeiwert ($k_{t,k} = 0.6, k_{t,l} \approx 0.4$)

- $\Delta \sigma_{pr}$: Spannstahldifferenzspannung $\Delta \sigma_{pr} = \sigma_{p,max} \sigma_{pm0}$
- *A_p*: Spannstahlfläche
- *f_{ctm}*: Mittelwert der zentrischen Betonzugfestigkeit
- *E*_p: E-Modul des Spannstahls

6.1.3 Anpassung der rechnerisch bestimmten Rissbreite infolge einzelner Drahtbrüche

In die Versuchskörper der zyklisch belasteten Großversuche wurde zu Versuchsbeginn, durch Steigerung der äußeren Last, ein Riss eingeprägt und in einem weiteren Schritt die Unterlast angeregelt. Bedingt durch Streuungen in den Systemeigenschaften (Materialparameter, Spannkraftverluste) der einzelnen Versuchskörper, stellten sich trotz gleicher Unterlast unterschiedliche Ausgangsrissbreiten ein. Aus diesem Grund war es sinnvoll, vom zyklischen Versuchsstart bis zum Bauteilversagen, lediglich die Rissweitenzunahme zum Zeitpunkt t zu betrachten. Somit wurde von der Rissweite zum Zeitpunkt t jeweils die Ausgangsrissweite zum Zeitpunkt t = 0 subtrahiert. Daraus ergibt sich allgemein die Rissweitenzunahme wie folgt:

$$\Delta w_{(t)} = w_{(t)} - w_{(t=0)}$$

Bedingt durch Drahtbrüche und Verbundveränderungen müssen im Laufe der zyklischen Belastung einige Parameter der Gleichung (6-12) modifiziert werden. Dies sind im speziellen die Parameter:

- Querschnittsfläche A_p
- Spannstahldifferenzspannung $\Delta \sigma_{pr}$
- Völligkeitsbeiwert k_t

Der Völligkeitsbeiwert nimmt mit zunehmender Schwingspielzahl ab. Dieser Verbundverlust ist kurz nach Versuchsstart am größten und nähert sich dann schnell mit zunehmender Schwingspielzahl einem Grenzwert an. Es zeigt sich, dass dieses Verhalten gut durch eine exponentielle Funktion beschrieben werden kann. Zum Start nimmt diese Funktion den Völligkeitsbeiwert einer kurzzeitigen Belastung $(k_{t,k})$ an und nähert sich im weiteren Verlauf dem Völligkeitsbeiwert der langzeitigen Belastung $(k_{t,l})$. Durch die im Parameter c einfließenden Einzelwerte a < 1 und b > 0 lässt sich das Verhalten des Verbundverlustes modellieren.

$$k_t(t) = k_{t,l} + (k_{t,k} - k_{t,l}) \cdot e^{N(t) \cdot c}$$

$$mit: \quad c = \ln(a) \cdot b$$
(6-14)

Mit jedem Drahtbruch einer Litze reduziert sich die *Querschnittsfläche* A_p . Da die *Spannstahldifferenz-spannungen* $\Delta \sigma_{pr}$ im direkten Zusammenhang zur Querschnittsfläche steht, kann diese zum Zeitpunkt t wie folgt daraus ermittelt werden:

$$\Delta \sigma_{pr}(t) = \sigma_{p,max} \cdot \frac{A_p(t=0)}{A_p(t)} - \sigma_{pm0}$$
(6-15)

Daraus ergibt sich die zeitlich abhängige Rissweitenfunktion zu:

$$w_{(t)} = (1 - k_t(t)) \cdot \frac{\left(\Delta \sigma_{Pr}(t)\right)^2 \cdot A_P(t)}{0.72 \cdot \pi \cdot f_{ctm} \cdot E_P \cdot \sqrt{A_P(t)}}$$
(6-16)

mit:

- $k_t(t)$: Funktion zur Beschreibung des Völligkeitsbeiwerts zum Zeitpunkt t
- $A_p(t)$: Restspannstahlfläche zum Zeitpunkt t
- $\Delta\sigma_{pr}(t):$ Spannstahldifferenzspannung in Abhängigkeit von der Restspannstahlfläche zum Zeitpunkt t
- *E*_p: E-Modul des Spannstahls
- *f_{ctm}*: Mittelwert der zentrischen Betonzugfestigkeit

6.1.4 Vergleich mit den nachgerechneten eigenen Versuchen

Durch die in Gleichung (6-16) angegebene Funktion können die Entwicklungen der in den Versuchen gemessenen Rissweiten nachgerechnet werden.

Für die Berechnungen wurden die gemessenen Materialkennwerte verwendet, welche in der Anlage zu finden sind. Da die zentrische Betonzugfestigkeit nicht für alle Versuchsträger vorlag, wurde diese aus der gemessenen Würfeldruckfestigkeit der einzelnen Träger nach Gleichung (6-17) berechnet.

$$f_{ctm} = 0.3 \cdot (f_{ck})^{\frac{2}{3}}$$
(6-17)

Als vorhandene Ausgangsspannung σ_{Pm0} im Spannglied infolge der Vorspannkraft wurde die aus dem Dekompressionszustand gewonnene Spannstahlspannung angesetzt.

Allen Versuchen lag ein Völligkeitsbeiwert $k_{t,k} = 0.6$ und der konstante Wert c = -0.002% zugrunde, wodurch alle Berechnungen akzeptable Ergebnisse hervorbrachten.

Es zeigte sich, dass der Einfluss der Funktion des Völligkeitsbeiwerts (Gl. (6-14)) im Wesentlichen den Verlauf im Anfangsbereich der Rissweitenentwicklung (bis ca. $2 \cdot 10^5$) bestimmte.

Der Völligkeitsbeiwert $k_{t,l}$ musste für die Träger TR01-TR03 stärker variiert werden. Bei den übrigen Versuchsträgern fiel der Verbundverlust sehr gering aus, so dass bei diesen der Wert $k_{t,l} = 0,59$ angesetzt werden konnte. Eine eindeutige Begründung für das Verhalten der ersten drei Träger konnte nicht gefunden werden. In den ersten zwei Trägern (TR01-TR02) könnte die etwas geringere Vorspannkraft der Grund für das stärkere Risswachstum zu Versuchsbeginn gewesen sein. TR03 zeigte in den Ergebnissen der Referenzprüfkörper zur Bestimmung der Druckfestigkeit und des E-Moduls vereinzelt schlechtere Werte. Wäre im Bereich des Risses Beton mit einer geringeren Festigkeit vorhanden, so könnte das ebenfalls zu einem anfänglich stärkeren Risswachstum führen.

Unter der Vorgabe der bekannten Bruchzeitpunkte bzw. Bruchschwingspielzahlen einzelner Drähte sind die Rissentwicklungen der Versuchsträger nach Gleichung (6-16) nachgerechnet worden. Die neben den festen Eingangsparametern verwendeten versuchsbezogenen Parameter sind in den Diagrammen angegeben. Bild 6-4 bis Bild 6-8 zeigt die Versuche der Serie TR des "alten" Spannstahls, Bild 6-9 bis Bild 6-12 die der Serie SB des "neuen" Spannstahls.

Es ist in nahezu allen Versuchen ersichtlich, dass die Nachrechnung der Rissweitenänderung gute Übereinstimmung erzielt. Der Verlauf der Kurven kann dadurch gut nachgebildet werden.

In einigen Bereichen weicht die Berechnung von den gemessenen Werten ab. Da es sich bei der hergeleiteten Formel um eine idealisierte Betrachtung handelt, sind gewisse Abweichungen durchaus zu erwarten. Nach dem Ansatz der Formel müssten die einzelnen Brüche direkt in der Rissebene auftreten und jeweils einen vergleichbaren Verbundverlust aufweisen. Dieses ist allerdings, wie es auch die ausgebauten Spannlitzen zeigten, nicht der Fall. Dadurch, dass die Brüche nicht alle in der Rissebene der Betons auftraten, haben Drähte mit entfernten Brüchen die Möglichkeit, sich im System zumindest teilweise zurück zu verankern.

In welcher Reihenfolge die einzelnen Drahtbrüche in den Litze aufgetreten sind, kann im Nachhinein nicht festgestellt werden. Die Analyse der ausgebauten Spannlitzen zeigte z.B. im Versuchsträger SB02, dass einige Drahtbrüche vom entstandenen Betonriss entfernt lagen. Dadurch haben diese einen geringeren Einfluss auf die Rissweitenzunahme.

Bild 6-4: Nachrechnung im Vergleich zu den Messwerten (TR-01, $\Delta \sigma_p = 200N/mm^2$)

Bild 6-5: Nachrechnung im Vergleich zu den Messwerten (TR-02, $\Delta \sigma_p$ =455N/mm²)

Bild 6-6: Nachrechnung im Vergleich zu den Messwerten (TR-03, $\Delta \sigma_p = 200N/mm^2$)

Bild 6-7: Nachrechnung im Vergleich zu den Messwerten (TR-04, $\Delta \sigma_p = 150N/mm^2$)

Bild 6-8: Nachrechnung im Vergleich zu den Messwerten (TR-05, $\Delta \sigma_p = 98N/mm^2$)

Bild 6-9: Nachrechnung im Vergleich zu den Messwerten (SB-01, $\Delta \sigma_p = 200N/mm^2$)

Bild 6-10: Nachrechnung im Vergleich zu den Messwerten (SB-02, $\Delta \sigma_p = 100N/mm^2$)

Bild 6-11: Nachrechnung im Vergleich zu den Messwerten (SB-03, $\Delta \sigma_p = 60N/mm^2$)

Bild 6-12: Nachrechnung im Vergleich zu den Messwerten (SB-04, $\Delta \sigma_0 = 80N/mm^2$)

Durch eine prozentuale Gewichtung der einzelnen Drahtbrüche innerhalb der Formel kann der Einfluss auf die Rissweitenzunahme modifiziert werden. Hierzu wird ein Gewichtungsfaktor g_{mod} eingeführt. Wird diese Anpassung manuell vorgenommen, kann der Verlauf nahezu exakt nachgebildet werden. Dieses zeigen exemplarisch das Bild 6-13 für den Versuch SB02 und das Bild 6-14 für den Versuch SB04. In beiden Bildern ist neben den Versuchswerten der nach Gleichung (6-16) errechnete Verlauf aufgetragen sowie ein modifizierter Verlauf. Die zur Modifikation der beiden Verläufe verwendeten Faktoren g_{mod} sind in der Tabelle 6-1 angegeben.

Die Berechnung erfolgt analog zu den Gleichungen (6-15) und (6-16). Lediglich der Einfluss eines Drahtbruchs des modifizierten Verlaufs findet bei der zum Zeitpunkt t vorhandenen Querschnittsfläche $A_p(t)$ durch den Faktor g_{mod} eine gewichtende Berücksichtigung und kann stattdessen in beiden Gleichungen als modifizierte Querschnittsfläche $A_{p,mod}(t)$ nach Gleichung (6-18) angesetzt werden.

$$A_{p,mod}(t) = A_p(t) \cdot g_{mod} \tag{6-18}$$

Es ist zu erkennen, dass der Faktor g_{mod} in der Regel zwischen 0,25 und 1 liegt. Liegt g_{mod} unter 1, so ist der Drahtbruch nicht direkt im Bereich des Risses im Beton aufgetreten. In diesem Fall liegt der Bruch etwas von dem Betonriss entfernt. Liegt g_{mod} über 1 und unter 2, so kommt es bei einem Drahtbruch zu einem stärkeren Verbundverlust. Dieses wäre denkbar, wenn der siebte Draht einer Litze bricht. Somit könnte eine eventuell noch vorhandene Umschnürung der bereits gebrochenen Drähte schlagartig entfallen, welche zuvor noch die Möglichkeit einer Rückverankerung der Zugkraft in den Beton bot.

Bruch	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SB02	0,75	0,50	0,50	1,00	1,00	0,25	1,00	1,00	1,00	1,00	2,00	1,75	1,00	1,75	2,00	1,00	1,00
SB04	0,50	0,50	0,75	0,75	0,50	1,00	1,00	1,00	1,00	2,00	2,00	1,00	1,00	2,00	1,50	2,00	2,00

Bild 6-13: modifizierte Nachrechnung im Vergleich zu den Messwerten (SB-02)

Bild 6-14: modifizierte Nachrechnung im Vergleich zu den Messwerten (SB-04)

Diesen Parameter als zusätzliche, vorausbestimmbare Variable in die Formel aufzunehmen ist nicht möglich, da die exakte Lage des nächsten Drahtbruches in einem Spannglied mit mehreren Litzen natürlich nicht vorhergesagt werden kann. Ohne diesen Faktor liegt die vorgestellte Berechnung daher eher auf der sicheren Seite. Ebenso muss die Anzahl der Schwingspiele bei den einzelnen Drahtbrüchen bekannt sein. Diese Formel dient daher eher dazu, die qualitativen Zusammenhänge zu verdeutlichen und abzubilden.

6.2 Rechensimulationen zur Prognose der Rissentwicklung

Auf der Basis der gewonnenen Versuchsdaten und der entwickelten Formel zur Berechnung der Rissweitenzunahme kann ein vergleichbarer Versuch simuliert werden. Hierzu wurde ein Programm entwickelt, welches die vorliegenden Versuchsdaten statistisch analysiert, auswertet und in weiteren Simulationsrechnungen verarbeitet. So kann eine Simulation mit einer gewünschten Prognosewahrscheinlichkeit durchgeführt werden. Ebenso ist es möglich, die weitere Entwicklung eines bereits laufenden Versuchs zu jedem beliebigen Zeitpunkt weiter voraus zu prognostizieren.

6.2.1 Analyse der vorhandenen Datenmenge der Versuchsergebnisse

Die einzelnen Brüche der insgesamt 35 Drähte eines Versuchsträgers bilden durch die aktuell vorherrschende Spannungsschwingbreite mit der zugehörigen Lastwechselzahl beim Bruch eine gemeinsame Datenmenge, welche den Versagensprozess im Gesamtsystem beschreibt. Insgesamt konnten so n=112 Datenpunkte anhand der Drahtbrüche aus allen Versuchen bestimmt werden. Um das Ansteigen der Spannung in den verbleibenden Drähten nach einem Bruch zu berücksichtigen, wird die Ausgangsschwingbreite $\Delta \sigma_p (i = 0)$ mit einem Verhältniswert multipliziert, welcher mit der Variablen *i* die Anzahl der gebrochenen Drähte beschreibt. Damit ergibt sich allgemein die

$$\Delta \sigma_p(i) = \frac{35}{35 - i} \cdot \Delta \sigma_{p,i=0} \tag{6-19}$$

Mit jedem weiteren Drahtbruch wächst der Verhältniswert 35/(35-i) überproportional an.

Schwingbreite in Abhängigkeit der gebrochenen Drähte zu:

Die Schwingspiele werden analog zur Schadensakkumulation für jede einzelne Spannungsschwingbreite $\Delta \sigma_p(i)$ angegeben. Somit ergibt sich jeweils aus der Differenz der Schwingspiele zwischen zwei Drahtbrüchen die Anzahl ΔN_i der Spannungsschwingbreite $\Delta \sigma_p(i)$.

$$\Delta N_i = N_{i+1} - N_i \tag{6-20}$$

Im Bild 6-15 ist der Zusammenhang zwischen den Gleichungen (6-19) und (6-20) grafisch dargestellt.

Durch Auftragen der so gewonnenen einzelnen Schwingspiele ΔN_i mit der jeweils zugehörigen Spannungsschwingbreite $\Delta \sigma_p(i)$ ergibt sich im halblogarithmischen Maßstab aus allen durchgeführten Großversuchen ein Streuband. Hierbei zeigt sich bereits eine Tendenz.

Als einfachste Grundlage zur statistischen Auswertung lässt sich diese Datenmenge durch eine lineare Mittelwertregression, basierend auf der Summe der kleinsten Fehlerquadrate, beschreiben. Es zeigt sich allerdings, dass diese im Bereich großer und speziell im Bereich der kleinen Schwingbreiten

zunehmend von der Datenmenge abweicht. Ebenso ist es nicht plausibel, dass danach Schwingbreiten nahe Null bereits zu ersten Drahtbrüchen nach ca. 3,5 Mio. Schwingspielen führen würden.

Daher bietet sich eine Regression auf Basis einer Potenzfunktion an, welche gerade den Bereich sehr kleiner Schwingbreiten deutlich besser beschreibt.

Die gesamte Datenmenge sowie die Mittelwertregressionsfunktionen, auf Basis einer linearen und einer Potenzfunktion, sind in Bild 6-16 dargestellt. Auf der Basis der gewählten Regressionsfunktion kann nun ein Prognoseintervall angegeben werden, in dessen Bereich die zu erwartenden Brüche liegen. Vom Versuch SB01 wurden die aufgezeichneten Brüche 8-11 als ein Ereignis gewertet, da diese vier Drahtbrüche einen nahezu identischen Bruchzeitpunkt aufweisen (siehe auch Versuchskurve in der Anlage, Bild A 3-42). Die Anzahl dieser Brüche wurde allerdings weiter berücksichtigt.

6.2.2 Bestimmung der Mittelwertfunktion und Prognoseintervallgrenzen

Die **Regressionsfunktion**, auf Basis einer Potenzfunktion, kann in allgemeiner Form nach Gleichung (6-21) für die insgesamt *n* Versuchswerte beschrieben werden.

$$y = a_0 \cdot x^{b_l} \tag{6-21}$$

Diese nichtlineare Regressionsfunktion lässt sich durch den Logarithmus in eine Funktion mit einem linearen Zusammenhang transformieren, wodurch die Parameter einfacher bestimmt werden können.

$$\ln y = \ln a_0 + b_l \cdot \ln x \tag{6-22}$$

Alternativ ergibt sich durch die Verwendung der Schreibweise $u = \ln x$, $v = \ln y$ und $a_l = \ln a_0$

$$v = a_l + b_l \cdot u \tag{6-23}$$

Nun lassen sich die Parameter a_l und b_l für die beobachteten Wertepaare nach der Methode der kleinsten Fehlerquadrate als Koeffizienten einer linearen Funktion schätzen.

Die *n*Versuchswerte x_i und y_i werden hierzu vorab ebenfalls auf logarithmische Werte transformiert.

$$u_i = \ln x_i \quad und \quad v_i = \ln y_i \tag{6-24}$$

$$\overline{u} = \frac{1}{n} \cdot (\sum_{i} u_{i}) \quad \text{und} \quad \overline{v} = \frac{1}{n} \cdot (\sum_{i} v_{i}) \tag{6-25}$$

Summen von Abweichungs-Quadraten und Abweichungsprodukten:

$$S_{uu} = \sum_{i} (u_i - \overline{u})^2 \tag{6-26}$$

$$S_{vv} = \sum_{i} (v_i - \overline{v})^2 \tag{6-27}$$

$$S_{uv} = \sum_{i} (u_i - \overline{u})(v_i - \overline{v})$$
(6-28)

Im Weiteren können nun daraus die **Parameter** a_l und b_l der Regressionsfunktion bestimmt werden.

$$b_l = \frac{S_{uv}}{S_{uu}} \tag{6-29}$$

$$a_l = \overline{v} - b_l \cdot \overline{u} = \overline{v} - \frac{S_{uv}}{S_{uu}} \cdot \overline{u}$$
(6-30)

Aus den gewonnenen Datenpunkten ergibt sich somit $a_l = 26,27$ und $b_l = -2,654$. Mit diesen beiden Parametern kann nun auch die **Streuung** um die Regressionsfunktion angegeben werden.

$$SQ(a_l, b) = S_{vv} - b_l \cdot S_{uv} \tag{6-31}$$

Durch den Freiheitsgrad m = n - 2 berechnet sich die **Standardabweichung** der *y* Werte zur Regressionsfunktion nach Gleichung (6-32).

$$\hat{\sigma}_u = \sqrt{\frac{1}{m} \cdot SQ(a_l, b_l)} \tag{6-32}$$

Die **Konfidenzgrenzen** für eine α %-ige Sicherheit ergeben sich unter der Verwendung des α -Quantils der Student-Verteilung (t-Verteilung) mit dem Freiheitsgrad m. Dieser "t-Wert" kann Tafelwerken (z.B. [75]) entnommen oder rechnergestützt ausgegeben werden (hier: $t_{m,\alpha=0,05} = 1,982$ für n=112). Damit ergibt sich für eine vorgegebene Spannungsschwingbreite u_0 , unter der Annahme normalverteilter y Werte, mit einer Sicherheit von 90% die obere und untere Grenze des **Konfidenzintervalls** nach Gleichung (6-33). Das Zutreffen normalverteilter Werte wird im Weiteren noch bewiesen (Bild 6-18).

$$f_{Konf,\alpha=0,05}(u_0)_{o/u} = a_l + b_l \cdot u_o \pm t_{m,\alpha=0,05} \cdot \hat{\sigma}_u \cdot \sqrt{\frac{1}{n} + \frac{(u_0 - \overline{u})^2}{S_{uu}}}$$
(6-33)

Durch geringfügiges Erweitern der Gleichung (6-33) unterhalb der Wurzel können ebenso die obere und untere Grenze des **Prognoseintervalls** nach Gleichung (6-34) errechnet werden.

$$f_{Prog,\alpha=0,05}(u_0)_{o/u} = a_l + b_l \cdot u_o \pm t_{m,\alpha=0,05} \cdot \hat{\sigma}_u \cdot \sqrt{1 + \frac{1}{n} + \frac{(u_0 - \overline{u})^2}{S_{uu}}}$$
(6-34)

Bild 6-17: Regressionsfunktion mit Konfidenz- und Prognoseintervall auf Basis der Versuchswerte (n=112)

6.2.3 Bestätigung normalverteilter Versuchswerte

Wie bereits beschrieben, wurde bei der Bestimmung des Prognoseintervalls der rechnerisch bestimmten Mittelwertfunktion normalverteilte Versuchswerte angenommen.

Zur Überprüfung, dass die Versuchswerte einer Normalverteilung folgen, wurden diese samt der daraus zuvor gewonnenen Mittelwertfunktion standardisiert.

Bild 6-18: Häufigkeitsverteilung und Verteilungsfunktion aller Versuchswerte um die gewonnene (standardisierte) Regressionsfunktion mit Verteilungsfunktion

Hierbei werden die Versuchsergebnisse um die Werte der Mittelwertfunktion verschoben. Die Mittelwertfunktion ist somit in jedem Schnitt gleich Null. Es zeigt sich, dass die Streuung um die Mittelwertfunktion, der aus den Versuchen gewonnenen insgesamt 112 Versuchswerte, einer Normalverteilung folgt. Bild 6-18 zeigt die Häufigkeitsverteilung der Versuchsergebnisse sowie die zugehörige Verteilungsfunktion der Summenhäufigkeit. Ebenso ist zum Vergleich die

Verteilungsfunktion einer Normalverteilung angegeben. Es ist deutlich zu erkennen, dass die gesamte Datenbasis einer Normalverteilung folgt. Somit kann der gewählte Ansatz weiter verfolgt und verwendet werden.

6.2.4 Berücksichtigung ansteigender Schwingbreiten bis zum Drahtbruch im jeweiligen Restquerschnitt

Die einzelnen Spannlitzendrähte des Spanngliedes unterliegen zum Versuchsbeginn einer für den Versuch vorab angesetzten Spannungsschwingbreite $\Delta \sigma_0$. Bricht ein erster Draht, so wächst die Spannungsschwingbreite in den verbleibenden Drähten anteilmäßig an. Diese unterliegen dann bis zum nächsten Drahtbruch einer gewissen zusätzlichen Anzahl an Lastzyklen ΔN_1 mit einer höheren Spannungsschwingbreite $\Delta \sigma_1$, usw. Somit steigt die Spannungsschwingbreite in den jeweils verbleibenden ungebrochenen Drähten mit jedem auftretenden Drahtbruch weiter an. Im Laufe des gesamten Versuchs wirkt daher auf die jeweiligen Drähte ohne Ermüdungsbruch ein Spannungskollektiv unterschiedlicher Spannungsgrößen $\Delta \sigma_i$ mit zugehörigen Lastwechselzahlen ΔN_i (zwischen zwei Brüchen), bis auch sie einen Ermüdungsbruch erleiden.

In der Simulation wird für eine Spannungsschwingbreite $\Delta \sigma_i$ die zugehörige Schwingspielzahl ΔN_i anhand der gewonnenen Mittelwertregressionsfunktion und einer auf den Versuchswerten basierenden Verteilungsfunktion mittels einer Zufallszahl bestimmt. Der Einfluss einer bereits zuvor einwirkenden, geringeren Schwingbreite wird daher in der Simulation durch die aus den Versuchsdaten gewonnenen Mittelwertregressionsgeraden bereits berücksichtigt. Da in der Simulationsrechnung des ersten Drahtbruchs unter der Schwingbreite $\Delta \sigma_0$ allerdings noch keine anderen Spannungsschwingbreiten zuvor eingewirkt haben können, muss dieses bei der Schätzung der Lastwechsel ΔN_0 durch eine Korrektur berücksichtigt werden.

Um eine geeignete Korrektur vorzunehmen, werden jeweils die ersten Drahtbrüche der jeweiligen Versuchsträger mit der gewonnenen Mittelwertregressionsfunktion verglichen und in eine prozentuale Beziehung gesetzt.

Tabelle 6-2 zeigt für die ersten drei Brüche aller Versuchskörper die prozentualen Abweichung der Spannungsschwingbreite zur rechnerisch bestimmten Mittewertregressionsfunktion. Die Größe von 100% würde in der Tabelle die exakte Lage eines Versuchsergebnisses auf der Regressionsfunktion widerspiegeln. Kleinere Werte bedeuten, dass die Regressionskurve um die entsprechende prozentuale Größe vor dem betrachteten Versuchsdatenpunkt liegt ($\Delta N_{0,cal} < \Delta N_{0,obs}$). Bei größeren Werten wiederum dahinter ($\Delta N_{0,cal} > \Delta N_{0,obs}$).

	TR01	TR02	TR03	TR04	TR05	SB01	SB02	SB03	SB04	MW
1. Bruch	54%	55%	56%	52%	65%	56%	72%	47%	118%	64%
2. Bruch	66%	74%	69%	114%	168%	40%	127%	96%	133%	99%
3. Bruch	91%	150%	95%	97%	71%	65%	129%	91%	204%	110%

Tabelle 6-2: prozentuale Abweichung der ersten Drahtbrüche von der MW-Regressionsfunktion

Bei Betrachtung der Drahtbrüche in der Datenmenge der Versuchsergebnisse fällt auf, dass jeweils der erste Drahtbruch der Versuchsträger meist deutlich oberhalb/hinter der verwendeten Mittelwertregressionsfunktion liegt (siehe auch Bild 6-19). Bereits ab dem zweiten Drahtbruch streuen die Datenpunkte aller Versuche hingegen um diese Funktion.

Bild 6-19: Darstellung der Abweichung des ersten Drahtbruchs von der Mittelwertfunktion

Die Werte zeigen, dass bei der Simulationsrechnung einer ersten einwirkenden Spannungsschwingbreite $\Delta \sigma_0$ ohne eine entsprechende Korrektur die Anzahl der Schwingspiele ΔN_0 bis zum ersten Drahtbruch unterschätzt wird.

Die prozentuale Abweichung der Regressionskurve zum jeweils ersten Drahtbruch liegt etwa zwischen 50% und 70%. Diese sind zur Verdeutlichung ebenfalls im Bild 6-19 aufgetragen. Aus allen Versuchsträgern ergibt sich ein gemittelter Wert von 64%.

In den weiteren Simulationsrechnungen wird bis zum erfolgten ersten Drahtbruch diese prozentuale Größe als Korrekturwert der einwirkenden Schwingbreite $\Delta \sigma_{i=0}$ verwendet (6-35). Dadurch erfolgt eine deutlich bessere Schätzung der zugehörigen Spannungsschwingspiele ΔN_0 .

Da sich der gemittelte Wert durch weitere neue Versuche ändern kann, wird dieser Korrekturwert allgemein durch die hierzu eingeführte Variable $h_{0,mod}$ ausgedrückt.

$$\Delta \sigma_{i=0,mod} = h_{0,mod} \cdot \Delta \sigma_{i=0} = 64\% \cdot \Delta \sigma_{i=0} \tag{6-35}$$

Nach einem erfolgten ersten Drahtbruch wird ohne Korrekturwert weitergerechnet bzw. $h_{0,mod}$ wieder zurück auf 100% gesetzt.

Näherungsweise wird nachfolgend vereinfachend wie folgt verfahren:

$$\Delta N_0 = \Delta N (0.64 \cdot \Delta \sigma_0) \tag{6-36}$$

 $\Delta N_i = \Delta N (\Delta \sigma_i) \qquad \qquad \text{für } i \ge 1$

6.2.5 Simulationsrechnung für beliebige Ausgangsparameter

Die aus den Daten bestimmten Funktionen und zugehörigen Verteilungen können nun für Simulationsrechnungen herangezogen werden. Es wurde mit Excel VBA eine Programmroutine entwickelt, mit der unter der Angabe gewisser Ausgangsparameter diese Simulationsrechnungen durchgeführt werden können.

Es sei darauf hingewiesen, dass durch die vorliegende Datenmenge nur das Verhalten der vorgestellten Versuchsträger wiedergegeben werden kann. Für eine Übertragung des Programms auf andere Versuchsträger müssten deren Versuchsdaten eingelesen und analysiert werden. Ebenso kann, bedingt durch ein anderes System, eine Anpassung der zu Grunde gelegten Rissweitenberechnung vonnöten sein.

Das Ablaufdiagramm im Bild 6-22 zeigt schematisch den Algorithmus des gesamten Programms. In einem ersten Schritt erfolgt die Eingabe der Ausgangsparameter. Hier wird zwischen Versuchs- und Materialparametern unterschieden.

Bei den Versuchsparametern müssen die Ausgangsschwingbreite $\Delta \sigma_p (i = 0)$, die im Betonriss vorherrschende Vorspannung im Spannstahl σ_{pr1} zu Versuchsbeginn und die angesetzte Unterspannung σ_u angegeben werden.

Die Materialparameter können den gemessenen oder auch den theoretischen Werten entsprechen. Hier werden der E-Modul des Spannstahls (E_P) und die Betondruckfestigkeit (f_{ck}) angegeben. Aus der Betondruckfestigkeit wird rechnerisch die Betonzugfestigkeit ermittelt. Alternativ kann auch ein gemessener Wert einer Betonzugfestigkeit angegeben werden. Weiter ist es möglich, den Völligkeitsbeiwert k_t zur Berücksichtigung des Verbundverlustes im Langzeitverhalten anzugeben. Wie sich bereits bei der direkten Nachrechnung der Versuche unter Berücksichtigung der bekannten Bruchzeitpunkte zeigte, kann hier allerdings für die meisten Versuche vereinfacht der Wert $k_{t,lang} = 0,59$ angesetzt werden.

Nach der Eingabe der geforderten Parameter erfolgt ein erster Rechen- und Analyseprozess der vorhandenen Daten nach den in Kapitel 6.2.1 und 6.2.2 beschriebenen Verfahren.

Mit steigender Anzahl an neuen Versuchsergebnissen werden die in diesem Prozess gewonnenen Funktionen immer exakter. Die Prognoseintervallgrenzen für ΔN_i in Abhängigkeit von $\Delta \sigma_i$ werden bei der Bestimmung mit einer Sicherheit von 90% angegeben. Dieser Wert lässt sich allerdings bei Bedarf anpassen. Liegt die Prognosefunktion mit zugehörigen Intervallgrenzen vor, startet der zweite Rechenprozess. In diesem werden nun auf Basis der Daten Simulationen der Rissweitenzunahme generiert. Wie sich zeigte, ist für eine Prognose eine maximale Anzahl (ZB_{max}) von 500 Rissweitenverläufen als völlig ausreichend anzusehen. Dieser Wert kann ebenfalls bei Bedarf angepasst werden. Bild 6-20 und Bild 6-21 zeigen den Unterschied zwischen 50 und 500 Simulationsrechnungen. Die Mittelwertprognose ändert sich hierbei kaum.

Bild 6-20: Simulation mit 50 Einzelsimulationen

Bild 6-21: Simulation mit 500 Einzelsimulatione

Die Generierung eines Rissweitenverlaufs startet mit dem Ausgangswert $\Delta \sigma_P(i=0)$. Zu dieser Schwingbreite wird anhand der im ersten Rechenprozess gewonnenen Mittelwertfunktion, Prognoseintervallgrenzen, Standardabweichung sowie Anzahl der Versuchswerte (siehe auch Kapitel 6.2.1 und 6.2.2) ein zufälliger Wert für $\Delta N_{i=0}$ auf der Grundlage einer Normalverteilung (analog den analysierten Versuchsergebnissen) generiert, so dass die erste Schwingspieldifferenz gewonnen wird. Anschließend wird die Spannungsschwingbreite $\Delta \sigma_{i,ZB}$ durch einen ersten Drahtbruch (i = 1) erhöht. Mit dieser gestiegenen Schwingbreite erfolgt nun die Ermittlung der nächsten Schwingspieldifferenz $\Delta N_{i=1}$ als Zufallsgröße nach gleicher Vorgehensweise und wiederholt sich für alle 35 Drähte. Ein so simulierter Rissweitenverlauf setzt sich dann entsprechend Bild 6-15 zusammen.

Bild 6-23 zeigt exemplarisch die Häufigkeitsverteilung der generierten Zufallswerte für ΔN_i der ersten 15 Drahtbrüche eines gesamten Simulationsprozesses. Für jeden dieser 15 mittels Zufallszahlen simulierten Drahtbrüche (*i*) ergeben sich bei jeweils 500 (ZB_{max}) Realisierungen die dargestellten Verteilungen für die standardisierten ΔN_i . Hier ist bereits zu erkennen, dass diese der vorgegebenen Normalverteilung folgen.

Bild 6-23: Häufigkeitsverteilung der ersten 15 Drahtbrüche eines Gesamtprozesses mit 500 Einzelsimulationen

Um dieses Verhalten abschließend zu prüfen, wurde in Bild 6-24 die Häufigkeitsverteilung aller dieser simulierten Werte dargestellt. Dieses Bild enthält ebenfalls die sich daraus ergebende Verteilungsfunktion sowie zum Vergleich die Verteilungsfunktion der ursprünglich realen Versuchswerte. Es zeigt sich eine gute Deckung.

Bild 6-24: Häufigkeitsverteilung aller simulierten, normalverteilten Zufallszahlen eines Rechenprozesses um den standardisierten Mittelwert mit zugehöriger Verteilungsfunktion

Anschließend werden analog die nächsten Rechenläufe bis zum letzten Simulationslauf ZB_{max} generiert. Aus allen Rissweitenverläufen lassen sich die Mittelwertprognose sowie die Min/Max Grenzen bestimmen. Diese Verläufe zeigen dann eine Prognose des zu erwartenden Rissweitenverlaufs.

Die nachfolgenden Bilder zeigen exemplarisch Simulationsrechnungen, für einen Versuchsträger der "alten" Serie (TR03, Bild 6-25) und für einen der "neuen" Serie (SB03; Bild 6-26), mit einer Prognosewahrscheinlichkeit von 90%. Die Simulationsrechnungen aller Versuchsträger können der Anlage A4 entnommen werden. Bei diesen Rechnungen wurden als Eingangsparameter die real gemessenen Werte angesetzt, welche ebenfalls der Anlage A3.1.2/A3.3 zu den Ermüdungsversuchen entnommen werden können. Insgesamt wurden bei diesen Simulationen 500 Einzelsimulationen durchgeführt.

Bild 6-25: Simulationsrechnung TR03 ($\Delta \sigma_{p,(i=0)} = 200MPa$)

Bild 6-26: Simulationsrechnung SB03 ($\Delta \sigma_{p,(i=0)} = 60$ MPa)

Die im jeweiligen realen Versuch erhaltene Rissweitenzunahme ist ebenfalls mit in den Bildern abgebildet. Es ist zu erkennen, dass diese deutlich im simulierten Prognoseband liegt. Das gilt ebenso für die übrigen Simulationen der anderen Versuchsträger. In den meisten Fällen folgen die Versuchskurven nahezu der Mittelwertkurve der jeweiligen Simulationsrechnung. Einige Versuche weichen in Teilbereichen von der simulierten Kurve ab, liegen aber noch im Prognosestreuband. Diese Abweichungen sind aber nicht weiter verwunderlich. Selbst der Versuch SB04, welcher bereits im Versuch durch ungewöhnlich frühe Drahtbrüche auffiel, liegt gerade noch im simulierten Streuband, wie es das Bild 6-27 zeigt. Damit erfolgt die Validierung solch breiter rechnerischer Streubänder.

Tendenziell kann der Fokus in der Simulation allerdings auf der generierten Mittelwertkurve liegen. Liegt eine Versuchsreihe eher im rechten Teil des aufgehenden Streubandes, so haben sich die Verhältnisse im Gesamtsystem des Versuchs positiv auf den Ermüdungsprozess ausgewirkt.

Liegt die Kurve hingegen im linken Teil des simulierten Streubandes, so kam es eher zu einem ungünstigen Systemverhalten hinsichtlich des Ermüdungsprozesses.

Damit kann durch die Simulation ebenfalls eine Bewertung gewonnener Versuchsergebnisse erfolgen.

Bild 6-27: Simulationsrechnung SB04 ($\Delta \sigma_{p,(i=0)} = 80$ MPa)

Durch die Programmroutine sind nun auch Simulationen unter anderen Ausgangsschwingbreiten möglich. Im nachfolgenden Bild 6-28 ist beispielsweise der Versagensverlauf zu einer Schwingbreite von $\Delta \sigma_{p,(i=0)} = 40MPa$ durchgeführt worden.

In der Simulationsrechnung zeigt sich, dass im Mittel nach $8\cdot 10^7$ Lastwechseln erste Ermüdungsbrüche zu erwarten wären.

Da in den durchgeführten Versuchen die kleinste Ausgangsschwingbreite bei $\Delta \sigma_{p,(i=0)} = 60MPa$ lag, kann diese Simulation nur als Extrapolation auf der Basis der vorhandenen Versuchsergebnisse verstanden werden. Um verlässlichere Simulationen für so kleine Spannungsschwingbreiten durchführen zu können, müssten durch zusätzliche Versuche weitere Ergebnisse in diesem Bereich gewonnen werden, welche die Datenbasis ergänzen.

Bild 6-28: Extrapolation des Versagensverlauf für $\Delta \sigma_{p,(i=0)} = 40$ MPa

6.2.6 Simulationsrechnungen für laufende Versuche

Durch das vorgestellte Programm zur Simulation der Rissweitenzunahme infolge auftretender Drahtbrüche ist es ebenso möglich, einen noch laufenden Versuch weiter in seinem Versagensverhalten zu simulieren.

Der grundsätzliche Simulationsprozess ist in Bild 6-31 abgebildet und basiert auf dem zuvor vorgestellten Programmablauf (Bild 6-22). Es werden zusätzliche Informationen wie die bis dahin gelaufenen Schwingspiele $N_{akt.}$, die bereits vorhandene Rissweitenzunahme $\Delta w_{akt.}$ seit Versuchsstart und die Anzahl der eventuell aufgetretenen Drahtbrüche benötigt. Diese Informationen lassen sich leicht einem laufenden Versuch entnehmen.

Bild 6-29 zeigt die Prognosesimulation des Versuchsträgers SB04 nach bereits abgelaufenen $N_{akt.} = 5.700.000$ Schwingspielen, einer bereits erfolgten Rissweitenzunahme $\Delta w_{akt.} = 0.312mm$ und bis zu diesem Zeitpunkt insgesamt 7 erfolgten Drahtbrüchen. Der sich später ergebende reale Versuchsverlauf ist ebenfalls im Bild abgebildet.

Bild 6-30 zeigt die Prognose des selben Versuchs nach abgelaufenen $N_{akt.} = 10.600.000$ Schwingspielen und 8 Drahtbrüchen, wodurch die Prognosegrenzen noch näher aneinander rücken.

Bild 6-29: Prognosesimulation des noch laufenden Versuchs SB04 nach 5,7 Mio. Schwingspielen, 7 Brüchen

Bild 6-30: Prognosesimulation des noch laufenden Versuchs SB04 nach 10,6 Mio. Schwingspielen, 8 Brüchen

Bild 6-31: Ablaufdiagramm der Programmrechnung zum beliebigen Versuchszeitpunkt

Es zeigt sich, dass die Prognose den weiteren Verlauf des Versuchsträgers gut abbildet, obwohl sich der Versuchsträger im gesamten Ermüdungsverlauf im Vergleich zu den übrigen Versuchen hinsichtlich seiner Drahtbrüche ungewöhnlich verhielt.

Die Prognose ab diesem Startpunkt (Bild 6-29) zeigt im Gegensatz zur allgemeinen Prognosesimulation des Versuchs SB04 (Bild 6-27) deutlich bessere Ergebnisse. Das liegt an der einfließenden Vorinformation aus dem laufenden Versuch.

Somit ist es durch das Simulationsprogramm möglich, das Verhalten zu einem beliebigen Zeitpunkt eines Versuchs weiter zu prognostizieren, um so die Restlebensdauer eines Versuchsträgers abzuschätzen.

6.3 Zusammenfassung

In diesem Kapitel konnte gezeigt werden, dass die Zunahme der gemessenen Rissweite im Versuchsträger, hervorgerufen durch den Schädigungsprozess infolge auftretender Drahtbrüche unter zyklischer Beanspruchung, durch physikalisch-mechanische Beziehungen nachgerechnet werden kann. Hierzu wurde eine Formel aufgestellt, welche diese Rissweitenzunahme vereinfacht beschreibt.

Weiter konnte gezeigt werden, dass mit dieser Formel die neun durchgeführten Versuche der "alten" und "neuen" Serie unter der Vorgabe der bekannten Anzahl von Drahtbrüchen mit jeweils zugehörigem Bruchzeitpunkt gut nachgerechnet werden konnten.

Anschließend erfolgte aus den zuvor gewonnenen Beziehungen die Vorstellung eines entwickelten und programmierten Simulationsprozesses, durch den vorhandene oder neue Versuche gleichen Typs unter einer beliebigen Schwingbreite und geänderten Materialparametern nachgerechnet oder prognostiziert werden können.

In dieser Simulation werden in einem ersten Prozess die Bruchdaten der durchgeführten Versuche analysiert und ausgewertet, um daraus eine Regressionsfunktion mit einem zugehörigen Prognoseintervall zu gewinnen.

Mit diesen neu generierten Informationen wurden in einem zweiten Prozess mehrere hundert Versagensprozesse durch simulierte Drahtbrüche, basierend auf der statistischen Verteilung der realen Datenmenge und einer gewünschten α -Sicherheit (i.d.R. 90%), durchgeführt. Aus diesen so simulierten Versagenskurven konnte abschließend eine Mittelwertkurve sowie die minimale und maximale Grenze erstellt werden.

In einem zweiten Schritt wurde dann ein modifiziertes Simulationsprogramm vorgestellt, durch welches auch die weitere Prognose während des laufenden Versuchs abgebildete werden kann.

In beiden Fällen konnten im Vergleich zu den vorliegenden Versuchskurven gute Deckungen und Prognosen abgebildet werden.

7 Zusammenfassung und Ausblick

Die vorliegende Arbeit befasste sich mit der Ermüdung von Betonstahl und Spannstahl im einbetonierten und nicht einbetonierten Zustand mit sehr hohen Lastwechselzahlen. Beim Spannstahl stand speziell die Bauweise mit nachträglichem Verbund im gekrümmten Stahlhüllrohr im Vordergrund.

Nachdem das erste Kapitel die Ausgangslage und Ziele dieser Arbeit erläuterte, wurde im Kapitel 2 das Phänomen der Materialermüdung beschrieben. Speziell sind beschleunigende Einflussfaktoren wie z.B. Reibermüdung/Reibkorrosion, welche häufig im Spannbeton vorkommen, angesprochen und erläutert worden. Anschließend wurden Begrifflichkeiten und Darstellungsformen im Bereich der Ermüdungsfestigkeit erläutert. Weiter erfolgte eine kurze Erläuterung des "interaktiven Verfahrens".

Im folgenden Kapitel 3 stand die historische Entwicklung ausgehend vom letzten Jahrhundert hinsichtlich der Betonstahl- und Spannstahlermüdung im Vordergrund. Die Entwicklung der Ermüdungsnachweise in Deutschland sowie wesentliche Forschungsarbeiten mit Groß- und Kleinversuchen zu diesem Thema waren hierbei von besonderem Interesse. Zugehörige Versuchsergebnisse dieser Arbeiten sind als aufbereitete Datenbank im Anhang A1 aufgeführt.

Für Betonstähle zeigte sich, dass die heutigen charakteristischen Wöhlerlinien auch für den Nachweis älterer Stabstähle herangezogen und diese damit abgedeckt werden können.

Es stellte sich heraus, dass speziell bei den Spannstählen im einbetonierten Zustand (Großversuch) entsprechende Versuchsergebnisse für niedrige Schwingbreiten und extrem hohe Lastwechselzahlen fehlen. Hier lagen die gefundenen Versuchsergebnisse fast ausschließlich oberhalb einer Schwingbreite von 100 MPa. Begründet ist dieses sicher durch die sehr langen Versuchszeiten und den damit verbundenen hohen Aufwand.

Auch schien sich an der historisch bedingten Dauerschwingfestigkeitsgrenze von 2·10⁶ in den letzten 60 Jahren nichts geändert zu haben, sodass es oft mit Erreichen dieser Grenze zu einem Versuchsabbruch kam. Der Verlauf der charakteristischen Wöhlerlinie konnte bisher somit für gekrümmte Spannglieder im Stahlhüllrohr (nachträglicher Verbund) unterhalb von 100 MPa nur hypothetisch angenommen werden.

Es folgte in Kapitel 4 die Vorstellung von eigenen Ermüdungsversuchen mit Betonstahl im einbetonierten und nicht einbetonierten Zustand. Bei der Betrachtung eines Systems (einbetonierter Zustand) waren im Gegensatz zum reinen Materialversuch (nicht einbetoniert) Unterschiede in den Versuchsergebnissen der Ermüdungsfestigkeit zu erkennen. Diese wirkten sich im vorliegenden Fall positiv durch das Zusammenspiel der Materialien Beton und Betonstahl aus. Negative Einflüsse, wie es beispielsweise unter einer Querpressung mit einer Reibdauerbeanspruchung vorkommt, waren hier nicht gegeben.

Ein Vergleich beider gewonnenen Streubänder der Ermüdungsfestigkeit zeigte, dass die im einbetonierten Zustand untersuchten Proben im Bereich der Dauerschwingfestigkeit eine um ca. 13% höhere charakteristische Ermüdungstragfähigkeit der 5%-Quantilfunktion aufwiesen.

Es muss allerdings angemerkt werden, dass die ermittelten Werte nur auf die aus diesen Versuchen gewonnenen Ergebnisse zutreffen und somit lediglich eine Tendenz zur Grundgesamtheit abbilden. Betonstähle anderer Hersteller, Chargen oder Durchmesser können andere Ergebnisse liefern.

Anschließend folgten in Kapitel 5 eigene Ermüdungsversuche an Spannstahllitzen.

Hierbei wurden "alte" Spannstähle aus einem Abbruchbauwerk von 1957 und "neue" Spannstähle einer aktuellen Produktion im freischwingenden und einbetonierten Versuch geprüft und untersucht. Im einbetonierten Zustand wurden diese im nachträglichen Verbund in einem gekrümmten Stahlhüllrohr eines Versuchsträgers verbaut. In einem ersten Schritt galt es neben statischen Zugversuchen insgesamt 27 "alte" Spannstahlproben und 29 Spannstahlproben einer "neuen" Produktion freischwingend unter einer zyklischen Belastung zu untersuchen und in Anlehnung an das interaktive Verfahren auszuwerten.

Es zeigte sich, dass die "neuen" Spannstahlproben speziell im Bereich der Dauerschwingfestigkeit relativ große Streuungen in den Versuchsergebnissen aufwiesen. Um dieses Phänomen zu ergründen, wurde der Versuchsstand überprüft und die Spannstähle näher metallografisch und mikroskopisch untersucht. Eine stichhaltige Erklärung konnte abschließend nicht gefunden werden. Die einzige Auffälligkeit ergab sich in einer Metallanalyse. Hier wies der "neue" Spannstahl im Randbereich vereinzelt entkohlte Stellen auf. Durch einen höheren Ferritbestandteil in diesen Bereichen wäre das Materialgefüge hier weicher und könnte als Unstetigkeitsstelle im Querschnitt als bruchauslösender Punkt gelten.

Aufgrund der großen Streuung wies der "neue" Spannstahl nach der Auswertung aller Versuchsergebnisse im Gegensatz zum "alten" Spannstahl eine nur geringfügig höhere 5%-Quantilgrenze der Dauerschwingfestigkeit auf.

Im Bereich der Zeitfestigkeit zeigten beide Spannstähle tendenziell ähnliche Größen in der ausgewerteten Steigung im doppeltlogarithmischen Maßstab.

In einem zweiten Schritt wurden die Spannstähle im einbetonierten Zustand im gekrümmten Stahlhüllrohr untersucht, um die Effekte des Gesamtsystems zu berücksichtigen. Hierfür wurden 5 Träger mit "alten" und 4 Träger mit "neuen" Spannstahllitzen hergestellt, wobei jeder Träger 5 Litzen á 7 Drähte enthielt. Die Träger hatten jeweils eine Länge von 4,5m, ein Höhe von 1m und eine Breite von 0,3m. Um die exakten Bruchzeitpunkte in den zum Teil über mehrere Monate laufenden Versuchen zeitlich zu identifizieren, wurden Mikrofon- und Impulsmessungen an den Ankerköpfen durchgeführt.

Selbst unter der geringsten einwirkenden Schwingbreite von $\Delta \sigma_P = 60MPa$ war noch kein eindeutiges Abknicken zu einer Dauerschwingfestigkeit erkennbar. Drahtbrüche traten noch vor Erreichen der charakteristischen Wöhlerlinie nach DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA auf. Daher erfolgt der Vorschlag, den zweiten Steigungsast der Wöhlerlinie steiler zu wählen und diesen vorerst mit k₂= 5 anzusetzen. Für eine genaue Festlegung sind weitere Versuche erforderlich.

Abschließend zeigte sich im Kapitel 6, dass die Zunahme der gemessenen Rissweite im Versuchsträger, hervorgerufen durch den Schädigungsprozess primär infolge auftretender Drahtbrüche unter zyklischer Beanspruchung, durch physikalisch-mechanische Beziehungen abgebildet werden kann. Die Versuche des "alten" und "neuen" Spannstahls konnten somit gut nachgerechnet werden.

Anschließend erfolgte aus den zuvor gewonnenen Beziehungen die Vorstellung eines entwickelten und programmierten Simulationsprozesses, durch den vorhandene oder neue Versuche gleichen Typs unter einer beliebigen Schwingbreite und geänderten Materialparametern nachgerechnet oder prognostiziert werden können.

In dieser Simulation wurden in einem ersten Prozess die Bruchdaten der durchgeführten Versuche analysiert und ausgewertet, um daraus eine Regressionsfunktion mit einem zugehörigen Prognoseintervall zu gewinnen.

Mit diesen neu generierten Informationen konnten in einem zweiten Prozess mehrere hundert Versagensprozesse durch simulierte Drahtbrüche, basierend auf der statistischen Verteilung der realen Datenmenge und einem gewünschten Vertrauensniveau (i.d.R. 90%), durchgeführt werden. Aus diesen so simulierten Versagenskurven ließen sich so abschließend eine Mittelwertkurve sowie die minimale und maximale Grenze erstellen.

In einem zweiten Schritt erfolgte die Modifizierung des zuvor vorgestellten Simulationsprogramms, mit dessen Hilfe der weitere Ablauf eines noch laufenden Versuchs abgebildet und prognostiziert werden kann.

Es besteht weiterhin Forschungsbedarf, um weitere Erkenntnisse im Bereich des Ermüdungsverhaltens von Spannstahl im gekrümmten Stahlhüllrohr im nachträglichen Verbund unter kleinen

Schwingbreiten mit extrem hohen Lastwechselzahlen bis 10⁸ zu gewinnen. Ein Abknicken der Wöhlerlinie hin zu einer Dauerschwingfestigkeit konnte bislang nicht eindeutig festgestellt werden.

Weiterhin sollten Untersuchungen zur Übertragbarkeit der gewonnenen Ergebnisse auf andere Spanngliedgrößen erfolgen.

Zudem ist es notwendig, in einem weiteren Schritt den Einfluss einer zusätzlichen schlaffen Betonstahlbewehrung im Versuchskörper zu untersuchen.

Ebenso erforderlich ist es, die auf ein Bauwerk einwirkenden, real auftretenden Belastungen genauer zu erfassen. In der vorliegenden Arbeit wurde ausschließlich die Widerstandsseite betrachtet.

8 Literaturverzeichnis

- "Spannstähle und Spannverfahren für Spannbeton nach DIN 4227 Vorläufige Richtlinien für die Prüfungen bei Zulassungen und Abnahmen, Oktober 1954", In: Betonkalender 1957, Berlin, Ernst & Sohn, S. 736–748, (1957)
- Abel, M.: "Zur Dauerhaftigkeit von Spanngliedern in teilweise vorgespannten Bauteilen unter Betriebsbedingungen", Schriftenreihe, 1. Auflage, IMB, Lehrstuhl und Institut für Massivbau, RWTH Aachen, 4, (1996)
- [3] Abel, M., Cordes, H., Hegger, J.: "Bewehrte Betonbauteile unter Betriebsbedingungen -Untersuchungen zur Reibermüdung von Spanngliedern bei teilweise vorgespannten Bauteilen unter Betriebsbedingungen bei Verwendung von Kunststoffhüllrohren, Schlussbericht, DFG Az.: Co 191/2-1, RWTH Aachen, (19. August 1996)
- [4] *Abeles, P. W.:* "Static and Fatigue Tests on Partially Prestressed Concrete Constructions", ACI Journal Proceedings, *Issue 12*, S. 361–376, Vol. 51, (1954)
- [5] Abeles, P. W., Brown, E. I., Hu, C. H.: "Behavior of Under-Reinforced Prestressed Concrete Beams Subjected to Different Stress Ranges", ACI-Publication, SP41-12, S. 279–300, 1974
- [6] Abeles, P. W., Brown, E. I., Hu, C. H.: "Fatigue Resistance of Under-Reinforced Prestressed Beams Subjected to Different Stress Ranges - Miner's Hypothesis", ACI-Publication, SP41-11, S. 237–278, 1974
- [7] *Birkenmaier, M., Jacobsohn, W.:* "Das Verhalten von Spannbetonquerschnitten zwischen Risslast und Bruchlast", Schweizerische Bauzeitung, *Heft 15,* S. 218–227, (Jg. 77) 1959
- [8] Block, K., Dreier, F.: "Die Ermüdungsfestigkeit zuverlässig und kostengünstig ermitteln Das interaktive Verfahren", Materialprüfung, Band 40, Heft 3, S. 73–77, (1998)
- [9] *Block, K., Dreier, F.:* "Das Ermüdungsverhalten von Dübelbefestigungen", Beuth Verlag, Deutscher Ausschuss für Stahlbeton, Heft 541, (2003)
- [10] *Bökamp, H.:* "Ein Beitrag zur Spannstahlermüdung unter Reibdauerbeanspruchung bei teilweiser Vorspannung", Dissertation, RWTH Aachen, (1990)
- [11] Canteli, A. F., Esslinger, V., Thürlimann, B.: "Ermüdungsfestigkeit von Bewehrungs- und Spannstählen", Birkhäuser, Bericht / Institut für Baustatik und Konstruktion ETH Zürich, Nr. 8002-1, (1984)
- [12] *Cordes, H.:* "Dauerhaftigkeit von Spanngliedern unter zyklischen Beanspruchungen", Deutscher Ausschuss für Stahlbeton, Heft 370, (1986)
- [13] Cordes, H., Hegger, J., Neuser, J. U.: "Untersuchungen zur Reibermüdung bei teilweise vorgespannten Bauteilen", In: Eligehausen, R., Kordina, K., Schießl, P. (Hg.)", In: Bewehrte Betonbauteile unter Betriebsbedingungen, Weinheim, Wiley-VCH, S. 322–335, (2000)
- [14] Cordes, H., Lapp-Emden, M.: "Untersuchung zur Dauerfestigkeit von Spanngliedern für die besonderen Bedingungen der teilwesen Vorspannung", Bericht / Institut für Massivbau, Technische Hochschule Aachen, 18/88, (1984)
- [15] *Cullimore, M.:* "The fatigue strength of high tensile steel wire cable subjected to stress fluctuations of small amplitude", IABSE Reports, *Band 32*, S. 49–56, (1972)
- [16] Czichos, H., Habig, K.-H.: "Tribologie-Handbuch", Vieweg+Teubner (GWV), 3. Aufl, (2010)
- [17] DIN 50100:1978: "Dauerschwingversuch Begriffe, Zeichen, Durchführung, Auswertung", Beuth Verlag, (Feb. 1978)

- [18] DIN EN 1990:2010-12: "Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010", Beuth Verlag GmbH, (Dezember 2010)
- [19] DIN EN 1992-1-1: "Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010", Beuth Verlag GmbH, (Januar 2011)
- [20] DIN EN 1992-1-1/NA: "Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau", Beuth Verlag, (April 2013)
- [21] DIN EN 1992-2: "Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln; Deutsche Fassung EN 1992-2:2005 + AC:2008", Beuth Verlag, (Dezember 2010)
- [22] DIN EN 1992-2/NA: "Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln", Beuth Verlag, (April 2013)
- [23] DIN EN ISO 15630-1:2011-02: "Stähle für die Bewehrung und das Vorspannen von Beton -Prüfverfahren - Teil 1: Bewehrungsstäbe, -walzdraht und -draht (ISO 15630-1:2010); Deutsche Fassung EN ISO 15630-3:2010", Beuth Verlag, (Feb. 2011)
- [24] DIN EN ISO 15630-3:2011-02: "Stähle für die Bewehrung und das Vorspannen von Beton -Prüfverfahren - Teil 3: Spannstähle (ISO 15630-3:2010); Deutsche Fassung EN ISO 15630-3:2010", Beuth Verlag, (Feb. 2011)
- [25] DIN EN ISO 6892-1: "Metallische Werkstoffe Zugversuch Teil 1: Pr
 üfverfahren bei Raumtemperatur (ISO 6892-1:2009); Deutsche Fassung EN ISO 6892-1:2009", Beuth Verlag, (Dez. 2009)
- [26] DIN 1045-1:2008: "Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion", Beuth Verlag GmbH, (2008)
- [27] DIN 4227:1953: "Spannbeton Richtlinien f
 ür Bemessung und Ausf
 ührung DIN 4227", Ernst & Sohn, (1953)
- [28] DIN FB 102: "DIN-Fachbericht 102 Betonbrücken", (2003)
- [29] DIN FB 102: "DIN-Fachbericht 102 Betonbrücken", (2009)
- [30] *Edwards, A. D., Picard, A.:* "Fatigue characteristics of prestressing strand", ICE Proceedings, *Heft 2,* S. 323–336, 53, (1972)
- [31] *Empelmann, M., Remitz, J.:* "Ermüdungsverhalten von Spanngliedern mit nachträglichem Verbund", Beton- und Stahlbetonbau, *11*, S. 760–770, 109, (2014)
- [32] Empelmann, M., Sender, C.: "Dauerschwingfestigkeit von Spannstählen unter dynamischer Beanspruchung im eingebauten Zustand", Fraunhofer IRB Verlag, Bauforschung T, Heft: T 3245, (2010)
- [33] Endo, K., Goto, H., Nakamura, T.: "Effects of Cycle Frequency on Fretting Fatigue Life of Carbon Steel", Bulletin of JSME, Vol. 12, No. 54, S. 1300–1308, (1969)
- [34] Endo, K., Komai, K., Suzuki, Y.: "Influences of Stress Cycle Frequency on Propagation of Corrosion Fatigue Cracks", Bulletin of JSME, Vol. 18, No. 115, S. 9–16, (1975)
- [35] *Endo, K.,* Miyao Y.: "Effects of cycle frequency on the corrosion fatigue strength", Bulletin of JSME, *Vol. 1, No. 4*, S. 374–380, (1958)
- [36] *Eskola, L.:* "Zur Ermüdung teilweise vorgespannter Betontragwerke", Dissertation, ETH Zürich, (September 1996)

- [37] Eurocode 2: "Planung von Stahlbeton- und Spannbetontragwerken : Teil 1 Grundlagen und Anwendungsregeln für den Hochbau", Beuth, (1992)
- [38] Fehlmann, P.: "Zur Ermüdung von Stahlbetonbrücken", Dissertation, ETH Zürich, (2012)
- [39] *Fehlmann, P., Vogel, T.:* "Versuche zur Ermüdungsfestigkeit alter Betonstähle", Beton- und Stahlbetonbau, *7*, S. 416–423, 104, (2009)
- [40] Fisher, J. W., Viest, I. M.: "AASHO road test technical staff papers, 1961", Highway Research Board Special Report, Heft 66, S. 132–147, (1961)
- [41] Frank, K. H., Hsu, C. K.: "Fatigue and Static Tests of Three Samples of 0.60 Inch Diameter Seven Wire Prestressing Strand, Phil M. Ferguson Structural Engineering Laboratory, The University of Texas at Austin, Phil M. Ferguson Structural Engineering Laboratory, (1981)
- [42] Funk, W.: "Der Einfluß der Reibkorrosion auf die Dauerhaltbarkeit zusammengesetzter Maschinenelemente", Forschungsvereinigung Verbrennungskraftmaschinen e.V, Forschungsberichte Verbrennungskraftmaschinen, 92, (1968)
- [43] Funk, W.: "Ein Prüfverfahren zur Untersuchung des Einflusses der Reibkorrosion auf die Dauerhaftigkeit", Materialprüfung, Band 11, Heft 7, S. 221–227, (1969)
- [44] Goodman, J.: "Mechanics applied to engineering", Longmans, Green & Co., (1914)
- [45] Haibach, E.: "Betriebsfestigkeit", Springer Verlag, 3. Auflage, VDI-Buch, (2006)
- [46] Hanson, J. M., Hulsbos, C., VanHorn, D. A.: "Fatigue Tests of Prestressed Concrete I-Beams -The Reinforced Concrete Research Council", ASCE Proceedings, Bulletin No. 19, ST 11, S. 71–92, 1970
- [47] Heeke, G., Maurer, R., Grochtmann, C.: "Ermüdungs- und Tragfähigkeitsuntersuchungen an lärmabsorbierenden Stahlbetonfertigteilelementen für Hochgeschwindigkeitsstrecken der Bahn", Bauingenieur, Band 90, Heft 4, S. S. 158–167, (2015)
- [48] Heft 525: "Erläuterungen zu DIN 1045-1", Beuth, 1. Auflage, Deutscher Ausschuss für Stahlbeton, (2003)
- [49] Hegger, J., Neuser, J. U.: "Untersuchungen zur Reibermüdung von großen Spanngliedern bei teilweise vorgespannten Bauteilen unter Betriebsbedingungen, Bericht, Nr. 49/98, Lehrstuhl und Institut für Massivbau, RWTH Aachen, (1998)
- [50] *Heimbach, H.:* "Zum Einfluß der Belastungsfrequenz auf die Zeit- und Dauerfestigkeit von Stahl", Materialprüfung, *Band 12, Heft 11,* S. 377–380, (1970)
- [51] Heller, B. E.: "Fatigue Response of Pretensioned Concrete Beams", Masterthesis, University of Texas at Austin, (2003)
- [52] Hilmes, J. B.: "Statistical analysis of the fatigue characteristics of underreinforced prestressed concrete flexural members", PhD thesis, Iowa State University of Science and Technology, (1965)
- [53] Koch, R.: "Dauerschwingversuch an einem teilweise vorgespannten Spannbetonträger", Schriftenreihe / Otto-Graf-Institut, Amtliche Forschungs- und Materialprüfungsanstalt für das Bauwesen, Heft 80, (1988)
- [54] König, G., Danielewicz, I.: "Ermüdungsfestigkeit von Stahlbeton- und Spannbetonbauteilen mit Erläuterungen zu den Nachweisen gemäß CEB-FIP Model Code 1990", Beuth, Deutscher Ausschuss für Stahlbeton, Heft 439, (1994)
- [55] Lane, R. E., Ekberg, C. E., JR.: "Repeated load tests on 7-wire prestressing strands, Fritz Engineering Laboratory Report, No. 223.21, Fritz Engineering Laboratory, Lehigh University, (1959)

- [56] Läpple, V.: "Einführung in die Festigkeitslehre", Vieweg +Teubner Verlag, 3. Auflage, (2012)
- [57] Lusche, M.: "Beitrag zum Bruchmechanismus von auf Druck beanspruchtem Normal- und Leichtbeton mit geschlossenem Gefüge", Beton-Verlag, Schriftenreihe der Zementindustrie, Heft 39, (1972)
- [58] Magnel, G.: "Theorie und Praxis des Spannbetons", Bauverlag BV GmbH, 3. Auflage, (1956)
- [59] Martin, H., Rußwurm, D.: "Versuche an Stäben und geschweißten Matten aus Stäben mit neuartiger Profilierung", Verlag der Baustahlgewebe, Baustahlgewebe Berichte aus Forschung und Technik, 1, (1968)
- [60] Maurer, R., Block, K., Dreier, F.: "Bestimmung der Ermüdungsfestigkeit von Betonstahl mit dem Interaktiven Verfahren, Abschlussbericht BASt-Forschungsvorhaben, FE 89.200/2007/AP, Lehrstuhl Betonbau, TU-Dortmund, (2008)
- [61] *Maurer, R., Block, K., Dreier, F.:* "Ermüdungsfestigkeit von Betonstahl Bestimmung nach dem Interaktiven Verfahren", Bauingenieur, *Band 85*, S. 17–28, (2010)
- [62] Maurer, R., Block, K., Dreier, F., Machoczek, D., Heeke, G.: "Interactive determination of the fatigue behaviour of reinforced steel", In: Šrůma, V. (Hg.)", In: Concrete Engineering for Excellence and Efficiency, Fib Symposium Prague 2011, Prague, Czech Concrete Society, Session 2B-6: Construction Technology, (2011)
- [63] Maurer, R., Dreier, F., Machoczek, D., Heeke, G.: "Bestimmung der Ermüdungsfestigkeit von einbetoniertem Betonstahl mit dem Interaktiven Verfahren, Abschlussbericht DIBt-Forschungsvorhaben, ZP 52-5-7.290-1293/08, Lehrstuhl Betonbau, TU-Dortmund, (2009)
- [64] Maurer, R., Dreier, F., Machoczek, D., Heeke, G.: "Bestimmung der Ermüdungsfestigkeit von einbetoniertem Betonstahl mit dem Interaktiven Verfahren", Fraunhofer IRB Verlag, Bauforschung T, Heft: T 3227, (2010)
- [65] Maurer, R., Zilch, K., Heeke, G., Kiziltan, H., Kolodziejczyk, A., Dunkelberg, D., Fitik, B.: "Nachrechnung von Betonbrücken zur Bewertung der Tragfähigkeit bestehender Bauwerke", Wirtschaftsverlag NW, Verlag für neue Wissenschaft, Berichte der Bundesanstalt für Straßenwesen : B, Brücken- und Ingenieurbau, H. 89, (2012)
- [66] Model Code 1990: "CEB-FIP Model Code 1990", Telford Verlag
- [67] Model Code 2010: "fib Model Code for Concrete Structures 2010", International Federation for Structural Concrete
- [68] Moss, D. S.: "Axial fatigue of high-yield reinforcing bars in air", Bridge Design Division, Structures Department, Transport and Road Research Laboratory, TRRL supplementary report, 622, (1980)
- [69] Muller, J. F., Dux, P. F.: "Fatigue of prestressed concrete beams with inclined strands", Department of Civil Engineering University of Queensland, Research report series, CE 135, (1992)
- [70] *Müller, H. H.:* "Prüfverfahren für die Dauerfestigkeit von Spannstählen, Abschlussbericht, Institut für Bauingenieurwesen III, *Nr. 111*, TU-München, (1985)
- [71] Müller, F., Zeller, W.: "Zulassungsprüfungen an Spanndrahtlitzen ø 12,4 mm, St 160/180 und ø 15,2 mm, St 160/180, hier: Dauerschwingversuche, Prüfungsbericht, Institut für Beton und Stahlbeton, Universität Karlsruhe, Institut für Beton- und Stahlbeton, (1975)
- [72] Odeh, R. E., Owen, D. B.: "Tables for normal tolerance limits, sampling plans, and screening, Statistics, Volume 32, (1980)
- [73] *Oertle, J.:* "Reibermüdung einbetonierter Spannkabel", Birkhäuser, Bericht / Institut für Baustatik und Konstruktion, ETH Zürich, 166, (1988)

- [74] Oertle, J., Esslinger, V., Thürlimann, B.: "Versuche zur Reibermüdung einbetonierter Spannkabel", Birkhäuser, Bericht / Institut für Baustatik und Konstruktion, ETH Zürich, 8101-2, (1987)
- [75] Osius, G.: "Skript zur Statistik in den Naturwissenschaften, Mathematik Arbeitspapiere Nr. 59, Fachbereich Mathematik/Informatik - Universität Bremen, (Juli 2009)
- [76] Overman, T. R., Breen, J. E., Frank, K. H.: "Fatigue behavior of pretensioned concrete girders, Research report / Center for Transportation Research, Bureau of Engineering Research, the University of Texas at Austin, No. 300-2F, (1984)
- [77] Ozell, A. M., Ardaman, E.: "Fatigue tests of pre-tensioned prestressed beams, Band 53, Heft 10, S. 413–424, 1956
- [78] Paulson, C., JR., Frank, K. H., Breen, J. E.: "A fatigue study of prestressing strands, Center for transortation research, Bureau of engineering research, *Research Report No. 300-1*, University of Texas at Austin, Center of Transportation Research, (April 1983)
- [79] Radaj, D., Vormwald, M.: "Ermüdungsfestigkeit", Springer Verlag, 2. Auflage, (2007)
- [80] Rehm, G.: "Beitrag zum Thema Dauerschwingfestigkeit von Betonstahl BSt 500 nach DIN 488 und 1045 - Eine Bewertung von Versuchsergebnissen und Einflußgrößen, Bericht, Prüfstelle für Betonstahl in München, (2010)
- [81] *Rigon, C., Thürlimann, B.:* "Fatigue tests on post-tensioned concrete beams", Birkhäuser, Bericht / Institut für Baustatik und Konstruktion, ETH Zürich, 8101-1, (1985)
- [82] RILEM: "Long term random dynamic loading of concrete structures Report by RILEM Committee 36-RDL", Materials and Structures, Vol. 17, Nr. 1, S. 1–28, (1984)
- [83] Slutter, R. G., Ekberg, C. E., JR.: "Static and fatigue tests on prestressed concrete railway slabs, Fritz Engineering Laboratory Report, Vol. 60, No. 131(59-2), Fritz Engineering Laboratory, Lehigh University, (1959)
- [84] Taylor, H., Sharp J.V.: "Fatigue in Offshore Concrete Structures", The Strucural Engineer, No. 3, Vol. 56A, S. 69–76, (März 1978)
- [85] Tide, R. H. R.: "A statistical study of the static and fatigue properties of high strength prestressing strand", Masterthesis, Lehigh University, (1966)
- [86] Tide, R. H. R., VanHorn, D. A.: "A statistical study of the static and fatigue properties of high strength prestressing strand, Fritz Engineering Laboratory Report, No. 309.2, Fritz Engineering Laboratory, Lehigh University, (1966)
- [87] *Tilly, G. P.:* "Fatigue of steel reinforcement bars in concrete: A Review", Fatigue of engineering materials and structures, *Heft 2,* S. 251–268, (1979)
- [88] *Tilly, G. P.:* "Fatigue testing and performance of steel reinforcement bars", Matériaux et Constructions, *1*, S. 43–49, 17, (1984)
- [89] Tilly, G. P., Moss, D. S.: "Long endurance fatigue of steel reinforcement", IABSE, IABSE Reports, Vol. 37, (1982)
- [90] *Trost, H., Cordes, H., Thormählen, U., Hagen, H.: "*Teilweise Vorspannung", Ernst, Deutscher Ausschuss für Stahlbeton, Heft 310, (1980)
- [91] Voß, K.-U.: "Zum Trag- und Verformungsverhalten von Spannbetonträgern im Zustand II, Institut für Baustoffe, Massivbau und Brandschutz, TU Braunschweig, 111, (1993)
- [92] Warner, R., Hulsbos, C.: "Probable fatigue life of prestressed concrete flexural members -Reprint No. 234", Fritz Engineering Laboratory Report, 223.24A, (1962)

- [93] Warner, R., Hulsbos, C.: "Fatigue properties of prestressing strand", Fritz Engineering Laboratory Report, No. 223.24C2, (1964)
- [94] *Warner, R., Hulsbos, C.:* "Fatigue Properties of prestressing strand", Journal of the Prestressed Concrete Institute, *Heft 1, Band 11,* S. 32–52, (Feb. 1966)
- [95] Warner, R.F., Hulsbos, C.L.: "Probable fatigue life of under-reinforced prestressed concrete beams", IABSE Publications, *Vol. 22*, S. 337–352, 1962
- [96] Wascheidt, H.: "Dauerschwingfestigkeit von Betonstählen im einbetonierten Zustand", Ernst, Deutscher Ausschuss für Stahlbeton, Heft 200, (1968)
- [97] *Wedler, B.:* "Ergänzungen und Erläuterungen zur 7. Auflage", Ernst & Sohn, 7. Aufl, Bestimmungen des Deutschen Ausschusses für Stahlbeton, (1963)
- [98] Wollmann, G. P., Yates, D. L., Breen, J. E., Kreger, M. E.: "Fretting fatigue in post-tensioned concrete", Center for Transportation Research, University of Texas; [Available through the National Technical Information Service], Research report / Center for Transportation Research, University of Texas at Austin, no. 465-2F, (1988)
- [99] Zilch, K., Zehetmaier, G.: "Bemessung im konstruktiven Betonbau", Springer, 2. Auflage, (2010)
- [100] Zilch, K., Zehetmaier, G., Gläser, C.: "Ermüdungsnachweis bei Massivbrücken", In: Beton-Kalender 2004, Brücken, Parkhäuser, Berlin, Ernst & Söhne, S. 311–406, (2004)
- [101] Zum Gahr, K. H.: "Tribologie: Reibung Verschleiß Schmierung", Naturwissenschaften, 75, S. 260–267, (1985)

ANLAGEN

A1	Datenbank recherchierter historischer Arbeiten	.158
A2	Eigenen Betonstahluntersuchungen	.178
A3	Eigenen Spannstahluntersuchungen	. 182
A4	Durchgeführte Simulationsrechnungen	.238

A1 Datenbank recherchierter historischer Arbeiten

A1.1 Betonstahl

A1.1.1 freischwingend durchgeführte Untersuchungen

Wascheidt [96]

Probe	σ	σ。	Δσ	Lastwechsel	Text	Probe	σ	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
Verwind	ungsgrad	12d (f _v =46	7 Mpa, ft=	=649 Mpa):		Verwind	ungsgrad	8d (f _v =567	' Mpa, f _t =6	87 Mpa):	
AI f1	60	370	310	2.416.000	k. Br.	All f1	60	440	380	413.000	Br.
AI f6	60	420	360	2.417.000	k. Br.	All f2	60	420	360	526.000	Br.
AI f3	60	430	370	2.426.000	k. Br.	All f3	60	400	340	678.000	Br.
AI f2	60	450	390	538.000	Br.	All f7	60	370	310	681.000	Br.
AI f4	60	440	380	682.000	Br.	All f5	60	390	330	807.000	Br.
AI f5	60	430	370	799.000	Br.	All f6	60	380	320	1.214.000	Br.
AI f7	60	420	360	1.654.000	Br.	All f4	60	380	320	2.116.000	k. Br.
						All f8	60	360	300	2.395.000	k. Br.

Tabelle A 1-1: glatter Rundstahl, ohne Rippen, ø16mm (Wascheidt [96])

Tabelle A 1-2: Betonstahl II, glatt (mit / ohne Kennzeichnung), ø16mm (Wascheidt [96])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	L
OHNE Ke	nnzeichnu	ung (f _v =37	4 Mpa, f _t =	579 Mpa):		MIT Ker	nzeichnun	g (Ke) (f _v =	374 Mpa,	f _t =57
AIII f1	60	370	310	2.091.000	Br.	AIII f1	60	360	300	
AIII f5	60	400	340	119.000	Br.	AIII f2	60	340	280	
AIII f8	60	380	320	243.000	Br.	AIII f5	60	330	270	
AIII f7	60	380	320	301.000	Br.	AIII f6	60	320	260	
AIII f4	60	390	330	375.000	Br.	AIII f11	60	330	270	
AIII f2	60	380	320	458.000	Br.	AIII f12	60	360	300	
AIII f10	60	370	310	483.000	Br.	AIII f13	60	320	260	
AIII f3	60	360	300	2.390.000	k. Br.	AIII f15	60	330	270	
AIII f9	60	360	300	2.432.000	k. Br.	AIII f3	60	300	240	
AIII f6	60	360	300	5.916.000	k. Br.	AIII f4	60	320	260	
						AIII f7	60	300	240	
						AIII f8	60	320	260	
						AIII f9	60	310	250	

Probe	σ_u	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
MIT Kenn	zeichnun	g (Ke) (f _v =	374 Mpa,	f _t =579 Mpa):	
AIII f1	60	360	300	394.000	Br. *
AIII f2	60	340	280	694.000	Br. *
AIII f5	60	330	270	1.224.000	Br. *
AIII f6	60	320	260	877.000	Br. *
AIII f11	60	330	270	806.000	Br. *
AIII f12	60	360	300	430.000	Br. *
AIII f13	60	320	260	912.000	Br. *
AIII f15	60	330	270	592.000	Br. *
AIII f3	60	300	240	3.258.000	k. Br.
AIII f4	60	320	260	2.415.000	k. Br.
AIII f7	60	300	240	2.434.000	k. Br.
AIII f8	60	320	260	2.381.000	k. Br.
AIII f9	60	310	250	3.287.000	k. Br.
AIII f10	60	340	280	1.981.000	k. Br.
AIII f14	60	310	250	2.141.000	k. Br.

* Bruch (am Kennzeichen der Probe)

Tabelle A 1-3: Rippen-Torstahl, BSt IVb, 16mm (Verwindegrad 6,5d), (f_v=520 Mpa, f_t=600 Mpa) (Wascheidt [96])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
CIII f1	60	320	260	1.840.000	Br. *	CIII f5	60	300	240	2.543.000	Br. *
CIII f8	60	360	300	418.000	Br. *	CIII f10	60	300	240	2.250.000	k. Br.
CIII f7	60	340	280	795.000	Br. *	CIII f9	60	290	230	3.400.000	k. Br.
CIII f2	60	310	250	1.261.000	Br. *	CIII f4	60	290	230	3.577.000	k. Br.
CIII f3	60	300	240	1.989.000	Br. *	CIII f6	60	290	230	4.513.000	k. Br.

* Bruch (Schrägrippe)

Tabelle A 1-4: Noreckstahl, BSt IIIb, ø16mm (Reckgrad 12,5%) (fy=520 Mpa, ft=559 Mpa) (Wascheidt [96])

Probe	σι	σ。	Δσ	Lastwechsel	Text	Probe	σ	σ	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
DII f1	60	300	240	3.086.000	k. Br.	DII f3	60	334	274	870.000	Br. *
DII f2	60	320	260	2.774.000	k. Br.	DII f5	60	330	270	1.156.000	Br. *
DII f4	60	310	250	3.602.000	k. Br.	DII f6	60	320	260	1.379.000	Br. *
DII f7	60	310	250	5.281.000	k. Br.	DII f8	60	350	290	1.442.000	Br. *

*Bruch (Längs-/Schrägrippe)

Probe	σ	σ.	Δσ	Lastwerhsel	Text	Prohe	σ.,	σ.	Δσ	Lastwerhsel	Text
Hobe	[MPa]	[MPa]	[MPa]	[N]	TEAC		[MPa]	[MPa]	[MPa]	[N]	TEAC
DI f1	60	320	260	649.000	Br. *1	DI f4	60	300	240	2.441.000	k. Br.
DI f8	60	320	260	223.000	Br. *2	DI f2	60	300	240	2.537.000	k. Br.
DI f11	60	310	250	255.000	Br. *2	DI f6	60	300	240	2.597.000	k. Br.
DI f7	60	340	280	385.000	Br. *2	DI f21	-150	150	300	3.173.000	k. Br.
DI f10	60	310	250	420.000	Br. *2	DI f23	-160	160	320	2.360.000	k. Br.
DI f9	60	330	270	693.000	Br. *2	DI f24	240	410	170	2.400.000	k. Br.
DI f5	60	340	280	398.000	Br. *1	DI f25	200	410	210	2.628.000	k. Br.
DI f3	60	310	250	822.000	Br. * ³	DI f22	-170	170	340	905.000	Br. *2
*1 n i	(C. I V			* ² D = = 1 /1 × /C		\	*3.0	15			

Tabelle A 1-5: High-Bond-Stahl, BSt IIIa, ø16m (fy=414 Mpa, ft=634 Mpa) (Wascheidt [96])

*1 Bruch (Schrägrippe)

*² Bruch (Längs-/Schrägrippe)

*³ Bruch (Einspannung)

Probe	σ_u	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
Verwindu	ungsgrad 8	3d (f _v =527	Mpa, ft=6	644 Mpa):	
BI f1	60	420	360	1.084.000	Br.*
BI f3	60	410	350	799.000	Br.*
BI f16	60	410	350	436.000	Br.*
BI f7	60	420	360	664.000	Br.*
BI f12	60	420	360	2.036.000	Br.*
BI f6	60	430	370	2.011.000	Br.*
BI f14	60	430	370	764.000	Br.*
BI f11	60	440	380	375.000	Br.*
BI f9	60	450	390	281.000	Br.*
BI f17	60	460	400	327.000	Br.*
BI f4	60	400	340	2.334.000	Br. *1
BI f5	60	390	330	3.693.000	k. Br.
BI f8	60	390	330	3.586.000	k. Br.
BI f2	60	400	340	2.424.000	k. Br.
BI f10	60	400	340	2.005.000	k. Br.
BI f15	60	450	390	504.000	Fehler
BI f13	60	460	400	341.000	Fehler
BI f21	300	500	200	2.643.000	k. Br.
BI f22	300	530	230	2.024.000	k. Br.
BI f23	200	500	300	2.002.000	k. Br.
BI f24	200	530	330	253.000	Br. * ³

Probe	σ_{u}	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
Verwindu	ungsgrad :	12d (f _v =48	6 Mpa, f _t =	=601 Mpa):	
BII f1	60	430	370	3.441.000	k. Br.
BII f2	60	450	390	258.000	Fehler
BII f7	60	400	340	338.000	Fehler
BII f8	60	380	320	963.000	Fehler
BII f14	60	420	360	1.700.000	k. Br.
BII f9	60	420	360	2.678.000	k. Br.
BII f13	60	430	370	3.440.000	k. Br.
BII f5	60	460	400	821.000	Br. *1
BII f6	60	430	370	1.907.000	Br. *2
BII f4	60	440	380	2.029.000	Br. *2
BII f10	60	460	400	318.000	Br. * ³
BII f11	60	460	400	433.000	Br. * ³
BII f3	60	450	390	1.000.000	Br. * ³
BII f12	60	450	390	2.052.000	Br. * ³
BII f21	200	450	250	2.180.000	k. Br.
BII f22	150	480	330	2.597.000	k. Br.
BII f23	150	500	350	1.378.000	Br. *

*¹ Bruch (Einspannung) *² Bruch (zwischen Längsrippen)

*³ Bruch (Fuß, Längsrippe)

Tabelle A 1.7. Rinnen-Torstahl	BSt IIIh ø16mm	(Wascheidt [96])
Tabelle A 1-7. Rippell-Turstalli,	σοι πο, φτοι ππ	waschelut [90])

Probe	σ	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
Verwindu	ungsgrad (10d (f _v =45	3 Mpa, f _t =	529 Mpa):	
CI f1	60	350	290	2.349.000	k. Br.
CI f13	60	340	280	2.118.000	k. Br.
CI f2	60	360	300	2.240.000	k. Br.
CI f3	60	380	320	2.372.000	k. Br.
CI f10	60	340	280	2.728.000	k. Br.
CI f7	60	370	310	2.831.000	k. Br.
CI f12	60	400	340	329.000	Br. *1
CI f5	60	390	330	653.000	Br. *1
CI f8	60	380	320	670.000	Br. *1
CI f9	60	360	300	933.000	Br. *1
CI f6	60	380	320	1.188.000	Br. *1
CI f11	60	350	290	1.239.000	Br. *1
CI f4	60	400	340	580.000	Br. *2
CI f21	325	460	135	2.002.000	k. Br.
CI f26	-175	175	350	2.338.000	k. Br.
CI f23	300	440	140	3.600.000	k. Br.
CI f25	-200	150	350	3.640.000	k. Br.
CI f24	-200	200	400	440.000	Br. *1
CI f27	-190	190	380	1.740.000	Br. *1
CI f22	200	425	225	2.024.000	Br. *1
CI f28	-180	180	360	2.840.000	Br. *1

Probe	σ_{u}	σ。	Δσ	Lastwechsel	Text						
	[MPa]	[MPa]	[MPa]	[N]							
Verwindungsgrad 12d (f _v =448 Mpa, ft=552 Mpa):											
CII f1	60	370	310	719.000	Br. *1						
CII f11	60	360	300	627.000	Br. *1						
CII f6	60	360	300	1.011.000	Br. *1						
CII f2	60	350	290	1.151.000	Br. *1						
CII f9	60	340	280	1.154.000	Br. *1						
CII f4	60	340	280	1.343.000	Br. *1						
CII f8	60	350	290	2.389.000	Br. *1						
CII f7	60	330	270	2.080.000	k. Br.						
CII f5	60	300	240	2.294.000	k. Br.						
CII f10	60	330	270	2.375.000	k. Br.						
CII f3	60	330	270	2,416,000	k. Br.						

*¹ Bruch (Schrägrippe) *² Bruch (Fuß, Längsrippe)

159

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
DIII f1	60	300	240	3.257.000	k. Br.	DIII f3	60	400	340	470.000	Br. *
DIII f4	60	340	280	2.286.000	k. Br.	DIII f7	60	380	320	782.000	Br. *
DIII f10	60	330	270	3.255.000	k. Br.	DIII f2	60	360	300	838.000	Br. *
DIII f5	60	340	280	4.590.000	k. Br.	DIII f9	60	350	290	1.037.000	Br. *
DIII f11	60	380	320	415.000	Br. *	DIII fe	60	380	320	1.345.000	Br. *
DIII f12	60	360	300	434.000	Br. *	DIII f8	60	350	290	2.000.000	Br. *

Tabelle A 1-8: Hi-Bond-Stahl A, BSt IIIa, ø16mm (f_y=476 Mpa, f_t=771 Mpa) (Wascheidt [96])

*Bruch (Längsrippe)

Tabelle A 1-9: Betonstahl I,II,III,IV, ø16mm (Wascheidt [96])

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text							
Betonsta	Betonstahl I (f _y =342 Mpa, f _t =437 Mpa):											
El f1	60	240	180	3.306.000	k. Br.							
El f2	60	300	240	540.000	Br. *1							
EI f3	60	280	220	1.266.000	Br. *1							
EI f4	60	260	200	2.164.000	k. Br.							
EI f5	60	270	210	1.189.000	Br. *1							
EI f6	60	270	210	2.380.000	k. Br.							
EI f7	60	260	200	2.354.000	k. Br.							
EI f8	60	320	260	274.000	Br. *1							
EI f9	60	300	240	467.000	Br. *1							
EI f10	60	280	220	655.000	Br. *1							
Betonsta	hl II (f _v =37	75 Mpa, f _t =	=548 Mpa):								
Ell f1	60	260	200	1.400.000	Br. *1							
Ell f2	60	240	180	2.020.000	k. Br.							
EII f3	60	250	190	6.937.000	k. Br.							
EII f4	60	300	240	357.000	Br. *1							
EII f5	60	280	220	812.000	Br. *1							
*1 Bruch	(Rippenkr	euzung)		* ² Bruch (Fuß d. Qu	errippe)							

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel	Text							
Betonsta	Betonstahl III (f _y =454 Mpa, f _t =797 Mpa):											
EIII f1	60	360	300	159.000	Br. *1							
EIII f2	60	340	280	207.000	Br. *1							
EIII f3	60	300	240	424.000	Br. *1							
EIII f4	60	260	200	3.660.000	k. Br.							
EIII f5	60	270	210	638.000	Br. *1							
EIII f6	60	270	210	832.000	Br. *1							
EIII f7	60	260	200	2.429.000	k. Br.							
Betonsta	hl IV (f _v =6	23 Mpa, f	=840 Mpa	a):								
EIV f1	60	340	280	276.000	Br. *1							
EIV f2	60	300	240	868.000	Br. *2							
EIV f3	60	280	220	3.291.000	k. Br.							
EIV f4	60	290	230	980.000	Br. *1							
EIV f5	60	290	230	695.000	Br. *1							
EIV f6	60	320	260	323.000	Br. *1							
EIV f7	60	300	240	607.000	Br. *2							
EIV f8	60	280	220	5.000.000	k. Br.							
EIV f9	60	280	220	2.546.000	k. Br.							

Tabelle A 1-10: Betonstahl I,II,III,IV, ø26mm (Wascheidt [96])

Probe	σ	σ。	Δσ	Lastwechsel	Text	Probe	σι	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
Betonsta	hl I (f _v =32	8 Mpa, f _t =	427 Mpa)	:		Betonstahl III (f _v =452 Mpa, f _t =764 Mpa):					
FI f1	60	260	200	887.000	Br. *1	FII f1	60	280	220	582.000	Br. *1
FI f2	60	300	240	403.000	Br. *1	FII f2	60	320	260	480.000	Br. *2
FI f3	60	320	260	310.000	Br. *1	FII f3	60	300	240	560.000	Br. *1
FI f4	60	280	220	723.000	Br. *2	FII f4	60	280	220	887.000	Br. *1
FI f5	60	240	180	2.785.000	k. Br.	FII f5	60	240	180	2.660.000	k. Br.
FI f6	60	250	190	1.795.000	Br. *1	FII f6	60	240	180	2.100.000	k. Br.
FI f7	60	250	190	1.219.000	Br. *2	FII f7	60	260	200	1.130.000	Br. *1
FI f8	60	240	180	2.300.000	k. Br.	FII f8	60	250	190	2.200.000	k. Br.
						FII f9	60	250	190	2.000.000	k. Br.
Betonsta	1 hl II (f _v =39	96 Mpa, f _t =	=571 Mpa):		Betonsta	hl IV (f _v =5	52 Mpa, ft	=736 Mpa	a):	
FII f1	60	240	180	2.500.000	k. Br.	FIV f1	60	260	200	2.600.000	k. Br.
FII f2	60	250	190	2.100.000	k. Br.	FIV f2	60	280	220	1.723.000	Br. *2
FII f3	60	260	200	1.180.000	Br. *1	FIV f3	60	320	260	399.000	Br. *1
FII f4	60	320	260	340.000	Br. *1	FIV f4	60	300	240	791.000	Br. *1
FII f5	60	250	190	2.300.000	k. Br.	FIV f5	60	270	210	870.000	Br. *1
FII f6	60	280	220	812.000	Br. *1	FIV f6	60	270	210	1.394.000	Br. *1
FII f7	60	300	240	766.000	Br. *1	FIV f7	60	280	220	799.000	Br. *1
FII f8	60	260	200	2.000.000	k. Br.	FIV f8	60	260	200	2.000.000	k. Br.
FII f9	60	300	240	605.000	Br. *1	FIV f9	60	300	240	2.000.000	k. Br.
*1 Bruch	(Rippenkr	euzung)		*2 Bruch (Fuß d. Qu	uerrippe)	FIV f10	60	320	260	360.000	Br. *1
							60	300	240	840.000	Br. *1
						FIV f12	60	270	210	1.165.000	Br. *1

161

Text

Br.

Br.

Br. *

DL

DL

DL

DL

DL

DL

DL

DL

DL

Δσ

[MPa]

396

396

302

326 326

350 302

302

286

286

350

302

Lastwechsel

[N] **498.000**

478.000

1.118.000

2.000.000

2.500.000

6.384.000

7.700.000

6.640.000

7.438.000

6.600.000

2.000.000

3.323.000

Rußwurm/Martin [59]

Probe	σ_u	σ。	Δσ	Lastwechsel	Text	Probe	σ	σo
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]
1	49	445	396	222.000	Br.	15a	49	445
2	49	445	396	234.000	Br.	16b	49	445
3	95	445	350	321.000	Br.	13	143	445
4	95	445	350	897.000	Br.	6	119	445
5	95	445	350	663.000	Br.	9	119	445
6a	95	445	350	413.000	Br.	9a	95	445
7	119	445	326	1.369.000	Br.	12	143	445
8	119	445	326	488.000	Br.	14	143	445
9b	63	445	382	1.810.000	Br.	15	159	445
10	119	445	326	260.000	Br.	16	159	445
11	143	445	302	1.548.000	Br.	16a	95	445
12a	49	445	396	459.000	Br.	17	143	445
14a	49	445	396	372.000	Br.	* Bruch (Einspannstell		

Tabelle A 1-11: KARI Stahl, Stahl IV b, ø4mm, fy=560 MPa, ft=587 MPa (RUßWURM/MARTIN [59])

Tabelle A 1-12: KARI Stahl, Stahl IV b, ø8mm, fy=610 MPa, ft=656 MPa (RUßWURM/MARTIN [59])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
1	0	445	445	282.000	Br.	14	65	445	380	361.000	Br.
2	5	445	440	290.000	Br.	15	65	445	380	609.000	Br.
3	5	445	440	444.000	Br.	16	85	445	360	314.000	Br.
4	5	445	440	614.000	Br.	18a	15	445	430	256.000	Br.
5	15	445	430	165.000	Br.	19a	25	445	420	404.000	Br.
6	15	445	430	397.000	Br.	10	45	445	400	2.000.000	DL
7	25	445	420	378.000	Br.	17	105	445	340	2.000.000	DL
8	25	445	420	198.000	Br.	18	105	445	340	10.000.000	DL
9	25	445	420	316.000	Br.	19	105	445	340	10.000.000	DL
10a	5	445	440	614.000	Br.	20	145	445	300	2.000.000	DL
11	45	445	400	586.000	Br.	20a	85	445	360	2.000.000	DL
12	45	445	400	667.000	Br.	20b	45	445	400	5.967.000	DL
13	45	445	400	376.000	Br.						

Tabelle A 1-13: KARI Stahl, Stahl IV b, ø12mm, fy=591 MPa, ft=635 MPa (RUßWURM/MARTIN [59])

Probe	σu	σ。	Δσ	Lastwechsel	Text	Probe	σ	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
1	18	443	425	1.328.000	Br.	16a	80	443	363	805.000	Br.
2	45	443	398	570.000	Br.	17	98	443	345	1.888.000	Br.
2a	45	443	398	392.000	Br.	20	104	443	339	658.000	Br.
3	45	443	398	789.000	Br.	22a	63	443	380	1.894.000	Br.
4	53	443	390	2.100.000	Br.	23a	63	443	380	1.288.000	Br.
5	63	443	380	703.000	Br.	24a	37	443	406	318.000	Br.
6	63	443	380	1.998.000	Br.	25	45	443	398	670.000	Br.
7	63	443	380	617.000	Br.	26	80	443	363	559.000	Br.
8	63	443	380	832.000	Br.	16	98	443	345	9.600.000	DL
9	80	443	363	315.000	Br.	18	98	443	345	3.019.000	DL
10	80	443	363	1.305.000	Br.	19	104	443	339	3.400.000	DL
11	80	443	363	453.000	Br.	21	104	443	339	10.000.000	DL
12	80	443	363	410.000	Br.	22	125	443	318	2.000.000	DL
13	80	443	363	1.542.000	Br.	23	125	443	318	2.000.000	DL
14	80	443	363	314.000	Br.	24	142	443	301	2.000.000	DL
15	80	443	363	639.000	Br.	27	80	443	363	10.000.000	DL
Canteli/Esslinger/Thürlimann [11]

Probe	σ	σ。	Δσ	Lastwechsel	Text	Probe	σ	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
Serie 1:						Fortsetzu	ing Serie 2	2:			
16	10	392	382	205.000	Br.	37	10	300	290	1.435.000	Br.
17	10	392	382	219.000	Br.	25	10	300	290	1.549.000	Br.
1	10	392	382	222.000	Br.	45	10	300	290	1.634.000	Br.
15	10	392	382	239.000	Br.	33	10	300	290	1.899.000	Br.
18	10	392	382	256.000	Br.	27	10	300	290	2.000.000	DL
2	10	392	382	288.000	Br.	43	10	300	290	2.000.000	DL
10	142	392	250	980.000	Br.	49	10	300	290	2.000.000	DL
51	142	392	250	1.015.000	Br.	26	10	290	280	2.000.000	DL
53	142	392	250	1.259.000	Br.	32	10	290	280	2.000.000	DL
28	142	392	250	1.263.000	Br.	35	10	290	280	2.000.000	DL
9	142	392	250	1.917.000	Br.	38	10	290	280	2.000.000	DL
34	142	392	250	1.970.000	Br.	41	10	290	280	2.000.000	DL
36	152	392	240	458.000	Br.	47	10	290	280	2.000.000	DL
54	152	392	240	1.362.000	Br.	Serie 5:					
42	152	392	240	1.405.000	Br.	18	10	392	382	219.000	Br.
58	152	392	240	1.513.000	Br.	17	10	392	382	231.000	Br.
44	162	392	230	1.629.000	Br.	16	10	392	382	248.000	Br.
55	162	392	230	1.855.000	Br.	3	142	392	250	679.000	Br.
29	142	392	250	2.000.000	DL	1	142	392	250	683.000	Br.
31	142	392	250	2.000.000	DL	2	142	392	250	787.000	Br.
50	152	392	240	2.000.000	DL	19	172	392	220	1.079.000	Br.
52	152	392	240	2.000.000	DL	21	172	392	220	1.130.000	Br.
60	152	392	240	2.000.000	DL	22	192	392	200	1.056.000	Br.
39	162	392	230	2.000.000	DL	26	192	392	200	1.276.000	Br.
48	162	392	230	2.000.000	DL	24	192	392	200	1.304.000	Br.
57	162	392	230	2.000.000	DL	28	192	392	200	1.381.000	Br.
59	162	392	230	2.000.000	DL	20	192	392	200	2.000.000	DL
46	172	392	220	2.000.000	DL	23	212	392	180	2.000.000	DL
56	172	392	220	2.000.000	DL	25	212	392	180	2.000.000	DL
Serie 2:						27	212	392	180	2.000.000	DL
5	10	550	540	41.000	Br.	Serie 6:					
7	10	550	540	49.000	Br.	13	10	392	382	234.000	Br.
14	10	520	510	51.000	Br.	15	10	392	382	251.000	Br.
13	10	520	510	57.000	Br.	14	10	392	382	328.000	Br.
4	10	520	510	66.000	Br.	9	142	392	250	779.000	Br.
12	10	520	510	66.000	Br.	7	142	392	250	1.201.000	Br.
11	10	520	510	71.000	Br.	48	152	392	240	776.000	Br.
6	10	520	510	74.000	Br.	43	172	392	220	800.000	Br.
3	10	490	480	86.000	Br.	45	172	392	220	1.407.000	Br.
8	10	310	300	478.000	Br.	39	172	392	220	1.482.000	Br.
23	10	310	300	570.000	Br.	40	192	392	200	1.951.000	Br.
19	10	310	300	604.000	Br.	8	142	392	250	2.000.000	DL
20	10	310	300	645.000	Br.	47	172	392	220	2.000.000	DL
21	10	310	300	859.000	Br.	42	192	392	200	2.000.000	DL
22	10	310	300	939.000	Br.	44	192	392	200	2.000.000	DL
40	10	300	290	911.000	Br.	46	192	392	200	2.000.000	DL
30	10	300	290	1.160.000	Br.	41	212	392	180	2.000.000	DL

Tabelle A 1-14: Betonstahl IIIb (Serie 1,2,5,6), ø20mm, f_y=460 Mpa, f_t=560 Mpa (Canteli et al. [11])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
3	10	392	382	77.000	Br.	16	112	392	280	2.000.000	DL
1	10	392	382	175.000	Br.	9	122	392	270	2.000.000	DL
2	10	392	382	390.000	Br.	14	122	392	270	2.000.000	DL
19	82	392	310	702.000	Br.	8	132	392	260	2.000.000	DL
20	92	392	300	907.000	Br.	13	132	392	260	2.000.000	DL
10	112	392	280	780.000	Br.	7	142	392	250	2.000.000	DL
11	122	392	270	1.403.000	Br.	15	142	392	250	2.000.000	DL
5	142	392	250	885.000	Br.	21	142	392	250	2.000.000	DL
18	92	392	300	2.000.000	DL	4	152	392	240	2.000.000	DL
17	102	392	290	2.000.000	DL	6	152	392	240	2.000.000	DL

Tabelle A 1-15: Betonstahl IIIb (Serie 3), ø10mm, fy=460 Mpa, ft=560 Mpa (Canteli et al. [11])

Tabelle A 1-16: Betonstahl IIIb (Serie 4), ø30mm, fy=460 Mpa, ft=560 Mpa (Canteli et al. [11])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
3	10	392	382	218.000	Br.	11	182	392	210	1.227.000	Br.
4	10	392	382	258.000	Br.	14	192	392	200	1.067.000	Br.
1	10	392	382	286.000	Br.	6	142	392	250	2.000.000	DL
7	142	392	250	820.000	Br.	17	182	392	210	2.000.000	DL
5	142	392	250	1.116.000	Br.	16	192	392	200	2.000.000	DL
8	162	392	230	1.010.000	Br.	10	202	392	190	2.000.000	DL
13	182	392	210	1.198.000	Br.	12	202	392	190	2.000.000	DL
9	182	392	210	1.227.000	Br.	15	202	392	190	2.000.000	DL

Tabelle A 1-17: Betonstahl IIIb (Serie 7), ø20mm, fy=460 Mpa, ft=480 Mpa (Canteli et al. [11])

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel	Text	Pr	obe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel	Text
34	152	392	240	620.000	Br.		11	10	392	382	176.000	Br.
5	142	392	250	576.000	Br.		12	10	392	382	154.000	Br.
6	142	392	250	542.000	Br.		29	172	392	220	2.000.000	DL
31	132	392	260	445.000	Br.		35	172	392	220	2.000.000	DL
38	112	392	280	399.000	Br.		30	152	392	240	2.000.000	DL
4	142	392	250	398.000	Br.		32	152	392	240	2.000.000	DL
33	132	392	260	381.000	Br.		36	152	392	240	2.000.000	DL
10	10	392	382	204.000	Br.		37	132	392	260	2.000.000	DL

<u>Rehm [</u>80]

Tabelle A 1-18: BSt 500 S, ø16mm (Rehm [80])

Probe	d [mm]	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Probe	d [mm]	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]
1	16	125	300	175	2.260.000	13	16	85	300	215	1.130.000
2	16	120	300	180	940.000	14	16	85	300	215	2.720.000
3	16	120	300	180	1.440.000	15	16	70	300	230	570.000
4	16	120	300	180	3.220.000	16	16	70	300	230	790.000
5	16	120	300	180	4.760.000	19	16	70	300	230	1.050.000
6	16	100	300	200	850.000	21	16	70	300	230	3.050.000
7	16	100	300	200	1.240.000	22	16	50	300	250	400.000
8	16	100	300	200	1.430.000	24	16	50	300	250	1.360.000
9	16	100	300	200	2.730.000	25	16	40	300	260	470.000
10	16	100	300	200	4.960.000	27	16	40	300	260	840.000
11	16	85	300	215	500.000	28	16	40	300	260	2.190.000
12	16	85	300	215	870.000						

Probe	d [mm]	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Probe	d [mm]	би [MPa]	σο [MPa]	Δσ [MPa]	Lastwechsel [N]
29	25	100	300	200	1.190.000	44	25	125	300	175	1.090.000
30	25	100	300	200	1.860.000	45	25	70	300	230	1.210.000
31	25	125	300	175	954.000	46	25	100	300	200	1.020.000
32	25	140	300	160	1.679.000	47	25	100	300	200	1.040.000
33	25	100	300	200	1.240.000	48	25	100	300	200	1.120.000
34	25	100	300	200	1.130.000	49	25	100	300	200	1.280.000
35	25	100	300	200	1.410.000	50	25	125	300	175	1.200.000
36	25	100	300	200	590.000	51	25	100	300	200	1.500.000
37	25	70	300	230	790.000	52	25	125	300	175	1.090.000
38	25	100	300	200	1.030.000	53	25	125	300	175	1.240.000
39	25	70	300	230	940.000	54	25	140	300	160	1.620.000
40	25	100	300	200	1.060.000	55	25	100	300	200	1.210.000
41	25	100	300	200	1.300.000	56	25	100	300	200	1.120.000
42	25	70	300	230	680.000	57	25	125	300	175	1.090.000
43	25	100	300	200	1.120.000						

Tabelle A 1-19: BSt 500 S, ø25mm, f_y= 525-560 MPa, f_t=650-690 MPa (Rehm [80])

Tabelle A 1-20: BSt 500 S, ø30/ø40mm, fy= 525-560 MPa, ft=650-690 MPa (Rehm [80])

Probe	d [mm]	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Probe	d [mm]	σu [MPa]	σο [MPa]	Δσ [MPa]	Lastwechsel [N]
59	32	125	300	175	1.010.000	66	32	125	300	175	1.440.000
60	32	100	300	200	640.000	67	32	130	300	170	920.000
61	32	100	300	200	890.000	68	32	155	300	145	1.950.000
62	32	125	300	175	1.280.000	69	32	130	300	170	1.140.000
63	32	120	300	180	1.370.000	70	40	125	300	175	1.250.000
64	40	140	300	160	910.000	71	40	125	300	175	1.240.000
65	32	135	300	165	1.340.000						

A1.1.2 Untersuchungen im einbetonierten Zustand

Wascheidt [96]

Tabelle A 1-21: Rundstahl ø16mm (Verwindungsgrad 12d), (f_v=497 Mpa, f_t=649 Mpa)

Probe	σ	σ。	Δσ	Lastwechsel	Text	Probe	σ	σo	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
AI b1	60	420	360	1.236.000	Br.	AI b4	60	380	320	2.095.000	Br.
AI b5	60	440	380	483.000	Br.	AI b3	60	370	310	2.957.000	k. Br.
AI b2	60	390	330	1.358.000	Br.						

Tabelle A 1-22: Betonstahl II ø16mm (ohne Kennzeichen auf Probe), (fy=374 Mpa, ft=579 Mpa)

Probe	σ u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
Alli b1	60	370	310	825.000	Br.	Alli b4	60	310	250	2.160.000	k. Br.
Alli b2	60	360	300	989.000	Br.	Alli b5	60	290	230	3.804.000	k. Br.
Alli b3	60	330	270	1.685.000	Br.	AI b4	60	280	220	2.437.000	k. Br.

Tabelle A 1-23: Torstahl, BSt IIIb, ø16mm

Probe	σ_{u}	σ_{o}	Δσ	Lastwechsel	Text	Probe	σ_u	σ_{o}	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
Verwind	ungsgrad	8d (f _v =527	' Mpa, f _t =6	544 Mpa):		Verwind	ungsgrad	12d (f _v =48	6 Mpa, f _t =	=601 Mpa):	
BI b1	60	400	340	1.033.000	Fehler	BII b1	60	350	290	2.320.000	k. Br.
BI b2	60	380	320	673.000	Br. *	BII b4	60	440	380	603.000	Fehler
BI b4	60	360	300	1.993.000	Br. *	BII b2	60	380	320	2.075.000	k. Br.
BI b5	60	350	290	2.484.000	k. Br.	BII b5	60	440	380	534.000	Br. *
BI b3	60	370	310	2.765.000	k. Br.	BII b6	60	420	360	780.000	Br. *
* Bruch (Fuß)					BII b3	60	400	340	1.993.000	Br. *

Text

Br. * Br. *

Br. *

Br. *

k. Br.

Lastwechsel

[N]

964.000

1.166.000

1.160.000

990.000

2.121.000

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text		Probe	σ u [MPa]	σ ₀ [MPa]
Verwind	ungsgrad :	10d (f _v =45	3 Mpa, f _t =	=529 Mpa):		1 [(kleine Be	tonkörpe	r)
CI b1	60	340	280	2.909.000	k. Br.		CI b.kl.1	60	370
CI b3	60	350	290	2.979.000	k. Br.	1 [CI b.kl.2	60	360
CI b5	60	380	320	991.000	Br. *		CI b.kl.3	60	350
CI b6	60	390	330	1.180.000	Br. *	1 [CI b.kl.5	60	350
CI b2	60	360	300	2.124.000	Br. *		CI b.kl.4	60	340
CI b4	60	370	310	2.542.000	Br. *		* Bruch (S	Schrägripp	pe)

Tabelle A 1-24: Rippen-Torstahl, BSt IIIb, ø16mm

Bruch (Schrägrippe)

Tabelle A 1-25: Torstahl, BSt IIIb, ø16mm

Probe	σι	σ。	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
Verwind	ungsgrad	12d (f _v =44	8 Mpa, f _t =	=552 Mpa):	
CII b1	60	330	270	1.042.000	Fehler
CII b2	60	330	270	2.030.000	k. Br.
CII b3	60	370	310	390.000	Br. *
CII b4	60	350	290	667.000	Br. *
CII b5	60	340	280	1.786.000	Br. *

Probe	σ u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text		
(kleine Be	etonkörpe	r)					
CII	200	450	250	4.631.000	k. Br.		
CII	150	420	270	2.182.000	k. Br.		
CII	150	440	290	984.000	Br. *		
* Bruch (Schrägrippe)							

Δσ

[MPa]

310

300

290

290

280

Tabelle A 1-26: High-Bond-Stahl, BSt IIIa, (fy=414 Mpa, ft=634 Mpa)

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
DI b1	60	320	260	1.971.000	Br. *	DI b5	60	310	250	2.140.000	Br. *
DI b2	60	340	280	571.000	Br. *	DI b6	60	300	240	1.401.000	Br. *
DI b3	60	330	270	2.119.000	Br. *	DI b7	60	300	240	2.045.000	Br. *
DI b4	60	320	260	1.117.000	Br. *	DI kl.b1	60	310	250	3.368.000	Br. *

* Bruch (Längs-/Schrägrippe)

Tabelle A 1-27: Noreckstahl, BSt IIIb, (fy=520 Mpa, ft=559 Mpa)

Probe	σ u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
DII b1	60	300	240	2.958.000	k. Br.	DII b3	60	340	280	891.000	Br. *
DII b2	60	320	260	2.527.000	k. Br.	DII b4	60	360	300	1.673.000	Br. *
* Druch (länge /Sel	arägrinnol									

Bruch (Längs-/Schrägrippe)

Tabelle A 1-28: Hi-Bond-Stahl A, BSt IIIa, (f_y=476 Mpa, f_t=711 Mpa)

Pro	obe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
D	III	60	380	320	409.000	Br. *	DIII	60	340	280	1.700.000	Br. *
D	III	60	360	300	551.000	Br. *	DIII	60	350	290	3.542.000	k. Br.

* Bruch (Schrägrippe)

Rußwurm/Martin [59]

Tabelle A 1-29: KARIStahl, Stahl IV b, mit Abkrümmung (15*d), (fy=591 Mpa, ft=635 Mpa)

Probe	σu	σ。	Δσ	Lastwechsel	Text	Probe	σu	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
869	136	338	202	2.040.000	k. Br.	908	264	480	216	2.028.000	k. Br.
870	134	332	198	2.013.000	k. Br.	909	217	484	267	2.291.000	k. Br.
881	135	335	200	2.009.000	k. Br.	911	253	480	227	2.072.000	k. Br.
882	104	335	231	2.248.000	k. Br.	910	240	480	240	1.039.000	Br.
883	96	338	242	2.225.000	k. Br.	-					

A1.2 Spannstahl

A1.2.1 freischwingend durchgeführte Untersuchungen

Tabelle A 1-30: Nuwaysir (1956), Litzen 7/16 inch, Güte 250ksi (1724Mpa) (aus [78])

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
101	958	1.150	192	5.155.500	DL	102	958	1.214	255	1.317.200	Br.
103	958	1.278	319	861.000	Br.		958	1.214	255	2.082.000	DL
104	958	1.342	385	352.100	Br.		958	1.214	255	1.446.500	Br.
				-			958	1.214	255	1.469.000	DL

Tabelle A 1-31: Fisher and Viest (1961), Litzen 3/8 inch, Güte 250ksi (1724Mpa) [40]

Probe	σu	σο	Δσ	Lastwechsel	Text	Probe	σu	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
251	932	1.266	334	1.236.000	Br.	254	1.120	1.360	240	1.351.400	Br.
	932	1.266	334	909.200	Br.		1.120	1.360	240	2.190.000	DL
	932	1.266	334	579.000	Br.		1.120	1.360	240	2.489.300	DL
252	932	1.360	428	560.700	Br.	255	1.120	1.454	334	512.800	Br.
	932	1.360	428	152.700	Br.		1.120	1.454	334	422.000	Br.
	932	1.360	428	174.000	Br.		1.120	1.454	334	199.100	Br.
253	932	1.454	522	68.100	Br.	256	1.120	1.549	428	213.400	Br.
	932	1.454	522	48.700	Br.		1.120	1.549	428	90.600	Br.
	932	1.454	522	38.200	Br.		1.120	1.549	428	159.000	Br.

Probenbezeichnung und Daten aus [78]

Tabelle A 1-32: Cullimore (1972), Litzen 0,6 inch [15]

Probe	σu	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
501	499	714	215	9.340.000	DL
	499	714	215	4.570.000	DL
	499	714	215	5.440.000	DL
	499	714	215	4.870.000	DL
	499	714	215	4.750.000	DL
	499	714	215	6.620.000	Br.
	499	714	215	4.200.000	Br.
502	459	754	294	11.160.000	DL
	459	754	294	3.070.000	Br.
	459	754	294	2.120.000	Br.
	459	754	294	5.660.000	DL
	459	754	294	5.370.000	DL
	459	754	294	10.230.000	DL
	459	754	294	1.370.000	Br.
503	439	775	336	1.230.000	Br.
	439	775	336	2.560.000	Br.
	439	775	336	4.370.000	Br.
	439	775	336	706.000	Br.
	439	775	336	8.020.000	Br.
	439	775	336	1.140.000	DL

Probe	σ	σ	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
504	417	796	379	1.200.000	Br.
	417	796	379	670.000	Br.
	417	796	379	814.000	Br.
	417	796	379	539.000	Br.
	417	796	379	314.000	Br.
	417	796	379	4.990.000	Br.
	417	796	379	6.510.000	DL
505	397	816	419	382.000	Br.
	397	816	419	821.000	Br.
	397	816	419	3.160.000	Br.
	397	816	419	347.000	Br.
	397	816	419	354.000	Br.
506	376	837	461	412.000	Br.
	376	837	461	1.330.000	Br.
	376	837	461	283.000	Br.
	376	837	461	142.000	Br.
	376	837	461	429.000	Br.

Probenbezeichnung und Daten aus [78]

Tabelle A 1-33: Storebaelt Bridge Tests (1979), Litzen 0,6 inch (aus [78])

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
751	350	610	260	6.010.000	Br.	752	350	670	320	1.860.000	Br.
	350	610	260	2.910.000	DL		350	670	320	10.000.000	DL
						753	350	750	400	220.000	Br.

Probe	σ	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
701	667	971	304	2.000.000	DL
702	657	971	314	2.000.000	DL
	657	971	314	2.000.000	DL
	657	971	314	2.000.000	DL
703	647	971	323	1.095.000	Br.
704	627	971	343	612.000	Br.
705	618	971	353	443.000	Br.
706	608	971	363	2.000.000	DL
	608	971	363	625.000	Br.
707	598	971	373	2.000.000	DL
	598	971	373	303.000	Br.
708	589	971	383	1.293.000	Br.
709	578	971	392	320.000	Br.

Probe	σ_{u}	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]	
711	677	971	294	2.000.000	DL
	677	971	294	2.000.000	DL
	677	971	294	2.000.000	DL
712	667	971	304	1.439.000	Br.
713	647	971	323	644.000	Br.
714	608	971	363	317.000	Br.
715	578	971	392	2.000.000	DL
	578	971	392	234.000	Br.
716	559	971	412	2.000.000	DL
	559	971	412	219.000	Br.
717	530	971	441	2.000.000	DL
	530	971	441	145.000	Br.
718	501	971	471	170.000	Br.
719	481	971	490	330.000	Br.

Tabelle A 1-34: Müller and Zeller (1975), Litzen 1/2 inch, Güte 250ksi (1724Mpa) [71]

Probenbezeichnung und Daten aus [78]

Tabelle A 1-35: Edwards and Picard (1972), Litzen 1/2 inch [30]

Probe	σu	σο	Δσ	Lastwechsel	Text	Probe	σu	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
551	756	1.078	321	416.000	*	555	1.135	1.409	274	473.500	*
	756	1.078	321	496.400	*		1.135	1.409	274	581.700	*
	756	1.078	321	558.600	*		1.135	1.409	274	667.600	*
	756	1.078	321	619.000	*		1.135	1.409	274	752.400	*
	756	1.078	321	686.000	*		1.135	1.409	274	848.000	*
	756	1.078	321	772.000	*		1.135	1.409	274	973.200	*
	756	1.078	321	921.200	*		1.135	1.409	274	1.195.700	*
552	756	1.097	341	347.000	*	556	1.135	1.438	303	230.100	*
	756	1.097	341	395.400	*		1.135	1.438	303	295.600	*
	756	1.097	341	432.700	*		1.135	1.438	303	351.400	*
	756	1.097	341	469.800	*		1.135	1.438	303	411.600	*
	756	1.097	341	514.200	*		1.135	1.438	303	489.300	*
	756	1.097	341	585.800	*		1.135	1.438	303	628.500	*
553	756	1.135	379	191.300	*	557	1.135	1.513	379	144.300	*
	756	1.135	379	238.900	*		1.135	1.513	379	163.400	*
	756	1.135	379	277.200	*		1.135	1.513	379	177.200	*
	756	1.135	379	315.400	*		1.135	1.513	379	189.800	*
	756	1.135	379	358.800	*		1.135	1.513	379	202.500	*
	756	1.135	379	416.300	*		1.135	1.513	379	216.900	*
	756	1.135	379	519.900	*		1.135	1.513	379	235.200	*
554	756	1.229	473	87.400	*		1.135	1.513	379	266.400	*
	756	1.229	473	98.900	*	558	1.135	1.608	473	87.400	*
	756	1.229	473	107.600	*		1.135	1.608	473	91.400	*
	756	1.229	473	116.300	*		1.135	1.608	473	94.200	*
	756	1.229	473	126.600	*		1.135	1.608	473	96.900	*
	756	1.229	473	143.200	*		1.135	1.608	473	99.900	*
* rekons	ekonstrujerte Lastwechselzahl						1 1 3 5	1 608	473	104 500	*

* rekonstruierte Lastwechselzah

Probenbezeichnung und Daten aus [78]

Tabelle A 1-36: Slutter and Ekberg (1959), Litzen 1/2 inch, Güte 250ksi (1724Mpa) [83]

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Prob	e <mark>σ</mark> u [MPa]	σ ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
201	965	1.200	234	1.147.000	Br.	201	965	1.200	234	1.360.000	Br.

Probenbezeichnung und Daten aus [78]

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
801	539	735	196	4.030.000	DL
	539	735	196	4.250.000	DL
	539	735	196	2.000.000	DL
	539	735	196	2.000.000	DL
	539	735	196	2.000.000	DL
802	503	686	183	10.000.000	DL
	503	686	183	4.550.000	DL
	503	686	183	4.860.000	DL
	503	686	183	2.000.000	DL
	503	686	183	2.000.000	DL
	503	686	183	1.835.000	Br.
	503	686	183	2.000.000	DL
803	503	686	183	4.670.000	Br.
	503	686	183	10.000.000	DL
	503	686	183	5.950.000	Br.
	503	686	183	2.000.000	DL

Tabelle A	1-37: Frank	and Hsu	(1981). Litz	en 0.6 inch	[41]
	1 37. H and	una nou	(1901), 112		[]

Probe	σ u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
803	503	686	183	2.000.000	DL
	503	686	183	2.000.000	DL
811	519	952	432	93.300	Br.
	519	952	432	125.840	Br.
	519	952	432	219.340	Br.
	519	952	432	153.280	Br.
	519	952	432	84.850	Br.
812	519	952	432	117.100	Br.
	519	952	432	267.170	Br.
	519	952	432	270.000	Br.
813	519	952	432	195.780	Br.
	519	952	432	179.200	Br.
	519	952	432	153.330	Br.

Probenbezeichnung und Daten aus [78]

Taballa A 1 29: Warner and Hulshes	(1966) Litzon 7/16 inch Güte 250k	$(1724Mp_2)[04][02][02]$
Tabelle A 1-38: Warner and Huisbos	(1900), LILZEN 7/10 INCH, GULE 250K	SI (1724IVIDA) [94], [93], [92]

Probe	σu	σο	Δσ	Lastwechsel	Text	Probe	σu	σο	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
301	729	1.003	274	3.282.500	DL	311	1.094	1.367	274	425.500	Br.
	729	1.003	274	5.375.000	DL		1.094	1.367	274	304.800	Br.
302	729	1.048	319	1.246.000	Br.		1.094	1.367	274	777.000	Br.
	729	1.048	319	1.159.600	Br.		1.094	1.367	274	863.000	Br.
	729	1.048	319	1.082.000	Br.		1.094	1.367	274	768.500	Br.
	729	1.048	319	561.000	Br.		1.094	1.367	274	300.600	Br.
	729	1.048	319	591.000	Br.		1.094	1.367	274	1.500.000	Br.
	729	1.048	319	715.000	Br.	312	1.094	1.458	365	234.400	Br.
303	729	1.094	365	287.400	Br.		1.094	1.458	365	211.000	Br.
	729	1.094	365	308.400	Br.		1.094	1.458	365	160.000	Br.
	729	1.094	365	344.100	Br.		1.094	1.458	365	170.600	Br.
	729	1.094	365	274.000	Br.		1.094	1.458	365	121.000	Br.
	729	1.094	365	573.000	Br.		1.094	1.458	365	159.000	Br.
	729	1.094	365	359.000	Br.		1.094	1.458	365	222.000	Br.
304	729	1.185	456	175.500	Br.		1.094	1.458	365	95.500	Br.
	729	1.185	456	152.600	Br.		1.094	1.458	365	155.000	Br.
	729	1.185	456	168.000	Br.		1.094	1.458	365	235.800	Br.
	729	1.185	456	116.000	Br.		1.094	1.458	365	271.800	Br.
	729	1.185	456	126.000	Br.		1.094	1.458	365	191.300	Br.
	729	1.185	456	174.000	Br.		1.094	1.458	365	176.000	Br.
305	729	1.276	547	90.400	Br.		1.094	1.458	365	162.400	Br.
	729	1.276	547	92.000	Br.		1.094	1.458	365	208.400	Br.
	729	1.276	547	105.200	Br.		1.094	1.458	365	214.500	Br.
	729	1.276	547	100.400	Br.		1.094	1.458	365	147.600	Br.
	729	1.276	547	71.000	Br.		1.094	1.458	365	40.900	Br.
	729	1.276	547	76.000	Br.		1.094	1.458	365	164.500	Br.
306	729	1.367	638	36.500	Br.		1.094	1.458	365	220.600	Br.
	729	1.367	638	54.000	Br.	313	1.094	1.549	456	103.000	Br.
307	729	1.458	729	37.800	Br.		1.094	1.549	456	70.000	Br.
308	1.094	1.276	182	3.306.000	Br.		1.094	1.549	456	88.300	Br.
	1.094	1.276	182	5.440.600	DL		1.094	1.549	456	73.000	Br.
309	1.094	1.313	219	652.800	Br.		1.094	1.549	456	88.500	Br.
	1.094	1.313	219	1.873.500	Br.		1.094	1.549	456	68.600	Br.
310	1.094	1.322	228	3.630.200	DL	Probenbe	ezeichnung	und Daten	aus [78]		

Probe	σu	σ。	Δσ	Lastwechsel	Text	Probe	σu	σο	Δσ	Lastwechsel	Text	
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]		
351	886	1.115	229	3.342.000	DL	353	886	1.172	286	394.000	Br.	
	886	1.115	229	2.030.000	DL		886	1.172	286	2.736.000	DL	
	886	1.115	229	2.600.000	DL		886	1.172	286	2.680.000	DL	
	886	1.115	229	2.006.000	DL	354	886	1.210	324	335.000	Br.	
	886	1.115	229	2.765.000	DL		886	1.210	324	798.000	Br.	
	886	1.115	229	2.623.000	DL		886	1.210	324	320.000	Br.	
	886	1.115	229	2.116.000	DL		886	1.210	324	1.660.000	Br.	
	886	1.115	229	2.743.000	DL		886	1.210	324	893.000	Br.	
	886	1.115	229	2.463.000	DL		886	1.210	324	2.174.000	Br.	
	886	1.115	229	2.547.000	DL		886	1.210	324	2.712.000	DL	
	886	1.115	229	2.077.000	DL		886	1.210	324	2.390.000	DL	
352	886	1.134	248	1.580.000	Br.	355	886	1.229	343	1.726.000	Br.	
	886	1.134	248	2.359.000	Br.		886	1.229	343	2.008.000	DL	
	886	1.134	248	2.403.000	Br.		886	1.229	343	791.000	Br.	
	886	1.134	248	1.608.000	Br.		886	1.229	343	246.000	Br.	
	886	1.134	248	3.881.000	DL		886	1.229	343	2.502.000	DL	
	886	1.134	248	2.141.000	Br.		886	1.229	343	2.080.000	DL	
	886	1.134	248	4.131.000	DL		886	1.229	343	2.020.000	DL	
	886	1.134	248	4.098.000	DL		886	1.229	343	290.000	Br.	
	886	1.134	248	4.424.000	DL		886	1.229	343	54.000	Br.	
353	886	1.172	286	466.000	Br.		886	1.229	343	93.000	Br.	
	886	1.172	286	489.000	Br.		886	1.229	343	85.000	Br.	
	886	1.172	286	2.101.000	Br.		886	1.229	343	42.000	Br.	
	886	1.172	286	483.000	Br.	r. Probenbezeichnung und Daten aus [78]						

Tabelle A 1-39: Hilmes (1965), Litzen 7/16 inch, Güte 250ksi (1724Mpa) [52]

Probe	σ"	σ	Δσ	Lastwechsel	Text	Probe	σ"	σ	Δσ	Lastwechsel	Text	
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]		
401	745	968	223	2.241.000	Br.	422	745	1.117	372	338.000	Br.	
	745	968	223	2.282.000	Br.		745	1.117	372	303.000	Br.	
	745	968	223	772.500	Br.		745	1.117	372	326.800	Br.	
402	745	968	223	928.000	Br.		745	1.117	372	184.400	Br.	
	745	968	223	2.185.000	Br.		745	1.117	372	235.500	Br.	
	745	968	223	1.281.300	Br.	423	745	1.117	372	630.000	Br.	
403	745	968	223	1.747.000	Br.		745	1.117	372	223.700	Br.	
	745	968	223	1.427.000	Br.		745	1.117	372	484.900	Br.	
	745	968	223	1.901.000	Br.		745	1.117	372	137.700	Br.	
411	745	1.043	298	721.700	Br.		745	1.117	372	301.900	Br.	
	745	1.043	298	723.000	Br.		745	1.117	372	272.200	Br.	
	745	1.043	298	1.154.000	Br.		745	1.117	372	169.200	Br.	
412	745	1.043	298	763.000	Br.	431	745	1.210	465	99.200	Br.	
	745	1.043	298	428.000	Br.		745	1.210	465	75.800	Br.	
	745	1.043	298	600.400	Br.		745	1.210	465	80.900	Br.	
413	745	1.043	298	1.189.900	Br.		745	1.210	465	112.600	Br.	
	745	1.043	298	976.600	Br.		745	1.210	465	101.000	Br.	
	745	1.043	298	919.000	Br.		745	1.210	465	107.100	Br.	
	745	1.043	298	745.100	Br.	432	745	1.210	465	131.100	Br.	
421	745	1.117	372	156.400	Br.		745	1.210	465	96.700	Br.	
	745	1.117	372	281.100	Br.		745	1.210	465	95.900	Br.	
	745	1.117	372	218.000	Br.		745	1.210	465	91.800	Br.	
	745	1.117	372	252.400	Br.		745	1.210	465	120.500	Br.	
	745	1.117	372	261.200	Br.		745	1.210	465	120.100	Br.	
	745	1.117	372	176.300	Br.	Probenbezeichnung und Daten aus [78]						

Fortsetzung Tabelle A 1-40:

Probe	σ	σ	Δσ	Lastwechsel	Text	Probe	σ.,	σ	Δσ	Lastwechsel	Text
	[MPa]	[MPa]	[MPa]	[N]			[MPa]	[MPa]	[MPa]	[N]	
433	745	1.210	465	123.500	Br.	471	1.117	1.415	298	326.400	Br.
	745	1.210	465	80.600	Br.		1.117	1.415	298	232.100	Br.
	745	1.210	465	123.300	Br.		1.117	1.415	298	254.200	Br.
	745	1.210	465	96.400	Br.		1.117	1.415	298	334.800	Br.
	745	1.210	465	166.700	Br.	472	1.117	1.415	298	183.900	Br.
	745	1.210	465	204.000	Br.		1.117	1.415	298	517.200	Br.
441	745	1.303	558	71.700	Br.		1.117	1.415	298	370.000	Br.
	745	1.303	558	67.800	Br.		1.117	1.415	298	353.700	Br.
	745	1.303	558	77.200	Br.		1.117	1.415	298	487.400	Br.
	745	1.303	558	69.400	Br.		1.117	1.415	298	512.500	Br.
	745	1.303	558	50.000	Br.		1.117	1.415	298	653.800	Br.
	745	1.303	558	58.500	Br.		1.117	1.415	298	449.000	Br.
442	745	1.303	558	74.300	Br.	473	1.117	1.415	298	332.100	Br.
	745	1.303	558	75.200	Br.		1.117	1.415	298	333.600	Br.
	745	1.303	558	60.000	Br.		1.117	1.415	298	273.400	Br.
	745	1.303	558	74.200	Br.		1.117	1.415	298	307.600	Br.
	745	1.303	558	69.800	Br.		1.117	1.415	298	489.300	Br.
	745	1.303	558	74.800	Br.	481	1.117	1.489	372	190.700	Br.
443	745	1.303	558	97.500	Br.		1.117	1.489	372	148.400	Br.
	745	1.303	558	68.800	Br.		1.117	1.489	372	267.900	Br.
	745	1.303	558	55.800	Br.		1.117	1.489	372	104.600	Br.
	745	1.303	558	58.500	Br.		1.117	1.489	372	151.000	Br.
	745	1.303	558	78.400	Br.		1.117	1.489	372	178.500	Br.
	745	1.303	558	84.400	Br.	482	1.117	1.489	372	174.000	Br.
451	1.043	1.489	447	158.700	Br.		1.117	1.489	372	77.500	Br.
	1.043	1.489	447	242.500	Br.		1.117	1.489	372	127.800	Br.
	1.043	1.489	447	130.500	Br.		1.117	1.489	372	254.400	Br.
452	1.043	1.489	447	54.100	Br.		1.117	1.489	372	215.700	Br.
	1.043	1.489	447	79.900	Br.		1.117	1.489	372	113.500	Br.
	1.043	1.489	447	53.400	Br.	483	1.117	1.489	372	199.500	Br.
	1.043	1.489	447	73.300	Br.		1.117	1.489	372	116.900	Br.
	1.043	1.489	447	107.900	Br.		1.117	1.489	372	197.900	Br.
	1.043	1.489	447	111.600	Br.		1.117	1.489	372	439.300	Br.
453	1.043	1.489	447	112.500	Br.		1.117	1.489	372	152.700	Br.
	1.043	1.489	447	138.100	Br.	404	1.117	1.489	372	356.400	Br.
45.4	1.043	1.489	447	119.900	Br.	491	1.11/	1.582	465	78.500	Br.
454	1.043	1.489	447	59.800	Br.		1.117	1.582	465	81.700	Br.
	1.043	1.489	447	87.200	Br.		1.11/	1.582	465	88.600	Br.
455	1.043	1.489	447	82.800	Br.		1.117	1.582	465	87.800	Br.
455	1.043	1.489	447	114 000	Br.		1.117	1.582	405	87.200	Br.
	1.043	1.489	447	114.000	Br.	402	1.117	1.582	465	96.300	Br.
461	1.045	1.489	447	1 405 500	Br.	492	1.117	1.582	405	92.300	Dr.
401	1.117	1.540	225	1.405.500	DI. Dr		1.117	1.562	405	02.300	DI. Dr
	1.117	1.340	225	1.055.000	DI. Dr		1.117	1.502	405	56.300	DI. Dr
462	1.117	1.340	223	1.091.000	Br.		1.117	1.582	405	55.300	Dr.
402	1 1 1 7	1.340	223	722 000	DI. Pr		1 117	1.582	405	97.600	DI. Dr
	1.117	1.340	223	1 224 000	DI. Dr	402	1.117	1.582	405	37.000	DI.
463	1.11/	1.340	223	1.224.900	Dr.	493	1.117	1.582	405	208.600	Br.
403	1.117	1.340	223	2 021 000	Dr.		1.117	1.582	405	94.400	Br.
	1.11/	1.340	223	2.031.900	Dr.		1.117	1.582	405	97.000	Br.
471	1.117	1.340	223	420 100	DI. Dr		1.117	1.582	405	82 200	DI.
4/1	1 1 1 7	1.415	230	435.100	DI. Pr		1 117	1.582	405	114 200	DI. Dr
	1 1 1 1 7	1.415	298	215 200	DI. Br	Prohenha	 ezeichnung	L.382	405 aus [78]	114.300	DI.
	1.11/	1.415	290	215.200	DI.	ribbelibe	ceciciniung	and Datell	aas [70]		

Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text	Probe	σ _u [MPa]	σ₀ [MPa]	Δσ [MPa]	Lastwechsel [N]	Text
151	912	1.188	276	304.700	Br.	156	1.124	1.293	169	4.107.100	DL
	912	1.188	276	1.041.100	Br.	157	1.124	1.308	185	3.733.500	DL
152	939	1.172	233	1.326.100	Br.	158	1.124	1.327	203	368.400	Br.
	939	1.172	233	422.000	Br.	159	1.124	1.346	223	980.200	Br.
	939	1.172	233	2.967.600	Br.	160	1.124	1.362	238	294.200	Br.
153	939	1.226	286	2.101.200	Br.	161	1.124	1.379	255	356.400	Br.
	939	1.226	286	373.200	Br.	162	1.207	1.362	155	1.564.500	DL
154	939	1.258	319	151.500	Br.		1.207	1.362	155	864.000	Br.
155	939	1.327	388	84.400	Br.		1.207	1.362	155	2.962.800	DL

Tabelle A 1-41: Lane and Ekberg (1959), Litzen 7/16 inch, Güte 250ksi (1724Mpa) [55]

Probenbezeichnung und Daten aus [78]

A1.2.2 Großversuche mit nachträglichem Verbund

Tabelle A 1-42: Abel [2]

Probe	Prüffreq.	Fu ^{*)}	F ₀ ^{*)}	Δσρ	Lastwechsel	Text	Probe	Prüffreq.	F u ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text
	[Hz]	[kN]	[kN]	[MPa]	[N]			[Hz]	[kN]	[kN]	[MPa]	[N]	
je 3x 7-	drähtige Lit	zen 0,6	5", St15	70/1770			je 11 E	nzeldrähte	ø7mm,	St1470	0/1670		
10	3	149	215	180	530.000	1. Br.	1	3	152	196	140	930.000	1. Br.
11	3	144	190	130	6.000.000	1. Br.	2	3	160	196	120	1.700.000	1. Br.
12	3	149	215	180	1.540.000	1. Br.	3	3	167	196	100	5.250.000	1. Br.
13	3	167	215	150	1.200.000	1. Br.	17	3	164	220	150	4.900.000	1. Br.
14	3	154	220	210	450.000	1. Br.							
15	3	176	220	125	17.050.000	1. Br.							
16	3	149	220	200	610.000	1. Br.							

^{*)} Maschinenkräfte vor Inaktivierung der Betonstahlbewehrung angegeben - Trägergeometrie identisch

Probe	Prüffreq.	F u ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text
	[Hz]	[kN]	[kN]	[MPa]	[N]	
1/I	2,8	175	210	120	2.100.000	1. Br.
2/I	2,8	175	210	120	2.200.000	1. Br.
3/I	2,8	168	210	140	1.100.000	1. Br.
1/11	2,8	168	210	140	1.300.000	1. Br.
2/11	2,8	160	210	160	700.000	1. Br.
3/11	2,8	160	210	180	700.000	1. Br.

Fabelle A 1-43: Bökamp	[10]	. 7-drähtige Litzen ø15,2mm, St	1570	/1770	, je Probe 3 Litzen
-------------------------------	------	---------------------------------	------	-------	---------------------

Prob	e Prüffreq.	F u ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text
	[Hz]	[kN]	[kN]	[MPa]	[N]	
1/11	2,8	160	225	190	500.000	1. Br.
2/111	2,8	160	225	190	400.000	1. Br.
3/111	2,8	160	225	190	400.000	1. Br.

*) Maschinenkräfte angegeben - Trägergeometrie identisch

 Tabelle A 1-44: Paralleldrähte 16x Ø7mm, St 1470/1670, Stahlhüllrohr, Oertle et al. [73]

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text	Probe	σ u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text
C1	1000	1100	100	0 - 2,0	-	DL		950	1100	150	5,7 - 6,0	5,960	5. Br.
	975	1100	125	2,0 - 3,0	2,960	1.+2.		"	"	"	6,0 - 7,6	7,640	6. Br.
	"	"	"	3,0 - 4,0	-	k. Br.		"	"	"	7,6 - 8,9	8,940	7. Br.
	950	1100	150	4,0 - 5,4	5,380	3. Br.					8,9 - 9,1	9,080	8. Br.
			н	5,4 - 5,7	5,740	4. Br.							

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ ₽ [MPa]	Lastwechsel [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text	P	Probe	σ u [MPa]	σ ₀ [MPa]	Δσ _Ρ [MPa]	Lastwechsel [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text
C2	1060	1160	100	0 - 2,0	-	DL				"	175	6,8 - 7,0	7,010	6.Br.
	"	1185	125	2,0 - 4,0	-	DL			"	"	175	7,0 - 7,1	7,140	7.Br.
	1035	1185	150	4,0 - 5,7	5,680	1.Br.			"	"	175	7,1 - 7,4	7,420	8.Br.
	"	"	150	5,7 - 6,0	-	k.Br.			"	"	175	7,4 - 7,7	7,690	9.Br.
	"	1210	175	6,0 - 6,3	6,310	2.Br.			"	"	175	7,7 - 7,9	7,940	10.Br.
	"		175	6,3 - 6,5	6,490	3.Br.			"		175	7,9 - 8,1	8,080	11.Br.
	"	"	175	6,5 - 6,6	6,640	4.Br.			"	"	175	8,1 - 8,3	8,280	12.+13.
	"		175	6,6 - 6,8	6,800	5.Br.				"	175	8,3 - 8,8	8,810	14.Br.

Tabelle A 1-45: 4x 7-drähtige Litzen 0,6", St 1470/1670, Stahlhüllrohr, Oertle et al. [73]

Tabelle A 1-46: Paralleldrähte 16x ø7mm, St 1470/1670, Kunststoffhüllrohr, Oertle et al. [73]

Probe	σ	σ ₀	Δσ _P	LW Periode	Bruch	Text	Probe	σ	σ.	Δσ _P	LW Periode	Bruch	Text
	[MPa]	[MPa]	[MPa]	[N·10°]	[N·10°]			[MPa]	[MPa]	[MPa]	[N·10°]	[N·10°]	
C3	925	1100	175	0 - 2,0	-	DL		900	1150	250	6,2 - 6,5	6,470	4.Br.
	"	1125	200	2,0 - 4,0	-	DL		"		250	6,5 - 7,1	7,090	5.Br.
	900	1125	225	4,0 - 4,7	4,720	1.Br.		"		250	7,1 - 8,0	-	k.Br.
	"	"	225	4,7 - 5,1	5,080	2.Br.		"	1175	275	8,0 - 8,2	8,180	6.Br.
	"	"	225	5,1 - 6,0	-	k.Br.		"	"	275	8,2 - 8,5	8,480	7.Br.
	"	1150	250	6,0 - 6,2	6,190	3.Br.		"	"	275	8,5 - 8,9	8,490	8.Br.

Tabelle A 1-47: 4x 7-drähtige Litzen 0,6", St 1470/1670, Kunststoffhüllrohr, Oertle et al. [73]

Probe	σս	σ。	Δσρ	LW Periode	Bruch	Text	Probe	σս	σ。	Δσρ	LW Periode	Bruch	Text
	[MPa]	[MPa]	[MPa]	[N·10⁻6]	[N·10 ⁻⁶]			[MPa]	[MPa]	[MPa]	[N·10⁻6]	[N·10⁻6]	
C4	985	1160	175	0 - 2,0	-	DL		975	1125	250	6,9 - 8,0	-	k.Br.
	"	1185	200	2,0 - 4,0	-	DL		"	1250	275	8,0 - 9,2	9,240	3.Br.
	975	1200	225	4,0 - 4,5	4,510	1.Br.		"	"	275	9,2 - 9,4	9,440	4.Br.
	"	"	225	4,5 - 6,0	-	k.Br.		"	"	275	9,4 - 9,8	9,810	5.Br.
	"	1225	250	6,0 - 6,9	6,920	2.Br.		"	"	275	9,8 - 10,0	-	k.Br.

Tabelle A 1-48: Litze ø15,2 mm, St1570/1770, Kunststoff-/ Plastikhüllrohr, Eskola [36]

Probe	Prüffreq. [Hz]	F u ^{*)} [kN]	F₀ *) [kN]	Δσ ₽ [MPa]	Lastwechsel [N]	Text	Probe	Prüffreq. [Hz]	F u ^{*)} [kN]	F₀ *) [kN]	Δσ ₽ [MPa]	Lastwechsel [N]	Text
Stahlhi	Stahlhüllrohr							hüllrohr					
S200	0,45-0,7	960	1350	200	400.000	1.Br.	P200	0,45-0,7	940	1350	200	780.000	1.Br.
S200-	0,45-0,7	940	1350	200	420.000	1.Br.	P200-	0,45-0,7	940	1350	200	2.052.000	1.Br.
*1													

*) Maschinenkräfte angegeben - Trägergeometrie identisch

Tabelle A 1-49: 7-drähtige Litzen 0,6", St1570/1770, je 4 Litzen übereinander, Hegger/Neuser [49]

Probe	Prüffreq. [Hz]	σ u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text		Probe	Prüffreq. [Hz]	σ _u [MPa]	σ ₀ [MPa]	Δσ ₽ [MPa]	Lastwechsel [N]	Text
21	3	-	-	125	28.600.000	DL		22	3	-	-	125	560.000	1.Br.
21a	3	-	-	185	1.850.000	1.Br.	ſ	23	3	-	-	125	730.000	1.Br.

Tabelle A 1-50: Müller [70]

Probe	Prüffreq.	σ_{u}	σ。	Δσρ	Lastwechsel	Text
	[Hz]	[MPa]	[MPa]	[MPa]	[N]	
gerippt	er Gewinde	stahl, St	1080/12	230, je 1x	ø26,5 mm	
1	k.A.	475	675	200	2.000.000	DL
		450	750	300	76.000	1. Br.
2	k.A.	515	675	160	2.000.000	DL
		450	750	300	220.000	1. Br.
3	k.A.	425	675	250	113.000	1. Br.
4	k.A.	425	675	200	417.000	1. Br.

Probe	Prüffreq. [Hz]	σ _u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text
Litzen,	St1570/177	0, je 3x	ø15,3 m	m		
8	k.A.	825	975	150	3.071.000	DL
		775	975	200	634.000	1. Br.
9	k.A.	825	975	150	2.337.000	1.Br.
10	k.A.	825	975	150	1.829.000	1.Br.
vergüt	ete Drähte,	St1420/	1570, je	3x ø12,2	mm	
5	k.A	465	865	200	2.099.800	1. Br.
6	k.A.	715	865	150	2.328.000	DL
		665	865	200	4.265.000	DL
		615	865	250	766.000	1. Br.
7	k.A.	690	865	175	1.141.000	1. Br.

Prohe	E.	F.	Δ σ ₂ *)	IW Periode	Bruch	Text	Prohe	E.	F.	Δ σ ₂ *)	IW Periode	Bruch	Text
TTODE	[kN]	[kN]	[MPa]	[N·10 ⁻⁶]	[N·10 ⁻⁶]	TCAL	TTODE	[kN]	[kN]	[MPa]	[N·10 ⁻⁶]	[N·10 ⁻⁶]	TCAL
Δ1	20	270	301	0-076	0 765	1 Br	Δ4	20	200	173	0 - 0 91	0 911	1 Br
	"	220	301	0.76 - 0.98	0.984	2.Br.		"	192	173	0.91 - 1.02	1.016	2.Br.
		212	301	0.98 - 1.08	1.079	3.Br.			184	173	1.02 - 1.03	1.027	3.Br.
		196	301	1.08 - 1.14	1.143	4./5.			176	173	1.03 - 1.54	1.544	4.Br.
		188	301	1,14 - 1,15	1,145	6.Br.			168	173	1,54 - 2,18	2,184	5.Br.
		168	301	1.15 - 1.17	1.173	7.Br.			158	173	2.18 - 2.29	2.288	6./7.
		156	301	1,17 - 1,20	1,204	8.Br.			144	173	2,29 - 2,31	2,305	8.Br.
A2	20	160	76	0 - 1.58	1.580	1.Br.	A5	20	160	78	0 - 4.00	-	k. Br.
		152	76	1,58 - 2,34	2,335	2.Br.			190	153	4,00 - 4,49	4,491	1.Br.
		144	76	2,34 - 2,40	2,401	3.Br.			180	153	4,49 - 4,59	4,588	2./3.
	"	135	76	2,40 - 4,40	-	k. Br.			154	153	4,59 - 4,82	4,818	4.Br.
	20	144	97	4,40 - 6,37	-	k. Br.		"	144	153	4,82 - 6,93	6,927	5.Br.
	20	160	161	6,37 - 7,53	7,529	4.Br.			140	153	6,93 - 7,40	7,396	6.Br.
		152	161	7,53 - 7,55	7,553	5.Br.		"	136	153	7,40 - 7,75	7,747	7.Br.
		140	161	7,55 - 7,82	7,795	6.Br.			132	153	7,75 - 8,30	8,296	8.Br.
		124	161	7,82 - 8,68	8,681	7.Br.	A6	20	180	155	0 - 1,16	1,159	1.Br.
		118	161	8,68 - 8,87	8,871	8.Br.			168	155	1,16 - 1,25	1,249	2.Br.
A3	20	160	83	0 - 2,05	-	k. Br.			160	155	1,25 - 1,48	1,480	3.Br.
	20	180	135	2,50 - 2,80	2,801	1.Br.			140	155	1,48 - 1,77	1,773	4.Br.
		170	135	2,80 - 3,87	3,831	2.Br.			128	155	1,77 - 2,04	2,041	5.Br.
	"	160	135	3,87 - 4,51	4,506	3.Br.			118	155	2,04 - 2,54	-	-
	"	152	135	4,51 - 4,95	4,949	4.Br.			80	155	2,54 - 4,60	-	-
	"	144	135	4,95 - 5,54	5,535	5.Br.		"	118	155	4,60 - 5,24	5,240	6.Br.
		136	135	5,54 - 6,31	6,312	6.Br.			108	155	5,24 - 5,69	5,685	7.Br.
	"	128	135	6,31 - 6,69	6,687	7.Br.		"	100	155	5,69 - 7,01	7,009	8.Br.
		120	135	6,69 - 6,99	6,992	8.Br.	r. ^{*)} Aus der maximalen Dehnung bestimmt						

Tabelle A 1-51: Paralleldrähte 16x ø7mm, fy=1520MPa, ft=1670MPa, Stahlhüllrohr, Rigon/Thürlimann [81]

Tabelle A 1-52: Paralleldrähte 15x ø7mm, fy=1520MPa, ft=1670MPa, Stahlhüllrohr, Rigon/Thürlimann [81]

Probe	Fu [kN]	F₀ [kN]	Δσ_{Ρ,max}*) [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text		Probe	Fu [kN]	F₀ [kN]	Δσ _{P,max} *) [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text
A8	20	220	124	0 - 1,25	1,425	1.Br.			20	168	124	1,77 - 2,19	2,190	5.Br.
		210	124	1,25 - 1,37	1,374	2.Br.			"	160	124	2,19 - 3,53	3,515	6.Br.
		200	124	1,37 - 1,48	1,478	3.Br.	11			154	124	3,53 - 3,94	-	-
		178	124	1,48 - 1,77	1,770	4.Br.	*) Aus der maximalen Dehnung bestimmt							

Tabelle A 1-53: Paralleldrähte 16x Ø7mm, f_y=1520MPa, f_t=1670MPa, Polyethylen, Rigon/Thürlimann [81]

Probe	Fu	Fo	$\Delta \sigma_{P,max}^{*)}$	LW Periode	Bruch	Text	Probe	Fu	Fo	$\Delta \sigma_{P,max}^{*)}$	LW Periode	Bruch	Text
	[kN]	[kN]	[MPa]	[N·10 ⁻⁶]	[N·10⁻6]			[kN]	[kN]	[MPa]	[N·10⁻⁶]	[N·10 ⁻⁶]	
A7	20	200	166	0 - 4,01	-	k. Br.		20	172	255	5,74 - 5,81	5,831	5.Br.
	20	220	255	4,01 - 5,42	5,422	1.Br.			160	255	5,82 - 6,15	6,148	6.Br.
	"	210	255	5,42 - 5,63	5,627	2.Br.			148	255	6,15 - 6,26	6,264	7.Br.
	"	196	255	5,63 - 5,67	5,673	3.Br.		"	136	255	6,26 - 7,15	7,152	8.Br.
	"	180	255	5,67 - 5,74	5,737	4.Br.	*) Aus der maximalen Dehnung bestimmt						

Tabelle A 1-54: 4x 7-drähtige Litzen 0,6", fy=1570MPa, ft=1760MPa, Polyethylen, Rigon/Thürlimann [81]

Probe	Fu [kN]	F₀ [kN]	Δσ_{P,max}*) [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text	Probe	Fu [kN]	F₀ [kN]	Δσ_{P,max}*) [MPa]	LW Periode	Bruch [N·10 ⁻⁶]	Text
B7	20	200	104	0 - 3,83	3,830	1.Br.		20	168	104	5,61 - 6,29	6,286	6.Br.
		192	104	3,83 - 4,17	4,165	2.Br.			168	104	6,29 - 7,24	7,186	7.Br.
		168	104	4,17 - 4,29	4,277	3.Br.			162	104	7,24 - 9,18	-	-
		180	104	4,29 - 5,45	5,440	4.Br.	*) Aus a	ler max	imalen D	ehnung be	stimmt		
	"	174	104	5,45 - 5,61	5,605	5.Br.							

Probe	Fu	F.	Δσ _{P,max} *)	LW Periode	Bruch	Text	Probe	Fu	F.	Δσ _{P,max} *)	LW Periode	Bruch	Text
	[kN]	[kN]	[MPa]	[N·10⁻⁰]	[N·10 ⁻			[kN]	[kN]	[MPa]	[N·10⁻°]	[N·10 ⁻	
B1	20	220	237	0 - 0,22	0,223	1.Br.	B4	20	170	94	0 - 1,44	1,440	1.Br.
	"	216	237	0,22 - 0,24	0,243	2.Br.		"	166	94	1,44 - 1,50	1,462	2.Br.
	"	212	237	0,24 - 0,25	0,254	3.Br.		"	162	94	1,40 - 1,58	1,576	3.Br.
	"	208	237	0,25 - 0,26	0,260	4.Br.		"	158	94	1,58 - 1,60	1,600	4.Br.
		204	237	0,26 - 0,27	0,269	5.Br.			152	94	1,60 - 3,85	2,734	5.Br.
	"	200	237	0,27 - 0,30	0,300	6.Br.		"	"	94	"	3,713	6.Br.
	"	196	237	0,30 - 0,36	0,357	7.Br.		"	148	94	3,85 - 4,51	4,409	7.Br.
	"	192	237	0,36 - 0,40	0,398	8.Br.		"	144	94	4,51 - 5,19	5,025	8.Br.
	"	188	237	0,40 - 0,59	0,588	9.Br.		"	138	94	5,19 - 6,05	6,054	9.Br.
	"	184	237	0,59 - 0,82	0,815	10.Br.		"	134	94	6,05 - 6,15	6,152	10.Br.
	"	180	237	0,82 - 0,86	0,858	11.Br.		"	128	94	6,15 - 8,16	-	k. Br.
	"	176	237	0,86 - 0,93	0,929	12./13.		"	142	k.A.	8,16 - 8,83	8,757	11.Br.
		172	237	0,93 - 1,04	1,109	14.Br.		"	140	"	8,83 - 9,53	9,377	12.Br.
	"	168	237	1,04 - 1,11				"	138	"	9,53 - 9,78	9,565	13.Br.
B2	20	180	126	0 - 0,42	0,422	1.Br.		"	"	"	н	9,721	14.Br.
	"	178	126	0,42 - 0,61	0,609	2.Br.	B5	20	160	62	0 - 0,74	0,626	1.Br.
		172	126	0,61 - 0,62	0,622	3./4.		"	156	62	0,74 - 1,41	1,346	2.Br.
	"	160	126	0,62 - 0,68	0,675	5.Br.		"	"	62	"	1,363	3.Br.
		156	126	0,68 - 0,72	0,721	6.Br.		"	150	62	1,41 - 1,50	1,493	4.Br.
	"	150	126	0,72 - 0,76	0,758	7.Br.			144	62	1,50 - 1,76	1,755	5.Br.
		144	126	0,76 - 1,08	1,066	8.Br.		"	138	62	1,76 - 2,07	1,995	6.Br.
	"	138	126	1,08 - 1,39	1,386	9.Br.			132	62	2,07 - 3,72	3,623	7.Br.
	"	132	126	1,39 - 1,46	1,459	10.Br.		"	126	62	3,72 - 4,09	4,086	8.Br.
	"	126	126	1,46 - 2,10	2,101	11.Br.			120	62	4,09 - 5,04	5,036	9.Br.
		120	126	2,10 - 2,12	2,123	12.Br.		"	114	62	5,04 - 5,66	5,125	10.Br.
	"	114	126	2,12 - 2,31	2,314	13.Br.		"	"	62	"	5,575	11.Br.
	"	108	126	2,31 - 2,37	2,367	14.Br.		"	108	62	5,66 - 5,996	5,728	12.Br.
B3	20	160	53	0 - 0,20	-	k. Br.			"	62		5,893	13.Br.
	"	180	94	0,20 - 0,31	3,045	1.Br.		"	100	62	5,996 - 6,24	6,240	14.Br.
	"	176	94	0,31 - 0,34	3,385	2.Br.	B6	20	160	62	0 - 3,43	3,430	1.Br.
	"	172	94	0,34 - 0,46	4,602	3.Br.		"	160	62	3,43 - 3,82	3,818	2.Br.
	"	168	94	0,46 - 0,47	4,705	4.Br.		"	156	62	3,82 - 4,10	3,904	3.Br.
	"	160	94	0,47 - 0,52	5,145	5.Br.		"	"	62	"	4,011	4.Br.
	"	156	94	0,52 - 0,54	5,406	6.Br.		"	144	62	4,10 - 4,42	4,265	5.Br.
	"	150	94	0,54 - 0,58	5,789	7.Br.		"	140	62	4,42 - 4,74	4,646	6.Br.
	"	144	94	0,58 - 0,60	6,013	8.Br.		"	"	62	"	4,662	7.Br.
	"	138	94	0,60 - 0,62	6,193	9.Br.		"	130	62	4,74 - 4,79	4,786	8.Br.
		132	94	0,62 - 0,63	6,239	10.Br.			124	62	4,79 - 5,05	5,004	9.Br.
	"	126	94	0,63 - 0,638	6,286	11.Br.		"	120	62	5,05 - 5,33	5,132	10.Br.
	"	120	94	0,638 - 0,64	6,414	12.Br.		"	116	62	5,33 - 5,77	5,774	11.Br.
	"	114	94	0,64 - 0,649	6,485	13.Br.		"	110	62	5,77 - 6,10	5,910	12.Br.
	"	108	94	0,649 - 0,65	6,502	14.Br.		"	104	62	6,10 - 6,43	6,170	13.Br.
^{*)} Aus d	ler max	imalen	Dehnung b	estimmt				"	98	62	6,43 - 6,57	6,574	14.Br.

Tabelle A 1-55: 4x 7-drähtige Litzen 0,6", fy=1570MPa, ft=1760MPa, Stahlhüllrohr, Rigon/Thürlimann [81]

Tabelle A 1-56: Einzelspannglied glatt, St835/1030; je 1x ø26 mm, Voß et al. [91]

Probe	Prüffreq. [Hz]	σ u [MPa]	σ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text	Probe	Prüffreq. [Hz]	σ u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text
A1	1,2	480	610	130	2.000.000	DL	A3	1,2	469	591	122	2.000.000	DL
A2	1,2	485	600	115	2.000.000	DL	A4 *)	1,2	485	595	110	2.000.000	DL

^{*)} unverpresst

Tabelle A 1-57: Einzeldrähte , St1470/1670; je 9x ø7 mm, Voß et al. [91]

Probe	Prüffreq. [Hz]	σ _u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text	Ρ	Probe	Prüffreq. [Hz]	σ u [MPa]	σ ₀ [MPa]	Δσ _P [MPa]	Lastwechsel [N]	Text
B1	1,2	716	850	134	1.300.000	1. Br.		B3	1,2	660	820	160	2.000.000	DL
B2	1,2	705	827	122	2.000.000	DL	1	B4 *)	1,2	702	826	124	2.000.000	DL
	*) unverpresst													

A1.2.3 Kleinkörperversuche mit nachträglichem Verbund

Probe	σ	σ。	$\Delta \sigma_{P}$	LW Periode	Bruch	Text	Probe	σ	σ。	Δσ _P	LW Periode	Bruch	Text
	[MPa]	[MPa]	[MPa]	[N·10⁻⁶]	[N·10 ⁻⁶]			[MPa]	[MPa]	[MPa]	[N·10 ⁻⁶]	[N·10 ⁻⁶]	
<u>Stahlhi</u>	illrohr						<u>Stahlhü</u>	illrohr (u	nverprss	st)			
39	1050	1250	200	0,0 - 1,4	1,40	1.	35	800	1000	200	0,0 - 2,0	-	DL
				1,4 - 1,8	1,80	2.		700	1000	300	2,0 - 2,1	2,10	1.
				1,8 - 2,3	2,30	3.					2,1 - 2,5	2,50	2.
20	1150	1350	200	0,0 - 1,5	1,50	1.					2,5 - 2,8	2,80	3.
				1,5 - 1,7	1,70	2.	32	800	1000	200	0,0 - 2,4	-	DL
				1,7 - 5,2	5,20	3.		700	1000	300	2,4 - 2,9	2,90	1.
24	1150	1350	200	0,0 - 1,5	1,50	1.					2,9 - 3,0	3,00	2.
				1,5 - 4,5	4,50	2.					3,0 - 3,6	3,60	3.
				4,5 - 4,9	4,90	3.	36	800	1000	200	0,0 - 2,5	-	DL
25	1150	1350	200	0,0 - 1,6	1,60	1.		700	1000	300	2,5 - 3,9	3,90	1.
				1,6 - 2,0	2,00	2.					3,9 - 4,0	4,00	2.
				2,0 - 2,8	2,80	3.					4,0 - 4,3	4,30	3.
19	1150	1350	200	0,0 - 1,7	1,70	1.	Kunstst	offhüllro	<u>ohr</u>				
				1,7 - 2,4	2,40	2.	45	950	1250	300	0,0 - 1,9	1,90	1.
				2,4 - 3,2	3,20	3.					1,9 - 4,9	4,90	2.
40	1050	1250	200	0,0 - 2,1	2,10	1.					4,9 - 5,6	5,60	3.
				2,1 - 2,6	2,60	2.	44	950	1250	300	0,0 - 2,0	2,00	1.
				2,6 - 5,0	5,00	3.					2,0 - 5,2	5,20	2.
47	1100	1250	150	0,0 - 2,2	2,20	1.					5,2 - 5,9	5,90	3.
				2,2 - 3,1	3,10	2.	65	975	1250	275	0,0 - 2,3	2,30	1.
				3,1 - 5,5	5,50	3.					2,3 - 2,7	2,70	2.
49	1100	1250	150	0,0 - 2,6	2,60	1.					2,7 - 5,5	5,50	3.
	1100	1250	150	2,6 - 8,0	-	k. Br.	34	975	1250	275	0,0 - 2,9	2,90	1.
	1050	1250	200	8,0 - 10,0	-	k. Br.					2,9 - 4,2	4,20	2.
	1000	1250	250	10,0 - 10,7	10,70	2.					4,2 - 6,8	6,80	3.
51	1100	1250	150	0,0 - 4,0	4,00	1.	57	1000	1250	250	0,0 - 2,7	2,70	1.
	1100	1250	150	4,0 - 6,0	-	k. Br.					2,7 - 9,2	9,20	k. Br.
	1075	1250	175	6,0 - 10,0	-	k. Br.	61	1000	1250	250	0,0 - 8,5	8,50	DL
	1050	1250	200	10,0 - 14,0	-	k. Br.					8,5 - 10,4	10,40	DL
55	1125	1250	125	0,0 - 2,3	2,30	1.	59	1050	1250	200	0,0 - 4,0	4,00	DL
				2,3 - 13,0	-	k. Br.		1000	1250	250	4,0 - 7,0	7,00	DL
53	1125	1250	125	0,0 - 4,1	4,10	1.		950	1250	300	7,0 - 10,0	10,00	DL
				4,1 - 9,9	9,90	2.					10,0 - 11,0	11,00	1.
63	1150	1250	100	0,0 - 4,0	-	DL	Kunstst	offhüllro	hr (unve	erprsst)			
	1100	1250	150	4,0 - 4,4	4,40	1.	30	800	1000	200	0,0 - 2,5	-	DL
				4,4 - 5,2	5,20	2.		800	1100	300	2,5 - 5,9	5,90	1.
				5,2 - 10,6	10,60	3.							

Tabelle A 1-58: Litze 0,6", St1570/1770, Stahl-/Kunstoffhüllrohr, Oertle et al. [74]

Tabelle A 1-59: Paralleldraht ø7mm, St1470/1670, Stahl-/Kunstoffhüllrohr, Oertle et al. [74]

Probe	σu	σ。	Δσρ	LW Periode	Bruch	Text
	[MPa]	[MPa]	[MPa]	[N·10⁻⁶]	[N·10⁻6]	
<u>Stahlhi</u>	illrohr					
3	1000	1250	250	0,0 - 1,3	1,30	Br.
5	1000	1250	250	0,0 - 2,1	2,05	Br.
10	1100	1300	200	0,0 - 1,4	1,40	Br.
2	1050	1250	200	0,0 - 1,7	1,65	Br.
1	1050	1250	200	0,0 - 1,7	1,70	Br.
11	1050	1250	200	0,0 - 2,2	2,15	Br.
41	1050	1250	200	0,0 - 2,3	2,30	Br.
29	800	1000	200	0,0 - 2,5	2,50	Br.
31	900	1100	200	0,0 - 4,8	4,75	Br.
28	700	900	200	0,0 - 6,4	6,40	Br.
8	1075	1250	175	0,0 - 2,1	2,05	Br.
7	1125	1300	175	0,0 - 2,6	2,60	Br.
4	1075	1250	175	0,0 - 3,6	3,60	Br.
9	1150	1300	150	0,0 - 4,2	4,15	Br.
6	1150	1300	150	0,0 - 4,5	4,50	Br.
18 ^{*1}	800	1000	200	0 - 4,0	-	DL
	700	1000	300	4,0 - 6,0	-	DL
	600	1000	400	6,0 - 10,3	10,30	Br.

Probe	σι	σ。	Δσρ	LW Periode	Bruch	Text
	[MPa]	[MPa]	[MPa]	[N·10⁻⁶]	[N·10 ⁻⁶]	
Kunstst	offhüllro	<u>ohr</u>				
23	850	1250	400	0,0 - 2,0	-	DL
	750	1250	500	2,0 - 4,2	4,20	Br.
15	850	1250	400	0,0 - 3,0	-	DL
	750	1250	500	3,0 - 7,2	7,20	Br.
14	950	1250	300	0,0 - 2,0	-	DL
	900	1250	350	2,0 - 5,0	-	DL
	850	1250	400	5,0 - 6,0	-	DL
	800	1250	450	6,0 - 8,0	-	DL
	750	1250	500	8,0 - 12,0	12,00	Br.
17	950	1250	300	0,0 - 3,0	-	DL
	850	1250	400	3,0 - 6,0	-	DL
	750	1250	500	6,0 - 13,2	13,20	Br.
12	1000	1250	250	0,0 - 3,0	-	DL
	950	1250	300	3,0 - 5,0	-	DL
	900	1250	350	5,0 - 8,0	-	DL
	850	1250	400	8,0 - 9,6	-	DL
	800	1250	450	9,6 - 9,8	9,80	Br.

¹ unverpresst

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ ₽ [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text
43	1000	1200	200	0,0 - 0,9	0,90	1.
				0,9 - 1,3	1,30	2.
				1,3 - 1,4	1,40	3.
21	1000	1200	200	0,0 - 1,1	1,10	1.
				1,1 - 1,4	1,40	2.
				1,4 - 2,1	2,10	3.
42	1000	1200	200	0,0 - 1,3	1,30	1.
				1,3 - 1,4	1,40	2.
				1,4 - 1,7	1,70	3.
46	1050	1200	150	0,0 - 1,5	1,50	1.
				1,5 - 2,6	2,60	2.
				2,6 - 3,1	3,10	3.
48	1050	1200	150	0,0 - 1,7	1,70	1.
				1,7 - 2,4	2,40	2.
				2,4 - 2,5	2,50	3.

Probe	σ _u [MPa]	σ ₀ [MPa]	Δσ ₽ [MPa]	LW Periode [N·10 ⁻⁶]	Bruch [N·10 ⁻⁶]	Text
50	1050	1200	150	0,0 - 2,3	2,30	1.
				2,3 - 2,8	2,80	2.
				2,8 - 3,9	3,90	3.
54	1075	1200	125	0,0 - 2,1	2,10	1.
				2,1 - 2,2	2,20	2.
				2,2 - 5,5	5,50	3.
52	1075	1200	125	0,0 - 2,6	2,60	1.
				2,6 - 3,8	3,80	2.
				3,8 - 3,9	3,90	3.
60	1100	1200	100	0,0 - 4,5	-	DL
	1065	1200	135	4,5 - 5,6	5,60	1.
				5,6 - 6,3	6,30	2.
				6,3 - 8,5	8,50	3.

Tabelle A 1-60: 5 Paralleldrähte Ø7mm , St1470/1670, Stahlhüllrohr, Oertle et al. [74]

Tabelle A 1-61: 5 Paralleldrähte Ø7mm , St1470/1670, Kunststoffhüllrohr, Oertle et al. [74]

Probe	σu	σ_0	Δσ _P	LW Periode	Bruch	Text	Probe	σu	σ_0	Δσ _P	LW Periode	Bruch	Text
	[IVIPa]	[IVIPa]	[IVIPa]	[N·10 -]	[N·10-]			[IVIPa]	[IVIPa]	[IVIPa]	[N·10 -]	[N·10 -]	
64	925	1200	275	0,0 - 5,7	5,70	1.	62	950	1200	250	0,0 - 7,4	7,70	1.
				5,7 - 7,0	-	k. Br.					7,4 - 7,6	7,60	2.
58	950	1200	250	0,0 - 5,5	5,50	1.	56	1000	1200	200	0,0 - 8,0	-	DL
				5,5 - 5,9	5,90	2.					8,0 - 9,4	9,40	1.
				5,9 - 6,3	6,30	3.					9,4 - 12,3	12,30	2.

A1.2.4 Großversuche mit sofortigem Verbund

Fabelle A 1-62: Spannstähle ø7,2mm	, St1420/1570,	, Bökamp	[10]
------------------------------------	----------------	----------	------

Probe	Prüffreq.	Fu ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text	Probe	Prüffreq.	F u ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text
	[Hz]	[kN]	[kN]	[MPa]	[N]			[Hz]	[kN]	[kN]	[MPa]	[N]	
DA01	k.A.	k.A.	k.A.	220	2.000.000	DL	DA03	k.A.	k.A.	k.A.	140 ^{*1}	2.000.000	DL
				260	2.000.000	DL					180	2.000.000	DL
				350	400.000	Br.					230	2.000.000	DL
DA02	k.A.	k.A.	k.A.	290 ^{*1}	1.100.000 ^{*1}	Br.					280	800.000	Br.

^{*)} Maschinenkräfte angegeben - Trägergeometrie identisch

*1 Werte aus Diagramm agbeschätzt

Tabelle A 1-63: Litzen Ø12,7mm, Heller [51]

Probe	Prüffreq. [Hz]	F u ^{*)} [kN]	F₀ *) [kN]	Δσ _Ρ [MPa]	Lastwechsel [N]	Text	Probe	Prüffreq. [Hz]	F u ^{*)} [kN]	F₀ *) [kN]	Δσ _P [MPa]	Lastwechsel [N]	Text
2	4	15,2	52,1	151,7	5.293.703	1.	4	2	5,38	63,2	310,3	519.799	1.
3	"	10,1	52,7	144,8	2.424.121	1.	5	"	2,67	63,4	289,6	318.958	1.

*) Maschinenkräfte angegeben - Trägergeometrie identisch

Tabelle A 1-64: Litzen Ø7,9mm, grade Litzenführung, John F. Muller/Peter F. Dux [69]

Probe	F u ^{*)}	F ₀ ^{*)}	Δσρ	Lastwechsel	Text	Probe	F u ^{*)}	F ₀ ^{*)}	Δσρ	Lastwechsel	Text
	[kN]	[kN]	[MPa]	[N]			[kN]	[kN]	[MPa]	[N]	
PS2	94	156	190	7.058.000	1. Br.	VP2	94	163	250	1.510.000	1. Br.
PS3	94	156	190	2.069.000	1. Br.	VP3	94	156	190	2.926.000	1. Br.
PS4	94	156	190	4.173.000	1. Br.	VP4	94	156	190	2.890.000	1. Br.
PP2	85	146	250	3.830.000	1. Br.	PT2	90	150	215	1.230.000	1. Br.
PP3	85	140	210	3.878.000	1. Br.	PT3	72	110	105	2.025.000	DL
PP4	85	140	210	2.394.000	1. Br.		"	114	150	2.000.000	DL
								117	190	2.025.000	DL
								120	230	1.450.000	1. Br.

	Probe	Fu ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text	Probe	F u ^{*)}	F ° ^{*)}	Δσρ	Lastwechsel	Text
		[kN]	[kN]	[MPa]	[N]			[kN]	[kN]	[MPa]	[N]	
	HD516-3	94	156	190	339.000	1. Br.	HD516-7	94	119	45	10.000.000	DL
	HD516-4	94	156	190	354.000	1. Br.		94	142	100	6.200.000	DL
	HD516-5	94	142	100	1.043.000	1. Br.		94	146	130	1.600.000	DL
Γ	HD516-6	94	119	45	10.350.000	DL		94	160	225	200.000	1. Br.
		94	156	190	375.000	1. Br.						

Tabelle A 1-65: Litzen Ø7,9mm, umgelenkte Litzen, John F. Muller/Peter F. Dux [69]

Tabelle A 1-66: Litzen ø12,7mm, umgelenkte Litzen, John F. Muller/Peter F. Dux [69]

Probe	Fu ^{*)}	F _o ^{*)}	Δσ _P	Lastwechsel	Text	Probe	F u ^{*)}	F ° ^{*)}	Δσ _P	Lastwechsel	Text
	[kN]	[kN]	[MPa]	[N]			[kN]	[kN]	[MPa]	[N]	
HD1025-1	70	110	225	890.000	1. Br.	HD550-3	72	103	75	2.000.000	DL
HD1025-2	85	150	390	192.000	1. Br.		72	110	105	2.755.000	1. Br.
HD1025-3	56	87	100	5.000.000	DL	HD51400-1	72	110	105	835.000	1. Br.
	60	96	140	2.467.000	1. Br.	HD51400-2	72	110	105	635.000	1. Br.
HD525-1	72	110	105	8.100.000	1. Br.	HD51400-3	72	103	75	2.000.000	DL
HD525-1	72	110	105	7.740.000	1. Br.		72	110	105	173.000	1. Br.
HD525-1	72	103	75	2.280.000	DL	HD5B-1	72	110	105	1.610.000	1. Br.
	72	110	105	2.800.000	DL	HD5B-2	72	110	105	1.790.000	1. Br.
	72	114	150	1.680.000	1. Br.	HD5B-3	72	103	75	2.000.000	DL
HD550-1	72	110	105	995.000	1. Br.		72	110	105	717.000	1. Br.
HD550-2	72	110	105	3.800.000	1. Br.						

 Tabelle A 1-67: Typ C: Litzen 1/2 inch, Güte 270ksi (1862Mpa), Typ A: Litzen 7/16 inch, Güte 250ksi (1724Mpa),

 Overman et al. [76]

Probe	Prüffreq.	F u ^{*)}	F 。 ^{*)}	Δσ _P	Lastwechsel	Text	Р	robe	Prüffreq.	Fu ^{*)}	F., *)	Δσρ	Lastwechsel	Text
	[Hz]	[kN]	[kN]	[MPa]	[N]				[Hz]	[kN]	[kN]	[MPa]	[N]	
C16.1	2,5 - 3	205	329	301,3	580.000	Vers.	A	A22.1	2,5 - 3	48,9	214	144,1	2.840.000	Vers.
C16.2	2,5 - 3	44,5	270	165,5	1.480.000	Vers.	A	422.2	2,5 - 3	57,8	214	141,3	5.000.000	Vers.
C16.3	2,5 - 3	151	285	338,5	910.000	Vers.	A	122.3	2,5 - 3	44,5	173	51,7	5.950.000	k. Br.
C16.4	2,5 - 3	44,5	369	191,7	1.910.000	Vers.	C	:16.U	2,5 - 3	107	342	142,7	1.730.000	Vers.
C14.1	2,5 - 3	26,7	302	170,3	2.290.000	Vers.	C	16.C1	2,5 - 3	107	325	155,1	2.540.000	Vers.
							C	16.C2	2,5 - 3	89	271	80,7	9.430.000	Vers.

*) Maschinenkräfte angegeben - Trägergeometrie identisch

Vers.: "Versagen"

A2 Eigenen Betonstahluntersuchungen

A2.1 Angaben zur Baustoffeigenschaften

A2.1.1 Betonstahl

Die nachfolgenden Tabellen beinhalten Werte zu den freischwingend und im einbetonierten Zustand untersuchten Betonstählen.

Charge	d	As	R _{eH} bzw. f _y	R _m bzw. f _t	R _m /R _{eH}	A ₁₀	A gt bzw. ε _u
	[mm]	[mm²]	[MPa]	[MPa]	[-]	[%]	[%]
1	20	318,90	558	668	1,20	19,0	13,2
2	20	314,27	557	665	1,19	17,5	11,3
3	20	316,28	562	679	1,21	18,5	12,4
4	20	314,09	573	690	1,20	16,5	11,7
5	20	314,37	571	688	1,21	18,0	12,6
Mittelwert:			564	678			12,2

Tabelle A 2-1: Festigkeitswerte des Betonstahls B 500 B (Herstellerangaben)

Tabelle A 2-2: Festigkeitswerte aus quasi-statischen Versuchen, Betonstahl B 500 B

Charge	d	R _{eH} bzw. f _y	R _{eL}	R _m bzw. f _t	R _m /R _{eH}	E-Modul
	[mm]	[MPa]	[MPa]	[MPa]	-	[MPa]
1	20	570,3	558,3	683	1,20	204.619
2	20	559,0	540,8	663	1,19	199.772
3	20	573,6	565,0	687	1,20	200.649
4	20	577,8	568,5	684	1,18	199.134
5	20	572,2	564,2	690	1,21	203.527
Mittelwert:		570,6	559,4	681		201.540

Tabelle A 2-3: chemische Analyse des Betonstahl B 500 B (Herstellerangaben)

Charge	С	Si	Mn	Р	S	Cu	Cr	Ni	Мо	Sn	Al	V	Pb	Zn	Ν	Cequ	Nb
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[-]	[%]
1	0,18	0,27	1,12	0,018	0,036	0,38	0,10	0,14	0,02	0,018	0,001	0,002	0,001	0,008	0,012	0,43	0,002
2	0,19	0,24	0,95	0,020	0,037	0,37	0,09	0,11	0,02	0,015	0,001	0,002	0,001	0,011	0,012	0,40	0,002
3	0,17	0,28	1,05	0,019	0,044	0,41	0,11	0,19	0,04	0,018	0,001	0,002	0,002	0,009	0,011	0,42	0,001
4	0,18	0,28	1,07	0,020	0,040	0,36	0,14	0,14	0,03	0,014	0,001	0,002	0,001	0,003	0,012	0,42	0,002
5	0,18	0,28	1,04	0,021	0,042	0,38	0,15	0,16	0,04	0,016	0,001	0,002	0,001	0,004	0,011	0,43	0,002

A2.1.2 Beton des einbetonierten Betonstahls

Tabelle A 2-4: Betonwürfelfestigkeit des Betons der einbetonierten Betonstähle

Probe		f _{c,cube}	[Mpa]	
	Reihe 1	Reihe 2	Reihe 3	Reihe 4
1	18	30,9	37,8	72,5
2	21	29,5	37,7	70,2
3	24	29,2	37,0	68,6
4	21	32,8	39,8	71,9
5	22	30,4	39,3	66,5
Mittelwert:	20,9	30,6	38,3	70,0

A2.1.3 Prüfergebnisse der eigenen Dauerschwingversuche

Probe	Reihe	Unterspannung	Oberspannung	Schwingbreite	Bruchschwingspiele	Lage der
		[MPa]	[MPa]	[MPa]	[N]	Bruchstelle
1.1	1	125	515,4	390,4	113.871	⊥ 53 mm
2.1	1	125	405,3	280,3	352.238	⊤0mm
3.1	1	125 361,3		236,3	703.833	Endanker
4.1	1	125 351,1		226,1	615.657	Endanker
5.1	1	125	341,6	216,6	2.587.442	GSchwZ 1
1.2	2	125	435,2	310,2	322.838	⊥ _{8 mm}
2.2	2	125	375,3	250,3	898.069	⊤ 0 mm
3.2	2	125	355,6	230,6	570.768	T 3 mm
4.2	2	125	345,4	220,4	3.678.681	kein Bruch 1)
5.2	2	125	335,2	210,2	7.337.462	GSchwZ 2
1.3	3	125	535,2	410,2	77.812	⊥ 3 mm
2.3	3	125	390,6	265,6	601.178	⊥ _{1 mm}
3.3	3	125	363,9	238,9	1.327.294	⊥ 2 mm
4.3	3	125	351,1	226,1	3.645.800	kein Bruch 1)
5.3	3	125	329,8	203,8	4.661.761	GSchwZ 3
1.4	4	125	475,3	350,3	144.010	⊥4 mm
2.4	4	125	375,3	250,3	845.461	T ⁵ mm
3.4	4	125	365,1	240,1	1.189.646	T ⁷ mm
4.4	4	125	355,6	230,6	5.546.000	GSchwZ 4
5.4	4	125	347,3	222,3	1.488.995	⊥ 90 mm
5.2' ²⁾	2	125	525,0	400,0	92.950	T 20 mm
4.4' ²⁾	4	125	545,4	420,4	74.363	T 0 mm
5.3' ²⁾	3	125	505,3	380,3	121.486	⊥ <u>18</u> mm

 Tabelle A 2-5:
 Belastungen, Bruchschwingspiele und -lage des einbetonierten Betonstahls

¹⁾ Versagen der Krafteinleitungkonstuktion, kein Probenbruch
 ²⁾ Zweite Belastung der zuvor nicht versagten Probe

GSchwZ: Grensschwingspielzahl erreicht, kein Probenbruch

T : Abstand des Bruches vom Spalt (Riss) nach unten

 \perp : Abstand des Bruches vom Spalt (Riss) nach oben

Bild A 2-1: Versuchsablauf der Dauerschwingversuche des einbetonierten Betonstahls

Probe	Reihe	Unterspannung	Oberspannung	Schwingbreite	Bruchschwingspiele	Lage der
		[MPa]	[MPa]	[MPa]	[N]	Bruchstelle
1	4	125	560,0	435,0	63.146	т 87 mm
2	5	125	465,1	340,1	106.484	T 70 mm
3	3	125	364,2	239,2	399.091	T 135 mm
4	4	125	317,4	192,4	2.957.232	⊥ 44 mm
5	3	125	540,3	415,3	56.475	T ^{44 mm}
6	2	125	425,0	300,0	188.125	⊥ <u>1</u> 30 mm
7	5	125	345,4	220,4	995.791	⊥ 190 mm
8	3	125	321,2	196,2	843.505	⊥ 150 mm
9	2	125	315,4	190,4	5.344.820	GSchwZ 1
10	5	125	525,0	400,0	85.709	T 165 mm
11	5	125	405,3	280,3	335.177	⊥ 50 mm
12	2	125	337,1	212,1	668.976	T 58 mm
13	4	125	329,5	204,5	870.907	⊥ 70 mm
14	2	125	310,4	185,4	8.781.756	GSchwZ 2
15	2	125	550,5	425,5	70.066	⊥ _{85 mm}
16	4	125	455,6	330,6	179.202	T 110 mm
17	1	125	355,6	230,6	528.404	T 120 mm
18	1	125	331,4	206,4	981.200	⊥ <u>1</u> 30 mm
19	3	125	305,3	180,3	8.318.589	GSchwZ 3
20	1	125	490,6	365,6	135.282	T 54 mm
21	1	125	385,5	260,5	459.205	T 85 mm
22	4	125	333,3	208,3	803.500	⊥ <u>1</u> 30 mm
23	5	125	325,0	200,0	2.392.840	⊥45 mm
24	3	125	312,3	187,3	2.331.958	⊥ 42 mm
25	1	125	320,5	195,5	6.276.999	T 54 mm
9´²)	2	125	505,3	380,3	13.871	⊥45 mm
14´ ²⁾	2	125	515,4	390,4	101.170	⊥ 50 mm
19´ ²⁾	3	125	503,3	378,3	100.031	⊥ ₁₆₃ mm

Tabelle A 2-6: Belastungen, Bruchschwingspiele und -lage des nicht einbetonierten Betonstahls

²⁾ Zweite Belastung der zuvor nicht versagten Probe

GSchwZ: Grensschwingspielzahl erreicht, kein Probenbruch

 ${\bf T}$: Abstand des Bruches von der Einspannstelle oben

 \perp : Abstand des Bruches von der Einspannstelle unten

Tabelle A 2-7: kn-Faktoren nach Odeh/Owen [72]

Die Werte basieren auf einer Normalverteilung, unbekanntem Mittelwert und unbekannter Varianz

Г

γ = (1-α)	-α) 75%							
p-Quantil	1%	5%	10%					
N								
2	7,267	5,122	3,992					
3	4,396	3,152	2,501					
4	3,726	2,681	2,134					
5	3,421	2,463	1,962					
6	3,244	2,336	1,859					
7	3,126	2,250	1,790					
8	3,042	2,188	1,740					
9	2,977	2,141	1,701					
10	2,927	2,104	1,671					
11	2,885	2,073	1,645					
12	2,851	2,048	1,624					
13	2,822	2,026	1,606					
14	2,797	2,007	1,591					
15	2,775	1,991	1,577					
16	2,756	1,976	1,565					
17	2,739	1,963	1,554					
18	2,723	1,952	1,545					
19	2,710	1,941	1,536					
20	2,697	1,932	1,528					
21	2,685	1,923	1,521					
22	2,675	1,915	1,514					
23	2,665	1,908	1,508					
24	2,656	1,901	1,502					
25	2,648	1,895	1,497					
26	2,640	1,889	1,492					
27	2,633	1,883	1,487					
28	2,626	1,878	1,483					
29	2,620	1,873	1,478					
30	2,614	1,869	1,475					
31	2,608	1,864	1,471					
32	2,602	1,860	1,467					
33	2,597	1,856	1,464					
34	2,593	1,853	1,461					
35	2,588	1,849	1,458					
36	2,584	1,846	1,455					
37	2,579	1,842	1,452					
38	2,575	1,839	1,450					
39	2,572	1,836	1,447					
40	2,568	1,834	1,445					
∞	2,326	1,645	1,282					

γ=(1-α)		90%	
p-Quantil	1%	5%	10%
N			
2	18,500	13,090	10,253
3	7,340	5,311	4,258
4	5,438	3,957	3,188
5	4,666	3,400	2,742
6	4,243	3,092	2,494
7	3,972	2,894	2,333
8	3,783	2,754	2,219
9	3,641	2,650	2,133
10	3,532	2,568	2,066
11	3,443	2,503	2,011
12	3,371	2,448	1,966
13	3,309	2,402	1,928
14	3,257	2,363	1,895
15	3,212	2,329	1,867
16	3,172	2,299	1,842
17	3,137	2,272	1,819
18	3,105	2,249	1,800
19	3,077	2,227	1,782
20	3,052	2,208	1,765
21	3,028	2,190	1,750
22	3,007	2,174	1,737
23	2,987	2,159	1,724
24	2,969	2,145	1,712
25	2,952	2,132	1,702
26	2,937	2,120	1,691
27	2,922	2,109	1,682
28	2,909	2,099	1,673
29	2,896	2,089	1,665
30	2,884	2,080	1,657
31	2,872	2,071	1,650
32	2,862	2,063	1,643
33	2,852	2,055	1,636
34	2,842	2,048	1,630
35	2,833	2,041	1,624
36	2,824	2,034	1,618
37	2,816	2,028	1,613
38	2,808	2,022	1,608
39	2,800	2,016	1,603
40	2,793	2,010	1,598
~~	2,326	1,645	1,282

$v = (1 - \alpha)$		95%	
n-Quantil	1%	5%	10%
N	270	5,0	20/0
2	37 09/	26 260	0 581
2	10 553	7 656	6 155
4	7 042	5 144	4 162
5	5 741	4 203	3 407
6	5.062	3.708	3.006
7	4.642	3.399	2.755
8	4.354	3.187	2.582
9	4.143	3.031	2.454
10	3,981	2,911	2,355
11	3,852	2,815	2,275
12	3,747	2,736	2,210
13	3,659	2,671	2,155
14	3,585	2,614	2,109
15	3,520	2,566	2,068
16	3,464	2,524	2,033
17	3,414	2,486	2,002
18	3,370	2,453	1,974
19	3,331	2,423	1,949
20	3,295	2,396	1,926
21	3,263	2,371	1,905
22	3,233	2,349	1,886
23	3,206	2,328	1,869
24	3,181	2,309	1,853
25	3,158	2,292	1,838
26	3,136	2,275	1,824
27	3,116	2,260	1,811
28	3,098	2,246	1,799
29	3,080	2,232	1,788
30	3,064	2,220	1,777
31	3,048	2,208	1,767
32	3,034	2,197	1,758
33	3,020	2,186	1,749
34	3,007	2,176	1,740
35	2,995	2,167	1,732
36	2,983	2,158	1,725
37	2,927	2,149	1,717
38	2,961	2,141	1,710
39	2,951	2,133	1,704
40	2,941	2,125	1,697
~	2,326	1,645	1,282

A3 Eigenen Spannstahluntersuchungen

A3.1 Angaben zur Baustoffeigenschaften

A3.1.1 Spannstahl

 Tabelle A 3-8:
 Spannstahleigenschaften ,alter'
 Spannstahl (freischwingend und Träger Typ TR)

	0,1%	0,2%	Zugfestigkeit	Gesamtdehnung	E-Modul	
Probe	Probe f _{p0,1}		f _p bzw. R _m	ε _u bzw. A _{gt}	Ep	
	[MPa]	[MPa]	[MPa]	[%]	[MPa]	
SP-S-01	1.511,1	1.586,3	1.807,8	7,9	194.999	
SP-S-02	1.526,0	1.598,5	1.821,6	7,7	192.198	
SP-S-03	1.519,2	1.601,5	1.819,9	7,5	193.799	
Mittelwert:	1.518,8	1.595,4	1.816,4	7,7	193.665	

Tabelle A 3-9: Spannstahleigenschaften ,neuer' Spannstahl (freischwingend und Träger Typ SB)

	0,1%	0,2%	Zugfestigkeit	Gesamtdehnung	E-Modul	
Probe	f _{p0,1}	f _{p0,2}	f _p bzw. R _m	ε _u bzw. A _{gt}	EP	
	[MPa]	[MPa]	[MPa]	[%]	[MPa]	
SPN-S-01	1.703,6	1.767,2	2.041,7	7,0	198.039	
SPN-S-02	1.694,4	1.747,2	2.021,7	7,0	197.553	
SPN-S-03	1.724,3	1.765,8	2.024,9	7,3	202.464	
SPN-S-04	1.704,2	1.762,6	2.026,5	8,2	199.381	
Mittelwert:	1.706,6	1.760,7	2.028,7	7,4	199.359	

Bild A 3-3: Dehnungsverlauf der Spannstahlzugproben des ,alten' Spannstahls

Bild A 3-4: Dehnungsverlauf der Spannstahlzugproben des ,neuen ' Spannstahls

A3.1.2 Beton und Einpressmörtel

Betonzusammensetzung

Träger	Zement		Zuschlag		Wasser	w/z	Konsistenz	Ausbreitmaß
	CEM I 42,5R	8/16	2/8	0/2				
	[kg]	[kg]	[kg]	[kg]	[kg]	[-]	[-]	[cm]
TR01	546,7	773,2	667,1	712,3	196,3	0,39	KP	39
TR02	546,7	773,2	667,1	712,3	196,3	0,39	KP	38
TR03	555,8	786,1	678,3	724,2	199,6	0,39	KP	40
TR04	555,8	786,1	678,3	724,2	199,6	0,39	KP	40
TR05	555,8	786,1	678,3	724,2	199,6	0,39	KP	37
SB01	588,0	831,6	717,6	766,1	211,1	0,39	КР	35
SB02 *)	588,0	831,6	717,6	766,1	211,1	0,39	KP	40
SB03 *)	588,0	831,6	717,6	766,1	211,1	0,39	KP	38
SB04 *)	588,0	831,6	717,6	766,1	211,1	0,39	KP	41

 Tabelle A 3-10:
 Betonzusammensetzung Träger TR01-TR05 und SB01-SB04

*) Es wurde zusätzlich mit geringen Mengen an Fließmittel gearbeitet

Spaltzug-/Biegezugfestigkeit

Von den Betonmischungen der Versuchskörper SB01 bis SB04 sind an weiteren Zylinderproben zusätzlich Spaltzugversuche durchgeführt worden (Bild A 3-5). Zum Vergleich sind aus der Mischung des Versuchsbalken SB03 drei Versuchskörper mit den Abmessungen 70/15/15cm hergestellt und hinsichtlich der Biegezugfestigkeit getestet worden. Die umgerechnete zentrische Zugfestigkeit lag hier bei 4,0 MPa. Die Zylinder derselben Mischung wiesen eine umgerechnete zentrische Zugfestigkeit von 3,6 MPa auf. Es zeigte sich, dass die ermittelten Zugfestigkeiten aus dem Zylinderspaltzugversuch um etwa 10% von dem Biegezugversuch abwichen.

Träger	Probe	h ₁	h ₂	h _{MW}	d1	d ₂	d _{MW}	F	f _{ct,sp}	f _{ct,sp,MW}	f _{ct}
	Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	[MPa]	[MPa]	[MPa]
SB01	1	296,0	298,0	297,0	150	150	150	205	2,9		
	2	300,0	300,0	300,0	150	150	150	272	3,8	3,3	3,0
	3	299,0	300,0	299,5	150	150	150	229	3,2		
SB02	1	300,0	300,0	300,0	150	150	150	234	3,3		
	2	299,0	298,0	298,5	150	150	150	259	3,7	3,6	3,2
	3	299,0	298,0	298,5	150	150	150	266	3,8		
SB03	1	296,0	296,0	296,0	150	150	150	246	3,5		
	2	298,0	297,0	297,5	150	150	150	282	4,0	4,0	3,6
	3	296,0	296,0	296,0	150	150	150	301	4,3		
SB04	1	298,0	299,0	298,5	150	150	150	296	4,2		
	2	299,0	299,0	299,0	150	150	150	280	4,0	4,1	3,7
	3	298,0	299,0	298,5	150	150	150	290	4,1		

Tabelle A 3-11: Spaltzugfestigkeit der Zylinderproben der Versuchsträger SB01-SB04

mit: $f_{ct} = 0.9 \cdot f_{ct,sp}$

Tabelle A 3-12: Biegezugfestigkeit aus drei Proben einer Betonmischung des Versuchsträgers SB03

Träger	Probe	I	b	h _b	F	f _{ct,fl}	f _{ct,fl,MW}	f _{ct}
	Nr.	[mm]	[mm]	[mm]	[kN]	[MPa]	[MPa]	[MPa]
SB03	1	700,0	150,0	150,0	28,7	6,0		
	2	700,0	150,0	150,0	26,9	5,6	6,0	4,0
	3	700,0	150,0	150,0	31,6	6,5		
mit: $f_{ct} \approx \frac{f_{ct,fl}}{1,5}$ (nach [99, S.71])								

Bild A 3-5: Spaltzugversuch an einer Zylinderprobe

Bild A 3-6: Probe im Biegezugfestigkeitsversuch

<u>E-Modul</u>

Der gemessene E-Modul wurde an Zylinderproben durchgeführt.

Träger	Probe	ø	h	Α	σ_u	σο	ε _u	εο	E	F	f _{c,cyl}
	Nr.	[mm]	[mm]	[mm²]	[MPa]	[MPa]	[‰]	[‰]	[MPa]	[kN]	[MPa]
TR01	1.1	150	300	17.671	0,5	17,7	0,031	0,599	30.269	957	54,2
	1.2	150	300	17.671	0,5	17,7	0,029	0,581	31.147	962	54,4
TR02	2.1	150	300	17.671	0,5	16,6	0,046	0,591	29.445	938	53,1
	2.2	150	300	17.671	0,5	17,7	0,034	0,607	30.005	963	54,5
TR03	3.1	150	300	17.671	0,5	23,3	0,070	0,985	24.951	728	41,2
	3.2	150	300	17.671	0,5	13,3	0,030	0,491	27.831	843	47,7
	3.3	150	300	17.671	0,5	14,0	0,022	0,438	32.488	938	53,1
TR04	4.1	150	300	17.671	0,5	16,7	0,022	0,519	32.529	955	54,0
	4.2	150	300	17.671	0,5	18,0	0,027	0,563	32.675	760	43,0
	4.3	150	300	17.671	0,5	14,3	0,006	0,434	32.327	868	49,1
TR05	5.1	150	300	17.671	0,5	16,4	0,042	0,595	28.703	852	48,2
	5.2	150	300	17.671	0,5	16,1	0,041	0,590	28.337	905	51,2
	5.3	150	300	17.671	0,5	17,1	0,017	0,547	31.266	878	49,7
Mittelwert:									30,152		50.3

Tabelle A 3-13: E-Modulprüfung des Betons der Träger TR01-TR05

 $f_{ck} = f_{cm,cyl} - 4MPa = 50,3 - 4 = 46,8 MPa$

Tabelle A 3-14: E-Modulprüfung des Betons der Träger SB01-SB04

Träger	Probe	Ø	h	Α	σ_u	σο	ε _u	εο	E	F	f _{c,cyl}
	Nr.	[mm]	[mm]	[mm²]	[MPa]	[MPa]	[‰]	[‰]	[MPa]	[kN]	[MPa]
SB01	1902-1	150	300	17.671	0,5	14,7	0,037	0,479	32.052	833	47,1
	1902-2	150	300	17.671	0,5	14,7	0,014	0,428	34.220	805	45,6
	1902-3	150	300	17.671	0,5	14,7	0,040	0,513	29.951	772	43,7
SB02	0603-1	150	300	17.671	0,5	13,3	0,044	0,464	30.555	674	38,1
	0603-2	150	300	17.671	0,5	13,3	0,036	0,448	31.148	755	42,7
	0603-2	150	300	17.671	0,5	13,3	0,022	0,468	28.774	729	41,3
SB03	0809-1	150	300	17.671	0,5	18,8	0,042	0,550	35.925	1049	59,4
	0809-2	150	300	17.671	0,5	18,8	0,032	0,555	34.895	1069	60,5
	0809-3	150	300	17.671	0,5	18,8	0,036	0,561	34.762	1026	58,1
SB04	2808-1	150	300	17.671	0,5	15,9	0,032	0,476	34.617	907	51,3
	2808-2	150	300	17.671	0,5	15,9	0,029	0,485	33.706	930	52,6
	2808-3	150	300	17.671	0,5	15,9	0,032	0,475	34.695	1077	60,9
Mittelwert:									32.942		50,1

$$f_{ck} = f_{cm,cyl} - 4MPa = 50,1 - 4 = 46,1 MPa$$

Festigkeitsentwicklung

Die Betonwürfel dienten zur Bestimmung der Festigkeitsentwicklung sowie der zum Versuch vorhandenen Druckfestigkeit. Es lag eine dem Zement übliche Festigkeitsentwicklung vor. Der Beton erreichte bereits nach 7 Tagen etwa 80-90% seiner Endfestigkeit.

Probe	Alter	ρ	F	f _{c,dry,cube}	f _{cm,dry,cube}
Nr.	[d]	[g/cm³]	[kN]	[MPa]	[MPa]
TR01.1	-	2,39	1.229	54,62	
TR01.2	/	2,39	1.274	56,6	55,0
TR01.3	14	2,37	1.428	63,5	62.6
TR01.4	14	2,38	1.388	61,7	02,0
TR01.5	20	2,37	1.445	64,2	64.4
TR01.6	20	2,38	1.451	64,5	04,4
TR02.1	7	2,36	1.282	57,0	FCC
TR02.2	/	2,36	1.267	56,3	50,0
TR02.3	14	2,37	1.378	61,2	62.2
TR02.4	14	2,39	1.426	63,4	02,5
TR02.5	20	2,36	1.523	67,7	69.7
TR02.6	20	2,38	1.567	69,6	00,7
TR03.1	7	2,17	819	36,4 *)	F 4 7
TR03.2	/	2,31	1.231	54,7	54,7
TR03.3	14	2,16	815	36,2 *)	FOF
TR03.4	14	2,33	1.339	59,5	59,5
TR03.5	20	2,34	1.353	60,1	60.1
TR03.6	28	2,16	835	37,1 *)	00,1

Tabelle A 3-15: Festigkeitsentwicklung des Betons der Träger TR01-TR05

Probe	Alter	ρ	F	f _{c,dry,cube}	f _{cm,dry,cube}
Nr.	[d]	[g/cm³]	[kN]	[MPa]	[MPa]
TR04.1	7	2,33	1.380	61,33	EQ C
TR04.2	/	2,34	1.258	55,9	58,0
TR04.3	14	2,34	1.356	60,3	60.0
TR04.4	14	2,34	1.343	59,7	60,0
TR04.5	20	2,34	1.500	66,7	66 7
TR04.6	20	2,18	970	43,1 *)	00,7
TR05.1	7	2,31	1.210	53,8	F2 4
TR05.2	/	2,31	1.180	52,4	53,1
TR05.3	14	2,41	1.507	67,0	574
TR05.4	14	2,25	1.074	47,7	57,4
TR05.5	20	2,41	1.433	63,7	64 5
TR05.6	20	2,37	1.470	65,3	04,5

*) <u>Hinweis:</u>

Probewürfel wurde bei der Herstellung schlecht verdichtet. Dieses ist an der ermittelten Rohdichte erkennbar. Daher wurden diese Werte aus der Wertung genommen.

Probe	Alter	ρ	F	f _{c,dry,cube}	f _{cm,dry,cube}	Probe	Alter	ρ	F	f _{c,dry,cube}	f _{cm,dry,cube}
Nr.	[d]	[g/cm³]	[kN]	[MPa]	[MPa]	Nr.	[d]	[g/cm ³]	[kN]	[MPa]	[MPa]
SB01.1		2,29	958	42,6		SB03.1		2,36	1.326	58,9	
SB01.2	7	2,34	1.174	52,2	46,4	SB03.2	7	2,37	1.246	55,4	56,6
SB01.3		2,29	1.003	44,6		SB03.3		2,39	1.246	55,4	
SB01.4		2,34	1.042	46,3		SB03.4		2,36	1.576	70,0	
SB01.5	14	2,32	1.186	52,7	51,2	SB03.5	14	2,37	1.374	61,1	63,5
SB01.6		2,32	1.225	54,4		SB03.6		2,33	1.333	59,2	
SB01.7		2,31	1.301	57,8		SB03.7		2,37	1.815	80,7	
SB01.8	28	2,32	1.242	55,2	55,1	SB03.8	28	2,36	1.481	65,8	70,3
SB01.9		2,27	1.177	52,3		SB03.9		2,34	1.447	64,3	
SB02.1		2,31	991	44,0		SB04.1		2,39	1.229	54,6	
SB02.2	7	2,31	1.030	45,8	46,4	SB04.2	7	2,37	1.084	48,2	51,2
SB02.3		2,33	1.112	49,4		SB04.3		2,37	1.144	50,8	
SB02.4		2,30	1.083	48,1		SB04.4		2,39	1.220	54,2	
SB02.5	14	2,33	1.188	52,8	50,1	SB04.5	14	2,38	1.225	54,4	56,8
SB02.6		2,33	1.114	49,5		SB04.6		2,39	1.389	61,7	
SB02.7		2,29	852	37,9		SB04.7		2,36	1.330	59,1	
SB02.8	28	2,29	1.222	54,3	49,6	SB04.8	28	2,36	1.310	58,2	59,5
SB02.9		2,32	1.274	56,6		SB04.9		2,36	1.373	61,0	

Tabelle A 3-16: Festigkeitsentwicklung des Betons der Träger SB01-SB04

Bild A 3-7: Betonfestigkeitsentwicklung der Träger TR01-TR05

Bild A 3-9: Betonfestigkeitsentwicklung der Träger SB01-SB04

Bild A 3-8: Würfel- und Zylinderproben des Betons

Bild A 3-10: Druckfestigkeitsprüfung am Würfel

Tabelle A 3-17: 28-Tage Würfeldruckfestigkeit der Versuchsträger

Umrechnung zur Berücksichtigung der Luftlagerung: $f_{cm,cube} = 0.92 \cdot f_{cm,dry,cube}$

Versuch	f _{cm,dry,cube} [MPa]	f _{cm,cube} [MPa]	f _{ck,cube} [MPa]
TR01	64,4	59,2	55,2
TR02	68,7	63,2	59,2
TR03	60,1	55,3	51,3
TR04	66,7	61,3	57,3
TR05	64,5	59,4	55,4
		Mittelwert:	55.7

Versuch f_{cm,cube} f_{ck,cube} f_{cm,dry,cube} [MPa] [MPa] [MPa] 46,7 SB01 55,1 50,7 SB02 49,6 45,6 41,6 70,3 60,6 SB03 64,6 SB04 59,5 54,7 50,7 49,9 Mittelwert:

 $f_{ck,cube} = f_{cm,cube} - 4MPa$

Einpressmörtel

Träger	Zement	Wasser	Einpresshilfe	w/z	Zement-	Wasser-	Tauchzeit	Tauchzeit
	[kg]	[kg]	[kg]	[-]	°C	°C	[s]	[s]
TR01 - TR02	100	39	0,5	0,39	10	8	41,0	99,0
TR03 - TR05	100	40	0,5	0,40	18	10	43,5	87,5
SB01 - SB02	50	19	0,5	0,38	16	12	46,0	79,0
SB03 - SB04	50	19	0,5	0,38	14	10	54,0	90,0

 Tabelle A 3-18: Zusammensetzung und Eigenschaften des Einpressmörtels

Tabelle A 3-19: Raumänderung des Einpressmörtels

Träger	Tiefe	nmaß Messun	g t=0	Tiefer	nmaß Messung	t=24h	Quellmaß
	Probe 1	Probe 2	Probe 3	Probe 1	Probe 2	Probe 3	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Vol[%]
TR01 - TR02	18,8	20,3	17,1	13,3	14,9	13,6	1,34
TR03 - TR05	15,5	17,4	14,3	11,8	14,4	10,7	1,29
SB01 - SB02	18,8	20,3	17,1	13,3	14,9	13,6	1,34
SB03 - SB04	18,6	17,6	20,3	14,8	12,5	15,8	1,32

A3.2 freischwingend untersuchte Spannstähle

A3.2.1 Messergebnisse

Tabelle A 3-20: Versuchsergebnisse des "neuen" Spannstahls unter zyklischer Belastung

	S	pannungsgröße	n	Bruchschwi	ngspiele	
Probe	σ	σο	Δσ	erster Drahtbruch	Litzenversagen	Bemerkung
	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	
SPN-D-01	900	1.750	850	-	-	3)
SPN-D-02	900	1.350	450	153.821	186.458	-
SPN-D-03	900	1.250	350	-	10.000.298	GSchwZ
SPN-D-04	900	1.600	700	48.958	50.772	-
SPN-D-05	900	1.300	400	334.509	415.126	-
SPN-D-06	900	1.400	500	5.273.017	5.356.678	-
SPN-D-07	900	1.440	540	6.005.851	6.081.090	-
SPN-D-08	900	1.660	760	-	-	3)
SPN-D-09	900	1.500	600	87.620	125.670	-
SPN-D-10	900	1.460	560	94.104	111.597	-
SPN-D-11	900	1.360	460	-	10.258.710	GSchwZ
SPN-D-12	900	1.900	1.000	-	2.340	2)
SPN-D-13	900	1.950	1.050	-	6.918	2)
SPN-D-14	900	1.700	800	-	37.182	2)
SPN-D-15	900	1.840	940	-	17.340	2)
SPN-D-16	900	1.420	520	102.160	185.043	-
SPN-D-17	900	1.380	480	-	11.019.149	GSchwZ
SPN-D-18	900	1.410	510	7.014.127	7.079.581	-
SPN-D-19	900	1.430	530	108.545	150.588	-
SPN-D-20	900	1.395	495	92.475	124.595	-
SPN-D-21	900	1.320	420	4.802.146	4.879.136	-
SPN-D-22	900	1.280	380	2.177.666	2.615.604	-
SPN-D-23	900	1.240	340	9.556.793	10.366.609	-
SPN-D-24	900	1.200	300	2.222.854	2.682.255	-
SPN-D-25	900	1.180	280	-	10.066.885	GSchwZ
SPN-D-26	900	1.190	290	-	10.200.010	GSchwZ
SPN-D-27	900	1.170	270	-	-	4)

Fortsetzung der Tabelle A 3-20:

SPN-D-28	900	1.160	260	-	10.200.010	GSchwZ
SPN-D-29	900	1.220	320	-	735.041	-
SPN-D-03 ¹⁾	900	1.510	610	106.308	141.943	DL-Test
SPN-D-11 ¹⁾	900	1.550	650	45.418	53.972	DL-Test
SPN-D-17 ¹⁾	900	1.530	630	-	81.136	DL-Test <i>2)</i>
SPN-D-25 ¹⁾	900	1.570	670	-	59.782	DL-Test 2)
SPN-D-26 ¹⁾	900	1.520	620	-	179.445	DL-Test <i>2)</i>
SPN-D-28 ¹⁾	900	1.560	660	-	53.299	DL-Test <i>2)</i>

GSchwZ: Grenzscwingspielzahl erreicht, kein Probenbruch; DL-Test: Durchläufter Test

¹⁾ zweite Belastung der zuvor nicht versagten Probe

²⁾ Litzenversagen erfolgte unmittelbar nach dem ersten Drahtbruch

³⁾ Probe hat sich bei der ersten Belastung aus der Klebung gezogen

⁴⁾ Stromausfall während des Versuchs - Probe wurde nicht gewertet

Tabelle A 3-21: Versuchsergebnisse des "alten" Spannstahls unter zyklischer Belastung

	S	pannungsgröß	en	Bruchschwi	ngspiele	
Probe	σ	σο	Δσ	erster Drahtbruch	Litzenversagen	Bemerkung
	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	
SP-D-01	900	1.750	850	6.465	6.465	-
SP-D-02	900	1.350	450	168.866	175.926	-
SP-D-03	900	1.250	350	291.811	385.067	-
SP-D-04	900	1.180	280	-	12.189.188	GSchwZ
SP-D-05	900	1.600	700	38.818	39.420	-
SP-D-06	900	1.300	400	364.032	414.281	-
SP-D-07	900	1.660	760	-	31.230	2)
SP-D-08	900	1.210	310	-	10.250.085	GSchwZ
SP-D-09	900	1.400	500	151.460	165.929	-
SP-D-10	900	1.500	600	50.077	61.537	-
SP-D-11	900	1.230	330	3.010.244	3.835.496	-
SP-D-12	900	1.240	340	-	12.286.561	GSchwZ
SP-D-13	900	1.270	370	470.466	650.923	-
SP-D-14	900	1.245	345	485.968	725.339	-
SP-D-15	900	1.220	320	8.804.191	9.187.819	-
SP-D-16	900	1.247	347	169.350	216.524	-
SP-D-17	900	1.320	420	97.728	101.599	-
SP-D-18	900	1.243	343	449.245	653.991	-
SP-D-19	900	1.225	325	-	10.446.369	GSchwZ
SP-D-20	900	1.235	335	738.323	1.023.773	-
SP-D-21	900	1.440	540	51.462	87.783	-
SP-D-22	900	1.720	820	-	15.566	2)
SP-D-23	900	1.760	860	-	11.427	2)
SP-D-24	900	1.560	660	-	60.167	2)
SP-D-25	900	1.195	295	553.989	934.548	-
SP-D-26	900	1.175	275	692.496	860.809	-
SP-D-27	900	1.160	260	-	10.114.496	GSchwZ
SP-D-04 ¹⁾	900	1.400	500	84.303	95.485	DL-Test
SP-D-08 ¹⁾	900	1.500	600	65.306	74.808	DL-Test
SP-D-12 ¹⁾	900	1.450	550	77.004	91.499	DL-Test
SP-D-19 ¹⁾	900	1.430	530	71.817	72.421	DL-Test
SP-D-27 ¹⁾	900	1.420	520	68.793	84.915	DL-Test

GSchwZ: Grenzscwingspielzahl erreicht, kein Probenbruch; DL-Test: Durchläufter Test

¹⁾ zweite Belastung der zuvor nicht versagten Probe

²⁾ Litzenversagen erfolgte unmittelbar nach dem ersten Drahtbruch

A3.2.2 Bilder und Parameter der freischwingend untersuchten Spannstahlproben

Auf den nachfolgenden Seiten sind die wesentlichen Parameter zu den freischwingend getesteten Spannstählen aufgeführt. Des Weiteren wurden die Bruchflächen der einzelnen, 3mm dicken Drähte mikroskopisch fotografiert und dokumentiert. Zur Dokumentation und Nachbearbeitung der Bilder wurde die Software Helicon Focus sowie ZEN verwendet. Die Bilder dienen zur Bestimmung der Drahtbruchreihenfolge und jeweiligen Bruchursache.

Bei der Interpretation der Bilder ist zu beachten, dass die Proben vor der Aufnahme nicht extra gereinigt wurden, um eventuelle Schadensursachen oder auch ungewollte, ermüdungsbruchauslösende Fremdkörper besser erkennen zu können. Daher dürfen einige Bruchflächen bei genauerer Betrachtung nicht falsch interpretiert werden:

- Trotz einer sehr guten und allseitigen Beleuchtung der unter dem Mikroskop befindlichen Probe konnten Schattenwurfbildungen auf der Oberfläche nicht vermieden werden. Daher können in einigen Bildern schwarze Bereiche fälschlicherweise als Rissstrukturen in der Bruchoberfläche verstanden werden. Dieser Effekt konnte gerade in der starken Reliefstruktur der Restgewaltbruchflächen nicht vermieden werden. Risse innerhalb der Bruchflächen konnten nicht festgestellt werden.
- Der im Versuch erzielte Bruch einzelner Drähte führte dazu, dass sich die auf der Spannstahloberfläche zum Teil noch befindlichen Verunreinigungen als staubfeine Partikel auf der Bruchfläche absetzten. Diese Verunreinigungen stammen aus feinen Resten des nach dem Ausbau noch anhaftenden Verpressmörtels oder zum Teil auch aus leichtem Flugrost und sind auf den Bilden hin und wieder als gelb/bräunliche Partikel zu erkennen. Hierbei handelt es sich nicht um eingeschlossene Fremdbestandteile im Spannstahl.
- Hin und wieder sind wachsartige Strukturen zu erkennen (z.B. Bruchbild SP-D-07-O5). Hierbei handelt es sich um Reste des Zweikomponentenklebers, mit dem die Spannlitzen in die Verankerungsröhrchen eingeklebt wurden. Dieser Effekt trat auf, wenn die Brüche am Rand der Klebung auftraten und der gebrochene Draht im weiteren zyklischen Versuch auf die Klebefläche traf.

			Inum	territoria		900 [MPa]	1.350 [MPa]	450 [MPa]	schnittsfläche von 52mm ²	uchart Lage [mm]	EMB 185		EMB 270	n.g.	EMB 225	n.g.	n.g. gebrochen, k.B.: kein Bild		\$-04.05	uarchnitt dar litna
				20-0-48	Spannungsgrößen ¹⁾	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestörten Quers	Unterer Teil Draht Bru	1 8	2		4	Blick in die 5	Bruchflächen 6	tbruch mit Ermüdungsbeginn, n.g.: nicht y		Draht 6 nicht geboochen An An An An An An An An An A	it nicht dar räumlichan I aca im Garamtai
		168.866	,	175.926		46,8 [kN]	70,2 [kN] C	23,4 [kN]		Bruchart Lage [mm]	EMB 95	n.g.	k.B. 5	n.g.	EMB 55	n.g.	ewaltbruch, GWBmE: vorzeitiger Gewah		P-D-02-01 P-D-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-01 Pro-02-02-01 Pro-02-02-02-02 Pro-02-02-02-02-02-02-02-02-02-02-02-02-02-	SP-D-02-U3
SP-D-02	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5	Bruchflächen 6	EMB: Ermüdungsbruch, GWB: Ge	Bruchhilder	Draht 2 nicht 2 gebracher.	
			- ANNAL	A construction of the second s		[MPa]	[MPa]	[MPa]	e von 52mm²	Lage [mm]	235	235	235	245	245	245	245 k.B.: kein Bild		S2	
					en ¹⁾	606	1.750	850	r ungestörten Querschnittsfläch	Draht Bruchart	1 GWB	2 GWB	3 GWB	4 GWB	5 GWB	6 GWB	7 EMB sbeainn. n.a.: nicht aebrochen.		P-D-D-C-	P-D-01-04
			SP-D-01		Spannungsgröß	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme eine	nm] Unterer Teil					Blick in die	Bruchflächen	er Gewaltbruch mit Ermüduna		section of the secti	S
		6.465	'	6.465		46,8 [kN]	91,0 [kN]	44,2 [kN]	-	Bruchart Lage [n	GWB 50	GWB 50	GWB 50	GWB 45	GWB 43	GWB 43	EN/B 47 valtbruch, GWBmE: vorzeitiae		the second	SP-D-01-03
SP-D-01	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	3 4 4	Blick in die 5	Bruchflächen 6	7 EMB: Ermüdunasbruch. GWB: Gev	Bruchhilder	Structure SP-D-D-2 SP-D-2 SP-D-	

Proben des "alten" Spannstahls

			231111	and the second s	(II ¹⁾	900 [[MPa]	1.400 [MPa]	500 [MPa]	ungestörten Querschnittsfläche von 52mm²	Draht Bruchart Lage [mm]	1 k.B. 15	2 EMB 300	3 GWB 295	4 GWB 295	5 GWB 295	6 GWB 295	V GWB 295		Dod-US S-D-0-US S-D-0-US S-D-0-US S-D-0-US S-D-0-US	Lage im Gesamtquerschnitt der Litze
			SP-D-04		Spannungsgröße	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer i	n] Unterer Teil D					Blick in die	Brucnjiacnen	Sewaltbruch mit Ermüdunast		Proceeding of the second of th	spricht nicht der räumlichen
		84.303	1	95.485		46,8 [kN]	72,8 [kN]	26,0 [KN]	-	Bruchart Lage [mn	EMB 290	k.B. 0	k.B. 0	k.B. 0	k.B. 0	k.B.	A.B. U Altbruch. GWBmE: vorzeitiger G		SP-04-13 SP-04-13	in den einzelnen Bruchbilder ent
SP-D-04 (DL-Test)	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	2 (7) (5) 3	34	Blick in die 5	Brucnyacnen 6	EMB: Ermüdunasbruch. GWB: Gew		Production of the second	²⁾ Die Ausrichtung der Bruchfläche
			2 WINN	and the second second		900 [MPa]	1.250 [MPa]	350 [[MPa]	hnittsfläche von 52mm²	chart Lage [mm]	MB 150	VB 170	VIB 220	VB 290	BmE 285	VIB 220	VB 180 ebrochen. k.B.: tein Bild		SD-ED-4-85	erschnitt der Litze
		Carl June and a	SP-D-03		Spannungsgrößen ¹⁾	Unterspannung:	Oberspannung:	Schwingbreite:	¹¹ unter Annahme einer ungestörten Quersc	Unterer Teil Draht Brud	1 EN	2	3 3 3 8	4 6	Blick in die 5 GW	Bruchjachen 6 EN	altbruch mit Ermüdunasbeainn. n.a.: nicht a	n	Particular for the former of t	icht nicht der räumlichen Lage im Gesamtque
		291.811	315.877	385.067		46,8 [KN]	65,0 [KN]	18,2 [kN]		Bruchart Lage [mm]	EMB 135	EMB 70	k.B. 0	k.B. 0	GWBME 65	EMB 120	GWB 1.20 Judithruch. GWBmE: varieitiaer Gew		SP-D-03-U3 Participation (1999) Participation (1999) Participat	in den einzelnen Bruchbilder entspr
SP-D-03	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	34	Blick in die 5	Bruchjacren 6	EMB: Ermüdunasbruch. GWB: Gew		Standard and standard a	²⁾ Die Ausrichtung der Bruchfläche

191

		1	ALL OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	A Construction		900 [MPa]	1.500 [MPa]	600 [MPa]	hnittsfläche von 52mm²	hart Lage [mm]	dB 42	(B 293	9. -5	VB 300	VB 300	VB 300	WB 300	brochen, k.B.: kein Bild	SD-80-4-4
					rößen ¹⁾	Ing:	.Br	:e:	einer ungestörten Quersch	Draht Bruc	1 EN	2 EN	3 k.f	4 GV	5 GV	9 GV	Z GV	dungsbeginn, n.g.: nicht ge	SP-DO-BUG
			SP-D-08		Spannungsg	Unterspann	Oberspannu	Schwingbreit	¹¹ unter Annahme	m] Unterer Teil					Blick in die	Bruchflächen		Gewaltbruch mit Ermü	The second secon
		65.306	1	74.808		46,8 [kN]	78,0 [KN]	31,2 [KN]		chart Lage [m	MB 245	.B.	WB 290	.B. 0	.B. 0	.B. 0	.B. 0	ch, GWBmE: vorzeitiger	And
L-Test)			:4	gen:				oreite:		Draht Bru	1 EI	2	3 0	4 k	5 k	9	7 k	oruch, GWB: Gewaltbru	Thermal and the second se
SP-D-08 (D	Lastwechsel	1. Drahtbruc	2. Drahtbrucl	Systemversa	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingb	22 B	Oberer Teil		9	2775		Blick in die	Bruchflächen		EMB: Ermüdungsk	Bruchbilder
						[MPa]	[MPa]	[MPa]	von 52mm²	Lage [mm]	280	0	0	0	0	0	0	B.: kein Bild	Taga
						906	1.660	760	irten Querschnittsfläche	Bruchart	EMB	k.B.	k.B.	k.B.	k.B.	k.B.	k.B.	n.g.: nicht gebrochen, k	Proposition
			SP-0-01		pannungsgrößen ¹⁾	Interspannung:	berspannung:	chwingbreite:	unter Annahme einer ungestö	Interer Teil Draht	1	2	(5)772) 3	4	Blick in die 5	Bruchflächen 6	2	bruch mit Ermüdungsbeginn,	Propried in the second se
						[kn]	[kN]	[kN] S	1	Lage [mm]	0	280	280	280	290	290	290	nE: vorzeitiger Gewalt	Pul substitution
		31.230	1	31.230		46,8	86,3	39,5		Bruchart	k.B.	EMB	GWB	GWBmE	GWBmE	GWB	GWB	Gewaltbruch, GWBn	S-D-07
10	isel	ruch:	ruch:	ersagen:	ßen			vingbreite:		eil Draht	1	2	3	4	die 5	chen 6	~	dungsbruch, GWB:	lder SP-D-07-02

¹⁷ Die Ausrichtung der Bruchflöche in den einzelnen Bruchbilder entspricht nicht der räumlichen Lage im Gesomtquerschnitt der Litze

193

				and a second sec	6 B	[MPa]	[MPa]	[MPa]	the von 52mm ²	Lage [mm]	41	285	294	297	298	288	297	, k.B.: kein Bild									Canada and		1.000 Jm	US						dar Litua
						906	1.45	55	irten Querschnittsfläc	Bruchart	k.B.	EMB	GWB	GWBME	GWBME	EMB	GWB	n.g.: nicht gebrochen					1,000 μπ	9	2	Z	A La		dmund og G. Hoeke stalf - Brochtische SP-0-12-05	SP-D-12-	6		Ar		1,000 µm	4 Cocamtauorehnitt
			1	-	ößen ¹⁾	ng:	1g:	e:	einer ungest	Draht	1	2	m	4	2	9	~	lungsbeginn,		1	7	1.0	• SP.D.12.06	SP-D-12-1					TU-0 Dipt-			en ander	A Star		*SP-D-12-U4 CD-D-12-U	1 on I not
		CP.D-12 a	SP-D-12		Spannungsgi	Unterspannu	Oberspannu	Schwingbreit	¹ unter Annahme	Unterer Teil		•			Blick in die	procrigancie		waltbruch mit Ermüc			4 9 7		TU-Dortmand DptIng: G. Heeke Spennstahl - Bruchtlict		P			and al	207 1.000	-D-12-U7				70.Deterund	DipLung, G. Heeke Spennstehl - Bruchflict	minin alabé dan kirin
						[kN]	[kN]	[kN]		Lage [mm]	235	Ŷ	'n	ų	- <u>-</u>	Ŷ	ņ	nE: vorzeitiger Gev	4	1	一		1.000 Jm	2-01		YA:			10-Dothmarc Dol - Ing. G. Heene Sparritahi - Bruchfläche SP-D-1	SP		~		and the second	mt 000.1	Princhhilder entro
		77.004	77.306	91.499		46,8	75,4	28,6		Bruchart	GWBmE	k.B.	k.B.	k.B.	k.B.	k.B.	k.B.	ewaltbruch, GWBn	and the second	A. A			und G. Heoka N - Bruchtsche SP.0-12-01	SP-D-1	14			Mes	1.600 µm				.t.,	-	G. Heeke M Bruchtliche Si-D-12-U3 CD-D-1	nanlarnia nah ni ni
Test)				en:				reite:		Draht	1	2	£	4	2	9	~	uch, GWB: G					TU-Dorte Det-Ing Spannsta						212-02	SP-D-12-U2				TU-Dott	Dati Jurg. Spornsti	for Develophick
SP-D-12 (DI	Lastwechsel	1. Drahtbruch	2. Drahtbruch	Systemversag	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbi		Oberer Teil		9	2×2	34	Blick in die	prominarueu		EMB: Ermüdungsbi									A A	3	TU-Dortmund Digi -try G. Heeke Sparnstahl - Bruchliche SPU	0,						2) Dia Aussichtman
		22			6]	Ē																			₽Ĭ							7
		0-14-0		a. 41444		[MPa]	[MPa]	[MPa]	e von 52mm²	Lage [m	85	6	115	115	118	115	85	k.B.: kein Bild							1				1.000 μ	S						or 1 it yo
						006	1.230	330	ten Querschnittsfläch	Bruchart	EMB	EMB	GWB	GWB	GWB	GWB	EMB	.g.: nicht gebrochen,		1			1.000 Jm				and the second s	The W	nund G. Heeke M Bruchfikche SP-D 11-US	SP-D-11-U					1.000 pm	Cocamtanoscehnist de
		1			ößen ¹⁾	ng:	6:	ii	iner ungestör	Draht	1	2	£	4	2	9	~	ungsbeginn, n					SPD:11-10	SP-D-11-U6					TU-Dorte Dipl-ing						SP-D-11-14 CD-D-11-114	wi on i and
		002 D1 902 04	SP-D-11		Spannungsgr	Unterspannu	Oberspannun	Schwingbreite	¹⁾ unter Annahme e	Unterer Teil		6			Blick in die	Bruchilachen		raltbruch mit Ermüdl					TU-Dortmand DipL-Ing. G. Heeke Spennstarl - Bruchfliche			T			u 1000	D-11-U7			No.	Tubermend	DpiIng. G. Heeke Spennstehl - Bruchliche	inter siche das sinni
						[kN]	[kN]	[kN]		Lage [mm]	195	190	180	180	180	180	192	: vorzeitiger Gew	6		5 - j		1.000 µm	10	X			AL	Dotmund Ing. G. Hoeke mistelit - Bruchtische S. 0.11-	SP-			1 A 1	No.	mt 000.1	13
		3.010.244	3.806.624	3.835.496		46,8	64,0	17,2		Bruchart	EMB	EMB	GWB	GWB	GWB	GWB	EMB	ewaltbruch, GWBmL		100		A Some	G. Heater 9. Buchthore SPD-11-01	SP-D-11-0					10 1000 μm					and the second se	G. Heeke M Bruchfliche St-D-11-U3 SD-D-11-L	a in dan aintal and ai
				en:				eite:		Draht	1	2	e	4	2	9	~	uch, GWB: Ge			4.00		TU-Dottru Dat Jng. C Sparastah		1	110	13		Serie and	P-D-11-U2				TU-Dottm	Dat Ing. C Spornstar	or Druchflöch.
SP-D-11	Lastwechsel	1. Drahtbruch.	2. Drahtbruch.	Systemversage	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbr		Oberer Teil		9	2 7 5	9	Blick in die	Bruchjachen		EMB: Ermüdungsbr							and and a			-	TU-Dortmand Dish-Ing. G. Hooko Spannishti - Bruchlische SP.D.	S						2) Dia Austichtung d

der Litze

195

			T INTER	A substant		900 [MPa]	1.245 [MPa]	345 [MPa]	schnittsfläche von 52mm ²	Ichart Lage [mm]	NIS INS	k.B. 36	W/B 156	W/B 157	SWB 158	k.B. 16	MB 248	gebrochen, K.B.: Kein Bild	Aun-	www.hnitt.dorlitzo
					en ¹⁾				ungestörten Quer	Draht Bru	7	2	m	4	5	9		peginn, n.g.: nicht	-D-14-06	-U-14-U4
		C hi-u-ds	SP-D-14		pannungsgröß	nterspannung:	berspannung:	chwingbreite:	unter Annahme eine	Interer Teil					Blick in die Bruchflächen			orucn mit Ermudung:	states and the second s	v nicht der räumliche
		9			S	Ikn] U	[kn] 0	[KN] Sc	(1	Lage [mm] U	611	243	135	134	135	262	39	: vorzeitiger Gewan	La Contraction of the second sec	us nuchhilder entenricht
		485.968	710.904	725.339		46,8	64,74	17,94		Bruchart	EMB	EMB	GWB	GWB	GWB	EMB	k.B.	waitoruch, GWBME	SP.D.14.C	Prezenan Bu
		igen:				breite:		Draht	7	7	m	4	ŝ	Q	zal	Provide a second s	a der Bruchflöche			
SP-D-14	Lastwechsel	1. Drahtbruc	2. Drahtbruc	Systemversa	Kraftgrößen	Unterlast:	Oberlast:	Lastschwing		Oberer Teil		4			Blick in die Bruchflächen	Bruchfläche		:NIB: Ermadungs	A Contraction of the second of	Die Ausrichtung
			Sector of	A VANA,	ißen ¹⁾	g: 900 [MPa]	3: 1.270 [MPa]	: 370 [MPa]	ner ungestörten Querschnittsfläche von 52mm²	Draht Bruchart Lage [mm]	I EMB 153	2 k.B. 15	3 EVIB 85	4 GWB 28/	3 GWB 290	6 GWB 293	291 June 2010 Ju		Scharts de la constant de	5r-U-13-U4 hen Linie im Geommanjerschnitt der Litze
		-	SP-D-13		Spannungsgrö	Unterspannun	Oberspannun	Schwingbreite	¹⁾ unter Annahme e	Unterer Teil					Bruchflächen	, 	untrheuch mit Ermüdu		The second secon	icht nicht der räumli
		0.466	9.643	0.923		46,8 [kN]	66,04 [kN]	19,24 [kN]		hart Lage [mm]	126	18 262	19/		ئ		5		Parallel Par	or-cz-u-suchhilder entsni
		47	61	1: 65				ite:		Draht Bruc	1 EN	2 EN	λ, ζ.	4 L	0	0 r	h GMR- Gewolthouch		b13-02	Bruchfläche in den ei
SP-D-13	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversager	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbrei		Oberer Teil		9		4	Blick in die Bruchflächen	, ,	FMR- Frmüduaashruci		State	2) Die Ausrichtung der

196

		1. The second seco	Biom		8	900 [MPa]	247 [MPa]	347 [MPa]	sfläche von 52mm ²	rt Lage [mm]	43	204	202	179	188	205	205	chen, k.B.: kein Bild		Leus	nitt der Litze
		Y			rößen ¹⁾	nng:	Oberspannung: 1.	te:	einer ungestörten Querschnitt	Draht Brucha	1 k.B.	2 GWB	3 GWB	4 EMB	5 EMB	6 GWB	7 GWB	idungsbeginn, n.g.: nicht gebro	ewakaraan mit ermuaangsoegimi, n.g. : man yeoro	s-p-16-tud	nlichen Lage im Gesamtauersch
		Constant and the	SP-D-16		Spannungs	Unterspann		Schwingbrei	¹⁾ unter Annahme	n] Unterer Tei					Blick in die	Bruchfläche		Sewaltbruch mit Ermi		There is a set of the	spricht nicht der räun
		9.350	5	6.524		46,8 [kN]	64,8 [kN]	18,0 [kN]	-	hart Lage [mr	VB 233	VB 91	VB 98	1B 101	1B 87	VB 90	VB 92	h, GWBmE: vorzeitiger (SPD1603	inzelnen Bruchbilder ent
	165		en: 21				eite:	-	Draht Bruc	1 GV	2 GV	3 GV	4 EN	5 EN	6 GV	Z GV	uch, GWB: Gewaltbruc		P.D.15-U.	er Bruchfläche in den e	
SP-D-16	Lastwechsel	1. Drahtbruch	2. Drahtbruch	Systemversage	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbr		Oberer Teil					Blick in die	Bruchflachen		EMB: Ermüdungsbr	Bruchbilder ²⁾	Bruchbilder ¹⁴	²⁾ Die Ausrichtung d
				naid.	8]	[[]			
			144	and a second sec		900 [MPa]	1.220 [MPa]	320 [MPa]	hittsfläche von 52mm ²	iart Lage [m	8 239	-5	8 187	B 177	B 178	B 176	B 179	rochen, k.B.: kein Bild		The second se	ichnitt der Litze
					en ¹⁾			Schwingbreite:	ungestörten Querschr.	Draht Bruch	1 EM	2 k.B	з	4 GW	5 GW	6 GW	Z GW	bruch mit Ermüdungsbeginn, n.g.: nicht gebr		PD-15-C0-	n Laae im Gesamtauer
		a state and	SP-D-15		Spannungsgröß	Unterspannung:	Oberspannung:		¹⁾ unter Annahme einei	Interer Teil C		•			Blick in die	Bruchflachen				Sime the second se	cht nicht der räumlichen
		11	1	9		.8 [kN]	4 [kN]	4 [kN]]	Lage [mm]	39	281	89	115	116	117	115	mE: vorzeitiger Gewali		15-03	en Bruchbilder entspric
		8.804.15		9.187.81		46,	63,4	16,6	-	ht Bruchart	k.B.	EMB	EMB	GWB	GWB	GWB	GWB	VB: Gewaltbruch, GW		SP.D.	ifläche in den einzeln
SP-D-15	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Dra	T	2	3		Blick in die 5	Brucnfrachen 6	2	EMB: Ermüdungsbruch, GM	Bruchbilder ²⁾	Bruchbilder ⁴	²⁾ Die Ausrichtung der Bruch

197
SP-D-18	Lastwechsel	1. Drahtbuch: 449.245 sands	C. Utalituduit	Kraftgrößen Spannungsgrößen ¹	Unterlast: 46,8 [kN] Unterspannung: 900 [MPa]	Oberlast: 64,636 [kN] Oberspannung: 1.243 [MPa]	Lastschwingbreite: 17,836 [kN/] Schwingbreite: 343 [MPa]	² unter Annahme einer ungestörten Querschrittsfläche von S2mm ²	t [mm] Oberer Teil Draht Bruchart Lage [mm] Unterer Teil Draht Bruchart Lage [mm]	220 I GWBME 156 I GWBME 124	270 2 EMB 90 2 EMB 181	244 244 3 GWB 100 STATE 3 GWB 192	268 4 GWB 101 4 GWB 191 101 4 GWB 191	77 Blick in die 5 k.B. 0 Blick in die 5 EMB 272	229 Bruchflöchen 6 k.B. 4 Bruchflöchen 6 EMB 271	715 715 GWB 99 7 GWB 189	e Bid ErWis Ermüdungsbruch, GW8: Gewaltbruch, GW8mE: vorzeitiger Gewaltbruch mit Ermüdungsbeginn, n.g.: nicht gebrochen, K.B.: kein Bild
-D-18	stwechsel	Drahtbruch: 4	stemversagen: 6	aftgrößen	terlast:	erlast:	tschwingbreite:		erer Teil Draht Bru	1 GW	2	و ع	3 () ()	Blick in die 5 k	Bruchflächen 6 k	7 G	3: Ermüdungsbruch, GWB: Gewaltbru
		E ALL						~	: [mm]	220	270	244	268	77	229	275	n Bild
	1		11.		900 [MPa]	1.320 [MPa]	420 [MPa]	estörten Querschnittsfläche von 52mm	ht Bruchart Lage	EMB	GWB	EMB	GWB	GWB 2	EMB	GWB	nn. n.a.: nicht aebrochen. k.B.: kei
		CEDITY CONTRACTOR		Spannungsgrößen ¹⁾	Unterspannung: 900 [MPa]	Oberspannung: 1.320 [MPa]	Schwingbreite: 420 [MPa]	³⁾ unter Annahme einer ungestörten Querschnittsfläche von 52mm	[mm] Unterer Teil Draht Bruchart Lage	1 EMB	13 2 GWB	31 5 EMB	4 GWB	a Blick in die 5 GWB 2	11 Bruchflächen 6 EMB 2	7 GWB	tiger Gewaltbruch mit Ermüdungsbeginn, n.g.: nicht gebrochen, k.B.: kei
		97.728	101.599	Spannungsgrößen ¹⁾	46,8 [KN] Unterspannung: 900 [MPa]	68,6 [kN] Oberspannung: 1.320 [MPa]	21,8 [KN] Schwingbreite: 420 [MPa]	³¹ unter Annahrre einer ungestörten Querschnittsfräche von 52mm	Bruchart Lage [mm] Unterer Teil Draht Bruchart Lage	EMB 55	k.B. 13 2 GWB	k.B. 31 541 3 EMB	k.B. 14 4 GWB	k R q Blick in die 5 GWB 2	EMB 41 Bruchfiächen 6 EMB 5	k B 10 7 GWB	woltbruch. GWBmE: vorzeitiger Gewaltbruch mit Ermüdungsbeginn. n.g.: nicht gebrochen. k.B.: kei

	a second	SP-D-20	The second se	Spannungsgrößen ¹¹	Unterspannung: 900 [MPa]	Oberspannung: 1.235 [MPa]	Schwingbreite: 335 [MPa]	¹ , unter Annahme einer ungestörten Querschnittsfläche von 52mm²	Unterer Teil Draht Bruchart Lage [mm]	1 k.B. 88	6 1 2 GWB 203	4 EMB 200	Blick in die 5 EMB 191	Bruchflächen 6 EMB 147	7 GWB 266	tbruch mit Ermüdungsbeginn, n.g. : nicht gebrochen, k.B. : kein Bild		SP-D-20-04
	738 273	-	1.023.773		46,8 [kN]	64,22 [kN]	17,42 [kN]		Bruchart Lage [mm]	EMB 185	k.b. 19 k.g. 18	EMB 71	EMB 80	EMB 130	k.B. 22	Sewaltbruch, GWBmE: vorzeitiger Gewu	SP.22-01	SP-D-20-U3
SP-D-20	Lastwechsel	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	" <	3 4	Blick in die 5	Bruchflächen 6	7	EMB: Ermüdungsbruch, GWB: G	Real Real Real Real Real Real Real Real	
		ALLA -	transference and transf) [MPa]) [MPa]	[MPa]	he von 52mm²	Lage [mm]	278 280	284	285	296	288	287	k.B.: kein Bild	St	
				jßen ¹⁾	JOG :: 800	B: 1.430	: 53(iner ungestörten Querschnittsfläc	Draht Bruchart	1 EMB	3 GWBmE	4 GWB	5 GWB	6 GWB	7 GWB	ingsbeginn, n.g. : nicht gebrochen,	Sr.D.19.4 Sr.D.19.4 Sr.D.19.4 Sr.D.19.4 Sr.D.19.4	SP-D-19-U4
		1.D.4.15	61-0-48	Spannungsgrö	Unterspannur	Oberspannun	Schwingbreite	²⁾ unter Annahme e.	e [mm] Unterer Teil	رن بر (-5	-5 Blick in die	-5 Bruchflächen	-5	eitiger Gewaltbruch mit Ermüdu	to the term of	
	71 817	-	72.421		46,8 [kN]	74,4 [kN]	27,6 [kN]		t Bruchart Lag	к.В. к.в.	k.B.	k.B.	k.B.	k.B.	k.B.	: Gewaltbruch, GWBmE: vorz	the second	SP-0-19-U3
SP-D-19 (DL-Test)	Lastwechsel	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Drah	1 () ()			Blick in die 5	Bruchflächen 6	2	EMB: Ermüdungsbruch, GWB	SP-D-19-UL	

- Litze

199

			-0-22	The second secon	nnungsgrößen ¹⁾	erspannung: 900 [MPa]	rspannung: 1.720 [MPa]	wingbreite: 820 [MPa]	er Annahme einer ungestörten Querschnittsfläche von 52mm²	erer Teil Draht Bruchart Lage [mm]	1 GWBME 225	(C) 2 k.B. 31	5 (7 (2) 3 GWB 200	Blick in die 5 GWB 290	ruchflächen 6 GWB 287	7 GWB 283	,
		99	1	99	Spi	5,8 [kN] Un	44 [kN] Ob	64 [kN] Sch	nn ₁	t Lage [mm] Un	54	246	ی ب	, ₂	-2	-5	
		15.5		:: 15.5		4	89,	te: 42,		Draht Bruchar	1 GWBm	2 EMB	4 V.0.	5 K.B.	6 k.B.	7 k.B.	
SP-D-22	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbrei		Oberer Teil		9	2 2 2	Blick in die	Bruchflächen		Bruchbilder ²⁾
			1 K 1						24	[mm]	2	T	T			,	
		1		11.1		900 [MPa]	1.440 [MPa]	540 [MPa]	erschnittsfläche von 52mr.	ruchart Lage [GWB 27	K.B.	k B 0	VBmE 26	B. 4	.B. 2	
		X			2				ten Que	B					1	× .	
		VI.	1		ßen	50			ner ungestör	Draht	1	2 0	0 4	5	6 K	×	•
		Value and	SP-D-21		Spannungsgrößen	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestör	Unterer Teil Draht	1		5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Blick in die 5 GV	Bruchflächen 6 k	7	
			SP-D-21		Spannungsgrößen	(kN) Unterspannung:	[kN] Oberspannung:	[kN] Schwingbreite:	¹⁾ unter Annahme einer ungestö	Lage [mm] Unterer Teil Draht	1	285 00 2	275 (1)22 3 275 (1)3	21 Blick in die 5 GV	290 Bruchflächen 6 k.	286 7 k	N
		51.462	- sP-0-21	87.783	Spannungsgrößen	46,8 [kN] Unterspannung:	74,9 [kN] Oberspannung:	28,1 [kN] Schwingbreite:	^{JJ} unter Annahme einer ungestö	Bruchart Lage [mm] Unterer Teil Draht	k.B. 0 1	GWB 285 60 2	EMB 275 (4)(3) 2	k.B. 21 Blick in die 5 GV	GWB 290 Bruchflächen 6 k	GWB 286 7 K	1
		ch: 51.462	ch:	agen: 87.783	Spannungsgrößen	46,8 [KN] Unterspannung:	74,9 [kN] Oberspannung:	breite: 28,1 [KN] Schwingbreite:	¹⁾ unter Annahme einer ungestö	Draht Bruchart Lage [mm] Unterer Teil Draht	1 k.B. 0	Z GWB 285 60 2	4 FMB 275 (4)(3) 4	5 k.8. 21 Blick in die 5 GV	6 GWB 290 Bruchflächen 6 k	7 GWB 286 7 k	R

			- Antonio	to the second se		900 [MPa]	(DAINI) C/T.T	hnittsfläche von 52mm ²	hart Iage [mm]	121	B.	VB 55	WB 55	VB 58	B. 8	B. 54	ebrochen, k.B.: kein Bild	sp.D.26-05
					-			restörten Quersci	aht Rriic	EN	K	3 GV	19 B	5 GV	5 K.	7	tinn, n.g.: nicht gu	SE-C6
		1		-26	ungsgrößen	pannung:	annung:	igui circ. nnahme einer und	r Tail Dr		•			t in die	flächen (iit Ermüdungsbeg	State of the state
			1	SP-D.	Spann	Unters	Caburin	^{1,} unter A	ml lintere		(₹ 	90	Blick	Bruch		Gewaltbruch m	The second secon
						[kN]	[KIN]	Inint	lage [mr	156	291	234	236	233	269	237	nE : vorzeitiger (- ton
		692.496		860.809		46,8	τ'το Τ'το	C/#T	Bruchart	EMB	EMB	GWB	GWB	GWB	EMB	GWB	valtbruch, GWBI	SP.2
				en:			soito.	בורב.	Draht	1	2	3	4	5	9	~	ruch, GWB: Gev	Indemendence in the second sec
3P-D-26	astwechsel	. Drahtbruch	. Drahtbruch	ystemversag	raftgrößen	Interlast:	JOERIASL:	astscilwilight	harar Tail		2	2 (7) S		Blick in die	Bruchflächen		MB: Ermüdungsbi	Characteristic and a second
			HWE	alad La l				12	mm	75	6	54		4	4		n Bild	je j
			R	112		MPal	MPal	ion 52mn	Lage			2		11	56		3.: kei	5
		X	A	NAME OF THE OWNER		1 105 [MPa]	LD IN SOL	Querschnittsfläche von 52mn	Bruchart Lage	k.B.	k.B.	EMB 2	k.B.	FMB 17	GWBmE 26	R B	: nicht aebrochen. k.B.: kei	sp.p.25-
		X			lisen "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 101 CTTT	ner ungestörten Querschnittsfläche von 52mn	Draht Bruchart Lage	1 k.B.	2 k.B.	3 EMB 2	4 k.B.	5 FMB 17	6 GWBmE 26	ZkB	nosbeaina. n.a.: nicht aebrochen. k.B.: kei	Sp25.
		A REAL PROPERTY OF THE REAL PR	SP-D-25		spannungsgroßen "	Unterspannung: 900 [MPa]	Schwinghreite 295 [MPa]	¹¹ unter Annahme einer ungestörten Querschnittsfläche von 52mn	Unterer Teil Draht Bruchart Lage	1 k.B.	2 k.B.	3 EMB 2	4 k.B.	Blick in die 5 FMB 17	Bruchflächen 6 GWBmE 26	7 48	altbruch mit Ermüdungsbeging. n.g. : nicht gebrochen. k.B .: kei	b3ch table to the table to the
			SP-D-25		Spannungsgroßen "	(KN) Unterspannung: 900 (MPa) (KN) Obserssonung: 145 (MPa)	IkN1 Schwinghreite 295 [MPa]	¹⁾ unter Annahme einer ungestörten Querschnittsfläche von 52mn	Lage [mm] Unterer Teil Draht Bruchart Lage	204 1 k.B.	282 2 k.B.	23 23 3 EMB 2	268 4 k.B.	102 Blick in die 5 FMB 17	14 Bruchflächen 6 GWBME 26	281 7 kB	: vorzeitiger Gewaltbruch mit Ermüdungsbeging. A.: nicht gebrochen. K.B.: kei	the set of
		553.989	- SP-D-25	934.548	Spannungsgroßen "	46,8 [kN] Unterspannung: 900 [MPd]	15.34 /kN/ Schwinghreite: 295 /MPd/	¹ ² unter Annahme einer ungestörten Querschnittsfläche von 52mn	Bruchart Lage [mm] Unterer Teil Draht Bruchart Lage	EMB 204 1 k.B.	GWB 282 2 k.B.	k.B. 23 3 EMB 2	EMB 268 4 K.B.	EMB 102 Blick in die 5 FMB 17	k.B. 14 Bruchflächen 6 GWBmE 26	GWB 281 7 kB	waithruch. GWBmE: vorzeitiger Gewalthruch mit Ermüdungsbeginn. n.g.: nicht gebrochen. k.B.: tei	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
		1: 553.989	- sP-D-25	gen: 934.548	Spannungsgroßen"	46,8 [kN] Unterspannung: 900 [MPa]	reite: 15.32 [kN] Schwinghreite: 295 [MPd]	¹¹ unter Annahme einer ungestörten Querschriftsflöche von 52mn	Draht Bruchart Lage [mm] Unterer Teil Draht Bruchart Lage	1 EMB 204 1 k.B.	2 GWB 282 2 k.B.	3 k.B. 23 611 3 EMB 2	4 EMB 268 4 K.B.	5 EMB 102 Blick in die 5 FMB 17	6 k.B. 14 Bruchflächen 6 GWBmE 26	7 GWB 281 7 kB	vuch. GWB: Gewaltbruch. GWBmE: vorseitiger Gewaltbruch mit Ermüdungsbeging. A.g.: nicht gebrochen. k.B.: kei	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

								1 20 21							
70-	_							N-D-U3 (DI	-Test)						
hsel	_						Last	twechsel							
bruch:	153.821				Y	1 10 10 10 10 10 10 10 10 10 10 10 10 10	1. Di	Irahtbruch:		106.308			ľ		11
bruch:	171.952		SPN-D-02				2. Di	hrahtbruch:				SPN-D-03			0 20-11-110
/ersagen:	186.458					Mar manufacture	Syst	temversagen		141.943					and the second s
ßen			Spannungsgrö	ßen ¹⁾			Kraf	ftgrößen				Spannungsgr	ößen ¹⁾		
	46,8	[kN]	Unterspannun		306	[MPa]	Unte	erlast:		46,8	[kN]	Unterspannul	18:	006	[MPa]
	70,2	[kN]	Oberspannun		1.350) [MPa]	Obe	erlast:		78,5	[kN]	Oberspannun	50	1.510	[MPa]
ingbreite:	23,4	[kN]	Schwingbreite		450) [MPa]	Last:	tschwingbrei	te:	31,7	[kN]	Schwingbreite		610	[MPa]
			¹⁾ unter Annahme ei	ner unge	störten Querschnittsfläc	he von 52mm ²]					¹⁾ unter Annahme e	einer ungestörte	en Querschnittsfläci	ie von 52mm²
eil Draht	Bruchart	Lage [mm]	Unterer Teil	Drah	t Bruchart	Lage [mm]	Obe	srer Teil	Draht	Bruchart	Lage [mm]	Unterer Teil	Draht	Bruchart	Lage [m
1	GWBmE	69		1	GWBmE	212			1	GWBmE	189		1	GWBmE	110
2	EMB	62		2	EMB	218			2	k.B.	11		2	GWB	312
3	EMB	58		m	EMB	220			e	k.B.	∞		e	GWB	311
4	GWB	78		4	GWB	223			4	EMB	296		4	k.B.	ų
u e	GWR	68	Blick in die	Y	G\N/R	225		Blick in die	v	ч В	35	Blick in die	v	FMR	640
en la		8	Bruchflächen	`		222	Br	ruchflächen	, ,		S	Bruchflächen	, ,	L'AD	111
	GWB	64		٩	GWB	774			٥	K.B.			٥	EIVIB	302
Contract Cive. C	EMB	61 E. worzeitiger Gound	vithench mit Ermildu	/	EMB	218 4 B - Loin Bild	- CAR-	Ermiidinachruch	CIMB. Go	K.B.	12 E-vorialition Gou	udithench mit Eemild	/	GWB	311 Partoin Bild
indention and	Jewarananan ang	E. VUIZEILIYEI DEW	מומנמכע עוור בוועממ	undensel	ני וויפיי ווורווו מבחוסרוובווי	עיסיי צבוון סווח		. Ellinoningen ac	0 . O . O . O		ב: אחוזפווולפו ספא	מוומו מכע עוור בוועומו	inigenegini, ing	יי ווורניר הבהו חרוובוו'	עיסיי אבוון סווח
er							Bruc	chbilder							
Title	terral Sol Peerson Speed Cot JT SPN-D-O2	I.U.	Tubering Development Reventable - Duckbare	SPN-D-02					Ti Obra	A BARRA SALDERE		TU-Optimus DPC-005 (Halles DPC-005 (Halles Stannabar - Brichtage	SPN-D-03-U6	in the second	a la companya da companya d
and other states and stat	12 All and a set of the set of th	And a second	and the contraction	9 <u>8</u> 2	And the second s	teon	Guin Garage	And a second sec		tooond 5	And a second sec	Hand	U.Loams	the second s	100 P
SPN-D-02-U2		SPN-	D-02-07		SPN-D-02-	-U5		SPN-	D-03-U2		SPIN	1-D-03-07		SPN-D-03-	U5
, moden			Puterson						TJ Deme	No.		TOODman	and the second s		
Spanne	stahl - Bruchfliche SPN-D-02-U3	-113	Sponnestani - Bruchilliche S	SPN-D-0	1,000 µm				Starrida	SPN-D-U3	-113	Spannstalv - Bruchliche	SPN-D-03-04	1 1200 1 I	
tuna der Bruchfläc	he in den einzelnen B	Truchbilder entspri	cht nicht der räumlic	hen Lage	im Gesamtquerschnitt a	ter Litze	²⁾ Die,	Ausrichtung der	Bruchf.äche	in den einzelnen B.	Bruchbilder entspr	icht nicht der räumli	chen Lage im G	iesamtauerschnitt d	er Litze

Proben des "neuen" Spannstahls

			SPN-D-d5		Spannungsgroisen " and invertigen "	Official partitions. 300 [M/Pa]	Schwingbreite: 400 [MPa]	¹¹ unter Annahme einer ungestärten Querschnittsfläche von 52mm ²	Unterer Teil Draht Bruchart Lage [mm]	1 EMB 233	2 GWB 293	3 GWB 291	4 GWB 290	Blick in die 5 EMB 237	erucinjacrieri 6 GWB 239	238 LIMB 238		a constrained of the second of	2rw-U-U2-U4
		334.509	409.109	077.074	16 g [LNI]	67.6 [KN]	20,8 [kN]		Bruchart Lage [mm]	k.B. 45	k.B5	k.B5	k.B5	k.B. 39	k.B. 35	K.B. 40 ewoltbruch.GWBmE: vorzeitioer Gew		ender the second	20-00-07-01-02
SPN-D-05	Lastwechsel	1. Drahtbruch:	2. Urahtbruch: Svetemversagen:		Krartgroisen	Oherlast.	Lastschwingbreite:		Oberer Teil Draht	1	ريان اران	2(1)(5) 3	34	Blick in die 5	erucrijachen 6	EMB: Ermüdunasbruch. GWB: G		Brucholider SPN-D-Q5-U2 SPN-D-Q5-U2	
						[MPa]	[MPa]	he von 52mm ²	Lage [mm]	191	165	1	2	234	0	k.B.: kein Bild		- The second	
				1	isen "			ner ungestärten Querschnittsfläc	Draht Bruchart	1 GWBmE	2 EMB	3 k.в.	4 k.B.	5 EMB	6 k.B.	A.B. K.B.		And	5PN-U-04-04
		Contraction of the local division of the loc	SPN-D-04		Spannungsgro	Ohersnanning	Schwingbreite	¹⁾ unter Annahme ei	e [mm] Unterer Teil	91	116	292	285	45 Blick in die	285 bruchjacher	286 280 280 280 280 280 280 280 280 280 280	2	LEDATE LE	
		48.958	50.772	7///00	AG & ILMI	83.2 [KN]	36,4 [kN]		ht Bruchart Lage	GWBmE	EMB	GWB	GWB	k.B.	GWB	G WB B: Gewalthruch, GWBmE: vorze		And the second s	CU-PU-U-VIAC
SPN-D-04	Lastwechsel	1. Drahtbruch:	2. Urantbruch: Systemversagen:	uyatelliveradell.	Krangroisen	Oherlact	Lastschwingbreite:		Oberer Teil Dral	1	2	3	304	Blick in die 5	Prucingiachen 6	EMB: Ermüdunasbruch. GW		Bruchblider Tuchter Participation SPN-Doda.	

es.

205

			20-CI-NdS		pannungsgrößen ¹¹	Interspannung: 900 [MPa]	Dberspannung: 1.440 [MPa]	chwingbreite: 540 [MPa]	unter Annahme einer ungestörten Querschnittsfläche von 52mm ²	Interer Teil Draht Bruchart Lage [mm]	1 GWB 294	2 k.B5	5(7)2) 3 k.B5	4 k.B. 38	Blick in die 5 D. g	Bruchflächen 6 D.B	7 k.B5	bruch mit Ermüdungsbeginn, n.g .: nicht gebrochen, k.B. : kein Bild		Draht 6 nitit gebrochen Draht 5 nitit gebrochen gebrochen ASA-D-O-O4	t nicht der räumlichen Lade im Gesamtauerschnitt der Litze
		6.005.851	000 100 2	060.100.0		46,8 [kN]	74,9 [kN]	28,1 [KN]		Bruchart Lage [mm]	k.B. 31	GWB 294	EMB 299	EMB 267	n.g.	n.g.	GWBmE 320	ewaltbruch, GWBmE: vorzeitiger Gewal		Provide the second seco	in den einzelnen Bruchhilder entsnrich
SPN-D-07	Lastwechsel	1. Drahtbruch:	2. Urantbruch:	oystelliversagell.	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	۳ ۲	4	Blick in die 5	Bruchflächen 6	2	EMB: Ermüdungsbruch, GWB: Ge	Bruchbilder	Protectioner	²⁾ Die Ausrichtung der Bruchfläch
				and formation	-	900 [MPa]	1.400 [MPa]	500 [MPa]	n Querschnittsfläche von 52mm²	Bruchart Lage [mm]	EMB 197	EMB 173	GWB 300	GWB 302	k.B10	k.B5	GWB 301	: nicht gebrochen, k.B.: kein Bild		Tobut	samtaueschnitt der Litze
		an an	90-D-NdS		Spannungsgrößen ¹⁾	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestörte	Unterer Teil Draht	1	و ال	3	4	Blick in die 5	Bruchflächen 6	2	altbruch mit Ermüdungsbeginn, n.g .		Definition of the second	irit nicht der räumlichen Lage im Ge
		017		0/0		46,8 [kN]	72,8 [kN]	26 [kN]		art Lage [mm]	79	101	Ϋ́	-5	3 284	3 282	ν	GWBmE : vorzeitiger Gew		M-D-Of-U1 M-D-Of-U1 Reference Reference Provide and Andread	elnen Bruchhilder entsar
		5.273.		.0cc.c				site:		Draht Bruch	1 EMB	2 EMB	3 k.B.	4 k.B.	5 GWE	6 GWE	7 k.B.	ch, GWB: Gewaltbruch,		Elements of the second se	r Rruchfläche in den einz
SPN-D-06	Lastwechsel	1. Drahtbruch:	2. Urantbruch:	adelineisage	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbre		Oberer Teil		6	2 (7)		Blick in die	Bruchflächen		EMB: Ermüdungsbrut	Bruchbilder	PLACE DATE	2) Die Ausrichtung der

			SPN-D-10		Spannungsgrößen ¹¹	Unterspannung: 900 (MPa)	Oberspannung: 1.460 [MPa]	Schwingbreite: 560 (MPa)	¹⁾ unter Annahme einer ungestörten Querschnittsfläche von 52mm ²	Unterer Teil Draht Bruchart Lage [mm]	1 EMB 179	6 dWB 297	(5)(2) 3 GWB 293	4 GWB 278	Blick in die 5 EMB 172	Bruchflächen 6 GWB 173	7 EMB 174	altbruch mit Ermüdungsbeginn, n.g.: nicht gebrochen, k.B. : kein Bild	a la	Политики Бакада С. Малбанда Бау, с. 1.0.4.4 Бакада С. Валбанда Бау, с. 1.0.4.4
		94.104		166.111		46,8 (KN)	75,9 [kN]	29,1 (KN)		Bruchart Lage [mm]	EMB 100	k.B5	k.B5	k.B. 5	EMB 107	GWB 103	EMB 105	ewaltbruch, GWBmE: vorzeitiger Gew	And the second sec	обори 1. Реков 1. Венских ягис. п. р. и соори 5. P.V-D-10-U3 5. P.V-D-10-U3
SPN-D-10	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	oysterriversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5	Bruchflächen 6	7	EMB: Ermüdungsbruch, GWB: Ge	Properties and the second	11-Define Del-trag Semittaria
			A second se	province and		900 [MPa]	.500 [MPa]	600 [MPa]	tsfläche von 52mm²	rt Lage [mm]	46	288	188	230	227	217	291	ochen, k.B.: kein Bild	DO9.US	Ţ
			60-0	ſ	ungsgrößen ¹⁾	spannung:	spannung: 1	ngbreite:	Annahme einer ungestörten Querschnit	er Teil Draht Brucha	1 k.B.	2 GWB	(7)(2) 3 EMB	4 EMB	ck in die 5 EMB	chflächen 6 EMB	7 GWB	mit Ermüdungsbeginn, n.g. : nicht gebro	And the second sec	амия 9.6. Мена дая - Вискласти стр. 4.0.0 от SPN-D-09-0.4
		87.620	SPN-1	23.0/0	Span	46,8 [kN] Unter	78,0 [kN] Obers	31,2 [KN] Schwi	¹⁾ unter	chart Lage [mm] Unter	/BmE 242	.B. 6	MB 99	MB 52	MB 54 Bli	MB 65 Bruc	.B. 5	ch, GWBmE: vorzeitiger Gewaltbruch	Shut and the second secon	Service 100 mm 100 mm 2004 4
60-Q-Nd	astwechsel	. Drahtbruch:	. Drahtbruch:	Asternversagen:	raftgrößen	nterlast:	berlast:	astschwingbreite:		berer Teil Draht Bru	1 GW	2 ¥	3 E	34	Blick in die 5 E	Bruchflächen 6 E	×	VIB: Ermüdungsbruch, GWB: Gewaltbru	Technologies and the second seco	RU-Yonmod Data gr C. Meese Spenuture - Brankicos

			SPN-D-12	and and a second	Spannungsgrößen ¹⁾	Unterspannung: 900 [MPa]	Oberspannung: 1.900 [MPa]	Schwingbreite: 1.000 [MPa]	$^{1\!j}$ unter Annahme einer ungestörten Querschnittsfläche von 52mm²	Unterer Teil Draht Bruchart Lage [mm]	1 EMB 257	2 k.B5	(5)(7)(2) 3 k.B5	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Blick in die 5 GWB 299	Bruchflächen 6 GWB 296	7 GWB 298	altbruch mit Ermüdungsbeginn, n.g.: nicht gebrochen, k.B. : kein Bild		Classifier and the second seco
		2.340	1	2.340		46,8 [kN]	98,8 [kN]	52,0 [kN]		Bruchart Lage [mm]	k.B. 18	GWB 273	GWB 279	k.B. 0	k.B. 0	k.B. 0	k.B. 0	Gewaltbruch, GWBmE: vorzeitiger Gev		Participant and the second sec
SPN-D-12	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	2(1) 2(1) 3	4	Blick in die 5	Bruchflächen 6	2	EMB: Ermüdungsbruch, GWB: (Bruchbilder	There is a second
			A DECEMBER OF A	and the second s		900 [MPa]	1.550 [MPa]	650 [MPa]	ten Querschnittsfläche von 52mm²	Bruchart Lage [mm]	EMB 175	GWB 277	GWB 271	k.B. 0	GWB 256	GWB 256	GWBmE 98	.g.: nicht gebrochen, k.B.: kein Bild		s s SN-D-11-US SN-D-11-US
		a can	SPN-D-11		Spannungsgrößen ¹⁾	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestör	Unterer Teil Draht	1	2	3	4	Blick in die 5	Bruchflächen 6	7	altbruch mit Ermüdungsbeginn, n		Utbrend Utbrend Busilines Approximation Busilines Approximation Busilines Approximation Busilines Approximation Control of Approximation Control o
						[kN]	[kN]	[kN]	»	Lage [mm]	102	11	14	277	25	24	180	nE: vorzeitiger Gew		1.01 SPIN
		45.418	1	53.972		46,8	80,6	33,8		Bruchart	EMB	k.B.	k.B.	EMB	k.B.	k.B.	GWBmE	ewaltbruch, GWBr.		Particular and the second seco
SPN-D-11 (DL-Test)	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5	Bruchflächen 6	2	EMB: Ermüdungsbruch, GWB: G.	Bruchbilder	SPN-D-11-02

			NUTA	nnungsgrößen ^{a)}	erspannung: 900 [MPa]	erspannung: 1.700 [MPa]	wingbreite: 800 [MPa]	er Annahme einer ungestärten Querschnittsfläche von 52mm ²	erer Teil Draht Bruchart Lage [mm]	1 GWB 297	2 k.B. 33	5X7X2 3 k.B. 36	(d) 3 4 GWBME 245	Blick in die 5 k.B. /2	6 EMB 214	ch mit Ermildungebealan n. a nicht aehrochen V. R lein Bild	brind and the second seco
		3/.182	37.182	Spa	46,8 [kN] Unt	88,4 [KN] Obe	41,6 [kN] Sch	nut i	t Bruchart Lage [mm] Unt	k.B5	GWBmE 250	GWBmE 245 (k.B. 40	GWBME 202	EMB 65	GWBME 205 Gewalthrich GWBmE- vorzeitiner Gewalthri	PI-G-VIS
SPN-D-14	Lastwechsel	1. Drahtbruch:	2. Urantus uch. Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5 Bruchflächen 5	9	EMR- Ermüdungebruch GWR-	Bruchbider Telebrah
		V	A management		900 [MPa]	1.950 [MPa]	1.050 [MPa]	uerschnittsfläche von 52mm²	3ruchart Lage [mm]	EMB 268	GWB 288	GWB 289	GWB 284	GWB 284	GWB 280	GWB 291	roban Laboration and the second
			SPN-D-13	Spannungsgrößen ¹⁾	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestärten Qu	Unterer Teil Draht B	1	2	3	4	Blick in die 5 Bruchflächen 5	9	althrich mit Frmildungshaalan n.a. nig	Let the second s
		6.918	6.918		46,8 [kN]	101,4 [kN]	54,6 [kN]		Bruchart Lage [mm]	k.B. 11	k.B5	k.B5	k.B.	к.в.	к.В. С. Г.	K.B	Supported to the second s
SPN-D-13	Lastwechsel	1. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	(1)6 2	2×7×5	(3)(4) (4)	Blick in die 5	9	EMR- Frmildungsbruch GWR- Geug	Bruchblider Bruchblider SPM-D-13-U2 SPM-D-13-U2

der Litze

209

		W	No.	at man		900 [MPa]	1.420 [MPa]	520 [MPa]	Querschnittsfläche von 52mm ²	Bruchart Lage [mm]	k.B. 23	EMB 155	EMB 241	GWB 292	GWB 289	GWB 288	GWB 288	nicht gebrochen, k.B.: kein Bild		Shub 36 US
		Y)		sen ¹⁾				er ungestörten	Draht	1	2	3	4	5	9	7	gsbeginn, n.g.:		PN-D-IG-U6
			SPN-D-16		Spannungsgröf	Unterspannung	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme ein	Unterer Teil		6			Blick in die	Bruchflächen		valtbruch mit Ermüdung		Libraria da la construcción de l
						[kN]	[kN]	[kN]		Lage [mm]	255	124	38	ή	Ϋ́	Ϋ́	Ϋ́	E: vorzeitiger Gew		EU-
		102.160	180.222	185.043		46,8	73,8	27,0		Bruchart	EMB	EMB	k.B.	k.B.	k.B.	k.B.	k.B.	ewaltbruch, GWBm		And the second sec
				gen:				reite:		Draht	1	2	3	4	5	9	7	ruch, GWB: Ge		the second secon
SPN-D-16	Lastwechsel	1. Drahtbruch	2. Drahtbruch	Systemversag	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingb		Oberer Teil			2(1)(2)		Blick in die	Bruchflächen		EMB: Ermüdungsb	Bruchbilder	Bruchblider
									m²	[mm]	3	33	32	36	35	6/	32	ild		- Marine and Andrewson and Andrews
			S-Adde	A monte of the second s		00 [MPa]	40 [MPa]	40 [MPa]	äche von 52m	Lage	9	3(29	28	28	11	29	en, k.B.: kein B		sn-sr
						9	1.8	9	ten Querschnittsfl	Bruchart	k.B.	GWB	GWB	GWB	GWB	EMB	GWB	g.: nicht gebroch		Lobust
			1		ößen ¹⁾	ופ:	:0	ä	iner ungestört	Draht	1	2	3	4	S	9	7	ungsbeginn, n.		Bowler
			SPN-D-15		Spannungsgr	Unterspannu	Oberspannun	Schwingbreit	¹⁾ unter Annahme e	Unterer Teil		•	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		Blick in die	Bruchflächen		altbruch mit Ermüd		Definition of the second secon
						[kN]	[kN]	[kN]		Lage [mm]	216	15	12	- S	4	66	7	E: vorzeitiger Gew		-OI
		17.340	'	17.340		46,8	95,68	48,88		Bruchart	EMB	k.B.	k.B.	k.B.	k.B.	EMB	k.B.	ewaltbruch, GWBmE		SPU-D-15-
				gen:				reite:		Draht	1	2	3	4	5	9	7	ruch, GWB: G		Physical and a second s
SPN-D-15	Lastwechsel	1. Drahtbruch	2. Drahtbruc	Systemversa	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingb		Oberer Teil			2(1)(5)	9	Blick in die	Bruchflächen		EMB: Ermüdungst	Bruchbilder	Brucholider

		The second se	SPN-D-18	and a second sec	Spannungsgrößen ¹⁾	Unterspannung: 900 [MPa]	Oberspannung: 1.410 [MPa]	Schwingbreite: 510 [MPa]	¹¹ unter Annahme einer ungestörten Querschnittsfläche von 52mm ²	Unterer Teil Draht Bruchart Lage [mm]	1 k.B. 33	2 k.B5	3 GWB 101	4 EMB 162	Blick in die 5 EMB 64	Bruchflachen 6 EMB 59	7 GWB 101	iltbruch mit Ermüdungsbeginn, n.g. : nicht gebrochen, k.B .: kein Bild	to the second se	Defails G Meas Spannards Bordenar SPAC FLU Spannards Bordenar SPAC - 18-U4 br nicht Her Tötunlichen Lone im Gescmitzuleschnift Her Litte
		7.014.127		7.079.581		46,8 [kN]	73,32 [kN]	26,52 [kN]		t Bruchart Lage [mm]	GWBmE 244	GWB 299	GWB 190	EMB 118	EMB 209	EMB 218	GWB 190	Gewaltbruch, GWBmE: vorzeitiger Gew	and the second sec	a G Meeas and Exceloran smith 18 03 SPN-D-18-U3 iche in den einzelnen Bruchhilder entend
SPN-D-18	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5	Brucnjiacnen 6	2	EMB: Ermüdungsbruch, GWB:	SPN-D-18-02	opter Speed
			Number of the second seco	and the second s		00 [MPa]	80 [MPa]	80 [MPa]	iche von 52mm ²	Lage [mm]	231	283	280	-5	-5	Ŷ	-5	n, k.B.: kein Bild	2-C5	dar Litzo
					ßen ¹⁾	g: 90	1.5		ner ungestörten Querschnittsfl	Draht Bruchart	1 GWBmE	Z GWB	3 EMB	4 k.B.	5 k.B.	6 k.B.	7 k.B.	ngsbeginn, n.g. : nicht gebroche	SPALP_17-06	WD-17-04 SPN-D-17-04 ben Lode im Gesamtruerschnit
			SPN-D-17		Spannungsgrö	Unterspannun	Oberspannung	Schwingbreite	¹⁾ unter Annahme ei	mm] Unterer Teil		9			9 Blick in die	3 Bruchjachen	0	er Gewaltbruch mit Ermüdu	Total and the second se	1.000 µm Digi. Ing. G. Heeke Sparnstari - Brochsteins S Portsorricht nicht der röumlic
		81.136		81.136		46,8 [kN]	79,56 [kn]	32,76 [kN]		Bruchart Lage	k.B. 46	k.B5	k.B5	GWB 28	GWB 28	EMB 29.	GWB 29	valtbruch, GWBmE: vorzeitig	And the second sec	SPN-D-17-U3 SPN-D-17-U3 in den eiszelnen Bruchhilder
SPN-D-17 (DL-Test)	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	3	Blick in die 5	Brucnjiacren 6	7	EMB: Ermüdungsbruch, GWB: Gev	DICTIONCE Protection Protect	Stering Gr Sterninko ² Die Δuscrichtung der Rruchfläche

211

				A manufacture of the second se		900 [MPa]	1.395 [MPa]	495 [MPa]	n Querschnittsfläche von 52mm ²	Bruchart Lage [mm]	k.B. 39	k.B. 13	k.B. 18	k.B. 21	k.B. 20	k.B. 37	k.B. 42	: nicht gebrochen, k.B. : kein Bild		Index In	anteriorchaitt dar lites
					sgrößen ¹⁾	:Bunut	nung:	reite:	ime einer ungestörter	eil Draht	1	2	3	4	lie 5	1en 6	7	müdungsbeginn, n.g.		SPN-D-20-06 SPN-D-20-06 SPN-D-20-06 SPN-D-20-06 SPN-D-20-06	iumlichen I and im Go
			UC.U.NGS		Spannung	Unterspar	Oberspan	Schwingbi	¹⁾ unter Annaf	Unterer T		() () ()			Blick in a	Bruchflaci		waltbruch mit Er		PLOCENSING AND	wicht nicht dor ri
						3 [kN]	t [kN]	t [kN]		Lage [mm]	238	269	273	271	271	242	235	mE: vorzeitiger Ge		E0-00	Ruchbilder enter
		92.475		124.595		46,8	72,54	25,74		Bruchart	EMB	GWB	GWB	GWB	GWB	EMB	EMB	iewaltbruch, GWB		Solution Section 2014	in dan aintal na
		ch:	ch:	igen:				breite:		Draht	1	2	e	4	5	9	~	sbruch, GWB: G		SPN-D-20-02	a dar Bruchfört
SPN-D-20	Lastwechsel	1. Drahtbrud	2. Drahtbruc	Systemverse	Kraftgrößen	Unterlast:	Oberlast:	Lastschwing		Oberer Teil					Blick in die	Bruchflachen		EMB: Ermüdung:	Bruchbilder	DFUCCIDDIDGE	" Die Ausrichtun
						[1-1												
				and the second s		[MPa]	[MPa]	[MPa]	ie von 52mm²	Lage [mm]	277	116	2	13	0	35	127	k.B.: kein Bild		CS I CONTRACTOR IN THE INTERNAL INFORMATION OF INTERNAL INT	or 1 it 12
						006	1.430	530	n Querschnittsfläci	Bruchart	GWB	EMB	k.B.	k.B.	k.B.	k.B.	EMB	.: nicht gebrochen,		-6F CIVAS	semmanierschnitt o
		X			ißen ¹⁾	3	50		iner ungestörte	Draht	1	2	e	4	5	9	~	ingsbeginn, n.g.		SPN-D-19-06	-hon I and im Ge
			SPN-D-19		Spannungsgrö	Unterspannur	Oberspannun	Schwingbreite	¹⁾ unter Annahme e	Unterer Teil		6	3	(4)3	Blick in die	Bruchflachen		altbruch mit Ermüdu		Provide the second seco	the nicht der räumlie
						[kN]	[kN]	[kN]		Lage [mm]	24	160	308	300	279	271	178	E: vorzeitiger Gewa		Long States and States	Zruchbilder entenric
		108.545	131.033	150.588		46,8	74,36	27,56		Bruchart	k.B.	EMB	GWB	GWB	EMB	GWBmE	EMB	waltbruch, GWBm.		Surve 1:0	d nanjarna nah ni e
				en:				reite:		Draht	1	2	e	4	2	9	~	ruch, GWB: Ge		Development	Har Rruchfäch
SPN-D-19	Lastwechsel	1. Drahtbruch	2. Drahtbruch	Systemversag	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingb		Oberer Teil			2 7 7 5	34	Blick in die	Bruchflächen		EMB: Ermüdungsb.	Bruchbilder	Bruchblider Sterens and Sterens and Steren	Die Ausrichtung

				0.22 manage	ungsgrößen ¹⁾	spannung: 900 [MPa]	pannung: 1.280 [MPa]	ngbreite: 380 [MPa]	Annahme einer ungestörten Querschnittsfläche von 52mm²	er Teil Draht Bruchart Lage [mm]	1 GWB 240	2 GWB 286	(7) 3 EMB 288	3 4 GWB 254	k in die 5 GWB 254	njracnen 6 EMB 242	7 GWB 257	mit Ermüdungsbeginn, n.g .: nicht gebrochen, k.B. : kein Bild		the second se	No. of Contraction of		anuar 2.0.0.000 2.0.0.000 2.0.0.000 2.000 2.0000 2.00000 2.00000 2.00000000	the reconstructory served of the SPN-D-22-U6					1000 mm Dic-lay G. 14046 1. 1200 mm	Sources		and the second s	The second s	and the second se	A A A A A A A A A A A A A A A A A A A	And	SPN-D-22-U4 der röumlichen Lage im Gesamtquerschnitt der Litze
		996	97	504 SPN-E	Spann	6,8 [kN] Unter:	,56 [kN] Obers	,76 [kN] Schwii	¹⁾ unter /	rt Lage [mm] Unter	38	۰ ₅		38	38 Blic	38 38	36	WBmE: vorzeitiger Gewaltbruch r		4 100	No. Contraction	- Aler-	10.004 10.000 Jun 2010-000	-D-22-U1		Alara .		De la compañía de la comp	TU-Dortmund Dick-Ing. G. Hoske	Spannean - Buchelsche SPW-DZ2-U7 SPN-D-22-U7				A T	ALC A	00-000 mm 000.1 500 mm 5000.000	-D-22-U3 Inen Bruchbilder entspricht nicht
		2.177.6	2.574.6	en: 2.615.6		4	99	eite: 19		Draht Brucha	1 k.B.	2 k.B.	3 k.в.	4 k.B.	5 k.B.	б k.в.	7 k.B.	uch, GWB: Gewaltbruch, G				-	TU-Dortmund Dia-Frg. G. Heeka	Sproteine Bruch Stronger Strong			to be a marine	-	1.00 μ	N-D-22-U2					1 P	TU-Dortmund Digt Frig G. Heeve Spennstehl - Bruchteche SPH.D-2	5PA er Bruchfläche in den einze
SPN-D-22	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversage	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbre		Oberer Teil		90		34	Blick in die	prucipiocien		EMB: Ermüdungsbru							R.		H.		TU-Dortmund Dipl-Ing. G. Meeke	Spannstin's - Bruchtlahwe Spanne SP							²⁾ Die Ausrichtung de
				anterna alle alle alle alle alle alle alle al		a]	[a]	al	52mm ²	ge [mm]	284	222	74	91	114	115	52	ein Bild											1.000 um								
						900 [MI	1.320 [MI	420 [MI	ten Querschnittsfläche von	Bruchart La	GWB	GWBmE	GWBmE	EMB	EMB	EMB	k.B.	.g.: nicht gebrochen, k.B.: I					1.000 pm	6		- Carl	- Pri	1	und G. Heede	SFN-D-21-05			5			1.000 pm	4 Gesamtquerschnitt der Litz
			SPN-D-21		nnungsgrößen ¹⁾	erspannung:	erspannung:	wingbreite:	er Annahme einer ungestör.	terer Teil Draht	1	2	3	4	Blick in die 5	erucujiacuen 6	7	ch mit Ermüdungsbeginn, n		-Fe	37	P. S.	L'Octiment D'Arreste D'Arreste	SPN-D-21-OL	6		1		70-Dottin 1,000 um	07	1		in the			U-Dotmund jel Jag G. Heeke awnstant - Bruchtlache SPN-D-21-U4	SPN-D-Z1-U. cht der räumlichen Lage im U
		0			Spa	[kN] Unt	[kN] Obe	[kN] Sch	nn (I	Lage [mm] Unt	8	58	207	187	165	165	234	ıE: vorzeitiger Gewaltbru	1		and the second	-	1.000 µm	-1 <i>1</i>			たん		Dotmund L-Ing. G. Heeke	SPN-D-21-01 SPN-D-21-01	1	a stand	22			1 mu 2002.1	1-U3 Bruchbilder entspricht ni
		4.802.146	4.823.800	4.879.136		46,8	68,6	21,8		Bruchart	k.B.	GWBmE	GWBmE	EMB	EMB	EMB	GWBmE	Gewaltbruch, GWBm	and a second	K	e		timed p.G.Heese	SPN-D-2				See.	1 000 um Dio	8	To	A REAL AND			A start	rtmund 9. G. Heeks stavi - Bruchitische SPH-D-21-U3	SPN-D-Z. che in den einzelnen
SPN-D-21	Lastwechsel	1. Drahtbruch:	2. Drahtbruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Blick in die 5	erucujacnen 6	2	EMB: Ermüdungsbruch, GWB:					45-140 45-140	unedo		01-	1	(seal	TU-Detmand Dipl-Ing. G. Meeke	Sponnatoria - Bayerlandra Sprycoza UZ SPN-D-21-U2						TU-20 Digit di Spanno	²⁾ Die Ausrichtung der Bruchflö

			a series	No. of Concession, No. of Conces	000 [440-1	1.200 [MPa]	300 [MPa]	rten Querschnittsfläche von 52mm²	Bruchart Lage [mm]	EMB 183	k.B. 7 t. D 10	7 164	EMB 106	k.B. 3	k.B. 7 1.a.: nicht aebrochen. k.B.: kein Bild
		I	N-D-24		nnungsgroßen "	rspannung:	vingbreite:	er Annahme einer ungestör	erer Teil Draht	1	2 6		Blick in die 5	ruchflächen 6	7 ch mit Ermüdunasbeainn. n
			SPI			[kN] Obe	[kN] Sch	¹⁾ nut	Lage [mm] Unt	98	277	115	173	289 ^B	E: vorzeitiaer Gewaltbruc
		2.222.854	2.371.979	2(77,280.2	0 37	62.4	15,6	_	Bruchart	EMB	GWB	EMB	EMB	GWB	Gewaltbruch. GWBm
0-24	chsel	tbruch:	tbruch:	versagen:	olsen ct:	it:	wingbreite:		Teil Draht	1	2 0	, P	in die 5	flächen 6	jdunasbruch. GWB:
SPN-	Lastw	1. Dra	2. Dra	5VSTEI		Oberle	Lastsc		Obere		-	<u>у</u>	Blic	Bruc	EMB: Er
				and the first	14041	MPal	MPa]	on 52mm²	Lage [mm]	126	54	193	191	- L	47 : kein Bild
		4			F	-	1				-+			1 1	
		y				1.240	340	n Querschnittsfläche v	Bruchart	EMB	к.в. г	FMR	EMB	k.B.	k.B.
				11 02	roisen "	Ing: 1.240	te: 340	einer ungestörten Querschnittsfläche v	Draht Bruchart	1 EMB	2 k.B.	L FAR	5 EMB	6 k.B.	7 K.B.
			SPN-D-23	11 - 0	spannungsgroßen "	Oberspannung: 1.240	Schwingbreite: 340	¹¹ unter Annahme einer ungestärten Querschnittsfläche v	Unterer Teil Draht Bruchart	1 EMB	2 k.B.	4 FMB	Blick in die 5 EMB	Bruchflächen 6 k.B.	7 k.B. outbruch mit Ermüdunasbeainn. n.a.: nicht aebrochen. k.B.
			SPN-D-23		Itwit Internations. 000	[KN] [KN] [Verspannung: 1.240	[kN] Schwingbreite: 340	¹¹ unter Annahme einer ungestärten Querschnittsfläche v	Lage [mm] Unterer Teil Draht Bruchart	151 1 EMB	223 6 4 B.		91 Blick in die 5 EMB	292 Bruchflächen 6 k.B.	242 7 K.B. The vorsettoer Gewoldbruch mit Ermildungsbeginn. n.a.: nicht gebrochen. K.B.
		9.556.793	10.341.651 SPN-D-23			64.48 [KN] Oberspannung: 1.240	17,68 [kN] Schwingbreite: 340	¹¹ unter Annahme einer ungestörten Querschnittsfläche	Bruchart Lage [mm] Unterer Teil Draht Bruchart	EMB 151 1 EMB	EVIB 223 6.1 2 k.B.		k.B. 91 Blick in die 5 EMB	EMB 292 Bruchflächen 6 k.B.	GWB 242 7 K.B. iewoltbruch GWBmE: vorzeitiger Gewoltbruch mit Emüldungsbeainn. n.a.: nicht gebrochen. <u>k.B.</u>

			SPN-D-26	annungsgrößen ¹⁾	terspannung: 900 [MPa]	erspannung: 1.520 [MPa]	wingbreite: 620 [MPa]	iter Annahme einer ungestärten Querschnittsfläche von 52mm²	terer Teil Draht Bruchart Lage [mm]	1 GWB 157	GWBME 216	5 7 0 3 GWB 263	4 EMB 163	Bruchflächen 2 GWB 258	7 FMB 150	uch mit Ermüdungsbeginn, n.g.: nicht gebrochen, k.B.: kein Bild		Lot returned to the returned t
	170 445	1/9.445	179.445	Spa	46,8 [kN] Un	79,04 [kN] Ob	32,24 [kN] Sch		Bruchart Lage [mm] Un	GWB 127	GWBmE 76	k.B. 15	EMB 115	K.B. 21	K.B. 25 FMR 127	waltbruch, GWBmE: vorzeitiger Gewaltbru		SPN-26-01 SPN-26-01 SPN-26-01 SPN-26-01 SPN-26-01 SPN-26-01 SPN-26-01 SPN-26-01
SPN-D-26 (DL-Test)	Lastwechsel	1. Urantoruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	F	3	Bruchflächen 5		EMB: Ermüdungsbruch, GWB: Ge	Bruchhilder	The attraction of the second s
		and the second sec	and the second s		900 [MPa]	1.570 [MPa]	670 [MPa]	Querschnittsflöche von 52mm²	Bruchart Lage [mm]	EMB 214	k.B5	k.B5	k.B.	λ.Β. 	К.В. К.В С- К.В.	nicht gebrochen, k.B.: kein Bild		Loo Internet of the second of
			SPN-D-25	Spannungsgrößen ¹¹	Unterspannung:	Oberspannung:	Schwingbreite:	¹⁾ unter Annahme einer ungestörten	Unterer Teil Draht	1	وم ال	3	(d) 3	Bruchflächen 5	0	altbruch mit Ermüdungsbeginn, n.g.:		and the refit multiple build be a served as a served a
	E0 703	707.60	59.782		46,8 [kN]	81,64 [kN]	34,84 [kN]		Bruchart Lage [mm]	k.B. 65	EMB 284	GWB 285	GWBME 280	GWB 280	GWB 290 GMR 788	waltbruch, GWBmE: vorzeitiger Gewo		And the second s
SPN-D-25 (DL-Test)	Lastwechsel	1. Drantoruch:	Systemversagen:	Kraftgrößen	Unterlast:	Oberlast:	Lastschwingbreite:		Oberer Teil Draht	1	2	3	4	Bruchflächen 5		EMB: Ermüdungsbruch, GWB: Ge	Bruchhilder	The second

215

A3.3 Großversuche mit Spannstahl im nachträglichen Verbund

A3.3.1 Messdaten

Tabelle A 3-22: Vorspannkraft/Vordehnung TR01-TR05 (Ermittlung über Dekompressionszeitpunkt)

Probe	Maschinenkraft bei Erreichen der Dekompression	Biegemoment Feldmitte	abgeschätzter Hebelarm bei Erreichen der Dekompressionslast	Spannstahl Fläche	ermittelte Vorspannkraft	ermittelte Vordehnung
	FD	MD	ZD	A _P	Р	ε _{P,D}
	[kN]	[kNm]	[m]	[mm²]	[kN]	[‰]
TR01	204	102	0,815	260	125	2,49
TR02	181	91	0,815	260	111	2,21
TR03	236	118	0,815	260	145	2,88
TR04	228	114	0,815	260	140	2,78
TR05	252	126	0,815	260	155	3,07

Tabelle A 3-23: Spannstahlspannungen TR01-TR05 (rechnergestützt ermittelt)

Verwendet wurden zur rechnerischen Bestimmung die im Versuch ermittelten Materialkenngrößen (Abschnitt A3.1) sowie die zum Versuchsbeginn bestimmte Vordehnung des Spannstahl (Tabelle A 3-22)

Probe	Maschi	nenkraft	Biegen	noment	rechneris (ermi	s <mark>cher innerer I</mark> ttelt mit Progr	Hebelarm amm)	Spanı (I	nstahlspa rechnerisc	nnung h)
	Fu	Fo	Μu	Mo	ΖU	zo	Δz	συ	σο	Δσυ
	[kN]	[kN]	[kNm]	[kNm]	[m]	[m]	[m]	[Mpa]	[Mpa]	[Mpa]
TR01	250	342	125	171	0,834	0,846	0,013	577	777	200
TR02	250	454	125	227	0,839	0,852	0,013	573	1.024	451
TR03	388	477	194	239	0,845	0,848	0,003	883	1.082	199
TR04	388	456	194	228	0,846	0,850	0,004	882	1.032	150
TR05	388	432	194	216	0,843	0,846	0,002	885	983	98

Tabelle A 3-24: Aus gemessenen Betondehnungen ermittelte Schwingbreite TR01-TR05

Probe		Moment	gemessen	e Dehnung	Lage	innerer	Druckk	raft		Spannsta	hl
					Druck-	Hebel-	Betonstahl	Beton	Kraft	Spannung	Schwing-
		(gemessen)	DMS oben	DMS unten	kraft	arm	(rechn.)	(rechn.)			breite
		М	εο	ευ	а	z	Fs	Fc	FP	σρ	Δσ _P
		[kNm]	[‰]	[‰]	[cm]	[m]	[kN]	[kN]	[kN]	[Mpa]	[Mpa]
TD 01	OL	170,3	-0,2748	0,0280	4,54	0,845	-102,6	-99,0	201,6	775	100
14-01	UL	125,0	-0,2461	-0,0339	5,61	0,834	-87,3	-62,6	149,9	576	199
	OL	226,5	-0,3658	0,0325	4,59	0,844	-103,9	-164,4	268,3	1.032	152
11-02	UL	125,5	-0,1913	-0,0341	5,76	0,832	-70,3	-80,5	150,7	580	432
TD 02	OL	238,5	-0,3048	0,0152	4,76	0,842	-90,2	-192,8	283,1	1.089	100
14-05	UL	194,3	-0,2359	-0,0057	5,12	0,839	-75,3	-156,3	231,6	891	190
TD 04	OL	227,3	-0,2261	0,0034	4,93	0,841	-69,4	-200,9	270,4	1.040	150
18-04	UL	193,9	-0,1884	-0,0005	5,01	0,840	-58,8	-172,0	230,8	888	152
	OL	215,4	-0,1319	-0,0414	6,19	0,828	-54,1	-206,0	260,1	1.000	06
18-05	UL	194,1	-0,1151	-0,0476	6,46	0,825	-50,7	-184,5	235,2	904	30

(OL: Oberlast, UL: Unterlast)

 Tabelle A 3-25:
 rechnerische Spannstahlspannungen SB01-SB04

Probe	Maschi	nenkraft	Biegen	noment	innerer Hebelarm (eindeutig)	Spa	nnstahlspann (rechnerisch)	lung
	F _U [kN]	Fo [kN]	Μ υ [kNm]	Mo [kNm]	z [m]	σ υ [Mpa]	б о [Мра]	Δσ υ [Mpa]
SB01	381	466	191	233	0,815	900	1.100	200
SB02	381	424	191	212	0,815	900	1.000	100
SB03	381	407	191	203	0,815	900	960	60
SB04	381	415	191	208	0,815	900	980	80

Probe	Maschinenkraft bei Erreichen der Dekompression	Biegemoment Feldmitte	abgeschätzter Hebelarm bei Erreichen der Dekompressionslast	Spannstahl Fläche	ermittelte Vorspannkraft	ermittelte Vordehnung
	FD [[A]]		ZD	A _P	P [LN]	Є Р,D
	[KN]	[KINITI]	[m]	[mm_]	נגואן	[700]
SB01	295	148	0,815	260	181	3,49
SB02	292	146	0,815	260	179	3,46
SB03	306	153	0,815	260	188	3,62
SB04	298	149	0,815	260	183	3,53

Tabelle A 3-26: Vorspannkraft/Vordehnung SB01-SB04 (Ermittlung über Dekompressionszeitpunkt)

A3.3.2 Bilder, Parameter und Ergebnisse der einzelnen Versuchsträger

Tabelle A 3-27: Datenblatt Versuchsträger TR01

Spanns	tani: "	alter" Spa entspricht	St 1570/1770									
Drahtb	Drahtbrüche:											
Nr.	Lastwechsel	Nr.	Lastwechsel									
1	1.027.503	9	3.013.814									
2	1.578.840	10	3.128.667									
3	1.795.037	11	3.207.039									
4	2.458.458	12	3.239.469									
1 5	2.617.902	2 13	3.323.244									
6	2.667.899	14	3.366.516									
7	2.731.406	15	3.388.136									
8	2.861.124	16	-									

Bild A 3-12: TR01 - Bruchimpulse des Mikrofons

Bild A 3-13: TR01 - Drahtbrüche

Bild A 3-14: TR01 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-15: TR01 – Spannstahl mit Drahtbrüchen

Tabelle A 3-28: Datenblatt Versuchsträger TR02

Bild A 3-17: TR02 - Risseinprägung / Last anfahren

Spanns	tahl: "	alter" Sp entspricht	annstahl t St 1570/1770
Drahtb	rüche:		
Nr.	Lastwechsel	Nr.	Lastwechsel
1	107.843	11	-
2	152.965	12	-
(1) 3	159.282	13	-
4	164.245	14	-
5	173.270	15	-
6	185.002	16	-
7	198.087	17	-
2 8	203.051	18	-
9	206.209	19	-
10	-	20	-

Schwingspiele [N]

Bild A 3-19: TR02 - Drahtbrüche

Bild A 3-20: TR02 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-21: TR02 – Spannstahl mit Drahtbrüchen

Bild A 3-22: TR02 – Detailaufnahme der Drahtbrüche

Bild A 3-23: TR03 - Risseinprägung / Last anfahren

"alter" Spannstahl Spannstahl: entspricht St 1570/1770 Drahtbrüche: Nr. Lastwechsel Nr. Lastwechsel 1 906.628 11 3.331.059 2 1.393.054 12 3.473.643 3 1.584.372 13 -4 2.015.290 14 -5 2.573.001 15 16 2.664.148 16 -2.935.333 17 7 -8 3.034.603 18 -3.247.580 9 19 2 10 3.314.813 20 -

Bild A 3-25: TR03 - Drahtbrüche

Bild A 3-26: TR03 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-27: TR03 – Spannstahl mit Drahtbrüchen

Bild A 3-28: TR03 – Detailaufnahme der Drahtbrüche

Tabelle A 3-30: Datenblatt Versuchsträger TR04

Bild A 3-29: TR04 - Risseinprägung / Last anfahren

Spannstahl: ,		,alter" Spannstahl entspricht St 1570/1770		
Drahtbrüche:				
Nr.	Lastwechsel	Nr.	Lastwechsel	
1	2.441.109	11	-	
2	2.719.061	12	-	
3	3.111.626	13	-	
1 4	4.964.423	14	-	
5	5.017.658	15	-	
6	5.205.332	16	-	
7	5.465.189	17	-	
8	Versuchsabbruch	18	-	
9	-	19	-	
10	-	20	-	

Bild A 3-31: TR04 - Drahtbrüche

Bild A 3-32: TR04 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-33: TR04 – Spannstahl mit Drahtbrüchen

Bild A 3-34: TR04 – Detailaufnahme der Drahtbrüche

Tabelle A 3-31: Datenblatt Versuchsträger TR05

Bild A 3-35: TR05 - Risseinprägung / Last anfahren

Spannstahl:		"alter" Spannstahl entspricht St 1570/1770		
Drahtbrüche:				
Nr.	Lastwechsel	Nr.	Lastwechsel	
1	4.222.271	11	-	
2	4.528.578	12	-	
3	7.379.030	13	-	
4	15.069.990	14	-	
5	Versuchsabbruch	15	-	
6	-	16	-	
7	-	17	-	
8	-	18	-	
9	-	19	-	
10	-	20	-	

Bild A 3-37: TR05 - Drahtbrüche

Bild A 3-38: TR05 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-39: TR05 – Spannstahl mit Drahtbrüchen

Bild A 3-40: TR05 – Detailaufnahme der Drahtbrüche

"neuer" Spannstahl Spannstahl: St 1570/1770 Drahtbrüche: Nr. Lastwechsel Nr. Lastwechsel 931.621 5.128.441 11 1 3.025.086 2 12 5.293.144 2 13 3 3.557.278 5.552.588 4 4.169.559 14 5.577.574 1)5 4.684.395 5.602.802 15 6 4.687.997 16 5.614.542 7 5.127.595 17 5.657.301 8 5.128.236 18 -9 5.128.252 19 -10 5.128.325 20 _

Bild A 3-43: SB01 - Drahtbrüche

Bild A 3-44: SB01 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-45: SB01 – Spannstahl mit Drahtbrüchen

Bild A 3-46: SB01 – Detailaufnahme der Drahtbrüche

Tabelle A 3-33: Datenblatt Versuchsträger SB02

"neuer" Spannstahl Spannstahl: St 1570/1770 Drahtbrüche: Nr. Lastwechsel Nr. Lastwechsel 1 3.075.717 11 13.744.240 2 3.690.445 12 14.061.662 3 4.230.917 13 14.154.861 4 6.822.967 14.968.901 14 2 15 5 8.573.257 15.790.498 6 10.654.973 16 15.991.643 17 11.288.906 16.107.585 17 8 12.037.602 18 16.193.259 9 13.629.690 19 13.744.239 10 20 -

Bild A 3-49: SB02 - Drahtbrüche

Bild A 3-50: SB02 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-51: SB02 – Spannstahl mit Drahtbrüchen

Bild A 3-52: SB02 – Detailaufnahme der Drahtbrüche

Tabelle A 3-34: Datenblatt Versuchsträger SB03

Bild A 3-53: SB03 - Risseinprägung / Last anfahren

Spannstahl: "I St		neuer" Spannstahl t 1570/1770		
Drahtbrüche:				
Nr.	Lastwechsel	Nr.	Lastwechsel	
1	36.175.800	11	79.188.127	
2	41.260.915	12	80.447.984	
3	46.733.668	2 13	81.013.476	
4	46.733.668	14	81.672.283	
5	48.407.145	15	82.728.100	
6	50.048.716	16	83.239.491	
7	63.883.817	17	83.970.354	
8	67.755.818	18	85.157.449	
1 9	70.199.508	19	-	
10	72.749.676	20	-	

(1): 1. Versagenspunkt (VP) (2): 2. Versagenspunkt (VP)

Bild A 3-55: SB03 - Drahtbrüche

Bild A 3-56: SB03 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-57: SB03 – Spannstahl mit Drahtbrüchen

Bild A 3-58: SB03 – Detailaufnahme der Drahtbrüche

Tabelle A 3-35: Datenblatt Versuchsträger SB04

Bild A 3-59: SB04 - Risseinprägung / Last anfahren

Spannstahl: "I Si		neuer" Sp it 1570/17	oannstahl 770	
Drahtbrüche:				
Nr.	Lastwechsel	Nr.	Lastwechsel	
1	1.459.836	11	11.827.965	
2	2.451.337	12	11.943.217	
3	2.740.193	13	12.915.753	
4	3.697.775	14	12.990.632	
5	3.888.152	15	18.498.472	
6	4.515.851	2 16	19.514.991	
7	5.264.613	17	20.010.837	
8	10.530.903	18	21.447.212	
1 9	10.793.535	19	21.621.101	
10	11.683.017	20	21.625.421	

(1): 1. Versagenspunkt (VP) (2): 2. Versagenspunkt (VP)

Bild A 3-61: SB04 - Drahtbrüche

Bild A 3-62: SB04 – Entnommene Spannlitzen und Hüllwellrohr

Bild A 3-63: SB04 – Spannstahl mit Drahtbrüchen

Bild A 3-64: SB04 – Detailaufnahme der Drahtbrüche

104

Schwingspiele

A4 Durchgeführte Simulationsrechnungen

Bild A 4-1: Simulationsrechnung des Versuchsträgers TR01

10¹

10²

10³

0 10⁰

106

107

108

109

105

Bild A 4-2: Simulationsrechnung des Versuchsträgers TR02

Bild A 4-3: Simulationsrechnung des Versuchsträgers TR03

Bild A 4-4: Simulationsrechnung des Versuchsträgers TR04

Bild A 4-5: Simulationsrechnung des Versuchsträgers TR05

Bild A 4-6: Simulationsrechnung des Versuchsträgers SB01

Bild A 4-7: Simulationsrechnung des Versuchsträgers SB02

Bild A 4-8: Simulationsrechnung des Versuchsträgers SB03

Bild A 4-9: Simulationsrechnung des Versuchsträgers SB04

Lebenslauf

Persönliche Daten

Name:	Guido Heeke
Wohnort:	Witten
Geburtsdatum:	02. 02. 1976
Geburtsort:	Rheine
Familienstand:	verheiratet, ein Kind
Staatsangehörigkeit:	deutsch

Schul- und Ausbildung

1982 – 1986	Canisius-Grundschule, Rheine
1986 – 1996	Kopernikus-Gymnasium, Rheine
1997 – 2000	Ausbildung am Berufskolleg Rheine, Bauzeichner - konstruktiver Ingenieurbau

Studium

2000 – 2006	Studium des Bauingenieurwesens
	Fachrichtung konstruktiver Ingenieurbau, Universität Dortmund
	Diplomarbeit:
	"Numerische Untersuchungen von aussteifenden Mauerwerks-wänden
	unter variierten Randbedingungen"

Berufstätigkeit

1997 – 2000	Bauzeichner, Ingenieurbüro Austrup & Niemeyer, Emsdetten
2006 – 2008	Tragwerksplaner, Ingenieurbüro Uhlir & Jansen, Dortmund
2008 – 2015	Wissenschaftlicher Mitarbeiter, Lehrstuhl Betonbau, Fakultät Architektur und Bauingenieurwesen, Technische Universität Dortmund
seit Mai 2015	Leitung des Technischen Büros, EUDUR-Bau GmbH & CO. KG, Herzebrock-Clarholz

In der Schriftenreihe Betonbau sind bisher erschienen:

Heft 1 Andreas Arnold

"Zum Einfluss der Zwangschnittgrößen aus Temperatur bei Tragwerken aus Konstruktionsbeton mit und ohne Vorspannung" (2008)

Heft 2 Gudrun Djouahra

"Verhalten von Stahlbetonbauteilen unter einer kombinierten Beanspruchung aus Last und zentrischem Zwang" (2009)

Heft 3 Melanie Krause

"Ein neues Konzept zum Nachweis der Standsicherheit von Dübelbefestigungen in Wärmedämm-Verbundsystemen (WDVS)" (2010)

Heft 4 Halil Kiziltan

"Zum Einfluss des Druckbogens auf den Schubwiderstand von Spannbetonbalken" (2012)

Heft 5 Seung Jin Choi, Halil Kiziltan

"Zur Berechnung der Durchbiegungen von Stahlbetonplatten unter Berücksichtigung wirklichkeitsnaher Materialmodelle" (2014)

Heft 6 Agnieszka Kolodziejczyk

"Untersuchungen zum Kippen schlanker Stahlbeton- und Spannbetonträger beliebiger Geometrie mit der nichtlinearen FEM" (2015)

Heft 7 Andreas Harling

"Maste und Türme aus hochfestem Beton – Wirklichkeitsnahe Erfassung der Rissbildung zylindrischer Baukörper" (2015)

Heft 8 Eva Stuppak

"Simulationsberechnungen zum Querkrafttragverhalten von Versuchsträgern aus Stahlbeton und Spannbeton mit der nichtlinearen FEM" (2015)

Heft 9 Guido Heeke

"Untersuchungen zur Ermüdungsfestigkeit von Betonstahl und Spannstahl im Zeit- und Dauerfestigkeitsbereich mit sehr hohen Lastwechselzahlen" (2016)

TECHNISCHE UNIVERSITÄT DORTMUND SCHRIFTENREIHE BETONBAU Herausgeber: Professor Dr.-Ing. Reinhard Maurer