Essays on Risk Management and

Systemic Risk in Insurance

INAUGURALDISSERTATION
zur
Erlangung des akademischen Grades eines
Doctor rerum politicarum (Dr. rer. pol.)
der
Fakulét fur Wirtschafts- und Sozialwissenschaften
der

Technischen Universat Dortmund

vorgelegt von

Christopher Bierth
Master of Science
aus Nettersheim

2016



CONTENTS

Contents

List of Figures

List of Tables M
1

1 Introduction
1.1 Motivation . . . . . . . . .

1.2 Publicationdetails. . . . . . . . .. . . ... ...

2 Dynamic Dependence in Equity Returns, Liquidity, and CreditRisk
2.1 Introduction . . . . . . . .. ...
2.2 Econometric methodology . . . .. ... ... ... ........
2.2.1 Univariate models for returns, bid-ask spreads, afadt in-
tensities . . . . . .. L L
2.2.2 Dependence modeling with dynamic R-vine copulas
23 Data . . .. ...
231 Datasources . .. . .. ... ..
2.3.2 Extracting default intensities from CDS spreads . . ......
2.3.3 Descriptive statistics . . . . ... ... ... ...
24 Empiricalstudy . . . ... ..
241 Anecdotalevidence . . . . .. ... ... ... ... ....
2.4.2 Forecasting Liquidity- and Credit-Adjusted ValueRask

2.5 Conclusion . . . . . . . ..,

3 Systemic Risk of Insurers Around the Globe

3.1 Introduction . . . . . . . . . .

=

]

13
17

18

26
26

29

39

39

69

71
75



CONTENTS

3.3

3.4

4 Size
4.1
4.2
4.3

4.4

4.5

5 Non-life Insurer Solvency and Default Risk

5.1
5.2
5.3

5.4

3.2.1 Sampleconstruction . . .. .. ... ... ... ....
3.2.2 Systemicriskmeasures . . . .. ... ... .. ... ...
3.2.3 Explanatoryvariables. . . . . .. ... ... .. ......
3.2.4 Descriptive statistics . . . . .. ... ... .. ...
The determinants of systemic risk of insurers

3.3.1 Panelregressions . . . .. ... ... ... ... ...
3.3.2 Additionalanalyses . . . . ... ... ... ... .. ...
3.3.3 Insurers and the systemic risk in the financial sector .. . .

3.3.4 Robustnesschecks . .. ... ... ... .. ... ...

Conclusion . . . . . .., .

is Everything: Explaining SIFI Designations

10

Introduction . . . . . . . .. .

4.3.1 Sample construction . .. ... ... .. ... ......

4.3.2 Systemicriskmeasures . . . ... ... ... ... ... -

4.3.3 Explanatoryvariables. . . . ... .. ... ... ..., .

4.3.4 Descriptive statistics . . . . ... ... 0L .

The determinants of systemic relevance

1116

4.4.1 Cross-sectionalregressions . . . . . .. ... ... .... .

4.4.2 Probitregressions. . . . . . .. ... oo

443 Robustnesschecks . . ... ... ... ... . ... ... -

Conclusion . . . . . . . e, .

12

Introduction . . . . . . . . ... .

Dataand variables . . . . . . . . . . . . . . ...

Empirical strategy . . . . . . .. .. ... .. ... .. .

5.3.1 Econometricdesign. . . . . .. ... .. .. ...

5.3.2 Explanatoryvariables. . . . .. ... ... .. ... ..., .

5.3.3 Descriptive statistics . . . ... ... ... .. . ... .

Empiricalresults . . . . . . . .. ... .

75
76

77

81

88
91

99
00

02
105
07
107

110
111
114

11
122
124
25

27
131
132
132
133
136

42



CONTENTS c
54.1 Insurerdefaultrisk . ... ... ... ... ... ..., . 142
5.4.2 Determinants of insurers’ defaultrisk . . . .. ... ... 143
5.4.3 Country effects and furtheranalyses . . . . .. ... ... E 1
5,5 Conclusion . . .. ... ... . 151
6 Derivatives Usage and Default Risk in the U.S. Insurance $tor 53
6.1 Introduction . . . . . . . ... ... 153
6.2 Data sources and sample construction . . . . .. .. ... .... 157
6.3 Empiricalstrategy . . . . . . . . . ... ._[158
6.3.1 Dependentvariable . . . . ... ... .. ......... 158
6.3.2 Main explanatory variables on an insurer’s deriestivsage .L_159
6.3.3 Controlvariables . . . ... ... .. ............ . 1160
6.3.4 Econometricdesign. . . . .. .. .. ... .. ... ... . 1162
6.3.5 Descriptive statistics . . . . ... ... ... ... ... . 1162
6.4 Empiricalresults . . ... ... . ... . 168
6.4.1 Defaultrisk . . ... .. ... .. .. ... .. ... . 168
6.4.2 Derivativesusage . . . . . . . .. e 170
6.4.3 Matching of derivatives users and non-users . . . . . . . 1175
6.4.4 Panel regressions of default risk on derivative usage . . . [17
6.4.5 Robustness and furtheranalyses . . ... ... ...... . 179
6.4.6 Systemic risk and derivativeusage . . . . . ... ... .. 84 1
6.4.7 Which insurers use derivatives? . . ... ... ... ... . .1 189
6.5 Conclusion .. ... .. ... .. ... e . 193
A Supplementary Material for Chapter 2 95
B Supplementary Material for Chapter 3 05
C Supplementary Material for Chapter 4 1
D Supplementary Material for Chapter 5 1%
E Supplementary Material for Chapter 6 22
Bibliography 227



LIST OF FIGURES

List of Figures

2.1

2.2

2.2

2.3

2.3

2.3

2.4

2.5

2.6

2.7
2.7

3.1

3.2

3.3

5.1

Time evolution of cross-sectionaldata. . . . . . .. ... .......
Dynamic correlations and tail dependences. . . . . ... ... .
Dynamic correlations and tail dependences (continued). . . . . .
Time evolution of stock returns, bid-ask spreads, afaldtentensities
of firms included in the Value-at-Risk study. . . . . . ... .. ...
Time evolution of stock returns, bid-ask spreads, afaldientensities
of firms included in the Value-at-Risk study (continued).

Time evolution of stock returns, bid-ask spreads, afaldlentensities
of firms included in the Value-at-Risk study (continued).

Realized portfolio losses and Value-at-Risk forecasts.. . . . . . .
Decomposing liquidity- and credit-adjusted ValueRak. . . . . . .
Realized portfolio losses and Value-at-Risk forecasis falternative

dependencemodels. . . . . .. ... Lo

Dynamic R-vine copula model versus alternative deperelarodels.

Dynamic R-vine copula model versus alternative depeselerodels

(continued). . . . . . . . .

Time evolution of the systemic risk measures for thegokitiom 2000
t02012. . . ..

Time evolution of systemic risk measures for (systeltyicgalevant)

insurers for the period from2000to 2012. . . . . .. ... ... .. L

Time evolution of CATFIN. . . . . . . . . . . . . . . .. ... ....

68
le3

8
98

Time evolution of insurers’ default risk for the periadrih 2000 to 20138.




LIST OF FIGURES Il

6.1 Time evolution of U.S. insurers’ default risk for the joerfrom 1999

t02014. . . . e 69
6.2 Structure of the derivative usage in the U.S. insuraactos . . . . . 171
6.3 Number of derivativesusers. . . . ... ... ... ... ..... 721
6.4 Number of swap and option derivativesusers. . . . ... . ... [17]

6.5 Number of futures and forwards derivatives users. . . .. .. . .. |[174




LIST OF TABLES

List of Tables

2.1

2.1

2.2

2.2

2.3
2.3
2.4
2.5
2.6

3.1
3.2

3.3

3.4
3.5
3.6
3.7

4.1

Summary statistics for mid prices, bid-ask spreads dafault inten-
sities/probabilities. . . . . .. ... o oo
Summary statistics for mid prices, bid-ask spreads dafault inten-
sities/probabilities (continued). . . . . . .. .. ... ... .. ..
Summary statistics for log-differences of mid pricad;dsk spreads,
and defaultintensities. . . . .. .. ... ... .. .. .. ...
Summary statistics for log-differences of mid pricad;dsk spreads,
and default intensities (continued). . . . . . ... .. ... .. ...
Cross-sectional distribution of parameter estimates.. . . . . . . .
Cross-sectional distribution of parameter estimatestijcued). . . . .
Average parameter estimates for marginal distribstion. . . . . . .
Temporal variation of selected parametric pair-capula. . . . . . .

Treewise selection of parametric pair-copulas. . . . ...... . . ..

Descriptive statistics. . . . . . . . . . ... ..

Descriptive statistics for main variables of interdge and non-life

INSUTEL. . . . . o o o e e

Descriptive statistics for main variables of intereStobal Systemi-
cally ImportantInsurers. . . . . .. ... ..o
Baseline panelregressions. . . . . . .. .. ... ... ......
Panel regressions - Large insurers. . . . . . .. ... ... ...
Panel regressions for U.S. and non-U.S. insurers.

Panel regressions for the crisis period.

31

34

Geographic sample distribution. . . . . .. ... .. 0L




LIST OF TABLES vV

4.2 Descriptive statistics: banks and insurers. . . . . .. ... ... [11b
4.3 Cross-sectional regression of systemic riskgVaR) of banks. . . .. 117
4.4 Cross-sectional regression of systemic risk (MES) okban. . . . . 118
4.5 Cross-sectional regression of systemic risk@¢VaR) of insurers. . .[_120
4.6 Cross-sectional regression of systemic risk (MES) afrers. . . . . [ 121
4.7 Systemic relevance of banks: probit regressions. . . . . . . . .. 12P
4.8 Systemic relevance of insurers: probit regressions. . . . . . . . . 124
5.1 Number of observations percountry. . . . . .. .. ... ... ... 137

5.2 Summary statistics of the full sample. . . . . .. ... ... ... [139

5.3 Descriptive statistics for observations above and/b#ie median val-

uesof solvencymeasures. . . . . . . . . ... .. o0 .| 141

5.4 Panel regressions of non-life insurers’ default rid0@-2013). . . .|.145

5.5 Panel regressions of default risk: U.S. and non-U.S:lif@msurers. | 147

5.6 Pooled OLS regressions of non-life insurers’ defask vn country
dummies (2000-2013). . . . . . . ... . 1149

5.7 Variance decomposition of non-life insurer defauk (@000-2013). .. 150

6.1 Descriptive statistics (fullsample). . . . . . .. ... ... .... 16

6.2 Descriptive statistics for users versus non-usersmfatees. . . . . L166

6.3 Descriptive statistics for insurers in the top and buttuartiles of fair

value gains/losses on derivative positions. . . . . . .. .. ...... [167
6.4 Matching of derivatives users and non-users. . . . . . . ... .. 175
6.5 Matching of swapusersandnon-users. . . . ... .. ....... 176
6.6 Matching of option usersand non-users. . . . ... ... .. ...\177
6.7 GMM-sys regressions of default risk on derivative usage&bles. . . 180

6.8 GMM-sys regressions and derivative use during thescfZ06-2010).._181

6.9 GMM-sys regressions of default risk on derivative usage control

variables. . . . . ... . 183
6.10 GMM-sys regressions of MES on derivative usage vagbl. . . . . 187
6.11 GMM-sys regressions of SRISK on derivative usage viesab. . . . [ 188
6.12 Logistic regression of derivative usage on insureragttaristics. . . ..190
6.13 Logistic regression of option usage on insurer chargtics. . . . . . 191




LIST OF TABLES Vv
6.14 Logistic regression of swap usage on insurer chaisitsr . . . . . 19
A.1 Sample of S&P 500 companies. . . . . ... .. ... ... ... 201
A.2 Summary statistics for level data of firms included inViadue-at-Risk
study. . .. e 202
A.3 Summary statistics for log-differenced data of firmsliied in the
Value-at-Riskstudy. . . . . .. .. ... ... ... . . 203
A.4 Variable pairs and parametric pair-copulas selectdnshR-vine trees| 204
B.1 Sampleinsurancecompanies. . . . . . . .. .. ..o .8 20
B.1 Sample insurance companies (continued). . . ... ... .. ... 207
B.2 Variable definitions and data sources. . . . . . ... .. ... .. .[204
B.2 Variable definitions and data sources (continued). . . . .. ... [21
C.1 Samplebanks. . . . ... ... . . ... 212
C.2 Sampleinsurers.. . . . . . . . . . . 213
C.1 \Variable definitions and datasources. . . . . . . .. .. ... ...<21%
C.1 \Variable definitions and data sources (continued). . . . . . ... [216
D.1 Sample non-life insurance companies. . . . . .. ... ... ... 21
D.1 Sample non-life insurance companies (continued). . . . . . . .. [21
D.2 Variable definitions and data sources. . . . . . .. ... .. ... . [22]
E.1 SampleU.S.insurers. . . . . . .. ... ... ... .. 223
E.1 Sample U.S.insurers (continued). . . ... ... .......... 224
E.2 Variable definitions and datasources.. . . . . . ... ... ... 226




Chapter 1

Introduction

1.1 Motivation

In July 2010, the government of the United States of Amerasspd th&odd-Frank
Wall Street Reform and Consumer Protection Agta reaction to the recent financial
crisis. Since insurance companies and banks unexpectadliotbe bailed out by the
government, confidence in the stability of the financial eyshad to be rebuild. The
reform contained changes in regulation of the financialsysh the United States and
affected all federal financial regulatory agencies, baaksl the insurance industry.
Similar to the United States, the European Union createerakprograms to manage
and regulate the financial health such asBhasel Ill framework for the banking sector
as well asSolvency llin the insurance industry. The inclusion of the insuranae se
tor into these regulatory requirements for financial stgbilnderlines its increasing
importance for regulators and academics alike.

The core business of insurance companies involves undergvrisks of policy-
holders, which is usually assessed and managed via wedlrstobd actuarial meth-
ods. Other business operations, however, might be proneatkethand exogenous
risks that arise from the environment an insurer exists or. é&xample, insurers that
are more involved in financial markets and thus, may focusomntraditional business

areas, are exposed to financial distress in those markeds, the more vital an insurer
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is for an entire market, the more it contributes to the wellly or distress of its par-
ticipants. Consequently, speaking in terms of possible mowent interventions, these
insurers have a higher probability to be bailed out. Befoeeritent financial crisis,
this appeared to be a phenomenon restricted to the bankihgy saly, but since the
near collapse ocAmerican International GroupAlG), discussions about systemic risk
are not limited to the banking sector anymore. Even the Geifinance supervision
Bundesanstaltifr FinanzdienstleistungsaufsicfBaFin) actively seeks the dialogue
with the insurance industry, discussing new approacheseffuirements preventing
default of insurance companies as well as a collapse of tlbewhsurance sector.
Theoretically, there are several channels through whistramce firms might be ex-
posed or even contribute to financial instability. Insutease to deal with elementary
risks such as market risk, liquidity risk or default risk afdncial institutions. While
these risks are of huge interest, it is vital to also undadsthe interplay of these vari-
ables when combining these risks. Therefore, risk managdmsancial institutions
are interested in and require adequate tools for captuepgrtddence and interactions
between these risks. Measures like Wadue-at-Risk which only focus on a single
effect of each risk, neglecting the dependence structueejnaluded in regulatory
frameworks and are heavily used by a wide range of institgtto manage risks.
Further, the asset side of insurers’ balance-sheets pomds to several parties that
destabilize the company’s system. The risk in using davieatlike futures, options,
and other financial instruments lies in the fact that the miavialue, instead of the
limited maturity, varies over time. Further, in case of etle-counter transactions
especially swap constructions have to capture the ratingpeicorresponding trad-
ing partner and the counterparty risk has to be limited. rawsce companies are not
only faced with the respective individual event of defablit also, with the event of
a financial market collapse. The chief executive officer (CBQ) the corresponding
management group of each insurance company anticipatetiseguence of the cor-
porate policy and the management decision for capturingcanttolling the personal

default risk, the contribution to financial instability dfd operating market as well as
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the avoidance of possible nomination as systemic impofitzatcial institution (SIFI).

“SlIFIs are financial institutions whose distress or disdgdiilure, because of their
size, complexity and systemic interconnectedness, wadde significant disruption
to the wider financial system and economic acti\HyT’he Financial Stability Board
(FSB) published a list withGlobal Systemically Important Insuref$-Slis) with
a methodology proposed by thieternational Association of Insurance Supervisors
(IAIS). The details of the implementation are higher regmients on loss absorbency
and are supposed to be implemented until 2019.

Economists, risk managers, and regulators around the waogldonging for mea-
sures and methods to preserve financial stability in thedwand detect possible finan-
cial risks before they lead to another near-collapsed fiahsector. Regarding this,
it is questionable if the statement “Systemically impotiasurers have to hold more
capital reserves and are subject to tighter monitoringtas@d to be true. Therefore, it
is important to evaluate the actions that have been takesstone financial stability as
well as to question common methodologies that are used moeasts and regulators.

The dissertation contributes to the discussion on risk mpament, financial stability,
and the corresponding regulation of insurance companiteeiform of five indepen-
dent articles that empirically assess different aspeatskimanagement and financial
default risk of insurers.

The first article, building the second chapter, studieseenér dependence structures
in equity markets as well as cross-dependences betweahdeddatives and equities.
The dynamic linear and extreme dependence in equity, ligidnd credit risk is
characterized by modeling the joint distribution of thecktoeturns, bid-ask spreads,
and default probabilities. More precisely, the respedtieek liquidity is modeled by
the bid-ask spread and credit risk is measured by the defisnbbility extracted from
the respective credit default swaps contracts.

This empirical study first documents the existence of sigaifi time-varying tail

IAIS (2013): Policy Measures to Address Systemically Intaot Financial Institutions, 4 November
2011.
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dependence between the stock returns, stock liquiditytlancespective firm’s default
intensities and subsequently introduces a liquidity- amdlit-adjusted Value-at-Risk
measure that enables risk managers to reliably forecadbtakrisk exposure of a

stock investment. The proposed dynamic vine copula modelisd to capture time-

varying tail dependence significantly better than statuta or dynamic correlation-

based models. However, no study so far has investigatedependence between
equity returns, credit risk, and stock liquidity of indivdl firms.

Further, this paper proposes a liquidity- and credit-adpi¥alue-at-Risk (LC-VaR)
does not only account for market price risk, but also for suiddeaks in illiquid-
ity and default probabilities. Using a portfolio of six commpes listed in the S&P
500, the study illustrates with a forecast of the portfaibC-VaR, employing the dy-
namic R-vine copula model, that not only LC-VaR forecasts waptiownside risk
adequately. Additionally, the dynamic R-vine copula modghgicantly outperforms
than the static vine copula or dynamic correlation-basedetso Although, the empir-
ical study primarily deals with risk forecasting which istromly limited to the field of
risk management.

The following two studies, chapter three and four, examimeissue of systemic
risk in the insurance sector. More precise, the empiricatstigations explore the
methodology of regulators to identify systemically im@ort insurers. Before the re-
cent financial crises and the near collapse of the insurer, A6&her economists nor
regulators originating that insurance companies can bemsysally relevant or even
contribute to it. Especially, this opinion is substantibby the differences in the core
business actvities of banks and insurers. Fundamentaleiites are that insurers are
not as exposed to runs or liquidity shortages as banks adlegranalso smaller in size
and less interconnected.

The third chapter is the first empirical study that empiticaxplores the con-
tribution and exposure to systemic risk for an internatiguenel of insurers over
a long time horizon. The study uses the three most promingstemic risk mea-

sures suggested in the literature, Marginal Expected ShortfaMES) proposed by
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Acharya et al.|(2010)ACoVaR byl Adrian and Brunnermeier (2015), aBRISKby
Brownlees and Engle (2015) as dependent variables in a pagedssion approach
in order to measure systemic risk. The main variables inghidy are the size and
the leverage of an insurer as well as a measure of interctedreess introduced in
Billio et al. (2012).

The key finding of this study is that systemic risk in the inggfonal insurance sec-
tor is small in comparison to precious findings in the litaratanalyzing the banking
sector. Further, during the financial crisis, however, iastidid contribute signifi-
cantly to the instability of the financial sector. Moreov&ystemic risk of insurers is
determined by various factors including an insurer’s icd@nectedness and leverage,
the magnitudes and significances of these effects, howdiffayr depending on the
systemic risk measure used and the insurer line and geagneggfion analyzed.

The empirical study in chapter four explores the determmai the systemic im-
portance of banks and insurers during the financial crisigadre detail, the empirical
analysis investigates the methodology of regulators totifjeglobal systemically im-
portant financial institutions.

The study uses the following empirical methodology in ordemeasure systemic
risk in the banking and insurance sector. The sample exidteedargest 148 banks
and 98 insurers in the world, combining a cross-sectionptagch with two popular
measures of systemic risk, MES an@oVaR.

One result of this analysis is that MES an@oVaR as two common measures of
systemic risk produce inconclusive results of financiatiiagons during the crisis.
Furthermore, there is little to no evidence that higherdage and interconnectedness
increase the exposure or contribution of individual ingitns to systemic risk. Sur-
prisingly, despite the methodologies published by regutathemselves, global sys-
temically important institutions are clearly identifialidg a quick glance at the total
assets in their balance-sheets.

The fifth chapter of this dissertation is dedicated to theesaty regulation and its ef-

fect on the idiosyncratic risks of insurers. In the lightetent discussions, the study of
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idiosyncratic default risk and its determinants in the nasige sector is important and
of high relevance to regulators. Especially the interplayeguired solvency capital
and the default risk of institutions is of great interest &y regulators and managers.

Although higher capital requirements are the most favdatds for regulators to
support financial stability, they are also viewed by mansgsrbeing counterproduc-
tive as they reduce profits, subsequently increasing fiahmstability. However, the
effects of higher solvency of insurers is also of great inguaoee to policyholders since
they could be affected by increases in insurance premiawdd @d@mand more protec-
tion from the contract’s issuer. Based on an internationmaldga of 308 non-life insur-
ers, this study finds that long-term solvency significargiyuces default risk across all
countries. Short-term solvency does not play a significalet in most of the regres-
sions.

Capital requirements related to an insurer’s long-termesady are well suited for
increasing the financial soundness of insurers. Anothepitapt result is that the
regulatory environment of insurers is more important fatugng the default risk of
non-life insurers. The main result of this analysis is tloaig-term capital is signifi-
cantly negatively related to the default risk of insurers.

The final chapter of this dissertation empirically inveates the impact of deriva-
tives usage by U.S. insurers on the insurers’ respectiauttefsk and its exposure to
systemic risk. More precisely, the insurers’ 10-K filingslafs. insurance companies
are evaluated in order to obtain information on the firmstlhised derivative usage.
Further, this is the first study which analyzes the insunaetgntions to use derivative
contracts and describes the variety of derivatives usedsuarers’ risk management.
This analysis is based on a large panel of U.S. insurers éopéniod from 1999 to
2014 and employs panel regressions of insurers’ defalltestimates on proxies of
derivative use.

Financial and non-financial companies employ derivatigtrioments for a variety
of reasons. Obviously, companies use derivatives for Imedgsky positions on their

balance sheet. In contrast, companies could also use falaecivatives for other rea-
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sons like lowering their expected costs of default, lowgtax payments, or reducing
the volatility of executive compensations (see, e.9., Benitd Stulz, 1985, Froot et/al.,
1993, DeMarzo and Duffie, 1995). The allegedly adverse effieterivatives usage on
an insurer’s firm risk, however, is not as obvious as reguatometimes claim it to
be.

While derivatives trading for risk-taking should obvioustgrease firm risk, the use
of derivatives for hedging purposes should have a decrgadfict on an insurer’s
default risk. Insurers often employ derivatives to hedgeous risks stemming from
both sides of the balance sheet.

The main result of the empirical study is that insurers eryiplp financial deriva-
tives have a significantly lower probability of default tharatched non-users. How-
ever, when insurers use derivatives for risk-taking andmexging purposes, deriva-
tives usage has an increasing effect on default risk. Amditheing is that derivatives
usage is positively correlated with an insurer’'s exposarsystemic market shocks.
The results corroborate current views by insurance regudahat derivatives usage
for trading negatively affects financial stability. Howevthe main findings also un-
derline the risk-reducing and thereby stabilizing effdaiging derivatives for hedging
purposes.

This dissertation empirically discusses and investig#tesimpact of regulation,
monitoring, and supervision of insurance companies on giastability and the re-
spective financial distress. Further, it investigates a approach to capture the de-

pendence between price, liquidity and default risk.
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1.2 Publication details

Paper | (Chapter[2):

Dynamic Dependence in Equity Returns, Liquidity, and CredskRi
Authors:

Hendrik Supper, Christopher Bierth, Gregor Weil3

Abstract:

We characterize the dynamic linear and extreme dependareguity, liquidity, and
credit risk by modeling the joint distribution of the stockturns, bid-ask spreads,
and default probabilities of a multivariate stock portiolat the security-level. We
employ dynamic vine copulas and document the existenceoifgiant time-varying
and persistent asymmetric tail dependence between thle taens, stock liquidity,
and the respective firms’ default intensities. The usefidrud our findings is illustrated
in a risk management setting in which we propose a liquidiiyd credit-adjusted
Value-at-Risk that takes into account the documented extd@pendence. We show
that our adjusted Value-at-Risk enables risk managersitbhgforecast the total risk

exposure of a stock investment.
Publication details:

Working paper.
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Paper Il (Chapter B):

Systemic Risk of Insurers Around the Globe
Authors:

Christopher Bierth, Felix Irresberger, Gregor Weil3
Abstract:

We study the exposure and contribution of 253 internatiifeaand non-life insurers
to systemic risk between 2000 and 2012. For our full sample®gewe find systemic
risk in the international insurance sector to be small. Intast, the contribution
of insurers to the fragility of the financial system peakedythe recent financial
crisis. In our panel regressions, we find the interconneessl of large insurers with
the insurance sector to be a significant driver of the insuiexposure to systemic risk.
In contrast, the contribution of insurers to systemic risgears to be primarily driven

by the insurers’ leverage.
Publication details:

Published in thdournal of Banking and Finance
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Paper Il (Chapter 4):

Size is Everything: Explaining SIFI Designations
Authors:

Felix Irresberger, Christopher Bierth, Gregor Weil3
Abstract:

In this paper, we study the determinants of the systemic itapoe of banks and insur-
ers during the financial crisis. We investigate the methogipbf regulators to identify
global systemically important financial institutions anadfithat firm size is the only
significant predictor of the decision of regulators to deaig a financial institution as
systemically important. Further, using a cross-sectigmalntile regression approach,
we find that Marginal Expected Shortfall aldCoVaR as two common measures of
systemic risk produce inconclusive results concerningys¢éemic relevance of banks

and insurers during the crisis.
Publication details:

Under review in thdReview of Financial Economics



1.2. PUBLICATION DETAILS 11

Paper IV (Chapter B):

Non-life Insurer Solvency and Default Risk
Authors:

Christopher Bierth

Abstract:

We investigate the determinants of default risk for an magional sample of non-life
insurers for the time period from 2000 to 2013. In particwee address the question
whether higher capital leads to a significantly improvedraial soundness of insurers.
As our main result, we show that the default risk of non-lifsurers is lower for those
companies that possess more long-term solvency, have fficierd operations, and
maintain a higher quality of their risk portfolio. In additi, we observe that most of
the variation in the default risk of non-life insurers isvdm by country effects rather

than idiosyncratic factors.
Publication details:

Working paper.
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Paper V (Chapter[6):

Derivatives Usage and Default Risk in the U.S. InsurancedBect
Author:

Christopher Bierth

Abstract:

This paper studies the effect of derivatives usage by Uskirers on the insurers’ re-
spective default risk. We first document that insurers thatley financial derivatives

have a significantly lower risk of defaulting than matched-using insurers. We then
find empirical evidence that the decreasing effect of déviea usage on default risk
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Chapter 2

Dynamic Dependence in Equity

Returns, Liquidity, and Credit Risk

2.1 Introduction

The analysis and characterization of the extreme deperdagtoveen financial time
series has gained considerable attention in risk and portibanagement. With
the recent financial crisis marking a historic tail evengkrmanagers and financial
economists alike have become more and more interested lyzargathe (potentially
time-varying) non-linear nature of dependence betweendiahassets. In this respect,
several recent studies have found dependence in equitye(sesChristoffersen et al.,
2012) and credit risk (see, e.g., Christoffersen et al., p@ii e highly non-linear and
asymmetric with the level of asymmetry being time-varyikigwever, no study so far
has investigated the dependence between equity retueatt sk, and stock liquidity
of individual firms.

In this paper, we characterize the dynamic linear and exdr@d@pendence in equity,
liquidity, and credit risk by modeling the joint distribon of the stock returns, bid-ask
spreads, and default probabilities of a multivariate sfpaifolio at the security-level.
We employ dynamic vine copulas and document the existencggofficant time-

varying and persistent asymmetric tail dependence betweestock returns, stock
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liquidity, and the respective firms’ default intensitieso e precise, we model the
stock returns, bid-ask spreads, and default intensitigsro$ in a multivariate port-
folio using dynamic regular vine (R-vine) copulas. We theopgmse and forecast a
liquidity- and credit-adjusted Value-at-Risk (VaR) thatnstihe spirit of the liquidity-
adjusted VaR of Berkowitz (2000), Bangia et al. (2002), and3/égid Supper (2013)
but that additionally incorporates information on the dreidk of the underlying se-
curitiesl% Confirming several predictions from the financial economitesdture (see,
e.g., Bekaert et al., 2007, Friewald et al., 2014, Boehmer ,£2@l5), this paper is the
first to document the existence of significant tail dependdxatween the stock returns,
stock liquidity, and default intensities of companies. \Wert illustrate the usefulness
of our findings in a risk management setting in which we prepadiquidity- and
credit-adjusted Value-at-Risk that takes into account theuthented extreme depen-
dence. We show that adjusting the standard Value-at-Riskgtaidity and credit risk
enables risk managers to reliably forecast the total riglkosyre of a stock investment.
Finally, we show that our dynamic vine copula model captdiree-varying tail de-
pendence significantly better than static copula or dyna@mielation-based models.
In our econometric framework, we aim to model the joint dttion of stock re-
turns, bid-ask spreads, and default intensities (extaicten credit default swap pre-
mia) of a stock portfolio. We use a dynamic vine copula modetdpture the time-
varying dependences in the portfolio and to reproduce tkenpially intricate spillover
effects and interactions between stock markets, stockdiiguand credit markets.
More precisely, in our model, we consider the dependenaedset (1) a stock’s return
and its liquidity, (2) a stock’s return and the default irdigy of the underlying firm,
() stock liquidity and the default intensity of a given firamd (4) all relevant cross-

dependences (e.g., between a stock’s return and the bguitlanother stole. Our

20ne could question the idea to incorporate estimates of fiefault probability into a forecast of a
stock investment’s Value-at-Risk as a firm’s default ristudd already be priced in its equity. However,
considerable empirical evidence on the so-called “distpeezle” suggests that equity returns do not
fully reflect a firm’s default risk (see, e.q., Friewald et2D14).

3Note that as we use an R-vine copula for dependence modalingre also capable of specifying the
conditional dependence structure of the joint distributiBee Section 2.2 for details.
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state-of-the-art copula approach is motivated by a subatdody of literature on how
the concept of stock liquidity is related to stock returnd aredit default swap premia
(CDS spreads hereafter) and how stock and credit marketatareonnected.

Starting with the relation between stock returns and liggidhe seminal work by
Amihud and Mendelson (1986) finds that market-observedageereturns are an in-
creasing function of the bid-ask spread. Further, stocksgher sensitivities to mar-
ket liquidity exhibit higher expected returns (Pastor ateh$haugh, 2003), liquidity
predicts future returns (Bekaert ef al., 2007), and expesttark excess returns reflect
compensation for expected market illiquidity (Amihud, 2D0Acharya and Pedersen
(2005) provide a theoretical asset pricing model with litityi risk that helps explain
these empirical findings and in which required returns ddpam expected liquid-
ity. Since liquidity exhibits commonalities and is chaexcted by strong temporal
variation (Watanabe and Watanabe, 2008, Hasbrouck and, 2884., Chordia et al.,
2000), our dynamic modeling approach is especially apjatgfor capturing the po-
tentially time-varying nature of the dependences in ourtivariate portfolio.

Regarding the dependence between stock returns and detamsities (i.e., credit
risk), the theoretical basis is given by the structural radéerton (1974). In his
model, equity can be viewed as a call option on the firm’'s asséh a strike price
equal to the value of the firm’s debt, which suggests a premigeng relationship
between equity- and debt-linked securities (Boehmer|e2@15). Further, as stated in
Friewald et al.|(2014), risk premia in equity and credit neaskmust be related because
Merton’s (1974) model implies that the market price of riskghbe the same for all
contingent claims written on a firm’s assets. The empirieadence on the relation
of stock returns and credit risk, however, is mixed. Somdisgidocument a positive
relation (Vassalou and Xing, 2004, Chava and Purnanandaifl) 2&hereas various
other papers find a negative relation between stock returdsceedit risk [(Dichev,
1998, Campbell et al., 2008). Moreover, an increasing brahtterature investigates
the interconnectedness of equity and CDS markets and psogideirical evidence on

the relation between CDS spreads and stock returns (segAelm@rya and Johnson,
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2007, Han and Zhou, 2011).

Finally, modeling the dependence of stock liquidity andadéifintensities is eco-
nomically relevant due to the relation between CDS and stoatkemg The theo-
retical and empirical motivation is givenlin Boehmer et'ia013), who investigate the
effect of CDS markets on equity market quality, that is, ldjtyi and market efficiency.
From a theoretical point of view, the authors discuss twept&l channels by which
CDS markets could affect liquidity in equity markets, riskashg and trader-driven
information spillovers. Risk sharing might be based on dyicatelta hedging strate-
gies by informed traders and is expected to reduce markatityg. Trader-driven
information spillovers, on the other hand, result from mfed speculators’ trading
on private information which causes all securities to begatimore efficiently and in-
creases market liquidity. While the theoretical effect of QD&kets on equity market
liquidity is ambiguous, the empirical study lin Boehmer et(aD15) documents this
effect to be adverse. That is, empirically, CDS trading i®aisged with significant
declines in equity market liquidity. Although not givingyaaevidence on the particular
relation between stock liquidity and CDS spreads, the stdd@oehmer et al.[(2015)
indicates that bid-ask spreads and default intensities samsehow be related, thereby
providing further motivation for our multivariate modedjrapproacik.

Our paper is related to several studies in the literaturebotplements these stud-
ies by making several major contributions. First, this papehe first to document
strong time-varying tail dependence at the individual séclevel between stock re-
turns and default intensities, as well as between stockdityuand default intensi-
ties. While previous studies have documented extreme deperdn stock returns
(see, e.g., Poon etlal., 2004, Bollerslev and Todorov, 201dstBffersen et all, 2012),
credit risk (see, e.d., Christoffersen etlal., 2014), anad/éen stock returns and liquid-
ity (Ruenzi et al., 2013, Weil3 and Supper, 2013), our studyiges the first empirical

evidence of significant tail dependence across equity and @Bx&ets. The variant

“Note that we extract default intensities from CDS spreads.
Note that we explore this relation in more detail in Secliofy @here we provide anecdotal evidence
on both linear and non-linear dependences between bidpasds and default intensities.
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of the standard VaR that we propose is closely related toitjuedity-adjusted VaR
of Berkowitz (2000) and Bangia etal. (2002). In contrast tortherk, however, we
propose a VaR that together with market and liquidity riskiadnally incorporates
credit risk. The idea to use copulas for modeling differask factors of a single
security is closely related to the work lof Nolte (2008) andifA&nd Supper (2013).
However, we do not consider a multivariate transactiong@gecenodel like it is done in
the former study, but directly model the stock returns antddsk spreads of multiple
stocks in a portfolio. In comparison to the latter study, wielisonally address the
guestion whether equity returns and liquidity also depemttimearly on default risk.
Finally, our paper builds on several previous studies orugeof vine copulas (see,
e.g., Aas et all, 2009, Min and Czado, 2010, DiRmann et al.32&id dynamic cop-
ula models (see, e.g., Patton, 2006, Christoffersen et@l2,20h and Patton, 2015)
in financial econometrics. To the best of our knowledge, ves@nt the first empirical
study that employs dynamic R-vine copulas and show that ardignaine is indeed
significantly better suited to capture the time-varyingetegence in the returns, liquid-
ity, and default intensities of our sample firms than commgelinear or static models.
The rest of this paper is organized as follows. In Sec¢tiohve2present the marginal
and multivariate models we employ in our study. The data uséte empirical study
are presented and discussed in Sedtioh 2.3, while Sécdrptains a discussion of

our empirical results. Sectign 2.5 concludes.

2.2 Econometric methodology

We now turn to the econometric models for the marginal digtrons and the multi-
variate dependence structure. Our modeling strategy stsnsi two steps. In a first
step, we model the marginal densities of stock returnsabldspreads, and default in-

tensities. In a second step, we then employ a dynamic R-vipel@enodel to capture

SNote that Heinen et al. (2009) also propose a dynamizatipnoagh of vine copulas. The authors,
however, restrict their study to the specific case of caranines (C-vines) and use a dynamic condi-
tional correlation specification to account for time-vagydependence. In contrast, we make use of the
more general class of R-vines and follow Patton (2006) toriparate dynamics into standard copulas.
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the time-varying dependences between the marginals.

2.2.1 Univariate models for returns, bid-ask spreads, and default

intensities

To apply copula theory and consistently estimate the deperedstructure between
returns, spreads, and intensities, our univariate mogleljiproach must be capable of
generating white-noise residuals. The univariate filtggtechniques should therefore
be able to pick up most of the first- and second-moment depeedaherent in the
time-series data. To this purpose, we first model mean dyssusing autoregressive
(AR) processes and then capture variance dynamics by empgl@ARCH (General-

ized Autoregressive Heteroskedastic) processes as uteddoy Bollerslev (1986).

2.2.1.1 Mean dynamics

In the financial econometrics literature, it has now beconsgybized fact that stock
returns are characterized by significant autocorrelatgae,( e.g., Summers, 1986,
Amihud and Mendelson, 1987, Fama and French, 1988, for earpjirical evidence).
Furthermore, as found in_GroRR-KluBmann and Hautsch (2Qdi@}ask spreads ex-
hibit strong long-range dependelJlgtRegarding CDS spreads and default intensities,
Oh and Patton (2015) find that CDS spreads are characterizbiog autocorrelation
and, more precisely, that daily log-differences of CDS sgses<hibit more autocorre-
lation than is commonly found for stock returns. Christaftar et al.[(2014) provide
support for this finding and show that log-differences of C[p&ads and default in-
tensities are strongly autocorrelated.

In modeling mean dynamics, Christoffersen etal. (2012) ns&Rymodel of order
two (denoted as AR(2)), whereas Oh and Patton (2015) use an) AR{&el and find
the first three lags to be strongly significant. We therefooduide three lags in our AR

specification to capture first-moment dependence.

’Note that much of this long-range dependence is eliminagddddifferencing. The remaining short-
run dependence, however, needs to be filtered by appropdagocesses.
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Formally, withR, = {Ra,t}thl, i = 1,2, 3, denoting the log-differenced time series of
stock prices, bid-ask spreads, and default intensitispgatively, the AR(3) process is

estimated as

Rt=u+¢d1iRii—1+ ¢2iRt—2 + ¢3iRi—3 + €, (2.1)

where estimation is conducted via conditional least squafiéde conditional mean,

tit, thus evolves according to the following dynamics

Mix = 1+ ¢1iR -1 + $2iRi1—2 + ¢3iR 3, (2.2)
leaving the residualg; = R ; — w;; for GARCH-filtering in the next steB.

2.2.1.2 Variance dynamics

A critical issue in capturing second-moment dependencenis-varying and asym-
metric volatility. Asymmetry in volatility is commonly refred to as the leverage
effect and is well investigated in the econometrics literat(see, e.g., Christie, 1982,
Nelson, 1991). The leverage effect arises from asymmettatility responses to bad
and good news on a firm and is based on the finding that the upewsion of condi-
tional volatility due to bad news is more pronounced thandd@nward revision due
to good news. In case of stock returns, bad news comes in tieedba negative AR
residual (that isg; < 0). In case of bid-ask spreads and default intensities, en th
other hand, bad news is associated with a positive AR relsfdeae ; > 0).

Another critical issue is the specification of an adequat&iutional model for the
margins. As stated in existing studies, skewness and lngght lead to misspecified
marginal distributions and, consequently, to biased egémfor the parameters of the
dependence model.

Christoffersen et al. (2014) and Oh and Patton (2015) find $tatk returns and

8In our empirical study in Sectidn 2.4, we show that our AR(3)del for conditional mean dynamics
passes the standard specification tests.
9See McNeil et al. (2005) and Kim etlal. (2007) for details.
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log-differences of CDS spreads and default intensities aeracterized by asym-
metry in volatility as well as by skewness and fat tails. Efere, we fol-
low Oh and Patton| (2015) and employ the GJR-GARCH model as pedpby
Glosten et al. (1993) to capture asymmetric volatility, vehee use the skewddlis-
tribution of [Fernandez and Steel (1998) to additionallyocart for skewness and fat
tails in the marginal distributions. More precisely, we fl6dR-GARCH(1,1) model to
the AR residualsg, so that conditional volatility evolves according to thédwing

dynamics

€1 =OitEit, &t Fir—1 ~ iid skt(vi, i)
2.3)

ol = Wi + Loty + i€y + 6i€ 110 (€i1)
where the parameters in the conditional variance equat®ea@nstrained to be posi-
tive, 7i ; denotes the set of information available on seRasp to and including timég,
1.1(+) is the indicator function, anski(v;, y;) denotes the skewedlistribution as pro-
posed by Fernandez and Steel (1998) with degrees of freedoampten; € (2, )

and skewness parametere (0, c0). With f; denoting the probability density function

(pdf) of a univariate standatdistribution, the pdf o8kt(v;, yi), fs iS given by

s ) = —2 : (2 2o fe) + el nole)| @4

As becomes apparent from _(R.4), theparameter controls the allocation of mass to
each side of the mode, asét(v;, y;) nests the standatdlistribution in case of; = 1.
That is,y; # 1 indicates skewness in the marginal time seifed, = 1, 2, 31

Note that the distribution of the return shocks, differs across the individual time
series,R;, but is constant over time, whereas the distributiofRofloes vary through
time due to the conditional mean and variance dynamics skstliabove. The GJR-

GARCH(1,1) model in[(Z13) is straightforwardly estimated maximum likelihood.

0we refer tol Fernandez and Steel (1998) for a detailed digmuss the statistical properties of
Ski(vi,yi).
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2.2.2 Dependence modeling with dynamic R-vine copulas

We now turn to the task of modeling the joint distribution édck returns, bid-ask
spreads, and default intensities of multiple firms. To cegphoth linear dependences
and potential non-linearities in the dependence structueerely on copulas in our
modeling approach. More precisely, we employ dynamic R-emgulas which pro-
vide us with a powerful tool to model high-dimensional daitions and to capture
complex and time-varying dependences in an extremely flexilay. Subsequently,
we discuss R-vine copulas and present our dynamization apiproNVe start with a

brief review on copulas and pair-copula constructions.

2.2.2.1 Copulas and pair-copula constructions

Generally speaking, d-dimensional copula function is a multivariate distrilouti
function on the unit cubgo, 1]* with standard uniform margins. More precisely, a
copula specifies the link between a multivariate distridoutand its one-dimensional
marginal distributions (see Nelsen, 2006). Formally, wits, ..., X4) denoting ad-
dimensional random vector with joint density= (f, ..., fy) and distribution function

F = (Fy, ..., Fq), the copuleC of the distributionF is given by

C(Uy, ..., Ug) = F(F7H(uy), ..., F(Ug)), (2.5)

WhereFfl is the generalized inverse Bf andy; € [0,1],i = 1, ...,d. The theoretical
framework of copulas goes back to Sklar (1959) who shows timater certain condi-
tions, every copula is a joint distribution function andeviersa (see Nelsen, 2006, for

a detailed discussion). Usinlg (R.5), the joint denditycan be expressed as

d
f (X0, Xa) = C(F1(X0). ... Fa(xa)) | ] i) (2.6)

i=1

wherec denotes the density @. Hence, we can separate the dependence structure

from the marginal structure and thus model the joint distidn by first modeling the
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marginal distributions and then specifying a model for tepehdence struct@.

In case of bivariate data (i.ed, = 2), there is a wide range of Archimedean and
elliptical copulas available that allow for flexible depende modelin@ In case of
multivariate data sets (that id, > 2), however, this becomes much more difficult so
that existing studies in the econometrics and statistiesaliure emphasize the need
for flexible copula models in high dimensions (see Cholletd et2009, Aas et al.,
2009/ Dimann et al., 201.Whi|e some papers attempt to construct multivariate ex-
tensions of (bivariate) Archimedean copulas (Embrechéd ¢€2003| Savu and Trede,
2010, Hofert) 2011), another strand in the literature aimsdnstruct flexible mul-
tivariate dependence models by splitting up the copulaitiers into a cascade of
bivariate (unconditional and conditional) copLQsThe resulting expression is called
a pair-copula construction (PCC hereafter) and can be dkeasdollows.

Let fj = fii(Xj[X%), Fix = Fi(Xj[%), Gijx = Cijk(Fij. Fji), and bep a(d — 1)-
dimensional vector satisfyinge € {1,....,d}\ {i} andn,, # n,, for £, # ¢,. Then, we

can decompose the multivariate densityin the following way

d-1
f=fg] [ faciigist..a- (2.7)

Further, as stated in Aas et al. (2009), the conditionalitkerfy,,, can be factorized as

fJ|’7 = Cjﬂm"lfm f”’lfm’ (28)

wherenn, is an arbitrarily chosen component pandn_p, results from removing,

fromn, me {1,..,d — 1}. Combining the two factorizations i (2.7) arid (2.8) then

INote that the expression in(2.6) provides the theoretiaaidfor our modeling strategy since we first
model the marginal densities using GARCH processes andniogiel the dependence structure with
R-vine copulas.

125ee Nelsen (2006) for a detailed overview.

3Note that, in high dimensions, the choice of copulas is aityureduced to elliptical copulas such as
the normal and thecopula which are only useful if the assumption of elliptidependence is valid.

YFor further details, see the seminal works by Joe (1997)f@ednd Cookel (2001, 2002), Whelan
(2004).
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yields the following expression for a PCC

d—1

d
1_[ fk C|77m|’]—m’ (29)

k=1 h=1i

Q.
j

K
=

whereh = dim(n) andm = m(h,i) € {1, ..., h} is arbitrarily chose@

Based on the pioneering works by Joe (1996, 1997) and Bedfar@€aoke (2001,
2002), Aas et al. (2009) introduced the concept of pair-tagpto the finance literature
and spurred a surge in empirical applications of PCCs (segHemen et al., 2009,
Aas and Berg, 2009, Chollete et al., 2009, Min and Czado,|201,)26or our mod-
eling framework, the use of PCCs is especially appropriate anynrespects. First,
splitting up the multivariate density according fo (2.9uks in a computationally fea-
sible density for likelihood estimation and, thereforealglies us to handle the high
dimensionality of our modeling approach. Moreover, PCCs ipewus with an ex-
tremely flexible tool to capture the presumably intricatpetedences between stock
returns, bid-ask spreads, and default intensities. Us®@<$? we are able to choose
each pair-copula from a different parametric copula faraitg, further, PCCs permit
the modeling of not only the pairs of the original variables &#lso pairs of conditional
distributions of recomputed variables (see Weil3 and Suﬁ,ﬂéﬁ% Since we follow
Patton |(2006) and estimate dynamic processes for the ptemwd the pair-copulas,
the dynamic PCCs are also capable of accounting for potgntiimé-varying patterns

in the dependence structure.

2.2.2.2 Regular vines

As can be seen from the eressi0(2.9), there exist méryaht PCCs for a given
multivariate distributionfF 2] To select a particular PCC and to determine the way in
which the marginals are to be coupled, Bedford and Cooke (ZIE) introduce so-

called (regular) vines. Vines are convenient tools withapgical representation that

15We use the conventidnm| & = inm. Thus,h = 1 yields unconditional pair-copulas,, i = 1, ....d—
1.

8That is, we are capable of specifying the conditional depand structure for the joint distribution.

"This results from the fact that, is arbitrarily chosen.
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facilitate the description of the conditional specificasanade for the joint distribu-
tion, F. More precisely, an R-vine is a graphical tree model that getdaon a nested
set of trees satisfying certain conditions.

To formally describe the concept of R-vines, we label the comepts ofX from
1 tod and recall that a treel = {N, E}, is an acyclical graph, whed < N and
Ec (';') denote the set of nodes and edges, respectively. Bedford aniak C2002)
define a regular vine od elements{V, as a nested set of tree®, = {Ty,..., T4_1},

that satisfies the following conditions

(c1) T, is atree with nodeBl; = {1,...,d} and a set of edges denotEd
(c2) Fori =2,...,d, T; is a tree with nodeBl; = Ej_; and|N;| =i + 1.

(c3) Fori =2,...,d — 1 and{a b} € E;, it must hold thata n b| = 1.

To derive the PCC induced by, each edge i; is associated with a bivariate (un-
)conditional copulaj = 1,..,d — 1. The edges of the R-vine trees are computed
according to (c1)-(c3) and on the basis of set operation®araed conditioning and
conditioned sets, which are given as foII(@sWith U denoting the set of all indices
contained irg = {a, b} € E;, the conditioning seDy, is given byDg = U, n Uy, and
the conditioned se€C, is defined to b&€, = U,AUy, with A denoting the symmetric
difference operat

As shown in_Bedford and Coaoke (2001, 2002), there is a unique PsSGceted

with <V, which can be expressed as

d—1

d —
f=TTfl]]]ccup. (2.10)

k=1 h=1ecEy

Hence, R-vine copulas as used in our modeling approach ateyar PCCs, i.e.
PCCs with a particular decompositidn_(2.9), which are deteeshiaccording to the

combinatorial rules presented abgve.

18\We follow the presentation (n DiRmann et al. (2013).

1%Note that/Cq| = 2 andCq N Dg = .

20A detailed description on the construction of R-vines andii® copulas as well as examples and il-
lustrations can be found in Bedford and Coake (2001, 20083, &% al.|(2009), DiBmann et al. (2013).
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2.2.2.3 Fitting an R-vine copula

Fitting an R-vine copula can be organized into three stepsSé€lection of R-vine
structure, (2) Selection of bivariate copula families, éBdEstimation of copula pa-
rameters. These steps are accomplished following the ségumethod as proposed
inDimann et al. (2013) and Hobaek Haff (2013), which exphbiestree-by-tree struc-
ture of vines and under which selection and estimation arieed treewise, con-
ditioning on the precedingly selected trees and estimabpdla parameters. More
precisely, for a given treel; € V, we first calculate the empirical Kendall's tau,
Tk for all possible variable pairg,j,k}, j,k = 1,...,d, and determine the edges of
T; by selecting the spanning tree that maximizes the sum oflatiesempirical tau
Then, each of the resulting edges is associated with a ategun-)conditional copula,
which is selected according to the Akaike information crite (AIC) We calculate
the AIC for each copula family considered and choose the leopith the minimum
AIC. Using the fitted copulas in treg, we now compute the transformed variables
by means of the correspondifmgfunctions and repeat the above procedure until we
reach tredy_; (see DiBmann et al., 2013, for details), resulting in a tofald — 1)/2
dynamic (un-)conditional pair-copulas.

Since we need standard uniform data to consistently estinggiulas, fitting the R-
vine copula in our econometric approach should be based de-whise time series.
Assuming that the GARCH processes discussed above corrpettyisthe marginal
densities, we apply the R-vine copula to the correspondindRGA residualsg;;.
The pseudo-observations used for estimatiprare then computed as the ranks of the

residuals, i.eu; = Fi(s;).

2INote that this method does not necessarily lead to a glodahom. Most of the dependence is,
however, captured in the first tree so that the model fit is idenably influenced by the fit of the
copulas in the first tree.

22Actually, we use Prim’s (1957) algorithm and calculate theimum spanning tree with weightsT .

23As found in Manner (2007), the AIC provides a reliable ciiar especially when compared to alter-
native criteria such as copula goodness-of-fit tests.

24We include dynamic extensions of the normtal(rotated) Clayton, (rotated) Gumbel, and (rotated)
Joe copula. Details can be found in Apperidix A.
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2.3 Data

This section presents the data used in our empirical studypaovides descriptive
statistics. Starting with a description of the data souyreesalso discuss the procedure

applied to extract default intensities from CDS spreads.

2.3.1 Data sources

To implement our econometric modeling strategy discussetéd preceding section,
we need to collect data on stock prices, bid-ask spreadsjefadlt intensities. In our
empirical study, we focus on S&P 500 constituents, and olitea corresponding mid,
bid, and ask quotes fromfhomson Reuters DatastrearMore precisely, we collect
daily quotes of all constituents in the S&P 500 index as regabby Datastreanmfrom
January 2008 to December 2013. Bid-ask spreads are theretattas the difference
between ask and bid quotes to proxy for the liquidity of thdentying stock.

Further, since default intensities are not observable & rtrarket, we follow
Christoffersen et all (2014) and extract default intersititem CDS spreads (see be-
low). Daily CDS spreads are retrieved fradatastreamwhere we start with an initial
sample of all constituents of the S&P 500 index between Jgr2@E08 and December
2013. Since we need to restrict our sample to companies witled CDS contracts,
we apply the following screening procedures to identifystheompanies. First, we
matchDatastreans equity codes with CDS cod@. If there is no match according
to this criterion, we additionally perform a search using ttelated series’ function
in Datastreanto confirm that there is no corresponding CDS spread to thectisp
company’s hame as it appears in the S&P 500 constituentdmeover, we focus on
dollar-denominated CDS contracts with a five-year maturty a modified restructur-

ing clause, since these are the most frequently tradedamstin the U.S. market and,

25The correspondindatastreamCDS codes are constructed as follows. First, we decompase ea
firm’s Mnemonics Datastreanctode) into its general (i.e., 'U’ and '@’) and firm-specificaponent.
To each three- or four-digit firm-specific component, we dueldollar sign to specify the currency.
Finally, we complement the CDS Mnemonic with the two-digfitrs) '"MR’ to specify the restructuring
clause.
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consequently, unlikely to be distorted from low levels ofulidity. These restrictions
reduce the initial sample to a total of 209 companies. Faemseed transparency, we
list the names of all sample firms in Appendix A.1.

Finally, as discussed in the next section, extracting defatensities from CDS
spreads relies on the valuation of CDS contracts and, thesafequires the construc-
tion of spot rate curves to derive discount rates. We followgterg studies in the
literature and use the bootstrapping procedure suggegtedrgstaff et al.|(2001) to
compute spot rate curves with maturities reaching from aneup to five years for
each trading day between January 2008 and December 2013 (geelarrow et al.,
2007, Longstaff and Rajan, ZO(Q).Using Datastreamwe collect daily observations
for the overnight, one-week, one-month, three-month,nsoath, and one-year LI-
BOR rates as well as for the midmarket two-year, three-year-year, and five-year
par swap rates. As n Longstaff et al. (2001), we then useralatd cubic spline algo-
rithm to interpolate the par curve at semi-annual intep\at&l compute spot rates by
bootstrapping the interpolated par curve. The resultimg-senual spot rates, in turn,
are interpolated employing cubic splines and are used tguatthe discount factors

required in the CDS valuation formula.

2.3.2 Extracting default intensities from CDS spreads

A credit default swap is essentially an insurance contraat provides protection
against credit loss due to default. The buyer of a CDS coniraties periodic pay-
ments (referred to as premiums) to the seller of the contnaattin exchange, receives
a payoff from the seller if the reference entity defaults daam or a bond prior to the
maturity date of the contract. The periodic amount that tteégetion buyer pays the
protection seller is quoted in terms of a spread, which isroomly measured in basis
points and can be converted into a dollar amount by muligjyvith the contract size

(i.e., the notional principab

26That is, the five-year spot rate curve contains daily spesrand is updated each day.
2’See, e.gl, Duffie and Singleton (2003) for details.
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There now exists a substantial body of literature on CDS ectdgr As stated in
Oh and Patton (2015), the pronounced interest is largeledrby the close relation
between CDS spreads and the market perception of defaukipiibies. For instance,
CDS spreads are higher for entities which the market perséovhave higher default
probabilities or higher losses given default (see Creal/gR8ll4). Since we require
default probabilities for our empirical study in Sectiod,2ve shall exploit this relation
and subsequently show how default probabilities (or ratthefiault intensities) can be
extracted from CDS spreads.

We follow |Christoffersen et all (2014) and Hull and White (2p88our presenta-
tion and denote the periodic payments from the protectigrebto the seller as the
premium payment leg of the CDS contract, and the compensadiyoff from the pro-
tection seller to the buyer in case of default as the paygfbliethe CDS. Further, we
assume that the CDS contract has quarterly payment @ategt;|i = 1, ..., N} (with
ty denoting the maturity of the contract), spreadand notional 1, where the payment
dates fall on the 20th of March, June, September and DecelaubéN = 20 (corre-
sponding to a maturity of five years). If default occurs, teference entity recovers a
certain percentage, of the notional where the (risk-neutral) probability tka entity
defaults before time is given byP(t) = Pr[r < t], with 7 denoting the time of de-
fault The corresponding default intensity,is defined byh(t)dt = Pr[r € dt|r > t]

and can be computed according to

P(t)=1—exp (— f h(s)ds) : (2.11)

0

Finally, letv(t, T;) denote the discount factors calculated from the spot rateecand
let Aj = tj — t_; be the time period between two payment dates. \Witt), s < t,

being the risk-neutral survival probability, the valuelod premium payment le§f/prem,

28See[(2.111) for the formal link between default intensitied probabilities.
29Consequently, in case of default the protection buyer vesai payoff equal to the difference between
the notional of the contract and the recovered value, i-erl
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can then be calculated according to

N

Vpremt T, St = Z t t| lAq t t|) Jti (S_ti—l) P(ds)] " (212)

where the integral accounts for the accrual payment thegtion buyer has to make
for the time frame from the last payment date to the time ozﬁdb@ The value of the

payoff leg,Vpay, is given by
N
Voay(t, T, St) = (1 — r)f v(t, s)P(ds). (2.13)
t

Following| Christoffersen et al. (2014), we compute the indégin (2.12) and(2.13)
by numerical approximations and, for this purpose, definécaf daily maturities,
{s|i =0,...,m}, wheres, = t ands; = ty. Furthermore, we assume default intensities

to be constant, i.éh(t) = h. The integrals can then be approximated as follows

| s-twp@gs ¥ (st (explhiy) - exp(ht)).
it {ilsietti_181}

[‘vespas~ 3 v exwin ) - expit)
t {ilsieti-1.t]}

(2.14)

In a final step, the equatio,ay(t, T, St) — Vprem(t, T, St) = 0 is solved numerically

to obtain the default intensitir. The default probabilityP(t), can now be calculated

using [Z.11).

2.3.3 Descriptive statistics

In our empirical study, we use monthly log-differences oilydenid prices, bid-ask
spreads, and default intensities to estimate the margimhtdapendence parameters,
and employ monthly default probabilities to incorporatedst risk into conventional
VaR. More precisely, for each trading day,between January 2008 and December

2013, monthly log-differences are calculated using the pmides, bid-ask spreads,

3ONote thatg(s, t) = 1 — [P(t) — P(s)].
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and default intensities at daysndt — 30. Daily bid-ask spreads are computed as the
difference between daily ask and bid quotes, and daily defgansities are extracted
from daily CDS spreads as discussed in the preceding sedtiog a fixed recovery
rate of 30% (i.e.y = 0.3) Monthly default probabilities are derived employing
(2.11) adjusted for a monthly horizon, that is

P(t) =1—exp (%h) (2.15)

As a simple first step, we start our empirical investigatigrabalyzing the cross-
sectional variation in our data. Tallle R.1 presents detaigtatistics on the cross-
sectional distribution of daily mid prices, bid-ask spreadefault intensities, and de-

fault probabilities for the period from January 2008 to Daber 2013.

3INote that holding the recovery percentage at a constant ievairly standard in existing studies
involving CDS or (defaultable) bond valuation (see, e.quffig, 1999, Duffie and Singleton, 1999,
Longstaff et al., 2005, Christoffersen et al., 2014). Asextdbyl Hull and Whitel (2000), the fixed re-
covery rate assumption has little impact on CDS valuatioemtie expected recovery rate is in the
0% to 50% range.
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Table 2.1: Summary statistics for mid prices, bid-ask sggeand default
intensities/probabilities.

The table reports descriptive statistics on the crosdesetdistribution of daily mid prices, bid-ask spreads,ad#f intensities,

and default probabilities for the period from January 2@DBé&cember 2013. The sample consists of the 209 companiesitisted
AppendiXA. We first calculate the time-series percentiles moments for each firm in the sample, and then compute the cross-
sectional percentiles and mean in a second step. That isplivies present the percentiles and mean from the cross+sactio
distribution of the measures listed in the rows. Mid priced bit-ask spreads are denominated in U.S. dollar, where tteg la
are calculated as the difference between ask and bid qud&tault intensities are extracted from CDS spreads acegitdi the
procedure discussed in Sectfon]2.3 and have a horizon ofeare Default probabilities are derived from the intensitiging the

formula in [Z.I5) and thus have a horizon of one month.

Percentiles
Min 5th 25th Median 75th 95th Max Mean

Panel A: Mid prices

Percentiles

- Min 0.8400 3.6280 9.9300 17.0900 26.9000 45.8640 89.09000.2625

- 1st 1.2760 5.0117 11.8050 19.9050 31.0920 50.2999 105.53523.3106

- 5th 2.3325 6.3485 14.8925 23.3652 36.7150 55.4575 115.38727.0530

- 25th 6.0900 11.2805 20.2625 32.3463 47.9500 76.1260 350.8 36.2797

- Median 7.4300 14.0420 24.8525 37.8950 55.8950 84.1910 .6256 43.6447

- 75th 9.9475 17.5680 31.5783 45,5750 65.0250 103.7060 58B8. 52.3385

- 95th 12.8400 23.6085 42.0950 57.4525 82.7050 138.7835 .6686 70.1802

- 99th 13.5535 25.9969 44.8700 63.3770 89.6535 153.0323 .4924 76.6626

- Max 14.1100 26.8480 46.4800 67.4800 92.1000 161.2720 9998. 80.0887
Moments

- Mean 8.2180 14.9015 26.7132 40.0617 57.8519 88.2465 288.5 45.1288

- St. Dev. 1.8085 4.0083 6.8227 10.1979 14.3946 28.3231 9268. 13.0255

- Skewness -1.2140 -0.5642 -0.0150 0.3789 0.7668 1.5137 052.8 0.4088

- Exc. Kurt.  -1.5268 -1.2267 -0.6563 -0.1856 0.3355 1.9105 .55@8 0.0611
-AC(1) 0.9834 0.9891 0.9931 0.9949 0.9963 0.9976 0.9983 9439
Panel B: Bid-ask spreads

Percentiles

- Min 0.0025 0.0050 0.0100 0.0100 0.0100 0.0100 0.0100 @.009
- 1st 0.0025 0.0050 0.0100 0.0100 0.0100 0.0100 0.0100 0.009
- 5th 0.0025 0.0054 0.0100 0.0100 0.0100 0.0100 0.0100 6.009
- 25th 0.0025 0.0088 0.0100 0.0100 0.0100 0.0100 0.0600 00.01
- Median 0.0075 0.0100 0.0100 0.0200 0.0200 0.0300 0.1200 0180.

- 75th 0.0100 0.0200 0.0200 0.0300 0.0400 0.0760 0.1899 60.03
- 95th 0.0200 0.0300 0.0500 0.0700 0.1090 0.1900 1.0056 08.09
- 99th 0.0300 0.0600 0.1272 0.1800 0.3044 0.6206 4.5000 16.27
- Max 0.0900 0.6300 3.0000 6.0500 10.5475 55.4340 194.00002.2525
Moments

- Mean 0.0126 0.0179 0.0280 0.0383 0.0550 0.1087 0.3186 90.04
- St. Dev. 0.0061 0.0352 0.1090 0.2156 0.3732 1.7631 4.9038 .4040
- Skewness 3.6236 8.0310 17.6093 21.9631 26.4984 36.6845 .496®  22.2276
-Exc. Kurt. 24.0800 114.8145 337.4985 529.0167 775.7203 981281 1558.6459 616.4122
-AC(1) -0.0011 0.0172 0.0941 0.2140 0.3463 0.4755 0.6675 225&
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Table 2.1: Summary statistics for mid prices, bid-ask sggeand default
intensities/probabilities (continued).

Percentiles

Min 5th 25th  Median 75th 95th Max Mean
Panel C: Default intensities
Percentiles
- Min 0.0015 0.0023 0.0039 0.0056 0.0092 0.0229 0.0452 @008
- 1st 0.0020 0.0027  0.0045 0.0068 0.0102 0.0256 0.0453 0.009
- 5th 0.0020 0.0036 0.0053 0.0081 0.0120 0.0292 0.0484 bB.010
- 25th 0.0030 0.0047 0.0071 0.0113 0.0163 0.0359 0.1205 4b6.01
- Median 0.0037 0.0056 0.0085 0.0135 0.0209 0.0462 0.14740170.
- 75th 0.0052 0.0067 0.0105 0.0178 0.0285 0.0606 0.5800 56.02
- 95th 0.0062 0.0101 0.0154 0.0299 0.0530 0.1153 1.2542 86.04
- 99th 0.0067 0.0114 0.0183 0.0362 0.0658 0.1626 1.2552 10.06
- Max 0.0082 0.0122 0.0201 0.0409 0.0720 0.1949 1.2618 6.071
Moments
- Mean 0.0044 0.0062 0.0094 0.0146  0.0249 0.0530 0.4055 19.02
- St. Dev. 0.0003 0.0012 0.0030 0.0057 0.0125 0.0327 0.46310120

- Skewness  -10.1455 -0.8015 0.6270 1.4298 2.1049 3.0180 09464. 1.3137
- Exc. Kurt. -1.6157 -0.7029 0.3303  2.4236 4.8407 10.7446 2.9344 4.8357
-AC(1) 0.5482 0.9604 0.9904 0.9938 0.9960 0.9979 0.9986 83539

Panel D: Monthly default probabilities

Percentiles

- Min 0.0001 0.0002 0.0003 0.0005 0.0008 0.0019 0.0038 (@.000
- 1st 0.0002 0.0002 0.0004 0.0006 0.0009 0.0021 0.0038 ©.000
- 5th 0.0002 0.0003 0.0004 0.0007 0.0010 0.0024 0.0040 ©.000
- 25th 0.0003 0.0004 0.0006 0.0009 0.0014 0.0030 0.0100 1R.00
- Median 0.0003 0.0005 0.0007 0.0011 0.0017 0.0038 0.012200186.

- 75th 0.0004 0.0006 0.0009 0.0015 0.0024 0.0050 0.0472 20.00
- 95th 0.0005 0.0008 0.0013 0.0025 0.0044 0.0096 0.0992 40.00
- 99th 0.0006 0.0009 0.0015 0.0030 0.0055 0.0135 0.0993 50.00
- Max 0.0007 0.0010 0.0017 0.0034 0.0060 0.0161 0.0998 0.005
Moments

- Mean 0.0004 0.0005 0.0008 0.0012 0.0021 0.0044 0.0325 18.00
- St. Dev. 0.0000 0.0001 0.0002 0.0005 0.0010 0.0027 0.03650010

- Skewness  -10.1516 -0.8023  0.6249 14276  2.1030 3.0159 0894. 1.3107
- Exc. Kurt. -1.6162 -0.7069 0.3297 24192 48266 10.5930 2.71859 4.8158
-AC(1) 0.5482 0.9604 0.9904 0.9938 0.9960 0.9979 0.9986 83®.9

Panel (A) of Tablé 2]1 reports descriptive statistics fa thid prices of the 209
sample firms. As indicated by the statistics on the timeesemeans, our sample is
characterized by strong cross-sectional variation of miideg, with the time-series
means ranging from 8.23 U.S. dollars (USD hereafter) to268.SD and being 45.13
USD on average. Further, mid prices are positively skeweldrnaaakly leptokurtic on
average, with an average skewness and excess kurtosi0880ad 0.0611, respec-
tively. Not surprisingly, mid prices exhibit significanttagorrelation with the average
first-order autocorrelation being about 99.43%.

Turning to the bid-ask spreads in Panel (B), we find the avebbédiask spread to
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be 0.05 USD. Again, our panel data exhibit considerablesesestional variation with
the time-series means ranging from 0.01 USD to 0.31 USD. fiinBng is further
supported by the statistics on the percentiles of the csesonal distribution. As
we employ the bid-ask spreads of the companies as a proxydck Bquidity, these
results indicate that the trading costs associated withadiately trading the shares
of a particular firm differ remarkably across our sample. §,hn view of the sub-
stantial variation in bid-ask spreads, incorporatingitigy risk into conventional VaR
appears to be economically essential to adequately cdpsses from potential liquid-
ity shocks. Finally, the time-series distributions of laisk spreads are heavily skewed
and leptokurtic on average.

In Panels (C) and (D) of Table 2.1, we present descriptivéstitat for the default
intensities and default probabilities extracted from theSC&preads of our sample
firms. Regarding the latter, the average time-series medrais@mparatively modest
level of 0.18%, whereas the minimum and maximum time-sarieans are given by
0.04% and 3.25%, respectively, indicating that defauk vigries considerably across
our sample firms. Of particular note is the substantial arhotidefault risk of some
S&P 500 constituents in our sample during the period fronudan2008 to Decem-
ber 2013. To be precise, as follows from the statistics ortithe-series maxima, the
monthly default probabilities amount to a maximum of abdd#l Consequently, the
significant variation and serious amounts of default risknfer motivate our approach
of adjusting standard VaR for credit risk. Turning to thehHggorder moments, we
find that default probabilities are positively skewed, téqirtic, and significantly au-
tocorrelated on average.

In addition to the summary statistics on stock prices, lskl-spreads, and default
intensities, we also present corresponding statisticallodata in differences. The
descriptive statistics for the log-differences of mid pacbid-ask spreads, and default

intensities are presented in Tablel2.2.
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Table 2.2: Summary statistics for log-differences of mides, bid-ask spreads, and
default intensities.

The table reports descriptive statistics on the crossesedtdistribution of monthly log-differences of
mid prices, bid-ask spreads, and default intensities fp#riod from January 2008 to December 2013.
For each trading day, log-differences are calculated using the prices, spreausintensities at days

t andt — 30. The sample consists of the 209 companies listed in App&dl We first calculate the
time-series percentiles and moments for each firm in the kgrapd then compute the cross-sectional
percentiles and mean in a second step. That is, the colureeemirthe percentiles and mean from the
cross-sectional distribution of the measures listed inrtves. Bid-ask spreads are calculated as the
difference between ask and bid quotes. Default intensitiegxtracted from CDS spreads according to
the procedure discussed in Secfiod 2.3 and have a horizameofesr.

Percentiles

Min 5th 25th  Median 75th 95th Max Mean
Panel A: Stock returns
Percentiles
- Min -2.4172 -1.1086 -0.6718 -0.5019 -0.3763 -0.2487 -B6l4 -0.5646
- 1st -1.7198 -0.6902 -0.4206 -0.3245 -0.2442 -0.1524 @b11-0.3612
- 5th -0.5608 -0.2909 -0.2092 -0.1570 -0.1182 -0.0799 D06 -0.1698
- 25th -0.1242 -0.0795 -0.0534 -0.0392 -0.0278 -0.0188 1IBO -0.0427
- Median -0.0129 0.0013 0.0090 0.0130 0.0191 0.0271 0.04110130G
- 75th 0.0274 0.0373 0.0500 0.0622 0.0735 0.0945 0.1195 30.06
- 95th 0.0656 0.0785 0.1110 0.1412 0.1737 0.2530 0.3481 9n.14
- 99th 0.0882 0.1116 0.1705 0.2237 0.2995 0.4728 0.9937 40.25
- Max 0.1155 0.1534 0.2532 0.3534 0.4798 0.8391 1.3251 0.401
Moments
- Mean -0.0436 -0.0089 0.0003 0.0051 0.0091 0.0159 0.02170044.

- St. Dev. 0.0438 0.0546 0.0744 0.0978 0.1231 0.1801 0.34781050
- Skewness  -2.8099 -1.8866 -1.2889 -0.8675 -0.5818 -0.187W.7702 -0.9438
-Exc. Kurt.  0.4175 0.9385 2.1253 3.6449 54871 9.6011 W14 4.2101
-AC(1) 0.8984 0.9172 0.9360 0.9447 0.9537 0.9626 0.9698 430.9

Panel B: Log-differences of bid-ask spreads

Percentiles

- Min -9.8730 -8.4583 -6.7719 -6.2832 -5.5984 -3.5666 -3940 -6.1205

- 1st -3.7483 -2.8421 -2.3979 -2.1846 -1.9459 -1.6094 8609 -2.1828

- 5th -2.3988 -1.5593 -1.3863 -1.0986 -1.0986 -0.6931 &169 -1.1752

- 25th -0.7215 -0.6931 -0.4700 -0.4055 -0.2231 0.0000 @00GO0.3449

- Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000000.

- 75th 0.0000 0.0000 0.0000 0.2877 0.4055 0.5596 0.6948 78.24
- 95th 0.6931 0.6931 1.0986 1.0986 1.2528 1.4642 2.6378 41.12
- 99th 1.0986 1.4390 1.9459 2.1972 2.4965 2.8916 3.7677 42.19
- Max 1.7918 3.6687 5.6168 6.2766 6.7719 8.4841 9.8730 8.153
Moments

- Mean -0.0710 -0.0328 -0.0255 -0.0216 -0.0166 -0.0098 12100-0.0213

- St. Dev. 0.3300 0.6064 0.7596 0.8368 0.9172 1.0662 1.46168380@

- Skewness -0.2592 -0.1267 -0.0086 0.0444 0.1147 0.2441 778.3 0.0518
-Exc. Kurt.  0.7405 29375 8.2886 12.5335 16.6561 23.5607.6(88 12.8523
-AC(1) 0.0381 0.1510 0.2237 0.2635 0.2989 0.3522 0.4762 58B.2
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Table 2.2: Summary statistics for log-differences of mides, bid-ask spreads, and
default intensities (continued).

Percentiles

Min 5th 25th  Median 75th 95th Max Mean
Panel C: Log-differences of default intensities
Percentiles
- Min -1.9458 -0.6973 -0.3701 -0.2705 -0.2120 -0.1338 -0205 -0.3332
- 1st -0.2704 -0.1347 -0.1030 -0.0883 -0.0784 -0.0542 ZB04 -0.0918
- 5th -0.0730 -0.0592 -0.0482 -0.0395 -0.0285 -0.0017 1500 -0.0354
- 25th -0.0210 -0.0119 -0.0053 -0.0016 -0.0012 -0.0006 Oo@m0 -0.0038
- Median -0.0007 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 .00@1 -0.0005
- 75th -0.0005 -0.0005 -0.0003 0.0000 0.0006 0.0082 0.0211.001@
- 95th -0.0004 0.0004 0.0285 0.0433 0.0535 0.0660 0.0825 380.0
- 99th 0.0922 0.0973 0.1023 0.1083 0.1192 0.1553 0.2137 48.11
- Max 0.0937 0.1603 0.2518 0.3338 0.4543 0.8304 2.1231  @.400
Moments
- Mean -0.0015 -0.0008 -0.0003 0.0001 0.0003 0.0008 0.00230000
- St. Dev. 0.0131 0.0225 0.0294 0.0334 0.0364 0.0533 0.15650350

- Skewness  -19.3336 -1.1683 0.4377 1.0662 1.9198 6.2680 93@3. 1.3678
- Exc. Kurt. 54259 9.1788 14.2182 27.1295 48.2334 217.84822.8101 57.0487
-AC(1) -0.4265 -0.2422 -0.0711 0.0611 0.1297 0.1805 0.2660.0183

Panel (A) of Tablé 212 reports summary statistics on thesesestional distribution
of stock returns. As can be seen from the panel, the stockisetf our sample firms
exhibit the usual stylized facts of a negligible mean of @¥4ronounced negative
skewness, and significant leptokurtosis on average. Theg&eutocorrelation of
stock returns is around 94% and thus slightly smaller that ¢ mid prices. As
expected, given the fact that our sample period partly caepthe financial crisis, the
stock returns are characterized by considerable timesseariation, with the average
time-series minimum and maximum being given by about -5684@96, respectively.
Further, as indicated by the statistics on the percentildslze time-series means, the
stock returns also vary considerably in the cross-section.

Turning to the cross-sectional statistics on log-diffeeshbid-ask spreads in Panel
(B), we find that the time-series means of log-differencey Wam approximately -
7% to 0.14% and are -2% on average. Interestingly, as in tee ochstock returns,
bid-ask spread changes exhibit strong time-series vamiasis indicated by, e.g., the

average interquartile range which reaches from about -31%b6% and, therefore,
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implies considerable dispersion in the time-series distions of log-differenced bid-
ask spreads. That is, our sample period is characterizedldstantial changes in the
stock liquidity of the average sample firm. Finally, the ldifferences are slightly
skewed and considerably autocorrelated on average.

Regarding the log-differences of default intensities ind?é@) of Tabld 2.2, we find
that the corresponding time-series means vary from -0.183283% and are 0.01% on
average, implying only slight cross-sectional variatidarning to the time-series vari-
ation, however, we can see from the panel that changes irefaeltintensities of the
sample firms vary considerably from -33% to 40% on averagkcating fundamental
changes in the market perception of default risk during tade period. Further-
more, log-differences of default intensities are heavigvged and only slightly auto-
correlated, so that log-differencing already eliminatestof the serial dependence in
default intensities.

Figure[2.1 illustrates the temporal variation in the cresstion of our data. More
precisely, the figure plots the time evolution of daily midces, bid-ask spreads, and
default intensities, as well as of the corresponding |dtginces, where we calculate
the cross-sectional average across all 209 sample firmabbr teading day between
January 2008 and December 2013.

Panels (a) and (b) show the time evolution of average migeprand stock returns,
respectively. As can be seen from Panel (a), stock pricesrexped sharp declines
during the financial crisis and decreased significantly froare than 50 USD in 2008
to approximately 20 USD in 2009. The post-crisis years ahefsecond quarter in
2009 are characterized by a strong and stable upward tretidth& mid prices rising
to pre-crisis levels. Turning to the time evolution of mdgtktock returns, we find
that the temporal variation of average returns is as exged@iee time period compris-
ing the financial crisis is characterized by substantiatgodhanges and pronounced
volatility, with stock returns ranging from -50% to 50%. Ihet post-crisis period,
however, volatility of average returns declines remarkatvid returns stay relatively

flat, varying between -20% and 20%.
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Panels (c) and (d) of Figufe 2.1 present the time evolutioaverage daily bid-
ask spreads and the corresponding monthly log-differeridessurprisingly, average
bid-ask spreads increased steeply during the financia$ cmglicating a severe dete-
rioration of stock liquidity and, consequently, implyingcreased trading costs for the
stocks of the average sample firm. The increased log-difé@®in Panel (b) in the
second half of 2008 result from the temporary surge in (ay@rhid-ask spreads and
reflect the considerable changes in the stock liquidity efsample firms. In subse-
guent years, bid-ask spreads and the corresponding ltegedites return to low levels
and stay relatively flat, indicating that liquidity resterand trading costs decline to
pre-crisis Ievel@

Finally, Panels (e) and (f) show the time evolution of averdgfault intensities and
the corresponding log-differences. The temporal vamatibdefault intensities is as
expected and shows that default risk significantly incréakeing the financial crisis.
Average default intensities increased from approximatétyin 2008 to nearly 5% in
2009 and returned to pre-crisis levels in the following ge#mterestingly, as indicated
by the 5th to 95th percentile range and as discussed ab@veathple is characterized
by strong cross-sectional variation, with the average @8ticentile default intensity
peaking at about 15% in 2009. Turning to the log-differenees find that the in-
creased intensities during the financial crisis coincidih wicreased log-differences

and increased volatility of log-differences.

32Note that the surges in bid-ask spreads and log-differeindée post-crisis period are predominantly
driven by outliers lacking any economic relevance. In oupgital study, however, we remove spu-
rious outliers by winsorising to assure the validity of oesults.
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Figure 2.1: Time evolution of cross-sectional data.

The figure shows the time evolution of daily mid prices, bé#-apreads and default intensities, as well
as of the corresponding monthly log-differences for thequefrom January 2008 to December 2013.
The sample consists of the 209 companies listed in Appéndixor each day of the sample period, we
calculate the cross-sectional average (black line) asagethe cross-sectional interquartile (dark-gray
shaded area) and 5th/95th percentile range (light-gragesharea). Mid prices and bid-ask spreads are
denominated in US dollar, where the latter are calculatetiadifference between ask and bid quotes.
Default intensities are extracted from CDS spreads acegrii the procedure discussed in Secfion 2.3
and have a horizon of one year. Monthly log-differences aleutated for each day in the sample period
using the prices, spreads, and intensities at tlapsit — 30.
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2.4 Empirical study

In this section, we first characterize the dynamic linearextteme dependence in eg-
uity, liquidity, and credit risk. We then implement our ecometric modeling approach
and illustrate the usefulness of our previous findings irska management setting by
investigating the performance of our newly proposed VaR-#hoda comprehensive

simulation study.

2.4.1 Anecdotal evidence

As a simple first step, we start our empirical study by repgrinecdotal evidence on
the relation between stock returns, bid-ask spreads, dadltentensities, providing
further motivation for our risk management application ie ihext section. Taking
returns, spreads, and intensities as proxies for markee grquidity, and credit risk,
we are especially interested in the dynamic dependenceeséttisk types and shall
document linear dependences as well as potential nordiiilesain the dependence
structure. To this purpose, we implement the following dergronometric modeling
strategy. First, for each trading day between January 20880&cember 2013 and
for each of the 209 firms in the sample, we calculate monttdgydidferences of mid
prices, bid-ask spreads, and default intensities (exddaitom daily CDS spreads, see
Sectiorl 2.B), resulting in the respective time se{i@é}:_l, 1=123;]=1,..,209,
whereT = 1542. To filter the time series and compute white-noise teds] we then

apply standard AR(3)-GARCH(1,1) processes with normallyriisted innovations

to the log-differenced time series, capturing most of thst-fiand second-moment
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dependenc@ That is

Rit =it + €t =it + oiteir,  &itFirr ~ iid N(0,1),
Mit = pi + d1iR—1 + 2iR12 + #3iRit—3, (2.16)

2 2
iy = wi + aiqz,t—l + Bioi_1s

where the subscript denoting the respective fipig omitted for convenience. Pseudo-
observationsy;, are then obtained by calculating the corresponding rarksy; =
Fi(ei).

In a next step, we then calculate dynamic correlations aidiépendences be-
tween the stock returns, bid-ask spreads, and defaultsities of thesamefirm
The former are computed using the Dynamic Conditional CaicgigDCC) model as
proposed by Engle (200. The DCC model uses the residuals from the univariate
GARCH processes as building blocks and assumes that the dysmanthe correla-
tion matrix,R;, are driven by some autoregressive term and the cross-grofiteturn

shocks, i.e.

R = diag Q) 'Q! diagQ}) %,
Q = (1—yi—vh)Q + QL +yial &,

(2.17)

Wherewi andwé are non-negative paramete€y¥, is the unconditional correlation ma-
trix, and & = <§’u§‘2t§ét>T with éljt given bYSij,t \/T j = 1,..,209 (see Aielli,
2013, for details).

Dynamic tail dependences, on the other hand, are calculsied Patton’s| (2006)

dynamict copula, which is outlined in Appendix]A. Copula estimatiorcaducted

33Note that we merely aim to provide first evidence on the tirag/ng linear and non-linear depen-
dences between stock returns, bid-ask spreads, and defaubities. Due to computational feasibil-
ity, in this section, we therefore neglect such issues asiamtry in volatility and fat tails as well as
skewness in the marginal distributions. These issues avevsy addressed in our risk management
application in the next section.

34This restriction is necessary to ensure computationaitféias Note, however, that the model ap-
proach discussed in Sectibn2.2 and employed in the nexbeectccounts for all relevant cross-
dependences.

39N fact, we use the modified DCC model according to Aielli (2p1
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for each of the three possible pairs of returns, spreadsingeuisities on the basis of
the corresponding pseudo-observatidug, u;,), whereiy, i, = 1,2, 3;i; # i».

Table[2.B reports the cross-sectional distribution ofnestes for the marginal and
dependence parameters.

The former are captured in Panel (A) and presented sepafateitock returns, bid-
ask spreads, and default intensities. The estimationtssfulstock returns are fairly
standard. We find the first two AR lags to be strongly significaapturing the auto-
correlation evidenced in Sectién P.3. Further, the cooditi variance models reveal
an only mild effect of lagged return shocks on current vbtgtias indicated by ther
parameter being around 0.05 on average. The autoregr@gsarameter is, however,
dominating with the cross-sectional average being aroudl @s is commonly found
in the literature, volatility persistence is quite high9®.on averag

Turning to the marginal parameters of bid-ask spreads, veedinthree AR lags
to be strongly significant. Moreover, as in the case of stetrns, the variance pa-
rameters indicate low values for the estimates of the newshparameterg, (0.08
on average) and high values for the autoregregsparameter (0.89 on average). As
above, volatility persistence is high at 0.97 on average.

Regarding default intensities, we can see from the margarampeter estimates that
the first two AR lags turn out to be significant. Interestinghea parameter is around
0.29 on average and, thus, considerably higher for defatdnhsities than for stock
returns and bid-ask spreads, indicating that news arrivatta volatility of default
intensities to a greater extent than volatility of stockires and bid-ask spreads. At the
same time, the autoregressp@arameter is much smaller and about 0.53 on average.
Volatility persistence, on the other hand, remains high&2 @n average, but appears
to be relatively low when compared to volatility persisteraf stock returns and bid-
ask spreads.

Turning to the DCC parameter estimates in Panel (B) of Tablev#eJind the au-

toregressival, parameter to be clearly dominating (0.90 on average). Egrthe

36See, e.gl, Christoffersen et al. (2012) and Engle (2002).



Table 2.3: Cross-sectional distribution of parameter estés

The table shows summary statistics of the parameter estimatdgefmarginal distributions as well as the correlation arplt@mmodels used to report first evidence on the dependencee$pliquidity, and credit
risk. The marginals are modeled as AR(3)-GARCH(1,1) processih standard normally distributed innovations, and datiens are computed from Englels (2002) Dynamic Conditid@airelation (DCC) model
(using the_Aielli (2013) modification). The copula models assédd on Patton’s (2006) dynanticopula as discussed in Appenflix A. For each of the 209 firmserstimple (see AppendixA.1), the models are
estimated on monthly log-differences of the mid prices, bkisggeads, and default intensities of gamefirm for the period from January 2008 to December 2013, whermaton of the DCC and thecopula
models is based on the corresponding AR-GARCH residualscripéige statistics are then calculated cross-sectigradtoss all sample firms. Persistence for the marginal and DC@Isiacomputed as + 3
andyi + Yo, respectively.

Cross-sectional distribution

Percentiles Moments
Min 1st 5th 25th  Median 75th 95th 99th Max Mean St. Dev. Skessne Exc. Kurt.
Panel A: Parameter estimates for AR-GARCH processes
Stock returns
u 0.7099 0.7521 0.8032 0.9053 0.9425 0.9778 1.0150 1.0698 261.1 0.9345 0.0664 -0.7963 1.2636
P1 -0.1705 -0.1231 -0.0948 -0.0385 -0.0050 0.0448 0.1369 8219 0.2309 0.0062 0.0721 0.5639 0.1035
b2 -0.1733 -0.1218 -0.0897 -0.0247 0.0093 0.0396 0.0753 0.11@.1170 0.0046 0.0510 -0.5435 0.4564
¢3 -0.0017 -0.0008 -0.0004  0.0001 0.0003  0.0006 0.0011 0.000/0018  0.0003 0.0005 -0.0800 2.0703
w 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 000.0 0.0000 0.0000 2.8841 14.0772
a 0.0000 0.0232 0.0291 0.0420 0.0527 0.0611 0.0789 0.0956 994.0 0.0527 0.0155 0.2690 0.4786
B 0.8946 0.9025 0.9114  0.9289 0.9398 0.9484 0.9638 0.9718 994.9 0.9391 0.0157 -0.0100 0.7668
Persistence 0.9560 0.9747 0.9825 0.9890 0.9929 0.9953 0.9993 1.0016 024.0 0.9918 0.0056 -1.9519 8.6149
Bid-ask spreads
u 0.0376 0.0857 0.1265 0.1774 0.2127 0.2455 0.3084 0.3869 848.4 0.2137 0.0592 0.6655 2.5100
d1 -0.1078 -0.0498  0.0262 0.0723 0.1049  0.1377 0.1879 0.21412590 0.1037 0.0545 -0.3384 1.1941
b2 -0.0469 -0.0264  0.0513 0.0979 0.1311  0.1585 0.1980 0.2612888  0.1276 0.0502 -0.2115 1.3672
b3 -0.0381 -0.0241 -0.0204 -0.0142 -0.0113 -0.0083 -0.001500 0.0045 -0.0113 0.0056 -0.2702 2.2573
w 0.0000 0.0003  0.0017 0.0093 0.0140 0.0216 0.0403 0.1652 870.3 0.0201 0.0350 7.6350 68.2337
a 0.0304 0.0325 0.0442 0.0635 0.0784 0.1013 0.1409 0.1917 919.2 0.0849 0.0341 1.8250 6.6965
B 0.4415 0.5391 0.8387 0.8796 0.8991  0.9139 0.9411 0.9639 6448.9 0.8881 0.0622 -4.4872 24.6484

Persistence 0.6417 0.7072 0.9461 0.9664 0.9785 0.9897 1.0040 1.0181680.0 0.9729 0.0440 -5.4572 36.1846

Default intensities

u -0.5321 -0.5137 -0.2581 -0.0644 0.0550 0.1216 0.1766 0.209.2701  0.0119 0.1473 -1.2988 2.0961
1 -0.4508 -0.2737 -0.1172 -0.0047 0.0394 0.0712 0.1100 G.12®.1474  0.0196 0.0823 -2.3825 8.6786
¢ -0.1694 -0.1162 -0.0739 -0.0159 0.0132 0.0392 0.0816 @3.12D.1492  0.0106 0.0480 -0.3077 1.0732
3 -0.0017 -0.0010 -0.0007 -0.0003 0.0000 0.0003 0.0009 0.002.0022  0.0000 0.0005 0.7591 3.5747
w 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0012014.0 0.0003 0.0003 1.4110 1.8542
a 0.0000 0.0002 0.0112 0.1114 0.2326 0.3815 0.7161 1.0000 000.0 0.2901 0.2326 1.2397 1.4225
B 0.0000 0.0000 0.0000 0.2441 0.6017 0.8359 0.9722 0.9915998.9 0.5326 0.3304 -0.2887 -1.3085
Persistence 0.0374  0.0930 0.3301 0.6327 0.9123  0.9927 1.1087 1.4202210.5 0.8227 0.2647 -0.5796 0.4133
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Table 2.3: Cross-sectional distribution of parameter et (continued).

Cross-sectional distribution

Percentiles Moments
Min 1st 5th 25th Median 75th 95th 99th Max Mean St. Dev. Skessne Exc. Kurt.

Panel B: Parameter estimates for DCC models

U1 0.0000 0.0000 0.0002 0.0007 0.0031 0.0073 0.0164 0.0237 320.0 0.0051 0.0056 1.7866 3.7179

W2 0.0007 0.0494 0.2750 0.9447 0.9636 0.9776 0.9895 0.9940 95B8.9 0.8950 0.2076 -3.0676 8.4476
Persistence  0.0207 0.0515 0.2758 0.9504 0.9681 0.9815 0.9926 0.9962 966.9 0.9000 0.2065 -3.0832 8.5102
Panel C: Parameter estimates for copula models
Stock returns - Bid-ask spreads

c -0.3755 -0.2286 -0.1579  -0.0086 0.0048 0.0416 0.1881 8.2930.3214 0.0148 0.0963 -0.0505 2.5971

b -2.0121 -2.0086  -1.9593 -1.3570 -0.0164 1.5862 1.9352 0097 2.0356 0.0850 1.4664 -0.0645 -1.5590

a -0.7829 -0.7021  -0.4633  -0.1025 0.0233 0.0994 0.3801 3.5290.7382 -0.0162 0.2460 -0.4087 1.1521

v 6.1908 8.9543 12,1979 20.7282 37.5850 63.6554 93.8263 548.9 99.9995 44.4172 26.0986 0.4750 -0.9234
Stock returns - Default intensities

c -0.1870 -0.1385  -0.0333 0.0086 0.0693 0.2590 0.6596 0.8174.1433 0.1653 0.2209 1.5093 2.2150

b -2.1471  -2.0622 -2.0168 -1.3190 0.3870 1.6951 1.9810 38.0022.0363 0.1837 1.4668 -0.2149 -1.4834

a -0.6104 -0.4915 -0.3039 -0.0615 0.0224 0.1072 0.4002 6.6310.9743 0.0318 0.2025 0.6263 3.0254

v 8.2157 8.6381 10.4262 15.3369 24.2336 44.4626 79.4284 548.6 99.9992 32.7019 22.9692 1.2417 0.8157
Bid-ask spreads - Default intensities

c -0.3462 -0.2171 -0.1323 -0.0437 -0.0066 0.0086 0.0994 6322 0.2777 -0.0167 0.0752 -0.1227 3.8508

b -2.0353 -2.0130 -1.9991 -1.7140 -0.2303 1.1646 1.8970 4500 2.0118 -0.2421 1.4562 0.1702 -1.5744

a -0.8831 -0.6167 -0.3822 -0.1680 -0.0132 0.1279 0.3330 37.41 0.4695 -0.0202 0.2216 -0.4639 0.6792

v 8.6169 9.5970 14.3452 31.5501 54.2957 78.5693 99.9412 998.9 99.9999 56.0324 27.7647 0.0326 -1.2075
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estimates indicate considerable persistence in the ¢onditcorrelation of stock re-
turns, bid-ask spreads, and default intensities ostrmaefirm.

Panel (C) reports the parameter estimates for the dynaceipulas and, on the one
hand, shows that there is substantial cross-sectionati@riin the dependence be-
tween stock returns, bid-ask spreads, and default integsiOn the other hand, the
estimates reveal that the dependence between returns i@adispreturns and intensi-
ties, and between spreads and intensities differ conditjeradicating that each pair
of returns, spreads, and intensities is characterized é&sifeppatterns in dependence.

The temporal variation of correlations and tail dependsnselepicted in Figure
2.2.

Panel (a) plots the corresponding correlations and shoatsctirrelations exhibit
considerable time variation and differ materially across three pairs of returns,
spreads, and intensities. While dynamic correlations betweturns and spreads and
between returns and intensities range from approximat€)ye-up to 50%, correla-
tions between spreads and intensities stay at compasativedlerate levels and vary
in the range of -30% to 25%. These patterns can also be fourttidadynamic tail
dependences in Panel (b). To be precise, dynamic tail depeed also exhibit con-
siderable variation across time as well as across the tlaiegqf returns, spreads, and
intensities. With the tail dependences between returnspirehds and between returns
and intensities varying between 0% and 15% and between 092Gt respectively,
the tail dependence between spreads and intensities is@nkess pronounced and

remains in the 0% to 2.5% range.
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Figure 2.2: Dynamic correlations and tail dependences.

The figure shows the minimum/maximum range of dynamic cafiais and tail dependences of stock
returns, bid-ask spreads, and default intensities. Fdr gading day between January 2008 and De-
cember 2013 and for each of the 209 firms in the sample (seenélpd@.)), we calculate dynamic
correlations and tail dependences between the returregdqrand intensities of tlsamefirm, result-

ing in a total of each 627 correlation and tail dependencé#icmnts per firm and day. We then calculate
cross-sectional minimum and maximum values for each dapabyc correlations are computed from
Engle’s (2002) Dynamic Conditional Correlation (DCC) mblesing the_Aielli (20183) modification),
and dynamic tail dependence coefficients flom Patton’s GR@@namict copula (see Appendix]A).
The models are estimated on the basis of the residuals fro(8)XRARCH(1,1) processes applied to
monthly log-differences of mid prices, bid-ask spreads, @efault intensities.
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Figure 2.2:

Tail dependence
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2.4.2 Forecasting Liquidity- and Credit-Adjusted Value-at-Risk

We now turn to our VaR simulation study, which applies the aiyit vine copula
model discussed in Sectign P.2 to forecasting liquidityd aredit-adjusted VaR. We
first discuss our approach to incorporate liquidity and itmésk into the standard VaR
framework and present the simulation design. We then dssthes simulation and

forecasting results and compare the performance of congpdépendence models.

2.4.2.1 Simulation design

The onset of the VaR concept as a de-facto industry standgedpurred a surge in
theoretical and empirical VaR studies in the risk managerienature. Since then,
a recurring topic has been the incorporation of liquiditskrinto the standard VaR
framework which only accounts for market price risk. Beingjsat of an intense and
controversial debate in the literature, much effort haslsent on the incorporation
of liquidity risk into standard VaR and many different exdemns have been proposed
in existing studies (see, e.q., Berkowltz, 2000, Bangiale28D2, Qi and Ng, 2009).
The incorporation of credit risk, on the other hand, has btsen widely discussed in
the literature (see Crouhy etlal., 2000, for an overview)hlastso far been restricted to
portfolios of credit-linked securities, i.e., bond potibs (Andersson et al., 2001) and
portfolios of derivatives with defaultable counterpasta borrowers. (Duffie and Pan,
2001). Following the notion of stockholders as the residiamants on a firm’s assets
(Vassalou and Xing, 2004), we argue that VaR measures ok gtoxtfolios as well
need to be modified by considering potential future losses fcredit events since
stock portfolios are subject to credit risk and might suffevere losses in case of the
underlying firm being in financial distress. Because a firm uleavhen it fails to
service its debt obligations and equity, in turn, is sergisebordinately to debt, credit
losses might be passed to stockholders causing stock valssfer sharp declines
and forcing stockholders to significantly write off theirrfolios.

To formally describe our liquidity- and credit-adjustedR/ésubsequently denoted
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as LC-VaR) as well as the simulation design, we adopt the ootattroduced in the
preceding sections and, in the first step, estimate the AG{HR-GARCH(1,1) pro-
cesses for the marginal time series of Iog-diﬁeren({dgjn}, withi = 1,2,3 de-
noting the type of series (returns, spreads, intensitied)ja= 1, ...,d denoting the
corresponding firm. The resulting residua{ﬁ,.‘;t}, are then used to compute pseudo-
observations (i.e., copula data{)‘,li"’t}, by calculating the corresponding ranks via the
transformatioru” = F/(&)), with F/ denoting the empirical distribution function. In
the next step, we estimate the dynamic R-vine copula modelsags$ed in Section
[2.2, where estimation is based on the copula d{a]h} Note that, for each datyin
the estimation period, there are three observations fdr ehthed firms, resulting in
a J-dimensional random vector given as

(0}, 0, 0, ..., 0, 0,08, . (2.18)
Having estimated the R-vine copula, we employ the sampliggrahm as discussed in
DiBmann et al.[(201.3) and simulate = 500 independent observatio &Di{m}:_l,
from the specified copula mod€l. The simulated (or rather, forecasted) copula data
can then be converted to simulated log-differences of mikpr bid-ask spreads, and
default intensities in the following way. Witl( - ; v/, /) denoting the quantile func-
tion of the skewed distribution of| Fernandez and Steel (1998), the simulaitee t

series can be calculated as

) o~ X ] vy

kRHl = Hit41 + €1 = Migt1 + Titr18itr1 (2.19)
v _ viooLa) A

Eitr1 = qSkt(kui,Hl’ Vi ¥i),

where,,, and¢?,,, are computed by inserting the estimated AR-GJR-GARCH

parameters into equationis (2.2) ahd(2.3), respectivelye fbrecasted mid prices,

37This results in 500 vectors of the form as[in (2.18). Note,thatindicated by the time subscript, we
identify these vectors as the forecasted pseudo-obsangdtr dayt + 1.
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{kr“rlf+1}, bid-ask spread ,k§f+l}, and default intensitie{,kﬁj } are given by

t+1

kmtj+1 = mtJ exp (klfei,t-&-l) ’ k§g+1 = S[jexp (kﬁé,Hl) ) I<F]tj+1 = htJ exp <k§é,t+1> )

(2.20)
where the forecasted monthly default probabiliti “tj+1}, can be calculated accord-
ing to (2.15) as follows

oy 30
P =1—exp (ﬁ) khtj+1) : (2.21)

Computing LC-VaR forecast:*‘.,C-VaRtj .1(6), now essentially reduces to calculating
empirical quantiles of forecasted mid price returns, Bk-spreads, and default prob-
abilities, whered denotes the corresponding confidence level. More precisstly

rstj = sf/mﬂ being the relative spread ab{jdenoting the bid price, LC-VaR forecasts

are calculated according to

LC-VaR,,1(6) = VaR.,4(6) + L-VaR,,4(6) + C-VaR.,(6).  (222)
where
\za/Rtj+1<9) = mtJ (1 — exp (q ({kﬁi,url} ;9>>> (2.23)

is the standard VaR and

L-VaR.,,(6) = %mg'q ({rsl. ) i1-0), c-VaR.,(6) = bjg ({<pl1}:1-0)
(2.24)

denote the liquidity- and credit-adjustment, respecyiwelth §( - ; #) denoting the em-
pirical quantile function evaluated at probabiléity

The liquidity-adjustment in(2.24) is proposed by Bangial 2{2002) and accounts
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for the exogenous liquidity risk of the underlying stock. dgenous liquidity risk
is proxied by the bid-ask spread and refers to the cost of idee trading, which
results from the liquidity suppliers’ purchasing at the hittl selling at the ask price
(see Kyle, 1985, Amihud and Mendelson, 1986). Further, Cti\(tERlotes the credit-
adjustment we propose to account for default risk of the tyithg firm. The idea
of incorporating credit risk into VaR calculation is basedtbe fact that stockholders
are serviced subordinately to debt holders in case of fiahdstress and might bear a
large portion of the credit losses when default occurs. Naewe base the calculation
of C-VaRj on the simplifying assumption that stockholders loose atheir capital
invested in a particular firm in the event of default, i.e.ytlseffer a loss equal to the
bid price of the corresponding sto@aThus, we define C-VaRo be the maximum
(expected) credit loss over the next month that will not beeexled with probability

1-6.

2.4.2.2 Forecasting LC-VaR: The baseline approach

In our baseline approach, we estimate and forecast partfi@+VaR based on a port-
folio consisting of six firms from the S&P 500, resulting in &8-dimensional vector
of prices, bid-ask spreads, and default intensities fon é@cling day in the sample pe-
riod The firms included in LC-VaR forecasting are printed in bolpetyn Appendix
[A1l and compris8M Company American ExpressHewlett-Packard Tenet Health-
care, Textron andWal-Mart Stores Portfolio LC-VaR is calculated at a monthly time
horizon with a confidence level of 95% (i.®.,= 0.95). Formally, portfolio LC-VaR
forecasts are derived by replacing, kI?v{"LHl, kr“'s,tj+1, b, andkbthrl in (2.23) and[(2.24)
with the corresponding portfolio prices, returns, spreadsl intensities calculated us-
ing cross-sectional equally-weighted averages.

The marginal models and the dependence model are estinragatio-sample com-

38Note, however, that the potential recovery for stockhaldarthe event of default is a result from
renegotiation between claim holders and depends on theselegfr shareholder advantage (see
Garlappi et al., 2008). To make C-VaR computation feasibteolur purposes, we rely on the as-
sumption of zero stockholder recovery.

3%That is, we setl = 6 and obtain vectors of the form as [n(2.18) for eachday
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prising monthly log-differences of prices, bid-ask speaghd default intensities for
the 261 trading days in 2010. The estimated models are thehtadorecast LC-VaR
numbers for the trading days in January 2011. The in- andba&mples are subse-
guently shifted forward one month and the models are rerastid based on the period
from February 1st, 2010 to February 1st, 2011, where fotgpis now conducted for
February 2011. We repeat this procedure ten times, reguftin30 LC-VaR forecasts
for the 230 trading days following January 1st, 2011. Thegimat models are re-
estimated every day, whereas the dynamic R-vine copula n®delestimated every
month due to computational complexity.

Descriptive statistics on the sample firms’ stock priced;dsk spreads, and default
intensities in levels and log-differences are providedaAppendix in Tablds Al2 and
[A.3, respectively. The time evolution of the stock retuttrid;ask spreads, and default
intensities of the six companies are plotted in Fidguré 2.3.

The different panels of Figufe 2.3 highlight that all six qmamies in our sample
are characterized by volatile stock returns and incredgjugdity. For several sam-
ple companies, default intensities exhibit a U-shaped anwution with default risk
reaching its minimum at the start of 2011 and increasinguiinamost of 2011. Fur-
thermore, almost all time series exhibit extreme data paimderlining the need to
account for the non-linear dependence structure in our &ateexample, the shares of
3M Companylummeted by more than 40% on one day in August 2011 Aitterican
Express Hewlett-Packargd and Textronexperiencing losses of similar magnitude on
their equity. Quite similarly, the illiquidity of our samgffirms’ stocks spiked as well
during the sample period (see, e.g., the bid-ask spreasdl¥l@@ompanyandHewlett-
Packardin 2010). Finally, the time series of default intensities axpectedly less
volatile than the companies’ stock returns but are alsoatharized by few extreme

observations.
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Figure 2.3: Time evolution of stock returns, bid-ask spseatd default intensities of
firms included in the Value-at-Risk study.

The figure plots the time series of stock returns, bid-as&as, and default intensities for the six firms
included in the Value-at-Risk (VaR) study. The six firms ud# 3M Company American Express
Hewlett-PackardTenet HealthcareTextron andWal-Mart Stores The plots refer to the in- and out-of-
sample time periods in the VaR study, which cover the peniothfJanuary 2010 to November 2011.
For each dayt, in the sample period, stock returns are calculated usiegrid prices at daysand

t — 30. Bid-ask spreads are calculated as the difference betasieand bid quotes. Default intensities
are extracted from CDS spreads according to the procedscastied in Sectidn 2.3 and have a horizon
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Figure 2.3: Time evolution of stock returns, bid-ask spseatd default intensities of

firms included in the Value-at-Risk study (continued).
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Figure 2.3: Time evolution of stock returns, bid-ask spseatd default intensities of
firms included in the Value-at-Risk study (continued).
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In the next step, we shortly comment on the parameter edsrfat the marginal
models of the six sample companies in our Value-at-Risk stddgrage parameter
estimates for the marginal distributions of monthly lodfetences on daily mid prices,
bid-ask spreads, and default intensities are presenteabiieP.4.

The parameter estimates for the mean dynamics show thatstthes first two AR
lags are strongly significant for stock returns, bid-askeagds, and default intensi-
ties. The results on the Ljung-Box test up to ten lags (denasedB(10) test) further
indicate that the AR(3) processes are successful in capgttheserial dependence ev-
idenced in Sectioh 2.3. The estimation results for the wagadynamics, on the other
hand, are fairly standard. Of particular note are the esésfar thes parameter which
captures asymmetry in volatility. While tieestimates for stock returns and bid-ask
spreads predominantly reveal only mild statistical evadeof asymmetry in volatility,
volatility of default intensities appears to be charaetediby strong asymmetry across
all six firms Further, the estimates for the skewtatistribution indicate fat tails and
slight skewness for the returns, spreads, and intensiti@®st firms. Finally, to check
the adequacy of the variance models, we apply the LB(10) ¢eitet squared stan-
dardized GARCH residuals. Impressively, the GJR-GARCH modelshble to pick
up most of the second-moment dependence inherent in thesemes data, as indi-
cated by the low number of rejections for the LB(10) test. Wechade from Tablé 2]4
that the marginal AR-GJR-GARCH models are capable of delivahegwvhite-noise
residuals required to obtain unbiased estimates for therdkgnce parameters of our
dynamic R-vine copula model.

To get a better understanding of our model’'s ability to aotdar non-linear de-
pendences in market price, liquidity, and credit risk, wecklly review the temporal
variation in the selected parametric pair-copulas in ourasyic R-vine copula. The

percentages of selected parametric bivariate pair-ceuashown in Table 2.5.

“ONote, however, that the estimated values fordlparameter of default intensities are positive through-
out the sample firms, which is somewhat counterintuitiveeinegative AR residuals are associated
with good news (see Sectién P.2). That is, the positive \walply an upward revision of volatility
in response to good news.



Table 2.4: Average parameter estimates for marginal bigtdns.

The table reports average parameter estimates for the maadistributions of monthly log-differences on daily midqes, bid-ask spreads, and default intensities for the | :
six firms investigated in our Value-at-Risk (VaR) study. Hiefirms include3M CompanyAmerican ExpresdHewlett-PackardTenet HealthcargTextron andWal-Mart
Stores The marginal distributions are modeled using AR(3)-GWRRGH(1,1) processes with skewedlistributed innovations as discussed in Sedtioh 2.2. iBtpwtith an
in-sample comprising the 261 trading days in 2010, the ediom period for the marginal models is subsequently shiiteward one day after each VaR forecast, resulting
in 230 re-estimations. The parameter estimates shown itabite result from averaging across the re-estimationsaiee persistence (denoted Var. Pers. in the table) is
calculated ag + a + %6. The last two columns show the number of rejections (at tAg [&vel) across all 230 re-estimations from Ljung-Boxgdst serial correlation up
to 10 lags as applied to the standardized and squared stiretaresiduals.
Mean dynamics Variance dynamics #Rej. of LB(10) test
u o1 2 o3 w B 0 Var. Pers. v v Resid. Sg. Resid.

Panel A: Stock returns

3M Company 0.9980 0.0238 -0.0762 0.0006 0.0000 0.9190 0.0550 0.0239 9859. 17.5909 0.8578 0 0

American Express 0.9460 0.0292 -0.0317 0.0001 0.0000 0.9097 0.0305 0.0176 9490. 11.4982 0.8934 0 7

Hewlett-Packard  0.9328 0.0993 -0.1152 0.0011 0.0000 0.9252 0.0157 0.0599 9709. 6.6431 0.9982 9 0

Tenet Healthcare 0.9501 0.1252 -0.1455 0.0004 0.0000 0.9620 0.0143 0.0126 9826. 9.8417 0.8842 2 16

Textron 1.0466 0.0071 -0.1040 -0.0013 0.0000 0.9307 0.0015 0.0801.972 5.2423 1.0024 0 0

Wal-Mart Stores  0.8942 0.0459 0.0090 0.0009 0.0000 0.9931 0.0051 -0.0204 9880. 3.2150 0.9207 0 0

Panel B: Log-differences of bid-ask spreads

3M Company -0.0131 -0.0665 -0.0448 -0.0457 0.0018 0.9807 0.0347 1305 0.9896 3.3627 0.9713 1 0

American Express 0.0189 0.0745 0.1175 -0.0390 0.0029 0.8766 0.0652 0.1195 0013. 5.5385 0.9406 0 0

Hewlett-Packard  0.1082 -0.0116 -0.0103 -0.0467 0.0092 0.9862 0.0281 -6.057 0.9855 29.9999 1.0737 0 0

Tenet Healthcare 0.0317 0.0119 0.0467 -0.0763 0.0046 0.9963 0.0055 -0.0196 .9920 8.9658 1.0573 0 0

Textron -0.0532 0.0741 0.0498 -0.0490 0.0066 0.9910 0.0249 -0.06370.9841 29.8826 1.0429 9 0

Wal-Mart Stores  0.0055 0.0357 -0.1111 -0.0123 0.0568 0.8016 0.2413 -0.16130.9623 2.1100 0.8096 0 0

Panel C: Log-differences of default intensities

3M Company -0.0545 0.0511 0.0244 0.0005 0.0000 0.8921 0.0035 0.1667 9790. 3.8639 1.0657 0 0

American Express -0.2948 -0.1048 0.0061 0.0001 0.0001 0.4055 0.1286 0.3970.7326 2.9294 0.9821 0 61

Hewlett-Packard -0.1336 0.0266 -0.0025 0.0006 0.0001 0.6981 0.0082 0.2532 .8330 4.0834 1.0327 0 42

Tenet Healthcare -0.1938 -0.0026 -0.0125 0.0002 0.0001 0.5834 0.0612 0.35580.8225 3.0183 0.9840 0 0

Textron -0.0668 0.0419 0.0231 -0.0011 0.0001 0.7984 0.0000 0.2218 .9098  3.1483 0.9319 0 0

Wal-Mart Stores  -0.0910 -0.0142 0.0034 0.0008 0.0000 0.9336 0.0025 0.1194 .9958 2.9655 1.1106 0 0
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Table 2.5: Temporal variation of selected parametric papulas.

The table reports results on the selected bivariate paranpetir-copulas in our dynamic R-vine copula model for eastimation period included in our Value-at-Risk
(VaR) study. The R-vine copula model is estimated on pseimd@rvations of standardized log-differences of mid grided-ask spreads, and default intensities for six
firms from the S&P 500, resulting in 153-(18 - 17/2) parametric pair-copulas that need to be specified anah&tstd for each R-vine copula estimation. The results in the
table show the number of a particular parametric copulalfalpging selected as a percentage of the number of pair-aspolbe specified in each R-vine copula estimation
(thatis, 153). The candidate copulas include dynamic eessof the standard normaJ,(rotated) Clayton, (rotated) Gumbel, and (rotated) Jgmikz where we follow the
dynamization approach suggested by Paiton (2006) (asedtih AppendiX_A). The selection of the bivariate pair-dagus based on the sequential method as proposed

by|DiRmann et &l. (2013) and conducted using Akaike’s Infatiam Criterion (AIC) as the selection criterion to be mied.

Rotaed J

Estimation period Parametric copula families (in %)

Normal t Clayton Rotated Clayton Gumbel Rotated Gumbel  Joe
01/2010 - 01/2011 51.63 1242 1.31 2.61 8.50 14.38 2.61
02/2010 - 02/2011 5556  5.88 1.96 3.92 5.88 9.15 12.42
03/2010 - 03/2011 51.63  5.88 2.61 0.65 7.84 15.69 3.27
04/2010 - 04/2011 56.21 11.76 3.27 3.92 5.23 9.80 5.23
05/2010 - 05/2011 56.21 12.42 1.96 1.96 8.50 11.76 3.92
06/2010 - 06/2011 5752 11.11 3.27 5.23 3.27 7.84 5.88
07/2010 - 07/2011 5425 7.84 0.00 4.58 9.15 16.99 2.61
08/2010 - 08/2011 56.21  8.50 3.27 261 5.23 13.73 5.23
09/2010 - 09/2011 48.37 6.54 2.61 3.27 13.73 14.38 7.19
10/2010 - 10/2011 49.02 8.50 3.27 2.61 11.76 15.03 3.27

6.54
5.23
12.42
4.58
3.27
5.88
4.58
5.23
3.92
6.54
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The percentages given in Tablel2.5 show that for around 50ftedbivariate pair-
copulas, the tail independent normal copula is selectedvdat 5.88% to 12.42% of
the pair-copulas are modeled using the symmetrically gplethdent Studentiscop-
ula. Conversely, 30% up to 45% of the pair-copulas are modededy either upper-
or lower-tail dependent copulas underlining the notiort tha dependence structure
of our data is indeed significantly non-linear and asymroetfurthermore, the per-
centages for several parametric copulas vary considexilbiyng the course of our
sample period thus confirming the need to employ time-vgrgopulas. For example,
the upper-tail dependent Gumbel copula is chosen for 8.5@keair-copulas for the
first of our estimation periods with this percentage plumnagto 3.27% for the period
of June 2010 to June 2011 and increasing again to 13.73%dqethod of September
2010 to September 2011.

The results so far emphasize that, while much of the depe&edaherent in market
price, liquidity, and credit risk can be adequately modelsithg tail independent nor-
mal copulas, the dependence structure of our data is alsaatkazed by significant
asymmetric tail dependence. However, our particular edton approach for the R-
vine copulas specifically tries to capture as much depemdas@ossible in the upper
trees of the vine structure. As a consequence, it could hertbst of the unconditional
dependence in our data is actually linear while the tail ddpat parametric copulas
are only selected in lower (less important) trees in whi@éhdbnditional dependence
is modeled. To answer this question, Tdblg 2.6 presentegmonding percentages of
selected parametric pair-copulas separately by the rigpéee in the R-vine model.

The results of Table 2.6 show an opposite picture. The noowojlila is selected
for only 35.88% of the pair-copulas in the first tree while tast majority of bivariate
(unconditional) data pairs are modeled using tail depenparametric copula@ In
the lower trees of the R-vines, the percentage for the norolle increases up to

65% while several of the tail dependent parametric copulasna longer selected.

“Un TablelA2 in the Appendix, we additionally tabulate théested parametric pair-copulas in the first
R-vine tree for all bivariate data pairs.



Table 2.6: Treewise selection of parametric pair-copulas.

The table reports average results on the treewise seleatftibivariate parametric pair-copulas in our dynamic R-viopula model across the estimation periods included
in our Value-at-Risk (VaR) study. The R-vine copula modastimated on pseudo-observations of standardized Iégrelifces of mid prices, bid-ask spreads, and default
intensities for six firms from the S&P 500, resulting in 153 {8- 17/2) parametric pair-copulas that need to be specified anah&tgtd for each R-vine copula estimation.
The 18-dimensional R-vine copula is composed of 17 treesy@vbopula selection is based on the sequential method pssa® by DiBmann et al. (2013) and conducted
using Akaike’s Information Criterion (AIC) as the selectioriterion to be minimized. Each treg,requires the selection and estimation of-18 bivariate parametric
pair-copulas. The results in the table show the number ofricpkar parametric copula family being selected in tree= 1,...,17, as a percentage of the total number
of pair-copulas to be specified in treéhat is, 18— i). The resulting percentages are averaged across all &stirrations conducted in our VaR study (see Secfigh 2.4).
The candidate copulas include dynamic versions of the atdnmibrmal}, (rotated) Clayton, (rotated) Gumbel, and (rotated) Jgrilzg where we follow the dynamization
approach suggested by Patton (2006) (as outlined in App&jdi

Parametric copula families (in %)

Tree Normal t Clayton Rotated Clayton Gumbel Rotated Gumbel Joe  RotatedJ
1 35.88 18.82  0.59 1.18 7.06 22.94 1.76 11.76
2 46.88  5.00 5.00 2.50 11.25 12.50 6.88 10.00
3 57.33  8.00 0.00 9.33 10.00 10.00 2.67 2.67
4 47.14  15.00 3.57 2.86 571 17.86 4.29 3.57
5 5231 11.54 3.85 0.77 9.23 13.85 1.54 6.92
6 55.00 9.17 1.67 1.67 9.17 10.00 8.33 5.00
7 56.36 10.00 4.55 3.64 6.36 8.18 5.45 5.45
8 62.00 9.00 1.00 6.00 3.00 9.00 6.00 4.00
9 64.44  7.78 111 3.33 7.78 6.67 5.56 3.33
10 62.50 1.25 5.00 1.25 3.75 11.25 10.00 5.00
11 61.43 7.14 1.43 0.00 11.43 11.43 4.29 2.86
12 61.67 1.67 0.00 1.67 6.67 13.33 8.33 6.67
13 52.00 6.00 4.00 4.00 8.00 12.00 10.00 4.00
14 65.00 5.00 0.00 2.50 10.00 10.00 5.00 2.50
15 56.67  3.33 3.33 3.33 10.00 13.33 3.33 6.67
16 65.00 0.00 0.00 5.00 5.00 15.00 5.00 5.00
17 50.00 0.00 0.00 10.00 10.00 20.00 10.00 0.00
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These results further underline our finding that our data&écdexhibit strong non-
linear dependence.

We now turn to the main results of our VaR study in which wenitéo calculate
LC-VaR forecasts for the portfolio profits and losses (P/lijraet, PLff. The portfolio

P/L are calculated according to

PL = by — a1, (2.25)

whereb, anda; denote the portfolio bid and ask price, respectively. Thaagortfolio
P/L are then compared to the LC-VaR forecasts estimated ahfédeace level of
6 = 0.95 using monthly log-differences of mid prices, bid-askesgis, and default
intensities. In Figuré 214, we plot the realized out-of-plarportfolio P/L against the
corresponding LC-VaR forecasts calculated from our dynd®aiine copula model.
In Panel (a) of Figuré_ 214, we first plot the realized portddi/L against the esti-
mated LC-VaR forecasts for the out-of-sample period thaerothe full year 2011.
The plot shows that our LC-VaR forecasts stay relatively eltis the realized P/L
throughout the out-of-sample. Even more importantly, tike\laR estimates appear
to capture the downward movements of the portfolio P/L qatequately without un-
derestimating portfolio risk. This last finding is emphasidy the plot in Panel (b)
in which we illustrate the distance between the realizedflay P/L and the LC-VaR
forecasts as well as the LC-VaR exceedances. First, we natdht distances be-
tween the P/L and the LC-VaR in case the LC-VaR is not exceedecttively small
throughout the out-of-sample. Consequently, companiesoying the LC-VaR based
on our dynamic R-vine copula model are able to limit their esceegulatory capital
derived from the LC-VaR forecasts. At the same time, the dcsta are also small
to non-existent in case the portfolio losses exceeded th&¥dR:-Our model thus ap-
pears to produce small Expected Shortfall estimates as $&tlond, our R-vine model
also seems to forecast portfolio P/L quite adequately basede number of times the

portfolio losses exceed the respective daily LC-VaR forec@his second finding is
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highlighted in Panel (c) of Figufe 2.4 in which we only ploetlosses that exceed the
LC-VaR forecasts.

Our analysis so far has shown that the LC-VaR forecasts franadymamic R-vine
copula model adequately predict portfolio losses. Conggtyeur results support the
notion that integrating information on the dependence betwmarket price, liquidity,
and credit risk into a VaR model is vital for accurate riskefcaisting. However, we
cannot rule out the possibility that the LC-VaR forecasts s#neate solely capture
market price risk and that the effect of liquidity and cretbsk is negligible. If this
were the case, the good fit of our LC-VaR model would simply be ttuchance
as it simply forecasts market price risk employing a sigaificamount of redundant
information on liquidity and credit risk. Figufe 2.5 shovmst the opposite is true.

In Figure[2.5, we decompose the LC-VaR forecasts into therketgrice (VaR),
liquidity risk (L-VaR) and credit risk component (C-VaR) anapthe time evolution
of the three components. The upper Panel (a) of Figufe 2.pawes the time evolution
of the standard market price VaR of our stock portfolio to iz VaR forecasts. As
expected, the LC-VaR forecasts predominantly consist okthedard VaR with the
market price component. However, a significant part of theMa®- forecasts (1%
to 5%) are due to the liquidity and/or credit components. plod for the liquidity
component given in Panel (b) shows that liquidity risk playsignificant role in the
forecasting of LC-VaR as the liquidity component accountafoto 2.5% of the LC-
VaR forecasts. Furthermore, the percentage of the liqumbimponent of the LC-
VaR shows only little time variation and decreases durirgydburse of our out-of-
sampl@ Finally, Panel (c) of Figure_2.5 shows that up to 2% of the alisd_C-VaR
forecasts are due to credit risk. More importantly, thethetaweight of the credit
component in the LC-VaR forecasts varies significantly dudar sample period, thus
again underlining the need to account for the time dynamicsarket price and credit

risk.

42This finding again reflects the increase in the overall liguidf stocks during our sample period as
shown in Figuré 2]3.
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Figure 2.4: Realized portfolio losses and Value-at-Riskdasts.

The figure shows the realized out-of-sample portfolio pscditd losses (P/L) on our sample portfolio
as well as the forecasts of liquidity- and credit-adjustedlig-at-Risk (LC-VaR) calculated from our
dynamic R-vine copula model. The portfolio P/L at timePLff, is calculated according to I?fL:

b, — a;_1, whereb; anda; denote the portfolio bid and ask price, respectively. Thema portfolio is
composed of six firms from the S&P 500 includiBiyl CompanyAmerican ExpresdHewlett-Packard
Tenet HealthcareTextron andWal-Mart Stores The forecasting period covers the 230 trading days
following January 1st, 2011. Starting with an in-sample pdsing the 261 trading days in 2010 and
an out-of-sample covering January 2011, the in- and oslaaiples are shifted forward one month with
the R-vine copula model being re-estimated. LC-VaR forecare calculated at a confidence level of
6 = 0.95 based on monthly log-differences of mid prices, bid-ggkads, and default intensities.
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Figure 2.5: Decomposing liquidity- and credit-adjustedligaat-Risk.

The figure presents the time evolution for the market pricaR)V liquidity (L-VaR), and credit com-
ponent (C-VaR) of liquidity- and credit-adjusted ValueRisk (LC-VaR) forecasts. LC-VaR forecasts
are computed from the our dynamic R-vine copula model at didemce level ofo6 = 0.95 based
on monthly log-differences of mid prices, bid-ask spreaa®] default intensities for the six firms in
our sample portfolio. The six firms inclu@M CompanyAmerican ExpresHewlett-Packard Tenet
Healthcare Textron andWal-Mart Stores The forecasting period covers the 230 trading days follow-
ing January 1st, 2011. Starting with an in-sample compyisire 261 trading days in 2010 and an
out-of-sample covering January 2011, the in- and out-ofgdas are shifted forward one month with
the R-vine copula model being re-estimated.
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2.4.2.3 Neglecting dynamics and non-linearities in depewtice

In the last part of our empirical study, we address the qoestinether the additional
flexibility of using (a) a dynamic instead of a static modedl &) a copula instead of a
correlation-based model is indeed necessary for accus&téorecasting. To this end,
we compare the forecasting accuracy of our proposed dynBmvioce copula model
to that of a static R-vine model as welllas Engle’s (2002) DCCehod

As a first step, we compare the realized out-of-sample darfboofits and losses on
our sample portfolio with the forecasts of the LC-VaR caltedafrom the respective
dependence model. Here, we are especially interested umttting the differences
of both dependence models relating to the portfolio profits l@sses in our sample.
The results of this comparison are presented in Figute 2.6.

The upper parts of Panels (a) and (b) of Figuré 2.6 plot tHeezhprofits and losses
of our portfolio against the LC-VaR forecasts estimated feamstatic R-vine copula
and DCC model, respectively. The plots show that for both rspdee LC-VaR fore-
casts stay relatively close to the realized portfolio IgsSénis finding is confirmed by
the middle plots in both panels in which we illustrate thealises between the real-
ized portfolio P/L and the LC-VaR forecasts. Compared to thheesponding plots for
our dynamic R-vine copula model, however, both models apjpda@ more conserva-
tive as both the distances between the realized P/L and théalRCforecasts are larger
and the number of VaR-exceedances are (unnecessarily)aﬁ@aThis finding is con-
firmed in a direct comparison of the different models. Theilteof this comparison
are plotted in Figure217.

The plots presented in Figure 2.7 clearly show that both tdécsvine copula and
the DCC model overestimate portfolio risk to a significantréeg While both models
yield LC-VaR forecasts that are exceeded on only few tradeygsdour dynamic R-

vine copula model produces forecasts that not only adelyuzdpture extreme losses

43In untabulated results, we further check the forecastimgiracy of all three models by performing
tests of the models’ conditional coverage (see Christefieiand Pelletier, 2004). The results of these
tests show that none of the models is rejected.
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but also limit the use of (regulatory) capital. Neglectihg time dynamics and non-
linearities in the dependence structure between market,drquidity, and credit risk
thus leads to an excessive allocation of capital that is retlad and that ultimately
leads to unnecessarily high capital costs. In fact, the ¢atiwea difference between
our dynamic R-vine copula and the static R-vine alternatigesiases to more than 200
USD at the end of our out-of-sample period showing the ecaceliy highly signifi-
cant potential to limit capital costs. Furthermore, as enied by Panel (c) of Figure
2.1, accounting for time variation in the dependence strecof the three LC-VaR

components seems to be more important than accounting felimear dependence.
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Figure 2.6: Realized portfolio losses and Value-at-Riskdasts from alternative
dependence models.

The figure shows the realized out-of-sample portfolio psafitd losses (P/L) on our sample portfolio as
well as the forecasts of liquidity- and credit-adjustedMaht-Risk (LC-VaR) calculated from alternative
dependence models. The alternative dependence modeldénalstatic R-vine copula model as well
as| Engle’s|(2002) Dynamic Conditional Correlation (DCC)dab The portfolio P/L at time, PLff,

is calculated according to |th = by — a_1, whereb; anda, denote the portfolio bid and ask price,
respectively. The sample portfolio is composed of six firnesfthe S&P 500 includin@M Company
American ExpresHewlett-PackardTenet HealthcareTextron andWal-Mart Stores The forecasting
period covers the 230 trading days following January 1st12@tarting with an in-sample comprising
the 261 trading days in 2010 and an out-of-sample coveringalg 2011, the in- and out-of-samples are
shifted forward one month with the dependence models behsgtimated every day. LC-VaR forecasts
are calculated at a confidence levebof 0.95 based on monthly log-differences of mid prices, bid-ask
spreads, and default intensities.
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Figure 2.7: Dynamic R-vine copula model versus alternategetidence models.

The figure compares the liquidity- and credit-adjusted ¥adtrRisk (LC-VaR) forecasts from the dy-
namic R-vine copula model to the LC-VaR forecasts from tladicR-vine copula model and Engle’s
(2002) Dynamic Conditional Correlation (DCC) model. LCR/dorecasts are calculated at a confi-
dence level ob = 0.95 based on monthly log-differences of mid prices, bid-agsleads, and default
intensities of six firms from the S&P 500 includidg§m CompanyAmerican Expresdewlett-Packard
Tenet HealthcareTextron andWal-Mart Stores The forecasting period covers the 230 trading days
following January 1st, 2011. Starting with an in-sample pasing the 261 trading days in 2010 and
an out-of-sample covering January 2011, the in- and osiaaiples are shifted forward one month with
the dynamic R-vine model and the alternative dependenceinbeing re-estimated every month and
every day, respectively. Portfolio profits and losses (RA)imet, PLff, are calculated according to

PLtpf = by — a_1, whereb, anda; denote the portfolio bid and ask price, respectively.

(a) Dynamic R-vine vs. Static R-vine (b) Dynamic R-vine vs. DCC model
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Figure 2.7: Dynamic R-vine copula model versus alternatejgetidence models

(continued).

(c) DCC model vs. Static R-Vine
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2.5 Conclusion

In this paper, we present first empirical evidence of pegsisind time-varying asym-
metric extreme dependence in equity prices, liquidity, aratlit risk. We propose to
use dynamic R-vine copulas to model the joint distributiothef market price, liquid-
ity, and credit risk of a multivariate stock portfolio at teecurity-level. Our model
is extremely flexible yet at the same time still tractableref@ high-dimensional
multivariate distributions and accounts for possible tvaeation in a distribution’s
linear and non-linear dependence structure. Using therdyn&-vine copula model,
we document the existence of significant time-varying tep@hdence between the
returns, the liquidity, and the default intensities of c@mies listed in the S&P 500.
While non-linear dependence has been shown to exist in sedakns and between
individual stock and market liquidity, this paper is the tfitg confirm that the joint
distribution of equity returns, liquidity, and defaultkigs characterized by strong tail
dependence as well.

We then propose a liquidity- and credit-adjusted Valu®isk (LC-VaR) that not
only accounts for market price risk, but also for sudden paakliquidity and default
probabilities. Using a portfolio of six companies from th&FS500, we forecast the
portfolio’s LC-VaR with the help of our dynamic R-vine copuladel. Not only do
we find the LC-VaR forecasts to adequately capture downsséiewie also find our dy-
namic R-vine copula model to significantly outperform statiee copula or dynamic
correlation-based models. While both benchmarks overaggiportfolio risk, our dy-
namic R-vine model significantly saves on risk capital whtléha same time yielding
an acceptable number of VaR-violations.

Although our empirical study primarily deals with risk f@aesting, our main finding
is not limited to the field of risk management. In fact, ourgwsed dynamic R-vine
copula model can be used in any context in financial economiadich one wishes
to model the dynamic tail dependence in a high-dimensioatd det. Consequently,

future research should address the question whether dgriiwines are (economi-
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cally) significantly superior to static or correlation-bdsmodels in other application
like, e.g., asset pricing studies in the spirit of Ruenzi £(2013), Ruenzi and Weigert

(2013), and Meine et al. (2015).
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Chapter 3

Systemic Risk of Insurers Around the

Globe

“SlFls are financial institutions whose distress or disonyefailure, because of their
size, complexity and systemic interconnectedness, wousskagnificant disruption

to the wider financial system and economic activity.:

Financial Stability Board, 11/04/2011

3.1 Introduction

At the climax of the financial crisis of 2007-2009, Americamternational Group

(AlG) became the first example of an insurance company tlogtined (and received)
a bailout due to it being regarded as systemically importsot only did AIG’s near-

collapse come to the surprise of most economists who camsldg/stemic risk to be
confined to the banking sector, but it also spurred a realgrraf insurance regula-
tion towards a macroprudential supervision of so-calledbgl systemically important
insurers (G-SlIs). As a consequence, the Financial StaBibard (FSB) together with
the International Association of Insurance Supervisoh$) recently published a list
of nine G-SllIs which will ultimately face higher capital atabs absorbency require-

ments. In their methodology, insurers are deemed to be ¢tésys relevance to the
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global financial sector, if they are of such size and glob@roonnectedness that their
default would cause severe disruptions in the financiabsectd subsequently the real
economy.

However, the (heavily criticize@ methodology proposed by the IAIS has only un-
dergone limited empirical scrutiny so far. Most importgnthe relation between the
interconnectedness and systemic risk of insurers has eotdrealyzed before. In this
paper, we intend to fill this gap in the literature by inveatigg whether the intercon-
nectedness of insurers with the global financial sector dit@d to their size increased
the insurers’ individual contribution to systemic risk. #& main result of our analysis
of a panel of global insurers from 2000 to 2012, we find thagritdnnectedness only
increases the systemic vulnerability of large life and titsminsurers. In contrast, the
impact of an insurer’s interconnectedness on its coniohub systemic risk is much
less clear.

Economists have long neglected the potential of the inggraector to destabilize
the whole financial system. In contrast to banks, insuregsiat subject to depositor
runs and thus do not face the risk of a sudden liquidity drahmgld more capital (see
Harrington| 2009) and are less interconnected horizgniath the rest of the financial
sector. However, the case of American International Gréuf) showed that insurers
can become systemically important nonetheless if theygmgz heavily in business
activities outside the traditional insurance sector. Aesequence, the Financial Sta-
bility Board urged the IAIS to identify G-Slis that could patally destabilize the
global financial sector and to implement new regulationtiese insurers. Building on
the experiences made during the AIG case/ thellAIS (201@ntgcpublished a pro-
posal for a methodology for identifying G-Sllis that citeswrmore and non-insurance

activities, insurer size and interconnectedness as therrdayers of systemic risk in

“For example, the Secretary General of the Geneva Assagjalidin Fitzpatrick, criticized the 1AIS
indicators for penalizing risk diversification.

45Although one could possibly think of an “insurer run” on lifesurance policies, this possibility ap-
pears to be highly unlikely as insurance customers are pfiaected by guarantees and as cancelling
a long-term life insurance policy often implies the rediiaa of severe losses. Consequently, there
exists no example of a default of an insurer in the past thaex significant contagion effects (see,
e.g., Eling and Pankoke, 2014).
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the insurance industry.

Both the question whether insurers can actually becomersicd#ly important and
the question whether the IAIS’s proposed methodology itable for identifying G-
SlIs remain relatively unanswered in the literature. Eadgtments of the topic of sys-
temic risk in insurance include the works by Acharya et ad0€p), Harrington! (2009)
and/ . Cummins and Welss (20@).In the latter, it is hypothesized that non-core ac-
tivities and high degrees of interconnectedness are tmeapyi causes of insurers’
systemic relevance. The interconnectedness of insureisasempirically analyzed
by Billio et al| (2012) who argue that illiquid assets of instg could create systemic
risks in times of financial crisis. In a related study, Baluthle(2011) conclude that
systemic risks exist in the insurance sector even thoughareesmaller than in bank-
ing. More importantly, systemic risk in insurance appearbdve grown partly as a
consequence to the increasing interconnectedness oemssamd their activities out-
side the traditional insurance business. Chenlet al. (20043 gpecial emphasis on
the insurance sector but find in their analysis of creditdéfawap and intraday stock
price data that the insurance sector is exposed but doesmniizite to systemic risks
in the banking sector. While the former two studies are onkyceoned with the in-
terconnectedness of banks and insurers, Weil3 aitdivtkel (2014) also study the
impact of size, leverage and other idiosyncratic charesties included in the 1AIS
methodology on the systemic risk exposure and contributfod.S. insurers during
the financial crisi@ Most importantly, they find that insurer size seems to haenlae
major driver of the systemic risk exposure and contributibt.S. insurers. Several of
the IAIS indicators (like, e.g., geographical diversifioa), however, do not appear to
be significantly related to the systemic risk of insurersafy, \Weil3 and Mihlnickel
(2015) support the too-big-to-fail conjecture for insgrby showing that insurer merg-

ers tend to increase the systemic risk of the acquiring @rsur

460ther analyses of systemic risk in insurance include theksvarf [Eling and Schmeiset (2010),
Lehmann and Hofmahn (2010) and van Lelyveld et al. (2011).

4In a related study, Cummins and Weiss (2014) analyze theacteistics of U.S. insurers that are
systemically important based on the insurers’ SRISK [(se®A@ et all, 2012).
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We complement the existing empirical literature on systensk in insurance by
performing the first panel regression analysis of the syistesk exposure and contri-
bution of international insurers. In particular, we tegbbtheses that size and intercon-
nectedness could drive the systemic importance of intematinsurers. To measure
an insurer’s exposure and contribution to the fragility led financial sector, we fol-
low |Anginer et al. ((20140,a) and Weil3 andiMnickel (2015| 2014) and employ the
Marginal Expected Shortfall (MES) of Acharya ef al. (2018gaCoVaR methodol-
ogy of|Adrian and Brunnermeler (2015), respectively. We thstimate these mea-
sures for a sample of 253 international life and non-lifeuness for the period from
2000 to 2012 and perform panel regressions of the quarteB$ MndACoVaR esti-
mates. As independent variables, we use insurer-spectfimacroeconomic variables
that have been discussed in the literature as potentiadrivf systemic risk. Most
importantly, we employ the measure of interconnectednessosed by Billio et al.
(2012) which is based on a principal component analysisestbck returns of finan-
cial institution@

Based on a sample of 253 life and non-life insurers, we findegysst risk in the
international insurance sector to be small in comparisoprévious findings in the
literature for banks. However, confirming the results of Bhlet al. (2011), we find a
strong upward trend in both the exposure and contributionsfrers to the fragility
of the global financial system during the financial crisisour panel regressions, we
find the interconnectedness of large insurers with the fiahsector to be a signif-
icant driver of the insurers’ exposure to systemic risk. dmtcast, the contribution
of insurers to systemic risk appears to be primarily drivgrthe insurers’ size and
leverage.

The remainder of this article is structured as follows. BedB.2 introduces the
data and the methodology used in our empirical study. SE&® presents the results

of our investigation into the determinants of systemic iiskhe insurance industry.

480ther potential measures of the interconnectedness ofimldnstitutions include the measures pro-
posed by Billio et al.|(2012) arnd Chen et al. (2014) which anlbbased on Granger causality tests.
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Concluding remarks are given in Sectionl3.4.

3.2 Data

This section describes the construction of our sample aesepis the choice of our

main independent variables as well as descriptive stisfiour data.

3.2.1 Sample construction

We construct our data sample by first selecting all publisled international insurers
from the dead and active firm lists ithomson Reuters Financial Datastrearfor
reasons of relevance, we concentrate on insurance firmdat@hassets in excess of
$ 1 billion at the end of 2000. We then omit all firms for whiclalt price data are
unavailable inDatastream Next, we exclude all secondary listings and nonprimary
issues from our sample. Further, we exclude Berkshire Hathawhich is listed as
an insurance company Datastreamdue to its unusually high stock price. Balance-
sheet and income statement data are retrieved fromhbenson Worldscopsatabase
and all stock market and accounting data are collected in dboars to minimize a
possible bias in our results stemming from currency risk.

Finally, we split our data sample into life and non-life insxs. The definition of
life and non-life insurance companies in the company listDatastreamis some-
what fuzz;@ Therefore, the industry classification Diatastreamis cross-checked
with the firms’ SIC code (Worldscope data item WC07021, SIC sddl&ll, 6321,
6331) and the Industry Classification Benchmark (ICB) code (M¢adpe data item
WCO07040, ICB supersector 8500) to exclude firms which cannotdzelg classified
as life or non-life insurance compaanAdditionally, all company names are manu-
ally screened for words suggesting a non-insurance natiuhe companies’ business

and the respective companies being excluded from the sampt#al, we end up with

“SFor example, several medical service plans and medicalesht# companies are listed as life insur-
ance companies iDatastrean®s company lists.
50Consequently, HMO, managed care and title insurance copare not included in the final sample.
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an international sample of 253 insurers, containing 1¥ifiturers and 141 non-life
insurers. For increased transparency, the names of afiersun our sample are listed
in AppendixB.1.

In the following subsections, we define and discuss thereiffiedependent and in-
dependent variables we use in our empirical study. An oeenaf all variables and

data sources is given in Appendix B.2

3.2.2 Systemic risk measures

Our analysis focuses on the exposure and contribution a¥icheal insurers to the
systemic risk of the global financial sector during the pg&2600 through 2012. Con-
sequently, we employ an insurer’s Marginal Expected SAb(ES), Systemic Risk
Index/Capital Shortfall (SRISK) andCoVaR as main dependent variables in our re-
gression analyses. We estimate the three measures of gysitgnfor each quarter in
our sample using daily stock market data for our sample e@rsuOur choice of these
systemic risk measures is motivated by the fact that thessunes have been exten-
sively discussed in the literature and are also used bya&msland central banks for
monitoring financial stability (see Benoit et al., Z'DQ)AS our first measure of sys-
temic risk, we use the quarterly Marginal Expected Shdnifalch is a static structural
form approach to measure an individual insuregdosureo systemic risk. It is de-
fined by Acharya et all (2010) as the negative average retuemandividual insurer’s
stock on the days a market index experienced its 5% worsbmes. As a proxy for
the market’s return, we use the World Datastream Bank Indexiirmain analysis.
Next, we implement th\CoVaR method proposed by Adrian and Brunnermeier
(2015), which is based on the tail covariation between thams of individual finan-
cial institutions and the financial system. We u€goVaR as an additional measure of

an insurer'ssontributionto systemic risk as Adrian and Brunnermeler (2015) criticize

5IAIl three systemic risk measures we employ share the prpplest they are all based on economic
theory and capture different aspects of systemic risk. ésthe recent financial crisis, several other
measures of systemic risk have been proposed in the literauwrther examples for such measures
apart from those used in this study are dug to De Jonghe|(zZBi@ng et al.[(2012), Schwaab et al.
(2011), Hautsch et al. (2015%), Hovakimian et al. (2012) andt&\ét al. (2015).
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the MES measure for not being able to adequately addressdbydticality that arises
from contemporaneous risk measurenigniVhile the unconditionahCoVaR esti-
mates are constant over time, the conditioh@bVaR is time-varying and estimated
using a set of state variables that capture the evolutiomibfisk dependence over
time. However, since we calculatdCoVaR based on stock prices for a given quarter,
the standard state variables used for estimating the ¢onditCoVaR show almost
no time-variation. Consequently, we focus on estimatinguth@nditional version of
ACoVaR in our analysis. An insurer’s contribution to systems& is then measured
as the difference between CoVaR conditional on the insureighender distress and
the CoVaR in the median state of the institution. A lower vadidCoVaR indicates
a higher contribution to systemic risk, while a positive Mia8icates an exposure to
systemic risk rather than a stabilizing effect.

As our third systemic risk measure, we use SRISK which attertptmeasure
the expected capital shortfall of a firm. SRISK is given as therage quar-
terly estimate of the Systemic Risk Index as proposed by Aeheral. (2012) and
Brownlees and Engle (2015). An insurer's SRISK is estimatethkyinsurer’s book
value of debt weighted with a regulatory capital ratio (se8%) plus the weighted long

run Marginal Expected Shortfall multiplied by the insusamarket value of equity.

3.2.3 Explanatory variables

In this subsection, we characterize the main independeiaiblas we use in our panel
regressions and robustness checks later on. In our analgsadtempt to capture the
key features that make insurers become systemically r@leVée thus concentrate on
the factors that have recently been suggested by the |AI$1(22013) as potential

sources of systemic risk in insurance. We therefore inciaaeir regressions proxies
for an insurer’s size, its capital structure, non-corevéas, and interconnectedness

with the financial system.

52Conversely, Acharya et al. (2010) criticize th€oVaR measure as being based on a non-coherent
risk measure.
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To proxy for the latter, we make use of the measure of intereotedness of a
financial institution proposed hy Billio et al. (2012). L&tbe the standardized stock
returns of the} institutions andG = CovVZ, Zj)j; be the covariance matrix of the
institutions’s daily stock returns. Using principal conmgnt analysis, we are able to
decompose this matrix into a matrx, which is a diagonal matrix of the eigenvalues
A1, ..., Ay Of G, and a matriX. = (L )i that contains the eigenvectors of the returns’

correlation matrix. Billio et al.[(2012) then define the syskvariance as

Z O'iO'jLiijk/lk.

N N
=1l=1

=)
i=1]

In their work, Billio et al. (2012) argue that the more intenoected a system is, the
less eigenvalues are necessary to explain a proporti¢h aff the system’s variance
aé A univariate measure of an institution’s interconnectedneith the system of

N financial institutions is then given by

n 0'-2
PCAS, = > —LiA
k=19s

b

h,>H

wherePCAS, is the contribution of institutiom to the risk of the system, arng is
Zic1d \vith a prescribed threshold
ket Ak

The more interconnected an insurer is with the rest of thedilmhsector, the higher
its systemic relevance will be. We therefore expect our pfokinterconnectedness to
enter our regressions alCoVaR with a significant negative sign. Similarly, we expect
interconnectedness to have a positive effect on both MES&H8K, since being more
interconnected with the financial system exposes insusarsritagion risks from other

banks and insurers.

To proxy for the size of an insurer, we use the natural logariof an insurer’s total

53Following a suggestion in Billio et al. (2012), we $¢t= 0.33.

54We calculate the proxy for interconnectedness using datasamers and banks. To be precise, we
employ data on all insurance companies in our sample as walhta on all banks available from
Datastreamwith total assets in excess of $ 1 billion at the end of 2000e tal sample used for
estimating the interconnectedness of individual insutersprises 1,491 banks and 253 insurers.
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asset@ We expect insurer size to be an economically significantedrof systemic
risk. On the one hand, a larger company is less likely to sirffen cumulative losses
due to its broader range of pooled risks and better risk siifteation. On the other
hand, an insurer could become more systemically relevahelg too-big-to-fail and
too-complex-to-fail (see 1AIS, 2013).

Another important explanatory variable in our regressisnan insurer’s leverage
ratio. We follow. Acharya et all (2010) and Fahlenbrach e(2012) and approximate
an insurer’s leverage as the book value of assets minus labo& of equity plus market
value of equity, divided by market value of equity. We haverediction for the sign of
the coefficient on leverage in our regression. High leveragdactor that incentivizes
managers into excessive risk-taking to increase a firm’sﬁtptlblity. In contrast,
Vallascas and Hagendorff (2011) argue that managers ofaoi@pwith high leverage
could feel pressured by investors to provide enough ligaskts to cover the payment
of interests. Consequently, a higher leverage could exersaptining function on
managers leading to a decrease in an insurer’s total risk.

Furthermore, we employ several other insurer- and cowyggific characteristics
as control variables. We include the variable debt matwitych is defined as the
ratio of total long term debt to total debt. There exists aevabnsensus among
economists and regulators that the dependence of certaks laad insurers on short-
term funding exposed these institutions to liquidity riskgring the financial crisis
and ultimately led to significant systemic risks (see Brunreer and Pedersen, 2009,
Cummins and Weiss, 2014, Fahlenbrach et al., 2012). Consiyjube IAIS has in-
cluded the ratio of the absolute sum of short-term borrovand total assets in its
methodology as a key indicator of systemic relevance. Wettieir line of thought
but use total long-term debt instead of short term debt.

To include a proxy for an insurer’s investment success inpaunel regression, we

%5In our robustness checks, we use net revenues, given asgtivallee of an insurer’s total operating
revenue, as an alternative proxy for firm size.

S6Support for this view is found byl Acharyaetal. (2010), Fablechetal. |(2012) and
Hovakimian et al.|(2012) who present empirical evidence baanks with low leverage during the
crisis performed better and had a smaller contribution sbesyic risk.
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use the ratio of investment income to net revenues. It is ééfas the ratio of an

insurer’s absolute investment income to the sum of absatwistment income and
absolute earned premiums. To characterize the qualityeoinburance portfolio, in

our analysis we compute the insurer’s loss ratio, consttuby adding claim and loss
expenses plus long term insurance reserves and dividingdyipms earned. We
expect insurers with higher loss ratios to contribute moresytstemic risk. In our

regressions, we also use an insurer’'s market-to-book dgimed as the market value
of common equity divided by the book value of common equity.

Next, we employ the insurers’ operating expense ratio,rgiwethe ratio of operat-
ing expenses to total assets, to control for the quality cﬂiagemer@ Furthermore,
we follow the reasoning of the IAIS (2013) and control for ttiegree to which an
insurer engages in non-traditional and non-insuranceiaes. We use the variable
Other income defined as other pre-tax income and expenseebeperating income.
If an insurer operates more outside the traditional instgdousiness, e.g., by mimick-
ing banks or becoming a central counterparty for creditvdéries, the more will it be
exposed to systemic risks from the financial sector as iegnetations with other fi-
nancial institutions increase. Therefore, we expect digesiorrelation between other
income and systemic risk.

Another variable that captures the non-core activitiessdirers is non-policyholder
liabilities, which is given by the total on balance-sheabiiities divided by total in-
surance reserves. We suspect a positive correlation opobeyholder liabilities and
systemic risk as policyholder liabilities are indicatiiedmraditional insurance activities
(see lAIS| 2013). To proxy for an insurer’s profitability goalst performance in our re-
gressions, we use the standard measures Return on Equity ERO@Return on Assets
(ROA). Higher profits can act as a buffer against future Issisas shielding an insurer
against adverse effects spilling over from the financiala@eédditionally, we employ

the quarterly buy-and-hold returns on an insurer’s stockraisidependent variable. It

57In our robustness checks, we also compute the operatingiegpatio by dividing operating expenses
by earned premiums.
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is very likely that insurers that performed well in the pagt @ontinue to perform well
over time. However, institutions that took on too many riskhe past could also stick
to their culture of risk-taking (see Fahlenbrach et al.,2)@hd increase their exposure
and contribution to systemic risk. We therefore expectitemsure to have a positive
impact on the systemic risk of insurers.

Finally, we also consider macroeconomic and country-$igecariables like the
GDP growth rate (in %) and the log of the annual change of th& @&flator. More-
over, we employ a country’s stock market turnover definedhaddtal value of shares
traded in a given country divided by the average market akgdtion to proxy for
the development of a country’s equity market (see, e.g.inee&nd Zervos, 1998,

Bartram et all, 2012).

3.2.4 Descriptive statistics

Table[3.1 presents descriptive statistics for the depédradghexplanatory variables we
use in our analysis.

For our full sample of life and non-life insurers, we only filgited evidence of a
systemic importance of insurers. Although weakly econaiftycsignificant, insurers
had mean estimates of MES an@€oVaR of only 1% during our full sample period.
The summary statistics on SRISK also underline the findingttieamayjority of insur-
ers did not significantly contribute to the instability oktfinancial sector. However,
the minimum estimate oACoVaR and the maximum SRISK estimate show that at
least some insurers contributed significantly to systemicat some point during our
sample period. Intuitively, we would expect insurers toehaxperienced the extreme
values of systemic relevance during the financial crisiss Trituition is proven in Fig-
ure[3.1 in which we plot the time evolution of the three systensk measures we use
over the course of our complete sample period.

We can see from Figurfe_3.1 that the mean MES is relativelytaoh®ver time,

showing a significant peak during the financial crisis. Theosxire to systemic risk



Table 3.1: Descriptive statistics.

The table presents descriptive statistics of the quarestimates of different systemic risk measures for a samp®5® international insurers. The sample period runs
from Q1 2000 to Q4 2012. Additionally, the table presentcdptve statistics for our set of explanatory variablese ¥¥port the number of observations, minimum and
maximum values, percentiles and moments. All variablestata sources are defined in ApperldixIB.2.
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Percentiles Moments

Obs Min 1th 5th 20th 80th 95th 99th Max Mean St. Dev.  Skewnessurtdsis
MES 12,808 -0.11 -0.02 -0.01 0.00 0.02 0.05 0.09 0.45 0.01 200 344 35.53
ACoVaR 4,893 -0.12 -0.04 -0.02 -0.01 0.00 0.00 0.00 0.00 -0.01 0.01 -3.90 29.98
SRISK (in billions) 8,997 0.00 0.00 0.00 0.07 2.46 12.30 82.0 166.22 2.80 8.50 7.56 81.36
Interconnectedness 11,361 0.00 0.00 0.00 0.00 0.16 2.37 .9923399,010.80 386.98 8,929.08 29.26 982.91
Total assets (in billions) 10,998 0.02 0.59 1.18 29.03 61.3B31.62 865.13 2,076.19 65.63 165.79 5.40 38.05
Leverage 12,066 1.01 1.32 1.77 3.10 13.37 30.41 86.80 446980 30.27 819.12 52.16 2,796.82
Debt maturity 11,104 0.00 0.00 0.00 0.58 1.00 1.00 1.00 1.00 780. 0.32 -1.45 0.78
Foreign sales 7,131 -63.41 0.00 0.00 0.00 50.42 82.85  109.82202.64 23.63 30.11 1.23 1.26
Investment success 12,065 -22.10 0.04 0.23 0.59 0.89 095 3 1.0 4.13 0.71 0.49 -34.67 1,614.19
Loss ratio 11,994 -1,717.91 3.39 38.53 64.26 109.65 196.190.70 8,439.29 107.48 211.37 20.09 681.64
Market-to-book 12,038 -14.10 0.26 0.55 0.91 2.27 4.16 749 512 1.78 1.67 8.32 167.10
Non-policyholder liabilities 12,025 0.56 1.01 1.05 112 7Q. 4,78 35.67 1,144.63 4.03 35.51 21.25 524.18
Operating expenses 12,510 -0.18 0.01 0.05 0.11 0.32 054 8 0.7 1.39 0.23 0.16 2.06 7.81
Other income (in millions) 12,669 -4.87 -0.93 -0.10 -0.00 0.01 0.17 1.19 17.95 0.02 0.53 0.00 0.00
ROA 12,423 -30.22 -5.56 -1.09 0.39 3.44 6.94 10.90 38.08 1.88 3.22 1.30 30.09
Performance 12,744 -0.91 -0.43 -0.25  -0.09 0.12 0.30 0.57 6410. 0.02 0.21 11.83 559.55
Net Revenues (in billions) 10,954 0.00 0.08 0.26 0.73 11.40 4.64 105.30 172.37 9.70 19.15 3.95 18.57
ROE 9,853 -77.86 -66.22 -6.84 5.66 16.29 25.82 34.29 36.69 .1610 12.84 -3.39 19.27
GDP Growth 12,598 -8.54 -5.49 -3.11 0.81 4.10 5.54 9.30 14.78 2.21 2.57 -0.45 2.25
Inflation 12,598 -14.45 -2.22 -1.20 0.88 3.12 6.01 8.86 2757 2.15 2.16 1.49 12.38
Stock market turnover 12,648 0.15 1.99 6.80 63.14 189.07 5848.404.07 404.07 130.21 85.64 1.17 1.78

8
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Figure 3.1: Time evolution of the systemic risk measuresterperiod from 2000 to
2012.

This figure plots the evolution of the systemic risk measwesginal Expected Shortfalls (MES),
SRISK, andACoVaR over our full sample period from 2000 to 2012. The sangunsists of 253
international life and non-life insurers. In each plot, thean of the respective risk measure (black line)
is plotted against the corresponding 10% and 90% percemntitgsa(grey lines). All variables and data
sources are defined in AppendixB.2.
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during this peak, however, is highly economically significavith insurers, on aver-
age, suffering losses of 5% on their stocks on those days dénketplummeted. Some
insurers were hit even harder with MES estimates of up to 10%e second plot

for our estimates of the insurersCoVaR shows a similar picture. The contribution to
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systemic risk by insurers was low to non-existent until 2@@én both mean and mini-
mumACoVaR estimates decreased dramatically. After the crisgsateragadCoVaR
of insurers increased again showing that the average batiom of insurers to sys-
temic risk was again limited. This result is corroboratedthy plot of the insurers’
SRISK estimatelg

Although the summary statistics for our full sample yieldn&instructive infor-
mation on our sample, some of our variables differ signifigaior life and non-life
insurers. To get a better understanding of the composifioniosample, we therefore
split our sample into life and non-life insurers and compsiected summary statistics
across both lines of business. The resulting summary titateand tests of the equality
of sample means are presented in Tablé 3.2. Summary siR@s# given separately
for our full sample period in Panel A and for the sub-samplthefquarters during the
financial crisis in Panel B.

In Panel A of Tablé 312, we compare the values of the systeislicrneasures to-
gether with the three main (presumed) determinants of systask (size, leverage,
and interconnectedness) for the life and non-life insureoar sample.

We can see from both Tallle B.2 that the means of the variabifes slibstantially
for life and non-life insurers. First, both the mean estesadbf MES andACoVaR
are higher for life insurers than for non-life insurers. bntrast, on average, non-life
insurers have significantly higher SRISK estimates tharnrgarers. These differences
are statistically significant although the absolute leeélhe average contribution and
exposure to systemic risk are again not economically sigifi(at least not across our
full panel)

Concerning the potential drivers of systemic risk in insgegithe univariate analysis

S8Further summary statistics for our explanatory variabligsrgin Table[3.1l show that the average
interconnectedness of the insurers in our sample is limitdédme insurers, however, are strongly
interconnected with the rest of the global insurance sebtost notably, AIG, AON, AXA, Genworth,
and MunichRe are above the 99% quantile of our intercondeetss variable. The average size of a
sample insurer is ca. $ 65 billion. Note that our sample ietuboth very small (5% quantile: $ 1.2
billion) and very large insurers (95% quantile: $ 331.6ibil).

S9Furthermore, the differences in the mean SRISK a@bVaR estimates are most likely due to the
different sizes of the samples for which both measures caofputed.



Table 3.2: Descriptive statistics for main variables oémest: life and non-life insurer.

The table compares the characteristics of insurers infh@surance sector relative to those in the non-life se@aoir sample consists of 253 international insurers (listed
in Appendix[B.1) and covers the period from Q1 2000 to Q4 2zan¢l A) and from Q3 2008 to Q2 2009 (Panel B). We report thémmim, maximum, mean, 5%-
and 95%-quantiles, and the standard deviation of the VadalT he equality of means of the different variables isagsising Welch’s t test for unequal sample sizes and
possibly unequal variances of the two samples. All varighbled data sources are defined in AppehdiX B.2. ***** * denestimates that are significant at the 1%, 5%, and
10% level, respectively.

Non-life Life

No. obs. Min 25% Mean 75% Max St. dev. No. obs. Min 25% Mean 75% axM St. dev. t-statistic
Panel A: Q1 2000 - Q4 2012
MES 6,386 -0.082 0.003 0.014 0.019 0.452 0.020 4,991 -0.0470040 0.016 0.023 0.304 0.020 -7.274%
ACoVaR 2,272 -0.119  -0.009 -0.007 -0.003 0.001 0.010 1,582 .08 -0.010 -0.008 -0.003 0.001 0.010 2.331*
SRISK (in billions) 5,150 0.000 0.103 3.210 1.718 1.662 80.2 3,847 0.000 0.108 2.242 1.836 79.23 5.190 5.842*%**
Interconnectedness 6,462 0.000 0.000 679.690 0.100 3®WBM@L 11,831.450 4,899 0.000 0.000 0.879 0.095 350.900 09.68 4.612***
Total assets (in billions) 6,180 0.02 2.75 43.00 24.13 1083 134.65 4,818 0.11 7.22 94.66 93.28 2,076.00 19491 1187
Leverage 5,974 1.01 2.89 16.01 8.61 7,100.00 200.04 4,588 25 1. 6.25 56.52 16.22  44,180.00 1,308.26 -2.08**
Panel B: Q3 2008 - Q2 2009
MES 520 -0.032 0.012 0.034 0.049 0.195 0.031 388 -0.032  0.000.040 0.059 0.227 0.039 -2.591%**
ACoVaR 109 -0.100 -0.021 -0.018 -0.006 -0.001 0.017 84 -0.089.024 -0.020 -0.009 -0.003 0.019 0.957
SRISK (in millions) 369 0.000 0.440 5.988 4.863 88.650 13.040 262 0.000 0.376 4.970 5.156 79.230 9.330 1.144
Interconnectedness 529 0.000 0.000 773.100 0.070 298@W0. 13,698.390 405 0.000 0.000 0.001 1.205 0.098 202.800 7100.
Total assets (in billions) 443 0.16 3.63 47.89 27.45 1476.00 143.59 328 0.73 12.38 126.30 125.90 2,076.00 248.28 -5¥12%*
Leverage 443 1.32 3.02 11.67 9.88 210.60 23.42 322 1.50 7.1897.0@ 22.93  44,180.00 3,475.01 -1.47

vivda '¢'€
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given in Tabld 3.2 shows that non-life insurers are, on aerslightly more intercon-
nected but are significantly smaller and less levered tif@misurers. Non-life insurers
have mean total assets of $ 43 billion while life insurerssagmificantly larger with
mean total assets of $ 94.66 billion. The leverage of theameenon-life insurer is 16
whereas the average life insurer has a leverage 56. Alththegmean estimates are
again distorted in part by the presence of few extreme ostliee quantiles presented
in Table[3.2 underline the finding that life insurer are digantly larger and more
levered.

Before turning to our panel regression analysis of the syistestevance of global
insurers, we shortly comment on the subset of nine Globale8ysally Important
Insurers (G-SlIs) as identified by the Financial StabilityaBbin July 2013. In Table
[3.3, we repeat our analysis of the summary statistics ofymiemic risk measures and

selected explanatory variables for the nine G-Slls.

Table 3.3: Descriptive statistics for main variables oénest: Global Systemically
Important Insurers.

This table shows the respective descriptive statistici®nine global systemically important insurers
(G-Sllis) as defined by the international association ofriaisce supervisors (IAIS) in the period from
Q1 2000 to Q4 2012 (Panel A) and from Q3 2008 to Q2 2009 (Panelli) nine G-Slis are Allianz,
American International Group, Assicurazioni Generali,ivAy Axa, MetLife, Ping An Insurance
(Group) Company of China, Prudential Financial and Prudenfll variables and data sources are
defined in AppendikBI2.

G-Slis
No. obs. Min 25% Mean 75% Max St. dev.
Panel A: Q1 2000 - Q4 2012

MES 434 -0.001 0.011 0.028 0.035 0.452 0.031
ACoVaR 249 -0.119 -0.014 -0.011 -0.004 0.000 0.012
SRISK (in billions) 378 0.000 2.065 18.209 27.387 125.494 .9%@
Interconnectedness 460 0.000 0.000 0.352 0.094 30.800 51.78
Total assets (in billions) 424 2455 293.00 521.20 730.90 83180 315.38
Leverage 416 1.36 3.71 10.69 14.67 55.08 10.76

Panel B: Q3 2008 - Q2 2009

MES 36 0.000 0.035 0.065 0.090 0.169 0.042
ACoVaR 20 -0.100 -0.039 -0.028 -0.012 -0.008 0.025
SRISK (in billions) 28 0.037 6.544 25.198 36.902 79.229 234.3
Interconnectedness 32 0.000 0.000 0.113 0.037 0.850 0.239
Total assets (in billions) 32 107.80 438.20 615.00 844.80 76120  330.19
Leverage 32 2.918 16.909 42,930 32.141 210.612 62.609

During our full sample period, the nine G-SlIs had averageSwiadACoVaR es-
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timates that did not significantly differ from those of inets that were not deemed
to be systemically important by the Financial Stability BhaHowever, global sys-
temically important insurers had a significantly higher m&RISK than insurers in
our full sample. Most importantly, however, average estandor the three systemic
risk measures of G-SllIs increased significantly during tharicial crisis as shown in

Figure[3.2.

Figure 3.2: Time evolution of systemic risk measures fos{@sically relevant)
insurers for the period from 2000 to 2012.

This figure plots the evolution of the systemic risk measWesginal Expected Shortfalls (MES),
SRISK, andACoVaR over a sample period from 2000 to 2012. The sample stsnsi 253 interna-
tional life and non-life insurers. In each plot, the meanhaf tespective risk measure in each quarter is
given for a sample of 253 international insurers (yellowdgtharea) and for the nine insurers identified
as global systemically important by the IAIS (2013) (blackd). All data are winsorized at the 1%
level. Variables and data sources are defined in Appéndix B.2
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As expected, G-Slls, on average also had significantly hitgtel assets and were
more interconnected. Interestingly, the mean leveragbdenhine G-Slis was lower
than the leverage of both the average life and non-life grsur our full sample. Not

surprisingly, all variables are on average significantlyhleir during the crisis than in
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our full sample. Again, however, these univariate reswitsofir full sample period do
not take into account the (possibly strong) correlatiortsvben size, interconnected-

ness, and leverage.

3.3 The determinants of systemic risk of insurers

In this section, we investigate the question which factetemine an insurer’s contri-
bution and exposure to systemic risk. First, we comment emehults of our baseline
panel regressions. Afterwards, we report and comment ghdtseof various robust-

ness checks.

3.3.1 Panel regressions

Based on the findings from our univariate analysis, we nowoperfa multivariate
panel regression analysis of our sample of internatiorsirgrs. In particular, we
intend to test the hypothesis that systemic risk in inswgasipredominantly driven by
an insurer’s size, its leverage, and its interconnectexiwéh the rest of the insurance
sector. In our baseline setting, we perform several pamggkssions with the three
systemic risk measures introduced in Section 3.2 as oumdiepé: variables. The set
of independent variables includes both the set of key feataf systemic relevance as
proposed by the IAIS (2013) and various control variableswdbned in Sectiof 3.213

and Tablé B.R. The econometric strategy we use is illustiadéaiv.

SystemicRisk= Bo + Bi - Interconnectednegs; + B, - Leverage_»
+ ;- Total assets_, + Q- Insurer controlg_,  (3.1)

+ @ - Country controlg_; + &y,

whereS ystemicRiskis the value of one of the three systemic risk measures faréms
I in quartert andinsurer controlg;_, as well aountry controlg_; are various firm-

specific and country-specific control variables, respettivio mitigate the possibility
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of reverse causality between our dependent and explanaoigbles driving our re-
sults, we lag all explanatory variables based on accoustatgments by two quarters.
The interconnectedness measure and country controlsggeddy one quarter. Fur-
thermore, we perform separate regressions for life andif@msurers to account for
systematic differences in accounting in different linesnsurance business. In addi-
tion, we estimate all panel regressions with clustereddstaherrors on the country
level and with insurer- and time-fixed effects to accountoobserved heterogeneity.
The results of our baseline regressions are presented ia[3ah

Starting with regressions (1) and (2) of the insuré&f€oVaR, we can see that nei-
ther the life insurers’ interconnectedness nor their siza significant driver of the
contribution to systemic risk. This first finding is in stmkj contrast to the hypotheses
formulated by the IAIS on the pivotal role of size and intemectedness for an in-
surer’s systemic importance. For the leverage of a firm, wkthat leverage enters the
regressions with a negative sign. Our results suggestitbamore levered a life insurer
is, the more it contributes to the system’s fragility. Thesult is statistically significant
at the 10%- and 1% level, respectively. Furthermore, theceft also economically
significant. For life insurers, an increase in leverage by standard deviation leads
to a decrease of -13% iCoVaR (1308.26x -0.0001) whereas for non-life insurers,
such an increase is associated with an increase in the lmatitin to systemic risk by
4% (200.04x -0.0002). Our result implies that the use of high leveragea@insur-
ance business therefore decreases the vala€olaR and consequently increases a
non-life insurer’s contribution to systemic risk.

Next, we report the results of our regressions (3) and (4hefinsurers’ Marginal
Expected Shortfall as the dependent variable. Interdgtimge find a positive rela-
tion between the interconnectedness of a non-life insureiita exposure to systemic
risk spilling over from the insurance sector. We thus codelthat being highly inter-
connected does not necessarily lead to a significantly hightribution to systemic
fragility, but rather to a higher exposure to adverse sydiceffects. Additionally,

leverage enters both regressions for life and non-liferersuwith a statistically and
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Table 3.4: Baseline panel regressions.

This table shows the results of panel regressions of qljadstimates of three systemic risk measures
for a sample of international insurers on key indicatorsystamic relevance and various control vari-
ables. All panel regressions are estimated with insured-cararter-fixed effects and with clustered
standard errors on the country level. The estimated model is

SystemicRisk= Bo + Bi1- Interconnectednegsi + B2 - Leverage—» + B3 - Total assets_»
+ Q- Insurer controlg;—, + O - Country controlg—1 + iy,

whereS ystemicRiskis the value of one of the three systemic risk measures foréngin quartert
andInsurer controls;_» as well aCountry controlg;_; are various firm-specific and country-specific
control variables. The sample includes insurer-quartsenkations of 112 international life insurers
and 141 international non-life insurers over the time p@d 2000 to Q4 2012. P-values are reported
in parentheses. All insurer characteristics based on atiogustatements are lagged by two quarters
and Interconnectedness and country control are lagged éyoarter. Variable definitions and data
sources are provided in Talile B.2 in the Appendix. ***** edote coefficients that are significant at
the 1%, 5%, and 10% level, respectively. Adf. iR adjusted R-squared.

Dependent variable: ACoVaR ACoVaR MES MES SRISK SRISK
Sample: Life Non-Life Life Non-Life Life Non-Life
(1) (2 3 (G) (5) (6)
Interconnectedness 11.6000 2.6100*** -11.7000 0.0078** -2132.9000 7.0100**
(0.728) (0.002) (0.308) (0.0112) (0.556) (0.047)
Total assets -0.0030 0.0005 0.0049* -0.0004 1.0075* 5.5704**
(0.216) (0.568) (0.051) (0.820) (0.094) (0.016)
Leverage -0.0001*  -0.0002*** 0.0002* 0.0004*** -0.0072 -0.1228**=*
(0.056) (0.000) (0.094) (0.000) (0.443) (0.000)
Debt maturity -0.0011 -0.0006 0.0019 0.0009 0.0754 -3.1216*
(0.403) (0.485) (0.309) (0.580) (0.837) (0.097)
Investment success 0.0008 -0.0067 -0.0049*** 0.0091 -0.4141 -2.1429
(0.652) (0.281) (0.004) (0.221) (0.434) (0.484)
Loss ratio -0.0057 0.0462* -0.0018 0.0006 0.0544 -1.5115
(0.183) (0.067) (0.128) (0.898) (0.666) (0.156)
Market-to-book ratio 0.0005* 0.0004 -0.0006 0.0002 0.1047 0.0943
(0.096) (0.348) (0.177) (0.155) (0.176) (0.486)
Non-policyholder liabilities ~ -0.1759** 0.1890** -0.0022 -0.0424 -4.2576*** 14.8805
(0.030) (0.035) (0.637) (0.376) (0.003) (0.611)
Operating expenses -0.0291** -0.0041 0.0253** 0.0155* -1.9027 14.5905
(0.034) (0.304) (0.022) (0.050) (0.437) (0.101)
Other income -0.6770 0.0184 1.4500 -0.0290 267.000 523.000
(0.226) (0.875) (0.441) (0.947) (0.521) (0.461)
ROA 0.2000 0.0405 0.1811 0.0467 15.8181 156.7285
(0.649) (0.802) (0.512) (0.820) (0.693) (0.147)
Performance -0.0012 0.0011 -0.0027 -0.0001 -0.3072 0.1843
(0.409) (0.471) (0.158) (0.966) (0.165) (0.726)
GDP growth 0.0003 0.0002 -0.0002 0.0002 -0.0796 -0.0908
(0.150) (0.365) (0.516) (0.499) (0.150) (0.424)
Inflation -0.0001 -0.0001 -0.0004* -0.0011*** -0.0269 -0.2008*
(0.397) (0.750) (0.074) (0.002) (0.648) (0.051)
Stock market turnover 0.0023 -0.0108 0.0460%*** 0.0452*** 1.9347 26.7704**
(0.801) (0.225) (0.008) (0.003) (0.520) (0.000)
Insurer-fixed effects Yes Yes Yes Yes Yes Yes
Time-fixed effects Yes Yes Yes Yes Yes Yes
Observations 925 1,333 2,658 3,569 2,508 3,426

Adj. R? 0.5865 0.5752 0.4422 0.4225 0.2040 0.1412
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economically significant positive sign. In our regressjom®ne standard deviation
increase in the leverage of life insurers is associated avi#%.1% higher MES and
therefore an increase of an insurer’'s exposure to systaskq1308.26x 0.0002).

For comparison, a one standard deviation increase in tleedge of a non-life insurer
is associated with an 8% increase in MES (200<04.0004). In line with our expec-

tation, higher leverage thus appears to significantly eeeean insurer’s exposure to

systemic risk. Higher operating to total assets ratios sse@ated with a higher MES
of insurers.

Finally, in model specifications (5) and (6), we employ theuirers’ SRISK as
the dependent variable. Underlining our previous findingsnf the regressions of
ACoVaR, we find no evidence for the hypothesis that the contabudf insurers to
systemic risk is significantly affected by the interconeeéctess of an individual life
insurer within financial system. For non-life insurers, vgaia find leverage to have a
mitigating effect on systemic risk with the effect beingletatistically and economi-
cally significant. However, in contrast to our previous Bsgions, insurer size is now
statistically and economically significantly related te tBRISK of insurers. For the
life insurers in our sample, we find an increase of total astebe associated with
an increase in SRISK of approx. 196 million (194.911.0075). For non-life insur-
ers, we find the economic significance of size to be even larjbra one standard
deviation increase in size being associated with an inereeSRISK by approx. 750
million (134.65 x 5.5704). These findings for SRISK have to be taken with careful
consideration, however, since the adjusted R-squared iretiressions of SRISK is

considerably lower than in the regressions of MES AGdVaR.

3.3.2 Additional analyses

The results of our baseline regressions have produced adi evidence that size, in-
terconnectedness, and leverage are fundamental driveysiamic risk in insurance.

To get a deeper understanding of the relation between idgvagic insurer character-
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istics and systemic risk, we perform several additionalys®s in this subsection.

First, we examine the question whether the exposure andilmgindn of large in-
surers to systemic risk are driven by different factors ttensystemic risk measures
of insurers in our full sample. To this end, we restrict ounpke to insurer-quarter
observations of institutions in the top 75% quantile of tatsets. The motivation be-
hind our analysis is that the relation between some of oulaegpory variables and
the systemic risk of an insurer might be mitigated or exaaied by the insurer’s size.
The results for the regression using insurers in the top &ssets quartile only are
presented in Table3.5.

Several of the results from our baseline regressions camy t our analysis of
large insurers. For example, the inferences for the insulererage remain more or
less unchanged. Higher leverage increases both the astidnband the exposure of
large life and non-life insurers to systemic risk. While lege is positively related to
the purely equity-based measures of systemic risk, we fiilgh#fisant negative corre-
lation between leverage and SRISK as our third measure @rmsystisk. However, in
regression (2) in Table 3.5 we find one striking differencecdntrast to our baseline
regressions, the interconnectedness of an insurer is neitivedy related to its con-
tribution to systemic risk. An increased interconnectedngf large insurers induces
more contribution to overall systemic risk. This is intuéj since an interconnected
insurance company could possibly contribute to systersiG but only if it is relevant
or large enough to have devastating effects through a defaiahilarly to the analysis
of our full sample, insurer size is significant in the regi@s®f the SRISK of non-life
insurers. Furthermore, and in line with our expectationfing higher loss ratios to be
positively associated with the contribution of large iressrto systemic risk.

Next, we address the question whether the drivers of systeskiin insurance differ
across countries. In fact, it is very possible that insueacmmpanies and even whole
sectors function in a different way than their counterpart®reign countries. Even
more importantly, insurance regulation differs substdlytifrom country to country.

Although we control for these systematic differences byubke of country-fixed ef-
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Table 3.5: Panel regressions - Large insurers.

This table shows the results of panel regressions of qliadstimates of three systemic risk measures
for a sample of international insurers on key indicatorsystemic relevance and various control vari-
ables. All panel regressions are estimated with insured-cararter-fixed effects and with clustered
standard errors on the country level. The estimated model is

SystemicRisk= Bo + B1 - Interconnectednegsi + B2 - Leverage_» + B3 - Total assets_»
+ Q- Insurer controlg;_, + O - Country controlg_1 + &ig,

whereS ystemicRiskis the value of one of the three systemic risk measures faréns in quartert
andInsurer controls;_» as well aZCountry controlg._; are various firm-specific and country-specific
control variables. The sample includes insurer-quartsenkations of 112 international life insurers
and 141 international non-life insurers over the time k@l 2000 to Q4 2012. In contrast to
our baseline setting, in these regressions, we only useenguarters of insurers in the top total
assets quartile. P-values are reported in paranthesesns@iller characteristics based on accounting
statements are lagged by two quarters and Interconnec®admel country control are lagged by one
guarter. Variable definitions and data sources are providékhble[B.2 in the Appendix. ***** *
denote coefficients that are significant at the 1%, 5%, and [&9@&b, respectively. Adj. Ris adjusted
R-squared.

Dependent variable: ACoVaR ACoVaR MES MES SRISK SRISK
Sample: Life Non-Life Life Non-Life Life Non-Life
(1) (2) 3 4) (5) (6)
Interconnectedness 1.1058 -0.2942** 0.0017 0.4796 0.3641 -205.6195
(0.179) (0.023) (0.120) (0.112) (0.337) (0.500)
Total assets -0.0008 -0.0037 0.0016 -0.0026 4.6792 11.8426%**
(0.885) (0.117) (0.626) (0.415) (0.122) (0.000)
Leverage 0.0001 -0.0001***  0.0004***  0.0003*** -0.0616 -0.0758**
(0.297) (0.001) (0.003) (0.000) (0.242) (0.047)
Debt maturity -0.0032 0.0032 -0.0007 -0.0082 -1.3610 -19.8851
(0.243) (0.292) (0.867) (0.208) (0.330) (0.105)
Investment success -0.0114 -0.0347** 0.0174 0.0232 3.8998 -20.3975**
(0.212) (0.032) (0.147) (0.418) (0.380) (0.023)
Loss ratio -0.1341** -0.0751* -0.0090** 0.0359 0.0280 1.9320
(0.022) (0.097) (0.028) (0.362) (0.987) (0.892)
Market-to-book ratio 0.0026** -0.0013 0.0004 0.0021 -0.4833 8.5890*
(0.0112) (0.447) (0.605) (0.547) (0.294) (0.065)
Non-policyholder liabilities 0.4520 -0.9806 0.0398 -0.1975 10.0329 -59.2137
(0.685) (0.306) (0.3412) (0.800) (0.367) (0.877)
Operating expenses 0.0220 -0.0730***  0.0331** 0.0722 14.8526 79.9298*
(0.482) (0.004) (0.025) (0.119) (0.165) (0.056)
Other income 3.4200%** 0.0539 0.4310 0.1690 3670.0000*** -504.0000
(0.003) (0.767) (0.872) (0.774) (0.004) (0.306)
ROA -0.6000* -0.7000 0.5000* 2.0000* 167.0000 993.2000**
(0.078) (0.183) (0.099) (0.070) (0.290) (0.038)
Performance -0.0046** 0.0047** -0.0081**  -0.0147*** -0.9752 -2.4596
(0.037) (0.024) (0.013) (0.005) (0.132) (0.298)
GDP growth 0.0000 0.0003 -0.0006 0.0002 -0.2241 -0.6056
(0.984) (0.421) (0.233) (0.837) (0.115) (0.337)
Inflation -0.0004 -0.0011 0.0005 0.0007 0.6069** 0.7485
(0.465) (0.120) (0.415) (0.670) (0.019) (0.494)
Stock market turnover -0.0184 -0.0392** 0.0194 0.0629* -8.2560 68.5784***
(0.167) (0.027) (0.315) (0.055) (0.185) (0.002)
Insurer-fixed effects Yes Yes Yes Yes Yes Yes
Time-fixed effects Yes Yes Yes Yes Yes Yes
Observations 377 296 858 560 843 554

Adj. R? 0.630 0.840 0.556 0.512 0.300 0.395
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fects in our robustness checks, it is nevertheless insteuttt analyze these country
differences in the relation between systemic risk and tkarirs’ idiosyncratic char-
acteristics in more detail. Our sample is composed of 95rgrsuwvith headquarters
located in the United States and 158 insurers from othertdesn To analyze the dif-
ferential drivers of systemic risk, we estimate separatepegressions for U.S. and
non-U.S. insurers. The results are given in Tablé 3.6.

For U.S. non-based life insurers, interconnectednessritbe regression of
ACoVaR with a positive coefficient that is statistically sigeant at the 1% level while
for non-U.S. insurers it is significant for both lines of mess. On the other hand,
interconnectedness seems to slightly increase the vafu@RI&K for non-life insur-
ers in the U.S. and for life insurers outside the United Stafehese mixed findings
indicate no clear trend on the impact of our interconneaedmeasure on the contri-
bution of insurers to systemic risk. With the exception & tbgressions of the SRISK
estimates of non-life insurers outside the U.S., totaltassenot a statistically signif-
icant determinant of systemic risk. In contrast, leveraggignificantly related to the
exposure to systemic risk of non-life insurers (U.S. and-bd8.) and life insurers
(only non-U.S.). Our results suggest that the impact ofrkeye on the exposure and
contribution of systemic risk does not vary across cousinielines of business.

Finally, we investigate the question whether our resulnge significantly if we
restrict our sample to the time period of the financial criisparticular, we hypoth-
esize that size, interconnectedness, and leverage mighhave been key drivers of
systemic risk in insurance during the financial crisis. Tie #nd, in Tablé 317, we re-
peat our previous baseline regressions but restrict oupleaim a smaller time period
covering the period from Q1 2006 to Q4 2010 (i.e., the timauadband during the
financial crisis).

This time, we find no statistically significant impact of irtennectedness on any of
the systemic risk measures. Again, insurer size does n@&aap be systematically
related to systemic risk of insurers except for SRISK of nénihsurers where we,

again, find a positive relation. While the signs of the coedfits for leverage remain



Table 3.6: Panel regressions for U.S. and non-U.S. insurers

This table shows the results of panel regressions of qiyadstimates of three systemic risk measures for a samplet@fiational insurers on key indicators of systemic
relevance and various control variables. All panel regoessare estimated with insurer- and quarter-fixed effetswith clustered standard errors on the country level.
The estimated model is:

SystemicRisk= Bo + B1 - Interconnectednegsi + B2 - Leverage—_, + B3 - Total assetg_»
+ Q- Insurer controlgi—_, + @ - Country controlg_; + &iy,

whereS ystemicRiskis the value of one of the three systemic risk measures farénsin quartert andInsurer controlg;_», as well axCountry controlg_, are various
firm-specific and country-specific control variables. Thexgkes include insurer-quarter observations of 95 U.S. &8Inbn-U.S. insurers over the time period Q1 2000 to
Q4 2012. P-values are reported in parentheses. All instiamacteristics based on accounting statements are laggeeblnjuarters and Interconnectedness and country
control are lagged by one quarter. Variable definitions aatd dources are provided in Table]B.2 in the Appendix. ****denote coefficients that are significant at the 1%,
5%, and 10% level, respectively. Adj?Rs adjusted R-squared.

us Non-US

Dependent variable: ACoVaR ACoVaR MES MES SRISK SRISK ACoVaR ACoVaR MES MES SRISK SRISK
Sample: Life Non-Life Life Non-Life Life Non-Life Life Non-Life Life Non-Life Life Non-Life
Interconnectedness 34.3000 2.8900*** -129.6 0.0072* 645.1000 5.4200* 2.8900* -6.1100** 0.0072* 0.6020 5.4200* -142.4000

(0.470) (0.000) (0.295) (0.085) (0.810) (0.064) (0.000) .04a) (0.085) (0.771) (0.064) (0.833)
Total assets 0.0005 0.0026 0.0070 -0.0021 0.9090 1.6734 0.0026 0.0002 .0020 -0.0012 1.6734 6.1613**

(0.952) (0.126) (0.105) (0.340) (0.272) (0.124) (0.126) .919) (0.340) (0.555) (0.124) (0.021)
Leverage 0.0002 -0.0002***  0.0001  0.0004*** 0.0020 -0.1180*** -0002***  -0.0002**  0.0004***  0.0006**  -0.1180*** 0.0368

(0.545) (0.000) (0.537) (0.000) (0.822) (0.000) (0.000) .048) (0.000) (0.016) (0.000) (0.573)
Other control varialbes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Insurer-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 258 812 723 1,917 678 1,807 812 521 1,917 1,652 1,807 1,619
Adj. R? 0.589 0.574 0.452 0.540 0.379 0.221 0.574 0.689 0.540 0.377 .2210 0.195
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Table 3.7: Panel regressions for the crisis period.

This table shows the results of panel regressions of qiaggstemic risk of international insurers on
key indicators of systemic relevance and various controafsées. All panel regressions are estimated
with insurer- and quarter-fixed effects and with clusterathdard errors country level. The conceptual
approach is the following:

SystemicRisk= Bo + Bi - Interconnectednegsi + B. - Leverage_, + B3 Total assets_»
+ Q- Insurer controlgi_» + O - Country controlg—1 + &y,

The sample includes insurer-quarter observations of 2&8national insurers over the time period Q1
2006 to Q4 2010. P-values are reported in parantheses. sAlién characteristics based on accounting
statements are lagged by two quarters and Interconnec®gadmel country control are lagged by one
quarter. Variable definitions and data sources are providédhble[B.2 in the Appendix. ******
denote coefficients that are significant at the 1%, 5%, and [&9&b, respectively. Adj. Ris adjusted
R-squared.

Dependent variable: ACoVaR ACoVaR MES MES SRISK SRISK
Sample: Life Non-Life Life Non-Life Life Non-Life
1) ) 3 (G) (5) (6)
Interconnectedness 0.6409 0.0405 -0.0316 -0.0316 29.8448 -2.2579
(0.252) (0.920) (0.962) (0.377) (0.833) (0.851)
Total assets -0.0192 0.0042 -0.0001 -0.0072 3.9042 6.9138**
(0.269) (0.539) (0.994) (0.537) (0.214) (0.016)
Leverage 0.0002 -0.0003*** 0.0005 0.0006*** 0.2112 -0.0841***
(0.480) (0.000) (0.254) (0.000) (0.180) (0.000)
Debt maturity -0.0146 -0.0049 0.0015 0.0061 -2.0916 1.1335
(0.226) (0.274) (0.774) (0.251) (0.547) (0.684)
Investment success -0.0281 -0.0585** -0.0127 -0.0016 -6.1390 -0.5964
(0.316) (0.020) (0.555) (0.722) (0.439) (0.581)
Loss ratio -0.0595 0.0016 0.0342 0.0004 -9.6110* -1.0701*
(0.432) (0.979) (0.298) (0.941) (0.062) (0.057)
Market-to-book ratio 0.0011 -0.0003 -0.0002 0.0000 -1.4385 -0.0573
(0.686) (0.732) (0.930) (0.754) (0.305) (0.471)
Non-policyholder liabilities ~ -10.8000*** -1.7117 0.5478 -0.1793 -702.6164 13.0993
(0.001) (0.233) (0.764) (0.340) (0.370) (0.787)
Operating expenses 0.0157*** -0.0061 0.0031 0.0187 5.1510 -1.1348
(0.005) (0.476) (0.820) (0.316) (0.538) (0.796)
Other income 14.3000 1.8100 -15.8000 0.2190 -130.0000  60.0000**
(0.224) (0.429) (0.182) (0.970) (0.597) (0.021)
ROA -0.9207 -3.4268** 0.3275 0.5115 77.5754 67.3172
(0.776) (0.023) (0.549) (0.559) (0.628) (0.422)
Performance -0.0091** -0.0031 0.0088 0.0004 2.4556** 4.7450
(0.024) (0.294) (0.356) (0.947) (0.046) (0.180)
GDP growth 0.0003 -0.0002 0.0011 0.0007 0.1959 0.3530
(0.770) (0.753) (0.243) (0.328) (0.373) (0.517)
Inflation 0.0004 0.0019 -0.0003 -0.0024 0.2310 -0.4832*
(0.656) (0.107) (0.801) (0.143) (0.320) (0.058)
Stock market turnover 0.0085 -0.0319* 0.0667**  0.0590** 4.2736 34.6236**
(0.679) (0.068) (0.018) (0.035) (0.654) (0.012)
Insurer-fixed effects Yes Yes Yes Yes Yes Yes
Time-fixed effects Yes Yes Yes Yes Yes Yes
Observations 130 239 387 788 379 772
Adj. R 0.787 0.847 0.575 0.470 0.244 0.155
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the same, we only find a statistically significant impact ostagic risk for non-life

insurers. The economic significance of this effect is, hawemoderate with a one
standard deviation increase in leverage causing a chargenokt minus one percent
in ACoVaR during the crisis period (23.42-0.0003). In the cross-section of non-life
insurers’ MES during the crisis period, a one standard dieviancrease in leverage is

associated with an 1.4% higher exposure to systemic risk223 0.0006).

3.3.3 Insurers and the systemic risk in the financial sector

While we have investigated the factors influencing the maitgpstemic risk of insur-
ers at the micro-level, we have not yet addressed the ovevall of systemic risk that
emanates from the insurance sector (and its possible nw@@romic consequences).
In our final analysis, we therefore employ a macro-level mea®f systemic risk
to capture the insurance sector’s propensity to cause raalaeconomic downturns.
More, specifically, we employ the CATFIN measure introducg@®ben et al. (2012)
and compare their results with the CATFIN measure estimaiedur sample of in-
surers. CATFIN is defined as the average of three Value-at-€&8kates of monthly
stock returns in excess of the 1-month treasury bill rate fivMee Generalized Pareto
Distribution and the Skewed Generalized Error Distributio generate Value-at-Risk
estimates from the cross-section of our insurers’ monthdgksreturns at the 99%
level. Additionally, the third estimate is from the crosszgonal 1% sample quantile.
The resulting CATFIN measures are plotted in Fidure 3.3 fertime period 07/2001
to 12/2012.

From the figure, we can see that the time evolution of the tme series of CATFIN
estimates are very similar, but vary in magnitude. Beforectisss, the estimated index
values are closely together until the beginning of the sri¢ihile the insurer CATFIN
peaks at around 60% in the beginning of 2009, the originahasés from Allen et al.
(2012) reach a maximum of over 70%. The monthly values footigainal CATFIN

index seem to be higher than the insurer CATFIN for the modt qiéer the crisis.
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Figure 3.3: Time evolution of CATFIN.

This figure plots the time evolution of the CATFIN measureaduced in Allen et al! (2012). CATFIN
is calculated by averaging the three Value-at-Risk esémfibm the Generalized Pareto Distribution,
the Skewed Generalized Error Distribution, and the nonpatdac sample quantiles for the cross-
section of stock returns of financial institutions in excesshe 1-month treasury bill rate. The red
line represents the CATFIN measure for the cross sectionsuirérs in our sample and the black line
is the original CATFIN measure calculatedlin Allen et al. 12D taken from the authors’ website at
http://faculty.msb.edu/tgb27/workingpapers.html. Baenple used for calculating the CATFIN of the
insurance sector consists of 253 international life andliferinsurers.
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Despite the small difference in the magnitude of the peaketif CATFIN time series,
the plot in Figuré 313 underlines the finding that the ovdealél of systemic risk in
the insurance sector was significant and high, especiatlinglthe crisis. However,
another important insight from Figuke B.3 is that the oudeslel of systemic risk in
the insurance sector fails to predict economic downturinsgsnsurer stocks seem to

lag behind the overall financial sector.
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3.3.4 Robustness checks

We also estimate regressions in which we employ alternateasures of an insurer’s
size (net revenues instead of total assets), profitabRQE instead of ROA) and in-
vestment activity (ratio of the insurers investment incameet revenues instead of
the ratio of the insurers absolute investment income touhe & absolute investment
income and absolute earned premiums), respectively. iddditregressions using the
beta of an insurer’s stock yield no change in our results. Astloned before, we also
replace total assets with premiums earned in the calcuolafi@ur variable operating
expenses. However, our previous conclusions remain valid.

Next, it could be argued that our results are driven by thei§pananner in which
we estimate the Marginal Expected Shortfall and the othstesyic risk measures. To
control for this potential bias, we recalculate MES a@bVaR using three alternative
indexes. To be precise, we employ the World DS Full Lin Insumeex, the MSCI
World Banks Index and the MSCI World Insurance Index taken flxatastream The
results show that our conclusions remain unchanged.

Another potential concern with our analysis could be thabes®f the insurers in
our sample might in fact just be locally rather than inteiorally active market partic-
ipants. Consequently, the presence of local insurers inasapke could bias our results
on systemic risk as the systemic relevance of locally acdtisarers should generally
lower than for globally important insurers. However, weideat that the inclusion of
locally active insurers in the context of our analysis isssigle for the following rea-
sons. First, we cannot rule out the possibility that insuiveith insurance activities in
only their home country contribute to global systemic risle do off-balance sheet and
non-insurance activities. Second, sheer size and relevamm insurer’'s home country
might be enough to destabilize a nation’s economy and thusecglobal financial sta-
biIityH Nevertheless, we perform an additional robustness cheekich we include

in our baseline regressions the variable Foreign saleghwsithe ratio of an insurer’s

60The anecdotal evidence of the inclusion of the Ping An InscgaGroup in the list of the nine G-Slls
underlines this notion.
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international sales to its total sales, to control for basgactivities abroad. Including
this factor does neither change our main results, nor is én@le significant in any
of the regressions.

Additionally, we employ GMM-sys regressions (see Blundetl 8ond, 1998) that
include one lag of our dependent variables and explanatanghbles lagged by one
quarter. In these regressions, double-lagged values dahslueer characteristics are
used as instruments for estimation. In doing so, we mitigatcerns on possible
endogeneity in our regression models. Our main resultseheryremain valid.

Finally, we winsorize all data at the 1% and 99% quantiles tainmize a possible
bias due to outliers and reestimate all our regressionggusinsorized data. The
results of these alternative regressions are qualitgtietl quantitatively similar to

those reported in the paper.

3.4 Conclusion

In this paper, we analyze the exposure and contribution 8fi@ternational life and
non-life insurers to global systemic risk in the period fra@00 to 2012. As our main
result, we find systemic risk in the international insuraseetor to be small in com-
parison to previous findings in the literature for banks in fuli sample. During the
financial crisis, however, insurers did contribute sigaifity to the instability of the
financial sector. Further, we conclude that systemic riskisdirers is determined by
various factors including an insurer’s interconnectedragsl leverage, the magnitudes
and significances of these effects, however, differ depgnain the systemic risk mea-
sure used and with the analyzed insurer line and geograggiimr. Most interestingly,
we find the interconnectedness of large insurers with theamee sector to be a signif-
icant driver of the insurers’ exposure to systemic risk. dntcast, the contribution of
insurers to systemic risk appears to be driven by (among®theverage, loss ratios,
and the insurer’s funding fragility.

Our results also show that life insurers do not contribugaificantly more to global
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systemic risk than non-life insurers. In addition, thererss to be little difference in
the interconnectedness of life and non-life insurers. Insbudy, we find no convinc-

ing evidence in support of the hypothesis that insurer szefundamental driver of
the contribution of an insurer to systemic risk. In contttasthe banking sector, we
show that the insurance sector predominantly suffers fremgoexposed to systemic
risk, rather than adding to the financial system'’s fragilignally, our study reveals
that both the systemic risk exposure and the contributiontefnational insurers were
limited prior to the financial crisis with all measures of®ymsic risk increasing signifi-

cantly during the crisis. In contrast to the banking sed¢towever, systemic risk in the
insurance sector does not appear to lead but rather follosvaeaonomic downturns

as evidenced by our analysis of the insurers’ CATFIN estimate
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Chapter 4

Size is Everything: Explaining SIFI

Designations

4.1 Introduction

At the climax of the financial crisis of 2007-2009, Americatdrnational Group (AIG)
became the first international insurer that required (atichately received) a bailout
as regulators considered AlG to be too systemically impotadefault. At the time,
AIG’s near-collapse came to the surprise of most analysidiaancial economists as
systemic risk was considered to be a problem confined to bgnkut not insurance.
As a response to this wakeup-call, regulators have recstdtyed to realign the reg-
ulation of international insurance companies towards aropradential supervision.
Most prominently, on July 18, 2013, the Financial StabiByard (FSB) in collabo-
ration with the International Association of Insurance &ugsors (IAIS) published a
list of nine Global Systemically Important Insurers (GsJhvhich will ultimately face
higher capital and loss absorbency requirements. In esseggulators deem insurers
to be globally systemically important in the views of redgala if they are of such size
and global interconnectedness that their default wouldén severe adverse effects on
the financial sector. Previously, in November 2011, the F&8 $imilarly identified

a set of 29 banks as Global Systemically Important Finarogtitutions (G-SIFIs).
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However, the validity of these classifications and the dataterminants of the deci-
sion of regulators to designate a financial institution adpal systemically important
remain relatively unknown.

Until the financial crisis, economists had never expectstesyic risks to arise from
the insurance sector. In contrast to banking, insurancepaaras are not vulnerable to
runs by customers and thus are not subject to sudden sheitatguidity. Although
theoretically, one could think of runs on life insuranceigek, there has not been a
single example in history for such a run to take place andecaystemwide defaults
of insurers (see, e.qg., Eling and Pankoke, ngﬁurthermore, even the largest inter-
national insurers are significantly smaller in size, lessroconnected, and hold more
capital (see Harrington, 2009) than the largest global saik light of this, the case
of AIG seems to have been a major exception to the rule thatens do not cause
systemic risks.

As insurers do not accept customer deposits, they do nottecesk of a sudden
shortage in liquidity due to a bank run. In addition, insanercontrast to banks often
rely more strongly on long-term liabilities thus furthercdeasing their exposure to
liquidity risk. Furthermore, insurers are said to be lessritonnected than banks re-
sulting in a lower probability of contagion among insuress€ Bell and Keller, 2009).
Based on the experiences from the financial crisis, the 1A0832 published a method-
ology for assessing the systemic risk of internationaliessi In this methodology, the
key determinants of systemic risk in insurance are non-ancenon-insurance activi-
ties, insurer size and interconnected@ss.

However, the empirical evidence on the questions whethsur@rs can be-
come systemically relevant and whether these factors dygemic risk is lim-

ited. Shortly after the financial crisis, Acharya et al. (2Harrington |(2009), and

81An “insurer run” is regarded as unlikely by most economistscastomers are often protected by
guarantees that are similar to explicit deposit insuranbermmes in banking.

62The non-core activities listed by the IAIS include credifalgt swaps (CDS) transactions for non-
hedging purposes, leveraging assets to enhance investetents, as well as products and activities
that concern bank-type (or investment bank-type) aatigiti Furthermore, the IAIS argues that in-
surance companies which engage in non-traditional inserantivities are more affected to financial
market developments and contribute more to systemic risheoinsurance sector.
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Cummins and Weiss (2014) discussed the role of insurersglthanfinancial crisig
More recently, due to the increased attention regulate&gyaing this topic, several
studies have analyzed different aspects of systemic risksiarance. For example,
Cummins and Weiss (2014) and Weil3 andiVhickel (2014) study the effect of dif-
ferent factors from the 1AIS methodology on the systemi& p$ U.S. insurers. In
addition, Weil3 and Nhlnickel (2015) support the too-big-to-fail conjectuoe insur-
ers by showing that insurer mergers tend to increase themystisk of the acquiring
insurers.

In this paper, we analyze the question whether common mesasfr systemic
risk are significantly driven by the size, the interconndntss, and the leverage of
global banks and insurers. As systemic risk measures, wédogrtipe institutions’
Marginal Expected Shortfall (MES) (see Acharya et al., 2Gtd theirACoVaR (see
Adrian and Brunnermeier, 2015). We then perform separatati@aegressions for
both a sample of the world’s largest banks and insurers skth&o measures of sys-
temic risk on size, interconnectedness, leverage, anddcentrol variables. For both
banks and insurers, the results of these quantile regressare inconclusive and coun-
terintuitive. The extreme quantiles of both MES axtdoVaR (i.e., institutions that are
most exposed and contribute the most to systemic risk) arsigoificantly affected
by size. Higher leverage and interconnectedness couttiitiely seem to decrease
systemic risk. We then turn to probit regressions of the @bdlly of membership in
the groups of G-SIFIs and G-SllIs. Our results are extrenelgaling: the decision of
regulators to declare a financial institution (bank or iesjas systemically relevant is
only driven by the institution’s size.

The rest of this paper is structured as follows. Relatedalitee is presented in
Sectiori4.R. The data and variables used in our empiricdystre discussed in Section
4.3. The outline and the results of our empirical study averyin Section 4]4. Section

4.3 concludes.

83additional analyses of systemic risk in insurance are duelEtmg and Schmeiser| (2010),
Lehmann and Hofmahn (2010), and van Lelyveld et al. (2011).
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4.2 Related literature

The case of systemic risk in the banking sector has beengdisdiextensively in the
recent literature. However, the question whether inswansactually become system-
ically relevant for the financial system and the questiontiviethe IAIS’s proposed
methodology is suitable for identifying G-SlIs remain telaly unanswered in the lit-
erature so far. Only few studies focus on the exposure anttilbotion of insurers
to systemic risk and the key determinants that could causreseonsequences for
insurers. Reviewing the academic literature, Trichet (3@0§ued that the traditional
insurance business is not vulnerable to “insurance rung”that interconnectedness
in the insurance sector is weak in contrast to the bankintpseéfter the financial
crisis this view changed significantly. For example, Baluchle(2011) conclude that
systemic risks exist in the insurance sector even thoughateesmaller than in bank-
ing. More importantly, systemic risk in insurance appearsave grown partially as a
consequence of the increasing interconnectedness oénssorother financial institu-
tions and their activities outside of the traditional ireuce business. Further, Trichet
(2005) argues that new non-traditional insurance acatijtior example, writing credit
derivatives, can cause contagion in the financial sector.afing that came almost
three years before the near-collapse of AIG.

In the empirical literature, several studies have focusethe the interconnected-
ness of insurers as a primary driver of systemc risk. Billiale{2012) analyze the
interconnectedness of global financial institutions basedheir stock prices. They
argue that illiquid assets of insurers could create systeisks in times of financial
crisis. In a related study, Chen et al. (2014) analyze thedateectedness of banks
and insurers but find in their analysis of credit default swagd intraday stock price
data that the insurance sector is exposed to but does notedatto systemic risks in
the banking sector.

While the former two studies only address the interconneetesl of banks and in-

surers, the effect of additional factor like size, leveraayed profitability on systemic
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risk in the insurance sector is studiedlby Weil3 arizthMickel [2014@ Most impor-
tantly, they find that insurer size has been a major driveneftystemic risk exposure
and contribution of U.S. insurers. Several of the IAIS irdas (e.g., geographical
diversification), however, do not appear to be significarglated to the systemic risk
of insurers. The hypotheses behind these suspected caladimins are similar to argu-
ments brought forward in banking. Insurer size, for examngbeld have an increasing
effect on systemic risk in the insurance sector, becaugenansurance companies
have a wider range of different risks covered and thus aepgesne to suffer from
cumulative losses (see Hagendorff etlal., 2014). Yet, tarngpeirance companies could
become too-interconnected-to-fail and thus systemigaligvant (see Acharya et/al.,
2009).

Additionally, the IAIS has also argued that high leveragaldancrease the sys-
temic importance of individual insurers (especially in donation with size and in-
terconnectedness). High leverage incentivizes managerexcessive risk-taking to
increase a firm’s profitability (see, e.g., Acharya et all(Fahlenbrach et al., 2012).
However, leverage is obviously not bad per se. For examglaséas and Hagendorff
(2011) stress the disciplining function of leverage asésgures managers into secur-
ing the payments of interest to investors and to secure asfiliquidity. In addition,
insurers that engage too heavily in non-core activitieb siscderivatives trading could
also single-handedly destabilize the financial sector. éxample, one of these non-
traditional activities identified by the IAIS is the use oftastrophe bonds to hedge
against severe losses induced by natural catastrophesas$tmption that these hedg-
ing vehicle could make insurers more interconnected withnionl markets and thus
more systemically relevant is confuted.in Weil3 etial. (201Bdncerning derivatives
trading, Cummins and Weiss (2014) note that excessive digggdrading by insurers
was a major source of systemic risk in insurance during ttetial crisis.

Probably the most fundamental question, however, remaiesher systemic risk in

54n a related study, Cummins and Weiss (2014) also analyzeh#cteristics of U.S. insurers that are
systemically important.
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insurance companies (if it even exists) is large enough statddize the whole finan-
cial sector. In this respect, Bierth et al. (2015) find systenigk in the international
insurance sector to be small in comparison to previous fgglin the literature for
banks. However, confirming the results of Baluch et al. (20tBy find a strong up-
ward trend in both the exposure and contribution of insutcetise fragility of the global
financial sector during the financial crisis. In further paregressions, they find the
interconnectedness of large insurers with the financiabseéc be a significant driver
of the insurers’ exposure to systemic risk. In contrast,civaribution of insurers to

systemic risk appears to be primarily driven by the insuiee and leverage.

4.3 Data

This section describes the construction of our sample ok$amnd insurers and
presents the choice of our dependent and main independeables as well as de-

scriptive statistics of our data.

4.3.1 Sample construction

Balance sheet and income statement data are retrieved feoifitimson Worldscope
database and all stock market and accounting data aretealliecU.S. dollars to min-
imize a possible bias as a result from currency risk.

To construct our sample, we select all publicly listed inggional insurers from the
dead and active firm list ithomson Reuters Financial Datastreamd omit all firms
for which stock price data are unavailabledDatastream We exclude Berkshire Hath-
away due to its unusual high stock price, although it is disie an insurer iDatas-
tream For our analysis we restrict our dataset to the one hundmggdt insurance
companies, measured by their total assets at the end of théyear 2006.

A similar procedure is used for the construction of our in&ional sample of

banks. Initially, we start with a sample of all firms in theigetand dead-firm “banks”
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and “financial services” lists iThomson Reuters Financial Datastrear@ As in
Fahlenbrach and Stulz (2011), we then select all companiasSIC codes between
6000 and 6300 (i.e., we eliminate insurers, real estateatqest, holding and invest-
ment offices as well as other non-bank companies in the fiabswivice industry from
our sample of banks). It is crucial for our analysis that weehaccounting price and
stock price data available ifhomson Worldscopand Datastream Therefore, we
exclude firms for which these data are not available. We ebech stock from our
sample if it is identified irDatastreamas a non-primary quote or if it is an American
Depositary Receipt (ADR). All OTC traded stocks and prefeeesitares are also re-
moved. Similar to the insurer sample, we restrict our datéosine 150 largest banks,
measured by their total assets at the end of the fiscal yed&. 2D0e to secondary
listings, we have to remove another two banks and two insdrem the samples. The
geographical distribution of our sample banks and insurevers 36 countries with
most banks (25 out of 148) and insurers (27 out of 98) being filee United States.
Following the U.S., the four most prominent countries in samples are China (10

banks/2 insurers), Japan (16/6), the United Kingdom (1&48J Germany (8/11). The

geographical spread of our sample firms is shown in Tabl E Hor increased trans-
parency, the names of the 98 insurers and 148 banks in ousngble can be found

in AppendixXC.2 and CI]1.

85Since we cannot rule out that some banks are erroneousdy listthe “financial services” instead of
the “banks” category iDatastreamwe use both lists to generate our final sample.
66The names of the 98 insurers and 148 banks in our final samgkvailable upon request.
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Table 4.1: Geographic sample distribution.

The table shows the geographic spread for the sample of thestal48 banks and for the 98 largest
international insurers. The minimum and maximum valuestlier total assets in 2006 are given in
billion US-$.

Banks Insurer
Country  Number Min Max Number Min Max
AT 4 65.81 213.96 2 25.86 26.98
AU 5 77.73 45341 4 19.04 72.99
BE 3 97.64 667.95 1 979.41 979.41
BM - - - 1 19.55 19.55
BR 1 123.21 123.21 - - -
CA 6 99.94  458.57 7 19.48  326.43
CH 3 84.34 1815.56 6 251 327.94
CN 10 56.62  930.42 2 61.96 96.71
DE 8 76.7 1324.18 11 24.24 1311.58
DK 1 433.14  433.14 - - -
ES 5 85.01 972.82 1 28.07 28.07
FI - - - 1 58.96 58.96
FR 5 25257 1697.21 4 20.38 907.91
GB 10 77.85 1841.03 7 22.03 527.71
GR 3 58.42 90.01 - - -
HK 1 86.29 86.29 - - -
IE 4 86.41 262.94 2 59.49 94.49
IL 2 61.37 62.59 - - -
IN 2 61.48 154.75 - - -
IS 1 64.03 64.03 - - -
IT 6 80.59  963.16 7 23.68  454.27
JP 15 58.02 1578.76 5 26.12  143.65
KR 6 70.71  209.69 - - -
LU 1 72.85 72.85 - - -
MY 1 59.01 59.01 - - -
NG 1 130.39  130.39 - - -
NL 1 1160.22 1160.22 2 404.42 1318.22
NO 1 194.97  194.97 1 33.67 33.67
PT 2 69.66 92.84 - - -
RU 1 120.62  120.62 - - -
SE 4 170  393.23 - - -
SG 3 90.91  118.69 1 25.83 25.83
TR 1 63.15 63.15 - - -
TW 3 68.09 72.33 3 4497  107.62
us 25 56.62 1841.03 27 1791 985.44
ZA 3 78.04  152.69 3 29.89 51.96
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Next, we define and discuss the main dependent and indeperat&bles for our
analysis in the subsequent sections. AppehdiX C.1 gives erview of all variable
definitions and data sources in our empirical study. To mignthe possibly biasing
effect of extreme outliers in our sample on our results, athcare winsorized at the

1% and 99% levels.

4.3.2 Systemic risk measures

This study employs two different measures of systemic gk proxy for an insti-
tution’s sensitivity or exposure and contribution to sysiterisk in a larger financial
system. Systemic risk is calculated for the crisis perioittviwve define as the period
between July 2007 and the end of december 2008 (see Fahtarddral., 2012). Simi-
lar to the recent literature (see, e.g., Anginer and Deiigiigunt,2014, Anginer et al.,
2014a, Weil3 and Mhinickel, 2014), we use as our measures of systemic riskrhe
conditionalACoVaR as defined by Adrian and Brunnermeier (2015) and the Margi
Expected Shortfall as defined by Acharya etlal. (2010).

One of the more established measures of systemic risk takstdsised by regulators
is the unconditionaACoVaR measured as the difference of the Value-at-risk (VaR) of
a financial sector ind@conditional on the distress of a particular insurer and i V
of the sector index conditional on the median state of therars ThereforeACoVaR
can be interpreted as the actual contribution to systemskamithe financial system by
the respective observed company.

In contrast, the Marginal Expected Shortfall is defined asigative average return
on afirm’s stock on the days an index (in our case the MSCI Wadéx) experienced
its 5% worst outcome@ A positive MES thus indicates a positive exposure to sys-

temic risk rather than a stabilizing effect.

7In our main analysis, we employ the MSCI World Index. For fiert robustness checks, we also
employ the the World DS Full Line Insurer Index, the MSCI WbBanks Index, and the MSCI World
Insurance index for the calculation ACoVaR and Marginal Expected Shortfall.

%8additionally, we employ the Dynamic Marginal Expected Sfadf calculated following the procedure
laid out by Brownlees and Engle (2015) for robustness chietks on.
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4.3.3 Explanatory variables

The focus of our analyses is to shed more light on the intgrpfasystemic risk and
possible determining factors proposed by the FinanciddiBiaBoard and the IAIS
(2013). Thus, we concentrate on size, leverage, and theeameectedness of banks
and insurers. We intend to show whether these factors caaiexpe decisions of
regulators to propose global systemic relevance for sontieedbanks and insurers in
the financial system. Furthermore, we compare the predigibwer of these factors
for explaining the cross-sectional variation in both thatitations’ MES andACoVaR.

As a standard proxy for size we employ the natural logaritfiemanstitution’s total
assets at the end of the fiscal year 2006. The effect of sizgstersic risk could be am-
biguous. On the one hand, if a bank or insurer is deemed “igaebfail”’, and hence
might receive subsidies from safety net policies in a simabf undercapitalization,
this could incentivize managers to take more risks tharefig@ptimal. Consequently,
large banks or insurers are more likely to contribute sigaiftly more to systemic risk
than smaller institutions (see, e.g., O’Hara and Shaw, ,186Barya and Yorulmazer,
2008/ Anginer et al., 2014a). Additionally, Gandhi and ligi¢2015) find that, in con-
trast to non-financial firms, size is a priced factor in thessreection of bank stock
return. According to their study this is due to the pricingroplicit bailout guarantees
by stock market investors. On the other hand, a larger firneigdly has more op-
portunities to diversify and thus hedge against times ofifire turmoil, which could
decrease the firm’s systemic risk.

As the next main variable of interest, we measure a firm’'srbgye as the book
value of assets minus the book value of equity plus the maetae of equity, divided
by the market value of equity (see Acharya etlal., 2010). Héylerage is a factor
that incentivizes managers into excessive risk-takingd¢osiase a firm’s profitabili@

In contrast, managers could be disciplined by higher lgesince they could feel

89Support for this view is found by _Acharyaetal (2010), Fabieach etal. |(2012) and
Hovakimian et al.|(2012) who empirically show that bankshwidw leverage during the crisis per-
formed better and had less contribution to systemic risk flrens with high leverage ratios.



4.3. DATA 112

more pressured to provide enough liquid assets to coveesttpayments (see, e.g.,
Vallascas and Hagendorff, 2011). This could in turn de@e@asank’s or insurer’s total

risk. We therefore include leverage as a main independeiabla in our regressions

with no prediction for the sign of the coefficient.

The third important factor entering our analyses is theraaenectedness of banks
and insurers within the financial system. Since we do not rd@eemation on, e.g.,
interbank lending markets, we make use of the measure atortaectedness of a fi-
nancial institution proposed by Billio etlal. (2012) basedstandardized stock returns
of individual banks and insurers.

Billio et al! (2012) propose an univariate meas®@AS of an institution’s inter-
connectedness with the system (using all types of finantséituitions) which is based
on a principal component analysis of the correlations betwad! institutions’ stocks.
The measure then computes the contribution of an indivishsdikution to the overall
risk of the financial system. The more interconnected anr@rsor bank is with the
rest of the financial sector, the higher its systemic relegamill be. We therefore sus-
pect PCAS to enter our regressions with a significant inangeaeffect on systemic risk
(see Arnold et al., 2012, Black etlal., 2013, 1AIS, 2013). Ateinonnected financial
institution will be more exposed to shocks within the systdi#owever, being more
intertwined with the system does not automatically trabesiato a higher contribu-
tion to the systemic risk itself. Furthermore, similar t@ loo-big-to-fail argument,
the too-interconnected-to-fail hypothesis (see Arnoldigt2012, Black et al., 2013,
IAIS|, 2013) states that institutions that are too-intereerted-to-fail are guaranteed
a safety net by governments to fall back on. Consequentlyerpectations for the
impact of the interconnectedness variable are unregltricte

In addition to our three main independent variables thaectlve most important
(presumed) driving factors of systemic relevance, we el our regressions several
firm-specific characteristics that have shown to be sigmfidaivers of performance
and systemic risk of banks and insurers in the recent liiezatAn overview of all the

variable definitions, data sources and our hypothesesdiegahe analyses is given in
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AppendixXC.1.

We include a firm’s annual buy-and-hold stock returns in 20f6ce institutions
that took on too many risks in the past could also stick tortbelture of risk-taking
(see Fahlenbrach etial., 2012) and increase their exposdreoatribution to systemic
risk. Next, we include standard proxys for a firm’s valuat{omarket-to-book ratio)
and its profitability (return on assets) and expect them tradse a bank’s and in-
surer’s systemic risk. The literature suggests that banéisresurers that relied heavily
on short-term funding were exposed to liquidity risks dgrthe recent financial cri-
sis and increased their overall systemic risk (see Brunnermaad Pedersen, 2009,
Cummins and Weiss, 2014, Fahlenbrach et al., 2012). Consiéguea control for
the degree to which an insurer or bank relied on long-ternt bletore the crisis (debt
maturity).

Turning to the variables specifically related to the insaeahusiness, we control
for the success of an insurer's asset management (invelssuecess) and whether
the form of generated income (fixed income) influences syistesk. If an insurance
company relies more on asset management rather than utiegwtrcould be more
intertwined with the global financial markets and could tbostribute and be more ex-
posed to global systemic risk. To check for other possible care activities we also
include the variables non-policyholder liabilities andhet income. Additional risk
could arise in the form of poor management of the company lwbauld also mani-
fest itself in the quality of the insurance portfolio. We téf®@re include the variables
loss ratio and operating expenses. Regarding our samplen&épae use the com-
position of the bank’s liabilities (deposits) to control @her banks with more deposit
financing are in fact more stable. Next, we include the natagarithm of expenses
set aside as an allowance for uncollectable or troubledslg@an loss provisions) to
proxy for a bank’s credit risk. A larger buffer against tréedbloans should serve as
a stabilizing factor for a bank’s systemic risk. Also, we tohfor the loans-to-assets
ratio (loans) of a bank, since it could indicate a businesdehthat focuses on lending

rather than more risky activities, which reduces systeisic With a similar reason-
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ing, we include the ratio of non-interest income to totaémest income (non-interest
income) as a variable in our analysis. A bank relying more @m-deposit taking ac-
tivities like, e.g., investment banking, could also be igskhan banks with a focus on
traditional lending (see, e.g., Brunnermeier et al., 20E®)ally, we employ a bank’s
Tier-1-capital ratio (tier-1-capital) to check whethegiher regulatory bank capital acts

as a buffer against losses and stabilizes the individua{ tatinin the financial sector.

4.3.4 Descriptive statistics

Table[4.2 shows summary statistics for our two dependeighias for the time period
July 2007 to the end of 2008 (crisis period) and for our thragraxplanatory variables
of interest, total assets, leverage and interconnectednéise year 20061

The summary statistics for the banks in our sample are giv&anel A and for the
insurers in Panel B of Table 4.2. First, we notice that themae# the variables of
the banking sector differ substantially from the insuraseetor. The average MES is
higher for insurers than for banks while the opposite is foxeACoVaR. One expla-
nation for this finding could be the fact that both measuresparely based on stock
market data. As insurers will most likely have a higher senti of their asset side
to downturns in equity markets, so will their own equity. Ceasently, the higher
estimates for MES of insurers could be indicative of a) a érgiverall (average) sys-
temic importance of insurers or b) a higher sensitivity @itlequity to market crashes
(which in part could also indicate a higher systemic risk).n@osely, the sheer size
of the asset management activities of the larger insuramtganies and crisis-related
shifts in their asset portfolios could also explain the loweerageACoVaR in our
sample.

Insurers have a mean of total assets of $ 158 billion while&kgame significantly
larger with a mean of total assets of $ 350 billion. Furtheemthe leverage of banks

Is on average 13.430 whereas the insurers have a mean lexdrag@85, which un-

ONote that the sample size is slightly reduced by the unabiitaof some balance sheet items for
smaller banks and insurers\Worldscope



Table 4.2: Descriptive statistics: banks and insurers.

The table shows summary statistics for the sample of the$atd8 banks and for the 98 largest international insufidrs.values for the systemic risk measures MES and
ACoVaR are given for the crisis period (July 2007 to Decemi@®82 and the values for the three independent variablesadcalated for the fiscal year 2006. Variable
definitions and data sources are documented in Appé&€ndixAll.data are winsorized at the 1% and 99% levels.

Banks
No. Obs. Min. 10% 25% Median Mean 75% 90% Max.
MES 148 -0.166  -0.048 0.001 0.033 0.025 0.064 0.097 0.137
ACoVaR 148 -0.021 -0.015 -0.010 -0.001 -0.005 0.000 0.000 010.0
Total assets (in billions) 148 56.620 65.278 85.010 151.200 350.800 345.500 1046.447 1841.000
Leverage 146 4.071 5.221 6.585 9.046 13.430 14.110 22.114 .06@6

Interconnectedness (in 18) 148 0.000 0.000 0.012  15950.000 108900.000 149556.000 9532800 1211000.000

Insurers

No. Obs. Min. 10% 25% Median Mean 75% 90% Max.
MES 98 0.009 0.020 0.034 0.051 0.056 0.073 0.098 0.150
ACoVaR 98 -0.021  -0.019 -0.018 -0.015 -0.015 -0.013 -0.011 .000
Total assets (in billions) 98 17.910 23.187 27.080 56.390 8.1 147.300 405.449 131.000
Leverage 98 1.729 3.322 5.273 7.309 9.285 11.350 17.265 6@2.2
Interconnectedness (in 18) 98 0.000 0.003 0.012 0.078 0.078 0.211 0.368 1.001

viva ‘€v
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derlines the increased leverage in banking compared to mtthestries. As expected,
on average, banks had significantly higher total assetstdge and were more inter-
connected than insurers. Additionally, we find only littledence of strong intercon-
nectedness of the insurers in our sample compared to thedaamBle. Based on the
univariate analysis, we hypothesize that size and levasgthe driving systemic risk
while interconnectedness does not play such an importéatf@o explaining differ-

ences in MES andCoVaR.

4.4 The determinants of systemic relevance

This section investigates which (possibly differenti@gtors determine the systemic
relevance of banks and insurers. We first present the resutisir cross-sectional
OLS and quantile regressions of the institutions’ MES a@bVaR during the crisis.
Afterwards, we report and comment on the results of our pnagressions for the

determination of factors that influence systemic relevascstated by regulators.

4.4.1 Cross-sectional regressions

Instead of only using the standard OLS approach for crostsesl regressions, we
perform the multivariate analysis of the determinants dfesre values of MES and
ACoVaR in two ways. In particular, we employ cross-sectionariile regressions
with bootstrapped standard erv@and simple OLS regressions with robust standard
errors of our systemic risk proxies during the crisis on dgagged) main independent
and the various control variables in 2006. The use of quartifjressions benefits us
with reasonable benefits compared to OLS regressions. Oldglsthe relationship
between the conditional mean of the dependent variable lemdntdependent vari-
ables. We do not include all active Banks and insurance comepavith available

data inDatastreambecause the values of our systemic risk measures (or the gumm

1By using bootstrapped standard errors, we are able to {padiaviate possible biases by the non-i.i.d.
character of our data.
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variables for our probit regressions) would be distortedhgyinclusion of too many

firms in a mechanical way. The quantile regression approgdoenker and Basset
(1978) circumvents the problems that arise in OLS due torbskedasticity in the

data by estimating the change in a specified quantile of tpertient variable given
the covariates produced by the independent variables. tueggression models the
guantiles of the dependent variable’s distribution anddfuge does not suffer from the
usual heteroskedasticity problem. For the MES, we analygz®5%-percentile and for
ACoVaR we analyze in the 5%-percentile, with both indicatirgeame systemic risk.

The results of our cross-sectional analysis for banks arenstin Tabld 4.4 and 41.3.

Table 4.3: Cross-sectional regression of systemic AskoVaR) of banks.

The table shows the OLS and quantile regression resultg wsisample of the 148 largest banks.
Independent variables are calculated for the fiscal yeab 20@ the systemic risk measures are
calculated for the crisis period (July 2007 to December 200Begressions on MES are on the
95%-percentile. The OLS regressions are estimated usbegds&edasticity-robust standard errors and
the quantile regression uses bootstrapped standard.eReralues are given in parentheses. *** **
and * denote statistical significance at the 1%-,5%- and 18k respectively. Variable definitions and
data sources are documented in AppefndiX C. 1. Intercorheess is given in millions. Test statistics
and p-values for Breusch-Pagan tests on heteroskedastieiteported below.

Dependent vari- ACoVaR ACoVaR ACoVaR  ACoVaR ACoVaR ACoVaR ACoVaR ACoVaR
able:
Estimation: OLS regression Quantile regression
Log(Total assets) 0.0008 0.0022 0.0008 0.0034*
(0.121) (0.100) (0.527) (0.090)
Leverage 0.0000 0.0000 0.0000 -0.0006
(0.529) (0.986) (0.914) (0.178)
Interconnectedness 0.0118***  0.0000** 0.0153 0.0061
(0.001) (0.049) (0.410) (0.259)
Performance -0.0040 -0.0096*
(0.176) (0.082)
ROA -0.0019 -0.0012
(0.177) (0.528)
Debt maturity -0.0021 -0.0033
(0.469) (0.647)
Deposits -0.0016 -0.0037
(0.761) (0.709)
Loan loss provi- -0.0016 -0.0031
sion
(0.346) (0.283)
Loans 0.0048 -0.0036
(0.371) (0.839)
Tier-1-capital 0.0939 0.1515
(0.175) (0.115)
Non-interest -0.0024 -0.0074**
income
(0.340) (0.045)
No. Obs. 148 146 148 92 148 146 148 92
R2 0.0169 0.0025 0.1360 0.3204 - - - -
Pseudd?? - - - - 0.0108 0.0012 0.1066 0.4826
¥ 1.01 0.05 4.02 23.23 - - - -

p-value 0.316 0.817 0.045 0.000
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Table 4.4: Cross-sectional regression of systemic risk (ME®Hanks.

The table shows the OLS and quantile regression resultg) wsisample of the 148 largest banks.
Independent variables are calculated for the fiscal yeab 20@ the systemic risk measures are
calculated for the crisis period (July 2007 to December 2008egressions om\CoVaR are on
the 5%-percentile. The OLS regressions are estimated usitgroskedasticity-robust standard
errors and the quantile regression uses bootstrappedasthedors. P-values are given in paren-
theses. ***** and * denote statistical significance at th&6-,5%- and 10%-level respectively.
Variable definitions and data sources are documented in ppEC.D. Interconnectedness is given
in millions. Test statistics and p-values for Breusch-Pagats on heteroskedasticity are reported below.

Dependent vari- MES MES MES MES MES MES MES MES
able:
Estimation: OLS regression Quantile regression
Log(Total assets) 0.0042 0.0062 0.0071 0.0022
(0.389) (0.669) (0.311) (0.888)
Leverage -0.0002 -0.0007 -0.0003 -0.0046
(0.475) (0.530) (0.589) (0.205)
Interconnectedness -0.1150**  -0.2070*** 0.0192 -0.1920*
(0.018) (0.000) (0.483) (0.069)
Performance -0.0030 -0.0267
(0.889) (0.385)
ROA -0.0132 -0.0451**
(0.196) (0.027)
Debt maturity 0.0153 0.0382
(0.592) (0.462)
Deposits -0.0422 -0.2903*
(0.383) (0.051)
Loan loss provi- 0.0040 0.0254
sion
(0.844) (0.333)
Loans -0.0287 0.1026
(0.704) (0.197)
Tier-1-capital 0.5999 1.3814
(0.196) (0.173)
Non-interest -0.0122 -0.0283
income
(0.567) (0.281)
No. Obs. 148 146 148 92 148 146 148 92
R2 0.0047  0.0028 0.1409 0.2975 - - - -
Pseudd?? - - - - 0.0212  0.0053  0.0003 0.2319
X2 5.71 0.02 34.21 0.14 - - - -
p-value 0.017 0.895 0.000 0.713

The first three regressions in all settings are concerndd tvé individual effects
of our three main dependent variables: size, leveragercome@ectedness with the
financial system, as well as systemic risk.

In the OLS regressions of banks we find no significant effe¢hefvariables total
assets and leverage on our systemic risk measures excepsfing significance at
the 1% level of interconnectedness A@GoVaR. Surprisingly, the variable enters the
guantile regression with a positive coefficient and thusdases the value &fCoVaR,
which we interpret as a decrease in the systemic risk cartitib of the bank, since

smaller values oACoVaR indicate a higher contribution to systemic risk. Hogretay
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adding our control variables, we only lose some of the sicguifte of the coefficient
of interconnectedness and find no statistically significgafiience of any other vari-
able onACoVaR. Looking at the respective quantile regressions on ¥habantile
of ACoVaR reveals that only bank size is a slightly statisticaltynificant predictor
of extreme contribution of banks to systemic risk. The \Jagaenters the quantile
regression with a positive sign of the coefficient at a 10%llewhich indicates the
unintuitive impression that larger banks contribute lessyistemic risk.

The OLS regressions of MES on our main variables of intetest/ghat only the in-
terconnectedness influenced the exposure of banks to aksfiwcks during the crisis.
The coefficient of interconnectedness enters both the OdShenquantile regression
with a negative sign that is significant at the 1% level in tbgression of the condi-
tional mean and at the 10% level for the regression of the §&&@tile. Thus, at least
for this sample, we find the counterintuitive result thanigainore interconnected does
not necessarily increase the exposure of banks to systeskidmterestingly, we note
a slightly significant decreasing effect of the variablea@®{s on MES which leaves us
with the interpretation that banks with higher deposit feiag were more stable and
less sensitive to external shocks during the financial<crisi

The regressions of banks’ systemic risk on the indicatorsysfemic relevance re-
veal that only the interconnectedness of banks with the éiahsector helps in ex-
plaining the magnitude of the contribution or exposure temic risk. In Tables 415
and[4.6, we show the results from the OLS and quantile regressf ACoVaR and
MES on the proposed factors of systemic relevance for imsure

Table[4.5 shows that an insurer’s size decrea@ggsVaR (significant at the 10%
level) and thus, indicates a higher contribution to systensk by larger insurers.
This significance, however, vanishes when including otlwtrol variables and is
also never significant when regressing the conditional tjeaof systemic risk. A
very similar pattern can be found in Tablel4.6 concerningriessize, where total as-
sets to increase the exposure to systemic risk. On the otimel; lve find that a higher

leverage induces a lower systemic risk contribution. Ag#iis counterintuitive result
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Table 4.5: Cross-sectional regression of systemic AskoVaR) of insurers.

The table shows the OLS and quantile regression resultg) @assample of the 98 largest insurance
companies. Independent variables are calculated for ited fisar 2006 and the systemic risk measures
are calculated for the crisis period (July 2007 to Decemb@B82. Regressions ahCoVaR are on the
5%-percentile. The OLS regressions are estimated usimydsiedasticity-robust standard errors and
the quantile regression uses bootstrapped standard.eReralues are given in parentheses. *****
and * denote statistical significance at the 1%-,5%- and 18%} respectively. Variable definitions
and data sources are documented in Appelndik C.1. Testisstsd p-values for Breusch-Pagan tests
on heteroskedasticity are reported below.

Dependent vari- ACoVaR ACoVaR ACoVaR ACoVaR ACoVaR ACoVaR ACoVaR ACoVaR
able:
Estimation: OLS regression Quantile regression
Log(Total assets) -0.0006* -0.0009 0.0003 0.0007
(0.082) (0.408) (0.367) (0.237)
Leverage 0.0001* 0.0002** 0.0001 0.0002*
(0.063) (0.043) (0.214) (0.078)
Interconnectedness 0.0032* 0.0022 0.0021 0.0058*
(0.089) (0.468) (0.344) (0.087)
Performance -0.0003 0.0006
(0.873) (0.743)
ROA 0.0006 0.0011%**
(0.237) (0.000)
Debt maturity 0.0014 -0.0006
(0.550) (0.804)
Investment success 0.0064 0.0063
(0.305) (0.094)
Loss ratio 0.0000 0.0000**
(0.651) (0.015)
Non-policyholder -0.0004 0.0000
liab.
(0.283) (0.974)
Operating ex- -0.0124 -0.0036
penses
(0.1112) (0.353)
Other income 0.0000 0.0000
(0.623) (0.853)
Fixed income 0.0000 -0.0012**
(0.999) (0.025)
No. Obs. 98 98 98 71 98 98 98 71
R2 0.0307 0.0307 0.0315 0.1973 - - - -
Pseudd?? - - - - 0.0092 0.0283 0.0332 0.3263
X2 0.01 0.37 0.40 0.75 - - - -
p-value 0.909 0.544 0.53 0.385

could be due to our proxies of systemic risk not being ableully tapture all facets
of an institution’s systemic relevance. For the intercani@eness variable, we find the
same effects on systemic risk as in the models involving aonpde of banks, although
with statistically less significant results.

Turning to the quantile regressions for our insurer sampéenotice that intercon-
nectedness exhibits a strong influence on systemic riskoAgh the actual values of
interconnectedness of insurers are much lower than thosedsample of banks, we

notice that being interconnected with the financial systenarainsurer has a much
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Table 4.6: Cross-sectional regression of systemic risk (ME$&isurers.

The table shows the OLS and quantile regression resultg) @assample of the 98 largest insurance
companies. Independent variables are calculated for ited fisar 2006 and the systemic risk measures
are calculated for the crisis period (July 2007 to Deceml@®¥82. Regressions on MES are on the
95%-percentile. The OLS regressions are estimated ustegds&edasticity-robust standard errors and
the quantile regression uses bootstrapped standard.eReralues are given in parentheses. *****
and * denote statistical significance at the 1%-,5%- and 18%} respectively. Variable definitions
and data sources are documented in Appelndik C.1. Testisstsd p-values for Breusch-Pagan tests
on heteroskedasticity are reported below.

Dependent  vari- MES MES MES MES MES MES MES MES
able:
Estimation: OLS regression Quantile regression
Log(Total assets) 0.0095*** 0.0019 0.0111 -0.0106
(0.000) (0.806) (0.269) (0.442)
Leverage -0.0006 -0.0009 -0.0009 -0.0013
(0.131) (0.204) (0.752) (0.575)
Interconnectedness -0.0275** 0.0156 -0.0734 -0.0141
(0.020) (0.453) (0.179) (0.795)
Performance -0.0390*** -0.0594**
(0.001) (0.012)
ROA 0.0024 -0.0018
(0.551) (0.805)
Debt maturity 0.0048 -0.0022
(0.762) (0.967)
Investment success 0.1042* 0.1318
(0.063) (0.199)
Loss ratio -0.0001** -0.0001
(0.025) (0.363)
Non-policyholder 0.0006 -0.0055
liab.
(0.858) (0.651)
Operating ex- -0.0934 -0.1014
penses
(0.277) (0.497)
Other income 0.0000 0.0000
(0.422) (0.691)
Fixed income 0.0077 0.0188
(0.210) (0.206)
No. Obs. 98 98 98 71 98 98 98 71
R2 0.1128 0.0154 0.0339 0.4932 - - - -
Pseudd?? - - - - 0.0432 0.0098 0.0394 0.4905
X2 0.88 0.02 1.55 5.13 - - - -
p-value 0.347 0.880 0.213 0.024 -

stronger impact on the systemic risk of the insurer than &mkis. The coefficients in
the quantile regressions are positiveA@2oVaR and negative for MES which indicates
a decrease in the contribution and the exposure to systéskiclihis holds true at the
1% level. Again, this counterintuitive result could be daeotir proxies of systemic
risk not being able to fully capture all facets of an instiunts systemic relevance.
Additionally, we find that profitability and higher loss radi also have a decreasing
effect on the contribution to systemic risk. Throughoutddlthe regressions neither

size nor leverage consistently enter the analysis with @ifgggnt coefficient. Conse-
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guently, a simple analysis of MES andCoVaR could lead to the conclusion that both

size and leverage are not significant drivers of systemkami®anking and insurance.

4.4.2 Probit regressions

In this section, we explain the probability of being dectheeglobal systemically im-
portant bank or insurer by regulators. Employing a prolgtession model allows us
to explain the probability that a bank or an insurer will beldeed systemically rele-
vant or not. To this end, we employ the same set of explanatmigbles as before in
our quantile regressions.

The results of the probit regressions for the 148 largeskfyameasured by their
total assets in 2006, are presented in Table 4.7.

Table 4.7: Systemic relevance of banks: probit regressions

The table shows the results of several probit regressiors duimmy variables that is one if a bank
was nominated as global systemically important by the FiizduStability Board and zero otherwise.
Our sample consists of the 148 largest banks measured lydtadiassets at the end of the fiscal year
2006. Stock market data are retrieved frdmmomson Reuters Financial Datastreamhile financial
accounting data are taken from tNeéorldscopedatabase. P-values are given in parentheses and
*rx kk * denote statistical significance at the 1%,5% and%0evel. Definitions of variables as well as
descriptions of the data sources are given in Tablé C.1 iAgpendix.

Model: (1) (2 (3) 4 (5) (6) (1)
Log(Total assets) 1.5630*** 1.5620%**  1.8896***
(0.000) (0.000) (0.000)
Leverage 0.0020 -0.0157 0.0336
(0.811) (0.574) (0.480)
Interconnectedness 0.0000 0.0000
(0.939) (0.743)
MES 5.1186** 3.0310 3.4083
(0.031) (0.327) (0.325)
ACoVaR 14.5811
(0.462)
Market-to-book ratio 0.2961
(0.532)
Performance -0.0411
(0.975)
ROA 0.4492
(0.304)
Debt maturity 0.5344
(0.685)
Deposits 0.9625
(0.621)
Non-interest income 1.4046*
(0.052)
Observations 146 144 146 146 146 141 108
AlIC 55.43 140.74  141.57 136.36 141.02 59.68 55.14

Table[4.7 shows the results of several probit regressiorduammy variables that
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take on the value of one if a bank was declared global systdiyienportant by the
Financial Stability Board and zero otherwise.

Starting with probit regressions (1) to (3) of systemicvealee of banks, we can see
that neither the banks’ leverage nor their interconneasslare significant indicators
of an institution’s systemic importance. This first findirsgm striking contrast to the
hypotheses formulated by the Financial Stability Board enptivotal role of leverage
and interconnectedness for a bank’s systemic relevanderestingly, our results in
regression (4) imply that the banks’ Marginal Expected 8alts has a significant
influence on the global importance of a bank as perceived dgiylaitors (from model
(5) we see thahCoVaR is not statistically significant). In model specifioas (6) and
(7), we include several control variables in our regressiout only find size to be a
driving factor for systemic importance. More preciselye MES of the banks which
previously entered the regression with a significant pasitioefficient now loses all
its statistical significance. Consequently, we find strorigeawe that the nomination
as a G-SIFl is only driven by the institution’s size.

The probit regression results for the sample of insurerslaoavn in Tablé 4]8.
Similar to the results for the banks, we can see from the prefgressions (1) to
(5) that neither the insurers’ leverage nor their inter@medness are significant in-
dicators of the nomination as a G-SlI by the FSB and the IAIGesE findings are
also in striking contrast to the hypotheses of the pivott o leverage and intercon-
nectedness for an insurer’s systemic importance. In regre$5) we find an insurer’s

ACoVaR to be a significant determinant of the probability tormduded in the list of
G-SlIs. However, this effect vanishes as soon as we add dsssts and other con-
trols to our regression model. Similar to the probit regiess for banks, we find in
regression (6) that size is the only reliable predictor atesic relevance according to

regulators. This holds true even when we include variousrobvariables.

In summary, the results of our probit regression analysew shat the inclusion of
an institution in the list of G-SIFIs or G-SllIs is only a questof size. While MES

and ACoVaR do appear to capture some of aspects of systemic reske thneasures
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Table 4.8: Systemic relevance of insurers: probit regoessi

The table shows the results of several probit regressiomsdummy variables that is one if an insurer
was nhominated as global systemically important by the FiizduStability Board and zero otherwise.
Our sample consists of the 98 largest insurers measureceinytakal assets at the end of the fiscal year
2006. Stock market data are retrieved frdimomson Reuters Financial Datastreamhile financial
accounting data are taken from th¥orldscopedatabase. P-values are given in parentheses and
*xx xx * denote statistical significance at the 1%,5% and%0evel. Definitions of variables as well as
descriptions of the data sources are given in Tablé C.1 iAgpendix.

Model: 1) 2 3 4 (©) (6)
Log(Total assets) 0.9546*** 1.526***
(0.000) (0.005)
Leverage 0.0287 -0.0760
(0.188) (0.482)
Interconnectedness -0.1704 1.468
(0.844) (0.567)
MES 7.0939
(0.177)
ACoVaR -145.0350**  -64.3375
(0.032) (0.526)
Market-to-book ratio -0.027
(0.950)
Performance 1.9750
(0.227)
ROA -0.354
(0.672)
Debt maturity -0.3316
(0.810)
Observations 96 96 96 96 96 96
AIC 37.95 62.67 64.08 62.51 58.28 41.86

cannot explain the methodology proposed by regulatorsy fieeermine the systemic
importance of a financial institution (regardless whethiera bank or insurer) only by

the institutions’ size.

4.4.3 Robustness checks

To underline the validity of our results, we perform addibrobustness checks. First,
our results could be biased by the manner in which we caleuled systemic risk
measureaACoVaR and Marginal Expected Shortfall. Reestimating the omeasusing
the MSCI World Banks Index and MSCI World Insurance Index dogsigmificantly
change our main results. For our cross-sectional analysiseestimate the OLS and
guantile regression models with alternative definition®wof key variables leverage
(ratio of total liabilities to total assets) and size (natuogarithm of net revenues).
Except for the OLS regression for banks of MES on controlaldéas, where we find

a statistical significance of leverage at the 10% level, cainrmferences are robust to
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these changes. Also, to control for an insurer’s line of hess, we include a dummy
variable in our cross-sectional analyses that is one if trapany is a life insurer
(SIC code 6311), and zero otherwise. Including this vaealgither changes our main
inferences, nor do we find it to be significant in most of theesgions. However, in the
regression of an insurerSCoVaR on the control variables, we find a positive relation
of the life insurer dummy andCoVaR that is significant at the 10% level indicating
that life insurers in our sample have a lower contributiosytstemic risk than non-life
insurers. Finally, we reestimate our probit regressionbdmks and insurers using data
from later years, i.e., 2009 and 2010 (if available) as ilddne argued that regulators
identified systemically relevant financial institutionssbd on post-crisis data rather
than data from 2006. Our additional analyses, howeveratave new information
and also suggest that size was the most common factor whestrectiing the list of

systemically relevant institutions.

4.5 Conclusion

In this paper, we study the determinants of the systemic rtapoe of the world’s
largest banks and insurers during the financial crisis. @sirsample of the largest
148 banks and 98 insurers in the world, we analyze the cexg#esal variation in two
popular measures of systemic risk of financial institutidngng the crisis. In the sec-
ond step of our analysis, we try to explain the decision ofil&grs to include certain
banks and insurers in the lists of global systemically ingoair financial institutions
and global systemically important insurers.

Our results show that our quantile regressions of banks’iasarers’ MES and
ACoVaR as our systemic risk proxies mainly produce countdtin results. We find
little to no evidence that higher leverage and intercoreghgss increase the exposure
or contribution of individual institutions to systemickis

As our second main finding, we show that regulators only seerate about an

institution’s size proxied by its total assets in their dem to declare the institution
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global systemically important. We find some correlatiormi@tn the probability of
being a G-SIFI and G-SlI, and the institution’s MES (banks) ACoVaR (insurers).
Nevertheless these proxies of systemic risk cannot exfilaiolassification by regula-
tors as soon as size is included in our probit regressionghWeconclude that despite
the methodologies published by regulators themselvegjd¢bsion to include a bank
in the G-SIFI list was purely a question of bank size. Glolyattesmically important
insurers are clearly identifiable by a simple look at theltatsets in their balance

sheet.
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Chapter 5

Non-life Insurer Solvency and Default

Risk

5.1 Introduction

Reinvigorated by the financial crisis of 2007-2009, acadsnaicd regulators have
taken a renewed interest in the impact of higher capitalirements for financial
institutions on the stability of the financial sector. Foaewle, the Financial Sta-
bility Board (FSB), the Basel Committee on Banking Supervision (BLBSd the
International Association of Insurance Supervisors (ldBhave designed new rules
and frameworks to warrant the safety of the financial systatuding banks, insur-
ers, and other financial intermediaries. Among other amtres and concepts, they
propose a framework to identify global systemically impottfinancial institutions
(SIFIs), focusing not only on banks but also on globally \&tinsurance compa-
nies. Institutions identified as SIFIs are required to fufiticter solvability or cap-
ital requirements and are more likely to be monitored mooselly by supervisors.
In fact, regulators and academics alike are demanding hicdqatal restrictions on
financial institutions to decrease the likelihood of a firnfadéting. The effective-
ness of higher capital requirements, however, is debatabéeich requirements might

weaken an institution’s profitability and could tempt magegto engage in excessive
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risk-taking and regulatory arbitrage (see, e.g., Kashyah 62008, Matutes and Vives,
2000, Berger and Bouwman, 2013, &inez et al., 2015, Ongena et al., 2013).

In the light of these recent discussions, the study of idiosgtic default risk and its
determinants in the insurance sector is important and d¢f regevance to regulators.
Especially the interplay of required solvency capital (@his the main instrument of
regulators to improve financial stability) and the defaidk rof institutions is of great
interest to both regulators and managers. Although higieital requirements are the
most favorite tools for regulators to support financial 8igbthey are also viewed by
managers as being counterproductive as they reduce phafitdly increasing financial
instability. However, the effects of higher solvency ofunsrs is also of great impor-
tance to policyholders since they could be affected by Bm@e in insurance premia or
could demand more protection from the contract’s issuer.

In this paper, we investigate the question whether highpitaldeads to a signifi-
cant reduction in the default risk of insurers. More prdgisge study the effects of an
insurer’s solvency on its default probability for an intational sample of non-life in-
surance companies. The question whether the idiosyncefawilt risk of insurers can
be explained by idiosyncratic fundamentals or rather byntguspecific determinants
is relatively unexplored in the literature. Most studiesaoninsurer’s likelihood to de-
fault focus on the U.S. sector only or employ relatively shione frames from several
decades ag@ One approach to explain the variation in insurers’ defask around
the globe is to look at the differences in regulation acrassitries. We extend the ex-
isting empirical literature on the determinants of insarelefault risk by performing
panel regression analyses for an international samplerefifeinsurers from 2000 to
2013. In particular, we are interested in the question widabsyncratic factors are
able to explain a non-life insurer’s default risk and how éixplanatory power of firm

fundamentals relates to the one of country-specific factors

2For example,_Shiu_(2011) analyzes a panel of non-life imstegacompanies from 1985 to 2002 fo-
cusing on the interplay of reinsurance and leverage andearthat highly levered companies are
more likely to become insolvent and thus, instead of raisiogtly capital, are more inclined to buy
reinsurance.
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Our study is related to Pasiouras and Gaganis (2013) whatmenation obtained
from surveys on insurance regulation to analyze the defakitof insurance sectors
in different countries. Similar to the work of Barth et al. 202005, 2013) on bank-
ing regulation, they derive indexes for, e.g., capital regyuents or supervisory power
standards in a given country and use these indicators t@iexihle z-score of an in-
surance company from 2005 to 2007. Related to this issuentakiet al.|(2015) de-
compose insurers’ capital structure into idiosyncratid eountry-specific factors and
find that the capital structure of insurers is not homogerm@ugss countries but rather
driven by institutional environmen@.Additionally, financial distress in a given year
or insurance firm might simply be the result of current ecoilcodownturns or in-
creased market competition.

Instead of identifying factors to explain idiosyncratidaldt risk of insurers, recent
studies have shifted their attention towards the detemmténaf the systemic risk and
the systemic relevance of the insurance sector. While sortteeatuthors concentrate
on the interconnectedness of the insurance sector with ldimlgfinancial network
and consequently its contribution to or relevance for systdin-)stability (see, e.g.,
Baluch et al., 2011, Billio et al., 2012, Chen et al., 2014, Cunsnaind Weiss, 2014),
other contributions focus on the determinants of proposedsures of systemic risk
(see, e.g., Weil3 and thinickel, 2014, 2015, Bierth et al., 201%) Moreover, one of
the more recent analyses given by Rauch et al. (2014) reVedlgltosyncratic default
risk is a significant driver of systemic risk measures forksaand insure

To answer our main question concerning the relation betweeansurer’s solvency
and its default risk, we pursue two approaches. As a first stepun dynamic panel
regressions of an insurer’s inverse z-score on idiosyiecarharacteristics and country-

effects. As independent variables, we employ differentsuess of short-term and

3Also, e.g., U.S. regulators rely more heavily on a free-rabakd competition to discipline insurers in
comparison to other country environments.

"Eling and Pankoke (2014) provide an overview of the recertkwa systemic risk in the insurance
sector.

SFor the discussion on such measures see| e.9., Acharyd20H)), Adrian and Brunnermelier (2015),
Brownlees and Engle (2015) lor Benoit et al. (2013). Otheppsed indicators of systemic relevance
are given by the 1AIS (2011, 2013).
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long-term solvency as well as control variables that praxy €.g., the insurers’ effi-
ciency or quality of its risk portfolio. As our main resultgwind long-term capital to
be significantly negatively related to the default risk afurers. In a second step, we
decompose a non-life insurer’s inverse z-score to determoinvhich extent individual
insurer characteristics explain the variance in defagk.riin order to compare indi-
vidual and country- and time-specific effects on defauk,rise perform a standard
analysis of covariance.

Based on an international sample of 308 non-life insurersfimgethat long-term
solvency significantly reduces default risk across all ¢oes in our sample. Short-
term solvency does not play a significant role in most of ogressions. Furthermore,
we observe that operating efficiency and an insurer’s |lass age suitable indicators
of financial distress for non-life insurance companies. By, compared to country-
specific effects, the explanatory power of idiosyncratatigators of financial distress
is small. Supporting the findingslin Pasiouras and GagafikiR we find that differ-
ences across countries and thus, regulatory environmiaytauip important role for the
financial soundness of insurance companies. As our mainypiotiplication, we find
that capital requirements related to an insurer’s longyteolvency are well suited for
increasing the financial soundness of insurers. Furthexpvee find that the regula-
tory environment of insurers is more important for redudimg default risk of non-life
insurers.

The remainder of this article is structured as follows. Bedb.2 explains the con-
struction of the data set. The subsequent se¢tidn 5.3 esplaé methodology and
variables used in our empirical study. Secfion 5.4 preshetsesults of our analysis
on the determinants of non-life insurers’ default risk. dading remarks are given in

Section 5.b.



5.2. DATA AND VARIABLES 131

5.2 Data and variables

This section presents the construction of our data sampleef@pirical study focuses
on a panel of non-life insurance companies around the wadiids, we begin to con-
struct our data sample by first selecting all publicly lisketkrnational insurers from
the dead and active firm lists ithomson Reuters Financial Datastreémm 2000 to
2013. As a next step, we exclude all secondary listings amepnionary issues from
our sample. The industry classification of insurance conggsain Datastreamis, in
parts, inconclusi\@ and therefore, we use the following method in order to idgnti
non-life insurers. The classification given Datastreamis cross-checked with the
firms’ SIC codes (Worldscope data item WC07021, SIC codes 63321, 6331) and
the Industry Classification Benchmark (ICB) code (Worldscopga dam WC07040,
ICB supersector 8500) to exclude firms which cannot be cledalysified as non-life
insurance compani€s. Next, we match the classification Dlatastreamand ICB. If
these classifications match, an insurance company is gldaritified as a non-life in-
surer. Otherwise the company is excluded from our samplditidaally, all company
names are manually screened for companies with a non-imseifacus in their line of
business. For our initial list of non-life insurers, we abthalance sheet and income
statement data from tiEhomson Worldscop#atabase. All stock market and account-
ing data are collected in U.S. dollars to minimize a posdiids due to currency risk.
The names of the 308 non-life insurance firms included in o Sample are listed
in AppendixD.1.

In the following section, we introduce and discuss our erogiistrategy as well as

the dependent and independent variables used in our model.

"®For example, several medical service plans and medicaleght# companies are listed as life insur-
ance companies iDatastrean®s company lists.
""Consequently, HMOs, managed care, and title insurance agiepare not included in the final sam-

ple.
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5.3 Empirical strategy

In our empirical study, we focus on the determinants of defask for an interna-
tional sample of 308 non-life insurers for the period fron®@Q@o 2013. As a proxy
for default risk, we employ an insurer’s inverse z-scoreragfias the standard devi-
ation of an insurer’s return on assets from the previous feayover the sum of the
equity ratio and return on ass@Qualitatively, the z-score measures by how many
standard deviations profits have to decrease below the mieéits in order to equal a
firm’s equity. Measuring the financial default risk of finasanstitutions using the z-
score methodology is widely utilized in the finance literat(see, e.g., Anginer etial.,
2014b Additionally, the z-score of an insurer could also be calted by using
(stock) market data or a combination of accounting and stoaiet data. In theory,
the calculation of a firm’s z-score based on accounting bgashould be equivalent
to using the average of stock returns and stock return \ibfgsee, e.gl, Scifer et al.,
2015). In our study, we use the approach based on balaneg¢dsdta as it does not re-
duce our sample size due to problems with data availabgig @lso, e.d., Boyd et al.,
2006, Tykvova and Borell, 2012). For the sake of an easierprggation, we employ
the inverse of a firm’s z-score as our main dependent variaiiere higher values
of the inverse z-score indicate a greater degree of finad@#iess of the insurance
company. The following subsections describe our empinoadiel and introduce the

explanatory variables.

5.3.1 Econometric design

In our empirical study, we investigate the relation betwaarninsurer’'s default risk,

measured by the inverse of the z-score, and firm charaatsrigith a focus on mea-

8Using a five-year rolling window for the estimation of therslard deviation provides more variation
and thus, the z-score calculation is not entirely dependerthe equity ratio and annual return on
assets. However, some studies employ only, e.g., threergliag windows in order to minimize a
possible loss of observations due to a lack of data avaitialdlee, e.gl, Pasiouras and Gaganis, 2013,
Schaeck et all., 2012).

®The first multivariate insolvency measure based on accogiakata is introduced in Altman (1968).
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sures of the insurer’s solvency. To do so, we analyze anratalfdr an international
panel of non-life insurers for the time period from 2000 td 20We include one-year
lags of our dependent variable to account for persistene@ afisurer’s default risk in
our analysis. To model such persistence in insurers’ diefisidl we estimate dynamic

panel regressions of the following type:

DEFAULT RISK, = o' + v + 1 x DEFAULT RISK! (5.1)

+ B2 x SOLVENCY! + ® x CONTROLS + &|

where DEFAULT RISKis the inverse z-score of insurién yeart, SOLVENCY! is one

of our respective solvency measures and CONTR@i&firm characteristics. Further,
we run all regressions using the (one-step) GMM estimaee &lundell and Bond,
1998) and employ double-lagged values of the dependerahlaras instruments. We
include insurer-fixed effecig and year-dummieg to capture unobserved heterogene-

ity across our sample.

5.3.2 Explanatory variables

We include various idiosyncratic and country-specific argltory variables as controls
in our regressions. An overview of all variables and thefirdiégons and data sources
is given in AppendiX_D.R. Our main variables of interest prdar the solvency of
insurance companies. Naturally, we would expect that thigyato pay short-term
and long-term liabilities is most vital to the default prbiday of a firm. However,
especially insurance companies are inclined to reserveginoapital to cover the
risk arising from future claims with stochastic occurreifloeth short-term and long-
term) The non-life insurance business is rather short-term taied compared to

the life insurance business where contracts have a longtrritga Therefore, we

80Also, short-term and long-term solvency have been propbgddlS (2007) to be key indicators for
an insurer’s default risk.
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assume that non-life insurers’ default risk depends ontgbam rather than long-term
solvency.

There are several ways to measure different facets of spiMenan insurance com-
pany. For example, the solvency ratio of an insurer deseribe size of its capital
relative to the premiums written, and measures an insurnsksof experiencing un-
covered claims. Other solvency ratios include debt to ggtatal debt to total assets,
and interest coverage ratios. Further, the solvency of suramce company could be
assessed using regulatory capital, which is often detenising prescribed rules by,
e.g., regulators. In practice, insurance companies hglidnilevels of capital and eco-
nomic capital is assessed using risk-based models. Atteenaethods to determine
regulatory and economic capital have been proposed to reafpte insurance default
risk adequatel

In our study, we include two different proxies for the solegonf a non-life insurance
company. We calculate the current solvency by the insuregtsncome divided by
the sum of short-term debt and portion of long-term debt.tHarmore, to estimate
the solvency for a longer time frame, we calculate an in&iteng-term solvency
by taking its total long-term insurance reserves dividedtbyotal liabilities. For a
longer time frame, we focus on the insurers’ capital whiaudes technical reserves,
accounting provisions, and capital for losses in assetiposi Higher values of each
of the two proxies indicate better an improved ability of asurer to pay back its
liabilities and thus, are expected to decrease the leveefafult risk of an insurance
company.

While the two variables above proxy for an insurer’s activerating cash flow and
solvency, we are also interested in whether the sheer sizamfal buffers against
unexpected high losses is relevant in determining defakit ¥We include the natural
logarithm of capital surplus as an additional explanatasable in our analysis and

expect it to be negatively related to the inverse z-scoedtso, e.g., Carson and Hoyt,

81For example, Mayers and Smith (2010) calculate solvendgsdty the insurers’ market value and
price of the insurance contracts written. Other authorsdifferent methods based on the economic
value of the balance sheet to measure the allocation ofsoheapital (see, e.d., Cummins, 2000).
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2000).

In addition to our measures of insurer solvency, we emplogrse other insurer-
specific characteristics that may be significant driversidividual default risk. We in-
clude the variable debt maturity which is defined as the w@tiotal long-term debt to
total debt. It exists a wide consensus among economistsegiuthtors that the depen-
dence of certain banks and insurers on short-term fundipgsed these institutions
to liquidity distress during the financial crisis (see, gRBrunnermeier and Pedersen,
2009, Cummins and Weliss, 2014, Fahlenbrachlet al., Ellh)our analysis, we as-
sume that the variable debt maturity not only influences auregr’s systemic relevance
(see, e.g., Bierth et al., 2015), but also the idiosyncradfault risk.

To characterize the quality of the risk portfolio, we obtaiformation on the insur-
ers’ loss ratio by employing the sum of claim and loss expeasel long-term insur-
ance reserves dividing by premiums earned. In the absemumnetraditional business
activities of insurers, the composition of their risk potith should be the determining
factor for the probability of default. Whenever the claim dods expenses exceed
the earned premiums by a large magnitude, it is an indicdteitler poor risk man-
agement or underwriting abilities and reflect the overaifipability and soundness of
the insurance firm. Thus, we expect that higher loss ratiesssociated with higher
default risk and therefore should enter our regressionyaaalwith a positive signed
coefficient.

Next, we are interested in whether the quality and efficiemicgn insurer’s man-
agement affects its overall default risk. In order to progy $uch inefficiencies, we
calculate an insurer’s operating expense ratio given byate of operating expenses
to total assets. Higher values of the operating expense eapress a less efficient
management of the insurance company and thus, is very ligelgcrease the overall
soundness of the insurer.

Also, we proxy for an insurer’s leverage by taking the sumarhed and unearned

82Als0, the (IAIS) includes the ratio of the absolute sum ofrsterm borrowing to total assets in its
methodological framework as a key indicator of systemievahce of an insurance company (see
IAIS] 2011, 2013).
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premiums divided by capital surplus. Many studies argué ltfgh leverage may in-
crease the overall risk of a firm if the leverage ratio hashedwalues beyond a certain
optimum, after which it decreases firm value (see, e.g., @aaad Hoyt| 2000).

As another idiosyncratic variable, we employ an insuremsual premium growth
(in percent) in booked premiums. A positive and higher glovéte increases the
insurers’ leverage in case of constant equity and thus, eanisky beyond a certain
optimum. On the other hand, a strong growth in booked premimmght also indi-
cate that an insurer’s business is in demand. Thus, we ahg@igotemium growth
could have both, a positive and negative impact on defakt fiherefore, we have no
expectations regarding the sign of its coefficient in ouresgions.

Finally, to control for country-specific factors (such ag thusiness climate) that
generally influence the well-being of an insurance compardifierent countries, we
also include a country’s annual real GDP growth rate (in %) the log of the annual

change of the GDP deflator.

5.3.3 Descriptive statistics

We start our empirical analysis by presenting selectedriiise statistics for both full

sample and sub-samples. To minimize possible biases stegrirom extremely high

or low values in our data, we winsorize each of our variabteésea1% and 99% level.
To describe our data sample in more detail, Table 5.1 shosvsumber of observa-

tions for our main independent variables of insurer solydoceach country.



Table 5.1: Number of observations per country.

The table presents the number of observations of the twables that describe a non-life insurer’s solvency per aguiihe sample consists of 308 international non-life
insurers and runs from 2000 to 2013. Solvency is an insunet'scome divided by the sum of short-term debt and portidarg-term debt. Long-term solvency is defined
as the total long-term insurance reserves divided by tizthilities. Data sources are given in AppendixD.2.

Country Solvency  Long-term solvency Country Solvency  Longerm solvency
AUSTRALIA 30 10 MALAYSIA 19 26
AUSTRIA 0 19 MALTA 0 8
BAHRAIN 4 13 MEXICO 0 11
BERMUDA 60 108 NIGERIA 9 20
BRAZIL 19 14 NORWAY 3 4
CANADA 37 49 OMAN 13 15
CAYMAN ISLANDS 1 8 PAKISTAN 26 94
CHINA 15 5 PERU 3 14
CROATIA 4 16 POLAND 13 18
CYPRUS 4 7 QATAR 19 18
DENMARK 26 43 RUSSIAN FEDERATION 0 8
EGYPT 2 0 SAUDI ARABIA 0 53
FINLAND 9 22 SINGAPORE 0 5
FRANCE 20 21 SOUTH AFRICA 6 0
GERMANY 19 62 SPAIN 0 18
GREECE 4 24 SWITZERLAND 28 68
HONG KONG 17 5 TAIWAN 5 30
INDONESIA 5 80 THAILAND 118 27
IRELAND 17 13 TUNISIA 0 17
ISRAEL 20 18 TURKEY 9 41
ITALY 57 143 UNITED ARAB EMIRATES 56 103
JAPAN 62 165 UNITED KINGDOM 76 64
JORDAN 13 72 UNITED STATES 585 479
SOUTH KOREA 35 129 VIETNAM 2 24
KUWAIT 14 30

LUXEMBOURG 15 14
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First, we notice that the number of observations differsstauttially for long-term
solvency and for the solvency variable. We find more datatpdior the insurers’
long-term solvency than for the solvency variable in the lwhgample. Second, the
maximum number of available observations per country foh variables is given by
479 for the United States, followed by 165 for Japan. We latkeiress this finding by
performing analyses that compare the impact of idiosyiwrvatiables on the default
risk of U.S. and non-U.S. non-life insurers. Overall, weuige non-life insurers from
50 different countries.

Next, we turn to the more detailed description of our sampledporting relevant
statistics for selected variables. Table]5.2 presentsrigéige statistics for the main
variables used in our empirical study.

Summary statistics for data values used in our baselinessgms are given sep-
arately in two panels for our full sample and for the sub-dengd large insurers,
respectively. Since data availability for the solvency &mdy-term solvency variables
differs across countries, it is reasonable to report deteei statistics for both samples
used in the regressions.

First, we notice that the mean of the annual default riskaiaei is higher for the
samples with long-term solvency and the standard deviasi@hmost twice as high.
For the panel of large non-life insurers, we find qualitdyitee same relation. Turn-
ing to the solvency variable, we observe a maximum of 2, Mich is significantly
higher as the average value of 116.96 indicating the presehfew outliers. As ex-
pected, large insurers have a significantly higher averalyescy ratio.

For the long-term solvency, we find no relevant differencggtie mean and stan-
dard deviation besides that a maximum value of 0.853 canlelfamong the smaller
and medium sized insurers. The average loss ratio of lagygens is similar for both
samples and we find a lower quality of the insurers’ risk didf among the full
sample. Since the operating expense ratio for large insusesignificantly smaller,
we argue that larger insurers might in fact have a more effialeanagement than

their smaller counterparts (this is in line with larger ireng being able to generate



Table 5.2: Summary statistics of the full sample.

The table presents descriptive statistics of the inverseoze and the main explanatory variables for a sample of @@8national non-life insurers (corresponding to our
baseline regressions including the variables solvencylamgtterm solvency). The sample period runs from 2000 ta320A4dditionally, the table presents descriptive
statistics for our set of explanatory variables for noe-lifisurers in the fourth quartile of total assets (large). réfgort the number of observatiois minimum and
maximum values, mean and standard deviation. All variadmhesdata sources are defined in Appendix D.2.

Sample Full Full

N=790 Mean St. Dev. Min Max N=720 Mean St. Dev. Min Max
Inverse z-score 0.728 1.204 0.034 15.864 1.084 2.226  0.034.864
Solvency 116.957 411.821 0.028 2755.960 - - - -
Long-term solvency - - - - 0.036 0.071  0.000 0.853
Loss ratio 67.991 17.483 4501 128.617 70.200 15.878 4.5(48.617
Operating efficiency 0.282 0.160 0.015 0.957 0.285 0.138 38.0 0.810
Debt maturity 0.545 0.391  0.000 1.000 0.728 0.375 0.000 (L.00
Sample Large Large

N=364 Mean St. Dev. Min Max N=338 Mean St. Dev. Min Max
Default risk 0.732 1.168 0.034 9.979 0.952 2.050 0.034 15.86
Solvency 157.395 496.694 0.028 2755.960 - - - -
Long-term solvency - - - - 0.039 0.061  0.000 0.284
Loss ratio 75.956  14.469 14.950 128.617 75.570 14.889 (04.9628.617
Operating efficiency 0.247 0.124  0.048 0.692 0.247 0.114 38.0 0.599
Debt maturity 0.715 0.326  0.000 1.000 0.780 0.331  0.000 (L.00
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economies of scale).

In addition to the summary statistics for our full sample, algo present descrip-
tive statistics separately for samples in which the insuage either above and below
the median values of the respective solvency measure. T$wiplgve statistics are
presented in Table5.3.

Panel A of Tablé 513 shows descriptive statistics for theeolations above and
below of the median value of the solvency variable. For tHaesof default risk with
observations below the median of solvency, we find a highem(#.19) and standard
deviation (2.19) than in the sample with values above theiamesblvency (0.68 and
1.23). Also, the t-test of the equality of means is highlyngfigant for every variable
except size. Furthermore, higher solvency is associatédadower mean in operating
expense ratio and thus, higher operating efficiency.

Turning to the statistics for observations above and bel@wnedian values of our
long-term solvency variable (Panel B), we find a statistycaignificant difference in
the means of the inverse z-score for the two samples. Legstéym solvency is
associated with a higher value of the inverse z-score arg] thhigher probability of
default for the firm, which is intuitive. Looking at the los#io of non-life insurers, we
find that more long-term solvency, on average, is assocwitddower loss ratios and
thus, a higher quality of the the company’s risk portfoliolthdugh this is intuitive,
we find the reverse relation in Panel A, where short-termesaly is associated with
higher loss ratios. Thus, we find slight differences betwiendynamics of solvency
and long-term solven

In Panel C, we present descriptive statistics for the mairalibes of interest with
our sample being split up using the median value of capitgdlss as the cut-off.
Obviously, the overall number of observations is higherctpital surplus than for the
other two variables, mainly due to data availability. Spig the full sample according
to this variable, however, does not reveal any significafierdinces in default risk.

The findings for the loss ratios are similar to those in PanéhBontrast to the other

83Also, note that the number and distribution of observatfonghese two variables differ substantially.



Table 5.3: Descriptive statistics for observations abaelzelow the median values of solvency measures.

The table compares the characteristics of an internatissrable of non-life insurers for the time period from 2000 €42 for observations that are above or below the
median values for three different solvency measures. Wartréipe number of observations, minimum, maximum, mean,iame@nd the standard deviation of an insurer’s
inverse z-score and selected control variables. We tesifhality of means of the two samples using Welch'’s t-testifgqual sample sizes. *** ** * denote estimates that

are significant at the 1%, 5%, and 10% level, respectivelyvaiables and data sources are defined in Appendik D.2.

Panel A: Solvency

Inverse z-score
Size

Loss ratio
Operating efficiency

Panel B: Long-term solvency

Inverse z-score
Size

Loss ratio
Operating efficiency

Panel C: Capital surplus

Inverse z-score
Size

Loss ratio
Operating efficiency

Above Below t-value
N Mean St. Dev. Median Min Max N Mean St. Dev. Median Min Max
527 1.19 2.19 052 0.04 1759 539 0.68 1.23 35 0.0.04 17.59 473
577 21.77 2.73 21.86 15.63 26.61 577 21.66 2.47 21.886315. 26.61 0.72
533 70.39 18.31 70.36 2.20 129.25 561 64.58 19.717.486 2.20 129.25 5.05
519 0.27 0.15 0.24 0.01 0.91 548 0.30 80.1 0.26 0.01 0.96 -3.38
Above Below
N Mean St. Dev. Median Min Max N Mean St. Dev. Median Min Max
776 1.11 2.45 0.46 0.04 1759 676 1.45 2.89 42 0.0.04 17.59 -2.37
947 21.17 2.37 21.33 15.63 26.61 947 20.48 2.69 19.996315. 26.61 5.90
939 63.11 20.42 64.28 2.20 129.25 946 73.46 22.776.557 2.20 129.25 -10.39
919 0.29 0.16 0.26 0.01 0.96 589 0.38 00.2 032 0.04 0.96 -8.43
Above Below
N Mean St. Dev. Median Min Max N Mean St. Dev. Median Min Max
919 1.23 2.76 0.39 0.04 1759 949 1.02 216 43 0.0.04 17.59 1.78
1,116 19.73 1.94 19.77 15.63 25.99 1,116 22.89 1.75 1228®.85 26.61 -40.48
1,070 63.72 19.94 65.23 2.20 129.25 1,068 70.24 5617 70.13 2.20 129.25 -8.03
1,116 0.37 0.21 0.32 0.01 0.96 1,106 60.2 0.14 0.24 0.01 0.96 15.36

*%%

*kk

*kk

*%

*kk

*kk

*k*%

*%%

*%k%
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solvency ratios, we find lower operating efficiency for olvations above the median

of capital surplus.

5.4 Empirical results

In this section, we investigate which factors determinemlife insurer’s default risk.
First, we comment on the evolution of the idiosyncratic défask of insurers in our
data during the sample period. Then, we discuss the resutisrobaseline panel
regressions. Subsequently, we report and comment on fusalts of additional

multivariate analyses.

5.4.1 Insurer default risk

The following Figure 5.1 presents the time evolution of mes) default risk. More
precisely, the figure plots the time evolution of the mean, 10%- and 90%-quantile
of the inverse z-score of the international sample of ntifisurer, outside of the
United States, as well as for the sample of U.S. non-liferasufor the sample period
from 2000 to 2013.

The first panel shows the time evolution of the U.S. non-lifsurers. As shown
in the figure, U.S. non-life insurers’ average default rigkef/-shaded area) increased
immensely during the dot-com crisis in 2002 and during thery®010 and 2012.
Interestingly, the mean of the inverse z-score in 2011 ark® 48 above the 90%-
guantile, probably due to outliers in that year. Before threeng financial crisis, the
default risk of U.S. non-life insurers declined over thergdaut stayed on a relatively
low level.

Turning to the time evolution of the non-U.S. non-life instg illustrated in the
second panel, it is not surprising that the average defsllimcreased steeply during

the financial crisis. In contrast to the U.S. sub-samplelahel of default risk for the

84Since we calculate the z-score using balance sheet dataamwsee an effect of variation in balance
sheet data due to the recent financial crisis in 2010 up t0.2012
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Figure 5.1: Time evolution of insurers’ default risk for theriod from 2000 to 2013.

The figure illustrates the time evolution of U.S. and non-Wé&-life insurers’ inverse z-score. Z-score
is defined as the sum of an insurer’s equity ratio and its metarassets over the standard deviation of
return on assets during the previous five years. White areseprthe values of the 10%-quantile and
black bars present the 90%-quantile of insurer’s inverseare per year. Grey shaded areas indicate the
mean values of inverse z-score per year.
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time period from 2000 to 2010 is considerably higher. Howewe find no evidence
for such high statistical outliers in 2011 and 2012 as footiwer sample. The evolution
of the inverse z-score values before the crisis period ispawable to those found for
the U.S. sample. Finally, we notice that the level of defaak in the U.S. is lower in

comparison with the non-U.S. non-life insurers.

5.4.2 Determinants of insurers’ default risk

Following our univariate investigation of insurers’ deltausk, we now describe the

results of our multivariate analyses. First, we run pangiassions for the time period



5.4. EMPIRICAL RESULTS 144

from 2000 to 2013 using firm-fixed effects and year dummie® d$timates resulting
from the (one-step) GMM-sys approach are given in Table 5.4.

Columns (1) - (6) present the results of regressions usindguiheample of non-
life insurers while (7) - (12) show analyses with observagian the fourth quartile of
insurers’ total assets.

In the first three regressions, we include the variable saly@among other idiosyn-
cratic factors and a country’s GDP growth and inflation raiest strikingly, we ob-
serve that the solvency measure does not seem to play acdgnifole in any of these
regressions. Thus, the short-term ability to pay off debtasthe determining factor
when assessing an insurer’s default risk. The same cooalisialid for the regres-
sions of default risk on solvency for the sample of large iessiin (7) - (9).

In contrast to these results, we find a strong negative oeldetween our measure of
long-term solvency and an insurer’s inverse z-score. Tigetahe ratio of long-term
insurance reserves and total liabilities in a non-life naswwe company, the lower is its
default risk as measured by the inverse z-score. Althougmdm-life insurance busi-
ness is more volatile than, e.g., the business of life immeaontracts, the ability to
meet long-term liabilities is nonetheless an essentialpmmant to preserve firm stabil-
ity. It equips the insurance company with sufficient buffersompensate unexpected
high losses in the future. We conclude that although we wexfikct short-term sol-
vency to be the determining factor of non-life insurers’aief risk (since their claims
are rather short-term and more volatile), long-term satyesignificantly reduces de-
fault risk over the full sample. The effect of long-term satey is also economically
significant with a one standard deviation increase of tharers long-term solvency
being associated with a minus 43.35%6.108 x 0.071) decrease of the insurers’
inverse z-score.

However, when we restrict our sample to large insurers,digisificance vanishes.
One explanation for this might be the higher level of longrtesolvency of larger
non-life insurers in general. Thus, the effect of this Vialeais not relevant for the

sample of large insurers. Our observations from Table S5ppa this view in the



Table 5.4: Panel regressions of non-life insurers’ defiasitt(2000-2013).

The table shows the results of the (one-step) GMM-sys etimaf the inverse z-score on solvency measures of insarasontrol variables. Regressors are defined in
AppendiXD.2. The lagged dependent variable is includetiérégressions. We employ double-lagged values of the depémariable as instruments. P-values are given
in parentheses and *, **, and *** indicate statistical sifitaince at the 10%, 5%, and 1% level, respectively.

Sample Full Large
@ @ ©) “ ©) 6) O C) 9) (10) (€3] (12)
Inverse z-scofke 1 0.106***  0.113**  0.164** -0.058 -0.067* -0.044 0.215** 0.201**  0.212**  0.147* 0.116** 0.147*
(0.000) (0.000) (0.000) (0.122) (0.066) (0.249) (0.000) .000) (0.000) (0.010)  (0.024) (0.012)
Solvency 0.000 0.000 0.000 0.000 0.000 0.000
(0.188) (0.159) (0.247) (0.313) (0.412) (0.455)
Long-term solvency -6.098***  -6.108***  -6.443** -4.133 -2.756 -4.063
(0.001) (0.000) (0.024) (0.297)  (0.408) (0.347)
Loss ratio 0.010***  0.009** 0.017**  0.019** 0.026***  0.03*** 0.032***  0.033** 0.038*** 0.023** 0.023** 0.026**
(0.009) (0.012) (0.000) (0.030) (0.001) (0.003) (0.000) .000) (0.000) (0.025)  (0.007) (0.020)
Operating efficiency  0.897* 0.573 0.601 8.518%*  7.248%*  G1*** 1.163* 1.260** 1.783** 4518*  2.897 4,782
(0.072) (0.214) (0.254) (0.000) (0.000) (0.000) (0.079) .0%B) (0.017) (0.039) (0.112) (0.042)
Debt maturity 0.171 0.205 -0.063 0.470 0.377 0.444 0.219 80.27 0.246 -0.149 -0.203 -0.305
(0.342) (0.230) (0.711) (0.175) (0.285) (0.254) (0.333) .183) (0.323) (0.739)  (0.615) (0.521)
Premium growth 0.036 0.240 0.114 0.376
(0.798) (0.401) (0.531) (0.263)
GDP growth -0.045 0.140** -0.033 -0.031
(0.114) (0.041) (0.341) (0.749)
Inflation 0.016 0.099 -0.001 0.087
(0.544) (0.133) (0.972) (0.309)
Observations 790 725 590 720 677 628 364 324 328 338 312 322
Wald 250.64 310.66 296.14 255.19 299.93 280.10 230.47 284.6 230.5 143.38 166.26 139.61
p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 10.00 0.001 0.001 0.001
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way that large insurers have a slightly higher average waflleng-term solvency, but
also less dispersion. In this case, it shows that there ssv@sation in the values of
solvency among the sub-sample of large non-life insuredstlams, these variables do
not play a significant role in this specific analysis. Anotheason might be that the
observations in the fourth quartile of insurers’ total &ssee those tied to a specific
group of countries. For example, U.S. non-life insurers@araverage larger in size
and make up the largest part of our sample. To understandiridiag in detail, we
run additional analyses that are concerned with the questieether insurers’ default
risk is driven by country-specific differences rather thdiosyncratic ones. Before
we turn to these analyses, we highlight a few more findings fi@ble[5.4. First,
we find that a non-life insurer’s loss ratio, as a proxy for thuality of an insurer’s
risk portfolio, is positively related to its inverse z-seoiSecond, the less efficient the
insurance company operates, the higher its default risk.€fiect of the proportion of
long-term debt on an insurer’s default risk, however, isgngicant.

As a first step towards a cross-country analysis of insudafgult risk, we include
a country’s respective GDP growth and inflation rate in regjiens (3) and (6). While
we find a significant positive relation between GDP growth dethult risk in (6),
this effect vanishes in (3), where we have other restristimmour observations due to
differences in data availability for the two solvency maasu

To further investigate possible differences in defauk esross our sample insurers
due to country-specific effects, we split our sample into.l& non-U.S. insurers.
U.S. insurers are different in the way that regulation dagsequire them to maintain
higher solvency capital standards in contrast to what, thg.Solvency Il framework
in the European Union demands of European ins@h&e repeat our baseline re-

gressions for these two separate samples. The resultsawe ghTabld 5.5.

8Further, one of the main key differences between the tweesystis that Solvency Il has a stricter
approach than the U.S. regulatory system.

In an effort to protect the interests of all stakeholders,Et prescribes a strict provision for capital
adequacy that may require a higher level of capitalizati@mntin the United States. In contrast, the
U.S. regulation focuses on free-markets and competitiahisitipline insurers.



Table 5.5: Panel regressions of default risk: U.S. and ndh-bbn-life insurers.

The table shows the results of the (one-step) GMM-sys etitmaf the inverse z-score on solvency measures of insaretsontrol variables for U.S.-based and insurers
outside of the United States. Regressors are defined in AppBad. The lagged dependent variable is included in theasgions and we employ double-lagged values of
the dependent variable as instruments. P-values are giyearéntheses and *, **, and *** indicate statistical sigcédince at the 10%, 5%, and 1% level, respectively.

Sample u.s. Non-U.S.
1) 2 3 4) ®) (6) ) 8
Inverse z-scoke, 0.0018 0.0133 -0.1861***  -0.1474*** 0.2577*** 0.2723**  (A310***  (0.1303***
(0.892) (0.283) (0.001) (0.004) (0.000) (0.000) (0.001) .000)
Solvency -0.0001 -0.0001 -0.0001 -0.0001
(0.428) (0.224) (0.281) (0.390)
Long-term solvency -5.7025 -5.1100 -4.0805***  -4.2808***
(0.498) (0.516) (0.006) (0.004)
Loss ratio 0.0087***  0.0126*** 0.0488***  0.0530*** 0.0053 0.0067* 0.0114* 0.0140**
(0.000) (0.000) (0.001) (0.000) (0.152) (0.063) (0.057) .019)
Operating efficiency 0.1644 0.5262**  4.5160***  5.1076*** 2139%*  1.9488***  7.5607**  6.7316***
(0.574) (0.031) (0.004) (0.000) (0.000) (0.000) (0.000) .00QD)
Debt maturity -0.0171 0.0473 0.7247 0.1578 -0.0441 0.0005 0.1611 -0.2213
(0.856) (0.548) (0.136) (0.727) (0.811) (0.998) (0.562) A78)
Premium growth 0.0940 0.1325 -0.5102*** -0.3446
(0.112) (0.717) (0.003) (0.145)
Observations 446 394 288 260 613 569 664 630
Wald 514.48 666.95 176.44 141.47 453.27 466.1 292.22 324.8
p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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First, we notice that in the case of U.S. non-life insureosyenof the two measures
of solvency enters the regressions with a statisticallgimant coefficient. For non-
U.S. insurers, however, we find similar results as in our lo@sesgressions. Different
from the findings in the regressions using the U.S. samplefivdethat the loss ra-
tio is a less significant factor when explaining default nidknon-U.S. insurers. We
conclude that U.S. non-life insurers’ default risk is notdependent on the level of
long-term and short-term solvency as for their non-U.S.ntexparts. This substan-
tial difference in the decomposition of insurers’ defaigkrunderlines the findings in
Pasiouras and Gaganis (2013), who reveal that instittidiffarences across coun-

tries significantly drive differences in insurers’ z-score

5.4.3 Country effects and further analyses

As our next step, we disaggregate effects in our analysisatigadue to differences
in idiosyncratic and economic or regulatory environmentshie home countries of
insurers in our sample. Fundamental distress could be dawmseurrent economic
downturns or could be systematically influenced by, e.gtrietsr regulation of busi-
ness activities or capital requirements.

Having pointed out that there are indeed differences in thelife insurers’ de-
fault risk across countries (see Pasiouras and Gagani®),20& are interested in the
explanatory power of such country effects. In order to dovg® estimate additional
pooled OLS regressions using country dummies instead ofléwel effects and run
standard analyses of covariances. The estimates for thedp@&S regressions (with
clustered standard errors on the country-level) are gindiable 5.6.

In columns (1) - (5), we report the OLS estimates for the regjoms that include
single variables and which are estimated with country-fizad time-fixed effects.
First, we include an insurer’s natural logarithm of totadets as a proxy for its size.
We observe a negative relation to the inverse z-score arg] éhdecreasing effect on

default ris@. Similar to the results above, an insurer’s loss ratio asdjperating

8Note that we do not report regressions with an insurer’sigiper baseline regression since it is highly
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Table 5.6: Pooled OLS regressions of non-life insurersadifrisk on country
dummies (2000-2013).

The table shows the results of pooled OLS regressions ohtlegde z-score on solvency measures of
insurers, country dummy variables, and control varialdResults for selected country dummy variables
are reported in the table while the other dummies are supptdesRegressors are defined in Appendix
[O.2. Standard errors are corrected for clustering on thelével, p-values are given in parentheses, and
* ** and *** indicate statistical significance at the 10%%& and 1% level, respectively.

1) 2 3 4 ®) (6) ()
Size -0.1433***
(0.007)
Leverage 0.0000
(0.805)
Surplus -0.0151
(0.718)
Loss ratio 0.0184*** 0.0091 0.0266**
(0.001) (0.152) (0.036)
Operating efficiency 0.8472** 1.3080* 3.6157***
(0.031) (0.060) (0.001)
Solvency -0.0001**
(0.029)
Long-term solvency -6.4534*
(0.062)
Debt maturity -0.0424 0.2308
(0.826) (0.378)
Constant 4.5404*  1.4625***  1.5501*** 0.1657 1.1710** 0.3954 -1.3675
(0.000) (0.000) (0.000) (0.707) (0.000) (0.462) (0.121)
Country-fixed effects  YES YES YES YES YES YES YES
Time-fixed effects YES YES YES YES YES YES YES
Observations 2,684 1,650 1,786 2,514 2,360 933 859
R2 0.1241 0.1022 0.1156 0.1347 0.118 0.2034 0.1798

expense ratio enter the respective regressions with ststatly significant positive
sign

Additionally, we estimate pooled OLS regressions emplgytime two additional
variables capital surplus and leverage. Beyond a certaimappoint, high leverage
is expected to increase the likelihood of a firm’s default ing, we assume that our
variable leverage enters the regressions with a positiye 3Vhile this is the case in
our sample, the coefficient is statistically insignificaBtmilarly, we find an intuitive
negative relation of the logarithm of capital surplus andresurer’s inverse z-score,

but no statistical significance.

correlated with some of our main variables and would bias#ignates. Instead, we opted for more
granular insurer characteristics than size.

8"Note that the number of observations in these regressiommgonably higher than in our baseline
regressions due to data availability for other variables.
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Columns (6) and (7) report estimates using our baseline n{adilout the lagged
dependent variable). For long-term solvency, we find qaiahly similar results as in
our previous analyses with the difference that the estirohtke coefficient of long-
term solvency is only statistically significant at the 10%gele In the absence of firm-
fixed effects, which capture unobserved heterogeneity irsample, our measure for
short-term solvency becomes a significant driver for anregrs default risk. The
coefficient enters the regression with a statistically ificgnt negative sign and thus,
reduces the default risk in this model.

Finally, we analyze the decomposition of our default riskaswge by employing
a standard analysis of covariance (ANCOVA) (see, e.g., Adisiet al.} 2015). We
include several firm-level determinants as well as countdagear dummies to explore
the degree to which each factor contributes to the variahitesorers’ inverse z-score.
For each variable, we calculate the ratio of the Type Illiphgum of squares and the
sum across all effects (times 100) in the model. The restdtgiaen in Tablé 5]7.

Table 5.7: Variance decomposition of non-life insurer défask (2000-2013).

The table shows the variance decomposition of insurer€rs® z-score obtained from an analysis
of covariance. Numbers represent the partial sum of sqdaresach variable in the model divided
by the sum of squares of all effects (the total sum is 100). |&haiory variables include firm-level
determinants, country dummies, and time dummies. All emare defined in AppendixD.2.

@ @ ©) 4 ©) (6) ) ®) (©)

Size - 5.40

Leverage - - 0.02 -

Surplus - - - 0.10 - - - - -
Loss ratio - - - - 10.16  2.63 8.86 0.88 9.00
Operating efficiency - - - - - 3.98 9.40 2.25 7.87
Debt maturity - - - - - 0.03 0.44 0.96 4.89
Solvency - - - - - 0.53 - 0.40
Long-term solvency - - - - - 4.06 - 1.71
Inverse z-scoke 1 - - - - - - - 24.47 5.10

Country-fixed effects 76.41 72.10 67.55 7356 71.17 82.00 .556 57.57 41.79
Time-fixed effects 2359 2251 3243 26.34 18.67 10.83 20.7B.481 29.63

Observations 2684 2684 1650 1,786 2,514 933 859 790 720
AdjustedR? 0.10 0.10 0.07 0.09 0.11 0.15 0.12 0.28 0.08

In column (1), we include year dummy variables and countgefieffects and ob-

serve that in this simple setting the country effects actémmover 75% of the vari-
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ation of an insurer’s inverse z-score. We continue like inmabled OLS regressions
by including single variables in our models to see what foacis determined by id-
ilosyncratic factors. The size of an insurance company eélabout 5.4% of the
dependent variable’s variance while the capital surplusleverage variables, which
were insignificant in the OLS regressions, account for leae bne percent. When we
employ a non-life insurer’s loss ratio as the only idiosyticr variable in the model,
we find that it determines almost twice as much of the fracti@mn the proxy for an
insurer’s size.

Next, we include all variables from our baseline analysdsi¢valso significantly
reduces the sample size in these models) and run separatsesnaith and without
one lag of inverse z-score. The results are reported in aedy(@) - (9). For the models
including our long-term solvency variable, we observe thatloss ratio and operating
expense ratio both account for a little less than 10% of theatian in default risk
and thus, possess a relatively high explanatory power caedga other firm-specific
factors. Interestingly, we find that the lag of inverse zrsaexplains a relatively high
proportion of the variance in these models. Still, we find trauntry effects and also
time dummies explain most of the variations in our settingsterms to the previous
analysis we find that the long-term solvency capital endomtngethe main buffer to
reduce financial distress. Additionally we find no evidenteur study for the U.S.
non-life insurance industry with the respective as a lomdsaregulatory guidelines

for a reducing effect of financial distress in interactiothatong-term solvency.

5.5 Conclusion

In this paper, we analyze the determinants of default risk0&f international non-life
insurers in the period from 2000 to 2013. As our main resudtfiwd that default risk
as measured by the inverse z-score is negatively relateahtdifie insurers’ long-term
solvency and positively related to the insurers’ loss mtioterestingly, we find only

little evidence that higher short-term solvency is asdediavith lower default risk.
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Restricting our sample to only large insurers (with totale#ssn the fourth quartile
of the full sample) reveals that none of the solvency measisra significant driver
of the default risk in that sub-sample. Also, when we compheesamples of U.S.
and non-U.S. non-life insurers, we find that there are diffiees in the determinants
of default risk across countries. While we confirm the resofltsur full sample anal-
ysis for non-U.S. insurers, we find no significant relatiomoy solvency measure for
the insurers from the United States. One Reason might be &npgbe the European
Union with it's new insurer regulation system Solvency Itahe corresponding cap-
ital requirement rules. The country specific regulationtesys and the corresponding
requirements affect the model of insurer business in diffewvays including the re-
spective government specific intention.

Further, we explore the explanatory power of single indicaof distress in compar-
ison to country effects and find that default risk is to a laegtent driven by country-
specific factors. The fraction of the variance of the inverseore explained by two
different measures of solvency is small compared to otheabigs. Of all idiosyn-
cratic insurer characteristics used in this study, we ofestirat an insurer’s loss ratio
and operating expense ratio are among the best predictarfirof’s financial distress.

Our study contributes to the discussion on solvency camtglirements in the in-
surance sector and stresses the importance of an inswegukatory environment for
its default risk. Most importantly, regulation aiming atreasing an insurer’s mid-
and long-term solvency appear to be a powerful tool for $icgmtly decreasing an

insurer’s default risk.
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Chapter 6

Derivatives Usage and Default Risk in

the U.S. Insurance Sector

6.1 Introduction

Financial and non-financial companies employ derivatigriments for a variety of
reasons. Most obviously, companies use derivatives fogihgdrisky positions on
their balance sheet. In contrast, companies could alsongs&cial derivatives for other
reasons, like lowering their expected costs of defaultiogering expected taxes, or
reducing the volatility of executive compensations (seg,, &mith and Stulz, 1935,
Froot et al.| 1993, DeMarzo and Duffle, 1995). Finally, somedi might simply be
using financial derivatives in their trading business, ¢bgrincreasing rather than de-
creasing their total firm risk. For insurance companiesgctviare by definition exposed
to a variety of risks, hedging should be the prime motive feing derivative instru-
ments. However, the literature still lacks an empiricabstigation into the effects the
usage of derivatives by insurers has on the institutionfsiudleand systemic risk.

In the wake of the financial crisis of 2007-2009 and mainly ttutlhe near-collapse
of American International Group (AIG), regulators have dree increasingly careful

not to rule out a destabilizing effect of individual systeally important insurers on the
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financial sect(@ In the context of regulators’ endeavour to implement a marcrden-
tial regulatory regime for insurers (see, €.qg., IAIS, 20&3pecially derivatives trading
and usage have been named as a potential source of systsknid e allegedly ad-
verse effect of derivatives usage on an insurer’s firm riskyéver, is not as obvious as
regulators sometimes claim it to be. While derivatives tngdor risk-taking should
obviously increase firm risk, the use of derivatives for hedgurposes should (at
least in theory) have a decreasing effect on an insurerautteisk. Insurers often em-
ploy derivatives to hedge various risks stemming from batbesof the balance sheet.
For example, insurers are exposed to interest rate riskt@gearantees for their poli-
cies) and via their debt financing. Also, insurers are oftens@lerably exposed to
foreign currency and market risk on their investments aaldilities. Derivatives may
also substitute assets as part of an insurer’s assettyatmanagement (ALM[f On
the other hand, some insurers could engage in derivataemty simply for generating
profit, a possibility which has been heavily criticized byg.ethe 1AIS (2011, 2013).
An empirical test of the unknown relation between an inssigigrivatives usage (and
its intended purpose) on the insurer’s default risk andesyit risk exposure, however,
has not yet been executed in the literature.

Motivated by the view of the IAIS| (2013) that derivative usagnd trading con-
stitute a source of systemic risk in the insurance indushig, paper investigates the
relation between the individual default risk of insuranoenpanies and their disclosed
information on derivatives usage. More precisely, we ea@uhe 10-K filings of U.S.
insurance companies to obtain information on the firms’ldssd derivatives usage,
the intended purpose, and the variety of derivatives usékimsurers’ risk manage-
ment. For a sample of 171 U.S. insurers for the period from®182014, we then

perform panel regressions of quarterly default risk estaman a set of variables that

88Several discussions on measuring systemic risk are giveneig., | Acharya et al.| (2010),
Adrian and Brunnermeier (2015%), Brownlees and Engle (20d5Benoit et al.[(2013). An overview
of the recent literature on systemic risk and systemic egleg in the insurance industry is given in
Eling and Pankoke (2014).

8For instance, insurers may use simple interest rate swapadthen their assets’ duration and match
it with the duration of their liabilities.
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proxy for the insurers’ use of derivatives and a set of cdmadables taken from the
literature (see, e.g., Bartram ef al., 2011, Cumminslet a@7,12001). To control for

the endogenous nature of an insurer’s decision to use tieesawe match derivative
users with a control group of non-users using nearest nerghlatching based on the
insurers’ size and market-to-book ratios.

The main result in our empirical study is that insurers tmpky financial deriva-
tives have a significantly lower risk of defaulting than nied non-using insurers.
We also find empirical evidence that the decreasing effededf/atives usage on de-
fault risk is reversed in case insurers use derivativesissrtaking and non-hedging
purposes. Moreover, we find a more pronounced use of demgatd increase an
insurer’s exposure to systemic market shocks as proxietéinsurer’s Marginal Ex-
pected Shortfall. Our results thus corroborate currenvsiby insurance regulators
that derivatives usage for trading negatively affects fomarstability. However, our
findings also underline the risk-reducing and thereby Btat effect of using deriva-
tives for hedging purposes.

This paper is related to, and complements several previodges in the empirical
financial economics literature. In the classical work of Miidni and Miller (1958),
hedging should not add value to a firm in case capital marketperfect. In the
presence of market frictions, however, risk managementhear a beneficial effect
on firms as shown, e.g., in the studies of Smith and Stulz (19850t et al. |(1993),
Nance et al. (1993), Leland (1998), and Whidbee and Woha©(1 98t surprisingly,
the empirical results in this literature (see, €.9., Mig@0€) are also ambiguous with
the expected effects of (and motives for) using financialdgves still being unclear.
For example| Bartram etial. (2011) find empirical evidencé thea use of financial
derivatives significantly reduces both total firm risk andteynatic risk. Yet at the
same time, several studies have also stressed the findinggtinzatives usage does not
significantly lower firm risk even if it is used for hedging poses (see, e.q., Tufano,
1996,| Allayannis and Weston, 2001, Graham and Rogers, 20G2ay (1999) also

finds that systematic risk is unaffected by the use of devieat Underlining this result,
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Hentschel and Kothari (2001) find that derivative usage tsimgmificantly related to a
firm’s stock return volatility. In addition, the results by@&y and Kothari (2003) and
Jin and Joriani (2006) further reveal that firm market valuesralatively unaffected
by hedging activities. For banks during the financial criSisapp and Weil3 (2014)
even find an increasing effect of derivatives usage by U.Bkdan the institutions’
systemic equity tail ris@

Our paper is also related to several studies in the risk me@anagt and insurance
literature. To start with, the study by Bartram (2015) findst therivative users have
higher gross exposures to financial risks compared to nersu3here is no evidence
of speculation with derivatives for sub-samples of firmsndividual countries or for
different types of derivatives. Firms use derivatives fed@ing independent of access
to derivatives or country-level governance. However, si$&ve larger reductions in
risk compared to non-users if shareholder rights are stromglitor rights are weak,
and if derivatives are readily available. Further, Cumming Banzon (1997) find
that insurers use derivatives to hedge their costs of fiahdtress and interest rate,
liquidity, and exchange rate risks. Cummins etlal. (2001)yameethe derivatives hold-
ings of U.S. insurers to explain why widely held, value-nmaizing firms engage in
risk management. They suggest that although measureskandsilliquidity will be
positively associated with an insurer’s decision to engagésk management. The
same measures of risk will be negatively related to the velofthedging for the set of
firms, who choose to hedge using derivative€ummins and Song Drechsler (2008)
study the usage of two common hedging tools, reinsurancdenhtives. In a simple
mean-variance efficient optimization model, the two heddools display substitutive
effects when assets and liabilities do not display strorigrabhedging.

Furthermore, Pé&z-Gonalez and Yun|(2013) show that active risk management
policies lead to an increase in firm value. To identify theetof hedging, they exploit

the introduction of weather derivatives as an exogenousksodirms’ ability to hedge

9The effects of derivatives usage by banks is also studigd,t®/ Geczy et al.|(1997).
91A related study in this respect is the work of Colquitt and HAB97).
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weather risks. Their main result is that risk managementdalconsequences on firm
outcomes. Cummins etlal. (1995) develop a model of price mht@tion in insurance
markets. They find that the price may increase or decreaesving a loss shock that
depletes the insurer’s capital, depending on factors ssi¢heaeffect of the shock on
the price elasticity of demand. Also, their study shows thatprice of insurance is
inversely related to insurer default r@Finally, there also exist several studies in the
literature that analyze the use of reinsurance for risk ameent as an alternative to
derivatives (see, e.d., Cole and McCullough, 2006, Garveh,&@14). However, no
study has analyzed the effects of derivatives usage on thaltigsk of insurers so far.
The remainder of this article is structured as follows. Bedb.2 introduces the
construction of our data sample. The following Section &8atibes the econometric
methodology and the main variables used in our empiricalyst8ection 6.4 presents

the results of our empirical analysis. Concluding remarksgaren in Sectioh 615.

6.2 Data sources and sample construction

This section describes the construction of our data samplieh is constructed from
data taken from th&lorningstar Document Researctine Center for Research in Se-
curity Prices(CRSP), and th€ompustatiatabases, respectively.

We start the construction of our data sample by first selg@iipublicly listed U.S.
insurance companies with SIC codes 6311, 6321, 6331 frordeghd and active lists
in CRSPfor the time period from Q1 1999 to Q3 2014.

Financial market data are retrieved fr@&RSR while accounting data are collected
from Compustat We then collect the 10-K filings for all firms in our samplerfrahe
Morningstar Document Researdatabase. Information on the insurers’ risk manage-
ment, hedging activities, as well as their usage of finaragaivatives are collected
manually from the insurers’ respective 10-K filings. In adumi to these qualitative

variables concerning the insurers’ risk management, we exgract from the 10-K

92They also provide evidence that prices declined in resptme loss shocks of the mid-1980s.
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filings for each insurance company the fair value gains asge® on derivatives po-
sitions. In our process of screening the insurers’ 10-Kdsinwe include only those
insurance companies in our final sample, for which at leastl@aK filing is available
during the course of our sample period. Furthermore, we aignscreen the 10-K
filings for clear identification of the firms as an insurancenpany and exclude a re-
spective firm from our sample if its 10-K filing indicates a Aourance business or
if the filing identifies it as a secondary listing.

Finally, we end up with a full sample of 171 U.S. insurers. KFareased trans-
parency, the names of all insurers in our final sample aredist Appendix EL. In the
next section, we define and discuss the different dependennhdependent variables
that we use in our empirical study. In this discussion, emghis given to the vari-
ables constructed from the insurers’ 10-K filings which we tesproxy for the firms’
derivatives usage. An overview of all variable definitiomsl @ata sources is given in

AppendiXE.2.

6.3 Empirical strategy

In this section, we describe the setup of our empirical aislyFirst, we introduce
our main dependent variable, with which we try to capturefithencial distress of an
insurer. Next, we describe our main independent variablasare used to proxy for
an insurer’s derivatives usage. We continue by discussimgset of insurer-specific
control variables as well as the econometric setup of oulysisa We conclude this

section by presenting selected descriptive statisticsuowariables.

6.3.1 Dependent variable

The goal of our empirical analysis is an investigation of tekation between an in-
surer’s default risk and its use of financial derivatives. a&Aproxy for an insurer’s

default risk, we use the inverse z-score calculated on thes lod the insurer’s stock



6.3. EMPIRICAL STRATEGY 159

return@ In the literature, the z-score is regularly used to proxytfierdefault risk of
firms and has been discussed in several previous paperse(geeBovd et al., 2006,
Berger et al., 2009, Uhde and Heimeshoff, 2009, Laeven anohé&£2009, De Nicolo,
2001, Anginer et al., 2014b). As our dependent variable, mpley the insurers’ in-
verse z-scores, which are defined as one divided by the averagterly stock return
divided by the respective insurer’s stock return volatitiver the last five quarters.
Theoretically, the calculation of the z-score based on @aiog variables should
be equivalent to using average stock returns and stocknretlatilities (see, e.g.,
Schafer et al.) 2015). To capture an insurer’s default risk in @encomprehensive
way, we use the stock based version of the inverse z-sconeriaropirical analyses.
Since we employ the inverse of the z-score, higher valudsnalicate a higher degree

of financial distress for a respective insurance company.

6.3.2 Main explanatory variables on an insurer’s derivatives usage

We are interested in the effects of the usage of derivatim&raots on our sample insur-
ers’ default risk. To obtain information on the disclosufelerivatives usage of insur-
ance companies, we use their respective (quarterly) 10rg$l For each firm with an
available 10-K filing in a given quarter, we manually screlem filing for disclosures
on the insurer’s derivatives usage. If an insurer disclasiesmation on derivatives,
we define the firm as a “derivatives-user”. Consequently, vimel®ur first variable
Derivatives-usels a dummy variable, that is one for derivatives users, ar@aa-
erwise. Since insurers can have different motives for uiragncial derivatives in turn
leading to different risk exposures stemming from the iassirderivatives positions,
we have no expectation regarding the sign of the coefficrenur regressions. Next,
we test whether insurers simply use derivatives as an imstntifor hedging, or alter-

natively, for taking on additional risks. When hedging is¢iméy purpose of derivatives

9%There exist other methods for capturing the financial distref firms like, e.g., using Merton’s
distance-to-default. In our analysis, we opted to use theaxe measure because of its fewer data
requirements. As a consequence, our sample size is notessady reduced due to missing data for
our sample insurers.
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usage, it should have a decreasing effect on a firm’s defantitgility since it is em-
ployed to reduce remaining risks. We include in our analgsisore nuanced dummy
variableHedgingthat is one, when derivatives are used for hedging purpesestdted
by the insurer’s disclosed information on the firm’s risk rageament activities), and
zero otherwis For our variableHedging the relation between the insurer’s motive
to use derivatives for hedging purposes and its defaultsigluld consistently be a
negative one. To get a clearer picture of the differentitda$ of the various types
of financial derivatives on an insurer’s default risk, weoadsnploy dummy variables
that indicate whether an insurer usgstions swaps forwards and/orfutures The
corresponding dummy variables are set to one, if an insusetages the use of the
respective type of derivative in its 10-K filing, and zeroethise. We argue that the
sign of the coefficient on these variables is unrestricteauinregressions and expect
different signs for the four different derivative types.

In addition to our dummy variables, we count the disclosenhiver of different
derivative types used by an insurer. The resulting numb#ras/ariableDerivatives
Intensity which ranges from zero to four. This variable proxies fa thtensity with
which an insurer uses derivative contracts (and should tlaxve a similar effect on an
insurer’s default risk as our dummy varialderivatives-user(see also Bartram et/al.,
2011, for a similar approach to measure the extent of a coy'godarivatives usage).

Finally, we collect the net fair value gains and losses onitisarers’ derivatives
positions as disclosed in the insurers’ 10-K filings. By dangwe attempt to measure
the actual exposure of an insurance firm to risks emanatomg fhe firm’s derivatives

positions.

6.3.3 Control variables

In our regression analyses, in addition to the variables\ansurer’s derivatives usage,

we control for a variety of firm characteristics. We use pegxior the insurers’ size,

94f an insurer disclosed that it does not use any kind of fir@rigrivative, we set the variabledging
to not available (NA).
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profitability, solvency, capital structure, and liab#is. In the following, we define the
control variables used in our empirical study. As a commoasuee of a firm’s size,
we employ the natural logarithm of the insurers’ total ass®@te expect insurer size to
be an economically significant driver of an insurer’s detfagk, although the expected
sign on the estimated coefficients in our regressions isstmected. On the one hand,
larger insurers are less likely to suffer from cumulativeskes due to its broader range
of pooled risks and better risk diversification. On the otiend, larger insurers could
also be more complex, which in turn could increase its defaobability.

Next, we include the variablgolvencyn our regressions defined as the ratio of cap-
ital surplus and the insurers’ total assets. We expect amens solvency to have a
decreasing effect on the default risk of the respectiverarsas a higher solvency im-
proves the firm’s ability to repay short-term liabilitieschaddresses a liquidity short-
age. Furthermore, we include the insurers’ return on a$R€4\) as a proxy for the
insurers’ profitability as an explanatory variable in ougressions. To be precise, we
calculate ROA by dividing an insurer’s pre-tax return bytital assets. We expect
ROA to have a decreasing effect on the default risk of instearompanies as higher
profits can shield insurers from the adverse effects of idpgnfinancial distress.

We also make use of the insurers’ market-to-book ratiosnddfas the market val-
ues of common equity divided by the book values of commontgqguidditionally,
we employ the insurers’ leverage, which we compute as tetal divided by total as-
sets, as a proxy for the insurers’ level of indebtedness &peat a positive impact of
leverage on our measure of an insurer’s financial dis@ﬁmally, we also control for
an insurer’s debt maturity by taking the insurer’s ratioatt long-term debt to total
debt. Here, we expect a more fragile funding structure ofnanrer to be positively

correlated with the probability of the insurer defaulting.

%In our robustness checks, we alternatively employ an imsufleg) total liabilities as a proxy for its
extent of financial leverage.
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6.3.4 Econometric design

After the discussion of the variables used in our empiricellysis, we now shortly
comment on the econometric design employed in our regmessio

In our empirical study, we investigate the relation betwaprnsurer’s default risk,
measured by the inverse of the z-score, and its derivatsageu We employ a panel
data sample with quarterly observations for our sample 8f thsurers over the time
frame from Q1 1999 to Q3 2014. To account for possible penscs in our dependent
variable, we estimate dynamic panel regressions thatdedle first lag of the inverse
z-score as an independent variable. As our main independaables of interests, we
include regressors that reflect information on the insuuses of derivative contracts in
the previous quarter. In particular, panel regressiongstimated using the (one-step)
GMM-sys estimator as proposed by Blundell and Band (1998)h(wduble-lagged

values of the dependent variable as instruments). The &stihbbaseline model is

INVERSE Z-SCORE = «; + ¢ + 1 x INVERSE Z-SCORE,_; (6.1)

+ 2 x DERIVATIVE-USER ;_; + B x CONTROLS; + &

where DERIVATIVE-USER; is a dummy variable that is one when insurerses
derivatives contracts (options, swaps, futures, forwanmlgjuartert, a; and yu; are
insurer-fixed and quarter-fixed effects that capture uneeseheterogeneity across
our sample insurers and across time, CONTRQIsSthe vector of control variables,

whereg;; are the model residuals.

6.3.5 Descriptive statistics

In this subsection, we present selected descriptive statier the dependent and inde-
pendent variables used in our empirical analysis. Tablp®\ides summary statistics
for the full sample.

First, we comment on the distribution of our dependent Wdeian our data sample.
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Table 6.1: Descriptive statistics (full sample).

The table presents descriptive statistics of the quarteslyes of the inverse z-score and control
variables for firm-quarter observations with availableomfiation on derivative use. The sample
includes the 171 U.S. insurers shown in AppendiX E.1 anddh&pte period runs from Q1 1999 to Q3
2014. We report the number of observations, minimum and maixi values, first and fourth quartile,

mean and median values. All variables and data sources finedé& AppendiX ER and all variables

except forDerivatives intensityre winsorized at the 5% level.

N Min  1st quartile Median Mean  3rd quartile Max
Inverse z-score 4,308 0.008 0.013 0.018 0.023 0.027 0.078
Derivatives intensity 3,745 0.000 1.000 2.000 2.313 4.000 .00@&
Gains/losses (in million US-$) 1,840 -767.500 -14.440 -0.10 -14.060 8.129 645.200
Debt maturity 5,656 0.000 0.023 0.054 0.086 0.101 0.587
Leverage 3,699 0.001 0.001 0.002 0.440 0.008 5.747
Market-to-book ratio 3,152 0.278 0.732 0.951 1.038 1.244 512.
ROE 4,193 -0.447 -0.062 0.016 0.007 0.097 0.337
Total assets (in million US-$) 6,114 98.600 1,210.000 5862. 31,900.000 21,190.000 356,500.000
Solvency 3,693 0.000 0.031 0.105 0.411 0.315 4.838
Volatility 4,314 0.008 0.012 0.018 0.023 0.027 0.077

Insurers in our sample have an average inverse z-score afapately 0.023 and a
median inverse z-score of 0.018. Estimates for our proxyefinsurers’ default risk
range from a minimum value of 0.008 to the maximum of 0.078.

On average, an insurer disclosed the use of at least twaahfféypes of financial
derivatives as can be seen from the mean and median values\@r@ableDerivatives
intensity Moreover, we can see from Tallel6.1 that our sample inclod#sinsurers,
which do not use derivatives at all, as well as insurers faclvberivatives intensity
takes on the maximum value of four.

Looking at the duration of an insurers’ liabilities, the iednie Debt maturityranges
from the minimum value of 0.000 to a maximum value of 0.587 wieer, the first
and last quartile are 0.023 and 0.101, respectively. Thappears as if the maximum
value constitutes an outlier in our sample. Consequentlyfimeethat most of the
insurance firms in our sample do not rely too heavily on lagrgrtdebt in their capital
structure.

The insurers in our sample have a mean leverage of around ##%antrast, the

median value is only around 0.2%. In addition, few insurac@@panies are highly
levered with values of up to 574.7% for our varialhleverage Moreover, the firms

in our sample have a mean market-to-book ratio of 1.024 wkighntedian ratio being
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0.945. Looking at the firm size of our sample insurers, we egntlat our sample is
composed of both small and large insurers with the mediandizen being approx. $
5.562 billion. Firms in the first quartile of size have totasats between $ 98.6 million
and $ 1.15 billion. Firm size between the first and third gleai$ quite homogeneous
across insurers. In contrast, the largest insurers in snpkehave total assets between
$21.190 and $ 356.500 billion.

The proxy for the insurers’ solvency has an average valuppfex. 0.411 with the
median solvency ratio being 0.105 and the maximum valuegh£i838. As a result,
the summary statistics indicate only a medium level of soiyeat the vast majority of
insurers with only a few institutions having higher, amggedls of solvency. Turning
to our measure of an insurer’s idiosyncratic equity valgtiwe find the volatility of
the insurers’ stock returns to be low, on average, with tharmend median values
for our variableVolatility being 2.3% and 1.8%, respectively. With 7.7%, even the
maximum value of the insurers’ stock volatility is quite l@amd 75% of our sample
insurers have an equity volatility that is lower than 2.7%.

After this first discussion of the composition and the maiarelsteristics of our
data sample, we now turn to an univariate analysis of thdasisd information on the
insurers’ derivatives usage. In Panel A of the following [€&h2, we present summary
statistics for the two sub-samples of derivative-users-aod-users. In Panel B, we
present similar summary statistics for the two sub-samptessurers that employ
derivatives (predominantly) for hedging or non-hedgingooses.

As can be seen from Panel A in Table]6.2, insurance compamaegtploy finan-
cial derivatives have, on average, a statistically lowdaualé risk than non-users of
derivatives (mean inverse z-scores of 0.020 vs. 0.026)ddlitian, derivatives users
also have a shorter debt maturity, a considerably higherdge, and a higher market-
to-book ratio on average. Non-users of derivatives are als@average, significantly
smaller than derivatives users. Interestingly, non-uappear to have a better mean
solvency than insurers, which employ derivatives.

Turning to Panel B of Table 6.2, we find that insurers that eyderivatives primar-
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ily for hedging purposes possess lower mean default riskitigurers that presumably
use financial derivatives for risk-taking. This differenbewever, is not statistically
significant. Interestingly, we find the stock return vol&tibf hedging insurers to be
statistically significantly lower than the volatility of $arers that use derivatives for
non-hedging purposes. Thus, it appears as if either the fuderiwatives for hedg-
ing exerts a stabilizing effect on the insurers’ stock \bitgtand/or that the use of
derivatives for speculation significantly increases anriess stock volatility.

Next, we turn to an analysis of the question whether insutatreport high gains
in fair values of derivative positions differ significantfsom their peers that report
low fair value gains or even losses on derivatives. To thi§ @able[6.8B reports sum-
mary statistics for insurers in the top and bottom quartldsir value gains/losses on
derivative positions.

The statistics presented in Tablel6.3 show that insuretsdpart the highest gains
on their derivative positions are, on average, smaller andl@y fewer types of fi-
nancial derivatives than insurers in the bottom quartilgaihs/losses on derivatives.
Apart from these two results, however, insurers in bothtjeardo not appear to differ
significantly with respect to their balance sheet and incetatement variables.

In the following section 614, we perform a deeper empiricallgsis and present the

results on the nexus between the default risk and derigatigsage of insurers.



Table 6.2: Descriptive statistics for users versus nomsusiederivatives.

The table presents descriptive statistics of the quartaalyes of the inverse z-score and control variables usetlisnstudy for sub-samples of derivative-users and
-non-users (Panel A). In Panel B, summary statistics are/stior the two sub-samples of insurers that use derivatisesiédging or non-hedging purposes. The sample
includes the 171 U.S. insurers shown in AppemndiX E.1 anddhgte period runs from Q1 1999 to Q3 2014. We report the numib@sservations, minimum and maximum
values, first and fourth quartile, mean and median values dquality of means of the different variables is testedgi$ifelch’s t-test for unequal sample sizes and
possibly unequal variances of the two samples (t-stadisticl p-values are reported). All variables and data soareedefined in Appendix H.2 and all variables except
for Derivatives intensity are winsorized at the 5% levelvddes are given in parentheses and *, **, and *** indicattistical significance at the 10%, 5%, and 1% level,
respectively.

Panel A: Derivatives usage No derivatives usage

N Min Ist quartile Median Mean 3rd quartile Max N Min 1st quiart Median Mean 3rd quartile Max t-value p-value
Inverse z-score 2,368 0.008 0.012 0.016 0.020 0.024 0.078 1,940 0.008 .015 0 0.021 0.026 0.031 0.078 -11.754 0.000***
Debt maturity 3,323 0.000 0.030 0.057 0.095 0.101 0.587 2,333 0.000 00.00 0.046 0.073 0.101 0.587 7.203 0.000***
Leverage 2,245 0.001 0.001 0.002 0.124 0.004 5.747 1,454 0.001 0.001 6 0.00 0.929 1.227 5.747 -18.868 0.000***
Market-to-book ratio 1,958 0.278 0.713 0.917 0.996 1.196 2511 1,194 0.278 0.759 1.005 1.109 1.322 2511 -6.404 0.000***
ROE 2,315 -0.447 -0.058 0.018 0.008 0.094 0.337 1,878 -0.447 -0.072 0.015 0.005 0.103 0.337 0.788 0.431
Total assets (in million US-$) 3,488 103.000 6,054.000 16,650.00%3,650.000 50,450.000 356,500.000 2,626 98.570 392.200 1,209.000 .0BM02 35,69.000 52,180.000 33.579 0.000***
Solvency 2,239 0.000 0.028 0.092 0.335 0.234 4.838 1,454 0.000 0.043 9 0.13 0.528 0.440 4.838 -5.868 0.000***
Volatility 2,429 0.008 0.012 0.017 0.023 0.027 0.077 1,885 0.008 0.013  .0180 0.023 0.027 0.077 -0.163 0.871
Panel B: Hedging Non-hedging purpose

N Min 1st quartile Median Mean 3rd quartile Max N Min st quiart Median Mean 3rd quartile Max t-value p-value
Inverse z-score 2,229 0.008 0.012 0.016 0.020 0.024 0.078 155 0.008 11 0.0 0.016 0.022 0.024 0.078 -1.138 0.257
Debt maturity 3,151 0.000 0.030 0.056 0.093 0.098 0.587 188 0.000 0.025 0.083 0.121 0.144 0.587 -2.493 0.013*
Leverage 2,145 0.001 0.001 0.002 0.102 0.004 5.747 116 0.001 0.001 0.002 0.497 0.002 5.747 -2.624 0.010**
Market-to-book ratio 1817 0.278 0.707 0.898 0.988 1.187 2.511 158 .2780 0.932 1.078 1.082 1.246 2.511 -3.168 0.002%**
ROE 2,179 -0.447 -0.058 0.018 0.008 0.093 0.337 152 -0.447 -0.060 0.021 .016 0 0.098 0.337 -0.649 0.517
Total assets (in million US-$) 3,294 103.000 6,532.000 17,490.00%6,150.000 53,310.000 356,500.000 210 196.200 1,866.000 6,048.000 50.009 16,810.000 52,170.000 24.862 0.000***
Solvency 2,139 0.000 0.029 0.091 0.333 0.227 4.838 116 0.000 0.009 0.208 0.363 0.335 3.936 -0.462 0.645
\olatility 2,294 0.008 0.012 0.017 0.022 0.027 0.077 135 0.008 0.016 210.0 0.028 0.034 0.077 -3.678 0.000***
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Table 6.3: Descriptive statistics for insurers in the tod battom quartiles of fair value gains/losses on derivgbivsitions.

The table compares descriptive statistics of insurers wigasns/losses on derivatives positions were in the bottoartide with the characteristics of insurers whose
gains/losses on derivatives positions were in the top bdgafthe sample includes the 171 U.S. insurers shown in Agip and the sample period runs from Q1 1999 to
Q3 2014. We report the number of observations, minimum arndman values, first and fourth quartile, mean and mediane&alThe equality of means of the different
variables is tested using Welch’s t-test for unequal sasigks and possibly unequal variances of the two sampleat{$igs and p-values are reported). All variables and
data sources are defined in Appendix]E.2 and all variablespésor Derivatives intensityre winsorized at the 5% level. P-values are given in paesethand *, **, and
*** indicate statistical significance at the 10%, 5%, and X, respectively.

1st quartile of net derivative gains and losses 4th quartile of net derivative gains and losses

N Min Ist quartile Median Mean 3rd quartile Max N Min. Ist Medi Mean 3rd Max. t-value p-value
Inverse z-score 262 0.008 0.013 0.020 0.026 0.030 0.078 270 0.008 1 0.01 0.016 0.023 0.026 0.078 1.646 0.100
Derivatives intensity 445 1.000 2.000 4.000 3.115 4.000 4.000 453 .0001 2.000 3.000 2.932 4.000 4.000 2.391 0.017*
Debt maturity 375 0.000 0.030 0.048 0.088 0.078 0.587 394 0.000 0.029 .0510 0.085 0.079 0.587 0.270 0.788
Leverage 308 0.001 0.001 0.002 0.003 0.002 0.047 330 0.001 0.001 0.002 .002 0 0.002 0.023 1.174 0.241
Market-to-book ratio 319 0.278 0.619 0.840 0.908 1.064 2.511 328 780.2 0.599 0.811 0.911 1.050 2511 -0.081 0.935
Total assets (in million US-$) 406 2,285.000 21,620.000 56,580.00 109,100.000 156,600.000 356,500.000 421 1,624.000 16,290.000  4AD@40 93,150.000 127,900.000 356,500.000 1.990 0.047**
Solvency 308 0.000 0.029 0.066 0.200 0.164 4777 330 0.000 0.027 0.064 .166 0 0.158 1.832 1.115 0.265
Volatility 281 0.007 0.012 0.018 0.025 0.031 0.077 283 0.007 0.012 80.01 0.025 0.032 0.077 0.295 0.768
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6.4 Empirical results

In this section, we report the results from our empiricallgses to answer the question
whether derivatives usage is a significant driver of an issidefault risk. We start our
empirical analysis by first commenting on the time evolutddour major dependent
and independent variables. We then address the endogeatus of an insurer’s
decision to use financial derivatives. We follow Bartram e{2011) and control for
endogeneity by matching users and non-users of derivdiagsd on variables known
from the literature to drive the decision to employ deriwesi. After matching users
and non-users of derivatives, we perform several panekssgns of the insurer’s

inverse z-score on various variables related to derivatisage.

6.4.1 Default risk

First, we analyze how the values of our main dependent Varewlve for our sample
of insurers over time. Figude 6.1 illustrates the time etioluof the U.S. insurers’

mean default risk (and respective quantiles) over the &rtigle period.



Figure 6.1: Time evolution of U.S. insurers’ default risk the period from 1999 to 2014.

This figure plots the time evolution of U.S. insurers’ defaigk over our full sample period from 1999 to 2014. The sangansists of 171 U.S. insurers shown in Appendix
[EJ. In each plot, the mean of the respective risk measuey @ea) is plotted against the corresponding 10% and 90éemequantiles (white and black areas).
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The time evolution of default risk is characterized by a speek during the dotcom-
crisis in 2001. Further, we notice a high peak during themefirancial crisis, which
underlines that the inverse z-score is a suitable proxyrfansurer’s degree of financial
distress. After the crisis, average default risk in the thSurance sector returns to its
pre-crisis level. Looking at the 90%-quantiles, we can agaie the extreme surge in
our sample insurers’ default risk after the onset of the firarcrisis in 2008. Next,
we shortly comment on the time evolution of derivatives @esagthe U.S. insurance

sector.

6.4.2 Derivatives usage

As a first step, we analyze the structure of the derivativag@isn the U.S. insurance
sector by looking at the annual derivative reports of thedwatl Association of Insur-
ance Commissioners (NAI@.Figure@ presents the percentage of each of the four
(major) derivative types used in the U.S. insurance secptiqn, swaps, forwards,
and futures) for the years 2011, 2012, and 2013.

The plots in Figur@ 612 show that forwards and futures ard oséy to a negligible
extent by insurers. Moreover, as can be seen from the lowel pihe percentages of
both futures and forwards do not vary much over time. In @stjrthe total notional
value of the derivatives used by insurers is primarily cosgabof options and swaps.
We see a strong increase in the use of options over the simarfperiod from 2011 to
2013, which drives the overall trend of increased deriestiusage by insurers. The
volume of options used in the U.S. insurance industry irsgedy over 10% from
2011 to 2013. Furthermore, the fraction of swaps in the dévie portfolio decreases
by more than 10% during this period. This shows a clear tremaétds the use of
options instead of swaps by U.S. insurers.

However, as revealed by both the disclosed informationeririburers’ 10-K filings

and the NAIC reports, the majority of insurers states heglgather than risk-taking

%The used reports are published and available on the follpwirweb-page:
http://ww. nai c.org/capital markets archive/ 131023. ht m


http://www.naic.org/capital_markets_archive/131023.htm
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Figure 6.2: Structure of the derivative usage in the U.Suriaasce sector.

The figure plots the notional values of the types of deriestifoption, swaps, forwards, futures) used in
the U.S. insurance sector for the years 2011, 2012, and 20#8data are received from the disclosed
NAIC derivative reports for the respective years. The uggmerel shows the total sum of the notional

value of all derivative types. The lower panel illustrates telative distribution of the notional values

across the four types of derivatives.
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as the main reason for using derivatives. Next, we conthasfindings taken from the
NAIC reports with the data from our sample. The upper panéligure[6.83 displays
the time evolution of the number of insurers in our samplagslerivatives, while
the lower panel shows the time evolution of the number of danmsurers that use
derivatives for hedging purposes.

Figure 6.3: Number of derivatives users.

The figure shows the number of insurers using derivatives oue full sample period from 1999 to
2014. The sample consists of 171 U.S. insurers shown in Afip@&1. The upper panel shows the
total number of derivatives users while the lower panel $esuon the number of insurers that employ
derivatives for hedging purposes.
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On average, around 35% of our sample insurers use derisatiVhe number of
insurers that employ derivatives increases slowly ovee timtil 2003, from where it
remains on a high level until the onset of the recent finaraials. After the crisis,
the number of derivatives users decreases significantlyetemsis levels. The second

panel focuses on the number of insurers that use derivairelsedging purposes.
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Here, we find that around 30% of our sample insurers use dieagdor hedging. The

number increases until 2004, from when it continues to akhibimilar pattern as the
total number of derivatives users shown in the upper pariehppears that most of
our sample insurers use derivatives for hedging purposlesrréhan for other reasons.
Similarly, we plot the time evolution of the number of detiva users for each of the
four derivative types. The plots are shown in Figure 6.4[abd 6

Figure 6.4: Number of swap and option derivatives users.

The figure shows the number of insurers using swaps (uppe&l)pamnd options (lower panel) over our
full sample period from 1999 to 2014. The sample consists/7af W.S. insurers shown in Appendix

E.
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Figure[6.4 shows the number of insurers using swaps (firslpand options (sec-
ond panel) during our sample period while Figlrel 6.5 showesusage of forwards
and futures, respectively. As before, the number of swapsusereases until the

beginning of the financial crisis and then decreases slomiych is in line with the
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Figure 6.5: Number of futures and forwards derivatives siser

The figure shows the number of insurers using futures (uppeelp and forwards (lower panel) over
our full sample period from 1999 to 2014. The sample consisig1 U.S. insurers shown in Appendix
ET.

Time evolution of number of insurers using futures

80
|

60

20

| e

I I I I I I I I I I I I I I I
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Number of derivative users in sample
40

Time evolution of number of insurers using forwards
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generally decreasing use of swaps observed above in HighirdNéte that not all of
the insurance companies in our sample use swaps, since iiigenof swap users is
significantly lower than the total number of derivative sseffhe number of option
users is even lower but remains relatively constant ovez.ti@ompared to the number
of users of options and swaps, the number of insurers thdbusards and futures is
significantly lower. However, the number of insurers usiogMards and futures has

increased steadily over time.
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6.4.3 Matching of derivatives users and non-users

In this part of our analysis, we address the endogeneousnadtthe relation between
derivatives usage and default risk and match users of deagawith non-using in-

surers. We compare the mean values of the inverse z-scosegimup of derivatives
users (treatment group) with corresponding mean valuesmusers (control group).
In each quarter from Q1 2006 to Q4 2010, we perform neareghher propensity

score matching procedures based on the insurers’ size ariétta-book ratio

We match users and non-users on the insurers’ size and ntarkebk ratio as these
firm characteristics are known to drive a firm’s decision tgptay financial deriva-

tives (see also Bartram et/al., 2011). After matching, we #i@sts and Wilcoxon tests
on the equality of the mean values for the two groups. Thelteesfiour matching

analyses are shown in Talple 6.4.

Table 6.4: Matching of derivatives users and non-users.

This table reports mean values for the inverse z-score aféns that use derivatives in a given quarter
matched with non-users from Q1 2006 to Q4 2010. Nearest bergmatching (with replacement)
of derivative users and non-users is performed on the irsusize and market-to-book ratios. The
columns “Yes” and “No” report average values for the user aod-user group and “Difference” is
their difference. The statistical significance of the diffece of mean values is tested with t-tests and
Wilcoxon tests, for which corresponding t-statistics anehfues are reported. Bolded values indicate a
statistical significance at the 10% level.

Inverse z-score

Time Yes No Difference t-stat  Wilcoxon
Q1 2006 0.014 0.017 -0.003 -0.938 0.268
Q2 2006 0.016 0.016 0.000 0.079 0.696
Q3 2006 0.015 0.012 0.003 1.464 0.317
Q4 2006 0.015 0.012 0.003 1.453 0.354
Q1 2007 0.013 0.012 0.001 0.514 0.788
Q2 2007 0.013 0.019 -0.007 -0.790 0.893
Q3 2007 0.026 0.023 0.003 0.895 0.732
Q4 2007 0.024 0.028 -0.004 -0.846 0.205
Q1 2008 0.026 0.033 -0.008 -1.624 0.026
Q2 2008 0.023 0.025 -0.002 -0.470 0.279
Q32008 0.051 0.046 0.005 0.414 0.510
Q4 2008 0.083 0.055 0.028 3.464 0.148
Q12009 0.063 0.048 0.015 1.480 0.324
Q2 2009 0.043 0.040 0.003 0.398 0.876
Q32009 0.031 0.025 0.006 1.127 0.743
Q4 2009 0.023 0.025 -0.002 -0.433 0.378
Q12010 0.019 0.015 0.004 0.971 0.551
Q22010 0.026 0.029 -0.004 -1.158 0.175
Q32010 0.020 0.021 -0.001 -0.235 0.940
Q4 2010 0.015 0.020 -0.005 -1.087 0.487

97Since the number of observations is relatively small fohegquarter, the matching of users and non-
users is performed with replacements.



6.4. EMPIRICAL RESULTS 176

Overall, we observe only little to no significant differesdeetween users and non-
users. During the crisis (Q4 2008), however, we find thatrésttment group of deriva-
tives users had a statistically significant larger inverse@e . These estimates, how-
ever, have to be taken with care, since the number of obsemgain each quarter is
quite low.

Next, we analyze whether we can find significant differenoethé default risk of
users of options and swaps vs. non-users. To this end, werpeftirther matchings
of users and non-users with swap and option users formingehément groups. The
results of these two analyses are reported in Tablés 6.5.@nd 6

Table 6.5: Matching of swap users and non-users.

This table reports mean values for the inverse z-score ofréns that use swaps in a given quarter
matched with non-users from Q1 2006 to Q4 2010. Nearest heighatching (with replacement) of
swap users and non-users is performed on the insurers’ sizenarket-to-book ratios. The columns
“Yes” and “No” report average values for the user and nom-ggeup and “Difference” is their
difference. The statistical significance of the differerafemean values is tested with t-tests and
Wilcoxon tests, for which corresponding t-statistics anehfues are reported. Bolded values indicate a
statistical significance at the 10% level.

Inverse z-score

Time Yes No Difference t-stat  Wilcoxon
Q1 2006 0.012 0.010 0.002 1.464 0.322
Q2 2006 0.013 0.010 0.003 2.711 0.071
Q32006 0.012 0.018 -0.007 -0.899 0.767
Q4 2006 0.011 0.013 -0.002 -0.500 0.862
Q1 2007 0.012 0.015 -0.004 -0.616 0.705
Q2 2007 0.011 0.010 0.000 0.464 0.900
Q32007 0.025 0.018 0.007 2.232 0.157
Q4 2007 0.022 0.034 -0.012 -0.858 0.631
Q1 2008 0.025 0.024 0.001 0.354 0.336
Q22008 0.021 0.031 -0.011 -1.574 0.112
Q32008 0.050 0.042 0.008 0.740 0.589
Q4 2008 0.081 0.081 -0.001 -0.031 0.942
Q1 2009 0.063 0.044 0.019 1.912 0.139
Q22009 0.039 0.048 -0.008 -0.498 0.959
Q32009 0.031 0.022 0.009 1.216 0.431
Q4 2009 0.020 0.033 -0.013  -1.192 0.254
Q12010 0.016 0.018 -0.002 -0.269 0.767
Q22010 0.024 0.020 0.004 0.967 0.600
Q32010 0.020 0.016 0.004 1.131 0.547

Q42010 0.017 0.011 0.005 2.184 0.280
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Table 6.6: Matching of option users and non-users.

This table reports mean values for the inverse z-score oféns that use options in a given quarter
matched with non-users from Q1 2006 to Q4 2010. Nearest heigimatching (with replacement)
of option users and non-users is performed on the insurés’ and market-to-book ratios. The
columns “Yes” and “No” report average values for the user aad-user group and “Difference” is
their difference. The statistical significance of the difece of mean values is tested with t-tests and
Wilcoxon tests, for which corresponding t-statistics anehfues are reported. Bolded values indicate a
statistical significance at the 10% level.

Inverse z-score

Time Yes No Difference  t-stat  Wilcoxon
Q1 2006 0.012 0.011 0.001 0.402 0.978
Q2 2006 0.013 0.011 0.002 1.604 0.640
Q32006 0.013 0.011 0.003 1.346 0.314
Q4 2006 0.012 0.010 0.002 1.150 0.365
Q1 2007 0.012 0.012 0.000 0.138 0.705
Q2 2007 0.011 0.011 0.000 0.068 0.753
Q32007 0.025 0.018 0.007 2.232 0.374
Q4 2007 0.027 0.015 0.012 2.361 0.039
Q12008 0.026 0.022 0.004 0.915 0.527
Q2 2008 0.025 0.016 0.010 2.078 0.091
Q32008 0.050 0.040 0.010 0.944 0.880
Q4 2008 0.087 0.057 0.030 3.352 0.027
Q1 2009 0.061 0.046 0.015 1.407 0.575
Q2 2009 0.043 0.036 0.007 0.777 0.771
Q3 2009 0.030 0.025 0.005 0.839 0.650
Q4 2009 0.023 0.021 0.002 0.460 0.787
Q12010 0.018 0.010 0.008 2.837 0.096
Q2 2010 0.024 0.015 0.009 3.871 0.125
Q32010 0.020 0.013 0.008 2.925 0.125
Q4 2010 0.016 0.013 0.003 1.224 0.813

Again, we can see that the disclosed usage of swaps has naspenreffect on
default risk over our sample period. Instead, the defask af swap users appears
to be significantly higher only during selected quarterscdntrast, users of options
consistently had higher inverse z-scores than non-useirsgdour sample period with
the differences being statistically significant espegidiliring the crisis years from
Q3 2007 to Q4 2008. We thus find empirical evidence that pdatity insurers that
employ options in their risk management, at times, have rfgigntly higher default
risk than comparable non-users. Even more surprising, Venves the fact that the
usage of financial derivatives does not exert a decreadiegt eih the insurers’ default

risk.
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6.4.4 Panel regressions of default risk on derivative usage

We now turn to our multivariate analyses of default risk for sample of U.S. insurers.
First, we perform several GMM-sys panel regressions|(seadgliland Bond, 1998)
of the inverse z-score on the various variables on the insuwlerivatives usage. The
resulting estimates are shown in Tablg 6.7.

In the first column of Tablé 617, we only include our main dumvayiable that is
one, if an insurer discloses the usage of derivatives inQt& Tiling, and zero oth-
erwise. Additionally, we employ insurer- and time-fixedegtfs and one lag of the
dependent variable as regressors. The sign of the coeffmi¢he derivative dummy
variable is negative and also statistically significanhat1% level. In contrast to the
cross-sectional matching analysis, we find a decreasiegtedf derivatives usage on
the default risk of U.S. insurers. As a consequence, we fingrezal evidence point-
ing at a beneficial effect of using financial derivatives andkierage default probability
of an insurer. Next, we include the hedging dummy variableegression (2) to test
whether the purpose of hedging has a significant effect cauftefisk. The hedging
dummy variable, however, is not significant in this regresspecification (note that
the number of observations in this regression is considiesaballer than in the first
regression).

To get a more nuanced picture of the effects the differerasyys derivatives have on
default risk, we include the respective dummy variableslpnene in our regressions
and report the results in columns (3) - (6). The dummy vagislibr options, futures,
and forwards are highly significant with a negative sign. iAgave find the result
that the use of the different derivatives significantly éases the level of default risk.
The swap dummy variable, however, is not a statisticallpificant driver of default
risk. Using all four dummy variables simultaneously in eggion (7) yields no reliable
results as all four dummies are highly correlated. Finallyegression (8), we perform
a regression in which we interact the hedging dummy with tin@my for the usage

of derivatives. The latter is now statistically significaartd positive, showing that
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the usage of derivatives for non-hedging purposes exeréstlbilizing effect on the

default risk of insurers.

6.4.5 Robustness and further analyses

To validate our main results, we perform additional pangtessions that include con-
trol variables and regressions on sub-samples. First, omle argue that the positive
effect of derivatives on an insurer’s default risk could rdp@ in times of crisis or
when derivative markets experience a downturn. Therefweerepeat our baseline
regressions for a sub-sample of observations during thediakcrisis. The results are
reported in Table 6]8.

In column (1) and (2), we observe that both the dummy vargable an insurer’s
derivatives use and hedging purpose have no significantdngainsurers’ default
risk. Consistent with our previous findings, we find a decregagffect of the use
of future contracts on insurers’ default risk. This vareabémains significant in all
settings of our analysis. Column (7) reports the estimatsult of the regression in
which we use all dummy variables. The results underline oevipus findings from
models (3)-(6). Finally, note that the use of swaps appeasghificantly increase the

default risk of insurers.



Table 6.7: GMM-sys regressions of default risk on derivatigage variables.

The table shows the results of panel regressions of quastallies of the inverse z-score for a sample of U.S. insunelag@ged indicators of derivative usage. All panel
regressions are estimated using the (one-step) GMM-sisatst in Blundell and Bond (1998) (with double-lagged eHwof the dependent variable as instruments) and
include insurer- and quarter-fixed effects. The estimatedeahis

INVERSE Z-SCORE; = o' + u; + 81 x INVERSE Z-SCORE;_; + 82 x DERIVATIVES;;_; + &i.

The dependent variable is the inverse z-score (winsorize¢dea5% level). DERIVATIVES; is a dummy variable that is one when insurarses derivatives contracts
(options, swaps, futures, forwards) in quatte#' andy; are insurer fixed- and quarter fixed effects. The sample dedunsurer-quarter observations of 171 U.S. insurers
over the time period from Q1 1999 to Q3 2014. P-values arertegpdn parentheses. Variable definitions and data sourespravided in Tablé El2 in the Appendix.

*x +x * denote coefficients that are significant at the 1995 and 10% level, respectively.

(2) (2) (3) (4) (5) (6) (7) (8)
Inverse z-scoke 0.304**  0.394** (0.393** (0.386** 0.386'** 0.385** (0.382** (.394**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) .0QD)
Derivatives -0.006°** 0.025**
(0.000) (0.000)
Hedging -0.003 0.011
(0.303) (0.214)
Options -0.003* -0.001
(0.039) (0.609)
Swaps 0.002 0.002
(0.273) (0.147)
Futures -0.004¢** -0.002
(0.008) (0.256)
Forwards -0.004¢** -0.003
(0.008) (0.129)
Derivativesx Hedge -0.014
(0.125)
N 4,242 2,343 2,309 2,317 2,297 2,318 2,261 2,343
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Table 6.8: GMM-sys regressions and derivative use duriagtisis (2006-2010).

The table shows the results of panel regressions of quaxtailes of the inverse z-score for a sample of U.S. insunetagged indicators of derivative usage for the crisis
period (2006-2010). All panel regressions are estimatadjube (one-step) GMM-sys estimator.in Blundell and BEon@9d) (with double-lagged values of the dependent

variable as instruments) and include insurer- and quéiked-effects. The estimated model is

INVERSE Z-SCORE; = o' + u; + 81 x INVERSE Z-SCORE;_; + 82 x DERIVATIVES;;_; + &y

The dependent variable is the inverse z-score (winsorize¢dea5% level). DERIVATIVES: is a dummy variable that is one when insurarses derivatives contracts
(options, swaps, futures, forwards) in quattes' andy; are insurer fixed- and quarter fixed effects. The sample dedunsurer-quarter observations of 171 U.S. insurers
over the time period from Q1 2006 to Q4 2010. P-values arertegpan parentheses. Variable definitions and data soureepravided in Tablé El2 in the Appendix.

*xx % * denote coefficients that are significant at the 19865 and 10% level, respectively.

1)

(4) (5) (6)

(7)

Inverse z-scoke; 0.441+**

0.528** 0.526** 0.537**

0.498**

(0.000) (0.000) (0.000) (0.000) (0.000)
Derivatives 0.002
(0.507)
Hedging
Options 0.001
(0.727)
Swaps 0.008¢ 0.009*
(0.050) (0.026)
Futures -0.007* -0.007
(0.014) (0.063)
Forwards -0.006¢* -0.004
(0.036) (0.233)
N 1,557 866 852 866 842
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Next, we run regressions that include several insurer ckeniatics as control vari-
ables in addition to the derivatives usage dummy. We repertéspective estimates
in Table[6.9.

In all regressions, we include the variables/erage Debt maturity andSolvency
Columns (1)-(4) show results employing the inverse z-sceadependent variable.
In (1) and (4), we include the derivatives usage dummy véiahd find that it enters
the regressions with a highly significant negative sign. tNexe also employ two al-
ternative variables that capture an insurer’s usage of diabderivatives. In (2), we
include the derivatives intensity, which describes the benof different derivative
types used in an insurer’s risk management. However, tbisigenot successful as
this variable is not significant in any of the two regressiddemplementing this find-
ing, the insurers’ net gains and losses on derivative postare also not significantly
correlated with the insurers’ average default risk. Alstertbat an insurer’s solvency
is always significantly positively correlated with the ddfarisk of insurers. Finally,
including an insurer’s stock return volatility as an indegent variable in regression

model (8) does not change our conclusions.



Table 6.9: GMM-sys regressions of default risk on derivatigage and control variables.

This table shows the results of panel regressions of qiyadstimates of three systemic risk measures for a samplet@fiational insurers on key indicators of systemic
relevance and various control variables. All panel regoessare estimated with insurer- and quarter-fixed effetsveith robust standard errors. The estimated model is
INVERSE Z-SCORE; = o' + u; + 81 x INVERSE Z-SCORE;_1 + 8> x DERIVATIVES;;_1 + ® x CONTROLS;_1 + &1
The dependent variable in Panel A is the inverse z-scorallmasbalance sheet data and Panel B employs the alternagigiisation of the inverse z-score. DERIVATIVES
is a dummy variable that is one when insurerses derivatives contracts (options, swaps, futures,diatsy in quartet. CONTROLS; are various firm-specific control
variables winsorized at the 5% level andy; are insurer fixed- and quarter fixed effects. The sample deslinsurer-quarter observations of 171 U.S. insurers theer
time period from Q1 1999 to Q3 2014. P-values are reportechiemtheses. Variable definitions and data sources aredgabim Tabld E2 in the Appendix. ***** *
denote coefficients that are significant at the 1%, 5%, and|&0&b, respectively.
Inverse z-score
1) 2) 3) 4)
Inverse z-scoke 0.289**  0.387** 0.571** (0.382**
(0.000) (0.000) (0.000) (0.000)
Derivatives -0.004¢** -0.004+**
(0.008) (0.010)
Leverage( x1073) 0.462 -0.816  -2.740*  -0.009
(0.416) (0.314) (0.010) (0.989)
Debt maturity -0.016**  0.005 0.022**  -0.004
(0.037) (0.638) (0.0112) (0.631)
Solvency(x1073) 4.240%*%  2.530%* 1.830°** 4.480**
(0.000) (0.000) (0.009) (0.000)
Derivatives intensity x 10~%) -0.180
(0.772)
Gains/Losse$x1073) -0.001
(0.563)
Volatility -0.214k**
(0.000)
Quarter fixed effects X X X X
Insurer fixed effects X X X X
N 2,567 1,542 778 2,010
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6.4.6 Systemic risk and derivative usage

The results so far emphasize the stabilizing role of usingnftral derivatives on the
default risk of insurers in case derivatives are primarggd for hedging and not for
risk-taking. In this part of our analysis, we try to answes telated question whether
the effect of derivatives usage on default risk also traasl#éo the systemic risk of
insurers.

The bailout of AIG during the financial crisis has spurred evous discussions on
the potential threat the insurance sector poses to finasi@hllity. Complementing
the Financial Stability Board’s list of globally systemilyalmportant banks, the 1AIS
recently published a list of nine global systemically impat insurers (GSII) that are
subject to increased monitoring by regula@sTo identify systemic relevance, they
employ several indicators such as an insurer’s size, lgeerar interconnectedness
with the rest of the financial system. They argue that noditicamal and non-insurance
activities could cause an insurer to become systemicdkyaat to the rest of the fi-
nancial system. While several authors analyze this quebtiaelating common sys-
temic risk measures to an insurer’s leverage, funding caings, or its interconnect-
edness (see, e.q., Weil3 andivhickel,| 2014, 2015, Bierth et lal., 2015, Chen et al.,
2014, Cummins and Welss, 2014), the interplay between amarisulerivatives use
and its systemic risk has not been analyzed yet.

Consequently, we perform further panel regressions inmghtivo common sys-
temic risk measures proposed in the literature. As exptepatariables, we employ
our derivatives usage dummy variahies.

In our study, we use quarterly estimates of kharginal Expected Shortfa(lMES)

andSRISK The MES is defined by Acharya et al. (2010) as the negativegegeturn

%The GSllIs are Allianz SE, American International Group,. Jissicurazioni Generali S.p.A., Aviva
plc, Axa S.A., MetLife, Inc., Ping An Insurance (Group) Caamy of China, Ltd., Prudential Financial
Inc. and Prudential plc.

99The systemic risk measures that we employ share the prapeitipoth are based on economic theory
and capture different aspects of systemic risk. Since ttentdinancial crisis, several other measures
of systemic risk have been proposed in the literature. EBugkamples for such measures apart from
those used in this study are duelto De Jonghe (2010), Huahg(@042),l Schwaab et al. (2011),
Hautsch et all (2015), Hovakimian et al. (2012) and White €R8115).
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on an individual insurer’s stock on the days th&P 500index experienced its 5%
worst outcomes and measures an individual insusxpsurdo systemic risk.y The
second systemic risk measure is SRISK, which is the quasstisnate of the Systemic
Risk Index as proposed by Acharya et al. (2012)land Brownleg&agle (2015

Table€ 6.10 shows the results of panel regressions of MES iovamiables describing
an insurer’s derivatives usage.

Column (1) reports the regressions in which we test the isdlahpact of deriva-
tives usage on MES. The coefficient enters the regressidnayitositive sign and is
significant at the 5% level. Thus, derivatives usage is aatatwith a higher exposure
of the insurer to tail events in the financial market and pidésystemic risks. This
result underlines in part the conjecture proposed by régnddhat engaging in deriva-
tives trading may bear additional risk for an otherwise yrwesed insurance company.
In the second regression, we find the complementing resatituing derivatives for
hedging significantly reduces the MES and thus an insurgpe®ure to systemic risk
in the financial sector. Turning to the four derivatives s&ssin (3)-(7), we can observe
a positive and significant influence of the use of future @mif. In column (8), we
show the results for the regression that includes the ictieraof derivatives usage
and hedging purpose to test whether the use of derivativesstotaking increases an
insurer’s systemic risk exposure. Again, we find the coeffitfor derivatives usage
to be statistically significant and positive, meaning that @ise of derivatives for non-
hedging purposes significantly increases an insurer’sevability to tail risks in the
financial sector.

In the following Table[6.111, we illustrate the results usBBISK as a proxy for
an insurer’'scontribution (rather than itexposurg to systemic risk as our dependent

variable.

100The return on the S&P 500 is a proxy for the return on the markefolio in our analysis.

10lFor an insureri at time t, the SRISK measure is given bBRISK; = k(Debt;) — (1 —
k) (1 — LRMES;) Equity;, wherek is a regulatory capital ratio (set to 8%ebt; is the in-
surer's book value of debtiRMES; is the long run Marginal Expected Shortfall defined as
1 — exp(—18- MES), MES is the estimated Marginal Expected Shortfall a@aquity; is the in-
surer’s market value of equity.



6.4. EMPIRICAL RESULTS 186

The results from models (1) and (2) show that derivativeg@sxerts an increas-
ing, and the use of derivatives for hedging exerts a deargasffect on an insurer’s
SRISK. Both results, however, are not statistically significat the 10% level. The
four derivative usage dummies used in the regressions umud (3)-(6) all have a
positive and statistically significant sign. SRISK has larggues for insurers that use
the different derivatives and thus, the insurer has a lazgpital shortfall and contri-
bution to systemic instability. When all four variables ased together in model (7),
only the use of forwards remains a significant driver of amiass contribution to
systemic risk. Interacting our variabl&serivativesand Hedgingdoes not yield any
new insights and it appears as if the overall usage of der@sby an insurer does not

increase its contribution to systemic r.

102Thijs finding is in line with the results of Chen et al. (2014un@mins and Weiss (2014), who view
insurers as “victims” rather than “perpetrators” of sysierisk.



Table 6.10: GMM-sys regressions of MES on derivative usagmbles.

The table shows the results of panel regressions of quarades of theMESfor a sample of U.S. insurers on lagged indicators of devigatsage. All panel regressions are
estimated using the (one-step) GMM-sys estimator in Bllirgahe Bond (1998) (with double-lagged values of the depahdariable as instruments) and include insurer-
and quarter-fixed effects. The estimated model is

MESi; = @' + it + B1 x MESit_1 + B2 x DERIVATIVES;_; + &iy.

The dependent variable is the MES as in Acharyalet al. (2@MBRIVATIVES;; is a dummy variable that is one when insureses derivatives contracts (options, swaps,
futures, forwards) in quartdr ' andy are insurer fixed- and quarter fixed effects. The sample desunsurer-quarter observations of 171 U.S. insurers tretime
period from Q1 1999 to Q3 2014. P-values are reported in plagsas. Variable definitions and data sources are provid@dhle E.2 in the Appendix. ***** * denote
coefficients that are significant at the 1%, 5%, and 10% legspectively.

1) 2 3) 4) ®) (6) (7 (8)
MES;_1 0.059**  0.102¢** 0.103** 0.11F** 0.117*** 0.108** 0.110** 0.102**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) .0QO)
Derivatives 0.005+* 0.028**
(0.020) (0.000)
Hedging -0.009* -0.003
(0.029) (0.829)
Options 0.001 -0.002
(0.639) (0.498)
Swaps -0.001 -0.002
(0.584) (0.412)
Futures 0.004+* 0.006"*
(0.042) (0.027)
Forwards &10~3) -0.214 -0.002
(0.934) (0.522)
Derivativesx Hedge -0.006
(0.663)
N 4,213 2,337 2,303 2,311 2,291 2,312 2,255 2,337
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Table 6.11: GMM-sys regressions of SRISK on derivative usag@bles.

The table shows the results of panel regressions of quakigiies of theSRISKfor a sample of U.S. insurers on lagged indicators of ddvigatsage. All panel regressions
are estimated using the (one-step) GMM-sys estimator ind3il and Bond (1998) (with double-lagged values of the ddpat variable as instruments) and include insurer-
and quarter-fixed effects. The estimated model is

SRISK; = @' + u + B1 x SRISK_1 + 32 x DERIVATIVES;;_1 + &iy.

The dependent variable is the SRISK as in Brownlees and KRQlb). DERIVATIVES; is a dummy variable that is one when insureses derivatives contracts (options,
swaps, futures, forwards) in quartere' andy; are insurer fixed- and quarter fixed effects. The sample dedunsurer-quarter observations of 171 U.S. insurerstbeer
time period from Q1 1999 to Q3 2014. P-values are reportechiemheses. Variable definitions and data sources aredgaim Tabld E2 in the Appendix. ***** *

denote coefficients that are significant at the 1%, 5%, and |£0@&b, respectively.

(2) (2) (3) (4) (5) (6) (7) (8)
SRISK_1 0.875** 0.871***  0.85F**  0.864"**  0.848** 0.826°** 0.814**  0.870**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) .0QD)
Derivatives 115.2 997.5
(0.546) (0.281)
Hedging -71.8 1,603.0
(0.932) (0.292)
Options 1,431 1% 655.5
(0.000) (0.070)
Swaps 738.9* 388.1
(0.032) (0.266)
Futures 1,206.0°%* 535.4
(0.000) (0.105)
Forwards 1,640.6** 1,308.9**
(0.000) (0.000)
Derivativesx Hedge -1,671.5
(0.336)
N 2,647 1,577 1,556 1,551 1,531 1,552 1,515 1,577
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6.4.7 Which insurers use derivatives?

The results from our regression analyses so far show thaigbef derivatives may

have a differential effect on the default risk and also ondhkposure and contribu-
tion of insurers to systemic risk. Therefore, the questigsea which insurers engage
in derivative activities and also, why they use such tsTo get an overview of

the characteristics of derivative users, we run additiéogiktic regressions with the
derivatives usage dummies as binary dependent variabthes.eBults from our regres-
sions of the derivative dummy on insurer characteristiessaown in Table 6.12.

Our first result is that derivatives usage is more likely fanger insurers, a result
which is in line with our intuition. Insurers with higher lekage ratios, however, seem
to be less likely to use derivatives, since the coefficietémnthe regressions with a
negative sign. Market-to-book ratios or solvency proxiesidt seem to play a major
role in explaining an insurer’s decision to use derivativden we include all of the
four variables together, instead of using each one of thgrarately, we find that in-
surer size is the only factor to explain the derivatives eshgnmy. These results also
hold true, when we employ quarter dummies to account for seaked time effects.

Table[6.1B an@ 6.14 present the results of logistic regrasgising the option and
swap usage dummies as dependent variables.

Qualitatively, the results from Table 6112 also remain fiarethe option and swap
dummies with a minor exception. In the regressions inclgdire leverage ratio, we
do not find any significant influence of this variable in theidien to use options.
Surprisingly, the size of an insurer does not explain thésitatto disclose swap usage
when all of the variables are included and thus, the sampéeisireduced. However,
we conclude that the sheer size of an insurance firm detesritsdecision to employ

financial derivatives.

103For example, highly levered insurers may be inclined to tieeiy the duration of their liabilities
through derivatives usage.



Table 6.12: Logistic regression of derivative usage onrgscharacteristics.
This table shows the results of logistic regressions ofvdéivie usage indicators on insurer characteristics. Ttimated model is:

DERIVATIVES! = a + ;1 x INSURER CHARACTERISTIC$_1 + &,

where DERIVATIVE$ is a dummy variable that is one if an insurer uses derivafivesgiven quarter and zero otherwise. INSURER CHARACTEF{C.ES“_1 include

an insurer’s size, leverage, market-to-book ratio andeswly. Variable definitions and data sources are providecbeIE.2 in the Appendix. P-values are reported in
parentheses and calculated using clustered standard emmdhe firm level. ****** denote coefficients that are sifinant at the 1%, 5%, and 10% level, respectively.
Regressions in column (1) - (4) include only one variablelev{s) uses all four characteristics. Columns (6) - (10) shesults from regressions using quarter dummies.

(@) @) ®) 4) ®) (6) ) ®) ©) (10)

Size 1.057** 0.93gF** 1.073** 0.943¢**
(0.000) (0.001) (0.000) (0.001)
Leverage -0.933F** -0.031 -0.918F** -0.025
(0.006) (0.861) (0.007) (0.892)
Market-to-book ratio -0.472 -0.555 -0.498 -0.665
(0.105) (0.129) (0.196) (0.167)
Solvency -0.157 0.463¢ -0.142 0.448*
(0.164) (0.072) (0.204) (0.088)
Constant -23.160F%*  Q.776***  0.997**  Q510¢*  -20.210¢%*  -23.500:%* 0.82T+* 1.095¢ 0.306 -19.870:**
(0.000) (0.001) (0.005) (0.021) (0.003) (0.000) (0.042) .070) (0.397) (0.004)
Quarter dummies X X X X X
N 6,019 3,600 3,042 3,593 2,108 6,019 3,600 3,042 3,593 2,108
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Table 6.13: Logistic regression of option usage on insunaracteristics.
This table shows the results of logistic regressions ofvdévie usage indicators on insurer characteristics. Ttimated model is:

OPTION = a + g1 x INSURER CHARACTERISTICS ; + &,

where OPTION s a dummy variable that is one if an insurer uses options iivengjuarter and zero otherwise. INSURER CHARACTERISTIGSnclude an insurer’s
size, leverage, market-to-book ratio and solvency. Végiadefinitions and data sources are provided in Tableé E.2enAipendix. P-values are reported in parentheses
and calculated using clustered standard errors on the fireh [&*,** * denote coefficients that are significant at tH&6, 5%, and 10% level, respectively. Regressions in
column (1) - (4) include only one variable while (5) uses allif characteristics. Columns (6) - (10) show results frognassions using quarter dummies.

1) 2 3 4 ®) (6) ) (8 ©) (10)
Size 0.423F** 0.552F* 0.425F** 0.555¢*
(0.001) (0.014) (0.001) (0.015)
Leverage -0.347 0.236 -0.350 0.246
(0.297) (0.392) (0.283) (0.387)
Market-to-book ratio -0.435 -0.845 -0.519 -1.005
(0.270) (0.159) (0.338) (0.199)
Solvency -0.086 0.290 -0.078 0.254
(0.660) (0.376) (0.692) (0.430)
Constant -9.062¥*%*  0.986F**  1.205¢*  0.975¢**  -11.190F*  -8.944***  (0.879F 1.448 1.043 -10.870°*
(0.002) (0.000) (0.010) (0.001) (0.032) (0.002) (0.072) .01@) (0.051) (0.041)
Quarter dummies X X X X X
N 3,411 2,202 1,880 2,195 1,385 3,411 2,202 1,880 2,195 1,385
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Table 6.14: Logistic regression of swap usage on insureachexistics.

This table shows the results of logistic regressions of swggge indicators on insurer characteristics. The estadmatelel is:

SWAP, = o + 81 x INSURER CHARACTERISTICS ; + &,

where SWAP is a dummy variable that is one if an insurer uses swaps inengiuarter and zero otherwise. INSURER CHARACTERISTIGSnclude an insurer’s

size, leverage, market-to-book ratio and solvency. Végidefinitions and data sources are provided in Tableé E.2enApipendix. P-values are reported in parentheses
and calculated using clustered standard errors on the fireh [&*,** * denote coefficients that are significant at tl&6, 5%, and 10% level, respectively. Regressions in

column (1) - (4) include only one variable while (5) uses allif characteristics. Columns (6) - (10) show results frognassions using quarter dummies.

1) 2 3 4 ©) (6) () (8 ©) (10)
Size 0.275%* 0.103  0.286* 0.107
(0.012) (0.542)  (0.013) (0.533)
Leverage -0.399¢ -0.229 -0.429¢ -0.201
(0.081) (0.425) (0.078) (0.473)
Market-to-book ratio 0.053 0.143 -0.090 -0.114
(0.897) (0.766) (0.869) (0.860)
Solvency -0.252 -0.422 -0.294 -0.500
(0.218) (0.197) (0.171) (0.179)
Constant -5.024*%  1.557*%*  1.185*  1.600F** -1.112  -5.423F*  1.779°**  1.402¢ 1.725%* -0.463
(0.045) (0.000) (0.011) (0.000) (0.788) (0.040) (0.006) .082) (0.007) (0.916)
Quarter dummies X X X X X
N 3,417 2,188 1,895 2,181 1,387 3,417 2,188 1,895 2,181 1,387
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6.5 Conclusion

In this paper, we analyze the relation between the defaltaf 171 U.S. insurance
companies and their derivatives usage in the time periad 899 to 2014. We hand-
collect data on our sample insurers’ derivatives usage bjuating their respective
10-K filings and relate this information to the insurers’ énse z-score as a proxy
of their idiosyncratic default risk. We then match users and-users of derivatives
using propensity score matching and thus alleviate in panptoblematic endogeneous
nature of an insurer’s decision to use financial derivativ@sally, we estimate panel
regressions of the proxies of the insurers’ default andesytrisk on various variables
that capture their engagement in derivatives markets.

As our main empirical result, we find that insurers that empiloancial derivatives
have a significantly lower risk of defaulting than matched-using insurers. We also
find that the decreasing effect of derivatives usage on tiefak is reversed in case
insurers use derivatives for risk-taking and non-hedgiagppses. Perhaps not sur-
prisingly, this adverse effect of using derivatives for Awuging purposes on default
risk also translates to an insurer’s exposure to tail risthenfinancial system. Conse-
quently, insurers that employ derivatives for risk-takagpear to be more vulnerable
to turmoil in financial markets. However, we do not find anydevice in favor of a
destabilizing effect of an insurer’s derivatives usage lom stability of the financial
system itself.

Our results complement current views by insurance reguddibat derivatives usage
for trading negatively affects an insurer’s financial hieahd might ultimately lead
to financial instability. However, our findings also undeelithe risk-reducing and
thereby stabilizing effect of using derivatives for hedgpurposes.

In future work, one could think about extracting more dethiinformation on the
insurers’ derivatives usage from their 10-K filings. Oneldaaiso think about using
the notional values of the insurers’ derivatives positioBsth approaches, however,

do not come without caveats as the information given in tkerers’ 10-K filings is



6.5. CONCLUSION 194

quite fuzzy and inconsistent across insurers.
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Appendix A
Supplementary Material for Chapter 2

Dynamic pair-copulas

This appendix presents the dynamic pair-copulas used ircamstruction of our
dynamic R-vine copula model. The dynamization of the stahddliptical and
Archimedean copulas is based|on Patton (2006), who incat@®time variation by
estimating appropriate dynamic processes for the evalutfidhe copula parameters.
We discuss the most important properties and show the (log/)Hoods for statistical

inference.

Normal copula

The bivariate normal copul&y, is given by

Cn(Urg, Upg; pr) = @, (O (Uny), @ H(Upy)) (A.1)

where®,, and®~* denote the bivariate Gaussian distribution function withrelation
parametep; and the univariate Gaussian quantile function, respdgtigadus ;, Uy; €

[0,1],t = 1,...,T. The correlation parametes, follows the dynamic

~ 1

10
o =A (c + bpi_1 + aEgd)‘l(ul,t_i)dfl(uz,t_i)> , (A.2)
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whereA(x) = (1 — e *)(1+ e )L ensures that, € [-1, 1] at all times. The normal
copula allows for equal degrees of positive and negativeni@gnce and is independent

in the talils, i.e., the asymptotic probabilities

A= Lirrg)Pr[Ul <¢€U, <& = yng) CNS,§>,
' m L%+ Cn(&d)
Ay zmpr[ul>§|u2>§]:|§m e

are equal to zero. Witk; = ®(u;;) fori = 1,2 andT denoting the sample size, the

log likelihood, £, is given by

1 X5, — 2pXaiXor + X%
L= 5K+ —log(l—pf) - ———F—— (A.4)
t=1 — b
t -copula
The bivariate copula,C;, is given by
Ci(Urt, Uzt v, o) = Ly (tv_l(ul,t)’ ty_l(Uz,t)), (A.5)

wheret,, andt,* denote the bivariate distribution and univariate quartitetion of a
(standard) Studenttdistribution with degrees of freedom parametand correlation

o, andugg, Ups € [0,1],t = 1,..., T. The correlation parameter, follows the dynamic

. 1 10
Ot = A <C + bpt,]_ + aE;tV:L(ul,ti)tyl(UZti)) s (A6)

whereA(x) = (1-e¥)(1+ e ) ensures thas, € [—1, 1] at all times. Thet copula
allows for equal degrees of positive and negative deperdand is asymptotically

dependent in the tails, with the coefficients of lower anderdpil dependencel ;
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andAyy, being equal and given by

VY + 1\/1—pt
ALg = Adug = 201 | — : (A.7)
V31+pe

With x; = t;*(uy) fori = 1,2, v; = 1(v + j) for j = 0,1,2, andT denoting the

sample size, the log likelihood;, is given by

e S (o5
1— p2 (1) v(1-p}) A8

(5201

Clayton and rotated Clayton copula

The bivariate Clayton copul&c, is given by

Pl

Colune Ui ) = (gt + it —1) ™, (A.9)

where6; € [—1,00)\{0} anduyy, Up; € [0,1],t = 1,...,T. The Clayton copula is an
asymmetric copula and implies greater dependence for na@gative events than for
joint positive events. While being asymptotically indepentdin the upper tail, its

lower tail dependence coefficient,, can be calculated according to
Ag=2"h (A.10)

Since the parameter of the Clayton copélahas little economic interpretation, Patton
(2006) suggests using the tail dependence coefficientsea®iiting variable for the

time dynamics equation. Usinig (A]10), we assume ¢havolves according to

1 L0
ALi=A <C +bALi1 + aE |U1,t—i - u2,t—i|> ,

(A.11)
log(2)
log(AL+)

= —
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whereA(x) = (1 + e X)t ensures that ; € [0, 1] at all times. WithT denoting the

sample size, the log likelihood of the dynamic Clayton copdlas given by

-
L= Z |Og (l + et) - (1 + Qt) |Og (Ul,tuz,t) — (2 + 9{1) |og (u]:tgt + uz—ft _ 1) ‘

t=1
(A.12)

The rotated Clayton copul&,c, is defined viaCc(Uyt, Upt; ) = Co(1l — ugy, 1 —
Upt; 6:), whered ; = 0 andAy; = 2-#%. The time evolution equation and the log

likelihood for the rotated version of the dynamic Clayton alapcan be derived using

(A11) and [AIR).

Gumbel and rotated Gumbel copula

The bivariate Gumbel copul&, is given by

Co(Upy, Uz 6) = exp(— [(—log(u))* + (— Iog(uz,t))"t]ﬁ%> , (A.13)

where6; € [1,00) andug,u; € [0,1],t = 1,...,T. The Gumbel copula is an asym-
metric copula and implies greater dependence for jointtpesevents than for joint
negative events. While being asymptotically independetiénlower tail, its upper

tail dependence coefficienty;, can be calculated according to
1
Aup = 2 — 2%, (A.14)

Since the parameter of the Gumbel copdjahas little economic interpretation, Patton

(2006) suggests using the tail dependence coefficientsea®iting variable for the
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time dynamics equation. Usinig (Al14), we assume ¢havolves according to

1 Lo
Aur = A (C + bAyi-1 + a— Z |Upi—i — U2,ti) ,
i—1

10
_ log(2)
log(2 — Auy)

(A.15)

t

where A(x) = (1 + e *)~! ensures thatly; € [0,1] at all times. Withxi",t =
(—log(u)*~ 1 fori = 1,2; j = 0,1, andT denoting the sample size, the log likeli-
hood of the dynamic Gumbel copulé, is given by
T Xl Xl
L=Ylog | 22 ) (%0, 4+ X2
; J <U1,tU2,t ( L Z’t)

-2

Pl

(A.16)

2N

100 (0 + 807+ (1) (8, +8)F 7).

The rotated Gumbel copul&c, is defined viaCg(Uyt, Uzt; 6) = Co(1l — Upg, 1 —
Upt; 6;), wheredyy = 0 andA ; = 2 — 2%, The time evolution equation and the log

likelihood for the rotated version of the dynamic Gumbelwaycan be derived using

(A.15) and [(A.16).

Joe and rotated Joe copula

The bivariate Joe copul&,;, is given by
6 6 6 6 &
C‘](Ul’t, Uz, Ht) =1- ((1 — U]_’t) v+ (1 — Uz’t) t— (1 — ul,t) t(l — Uz,t) t) & (Al?)

wheref, € [1,00) anduy, Upy € [0,1],t = 1,..., T. The Joe copula is an asymmetric
copula and implies greater dependence for joint positientssthan for joint nega-
tive events. While being asymptotically independent in thedr tail, its upper tail

dependence coefficienty;, can be calculated according to

Pl

Ayy =2 — 2%, (A.18)
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Since the parameter of the Joe copuia,has little economic interpretation, Paiton
(2006) suggests using the tail dependence coefficientsea®iiting variable for the

time dynamics equation. Usinig (A]18), we assume ¢havolves according to

ML
Aug = A (C + bAys_1 + aE; [Upt—i — Upgi |>

~ log(2)
~log(2 — Ayy)’

(A.19)

t

whereA(x) = (1+e )~ ensures thaty; € [0, 1] at all times. Withxi{t = (1—uj)%)
fori =1,2; ] = 0,1, andT denoting the sample size, the log likelihood of the dynamic

Joe copula/, is given by
T 1,
£=Yl0g| (8, + 3, —88) " b, (- 1+, + 8, — 88 | (A20)
t=1

The rotated Joe copul&,,, is defined vieC,;(Uyt, Upt; 6:) = Cy(1 — Urg, 1 — Ugy; 6r),
wheredy; = 0andA ; = 2 — 2% . The time evolution equation and the log likelihood

for the rotated version of the dynamic Joe copula can be etknising [[A.1IP) and

(A.20).



The table lists a total of 209 companies included in the S&PKEOck market index as reported Bgomson Reuters Datastredratween January 2008 and December 2013.

Table A.1: Sample of S&P 500 companies.

Starting with an initial sample of all constituents of the B&00 index, we exclude firms with missing/incomplete stad&epdata and further restrict the sample to firms
with traded credit default swaps (CDS). The stock price ab& Gpread data of the remaining 209 companies are retrieggdDatastreamand used to document linear

and non-linear dependences between stock returns, bispasids, and default intensities. The six companies grintbold type are included in our Value-at-Risk (VaR)
study and are used to forecast liquidity- and credit-adpisaR.

3M Company

Allegheny Technologies Inc
American Express Co
Archer-Daniels-Midland Co
Avery Dennison Corp
Baxter International Inc.
BorgWarner

Campbell Soup
CenterPoint Energy

CMS Energy

Constellation Brands
Darden Restaurants

Dow Chemical

Edison Int'l

EOG Resources

Fluor Corp.

General Mills

Hasbro Inc.

Honeywell Int'l Inc.
International Bus. Machines
Johnson & Johnson
Kimberly-Clark

Lilly (Eli) & Co.

Marriott Int'l.

McKesson Corp.

Molson Coors Brewing Company
Newmont Mining Corp.
NRG Energy

P G & E Corp.

Pfizer Inc.

Principal Financial Group
PVH Corp.

Rockwell Automation Inc.
Sealed Air Corp.

Snap-On Inc.

Target Corp.

The Hershey Company
Transocean

United Health Group Inc.
Valero Energy

Wells Fargo

Wisconsin Energy Corporation

Abbott Laboratories
Allergan Inc
American International Group, Inc.
Assurant Inc
Avon Products
BB&T Corporation
Boston Properties
Capital One Financial
CenturyLink Inc
Coca-Cola Enterprises
Corning Inc.
DaVita Inc.
Dr Pepper Snapple Group
EMC Corp.
Equifax Inc.
FMC Technologies Inc.
Genworth Financial Inc.
HCP Inc.
Hospira Inc.
International Game Technology
Johnson Controls
Kimco Realty
Lincoln National
Marsh & McLennan
MeadWestvaco Corporation
The Mosaic Company
NIKE Inc.
Nucor Corp.
Pentair Ltd.
Pioneer Natural Resources
Progressive Corp.
Quest Diagnostics
Safeway Inc.
Sempra Energy
Southwest Airlines
Tenet Healthcare Corp.
The Travelers Companies Inc.
Tyson Foods
United Parcel Service
Vornado Realty Trust
Western Digital
Xerox Corp.

ACE Limited
Allstate Corp
Amerisource Bergen Corp
Automatic Data Fsging
Baker Hughes Inc
Becton Dickimso
Boston Scientific
Cardinal Health Inc.
Chesapeake Energy

Computer Sciences Corp.

CVS Caremark Corp.
Devon Energy Corp.
DTE Energy Co.
Emerson Electric
Exelon Corp.

Freeport-McMoran Cp & Gld

Halliburton Co.
Health Care REIT, Inc.
Host Hotels & Resorts

Interpublic Group

Joy Global Inc.
Kohl’s Corp.
Lockheed Martin Corp.
Masco Corp.
Medtronic Inc.
Murphy Oil
Noble Energy Inc
Occidental Petroleum
Pepco Holdings Inc.
Pitney-Bowes
Prologis
Raytheon Co.
SCANA Corp
Sherwin-Williams
Stanley Black & Decker

Tesoro Petroleum Co.

Time Waroer In
Tyco International
United Tethgies

Wal-Mart Stores

Whirlpool Corp.
Yum! Brands Inc

Aetna Inc

Amei@orp

nadarko Petroleum Corp
AutoZone Inc
Ball Corp
Bemis Company
BristolevtySquibb
effsitar Inc.
©haorp.
nA@a Foods Inc.
D. Rttto
DirecTV
EastmamiChke

Ensco plc

Exxon Mobil Corp.
Gannett Co.

Har€orporation
Hess Corporation
Hunaalmc.

Iron Mountain Incorporated
JPMdazhase & Co.

Leggett & Platt

Loe's Cos.

Mattel Inc.
ralé& Co.
anyinc.

Norfolk Soetim Corp.
Omnicom Group
PepsiCo Inc.

PNEiabServices
Bniidl Financial
Republic Senlites
Schlumbeiigel.
Simon Prgp@rbup Inc
Bead Hotels & Resorts
Texas Instruments
TJX Companies Inc.
U.S. Bancorp
Unum Group
The Walt Disney Company

Williams Cos.

Zimideldings

Air Products & Chesis Inc
American Electric Power
Apache Corporation
AvalonBay Communities, Inc.
Bank of America Corp
Best Buy Co. Inc.
Cameron International Corp.
CBS Corp.
The Clorox Company
ConocoPhillips
Danaher Corp.
ovdd Corp.
Eaton Corp.
Entergy|Cor
dBeCorporation
Gap (The)
Hartford Financial Svc.Gp.
Hewlett-Packard
lllinois Tool Works
Jabil Cittcui
KeyCorp
LeanCorp.
Marathon Qil Corp.
Maald’s Corp.
MetLife Inc.
Newell Rubbermaid Co.
Northrop Grumman Corp.
EOK
kin&lmer
PPG Industries
Pulte Homes Inc.
Reynolds American Inc.
Seagate Technology
SLM Corporation
Sysco Corp.
Textron Inc.
Torchmark Corp.
oJRacific
V.F. Corp.
WellPoint Inc.
Wstream Communication

jaor4



Table A.2: Summary statistics for level data of firms inclddethe Value-at-Risk study.

The table reports descriptive statistics on the time-setfistribution of daily mid prices, bid-ask spreads, defmiensities, and default probablities (at a monthly haomiz

for the six firms investigated in our Value-at-Risk (VaR)dtu The six firms includ8M Company American ExpressHewlett-Packard Tenet HealthcareTextron and
Wal-Mart Stores The summary statistics refer to the in- and out-of-sampie periods in the VaR study, which cover the period from dan@010 to November 2011
resulting in 499 daily observations. Mid prices and bid-sigieads are denominated in US dollar, where the latter &related as the difference between ask and bid quotes.
Default intensities are extracted from CDS spreads acegitdi the procedure discussed in Secfiioth 2.3 and have a haizme year. Default probabilities are derived from
the intensities using the formula in(2]15) and thus haver&zto of one month.

Percentiles Moments
Min 1st 5th 25th  Median 75th 95th 99th Max Mean St. Dev. SkessneExc. Kurt.  AC(1)

Panel A: Mid prices

3M Company 70.93 73586 76.855 81 84.72 89.615 95.388 96.9258 97.973285. 5.739 0.1499 -0.7167 0.9749
American Express 36.79  37.709 38.384  41.465 44,17 46.94 51.258 52.3412 53&D4242  3.8702 0.2353 -0.7618 0.9729
Hewlett-Packard 22,2 22.6486 24.439 36.4125 42.1 47.075 53.069 53.8702 2544.0519 8.4451 -0.6218 -0.3825 0.992

Tenet Healthcare  14.36 16 16.72 18.12 2152 2546 28.168 30.0424 30.52 21.9784.006 0.2134 -1.2524  0.9814
Textron 14.88 15.259 16.719 18.91 21.42 2349 27.171 27.9612 28.548724  3.1636 0.2213 -0.6451  0.9827
Wal-Mart Stores 48 48.5668 50.274  52.105 53.6 54.625 56.73 58.1308 59.324563. 1.9611 -0.0272 0.2277  0.9583

Panel B: Bid-ask spreads

3M Company 0.01 0.01 0.01 0.01 0.02 0.04 0.08 0.11 112 0.0329 0.0537 75@6. 334.9984 0.0784
American Express  0.01 0.01 0.01 0.01 0.02 0.03 0.05 0.1002 0.18 0.0228 0.018 8208. 241701 0.2213
Hewlett-Packard 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.14 0.0195 0.0135 733.7 25.9914 0.2291
Tenet Healthcare 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.08 7.76  0.0615 0.3456 2102. 492.1938 -0.0033
Textron 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 7.6 0.0319 0.3396 522.2 493.4575 -0.0036
Wal-Mart Stores 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.0502 0.34 0.0195 0.0207 0.466  145.0211 0.1117

Panel C: Default intensities

3M Company 0.0041 0.0042 0.0044 0.0048 0.0051 0.0055 0.007 0.0074 75.000.0053 0.0007 1.2603 0.9934 0.9845
American Express 0.0092  0.0098 0.0101 0.0108 0.0121 0.0148 0.0181 0.020622D.0 0.013 0.0027 0.976 0.0338 0.9709
Hewlett-Packard 0.0037 0.0037 0.0043 0.0055 0.0061 0.0093 0.0183 0.021221D.0 0.0079 0.0042 1.7035 1.9721 0.9876
Tenet Healthcare 0.0584 0.059 0.0613 0.0695 0.078 0.0845 0.1074 0.1167 9.12D.0798 0.014 0.8984 0.4018 0.9837
Textron 0.0152 0.0153 0.0167 0.0204 0.0242 0.0325 0.0378 0.0391406.0 0.0262 0.0069 0.3656 -1.1715 0.9908
Wal-Mart Stores  0.0048 0.0051 0.0052 0.0061 0.0064 0.0069 0.0079 0.0083088.0 0.0065 0.0008 0.3221 -0.1403 0.9788

Panel D: Monthly default probabilities

3M Company 0.0003 0.0004 0.0004 0.0004 0.0004 0.0005 0.0006 0.0006006.0 0.0004 0.0001 1.2602 0.993 0.9845
American Express 0.0008 0.0008 0.0008 0.0009 0.001 0.0012 0.0015 0.0017 18.000.0011 0.0002 0.9757 0.0328 0.9709
Hewlett-Packard 0.0003  0.0003 0.0004 0.0005 0.0005 0.0008 0.0015 0.0018018.0 0.0007 0.0004 1.703 1.97 0.9876
Tenet Healthcare 0.0049  0.0049 0.0051 0.0058 0.0065 0.007 0.0089 0.0097 06.010.0066 0.0012 0.8956 0.3957 0.9837
Textron 0.0013 0.0013 0.0014 0.0017 0.002 0.0027 0.0031 0.0033 34.000.0022 0.0006 0.365 -1.1719  0.9908

Wal-Mart Stores  0.0004  0.0004 0.0004 0.0005 0.0005 0.0006 0.0007 0.000700D.0 0.0005 0.0001 0.3219 -0.1405 0.9788
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Table A.3: Summary statistics for log-differenced data whé included in the Value-at-Risk study.

The table reports descriptive statistics on the time-setdistribution of monthly log-differences of mid pricesdkask spreads, and default intensities for the six firms
investigated in our Value-at-Risk (VaR) study. The six firmslude 3M Company American ExpressHewlett-Packargd Tenet HealthcareTextron andWal-Mart Stores
The summary statistics refer to the in- and out-of-sampie tperiods in the VaR study, which cover the period from Jan@10 to November 2011 resulting in 460 daily
observations. For each ddyjn the sample period, log-differences are calculatedgigia prices, spreads, and intensities at dayslt — 30. Bid-ask spreads are calculated
as the difference between ask and bid quotes. Default itienare extracted from CDS spreads according to the ptweeadiscussed in Sectién 2.3 and have a horizon of
one yeatr.

Percentiles Moments
Min 1st 5th 25th  Median 75th 95th 99th Max Mean St. Dev. SkessneExc. Kurt.  AC(1)
Panel A: Stock returns
3M Company -0.4987 -0.4059 -0.2380 -0.0831 0.0198 0.0884 0.1669 @.220.2902 -0.0042 0.1282 -0.9150 1.2774 0.9525

American Express -0.1108 -0.0898 -0.0667 -0.0250 0.0024 0.0232 0.0545 @.070.0727 -0.0009 0.0367 -0.3641 -0.2060 0.9271
Hewlett-Packard -0.2302 -0.1791 -0.1339 -0.0438 0.0168 0.0639 0.1125 3.138.1528 0.0062 0.0759 -0.4930 -0.3404  0.9298
Tenet Healthcare -0.2214 -0.1975 -0.1191 -0.0386 0.0085 0.0351 0.0778 6.104.1249 -0.0041 0.0599 -0.9563 1.2339 0.9434
Textron -0.4119 -0.3703 -0.2261 -0.0982 -0.0207 0.0339 0.0902 99.110.1400 -0.0389 0.1034 -1.1114 1.5305 0.9521
Wal-Mart Stores  -0.3858 -0.3013 -0.2063 -0.0808 -0.0162 0.0392 0.2651 88470.5059 -0.0109 0.1410 1.3039 3.6138 0.9374

Panel B: Log-differences of bid-ask spreads

3M Company -5.9402 -1.0986 -1.0986 -0.4055 0.0000 0.0000 1.0986 #.216.6333 -0.0316 0.6936 0.6742 28.4284 -0.0005
American Express -2.5257 -1.6094 -1.0986 -0.4055 0.0000 0.4055 0.9163 B8.388.2189 -0.0318 0.6301 0.1000 2.7220 0.0278
Hewlett-Packard -2.4849 -1.7918 -1.3863 -0.6931 0.0000 0.4055 1.2661 8.792.8904 -0.0347 0.7884 0.1789 0.5025 0.1207
Tenet Healthcare -3.6199 -1.6860 -1.1066 -0.6931 0.0000 0.4055 1.0986 5.648.1091 -0.0690 0.7414 0.0842 1.4815 0.0662
Textron -1.9459 -1.5694 -1.0986 -0.6931 0.0000 0.4055 1.0986 #.602.6391 -0.0470 0.6397 0.1725 0.6715 -0.0033
Wal-Mart Stores  -5.2679 -0.6931 -0.6931 0.0000 0.0000 0.0000 0.6931 0.6982679 -0.0115 0.4942 -0.0074 54.6338 0.0038

Panel C: Log-differences of default intensities

3M Company -0.1282 -0.0833 -0.0422 -0.0150 -0.0016 0.0112 0.0456 88.090.1351 -0.0005 0.0290 0.3665 3.8761 -0.0621
American Express -0.0688 -0.0366 -0.0164 -0.0056 -0.0002 0.0046 0.0144 22050.1072 -0.0001 0.0142 2.3588 20.5839 -0.2622
Hewlett-Packard -0.0941 -0.0607 -0.0321 -0.0093 -0.0002 0.0101 0.0327 22060.1199 0.0004 0.0221 0.3707 5.8719 -0.1556
Tenet Healthcare -0.0610 -0.0502 -0.0272 -0.0073 -0.0005 0.0074 0.0239 68.050.1106 -0.0001 0.0177 0.9112 7.3419 -0.2213
Textron -0.2241 -0.0679 -0.0348 -0.0099 -0.0010 0.0090 0.0258 50.050.1690 -0.0015 0.0249 -0.7232 20.8471 -0.0782
Wal-Mart Stores  -0.1922 -0.0948 -0.0489 -0.0159 -0.0017 0.0127 0.0508 53.080.4379 -0.0007 0.0375 3.0806 42.2552 -0.0904
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Table A.4: Variable pairs and parametric pair-copulasctetein first R-vine trees.

The table reports the (unconditional) variable pairs andrinte parametric pair-copulas selected in the first treheR-vine copula model for each estimation period includezlinValue-at-Risk (VaR) study. The
R-vine copula model is estimated on pseudo-observationsdatdized log-differences of mid prices (m), bid-ask spéay and default intensities (h) for six firms from the S&P 5@8ulting in 17 variable pairs
and parametric pair-copulas that need to be specified in #teriée. The six firms includ@M Company(MMM), American Expres§AXP), Hewlett-PackardHPQ), Tenet Healthcar¢ THC), Textron(TXT), and
Wal-Mart StoreWMT). The candidate copulas include dynamic versions of thedard normalGy), t (Cy), (rotated) Clayton@c andCc), (rotated) GumbelGs andC,g), and (rotated) Joe copul&{ andC;;),
where we follow the dynamization approach suggested by f?@@06) (as outlined in Appendix]A). The selection of theiaale pairs and the bivariate pair-copulas is based on tpeeseial method as proposed by
DiBmann et &l..(2013), where the former results from some maxinpamrsng tree algorithm based on Kendall's tau and the latteonducted using Akaike’s Information Criterion (AIC) & tselection criterion

to be minimized.

01/2010 - 01/2011 02/2010 - 02/2011 03/2010 - 03/2011 042@u/2011 05/2010 - 05/2011
Pair Copula Pair Copula Pair Copula Pair Copula Pair Copula
MMM(m)  AXP(m) Cn MMM(m)  MMM(h) Cn MMM(m)  MMM(h) Cc MMM(m)  MMM(s) Cn MMM(m)  MMM(s) Cn
MMM(m) AXP(h) Cn MMM(@m)  AXP(m) Cn MMM(m) AXP(m) Cn MMM(@m)  MMM(h) Cic MMM(@m)  AXP(m) Cic
MMM(s) AXP(s) Cn MMM(m) AXP(h) Cn MMM(m) AXP(s) Cn MMM(m)  AXP(m) Cn MMM(m) AXP(s) Cn
MMM(h) AXP(s) Cn MMM(s) AXP(s) Cn MMM(m) AXP(h) Cn MMM(m) AXP(s) Cn MMM(m) AXP(h) Cn
AXP(s) AXP(h) Cn AXP(s) AXP(h) Cn MMM(s) AXP(s) Cn MMM(m) AXP(h) Cn MMM(s) MMM(h) Cn
AXP(s) WMT(s) Cij AXP(s) WMT(s) Cc AXP(s) WMT(s) CiJ MMM(m) HPQ(m) Cs MMM(s) THC(m) Ci
HPQ(m) THC(m) Cr HPQ(m) THC(m) Cn HPQ(m) THC(m) Cn AXP(s) WMT(s) Cr AXP(s) WMT(s) Cn
HPQ(s) HPQ(h) Cic HPQ(s) HPQ(h) Cic HPQ(s) HPQ(h) Cic HPQ(mM) THC(m) Cn HPQ(m) THC(m) Cs
HPQ(s) THC(s) Cu HPQ(s) THC(s) Cn HPQ(s) THC(s) Cn HPQ(s) HPQ(h) Ci HPQ(s) HPQ(h) Cy
HPQ(s) THC(h) Ce HPQ(s) THC(h) Cy HPQ(h) THC(m) C; HPQ(s) THC(s) Cic HPQ(s) THC(s) Cic
HPQ(h) THC(m) Cn HPQ(h) THC(m) Cy THC(s) TXT(s) Cn HPQ(h) THC(m) Cic HPQ(h) THC(m) Ce
THC(s) TXT(s) Cc THC(s) TXT(s) Cic THC(s) WMT(h) Cic THC(s) THC(h) Cie THC(s) THC(h) Cig
THC(s) WMT(h) Ci THC(s) WMT(h) Cic THC(h) TXT(m) Ce THC(s) TXT(s) Cic THC(s) TXT(s) Cic
TXT(m) TXT(h) Ci TXT(m) TXT(h) Ci TXT(m) TXT(s) Cic TXT(m) TXT(s) Cn TXT(m) TXT(s) Cn
TXT(S) TXT(h) C TXT(s) TXT(h) (o TXT(m) TXT(h) C TXT(m) TXT(h) C TXT(m) TXT(h) (o
WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci
WMT(m) WMT(h) Ci WMT(m) WMT(h) Ci WMT(m) WMT(h) Ci WMT(m) WMT(h) Ci WMT(m) WMT(h) Ci
06/2010 - 06/2011 07/2010 - 07/2011 08/2010 - 08/2011 092@B/2011 10/2010 - 10/2011
Pair Copula Pair Copula Pair Copula Pair Copula Pair Copula
MMM(m)  AXP(m) Cc MMM(m)  AXP(m) Cu MMM(m) AXP(m) Cu MMM(m)  AXP(m) Cc MMM(m) AXP(s) Cn
MMM(m) AXP(s) Cn MMM(m) AXP(s) Cn MMM(m) AXP(s) Cn MMM(m) AXP(s) Cn MMM(s) MMM(h) Cic
MMM(m) AXP(h) Cn MMM(m) AXP(h) Cn MMM(m) AXP(h) Cn MMM(m) AXP(h) Cn MMM(s) AXP(s) Cn
MMM(s) MMM(h) Ce MMM(s) MMM(h) Cn MMM(m) HPQ(m) Ce MMM(s) MMM(h) Cic MMM(h) AXP(m) Cn
MMM(s) AXP(s) Cn MMM(s) AXP(m) Cic MMM(s) MMM(h) Cic MMM(s) AXP(s) Cn AXP(m) AXP(h) Cn
MMM(s) THC(m) Cn AXP(s) WMT(s) Cn MMM(s) AXP(s) Cn AXP(s) WMT(s) Cic AXP(s) WMT(s) Cn
AXP(s) WMT(s) Cn HPQ(m) THC(m)  Cy AXP(s) WMT(s) Cn HPQ(m) THC(s) Ciws HPQ(m) TXT(m) CiJ
HPQ(mM) THC(m) Cr HPQ(s) HPQ(h) Cic HPQ(s) HPQ(h) Cic HPQ(s) TXT(s) Cy HPQ(s) HPQ(h) Cy
HPQ(s) HPQ(h) Cwc HPQ(h) THC(m) Cn HPQ(s) TXT(s) Ci HPQ(h) THC(m) Cig HPQ(s) TXT(s) Cs
HPQ(s) THC(s) Cu THC(m) THC(s) Cu HPQ(h) THC(m) Cic HPQ(h) THC(h) Cic HPQ(h) THC(m) Ce
HPQ(h) THC(m) Cn THC(s) THC(h) Cn THC(m) THC(s) CiJ THC(m) THC(s) Cr THC(m) THC(s) Cic
THC(s) THC(h) Cr THC(s) TXT(s) Cn THC(s) THC(h) Cu THC(s) WMT(h) Ce THC(s) THC(h) Cig
THC(s) TXT(s) Cic THC(s) WMT(h) Cn THC(s) WMT(h) Cn TXT(m) TXT(s) Ct TXT(m) TXT(s) Cic
TXT(m) TXT(s) Cic TXT(m) TXT(s) Ci TXT(m) TXT(s) Ce TXT(m) TXT(h) Ci TXT(m) TXT(h) Ci
TXT(m) TXT(h) Ct TXT(m) TXT(h) Ce TXT(m) TXT(h) C TXT(s) WMT(s) Cn TXT(s) WMT(s) Cic
WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Ci WMT(m) WMT(s) Cic
WMT(m) WMT(h) Ci WMT(m) WMT(h) Ci WMT(m) WMT(h) Cic WMT(s) WMT(h) Cic WMT(m) WMT(h) Ci
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Table B.1: Sample insurance companies.

The appendix lists all international insurance comparhasdre used in the empirical study. The sample
is constructed by first selecting all international insafeom the country and dead-firm listsDfiomson
Reuters Financial Datastreamrhe list is then corrected for all companies for which stpdke and
balance sheet data are not available ffimemson Reuters Financial DatastreamdWorldscope The
names of the companies are retrieved fromWeldscopdatabase (item WC06001).

ALEA GROUP HOLDINGS
CHAUCER HOLDINGS PLC
21ST CENTURY INS

ACE LIMITED

AEGON N.V.

AFFIN-ACF HOLDINGS
AFLAC INCORPORATED
AFRICAN LIFE

AGEAS SA

ASSURANCES GENERALES
AIOI INSURANCE

ALFA CORPORATION
ALLEANZA ASSICUR.
ALLEGHANY CORP
ALLIANZ SE

ALLIANZ LEBENSVERS.
ALLSTATE CORPORATION
ALM BRAND AS

ALTERRA CAPITAL
AMBAC FINANCIAL
AMERICAN NATIONAL
AMERICAN PHYSICIANS
AMERICAN EQUITY INV
AMERICAN FIN'L GROUP
AMERICAN INT'L GROUP
AMERUS GROUP CO
AMLIN PLC

AMP LIMITED

ANN & LIFE RE HLDGS
AON PLC

ARAB INSURANCE GROUP
ARCH CAPITAL GROUP
ARGONAUT GROUP, INC.
ARTHUR J GALLAGHER
ASIA FINANCIAL HLDGS
ASPEN INSURANCE HOLD
ASSICUR GENERALI SPA
ASSURANT INC
ASSURED GUARANTY LTD
AVIVA PLC

AXA SA

AXA ASIA PACIFIC
AXA LEBENSVERSICH
AXA KONZERN AG
AXA PORTUGAL SEGUROS
AXA VERSICHERUNG AG
AXIS CAPITAL HLDG
BALOISE HOLDING AG
BENFIELD GROUP LTD
BRIT INSURANCE HOLD
CAPITAL ALLIANCE
CASH.LIFE AG
CATHAY FINANCIAL
CATLIN GROUP LTD
CATTOLICA ASS
CESKA POJISTOVNAA.S
CHALLENGER FIN'L SVC
CHESNARA PLC
CHINA LIFE INSURANCE
CHINA TAIPING INSU
CHUBB CORP (THE)
CINCINNATI FINL CORP
CLAL INSURANCE ENT
CNA FINANCIAL CORP
CNA SURETY CORP
CNO FINANCIAL
CNP ASSURANCES
CODAN A/S
GROUPE COFACE
COMMERCE GROUP, INC.
MILANO ASSICURAZIONI
COX INSURANCE
DAI-ICHI LIFE INSU
DAIDO LIFE INSURANCE
DBV WINTERTHUR
DELPHI FINANCIAL GRP
DELTA LLOYD LEBENS
DONGBU INSURANCE CO.
DEUTSCHE AERZTEVERS
E-L FINANCIAL CORP.
EMPLOYERS HOLDINGS
ENDURANCE SPECIALTY

ERGO PREVIDENZA
ERGO-VERSICHERUNG
ERIE FAMILY LIFE INS
ERIE INDEMNITY
ETHNIKI GREEK INS
EULER HERMES
EVEREST RE GROUP
FAIRFAX FIN'L HLDGS
FBD HOLDINGS PLC
FBL FINANCIAL GROUP
FINANCIAL INDUSTRIES
FINAXA SA
FIRST FIRE & MARINE
FONDIARIA - SAl SPA
FOYER S.A.
FPIC INSURANCE GRUP
FRIENDS PROVIDENT
FUBON FINANCIAL
FUJI FIRE& MARINE INS
GENERALI (SCHWEIZ)
GENERALI DEUTSCH
GENERALI HOLDING VE
GENWORTH FIN'L, INC.
GLOBAL INDEMNITY
GRUPO NACIONAL
GRUPO PROFUTURO
GREAT EASTERN HLDGS
GREAT WEST LIFECO
GRUPO CATALANA
GREAT AMERICAN FIN'L
HANNOVER RUECK SE
HANOVER INSURANCE
HAREL INSUR INVES
HARLEYSVILLE GROUP
HARTFORD FINL SR\C
HCC INS HOLDINGS
HELVETIA HOLDING
HILB, ROGAL & HOBBS
HILLTOP HOL
HISCOX PLC
HORACE MANN EDUCATRS
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Table B.1: Sample insurance companies (continued).

HYUNDAI M & F INS.
INDUSTRIAL ALLIANCE
INFINITY PROP & CAS
ING GROEP N.V.
INSURANCE AUSTRALIA
INTACT FINANCIAL

IPC HOLDINGS, LTD.
JARDINE LLOYD
JEFFERSON-PILOT CORP
JOHN HANCOCK FIN SVC
KANSAS CITY LIFE INS
KEMPER

KINGSWAY FINANCIAL
KOELNISCHE RUECKVER.
KOREAN REINSURANCE
LANDAMERICA FINL GRP
LEGAL & GEN'L GRP
LIBERTY GROUP LTD
LIBERTY HOLDINGS

LIG INSURANCE CO LTD
LINCOLN NAT'L CORP
LOEWS CORPORATION
MAA GROUP

MANULIFE FINANCIAL
MAPFRE SA

MARKEL CORP

MARSH & MCLENNAN CO.
MBIA INC

MEDIOLANUM

MENORAH MIVTACHIM
MERCURY GENERAL CORP
METLIFE INC

MIDLAND COMPANY
MIGDAL INSURAN & FIN
MIIX GROUP, INC

MNI HOLDINGS BHD
MONTPELIER RE HLDGS
MONY GROUP INC.

MS& AD INSURANCE
MUENCHENER

NATIONAL WESTERN
NATIONWIDE FIN'L
NAVIGATORS GROUP INC
NIPPONKOA INS

NISSAY DOWA GEN
NISSHIN FIRE/MAR INS
NUERNBERGER BET.-AG
ODYSSEY RE

OHIO CASUALTY CORP
OLD MUTUAL PLC

OLD REPUBLIC INTL
PARTNERRE LTD.
PENN TREATY AMERICAN
PERMANENT TSB GROUP
PHILADELPHIA CORP
PHOENIX COMPANIES
PHOENIX HOLDINGS
PICC PROPERTY
PING AN INSURANCE
PLAT UNDERWRITERS
PMA CAPITAL CORP
POHJOLA-YHTYMA OYJ
POWER CORP OF CANADA
POWER FINANCIAL CORP
PREMAFIN FINANZIARIA
PRESIDENTIAL LIFE
PRINCIPAL FINL GROUP
PROASSURANCE CORP
PROGRESSIVE CORP
PROMINA GROUP
PROTECTIVE LIFE CORP
PRUCO LIFE INSURANCE
PRUDENTIAL PLC
PRUDENTIAL FINANCIAL
QBE INSURANCE GROUP
RIUNIONE ADRIATICA
REINSURANCE GROUP
RENAISSANCERE HLDGS
RHEINLAND HOLDING
RLI CORP
RSA INSURANCE GROUP
SAFECO CORPORATION
SAFETY INSURANCE GP
SAMPO OYJ
SAMSUNG FIRE & MARINE
SOUTH AFRICAN NAT’L
SCHWEIZERISCHE NAT
SCOR SE
SCOTTISH RE GROUP
SELECTIVE INSURANCE
SHIN KONG FINANCIAL
SKANDIA FORSAKRINGS
SOMPO JAPAN INSURANC
SAINT JAMES'’S PLACE
STANCORP FINANCIAL
STATE AUTO FINANCIAL
STOREBRAND ASA
SUL AMERICA SEGUROS
SUN LIFE FINANCIAL
SWISS LIFE HOLDING

SWISS RE
TAIWAN LIFE INSURANC
TAIYO LIFE INSURANCE
TOKIO MARINE
TONG YANG LIFE INS
TOPDANMARK A/S
TORCHMARK CORP
TORO ASSICURAZIONI
TOWER LTD
TRANSATLANTIC HLDGS
TRAVELERS COS
TRAVELERS PROPERTY
TRYG A/S
UICI
UNIPOL GRUPPO FIN
UNIQA INSUR
UNITED FIRE
PROVIDENT COMPANIES
WAADT VERSICHERUNGEN
VESTA INSURANCE GRP
VIENNA INSURANCE
VITTORIA ASSICURAQI
W R BERKLEY CORP.
WELLINGTON
WESCO FINANCIAL CORP
WHITE MOUNTAIN INSUR
WILLIS GROUP
WUERTTEMBERGISCHE LE
XL GROUP PLC
ZENITH NATIONAL
ZURICH INSURANCE



208

Variable definitions and data sources



209

Table B.2: Variable definitions and data sources.

The appendix presents definitions as well as data sourcel éiependent and independent variables that are used émtpigical
study. The insurer characteristics were retrieved fromTthemson Reuters Financial Datastreaand Thomson Worldscope
databases.

Variable name Definition Data source
Dependent variables
ACoVaR UnconditionahCoVaR as defined by Adrian and Brunnermeier (2015)Datastream, own

measured as the difference of the Value-at-risk (VaR) of afiizhsec- calc.
tor index conditional on the distress of a particular insared the VaR
of the sector index conditional on the median state of ther@rsu

MES Quarterly Marginal Expected Shortfall as defined| by Agh&tal. Datastream, own
(2010) as the average return on an individual insurer'sksbocthe days calc.
the World Datastream Bankdex experienced its 5% worst outcomes.

SRISK Average quarterly estimate of the Systemic Risk Indepraposed by Datastream,
Acharya et al.[(2012) and Brownlees and Engle (2015). Th&BRl-  Worldscope
timate for insuref at timet is given bySRIS K; = k(Debt;) — (1—  (WC03351,

k) (1 — LRMES) Equityi; wherek is a regulatory capital ratio (set WC08001), own.
to 8%), Debt; is the insurer’s book value of debtRMES; is the calc.

long run Marginal Expected Shortfall defined as &xp(—18- MES),

MES is the estimated Marginal Expected Shortfall d&quity ; is the

insurer’'s market value of equity.

Insurer characteristics

Beta Beta of the capital asset pricing model measuring the msekaitivity Worldscope
of a firm and a local market index of the insurer’s country. (WC09802).

Debt maturity Total long-term debt (due in more than one yeiijied by total debt.  Worldscope
(WC03251,
WC03255).

Foreign sales International sales divided by net revertiraeg 100) Worldscope
(WC08731).

Investment success Ratio of insurer’s investment income teesehues. Worldscope
(wco1001,
WC01006), own
calc.

Interconnectedness PCAS measure as defined in Billig et@Gil2)2 PCAS is constructed Datastream, own

using a decomposition of the variance-covariance matrixeirtburers’  calc.
daily, standardized stock returns.

Leverage Book value of assets minus book value of equity plukehsalue of Worldscope
equity, divided by market value of equity. (WC02999,
WCO03501,
WCO08001), own
calc.
Loss ratio Ratio of claim and loss expenses plus long termramee reserves to Worldscope

earned premiums. (WC15549).
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Table B.2: Variable definitions and data sources (continued)

The appendix presents definitions as well as data sources! fdependent and independent variables
that are used in the empirical study. The insurer charatiesiwere retrieved from tiEhomson Reuters
Financial Datastreanand Thomson Worldscop#atabases.

Variable name Definition Data source
Insurer characteristics
Market-to-book Market value of common equity divided by boakue of common eq- Worldscope
uity. (WcCo7210,
WCO03501).
Net revenues Log value of total operating revenue of therersu Worldscope
(WC01001).
Non-Policyholder Liabili- Total on balance sheet liabilities divided by total insweneserves. Worldscope
ties (WC03351,
WCO03030).
Operating expenses Ratio of operating expenses to tottkass Worldscope
(WC01249,
WC02999).
Other income Other pre-tax income and expenses besidesiogerabme. Worldscope
(WC01262).
Performance Quarterly buy-and-hold return on an insuréstsks Datastream, own
calc.
Return on Assets Return of the insurer on it's total asségs &fxes (in %). Worldscope
(WC08326).
Return on Equity An insurer’s earnings per share duringake12 months over the pro- Worldscope
rated book value per share times 100 (in %). (WC08372).
Total assets Natural logarithm of a insurer’s total assets. Worldscope
(WC02999).

Country characteristics
GDP growth Annual real GDP growth rate (in %). WDI  database
(World Bank).

Inflation Log of the annual change of the GDP deflator. WDI  dasab
(World Bank)

Stock market turnover Total value of shares traded in a gieemiry divided by the average WDI  database
market capitalization. (World Bank).
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Table C.1: Sample banks.

The table shows the names of the 148 international banksinsaar study. Banks were selected by their respective taséta at the end of the fiscal year 2006 and

availability of stock price data fror@atastream

ABN AMRO HOLDING N.V.

ALLIANCE & LEICESTER PLC

ALLIED IRISH BANKS PLC

ALPHA BANK SA

AMERIPRISE FINANCIAL, INC.

ANGLO IRISH BANK CORPORATION PLC
AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED
BANCO BILBAO VIZCAYA ARGENTARIA SA
BANCO COMERCIAL PORTUGUES, S.A.
BANCO DO BRASIL SA

BANCO ESPANOL DE CREDITO, S.A.
BANCO ESPIRITO SANTO SA

BANCO POPOLARE

BANCO POPULAR ESPANOL

BANCO SABADELL

BANCO SANTANDER SA

BANK AUSTRIA CREDITANSTALT AG

BANK HAPOALIM B.M.

BANK LEUMI LE-ISRAEL B.M.

BANK OF AMERICA CORPORATION

BANK OF CHINA LIMITED

BANK OF COMMUNICATIONS CO LTD

BANK OF IRELAND

BANK OF MONTREAL

BANK OF NEW YORK MELLON CORP.

BANK OF NOVA SCOTIA (THE)

BANK OF YOKOHAMA LIMITED (THE)
BANQUE NATIONALE DE BELGIQUE
BARCLAYS AFRICA GROUP LTD

BARCLAYS PLC

BAYERISCHE HYPO- UND VEREINSBANK AG
BB & T CORPORATION

BNP PARIBAS SA

BRADFORD & BINGLEY PLC

CANADIAN IMPERIAL BANK OF COMMERCE
CAPITAL ONE FINANCIAL CORPORATION
CAPITALIA SPA

CHIBA BANK LTD (THE)

CHINA CITIC BANK CORPORATION LIMITED
CHINA CONSTRUCTION BANK CORP

CHINA MERCHANTS BANK CO LTD

CHINA MINSHENG BANKING CORPORATION LIMITED
CITIGROUP INC.

COMERICA INCORPORATED
COMMERZBANK AKTIENGESELLSCHAFT
CREDIT AGRICOLE SA

CREDIT INDUSTRIEL ET COMMERCIAL SA
CREDIT SUISSE GROUP AG

DAIWA SECURITIES GROUP INCORPORATED

DANSKE BANK AS

DBS GROUP HOLDINGS LTD

DEPFA BANK PLC

DEUTSCHE BANK AKTIENGESELLSCHAFT
DEUTSCHE BOERSE AG

DEUTSCHE POSTBANK AG

DEXIA SA

DNB ASA

ECOBANK NIGERIA PLC

ERSTE GROUP BANK AG

ESPIRITO SANTO FINANCIAL GROUP S.A.
EUROBANK ERGASIAS SA

FIFTH THIRD BANCORP

FIRSTRAND LIMITED

GOLDMAN SACHS GROUP INC

HANA FINANCIAL GROUP

HANG SENG BANK LIMITED

HBOS PLC

HSBC HOLDINGS PLC

HUA XIA BANK COMPANY LTD

HYPO REAL ESTATE HOLDING
HYPOTHEKENBANK FRANKFURT AG
ICAP PLC

ICICI BANK LIMITED

INDUSTRIAL AND COMMERCIAL BANK OF CHINA LTD
INDUSTRIAL BANK CO LTD

INDUSTRIAL BANK OF KOREA

INTESA SANPAOLO SPA

JAPAN SECURITIES FINANCE CO LTD
JOYO BANK LIMITED (THE)

JPMORGAN CHASE & CO.

KAUPTHING BANK HF

KB FINANCIAL GROUP INCORPORATION
KBC GROUP NV

KEYCORP

KOREA EXCHANGE BANK

LANDESBANK BERLIN HOLDING AG
LLOYDS BANKING GROUP PLC

M & T BANK CORPORATION

MACQUARIE GROUP LIMITED

MALAYAN BANKING BERHAD

MARSHALL & ILSLEY CORPORATION
MEGA FINANCIAL HOLDING COMPANY LIMITED
MITSUBISHI UFJ FINANCIAL GROUP INCORPORATED
MIZUHO FINANCIAL GROUP INC
MORGAN STANLEY

NATIONAL AUSTRALIA BANK LIMITED
NATIONAL BANK OF CANADA

NATIONAL BANK OF GREECE, S.A.

NATIONAL CITY CORPORATION
NATIXIS
NIKKO CORDIAL CORPORATION
NISHI-NIPPON CITY BANK LIMITED (THE)
NOMURA HOLDINGS INCORPORATED
NORDEA BANK AB
NORTHERN ROCK PLC
NORTHERN TRUST CORPORATION
OVERSEA-CHINESE BANKING CORPORATION LIMITED
PNC FINANCIAL SERVICES GROUP INCORPORATED
RAIFFEISEN BANK INTERNATIONAL AG
REGIONS FINANCIAL CORPORATION
RESONA HOLDINGS INC
ROYAL BANK OF CANADA
ROYAL BANK OF SCOTLAND GROUP PLC (THE)
SAN PAOLO IMI SPA
SBERBANK ROSSII OAO
SCHWEIZERISCHE NATIONALBANK
SHANGHAI PUDONG DEVELOPMENT BANK
SHINHAN FINANCIAL GROUP COMPANY LIMITED
SHINSEI BANK LIMITED
SHIZUOKA BANK LTD (THE)
SKANDINAVISKA ENSKILDA BANKEN
SLM CORPORATION
SOCIETE GENERALE
SOVEREIGN BANCORP INCORPORATED
ST. GEORGE BANK LIMITED
STANDARD BANK GROUP LIMITED
STANDARD CHARTERED PLC
STATE BANK OF INDIA
STATE STREET CORPORATION
SUMITOMO MITSUI FINANCIAL GROUP INC
SUMITOMO TRUST AND BANKING COMPANY LIMITED (THE)
SUNTRUST BANKS, INC.
SVENSKA HANDELSBANKEN AB
SWEDBANK AB
TAISHIN FINANCIAL HOLDING COMPANY LIMITED
TAIWAN COOPERATIVE BANK
TORONTO-DOMINION BANK (THE)
TURKIYE IS BANKASI A.S.
U.S. BANCORP
UBI BANCA
UBS AG
UNICREDIT SPA
UNITED OVERSEAS BANK LIMITED
WACHOVIA CORPORATION
WELLS FARGO & COMPANY
WESTPAC BANKING CORPORATION
WOORI FINANCE HOLDINGS

A4
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Table C.2: Sample insurers.

The table shows the names of the 98 international insureid insour study. Insurers were selected by
their respective total assets at the end of the fiscal yeas 286 availability of stock price data from

Datastream

ACE LIMITED

AEGON N.V.

AFLAC INCORPORATED

AGEAS SA

AlOI INSURANCE COMPANY LIMITED

ALLEANZA ASSICURAZIONI S.P.A.

ALLIANZ LEBENSVERSICHERUNG-AG

ALLIANZ SE

ALLSTATE CORPORATION (THE)

AMBAC FINANCIAL GROUP, INC.

AMERICAN FINANCIAL GROUP, INC.

AMERICAN INTERNATIONAL GROUP, INC.
AMERICAN NATIONAL INSURANCE COMPANY
AMP LIMITED

AON PLC

ASSICURAZIONI GENERALI SPA

ASSURANCES GENERALES DE FRANCE (AGF) SA
ASSURANT, INC.

AVIVA PLC

AXA ASIA PACIFIC HOLDINGS LIMITED

AXA KONZERN AG

AXA LEBENSVERSICHERUNG AG

AXA SA

BALOISE HOLDING AG

CATHAY FINANCIAL HOLDING COMPANY LIMITED
CATTOLICA ASSICURAZIONI S.C.AR.L.
CHALLENGER FINANCIAL SERVICES GROUP LTD
CHINA LIFE INSURANCE CO LTD

CHUBB CORPORATION (THE)

CNA FINANCIAL CORPORATION

CNO FINANCIAL GROUP, INCORPORATION

CNP ASSURANCES

DBV-WINTERTHUR HOLDING AG

ERGO VERSICHERUNGSGRUPPE AG

FAIRFAX FINANCIAL HOLDINGS LIMITED

FUBON FINANCIAL HOLDING COMPANY LIMITED
GENERALI DEUTSCHLAND HOLDING AG
GENWORTH FINANCIAL, INC.

GREAT EASTERN HOLDINGS LTD

GREAT-WEST LIFECO INC

HANNOVER RUECK SE

HARTFORD FINANCIAL SERVICES GROUP, INC. (THE)
HELVETIA HOLDING AG

INDUSTRIAL ALLIANCE INSURANCE AND FINANCIAL SERVICES INCORPORATED
ING GROEP N.V.

LEGAL & GENERAL GROUP PLC

LIBERTY GROUP LIMITED

LIBERTY HOLDINGS LIMITED

LINCOLN NATIONAL CORPORATION

LOEWS CORPORATION
MANULIFE FINANCIAL CORPORATION
MAPFRE SA
MARSH & MCLENNAN COMPANIES, INC.
MBIA INC.
MEDIOLANUM S.P.A
METLIFE, INC.
MS & AD INSURANCE GROUP HOLDINGS, INCORPORATED
MUENCHENER RUCKVERSICHERUNGS-GESELLSCHAFT AG
NATIONWIDE FINANCIAL SERVICES INC
NIPPONKOA INSURANCE COMPANY LIMITED
NUERNBERGER BETEILIGUNGS-AG
OLD MUTUAL PLC
PERMANENT TSB GROUP HOLDINGS PLC
PHOENIX COMPANIES INC
PING AN INSURANCE (GROUP) COMPANY OF CHINA LTD
POWER CORPORATION OF CANADA
POWER FINANCIAL CORP
PREMAFIN FINANZIARIA SPA
PRINCIPAL FINANCIAL GROUP, INCORPORATED
PROGRESSIVE CORPORATION (THE)
PROTECTIVE LIFE CORPORATION
PRUCO LIFE INSURANCE COMPANY
PRUDENTIAL FINANCIAL, INCORPORATED
PRUDENTIAL PLC
QBE INSURANCE GROUP LIMITED
REINSURANCE GROUP OF AMERICA, INC.
RSA INSURANCE GROUP PLC
SAMPO OYJ
SANLAM LIMITED
SCOR SE
SHIN KONG FINANCIAL HOLDING COMPANY LIMITED
SOMPO JAPAN INSURANCE INC
ST. JAMES’S PLACE PLC
STOREBRAND ASA
SUN LIFE FINANCIAL INCORPORATED
SWISS LIFE HOLDING AG
SWISS RE LTD
TOKIO MARINE HOLDINGS INCORPORATED
TRAVELERS COMPANIES, INC. (THE)
UNIPOL GRUPPO FINANZIARIO SPA
UNIPOLSAI ASSICURAONI SPA
UNIQA INSURANCE GROUP AG
UNUM GROUP
VIENNA INSURANCE GROUP
WHITE MOUNTAINS INSURANCE GROUP LTD
WURTTEMBERGISCHE LEBENSVERSICHERUNG AG
XL GROUP PLC
ZURICH INSURANCE GROUP LIMITED



214

Variable definitions and data sources



Table C.1: Variable definitions and data sources.

The appendix presents data sources, definitions and exjigtes in our regression analyses for all dependent angémient variables that are used in the empirical study.
The expected sign of each independent variable on the sigstisinof a bank or insurer is shown in the last column with aifidicating an expected increasing (and a *-”
a decreasing) impact on systemic risk. The bank and insorerals were taken from thEhomson Reuters Financial Datastreamd Thomson Worldscopgatabases.

Variable name Definition Data source Hypotheses Expected sign
Panel A: Systemic risk measures
ACoVaR Unconditional ACoVaR as defined by Datastream, own calc.

Adrian and Brunnermeier | (2015), measured as
the difference of the Value-at-risk (VaR) of a financial
sector index conditional on the distress of a particular
insurer and the VaR of the sector index conditional
on the median state of the firm.
MES Marginal Expected Shortfall as defined byDatastream, own calc.
Acharya et al. [(2010) as the negative average re-
turn on an individual firm's stock on the days
the MSCI World index experienced its 5% worst
outcomes.

Panel B: Main independent variables

Interconnectedness PCAS measure as defined in_Billic et 812f2 Datastream, own calc. More exposure to other banks and nssure +
PCAS is constructed using a decomposition of the
variance-covariance matrix of the firms’ daily, stan-
dardized stock returns.

Market-to-book Market value of common equity divided by bookWorldscope (WC07210, Greater charter value incentivizes bank managers to -
value of common equity. WC03501) keep their bank’s capital ratio and to limit their
risk-taking (see Keeley, 1990 ahd Fahlenbrach et al.
(2012)).
Total assets Natural logarithm of a firm’s total assets. adge (WC02999) Too-big-to-fail vs. more diversification. -+
Leverage Book value of assets minus book value of equity plWorldscope  (WC02999, Disciplining effect of leverage vs. greater vulnera- +/-
market value of equity, divided by market value ofWC03501, WCO08001), bility during financial crises (see Adrian and Shin,
equity. own calc. 2010).
Performance Annual buy-and-hold stock returns computed froDatastream, own calc. Firms that performed well in the pastawiiitinue to +/-
the first and last trading day in the year 2006. perform well over time VS. institutions that took on

too many risks in the past could also stick to their cul-
ture of risk-taking (see_Fahlenbrach etfal.. 2012) and
increase their exposure and contribution to systemic

risk.
Return on assets Return of the firm on it's total assets adbegst (in  Worldscope (WC08326). Higher profits can shield banks froeativerse ef- -
%). fects of a financial crisis
Debt maturity Total long-term debt (due in more than one year) dWorldscope (WC03251, A less fragile funding structure of a bank makes it less
vided by total debt. WC03255). vulnerable to sudden shortages in liquidity during a

crisis (see Brunnermeier and Pedersen, 2009).

GT¢



Table C.1: Variable definitions and data sources (continued)

Variable name Definition Data source Hypotheses Expected sign
Panel C: Bank characteristics
Deposits Total deposits divided by total liabilities. Wistope (WC03019, Banks with more deposit financing are more stable in

Loan loss provisions Natural logarithm of expenses seteasisl an al-

lowance for uncollectable or troubled loans.

Loans Ratio of total loans to total assets.

Tier-1-capital Ratio of a bank’s Tier-1-Capital to totakats.

Non-interest income Non-interest income divided by totariest income.

Panel D: Insurer characteristics

Investment success Ratio of insurer’s investment income teemethues.

WCO03351). times of crises.
Worldscope (WC01271). A larger buffer against troubled fosimould serve as
a stabilizing factor reducing a bank’s total risk.

Worldscope (W@022 A higher loans-to-assets ratio of a bank could indicate
WC02999). a business model that focuses on lending rather than
more risky activities.

Worldscope (WC18228, Higher regulatory bank capital acts as a buffer against
WC02999). losses and should stabilize both an individual bank
and the financial sector.

Worldscope (WC01021,Higher values of non-interest income relative to to-
WCO01016). tal interest income could be indicative of a busi-
ness model that concentrates more on non-deposit
taking activities (like, e.g., investment banking) and
thus more risk-taking (see, e.g.. Brunnermeier 2t al.,
2012).

Worldscope (WC01001, Insurers become more intertwined with financial mar-
WC01006), own calc. kets through asset management.

Loss ratio Ratio of claim and loss expenses plus long teraorins Worldscope (WC15549). High loss ratio indicates bad qualitthe insurance

ance reserves to earned premiums.

portfolio and increases default risk.

Non-Policyholder Liabilities Total on balance sheet ligigis divided by total in- Worldscope (WC03351, Non-core insurance activities increase the risk to suf-
surance reserves. WC03030). fer from other sources in the financial market (see
IAIS, [2013).
Operating expenses Ratio of operating expenses to tottkass Worldscope (WC01249, Poor management reflects the total risk of the insur-
WC02999). ance company.
Other income Other pre-tax income and expenses besidesiogeratVorldscope (WC01262). Non-core insurance activities iaseethe risk to suf-
income. fer from other sources in the financial market (see
IAIS, [2013).
Fixed income Natural logarithm of fixed income. Worldscope (W2&ER). Engagement in other asset classes than fixed income
could suffer more profoundly from plummeting asset
prices.

9T¢
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Table D.1: Sample non-life insurance companies.

The table lists all international non-life insurance coniparthat are used in the empirical study. The sample is consttixy

first selecting all international non-life insurance comparirom the dead- and active-firm list thomson Reuters Worldscope
Further, the list is adjusted for all companies for which ktpidce and balance sheet data are not available ffbomson Reuters
Financial DatastreanandWorldscope The names of the companies are retrieved fronWtbddscopalatabase (item WC06001).

21ST CENTURY INSURANCE GROUP

ABBEY PROTECTION PLC

ABU DHABI NATIONAL TAKAFUL CO PSC

ABU DHABI NATIONAL INSURANCE COMPANY
ACE LIMITED

ACE ARABIA COOPERATIVE INSURANCE COMPANY
ADAMJEE INSURANCE COMPANY LIMITED
ADMIRAL GROUP PLC

ADVENT CAPITAL (HOLDINGS) PLC

AGF BRASIL SEGUROS S.A.

AGROTIKI INSURANCE S.A.

AlOI INSURANCE COMPANY LIMITED

AKSIGORTA ANONIM SIRKETI

AL AHLIA INSURANCE COMPANY BSC

AL AIN AHLIA INSURANCE CO PSC

AL ALAMIYA FOR COOPERATIVE INSURANCE COMPANY
AL BARAKAH TAKAFUL PLC

AL BUHAIRA NATIONAL INSURANCE COMPANY
AL DHAFRA INSURANCE COMPANY P.S.C.

AL MANARA INSURANCE CO PSC

AL SAGR NATIONAL INSURANCE CO PSC

AL WATHBA NATIONAL INSURANCE COMPANY
AL-AHLEIA INSURANCE CO SAK

AL RAJHI FOR COOPERATIVE INSURANCE

ALFA CORPORATION

AL KHALEEJ TAKAFUL GROUP QSC

ALLEGHANY CORPORATION

ALLIANZ SE

ALLIANZ SAUDI FRANSI COOPERATIVE INSURANCE COMPANY
ALLIED COOPERATIVE INSURANCE GROUP
ALLIED WORLD ASSURANCE COMPANY HOLDINGS, LTD
ALLSTATE CORP

ALM BRAND AS

ALTERRA CAPITAL HOLDINGS LIMITED
AMERICAN FINANCIAL GROUP, INC.

AMERICAN INTERNATIONAL GROUP, INC.

AMLIN PLC

AMTRUST FINANCIAL SERVICES, INC.

ANADOLU ANONIM TURK SIGORTA SIRKETI
ARAB ORIENT INSURANCE CO. LTD

ARAB UNION INTERNATIONAL INSURANCE
ARABIA INSURANCE COOPERATIVE COMPANY
ARABIAN SCANDINAVIAN INSURANCE COMPANY
ARABIAN SHIELD COOPERATIVE INSURANCE
ARCH CAPITAL GROUP LTD.

ARGONAUT GROUP INCORPORATED

ARGO GROUP INTERNATIONAL HOLDINGS LIMITED
ASKARI GENERAL INSURANCE CO.

ASPEN INSURANCE HOLDINGS LTD

ASURANSI BINTANG TBK PT

ASURANSI BINA DANA ARTA TBK PT

ASURANSI BINTANG TBK PT

ASURANSI DAYIN MITRA TBK PT

ASURANSI HARTA AMAN PRATAMA TBK PT

PT ASURANSI JASA TANIA TBK

ASURANSI MULTI ARTHA GUNA TBK PT
ASURANSI RAMAYANA TBK PT

ATLAS FINANCIAL HOLDINGS, INCORPORATION
ATLAS INSURANCE CO., LTD.

ATRIUM UNDERWRITING PLC

AVIVA SIGORTA AS

AXA COOPERATIVE INSURANCE COMPANY

AXA VERSICHERUNG AG

AXIS CAPITAL HOLDINGS LTD

BAHRAIN KUWAIT INSURANCE COMPANY BSC
BAHRAIN NATIONAL HOLDING COMPANY
BALDWIN & LYONS INCORPORATED

BANGKOK INSURANCE PUBLIC COMPANY LIMITED
BANGKOK UNION INSURANCE PUBLIC COMPANY LIMITED
BEAZLEY PLC

BERKSHIRE HATHAWAY INC.

BIDV INSURANCE CORPORATION

BURUJ COOPERATIVE INSURANCE CO
CALLIDEN GROUP LIMITED

CATLIN GROUP LTD

CENTRAL INSURANCE COMPANY LIMITED
CENTURY INSURANCE CO LTD

CHARAN INSURANCE PUBLIC COMPANY LIMITED

CHUBB CORP
CIE D’ASSURANCES ET DE REASSURAN. ASTREE
CINCINNATI FINANCIAL CORPORATION
CLAL INSURANCE ENTERPRISES HOLDINGS LIMITED
CNA FINANCIAL CORPORATION
COMMERCE GROUP INC
MILANO ASSICURAZIONI S.P.A.
COSMOS INSURANCE PUBLIC COMPANY LTD.
COX INSURANCE HOLDINGS PLC
CROATIA LLOYD D.D.
CUSTODIAN & ALLIED INSURANCE PLC
DELTA INSURANCE COMPANY
DEVES INSURANCE PUBLIC COMPANY LIMITED (THE)
DHIPAYA INSURANCE PUBLIC COMPANY LIMITED
DHOFAR INSURANCE COMPANY
DIRECT LINE INSURANCE GRUP PLC
DOHA INSURANCE
DONEGAL GROUP INC.
DONGBU INSURANCE CO., LTD.
DUBAI INSURANCE COMPANY
DUBAI ISLAMIC INSURANCE & REINSURANCE
DUBAI NATIONAL INSURANCE COMPANY
E-L FINANCIAL CORPORATION LIMITED
EFU GENERAL INSURANCE LTD
EGI FINANCIAL HOLDINGS INC.
EMC INSURANCE GROUP INC.
EMIRATES INSURANCE COMPANY P.S.C
ENDURANCE SPECIALTY HOLDINGS LTD.
ENSTAR GROUPIMITED
ESURE GROUP PLC
EULER HERMES GROUP/S
EUROHERC OSIGURANJE D D
EVEREST RE GROUP, LTD.
FAIRFAX FINANCIAL HOLDINGS LIMITED
FBD HOLDINGS PLC
FEDERATED NATIONAL HOLDING CO
FIRST ACCEPTANCE CORPORATION
FIRST FIRE & MARINE INSURANCE CO., LTD.
FIRST INSURANCE COMPANY LIMITED (THE)
FIRST MERCURY FINANCIAL CORPORATION
FIRST TAKAFUL INSURANCE COMPANY KCSC
FLAGSTONE REINSURANCE HOLDINGS SA
UNIPOLSAI ASSICURAZIONI SPA
FOYER S.A.
AL FUJAIRAH NATIONAL INSURANCE CO P.S.C.
FUJI FIRE & MARINE INSURANCE COMPANY LIMITED
GABLE HOLDINGS INC
GENERALI HOLDING VIENNA AG
GENERAL DE SEGUROS SA
GJENSIDIGE FORSIKRING ASA
GLOBAL INDEMNITY PLC
GOSHAWK INSURANCE HOLDINGS PLC
GREENLIGHT CAPITAL RE, LIMITED.
GRUPO CATALANA OCCIDENTE SA
GULF INSURANCE CO KSC
HABIB INSURANCE COMPANY LIMITED
HANOVER INSURANCE GROUP INC
HANWHA GENERAL INSURANCE COMPANY LIMITED
HARDY UNDERWRITING BERMUDA LIMITED
HARLEYSVILLE GROUP INC.
HARTFORD FINANCIAL SERVICES GROUP INC
HCC INSURANCE HOLDINGS INC
HCI GROUP INC
HEUNGKUK FIRE & MARINE INSURANCE CO LTD
HIGHWAY INSURANCE GROUP PLC
HILLTOP HOLDINGS INC
HISCOX PLC
HOLYLAND INSURANCE
HORACE MANN EDUCATCRS CORPORATION
HYUNDAI MARINE & FIRE INSURANCE COMPANY LIMITED
INDARA INSURANCE PUBLIC COMPANY LIMITED
INDEQUITY GROUP LIMITED
INFINITY PROPERTY & CASUALTY CORPORATION
INGOSSTRAKH OSAO
INSPLANET AB
INSURANCE AUSTRALIA GROUP LIMITED
INTACT FINANCIAL CORPORATION
IGI INSURANCE LTD



219

Table D.1: Sample non-life insurance companies (contijpued

ISLAMIC ARAB INSURANCE COMPANY
JADRANSKO OSIGURANJE D.D.

JAMES RIVER GROUP, INC.

JERUSALEM INSURANCE COMPANY

JORDAN EMIRATES INSURANCE PSC

JUBILEE GENERAL INSURANCE CO LTD

KEMPER CORPORATION

KILN PLC

KINGSWAY FINANCIAL SERVICES INC

KSK GROUP BHD

KUWAIT INSURANCE CO SAK

LANCASHIRE HOLDINGS LTD

LIG INSURANCE COMPANY LIMITED

LINKAGE ASSURANCE PLC

LOEWS CORPORATION

LOTTE NON-LIFE INSURANCE CO LTD

LPI CAPITAL BERHAD

MAIDEN HOLDINGS, LIMITED

MAPFRE PERU CIA DE SEGUROS Y REASEGUROS
MARKEL CORPORATION

MEADOWBROOK INSURANCE GROUP INCORPORATED
MERCER INSURANCE GROUP.INC.

MERCHANTS GROUP, INC.

MERCURY GENERAL CORPORATION

MERITZ FINANCIAL GROUP INC

METHAQ TAKAFUL INSURANCE COMPANY
MIDDLESEA INSURANCE P.L.C.

MIN XIN HOLDINGS LTD.

MOHANDES INSURANCE COMPANY

MONTPELIER RE HOLDINGS LTD

MPHB CAPITAL BHD

MS&AD INSURANCE GROUP HOLDINGS, INCORPORATED
MUANG THAI INSURANCE COMPANY LIMITED
MUSCAT NATIONAL HOLDINGS COMPANY SAOG
MUTUAL & FEDERAL INSURANCE COMPANY LTD
NAM SENG INSURANCE PUBLIC CO LIMITED
NATIONAL ATLANTIC HOLDINGS CORPORATION
NATIONAL GENERAL INSURANCE COMPANY
NATIONAL INTERSTATE CORPORATION

NAVAKIJ INSURANCE PUBLIC COMPANY LIMITED (THE)
NAVIGATORS GROUP INC

NIGER INSURANCE PLC

NIPPONKOA INSURANCE COMPANY LIMITED
NISSAY DOWA GENERAL INSURANCE COMPANY LIMITED

NISSHIN FIRE & MARINE INSURANCE COMPANY LIMITED (THE)

SOMPO JAPAN NIPPONKOA HOLDINGS INC
NORTH POINTE HOLDINGS CORPORATION
NOVAE GROUP PLC

OHIO CASUALTY CORPORATION

OMAN INSURANCE COMPANY

OMAN UNITED INSURANCE CO. SAOG
ONEBEACON INSURANCE GROUP LTD
OPTIMUM GENERAL INC

ORIENT INSURANCE COMPANY PSC

PACIFIC & ORIENT BERHAD

PENN MILLERS HOLDING CORPORATION

THE PEOPLE S INSURANCE CO (GROUP) OF CHINA LTD
PETROVIETNAM INSURANCE JOINT STOCK CORP
PHILADELPHIA CONSOLIDATED HOLDINGS CORPORATION
PHILADELPHIA INSURANCE COMPANY LTD
PHOENIX METROLIFE EMPORIKI

PICC PROPERTY AND CASUALTY COMPANY LTD
PETROLIMEX INSURANCE CORP

PLATINUM UNDERWRITERS HOLDINGS LIMITED
PMA CAPITAL CORPORATION

PORTO SEGURO SA

PREMAFIN FINANZIARIA SPA

PREMIER INSURANCE LIMITED
PROASSURANCE CORPORATION

PROCENTURY CORPORATION

PROGRESSIVE CORP

POWSZECHNY ZAKLAD UBEZPIECZEN SA
QATAR GENERAL INSURANCE & REINSURANCE
QATAR INSURANCE

QATAR ISLAMIC INSURANCE COMPANY

QBE INSURANCE GROUP LIMITED

QUANTA CAPITAL HOLDINGS LTD

RANDALL AND QUILTER INVESTMENT HOLDINGS PLC
RENAISSANCERE HOLDINGS LTD.

REPUBLIC COMPANIES GROUP, INC.

RLI CORP.

RSA INSURANCE GROUP PLC

RTW, INC.

SABB TAKAFUL

SAFECO CORPORATION

SAFETY INSURANCE GROUP, INC.

SAFETY INSURANCE PUBLIC COMPANY LIMITED (THE)
SAMPO OYJ

SAMSUNG FIRE & MARINE INSURANCE COMPANY LIMITED
SANTAM LIMITED

SALAMA COOPERATIVE INSURANCE CO

SAUDI UNITED COOPERATIVE INSURANCE COMPANY

SCHWEIZERISCHE NATIONAL VERSICHERUNGS GESELLSCHAFT AG

SEABRIGHT HOLDINGS, INCORPORATION
SECREX SEGUROS DE CREDITO Y GARANTIAS SA
SELECTIVE INSURANCE GROUP, INCORPORATED
SHAHEEN INSURANCE COMPANYNLITED
SHC INSURANCE PTE LIMITED
SHINKONG INSURANCE CO LTD
SAMAGGI INSURANCE PCL
SILVER STAR INSURANCE CO. LTD.
STE TUN D’ASSURANCES ET DE REASSURANCES
SOLIDARITY SAUDI TAKAFUL
SOMPO JAPAN NIPPONKOA INSURANCE INC
SPECIALTY UNDERWRITERS ALLIANCE, INC.
SRI AYUDHYA CAPITAL PCL
STANDARD ALLIANCE INSURANCE PLC
STATE AUTO FINANCIACORP
SYN MUN KONG INSURANCE PUBLIC COMPANY LIMITED
TAIWAN FIRE & MARINE INSURANCE COMPANY LIMITED
DAR AL TAKAFUL PJSC
TAKAFUL INTERNATIONAL COMPANY
TALANX AG
THAI INSURANCE PUBLIC COMPANY LIMITED (THE)
THAI SETAKIJ INSURANCE PUBLIC COMPANY LIMITED (THE)
THAIVIVAT INSURA NCE PUBLIC COMPANY LIMITED
ARAB ASSURERS INSURANCE CO PSC
THE ISLAMIC INSURANCE COMPANY
THE MEDITERRANEAN & GULF INS CO - JORDAN
TOKIO MARINE HOLDINGS INCORPORATED
TOPDANMARK A'S
TORO ASSICURAZIONI CIA ANOMIA D’ASSICU.
TOWER GROUP INTERNATIONAL LTD
TRADE UNION COOPERATIVE INSURANCE CO
TRANSATLANTIC HOLDINGS, INC.
TRAVELERS COMPANIES INC
TRYG A/S
TOWARZYSTWO UBEZPIECZE EUROPA SA
UNION GENERALE DU NORD
UNICO AMERICAN CORPORATION
UNION INSURANCE COMPANY P.S.C.
UNION INSURANCE COMPANY LIMITED
UNIPOL GRUPPO FINANMRIO SPA
UNISON FORSIKRING ASA
UNITED COOPERAVE ASSURANCE (UCA)
UNITED FIRE & CASUALTY CO
UNITED INSURANCE CO PSC
UNITED OVERSEAS INSURANCE LIMITED
UNIVERSAL INSURANCE HOLDINGS, INC
VALIDUS HOLDINGS, LIMITED
VAUDOISE ASSURANCES HOLDING
VITTORIA ASSICURAZIONI SPA
W. R. BERKLEY CORP
SAUDI INDIAN COMPANY FOR CO- OPERATIVE INSURANCE
WATANIYA INSURANCE COMPANY
WESCO FINANCIAL CORPORATION
WESTAIM CORPORATION (THE)
WETHAQ TAKAFUL INSURANCE CO KCSC
WHITE MOUNTAINS INSURANCE GROUP LTD
WUERTTEMBERGISCHE UND BADISCHE VERS.AG
ZUR SHAMIR HOLDINGS LTD
ZURICH INSURANCE GROUP LIMITED
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Table D.2: Variable definitions and data sources.

The appendix presents definitions as well as data sourced| fdependent and independent variables that are used entbé&ical study. The insurer characteristics are
retrieved from th&'homson Reuters Financial Datastreamd Thomson Worldscops#atabases.

Variable name

Definition

Data source

Inverse z-score

Capital surplus

Debt maturity

Equity ratio

Leverage

Long-term solvency

Loss ratio

Operating expenses

Premium growth
Return on Assets
Size

Solvency

GDP growth

Inflation

One divided by z-score. Z-score is the suam @fsurer’s equity ratio and return on assets, divided bystandard deviation

of an insurer’s return on assets from the previous five years.

Natural logarithm of capital surplus. Gasurplus represents the amount received in excess of par fram the sale of

common stock.

Total long-term debt (due in more than one ye&ijield by total debt.

Ratio of an insurer’s equity to total assets.

Sum of earned and unearned premiums divided by lcaynipdus.

Total long-term insurance reservesldivby total liabilities.

Ratio of claim and loss expenses plus long ternramee reserves to earned premiums.

Ratio of operating expenses to tottkass

One year annual growth rate in booked premiums.
Return of the insurer on its total assedstaftes (in %).
Natural logarithm of an insurer’s total assets.

Net income divided by the sum of short-term debt amceat portion of long-term debt.

Annual real GDP growth rate (in %).

Natural logarithm of the annual change of the GDRatler.

own calc.

Worldscope (WC03481), own calc.

Worldscope (WC03251,
WC03255).
Worldscope (WC01249,
WC02999).

Worldscope (WC03010, WC01002,
WC03351), own calc.

Worldscope
(WC03030,wC03351), own
calc.

Worldscope (WC15549).

Worldscope (WC01249,
WC02999).

Worldscope (WC01004).
Worldscope (WC08326).
Worldscope (WC02999).

Worldscope
(WC07250,WC03051), own
calc.

WDI database (World Bank).

WDI database (World Bank).

TZc
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Table E.1: Sample U.S. insurers.

The appendix lists all insurers that are included in the eicgdistudy. The sample is constructed by
first selecting all firms with (TIC/CUSIP) SIC-codes 63112&3and 6331 from th€ompustat/CRSP
databases. The list is then corrected for all insurance aoiap for which no 10-K filings could be
found in theMorningstar Document Researdatabase for the time period Q1 1999 until Q3 2014.
All insurers in theCRSP/CompustandMorningstar Document Researdatabases are matched using
their TIC and CUSIP-Codes and we manually double-checkethwsurance companies that have non-

matching names.

21ST CENTURY INS GROUP

ACA CAPITAL HOLDINGS INC

ACAP CORP

ACCEPTANCE INSURANCE COS INC
ACE LTD

AETNA INC

AFFIRMATIVE INS HOLDINGS INC
AFLAC INC

ALFA CORP

ALLEGHANY CORP

ALLIED WORLD ASSURANCE CO AG
ALLSTATE CORP

ALTERRA CAPITAL HOLDINGS LTD
AMBAC FINANCIAL GROUP INC
AMCOMP INC

AMER COUNTRY HOLDINGS INC
AMERICAN EQTY INVT LIFE HLDG
AMERICAN FINANCIAL CORP OH
AMERICAN FINANCIAL GROUP INC
AMERICAN GENERAL CORP
AMERICAN INDEPENDENCE CORP
AMERICAN INTERNATIONAL GROUP
AMERICAN NATIONAL INSURANCE
AMERICAN PHYSICIANS CAPITAL
AMERICAN RE CORP

AMERISAFE INC

AMWEST INSURANCE GROUP INC
ANNUITY AND LIFE RE HOLDINGS
ARCH CAPITAL GROUP LTD

ASPEN INSURANCE HOLDINGS LTD
ASSURANT INC

ASSURED GUARANTY LTD

ATHENE USA CORP

AXA FINANCIAL INC

AXIS CAPITAL HOLDINGS LTD
BERKLEY (W R) CORP

BERKSHIRE HATHAWAY

BLANCH E W HOLDINGS INC

BPO MANAGEMENT SERVICES/PA
BRISTOL WEST HOLDINGS INC
CAREMARK ULYSSES HOLDING CORP
CASTLEPOINT HOLDINGS LTD
CHUBB CORP

CITIZENS INC

CNA FINANCIAL CORP

CNA SURETY CORP

CNO FINANCIAL GROUP INC
COMMERCE GROUP INC/MA
CONSECO INC

DARWIN PROFESSIONAL UNDWRTS
DELPHI FINANCIAL GROUP INC
DIRECT GENERAL CORP

DONEGAL GROUP INC

EASTERN INSURANCE HLDGS INC
EMPLOYERS HOLDINGS INC
ENDURANCE SPECIALTY HOLDINGS
ENHANCE FINANCIAL SVCS GRP
ENSTAR GROUP INC

ENSTAR GROUP LTD
ESSENT GROUP LTD
EVEREST RE GROUP LTD
FARM FAMILY HOLDINGS INC
FBL FINANCIAL GROUP INC-CL A
FEDERATED NATIONAL HLDG CO
FIDELITY & GUARANTY LIFE
FIRST ACCEPTANCE CORP
FIRST MERCURY FINANCIAL CORP
FORTUNE FINANCIAL INC
FRONTIER INSURANCE GROUP INC
GAINSCO INC
GLOBAL INDEMNITY PLC
GREAT AMERN FINL RESOURCES
GREENLIGHT CAPITAL RE LTD
HALLMARK FINANCIAL SERVICES
HANOVER INSURANCE GROUP INC
HARTFORD FINANCIAL SERVICES
HCC INSURANCE HOLDINGS INC
HCI GROUP INC
HEALTHMARKETINC UICI
HIGHLANDS INSURANCE GRP INC
HILLTOP HOLDINGS INC
HORACE MANN EDUCATORS CORP
HSB GROUP INC
INDEPENDENCE HOLDING CO
INFINITY PROPERTY & CAS CORP
JAMES RIVER GROUP INC
JEFFERSON-PILOT CORP
KANSAS CITY LIFE INS CO
KEMPER CORP
KINGSWAY FINANCIAL SVCS INC
KMG AMERICA CORP
LANDAMERICA FINANCIAL GP
LINCOLN NATIONAL CORP
MAIDEN HOLDINGS LTD
MAJESTIC CAPITAL LTD
MARKEL CORP
MBIA INC
MEADOWBROOK INS GROUP INC
MERCER INSURANCE GROUP INC
MERCHANTS GROUP INC
MERCURY GENERAL CORP
METLIFE INC
MGIC INVESTMENT CORP/WI
MIIX GROUP INC
MONTPELIER RE HOLDINGS
MONY GROUP INC
MUTUAL RISK MANAGEMENT LTD
NYMAGIC INC
NATIONAL ATLANTIC HOLDINGS
NATIONAL INTERSTATE CORP
NATIONAL SEC GROUP INC
NATIONAL WESTERN LIFE -CL A
NATIONWIDE FINL SVCS -CL A
NORTH POINTE HOLDINGS CORP
ODYSSEY RE HOLDINGS CORP
OLD REPUBLIC INTL CORP
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Table E.1: Sample U.S. insurers (continued).

ONEBEACON INSURANCE GROUP
PARTNERRE LTD

PAULA FINANCIAL/DE
PENN-AMERICA GROUP INC
PENN TREATY AMERN CORP
PHOENIX COMPANIES INC
PLATINUM UNDERWRITERS HLDG
PMI GROUP INC

PRESERVER GROUP INC
PRIMERICA INC

PRINCIPAL FINANCIAL GRP INC
PROASSURANCE CORP
PROCENTURY CORP
PROGRESSIVE CORP-OHIO
PROTECTIVE LIFE CORP
PRUDENTIAL FINANCIAL INC
QUANTA CAPITAL HOLDINGS LTD
RADIAN GROUP INC

RAM HOLDINGS LTD
REINSURANCE GROUP AMER INC
RELIANCE GROUP HOLDINGS
RELIASTAR FINANCIAL CORP
RENAISSANCERE HOLDINGS LTD
REPUBLIC COMPANIES GROUP
RLI CORP

RTW INC

SAFECO CORP

SAFETY INSURANCE GROUP INC
SCOTTISH RE GROUP LTD

SCPIE HOLDINGS INC
SEABRIGHT HOLDINGS INC
SOUTHWESTERN LIFE HLDGS INC
SPECIALTY UNDERWRITERS
STANCORP FINANCIAL GROUP INC
SUN LIFE FINANCIAL INC
SYMETRA FINANCIAL CORP
SYNCORA HOLDINGS LTD
TORCHMARK CORP

TOWER GROUP INTL LTD
TRANSATLANTIC HOLDINGS INC
TRAVELERS COS INC
TRAVELERS CORP

TRIPLE-S MANAGEMENT CORP
UNICO AMERICAN CORP

UNITED AMERICA INDEMNITY Ltd
UNITED FIRE GROUP INC
UNIVERSAL AMERICAN CORP
UNIVERSAL INSURANCE HLDGS
UNUM GROUP

US HEALTH GROUP INC

VALIDUS HOLDINGS LTD

VESTA INSURANCE GROUP INC
VOYA INSURANCE & ANNUITY CO
WHITE MTNS INS GROUP LTD

XL GROUP PLC

ZENITH NATIONAL INSURANCE CP
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Table E.2: Variable definitions and data sources.

The appendix presents definitions as well as data sourced fiependent and independent variables that are used entpeical study. Variables describing an insurer’s
use of financial derivatives are constructed using infoimnafrom the respective insurer’s 10-K filings retrievedrfréhe Morningstar Document Researciatabase. The
insurer characteristics were retrieved from @@mpustabndCRSPdatabases.

Variable name Definition Data source

Dependent variables

Inverse z-score One divided by z-score. Z-score is the geestock return divided by the respective stock return ilitjat CRSP, own calc.

MES Quarterly Marginal Expected Shortfall definedin Ackaei al. [(2010) as the average return on an individual in'surer CRSP, own calc.
stock on the days th8&P 500index experienced its 5% worst outcomes.

SRISK Average quarterly estimate of the Systemic Risk Indgxragosed by Acharya etlal. (2012) dnd Brownlees and EngleCRSP, Compustat, own. calc.
(2015). The SRISK estimate for insurer at time t is given by SRISK; = k(Debt;) — (1 —

k) (1 — LRMESH) Equity ¢, wherek is a regulatory capital ratio (set to 8%@eb ; is the insurer’s book value of
debt,LRMES ¢ is the long-run Marginal Expected Shortfall defined as &xp(—18- MES), MES is the estimated
Marginal Expected Shortfall arilquity ¢ is the insurer's market value of equity.

Insurer derivatives usage variables

Derivative-user Dummy variable with value 1 if an insureesislerivatives, and 0 otherwise. Morningstar.
Hedging Dummy variable with value 1 if an insurer predomihanses derivatives to hedge risks, and 0 otherwise. Mgstar.
Derivatives intensity The number of different types of datives used by an insurer (ranges from 0 to 4). Morningstar.
Swaps Dummy variable with value 1 if an insurer uses swapbPastherwise. Morningstar.
Options Dummy variable with value 1 if an insurer uses ogstj@md 0 otherwise. Morningstar.
Forwards Dummy variable with value 1 if an insurer uses fodsaand O otherwise. Morningstar.
Futures Dummy variable with value 1 if an insurer uses fugpaed 0 otherwise. Morningstar.
Gains/Losses Fair value gains/losses on an insurer'sadieeg positions. Morningstar.

Insurer-specific control variables

Capital surplus Natural logarithm of insurer’s capital $usp Compustat.

Debt maturity Total long-term debt (due in more than one ydaided by total debt. Compustat, own calc.
Leverage Total debt divided by total size Compustat, own calc.
Market-to-book Market value of common equity divided by kealue of common equity. Compustat, own calc.
ROA Return on assets. Compustat, own calc.
Total Liabilities Natural logarithm of an insurer’s liaties. Compustat.

Size Natural logarithm of an insurer’s total assets. Compustat.

Solvency Capital surplus divided by total assets. Compustat, own calc.
\olatility Standard deviation of an insurer’s stock retsirn CRSP, own calc.

9¢¢
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