

Synthesis and Development of a Mucin Glycopeptide Microarray System for Evaluation of Protein-Interactions

DISSERTATION

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

der Fakultät Chemie und Chemische Biologie

der Technischen Universität Dortmund.

Vorgelegt von Diplom Chemiker

CHRISTIAN PETT

aus Mainz.

Dortmund 2016

Die vorliegende Arbeit entstand im Zeitraum von Oktober 2009 bis September 2015 unter Anleitung von Dr. Ulrika Westerlind an der Fakultät Chemie und Chemische Biologie der Technischen Universität Dortmund und dem Leibniz-Institut für analytische Wissenschaften ISAS -e.V-, Dortmund.

Dekanin: Prof. Dr. Insa Melle

Erster Gutachter: Prof. Dr. Herbert Waldmann

Zweiter Gutachter: Prof. Dr. Christian Hedberg

Teile dieser Arbeit wurden bereits in folgenden Beiträgen veröffentlicht:

A Unified Strategy for the Synthesis of Mucin Cores 1-4 and the Assembled Multivalent Glycopeptides

C. Pett, M. Schorlemer, U. Westerlind, Chem. Eur. J. 2013, 19, 17001-17010.

A convergent Strategy for the Synthesis of Type-1 Elongated Mucin Cores 1-3 and the Corresponding Glycopeptides

C. Pett, U. Westerlind, Chem Eur. J. 2014, 20, 7287-7299 (inkl. Back Cover der Ausgabe).

Weitere Beteiligung an folgenden Beiträgen:

Assignment of Saccharide Identities through Analysis of Oxonium Ion Fragmentation Profiles in LC-MS/MS of Glycopeptides

A. Halim, U. Westerlind, C. Pett, M. Schorlemer, U. Rüetschi, G. Brinkmalm, C. Sihlbom, J. Lengquist, G. Larson, J. Nilsson, *J. Proteome Res.* **2014**, 13, 6024-6032.

Distinctive MS/MS Fragmentation Pathway of Glycopeptide Generated Oxonium Ions Provide Evidence of the Glycan Structure

J. Yu, M. Schorlemer, A. Gomez Toledo, C. Pett, C. Sihlbom, G. Larson, U. Westerlind, J. Nilsson, *Chem. Eur. J.* **2015**, 22, 1114-1124.

FÜR MARTHA

TABLE OF CONTENT

1	Intro	oduction	1
	1.1	The mucin glycoprotein family	1
	1.2	Abnormal glycosylation and the role of MUC1 in cancer	5
	1.3	Galectins and the role of galectin-3 in cancer	8
	1.4	MUC1 carbohydrate vaccines	11
	1.5	Mucins in airway diseases	15
2	Mot	ivation	. 16
3	Syn	thetic strategies	. 20
	3.1	Glycopeptide synthesis strategies	20
	3.1.1	Glycopeptide synthesis on solid phase	21
	3.1.2	2 Side reactions in solid phase glycopeptide synthesis	26
	3.2	Strategies in carbohydrate synthesis	29
	3.2.1	Glycosylation methods	29
	3.2.2	2 Protecting group chemistry	31
4	Res	ults and discussion	. 34
	4.1	Part 1 – Synthesis of core 1, 2 and 3 glycosylated amino acids	34
	4.1.1	, , , , , , , , , , , , , , , , , , , ,	
	4.1.2	2 Examples for syntheses of glycosylated amino acids/glycopeptides in the fie	
	7.1.2	and comparison to the strategy of this work	
	4.1.3	Synthesis of the T_N -antigen glycosyl acceptor	38
	4.1.4	Synthesis of the T-antigen amino acid	41
	4.1.5	5 Synthesis of the type-1 <i>N</i> -acetyllactosamine glycosyl donor	42
	4.1.6	Synthesis of the type-2 <i>N</i> -acetyllactosamine glycosyl donor	48
	4.1.7	Synthesis of the galactose extended core 3 amino acids	49
	4.1.8	Synthesis of the extended core 1 tetrasaccharide amino acids	53
	4.1.9	9 Synthesis of the extended core 2 hexasaccharide amino acids	57
	4.2	Part 2 - Syntheses of mucin glycopeptide libraries	59
	4.2.1	Synthesis plan for MUC1 and MUC5B glycopeptide library build-up	59
	4.2.2	2 Synthesis of a triethlyene glycol linker	60
	4.2.3	3 Synthesis of a MUC1 glycopeptide library	61
	4.2.4	Synthesis of a MUC5B glycopeptide library	70
	4.2.5	5 Synthesis of sialylated MUC1 glycopeptides	74
	4.2.6	5 Tandem MS of sialylated mucin O-glycopeptides - oxonium ion pattern anal	-
	4.3	Part 3 – Microarray studies with glycopeptide binding proteins	91
	4.3.1	I Introduction on microarray development	91

	4.3.2	Immobilization methods for glycopeptide microarrays	92
	4.3.3	Principle of serum screening by glycopeptide microarrays	94
	4.3.4	Evaluation of mucin anti-tumor vaccines by glycopeptide microarray analys induced antibody responses	
	4.3.5	Vaccine candidates for induction of immune response and antisera generation mice	
	4.3.6	Utilized microarray platforms for antisera, plant lectin and galectin-3 screen	
	4.3.7	Antibody titer determination of antisera induced by MUC1 vaccine candidat	es
	4.3.8	Elucidation of antibody specificity from vaccination experiments using the MUC1 glycopeptide microarray	102
	4.3.9	Elucidation of antibody binding specificity towards sialylated MUC1 glycopeptides on a microarray	126
	4.3.10	Discussion of MUC1 serum antibody specificity elucidation	128
	4.3.11	Binding of plant lectins to MUC1 glycopeptides on a microarray	136
	4.3.12	Binding of galectin-3 to MUC1 glycopeptides on a microarray	141
5	Summa	ary	151
6	Zusam	menfassung	164
7	Experir	nental	178
7	.1 Syn	theses of chapter 4.1	178
	7.1.1	General	178
	7.1.2	Synthesis of the T_N -antigen glycosyl acceptor	
	7.1.3	Synthesis of the T-antigen amino acid	187
	7.1.4	Syntheses of the type-1 <i>N</i> -acetyllactosamine glycosyl donor	191
	7.1.5	Syntheses of the type-2 <i>N</i> -acetyllactosamine glycosyl donor	200
	7.1.6	Synthesis of the extended type-2 core 3 amino acid	203
	7.1.7	Synthesis of the extended type-1 core 3 amino acid	209
	7.1.8	Synthesis of the T-antigen glycosyl acceptor building block	215
	7.1.9	Synthesis of the extended type-1 core 1 amino acid	220
	7.1.10	Synthesis of the extended type-2 core 1 amino	227
	7.1.11	Synthesis of the extended type-1 core 2 amino acid	235
	7.1.12	Synthesis of the extended type-2core 2 amino acid	241
7	.2 Syn	theses of chapter 4.2	248
	7.2.1	General	248
	7.2.2	Synthesis of the triethylene glycol spacer amino acid	248
	7.2.3	General protocol for MUC1 and MUC5B solid phase glycopeptide synthesis	
	7.2.4	Synthesis of MUC1 glycopeptides	253
	7.2.5	Synthesis of MUC5B glycopeptides	266
	7.2.6	Synthesis of α2,3- and α2,6-sialylated MUC1 glycopeptides	274

	7.3	Microarray experiments with immobilized MUC1 glycopeptides2	283
	7.3.	1 General	283
	7.3.	2 Nexterion slide H microarray loading capacity	284
	7.3.3	3 General spotting conditions	285
	7.3.4	4 Spotting of MUC1 microarrays MA1, MA2, MA3, MA4, MA5	286
	7.3.	5 General protocol for microarray assays with antiserum or lectin samples2	293
8	Ref	erences Fehler! Textmarke nicht definio	ert.
9	Арр	pendix3	316
	9.1	Spectroscopic data	316
	9.2	HPLC chromatograms	334
	9.2.	1 MUC1 glycopeptides	334
	9.2.2	2 MUC5B glycopeptides	338
	9.2.3	3 Sialylated MUC1 glycopeptides	341
	9.3	Microarray data	344
	9.3.	1 Microarray format 1 (MA1)	344
	9.3.2	2 Microarray format 2 (MA2)	345
	9.3.	3 Microarray format 3 (MA3)	353
	9.3.4	4 Microarray format 4 (MA4)	355
	9.3.	5 Microarray format 5 (MA5)	357
Ac	cknov	wledgements	359

ABBREVIATIONS

аа	amino acid	DMSO	dimethyl sulfoxide
AAA	amino acid analysis	DMTST	dimethyl(methylthio)sulfonium
Ac	acetyl		trifluoromethanesulfate
APC	antigen presenting cell	DNA	deoxyribonucleic acid
arom	aromatic	DPS	diphenyl sulfoxide
AuNP	gold nanoparticle	EDC	N-ethyl-N'-(dimethyaminopropyl)- carbodiimide
AW	acid washed	EGRF	epidermal growth factor receptor
BCR	B-cell receptor	ELISA	enzyme-linked immunosorbent
Boc	<i>tert</i> -butyloxycarbonyl	Em	assay emission
BSA	bovine serum albumin	eq	equivalents
Bu	butyl	eq ESI	•
Bn	benzyl		electrospray ionization
Bz	benzoyl	Et	ethyl
С	concentration	Ex	excitation
calc.	calculated	FA	formic acid
cat.	catalytic	FAC	frontal affinity chromatography
CD	cluster of differentiation	Fmoc	N-(9H-fluoren-9-yl)- methoxycarbonyl
^C Hex	cyclohexane	Fuc	∟-fucose
CID	collision induced dissociation	Gal	D-galactose
CMP	cytidine-5´-monophospho-	GalNAc	N-acetyl-D-galactosamine
CFG	Consortium for Functional	gg	gauche-gauche
Cosmc	Glycomics	Glc	D-glucose
COSINC	core 1 β3-Gal-T-specific molecular chaperone	GlcNAc	N-acetyl-p-glucosamine
COSY	correlated spectroscopy	grad	gradient
CRD	carbohydrate recognition	gt	gauche-trans
	domain	GTP	guanosine-5'-triphosphate
CTL	cytotoxic T-lymphocyte	h	hour
d	duplet or day	HATU	O-(1H-7-azabenzotriazol-1-yl)-
DBU	1,8-diazabicylo[5.4.0]undec-7- ene		1,1,3,3-tetramethylunronium
DC	dendritic cell	HBTU	hexafluorophosphate O-(1H-benzotriazol-1-yl)-1,1,3,3-
DCC	N,N-dicyclohexylcarbodiimide	TID TO	tetramethylunronium
DCM	dichloromethane		hexafluorophosphate
dd	duplet of duplet	HCD	Higher energy C-trap dissociation
dhb	2,5-dihydroxy benzoic acid	HER2 =	human epidermal growth factor
DIC	N,N-diisopropylcarbodiimide	ERBB2	receptor 2
DIPEA	diisopropylethylamine	HMBC	heteronuclear multiple bond
	4-(dimethylamino)pyridine	HMFG	correlation
DMF			human milk fat globule
	dimethylformamide	HOAt	7-aza-1-hydroxybenzotriazole

HOBt	1-hydroxybenzotriazole	OTf	trifluoromethanesulfonate
HPLC	high performance liquid		(triflate)
סוו	chromatography	p Dom CCK	para
HR	high resolution	Pam ₃ CSK ₄	N-palmitoyl-s-[2,3- bis(palmitoyloxy)-(2RS)-propyl-
HSQC	heteronuclear single quantum coherence		[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-
Hz	hertz		lysyl-[S]-lysyl-[S]-lysyl-
IDCP	iodonium dicollidine perchlorate	Pbf	2,2,4,6,7- pentamethyldihydrobenzofuran-5-
lg	immunoglobulin		sulfonyl
IL	interleukin	PBS/PBST	phosphate buffered saline/PBS+Tween-20
<i>i</i> Pr	isopropyl	PCR	polymerase chain reaction
ITC	isothermal titration calorimetry	PEG	polyethylene glycol
J	coupling constant	PG	protecting group
KLH	Keyhole Limpet Hemocyanin	Ph	phenyl
Lac	lactose	pН	potentia hydrogenii
LacNAc	N-acetyllactosamine	Phth	phthalimido
Le ^x /Le ^a	Lewis x/Lewis a	PMP	<i>para</i> -methoxy phenyl
LG	leaving group	pos	positive
m	multiplet	PNGase	Peptide <i>N</i> -glycosidase
М	molarity or mega	ppGalNAcT	polypeptide <i>N</i> -
mAb	monoclonal antibody		acetylgalactosamine transferase
MALDI	matrix assisted laser desorption	ppm	parts per million
Man	ionization D-mannose	PS	polystyrene
mbar	millibar	PSGL-1	P-selectin glycoprotein ligand-1
MD	molecular dynamics	p-TsOH	para-toluenesulfonic acid
Ме	methyl	PyBOP	(benzotriazol-1- yloxy)tris(pyrrolidino)phosphonium
MGL	macrophage c-type lectin		hexafluorophoshate
MHC	major histocompatibility	q	quartet
	complex	quart	quaternary
min	minutes	R	residue
miRNA	micro ribonucleic acid	Ras	rat sarcoma
MPL	monophosphoryl lipid A	R_{f}	retention factor
mRNA	messenger ribonucleic acid	RNA	ribonucleic acid
MS	molecular sieve or mass	RP	reverse phase
NBS	spectrometry N-bromosuccinimide	R _t	retention time
NCE	normalized collision energy	RTK	receptor tyrosine kinase
Neu5Ac	N-acetylneuraminic acid	S	singlet
NHS	N-hydroxysuccinimide	SEA	sea urchin sperm protein, enterokinase and agrin
NIS	N-iodosuccinimide	sLe ^x /sLe ^a	sialyl-Lewis x/sialyl-Lewis a
NMP	N-methylpyrrolidone	SNP	single nucleotide polymorphism
NMR	nuclear magnetic resonance	SPE	solid phase extraction
NSCLC	non-small cell lung cancer	SPPS	solid phase peptide synthesis

ST STD STN Su t T/TF TACA TBAF TBS TBTU TCR TEG tert TES	sialyl-Thomsen-Friedenreich antigen saturation transfer difference sialyl-Thomsen Nouveau antigen succinimide triplet Thomsen-Friedenreich antigen tumor associated carbohydrate antigen <i>tert</i> -butylammonium fluoride <i>tert</i> -butyldimethylsilyl O-(1H-benzotriazol-1-yl)-1,1,3,3- tetramethylunronium tetrafluoroborate T-cell receptor triethylene glycol tertiary triethylsilyl	THF TIPS TLC TLR TMS T _N TOCSY TOF TroC Trt TT UV VEGF VNTR α δ	tetrahydrofuran triisopropylsilane thin layer chromatography Toll-like receptor tetramethylsilyl Thomsen-Nouveau antigen total correlation spectroscopy time of flight trichloroethoxycarbonyl trityl tetanus toxoid ultraviolet vascular endothelial growth factor variable number of tandem repeats specific optical rotation chemical shift
		α	•
TES	triethylsilyl	δ	chemical shift
TFA TfOH	trifluoroacetic acid Trifluoromethanesulfonic acid	λ	wavelength
tg	trans-gauche		

Amino acid codes

Ala, A	Alanine
Arg, R	Arginine
Asn, N	Asparagine
Asp, D	Aspartate
Cys, C	Cysteine
GIn, Q	Glutamine
Glu, E	Glutamate
Gly, G	Glycine
His, H	Histidine
lle, l	Isoleucine
Leu, L	Leucine
Lys, K	Lysine
Met, M	Methionine
Phe, F	Phenylalanine
Pro, P	Proline
Ser, S	Serine
Thr, T	Threonine
Trp, W	Tryptophan
Tyr, Y	Tyrosine
Val, V	Valine

1 INTRODUCTION

1.1 The mucin glycoprotein family

Mucins belong to a family of highly glycosylated proteins expressed by epithelial cells.¹ Up to now, 21 members of this family have been identified. The carbohydrate-content of the mucins is usually higher than 50 wt% of the protein. These glycoproteins are a major part of the innate immune system. Secreted mucins form the mucus layer that protects the epithelial tissues of the gastrointestinal and respiratory tract and the ductal surfaces of breast, pancreas and kidney tissue against invading pathogens and chemical or physical stress factors.² While most mucins are restricted to specific tissues, the MUC1 glycoprotein is ubiquitously distributed.³ MUC1 was first identified by murine monoclonal antibodies raised against human milk fat globule (HMFG).⁴ Mucins can be subdivided into two major classes, the secreted or gel-forming mucins and the membrane-bound mucins. The ubiquitous MUC1 belongs to the class of the membrane tethered mucins. It is embedded into the membrane lipid bilayer by a single trans-membrane domain. The N-terminal ectodomain has a rod-like structure and stretches out 200-500 nm into the extracellular space, significantly surpassing the thickness of the glycocalyx (ca. 10 nm).⁵ The short transmembrane domain connects to the 72 amino acids cytoplasmatic domain, which is involved in cell signaling processes.^{6,7}

The MUC5B glycoprotein is belongs to the class of the secreted mucins and is mainly expressed in the respiratory system. Together with MUC5AC, it is the major airway mucin. Most secreted mucins have cysteine-rich regions, enabling formation of disulfide bridges and thus protein networks.⁸ Almost all mucins have an extracellular domain rich in proline, serine and threonine and arranged in domains called VNTR-regions (variable number of tandem of repeats). In MUC1, а VNTR 20 amino acids with the sequence PAHGVTSAPDTRPSAPGSTAP is repeated 20-125 times, in MUC5B a VNTR region consisting of 29 amino acids with the sequence ATGSTATPSSTPGTTHTPPVLTTTRTTPT is repeated in total 11 times.^{9,10} The overall number of VNTRs in MUC1 depends on genetic polymorphism and is different in each individual. A MUC1 tandem repeat contains five glycosylation sites (3x threonine, 2x serine) and the high proline content disturbs the formation of secondary structures, giving MUC1 a stretched, rod-like appearance.^{11,12} MUC1 is expressed as a single precursor protein with a proteolytic cleavage site within a SEA (sea urchin sperm protein, enterokinase and agrin) domain between the ecto- and transmembrane

domain. This site is auto-catalytically cleaved during posttranslational processing and the extracellular domain is then non-covalently associated with the transmembrane domain.¹³ All *O*-glycosylated proteins are posttranslational modified during the passage through the golgi complex. Here, the carbohydrate decoration is added by the sequential addition of monosaccharides which requires an ensemble of various different glycosyltransferases. After the exocytotic transport to the cell membrane, MUC1 is internalized and transported back to the trans-golgi with subsequent re-localization to the cell membrane. During this cyclic process, the glycosylation pattern is further matured.¹⁴

Mucin-like O-glycosylation is commonly found on threonine and serine amino acid residues. Recently, tyrosine was identified as a mucin-type glycosylation site, however, only a few examples of glycosylated proteins with this new posttranslational modification were found until now.^{15,16} Mucin-type glycosylation is characterized by eight core structures, namely core 1 to core 8.¹⁷ All cores structures have in common, that the first added carbohydrate is N-acetylgalactosamine in α -configuration, which is attached by a family of polypeptide Nacetylgalactosaminyltransferases (ppGalNAcT). This structure alone is known as the T_Nantigen (Thomsen-Nouveau antigen). Further elongation by the action of a β 1,3-galactose transferase (C1GaIT, T-synthase), results in the basic core 1 motif, also named T-antigen (or TF for Thomsen-Friedenreich antigen). Instead of a galactose, a glucosamine can be attached by the core 3 N-acetylglucosaminyltransferase (C3GnT) resulting in the core 3 glycan. Core 3 structures are specifically found on mucins of the gastrointestinal tract.¹⁸ Elongation on the 6-position of the first N-acetylgalactosamine of core 1 or core 3 by different members of the core 2 N-acetylglucosaminyltransferase family (C2GnT) results in the core 2 and core 4 glycans, respectively. Core 1 to core 4 are the most abundant core motifs, while core 5 to 8 are very rare and only found in a few mucins. The genes encoding for the glycosyltransferases involved in core 7 and core 8 biosynthesis have not been identified yet (figure 1.1).

2

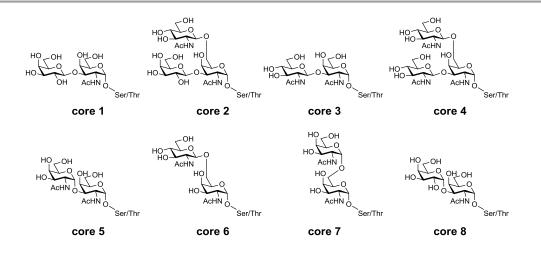


Figure 1.1: Structures of the common O-glycan core motifs.

The O-glycan core structures can be elongated by the alternating action of a β 1,3-GlcNAc-transferase (β 1,3GlcNAcT) and by either a β 1,3- or β 1,4-Gal-transferase (β 1,3GalT, β 1,4GalT) (*figure 1.2*).

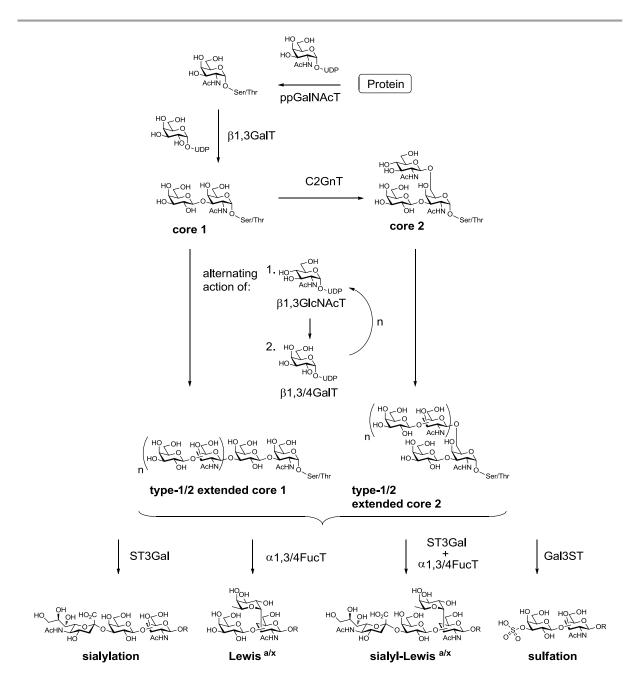


Figure 1.2: Biosynthesis of mucin type O-glycosylation.

Like this, the core structures are elongated either by a Gal β 1,3-GlcNAc β (type-1 *N*-acetyllactosamine, LacNAc) or by a Gal β 1,4-GlcNAc β (type-2 LacNAc) disaccharide unit (*figure 1.2*).¹⁷ Chain termination may occur by the performance of a family of six α 2,3-sialyltransferases (ST3Gal-I to -VI), which attach a sialic acid (e.g. *N*-acetylneuraminic acid, Neu5Ac) to the terminal galactose of the carbohydrate chains. Sialylation may also occur by a α 2,6-linkage on a terminal Gal or the initial α GalNAc of the T_N- or T-antigen. Terminal α 2,6-sialylation on galactose is mainly performed on *N*-glycans by a family of α 2,6-galactose sialyltransferases (ST6Gal-I and -II), while *O*-glycans are mainly sialylated on the initial α GalNAc by a family of α 2,6-*N*-acetylgalactosamine sialyltransferases (ST6GalNAc-I to -VI).^{17,19} Many glycosyltransferases do not recognize sialylated glycans, and therefore further

chain growth is prevented. An exception is the α 1,3/4-fucosyltransferases (FUT3) which adds a fucose monosaccharide, either to the 3- or the 4-position of the GlcNAc of the corresponding type-1 and type-2 LacNAc disaccharide units, even when sialylated. This results in the formation of the Lewis^x (Le^x) and the Lewis^a (Le^a) antigens or the corresponding sialyl-Lewis^x (sLe^x) and sialyl-Lewis^a (sLe^a) glycans. Sialylated Le antigens are important motifs, involved in leukocyte recruitment and emigration during inflammations.²⁰ The carbohydrates may also be terminated by sulfation (*figure 1.2*). The number of carbohydrates per *O*-glycan chain on mucins on healthy cells, usually varies between 2 and 20 monosaccharides.²¹

1.2 Abnormal glycosylation and the role of MUC1 in cancer

In epithelial carcinomas, expression of MUC1 undergoes a number of fundamental changes. The expression of the MUC1 glycoprotein is dramatically increased and the epithelial cell polarity is lost.²² Usually, MUC1 and other membrane-bound mucins are expressed only on the apical site of the cells, which is exposed to the ductal environment. However, in carcinoma cells, MUC1 is found also on the lateral and basal sites of the cells. In cases of cellular stress, e.g. in acute or chronic inflammatory insults, the cell polarity may further be lost. Cells can perform a repair program to regain polarity as soon as the stress response is terminated.²³ In cancer however, the stress response is irreversible. During these processes, the cytoplasmatic domain of the dislocated MUC1 can now interact with receptor tyrosine kinases (RTKs) that are located on the basal cell membranes. For instance, MUC1 interacts with the RTK ERBB2 (HER2) and its activation is associated with the loss of *tight junctions*²⁴ between the cells.²⁵ Also, MUC1 binds β-catenin, which is usually bridging between actin filaments and the cell-cell-adherence molecule E-cadherin. As a result, adherence junctions between the cells are lost.²⁶ Overexpression of the rod-shaped MUC1 extracellular domain also masks the cell surface, resulting in destabilization of integrin-mediated adhesion of the cell with the extracellular matrix.^{27,28} These factors promote a separation of tumor cells from normal cell clusters and trigger metastasis.

Additionally to overexpression of the MUC1 glycoprotein, the glycan structures attached to the mucin polypeptide tandem repeats are altered due to changes in the expression levels of various glycosyltransferases. These aberrantly structured glycans are referred to as TACAs (tumor associated carbohydrate antigens). In mammary cancer, the levels of C2GnT1 are downregulated or even completely obliterated.²⁹ The branching to core 2 glycan motifs is therefore inhibited and core 1 structure formation is favored instead. Concomitantly, an

overexpression of sialyltransferases results in premature sialylation of the truncated carbohydrates.^{30,31,32,33} After sialylation further glycosylation is prevented. As a result, tumor cell glycosylation consists of short and often sialylated glycans. T_N - and T-antigens and the corresponding sialylated ST_N- and ST-antigens are the most prominent glycans on cancer-associated MUC1 (*figure 1.3*).

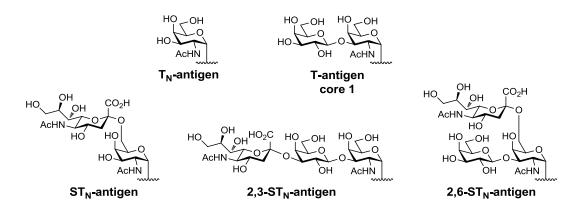


Figure 1.3: Structures of tumor-associated carbohydrate antigens (TACAs) on mucins.

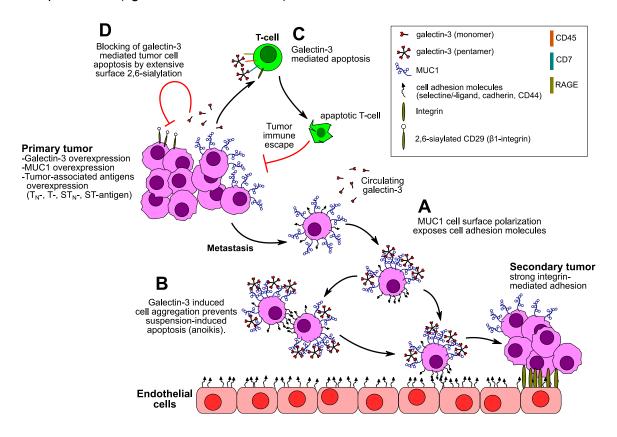
TACAs were found on several human and murine breast cancer cell lines, on tissue samples of breast cancer patients and as well as on shed or secreted MUC1 in the serum of advanced breast cancer patients.^{30,34} Interestingly, expression of sLe^x epitopes, which are a ligands for E-selectins, also occurs in breast cancer.³⁵ For normal *O*-glycosylation in the gastric, colorectal, pancreatic and hepatic tissue, the expression of core 3 β 1,3-*N*-acetylglucosaminyltransferase (C3GnT) is pivotal. Disturbed expression of this enzyme consequently results in higher levels of T_N-antigen instead, which is correlated to cancer growth and susceptibility for metastasis.^{36,37,38}

The reasons for the aberrant levels of glycosyltransferase expression are not fully understood. The increased levels of T_{N} - and ST_{N} -antigen are related to a genetic mutation in the gene *Cosmc* (core 1 β 3-Gal-T-specific molecular chaperone).^{39,40,41} This gene encodes for the chaperone Cosmc, required for the correct folding of the C1GnT (β 1,3GalT, T-synthase). A lack of this chaperone leads to C1GnT aggregation and subsequent degradation in the proteasome. Consequently, appearance of T_{N} -antigens increases because of faulty core 1 glycan elongation.⁴⁰ Increased levels of ST3Gal-I in cancer cells could be related to hypoxia, which also influences expression levels of various other glycosyltransferases.⁴² In colon cancers, increased T-antigen and sLe^x and sLe^a glycosylation is not only related to glycosyltransferase expression rates. Rather higher transcription of the UDP-Gal transporter gene leads to increased amounts of galactose-donor in Golgi network.⁴³

As a consequence, aberrant glycosylation results in a higher content of short and truncated carbohydrates. The tumor associated T_{N} - and T-antigen have been identified in about 90% of all carcinomas.^{44,45} Because of the smaller glycans, the protein backbone is not effectively covered any more. Peptide epitopes are exposed, which in normal mucins would be masked by extensive glycosylation. These distinct differences of healthy and malignant cells, permits the humoral immune reactions to unique protein epitopes in cancer.

The PDTR peptide domain within the MUC1 tandem repeat sequence has been identified as an immune-relevant peptide epitope, which is recognized by many MUC1 antibodies.^{46,47,48,49} A secondary structure in this peptide sequence was found and identified as either a type I or II β-turn.^{50,51,52} Later NMR studies confirmed a type I turn.^{53,54,55} but also consecutive γ-turns leading to s-shaped structures were proposed.^{56,57} The reported variations might be referred to different experimental conditions and the interplay between the different analyzed peptide backbones and attached glycoforms, resulting in conformational variations. However, the secondary turn structure in the PDTR motif is usually regarded as the reason for its pronounced immune reactivity as it forms a "knob-like" structure that projects out of the straight protein. The GSTA domain of the tandem repeat was later identified as a novel cancer specific epitope, by the generation of MUC1 mAbs.⁵⁸ In further experiments, a MUC1 glycopeptide microarray system was presented for the screening of serum antibodies. Former breast cancer patients who were classified as disease-free were treated with a MUC1 triple tandem repeat sequence, perglycosylated with T_N -antigen (25 x T_N) and conjugated to KLH (keyhole limpet hemocyanin) as carrier protein. Antisera were extracted before and after administration. The sera of 18 out of 20 patients showed recognition of glycopeptides with double T_N-antigen glycosylation in the GSTA domain after the injection.^{59,60} Further tests with sera from large cohorts of breast-, ovary- and prostate cancer patients, revealed auto-antibodies directed against the GSTA epitope.^{61,62} Of the reported monoclonal antibodies against MUC1 tandem repeats, only a few were directed against the VTSA peptide domain, however, this region seems to be less immunogenic.^{63,64} According to the site-specificities of the relevant ppGalNAcTs, involved in MUC1 glycosylation, the VTSA domain is likely to be glycosylated on the endogenous protein. However, in between the VT/SA motif is a cleavage site (/) for the protease cathepsin L, which is involved in antigen processing in the endosomes in mammals. Glycosylation in VTSA, whether on threonine or serine, obstructs the action of the protease. The resulting peptide fragments may not be in the optimal size range for MHC II (major histocompatibility complex II) protein presentation to the T-cells. This might be one reason for the low immunogenicity of this motif.^{65,66} In many cases not only the peptide sequence is part of the epitope. A carbohydrate hapten may be included in the antigenic determinant. Several MUC1 antibodies that have been raised, show

better reactivity, when the peptide/protein contains glycosylation and many are exclusively reactive on glycosylated MUC1.⁴⁶


1.3 Galectins and the role of galectin-3 in cancer

Galectins are a family of lectins with conserved C-terminal carbohydrate recognition domains (CDRs) for recognition of β -galactosides. The 15 found members of the family of mammal galectins are divided into three main classes: 1) The prototype galectins (galectin-1, -2, -5, -7, -10, -11, -13, -14, -15) consisting of two dimerized CDR chains, 2) the tandem repeat type galectins (galectin-4, -6, -8, -9, -12) consisting of a single chain with a CRD at each end and 3) chimera type galectin-3 with one CRD, connected to a tandem repeat of a collagen-like sequence, which enables oligomerization to pentamers. Although all members of the galectin family have a general affinity for β -galactosides, each galectin has a fine specificity regarding the type of galactosyl-oligosaccharide.⁶⁷ In contrast to other common mammalian lectins, such as C-type lectins, selectins and siglecs, galectins are not membrane-bound. They appear on the intracellular side in the cytosol, in the nucleus and are also secreted into the extracellular space. Accordingly, galectins are involved in a plethora of different physiological cell functions, such as involvement in cell-cell junctions, adhesion to extracellular matrix, signaling pathways, cell cycle progression, apoptosis, regulation of RNA splicing, modulation of signal transduction and cell migration.⁶⁸

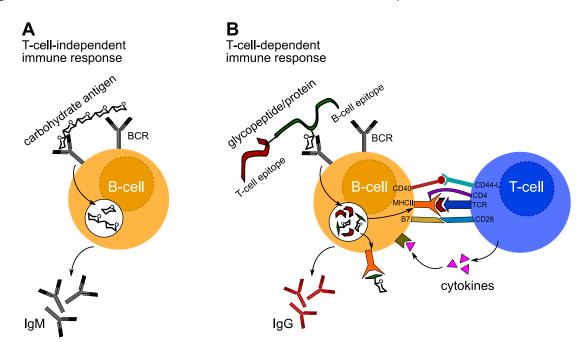
Galectin-3 is one of the most studied galectins and shows increased expression in various carcinomas. Further, galectin-3 plays several roles in tumorgenesis and metastasis.⁶⁹ For example, cytosolic galectin-3 binds selectively to the oncogene K-Ras but not to the isoforms H- and N-Ras.⁷⁰ The galectin-3 interaction with K-Ras increases the amount of activated GTP-K-Ras, leading to enhanced activation of downstream effectors, preventing apoptosis or promoting cell proliferation.⁷¹ Further, upon an exogenous apoptotic stimuli, cytosolic galectin-3 is translocated to the mitochondrial membrane where it prevents release of cytochrome C, thereby preventing apoptosis.⁷² The mechanism might be similar to the anti-apoptotic properties of Bcl-2 (B-cell lymphoma 2), which shows significant sequence homology to galectin-3. Tumor promotion may further be executed by galectin-3 involvement in the Wnt/ β -catenin pathway. Galectin-3 prevents phosphorylation of β -catenin and thereby degradation in the proteasome. As a result β -catenin translocates into the nucleus, accumulates and activates gene expression of the cell cycle progressor cyclin D or the protooncogene c-Myc.^{73,74} These examples show the various tumor-promoting effects of intracellular galectin-3. Galectin-3 was co-immunoprecipitated with several proteins involved

in the mentioned pathways, such as K-Ras⁷⁰ or β -catenin⁷⁵, indicating a recognition mode independent of glycosylation. Many more examples for intracellular, carbohydrate-independent interactions are reported.⁷⁶ In general, intracellular galectin-3 mediates cancer promoting effects by preventing apoptosis and providing tumor cell survival.

Extracellular galectin-3 is able to bind galactosides on glycoproteins presented on the cell surface. For instance, mucin glycoproteins on different epithelial carcinoma cells are primary binding partners for galectin-3.77,78 Furthermore, co-immunoprecipitation from colon cancer cell lines showed that cancer associated MUC1 is a natural target for galectin-3 and binding seems to be mediated by glycosylation⁷⁷ with the tumor-associated T-antigen.⁷⁹ MUC1 proteins with T-antigen presentation on cancer cells are proposed to permit adhesion to endothelial cells in the presence of galectin-3.^{80,81,82} Binding was increased when the cells were pretreated with sialidase and depletion of binding occurred by O-glycanase treatment (T-antigen specific endoglycosidase from Streptococcus pneumoniae). MUC1-transfected melanoma cells with T-antigen glycosylation exhibited stronger endothelial cell binding when treated with galectin-3, while no effect was visible on the MUC1 negative revertants.⁸³ It was therefore proposed that galectin-3 captures overexpressed MUC1 on the surface of circulating tumor cells and through clustering of MUC1, several shorter adhesion molecules, such as E-cadherin, CD44 and E-selectin ligands are revealed which are then exposed on the cell surface and are able to interact with their corresponding binding partners on the endothelial side (figure 1.4, mechanism A).⁷⁹ By this mechanism, galectin-3 supports settling of metastasizing tumor cells. Also, adhesion of the circulating tumor cells to each other is increased through mucin/galectin-3 interaction, leading to aggregation of tumor cells (figure *1.4*, mechanism **B**).⁸⁴ The cell adhesion prevents apoptosis of the tumor cells, induced by the loss of cell-cell or cell-matrix interactions (anoikis).^{85,86} By recognizing tumor related glycosylation on overexpressed MUC1 and following mediated adhesion to epithelial tissue, galectin-3 promotes installation of secondary tumors. Furthermore, extracellular galectin-3 has been shown to be immunosuppressive. T- and B-leukocytes, which were exposed to galectin-3, became apoptotic (*figure 1.4*, mechanism **C**).^{87,88,89,90,91} As molecular receptors on were identified.^{87,88,92,93,94} All interactions are mediated by protein *N*- and O-glycosylation with varying contributions. For example, CD45 contains N- and O-glycans, but the splice isoform CD45RO, which lacks the heavily O-glycosylated protein domain, shows almost no galectin-3 binding, highlighting the significance of O-glycosylation for galectin-3 induced apoptosis.⁹⁴ Overexpressed galectin-3 in circulation and membrane-associated to the tumor cells is therefore suspected to be beneficial for the tumor cells and helps to escape immune surveillance. Apart from apoptosis of immune cells, the human colon adenocarcinoma cell line SW48 was also shown to enter apoptosis after removal of N-acetylneuraminic acid by sialidase treatment and contact with galectin-3.⁹³ CD7 and CD29 were identified as galectin-3 receptors. CD29 was found to be α 2,6-oversialylated on this carcinoma cell line, thus hindering galectin-3 interaction. It was therefore proposed, that overexpression of galectin-3 and oversialylation is advantageous for cancer progression in several ways. The cancer cells benefit from the intracellular anti-apoptotic effects and are at the same time protected from apoptotic effects of extracellular galectin-3 by extensive α 2,6-sialylation of the galectin-3 receptor CD29 (*figure 1.4*, mechanism **D**).

Figure 1.4: Proposed effects of extracellular galectin-3 on tumor metastasis and immune evasion. **A**: Clustering of MUC1 by galectin-3 exposes cell adhesion molecules. **B**: Tumor cell aggregation through exposed cell adhesion molecules prevents anoikis. **C**: Galectin-3 mediated apoptosis of T-cells results in tumor immune escape. **D**: Extensive α2,6-sialylation blocks galectin-3 mediated apoptosis of tumor cells.

Other members of the galectin family were found to share the same metastasis promoting features.⁹⁵ MUC1 and galectin-3 act in a tumor-promoting interplay. The *N*-glycosylated (Asn-36) intracellular, C-terminal part of MUC1 further signals an increase of galectin-3 mRNA translation by stabilizing the transcript through decrease of the inherent, galectin-3 suppressing miRNA-322. Tumor-related MUC1 overexpression is therefore correlated with increase in galectin-3 expression. In return, galectin-3 binds the MUC1 *N*-glycosylation at Asn-36 and bridges to ERBB1, integrating MUC1 into EGRF signaling.⁹⁶

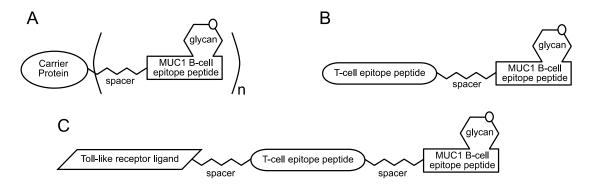

Galectin-3 may be involved in tumor progression in several ways. In general, intracellular galectin-3 acts anti-apoptotic and therefore promotes cancer development *via* carbohydrate-independent protein-protein interactions. Extracellular galectin-3 promotes metastasis and regulates cell apoptosis *via* carbohydrate-dependent mechanisms. Through direct contact with cell surface glycans, for example the tumor-associated T-antigen, it is probably involved in installment of daughter tumors, which makes it an interesting subject for further carbohydrate-lectin binding studies.

1.4 MUC1 carbohydrate vaccines

The fact that MUC1 is overexpressed and aberrantly glycosylated made it a prime target in immunotherapy and immunodiagnostics of carcinomas, including breast, ovarian, lung, colon and pancreatic cancers. Anti-MUC1 auto-antibodies are found in serum of cancer patients and their identification is in general associated with a better prognosis.^{11,61,97} Treatment of cancer relies on the removal of the tumor burden by chemotherapy, radiation or surgery. Hence, immunotherapeutic methods are a valuable asset to established tumor therapy. Passive immunization with monoclonal antibodies is a successful and relatively safe approach in immunotherapy. Several cancer target reactive monoclonal antibody drugs have already entered the market and second generation approaches, such as engineered antibody fragments or antibody-drug-conjugates (ADCs), are in the focus of contemporary pharmaceutical research and clinical studies, with first products already launched.⁹⁸ However, the protection by passive immunization with monoclonal antibodies is not longlasting, most available therapeutic antibodies on the market and in late stage clinical trials are chimeric or humanized antibody drugs,⁹⁹ which can still provoke an unwanted immune response¹⁰⁰ and full human sequence antibody production by *in vitro* affinity maturation through biological display systems or *in vivo* expression in transgenic animals is complex. Active immunization with an anti-tumor vaccine on the other hand, could induce inherent antibody production against tumor related tissue. Especially against metastasizing tumors, an augmented immune surveillance would be helpful. Although auto-antibodies are found in the serum of patients, the induced immune reaction by the inherent tumor-associated antigens is obviously not strong enough to eradicate the tumor burden. The reason is, that the tumor-associated antigens are often seen as self-antigens and are only poorly immunogenic, although being abnormal.¹⁰¹

An organism has a natural tolerance for antigens regarded as "own". All lymphocytes are generated in the bone morrow. To avoid autoimmunity, lymphocytes are selected for

tolerance against endogenous tissues. Cells that recognize self-antigens are selected for cell lysis. For B-cells, this education happens directly in the bone morrow and for the T-cells in the thymus. Dendritic cells, macrophages and B-cells are antigen-presenting cells (APCs) and can detect and internalize exogenic pathogens. After digestions, parts of the pathogens are linked to major histocompatibility complex II (MHC II) proteins, which are presented at the surface of the APCs to CD4⁺ T-cells.¹⁰² If a presented antigen is of endogenous nature, the T-cell receptor (TCR) will only bind weakly to the MHC-antigen-complex, according to maturation in the thymus. Important costimulatory signals cannot emerge and the T-cell remains inactive. If the APC is a B-cell, it can proliferate into a plasma cell and start to secret antibodies in a T-cell independent reaction. These antibodies are of the IgM-type and are short-lived and of low affinity (figure 1.5, A). In general, sole carbohydrates are T-cellindependent antigens.¹⁰³ Tumor related MUC1 IgM antibodies are found in cancer patient sera but immune response is too weak to successfully generate immunity. On the other hand, if an APC presents an unknown antigen to the T-cell, then the MHC-II-antigen-complex is bound with high affinity. Costimulation takes place and the T-cell proliferates into a Thelper (T_h) cell and secretes cytokines which dock to cytokine receptors at the B-cell to induce proliferation into an antibody-producing plasma cell (figure 1.5, B). The antibodies generated by the T-cell-dependent pathway are long-lived, high affinity IgG antibodies. Furthermore, B-cells may also proliferate into memory B-cells. This class change from IgM to IgG antibodies characterizes an effective humoral immune response.


Figure 1.5: A: T-cell independent response by carbohydrate antigens elicits IgM antibody production. B: Costimulatory signals enables proliferation of B-cells into plasma cells and IgG antibody production.

At any time, the immune effector cells patrol for unusual structures and start an immune reaction if necessary. However, tumor cells also develop mechanisms to escape the permanent immune surveillance. For instance, the ability to express MHC I molecules may be gradually lost during increasing stages of tumorgenesis.^{104,105} Some solid tumors also start to overexpress cytokines with immunosuppressive functions, such as IL-10, IL-4 or vascular endothelial growth factor (VEGF).¹⁰⁶ It has been found, that MUC1 itself is an immunosuppressive factor. Shed and secreted MUC1 in tumor tissue arrests T-lymphocytes in their cell cycle and proliferation of naïve T-cells is blocked.^{107,108}

A suitable vaccine must therefore be able to overcome natural tolerance and effectively augment the immune response. Commonly, a chemically synthesized antigenic B-cell epitope is conjugated to an immunostimulant. A common strategy is the conjugation to a carrier protein. Carbohydrate antigens may be directly linked to a carrier, such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid. Immunological studies in mice revealed, that the induced immune reactions by such a conjugate elicits modest responses, often significantly of the IgM-type, indicating insufficient antibody class change.^{109,110,111,112,113} Variants of using unglycosylated peptide epitopes, in form of multi tandem repeat peptides or as carrier protein conjugates have been tested. Most of the formulations used with unglycosylated peptides suffer from low humoral response or lack of class switching to IgG isoforms.^{114,115,116,117,118} The reasons might be related to missing conformational effects of the carbohydrates on the peptide backbone. Tecemotide (L-BLP25, Stimuvax®, Merck KGaA) is a liposomal formulation of an unglycosylated MUC1 tandem repeat peptide (25mer), conjugated to monophosphoryl lipid A (MPL). The compound went into clinical trials with application in NSCLC (non-small cell lung cancer). After not meeting the primary end point in an initial phase III clinical trial,¹¹⁹ the formulation was withdrawn in 2014, shortly after the beginning of a second phase III trial and is discontinued.¹²⁰

Vaccine designs based on glycopeptides seem to be more promising.¹⁰³ In comparison, glycosylated peptide vaccine candidates usually elicit stronger immune responses than the unglycosylated counterpart.¹²¹ An early study already showed that serum antibodies of breast cancer patients react stronger with glycosylated MUC1 tandem repeats than with the unglycosylated tandem repeats.⁴⁷ Commonly, MUC1 glycopeptides are also conjugated to immunostimulants to enhance immune response, to overcome tolerance and ensure antibody class switching. Several glycopeptide vaccine conjugate designs have been reported in the literature. A MUC1 glycopeptide may be attached to a carrier protein, for instance bovine serum albumin (BSA),^{122,123} keyhole limpet hemocyanin (KLH)^{124,125} or tetanus toxoid (TT) (*figure 1.6*, **A**).^{126,127,128} Carrier proteins fortify immune responses by presenting T-cell-epitopes for T-cell-dependent immune reactions and multivalent

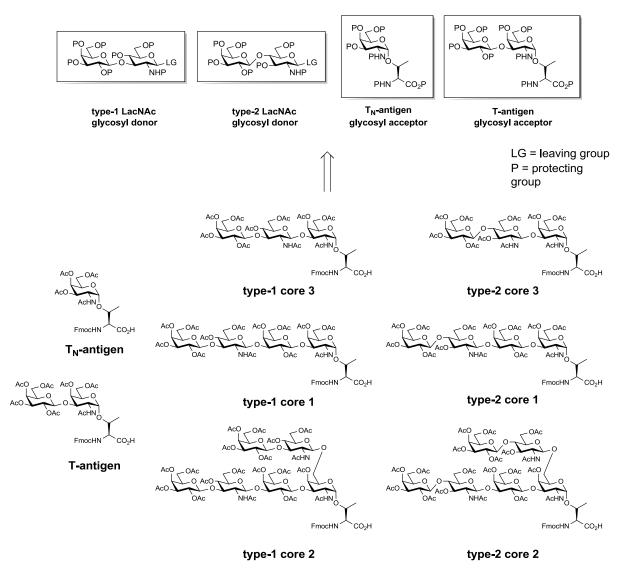
presentation of the B-cell epitopes enhances the tendency for receptor clustering on the antigen presenting cells (APC), such as dendritic cells (DCs), B-cells or macrophages. Exogenous proteins also provoke a response against carrier epitopes, which sustains the risk of overriding the immune reaction against the selected B-cell-epitope.^{129,130,115} Alternatively, short peptide sequences may be used as T-cell epitopes (*figure 1.6*, **B**). Examples are peptides coming from ovalbumin,¹³¹ the polio virus¹³² or rationally designed peptides like the PADRE-sequence.¹³³ The P30-sequence, a 30mer peptide derived from tetanus toxoid, has recently been reported to give robust antibody titers. Also, this peptide may function as a built-in adjuvant, making the use of additional adjuvants in immunotherapy obsolete.^{134,135} Other common immunostimulants are Toll-like-receptor (TLR) ligands, like the lipopeptide Pam₃CSK₄.¹³⁶ As a mitogen, the lipopeptide is not immunogenic but stimulates TLR-1/2,¹³⁷ which initiates induction of costimulatory proteins in B- and T-cells. Conjugation of these components, with spatial separation via a non-immunogenic spacer, results in two- and three component vaccines.

Figure 1.6: Design examples for potential glycopeptide vaccine conjugates: A: Two-component peptide-protein vaccine. B: Two-component peptide-peptide vaccine. C: Three-component peptide vaccine with TLR-lipopeptide.

In addition to a humoral antibody response, it would be beneficial if the vaccine could induce cytotoxic T-cell responses. In that way, malignant tumor cells would also be opposed to cytotoxic T-lymphocytes (CTLs), which could directly lyse the cells or induce apoptosis. Exogenous substrates, such as the potential vaccine, are endocytotically internalized, processed by digestion and the resulting (glyco-)peptides loaded onto MHC II molecules. The loaded antigens are then exclusively presented to CD4⁺-T-cells and differentiation into T-helper cells proceeds. CTL activation, on the other hand, relies on antigen presentation by MHC I to CD8⁺ T-cells. Nevertheless, CTLs with specificity against the MHC-unrestricted epitope localized to the DTR domain have been isolated from tumor patients.^{138,139} Since then, MHC I restricted peptide sequences within or outside the MUC1 tandem repeat were also reported and specific CTL-responses could be induced in mouse models.^{140,141,142,143,144} Moreover, it was documented that glycosylation is able to stabilize the binding to MHC I.^{142,144} It is not clear though, how the tandem repeat sequences get access to the MHC I pathway.

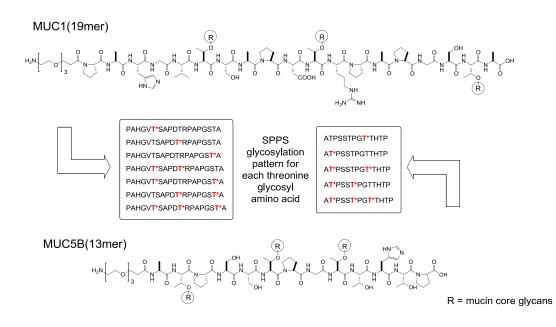
This would involve mechanisms of cross-presentation. The antigen could for example escape into the cytosol and be processed by the proteasome,^{145,146} or be digested by cathepsins to yield 8-11mer peptides which would fit into the MHC I binding groove.¹⁴⁷ It was also shown, that the C-type lectin MGL (macrophage galactose c-type lectin) can mediate internalization of glycopeptides into APCs upon which the glycopeptides are directed into MHC II as well as into MHC I compartments.^{148,149} The uncertainties regarding efficient MHC I presentation makes addressing cytotoxic immune responses by vaccines difficult and so far no example of a CTL-response, being able to successfully neutralize human cancer cells is reported (for example in transgenic mouse models).¹⁴³

1.5 Mucins in airway diseases


The glycans on mucin glycoproteins are covering the epithelial cell-surface and determine physical and biological properties of the mucus. The glycans are effecting the conformation of the protein and the hydrophilic glycans are preventing dehydration, thus influencing the mucus flow properties. The different carbohydrate structures also function as ligands to different pathogens, which during normal flow properties to a large extend are cleared by the mucus.¹⁵⁰ This process is an important part of the innate immune system. In airway diseases, the binding of pathogens to glycan ligands results in inflammatory-infective responses in the respiratory tract contributing to the mucin overproduction and causing an aberrant flow of the mucus, which further is an important factor in the morbidity and mortality of COPD, CF and asthma patients. Changes in terminal mucin glycosylation has been found in these patient groups, e.g. altered levels of sialylation, sulfation and fucosylation.¹⁵¹ These alterations of the O-glycosylation influence both biophysical and biological (binding to bacteria, viruses and cells) properties of specific mucins. The changes in glycosylation and mucin production in COPD, CF and Asthma are probably one of the major factors involved in the non-optimal transport properties of the mucus and rather than protecting the host, the gel instead provides an environment where the pathogens thrive and contribute even more to inflammation and disease.¹⁵²

2 Motivation

Oligosaccharides attached to proteins and lipids form the glycocalyx, which covers the surface of most animal and some bacterial cells. These glycoproteins and lipids are the first interaction partners dealing with extracellular stimuli. The specific recognition by receptors, carbohydrate binding proteins or antibodies is the first step in a process leading to various kinds of biological outcomes. The development of microarray technology and the application in the field of glyco-sciences during the last decade, allows evaluation of carbohydrateprotein interactions in a high-throughput manner and with smaller amounts of precious, complex carbohydrates. The bottleneck in many cases is the availability of defined carbohydrate structures which are not easily isolated from biological material due to their heterogeneity regarding site-specific glycosylation and stoichiometric carbohydrate occupancy. The aim of this work was to establish a unified strategy for the synthesis of complex mucin type O-glycans and the incorporation into peptides in order set up a comprehensive glycopeptide library. The glycopeptides serve as substrates for the build-up of a glycopeptide microarray platform. The combination of peptide and glycan motifs, allows the evaluation of specificities of carbohydrate and glycoprotein binding proteins, such as lectins or antibodies, in the most natural way of glycan presentation.


As peptide scaffolds, tandem repeat sequences from MUC1 and MUC5B are chosen for solid phase peptide synthesis. MUC1 is overexpressed and aberrantly glycosylated on cancer cells, representing a potential candidate for vaccine development. Here, a designed MUC1 glycopeptide array will serve for epitope mapping of serum antibodies generated from administration of potential synthetic vaccine candidates to mice. Further, it is possible to elucidate MUC1 glycopeptide interactions with human lectins involved in cancer progression, such as the interaction of galectin-3 with MUC1. Also plant lectins, commonly used in affinity-based enrichment methods of glycans, glycopeptides and -proteins, will be screened for their binding specificity. The build-up of a library of MUC5B glycopeptides, in addition to the MUC1 peptides, can potentially serve as model system for multivalent lectin association of airway-invading pathogens. Knowledge about virus and microbe airway pathogen interactions are important in order to generate new point-of-care diagnostic tools or can function as starting points for development of new anti-adhesive drugs. An array of mucin glycopeptides may be useful to map pathogen strain fine specificity to different glycan ligands.

The synthesis strategy is envisioned to constitute from a few basic building blocks that could be assembled to diverse glycosylated amino acid building blocks. The synthesis involves construction of two glycosylated threonine amino acid acceptors, which allow chemical elongation into the common mucin-type *O*-glycan core structures. A second central motif is the assembly of type-1 and type-2 LacNAc (Gal β -1,3/4GlcNAc β) disaccharides, for *O*-glycan core synthesis. The glycan elongation with the LacNAc disaccharides is mimicking the alternating biosynthetic action of GlcNAc- and Gal-transferases. From the stock of the common basic building blocks, a route was planned to synthesize T-antigen, extended core 1, 2 and 3 glycosylated amino acids (*figure 2.1*).

Figure 2.1: Basic pool of glycosyl donors and acceptors for convergent assembly of *O*-glycan mucin core amino acids.

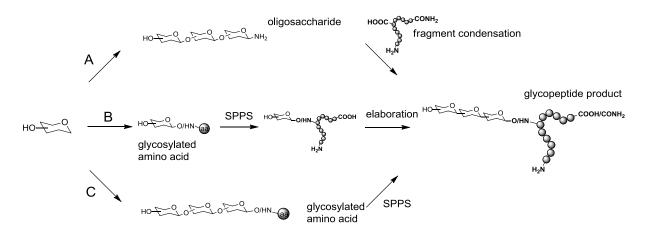
The threonine glycosyl amino acids were then aimed to be introduced into MUC1 and MUC5B peptide sequences of the corresponding tandem repeats. The focus lies on the synthesis of mono-, di- and triglycosylated glycosyl peptides which are homogeneously decorated and arranged in an identical pattern for each glycosyl amino acid (*figure* 2.1).

Figure 2.2: Construction of mucin glycopeptide libraries with multivalent glycosylation patterns by solid phase synthesis using the O-glycosylated threonine amino acids.

Glycopeptide diversity can be further increased by applying glycosyl transferases such as sialyltransferases for termination of the glycan structures. Optimal would be a time and resources saving enzymatic approach on immobilized glycopeptides such as a glycopeptide microarray. Three sialyltransferases are planned to be used for the synthesis of sialylated glycopeptides. It is necessary to first evaluate the activity and specificity of the transferases towards the mucin glycoproteins in solution before applying them on a microarray surface and to further generate modified glycopeptide standards for later evaluation of the on-slide enzyme performance. With the sialic acid modified peptide standards in hand and knowledge about the substrate specificity regarding the glycan core structures on the mucin peptide backbones, on-slide enzymatic modification can be approached.

For immobilization of the synthetic glycopeptides, amine reactive, *N*-hydroxysuccinimide functionalized, microarray slides were selected. All glycopeptides are going to be conjugated with a triethylene glycol spacer amino acid with a terminal amine to the *N*-terminal end. In previous studies it has been observed that ligand presentation to surface is dependent on the size of the spacer and a spacer length of at least 6-carbons is recommended. In both mucin peptide sequences the N-terminal linker contains the only free amine and will connect the glycopeptides site-specific to the slides. The established glycopeptide array will then be

utilized in carbohydrate/glycopeptide binding studies. The glycopeptide array is aimed for epitope mapping of serum antibodies from mice, which have been treated with potential synthetic vaccine candidates. Points of interest are the peptide epitopes and the dependence on glycosylation, influences of different glycans according to their structure or size and influences of multivalent glycosylation. An important issue regarding the safe application of potential anti-tumor vaccines, is the specificity of the induced immune reaction. Generated antibodies should selectively target tumor-associated epitopes and omit natural structures, in order to prevent autoimmune reactions. The planned glycopeptide microarray contains short tumor-associated and larger non-tumor-associated glycans in order to evaluate the fine-specificity of the induced antibodies. Further, the array system will be used with carbohydrate binding lectins, such as common plant lectins or human galectins with significance in tumor progression, for instance galectin-3. The carbohydrate binding properties are evaluated when connected to an authentic peptide as a carrier. This work is further supposed to lay the fundament for studies on host-pathogen interactions.


The chemically defined, synthetic glycopeptides synthesized in this work, will also be used in mass spectrometry HCD fragmentation studies. Access to defined carbohydrate or glycopeptide specimens is restricted due to carbohydrate heterogeneity. A biological sample of a glycoprotein has many different glycoforms at the same glycosylation site and variances in occupancy of the glycosylation sites. In typical bottom-up proteomic approaches, the digestion of a set of proteins gives rise to several peptides for mass spectrometric analysis. Protein glycosylation is important for the biological functionality of a protein and the diverse processes in which it is involved. However, glycopeptides obtained in bottom-up proteomics propose a special challenge in mass spectrometric analysis. Differentiation of isobaric fragments of glycan-derived ions and elucidation of the linkage connectivity of the carbohydrates is difficult by means of mass spectrometry. Often, when analysis of protein alycosylation is restricted due to technologic or methodic limitations, carbohydrate structure determination is based indirectly on the knowledge of specificities and expression of glycosyl transferases, glycosidases or carbohydrate binding lectins. However, the carbohydrate specificities of these proteins may not be fully explored and structural influences of the underlying glycan or protein in the substrate alter the activity of the recognizing proteins and enzymes. Absolute and direct methods of analysis of protein glycosylation are needed. The chemically defined, synthetic glycopeptides synthesized in this work, can serve as glycopeptide standards in HCD fragmentation studies. Typical carbohydrate fragmentation products of O-glycopeptides will be studied. The relative intensities of the extracted ions will be compared and examined for regularities which will aid in determination of carbohydrate structures from glycoprotein samples. The focus lies on structural glycan determination on the level of the glycopeptide which will facilitate typical glycoproteomic workflows.

3 SYNTHETIC STRATEGIES

3.1 Glycopeptide synthesis strategies

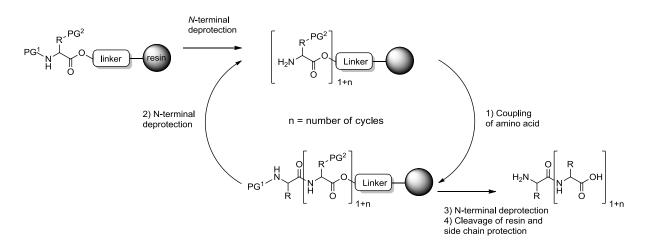
Obtaining chemically homogenous glycopeptides or glycoproteins from biological sources remains still a difficult task, due to the microheterogenic nature of carbohydrate biosynthesis.^{153,154} Chemical or chemoenzymatic synthesis is a reliable method to make precise glycoforms available. For the synthesis of glycopeptides, three general approaches are commonly utilized (*figure 3.1*):

- A) Synthesis of protected peptides and carbohydrates for convergent fragment condensation
- B) Synthesis of simple glycosyl amino acids for solid phase peptide synthesis (SPPS) and chemical or chemoenzymatic elaboration
- C) Synthesis of fully glycosylated amino acids for SPPS

Figure 3.1: Different strategies in glycopeptide synthesis. **A**: Carbohydrate and peptide fragment condensation. **B**: Glycopeptide elaboration on peptide level. **C**: Introduction of full extended glycosyl amino acids in SPPS.

Conveniently protected peptides and carbohydrates can be synthesized in a convergent fashion and then condensed to form glycopeptides (*figure 3.1*, **A**). Convergent assembly often results in low yields since the large structures suffer from sterical hindrance or from poor solubility of the peptides under common glycosylation conditions. This approach is usually applied for the syntheses of *N*-glycopeptides. The common procedure is to convert the unprotected saccharide by *Kochetkov* β -amination into a glycosylamine followed by

Lansbury aspartylation of these glycosylamines,^{155,156} for example glycosylation of the *N*-glycan heptasaccharide Man₅GlcNAc₂NH₂ with aspartic acid containing peptides.¹⁵⁷ The approach of using simple glycosyl amino acids in SPPS and further elaboration on glycopeptide level is convenient for the synthesis of *N*-glycopeptides (*figure 3.1*, **B**). Endoglycosidases, such as Endo M (*Mucor hiemalis*) and Endo A (*Arthrobacter protophormiae*) can be used to extend the initial, asparagine-linked GlcNAc β of the *N*-glycan chitobiose core *en bloc* with a presynthesized complex oligosaccharide.¹⁵⁸ Comparable enzymes for *O*-glycan synthesis are not known. *O*-glycans need to be assembled by a stepwise enzymatic elongation protocol using various different glycosyl transferases. An example for the stepwise enzymatic synthesis of a sLe^x containing PSGL-1 *O*-glycopeptide fragment was reported by *C.H. Wong*.¹⁵⁹ The most commonly applied method for generation of glycopeptides, especially of *O*-glycopeptides, is the use of Fmoc-protected, glycosyl amino acid building blocks in Fmoc-SPPS (*figure 3.1*, **C**).


In this research work, complex *O*-glycosylated amino acids were applied, since stepwise chemical and chemoenzymatical manipulations on peptide level are difficult when homogenous products, especially multivalent glycopeptides, should be formed. Thus, a retrosynthetic strategy for the generation of the various glycan core amino acid building blocks regarding glycosylation methods and protecting group chemistry needs to be worked out, also with regards to the demands of the following Fmoc-SPPS (see *chapter 3.2.3*). This approach can still be extended by enzymatic termination of the complex glycan moiety by e.g. sialylation, fucosylation or sulfation, to increase diversity and generate specific glycan motifs.

3.1.1 Glycopeptide synthesis on solid phase

Although glycosylation is a highly abundant posttranslational modification, isolation and characterization is difficult due to the microheterogenic nature of glycoproteins.^{154,160} Often when glycopeptides are applied in biological experiments, the glycans need to be attached on specific glycosylation sites on the peptide backbone as a homogenous glycoforms. SPPS can provide defined glycopeptides in preparative amounts. When SPPS was introduced in 1963 by *Merrifield*, a simple tetrapeptide model was synthesized, to demonstrate the applicability of the method.¹⁶¹ In SPPS the peptide sequence is build-up stepwise, amino acid by amino acid, on a polymer resin as insoluble support. Unreacted amino acids and coupling reagents are washed away after each step by simple filtration of the resin. One year after the method was introduced, it demonstrated a huge potential, by the synthesis of the biologically active nonapeptide bradykinin.¹⁶² *Merrifields* method relied on N-terminal *tert*-butyl

oxycarbonyl (Boc) protection and aqueous hydrogen fluoride for release of the peptides from the resin. After Fmoc was introduced as a base labile N-terminal protecting group,¹⁶³ a milder variant of SPPS based on Fmoc protection was developed.^{164,165} The Fmoc-SPPS is also suitable for the synthesis of glycopeptides, since the conditions applied, neither harm the acid sensitive acetal groups of the glycosidic bonds nor the base labile connection of *O*-glycans to the peptide backbone.

Fmoc-SPPS utilizes an orthogonal protecting group strategy. The base labile Fmoc is cleaved after each elongation step and the acid labile amino acid side-chain protecting groups are cleaved along with the release of the peptide from the resin. The peptide is attached by the C-terminal end to the resin and the chain grows towards the N-terminal end (opposed to natural protein biosynthesis). The general process consists of 1) attachment of a N^{α}-protected amino acid and 2) removal of the N^{α}-protection. These steps are repeated in cycles until the desired chain length is reached and the peptide is 3) deprotected on the N-terminal side and 4) released from the resin (*figure 3.2*).

Figure 3.2: Principle of solid phase peptide synthesis (SPPS). R = amino acid side-chain. PG¹ = N-terminal protecting group. PG² = Side-chain protecting group.

The peptide chain is synthesized on a polymer resin in the form of beads. The beads usually consist of polystyrene (PS), cross-linked with 1% divinylbenzene. *TentaGel®*-resins (*Rapp Polymere GmbH*, Tübingen) are copolymers of polyethylene glycol (PEG) attached to the PS matrix. The PEG chains contribute with hydrophilic properties and render the polymer more polar, which increases the ability to swell in polar solvents. Thereby, the reaction centers on the resin become more accessible. A linker moiety can be attached to the end of the PEG-chains. These linkers are stable under the conditions applied in peptide synthesis and serve as cleavable handles for the release of the peptide at the end of the c-terminal functional group of the peptide. Also, commercial resins can be obtained preloaded with the first C-

terminal Fmoc-protected amino acid. In this work, Fmoc-amino acid preloaded *TentaGel® R* Trt resins were used (*figure 3.3*).

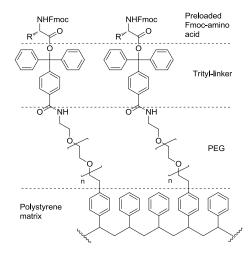


Figure 3.3: Representation of Tentagel® trityl resin.

The peptide ester is cleaved from the trityl-linker under acidic conditions with neat trifluoroacetic acid (TFA), usually with addition of cation scavengers such as triisopropylsilane (TIPS), thiophenol or water. Albeit lower amounts of acid could be used for the trityl ester cleavage (1% TFA), higher amounts of TFA also remove all acid labile protecting groups from the side-chains of the amino acids. Among the amino acids used for the MUC1 and MUC5B sequences, arginine, histidine, threonine, serine and aspartate carried acid labile protecting groups (*figure 3.4*).

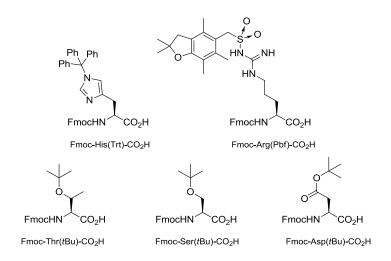


Figure 3.4: Acid labile protecting groups on amino acids used for MUC1 and MUC5B glycopeptide syntheses.

The coupling of the Fmoc-amino acids is in general mediated by *in situ* activation of the C-terminus as an active anhydride/ester intermediate. Typical coupling reagents are carbodiimids like *N*,*N*-dicyclohexylcarbodiimide (DCC),¹⁶⁶ *N*,*N*-diisopropylcarbodiimde (DIC) or *N*-ethyl-*N*-(dimethyaminopropyl)-carbodiimide-hydrochloride (EDC·HCI), phosphonium

salts like benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophoshat (PyBOP)¹⁶⁷ or aminium/uronium salts like *O*-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethylunronium hexafluorophosphate (HBTU),¹⁶⁸ *O*-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethylunronium tetrafluoroborate (TBTU)¹⁶⁹ or *O*-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethylunronium hexafluorophosphate (HATU). Commonly, the hydroxybenzotriazoles HOBt¹⁷⁰ or HOAt¹⁷¹ are used as additives along with the corresponding aminium/uronium salt, to further increase reaction speed and reduce the tendency for racemization (*figure 3.5*).¹⁷²

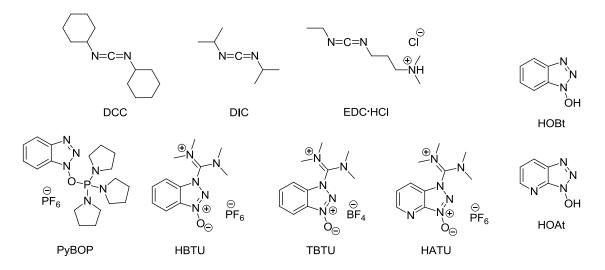


Figure 3.5: Common used carbodiimide and benzotriazole peptide coupling reagents.

In terms of reactivity and lower tendency for racemization on C^{α} of the amino acids, the phosphonium and aminium salts are more effective than the carbodiimids. DCC forms dicyclohexylurea with low solubility. In Boc-SPPS the urea is dissolved in TFA during Boc-removal, but during Fmoc-SPPS the urea precipitates and cannot be removed by washing. Aminium salts derived from the corresponding benzotriazoles 1-hydroxybenzotriazole and 7-aza-1-hydroxybenzotriazole are very commonly used soluble coupling reagents. When the aminium salts were introduced, they were first described as uronium salts. Later, it was shown that HBTU and HATU actually crystallize in the aminium (guanidinium *N*-oxide) form, when synthesized by the originally reported procedure.^{173,174} However, they are still often referred to as uronium salts. Both forms can be synthesized selectively but in solution and under basic conditions the *O*-form (uronium) isomerizes into the *N*-form (aminium). Both forms are able to activate carboxylic acids, albeit the *O*-isomer is reported to be more reactive than the thermodynamically more stable *N*-isomer (*figure 3.6*).

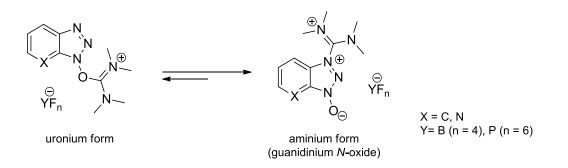


Figure 3.6: Uronium and aminium forms of benzotriazole coupling reagents.

The HATU/HOAt-system is reported to be more effective in terms of reactivity and lower epimerization tendencies, compared to HBTU/HOBt-systems and is preferred in couplings with sterically demanding amino acids. The increased reactivity of the 7-aza-1-hydroxybenzotriazoles could is based on a neighboring effect of the pyridine nitrogen during formation of the active ester intermediate (*figure 3.7*).¹⁷¹ The carboxylic acid component is preactivated with HATU and HOAt and *N*-ethyldiisopropylamine (DIPEA, *Hünigs Base*). The deprotonated acid attacks the electrophilic carbon in the guanidyl group of the guanidinium *N*-oxide to form an *O*-acylisouronium salt. This further reacts with the HOAt to give an active ester intermediate. The pyridine nitrogen of this intermediate presumably helps in coordination of the approaching amine by hydrogen bonding. Finally the amine can attack the ester carbonyl group and replace the benzotriazole to form a peptide bond (*figure 3.7*).

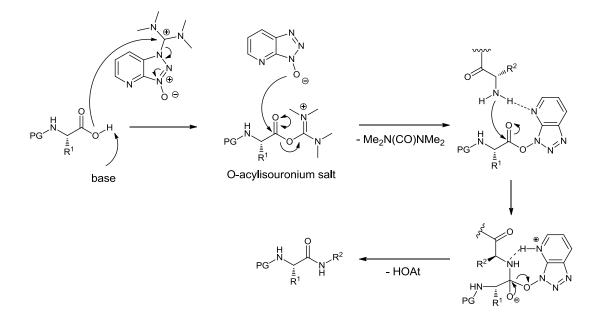


Figure 3.7: Reaction mechanism of HATU mediated peptide coupling.

In this work HBTU/HOBt was used in formations of peptide bonds between unglycosylated amino acids. The more reactive HATU/HOAt system was utilized for couplings with the glycosylated amino acids. If not otherwise stated, commercial Fmoc amino acids were used

in excess of 8 equivalents relative to the molar resin binding capacity. The ratio of the reagents donor amino acid/HBTU/HOBt/DIPEA was 1 : 0.95 : 0.95 : 2. HBTU and HATU were applied in slightly substoichiometric amounts compared to the donor amino acid. The aminium salts are known to guanylate free amines and even hydroxyl groups. Capping of the N-terminus may occur, if too much of the coupling reagent is applied (*figure 3.8*).

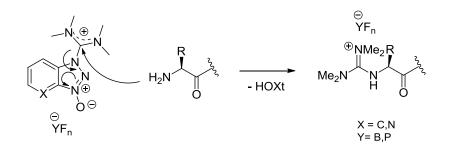


Figure 3.8: Guanidylation of N-terminal amino groups by excess of used aminium/uronium reagent.

All peptide syntheses were conducted by applying the Fmoc-based SPPS protocol. The Fmoc group is base-labile and can be cleaved off with 20%-50% piperidine, morpholine or a mixture of DBU (1,8-diazabicycloundecene) and piperidine.^{175,176} The piperidine serves also as a scavenger for the cleaved dibenzofulvene, which could otherwise block the liberated N-terminus. The base-catalyzed deprotection proceeds *via* an E1cb mechanism. The H9 proton of the fluorene ring is acidic due to the cyclopentadienyl-type anion as intermediate (*figure 3.9*).

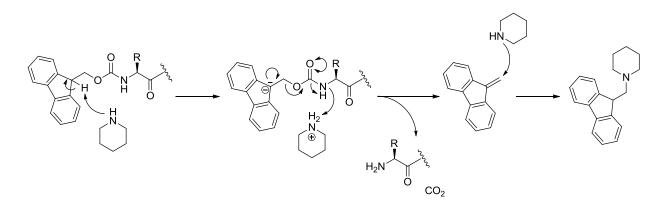
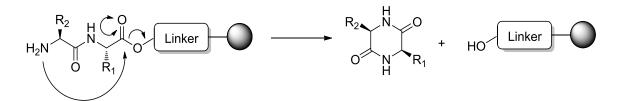
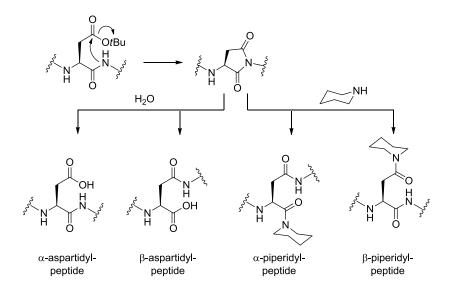


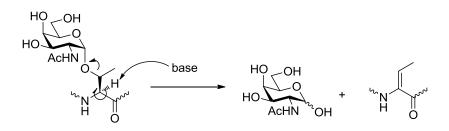
Figure 3.9: Piperidine mediated Fmoc-deprotection and reaction with dibenzofulvene.

3.1.2 Side reactions in solid phase glycopeptide synthesis

Side-reactions in SPPS can lower yields or even prevent product formation at all. A very prominent side-reaction is the diketopiperazine formation. Although also present in Boc-SPPS, diketopiperazine formation is a prominent problem in basic Fmoc-deprotection.¹⁷⁷ On

the level of a synthesized dipeptide, the liberated amine may attack the ester bond between the linker and the peptide leading to the cyclic piperazinedione (*figure 3.10*). Diketopiperazine formation is favored on sterical less demanding alkoxybenzyl-linkers (e.g. *Wang* resins). Bulky linkers, like the used trityl-linker, can suppress this side-reaction. Cterminal glycine and proline amino acids are prone to form diketopiperazines. In these cases, it may be helpful to elongate with a preformed dipeptide onto the first attached amino acid.


Figure 3.10: Diketopiperazine secession from dipeptide loaded solid phase resin.

Another prominent side-reaction is the formation of aspartimides. The nitrogen on the α -carboxylic acid may react with the ester on the side chain of a protected aspartate ester to form a cyclic succinimide (*figure 3.12*). This intermediate can be hydrolyzed later in solution to form α -and β -aspartidyl peptides or it may react with piperidine during the Fmoc-deprotection procedure to yield α - and β -piperidyl peptides. Aspartimide formation may happen during chain elongation as well as under the acidic conditions applied during peptide release from the resin. It is sequence dependent and related to the amino acid coupled before the aspartate in the chain.¹⁷⁸ For Fmoc-SPPS it is reported that a preceding Thr(*t*Bu) and Thr residues can promote aspartimide formation.¹⁷⁹

Figure 3.11: Aspartimide formation and reaction with water during peptide cleavage and with piperidine during Fmoc-deprotection.

In *O*-glycopeptide synthesis, a common side-reaction is related to the stability of the glycosidic bond connecting the α GalNAc to the threonine amino acid in the synthesized peptides. The *O*-glycosylated amino acids are introduced to the peptides during syntheses with *O*-acetyl ester protecting groups on the carbohydrate hydroxyl-groups. Treatment with a base is needed to liberate the glycans after cleavage from the resin. Strongly basic conditions may result in abstraction of the C^{α}-hydrogen by the base and initiate β -elimination of the glycan by an E1cB mechanism (*figure 3.12*).¹⁸⁰

Figure 3.12: β -Elimination of glycans at high pH.

Related to β -elimination, elevated pH during deacetylation may result in epimerization of the stereogenic centers on C^{α} of the amino acids (*figure 3.13*). However, epimerization and β -elimination are reported to be surprisingly low during basic acetyl removal, probably due to a protection by the deprotonation of the nitrogen in the peptide amide bond.¹⁸⁰

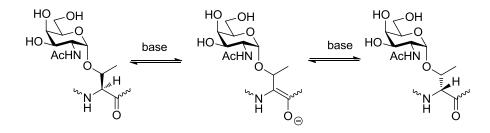


Figure 3.13: Base-induced epimerization of glycosylated peptides.

3.2 Strategies in carbohydrate synthesis

3.2.1 Glycosylation methods

An important issue in chemical glycosylations, is the choice of appropriate anomeric leaving groups and suitable promoters or catalysts for glycosylation reactions. Many different glycosylation procedures are reported and it is not always obvious which is the most suitable for formation of a certain glycosidic bond. The first reported glycosylation reactions either used basic activation of the alcohol acceptor¹⁸¹ or acidic activation of the glycosyl donor.¹⁸² *W. Koenigs* und *E. Knorr* shortly afterwards reported reactions of C1 halogenated carbohydrates with alcohols and silver salts as promoters. The combination of a leaving group at C1 with a metal promoter provided irreversible glycosylations, which could be applied to various acceptors (*figure 3.14*).

Figure 3.14: General acid catalyzed glycosylation with and without leaving group. LG = leaving group. E = electrophilic promoter/catalyst.

Glycosyl halides are still very useful donors in glycosylation reactions, however they require stoichiometric amounts of a promoter that is consumed during the reaction (hence, not a catalyst). For a long time the *Koenigs-Knorr* glycosylation with glycosyl halides was the only reliable glycosylation method. In the last decades, further glycosylation strategies were established (*figure 3.15*).

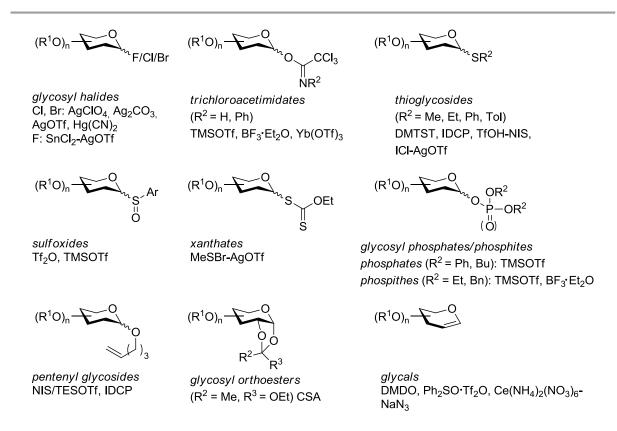


Figure 3.15: Common leaving groups and corresponding promoters/catalysts for chemical glycosylations.

Among the most commonly used glycosylation methods, besides the glycosyl halides, are glycosylations with thioglycosides and trichloroacetimidates. Because of their high stability, the thioalkyl/aryl moiety in thioglycosides can be introduced early in the synthesis of the buildings blocks and also function as anomeric protecting group. The thioglycosides are activated with thiophilic reagents commonly containing or generating iodonium- (e.g. iodonium dicollidine perchlorate (IDCP)¹⁸³, NIS/TfOH^{184,185}) or sulfonium-ions (e.g. dimethyldithiosulfonium triflate (DMTST)¹⁸⁶). Furthermore, glycosyl thioglycosides are usually stable under glycosylation conditions required for other glycosylation methods and can therefore orthogonally act as glycosyl acceptors at other positions of the carbohydrate.¹⁸⁷ Glycosyl trichloroacetimidates (reactions are often referred to as "*Schmidt-glycosylations*") are usually highly reactive and easy to handle.^{188,189} They can be activated with catalytic amounts of a lewis acid without any further promoter (hence a catalyst), e.g. trimethylsilyl-triflate (TMSOTf), triflic acid (TfOH) or boron triflouride (BF₃).

3.2.2 Protecting group chemistry

A prerequisite for the successful synthesis of many different variants of complex glycans from basic building blocks, is a unified protecting group chemistry. Protecting groups allow temporary blocking of functional groups that would otherwise equally react and lead to unwanted results. Especially in carbohydrate synthesis, protecting groups have a significant influence on reactivity and stereoselectivity.¹⁹⁰ *B. Fraser-Reid* rationalized the relation of electronic effects by protecting groups and the reactivity of glycosyl donors.^{191,192} Electron-withdrawing acyl protecting groups decrease the reactivity of the donors by decreasing the nucleophilicity of the leaving group in comparison to donors protected with electron-donating ether groups. Decreased electron density at the anomeric center further destabilizes the intermediate oxonium ion. Hence, protecting groups were divided into "disarming" (esters, amides) and "arming" (ethers) groups. However, an ester group in 2-position of the carbohydrate ring can stabilize the oxonium ion after leaving groups in 2-position in combination with global ether protecting make very reactive glycosyl donors (*figure* 3.16).^{193,194}

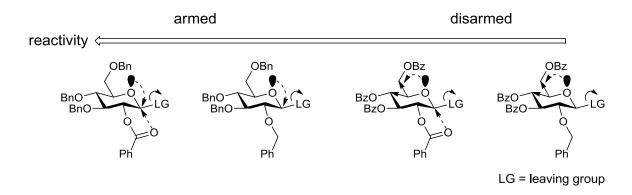
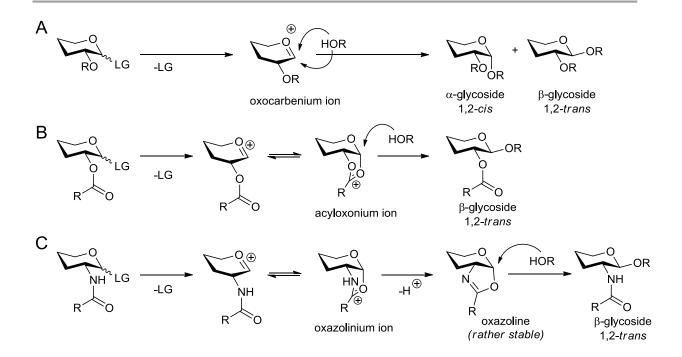



Figure 3.16: The general reactivity of glycosyl donors according to the armed/disarmed concept.

Configurational changes on the carbohydrate have further influence on the donor reactivity and hence result in stereo-electronic effects. For example, axial configured substituents on the carbohydrate ring increase reactivity compared to equatorial oriented substituents and fused ring systems may disturb the planar sp²-geometry of the oxonium ion intermediate after leaving group separation.^{195,196}

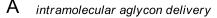

Protecting groups at the 2-position have major influence on whether the glycosylation will give an α -(1,2-*cis*) or β -(1,2-*trans*) configured product.¹⁹⁰ Esters, amides and carbamates in 2-position behave as participating neighboring groups and will direct glycosylation reactions towards the β -product. Ethers and azides are non-participating neighboring groups and α - as well as β -glycosides can be formed (*figure 3.17*).

Figure 3.17: Influence of neighboring groups. **A**: Ether groups adjacent to the C1 position do not participate in the glycosylation. **B**: β -directing influence of neighboring ester groups. **C**: β -directing influence of neighboring amide groups *via* an oxazoline intermediate.

Due to the directing influence of participating neighboring groups, stereoselective formation of 1.2-trans-glycosides is rather predictable, although unexpected exceptions may be possible. Synthesis of 1,2-cis-glycosides requires the absence of a participating group and it is challenging to perform the glycosylation with full stereoselectivity. Although the α -anomer is favored due the anomeric effect, diastereoselective mixtures are commonly obtained.¹⁹⁷ The strategies for preparing 1,2-cis-selective reactions are permanently extended since the need for comprehensive methods is still high. A widely-used method is the intramolecular aglycon delivery (IAD) introduced by O. Hindsgaul for the preparation of β-mannosides (figure 3.18, A).¹⁹⁸ The glycosyl donor and acceptor are first linked by a protecting group at the 2-position of the donor (an isopropenyl ether in the original publication) and upon activation of the leaving group an intramolecular S_N2-transfer of the acceptor takes place to form the 1,2-cis-linkage. Several modifications of IAD using different tethers are reported. A recent example by Y. Ito describes the oxidative coupling of donor and acceptor with a 2naphtylmethyl ether group as tether.¹⁹⁹ The group of *G.J. Boons* presented an approach that makes use of a chiral auxiliary as protecting group in 2-position (figure 3.18, B).^{200,201} A (S)phenylthiomethylbenzyl ether participates by forming a six-membered ring, fused to the carbohydrate ring. Due to the equatorial orientation of the two phenyl groups, a trans-decalinlike intermediate favors an attack from the cis-face of the acceptor. A strategy for transselective glycosylations without an acyl group in 2-position was introduced by A.V.

Demchenko (*figure 3.18*, **C**). A 2-*O*-picolinyl ether group at the 2-position occupies the *cis*site and forms stereoselectively 1,2-*trans*-glycosides. Recently, the same group described participation of picolinyl- and picoloyl substituents, also when located on one of the other positions of the carbohydrate ring. In this case, the participating group does not block the anomeric center from one site, but the pyridine ring presumably participates by hydrogen bonding with the hydrogen of the nucleophilic alcohol, facilitating deprotonation and putting the reaction partners in close proximity. The acceptor is *syn*-oriented with regards to the picolinyl/picoloyl-group. Depending on which position of the carbohydrate ring is substituted by the participating ether, either *cis*- or *trans*-products can be formed stereoselectively. This method for remote stereoselective control was termed H-bond mediated aglycone delivery (HAD).^{202,203} Several more strategies for stereoselective glycosylations are reported and the field is permanently extended.²⁰⁴

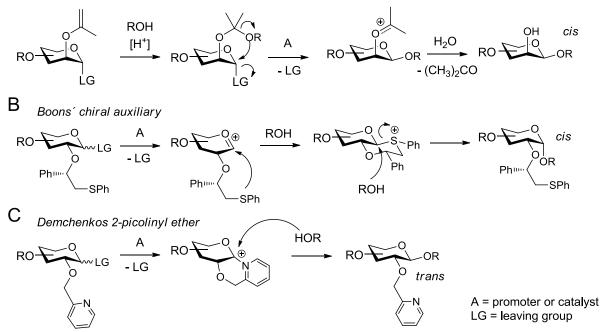


Figure 3.18: Selected examples for stereoselective glycosylation methods.

4 RESULTS AND DISCUSSION

4.1 Part 1 – Synthesis of core 1, 2 and 3 glycosylated amino acids

4.1.1 Retrosynthetic considerations for glycosyl amino acid building block

synthesis

Based on the inherent structural canon of mucin *O*-glycan biosynthesis (*chapter 1.1*), a retrosynthesis route for the complex core 1, 2 and 3 amino acid building blocks was envisioned. Biosynthetic backbone elongation happens by the combined alternating action of a β 1,3-GlcNAc-transferase, followed by either a β 1,3-Gal-transferase or a β 1,4-Gal-transferase. The alternating transfer of either a 1,3- or 1,4-linked β Gal and a β GlcNAc results in elongation by type-1 (Gal β 1,3-GlcNAc β) or type-2 (Gal β 1,4-GlcNAc β) *N*-acetyllactosamine disaccharides.^{17,205,206} Thus, a synthetic route was imagined that includes chemically preformed type-1 and type-2 disaccharide units, with proper protecting groups for further glycosylation reactions and if possible already for later Fmoc-SPPS. The type-1 disaccharide **27** and type-2 disaccharide **31** for later elongation of the core structures should be formed in trichloroacetamide couplings of donor **18** and acceptors **24** (glycosylation I) and acceptor **30** (glycosylation II) (*figure 4.1*).

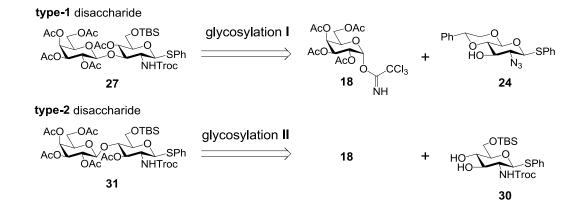
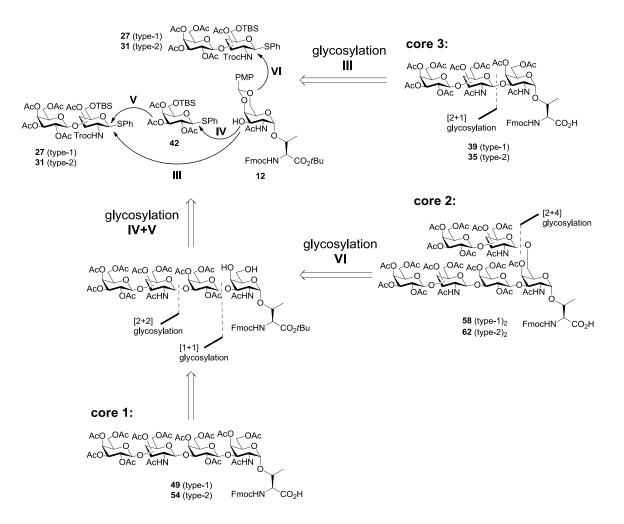



Figure 4.1: Retrosynthesis of the type-1 and type-2 LacNAc disaccharide building blocks.

The disaccharides were chosen to be thioglycosyl donors, since the thiophenyl group in acceptors **24** and **30** is orthogonal to several glycosylation conditions and can be installed prior to trichloroacetamide couplings.¹⁸⁷

In mucin glycoproteins, the *O*-glycans are linked to threonine and serine amino acid by an initial α GalNAc. In this synthetic approach the glycans are build-up on an appropriately protected threonine amino acid. Thus, the threonine amino group is protected by a Fmoc-group, according to the Fmoc-SPPS-protocol, while the carboxyl group is permanently blocked by a *tert*-butyl-ester during glycan assembly and cleaved off just before SPPS. The attachment of the first α GalNAc to the protected threonine amino acid to form the T_N-antigen **12** is to be carried out using a galactosyl bromide with a classical AgClO₄/Ag₂CO₃ promoter system, according to reported procedures.^{207,208} Glycosylation of donors **27** and **31** with acceptor **12** will be carried out to give extended core 3 structures **35** and **39** (*figure 4.2*, **III**). Similarly, the extended core 1 tetrasaccharides amino acids **49** and **54** should be synthesized with the preceding glycosylation of the monosaccharide thiophenyl glycoside donor **42** (*figure 4.2*, **IV+V**). Finally the extended core 2 hexasaccharide amino acids **58** and **62** are branched from the synthesis routes of the extended core 1 structures by a further thioglycoside coupling with donors **27** and **31** in 6-position of the primary α GalNAc (*figure 4.2*, **IV+V**).

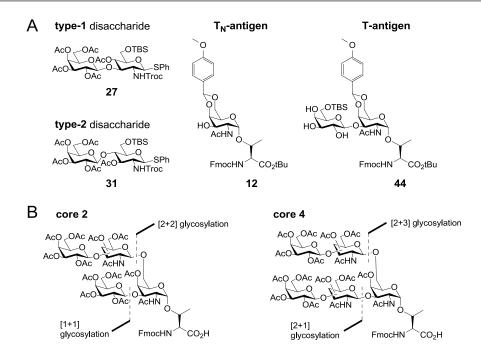


Figure 4.2: Retrosynthesis of core 3 (glycosylation III), core 1 (glycosylations IV+V) and core 2 (glycosylations IV+V+VI) glycosylated threonine amino acids.

The final glycosyl amino acids for SPPS will be globally protected with O-acetyl-esters on the carbohydrate hydroxyl groups. Acetyl groups are known to stabilize glycosidic bonds due to electron withdrawing effects, especially during acidic trifluoroacetic acid treatment required for release of the synthesized glycopeptides from the resins.^{209,210} After glycopeptide synthesis the acetyl groups can be cleaved by mild treatment with sodium methoxide in methanol (Zemplén conditions) or sodium hydroxide in methanol.²¹¹ The temporary protecting group strategy relies on the use of silvl-ethers, acetyls and acetals for the carbohydrate hydroxyl-groups, while 2-O-deoxy-acetamide groups are protected by trichloroethoxycarbonyl groups (Troc) or are masked as azides.²¹² The initial 2-amino-groups of the D-sugars are not directly converted to acetamide groups. During further glycosylations, the neighboring acetamide group would participate and stabilize the intermediate oxocarbenium ion by rapidly rearranging to an 1,2-oxazoline (figure 3.17, B). The 1,2oxazoline intermediates are known to be rather stable and are poor glycosyl donors. In carbamates, in contrast to amides, the likeliness to form rather stable oxazolines is reduced because of the additional electron donating alkoxy group.²¹³ Therefore, the glycosyl donor reactivity, especially in the case of Troc-protection, is known to be increased during glycosylations.²¹⁴ Azides are employed during glycosylations either when a non-participating neighboring group is required for a-anomeric stereoselectivity, or when due to steric hindrance a small and linear group is beneficial. To keep the number of different protecting groups low, regioselective glycosylation preferences are used within the reactions. According to the slogan "The best protecting group is no protecting group",²¹² this represents an elegant way to minimize yield repressing and time consuming steps. For example, the superior reactivity of the equatorial 3-OH of galactose can often be used in glycosylations, without any protection on positions 2 and 4.215,216,217 In contrast, equatorial 4-OH in GlcNAc is preferentially glycosylated over the equatorial 3-OH.^{218,219} Further the advanced reactivity of primary alcohols over secondary alcohols can be used to glycosylate the carbohydrate in 6position, without effecting the unprotected 4-position.²²⁰

The synthesis is highly convergent, meaning that from a few common buildings blocks in stock, a high diversity of various glycosyl amino acids can be obtained. The retrosynthetic strategy is finally based on four basic building blocks, namely the type-1 and -2 LacNAc disaccharides **27** and **31** as glycosyl donors and the T_{N} - and T-antigen as acceptors **12** and **44** (*figure 4.3*, **A**). Apart from the here presented core 1, 2 and 3 glycans, different synthesis variations thereof are further possible. Based on the developed synthesis route, core 2 tetrasaccharide and core 4 pentasaccharide were also synthesized outside the frame of this thesis during the course of this project (*figure 4.3*, **B**).

36

Figure 4.3: A: Basic building blocks used for convergent core structure synthesis presented in this work. B: Core 2 and core 4 structures for further syntheses.

4.1.2 Examples for syntheses of glycosylated amino acids/glycopeptides in

the field and comparison to the strategy of this work

Selected examples for core 1 structures came from early reports of H. Paulsen and J.-P. Hölck²²¹ and sialylated core 1 building blocks from *H. Kunz*,^{222,223} applied in Fmoc-SPPS. In an approach to simplify the synthesis of core structures K.J. Bock and H. Paulsen reported a synthesis for the basic core 1-4 structures without further elongation or termination, ready for Fmoc-SPPS.²²⁴ Elongated core 3 type-2 and core 1 type-2 amino acids are reported by S.J. Danishefsky as part of Le^y-antigens through glycal assembly and were incorporated into peptides.²²⁵ There are some examples for core syntheses using a type-2 disaccharide for core extension by Y. Nakahara (core 1 and core 3 type-2),^{226,227} C.R. Bertozzi (core 1 type-2)²¹⁶ and *H. Kunz* (core 2 type-2).²²⁸ The protecting group and building block strategy of these examples were directed towards certain structures, specifically terminated (e.g. fucosylated) and therefore less universal for the design of various core structures, in contrast to the strategy presented in this thesis. The possibilities for glycan termination by means of chemical building blocks were not in the focus, but rather the convergent build-up of several scaffold core structures with the possibility of increasing the glycan diversity in a later step on glycopeptide level by a chemoenzymatic approach. Hence the protecting group chemistry should be kept as simple as possible for a high variability in core synthesis using only few building blocks. Examples for chemoenzymatic modifications of mucins carrying a chemical presynthesized basic core 2 trisacharide are reported by *S.-I. Nishimura*.^{229,230} The variable building block system presented in this research work, also includes type-1 elongation of core glycans, which has so far not been reported.

4.1.3 Synthesis of the T_N-antigen glycosyl acceptor

According to the mentioned convergent synthesis strategy (chapter 4.1.1), the synthesis of all mucin-type O-glycan core structures is based upon the generation of a central Nacetylgalactosamine glycosylated threonine amino acid (T_N-antigen), the fundamental motif for mucin-type glycosylation. The first GalNAc amino acid synthesis, employing the serine equivalent, has been described by T.Osawa et al.²³¹ B. Ferrari and A. A. Paviat later reported the synthesis of the threonine conjugate.²³² The methodology applied in this work is based on reported methodology developed by H. Paulsen and J.-P. Hölck using silver perchlorate/carbonate mixtures as glycosylation promoters.²²¹ The 3,4,6-tri-O-acetyl-2-azido-2-deoxy-galactosyl bromide donor **8** used in a *Keonigs-Knorr* glycosylation,²³³ was generated from D-galactose in four steps. Initially, the D-galactose was peracetylated with acetic anhydride and catalytic amounts of perchloric acid. Subsequential addition of phosphorus tribromide and water results in the α -anomeric galactosylbromide 5. The product was then reduced with zinc dust activated by copper(II) sulfate to give the 3,4,6-tri-O-acetyl-galactal 6.^{234,235} The galactal was further treated with cerium(IV) ammonium nitrate and sodium azide in dry acetonitrile. A radical mechanism for the azidonitration was proposed by R.U. Lemieux.²³⁶ The product 3,4,6-tri-O-acetyl-2-azido-2-deoxy-galactosyl nitrate 7 was obtained as an anomeric mixture of α/β (1:1). Next, compound **7** was treated with lithium bromide in dry acetonitrile to give the desired α-anomer of the halide donor 3,4,6-tri-O-acetyl-2-azido-2deoxy-galactosyl bromide **8**.²³⁶ Donor **8** was synthesized in 4 steps in an overall yield of 32 % (figure 4.4).

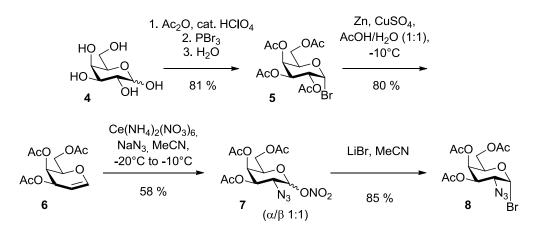


Figure 4.4: Synthesis of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-galactosyl bromide 8.

For the synthesis of the amino acid glycosyl acceptor, L-threonine was protected with an *N*-(9-fluorenyl)-methoxycarbonyl-group (Fmoc) as a base labile protecting group during SPPS. Initially, L-threonine was reacted with *N*-(9-fluorenyl)-methoxycarbonyl-succinimidylcarbonate (Fmoc-OSu) under alkaline conditions.²³⁷ The Fmoc amino acid **2** was then esterified with *tert*-butanol in a copper(I) catalyzed reaction with *N*,*N*-dicylcohexylcarbodiimid (DCC) as coupling reagent to give glycosyl acceptor **3** (*figure 4.5*).^{238,239,240}

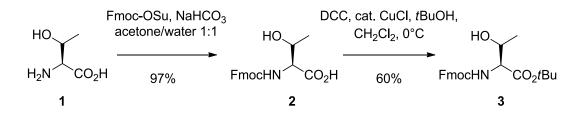


Figure 4.5: Synthesis of threonine galactosyl acceptor 3.

For the esterification, *tert*-butanol was initially activated with DCC catalyzed by copper(I). The *O-tert*-butyl-*N*,*N*-isourea I was then treated with the amino acid to result in the ester product III and *N*,*N*'-dicyclohexyl urea II (*figure 4.6*).^{238,239}

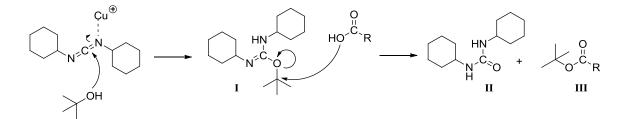


Figure 4.6: Mechanism of DCC and copper(I) mediated esterification.

Finally, galactosylbromide **8** and amino acid acceptor **3** were glycosylated to form the acetyl protected T_N -antigen **9**. The *Koenigs-Knorr* reaction was performed with water-free silver perchlorate and silver carbonate as glycosylation promoters in an unpolar solvent mixture of

dry toluene/dichloromethane (1:1).^{221,207,241} The azide group in 2-position of the galactosyl donor acts as a non-participating protecting group, promoting the α -anomer as the favored glycosylation product in a yield of 60% (*figure 4.7*).

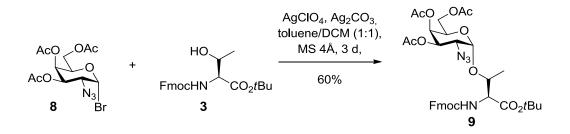


Figure 4.7: Synthesis of Fmoc-Thr(αAc₃GalN₃)-OtBu 9.

Compound **9** was reduced to the acetamide using thioacetic acid (*figure 4.8*, **A**).²⁴² The reaction is base-promoted by pyridine and the azide is reduced to the acetamide *via* a thiatriazoline intermediate **I** with final loss of nitrogen and elemental sulfur (*figure 4.8*, **B**).²⁴³

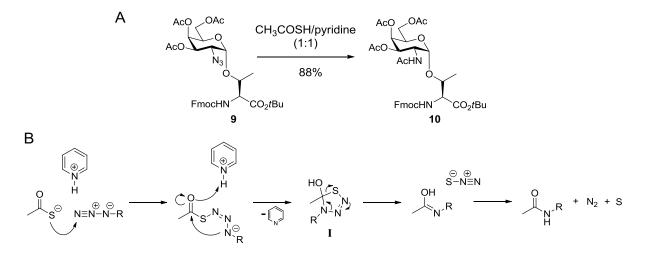


Figure 4.8: A: Synthesis of 10 by reduction of 9. B: Mechanism of the base promoted amidation.

The acetyl groups of compound **10** were removed by transesterification under *Zemplén* conditions with sodium methoxide in methanol.²¹¹ These conditions are regarded as a mild deacetylation procedure and the pH is usually not raised above 8.5 in order to preserve the base labile Fmoc-group.²⁰⁸ However, deacetylation was slow with reaction times of several hours to a few days and usually showed partial loss of Fmoc. It was found more convenient to transesterify at pH 10-10.5 in shorter times with direct subsequent re-protection of the α -amino group using Fmoc-OSu.²³⁷ The amount of cleaved Fmoc was followed by thin layer chromatography (TLC) and an estimated amount of 0.5 eq of Fmoc-OSu was enough for complete re-protection. Further, β -elimination or epimerization by base-catalyzed removal of the H^a of threonine was not observed under these conditions.¹⁸⁰ Next, the 4-OH and 6-OH positions were protected with *para*-methoxybenzaldehyde dimethyl acetal in acetonitrile at

50°C and catalytic amounts of *para*-toluenesulfonic acid (*p*-TsOH) to give the corresponding acetal protected glycosyl acceptor **12**. The three modifications on the T_N -antigen from compound **9** gave **12** in 73% overall yield (*figure 4.9*).

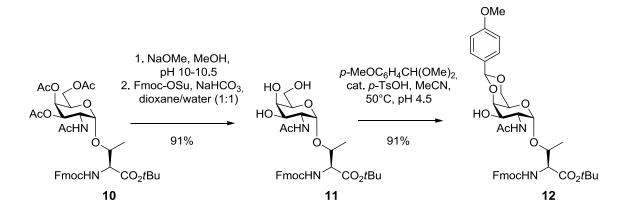


Figure 4.9: Synthesis of T_N-antigen glycosyl acceptor 12.

4.1.4 Synthesis of the T-antigen amino acid

The T- or T_F-antigen (Gal β 1,3GalNAc α Thr, Thomsen-Friedenreich antigen) was prepared from the suitable T_N-antigen **12** and the galactosyl bromide **5**, employing coupling conditions according to a *Koenigs-Knorr* variant developed by *Helferich* employing mercury(II) cyanide in dry nitromethane/dichloromethane (2:1).^{244,245,220} As expected, only β -anomer of T-antigen **13** was obtained in 70% yield. The *para*-methoxybenzylidene group was hydrolyzed under acidic conditions and the liberated hydroxyl groups were acetylated with acetic anhydride to give compound **14**. Finally the *tert*-butyl ester was cleaved with trifluoroacetic acid and anisole as cation-scavenger, resulting in the peracetylated and Fmoc-protected T-antigen building block **15** ready for use in SPPS (*figure 4.10*).²²⁰

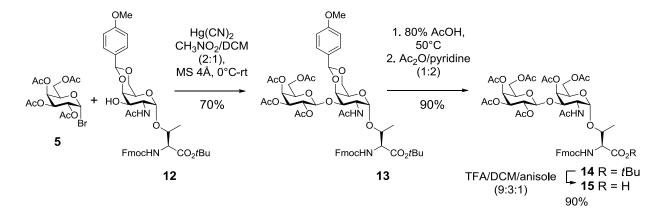
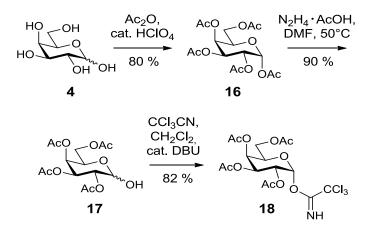
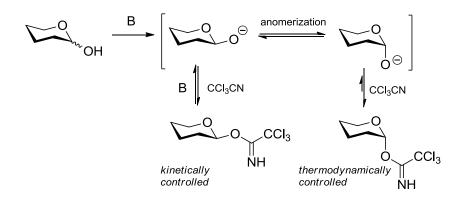
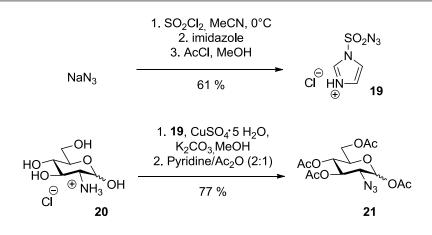


Figure 4.10: Synthesis of T-antigen amino acid building block 15 for use in SPPS.

4.1.5 Synthesis of the type-1 *N*-acetyllactosamine glycosyl donor

The syntheses of the type-1 and type-2 disaccharide building blocks share the common trichloroacetimide galactosyl donor **18**. D-Galactose was peracetylated under the same conditions as mentioned for galactosyl bromide **8** generating peracetylated galactose **16**. The acetyl group on the anomeric position, forming an acetal, has an improved electrophilicity compared to the other acetyl groups and was selectively cleaved with hydrazine acetate in DMF. The resulting anomeric mixture of 2,3,4,6-tetra-*O*-acetyl-galactose **17** was then treated with trichloroacetonitrile and catalytic amounts of DBU (1,8-diazabicylo[5.4.0]undec-7-ene) to give the trichloroacetimidate donor **18**.²⁴⁶ Donor **18** was synthesized in three steps in 66% yield (*figure 4.11*).


Figure 4.11: Synthesis of galactosyl trichloroacetimidate donor 18.

Galactosyl trichloroacetimidate **18** was obtained exclusively in α -configuration from the anomeric 2,3,4,6-tetra-*O*-acetyl- α/β -galactose **17**. In this base-catalyzed glycosylation, the intermediate anomeric oxyanion can either give α -anomer under thermodynamic control, stabilized by the anomeric effect, or β -anomeric product under kinetic control, due to the higher nucleophilicity of the β -oxyanion intermediate. Depending on the strength of the base that is used to deprotonate the anomeric OH-group, the kinetically formed β -anomeric product can react back, anomerize and finally form the α -anomer under thermodynamic reaction control. Bases like DBU or sodium hydride are strong enough to elicit retro-reaction, while potassium carbonate is commonly used to generate the β -anomer, since it is not able to deprotonate the β -imidate and initiate the back-reaction (*figure 4.12*).²⁴⁷

Figure 4.12: Formation of α -imidates under kinetic control and formation β -imidates under thermodynamic control.

As acceptor for the synthesis of the type-1 disaccharide, the phenyl 2-azido-2-deoxy-4,6benzylidene-1-thio- β -D-glucopyranoside **24** was synthesized. The 2-acetamido-group at the GlcNAc unit of the later disaccharide was initially masked as an azide during disaccharide formation. The azide group was introduced with the diazotransfer reagent imidazole-1sulfonyl-azide hydrochloride 19. Therefore, sodium azide was suspended in acetonitrile and sequentially treated with sulfurylchloride under ice-cooling followed by addition of imidazole. The imidazole-1-sulfonyl-azide was finally precipitated as the hydrochloride salt 19 with acetyl chloride in methanol (figure 4.10).²⁴⁸ The hydrochloride 19 is regarded as less explosive and more shelf stable than other common diazotransfer reagents, e.g. trifluoromethanesulfonyl azide (TfN₃).²⁴⁸ Anyhow, also compound **19** is impact sensitive and thermally labile, like other low-molecular weight azides, attached to electron withdrawing substituents. Concentration of mother liquids after filtration of the precipitated hydrochloride salt must be omitted, the hygroscopic salt must be stored dry to avoid water uptake (formation of hydrazoic acid) and the compound should always be added or used in solution for better heat dissipation.^{249,250} The diazotransfer reagent **19** transferred a diazo group to the amine in 2-position of p-glucosamine in a copper(II) catalyzed reaction. Subsequentially, a peracetylation with acetic anhydride in pyridine was performed to give an anomeric mixture of 1,3,4,6-tetra-O-2-azido-2-deoxy-glucosylpyranoside 21 (figure 4.13).²⁴⁸

Figure 4.13: Synthesis of 1,3,4,6-tetra-*O*-2-azido-2-deoxy-glucosylpyranoside **21** by diazotransfer with imidazole-1-sulfonyl-azide hydrochloride **19**.

Next, the thiophenyl group was installed on the anomeric position. Because of the nonparticipating azide on the 2-position, compound **21** was not transferred into the thiophenyl glucopyranoside directly, since the obtained thiophenyl donor would consist of a mixture of reactive β -anomer and less reactive, thermodynamically more stable α -anomer. Therefore, the anomeric acetyl group was first activated by the lewis acid titanium(IV) chloride with cleavage of the acetate and substitution by a chlorine atom, to result in the α -anomer of 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-glucopyranosyl chloride **22**.^{251,252,236} Then, the chloride was substituted by a thiophenyl group in a *Walden inversion* to give the phenyl 2-azido-2deoxy-1-thio-glucopyranoside **23**.²⁵³ The 4- and 6-position were protected with an acid-labile benzylidene acetal to result in acceptor **24**.²⁵⁴ The glycosyl acceptor **24** was synthesized in 4 steps with an overall yield of 25% (*figure 4.14*).

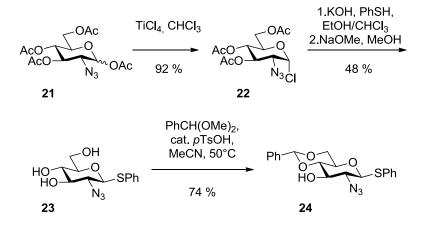


Figure 4.14: Synthesis of glycosyl acceptor 24.

The following glycosylation of acceptor **24** and trichloroacetimidate donor **18**, was performed according to a modified procedure originally described by *Toepfer* and *Schmidt*.²⁵⁵ The glycosyl donor was activated by catalytic amounts of trimethylsilyl trifluoromethanesulfate

(TMSOTf) in diethyl ether at room temperature. The protected type-1 disaccharide **25** was obtained in good yields between 85-92% (*figure 4.15*).

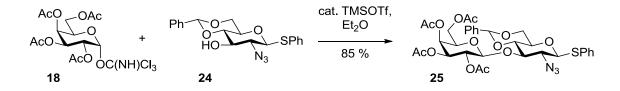
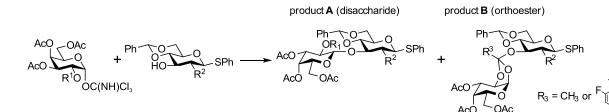
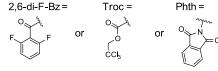




Figure 4.15: Synthesis of type-1 disaccharide 25 by glycosylation of acceptor 24 with donor 18.

Type-1 disaccharide 25, which already contains a trans-configurated thiophenyl leaving group at the reducing end, will act as a donor in later glycosylation steps. To achieve desired β -stereoselectivity, the azide was transformed into a participating *N*-Troc protecting group. Implementation of the Troc directly on the monosaccharide stage, instead of masking the amine as an azide, would have been more convenient. Direct use of a N-Troc-containing acceptor with donor 18 under common conditions used for trichloroacetimidate couplings (e.g. DCM, T \leq -40°C, molecular sieve) resulted in breakdown of the reactants (table 4.1, entry a). Exchange of N-Troc to a N-phthalimido group, aided glycosylation, but formed exclusively orthoester product (table 4.1, entry b). Common methods to repress orthoester formation, like the use of bulky and electron-withdrawing difluorobenzoyl esters in 2-position of the donor (table 4.1, entry c) or more acidic conditions created by acid washed molecular sieves (AW MS) (table 4.1, entry d), helped to reduce orthoester formation in favor for disaccharide product.^{256,257} Reduction of the amount of molecular sieve eliminated orthoester formation in a test reaction (table 4.1, entry e), indicating beneficial effects from low or completely absent molecular sieve. However, keeping lower amount of AW MS again with a 2-O-acetyl group on the donor instead of the difluorobenzoyl ester, increased orthoester generation (table 4.1, entry f). If the 2-O-acetyl group remained on the donor and the phthalimido group was exchanged with an azide group on position-2 of the acceptor, complete disaccharide production was observed (although in low yield, table 4.1, entry **g**). The scale of the reaction also influenced the amount of orthoester formation. Small scale reactions (≤ 50 mg acceptor) gave the desired glycoside as a major product, while larger reactions (≥ 100 mg acceptor) and especially gram scale reactions resulted in higher amounts of orthoester (compare entry g/h). Great influence was observed by the solvent. Replacing DCM by diethyl ether, without MS, finally provided pure disaccharide glycosylation product, also in large scale glycosylations (table 4.1, entry i). A reaction was performed in order to control if complete disaccharide formation could be achieved in a diethyl ether system, without any MS by keeping the N-Troc on the acceptor, as initially planned (table 4.1, entry j), but similar to reaction conditions in entry a, no product formation was observed.

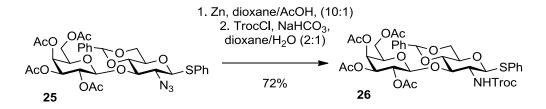
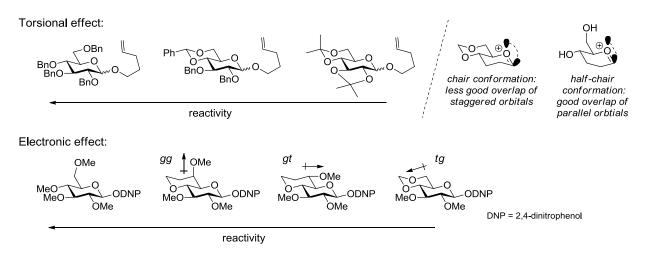
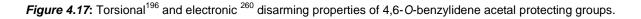
Table 4.1: Comparison of various reaction conditions and protecting group patterns for the synthesis of a type-1 disaccharide.

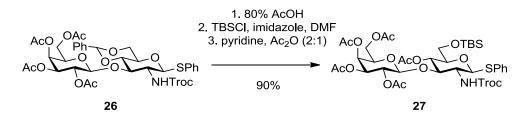
entry	R ₁	R_2	scale in g _{donor}	conditions	molecular sieve	yield in %	product ratio A:B
а	Ac	<i>N</i> -Troc	0.05	DCM, - 40°C	100 mg MS 4Å	breakdown	n.a.
b	Ac	N-Phth	0.05	DCM, -40°C	100 mg MS 4Å	70	0:1
С	2,6-di-F-Bz	<i>N</i> -Phth	0.05	DCM, -40°C	100 mg MS 4Å	72	1:3
d	2,6-di-F-Bz	<i>N</i> -Phth	0.05	DCM, -40°C	100 mg AW MS 4Å	52	1:1
е	2,6-di-F-Bz	<i>N</i> -Phth	0.05	DCM, -40°C	30 mg AW MS 4Å	44	1:0
f	Ac	<i>N</i> -Phth	0.05	DCM, -40°C	30 mg AW MS 4Å	53	1 : 1.7
g	Ac	N_3	0.02	DCM, -40°C	25 mg AW MS 4Å	25	1:0
h	Ac	N_3	1	DCM, -40°C	1 g AW MS 4Å	92	1:3
i	Ac	N ₃	10	Et ₂ O, RT	-	85	1:0
j	Ac	N-Troc	0.05	Et_2^2O, RT	-	breakdown	n.a.

The methodology reported by Toepfer and Schmidt, using an azide acceptor and diethyl ether as solvent was successful, also in gram scale reactions.²⁵⁵ It is interesting, that especially a reaction in diethyl ether represses orthoester formation, since orthoester formation usually benefits from diethyl ether as a solvent.²⁵⁸ Sometimes orthoesters can rearrange into the corresponding glycosidic bond by treatment with higher amounts of lewis acids like TMSOTf.²⁵⁹ Here, these attempts lead to breakdown of the starting materials. The synthesis of type-1 LacNAc disaccharide, was dependent on subtle interactions of various reaction parameters, like protecting groups, solvents, batch scale or molecular sieve can influence the product formation in chemical glycosylations.

After the 1,3-glycosylation was carried out, the azide-group was first reduced and subsequently protected with a N-Troc group. Disaccharide 25 was treated with activated zinc powder (previously suspensed in 1 M HCl and washed with water, methanol and diethyl

ether) in a mixture of 1,4-dioxane/acetic acid (10:1). Under these conditions the acidity was high enough to promote reduction of the azide with the zinc, while the acid labile benzylidene acetal remained stable. Then TrocCl was used to protect the free amine to give disaccharide **26** in 72% yield (*figure 4.16*).


Figure 4.16: Synthesis of compound 26. Change from azide to N-Troc protection.

Considerations regarding the reactivity of the thiophenyl disaccharide **26** as glycosyl donor were made. The 4,6-*O*-benzylidene acetal group is well known to lower the reactivity of glycosyl donors. This effect was explained by a conformational lock of the pyranose in the ${}^{4}C_{1}$ chair configuration because of the rigidity introduced by the fused 1,3-dioxane ring. As a consequence, the formation of an intermediate oxocarbenium ion with planar sp²-geometry at C1, after separation of the leaving group, is hampered during glycosylation, due to non-optimal orbital overlap of the π -orbital forming the double bond.¹⁹⁶ Additionally to this torsional effect, reactivity is also reduced by an electronic effect.²⁶⁰ The C6-O6 bond (and the negative dipole it represents) can adopt three staggered conformations, the *gg*, *gt* and *tg* conformation. In *gg* and *gt*, the dipole is oriented more perpendicular to the positive oxocarbenium transition state, for better dipole-charge stabilization, while in *tg* the negative dipole is directed away from the positive center (*figure 4.17*).

Additionally to reactivity issues, retrosynthetic planning involved disaccharide extension of the T-antigen acceptor amino acid, forming a common core 1 tetrasaccharide amino acid, which contains an acid labile *para*-methoxy benzylidene acetal at the 6-position of the α GalNAc. For further extension of the core 1 tetrasaccharide, in order to form core 2 structures, a step involving selective GalNAc benzylidene acetal removal was required before the core 2 structure branching could be established (retrosynthesis, *figure 4.2*). Therefore, the 4,6-*O*-benzylidene acetal at disaccharide **26** was exchanged to a 4-*O*-acetyl and 6-*O*-*tert*-butyldimethylsilyl protecting (TBS) group.²⁶¹ The TBS-group has the advantage that it can be selectively cleaved by a fluoride source in the presence of other acid labile protecting groups, such as the benzylidene acetal on the α GalNAc of the glycosylated amino acids. The benzylidene acetal of compound **26** was cleaved in 80% acetic acid, followed by regioselective protection at 6-position with TBSCI and acetylation with acetic anhydride to give the final type-1 disaccharide donor **27** (*figure 4.18*).

Figure 4.18: Change from a 4,6-*O*-benzylidene acetal to *tert*-butyldimethylsilyl ether and acetyl protecting groups for the synthesis of the type-1 thiophenyl donor **27**.

4.1.6 Synthesis of the type-2 *N*-acetyllactosamine glycosyl donor

The type-2 disaccharide building block was formed from the described galactosylpyranosyl trichloroacetimidate donor **18** and glucosaminylpyranosyl thiophenol acceptor **30**. Similar to the type-1 building block synthesis, the acceptor **30** contained a C1-thiophenyl leaving group for later elongation towards the desired extended core amino acids. To obtain acceptor **30**, glucosamine hydrochloride was directly protected with a Troc group at position 2 and all further hydroxyl groups were acetylated to give compound **28** as an anomeric mixture ($\alpha/\beta = 8.3 : 1$). Next, the anomeric acetyl leaving group of compound **28** was activated with boron trifluoride and substituted with a thiophenyl group. Since compound **28** had the anomeric acetyl group predominantly in the thermodynamically stable α -anomeric configuration, the reaction was stirred for 3 d with excess of three equivalents of thiophenol for full conversion into the thioglycoside **29**.²⁶² In order to liberate the acetylated 4-position for glycosylation with donor **18**, compound **29** was completely deacetylated with methanolic HCl solution, prepared from acetyl chloride in methanol. Standard basic alcoholysis for the removal of the acetyl

groups, converts the *N*-Troc group into the corresponding alkylcarbamate, which cannot be cleaved under reductive conditions commonly applied for *N*-Troc deprotection.²¹⁴ As an alternative, a guanidine nitrate/sodium methoxide system was reported to deacetylate under basic conditions, without harming the *N*-Troc group.²⁶³ Subsequently the primary alcohol at the 6-position was protected with a TBS ether group to give glycosyl acceptor **30** in 3 steps and 60% yield (*figure 4.19*).

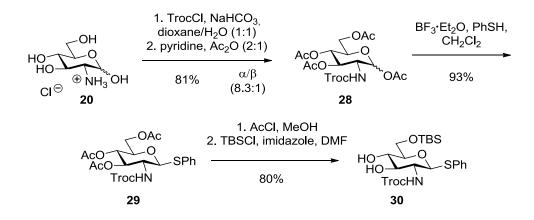


Figure 4.19: Synthesis of type-2 glycosyl acceptor 30.

Glycosyl acceptor **30** was regioselectively glycosylated in the more reactive^{214,219} 4-position with trichloroacetimidate **18** and catalytic amounts of TMSOTf and subsequently acetylated in 3-position in 80% overall yield (*figure 4.20*). Problems with orthoester formation were not observed.

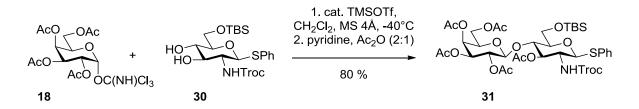


Figure 4.20: Synthesis of type-2 thiophenyl donor 31.

4.1.7 Synthesis of the galactose extended core 3 amino acids

As outlined in the retrosynthetic analysis (*figure 4.2*), the synthesis of the core 3 amino acids was conducted by the glycosylation of the T_N -antigen acceptor amino acid **12** with either the type-1 or type-2 disaccharide donor. For the synthesis of the type-1 core 3 building block, thioglycoside donor **31** was activated by the promoter-catalyst system *N*-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) (*figure 4.21*).¹⁸⁴

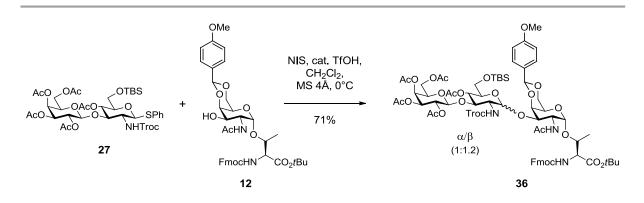


Figure 4.21: Preparation of type-1 core 3 glycosylated amino acid 36.

Although the *N*-Troc group is a participating neighboring group, directing glycosylations towards the β -anomer, a mixture of α/β -anomers ($\alpha/\beta = 1:1.2$) of compound **36** was obtained in 71% yield. The thiophilic iodonium ion liberated from NIS at acidic conditions, was attacked by the phenyl sulfide to leave as phenylsulfenyl iodide. Since most of the product formed was the desired β -anomer, it can be assumed that the reaction proceeded by a S_N1-mechanism. The neighboring *N*-Troc group participated in the reaction, since more α -product instead of β -product would be expected due to the α -directing anomeric effect. However, *N*-Troc participation was likely somehow hampered, since some donor was also attacking from the *cis* side, instead from the *trans* side of the oxazolinium intermediate (*figure 4.22*).

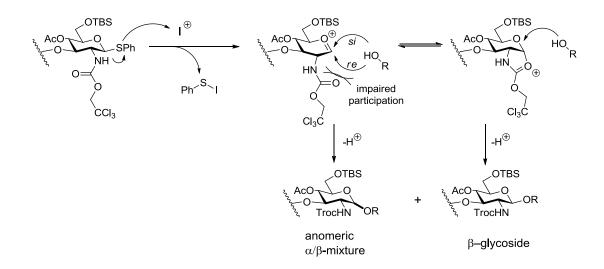
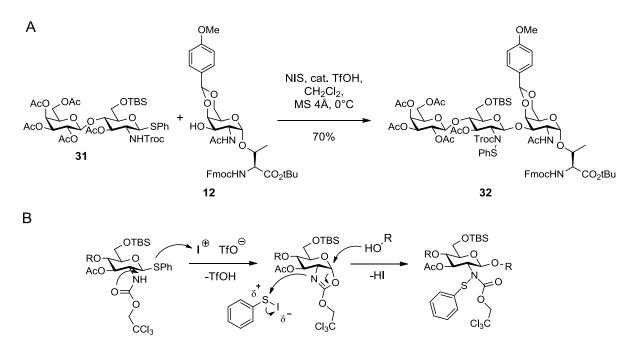


Figure 4.22: Formation of an anomeric mixture of compound 36.

Separation of the two diastereomeric forms of compound **36** was not possible by means of standard silica gel chromatography. The diastereomeric mixture was proceeded to the next step and treated with 80% acetic acid to remove the acid labile *para*-methoxybenzylidene acetal and the *tert*-butyldimethylsilyl ether to give compound **37** in 50% yield of the desired β -anomer and 29% of the α -anomer. The anomeric products had sufficient distinct retention

times to be separated by silica gel chromatography. Next, the *N*-Troc group was cleaved under reductive conditions with zinc in acetic acid and the released amine was acetylated along with the remaining free hydroxyl groups to give compound **38** in 85% yield.²⁶⁴ In the final step, the *tert*-butyl group was removed in a mixture of TFA/DCM and anisole as a cation-scavenger. The type-1 core 3 building block was synthesized over 4 steps and in 26% yield starting from the T_N-antigen acceptor **12** (*figure 4.23*).



15:5:1

Figure 4.23: Synthesis of type-1 core 3 amino acid building block 39 for SPPS.

The synthesis of the type-2 core 3 amino acid followed the same strategy as the corresponding type-1 extended amino acid. T_N -antigen glycosyl acceptor **12** was glycosylated with the type-2 LacNAc thioglycoside donor **31** with NIS/TfOH as promoter system. The glycosylation product **32** was generated with full β -stereoselectivity as expected and in contrast to type-1 core 3 glycosylation product **37**. However, a significant amount of the obtained product was an adduct consisting of the glycosylation product and the leaving phenyl sulfide group, as indicated by a mass increase of 108 u. NMR-spectroscopy showed proton-signal doubling and two-dimensional NMR-experiments showed two independent spin-systems. This separation indicated on one compounds with axial chirality due to restricted rotation around a single bond. Therefore it was assumed that the phenyl sulfide was added to the carbamate nitrogen of the *N*-Troc group. Different promoter systems did not improve reaction outcome. Dimethyl(methylthio)sulfonium trifluoromethanesulfate (DMTST)¹⁸⁶ did not activate the reaction at all, while *N*-bromosuccinimide (NBS)/TfOH¹⁸⁵ or

diphenyl sulfoxide (DPS)/Tf₂O²⁶⁵ showed the same results as the NIS/TfOH system. Thus, NIS was used and the phenyl sulfide adduct was obtained as the main product in 70% yield (*figure 4.24*, **A**).

Figure 4.24: A: Glycosylation of donor **31** and acceptor **12** for preparation of type-1 core 3 glycosylated amino acid **32**. B: Proposed formation of phenyl sulfide adduct **32**.

The glycosylation worked with full β-stereoselectivity, implying full neighboring group participation of the *N*-Troc group. The oxazoline intermediate may be attacked by the donor at C1 and probably along with oxazoline ring opening, the phenyl sulfide group added by substitution on sulfur (figure 4.23, B). According to Pauling electronegativity, sulfur is slightly positive polarized by the more electronegative iodine. Also, an orbital stabilization from the aromatic π -system to the transition state of a S_N2-reaction in benzylic position may promote the substitution. Since the formation of the type-1 core 3 analogue 36 showed unexpected stereoselectivity and later glycosylations with the type-1 and type-2 donors on extended core 1 and 2 glycans were not forming the phenyl sulfide byproducts, it was assumed that the sterical environment at the T_N -antigen acceptor had a strong influence on the reaction outcome. T. Reipen and H. Kunz have reported unexpected orthoester formation on an equally protected serine analogue of the T_N -antigen, when peracetylated galactosylpyranosides with halide or trichloroactimidate were evaluated as donors.²²³

Compound **32** followed protecting group transformations according to the corresponding type-1 core 3 analog **36**. The acid labile *para*-methoxybenzylidene acetal and the *tert*-butyldimethylsilyl ether groups were hydrolyzed in 80% acetic acid to give compound **33**. The *N*-Troc group was removed under reductive conditions with zinc in acetic acid with

simultaneous removal of the phenyl sulfide group. The remaining amine and the hydroxyl groups were further acetylated in pyridine and acetic anhydride (2:1). The *tert*-butyl group was removed in TFA/DCM with anisole as cation-scavenger. The type-2 core 3 amino acid building block was obtained in 4 steps and 41% yield overall, starting from the T_N -antigen glycosyl acceptor **12** (*figure 4.25*).

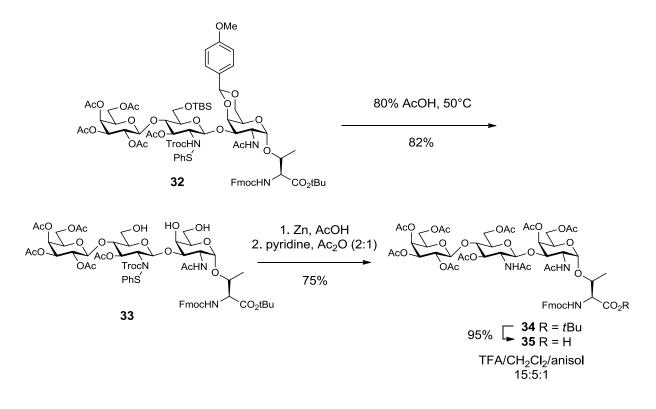


Figure 4.25: Synthesis of type-1 core 3 amino acid building block 35 for SPPS.

4.1.8 Synthesis of the extended core 1 tetrasaccharide amino acids

For the synthesis of the linear core 1 tetrasaccharides and branched core 2 hexasaccharides a common core 1 acceptor (a T-antigen acceptor) building block was constructed (retrosynthesis, *figure 4.2*, glycosylation **IV**). In contrast to the previously synthesized T-antigen building block **13** (*figure 4.10*), a different monosaccharide galactosyl donor was applied. The galactose donor was protected temporarily in 6-position with a protecting group, stable under the basic conditions which are used for deacetylation. Like this, the reactive primary alcohol was blocked, which later allowed regioselective modifications on the remaining secondary alcohol groups. A TBS-group was selected, which later was cleaved together with the TBS-group of the elongating LacNAc disaccharide units by using a fluoride source, orthogonal to the *para*-methoxy benzylidene acetal of the initial α GalNAc unit. Peracetylated galactose **16** was first transformed into the β -thiophenyl-galacosylpyranoside **40** using boron trifluoride as a lewis acid promoter and thiophenol as glycosyl acceptor. Due to the α -anomeric configuration of **16**, excess of thiophenol (3 eq) was used and long reaction times were required for full conversion. The acetyl groups of the obtained thioglycoside **40** were then removed by transesterification with sodium methoxide, the 6-position was selectively protected with a TBS group and the remaining hydroxyl groups were again acetylated. The thiophenyl glycoside **42**²⁶⁶ was prepared in 3 steps and 57% yield starting from 1,2,3,4,6-penta-*O*-acetyl- α -galactosylpyranoside **16** (*figure 4.26*).

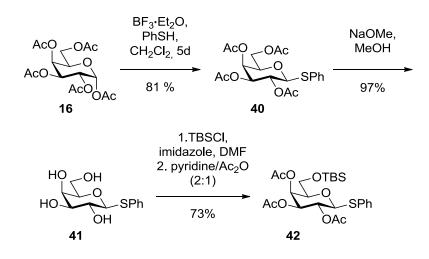


Figure 4.26: Synthesis of glycosyl donor 42.

The thiophenyl glycosyl donor **42** was glycosylated with the T_N -antigen acceptor **12**, promoted by a NIS/TfOH system. The glycosylation product **43** was obtained in 74% yield and with full β -stereoselectivity. No problems with stereoselectivity or orthoester formation were monitored in this reaction (compared with type-1 core 3 synthesis, *chapter 4.1.5*). The obtained compound **43** was deacetylated with sodium methoxide in methanol. The pH was set to 9.5 to efficiently remove the acetyl esters. A reaction to reinsert the partially removed Fmoc group followed. The core 1 glycosyl acceptor **44** was synthesized in 72% yield and displays unprotected hydroxyl groups 2, 3 and 4 on the galactose unit (*figure 4.27*).

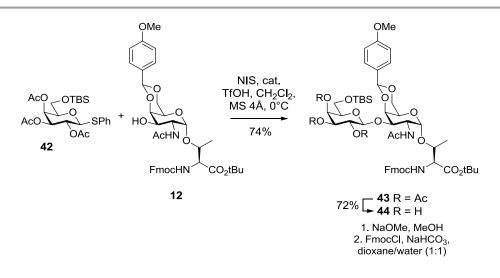


Figure 4.27: Preparation of T-antigen 44 by glycosylation of donor 42 and acceptor 12.

Next, T-antigen acceptor **44** was glycosylated with either the type-1 or type-2 LacNAc disaccharide in a [2+2]-block synthesis (the reaction pathways for both the disaccharides were analog from this stage, thus, presentation of both pathways will be presented simultaneously). The thioglycoside donors were activated by the approved conditions with NIS/TfOH in DCM. It is well known that equatorial hydroxyl groups tend to react preferentially in glycosylations, if a vicinal axial hydroxyl group is present. Therefore the hydroxyl group at the galactose position 3 of acceptor **44** was glycosylated regioselectively in the presence of the unprotected hydroxyl groups on position 2 and 4.²²² Regioselectivity was proven by HMBQ-NMR spectrometry, which showed spin coupling between H1(donor)-C3'(acceptor) and H3'(acceptor)-C1(donor). Tetrasaccharide core 1 structures were obtained in 64% (**45**) and 65% (**50**) yields, respectively (*figure 4.28*).

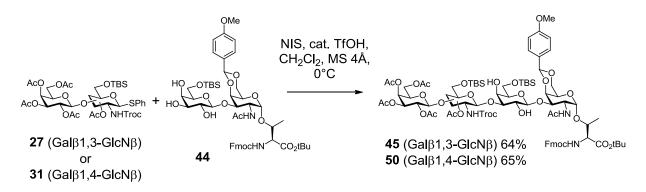
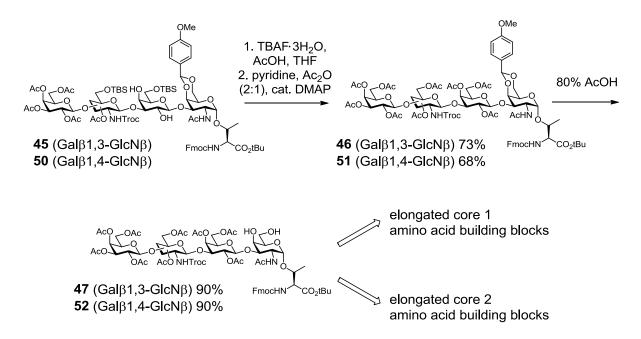



Figure 4.28: Glycosylations of glycosyl donors 27 and 32 with acceptor 44.

The two TBS protecting groups of glycosylation products **45** and **50** were cleaved with tetran-butylammonium fluoride (TBAF) trihydrate. The reasonable basicity of the fluoride anion in aprotic solvents demands addition of acetic acid to buffer the reaction and prevent unwanted cleavage of the Fmoc group.^{267,268} Subsequent, acetylation of the hydroxyl groups resulted in compounds **46** and **51**. Treatment with acetic anhydride in pyridine of the complex glycans required addition of catalytic amounts of 4-(dimethylamino)pyridine (DMAP, *Steglich Base*) for complete acetylation.²⁶⁹ Compounds **46** and **51** were treated with 80% acetic acid to hydrolyze the acid labile acetal, revealing 4- and 6-OH of the prime α GalNAc. The resulting compounds **47** and **52** in this stage represented branching points for either further protecting group manipulations to complete type-1 and -2 elongated core 1 glycosyl amino acids for SPPS or for selective glycosylations on 6-OH to give branched core 2 hexasaccharides (*figure 4.29*).

Figure 4.29: Synthesis of the extended core 1 tetrasaccharides **47** and **52**, as branching compounds in the synthesis routes of extended core 1 and core 2 structures.

To continue the synthesis route of the linear elongated core 1 building blocks, the *N*-Troc groups on compounds **47** and **52** were removed by reduction using activated zinc in acetic acid and the obtained free amines and the unprotected hydroxyl groups were acetylated. In the final step, the *tert*-butyl esters on **48** and **53** were cleaved in TFA/DCM with anisole as a scavenger to give the type-1 and -2 elongated core 1 amino acids **49** and **54** ready for SPPS. Compounds **49** and **54** were both synthesized over 5 steps in 32% (type-1, **49**) and 29% (type-2, **54**) overall yield starting from the glycosylation with the common T-antigen acceptor **12** (*figure 4.30*).

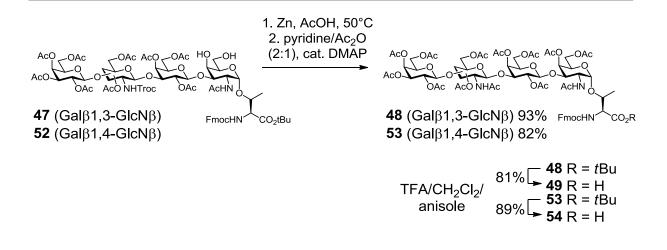


Figure 4.30: Syntheses of extended core 1 amino acid building blocks 49 and 54 for SPPS.

4.1.9 Synthesis of the extended core 2 hexasaccharide amino acids

The branched core 2 building blocks were constructed from the common tetrasaccharide building blocks **47** for type-1 and **52** for type-2 and were assembled in a [2+4] building block glycosylation (retrosynthesis, *figure 4.2*). In this work the two homogeneous variants core 2 (type-1)₂ and core 2 (type-2)₂ were synthesized. For further biological evaluation on microarrays, it was considered more interesting to see effects of glycan size and core 2 branching of homogenous glycans, for comparing the two different elongation variants. The type-1 tetrasaccharide acceptor **47** was reacted with type-1 disaccharide donor **27** and type-2 tetrasaccharide acceptor **52** with type-2 disaccharide donor **31** in a NIS/TfOH promoted glycosylation (*figure 4.31*).

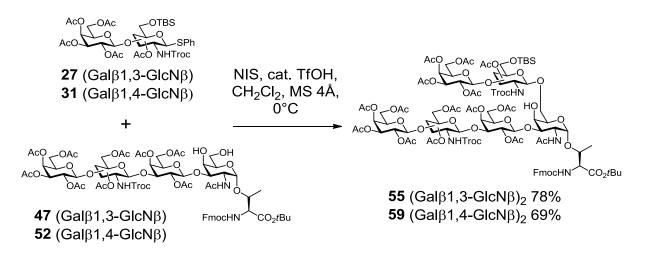


Figure 4.31: Glycosylation of donors 27 and acceptor 47 and glycosylation of donor 31 and acceptor 52.

Both reactions resulted in the corresponding core 2 hexasaccharides **55** ((Gal β 1,3-GlcN β)₂) and **59** ((Gal β 1,4-GlcN β)₂), in 78% and 69% yield, respectively. In both cases, full regioselectivity on position 6 of the acceptor amino acid, verified by HMBC-NMR spectroscopy, and full β -stereoselectivity was obtained. Next, the TBS groups were hydrolyzed in 80% acetic acid and acetylation of the free hydroxyl groups followed, resulting in compounds **56** and **60**. The subsequent acetylation reactions after each protecting group manipulation step had the purpose to neutralize effects of acetyl migration, commonly observed with carbohydrates partly acetylated and partly unprotected.²⁷⁰ Here, intra- or intermolecular acetyl migrations lead to ambiguities during reaction monitoring by thin layer chromatography and purification by silica chromatography due to differently acetylated species of the same scaffold. After removal of the TBS groups, the two *N*-Troc groups on each hexasaccharide were removed with zinc in acetic acid and the amines were acetylated to give compounds **57** and **61**, respectively. Finally, the *tert*-butyl ester at the carboxy-terminus of the amino acid was removed using TFA/DCM with anisole to give the final core 2 hexasaccharides **58** and **62**, ready for SPPS (*figure 4.32*).

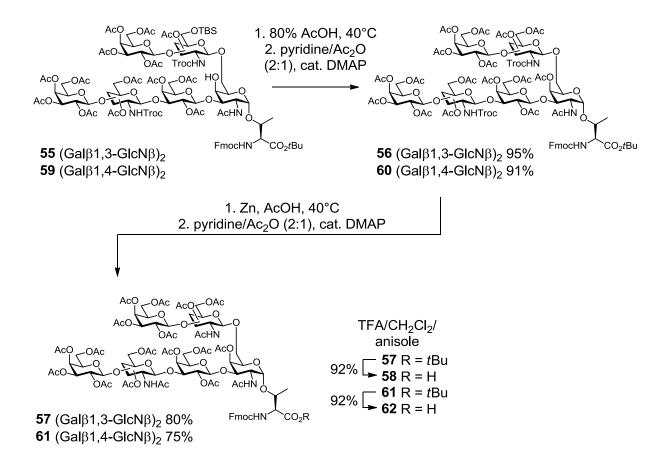


Figure 4.32: Synthesis of extended core 2 amino acid building blocks 58 and 62 for SPPS.

4.2.1 Synthesis plan for MUC1 and MUC5B glycopeptide library build-up

An extended library of mucin glycoproteins was synthesized with the synthetic T_N- and Tantigen and the extended core 1, 2 and 3 amino acids. These glycosylated amino acid building blocks were incorporated into the tandem repeat peptide sequences of MUC1 and MUC5B to generate several peptide isoforms/glycoforms for each of the mucins tandem repeat sequences. The different variants were chosen with respect to different glycosylation sites and multivalent occupation of these glycosylation sites. A MUC1 tandem repeat consists of 20 amino acids of the sequence PAHGVTSAPDTRPAPGSTAP. The sequence was first synthesized without glycosylation. The decision was made to synthesize a 19mer of the MUC1 peptide of the sequence PAHGVTSAPDTRPAPGSTA to avoid potential problems with diketopiperazine formation and increase the yields. The MUC1 19mer contains five potential glycosylation sites, of which three are composed of threonines and were occupied by the synthesized threonine amino acid building blocks. The MUC5B tandem repeat consists of 29 amino acids of the sequence ATGSTATPSSTPGTTHTPPVLTTTATTPT. For MUC5B the 13mer ATPSSTPGTTHTP from A⁶ to P¹⁸ was synthesized. It contains seven potential glycosylation sites, of which five are located on threonine. Figure 4.33 shows the chosen multivalent glycosylation pattern for the synthesis of the MUC1 and MUC5B peptides. This pattern was applied to the synthetic glycosylated amino acids. Like this, 8 (glycosylated amino acids) x 7 (peptide isoforms) = 56 MUC1(19mer) and 7 (glycosylated amino acids) x 5 (peptide isoforms) = 42 MUC5B(13mer) glycopeptides were synthesized (figure 4.33).

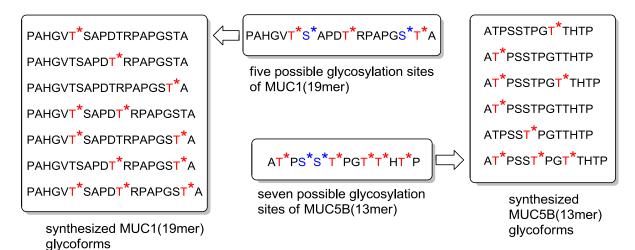


Figure 4.33: Synthesized MUC1(19mer) and MUC5B(13mer) glycopeptides.

In the case of the MUC1 peptides, which were already used in the first microarray studies, also three MUC1 22mers and a few MUC1 sequences with migrating PDTR and GSTA domains were synthesized. Full lists of all synthesized MUC1 and MUC5B peptides are shown in *table 4.2* (MUC1, *chapter 4.2.3*) and in *table 4.3* (MUC5B, *chapter 4.2.4*).

4.2.2 Synthesis of a triethlyene glycol linker

Each synthesized mucin sequence, was extended with a triethylene glycol (TEG) linker amino acid at the N-terminal end. In the synthesis of immunogenic vaccine conjugates based on (glyco-) peptide antigens, spacers between the antigen and applied carriers or mitogens provide spatial separation of the different components and prohibit unwanted conformational influences.²⁷¹ Similar to this approach, the triethylene glycol attached to the N-terminus of the glycopeptides provides additional spacing to the surface of a microarray. In the field of carbohydrate microarrays it is common to use various spacers between the surface and the glycan.²⁷² Signal intensity variations depending on the length of spacers are reported and due to steric hindrance, too short linkers usually disturb the interactions between the glycan and the protein binding partners.²⁷³ Oligoethylene glycol spacers are reported to have minimal nonspecific interaction with proteins on microarrays.²⁷⁴ The utilized amine reactive microarray slides have a three-dimensional hydrophilic polymer coating with a hydrophilic tether connected to the reactive site. The triethylene glycol spacer is incorporated additionally to the surface tether of the commercial slide. The spacer displays an amine group and is therefore suited for the use with functionalized amine reactive microarray slides. Furthermore, with a glycol spacer attached, each glycopeptide can be used also for the synthesis of mucin glycopeptide vaccine conjugates.²⁷¹

The synthesis of the triethylene glycol spacer amino acid followed a reported strategy.^{275,276,240} The alkoxide of triethylene glycol was initially reacted in a *Michael*-addition with *tert*-butylacrylate to give the 12-hydroxy-4,7,10-trioxa-dodecanate-*tert*-butylester **63**.²⁷⁵ The free hydroxyl group was transferred into a better leaving group by mesylation with methanesulfonyl chloride and then substituted with an azide group. The resulting 12-azido-4,7,10-trioxa-dodecanate-*tert*-butylester **64** was further reduced with raney-nickel in isopropanol to give the corresponding amine **65**.²⁷⁶ The free amine was then protected using Fmoc-OSu and the orthogonally protected Fmoc amino acid **66** was obtained.²⁴⁰ By deblocking the *tert*-butyl-carboxyl group in TFA, the adequate Fmoc amino acid **67** was received and ready for SPPS.²⁴⁰ Compound **67** was synthesized in five steps and 30% yield overall (*figure 4.34*).

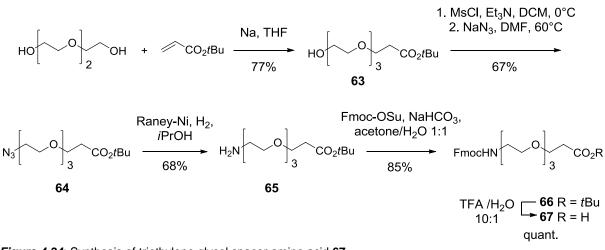
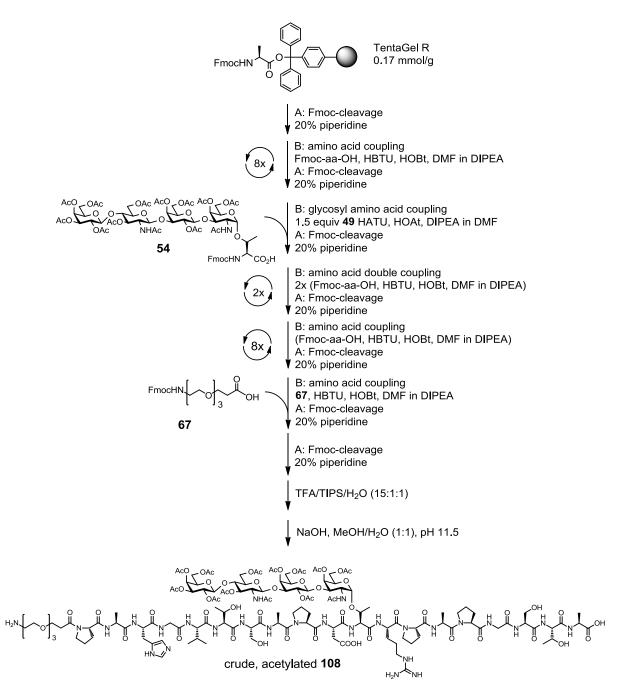



Figure 4.34: Synthesis of triethylene glycol spacer amino acid 67.

4.2.3 Synthesis of a MUC1 glycopeptide library

Since all MUC1 as well as all MUC5B glycopeptides follow the same SPPS-protocol, representative syntheses are shown in detail only for MUC1(19mer) **108**, MUC1(19mer) **109**, MUC1(19mer) **98** and MUC5B(13mer) **161**. Glycopeptide numbering, characteristic reaction parameters and yields for each synthesized glycopeptide are combined in *table 4.2* (MUC1) and *table 4.3* (MUC5B).

The MUC1 glycopeptides were generated on TentaGel® R Trt-Ala Fmoc resins with loading capacities of 0.17 mmol/g or 0.15 mmol/g. The comparatively low loading capacities support good availability of reaction centers and prohibit peptide aggregation. The synthesis of glycopeptide **108** was initiated by the cleavage of the amino acid Fmoc protecting group on the preloaded resin by addition of 20% piperidine in DMF (figure 4.32). Automated chain elongation of the first eight amino acids followed. In each elongation cycle, eight equivalents of the standard Fmoc protected amino acid were utilized in a peptide coupling mediated by HBTU/HOBt. Each cycle was finished by Fmoc deprotection with 20% piperidine in DMF. The glycosylated type-2 core 1 amino acid 54 (1.5 eq) was preactivated with HATU/HOAt and DIPEA in DMF in a separate vessel and then manually pipetted to the synthesis reactor. The reaction was periodically shaken by vortex for 6 h. The two preceding amino acids after the glycosylated amino acids were coupled in double couplings. After the completion of the MUC1(19mer) sequence by automated synthesis steps, the Fmoc protected spacer amino acid 67 (3 eq) was preactivated with HBTU/HOBt and DIPEA and then added manually to the reactor. The reaction was shaken for 2 h. Final Fmoc deprotection preceded detachment of the peptide from the resin using TFA/TIPS/H₂O (15:1:1) with simultaneous cleavage of all acid sensitive protecting groups on the side chains of the amino acids (figure 4.35). The crude peptide was lyophilized and then loaded onto a C18 cartridge (1 g) and desalted. The

glycopeptide was eluted successively with 30, 50, and 70% of acetonitrile in water. The eluted glycopeptide was again lyophilized before the following deacetylation step

In order to hydrolyze the acetyl groups of the glycan moiety, the glycopeptides were dissolved in methanol/water (1:1) and 150 mM NaOH solution was added in small portions until a pH of 11.5 was reached. Several additions were necessary, due to buffering effects. After completion of the deacetylation the reaction was acidified with acetic acid and glycopeptide **108** was purified by preparative HPLC. After lyophilization, glycopeptide **108** was obtained in 53% yield overall, regarding the resin loading capacity (*figure 4.36*).

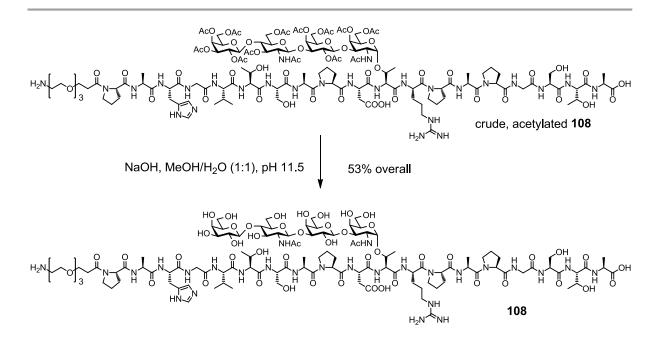
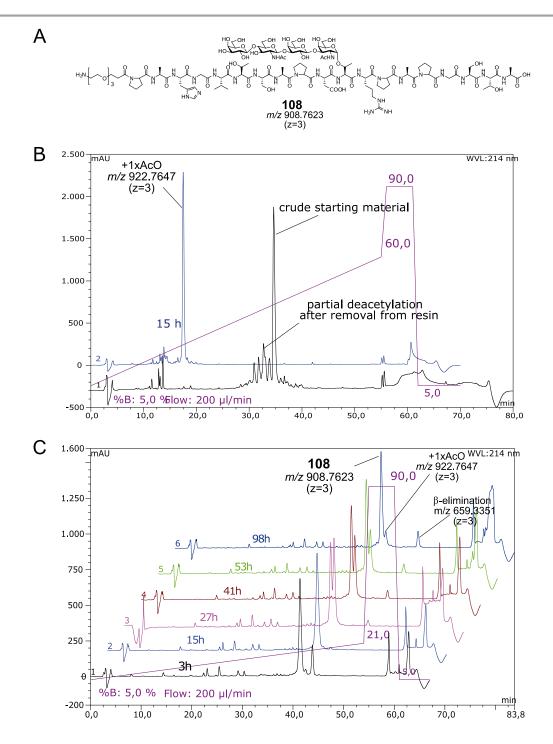



Figure 4.36: Deacetylation and synthesis of MUC1(19mer) 108.

Standard deacetylation conditions, like the mentioned *Zemplén* deacetylation at pH 8.5,²¹¹ were not sufficient to the remove all acetyl groups. Chromatographic and mass spectrometric analysis showed that under these mild conditions one acetyl group was omitted. *S. Dziadek et al.* reported the synthesis of α 2,3-sialyl-T-antigen glycopeptides, where the 4'-position of the galactose unit was sterically hindered and required harsher conditions for deacetylation.²¹⁵ Here, ESI-mass-spectrometry with collision induced dissociation (CID) fragmentation of monoacetylated compound **108** indeed revealed that a hydroxyl group of the core 1 galactose remained acetylated at standard *Zemplén* conditions.

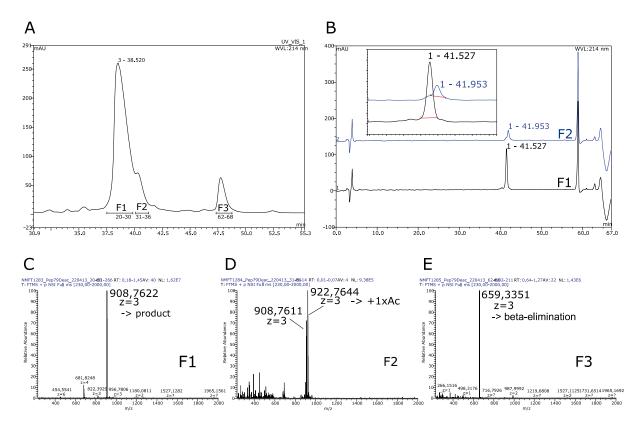
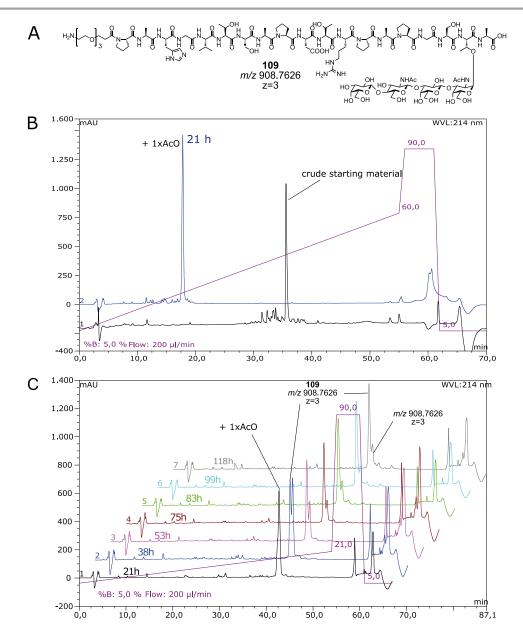
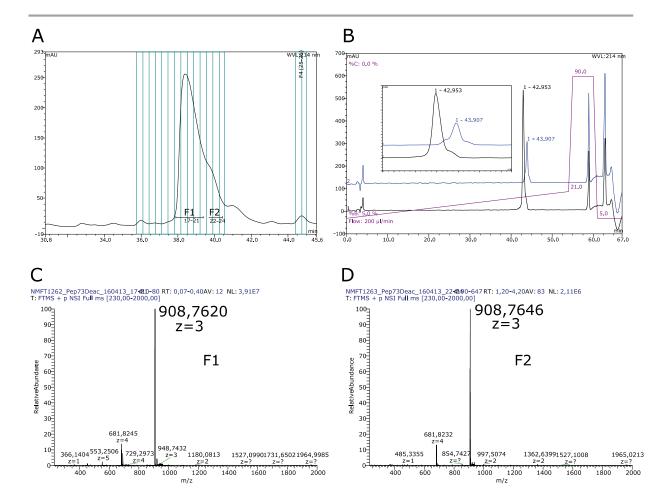

All glycopeptides carrying an elongated tetrasaccharide core 1 motif, including the elongated hexasaccharide core 2 structures, share the hindered 4'-OAc of the core 1 galactose. All of these glycopeptides were treated at higher pH (11.5) for full deacetylation. Extended core 3 glycopeptides, devoid of a core 1 galactose, but also the not extended T-antigen glycopeptides, could be deacetylated under standard *Zemplén* conditions. Stringent chromatographic reaction control by HPLC was necessary to keep unavoidable β -elimination at pH 11.5 at acceptable levels. The sodium hydroxide solution was added carefully in small doses to the dissolved glycopeptide in the methanol/water mixture. Setting the pH to 11.5 often took a long time, since glycopeptides with large glycans showed strong buffering effects, especially in the case multiglycosylated glycopeptides. The deacetylation step, resulting in glycopeptide **108**, is shown in the HPLC chromatograms in *figure 4.37*.

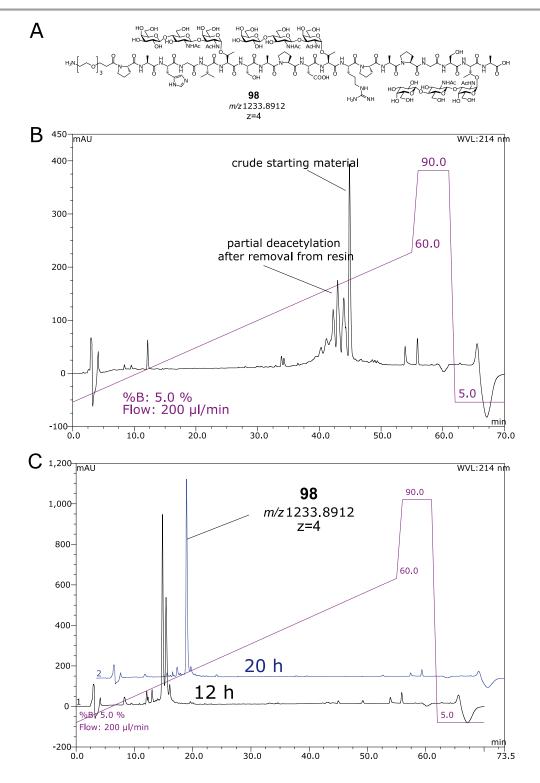
Figure 4.37: Analytical HPLC control of deacetylation of glycopeptide **108**. **A**: Structure of deacetylated product **108**. **B**: After 15 h (grad.: water/84% ACN + 0.1% TFA (95:5) \rightarrow (40:60), 55 min = 1% min⁻¹). Monoacetylated glycopeptide (blue curve) is left. All starting material (black curve) is completely consumed. **C**: Until 98 h (grad.: water/84% ACN + 0.1% TFA (95:5) \rightarrow (79:21), 54 min, 0.3% min⁻¹). Deacetylation of monoacetylated glycopeptide (+1xAcO) and increasing β-elimination at pH 11.5.


Partial deacetylation commonly occurred during the release of the glycopeptides from the resin by the treatment with TFA (*figure 4.37*, **B**, black curve). After 15 h at pH 9.5, one acetyl group was left. Adjustment of the pH to 11.5 and HPLC monitoring with a slower gradient

(water/84% ACN (95:5)→(79:21), 54 min, 0.3% min⁻¹) enabled removal of the last acetyl group (*figure 4.37*, **C**). After 98 h only small amounts of monoacetylated product (+1x AcO) were left. Due to the increased pH, 14% of β-elimination was observed (by peak integration). Purification by preparative HPLC separated the main product peak from the leftover monoacetylated glycopeptide (*figure 4.38*). Analytical HPLC of the main fraction F1 showed a single product and with the expected molecular weight (*figure 4.38*, **B** and **C**). The separated fraction F2 was a mixture of fully deacetylated and monoacetylated **108** (*figure 4.38*, **D**). The last fraction F3 contained peptide with β-elimination (*figure 4.38*, **E**).


Figure 4.38: HPLC and HR-ESI-MS analysis after deacetylation of **108**. **A**: Preparative HPLC (grad.: water/84% acetonitrile + 0.1% TFA (95:5) → (79:21), 60 min = 0.26% min⁻¹) separation of fractions F1 = 20-30, F2 = 31-36 and F3 = 62-68. **B**: Analytical HPLC (grad.: water/84% acetonitrile + 0.1% TFA (95:5) → (21:79), 54 min = 0.27% min⁻¹) of main peak F1 and F2. **C**: HR-ESI-MS of F1, *m/z*: 908.7621 ([M+3H]³⁺, calc. 908.7603); 681.8247 ([M+4H]⁴⁺, calc. 681.8220) → complete deacetylation. **D**: HR-ESI-MS of F1, *m/z*: 922.7644 ([M+3H]³⁺, calc. 922.7648) → monoacetylation; **E**: HR-ESI-MS of F1, *m/z*: 659.0008 ([M+3H]³⁺, calc. 659.0007)→ β-elimination.

Glycopeptide **109** carried the type-2 core 1 glycan in the GST*A domain. Deacetylation of **109** was performed under the same conditions as **108**. The majority of acetyl groups were hydrolyzed rapidly (*figure 4.39*, **B**), while further hydrolysis of the remaining 4'-OAc on galactose was again slow (*figure 4.39*, **C**).


Figure 4.39: Analytical HPLC control of deacetylation of glycopeptide **109**. **A**: Structure of deacetylated product **109**. **B**: After 21 h (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (40:60), 55 min = 1% min⁻¹): Monoacetylated glycopeptide (blue curve) is left. All starting material (black curve) is completely consumed. **C**: Until 118 h (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (21:79), 54 min = 0.3% min⁻¹): No further product formation from 75 h.

No further change was visible in the HPLC chromatogram after 75 h. ESI-MS analysis after separation of the main peak and the minor site product in preparative HPLC revealed that the minor product was not leftover monoactylated glycopeptide but a product with the same mass as the desired deacetylated glycopeptides (*figure 4.40*). It was assumed that the minor peak was epimerization product. Depending on the glycosylation site and extend of glycosylation this side reaction appeared for some peptides in varying amounts and the by-product was usually effectively removed by preparative HPLC.

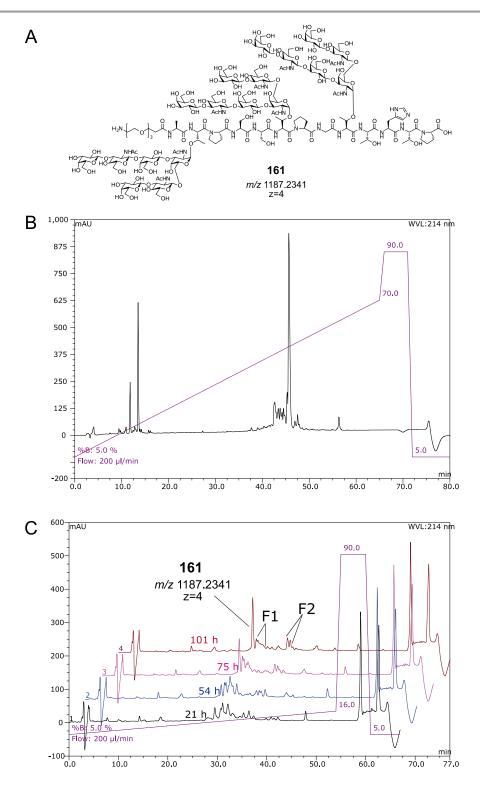
Figure 4.40: HPLC and HR-ESI-MS analysis after deacetylation of **109**. **A**: Preparative HPLC (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (40:60), 55 min = 1% min⁻¹) separation of fractions F1 = 17-21, F2 = 22-24. **B**: Analytical HPLC (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (79:21), 54 min = 0.3% min⁻¹) of fractions F1 (black curve) and F2 (blue curve). **C**: HR-ESI-MS of fraction F1, *m/z*: 908.7620 ([M+3H]³⁺, calc. 908.7603); 681.8245 ([M+4H]⁴⁺, calc. 681.8220) \rightarrow complete deacetylation. **D**: HR-ESI-MS of fraction F2, *m/z*: 908.7646 ([M+3H]³⁺, calc. 908.7603) \rightarrow assumed epimerization.

Glycopeptides without the internal galactose of the central core 1 motif, such as the Tantigen or core 3 glycopeptides, were deacetylated at pH 9.5 in a few hours. As an example, *figure 4.41* shows HPLC chromatograms of trivalent type-2 core 3 glycopeptide **98** (*figure 4.41*, **A**), after SPPS (*figure 4.41*, **B**) and at deacetylation conditions (*figure 4.41*, **C**). The deacetylation reaction was stopped after 20 h by addition of acetic acid.

Figure 4.41: A: Structure of triglycosylated type-2 core 3 peptide **98**. B: Analytical HPLC chromatogram after SPPS. C: Complete deacetylation after 20 h. (grad. in B and C: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (40:60), 55 min = 1% min⁻¹).

The MUC1 glycopeptide library was synthesized according to the examples shown above. MUC1(22mer) PAHGVTSAPDT*RPAPGS*T*APPA sequences **131-133** were synthesized according to the same SPPS protocol. The serine **211** and threonine **212** T_N -antigen building blocks for **131-133** and **69-75** were kindly provided by Dr. Hui Cai. *Table 4.2* summarizes all synthesized MUC1 glycopeptides and relevant reaction parameters.

Table 4.2: Overview of all synthesized MUC1 sequences with relevant reaction parameters.


			:	deacetylation			
Glycan	#	Sequence	eq glycosylated amino acid	min reaction time glycosylated amino acid (h)	pН	reaction time (h)	final overall yield (%)
T _N	68	PAHGVT*SAPDTRPAPGSTA	1.5	2	9.5	6	67
	69	PAHGVTSAPDT*RPAPGSTA	1.5	2	9.5	6	65
	70	PAHGVTSAPDTRPAPGST*A	1.5	2	9.5	6	70
	71	PAHGVT*SAPDT*RPAPGSTA	1.5	2	9.5	6	51
	72	PAHGVT*SAPDTRPAPGST*A	1.5	2	9.5	6	52
	73	PAHGVTSAPDT*RPAPGST*A	1.5	2	9.5	6	56
	74	PAHGVT*SAPDT*RPAPGST*A	1.5	2	9.5	6	40
Т	75	PAHGVT*SAPDTRPAPGSTA	1.5	2	9.5	14	85
	76	PAHGVTSAPDT*RPAPGSTA	1.5	2	9.5	14	85
	77	PAHGVTSAPDTRPAPGST*A	1.5	2	9.5	14	76
	78	PAHGVT*SAPDT*RPAPGSTA	1.5	2	9.5	14	67
	79	PAHGVT*SAPDTRPAPGST*A	1.5	2	9.5	14	85
	80	PAHGVTSAPDT*RPAPGST*A	1.5	2	9.5	14	62
	81	PAHGVT*SAPDT*RPAPGST*A	1.5	2	9.5	14	59
	82	PGSTAPPAHGVTSAPDT*RPA	1.5	2	9.5	4	71
	83	APDT*RPAPGSTAPPAHGVTSA	1.5	2	9.5	4	54
	84	APDT*RPA	1.5	2	9.5	15	66
type-1 core 3	85	PAHGVT*SAPDTRPAPGSTA	1.5	5	9.5	16	60
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	86	PAHGVTSAPDT*RPAPGSTA	1.5	5	9.5	16	74
	87	PAHGVTSAPDTRPAPGST*A	1.5	5	9.5	16	79
	88	PAHGVT*SAPDT*RPAPGSTA	1.5	5	9.5	16	37
	89	PAHGVT*SAPDTRPAPGST*A	1.5	5	9.5	16	75
	90	PAHGVT SAPDT*RPAPGST A	1.5	5	9.5 9.5	24	47
	90 91	PAHGVT*SAPDT*RPAPGST*A	1.5	5	9.5 9.5	16	62
type-2 core 3	92	PAHGVT*SAPDTRPAPGSTA	1.5	5	9.5	18	70
.)po <u>2</u> colo c	93	PAHGVTSAPDT*RPAPGSTA	1.5	5	9.5	18	65
	94	PAHGVTSAPDTRPAPGST*A	1.5	5	9.5	27	72
	95	PAHGVT*SAPDT*RPAPGSTA	1.5	5	9.5	20	74
	96	PAHGVT*SAPDTRPAPGST*A	1.5	5	9.5	21	62
	97	PAHGVTSAPDT*RPAPGST*A	1.5	5	9.5	21	62
	98	PAHGVT*SAPDT*RPAPGST*A	1.5	5	9.5	20	59
	99 99	PAHGVT SAFDT KFAFGST A PAHGVT*SA	1.5	5	9.5 9.5	15	24
type-1 core 1	100	PAHGVT*SAPDTRPAPGSTA	1.5	6	11.5	53	40
type-1 core 1	100	PAHGVTSAPDT*RPAPGSTA	1.5	6	11.5	53	45
	102		1.5	6	11.5	80	43
		PAHGVT*SAPDT*RPAPGSTA					
		PAHGVT SAPDT RPAPGSTA PAHGVT*SAPDTRPAPGST*A	1.5	6	11.5	84	36
			1.5	6	11.5	62	35
		PAHGVTSAPDT*RPAPGST*A PAHGVT*SAPDT*RPAPGST*A	1.5 1.5	6 6	11.5 11.5	62 84	36 27
tuno 2 coro 1	107		1 5	e	11 5	Q /	40
type-2 core 1			1.5	6	11.5	84	49 53
	108		1.5	6	11.5	98 108	53
			1.5	6	11.5	108	45
			1.5	6	11.5	119	34
		PAHGVT*SAPDTRPAPGST*A	1.5	6	11.5	95	26
		PAHGVTSAPDT*RPAPGST*A	1.5	6	11.5	80	29
		PAHGVT*SAPDT*RPAPGST*A	1.5	6	11.5	127	17
		GST*APPAHGVTSAPDTRPA	1.5	6	11.5	78	14
	115	PDTRPAPGST*APPAHGVTSA	1.5	6	11.5	80	41
	116	PDTRPAPGSTAPPAHGVT*SA	1.5	6	11.5	60	40
type-1 core 2	117	PAHGVT*SAPDTRPAPGSTA	2.0	10	11.5	81	36

			SPPS		deacetylation		
Glycan	#	Sequence	eq glycosylated amino acid	min reaction time glycosylated amino acid (h)	рН	reaction time (h)	final overall yield (%)
	119	PAHGVTSAPDTRPAPGST*A	2.0	10	11.5	103	37
	120	PAHGVT*SAPDT*RPAPGSTA	2.0	10	11.5	82	22
	121	PAHGVT*SAPDTRPAPGST*A	2.0	10	11.5	138	20
	122	PAHGVTSAPDT*RPAPGST*A	2.0	10	11.5	82	20
	123	PAHGVT*SAPDT*RPAPGST*A	2.0	10	11.5	129	9
type-2 core 2	124	PAHGVT*SAPDTRPAPGSTA	2.0	10	11.5	90	43
	125	PAHGVTSAPDT*RPAPGSTA	2.0	10	11.5	120	33
	126	PAHGVTSAPDTRPAPGST*A	2.0	10	11.5	129	40
	127	PAHGVT*SAPDT*RPAPGSTA	2.0	10	11.5	96	18
	128	PAHGVT*SAPDTRPAPGST*A	2.0	10	11.5	129	8
	129	PAHGVTSAPDT*RPAPGST*A	2.0	10	11.5	149	14
	130	PAHGVT*SAPDT*RPAPGST*A	2.0	10	11.5	129	3
*type-2 core 1 + [#] 2xTn	131	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	3x1.5	9	11.5	106	16
*type-2 core 3 + [#] 2xTn	132	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	3x1.5	9	9.5	16	19
*type-2 core 2 + [#] 2xTn	133	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	1x2.0+2x1.5	9	11.5	106	8

4.2.4 Synthesis of a MUC5B glycopeptide library

MUC5B(13mer) glycopeptides were synthesized on TentaGel® R Trt-Pro Fmoc. The MUC5B tandem repeat consists of 29 amino acids of the sequence ATGSTATPSSTPGTTHTPPVLTTTATTPT with 16 potential serine or threonine glycosylation sites. The peptide sequence ATPSSTPGTTHTP was chosen for a feasible synthesis of a multivalent pattern, similar to the described MUC1 glycopeptides. This MUC5B(13mer) sequence contains seven O-glycosylation sites of which five could be addressed with the glycosylated threonine amino acids described herein.

Triglycosylated MUC5B peptide **161** with type-1 core 2 hexasaccharide glycan decoration was synthesized according to the SPPS protocol displayed in *figure 4.35*. The type-1 core 2 glycosylated amino acid building block **58** was incorporated at the threonine glycosylation sites T^2 , T^6 and T^9 and was applied in 2 eq excess with elongated reaction times (minimum 10 h). *Figure 4.42* shows the analytical HPLC chromatogram of acetylated glycopeptide **161** after SPPS (*figure 4.42*, **B**) and the course of deacetylation to result in the final product sequence **161** (*figure 4.42*, **C**).

Figure 4.42: A: Structure of deacetylated product **161**. B: Analytical HPLC of crude, acetylated glycopeptide **161** after SPPS (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (30:70), 65 min, 1% min⁻¹). C: Deacetylation of **161** (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (16:84), 54 min, 0.2% min⁻¹).

The main peak in the chromatogram (*figure 4.42*, **C**) represented the desired fully deacetylated product, the triglycosylated type-2 core 2 glycopeptide **161**. Fractions F1 and F2 were also isolated and analyzed my mass spectrometry (*figure 4.43*). Fraction F1

contains a mixture of product isomers, which might be peptide epimerization and product masses fitting for shorter, acetyl capped sequences (*figure 4.43*, **A**). The sequences were capped at the corresponding proline amino acids P^7 and P^3 , after which a glycosylated amino acid was supposed to follow. Since the used glycosylated amino acid **58** was applied in the synthesis of various other MUC1 and MUC5B sequences, a contamination with acetic acid, leftover from silica column chromatography after *tert*-butyl ester removal, was excluded. It was assumed that intra- or intermolecular acetyl-migration took place during the coupling of the second and third glycosylated amino acid. The short distances between the selected glycosylation sites in the MUC5B sequence could have facilitated close proximities between terminal prolines and the previously installed glycan. Then, the elongated reaction times and slower reaction rates of the bulky hexasaccharide glycosylated amino acids could have promoted acetyl-migration. Fraction F2 contained a mixture of diglycosylated deletion sequences, missing a complete glycosylated amino acid and glycopeptides with a single β -elimination site, having a unsaturated homoalanine instead of a glycosylated threonine (*figure 4.43*, **B**).

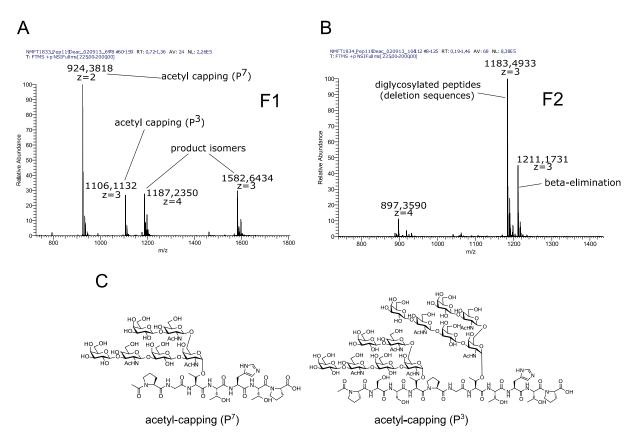


Figure 4.43: Side products in SPPS of glycopeptide 161 in fractions F1 and F2.

However, the desired glycopeptide product was obtained as the main product (*figure 4.42*, **C**). Glycopeptide **161** was obtained in 10% yield overall after the final deacetylation, based on the amount of initially employed SPPS-resin. The synthesis of glycopeptide **161**

demonstrates the feasibility of SPPS of short peptide sequences (13 amino acids) with bulky glycans motifs, distributed on densely occupied glycosylation sites. The carbohydrate portion accounts for almost 70% of the overall weight of glycopeptide **161**. The MUC5B glycopeptide library was synthesized according to the general SPPS protocol also applied for MUC1 glycopeptide synthesis (*figure 4.35*). Relevant reaction parameters and overall yields for the synthesized MUC5B sequences are summarized in *table 4.3*.

			5	SPPS		deacetylation		
Glycan	#	Sequence	equiv glycosylated amino acid	min reaction time for glycosylated amino acid/h	рН	time/h	final overall yield/%	
Т	134	ATPSSTPGT*THTP	1.5	2	9.5	14	78	
	135	AT*PSSTPGTTHTP	1.5	2	9.5	8	72	
	136	AT*PSSTPGT*THTP	1.5	2	9.5	14	79	
	137	AT*PSST*PGTTHTP	1.5	2	9.5	14	62	
	138	AT*PSST*PGT*THTP	1.5	2	9.5	14	61	
	139	T*GSTAT*PSST*PGT*THTP	1.5	2	9.5	18	33	
core 3 type1	140	ATPSSTPGT*THTP	1.5	5	9.5	12	72	
	141	AT*PSSTPGTTHTP	1.5	5	9.5	12	70	
	142	AT*PSSTPGT*THTP	1.5	5	9.5	16	61	
	143	AT*PSST*PGTTHTP	1.5	5	9.5	12	54	
	144	AT*PSST*PGT*THTP	1.5	5	9.5	21	62	
	145	T*GSTAT*PSST*PGT*THTP	1.5	5	9.5	21	36	
core 3 type2	146	ATPSSTPGT*THTP	1.5	5	9.5	12	67	
	147	AT*PSSTPGTTHTP	1.5	5	9.5	18	75	
	148	AT*PSSTPGT*THTP	1.5	5	9.5	20	62	
	149	AT*PSST*PGTTHTP	1.5	5	9.5	12	67	
	150	AT*PSST*PGT*THTP	1.5	5	9.5	20	65	
	151	T*GSTAT*PSST*PGT*THTP	1.5	5	9.5	18	49	
core 1 type 1	152	ATPSSTPGT*THTP	1.5	6	11.5	36	36	
	153	AT*PSSTPGTTHTP	1.5	6	11.5	44	49	
	154	AT*PSSTPGT*THTP	1.5	6	11.5	40	30	
	155	AT*PSST*PGTTHTP	1.5	6	11.5	110	40	
	156	AT*PSST*PGT*THTP	1.5	6	11.5	110	19	
	157	T*GSTAT*PSST*PGT*THTP	1.5	6	11.5	110	10	
core 1 type2	158	ATPSSTPGT*THTP	1.5	6	11.5	140	17	
	159	AT*PSSTPGTTHTP	1.5	6	11.5	67	37	
	160	AT*PSSTPGT*THTP	1.5	6	11.5	38	22	
	161	AT*PSST*PGTTHTP	1.5	6	11.5	113	22	
	162	AT*PSST*PGT*THTP	1.5	6	11.5	87	15	
	163	T*GSTAT*PSST*PGT*THTP	1.5	6	11.5	87	9	
core 2 type 1	164	ATPSSTPGT*THTP	2.0	10	11.5	185	20	
	165	AT*PSSTPGTTHTP	2.0	10	11.5	175	28	
	166	AT*PSSTPGT*THTP	2.0	10	11.5	146	16	
	167	AT*PSST*PGTTHTP	2.0	10	11.5	143	21	
	168	AT*PSST*PGT*THTP	2.0	10	11.5	101	10	
core 2 type2	169	ATPSSTPGT*THTP	2.0	10	11.5	185	15	
	170	AT*PSSTPGTTHTP	2.0	10	11.5	196	28	
	171	AT*PSSTPGT*THTP	2.0	10	11.5	190	17	
				10			~ /	
	172	AT*PSST*PGTTHTP	2.0	10	11.5	143	21	

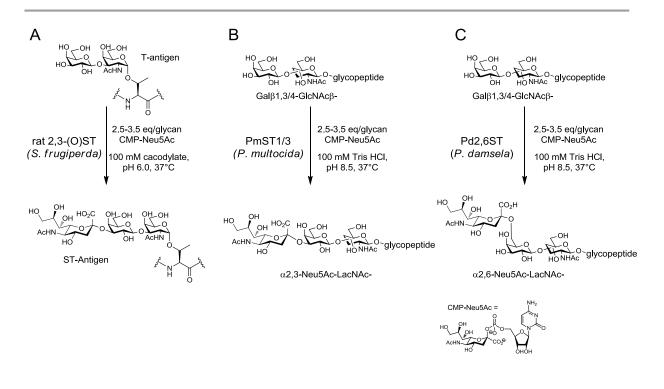
Table 4.3: Overview of all synthesized MUC5B sequences with relevant reaction parameters.

4.2.5 Synthesis of sialylated MUC1 glycopeptides

4.2.5.1 Enzymatic carbohydrate extension of MUC1 glycopeptides

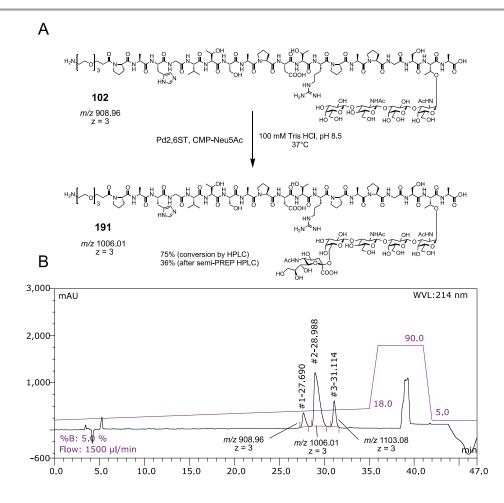
Sialylation is a frequent glycan modification, terminating carbohydrate chains in O- and Nglycoproteins and glycolipids. In this context, glycans are usually decorated with Nacetylneuraminic acid (Neu5Ac) α 2,3- or α 2,6-linked to terminal galactose, α 2,6-linked to GalNAc or sometimes $\alpha 2,8$ - or $\alpha 2,9$ -linked to a preceding Neu5Ac.²⁷⁷ This type of glycosylation has significant effects on protein structure and is involved in a plethora of glycan-protein interactions.²⁷⁸ Neu5Ac adds a negative charge to a glycoprotein, increasing the hydrophilicity and providing charge repulsion of cells, for example sialylated erythrocytes in circulation. The half-life of serum glycoproteins is influenced, since non-sialylated glycans are recognized by asialoglycoprotein receptors on hepatocytes and are then cleared from circulation. α 2,3-Sialylation together with 1,3/4-fucosylation on Gal β 1,3-GlcNAc β and Galβ1,4-GlcNAcβ chains, forms sLe^a and sLe^x (sialyl Lewis) glycans. Lewis structures are essential for leukocyte recruitment to inflamed tissues, due to binding to the corresponding selectins on the endothelial tissue, blood platelets or to the leukocyte itself. Further, generation of sialyl Lewis motifs on mucins is increased in most carcinomas facilitating metastasis by aforementioned selectin interaction. The a2,3-sialylation is in particular responsible for the binding of the human adopted influenza virus. Also, $\alpha 2.6$ -sialylation may have strong influence on apoptotic effects mediated by galectins. Cancer cells are suspected make to use of this "carbohydrate on-off switch", in order to avoid cell death by extracellular galectin-induced apoptosis.93

A selection of the synthesized glycopeptides was enzymatically sialylated. Here, terminal sialylation of the T-antigen and extended core 1, 2 and 3 structures, represents the physiological glycosylation state of mucins and binding behavior of antibodies and lectins was evaluated with the sialylated glycopeptides.


A chemoenzymatic approach on the peptide level was chosen, since it offers the option to modify certain peptides after SPPS, instead of preparing an extra set of chemically sialylated glycosyl amino acids before incorporation in SPPS. Chemoenzymatic glycosylation at the amino acid stage before Fmoc-SPPS would not be convenient because of protecting group issues. Several chemical methods of sialylation of complex carbohydrates have been presented on the level of oligosaccharides and glycosylated amino acids. Despite all efforts, chemical sialylations are still very challenging.^{279,280} The presence of an electron withdrawing carboxyl group at the anomeric center prompts elimination reactions towards 2,3-dehydro compounds, while the absence of a participating neighboring group at position 3 is unfavorable for the stereoselectivity of the glycosylation. Appropriate choices of anomeric C1

protecting groups and C2 leaving groups are essential for chemical sialylations. In contrast, enzymatic extension with sialyltransferases is reliable in terms of regio- and stereoselective sialylation outcome.¹⁹ The only drawback is the fairly high price of the nucleotide donor sugar, here cytidine-5´-monophospho-*N*-acetylneuraminic acid (CMP-Neu5Ac). Alternatively, it is possible to generate CMP-Neu5Ac *in situ* from cytidine triphosphate (CTP) and Neu5Ac and Neu5Ac from *N*-acetylmannosamine in a one-pot multienzyme system (OPME).²⁸¹

Three different commercial and one expressed (generously provided by Prof. Xi Chen) sialyltransferase were applied for glycopeptide sialylation in this work:


- 1. Rat 2,3-OST: α2,3-(O)-Sialyltransferase from rat, recombinant (*Spodoptera frugiperda*)²⁸²
- PmST1 (*PM0188*): α2,3-(O)-Sialyltransferase from *Pasteurella multocida*, recombinant (*Escherichia coli*)²⁸³
- 3. PmST3 (*PM1174*): α2,3-(O)-Sialyltransferase from *Pasteurella multocida*, recombinant (*Escherichia coli*), from Prof. X. Chen.²⁸⁴
- 4. Pd2,6ST: α2,6-(O)-Sialyltransferase from *Photobacterium damsela*, recombinant (*Escherichia coli*)²⁸⁵

Rat 2,3-OST is a α 2,3-sialyltransferase with a reported specificity for the T-antigen (Gal β 1,3-GalNAc α) structure.²⁸² In test-reactions with MUC1, carrying LacNAc (Gal β 1,3/4-GlcNAc β) terminated glycopeptides, no reactivity with rat 2,3-OST was observed. PmST1 and PmST3 are a α 2,3-O-sialyltransferases with reported reactivity towards LacNAc and lactose substrates and good reactivity with β -galactosides in general, and were used to α 2,3-sialylate type-1 and type-2 LacNAc terminated glycopeptides.²⁸³ Pd2,6ST is a α 2,6-sialyltransferase with a reported substrate specificity for β -linked Gal and GalNAc residues, but low activity on α -linked substrates.²⁸⁵ It was used to α 2,6-sialylated the type-1 and type-2 terminated LacNAc glycopeptides (*figure 4.44*).

Figure 4.44: Sialyltransferases used for enzymatic termination. **A**: Rat 2,3-OST for α2,3-sialylation of T-antigen. **B**: PmST1/3 for α2,3-sialylation of type-1 and type-2 LacNAc. **C**: Pd2,6ST for 2,6-sialylation of type-1 and type-2 LacNAc.

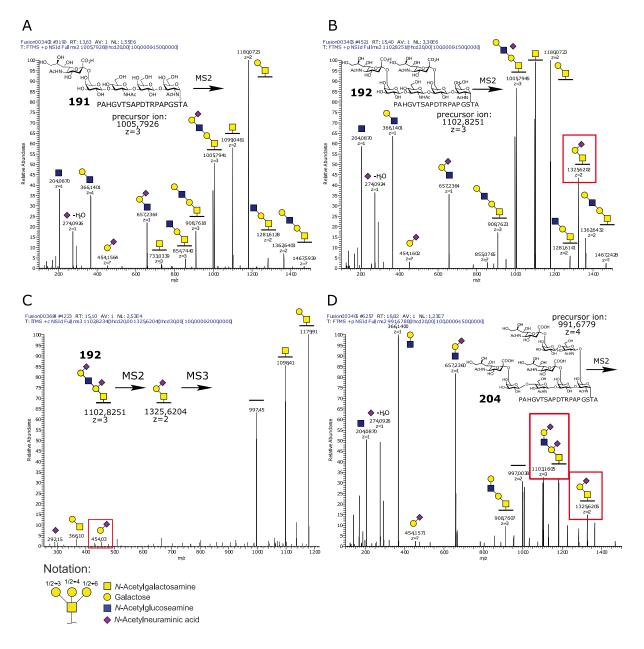

A selection of 21 MUC1 glycopeptides was chosen for in-solution enzymatic sialylation. The peptides (0.5-1.5 mg) were dissolved in an appropriate reaction buffer and CMP-Neu5Ac and the particular enzyme was added. Usually after 3-6 h an extra portion of donor sugar and enzyme was added and the reaction was left for shaking overnight at 37°C. Progress was monitored by HPLC-ESI-MS and upon complete or almost complete conversion of the glycopeptide the reaction was stopped by addition of cold acetonitrile (15-20% end-concentration). The reaction mixtures were desalted by solid phase extraction on a C18 cartridge. In order to ensure high peptide purity before immobilization on the microarray, the desired products were further purified by semi-preparative HPLC-MS. All analytical and preparative HPLC steps were performed with 0.1% of formic acid (FA) as a comparably weak acid for ion-pairing, instead of TFA. TFA did not provide significant differences in retention times for the non-sialylated starting materials and the sialylated products. For illustration, *figure 4.45* shows the enzymatic sialylation of glycopeptides **102** with Pd2,6ST (*figure 4.45*, **A**) and the preparative HPLC of the final product glycopeptide **191** (*figure 4.45*, **B**).

Figure 4.45: A: Enzymatic α 2,6-sialylation of glycopeptide **102** with Pd2,6ST to afford product **191**. B: Semipreparative HPLC-MS of glycopeptide **191** with leftover starting material (*m/z* 908.96), monosialylated main product (*m/z* 1006.01) and disialylated product (*m/z* 1103.08).

Usually, treatment with Pd2,6ST resulted in pure monosialylated glycans (per equivalent LacNAc). The peptides with glycosylation in the GST*A site, also showed minor amounts of peptides with one extra Neu5Ac residue. It was recently reported that this bacterial sialyltransferase is also able to add Neu5Ac to internal galactose units of type-2 poly-LacNAc repeats.^{286,287} The equivalent human enzyme, ST6Gal-I, is solely an exo-glycosyltransferase, adding a single α 2,6-linked Neu5Ac only to the non-reducing end. However, here the internal Gal is not part of a poly-LacNAc chain, as reported, but of a core 1 (Gal β 1,3-GalNAc α) substructure. Mass spectrometric HCD-MS2 fragmentation revealed additional sialylation on the T-antigen glycopeptide fragment ion (*m*/*z* 1325.6202, *z*=3) of the minor disialylated product, compared to the monosialylated main product (*figure 4.46*, **A** and **B**). This fragment included no information whether Neu5Ac was located on Gal or GalNAc. However, no 2,6-ST_N-antigen glycopeptide fragment ion could be observed, hinting that Neu5Ac is indeed located on Gal. Further HCD-MS3 fragmentation of ion *m*/*z* 1325.6202 showed ion *m*/*z* 454.03, representing a Neu5Ac-Gal ion (*figure 4.46*, **C**) and confirming sialylation of the

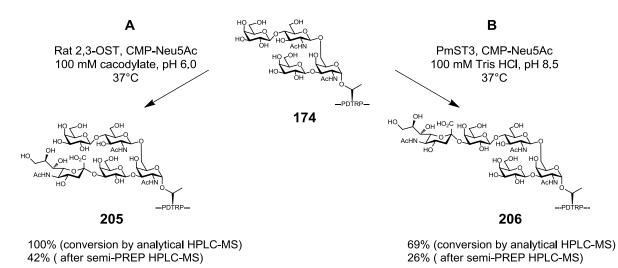

internal galactose. Additionally, HCD-MS2 of the three times sialylated core 2 structure of glycopeptide **204**, having the 6-OH position of the initial GalNAc α blocked with a lactosamine, also showed the fragment *m/z* 1325.6205 in HCD-MS2 and additionally disialylated core 1 hexasaccharide peptide *m/z* 1103.1065 (*figure 4.46*, **D**), further indicating sialylation on the galactose of the T-antigen substructure. Also, core 3 modified glycopeptides, lacking internal Gal, did not show any multiple sialylation products.

Figure 4.46: A: HCD-MS2 fragmentation (20% NCE) of 2,6-monosialylated glycopeptide **191**. B: Disialylated product **192** with additional T-antigen sialylation (*m/z* 1325.6202). Neu5Ac with indistinct glycosylation position is shown to be "disconnected". C: HCD-MS3 fragmentation (30% NCE) with Neu5AcGal oxonium ion *m/z* 454.03. D: HCD-MS2 fragmentation of monosaccharide glycopeptide **204** with additional T-antigen sialylation (*m/z* 1325.6202).

Minor internal sialylation by Pd2,6ST was observed on some glycopeptides with internal Gal, i.e. core 1 tetrasaccharide and core 2 hexasaccharides but only if the glycan was located in the GST*A region. Glycosylation in the VT*SA and PDT*R domains was not affected, at least not with the sialylation conditions applied here. The degree of internal sialylation is dependent on the conditions used. The applied conditions provided internal sialylation yields of 5-20%, except for glycopeptide **109** (type-2 core 1 on GST*A), yielding 50% of disialylated product (by HPLC peak integration). For three of the fourteen glycopeptides treated with Pd2,6ST, the minor by-product with a further α 2,6-Neu5Ac residue was isolated (namely **192**, **198**, **204**, *table 4.4*, *vide infra*), which were appended to the library.

The α 2,3-sialyltransferases provided glycosylation products according to the expected specificities. Rat 2,3-OST generated exclusively sialylated T-antigen (Gal β 1,3-GalNAc α) glycans. Test reactions with the T-antigen-specific rat 2,3-OST on type-1 and type-2 LacNAc extended peptides showed no activity, with the applied reaction conditions. Consequently, glycopeptide **174** with a core 2 tetrasaccharide, containing both, a type-2 LacNAc (Gal β 1,4GlcNAc β) branch and a T-antigen substructure (Gal β 1,3GalNAc α), was only sialylated on the T-antigen motif to result in glycopeptide **205** (*figure 4.47*, reaction **A**). PmST3 was reported to sialylate terminal galactose and galactoside monosaccharides in general,²⁸³ including T-antigen (Gal β 1,3-GalNAc α / β) structures on smaller MUC1 peptide fragments.²⁸⁸ However, no reactivity with the T-antigen MUC1 glycopeptide **174**, only one equivalent of Neu5Ac was transferred to the glycopeptide resulting in glycopeptide **206** (*figure 4.47*, reaction **B**). No double sialylation was observed, although excess of CMP-Neu5Ac was applied (total 3.5 eq). It was concluded that glycopeptide **174** was selectively sialylated on the LacNAc branch.

Figure 4.47: Enzymatic α 2,3-sialylation of glycopeptide **174** with rat 2,3-OST and PmST1 on different branches of the core 2 type-2 tetrasaccharide glycan, resulting in glycopeptides **205** and **206**.

The LacNAc sialylation on glycopeptide **206** by PmST3 was further verified by microarray screening. The binding of the LacNAc-specific lectin *Erythrina cristagalli* (ECA) was completely abolished after sialylation and sialic acid binding lectin wheat germ agglutinin (WGA) recognized only T-antigen sialylation, as in **205** (see *chapter 4.3.11.1*; *figure 4.75*, **A** and **E**). Also, mass spectrometric HCD-MS2 fragmentation of the precursor ions of **205** and **206**, revealed the ST-antigen glycopeptide fragment *m*/*z* 1352.6160 (z = 2) for **205** (*figure 4.48*, **A**), but not in the fragmentation spectrum of **206**, which instead showed the sialyl-LacNAc trisaccharide oxonium ion *m*/*z* 657.23, indicating LacNAc instead of T-antigen sialylation (*figure 4.48*, **B**).

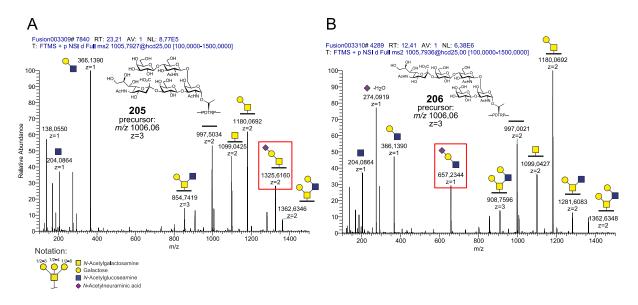


Figure 4.48: HCD-MS2 fragmentation spectra of glycopeptides 205 (A) and 206 (B), both recorded at 25% NCE.

PmST3 was also not able to sialylate type-1 LacNAc containing glycopeptides, indicating low specificity for β 1,3-linked disaccharides in general, in addition to the β 1,3-linked T-antigen. Further sialylation reactions on type-1 LacNAc units and as well type-2 containing glycopeptides were performed using commercial PmST1, which had a similar activity towards both LacNAc structures. Significant reaction parameters for all enzymatic α 2,3- and α 2,6- sialylations are summarized in *table 4.4*.

M	MUC1 Acceptor Peptide		Conditions		Product		
Glycan	#	Sequence	enzyme	reaction time (h)	#	conversion (%, by HPLC)	
Т	75	PAHGVT*SAPDTRPAPGSTA	rat2,3OST	20	175	97	
	76	PAHGVTSAPDT*RPAPGSTA	rat2,3OST	36	176	82	
	77	PAHGVTSAPDTRPAPGST*A	rat2,3OST	20	177	94	
	78	PAHGVT*SAPDT*RPAPGSTA	rat2,3OST	15	178	89	
	79	PAHGVT*SAPDTRPAPGST*A	rat2,3OST	15	179	100	
	80	PAHGVTSAPDT*RPAPGST*A	rat2,3OST	15	180	100	
	81	PAHGVT*SAPDT*RPAPGST*A	rat2,3OST	38	181	70	
type-2 core 3	92	PAHGVT*SAPDTRPAPGSTA	PmST1	22	182	100	
	93	PAHGVTSAPDT*RPAPGSTA	PmST1	24	183	88	
	94	PAHGVTSAPDTRPAPGST*A	PmST1	22	184	94	
	92	PAHGVT*SAPDTRPAPGSTA	Pd2,6ST	15	185	97	
	93	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	24	186	88	
	94	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	15	187	100	
	98	PAHGVT*SAPDT*RPAPGST*A	Pd2,6ST	18	188	100	
type-1 core 1	101	PAHGVTSAPDT*RPAPGSTA	PmST1	12	189	88	
	102	PAHGVTSAPDTRPAPGST*A	PmST1	12	190	85	
	102	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	191	75	
	102	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	192	17	
type-2 core 1	107	PAHGVT*SAPDTRPAPGSTA	PmST1	18	193	97	
	108	PAHGVTSAPDT*RPAPGSTA	PmST1	39	194	100	
	108	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	18	195	97	
	109	PAHGVTSAPDTRPAPGST*A	PmST1	18	196	97	
	109	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	197	55	
	109	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	198	40	
	113	PAHGVT*SAPDT*RPAPGST*A	PmST1	18	199	81	
type-1 core 2	119	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	200	91	
type-2 core 2	125	PAHGVTSAPDT*RPAPGSTA	PmST1	36	201	66	
(hexa- saccharide)	125	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	40	202	81	
,	126	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	203	84	
	126	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	12	204	16	
type-2 core 2	174	PAHGVTSAPDT*RPAPGSTA	rat2,3OST	22	205	100	
(tetra- saccharide)	174	PAHGVTSAPDT*RPAPGSTA	PmST3	40	206	69	

All Neu5Ac modified glycopeptides were synthesized in 0.5-1.5 mg scale of starting peptide. In most cases the glycosylation proceeded to almost full conversion with the depicted conditions. Since high purity was desired for microarray spotting, leftover starting material and possible oversialylated byproducts were separated. The crude reaction mixture was first desalted by solid phase extraction on C18 cartridges and the main product was then isolated by semi-preparative HPLC-MS. The scale of the synthesis was small and gravimetric determination of the received reaction products was not considered to be reliable. Instead, the glycopeptides were dissolved in water and the glycopeptide concentration of an aliquot was determined by amino acid analysis (AAA). Briefly, the peptides were hydrolyzed with 6 N HCl in the gas phase at 120°C for 22h. The obtained free amino acids were conjugated at the amino group with 6-aminoquinolyl-*N*-hydroxysuccinimidyl carbamate (AQC).²⁸⁹ By HPLC with fluorescence detection, the signal intensity of each amino acid was compared with a likewise labeled norleucine internal standard. Considering the stoichiometric abundance of each amino acid, the overall peptide concentration in the glycopeptide solution was then deduced.

4.2.6 Tandem MS of sialylated mucin O-glycopeptides - oxonium ion pattern

analysis

The analysis of protein glycosylation is a challenging task. One problem is the glycan heterogeneity at different or even the same glycosylation sites on a protein. The glycomic approach for saccharide identification and carbohydrate linkage elucidation usually involves chemical or enzymatic release from a protein, which prohibits information about glycosylation site occupation and site-specific glycan structures. Glycan removal itself can be problematic. *N*-glycan removal benefits from the existence of endoglycosydases PNGase F and A which enzymatically cleave the N-glycans at the linkage to the protein backbone. PNGases remove the glycan along with a change from the connecting asparagine to aspartate, indicating a former glycosylation site. In the case of O-glycans, no such endoglycosidases are known, except for O-glycanase from Streptococcus pneumonia, cleaving only the unmodified Tantigen. A stepwise exoglycosidase treatment must be used to digest the O-glycans. Chemical methods, such as β-elimination or hydrazinolysis, for the carbohydrate part and subsequent reaction of the dehydro-peptide with a Michael-donor can be employed for glycosylation site determination.²⁹⁰ All this requires several wet lab manipulations on the precious samples. Furthermore, in order to elucidate the carbohydrate structure and linkage connectivity of the cleaved glycans, more modifications, such as glycan permethylation followed by hydrolysis, chemical reduction of the reducing end and sialic acid esterification are required, or the structure must be concluded by the digestion pattern of several glycosidases. In contrast to the glycomic approach, in a typical bottom-up proteome/glycoproteome analysis the (glyco-) proteins are digested by proteases and analyzed by mass spectrometry at the peptide level.^{291,292} This approach simplifies detection of glycosylation sites and the identity of the glycosylated protein can be deduced from the obtained glycopeptides. However, analysis on the glycopeptide level still requires methodologies for linkage elucidation, determination of anomeric configuration and discrimination of isobaric saccharides. A promising method reported lately for the use on glycoconjugates, is ion mobility mass spectrometry (IM-MS). Analytes are separated by differences of their rotationally averaged collisional cross-sections (CSS) during MS or after MS/MS. It has been reported that by this method it is possible to distinguish isomeric oligosaccharides and saccharides fragments from glycopeptides,^{293,294} different glycosylation sites on otherwise identical glycopeptides,²⁹⁵ epimeric methylglycosides²⁹⁶ and may therefore be used in carbohydrate sequencing.

Another way to explore the structure of saccharide epimers and their connectivity in complex glycans attached to glycopeptides, is the analysis of the oxonium ion fragmentation patterns in tandem MS. MS/MS-fragmentation by collisional induced dissociation (CID) or higherenergy C-trap dissociation (HCD) allows stepwise detachment of the monosaccharides. HCD provides the advantage of simultaneous fragmentation of the peptide backbone and the carbohydrates, allowing analysis of glycopeptides in a single MS/MS run. Also high resolution MS2 spectra can be recorded.²⁹⁷ Fragmentation of glycans, results predominantly in isobaric hexose (Gal, Man, Glc) and isobaric hexosamine (GalNAc, GlcNAc) oxonium ion fragments. The relative intensities of the isobaric ion fragments derived from the HexNAc and also Neu5Ac units, can be used as reporter ions in CID or HCD fragmentation (*table 4.5*). Comparison of the relative ion intensities gives then glycan structure specific fragment patterns.

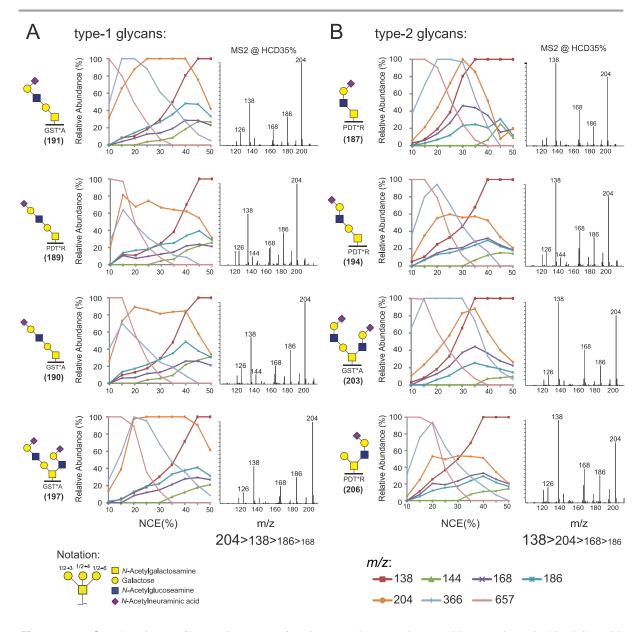

Fragment Ion	Monoisotopic Mass	Composition
126	126.055	[HexNAc - C₂H ₆ O ₃]⁺
138	135.055	[HexNAc - CH ₆ O ₃]⁺
144	144.065	$\left[\text{HexNAc} - \text{C}_2\text{H}_4\text{O}_2\right]^+$
168	168.066	[HexNAc - 2H₂O] ⁺
186	186.076	[HexNAc - H₂O] ⁺
204	204.087	HexNAc ⁺
274	274.092	[Neu5Ac - H₂O] ⁺
292	292.103	Neu5Ac ⁺
366	366.140	HexHexNAc ⁺
454	454.156	Neu5AcHex ⁺
657	657.235	Neu5AcHexHexNAc ⁺

Table 4.5: Characteristic HexNAc and Neu5Ac oxonium ions in tandem MS experiments.

For example, in cooperation with *J. Nilsson* (University of Gothenburg) it was demonstrated that isobaric α GalNAc and β GlcNAc glycan decoration can be distinguished by the HexNAc oxonium ion MS fragmentation pattern.²⁹⁸ MS2 fragmentation of a MUC1 peptide with α GalNAc (T_N-antigen) glycosylation shows equally high intensities of fragments *m/z* 138, 144, 186 and 204. However, a β GlcNAc modification at the same glycosylation site shows strong intensities for 138 and low intensities for *m/z* 144 and *m/z* 186. The two epimeric HexNAc⁺ oxonium ions of GalNAc⁺ and GlcNAc⁺, differing only in the configuration at C4,

have different fragmentation behaviors. This can be exploited by calculating the GlcNAc/GalNAc-ratio by the relative intensity ratio of m/z 138 + m/z 168 (GlcNAc) to m/z 126 + m/z 144 (GalNAc). Based on the developed method of calculating the GlcNAc/GalNAc-ratio, novel GlcNAcylated peptides, which were further extended on the GlcNAc unit while passing through the Golgi complex and loaded onto HLA I molecules, as well as normal mucin type GalNAc glycopeptides were recently identified.²⁹⁹ In collaboration with *J. Nilsson*, the type-1 and type-2 core 3 MUC1 glycopeptides **85-87** and **92-94**, synthesized in this work, were also fragmented by HCD. The oxonium ion profile significantly differed between the type-1 and the type-2 LacNAc elongated glycans. In type-1 glycans strong intensities of m/z 204 and moderate intensities of m/z 186 were observed, while type-2 glycans resulted in low intensities of m/z 204 and m/z 186 ions. Like this, the connectivity of the common 1,3- and 1,4-linked LacNAc disaccharide units can be deduced on the level of intact glycopeptides.

In analogy to the experiments performed in collaboration with *J. Nilsson et al.*, the sialylated glycopeptides, synthesized with PmST1/3 and Pd2,6ST were analyzed, whether the terminal sialylation influences oxonium ion profiling of glycan LacNAc elongation. Thus, selected sialylated glycopeptides with α 2,3- and α 2,6-linked Neu5Ac on either type-1 or type-2 disaccharide units were subjected to HCD-MS2 fragmentation in an Orbitrap Fusion mass spectrometer. The normalized collision energy (NCE) was increased in 5% increments and relative intensities of relevant oxonium ions were recorded (*figure 4.49*, for fragment ion composition see *table 4.5*).

Figure 4.49: Oxonium Ion profiles and spectra of various mucin core glycopeptides terminated with sialic acid. Oxonium ions were generated by HCD-MS2 in 5% increments of NCE from 10-50% on an *Orbitrap Fusion* mass spectrometer. Profiles show relative ion intensities at different NCE levels and spectra show *m*/z 100-220 at 35% NCE. **A:** HexNAc⁺ fragmentation of type-1 glycans. **B**: HexNAc⁺ fragmentation of type-1 glycans.

Type-1 disaccharide glycopeptides (**191**, **189**, **190**, **197**, *figure 4.49*, **A**) showed oxonium ion profiles with high intensities of fragment m/z 204 relative to m/z 138 at NCEs of 30-35%. Fragment m/z 138 surpassed m/z 204 only in the highest energy settings of 45-50%. The MS2 spectra from m/z 100-220 at 35% NCE showed the uniform ion patterns with intensities in the order m/z 204>138>186>168 for all type-1 elongated glycopeptides. In contrast, the type-2 elongated glycopeptides (**187**, **194**, **203**, **206**, *figure 4.49*, **B**) had similar intensities of ions m/z 138 and 204 in the area of 30-35% NCE. All spectra of the type-2 glycans at 35% NCE had again uniform oxonium ion levels in the order m/z 138>204>168>186, which was distinctly different to the type-1 glycopeptides. At NCE levels of 40%, type-1 glycopeptides

had approximately equal levels of m/z 138 and m/z 204, while in type-2 glycopeptides m/z 204 was significantly lower than m/z 138. This is in accordance with the results reported for the not sialylated type-1 and type-2 glycopeptides.²⁹⁸ It was previously proposed that the lower levels of m/z 204 in type-2 glycans compared to type-1 could correspond to a higher acidity of H-5 in the GlcNA-ring, which is eliminated from the m/z 366 and possibly taken up by the galactose, leaving as neutral loss.^{300,301} Therefore, generation of m/z 204 from type-2 HexHexNAc⁺ oxonium ions is to a large extend skipped in favor of direct formation of m/z 186, which then loses another equivalent of water in order to aromatize to m/z 168 and finally gives away CH₂O to result in m/z 138 (figure 4.50).

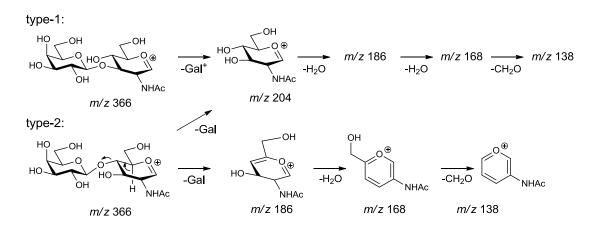
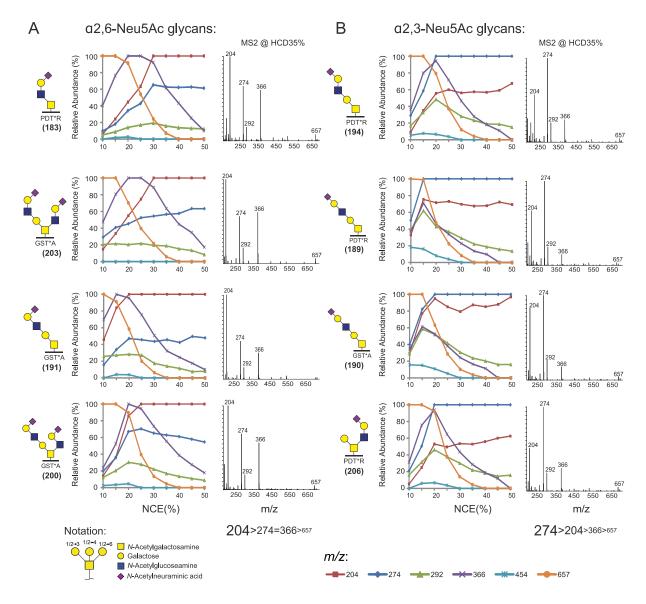
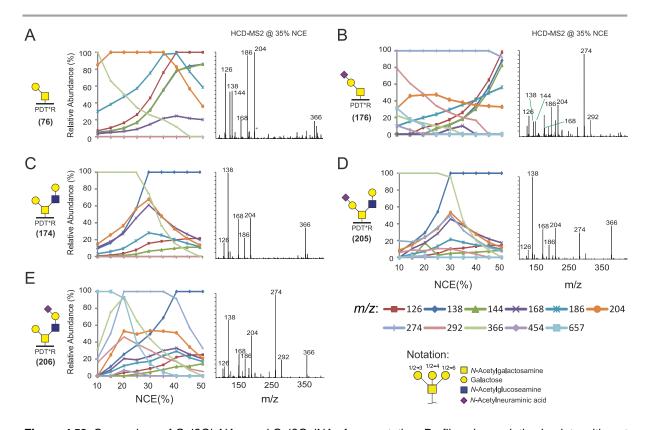



Figure 4.50: Possible fragmentation mechanism of type-1 and type-2 derived oxonium ions.^{300,301}

Compared to the already published results with J. Nilsson et al., the oxonium ion profiles slightly differ in normalized collision energy levels. Such instrument specific variations were found when different mass spectrometers were used for HCD. In the already reported previous cases a Q-Exactive and a LTQ-Orbitrap Velos, both Thermo Fisher Scientific, were used. The instrument used for the here described measurements was an Orbitrap Fusion, also Thermo Fisher Scientific. However, the overall trends and relative intensities of the oxonium ions originating from the LacNAc disaccharides are according to the published results,²⁹⁸ although the LacNAc structures are now further terminated by a sialic acid. Also, different glycosylation sites (here PDT*R or GST*A), the core structures (core 1, core 2, core 3) and the number of LacNAc units (core 2 \rightarrow 2 eq LacNAc and core 1 or 3 \rightarrow 1 equiv LacNAc) seemed to have no effects on these fragmentation differences. Some influence of of sialic acid attachment on the relative ion intensities of the GlcNAc⁺ derived oxonium ions could be monitored. Apparently, all glycopeptides with a2,6-sialylation showed elevated levels of *m/z* 204 in relation to *m/z* 138 (e.g. 187 and 203 vs 194 and 206, figure 4.49, B). It was assumed that sialylation on either 3- or 6-position of Gal differently influences the fragmentation behavior of Neu5AcHexHexNAc⁺ ion m/z 657, which probably alters aforementioned fragmentation mechanism of ion m/z 366 (figure 4.49). Exact elucidation of the fragmentation mechanisms is a matter of further research. However, conjugation with $\alpha 2,3$ - and $\alpha 2,6$ -sialic acid does not prevent discrimination of the type-1 and type-2 disaccharide structures by altered GlcNAc⁺ oxonium ion pattern profiling.

Due to the modification with Neu5Ac, further characteristics of relative oxonium ion intensities were monitored in the area of m/z 250-660.


Figure 4.51: Oxonium-ion profiles and spectra of various mucin core glycopeptides terminated with sialic acid. Profiles show relative ion intensities at different NCE levels and spectra show m/z 200-660 at 35% NCE. A: HexNAc and Neu5Ac fragmentation of α 2,6-Neu5Ac glycans. B: HexNAc and Neu5Ac fragmentation of α 2,6-Neu5Ac glycans.

In general, Neu5Ac was represented strongest by oxonium ion m/z 274 (*figure 4.51*), which corresponds to Neu5Ac⁺ with loss of one equivalent of water (*table 4.5*). The Neu5AcHex⁺ ion m/z 454 was seen in small intensities and the oxonium ion m/z 657 of the trisaccharide

Neu5AcHexHexNAc⁺ ion was dominating the profile for low collisional energies (10-20%), but decays swiftly with increasing energy levels. α 2,6-Neu5Ac modified glycopeptides showed a strong plateau of the HexNAc⁺ ion *m/z* 204 at NCEs of 20-30% (*figure 4.51*, **A**). The Neu5Ac derived ion *m/z* 274 showed weaker intensities relative to *m/z* 204. Oxonium ion signal *m/z* 366 was high in relative intensities at NCEs around 20%. The spectra of all α 2,6-Neu5Ac terminated glycans at 35% NCE showed similar fragment profiles with signal intensities in the order *m/z* 204 > 274 = 366 > 657. In contrast, α 2,3-Neu5Ac glycosylated peptides showed Neu5Ac derived ion *m/z* 274 dominating the profile with highest ion intensities for NCEs ≥20% and HexNAc⁺ ion *m/z* 204 being relatively weaker than *m/z* 274 (*figure 4.51*, **B**). Oxonium ion *m/z* 366 of HexHexNAc⁺ was also weaker compared to *m/z* 274. The overall ionization pattern for α 2,3-Neu5Ac modified glycopeptides at 35% NCE was found to be *m/z* 274>204>366>657. In fact, the relative intensity profiles for *m/z* 204 (HexNAc) and *m/z* 274 (Neu5Ac) showed reversed behavior for α 2,6- and α 2,3-Neu5Ac modified glycopeptides.

To conclude, in addition to oxonium ion discrimination of β 1,3- and β 1,4-linked LacNAc disaccharide glycans, assignment of the connectivity of the terminal sialylation was possible by comparing also the relative Neu5Ac derived oxonium ions. The two different types of terminal sialylation had an influence on the fragmentation behavior of HexHexNAc ion *m*/*z* 366. In case of α 2,6-Neu5Ac glycopeptides, fragments of β 1,3/4-LacNAc appear dominantly, namely *m*/*z* 204 and *m*/*z* 366. In the case of α 2,3-Neu5Ac, the sialic acid derived ion *m*/*z* 274 had the strongest intensities. The mechanism by which the two kinds of sialic acids are fragmented are apparently different, generating higher levels of Neu5Ac oxonium ions in the case of α 2,3-Neu5Ac glycosylation. Also, in the case of α 2,3-Neu5Ac modification, higher intensities of the in general low abundant Neu5AcHex⁺ *m*/*z* 454 were present, especially in combination with type-1 modified glycopeptides (peptides **189** and **190**, *figure 4.51*, **B**). This could be related to the lower intensities of HexHexNAc⁺ ion *m*/*z* 366.

The demonstrated examples carried different mucin type core structures, which all have in common that the first monosaccharide attached to the peptide backbone is a α GalNAc. In the aforementioned fragmentation experiments of the sialylated glycopeptides, all HexNAc⁺ oxonium ions m/z 204 were related to the GlcNAc in the LacNAc structures, ignoring the present GalNAc. By CID-MS3 experiments, *J. Nilsson et al.* demonstrated that the HexNAc⁺ oxonium ions used for profiling, are merely derived from the terminal β GlcNAc of the elongating chains and not from the internal α GalNAc.²⁹⁸ Similar results were observed by HCD-MS2 fragmentation. Additionally to these previous experiments, the same conclusion could be obtained here, by comparing core 1 (T-antigen) and branched core 2 MS2 fragmentation profiles (*figure 4.52*).

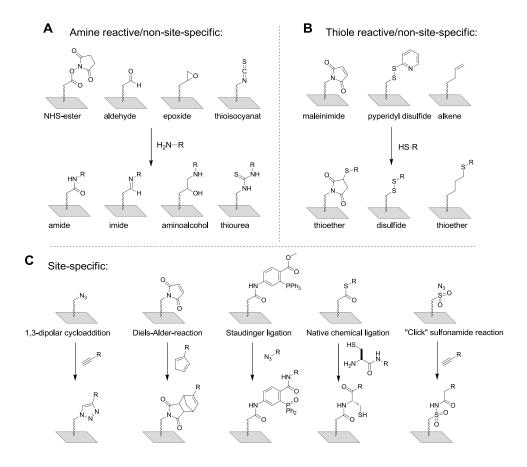
Figure 4.52: Comparison of GalβGlcNAc- and GalβGalNAc-fragmentation. Profiles show relative ion intensities at different NCE levels and spectra show *m/z* 100-400 at 35% NCE. **A**: Core 1 (T-antigen) glycopeptide **76**. **B**: Core 1 (ST-antigen) glycopeptides **176**. **C**: Core 2 glycopeptide **174**. **D**: Core 2 glycopeptide **205** with "T-antigen-like" sialylation. **E**: Core 2 glycopeptide **206** with LacNAc-sialylation.

Glycopeptide **76** with T-antigen glycosylation showed a typical α GalNAc derived oxonium ion profile (figure 4.52, A).²⁹⁸ Fragmentation of the sialyI-T (ST-antigen) glycopeptide 176 (figure 4.52, B) further produced Neu5Ac derived reporter ions, for relative comparison with the HexNAc (=GalNAc) derived oxonium ions. Fragmentation of the ST-antigen of glycopeptide **176** revealed oxonium ion m/z 274 ([Neu5Ac - H₂O]⁺) as the most abundant ion in the profile over all collision energy settings, completely overwhelming the intensity of the aGalNAc ion profile, compared to not sialylated glycopeptide 76. The oxonium ion pattern was clearly dominated by the Neu5Ac fragmentation. The Neu5AcHexHexNAc⁺ ion m/z 657 and HexHexNAc⁺ ion m/z 366 were only weak, compared to m/z 274. On the other hand, if a LacNAc is attached to the T-antigen in 6-position of the α GalNAc, like in the core 2 glycopeptide **205** (*figure 4.52*, **D**), the same Neu5Ac ion signal was itself overwhelmed by peak m/z 138, which must therefore mainly derive from the branched β GlcNAc. This demonstrates that, HexNAc fragmentation was almost independent from the internal α GalNAc. Further, the Gal β 1,4GlcNAc ion m/z 366 was present in significant amounts for 10-35% NCE. The unsialylated core 2 glycopeptide equivalent **174** (figure 4.52, **C**) was virtually fragmenting according to **205** (figure 4.52, **D**), except without the Neu5Ac reporter ions m/z274 and m/z 292. In contrast to 205 (figure 4.52, D), sialylated at the inner core

Gal β 1,3GalNAc, the ion profile of the core 2 modified glycopeptide **206** (*figure 4.52*, **E**), sialylated at the LacNAc branch instead, showed strong Neu5Ac reporter ions *m/z* 274 and *m/z* 292. Compared to the ST-antigen peptide **176** (*figure 4.52*, **B**), glycopeptide **206** (*figure 4.52*, **E**) additionally showed *m/z* 366 and *m/z* 657 ions, which were absent or low in ST-antigen peptide **176** (*figure 4.52*, **B**). The low abundance of these di- and trisaccharides in **176** (*figure 4.52*, **B**) and their high profile in **205** (*figure 4.52*, **D**) and **206** (*figure 4.52*, **E**), can probably be explained by the higher stability of the α GalNAc (α -anomers are thermodynamically favored), directly connected to the peptide backbone.

To conclude, with the two common forms of sialylation ($\alpha 2,3$ - and $\alpha 2,6$ -Neu5Ac), terminating type-1 or type-2 LacNAc disaccharides, four isobaric trisaccharide units can be formed. The oxonium ion pattern analysis of the synthesized sialylated O-glycopeptides revealed that it is possible to distinguish between these four isobaric structures by the abundance of the HexNAc- and Neu5Ac-derived oxonium ions, in ion-trap HCD tandem MS experiments. The analysis on the tested MUC1 glycopeptides is independent from glycosylation site or core structure. Further does the initial aGalNAc not hamper with the GlcNAc fragmentation of the type-1 and -2 disaccharides. The isobaric Neu5AcHexHexNAc trisaccharides are common terminating sugar units, not only on mucin type O-glycosylation but also on α -Omannosylated proteins, α -O-fucosylated proteins and of course on N-glycans of the complex and hybrid type. Lately, complex mucin type glycosylation was discovered on tyrosine residues on amyloid precursor proteins,¹⁵ and afterwards on several (but still few in total numbers) other proteins, e.g. by Simple Cell technology.^{16,302} This still unexplored type of glycosylation was shown to develop complex O-glycan motifs,¹⁵ but tyrosine O-glycosylation is not amenable for chemical glycan cleavage by β -elimination and relies on glycoproteomic elucidation on the glycopeptide level. Discrimination of sialic acid linkage connectivities is commonly done by exoglycosidase digest and intermediate MS control. For example, a2,3sialidase digest may be applied and if a $\alpha 2.3$ -connected sialic acid is present, the corresponding mass reduction will be observed. This is laborious and in the case of β 1,3/4galactosidases, no such enzymatic discrimination is possible and requires even more laborious glycan removal, carbohydrate permethylation and hydrolysis steps combined with MS control. Comparison of relative oxonium ion intensities might facilitate glycan sequencing directly on the glycopeptide level. On the glycopeptide level, the information of glycosylation site occupancy and the identity of the correlating glycoprotein are retained. Therefore, knowledge about the fragmentation behavior of common glycan structures may help to elucidate the glycoproteome. This further underlines the importance of chemical and chemoenzymatic glycan synthesis strategies, for generation of defined glycan/glycopeptide reference molecules.

4.3 Part 3 – Microarray studies with glycopeptide binding proteins


4.3.1 Introduction on microarray development

Microarray based technologies were first applied in analysis of DNA-arrays as tools in genomic and transcriptomic research.³⁰³ With the advent of high throughput molecular biology, the increasing interest in expression studies and whole genome sequencing, the ability of performing hundreds or thousands of reactions to study binding events in miniaturized experiments matched with the biological needs of the time. Oligonucleotide synthesis and polymerase chain reaction (PCR) technology enables scientists to build-up polynucleotide libraries and microarrays represented a methodology for fast screening of many samples in parallel with consumption of only minute amounts. In genetic analysis, microarrays are used for sequencing, to detect single nucleotide polymorphisms (SNPs) or mutations or for expression analysis.³⁰⁴ In a typical expression analysis, messenger RNA (mRNA) strands are isolated and transferred to complementary DNA (cDNA) by the action of reverse transcriptase. The amplified product is fluorescently labeled and screened against an immobilized library of single stranded DNA. Hybridization reveals the existence and relative amount of a transcript, which allows drawing conclusions about the expression level of a certain protein. However, mRNA levels, protein expression and protein interactions do not always correlate. Protein splicing and post-translational modifications often change the protein functionality and dictate behavior in cellular pathways or interaction with binding partners, which cannot be explained solely by evaluation of protein expression. After sequencing the human genome and that of other organisms, the function and abundance of the expression products has attracted more attention. Thus, the development of protein microarray platforms for interaction studies was the logical continuation.³⁰⁵ While DNA/RNA substrates are uniform, negatively charged and hydrophilic molecules, build from only four different nucleotides, proteins on the other hand consist of up to twenty amino acids creating macromolecules with varying hydrophilicity/hydrophobicity and differently folded conformations, that need to be conserved during microarray experiments. Protein microarrays are employed in studies of protein/protein-, antigen/antibody-, enzyme/substrate-, protein/DNA- and ligand/receptor-interactions and offer a high throughput alternative to commonly used enzyme-linked immunosorbent assays (ELISA) or western blots. The great versatility of protein arrays makes them useful as tools in clinical biomarker detection, drug discovery or elucidation of proteomic interaction networks.³⁰⁶ Consequently, microarray technology was also transferred to carbohydrate analytics shortly after the first

protein applications. Like protein microarrays, carbohydrate microarrays benefit even more from the multivalent presentation of densely immobilized test molecules, since most carbohydrate binding proteins, like lectins or antibodies, are dependent on multivalent recognition for strong binding.³⁰⁷ The *Consortium for Functional Glycomics* (CFG) is an international research initiative, providing the research community with a comprehensive collection of glycans on a glycoarray platform. The current array version (v5.2) contains 609 carbohydrate structures. Mentionable in this context, are the efforts of high throughput characterization of the receptor specificities of hemagglutinins from pandemic influenza viruses, for example from modern H5N1 or the 1918 H1N1 virus heamagglutinins.^{308,309} Like this, mutations in the virus genome can be directly correlated with changes in binding preferences, enabling for example avian specific viruses to become infectious for human hosts. Carbohydrates can also be arrayed as glycoconjugates. Glycopeptide arrays offer the possibility to evaluate carbohydrate-protein binding events with carbohydrates presented on a natural scaffold.³¹⁰ The peptide backbone is sometimes included in part or completely in the binding epitope, whose binding is either modulated or prevented by the glycan.³¹¹

4.3.2 Immobilization methods for glycopeptide microarrays

Microarrays have been established on spherical polymer beads, gold surfaces, nitrocellulose membranes or coated glass slides, with the latter being the most used surface when applied with fluorescence detection. The functional groups of the surface coating determine the kind of connection established and must fit the criteria of the probes that are supposed to be immobilized. The binding methodology also determines whether a molecule is attached to the surface in a random orientation or oriented by site-specific interactions.^{312,313} Methods for random orientation in protein immobilization often involve direct binding to the surface by amino acids residues. Lysine residues and the protein N-terminus can be linked to aldehyde, epoxy, isothiocyanate or N-hydroxysuccinimide (NHS) ester modified surfaces (figure 4.53, A). Cysteine residues can connect via a thioether or disulfide bond (figure 4.53, B). Alternatively, cysteines can adhere non-covalently to gold surfaces. The drawback of nonsite-specific attachment is that the active site of proteins might on part be covered and activity is lost. Installation of remote reaction sites in the proteins, distant from the active site, helps to preserves activity. Proteins can be expressed with affinity tags for non-covalent and site-directed adhesion, i.e. hexahistidine (His₆-tag) sequences for nitrilotriacetic acid (NTA) surfaces or glutathione-S-transferase (GST-tag) for glutathione modified surfaces. Proteins can also be expressed as intein-fusion-proteins and then conjugated site-specifically with a biotinylated peptide by expressed protein ligation (EPL). Alternatively, bio-orthogonal chemical groups may be inserted into the probe, for instance azides, alkines, cyclopentadienes, to feature site specific reactions, such as 1,3-dipolar cycloadditions, *Staudinger* ligations or *Diels-Alder* reactions (*figure 4.53*, **C**). Like this, probes will be linked with a uniform orientation.

Figure 4.53: Overview of common covalent non-site-(**A** and **B**) and site-specific (**C**) immobilization strategies for microarray application.

Site-directed and covalent immobilization techniques are often advantageous for protein activity.³¹² Especially the selective, covalent immobilization of unpurified expressed proteins directly from cell lysates represents a highly efficient method of protein microarray fabrication. The group of H. Waldmann presented the immobilization of oxyamine-modified proteins from cell lysates.³¹⁴ The proteins of interest were overexpressed as fusion proteins with intein domains in E.coli. After cell lysis, the lysate was treated with 2mercaptoethanesulfonate (MESNA) to generate a C-terminal thioesters on the expressed proteins, which was then transferred into the oxyamine by addition of bis(oxyamine)ethane. The high reactivity of the C-terminal oxyamine was used to form a stable oxime bond with a ketone functionalized surface. In another approach, proteins were expressed with a "CaaXbox", а C-terminal tetrapeptide sequence which is recognized by protein farnesyltransferases. Farnesylation of the target proteins occurred in vivo when the protein expressing *E.coli* were additionally transfected with a farnesyltransferase encoding vector. After cell lysis, the lysate was incubated on a thiol-functionalized microarray slide and irradiated with UV-light. This initiated a thiol-ene reaction with the olefinic isoprenoid groups and selectively attached the lipidated proteins to the surface.³¹⁵

Commercial microarray slides are available for all kinds of application featuring various chemical immobilization strategies. *Nexterion® slide H* microarray slides (*Schott GmbH*, Mainz, Germany) are used in this work. The hydrogel coated slides have been used successfully for glycan and glycopeptide microarray serum analysis before.^{59,60,310,316} The glass slides are coated with a cross-linked hydrophilic polymer. Hydrophilic spacers are crafted onto the polymer network with amine reactive NHS-esters at the ends (*figure 4.54*).

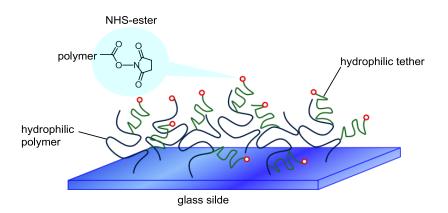


Figure 4.54: Schematic representation of Nexterion® slide H composition.

The polymer and the spacer are supposed to generate spatial distance between the immobilized probes and the samples screened on the microarray. Sensible protein probes or samples may denature due to contact with the surface. Also, the hydrophilic network mimics a "in-solution" environment, supposed to support probe accessibility and maintain protein specificity and conformation. The absence of any free amine residue, except for the primary amine of the spacer amino acid at the N-terminal end of the MUC1 and MUC5B tandem repeat peptides, results in N-terminal attachment only and uniform orientation of the glycopeptides.

4.3.3 Principle of serum screening by glycopeptide microarrays

Glycopeptides were delivered to the NHS-functionalized microarray slides by piezo driven non-contact spotting. The slides were left for incubation at high humidity (70-100%), to complete the covalent coupling between the surface NHS-esters and the N-terminal amine of the glycopeptides. Unreacted NHS-ester groups were quenched with ethanolamine. A silicone superstructure was used to form different reaction wells. The antiserum was incubated on the array surface and the polyclonal antibodies bound with certain affinities to the various glycopeptides. After incubation, the slides were washed with buffer to remove all unbound antibodies. Then, a secondary antibody with affinity for the F_c part of the primary serum antibodies was incubated on the slide. The secondary antibody was conveniently labeled, e.g. with a fluorophore for detection with a fluorescence scanner (*figure 4.55*).

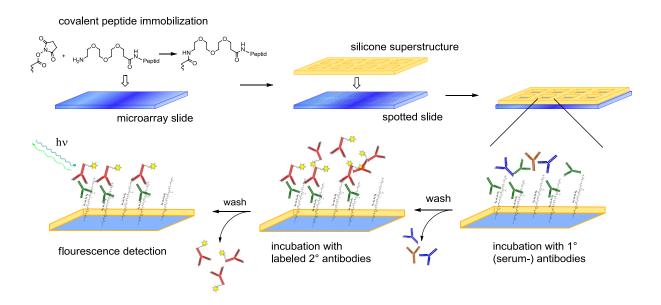


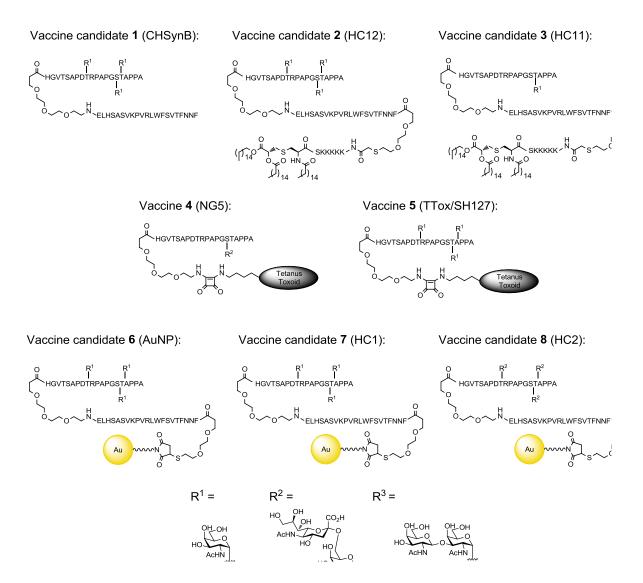
Figure 4.55: Principle of glycopeptide microarray analysis with fluorescence detection.

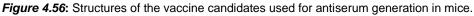
4.3.4 Evaluation of mucin anti-tumor vaccines by glycopeptide microarray

analysis of induced antibody responses

The MUC1 glycoprotein is a promising target for biomarker tumor diagnostics and a lead structure for the development of active anti-tumor vaccines.³¹⁷ The MUC1 is ubiquitously found on the surface of epithelial cells and is overexpressed by breast-, colon-, pancreas-, prostate- and ovary-carcinomas.²² Other characteristics of the mucins on cancer cells are aberrant and truncated glycosylation causing loss of apical cell polarization, alteration of adhesion and anti-adhesion events and stimulation of downstream signaling, contributing to the establishment of a reactive tumor microenvironment. The aberrant glycosylation on tumor cells is partly caused by mutation of the Cosmc chaperone essential for T-synthase activity,⁴⁰ downregulation of the core 2 β -1,6-*N*-acetylglucosaminyltransferase-1 (C2GnT-1) and premature sialylation through increased sialyltransferase expression.^{318,319} As a result, mucin type core 1 *O*-glycosylation, e.g. sialyl-T-, T-antigen and the shorter structures sialyl-T_N- and T_N-antigen, dominate over branched and extended core 2 glycans, are exposed to the immune system.^{30,320,321}

Induction of humoral immune responses directed to these structurally different MUC1 glycopeptide epitopes, possibly accompanied with cytotoxic effects would be valuable assets for tumor immunotherapy. A synthetic vaccine has to meet high expectations. It needs to be safe in its application, elicit a strong immune response, overcome immune tolerance and create an immunological memory. On the other hand, it needs to be selective in eradication of tumor cells without creating autoimmune damages in clinical settings.^{111,225} Several successful methodologies, which reliably increase antigenicity of mucin glycopeptides have been reported in the last years. MUC1 glycopeptide B-cell epitopes were conjugated to different immune stimulants like carrier proteins, T-cell epitope peptides and/or mitogens to form di- and tripartite vaccine candidates, or immune silent polymers for multivalent epitope presentation.^{271,322} Thus, the question of how to break the immune tolerance to self antigens with concomitant strong immune stimulation is effectively addressed, but nevertheless, a deeper insight into quality and specificity of the raised polyclonal, humoral reactions are to date missing. This is due to the limited availability of glycopeptide probes for bioassays, as e.g. ELISA, microarray or SPR. As a consequence, only a few noteworthy examples have been reported for the extensive screening of tumor associated anti-MUC1 antibodies.^{60,323,324}


In order to screen the specificity of polyclonal antibodies and humoral immune response upon stimulation with synthetic glycopeptide vaccine constructs, a unique MUC1 glycopeptide library is introduced for MUC1 glycopeptide microarray generation. Glycopeptide chip analysis enables screening of immune serum antibody specificity and cross-reactivity after induction by different MUC1 vaccine candidates.


The final MUC1 glycopeptide library features more than 130 synthetic MUC1 tandem repeat entries with tumor associated T_N - and T-antigen, as well as further elongated and branched, core 1, 2 and 3 structures in multivalent presentation mode. The extended carbohydrate core structures represent model glycopeptides that expect to resemble the glycosylation status in a non-diseased cells surface environment. The use of chemically defined glycopeptide structures, was aimed to answer questions about the different characteristics of the MUC1 tandem repeat glycosylation sites, VT*S*A, PDT*RP and GS*T*A, interactions between this domains and the different carbohydrate haptens. Influences on the antibody specificity due to the use of different immune stimulants were further visible.

4.3.5 Vaccine candidates for induction of immune response and antisera

generation in mice

The sera of mice treated with several MUC1 vaccine candidates were screened on the MUC1 microarray chip (*figure 4.56*). The induced sera of the following vaccines were kindly provided and pre-evaluated (antibody titer, antibody isotype analysis, T-cell response and binding) by group team members and collaborators.

• Vaccine candidate 1 (CHSynB)

Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. Ulrika Westerlind. Two-component vaccine of a N-terminal MUC(20mer) B-cell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent α GalNAc (T_N-antigen) glycosylation and P30 peptide FNNFTVSFWLRVPKVSASHLE as T-cell epitope.

Administration of the vaccine to three BALB/c mice was performed in the group of Prof. E. Schmitt, Institute of Immunology, Johannes Gutenberg University, Mainz.

- Vaccine candidate 2 (HC12) Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. U. Westerlind. Three-component vaccine of a N-terminal MUC(20mer) Bcell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent αGalNAc (T_N-antigen) glycosylation, a P30 peptide FNNFTVSFWLRVPKVSASHLE as T-cell epitope and a Pam₃CSK₄ lipopeptide as mitogen. Administration of the vaccine to three CL57B/6 mice was performed in the group of Prof. M. Lu, Institute of Virology, University Hospital of Essen.
- Vaccine candidate **3** (HC11)

Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. U. Westerlind. Three-component vaccine of a N-terminal MUC(20mer) B-cell epitope HGVTSAPDTRPAPGS*TAPPA with single α GalNAc (T_N-antigen) glycosylation, a P30 peptide FNNFTVSFWLRVPKVSASHLE as T-cell epitope and a C-terminal Pam₃CSK₄ lipopeptide as mitogen. Administration of the vaccine to three CL57B/6 mice was performed in the group of Prof. M. Lu, Institute of Virology, University Hospital of Essen.

- Vaccine candidate 4 (NG5)¹²⁶ Synthesized by Dr. N. Gaidzik at Johannes Gutenberg University Mainz, work group of Prof. Dr. H. Kunz. Two-component vaccine of a *N*-terminal MUC(22mer) B-cell epitope PAHGVTSAPDTRPAPGS*TAPPA with trivalent αGalNAc (ST_N-antigen) glycosylation, conjugated to a tetanus toxoid carrier protein. One serum (mouse 5) from administration of the vaccine to one BALB/c mouse, performed in the group of Prof. E. Schmitt, Institute of Immunology, Johannes Gutenberg University, Mainz.
- Vaccine candidate 5 (SH127)
 Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. Ulrika Westerlind. Two-component vaccine of a N-terminal MUC(20mer) B-cell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent αGalNAc (T_N-antigen) glycosylation, conjugated to a tetanus toxoid carrier protein. Administration of the vaccine to three Balb/c mice was performed in the group of Prof. E. Schmitt, Institute of Immunology, Johannes Gutenberg University, Mainz.
- Vaccine candidate 6 (AuNP)
 Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. Ulrika Westerlind. Three-component vaccine of a N-terminal MUC(20mer)
 B-cell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent αGalNAc (T_N-antigen) glycosylation, a P30 peptide FNNFTVSFWLRVPKVSASHLE as T-cell epitope and

coupled to gold nanoparticles. Administration of the vaccine to three Balb/c mice was performed in the group of Prof. E. Schmitt, Institute of Immunology, Johannes Gutenberg University Mainz.

• Vaccine candidate 7 (HC1)

Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences -ISAS-, work group Dr. Ulrika Westerlind. Three-component vaccine of a N-terminal MUC(20mer) B-cell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent α GalNAc (T_N-antigen) glycosylation, a P30 peptide FNNFTVSFWLRVPKVSASHLE as T-cell epitope and coupled to gold nanoparticles. Administration of the vaccine to three CL57B/6 mice was performed in the group of Prof. M. Lu, Institute of Virology, University Hospital of Essen.

• Vaccine candidate 8 (HC2)

Synthesized by Dr. H. Cai, Leibniz Institute for Analytical Sciences –ISAS-, work group Dr. Ulrika Westerlind. Three-component vaccine of a N-terminal MUC(20mer) B-cell epitope HGVTSAPDT*RPAPGAS*T*APPA with trivalent Galβ1,3-GalNAcα (T-antigen) glycosylation, a P30 peptide, FNNFTVSFWLRVPKVSASHLE as T-cell epitope and coupled to gold nanoparticles. Administration of the vaccine to three CL57B/6 mice was performed in the group of Prof. M. Lu, Institute of Virology, University Hospital of Essen.

4.3.6 Utilized microarray platforms for antisera, plant lectin and galectin-3

screening

The MUC1 glycopeptide sequence library, synthesized in this work, was appended by MUC1 glycopeptides previously synthesized by Dr. U. Westerlind^{325,310} and Dr. H. Cai³²⁶. Five different MUC1 microarrays were established and utilized for antisera, plant lectin and galectin-3 screening (for detailed spotting pattern information on the different microarray formats and a summary list of all containing peptides see *chapter 6.3.4*). Microarray 1 (**MA1**) consists of one of three MUC1 B-cell epitope sequences used for vaccine candidate development (glycopeptides **232**, **234** and **237**). This array format was initially used to determine antibody titer values of the induced antisera, in order to estimate the antibody concentration before proceeding with further experiments in larger glycopeptide microarray formats. The antisera were incubated on the wells in different dilutions series (*chapter 4.3.7*). Microarray format 2 (**MA2**) contained 85 MUC1 glycopeptides and was used for the evaluation of serum antibody specificities of the induced antisera. Microarray format 3 (**MA3**)

contained further 19 MUC1 glycopeptides for giving more specific insights into antibody specificity, after screening experiments with **MA2** (*chapter 4.3.8*). Microarray format 4 (**MA4**) contained 55 glycopeptides containing sialylated glycopeptides and the corresponding non-sialylated precursors, in order to evaluate the influence of complex glycan sialylation on antibody binding. **MA4** was further used to evaluate the *O*-glycan specificity of galectin-3 (*chapter 4.3.11.3*). Microarray format 5 (**MA5**) contained 132 MUC1 glycopeptides for screening the carbohydrate specificity of several plant lectins (*chapter 4.3.11.1*).

4.3.7 Antibody titer determination of antisera induced by MUC1 vaccine

candidates

Before the sera were administered to the MUC1 microarray chips, adequate concentrations for incubations were determined. Therefore, only the antigenic MUC1 sequence of the corresponding vaccine was immobilized on the microarray slide in relative small wells (MA1, 3 x 3 mm, 5 µL incubation volume) and incubated with dilution series of the antisera. Peptide spotting concentration and spotting droplet size were equal to the spotting parameters of the full library (experimental details, chapter 6.4). Like this, saturation concentrations for binding to the B-cell epitope were monitored. Accordingly, further incubations of the complete MUC1 library were made using antibody concentrations close to the saturation limit, in order to also detect weak antibody recognition to bound MUC1 glycopeptides. Well replicates were also prepared with lower serum concentrations underneath the saturation level of the antigenic MUC1 glycopeptide. In extreme cases, the more dilute antibody sera only show reactivity to the antigenic B-cell epitope sequence and all other signals disappeared in the background. This may give the impression, that a polyclonal serum is very specific only for the antigen sequence. To generate a complete picture of weak and strong binders, several concentrations of serum must be tested. Due to differences in induced antibody titers between different individuals, the sera from immunized mice must be compared in terms of specificity, depending on the measured antibody concentrations. Similar to titer determination by enzyme linked immunosorbent assay (ELISA), the antibody binding concentrations towards the antigen can be directly evaluated on a microarray slide. In ELISA optical density (extinction) of a colorimetric reaction is measured and results are usually plotted in a halflogarithmic correlation. Here, fluorescence of a fluorophore tagged secondary antibody is detected and directly plotted against the concentration (figure 4.57).

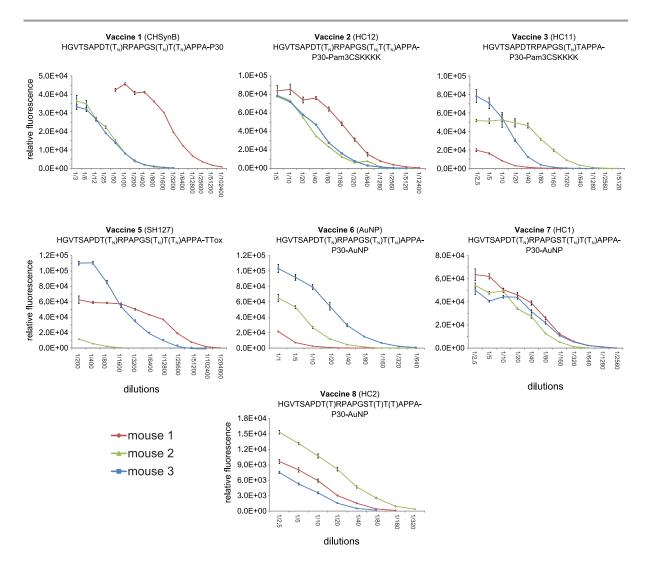
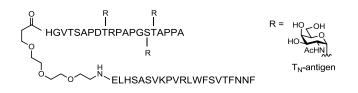
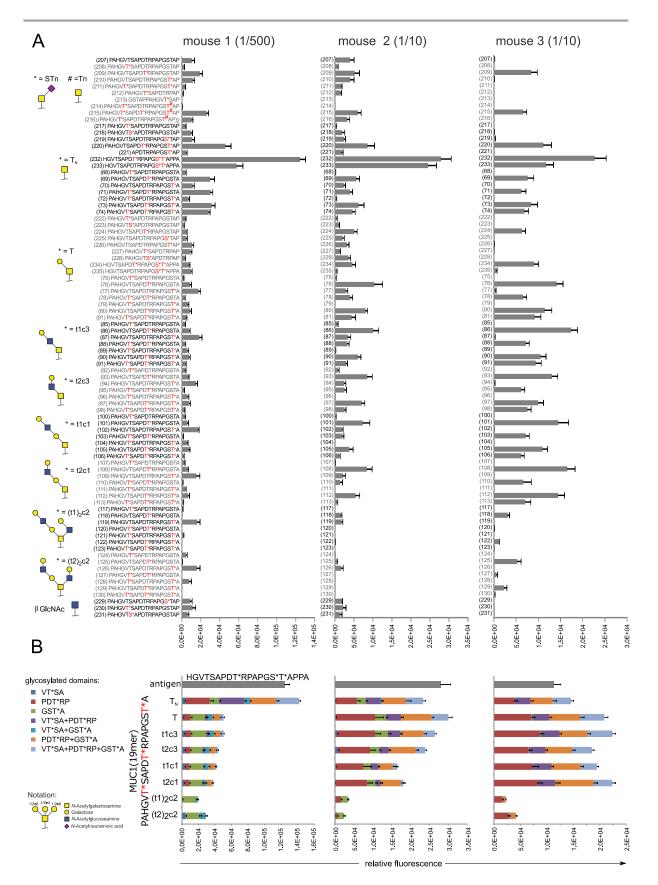



Figure 4.57: Dilution series of all tested vaccine candidates on MA1.


The microarray results were in accordance with ELISA tests performed by Dr. Hui Cai. The sera of mouse 1 and 3 induced by the tetanus toxoid conjugated with vaccine **5** show by far the highest antibody titers, confirming the strong immune response elicited by tetanus toxoid conjugated vaccines.¹²⁸ Also, mouse 1 of vaccine candidate 1 gave a strong immune response. Based upon the dilution series, concentrations for incubations were estimated and compared among the vaccines.

4.3.8 Elucidation of antibody specificity from vaccination experiments using the MUC1 glycopeptide microarray

4.3.8.1 Vaccine candidate 1 (3T_N-MUC1-P30, CHSynB)

The Two component vaccine candidate 1 consisted of the B-cell epitope (HGVTSAPDT*RPAPGS*T*APPA) with T_N-antigen glycosylation in the PDT*R domain and in the GS*T*A domain, both on serine and threonine. The PDT*R domain is known to be immune relevant and glycosylation on this domain enhances cancer derived monoclonal antibody recognition.³²⁷ The GSTA domain has been identified as an immunogenic domain due to findings of monoclonal antibodies and auto-antibodies from cancer patients. The second part of the vaccine consisted of the peptide T-cell epitope P30, a peptide sequence FNNFTVSFWLRVPKVSASHLE derived from the immunogenic tetanus toxoid protein. The vaccine was immunized in mice without extra addition of an adjuvant. The vaccine generated high antibody titers directed to the B-cell epitope in all sera, mouse 1 had a very strong immune response. IgG₁ was the dominating antibody isotype. Breast cancer tumor cells from the T47D and MCF-7 cell lines were recognized in all sera. In addition to the evaluation of the vaccine induced antibody response, antibody glycopeptide binding epitopes were evaluated by microarray analysis (MA2: figure 4.58, MA3: figure 4.59).

Figure 4.58: Binding of vaccine candidate **1** (CHSynB) antisera (mouse 1-3) on microarray **MA2**. **A**: Full peptide list. **B**: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

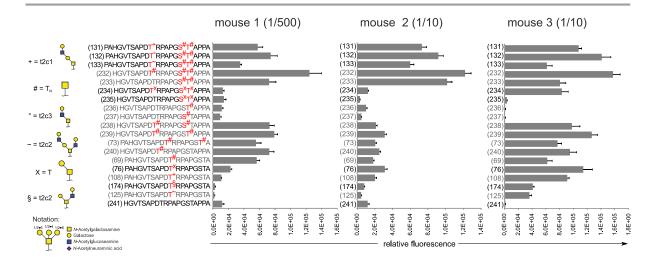
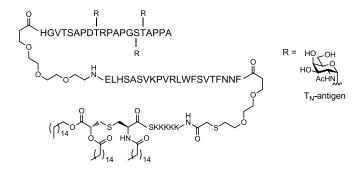


Figure 4.59: Binding of vaccine candidate 1 (CHSynB) antisera (mouse 1-3) on microarray MA3.

The vaccine candidate **1** generated antisera from all three mice, showed low antibody specificity for the unglycosylated peptide sequences **207** and **241**, demonstrating that glycosylation was mandatory for strong antibody binding.

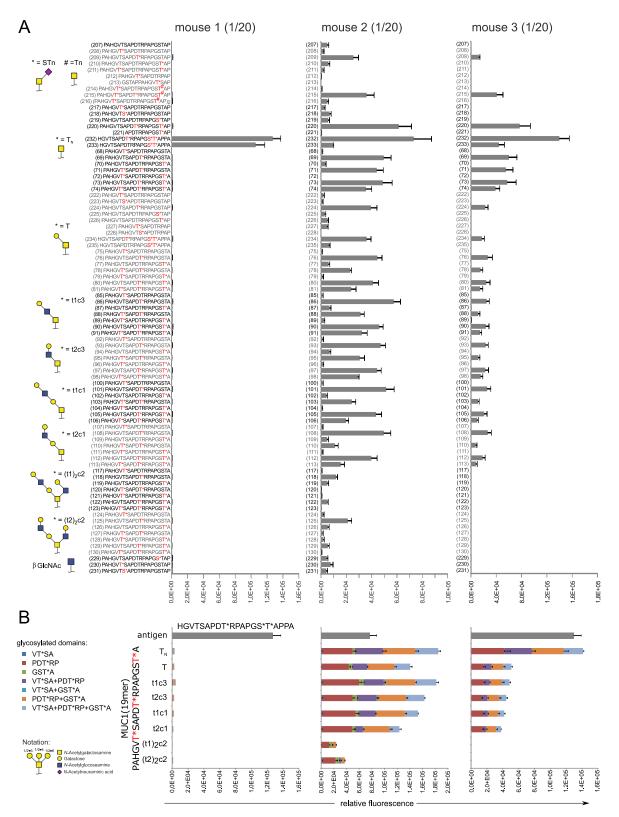
Mouse 1 serum (dilution: 1/500):

The mouse 1 serum antibodies had a mixed specificity for both glycosylation sites of the antigen structure, PDT*R and GS*T*A. Apart from strong binding to the B-cell epitope sequence 232, monoglycosylated peptides with T_N-antigen glycosylation in PDT*R (70, 72, 74, 75, figure 4.58) were well recognized. Deviations to different extended glycans other than T_N-antigen in PDT*R on the MUC1(19mer) resulted in no significant binding. Sole glycosylation with T_N -antigen in the GSTA region on the serine (237, figure 4.59) or threonine (236, figure 4.59) composed only weak epitopes for the antibodies (figure 4.59). However, glycopeptide 233 with clustered T_N-antigen glycosylation in the GS*T*A site was highly recognized by the antibodies, proposing that the GSTA domain must be glycosylated at both amino acids. On the other hand, clustered glycosylation in the GSTA domain with T-antigen alone (235) or with additional glycosylation in PDT*R (234) resulted in very weak antibody affinity. Thus, glycosylation with T_N-antigen exclusively in PDT*R as well as in GS*T*A contribute or add up to overall antibody binding (figure 4.59). Larger type-2 core 3, core 1 and core 2 glycans **131-133** in PDT*R reduce binding, but are tolerated to a certain extent, as long as GS*T*A carries clustered glycosylation with T_N-antigen. The equivalent MUC1(19mer) sequences without glycosylation in GS*T*A (93, 108 and 125, figure 4.58) were not recognized. Peptides glycosylated with T_N-antigen in the VT*SA region alone, were not recognized, since this domain is not part of the binding epitope. The C-terminal PPA sequence, which is not present in the MUC1(19mer) (ending with GSTA) and some of the MUC1(20mer) (ending with GSTAP) sequences, has only a minor effect on the overall antibody recognition, e.g. observed by comparing of the sequences **239/73** and **204/69** (*figure 4.59*). Among the rest of the glycopeptides, e.g. for the block of MUC1(19mer) **75-113**, a low basal antibody recognition was observed, that obliterates towards the larger hexasaccharide decorated sequences **117-130**, except for the core 2 hexasaccharides in GST*A (**119, 126**), which still showed weak antibody reactivity.


Mouse 2 and mouse 3 sera (dilution: 1/10):

Mouse 2 and 3 sera showed very similar binding specificity with preference for peptides glycosylated with T_N-antigen in PDT*R and GS*T*A. Mouse 2 serum antibodies had stronger reactivity towards clustered T_N-antigen GS*T*A epitopes, while mouse 3 serum antibodies preferred the glycosylated PDT*R domain. In accordance with mouse 1 serum, sequence **233** with double T_N -antigen glycosylation in GSTA was well recognized by both sera and antibody reactivity towards single glycosylation on serine or threonine (236, 237) was weak. The equivalent sequence 235 with clustered T-antigen glycosylation was not detected (figure 4.58). Like the mouse 1 serum antibodies, clustered glycosylation with T_N-antigen on serine and threonine in GS*T*A was a prerequisite for contribution to antibody binding. In contrast to mouse 1 antibodies, glycosylation in PDTR was allowed to deviate to glycan structures other than T_N-antigen and strong antibody reactivity was observed on virtually all MUC1(19mer) peptides with glycosylation ranging from monosaccharide to core 1 tetrasaccharide structures in PDTR (e.g. 69 with T_N-antigen and 108 with type-2 core 1, figure 4.58). The GS*T*A epitope on the other hand, only contributes when carrying exclusively the T_N-antigen on both serine and threonine. Sequences with PDT*R and single threonine glycosylation in the GS*T*A site are recognized as well as PDT*R glycosylation alone. Single glycosylation in the VT*SA site was not recognized by the antibodies and glycosylation in the VT*SA combined with glycosylation in the PDT*R even reduced the antibody reactivity towards the PDT*R binding epitope. Glycopeptide sequences with glycans up to the size of linear tetrasaccharides in the PDTR site, were well recognized, binding to branched core 2 hexasaccharides were strongly reduced. In particular, serum of mouse 3 showed significant stronger fluorescence intensities for the linear type-2 core 1 tetrasaccharide glycopeptide 108 than for the branched type-2 core 2 tetrasaccharide glycopeptide **174** (*figure 4.59*). The branched type-2 core 2 hexasaccharide peptide **125**, sharing the same linear tetrasaccharide substructure with peptide 108, showed the same antibody reactivity as the branched tetrasaccharide glycopeptide **205**. This demonstrates that the branching of the inner α GalNAc influences the antibody recognition and antibodies prefer core 1 over core 2 glycosylation, rather than being negatively influenced in antibody recognition by the glycan size in terms of numbers of saccharides. Also glycopeptides 131

(tetra core 1) and **133** (hexa core 2) show this trend, albeit less pronounced, since antibodies in the immune sera compensate for this effect by recognition of the additional GS*T*A binding epitope glycosylated with clustered T_N -antigen (*figure 4.59*).


For all trivalent MUC1(19mer) glycopeptides (VT*SA+PDT*R+GST*A) with linear core 3 and core1 glycosylation (74, 81, 91, 98, 106, 113, *figure 4.58*, B) no obvious shielding effect by the high glycan density influenced antibody recognition to the PTDR epitope. These peptides were all recognized by the antibody sera, as well as the equivalent divalent peptides with glycosylation in VT*SA+PDT*R or PDT*R+GST*A. The reactivity of the divalent peptides, glycosylated in VT*SA and PDT*R, was weaker than divalent peptides with PDT*R+GST*A glycosylation. Divalent glycopeptides with PDT*R+GST*A-glycosylation were recognized as effective as monovalent peptides with glycosylated PDT*R region alone. Hence, even for trivalent glycopeptides with three core 1 tetrasaccharides, no significant reduction in antibody binding was observed due to multivalent glycosylation. However, trivalent core 2 hexasaccharide glycopeptides (t1c2 and t2c2, VT*SA+PDT*R+GST*A, *figure 4.58*, B) were not recognized any more by the antibodies, probably because of steric reasons and the above mentioned unfavorable core 2 recognition. These peptides may therefore be regarded as mucin tandem repeats completely shielded by *O*-glycans, which are found to a large extend on healthy epithelial cells.

4.3.8.2 Vaccine candidate 2 (3T_N-MUC1-P30-Pam₃CSK₄, HC12)

The three component vaccine candidate **2** consisted of the same B-cell epitope as vaccine candidate **1**, (HGVTSAPDT*RPAPGS*T*APPA) with T_N -antigen glycosylation in the PDT*R domain and in the GS*T*A domain, both on serine and threonine. The B-cell epitope was additionally connected to the P30 T-cell epitope and the toll-like receptor-2 ligand Pam₃CysK₄, which functions as a build-in immunoadjuvant. The vaccine was immunized in mice without extra addition of an external adjuvant. The vaccine generated high antibody titers directed to the B-cell epitope in all sera. A mixed IgG response was generated, with IgG1 as the dominating antibody isotype and some IgG_{2b} and IgG₃ antibodies. Breast cancer

tumor cells from the T47D and MCF-7 cell lines were recognized in all sera, pancreas capan-1 and -2 tumor cells were here not recognized. Microarray analysis for evaluation of antibody glycopeptide binding epitopes is shown below (**MA2**: *figure 4.60*, **MA3**: *figure 4.61*).

Figure 4.60: Binding of vaccine candidate 2 (HC12) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

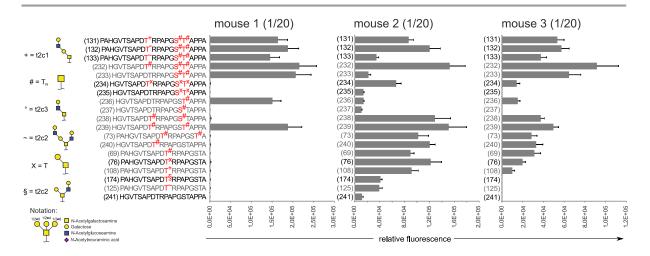


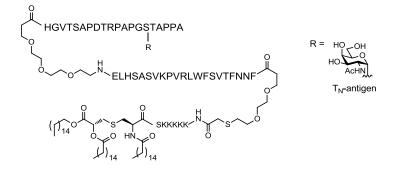
Figure 4.61: Binding of vaccine candidate 2 (HC12) antisera (mouse 1-3) on microarray MA3.

All sera induced by vaccine candidate **2** showed no recognition of unglycosylated MUC1 sequences **207** and **241** (*figure 4.60*, *figure 4.61*). Glycosylation was mandatory. Mouse 2 and 3 had in principle similar affinities like mouse 2 and 3 of vaccine candidate **1**.

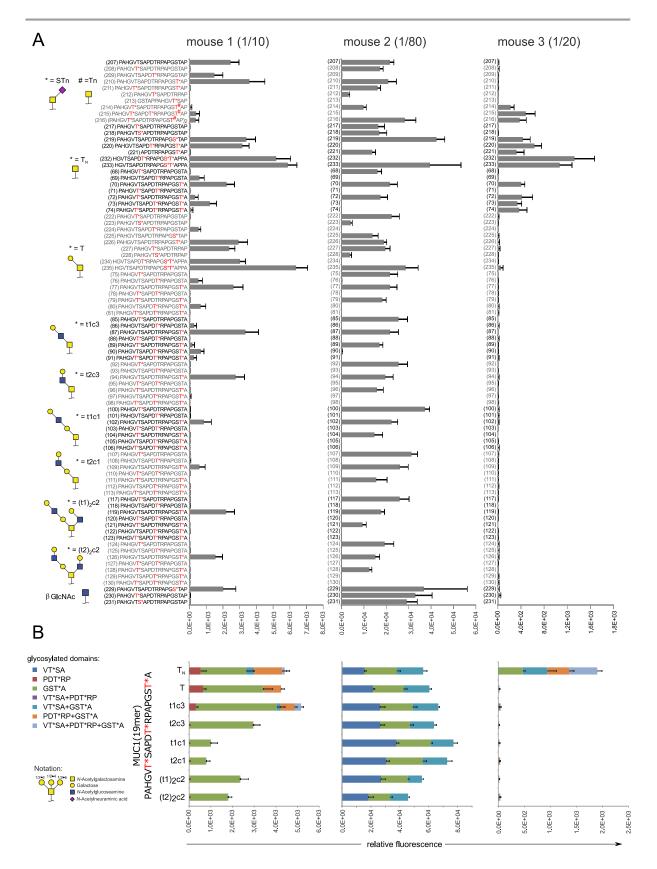
Mouse 1 serum (dilution 1/20):

Serum antibodies of mouse 1 were very specific for glycopeptides with single T_N -antigen glycosylation on threonine in GST*A. The glycopeptide 19mer **70** (ending with GST*A, *figure 4.60*) and the 20mer **237** with serine glycosylation in GS*TAPPA were not bound by the antibodies. The threonine glycosylated C-terminal T*APPA (e.g. in **236**) was the major antibody binding epitope (*figure 4.61*).

Mouse 2 serum (dilution 1/20):


The antibodies were almost only dependent on the glycosylated PDT*R domain. Single or double glycosylation in the GSTA region, no matter of the glycan structure, only provided weak interaction with the antibodies. In accordance with the mouse 2 and 3 sera of vaccine candidate 1, antibodies were accepting various linear glycans in the PDT*R epitope, e.g. T_N -antigen, T-antigen, extended core 3 and core 1 (*figure 4.60*, **A**). Branched core 2 glycans in PDT*R provided again lower affinity to the antibodies than the core 1 glycans (*figure 4.61*). In multivalent glycopeptides, glycosylation in VT*SA had a negative effect on binding, while single glycosylation on threonine in GST*A was tolerated (*figure 4.60*, **B**). Strong reduction of binding was observed for glycopeptides with multivalent core 2 hexasaccharide glycosylation (*figure 4.60*, **B**).

Mouse 3 serum (dilution 1/20):


Mouse 3 serum antibodies had a mixed PDT*R and GS*T*A dependency. Glycosylation in the GS*T*A region must be clustered T_N -antigen glycosylation (compare **233** and **235**, *figure*

4.61). Glycosylation in PDT*R had strongest effects when T_N -antigen glycosylation was present, albeit other glycans in this domain were accepted with lower affinity (**131**, **132**, **132**, **232**, *figure 4.61*). Core 1 over core 2 specificity in PDT*R was present, but at a weak level due to overall weaker affinity to PDT*R, compared to GS*T*A.

4.3.8.3 Vaccine candidate 3 (T_N-MUC1-P30-Pam₃CSK₄, HC11)

The three component vaccine candidate **3** consisted of the same B-cell epitope peptide sequence as vaccine candidate **1** and **2**, but with T_N -antigen glycosylation only in the GS*TA domain (HGVTSAPDTRPAPGS*TAPPA). In accordance to vaccine candidate 2, the B-cell epitope was connected to the P30 T-cell epitope and the toll-like receptor-2 ligand Pam₃CysK₄. The vaccine candidate was administered to the mice without addition of an external adjuvant. The vaccine generated high antibody titers directed to the B-cell epitope in all sera. A mixed IgG response was generated, consisting of IgG₁, IgG_{2b} and IgG₃ antibodies, mouse serum 1 additionally had high levels of IgM antibodies. Strong recognition of breast cancer MCF-7 tumor cells and pancreas capan-1 and -2 tumor cells was mainly observed in the mouse 2 serum. The mouse 2 serum antibodies further recognized tumor cells from patient breast cancer tumor cells, evaluated on a tumor tissue array including 360 patient samples. Glycopeptide microarray analysis for evaluation of the induced antibody glycopeptide binding epitopes is shown below (**MA2**: *figure 4.62*, **MA3**: *figure 4.63*).

Figure 4.62: Binding of vaccine candidate 3 (HC12) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

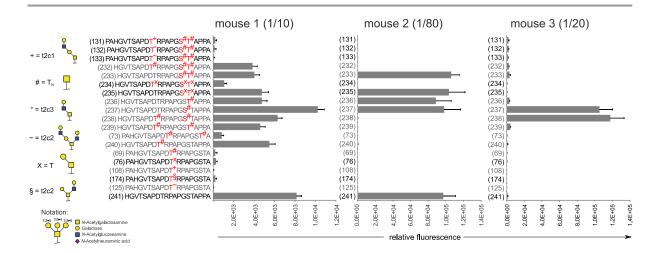


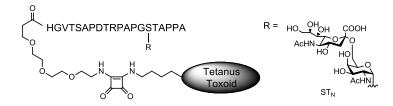
Figure 4.63: Binding of vaccine candidate 3 (HC12) antisera (mouse 1-3) on microarray MA3.

The B-cell epitope sequence HGVTSAPDTRPAPGS*TAPPA with T_N -antigen glycosylation was not included in the MUC1 chip **MA2** (*figure 4.62*). Peptide HGVTSAPDTRPAPGS*TAPPA **237** was included in **MA3** (*figure 4.63*).

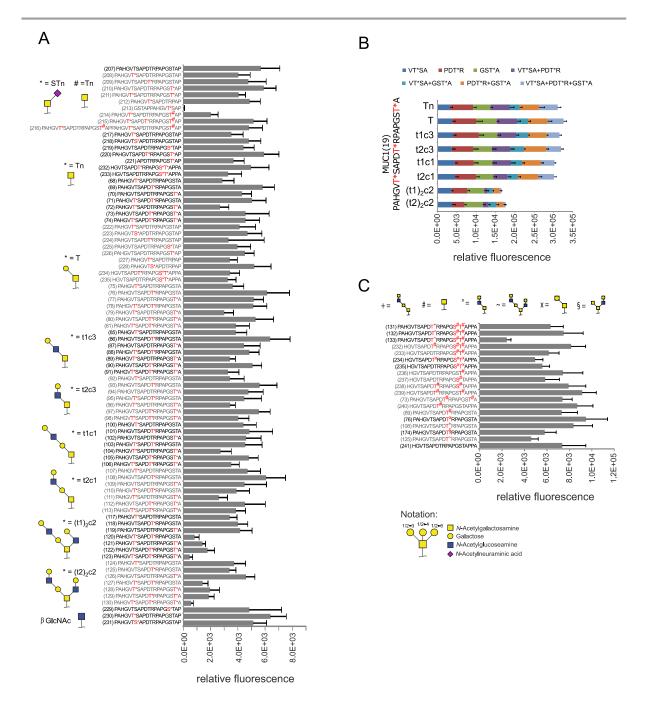
Mouse 1 serum (dilution 1/10):

The serum antibodies recognized unglycosylated **207** and **241** (*figure 4.62*, *figure 4.63*). Peptides **207** (unglycosylated), **208** (VT*SA), **209** (PDT*R) and **210** (GST*A) imply that VTSA is an epitope, but must not be glycosylated for binding (*figure 4.62*). Short glycopeptide **221** without VTSA domain is also not bound by the antibodies. Further, the Cterminal STAPPA sequence seemed to be the second peptide binding epitope, as seen when **241** is compared to the 19mer sequences (*figure 4.58*). T_N-antigen glycosylation on serine (**237**, *figure 4.63*), as in the B-cell epitope, slightly enhances antibody affinity. Additional glycosylation in PDT*R was tolerated for small T_N-antigen glycosylation, while larger glycans in that domain prevent antibody binding (**131**, **132**, **133**, **232**, *figure 4.62*). Also, peptides glycosylated on threonine in GST*A with ST_N-antigen, T-antigen and extended core 3, core 1 and core 2 were recognized. The monoglycosylated sequences **119** and **126**, with branched core 2 hexasaccharide glycosylation, also showed strong antibody recognition, even stronger than sequences **102** and **109** with the smaller, unbranched core 1 tetrasaccharide glycosylation (*figure 4.62*, **A+B**).

Mouse 2 serum (dilution: 1/80):


Unglycosylated MUC1 sequences **207** and **241** were recognized by the mouse 2 serum antibodies, proposing that the binding epitope is an unglycosylated peptide segment (*figure 4.62, figure 4.63*). Further, all glycopeptides with glycosylation in the VT*SA and/or GST*A regions were all accepted by the antibodies. Recognition was lost when the PDT*R domain was glycosylated, demonstrating that the non-glycosylated PDTR domain was highly

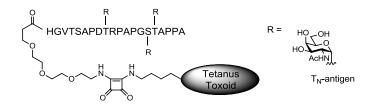
important for antibody recognition. In GSTA, glycosylation in serine as well as threonine or both was tolerated, in VTSA however, only glycosylation in threonine was accepted, while glycosylation on serine obliterates all binding (**222/223** and **227/228**, *figure 4.62*). The minimum peptide binding epitope might therefore be unglycosylated SAPDTR.


Mouse 3 serum (dilution: 1/20):

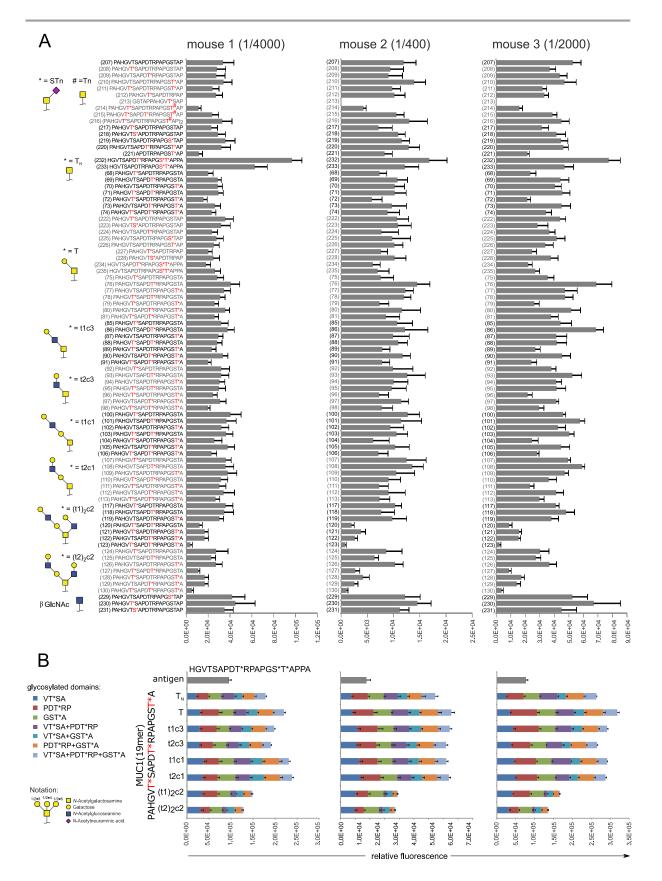
The unglycosylated peptides **207** and **241** were not recognized (*figure 4.62*, *figure 4.63*). This antibody serum exclusively recognizes peptides with T_N -antigen glycosylation in the GSTA region with remarkable specificity. No other glycans in this domain were accepted. The specificity was directed on the serine glycosylated with T_N -antigen of the B-cell epitope sequence **237**. The equivalent sequence with T_N -antigen glycosylation on threonine, sequence **236** (*figure 4.63*) was not a binding epitope. Interestingly, T_N -antigen glycosylation on threonine was accepted in the MUC(19mer) peptides with C-terminal GST*A (**70**, **72**, **73**, **74**, *figure 4.62*) and the MUC1(20mer) with C-terminal GST*AP (e.g. **215**, **220**, *figure 4.62*) in contrast to the GST*APPA terminated peptides.

4.3.8.4 Vaccine candidate 4 (T_N-MUC1-TT, NG5)

The vaccine candidate **4** consisted of the same B-cell epitope as vaccine candidate **3**, but with ST_N -antigen glycosylation instead of T_N -antigen in the GS*TA domain (HGVTSAPDTRPAPGS*TAPPA). The B-cell epitope was here conjugated to a tetanus toxoid immune carrier protein. The vaccine candidate was administered to mice with addition of *Freund's* adjuvant. The vaccine generated very high antibody titers directed to the B-cell epitope in all sera. IgG₁ was the dominating antibody isotype. Breast cancer MCF-7 cells were recognized by all sera. The mouse 5 serum antibodies were further evaluated for recognition of tumor cells from breast cancer patients, the antibody staining was gradually increased by evaluation of stage 1 to stage 3 cancer patient tissues. These polyclonal antibodies were therefore considered interesting for glycopeptide microarray analysis (MA2+MA3: *figure 4.64*).


Figure 4.64: Binding of vaccine candidate 4 (NG5) antiserum on microarrays (dilution 1:100) MA2 and MA3. A: MA2: full peptide list. B: MA2: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site. C: MA3: full peptide list.

The B-cell epitope sequence HGVTSAPDTRPAPGS*TAPPA with ST_N-glycosylation was not included in either of the two MUC1 chips. However, peptide sequence HGVTSAPDTRPAPGS*TAP **210** (*figure 4.63*, **C**), shorter by two N-terminal amino acids, was strongly recognized.


The mouse 5 (NG5) antibody serum showed very broad glycopeptide recognition and almost all sequences were recognized by the antibodies including the unglycosylated peptides **207** and **241** (*figure 4.64*, A+C). No distinct preferences were present, except for certain

peptides glycosylated in the immunodominant PDTR region. The only peptide not recognized was **213** (*figure 4.64*, **A**), consisting of a peptide lacking the PDTR domain. Binding of core 2 hexasaccharide glycopeptides was less strong and vanishes completely for trivalent glycopeptides, which probably completely sterically hinder antibody recognition to peptide backbone epitopes.

4.3.8.5 Vaccine candidate 5 (3T_N-MUC1-TT, SH127)

The vaccine candidate **5** consisted of the same B-cell epitope as vaccine candidate **1** and **2**, (HGVTSAPDT*RPAPGS*T*APPA) with T_N -antigen glycosylation in the PDT*R domain and in the GS*T*A domain, both on serine and threonine. The B-cell epitope was here conjugated to the tetanus toxoid immune carrier protein. The vaccine candidate was administered to mice with addition of *Freund's* adjuvant. The vaccine candidate generated very high antibody titers directed to the B-cell epitope in all sera. IgG₁ was the dominating antibody isotype. Breast cancer MCF-7 and T47D cells were recognized in all sera. Microarray analysis for evaluation of the induced antibody glycopeptide binding epitopes is shown below (**MA2**: *figure 4.65*, **MA3**: *figure 4.66*).

Figure 4.65: Binding of vaccine candidate 5 (SH127) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

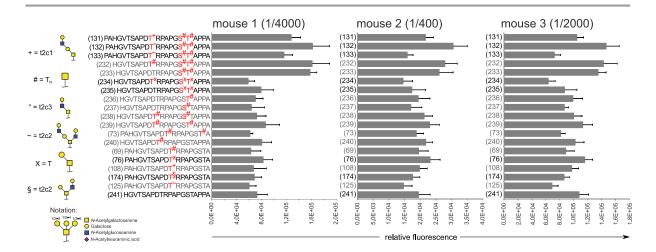
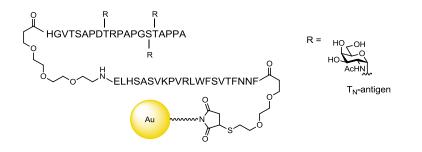
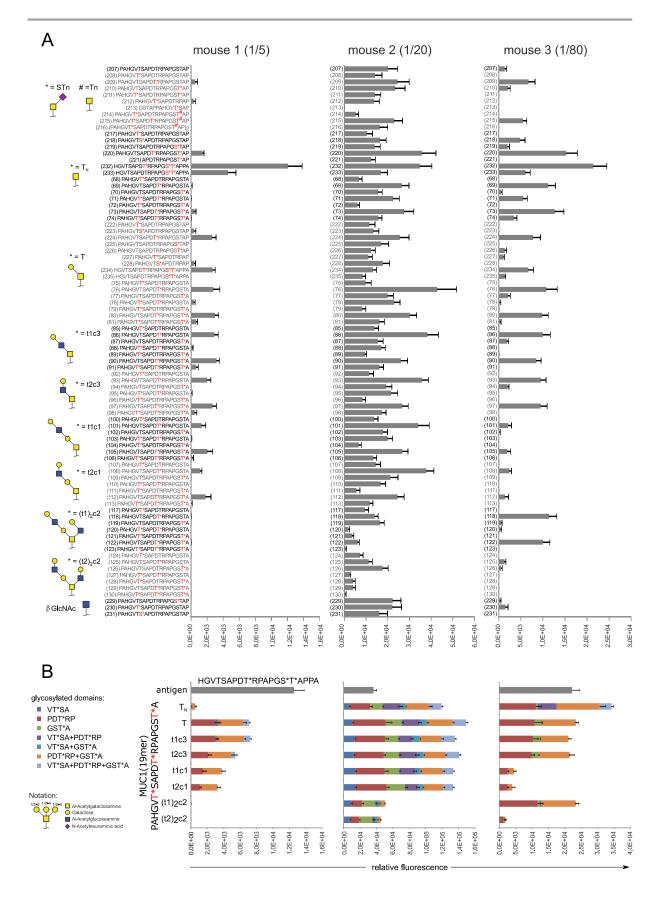



Figure 4.66: Binding of vaccine candidate 5 (HC12) antisera (mouse 1-3) on microarray MA3.


Mouse 1 serum (dilution: 1/4000), mouse 2 serum (dilution: 1/400) and Mouse 3 serum (dilution: 1/2000):

The tetanus toxoid conjugate of B-cell epitope 232 induced three mouse antisera with very similar binding patterns. The B-cell epitope sequence 232 was detected strongest by the antibodies, but all other entries were also detected to a good extent. Peptides with glycosylation in PDT*R were slightly preferred by the antibodies of mouse serum 3 (figure 4.64). All sera have slight preference for sequences with clustered T_N -antigen glycosylation in GS*T*A (figure 4.65, B) but no further distinct preferences, neither for domains nor for specific glycan decoration existed. Unglycosylated peptides 207 and 241 were detected as well as most of the others. Only the short peptide 213, which completely lacks the immunodominant PDTR domain was not bound by any of the three sera. A shielding effect of the large and branched core 2 hexasaccharide structures existed, but was weaker than in the previous examples. Only glycopeptides with hexasaccharide decoration on all three glycosylation sites are effectively shielded from antibody recognition (figure 4.65, B). The well replicates using higher dilutions of each serum, showed the same overall patterns. Saturation effects can therefore be precluded. Vaccine candidate 5 shares the same B-cell epitope as the above described vaccine candidate 1 and 2, which shows that the choice of immune stimulant has a strong influence on the induced antibody specificity.

4.3.8.6 Vaccine candidate 6 (3T_N-MUC1-P30-AuNP, AuNP)

The three component vaccine candidate **6** consisted of the same B-cell epitope as vaccine candidate **1**, **2** and **5**, (HGVTSAPDT*RPAPGS*T*APPA) with T_N -antigen glycosylation in the PDT*R domain and in the GS*T*A domain, both on serine and threonine. The B-cell epitope was additionally connected to the P30 T-cell epitope and gold nanoparticles (AuNPs) as carriers. The AuNPs were considered to contribute with multivalent presentation of the antigen structure, resulting in increased uptake by antigen presenting cells. The vaccine was administered to mice with addition of *Freund's* adjuvant. High antibody titers directed to the B-cell epitope were generated in all sera, as depicted by ELISA. A mixed IgG response was present, consisting of IgG₁, IgG_{2a} and IgG_{2b} isotype antibodies. Breast cancer tumor cells from MCF-7 cell lines were stained by the mouse 2 and 3 antisera in FACS, but not by the very specific mouse 1 serum. Microarray analysis for evaluation of antibody glycopeptide binding epitopes is shown below (**MA2**: *figure 4.67*, **MA3**: *figure 4.68*).

Figure 4.67: Binding of vaccine candidate 6 (AuNP) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

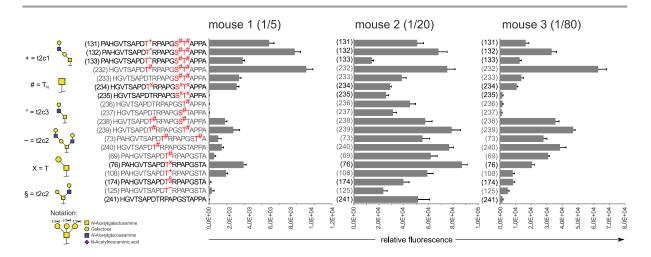
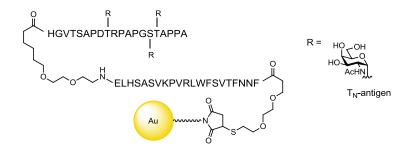


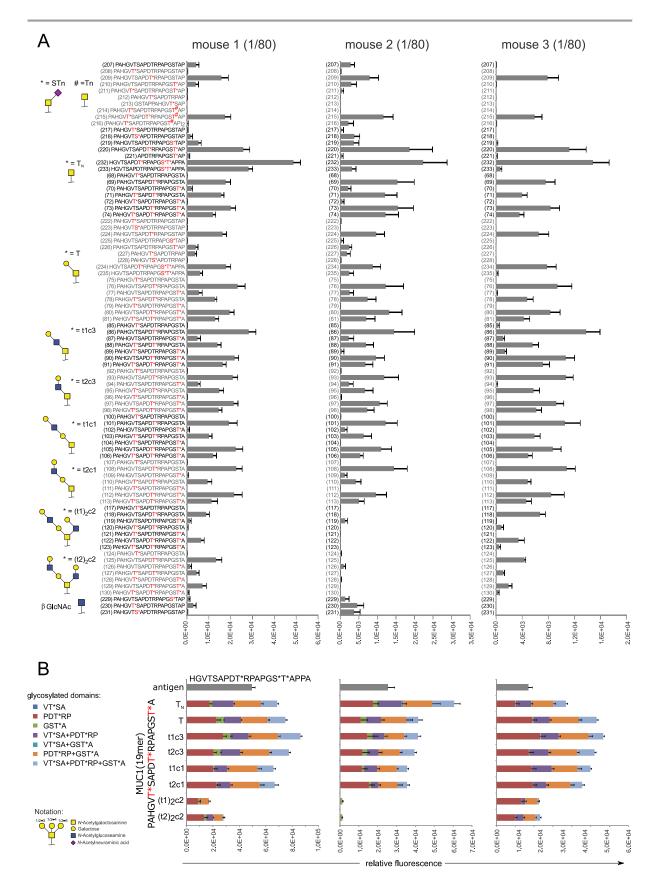
Figure 4.68: Binding of vaccine candidate 6 (AuNP) antisera (mouse 1-3) on microarray MA3.

Mouse 1 serum (dilution: 1/5):

Serum from mouse 1 had no preferences for unglycosylated peptides **207** and **241** (*figure 4.67*, *figure 4.68*). The serum antibodies showed a very strong reactivity to the glycopeptide B-cell epitope sequence **232** (*figure 4.68*). As shown by peptide **233**, glycosylation in both PDT*R and GS*T*A contribute to recognition by the antibodies. Peptides **235**, **236** and **237** demonstrated that the clustered T_N -antigen glycosylation must be present in the GS*T*A binding epitope (*figure 4.68*). Interestingly, single glycosylation with T_N -antigen in PDT*R resulted in rather weak antibody binding for the MUC1 20mers (**240**, *figure 4.67*) as well as for the MUC1 19mers (**69**, *figure 4.68*). A stronger antibody affinity was observed for the T-antigen and the tetrasaccharide core 1 glycans, monoglycosylated in PDT*R. Again, antibodies universally accept larger glycans in the PDT*R binding epitope (**131-133**, *figure 4.68*). An antibody preference for monoglycosylated core 1 over core 2 structures in the PDT*R epitope was present (**76, 108, 174**, *figure 4.68*).


Mouse 2 serum (dilution: 1/20):

The mouse 2 serum antibodies showed reactivity against the unglycosylated MUC1 sequences **207** and **241** (*figure 4.67*, *figure 4.68*). A general binding to most of the glycopeptides on the chip was observed, with a preference for entries glycosylated in PDT*R. Only the short glycopeptide **213** (*figure 4.67*), devoid of a PDT*R domain, showed no signal. Still, a preference for core 1 over core 2 glycans was present (**76**, **108**, **174** and **131**, **132**, **133**, *figure 4.68*) and a signal cut off for multivalent glycopeptides with large hexasaccharide glycans was observed.


Mouse 3 (dilution 1/80)

Mouse 3 serum antibodies showed no recognition of unglycosylated **207** and **241** (*figure 4.67, figure 4.68*). Antibodies mainly reacted on glycosylation in PDT*R, as observed also in other sera, with tolerance for various glycan structures. Glycosylation in the GSTA region was only found to be a minor binding epitope and was weakly recognized only when doubly glycosylated on the serine and threonine. T_N -antigen glycosylation in PDT*R resulted in the strongest antibody binding. Unexpectedly, serum antibodies had a relatively strong binding to mono- and divalent glycosylated type-1 core 2 hexasaccharide modified sequences **118** and **122** (*figure 4.67*). The antibodies showed only weak binding to the corresponding type-2 glycopeptides **125** and **129** as well as the linear, unbranched type-1 tetrasaccharide structures **101**. The preference of core 1 over core 2 glycans was here not present, as seen with glycopeptides **108**, **174** and **125** (*figure 4.68*).

4.3.8.7 Vaccine candidate 7 (3T_N-MUC1-P30-AuNP, HC1)

The vaccine candidate **7** is identical to vaccine **6** with the difference that the vaccine candidate was administered to the mice were without extra addition of an external adjuvant (*Freund's* adjuvant in case of vaccine candidate **6**). The adjuvant liposome formation was believed to disturb the multivalent AuNP antigen presentation, with the risk of encapsulation of the nanoparticles. The vaccine generated high antibody titers directed to the B-cell epitope in all sera. IgG₁ was the dominating antibody isotype. Breast cancer T47D and MCF-7 cells and pancreas capan-1 and -2 tumor cells were recognized in all sera. The mouse 2 serum antibodies were selected and stained tumor cells from patient tissues, evaluated on a tumor tissue array including 360 patient samples. Glycopeptide microarray analysis for evaluation of antibody glycopeptide binding epitopes is shown below (**MA2**: *figure 4.69*, **MA3**: *figure 4.70*).

Figure 4.69: Binding of vaccine candidate 7 (HC1) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

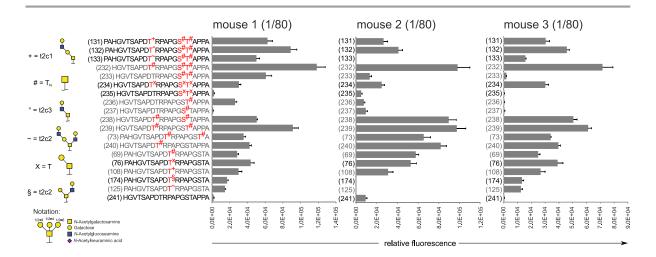
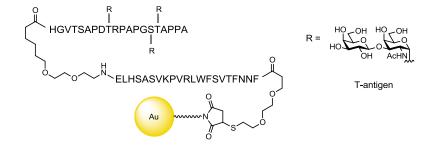



Figure 4.70: Binding of vaccine candidate 7 (HC1) antisera (mouse 1-3) on microarray MA3.

Mouse 1 serum (dilution: 1/80), mouse 2 serum (dilution: 1/80) and mouse 3 serum (dilution: 1/80):

Unglycosylated peptides 207 and 241 were only weakly recognized by the antibody sera (figure 4.69, figure 4.70). The overall patterns for all three sera were similar and more homogenous compared to the aforementioned gold nanoparticle vaccine candidate 6 (AuNP) induced antisera. All sera from this vaccine candidate showed the same overall dependent binding on glycosylation in PDT*R. Dependency on glycosylation in GS*T*A for antibody recognition, was present in the mouse 1 serum, preferably with clustered T_N -antigen presentation. Mouse 2 and 3 serum antibodies had weak (mouse 2) or no interactions (mouse 3) with the glycosylated GS*T*A domains (233, 236 and 237, figure 4.69, A and green bars in **B**, figure 4.69). In all three sera, weaker antibody affinity was observed for, the PDT*R core 2 glycopeptide peptide structures. As with core 2 tetrasaccharide 174 and the core 2 hexasaccharide 125, weaker antibody affinity was observed to branched core 2 structures than to the linear core 1 structures, such as tetrasaccharide 108 (figure 4.70). According to the observations in the previous examples, preferences for core 1 over core 2 glycosylation in PDT*R were present with the serum antibodies having high affinity to this glycosylated domain (76, 108, 174, figure 4.70). Shielding of the peptide backbone with core 2 hexasaccharide triglycosylation was observed (figure 4.69, B), similar to the previous examples.

4.3.8.8 Vaccine candidate 8 (3T-MUC1-P30-AuNP, HC2)

The vaccine candidate **8** is identical to vaccine **7** with the difference that the B-cell epitope presents the T-antigen structure instead of T_N -antigen on the peptide tandem repeat. The vaccine candidate was administered to the mice without extra addition of an external adjuvant. The vaccine generated high antibody titers directed to the B-cell epitope in all sera. IgG₁ was the dominating antibody isotype. Breast cancer T47D and MCF-7 cells and pancreas capan-1 and -2 tumor cells were recognized with all sera. Glycopeptide microarray analysis for evaluation of antibody glycopeptide binding epitopes is shown below (MA2: *figure 4.71,* MA3: *figure 4.72*).

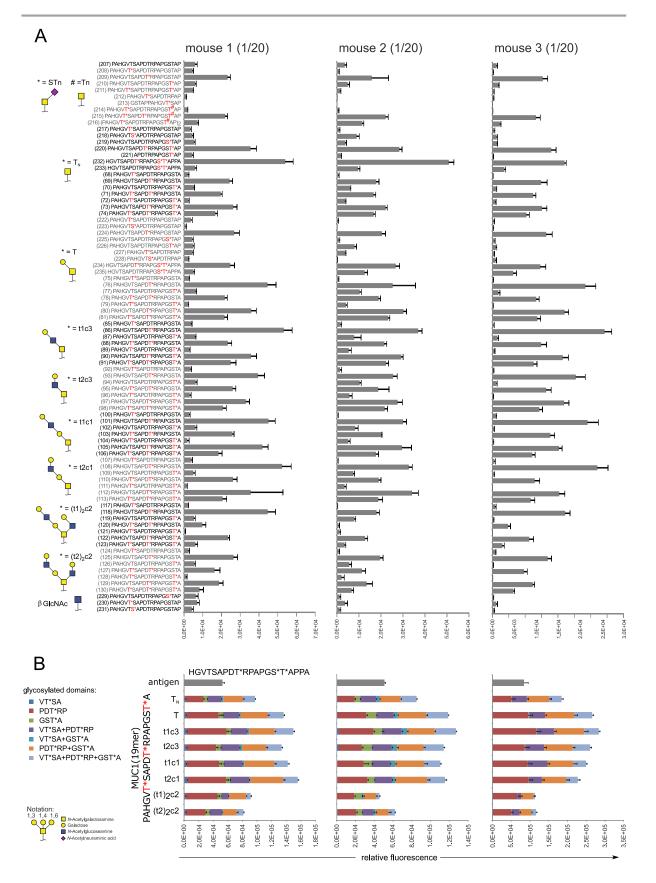


Figure 4.71: Binding of vaccine candidate 8 (HC2) antisera (mouse 1-3) to microarray MA2. A: Full peptide list.B: MUC(19mer) sequences, plotted as cumulative binding depending on the glycosylation site.

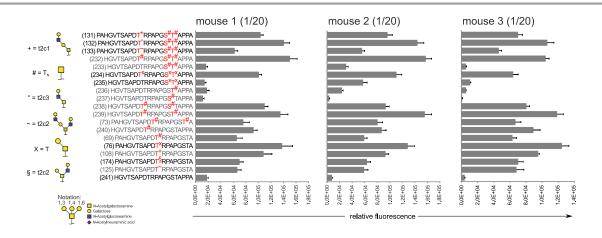


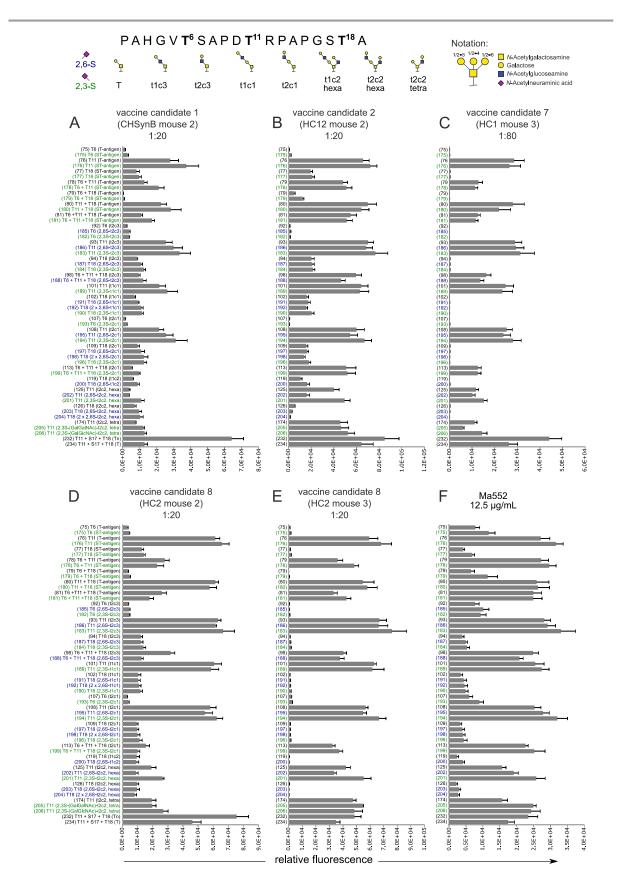
Figure 4.72: Binding of vaccine candidate 8 (HC2) antisera (mouse 1-3) on microarray MA3.

Mouse 1 serum (dilution: 1/20), mouse 2 serum (dilution: 1/20) and mouse 3 serum (dilution: 1/20):

The unglycosylated peptides **207** and **241** were recognized with weak affinity by the antibodies (*figure 4.71, figure 4.72*). Like vaccine candidate **7**, the overall recognition pattern was rather homogenous for all three sera. The B-cell epitope sequence **234** was strongly recognized by the serum antibodies, but in contrast to the above described antibodies of vaccine candidate **7** (HC1), induced with the triple T_N -antigen glycosylated analogues, several other MUC1 sequences had similar affinity like the B-cell epitope towards the antibodies. Glycosylation in GSTA with T_N -antigen on the serine or threonine or (e.g. **225**, **226**, *figure 4.71*; **233**, **235**, **236**, **237**, *figure 4.72*) double glycosylation with T-antigen in GS*T*A (**235**, *figure 4.72*) or any other glycan on threonine in this region (*figure 4.71*, green bars in **B**), resulted in very weak antibody binding. Only the mouse 2 serum showed some reactivity against clustered glycosylation with T-antigen in the GS*T*A domain. However, if additionally glycosylation in PDT*R was present or if PDT*R was the only glycosylated site, than strong binding was observed, demonstrating that antibody reactivity was directed mainly to the PDT*R domain was observed (*figure 4.71*).

Further, the change from T_{N} - to T-antigen glycosylation of the B-cell epitope (vaccine candidate **7** compared to vaccine candidate **8**), seemed to result in slightly higher antibody acceptance for larger glycans on the peptide backbone. The antibody cut-off for the core 2 hexasaccharide peptides was not as pronounced (*figure 4.71*, **B**) as in vaccine candidate **7** or the two-and three component vaccine candidates **1** and **2**, sharing the same T_N -antigen glycosylated B-cell epitope. Larger glycans in glycopeptide based cancer vaccines may therefore lead to a general higher tolerance for different glycan structures on the mucin peptide tandem repeats. Such vaccine constructs may therefore generate antibodies with lower specificity for small tumor-associated glycans.

Core 1 over core 2 glycan preference still existed, but the difference between glycopeptides **108**, **174** and **241** was not as pronounced as in the other vaccine candidate examples with T_N -glycosylation (*figure 4.72*).


4.3.9 Elucidation of antibody binding specificity towards sialylated MUC1

glycopeptides on a microarray

Sialylation at the terminal, non-reducing end is common for naturally occurring *N*- and *O*glycans. Sialic acids are hydrophilic, bulky and negatively charged monosaccharides, which commonly serve as recognition domains, but may at the same time shield other carbohydrate epitopes from recognition. These events usually rely on interactions of carbohydrate binding proteins such as bacterial and viral lectins, selectins or siglecs with sialic acid containing glycoproteins or glycolipids.³²⁸ Antibodies may further be directed to unique sialylated carbohydrate epitopes. Here, antibodies directed against tumor associated MUC1 glycopeptides were evaluated for potential cross-reactivity to sialylated glycopeptides. The synthesized sialylated mucin glycopeptides were compared with the unsialylated glycopeptides, to elucidate the potential effects on antibody recognition by the additional sialylation.

After the enzymatic glycosylation, yielding the synthesized sialylated glycopeptides, the low abundant products were quantified by amino acid analysis. To avoid any discrepancies between different methods of quantification of the glycopeptides used for microarray analysis, the corresponding unsialylated glycopeptides were as well determined by amino acid analysis instead of gravimetrical weighing. The unsialylated peptides and their sialylated counterparts were spotted on microarray format **MA4**.

The sera of vaccine candidate **1** (CHSynB) mouse 2, vaccine candidate **2** (HC12) mouse 2, vaccine candidate **7** (HC1) mouse 3 and vaccine candidate **8** (HC2) mouse 2 and 3 were chosen for antibody screening. The antisera were chosen based on the strong dependency on the glycosylated PDT*R binding epitope. Antibodies directed to the GSTA domain were usually highly restricted to double (clustered) T_N -antigen glycosylation and were therefore not selected for elucidation of antibody ma552 was screened on this array (*figure 4.73*, **F**). Ma552 originated from immunization of mice with ZR75-1 breast cancer cells. A broad set of glycopeptides were recognized by this antibody, although, similar to the probed vaccine candidates, this mAb targets the PDTRPAPGS binding epitope of the MUC1 tandem repeat, preferably if this domain is glycosylated.^{46,329,330}

Figure 4.73: Comparison of antibody binding to sialylated glycopeptides and to the unglycosylated counterparts. Unsialylated glycopeptides are depicted in black, α2,6-sialylation in blue and α2,3-sialylation in green. Entries **232** (**A**, **B**, **C**) and **234** (**D**, **E**) are the administered B-cell epitopes.

Sialylation with α 2,3-Neu5Ac (in green) and α 2,6-Neu5Ac (in blue) resulted in no significant changes in antibody reactivity compared with the unsialylated MUC1 glycopeptide epitopes (in black, *figure 4.73*). This means that the T-antigen and the ST-antigen, which are both tumor-associated antigens, as well as the linear sialylated extended core 1 and core 3 glycopeptide epitopes were well recognized by the induced antibodies. Antibody reactivity to monoglycosylated sialylated and unsialylated core 2 epitopes was also observed. However, on certain core 2 glycopeptides, small but distinct effects of the sialylation were found. Peptide entry **201** with a bulky α 2,3-disialylated core 2 octasaccharide in PDT*R seemed to slightly increase antibody recognition compared to the unglycosylated counterpart (**125** vs **201**, *figure 4.73*). α 2,6-Sialylation on the core 2 octasaccharide of glycopeptide **202** had a considerably decreasing effect for binding of antibodies, in particular observed in the antisera from vaccine candidate **2** mouse 2 (*figure 4.73*, **B**) and vaccine candidate **8** mouse 2 (*figure 4.73*, **D**).

The monoclonal antibody Ma552, induced from human breast cancer cells, generated a similar antibody recognition to the sialylated and to unsialylated MUC1 glycopeptides. The antibody cross-reactivity to different MUC1 glycopeptide structures was thus in general higher than for most of the antisera induced by the above described synthetic vaccines.

4.3.10 Discussion of MUC1 serum antibody specificity elucidation

4.3.10.1 The role of PDTR-glycosylation

The PDTR peptide domain has been identified as an immuno-dominant region in the MUC1 tandem repeat sequence. The ISOBM TD-4 workshop (San Diego, California, 1996) examined a comprehensive collection of 56 monoclonal antibodies directed against mucin glycoproteins or tumor associated carbohydrates with antigen structures derived from isolated mucins or tumor cells. About 34 antibodies were directed against the MUC1 peptide tandem repeat and 28 of them showed reactivity against epitopes including the core DTR. For the majority of most of the other antibodies, evidence for carbohydrate dependent epitopes were found. However, monoclonal antibody Ma552, which was also part of the ISOBM-investigation, was described to be PDTR-specific, although this investigation showed that Ma552 has merely a preference for PDTR and recognizes further MUC1 glycopeptides with lower affinity (*figure 4.73*, **F**). At the time of the ISOBM workshop, it was unclear if the immunogenicity of the PDTR domain solely relied on the peptide epitope and had a better accessibility when unglycosylated or if the glycosylation stabilized the formation of

immunogenic secondary turn structures. It was found that the majority of available monoclonal antibodies derived from tumor sources showed enhanced or even exclusive binding when the PDT*R motif was glycosylated with T_N - or T-antigen.^{327,330} It was therefore proposed, that a MUC1 peptide vaccine would be more potent when glycosylated in the PDTR domain.⁴⁷

Two- and three component vaccine candidates 1 and 2 and as well the gold-nanoparticle bound vaccine candidates 6 and 7 shared the same B-cell epitope, which include T_N-antigen glycosylation in the PDTR and GSTA region and vaccine candidate 8 contains an analogue B-cell epitope with T-antigen decoration. All of them showed strong binding to the B-cell epitope 232 and all mouse sera except one (vaccine candidate 2 (HC12), mouse 1) showed broad recognition dependent on PDT*R glycosylation (14 out of 15 sera). Glycosylation was not restricted to the T_N-antigen only, but also T-antigen and elongated core 3 trisaccharide and core 1 tetrasaccharide structures provide binding. To some degree even branched core 2 hexasaccharides were accepted in this domain. Thus, similar to the majority of monoclonal antibodies that have formerly been generated from tumor tissue or other MUC1 sources (e.g. human milk, urine), vaccines of this kind indeed induce specificity for glycosylation in PDTR. Vice versa, the specificity of the known monoclonal antibodies derived from PDTR glycosylated source material, suggests that the PDTR domain often is glycosylated in tumor cell MUC1 glycoproteins. It is known that all glycosylation sites of the MUC1 tandem repeat are potential targets for the polypeptide glycosyltransferases in cancer cells.³³¹ Also, some monoclonal antibodies were recently reported to have tolerance for T_{N-} , T-, and ST- glycoforms in PDT*R, screened on a MUC1 microarray system.³²⁴ In the current thesis, a broad tolerance of glycoforms by the induced antibodies was shown not only for the T_N-, T- and ST_N-antigen structures, but to some extend for linear and to sometimes even branched type-1 and -2 elongated mucin core structures that are not classic tumorassociated antigens. Vaccine candidate 3 (HC11, figure 4.62 and 4.63), containing a B-cell epitope without glycosylation in PDTR induced three different antibody specificities in each of the three mice immune sera, of which only one recognized the unglycosylated PDTR domain (mouse 2), indicating that the glycosylated PDT*R indeed is more immunogenic than an unglycosylated PDTR and also more immunogenic than a single glycosylation on the serine of GS*TA.

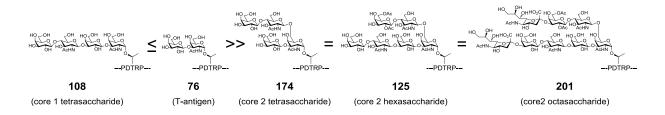
4.3.10.2 Role of GSTA glycosylation

The results obtained in this work from the investigated murine antisera induced by vaccine candidates 1, 2, 6, 7, 8 containing a B-cell epitope with homogenous T_N - or T-antigen

glycosylation in PDT*R and GS*T*A, showed a very narrow and specific dependence on glycosylated GS*T*A. The two- and three component vaccines candidates 1 and 2 induced antibodies, which showed significant binding to clustered T_N-antigen glycosylation in the GS*T*A epitope (233). If the glycosylation in this domain was exchanged to clustered Tantigen glycosylation (235) antibody binding was lost. Double glycosylation in this domain was mandatory, since single glycosylation in GSTA, whether with T_N-antigen on serine or threonine (236 and 237) or a different core glycan on threonine, resulted in no or weak antibody binding. While glycosylation in the GS*T*A binding epitope needed to match the vaccine template, the PDT*R glycosylation often provided a broader spectrum of possible binding interactions and was therefore considered responsible for a major part of the antibody recognition. In contrast, vaccine candidate 3 (HC11) has a B-cell epitope only glycosylated on serine in the GS*TA region. The antibodies from two out of the three generated sera induced by vaccine candidate 3 (mouse serum 1 and 2) had peptide epitopes that neither relied on glycosylation nor on the GSTA domain. Only mouse 3 showed very specific reactivity for T_N-antigen on either serine or threonine in GSTA. The immunogenicity of the monoglycosylated GS*TA domain was inferior to that of PDT*R. In the di- and tripartite vaccines with clustered T_N-glycosylation in GSTA the immunogenicity was higher than monoglycosylation in GSTA of vaccine candidate 3 (HC11). The influence of GSTA domain glycosylation seems not to be very important in the case of the gold nanoparticle vaccine candidates 6, 7 and 8. Only 3 out of 9 mouse sera (vaccine 6 mouse 1, vaccine 7 mouse 1, vaccine 8 mouse 2) showed strong antibody interactions with double or monoglycosylated GSTA (e.g. 233, 235). Here, glycosylation in PDTR clearly dominates antibody binding in comparison to GSTA glycosylation, again highlighting the immunogenic relevance. In the AuNP based vaccines, the induced antibodies had a strong preference for the PDTR epitope in spite of the attached B-cell epitopes containing T_N -antigen in both the PDTR and GSTA region, proposing that the latter has a lower immunogenicity. R. Cummings and D. Live administered MUC1 tandem repeat sequences on KLH to breast cancer patients in remission, containing either T_N-antigen glycosylation in PDT*R or clustered in GS*T*A or in both epitopes.332 They identified both epitopes as immunogenic, however, the vaccine candidates containing glycosylation in both epitopes, generated polyclonal immune sera with higher affinity to the glycosylated PDT*R domain.

It can be speculated, that the very narrow antibody specificity to clustered T_N -antigen glycosylation in the GSTA domain was the result of the conformational influence of the carbohydrate decoration. GS*T*A with consecutive glycosylation on serine and threonine was found to be locked in a rigid and extended structure. *F. Corzana et al.* conducted molecular dynamics (MD) simulation with a serine-threonine dipeptide with clustered T_N -antigen glycosylation (S*T*, as in the GS*T*A domain) and found that the glycans adopted

an orientation similar to the orientation of monoglycosylated serine-threonine dipeptides without vicinal glycosylation (ST* or S*T).³³³ The vicinal glycans in diglycosylated peptides can occupy natural positions without sterical interferences. The superimposed MD structures showed low flexibility for this orientation, meaning that the glycans are fixed in their positions. Similar results were obtained by the groups *R. Cummings* and *D. Live*.³³² NOE signals observed through NMR spectroscopy of synthetic T_N-antigen glycosylated peptides were compared and peptides with vicinal, clustered T_N-antigen glycosylation showed fortified NOE interactions between the peptide backbone and the carbohydrate moieties, indicating more rigid structures for glycopeptide with clustered glycosylation. The group around *H. Kunz* showed that a PAPGS*T*APPA decapeptide with clustered T_N-glycosylation, adopts an extended "rod-like" structure.³³⁴ The rigid peptide conformation with fixed and inflexible clustered T_N-antigen glycosylation in the GS*T*A domain of MUC1, may be recognized by the immune effector cells and translated into a very precise antibody design with high specificity for the template, but low flexibility for deviating structures.


4.3.10.3 Role of the VTSA domain

The VTSA domain of the vaccine candidates was not glycosylated and no antibody reactivity against the VTSA peptide domain, whether glycosylated or not, was observed here, with the exception of vaccine candidate **3** (HC11) mouse 1. The B-cell epitope of vaccine candidate **3** had one T_N -antigen in the GS*TA domain and produced different antibody specificities in all three mice.

In the cases of the other vaccine candidates, glycosylation on threonine of VT*SA was here shown to decrease antibody reactivity to the glycosylated PDT*R motif in multivalent glycopeptides. PDT*R-specific antibodies often tolerated additional glycosylation in GST*A, without (almost) any decrease in binding affinity. Additional VT*SA glycosylation, however, often reduced binding to PDT*R. *Hanisch et al.* described disturbed antibody binding of monoclonal antibodies directed to unglycosylated PDTR in the presence of glycosylation in the VTSA region.³³⁵ *Dziadek et al* demonstrated that glycosylation with a α2,6-ST-antigen on Thr in VT*SA resulted in a long range effect on the conformation of the unglycosylated PDTR turn structure.⁵⁴ The results from this work are in accordance with these findings, but appending that a conformational influence from VT*SA also influences glycosylated PDT*R domains and thereby modify antibody recognition.

4.3.10.4 Influence of glycan size, core branching and sialylation

As stated above, elongated core 3 and core 1 structures in general do not obstruct antibody binding to the immuno-dominant PDTR motif and the antibodies directed to the PDTR epitope tolerate to some extend multivalent glycosylation on other glycosylations sites of MUC1, containing these glycans. A limitation in the recognition of the glycopeptides was set by the branched core 2 hexasaccharide structures. For direct comparison, glycopeptide 174, modified with a type-2 core 2 tetrasaccharide in PDT*R was added to microarray MA3 along with the corresponding linear core 1 tetrasaccharide sequence 108, core 2 hexasaccharide sequence 125 and the core 1 T-antigen peptide 76 (diagrams for MA3 in the corresponding chapter 4.3.8). Disaccharide decorated peptide 76 was usually recognized well and linear elongation with a lactosamine unit to form a core 1 tetrasaccharide as in glycopeptide 108 was detected as good or moderately weaker. If glycan elongation with the lactosamine was in 6-position of the α GalNAc instead, to form the equivalent branched core 2 tetrasaccharide, recognition dropped significantly. Furthermore, if the core 2 glycan was further elongated, to give branched core 2 hexasaccharide glycopeptide 125, no further loss of recognition was accordingly observed. In fact, the core 2 tetrasaccharide, hexasaccharide and even disialylated octasaccharide on glycopeptide 201 (MA4, figure 4.73) decorated peptides showed approximately the same binding intensities by the induced antibodies (figure 4.74).

Figure 4.74: General binding affinities of the PDT*R-specific serum antibodies depending on the *O*-glycosylation in this peptide domain.

This demonstrates that linear core 1 structures are preferred over branched core 2 glycans in the immunodominant PDTR domain. The antisera induced by T_N -antigen decorated vaccine candidates **1**, **2**, **6**, **7**, **8** show in general almost stable antibody recognition in terms of intensity for linear di-, tri- and tetrasaccharide glycan structures in the PDTR domain (diagrams for **MA2** section **B** in *chapter 4.3.8*), but a significant drop in antibody recognition for the core 2 hexasaccharides. The reduced antibody preference for β 1,6-branched glycans could either be a steric effect due to the branching or a conformational alteration of the secondary structure of the peptide backbone induced by the glycan. A α GalNAc in the PDT*R motif results in a conformational change in the PDTR turn structure.^{53,331} It is still not fully investigated how further core elongation may change the peptide conformation.

Previous NMR studies of extended glycosylation on non-MUC1 mucin glycopeptides showed that further glycan elongation, beyond the initial α GalNAc, does not have a great impact on the backbone conformation,³³⁶ including elongation in a core 2 fashion.^{337,57} On the other hand, H. Kunz showed, that peptides from LI-cadherin with various glycans attached, exhibited glycan dependent conformational changes in similar NMR experiments, when glycosylation was further extended on the aGalNAc monosaccharide.³³⁸ Based on the coupling constants and NOE coupling in NMR experiments, the group of S.-I. Nishimura reported that distal sialylation on an extended core 2 glycan at the PDT*R domain in a MUC1 tandem repeat, had remote effects on the conformation in the domain, while sialylation of glycans in the VTSA and GSTA sites had no conformational effect on these glycosylation sites.⁵⁷ Conformational effects are thus most likely sequence dependent and can therefore be a plausible reason for the reduced antibody affinity to the core 2 glycosylated PDT*R motifs. It may indicate that additionally to the conformational change in the PDTR domain, caused by glycosylation with the basic aGalNAc, the ßGlcNAc linked to the 6-position of aGalNAc is also influencing the peptide backbone conformation. In contrast, elongation in 3position of the α GalNAc with β 1,3Gal (core 1) or β 1,3GalNAc (core 3) may not have a comparable conformational influence on the peptide, due to the similar binding affinities of the antibodies towards the core structures.

The findings are interesting, since several studies, for instance with breast carcinoma cells, indicate that core 1 glycan decoration is more abundant than core 2 glycosylation on tumor cells, while core 2 glycans decoration is often found on healthy cells.^{30,321,339} The aberrant glycosylation on tumor cells has been associated with decreased expression of core 2 1,6-*N*-acetylglucosaminyltransferase 1 (C2GnT-1) and upregulated expression of human α 2,3-sialyltransferase 1 (ST3Gal1) during oncogenesis.³²⁰ Further, high contents of secreted and shedded MUC1 carrying core 1 based glycans have been found in the sera of advanced breast cancer patients.³⁴ Therefore it would be highly eligible, to produce antibodies that show higher affinity to tumor related core 1 glycoproteins on various adenocarcinomas.³⁴⁰ To some extent, this feature appears to be inherent in the presented vaccine candidates. The aberrant glycosylation on tumor cells is sometimes also caused by mutation of the Cosmc chaperone essential for T-synthase activity resulting in presentation of T_N- and ST_N-antigen modified epitopes, structures which are also covered by the antibodies induced by the above described vaccines.

Vaccine candidates **7** and **8** share the same B-cell epitope sequence with T_N - and T-antigen as haptens, respectively, on a gold nanoparticle support. The three sera originating from the T-antigen glycosylated vaccine candidate **8** seemed to have a slightly higher tolerance for the sequences with the bulky core 2 hexasaccharides than the T_N -antigen vaccine **7** (*figures*

4.69 and 4.71, B). It appears reasonable that the slightly bigger T-antigen hapten induced antibodies with specificity for somewhat larger glycans. This study clearly shows that there is a size tolerance for larger carbohydrates than the vaccinated haptens, at least in the immuno-dominant PDTR motif. This may in particular be problematic if the antibody discrepancy between core 1 and core 2 structures is lost with the risk of generating an immunological memory, also to normal healthy cells. The larger tumor-associated antigens, such as the ST- (Neu5Ac α 2,3-Gal β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α) trisaccharide or the di-ST-(Neu5Ac α 2,3-Gal} β 1,3-GalNAc α Gal β 1,3-[Neu5Aca2,6]-GalNAca) tetrasaccharide may therefore not be the optimal choice for vaccination. Due to the potentially higher immunogenicity of the negatively charged sialic acid residues in these structures and the fact that sialylation seems to influence the MUC1 peptide backbone conformation, these tumor-associated glycan structures may thus behave different from the above described T-antigen vaccine candidate 8. There is no defined threshold yet, that marks the borderline between tumor-associated and healthy, regarding the size and valency of carbohydrates that obstruct antibody epitopes, such as the PDTR domain. Information of this kind is important because of possible autoimmunity, induced by an inadequate, potential therapeutic vaccine.

Finally, no significant differences in antibody recognition were monitored for type-1 or type-2 core elongation. In general, the type of carbohydrate backbone elongation by type-1 or type-2 LacNAc does not seem to have conformational influences on the tandem repeat peptide of MUC1. Only one antiserum from vaccine candidate **6** mouse 3 (*figure 4.67*, **A+B**) showed strong discrepancy for binding to peptides, glycosylated with core 2 type-1 hexasaccharides in PDT*R. Since the corresponding core 1 type-1 tetrasaccharide and the core 2 type-2 hexasaccharide were not recognized, the antibodies must have a preference for the peptide epitope conformation induced by core 2 glycosylation with further β 1,3-linked elongation, or directly to the carbohydrate structure itself.

4.3.10.5 Antibody binding of multivalent peptides with glycosylation in different

domains

Trivalent peptides with di- (basic core 1), tri- (extended core 3), tetra- (extended core 1) and pentasaccharides (sialylated, extended core 1) in all three glycosylation sites, still exhibit accessible epitopes for the induced antibodies. However, trivalent core 2 hexasaccharide decoration in all three glycosylation sites (HGVT*+PDT*R+GST*A, diagrams of **MA2**, section **B** in *chapter 4.3.8*) effectively prevents antibody binding and was therefore regarded as a model structure for a mucin peptide/protein backbone masked by extensive *O*-glycosylation.

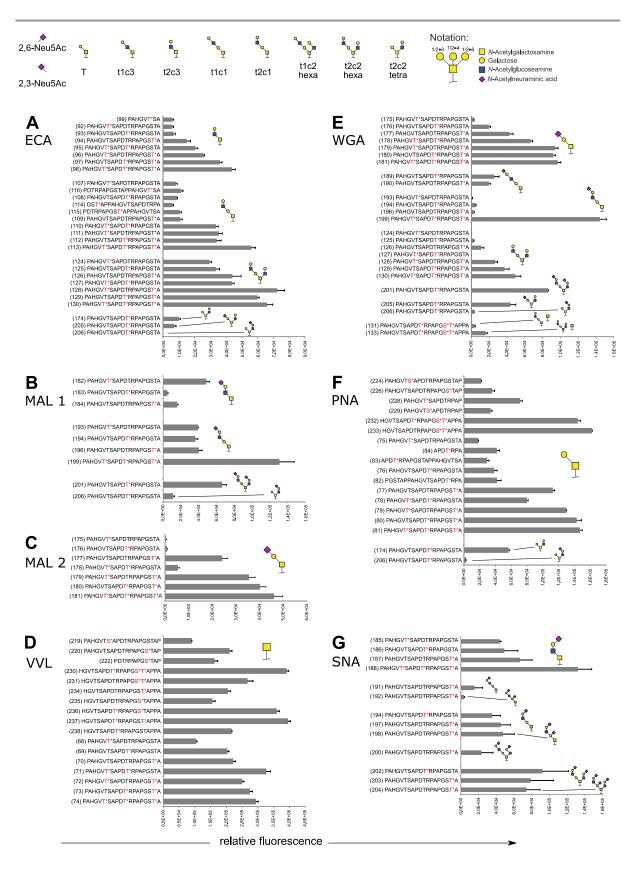
These results suggest that multiple branched core 2 glycans are more effective in shielding the mucin proteins than linear core 1 or 3 glycans.

4.3.10.6 Influence of the T-cell-epitopes, mitogens and carriers on antibody

binding

All vaccine candidates, except for number 3, 4, and 8, share the same B-cell epitope sequence (HGVTSAPDT*RPAPGS*T*APPA, $* = T_N$ -antigen). However, differences in the antibody binding patterns were observed. Most obvious was the general low antibody specificity of the tetanus toxoid conjugated candidates 4 and 5 (chapter 4.3.8.4 and chapter 4.3.8.5). Basically all sequences were recognized to a good extent, no matter if glycosylated or not. Only sequence 213, missing the PDTR domain, showed no reactivity with the antibodies. This clearly indicates that the tetanus toxoid vaccine induced antisera were specific for the PDTR sequence, and therefore also MUC1-specific. In this case, reduction of antibody binding to the large core 2 hexasaccharide peptides was observed, but was less pronounced. Still, trivalent hexasaccharide peptides were shielded by the glycans from antibody binding. To conclude, the tetanus toxoid vaccine candidates elicited uniform antibody specificity for MUC1 tandem repeats with an antibody binding epitope dependent on the PDTR domain and to a large extend independent from the glycosylation status. A cutoff for larger carbohydrate core 2 structures, which are found on healthy cells, was still observed. The glycan decoration of the B-cell epitope sequence, conjugated to the tetanus toxoid vaccine candidates, does not have great influence on accentuated antibody binding profiles with the glycopeptide library presented here, as can be seen by comparing vaccine candidate 4 and 5. Carrier proteins are known to produce a larger spectrum of antibodies also against peptide epitopes on the carrier protein, which in the worst case can overrule the hapten specific immune response.^{129,130} This should mainly influence the antibody titer of the immune response against a certain antigen. Here it seems that the strong immune response induced by the tetanus toxoid stimulant also induces less accentuated antibody specificity. The extraordinary strong immune response is combined with an expense of antibody binding specificity. Anyhow, as demonstrated by Gaidzik et al., mouse 5 of tetanus toxoid conjugated vaccine candidate 4 (NG5), tested on the MUC1 microarray in this work, elicited IgGantibodies in mice, that specifically showed high reactivity against advanced tumor cells (G3phase) in mammary carcinoma tissue sections, but only weak recognition of tumor tissue in the early phase (G1-phase).¹²⁶ This could be the direct influence of the observed core 2 affinity cutoff (more normal core 2 glycans on early phase tumor cells) or just a result of the dramatically increased expression of the MUC1 glycoprotein on the advanced tumor cells or

a combination of both effects. Such an immune response, combined with the general high antibody titers observed, may just be right to create an adequate therapeutic immune reaction or might be borderline, regarding the risks of inducing autoimmune reactions against normal cell surface glycosylation.


The two- and three-compound vaccine candidates **1**, **2** and **3** produced sera that were not uniform in the induced antibody profile. A minority of the antibody sera showed very specific binding to a few sequences including site specific T_N -antigen glycosylation according to the induced antigen structure, while others showed showed broad recognition of differently glycosylated domains. The attached mitogen Pam₃CSK₄ in vaccine **2** and **3** does not have an obvious positive effect on the antibody profile compared to candidate **1**. Thus, a larger variance of isotype antibody classes are formed by immune stimulation with the build-in adjuvant Pam₃CSK₄ vaccines, which might be favorable for an efficient immune response directed to tumor cells.

The P30-AuNP conjugated vaccines **7** and **8** on the other hand, presented a more uniform induced antibody response in all of the mice. The immune sera were not only specific for the glycoform of the B-cell epitope, but showed in general broad acceptance of various PDTR glycosylated sequences. Generation of uniform immune reactions is an important feature of a safe vaccine.

4.3.11 Binding of plant lectins to MUC1 glycopeptides on a microarray

4.3.11.1 Glycopeptide microarray analysis with plant lectins

Plant lectins are commonly used in carbohydrate structure analysis to detect specific recognition elements on glycoproteins or glycolipids. Specific lectins are also used in glycobiology and glycoproteomics for enrichment of certain glycoproteins and glycopeptides by lectin weak affinity chromatography (LWAC).³⁴¹ The presented mucin glycopeptide microarray platform was used to evaluate interactions with lectins known to recognize specific carbohydrate binding elements. Effects on glycan presentation at different glycosylation sites, presentation in different core structures and influences by multivalent ligand effects in the lectin interactions were evaluated. A library of 132 MUC 1 glycopeptides was screened on microarray format **MA5**. *Figure 4.75* only shows the positive binders of the library (for complete peptide list see *chapter 6.3.4* and complete data *chapter 8.3.4*).

Figure 4.75: Binding of different plant lectins on the glycopeptide array platform MA5. A: Erythrina cristagalli (ECA, 100 μg/mL), B: Maackia amurensis I (MAL I, 80 μg/mL), C: Maackia amurensis II (MAL II, 20 μg/mL), D: Vicia villosa (VVL, 50 μg/mL), E: Wheat germ agglutinin (WGA, 50 μg/mL), F: Peanut agglutinin (PNA, 10 μg/mL), G: Sambucus nigra agglutinin (SNA, 20 mg/mL).

All lectins recognized the glycopeptides according to their reported carbohydrate binding specificities (*figure 4.75*).³⁴² Additionally to HPLC and MS characterization, lectin binding validates the enzymatic α 2,3- and α 2,6-sialylation performed on glycopeptide level. The observed lectin binding specificities to the mucin core glycopeptides found on the microarray were as follows:

A Erythrina cristagalli (ECA)

ECA was reported to recognize terminal Gal β 1,4-GlcNAc (type-2 LacNAc) structures and accordingly showed affinity to the type-2 terminated core 1, core 2 and core 3 glycans of the MUC1 glycopeptides. As seen best in the core 3 glycosylated peptides **92-99**, multivalent presentation of the glycans on the peptide backbone multiplies binding affinity. Branched core 2 glycans with two terminal LacNAc extensions are recognized exponentially stronger than the corresponding unbranched core 1 or core 3 glycans. α 2,3- or α 2,6-Sialylation blocks LacNAc recognition. Type-1 LacNAc terminated glycans were not recognized, as expected.

B Maackia amurensis I (MAL I)

MAL I was previously reported to recognize the terminal α 2,3-sialylated type-2 LacNAc trisaccharide structures. Evaluation on the glycopeptide array showed that the sialyl-LacNAc core 3 was a particular good ligand when presented in the VT*SA domain of peptide **182**, compared to the other glycosylation sites, indicating a conformational interaction of glycan and peptide backbone. The α 2,3-sialylated, type-2 extended core 1 glycans of peptides **193**, **194** and **196**, which were not bound by WGA (**E**), were recognized by MAL-I, as expected. Furthermore, the sialylated LacNAc was recognized better, if attached in a linear mode, e.g. in an extended core 1 glycopeptide (**194**), than in a branched fashion as a core 2 glycopeptide (**206**).

C Maackia amurensis II (MAL II, MAH)

MAL II was reported to recognize α 2,3-sialylated T-antigen structures and binds to the ST-antigen glycopeptide motives on the microarray as expected.

D Vicia villosa (VVL)

VVL was reported to recognize terminal GalNAc α as in the T_N-antigen and has been used in glycoproteomics to enrich GalNAc α glycopeptides from *Simple cell* lines. *Simple cell* lines were recently reported to be very useful in identification of *O*glycosylation sites, which is rather difficult with standard glycomics and proteomics techniques.¹⁶ Glycopeptide microarray analysis showed that the VVL lectin was very specific to the T_N-antigen glycopeptides. Minor preference for threonine over serine glycosylation was seen, e.g. **234** (Thr) versus **235** (Ser), which is in accordance with enzyme-linked lectin assay (ELLA) results by *Madariaga et al.*, although the difference here on the microarray was not so pronounced.³⁴³

E Wheat germ agglutinin (WGA, *Triticum aestivum*)

WGA was reported to recognize terminal GlcNAc β and sialic acid residues. The lectin is commonly used to enrich sialylated O-glycans, N-glycans and O-GlcNAcylated peptides from glycoproteomic tryptic samples. Here, the $\alpha 2,3$ -sialylated T-antigen glycopeptides were very good ligands, better than terminally sialylated type-1 or -2 LacNAc glycan conjugates. In fact, the sialyl type-1 extended core 1 peptides 189 and 190 were weak to medium binders, while the type-2 analogs 194 and 196 show very low lectin binding. A 1,3-glycosidic bond between the Gal and the GlcNAc seems to be favored. The peptides with $\alpha 2,3$ -Neu5Ac on the type-2 core 3 glycosylated peptides were not recognized. Even more surprising, the triglycosylated linear sialyl type-2 core 1 glycopeptide 199 was recognized very strong, although all the corresponding monovalent glycopeptides showed almost no affinity. This is an extreme example for lectin avidity. A significant lectin binding was also observed to multivalent, not sialylated type-2 extended core 2 hexasaccharide glycans on peptides 128-130. Binding was probably mediated by multivalent presentation of internal GlcNAc β of this glycoform, although LacNAc is reported to be a poor ligand. The analog type-1 hexasaccharide modified peptides were not recognized. Glycopeptide 133 with an unsialylated core 2 type-2 hexasaccharide and GalNAca at another glycosylation site, was weakly recognized, hinting on a cooperative effect between these glycans, which did not result in lectin binding itself on different peptides. In summary, additionally to the known binding specificity for sialic acids and terminal GlcNAc_β, WGA also interacts with various core 2 glycoforms which do neither posses terminal sialic acids nor terminal GlcNAc_β. Further, the connectivity between a sialylated Gal and HexNAc influences the binding, for instance a single α2,3-sialylated type-2 LacNAc was a poor ligand, while the equivalent type-1 LacNAc showed significant binding. Also, only $\alpha 2,3$ -linked Neu5Ac was recognized and no affinity for α 2,6-Neu5Ac was observed.

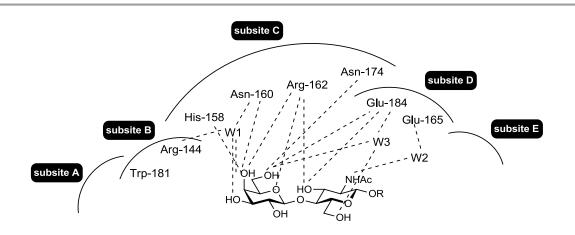
F Peanut agglutinin (PNA, Arachis hypogaea)

PNA was reported to recognize T-antigen structures and binds to the array as expected. Threonine glycosylation was preferred over serine glycosylation, as shown in glycopeptides **228** and **229**. Core 2 glycosylation on the T-antigen, as in peptide

174 did not prohibit recognition. On the other hand, if the core 2 was α 2,3-sialylated on the LacNAc side chain, as in glycopeptides **206**, lectin recognition was prohibited.

G Sambucus nigra agglutinin (SNA)

SNA was reported to recognize terminal Neu5Ac α 2,6-Gal and as expected bound to glycopeptides containing this structure on the microarray. α 2,6-Sialylated type-2 LacNAc is thereby preferred over sialylated type-1 LacNAc (e.g. **191** vs. **197**). Also, internal α 2,6-sialylation next to the type-1 prevents binding (**192**), which is not the case when the internal sialylation is next to a type-2 structure (**204**). No binding to Neu5Ac α 2,6-GalNAc α or 2,3-sialylated structures was observed.


In summary, all relevant glycoforms were addressed by the corresponding lectins and unique fine specificities were sometimes observed.

By comparing the different glycosylation sites when decorated with the identical glycan, it became apparent that most lectins recognized the glycan stronger when attached to the glycosylation site at the free C-terminal end of the peptide and vice versa weaker if the glycan was attached to the glycosylation domain close to the N-terminal end, where the peptide was linked to the polymer of the hydrogel. In most of the glycopeptides, the glycosylation site at the C-terminal end was the GST*A domain and at the N-terminal end the VT*SA motif. This was seen very clearly in the case of ECA (figure 4.75, A, e.g. 124 vs. 125 vs. 126), WGA (figure 4.75, E, e.g. 175 vs. 176 vs. 177) or MAL II (figure 4.75, C, e.g. 175 vs. 176 vs. 177). In fact, the only lectin that does not follow this trend is MAL I (figure 4.75, B, 184 vs. 185 vs. 186). It was not fully clear though, if this was a result of a sterical effect and that the lectins could simply approach glycans at the loose end of the peptide better than at the surface bound end. Alternatively, it could be a real conformational effect by which glycans are presented in a favorable way by the GSTA domain. Peptides with the VT*SA or PDT*R glycosylation sites present at different distance from the N-terminal end, were compared, e.g. 107 and 116 (figure 4.75, A, ECA, VT*SA) or 76, 82 and 83 (figure 4.75, F, PNA, PDT*R). An effect of reduced binding by the lectins if the glycan was closer to the immobilized N-terminal site was observed, although the difference in signal intensity is not large. To fully evaluate these effects, more peptides need to be synthesized.

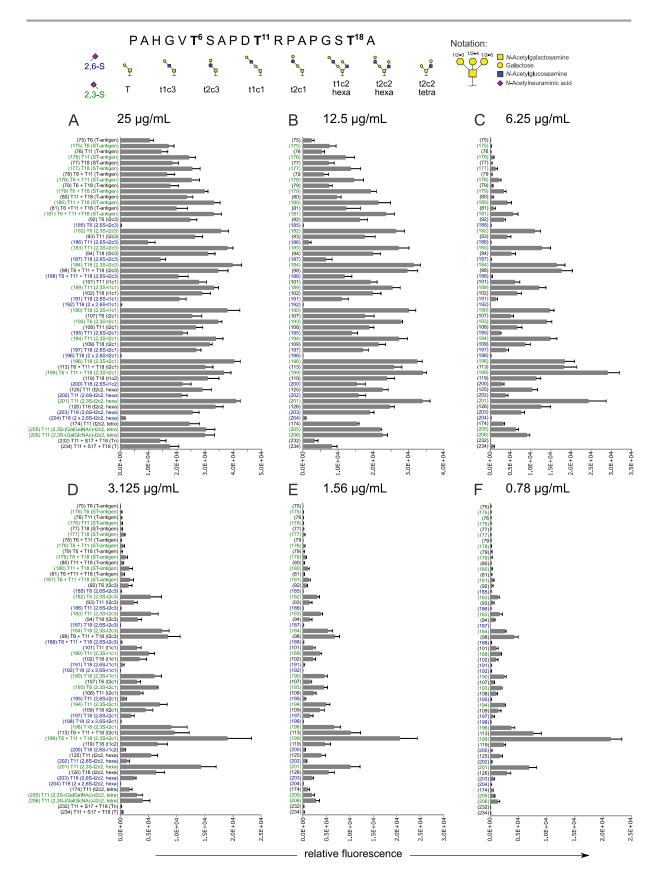
4.3.12.1 Introduction on the binding specificities of galectin-3

Galectin-3 is involved in intracellular, carbohydrate-independent processes, which have in general anti-apoptotic effects and are therefore promoting cancer development. On the other hand, extracellular galectin-3 is recognized by protein receptors in a carbohydrate-dependent way and is suspected to have apoptotic effects on cells.³⁴⁴ For example, T-cells were shown to become apoptotic upon contact with galectin-3. Various kinds of tumor cells overexpress galectin-3 and it is believed that cancer cells gain advantage from intracellular anti-apoptotic galectin-3 effects with simultaneous immune suppression by expressed extracellular galectin-3.93 There is evidence that tumor cells protect themselves from the extracellular apoptotic effects by aberrant cell surface a2,6-sialylation. Furthermore, the characteristic surface glycosylation of cancer cells seems to be correlated with cancer cell progression.^{79,83} The MUC1 glycoprotein is overexpressed on the surface of cancer cells and further exhibits tumor-associated glycosylation. Galectin-3 was observed to interact with the T-antigen structure on MUC1 and is probably involved in the extracellular, pro-metastatic effects, mediated by galectin-3.79 The established MUC1 tandem repeat glycopeptide array provides a platform for elucidation of galectin-3 binding preferences, facing typical tumor-associated glycan motifs, differently elongated O-glycan core structures, sialic acid termination and multivalent presentation branching on the glycan core structure or glycan decoration on several glycosylation sites. As a future perspective, such a glycopeptide array may provide a useful platform in the search of potent glycomimetics, such as competitive galectininhibitors.345,346

Galectins share a common preference for β -galactose, due to conserved sequence homology in their carbohydrate recognition domain (CRD). X-ray crystallography of the conserved galectin-3 CRD, complexed with Lac/LacNAc or T-antigen disaccharides, identified a binding groove with additional space at the non-reducing end of the carbohydrates.^{347,348} The suggested binding model comprises five subsites, namely A, B, C, D and E.³⁴⁹ Sites A-D cover an area large enough for a tetrasaccharide, while E can hold further saccharide residues or parts from the connected protein or lipid. Lactose or LacNAc as the central binding motifs for galectin CRDs, are located in sites C-D. The C-site features the mandatory contact to the axial 4'-OH and the 6'-OH of the galactose.³⁴⁷ The less restricted D-site houses the Glc, GlcNAc or GalNAc and contributes to overall binding (*figure 4.76*).

Figure 4.76: Model of galectin-3 subsites with hydrogen bonding to *N*-acetyllactosamine (LacNAc). Sites C-D house the central disaccharide. Sites A, B and E are vacant and can be occupied by modifying residues. W1-3 represent water molecules, participating in the LacNAc binding.

The A, B and E sites vary in preference for the residues around the central Lac/LacNAc for the different members of the galectin family. Like this, the various galectins interact with different interaction partners and are able to fulfill distinct actions. Identifying the characteristic interaction partners and unique specificities of the galectins is therefore necessary to understand galectin functions.


Several methods have been applied to study lectin-carbohydrate interaction and affinity of galectins to various biologically relevant carbohydrate structures. Solution-phase assays, such as fluorescence polarization,³⁵⁰ isothermal titration calorimetry (ITC),³⁵¹ frontal affinity chromatography (FAC)⁶⁷ and flow cytometry³⁵² have been used to evaluate or quantify binding affinities to a specific ligand in solution. On the other hand, immobilized ligands on a surface permit multivalent interactions, crucial for avidity in biological processes. Carbohydrate microarrays,^{353,354,355,356} ELISA-like plate assays³⁵⁷ and SPR^{353,358} have been used to study galectin specificity. In the published literature, the data obtained from solutionphase or surface assays are partly inconsistent within different studies of galectins.^{359,360} In the case of galectin-3 for example, the group around R.D. Cummings screened galectin-3 on a glycoarray by the Consortium for Functional Glycomics (CFG).^{353,361} The array failed to detect type-1 and type-2 LacNAc, the sialylated versions thereof, type-2 LacNAc terminated core 2 and core 4 glycans and the T-antigen, although the LacNAc disaccharide has before already been identified as the central galectin binding motif by other methodologies. H. Tetano et al. presented a glycoarray with glycans attached to a polyacrylamid backbone immobilized on epoxy slides on which binding to type-1 but not to type-2 LacNAc was observed.³⁵⁵ The Seeberger group immobilized glycans with a thiol-linker onto maleimidefunctionalized slides and observed stronger recognition of Lac than of LacNAc,³⁵⁶ although binding affinity was reported the other way around by several other studies. In general, the

way of presentation and the linker strategy, ligand concentrations, galectin preparation and detection method, may determine the result of galectin ligand profiling significantly.^{350,353,356,362}

Ultimately, studying specificity of galectin-3 to carbohydrates linked to tandem repeat peptides of the natural binding partner MUC1 was consequently reasonable, since the glycans are presented in a more natural way on the peptide backbone and in a multivalent mode. Also, no detailed study of extended *O*-glycan core structures as ligands for galectin-3 was reported. The CFG glycoarray platform also features some shorter core structures, but the results with galectin-3 were not conclusive since LacNAc terminated *O*-glycans as well as the known ligand LacNAc itself failed to show binding in previous studies.^{353,361}

4.3.12.2 Incubation of the MUC1 microarray with galectin-3

The MUC1 microarray **MA4** was incubated with recombinant (His-tagged) human galectin-3 expressed in *E.coli*. The lectin was detected by a secondary *Alexa Fluor 488* anti-mouse/human Mac-2/Galectin-3 antibody (dilution 1:500). Galectin-3 was applied in dilutions from 25 μ g/mL (ca 0.89 μ M) to 0.79 μ g/mL (ca 28 nM) in PBST (0.2%) buffer (*figure 4.77*). Normal physiological serum levels of galectin-3 are around 10 ng/mL and around 100-500 ng/mL in colorectal and breast cancer patients.⁹⁵

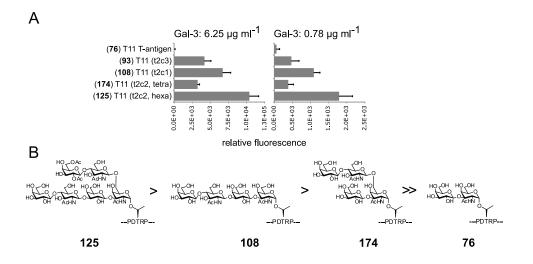


Figure 4.77: Galectin-3 binding of MUC1 glycopeptide tandem repeats. Incubation with **A**: 25 μ g/mL, **B**: 12.5 μ g/mL, **C**: 6.25 μ g/mL, **D**: 3.13 μ g/mL, **E**: 1.56 μ g/mL, **F**: 0.79 μ g/mL of galectin-3 in PBST (0.2%) buffer. Unsialylated glycopeptides are depicted in black, α 2,6-sialylation in blue and α 2,3-sialylation in green.

4.3.12.3 Galectin-3 binding to unsialylated type-1 and type-2 LacNAc structures

At 25 µg/mL (*figure 4.77*, **A**) most of the surface bound glycopeptides were apparently saturated with galectin-3. Pronounced discrimination of binding specificities was best seen at concentration around 6.25 µg/mL (*figure 4.77*, **C**). At the lowest tested concentration of 0.78 µg/mL (*figure 4.77*, **F**), the three highest signals belong to glycopeptides with multivalent glycan presentation at the peptide backbone. Of those, entries **110** and **199** carry three LacNAc extended core 1 glycans with α 2,3-sialylation on the latter and entry **201** presents an octasaccharide with double α 2,3-Neu5Ac-LacNAc termination. Interestingly, at high galectin-3 concentrations (25 µg/mL and 12.5 µg/mL) glycopeptide **232**, decorated with three α GalNAc monosaccharides, was also recognized by galectin-3. The recognition of the sole T_N -antigen was not described before in the literature. Glycopeptide **234**, has the same glycosylation pattern as **232**, but with three T-antigen (Galβ1,3-GalNAc) structures instead, which both showed only medium recognition at 12.5 µg/mL. The tumor-associated T_N - and T-antigen glycans decorating the mucin glycoproteins, might therefore be low-affinity binding partners for galectin-3 in cancer tissue, were elevated levels of this structure can be found on overexpressed mucins.

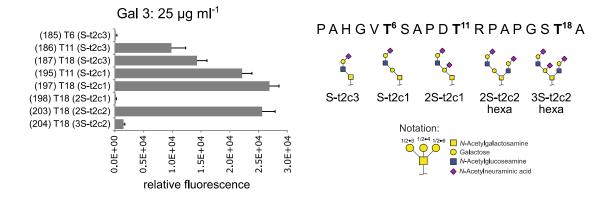
The tumor relevant T_{N} - and T-antigen were as well recognized at high galectin-3 concentrations. However, LacNAc terminated glycans represent better binding partners, whereupon type-1 and type-2 LacNAc glycans were equally well bound. LacNAc being attached to the basic core 1 in a linear fashion (**108**) was preferred over LacNAc branched in a regioisomeric core 2 structure (**174**) (*figure 4.78*). The core 2 hexasaccharide (**125**) offering two terminal LacNAc units showed thus strongest binding, while T-antigen (**76**, basic core 1) was recognized only with high concentrations of galectin-3.

Figure 4.78: **A:** Extract from full array **MA4** (*figure 4.77*). Comparison of galectin-3 binding to LacNAc present in linear and branched *O*-glycan core structures at galectin concentrations of 6.25 μg/ml and 0.78 μg/ml. **B:** Structures of the compared glycans in order of recognition affinity by galectin-3.

Glycopeptide **174** presents two terminal galactose units, while glycopeptide **108** has one terminal galactose and one internal galactose unit. However, the long carbohydrate chain of **108** (extended core 1) showed better recognition by galectin-3, than **108** (branched core 2). Therefore, the long chain variant further stabilizes the binding to the galectin by filling the vacant pockets of the binding groove, either by filling the A-B sites with the terminal LacNAc and the internal Gal β 1,3GalNAc in C-D or with LacNAc in C-D and the internal galactose in the E site.

Gabius et al. tested the binding of human galectin-3 to a selection of glycoproteins by their inhibitory potency on enzyme-linked lectinosorbent assay (ELLSA). It was found that LacNAc, as a terminal epitope in core 2 glycans on hog gastric mucin, possessed lower inhibitory potency relative to glycoproteins with terminal LacNAc in core 1 glycans, which is in accordance with the trend observed on the MUC1 glycopeptides.³⁶³

4.3.12.4 Influence of α2,3-sialylation of terminal LacNAc on galectin-3 binding

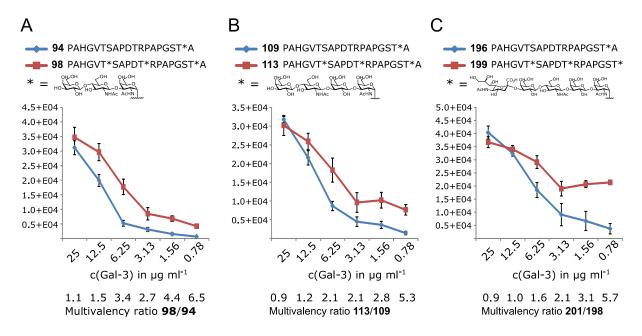

Further, direct influence of $\alpha 2,3$ -sialylation was observed. According to the galectin binding model, modification on the terminal Gal residue in binding pocket B (figure 4.76) of the binding groove, was reported to have in many cases an affinity-enhancing effect on galectin-3 binding. Such enhancing effects were mediated by 3'-O-α/β-galactosylation and 2'-Ofucosylation of the galactose unit in pocket C.^{353,355,356} These kinds of modifications are for instance found in the blood group antigens. The reports about $\alpha 2,3$ -sialylation in this position are however varying. While in some cases no significant influence on galectin-3 binding was found, some reports document a decrease or even complete blocking of galectin-3 binding.^{351,352,353,364,365} However, sialylation with terminal α 2,3-Neu5Ac on type-1 or type-2 LacNAc or T-antigen structures on the MUC1 glycopeptide platform (figure 4.77, green entries), increases the binding affinity compared to the corresponding unsialylated glycopeptides (in black). Within the medium concentrations 6.25-1.56 µg/ml, the signal intensity doubled by $\alpha 2,3$ -sialylation compared to the neutral glycans (e.g. 93 vs. 183, 108 vs. 194, 125 vs. 201 etc., figure 4.77). The triglycosylated, core 1 decorated peptide 199 with a2,3-sialylation was in particular well recognized, even in the lowest applied galectin-3 concentration (0.78 µg/ml). Clustered, α2,3-sialylated O-glycans, and probably also Nglycans, would form formidable epitopes for galectin-3 according to this binding behavior. The reason why $\alpha 2,3$ -sialylation was previously found to have either none or affinity decreasing effects in the former reports is unknown, though different assays and ligand substrates have been applied. The groups of R.D. Cummings and J. Hirabayashi used glycoarrays to assess the specificity of galectin-3.^{353,355} The former makes use of the glycan

array from the Consortium for Functional Glycomics (CFG) which failed to identify the basic well-known binding motif LacNAc and O-glycan core structures terminated with LacNAc even at high galectin-3 concentrations (1-10 µM).361,353 The second study strangely showed binding only to type-1 LacNAc, but not to type-2 LacNAc as galectin-3 binding partner. Other studies made use of ITC with galectin-3 and oligosaccharides,³⁵¹ cell aggregation assays with galectin-3 and breast cancer cell lines,³⁶⁵ flow cytometry with chinese hamster ovary (CHO) glycosylation mutants,³⁵² or co-immunoprecipitation of galectin-3 with MUC1 and EGFR.³⁶⁴ In all previous examples, a2,3-sialylation was proposed to have none or even a minor reducing effect towards galectin-3 binding. The influence of sialylation on T-antigens on mucins, expressed by cancer cells, is in particular interesting, since this glycoform has been associated with galectin-3 assisted metastasis of tumor cells.⁷⁹ In this working model, overexpressed MUC1 on the cancer cell surface shields adhesion molecules needed for cellcell interaction in metastasis. Galectin-3 binds the tumor-associated T-antigen epitopes on the mucins, and locally concentrates MUC1, which liberates the adhesion proteins in other areas for cell-cell-interaction. It was shown that interaction of galectin-3 with immunoprecipitated MUC1 from HT29 colon cancer cells lines vanished, when treated with O-glycanase (T-antigen specific) or became intensified when sialic acids were removed by treatment with an unspecific 2,3-, 2,6-, 2,8-sialidase (A. ureafaciens).79 It was concluded that only unsubstituted T-antigen was responsible for binding. However, the presence of a2,6-Neu5Ac on the T-antigen could have been responsible for diminished binding (see next chapter), while the tumor-associated 2,3-ST-antigen, according to the results of this work, is in fact a better epitope for galectin-3. It is also not known, if a α 2,6-Neu5Ac located on the aGalNAc of the T-antigen would prevent galectin-3 from binding. The glycopeptides on this array were chemically precisely defined and binding to the different carbohydrate structures was validated with the according lectins, which gives confidence regarding the found specificities.

4.3.12.5 Influence of α2,6-sialylation of terminal LacNAc on galectin-3 binding

In contrast to α 2,3-sialylation, binding of galectin-3 to α 2,6-sialylated glycans was considerably reduced (*figure 4.76*, blue entries). According to the galectin binding model, a free 6'-OH on galactose is necessary for hydrogen bonding. Whether type-1 or type-2 LacNAc was terminated by α 2,6-sialic acid, did not make a difference. At high galectin-3 concentrations (25-12.5 µg/mL) also α 2,6-sialylated glycans were recognized to some extent, the three entries with further internal α 2,6-linked sialic acid on the basic core 1 galactose (peptides **192**, **198** and **204**) were completely unavailable for galectin-3 binding. Similarly, glycopeptide **182** with a type-2 LacNAc extended core 3 glycan is not at all recognized and

the same glycoforms with the glycan in PDT*R (**183**) or GST*A (**184**) are considerably weaker bound than the corresponding peptides with the LacNAc extended core 1 (**195** and **197**) (*figure 4.79*).


Figure 4.79: Extract from array MA4 (*figure 4.77*). Comparison of α 2,6-sialylated glycopeptides for evaluation of internal galactose binding by galectin-3 (concentration: 25 µg/mL).

This shows that galectin-3 binds also the internal galactose of the core 1 motif in complex Oglycans. In contrast to other galectins, galectin-3 recognizes internal LacNAc units, which strengthens binding affinity to poly-LacNAc chains.³⁵¹ Glycopeptides with terminally α 2,6sialylated glycans show significantly reduced reactivity with galectin-3. Terminal α 2,6sialylation was also found to reduce galectin-3 binding in other assays.^{67,351,363,364} The biological interactions are intensively studied. This type of sialylation, which blocks the binding epitopes for many galectins including galectin-3, has been correlated with the expression levels of ST6Gal-I, which mainly sialylates N-glycans, but also O-glycoproteins and to some extend O-glycosphingolipids and ST6GalNAc-I, which mainly sialylates Oglycans. ST6Gal-I is overexpressed on many cancer types,³⁶⁶ including breast,³⁶⁷ colon³⁶⁸ or ovary.³⁶⁹ In addition, also the levels of galectin-3 are elevated.³⁷⁰ In contrast to its antiapoptotic and carbohydrate-independent intracellular functions, extracellular galectin-3 has pro-apoptotic effects (see introduction, *chapter 1.3*). It was postulated that overexpression of ST6Gal-I and increase of extracellular sialylation counteracts the extracellular apoptotic mechanisms induced by galectin-3, additional to the simultaneous anti-apoptotic effects inside the cell. This would be advantageous for the survival of tumor cells.³⁷¹ For example, when the β 1-subunit of integrins is α 2,6-sialylated, epithelial colon cancer cells do not respond to galectin-3 induced apoptosis anymore.⁹³ Furthermore, sialylation of the B1integrin unit promotes cell migration and therefore tumor cell metastasis.³⁷²

4.3.12.6 Influence of the peptide backbone multivalent presentation

Similar to the tested plant lectins described above, carbohydrate binding by galectin-3 was usually stronger, when the peptides were glycosylated at the C-terminal end (see *chapter 4.3.10.1*), as can be seen with the T-antigen glycopeptides **75-81** or ST-antigen glycopeptides **175-181** (*figure 4.77*). The glycans on the C-terminal end of the peptides were better accessible for the carbohydrate binding proteins than the glycans on the N-terminal site, which was connected site-specifically to the hydrogel microarray surface. A randomized orientation on the surface was not possible, at least not without further chemical modifications, such as implementation of another amine reactive spacer at the C-terminal end.

Some glycopeptides with multivalent glycan presentation were immobilized on **MA4**, such as the triglycosylated T- and ST-antigen peptides **81** and **181**, the triglycosylated type-2 core 3 and core 1 peptides **98**, **113**. Additionally, the core 2 hexa- or octasaccharides on peptides **125** and **201**, presented terminal LacNAc in a biantennary way. As expected, these multiglycosylated peptides were recognized better relative to the monoglycosylated equivalents. Mono- and trivalent variants of glycopeptides with the same glycan were compared by calculating the multivalency ratio, which is the signal intensity of trivalent conjugated peptides. The multivalency ratio represents a factor for signal amplification due to multivalent binding modes (*figure 4.80*).

Figure 4.80: Comparison of signal intensities at different galectin concentrations from mono- and triglycosylated peptides, represented by the multivalency ratio (= signal intensity [trivalent/monovalent] peptide). A: type-2 core 3 peptides 94 and 98. B: type-2 core 1 peptides 109 and 113. C: Sialyl type-2 core 1 peptides 201 and 198.

Multivalent carbohydrate binding of galectin-3 did not follow a linear increase, since comparison of mono- and trivalent glycopeptide ligands should otherwise give a maximum multivalency ratio of 3, which would equal a three times higher affinity for triglycosylated peptides. At high concentrations of galectin-3 the ratio is around 1 because the system is saturated by the lectin. At concentrations around 1.5 µg/ml, approximately three times more galectin-3 is bound by the trivalent glycopeptides and at the lowest concentration the ratio showed a value around six, meaning that three equivalents of carbohydrate lead to an increase in binding by the factor of six at that galectin concentration. Galectin-3 therefore definitely recognized the carbohydrates by a multivalent binding mode, which increased in an exponential way if more carbohydrate structures were available for binding. It can be expected that the ratio would increase further if lower concentrations of galectin-3 were tested.

5 SUMMARY

Tumor cells differ from normal cells by the glycosylation pattern on their cell surface proteins. Aberrant glycosylation on the mucin glycoproteins is based on the altered expression of several glycosyltransferases. The downregulation of 2 core N-acetylglucosaminyltransferases and increased upregulation of sialyltransferases results in truncated and prematurely sialylated glycans. Mutations of the gene COSMC are responsible for lower C1GnT (T-synthase) levels and therefore hampered core 1 elongation. As a consequence, altered glycan structures are truncated and often prematurely sialylated. The smaller carbohydrate structures represent tumor-associated antigens, which make the peptide backbone accessible for tumor-specific antibodies. Serum auto-antibodies have been identified against these characteristic tumor structures and prove that a humoral immune response against altered tumor cell surface structures is feasible. Stimulation of the immune system with an adequate vaccine, directed against tumor-associated glycopeptide structures, would be a valuable therapeutic strategy to reduce the tumor burden, provide protection against metastasis and create long term protecting against relapses.

One of the most promising targets for active vaccination in cancer immunotherapy is the MUC1 glycoprotein. This membrane-bound protein is found on epithelial cell tissues and is highly overexpressed and aberrantly glycosylated on carcinoma cells. Organic synthesis is a reliable way to generate precisely defined vaccines, based on the MUC1 tandem repeat structure, for the potential use in immunotherapy. The main challenges in this undertaking, is to overcome the self-tolerance of the immune system against these endogenous structures and in relation to that, provoke a guaranteed specificity against the tumor-associated structures.

To study the induced antibody specificity of potential tumor-associated vaccine candidates, a MUC1 tandem repeat glycopeptide microarray platform was designed. For that purpose, a MUC1 glycopeptide library was prepared, with the premise to screen antibody sera for the binding specificities towards different glycopeptide epitopes. The antibody cross-reactivity of peptides, glycosylated with *O*-glycan core structures, such as extended core 1, 2 and 3 structures, which likely represent the elaborate glycosylation status of the mucins on healthy cells, was compared with antibody recognition of peptides with shorter, tumor-associated structures. The glycans were presented on the peptide backbone in a systematic and

multivalent pattern, to mimic the structures on natural mucin glycoproteins. The glycopeptides were synthesized in a convergent strategy with presynthesized and appropriately protected glycosylated amino acids. These amino acids were synthesized from a small pool of common building blocks, which were assembled in a uniform fashion to generate several glycosylated threonine amino acids for solid phase peptide synthesis.

The modular strategy involved the synthesis of type-1 (Gal β 1,3-GlcNAc β) and type-2 (Gal β 1,3-GlcNAc β) *N*-acetyllactosamine disaccharides **27** and **31** for flexible elongation of threonine T_N- and T-antigen acceptor amino acids. Trichloroacetimidate couplings were selected for the construction of the disaccharides, which themselves were further utilized in thioglycoside coupling reactions. The synthesis of the type-1 disaccharide, including a β 1,3-linkage, turned out to be synthetically more challenging, since problems with low reactivity and orthoester formation occurred. By improving the coupling conditions, the β 1,3-connected type-1 disaccharide was finally prepared in high yields at a multigram scale. The synthesized β 1,4- and β 1,3-linked LacNAc thiophenyl donors approved to be universal building blocks as donors for appropriately protected amino acid acceptors **12** and **44**. The products of the convergent synthesis approach were core 1, 2 and 3 mucin-type *O*-glycans, terminated by galactose. This strategy mimics the biosynthesis of complex *O*-glycans, which are enzymatically elongated by the alternating addition of *N*-acetylglucosamine followed by galactose (*figure 5.1*).

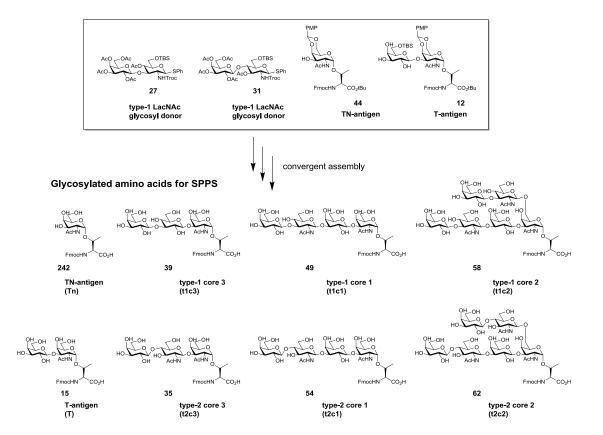


Figure 5.1: Synthesized glycosylated amino acids for SPPS by convergent assembly of basic building blocks.

Glycosylation of the T-antigen acceptor 44 with either LacNAc donor 27 or 31 proceeded regioselectively on the more reactive 3-position of the galactose with full β -stereoselectivity. After changing the temporary protecting groups on the carbohydrate part to acetyl groups, the final type-1 core 1 and type-2 core 1 elongated amino acids 49 and 54, were ready to be applied in SPPS. The intermediate products 47 and 52 were also used for further regioselective glycosylation on the 6-position of the *N*-acetylgalactosamine with the thioglycoside donors 27 and 31, to result in the final core 2 hexasaccharide amino acids 58 and 62 (*figure 5.2*).

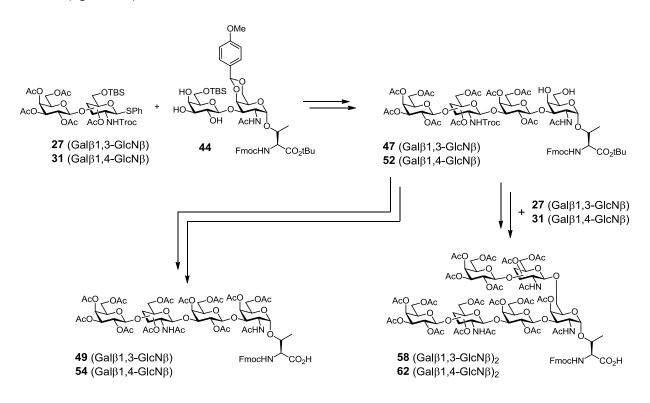
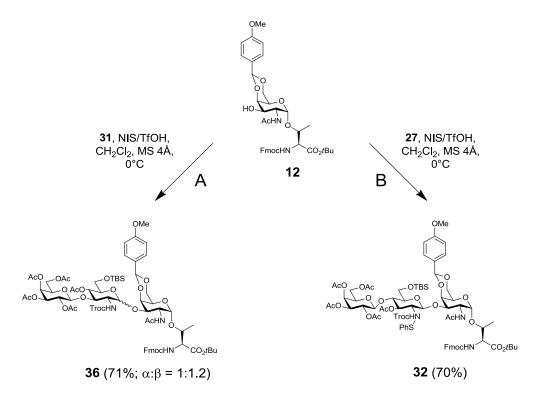



Figure 5.2: Synthesis route of extended core 1 and 2 amino acid building blocks.

Glycosylations with the T_N -antigen acceptor **12** and the thioglycoside donors **27** or **31** to form the corresponding elongated core 3 amino acids, gave unexpected results. Reaction of the type-1 donor **31** with acceptor **12** gave an anomeric mixture of the glycosylation product (α/β = 1:1.2). The diastereomers were separated after the successive hydrolysis of the 4,6-*Opara*-methoxybenzylidene acetal and the 6'-*O*-*tert*-butyldimethylsilyl ether. Further protecting group manipulations provided the appropriately peracetylated type-1 core 3 amino acids for SPPS (*figure 5.3*, **A**). For formation of the type-2 core 3 trisaccharide amino acid, glycosylation with the type-2 donor **27** generated the desired β-anomer, but also formed a byproduct, with a phenyl sulfide group, attached to the nitrogen of the *N*-Troc carbamate (*figure 5.3*, **B**). Increased amounts of NIS as a promoter, were found to favor the formation of the phenyl sulfide adduct. Since the phenyl sulfide group could be removed in a later step along with *N*-Troc deprotection, increased amounts of NIS were applied, turning the byproduct into the main product. After few protecting group manipulation steps the desired type-2 core 3 glycosylated amino acid was obtained, ready for SPPS.

Figure 5.3: Glycosylation reactions for synthesis of extended core 3 amino acids. **A**: Reaction of donor **31** with acceptor **12** resulted in anomeric product **36** with type-1 extension. **B**: Reaction of donor **27** with acceptor **12** resulted in product **32** with type-2 extension and *N*-phenyl sulfide group linked to *N*-Troc.

The glycosylated amino acids were globally *O*-acetylated for protection of the carbohydrate moieties during Fmoc-SPPS. MUC1 tandem repeat glycopeptides were synthesized on *Tentagel*®-Trityl-resins. The glycosylated amino acids were incorporated at all three threonine glycosylation sites of the MUC1 tandem repeat to produce several variants of mono-, di- and triglycosylated MUC1 peptides. The amino acid sequences were equipped with an amino triethylene glycol spacer (TEG) on the N-terminus, as a linker for later immobilization to microarray chips (*figure 5.4*).

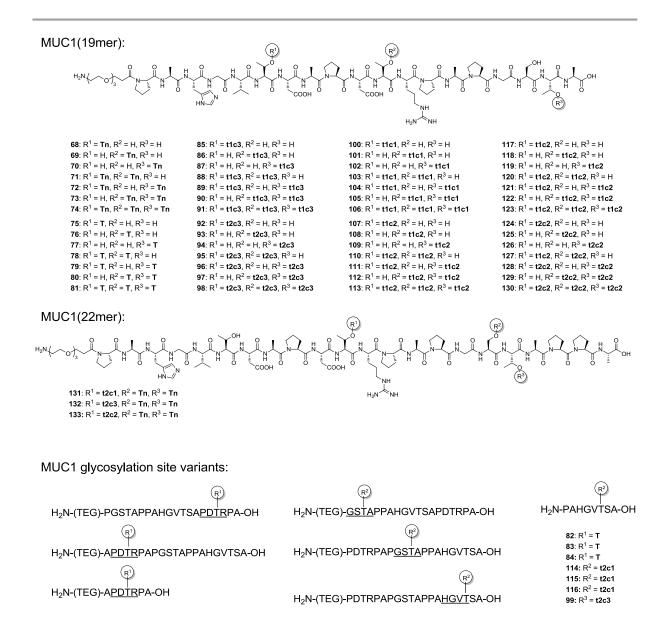


Figure 5.4: Synthesized MUC1 glycopeptide sequences.

Further, the glycosylated amino acids were introduced into a sequence of the MUC5B tandem repeat. Similar to the synthesis of the MUC1 glycopeptides, several multivalent MUC5B glycopeptides were constructed (*figure 5.5*). MUC5B is one major protein involved in mucus formation in the lungs and respiratory pathways. In future works, these glycopeptides will be used for binding studies, for example with from *Pseudomonas aeroginosa* bacterial strains as well as the with the isolated bacterial lectins *Lec A* and *Lec B. Pseudomonas aeroginosa* is a contributor to chronic infections and inflammatory environment causing exacerbations in COPD and Asthma airway disease.

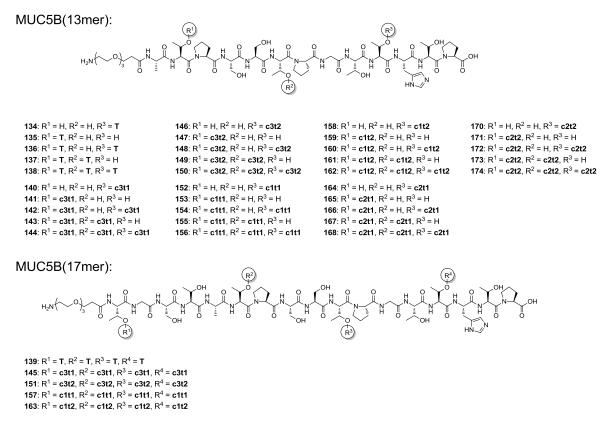


Figure 5.5: Synthesized MUC5B sequences.

After solid phase peptide synthesis, the carbohydrate acetyl protecting groups were cleaved off in solution under basic conditions. T_{N} -, T-antigen and core 3 structures were readily deprotected under *Zemplén* conditions. Elongated core 1 and core 2 glycopeptides required harsher conditions at pH of 11.5, in order to remove less the reactive 4'-*O*-acetyl group of the internal galactose unit. Certain β -elimination and some epimerization reactions were monitored by analytical HPLC and separated without problems from the desired products by preparative HPLC.

A selected fraction of the chemically synthesized MUC1 glycopeptides were further employed in enzymatic termination of the peptide glycan chains by the use of the three α 2,3-sialyltransferases rat2,3OST (rat, recombinant, *S. frugiperda*), PmST1 and PmST3 (*P. multocida*) and the α 2,6-sialyltransferase Pd2,6ST (*P. damsela*). The selection of peptides comprised representatives of various glycans with occupation of different glycosylation sites (*figure 5.6*). In continuing experiments, the variants of sialylated peptides will serve as standards for on-slide enzymatic modifications on glycopeptide microarray chips. During the course of this thesis, the sialylated MUC1 glycopeptides were already used in microarray evaluation of induced polyclonal antibody binding specificity against the sialylated MUC1 glycopeptides as well as with carbohydrate binding plant lectins and human galectin-3.

Further, the fragmentation patterns of the sialylated peptides were analyzed by HCD-MS fragmentation.

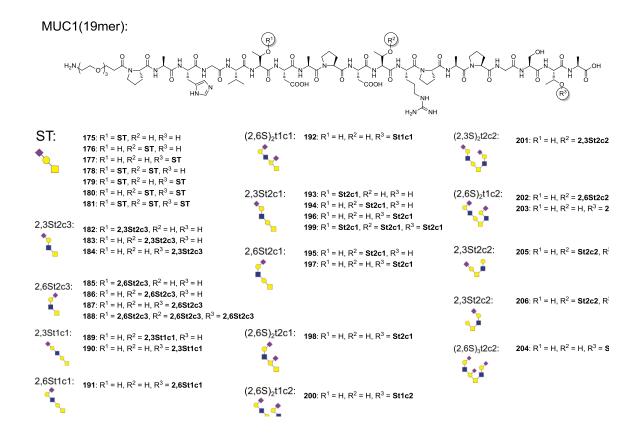
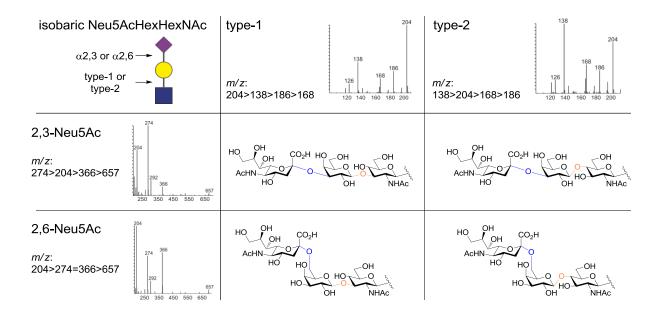



Figure 5.6: Synthesized MUC1 glycopeptides with terminal a2,3- or a2,6-N-acetylneuraminic acid.

The α 2,6-sialyltransferase Pd2,6ST has been reported to sialylate terminal as well as internal galactose units in poly-LacNAc oligosaccharide chains. Here, the enzyme was used to sialylate terminal type-2 and type-1 disaccharides and it was found capable to sialylate also internal galactose units of the fundamental core 1 substructure. However, the affinity to the internal core 1 galactose was lower and only peptides with glycosylation in the GSTA domain of the MUC1 tandem repeat were found to be partly sialylated (probably due to less sterical hindrance). The additional products, including an extra internal core 1 sialic acid, was collected if found in amounts significant enough for semi-preparative HPLC, as in peptides **192**, **198** and **204**. The products of the enzymatic conversions were finally analyzed by analytical HPLC and high-resolution mass spectrometry. The characteristic HexNAc and Neu5Ac oxonium ions, originating from the glycans of the different glycopeptides by applying higher energy C-trap dissociation (HCD) fragmentation, were analyzed, regarding their relative intensities. It was found, that the ions of the HexNAc-fragmentation almost exclusively originate from β GlcNAc of the type-1 and type-2 LacNAc residues and not from the internal α GalNAc. The observed diagnostic oxonium ions could therefore be further used

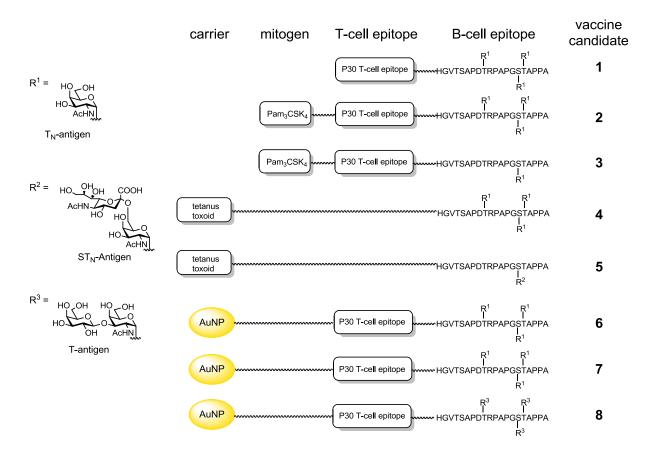

to discriminate spectrometrically between the β 1,3- and β 1,4-linked LacNAc disaccharides, by comparing the relative ion intensities of the fragments, derived from HexNAc fragmentation. At the same time, the connectivity of the α 2,3- and α 2,6-linked Neu5Ac could be differentiated by comparing the relative intensities of the HexNAc⁺ and the Neu5Ac⁺ ions. Higher intensities of *m*/*z* 204 (HexNAc⁺) were found for peptides with α 2,3-sialylation, while higher levels of *m*/*z* 274 (Neu5Ac⁺-H₂O) were found in cases of α 2,6-sialylation. These observations allowed distinguishing between the four isobaric trisaccharides residue variants (Neu5AcHexHexNAc), commonly terminating physiological glycan motifs on *N*- and *O*glycoproteins (*table 5.1*).

Table 5.1: Oxonium ion profiles for isobaric Neu5AcHexHexNAc trisaccharide residues in HCD-MS fragmentation experiments (at 35% NCE).

The oxonium ion pattern analysis may be integrated into standard glycoproteomic workflows. MS-analysis of the glycans after proteolytic digestion of the samples on the glycopeptide level would omit laborious wet lab modifications, such as β -elimination, hydrazinolysis and permethylation. Further, structural analysis on the intact glycopeptide, would retain the information of its origin from the former glycoprotein in complex samples. Oxonium ion profile analysis with CID or HCD for glycan sequencing paired with ETD or ECD for glycosylation site determination on the level of the glycopeptides may become extremely helpful in glycome and glycoproteome elucidation. The whole approach also underlines the importance of organic and chemoenzymatic carbohydrate and glycopeptide synthesis, providing useful standards for structural glycoproteomic analysis.

The synthesized mucin glycopeptide library was thus employed to study antibody and lectin interactions by microarray analysis. All glycopeptides were synthesized with a triethylene glycol spacer amino acid at the N-terminus with a single amine group for site selective and covalent immobilization to the amine reactive *N*-hydroxysuccinimide coated microarray surface. The prepared glycopeptide arrays were used to screen for polyclonal antibody binding specificity of murine antisera, induced by different synthetic anti-tumor vaccine candidates. The induced antibodies were obtained by immunization of mice with synthetic vaccine candidates, synthesized in the work group and by the collaborator, containing MUC1 B-cell epitope glycopeptides and different immune stimulants (*figure 5.7*).

Figure 5.7: Structures of synthetic vaccine candidates used for generation of polyclonal antibody immune sera in mice.

The antisera of the mice were screened in various concentrations on the MUC1 microarray slides. The major findings were:

 Vaccine candidates with T_N-antigen glycosylation in both the immunodominant PDT*R region and the GS*T*A epitope domain of the MUC1 peptide tandem repeat, elicited antibodies with reactivity against the glycosylated PDT*R epitope. PDT*Rspecific antibodies, to a certain degree, tolerated extended core glycans in the immunodominant domain in addition to the tumor-associated T_N - or T-antigen structure that was included in the B-cell epitope of the vaccine.

- Linear glycosylation (e.g. extended core 1 structures) in PDTR was preferred over branched core structures (e.g. extended core 2 structures). In the epithelial tissue of breast cells, core 2 glycans dominate cell surface glycosylation in the healthy state, compared to core 1 glycans in the tumor cells. This means that the induced serum antibodies discriminate to a great extent between healthy and cancerous cell surface glycosylation.
- Triglycosylated MUC1 tandem repeat sequences with extended core 2 glycosylation on all three threonine glycosylation sites were typically not recognized by the serum antibodies. Thus, this glycoform variant is regarded as a mimic for MUC1 glycosylation on healthy epithelial cells, which is entirely masking the protein epitopes. The induced antibodies are therefore expected to discriminate between extensive, healthy MUC1 cell glycosylation and malignant, truncated cancer glycosylation.
- Immune reactivity directed against clustered (vicinal diglycosylated) T_N-antigen glycosylation in the GS*T*A domain of the vaccine candidates, generated immune sera with restricted reactivity specifically for clustered T_N-antigen glycosylation. In contrast to the immune response induced by PDT*R glycosylated with T_N-antigen, no glycoform variation is tolerated by the antibodies. Hence, PDT*R and GS*T*A are fundamentally different classes of epitopes, according to the different reported peptide conformations.
- Single glycosylation with tumor associated T_N-antigen in GS*TA on a tripartite vaccine, elicited completely different antibody specificities in each of the three mice. Only one serum specificity was directed against glycosylation in GSTA. Single glycosylation in this domain appeared to be less immunogenic, compared to glycosylation in PDT*R.
- B-cell epitope conjugation with a P30 T-helper-cell epitope alone (two-component vaccine), combined with P30 and Pam₃CysSK₄ TLR-2 ligand (three-component vaccine) or together with P30 conjugated to gold nanoparticles, produced similar antibody specificity profiles in several mice. However, different antibody isotype pattern and variances in antibody titers were observed. These factors are also important for vaccine efficiency.
- B-cell epitope conjugation to tetanus toxoid resulted in very high antibody titers. The strong immune response appeared to create less glycoform and glycosylation site specific antibodies. However, the binding epitopes must contain the PDTR peptide sequence, hence the immune sera are still selective for the MUC1 tandem repeat

peptide sequence. Further, the antibody recognition was lost, when the MUC1 tandem repeat peptides were glycosylated with extended core 2 hexasaccharides in all three threonine glycosylation sites. Discrimination of extensive glycosylation on proteins of healthy cells and truncated glycosylation of proteins on diseased cells may therefore occur by exclusion of glycan size and structure.

In summary, the above described findings give new insights on antibody binding, elicited by synthetic vaccine constructs. Especially the contribution of the different glycosylation sites in MUC1 will help to understand the characteristics by which humoral immune responses react on tumor-associated MUC1 protein glycosylation and will aid with rationalizing vaccine designs. The presented glycoepeptide microarray system was for instance able to elucidate antibody cross-reactivity with various glycans at different sites, showing antibody discrimination between linear core 1 and branched core 2 structures.

The glycopeptide library was further used to evaluate binding to plant lectins, with certain known glycan binding specificity. It was found, that the glycopeptide microarray platform was able to produce results according to the expected lectin binding. Additionally, new binding specificities for further fine-tuning of the known binding specificities were observed, such as discrimination for the sialylation site, structure of O-glycan core elongation, amino acid preferences and glycosylation site specificity. The glycopeptide array was further utilized to explore the binding behavior of recombinant human galectin-3 towards MUC1 glycopeptides decorated with typical mucin-type O-glycan decoration. The physiological and pathophysiological properties of the galectin family are under intensive research since they are involved in several intra- and extracellular processes, promoting tumor development. For instance, there is evidence that extracellular galectin-3 is involved in adhesion of circulating tumor cells to secondary epithelial sites. This adhesion process is facilitated by binding to overexpressed MUC1 via the tumor-associated T-antigen, influencing the MUC1 membrane localization and increasing the likeliness of selectin binding between the circulating tumor cells and the endothelial cell surface.

Galectin-3 was incubated on the MUC1 glycopeptide chip at several concentrations. It was found that galectin-3 recognized the glycopeptides with tumor-associated T_N - and T-antigen glycosylation as weak affinity ligands. The affinity for these antigens was however lower than for the core 1, core 2 and core 3 *O*-glycans. Glycopeptides with terminating $\alpha 2,3$ -*N*-acetylneuraminic acid showed increased recognition. This is interesting, since the influence of $\alpha 2,3$ -sialylation is so far described as rather being tolerated by galectin-3 and in some reports even hindering interaction with glycoproteins. Previous studies have shown that modifications on the 2'- or 3'-position of *N*-acetylneuramine with fucose, α -galactose or α -*N*-acetylgalactosamine residues (but not yet *N*-acetylneuraminic acid) enhance binding by

fitting into the B-site of the galectin binding groove. In this study, it is shown that $\alpha 2,3$ -sialylation enhances galectin-3 affinity, supposedly by binding in this pocket. In accordance with already observed glycan recognition studies, $\alpha 2,6$ -*N*-acetylneuraminic acid decorated glycopeptides showed decreased galectin-3 binding. Additional internal sialylation on the core 1 substructure further reduced galectin-3 binding, since galectin-3 is able to recognize internal galactose units. The $\alpha 2,6$ -linked sialic acids have profound biological effects and are regarded as molecular switches, by which cells can regulate extracellular galectin-3 mediated apoptosis. Although this kind of sialylation is predominantly found on *N*-glycans, the $\alpha 2,6$ -sialylation on *O*-glycoproteins on tumor cells appears the to be increased. The found galectin-3 preferences are summarized in *figure 5.8*.

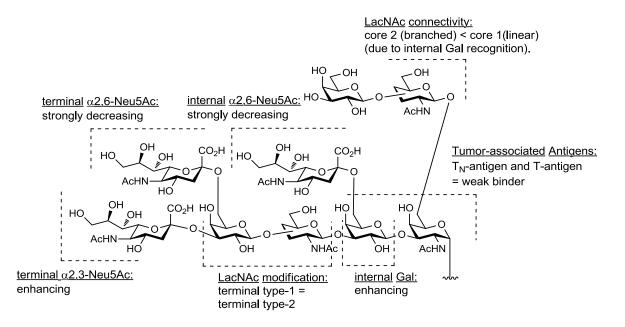


Figure 5.8: Influence of O-glycan modifications on galectin-3 binding affinity.

The use of glycopeptides with numerous occupied glycosylation sites allowed the evaluation of multivalent binding effects. Since the binding intensities increased exponentially from mono- to triglycosylated peptide variants, it was concluded that the binding mode is multivalent and must therefore be accompanied with galectin-3 oligomerization.

In conclusion, the presented glycopeptide microarray platform is well equipped for evaluation of protein-glycan and protein-glycopeptide interactions. The glycopeptide library features a comprehensive selection of MUC1 peptides with various different core glycans presented in a multivalent fashion. Additionally, a MUC5B glycopeptide library was prepared, which can be used for further lectin binding studies. The constructed mucin glycopeptide library will also be modified by on-slide enzymatic glycosylation, in order to quickly produce more diverse glycan structures. Reactions with sialyl-, fucosyl-, α/β -galactosyl- or *N*-acetylgalactosaminyl-transferases can produce (sialyl-)Lewis antigens or blood group antigens. The synthesized

sialylated glycopeptides are a first step in this direction, since they will be used as standards for validation of on-slide enzymatic sialylation. In-solution chemoenzymatic syntheses were further used to optimize the enzyme reaction conditions and to test the enzyme substrate scope to different glycan structures. In addition to studies of human lectins, like the galectins, the constructed mucin glycopeptide array platform, will be used to study lectin interactions with viruses and bacteria, which e.g. are responsible for infections in airway diseases.

6 ZUSAMMENFASSUNG

Tumorzellen unterscheiden sich von gesunden Zellen durch eine veränderte Glycosylierung der Proteine an der Zelloberfläche. Verminderte Expression von Core 2 N-Acetylglucosaminyltransferase und erhöhte Expression von Sialyltransferasen, resultiert in verkürzten und vorzeitig sialylierten Glycanen. Mutationen des Gens COSMC sind verantwortlich für verminderte Level von C1Gn-T (T-synthase), wodurch die Ausbildung von Core 1 Glycanstrukturen unterbunden wird. Die verkürzten Kohlenhydrate repräsentieren Tumor-assoziierte Antigene und machen das Protein-Rückgrat zugänglich für Tumorspezifische Antikörper. Serum Autoantikörper gegen diese charakteristischen Strukturen wurden identifiziert und zeigen, dass eine Immunantwort gegen diese veränderten Zelloberflächenstrukturen möglich ist. Stimulation des Immunsystems mit geeigneten Vakzinen, welche gegen diese Strukturen gerichtet sind, könnten eine wertvolle Ergänzung der therapeutischen Methoden darstellen, um die Tumorlast zu senken, Schutz vor Metastasierung aufzubauen und Langzeitschutz gegen Rezidiven zu bilden.

Ein vielversprechendes Ziel einer aktiven Vakzinierung in der Krebs-Immuntherapie, stellt das MUC1 Glycoprotein dar. Dieses membrangebundene Protein, welches sich an der Oberfläche von Epithelzellen befindet, wird auf Karzinomzellen überexprimiert und weist ein abnormes Glycosylierungsmuster auf. Organische Synthese ist eine zuverlässige Methode um definierte Vakzine darzustellen, welche auf der *tandem repeat* Peptidsequenz des MUC1-Proteins basieren und potentiell in der Immuntherapie eingesetzt werden können. Dabei besteht die Herausforderung darin, die Eigentoleranz des Immunsystems gegenüber diesen endogenen Strukturen zu überwinden, aber gleichzeitig eine garantierte Spezifität für die Tumor-assoziierten Strukturen zu erzeugen.

Um die erzeugte Antikörperspezifität von potentiellen Vakzinen gegen Tumor-assoziierte MUC1 Strukturen untersuchen zu können, wurde im Rahmen dieser Arbeit ein MUC1 Glycopeptid-Mikroarray System erstellt. Hierzu wurde eine Bibliothek von MUC1 Glycopeptiden synthetisiert, welche dazu diente, die Bindungsspezifitäten von induzierten Antiköperseren zu evaluieren. So konnte die Kreuzspezifität der Antikörper für die erweiterten Core 1, 2 und 3 *O*-Glycan-Strukturen, welche dem Glycosylierungsmuster auf gesunden Epithelzellen entsprechen, mit der Spezifität für Peptide mit Tumor-assoziierten Antigenen, wie dem T_N- und dem T-Antigen, verglichen werden. Dabei wurden die Glycane

auch in multivalenten Glycoformen der Peptide auf dem Array präsentiert, um die natürlichen Muster der zellulären Glycoproteine zu imitieren. Die Glycopeptide wurden in einer konvergenten Synthesestrategie, mit synthetischen glycosylierten Aminosäuren aufgebaut. Diese Aminosäuren wurden selbst aus einem Pool von wenigen Bausteinen synthetisiert, welcher es ermöglichte mehrere komplexe glycosylierte Aminosäuren zu erzeugen.

Die modulare Strategie beinhaltete die Synthese von Type-1 (Gal β 1,3-GlcNAc β) und Type-2 (Gal β 1,3-GlcNAc β) *N*-Acetyllactosamin Disacchariden **27** und **31**, mit denen die T_N- und T-Antigen Glycosylakzeptoren flexibel erweitert werden konnten. Trichloracetimidat-vermittelte Kupplungen wurden für die Disaccharid-Synthesen ausgewählt, welche selbst als Thioglycoside in weiteren Glycosylierungen verwendet wurden. Die Synthese der Type-1 Disaccharide war zunächst Aufgrund von Problemen mit niedrigen Reaktivitäten und Orthoester-Bildung synthetisch anspruchsvoller. Optimierung der Reaktionsbedingungen lieferte die β 1,3-verknüpften Type-1 Disaccharide in hohen Ausbeuten auch in Multigramm-Ansätzen. Die synthetisierten β 1,4- und β 1,3-verknüpften LacNAc Thioglycoside erwiesen sich als universelle Donoren für die entsprechend geschützten Aminosäure-Akzeptoren **12** und **44**. Die Produkte der konvergenten Synthese entsprachen Core 1, Core 2 und Core 3 *O*-Glycanbiosynthese, bei der die grundlegenden Core Strukturen enzymatisch durch alternierende Hinzufügung von *N*-Acetylglucosamin- und Galactose-Einheiten verlängert werden (*Abbildung* 5.1).

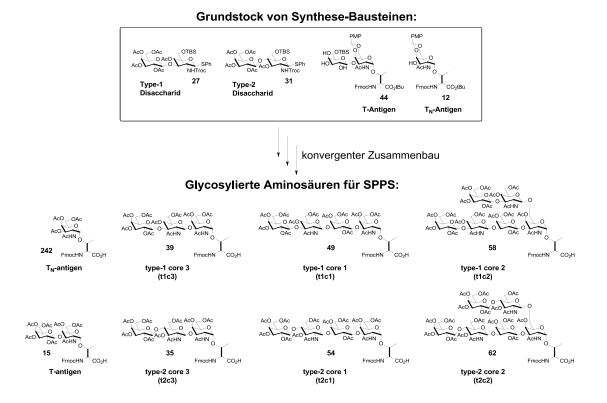


Abbildung 6.1: Konvergente Synthese von glycosylierten Aminosäuren.

Glycosylierung des T-Antigen Akzeptors **44** mit den LacNAc-Donoren **27** oder **31** verlief regioselektiv an der reaktiveren 3'-OH-Gruppe der Galactose mit voller β -Stereoselektivität. Nachdem die temporären Kohlenhydrat-Schutzgruppen gegen *O*-Acetylgruppen ausgetauscht wurden, konnten die finalen Type-1 und Type-2 Core 1 Aminosäuren **49** und **54** in der Peptid-Festphasensynthese eingesetzt werden. Die Zwischenprodukte **47** und **52** der Syntheseroute wurden für weitere Glycosylierungen in Position 6 des *N*-Acetylgalactosamins mit Thioglycosid-Donoren **27** und **31** eingesetzt um, die Core 2 Hexasaccharid-modifizierten Aminosäuren **58** und **62** darzustellen (*Abbildung 5.2*).

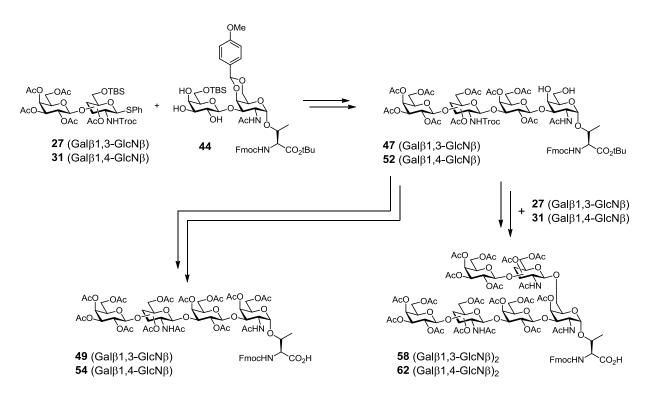


Abbildung 6.2: Synthese der erweiterten core 1 und core 2 Aminosäuren.

Bei den Glycosylierungen von T_N-Antigen Akzeptor **12** mit den beiden Thioglycosid-Donoren zur Darstellung der erweiterten Core 3 Aminosäuren, wurden unerwartete Reaktionsprodukte erhalten. Die Reaktion des Type-1 Donors 31 mit Akzeptor 12 lieferte ein anomeres Gemisch des Glycosylierungsprodukts (α/β = 1:1.2). Die Diastereomere konnten nach der folgenden sauren Hydrolyse der 4,6-O-para-Methoxybenzylidengruppe und der 6'-O-tert-Butyldimethylsilylethergruppe getrennt werden (Abbildung 5.3, **A**). Weitere Modifikationen des Schutzgruppenmusters ergab die peracetylierte Type-1 Core 3 Aminosäure für den Einsatz in der Peptid-Festphasensynthese. Zur Darstellung der entsprechenden Type-2 Core 3 Trisaccharid-Aminosäure, lieferte die Glycosylierung mit Type-2 Donor **27** das erwünschte β-Anomer, allerdings mit einem Nebenprodukt, bei dem die Phenylsulfid-Abgangsgruppe an den Stickstoff des Carbamats der Troc-Schutzgruppe gebunden wurde (Abbildung 5.3, B). Reaktion mit N-Iodosuccinimid in hohem Überschuss, lieferte das Phenylsulfid-Nebenprodukt als Hauptprodukt. Nach Anpassung der temporären Schutzgruppen, wurde die peracetylierte Type-2 Core 3 Aminosäure für die Festphasensynthese erhalten.

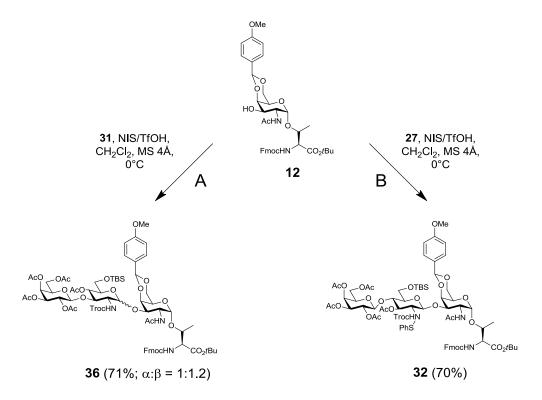
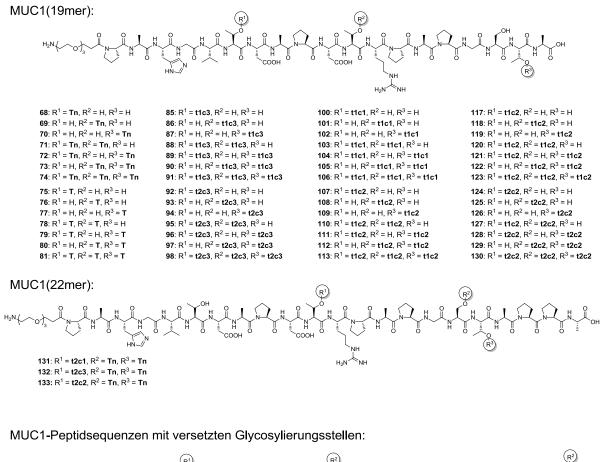



Abbildung 6.3: Glycosylierungen zur Darstellung der Core 3 Aminosäure Bausteine. A: Reaktion des Donors 31 mit Akzeptor 12 und Bildung des anomeren Produktgemischs 36. B: Reaktion von Donor 27 mit Akzeptor 12 ergab Produkt 32 als Phenylsulfid-Addukt.

Die MUC1 Peptidsequenzen wurden an *Tentagel*®-Trityl Harzen synthetisiert. Die Kohlenhydratreste waren während der Peptid-Festphasensynthese global mit *O*-Acetylgruppen geschützt. Die glycosylierten Aminosäuren wurden an den drei Threonin-Glycosylierungsstellen der Peptidsequenz eingebracht um verschiedene Glycoformen des mono-, di- und triglycosylierten MUC1 Peptids darzustellen. Um räumlichen Abstand zwischen der Mikroarray-Oberfläche und der Glycopeptidsequenz in folgenden Experimenten zu gewährleisten, wurden die Aminosäuresequenzen mit einer N-terminalen Triethylenglycol-Aminosäure (TEG) synthetisiert (*Abbildung 5.4*).

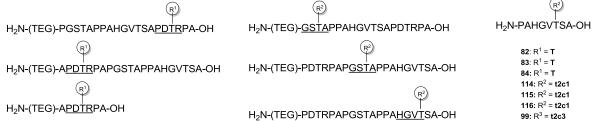
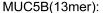
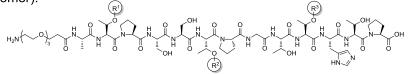
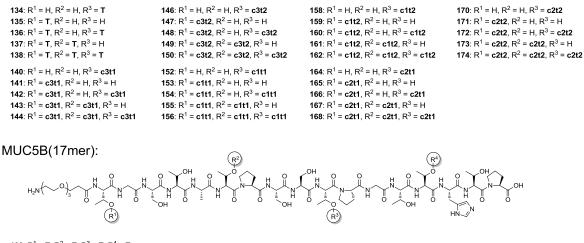
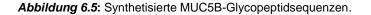





Abbildung 6.4: Synthetisierte MUC1 Glycopeptid-Sequenzen.


Weiterhin wurden die glycosylierten Aminosäuren in Peptid-Wiederholungssequenzen des Proteins MUC5B synthetisch eingebracht. Ähnlich der Synthese der MUC1 Glycopeptide, wurden multivalente Glycoformen der MUC5B-Sequenz hergestellt (*Abbildung 5.5*). MUC5B ist ein bedeutendes Glycoprotein, welches hauptsächlich für die Bildung von Mucus in den Atemwegen verantwortlich ist. In weiteren Studien, werden diese Glycopeptide für Bindungsstudien mit Atemwegs-infizierenden Bakterienstämmen, wie z.B. *Pseudomonas aeroginosa*, sowie isolierten bakteriellen Lektinen, wie z.B. *Lec A* und *Lec B* verwendet werden. Chronische Infektionen mit *Pseudomonas aeroginosa* und begleitenden Entzündungsprozessen stellen eine der Hauptfaktoren für schlechte Prognosen bei COPD (*chronic obstructive pulmonary disease*) und chronischen Asthmaerkrankungen dar.

$$\begin{split} \textbf{139:} \ R^1 = \textbf{T}, \ R^2 = \textbf{T}, \ R^3 = \textbf{T}, \ R^4 = \textbf{T} \\ \textbf{145:} \ R^1 = \textbf{c3t1}, \ R^2 = \textbf{c3t1}, \ R^3 = \textbf{c3t1}, \ R^4 = \textbf{c3t1} \\ \textbf{151:} \ R^1 = \textbf{c3t2}, \ R^2 = \textbf{c3t2}, \ R^3 = \textbf{c3t2}, \ R^4 = \textbf{c3t2} \\ \textbf{157:} \ R^1 = \textbf{c1t1}, \ R^2 = \textbf{c1t1}, \ R^3 = \textbf{c1t1}, \ R^4 = \textbf{c1t1} \\ \textbf{163:} \ R^1 = \textbf{c1t2}, \ R^2 = \textbf{c1t2}, \ R^3 = \textbf{c1t2}, \ R^4 = \textbf{c1t2} \end{split}$$

Nach der Peptid-Festphasensynthese wurden die O-Acetylgruppen der Glycane unter basischen Bedingungen abgespalten. T_{N} - und T-Antigen sowie Core 3 dekorierte Glycopeptide wurden problemlos unter standardmäßigen *Zemplén* Bedingungen bei pH 8,5 entschützt. Erweiterte Core 1 und Core 2 Glycopeptide benötigten höhere pH-Werte (~11,5) um die reaktionsträgen 4'-O-Acetylgruppe der internen Galactose zu hydrolsieren. Etwaige β -Eliminierungs- und Epimerisierungs-Produkte wurden mittels analytischer HPLC beobachtet und durch präparative HPLC abgetrennt.

Ausgewählte MUC1 Glycopeptide wurden weiterhin durch enzymatische Sialylierung an den Glycanketten terminiert. Zum Einsatz kamen die drei α2,3-Sialyltransferasen Rat2,3OST (rat, recombinant, S. frugiperda), PmST1 und PmST3 (P. multocida) und die α2,6-Sialyltransferase Pd2,6ST (P. damsela). Die Auswahl der Glycopeptide beinhaltete Vertreter mit verschiedenen Glycanen an unterschiedlichen Glycosylierungsstellen (Abbildung 5.6). In weiterführenden Experimenten können diese sialylierten Peptide als Standards für globale enzymatische Sialylierungen auf den Mikroarray Oberflächen dienen. Im Rahmen dieser Arbeit wurden die sialylierten MUC1 Peptide bereits verwendet um die Bindungsspezifitäten Antikörpern polyklonalen Vakzinierungsexperimenten, von aus sowie die Bindungsspezifitäten von Lektinen und humanem Galectin-3 zu evaluieren. Weiterhin

wurden die Fragmentierungsmuster der sialylierten Peptide durch HCD-MS Fragmentierung untersucht.

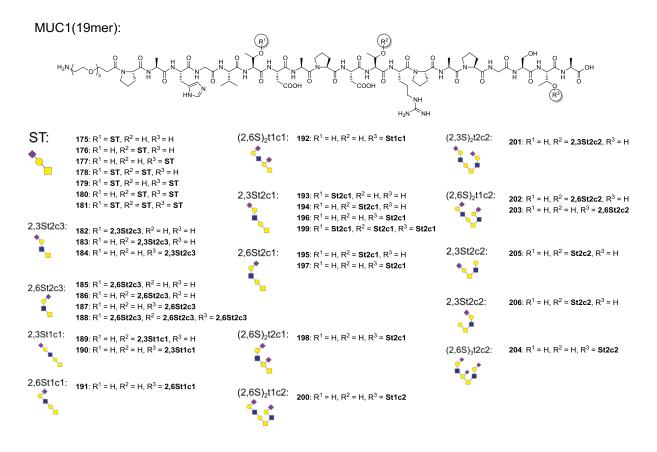
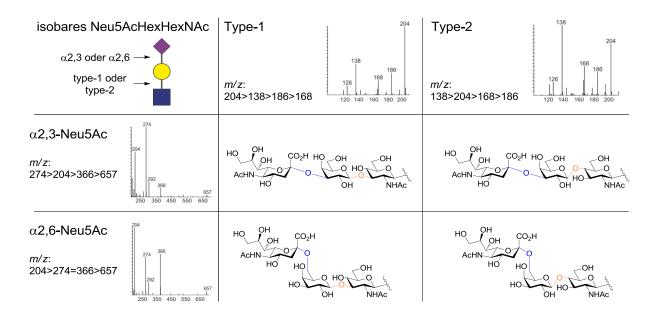



Abbildung 6.6: MUC1 Glykopeptide mit terminaler a2,3- und a2,6-Sialylierung.

Die Sialyltransferase Pd2,6ST ist in der Lage terminale, als auch interne Galactose-Einheiten in Type-2 poly-LacNAc Oligosacchariden zu sialylieren. In dieser Arbeit wurde das Enzym verwendet, um Sialinsäurereste an terminale type-2 und type-1 LacNAc-Reste zu binden. Dabei wurde festgestellt, dass Pd2,6ST auch in der Lage ist, die interne Galactose der Core 1 Substruktur von erweiterten Core 1 und Core 2 Glycanen zu modifizieren. Die Affinität des Enzyms zu der internen Galactose war geringer als zu terminalen Galactoseresten und ausschließlich Peptide mit Glycosylierung in der GSTA Domäne des MUC1-Peptids wurden zum Teil zusätzlich sialyliert (vermutlich aufgrund geringerer sterischer Behinderung). Dieses weitere Reaktionsprodukt, mit zusätzlicher interner Core 1 a2,6-Sialylierung wurde nach Möglichkeit ebenfalls isoliert, wie es bei den Glycopeptidsequenzen 192, 198 und 204 der Fall war. Die sialylierten Produkte aus den enzymatischen Reaktionen wurden mittels analytischer HPLC und hochauflösender Massenspektrometrie analysiert. Die charakteristischen HexNAcund Neu5Ac-Oxoniumionen, welche HCDunter Fragmentierungsbedingungen (higher energy C-trap dissociation) auftraten, wurden bezüglich ihrer relativen Intensitäten untersucht. Es stellte sich heraus, dass es sich bei den auftretenden HexNAc-Fragmentionen fast ausschließlich um Fragmente der β -GlcNAc aus den Type-1 und Type-2 LacNAc-Resten handelt und nur sehr wenig von den internen α -GalNAc Einheiten stammt. Die beobachteten, diagnostischen HexNAc-Fragmentionen konnten daher benutzt werden um spektrometrisch zwischen den β 1,3- und β 1,4-verknüpften LacNAc Disacchariden zu unterscheiden. Zusätzlich war es möglich, die Konnektivität der α 2,3 oder α 2,6 gebundenen Sialinsäurereste zu bestimmen, indem die relativen Intensitäten der HexNAc⁺-Ionen mit den Neu5Ac⁺-Ionen verglichen wurden. Höhere Intensitäten von *m/z* 204 (HexNAc⁺) wurden für α 2,6-Sialylierung gefunden, wobei hohe Level von *m/z* 274 (Neu5Ac⁺-H₂O) im Fall von α 2,3-Sialylierung dominierten. Diese Beobachtungen ermöglichen es, die vier isobaren Trisaccharidreste, welche häufig physiologische *N*- und *O*-Glycane terminieren, massenspektrometrisch zu unterscheiden (*Tabelle 5.1*).

Tabelle 6.1: Intensitätsprofile der Oxoniumionen für die vier isobaren Neu5AcHexHexNAc Trisaccharidreste in HCD-MS Fragmentierungsexperimenten (bei 35% NCE).

Die Analyse von Oxoniumion-Profilen könnte standardmäßig in glycoproteomische Arbeitsabläufe eingefügt werden. Massenspektrometrische Analyse der Glycane nach dem proteolytischen Verdau der Proben auf Glycopeptid-Level, könnte aufwendige, nasschemische Methoden, wie β-Eliminierung, Hydrazinolyse und Permethylierung aussparen. Desweiteren würde die Strukturanalyse am intakten Glycopeptid die Information über seine Herkunft vom ursprünglichen Glycoprotein bewahren. Oxoniumionen-Analyse mittels CID oder HCD zur Glycansequenzierung, zusammen mit ETD oder ECD Fragmentierung zur Identifizierung der Glycosylierungsstellen auf Stufe des Glykopeptids, könnte ein hilfreiches Mittel sein in der Aufklärung des Glycoms und Glycoproteoms. Desweiteren unterstreicht dieser Ansatz die Wichtigkeit, von organischer und chemo-enzymatischer Synthese von Kohlenhydraten und Glycopeptiden, um wertvolle Standards für glycoproteomische Untersuchungen zu liefern.

Die synthetische MUC1 Glycopeptidbibliothek wurde weiterhin benutzt um Wechselwirkungen mit Antikörpern und Lektinen durch Mikroarray-Analyse durchzuführen. Alle Glycopeptide wurden mit einer N-terminalen Triethylenglycol-Aminosäure als Linker synthetisiert, welche die einzige Aminogruppe des MUC1-Peptids beinhaltete. Somit wurden **N-Terminus** die Glycopeptide selektiv und gerichtet mit dem an N-Hydroxysuccinimidgruppen-beschichtete gebunden. Mikroarrays Die so erhaltenen Glycopeptid-Arrays wurden benutzt um die Bindungsspezifität von polyklonalen Antikörpern aus murinen Antiseren zu untersuchen. Diese Antiseren wurden durch Immunisierung von Mäusen mit synthetischen Vakzin-Kandidaten erhalten, welche in der Arbeitsgruppe oder durch Kooperationspartner synthetisiert wurden. Die Vakzin-Kandidaten beruhten auf MUC1 Glycopeptid-Strukturen als immunogene B-Zell-Epitope, konjugiert an diverse Immunstimulatoren. (Abbildung 5.7).

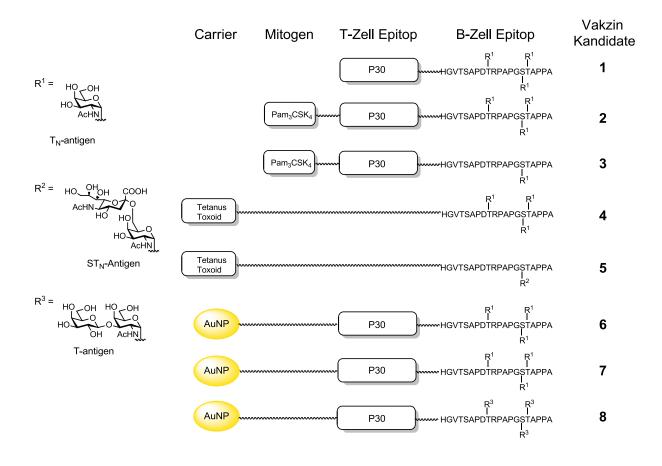


Abbildung 6.7: Strukturen der synthetischen Vakzin-Kandidaten zur Erzeugung von Antiseren in Mäusen.

Die so erhaltenen Antiseren wurden in unterschiedlichen Konzentrationen auf den MUC1 Glykopeptid-Mikroarrays auf Bindung untersucht. Die Ergebnisse dieser Untersuchungen waren:

- Vakzin-Kandidaten mit T_N-Antigen Glycosylierung in der immundominanten PDT*R Region und im GS*T*A Epitop des MUC1 Peptids, generieren Antikörper mit Spezifität für das glycosylierte PDT*R Epitop. PDT*R-spezifische Antikörper, tolerieren zu einem gewissen Grad erweiterte Core Glycane in der immundominanten Domäne, zusätzlich zu den Tumor-assoziierten T_N- und T-Antigen Strukturen in den B-Zell Epitopen der Vakzin-Kandidaten.
- Lineare Glycosylierung (z.B. erweiterte Core 1 Strukturen) in der PDTR Sequenz, wurde bevorzugt von den erzeugten Antikörpern erkannt, im Gegensatz zu verzweigter Glycosylierung (erweitere Core 2 Strukturen). Im Fall von Brustgewebszellen, dominiert verzweigte Core 2 Glycosylierung auf der Oberfläche gesunder Zellen, während auf Mammakarzinomzellen unverzweigte Core 1 Strukturen überwiegen. Dies bedeutet, dass die erzeugten Antikörper zum großen Teil zwischen gesunder und krankhafter Zelloberflächenglycosylierung unterscheiden können.
- Triglycosylierte MUC1 Peptidsequenzen mit erweiterter Core 2 Glycosylierung an allen drei Threonin-Glycosylierungsstellen, wurden durch die Antikörper kaum bis gar nicht erkannt. Daher können diese Glycoformen als repräsentativ für MUC1 Glycosylierung auf gesunden Epithelzellen angesehen werden, welche die Proteinepitope komplett abschirmt. Es wird daher erwartet, dass die induzierten Antikörper zwischen extensiver MUC1 Glycosylierung auf gesunden Zellen und verkürzter Glycosylierung auf krankhaften Zellen unterscheiden können.
- Immunreaktivität, welche sich gegen vicinale (*clustered*) T_N-Antigen Glycosylierung in der GS*T*A Region der Vakzin-Kandidaten richtet, erzeugte Antiseren mit ausschließlicher Reaktivität der Antikörper für exakt diese vicinale T_N-Antigen Glycosylierung. Im Gegensatz zu der Immunreaktivität, welche sich gegen die PDT*R Domäne mit nur einem T_N-Antigen richtete, werden in der GS*T*A Sequenz keine anderen Glycoformen durch die Antikörper toleriert. Daher sind die beiden Domänen, einfach glycosylierte PDT*R Sequenz und vicinal glykosylierte GS*T*A Sequenz, als fundamental unterschiedliche Epitopklassen zu betrachten. Dies entspricht den in der Literatur beschriebenen die Beobachtungen, dass beiden glycoslierten Peptidsequenzen unterschiedliche Arten von Konformationen einnehmen.
- Einzelne Glycosylierung mit T_N-Antigen in der GS*TA Domäne eines Drei-Komponenten Vakzin-Kandidaten, rief eine jeweils unterschiedliche Antikörperspezifität in den drei Mäusen hervor. Nur eines der drei Seren, zeigte dabei

eine Antikörperspezifität für die glycosylierte GS*TA Region. Einfache Glycosylierung mit nur einem Glycan in dieser Region scheint daher weniger immunogen zu sein, als doppelte, vicinale Glycosylierung in GS*T*A oder als entsprechende einfache Glycosylierung in der PDT*R Sequenz.

- MUC1 B-Zell-Epitop, konjugiert mit einer P30 T-Zell-Epitop Peptidsequenz (Zwei-Komponenten-Vakzine), kombinierte Konjugation mit P30 und Pam₃CysSK₄ (Drei-Komponenten-Vakzine) oder Konjugation mit P30 an Goldnanopartikel, induzierte jeweils ähnliche Antikörper Spezifitäten in fast allen Mäusen. Dennoch unterschieden sich die verschiedenen Strategien in der Zusammensetzung der unterschiedlichen Antikörper-Isotypen und der Antikörpertiter. Hierbei handelt es ebenfalls um wichtige Parameter, welche die Effizienz eines Vakzins bestimmen.
- Konjugation der MUC1 B-Zell-Epitope an ein Tetanus Toxoid Protein, induzierte sehr hohe Antikörpertiter. Die starke Immunreaktion scheint jedoch auf Kosten der Spezifität für Glycoformen und Glycosylierungstellen zu gehen. Dennoch musste das Peptidepitop die immundominante PDTR Sequenz enthalten, womit die Antiseren weiterhin eine Selektivität für die MUC1 Peptidsequenz aufwiesen. Weiterhin wurde die Erkennung durch die Antikörper stark beeinflusst, wenn alle Threonin-Glycosylierungstellen mit verzweigten Core 2 Glycanen modifiziert waren. Eine Unterscheidung von MUC1 Proteinen auf gesunden oder erkrankten Zellen, scheint daher durch die ausgeprägten Glycanstrukturen zusammen mit einem hohen Glycosylierungsgrad möglich zu sein.

Zusammenfassend lässt sich sagen, dass die beschriebenen Effekte neue Informationen über Bindungspezifitäten von Antikörpern geben, welche durch synthetische Vakzin-Strukturen erzeugt wurden. Besonders deutlich wird die Beteiligung der unterschiedlichen Glycosylierungsstellen des MUC1 Peptids an der Erkennung durch die Antikörper. Dies trägt dazu bei, die Kriterien nach denen sich die humorale Immunreaktion gegen Tumorassoziierte Strukturen auf MUC1 Proteinen richtet, besser zu verstehen und Vakzin-Designs zu optimieren. Das vorgestellte Glycopeptid-Mikroarray System, konnte so zum Beispiel Antikörper-Kreuzreaktivität gegenüber verschiedenen Glycoformen aufzeigen, wie die Unterschiede zwischen Core 1 und Core 2 Erkennung

Die Glycopeptidbibliothek wurde weiterhin dazu benutzt, um die Bindung von Lektinen zu evaluieren, deren Glycan-Spezifität bereits weitgängig bekannt ist. Der Glycopeptid-Mikroarray bestätigte dabei die zu erwartenden Lektin-Bindungen. Es wurden allerdings auch einige neue Spezifitäten bezüglich unterschiedlicher gebundener Sialylierung, erweiterten *O*-Glycan Core Strukturen und Aminosäure Präferenzen entdeckt, welche die bereits bekannten Spezifitäten weiter verfeinern. Der Glycopeptid-Mikroarray wurde auch benutzt um das Bindungsverhalten von humanem Galectin-3 gegenüber O-Glycosylierung vom Mucin-Typ zu untersuchen. Die physiologischen und pathophysiologischen Funktionen der Galectine werden derzeit intensiv erforscht, besonders da sie an intra- und extrazellulären Prozessen beteiligt sind, welche die Entwicklung von Tumoren beeinflussen und fördern. Beispielsweise gibt es Hinweise darauf, dass extrazelluläres Galectin-3 an der Adhäsion von zirkulierenden Tumorzellen epitheliale Oberflächen involviert an ist. Diese Adhäsionsprozesse werden durch Bindung an Tumor-assoziiertes T-antigen auf überexprimiertem MUC1 begünstigt. Bindung von MUC1 durch Galectin-3 auf den zirkulierenden Tumorzellen führt vermutlich zu einer Lokalisierung des langen MUC1 Proteins auf der Zelloberfläche, wodurch Zelladhäsionsproteine wie Selectine und Selectinliganden freigelegt werden und somit den Kontakt zu den Epithelzellen herstellen.

Galectin-3 wurde auf einem MUC1 Glycopeptid-Array in unterschiedlichen Konzentrationen inkubiert. Dabei wurde beobachtet, dass sowohl die Tumor-assoziierten T-Antigene als auch die T_N-Antigene Galectin-Bindungspartner darstellen. Die Affinität zu diesen Antigenen ist jedoch schwächer als die Bindungsaffinitäten zu den erweiterten Core 1, Core 2 und Core 3 Glycanen. Glycopeptide mit terminierenden $\alpha 2,3$ -N-Acetylneuraminsäureresten zeigten erhöhte Affinität zu Galectin-3. Dies ist interessant, da bisherige Studien α 2,3-Sialylierung als Modifikation beschreiben, welche entweder ohne größeren Einfluss toleriert wird oder sogar die Affinität des Galectins zum Glycan senkt. Bisherige Studien zeigten weiterhin, dass Modifikation in 2'- oder 3'-Position von N-Acetyllactosamin mit Fucose, α-Galactose oder α-N-Acetylgalactosamin die Bindung zu Galectin-3 verstärken, indem sie die B-Stelle der Glycanbindungstasche des Galectins besetzen. In dieser Arbeit wurde nun gezeigt, dass a2,3-Sialylierung die Bindungsaffinität gegenüber Galectin-3 steigert, vermutlich ebenfalls durch Anlagerung an die erwähnte B-Stelle. In Übereinstimmung mit bisherigen Erkenntnissen wurde beobachtet, dass Glycopeptide mit a2,6-Sialylierung, verringerte Bindung durch Galectin-3 aufwiesen. Weiterhin wurde die Bindung stark verringert, wenn die O-Glycane zusätzliche interne a2,6-Sialylierung aufwiesen, da Galectin-3 ebenfalls Galactose Einheiten binden kann, welche sich intern in einem Glycan befinden. Die Modifikation von Glycanen mit a2,6-verknüpfter Sialinsäure hat bedeutende biologische Funktionen. Sie wird als ein molekularer Schalter betrachtet, mit dem Zellen induzierte Apoptose durch extrazelluläres Galectin-3 regulieren können. Die gefundenen Bindungspräferenzen von Galectin-3 mit den präsentierten O-Glycanen sind in Abbildung 5.8 zusammengefasst.

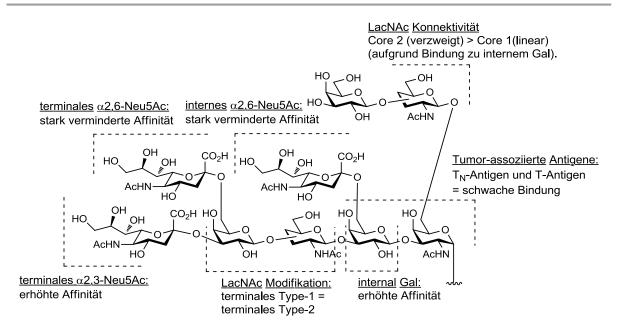


Abbildung 6.8: Einfluß von O-Glycan-Modifikationen auf Galectin-3 Bindungsaffinität.

Die Benutzung von Glycopeptiden mit mehreren besetzten Glycosylierungsstellen, ermöglichte die Evaluierung von multivalenten Bindungseffekten. Da die Bindungsintensitäten exponentiell von mono- zu triglycosylierten Peptiden anstieg, kann gefolgert werden, dass es sich um einen multivalenten Bindungsmodus handelt, welcher Galectin-3 Oligomerisierung voraussetzt.

Das im Rahmen dieser Arbeit vorgestellte Mikroarray System erwies als geeignet um Protein-Glvcan und Protein-Glycopeptid Interaktionen zu untersuchen. Die Glycopeptidbibliothek umfasst eine umfangreiche Sammlung von MUC1 Glycopeptiden mit verschiedenen O-Glycanen in multivalenter Präsentation. Weiterhin wurde eine MUC5B Glycopeptidbibliothek dargestellt, welche ebenso für weitere Bindingsstudien mit Lektinen verwendet werden kann. Die Diversität der hergestellten Mucin Glycopeptidbibliothek wird in Zukunft durch enzymatische Modifikation direkt auf dem Mikroarray Chip erweitert werden. Durch Reaktionen mit Sialyl-, Fucosyl-, α/β-Galactosyloder N-Acetylgalactosaminyltransferasen lassen sich beispielsweise die biologisch relevanten (Sialyl-) Lewis- oder Blutgruppenantigene darstellen. Die synthetisierten, sialylierten Glycopeptide stellen einen ersten Schritt in diese Richtung dar, da sie als interne Standards zur Validierung der enzymatischen Sialylierung auf den Mikroarrays benutzt werden können. Die in Lösung durchgeführten enzymatischen Sialylierungen dienten auch der Optimierung der Reaktionsbedingungen und zum Testen der Substratspezifität der verwendeten Sialyltransferasen bezüglich komplexen O-glycosylierten Peptiden. Zusätzlich zur Untersuchung von verschiedenen Lektinen, kann das Glykopeptid-Arrays System in Zukunft

auch verwendet werden um Interaktionen mit ganzen Viren oder Bakterien zu untersuchen, welche zum Beispiel verantwortlich für Infektionen in den Atemwegen sind.

7 EXPERIMENTAL

7.1 Syntheses of chapter 4.1

7.1.1 General

If not otherwise stated, all reactions were performed at room temperature. All distillations stated *in vacuo*, were performed at 40°C.

Solvents: Solvents were purchased in the quality grade *pro analysi* (p.a.) and not further purified, if not otherwise stated. Drying of dichloromethane, chloroform and acetonitrile was performed by standing over calcium hydride and subsequent distillation under argon atmosphere. Analogous, nitromethane was dried with calcium chloride. Dry methanol, toluene and diethyl ether were purchased in septum-sealed bottles with molecular sieves (*Acroseal®*) from *Acros Organics*.

Thin layer chromatography (TLC): Was performed using aluminum plates coated with silica gel (*Kieselgel 60 F*₂₅₄) from *Merck KGaA*, Darmstadt. Spots were detected by:

- UV light (254 nm)
- "Sugar-stain": 10% sulfuric acid in ethanol. Visualized by heat exposure.
- Potassium permanganate solution (2 g KMnO₄, 13.2 g K₂CO₃, 165 mg NaOH in 200 mL H₂O). Visualized by heat exposure.

Optical rotation: Specific rotation ($[\alpha]_D^{20}$) was recorded on a *Polaritronic HH8* from *Schmidt* + *Heansch GmbH*, Berlin at λ = 598.5 (sodium D line). Solvents and concentrations are given with each compound.

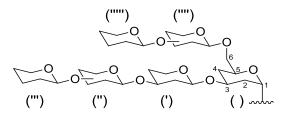
Flash column chromatography: Compounds were purified by flash column chromatography on silica gel (*Kieselgel 60*, 0.04-0.063 nm) from *Carl Roth GmbH*, Karlsruhe. Solvents were redistilled for further use in chromatography.

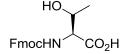
Mass spectrometry: ESI-spectra were measured with a *Micromass LCT*-spectrometer from *Mircromass*, Eschborn. High-resolution ESI-spectra were measured with a *LTQ-FT ICR ultra mass* spectrometer and *Thermo Orbitrap Fusion Tribrid* spectrometer, both *Thermo Scientific*. HPLC-MS was performed with the described analytical HPLC system coupled with a *MSQ Plus* spectrometer from *Thermo Scientific*.

NMR-spectroscopy: ¹H and ¹³C spectra were measured at the following instruments:

- Varian Mercury 400, Agilent: 400 MHz ¹H-NMR, 100.6 MHz ¹³C-NMR, COSY, TOCSY, HSQC, HMBC.
- Advance DRX 500, *Bruker*: 500 MHz ¹H-NMR, 125.8 MHz ¹³C-NMR, COSY, TOCSY, HSQC, HMBC.
- Ascend 600, Bruker: 600 MHz ¹H-NMR, 150.9 MHz ¹³C-NMR, COSY, TOCSY, HSQC, HMBC.

All spectra were recorded at 295 K. The reported values for the chemical shifts δ (ppm) were calibrated to the residual proton or carbon resonance signal of the deuterated solvent, relatively correlated to the corresponding tetramethylsilane signal.³⁷³ Signal multiplicity is assigned as follows: s = singlet, d = duplet, t = triplet, q = quartet, m = multiplet, br = broad. Elucidation of the ¹H and ¹³C signals was performed by usage of the gCOSY, gTOCSY, gHSQC and gHMBC correlation experiments as stated at the compound. For interpretation of the carbohydrate ring systems, the ¹H and ¹³C signals are distinguished by assignment with apostrophes (') as follows:



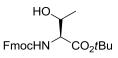

Figure 7.1: Assignment of carbohydrate rings and atom positions.

- (): α -*N*-acetyl-galactosamine (T_N-Antigen)
- ('): β -1,3-galactose (core 1, 2) or β -1,3-*N*-acetyl-glucosamine (core 3)
- ("): β -1,3-*N*-acetyl-glucosamine (core 1, 2) or β -1,3/4-galactose (core 3)
- ("'): β-1,3/4-galactose (core 1, 2)
- (""): β-1,6-*N*-acetyl-glucosamine (core 2)
- ("""): β-1,3/4-galactose (core 2)

Proton and carbon atoms of amino acids are assigned by indexed, greek letters.

7.1.2 Synthesis of the T_N-antigen glycosyl acceptor

N-(9H-fluoren-9-yl)-methoxycarbonyl-L-threonine²³⁷ (2) (Fmoc-Thr-OH)


To a solution of L-threonine **1** (10.14 g, 84.8 mmol) and sodium bicarbonate (7.44 g, 88.1 mmol) in acetone/water (450 mL, 1:1) was added *N*-(9H-fluoren-9-yl)-methoxycarbonyl-succinimidyl carbonate (28.55 g, 84.5 mmol) in portions and the reaction was stirred for 24 h. Then the reaction was acidified with 12 N HCl to pH 2. The acetone was removed *in vacuo* and the aqueous phase was extracted three times with dichloromethane (200 mL) and the combined organic phases were then washed two times with of 1 N HCl and two times with water (100 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was co-evaporated with toluene and dichloromethane (three times each).

Yield: 28.0 g (82.0 mmol, 97%), pale yellow, amorphous solid, $R_f = 0.24$ (EtOAc + 1vol% AcOH).

 $C_{19}H_{19}NO_5$ (M = 341.36 g/mol) [341.13].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.62 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.4$ Hz), 7.47 (m, 2H, H1-, H8-Fmoc), 7.27-7.16 (m, 4H, H2-, H3-, H6-, H7-Fmoc), 6.48 (s_{br}, 1H, OH), 5.99 (d, 1H, NH, $J_{NH,T\alpha} = 9.3$ Hz), 4.37-4.26 (m, 4H, CH₂(Fmoc), T^{α}, T^{β}), 4.07 (t, 1H, H9(Fmoc), $J_{H9,CH2} = 7.1$ Hz), 1.13 (d, 3H, T^{γ}, $J_{T\alpha,T\beta} = 6.2$ Hz).

N-(9H-fluoren-9-yl)-methoxycarbonyl-L-threonine-*tert*-butylester^{238,239,240} (3) (Fmoc-Thr-O*t*Bu)

A mixture of *N*,*N*'-dicyclohexylcarbodiimide (55.6 g, 270.0 mmol) and copper (I) chloride (650 mg, 6.6 mmol) in *tert*-butanol (25.53 g, 344.0 mmol) was stirred under argon

atmosphere in the dark for 3d. The mixture was then diluted with dry dichloromethane (30 mL) and cooled in an ice-bath. Fmoc-Thr-OH **2** (27.5 g, 80.6 mmol) was dissolved in dry dichloromethane (60 mL) and added dropwise to the stirred mixture. Stirring was continued for 45 min until TLC (toluene/acetone 4:1) indicated full consumption of Fmoc-Thr-OH **2**. Precipitated urea was removed by filtration over *Celite*® and washed with dichloromethane. The organic phase was washed with saturated sodium bicarbonate solution (four times), dried over sodium sulfate and concentrated *in vacuo*. The residue was taken up in ethyl acetate (100 mL) and stored overnight at -20°C. Further precipitated urea was filtered off over *Celite*®. The solvent was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica (^CHex/EtOAc 4:1 \rightarrow 3:1) and subsequent recrystallization from diethyl ether/petrol ether.

Yield: 19.1 g (48.1 mmol, 60%), colorless crystals, $R_f = 0.41$ (^CHex/EtOAc 2:1).

C₂₃H₂₇NO₅ (M = 397.46 g/mol) [397.19].

ESI-MS (pos), m/z: 420.10 ([M+Na]⁺, calc. 420.18), 363.96 ([M-*t*Bu+H]⁺, calc. 364.12).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.76 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.5$ Hz), 7.62 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 7.6$ Hz), 7.40 (t, 2H, H3-, H6-Fmoc, $J_{H3,H2} = J_{H3,H4} = J_{H6,H5} = J_{H6,H7} = 7.4$ Hz), 7.31 (m, 2H, H2-, H7-Fmoc), 5.62 (d, 1H, NH, $J_{NH,T\alpha} = 9.0$ Hz), 4.42 (d, 2H, CH₂(Fmoc), $J_{CH2,H9} = 7.2$ Hz), 4.30-4.22 (m, 3H, H9(Fmoc), $T^{\alpha}_{,,} T^{\beta}$), 2.14 (s_{br}, 1H, OH), 1.49 (s, 9H, *t*Bu), 1.24 (d, 3H, T^{γ} , $J_{T\gamma,T\beta} = 6.4$ Hz).

2,3,4,6-Tetra-O-acetyl- α -D-galactosylpyranosyl bromide (5) (α Ac₄GalBr)

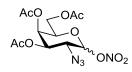
Acetic anhydride (600 mL, 6.4 mol) was cooled in an ice bath and perchloric acid (4 mL, 60%) was added. D-(+)-galactose **4** (130.25 g, 722.7 mmol) was added in portions (with a spoon, waiting for the previous portion to dissolve) and stirred for 1 h at room temperature. The solution was cooled in an ice bath and phosphorus tribromide (391 g, 1.4 mol) was added dropwise, followed by slow dropwise addition of water (90 mL, 5.1 mol) in a way to prevent the temperature from rising above 20°C. The ice bath was removed and the reaction was stirred for 3 h. The reaction was diluted with dichloromethane (800 mL) and poured into ice-water (400 mL). The mixture was stirred until the ice was completely molten. The aqueous phase was separated and the organic phase washed with saturated sodium bicarbonate solution (two times). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was crystallized from of diethyl ether (150 mL). The crystals were filtered off and washed with ice cold ether and cyclohexane.

Yield: 239.8 g (583.2 mmol, 81%), colorless crystals, $R_f = 0.58$ (Tol/EtOAc 3:2).

 $C_{14}H_{19}BrO_9$ (M = 411.20 g/mol) [410.02].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.69 (d, 1H, H1, $J_{H1,H2} = 4.0$ Hz), 5.52 (dd, 1H, H4, $J_{H4,H5} = 1.4$ Hz, $J_{H4,H3} = 3.3$ Hz), 5.40 (dd, 1H, H3, $J_{H3,H4} = 3.3$ Hz, $J_{H3,H2} = 10.6$ Hz), 5.04 (dd, 1H, H2, $J_{H2,H1} = 4.0$ Hz, $J_{H2,H3} = 10.6$ Hz), 4.48 (m, 1H, H5), 4.14 (m, 2H, H6_{ab}), 2.15, 2.11, 2.05, 2.01 (4 x s; 4 x 3H, 4 x CH₃(Ac)).

3,4,6-Tri-O-acetyl-D-galactal^{234,235} (6)


A mixture of water and acetic acid (700 mL) was cooled to -10°C. Zinc dust (112.73 g, 1.72 mol) and copper (II) sulfate pentahydrate (12.32 g, 49.3 mmol) were added. After gas generation had started, αAc_4 GalBr **5** (110.11 g, 267.8 mmol) dissolved in dichloromethane (110 mL) was added dropwise. After addition, a second batch of zinc dust (55.09 g, 840.1 mmol) and copper (II) sulfate pentahydrate (6.73 g, 27.0 mmol) was added. The reaction was stirred for another 3 h. The zinc was filtered off and washed with water/acetic acid (1:1) and with dichloromethane. The filtrate was transferred into a separation funnel and extracted with dichloromethane (three times). The organic phase was washed with water and saturated sodium bicarbonate solution. The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The product was obtained after flash column chromatography on silica (^CHex/EtOAc 4:1).

Yield: 58.7 g (215.6 mmol, 80%), colorless oil, R_f = 0.49 (Tol/EtOAc 3:2).

 $C_{12}H_{16}O_7$ (M = 272.25 g/mol) [272.09].

ESI-MS (pos), m/z: 294.79 ([M+Na]⁺, calc. 295.08).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.41 (dd, 1H, H1, $J_{H1,H2} = 7.1$ Hz, $J_{H1,H3} = 1.7$ Hz), 5.52-5.49 (m, 1H, H3), 5.38-5.36 (m, 1H, H4), 4.68 (ddd, 1H, H2, $J_{H2,H1} = 6.3$ Hz, $J_{H2,H3} = 2.7$ Hz, $J_{H2,H4} = 1.5$ Hz), 4.30-4.14 (m, 3H, H5, H6_{ab}), 2.08, 2.03, 1.99 (3 x s, 3 x 3H, 3 x CH₃(Ac)).

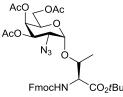
Cerium (IV) ammonium nitrate (114.75 g, 209.2 mmol) and sodium azide (7.03 g, 108.1 mmol (both thoroughly grinded in a mortar and vacuum-dried) were carefully added to dry acetonitrile, cooled to -20°C under argon atmosphere. Galactal **6** (18.66 g, 68.5 mmol) was dissolved in dry acetonitrile (150 mL) and added dropwise to the flask. The temperature was kept between -10°C and -20°C and the reaction was stirred until TLC (Tol/EtOAc 7:3) indicated full consumption of the starting material (after 5.5 h). The reaction mixture was diluted with diethyl ether (500 mL) and washed with ice cold water (three times, 300 mL each). The organic phase was dried over sodium sulfate and the solvent was concentrated *in vacuo.* The product was obtained from the residue after flash column chromatography on silica (^CHex/EtOAc 4:1).

Yield: 15.03 g (α/β 1:1, 39.9 mmol, 58 %), light yellow, amorphous solid, R_f = 0.56 (Tol/EtOAc 7:3).

 $C_{12}H_{16}N_4O_{10}$ (M = 376.28 g/mol) [376.09].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.33 (d, 1H, H1^{α}, $J_{H1\alpha,H2\alpha}$ = 4.2 Hz), 5.58 (d, 1H, H1^{β}, $J_{H1\beta,H2\beta}$ = 8.8 Hz), 5.49 (m, 1H, H4^{α}), 5.38 (m, 1H, H4^{β}), 5.25 (dd, 1H, H3^{α}, $J_{H3\alpha,H2\alpha}$ = 11.3 Hz, $J_{H3\alpha,H4\beta}$ = 3.2 Hz), 4.96 (dd, 1H, H3^{β}, $J_{H3\beta,H2\beta}$ = 10.6 Hz, $J_{H3\beta,H4\beta}$ = 3.3 Hz), 4.36 (m, 1H, H5^{α}), 4.14-4.03 (m, 6H, H2^{α}, H5^{β}, H6^{α}_{ab}, H6^{β}_{ab}), 3.81 (dd, 1H, H2^{β}, $J_{H2\beta,H1\beta}$ = 8.8 Hz, $J_{H2\beta,H3\beta}$ = 10.6 Hz), 2.16 (s, 6H, CH₃(Ac^{α}), CH₃(Ac^{β})), 2.07, 2.06, 2.03, 2.02 (4 x s, 4 x 3H, CH₃(Ac^{α}), CH₃(Ac^{β})).

3,4,6-Tri-O-acetyl-2-azido-2-desoxy- α -D-galactosylpyranosyl bromide²³⁶ (8) (α Ac₃GalN₃-Br)

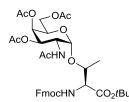


 $\alpha/\beta Ac_3GalN_3$ -ONO₃ 7 (14.52 g, 38.5 mmol) was dissolved in dry acetonitrile (300 mL). Lithium bromide (34.56 g, 397.2 mmol, vacuum-dried and grinded in a mortar before usage) was added and the suspension was stirred for 16 h. The reaction was diluted with dichloromethane (300 mL) and washed with brine (three times, 100 mL each). The organic phase was dried over sodium sulfate, concentrated *in vacuo* and the residue was purified by flash column chromatography on silica (^CHex/EtOAc 4:1).

Yield: 12.83 g (32.7 mmol, 85%), colorless, amorphous solid, $R_f = 0.64$ (Tol/EtOAc 7:3). $C_{12}H_{16}BrN_3O_7$ (M = 394.18 g/mol) [393.04].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.46 (d, 1H, H1, $J_{H1,H2}$ = 3.8 Hz), 5.49 (dd, 1H, H4, $J_{H4,H3}$ = 3.2 Hz, $J_{H4,H5}$ = 1.3 Hz), 5.33 (dd, 1H, H3, $J_{H3,H2}$ = 10.7 Hz, $J_{H3,H4}$ = 3.2 Hz), 4.47 (m, 1H, H5), 4.19-4.11 (m, 2H, H6_{a,b}), 3.97 (dd, 1H, H2, $J_{H2,H3}$ = 10.7 Hz, $J_{H2,H1}$ = 3.8 Hz), 2.15, 2.05, 2.04 (3 x s, 3 x 3H, CH₃(Ac)).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(3,4,6-tri-*O*-acetyl-2-azido-2-desoxy-α-D-galactosylpyranosyl)-L-threonine-*tert*-butylester^{240,208,221,241} (9) (Fmoc-Thr(α Ac₃GalN₃)-O*t*Bu)

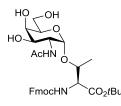


Fmoc-L-threonine-O*t*Bu **3** (22.24 g, 55.8 mmol) was dissolved in dry dichloromethane/toluene (300 mL, 1:1) and stirred with molecular sieves (20.3 g, 4Å) for 45 min under argon atmosphere. The mixture was cooled in an ice bath. Then silver carbonate (21.05 g, 76.1 mmol, vacuum dried) and silver perchlorate monohydrate (3.42 g,15.2 mmol, three times carefully co-evaporated with 20 mL dry toluene each) in dry toluene (40 mL) were added and the reaction was stirred for 30 min in the dark. Then α Ac₃GalN₃-Br **8** (19.85 g, 49.9 mmol) dissolved in dry dichloromethane/toluene (200 mL, 1:1) was added dropwise and the reaction was stirred for 24 h in the dark while the reaction warmed up to room temperature. The molecular sieves were filtered off over *Celite*® and washed with dichloromethane (400 mL). The solution was washed with saturated sodium bicarbonate solution (three times) and with water and brine (once each). The organic phase was separated, dried over sodium sulfate, filtered and the concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica (DCM/EtOAc 40:1).

Yield: 21.39 g (30.1 mmol, 60%), colorless, amorphous solid, $R_f = 0.34$ (DCM/EtOAc 20:1). $C_{35}H_{42}N_4O_{12}$ (M = 710.73 g/mol) [710.28].

ESI-MS (*pos*), *m/z*: 710.80 ([M+H]⁺, calc. 711.28); 733.13 ([M+Na]⁺, calc. 733.72).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.76 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.5$ Hz), 7.63 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 7.4$ Hz), 7.42-7.31 (m, 4H, H2-, H7-, H3-, H6-Fmoc), 5.65 (d, 1H, NH-Fmoc, $J_{NH,T\alpha} = 9.4$ Hz), 5.47 (m, 1H, H4), 5.34 (dd, 1H, H3, $J_{H3,H2} =$ 11.2 Hz, $J_{H3,H4} = 3.0$ Hz), 5.11 (d, 1H, H1, $J_{H1,H2} = 3.6$ Hz), 4.45-4.25 (m, 6H, H9-, CH₂(Fmoc), H5, T^{α}, T^{β}), 4.13-4.09 (m, 2H, H6_{ab}), 3.64 (dd, 1H, H2, $J_{H2,H3} = 11.2$ Hz, $J_{H2,H1} = 3.7$ Hz), 2.15, 2.07, 2.04 (3x s, 3 x 3H, 3 x CH₃(Ac)), 1.51 (s, 9H, *t*Bu), 1.35 (d, 3H, T^{γ}, $J_{T\gamma,T\beta} = 6.4$ Hz). *N*-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamindo-3,4,6-tri-*O*-acetyl-2-desoxy- α -D-galactosylpyranosyl)-L-threonine-*tert*-butylester²⁴³ (10) (Fmoc-Thr(α Ac₃GalNAc)-O*t*Bu)


Fmoc-Thr(α Ac₃GalN₃)-O*t*Bu **9** (21.33 g, 30.0 mmol) was dissolved in pyridine/thioacetic acid (100 mL, 1:1) and stirred at room temperature for 2 d. The precipitate was filtered off and washed with pyridine and toluene. The filtrate was co-evaporated with toluene. The residue was taken up with ethyl acetate (100 mL), further precipitate was filtered off, washed and the filtrate concentrated *in vacuo*. The product was purified by flash column chromatography on silica (^CHex/EtOAc 1:1 \rightarrow 1:2).

Yield: 16.61 g (22.8 mmol, 76%), colorless, amorphous solid, $R_f = 0.27$ (^CHex/EtOAc 1:2). $C_{37}H_{46}N_2O_{13}$ (M = 726.77 g/mol) [726.30].

ESI-MS (pos), m/z: 748.98 ([M+Na]⁺, calc. 749.29), 727.01 ([M+H]⁺, calc. 727.31), 670.80 ([M-*t*Bu+H]⁺, calc. 671.24).

^{*1}H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.77 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.7$ Hz), 7.64 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 7.6$ Hz), 7.42-7.33 (m, 4H, H2-, H7-, H3-, H6-Fmoc), 5.93 (d, 1H, NH-Fmoc, $J_{NH,T\alpha} = 9.8$ Hz), 5.45 (d, 1H, NH-Ac, $J_{NH,H2} = 9.4$ Hz), 5.39 (m, 1H, H4), 5.08 (dd, 1H, H3, $J_{H3,H2} = 11.3$ Hz, $J_{H3,H4} = 3.2$ Hz), 4.89 (d, 1H, H1, $J_{H1,H2} = 3.7$ Hz), 4.61 (m, 1H, H2), 4.38 (m, 2H, CH₂(Fmoc)), 4.22-4.12 (m, 4H, H9(Fmoc), H5, T^{α}, T^{β}), 2.16, 2.04, 2.00 (3 x s, 4 x 3H, 4 x CH₃(Ac)), 1.46 (s, 9H, *t*Bu), 1.26 (d, 3H, T^{γ}, $J_{T\gamma,T\alpha} = 6.4$ Hz).</sup>

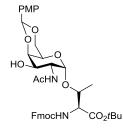
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamindo-2-desoxy- α -D-galactosylpyranosyl)-L-threonine-*tert*-butylester^{208,237} (11) (Fmoc-Thr(α GalNAc)-O*t*Bu)

Fmoc-Thr(α Ac₃GalNAc)-O*t*Bu **10** (27.98 g, 38.5 mmol) was dissolved in methanol (250 mL) and a solution of sodium methoxide (1 wt%) in methanol was added slowly in a dropwise manner, until pH 9.5 was established (wet pH paper). After 24 h TLC showed the main deacetylated product plus product with cleavage of the Fmoc-group. The reaction was

neutralized with acidic cation exchange resin (*Dowex 50WX8*). The resin was filtered off and the solvent removed *in vacuo*. The residue was taken up with 1,4-dioxane (150 mL) and a solution of sodium bicarbonate (4.09 g, 48.7 mmol) in water (150 mL) was added. Then *N*-9-Fluorenylmethyloxycarbonyl-succinimidylcarbonate (6.89 g, 20.4 mmol) was added and the suspension was stirred for 16 h at room temperature. The majority of the 1,4-dioxane was removed *in vacuo* and of ethyl acetate (600 mL) was added. The organic phase was washed with saturated sodium bicarbonate, water and brine. The organic phase was dried over sodium sulfate, filtered and the concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 15:1).

Yield: 21.00 g (35.0 mmol, 91%), colorless, amorphous solid, $R_f = 0.26$ (EtOAc/MeOH 15:1). $C_{31}H_{40}N_2O_{10}$ (M = 600.66 g/mol) [600.27].

ESI-MS (pos), m/z: 601.00 ([M+H]⁺, calc. 601.28).


¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.76 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.3$ Hz), 7.60 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 7.6$ Hz), 7.41-7.29 (m, 4H, H2-, H7-, H3-, H6-Fmoc), 6.86 (d, 1H, NH-Ac, $J_{NH,H2} = 7.8$ Hz), 5.75 (d, 1H, NH-Fmoc, $J_{NH,T\alpha} = 9.4$ Hz), 4.95 (s_{br}, 1H, OH), 4.87 (d, 1H, H1, $J_{H1,H2} = 3.0$ Hz), 4.44-4.40 (m, 2H, CH₂(Fmoc)), 4.31-4.24 (m, 3H, H9(Fmoc), H2, T^{α}), 4.14 (m, 1H, T^{β}), 4.04 (m, 1H, H4), 3.92-3.82 (m, 5H, H3, H5, H6_{ab}, OH), 2.10 (s, 3H, CH₃(Ac)), 1.44 (s, 9H, *t*Bu), 1.29 (d, 3H, T^{γ}, $J_{T\gamma,T\beta} = 6.2$ Hz).

¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 171.29, 171.06 (C=O(Ac), COO*t*Bu), 156.66 (C=O(Fmoc)), 143.28 (C1_a-, C8_a-Fmoc), 141.45 (C4_a-, C5_a-Fmoc), 127.91 (C3-, C6-Fmoc), 127.22 (C2-, C7-Fmoc), 125.13 (C1-, C8-Fmoc), 120.14 (C4-, C5-Fmoc), 99.73 (C1), 83.44 (C_q(*t*Bu)), 76.51 (T^β), 71.01, 70.21, 69.92 (C3, C4, C5), 67.32 (CH₂(Fmoc)), 62.70 (C6), 59.12 (T^α), 50.99, 47.34 (C9(Fmoc), C2), 28.20 (*t*Bu), 23.06 (CH₃(Ac)), 21.18 (T^α).

N-(9H-fluoren-9-yl)-methoxycarbonyl-O-(2-acetamindo-4,6-O-para-

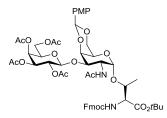
methoxybenzylidenacetal-2-desoxy-α-D-galactosylpyranosyl)-L-threonine-*tert*butylester (12)

(Fmoc-Thr(PMP-GalNAc)-OtBu)

A solution of Fmoc-Thr(α GalNAc)-O*t*Bu **11** (15.06 g, 25.8 mmol) and *para*methoxybenzaldehyde dimethyl acetal (5.94 g, 32.7 mmol) in dry acetonitrile (150 mL) was adjusted to pH 4.5 by addition of *para*-toluenesulfonic acid monohydrate (careful addition with the tip of a spatula). The reaction was stirred for 2.5 h and then neutralized with a few drops of *N*,*N*-diisopropylethylamine. The solvent was removed *in vacuo* and the residue was purified by flash column chromatography on silica (^CHex/EtOAc 1:1 \rightarrow 1:2).

Yield: 16.38 g (22.8 mmol, 91%), colorless, amorphous solid, R_f = 0.33 (Tol/EtOAc 1:2).

 $C_{39}H_{46}N_2O_{11}$ (M = 718.79 g/mol) [718.31].


ESI-MS (pos), m/z: 718.93 ([M+H]⁺, calc. 719.32), 741.13 ([M+Na]⁺, calc. 741.30), 1436.80 ([2M+H]⁺, calc. 1437.63).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.77 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.5$ Hz), 7.61 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 8.0$ Hz), 7.45-7.32 (m, 6H, H2-, H7-, H3-, H6-Fmoc, H2-, H6-PMP), 6.88 (d, 2H, H3-, H5-PMP, $J_{H2,H1} = J_{H3,H4} = 8.4$ Hz), 6.50 (d, 1H, NH-Fmoc, $J_{NH,T\alpha} = 8.6$ Hz), 5.60 (d, 1H, NH-Ac, $J_{NH,H2} = 9.5$ Hz), 5.50 (s, 1H, CH(PMP)), 4.95 (d, 1H, H1, $J_{H1,H2} = 3.6$ Hz), 4.52-4.43 (m, 3H, CH₂(Fmoc), H2), 4.27-4.01 (m, 6H, H9(Fmoc), H5, H6_{a,b}, T^{α}, T^{β}), 3.88-3.83 (m, 1H, H3), 3.79 (s, 3H, CH₃(PMP)), 3.68 (s, 1H, H4), 3.17 (s_{br}, 1H, OH), 2.10 (s, 3H, CH₃(Ac)), 1.46 (s, 9H, CH₃(*t*Bu)), 1.29 (d, 3H, T^{γ}, $J_{T\gamma,T\beta} = 5.9$ Hz).

¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 172.54, 170.84 (C=O(Ac), COO*t*Bu), 160.28 (C_{*para*}(PMP)), 156.59 (C=O(Fmoc)), 143.80 (C1_a-, C8_a-Fmoc), 141.45 (C4_a-, C5_a-Fmoc), 132.11 (C_{*arom*}(PMP)), 130.23 (C_{*ipso*}(PMP)), 127.90, 127.81, 127.12 (C3-, C6-Fmoc, C_{*arom*}(PMP)), 125.17 (C1-, C8-Fmoc), 120.14 (C4-, C5-Fmoc), 114.43, 113.69 (C_{*arom*}(PMP)), 101.27 (CH(PMP)), 100.58 (C1), 83.46 (C_q(*t*Bu), 76.46 (T^β), 75.63 (C5), 69.72 (C3), 69.27 (C6), 67.32 (CH₂(Fmoc)), 63.77 (C4), 59.08 (T^α), 55.41 (CH₃(PMP)), 47.33 (C9(Fmoc)), 28.21 (*t*Bu), 23.19 (CH₃(Ac)), 19.13 (T^γ).

7.1.3 Synthesis of the T-antigen amino acid

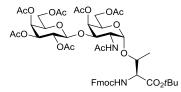
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamindo-3-*O*-[2,3,4,6-tetra-*O*-acetyl-α-Dgalactosylpyranosyl]-4,6-*O-para*-methoxybenzylidenacetal-2-desoxy-α-Dgalactosylpyranosyl)-L-threonine-*tert*-butylester^{220,244,245} (13) (Fmoc-Thr(αAc₄Gal-(1→3)-αPMP-GalNAc)-O*t*Bu)

Fmoc-Thr(PMP-GalNAc)-O*t*Bu **12** (2.72 g, 3.78 mmol) was dissolved in a mixture of dry nitromethane and dry dichloromethane (105 mL, 2:1) under argon atmosphere. Activated molecular sieves (4 g, 4Å) and mercury (II) cyanide (2.87 g, 11.36 mmol) were added in the

dark. The mixture was stirred for 45 min and then $\alpha Ac_4GalBr \ 5$ (4.69 g, 11.41 mmol) dissolved in dry dichloromethane (5 mL) was added in portions (1 mL) over 40 min and the reaction was stirred in the dark. After 3 h another of portion of mercury (II) cyanide (950 mg, 3.76 mmol) was added and the reaction was stirred for 20 h in the dark. The molecular sieves were filtered off over *Celite*® and washed with dichloromethane. The dichloromethane phase was washed with saturated sodium hydrogen carbonate solution (three times, 100 mL each), saturated sodium iodide solution (two times, 80 mL each) and once with brine (100 mL). The organic phase was separated, dried over sodium sulfate, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica (^cHex/EtOAc 1:1 \rightarrow 1:2).

Yield: 2.77 g (2.64 mmol, 70%), colorless, amorphous solid, $[\alpha]_D^{20}$ +74.76 (c = 0.49, CHCl₃), R_f = 0.48 (Tol/EtOAc 1:3).

 $C_{53}H_{64}N_2O_{20}$ (M = 1048.41 g/mol) [1049.41].


ESI-MS (pos), m/z: 1071.20 ([M+Na]⁺, calc. 1071.39).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.71 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.2$ Hz), 7.54 (m, 2H, H1-, H8-Fmoc), 7.39 (d, 2H, H2-, H6-PMP, $J_{H2,H3} = J_{H6,H5} = 8.6$ Hz), 7.36-7.23 (m, 4H, H2-, H3-, H6-, H7-Fmoc), 6.81 (d, 2H, H3-, H5-PMP, $J_{H3,H2} = J_{H5,H6} = 8.8$ Hz), 5.75 (d, 1H, NH-Ac, $J_{NH,H2} = 7.3$ Hz), 5.50-5.44 (m, 2H, NH-Fmoc, CH(PMP)), 5.31 (s, 1H, H4'), 5.12 (dd, 1H, H2', $J_{H2',H1'} = 7.9$ Hz, $J_{H2',H3'} = 9.7$ Hz), 4.91-4.88 (m, 2H, H1, H3'), 4.66-4.60 (m, 2H, H1', H2), 4.47-4.38 (m, 2H, CH₂(Fmoc)), 4.18-3.82 (m, 10H, H3, H5, H6_{a,b}, H5', H6'_{a,b}, H9(Fmoc), T^α, T^β), 3.72 (s, 3H, CH₃(PMP)), 3.59 (m, 1H, H4), 2.28, 2.06, 1.97, 1.94, 1.90 (5 x s, 5 x CH₃(Ac)), 1.39 (s, 9H, *t*Bu), 1.23-1.18 (m, 3H, T^γ).

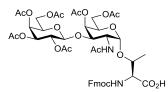
¹³C-*NMR* (100.6 MHz, HSQC, CDCl₃), *δ* (*ppm*): 170.50, 170.39, 170.27, 169.80, 169.56 (C=O(Ac), COO*t*Bu), 160.07 (C_{*para*}(PMP)), 156.58 (C=O(Fmoc)), 143.78 (C1_a-, C8_a-Fmoc), 141.46 (C4_a-, C5_a-Fmoc), 130.31 (C_{*arom*}(PMP)), 129.13, 128.32, 127.94, 127.65, 127.19 (C3-, C6-, C2-, C7-Fmoc, 3 x C_{*arom*}(PMP)), 125.39 (C1-, C8-Fmoc), 120.19 (C4-, C5-Fmoc), 113.63 (C_{*arom*}(PMP)), 101.38 (C1), 100.58 (CH(PMP)), 100.51 (C1'), 83.30 (C_q(*t*Bu)), 76.46 (T^β), 75.69 (C5), 74.39 (C3), 71.02 (C3', C5'), 69.16 (C6), 68.86 (C2'), 67.14 (C4', CH₂(Fmoc)), 63.82 (C4), 61.44 (C6'), 59.21 (T^α), 55.40 (CH₃(PMP)), 47.96 (C2), 47.39 (C9(Fmoc)), 28.21 (*t*Bu), 23.60, 21.55, 20.82, 20.67 (CH₃(Ac)), 19.07 (T^v).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamindo-3-*O*-[2,3,4,6-tetra-*O*-acetyl- α -D-galactosylpyranosyl]-4,6-*O*-acetyl-2-desoxy- α -D-galactosylpyranosyl)-L-threonine-*tert*-butylester²²⁰ (14)

(Fmoc-Thr(α Ac₄Gal-(1 \rightarrow 3)- α Ac₂GalNAc)-O*t*Bu)

A solution of Fmoc-Thr(α Ac₄Gal-(1 \rightarrow 3)- α PMP-GalNAc)-O*t*Bu **13** (833 mg, 0.85 mmol) in 80% acetic acid (15 mL) was stirred at 50°C for 4 h. The reaction was co-evaporated with toluene. The residue was taken up with pyridine/acetic anhydride (15 mL, 2:1) and stirred for 16 h. The reaction was concentrated *in vacuo* and the residue was co-evaporated with toluene. The crude product was purified by flash column chromatography on silica (^CHex/EtOAc 1:2).

Yield: 782 mg (0.77 mmol, 90%), colorless, amorphous solid, $[\alpha]_D^{20}$ +50.20 (c = 0.51, CHCl₃), R_f = 0.48 (Tol/EtOAc).


ESI-MS (*pos*), *m/z*: 1014.93 ([M+H]⁺, calc. 1015.39).

 $C_{49}H_{62}N_2O_{21}$ (M = 1015.02 g/mol) [1014.38].

¹H NMR (400 MHz, 25°C, internal CDCl₃, δ (H) = 7.26 ppm): 7.78 (d, ³J(H-4,H-3) = ³J(H-5,H-6) = 7.6 Hz, 2H, H-4-, H-5-Fmoc), 7.61 (d, ${}^{3}J_{H1,H2} = {}^{3}J_{H8,H7} = 7.0$ Hz, 2H, H-1-, H-8-Fmoc), 7.42 (t, ${}^{3}J(H-3,H-4) = {}^{3}J(H-3,H-2) = {}^{3}J(H-6,H-5) = {}^{3}J(H-6,H-7) = 7.5$ Hz, 2H, H-3-, H-6-Fmoc), 7.33 (t, ${}^{3}J(H-2,H-3) = {}^{3}J(H-2,H-1) = {}^{3}J(H-7,H-8) = {}^{3}J(H-7,H-6) = 7.5$ Hz, 2H, H-2-, H-7-Fmoc), $5.99 (d, {}^{3}J(NH,H-2) = 9.8 Hz, 1H, NH-Ac), 5.44 (d, {}^{3}J(NH,H-2) = 8.9 Hz, 1H, NH-Fmoc), 5.37$ 5.34 (m, 2H, H-4, H-4'), 5.09 (dd, ${}^{3}J(H-2',H-1') = 7.7$ Hz, ${}^{3}J(H-2', H-3') = 10.5$ Hz, 1H, H-2'), 4.94 (dd, ${}^{3}J$ (H-3',H-2') = 10.5 Hz, ${}^{3}J$ (H-3',H-4') = 3.0 Hz), 4.83 (s, 1H, H-1), 4.59-4.49 (m, 4H, H-1', H-2, CH_{2ab}-Fmoc), 4.27-4.09 (m, 7H, H-6_{ab}, H-6'_{ab}, H-9-Fmoc, T^α, T^β), 4.01-3.97 (m, 1H, H-5'), 3.88-3.85 (m, 1H, H-5'), 3.79 (d, ${}^{3}J$ (H-3,H-2) = 8.5 Hz), 2.16, 2.13, 2.06, 2.05, 2.04, 2.01, 1.97 (7 x s, 21 H, CH₃-(Ac)), 1.46 (s, 9H, CH₃-*t*Bu), 1.29 (d, ${}^{3}J(T^{\gamma},T^{\beta}) = 5.5$ Hz, 1H, T^{γ}). ¹³C NMR (100.6 MHz, 25°C, internal CDCl₃, δ (H) = 77.16 ppm): 170.54, 170.28, 170.00, 169.66 (C=O-(Ac)), 156.04 (C=O-(Fmoc)), 143.79 (C1_a-, C8_a-Fmoc), 141.51 (C4_a-, C5_a-Fmoc), 128.02 (C2-, C7-Fmoc), 127.26 (C3-, C6-Fmoc), 125.01 (C1-, C8-Fmoc), 120.26 (C4-, C5-Fmoc), 101.08 (C-1, C-1'), 83.45 (C_{quart}-*t*Bu), 78.0 (C-3), 76.5 (T^β), 73.39, 70.89, 70.85, 69.27 (C-3', C-4, C-5, C-5'), 68.17 (C-2'), 66.90 (C-4', CH2-Fmoc), 63.14 (C-6), 61.14 (C-6'), 59.18 (T^α), 48.57 (C-2), 47.43 (C-9-Fmoc), 28.25 (CH₃-(tBu)), 20.87, 20.86, 20.84, 20.79, 20.70 (CH₃-(Ac)), 18.7 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamindo-3-*O*-[2,3,4,6-tetra-*O*-acetyl- α -D-galactosylpyranosyl]-4,6-*O*-acetyl-2-desoxy- α -D-galactosylpyranosyl)-L-threonine²²⁰ (15)

(Fmoc-Thr(αAc₄Gal-(1→3)-αAc₂GalNAc)-OH)

Fmoc-Thr(α Ac₄Gal-(1 \rightarrow 3)- α Ac₂GalNAc)-O*t*Bu **14** (750 mg, 0.74 mmol) was dissolved in dichloromethane (3 mL) and anisole (1 mL) and trifluoroacetic acid (9 mL) was added. The reaction was stirred for 5 h and then co-evaporated with toluene. The crude product was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 10:1).

Yield: 638 mg (0.67 mmol, 90%), colorless, amorphous solid, $[\alpha]_D^{20}$ +75.17 (c = 0.99, CHCl₃) R_f = 0.27 (EtOAc/MeOH 4:1).

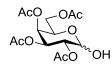
 $C_{45}H_{54}N_2O_{21}$ (M = 958.91 g/mol) [958.32].

ESI-MS (*pos*), *m/z*: 958.93 ([M+H]⁺, calc. 959.33), 1917.46 ([2M+H]⁺, calc. 1917.65).

¹*H-NMR* (400 MHz, gCOSY, DMSO), *δ* (*ppm*): 7.90 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.8$ Hz), 7.74 (m, 2H, H1-, H8-Fmoc), 7.45-7.29 (m, 4H, H2-, H3-, H6-, H7-Fmoc), 5.30 (d, 1H, H4, $J_{H4,H3} = 3.3$ Hz), 5.24 (d, 1H, H4', $J_{H4',H3'} = 3.6$ Hz), 5.05 (dd, 1H, H3', $J_{H3',H2'} = 10.4$ Hz, $J_{H3',H4'} = 3.7$ Hz), 4.84 (dd, 1H, H2', $J_{H2',H1'} = 7.8$ Hz, $J_{H2',H3'} = 10.2$ Hz), 4.74 (d, 1H, H1', $J_{H1',H2'} = 8.0$ Hz), 4.70 (d, 1H, H1, $J_{H1,H2} = 4.0$ Hz), 4.54-4.44 (m, 2H, CH₂-Fmoc), 4.32-4.26 (m, 2H, H9-Fmoc, T^β), 4.13-4.02 (m, 6H, H2, H3, H5', H6_a, H6_a', T^α), 3.93-3.84 (m, 3H, H5, H6_b, H6_b'), 2.10, 2.04, 2.00, 1.98, 1.90, 1.83 (6 x s, 6 x 3H, 6 x CH₃-Ac), 1.15 (d, 3H, T^γ, $J_{T\gamma,T\beta} = 6.3$ Hz). ¹³*C-NMR* (100.6 MHz, HSQC, CDCl₃), *δ* (*ppm*): 171.96, 171.69, 170.04, 169.90, 169.81, 169.75, 169.49 (C=O(Ac)), 156.81 (C=O(Fmoc)), 143.71 (C1_a-, C8_a-Fmoc), 140.79 (C4_a-, C5_a-Fmoc), 128.31 (C2-, C7-Fmoc), 127.78 (C3-, C6-Fmoc), 125.82 (C1-, C8-Fmoc), 120.92 (C4-, C5-Fmoc), 100.42 (C1'), 98.75 (C1), 84.78 (C_{quart}-tBu), 75.29 (T^γ), 74.47 (C5), 70.91 (C3'), 70.24 (C4, C3), 69.14 (C2'), 68.01 (C5'), 67.79 (C4'), 66.23 (CH₂-Fmoc), 63.78 (C6), 61.49 (C6'), 59.19 (T^α), 48.50 (C2), 47.47 (C9-Fmoc), 31.28 (CH₃-tBu), 22.72, 20.63, 20.48, 20.45, 20.36, 20.30 (CH₃-Ac), 18.41 (T^γ).

7.1.4 Syntheses of the type-1 N-acetyllactosamine glycosyl donor

1,2,3,4,6-Penta-O-acetyl- α -D-galactosylpyranoside (16) (α Ac₅Gal)

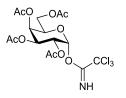

Perchloric acid (2 mL, 60%) was added to acetic anhydride (400 mL, 4.2 mol), cooled in an ice bath. D-(+)-Galactose **4** (70.82 g, 393 mmol) was added in portions (with a spoon, waiting for the previous portion to dissolve). After addition, the ice-bath was removed and the reaction was stirred for 4 h. Then the reaction was poured into ice water (1.2 L) and stirred for 1 h. The precipitate was filtered off and washed with water. The solid precipitate was dissolved in ethyl acetate (600 mL) and washed with saturated sodium hydrogen bicarbonate, water and brine (150 mL each). The organic phase was dried over sodium sulfate, filtered and the solvent removed in *vacuo*. The product was obtained by crystallization from ethyl acetate/cyclohexane.

Yield: 122.7 g (314.4 mmol, 80 %), colorless crystals, $R_f = 0.44$ (Tol/EtOAc 3:2).

 $C_{16}H_{22}O_{11}$ (M = 390.34 g/mol) [390.12].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.31 (d, 1H, H1, $J_{H1,H2}$ = 2.5 Hz), 5.44 (m, 1H, H4), 5.27 (m, 2H, H3, H2), 4.29 (m, 1H, H5), 4.06-4.02 (m, 2H, H6_{a,b}), 2.10, 1.98, 1.96, 1.94 (4 x s, 5 x 3H, 5 x CH₃-Ac).

2,3,4,6-Tetra-O-acetyl- α/β -D-galactosylpyranose (17) (α/β Ac₄Gal-OH)


 α Ac₅Gal **16** (45.24 g, 115.8 mmol) was dissolved in dry *N*,*N*-dimethylformamid (200 mL) and hydrazine acetate (12.45 g, 138.2 mmol) was added. The reaction was stirred for 3 h at 50°C. Ethyl acetate (1 L) was added and washed with water (two times, 600 mL) and with brine (400 mL). The organic phase was dried over sodium sulfate, filtered and the solvent removed *in vacuo*. The product was purified by flash column chromatography on silica (Tol/EtOAc 2:1).

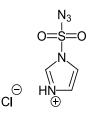
Yield: 36.24 g (α/β 3.2:1, 104.0 mmol, 90%), colorless, viscous oil, R_f = 0.23 (Tol/EtOAc). C₁₄H₂₀O₁₀ (M = 348.30 g/mol) [348.11].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 5.49 (t, 1H, H1, H1 α , J_{H1 α ,H2 α} = J_{H1 α ,OH α} = 3.6 Hz), 5.45 (dd, 1H, H4 α , J_{H4 α ,H3 α} = 3.4 Hz, J_{H4 α ,H5 α} = 1.2 Hz), 5.41-5.38 (m, 2H, H3 α , H4 β), 5.13 (m, 1H,

H2 α), 5.07-5.05 (m, 2H, H2 β , H3 β), 4.71-4.67 (m, 1H, H1 β), 4.47-4.44 (m, 1H, H5 α), 4.14-4.06 (m, 4H, H6 α , H6 β), 3.98-3.94 (m, 2H, H5 β , OH β), 3.68-3.67 (m, 1H, OH α), 2.12, 2.07, 2.03, 1.97 (4 x s, 4 x 3H, 4 x CH₃ α (Ac)), 2.14, 2.08, 2.02, 1.98 (4 x s, 4 x 3H, CH₃ β (Ac)).

2,3,4,6-Tetra-O-acetyl- α -D-galactosylpyranosyl-trichloroacetimidate²⁴⁶ (18) (α Ac₄Gal-trichloroacetimidate)

To a solution of $\alpha/\beta Ac_4Gal-OH$ **17** (25.29 g, 72.6 mmol) in dry dichloromethane (200 mL) was added trichloroacetonitrile (30.1 mL, 145.0 mmol) and the solution was cooled in an ice-bath before 1,8-diazabicyclo[5.4.0]undec-7-ene (2.17 mL, 14.5 mmol) was added. The reaction was stirred for 2 h in the ice-bath. The solvent was removed *in vacuo* and the product crystallized from ethyl acetate/cyclohexane.

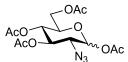

Yield: 28.6 g (58.1 mmol, 82%), colorless crystals, $[\alpha]_D^{20}$ +100.60 (c = 0.50, CHCl₃), R_f = 0.40 (^CHex/EtOAc 2:1).

 $C_{16}H_{20}CI_3NO_{10}$ (M = 492.69 g/mol) [491.01].

ESI-MS (pos), m/z: 513.80 ([M+Na]⁺, calc. 514.00).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 8.66 (s, 1H, NH), 6.59 (d, 1H, H1, $J_{H1,H2} = 3.4$ Hz), 5.55 (dd, 1H, H4, $J_{H4,H3} = 3.1$ Hz, $J_{H4,H5} = 1.2$ Hz), 5.41 (dd, 1H, H3, $J_{H3,H4} = 3.1$ Hz, $J_{H3,H2} = 10.9$ Hz), 5.35 (dd, 1H, H2, $J_{H2,H1} = 3.5$ Hz, $J_{H2,H3} = 10.8$ Hz), 4.44-4.41 (m, 1H, H5), 4.15 (dd, 1H, H6_a, $J_{H6a,H6b} = 11.3$ Hz, $J_{H6a,H5} = 6.6$ Hz), 4.07 (dd, 1H, H6_b, $J_{H6b,H6a} = 11.3$ Hz, $J_{H6b,H5} = 6.7$ Hz), 2.15, 2.01, 2.00 (3 x s, 4 x 3H, 4 x CH₃-Ac).

¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 170.42, 170.22, 170.20, 170.09 (C=O(Ac)), 161.10 (C=NH), 93.71 (C1), 90.94 (CCl₃), 69.16 (C3'), 67.67 (C5'), 67.54 (C2'), 67.07 (C4'), 61.41 (C6), 20.80, 20.77, 20.74, 20.68 (CH₃-Ac).


A suspension of sodium azide (35.18 g, 541 mmol) in acetonitrile (650 mL) was cooled in an ice-bath. Then sulfuryl chloride (72.63 g, 537 mmol) was added dropwise and stirred for 18 h. Then, imidazole (69.63 g, 1.02 mol) was added in portions and stirred for 4 h. The mixture was diluted with ethyl acetate (1.2 L) and washed with water (two times, 400 mL) and with saturated sodium bicarbonate solution (400 ml). The organic phase was dried over sodium sulfate, filtered and cooled in an ice-bath. The cooled mixture was treated with hydrochloric acid in methanol (65 mL acetyl chloride previously dropped into 225 mL of ice-cooled dry methanol). The mixture was stored overnight at -20°C. The precipitated product was filtered off and washed with ethyl acetate. The mother liquor must not be concentrated after filtration (risk of explosion).

Yield: 68.80 g (328.2 mmol, 61%), colorless crystals.

 $C_{3}H_{4}CIN_{5}O_{2}S$ (M = 209.61 g/mol) [208.98].

¹*H-NMR* (400 MHz, D₂O), *δ* (*ppm*): 7.65 (m, 1H, H4), 8.06 (m, 1H, H5), 9.42 (m, 1H, H2).

1,3,4,6-Tetra-O-acetyl-2-azido-2-deoxy- α/β -D-glucopyranose²⁴⁸ (21) (α/β Ac₄GlcN₃)

To a suspension of potassium carbonate (80.72 g, 583 mmol) and (694 mg, 2.8 mmol) copper (II) sulfate pentahydrate in methanol (800 mL) were added first glucosamine hydrochloride **20** (60.88 g, 282 mmol) and then imidazole-1-sulfonyl azide hydrochloride **19** (64.17 g, 306 mmol). The suspension was stirred with a mechanical stirrer for 4 h. The solvent was removed *in vacuo* and co-evaporated with toluene. The residue was dissolved in pyridine (600 mL) and cooled in an ice bath. Then acetic anhydride (300 mL, 3.2 mol) was added and the reaction was stirred for 18 h at room temperature. The reaction volume was split in two halves and water (500 mL each) was added. Each aqueous phase was extracted with ethyl acetate (four times, 500 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The black residue was purified by flash column chromatography on silica (^CHex/EtOAc 3:1 \rightarrow 2:1).

Yield: 80.3 g (α/β 1:2, 215.1 mmol, 77%), colorless oil, $[\alpha]_D^{20}$ +45.19 (c = 1.01, CHCl₃), R_f = 0.21 (^cHex/EtOAc 3:1).

 $C_{14}H_{19}N_3O_9$ (M = 373.32 g/mol) [373.11].

ESI-MS (*pos*), *m/z*: 396.07 ([M+Na]⁺, calc. 396.10).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.28 (d, 1H, H1^{α}, $J_{H1\alpha,H2\alpha}$ = 3.6 Hz), 5.54 (d, 1H, H1^{β}, $J_{H1\beta,H2\beta}$ = 8.6 Hz), 5.43 (dd, 1H, H3^{α}, $J_{H3\alpha,H2\alpha}$ = 9.4 Hz, $J_{H3\alpha,H4\alpha}$ = 10.4 Hz), 5.12-5.10 (m, 3H, H3^{β}, H4^{α}, H4^{β}), 4.31-4.26 (m, 2H, H6^{α}_a, H6^{β}_a), 4.08-4.02 (m, 3H, H5^{α}, H6^{α}_b, H6^{β}_b), 3.79 (m, 1H, H5^{β}), 3.67-3.62 (m, 2H, H2^{α}, H2^{β}), 2.17, 2.09, 2.06, 2.03 (4 x s, 4 x CH₃-Ac^{α}), 2.17, 2.08, 2.06, 2.01 (4 x s, 4 x CH₃-Ac^{β}).

3,4,6-Tri-O-acetyl-2-azido-2-deoxy- α -D-glucopyranosyl chloride^{236,251,252} (22) (α Ac₃GlcN₃-Cl)

A solution of $\alpha/\beta Ac_4 GlcN_3$ **21** (80.2 g, 214 mmol) in dry chloroform (600 mL) was cooled in an ice-bath. Then titanium (IV) chloride (47.1 mL, 429.6 mmol) was added dropwise. The mixture turned yellow and a solid started to precipitate. The temperature was allowed to reach room temperature and was stirred for 45 min. Then the temperature was raised until reflux of the solvent. The solid dissolved and the solution turned brown. After 4.5 h stirring at reflux, the solution was diluted with dichloromethane and washed with saturated sodium bicarbonate solution (two times) and two times with brine. The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^cHex/EtOAc 3:1).

Yield: 69.1 g (197.4 mmol, 92 %), yellow oil, R_f = 0.52 (Tol/EtOAc 3:1).

 $C_{12}H_{16}CIN_{3}O_{7}$ (M = 349.72 g/mol) [349.07]

ESI-MS (pos), m/z: 350.32 ([M+H]⁺, calc. 350.08)

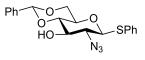
¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.11 (d, 1H, H1, $J_{H1,H2} = 3.8$ Hz), 5.50 (dd, 1H, H3, $J_{H3,H2} = 10.2$ Hz, $J_{H3,H4} = 9.7$ Hz), 5.10 (m, 1H, H4), 4.33-4.29 (m, 2H, H5, H6_a), 4.10 (m, 1H, H6_b), 3.85 (dd, 1H, H2, $J_{H2,H3} = 10.3$ Hz, $J_{H2,H1} = 3.8$ Hz), 2.09, 2.08, 2.04 (3 x s, 3 x CH₃-Ac).

Phenyl 2-azido-2-deoxy-1-thio-β-D-glucopyranoside²⁵³ (23) (βGlcN₃-SPh)

HO OH HO N₃ SPh

Thiophenol (22.2 mL, 217 mmol) and potassium hydroxide (12.25 g, 217 mmol) was added to ethanol (400 mL). Then α Ac₃GlcN₃-Cl **22** (69.18 g, 197.4 mmol) was dissolved in chloroform (400 mL) and added. The reaction was stirred for 3 h. The solution was diluted with dichloromethane and washed with saturated sodium bicarbonate (two times). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in 0.25 M sodium methoxide in methanol (400 mL) and stirred for 2 h. The solution was neutralized with acidic cation exchange resin (*Dowex 50WX8*). The resin was filtered off and the filtrate concentrated *in vacuo*. The residue was taken up with dichloromethane and washed with saturated sodium bicarbonate solution and with water (once each). The organic phase was dried over sodium chromatography on silica (Tol/EtOAc 8:7).

Yield: 28.3 g (95.2 mmol, 48%), colorless solid, $R_f = 0.33$ (100% EtOAc).


 $C_{12}H_{15}N_3O_4S$ (M = 297.33 g/mol) [297.08]

ESI-MS (*pos*), *m/z*: 298.30 ([M+H]⁺, calc. 298.09), 320.20 ([M+Na]⁺, calc. 320.07).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.53-7.51 (m, 2H, H2-, H6-SPh), 7.32-7.30 (m, 3H, H3-, H4-, H5-SPh), 4.53 (d, 1H, H1, $J_{H1,H2}$ = 10.1 Hz), 3.91-3.81 (m, 2H, H6), 3.59 3.49 (2 x t, 2H, H3, H4), 3.34-3.29 (m, 2H, H2, H5).

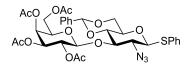
¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 133.00 (C2-, C6-SPh), 131.90 (C1-SPh), 129.39 (C3-, C5-SPh), 128.63 (C4-SPh), 87.02 (C1), 79.51 (C5), 77.18, 69.80 (C3, C4), 65.38 (C2), 62.10 (C6).

Phenyl 2-azido-2-deoxy-4,6-O-benzylidene-1-thio- β -D-glucopyranoside²⁵⁴ (24) (β Bn-GlcN₃-SPh)

A solution of β GlcN₃-SPh **23** (28.20 g 94.8 mmol) and benzylidene dimethyl acetal (21.4 mL, 142.3 mmol) in dry acetonitrile (300 mL) set to pH 4.5 by addition of *para*-toluene sulfonic acid monohydrate (careful addition with the tip of a spatula). The solution was stirred at 50°C for 1.5 h. The reaction was neutralized with a few drops of *N*,*N*-diisopropylethylamine (wet pH paper). The reaction was concentrated *in vacuo* and the residue taken up with ethyl

acetate and washed with saturated sodium bicarbonate solution and with brine (once each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The product was obtained by recrystallization from ethyl acetate/cyclohexane.

Yield: 27.0 g (70.0 mmol, 74%), pale yellow solid, $[\alpha]_D^{20}$ -72.13 (c = 0.50, CHCl₃), R_f = 0.60 (^cHex/EtOAc).


 $C_{19}H_{19}N_3O_4S$ (M = 385.44 g/mol) [385.11].

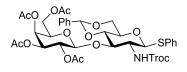
ESI-MS (pos), m/z: 386.42 ([M+H]⁺, calc. 386.12), 408.26 ([M+Na]⁺, calc. 408.10).

¹*H-NMR* (400 MHz, CDCl₃), *δ* (*ppm*): 7.59-7.56 (m, 2H, H2-, H6-Bn), 7.48-7.45 (m, 2H, H2-, H6-SPh), 7.38-7.35 (m, 6H, H3-, H4-, H5-Bn, H3-, H4-, H5-SPh), 5.53 (s, 1H, CH-Bn), 4.54 (d, 1H, H1, $J_{H1,H2}$ = 10.2 Hz), 4.38 (dd, 1H, H6_a, $J_{H6a,H6b}$ = 10.4 Hz, $J_{H6a,H5}$ = 4.7 Hz), 3.79-3.74 (m, 2H, H3, H6_b), 3.50-3.44 (m, 2H, H4, H5), 3.35 (dd, 1H, H2, $J_{H2,H1}$ = 10.1 Hz, $J_{H2,H3}$ = 9.0 Hz), 2.79 (s_{br}, 1H, OH).

¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 133.83 (C2-, C6-SPh), 129.57, 129.29, 128.84, 128.54 (C3-, C4-, C5-Bn, C3-, C4-, C5-SPh), 102.10 (CH-Bn), 86.99 (C1), 80.36 (C5), 74.26 (C3), 70.43 (C4), 68.57 (C6), 65.35 (C2).

Phenyl 3-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl)-2-azido-4,6-*O*-benzylidene-2deoxy-1-thio- β -D-glucopyranoside²⁵⁵ (25) (β Ac₄Gal-(1 \rightarrow 3)- β Bn-GlcN₃-SPh)

 β Bn-GlcN₃-SPh **24** (12.14 g, 31.5 mmol) and α Ac₄Gal-trichloroacetimidate **18** (15.54 g, 31.5 mmol) were dissolved in dry diethyl ether (250 mL). A solution of trimethylsilyl trifluoromethansulfonate in diethyl ether (6.3 mL, 0.5 M, 3.15 mmol) was added dropwise. After 30 min of stirring, the reaction was neutralized by dropwise addition of triethylamine (wet pH paper). The mixture was diluted with diethyl ether (150 mL) and washed with saturated sodium bicarbonate solution, water and brine (once each). The organic phase was dried over sodium sulfate, filtered and the solvent removed *in vacuo*. The crude product was purified by flash column chromatography on silica (^CHex/EtOAc 2:1).


Yield: 19.22 (26.9 mmol, 85%), colorless, amorphous solid, $[\alpha]_D^{20}$ -26.11 (c = 1.01, MeOH), R_f = 0.52 (Tol/EtOAc 3:1).

 $C_{33}H_{37}N_3O_{13}S$ (M = 715.72 g/mol) [715.20].

ESI-MS (pos), m/z: 733.07 ([M+NH₄]⁺, calc. 733.24), 738.20 ([M+Na]⁺, calc. 738.19). *HR-ESI-MS (pos), m/z:* 733.2387 ([M+NH₄]⁺, calc. 733.2391).

¹*H NMR* (400 MHz, CDCl₃, 25°C, internal CDCl₃ δ (H)=7.26 ppm): δ = 7.59-7.56 (m, 2H, H-2-, H-6-Bn), 7.45-7.38 (m, 2H, H-2-, H-6-SPh), 7.38-7.35 (m, 6H, H-3-, H-4-, H-5-Bn, H-3-, H-4-, H-5-SPh), 5.54 (s, 1H, CH-Bn), 5.29 (d, ³*J*(H-4',H-3') = 3.4 Hz, 1H, H-4'), 5.22 (dd, ³*J*(H-2',H-1') = 8.0 Hz, ³*J*(H-2',H-3') = 10.4 Hz, 1H, H-2'), 4.95 (dd, ³*J*(H-3',H-2') = 10.4 Hz, ³*J*(H-3',H-4') = 3.4 Hz, 1H, H-3'), 4.77 (d, ³*J*(H-1',H-2') = 8.0 Hz, 1H, H-1'), 4.50 (d, ³*J*(H-1,H-2) = 10.1 Hz, 1H, H-1), 4.37 (dd, ²*J*(H-6_a,H-6_b) = 10.6 Hz, ³*J*(H-6_a,H-5) = 4.9 Hz 1H, H-6_a), 4.03 (dd, ²*J*(H-6'_b,H-6'_a) = 7.7 Hz, ³*J*(H-6'_b,H-5') = 11.1 Hz 1H, H-6'_b), 3.86-3.59 (m, 5H, H-6_b, H-6_b', H-5', H-4, H-3), 3.44-3.33 (m, 2H, H-5, H-2), 2.10, 2.05, 1.96, 1.91 (4 x s, 4 x 3H, 4 x CH₃-Ac). ¹³*C NMR* (150.9 MHz, CDCl₃, 30°C, internal CDCl₃ δ (C)=77.16 ppm): δ = 170.36, 170.26, 169.58 (C=O-(Ac)), 136.92 (C-1-SPh), 134.20 (C-2-, C-6-SPh), 130.11 (C-1-Bn), 129.42, 129.34, 129.10 (C-3-, C-4-, C-5-Bn), 128.47 (C-3-, C-4-, C-5-SPh), 126.07 (C-2-, C-6-Bn), 101.44 (CH-Bn), 101.39 (C-1'), 87.12 (C-1), 81.48 (C-3), 79.38 (C-4), 71.09 (C-3'), 70.92 (C-5'), 70.62 (C-5), 69.53 (C-2'), 68.49 (C-6), 66.92 (C-4'), 64.53 (C-2), 61.05 (C-6'), 20.85, 20.75, 20.70, 20.67 (CH₃-(Ac)).

Phenyl 3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-4,6-*O*-benzylidene-2-deoxy-1thio-2-*N*-(2,2,2-trichlorooxycarbonyl)-β-D-glucopyranoside (26) (βAc₄Gal-(1→3)-βBn-GlcNHTroc-SPh)

 β Ac₄Gal-(1 \rightarrow 3)- β Bn-GlcN₃-SPh **25** (19.20 g, 26.9 mmol) was dissolved in mixture of 1,4-dioxane and acetic acid (220 mL, 10:1) and cooled in an ice bath. Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and finally diethyl ether. Zinc dust (10.60 g, 161.4 mmol) was added to the solution and the reaction was stirred overnight, while the temperature rose to room temperature. The zinc dust was filtered off, washed with ethyl acetate (400 mL) and the filtrate was further diluted with ethyl acetate (400 mL). The organic phase was washed with saturated sodium bicarbonate solution (two times), water and brine (500 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in 1,4-dioxane (200 mL) and sodium bicarbonate (5.20 g, 61.8 mmol) dissolved in water was added (100 mL). The stirred suspension was cooled in an ice bath and a solution of 2,2,2-trichloroethyl chloroformate (6.84 g, 32.3 mmol) in 1,4-dioxane (40 mL) was added dropwise. The ice bath was removed and the reaction was stirred further for 3 h. The 1,4-dioxane was removed *in vacuo* and the aqueous phase was extracted with ethyl

acetate (500 mL). The ethyl acetate phase was washed with water (two times, 150 mL each) and with brine (once, 150 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The product was purified by flash column chromatography on silica (toluene/EtOAc 3:1).

Yield: 16.81 (19.4 mmol, 72%), colorless, amorphous solid, $[\alpha]_D^{20}$ -10.0° (c = 1.01, CHCl₃); R_f = 0.37 (Tol/EtOAc 3:1).

 $C_{36}H_{40}CI_3NO_{15}S$ (M = 865.12 g/mol) [863.12].

HR-ESI-MS (pos), m/z: 864.1261 ([M+H]⁺, calc. 864.1257), 881.1525 ([M+NH₄]⁺, calc. 881.1522), 886.1073 ([M+Na]⁺, calc. 886.1076).

¹*H NMR* (400 MHz, CDCl₃, 25°C, internal CDCl₃ δ (C)=7.26 ppm): δ = 7.47-7.45 (m, 4H, H-2-, H-6-SPh, H-2-, H-6-Bn), 7.37-7.36 (m, 3H, H-3-, H-4-, H-5-Bn), 7.32-7.31 (m, 3H, H-3-, H-4-, H-5-SPh), 5.53 (s, 1H, CH-(Bn)), 5.32 (d, ³*J*(NH,H-2) = 7.9 Hz, 1H, NH-Troc), 5.29 (d, ³*J*(H-4',H-3') = 3.2 Hz, 1H, H-4'), 5.16 (m, 2H, H-2', H-1), 4.92 (dd, ³*J*(H-3',H-2') = 10.4 Hz, ³*J*(H-3',H-4') = 3.2 Hz, 1H, H-3'), 4.82 (d, ²*J*(CH_{2a},CH_{2b}) = 12.1 Hz, 1H, CH_{2a}-(Troc)), 4.72-4.68 (m, 2H, H-1', CH_{2b}-(Troc)), 4.36 (dd, ³*J*(H-6_a,H-6_b) = 10.6 Hz, ³*J*(H-6_a,H-5) = 4.8 Hz, 1H, H-6_a), 4.29 (t, ³*J*(H-3,H-2) = ³*J*(H-3,H-4) = 8.9 Hz, 1H, H-3), 4.04 (m, 1H, H-6_a'), 3.82-3.77 (m, 2H, H-6_b, H-6_b'), 3.67 (t, ³*J*(H-4,H-3) = ³*J*(H-4,H-5) = 9.2 Hz, 1H, H-4), 3.62 (m, 1H, H-5'), 3.56-3.52 (m, 1H, H-5), 3.36 (m, 1H, H-2), 2.10, 1.99, 1.95, 1.94 (4 x s, 4 x 3H, CH₃-(Ac)).

¹³C *NMR* (150.9 MHz, CDCl₃, 30°C, internal CDCl₃ δ (H)=77.16 ppm): δ = 170.34, 170.23, 169.50 (C=O-(Ac)), 153.76 (C=O-(Troc)), 137.08 (C-1-Bn), 133.03 (C-2-, C-6-SPh), 131.84 (C-1-SPh), 129.41, 129.27 (C-3-, C-4-, C-5-Bn), 128.54, 128.45 (C-3-, C-4-, C-5-SPh), 126.15 (C-2-, C-6-Bn), 101.48 (CH-(Bn)), 100.87 (C-1'), 95.41 (CCl₃-(Troc)), 86.21 (C-1), 79.96 (C-4), 79.18 (C-3), 74.61 (CH₂-(Troc)), 71.04 (C-3'), 70.66 (C-5'), 70.52 (C-5), 69.41 (C-2'), 68.67 (C-6), 66.87 (C-4'), 60.96 (C-6'), 56.53 (C-2), 20.80, 20.75, 20.71, 20.67 (CH₃-(Ac)).

Phenyl 3-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl)-4-*O*-acetyl-6-*O*-*tert*butyldimethysilyl-2-deoxy-1-thio-2-*N*-(2,2,2-trichloroethoxycarbonyl)- β -Dglucopyranoside (27) (β Ac₄Gal-(1 \rightarrow 3)- β Ac-TBS-GlcNHTroc-SPh)

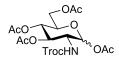
ACO OAC OTBS ACO O ACO O SPh

 β Ac₄Gal-(1 \rightarrow 3)- β Bn-GlcNHTroc-SPh **26** (8.08 g, 9.3 mmol) was dissolved in 80% acetic acid (80 mL) and stirred at 55°C for 7 h. The reaction was diluted and co-evaporated with toluene.

The residue was dissolved in dry *N*,*N*-dimethylformamide (80 mL). Imidazole (1.58 g, 23.3 mmol) and *tert*-butyldimethylsilyl chloride (1.67 g, 11.1 mmol) were added. After stirring for 3 h the reaction was diluted with ethyl acetate (400 mL) and washed with water (two times, 400 mL each) and with brine (once, 200 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (150 mL, 2:1) and stirred for 16 h. Then the solvent was removed by co-evaporation with toluene *in vacuo*. The crude was purified by column chromatography on silica (^cHex/EtOAc 2:1).

Yield: 7.82 g (8.4 mmol, 90%), colorless, amorphous solid, $[\alpha]_D^{20}$ +4.3° (c = 0.99, MeOH); R_f = 0.34 (^cHex/EtOAc 2:1).

 $C_{37}H_{52}CI_3NO_{16}SSi (M = 933,32 \text{ g/mol}) [931.18].$


HR-ESI-MS (pos), m/z: 932.1924 ([M+H]⁺, calc. 932.1914), 949.2182 ([M+NH₄]⁺, calc. 949.2180), 954.1733 ([M+Na]⁺, calc. 954.1734).

¹*H NMR* (400 MHz, CDCl₃, 25°C, internal CDCl₃ δ (H)=7.26 ppm): δ = 7.52-7.49 (m, 2H, H-2-, H-6-SPh), 7.29-7.28 (m, 3H, H-3-, H-4-, H-5-SPh), 5.33 (d, ³*J*(H-4',H-3') = 3.4 Hz, 1H, H-4'), 5.14 (d, ³*J*(NH,H-2) = 8.4 Hz, 1H, NH-Troc), 5.06 (dd, ³*J*(H-2',H-1') = 7.8 Hz, ³*J*(H-2',H-3') = 10.3 Hz, 1H, H-2'), 4.98 (d, ³*J*(H-1,H-2) = 10.4 Hz, 1H, H-1), 4.92 (dd, ³*J*(H-3',H-2') = 10.3 Hz, ³*J*(H-3',H-4') = 3.4 Hz, 1H, H-3'), 4.86-4.80 (m, 2H, H-4, CH_{2a}-(Troc)), 4.73 (d, ²*J*(CH_{2a},CH_{2b}) = 12.1 Hz, 1H, CH_{2b}-(Troc)), 4.62 (d, ³*J*(H-1',H-2') = 7.8 Hz, 1H, H-1'), 4.19 (t, ³*J*(H-3,H-2) = ³*J*(H-3,H-4) = 9.4 Hz, 1H, H-3), 4.13-4.04 (m, 2H, H-6'_{ab}), 3.84 (t, ³*J*(H-5',H-6'_{ab}) = 6.8 Hz, 1H, H-5'), 3.70-3.68 (m, 2H, H-6_{ab}), 3.59-3.55 (m, 1H, H-5), 3.44-3.37 (m, 1H, H-2), 2.14, 2.06, 2.03, 1.95 (s, 5 x 3H, CH₃-(Ac)), 0.89 (s, 9H, *t*Bu-TBS), 0.06, 0.04 (s, 2 x 3H, CH₃-(TBS)).

¹³C *NMR* (150.9 MHz, CDCl₃, 30°C, internal CDCl₃ δ (C)=77.16 ppm): δ = 170.52, 170.29, 170.18, 169.41, 169.32 (5 x C=O-(Ac)), 153.82 (C=O-(Troc)), 132.97 (C-1-SPh), 132.16 (C-2-, C-6-SPh), 129.16 (C-3-, C-5-SPh), 128.03 (C-4), 100.96 (C-1'), 95.43 (CCl₃-(Troc)), 85.92 (CH-Bn), 79.39 (C-5), 79.03 (C-3), 74.62 (CH₂-(Troc)), 71.05 (C-3'), 70.74 (C-5'), 69.41 (C-4), 69.23 (C-2'), 66.99 (C-4'), 63.09 (C-6), 61.21 (C-6'), 56.96 (C-2), 26.00 (*t*Bu-TBS), 21.00, 20.87, 20.82, 20.78, 20.66 (5 x CH₃-(Ac)), 18.47 (C_q-TBS), -5.15, -5.31 (CH₃-(TBS)).

7.1.5 Syntheses of the type-2 N-acetyllactosamine glycosyl donor

1,3,4,6-Tetra-*O*-acetyl-2-*N*-(2,2,2-trichloroethoxycarbonyl)-2-deoxy- α/β -D-glucopyranoside (28) (α/β Ac₄-GlcNTroc)

To a solution of *N*-glucosamine hydrochloride **20** (10.11 g, 46.8 mmol) in water (100 mL), was added sodium bicarbonate (8.79 g, 104.7 mmol). A solution of 2,2,2-trichloroethyl chloroformate (8.1 mL, 59.9 mmol) in 1,4-dioxane (50 mL) was added dropwise to the stirred solution. After 1.5 h the 1,4-dioxane was removed *in vacuo*. A white solid precipitated from the aqueous solution. The flask was stored for 5 h at 4°C. The precipitate was filtered off and washed with cold water and then with dichloromethane. The solid was dissolved in pyridine/acetic anhydride (120 mL, 2:1) and 4-(dimethylamino)pyridine (61 mg, 0.5 mmol) was added. After 4 h of stirring the reaction was co-evaporated es with toluene. The crude was purified by flash column chromatography on silica (^CHex/EtOAc 2:1).

Yield: 19.6 g (α/β 8.3:1, 37.5 mmol, 80%), colorless solid, [α]_D²⁰ +67.13 (c = 0.50, CHCl₃), R_f = 0.22 (^CHex/EtOAc).

 $C_{17}H_{22}CINO_{11}$ (M = 522.72 g/mol) [521.03].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 6.23 (d, 1H, H1^{α}, $J_{H1\alpha,H2\alpha}$ = 3.6 Hz), 5.73 (d, 1H, H1^{β}, 8.8 Hz), 5.29-5.15 (m, 5H, NH^{α}, H3^{α}, H4^{α}, H3^{β}, H4^{β}), 4.81 (d, 1H, CH_{2a}^{α}(Troc), $J_{CH2a,CH2b}$ = 12.0 Hz), 4.76-4.71 (m, 2H, CH_{2ab}^{β}(Troc)), 4.62 (d, 1H, CH_{2b}^{α}(Troc), $J_{CH2b,CH2a}$ = 12.0 Hz), 4.29-3.99 (m, 6H, H2^{α}, H6^{α}, H6^{β}, H5^{α}), 3.95-3.93 (m, 1H, H2^{β}), 3.84-3.80 (m, 1H, H5^{β}), 2.19, 2.08, 2.04, 2.03 (4 x s, 4 x 3H, 4 x CH₃(Ac)).

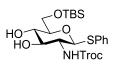
¹³C-*NMR* (100.6 MHz, CDCl₃), *δ* (*ppm*): 171.39, 170.76, 169.29, 168.71 (C=O(Ac)), 154.17 (C=O(Troc)), 90.57 (CCl₃(Troc)), 74.83 (C1), 70.54, 69.89, 67.69 (C3, C4, C5), 61.62 (C6), 53.38 (C2), 21.05, 20.82, 20.79, 20.69 (CH₃(Ac)).

Phenyl 3,4,6-tetra-O-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-1-thio- β -D-glucopyranoside²⁶² (29) (β Ac₃GlcNTroc-SPh)

AcO O SPh

Thiophenol (12.0 g, 109.0 mmol) was added to a solution of $\alpha/\beta Ac_4 GlcNTroc$ **28** (19.0 g, 36.3 mmol) in dry dichloromethane (200 mL) under argon atmosphere. Boron trifluoride diethyl

etherate (48%, 7.4 mL, 60.0 mmol) was added and the reaction stirred for 3 d. The reaction was neutralized with triethylamine and the solvent removed *in vacuo*. The residue was purified by flash column chromatography on silica (^CHex/EtOAc 2:1).


Yield: 19.3 g (33.6 mmol, 93%), colorless solid, $[\alpha]_D^{20}$ -3.33 (c = 1.00, CHCl₃), R_f = 0.34 (^cHex/EtOAc 2:1).

 $C_{21}H_{24}CI_3NO_9S$ (M = 572.84 g/mol) [571.02].

ESI-MS (pos), m/z: 462.73 ([M-SPh]⁺, calc. 462.01), 571.67 ([M+H]⁺, calc. 572.03), 593.93 ([M+Na]⁺, calc. 594.01).

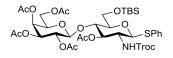
¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.52-7.49 (m, 2H, H2-, H6-SPh), 7.31-7.29 (m, 3H, H3-, H4-, H5-SPh), 5.43 (d, 1H, NH, $J_{NH,H2}$ = 9.1 Hz), 5.28 (t, 1H, H3, $J_{H3,H2}$ = $J_{H3,H4}$ = 9.5 Hz), 5.01 (t, 1H, H4, $J_{H4,H3}$ = $J_{H4,H5}$ = 9.6 Hz), 4.86 (d, 1H, H1, $J_{H1,H2}$ = 10.4 Hz), 4.79 (d, 1H, CH_{2a}(Troc), $J_{CH2a,CH2b}$ = 12.1 Hz), 4.71 (d, 1H, CH_{2b}(Troc), $J_{CH2b,CH2a}$ = 12.1 Hz), 4.21-4.13 (m, 2H, H6), 3.74-3.69 (m, 2H, H2, H5), 2.07, 2.00, 1.99 (3 x s, 3 x 3H, 3 x CH₃(Ac)).

Phenyl 6-*O*-*tert*-butyldimethylsilyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-1-thioβ-D-glucopyranoside (30) (βTBS-GlcNTroc-SPh)

Acetyl chloride (20 mL) was dropped into dry methanol (200 mL), cooled in an ice bath. After 15 min, a solution of β Ac₃GlcNTroc-SPh **29** (19.24 g, 33.6 mmol) in dichloromethane (50 mL) was added dropwise. After complete addition the ice bath was removed and the reaction stirred for 6 h. Then the solvent was removed *in vacuo* and the residue taken up in ethyl acetate (400 mL). The ethyl acetate phase was washed with water, saturated sodium bicarbonate, water again and brine (150 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The gel-like residue was dried at reduced pressure (10⁻²-10⁻¹ mbar), until a white, amorphous solid was left. The solid was dissolved in 160 mL of dry *N*,*N*-dimethylformamide under argon atmosphere. Imidazole (5.72 g, 84.0 mmol) and *tert*-butyldimethylsilyl chloride (5.57 g, 37.0 mmol) were added. The reaction was stirred for 3 h. Then it was diluted with ethyl acetate (500 mL) and washed with water (two times, 150 mL) and with brine (once, 150 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The gel-like residue by flash column chromatography on silica (DCM→DCM/MeOH 15:1).

Yield: 15.03 (26.8 mmol, 80%), pale yellow, amorphous solid, $[\alpha]_D^{20}$ +20.50 (c = 1.01, CHCl₃), R_f = 0.15 (Tol/EtOAc 3:1), 0.52 (DCM/MeOH 10:1).

 $C_{21}H_{32}CI_3NO_6SSi (M = 560.99 \text{ g/mol}) [559.08].$


ESI-MS (pos), m/z: 559.80 ([M+H]⁺, calc. 560.08).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.49-7.47 (m, 2H, H2-, H6-SPh), 7.28-7.26 (m, 3H, H3-, H4-, H5-SPh), 5.63 (d, 1H, NH, $J_{NH,H2} = 8.0$ Hz), 4.81-4.78 (m, 2H, H1, CH_{2a}(Troc)), 4.70 (d, 1H, CH_{2b}(Troc), $J_{CH2a,CH2b} = 12.0$ Hz), 3.90 (dd, 1H, H6, $J_{H6a,H6b} = 4.7$ Hz, $J_{H6a,H5} = 1.6$ Hz), 3.74 (t, 1H, H3, $J_{H3,H4} = J_{H3,H2} = 9.2$ Hz), 3.54 (t, 1H, H4, $J_{H4,H3} = J_{H4,H5} = 9.4$ Hz), 3.47-3.40 (m, 2H, H2, H5), 0.91 (s, 9H, *t*Bu(TBS)), 0.10, 0.09 (2 x s, 2 x 3H, 2 x Me(TBS)).

¹³C-*NMR* (100.6 MHz, CDCl₃), δ (*ppm*): 154.97 (C=O(Troc)), 132.33 (C2-, C6-SPh), 129.08 (C3-, C4-, C5-SPh), 127.97 (C1-SPh), 95.55 (CCl₃(Troc)), 86.45 (C1), 78.74 (C5), 76.02 (C3), 74.85 (CH₂(Troc)), 72.97 (C6), 64.48 (C2), 56.58 (C2), 26.01 (*t*Bu(TBS)), 18.39 (C_{quart}(TBS)), -5.26, -5.29 (Me(TBS)).

Phenyl 3-*O*-acetyl-4-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl)-6-*O*-tertbutyldimethylsilyl-2-deoxy-1-thio-2-*N*-(2,2,2-trichloroethoxycarbonyl)- β -Dglucopyranoside (31)

(βAc₄Gal-(1→4)-βAc-TBS-GlcNTroc-SPh)

βTBS-GlcNTroc-SPh **30** (14.98 g, 26.70 mmol) and αAc₄Gal-trichloroacetimidate **18** (13.15 g, 26.70 mmol) were dissolved in dry dichloromethane (200 mL). Activated molecular sieves (15 g, 4Å) were added under argon atmosphere. The suspension was stirred for 1 h at room temperature and then cooled to -50°C. Trimethylsilyl trifluoromethanesulfonate (482 µL, 593 mg, 2.67 mmol) in a suspension with dry dichloromethane (5 mL) was added dropwise *via* a syringe. The reaction was stirred at -50°C for 1.5 h and then quenched with triethylamine (5 mL). The molecular sieves were filtered off over *Celite*® and washed with dichloromethane (200 mL). The filtrate was washed with saturated sodium bicarbonate, water and brine (150 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (225 mL, 2:1) and stirred for 18 h. The reaction was co-evaporated with toluene *in vacuo* and the residue purified by flash column chromatography on silica (^CHex:EtOAc 2.5:1).

Yield: 19.15 g (20.5 mmol, 77%), colorless, amorphous solid, $[\alpha]_D^{20}$ -12.05 (c = 1.00, CHCl₃), R_f = 0.34 (^CHex/EtOAc 2:1).

 $C_{37}H_{52}CI_3NO_{16}SSi (M = 933.32 \text{ g/mol}) [931.18].$

ESI-MS (pos), m/z: 932.80 ([M+H]⁺, calc.932.19); 948.67 ([M+NH₄]⁺, calc. 949.22); 1888.33 ([2M+Na]⁺, calc. 1887.36).

HR-ESI-MS (pos), m/z: 932.1922 ([M+H]⁺, calc. 932.1920), 822.1728 ([M-SPH]⁺, calc. 822.1730).

¹*H NMR* (400 MHz, 25°C, internal CDCl₃, δ (H)=7.26 ppm): δ = 7.50-7.47 (m, 2H, H-2-, H-6-SPh), 7.29-7.27 (m, 3H, H-3-, H-4-, H-5-SPh), 5.37 (d, ³*J*(NH,H-2) = 9.8 Hz, 1H, NH-Ac), 5.33 (dd, ³*J*(H-4',H-3') = 3.4 Hz, ³*J*(H-4',H-5') = 0.9 Hz, 1H, H-4'), 5.12-5.03 (m, 2H, H-3, H-2'), 4.91 (dd, ³*J*(H3',H2') = 10.4 Hz, ³*J*(H-3',H-4') = 3.6 Hz, 1H, H-3'), 4.79-4.70 (m, 3H, H-1', CH₂-(Troc)), 4.66 (d, ³*J*(H-1,H-2) = 9.5 Hz, 1H, H-1), 4.09 (d, ²*J*(H-6_a',H-6_b') = 6.7 Hz, 2H, H-6_{ab}'), 3.93-3.79 (m, 4H, H-4, H-5', H-6_{ab}), 3.70 (q, ³*J*(H-2,H-1) = ³*J*(H-2,H-3) = ³*J*(H-2,NH) = 9.8 Hz, 1H, H-2), 3.37-3.33 (m, 1H, H-5), 2.10, 2.04, 2.02, 2.00, 1.95 (5 x s, 15H, CH₃-(Ac)), 0.93 (s, 9H, *t*Bu-(TBS)), 0.13, 0.10 (2 x s, 6H, Me-(TBS)).

¹³*C NMR* (100.6 MHz, 25°C, internal CDCl₃, δ (C)=77.16 ppm): δ = 170.78, 170.42, 170.27, 170.20, 168.84 (C=O-(AcO)), 154.27 (C=O-(Troc)), 132.80 (C-1-SPh), 128.99, 128.03 (C-2-, C-3-, C-4-, C-5-, C-6-SPh), 100.36 (C-1'), 95.62 (CCl₃-(Troc)), 87.03 (C-1), 79.68 (C-5), 74.64 (CH₂-(Troc)), 74.06 (C-4), 73.75 (C-3), 71.24 (C-3'), 70.78 (C-5'), 69.37 (C-2'), 67.01 (C-4'), 61.20 (C-6), 55.19 (C-2), 26.01 (*t*Bu-(TBS)), 20.92, 20.88, 20.75, 20.70, 20.66 (CH₃-(Ac)), 18.38 (C_{quart}-(TBS)), -4.87, -5.16 (CH₃-(TBS)).

7.1.6 Synthesis of the extended type-2 core 3 amino acid

N-(9H-fluoren-9-yl)-methoxycarbonyl-O-{2-acetamido-2-deoxy-4,6-O-para-

methoxybenzylidene-3-O-[3-O-acetyl-6-O-tert-butyldimethylsilyl-2-deoxy-2-N-

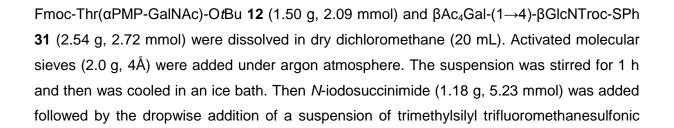
(2,2,2-trichloroethoxycarbonyl)-2-N-phenylsulfide-4-O-(2,3,4,6-

tetra-*O*-acetyl- β -D-galactopyranosyl)- β -D-glucopyranosyl]- α -D-galactosylpyranosyl}-Lthreonine-*tert*-butylester (32)

OTBS

TrocN

PhŚ


PMP

AcHN

FmocHN

CO₂tBu

(Fmoc-Thr(βAc₄Gal-(1→4)-βAc-TBS-GlcN(SPh)Troc(1→3)-αPMP-GalNAc)-OtBu)

acid (55.5 μ mol 94.1 mg, 0.63 mmol) in dry dichloromethane (300 μ L) *via* a syringe. The reaction was stirred for 4.5 h and then diluted with dichloromethane (20 mL). The molecular sieves were filtered off and washed with dichloromethane. More dichloromethane was added to give a total volume of 150 mL. The dichloromethane phase was washed with 0.5 M sodium thiosulfate solution, saturated sodium bicarbonate, water and brine (60 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (Tol/EtOAc 4:1).

Yield: 2.41 g (1.46 mmol, 70%), colorless, amorphous solid, $[\alpha]_D^{20}$ +51.73 (c = 0.52, CHCl₃), R_f = 0.53 (Tol/EtOAc 1:1).

 $C_{76}H_{96}CI_3N_3O_{27}SSi (M = 1650.09 \text{ g/mol}) [1647.48].$

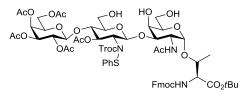
ESI-MS (*pos*), *m/z*: 1666.00 ([M+NH₄]⁺, calc. 1665.51).

HR-ESI-MS (pos), m/z: 1648.4844 ([M+H]⁺, calc. 1648.4865).

⁷*H NMR* (600 MHz, 25°C, [D₄]MeOD, internal MeOH, δ (H)=4.87 ppm): δ = 7.86 (m, 4H, H-4-, H-5-Fmoc, N-H-Ac, N-H-Ac*), 7.71-7.69 (m, 2H, H-1-, H-8-Fmoc), 7.44-7.38 (m, 4H, H-2-, H-7-Fmoc, H-2-, H-6-PMP), 7.35-7.30 (m, 4H, H-3-, H-6-Fmoc, 2 H_{arom}-SPh), 7.25-7.19 (m, 3H, 3 H_{arom}-SPh), 6.72-6.89 (m, 2H, H-3-, H-5-PMP), 6.84-6.81 (m, 2H, H-3-, H-5-PMP*), 5.53 (s, 1H, CH-(PMP)), 5.42-5.29 (m, 3H, H-4", H-4"*, CH_{2a}*-(Troc)), 5.24 (t, ³*J*(H-3',H-2') = 9.8 Hz, 1H, H-3'), 5.09-5.07 (m, 1H, H-3'*), 5.00-4.95 (m, 2H, H-2", H-3"), 4.93-4.86 (m, 3H, H-1"*, H-2"*, H-3"*), 4.82-4.68 (m, 5H, H-1"*, H-1, H-1*, H-1', H-1'*), 4.63-4.54 (m, 5H, H-2*, H-2'*, CH_{2ab}-(Fmoc), CH_{2b}-(Troc), CH*_{2b}-(Troc)), 4.53-4.41 (m, 5H, H-2, H-2', H-4, H-4*, T^β), 4.32-4.29 (m, 1H, H-9-Fmoc), 4.18-4.03 (m, 5H, H-6_{ab}, H-6_{ab}", T^α), 4.00-3.85 (m, 6H, H-3, H-4', H-5", H-5"*, H-6'_{ab}), 3.81-3.76 (m, 5H, CH₃-(PMP), H-5, T^α*), 3.49-3.45 (m, 1H, H-5'), 2.16-1.91 (m, CH₃-(Ac)), 1.45 (s, 9H, *t*Bu-(Thr)), 1.23-1.22 (m, 3H, T^γ), 0.91 (s, 9H, *t*Bu-(TBS)), 0.18-0.13 (m, 12H, 2 Me-(TBS)).

¹³*C NMR* (150.9 MHz, 25°C, [D₄]MeOD, internal MeOH, δ (C)=49.00 ppm): δ = 172.02, 171.94, 171.91, 171.88, 171.83, 171.73, 171.39, 171.36, 171.03, 170.91, 170.89, 170.83, 170.82, 170.78, 170.62, 170.46 (C=O-(Ac), C=O-(*t*Bu)), 161.50 (C-1-PMP), 159.13 (C=O-(Fmoc)), 156.62 (C=O-(Troc)), 145.27, 145.15 (C-1_a-, C-8_a-Fmoc), 142.71 (C-4_a-, C-5_a-Fmoc), 138.31 (C-1-SPh), 131.79, 131.66 (C-4-PMP), 130.20 (C_{arom}-SPh), 128.84 (C-2-, C-7-Fmoc), 128.22 (C-3-, C-6-Fmoc), 126.03 (C-1-, C-8-Fmoc), 121.06, 121.04 (C-4-, C-5-Fmoc), 114.36 (C-3-, C-5-PMP), 103.90 (C-1', C-1'*), 101.95 (CH-PMP), 101.37 (C-1'', C-1''*), 100.91 (C-1, C-1*), 96.31, 95.97 (C_{quart}-(Troc)), 83.54 (C_{quart}-(*t*Bu)), 77.59 (C-3, CH_{2ab}-(Troc)), 77.23 (C-4), 77.14 (CH_{2ab}-(Troc*)), 76.44 (C-5'), 76.18 (C-4'), 75.50 (T^V), 72.54 (C-3''), 72.04, 71.88 (C-5'', C-5''*), 71.55 (C-3'), 70.60 (C-2'', C-2''*), 70.23 (C-6_{ab}), 68.68, 68.56 (C-4'', C-4''*), 67.45 (CH_{2ab}-(Fmoc)), 64.80, 64.65 (C-5), 63.55 (C-2'), 62.82, 62.50, 62.35 (C-6', C-6''), 60.75, 60.72 (T^α, T^α*), 55.69 (CH₃-PMP), 48.95 (C-2[#]), 48.68 (C-9-(Fmoc)[#]), 28.40,

28.36 (*t*Bu-(Thr), *t*Bu-(Thr)*), 26.57 (*t*Bu-(TBS)), 24.44, 24.00, 21.67-20.45 (CH₃-(Ac)), 20.05 (*t*Bu), 19.21, 19.13 (T^v).


(*, rotational-isomers, if identifiable)

([#],congruent with solvent peak, shift from HSQC)

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-{2-acetamido-2-deoxy-3-*O*-[3-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl)-2-*N*-phenylsulfide-4-*O*-(2,3,4,6-

tetra-*O*-acetyl- β -D-galactopyranosyl)- β -D-glucopyranosyl]- α -D-galactosylpyranosyl}-L-threonine-*tert*-butylester (33)

(Fmoc-Thr(βAc₄Gal-(1→4)-βAcGlcN(SPh)Troc(1→3)-GalNAc)-O*t*Bu)

Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac-TBS-GlcN(SPh)Troc(1 \rightarrow 3)- α PMP-GalNAc)-O*t*Bu) **32** (2.35 g, 1.42 mmol) was dissolved in 80 vol% acetic acid (25 mL) and stirred for 18 h at 50°C. The solvent was removed *in vacuo* and the residue was co-evaporated with toluene. The crude was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 25:1).

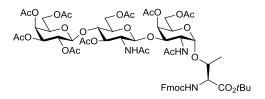
Yield: 1.67 g (1.17 mmol, 82%), colorless, amorphous solid, $[\alpha]_D^{20}$ +26.08 (c = 0.51, CHCl₃), R_f = 0.43 (EtOAc/MeOH 25:1).

 $C_{62}H_{76}CI_3N_3O_{26}S$ (M = 1417.70 g/mol) [1415.35].

ESI-MS (pos), m/z: 1416.53 ($[M+H]^+$, calc. 1416.36), 1433.80 ($[M+NH_4]^+$, calc. 1433.38).

HR-ESI-MS (pos), m/z: 1416.3584 ([M+H]⁺, calc. 1416.3582).

¹*H NMR* (600 MHz, 25°C, [D₄]MeOD, internal MeOH, δ (H)=4.87 ppm): δ = 7.84-7.78 (m, 3H, H-4-, H-5-Fmoc, N-H-Fmoc), 7.71-7.68 (m, 2H, H-1-, H-8-Fmoc), 7.60-7.56 (s_{br}, 1H, N-H-Ac), 7.43-7.24 (m, 9H, H-2-, H-3-, H-6-, H-7-Fmoc, C_{arom}-SPh), 5.37-5.30 (m, 3H, H-4", H-4"*, CH_{2a}-(Troc)), 5.25 (d, ²*J*(CH_{2a},CH_{2b}) = 12.4 Hz, 1H, CH_{2b}-(Troc)), 5.12-5.02 (m, 1H, H-3")[#], 5.02-4.95 (m, 1H, H-3'), 4.94-4.88 (m, 2H, H-1', H-2"), 4.78-4.72 (m, 1H, H-1), 4.70-4.62 (m, 4H, H-1", CH_{2a}-(Fmoc), CH_{2b}-(Troc), CH_{2b}*-(Troc)), 4.42-4.33 (m, 2H, H-2, T^β), 4.29 (s_{br}, 1H, H-9-Fmoc), 4.25-4.15 (m, 2H, H-5, H-5*), 4.14-4.00 (m, 4H, H-5", H-6", T^α), 3.91-3.82 (m, 3H, H-4, H-4', H-6_a), 3.80-3.64 (m, 4H, H-3, H-6_b, H-6'_{ab}), 3.48-3.41 (m, 1H, H-5"), 2.13-1.75 (m, 18H, CH₃-(Ac)), 1.43 (s, 9H, *t*Bu), 1.25 (m, 3H, T^γ).


¹³C *NMR* (150.9 MHz, 25°C, [D₄]MeOD, internal MeOH, δ (C)=49.00 ppm): δ =173.44, 171.84, 171.37, 170.92, 170.73 (C=O-(Ac), C=O-(*t*Bu)), 159.36, 159.23, (CH_{2ab}-(Fmoc), CH_{2ab}*-(Fmoc)), 158.65, 158.33 (CH_{2ab}-(Troc), CH_{2ab}*-(Troc)), 145.30, 145.13 (C-1_a-, C-8_a-Fmoc), 142.69 (C-4_a-, C-5_a-Fmoc), 138.08 (C-1-SPh), 130.27 (C_{arom}-SPh), 128.84 (C-2-, C-7-Fmoc),

128.22 (C-3-, C-6-Fmoc), 126.03 (C-1-, C-8-Fmoc), 121.04 (C-4-, C-5-Fmoc), 103.49, 103.00 (C-1', C-1'*), 101.69, 101.45 (C-1, C-1*), 100.52, 100.44 (C-1", C-1"*), 96.52, 96.38 (C_{quart}-(Troc)), 83.40 (C_{quart}-(*t*Bu)), 80.91, 80.41 (C-3, C-3*), 77.50, 77.21 (CH_{2ab}-, CH_{2ab}-*(Troc)), 76.83 (C-4), 76.18 (C-5'), 75.77 (T^β), 72.40 (C-3", C-4'), 71.65 (C-2", C-3'), 69.98, 69.35 (C-5", C-5"*), 68.51 (C-4", C-4"*), 67.47 (CH_{2ab}-(Fmoc)), 63.52, 63.04 (C-2', C-2'*), 62.65, 62.60 (C-6_{ab}'), 62.29, 62.23 (C-6_{ab}"), 60.76 (T^α, C-6_{ab}), 48.77 (C-2[#]), 48.64 (C-9-(Fmoc)[#]), 24.87, 24.52, 24.09, 20.77-20.47 (CH₃-(Ac), CH₃-(Ac)^{*}), 19.84 (T^V).

(*, rotational-isomers, if identifiable)

([#] congruent with solvent peak, shift from HSQC)

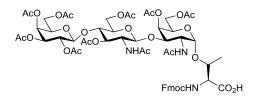
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-{2-acetamido-4,6-di-*O*-acetyl-2-deoxy-3-*O*-[2-acetamido-3,6-di-*O*-acetyl-2-deoxy-4-*O*-{2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl}-β-D-glucopyranosyl]-α-D-galactosylpyranosyl}-L-threonine-*tert*-butylester (34) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNAc-(1→3)- α Ac₂GalNAc)-O*t*Bu)

Zinc dust was preactivated by treating it for a few minutes with 1 N hydrochloric acid and then washed with water, methanol and diethyl etherr. Fmoc-Thr(β Ac4Gal-(1 \rightarrow 4)- β GlcN(SPh)Troc(1 \rightarrow 3)-GalNAc)-OtBu **33** (1.60 g, 1.13 mmol) was dissolved in acetic acid and preactivated zinc (1.11 g, 16.8 mmol) was added. The reaction was stirred at room temperature for 16 h. Then the same amount of zinc was additionally added and the reaction stirred for 20 h. The zinc powder was filtered off and washed with acetic acid. The filtrate was co-evaporated with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (22.5 mL, 2:1) and stirred for 18 h. The solvent was removed *in vacuo* and the crude purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 25:1).

Yield: 1.11 g (0.85 mmol, 75%), pale yellow, amorphous solid, $[\alpha]_D^{20}$ +47.45 (c = 0.51, CHCl₃), R_f = 0.23 (EtOAc/MeOH 25:1).

 $C_{61}H_{79}N_{3}O_{28}$ (M = 1302.28 g/mol) [1301.49].

ESI-MS (*pos*), *m*/*z*: 1301.73 ([M+H]⁺, calc. 1302.49), 1318.30 ([M+NH₄]⁺, calc. 1319.52).


HR-ESI-MS (pos), m/z: 1302.4927 ([M+H]⁺, calc. 1302.4928).

¹*H* NMR (400 MHz, 25°C, CDCl₃, internal CHCl₃, δ (H)=7.26 ppm): δ = 7.76 (d, ³*J*(H-4,H-3) = ³*J*(H-5,H-6) = 7.4 Hz, 2H, H-4-, H-5-Fmoc), 7.62 (d, ³*J*(H-1,H-2) = ³*J*(H-8,H-7) = 7.3 Hz, 2H, H-1-, H-8-Fmoc), 7.42-7.26 (m, 4H, H-2-, H-7-, H-3-, H-6-Fmoc), 6.46 (d, ³*J*(NH,H-2) = 9.3

Hz, 1H, NH-Ac), 6.03 (d, ${}^{3}J(NH,T^{\alpha}) = 9.5$ Hz, 1H, NH-Fmoc), 5.92 (d, ${}^{3}J(NH',H-2') = 8.4$ Hz, 1H, NH'-Ac), 5.33 (s_{br}, 1H, H-4"), 5.29 (s, 1H, H-4), 5.16-5.07 (m, 2H, H-3', H-2"), 4.97 (dd, ${}^{3}J(H-3",H-2") = 10.4$ Hz, ${}^{3}J(H-3",H-4") = 3.3$ Hz, 1H, H-3"), 4.82 (s_{br}, 1H, H-1), 4.73-4.70 (m, 2H, H-1', H-6_a'), 4.55-4.51 (m, 2H, H-1", CH_{2a}-(Fmoc)), 4.46-4.42 (m, 2H, H-2, CH_{2b}-(Fmoc)), 4.26-4.19 (m, 3H, T^{α},T^{β}, H-9-Fmoc), 4.11-3.97 (m, H5, H-6_{ab}, H-6_b', H-6_{ab}"), 3.85-3.77 (m, 3H, H-3, H-4', H-5"), 3.68 (q, ${}^{3}J(H-2',H-1') = {}^{3}J(H-2',NH') = {}^{3}J(H-2',H-3') = 8.4$ Hz, 1H, H-2'), 3.56 (m, 1H, H-5'), 2.13-1.95 (m, 30H, CH₃-(Ac)), 1.44 (s, 9H, *t*Bu), 1.28 (d, ${}^{3}J(T^{\gamma},T^{\beta}) = 5.4$ Hz, 3H, T^{γ}).

¹³*C NMR* (100.6 MHz, 25°C, CDCl₃, internal CHCl₃, δ (H)=77.16 ppm): δ = 170.41-169.26 (C=O-(Ac), C=O-(*t*Bu)), 157.00 (C=O-(Fmoc)), 143.97, 143.85 (C-1_a-, C-8_a-Fmoc), 141.45 (C-4_a-, C-5_a-Fomc), 127.90 (C-2-, C-7-Fmoc), 127.24 (C-3-, C-6-Fmoc), 125.21 (C-1-, C-8-Fmoc), 120.15 (C-4-, C-5-Fmoc), 101.29 (C-1"), 99.66 (C-1, C-1'), 83.19 (C_{quart}-(*t*Bu)), 76.10 (T^β), 75.62 (C-4'), 73.41 (C-5'), 72.75 (C-3'), 72.28 (C-3), 70.98 (C-3"), 70.77 (C-5"), 69.29 (C-4, C-2"), 67.89 (C-5), 67.10 (CH_{2ab}-(Fmoc)), 66.67 (C-4"), 62.69 (C-6_{ab}), 61.39 (C-6'_{ab}), 60.74 (C-6"_{ab}), 59.24 (T^α), 54.24 (C-2'), 48.82 (C-2), 47.39 (C-9-Fmoc), 28.22 (CH₃-(*t*Bu)), 23.38, 21.02-20.66 (CH₃-(Ac)), 19.08 (T^γ).

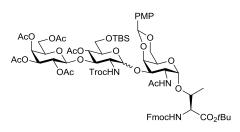
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-{2-acetamindo-4,6-di-*O*-acetyl-2-deoxy-3-*O*-[2-acetamido-3,6-di-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-α-D-galactosylpyranosyl}-L-threonine (35) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNAc-(1→3)- α Ac₂GalNAc)-OH)

Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcN-(1 \rightarrow 3)- α Ac₂GalNAc)-O*t*Bu **34** (1.39 g, 1.07 mmol) was dissolved in dichloromethane (7.5 mL) and anisole (3 mL). Then trifluoroacetic acid (22.5 mL) was added and the solution was stirred for 2 h. The reaction was co-evaporated with toluene. The crude was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 25:1 \rightarrow 10:1).

Yield: 1.27 g (1.02 mmol, 95%), colorless, amorphous solid, $[\alpha]_D^{20}$ +53.60 (c = 0.99, CHCl₃), R_f = 0.41 (EtOAc/MeOH 3:1).

 $C_{57}H_{71}N_3O_{28}$ (M = 1246.18 g/mol) [1245.42].

ESI-MS (pos), m/z: 1245.80 ([M+H]⁺, calc. 1246.43), 1262.47 ([M+NH₄]⁺, calc. 1263.46), 1268.07 ([M+Na]⁺, calc. 1268.41).


HR-ESI-MS (pos), m/z: 1246.4297 ([M+H]⁺, calc. 1246.4302).

¹*H NMR* (600 MHz, 25°C, [D₆]DMSO, internal DMSO, δ (H)=2.50 ppm): δ = 12.83 (s_{br}, 1H, COOH), 7.91, 7.90 (2 x d, *J*_{H-4,H-3} = *J*_{H-5,H-6} = 7.6 Hz, 2H, H-4-, H-5-Fmoc), 7.81 (d, *J*_{NH,H-2}' = 8.3 Hz, 1H, N-H'-Ac), 2 x 7.73 (2 x d, *J*_{H-1,H-2} = *J*_{H-8,H-7} = 7.4 Hz, 2H, H-1-, H-8-Fmoc), 7.44-7.41 (m, 2H, H-2-, H-7-Fmoc), 7.37 (d, *J*_{NH,Tα} = 9.6 Hz, 1H, N-H-Fmoc), 7.34-7-31 (m, 2H, H-3-, H-6-Fmoc), 7.21 (d, *J*_{NH,H2} = 9.2 Hz, 1H, N-H-Ac), 5.28 (d, *J*_{H-4,H-3} = 3.5 Hz, 1H, H-4), 5.22 (d, *J*_{H-4",H-3"} = 3.6 Hz, 1H, H-4'), 5.17 (dd, *J*_{H-3",H-4"} = 3.6 Hz, *J*_{H-3",H-2"} = 10.3 Hz, 1H, H-2''), 5.09 (t, *J*_{H-3",H-4"} = *J*_{H-3',H-2'} = 9.4 Hz, 1H, H-3'), 4.85-4.81 (m, 2H, H-1', H-2''), 4.75 (d, *J*_{H-1",H-2"} = 8.0 Hz, 1H, H1''), 4.74 (d, *J*_{H-1,H-2} = 4.0 Hz, 1H, H-1), 4.51-4-47 (m, 2H, CH_{2ab}-Troc), 4.31 (t, *J*_{H-9,CH2} = 6.7 Hz, 1H, H-9-Fmoc), 4.27 (m, 1H, H-6'_a), 4.22-4.20 (m, 2H, H-5'', T^β), 4.12 (dd, *J*_{Tα,Tβ} = 2.1 Hz, *J*_{Tα,NH-Fmoc} = 9.6 Hz), 4.09-4.02 (m, 4H, H-2, H-5, H-6_a, H-6'_b, 4.00-3.97 (m, 2H, H-6''_{ab}), 3.86-3.80 (m, 2H, H-3, H-6_b), 3.65 (t, *J*_{H-4",H-3"} = *J*_{H-4",H-5'} = 9.4 Hz, 1H, H-4'), 3.57 (m, 1H, H5'), 3.25 (m, 1H, H-2'), 2.09, 2.04, 2.03, 2.01, 2.00, 1.99, 1.95, 1.90, 1.83, 1.69 (each s, 30H, CH₃-(Ac)), 1.14 (d, *J*_{TY,Tβ} = 6.5 Hz, 1H, T^γ).

¹³C *NMR* (150.9 MHz, 25°C, [D₆]DMSO, internal DMSO, δ (H)=39.52 ppm): δ = 171.54, 170.24, 170.12, 2 x 169.87, 169.53, 169.52, 169.38, 169.24, 169.18, 169.18, 169.17 (C=O-(Ac), 156.79 (C=O-(Fmoc)), 143.77, 143.74 (C-1_a-, C-8_a-Fmoc), 140.82, 140.79 (C-4_a-, C-5_a-Fmoc), 127.69, 127.65 (C-2-, C-7-Fmoc), 127.07 (C-3-, C-6-Fmoc), 125.16, 125.08 (C-1-, C-8-Fmoc), 120.23, 120.18 (C-4-, C-5-Fmoc), 100.09 (C-1"), 100.00 (C-1'), 98.93 (C-1), 76.67 (C-4'), 75.02 (T^β), 73.02 (C-3), 72.77 (C-3'), 71.49 (C-5'), 70.22 (C-3"), 69.91 (C-4), 69.57 (C-5"), 68.99 (C-2"), 67.03 (C-4", C-5), 65.50 (CH_{2ab}-(Fmoc)), 62.75 (C-6_{ab}), 61.98 (C-6'_{ab}), 60.72 (C-6"_{ab}), 58.57 (T^β), 54.43 (C-2'), 47.96 (C-2), 46.79 (C-9-Fmoc), 22.72, 22.65, 20.78-20.33 (CH₃-(Ac)), 18.72 (T^γ).

7.1.7 Synthesis of the extended type-1 core 3 amino acid

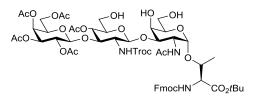
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-2-deoxy-4,6-*O*-paramethoxybenzylideneacetal-3-*O*-{4-*O*-acetyl-6-*O*-*tert*-butyldimethysilyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)- α/β -Dglucopyranosyl}- α -D-galactopyranosyl)-L-threonine-tert-butylester (36) (βAc₄Gal-(1→3)- α/β Ac-TBS-GlcNHTroc-(1→3)- α PMP-GalNAc)-Thr-OtBu)

Fmoc-Thr(αPMP-GalNAc)-O*t*Bu **12** (1.51 g, 2.10 mmol) and βAc₄Gal-(1→3)-βGlcNTroc-SPh **27** (2.55 g, 2.73 mmol) were dissolved in dry dichloromethane (30 mL). Activated molecular sieves 4Å (2.1 g) were added under argon atmosphere. The suspension was stirred for 1 h and then cooled in an ice bath. *N*-iodosuccinimide (614 mg, 2.73 mmol) was added to the suspension, followed by the dropwise addition of a suspension of trifluoromethanesulfonic acid (37.2 µL, 63.0 mg, 0.42 mmol) in dry dichloromethane (300 µL) *via* a syringe. After 2 h the reaction was treated with another addition of **27** (255 mg, 0.27 mmol) and *N*-iodosuccinimide (61 mg, 0.27 mmol). The reaction was stirred for 3 h under argon atmosphere and ice-cooling. The reaction was diluted with dichloromethane (20 mL). The molecular sieves were filtered off and washed with dichloromethane. The filtrate was further diluted with dichloromethane (total volume 180 mL). The dichloromethane phase was washed with a solution of 0.5 M sodium thiosulfate, saturated sodium bicarbonate, water and brine (60 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^CHex/EtOAc 2:1→1:1), to give a mixture of the α- and β-anomer.

Yield: 2.29 g (α/β (1:1.2), 1.48 mmol, 71%), colorless, amorphous solid, $[\alpha]_D^{20}$ +55.40 (c = 1.00, CHCl₃), R_f = 0.47 (^CHex/EtOac 1:1).

 $C_{70}H_{92}CI_3N_3O_{27}Si (M = 1541.93 \text{ g/mol}) [1539.48].$

ESI-MS (pos), m/z: 1540.00 ([M+H]⁺, calc. 1540.48), 1562.20 ([M+Na]⁺, calc. 1562.47).


HR-ESI-MS (pos), m/z: 1540.4824 ([M+H]⁺, calc. 1540.4831), 1562.4653 ([M+Na]⁺, calc. 1562.4651).

¹*H* NMR (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)=2.50 ppm): δ = 7.92-7.88 (m, 4H, H-4_{αβ}-, H-5_{αβ}-Fmoc), 7.75-7.69 (m, 5H, H-1_{αβ}-, H-8_{αβ}-Fmoc, NH'_β-Troc), 7.56 (d, ³*J*(NH_α,T^α) = 9.7 Hz, 1H, NH_α-Fmoc), 7.51 (d, ³*J*(NH_β,T^α) = 9.7 Hz, 1H, NH_β-Fmoc), 7.44-7.29 (m, 14H,

$$\begin{split} \mathsf{NH}_{\alpha\beta}-\mathsf{Ac},\ \mathsf{H2}_{\alpha\beta}-,\ \mathsf{H7}_{\alpha\beta}-\mathsf{Fmoc},\ \mathsf{H-3}_{\alpha\beta}-,\ \mathsf{H-6}_{\alpha\beta}-\mathsf{Fmoc},\ \mathsf{H-2}_{\alpha\beta}-,\ \mathsf{H-6}_{\alpha\beta}-\mathsf{SPh}\),\ 7.07\ (d,\ \mathsf{1H},\ \mathsf{NH'}_{\alpha}-\mathsf{Troc}),\\ 6.96-6.93\ (m,\ \mathsf{4H},\ \mathsf{H-3}_{\alpha\beta}-,\ \mathsf{H-5}_{\alpha\beta}-\mathsf{SPh}),\ 5.70\ (s,\ \mathsf{1H},\ \mathsf{CH}-\mathsf{PMP}_{\alpha}),\ 5.45\ (s,\ \mathsf{1H},\ \mathsf{CH}-\mathsf{PMP}_{\beta}),\ 5.26\ (d,\ {}^3J(\mathsf{H-4'}_{\alpha},\mathsf{H-3'}_{\alpha})=3.4\ \mathsf{Hz},\ \mathsf{H-4'}_{\alpha}),\ 5.22\ (d,\ {}^3J(\mathsf{H-4'}_{\beta},\mathsf{H-3'}_{\beta})=3.2\ \mathsf{Hz},\ \mathsf{H-4'}_{\beta}),\ 5.03\ (d,\ {}^3J(\mathsf{H-1'}_{\alpha},\mathsf{H-2'}_{\beta}),\ 4.94-4.82\ (m,\ \mathsf{3H},\ \mathsf{H4'}_{\alpha},\ \mathsf{H-3''}_{\beta},\ \mathsf{CH}_{2a}-\mathsf{Troc}),\ 4.80-4.72\ (m,\ \mathsf{7H},\ \mathsf{H-1}_{\alpha},\ \mathsf{H-1}_{\beta},\ \mathsf{H-1''}_{\alpha},\ \mathsf{H-2''}_{\alpha},\ \mathsf{H-2''}_{\beta}),\ \mathsf{CH}_{2a}-\mathsf{Troc},\ \mathsf{CH}_{2b}-\mathsf{Troc}),\ 4.63-4.57\ (m,\ 4H,\ \mathsf{H-1'}_{\beta},\ \mathsf{H-1''}_{\alpha},\ \mathsf{H-2''}_{\alpha},\ \mathsf{H-2''}_{\alpha},\ \mathsf{H-2''}_{\beta}),\ \mathsf{CH}_{2a}-\mathsf{Troc},\ \mathsf{CH}_{2b}-\mathsf{Troc}),\ 4.63-4.57\ (m,\ 4H,\ \mathsf{H-1'}_{\beta},\ \mathsf{H-1''}_{\beta},\ \mathsf{H-1''}_{\alpha},\ \mathsf{H-2''}_{\alpha},\ \mathsf{H-2''}_{\alpha},\ \mathsf{H-2''}_{\alpha}),\ \mathsf{CH}_{2a}-\mathsf{Fmoc},\ \mathsf{A.33-4.24}\ (m,\ 6H,\ \mathsf{H-2}_{\beta},\ \mathsf{H-4}_{\beta},\ \mathsf{H-9}_{\alpha\beta}-\mathsf{Fmoc},\ \mathsf{T}^{\beta}_{\alpha\beta}),\ 4.21-4.16\ (m,\ 1H,\ \mathsf{H-2}_{\alpha}),\ 4.14-3.90\ (m,\ 14H,\ \mathsf{H-3'}_{\beta},\ \mathsf{H-5''}_{\alpha\beta},\ \mathsf{H-6}_{ab\alpha\beta},\ \mathsf{H-6}_{ab\alpha\beta},\ \mathsf{H-6}_{ab\alpha\beta}),\ 3.82-3.74\ (m,\ 8H,\ \mathsf{H-3}_{\alpha},\ \mathsf{H-3'}_{\alpha},\ \mathsf{CH}_{3}-\mathsf{PMP}_{\alpha\beta}),\ 3.69-3.54\ (m,\ 9H,\ \mathsf{H-2'}_{\alpha},\ \mathsf{H-5}_{\alpha},\ \mathsf{H-5}_{\beta},\ \mathsf{H-5''}_{\alpha},\ \mathsf{H-6}_{ab\alpha\beta}),\ 3.37-3.34\ (m,\ 1H,\ \mathsf{H-5'}_{\beta}),\ 3.18-3.12\ (m,\ 1H,\ \mathsf{H-2'}_{\beta}),\ 2.12,\ 2.08,\ 2.07,\ 2.02,\ 1.99,\ 1.98,\ 1.96,\ 1.95,\ 1.92,\ 1.91,\ 1.90,\ 1.88,\ 1.87,\ 1.86\ (m,\ 36H,\ \mathsf{CH}_{3}-(\mathsf{AC})_{\alpha\beta}),\ 1.36\ (s,\ 18H,\ \mathsf{CH}_{3}-(\mathsf{A})_{\alpha\beta}),\ 1.17-1.13\ (m,\ 6H,\ \mathsf{T}^{\prime}_{\alpha\beta}),\ 0.87,\ 0.83\ (2\ x\ s,\ 18H,\ \mathsf{CH}_{3}-\mathsf{TBS}_{\alpha\beta}),\ 0.06,\ -0.02,\ -0.03\ (3\ x\ s,\ \mathsf{M-TBS}_{\alpha\beta}). \end{split}$$

¹³C NMR (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 169.93, 169.88, 169.87, 169.84, 169.84, 169.55, 169.46, 169.41, 169.37, 169.31, 169.21, 169.19, 169.16, 169.12, 169.10, 169.07, 168.98, 168.46 (C=O-(Ac)), 159.55, 159.50 (C-1-PMP_{αβ}) 156.79, 156,75 (C=O-(Fmoc)_{αβ}), 154.36, 153.64 (C=O-(Troc)_{αβ}), 143.85, 143.72,143.68, 143.65 (C-1_a-, C-8_b-Fmoc_{αβ}), 140.80, 140.77, 140.73 (C-4_a-, C-5_b-Fmoc_{αβ}), 130.74, 130.67 (C-4-PMP_{ab}), 127.69, 127.66, 127.64, 127.60, 127.47, 127.02 (C-2-, C-7-Fmoc_{ab}, C-2-, C-6-PMP_{αβ}), 125.22, 125.18, 125.16, 125.13, 124.85 (C-3-, C-6-Fmoc_{αβ}, C-1-, C-8-Fmoc_{αβ}), 120.21, 120.17, 120.09 (C-4- ,C-5-Fmoc_{αβ}), 113.4, 113.35 (C-3-, C-5-PMP_{αβ}), 101.93 (C-1'_β), 100.09 (CH-PMP_β), 99.99 (C-1"_β), 99.43 (CH-PMP_α), 99.24, 99.07 (C-1_α, C-1_β, C-1"_α), 97.14 (C-1'_α), 96.09, 95.93, 95.74 (CCl₃-Troc_{αβ}), 81.42, 81.37 (C_α-*t*Bu), 76.79 (C-3'_β), 76.16 (C-3_β), 75.80 (C-4_{β}), 75.39 (C-3'_{α}), 74.02 (C-3_{α}), 73.90 (T^{β}_{β}), 73.82 (CH₂-Troc), 73.61 (T^{β}_{α}), 73.18 (C-5'_β), 73.52 (CH₂-Troc), 72.74 (C-4_α), 70.33 (C-3"_α), 70.29 (C-3"_β), 69.99 (C-5'_α), 69.77 (C-5"_α), 69.72 (C-5"_β), 68.89 (C-4'_α), 68.75 (C-2"_α), 68.49, 68.46 (C-6_{αβ}), 68.39 (C-2"_β), 67.84 (C-4'_α), 67.20, 67.14 (C-4"_{αβ}), 65.76, 65.57 (CH₂-Fmoc_{αβ}), 62.76 (C-5_α), 62.71 (C-5_β), 62.18 (C- $6'_{\beta}$), 61.09, 60.97 (C- $6''_{\alpha\beta}$), 60.84 (C- $6'_{\alpha}$), 59.39, 59.24 (T $^{\alpha}_{\alpha\beta}$), 57.31 (C- $2'_{\beta}$), 55.54 (C- $2'_{\alpha}$), 55.10, 55.06 (CH₃-PMP_{$\alpha\beta$}), 47.28, 47.11 (C-2_{$\alpha\beta$}), 46.78, 46.75 (C-9-Fmoc_{$\alpha\beta$}), 27.58, 25.74 (CH₃-(*t*Bu)), 23.04, 22.97, 20.84, 20.75, 20.61, 20.53, 20.49, 20.44, 20.41, 20.33, 20.27, 20.21 (CH₃-(Ac)), 19.18, 19.17 (T^γ_{αβ}), -5.35, -5.39, -5.61, -5.70 (Me-TBS_{αβ}).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-3-*O*-{4-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)- α/β -D-glucopyranosyl}- α -D-galactopyranosyl)-L-threonine-*tert*-butylester (37) (βAc₄Gal-(1→3)-βAcGlcNHTroc-(1→3)- α GalNAc)-Thr-OtBu)

Fmoc-Thr(βAc4Gal-(1 \rightarrow 3)-α/βAc-TBS-GlcNHTroc(1 \rightarrow 3)-αPMP-GalNAc)-O*t*Bu **36** (2.03 g, 1.32 g mmol) was dissolved in 80 vol% acetic acid (25 mL) and stirred 18 h at 40°C. The solvent was removed *in vacuo* by co-evaporation with toluene. The crude was purified by flash column chromatography on silica (^CHex/EtOAc 1:2 \rightarrow EtOAc/MeOH 25:1).

Yield: β-Anomer: 861 mg (0.66 mmol, 50%), colorless, amorphous solid, $[α]_D^{20}$ +29.93 (c = 0.50, CHCl₃), R_f = 0.30 (EtOAc/MeOH 20:1).

α-Anomer: 502 mg (0.38 mmol, 29%), colorless, amorphous solid, $[\alpha]_D^{20}$ +56.47 (c = 0.51, CHCl₃), R_f = 0.61 (EtOAc/MeOH 20:1).

 $C_{56}H_{72}CI_3N_3O_{26}$ (M = 1309.53 g/mol) [1307.35].

β-Anomer:

ESI-MS (pos), m/z: 1307.93 ([M+H]⁺, calc. 1308.35).

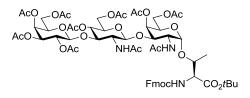
HR-ESI-MS (pos), m/z: 1308.3546 ([M+H]⁺, calc. 1308.3548).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)=2.50 ppm): δ = 7.91-7.89 (m, 2H, H-4-, H-5-Fmoc), 7.75 (m, 2H, H-1-, H-8-Fmoc), 7.57 (d, ³*J*(NH,H2') = 9.2 Hz, 1H, NH-Troc), 7.52 (d, 1H, ³*J*(NH,T^α) = 9.8 Hz, NH-Fmoc), 7.43-7.41 (m, 2H, H2-, H7-Fmoc), 7.36-7.29 (m, 3H, NH-Ac, H-3-, H-6-Fmoc), 5.24 (d, ³*J*(H-4",H-3") = 3.8 Hz, 1H, H-4"), 4.90 (dd, ³*J*(H3",H4") = 3.7 Hz, ³*J*(H3",H2") = 10.5 Hz, 1H, H-3"), 4.86 (d, ²*J*(CH_{2a},CH_{2b}) = 12.3 Hz, 1H, CH_{2a}-(Troc)), 4.78 (dd, ³*J*(H-2",H-3") = 10.2 Hz, ³*J*(H-2",H-1") = 8.0 Hz, 1H, H-2"), 4.73 (t, ³*J*(OH-6',H-6'_{ab}) = 5.9 Hz, 1H, OH-6'), 4.65-4.63 (m, 2H, H-1", OH-6), 4.59-4.53 (m, 4H, H-1, H-1', H-4', CH_{2b}-(Troc)), 4.49 (dd, ²*J*(CH_{2a},CH_{2b}) = 11.0 Hz, ³*J*(CH_{2a},H-9) = 6.9 Hz, 1H, CH_{2a}-(Fmoc)), 4.43 (dd, ²*J*(CH_{2b},CH_{2a}) = 11.0 Hz, ³*J*(CH_{2b},H-9) = 4.6 Hz, 1H, CH_{2b}-(Fmoc)), 4.32-4.30 (m, 2H, H-9-Fmoc, OH-4), 4.21-4.17 (m, 2H, H-2, T^β), 4.12-4.09 (m, 1H, H-6'_a), 4.07-4.02 (m, 2H, H-5", T^α), 3.97-3.95 (m, 3H, H-4, H-3', H-6"_b), 3.69-3.67 (m, 1H, H-5), 3.57 (dd, ³*J*(H-3,H-4) = 2.9 Hz, ³*J*(H-3,H-2) = 11.1 Hz, 1H, H-3), 3.51-3.45 (m, 3H, H-6'_a, H-6_{ab}), 3.37-3.34 (m, 3H, H-2', H-6'_b, H-5'), 2.09, 2.00, 1.98, 1.90, 1.88 (s, 6 x 3H, CH₃-(Ac)), 1.34 (s, 9H, *t*Bu), 1.17 (d, ³*J*(T^γ,T^β) = 4.7 Hz, 3H, T^γ).

¹³C NMR (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 172.00, 169.91, 169.86, 169.37, 169.32, 169.20, 169.14, 169.01 (C=O-(Ac), C=O-(*t*Bu)), 156.83

 $(C=O-(Fmoc)), 153.70 (C=O-(Troc)), 143.71, 143.69 (C-1_a-, C-8_a-Fmoc), 140.81, 140.76 (C-4_a-, C-5_a-Fmoc), 127.71, 127.66 (C-2-, C-7-Fmoc), 127.07, 127.03 (C-3-,C-6-Fmoc), 125.31, 125.16 (C-1-,C-8-Fmoc), 120.20, 120.15 (C-4-, C-5-Fmoc), 101.77 (C-1'), 99.98 (C-1''), 98.96 (C-1), 95.82 (CCl_3-(Troc)), 81.22 (C_q-tBu), 77.18 (C-3'), 76.48 (C-3), 73.74 (CH_2-(Troc), 73.66 (C-5'), 73.53 (T^β), 71.52 (C-5), 70.18 (C-3''), 69.71 (C-5''), 69.20 (C-4'), 68.41 (C-2''), 67.86 (C-4), 67.25 (C-4''), 65.57 (CH_2-(Fmoc)), 61.06 (C-6''), 60.94 (C-6), 60.54 (C-6'), 59.42 (T^α), 57.40 (C-2'), 47.22 (C-2), 46.76 (C-9-Fmoc), 27.62 (CH_3-(tBu)), 22.93, 20.74, 20.59, 20.51, 20.42, 20.36, 20.23 (CH_3-(Ac)), 19.08 (T^γ).$

α-Anomer:


ESI-MS (pos), m/z: 1308.00 ([M+H]⁺, calc. 1308.35).

HR-ESI-MS (pos), m/z: 1308.3558 ([M+H]⁺, calc. 1308.3548).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ= 7.91-7.89 (m, 2H, H-4-, H-5-Fmoc), 7.78-7.71 (m, 3H, NH-Troc, H-1-, H-8-Fmoc), 7.60 (d, ³*J*(NH,T^α) = 9.8 Hz, 1H, NH-Fmoc), 7.55 (d, ³*J*(NH,H-2) = 10.1 Hz, 1H, NH-Ac), 7.42-7.40 (m, 2H, H-2-, H-7-Fmoc), 7.33-7.29 (m, 2H, H-3-, H-6-Fmoc), 5.25 (d, ³*J*(H-4",H-3") = 3.5 Hz, 1H, H-4"), 5.05-5.02 (m, 2H, H-3", CH_{2a}-(Troc)), 4.88 (t, ³*J*(H-4',H-3') = ³*J*(H-4',H-3') = 9.6 Hz, 1H, H-4'), 4.86 (d, ³*J*(H-1',H-2') = 3.4 Hz, 1H, H-1'), 4.81 (dd, ³*J*(H-2",H-1") = 8.0 Hz, ³*J*(H-2",H-3") =10.1 Hz, 1H, H-2"), 4.76 (d, ³*J*(H-1",H-2") = 8.0 Hz, 1H, H-1"), 4.68-4.65 (m, 2H, OH-6, CH_{2b}-(Troc)), 4.61 (d, ³*J*(H-1,H-2) = 4.0 Hz, 1H, H-1), 4.53 (t, ³*J*(OH-6',H-6'_{ab}) = 5.2 Hz, 1H, OH-6'), 4.48 (d, ³*J*(OH-4,H-4) = 3.3 Hz, 1H, OH-4), 4.44 (dd, ²*J*(CH_{2a},CH_{2b}) = 10.7 Hz, ³*J*(CH_{2a},H-9) = 6.9 Hz, 1H, CH_{2a}-(Fmoc)), 4.37 (dd, ²*J*(CH_{2b},CH_{2a}) = 10.7 Hz, ³*J*(CH_{2b},H-9) = 6.9 Hz, 1H, CH_{2b}-(Fmoc)), 4.29-4.25 (m, 3H, H-2, H-9-(Fmoc), T^β), 4.11-4.09 (m, 2H, H-5", H-6"_a), 4.04-4.01 (m, 2H, T^α, H-6"_b), 3.87-3.83 (m, 2H, H-4, H-3'), 3.70-3.65 (m, 2H, H-5, H-5'), 3.59-3.51 (m, 5H, H-3, H-2', H-6'_a, H-6_{ab}), 3.42-3.40 (m, 1H, H-6'_b), 2.10, 2.01, 1.99, 1.94, 1.90, 1.84 (6 x s, 6 x 3H, CH₃-(Ac)), 1.35, (s, 9H, CH₃-(*t*Bu)), 1.19 (d, ³*J*(T^Y,T^β) = 5.5 Hz, 3H, T^Y).

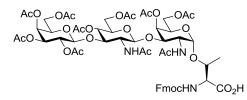
¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 169.89, 169.80, 169.39, 169.24, 169.19, 169.03, 168.88 (C=O-(Ac), C=O-(*t*Bu)), 156.86 (C=O-(Fmoc)), 154.57 (C=O-(Troc)), 143.71 (C-1_a-, C-8_a-Fmoc), 140.70 (C-4_a-, C-5_a-Fmoc), 127.62 (C-2-, C-7-Fmoc), 127.00 (C-3-, C-6-Fmoc), 125.34 (C-1-, C-8-Fmoc), 120.07 (C-4-, C-5-Fmoc), 99.99 (C-1"), 98.64 (C-1), 97.96 (C-1'), 95.87 (CCl₃-(Troc)), 81.22 (C_q-*t*Bu), 78.37 (C-3), 75.82 (C-3'), 73.52 (CH₂-(Troc)), 73.11 (T^β), 71.33 (C-5), 70.30 (C-5'), 70.20 (C-3"), 69.59 (C-5"), 68.81 (C-2"), 68.17 (C-4'), 67.07 (C-4"), 66.42 (C-4), 65.69 (CH₂-(Fmoc)), 61.03, 60.87 (C-6, C-6"), 59.53 (C-6'), 59.26 (T^α), 55.40 (C-2'), 47.17, 46.69 (C-2, C-9-Fmoc), 27.58 (CH₃-(*t*Bu)), 22.92, 20.60, 20.48, 20.32, 20.26, 20.19, (CH₃-(Ac)), 19.12 (T^V).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2-*N*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl}- α -D-galactopyranosyl)-L-threonine-*tert*-butylester (38) (Fmoc-Thr(βAc₄Gal-(1→3)-βAc₂GlcNAc-(1→3)- α Ac₂GalNAc)-OtBu)

Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and finally diethyl ether. Fmoc-Thr(β Ac₄-Gal-(1 \rightarrow 3)- β Ac₂GlcNTroc-(1 \rightarrow 3)- α GalNAc)-O*t*Bu **37** (861 mg, 0.66 mmol) was dissolved in acetic acid and activated zinc was added. The reaction was stirred at room temperature for 16 h. Then more of the activated zinc (430 mg, 6.6 mmol) was added and the reaction stirred for 22 h. The zinc dust was filtered off and washed with acetic acid. The filtrate was co-evaporated with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (15 mL, 2:1) and stirred overnight. The solvent was removed *in vacuo* by co-evaporation with toluene and the crude product was purified by flash column chromatography on silica (100% EtOAc).

Yield: 724 mg (0.56 mmol, 85%), colorless, amorphous solid, $[\alpha]_D^{20}$ +56.39 (c = 0.49, CHCl₃), R_f = 0.24 (EtOAc).

 $C_{61}H_{79}N_{3}O_{28}$ (M = 1302.28 g/mol) [1301.49].


ESI-MS (pos), m/z: 1302.00 ([M+H]⁺, calc. 1302.49), 1324.40 ([M+Na]⁺, calc. 1324.47).

HR-ESI-MS (pos), m/z: 1302.4928 ([M+H]⁺, calc. 1302.4928).

¹*H NMR* (600 MHz, CDCl₃, 30°C, internal CDCl₃ δ(H)= 7.26 ppm): δ = 7.75 (d, 2H, ³*J*(H-4,H-3) = ³*J*(H-5,H-6) = 7.6 Hz, H-4-, H-5-Fmoc), 7.61-7.60 (m, 2H, H-1-, H-8-Fmoc), 7.39 (t, ³*J*(H-2,H-1) = ³*J*(H-2,H-3) = ³*J*(H-7,H-6) = ³*J*(H-7,H-8) = 7.4 Hz, 2H, H-2-, H-7-Fmoc), 7.31-7.28 (m, 2H, H-3-, H-6-Fmoc), 6.25-6.21 (m, 2H, NH-Ac, NH'-Ac), 6.17 (d, ³*J*(NH,T^α) = 9.6 Hz, 1H, NH-Fmoc), 5.33 (d, ³*J*(H-4",H-3") = 3.5 Hz, 1H, H-4"), 5.27 (d, ³*J*(H-4,H-3) = 2.7 Hz, 1H, H-4), 5.06 (d, ³*J*(H-1',H-2') = 8.4 Hz, 1H, H-1'), 5.04 (dd, ³*J*(H-2",H-3") = 10.5 Hz, ³*J*(H-2",H-1") = 8.1 Hz, 1H, H-2"), 4.94-4.90 (m, 2H, H-3", H-4'), 4.83 (d, ³*J*(H-1,H-2) = 3.7 Hz, 1H, H-1), 4.69 (t, ³*J*(H-3',H-2') = ³*J*(H-3',H-4') = 9.6 Hz, 1H, H-3'), 4.55-4.49 (m, 2H, H-6'_a, CH_{2a}-(Fmoc)), 4.46 (d, ³*J*(H-1',H-2') = 8.0 Hz, 1H, H-1'), 4.44-4.37 (m, 2H, H-2, CH_{2b}-(Fmoc)), 4.28-4.22 (m, 3H, T^α, T^β, H-9-Fmoc), 4.13-4.05 (m, 4H, H-5, H-6_a, H-6"), 4.01-3.97 (m, 2H, H-6_b, H-6'_b), 3.89 (dd, ³*J*(H-3,H-2) = 10.9 Hz, ³*J*(H-2',H-3') = ³*J*(H-2',NH) = 8.4 Hz, 1H, H-2'), 2.13, 2.08, 2.05, 2.04, 2.03, 1.99, 1.95 (m, 30 H, CH₃-(Ac)), 1.44 (s, 9H, *t*Bu), 1.30 (d, ³*J*(T^v,T^β) = 6.4 Hz, 3H, T^v).

¹³C *NMR* (150.9 MHz, CDCl₃, 30°C, internal CDCl₃ δ(C)=77.16 ppm): δ = 171.94, 171.78, 170.98, 170.66, 170.54, 170.51, 170.36, 170.28, 169.90, 169.38, 169.30 (C=O-(Ac), C=O-(*t*Bu)), 157.06 (C=O-(Fmoc)), 143.94, 143.89 (C-1_a-, C-8_a-Fmoc), 141.47 (C-4_a-, C-5_a-Fmoc), 127.92, 127.90 (C-2-, C-7-Fmoc), 127.22, 127.18 (C-3-, C-6-Fmoc), 125.09 (C-1-, C-8-Fmoc), 120.15 (C-4-, C-5-Fmoc), 101.07 (C-1"), 99.85 (C-1), 97.74 (C-1'), 83.19 (C_q-*t*Bu), 76.46 (C-3'), 76.00 (T^β), 72.49 (C-5'), 71.18 (C-3"), 70.73 (C-5"), 70.67 (C-3), 69.95 (C-4), 69.45 (C-2"), 68.77 (C-4'), 68.68 (C-2"), 67.67 (C-5), 67.03 (CH₂-(Fmoc)), 66.99 (C-4"), 62.62 (C-6"), 61.82 (C-6'), 61.13 (C-6), 59.24 (T^α), 58.79 (C-2'), 48.33 (C-2), 47.38 (C-9-Fmoc), 28.24 (*t*Bu), 23.87, 23.47, 21.11, 21.00, 20.98, 20.92, 20.82, 20.80, 20.76, 20.68 (CH₃-(Ac)), 19.08 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl}-α-D-galactopyranosyl)-L-threonine (39) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→3)- α Ac₂GalNAc)-OH)

Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNAc-(1 \rightarrow 3)- α Ac₂GalNAc)-O*t*Bu (1.27 g, 0.97 mmol) **38** was dissolved in dichloromethane (5 mL) and anisole (1 mL). Then trifluoroacetic acid (15 mL) was added and the solution was stirred for 2.5 h. The reaction was co-evaporated with toluene. The crude was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 20:1).

Yield: 1.06 g (0.85 mmol, 87 %), colorless, amorphous solid, $[\alpha]_D^{20}$ +64.90 (c = 1.00, CHCl₃), R_f = 0.35 (EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

 $C_{57}H_{71}N_3O_{28}$ (M = 1246.18 g/mol) [1245.42].

HR-ESI-MS (pos), m/z: 1246.4301 ([M+H]⁺, calc. 1246.4302).

¹*H NMR* (500 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.91-7.89 (m, 2H, H-4-, H-5-Fmoc), 7.74 (d, ³*J*(H-1,H-2) = ³*J*(H-8,H-7) = 7.4 Hz, 2H, H-1-, H-8-Fmoc), 7.69 (d, ³*J*(NH,H-2') = 7.1 Hz, 1H, NH'-Ac), 7.45-7.30 (m, 5H, H-2-, H-3-, H-6-, H-7-Fmoc, NH-Fmoc), 7.26 (d, ³*J*(NH,H-2) = 9.4 Hz, 1H, NH-Ac), 5.27 (d, ³*J*(H-4,H-3) = 3.4 Hz, 1H, H-4), 5.24 (d, ³*J*(H-4",H-3") = 3.9 Hz, 1H, H-4"), 5.08 (dd, ³*J*(H-3",H-2") = 10.3 Hz, ³*J*(H-3",H-4") = 3.6 Hz, 1H, H-3"), 4.77 (dd, ³*J*(H-2",H-3") = 10.2 Hz, ³*J*(H-2",H-1") = 7.8 Hz, 1H, H-2"), 4.74 (d, ³*J*(H-1", H-2) = 4.1 Hz, 1H, H-1), 4.64 (d, ³*J*(H-1", H-2") = 8.1 Hz, 1H, H-1"), 4.63-4.60 (m, 2H, H-1', H-4'), 4.53-4.44 (m, 2H, CH₂-(Fmoc)), 4.31 (t, ³*J*(H-9,CH_{2a}) = ³*J*(H-9,CH_{2b}) = 6.6 Hz, 1H, H-9-

Fmoc), 4.26-4.24 (m, 1H, T^{β}), 4.15-3.97 (m, 9H, H-2, H-5, H-5", H-6_{a,b}, H-6'_{a,b}, H-6"_a, T^{α}), 3.88-3.85 (m, 1H, H-6"_b), 3.80 (dd, ³*J*(H-3,H-2) = 11.2 Hz, ³*J*(H-3,H-4) = 3.4 Hz, 1H, H-3), 3.65-3.62 (m, 1H, H-5'), 3.38 (m, 1H, H-2'), 2.09, 2.04, 2.01, 2.00, 1.99, 1.98, 1.89, 1.88, 1.98 (s, 30 H, CH₃-(Ac)), 1.16-1.14 (m, 3H, T^{γ}).

¹³C *NMR* (125.8 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 171.55, 170.24, 170.00, 169.99, 169.82, 169.60, 169.40, 169.35, 169.29, 169.16, 169.12 (C=O-(Ac)), 156.74 (C=O-(Fmoc)), 143.73, 143.68 (C-1_a-, C-8_a-Fmoc), 140.78, 140.73 (C-4_a-, C-5_a-Fmoc), 127.64, 127.59 (C-2-, C-7-Fmoc), 127.00 (C-3-, C-6-Fmoc), 125.16, 125.07 (C-1-, C-8-Fmoc), 120.13, 120.07 (C-4-, C-5-Fmoc), 100.56 (C-1'), 99.87 (C-1''), 98.82 (C-1), 76.80 (C-3'), 74.65 (T^β), 72.62 (C-3), 70.49, 70.38 (C-3'', C-5'), 69.74 (C-4), 69.47 (C-5), 68.85 (C-4'), 68.61 (C-2''), 67.14 (C-4''), 67.00 (C-5''), 66.51 (CH₂-(Fmoc)), 62.70 (C-6''), 61.68, 61.07 (C-6, C-6'), 58.49 (T^α), 47.09 (C-2), 46.78 (C-9-Fmoc), 22.83, 22.76, 20.68, 20.58, 20.48, 20.43, 20.39, 20.27, 20.22 (CH₃-(Ac)), 18.34 (T^γ).

7.1.8 Synthesis of the T-antigen glycosyl acceptor building block

Phenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-galactosylpyranoside (40) (βAc₄Gal-SPh)

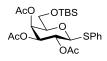
 α Ac₅Gal **16** (60.0 g, 153.7 mmol) and thiophenol (62.7 mL, 615 mmol) were dissolved in dry dichloromethane (400 mL). Boron trifluoride diethyl etherate (31.3 mL, 48%, 254.1 mmol) was added dropwise. The reaction was stirred for 5 d and then neutralized with triethylamine. The solvent was removed *in vacuo*. The crude was purified by flash column chromatography on silica (^CHex/EtOAc 2:1).

Yield: 55.0 g (124.9 mmol, 81%), colorless, amorphous solid, $R_f = 0.48$ (Tol/EtOAc 3:1). $C_{20}H_{24}O_9S$ (M = 440.46 g/mol) [440.11].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.53-7.50 (m, 2H, H2-, H6-SPh), 7.32-7.31 (m, 3H, H3-, H4-, H5-SPh), 5.41 (d, 1H, H4, $J_{H4,H3} = 2.7$ Hz), 5.24 (t, 1H, H2, $J_{H2,H3} = J_{H2,H1} = 9.9$ Hz), 5.05 (dd, 1H, H3, $J_{H3,H2} = 9.9$ Hz, $J_{H3,H4} = 3.3$ Hz), 4.72 (d, 1H, H1, $J_{H1,H2} = 10.0$ Hz), 4.21-4.09 (m, 2H, H6), 3.94 (t, 1H, H5, $J_{H5,H6ab} = 7.1$ Hz), 2.12, 2.09, 2.04, 1.97 (4 x s, 4 x 3H, 4 x CH₃(Ac)).

Phenyl 1-thio-β-D-galactosylpyranoside (41) (βGal-SPh)

 β Ac4Gal-SPh **40** (55.05 g, 124.9 mmol) was added to a solution of sodium methoxide (1.08 g, 20.0 mmol) in methanol (400 mL) and the reaction was stirred for 3 h. It was neutralized with acidic cation exchange resin (*Dowex 50WX8*). After filtration of the resin, the filtrate was concentrated *in vacuo* and the residue purified by flash column chromatography on silica (DCM/MeOH 7:1).


Yield: 33.1 g (121.6 mmol, 97%), colorless solid, $[\alpha]_D^{20}$ -31.29 (c = 1.01, CHCl₃), R_f = 0.13 (DCM/MeOH 7:1).

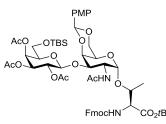
 $C_{12}H_{16}O_5S$ (M = 272.32 g/mol) [272.07].

¹*H-NMR* (400 MHz, MeOH-d₄, gCOSY, gHSQC), δ (*ppm*): 7.61-7.58 (m, 2H, H2-, H6-SPh), 7.35-7.27 (m, 3H, H3-, H4-, H5-SPh), 4.58 (d, 1H, H1, $J_{H1,H2} = 9.7$ Hz), 3.95 (dd, 1H, H4, $J_{H4,H3} = 3.3$ Hz, $J_{H4,H5} = 0.8$ Hz), 3.84-3.3.74 (m, 2H, H6_{ab}), 3.68-3.60 (m, 2H, H2, H5), 3.55 (dd, 1H, H3, $J_{H3,H2} = 9.2$ Hz, $J_{H3,H4} = 3.3$ Hz).

¹³*C-NMR* (100.6 MHz, MeOH-d₄, gHSQY), *δ* (*ppm*): 136.02, 132.09, 129.85, 127.97 (PhS), 90.25 (C1), 80.58 (H5), 76.32 (C3), 70.99 (C2), 70.40 (C4), 62.60 (C6).

Phenyl 2,3,4-*O*-acetyl-6-*tert*-butyldimethylsilyl-1-thio- β -D-galactosylpyranoside²⁶⁶ (42) (β Ac₃TBS-Gal-SPh)

Imidazole (10.0 g, 146.8 mmol) and *tert*-butyldimethylsilyl chloride (12.2 g, 80.8 mmol) was added to a solution of β Gal-SPh **41** (20.1 g, 73.6 mmol) in dry *N*,*N*-dimethylformamide (150 mL). The reaction was stirred for 3 h at room temperature. The reaction was diluted with ethyl acetate (600 mL) and washed with water (600 mL), saturated sodium bicarbonate (200 mL) and brine (200 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in pyridine and acetic anhydride (300 mL, 2:1). The reaction was stirred for 18 h and then co-evaporated with toluene *in vacuo*. The crude was purified by flash column chromatography on silica (^CHex/EtOAc 4:1).


Yield: 27.3 g (53.2 mmol, 73%), colorless, amorphous solid, $[\alpha]_D^{20}$ +5.10 (c = 1.00, CHCl₃), R_f = 0.4 (^cHex/EtOAc 4:1).

 $C_{24}H_{36}O_8SSi (M = 512.69 \text{ g/mol}) [512.19].$

¹*H-NMR* (400 MHz, CDCl₃, gCOSY, gHSQC), δ (*ppm*): 7.50-7.48 (m, 2H, H2-, H6-SPh), 7.30-7.28 (m, 3H, H3-, H4-, H5-SPh), 5.48 (d, 1H, H4, $J_{H4,H3}$ = 3.2 Hz), 5.25-5.20 (m, 1H, H2), 5.07-5.04 (m, 1H, H3), 4.74-4.71 (m, 1H, H1), 3.76-3.71 (m, 2H, H5, H6_a), 3.63-3.58 (m, 1H, H6_b), 2.10, 2.07, 1.96 (3 x s, 3 x 3H, 3 x CH₃(Ac)), 0.84 (s, 9H, *t*Bu(TBS)), 0.01, 0.00 (2 x s, 2 x 3H, Me(TBS)).

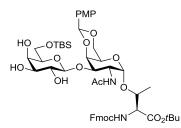
¹³C-*NMR* (100.6 MHz, CDCl₃, gHSQY), *δ* (*ppm*): 170.19, 170.14, 169.62 (C=O(Ac)), 133.28 (C1-SPh), 132.11 (C2-, C6-SPh), 129.05 (H3-, H5-SPh), 127.98 (C4-SPh), 87.04 (C1), 77.55 (C5), 72.48 (C3), 67.76 (C2), 67.39 (C4), 60.99 (C6), 21.00, 20.84, 20.77 (CH₃(Ac)), 18.11 (*t*Bu(TBS)), -5.40, -5.56 (Me(TBS)).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-[2-acetamido-2-deoxy-4,6-*O*-paramethoxybenzylidene-3-*O*-(2,3,4-*O*-acetyl-6-*tert*-butyldimethylsilyl-β-Dgalactopyranosyl)-α-D-galactopyranosyl]-L-threonine-*tert*-butylester (43) (Fmoc-Thr(β Ac₃TBS-Gal-(1→3)-αPMP-GalNAc)-O*t*Bu)

Fmoc-Thr(PMP-GalNAc)-O*t*Bu **12** (13.93 g, 19.4 mmol) and β Ac₃TBS-Gal-SPh **42** (13.91 g, 27.2 mmol) were dissolved in dry dichloromethane (200 mL) under argon atmosphere. Activated molecular sieves (15 g, 4Å) were added and the suspension was stirred for 1 h at room temperature before the mixture was cooled in an ice bath. *N*-iodosuccinimide (6.07 g, 27.1 mmol) was added, followed by (336 µL, 570 mg, 3.8 mmol) trifluoromethanesulfonic acid in dichloromethane (4 mL). The reaction was stirred for 3 h in the ice bath and then 0.5 h without cooling. The reaction was filtered over *Celite*® and washed with dichloromethane (200 mL). The dichloromethane phase was washed with 0.5 M sodium thiosulfate solution, sodium bicarbonate, water and brine (150 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The crude was purified by flash column chromatography on silica (^CHex/EtOAc 1:1).

Yield: 16.08 g (14.3 mmol, 74%), colorless, amorphous solid, $[\alpha]_D^{20}$ +57.90 (c = 1.00, CHCl₃), R_f = 0.31 (^CHex/EtOAc 2:3).

 $C_{57}H_{76}N_2O_{19}Si (M = 1121.3 \text{ g/mol}) [120.48].$


ESI-MS (pos), m/z: 1003.13 ([M-PMP+H]⁺, calc. 1003.44), 1121.20 ([M+H]⁺, calc. 1121.49). *HR-ESI-MS (pos), m/z:* 1121.4875 ([M+H]⁺, calc. 1121.4890).

¹*H NMR* (400 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ = 7.90 (d, ³*J*(H-3,H-4) = ³*J*(H-5,H-6) = 7.4 Hz, 2H, H-4-, H-5-Fmoc), 7.73 (d, ³*J*(H-1,H-2) = ³*J*(H-8,H-7) = 7.6 Hz, 2H, H-1-, H-8-Fmoc), 7.48-7.29 (m, 7H, H-2-, H-7-, H-3-, H-6-Fmoc, NH-Ac, NH-Fmoc, H-3-, H-5-PMP), 6.94 (d, ³*J*(H-2,H-3) = ³*J*(H-6,H-5) = 9.0 Hz, 2H, H-2-, H-6-PMP), 5.53 (s, 1H, CH-(PMP)), 5.32 (d, ³*J*(H-4',H-3') = 3.6Hz, 1H, H-4'), 5.00 (dd, ³*J*(H-3',H-4') = 3.5 Hz, ³*J*(H-3',H-2') = 10.4 Hz, 1H, H-3'), 4.91 (m, 1H, H-2'), 4.76 (d, ³*J*(H-1',H-2') = 8.0 Hz, 1H, H-1'), 4.72 (d, ³*J*(H-1,H-2) = 3.8 Hz, 1H, H-1), 4.51-4.49 (m, 2H, CH₂-(Fmoc)), 4.31-4.22 (m, 4H, H-2, H-5, H-9-Fmoc, T^β), 4.11-4.00 (m, 3H, H-6_{ab}', T^α), 3.93 (t, ³*J*(H-5',H-6a') = ³*J*(H-5',H-6b') = 6.8Hz, 1H, H-5'), 3.80 (dd, ³*J*(H-3,H-4) = 3.3 Hz, ³*J*(H-3,H-2) = 11.4 Hz, 1H, H-3), 3.76 (s, 3H, CH₃-(PMP)), 3.66-3.64 (m, 2H, H-4, H-6_a), 3.56-3.54 (m, 1H, H-6_b), 2.09, 1.98, 1.89, 1.85 (each s, 3H, CH₃-(Ac)), 1.37 (s, 9H, *t*Bu-(Thr)), 1.13 (d, ³*J*(T^γ,T^β) = 6.3 Hz, 3H, T^γ), 0.83 (s, 9H, *t*Bu-(TBS)).

¹³C *NMR* (100.6 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 169.82, 169.55, 168.13, 168.93, 168.86 (C=O-(Ac), C=O-(*t*Bu)), 159.53 (C-1-PMP), 156.75 (C=O-(Fmoc)), 143.74, 143.60 (C-1_a-,C-8_b-Fmoc), 140.82, 140.79 (C-4_a-, C-5_b-Fmoc), 130.74 (C-4-PMP), 127.72, 127.69, 127.63, 126.98 (C-2-, C-6-PMP, C-2-,C-7-, C-3-, C-6-Fmoc), 125.17, 125.11 (C-1-, C-8-Fmoc), 120.22, 120.16 (C-4-, C-5-Fmoc), 113.38 (C-3-, C-5-PMP), 101.49 (C-1'), 99.73 (CH-(PMP)), 99.21 (C-1), 81.45 (C_{quart}-(*t*Bu)), 75.19 (T^β), 74.55 (C-3), 73.73 (C-5), 72.42, 72.35 (C-5')*, 70.74 (C-3'), 68.32 (C-2', C-6_{ab}), 66.89 (C-4'), 65.51 (CH₂-(Fmoc)), 62.89 (C-4), 60.43 (C-6_{ab}'), 59.30 (T^α), 55.13 (CH₃-(PMP)), 47.04 (C-2), 46.79 (C-9-(Fmoc)), 27.59 (*t*Bu-(Thr)), 25.64 (*t*Bu-(TBS)), 22.97, 20.49, 20.41, 20.34 (CH₃(Ac)), 19.89 (T^γ), 18.84 (C_{quart}(TBS)), -6.09, -6.12 (Me(TBS)).

*signal doubling due to conformers

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-[2-acetamido-2-deoxy-4,6-*O-para*methoxybenzylidene-3-*O*-(6-*tert*-butyldimethylsilyl-β-D-galactopyranosyl)-α-Dgalactopyranosyl]-L-threonine-*tert*-butylester (44) (Fmoc-Thr(β TBS-Gal-(1→3)- α PMP-GalNAc)-O*t*Bu)

To a solution of Fmoc-Thr(β Ac₃TBS-Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu **43** (14.74 g, 13.1 mmol) in methanol (150 mL) was added small portions of a solution of sodium methoxide (1 wt%) in methanol, to keep the pH at 9.5. After 36 h the solution was neutralized with acidic

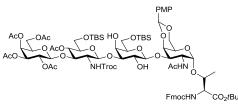
cation exchange resin (*Dowex 50 WX8*). The resin was filtered off and washed with methanol. The filtrate was concentrated *in vacuo*. The residue was dissolved in 1,4-dioxane (150 mL) and a solution of sodium bicarbonate (1.50 g, 17.8 mmol) in water (150 mL) was added. *N*-9-Fluorenylmethyloxycarbonyl-succinimidylcarbonate (3.69 g, 10.9 mmol) was added and stirred for 3 h. The 1,4-dioxane was removed *in vacuo*, the aqueous phase diluted with water (150 mL) and extracted with ethyl acetate (500 mL and 200 mL). The combined organic phases were washed with water and brine, dried over sodium sulfate, filtered and concentrated *in vacuo*. The crude was purified by flash column chromatography on silica (^cHex/EtOAc 1:2→ EtOAc).

Yield: 9.42 g (9.47 mmol, 72%), colorless, amorphous solid, $[\alpha]_D^{20}$ +80.20 (c = 1.00, CHCl₃), R_f = 0.19 (EtOAc).

 $C_{51}H_{70}N_2O_{16}Si (M = 995.19 g/mol) [994.45].$

ESI-MS (*pos*), *m/z*: 995.20 ([M+H]⁺, calc. 995.46), 1017.40 ([M+Na]⁺, calc. 1017.44).

HR-ESI-MS (pos), m/z: 995.4569 ([M+H]⁺, calc. 995.4573), 881.3706 ([M-TBS+H]⁺, calc. 881.3708).


¹*H NMR* (400 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ = 7.90 (d, ³*J*(H-3,H-4) = ³*J*(H-5,H-6) = 6.7 Hz, 2H, H-4-, H-5-Fmoc), 7.72 (d, ³*J*(H-1,H-2) = ³*J*(H-8,H-7) = 7.5 Hz, 2H, H-1-, H-8-Fmoc), 7.59 (d, ³*J*(NH,T^α) = 9.8 Hz, 1H, NH-Fmoc), 7.50 (d, ³*J*(NH,H-2) = 9.8 Hz, 1H, NH-Ac), 7.43 (t, ³*J*(H-2,H-1) = ³*J*(H-2,H-3) = ³*J*(H-7,H-6) = ³*J*(H-7,H-8) = 7.1 Hz, 2H, H2-, H-7-Fmoc), 7.37 (d, ³*J*(H-2,H-3) = ³*J*(H-6,H-5) = 8.7 Hz, 2H, H-2-, H-6-PMP), 7.31 (t, ³*J*(H-3,H-2) = ³*J*(H-3,H-4) = ³*J*(H-6,H-5) = ³*J*(H-6,H-7) = 7.1 Hz, 2H, H-3-, H-6-Fmoc), 6.94 (d, ³*J*(H-3,H-4) = ³*J*(H-6,H-5) = ³*J*(H-6,H-7) = 8.7 Hz, 2H, H-3-, H-6-FMP), 5.51 (s, 1H, CH-(PMP)), 4.78-4.76 (m, 2H, H-1, OH-2'), 4.48-4.46 (m, 3H, CH_{2ab}-(Fmoc), OH-4'), 4.33-4.26 (m, 5H, H-1', H-2, H-5, H-9-Fmoc, T^β), 4.13-4.10 (m, 1H, T^α), 4.07-3.96 (m, 2H, H-6_{ab}), 3.81 (dd, ³*J*(H-3,H-4) = 2.4 Hz, ³*J*(H-3,H-2) = 11.3 Hz, 1H, H-3), 3.76 (s, 3H, CH₃-(PMP)), 3.73-3.67 (m, 2H, H-6_{ab}'), 3.63-3.59 (m, 2H, H-4, H-4'), 3.40 (t, ³*J*(H-5',H-6a'), ³*J*(H-5',H-6a'), ³*J*(H-5',H-6b') = 5.7 Hz, 1H, H-5'), 3.31-3.24 (m, 3H, H-2', H-3', OH-3'), 1.82 (s, 3H, CH₃-(Ac)), 1.37 (s, 9H, *t*Bu-(Thr)), 1.12 (d, ³*J*(T^γ,T^β) = 6.2 Hz, 3H, T^γ), 0.87 (s, 9H, *t*Bu-(TBS)).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 169.44, 169.02 (C=O-(Ac), C=O-(*t*Bu)), 159.55 (C-1-PMP), 156.81 (C=O-(Fmoc)), 143.76, 143.58 (C-1_a-,C-8_b-Fmoc), 140.80, 140.78 (C-4_a-, C-5_b-Fmoc), 130.84 (C-4-PMP), 127.73, 126.67 (C-2-, C-6-PMP, C-2-, C-7-, C-3-, C-6-Fmoc), 125.18, 125.15 (C-1-,C-8-Fmoc), 120.22, 120.16 (C-4-, C-5-Fmoc), 113.31 (C-3-, C-5-PMP), 105.78 (C-1'), 99.85 (CH-(PMP)), 99.62 (C-1), 81.36 (C_{quart}-(*t*Bu)), 75.87 (T^β), 75.44 (C-5'), 74.62 (C-3), 73.86 (C-5), 72.28 (C-3'), 70.13 (C-2'), 68.43 (C-6_{ab}), 68.24 (C-4'), 65.53 (CH_{2ab}-(Fmoc)), 63.07 (C-4), 62.77 (C-6_{ab}'), 59.77 (T^α),

55.14 (CH₃-(PMP)), 47.36 (C-2), 46.80 (C-9-Fmoc), 27.61 (*t*Bu-(Thr)), 25.80 (*t*Bu-(TBS)), 23.01 (CH₃-(N-H-Ac)), 19.29 (T^γ), 17.95 (C_{quart}-(TBS)), -5.29 (2 x Me-(TBS)).

7.1.9 Synthesis of the extended type-1 core 1 amino acid

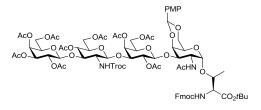
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-2-deoxy-4,6-*O*-paramethoxybenzylideneacetal-3-*O*-{6-*O*-tert-butyldimethylsilyl-3-*O*-[4-*O*-acetyl-6-*O*-tertbutyldimethysilyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl}-α-Dgalactopyranosyl)-L-threonine-*tert*-butylester (45) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac-TBS-GlcNAc-(1→3)- β TBS-Gal-(1→3)- α PMP-GalNAc)-OtBu)

Fmoc-Thr(βTBS-Gal-(1→3)-βPMP-GalNAc)-OtBu **44** (4.96 g, 4.99 mmol) and βAc₄Gal-(1→3)-βAc-TBS-GlcNHTroc-SPh **27** (5.91 g, 6.33 mmol) were dissolved in dry dichloromethane (100 mL) under argon atmosphere. Activated molecular sieves 4Å (6.31 g) were added and the suspension was stirred for 1 h before it was cooled in an ice bath. *N*-iodosuccinimide (1.46 g, 6.33 mmol) was added followed by the dropwise addition of a suspension of trifluoromethanesulfonic acid (88 µL, 150 mg, 1.0 mmol) in dry dichloromethane (1 mL) *via* a syringe. After 2 h the reaction was treated with another addition of **27** (1.07 g, 1.0 mmol) and *N*-iodosuccinimide (225 mg, 1.0 mmol). The reaction was stirred for 1.5 h under and then diluted with dichloromethane (100 mL). The molecular sieves were filtered off and washed with 0.5 M sodium thiosulfate solution, saturated sodium bicarbonate, water and brine (100 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^CHex/EtOAc 2:1→1:1).

Yield: 5.81 g (3.2 mmol, 64%), colorless, amorphous solid, $[\alpha]_D^{20}$ +49.04 (c = 1.01, CHCl₃), R_f = 0.30 (^cHex/EtOAc).

 $C_{82}H_{116}CI_3N_3O_{32}Si_2$ (M = 1818.33 g/mol) [1815.61].

ESI-MS (pos), m/z: 1816.87 ([M+H]⁺, calc. 1816.62). 1834.00 ([M+NH₄]⁺, calc. 1833.65), 1838.00 ([M+Na]⁺, calc. 1838.60).


HR-ESI-MS (pos), m/z: 1816.6234 ([M+H]⁺, calc. 1816.6224).

¹H NMR (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.90-7.88 (m, 2H, H-4-, H-5-Fmoc), 7.75-7.72 (m, 2H, H-1-, H-8-Fmoc), 7.62 (d, ³J(NH,H-2") = 9.0 Hz, 1H, NH-Troc), 7.52 (d, ${}^{3}J(NH,T^{\gamma}) = 9.8$ Hz, 1H, NH-Fmoc), 7.48 (d, ${}^{3}J(NH,H-2) = 9.6$ Hz, 1H, NH-Ac), 7.42 (t, ${}^{3}J(H-2,H-7) = {}^{3}J(H-2,H-1) = {}^{3}J(H-7,H-6) = {}^{3}J(H-7,H-8) = 7.5$ Hz, 2H, H-2-, H-7-Fmoc), 7.36 (d, ${}^{3}J(H-3,H-2) = {}^{3}J(H-5,H-6) = 8.7$ Hz, 2H, H-3-, H-5-PMP), 7.31 (t, ${}^{3}J(H-3,H-2) = {}^{3}J(H-3,H-2) = {$ $3,H-4) = {}^{3}J(H-6,H-7) = {}^{3}J(H-6,H-5) = 7.6$ Hz, 2H, H-3-, H-6-Fmoc), 6.94 (d, ${}^{3}J(H-2,H-3) = {}^{3}J(H-6,H-7) =$ 6,H-5) = 8.8 Hz, 2H, H-2-, H-6-PMP), 5.53 (s, 1H, CH-PMP), 5.21 (d, ³J(H-4",H-3") = 3.6 Hz, 1H, H-4"), 4.97 (dd, ${}^{3}J$ (H-3",H-4") = 3.6 Hz, J(H-3",H-2") = 10.3 Hz, 1H, H-3"), 4.83-4.81 (d, ³J(CH_{2a},CH_{2b}) = 12.2 Hz, 1H, (CH_{2a}-Troc), 4.75 (m, 3H, H-1, H-1", H-2"), 4.70 (d, ${}^{3}J(CH_{2b}, CH_{2a}) = 12.2$ Hz, CH_{2b} -(Troc)), 4.67 (d, ${}^{3}J(H-1", H-2") = 8.0$ Hz, 1H, H-1"), 4.56 (t, ${}^{3}J(H4",H3") = {}^{3}J(H-4",H-5") = 9.4 Hz, 1H, H-4"), 4.47-4.44 (m, 3H, OH-2', CH₂-(Fmoc)), 4.38$ (d, ³*J*(OH-4',H-4') = 4.9 Hz, 1H, OH-4'), 4.34-4.27 (m, 5H, H-1', H-2, H-5, T^v, H-9-Fmoc), 4.13 $(d, {}^{3}J(T^{\alpha}, T^{\beta}) = 11.1 \text{ Hz}, 1\text{H}, T^{\alpha}), 4.09-4.02 \text{ (m, 3H, H-5''', H-6_a, H-6'''_a)}, 4.00-3.94 \text{ (m, 3H, H-3'', H-6''_a)}, 4.00-3.94 \text{ (m, 3H, H-3'', H-3'', H-6''_a)}, 4.00-3.94 \text{ (m, 3H, H-3'', H-3'',$ $H-6_{h}$, $H-6''_{h}$), 3.83 (dd, ${}^{3}J(H-3,H-4) = 2.0$ Hz, ${}^{3}J(H-3,H-2) = 11.2$ Hz, 1H, H-3), 3.78-3.75 (m, 4H, CH₃-(PMP), H-4'), 3.72-3.65 (m, 2H, H-6"_{ab}), 3.64 (s, 1H, H-4), 3.61-3.51 (m, 2H, H-6'_{ab}), 3.45-3.42 (m, 1H, H-2'), 3.39-3.33 (m, 5H, H-2', H-3', H-5', H-2", H-5"), 2.09, 2.00, 1.99, 1.98, 1.87, 1.84 (m, 18H, CH₃-(Ac)), 1.38 (*t*Bu-(Thr)), 1.12 (d, ${}^{3}J(T^{\gamma},T^{\beta}) = 7.2$ Hz, 3H, T^{γ}), 0.86, 0.78 (s, 2 x 9H, *t*Bu-TBS), 0.05, -0.02, -0.03 (s, 4 x 3H, CH₃-TBS).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 169.84, 169.48, 169.37, 169.27, 169.07, 169.04 (C=O-(Ac), C=O-(*t*Bu)), 159.49 (C-1-PMP), 156.66 (C=O-(Fmoc)), 154.34 (C=O-(Troc)), 143.80, 143.51 (C-1_a-, C-8_b-Fmoc), 140.79 (C-4_a-, C-5_b-Fmoc), 130.81 (C-4-PMP), 127.68, 127.64, 127.60 (C-2-, C-7-Fmoc, C-2-, C-6-PMP), 126.99 (C-3-, C-6-Fmoc), 125.19 (C-1-, C-8-Fmoc), 120.16, 120.10 (C-4-, C-5-Fmoc), 113.26 (C-3-, C-5-PMP), 105.56 (C-1'), 101.39 (C-1"), 100.05 (C-1"), 99.65 (CH-(PMP)), 99.60 (C-1"), 95.93 (CCl₃-(Troc)), 81.40 (C_q-*t*Bu(Thr)), 80.59 (C-3'), 77.55 (C-3"), 75.77 (C-5), 75.14 (C-5'), 74.88 (C-3), 74.09 (T^β), 73.80 (C-5"), 73.66 (CH₂-(Troc)), 70.36 (C-3"), 69.78 (C-2'), 69.61 (C-5"), 69.15 (C-4"), 68.64 (C-2"), 68.40 (C-6), 67.28 (C-4'), 67.15 (C-4"), 65.59 (CH₂-(Fmoc)), 63.10 (C-4), 62.35 (C-6'), 62.21 (C-6"), 60.87 (C-6"), 59.23 (T^α), 57.13 (C-2"), 55.12 (CH₃-(PMP)), 47.41 (C-2), 46.78 (C-9-Fmoc), 27.61 (*t*Bu-Thr), 25.78, 25.62 (*t*Bu-TBS), 23.14, 20.60, 20.48, 20.41, 20.35, 20.27 (CH₃-(Ac)), 19.27 (T^γ), 17.95, 17.91 (C_q-TBS), -5.33, -5.37, -5.40, -5.44 (CH₃-(TBS)).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-2-deoxy-4,6-*para*-methoxybenzylideneacetal-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[4,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl]- β -D-galactopyranosyl]- β -D-galactopyranosyl]- β -D-galactopyranosyl]- α -D-galactopyranosyl]-L-threonine-*tert*-butylester (46)

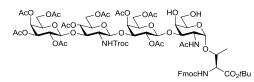
(Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNHTroc-(1→3)- β Ac₃Gal-(1→3)- α PMP-GalNAc)-OtBu)

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac-TBS-GlcNHTroc-(1 \rightarrow 3)- β TBS-Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu **45** (6.98 g, 3.84 mmol) in tetrahydrofuran (100 mL) was cooled in ice bath. A solution of tetra-n-butylammoniumfluoride trihydrate (14.54 g, 46.1 mmol) and acetic acid (7.69 mL, 8.07 g, 134.4 mmol) in tetrahydrofuran (40 mL) was added. After 1 h the ice bath was removed and the reaction stirred for 8 h until TLC (EtOAc/MeOH 25:1) indicated complete consumption. The reaction was diluted with ethyl acetate (600 mL) and the organic phase was washed with saturated bicarbonate solution and brine (two times, 600 mL, 1:1,) and with brine (once, 400 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in pyridine (120 mL). Then *N*,*N*-(dimethylamino)pyridine (45 mg, 0.37 mmol) was added, followed by addition of acetic anhydride (60 mL) and the reaction was stirred for 18 h. The solvent was removed by co-evaporation with toluene *in vacuo*. The crude product was purified by flash column chromatography on silica (°Hex/EtOAc 1:2).

Yield: 4.96 g (2.82 mmol, 73%), colorless, amorphous solid, $[\alpha]_D^{20}$ +45.66 (c = 1.00, CHCl₃), R_f = 0.34 (Tol/EtOAc 1:3).

 $C_{78}H_{96}CI_3N_3O_{36}$ (M = 1757.95 g/mol) [1755.48].

ESI-MS (*pos*), *m/z*: 1756.80 ([M+H]⁺, calc. 1756.49), 1773.87 ([M+NH₄]⁺, calc. 1773.52).


HR-ESI-MS (pos), m/z: 1756.4936 ([M+H]⁺, calc. 1756.4917), 897.7234 ([M+K+H]²⁺, calc. 897.7277).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.92-7-90 (m, 2H, H-4-,H-5-Fmoc), 7.75 (m, 2H, H-1-, H-8-Fmoc), 7.70 (d, ³*J*(NH,H-2") = 9.3 Hz, 1H, NH-Troc), 7.44-7.41 (m, 4H, H-2-, H-7-Fmoc, NH-Fmoc, NH-Ac), 7.34-7.30 (m, 4H, H-3-, H-6-Fmoc, H-2-, H-6-PMP), 6.93 (d, ³*J*(H-3,H-2) = ³*J*(H-5,H-4) = 8.8 Hz, 2H, H-3-, H-5-PMP), 5.46 (s, 1H, CH-(PMP)), 5.30 (d, ³*J*(H-4",H-3") = 3.9 Hz, 1H, H-4"), 5.23 (d, ³*J*(H-4",H-3") = 3.7 Hz, 1H, H-4"), 4.92 (dd, ³*J*(H-3",H-4") = 3.6 Hz, ³*J*(H-3",H-2") = 10.3 Hz, 1H, H-3"), 4.86-4.80 (m, 2H, H-2', CH_{2a}-(Troc)), 4.76 (dd, ³*J*(H-2",H-1") = 7.9 Hz, ³*J*(H-2",H-3") = 10.3 Hz, H-2"),

4.71 (d, ${}^{3}J(H-1,H-2) = 3.7$ Hz, 1H, H-1), 4.65-4.60 (m, 3H, H-1', H-1''', H-4''), 4.55-4.44 (m, 4H, H-1'', CH_{2b}-(Troc), CH₂-(Fmoc)), 4.31 (t, ${}^{3}J(H-9,CH_{2}-(Fmoc)) = 6.6$ Hz, 1H, H-9-Fmoc), 4.27-4.24 (m, 2H, H-5, T^β), 4.19 (dt, ${}^{3}J(H-2,H-1) = 3.5$ Hz, ${}^{3}J(H-2,NH) = {}^{3}J(H-2,H-3) = 10.4$ Hz, 1H, H-2), 4.13-3.90 (m, 12H, H-5', H-3'', H-5''', H-6_{ab}, H-6'_{ab}, H-6''_{ab}, H-6'''_{ab}, T^α), 3.83 (dd, {}^{3}J(H-3',H-2') = 10.3 Hz, ${}^{3}J(H-3',H-4') = 3.7$ Hz, 1H, H-3'), 3.77-3.75 (m, 4H, H-3, CH₃-(PMP)), 3.68-3.63 (m, 2H, H-4, H-5''), 3.29-3.23 (q, {}^{3}J(H-2'',H1'') = {}^{3}J(H-2'',H-3'') = {}^{3}J(H-2'',NH) = 9.2 Hz, 1H, H-2''), 2.09, 2.05, 2.04, 2.02, 2.01, 1.99, 1.97, 1.90, 1.88, 1.83 (m, 30H, CH₃-(Ac)), 1.36 (s, 9H, *t*Bu), 1.14 (d, {}^{3}J(T',T^β) = 6.4 Hz, 3H, T^V).

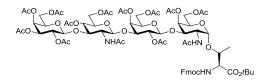
¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 170.08, 169.98, 169.88, 169.82, 169.31, 169.24, 169.18, 169.13, 168.73, 168.58 (C=O-(Ac), C=O-(*t*Bu)), 159.48 (CH-PMP), 156.73 (C=O-(Fmoc)), 153.80 (C=O-(Troc)), 143.70, 143.67 (C-1_a-, C-8_a-Fmoc), 140.81, 140.77 (C-4_a-, C-5_a-Fmoc), 130.74 (C-4-PMP), 127.71, 127.66 (C-2-, C-7-Fmoc), 127.42 (C-3-, C-6-Fmoc), 127.03, 127.02 (C-3-, C-5-PMP), 125.24, 125.12 (C-1-, C-8-Fmoc), 120.20, 120.15 (C-4-, C-5-Fmoc), 113.37 (C-2-, C-6-PMP), 101.38 (C-1"), 101.14 (C-1"), 99.79 (C1'), 99.72 (CH-(PMP)), 99.01 (C-1), 95.54 (CCl₃-(Troc)), 81.44 (C_q-(*t*Bu)), 77.10 (C-3'), 76.54 (C-3"), 74.98 (T^β), 74.75 (C-3), 73.96 (CH₂-(Troc)), 73.41 (C-5), 70.55 (C-5'), 70.19 (C-5"), 70.14 (C-3"), 69.74 (C-5"), 69.48, 69.44 (C-2', C-4'), 68.50 (C-6, C-2"), 68.29 (C-4"), 67.22 (C-4"'), 65.60 (CH₂-Fmoc), 62.88 (C-4), 62.25 (C-6'), 61.52 (C-6"), 60.93 (C-6"'), 59.28 (T^α), 56.95 (C-2"), 55.10 (CH₃-(PMP)), 46.91 (C-2), 46.77 (C-9-Fmoc), 27.58 (*t*Bu), 22.91, 20.76, 20.64, 20.60, 20.51, 20.47, 20.42, 20.34, 20.22 (CH₃-(Ac)), 19.28 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[4,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetylβ-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-α-Dgalactopyranosyl)-L-threonine-*tert*-butylester (47) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNHTroc-(1→3)-Ac₃Gal-(1→3)- α -GalNAc)-OtBu)

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu **46** (4.84 g, 2.75 mmol) in 80% acetic acid (60 mL) was stirred for 2 h at 40°C. The solvent was removed by co-evaporation with toluene *in vacuo*. The crude product was purified by flash column chromatography on silica (^CHex/EtOAc 1:3 \rightarrow EtOAc).

Yield: 4.05 g (2.47 mmol, 90%), colorless, amorphous solid, $[\alpha]_D^{20}$ +31.22 (c = 0.49, CHCl₃), R_f = 0.19 (EtOAc).

 $C_{70}H_{90}CI_3N_3O_{35}$ (M = 1639.82 g/mol) [1637.44].


ESI-MS (pos), m/z: 1638.00 ([M+H]⁺, calc. 1638.45).

HR-ESI-MS (pos), m/z: 1638.4506 ([M+H]⁺, calc. 1638.4499), 838.7021 ([M+K+H]²⁺, calc. 838.7068).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.92-7.90 (m, 2H, C-4-, C-5-Fmoc), 7.76-7.71 (m, 3H, C-1-, C-8-Fmoc, NH-Troc), 7.44-7.41 (m, 4H, C-2-, C-7-Fmoc, NH-Ac, NH-Fmoc), 7.33-7.31 (m, 2H, C-3-, C-6-Fmoc), 5.29 (d, ³*J*(H-4',H-3') = 3.8 Hz, 1H, H-4'), 5.24 (d, ³*J*(H-4'',H-3'') = 3.7 Hz, 1H, H-4'''), 4.93 (dd, ³*J*(H-3''',H-2''') = 10.5 Hz, *J*(H-3''',H-4''') = 3.6 Hz, 1H, H-3'''), 4.90-4.85 (m, 2H, H-2',CH_{2a}-(Troc)), 4.77 (dd, ³*J*(H-2''',H-1''') = 7.9 Hz, ³*J*(H-2''',H-3''') = 10.4 Hz, 1H, H-2'''), 4.66-4.55 (m, 5H, H-1, H-1', H-1''', H-4''', CH_{2b}-(Troc)), 4.51-4.42 (m, 3H, H-1'', CH₂-(Fmoc)), 4.36 (d, ³*J*(OH-4,H-4) = 5.4 Hz, 1H, OH-4), 4.32 (t, ³*J*(H-9,CH_{2ab}) = 6.8 Hz, 1H, H-9-Fmoc), 4.24-4.20 (m, 2H, H-2, T^β), 4.14-3.87 (m, 11H, H-3'', H-4, H-5', H-5''', H-6'ab, H-6'''ab, T^o), 3.83 (dd, ³*J*(H-3',H-4') = 3.3 Hz, ³*J*(H-3',H-2') = 9.9 Hz, 1H, H-3''), 3.67-3.61 (m, 2H, H5, H5''), 3.54 (dd, 1H, H3, *J*_{H3,H4} = 2.2 Hz, *J*_{H3,H2} = 11.0 Hz), 3.48-3.46 (m, 2H, H-6), 3.28-3.26 (m, 1H, H-2''), 2.09, 2.06, 2.04, 2.01, 1.99, 1.98, 1.88, 1.85 (m, 30H, CH₃-(Ac)), 1.35 (s, 9H, *t*Bu), 1.16-1.15 (m, 3H, T^γ).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 170.08, 169.97, 169.88, 169.82, 169.65, 169.32, 169.23, 169.13, 168.11, 168.64 (C=O-(Ac), (C=O)-*t*Bu), 156.77 (C=O-(Fmoc)), 153.81 (C=O-(Troc)), 143.71, 143.65 (C-1_a-, C-8_a-Fmoc), 140.81, 140.76 (C4_a-, C5_a-Fmoc), 127.71, 126.66 (C-2-, C-7-Fmoc), 127.04, 127.01 (C-3-, C-6-Fmoc), 125.29, 125.15 (C-1-, C-8-Fmoc), 120.21, 120.15 (C-4-, C-5-Fmoc), 101.39 (C-1'), 101.14 (C-1''), 99.77 (C-1'''), 98.91 (C-1), 95.54 (CCl₃-Troc), 81.33 (C_q-*t*Bu), 77.44 (C-3'), 77.23 (C-3), 76.59 (C-3''), 73.99 (CH₂-(Troc)), 73.48 (T^β), 71.67 (C-5), 70.58 (C-5'), 70.21 (C-5''), 70.15 (C-3'''), 69.75 (C-5'''), 69.40 (C-2', C-4'), 68.52 (C-2'''), 68.25 (C-4''), 67.43 (C-4), 67.22 (C-4'''), 65.58 (CH_{2a}-(Fmoc)), 62.05 (C-6'''), 61.54 (C-6''), 60.92 (C-6'), 60.53 (C-6), 59.35 (T^α), 56.93 (C-2''), 47.04 (C-2), 46.77 (C-9-Fmoc), 27.59 (*t*Bu), 22.94, 20.76, 20.62, 20.53, 20.46, 20.43, 20.34, 20.24 (m, 30H, CH₃-(Ac)), 19.05 (T^γ).

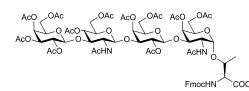
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-α-Dgalactopyranosyl)-L-threonine-*tert*-butylester (48) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→3)-Ac₃Gal-(1→3)- α Ac₂GalNAc)-O*t*Bu)

Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and diethyl ether. Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- β GalNAc)-O*t*Bu **47** (1.36 g, 0.83 mmol) was dissolved in acetic acid (20 mL) and pre-activated zinc (1.09 g, 16.6 mmol) was added. The reaction was stirred at 40°C for 18 h. The zinc dust was filtered off and washed with acetic acid. The filtrate was co-evaporated with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (30 mL, 2:1). Then 4-(dimethylamino)pyridine (10.1 mg, 0.08 mmol) was added and the solution stirred for 20 h. The solvent was removed by co-evaporation with toluene *in vacuo* and the crude product purified by flash column chromatography on silica (100% EtOAc).

Yield: 1.23 g (0.77 mmol, 93%), colorless, amorphous solid, $[\alpha]_D^{20}$ +49.60 (c = 0.50, CHCl₃), R_f = 0.26 (EtOAc).

 $C_{73}H_{95}N_3O_{36}$ (M = 1590.53 g/mol) [1589.57].

ESI-MS (*pos*), *m/z*: 1590.13 ([M+H]⁺, calc. 1590.58).


HR-ESI-MS (pos), m/z: 1590.5772 ([M+H]⁺, calc. 1590.5774).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.92-7.90 (m, 2H, C-4-, C-5-Fmoc), 7.76-7.73 (m, 3H, C-1-, C-8-Fmoc), 7.69 (d, ³*J*(NH",H2") = 9.2 Hz, 1H, NH"-Ac), 7.50 (d, ³*J*(NH,H2) = 9.8 Hz, 1H, NH-Ac), 7.44-7.40 (m, 3H, C-2-, C-7-Fmoc, NH-Fmoc), 7.34-7.30 (m, 2H, C-3-, C-6-Fmoc), 5.26 (m, 2H, H-4, H-4'), 5.23 (d, ³*J*(H-4''',H-3''') = 3.7 Hz, 1H, H-4'''), 5.08 (dd, ³*J*(H-3''', H-2''') = 10.3 Hz, ³*J*(H-3''',H-4''') = 3.5 Hz, 1H, H-3'''), 4.77-4.71 (m, 2H, H-2', H-2'''), 4.68 (d, ³*J*(H-1,H-2) = 4.0 Hz, 1H, H-1), 4.66 (d, ³*J*(H-1''',H-2''') = 8.0 Hz, 1H, H-1'''), 4.62 (t, ³*J*(H-4'',H-3'') = ³*J*(H-4'',H-2'') = 9.7 Hz, 1H, H-4'''), 4.58 (d, ³*J*(H-1',H-2') = 7.9 Hz, 1H, H-1'), 4.52-4.43 (m, 3H, CH₂-(Fmoc), H-1''), 4.31 (t, ³*J*(H-9,CH_{2ab}) = 6.7 Hz, 1H, H-9-Fmoc), 4.22-4.15 (m, 2H, H-2, T^β), 4.11-3.84 (m, 11H, H-5', H-5'', H-5''', H-6, H-6', H-6'', H-6''', T^α), 3.82-3.79 (m, 3H, H-3, H-3'', H-3''), 3.70-3.68 (m, 1H, H-5''), 3.56-3.47 (m, 1H, H-2''), 2.09, 2.05, 2.02, 2.01, 2.00, 1.99, 1.98, 1.98, 1.89, 1.84, 1.82 (m, 39H, CH₃-(Ac)), 1.35 (s, 9H, *t*Bu), 1.16 (d, ³*J*(T^v,T^β) = 6.7 Hz, 3H, T^v).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 170.08, 170.07, 169.95, 169.90, 169.88, 169.70, 169.52, 169.48, 169.37, 169.14, 169.08, 168.93,

168.79, 168.72 (C=O-(Ac), C=O-(*t*Bu)), 156.74 (C=O-(Fmoc)), 143.71, 143.64 (C-1_a-, C-8_a-Fmoc), 140.80, 140.77 (C-4_a-, C-5_a-Fmoc), 127.72, 127.67 (C-2-, C-7-Fmoc), 127.04, 127.01 (C-3, C-6-Fmoc), 125.22, 125.10 (C-1-, C-8-Fmoc), 120.21, 120.16 (C-4-, C-5-Fmoc), 100.67 (C-1"), 100.45 (C-1'), 99.90 (C-1"'), 98.69 (C-1), 81.48 (C_q-*t*Bu), 77.15 (C-3"), 76.40 (C-3'), 74.02 (T^β), 73.01 (C-3), 70.46 (C-3"'), 70.28 (C-5), 70.24 (C-5"), 69.72 (C-4', C-2'), 69.47 (C-5"'), 68.99 (C-4), 68.55 (C-2"'), 68.46 (C-4"), 67.27 (C-5'), 67.15 (C-4"'), 65.61 (CH₂-(Fmoc)), 63.03, 61.67, 61.46, 61.10 (C-6, C-6', C-6", C-6"'), 59.30 (T^α), 54.20 (C-2"), 47.62 (C-2), 46.75 (C-9-Fmoc), 27.58 (CH₃-(*t*Bu)), 22.82, 20.66, 20.58, 20.50, 20.47, 20.37, 20.33, 20.29 (CH₃-(Ac)), 18.74 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-α-Dgalactopyranosyl)-L-threonine (49) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→3)-Ac₃Gal-(1→3)- α Ac₂GalNAc)-OH)

Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNAc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- β Ac₂GalNAc)-O*t*Bu **48** (1.20 g, 0.75 mmol) was dissolved in dichloromethane (5 mL) and anisole (0.5 mL). Trifluoroacetic acid (15 mL) was added and the reaction was stirred for 90 min. The solvent was removed by co-evaporation with toluene. The crude product was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 25:1).

Yield: 933 mg (0.61 mmol, 81%), colorless, amorphous solid, $[\alpha]_D^{20}$ +57.92 (c = 1.01, CHCl₃), R_f = 0.24 (EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

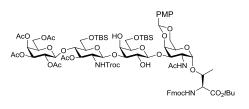
 $C_{69}H_{87}N_3O_{36}$ (M = 1534.43 g/mol) [1533.51].

MALDI-TOF-MS (dhb, pos), m/z: 1556.5294 ([M+Na]⁺, calc. 1556.4967), 1572.4962 ([M+K]⁺, calc. 1572.4706).

HR-ESI-MS (pos), m/z: 1534.5143 ([M+H]⁺, calc. 1534.5148).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 12.96 (CO₂H), 7.92-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.76-7.71 (m, 3H, H-1-, H-8-Fmoc, NH"-Ac), 7.47-7.30 (m, 6H, H-2-, H-3-, H-5-, H-6-Fmoc, NH-Ac, NH-Fmoc), 5.27-5.25 (m, 2H, H-4, H-4'), 5.23 (d, ³*J*(H-4''',H-3''') = 3.6 Hz, 1H, H-4'''), 5.07 (dd, ³*J*(H-3''',H-4''') = 3.6 Hz, ³*J*(H-3''',H-2''') = 10.3 Hz, 1H, H-3'''), 4.77-4.73 (m, 2H, H-2', H-2'''), 4.71 (d, ³*J*(H1,H2) = 3.9 Hz, 1H, H-1), 4.67 (d, ³*J*(H-1''',H-2''') = 7.9 Hz, 1H, H1'''), 4.64-4.58 (m, 2H, H-1', H-4''), 4.52-4.43 (m, 3H, H-1'',

CH₂-Fmoc), 4.31 (t, ³J(H-9,CH₂) = 6.7 Hz, 1H, H-9-Fmoc), 4.27-4.25 (m, 1H, T^β), 4.14-4.03 (m, 7H, H-2, H-5', H-5''', H-6'_a, H-6''_a, T^α), 4.01-3.96 (m, 2H, H-6''_a, H-6''_a), 3.93-3.78 (m, 7H, H-3, H-3', H-3'', H-5, H-6_{ab}, H-6'_b), 3.69-3.67 (m, 1H, H-5''), 3.54-3.52 (m, 1H, H-2''), 2.09, 2.04, 2.02, 2.01, 2.00, 1.99, 1.97, 1.89, 1.84, 1.81 (s, 39H, CH₃-(Ac)), 1.14 (d, ³J(T^γ,T^β) = 6.3 Hz, 3H, T^γ).


¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 171.71, 170.10 170.00, 169.92, 169.73, 169.55, 169.51, 169.51, 169.39, 169.16, 169.02, 168.95, 168.69 (C=O-(Ac)), 156.78 (C=O-(Fmoc)), 143.76, 143.71 (C-1_a-, C-8_a-Fmoc), 140.77, 140.81, 140.76 (C-4_a-, C-5_a-Fmoc), 127.72, 127.66 (C-2-, C-7-Fmoc), 127.05 (C-3-, C-6-Fmoc), 125.26, 125.13 (C-1-, C-8-Fmoc), 120.21, 120.16 (C-4-, C-5-Fmoc), 100.67 (C-1"), 100.56 (C-1'), 99.91 (C-1"'), 98.75 (C-1), 77.19 (C-3"), 79.46 (C-3'), 74.44 (T^β), 73.29 (C-3), 70.48 (C-3"'), 70.30 (C-5"), 70.23 (C-5), 69.64 (C-2', C-4'), 69.48 (C-5"'), 69.00 (C-4), 68.56 (C-2"'), 68.46 (C-4"), 67.26 (C-5'), 67.16 (C-4"'), 65.57 (CH₂-(Fmoc)), 63.05 (C-6'), 61.77 (C-6), 61.48 (C-6"), 61.11 (C-6"'), 58.45 (T^α), 54.20 (C-2"), 47.77 (C-2), 46.77 (C-9-Fmoc), 22.83, 22.79, 20.66, 20.62, 20.58, 20.51, 20.39, 20.35, 20.31 (CH₃-(Ac)), 18.43 (T^γ).

7.1.10 Synthesis of the extended type-2 core 1 amino

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-4,6-*O-para*methoxybenzylidenacetal-3-*O*-{6-*tert*-butyldimethylsilyl-3-*O*-[3-*O*-acetyl-2-deoxy-6-*tert*butyldimethyldimethylsilyl-2-*N*-(2,2,2-trichloroethoxycarbonyl)-4-*O*-(2,3,4,6tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-α-D-

galactopyranosyl)-∟-threonine-*tert*-butylester (50) (Fmoc-Thr(βAc₄Gal-(1→4)-βAc-TBS-GlcNHTroc-(1→3)-βTBS-Gal-(1→3)-αPMP-GalNAc)-

O*t*Bu)

Fmoc-Thr(β TBS-Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu **39** (3.98 g, 4.00 mmol) and β Ac₄Gal-(1 \rightarrow 4)- β Ac-TBS-GlcNHTroc-SPh **31** (4.88 g, 5.23 mmol) were dissolved in dry dichloromethane (60 mL) under argon atmosphere. Activated molecular sieves (5 g, 4Å) were added. The suspension was stirred for 1 h before it was cooled in an ice bath. *N*-iodosuccinimide (1.18 g, 5.23 mmol) was added followed by the dropwise addition of a suspension of trifluoromethanesulfonic acid (53 µL, 91 mg, 0.61 mmol) in dry dichloromethane (1 mL) *via* a syringe. After 2.5 h the reaction was treated with another

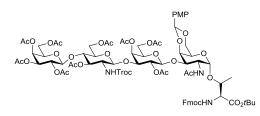
addition of $\beta Ac_4Gal-(1\rightarrow 4)$ - $\beta Ac-TBS-GlcNHTroc-SPh$ **31** (1.12 g, 1.20 mmol) and *N*-iodosuccinimide (270 mg, 1.2 mmol). The reaction was stirred further for 1.5 h under argon atmosphere and ice-cooling. The reaction was diluted with dichloromethane (40 mL). The molecular sieves were filtered off and washed with dichloromethane (total volume of 200 mL). The dichloromethane phase was washed with 0.5 M sodium thiosulfate solution, saturated sodium bicarbonate solution, water and brine (80 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^cHex/EtOAc 2:1 \rightarrow 3:2 \rightarrow 1:1).

Yield: 4.71 g (2.59 mmol, 65%), colorless, amorphous solid, $[\alpha]_D^{20}$ +42.22 (c = 0.99, CHCl₃), R_f = 0.45 (^CHex/EtOAc 2:3).

 $C_{82}H_{116}CI_{3}N_{3}O_{32}Si_{2}$ (M = 1818.33 g/mol) [1815.61].

ESI-MS (*pos*), *m/z*: 1817.00 ([M+H]⁺, calc. 1816.62). 1833.93 ([M+NH₄]⁺, calc. 1833.65), 1838.47 ([M+Na]⁺, calc. 1838.60).

HR-ESI-MS (pos), m/z: 1816.6224 ([M+H]⁺, calc. 1816.6224), 1702.5239 ([M-TBS+H]⁺, calc. 1702.5360).


¹H NMR (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ= 7.90-7.88 (m, 2H, H-4-, H-5-Fmoc), 7.76-7.73 (m, 2H, H-1-, H-8-Fmoc), 7.63 (d, ³J(N-H,H-2") = 8.3 Hz, 1H, N-H-Troc,), 7.56 (d, ${}^{3}J(N-H,T^{\alpha}) = 9.8$ Hz, 1H, N-H-Fmoc), 7.47 (d, ${}^{3}J(N-H,H-2) = 9.7$ Hz, 1H, N-H-Ac), 7.42 (t, ${}^{3}J(H-2,H-1) = {}^{3}J(H-2,H-3) = {}^{3}J(H-7,H-6) = {}^{3}J(H-7,H-8) = 7.4$ Hz, 2H, H-2-, H-7-Fmoc), 7.37 (d, ${}^{3}J(H-2,H-3) = {}^{3}J(H-6,H-5) = 8.8$ Hz, 2H, H-2-, H-6-PMP), 7.31 (t, ${}^{3}J(H-3,H-4)$ $= {}^{3}J(H-3,H-2) = {}^{3}J(H-6,H-7) = {}^{3}J(H-6,H-5) = 7.4 \text{ Hz}, 2H, H-3-, H-6-Fmoc), 6.93 (d, {}^{3}J(H-3,H-2))$ $= {}^{3}J(H-5,H-6) = 8.8 Hz, 2H, H-3-, H-5-PMP), 5.52 (s, 1H, CH-(PMP)), 5.24 (d, {}^{3}J(H-4''',H-3'''))$ = 3.6 Hz, 1H, H-4"), 5.11 (dd, ${}^{3}J$ (H-3",H-4") = 3.5 Hz, ${}^{3}J$ (H-3",H-2") = 10.3 Hz, 1H, H-3"), 4.98 (d, ${}^{3}J(H-1",H-2") = 8.5$ Hz, 1H, H-1"), 4.93 (t, ${}^{3}J(H-3",H-2") = {}^{3}J(H-3",H-4") = 6.6$ Hz, 1H, H-3"), 4.89 (d, ${}^{2}J(CH_{2a},CH_{2b}) = 12.4$ Hz, 1H, CH_{2a} -(Troc)), 4.83 (m, 1H, H-2"), 4.77 (d, ${}^{3}J$ (H-1,H-2) = 3.3 Hz, 1H, H-1), 4.72 (d, ${}^{3}J$ (H-1",H-2") = 7.9 Hz 1H, H-1"), 4.68-4.65 (m, 2H, CH_{2b}-(Troc), OH-2'), 4.48-4.40 (m, 3H, CH_{2ab}-(Fmoc), OH-4'), 4.36-4.26 (m, 5H, H-2, H-5, H-1', H-9-Fmoc, T^β), 4.15-4.10 (m, 2H, H-5"', T^α), 4.06-3.97 (m, 4H, H-6_{ab}, H-6_{ab}"'), 3.83-3.62 (m, 11H, H-3, H-4, H-4', H-4", H-6_{ab}', H-6_{ab}", CH₃-PMP), 3.45-3.41 (m, 3H, H-2', H-2", H-5"), 3.36-3.30 (m, 2H, H-5', H-3'), 2.09-1.86 (m, 18H, CH₃-(Ac)), 1.39 (s, 9H, tBu-(Thr)), 1.12 (d, ${}^{3}J(T^{\gamma},T^{\beta}) = 6.2$ Hz, 3H, T^{γ}), 0.87, 0.83 (each s, 9H, *t*Bu-(TBS)), 0.05, 0.04, 0.03 (each s, 3H, Me(TBS)).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.52 ppm): δ = 169.85, 169.46, 169.34, 169.33, 169.01 (C=O-(Ac), C=O-(*t*Bu)), 159.50 (C-1-PMP), 156.69 (C=O-(Fmoc)), 154.39 (C=O-(Troc)), 143.83, 143.53 (C-1_a-, C-8_a-Fmoc), 140.77 (C-4_a-, C-5_a-Fmoc), 130.82 (C-4-PMP), 127.62 (C-2-, C-7-Fmoc, C-2-, C-6-PMP), 126.99 (C-3-, C-6-Fmoc), 125.21 (C-1-, C-8-Fmoc), 120.16, 120.10 (C-4-, C-5-Fmoc), 113.29 (C-3-, C-5-Pmb),

105.39 (C-1'), 100.26 (C-1''), 2 x 99.75, 99.67 (C-1, C-1''', CH-(PMP)), 96.17 (C_{quart}-(*t*Bu-(TBS)), 81.39 (C_{quart}-(*t*Bu-(Thr))), 80.43 (C-5''), 75.78 (T^β), 75.61 (C-4''), 75.08, 75.03, 74.99 (C-3, C-3', C-5'), 74.16 (C-5), 73.50 (C-3''), 73.39 (CH_{2ab}-(Troc)), 70.27 (C-3'''), 69.94 (C-2'), 69.77 (C-5''), 69.04 (C-2'''), 68.42 (C-6_{ab}), 67.13 (C-4'), 67.03 (C-4'''), 65.59 (CH_{2ab}-(Fmoc)), 63.10 (C-4), 62.09 (C-6'_{ab}), 61.58 (C-6''_{ab}), 60.89 (C-6''_{ab}), 59.25 (T^{α}), 55.82 (C-2''), 55.12 (CH₃-(PMP)), 47.28, 46.79 (C-2, C-9-(Fmoc)), 27.61 (*t*Bu-(Thr)), 25.79, 25.62 (2 *t*Bu-(TBS)), 23.22, 20.59, 2 x 20.45, 20.37, 20.33 (6 CH₃-(Ac)), 19.31 (T^{γ}), 17.96, 17.90 (2 C_q(TBS)), - 5.25, -5.34, -5.42 (4 Me(TBS)).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-4,6-*O*-para-methoxybenzylidene-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[3,6-di-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactosylpyranosyl}- α -D-galactopyranosyl)-L-threonine-*tert*-butylester (51)

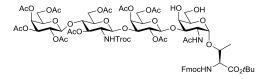
 $(Fmoc-Thr(\beta Ac_4Gal-(1\rightarrow 4)-\beta Ac_2GlcNHTroc-(1\rightarrow 3)-\beta Ac_3Gal-(1\rightarrow 3)-\alpha PMP-GalNAc)-OtBu)$

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac-TBS-GlcNHTroc-(1 \rightarrow 3)- β TBS-Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu (3.80 g, 2.09 mmol) **50** in tetrahydrofuran (60 mL) was cooled in ice bath. A solution of tetra butylammoniumfluoride trihydrate (6.59 g, 20.9 mmol) and acetic acid (2.39 mL, 41.8 mmol) in tetrahydrofuran (20 mL) was added. After 1 h the ice bath was removed and the reaction was further stirred for 16 h. The reaction was diluted with ethyl acetate (400 mL) and the organic phase was washed with saturated sodium bicarbonate solution/brine (two times, 450 mL each, 1:1) and once with brine (200 mL). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in pyridine (60 mL). Then 4-(dimethylamino)pyridine (25 mg, 0.20 mmol) was added followed by acetic anhydride (30 mL) and the reaction was stirred for 24 h. The solvent was removed by co-evaporation with toluene *in vacuo*. The crude was purified by flash column chromatography on silica (^cHex/EtOAc 1:2).

Yield: 2.50 g (1.44 mmol, 68%), colorless, amorphous solid, $[\alpha]_D^{20}$ +56.94 (c = 0.49, CHCl₃), R_f = 0.43 (Tol/EtOAc 1:3).

 $C_{78}H_{96}CI_3N_3O_{36}$ (M = 1757.95 g/mol) [1755.48].

ESI-MS (*pos*), *m/z*: 1756.93 ([M+H]⁺, calc. 1756.49), 1773.73 ([M+NH₄]⁺, calc. 1773.52).


HR-ESI-MS (pos), m/z: 1756.4922 ([M+H]⁺, calc. 1756.4917), 898.7227 ([M+K+H]²⁺, calc. 897.7277).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ= 7.92-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.81 (d, ³*J*(N-H,H-2) = 9.1 Hz, 1H, N-H-Troc), 7.77-7.34 (m, 1H, H-1, H-8-Fmoc), 7.43-7.41 (m, 4H, H-2-, H-7-Fmoc, N-H-Ac, N-H-Fmoc), 7.34-7.30 (m, 4H, H-2-, H-6-PMP, H-3-, H-6-Fmoc), 6.93 (d, 2H, H-3-, H-5-PMP, ³*J*(H-3,H-2) = ³*J*(H-5,H-4) = 8.8 Hz), 5.44 (s, 1H, CH-(PMP)), 5.33 (m, 1H, H-4'), 5.22 (d, ³*J*(H-4''',H-3''') = 3.2 Hz, 1H, H-4'''), 5.16 (dd, ³*J*(H-3''',H-2''') = 10.3 Hz, ³*J*(H-3''',H-4''') = 3.3 Hz, 1H, H-3'''), 4.98-4.97 (m, 2H, H-3'', CH_{2a}-(Troc)), 4.84-4.80 (m, 2H, H-2', H-2'''), 4.71-4.69 (m, 2H, H-1, H-1'''), 4.63-4.61 (m, 2H, H-1', H-1''), 4.53-4.45 (m, 3H, CH_{2ab}-(Fmoc), CH_{2b}-(Troc)), 4.32 (t, ³*J*(H-9,CH_{2ab}) = 6.7 Hz, 1H, H-9-Fmoc), 4.28-4.26 (m, 3H, H-5, H-6_a'', T^α), 4.23-4.17 (m, 2H, H-2, H-5'''), 4.09-3.99 (m, 6H, H-6_{ab}, H-6_a', H-6_{ab}''', T^α), 3.93-3.89 (m, 3H, H-5', H-6_b', H-6_b''), 3.97 (dd, ³*J*(H-3',H-4') = 4.0 Hz, ³*J*(H-3',H-2') = 10.2 Hz, 1H, H-3'), 3.75-3.72 (m, 4H, H-3, CH₃-PMP), 3.70-3.65 (m, 2H, H-4, H-4''), 3.54-3.51 (m, 1H, H-5''), 3.29 (q, ³*J*(H-2'',H-1'') = ³*J*(H-2'',N-H'') = ³*J*(H-2'',H-3'') = 9.1 Hz 1H, H-2''), 2.09-1.83 (m, 30H, CH₃-(Ac)), 1.36 (s, 9H, *t*Bu), 1.15 (d, ³*J*(T^γ,T^β) = 6.2 Hz, 3H, T^γ).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.52 ppm): δ = 170.30, 170.02, 169.87, 169.54, 169.50, 169.24, 169.19, 169.09, 168.71 (C=O-(Ac), C=O-(*t*Bu)), 159.51 (C1-PMP), 156.78 (C=O-(Fmoc)), 153.99 (C=O-(Troc)), 143.73, 143.70 (C-1_a-, C-8_a-Fmoc), 140.83, 140.79 (C-4_a-, C-5_a-Fmoc), 130.75 (C-4-PMP), 127.67 (C-2-, C-6-PMP), 127.04 (C-3-, C-6-Fmoc, C-2-, C-7-Fmoc), 125.25, 125.14 (C-1-, C-8-Fmoc), 120.21, 120,16 (C-4-, C-5-Fmoc), 113.39 (C-3-, C-5-PMP), 101.46 (C-1'), 100.59 (C-1''), 100.02 (C-1'''), 99.83 (CH-(PMP)), 99.06 (C-1), 96.08 (C_{quart}-(Troc)), 81.46 (C_{quart}-(*t*Bu)), 78.13 (C-3'), 75.98 (C-4''), 75.05, 75.00 (T^β, C-3), 73.40 (C-5, CH_{2ab}-(Troc)), 72.75 (C-3''), 71.51 (C-5''), 70.67 (C-5), 70.27 (C-3'''), 69.61 (C-5''), 69.42 (C-4'), 69.05, 68.92 (C-2', C-2''), 68.59 (C-6_{ab}), 67.04 (C-4''), 65.61 (CH_{2ab}-(Fmoc)), 62.89 (C-4), 62.47 (C-6_{ab}'), 61.79 (C-6_{ab}''), 60.81 (C-6_{ab}'''), 59.29 (T^α), 55.78 (C-2''), 55.11 (CH₃-(PMP)), 46.86, 46.79 (C-2, C-9-Fmoc), 27.59 (*t*Bu), 22.92, 20.76, 20.69, 20.64, 20.49, 20.47, 20.46, 20.36, 20.33, 20.31 (CH₃-(Ac)), 19.32 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[3,6-di-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-4-*O*-(2,3,4,6tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}- α -Dgalactopyranosyl)-L-threonine-*tert*-butylester (52)

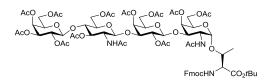
 $(Fmoc-Thr(\beta Ac_4Gal-(1 \rightarrow 4)-\beta Ac_2GlcNHTroc-(1 \rightarrow 3)-\beta Ac_3Gal-(1 \rightarrow 3)-\alpha GalNAc)-OtBu)$

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- β PMP-GalNAc)-O*t*Bu **51** (2.45 g, 1.39 mmol) in 80% acetic acid (50 mL) was stirred for 1 h at 40°C. The solvent was removed by co-evaporation with toluene *in vacuo*. The crude product was purified by flash column chromatography on silica (100% EtOAc).

Yield: 2.05 g (1.25 mmol, 90%), colorless, amorphous solid, $[\alpha]_D^{20}$ +36.86 (c = 0.51, CHCl₃), R_f = 0.27 (EtOAc).

 $C_{70}H_{90}CI_3N_3O_{35}$ (M = 1639.82 g/mol) [1637.44].

ESI-MS (pos), m/z: 1638.93 ([M+H]⁺, calc. 1638.45).


HR-ESI-MS (pos), m/z: 1638.4480 ([M+H]⁺, calc. 1638.4499).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ= 7.92-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.81 (d, ³*J*(N-H,H-2") = 9.1 Hz, 1H, N-H-Troc), 7.75 (t, ³*J*(H-1,H-2) = ³*J*(H-8,H-7) = 7.7 Hz, 2H, H-1-, H-8-Fmoc), 7.46-7.41 (m, 4H, H-2-, H-7-Fmoc, N-H-Fmoc, N-H-Ac), 7.34-7.29 (m, 2H, H-3-, H-6-Fmoc), 5.31 (d, ³*J*(H-4'',H-3') = 3.5 Hz, 1H, H-4'), 5.21 (d, ³*J*(H-4''',H-3''') = 3.6 Hz, 1H, H-4'''), 5.16 (dd, ³*J*(H-3''',H-2''') = 10.3 Hz, ³*J*(H-3''',H-4''') = 3.5 Hz, 1H, H-4''), 4.99-4.97 (m, 2H, H-3'', CH_{2a}-(Troc)), 4.86 (t, ³*J*(H-2',H-3') = ³*J*(H-2',H-1') = 8.2 Hz, 1H, H-2'), 4.82 (dd, ³*J*(H-2''',H-3'') = 10.3 Hz, ³*J*(H-2'',H-1'') = 7.9 Hz, 1H, H-2'''), 4.70-4.58 (m, 4H, H-1, H-1', H-1'', H-1'''), 4.52-4.49 (m, 2H, CH_{2b}-(Troc), CH_{2a}-(Fmoc)), 4.46-4.30 (m, 1H, CH_{2b}-(Fmoc)), 4.39 (d, ³*J*(OH-4,H-4) = 5.4 Hz, 1H, OH-4,), 4.32 (t, ³*J*(H-9,CH_{2ab}) = 6.7 Hz, 1H, H-9-Fmoc), 4.26-4.20 (m, 4H, H-2, H-5''', H-6a'', T^β), 4.08-4.06 (m, 1H, T^α), 4.01-3.91 (m, 6H, H-5', H-6ab', H-6ab'', H-6ab'''), 3.89-3.87 (m, 1H, H-4), 3.80-3.78 (m, 1H, H-3'), 3.68 (t, ³*J*(H-4'',H-3'') = ³*J*(H-4'',H-5'') = 9.5 Hz 1H, H-4''), 3.63-3.61 (m, 1H, H-5), 3.55-3.82 (m, 2H, H-3, H-5''), 3.48-3.46 (m, 1H, H-6ab), 3.33-3.29 (m, 2H, OH-6, H-2''), 2.09- 1.85 (m, 30H, CH₃-(Ac)), 1.35 (s, 9H, *t*Bu), 1.16-1.15 (m, 3H, T^γ).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 170.30, 170.01, 170.00, 169.87, 169.59, 169.51, 169.23, 169.11, 169.08, 168.77, 168.64 (C=O-(Ac), C=O-(*t*Bu)), 156.80 (C=O-(Fmoc)), 154.00 (C=O-(Troc)), 143.73, 143.66 (C-1_a-, C-8_a-Fmoc), 140.82, 140.77 (C-4_a-, C-5_a-Fmoc), 127.73, 127.67 (C-2-, C-7-Fmoc), 127.03 (C-3-, C-6-Fmoc), 125.30, 125.17 (C-1-, C-8-Fmoc), 120.22, 120.16 (C-4-, C-5-Fmoc), 101.42 (C-1'),

100.55 (C-1"), 99.99 (C-1""), 98.94 (C-1), 96.07 (C_{quart}-(Troc)), 81.36 (C_{quart}-(*t*Bu)), 78.33 (C-3'), 77.43 (C-3), 75.91 (C-4"), 73.49 (T^{β}), 73.38 (CH_{2ab}-(Troc)), 72.80 (C-3"), 71.67 (C-5), 71.51 (C-5"), 70.68 (C-5'), 70.26 (C-3""), 69.59 (C-5""), 69.31 (C-4'), 69.05 (C-2'), 68.91 (C-2""), 67.43 (C-4), 67.02 (C-4""), 65.58 (CH_{2ab}-(Fmoc)), 62.22 (C-6_{ab}), 61.80 (C-6_{ab}"), 60.81 (C-6_{ab}"), 60.54 (C-6_{ab}), 59.36 (T^{α}), 55.75 (C-2"), 46.99 (C-2), 46.79 (C-9-Fmoc), 27.59 (*t*Bu), 22.95, 20.76, 20.66, 20.64, 20.49, 20.45, 20.43, 20.36, 20.32, 20.30 (CH₃-(Ac)), 19.09 (T^{γ}).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactosylpyranosyl}-α-D-galactosylpyranosyl)-L-threonine-*tert*-butylester (53) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNAc-(1→3)- β Ac₃Gal-(1→3)- α Ac₂GalNAc)-O*t*Bu)

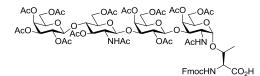
Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and diethyl ether. Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNHTroc-(1→3)- β Ac₃Gal-(1→3)- β GalNAc)-O*t*Bu **52** (492 mg, 0.29 mmol) was dissolved in acetic acid (6 mL) and preactivated zinc dust (393 mg, 6.0 mmol) was added. The reaction was stirred at 40°C for 18 h. The zinc dust was filtered off and washed with acetic acid. The filtrate was co-evaporated several times with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (9 mL, 2:1). Then 4-(dimethylamino)pyridine (3.7 mg, 0.03 mmol) was added and the reaction was stirred for 20 h. The solvent was removed by co-evaporation with toluene *in vacuo* and the crude product purified by flash column chromatography on silica (100% EtOAc).

Yield: 389 mg (0.25 mmol, 82%), colorless, amorphous solid, $[\alpha]_D^{20}$ +41.40 (c = 0.50, CHCl₃), R_f = 0.21 (EtOAc/MeOH 20:1).

 $C_{73}H_{95}N_3O_{36}$ (M = 1590.53 g/mol) [1589.57].

HR-ESI-MS (pos), m/z: 1590.5763 ([M+H]⁺, calc. 1590.5774), 814.7661 ([M+K+H]²⁺, calc. 814.7706).

¹*H NMR* (500 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.77 (d, ³*J*(H-4,H-3) = ³*J*(H-5,H-6) = 9.1 Hz, 2H, H-4-, H-5-Fmoc,), 7.62-7.59 (m, 2H, H-1-, H-8-Fmoc), 7.49-7.46 (m, 2H, H-2-, H-7-Fmoc), 7.39-7.35 (m, 2H, H-3-, H-6-Fmoc), 6.22 (d, ³*J*(N-H,H-2) = 9.1 Hz, 1H, N-H-Ac), 5.92 (d, ³*J*(N-H,T^{α}) = 9.1 Hz, 1H, N-H-Fmoc), 5.60-5.54 (m, 1H, N-H"-Ac), 5.32-5.29 (m, 3H, H-4, H-4', H-4'''), 5.15 (t, ³*J*(H-3", H-2'') = ³*J*(H-3",H-4'') = 9.5 Hz, 1H, H-3''),


5.07 (dd, ${}^{3}J(H-2''',H-1''') = 8.0$ Hz, ${}^{3}J(H-2''',H-3''') = 10.3$ Hz, 1H, H-2'''), 4.98-4.95 (m, 2H, H-2', H-3'''), 4.83 (s_{br}, 1H, H-1), 4.76-4.68 (m, 2H, H-1'', H-6_a''), 4.57 (d, ${}^{3}J(H-1',H-2') = 7.8$ Hz, 1H, H-1'), 4.51-4.49 (m, 2H, H-1''', H-2), 4.43 (m, 1H, CH_{2a}-(Fmoc)), 4.35-4.31 (m, 1H, CH_{2b}-(Fmoc)), 4.25-4.17 (m, 3H, T^{β}, T^{α}, H-9-Fmoc), 4.12-4.02 (m, 6H, H-5, H-6_{ab}, H-6_a', H-6_{ab}'''), 3.99-3.90 (m, 3H, H-3, H-6_b', H-6_b'''), 3.86-3.50 (m, 3H, H-3', H-5, H-5'), 3.77 (t, ${}^{3}J(H-4'',H-3'') = {}^{3}J(H-4'',H-5'') = 9.3$ Hz, 1H, H-4''), 3.58-3.52 (m, 2H, H-2'', H-5''), 2.11-1.87 (m, 39H, CH₃(Ac)), 1.43 (s, 9H, *t*Bu), 1.30 (m, 3H, T^{γ}).

¹³C *NMR* (125.6 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.20 ppm: δ = 170.89, 170.62, 170.50, 170.46, 170.27, 170.22, 170.16, 170.15, 170.00, 169.67, 169.26 (C=O-(Ac), C=O(*t*Bu)), 156.63 (C=O-(Fmoc)), 143.82 (C-1_a-, C-8_a-Fmoc), 141.49 (C-4_a-, C-5_a-Fmoc), 127.99 (C-2-, C-7-Fmoc), 127.27 (C-3-, C-6-Fmoc), 125.10 (C-1-, C-8-Fmoc), 120.24 (C-4-, C-5-Fmoc), 101.23 (C-1'''), 100.60 (C-1'), 100.45 (C-1''), 100.09 (C-1), 83.56 (C_{quart}-(*t*Bu)), 76.6 (T^β), 76.13 (C-5), 75.94 (C-4''), 72.68 (C-5''), 71.92 (C-3, C-3''), 71.33 (C-5'), 71.01 (C-3'''), 70.83 (C-3'), 70.70 (C-2'), 69.29 (C-4, C-4'), 69.19 (C-2'''), 68.15 (C-5'''), 67.20 (CH_{2ab}-(Fmoc)), 66.75 (C-4'''), 63.16 (C-6_{ab}'), 61.91 (C-6_{ab}'''), 60.90 (C-6_{ab}, C-6_{ab}''), 59.20 (T^α), 55.30 (C-2''), 48.70 (C-2), 47.36 (C-9-(Fmoc)), 28.24 (*t*Bu), 23.30-20.68 (CH₃-(Ac)), 18.76 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-

tetra-O-acetyl- β -D-galactopyranosyl)- β -D-glucopyranosyl]- β -D-galactosylpyranosyl}- α -D-galactosylpyranosyl)-L-threonine (54)

(Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcNAc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- α Ac₂GalNAc)-OH)

To a solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcNAc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)- β Ac₂GalNAc)-O*t*Bu **53** (718 mg, 0.45 mmol) in dichloromethane (3 mL) and anisole (0.5 mL) was added trifluoroacetic acid (9 mL) and the reaction was stirred for 2.5 h. The solvent was removed by co-evaporation with toluene. The crude product was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 25:1).

Yield: 616 mg (0.40 mmol, 89%), colorless, amorphous solid, $[\alpha]_D^{20}$ +48.57 (c = 1.00, CHCl₃) R_f = 0.21 (EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

 $C_{69}H_{87}N_3O_{36}$ (M = 1534.43 g/mol) [1533.51].

ESI-MS (pos), m/z: 1534.00 ([M+H]⁺, calc. 1534.51), 1556.33 ([M+Na]⁺, calc. 1556.50). *HR-ESI-MS (pos), m/z:* 1534.5139 ([M+H]⁺, calc. 1534.5148).


¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm): δ = 12.90 (COOH), 7.91, 7.90 (2 x d, *J*_{H-4,H-3} = *J*_{H-5,H-6} = 7.4 Hz, 2 x 1H, H-4-, H-5-Fmoc), 7.83 (d, *J*_{N-H",H-2"} = 9.0 Hz, 1H, N-H"-Ac), 7.74 (m, 2H, H-1-, H-8-Fmoc), 7.45-7.30 (m, 6H, H-2-, H-3-, H-6-, H-7-Fmoc, N-H-Fmoc, N-H-Ac), 5.28 (d, *J*_{H-4',H-3'} = 3.7 Hz, 1H, H-4'), 5.27 (d, *J*_{H4,H3} = 3.4 Hz, 1H, H-4), 5.22 (d, *J*_{H-4'',H-3''} = 3.5 Hz, 1H, H-4'''), 5.17 (dd, *J*_{H-3'',H-4'''} = 3.5 Hz, *J*_{H-3'',H-2''} = 10.3 Hz, 1H, H-3'''), 5.00 (t, *J*_{H-3'',H-4''} = *J*_{H-3'',H-2''} = 9.5 Hz, 1H, H-3''), 4.83 (dd, *J*_{H-2'',H-3'''} = 10.3 Hz, *J*_{H-2'',H-1'''} = 8.0 Hz, 1H, H-2'''), 4.74-4.69 (m, 4H, H-1, H-2, H-1'', H-1'''), 4.59 (d, *J*_{H-1',H-2'} = 8.0 Hz, 1H, H-1'), 4.52-4.43 (m, 2H, CH_{2ab}-(Fmoc)), 4.32-4.30 (m, 2H, H-9-(Fmoc), H-6a''), 4.27-4.25 (m, 1H, T^β), 4.21 (t, *J*_{H-5''',H-6'''} = 6.8 Hz, 1H, H5'''), 4.15-4.08 (m, 4H, H-2, H-5, H-6a', T^α), 4.00-3.98 (m, 2H, H-6ab'''), 3.94-3.79 (m, 6H, H-3, H-3', H-5', H-6ab, H-6b', H-6b''), 3.65 (t, *J*_{H-4'',H-3''} = *J*_{H-4'',H-5''} = 9.5 Hz, 1H, H-4'''), 3.57-3.54 (m, 1H, H-5''), 3.41-3.37 (m, 1H, H-2''), 2.09-1.70 (m, 39H, CH₃-(Ac)).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.20 ppm: δ = 170.29, 170.11, 170.01, 169.87, 169.73, 169.51, 169.43, 169.39, 169.13, 169.02, 168.82 (C=O-(Ac)), 156.78 (C=O-(Fmoc)), 143.76, 143.72 (C-1_a-, C-8_a-Fmoc), 140.81, 140.77 (C-4_a-, C-5_a-Fmoc), 127.71, 127.67 (C-2-, C-7-Fmoc), 127.06 (C-3, C-6-Fmoc), 125.27, 125.14 (C-1-, C-8-Fmoc), 120.22, 120.16 (C-4-, C-5-Fmoc), 100.55 (C-1'), 100.00, 98.74 (C-1, C-1", C-1"), 76.87 (C-3'), 76.14 (C-4"), 74.45 (T^β), 73.43 (C-3), 72.71 (C-3"), 71.44 (C-5"), 70.25 (C-5', C-3"), 69.67 (C-4), 69.56 (C-5"), 69.47 (C-2'), 69.04 (C-4'), 68.94 (C-2"), 67.26 (C-5), 67.03 (C-4"), 65.56 (CH_{2ab}-(Fmoc)), 63.08 (C-6_{ab}'), 61.77, 61.69 (C-6_{ab}, C-6_{ab}"), 60.77 (C-6_{ab}"), 58.47 (T^α), 53.98 (C-2"), 47.71 (C-2), 46.78 (C-9-Fmoc), 22.80, 2 x 22.63, 20.64-20.38 (CH₃-(Ac)), 18.43 (T^γ).

7.1.11 Synthesis of the extended type-1 core 2 amino acid

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-*N*-acetamido-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[4,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroetoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetylβ-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-{4-*O*-acetyl-6-*Otert*-butyldimethylsilyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl}-α-D-galactopyranosyl)-L-threonine*tert*-butylester (55)

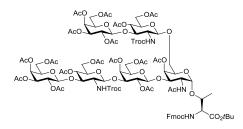
 $(Fmoc-Thr(\beta Ac_4Gal-(1\rightarrow 3)-\beta Ac_2-TBS-GlcNHTroc-(1\rightarrow 3)-Ac_3Gal-(1\rightarrow 3)-\{\beta Ac_4Gal-(1\rightarrow 3)-\beta Ac_2-TBS-GlcNHTroc-(1\rightarrow 6)\}-\alpha GalNAc)-OtBu)$

dichloromethane phase was washed with 0.5 M sodium thiosulfate solution, saturated sodium bicarbonate solution, water and brine (30 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^cHex/EtOAc 1:1 \rightarrow 1:2).

Yield: 1.47 g (0.597 mmol, 78%), colorless, amorphous solid, $[\alpha]_D^{20}$ +19.20 (c = 0.49, CHCl₃), R_f = 0.41 (Tol/EtOAc 1:3).

 $C_{101}H_{136}CI_6N_4O_{51}Si (M = 2462.96 \text{ g/mol}) [2458.61].$

MALDI-TOF-MS (dhb, pos), m/z: 2386.41 ([M-TBS+K]⁺, calc. 2386.48), 2500.40 ([M+K]⁺, calc. 2500.57).


HR-ESI-MS (pos), m/z: 1250.7860 ([M+K+H]²⁺, calc. 1250.7896).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.91-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.76-7.70 (m, 4H, H-1-, H-8-Fmoc, NH"-Troc, NH""-Troc), 7.45-7.30 (m, 6H, H-2-, H-7-Fmoc, C-3-, C-6-Fmoc, NH-Ac, NH-Fmoc), 5.30 (m, 1H, H-4'), 5.24-5.22 (m, 2H, H-4''', H-4''''), 5.01 (dd, ³*J*(H-3''',H-4'''')) = 3.5 Hz, ³*J*(H-3'''',H-2'''') = 10.5 Hz, 1H, H-3''''), 4.93 (dd, ³*J*(H3''',H4''') = 3.5 Hz, ³*J*(H-3''',H-2''') = 10.4 Hz, 1H, H-3'''), 4.88-4.85 (m, 2H, H-2', CH_{2a}-(Troc)), 4.81-4.75 (m, 3H, H-2''', H-2'''', CH_{2a}-(Troc)), 4.72-4.59 (m, 5H, H-1''', H-1'''', H-4''', H-4'''', CH_{2b}-(Troc)), 4.57-4.54 (m, 3H, H-1, H-1', CH_{2b}-(Troc)), 4.50-4.44 (m, 3H, H-1'', CH₂-(Fmoc)), 4.39-4.38 (d, ³*J*(H1''',H2'''') = 8.4 Hz, 1H, H-1''''), 4.32 (t, ³*J*(H-9,CH₂) = 6.7 Hz, 1H, H-9-Fmoc), 4.21-4.17 (m, 1H, H-2), 4.12-3.91 (m, 12H, H-3'', H-5'''', H-6'_{ab}, H-6''_{ab}, H-6'''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_{ab}, H-6''''_a, H-6''''_a, H-5''', 3.60-3.49 (m, 3H, H-3, H-6_b, H-6''''_b), 3.47-3.45 (m, 1H, H-5'''), 3.38 (q, ³*J*(H2'''',H3'''') = ³*J*(H2'''',NH) = 9.3 Hz, 1H, H-2''''), 3.29-3.24 (m, 1H, H-2'''), 2.09, 2.04, 2.03, 2.01, 2.00, 1.99, 1.98, 1.97, 1.96, 1.88, 1.84 (m, 45H, 15 x CH₃-(Ac)), 1.36 (s, 9H, *t*Bu-(Thr)), 1.13 (d, ³*J*(T^γ,T^β) = 6.0 Hz, 3H, T^γ), 0.85 (s, 9H, *t*Bu-(TBS)), 0.01, 0.00 (2 x s, 2 x 3H, 2 x CH₃-(TBS)).

¹³C *NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ =170.07, 170.02, 169.88, 169.82, 169.73, 169.69, 169.64, 169.53, 169.53, 169.48, 169.38, 169.31, 169.25, 169.23, 169.20, 169.13, 169.09, 169.04, 169.86, 168.66 (C=O-(Ac), C=O-(*t*Bu)), 156.75 (C=O-(Fmoc)), 154.08, 153.80 (2 x C=O-(Troc)), 143.68, 143.67 (C-1_a-, C-8_a-Fmoc), 140.80, 140.76 (C-4_a-, C-5_a-Fmoc), 127.70, 127.66 (C-2-, C-7-Fmoc), 125.23, 125.12 (C-1-, C-8-Fmoc), 120.21, 120.16 (C-4-, C-5-Fmoc), 101.44 (C-1'), 101.13 (C-1"), 100.61 (C-1""), 99.96 (C-1""), 99.77 (C-1"), 99.05 (C-1), 95.89, 95.52 (2 x CCl₃-(Troc)), 81.39 (C_q-*t*Bu), 77.92 (C-3""), 77.31 (C-3'), 76.70 (C-3), 76.59 (C-3"), 74.00 (T^β, CH₂-(Troc)), 73.55 (C-5""), 73.49 (CH₂-(Troc)), 70.48 (C-5'), 70.33 (C-3""), 70.20 (C-5"), 70.15 (C-3""), 70.06 (C-5), 69.75 (C-5"", C-6), 69.60 (C-5""), 69.37 (C-2'), 69.24 (C-4'), 68.81 (C-4""), 68.75 (C-2""), 68.53 (C-2""), 68.43 (C-4), 68.25 (C-4"), 67.22, 67.18 (C-4"", C-4""), 65.60 (CH₂-(Fmoc)), 62.03 (C-6""), 61.70 (C-6"), 61.50 (C-6'), 60.92 (C-6""), 60.84 (C-6""), 59.57 (T^a), 56.93 (C-2"), 56.62 (C-2""), 46.92 (C-2), 46.77 (C-9-Fmoc), 27.62 (C_q-*t*Bu(Thr)), 25.74 (C_q-TBS), 22.95, 20.62, 20.60, 20.50, 20.47, 20.42, 20.34, 20.27, 20.23 (CH₃-(Ac)), 19.03 (T^γ), 18.02 (CH₃-(*t*Bu+TBS)), -5.42, -5.44 (CH₃-(TBS)).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(4-*O*-acetyl-2-*N*-acetamido-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[4,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroetoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-{4,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl}-β-D-galactopyranosyl]-β-D-galactopyranosyl]-β-b-glucopyranosyl]-β-b-galactopyranosyl]-β-b-ga

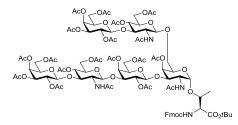
(Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNHTroc-(1→3)-Ac₃Gal-(1→3)-{ β Ac₄Gal-(1→3)- β Ac₂GlcNHTroc-(1→6)}- α GalNAc)-OtBu)

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂-TBS-GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 3)- β Ac₂-TBS-GlcNHTroc-(1 \rightarrow 6)]- α GalNAc)-O*t*Bu **55** (2.91 g, 1.18 mmol) in 80% acetic acid (30 mL) was stirred for 17 h at 35°C. The solvent was removed by coevaporation with toluene *in vacuo*. The residue was dissolved in pyridine (20 mL) and cooled in an ice bath. Then 4-(dimethylamino)pyridine (15 mg, 0.12 mmol) and acetic anhydride (10 mL) were added and the solution was stirred for 6.5 h. The crude product was purified by flash column chromatography on silica (^CHex/EtOAc 1:3).

Yield: 2.74 g (1.12 mmol, 95%), colorless, amorphous solid, $[\alpha]_D^{20}$ +26.70 (c = 0.50, CHCl₃), R_f = 0.36 (Tol/EtOAc 1:4).

 $C_{99}H_{126}CI_6N_4O_{53}$ (M = 2432.77 g/mol) [2428.54].

MALDI-TOF-MS (dhb, pos), m/z: 2471.00 ([M+K]⁺, calc. 2470.51).


HR-ESI-MS (pos), *m/z*: 1235.7530 ([M+K+H]²⁺, calc. 1235.7569).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.91-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.79 (d, ³*J*(NH,H-2^{IIII}) = 9.7 Hz, 1H, NH^{IIII}-Troc,), 7.76-7.73 (m, 2H, H-1-, H-8-Fmoc), 7.68 (d, ³*J*(NH,H2^{III}) = 9.4 Hz, 1H, NH^{III}-Troc), 7.49 (d, ³*J*(NH,H-2) = 9.8 Hz, 1H, NH-Ac), 7.43-7.41 (m, 3H, H-2-, H-7-Fmoc, NH-Fmoc), 7.34-7.29 (m, 2H, H-3-, H-6-Fmoc), 5.27 (s_{br}, 1H, H-4'), 5.23-5.22 (m, 2H, H-4^{IIII}, H-4^{IIIII}), 5.21 (s_{br}, 1H, H-4), 5.03 (dd, ³*J*(H-3^{IIIII},H-2^{IIIII}) = 10.3 Hz, ³*J*(H-3^{IIIII},H-4^{IIIII}) = 3.6 Hz, 1H, H-3^{IIIII}), 4.93 (dd, ³*J*(H-3^{IIII},H-2^{IIIII}) = 3.5 Hz, ³*J*(H-3^{IIII},H-4^{IIIII}) = 10.4 Hz, 1H, H-3^{IIII}), 4.87-4.85 (d, ²*J*(CH_{2a},CH_{2b}) = 12.1 Hz, 1H, CH_{2a}-(Troc)), 4.82-4.75 (m, 3H, CH_{2a}-(Troc), H-2^{IIII}, H-2^{IIIII}), 4.73-4.67 (m, 4H, H-1^{IIII}, H-2, H-4^{IIII}, CH_{2b}-(Troc)), 4.48-4.39 (m, 3H, H-1, H-1^{IIII}, H-4^{IIII}), 4.56-4.50 (m, 3H, H-1', CH_{2b}-(Troc), CH_{2a}-(Fmoc)), 4.448-4.39 (m, 3H, H-1^{IIII}, H-1^{IIII}, CH_{2b}-(Fmoc)), 4.31 (t, ³*J*(H-9,CH₂) = 6.7 Hz, 1H, H-9-Fmoc), 4.14-4.01 (m, 9H, H-2, H-6^{III}_a, H-6^{IIII}_a, H-5, H-5^{IIII}, H-5^{IIIII}, T^β), 3.99-3.93 (m, 5H, H-6^{III}_b, H-6^{IIII}_b, H-6^{IIIII}_b, H-6^{IIIII}_a, H-5^{IIII}, H-6^{IIII}_a), 3.86-3.81 (m, 3H, H-3', H-3^{IIII}, H-5^{IIIII}, 3.80-

3.73 (m, 2H, H-3, H-6_a), 3.70-3.69 (m, 1H, H-5""), 3.66-3.64 (m, 1H, H-5"), 3.43-3.35 (m, 2H, H-6_b, H-2""), 3.26 (q, ${}^{3}J$ (H-2", H-3") = ${}^{3}J$ (H-2",H-1") = ${}^{3}J$ (H-2",NH) = 9.5 Hz, 1H, H-2"), 2.09, 2.06, 2.02, 2.01, 2.00, 1.99, 1.98, 1.97, 1.96, 1.88 (m, 51H, CH₃-(Ac)), 1.35 (s, 9H, *t*Bu), 1.15 (d, ${}^{3}J$ (T^{γ},T^{β}) = 6.3 Hz, 3H, T^{γ}).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.52 ppm): δ = 170.07, 170.06, 169.92, 169.89, 169.83, 169.59, 169.39, 169.35, 169.32, 169.29, 169.24, 169.14, 169.07, 168.76, 168.70 (C=O-(Ac), C=O-(*t*Bu)), 156.77 (C=O-(Fmoc)), 154.05 (C=O-(Troc)), 153.82 (C=O-(Troc)), 143.71, 143.67 (C-1_a-, C-8_a-Fmoc), 140.82, 140.77 (C-4_a-, C-5_a-Fmoc), 127.69, 127.67 (C-2-, C-7-Fmoc), 127.03, 127.02 (C-3-, C-6-Fmoc), 125.23, 125.11 (C-1-, C-8-Fmoc), 120.19, 120.14 (C-4-, C-5-Fmoc), 101.21 (C-1"), 100.52 (C-1'), 100.50 C-1""), 99.91 (C-1""), 99.81 (C-1""), 98.74 (C-1), 95.84 (CCl₃-Troc), 95.55 (CCl₃-Troc), 81.48 (C_q-*t*Bu), 77.70 (C-3'), 76.81 (C-3"), 76.58 (C-3""), 74.18 (T^β), 73.93 (CH₂-(Troc)), 73.64 (CH₂-(Troc)), 73.30 (C-3), 70.60 (C-5"), 70.24 (C-3""), 70.15 (C-3"", C-4, C-5', C-5""), 69.74 (C-5""), 69.61 (C-2', C-5""), 69.21 (C-4"), 68.98 (C-6), 68.86 (C-5, C-4""), 68.75, 68.51 (C-2"", C-2"""), 68.32 (C-4"), 67.23, 67.14 (C-4"", C-4"""), 65.57 (CH₂-Fmoc), 62.00 (C-6""), 61.57 (C-6"_{ab}), 61.45 (C-6'_{ab}), 60.93 (C-6""_{ab}), 60.80 (C-6""_{ab}), 59.57 (T^α), 56.96 (C-2""), 56.62 (C-2"), 47.62 (C-2), 46.78 (C-9-Fmoc), 27.61 (tBu), 22.82, 20.64, 20.60, 20.56, 20.51, 20.47, 20.44, 20.41, 20.34, 20.27, 20.23 (CH₃-(Ac)), 19.03 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(4-*O*-acetyl-2-*N*-acetamido-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-{2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-Dglucopyranosyl}-α-D-galactopyranosyl)-L-threonine-*tert*-butylester (57) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→3)-Ac₃Gal-(1→3)-{ β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→6)}-αGalNAc)-OtBu)

Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and finally diethyl ether. Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNHTroc-(1 \rightarrow 6)]-

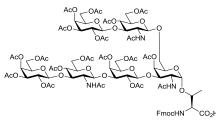
αAcGalNAc)-O*t*Bu **56** (2.68 g, 1.10 mmol) was dissolved in acetic acid (35 mL) and activated zinc dust (2.16 g, 16.5 mmol) was added. The reaction was stirred at 35°C for 36 h. The zinc

was filtered off and washed with acetic acid. The filtrate was co-evaporated with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (30 mL, 2:1). Then 4-(dimethylamino)pyridine was added (7 mg, 0.06 mmol) and stirred for 17 h. The solvent was removed by co-evaporation with toluene *in vacuo* and the crude product purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 40:1).

Yield: 1.91 g (0.88 mmol, 80%), colorless, amorphous solid, $[\alpha]_D^{20}$ +26.53 (c = 0.49, CHCl₃), R_f = 0.30 (EtOAc/MeOH 25:1).

 $C_{97}H_{128}N_4O_{51}$ (M = 2166.05 g/mol) [2164.75].

MALDI-TOF-MS (dhb, pos), m/z: 2187.62 ([M+Na]⁺, calc. 2187.74), 2203.58 ([M+K]⁺, calc. 2203.72).


HR-ESI-MS (pos), m/z: 1083.8874 ([M+2H]²⁺, calc. 1083.8868), 1102.8611 ([M+K+H]²⁺, calc. 1102.8647).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 7.91-7.88 (m, 2H, H-4-, H-5-Fmoc), 7.79 (d, ³*J*(NH",H-2")) = 7.6 Hz, 1H, NH"-Ac), 7.77-7.73 (m, 2H, H-1-, H-8-Fmoc), 7.69 (d, ³*J*(NH",H-2")) = 9.3 Hz, 1H, NH"-Ac), 7.56 (d, ³*J*(NH,H-2)) = 10.0 Hz, 1H, NH-Ac), 7.44-7.39 (m, 3H, H-2-, H-7-Fmoc, NH-Fmoc), 7.33-7.30 (m, 2H, H-3-, H-6-Fmoc), 5.25 (s_{br}, 1H, H-4'), 5.23 (m, 1H, H-4''', H-4'''), 5.21 (s_{br}, 1H, H-4), 5.09-5.06 (m, 2H, H-3''', H3"'''), 4.77-4.74 (m, 2H, H-2''', H-2''''), 4.71-4.70 (m, 2H, H-1'''', H-2'), 4.66-4.60 (m, 4H, H-1, H-1''', H-4''', H-4'''), 4.57 (d, ³*J*(H-1',H-2') = 8.0 Hz, 1H, H-1'), 4.52-4.51 (m, 1H, CH_{2a}-(Fmoc)), 4.48-4.43 (m, 2H, H-1'', CH_{2b}-(Fmoc)), 4.38-4.37 (m, 1H, H-1'''), 4.31 (t, ³*J*(H-9,CH₂) = 6.7 Hz, 1H, H-9-Fmoc), 4.18-3.96 (m, 13H, H-2, T^α, T^β, H-5, H-5''', H-5'''', H-6'_{ab}, H-6_a'', H-6'''_{ab}, H-6'''_{ab}), 3.90-3.89 (m, 2H, H-6_b''), 3.85-3.83 (m, 1H, H-5'), 3.80-3.73 (m, 7H, H-2'''', H-3, H-6''''_{ab}), 4.30'', H-5'''', H-5'''', H-5'''', H-5'''', H-5'''', H-5'''', H-3''', H-3''', H-3''', H-5''', H-5'''', H-5''', S.20'', A.34-3.32 (m, 1H, H-6_b), 2.09, 2.05, 2.02-1.98, 1.91, 1.90, 1.88, 1.85, 1.83, 1.81 (m, 57H, CH₃-(Ac)), 1.34 (s, 9H, *t*Bu), 1.13 (d, ³*J*(T^v, T^β) = 6.1 Hz, 3H, T^v).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 170.10, 170.04, 169.99, 169.92, 169.89, 169.63, 169.50, 169.39, 169.27, 169.16, 168.93, 168.86, 168.81, 168.75 (C=O-(Ac), C=O-(*t*Bu)), 156.80 (C=O-(Fmoc)), 143.73, 143.67 (C-1_a-, C-8_a-Fmoc), 140.82, 140.78 (C-4_a, C-5_a-Fmoc), 127.73, 127.70 (C-2-, C-7-Fmoc), 127.06, 127.03 (C-3-, C-6-Fmoc), 125.28, 125.12 (C-1-, C-8-Fmoc), 120.21, 120.15 (C-4-, C-5-Fmoc), 100.97 (C-1^{III}), 100.70 (C-1^{II}), 100.53 (C-1^I), 99.97 (C-1^{IIII}), 99.92 (C-1^{III}), 98.33 (C-1), 81.42 (C_q-tBu), 77.85 (C-3^{IIII}), 77.19 (C-3^I), 76.47 (C-3^{III}), 73.58 (T^β), 73.30 (C-3), 70.57 (C-5^{IIII}), 70.52, 70.48 (C-3^{IIII}, C-3^{IIII}), 70.29, 70.16 (C-5^{III}, C-5^{IIII}), 69.16 (C-6), 68.98 (C-4^I), 68.68 (C-5), 68.63, 68.56 (C-2^{IIIII}, C-4^{IIII}), 68.47, 68.46 (C-2^{IIII}, C-4^{IIII}), 67.17 (C-4^{IIII}, C-4^{IIIII}), 65.60 (CH₂-(Fmoc)), 62.03 (C-6^{IIII}_{ab}), 61.66 (C-6^{II}_{ab}), 61.46 (C-6^{III}_{ab}), 61.12 (C-6^{IIII}_{ab}), 61.05 (C-6^{IIIII}_{ab}), 59.51 (T^α), 54.22 (C-2^{III}), 53.62 (C-2^{IIII}), 47.72 (C-2),

46.78 (C-9-Fmoc), 27.57 (*t*Bu), 22.91, 22.82, 22.81, 20.76, 20.67, 20.58, 20.52, 20.47, 20.43, 20.39, 20.35, 20.31 (CH₃-(Ac)), 19.17 (Τ^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(4-*O*-acetyl-2-*N*-acetamido-2-deoxy-3-*O*-{2,4,6-*O*-acetyl-3-*O*-[2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-{2-*N*-acetamido-4,6-*O*-acetyl-2-deoxy-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-Dglucopyranosyl}-α-D-galactopyranosyl)-L-threonine (58) (Fmoc-Thr(β Ac₄Gal-(1→3)- β Ac₂GlcNAc-(1→3)-Ac₃Gal-(1→3)-{ β Ac₄Gal-(1→3)-} β Ac₂GlcNAc-(1→6)}-αGalNAc-OH)

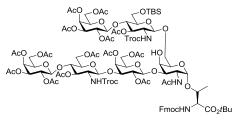
Trifluoroacetic acid (15 mL) was added to a solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNAc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 3)- β Ac₂GlcNAc-(1 \rightarrow 6)]- α AcGalNAc)-O*t*Bu **57** (1.82 g, 0.84 mmol) and anisole (2 mL) in dichloromethane (5 mL) and the reaction mixture was stirred for 3 h. The solvent was removed by co-evaporation with toluene. The crude product was purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

Yield: 1.63 g (0.77 mmol, 92%), colorless, amorphous solid, $[\alpha]_D^{20}$ +34.36 (c = 1.00, CHCl₃), R_f = 0.12 (EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

 $C_{93}H_{120}N_4O_{51}$ (M = 2109.94 g/mol) [2108.69].

MALDI-TOF-MS (dhb, pos), m/z. 2132.06 ([M+Na]⁺, calc. 2132.93), 2148.01 ([M+K]⁺, calc. 2148.66).

HR-ESI-MS (pos), m/z: 1055.8560 ([M+2H]²⁺, calc. 1055.8555), 1074.8302 ([M+K+H]²⁺, calc. 1074.8334).


¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm): δ = 12.20 (s, 1H, COOH), 7.91 (m, 2H, H-4-, H-5-Fmoc), 7.81-7.79 (m, 1H, NH'''-Ac), 7.77-7.73 (m, 3H, H-1-, H-8-Fmoc, NH''-Ac), 7.45-7.41 (m, 3H, H-2-, H-7-Fmoc, NH-Ac), 7.34-7.30 (m, 3H, H-3-, H-6-Fmoc, NH-Fmoc), 5.25 (d, ³*J*(H4',H3') = 3.5 Hz, 1H, H-4'), 5.23-5.22 (m, 2H, H-4''', H-4''''), 5.21 (s, 1H, H-4), 5.09-5.06 (m, 2H, H-3''', H-3''''), 4.77-4.73 (m, 2H, H-2''', H-2''''), 4.72-4.69 (m, 2H, H-1'''', H-2'), 4.67-4.60 (m, 4H, H-1, H-1''', H-4''', H-4''''), 4.56 (d, ³*J*(H1',H2') = 8.1 Hz, 1H, H-1'), 4.52 (dd, ²*J*(CH_{2a},CH_{2b}) = 10.8 Hz, ³*J*(CH_{2a},H-9) = 6.7 Hz, 1H, CH_{2a}-(Fmoc)), 4.38-(m, 1H, H-1''), 4.43 (dd, ²*J*(CH_{2b},CH_{2a}) = 11 Hz, ³*J*(CH_{2b},H-9) = 6.9 Hz, 1H, CH_{2b}-Fmoc), 4.38-

4.37 (m, 1H, H-1""), 4.31 (t, ${}^{3}J$ (H-9,CH₂) = 6.8 Hz, 1H, H-9-Fmoc), 4.24-4.22 (m, 1H, T^β), 4.15-4.04 (m, 8H, H-2, T^α, H-5", H-6", H-6'a, H-6"a, H-6"a, H-6"a), 4.03-3.95 (m, 5H, H-5, H-6'b, H-6"b, H-6"b, H-6"b), 3.91-3.84 (m, 3H, H-5', H-6""ab) 3.82-3.71 (m, 7H, H-2"", H-6a, H-5"", H-3, H-3', H-3", H-3""), 3.70-3.66 (m, 1H, H-5"), 3.51 (s_{br}, 1H, H-2"), 3.32-3.30 (m, 1H, H-6b), 2.09, 2.04, 2.01, 2.00, 1.99, 1.98, 1.97, 1.91, 1.88, 1.85, 1.81 (m, 57H, CH₃-(Ac)), 1.12 (d, ${}^{3}J$ (T^{γ}, T^{β}) = 6.2 Hz, 3H, T^{γ}).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)=39.51 ppm): δ = 170.09, 170.05, 169.99, 169.92, 169.87, 169.59, 169.50, 169.38, 169.26, 169.16, 169.08, 169.08, 168.93, 168.92, 168,71 (C=O-(Ac)), 156.76 (C=O-(Fmoc)), 143.76, 143.70 (C-1_a-, C-8_a-Fmoc), 140.81, 140.75 (C-4_a, C-5_a-Fmoc), 127.70, 127.67 (C-2-, C-7-Fmoc), 127.06 (C-3-, C-6-Fmoc), 125.29, 125.14 (C-1-, C-8-Fmoc), 120.19, 120.13 (C-4-, C-5-Fmoc), 100.90 (C-1^{III}), 100.68 (C-1^{II}), 100.57 (C-1^I), 99.94, 99.91 (C-1^{III}, C-1^{IIII}), 98.33 (C-1), 77.81 (C-3^{IIII}), 77.20 (C-3^{II}), 76.49 (C-3^I), 73.92 (T^β), 73.46 (C-3), 70.60, 70.56 (C-3^{III}, C-3^{IIIII}) 70.51 (C-5^{IIII}), 70.30, 70.18 (C-4, C-5^{II}), 69.62 (C-2^{II}), 69.47 (C-5^{IIII}, C-5^{IIIII}), 68.96 (C-4^I, C-6), 68.70 (C-5), 68.62, 68.55, (C-2^{IIII}, C-2^{IIIII}), 61.71 (C-6^{III}), 61.10 (C-6^{III}), 61.03 (C-6^{IIIII}), 58.52 (T^α), 54.20 (C-2^{III}), 53.66 (C-2^{IIII}), 47.85 (C-2), 46.77 (C-9-Fmoc), 22.86, 22.82, 22.76, 20.76, 20.57, 20.51, 20.47, 20.45, 20.43, 20.38, 20.34, 20.30 (CH₃-(Ac)), 18.77 (T^Y).

7.1.12 Synthesis of the extended type-2core 2 amino acid

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[3,6-*O*-acetyl-2-*N*-(2,2,2-trichloroethoxycarbonylamino)-4-*O*-(2,3,4,6tetra-*O*-acetyl-β-D-galactopyranosyl)-2-deoxy-β-D-glucopyranosyl]-β-Dgalactosylpyranosyl}-6-*O*-[3-*O*-acetyl-2-deoxy-6-*O*-*tert*-butyldimethylsilyl-2-*N*-(2,2,2-trichloroethoxycarbonylamino)-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)β-D-glucopyranosyl]-α-D-galactosylpyranosyl)-L-threonine-*tert*-butylester (59) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂-TBS-GlcNHTroc-(1→3)- β Ac₃Gal-(1→3)-[β Ac₄Gal-(1→4)- β Ac₂-TBS-GlcNHTroc-(1→6)]- α GalNAc)-O*t*Bu)

 $\label{eq:Fmoc-Thr} \begin{array}{ll} \mathsf{Fmoc-Thr}(\beta Ac_4 Gal - (1 \rightarrow 4) - \beta Ac_2 - \mathsf{TBS-GlcNHTroc} - (1 \rightarrow 3) - \beta Ac_3 Gal - (1 \rightarrow 3) - \beta GalNAc) - O\mathit{t}\mathsf{Bu} \\ \begin{array}{ll} \textbf{52} \end{array} \\ \begin{array}{ll} \mathsf{694} \mbox{ mg}, \ 0.42 \mbox{ mmol}) \mbox{ and } \beta Ac_4 Gal - (1 \rightarrow 4) - \beta Ac - \mathsf{TBS-GlcNTroc} - \mathsf{SPh} \ \textbf{31} \ (515 \mbox{ mg}, \ 0.55 \mbox{ mmol}) \end{array} \\ \end{array}$

were dissolved in dry dichloromethane (15 mL) and 0.6 g of activated molecular sieves 4Å were added under argon atmosphere. The suspension was stirred for 1 h before and then cooled in an ice bath. *N*-iodosuccinimide (124 mg, 0.55 mmol) was added followed by the dropwise addition of a suspension of trifluoromethanesulfonic acid (7.5 µmol, 0.09 mmol) in dry dichloromethane (100 µL) *via* a syringe. After 3 h the reaction was treated with another addition of β Ac₄Gal-(1→4)- β Ac-TBS-GlcNTroc-SPh **31** (119 mg, 0.13 mmol) and *N*-iodosuccinimide (28 mg, 0.13 mmol). The reaction was stirred further for 3.5 h under argon atmosphere and ice-cooling. The molecular sieves were filtered off and washed with dichloromethane. More dichloromethane was added (total volume of 120 mL). The dichloromethane phase was washed with of 0.5 M sodium thiosulfate solution, saturated sodium bicarbonate, water and brine (30 mL each). The organic phase was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica (^cHex/EtOAc 1:1→1:3).

Yield: 722 mg (0.29 mmol, 69%), colorless, amorphous solid, $[\alpha]_D^{20}$ +20.27 (c = 0.49, CHCl₃), R_f = 0.39 (Tol/EtOAc 1:3).

 $C_{101}H_{136}CI_6N_4O_{51}Si (M = 2462.96 \text{ g/mol}) [2458.61].$

MALDI-TOF-MS (dhb, pos), m/z: 2500.72 ([M+K]⁺, calc. 2500.57).


HR-ESI-MS (pos), m/z: 1250.7862 ([M+K+H]²⁺, calc. 1250.7896).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm: δ = 7.92-7.88 (m, 2H, H-4-, H-5-Fmoc), 7.81-7.73 (m, 4H, H-1-, H-8-Fmoc, 2 N-H-Troc), 7.46-7.38 (m, 4H, H-2-, H-7-Fmoc, N-H-Ac, N-H-Fmoc), 7.34-7.30 (m, 2H, H-3-, H-6-Fmoc), 5.32 (s_{br}, 1H, H-4'), 5.25 (d, *J*_{H-4^{-m},H-3^{-m}} = 3.6 Hz, 1H, H-4^{-m}), 5.22 (d, *J*_{H-4^{-m},H-3^{-m}} = 3.6 Hz, 1H, H4^{-m}), 5.16 (dd, *J*_{H-3^{-m},H-4^{-m}} = 3.6 Hz, *J*_{H-3^{-m},H-2^{-m}} = 10.2 Hz, 1H, H3^{-m}), 5.08 (dd, *J*_{H-3^{-m},H-4^{-m}} = 3.6 Hz, *J*_{H3^{-m},H-2^{-m}} = 10.3 Hz, 1H, H-3^{-m}), 4.98-4.88 (m, 4H, H-3^{-m}, H-3^{-m}, CH_{2a}^{-m}-(Troc), CH_{2a}^{-m}-(Troc)), 4.86-4.80 (m, 3H, H-2⁻, H-2^{-m}), 4.72-4.69 (m, 2H, H-1^{-m}, H-1^{-m}), 4.63-4.59 (m, 2H, H-1^{-m}, CH_{2b}^{-m}-(Troc)), 4.32 (t, *J*_H-9,CH2ab</sub> = 6.6 Hz, 1H, H-9-(Fmoc)), 4.27-4.25 (m, 1H, H-6_a^{-m}), 4.23-4.19 (m, 2H, H-2, H-5^{-m}), 4.08 (m, 10H, H-5^{-mm}, H-6_{ab}⁻, H-6_{ab}^{-mm}, H-6_{ab}^{-mm}, T^α, T^β), 3.88-3.85 (m, 1H, H-5^{-mm}), 3.84-3.73 (m, 8H, H-3^{-s}, H-4^{-mm}, H-5^{-mm}, H-6_{ab}^{-mm}, H-6_{ab}^{-mm}, H-6_{ab}^{-mm}), 3.68 (t, *J*_{H-4^{-mm},H-3^{-mm}} = 9.3 Hz, 1H, H-4^{-mm}), 2.10-1.84 (m, 45H, CH₃-(Ac)), 1.35 (s, 9H, *t*Bu-(Thr)), 1.09 (d, *J*_{Tγ,Tβ} = 6.1 Hz, 3H, T^V), 0.88 (s, 9H, *t*Bu-(TBS)), 0.07, 0.06 (each s, 3H, 2 Me-(TBS)).}

¹³C NMR (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 170.30, 169.86, 169.68, 169.40, 169.51, 169.45, 169.27, 169.07, 169.00, 168.80, 168.66 (C=O-(Ac), C=O-(*t*Bu)), 156.76 (C=O-(Fmoc)), 154.13, 154.01 (2 C=O-(Troc)), 143.71, 143.66 (C-1_a-, C-8_a-Fmoc), 140.83, 140.79 (C-4_a-, C-5_a-Fmoc), 127.66 (C-2-, C-7-Fmoc), 127.03 (C-3-, C-6-Fmoc), 125.24, 125.14 (C-1-, C-8-Fmoc), 120.23, 120.17 (C-4-, C5-Fmoc), 101.48 (C-1'),

100.53 (C-1"), 100.00 (C-1"', C-1""), 99.63 (C-1""), 99.10 (C-1), 96.16, 96.07 (C_{quart} -(Troc)), 81.40 (C_{quart} -(tBu)), 78.22 (C-3'), 76.78 (C-3), 75.89 (C-4"), 74.75 (C-4""), 74.52 (C-5""), 74.21 (T^β), 73.40 (CH_{2ab}"-(Troc)), 73.31 (CH_{2ab}""-(Troc)), 72.80 (C-3", C-3""), 71.53 (C-5"), 70.65 (C-5'), 70.26 (C-3", C-3"", C-5), 70.04 (C-6_{ab}), 69.94 (C-5""), 69.60 (C-5""), 69.20 (C-4'), 68.99, 68.92 (C-2', C-2", C-2""), 68.58 (C-4), 67.10 (C-4""), 67.03 (C-4"), 65.57 (CH_{2ab}-(Fmoc)), 61.92 (C-6_{ab}), 61.76 (C-6_{ab}"), 61.06 (C-6_{ab}"", C-6_{ab}""), 60.82 (C-6_{ab}"), 59.57 (T^α), 55.78 (C-2"), 55.60 (C-2""), 46.94 (C-2), 46.80 (C-9-(Fmoc)), 27.64 (*t*Bu-(Thr)), 25.76 (*t*Bu-(TBS)), 22.99, 20.69-20.33 (CH₃-(Ac)), 18.86 (T^γ), 17.96 (C_{quart}-(TBS), -5.23, -5.31 (2 Me(TBS)).

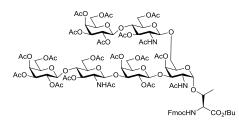
N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-4-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[3,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonylamino)-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-Dgalactopyranosyl}-6-*O*-[3,6-*O*-acetyl-2-deoxy-2-*N*-(2,2,2-trichloroethoxycarbonyl)-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-α-Dgalactopyranosyl)-L-threonine-*tert*-butylester (60) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNHTroc-(1→3)- β Ac₃Gal-(1→3)-[β Ac₄Gal-(1→4)- β Ac₂-GlcNHTroc-(1→6)]-αAcGalNAc)-O*t*Bu)

A solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac2-TBS-GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 4)- β Ac₂-TBS-GlcNHTroc-(1 \rightarrow 6)]- α GalNAc)-O*t*Bu **59** (1.66 g, 0.67 mmol) in of 80% acetic acid (18 mL) was stirred for 20 h at 40°C. The solvent was removed by coevaporation with toluene *in vacuo*. The residue was dissolved in pyridine (20 mL) and cooled in an ice bath. Then 4-(dimethylamino)pyridine (8 mg, 0.07 mmol) and acetic anhydride (10 mL) were added and the solution was stirred 18 h. The crude product was purified by flash column chromatography on silica (^CHex/acetone 3:2 \rightarrow 4:3).

Yield: 1.48 g (0.61 mmol, 91%), colorless, amorphous solid, $[\alpha]_D^{20}$ +24.30 (c = 1.00, CHCl₃), R_f = 0.48 (Tol/EtOAc 1:2).

 $C_{99}H_{126}CI_6N_4O_{53}$ (M = 2432.77 g/mol) [2428.54].

MALDI-TOF-MS (dhb, pos), m/z. 2455.04 ([M+Na]⁺, calc. 2455.76), 2471.01 ([M+K]⁺, calc. 2471.87).


HR-ESI-MS (pos), m/z: 1216.7809 ([M+2H]²⁺, calc. 1216.7790).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm: δ = 7.91-7.89 (m, 2H, H-4-, H-5-Fmoc), 7.76-7.72 (m, 4H, H-1-, H-8-Fmoc, 2 N-H-Troc), 7.45-7.41 (m, 4H, H-2-, H-7-Fmoc, N-H-Ac, N-H-Fmoc), 7.33-7.31 (m, 2H, C-3-, C-6-Fmoc), 5.29 (S_{br}, 1H, H-4'), 5.23-5.21 (m, 3H, H-4, H-4''', H-4''''), 5.17-5.14 (m, 2H, H-3''', H-3''''), 4.97-4.89 (m, 3H, H-3'', H-3'''', CH_{2a}''-(Troc)), 4.91-4.89 (m, 1H, CH_{2a}'''-(Troc)), 4.83-4.80 (m, 2H, H-2''', H-2''''), 4.73-4.70 (m, 3H, H-1''', H-1'''', H-2'), 4.63-4.55 (m, 4H, H-1, H-1', H-1'', CH_{2b}'''-(Troc)), 4.51-4.47 (m, 4H, H-1''', CH_{2b}''-(Troc), CH_{2ab}-(Fmoc)), 4.32-4.27 (m, 3H, H-9-(Fmoc), H-6a'', H-6a''''), 4.22-4.19 (m, 2H, H-5''', H-5''''), 4.14-4.09 (m, 3H, H-2, H-6b'', T^β), 4.05-3.99 (m, 6H, H-5'''', H-6_{ab}'''', H-6_{ab}'''', H-6_{ab}'''', T^α), 3.94-3.88 (m, 3H, H-6_{ab}', H-6_b''''), 3.81-3.76 (m, 3H, H-3, H-3', H-6a), 3.71-3.65 (m, 2H, H-4'''), 3.61-3.58 (m, 1H, H-5'''), 3.53-3.50 (m, 1H, H-5'''), 3.44 (q, J_H. 2^m,H-3^m = J_{H-2^m,H-4^m} = J_{H-2^m,N-H} = 11.5 Hz, 1H, H-2'''), 3.35-3.27 (m, 2H, H-2'', H-6_b), 2.09-1.82 (m, 51H, CH₃(Ac)), 1.35 (s, 9H, *t*Bu), 1.13 (d, J_{TY,Tβ} = 7.7 Hz, 3H, T^V).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 170.28, 169.97, 169.90, 169.87, 169.60, 169.51, 169.30, 169.23, 169.19, 169.09, 168.80, 168.75 (C=O-(Ac), C=O-(*t*Bu)), 156.80 (C=O-(Fmoc)), 154.15, 153.99 (2 C=O-(Troc)), 143.75, 143.65 (C-1_a-, C-8_a-Fmoc), 140.82, 140.78 (C-4_a-, C-5_a), 127.72, 127.67 (C-2-, C-7-Fmoc), 127.03 (C-3-, C-6-Fmoc), 125.24, 125.13 (C-1-, C-8-Fmoc), 120.22, 120.17 (C-4-, C-5-Fmoc), 100.63 (C-1"), 100.55 (C-1'), 100.05 (C-1""), 99.99, 99.89 (C-1"", C-1""), 99.76 (C-1), 96.09, 96.02 (2 C_{quart}-(Troc)), 81.49 (C_{quart}-(*t*Bu)), 77.62 (C-3'), 76.37 (C-4""), 75.93 (C-4"), 74.28 (T^β), 73.37, 73.34 (C-3, CH_{2ab}"-(Troc)), 73.34 (CH_{2ab}"'-(Troc)), 72.72 (C-3", C-3""), 71.75 (C-5"), 71.46 (C-5""), 70.22 (C-4, C-3"", C-2""), 68.87 (C-5), 67.04 (C-4"", C-4""), 65.62 (CH_{2ab}-(Fmoc)), 62.19 (C-6_{ab}"), 61.81, 61.69 (C-6_{ab}', C-6_{ab}""), 60.87, 60.81 (C-6_{ab}"', C-6_{ab}""), 59.53 (T^α), 55.79 (C-2"), 55.64 (C-2""), 47.57 (C-2), 46.77 (C-9-Fmoc), 27.63 (*t*Bu), 22.84, 20.64-20.32 (CH₃-(Ac)), 18.85 (T^γ).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-4-*O*-acetyl-2-deoxy-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-

tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-α-D-galactopyranosyl)-L-threonine-*tert*-butylester (61) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNAc-(1→3)- β Ac₃Gal-(1→3)-[β Ac₄Gal-(1→4)- β Ac₂-GlcNAc-(1→6)]- α AcGalNAc)-O*t*Bu)

Zinc dust was activated by treatment with 1 N hydrochloric acid for a few minutes followed by washing with water, methanol and finally diethyl ether. Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcNHTroc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 4)- β Ac₂-GlcNHTroc-(1 \rightarrow 6)]-

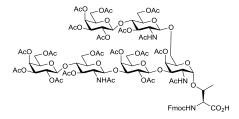
 α AcGalNAc)-O*t*Bu) **60** (2.20 g, 0.90 mmol) was dissolved in acetic acid (30 mL) and preactivated zinc (1.18 g, 18.0 mmol) was added. The reaction was stirred at 40°C for 36 h. The solid was filtered off and washed with acetic acid. The filtrate was co-evaporated with toluene *in vacuo*. The residue was dissolved in pyridine/acetic anhydride (30 mL, 2:1). Then 11 mg (0.09 mmol) 4-(dimethylamino)pyridine was added and stirred for 18 h. The solvent was removed by co-evaporation with toluene *in vacuo* and the crude product purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH 20:1).

Yield: 1.46 g (0.68 mmol, 75%), colorless, amorphous solid, $[\alpha]_D^{20}$ +21.05 (c = 0.51, CHCl₃), R_f = 0.21 (EtOAc/MeOH 15:1).

 $C_{97}H_{128}N_4O_{51}$ (M = 2166.05 g/mol) [2164.75].

MALDI-TOF-MS (dhb, pos), m/z: 2204.37 ([M+K]⁺, calc. 2204.15).

HR-ESI-MS (pos), m/z: 1083.8872 ([M+2H]²⁺, calc. 1083.8868).


¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ (H)= 2.50 ppm: δ = 7.91-7.89 (m, 2H, H-4-, H-5-Fmoc), 7.81-7.78 (m, 2H, N-H"-Ac, N-H""-Ac), 7.76-7.72 (m, 2H, H-1-, H-8-Fmoc), 7.52 (d, $J_{N-H,H-2}$ = 9.7 Hz, 1H, N-H-Ac), 7.45-7.41 (m, 2H, H-2-, H-7-Fmoc), 7.40-7.38 (m, 1H, N-H-Fmoc), 7.34-7.29 (m, 2H, H-3-, H-6-Fmoc), 5.27 (d, ³*J*(H4',H3') = 3.7 Hz, 1H, H-4'), 5.23-5.21 (m, 2H, H-4"", H-4""), 5.19 (d, ³*J*(H-4,H-3) = 1.9 Hz, 1H, H-4), 5.18-5.15 (m, 2H, H-3"", H-3""), 5.00 (t, ³*J*(H-3",H-4") = ³*J*(H-3",H-2") = 9.3 Hz, 1H, H-3", 4.91 (t, ³*J*(H-3"",H-4"") = ³*J*(H-3"",H-2"") = 9.3 Hz, 1H, H-3"", 4.73-4.67 (m, 4H, H-1", H-1"", H-1"", H-1"", H-2"), 4.60 (d, ³*J*(H-1,H-2) = 4.1 Hz 1H, H-1), 4.56 (d, ³*J*(H-1',H-2') = 8.0 Hz, 1H, H-1'), 4.52-4.45 (m, 3H, H-1"", CH_{2ab}-(Fmoc)), 4.33-4.26 (m, 3H, H-6_a", H-6_a"", H-9-Fmoc), 4.22-4.19 (m, 2H, H-5"", H-5""), 4.15-4.11 (m, 2H, H-2, T^β), 4.08-4.05 (m, 1H, H-6_b"), 4.02-

3.98 (m, 6H, H-5"", H-6_{ab}", H-6_{ab}"", T^{α}), 3.94-3.89 (m, 3H, H-6_{ab}', H-6_b""), 3.84 (t, ³J(H-5',H-6') = 5.9 Hz, 1H, H-5'), 3.80-3.74 (m, 3H, H-3', H-3"", H-6_a), 3.70-3.63 (m, 4H, H-2"", H-4", H-4"", H-5"), 3.56-3.54 (m, 1H, H-5""), 3.39 (q, ³J(H-2",H-1") = ³J(H-2",H-3") = ³J(H-2",N-H) = 9.3 Hz, 1H, H-2"), 3.31-3.27 (m, 1H, H-6_b), 2.09-1.69 (m, 57H, CH₃-(Ac)), 1.34 (s, 1H, *t*Bu), 1.11 (d, $J_{T\gamma,T\beta}$ = 6.3 Hz, 3H, T^{γ}).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 170.28, 170.24, 170.00, 169.90, 169.87, 169.59, 169.51, 169.42, 169.42, 169.37, 169.34, 169.12, 169.10, 169.01, 168.01, 168.87, 168.83 (C=O-(Ac), C=O-(*t*Bu)), 156.80 (C=O-(Fmoc))), 143.73, 143.66 (C-1_a-, C-5_a-Fmoc), 140.82, 140.78 (C-4_a-, C-5_a-Fmoc), 127.73, 127.69 (C-2-, C-7-Fmoc), 127.03 (C-3-, C-6-Fmoc), 125.25, 125.12 (C-1-, C-8-Fmoc), 120.22, 120.17 (C-4-, C-5-Fmoc), 100.51 (C-1'), 100.42 (C-1'''), 100.02, 99.99, 99.91 (C-1'', C-1''', C-1''''), 98.44 (C-1), 81.43 (C_{quart}-(*t*Bu)), 76.81 (C-3'), 76.49 (C-4'''), 76.13 (C-4''), 73.77 (T^β), 73.37 (C-3, C-3''''), 72.72 (C-3''), 71.68 (C-5''), 71.43 (C-5'''), 70.22, 70.16, 70.05 (C-3''', C-3''''', C-4, C-5'), 69.62, 69.56 (C-5''', C-5'''''), 69.45 (C-2'), 69.13 (C-6_{ab}), 68.99 (C-4'), 68.93, 68.91 (C-2''', C-2'''''), 68.59 (C-5), 67.03, 67.02 (C-4''', C-4''''), 55.48 (T^α), 53.96 (C-2''), 53.08 (C-2'''), 47.67 (C-2), 46.77 (C-9-(Fmoc)), 27.57 (*t*Bu), 22.81, 22.68, 22.62, 20.64-20.33 (CH₃-(Ac)), 19.00 (T^Y).

N-(9H-fluoren-9-yl)-methoxycarbonyl-*O*-(2-acetamido-2-deoxy-4-*O*-acetyl-3-*O*-{2,4,6-tri-*O*-acetyl-3-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranosyl}-6-*O*-[2-acetamido-3,6-*O*-acetyl-2-deoxy-4-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-β-D-glucopyranosyl]-α-D-galactopyranosyl)-L-threonine (62) (Fmoc-Thr(β Ac₄Gal-(1→4)- β Ac₂GlcNAc-(1→3)- β Ac₃Gal-(1→3)-[β Ac₄Gal-(1→4)- β Ac₂-

GlcNAc-(1→6)]-αAcGalNAc)-OH)

To a solution of Fmoc-Thr(β Ac₄Gal-(1 \rightarrow 4)- β Ac₂GlcNAc-(1 \rightarrow 3)- β Ac₃Gal-(1 \rightarrow 3)-[β Ac₄Gal-(1 \rightarrow 4)- β Ac₂-GlcNAc-(1 \rightarrow 6)]- α AcGalNAc)-O*t*Bu **61** (1.82 g, 0.84 mmol) in dichloromethane (5 mL) and anisole (2 mL) was added trifluoroacetic acid (15 mL) and the solution was stirred for 3 h. The solvent was removed by co-evaporation with toluene. The crude product was

purified by flash column chromatography on silica (EtOAc \rightarrow EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

Yield: 1.629 mg (0.77 mmol, 92%), colorless, amorphous solid, $[\alpha]_D^{20}$ +27.60 (c = 1.00, CHCl₃), R_f = 0.23 (EtOAc/MeOH/AcOH/H₂O 50:3:3:2).

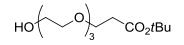
HR-ESI-MS (pos), m/z: 1055.8560 ([M+2H]²⁺, calc. 1055.8555), 1074.8311 ([M+K+H]²⁺, calc. 1074.8334).

¹*H NMR* (600 MHz, [D₆]DMSO, 30°C, internal DMSO δ(H)= 2.50 ppm: δ = 7.91-7.90 (m, 2H, H-4-, H-5-Fmoc), 7.83-7.79 (m, 2H, NH^{III}-Ac, NH^{IIII}-Ac), 7.77-7.73 (m, 2H, H-1-, H-8-Fmoc), 7.45-7.41 (m, 3H, NH-Ac, H-2-, H-7-Fmoc), 7.34-7.31 (m, 3H, NH-Fmoc, H-3-, H-6-Fmoc), 5.28 (d, ³*J*(H-4',H-3') = 3.5 Hz, 1H, H-4'), 5.23-5.22 (m, 1H, H-4''', H-4''''), 5.20 (d, 1H, H-4), 5.18-5.15 (m, 2H, H-3''', H-3''''), 5.00 (t, ³*J*(H-3'',H-2'') = ³*J*(H-3'',H-4''), 1H, H-3'') = 9.5 Hz), 4.91 (t, ³*J*(H-3'''',H-2'''') = ³*J*(H-3'''',H-4'''') = 9.5 Hz, 1H, H-3''''), 4.85-4.82 (m, 2H, H-2''', H-2''''), 4.73-4.68 (m, 4H, H-1'', H-1'''', H-2''), 4.64 (d, ³*J*(H-1,H-2) = 4.1 Hz, 1H, H-1), 4.56 (d, ³*J*(H-1',H-2') = 7.9 Hz 1H, H-1'), 4.52-4.43 (m, 3H, H-1''', CH_{2ab}-(Fmoc)), 4.32-4.30 (m, 2H, H-9-Fmoc, H-6'''a), 4.28-4.26 (m, 1H, H-6''a), 4.23-4.20 (m, 3H, H-5''', H-5'''', T^β), 4.12-4.05 (m, 3H, H-2, H-6'''a), 4.02-3.98 (m, 4H, H-6'''ab, H-6''''ab), 3.94-3.85 (m, 3H, H-6'ab, H-6''''_b, H-5'), 3.81-3.77 (m, 2H, H-3, H-3'), 3.75-3.73 (m, 1H, H-6_a), 3.71-3.63 (m, 4H, H-2'''', H-4''', H-4'''', H-5''), 3.56-3.54 (m, 1H, H-5'''), 3.41-3.36 (m, 1H, H-2''), 3.31-3.27 (m, 1H, H-6_b), 2.30, 2.09, 2.08, 2.07, 2.02, 2.01, 2.00, 1.99, 1.98, 1.95, 1.94, 1.91, 1.90, 1.89, 1.84, 1.74, 1.69 (m, 57H, CH₃-(Ac)), 1.10 (d, 3H, T^v, ³*J*(T^v, T^β) = 6.4 Hz).

¹³*C NMR* (150.9 MHz, [D₆]DMSO, 30°C, internal DMSO δ (C)= 39.52 ppm): δ = 172.02, 171.80, 170.26, 170.23, 170.00, 169.89, 169.85, 169.55, 169.50, 169.41, 169.37, 169.35, 169.11, 169.09, 169.02, 168.95, 168.83 (C=O-(Ac)), 156.80 (C=O-(Fmoc)), 143.77, 143.72 (C-1_a-, C-8_a-Fmoc), 140.82, 140.77 (C-4_a-, C-5_a-Fmoc), 127.71, 127.67 (C-2-, C-7-Fmoc), 127.06 (C-3-, C-6-Fmoc), 125.27, 125.14 (C-1-, C-8-Fmoc), 120.19, 120.14 (C-4-, C-5-Fmoc), 100.60 (C-1'), 100.37 (C-1'''), 100.03, 100.00, 99.93 (C-1'', C-1''', C-1''''), 98.46 (C-1''''), 76.82 (C-3'), 76.54 (C-4'''), 76.14 (C-4''), 74.08 (T^β), 73.47 (C-3), 73.37 (C-3'''), 72.72 (C-3''), 71.70 (C-5''), 71.47 (C-5'''), 70.25, 70.19, 70.13 (C-4, C-3''', C-3'''', C-5'), 69.65, 69.59, 69.50 (C-2', C-5'''', C-5''''), 69.00, 68.96, 68.93 (C-4', C-2''', C-2'''', C-6_{ab}), 68.57 (C-5), 67.06 (C-4''', C-4''''), 53.99 (C-2''), 53.12 (C-2'''), 47.83 (C-2), 46.80 (C9-Fmoc), 22.78, 22.65, 22.61, 21.04, 20.62, 20.61, 20.57, 20.54, 20.52, 20.49, 20.45, 20.35, 20.32, 20.30 (CH₃-(Ac)), 18.68 (T^γ).

247

7.2 Syntheses of chapter 4.2


7.2.1 General

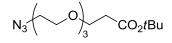
Solid phase peptide synthesis: SPPS of peptides and glycopeptides was carried out on a *Syro I* peptide synthesizer by *Multisyntech GmbH*. Solid phase resins were purchased from *Rapp Polymere GmbH*. Protected amino acid building blocks for Fmoc-SPPS (*Novabiochem®*) were purchased from *Merck KGaA*, and *Merck Schuchardt OHG*. *N*,*N*-dimethylformamide, *N*-methypyrrolidone, trifluoroacetic acid and piperidine were purchased from *Biosolve Chimie SARL*. Coupling reagents HBTU and HATU (*Novabiochem®*) were purchased from Merck KGaA. HOBt monohydrate was purchased from *Sigma-Aldrich GmbH* and recrystallized from absolute ethanol and dried at reduced pressure. HOAt was purchased from *GL Biochem*, *Shanghai*.

RP-HPLC: Analytic RP-HPLC was performed on a Dionex U-3000 (*Thermo Scientific*) system (DR-3600 six channel degasser, LPG-3x00 pump, TCC-3100 column compartment, DAD-3000 UV/VIS diode array detector, WPS-3000 autosampler). A *Luna C18(2)* column (3 μ m, 100Å, 150 x 2.0 mm) from *Phenomenex* was applied for analytical HPLC. Semi-preparative RP-HLPC was performed on the same Dionex HPLC setup as for analytical RP-HPLC with a *InertSustain C18* (5 μ m, 250 x 6.0 mm) from *GL Sciences Inc*. Preparative RP-HPLC was performed on a Dionex U-3000 system (HPG-3200P, VWD-3400 UV/VIS detector, AFC-3000 sampler). A *Luna C18(2)* column (10 μ m, 100Å, 250 x 21.2 mm) from *Phenomenex* was applied for preparative HPLC. The flow rate was set to 20 mL/min. (Glyco-)Peptides were detected at $\lambda = 214$ nm. Both systems were operated and chromatograms analyzed with *Dionex Chromeleon* (version 6.80DU10a Build 2826(171948)).

7.2.2 Synthesis of the triethylene glycol spacer amino acid

12-Hydroxy-4,7,10-trioxa-dodecanate-*tert*-butylester²⁷⁵ (63) (HO-{TEG}-COO*t*Bu)

Triethylene glycol (33.6 g, 223.7 mmol) was given into dry THF under argon atmosphere and sodium (50 mg, 2.2 mmol) was added in small portions. After the sodium had completely dissolved, *tert*-butyl-acrylate (9.3 g, 72.6 mmol) was added and stirred for 20 h. The reaction

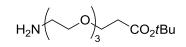

was neutralized with 1 N hydrochloric acid (2 mL) and the solvent was removed *in vacuo*. The residue was taken up with brine (70 mL) and was then extracted with ethyl acetate (four times, 50 mL each). The combined organic phases were washed with brine (30 mL), dried over magnesium sulfate and filtered. The solvent was removed *in vacuo* and the product was used further without any more purification.

Yield: 15.56 g (55.9 mmol, 77%), pale yellow liquid, R_f = 0.28 (EtOAc).

 $C_{13}H_{26}O_6$ (M = 278.34 g/mol) [278.17].

¹*H-NMR* (400 MHz, CDCl₃), *δ* (*ppm*): 3.67-3.53 (m, 14H, OCH₂), 2.96 (s, 1H, OH), 2.44 (t, 1H, 2-CH₂, $J_{CH2,CH2} = 6.5$ Hz), 1.38 (s, 9H, *t*Bu).

12-Azido-4,7,10-trioxa-dodecanate-*tert*-butylester²⁷⁶ (64) (N₃-{TEG}-COO*t*Bu)


A solution of 12-hydroxy-4,7,10-trioxa-dodecansäure-*tert*-butylester **63** (15.12 g, 54.3 mmol) and triethylamine (20.1 mL, 145.3 mmol) in 20 mL dry dichloromethane was cooled in an icebath and methanesulfonyl chloride (10.1 mL, 132.3 mmol) was added dropwise. After stirring for 5 h, the mixture was filtered over *Celite*® and washed with dichloromethane (100 mL). The filtrate was washed with ice-water (60 mL) and with brine (two times, 50 mL). The organic phase was dried over magnesium sulfate, filtered and the solvent removed *in vacuo*. The residue was taken up with *N,N*-dimethylformamide (20 mL) and sodium azide (21.72 g, 333.8 mmol) was added. The reaction was stirred at 60°C for 18 h. The solvent was removed *in vacuo* and the residue was taken up with water (80 mL). The aqueous phase was extracted with diethyl ether (three times). The combined ether phases were dried over magnesium sulfate, filtered and the solvent removed *in vacuo*.

Yield: 10.92 g (36.1 mmol, 67%) colorless oil, $R_f = 0.23$ (^CHex/EtOAc).

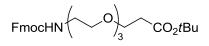
 $C_{13}H_{25}N_3O_5$ (M = 303.35 g/mol) [303.18].

ESI-MS (pos), m/z: 326.07 ([M+H]⁺, calc. 326.34).

¹*H-NMR* (400 MHz, CDCl₃), *δ (ppm)*: 3.68-3.57 (m, 12H, 6 x OCH₂), 3.36 (t, 2H, 12-OCH₂), 2.47 (t, 2H, 2-CH₂), 1.42 (s, 9H, *t*Bu).

To a suspension of a nickel-aluminum alloy (*Raney-Nickel*, 8.5 g) in water (250 mL), were given sodium hydroxide pellets until no further gas generation could be observed. The water was decanted and the solid washed with water until the supernatant remained neutral. Then it was washed several times with 2-propanol. The *Raney-Nickel* was given to a solution of N₃-{TEG}-COO*t*Bu **64** (10.81 g, 35.6 mmol) in 2-propanol (80 mL). The reaction flask was evacuated several times via a membrane pump in order to remove dissolved air, before the flask was flushed with hydrogen and stirred for 16 h. The *Raney-Nickel* was filtered off over *Celite*® and the solvent was removed *in vacuo*. The crude product was purified by flash column chromatography on silica (Et₂O→Et₂O/MeOH 1:1).

Yield: 6.69 g (24.1 mmol, 68%), yellow oil.

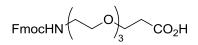

 $C_{13}H_{27}NO_5$ (M = 277.36 g/mol) [277.19].

ESI-MS (pos), m/z: 278.07 ([M+H]⁺, calc. 278.36).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 3.63 (t, 2H, 3-CH₂, $J_{CH2,CH2} = 6.5$ Hz), 3.59-3.52 (m, 8H, 4 x OCH₂), 3.43 (t, 2H, OCH₂, $J_{CH2,CH2} = 5.3$ Hz), 2.79 (t, 2H, OCH₂, $J_{CH2,CH2} = 5.2$ Hz), 2.42 (t, 2H, OCH₂, $J_{CH2,CH2} = 6.5$ Hz), 1.71 (s_{br}, 2H, NH₂), 1.36 (s, 9H, *t*Bu).

N-(9H-Fluoren-9-yl)-methoxycarbonyl-amido-4,7,10-trioxa-dodecanate-*tert*-butylester²⁴⁰ (66)

(FmocHN-{TEG}-CO2tBu)


To a solution of H_2N -{TEG}-CO₂*t*Bu **65** (6.38 g, 23.0 mmol) in a mixture of water and acetone (160 mL, 1:1) was added sodium bicarbonate (2.10 g, 25.0 mmol). Fmoc-OSu (8.00 g, 23.7 mmol) was added in portions to the solution and the reaction was stirred for 18 h. Then, the reaction was acidified to pH 6 using 6 N hydrochloric acid. The acetone was removed *in vacuo* and the remaining aqueous phase was extracted with dichloromethane (four times, 100 mL each). The combined organic phases were dried over magnesium sulfate, filtered and the solvent removed in vacuo. The crude product was purified by flash column chromatography on silica (^CHex/EtOAc 2:1).

Yield: 9.75 g (19.5 mmol, 85%), yellow oil, $R_f = 0.26$ (^CHex/EtOAc 1:1).

 $C_{28}H_{37}NO_7$ (M = 499.60 g/mol) [499.26].

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 7.76 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 6.7$), 7.60 (d, 2H, H1-, H8-Fmoc, $J_{H1,H2} = J_{H8,H7} = 7.6$ Hz), 7.39 (t, 2H, H2-, H7-Fmoc, $J_{H2,H3} = J_{H2,H1} = J_{H7,H6} = J_{H7,H8} = 7.5$ Hz), 7.33-7.29 (m, 2H, H3-, H6-Fmoc), 5.43 (s_{br}, 1H, NH), 4.40 (d, 2H, CH₂(Fmoc), $J_{CH2,H9} = 7.0$ Hz), 4.22 (t, 1H, H9(Fmoc), $J_{H9,CH2} = 7.0$ Hz), 3.69 (t, 2H, 11-CH₂, $J_{CH2,CH2} = 6.5$ Hz), 3.63-3.57 (m, 10, 5 x OCH₂), 3.41-3.39 (m, 2H, 12-CH₂), 2.49 (t, 2H, 2-CH₂, $J_{CH2,CH2} = 6.5$ Hz), 1.43 (s, 9H, *t*Bu).

N-(9H-Fluoren-9-yl)-methoxycarbonyl-amido-4,7,10-trioxa-dodecanate²⁴⁰ (67) (FmocHN-{TEG}-CO₂H)

FmocHN-{TEG}-CO₂*t*Bu **66** (9.51 g, 19.0 mmol) was dissolved in a mixture of trifluoroacetic acid and water (22 mL, 10:1) and stirred for 2 h. The solvent was removed by co-evaporation with toluene and dichloromethane. The crude product was purified by flash column chromatography on silica (DCM/MeOH/AcOH 100:2:1). The product was co-evaporated, with toluene and dichloromethane (three times each).

Yield: 8.4 g (24.3 mmol, quant.), pale yellow oil, $R_f = 0.46$ (DCM/MeOH/AcOH 100:2:1).

 $C_{24}H_{29}NO_7$ (M = 443.49 g/mol) [443.19].

ESI-MS (pos), m/z: 466.31 ([M+Na]⁺, calc. 466.18).

¹*H-NMR* (400 MHz, CDCl₃), δ (*ppm*): 9.69 (s_{br}, 1H, COOH), 7.76 (d, 2H, H4-, H5-Fmoc, $J_{H4,H3} = J_{H5,H6} = 7.6$), 7.60 (m, 2H, H1-, H8-Fmoc), 7.40 (t, 2H, H2-, H7-Fmoc, $J_{H2,H3} = J_{H2,H1} = J_{H7,H6} = J_{H7,H8} = 7.4$ Hz), 7.31 (t, 2H, H3-, H6-Fmoc, $J_{H3,H2} = J_{H3,H4} = J_{H6,H5} = J_{H6,H7} = 7.4$ Hz), 5.57 (s_{br}, 1H, NH), 4.43-4.22 (m, 2H, CH₂(Fmoc)), 4.24-4.22 (m, 1H, H9(Fmoc)), 3.75-3.72 (m, 2H, 11-CH₂), 3.62-3.56 (m, 10H, 5 x OCH₂), 3.40-3.39 (m, 2H, 12-CH₂), 2.60 (t, 2H, 2-CH₂, $J_{CH2,CH2} = 6.2$ Hz).

¹³C-NMR (100.6 MHz, CDCl₃), δ (ppm): 175.68 (COOH), 156.81 (C=O(Fmoc), 144.03 (C1_a-, C8_a-Fmoc), 141.36 (C4_a-, C5_a-Fmoc), 127.72 (C3-, C6-Fmoc), 127.11 (C2-, C7-Fmoc), 125.13 (C1-, C8-Fmoc), 120.00 (C4-, C5-Fmoc), 70.57, 70.43, 70.33, 70.12 (4 x OCH₂), 66.72 (CH₂(Fmoc)), 66.43 (11-CH₂), 47.30 (C9(Fmoc)), 40.98 (12-CH₂), 34.84 (2-CH₂).

7.2.3 General protocol for MUC1 and MUC5B solid phase glycopeptide synthesis

Automated steps of the solid phase peptide synthesis: The peptide syntheses were carried out automatically on a peptide synthesizer following a standard protocol for Fmoc solid phase peptide synthesis until the peptides were cleaved from the resin. The reservoir bottles of the peptide synthesizer were loaded with 0.5 M Fmoc-aa-OH in DMF, 0.45 M (each) HBTU and HOBt in DMF and 2 M DIPEA in NMP. The preloaded *TentaGel*-Fmoc-aa-Trt resins (batch size shown with each peptide below) were given into 2 mL synthesis reactors equipped with an filter frit and swollen with of DCM (0.5-1 mL each) for 30 min. The Fmoc-protecting group of the preloaded resin amino acid was initially cleaved through a triple addition of 20 vol% piperidine in DMF (46.2 μ L per 1 μ mol batch size; 6 x 1 min, 15 s vortex; 45 s break). In automated reaction cycles the corresponding Fmoc-aa-OH (8 eqiuv.), HBTU (7.6 eq), HOBt (8 eq) and DIPEA (16 eq) were added automatically and the reaction was shaken by vortex (40 min reaction time, 15 s vortex; 2.75 min break). A reaction cycle was concluded by Fmoc-deprotection before the next cycle was carried out.

Manual coupling steps with glycosylated amino acids: The glycosylated amino acids were dissolved in DMF (23 μ L per 1 μ mol batch size) in an external vessel and pre-activated with the coupling reagents HATU, HOAt and DIPEA. The glycosylated amino acids **15**, **35**, **39**, **49**, **54**, **242** were applied in 1.5 equivalents excess with 1.45 eq HATU/HOAt and 3 eq DIPEA. The glycosylated amino acids **58** and **62** were applied in 2.0 equivalents excess with 1.9 eq HATU/HOAt and 4 eq DIPEA. After 2-3 min of pre-activation the reaction mixtures were manually pipetted into the synthesis reactor and shaken by vortex (15 s vortex; 2.45 min break). The minimum reaction times for glycosylated amino acids were: **15**, **242**: 2h; **35**, **39**: 5h; **49**, **54**: 6h; **58**, **62**: 10h. All coupling reactions were performed at room temperature. After the reaction, the resin was washed with DMF (46.2 μ L per 1 μ mol batch size; 6 x 1 min, 15 s vortex; 45 s break). After manual coupling steps with a glycosylated amino acids the two following standard amino acids were coupled via a double coupling.

Manual coupling steps with spacer amino acid 67: The triethylene glycol spacer amino acid 67 was N-terminally linked to the mucin tandem repeat peptide sequences. Amino acid 67 was dissolved in DMF (23µL per 1 µmol batch size) in an external vessel and preactivated with HBTU/HOBt and DIPEA. The spacer amino acid 67 was applied in 3 eq excess with 2.8 eq HBTU/HOBt and 6 eq DIPEA. After 2-3 min of pre-activation time the reaction mixture was added to the synthesis reactor. The synthesis was occasionally shaken by vortex (15 s vortex; 2.45 min break) for 2 h at room temperature. Afterwards, the resin was washed with DMF (6 x 1 min 6 x 500 μ L, 15 s vortex; 45 s break). The Fmoc-group was removed by triple addition of 20 vol% piperidine in DMF (500 μ L each, 3 x 3 x 9 min; 15s vortex, 45 s break) and the resin was washed with DMF (6 x 1 min 6 x 500 μ L, 15 s vortex; 45 s break).

Release of the peptides from the solid phase resin: After peptide synthesis the resin was washed with dichloromethane, isopropanol and diethyl ether (5 x 500 µL each; 5 x 1 min; 15 s vortex; 45 s break). The resin was dried in an airstream for 30 min and then transferred from the synthesis reactor into a 2 mL syringe clogged by a filter frit. The glycopeptides were cleaved from the resin by three additions of TFA/TIPS/H₂O 15:1:1 (1 x 120 min + 2 x 10 min; 15 s vortex; 2.45 min break). The combined filtrates were co-evaporated with toluene *in vacuo*. The residue was taken up with water (2 x 5 mL), 30% buffer B, 50% buffer B and 70% buffer B (5 mL each; in this order) and passed over a C18-column (*Waters Sep-Pak*® *Vac 6cc (1 g)*). The fractions containing buffer B were combined, the acetonitrile evaporated *in vacuo* and the aqueous residue was lyophilized to give the crude glycopeptide product.

Removal of the carbohydrate acetyl protecting groups: The crude glycopeptides carrying glycosylated amino acids **15**, **35**, **39**, **242** were dissolved in methanol (10 mL) and were treated with portions of 1% sodium methoxide in methanol until a pH of 9.5 was reached (wet pH paper). The reaction was stirred at room temperature and the reaction was followed by analytical HPLC (6-18 h).

Crude glycopeptide carrying glycans from glycosylated amino acids **49**, **54**, **58**, **62** were dissolved in water (4.5 mL) and methanol (3.9 mL) and a solution sodium methoxide in water (600 μ L, 150 mM) was added. The reaction is treated carefully with injections (100-300 μ L) of the sodium methoxide solution to slowly raise the pH to 11.5 (wet pH paper) and the reaction was followed by analytical HPLC (36-168 h). The reaction was acidified with 20 μ L of acetic acid and the solvents evaporated *in vacuo*. The crude glycopeptide was purified by preparative HPLC and the product was lyophilized from water.

7.2.4 Synthesis of MUC1 glycopeptides

All MUC1-glycopeptides **68-133** were synthesized following the general procedure reported in chapter 6.3.2.1. For MUC1 sequences, *TentaGel* R Fmoc-Ala-Trt resin (loading: 0.17 mmol/g; *Rapp Polymere, Tübingen*) was used. HPLC eluents were composed of gradients of modifier A: water + 0.1% TFA and modifier B: 84% acetonitrile + 0.1% TFA. Peptide bonds were detected at λ = 214 nm during HPLC. The threonine T_N-antigen building block **242** in glycopeptides **68-74** and **131-133** and the serine building block **243** in glycopeptides **131-133** were kindly provided by Dr. H. Cai.

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (68)

The glycopeptide was synthesized on 58.5 mg (10 µmol) of resin.

Analytical HPLC $R_t = 17.85 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 15.27 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 733.0323 ([M+3H]³⁺, calc. 733.0319); *Yield*: 67% (14.6 mg, 6.7 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (69)

The glycopeptide was synthesized on 58.5 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 18.30 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 15.91 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 733.0320 ([M+3H]³⁺, calc. 733.0319); *Yield*: 65% (14.3 mg, 6.5 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (70)

The glycopeptide was synthesized on 58.5 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 18.95 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 16.12 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 733.0324 ([M+3H]³⁺, calc. 733.0319); *Yield*: 70% (15.4 mg, 7.0 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (71)

The glycopeptide was synthesized on 58.5 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 17.52 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 14.72 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 800.7258 ([M+3H]³⁺, calc. 800.7251); *Yield*: 51% (12.2 mg, 5.1 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (72)

The glycopeptide was synthesized on 58.5 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 17.85 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 15.08 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 800.7260 ([M+3H]³⁺, calc. 800.7251); *Yield*: 52% (12.5 mg, 5.3 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (73)

The glycopeptide was synthesized on 58.5 mg (10 $\mu mol)$ of resin.

Analytical HPLC $R_t = 18.46 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), flow: 200 µL/min, 25 min); Preparative HPLC $R_t = 15.64 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), flow: 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 800.7260 ([M+3H]³⁺, calc. 800.7251); *Yield*: 56% (13.4 mg, 5.6 µmol).

MUC1(19mer) T_N-antigen: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (74)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 17.34 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 14.52 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 868.4197 ([M+3H]³⁺, calc. 868.4182), 651.5677 ([M+4H]⁴⁺, calc. 651.5655); *Yield*: 40% (10.4 mg, 4.0 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (75)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 16.42 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 14.49 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 787.0485 ([M+3H]³⁺, calc. 787.0495), 600.0255 ([M+4H]⁴⁺, calc. 600.0279); *Yield*: 85% (26.2 mg, 11.1 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (76)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 17.33 \text{ min}$ (A/B, (95:5) \rightarrow (50:50), 200 µL/min, 45 min); Preparative HPLC $R_t = 15.69 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 787.0495 ([M+3H]³⁺, calc. 787.0485); *Yield*: 85% (25.9 mg, 11.0 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (77)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 17.46 \text{ min}$ (A/B, (95:5) \rightarrow (50:50), 200 µL/min, 50 min); Preparative HPLC $R_t = 15.98 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 787.0486 ([M+3H]³⁺, calc. 787.0495); *Yield*: 76% (23.4 mg, 9.9 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (78)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 15.6 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 35 min); Preparative HPLC $R_t = 13.35 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 908.7603 ([M+3H]³⁺, calc. 908.7603); *Yield*: 67% (23.8 mg, 8.7 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (79)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 15.19 \text{ min}$ (grad.: water/84% acetonitrile + 0.1% TFA (95:5) \rightarrow (65:35), 200 µL/min, 35 min, wavelength = 214 nm); Preparative HPLC $R_t = 13.67 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 908.7610 ([M+3H]³⁺, calc. 908.7603); *Yield*: 76% (27.0 mg, 9.9 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (80)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 16.39 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 35 min); Preparative HPLC $R_t = 14.63 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 908.7598 ([M+3H]³⁺, calc. 908.7603) 691.3084 ([M+3H+K]⁴⁺, calc. 691.3110), 553.2481 ([M+4H+K]⁵⁺, calc553.2502); *Yield*: 62% (22.1 mg, 8.1 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (81)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.51 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), flow: 200 µL/min, 35 min); Preparative HPLC $R_t = 12.78 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1030.4723 ([M+3H]³⁺, calc 1030.4723); *Yield*: 58% (23.6 mg, 7.6 µmol).

MUC1(20mer) T-antigen: H₂N-(TEG)-PGSTAPPAHGVTSAPDT*RPA-OH (82)

The glycopeptide was synthesized on 66.7 mg (10 $\mu mol)$ of resin.

Analytical HPLC $R_t = 18.95 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 15.64 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 20 mL/min, 30 min); *HR-ESI-MS*, *m/z*: 819.4007 ([M+3H]³⁺, calc. 819.4005), *Yield*: 71% (16.7 mg, 7.1 µmol).

MUC1(21) T-antigen: H₂N-(TEG)-APDT*RPAPGSTAPPAHGVTSA-OH (83)

The glycopeptide was synthesized on 66.7 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 18.88 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 15.67 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 20 mL/min, 30 min); *HR-ESI-MS*, *m/z*: 843.0798 ([M+3H]³⁺, calc.843.0795), *Yield*: 54% (13.1 mg, 5.3 µmol).

MUC1(19mer) T-antigen: H₂N-(TEG)-APDT*RPA-OH (84)

The glycopeptide was synthesized on 46.7 mg (7 μ mol) of resin.

Analytical HPLC $R_t = 15.68 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), flow: 200 µL/min, 54 min); Preparative HPLC $R_t = 11.89 \text{ min}$ (A/B, (95:5) \rightarrow (75:25), flow: 20 mL/min, 20 min); *HR-ESI-MS*, *m/z*: 648.3143 ([M+2H]²⁺, calc. 648.3154); *Yield*: 66% (5.9 mg, 4.6 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (85)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 18.65 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 14.89 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1099.0464 ([M-{Gal\beta(1,3)-GlcNac}+2H]²⁺, calc. 1099.0443); 854.7428 ([M+3H]³⁺, calc. 854.7427); 650.7965 ([M+K+3H]⁴⁺, calc. 650.7978); *Yield*: 60% (20.0 mg, 7.81 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (86)

The glycopeptide was synthesized on 76.5 mg (13 $\mu mol)$ of resin.

Analytical HPLC $R_t = 19.66 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 30 min); Preparative HPLC $R_t = 15.35 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1099.0464 ([M-{Gal\beta(1,3)-GlcNac}+2H]²⁺, calc. 1099.0443); 854.7429 ([M+3H]³⁺, calc. 854.7427); 650.7963 ([M+K+3H]⁴⁺, calc. 650.7978); *Yield*: 74% (24.2 mg, 9.6 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (87)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 20.34 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 200 µL/min, 30 min); Preparative HPLC $R_t = 15.87 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1098.5453 ([M-{Gal}\beta(1,3)-GlcNac}+2H]²⁺, calc. 1099.0443); 862.0710 ([M+Na+2H]³⁺, 862.0700); 854.7430 ([M+3H]³⁺, calc. 854.7427); 646.8051 ([M+K+3H]⁴⁺, calc. 646.8043); *Yield*: 79% (26.4 mg, 10.3 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (88)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 33.36 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 12.98 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS* (*Orbitrap Fusion*), *m/z*: 1044.1473 ([M+3H]³⁺, calc. 1044.1465); 783.3623 ([M+4H]⁴⁺, calc. 783.3617); *Yield*: 37% (15.1 mg, 4.8 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (89)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 34.70 \text{ min} (A/B, (95:5) \rightarrow (79:21), 200 \ \mu\text{L/min}, 54 \text{ min});$ Preparative HPLC $R_t = 13.44 \text{ min} (A/B, (95:5) \rightarrow (70:30), 20 \text{ mL/min}, 25 \text{ min});$ *HR-ESI-MS*, *m/z*: 1044.1491 ([M+3H]³⁺, calc. 1044.1465); 783.3648 ([M+4H]⁴⁺, calc. 783.3617); *Yield*: 75% (30.5 mg, 9.7 \ \mu\text{mol}).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (90)

The glycopeptide was synthesized on 58.8 mg (10 µmol) of resin.

Analytical HPLC $R_t = 38.93 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 14.49 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1044.1489 ([M+3H]³⁺, calc. 1044.1465); 783.3647 ([M+4H]⁴⁺, calc. 783.3617); *Yield*: 47% (14.8 mg, 4.7 µmol).

MUC1(19mer) type-1 core 3: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (91)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 31.50 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 12.52 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1233.5506 ([M+3H]³⁺, calc. 1233.5504), 925.4160 ([M+4H]⁴⁺, calc. 925.4146); *Yield*: 62% (29.8 mg, 8.1 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (92)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 15.91 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 14.03 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1099.0472 ([M-{Gal\beta(1,4)-GlcNac}+2H]^{2+}, calc. 1099.0443); 997.0067 ([M-{Gal\beta(1,4)-GlcNac}+2H]^{2+}, calc. 997.0029); 854.7432 ([M+3H]^{3+}, calc. 854.7427), 366.1399 ([β Gal(1,4)- β GlcNac]⁺, calc. 366.1400); *Yield*: 70% (23.2 mg, 9.1 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (93)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 16.80 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 14.94 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1099.0455 ([M-{Gal\beta(1,4)-GlcNac}+2H]^{2+}, calc. 1099.0443); 997.0057 ([M-{Gal\beta(1,4)-GlcNac}+2H]^{2+}, calc. 997.0029); 854.7432 ([M+3H]^{3+}, calc. 854.7427); 650.7965 ([M+K+3H]^{4+}, calc. 650.7978), 366.1398 ([β Gal(1,4)- β GlcNac]⁺, calc. 366.1400); *Yield*: 65% (21.4 mg, 8.4 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (94)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

 GlcNac $\beta(1,3)$ -GalNAc}+2H]²⁺, calc. 997.5046); 854.7431 ([M+3H]³⁺, calc. 854.7427); *Yield*: 72% (23.7 mg, 9.3 μ mol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (95)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.76 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 35 min); Preparative HPLC $R_t = 12.87 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1383.1496 ([M-{Gal\beta(1,4)-\betaGlcNac}+2H]^{2+}, calc. 1383.1500); 1200.5839 ([M-{Gal\beta(1,4)-GlcNac}+2H]^{2+}, calc. 1200.5839); 1044.1468 ([M+3H]^{3+}, calc. 1044.1465), 922.4361 ([M-{Gal\beta(1,4)-GlcNac}+3H]^{3+}, calc. 922.4358), 366.1395 ([Gal\beta(1,4)-GlcNac]^+, calc. 366.1400); *Yield*: 74% (30.4 mg, 9.7 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (96)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 15.63 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.55 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1044.1503 ([M+3H]³⁺, calc. 1044.1465); 783.3658 ([M+4H]⁴⁺, calc. 783.3617); *Yield*: 89% (44.0 mg, 11.6 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (97)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 15.98 \text{ min}$ (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 14.47 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1044.1502 ([M+3H]³⁺, calc. 1044.1465); 783.3655 ([M+4H]⁴⁺, calc. 783.3617); *Yield*: 89% (44.0 mg, 11.6 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (98)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC R_t = 14.13 min (A/B, (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC R_t = 12.25 min (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1233.8912 ([M+3H]³⁺, calc. 1233.8848), 1111.8482 (M-{Gal\beta(1,4)-GlcNac}+3H]³⁺, calc. 1111.8396), 1124.4968 (M-{Gal\beta(1,4)-GlcNac}+Na+2H]²⁺, calc. 1124.4916), 944.3933 ([M+2K+2H])⁴⁺, calc. 944.3925), 935.1564 ([M+K+3H])⁴⁺, calc. 935.1544), 925.4198 ([M+4H]⁴⁺, calc. 925.4146), 755.9159 ([M+2K+3H]⁵⁺, calc. 755.9162), 748.1260 ([M+5H]⁵⁺, calc. 748.1243), 366.1402 ([Gal\beta(1,4)-GlcNac]⁺, calc. 366.1400); *Yield*: 62% (21.0 mg, 8.1 µmol).

MUC1(19mer) type-2 core 3: H₂N-(TEG)-PAHGVT*SA-OH (99)

The glycopeptide was synthesized on 46.7 mg (7 μ mol) of resin.

Analytical HPLC $R_t = 14.826 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 12.37 \text{ min}$ (A/B, (95:5) \rightarrow (75:25), 20 mL/min, 20 min); *HR-ESI-MS*, *m/z*: 755.8554 ([M+2H]²⁺, calc. 755.8540); *Yield*: 24% (2.51 mg, 1.7 µmol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (100)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 36.32 \text{min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 14.03 \text{ min}$ (A/B, (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 908.7662 ([M+3H]³⁺, calc. 908.7603); *Yield*: 40% (14.3 mg, 5.2 µmol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (101)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 40.72 \text{ min} (A/B, (95:5) \rightarrow (79:21), 200 \ \mu\text{L/min}, 54 \text{ min});$ Preparative HPLC $R_t = 46.12 \text{ min} (A/B, (95:5) \rightarrow (82:18), 20 \text{ mL/min}, 60 \text{ min});$ *HR-ESI-MS*, *m/z*: 908.7633 ([M+3H]³⁺, calc. 908.7603); 681.8250 ([M+4H]⁴⁺, calc. 681.8220); *Yield*: 45% (16.2 mg, 5.9 \ \mumol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (102)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 43.20 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 41.25 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 908.7615 ([M+3H]³⁺, calc. 908.7603); 681.8239 ([M+4H]⁴⁺, calc. 681.8220); *Yield*: 43% (15.2 mg, 5.6 µmol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (103)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 35.04 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 29.07 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1152.1842 ([M+3H]³⁺, calc. 1152.1817); 864.3899 ([M+4H]⁴⁺, calc. 864.3881); *Yield*: 36% (16.1 mg, 4.7 µmol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (104)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC R_t = 35.88 min (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC R_t = 32.64 min (A/B, (95:5) \rightarrow (79:21), flow: 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*.

1152.1831 ([M+3H]³⁺, calc. 1152.1817); 864.3892 ([M+4H]⁴⁺, calc. 864.3881); *Yield*: 35% (15.4 mg, 4.5 μ mol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (105)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 38.81 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 34.15 \text{ min}$ (A/B, (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1152.1839 ([M+3H]³⁺, calc. 1152.1817); 864.3893 ([M+4H]⁴⁺, calc. 864.3881); *Yield*: 36% (16.3 mg, 4.7 µmol).

MUC1(19mer) type-1 core 1: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (106)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 32.87 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 27.15 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1423.2668 ([M+2Na+K]³⁺, calc. 1423.2442 ([M+3H]³⁺, calc. 1395.9376), 1067.7021 ([M+2Na+K+H]⁴⁺, calc. 1067.6850), 1051.4628 ([M+NH₄+3H]⁴⁺, calc. 1051.4617), 1047.2058 ([M+4H]⁴⁺, calc. 1047.2051); *Yield*: 27% (14.5 mg, 3.5 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (107)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 38.86 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 33.31 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 908.7606 ([M+3H]³⁺, calc. 908.7603); 691.3096 ([M+K+3H]⁴⁺, calc. 691.3110); *Yield*: 49% (17.4 mg, 6.4 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (108)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 41.53 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 38.52 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 908.7621 ([M+3H]³⁺, calc. 908.7603); 681.8247 ([M+4H]⁴⁺, calc. 681.8220); *Yield*: 53% (18.9 mg, 6.9 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (109)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC R_t = 42.95 min (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC R_t = 38.39 min (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*.

908.76199 ($[M+3H]^{3+}$, calc. 908.7603); 681.8245 ($[M+4H]^{4+}$, calc. 681.8220); *Yield*: 45% (15.8 mg, 5.8 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (110)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 31.33 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 38.84 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1152.1847 ([M+3H]³⁺, calc. 1152.1817); 869.8854 ([M+4H]⁴⁺, calc. 869.8836), 864.3898 ([M+4H]⁴⁺, calc. 864.3881); *Yield*: 34% (15.3 mg, 4.4 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (111)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 35.57 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 33.41 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 49 min); *HR-ESI-MS*, *m/z*: 1152.5247 ([M+3H]³⁺, calc. 1152.5247); 864.6428 ([M+4H]⁴⁺, calc. 864.6390); *Yield*: 26% (11.6 mg, 4.5 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (112)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC R_t = 38.80 min ((95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC R_t = 36.41 min (A/B: (95:5) \rightarrow (79:21), flow: 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1152.1841 ([M+3H]³⁺, calc. 1152.1817); 864.3894 ([M+4H]⁴⁺, calc. 864.3881); *Yield*: 29% (12.8 mg, 3.7 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (113)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 32.26 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 28.57 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1395.9435 ([M+3H]³⁺, calc. 1395.9376), 1047.2065 ([M+4H]⁴⁺, calc. 1047.2051); *Yield*: 17% (9.0 mg, 2.2 µmol).

MUC1(19mer) type-2 core 1: H₂N-(TEG)-GST*APPAHGVTSAPDTRPA-OH (114)

The glycopeptide was synthesized on 53.3 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 37.31 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 42.17 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 908.7609 ([M+3H]³⁺, calc. 908.7603); *Yield*: 14% (3.1 mg, 1.1 µmol).

MUC1(20mer) type-2 core 1: H₂N-(TEG)-PDTRPAGST*APPAHGVTSA-OH (115)

The glycopeptide was synthesized on 53.3 mg (8 µmol) of resin.

Analytical HPLC $R_t = 39.38 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 45.54 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 941.1122 ([M+3H]³⁺, 941.1112 calc.); *Yield*: 41% (9.4 mg, 3.3 µmol).

MUC1(20mer) type-2 core 1: H₂N-(TEG)-PDTRPAGSTAPPAHGVT*SA-OH (116)

The glycopeptide was synthesized on 53.3 mg (8 μ mol) of resin.

Analytical HPLC $R_t = 39.02 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 44.37 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 941.1125 ([M+3H]³⁺, 941.1112 calc.); *Yield*: 40% (9.1 mg, 3.2 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (117)

The glycopeptide was synthesized on 47.1 mg (8 μ mol) of resin.

Analytical HPLC $R_t = 33.24 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 34.12 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1030.4716 ([M+3H]³⁺, calc. 1030.4710); 777.3636 ([M+NH₄+3H]⁴⁺, calc. 777.3617); *Yield*: 36% (9.1 mg, 2.9 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (118)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 37.54 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 36.80 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1030.4734 ([M+3H]³⁺, calc. 1030.4710); 773.1071 ([M+4H]⁴⁺, calc. 773.1051); *Yield*: 34% (10.6 mg, 3.4 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (119)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 40.91 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 41.18 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1030.4717 ([M+3H]³⁺, calc. 1030.4710); 773.1062 ([M+4H]⁴⁺, calc. 773.1051); *Yield*: 37% (11.5 mg, 3.7 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (120)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 29.84 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 27.75 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*.

1395.9406 ($[M+3H]^{3+}$, calc. 1395.9391); 1047.2064 ($[M+4H]^{4+}$, calc. 1047.2062); *Yield*: 22% (9.3 mg, 2.2 µmol).

MUC1(19mer) type-1 core 2:H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (121)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 31.83 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.32 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1395.9406 ([M+3H]³⁺, calc. 1395.9439); 1047.2073 ([M+4H]⁴⁺, calc. 1047.2062); *Yield*: 20% (8.4 mg, 2.0 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (122)

The glycopeptide was synthesized on 58.8 mg (10 µmol) of resin.

Analytical HPLC $R_t = 34.49 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 32.69 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1395.9427 ([M+3H]³⁺, calc. 1395.9439); 1047.2072 ([M+4H]⁴⁺, calc. 1047.2062); *Yield*: 20% (8.3 mg, 2.0 µmol).

MUC1(19mer) type-1 core 2: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (123)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 27.69 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 24.15 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1321.0576 ([M+4H]⁴⁺, calc. 1321.0542), 1057.2493 ([M+5H]⁵⁺, calc. 1057.2455); *Yield*: 9% (4.8 mg, 0.9 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVT*SAPDTRPAPGSTA-OH (124)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 36.45 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 31.71 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1057.7999 ([M+Na+2H]³⁺, calc. 1057.7969), ([M+3H]³⁺, calc. 1030.4710); 773.1058 ([M+4H]⁴⁺, calc. 773.1051); *Yield*: 43% (13.2 mg, 4.3 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPAPGSTA-OH (125)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 38.36 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 36.59 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1030.4716 ([M+3H]³⁺, calc. 1030.4710); 773.1068 ([M+4H]⁴⁺, calc. 773.1051); *Yield*: 34% (10.6 mg, 3.4 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVTSAPDTRPAPGST*A-OH (126)

The glycopeptide was synthesized on 58.8 mg (10 µmol) of resin.

Analytical HPLC $R_t = 40.94 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 40.43 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1030.4726 ([M+3H]³⁺, calc. 1030.4710); 773.1067 ([M+4H]⁴⁺, calc. 773.1051); *Yield*: 40% (12.4 mg, 4.0 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGSTA-OH (127)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 30.19 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 27.62 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1051.4627 ([M+NH₄+H]⁴⁺, calc. 1051.4606), 1395.9391 ([M+3H]³⁺, calc. 1395.9391); 1047.2065 ([M+4H]⁴⁺, calc. 1047.2062); *Yield*: 18% (7.5 mg, 2.2 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVT*SAPDTRPAPGST*A-OH (128)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 32.06 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.09 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1395.9425 ([M+3H]³⁺, calc. 1395.9439); 1047.2076 ([M+4H]⁴⁺, calc. 1047.2062); 845.5567 ([M+K+4H]⁵⁺, calc. 845.5567); *Yield*: 8% (3.4 mg, 0.8 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPAPGST*A-OH (129)

The glycopeptide was synthesized on 58.8 mg (10 $\mu mol)$ of resin.

Analytical HPLC $R_t = 33.61 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 33.09 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1395.9433 ([M+3H]³⁺, calc. 1395.9439); 1047.2074 ([M+4H]⁴⁺, calc. 1047.2062); *Yield*: 14% (5.8 mg, 1.4 µmol).

MUC1(19mer) type-2 core 2: H₂N-(TEG)-PAHGVT*SAPDT*RPAPGST*A-OH (130)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 26.71 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 24.59 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1321.3103 ([M+4H]⁴⁺, calc. 1321.3050), 1057.0485 ([M+5H]⁵⁺, calc. 1057.0448); *Yield*: 3% (1.7 mg, 0.3 µmol).

MUC1(22mer) type-2 core 1 (Thr¹¹) + 2xTn (Ser¹⁵, Thr¹⁶): H₂N-(TEG)-PAHGVTSAPDT*RPAPGS*T*APPA-OH (131)

The glycopeptide was synthesized on 66.7 mg (10 µmol) of resin (0.15 mmol/g).

Analytical HPLC $R_t = 40.42 \text{ min} (A/B: (95:5) \rightarrow (79:21), 200 \ \mu\text{L/min}, 54 \text{ min});$ Preparative HPLC $R_t = 44.71 \text{ min} (A/B: (95:5) \rightarrow (80:20), 20 \text{ mL/min}, 60 \text{ min});$ *HR-ESI-MS*, *m/z*: 1132.5323 ([M+3H]³⁺, calc. 1132.5274), 849.6495 ([M+4H]⁴⁺, calc. 849.6474); *Yield*: 16% (5.3 mg, 1.6 \mumol).

MUC1(22mer) type-2 core 3 (Thr¹¹) + 2xTn (Ser¹⁵, Thr¹⁶) H₂N-(TEG)-PAHGVTSAPDT*RPAPGS*T*APPA-OH (132)

The glycopeptide was synthesized on 66.7 mg (10 µmol) of resin (0.15 mmol/g).

Analytical HPLC $R_t = 39.31 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 44.72 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1078.5148 ([M+3H]³⁺, calc. 1078.5098), 809.1357 ([M+4H]⁴⁺, calc. 809.1342); *Yield*: 19% (6.1 mg, 1.9 µmol).

MUC1(22mer) type-2 core 2 (Thr¹¹) + 2xTn (Ser¹⁵, Thr¹⁶)

H₂N-(TEG)-PAHGVTSAPDT*RPAPGS*T*APPA-OH (133)

The glycopeptide was synthesized on 66.7 mg (10 µmol) of resin (0.15 mmol/g).

Analytical HPLC $R_t = 36.18 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 41.24 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1254.2446 ([M+3H]³⁺, calc. 1254.2381), 940.9311 ([M+4H]⁴⁺, calc. 940.9304); Yield: 8% (2.9 mg, 0.77 µmol).

7.2.5 Synthesis of MUC5B glycopeptides

The MUC5B glycopeptides **134-174** were synthesized following the general procedure reported in chapter 6.3.2.1. For MUC5B sequences, *TentaGel* R Fmoc-Pro-Trt resin (loading: 0.19 mmol/g) was used.

MUC5B(13mer) T-antigen: H₂N-(TEG)-ATPSSTPGT*THTP-OH (134)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 15.11 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.65 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 911.9250 ([M+2H]²⁺, calc. 911.9257), 608.2862 ([M+3H]³⁺, calc. 608.2862); *Yield*: 78% (18.4 mg, 10.1 µmol).

MUC5B(13mer) T-antigen: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (135)

The glycopeptide was synthesized on 76.5 mg (13 $\mu mol)$ of resin.

Analytical HPLC $R_t = 15.15 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.85 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 911.9263 ([M+2H]²⁺, calc. 911.9257), 608.2869 ([M+3H]³⁺, calc. 608.2862); *Yield*: 72% (17.0 mg, 9.9 µmol).

MUC5B(13mer) T-antigen: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (136)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.24 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 12.63 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1094.9937 ([M+2H]²⁺, calc. 1094.9934), 730.3307 ([M+3H]³⁺, calc. 730.3314), 557.4867 ([M+K+3H]⁴⁺, calc. 557.4893); *Yield*: 79% (22.3 mg, 10.2 µmol).

MUC5B(13mer) T-antigen: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (137)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 14.22 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 12.86 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1094.9930 ([M+2H]²⁺, calc. 1094.9934), 911.9259 ([M-{Gal\beta(1,4)-GalNac}+2H]²⁺, calc. 911.9353), 366.1395 ([Gal\beta(1,4)-GalNac]⁺, calc. 366.1395); *Yield*: 62% (17.7 mg, 8.1 µmol).

MUC5B(13mer) T-antigen: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (138)

The glycopeptide was synthesized on 76.5 mg (13 $\mu mol)$ of resin.

Analytical HPLC $R_t = 13.79 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.82 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1277.5626 ([M+2H]²⁺, calc. 1277.5595), 852.0418 ([M+3H]³⁺, calc. 852.0421), 648.7709 ([M+K+3H]⁴⁺, calc. 648.7724); *Yield*: 61% (20.2 mg, 8.1 µmol).

MUC5B(17mer) T-antigen:H₂N-(TEG)-T*GSTAT*PSST*PGT*THTP-OH (139)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 13.16 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 11.71 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1089.1364 ([M+3H]³⁺, calc. 1089.1358), 826.5911 ([M+K+3H]⁴⁺, calc. 826.5926); *Yield*: 33% (18.1 mg, 4.2 µmol).

MUC5B(13mer) type-1 core 3: H₂N-(TEG)-ATPSSTPGT*THTP-OH (140)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 16.41 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.37 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1013.9677 ([M+2H]²⁺, calc. 1013.9670), 683.3074 ([M+3H]³⁺, calc. 683.3066); *Yield*: 72% (19.0 mg, 9.4 µmol).

MUC5B(13mer) type-1 core 3: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (141)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 16.34 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.35 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1013.9695 ([M+2H]²⁺, calc. 1013.9670), 683.3086 ([M+3H]³⁺, calc. 683.3066); *Yield*: 70% (18.3 mg, 9.0 µmol).

MUC5B(13mer) type-1 core 3: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (142)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 15.03 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 12.32 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1298.0817 ([M+2H]²⁺, calc. 1298.0728), 871.3967 ([M+NH₄+2H]³⁺, calc. 871.3931), 865.7193 ([M+3H]³⁺, calc. 865.7176); *Yield*: 61% (20.6 mg, 7.9 µmol).

MUC5B(13mer) type-1 core 3: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (143)

The glycopeptide was synthesized on 76.5 mg (13 $\mu mol)$ of resin.

Analytical HPLC $R_t = 15.26 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 12.63 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1298.0780 ([M+2H]²⁺, calc. 1298.0728), 871.3954 ([M+NH₄+2H]³⁺, calc. 871.3931), 865.7190 ([M+3H]³⁺, calc. 865.7176); *Yield*: 54% (18.1 mg, 7.0 µmol).

MUC5B(13mer) type-1 core 3: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (144)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.58 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 11.79 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1055.1250 ([M+2H]²⁺, calc. 1055.1215); *Yield*: 62% (25.6 mg, 8.1 µmol).

MUC5B(17mer) type-1 core 3: H₂N-(TEG)-T*GSTAT*PSST*PGT*THTP-OH (145)

The glycopeptide was synthesized on 41.2 mg (7 μ mol) of resin.

Analytical HPLC $R_t = 37.98 \text{ min}$ (A/B: (95:5) \rightarrow (84:16), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.06 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1365.9219 ([M+NH₄+3H]⁴⁺, calc. 1365.9183), 1360.2442 ([M+3H]³⁺, calc. 1360.2427), 1029.9224 ([M+K+3H]⁴⁺, calc. 1029.9228); *Yield*: 36% (10.2 mg, 2.5 µmol).

MUC5B(13mer) type-2 core 3: H₂N-(TEG)-ATPSSTPGT*THTP-OH (146)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 14.73 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.15 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1013.9674 ([M+2H]²⁺, calc. 1013.9670), 830.8999 ([M-{Gal\beta(1,4)-GlcNAc}+2H]²⁺, calc. 830.8992), 366.1398 ([Gal\beta(1,4)-GlcNAc]⁺, calc 366.1395); *Yield*: 66% (17.5 mg, 8.6 µmol).

MUC5B(13mer) type-2 core 3: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (147)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.96 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.17 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1013.9673 ([M+2H]²⁺, calc. 1013.9670), 830.8999 ([M-{Gal\beta(1,4)-GlcNAc}+2H]²⁺, calc. 830.8992), 688.6289 ([M+K+2H]³⁺, calc. 688.6313), 366.1397 ([Gal\beta(1,4)-GlcNAc]⁺, calc 366.1395); *Yield*: 75% (17.6 mg, 9.7 µmol).

MUC5B(13mer) type-2 core 3: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (148)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 13.71 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 11.99 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1298.0751 ([M+2H]²⁺, calc. 1298.0728), 1115.5072 ([M-{ β Gal(1,4)-GlcNAc-OH}+2H]²⁺, calc. 1115.5056), 865.7179 ([M+3H]³⁺, calc. 865.7176), 366.1396 ([β Gal(1,4)-GlcNAc-OH]⁺, calc 366.1395); *Yield*: 62% (21.0 mg, 8.1 µmol).

MUC5B(13mer) type-2 core 3:H₂N-(TEG)-AT*PSST*PGTTHTP-OH (149)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 13.96 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 12.28 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1298.0784 ([M+2H]²⁺, calc. 1298.0728), 878.3700 ([M+K+2H]³⁺, calc. 878.3696), 871.3954 ([M+NH₄+2H]³⁺, calc. 871.3931), 865.7190 ([M+3H]³⁺, calc. 865.7176), 659.0281 ([M+K+3H]⁴⁺, calc. 659.0279); *Yield*: 67% (22.5 mg, 8.7 µmol).

MUC5B(13mer) type-2 core 3: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (150)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 13.28 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 11.81 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1399.6147 ([M-{Gal\beta(1,4)-GlcNAc}+2H]^{2+}, calc. 1399.6125), 1062.4496 ([M+Na+2H]^{3+}, calc. 1062.4488), 1055.1222 ([M+3H]^{3+}, calc. 1055.1215); *Yield*: 65% (26.6 mg, 8.4 µmol).

MUC5B(17mer) type-2 core 3: H₂N-(TEG)-T*GSTAT*PSST*PGT*THTP-OH (151)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 12.91 \text{ min } (A/B: (95:5) \rightarrow (65:35), 200 \ \mu\text{L/min}, 30 \ \text{min});$ Preparative HPLC $R_t = 10.94 \text{ min } (A/B: (95:5) \rightarrow (70:30), 20 \ \text{mL/min}, 25 \ \text{min});$ *HR-ESI-MS*, *m/z*. 1360.2452 ([M+3H]³⁺, calc. 1360.2427), 1020.4353 ([M+4H]⁴⁺, calc. 1029.4339); *Yield*: 49% (26.1 mg, 6.4 \ \mu\text{mol}).

MUC5B(13mer) type-1 core 1: H₂N-(TEG)-ATPSSTPGT*THTP-OH (152)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 16.01 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.21 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*: 1094.9953 ([M+2H]²⁺, calc. 1094.9934), 730.3317 ([M+3H]³⁺, calc. 730.3314); *Yield*: 36% (8.0 mg, 3.6 µmol).

MUC5B(13mer) type-1 core 1: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (153)

The glycopeptide was synthesized on 76.5 mg (13 $\mu mol)$ of resin.

Analytical HPLC $R_t = 16.23 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 13.66 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 20 mL/min, 25 min); *HR-ESI-MS*, *m/z*. 1094.9991 ([M+2H]²⁺, calc. 1094.9934), 730.3324 ([M+3H]³⁺, calc. 730.3314); *Yield*: 49% (8.3 mg, 3.8 µmol).

MUC5B(13mer) type-1 core 1: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (154)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.11 \text{ min}$ (A/B: (95:5) \rightarrow (70:30), 200 µL/min, 25 min); Preparative HPLC $R_t = 29.06 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 49 min); *HR-ESI-MS*, *m/z*: 973.7534 ([M+3H]³⁺, calc. 973.7528); *Yield*: 30% (11.5 mg, 3.9 µmol).

MUC5B(13mer) type-1 core 1: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (155)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 31.77 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 29.54 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 979.4302 ([M+NH₄+2H]³⁺, calc. 979.4284) 973.7534 ([M+3H]³⁺, calc. 973.7528); *Yield*: 40% (15.3 mg, 5.2 µmol).

MUC5B(13mer) type-1 core 1: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (156)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 29.77 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 28.28 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1222.8532 ([M+NH₄+2H]³⁺, calc. 1222.8498), 1217.1760 ([M+3H]³⁺, calc.1217.1728); *Yield*: 19% (9.1 mg, 2.5 µmol).

MUC5B(17mer) type-1 core 1: H₂N-(TEG)-T*GSTAT*PSST*PGT*THTP-OH (157)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 28.56 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 31.41 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 65 min); *HR-ESI-MS*, *m/z*. 1581.9901 ([M+NH_4+2H]^{3+}, calc. 1581.9887), 1576.3150 ([M+3H]^{3+}, calc. 1576.3132), 1186.7444 ([M+NH_4+3H]^{4+}, calc. 1186.7633), 1182.4878 ([M+4H]^{4+}, calc. 1182.4867); *Yield*: 9% (5.0 mg, 1.1 µmol).

MUC5B(13mer) type-2 core 1: H₂N-(TEG)-ATPSSTPGT*THTP-OH (158)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 34.41 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 33.94 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1094.9950 ([M+2H]²⁺, calc. 1094.9934), 730.3325 ([M+3H]³⁺, calc. 730.3314); *Yield*: 17% (3.7 mg, 1.7 µmol).

MUC5B(13mer) type-2 core 1: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (159)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 34.21 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 31.85 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 49 min); *HR-ESI-MS*, *m/z*. 1094.9938 ([M+2H]²⁺, calc. 1094.9934), 730.3318 ([M+3H]³⁺, calc. 730.3314); *Yield*: 37% (10.4 mg, 4.8 µmol).

MUC5B(13mer) type-2 core 1: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (160)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 14.67 \text{ min}$ (A/B: (95:5) \rightarrow (65:35), 200 µL/min, 30 min); Preparative HPLC $R_t = 28.02 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 49 min); *HR-ESI-MS*, *m/z*. 979.4328 ([M+NH₄+2H]³⁺, calc. 979.4284), 973.7551 ([M+3H]³⁺, calc. 973.7528); *Yield*: 22% (8.4 mg, 2.9 µmol).

MUC5B(13mer) type-2 core 1: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (161)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 32.66 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 25.87 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 973.7535 ([M+3H]³⁺, calc. 973.7528); *Yield*: 22% (8.4 mg, 2.9 µmol).

MUC5B(13mer) type-2 core 1: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (162)

The glycopeptide was synthesized on 76.5 mg (13 µmol) of resin.

Analytical HPLC $R_t = 29.55 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 25.67 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1244.8405 ([M+2Na+K]³⁺, calc. 1222.8153), ([M+NH₄+2H]³⁺, calc. 1222.8498), 1217.1770 ([M+3H]³⁺, calc. 1217.1728), 913.3859 ([M+4H]⁴⁺, calc. 913.3834); *Yield*: 15% (7.3 mg, 2.0 µmol).

MUC5B(17) type-2 core 1: H₂N-(TEG)-T*GSTAT*PSST*PGT*THTP-OH (163)

The glycopeptide was synthesized on 76.5 mg (13 μ mol) of resin.

Analytical HPLC $R_t = 28.36 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 25.67 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1576.3150 ([M+3H]³⁺, calc. 1576.3132), 1186.7467 ([M+NH₄+3H]⁴⁺, calc. 1186.7633), 1182.4892 ([M+4H]⁴⁺, calc. 1182.4867); *Yield*: 9% (5.0 mg, 1.1 µmol).

MUC5B(13mer) type-1 core 2: H₂N-(TEG)-ATPSSTPGT*THTP-OH (164)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 40.52 \text{ min}$ (A/B: (95:5) \rightarrow (84:16), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.09 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1277.5636 ([M+2H]²⁺, calc. 1277.5595), 852.0428 ([M+3H]³⁺, calc. 852.0421); *Yield*: 20% (5.2 mg, 2.0 µmol).

MUC5B(13mer) type-1 core 2: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (165)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 30.78 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.23 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*:

1277.5644 ([M+2H]²⁺, calc. 1277.5595), 852.0431 ([M+3H]³⁺, calc. 852.0421); *Yield*: 28% (7.2 mg, 2.8 μ mol).

MUC5B(13mer) type-1 core 2: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (166)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 25.40 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 23.29 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1222.8551 ([M+NH₄+2H]³⁺, calc. 1222.8498), 1217.1780 ([M+3H]³⁺, calc. 1217.1743); *Yield*: 16% (5.9 mg, 1.6 µmol).

MUC5B(13mer) type-1 core 2: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (167)

The glycopeptide was synthesized on 58.8 mg (10 µmol) of resin.

Analytical HPLC $R_t = 24.17 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 21.78 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1217.1779 ([M+3H]³⁺, calc. 1217.1743); *Yield*: 21% (7.8 mg, 2.1 µmol).

MUC5B(17mer) type-1 core 2: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (168)

The glycopeptide was synthesized on 47.1 mg (8 µmol) of resin.

Analytical HPLC $R_t = 27.35 \text{ min}$ (A/B: (95:5) \rightarrow (84:16), 200 µL/min, 54 min); Preparative HPLC $R_t = 24.57 \text{ min}$ (A/B: (95:5) \rightarrow (86:14), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1582.6435 ([M+3H]³⁺, calc. 1582.6410), 1196.7215 ([M+K+3H]⁴⁺, calc. 1196.7215), 1191.4909 ([M+NH₄+3H]⁴⁺, calc. 1191.4892), 1187.2341 ([M+4H]⁴⁺, calc. 1187.2325); *Yield*: 10% (3.7 mg, 0.8 µmol).

MUC5B(13mer) type-2 core 2: H₂N-(TEG)-ATPSSTPGT*THTP-OH (169)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 41.00 \text{ min}$ (A/B: (95:5) \rightarrow (84:16), 200 µL/min, 54 min); Preparative HPLC $R_t = 30.49 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1277.5644 ([M+2H]²⁺, calc. 1277.5595), 852.0429 ([M+3H]³⁺, calc. 852.0421); *Yield*: 28% (7.3 mg, 2.8 µmol).

MUC5B(13mer) type-2 core 2: H₂N-(TEG)-AT*PSSTPGTTHTP-OH (170)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 30.90 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 29.55 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1277.5644 ([M+2H]²⁺, calc. 1277.5595), 852.0433 ([M+3H]³⁺, calc. 852.0421); *Yield*: 28% (7.2 mg, 2.8 µmol).

MUC5B(13mer) type-2 core 2: H₂N-(TEG)-AT*PSSTPGT*THTP-OH (171)

The glycopeptide was synthesized on 58.8 mg (10 µmol) of resin.

Analytical HPLC $R_t = 25.40 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 23.27 \text{ min}$ (A/B: (95:5) \rightarrow (80:20), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1222.8551 ([M+NH₄+2H]³⁺, calc. 1222.8498), 1217.1769 ([M+3H]³⁺, calc. 1217.1743), 922.6223 ([M+4H]⁴⁺, calc. 922.6215); *Yield*: 17% (6.2 mg, 1.7 µmol).

MUC5B(13mer) type-2 core 2: H₂N-(TEG)-AT*PSST*PGTTHTP-OH (172)

The glycopeptide was synthesized on 58.8 mg (10 μ mol) of resin.

Analytical HPLC $R_t = 24.63 \text{ min}$ (A/B: (95:5) \rightarrow (79:21), 200 µL/min, 54 min); Preparative HPLC $R_t = 24.27 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*: 1217.1770 ([M+3H]³⁺, calc. 1217.1743); *Yield*: 21% (7.7 mg, 2.1 µmol).

MUC5B(13mer) type-2 core 2: H₂N-(TEG)-AT*PSST*PGT*THTP-OH (173)

The glycopeptide was synthesized on 47.1 mg (8 µmol) of resin.

Analytical HPLC $R_t = 28.32 \text{ min}$ (A/B: (95:5) \rightarrow (84:16), 200 µL/min, 54 min); Preparative HPLC $R_t 25.57 = \text{min}$ (A/B: (95:5) \rightarrow (86:14), 20 mL/min, 60 min); *HR-ESI-MS*, *m/z*. 1582.6453 ([M+3H]³⁺, calc. 1582.6410), 1196.7216 ([M+K+3H]³⁺, calc. 1196.7215), 1191.4916 ([M+NH_4+3H]⁴⁺, calc. 1191.4892), 1187.2346 ([M+4H]⁴⁺, calc. 1187.2325); *Yield*: 9% (3.4 mg, 0.7 µmol).

7.2.6 Synthesis of α 2,3- and α 2,6-sialylated MUC1 glycopeptides

7.2.6.1 General procedure for enzymatic sialylations

Utilized Sialyltransferases:

- For α2,3-sialylation of T-antigen containing peptides: Rat 2,3-OST: α2,3-(O)-Sialyltransferase from rat, recombinant (*Spodoptera frugiperda*)²⁸², (*Calbiochem*) *Merck KGaA*.
- For α2,3-sialylation of type-1 and -2 LacNAc containing peptides: PmST1: α2,3-(O)-Sialyltransferase from *Pasteurella multocida*, recombinant (*Escherichia coli* BL21(DE3))²⁸³, *Sigma Aldrich Inc*.
- For α2,3-sialylation of type-2 LacNAc containing peptide (only 174): PmST3: α2,3-(O)-Sialyltransferase from *Pasteurella multocida*, recombinant (*Escherichia coli* BL21(DE3)), Prof. Dr X. Chen, University of California.²⁸⁴

4. For α2,6-sialylation of LacNAc structures:

Pd2,6ST: α2,6-(O)-Sialyltransferase from *Photobacterium damsela*, recombinant (*Escherichia coli* BL21(DE3))²⁸⁵, *Sigma Aldrich Inc*.

The MUC1 glycopeptide (0.5-1.5 mg) was transferred into a 500 µL reaction vial and dissolved in corresponding reaction buffer (Rat 2,3-OST: 100 mM sodium cacodylate, pH 6.0; PmST1 and Pd2,6ST: 100 mM tris(hydroxymethyl)aminomethane hydrochloride (TRIS HCI), pH 8.5). Citidin-5'-monophospho-N-actylneuraminc acid (CMP-Neu5Ac) was dissolved in reaction buffer and added to the glycopeptide (2.5 eq per carbohydrate substrate) in the reaction vial. Then the sialyltransferase in reaction buffer was added to the reaction mixture (see table 6.1 for quantity in mU). The final glycopeptide concentration in the reaction was 4 mM. The reaction vial was shaken overnight at 37°C. The reaction was followed by analytic HPLC and eventually readjusted by further addition of CMP-Neu5Ac and sialyltransferase (see table 6.1). The reaction was stopped by addition of cold acetonitrile (20% end concentration). The solvent was evaporated in vacuo and the residue loaded on a solid phase extraction (SPE) column for desalting. The SPE column (Agilent Spec 3 mL C18AR 15mg) was previously equilibrated with acetonitrile (3 x 500 µL) and 0.05% FA (3 x 500 μ L). Crude glycopeptide was taken up with 0.05% FA (3 x 100 μ L), loaded onto the SPE cartridge and washed with 0.05% FA (3 x 300 μ L). The glycopeptide was eluted with 30% acetonitrile + 0.05% FA (2 x 300 µL) and 50% acetonitrile + 0.05% FA (1 x 300 µL). The combined acetonitrile fractions were concentrated in vacuo and the finally lyophilized from water. The lyophilisate was purified by semi-preparative HPLC-MS (see chapter 6.2.1 for used HPLC systems). The amount of sialylated glycopeptide product was determined by amino acid analysis. Table 6.1 summarizes relevant reaction parameter.

N	IUC1	Acceptor Peptide		Со	nditions			Pr	oduct
Glycan	#	Sequence	enzyme	eq CMP- Neu5Ac	reaction time (h)	enzyme activity (mU)	buffer	#	Neu5Ac
Т	75	PAHGVT*SAPDTRPAPGSTA	rat2,3OST	2.0	20	5.6	1	175	α2,3
	76	PAHGVTSAPDT*RPAPGSTA	rat2,3OST	2.0+0.5	36	5.0+1.4	1	176	α2,3
	77	PAHGVTSAPDTRPAPGST*A	rat2,3OST	2.0	20	5.6	1	177	α2,3
	78	PAHGVT*SAPDT*RPAPGSTA	rat2,3OST	4.0+2.0	15	4.2+1.4	1	178	α2,3
	79	PAHGVT*SAPDTRPAPGST*A	rat2,3OST	4.0+2.0	15	4.2+1.4	1	179	α2,3
	80	PAHGVTSAPDT*RPAPGST*A	rat2,3OST	4.0+2.0	15	4.2+1.4	1	180	α2,3
	81	PAHGVT*SAPDT*RPAPGST*A	rat2,3OST	6.0	38	10.5	1	181	α2,3
type-2 core 3	92	PAHGVT*SAPDTRPAPGSTA	PmST1	2.5+1.0	22	5+2	2	182	α2,3
	93	PAHGVTSAPDT*RPAPGSTA	PmST1	2.5+1.0	24	5+2	2	183	α2,3
	94	PAHGVTSAPDTRPAPGST*A	PmST1	2.5+1.0	22	5+2	2	184	α2,3
	92	PAHGVT*SAPDTRPAPGSTA	Pd2,6ST	2.5+1.0	15	20+12.5	2	185	α2,6
	93	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	2.5+1.0	24	20+12.5	2	186	α2,6
	94	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	2.5+1.0	15	20+12.5	2	187	α2,6
	98	PAHGVT*SAPDT*RPAPGST*A	Pd2,6ST	7.5+3.0	18	30+15	2	188	α2,6

Table 7.1: Summary of reaction parameters for enzymatic α 2,3- and α 2,6-sialylation.

MUC1 Acceptor Peptide			Conditions					Product	
Glycan	#	Sequence	enzyme	eq CMP- Neu5Ac	reaction time (h)	enzyme activity (mU)	buffer	#	Neu5Ac
turna 1 aara 1	404		PmST1	0.0.1.0	40	6	0	400	~ 2 2
type-1 core 1	101 102	PAHGVTSAPDT*RPAPGSTA PAHGVTSAPDTRPAPGST*A	PmST1 PmST1	2.0+1.0	12	6	2	189 190	α2,3 π2.2
	102	PAHGVTSAPDTRPAPGST A PAHGVTSAPDTRPAPGST*A	PhSTT Pd2.6ST	2.0+1.0 2.0+1.0	12 12	6 25	2 2	190	α2,3 α2.6
	102	PAHGVTSAPDTRPAPGST A PAHGVTSAPDTRPAPGST*A	Pd2,651 Pd2,6ST	2.0+1.0 2.0+1.0	12	25	2	191	α2,6 2x(α2,6)
	102	FANGVISAPDIRFAPGSI A	Fu2,031	2.0+1.0				192	2X(UZ,0)
type-2 core 1	110	PAHGVT*SAPDTRPAPGSTA	PmST1	2.5+1.0	18	5+2	2	193	α2,3
	111	PAHGVTSAPDT*RPAPGSTA	PmST1	2.0+1.0	39	6	2	194	α2,3
	111	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	2.5+1.0	18	20	2	195	α2,6
	112	PAHGVTSAPDTRPAPGST*A	PmST1	2.0+1.0	18	6	2	196	α2,3
	112	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	2.0+1.0	12	25	2	197	α2,6
	112	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	2.0+1.0	12	25	2	198	2x(α2,6)
	116	PAHGVT*SAPDT*RPAPGST*A	PmST1	7.5+3.0	18	10+4	2	199	α2,3
type-1 core 2	119	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	4.0+2.0	12	25	2	200	α2,6
type-2 core 2	125	PAHGVTSAPDT*RPAPGSTA	PmST1	4.0+2.0	36	4.2+1.4	2	201	α2,3
(hexa- saccharide)	125	PAHGVTSAPDT*RPAPGSTA	Pd2,6ST	4.0+2.0	40	30	2	202	α2,6
Sacchanacy	126	PAHGVTSAPDTRPAPGST*A	Pd2.6ST	4.0+2.0	12	25	2	203	α2,6
	126	PAHGVTSAPDTRPAPGST*A	Pd2,6ST	4.0+2.0	12	25	2	204	3x(α2,6)
type-2 core 2	174	PAHGVTSAPDT*RPAPGSTA	rat2,3OST	2.5+1.0	22	4.2+1.4	1	205	α2,3
(tetra- saccharide)	174	PAHGVTSAPDT*RPAPGSTA	PmST3	2.5+1.0	40	19 µg	2	206	α2,3

buffers: 1 = 100 mM cacodylate pH 6.0 2 = 100 mM TRIS HCl pH 8.5

7.2.6.2 Sialylated MUC1 glycopeptides 175-206

Yields are represented by glycopeptide conversion observed by analytical HPLC and after SPE and semi-preparative HPLC quantified by amino acid analysis HPLC eluents were composed of gradients of modifier A: water + 0.1% FA and modifier B: 84% acetonitrile + 0.1% FA. Peptide bonds were detected at λ = 214 nm during HPLC. In order to prevent overloading the HPLC column, only a fraction of the crude glycopeptide was purified and yields from amino acid analysis (AAA) were correlated to the amount of starting material.

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVT*SAPDTRPGSTA-OH (175)

Glycopeptide 75 (1.34 mg, 568 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 26.81 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 27.83 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, 35 min); *HR-ESI-MS*, *m/z*. 884.0827 ([M+3H]³⁺, calc. 884.0813), 663.3131 ([M+4H]⁴⁺, calc. 663.3128); *Yield*: 97 % (conversion by HPLC), 45% (253 µmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (176)

Glycopeptide **76** (1.62 mg, 686 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 29.76 \text{ min (A/B: (95:5)} \rightarrow (85:15), 200 \ \mu\text{L/min, 40 min});$ Preparative HPLC $R_t = 27.83 \text{ min (A/B: (95:5)} \rightarrow (78:22), 1.5 \text{ mL/min, 45 min});$ *HR-ESI-MS, m/z*: 884.0823 ([M+3H]³⁺, calc. 884.0813), 663.3131 ([M+4H]⁴⁺, calc. 663.3128); *Yield*: 82 % (conversion by HPLC), 47% (322 nmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (177)

Glycopeptide 77 (1.58 mg, 669 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 30.74 \text{ min (A/B: (95:5)} \rightarrow (85:15), 200 \ \mu\text{L/min, 40 min});$ Preparative HPLC $R_t = 27.27 \text{ min (A/B: (95:5)} \rightarrow (78:22), 1.5 \text{ mL/min, 45 min});$ *HR-ESI-MS, m/z*: 884.0824 ([M+3H]³⁺, calc. 884.0813), 663.3131 ([M+4H]⁴⁺, calc. 663.3128); *Yield*: 94 % (conversion by HPLC), 45% (303 nmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVT*SAPDT*RPGSTA-OH (178)

Glycopeptide 78 (0.80 mg, 294 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 28.45 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.08 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, 45 min); *HR-ESI-MS*, *m/z*: 1102.8255 ([M+3H]³⁺, calc. 1102.8239), 827.3724 ([M+4H]⁴⁺, calc. 827.3697); *Yield*: 89% (conversion by HPLC), 28% (81 nmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVT*SAPDTRPGST*A-OH (179)

Glycopeptide **79** (0.99 mg, 364 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 29.54 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.84 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, 45 min); *HR-ESI-MS*, *m/z*: 1102.8251 ([M+3H]³⁺, calc. 1102.8239), 1102.8251 ([M+4H]⁴⁺, calc. 827.3697); *Yield*: 100% (conversion by HPLC), 26% (94 nmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVTSAPDT*RPGST*A-OH (180)

Glycopeptide 80 (0.78 mg, 286 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 32.60 \text{ min } (A/B: (95:5) \rightarrow (85:15), 200 \ \mu\text{L/min}, 40 \text{ min});$ Preparative HPLC $R_t = 28.84 \text{ min } (A/B: (95:5) \rightarrow (78:22), 1.5 \text{ mL/min}, \text{min});$ *HR-ESI-MS*, *m/z*: 1102.8249 ([M+3H]³⁺, calc. 1102.8239), 827.3717 ([M+4H]⁴⁺, calc. 827.3697); *Yield*: 100 % (conversion by HPLC), 41% (118 nmol, AAA).

MUC1(19mer) α2,3-sialyl T: H₂N-(TEG)-PAHGVT*SAPDT*RPGST*A-OH (181)

Glycopeptide 81 (1.52 mg, 492 µmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 30.85 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 25.44 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, 45 min); *HR-ESI-MS*, *m/z*: 1321.9009 ([M+3H]³⁺, calc. 1321.5664), 991.6781 ([M+4H]⁴⁺, calc. 991.6764); *Yield*: 70 % (conversion by HPLC), 55% (272 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPGSTA-OH (182)

Glycopeptide 92 (0.73 mg, 285 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 26.68 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.39 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 951.7759 ([M+3H]³⁺, calc. 951.7745), 714.0831 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 100% (conversion by HPLC), 48% (136 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (183)

Glycopeptide 93 (0.70 mg, 273 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 29.794 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.05 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 951.7756 ([M+3H]³⁺, calc. 951.7745), 714.0832 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 88% (conversion by HPLC), 43% (118 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 3: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (184)

Glycopeptide 94 (0.62 mg, 242 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 30.89 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 29.55 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 951.7758 ([M+3H]³⁺, calc. 951.7745), 714.0833 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 94% (conversion by HPLC), 46% (110 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDTRPGSTA-OH (185)

Glycopeptide 92 (0.66 mg, 258 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 26.51 \text{ min } (A/B: (95:5) \rightarrow (85:15), 200 \ \mu\text{L/min}, 40 \ \text{min});$ Preparative HPLC $R_t = 25.62 \text{ min } (A/B: (95:5) \rightarrow (82:18), 1.5 \ \text{mL/min}, \ \text{min});$ *HR-ESI-MS*, *m/z*: 951.7759 ([M+3H]³⁺, calc. 951.7745), 714.0834 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 97% (conversion by HPLC), 57% (147 \ \text{nmol}, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 3: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (186)

Glycopeptide 93 (0.79 mg, 273 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 29.14 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.17 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 951.7754

([M+3H]³⁺, calc. 951.7745), 714.0831 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 88% (conversion by HPLC), 57% (176 nmol, AAA).

MUC1(19mer) α 2,6-sialyl type-2 core 3: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (187)

Glycopeptide 94 (0.64 mg, 250 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 30.56 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 29.09 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 951.7755 ([M+3H]³⁺, calc. 951.7745), 714.0833 ([M+4H]⁴⁺, calc. 714.0827); *Yield*: 100% (conversion by HPLC), 67% (166 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 3: H₂N-(TEG)-PAHGVT*SAPDT*RPGST*A-OH (188) Glycopeptide 98 (0.80 mg, 216 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 29.65 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 24.97 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1143.9884 ([M+4H]⁴⁺, calc.1143.9870), 915.3914 ([M+5H]⁵⁺, calc. 915.3911); *Yield*: 100% (conversion by HPLC), 10% (23 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-1 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (189) Glycopeptide **101** (0.83 mg, 304 μmol) was sialylated with PmST1.

Analytical HPLC R_t = 28.97 min (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC R_t = 25.98 min (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7932 ([M+3H]³⁺, calc. 1005.7921), 754.5964 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 88% (conversion by HPLC), 38% (133 nmol, AAA).

MUC1(19mer) α 2,3-sialyl type-1 core 1: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (190)

Glycopeptide **102** (0.69 mg, 253 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 30.13 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 27.17 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7968 ([M+3H]³⁺, calc. 1005.7921), 754.5996 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 85% (conversion by HPLC), 44% (111 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-1 core 1: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (191) + (192)

Glycopeptide 102 (0.67 mg, 246 nmol) was sialylated with Pd2,6ST.

191 (monosialylated main product): Analytical HPLC $R_t = 29.34 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.99 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min,

min); *HR-ESI-MS*, *m/z*: 1005.7938 ([M+3H]³⁺, calc. 1005.7921), 754.5972 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 75% (conversion by HPLC), 36% (89 nmol, AAA).

192 (disialylated by-product): Analytical HPLC R_t = 33.88 min (A/B: (95:5) → (85:15), 200 μ L/min, 40 min); Preparative HPLC R_t = 31.11 min (A/B: (95:5) → (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1102.8253 ([M+3H]³⁺, calc. 1102.8239), 827.3719 ([M+4H]⁴⁺, calc. 827.3697); *Yield*: 17% (conversion by HPLC), 15% (36 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDTRPGSTA-OH (193)

Glycopeptide **110** (0.75 mg, 304 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 25.54 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 25.73 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7947 ([M+3H]³⁺, calc. 1005.7921), 754.5963 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 97% (conversion by HPLC), 42% (115 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (194)

Glycopeptide 111 (0.95 mg, 349 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 29.23 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.99 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7937 ([M+3H]³⁺, calc. 1005.7921), 754.5963 ([M+4H]⁴⁺, calc.754.5959); *Yield*: 100% (conversion by HPLC), 58% (202 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 1: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (195)

Glycopeptide 111 (0.80 mg, 294 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 28.82 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 27.83 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7931 ([M+3H]³⁺, calc. 1005.7921), 754.5963 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 97% (conversion by HPLC), 38% (110 nmol, AAA).

MUC1(19mer) α 2,3-sialyl type-2 core 1: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (196)

Glycopeptide 112 (0.69 mg, 253 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 30.26$ min (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.37$ min (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7936 ([M+3H]³⁺, calc. 1005.7921), 754.5965 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 97% (conversion by HPLC), 38% (95 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 1: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (197) + (198)

Glycopeptide 112 (0.63 mg, 231 nmol) was sialylated with Pd2,6ST.

197 (monosialylated main product): Analytical HPLC $R_t = 29.75 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 27.06 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7934 ([M+3H]³⁺, calc. 1005.7921), 754.5966 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 55% (conversion by HPLC), 20% (47 nmol, AAA).

198 (disialylated by-product): Analytical HPLC $R_t = 34.00 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.95 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1102.8250 ([M+3H]³⁺, calc. 1102.8239), 827.3714 ([M+4H]⁴⁺, calc. 827.3697); *Yield*: 40% (conversion by HPLC), 18% (38 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 1: H₂N-(TEG)-PAHGVT*SAPDT*RPGST*A-OH (199) Glycopeptide **116** (0.63 mg, 231 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 28.42 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 24.00 \text{ min}$ (A/B: (95:5) \rightarrow (82:18), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1265.5250 ([M+4H]⁴⁺, calc. 1265.5266), 1012.6191 ([M+5H]⁵⁺, calc. 1012.6228); *Yield*: 81% (conversion by HPLC), 42% (63 nmol, AAA).

MUC1(19mer) α**2,6-sialyl type-1 core 2: (H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (200)** Glycopeptide **119** (0.64 mg, 151 nmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 31.39 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.26 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1224.5352 ([M+3H]³⁺, calc. 1224.5346), 918.6557 ([M+4H]⁴⁺, calc. 918.6528); *Yield*: 91% (conversion by HPLC), 68% (141 nmol, AAA).

MUC1(19mer) α2,3-sialyl type-2 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (201)

Glycopeptide **125** (0.69 mg, 223 nmol) was sialylated with PmST1.

Analytical HPLC $R_t = 30.68 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.19 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1224.5350 ([M+3H]³⁺, calc. 1224.5346), 918.6555 ([M+4H]⁴⁺, calc. 918.6528); *Yield*: 66% (conversion by HPLC), 52% (116 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 2: H₂N-(TEG)-PAHGVTSAPDT*RPGSTA-OH (202)

Glycopeptide 125 (0.78 mg, 396 µmol) was sialylated with Pd2,6ST.

Analytical HPLC $R_t = 29.63 \text{ min } (A/B: (95:5) \rightarrow (85:15), 200 \ \mu\text{L/min}, 40 \ \text{min});$ Preparative HPLC $R_t = 26.29 \ \text{min } (A/B: (95:5) \rightarrow (78:22), 1.5 \ \text{mL/min}, \ \text{min});$ *HR-ESI-MS*, *m/z*: 1224.5352 ([M+3H]³⁺, calc. 1224.5346), 918.6553 ([M+4H]⁴⁺, calc. 918.6528); *Yield*: 81% (conversion by HPLC), 15% (61 \ \text{nmol}, \ AAA).

MUC1(19mer) α 2,6-sialyl type-2 core 2: H₂N-(TEG)-PAHGVTSAPDTRPGST*A-OH (203) + (204)

Glycopeptide 126 (0.61 mg, 198 µmol) was sialylated with Pd2,6ST.

203 (monosialylated main product): Analytical HPLC $R_t = 32.08 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.79 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1224.5350 ([M+3H]³⁺, calc. 1224.5346), 918.6553 ([M+4H]⁴⁺, calc. 918.6528); *Yield*: 84% (conversion by HPLC), 76% (150 nmol, AAA).

204 (disialylated by-product): Analytical HPLC $R_t = 36.31 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 28.05 \text{ min}$ (A/B: (95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1321. 9008 ([M+3H]³⁺, calc. 1321.9009), 991.6779 ([M+4H]⁴⁺, calc. 991.6775); *Yield*: 16% (conversion by HPLC), 10% (21 nmol, after semi-prep HPLC).

MUC1(19mer) α2,3-sialyl type-2 core 2: H₂N-(TEG)-PAHGVTSAPDTRPGSTA-OH (205)

Glycopeptide 174 (0.64 mg, 235 nmol) was sialylated with rat 2,3-OST.

Analytical HPLC $R_t = 26.82 \text{ min}$ (A/B: (95:5) \rightarrow (85:15), 200 µL/min, 40 min); Preparative HPLC $R_t = 26.46 \text{ min}$ ((95:5) \rightarrow (78:22), 1.5 mL/min, min); *HR-ESI-MS*, *m/z*: 1005.7929 ([M+3H]³⁺, calc. 1005.7921), 754.5967 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 100% (conversion by HPLC), 42% (99 nmol, AAA).

MUC1(19mer) α2,6-sialyl type-2 core 2: H₂N-(TEG)-PAHGVTSAPDTRPGSTA-OH (206)

Glycopeptide 174 (0.73 mg, 268 nmol) was sialylated with PmST3.

Analytical HPLC $R_t = 27.13 \text{ min } (A/B: (95:5) \rightarrow (85:15), 200 \ \mu\text{L/min}, 40 \ \text{min});$ Preparative HPLC $R_t = 26.58 \text{ min } (A/B: (95:5) \rightarrow (78:22), 1.5 \ \text{mL/min}, \text{min});$ *HR-ESI-MS*, *m/z*: 1005.7935 ([M+3H]³⁺, calc. 1005.7921), 754.5966 ([M+4H]⁴⁺, calc. 754.5959); *Yield*: 69% (conversion by HPLC), 26% (69 \ \text{nmol}, AAA).

7.3 Microarray experiments with immobilized MUC1 glycopeptides

7.3.1 General

Microarray Spotting: Microarray chips were spotted with an *iTwo 400* spotter from *M2-Automation* equipped with a humidity control unit. The *Nexterion H®* microarray slides were purchased from *Schott GmbH*, Mainz. Glycopeptide substrates for spotting were pipetted into *Nunc*® 384-well plates from *Thermo Scientific* and loaded into the microarray spotter.

Microarray Scanning: Scanning of the microarray slides was performed with a *Typhoon Trio*+ by *Amersham Biosciences (GE Healthcare)*. The photo-multiplier tube voltage was set to 480 V or 500 V and it was scanned at 10 µm resolution. Excitation of *Alexa Fluor 488* conjugates (Ex_{max} : 495 nm, Em_{max} : 519 nm) was performed with a blue laser (488 nm) and a 520 nm band-pass emission filter. Excitation of *Cy5* conjugates (Ex_{max} : 650 nm, Em_{max} : 670 nm) was performed with a red laser (633 nm) and a 670 nm band-pass emission filter.

Microarray data processing: Data was obtained with *Amersham Typhoon Array* software. Background was substracted by *spot edge average* background substraction. Data was processed with *Microsoft Excel*. Given values in the diagrams represent the mean of the spot replicates with standard deviation.

Antibodies and lectins:

Secondary goat-anti-mouse antibody used for detection of primary serum antibodies and primary anti-MUC1 Ma552 antibody:

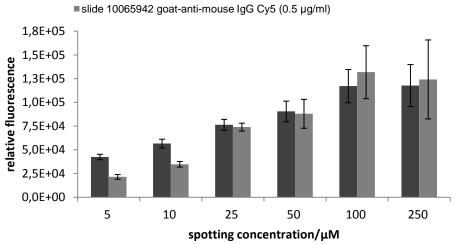
- Alexa Fluor® 488 goat-anti-mouse IgG (H+L, 2 mg/mL) was purchased from LifeTechnologies (Thermo Fisher Scientific), Eugene, OR, USA. Experimental dilution: 1:3000 (0.67 µg/ml).
- Mouse monoclonal IgG₁ antibody NCL-MUC1 core glycoprotein Ma552, human breast cancer cell line ZR75-1, 25 μg/ml, *Leica Biosystems*, Newcastle Ldt, UK. Experimental dilution: 12.5 μg/ml.

Biotinylated plant lectins were purchased from Vector Laboratories Inc:

- Biotinylated *Erythrina cristagalli* (ECA), 5mg/ml.
- Biotinylated Wheat germ agglutinin (WGA, *Triticum aestivum*), 5mg/ml.

- Biotinylated Maackia amurensis I (MAL I), 2 mg/ml.
- Biotinylated Maackia amurensis II (MAL II), 1 mg/ml.
- Biotinylated Peanut agglutinin (PNA, Arachis hypogaea), 5mg/ml.
- Biotinylated Vicia villosa (VVL), 2 mg/ml.
- Biotinylated Sambucus nigra agglutinin (SNA), 2 mg/ml.

Streptavidin-Cy5-conjugate for detection of the biotinylated lectin:


Cy5-Streptavidin conjugate (ZyMax[™] Grade), 1mg/ml, *Invitrogen (Thermo Scientific)*.
 Experimental dilution 1:1500 (0.67 µg/ml).

Galectin-3 and anti-galectin-3 antibody:

- Human, His-tagged, recombinant (*E.coli*) galectin-3 (1-250aa), *ATGen* Ltd, South Korea.
- Alexa Fluor® 488 anti-mouse/human Mac-2 (Galectin-3), 0.5 mg/mL, Biolegends Inc, San Diego, USA. Experimental dilution: 1:500 (1 μg/ml).

7.3.2 Nexterion slide H microarray loading capacity

The standard protocol for NHS-coated *Nexterion H*® microarray slides from *Schott* recommends surface loading with concentrations of 0.1-1 mg/mL for proteins (antibodies). The smaller MUC1 glycopeptides contain one reactive amine group on the N-terminus for covalent surface bonding. MUC1(19mer) **69** [(TEG)₃-PAHGVTSAPDT(T_N)RPAPGSTA] was spotted on two *Nexterion* slides, incubated with vaccine candidate 5 mouse 1 (SH127, 1:2000) and detected by addition with either goat-anti-mouse-IgG-Cy5 or goat-anti-mouse-IgG-AlexaFluor488 in concentrations ranging from 5 to 250 μ M was performed to evaluate best spotting conditions (*figure 6.1*).

■ slide10065947 goat-anti-mouse IgG AlexaFluor 488 (0.5 µg/ml) ■ slide 10065942 goat-anti-mouse IgG Cv5 (0.5 µg/ml)

Figure 7.2: Loading capacity of Nexterion slide H.

Each bar represents the mean of 672 spots per well. Slide saturation is reached between 50 and 100 μ M, according a previous publication on a glycoarray using *Nexterion H*® slides.³¹⁶ Higher spotting concentrations only increased standard deviation. Best spotting conditions in terms of best signal to standard deviation ratios are found between 25 and 50 μ M. For highest signals intensity all further microarray spotting was carried out in concentrations of 50 μ M which equals 0.11-0.26 mg/mL, depending on the molecular weight of each glycopeptide.

7.3.3 General spotting conditions

Reagents:

• Spotting buffer: 150 mM NaH₂PO₄/Na₂HPO₄ buffer (pH 8.5)

Glycopeptides were dissolved and diluted to a spotting concentration of 50 mM in spotting buffer. A volume of 20 μ L of each glycopeptide solution was pipetted into a *Nunc*® 384-well plate. The 384-well plate and the *Nexterion H*® slides were loaded in the spotter. Droplets were generated by piezo-driven droplet generation. The spotter settings were adjusted to generate substrate spots from single droplets of 100 pL ± 3 pL onto the microarray slides. During spotting, humidity in the spotting chamber was kept between 50-60%. After the spotting process, microarray slides were kept at 90-99% relative humidity overnight, to complete surface immobilization. Not immediately used slides are stored below -20°C, until further use.

7.3.4 Spotting of MUC1 microarrays MA1, MA2, MA3, MA4, MA5

Five different microarray formats (**MA1-MA5**) were spotted for the different applications and with growing size of the MUC1 glycopeptide library:

- MA1: Serum antibody titer microarray (chapter 4.3.7)
- MA2: Serum antibody microarray 1 (chapter 4.3.8)
- MA3: Serum antibody microarray 2 (*chapter 4.3.8*)
- MA4: Serum antibody microarray 3 and galectin microarray (*chapter 4.3.9*; *chapter 4.3.11.3*)
- MA5: Plant lectin microarray (*chapter 4.3.11.1*)

The glycopeptide library synthesized in the course of this work was appended by glycopeptides previously synthesized by M.Sc. M.Schorlemer, Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., (entry **174**), Dr. U. Westerlind and Dr. H. Cai Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund and Johannes-Gutenberg-Universität Mainz, laboratory of Prof. Dr. H. Kunz (entries **207-241**). *Table 6.2* lists all glycopeptides utilized for microarray spotting and the according microarray format.

Table 7.2: Full list of MUC1 glycopeptides utilized for microarray spotting of the microarray formats MA1, MA2, MA3, MA4, MA5 with positions of the glycopeptide entries on the arrays. (-) indicates absence of the according glycopeptide.

Peptide number	MUC1 sequence	Glycan	Origin	Рер	Peptide position on Microarray					
number				MA1	MA2	MA3	MA4	MA5		
68	PAHGVT*SAPDTRPAPGSTA	T _N	This thesis	-	27	-	-	21		
69	PAHGVTSAPDT*RPAPGSTA	T _N	This thesis	-	28	14	-	22		
70	PAHGVTSAPDTRPAPGST*A	T _N	This thesis	-	29	-	-	23		
71	PAHGVT*SAPDT*RPAPGSTA	T _N	This thesis	-	30	-	-	24		
72	PAHGVT*SAPDTRPAPGST*A	T _N	This thesis	-	31	-	-	25		
73	PAHGVTSAPDT*RPAPGST*A	T _N	This thesis	-	32	12	-	26		
74	PAHGVT*SAPDT*RPAPGST*A	T _N	This thesis	-	33	-	-	27		
75	PAHGVT*SAPDTRPAPGSTA	Т	This thesis	-	34	-	1	37		
76	PAHGVTSAPDT*RPAPGSTA	Т	This thesis	-	35	15	3	38		
77	PAHGVTSAPDTRPAPGST*A	Т	This thesis	-	36	-	5	39		
78	PAHGVT*SAPDT*RPAPGSTA	Т	This thesis	-	37	-	7	40		
79	PAHGVT*SAPDTRPAPGST*A	Т	This thesis	-	38	-	9	41		
80	PAHGVTSAPDT*RPAPGST*A	Т	This thesis	-	39	-	11	42		
81	PAHGVT*SAPDT*RPAPGST*A	Т	This thesis	-	40	-	13	43		
82	PGSTAPPAHGVTSAPDT*RPA	Т	This thesis	-	-	-	-	34		
83	APDT*RPAPGSTAPPAHGVTSA	т	This thesis	-	-	-	-	35		

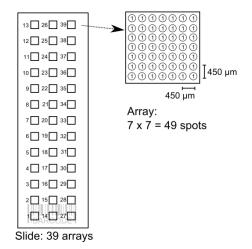
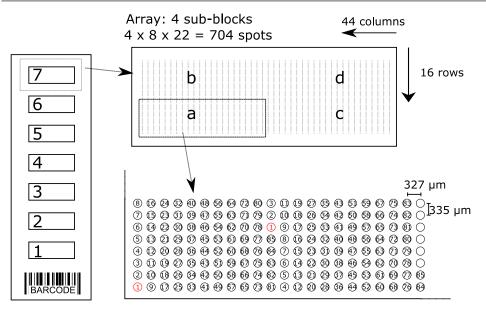
Peptide number	MUC1 sequence	Glycan	Origin	Рер	irray			
				MA1	MA2	MA3	MA4	MA5
84	APDT*RPA	Т	This thesis	-	-	-	-	36
85	PAHGVT*SAPDTRPAPGSTA	type-1 core 3	This thesis	-	41	-	-	52
86	PAHGVTSAPDT*RPAPGSTA	type-1 core 3	This thesis	-	42	-	-	53
87	PAHGVTSAPDTRPAPGST*A	type-1 core 3	This thesis	-	43	-	-	54
88	PAHGVT*SAPDT*RPAPGSTA	type-1 core 3	This thesis	-	44	-	-	55
89	PAHGVT*SAPDTRPAPGST*A	type-1 core 3	This thesis	-	45	-	-	56
90	PAHGVTSAPDT*RPAPGST*A	type-1 core 3	This thesis	-	46	-	-	57
91	PAHGVT*SAPDT*RPAPGST*A	type-1 core 3	This thesis	-	47	-	-	58
92	PAHGVT*SAPDTRPAPGSTA	type-2 core 3	This thesis	-	48	-	15	59
93	PAHGVTSAPDT*RPAPGSTA	type-2 core 3	This thesis	-	49	-	18	60
94	PAHGVTSAPDTRPAPGST*A	type-2 core 3	This thesis	-	50	-	29	61
95	PAHGVT*SAPDT*RPAPGSTA	type-2 core 3	This thesis	-	51	-	-	62
96	PAHGVT*SAPDTRPAPGST*A	type-2 core 3	This thesis	-	52	-	-	63
97	PAHGVTSAPDT*RPAPGST*A	type-2 core 3	This thesis	-	53	-	-	64
98	PAHGVT*SAPDT*RPAPGST*A	type-2 core 3	This thesis	-	54	-	32	65
99	PAHGVT*SA	type-2 core 3	This thesis	-	-	-	-	73
100	PAHGVT*SAPDTRPAPGSTA	type-1 core 1	This thesis	-	55	-	-	74
101	PAHGVTSAPDT*RPAPGSTA	type-1 core 1	This thesis	-	56	-	35	75
102	PAHGVTSAPDTRPAPGST*A	type-1 core 1	This thesis	-	57	-	37	76
103	PAHGVT*SAPDT*RPAPGSTA	type-1 core 1	This thesis	-	58	-	-	77
104	PAHGVT*SAPDTRPAPGST*A	type-1 core 1	This thesis	-	59	-	-	78
105	PAHGVTSAPDT*RPAPGST*A	type-1 core 1	This thesis	-	60	-	-	79
106	PAHGVT*SAPDT*RPAPGST*A	type-1 core 1	This thesis	-	61	-	-	80
107	PAHGVT*SAPDTRPAPGSTA	type-2 core 1	This thesis	-	62	-	41	85
108	PAHGVTSAPDT*RPAPGSTA	type-2 core 1	This thesis	-	63	16	43	86
109	PAHGVTSAPDTRPAPGST*A	type-2 core 1	This thesis	-	64	-	46	87
110	PAHGVT*SAPDT*RPAPGSTA	type-2 core 1	This thesis	-	65	-	-	88
111	PAHGVT*SAPDTRPAPGST*A	type-2 core 1	This thesis	-	66	-	-	89
112	PAHGVTSAPDT*RPAPGST*A	type-2 core 1	This thesis	-	67	-	-	90
113	PAHGVT*SAPDT*RPAPGST*A	type-2 core 1	This thesis	-	68	-	50	91
114	GST*APPAHGVTSAPDTRPA	type-2 core 1	This thesis	-	-	-	-	94
115	PDTRPAPGST*APPAHGVTSA	type-2 core 1	This thesis	-	-	-	-	93
116	PDTRPAPGSTAPPAHGVT*SA	type-2 core 1	This thesis	-	-	-	-	92
117	PAHGVT*SAPDTRPAPGSTA	type-1 core 2 (hexa)	This thesis	-	69	-	-	107
118	PAHGVTSAPDT*RPAPGSTA	type-1 core 2 (hexa)	This thesis	-	70	-	-	108
119	PAHGVTSAPDTRPAPGST*A	type-1 core 2	This thesis	-	71	-	53	109
120	PAHGVT*SAPDT*RPAPGSTA	(hexa) type-1 core 2	This thesis	-	72	_	-	110
		(hexa) type-1 core 2						
121	PAHGVT*SAPDTRPAPGST*A	(hexa) type-1 core 2	This thesis	-	73	-	-	111
122	PAHGVTSAPDT*RPAPGST*A	(hexa)	This thesis	-	74	-	-	112
123	PAHGVT*SAPDT*RPAPGST*A	type-1 core 2 (hexa)	This thesis	-	75	-	-	113
124	PAHGVT*SAPDTRPAPGSTA	type-2 core 2 (hexa)	This thesis	-	76	-	-	115
125	PAHGVTSAPDT*RPAPGSTA	type-2 core 2 (hexa)	This thesis	-	77	17	55	116
126	PAHGVTSAPDTRPAPGST*A	type-2 core 2	This thesis	-	78	-	58	117
127	PAHGVT*SAPDT*RPAPGSTA	(hexa) type-2 core 2	This thesis	-	79	-	-	118
		(hexa) type-2 core 2						
128	PAHGVT*SAPDTRPAPGST*A	(hexa)	This thesis	-	80	-	-	119

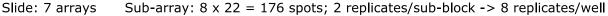
Peptide	MUC1 sequence	Glycan	Origin	Рер	otide pos	tide position on Microarray				
number			e.ig.ii	MA1	MA2	MA3	MA4	MA5		
129	PAHGVTSAPDT*RPAPGST*A	type-2 core 2 (hexa)	This thesis	-	81	-	-	120		
130	PAHGVT*SAPDT*RPAPGST*A	type-2 core 2 (hexa)	This thesis	-	82	-	-	121		
131	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	*type-2 core 1 + [#] 2xTn	This thesis	-	-	1	-	130		
132	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	*type-2 core 3 + [#] 2xTn	This thesis	-	-	2	-	131		
133	PAHGVTSAPDT*RPAPGS [#] T [#] APPA	*type-2 core 2 + [#] 2xTn	This thesis	-	-	3	-	132		
174	PAHGVTSAPDT*RPAPGSTA	type-2 core 2 (tetra)	M. Sc. M. Schorlemer	-	-	18	61	127		
175	PAHGVT*SAPDTRPAPGSTA	ST	This thesis	-	-	-	2	44		
176	PAHGVTSAPDT*RPAPGSTA	ST	This thesis	-	-	-	4	45		
177	PAHGVTSAPDTRPAPGST*A	ST	This thesis	-	-	-	6	46		
178	PAHGVT*SAPDT*RPAPGSTA	ST	This thesis	-	-	-	8	47		
179	PAHGVT*SAPDTRPAPGST*A	ST	This thesis	-	-	-	10	48		
180	PAHGVTSAPDT*RPAPGST*A	ST	This thesis	-	-	-	12	49		
181	PAHGVT*SAPDT*RPAPGST*A	ST	This thesis	-	-	-	14	50		
182	PAHGVT*SAPDTRPAPGSTA	2,3-sialyl type- 2 core 3	This thesis	-	-	-	17	66		
183	PAHGVTSAPDT*RPAPGSTA	2,3-sialyl type- 2 core 3	This thesis	-	-	-	24	67		
184	PAHGVTSAPDTRPAPGST*A	2,3-sialyl type- 2 core 3	This thesis	-	-	-	31	68		
185	PAHGVT*SAPDTRPAPGSTA	2,6-sialyl type- 2 core 3	This thesis	-	-	-	16	70		
186	PAHGVTSAPDT*RPAPGSTA	2,6-sialyl type-	This thesis	-	-	-	19	71		
187	PAHGVTSAPDTRPAPGST*A	2 core 3 2,6-sialyl type-	This thesis	_	-	-	30	72		
188	PAHGVT*SAPDT*RPAPGST*A	2 core 3 2,6-sialyl type-	This thesis	-		-	34	69		
		2 core 3 2,3-sialyl type-		-	-					
189	PAHGVTSAPDT*RPAPGSTA	1 core 1 2,3-sialyl type-	This thesis	-	-	-	36	83		
190	PAHGVTSAPDTRPAPGST*A	1 core 1 2,6-sialyl type-	This thesis	-	-	-	40	84		
191	PAHGVTSAPDTRPAPGST*A	1 core 1	This thesis	-	-	-	38	81		
192	PAHGVTSAPDTRPAPGST*A	2,6-sialyl type- 1 core 1	This thesis	-	-	-	39	82		
193	PAHGVT*SAPDTRPAPGSTA	2,3-sialyl type- 2 core 1	This thesis	-	-	-	42	98		
194	PAHGVTSAPDT*RPAPGSTA	2,3-sialyl type- 2 core 1	This thesis	-	-	-	45	99		
195	PAHGVTSAPDT*RPAPGSTA	2,6-sialyl type- 2 core 1	This thesis	-	-	-	44	95		
196	PAHGVTSAPDTRPAPGST*A	2,3-sialyl type- 2 core 1	This thesis	-	-	-	49	100		
197	PAHGVTSAPDTRPAPGST*A	2,6-sialyl type- 2 core 1	This thesis	-	-	-	47	96		
198	PAHGVTSAPDTRPAPGST*A	2,6-sialyl type-	This thesis	-	-	-	48	97		
199	PAHGVT*SAPDT*RPAPGST*A	2 core 1 2,3-sialyl type-	This thesis	-	-	-	51	102		
		2 core 1 2,6-sialyl type-								
200	PAHGVTSAPDTRPAPGST*A	1 core 2 (hexa)	This thesis	-	-	-	54	114		
201	PAHGVTSAPDT*RPAPGSTA	2,3-sialyl type- 2 core 2	This thesis	-	-	-	57	126		
-•·		(hexa) 2,6-sialyl type-					-			
202	PAHGVTSAPDT*RPAPGSTA	2 core 2 (hexa)	This thesis	-	-	-	56	122		
202		2,6-sialyl type-	This design				50	400		
203	PAHGVTSAPDTRPAPGST*A	2 core 2 (hexa)	This thesis	-	-	-	59	123		
204	PAHGVTSAPDTRPAPGST*A	2,6-sialyl type- 2 core 2	This thesis	-	-	-	60	124		
		(hexa) 2,3-sialyl								
205	PAHGVTSAPDT*RPAPGSTA	(core1) type-2 core 2 (tetra)	This thesis	-	-	-	62	128		
		2,3- sialyl(LacNAc)								
206	PAHGVTSAPDT*RPAPGSTA	type-2 core 2	This thesis	-	-	-	63	129		

Peptide	MUC1 sequence	Glycan	Origin	Рер	tide pos	sition on Microarray			
number	•	•	_	MA1	MA2	MA3	MA4	MA5	
207	PAHGVTSAPDTRPAPGSTAP	-	Dr. U. Westerlind	-	1	-	-	-	
208	PAHGVT*SAPDTRPAPGSTAP	ST _N	Dr. U. Westerlind	-	2	-	-	2	
209	PAHGVTSAPDT*RPAPGSTAP	STN	Dr. U. Westerlind	-	3	-	-	3	
210	PAHGVTSAPDTRPAPGST*AP	ST _N	Dr. U. Westerlind	-	4	-	-	4	
211	PAHGVT*SAPDTRPAPGST*AP	ST _N	Dr. U. Westerlind	-	5	-	-	5	
212	PAHGVT*SAPDTRPAP	ST _N	Dr. U. Westerlind	-	6	-	-	6	
213	GSTAPPAHGVT*SAP	* ST _N , ° T _N	Dr. U. Westerlind	-	7	-	-	7	
214	PAHGVT*SAPDTRPAPGST°AP	* ST _N , ° T _N	Dr. U.	-	8	-	-	8	
215	PAHGVT*SAPDT°RPAPGST*AP	* ST _N , ° T _N	Westerlind Dr. U.	-	9	-	-	9	
216	PAHGVT*SAPDTRPAPGST°APPA	* ST _N , ° T _N	Westerlind Dr. U.	-	10	-	-	10	
217	HGVT*SAPDTRPAPGST°AP PAHGVT*SAPDTRPAPGSTAP	T _N	Westerlind Dr. U.	-	11	-	-	-	
218	PAHGVTS*APDTRPAPGSTAP		Westerlind Dr. U.		12	-	-	11	
	PAHGVTS APDTRPAPGS*TAP	T _N	Westerlind Dr. U.	-		-			
219		T _N	Westerlind Dr. U.	-	13	-	-	12	
220	PAHGVTSAPDT*RPAPGS*TAP	T _N	Westerlind Dr. U.	-	14	-	-	-	
221	APDTRPAPGST*AP	T _N	Westerlind Dr. U.	-	15	-	-	13	
222	PAHGVT*SAPDTRPAPGSTAP	Т	Westerlind	-	16	-	-	-	
223	PAHGVTS*APDTRPAPGSTAP	Т	Dr. U. Westerlind	-	17	-	-	28	
224	PAHGVTSAPDT*RPAPGSTAP	т	Dr. U. Westerlind	-	18	-	-	-	
225	PAHGVTSAPDTRPAPGS*TAP	Т	Dr. U. Westerlind	-	19	-	-	29	
226	PAHGVTSAPDTRPAPGST*AP	т	Dr. U. Westerlind	-	20	-	-	-	
227	PAHGVT*SAPDTRPAP	Т	Dr. U. Westerlind	-	21	-	-	30	
228	PAHGVTS*APDTRPAP	Т	Dr. U. Westerlind	-	22	-	-	31	
229	PAHGVTSAPDTRPAPGS*TAP	αGlcNAc	Dr. U. Westerlind	-	83	-	-	-	
230	PAHGVT*SAPDTRPAPGSTAP	αGlcNAc	Dr. U. Westerlind	-	84	-	-	-	
231	PAHGVTS*APDTRPAPGSTA	αGlcNAc	Dr. U.	-	85	-	-	-	
232	HGVTSAPDT*RPAPGS*T*APPA	T _N	Westerlind Dr. H. Cai	1	23	4	64	14	
233	HGVTSAPDTRPAPGS*T*APPA	T _N	Dr. H. Cai	-	24	5	65	15	
234	HGVTSAPDT*RPAPGS*T*APPA	т	Dr. H. Cai	1	25	6	-	32	
235	HGVTSAPDTRPAPGS*T*APPA	Т	Dr. H. Cai	-	26	7	-	33	
236	HGVTSAPDTRPAPGST*APPA	T _N	Dr. H. Cai	-	-	8	-	16	
237	HGVTSAPDTRPAPGS*TAPPA	T _N	Dr. H. Cai	1	-	9	-	17	
238	HGVTSAPDT*RPAPGS*TAPPA	T _N	Dr. H. Cai	-	-	10	-	18	
239	HGVTSAPDT*RPAPGST*APPA	T _N	Dr. H. Cai	-	-	11	-	19	
240	HGVTSAPDT*RPAPGSTAPPA	T _N	Dr. H. Cai	-	-	13	-	20	
241	HGVTSAPDTRPAPGSTAPPA	-	Dr. H. Cai	-	-	19	-	1	

7.3.4.1 Format of microarray MA1

Microarray **MA1** was utilized for antibody titer determination (chapter 4.3.7). **MA1** was spotted homogenously with each of the corresponding antigen peptides of the vaccine candidates **229**, **231** or **234** (*table 6.1*). The glycopeptide was spotted in 39 arrays with 7 x 7 = 49 replicates. The pitch was set to 450 μ M in each direction (*figure 6.2*).


Figure 7.3: Format of microarray MA1.

The murine serum antibodies were detected with *Alexa Fluor*® *488* goat-anti-mouse IgG (1:3000) as described in the general procedure for array incubation (*chapter 6.3.5*). Central nine replicates were chosen for data acquisition.

7.3.4.2 Format of microarray MA2

Microarray **MA2** was utilized for serum antibody screening (*chapter 4.3.8*). Glycopeptides were arranged in seven rectangular arrays per slide. The barcode area was left unspotted. Each array consisted of four identical sub-blocks of eight columns and 22 rows, resulting in maximum 176 spots per sub-block and 4 x 176 = 704 possible spots per array. In total 85 MUC1 glycopeptides were spotted two times into each sub-block (2 x 85 = 170 spots; 176 (max) - 170 (used) = 6 spots unused), resulting in eight spot replicates per array. Peptides were spotted in the order according to *table 6.1*. Pitch spacing was set to 335 µm in x-direction and 327 µm y-direction (*figure 6.3*).

Figure 7.4: Format of microarray MA2.

The murine serum antibodies from synthetic vaccine candidates **1-8** were detected with *Alexa Fluor*® *488* goat-anti-mouse IgG (1:3000) as described in the general procedure for array incubation (*chapter 6.3.5*).

7.3.4.3 Format of microarray MA3

Microarray **MA3** was utilized in serum antibody screening (*chapter 4.3.8*). Glycopeptides were arranged in 16 wells on the microarray slide. Each array was spotted in a $12 \times 12 = 144$ spots pattern. The glycopeptides were spotted with 7 replicates each (*figure 6.3*). Pitch spacing was set to 380 µm in x-direction and 410 µm y-direction (*figure 6.4*)

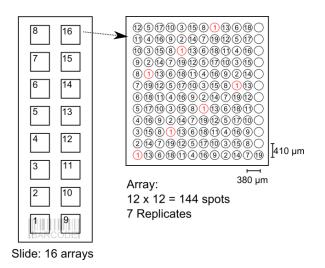
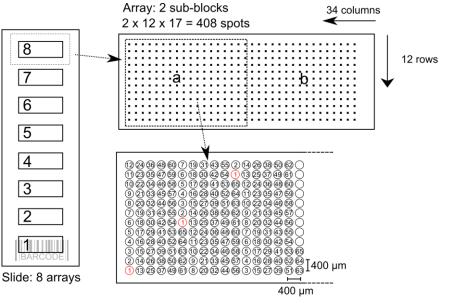



Figure 7.5: Format of microarray MA3.

The murine serum antibodies from synthetic vaccine candidates **1-8** were detected with *Alexa Fluor*® *488* goat-anti-mouse IgG (1:3000) as described in the general procedure for array incubation (*chapter 6.3.5*).

7.3.4.4 Format of microarray MA4

Microarray **MA4** was utilized in serum antibody screening and galectin-3 screening (*chapter* 4.3.9 and *chapter* 4.3.11.3). Glycopeptides were arranged in eight arrays per slide. Each array consisted of two identical sub-blocks of 12 columns and 17 rows, resulting in maximum 204 spots per sub-block and 2 x 204 = 408 spots per array. In total 65 MUC1 glycopeptides were spotted three times into each sub-block ($3 \times 65 = 195$ spots; 204 (max) - 195 (used) = 9 spots unused), resulting in seven spot replicates per array. Peptides were spotted in the order according to *table* 6.1. Pitch spacing was set to 400 µm in x-direction and 400 µm y-direction (*figure* 6.5).

Sub-array: 12 x 17 =204 spots; 3 replicates/sub-block -> 6 replicates/well

The murine serum antibodies from synthetic vaccine candidates **1-8** were detected with *Alexa Fluor*® 488 goat-anti-mouse IgG (1:3000) and galectin-3 was detected with *Alexa Fluor*® 488 anti-mouse/human MAC2/galectin-3 (1:500) an as described in the general procedure for array incubation (*chapter 6.3.5*).

Figure 7.6: Format of microarray MA4.

7.3.4.5 Format of microarray MA5

Microarray **MA5** was utilized in plant lectin screening (*chapter 4.3.11.1*). Glycopeptides were arranged in eight arrays per slide. Each array contained spots arranged in 16 columns and 42 rows, resulting in maximum 672 spots per array. In total 132 MUC1 glycopeptides were spotted five spot replicates per array (5 x 132 = 660 spots; 672 (max) - 660 (used) = 12 spots unused). Peptides were spotted in the order according to *table 6.1*. Pitch spacing was set to 340 µm in x-direction and 343 µm in y-direction (*figure 6.6*).

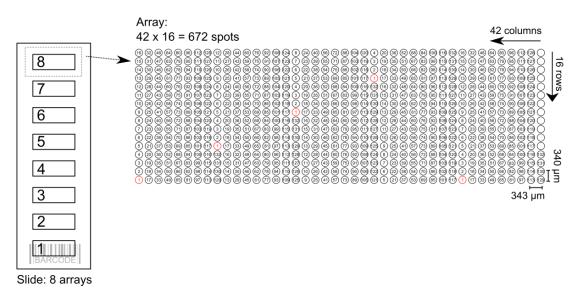


Figure 7.7: Format of Microarray MA5.

The biotinylated plant lectins were detected with Cy5-Streptavidin Conjugate (1:1500) as described in the general procedure for array incubation (*chapter 6.3.5*).

7.3.5 General protocol for microarray assays with antiserum or lectin samples

Reagents:

- Block-buffer: 25 mM ethanolamine in 100 mM sodium tetraborate buffer (pH 9.0)
- Incubation-buffer: PBST-buffer (0.2% Tween-20): 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na₂HPO₄, 1.4 mM KH₂PO₄, 0.2% Tween-20.
- Wash-buffer 1: PBST-buffer (0.05%)
- Wash-buffer 2: PBS-buffer

The volumes for all incubation and washing steps were depended on the corresponding well size of the microarray:

- MA1: 3 x 3 mm → 5 µL
- MA2, MA4, MA5: 6.59 x 15.58 mm \rightarrow 100 μ L
- MA3: 6.59 x 6.59 mm → 50 µL

General incubation procedure for microarray assay:

Blocking:

- 1. The slides are immersed in a bath of block-buffer. No further blocking with a protein component (i.e. BSA) is required.
- 2. The slides are rinsed three times with water and then spin dried in a centrifuge.
- 3. The slide is mounted into a slide holder with a well-forming silicone superstructure.
- 4. Incubation with antiserum or lectin:

The antiserum/lectin is diluted in incubation-buffer and pipetted into the wells. The slide holder is positioned into a humidity chamber (70% RH) and gently shaken for 60 min.

- 5. The wells are washed two times wash buffer 1 and once with wash buffer 2 for 15 min each.
- 6. Incubation with secondary antibody:

Wash-buffer is carefully pipetted out of the wells and of secondary antibody diluted in incubation-buffer is added. The slide holder is positioned into a humidity chamber (70% RH) and gently shaken for 60 min.

- 7. Washing according to step 5.
- 8. Slides are removed from the slide holder, the silicone superstructure is removed and the slides are generously rinsed with water and spin-dried.
- 9. Slides are scanned for fluorescence.

8 **REFERENCES**

- 1. J. Dekker, J. W. Rossen, H. A. Büller, A. Einerhand, *Trends in Biochemical Sciences* **2002**, 27, 126.
- 2. D. J. Thornton, J. K. Sheehan, Proc. Am. Thorac. Soc. 2004, 1, 54.
- 3. S. J. Gendler, A. P. Spicer, Annu. Rev. Physiol. 1995, 57, 607.
- 4. J. Taylor-Papadimitriou, J. A. Peterson, J. Arklie, J. Burchell, R. L. Ceriani, W. F. Bodmer, *Int. J. Cancer* **1981**, 28, 17.
- 5. J. Hilkens, Ligtenberg, Marjolÿn J. L. H. L. Vos, S. V. Litvinov, *Trends in Biochemical Sciences* **1992**, 17, 359.
- S. Zrihan-Licht, A. Baruch, O. Elroy-Stein, I. Keydar, D. H. Wreschner, *FEBS Letters* 1994, 356, 130.
- 7. P. K. Singh, M. A. Hollingsworth, Trends in Cell Biology 2006, 16, 467.
- 8. D. J. Thornton, K. Rousseau, M. A. McGuckin, Annu. Rev. Physiol. 2008, 70, 459.
- S. Gendler, J. Taylor-Papadimitriou, T. Duhig, J. Rothbard, J. Burchell, J. Biol. Chem. 1988, 263, 12820.
- 10. J.-L. Desseyn, V. Guyonnet-Duperat, N. Porchet, J.-P. Aubert, A. Laine, *J. Biol. Chem.* **1997**, 272, 3168.
- 11. S. E. Baldus, K. Engelmann, F.-G. Hanisch, Crit. Rev. Clin. Lab. Sci. 2004, 41, 189.
- 12. N. Jentoft, Trends in Biochemical Sciences 1990, 15, 291.
- F. Levitin, O. Stern, M. Weiss, C. Gil-Henn, R. Ziv, Z. Prokocimer, N. I. Smorodinsky, D.
 B. Rubinstein, D. H. Wreschner, *J. Biol. Chem.* 2005, 280, 33374.
- C. L. Kinlough, R. J. McMahan, P. A. Poland, J. B. Bruns, K. L. Harkleroad, R. J. Stremple, O. B. Kashlan, K. M. Weixel, O. A. Weisz, R. P. Hughey, *J. Biol. Chem.* 2006, 281, 12112.
- A. Halim, G. Brinkmalm, U. Rüetschi, A. Westman-Brinkmalm, E. Portelius, H. Zetterberg,
 K. Blennow, G. Larson, J. Nilsson, *Proc. Natl. Acad. Sci. U.S.A.* 2011, 108, 11848.

- C. Steentoft, S. Y. Vakhrushev, M. B. Vester-Christensen, Schjoldager, Katrine T-B G, Y. Kong, E. P. Bennett, U. Mandel, H. Wandall, S. B. Levery, H. Clausen, *Nat. Methods* 2011, 8, 977.
- 17. I. Brockhausen. in *Comprehensive Glycoscience*, edited by H. Kamerling (Elsevier, Oxford, 2007), pp. 33–59.
- 18. T. Iwai, N. Inaba, A. Naundorf, Y. Zhang, M. Gotoh, H. Iwasaki, T. Kudo, A. Togayachi, Y. Ishizuka, H. Nakanishi, H. Narimatsu, *J. Biol. Chem.* **2002**, 277, 12802.
- 19. Y. Li, X. Chen, Appl. Microbiol. Biotechnol. 2012, 94, 887-905.
- 20. R. McEver, Glycoconj. J. 1997, 14, 585-591.
- 21. Jan-Willem Van Klinken, B. A. Einerhand, H. A. Büller, J. Dekker, *Analytical Biochemistry* **1998**, 265, 103.
- 22. J. Taylor-Papadimitriou, J. Burchell, D. W. Miles, M. Dalziel, *Biochim. Biophys. Acta Molecular Basis of Disease* **1999**, 1455, 301.
- 23. P. D. Vermeer, L. A. Einwalter, T. O. Moninger, T. Rokhlina, J. A. Kern, J. Zabner, M. J. Welsh, *Nature* **2003**, 422, 322.
- 24. K. Shin, V. C. Fogg, B. Margolis, Annu. Rev. Cell Dev. Biol. 2006, 22, 207.
- 25. Y. Li, W.-h. Yu, J. Ren, W. Chen, L. Huang, S. Kharbanda, M. Loda, D. Kufe, *Mol. Cancer Res.* **2003**, 1, 765.
- 26. M. Yamamoto, A. Bharti, Y. Li, D. Kufe, J. Biol. Chem. 1997, 272, 12492.
- 27. Ligtenberg, Marjolijn J. L. F. Buijs, H. L. Vos, J. Hilkens, Cancer Res. 1992, 52, 2318.
- 28. J. Wesseling, J. Cell Biol. 1995, 129, 255.
- 29. I. Brockhausen, J.-M. Yang, J. Burchell, C. Whitehouse, J. Taylor-Papadimitriou, *Eur. J. Biochem.* **1995**, 233, 607.
- M. Dalziel, C. Whitehouse, I. McFarlane, I. Brockhausen, S. Gschmeissner, T. Schwientek, H. Clausen, J. M. Burchell, J. Taylor-Papadimitriou, *J. Biol. Chem.* 2001, 276, 11007.
- 31. R. Sewell, M. Bäckström, M. Dalziel, S. Gschmeissner, H. Karlsson, T. Noll, J. Gätgens,
 H. Clausen, G. C. Hansson, J. Burchell, J. Taylor-Papadimitriou, *J. Biol. Chem.* 2006, 281, 3586.
- A. Solatycka, T. Owczarek, F. Piller, V. Piller, B. Pula, L. Wojciech, M. Podhorska-Okolow, P. Dziegiel, M. Ugorski, *Glycobiology* 2012, 22, 1042.
- 33. F. Dall'Olio, M. Chiricolo, *Glycoconj. J.* 2001, 18, 841.

- 34. S. J. Storr, L. Royle, C. J. Chapman, Hamid, Umi M Abd, J. F. Robertson, A. Murray, R. A. Dwek, P. M. Rudd, *Glycobiology* **2008**, 18, 456.
- 35. N. Matsuura, T. Narita, N. Hiraiwa, M. Hiraiwa, H. Murai, T. Iwase, H. Funahashi, T. Imai,H. Takagi, R. Kannagi, *Int. J. Oncol.* **1998**,
- 36. G. An, B. Wei, B. Xia, J. M. McDaniel, T. Ju, R. D. Cummings, J. Braun, L. Xia, *J. Exp. Med.* **2007**, 204, 1417.
- T. Iwai, T. Kudo, R. Kawamoto, T. Kubota, A. Togayachi, T. Hiruma, T. Okada, T. Kawamoto, K. Morozumi, H. Narimatsu, *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102, 4572.
- 38. P. Radhakrishnan, P. M. Grandgenett, A. M. Mohr, S. K. Bunt, F. Yu, S. Chowdhury, M. A. Hollingsworth, *Int. J. Cancer* 2013, 133, 2824.
- 39. T. Ju, R. D. Cummings, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16613.
- 40. T. Ju, G. S. Lanneau, T. Gautam, Y. Wang, B. Xia, S. R. Stowell, M. T. Willard, W. Wang, J. Y. Xia, R. E. Zuna, Z. Laszik, D. M. Benbrook, M. H. Hanigan, R. D. Cummings, *Cancer Res.* 2008, 68, 1636.
- 41. Y. Wang, T. Ju, X. Ding, B. Xia, W. Wang, L. Xia, M. He, R. D. Cummings, *Proc. Natl. Acad. Sci. U.S.A.* **2010**, 107, 9228.
- 42. T. Koike, N. Kimura, K. Miyazaki, T. Yabuta, K. Kumamoto, S. Takenoshita, J. Chen, M. Kobayashi, M. Hosokawa, A. Taniguchi, T. Kojima, N. Ishida, M. Kawakita, H. Yamamoto, H. Takematsu, A. Suzuki, Y. Kozutsumi, R. Kannagi, R. Kanangi, *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 8132.
- 43. K. Kumamoto, Y. Goto, K. Sekikawa, S. Takenoshita, N. Ishida, M. Kawakita, R. Kannagi, *Cancer Res.* **2001**, 61, 4620.
- 44. G. Springer, Science 1984, 224, 1198.

45. B. J. Campbell, I. A. Finnie, E. F. Hounsell, J. M. Rhodes, J. Clin. Invest. 1995, 95, 571.

 M. R. Price, P. D. Rye, E. Petrakou, A. Murray, K. Brady, S. Imai, S. Haga, Y. Kiyozuka, D. Schol, Meulenbroek, M. F. A. Snijdewint, F. G. M. S. von Mensdorff-Pouilly, R. A. Verstraeten, K. Kenemans, A. Blockzjil, N. Nilsson, O. Nilsson, R. Reddish, M. R. Suresh, K. Koganty, S. Fortier, B. Baronic, A. Berg, M. B. Longenecker, H. Hilkens, M. Boer, K. Karanikas, McKenzie, I. F. C. G. Galanina, L. A. Simeoni, A. G. Ter-Grigoryan, I. M. Belyanchikov, N. V. Bovin, Y. Cao, U. Karsten, J. Dai, W. J. Allard, G. Davis, K. K. Yeung, F.-G. Hanisch, K. O. Lloyd, V. Kudryashov, R. Sikut, A. Sikut, K. Zhang, D. Baeckström, G. C. Hansson, C. A. Reis, H. Hassan, E. P. Bennett, H. Claussen, L. Norum, T. Varaas, B. Kierulf, K. Nustad, P. Ciborowski, W. M. Konitzki, J. Magarian-Blander, O. J. Finn, J. Hilgers, *Tumor Biol.* 1998, 19(suppl 1), 1.

- 47. S. von Mensdorff-Pouilly, E. Petrakou, P. Kenemans, K. van Uffelen, A. A. Verstraeten, Snijdewint, Frank G. M. van Kamp, Gerard J. D. J. Schol, C. A. Reis, M. R. Price, P. O. Livingston, J. Hilgers, *Int. J. Cancer* **2000**, 86, 702.
- 48. J. Taylor-Papadimitriou, J. Burchell, T. Plunkett, R. Graham, I. Correa, D. Miles, M. Smith, *J. Mammary Gland. Biol. Neoplasia* **2002**, 7, 209-221.
- 49. A. Danielczyk, R. Stahn, D. Faulstich, A. Löffler, A. Märten, U. Karsten, S. Goletz, *Cancer Immunol. Immunother.* **2006**, 55, 1337-1347.
- 50. M. J. Scanlon, S. D. Morley, D. E. Jackson, M. R. Price, S. J. Tendler, *Biochem. J.* **1992**, 284 (Pt 1), 137.
- 51. J. D. Fontenot, S. V. Mariappan, P. Catasti, N. Domenech, O. J. Finn, G. Gupta, *J. Biomol. Struct. Dyn.* **1995**, 13, 245.
- 52. O. J. Finn, K. R. Jerome, R. A. Henderson, G. Pecher, N. Domenech, J. Magarian-Blander, S. M. Barratt-Boyes, *Immunol. Rev.* **1995**, 145, 61.
- 53. J. Schuman, A. P. Campbell, R. R. Koganty, B. M. Longenecker, *J. Pept. Res.* **2003**, 61, 91.
- 54. S. Dziadek, C. Griesinger, H. Kunz, U. M. Reinscheid, Chem. Eur. J. 2006, 12, 4981.
- 55. J. S. Grinstead, R. R. Koganty, M. J. Krantz, B. M. Longenecker, A. P. Campbell, *Biochemistry* **2002**, 41, 9946.
- 56. L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, S. Sherman, *Biochemistry* **2000**, 39, 12076.
- 57. T. Matsushita, N. Ohyabu, N. Fujitani, K. Naruchi, H. Shimizu, H. Hinou, S.-I. Nishimura, *Biochemistry* **2013**, 52, 402.
- 58. M. A. Tarp, A. L. Sorensen, U. Mandel, H. Paulsen, J. Burchell, J. Taylor-Papadimitriou,H. Clausen, *Glycobiology* 2007, 17, 197.
- H. H. Wandall, O. Blixt, M. A. Tarp, J. W. Pedersen, E. P. Bennett, U. Mandel, G. Ragupathi, P. O. Livingston, M. A. Hollingsworth, J. Taylor-Papadimitriou, J. Burchell, H. Clausen, *Cancer Res.* 2010, 70, 1306.
- O. Blixt, E. Cló, A. S. Nudelman, K. K. Sørensen, T. Clausen, H. H. Wandall, P. O. Livingston, H. Clausen, K. J. Jensen, *J. Proteome Res.* **2010**, 9, 5250.
- 61. O. Blixt, D. Bueti, B. Burford, D. Allen, S. Julien, M. Hollingsworth, A. Gammerman, I. Fentiman, J. Taylor-Papadimitriou, J. M. Burchell, *Breast Cancer Res.* **2011**, 13, R25.

- 62. J. W. Pedersen, O. Blixt, E. P. Bennett, M. A. Tarp, I. Dar, U. Mandel, S. S. Poulsen, A. E. Pedersen, S. Rasmussen, P. Jess, H. Clausen, H. H. Wandall, *Int. J. Cancer* 2011, 128, 1860.
- 63. F.-G. Hanisch, T. Stadie, K. Boßlet, Cancer Res. 1995, 55, 4036.
- 64. M. Yamamoto, V. P. Bhavanandan, S. Nakamori, T. Irimura, Cancer Sci. 1996, 87, 488.
- 65. F.-G. Hanisch, T. Schwientek, Von Bergwelt-Baildon, Michael S, J. L. Schultze, O. Finn, *Eur. J. Immunol.* **2003**, 33, 3242.
- 66. F.-G. Hanisch, Biochem. Soc. Trans 2005, 33, 705.
- J. Hirabayashi, T. Hashidate, Y. Arata, N. Nishi, T. Nakamura, M. Hirashima, T. Urashima, T. Oka, M. Futai, Muller, Werner E. G, F. Yagi, K.-i. Kasai, *Biochim. Biophys. Acta General Subjects* **2002**, 1572, 232.
- M. Viguier, T. Advedissian, D. Delacour, F. Poirier, F. Deshayes, *Tissue Barriers* 2014, 2, e29103.
- 69. H. Ahmed, P. Guha, E. Kaptan, G. Bandyopadhyaya, *Trends in carbohydrate research* **2011**, 3, 13.
- 70. G. Elad-Sfadia, R. Haklai, E. Balan, Y. Kloog, J. Biol. Chem. 2004, 279, 34922.
- 71. R. Shalom-Feuerstein, T. Cooks, A. Raz, Y. Kloog, Cancer Res. 2005, 65, 7292.
- 72. Y. Takenaka, T. Fukumori, T. Yoshii, N. Oka, H. Inohara, H.-R. C. Kim, R. S. Bresalier, A. Raz, *Mol. Cell Biol.* **2004**, 24, 4395.
- 73. T. Shimura, Y. Takenaka, T. Fukumori, S. Tsutsumi, K. Okada, V. Hogan, A. Kikuchi, H. Kuwano, A. Raz, *Cancer Res.* **2005**, 65, 3535.
- 74. S. Song, N. Mazurek, C. Liu, Y. Sun, Q. Q. Ding, K. Liu, M.-C. Hung, R. S. Bresalier, *Cancer Res.* **2009**, 69, 1343.
- 75. T. Shimura, Y. Takenaka, S. Tsutsumi, V. Hogan, A. Kikuchi, A. Raz, *Cancer Res.* **2004**, 64, 6363.
- 76. J. Dumic, S. Dabelic, M. Flögel, *Glycoproteomics* **2006**, 1760, 616.
- 77. R. S. Bresalier, J. C. Byrd, L. Wang, A. Raz, Cancer Res. 1996, 56, 4354.
- 78. S. Senapati, P. Chaturvedi, W. G. Chaney, S. Chakraborty, V. S. Gnanapragassam, A. R. Sasson, S. K. Batra, *Clin. Cancer Res.* **2011**, 17, 267.
- 79. L.-G. Yu, N. Andrews, Q. Zhao, D. McKean, J. F. Williams, L. J. Connor, O. V. Gerasimenko, J. Hilkens, J. Hirabayashi, K. Kasai, J. M. Rhodes, *J. Biol. Chem.* 2007, 282, 773.

- V. V. Glinsky, M. E. Huflejt, G. V. Glinsky, S. L. Deutscher, T. P. Quinn, *Cancer Res.* 2000, 60, 2584.
- V. V. Glinsky, G. V. Glinsky, K. Rittenhouse-Olson, M. E. Huflejt, O. V. Glinskii, S. L. Deutscher, T. P. Quinn, *Cancer Res.* 2001, 61, 4851.
- 82. S. K. Khaldoyanidi, V. V. Glinsky, L. Sikora, A. B. Glinskii, V. V. Mossine, T. P. Quinn, G. V. Glinsky, P. Sriramarao, *J. Biol. Chem.* 2003, 278, 4127.
- 83. Q. Zhao, X. Guo, G. B. Nash, P. C. Stone, J. Hilkens, J. M. Rhodes, L.-G. Yu, *Cancer Res.* **2009**, 69, 6799.
- Q. Zhao, M. Barclay, J. Hilkens, X. Guo, H. Barrow, J. M. Rhodes, L.-G. Yu, *Mol. Cancer* 2010, 9, 154.
- 85. P. Matarrese, O. Fusco, N. Tinari, C. Natoli, F.-T. Liu, M. L. Semeraro, W. Malorni, S. Iacobelli, *Int. J. Cancer* **2000**, 85, 545.
- 86. S. M. Frisch, R. A. Screaton, Curr. Opin. Cell Biol. 2001, 13, 555.
- 87. T. Fukumori, Y. Takenaka, T. Yoshii, H.-R. C. Kim, V. Hogan, H. Inohara, S. Kagawa, A. Raz, *Cancer Res.* **2003**, 63, 8302.
- 88. Y. Suzuki, T. Inoue, T. Yoshimaru, C. Ra, *Biochim Biophys Acta Molecular Cell Research* **2008**, 1783, 924.
- P. Guha, E. Kaptan, G. Bandyopadhyaya, S. Kaczanowska, E. Davila, K. Thompson, S. S. Martin, D. V. Kalvakolanu, G. R. Vasta, H. Ahmed, *Proc. Natl. Acad. Sci. U.S.A.* 2013, 110, 5052.
- 90. W. Peng, H. Y. Wang, Y. Miyahara, G. Peng, R.-F. Wang, Cancer Res. 2008, 68, 7228.
- 91. O. Suzuki, M. Abe, Oncol. Rep. 2008, 19, 743.
- 92. B. N. Stillman, D. K. Hsu, M. Pang, C. F. Brewer, P. Johnson, F.-T. Liu, L. G. Baum, *J. Immunol.* **2006**, 176, 778.
- 93. Y. Zhuo, R. Chammas, S. L. Bellis, J. Biol. Chem. 2008, 283, 22177.
- 94. J. Xue, X. Gao, C. Fu, Z. Cong, H. Jiang, W. Wang, T. Chen, Q. Wei, C. Qin, FEBS Lett. 2013, 587, 3986.
- 95. H. Barrow, X. Guo, H. H. Wandall, J. W. Pedersen, B. Fu, Q. Zhao, C. Chen, J. M. Rhodes, L.-G. Yu, *Clinical Cancer Research* **2011**, 17, 7035.
- 96. S. Ramasamy, S. Duraisamy, S. Barbashov, T. Kawano, S. Kharbanda, D. Kufe, *Mol. Cell* 2007, 27, 992.

- 97. Graves, C R L, Robertson, J F R, A. Murray, M. R. Price, C. J. Chapman, *J. Pept. Res.* 2005, 66, 357.
- 98. J. Li, Z. Zhu, Acta Pharmacol. Sin. 2010, 31, 1198.
- 99. J. G. Elvin, R. G. Couston, van der Walle, Christopher F. Int. J. Pharm. 2013, 440, 83.
- 100. Hwang, William Ying Khee, J. Foote, *Methods* **2005**, 36, 3.
- 101. O. J. Finn, J. Immunol. 2008, 181, 1589.
- 102. J. Neefjes, H. Ovaa, Nat. Chem. Biol. 2013, 9, 769.
- 103. F. R. Carbone, P. A. Gleeson, *Glycobiology* **1997**, 7, 725.
- 104. C. M. Cabrera, P. Jiménez, T. Cabrera, C. Esparza, F. Ruiz-Cabello, F. Garrido, *Tissue Antigens* **2003**, 61, 211.
- 105. F. Garrido, I. Algarra. in *Advances in Cancer Research* (Academic Press2001), pp. 117–158.
- 106. H. T. Khong, N. P. Restifo, *Nat. Immunol.* **2002**, 3, 999.
- 107. B. Agrawal, M. J. Krantz, M. A. Reddish, B. M. Longenecker, Nat. Med. 1998, 4, 43.
- 108. A. K. Chan, D. C. Lockhart, W. v. Bernstorff, R. A. Spanjaard, H.-G. Joo, T. J. Eberlein, P. S. Goedegebuure, *Int. J. Cancer* **1999**, 82, 721.
- 109. E. C. Beuvery, F. van Rossum, J. Nagel, Infec. Immun. 1982, 37, 15.
- B. M. Longenecker, M. Reddish, R. Koganty, G. MacLean. in Antigen and Antibody Molecular Engineering in Breast Cancer Diagnosis and Treatment, edited by R. Ceriani (Springer US1994), pp. 105-124.
- G. Ragupathi, S. F. Slovin, S. Adluri, D. Sames, I. J. Kim, H. M. Kim, M. Spassova,
 W. G. Bornmann, K. O. Lloyd, H. I. Scher, P. O. Livingston, S. J. Danishefsky, *Angew. Chem. Int. Ed.* **1999**, 38, 563.
- E. Kagan, G. Ragupathi, S. Yi, C. Reis, J. Gildersleeve, D. Kahne, H. Clausen, S. Danishefsky, P. Livingston, *Cancer Immunol. Immunother.* **2005**, 54, 424-430.
- S. F. Slovin, G. Ragupathi, C. Musselli, K. Olkiewicz, D. Verbel, S. D. Kuduk, J. B. Schwarz, D. Sames, S. Danishefsky, P. O. Livingston, H. I. Scher, *J. Clin. Oncol.* 2003, 21, 4292.
- T. Gilewski, S. Adluri, G. Ragupathi, S. Zhang, T.-J. Yao, K. Panageas, M. Moynahan, A. Houghton, L. Norton, P. O. Livingston, *Clin. Cancer Res.* 2000, 6, 1693.
- M. A. Reddish, G. D. MacLean, R. R. Koganty, J. Kan-Mitchell, V. Jones, M. S. Mitchell, B. M. Longenecker, *Int. J. Cancer* **1998**, 76, 817.

- 116. M. M. Soares, V. Mehta, O. J. Finn, J. Immunol. 2001, 166, 6555.
- B. Acres, V. Apostolopoulos, J.-M. Balloul, D. Wreschner, P.-X. Xing, D. Ali-Hadji, N. Bizouarne, M. P. Kieny, McKenzie, Ian F. C. *Cancer Immunol. Immunother.* 2000, 48, 588-594.
- 118. G. J. Rowse, R. M. Tempero, M. L. VanLith, M. A. Hollingsworth, S. J. Gendler, *Cancer Res.* **1998**, 58, 315.
- C. Butts, M. A. Socinski, P. L. Mitchell, N. Thatcher, L. Havel, M. Krzakowski, S. Nawrocki, T.-E. Ciuleanu, L. Bosquée, J. M. Trigo, A. Spira, L. Tremblay, J. Nyman, R. Ramlau, G. Wickart-Johansson, P. Ellis, O. Gladkov, J. R. Pereira, Eberhardt, Wilfried Ernst Erich, C. Helwig, A. Schröder, F. A. Shepherd, *The Lancet Oncol.* **2014**, 15, 59.
- 120. Merck. Press release. Available at http://www.merckgroup.com/en/media/extNewsDetail.html?newsId=8475BA17A3F51470 C1257D50006901B4&newsType=1.
- V. Lakshminarayanan, P. Thompson, M. A. Wolfert, T. Buskas, J. M. Bradley, L. B. Pathangey, C. S. Madsen, P. A. Cohen, S. J. Gendler, G.-J. Boons, *Proc. Natl. Acad. Sci.* U.S.A. 2012, 109, 261.
- H. Cai, Z.-H. Huang, L. Shi, P. Zou, Y.-F. Zhao, H. Kunz, Y.-M. Li, *Eur. J. Org. Chem.* 2011, 2011, 3685.
- 123. H. Cai, Z.-H. Huang, L. Shi, Z.-Y. Sun, Y.-F. Zhao, H. Kunz, Y.-M. Li, *Angew. Chem. Int. Ed.* **2012**, 51, 1719.
- 124. A. L. Sorensen, *Glycobiology* **2005**, 16, 96.
- 125. J. Zhu, Q. Wan, D. Lee, G. Yang, M. K. Spassova, O. Ouerfelli, G. Ragupathi, P. Damani, P. O. Livingston, S. J. Danishefsky, *J. Am. Chem. Soc.* **2009**, 131, 9298.
- 126. N. Gaidzik, A. Kaiser, D. Kowalczyk, U. Westerlind, B. Gerlitzki, H. P. Sinn, E. Schmitt, H. Kunz, *Angew. Chem. Int. Ed.* **2011**, 50, 9977.
- 127. A. Hoffmann-Röder, A. Kaiser, S. Wagner, N. Gaidzik, D. Kowalczyk, U. Westerlind,B. Gerlitzki, E. Schmitt, H. Kunz, *Angew. Chem. Int. Ed.* **2010**, 49, 8498.
- 128. A. Kaiser, N. Gaidzik, U. Westerlind, D. Kowalczyk, A. Hobel, E. Schmitt, H. Kunz, *Angew. Chem. Int. Ed.* **2009**, 48, 7551.
- 129. T. L. McCool, C. V. Harding, N. S. Greenspan, J. R. Schreiber, *Infect. Immun.* **1999**, 67, 4862.
- 130. L. A. Herzenberg, T. Tokuhisa, L. A. Herzenberg, *Nature* **1980**, 285, 664.
- 131. S. Dziadek, A. Hobel, E. Schmitt, H. Kunz, Angew. Chem. Int. Ed. 2005, 44, 7630.

- 132. S. Ingale, M. A. Wolfert, T. Buskas, G.-J. Boons, *ChemBioChem* **2009**, 10, 455.
- 133. J. Alexander, M.-F. del Guercio, A. Maewal, L. Qiao, J. Fikes, R. W. Chesnut, J. Paulson, D. R. Bundle, S. DeFrees, A. Sette, *J. Immunol.* **2000**, 164, 1625.
- H. Cai, M.-S. Chen, Z.-Y. Sun, Y.-F. Zhao, H. Kunz, Y.-M. Li, *Angew. Chem. Int. Ed.* 2013, 52, 6106.
- H. Cai, Z.-Y. Sun, M.-S. Chen, Y.-F. Zhao, H. Kunz, Y.-M. Li, *Angew. Chem. Int. Ed.* 2014, 53, 1699.
- 136. A. Lahiri, P. Das, D. Chakravortty, Vaccine 2008, 26, 6777.
- 137. A. O. Aliprantis, *Science* **1999**, 285, 736.
- 138. K. R. Jerome, D. L. Barnd, K. M. Bendt, C. M. Boyer, J. Taylor-Papadimitriou, McKenzie, Ian F. C. R. C. Bast, O. J. Finn, *Cancer Res.* **1991**, 51, 2908.
- 139. K. R. Jerome, N. Domenech, O. J. Finn, *J. Immunol.* **1993**, 151, 1654.
- 140. N. Doménech, R. A. Henderson, O. J. Finn, J. Immunol. 1995, 155, 4766.
- P. Brossart, K. S. Heinrich, G. Stuhler, L. Behnke, V. L. Reichardt, S. Stevanovic, A. Muhm, H.-G. Rammensee, L. Kanz, W. Brugger, *Blood* **1999**, 93, 4309.
- V. Apostolopoulos, E. Yuriev, P. A. Ramsland, J. Halton, C. Osinski, W. Li, M. Plebanski, H. Paulsen, McKenzie, Ian F C, *Proc. Natl. Acad. Sci. U.S.A.* 2003, 100, 15029.
- D. Stepensky, E. Tzehoval, E. Vadai, L. Eisenbach, *Clin. Exp. Immunol.* 2006, 143, 139.
- T. Ninkovic, L. Kinarsky, K. Engelmann, V. Pisarev, S. Sherman, O. J. Finn, F.-G. Hanisch, *Mol. Immunol.* 2009, 47, 131.
- A. R. Hearn, L. de Haan, A. J. Pemberton, T. R. Hirst, A. J. Rivett, *J. Biol. Chem.* 2004, 279, 51315.
- U. Seifert, C. Marañón, A. Shmueli, J.-F. Desoutter, L. Wesoloski, K. Janek, P. Henklein, S. Diescher, M. Andrieu, de la Salle, Henri, T. Weinschenk, H. Schild, D. Laderach, A. Galy, G. Haas, P.-M. Kloetzel, Y. Reiss, A. Hosmalin, *Nat. Immunol.* 2003, 4, 375.
- 147. L. Shen, L. J. Sigal, M. Boes, K. L. Rock, *Immunity* **2004**, 21, 155.
- C. Napoletano, A. Rughetti, Agervig Tarp, Mads P, J. Coleman, E. P. Bennett, G. Picco, P. Sale, K. Denda-Nagai, T. Irimura, U. Mandel, H. Clausen, L. Frati, J. Taylor-Papadimitriou, J. Burchell, M. Nuti, *Cancer Res.* 2007, 67, 8358.

- E. Saeland, S. van Vliet, M. Bäckström, van den Berg, VeniceC. M. T. H.
 Geijtenbeek, G. Meijer, Y. van Kooyk, *Cancer Immunol. Immunother.* 2007, 56, 1225-1236.
- 150. M. C. Rose, J. A. Voynow, *Physiol. Rev.* **2006**, 86, 245.
- 151. V. Venkatakrishnan, N. H. Packer, M. Thaysen-Andersen, *Expert Rev Respir Med* **2013**, 7, 553.
- 152. A. Livraghi, S. H. Randell, *Toxicol. Pathol.* **2007**, 35, 116.
- 153. N. Manri, Y. Takegawa, N. Fujitani, A. Kaneko, A. Hirabayashi, S.-I. Nishimura, T. Sakamoto, *Anal. Sci.* **2012**, 28, 723.
- 154. F.-G. Hanisch, S. Müller, *Glycobiology* **2000**, 10, 439.
- 155. L. M. Likhosherstov, O. S. Novikova, V. A. Derevitskaja, N. K. Kochetkov, *Carbohydrate Res.* **1986**, 146, C1.
- 156. S. T. Anisfeld, P. T. Lansbury, J. Org. Chem. 1990, 55, 5560.
- 157. S. T. Cohen-Anisfeld, P. T. Lansbury, J. Am. Chem. Soc. 1993, 115, 10531.
- 158. Rising, Thomas W D F, C. D. Heidecke, Moir, James W B, Z. Ling, A. J. Fairbanks, *Chem. Eur. J.* **2008**, 14, 6444.
- K. M. Koeller, Smith, Mark E. B. R.-F. Huang, C.-H. Wong, *J. Am. Chem. Soc.* 2000, 122, 4241.
- 160. P. H. Jensen, D. Kolarich, N. H. Packer, FEBS J. 2010, 277, 81.
- 161. R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149.
- 162. R. B. Merrifield, J. Am. Chem. Soc. 1964, 86, 304.
- 163. L. A. Carpino, G. Y. Han, J. Org. Chem. 1972, 37, 3404.
- 164. E. Atherton, H. Fox, D. Harkiss, C. J. Logan, R. C. Sheppard, B. J. Williams, *J. Chem. Soc. Chem. Commun.* **1978**, 537.
- 165. C.-D. Chang, J. Meienhofer, Int. J. Pep. Prot. Res. 1978, 11, 246.
- 166. J. C. Sheehan, G. P. Hess, J. Am. Chem. Soc. 1955, 77, 1067.
- 167. J. Coste, D. Le-Nguyen, B. Castro, Tetrahedron Lett. 1990, 31, 205.
- 168. V. Dourtoglou, J.-C. Ziegler, B. Gross, Tetrahedron Lett. 1978, 19, 1269.
- 169. R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen, Tetrahedron Lett. 1989, 30, 1927.
- 170. W. König, R. Geiger, Chem. Ber. 1970, 103, 788.

- 171. L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397.
- 172. L. A. Carpino, A. El-Faham, F. Albericio, *Tetrahedron Lett.* 1994, 35, 2279.
- 173. I. Abdelmoty, F. Albericio, L. Carpino, B. Foxman, S. Kates, *Lett. Pept. Sci.* **1994**, 1, 57-67.
- L. A. Carpino, H. Imazumi, A. El-Faham, F. J. Ferrer, C. Zhang, Y. Lee, B. M.
 Foxman, P. Henklein, C. Hanay, C. Mügge, H. Wenschuh, J. Klose, M. Beyermann, M.
 Bienert, *Angew. Chem. Int. Ed.* 2002, 41, 441.
- 175. M. Meldal, T. Bielfeldt, S. Peters, K. J. Jensen, H. Paulsen, K. Bock, *Int. J. Pep. Prot. Res.* **1994**, 43, 529.
- 176. J. Kihlberg, T. Vuljanic, *Tetrahedron Lett.* **1993**, 34, 6135.
- 177. E. Pedroso, A. Grandas, de las Heras, Xavier, R. Eritja, E. Giralt, *Tetrahedron Lett.***1986**, 27, 743.
- 178. Y. Yang, W. V. Sweeney, K. Schneider, S. Thörnqvist, B. T. Chait, J. P. Tam, *Tetrahedron Lett.* **1994**, 35, 9689.
- 179. J. Lauer, C. Fields, G. Fields, *Lett. Pept. Sci.* **1995**, 1, 197-205.
- 180. P. Sjölin, M. Elofsson, J. Kihlberg, J. Org. Chem. 1996, 61, 560.
- 181. A. Michael, Am. Chem. J. 1879, 1, 305.
- 182. E. Fischer, Ber. Dtsch. Chem. Ges. 1893, 26, 2400.
- 183. G. H. Veeneman, van Boom, J. H, *Tetrahedron Lett.* **1990**, 31, 275.
- 184. G. H. Veeneman, van Leeuwen, S. H. van Boom, J. H. *Tetrahedron Lett.* **1990**, 31, 1331.
- 185. K. C. Nicolaou, S. P. Seitz, D. P. Papahatjis, J. Am. Chem. Soc. 1983, 105, 2430.
- 186. P. Fügedi, P. J. Garegg, Carbohydrate Res. 1986, 149, C9.
- 187. P. Fügedi, P. Garegg, H. Lönn, T. Norberg, *Glycoconj. J.* **1987**, 4, 97-108.
- 188. R. R. Schmidt, J. Michel, Angew. Chem. Int. Ed. 1980, 19, 731.
- 189. J. R. Pougny, J. C. Jacquinet, M. Nassr, D. Duchet, M. L. Milat, P. Sinay, *J. Am. Chem. Soc.* **1977**, 99, 6762.
- 190. L. K. Mydock, A. V. Demchenko, Org. Biomol. Chem. 2010, 8, 497.
- 191. D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, *J. Am. Chem. Soc.* **1988**, 110, 5583.
- 192. B. Fraser-Reid, Z. Wu, U. E. Udodong, H. Ottosson, J. Org. Chem. 1990, 55, 6068.

193. M. N. Kamat, A. V. Demchenko, Org. Lett. 2005, 7, 3215.

- 194. L. K. Mydock, A. V. Demchenko, Org. Lett. 2008, 10, 2107.
- 195. C. McDonnell, O. López, P. Murphy, Fernández Bolaños, José G, R. Hazell, M. Bols, *J. Am. Chem. Soc.* **2004**, 126, 12374.
- 196. B. Fraser-Reid, Z. Wu, C. W. Andrews, E. Skowronski, J. P. Bowen, *J. Am. Chem. Soc.* **1991**, 113, 1434.
- 197. E. Juaristi, G. Cuevas, *Tetrahedron* **1992**, 48, 5019.
- 198. F. Barresi, O. Hindsgaul, J. Am. Chem. Soc. 1991, 113, 9376.
- 199. A. Ishiwata, Y. Munemura, Y. Ito, *Eur. J. Org. Chem.* **2008**, 2008, 4250.
- 200. J.-H. Kim, H. Yang, J. Park, G.-J. Boons, J. Am. Chem. Soc. 2005, 127, 12090.
- 201. T. Fang, K.-F. Mo, G.-J. Boons, J. Am. Chem. Soc. 2012, 134, 7545.
- 202. J. P. Yasomanee, A. V. Demchenko, J. Am. Chem. Soc. 2012, 134, 20097.
- 203. J. P. Yasomanee, A. V. Demchenko, Angew. Chem. Int. Ed. Engl. 2014, 53, 10453.
- 204. J. P. Yasomanee, A. V. Demchenko, Chem. Eur. J. 2015, 21, 6572.
- P. v. d. Steen, P. M. Rudd, R. A. Dwek, G. Opdenakker, *Crit. Rev. Biochem. Mol. Biol.* 1998, 33, 151.
- G. Lamblin, S. Degroote, J.-M. Perini, P. Delmotte, A. Scharfman, M. Davril, J.-M. Lo-Guidice, N. Houdret, V. Dumur, A. Klein, P. Rousse, *Glycoconj. J.* 2001, 18, 661-684.
- 207. B. Liebe, H. Kunz, *Tetrahedron Lett.* **1994**, 35, 8777.
- 208. B. Liebe, H. Kunz, Angew. Chem. Int. Ed. 1997, 36, 618.
- 209. H. Kunz, C. Unverzagt, Angew. Chem. Int. Ed. 1988, 27, 1697.
- 210. C. Unverzagt, H. Kunz, *Bioorg. Med. Chem.* **1994**, 2, 1189.
- 211. G. Zemplén, A. Kunz, Ber. dtsch. Chem. Ges. A/B 1923, 56, 1705.
- 212. M. Schelhaas, H. Waldmann, Angew. Chem. Int. Ed. 1996, 35, 2056.
- 213. G.-J. Boons, K. Hale. *Organic synthesis with carbohydrates* (Sheffield Academic Press; Blackwell Science, Sheffield, England, Malden, MA U.S.A. 2000).
- 214. U. Ellervik, G. Magnusson, Carbohydrate Res. 1996, 280, 251.
- 215. S. Dziadek, C. Brocke, H. Kunz, Chem. Eur. J. 2004, 10, 4150.
- 216. M. R. Pratt, C. R. Bertozzi, Org. Lett. 2004, 6, 2345.

- 217. H. Paulsen, M. Paal, D. Hadamczyk, K.-M. Steiger, *Carbohydrate Res.* 1984, 131, C1.
- 218. U. Ellervik, H. Grundberg, G. Magnusson, J. Org. Chem. 1998, 63, 9323.
- 219. U. Ellervik, G. Magnusson, J. Org. Chem. 1998, 63, 9314.
- 220. C. Brocke, H. Kunz, Synthesis 2004, , 525.
- 221. H. Paulsen, J.-P. Hölck, Carbohydrate Res. 1982, 109, 89.
- 222. S. Dziadek, D. Kowalczyk, H. Kunz, Angew. Chem. Int. Ed. 2005, 44, 7624.
- 223. T. Reipen, H. Kunz, Synthesis 2003, , 2487.
- 224. E. Meinjohanns, M. Meldal, A. Schleyer, H. Paulsen, K. Bock, *J. Chem. Soc. Perkin Trans. 1* **1996**, , 985.
- 225. P. W. Glunz, S. Hintermann, L. J. Williams, J. B. Schwarz, S. D. Kuduk, V. Kudryashov, K. O. Lloyd, S. J. Danishefsky, *J. Am. Chem. Soc.* **2000**, 122, 7273.
- 226. Y. Takano, M. Habiro, M. Someya, H. Hojo, Y. Nakahara, *Tetrahedron Lett.* **2002**, 43, 8395.
- 227. Y. Nakahara, C. Ozawa, E. Tanaka, K. Ohtsuka, Y. Takano, H. Hojo, Y. Nakahara, *Tetrahedron* **2007**, 63, 2161.
- 228. K. Baumann, D. Kowalczyk, T. Gutjahr, M. Pieczyk, C. Jones, M. K. Wild, D. Vestweber, H. Kunz, *Angew. Chem. Int. Ed.* **2009**, 48, 3174.
- 229. T. Matsushita, H. Hinou, M. Fumoto, M. Kurogochi, N. Fujitani, H. Shimizu, S.-I. Nishimura, *J. Org. Chem.* **2006**, 71, 3051.
- T. Matsushita, R. Sadamoto, N. Ohyabu, H. Nakata, M. Fumoto, N. Fujitani, Y. Takegawa, T. Sakamoto, M. Kurogochi, H. Hinou, H. Shimizu, T. Ito, K. Naruchi, H. Togame, H. Takemoto, H. Kondo, S.-I. Nishimura, *Biochemistry* **2009**, 48, 11117.
- 231. R. Kaifu, T. Osawa, Carbohydrate Res. 1977, 58, 235.
- 232. B. Ferrari, A. A. Pavia, *Carbohydrate Res.* **1980**, 79, C1.
- 233. W. Koenigs, E. Knorr, Ber. Dtsch. Chem. Ges. 1901, 34, 957.
- 234. J. Broddefalk, U. Nilsson, J. Kihlberg, J. Carb. Chem. 1994, 13, 129.
- 235. A. P. Kozikowski, J. Lee, J. Org. Chem. 1990, 55, 863.
- 236. R. U. Lemieux, R. M. Ratcliffe, Can. J. Chem. 1979, 57, 1244.
- 237. A. Paquet, Can. J. Chem. 1982, 60, 976.
- 238. E. Schmidt, F. Moosmüller, Justus Liebigs Ann. Chem. 1955, 597, 235.

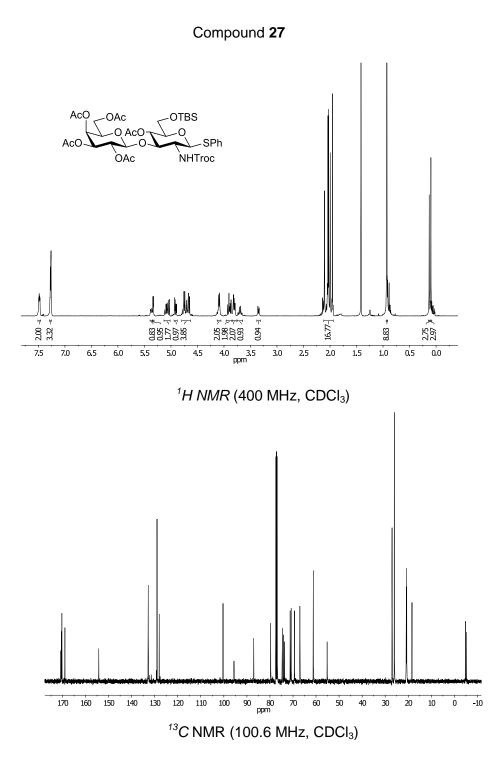
- 239. E. Däbritz, Angew. Chem. 1966, 78, 483.
- 240. S. Dziadek, Dissertation, Johannes Gutenberg Univerität Mainz 2005,
- 241. B. Liebe, H. Kunz, *Helv. Chim. Acta* **1997**, 80, 1473.
- 242. T. Rosen, I. M. Lico, Chu, Daniel T. W. J. Org. Chem. 1988, 53, 1580.
- R. V. Kolakowski, N. Shangguan, R. R. Sauers, L. J. Williams, *J. Am. Chem. Soc.* 2006, 128, 5695.
- 244. B. Helferich, K.-F. Wedemeyer, Justus Liebigs Ann. Chem. 1949, 563, 139.
- 245. B. Helferich, K. Weis, Chem. Ber. 1956, 89, 314.
- 246. R. R. Schmidt, M. Stumpp, *Liebigs Ann. Chem.* **1983**, 1983, 1249.
- 247. R. R. Schmidt, J. Michel, *Tetrahedron Lett.* **1984**, 25, 821.
- 248. E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2007, 9, 3797.
- 249. E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2011, 13, 2514.
- 250. N. Fischer, E. D. Goddard-Borger, R. Greiner, T. M. Klapötke, B. W. Skelton, J. Stierstorfer, *J. Org. Chem.* **2012**, 77, 1760.
- 251. H. Paulsen, A. Richter, V. Sinnwell, W. Stenzel, *Carbohydrate Res.* **1978**, 64, 339.
- 252. De Silva, Ravindra A. Q. Wang, T. Chidley, D. K. Appulage, P. R. Andreana, *J. Am. Chem. Soc.* **2009**, 131, 9622.
- 253. B. Lüning, T. Norberg, J. Tejbrant, Glycoconj. J. 1989, 6, 5.
- 254. M. Vasan, M. A. Wolfert, G.-J. Boons, Org. Biomol. Chem. 2007, 5, 2087.
- 255. A. Toepfer, R. R. Schmidt, J. Carb. Chem. 1993, 12, 809.
- 256. D. Cato, T. Buskas, G. Boons, J. Carb. Chem. 2005, 24, 503.
- 257. M. Wilstermann, G. Magnusson, Carbohydrate Res. 1995, 272, 1.
- 258. G. Wulff, W. Schmidt, Carbohydrate Res. 1977, 53, 33.
- 259. Z. Yang, W. Lin, B. Yu, Carbohydrate Res. 2000, 329, 879.
- 260. H. H. Jensen, L. U. Nordstrøm, M. Bols, J. Am. Chem. Soc. 2004, 126, 9205.
- 261. E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190.
- 262. F. Yan, S. Mehta, E. Eichler, W. W. Wakarchuk, M. Gilbert, M. J. Schur, D. M. Whitfield, *J. Org. Chem.* **2003**, 68, 2426.
- 263. U. Ellervik, G. Magnusson, Tetrahedron Lett. 1997, 38, 1627.

- 264. T. B. Windholz, Johnston, David B. R. *Tetrahedron Lett.* **1967**, 8, 2555.
- 265. J. D. Codée, van den Bos, Leendert J, R. E. Litjens, H. S. Overkleeft, van Boeckel, Constant A.A, van Boom, Jacques H, van der Marel, Gijs A, *Tetrahedron* **2004**, 60, 1057.
- 266. S. Nambiar, J. F. Daeuble, R. J. Doyle, K. Grant Taylor, *Tetrahedron Lett.* **1989**, 30, 2179.
- 267. J. H. Clark, Chem. Rev. 1980, 80, 429.
- 268. M. Ueki, M. Amemiya, Tetrahedron Lett. 1987, 28, 6617.
- 269. G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. Int. Ed. 1978, 17, 569.
- 270. A. H. Haines. in *Advances in Carbohydrate Chemistry and Biochemistry*, edited by R. Stuart Tipson and Derek Horton (Academic Press1976), pp. 11–109.
- 271. N. Gaidzik, U. Westerlind, H. Kunz, Chem. Soc. Rev. 2013, 42, 4421.
- 272. O. C. Grant, Smith, Hannah M K, D. Firsova, E. Fadda, R. J. Woods, *Glycobiology* **2014**, 24, 17.
- 273. D. M. Lewallen, D. Siler, S. S. Iyer, ChemBioChem 2009, 10, 1486.
- 274. S. Park, M.-R. Lee, S.-J. Pyo, I. Shin, J. Am. Chem. Soc. 2004, 126, 4812.
- 275. M. Gewehr, H. Kunz, *Synthesis* **1997**, 1997, 1499.
- 276. S. Keil, C. Claus, W. Dippold, H. Kunz, Angew. Chem. Int. Ed. 2001, 40, 366.
- 277. C. A. Bush, L. Deng, X. Chen, A. Varki, *Biopolymers* 2013, 99, 650.
- 278. A. Varki, Trends in Molecular Medicine 2008, 14, 351.
- 279. G.-J. Boons, A. V. Demchenko, Chem. Rev. 2000, 100, 4539.
- 280. X. Chen, A. Varki, ACS Chem. Biol. 2010, 5, 163.
- 281. H. Yu, H. A. Chokhawala, S. Huang, X. Chen, Nat. Protoc. 2006, 1, 2485.
- Y. C. Lee, N. Kojima, E. Wada, N. Kurosawa, T. Nakaoka, T. Hamamoto, S. Tsuji, J. *Biol. Chem.* **1994**, 269, 10028.
- 283. H. Yu, H. Chokhawala, R. Karpel, H. Yu, B. Wu, J. Zhang, Y. Zhang, Q. Jia, X. Chen, *J. Am. Chem. Soc.* **2005**, 127, 17618.
- 284. V. Thon, Y. Li, H. Yu, K. Lau, X. Chen, Appl Microbiol Biotechnol 2012, 94, 977-985.
- H. Yu, S. Huang, H. Chokhawala, M. Sun, H. Zheng, X. Chen, *Angew. Chem. Int. Ed.* **2006**, 45, 3938.

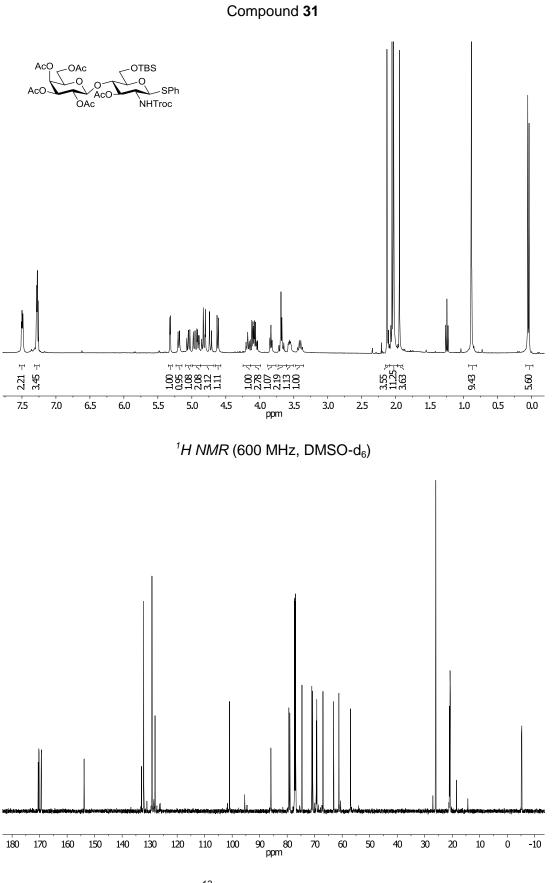
- C. M. Nycholat, W. Peng, R. McBride, A. Antonopoulos, de Vries, Robert P, Z.
 Polonskaya, M. G. Finn, A. Dell, S. M. Haslam, J. C. Paulson, *J. Am. Chem. Soc.* 2013, 135, 18280.
- 287. W.-T. Chien, C.-F. Liang, C.-C. Yu, C.-H. Lin, S.-P. Li, I. Primadona, Y.-J. Chen, Mong, Kwok Kong T, C.-C. Lin, *Chem. Commun.* **2014**, 50, 5786.
- 288. H. Malekan, G. Fung, V. Thon, Z. Khedri, H. Yu, J. Qu, Y. Li, L. Ding, K. S. Lam, X. Chen, *Carbohydrate-Processing Enzymes* **2013**, 21, 4778.
- 289. S. A. Cohen, D. P. Michaud, Anal. Biochem. 1993, 211, 279.
- 290. G. Zauner, R. P. Kozak, R. A. Gardner, D. L. Fernandes, A. M. Deelder, M. Wuhrer, *Biol. Chem.* **2012**, 393, 687.
- Y. Zhang, B. R. Fonslow, B. Shan, M.-C. Baek, J. R. Yates, *Chem. Rev.* 2013, 113, 2343.
- 292. W. R. Alley, B. F. Mann, M. V. Novotny, *Chem. Rev.* **2013**, 113, 2668.
- 293. H. Li, B. Bendiak, W. F. Siems, D. R. Gang, H. H. Hill, Anal. Chem. 2013, 85, 2760.
- 294. P. Both, A. P. Green, C. J. Gray, R. Sardzík, J. Voglmeir, C. Fontana, M. Austeri, M. Rejzek, D. Richardson, R. A. Field, G. Widmalm, S. L. Flitsch, C. E. Eyers, *Nat. Chem.* 2014, 6, 65.
- 295. A. J. Creese, H. J. Cooper, Anal. Chem. 2012, 84, 2597.
- 296. H. Li, K. Giles, B. Bendiak, K. Kaplan, W. F. Siems, H. H. Hill, *Anal. Chem.* **2012**, 84, 3231.
- 297. J. Nilsson, A. Halim, A. Grahn, G. Larson, Glycoconj. J. 2013, 30, 119.
- 298. A. Halim, U. Westerlind, C. Pett, M. Schorlemer, U. Rüetschi, G. Brinkmalm, C. Sihlbom, J. Lengqvist, G. Larson, J. Nilsson, *J. Proteome Res.* **2014**, 13, 6024.
- 299. F. Marino, M. Bern, Mommen, Geert P M, A. C. Leney, van Gaans-van den Brink, Jacqueline A M, Bonvin, Alexandre M J J, C. Becker, van Els, Cécile A C M, Heck, Albert J R, J. Am. Chem. Soc. 2015, 137, 10922.
- Y. Ohashi, T. Ii, M. Kubota, S. Nunomura, H. Niwa, M. Ohashi, T. Ogawa, Y. Nagai, J. Mass Spectrom. Soc. Jpn. 1998, 46, 45.
- 301. Y. Ohashi, J. Mass Spectrom. Soc. Jpn. 2007, 55, 311.
- 302. J. C. Trinidad, R. Schoepfer, A. L. Burlingame, K. F. Medzihradszky, *Mol. Cell Proteomics* **2013**, 12, 3474.
- 303. M. Schena, D. Shalon, R. W. Davis, P. O. Brown, Science 1995, 270, 467.

- 304. M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vöhringer, T. O. Joos, *Trends in Biotechnology* **2002**, 20, 160.
- 305. G. MacBeath, S. L. Schreiber, Science 2000, 289, 1760.
- D. Weinrich, P. Jonkheijm, C. M. Niemeyer, H. Waldmann, *Angew. Chem. Int. Ed.* 2009, 48, 7744.
- 307. M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2754.
- J. Stevens, O. Blixt, T. M. Tumpey, J. K. Taubenberger, J. C. Paulson, I. A. Wilson, Science 2006, 312, 404.
- J. Stevens, O. Blixt, L. Glaser, J. K. Taubenberger, P. Palese, J. C. Paulson, I. A. Wilson, J. Mol. Biol. 2006, 355, 1143.
- U. Westerlind, H. Schröder, A. Hobel, N. Gaidzik, A. Kaiser, C. M. Niemeyer, E. Schmitt, H. Waldmann, H. Kunz, *Ang. Chem. Int. Ed.* 2009, 48, 8263.
- 311. O. Blixt, U. Westerlind, Curr. Opin. Chem. Biol. 2014, 18, 62.
- 312. L. S. Wong, F. Khan, J. Micklefield, Chem. Rev. 2009, 109, 4025.
- T. Govindaraju, P. Jonkheijm, L. Gogolin, H. Schroeder, Becker, Christian F W, C. M. Niemeyer, H. Waldmann, *Chem. Commun.* 2008, , 3723.
- L. Yi, Y.-X. Chen, P.-C. Lin, H. Schröder, C. M. Niemeyer, Y.-W. Wu, R. S. Goody, G. Triola, H. Waldmann, *Chem. Commun.* 2012, 48, 10829.
- D. Weinrich, P.-C. Lin, P. Jonkheijm, Nguyen, Uyen T T, H. Schröder, C. M. Niemeyer, K. Alexandrov, R. Goody, H. Waldmann, *Angew. Chem. Int. Ed.* 2010, 49, 1252.
- 316. O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt, R. Alvarez, M. C. Bryan, F. Fazio, D. Calarese, J. Stevens, N. Razi, D. J. Stevens, J. J. Skehel, I. van Die, D. R. Burton, I. A. Wilson, R. Cummings, N. Bovin, C.-H. Wong, J. C. Paulson, *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 17033.
- 317. D. H. Dube, C. R. Bertozzi, Nat. Rev. Drug Discov. 2005, 4, 477.
- J. Burchell, R. Poulsom, A. Hanby, C. Whitehouse, L. Cooper, H. Clausen, D. Miles, J. Taylor-Papadimitriou, *Glycobiology* 1999, 9, 1307.
- 319. M. N. Christiansen, J. Chik, L. Lee, M. Anugraham, J. L. Abrahams, N. H. Packer, *Proteomics* **2013**,
- J. Burchell, A. Mungul, J. Taylor-Papadimitriou, *J. Mammary Gland. Biol. Neoplasia* 2001, 6, 355-364.

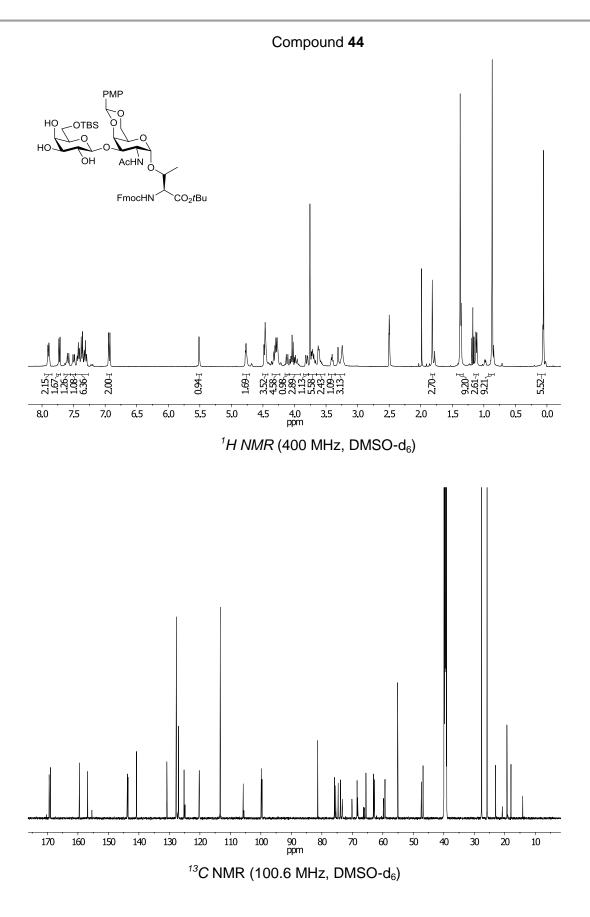
- 321. K. O. Lloyd, J. Burchell, V. Kudryashov, Yin, B. W. T. J. Taylor-Papadimitriou, *J. Biol. Chem.* **1996**, 271, 33325.
- 322. R. M. Wilson, S. J. Danishefsky, J. Am. Chem. Soc. 2013, 135, 14462.
- 323. F. Garcia-Martin, T. Matsushita, H. Hinou, S.-I. Nishimura, *Chem. Eur. J.* **2014**, 20, 15891.
- T. Matsushita, W. Takada, K. Igarashi, K. Naruchi, R. Miyoshi, F. Garcia-Martin, M. Amano, H. Hinou, S.-I. Nishimura, *Biochim. Biophys. Acta General Subjects* 2014, 1840, 1105.
- U. Westerlind, A. Hobel, N. Gaidzik, E. Schmitt, H. Kunz, *Angew. Chem. Int. Ed.* 2008, 47, 7551.
- 326. H. Cai, Z.-Y. Sun, Z.-H. Huang, L. Shi, Y.-F. Zhao, H. Kunz, Y.-M. Li, *Chem. Eur. J.* **2013**, 19, 1962.
- 327. U. Karsten, C. Diotel, G. Klich, H. Paulsen, S. Goletz, S. Müller, F.-G. Hanisch, *Cancer Res.* **1998**, 58, 2541.
- 328. R. Schauer, Curr. Opin. Struct. Biol. 2009, 19, 507.
- D. Baeckström, O. Nilsson, M. R. Price, L. Lindholm, G. C. Hansson, *Cancer Res.* 1993, 53, 755.
- 330. U. Karsten, N. Serttas, H. Paulsen, A. Danielczyk, S. Goletz, *Glycobiology* **2004**, 14, 681.
- 331. L. Kinarsky, G. Suryanarayanan, O. Prakash, H. Paulsen, H. Clausen, F.-G. Hanisch,M. A. Hollingsworth, S. Sherman, *Glycobiology* 2003, 13, 929.
- 332. A. Borgert, J. Heimburg-Molinaro, X. Song, Y. Lasanajak, T. Ju, M. Liu, P. Thompson,
 G. Ragupathi, G. Barany, D. F. Smith, R. D. Cummings, D. Live, ACS Chem. Biol. 2012,
 7, 1031.
- 333. F. Corzana, J. H. Busto, García de Luis, Marisa, J. Jiménez-Barbero, A. Avenoza, J.M. Peregrina, *Chem. Eur. J.* 2009, 15, 3863.
- 334. P. Braun, G. M. Davies, M. R. Price, P. M. Williams, Tendler, Saul J. B, H. Kunz, *Bioorg. Med. Chem.* **1998**, 6, 1531.
- 335. Stadie, Tanja R. E. W. Chai, A. M. Lawson, Byfield, Peter G. H. F.-G. Hanisch, *Eur. J. Biochem.* **1995**, 229, 140.
- 336. D. M. Coltart, A. K. Royyuru, L. J. Williams, P. W. Glunz, D. Sames, S. D. Kuduk, J.
 B. Schwarz, X.-T. Chen, S. J. Danishefsky, D. H. Live, *J. Am. Chem. Soc.* 2002, 124, 9833.

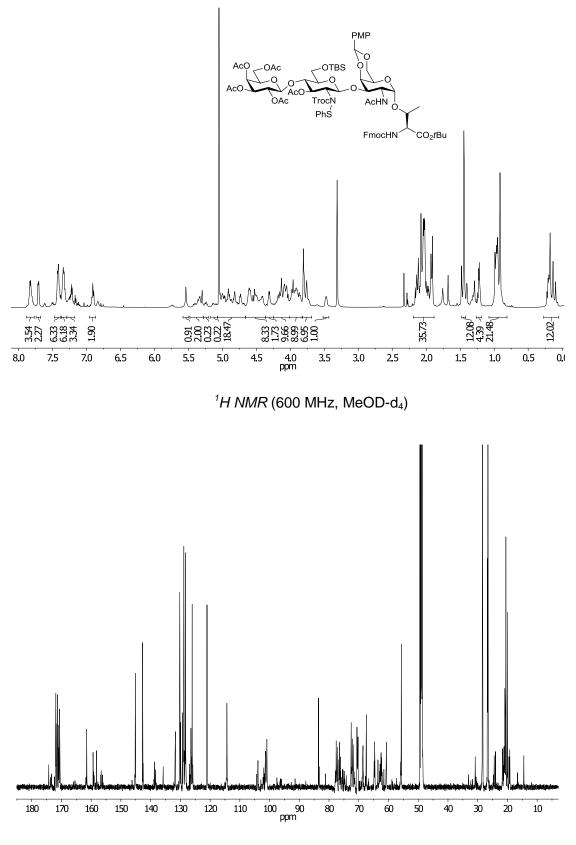

- R. Hashimoto, N. Fujitani, Y. Takegawa, M. Kurogochi, T. Matsushita, K. Naruchi, N. Ohyabu, H. Hinou, X. D. Gao, N. Manri, H. Satake, A. Kaneko, T. Sakamoto, S.-I. Nishimura, *Chem. Eur. J.* 2011, 17, 2393.
- 338. A. Kuhn, H. Kunz, Angew. Chem. Int. Ed. 2007, 46, 454.
- 339. K. Engelmann, C. L. Kinlough, S. Müller, H. Razawi, S. E. Baldus, R. P. Hughey, F.-G. Hanisch, *Glycobiology* 2005, 15, 1111.
- N. Ohyabu, H. Hinou, T. Matsushita, R. Izumi, H. Shimizu, K. Kawamoto, Y. Numata,
 H. Togame, H. Takemoto, H. Kondo, S.-I. Nishimura, *J. Am. Chem. Soc.* 2009, 131,
 17102.
- 341. X. Dan, W. Liu, T. B. Ng, Med. Res. Rev. 2015, , 1.
- 342. J. Hirabayashi, M. Yamada, A. Kuno, H. Tateno, Chem. Soc. Rev. 2013, 42, 4443.
- 343. D. Madariaga, N. Martínez-Sáez, V. J. Somovilla, L. García-García, M. Á. Berbis, J. Valero-Gónzalez, S. Martín-Santamaría, R. Hurtado-Guerrero, J. L. Asensio, J. Jiménez-Barbero, A. Avenoza, J. H. Busto, F. Corzana, J. M. Peregrina, *Chem. Eur. J.* 2014, 20, 12616.
- 344. S. Di Lella, V. Sundblad, J. P. Cerliani, C. M. Guardia, D. A. Estrin, G. R. Vasta, G. A. Rabinovich, *Biochemistry* **2011**, 50, 7842.
- 345. D. Giguère, S. André, M.-A. Bonin, M.-A. Bellefleur, A. Provencal, P. Cloutier, B. Pucci, R. Roy, H.-J. Gabius, *Bioorg. Med. Chem.* **2011**, 19, 3280.
- S. André, D. Giguère, T. K. Dam, F. Brewer, H.-J. Gabius, R. Roy, *New J. Chem.* 2010, 34, 2229.
- 347. J. Seetharaman, A. Kanigsberg, R. Slaaby, H. Leffler, S. H. Barondes, J. M. Rini, J. Biol. Chem. 1998, 273, 13047.
- 348. C.-F. Bian, Y. Zhang, H. Sun, D.-F. Li, D.-C. Wang, *PLoS ONE* 2011, 6, e25007.
- H. Leffler, S. Carlsson, M. Hedlund, Y. Qian, F. Poirier, *Glycoconj. J.* 2004, 19, 433-440.
- 350. P. Sörme, B. Kahl-Knutsson, M. Huflejt, U. J. Nilsson, H. Leffler, *Anal. Biochem.*2004, 334, 36.
- 351. C. F. Brewer, Glycoconj. J. 2002, 19, 459-465.
- S. K. Patnaik, B. Potvin, S. Carlsson, D. Sturm, H. Leffler, P. Stanley, *Glycobiology* 2006, 16, 305.

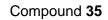
- 353. S. R. Stowell, C. M. Arthur, P. Mehta, K. A. Slanina, O. Blixt, H. Leffler, D. F. Smith,
 R. D. Cummings, *J. Biol. Chem.* 2008, 283, 10109.
- 354. X. Song, B. Xia, S. R. Stowell, Y. Lasanajak, D. F. Smith, R. D. Cummings, *Chem. Biol.* **2009**, 16, 36.
- 355. H. Tateno, A. Mori, N. Uchiyama, R. Yabe, J. Iwaki, T. Shikanai, T. Angata, H. Narimatsu, J. Hirabayashi, *Glycobiology* **2008**, 18, 789.
- 356. T. Horlacher, M. A. Oberli, D. B. Werz, L. Kröck, S. Bufali, R. Mishra, J. Sobek, K. Simons, M. Hirashima, T. Niki, P. H. Seeberger, *ChemBioChem* **2010**, 11, 1563.
- 357. S. R. Stowell, M. Dias-Baruffi, L. Penttilä, O. Renkonen, A. K. Nyame, R. D. Cummings, *Glycobiology* **2004**, 14, 157.
- 358. van den Berg, T. K. H. Honing, N. Franke, A. van Remoortere, Schiphorst, W. E. C.
 M. F.-T. Liu, A. M. Deelder, R. D. Cummings, C. H. Hokke, I. van Die, *J. Immunol.* 2004, 173, 1902.
- 359. A. Leppänen, S. Stowell, O. Blixt, R. D. Cummings, J. Biol. Chem. 2005, 280, 5549.
- 360. E. M. Rapoport, N. V. Bovin, *Biochemistry Moscow* 2015, 80, 846-856.
- 361. http://www.functionalglycomics.org/.
- C. T. Oberg, S. Carlsson, E. Fillion, H. Leffler, U. J. Nilsson, *Bioconjug. Chem.* 2003, 14, 1289.
- 363. M. Krzeminski, T. Singh, S. André, M. Lensch, A. M. Wu, Bonvin, Alexandre M. J. J.
 H.-J. Gabius, *Biochim. Biophys. Acta General Subjects* 2011, 1810, 150.
- 364. J.-T. de Oliveira, A.-J. de Matos, A. L. Santos, R. Pinto, J. Gomes, V. Hespanhol, R. Chammas, A. Manninen, E. S. Bernardes, C. Albuquerque Reis, G. Rutteman, F. Gärtner, *Int. J. Dev. Biol.* 2011, 55, 823.
- 365. T.-W. Lin, H.-T. Chang, C.-H. Chen, C.-H. Chen, S.-W. Lin, T.-L. Hsu, C.-H. Wong, *J. Am. Chem. Soc.* **2015**, 137, 9685.
- 366. A. F. Swindall, A. I. Londoño-Joshi, M. J. Schultz, N. Fineberg, D. J. Buchsbaum, S. L. Bellis, *Cancer Res.* 2013, 73, 2368.
- 367. M.-A. Recchi, A. Harduin-Lepers, Y. Boilly-Marer, A. Verbert, P. Delannoy, *Glycoconj. J.* **1998**, 15, 19-27.
- 368. F. D. Olio, N. Malagolini, G. Di Stefano, F. Minni, D. Marrano, F. Serafini-Cessi, *Int. J. Cancer* **1989**, 44, 434.

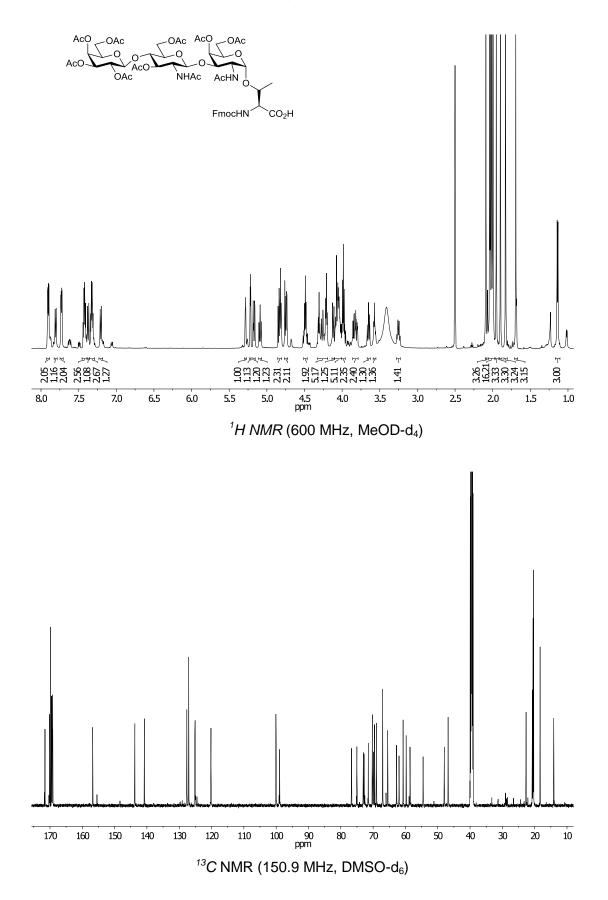

- 369. P.-H. Wang, W.-L. Lee, C.-M. Juang, Y.-H. Yang, W.-H. Lo, C.-R. Lai, S.-L. Hsieh, C.-C. Yuan, *Gynecologic Oncology* 2005, 99, 631.
- 370. F.-T. Liu, G. A. Rabinovich, Nat. Rev. Cancer 2005, 5, 29.
- 371. Y. Zhuo, S. L. Bellis, J. Biol. Chem. 2011, 286, 5935.
- 372. F. M. Shaikh, E. C. Seales, W. C. Clem, K. M. Hennessy, Y. Zhuo, S. L. Bellis, *Exp. Cell Res.* **2008**, 314, 2941.
- 373. H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.

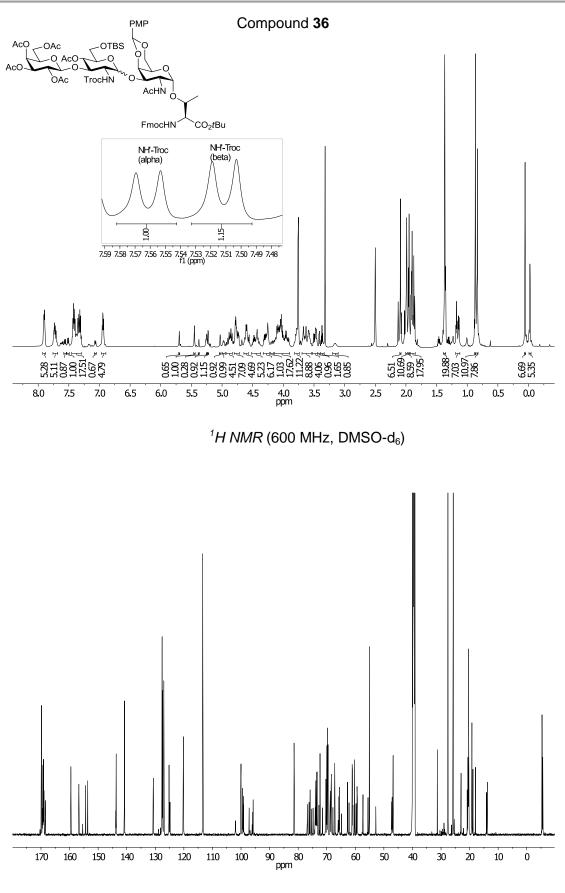
APPENDIX

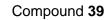

9.1 Spectroscopic data

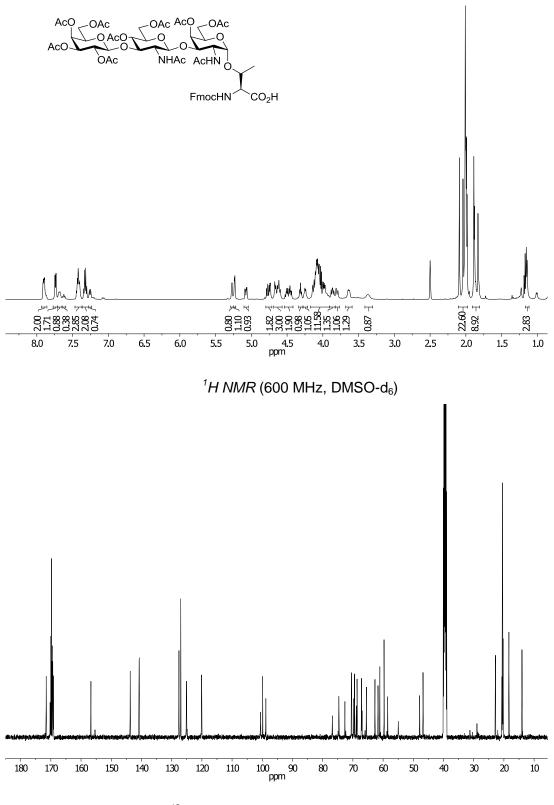


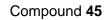

¹³C NMR (150.9 MHz, CDCl₃)

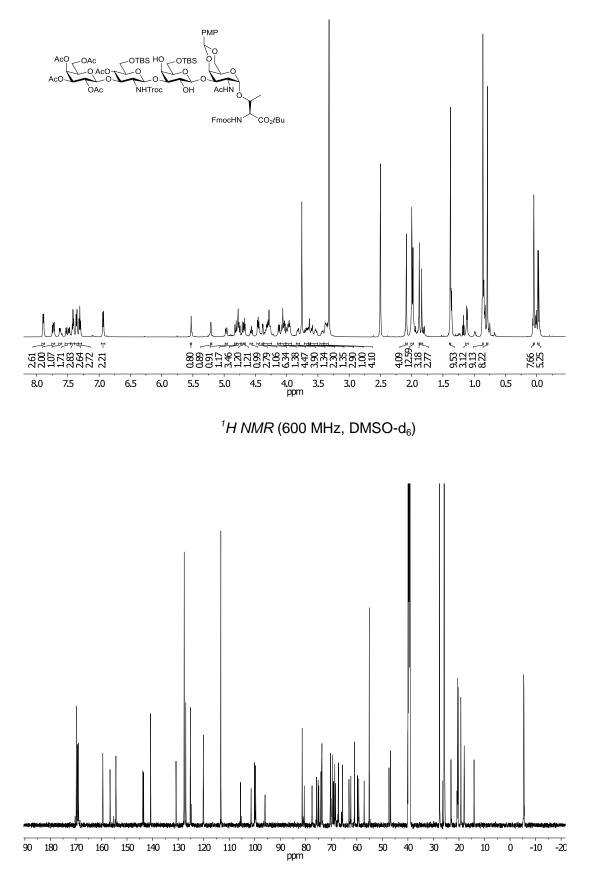


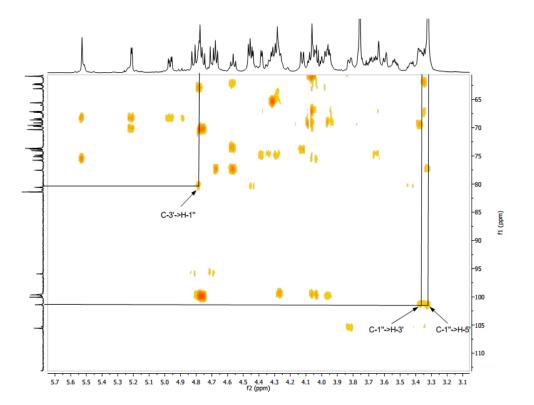

Compound 32


¹³C NMR (150.9 MHz, MeOD-d₄)

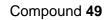


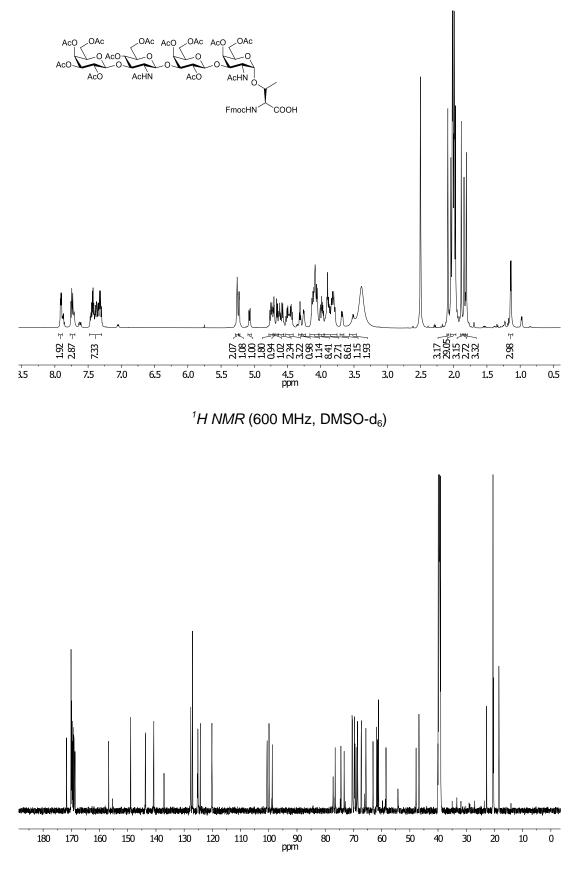



¹³C NMR (150.9 MHz, DMSO-d₆)

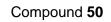


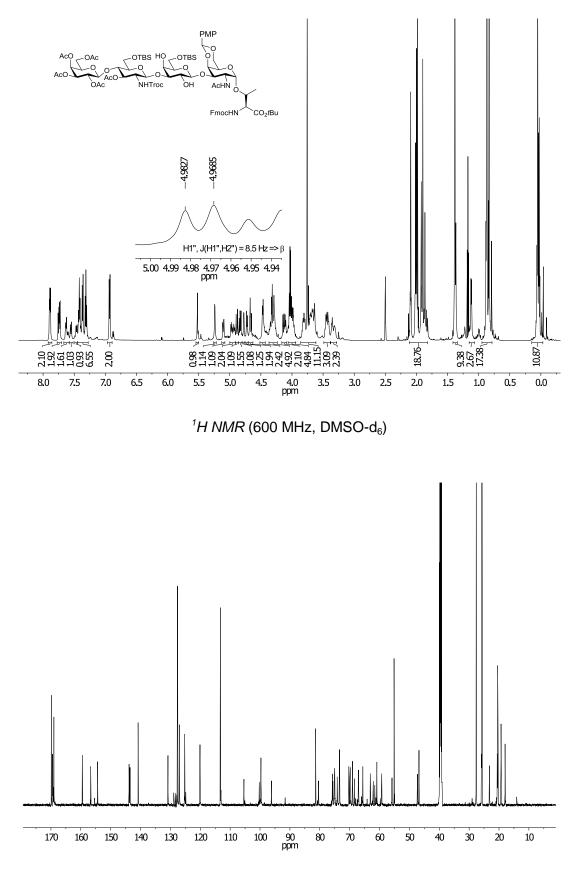
¹³C NMR (150.9 MHz, DMSO-d₆)

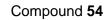


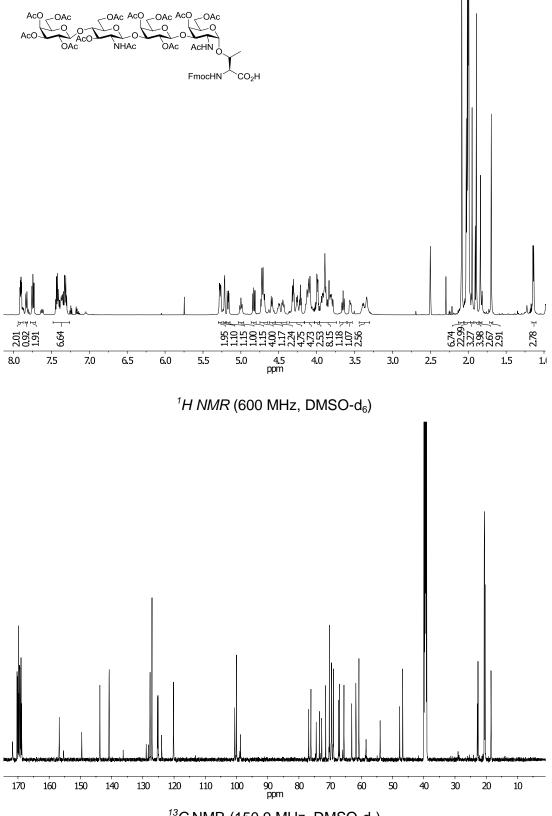


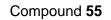
¹³C NMR (150.9 MHz, DMSO-d₆)

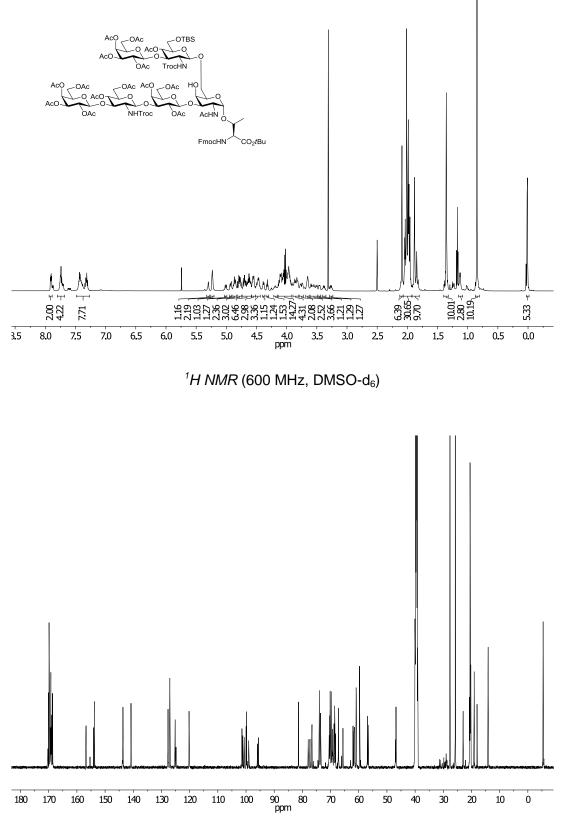



¹*H*-¹³*C*-HMBC

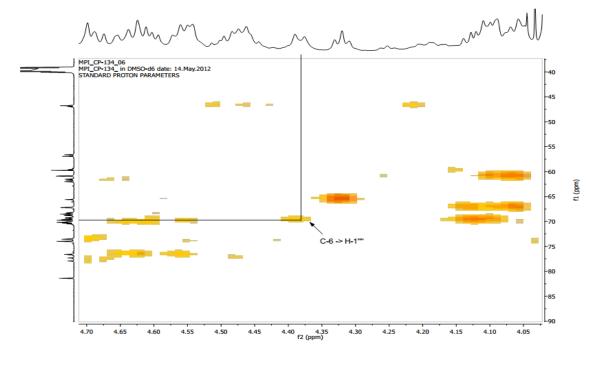


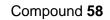

¹³C NMR (150.9 MHz, DMSO-d₆)

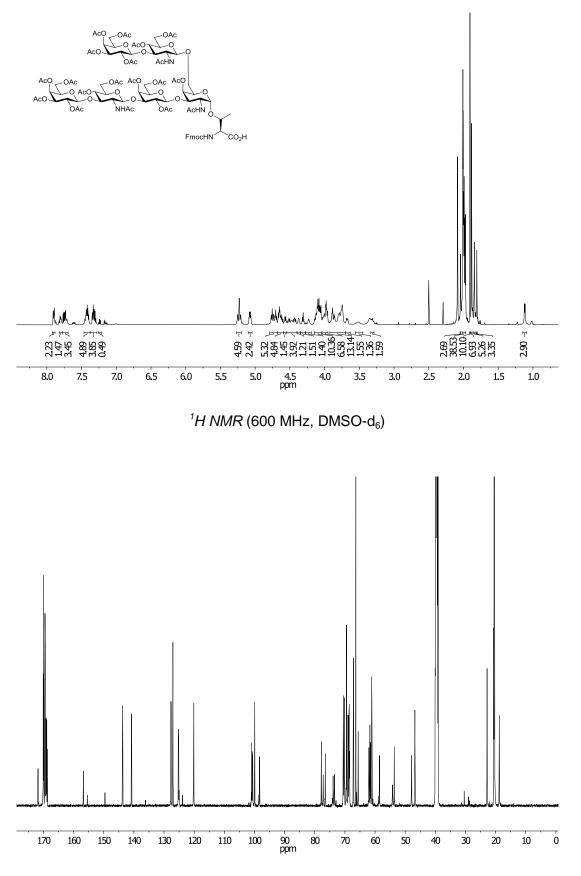


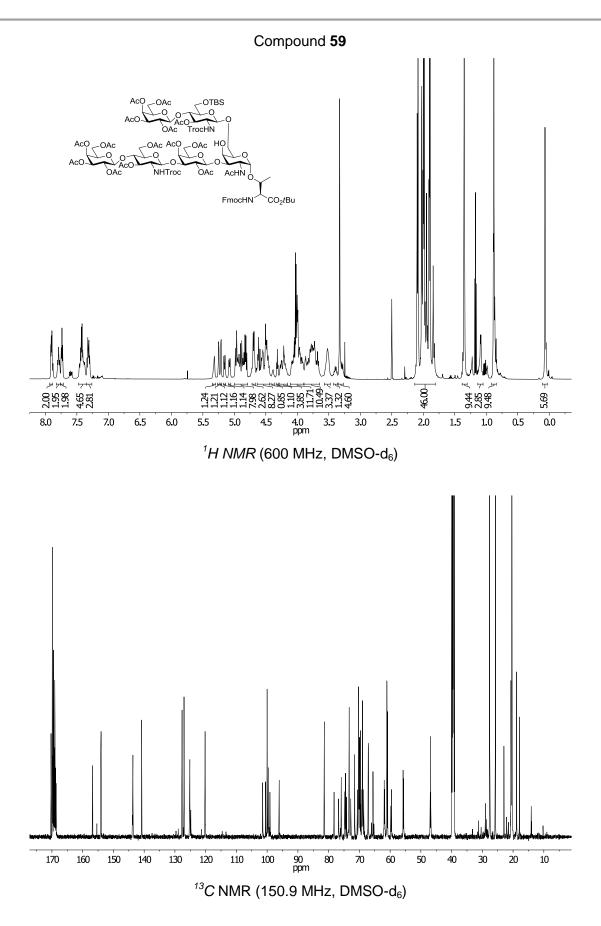


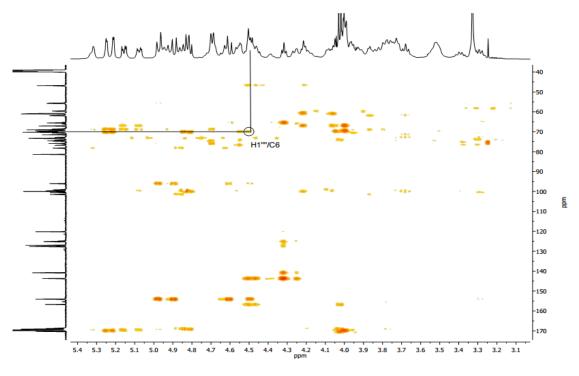
¹³C NMR (150.9 MHz, DMSO-d₆)

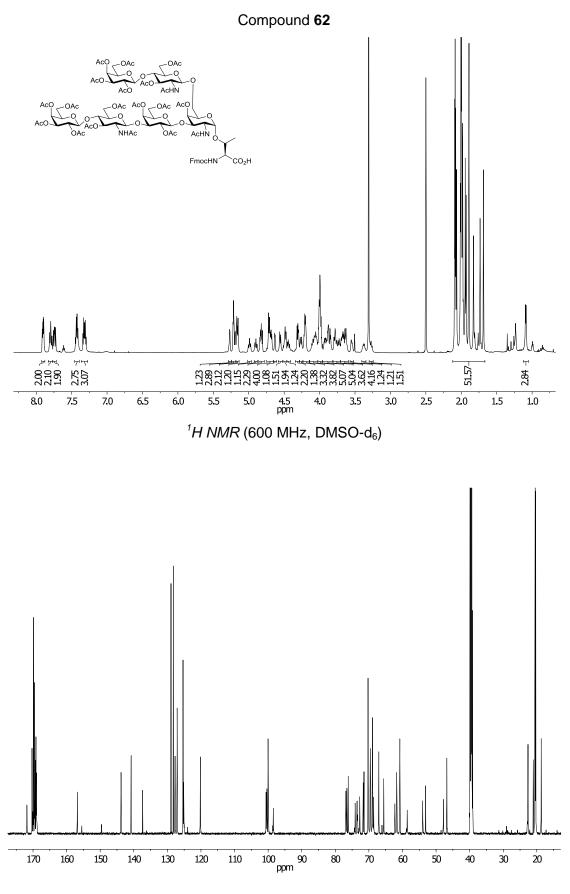






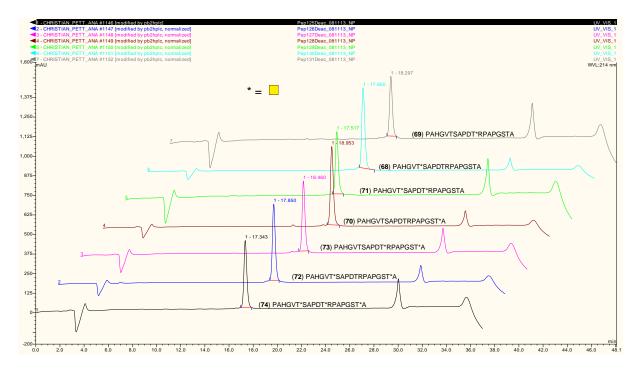



¹*H*-¹³*C*-HMBC

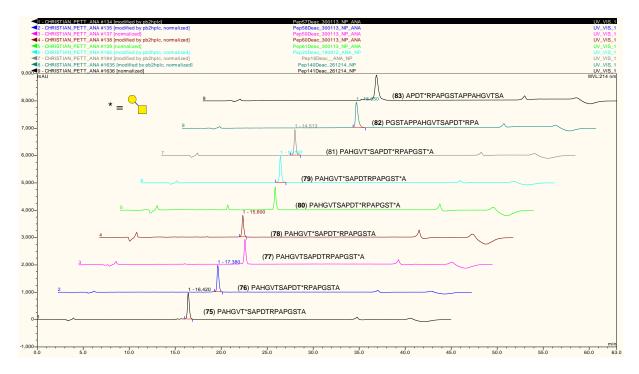


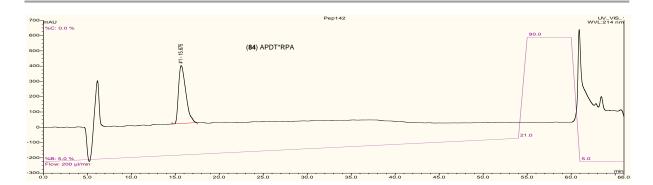
¹³C NMR (150.9 MHz, DMSO-d₆)

¹*H*-¹³*C*-HMBC



¹³C NMR (150.9 MHz, DMSO-d₆)

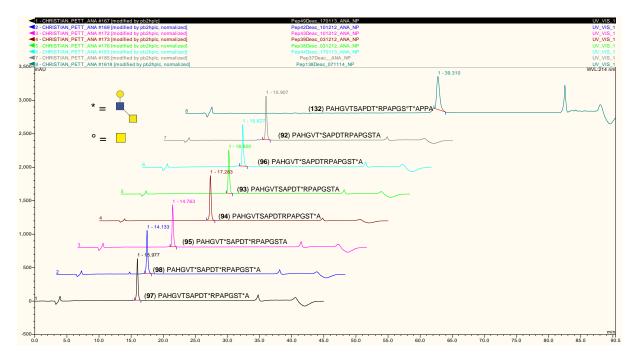

9.2 HPLC chromatograms

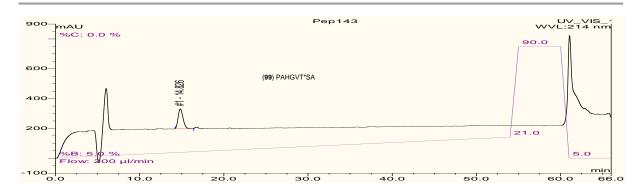

9.2.1 MUC1 glycopeptides

9.2.1.1 T_N -antigen glycopeptides

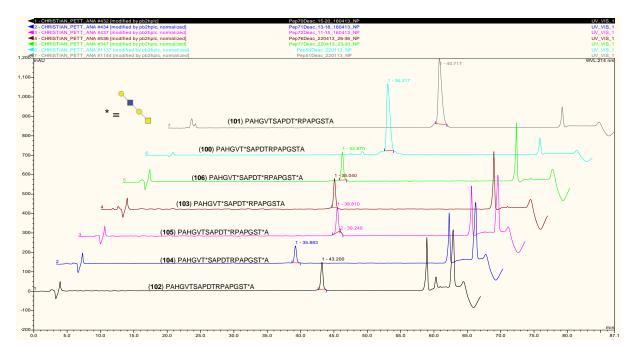


9.2.1.2 T-antigen glycopeptides

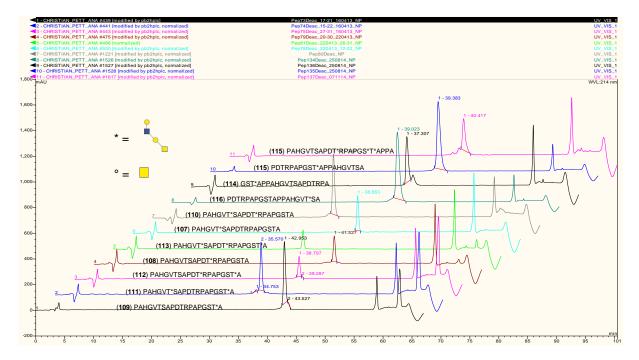


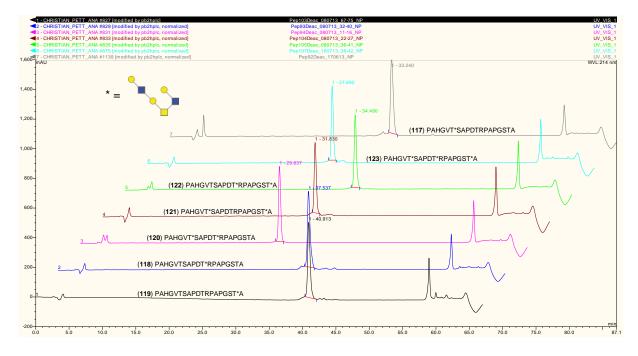


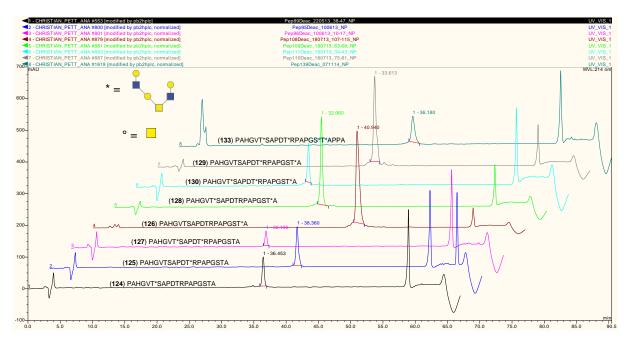
9.2.1.3 Core 3 type-1 glycopeptides



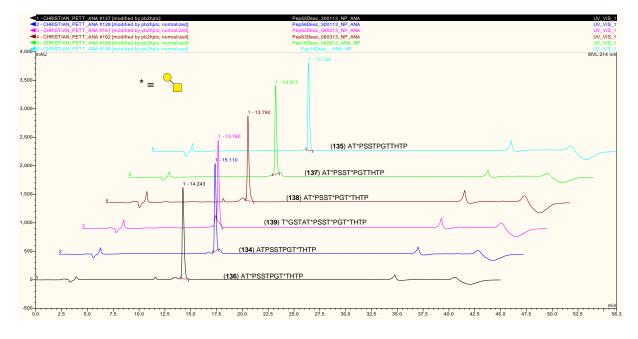
9.2.1.4 Core 3 type-2 glycopeptides



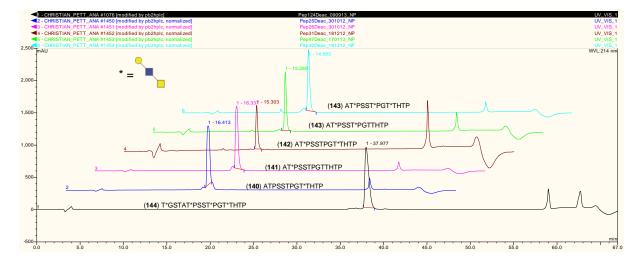

9.2.1.5 Core 1 type-1 glycopeptides

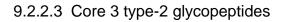

9.2.1.6 Core 1 type-2 glycopeptides

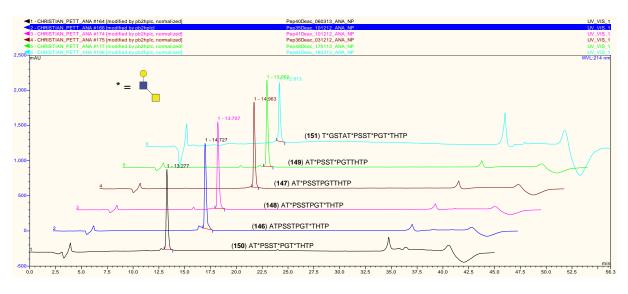
9.2.1.7 Core 2 type-1 glycopeptides

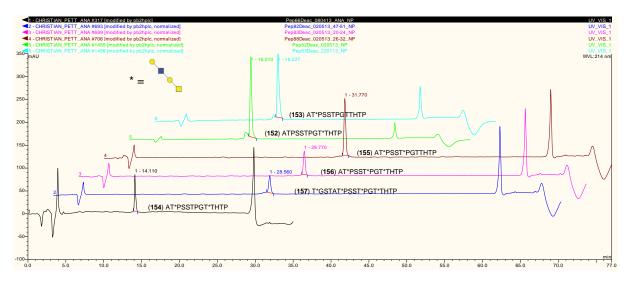


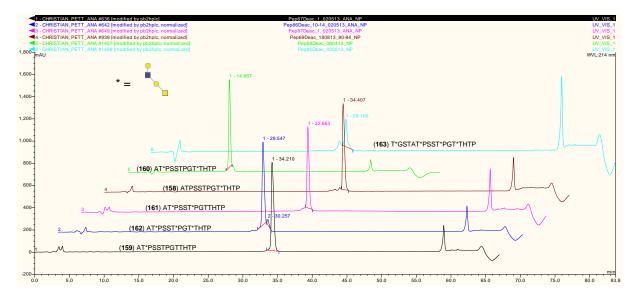
9.2.1.8 Core 2 type-2 glycopeptides

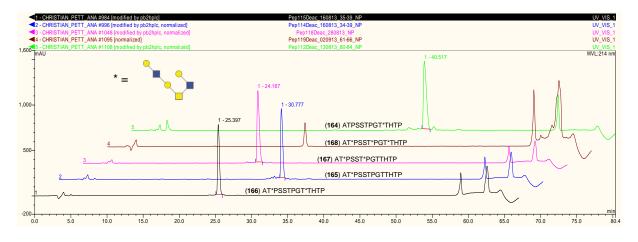


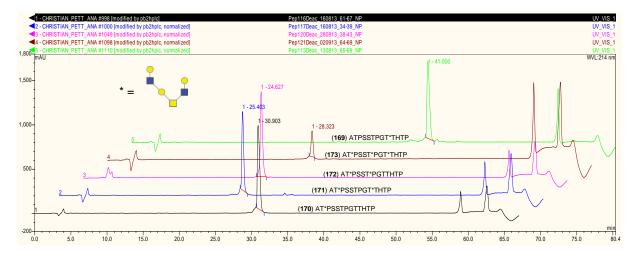

9.2.2 MUC5B glycopeptides

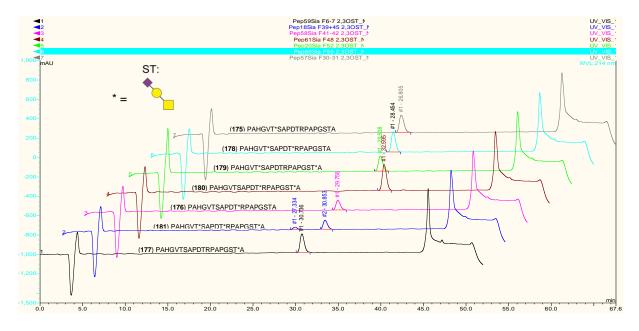

9.2.2.1 T-antigen glycopeptides


9.2.2.2 Core 3 type-1 glycopeptides

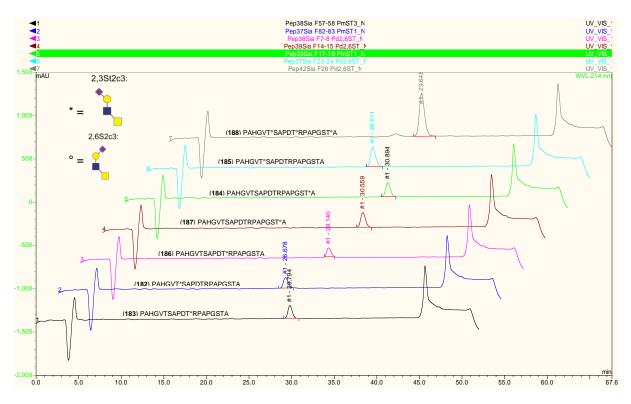


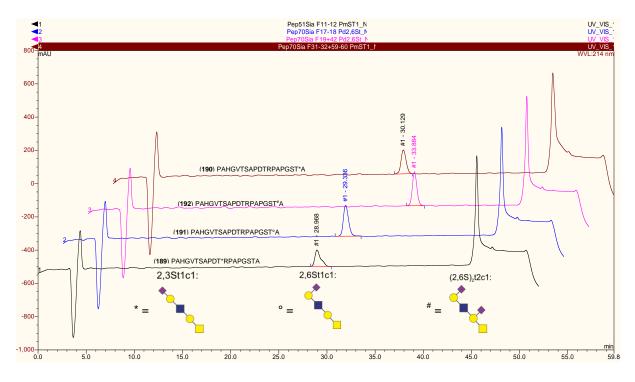

9.2.2.4 Core 1 type-1 glycopeptides


9.2.2.5 Core 1 type-2 glycopeptides

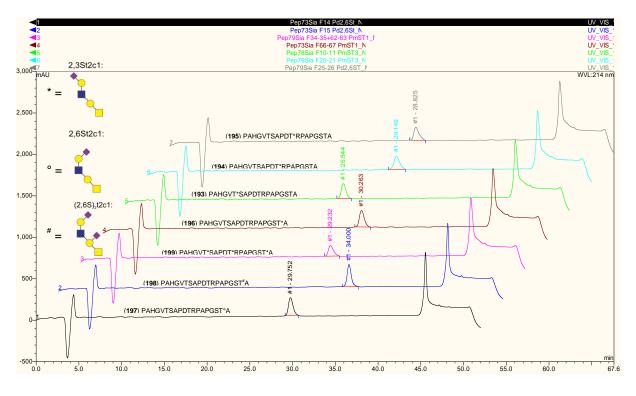

9.2.2.6 Core 2 type-1 glycopeptides

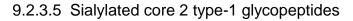
9.2.2.7 Core 2 type-2 glycopeptides

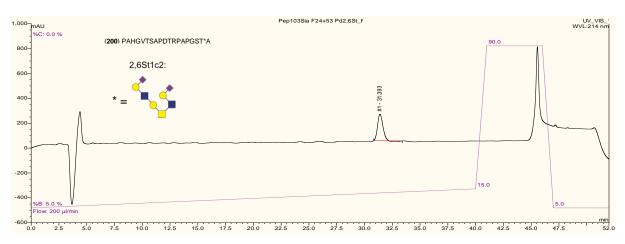


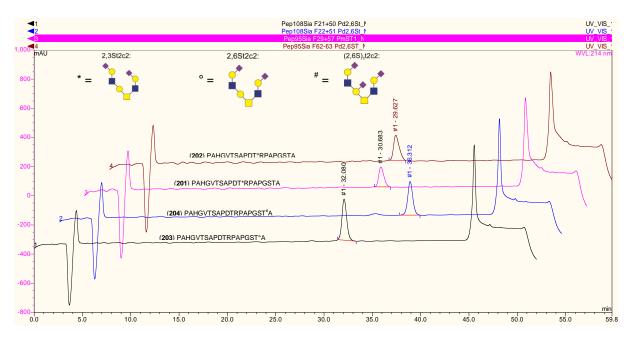

9.2.3 Sialylated MUC1 glycopeptides

9.2.3.1 2,3-ST-antigen glycopeptides

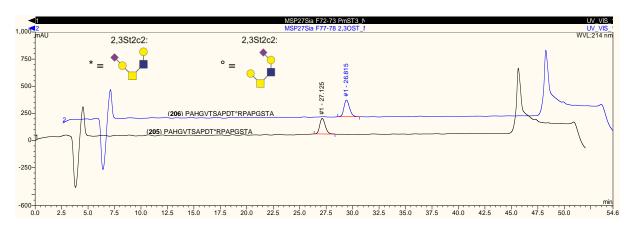

9.2.3.2 Sialylated core 3 type-2 glycopeptides






9.2.3.3 Sialylated core 1 type-1 glycopeptides

9.2.3.4 Sialylated core 1 type-2 glycopeptides



9.2.3.6 Sialylated core 2 type-2 hexasaccharide glycopeptides

9.2.3.7 Sialylated core 2 type-2 tetrasaccharide glycopeptides

9.3 Microarray data

9.3.1 Microarray format 1 (MA1)

dilutions	CHSynB mouse1		CHSynB mouse2		CHSynB mouse3	
	MEAN	SD	MEAN	SD	MEAN	SD
1/50 1/100 1/200 1/400 1/800 1/3200 1/6400 1/2800 1/25600 1/51200 1/2.5	54946 53555 51492 40443 36667 26935 16533 6657 2088 405 42	3310 4396 6835 4856 1125 1258 1234 393 228 45 29	43349	1473	42988	1744
1/5 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280 1/2560			38635 33123 23765 14461 7101 2398 793 225 13	955 990 664 349 341 154 59 56 18	43571 40318 30123 21954 11775 5780 1770 418 90 7	934 1125 479 1445 708 164 120 59 47 9
	HC12 mouse 1		HC12 mouse 2		HC12 mouse 3	
1/2.5 1/5 1/10 1/20 1/40 1/160 1/320 1/640 1/1280	64563 66021 65771 66284 60681 51283 26617 12247 2589 137	2516 1736 3095 3071 1472 2650 715 664 200 33	49077 43833 43975 37130 25189 14614 7508 2684 566	2142 1444 954 973 997 462 658 177 65	63379 66021 50004 32381 27774 11048 4561 1447	3050 1736 1244 2388 447 894 317 147
	HC11 mouse 1		HC11 mouse 2		HC11 mouse 3	
1/2.5 1/5 1/10 1/20 1/40 1/160 1/320 1/640 1/1280 1/2560 1/5120	19840 16338 8226 2988 1251 424 163 44	1509 698 294 92 83 42 29 21	51786 51147 52594 49326 46371 31703 19683 9051 3540 1176 255 55	1310 2626 8161 4533 2668 949 1188 245 113 56 29 21	78344 70605 54613 30509 12502 3910 1244 315 145 7	7167 5704 3986 1261 525 186 67 21 30 10

dilutions	SH127 mouse 1		SH127 mouse 2		SH127 mouse 3	
	MEAN	SD	MEAN	SD	MEAN	SD
1/200 1/400 1/800 1/1600 1/3200 1/4400 1/12800 1/51200 1/51200 1/102400 1/204800	62590 59026 58486 57341 50479 43329 37002 19144 7800 1913 134	5033 1334 1001 1196 1217 426 505 750 389 144 121	11584 5723 2117 302	418 222 243 109	110210 110609 85695 54822 35390 19952 10754 3439 583 45	2384 1827 2251 2209 1341 413 635 249 74 25
	AuNP mouse 1		AuNP mouse 2		AuNP mouse 3	
1/1 1/5 1/10 1/20 1/40 1/320 1/320 1/320 1/2560 1/5120	21494 7099 2568 684 80 38 20 6 4	619 399 89 108 36 12 19 8 11	64996 53141 26825 11868 4570 1544 7 319 62 8 6 4	4537 1939 1411 420 265 138 8 118 16 11 11 8	103300 91688 79229 54220 29669 14841 6674 2267 827 132 58 26	5189 3829 3538 4860 1997 521 377 270 86 32 24 27
	HC1 mouse1		HC1 mouse2		HC1 mouse3	
1/2.5 1/5 1/10 1/20 1/40 1/150 1/150 1/320 1/640 1/1280 1/2560	63527 62061 50415 46051 38956 25783 12102 5732 2317 1058 21	5046 2206 1463 2159 1901 1341 896 329 122 165 15	54111 47775 49493 33947 27338 12514 5187 1266 211	2154 1067 1610 619 1554 447 154 37 45	50186 40651 44398 43962 31643 21719 10735 5295 2155 1032 96	3917 731 1059 1607 1434 1111 252 236 108 73 35
	HC2 mouse 1		HC2 mouse 2		HC2 mouse 3	
1/2.5 1/5 1/10 1/20 1/40 1/80 1/160 1/320	9654 8013 5924 3043 1523 423 128	422 438 315 90 103 37 71	15349 13160 10729 8176 4699 2556 933 382	360 236 386 360 219 156 113 57	7498 5283 3557 1540 523 191	206 180 196 88 66 82

9.3.2 Microarray format 2 (MA2)

Vaccine candidate 1 (CHSynB):

Vaccine candidate 2 (HC12):

Dentidee	mouse	1 (1/80)	mouse2	2 (1/20)	mouse2	2 (1/80)	mouse2	(1/320)	mouse	3 (1/20)	mouse3	(1/80)	mouse3	(1/320)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
231 230	285 515	295 249	4140 7671	1061 1798	957 2352	292 296	280 553	148 97	61 209	72 106	74 3	30 7	11 6	14 16
229	517	194	4513	888	1209	450	246	133	400	144	69	74	20	30
130 129	79 41	103 41	509 5360	191 1114	17 2821	26 1133	16 747	40 158	12 18	20 0	0 115	0 55	9 37	23 42
128	32	48	1911	672	442	159	200	65	50	91	84	18	7	17
127	52 87	60 112	1347 5278	436 1136	400 1627	81 352	0 337	0	81 139	73 109	44 5	65 7	65 6	68
126 125	190	112	21159	3045	9723	1637	3162	119 627	110	109	6	12	40	15 47
124	5	12	1830	590	287	161	8	19	#DIV/0!	#DIV/0!	11	11	44	60
123 122	77 27	88 40	111 5250	144 447	20 1716	38 171	38 428	54 143	0 39	0 53	2	6 16	0 50	0 54
121	71	77	520	179	68	84	1	2	71	93	17	27	25	45
120 119	38 32	62 42	335 5007	85 994	90 1440	94 353	10 401	26 113	13 16	25 21	0	0 15	0 30	0 52
119	45	42 50	11781	1216	3979	666	913	192	60	71	0	0	45	52
117	18	#DIV/0!	666	195	80	82	0	0	38	67	20	33	59	61
113 112	5 182	7 142	15563 39780	2886 4491	5564 21732	1386 4387	1978 7805	413 1605	10117 23033	2317 4963	2312 5674	430 1330	534 1290	85 188
111	28	50	1152	393	148	112	41	43	39	74	2	6	0	0
110 109	73 9	112 0	10984 4842	2613 962	4899 1269	1441 375	1749 238	687 173	9252 2	2565 4	2731 53	144 72	437 2	108 5
105	216	76	49570	5503	32235	6459	12460	2592	33136	7091	7156	1371	1690	378
107	24	32	1297	301	191	78	17	44	29	67	41	41	14	19
106 105	103 283	87 127	19665 43452	2156 4252	8241 27105	1217 5753	2643 9525	403 2362	12026 26141	2473 5597	2671 7650	569 1301	496 1837	115 316
104	21	38	924	417	18	52	14	33	0	0	2	5	24	41
103 102	15 67	#DIV/0! 78	24290 4289	3118 717	11334 1140	1237 250	3797 142	405 127	13973 36	2304 79	3240 8	548 19	660 20	113 28
101	256	135	51469	6287	31766	6502	12296	1443	31948	7253	6470	417	1842	140
100	56	71	1421 29085	377 900	34	53 2901	31	51	0 19430	0	0	0	27	51
98 97	3 305	6 131	44296	3214	17214 31058	6052	6190 11889	825 2466	28230	3939 6415	4545 6582	669 1320	1161 1836	324 211
96	48	72	1776	390	226	127	15	22	0	0	17	26	64	58
95 94	131 35	123 61	30585 6812	3740 903	16491 2085	3355 381	6120 463	1195 90	14640 0	2927 0	3749 0	447 0	776 6	106 14
93	255	167	47111	3694	32655	5930	11927	1898	29076	5130	7255	1651	1730	227
92 91	76 458	81 142	1265 32310	657 4165	146 18388	169 3088	8 6749	14 790	0 17814	0 3450	7 3962	13 262	10 1066	25 178
90	780	142	45941	3114	34396	6338	13343	2303	29378	6202	7449	1461	1832	517
89 88	254 212	164 191	2435 31226	500 2905	496 17738	153 3109	59 6215	84 1219	718 14406	278 3272	83 3347	59 691	3 635	7 130
87	318	191	6697	1127	2070	410	582	1219	445	240	53	73	035	0
86	519	116	57473	5293	38106	5438	15094	2569	30977	5280	7845	1335	1507	262
85 81	87 75	78 56	1364 23830	379 3812	51 13930	72 2806	4 5346	9 637	0 18137	0 5275	0 3809	0 274	0 1068	0 156
80	374	242	40973	4364	30298	6147	12106	1943	30103	7526	6966	517	1711	311
79 78	81 14	92 16	1351 22916	579 1042	151 13990	150 1328	18 4823	29 553	0 18844	0 4578	0 4389	0 646	0 875	0 281
77	31	31	5897	1002	1703	455	487	116	0	0	0	0	6	17
76 75	366 23	212 25	44528 853	3635 214	30909 154	5700 229	11396 20	2212 32	33250 0	9052 0	8340 0	2048 0	1727 1	332 3
235	36	0	6263	817	1704	350	461	110	66	90	6	13	20	35
234	277	255	36034	3457	27116	5715	10297	1630	21610	4818	6124	724	1121	190
228 227	0 86	0 97	0 4896	0 681	0 1504	0 346	0 488	0 104	0 33	0 55	0	0	0 8	0 20
226	82	93	5245	628	1556	333	390	132	0	0	0	0	0	0
225 224	45 268	57 159	2905 39462	858 4672	625 29860	339 6533	82 11219	101 2750	23 28321	44 5469	33 8419	53 1145	13 1657	23 327
223	59	68	1193	427	66	92	26	47	0	0	0	0	7	13
222 74	0 482	0 162	1934 35506	693 4509	349 22892	155 3290	5 9119	9 1453	0 48502	0 8424	0 14789	0 2817	1 2665	2 394
73	0	0	48848	7328	36080	5806	17037	1835	71673	17470	19680	4186	4951	723
72 71	0 25	0 42	0 44014	0 5145	0 28797	0 5009	0 12019	0 1387	0 69022	0 13907	0 20336	0 2730	0 4190	0 733
70	401	193	3459	553	780	287	12015	145	03022	0	0	0	4190	0
69	74	68	49615	5734	34132	6039	13678	2278	75144	15585	25984	4313	4639	1108
68 233	62 80240	67 9915	1172 9613	213 408	162 2905	149 1050	35 1127	51 247	8 55347	22 10674	0 41623	0 1902	0 12489	0 1193
232	99975	8144	73219	14051	52716	10248	25362	3627	174478	19804	83163	7569	24558	2462
221 220	0 777	0 295	214 61437	313 9992	7 45267	18 8929	13 21971	35 4495	0 96356	0 20976	0 32171	0 4204	0 7197	0 1363
219	25	43	5620	1048	1807	459	451	71	0	0	0	0	0	0
218 217	75 49	78 68	6826 2556	1182 641	2302 519	360 382	586 51	53 72	140 0	155 0	18 64	24 86	18 4	44 6
216	591	256	5063	957	1155	499	263	149	0	0	0	0	25	39
215 214	1007 149	232 127	35987 552	5917 281	23597 74	4716 103	9671 40	1115 62	51160 17	12135 38	18211 0	2618 0	3939 2	779 6
214 213	49	118	9	15	8	105	145	109	8	23	17	23	51	70
212	28	45	295	207	18	51	0	0	0	0	0	0	0	0
211 210	45 99	93 107	1970 5857	462 1073	417 1607	155 457	123 349	82 98	73 22	94 39	0	0	36 14	50 35
209	419	187 94	25605	4027 474	12394	3054 234	4894 51	596 46	15751 89	1904 104	7731	772 19	1603 0	520 0
208 207	58 76	94 89	1865 4905	474 1200	411 1273	234 360	434	46 79	0	0	16 0	0	27	32
			-		•		•				•		•	

Vaccine candidate 3 (HC11):

	mouse1	(1/10)	mouse1 (1/40)	mouse2	2 (1/80)	mouse2	(1/640)	mouse3	(1/20)	mouse3 (:	1/80)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
(231) (230)	13 32	13 26	3 12	4 14	29194 32993	4645 7474	7165 9463	747 1283	4 40	8 25	1 4	2 5
(230)	2018	750	316	218	36824	19343	13071	3662	16	16	5	5
(130)	9	11	11	13	0	1	6	6	12	15	5	8
(129) (128)	12 12	13 12	10 4	10 6	6 13134	10 2147	6 2128	12 653	13	11 11	1 7	1
(127)	4	9	8	10	9	12	7	15	8	9	3	6
(126) (125)	1553 23	415 17	187 5	117 7	15160 11	1880 17	4016 5	913 11	11 13	15 16	4	6 6
(124)	8	12	8	12	19320	4034	4059	582	11	18	12	9
(123)	2 13	3 13	3	6 4	2 4	2 8	6 4	11 7	9	9	8 2	8
(122) (121)	10	10	2 7	4 10	4 9441	1601	4 1489	528	8 4	10 9	0	5 0
(120)	1	2	8	8	9	13	2	6	5	7	0	0
(119) (118)	2190 22	499 22	295 4	128 4	17694 10	1507 11	4788 7	1306 7	7	10 3	0	1 4
(117)	16	13	7	9	26021	4143	5191	648	9	9	0	0
(113) (112)	12 10	14 14	7 11	9 14	5	10 12	12 7	11 7	7 12	10 11	5 0	5 1
(111)	3	6	3	4	15546	4804	2915	1073	7	12	2	3
(110)	10 591	15 343	3 59	5	6 26147	10	9 5852	11	10	9	10	11
(109) (108)	40	35	10	39 15	20147	3666 47	4	1399 10	11 8	14 6	14 10	7 13
(107)	8	13	5	6	31235	2675	7071	1293	8	13	5	6
(106) (105)	7	12 13	1 6	2 8	8	15 17	5	6 13	15 9	17 9	1	3 4
(104)	16	16	6	5	14706	3675	3025	977	3	6	0	0
(103) (102)	3 855	5 447	5 102	6 97	8 22349	16 2730	5 4795	7 1200	2	3 16	1 4	3 5
(101)	22	30	1	2	4	5	6	12	10	14	6	10
(100) (98)	61 7	153 10	11 5	14 8	37276 11	2080 14	7776 9	1929 13	11 7	18 13	2	3 3
(97)	36	50	5	13	2	4	8	8	8	10	1	2
(96) (95)	12 11	15 9	5	8 11	15875 4	2810 8	4210 8	765 11	5	7 9	7 3	10 4
(94)	2762	527	574	149	4 19597	8 3471	5783	1411	13	15	2	5
(93)	18	14	3	6	6	9	5	13	5	7	0	0
(92) (91)	14 264	24 144	9 48	14 29	25536 16	3944 19	5691 9	1423 6	5 15	9 11	2 14	3 13
(90)	686	173	221	405	147	387	3	9	6	9	8	10
(89) (88)	298 8	367 9	22 14	29 17	17044 15	1411 19	4284 6	623 7	8 15	8 14	1	1
(87)	3349	775	678	204	21710	3698	5474	1210	6	11	0	0
(86) (85)	272 6	138 8	52 1	32 4	8 25502	14 3963	7 6232	12 1195	13 1	15 3	5 3	3 4
(81)	8	11	10	15	20	25	3	7	9	14	1	2
(80) (79)	669 14	300 11	95 8	39 12	13 18230	15 1709	5 4841	6 513	13 5	15 8	0	0 2
(78)	11	9	8	12	2	5	5	5	5	9	5	7
(77) (76)	2627 529	569 236	460 53	144 43	21699 55	3079 130	6130 17	1118 24	8 7	6 9	2	3 3
(75)	1	4	3	43	21663	3450	5413	1088	4	7	8	7
(235) (234)	6376 3017	689	1638 474	337 136	28699 1	5535 3	8133 7	1225 8	65	48 9	102 122	77 30
(234)	5	329 7	13	130	3794	715	562	255	6 6	11	122	81
(227)	2375	336	379	114	19610	2065	5988	788	26	21	1	2
(226) (225)	2931 2	546 3	493 17	112 22	18026 13846	2790 2530	5787 5222	968 771	15 9	20 15	87 1	42 1
(224)	545	127	9	14	2	5	1	2	1	3	4	4
(223) (222)	5 10	8 14	9	12 12	3715 20001	1409 7630	600 5027	329 1087	10 11	9 12	15 9	4 11
(74)	111	89	13	13	10	13	5	6	461	168	391	60
(73) (72)	1216 333	392 181	192 80	84 36	20 17446	15 3069	6 5134	11 578	369 522	172 230	478 6	59 5
(71)	9	13	8	15	13	14	4	7	0	0	10	11
(70) (69)	2217 591	473 287	373 81	135 62	21623 29	3321 46	5458 8	889 11	505 1	77 3	7 5	9 6
(68)	14	18	11	12	16095	1789	4432	651	8	13	4	4
(233) (232)	5535 5189	1107 861	1455 1376	392 355	39520 12	13835 19	12917 10	2944 19	1180 1658	507 428	1 2	2 4
(221)	20	23	5	6	13758	1392	5112	653	406	161	109	41
(220)	3164 3399	398 547	510	124 183	48 42443	64 3655	3	6	793 542	150 158	215 161	74 32
(219) (218)	3399	547	533 5	183 6	42443 16928	3655 3291	11112 5003	2243 897	10	158 8	161 6	32 7
(217)	9	12	12	13	16423	2750	4802	683	2	3	5	7
(216) (215)	370 391	184 206	60 97	62 46	28335 6	4874 9	7721 4	900 7	474 606	140 200	110 73	36 72
(214)	81	54	18	21	8622	3662	2718	560	279	72	87	6
(213) (212)	4	7 4	11 3	12 7	3 3207	5 469	0 375	0 294	3 4	4 5	3 6	5 5
(211)	12	13	4	6	16153	1251	4479	625	9	11	3	5
(210) (209)	3584 1486	920 503	675 232	241 64	20917 56	3603 107	6301 11	773 14	9 8	10 12	2	3 4
(209)	9	12	3	64 7	17259	107	5224	621	8 14	12	2	8
(207)	2453	501	434	126	21645	1729	6190	884	13	10	4	6

Vaccine candidate 4 (NG5):

Peptides	NG5 mouse	5 (1/100)
replices	MEAN	SD
231	5130	977
230	6400	1155
229	4846	2365
130 129	572 1873	162 387
123	1968	677
127	1423	389
126	4599	649
125 124	3394 3725	466 844
124	467	217
122	1778	503
121	1410	222
120	830	328
119 118	4167 4003	877 726
117	3410	529
113	3863	702
112	4520	1495
111	2606	634
110 109	3903 4491	947 1611
109	6081	1414
107	4717	943
106	3515	592
105 104	4809	685
104	2726 4547	793 1231
102	4602	1104
101	4849	1708
100	4407	946
98 97	4032 5541	778 829
97	3435	383
95	4477	1248
94	4779	1078
93	5601	1268
92 91	3420 3270	1042 807
90	5077	671
89	3415	404
88	4842	715
87	4454	1181
86 85	6373 3854	1458 804
81	3859	985
80	5305	1316
79	3002	679
78 77	5131 5175	997 711
76	6150	1645
75	3629	805
235	3256	610
234 228	3431 5202	700 1237
228	3412	552
226	4523	671
225	3975	962
224 223	3318 4708	2612
223 222	4708 4125	1052 1176
74	4570	1031
73	4570	1724
72	2698	636
71 70	5046 4310	1019 694
69	5823	856
68	2863	854
233	3283	996
232 221	4967 3685	1315 777
220	5925	1089
219	4413	783
218	4811	876
217	3528	857
216 215	4822 5156	981 980
215	2024	526
213	30	59
212	4873	774
211 210	4065 5902	495 896
210	4776	1303
208	4043	864
207	5691	1386

Vaccine candidate 5 (SH127):

abo 4555 1722 4005 8150 1007 9800 1008 2731 8511 5020 8406 9707 1130 100 1130 1134 2207 880 1247 1230 1231<		mouse1	(1/4000)	mouse1 (1	L/12000)	mouse1 (1,	/50000)	mouse2 (1/400)	mouse2 (1/800)	mouse3 (1/2000)	mouse3 (1	/4000)	mouse3 (1,	(12000)
4406 1120 4407 1208 1208 1208 1208 2731 8281 5020 8486 9770 14191 348 200 5130 1312 2207 8230 1323 23311 2331 2331 23	Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
1290 1498 1150 1275 9030 6225 9030 1277 1278 1288 1278 1288 1278 1288 1278 1288 1278 1288 1278 1288 1278 1288 <th< th=""><th>231</th><th>35080</th><th>7913</th><th>29892</th><th>5585</th><th>4686</th><th>845</th><th>10046</th><th>3619</th><th>8281</th><th>2592</th><th>45083</th><th>10129</th><th>28889</th><th>5921</th><th>10733</th><th>2479</th></th<>	231	35080	7913	29892	5585	4686	845	10046	3619	8281	2592	45083	10129	28889	5921	10733	2479
1300 130 1342 223 884 1240 251 2457 735 360 1270 130 312 320 331 320 353 320 353 320 353 320 353 336 320 353 336 320 353 336 320 353 336 320 353 336 320 353 336 337 336 330 336 330 336 330 336 330 336 330 336 330 336 330 336 330 33																	4344
192 1962 203 126 137 126 137 126 137 126 137 126 137 126 137 126 137 126 137 126 137 137 136 136 136 136 136 136 136 136 136 136 137 136 136 136 136 136 137 136 136 136 137 136 137 <th></th> <th>3459</th>																	3459
128 1955 3311 1287 388 297 75 44.7 120 478 702 1001 1101 4105 4100 600 778 150 1001 128 670 600 778 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 178 150 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>225</th></th<>																	225
1100 1376 880 2055 158 156 156 156 156 156 156 157 1207 <th1207< th=""> <th1207< th=""> <th1207< th=""></th1207<></th1207<></th1207<>																	852
126 1274 560 1471 600 401 700 977 286 940 173 2802 387 2875 910 2720 380 2837 2875 380 1572 1930 1270 380 1570																	502
125 2280 3381 1577 2885 4483 998 5720 1990 2537 1199 7223 3330 1576 121 8538 115 121 1398 1600 1199 746 304 304 1304 1498 891 1429 160 1492 1429 160 1492 140 1492 140 1492 140 1492 140 1492 140 1403 130 130 130 130 130 1304 1307 1402 150 1404 1501 1404 1501 1408 1501 1408 1501 1403 1301 1302 1309 1309 1309 1309 1309 1309 1309 1309 1301 13																	2205
123 378 188 189 766 26 51 788 190 1040 800 201 555 157 157 157 157 157 157 157 157 157 157 157 158 157 157 158 157 157 158 157 156 157 156 157 156 157 156 157 156 157 156 157																	1163
122 1660 350 1157 1146 3106 300 200 556 3892 744 1538 1779 516 1722 572 158 344 177 350 1782 550 372 551 384 137 350 372 552 128 136 330 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1931</th></t<>																	1931
121 168 3.46 19.21 1.37 2.266 301 300 8.44 9.70 7.65 19.22 2.65 9.72 15.86 37.2 2.66 37.1 18.81 33.2 139 303.2 37.2 2.660 47.1 48.22 35.3 19.64 15.4 44.7 57.1 17.00 19.05 13.7 19.05 17.70 19.05 17.70 19.05 17.70 19.05 19.77 19.05 10.05 19.77 19.05 10.05 19.77 19.05 10.05 19.77 19.05 10.05 19.77 19.05 10.05 19.05 10.05 <th></th> <th>217</th>																	217
120 1214 2531 764 1317 772 535 1966 547 8078 1977 5511 465 1863 833 138 3376 6353 2482 3044 5547 833 764 225 6063 1541 4804 776 2714 3151 3157 3151																	537
119 3032 3772 30965 4071 4862 553 9769 2252 5026 1070 1602 2273 1070 160 117 3604 657 6370 4622 4803 413 1931 623 1032 1937 2237 1937 2371 1937 2371 1937 2372 1437 1362 2373 1937 2372 1437 1362 2373 1937 1237 1343 1938 1938 1937 1343 1937 1343 1938 1937 1343 1937 1344 1937 1344 1938 1937 1344 1937 1344 1937 1344 1937 1344 1343 1343 1348 1130 1348 1240 1378 1348 1343 1348 1120 1214 1203 1214 1203 1214 1204 1204 1204 1204 1204 1204 1204 1204 1204 1204 <th></th> <th>306</th>																	306
118 3070 8355 8429 3064 55-7 833 745 2050 1051 4952 4252 4131 2170 1370 155 4252 4131 2170 1377 255 113 2329 9471 0527 2941 4130 522 1031 155 4252 4131 526 1970 1897 1804 1210 1395 2430 1317 1865 1224 4131 546 1234 1313 1314																	1827
117 8034 6587 8457 4857 4803 413 951 2625 1011 1931 626 1997 2557 741 1931 626 1994 2273 1413 3646 2545 3841 1024 1333 566 1244 1238 5661 1244 1238 5661 1244 1238 5661 1244 1238 5661 1244 1238 5661 1244 1238 5661 1244 1245 1341 1346 1349 1353 1353 1355 </th <th></th> <th>1694</th>																	1694
112 113 960 22667 7819 563 778 983 10.54 4138 506 2551 843 10241 883 1024 883 1264 8138 2064 2551 853 1054 2388 2069 1553 8079 1553 8079 1563 8079 1563 8079 1574 2388 2084 1333 9084 1336 907 23318 8080 1574 2388 1214 1883 1214 1883 1214 1883 1214 1883 1214 1883 1214 1883 1214 1883 1214 1883 1214 1813 1616 1313 964 1303 1303 1303 1303 1303 1304 1304 1304 1304 1304 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303 <th>117</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>413</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2591</th>	117						413										2591
111 3162 5959 22073 2900 3221 3670 77.38 17.42 5657 15.45 2328 2680 1670 15.3 1607 15.67 109 37920 8264 3335 7488 555 757 1007 3504 4485 633 3326 518 1327 728 727 728 727 728 727 727 727 727 727 727 727 727 727 728 728 728 728 728 728 728 728 728 728 728 728 728 728 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1432</th></td<>																	1432
110 1362 6226 2507 4226 5288 619 9057 2249 8836 1056 4346 6837 3126 518 1156 1556 106 3524 7497 3886 7868 5858 500 399 1001 200 5046 4472 5218 1727 272 106 23316 4668 1719 4288 3943 502 7111 129 5527 2606 4472 5431 1664 13131 1414 1016 106 2370 4264 1605 1710 129 5527 2653 4256 1352 6078 13131 101 1301 1301 1301 1301 1301 1302 1401 1401 1301 <																	1852
109 3720 2262 33350 7646 5559 977 10507 3502 8069 1085 60325 8052 11568 11573																	1426
106 3524 7497 38868 5786 8035 888 12429 3780 9961 1060 2025 4007 5251 1172 12488 1970 106 23318 4668 1719 4288 3943 502 7111 129 5572 1286 2805 13831 1034 2206 1373 1144 105 104 25641 6333 1729 7427 4113 650 1008 2116 1444 10314 201 1115 1444 1031 1115 1444 1031 1115 1444 1031 1313 1312 4101 4410 1213 4444 1031 1313 1312 4101 4410 1231 2414 4444 1033 1333 2604 1323 2404 1323 2404 1323 2404 1333 2604 1333 2604 1333 2604 1333 2604 1333 2604 1334 1160 <th></th> <th>1559</th>																	1559
107 3954 1058 3972 1584 5605 388 12490 3724 1260 5885 4772 2588 2790 2608 18351 1378 272 1288 2970 2608 18351 1378 2121 1375 212 106 33511 13488 30425 5221 5824 6555 1295 42653 4226 13521 6078 5333 133 102 32010 6779 28107 5301 531 737 1608 131 1616 6065 8933 4418 1033 133 100 40439 7743 1364 4337 777 1711 2095 6411 1068 3237 4374 1303 233 4418 1033 133 1316 6405 323 2404 1303 3340 1340 1343 333 1316 6401 1337 333 2451 1411 1435 334 1416																	2751
105 3331 13468 30425 5221 5824 764 1050 2679 6644 1189 4462 9433 1203 1305 1175 9172 103 36422 6253 30001 4771 5370 530 1056 6159 1617 50423 1216 4431 1241 1																	1961
104 25641 6333 12720 7827 4113 650 6109 3045 6529 1255 1265 1272 1272 1272 1272 1272 1272 1272 1272 1272 1273 1660 1614 1614 1612 1616 16144 1614 1614 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1055</th></t<>																	1055
103 36422 620 30001 4771 5370 820 1058 2118 8120 617 5029 3172 32375 4068 12116 1348 101 36891 8751 33342 7130 6747 1108 11432 3112 8431 1363 60605 8333 40366 5764 1629 1373 98 21324 4144 18866 3207 4937 707 7741 205 6241 1002 2946 3328 19903 2104 1828 1476 5161 1099 24385 3046 1447 1476 5591 819 21265 3142 1646 1337 3331 2153 4138 11160 166 1337 3333 2153 4138 11160 166 1133 3443 325 5290 2454 4156 6337 2538 1133 316 1106 167 3263 3129 3136 1116 146<																	2164 1369
102 32:06 679 18:10 9932 2547 7498 1670 42:418 52:41 16:32 48:1 10:31 9932 100 40439 974 36:606 65:33 45:3 13:42 41:60 86:58 11:77 48:68 33:6 45:3 13:63 60:56 85:8 11:77 48:68 33:7 32:66 47:4 13:78 5:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 16:78 17:78 56:9 16:71 56:51 16:78 16:78 17:78 16:89 14:14 16:98 14:14 16:98 14:14 16:98 14:14 16:98 14:14 16:98 14:14 16:18 16:18 14:18 54:19 32:18 14:13 14:18 14:18 14:18 14:18 14:18 14:18 14:18																	1369
100 40439 978 36606 6583 4933 545 11427 4100 9083 1127 48084 6157 3283 474 1370 253 97 30672 5566 2449 4073 4476 561 10099 2402 4136 3120 42683 373 2007 3110 1152 128 96 2485 3966 42043 3733 23134 4131 1160 166 94 30410 6882 39343 4382 5360 955 12615 3422 6677 1333 23133 1131 1160 166 93 31940 6882 39343 4382 5360 955 12615 3422 1364 4137 3113 3133 2333 23313 4131 1107 2107 3333 2333 3131 3133 3233 90 33516 5311 1733 4261 7777 5463																	1933
98 21324 414 18868 3207 4797 7741 2005 6141 1062 29496 3328 1993 2060 1158 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1933</th></th<>																	1933
97 30872 5566 28499 4073 4476 561 10699 2402 5524 1083 22685 6154 24685 660 11152 1183 1162 1183 1162 1183 95 29850 6054 24022 4934 5229 574 9655 2554 694 4156 610 12824 2813 1116 1166 1137 333 21153 1166 1137 333 21153 1166 1137 333 6909 631 2403 2083 4004 1217 235 91 20003 2736 17592 4476 512 1808 2439 572 1080 2461 1702 111 1199 243 92 23394 3416 20262 3544 4966 472 383 437 528 913 138 1711 1719 243 111 1799 2441 722 433 1160 177																	2532
96 24385 3006 19644 3153 3864 438 7266 1771 5551 819 21626 3142 1524 2645 6660 1110 166 94 30415 4847 26773 5469 41124 805 10019 2699 4651 1666 41337 3333 28153 4138 11100 166 91 31904 6692 2829 2319 4177 515 9885 3732 1008 2427 3059 921 12288 2436 90 3316 4514 2475 4468 850 6931 2382 1009 3921 12288 233 90 3316 4450 4450 4451 5727 4529 951 2662 332 1156 1775 512 1009 7788 7787 111 1179 2428 88 23392 3164 4565 516 1018 1772 5299																	1459
95 28850 6054 24022 4944 5529 574 6954 4154 41559 6310 28862 5220 11441 199 93 31940 6982 33943 4382 5360 955 12615 3422 8448 1166 52420 6417 34116 4600 1476 339 91 20033 2736 1759 4766 4888 850 6933 2839 5732 1088 24227 6325 1899 2466 8011 2335 90 23356 5454 24720 5344 696 877 755 629 911 26952 3353 1899 2464 8001 2337 111 1278 338 5732 108 24792 4332 111 1278 348 943 4139 718 22777 311 1179 243 86 3776 6067 36331 5711 7216 1738																	1120
93 31940 6982 33343 4382 5360 955 12615 3422 8448 1186 5420 6417 34116 4690 14733 235 91 20003 2736 17592 4276 4688 850 6633 2839 5732 1000 2436 8013 133 90 33516 4514 28702 5891 4266 712 10858 2480 5448 956 45419 5727 3069 2436 8013 1332 80 233516 4364 20626 3235 11026 2128 1208 571 1111 1179 2237 3313 6411 1179 2237 86 3776 6007 3631 5711 7216 1018 11275 433 8459 942 6680 5237 41511 5332 17737 366 853 3106 3507 32133 6464 4424 4684																	1943
92 31994 7504 2819 7078 4177 515 9885 3233 6697 1835 4009 6337 2693 4604 12176 253 90 33516 4514 2870 5891 4266 712 10858 2800 5448 951 2606 3325 18080 2461 7022 11258 1333 89 23392 3816 2062 3334 4096 867 7858 1473 5289 951 26962 3325 18080 2461 7022 11552 1773 6363 87 29482 4033 24508 5633 4729 5435 9313 3074 5745 788 4139 2277 5111 11799 2127 4363 8459 942 4680 3356 6106 564 7732 3083 3733 636 1217 4363 8459 941 12178 4368 93798 4333 568																	1663
91 20003 2736 1772 4276 4688 850 6933 2839 5721 1008 24227 3625 18099 2436 8013 1332 98 23392 3816 20262 3534 4096 667 7725 6229 151 26962 3325 18009 2431 1728 6239 151 1870 2432 4331 1188 27777 5111 1179 244 86 37796 6087 33251 5711 7216 1018 12175 4638 8459 942 6860 1527 41511 1592 17777 513 86 31796 6087 3213 6404 11589 325 790 4231 7527 4434 1285 335 790 2271 5638 3373 566 16167 353 790 2271 5638 3573 5666 16167 353 97 25951 3607																	2353
90 33516 4514 2870 5881 4266 712 1088 2800 5448 926 45419 5727 3099 3921 11228 2301 88 2332 3436 20050 4285 5126 832 10896 1725 6229 1049 41709 6788 27827 4332 11562 175 86 3796 6087 36351 5711 7716 1108 12175 4368 8459 942 6860 5297 41511 1532 1773 566 85 31940 6396 31205 5627 4156 116 10687 2225 6494 772 44241 7527 3056 1205 223 1288 2376 3795 3243 1288 2433 3986 10804 4243 383 567 1207 1464 577 1399 4599 24343 3566 1617 739 3423 3677 3799																	
89 23392 3816 20262 3534 4096 867 7588 1437 5289 951 26962 3325 18080 2461 7082 11156 87 23482 4038 24508 5633 4729 585 9913 374 574 798 41391 7188 2777 5111 11759 224 86 37796 6087 36251 5711 7716 118 12175 4363 8459 942 6860 5297 4151 5932 1773 305 81 25776 3778 2112 4340 4874 855 856 2530 5533 899 3778 4899 24543 3986 10808 247 79 23951 3070 19275 4458 3983 521 733 1754 4582 2601 1323 8493 2410 577 1393 313 79 23951 3070 1927																	2301
87 29482 4038 24508 5583 9913 3074 5745 798 41391 7188 27777 5111 11799 224 86 31940 60367 36351 5711 7216 1018 12175 4363 8459 942 66600 5297 41511 5932 17737 366 81 25776 3778 22152 4340 4474 585 8353 2533 899 3798 4899 2453 3986 10800 243 79 25951 3607 13275 4458 3983 521 7330 1754 4582 650 26216 3388 16574 777 7114 1393 1363 77 3433 5775 3442 4181 14461 709 12271 1493 6369 1722 4733 8398 3073 6927 14645 3575 76 40739 8142 36737 5353																	1105
86 37796 6087 3631 5711 7216 1018 12175 4363 8459 942 6800 5277 41511 5923 1773 566 85 31940 6396 31205 5627 4156 316 10687 2925 6484 772 44211 7522 30095 5243 1280 2277 80 35760 3778 22152 4430 48474 585 8536 2630 5533 899 24543 3986 16176 357 70 31059 4409 27205 4487 594 11208 2457 6080 1546 47331 3838 3073 566 16176 373 3746 3739 1773 3430 5777 30482 4118 4461 709 12071 1493 6800 1782 4733 8389 30073 5971 13933 376 75 28428 5803 18103 3783																	1794
85 31940 6396 31205 5527 44156 316 10687 2925 6484 772 44241 7522 30095 5243 3986 12850 227 81 25776 3778 22152 4340 4874 585 8336 2630 5533 899 3778 4899 24543 3986 1080 2423 79 25951 3607 13275 4458 3983 521 7339 1754 4582 650 26216 3388 16574 270 7204 172 76 40739 8142 3673 5531 5911 1739 13078 4587 7817 1580 6893 10615 45091 8177 1936 450 75 24242 5803 1880 3765 798 6047 1395 6803 13657 229 21616 4432 1032 225 235 262688 5083 18800																	2247
81 25776 3778 22152 4340 4874 585 8536 2630 5333 899 37788 4299 2453 3960 10800 243 80 35760 3795 32133 6842 5235 649 11589 3525 7906 2227 51638 6333 3573 5686 16176 533 79 31059 4409 22205 4467 4998 594 11208 2457 6080 1546 47331 544 3340 5777 13993 317 76 40739 8142 36737 5353 5911 1739 13078 4587 7817 1580 69696 10651 44091 1032 225 235 22648 5083 18800 3766 778 6054 2171 4480 943 26852 296 1179 3749 3749 3749 3749 3749 3749 14724 2429 21611 <th></th>																	
80 35760 3795 32133 6442 5235 649 11589 3525 7906 227 51638 6333 35793 5668 16176 357 79 25951 3607 19275 4458 3983 521 7139 1754 4582 650 1546 47391 5444 32410 5577 7204 77 34530 5775 30482 4118 4461 709 12271 1493 6369 172 47363 8398 34073 6527 11646 557 75 28428 5803 21959 5514 3385 612 7564 2442 3996 880 35472 4229 24161 4432 10032 225 234 1014 4175 15757 3075 3786 798 6047 1388 5452 2047 2721 1576 2540 6632 1217 4480 943 26852 2469 3010																	2421
76 31059 4409 22205 4867 4998 594 11208 2457 6080 1546 47391 5454 32410 5577 13993 313 76 30430 5775 30482 4118 4461 709 12271 1493 6369 1782 47363 8398 3003 6927 14645 460 75 28428 5803 21595 5514 3385 612 7564 2442 3996 880 35472 4229 24161 4432 10032 225 235 26268 5083 1757 3075 3756 798 6047 1399 409 3101 1914 370 757 177 244 4175 15757 3075 3756 798 6047 1399 3128 14029 549 1014 2047 2247 22047 2722 1576 5481 1247 248 227 20217																	3517
77 94330 5775 30482 418 4461 709 12271 1493 6369 172 47363 8388 84073 5027 14645 5357 76 40739 8142 36737 5535 5911 1739 13078 4587 7817 1580 6896 10651 45091 8177 19366 480 75 26268 5083 18800 3746 3783 426 6954 2171 4480 943 26852 296 19179 3749 7452 155 228 24843 5574 2109 4043 3426 290 10179 2168 4938 1492 3775 4861 29076 5462 12477 177 227 20217 3468 1753 2894 4002 430 7610 1218 4938 1492 3775 3818 3418 3010 19141 3700 5771 177 2255																	1796
76 40739 8142 36737 5535 5911 1739 13078 4587 7817 1508 68936 10651 45091 8117 19366 482 75 28428 5803 21959 5514 3385 612 7564 2424 3996 880 3547 4229 24161 4432 1032 229 234 18104 4175 15757 3075 7876 798 6047 1389 5045 1270 22047 2732 15765 5460 6623 157 224 2443 5574 2100 4342 4029 400 10179 2168 4938 1492 3705 4861 2076 5462 1247 248 225 2764 640 2395 4939 4000 469 9749 3498 1133 1286 41629 5673 30378 734 1217 255 224 23555 5109																	3189
75 28428 5803 21959 5514 3385 612 7564 2442 3996 880 5472 4229 24161 4420 10032 2235 235 26268 5083 18800 3746 3783 426 6954 2171 4480 943 26852 2996 19179 3749 7452 1575 234 18104 4175 1575 3075 3756 798 6047 138 5045 1270 22047 2732 15765 2540 662 12447 2462 226 25255 4869 21902 3876 4734 559 10162 1666 5552 1029 3378 5459 27030 5981 10847 267 226 25255 4869 21902 3876 4734 559 10162 1666 5552 1029 3378 6433 24101 544 224 2555 5138 3690																	
235 26268 5083 18800 3763 3783 426 6954 2171 4480 943 26852 296 19179 3749 7452 153 234 18104 4175 15757 3756 798 6047 1389 5045 1270 2007 2732 1576 2540 6623 157 228 24843 5574 2100 4043 3426 290 10179 2168 4938 1492 37705 4861 29076 5462 1217 2732 227 20217 3468 1753 2894 4002 430 7610 1218 4291 562 24639 3010 19141 3700 7577 177 226 27641 6240 23953 4939 4000 469 9749 3498 5133 1266 41629 563 30378 754 21217 255 223 51914 2438 3919																	2292
228 24843 5574 21009 4034 3426 290 10179 2168 4938 1422 37705 4861 29076 5462 12447 247 227 20217 3468 17532 2894 4009 430 7610 1218 4291 562 2469 3010 19141 3700 7577 777 226 22555 4869 21902 3876 4734 559 10162 1066 552 1029 33785 5459 2030 5981 101647 267 225 27641 6240 23353 4399 4000 469 9749 3498 5133 1266 41629 5673 30378 754 12217 256 223 31943 8275 25258 5354 3680 344 10833 2533 5166 1107 28483 768 2304 6199 12139 253 222 35714 7344 <th></th> <th></th> <th></th> <th>18800</th> <th></th> <th>1531</th>				18800													1531
227 20217 3468 1752 2894 4029 430 7610 1218 4291 562 24639 3010 19141 3700 7577 177 226 25255 4869 21902 386 4734 559 10162 1606 5552 1029 33785 5459 27030 5981 10847 2657 224 23556 5109 21369 4188 3919 323 7680 323 4193 1043 36640 3836 24136 4114 11449 548 224 23556 5109 21369 4188 3919 323 7680 320 4793 1043 36640 3836 24136 4114 11449 548 224 35714 77647 5139 4256 1021 10647 2216 5552 1033 43982 3827 30242 619 12139 253 74 23200 3701 26892 <th></th> <th>1557</th>																	1557
226 25255 4869 21902 387 4734 559 10162 1060 5552 102 33785 5459 27030 5981 10847 263 225 27641 6240 23933 4939 4000 469 9749 3498 5133 1286 41629 5673 30378 7354 12217 250 224 23556 5109 21369 4188 33191 323 7680 3233 5133 10840 3680 2416 4174 1149 548 223 31943 8275 2528 5334 3680 344 10833 2533 5196 107 28483 7084 24100 556 11604 293 74 23300 3780 21581 3802 4781 443 8866 253 5570 1176 34180 3905 2376 281 10039 233 73 26291 5041 26892																	2480
225 27641 6240 23953 4393 4000 469 9749 3498 5133 1268 41629 5673 30378 7354 12217 255 224 23556 5109 21369 4188 3919 323 7680 3233 1043 3860 24136 4174 11419 548 223 31943 8275 25256 5354 3660 344 1083 2533 5196 1107 28483 7084 24100 5576 10164 293 222 35714 77647 5109 4256 1021 10647 2216 5556 1031 4380 3902 2387 6193 2139 233 5191 1107 28483 7084 24100 5576 1018 2184 4392 3927 30242 6193 21319 253 74 26391 5041 26892 6630 4204 289 9691 2750 533																	
224 23556 5109 21369 4188 3919 322 7680 3230 4793 1043 5660 386 24136 4174 11419 548 223 31943 8275 25258 5354 3660 344 10833 2533 5196 1107 28483 7084 24100 5576 11604 233 74 23300 3780 21581 3802 4725 1021 10647 2216 5562 1033 43982 382 2827 30242 6199 12139 2537 74 23300 3700 21581 3802 4781 443 8866 2535 5570 1176 34180 3095 2378 2311 1098 2337 72 15872 3571 4331 4326 3641 452 5861 10318 4149 4679 858 45604 5087 31304 673 13812 340 71																	2509
222 35714 7747 5109 4256 1021 10647 2216 5562 1033 43982 3827 30242 6199 12139 253 74 23300 3760 21581 3802 4781 443 8866 2253 5670 1176 3180 3905 2378 20242 6190 12139 253 72 15872 3275 1431 4326 3641 452 5861 1943 4195 672 21323 2393 1452 3661 213 71 29456 4374 25749 5010 4464 496 10218 2184 4679 858 45604 5078 1315 4604 6662 12139 21315 4404 470 10218 2184 4679 858 45604 5078 31304 4042 470 3312 340 60 28786 3221 27512 5862 11079 3223 7747			5109	21369		3919		7680		4793	1043	36640	3836	24136	4174		5486
74 23300 3780 21581 3802 4781 443 8866 2253 5670 1176 94180 3905 23786 2813 10998 233 73 26291 5041 26892 6630 4204 289 9691 2750 5937 1315 45004 6687 32081 6232 14013 298 71 29456 4374 25749 5010 4464 496 10218 2184 4679 858 45604 5087 31304 6733 13132 300 6273 13812 346 3426 3304 473 4464 496 10218 2184 4679 858 45604 5087 31304 673 13812 340 70 28786 4221 25512 5862 4602 10315 1904 6615 1794 4422 4377 3237 7246 14175 322 68 20100 4437 16687 <th></th> <th>2934</th>																	2934
73 26291 5041 26892 6630 4204 289 9691 270 5937 1315 45004 6607 32081 6222 14013 298 72 15872 3275 14331 4326 3641 452 5861 1943 4195 672 21323 2333 1452 3653 662 1212 70 28786 4244 25749 5010 4464 496 10218 2184 4679 858 45604 5037 31304 6733 1312 344 70 28786 4245 25624 5569 4152 650 10195 1877 5458 1346 40422 4367 32007 6411 12678 284 69 2878 3221 27512 5858 1346 40422 4367 3207 6131 1475 322 68 20100 4437 16687 5105 3156 438 6579																	2527
72 15872 3275 14331 4326 3641 452 5861 1943 4195 672 21323 2393 14522 3653 6626 2127 71 29456 4374 25749 5010 4464 496 10218 2184 4679 858 45604 5087 31304 6733 13812 346 70 28786 4242 5569 4152 650 10195 1877 5458 1346 40642 4367 2807 6321 6427 31304 673 13812 346 69 28786 3221 27512 5862 4602 1083 10755 1904 6615 1794 4422 579 32327 7246 14175 3223 68 20100 4437 16687 5135 3356 438 6579 2487 4272 793 23446 369 1082 4908 7122 2158 233																	2318
71 29456 4374 25749 5010 4464 496 10218 2184 4679 858 45604 5087 31304 6733 13812 340 70 28786 4245 26242 5569 4152 650 10195 1877 5458 1346 40422 4367 29007 6421 12678 284 69 28786 3221 27512 5862 4602 1083 10755 1904 6615 1794 44228 579 3237 7246 14175 322 68 20100 4437 16687 5105 3156 438 6579 2487 4272 793 23446 3669 18082 4908 7122 219 233 62741 11405 5006 9740 13449 2027 1218 2581 2130 47069 6657 14125 321 4465 4706 6607 5128 7015 15581 4007																	2982
69 28788 3221 27512 5862 4602 1083 10755 1904 6615 1794 44228 579 32327 7246 14175 3226 68 20100 4437 16687 5105 3156 438 6579 2487 4272 793 23446 3869 11082 4908 7122 216 233 62741 11405 50046 9740 13149 2027 12148 2658 9153 2130 47069 6605 34425 7015 12581 47013 232 96702 9112 75487 13115 18032 4021 16823 3374 10451 2851 77477 7961 52849 7689 23513 484																	3400
68 20100 4437 16687 5105 3156 438 6579 2487 4272 793 23446 3869 18082 4908 7122 213 233 62741 11405 50046 9740 13449 2027 12148 2638 9153 2130 47069 6057 34425 7015 15581 407 232 96702 9112 75487 13115 18032 4031 16823 3374 10451 2851 7747 7961 52849 7689 25313 484	70	28786	4245	26242				10195	1877							12678	2848
233 62741 11405 50046 9740 13449 2027 12148 2658 9153 2130 47069 6057 34425 7015 15581 4070 232 96702 9112 75487 13115 18032 4031 16823 3374 10451 2851 77477 7961 52849 7689 23513 484	69	28788	3221	27512	5862	4602	1083	10755	1904	6615	1794	44228	5797	32327	7246	14175	3228
232 96702 9112 75487 13115 18032 4031 16823 3374 10451 2851 77477 7961 52849 7689 23513 484																	2197
																	4078
221 11501 5245 112/1 21/5 426/ 510 6295 1464 4/14 600 2259/ 5420 16494 5065 /496 1/6	221	11561	3245	11271	2173	4287	516	8295	1464	4714	866	22597	3426	16494	3065	7498	1768
																	2603
																	1757
																	1948
																	1547 2555
																	1934
214 11250 2289 9669 1660 2540 610 4267 494 3327 771 15945 2180 10567 1667 4295 96	214	11250	2289	9669	1660		610			3327					1667		969
														-			0
																	1782
																	1567 2555
																	2021
208 28028 793 25672 3929 3468 494 9381 2505 4347 557 36839 4093 25547 4066 10899 213	208	28028	7993	25672	3929	3468	494	9381	2505	4347	557	36839	4093	25547	4066	10899	2137
207 33647 9920 30117 6265 3934 632 11925 2343 6515 2249 52751 5600 36013 5624 14217 361	207	33647	9920	30117	6265	3934	632	11925	2343	6515	2249	52751	5600	36013	5624	14217	3612

Vaccine candidate 6 (AuNP):

Dontidos	mouse1	. (1/5)	mouse2	2 (1/10)	mouse2	(1/20)	mouse2	(1/80)	mouse3	(1/80)	mouse3	(1/160)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
231	4	7	23575	6331	16119	3755	4172	855	4	5	2	4
230	4	5	31990	11851	22119	4212	5149	1032	1498	610	3274	1669
229 130	6 8	7 11	32995 658	7952 307	22269 442	3802 359	6054 18	957 29	273 4	223 7	1383 6	524 4
129	9	10	4847	1181	3943	1121	690	300	6	11	1448	548
128	8	11	6297	2517	3958	1058	914	229	2	5	7	16
127	5	13	2498	822	2517	434	451	153	9	13	4	10
126 125	5	9 5	20928 14002	3742	17620 11200	2554 1682	5224	683 532	521	278 328	1921 4108	485 1077
125	9	12	14002	3274 3976	7233	1391	3163 1529	532	1286 2	328	4108	13
123	5	8	576	314	609	322	26	24	6	11	505	600
122	20	19	7326	1409	6081	817	1495	204	9985	1580	15752	1641
121	3	5	4431	1424	3558	791	669	205	4	7	3	5
120 119	10 9	16 11	1926 19653	727 3229	1884 16405	565 1950	249 4711	140 538	425 525	247 236	2287 1889	761 401
115	18	20	24144	5237	13964	1588	3591	453	11410	1738	17837	2361
117	2	3	17212	4015	9449	1707	1623	278	2	4	4	7
113	60	85	13164	2196	11745	1414	2861	1198	6	12	0	0
112 111	1811	666	31609 11021	6228 2951	24526	3005 1602	7527	1016	1379 7	853	4572 9	1472 10
111 110	4	6 6	23125	4093	5570 16672	2334	1315 4378	349 897	3	13 5	2	4
109	13	12	27265	6332	21210	3523	5741	1071	8	17	673	454
108	1138	203	53168	8914	37834	3417	11706	1511	2425	475	6009	1011
107	2	6	27722	7070	14498	2151	2965	446	10	14	5	8
106 105	151 2035	144 658	12523 27027	1882 2713	13378 26688	1505 2631	3264 8245	442 1182	2 1935	4 777	2 5701	4 1568
104	3	5	10544	3510	6578	1208	1352	267	4	8	3	5
103	44	45	23543	3678	19868	2396	5078	688	2	5	5	6
102	6	10	27016	5186	17892	1955	5134	1092	173	178	1231	503
101 100	1294 7	527 13	45692 22928	9933 6840	34008 13700	5106 1812	10477 3243	1432 563	2147 11	730 10	5359 7	1470 12
98	443	269	16666	2301	17265	1946	5429	518	4	8	1047	506
97	2680	465	26111	2600	26693	2740	8561	759	9517	1447	14302	3043
96	4	8	13449	2884	8386	1428	2101	322	6	7	8	12
95 94	54 10	76 13	23057 25458	4493 4246	21480 19214	3119 2668	6549 5826	887 744	3 1977	4 333	1410 4711	730 1416
93	1991	465	41826	5835	35767	2948	10962	1922	9531	1186	14342	1689
92	6	7	22318	6250	11474	1965	2954	370	3	5	7	13
91	625	269	20258	3664	16203	1848	4749	571	5	13	1085	279
90 89	3176 9	337 14	26665 11631	2978 2122	26012 10009	3137 1540	7814 2392	910 230	8510 14	1084 25	14083 0	1999 0
88	139	103	21549	2915	17073	1540	4911	660	14	3	488	556
87	10	8	26690	5704	15415	2433	4838	596	1806	452	4412	1077
86	2899	472	51347	7490	38250	5085	11539	1859	9968	1708	15735	2241
85	9	10	19477	3185	13898	1817	3647	805	15	14	1	2
81 80	650 2970	164 465	24896 34276	4345 4864	16235 30197	2185 3091	5131 9302	1236 1261	264 9795	255 1417	1707 14934	626 2101
79	4	6	11891	2691	8235	1640	1742	261	15	18	8	10
78	354	152	24749	2476	22987	2669	6741	651	239	236	1902	411
77	9	15	24438	3180	19977	2611	5877	645	2066	545	4860	997
76 75	2761 4	813 6	53133 17727	10514 4148	42777 9774	8846 2603	13392 2454	1634 347	10778 5	2467 10	15946 10	2789 11
235	7	7	11572	2917	8446	1341	2092	429	1347	218	3419	586
234	2673	331	18392	2976	13175	1598	4491	760	6697	1156	10777	1339
228 227	370 3	181 5	23446 14892	4212 2713	17769 11100	3108 1784	5673 3468	964 454	5 1095	7 179	4 3029	9 619
226	6	8	21031	2948	12279	1983	4079	627	1378	413	3512	523
225	7	9	18193	4030	16997	3380	5630	1091	7	11	7	14
224	2619	488	23315	1629	25565	4256	7962	1823	7744	1736	11412	1211
223 222	352 10	239 11	20618 16804	5070 4581	13396 11561	2500 2582	3823 3369	983 769	6 10	10 12	5	8 11
74	10	19	24341	2703	15696	1613	4809	843	3461	652	6652	721
73	437	169	33410	6868	27513	4482	8836	1473	12679	2072	17433	1950
72	6	14	11260	3912	6003	1031	1531	293	7	10	4	6
71 70	16 7	26 12	26035 17724	4482 2665	22408 15523	2912 1931	7255 4783	1073 676	5496 506	974 266	9738 1854	1221 659
69	67	71	31572	4502	26429	3352	8110	1101	11162	1720	15877	1858
68	4	5	12149	3785	6759	1420	1650	256	3	6	200	559
233 232	4589 12076	987 1747	25340	4763	16765	3081	5623 10789	883 1454	6071	1075	10537 29896	1368 2440
232	12076	4	35971 12649	7291 1812	34799 12398	5527 1871	4415	657	21420 10	3051 16	29890	2440
220	1426	173	41949	8916	35763	6448	11504	2090	15230	2571	20941	2750
219	1	4	25378	5615	13933	2601	4873	830	1990	456	4628	756
218 217	11 7	8	20691 14288	4436	16384	2871	5118	1026	4797	1148	9091 4	1441 9
217 216	11	11 13	28711	4304 4666	10341 16348	2581 3627	2894 5389	546 1436	0 11	0 12	8	13
215	12	13	25998	4116	22988	3848	8463	2722	5478	862	9567	1382
214	6	14	7153	1800	5198	1380	1493	331	3	4	3	5
213 212	10 317	11 209	4 18378	7 3943	5 13560	7 2564	8 4597	12 791	7	7 6	4	6 3
212 211	1	209	18378	3943 3869	13560	2564	4597 4634	791	3	11	2	3
210	10	11	25201	5184	23432	4501	7423	1434	2053	547	4954	1334
209	520	291	28085	7220	24431	5429	8055	1881	6731	1489	10761	1975
208 207	9 8	8 6	14052 30499	3335 8588	14111 20103	3240 4493	4289 6341	1040 1300	5 1345	9 457	5 3242	6 1052
207		5	50455	0500	20103		0.041	1300	1.040	101	3242	1032

Vaccine candidate 7 (HC1):

A	mouse1	(1/80)	mouse1	(1/230)	mouse2	(1/80)	mouse2	(1/320)	mouse3	(1/80)	mouse3	(1/320)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
231	283	119	54	35	3701	1636	1370	391	3	7	534	163
230	2952	1229	185	130	4547	1773	1699	630	50	107	1193	352
229 130	927 615	456 319	45 63	54 62	1356 6	997 9	349 10	395 13	5 370	5 192	298 6093	117 997
130	7122	1743	902	359	11	16	10	13	2386	644	12341	472
128	92	34	30	25	196	143	6	17	10	13	68	53
127	4427	1113	346	230	8	10	11	17	1511	442	9655	990
126 125	1507 13360	610 2582	90 2703	44 873	919 8	462 11	31 5	43 9	16 5655	20 652	319 16879	75 1143
125	13360	68	2705	19	131	170	55	9 84	14	14	931	1145
123	61	31	27	24	6	9	8	15	601	263	3033	591
122	6546	1343	630	233	6	9	20	22	4299	1093	11248	1329
121 120	25 340	25 216	6 9	12 12	18 9	20 10	14 6	20 10	3 1021	6 392	52 4797	36 725
119	1488	458	106	67	1323	570	201	230	52	44	362	99
118	8766	1488	1527	456	9	11	46	43	8396	1030	22204	1488
117	79	56	20	21	45	55	22	30	12	17	798	337
113 112	11265 21569	2775 3701	1775 6012	592 1592	5018 9594	1422 2857	1470 4421	592 985	5792 10548	961 2505	11681 20417	1260 1673
111	42	41	13	23	16	2057	11	17	10540	19	20417	26
110	9452	1935	1121	682	4186	1382	841	322	5708	1158	12921	1509
109	416	251	27	26	1216	595	138	217	20	22	560	144
108 107	22594 171	2667 71	6169 39	1153 33	14468 42	3567 52	4104 2	681 3	13549 3	1610 5	32028 661	3239 240
106	12005	1516	2030	417	4937	1480	1417	364	6164	765	12153	887
105	22308	3237	6396	1491	11015	2822	4362	1123	10858	1586	21050	2197
104 103	82 10079	72 1378	25 2230	27 468	52 6313	60 2114	36 1142	32 758	2 7345	4 1085	270 17681	375 1314
102	845	361	50	43	1260	569	149	223	8	15	505	103
101	19230	3740	5889	1066	12230	3112	3471	758	13189	2925	29030	3283
100 98	111 14535	69 1474	40 3492	34 503	51 7276	86 1833	26 2248	37 485	8 7709	8 975	1120 14313	189 971
97	21403	1937	7003	969	10621	2036	5065	1046	11534	1424	21888	1454
96	190	67	46	30	149	176	8	14	5	13	267	100
95	14800	2005	3722	675	6626	2186 1108	2026 409	748	7174	1151	16404	1529
94 93	5109 20968	935 2265	301 6956	84 1585	2364 11831	3834	5072	597 954	140 13376	152 1392	1266 25454	199 2883
92	174	69	43	34	90	92	30	50	7	10	340	130
91	16408	1531	4768	932	6776	1997	2048	487	8986	1250	12604	997
90 89	21838 151	1814 80	7289 35	841 31	9611 434	2268 530	5341 0	867 0	13349 1697	1684 280	21477 641	1688 141
88	13960	1646	4047	654	6952	1995	2382	663	6986	1123	14884	1608
87	4803	1431	280	144	2273	1348	314	381	1344	277	1572	331
86 85	28277 140	3235 110	9037 23	1261 33	14506 37	5530 89	4910 23	751 43	17253 467	2642 135	36287 402	6115 171
81	12921	1620	3388	522	6980	2375	2514	557	5308	1132	12677	3066
80	19573	1992	6562	1285	13189	3438	6074	943	10388	1862	22041	1234
79 78	48 12792	35 861	7 3280	11 498	38 7364	72 2244	5 2391	9 382	4 5948	5 1150	200 13368	84 891
78	5556	1412	378	498 90	2542	1017	574	618	163	126	1841	452
76	23215	3400	6759	1121	12247	4798	5547	838	11758	2747	28347	3193
75	76	72	27	32	29	41	25	32	8	8	260	117
235 234	6070 17884	1042 2139	3390 6989	514 1021	2425 8782	1168 2109	1 3280	3 809	218 9764	149 1729	6350 13503	968 3561
228	122	111	39	40	103	78	0	0	4	8	996	258
227	3722	668	4231	472	1819	858	0	0	5	8	581	49
226 225	4037 219	1007 134	80 5945	60 613	2437 415	646 445	319 4	355 8	2	4 10	1090 694	251 153
224	16351	1765	32	11	9697	2216	4297	681	8168	1918	16422	1834
223	144	125	521	139	18	19	4	4	13	7	271	130
222 74	162 11947	109 1212	6314 11702	914 1966	72 12202	105 3485	7 6462	11 783	3 4500	3 823	405 10380	271 892
73	20096	2183	21911	3152	15507	4184	7852	1422	10444	1721	13553	4693
72	174	123	13	16	589	405	0	0	6	9	943	187
71 70	15708 2103	1206 380	207 269	105 75	12059 2142	3225 723	7644 183	1093 287	4987 0	957 0	12411 1251	845 84
69	17732	2174	209	48	15402	4523	8054	1311	9503	1780	14868	84 1814
68	138	60	5737	947	0	0	71	50	3	7	160	47
233	28215	1846	41	35	3147	1070	1367	414	816	269	3183	1319
232 221	48720 1147	3281 155	52 81	51 45	22339 411	6452 346	12638 0	2218 0	18557 123	3094 107	22629 269	1861 64
220	25778	2947	9558	1672	18708	6134	10008	1642	14027	3222	17970	1460
219	5310	1201	449	47	3635	1370	1602	408	177	138	1413	129
218 217	1690 294	897 183	114 35	37 35	3789 318	1442 540	1994 8	341 19	3	5 4	1291 508	237 235
217 216	381	215	35 71	35 46	2201	1362	8 24	46	49	4 65	2269	332
215	17412	2642	5064	947	11635	2589	8533	1399	7375	1405	13320	1292
214	77 10	76 16	32 11	13 18	10 7	14 11	13 17	16 18	14 4	14 7	61 12	87
213 212	10	16 134	11 27	18 17	10	11	17	18 15	4	15	12 357	11 105
211	186	158	48	41	482	420	45	85	8	13	513	54
210	3996	1310	293	78	2959	1371	948	596	29	39	1773	255
209 208	15785 209	3124 172	4570 46	1077 33	7939 82	2373 97	5025 44	1008 82	9874 6	2097 12	15392 278	1481 117
207	4241	1208	277	159	2794	1042	781	516	44	54	1293	249

Vaccine candidate 8 (HC2):

	mouse1	l (1/20)	mouse1	(1/80)	mouse2	2 (1/20)	mouse2	(1/80)	mouse3	(1/20)	mouse3	(1/80)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
231	4160	809	925	417	1281	495	392	152	534	163	141	97
230	6955	1214	1844	557	3694	1162	1193	466	1193	352	292	170
229	5572	2299	1550	594	1258	500	265	171	298	117	36	51
130	8271	2124	1723	631	6695	900	2717	664	6093	997	2217	671
129	18712	2138	8428	1960	13532	2582	6265	1263	12341	472	6869	988
128	1080	510	263	110	2115	1227	599	196	68	53	15	28
127 126	16329 5279	2836 1062	4866 1749	1131 207	11349 5579	1694 1095	4737 1955	984 347	9655 319	990 75	4537 90	765 77
126	26430	2070	13825	1291	19689	1095	1955	1427	16879	1143	10249	1467
124	2429	444	704	233	891	258	205	76	931	146	231	72
123	5345	2352	1376	702	3124	1133	860	336	3033	591	851	282
122	23053	1550	11262	2629	12786	1220	5319	1034	11248	1329	6691	1046
121	613	178	173	70	1224	489	252	89	52	36	19	21
120	8690	3502	2033	513	798	394	164	62	4797	725	1830	668
119	5322	684	1735	175 475	7937	616	3361	454	362	99	444 12596	1068
118 117	44652 2324	4132 135	19263 654	475	18005 299	1270 73	6858 55	887 44	22204 798	1488 337	200	1813 40
117	20655	2105	10104	1580	18825	1961	10474	1058	11681	1260	6222	1206
112	35612	17186	27148	7177	31599	7619	15500	5907	20417	1673	11456	4300
111	1517	251	410	169	3460	779	793	253	24	26	43	59
110	26158	2146	12573	1520	19017	985	8609	809	12921	1509	6866	1255
109	4362	1991	1506	349	6530	2678	2665	751	560	144	146	66
108 107	52376 3947	4837 549	30489 1042	2319 141	32691 552	1556 64	19731 116	1398 56	32028 661	3239 240	19960 140	2766 50
107	3947 18465	549 1844	1042	305	17715	1204	10497	1214	12153	240 887	6974	783
105	41853	3019	26481	2662	29571	4299	17401	1214	21050	2197	13713	2038
104	1747	997	645	187	4673	1597	1347	659	270	375	26	29
103	25373	1589	12932	1890	19925	811	11645	1167	17681	1314	10599	1171
102	6067	781	1758	395	8306	1346	3272	427	505	103	93	66
101	40022	14642	26679	2022	24858	10682	17123	4427	29030	3283	16649	5622
100 98	2879 20811	401 1760	748 13819	269 1397	497 21734	145 1288	131 14487	48 870	1120 14313	189 971	241 9515	82 992
97	31811	3690	23767	466	27592	2131	19441	1037	21888	1454	15593	1611
96	3079	711	941	130	5685	1237	1815	319	267	100	53	46
95	23808	6400	15538	1998	18802	4860	12622	1574	16404	1529	10104	1249
94	5953	782	1978	345	10343	697	4774	441	1266	199	275	74
93 92	39446 3191	3477 1056	24103 1128	1271 221	25551 1458	1840 714	16467 415	1222 140	25454 340	2883 130	17126 203	2390 260
92	24909	2808	16119	801	22307	1176	13732	140	12604	997	8353	1149
90	35780	2905	24545	910	29193	886	20304	1220	21477	1688	15766	2107
89	2913	333	953	130	5361	1191	2156	523	641	141	157	71
88	23322	2131	15430	852	21523	1113	13926	987	14884	1608	9776	1355
87	5242	1913	1942	360	7839	3147	4019	1470	1572	331	328	91
86 85	53256 3800	4463 454	32892 1034	1430 336	36883 1701	1792 456	23689 420	1958 129	36287 402	6115 171	22615 56	2559 61
81	21613	1610	14911	1208	20458	8002	13428	4088	12677	3066	7240	4454
80	35894	2677	24409	1029	30238	1375	20623	971	22041	1234	15731	1993
79	2274	222	594	164	4091	630	1436	240	200	84	42	45
78 77	21763 6307	1313 412	13037 2265	413 312	18965 10350	803 742	12018 5167	1022 397	13368 1841	891 452	8914 531	1073 181
76	40997	10966	26331	2084	25363	10352	19065	2722	28347	3193	18458	2213
75	2678	315	826	213	745	163	142	74	260	117	67	43
235	5421	1053	1608	174	12574	1380	6384	788	6350	968	2260	290
234	24624	2312	21709	7390	28681	5798	18520	1075	13503	3561	11923	1684
228 227	2291 4578	314 405	628 1438	119 213	190 3762	91 320	41 1159	30 128	996 581	258 49	281 74	150 29
226	4937	515	1438	188	7979	951	3527	718	1090	251	236	53
225	4016	1436	1404	199	892	425	186	116	694	153	162	86
224	26818	2723	18345	958	20470	1643	13288	5558	16422	1834	12885	1846
223	887	375	204	97	62	58	31	21	271	130	84	41
222 74	3675	751	1007 9444	312	518	259 730	128	92 799	405	271 892	114 6794	94
74 73	16713 26247	1085 2015	16233	728 1435	16714 19517	730	10802 13951	3439	10380 13553	892 4693	8803	1031 5415
72	2489	316	785	123	3751	341	1263	282	943	187	254	53
71	20076	1485	11036	704	16677	963	10969	859	12411	845	8115	948
70	5180	397	1655	211	5873	612	2215	361	1251	84	299	114
69	24341	1583	14187	1003	17887	1238	12213	1046	14868	1814	10237	1534
68	1959	631	557	159	690	329	122	53	160	47	22	24
233 232	5882 54024	891 4232	1959 30433	392 1156	8366 50857	3477 2285	4434 29449	1850 1725	3183 22629	1319 1861	752 16851	474 2226
221	4387	594	1430	273	1934	218	535	111	269	64	54	49
220	35511	3107	22399	1028	28382	1203	17446	1129	17970	1460	13268	1615
219	5401	566	1709	341	3848	495	1370	226	1413	129	205	96
218	4500	573	1441	171	8954	1197	4576	958	1291	237	336	83
217 216	3024	1211 558	1021 2496	232 239	933 11560	425	237 5039	91 632	508 2269	235 332	141	42
216	7220 21976	1286	13483	623	22146	661 1160	14674	632	13320	332 1292	562 8603	111 1435
213	1814	212	449	206	625	297	139	70	61	87	43	44
213	8	13	10	18	2	5	3	8	12	11	9	9
212	1097	267	309	83	117	43	28	30	357	105	258	418
211	4839	297	1645	173	1460	337	356	84	513	54	123	49
210 209	6017 21286	513 5776	2082 11320	270 1251	4912 15857	849 7549	2035 8885	443 1827	1773 15392	255 1481	467 10978	109 1334
209	4578	426	1459	1251	949	160	207	93	278	1481	72	60
207	5954	1080	1992	200	3614	810	1186	227	1293	249	263	200
	•		•				•				•	

9.3.3 Microarray format 3 (MA3)

Vaccine candidate 1 (CHSynB):

Peptides	mouse1	(1/500)	mouse2	(1/10)	mouse3	(1/10)
reptides	MEAN	SD	MEAN	SD	MEAN	SD
131	57882	6416	73120	5436	103813	10930
132	74588	8265	91741	5622	141171	13257
131	35286	1682	59962	4098	61466	7631
232	124478	15093	122011	6687	157653	10346
233	72519	8612	97213	12853	80421	8515
234	13089	1352	12167	742	83237	9233
235	14344	2500	3123	250	3289	611
236	11591	1422	10038	1116	965	352
237	9556	1175	4688	424	679	607
238	73126	5870	21275	1244	97831	11661
239	79197	3946	31088	2258	126685	8678
73	55546	6345	20448	1582	72588	12727
240	72725	5859	25113	1325	95025	9781
69	56557	3723	18187	965	61983	7120
76	22764	1660	31217	2618	114389	13153
108	11131	337	20132	1628	89257	5513
174	2899	388	7977	607	39184	5024
125	2064	457	4511	523	36106	2908
241	12112	2129	11834	1708	1270	351

Vaccine candidate 2 (HC12):

	mouse1	(1/20)	mouse1	(1/80)	mouse2	: (1/20)	mouse	2 (1/80)	mouse	3 (1/20)	mouse	3 (1/80)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
131	164069	22915	132231	15283	86560	7519	35836	2825	53449	6425	35836	2825
132	188231	25918	150696	12036	120432	16975	49358	4561	57456	7389	49358	4561
131	145285	22504	114453	10958	34814	3682	12519	1523	37529	5569	12519	1523
232	215669	41099	178899	24204	152563	24984	79916	12567	91559	20960	79916	12567
233	206897	36939	173373	33755	21974	3689	7272	1013	64730	11339	7272	1013
234	1426	297	381	417	66632	7691	34380	3390	14239	3040	34380	3390
235	99	89	18	30	14643	2124	4241	437	26	68	4241	437
236	150875	20431	101993	11001	15026	2226	3442	300	15243	2132	3442	300
237	281	268	18	49	11550	1947	2702	272	0	0	2702	272
238	2423	395	263	115	128820	24936	68268	5448	34934	7377	68268	5448
239	188153	33369	126531	12177	151022	28596	80588	5828	49621	4924	80588	5828
73	908	330	117	147	101923	16539	53625	5585	28554	5236	53625	5585
240	1695	271	202	87	120544	8654	63508	3728	33014	6468	63508	3728
69	777	256	129	137	89533	5637	45929	2449	31275	5880	45929	2449
76	2281	201	389	158	122083	17351	52682	4953	19883	3013	52682	4953
108	1367	210	86	108	91320	10647	38125	3786	10024	2291	38125	3786
174	1112	142	168	174	43074	5041	16376	1463	0	0	16376	1463
125	1037	172	204	206	39360	4627	14784	1129	5	14	14784	1129
241	86	78	42	49	11813	1793	2832	509	15	41	2832	509

Vaccine candidate 3 (HC11):

	mouse1 (1/10)	mouse2	(1/80)	mouse3 (1/20)		
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	
131	200	121	0	0	1950	600	
132	140	131	0	0	2188	935	
131	66	87	43	57	1419	382	
232	3845	464	0	0	2435	309	
233	4021	496	106152	9251	3047	1340	
234	1079	238	2	6	140	202	
235	4761	654	103567	18278	247	145	
236	4754	513	88708	17379	3049	457	
237	10230	635	98174	18693	105321	14728	
238	6302	426	93	123	117705	15619	
239	4598	483	34	50	4740	1660	
73	834	200	0	0	280	164	
240	5492	569	139	118	809	506	
69	203	171	0	0	133	130	
76	273	112	29	51	108	123	
108	24	36	0	0	23	62	
174	207	104	0	0	33	82	
125	57	123	8	14	78	146	
241	8495	986	97155	14076	1100	237	

Vaccine candidate 5 (SH127):

Destidas	mouse1 (1/4000)	mouse2	(1/400)	mouse3 (1/2000)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD
131	128338	14333	21782	2404	105023	9068
132	162584	26962	30644	4371	147196	18220
131	116628	13062	15968	1742	72784	8482
232	162063	27150	27982	3816	143294	19326
233	158482	10402	26156	4328	135604	10927
234	59276	9528	14654	2868	64077	9330
235	79853	19167	17444	4274	87442	17171
236	70784	11619	19485	3602	99445	13230
237	64402	20246	17120	3385	82826	12676
238	72857	14295	21350	2617	100452	11497
239	86948	21886	23107	2988	113567	13409
73	58846	9303	18870	2245	81870	5966
240	81047	15151	21879	2003	102670	12115
69	63402	15611	19604	2924	89155	11699
76	83213	14775	23261	3071	116405	10740
108	67808	19929	19885	2354	97728	9360
174	69127	10759	17684	2179	86765	7022
125	60733	10443	14783	2579	69345	8168
241	73298	16092	19572	3596	108315	12974

Vaccine candidate 6 (AuNP):

	mouse1	(1/5)	mouse2	(1/20)	mouse3 (1/80)			
Peptides	MEAN	SD	MEAN	SD	MEAN	SD		
131	6855	544	50840	4994	16422	2055		
132	9775	652	67905	6959	33075	3050		
131	3853	185	14364	1320	12630	1057		
232	11089	752	74968	6173	62812	5343		
233	3416	225	38421	3472	13654	1328		
234	3149	258	29992	2365	10677	764		
235	30	70	25815	1845	1622	415		
236	28	43	45073	4319	1626	373		
237	56	112	31369	2974	1132	290		
238	1822	214	57253	5491	35485	2330		
239	2769	727	78499	7209	47882	3091		
73	1338	819	55129	5721	27876	2137		
240	1453	184	73573	8370	38397	3787		
69	581	185	61664	5252	28458	4989		
76	3940	275	86737	4209	20452	1489		
108	1945	177	58947	4621	8249	1131		
174	196	204	39685	4552	8447	1058		
125	317	255	23645	3016	5016	773		
241	20	26	51457	9125	1720	377		

Vaccine candidate 7 (HC1):

Dantidaa	mouse1	(1/80)	mouse1	(1/320)	mouse	2 (1/80)	mouse2	(1/320)	mouse3	(1/80)	mouse3 (1/320)		
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	
131	62600	5878	16228	2088	26662	3931	5660	530	30368	2727	6783	653	
132	88754	6996	25862	3322	41043	3921	8695	1417	44403	3851	10572	694	
131	50080	3700	12692	1456	0	0	9	24	15253	1199	3571	292	
232	118232	9563	29439	3610	98205	11874	19597	3016	71566	7544	18944	2156	
233	60763	6652	14538	2005	13321	1714	3632	732	1882	175	383	122	
234	30313	2182	7496	767	24868	2826	5256	884	30155	2267	7232	521	
235	2183	433	189	141	5015	935	956	158	388	157	26	34	
236	25845	2086	5383	622	7581	967	1399	195	494	145	84	84	
237	1177	303	182	121	9487	1789	1932	441	536	249	134	159	
238	49457	2842	11281	1388	89653	7263	18904	1693	50435	2725	13547	926	
239	91194	6223	22790	2210	97478	8706	21176	3283	61149	2387	16399	1263	
73	35600	2412	7997	934	65439	6502	15526	2130	33550	1271	9386	740	
240	42424	1949	9994	852	81902	5758	17345	2254	39588	1451	9817	650	
69	28352	1560	7009	565	57757	2901	14492	1247	24952	1315	6976	281	
76	43614	3804	9447	884	52855	5495	10637	1647	39056	3816	8920	962	
108	29910	3708	6998	623	31060	4700	6567	1754	26675	3234	6100	980	
174	16989	1253	3784	173	0	0	22	51	13274	1208	3106	518	
125	14528	948	3124	322	51	136	66	78	12421	1246	2800	234	
241	1696	462	284	184	9286	1275	1914	226	454	124	51	74	

Vaccine candidate 8 (HC2):

	mouse1	(1/20)	mouse	1 (1/80)	mouse2	(1/20)	mouse	2 (1/80)	mouse3	(1/20)	mouse3 (1/80)		
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	
131	106588	8739	50155	7518	96477	7665	40498	5452	70262	5367	26820	2098	
132	140794	9337	74318	13406	144198	10160	65560	9663	106447	8141	42146	4998	
131	62314	4945	20596	3744	55932	3790	20125	2539	46326	3295	14947	1789	
232	150340	11567	71911	13504	157447	8972	72032	11861	104507	4116	40914	7027	
233	16765	2096	4335	1018	30611	3137	9423	1779	5794	598	1313	156	
234	100920	4040	50846	6075	110827	8407	49692	8359	64324	5783	27260	2904	
235	14567	1846	3534	480	57616	6285	16580	2522	10895	815	2544	367	
236	18258	3145	4597	793	23941	1806	5782	669	5673	374	1181	237	
237	11700	1928	2811	821	3641	864	993	308	1117	266	200	189	
238	110176	5031	52842	9650	93693	5387	39075	6261	80679	3637	34050	3777	
239	135253	11877	69781	14076	155948	10564	67836	10756	118626	7699	52367	6037	
73	76074	9580	34465	8066	80761	7824	37144	4908	67026	6688	29038	2953	
240	97484	14127	45224	8870	87212	6895	36378	4753	89285	8219	37705	4265	
69	65749	8511	24893	3850	59338	4424	24594	4317	63303	5144	24349	3017	
76	137940	16497	66770	9485	128750	10481	58564	11644	124577	8596	52015	5875	
108	108355	13308	47653	7497	93281	5223	40412	8521	96129	2812	39273	3168	
174	70158	5605	20924	3397	63657	5575	22364	4456	70379	6210	23921	2707	
125	66499	6012	19246	2747	59138	6074	20673	4694	68300	9096	21408	3232	
241	18108	2047	4268	924	8865	2736	1836	385	4062	338	857	146	

9.3.4 Microarray format 4 (MA4)

Serum antibody microarray:

MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 75 193 293 422 427 433 67 104 1960 355 1557 113 11716 11716 11716 11716 11716 11716 11716 11716 11716 11717 1	Peptides	CHSynB r (1/2		HC12 m (1/2		HC1 mc (1/8		HC2 m (1/	ouse 2 20)	HC2 m (1/		Ma552 (25µg/mL)		
175 2933 422 4497 443 67 104 1960 355 157 161 11716 1376 76 2044 4891 61121 29828 4480 5586 5587 157 1218 5807 6608 7655 31576 2181 77 8194 1612 1277 1209 1283 1281 2011 2008 36037 3389 2721 2202 78 12144 1549 22809 4457 11228 1224 5045 5026 4330 348 29640 2013 79 443 3446 349 111 12515 955 518 155 11428 2040 80 22360 3008 663 2566 3104 1727 1628 2101 724 538 155 11428 2004 80 22380 6661 5566 3104 1717 277 1648 3101 <	reptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	
76 28044 4991 28628 4435 65686 5268 6373 6407 27128 28621 176 31446 122 12711 1209 169 142 1942 1574 1288 179 4245 605 177 8644 1346 13366 955 1188 121 2091 159 1644 338 6879 131 178 12144 3254 22304 365 5053 757 438 6462 2001 179 923 196 476 488 49 111 12555 518 555 1142 22901 360 1080 22504 3006 6664 5766 4557 11702 271 5248 5111 224 2353 306 2490 2212 24950 24962 24960 220 24910 2533 306 2216 2442 220 24910 2533 306 2492														
176 37426 7411 65227 4774 2185 5807 6808 7655 31576 2184 405 177 9644 1346 13866 995 188 121 20911 2008 1644 338 6879 713 178 12144 1469 22839 4857 11228 1224 5054 5026 4300 3348 29640 2013 178 2414 3254 22809 4457 11228 1224 5054 5057 425 86 642 1066 179 923 196 4726 488 49 11 12515 975 5457 838 2500 3164 1238 2664 6428 6746 58010 7234 26328 3405 180 22840 315 3713 2644 11702 71 164 4575 4242 320 24400 24400 24400 24400 2440 24														
77 8194 1122 12771 1209 159 1274 1284 179 1243 4245 4025 178 12814 1466 12934 12931 12833 48124 3958 36037 3829 27231 22021 178 12144 3254 22030 4437 11328 1242 50945 5056 48300 3842 29640 2013 179 443 346 399 23 36 5053 777 42 584 2001 100 22504 3008 61417 2105 28042 5037 60995 7576 5457 1332 2506 3104 12551 1004 54807 5248 31012 2860 24950 24950 25134 4057 4262 202 24910 2513 544 170 17042 211 521 544 171 217 1668 7714 6612 202 24915 1533														
177 9644 1386 995 188 121 20911 20081 1644 338 6879 713 78 12144 1254 1280 11283 12134 3958 3003 3829 22211 2202 79 443 149 346 389 23 35 5053 757 42 58 6482 1046 80 22504 3408 6117 2105 255 518 155 11428 2001 180 22800 6646 57695 3104 12551 1044 5441 3010 7248 3010 7234 26328 3060 181 17278 1553 1783 2644 1702 926 5134 4957 42642 3020 2012 2480 2374 480 4721 17 162 1261 1264 1231 1264 1201 1264 1231 1264 1201 1214 1221														
76 12814 1649 27934 2939 12833 1823 48124 3958 30307 3229 27211 2202 79 443 1346 3264 2300 450 5035 575 513 555 142 586 6462 1046 80 22504 3408 61417 2105 28042 5037 6995 7576 54579 8338 25007 3618 80 22504 3408 61417 2105 28042 5037 62995 7576 54579 8338 25007 3618 81 1085 683 2596 3141 12551 1044 5448 3311 2682 24910 2293 91 22434 335 716 78 8 20 1013 184 584 3301 6363 92 2242 3353 7642 3132 6424 6681 5724 63131 1303 1483 <th></th>														
176 21144 3254 1228 1224 50945 5026 4300 3348 2640 2013 179 933 196 4726 458 49 111 12515 755 518 155 11428 2901 800 22504 3408 61417 2105 28042 5037 69995 7575 518 153 1538 21382 3061 1080 28380 6064 5796 4557 1013 144 584 710 7868 2202 24010 22931 92 2284 335 3761 278 8 20 1013 144 584 170 7680 1229 182 3346 308 4489 318 18 29 1488 241 170 7680 1229 182 3346 308 4499 76631 5246 22144 1231 1214 1223 1312 1264 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
79 443 3446 389 23 36 503 757 42 58 6482 1041 80 22504 3408 61417 2105 28042 5037 6995 7576 54579 838 25907 3618 180 22836 6064 5766 54577 1104 5264 6428 6766 58010 7224 22828 3405 181 10850 863 25906 3104 1251 104 54807 5248 3111 2666 2442 3202 24960 2447 181 1777 1638 771 622 107 10142 1264 182 3446 308 3761 278 2383 3075 70204 4997 66851 5246 28144 1233 186 2995 5232 61639 7062 31329 6240 7657 11077 71014 492175 23938 486		-						-				-		
179 923 196 4726 458 49 111 12515 955 518 1152 11428 2907 180 28300 6064 57695 4557 21899 5064 64289 6746 58010 7234 26328 3040 181 17278 1553 17483 2644 1702 226 5134 4957 42642 3202 24910 2393 92 2284 333 3761 278 8 20 1013 184 584 170 7860 1226 182 3846 308 4489 318 18 29 1488 243 660 20 9330 1636 183 33515 6533 76643 377 7024 497 66651 5264 21514 1232 1311 4257 184 1295 532 6633 7644 23329 6246 6575 1107 76103														
80 22504 30.08 61417 2105 280.42 50.37 69995 77.65 545.79 483.81 259.07 361.8 81 10850 86.3 259.06 31.04 12551 1094 548.07 52.48 5010 72.34 263.28 30.04 181 17278 1553 17833 2644 11702 92.6 51.33 4997 42.64 32.02 24960 22.29 185 4045 377 4490 472 17 27 1668 271 662 20 93.01 15.65 93 25412 3744 632.2 1945 289.43 3075 702.04 4977 66851 52.46 281.41 123.3 186 29915 232.35 66533 764.2 313.29 62.46 7657 1107 761.00 107.82 33111 42.57 187 10736 92.5 11349 1468 20.61 12.02.07														
180 28380 6064 57695 4557 21899 5064 64289 5746 58010 7234 25328 3001 181 17278 1553 17833 2644 11702 926 51334 4957 42642 3022 24910 2539 92 2284 335 3761 278 8 20 1013 184 584 170 10142 1446 182 3846 308 4489 318 18 29 1488 243 660 260 9330 1636 93 25412 3744 6533 708 29389 3544 6800 77160 10722 3111 4257 94 8413 470 12031 1067 130 129 20133 2434 1116 122 3384 468 187 10736 925 11394 1468 2067 1614 1404 114 4922 5036														
81 10850 833 25906 3104 12551 1094 54807 5248 33112 2666 24472 202 24960 2593 92 2284 335 3761 278 8 20 1013 184 584 170 7680 1229 185 4045 377 4490 472 17 27 1668 271 622 107 10142 1646 93 25412 3744 63252 1945 28943 3075 70204 497 66818 5742 23132 2335 186 2395 522 1639 708 23389 3546 66830 5735 66818 6742 2313 2335 1311 4257 2335 3311 4232 2333 184 12781 940 1468 129 1312 2464 1675 1144 114 4922 303 184 12714 1281														
92 2284 335 3761 278 8 2.0 1013 184 584 170 7680 1229 182 3846 307 4490 472 17 27 1668 271 622 107 10142 1646 93 25412 3744 63252 1945 28943 3075 70204 4997 66851 5246 2813 2331 183 33515 6533 7642 31329 6246 76575 66348 6724 23132 3351 94 8413 470 12031 1067 130 129 20133 2444 1166 122 933 466 187 10736 925 11949 1468 206 101 2133 2144 160 1715 293 5362 723 98 9497 785 1373 1408 121 1424 160 1711 160 122 303<	81	10850	863	25906	3104	12551			5248		2686	24960	2447	
185 4045 377 4490 472 17 27 1668 271 622 107 10142 1646 182 3846 308 4489 318 18 29 1488 2433 660 260 9330 1636 186 29995 5232 61633 708 29389 3544 68500 7755 66448 6724 29135 2335 94 8413 470 12031 1067 130 129 20133 2434 1116 122 3938 486 10736 975 11949 1668 2076 59448 5037 40358 2260 24484 1600 184 12414 1721 1253 2175 580 62322 1664 25489 2616 101 21504 3793 60618 5030 24779 3530 64217 5980 62922 1664 25489 2616 102 <th>181</th> <th>17278</th> <th>1553</th> <th>17833</th> <th>2644</th> <th>11702</th> <th>926</th> <th>51334</th> <th>4957</th> <th>42642</th> <th>3202</th> <th>24910</th> <th>2593</th>	181	17278	1553	17833	2644	11702	926	51334	4957	42642	3202	24910	2593	
182 3846 308 4489 318 18 29 1488 243 660 260 9330 1536 186 25412 3744 63252 1945 28943 3075 70204 4997 66851 5246 28154 1823 183 33515 6539 66533 7642 31329 6246 76575 1097 76180 10722 33111 4257 94 4813 470 12031 1067 130 129 20133 2434 1116 122 3938 466 187 10736 925 11949 1468 206 101 20807 1873 1404 211 4922 503 184 12141 1721 12543 10664 59448 5030 3712 3094 20843 1085 102 6909 569 10343 1737 58 50 15835 16424 8648 2742 2	92	2284	335	3761	278	8	20	1013	184	584	170	7680	1229	
93 25412 3744 63222 1945 28943 3075 70204 4997 66511 5246 28154 1823 186 29995 5322 61639 708 29389 3544 66503 6735 66348 6724 2135 2335 94 8413 470 12031 1067 130 129 20133 2434 1116 122 3938 4866 10736 925 11949 1468 2006 101 20807 1873 1404 121 14922 503 184 12518 974 13803 1488 189 131 21464 1680 1715 293 5362 723 98 9497 785 3173 2812 1624 26433 100 37812 3040 20434 1085 101 21504 3793 60618 5030 24779 3530 64217 5980 62922 1664														
186 29995 5.232 61639 708 29389 35.44 68500 5735 66448 6724 293135 23351 183 33515 6539 66533 7642 31329 6246 76575 11097 76180 10782 33111 4257 184 1431 470 12031 1067 130 129 2133 2444 1166 122 3938 486 187 10736 925 11949 1468 120 1101 21604 1715 293 5362 723 98 9497 785 31733 2812 15264 2076 59448 5037 40358 2260 24648 1650 188 12141 1721 12543 1089 13457 550 15835 16548 8648 27428 2152 102 6909 569 10343 1737 58 50 15835 1654 894 2425 <th></th>														
183 33515 6539 66533 7642 31329 6246 76575 11097 76180 10782 31111 4257 94 8413 470 12031 1067 130 129 20133 2434 1116 122 3938 486 10736 925 11949 1468 206 101 20807 1873 1404 212 4922 503 184 12518 974 13803 1488 189 131 21464 1680 1715 239 5362 723 98 9497 785 60618 5030 2479 530 64217 5980 62922 1664 25649 2616 189 26331 6114 58618 5094 23439 4500 62922 1664 25489 2616 190 14027 1070 10813 1375 80 79 15579 1069 1310 185 4581 <														
94 8413 470 12031 1067 130 129 20133 2434 1116 122 938 486 187 10736 925 11949 1468 206 101 20807 1873 1404 211 4922 503 98 9497 785 31753 2812 16264 2076 59448 5037 40358 2260 24443 1650 101 21504 3793 60618 5030 24779 3530 64217 5980 62922 1664 25489 2515 102 6990 569 10343 1737 58 50 15335 1648 844 202 3439 619 107 1070 10813 1375 80 79 1669 1310 185 4581 906 107 1503 271 3102 169 52 50 721 239 2116 151 597 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
167 10736 925 11949 1468 206 101 20807 1873 1404 211 4922 503 184 12518 974 13803 1488 189 131 21464 1680 1715 293 5362 723 188 12141 1721 12543 1089 13655 1519 46458 5037 40358 2260 2444 1650 188 12141 1721 12543 1089 13655 1519 46458 501 62922 1664 25489 2616 189 26331 6114 58618 5094 23439 650 62922 1664 25489 2616 190 593 503 1312 1365 109 88 17411 1666 1144 199 4336 868 190 11027 1070 10813 1375 80 79 1557 1069 1310 185 4														
184 12518 974 13803 1488 189 131 2464 1680 1715 293 5362 723 98 9497 785 31753 2812 16264 2076 59448 5037 40358 2260 24848 1650 101 21504 3793 66618 5030 24779 3530 64217 5980 65222 1664 2548 2516 102 6990 569 10343 1737 58 50 15835 1654 894 202 3439 619 191 9053 536 10312 1365 109 88 17411 1686 1144 199 4336 888 190 11422 749 11706 1369 91 52 2033 2041 1557 1069 1310 185 4881 96 190 11422 749 13706 1322 230 2408 245										-				
98 9497 785 31753 2812 15264 2076 59448 5037 40358 2260 24448 1650 188 12141 1721 12543 1089 13695 1519 46458 5037 37812 3094 20843 1085 189 26331 6114 56618 5094 23439 4500 62927 7923 61648 8648 27428 2152 100 6905 569 10343 1737 58 50 15835 1654 894 202 3436 868 192 11027 1070 10813 1375 80 79 1557 1069 1310 185 4561 9947 4212 1302 160 1323 1303 2441 1562 366 4937 422 1329 107 1503 271 1102 169 52 2233 2104 1562 3666 132 139 3														
188 12/141 1721 12/543 1089 13695 1519 46458 3510 37812 3094 20843 1085 109 26331 6114 58618 5090 24779 3530 64217 5980 62922 1664 25489 2616 102 6990 569 10343 1737 58 50 1583 1654 894 202 3439 619 102 6990 569 10343 1737 58 50 1583 1654 894 202 3439 619 103 1027 1070 10813 1355 80 79 15579 1069 1310 185 4581 906 107 1103 271 3102 169 52 50 721 239 2116 151 5976 1032 108 24418 2812 52430 2500 59947 6985 56781 1669 25287														
101 21504 3793 60618 5030 24779 3530 64217 5980 6222 1664 25489 2515 189 26331 6114 58618 5094 23439 4500 62977 7923 61648 8648 27428 2152 191 9053 536 10343 1737 58 50 15835 1648 1844 199 4336 868 190 11422 749 11706 1369 91 52 20333 2041 1552 366 4893 742 107 1503 271 3102 169 52 50 721 239 2116 151 5976 1032 103 2404 293 3866 508 153 59 805 65 2664 176 8942 1225 108 21411 2814 58120 3782 2530 5947 6985 56781 1669														
189 26331 6114 56618 5094 23439 4500 62972 7923 61648 8648 27428 2152 102 6990 569 10343 1737 58 50 1583 1654 894 202 3439 619 1102 11027 1070 10813 1375 80 79 1557 1069 1310 185 4581 906 1007 1503 271 1102 169 52 50 721 239 2116 151 5976 1032 103 2408 299 3366 508 153 59 805 65 2664 176 894 125 108 21411 2814 5062 1239 2116 151 59761 1032 108 224515 4245 54255 6584 54731 2616 27781 1866 194 31264 6772 6163														
191 9053 536 10312 1365 109 88 17411 1686 1144 199 4336 868 192 11027 1070 10813 1375 80 79 1557 1069 1310 185 4581 906 107 1503 271 3102 169 52 50 721 239 2116 151 5976 1032 108 21411 2814 58120 3782 2508 5947 6985 56781 166 25287 1880 195 25455 4229 5414 5067 23849 3245 54255 6584 54753 2516 27781 1866 194 31264 6772 62395 4016 20091 3616 5152 5105 2037 2999 301 459 197 10922 1956 9637 1063 132 149 16502 1209 1288 4317														
192 11027 1070 10813 1375 80 79 1579 1069 1310 185 4581 906 190 11422 749 11706 1369 91 52 2033 2041 1552 366 4893 742 193 2408 299 3866 508 153 59 805 65 2664 176 8942 1259 195 25455 4229 54414 58120 3782 23849 3245 6658 56781 1669 25287 1880 194 31264 6772 62395 4016 22091 361 67152 6165 66597 5105 32037 2995 196 1266 1511 1151 1766 74 97 1197 1135 169 4482 582 198 12401 2448 9784 1631 93 105 13474 1197 1135 169	102	6990	569	10343	1737	58	50	15835	1654	894	202	3439	619	
190 11422 749 11706 1369 91 52 20333 2041 1552 366 4893 742 107 1503 271 3102 169 52 50 721 239 2116 151 5976 1032 108 21411 2814 58120 3782 25308 2500 59947 6985 56781 1669 25287 1880 154 31264 6772 62395 4016 28091 3631 67152 6165 66597 5105 32037 2995 109 8806 1219 9347 856 173 119 1543 1559 1230 99 3301 459 109 8806 1219 9347 856 173 119 1543 1559 1230 99 3301 459 108 12401 2448 9784 1631 93 105 13474 1197 1135	191	9053	536	10312	1365	109	88	17411	1686	1144	199	4336	868	
107 1503 271 3102 169 52 50 721 239 2116 151 5976 1032 193 2408 299 3866 508 153 59 805 65 2664 176 8942 1239 193 24111 2814 58120 3782 25308 2500 59947 695 56781 1669 25287 1880 195 25455 4229 54414 5067 23849 3245 54255 6584 54753 2516 207781 1866 194 31264 6772 62395 4016 28091 3631 67152 6165 6697 5105 3207 2995 109 8806 1219 9347 856 173 119 1543 1559 1230 99 3301 459 109 8806 1511 1151 1766 74 97 13709 1287 188														
193 2408 299 3866 508 153 59 805 65 2664 176 8942 1259 108 21411 2814 58120 3782 25308 2500 59947 6855 56781 1669 25287 1880 194 31264 6772 62395 4016 28091 3631 67152 6165 66597 5105 32037 2995 199 8066 1279 9347 856 173 119 15436 1559 1230 99 331 459 197 10922 1956 9637 1063 132 149 16502 1209 1266 168 3930 687 198 12401 2448 9784 1631 93 105 13474 1197 1135 169 4412 582 130 5315 3751 13571 2473 1256 1419 50786 8682 3267 <th></th>														
108 21411 2814 58120 3782 25308 2500 5947 6985 56781 1669 25287 1880 195 25455 4229 54414 5067 23849 3245 54255 6584 54753 2616 27781 1866 194 31264 6772 62395 4016 28091 3631 67152 6165 66597 5105 32037 2995 109 8806 1219 9347 856 173 119 15436 1559 1230 99 3301 459 196 12626 1511 11151 1766 74 97 1790 1608 1857 185 4371 994 133 5137 1371 1474 15187 1835 22597 815 199 9566 665 9895 1479 12765 1471 51981 706 37311 2522 2501 33194														
195 25455 4229 54414 5067 23849 3245 64255 6584 54753 2616 27781 1866 194 31264 6772 62395 4016 28091 3631 67152 6165 66597 5105 32037 2995 109 8806 1219 9347 856 173 119 15436 1559 1230 99 3310 459 197 10922 1956 9637 1063 132 149 16502 1209 1206 168 3930 687 198 12401 2448 9784 1631 93 105 13474 1197 1135 169 4182 582 136 5151 11151 1766 74 97 17909 1608 1587 183 4292 815 130 5556 6656 5895 1457 51981 7096 37311 2592 2521 31														
194 31264 6772 62395 4016 28091 3631 67152 6165 66597 5105 32037 2995 109 8806 1219 9347 856 173 119 15436 1559 1230 99 3301 459 197 10922 1956 9637 1631 132 149 16502 1209 1286 168 3930 687 198 12401 2448 9784 1631 93 105 13474 1197 1135 168 4312 582 136 12265 1511 11151 1766 74 97 17909 1608 1857 185 4371 944 133 515 375 15371 2473 1256 1471 5198 706 37311 2592 2501 3194 199 9566 665 9925 1457 157 91 16275 2056 333														
109 8806 1219 9347 856 173 119 15436 1559 1230 99 3301 459 197 10922 1956 9637 1063 132 149 16502 1209 1226 168 3930 687 198 12401 2448 9784 1651 93 105 13474 1197 1135 169 4182 582 196 12626 1511 11151 1766 74 97 17909 1608 1587 183 4271 994 133 5315 375 15371 2473 12265 1471 51981 7096 37311 2592 25101 3194 199 6031 454 9326 1877 5181 7086 303 185 4117 483 200 8812 1034 8971 157 91 16275 2056 303 185 4117 435														
197 10922 1956 9637 1063 132 149 16502 1209 1266 168 3930 667 198 12401 2448 9784 1631 93 105 13474 1197 1135 169 4182 582 196 12626 1511 1151 766 74 97 17909 1608 1587 185 431 93 133 5315 375 15371 2473 12566 1499 50786 8682 32367 1813 22597 815 199 9566 665 9895 1847 51981 7096 3731 2592 25201 3194 119 6031 454 9326 1817 56 63 10553 1243 353 150 2344 435 200 8812 1034 8971 1677 91 16275 2056 3031 15720 1117 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>														
198 12401 2448 9784 1631 93 105 13474 1197 1135 169 4182 582 196 12626 1511 11151 1766 74 97 1790 1608 1587 185 4371 994 133 5315 375 15371 2473 12566 1499 50786 8682 3267 1813 2297 815 199 9566 665 9895 1459 12495 1471 51981 706 37311 2592 25201 3194 200 8812 1034 8971 1677 56 63 10553 1243 353 150 2344 435 202 3766 163 8784 1460 10152 1204 40045 4503 301 1570 1117 202 3766 163 8784 1460 10152 1244 48450 3501 5406 25783														
13 5315 375 15371 2473 12566 1499 5076 86822 3267 1813 22597 815 199 9566 665 9895 1459 12495 1471 51981 7096 37311 2592 25201 3194 200 8812 1034 8971 1677 157 91 16575 2056 303 185 4117 483 200 8812 1034 8971 1677 91 16275 2056 303 185 4117 483 202 3766 163 8784 1400 10152 1204 1580 2771 3345 1659 19112 1385 201 11014 1702 26530 850 1523 1444 49464 4355 5301 5700 117 2158 409 203 9735 1484 9522 1577 108 93 2914 214 72	198	12401	2448			93	105				169			
199 9566 665 9895 1459 12495 1471 51981 7096 37311 2592 25201 3194 119 6031 454 9326 1817 56 63 10553 1243 353 150 2344 435 200 8812 1034 8971 1697 157 91 16275 2056 303 185 4117 483 125 3660 634 19094 2928 11773 1145 40045 4540 42156 3301 15720 1117 202 3766 163 8784 1460 10152 1204 1580 2771 33459 1659 19112 1385 203 9735 1484 9532 1577 108 93 2914 274 214 72 2987 488 203 9735 1484 9532 1577 108 93 2914 274 214	196	12626	1511	11151	1766	74	97	17909	1608	1587	185	4371	994	
119 6031 454 9326 1817 55 63 10553 1243 353 150 2344 435 200 8812 1034 8971 1697 157 91 16275 2056 303 185 4117 483 202 366 634 19094 2928 11773 1145 40045 4540 42156 3301 15720 1117 202 3766 163 8784 1460 1512 1204 1583 5301 5500 55301 5500 1523 1264 49464 4835 55301 5406 25783 2663 1014 1702 2653 0550 15233 1444 49464 4835 55301 55406 25783 2663 1024 1030 1795 1235 54 84 142 274 214 72 2987 488 204 1030 1797 1235 54		5315	375		2473			50786		32367		22597		
200 8812 1034 8971 1697 157 91 16272 2056 303 185 4117 483 125 3660 634 19094 2928 11773 1145 40045 4500 42156 3301 15720 1117 202 3766 163 8784 1460 10152 1204 15830 2771 33459 1659 19112 1385 201 11014 1702 26530 850 1523 1444 49464 4835 55301 5406 25783 2663 203 9735 1484 9532 1577 108 93 2914 274 214 72 2987 488 203 9735 1484 9522 1157 108 93 2914 214 243 244 243 144 243 144 243 144 244 144 243 144 244 148 1635														
125 3660 634 19094 2928 1177 1145 40045 4540 42156 3301 15720 1117 202 3766 163 8784 1460 10152 1204 15830 2771 33459 1659 19112 1385 201 1104 1702 26530 850 15323 1444 49464 4835 55301 55406 25783 2663 126 6974 956 9400 1288 142 148 5400 345 448 117 2158 409 203 9735 1484 9532 1577 108 93 2914 274 214 72 2987 488 174 7819 134 19242 2823 11155 1023 45566 6602 47324 2363 15731 1577 205 12167 604 19558 2530 6119 407 46286 66160														
202 3766 163 8784 1460 10152 1204 1583 2771 33459 1559 19112 1385 201 11014 1702 26530 850 15233 1444 49464 4935 55301 5406 25783 2663 126 6974 956 9400 1288 142 148 5400 345 448 117 2158 409 203 9735 1484 9522 1577 108 93 2914 274 214 72 2987 488 204 1030 1797 1235 54 84 1635 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 243 144 2447														
201 11014 1702 26530 850 15233 1444 49464 4835 55301 5406 25783 2663 126 6974 956 9400 1288 142 148 5400 345 448 117 2158 409 203 9735 1484 9532 1577 108 93 2914 274 214 72 2987 488 204 10300 1795 7991 1235 54 84 1635 144 243 144 2667 4488 174 7819 134 19242 2823 11155 1023 4556 6602 47324 2363 15731 1577 205 12167 604 19558 2530 6119 407 46288 6816 54816 356 24939 837 206 12866 1217 26919 3188 14412 2149 248411 5982 24276 <th></th>														
126 6974 956 9400 1288 142 148 5400 345 448 117 2158 409 203 9735 1484 952 1577 108 93 2914 274 214 72 2987 488 100 1795 7991 1235 54 84 1635 144 243 144 243 144 2647 448 174 7819 134 19242 2823 11155 1023 45566 6602 47324 2363 15771 1577 205 12167 604 19558 2530 6119 407 46288 6816 54816 356 24939 837 206 12886 1286 1277 2618 14412 2193 52254 6187 48411 582 24276 2706														
203 9735 1484 9532 1577 108 93 2914 274 214 72 2987 488 204 10300 1795 7991 1235 54 84 1635 144 243 144 2647 448 174 7819 134 19242 2823 11155 1023 4556 6602 47324 2363 15771 1577 205 12167 604 19558 2530 6119 407 46288 6816 54816 556 24399 837 206 12866 1217 26919 3188 14412 2193 5224 6187 48411 5982 24276 2704														
204 10300 1795 7991 1235 54 84 1635 144 243 144 2647 448 174 7819 134 19242 2823 11155 1023 4556 6602 47324 2363 15731 1577 205 12167 604 19558 2530 6119 407 46288 6816 54816 356 24939 837 206 12866 1217 26919 3188 14412 2193 52254 6187 48411 5982 24276 2704														
174 7819 134 19242 2823 11155 1023 45566 6602 47324 2363 15731 1577 205 12167 604 19558 2530 6119 407 46288 6816 54816 356 24939 837 206 12886 1217 26919 3188 14412 2199 52254 6187 48411 5982 24276 2704														
205 12167 604 19558 2530 6119 407 46288 6816 54816 356 24339 837 206 12886 1217 26919 3188 14412 2193 52254 6187 48411 5982 24276 2704														
222 64309 6944 75609 7013 44169 5505 84012 12634 48522 4910 22459 2770														
	232	64309	6944	75609	7913	44169	5505	84912	12634	48522	4819	23459	2770	
234 12770 1802 46217 5793 26256 3880 64302 10446 34915 2878 17442 1877	234	12770	1802	46217	5793	26256	3880	64302	10446	34915	2878	17442	1877	

Galectin-3 microarray:

Dentidae	Gal-3 (25 µg/mL)		Gal-3 (12.	5 μg/mL)	Gal-3 (6.2	5 μg/mL)	Gal-3 (3.13	3 μg/mL)	Gal-3 (1.56	6 μg/mL)	Gal-3 (0.7	8 μg/mL)
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
75	10468	1367	2524	697	35	66	28	41	7	17	72	50
175	17134	1877	7615	1821	138	113	147	144	90	88	70	78
76	14667	2136	5453	699	58	89	144	132	96	101	60	86
176	24358	2352	12175	2544	705	205	236	179	92	103	53	99
77	18426	2127	7343	1564	262	199	222	157	117	106	54	82
177	25532	2746	13667	2741	1315	435	636	198	291	200	72	71
78	16563	2728	5918	1435	335	126	115	89	36	42	68	78
178	25320	2706	14565	2666	2155	475	518	251 167	329	178 214	97	105
79 179	17686 29966	2981 1085	7518 19332	841 1510	528 3381	121 534	258 970	304	188 660	214 147	177 188	130 157
80	23525	2183	9650	1201	596	248	465	304 151	248	136	48	94
80 180	33222	2183	21487	3413	4266	248 976	465	569	248 1128	269	48 260	94 144
81	19950	3894	12347	3979	4200	384	542	221	270	269 94	134	144
181	33103	2810	23600	2460	5618	1227	1687	665	1283	336	454	193
92	24762	2345	16242	2400	3351	373	1087	599	807	215	316	176
185	158	201	87	71	101	121	77	122	56	63	70	96
182	35660	2698	26460	2401	11037	1460	5374	1949	3092	483	1368	235
93	26523	2557	17552	2962	4194	894	2479	547	1476	489	471	211
186	9854	2475	1763	584	66	92	49	97	62	56	40	97
183	37977	1929	27187	2894	12743	2179	5449	1272	3839	368	1655	490
94	31144	2395	19921	2072	5222	1014	3090	699	1535	429	652	184
187	14288	1749	6591	1736	90	146	27	50	85	132	0	0
184	39784	3123	31472	1962	16479	2022	7409	1257	5365	992	2594	187
98	34742	3408	29654	2939	17697	2660	8476	2139	6824	1004	4230	716
188	20592	3415	11911	1989	401	145	161	121	94	134	104	106
101	27882	2617	19195	1862	6123	1186	2965	731	2247	399	1082	316
189	33287	1510	25458	2161	12125	1649	5094	990	3694	356	1837	152
102	29040	2964	19880	2287	6649	1122	3437	1211	2218	500	1011	362
191	20932	2383	11049	1871	1354	387	463	232	279	143	111	141
192	222	277	61	72	11	22	31	49	10	20	94	117
190	37973	4384	30124	1931	14809	973	6038	1281	4591	647	2514	315
107	25499	3370	17645	2578	5069	660	2970	627	1616	297	595	144
193	34728	1248	27923	326	14002	1253	6596	113	4538	733	1901	196
108	26860	2349	18922	1223	6719	1097	3589	437	2382	433	1092	166
195	22159	1687	13991	1520	2377	247	903	174	464	190	88	137
194	33899	2447	27322	2418	14887	1619	7031	1306	5031	736	2530	177
109	31774	791	21522	1911	8672	1237	4488	1290	3645	948	1436	451 236
197 198	26902 167	1650 118	17082 39	1598 44	3909 67	583 96	1928 109	559 63	1521 55	674 70	495 59	236 69
198	40403	2096	39 32493	44 1400	18481	2430	9072	2786	6696	1317	3724	609
196	30168	2098	25885	2202	18481	3198	9608	2625	10211	2095	7644	1411
115	36728	2479	34065	1070	29124	2872	19015	4241	20703	3668	21353	1976
133	30991	3937	23931	2144	11447	1058	6632	1762	4758	1128	2393	315
200	22027	3053	15391	2342	2899	480	752	147	4738	107	119	188
125	29081	3161	22638	1581	10397	1286	5478	1123	3973	887	1788	369
202	21885	1800	15854	2018	3831	514	1183	459	792	80	197	96
201	41111	1374	33978	2109	24385	4347	14364	2646	10188	1998	6898	1334
126	33682	2752	24694	1270	12609	2357	6335	1534	5522	1207	2952	679
203	25628	2262	19043	1142	7703	786	2508	280	2016	301	562	212
204	1508	220	769	175	85	110	36	48	51	84	117	129
174	24522	3475	15584	393	3254	263	1675	417	1104	314	385	141
205	30399	3092	22067	313	6349	598	2952	1029	1967	542	746	71
206	29988	3344	22658	1348	9085	713	3996	1257	2843	713	1376	305
232	14145	2031	3395	908	57	2	99	124	170	75	62	17
234	17631	3109	8294	1425	776	308	414	72	202	218	32	55
			•		•		•		•		•	

9.3.5 Microarray format 5 (MA5)

Plant lectin microarray:

Dentidae	ECA (0.1 MAL I (0.08 MAL I (0.2 mg/mL) mg/mL) mg/mL)		PNA (0.01 PNA (0.05 mg/mL) mg/mL)			WGA(0.02 VVL (0.05 mg/mL) mg/mL)			SNA (mg/			I (0.02 ′mL)	MAL II (0.04 mg/mL)							
Peptides	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
238 208 209 210 211 212 213 214 215 216 218 229 230 233 234 235 236 237 68 69 70 71 72 73 74 223 225 227 228 231 232 225 227 228 233 234 235 236 237 68 69 70 71 72 73 73 74 223 225 227 73 74 225 227 73 74 225 227 73 74 225 227 73 74 225 227 73 74 225 227 74 228 231 232 232 234 235 236 237 68 89 70 71 77 78 80 81 177 178 179 80 81 177 178 179 80 81 177 178 179 80 81 177 178 179 80 81 177 178 179 90 91 91 92 93 94 95 96 97 98 82 83 84 87 77 78 88 89 90 91 92 93 94 95 96 97 98 82 83 84 85 86 87 78 88 89 90 91 12 92 93 94 95 96 97 97 98 82 83 84 85 86 87 78 88 89 90 91 12 92 93 94 95 96 97 97 98 80 81 117 179 180 181 182 183 184 185 85 86 87 78 88 99 90 91 12 92 93 94 95 96 97 97 98 182 183 184 185 186 187 197 197 198 180 181 177 178 179 180 181 177 178 179 180 181 177 178 179 180 181 177 178 179 99 90 91 177 178 180 181 182 183 184 185 185 186 187 197 99 90 91 192 93 94 95 97 98 182 183 184 185 186 187 191 192 193 194 197 197 198 193 194 197 197 198 193 194 197 197 197 198 193 194 197 197 197 197 198 193 194 197 197 197 197 198 193 194 197 197 197 197 197 197 197 197 197 197	0 0 0 0 0 0 29 35 0 0 26 9 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 34 \\ 34 \\ 0 \\ 0 \\ 37 \\ 11 \\ 0 \\ 0 \\ 13 \\ 0 \\ 11 \\ 0 \\ 17 \\ 26 \\ 5 \\ 23 \\ 28 \\ 44 \\ 0 \\ 19 \\ 19 \\ 10 \\ 0 \\ 27 \\ 26 \\ 5 \\ 23 \\ 28 \\ 44 \\ 0 \\ 9 \\ 19 \\ 19 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 31 32 12 12 28 90 13 12 16 9 1 30 9 57 16 60 13 9 57 16 60 13 9 57 16 60 13 9 57 16 60 13 22 23 2 6 0 18 33 4 15 13 295 4 14 12 16 9 57 16 16 9 57 16 16 13 13 22 23 2 6 0 18 33 4 15 13 295 4 14 12 13 20 50 70 22 23 2 6 0 18 33 4 15 13 295 4 14 12 56 71 18 30 22 23 2 6 0 18 33 4 15 13 295 4 14 12 56 71 18 33 4 15 13 295 4 14 12 56 71 14 4 24 26 13 35 50 71 25 31 25 14 4 24 26 0 18 33 4 15 13 295 4 14 12 20 14 4 24 26 13 35 50 71 25 31 24 12 13 35 50 71 25 31 24 14 26 13 35 50 71 25 31 24 14 26 13 35 50 71 25 31 24 14 26 38 10 27 14 28 28 12 55 17 14 426 38 10 24 14 26 12 55 17 4 30 0 0 71 1 38 10 27 1 38 10 27 1 38 10 27 1 38 100 15 27 17 38 10 27 1 38 10 15 55 17 4 30 10 27 1 38 12 15 55 17 4 30 10 27 1 38 12 15 55 17 4 30 10 27 1 38 12 15 55 17 4 30 10 27 1 38 12 13 28 12 15 55 17 4 30 10 27 1 38 12 13 26 27 1 38 12 15 17 4 30 10 27 1 38 12 13 28 12 28 12 28 12 15 55 17 4 30 10 27 13 28 38 16 28 3 28 3 38 28 3 38 10 28 3 38 10 28 3 38 11 25 55 17 4 30 10 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 28 3 38 13 13 28 13 13 28 13 13 28 13 13 28 13 13 28 13 28 13 28 13 28 13 28 13 13 28 13 13 28 13 13 13 13 13 13 13 13 13 13	0 466 29 2 48 33 20 60 60 16 33 1 38 55 45 4 33 46 52 55 54 4 43 55 52 55 54 4 40 32 9 22 8 57 54 54 54 54 55 55 54 40 32 9 22 8 57 57 22 9 22 11 1 40 32 9 22 8 57 57 57 57 57 57 57 57 57 57 57 57 57	20 24 0 25 131 24 94 20 25 21 31 24 94 20 25 21 31 24 95 26 21 31 24 95 26 103 41 168 262 168 262 103 41 121 139 1448 3485 448 30 0 158 103 41 121 139 1448 3485 448 30 0 158 103 41 121 139 1448 3485 448 30 0 15 11 30 27 25 15 11 14 14 14 14 14 14 14 14 14	28 43 0 46 47 69 27 18 39 97 128 77 128 73 38 39 38 43 39 38 43 39 25 46 43 39 77 11 5 39 77 11 0 0 33 0 142 59 0 0 30 11 15 238 6 6 39 77 71 0 0 30 12 25 4 26 109 39 11 15 238 26 27 27 11 15 238 26 27 27 11 15 238 26 27 27 11 15 238 26 27 27 11 15 238 26 27 27 11 15 238 26 29 20 11 15 238 26 29 20 30 11 238 26 29 20 30 11 238 26 29 30 30 14 29 30 30 14 29 30 30 11 238 28 29 29 20 11 5 238 28 29 20 11 15 238 28 29 20 11 15 238 28 29 21 9 21 9 21 9 0 18 48 65 55 53 13 19 2 19 0 0 18 48 63 79 90 17 14 40 63 79 90 17 14 40 23 23 21 9 19 0 11 23 26 29 21 19 0 11 23 26 29 27 19 0 0 18 23 29 19 0 0 18 40 23 23 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25	1 16 8 7 55 12 15 27 7 24 40 38 16 17 26 0 12 4 4 4 4 4 12 15 2 7 7 0 22293 69844 33815 27 7 0 22293 144346 162176 42065 29131 144346 162176 42065 29131 143346 162176 42065 29131 143346 162176 42065 29131 143346 162176 42065 29131 143346 162176 42065 29131 143042 14376 10986 123917 143042 14377 10 30 0 0 0 14 43 0 0 0 14 14 22 9 16 33815 10741 79986 12299 143042 14376 162176 420 8 38 10741 79986 12299 143042 14377 16 16 21 20 20 20 20 20 20 20 20 20 20	2 2 3 10 15 7 4 26 10 15 7 4 20 10 20 20 20 20 20 20 21 20 21 20 21 20 21 20 21 21 4 4 22 21 4 15 27 21 20 21 21 21 21 21 21 21 21 21 21	0 3 14 1 0 0 22 43 0 0 22 43 0 0 12 23 0 9 0 14 0 12 23 0 9 0 14 0 12 27 16 0 435121 87404 58511 87404 585157 62466 40901 72944 205987 81476 541557 62466 40911 134704 55157 62466 40911 134788 1734788 1734788 1734788 173478 173478 1735 164 11 4 0 26 10 0 7 11 38 0 0 7 1 38 0 0 7 1 38 0 0 7 1 38 17 626 10 0 0 7 11 38 17 165 444 205987 81476 52157 62466 40901 11 4 13 13 0 0 7 11 38 0 0 7 1 38 17 165 444 20 20 11 4 13 17 17 22 11 16 17 17 17 17 16 16 11 1 38 0 0 7 11 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 7 1 38 0 0 0 0 7 1 38 0 0 0 0 7 1 38 0 0 0 0 17 24 17 17 17 17 17 17 17 17 17 17	0 7 32 2 0 0 9 9 9 7 0 0 0 2 3 4 2 3 0 0 2 3 4 2 3 0 4 2 3 0 4 2 3 0 4 2 3 2 3 0 4 2 3 2 3 4 2 3 2 3 2 3 4 2 3 2 3 2 3 4 2 3 2 5 5 8 3 3 3 7 5 5 8 3 3 3 7 5 5 8 3 3 1 7 5 5 8 3 3 1 7 5 5 8 3 3 1 7 5 5 8 3 3 1 5 5 8 3 3 1 5 5 5 8 3 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1951 0 0 1951 0 0 0 0 0 0 0 0 0 0 0 0 0	19 33 3309 1665 763 24 387 126463 31140 209901 162420 391474 209901 162420 391474 209901 162420 391477 395243 209901 10512 203227 2121546 325562 50424 274312 203227 203227 203257 57 10 0 20 203 21 203227 215566 250424 274312 203257 57 10 0 20 203 21 215567 57 10 0 0 0 0 0 0 20 203 21 10 10 0 0 0 0 20 203 21 10 10 10 10 10 10 10 10 10 1	26 48 442 441 19 50 135 7432 5256 1527 8806 51775 8814 9806 51775 8814 9805 8817 8817 8817 8905 8817 8905 8814 99 24 8057 892 4922 8065 6139 9924 4922 8065 6139 9924 8057 8114 9922 8057 8057 8114 9924 8057 8057 8114 9924 8057 8057 805 8057 805 805 805 805 805 805 805 805 805 805	0 0 0 1 2 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 1 0 0 3 9 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	8 32392 32392 32392 1660 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 2 0 123 0 0 2 0 0 2 0 123 0 0 0 0 0 0 0 0 0 133 <th>18 72431 1006 3358 4 0 130 0 0 131 0 132 133 736 130 0 434 0 455 131 0 132 344 0 131 0 255 133 0 0 0 131 0</th> <th>0 849 0 849 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 1898 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	18 72431 1006 3358 4 0 130 0 0 131 0 132 133 736 130 0 434 0 455 131 0 132 344 0 131 0 255 133 0 0 0 131 0	0 849 0 849 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1898 0 0 0 0 0 0 0 0 0 0 0 0 0

9 APPENDIX

Peptides	ECA (mg/r		MAL I mg/r		MAL I (0.2 mg/mL)		PNA (mg/i		PNA mg/		WGA(mg/i		VVL (mg/		SNA (mg/		MAL II mg/		MAL II mg/r	
	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD	MEAN	SD
118	85	55	40	38	12	21	72	46	5525	12218	116	212	65	65	0	0	33	46	3	6
119	296	79	38	54	48	108	30	34	41	45	37	83	64	98	32	57	62	138	23	34
120	707	116	4	8	189	362	98	143	198	192	0	0	197	111	1	1	0	0	24	43
121	3101	512	12	18	22	31	164	91	573	318	0	0	341	577	88	59	0	0	0	0
122	2315	425	17	39	26	41	111	88	228	131	10	22	10	20	69	86	87	195	0	0
123	5202	1593	25	55	9	9	220	38	1036	334	15	34	64	62	63	53	12	26	6	13
200	0	0	28	38	38	79	19	22	510	1039	42	94	28	48	23355	12956	36	71	0	0
124	29499	1345	329	98	496	86	26	31	0	0	131	146	0	0	102	103	25	55	0	0
125	33534	2314	111	81	222	125	10	15	67	53	2545	489	0	0	49	54	16	35	8	17
126	43986	5539	76	58	44	45	3	7	41	46	11244	2716	72	82	3791	6814	16	36	21	39
127	43891	1219	882	236	1775	133	52	59	19	33	318	699	22	48	505	599	0	0	5	12
128	72387	4720	1331	325	2595	278	16	22	284	545	26340	3019	138	57	1887	999	13	28	0	0
129	59980	944	736	138	1508	64	161	313	0	1	37044	5313	162	75	4723	4934	2	5	7	16
130	65921	3674	3407	362	5852	702	20	35	14	13	49210	6387	167	145	2821	1730	49	104	0	0
202	0	0	41	48	256	472	13	14	37	46	42	63	72	98	91985	29520	0	0	6	14
203	0	0	31	36	68	58	17	28	118	180	187	419	39	36	78743	25824	8	19	198	444
204 201	0	0 10	59 66275	48 5354	45 74780	43 6251	14 4	23 7	17 348	27 675	0 83394	0 4029	132 4	111 9	73735 2	15447 3	598 843	1337 385	0 2094	0 222
201	8 9967	10	3	5354 6	74780 34	33	4 54124	, 5719	348 88028	2766	201	4029	4 134	9 136	6	3 13	843 0	385	2094 576	1149
205	7065	1069	44	53	30	59	65	49	95	2766	43927	6005	64	81	0	0	416	242	790	221
205	7065	5	11388	1480	11958	3915	2082	788	10047	3663	2836	359	04	0	0	0	308	100	552	74
131	8068	5 1417	11566	47	241	173	36	36	83	176	3563	359 774	397756	19688	19	26	0	0	37	63
131	9728	1639	204	29	384	387	32	45	68	47	497	190	626925	7760	0	20	0	0	12	27
132	20246	2681	204	29 53	510	116	52	45	18	27	15987	190	485644	38920	69	101	24	35	12	27
133	20246	2081	241	55	510	110	/	12	18	27	12987	1932	465644	56920	69	101	24	55	11	23

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to Dr. Ulrika Westerlind for enabling me to work on this project, for scientific guidance, supervision of this thesis, various discussions and critical review of this manuscript. Thank you for creating this opportunity. I am thankful to Prof. Dr. Herbert Waldmann for providing an interdisciplinary environment and making it possible to work on this thesis. Also, I am grateful to Prof. Dr. Albert Sickmann for welcoming us and integrating our group into ISAS. The institute has been a stimulating place, which allowed insights into techniques and methodologies which lay outside the frame of this thesis.

I would like to thank Prof. Dr. Christian Hedberg for many ideas regarding chemistry, but also practical support, bypassing various shortages. Further, I am most grateful to him for being part of the PhD committee.

I also want to thank Prof. Dr. Horst Kunz for all the helpfulness and cooperation, especially for providing us with antiserum from vaccination experiments. Here, I am especially grateful to Dr. Nikola Gaidzik. I would like to acknowledge our collaborators Prof. Dr. Edgar Schmitt and Prof. Dr. Mengji Lu for vaccination experiments, Dr. Jonas Nilsson and his coworkers for the collaboration on the glycopeptide mass spectrometry project and Prof. Dr. Xi Chen, for providing us with PmST3 sialyltransferase.

Also I am grateful to the scientific and technical staff of ISAS: Helma Geltenpoth and Rita Fobbe for measuring HR-ESI-MS, Susanne Krois for performing amino acid analysis, Ingo Feldmann and Rolf Bandur for technical support on chromatography and various different laboratory equipment, the workshop and the house service of ISAS for help with installation of technical devices, the team of the ISAS IT department, Dr. Jörg Lambert for all the support around the NMR-instrument, the technical service of the TU Dortmund for measuring various NMR samples and Dr. Petra Janning from the Max-Plank Institut für Molekulare Physiologie for support on ESI-MS.

Further I am thankful for the financial support from the Verband der Chemischen Industrie for a Liebig PhD scholarship.

Finally I am very grateful to my fellow labmates. Dr. Hui Cai for all the collaboration on the vaccine project and good comradeship and also to my other labmates Vanessa, Jin and

Manuel for discussion, help and creating a nice working atmosphere. Many thanks to all the other members of ISAS for scientific exchange and as well for several distracting events around the work that made the time at the institute especially worthwhile.

My greatest gratitude, however, belongs to Martha for all the support and patience, no matter what happened.

THANK YOU!

EIDESSTATTLICHE ERKLÄRUNG

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und nur mit den angegebenen Hilfsmitteln angefertigt habe. Die Arbeit wurde weder bisher im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Es haben bisher keine Promotionsverfahren stattgefunden.

Dortmund, den 26.01.2016

Christian Pett