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Zusammenfassung

In dieser Arbeit werden vier verschiedene phänomenologische Modelle zur Beschreibung
des Verhaltens ferroelektrischer Materialien vorgestellt, im Rahmen der Finiten Elemen-
te Methode eingebunden und anhand repräsentativer numerischer Beispiele validiert.
Das erste Modell dient zur Erfassung der ratenabhängigen dielektrischen Hysterese-
kurve und Schmetterlingskurve von Ferroelektrika. Die zugehörigen Materialparameter
werden mit Hilfe experimenteller Daten kalibriert. Bei dem zweiten Ansatz handelt es
sich um ein

”
multi-surface“ Modell, welches kleine und große Hystereseschleifen sowie

asymmetrische Schmetterlingskurven abbilden kann. Die Auswirkung von äußeren me-
chanischen Lasten auf die beiden Hysteresekurven wird im dritten Modell untersucht.
Dabei stehen ferroelastische Hysteresekurven, mechanische Depolarisation und aniso-
trope Umklappvorgänge im Fokus. Thermische Depolarisation und antiferroelektrisches
Hystereseverhalten werden im vierten Modell betrachtet. Abschließend wird das erste
Modell zur Simulation von ferroelektrischen Kompositen verwendet. Dabei wird sowohl
ein einfacher Homogenisierungsansatz als auch ein Finite Elemente basierter Ansatz
vorgestellt. Numerische Simulationsergebnisse beider Zugänge werden bei verschiede-
nen elektrischen Anregungsfrequenzen mit experimentellen Daten und untereinander
verglichen.

Abstract

In this work, four different phenomenological models are introduced and related simula-
tion results are presented. The models are developed such that these can be implemented
in a finite element framework. The first model captures rate dependent ferroelectric be-
haviour of dielectric hysteresis and butterfly hysteresis at different loading rates. The
material parameters of the model are calibrated based on experimental data. In the
second model, a multi-surface approach is established in order to calculate minor and
major ferroelectric hysteresis loops as well as asymmetric butterfly hysteresis. The third
model captures the effects of external stresses on ferroelectric hysteresis. In addition
to that, the model is also formulated to capture the ferroelastic hysteresis, mechani-
cal depolarisation as well as anisotropic switching behaviour. To capture the thermal
depolarisation behaviour as well as antiferroelectric hysteresis, another model is intro-
duced and further simulation results are presented. To extent the ferroelectric models
to capture the effective behaviour of ferroelectric composites, a simple homogenisation
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approach is applied. Following that, a finite element homogenisation approach is used
to obtain the effective behaviour of ferroelectric composites. Thereafter, the experimen-
tal data for piezocomposites at different electrical loading frequencies and the results
obtained for both simulation approaches are compared.
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1 Introduction

1.1 Smart materials

Among various materials around us, there are few which are distinguished due to their
special behaviours. For example, shape memory alloys change their crystal structures
with respect to the temperature, resulting in a changing shape of the material from
a macroscopic viewpoint. This shape change in the material could be designed such
as to have a mechanical actuation and could thus be used as a solid state heat engine
as it converts heat energy into mechanical energy. This unique behaviour can be used
in applications such as civil structures, robotics, etc. [58]. The same material under
different ambient temperature condition could recover a mechanical strain of more than
10% which is known as super-elastic behaviour. This behaviour is also known as pseu-
doelastic behaviour due to the existence of hysteresis loops in the stress-strain curve.
This behaviour is used in applications like vibration damping, stents, etc. Magnetorhe-
ological fluid (MRF) is one of the smart materials which exists in liquid form. This
MRF could change its viscocity under a varying magnetic field. Magnetorheological
elastomers (MRE) are polymers which change their stiffness under varying magnetic
fields. In active vibration control applications, the dynamic properties of the suspen-
sion system made of MRF and MRE, are modified desirably by external magnetic field
to achieve the controlled dynamic behaviour. Such materials which can significantly
change their physical properties are called smart materials. Potential applications of
such materials attracted the research community to do engineering studies of these ma-
terials. One of these materials which falls into this category for its strong interaction
between electrical and mechanical fields is called piezoelectric material.

1.2 Piezoelectric materials

Piezoelectricity is derived from the Greek language – ’piezo’ means press and electric
means amber, a source of electric charge. Piezoelectric material responds electrically for
a mechanical stimuli, which is called direct piezoelectric effect, and mechanically for an
electrical stimuli, which is called converse piezoelectric effect. These special behaviour
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−

−+

+

Figure 1.1: Direct piezoelectric effect.

−

−+

+

Figure 1.2: Converse piezoelectric effect.

are schematically shown in Fig 1.1 and 1.2. For the direct piezoelectric effect, material
exerts surface charges when it is subjected to external stresses. The direction of flow of
surface charges depends on the poling direction of the material and on the sense of the
external stresses. For the converse piezoelectric effect, the material exerts a mechanical
strain by applying an electric field. The strain will be compressive or tensile which again
depends on the poling direction4.

This electromechanical coupling is linear within a certain loading range. This strong
coupling behaviour can be identified by using a piezoelectric coupling factor. This
piezoelectric coupling factor (k) is defined as the square root of the ratio of electrical
energy converted to mechanical energy per given electrical energy or as the square root

4The piezoelectric material is electrically poled in nature. The direction from negative to positive
charge is known as poling direction.
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1.3 Linear piezoelectric behaviour

of the ratio of mechanical energy converted to electrical energy per given mechanical
energy. The value of k is 0.7 or more [53] for piezoelectric materials. Another notable
factor of this material is its response time. The response time of the material is observed
to be very small which is advantageous for control applications. Degradation of material
property under electric fatigue is little, making it reliable during its life cycle.

Due to its strong electromechanical coupling behaviour, less response time and high
reliability, it could be used for various applications such as sensors and actuators. For
example, in load cells, displacement sensors, etc., a voltage exerts in these devices which
is proportional to measuring mechanical load or displacement as an output signal for
calibration and measurement. In actuator applications, the given input signal in terms
of voltage can be used for actuation output. It could also be used for some closed
loop feedback control applications such as active vibration control, structural health
monitoring, etc. As an example, the amount of fuel injection can be controlled to
improve fuel efficiency and also to reduce emission by using fuel injectors with stacked
piezoelectric actuators. This control system senses the NOx, carbon monoxide etc. from
the emission and gives the actuation signal accordingly.

1.3 Linear piezoelectric behaviour

In order to understand the mechanism behind this behaviour, let us consider a unit
cell of one of these materials, e.g. BaTiO3 or PZT, see Fig. 1.3. Even in the absence
of an electric field, there is a separation between positive and negative charges. Due
to this separation, an electrical dipole is present in the material. When the electric
field is applied, due to Coulomb forces, the displacement between charges vary and the
variation depends on the applied electric field. Thus, the applied electric field varies the
electric dipole moment and therefore, the electric displacement. The change in electric
displacement due to the applied electric field is given as

D = P + ε0E = ε0[1 + χe]E = εE (1.1)

where P is the polarisation, ε0 is the electric permittivity of free space, χe is the electric
susceptibility1 and ε is the dielectric constant. Due to the change in displacement be-
tween charges under the electric field, there exerts a mechanical strain on a macroscopic
scale. The relation between the exerted strain and the applied electric field is given as
follows

ε = dE (1.2)

where ε represents the strain and d represents the piezoelectric coupling coefficient.
Similarly under external stress, the material undergoes a change in mechanical displace-

1For piezoelectric material, the electrical susceptability is in the order of 103, which leads to the
approximation D ≈ P .
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+

−
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T i4+

O2−

Figure 1.3: Tetragonal piezoelectric unit-cell as an electric dipole, [59].

ment. As a result, there exerts a change in displacement between charges. Thus the
applied stress gives an electric displacement along with the strain. This behaviour under
external stress can be represented as,

ε = Cσ (1.3)

D = d∗ σ (1.4)

where σ is the stress, d∗ is the piezoelectric coefficient2 and C is the compliance.

1.4 Linear three-dimensional constitutive relations

The constitutive relation of piezoelectric material is anisotropic in nature. There exists
a four fold symmetry along the poled direction. Due to this, the material properties
in two orthogonal directions lateral to poled directions coincide. By considering e3
as a poled direction, the constititive relation can be represented using a matrix form
with Voigt notation as in eq.(1.5). Due to the four fold symmetry, the properties in
the direction along e1 and e1 are the same. In the polycrystaline material, there is
a rotational symmetry along a poled direction in macroscopic scale. Therefore, it is

2The piezoelectric coupling coefficients d in eq.(1.2) and d∗ in eq.(1.4) are numerically identical. This
comes from the principle that within the reversible electromechanical regime, there exists an energy
potential Ψ . This energy potential is independent of the loading path. So that

d∗ =
∂2Ψ

∂σ∂E
=

∂2Ψ

∂E∂σ
= d .
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1.5 Non-linear ferroelectric behaviour

commonly considered as transversely isotropic with the plane of isotropy being normal
to the poled direction,




ε1
ε2
ε3
ε4
ε5
ε6
D1

D2

D3




=




C11 C12 C13 0 0 0 0 0 d31
C12 C11 C13 0 0 0 0 0 d31
C13 C13 C33 0 0 0 0 0 d33
0 0 0 C44 0 0 0 d15 0
0 0 0 0 C44 0 d15 0 0
0 0 0 0 0 C66 0 0 0
0 0 0 0 d15 0 ε11 0 0
0 0 0 d15 0 0 0 ε11 0
d31 d31 d33 0 0 0 0 0 ε33







σ1
σ2
σ3
σ4
σ5
σ6
E1

E2

E3




. (1.5)

However, this consideration is not valid in a single crystal piezoelectric material.

1.5 Non-linear ferroelectric behaviour

The linear piezoelectric behaviour is limited to a certain range of an applied electric field
or mechanical loading. Beyond this limit, it behaves non-linearly and this non-linear
behaviour is referred to as ferroelectric behaviour. This non-linear behaviour arises
from the polycrystal nature of piezoelectric material. In a polycrystal piezoelectric ma-
terial, the polarised crystals are oriented in different directions. In case of randomly
oriented polarisation directions at the level of the single crystals, the macroscopic po-
larisation obtained by averaging the polarisation contribution over the entire region of
the polycrystaline material results in negligible effective polarisation. In order to ob-
tain the polarisation effect in the material for a specified direction, the crystals need to
be oriented towards that direction. The process to orient the crystals to the favorable
direction is called poling.

In a piezoelectric material with a tetrogonal crystal structure, a unit cell can have
six possible variants as shown in Fig. 1.4. A region of crystals contains single variant
is called domain. Fig. 1.5 shows a piezoelectric polycrystal structure and the schematic
sketch of the same. In this picture, arrows represent the direction of polarisation or
dipole direction. Domains which distinguish the region from its adjacent region by its
direction of polarisation are shown in thin lines, where the grain boundaries are shown
in thick lines.

By applying an external electric field, the crystals in the domain will switch from
one variant to another, see Fig. 1.6. This phenomenon of reorientation is called domain
switching. As each of the variants have different polarisation direction and different
dimensions in a particular axis, the change in domain from one variant to another
gives macroscopically a change in polarisation and strain. This switching phenomena
is irreversible and thus the material behaves non-linear during this process. This non-

7



1 Introduction

Figure 1.4: Six variants of a tetrogonal crystal structure.

Figure 1.5: A polycrystaline grain structure [3] and a schematic picture of a polycrystal grain structure.

−

+

Figure 1.6: Schematic picture of the orientation of domains under an applied electrical field.
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B
C

A

D

Figure 1.7: Experimental results of dielectric hysteresis behaviour [124].

.

linear behaviour is referred to as ferroelectricity4. During the domain switching process,
permanent strains will be generated. This nonlinearity can be seen by observing the
change in strains or electric displacement with respect to external stresses or electric
fields.

1.5.1 Dielectric hysteresis

At the unpoled stress free state, the material’s configuration can be identified with the
origin in the graph as shown in Fig. 1.7. Upon applying an electric field, there will be
a change in electric displacement. This change in electric displacement is due to the
displacement of electric charges and is linear and reversible until it reaches point A.
By further increasing the electric field beyond this point, the material obtains remnant
polarisation due to domain switching. The direction of the polarisation is along the
applied electric field. The electric field at this point is called coercive electric field Ec.
The remnant polarisation then increases until it saturates at point B. There it reaches
the maximum remnant polarisation. By reversing the electric field from point B, the
electric displacement decreases linearly until it reaches point C. From point C, upon
decreasing the electric field, the polarisation domains reverse their direction. Thus the
remnant polarisation decreases. This switching occurs until the remnant polarisation is
saturated in the negative direction. The point at this state is referred to as D. Further
reversal of the electric field in the positive direction changes the remnant polarisation
and it thus reaches point A and completes the hysteresis loop.

4The term ferroelectricity derives from the term ferromagnetism due to the analogy between their
behaviour.
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A

B

C

D

Figure 1.8: Experimental results of butterfly hysteresis behaviour [124].

.

1.5.2 Butterfly hysteresis

The ferroelectric hysteresis behaviour could also be observed in the electric field vs strain
curve, which is known as butterfly hysteresis, Fig. 1.8. When the electric field is applied
on the unpoled state of material, which is referred to the origin in the graph, no change
in strain will be observed until the electric field reaches a coercive electric field at point
A. Then the material starts domain switching and thus there will be a change in strain.
This exerted strain is the additive decomposition of reversible part and irreversible part.
The irreversible strain is referred to as remnant strain. The remnant strain evolves until
the material reaches the saturation state of domain switching which is referred to as
point B. Once the material reaches this saturation state, it will show a linear change
in strain with respect to the applied electric field. However, reversing the electric field
to a certain magnitude switches the domain in the reverse direction. As a result, the
remnant strain is reduced until it reaches a point given as point C. At this point, the
remnant strain becomes zero and after this point, the strain starts to increase. The
point where the domains start switching in the reverse direction is given as point C.
During this domain switching, the material exerts a positive strain. Switching becomes
saturated at point D and behaves linearly for the applied electric field. The sign of
change in strain with respect to electric field is opposite between the states from B to
C and from A to D. This is due to the fact that the direction of polarisation is opposite
between the states from B to C and from A to D.

1.5.3 Mechanical depolarisation

When external compressive stresses are applied upon the polarised material along the
poling direction, the material undergoes depolarisation. This is called mechanical de-
polarisation. Fig. 1.9 represents experimental result of this behaviour. In a polarised
material, ideally all the domains are oriented in the poling direction. This state is rep-
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A

B

C

A

B

C

Figure 1.9: Experimental results of ferroelastic behaviour [57].

.

Figure 1.10: Experimental results of ferroelastic behaviour [124].

.

resented as A. Upon applying compression stress, the material behaves linearly until it
reaches point B. Compressing the material beyond this point starts a domain switching
towards the perpendicular plane to the poling direction. The domain switching from
poling direction to its perpendicular plane is called 900 domain switching and the do-
main switching to the opposite direction is called 1800 domain switching. This switching
reduces the remnant polarisation and also the remnant strain of the material which has
been exerted during the poling process. This non-linear switching continues until it
reaches point C. At point C the domains which were oriented towards the loading di-
rection switch to the other orthogonal direction, and thus the remnant polarisation will
be zero at this point. By reducing the load from point C, one can observe a linear
behaviour in the stress-strain curve.
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Figure 1.11: Rate dependent ferroelectric behaviour [125].

Mechanical loading on ferroelectric material causes non-linear hysteresis stress strain
behaviour even without any changes in the polarisation. This behaviour is called fer-
roelasticity. Fig. 1.10 shows experimental result of compressive stress vs strain of the
unpoled ferroelastic material. Upon applying the compressive stress, the domain along
the direction of the applied stress will have a 900 domain switching. This switching
results in an irreversible strain. This switching until all the domains along the loading
direction are switched to the perpendicular plane. Upon further loading, the material
shows elastic behaviour without any irreversible deformation.

1.5.4 Rate dependent behaviour

The rate of loading is found to have a profound effect on the ferroelectric behaviour. As
the frequency of electrical loading increases, the coercive electric field of the hysteresis
loop also increases. Furthurmore, the saturation behaviour in ferroelectric hysteresis
vanishes as the frequency increases. This rate effect could also be observed in the
butterfly hysteresis loop. In a butterfly hysteresis loop, the change in total strain in
a cyclic loading decreases. A schematic depiction of this behaviour can be seen in
Fig. 1.11. This behaviour is due to the fact that, at higher rate of loading, the time
taken for the domain switching process becomes comparable with the time taken for one
complete cycle of loading. As a result, at higher frequencies, even before the completion
of domain switching process, the external loading reverses the applied direction and
consequently attenuates the completion of domain switching. Due to this fact, as the
frequency of loading increases, the process of domain switching reduces. A notable
reduction of polarisation and strain is therefore observed as the frequency of loading
increases.

1.5.5 Thermal effects

As the ambient temperature of the material rises, a notable change can be observed
in the ferroelectric behaviour. From Fig. 1.12, it can be observed that the increase in
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temperature decreases the coercive electric field as well as the saturation polarisation.
As the material’s temperature rises to a certain temperature, the tetrogonal crystal
structure of the ferroelectric ceramics change their crystal structure into a cubic phase.
This phase change temperature is called Curie temperature. The phase change effect
can be observed in the experimental results of differential scanning calorimetry, Fig. 1.13
(d). Close to this temperature, the ferroelectric hysteresis behaviour is observed to have
a double hysteresis loop, Fig. 1.13 (c). This effect is called antiferroelectric hysteresis.
Upon further increasing the temperature above Curie temperature, the behaviour is
observed to have no hysteresis effect.

Figure 1.12: Temperature dependent ferroelectric behaviour [78].

.

1.6 Ferroelectric composites

Ferroelectric materials have a potential for many electro-mechanical applications such as
sensors and actuators. However, they have some limitations due to their brittle nature.
Because of that, these materials have some short comings like premature failure, diffi-
culties to attach in curved structures, etc. To overcome these difficulties, piezoelectric
composites are designed. Composites possibly give the advantageous characteristics of
individual components. In piezoelectric composites, structural properties such as stiff-
ness, deflection, fatigue life are improved and extend their application regime. These
composites are classified, generally, based on the type of constituent material, spatial
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Figure 1.13: Temperature dependent ferroelectric behaviour [8].

.

arrangement of material phases and also based on the type of electrode used for the
actuation [17]. Based on the required properties, epoxy or other polymers are generally
used as the matrix material. According to the spatial arrangement of the piezoelectric
material, the composites are classified as particulate, fibrous and laminar. Composites
are also classified as n-m composites [89], where n and m are integers that represent
the number of material flow of piezoelectric and matrix material respectively. For ex-
ample, 1-3 composites, 2-2 composites, etc. In fiber composites, one can have different
cross-sections such as rectangular fibers, round fibers and hollow fibers based on the ad-
vantages of different manufacturing techniques [66, 118]. Electrodes in the composites
are classified as areal electrodes and interdigitated electrodes. Interdigitated electrodes
have been introduced by Hagood et al. [44] to increase the electromechanical coupling
by applying the electric field along the fiber direction. Active fiber composites and
macrofiber composites are examples of interdigitated electrodes.

1.6.1 1-3 composites

Among various classifications of piezocomposites, 1-3 composites are one of the popular
types of composites. Fig. 1.14 shows the schematic representation of 1-3 composites.

14



1.7 Motivation for this work

Figure 1.14: 1-3 composite.

.

In this composite, the piezoelectric fibers are embedded in a polymer matrix material.
The fibers are poled along the axial direction of the fiber and electrodes are attached
to the surface of the fibers. Due to the ease of poling and various advantages over
monolithic material, the composite has been studied to a larger extent than other two
phase piezoelectric composites.

The dice and fill fabrication technique is used for manufacturing 1-3 composites. By
applying this technique, a solid piezoceramic disk will be grooved. This piezoceramic
material will be poled before grooving. The grooved space will be filled with epoxy resin
or any matrix material. Thereafter, the filled resin will be cured by bringing it to room
temperature. Finally, the remaining ceramic base will be ground to form a required
composite shape. Electrodes are then attached to the surface for the actuation. The
arrange and fill technique is another technique used to manufacture the composite. By
applying this technique, the fibers are arranged inside a mold and filled with epoxy
resin and let to solidify. Here, the electroding and poling will be carried out once the
composite is cut for the required dimensions.

1-3 composites have advantages such as low density, high sensitivity, high electrical
capacitance, strong piezoelectric response in both transmit and receive operations, wide
energy transformation band width, better damage resistance to mechanical shock and
vibration, tailored acoustic impedance, etc. [75, 95] This composite is used for various
applications such as piezoelectric tactile sensors, vibration energy harvesters, acoustic
transducers, inertial sensors, pulse-echo ultrasonic transducer arrays, hydrophones, etc.
[73, 104, 115].

1.7 Motivation for this work

Piezoelectric materials and their composites are useful as sensors. These materials could
be used for large strain actuation applications. Due to their reliability and micro-second
response, the material is also very useful in control applications. Because of the impor-
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tance of ferroelectric materials and their composites in engineering applications, a well
structured mathematical model needs to be developed. The development of such a
model will be useful for application engineers who engineer this material for their ap-
plications in efficient and effective manner. Requirements of some applications can be
such that the materials will undergo multiaxial loading. The response of the material in
poling direction is different from the response of the material in the direction perpen-
dicular to the poling direction. For such multiaxial loading applications, the uniaxial
constitutive model is not sufficient, and therefore a three dimensional constitutve model
needs to be developed which should also incorporate the anisotropic behaviour. Switch-
ing behaviour is a main phenomena in ferroelectric materials. Therefore, the nonlinear
response of the material needs to be integrated in the model. From considering the
importance of the material behaviour and the requirements of the constitutive model,
developing a three-dimensional nonlinear ferroelectric constitutive model for ferroelec-
tric material is a significant contribution in this field of research. Due to the advantages
of ferroelectric composites over bulk material, it is also essential to develop a model to
capture the behaviour of ferrocomposites. With these motivation factors, in this work,
different three-dimensional nonlinear ferroelectric constitutive models are proposed to
capture the influence of electrical loading rate, electrical loading amplitude, electrome-
chanical loading and thermal loading. Also, homogenisation techniques are discussed
for ferroelectric behaviour of composites to predict their effective properties.

1.8 Notation

The notations used in this work are briefly summarised for the reader’s convenience.
Cartesian basis vectors in a three-dimensional Euclidean space are denoted by {ei}
with i = 1, 2, 3. Tensors of first, second, third and fourth order are expressed in terms
of their coefficients [•]i and use of Einstein’s summation convention is made, i.e. vectors
are represented as u = ui ei, second order tensors read S = Sij ei ⊗ ej, third order
tensors take the form e = eijk ei ⊗ ej ⊗ ek, and fourth order tensors are denoted as
T = Tijkl ei ⊗ ej ⊗ ek ⊗ el, respectively. Inner tensor products between tensors of
different order are denoted as the scalar products u · v = ui vi and S : T = Sij Tij, as
well as S · u = Sij uj ei and e : T = eijk Tjk ei, together with e · u = eijk uk ei ⊗ ej
and T : S = Tijkl Skl ei ⊗ ej. Outer tensor products, also known as dyadic products,
are represented as u ⊗ v = ui vj ei ⊗ ej and S ⊗ u = Sij uk ei ⊗ ej ⊗ ek as well as
S⊗T = Sij Tkl ei⊗ej⊗ek⊗el. Moreover, use of non-standard outer products is made,
namely S ⊗ T = Sik Tjl ei⊗ej⊗ek⊗el and S ⊗ T = Sil Tjk ei⊗ej⊗ek⊗el as well as
[S ⊗ v ] = Sik vj ei ⊗ ej ⊗ ek. The second-order identity tensor I and the fourth-order
symmetric tensor Isym are defined as I = δij ei ⊗ ej and Isym = 1

2
[I ⊗ I + I ⊗ I] with

the Kronecker delta symbol δij = ei · ej. The fourth order deviatoric projection tensor
is given as P = Isym − 1

3
I ⊗ I.
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2 Literature review

Piezoelectric material has been extensively studied by the researchers with respect to
its potential on active control applications. This chapter provides an overview on the
literature on various experimental studies conducted on bulk as well as on composites
of piezoelectric materials to understand their different kind of behaviour and properties
under various loading conditions. Thereafter, different ferroelectric material models,
proposed to simulate their behaviour, and several homogenization methods suggested
to obtain the effective properties of piezocomposites are reviewed.

2.1 Experimental studies

Various experimental setups and methods were used to predict the piezoelectric and
ferroelectric behaviour of the material [1, 36, 110, 124]. Linear range material parame-
ters are obtained with the resonator method by exciting the material to resonance and
anti-resonance frequencies. Non-linear behaviour patterns in general are studied using
uniaxial cyclic electric fields. Triangular cyclic electric fields are commonly applied for
this study. The range of the applied electric field reaches upto ±2.5KV/mm. That
requires high voltage even for this specimen. In order to avoid arcing due to such high
voltage, the experimental setup is immersed in a silicon oil bath. The shape of ferro-
electric material is chosen for the requirement of the experiment. The material is then
cut from bulk ceramics and electroded on two opposite faces to apply electrical loading.
The Sawyer tower circuit is used to measure the electrical displacement. Displacement
sensors such as strain gauge, LVDT or laser vibrometer are chosen based on the re-
quired accuracy and suitablity to the experimental setup. Huber et al. [48] studied the
polarisation rotation behaviour. In this study, a block of specimen is cut from a plate
of poled ferroelectric material with the faces of the blocks cut at differing angles to the
poling direction. The authors used this experiment to study the change in polarisation
with the electric field for various angles from the poling direction.

Experiments under mechanical loading are quite challenging due to the brittle nature
of the material. The report of Hwang et al. [51] describes the experimental setup for
electromechanical loading to study its nonlinear ferroelectric behaviour under constant
stress. A servo-hydraulic device is set up to apply a constant mechanical load and a
load cell is used to determine the external stresses. Some studies are motivated based
on temperature dependence of the material behaviour. In [56], the authors used a ring

17



2 Literature review

heater with a PID controller to study the behaviour at constant temperature. For such
experimental setups, a thermocouple is one of the commonly used temperature sensor.

As an actuator with complicated shapes, piezoelectric material can undergo high
compressible stresses. Behaviour patterns at high stresses are studied to understand the
permanent deformation and performance degradation during such loading condition
[67]. Studies on this aspect revealed the inelastic nature of this material in stress
strain behaviour [68] which is referred as ferroelastic behaviour. Soft doped piezoelectric
materials, which are characterized by high relative permittivity are observed to have this
ferroelastic behaviour prominant than hard doped piezoelectric materials. Hence, it has
been suggested that hard PZTs can be used for high stress levels without depoling or
permanent strain. From the stress-strain curve of polycrystalline barium titanate, it was
noticed that the material has lower strength during tension than during compression
[112]. This observation gave the motivation to study the nonsymmetrical deformation
of the PZT. It is observed that the value of plastic strain is double in tensile loading
compared to compressive loading for the same stress value [37]. In another study,
increasing compression load resulted in decreasing remnant polarisation [18]. Further
studies under compression stress also showed a reduction in the dielectric hysteresis and
butterfly hysteresis [126].

Recent studies have shown that the ferroelectric properties of piezoelectric material
are highly influenced by the grain size of the material. In the work of Arlt et al. [4], for
barium titanate ceramics, it was observed that the decrease in grain sizes less than 10
µm decreases the width of ferroelectric 90o domains. Therefore, decreasing grain size
increases the dielectric constant of the material. For the material with very fine sized
grain (> 0.7µm), the dielectric constant starts reducing. From the experimental work of
Zhoa et al. [123], the decrease in grain size distorts the tetrogonal lattice structure and as
a result reduces the heat of phase transition as well as the Curie temperature. Liu et al.
[76] conducted the experimental studies on ferroelectric films for a relationship between
coercive electric field and grain size. According to their observation, the coercive value
increases by decreasing the grain size until it reaches a critical grain size and then it
starts decreasing rapidly. It has also been observed that the dependency of coercive
value with the grain size increases as the film thickness decreases.

Studies on thermal effects of ferroelectric materials are important to improve the know
for design of the material for applications like fuel injector or other high temperature ac-
tuation systems. The study [74] reported that there is an increase in dielectric constant
with respect to temperature. Various non-linear behaviour patterns of piezoelectric
material at high temperature are reported in the literature. At high temperatures the
material has been observed to have low ferroelectric hysteresis effect [39]. It has also been
observed to have low ferroelastic hysteresis [117]. These experimental results were the
motivation to propose temperature dependent domain switching models [102]. Above
the Curie temperature materials undergo a phase change which results in depolarisation.
Such thermal depolarisation due to phase change is studied by Gonzalez-Abreu et al.
[41]. In this work, the authors tested the phase change temperature for various lead
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free ferroelectric ceramics and also presented the change in polarisation with respect to
temperature. Ma et al. [78] studied the PLZT material for temperature effects on ferro-
electric behaviour. From their observation, the value of coercive electric field decreases
as the temperature increases. In the work of Bai et al. [8], the ferroelectric hysteresis
is observed to have a double hysteresis antiferroelectric behaviour as the temperature
gets close to the Curie temperature. The behaviour at high frequency of loading varies
from low frequency loading. This loading rate dependency on ferroelectric properties
is reported in [124]. According to their findings, ferroelectric domain switching is more
prominent for lower frequencies of loading than for higher frequency.

In addition to bulk PZT studies, considerable experimental research has been per-
formed on piezocomposites. Experimental setups used for ferroelectric materials are
used for measuring the behaviour of composites as well. Experimental studies on piller
shaped PZT composites showed that the material parameters not only depend strongly
on the type and volume of matrix material but also on the spatial distribution of the PZT
pillers [45]. From the experimental studies of Furukawa et al. [113] on piezocomposites
with epoxy resin as a matrix, the dielectric constant is noticed to have strong temper-
ature dependence for high volume fractions of the matrix. Dynamic properties of the
material are important for high frequency applications like sound attenaution. Grewe
et al. [42] showed that the acoustic properties of particle filled composites depend on
the particle type, the particle size, the volume fraction of the filler, the polymer matrix
type, and the adhesion properties between matrix and the filler. An attempt to study
the influence of fine (10-50 µm) piezofibers showed a reduction in material constants.
The reason behind such results were reported due to the damage of piezo fiber during
the poling process [109]. Non-linear behaviour of 1-3 composites has been studied by
Jayendiran et al. [55]. In their study, a reduction in the ferroelectric hysteresis nature
of the composite by increasing the volume fraction of the fiber is observed. Piezocom-
posites also have a similar reducing effect of ferroelectric hysteresis as the temperature
increases [56].

2.2 Ferroelectric constitutive models

To design an actuation system for certain applications, a mathematical model for the
constitutive behaviour of the material has to be established. There are various references
in the literature that deal with the constitutive modelling of ferroelectric materials to
predict the non-linear behaviour of these materials. Various methods are used through-
out the literature based on the scale of the material under consideration. In atomic
scale models, atoms of a unit cell and the interaction between them are considered for
the system of analysis. The works [24, 38, 116] used ab initio calculations via quantum
mechanical principles for solving the fundamental interactive forces between atoms in
the crystal structure. To imply the quantum mechanical principles, the Schroedinger
equation is solved for such system. However, it is highly demanding to solve this prob-
lem even for a small system. The Density Functional Theory (DFT) is commonly used
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to reformulate this problem in order to overcome its complexity. Even though this
first principle study is not able to describe the ferroeletric behaviour, it could be used
to study phase change properties, electromechanical properties, optical and magnetic
properties of the material, which are helpful in developing relatively large scale mod-
els. Other than atomic scale models, ferroelectric models are commonly classified as
micromechanical and phenomenological ones.

2.2.1 Micromechanical models

Micromechanical models consider the interaction between domains and grains. In mi-
cromechanical models, the constitutive behaviour of a single crystal is taken into ac-
count. The effective behaviour of a ceramic polycrystal is obtained by averaging a large
number of crystals with different orientation. Hwang et al. [51] introduced this method
to simulate the electromechanical behaviour of the switching process. In this study, a
tetragonal crystal structure is considered and therefore the domain switches within six
possible variants of the crystal structure. The driving force for this switching phenom-
ena is obtained based on work energy criteria for a given electromechanical load. 10,000
grains are considered with random orientation, and the stress and electric field that are
applied to all these grains are considered to be homogenised by using the Reuss approx-
imation. The calculated spontaneous strains and polarisation of each grain with respect
to their individual coordinates are then transformed to a global coordinate system. The
resulting strains and polarisation in the global coordinates are then averaged to model
the macroscopic ferroelectric effect. The simulation results gave insight of the ferro-
electric hysteresis, butterfly hysteresis and mechanical depolarisation. [83] considered
grain orientation parameterized as a function of Euler angles. The quantity of internal
variable such as remnant polarisation and strain in orientation space render a related
macroscopic contributions. Equation for switching criteria in this work is considered so
as to comply with transversely isotropic symmetry of material properties.

Models discussed previously did not consider interaction between the grains. This
interaction gives an additional contribution to work energy potential in the switching
criteria and this additional contribution is denoted as interaction energy. This interac-
tion energy in the system considered in [81] is calculated using the mean field theory.
[23, 52] used this interaction energy in the switching criteria for their model. In addi-
tion thereto, [23] extended the previous micromechanical work by considering the crystal
structure change between rhombohedral and tetragonal systems. A study on accounting
the switching phenomena between these two crystal structure in PZN is shown in [92].
Six variants of tetrogonal structure and eight rhombohedral variants were considered
for domain switching. Furthermore, the authors considered a saturation in linear piezo-
electric effects at large applied electric field. In [22], the authors extended this model to
capture the antiferroelectric effect. Huber et al. [49] extended the micromechanical ap-
proach to consider the change in linear piezoelectric properties by using a self-consistent
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scheme for the polycrystal. Later, the authors used a viscoplastic approach [48] instead
of a perfectly plastic approach to improve the computational efficiency.

Instead of a random orientation of crystals, [50] considered volume fractions of six
variants to calculate the remnant strain and remnant polarisation. Changes in volume
fractions of each variant depend on the switching criteria. Elhadrouz et al. [34] de-
veloped a micromechanical model for ferroelectric single crystals. In this model, the
interaction energy term is obtained from the kinematic adjustments with the adjacent
domains. The simulation results show the change in strain and electric displacement
of a poled material which is termed as mechanical depolarisation. Based on an effec-
tive medium approximation, Roedel and Kreher [96, 97] developed a model to describe
a polycrystalline behaviour of ferroelectrics. In this model they considered only the
domain wall motion and excluded the domain switching. With this consideration, the
model could capture the minor hysteresis of the poled ferroelectric ceramics. To study
the domain patterns and their evolution, Zhang et al. [121, 122] introduced a phase field
modelling approach. In this work, the finite difference method is used to solve related
boundary value problems. The authors studied the domain motion for various condi-
tions such as cubic to tetrogonal transformation and different electromechanical loading.
Ferroelectric hysteresis curves have also been obtained by averaging the field variables
over the domain. In the works [98, 111], the authors implemented the domain evolution
in finite element analysis framework. Xu et al. [119] used this micromechanical analysis
to predict the mesoscopic response.

Kim and Jiang [64] formulated a model to describe its rate dependent effect. In this
formulation, the evolution of mass fractions, which are considered as internal variables,
depends on the frequency of the applied loading. This model is implemented in the finite
element method and obtained ferroelectric hysteresis and butterfly curves for different
rates of loading. The results could predict the qualitative behaviour of the experimental
observations. A micromechanically motivated model for rate-dependent response of
piezoceramics using finite element formulation is discussed in Arockiarajan et al. [5, 6].
Using a finite element formulation, in [5], the piezoelectric problem is reduced to a
purely electrical problem by considering only the electric degrees of freedom. Later on,
this work was extended to electromechanical loading, [6]. In [7], the authors used an
additional term in the energy based switching criteria to consider the impact of grain
boundary effects. To consider the non-uniformity in the grain size, Jayabal et al. [54]
used a polygonal finite element approach to predict the intergranular effects.

2.2.2 Phenomenological models

The consideration of switching for each crystal leads to a large number of variables.
Thus, this approach is computationally inefficient for the simulation of large scale real
world application systems. This requires a model with few variables, respectively degrees
of freedom, for macroscopic systems. This motivates the development of phenomeno-
logical macroscopical models.
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The works [29, 30] are one of the early studies on phenomenological modelling of
non-linear ferroelectric behaviour. In this phenomenological treatment, a free energy
potential is considered as a function of dielectric constant, crystal structure, internal
energy and self polarisation which vary with respect to temperature. This model was
able to calculate the dielectric constant and remnant strain for various temperatures
and also for different crystal structures. However, this approach is limited to a stress
free one-dimensional analysis. Chen et al. [19–21] proposed a constitutive relation and
rate law of internal variables for electromechanical behaviour. In their approach, the
electric dipoles, which represent the macroscopic electrical properties, can alter their
magnitude and direction by external stimuli. They considered the dipole response to be
transient and instantaneous to represent rate dependent behaviour. With this approach,
they successfully captured the ferroelectric and butterfly curves. However, this model
lacks the capturing of further electromechanical phenomena.

Many phenomenological models have been developed based on a thermodynamical
framework which is analogous to the theory of plasticity. In this model, two sets of state
variables are used to describe the state of the system. These are external variables, which
describe the observables on the current state of the system and internal variables, which
describe the nature of the system due to the history of loading. Internal variables are
essential in such a model to describe the irreversible hysteresis behaviour of the material.
Stating evolution functions and the conditions for evolution of these variables are the
main theme in developing the constitutive relation. These evolutions are developed in
such way that they fulfil the Clausius-Duhem inequality.

One thermodynamically sound phenomenological model is presented in Bassiouny et
al. [10–13]. In these works, a free energy function per unit volume is introduced as a
function of temperature, strains and the polarisation. The polarisation is additively
decomposed into a reversible and an irreversible part, which serves as internal state
variable. These internal variables are computed based on the maximum dissipation hy-
pothesis. For rate-independent effects, an electric loading function, or rather switching
criterion, is suggested to determine the evolution of the internal state variable. With this
model, they could capture the ferroelectric hysteresis for different compressible stresses.
In [11], the authors presented an analysis for a ferroelectric circular cylinder subjected
to torsion and a longitudinal electric field.

Cock and McMeeking [25] developed a phenomenological model using the idea of
Bassiouny’s work. They developed a one-dimensional model which reflects the dielectric
and the butterfly hysteresis. In this model, kinematic hardening concepts are used to
capture the ferroelectric switching. Landis and McMeeking [71] developed a model to
simulate the ferroelastic behaviour. They adapted the plasticity theory with a quadratic
switching surface along with the associated flow rule. However, the scope of this model
is only to capture the behaviour due to mechanical loading and therefore it does not
deal with electrical loading.

Kamlah and Tsakmakis [59, 61] developed a one dimensional ferroelectric and fer-
roelastic domain switching model. This model could capture most of the nonlinear
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electromechanical phenomena. Remnant polarisation and irreversible strains are used
as the internal variables. They used a separate yield surface for ferroelectric and fer-
roelastic switching. In addition, two separate surfaces were introduced to condition the
saturation limit. With the use of linear kinematic hardening, the model could capture a
ferroelectric, ferroelastic and butterfly curve hysteresis in a reasonable manner. In this
contribution the irreversible strain part is additively decomposed into two parts, where
one evolves from ferroelastic switching and where the other part is due to ferroelectric
switching. The ferroelectric switching part is obtained from a direct relationship to the
remnant polarisation. The model also considers the saturation polarisation as a function
of stress. By using this function, the mechanical depolarisation effect could also be cap-
tured. Due to the complexity involved in the evolution of the internal variables, they are
computed using the Euler forward method, which requires a small time step of loading.
Later, this model was extended to three dimensions with the idea of implementing it for
the finite element analysis [60]. It has been observed to have a convergence issues during
the implementation which was overcome with a staggering approach. Despite its lack
of numerical efficiency, the analysis of stacked actuator was successfully implemented.

Landis [72] developed a rigorous thermodynamical framework for a three-dimensional
constitutive relation to capture ferroelectric, ferroelastic, butterfly hysteresis and me-
chanical depolarisation. In this approach, he used a single switching surface for all
different switching phenomena. Remnant polarisation and irreversible strains were con-
sidered as internal variables. McMeeking and Landis [82] simplified this formulation
by considering remnant polarisation as internal variable for the cost of limiting its ca-
pability on capturing ferroelastic behaviour. Schröder and Romanowski [100] used the
idea of only one switching criterion for their work. They used the coordinate invariant
thermodynamically consistent model which is based on the work of Schröder and Gross
[99] and which accounts for the dielectric hysteresis as well as the butterfly hysteresis.
In the uni-axial model the polarisation direction is assumed to be constant, which limits
the model from capturing the polarisation rotation.

A rate-independent ferroelectric and ferroelastic model is suggested by Klinkel [65].
In this model, a key difference from other models is that it uses an irreversible elec-
tric field as an internal variable instead of irreversible polarisation. Irreversible strain
is also used as the internal variable which is further additively decomposed into two
parts, with one contribution being directly related by a one to one relation with the
irreversible part of the electric field and the other part is due to the mechanical depolar-
isation term. This approach could capture ferroelectric, ferroelastic, butterfly hysteresis
and mechanical depolarisation. It could also capture the different saturation limit of
strain under compression and under tension in ferroelastic behaviour. The model is
flexible enough in capturing the experimental results. A wide range of experimental
data as well as simulation results are captured by this model. However, under cyclic
electric loading with constant prestress, the simulation results produce a ratcheting be-
haviour in the butterfly curve which is an unphysical phenomenon and is not observed in
the experiments. A rate-dependent formulation of ferroelectric behaviour, conceptually
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analogous to viscoplasticity, is established in Miehe and Rossato [84]. In this model, the
irreversible polarisation is modelled as an internal variable and captured and the model
is formulated based on an incremental variational framework. This model reflects the
rate dependent behaviour of the material which is observed in the experiments. With
this model, a boundary value problem is solved by implementing it in a finite element
analysis framework. Later this work is extended to electro-magneto-mechanical coupling
problems [85]

Typical piezoelectric finite element models use displacements and the electric po-
tential as nodal degrees of freedom, see Gaudenzi and Bathe [40]. Accordingly, the
electric field and the strains are calculated from the gradients of the nodal degrees of
freedom. By assuming the free charge density in the volume to be zero, the diver-
gence of the electric displacement can equate to zero. Thus, the electric displacement
can be derived from a vector potential. Considering this vector potential as the nodal
degree of freedom instead of the usual scalar potential, Landis [70] presented a new
formulation. This method improves the numerical stability for nonlinear ferroelectric
constitutive equations. In Kamlah and Böhle [60] the finite element analysis is carried
out in a two-step scheme to avoid a switching of variables. In the first step a purely
dielectric boundary problem is solved to obtain the electric potential. In the second
step, the electro-mechanical problem for the mechanical boundary conditions is solved
with the prescribed electric potential from the first step. For the finite element solution,
Newton’s method was employed including the analysis of the domain switching process
with incremental loading steps. Since the constitutive relations are highly nonlinear due
to hysteresis effects, the Newton iteration scheme is used. This procedure is standard
for solving problems with inelastic material behaviour, see e.g. Simo and Hughes [106].
Such procedures are also used in Klinkel [65] and Miehe and Rossato [84].

2.3 Models for piezocomposites

The aim of piezocomposite modelling is to predict the variation in the effective response
of the composite with respect to the volume fraction and complex geometry of the con-
stituents, thermal effects and also the electromechanical properties of matrix material.
These models are important not only for the design of the actuator system applications
but also for the design of the piezocomposite itself to tune the properties for requirement.

Newnham et al. [89] introduced an analytical model based on the connectivity for
piezocomposites to predict its structure-property relations with respect to series and
parallel connectivity. Using this relation, Banno [9] developed an analytical model to
calculate the behaviour of 0-3 type and 1-3 type composites. Later, Aboudi [2] used
this procedure to calculate the thermo-piezoelectric properties of the multiphase com-
posites. Smith and Auld [108] developed a material model to predict the material prop-
erties which govern the thickness mode oscillation in thin 1-3 piezoelectric composites.
Schulgasser [101] developed a method to obtain the effective behaviour of composites
by considering only the volume fraction and excluding the geometry of the constituents.
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In this approach, both the fiber and matrix are considered as a transversely isotropic
material. In [107], the author used a parallel-series connectivity approach for 1-3 com-
posites as in [89] to find out the properties for hydrostatic coefficients. This work aims
to facilitate as a design tool for underwater application. Sigmund et al. [103] developed
a topological optimisation method to enhance the performance of 1-3 composites for
underwater hydrostatic applications.

In an analytical method developed by Benveniste [15], effective constants of the com-
posite aggregate are calculated from the local field by considering uniform strain and
electric field intensity throughout the material. Dunn and Taya [31] developed a piezo-
electric analogy to Eshelby’s tensor [35] in the elastic case. Later, the authors used this
method to formulate a model for fiber composites with a cylinderical inclusion [32]. For
non-dilute concentration, the authors extended a mechanical field formulation by Mori
and Tanaka [86] and Benveniste [14] to the electromechanical field formulation. Haung
and Kuo [47] developed an analytical technique to determine the effective properties of
piezoelectric composites containing spatially oriented short fibers. Here, the effective
material constants are expressed in terms of phase properties, volume fraction and shape
inhomogeneity by treating the fibers as spheroidal inclusions. The results show that the
longitudinal and in-plane shear moduli increase with fiber length, while the piezoelec-
tric and dielectric constants decrease. In the work of [69], the authors expressed the
effective constants by investigating composites as a three-dimensional anisotropic inclu-
sion of piezoelectric material in a matrix. With the results, they came to the conclusion
that the electromechanical coupling is strongly affected by both the volume fraction and
the orientation of the inclusion. Poizat and Sester [94] also mentioned the piezoelectric
effects as a function of volume fractions along with the aspect ratio of the inclusion.

Kar-Gupta and Venkatesh [62] developed a homogenisation method for capturing
the electromechanical response for 1-3 piezoelectric composites. In this work, both the
matrix and fiber are considered to be transversely isotropic and piezoelectrically active.
Bonnet [16] showed this method to solve for composites with elliptic cross sections and
multi-phase fibrous composites. Dell and Shu [27] investigated a 1-3 composite with both
an active and passive matrix using the micromechanics based Mori-Tanaka model. With
the results, they concluded that the active polymer matrix can improve the hydrostatic
performance more significantly than passive matrix material.

In the research work discussed above, the homogenisation methods to calculate the
effective responses of the piezoelectric material omit the information on the geometry
of the fiber. There are methods which adopt the actual geometry of the composite and
calculate the effective properties using finite element analysis. Hossack and Hayward
[46] made an attempt to discover the influence of ceramic volume fraction, pillar shape
and orientation on the piezoelectric characteristics of 1-3 composites using finite element
analysis. In this work, they used circular, triangular and square shape pillars for the
analysis. They suggested that this numerical method could be used as a good design
tool for composites. Silva et al. [105] used the finite element analysis to observe the
effective properties of a composite with complex topology. In this analysis, they used
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periodic boundary conditions for the unit cell. Pettermann and Suresh [93] studied
composites for a different kind of periodic arrangement such as hexagonal and square
arrangements of continuous fibers using finite element method.

Odegard [91] calculated the electromechanical properties of various piezoelectric com-
posites such as Graphite/PVDF fiber composites, SiC/PVDF particle composites, PZT-
7A/polyimide fiber composites, and PZT-7A/polyimide particle composites. The author
used the finite element analysis for the calculation and compared the results with the
Mori-Tanaka self-consistent method. The comparison was carried out for various vol-
ume fractions of piezoelectric material. This proposed method turned out to achieve
results as accurate as the ones achieved by the Mori-Tanaka method. It also has the
advantage of not requiring the iterative scheme as the Mori-Tanaka method. Muliana
[88] estimated time dependent properties of fiber reinforced composites using a finite
element based micromechanical model. In the work of Zhang and Wu [120], they stud-
ied the influence of connectivity and shape of the fiber in the two phase composites. In
this work, 3-0, 3-1, 3-2, and 3-3 are the connectivities and circular cylinder, elliptical
cylinder, and triangular prism are the shapes they have considered.

2.4 Motivation and scope based on the literature review

Due to the importance of piezoelectric materials in engineering applications, a signifi-
cant amount of work has been carried out on its material characterisation and modelling.
From the contribution of experimental work, extensive studies have been made on fer-
roelectric behaviour under the influence of various physical factors such as external
stress, temperature, loading rate, grain size, etc. From the aspect of modelling, both
micromechanical and phenomenological modelling are the two approaches which have
been followed. In micromechanical modelling, with fewer assumptions, physically sound
models have been proposed. The development of such models is useful for multiscale
modeling methods. For the advantage of numerical efficiency in the calculation of large
scale systems, phenomenological models have been developed. Within this classification,
one dimensional models are limited to the analysis of the material which undergoes uni-
axial loading. Three dimensional piezoelectric models have been introduced to analyse
multiaxial loading conditions.

From the literature on phenomenological modelling on bulk ferroelectric materials,
there is only a limited number of proposed models which considered the influence of
stress and temperature on ferroelectric hysteresis behaviour. Therefore, as a part of
this work, a model has been proposed which could capture the influence of dielectric
and butterfly hysteresis under compressive stress. This model has also been developed
so that it could capture the behaviour of mechanical depolarisation and ferroelasticity.
In addition, an elliptical switching surface has been introduced in order to capture the
anisotropic switching behaviour observed in experimental analyse.

The hysteresis behaviour of the material is highly influenced by the amplitude of
the applied electric field. Depending on the magnitude, the material exhibits minor or
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major ferroelectric hysteresis. Along with this behaviour, in a prepoled material, the
material exhibits asymmetric butterfly hysteresis. To capture these behaviour patterns,
a multiple switching surface model has been proposed in this work. To avoid complexity,
the model focuses only on the ferroelectric hysteresis behaviour.

Experimental studies on temperature dependency on the piezoelectric material are
carried out to a large extent. The effect of temperature on the properties of linear
piezoelectric material parameters is implemented in various models. However, the mod-
els merely focus on the effects of hysteresis behaviour due to temperature, in particular
the switch between the ferroelectric hysteresis to antiferroelectric hysteresis and also
thermal depolarisation. Having the importance of temperature dependent ferroelectric
hysteresis model and the fact that it has been merely discussed in the existing literature
as a motivation factor, a temperature dependent model has been proposed. A different
method has been introduced in the calculation of internal variables in order to improve
the numerical efficiency.

From the literature on piezoelectric composites, material properties of the matrix ma-
terial, the volume fraction of the constituents and the distribution of the constituents
are known to have greater influence on the properties of ferroelectric composites. Var-
ious homogenisation approaches have been proposed to predict the effective properties
of ferroelectric materials. However, they mainly focus on the linear piezoelectric be-
haviour. For applications like large deformation actuators, studies on ferroelectric hys-
teresis behaviour of ferroelectric composites are deemed to be important. Therefore,
in this work, a homogenisation procedure to obtain the rate dependent behaviour on
ferroelectric composites from a rate dependent ferroelectric model is proposed. A finite
element homogenisation procedure is also introduced in this work.

2.5 Organisation of the work

The subsequent chapters of this thesis are organised as follows. In chapter 3, an overview
of the aspects of electromechanical modelling is discussed. Here, based on the considered
assumptions, the field equations are introduced. Subsequently, a discusson on consti-
tutive modelling within a thermodynamical framework is given. Using the discussed
framework, a rate dependent ferroelectric model is then presented. For numerical ex-
amples, the material parameters are calibrated based on experimental data for various
frequencies of loading and with that parameters the simulations are performed. The
simulation results obtained are then compared with the experimental data.

In chapter 4, the model introduced in chapter 3 is extended to a multi-surface model.
Here, instead of having remnant polarisation as a single internal variable, it is additively
decomposed into several contributions. Therefore, an independent switching surface for
each internal variable is introduced. Using this formulation, the behaviour of minor
hysteresis as well as asymmetric hysteresis could be captured. Graphical illustration is
given in order to better understanding the ability of the model to capture the mentioned
behaviours. The simulation results are referred to material parameters for parameter
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calibration. In addition, the model is used to simulate the decaying behaviour of offset
polarisation observed in the electrically fatigued specimen is also presented.

In chapter 5, along with ferroelectric hysteresis behaviour, a model is presented which
could capture the behaviour of ferroelastic and mechanical depolarisation. The main
difference from other models available in the literature is the incorporation of anisotropic
behaviour of the switching surface in the poled specimen. This anisotropic behaviour
becomes evident from the polarisation experiments. To reach a qualitative comparison
and to show the capability of capturing various behaviour patterns, the simulation
results are presented along with the experimental results from the literature.

In chapter 6, an alternative approach for solving the evolution equation of inter-
nal variables for ferroelectric models is provided. Using this method, a local iteration
procedure in the finite element analysis can be totally omitted for nonlinear hardening
models. Therefore, this method can be seen as a great improvement in the compu-
tational efficiency. Then the model is implemented in the finite element framework
to solve boundary value problem. Thereafter, a temperature dependent model is intro-
duced. This model is able to capture the thermal depolarisation behaviour as well as the
antiferroelectric behaviour. Numerical examples are then presented for the ferroelectric
behaviour under various temperatures.

Chapter 7 discusses the homogenisation procedures in the analysis of the effective
properties calculation for ferrocomposites. A 1-3 fiber composite with various volume
fractions is used for the analysis. In the first part of this chapter, various semi-analytical
homogenisation procedures are discussed. Following that, a homogenisation procedure
using a finite element analysis is presented. In these procedures, for ferroelectric ma-
terial, the constitutive model introduced in chapter 3 is considered. For the matrix
material, linear piezoelectric constitutive models with negligible coupling terms are con-
sidered. The results from both procedures are then compared with experimental data.
At the end of this chapter, a comparison with both of these procedures along with ex-
perimental data is given. Finally, in chapter 8, the presented work is concluded with a
perspective on future work.
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ferroelectric ceramics

The present chapter deals with the constitutive modelling aspects of ferroelectric mate-
rials. The chapter begins with the introduction on the fundamental governing equations
in electromechanical continua. Following that, the thermodynamical framework on con-
stitutive modelling is discussed. In this section, a stress driven model and a strain
driven model are discussed. Thereafter, a three dimensional rate dependent ferroelec-
tric constitutive model is introduced. In the results section, the introduced model is
used for numerical simulations for various loading frequencies as well as for a so called
polarisation rotation test. For this numerical simulation, the material parameters are
calculated by using a parameter identification procedure based on experimental data.

3.1 Fundamental governing equations

In the present work, relativistic effects and quantum effects are neglected. Hence, the
governing laws involved for electromechanical analysis are the balance of linear mo-
mentum equation and Maxwell’s, respectively Gauß’s electrostatic law. The considered
length scale also leads to assume the material as a continuum. Therefore, the governing
relations are derived within a continuum field theory.

3.1.1 Balance of linear momentum

The rate of change of linear momentum of a material volume is equal to the net external
force applied on it. For the quasi-static case, balance of linear momentum of a continuum
body can be represented in local form as, [114],

∇ · σ + b = 0 (3.1)

where σ represents the stress tensor and b represents the body force. Similarly, the rate
of change of angular momentum is balance with the torque applied. In the absence of
body couple1, the balance of angular momentum results in

σ = σt (3.2)

1In piezoelectric material, a body couple exerts due to the presence of dipoles. However, this torque
is neglected due to the very small distance between the two charges in the dipole.
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The strain tensor ε is derived from the displacement field u, i.e.

ε =
1

2
[∇u+∇ut] . (3.3)

3.1.2 Balance of electric charges

Gauß’s law states that ”The net electric flux through any closed surface is proportional
to the net electric charge enclosed within that closed surface”, [43]. From this, the local
balance of the electric charges is written mathematically as

∇ ·D = % , (3.4)

where D represents the electric displacement vector and % represents the density of the
electric charge. Under the absence of a time varying magnetic field, the electric field is
irrotational. Therefore, from Maxwell’s third equation this can be represented as

∇×E = 0 . (3.5)

An irrotational vector field can be derived from the gradient of a scalar potential. Hence,
the electric field can be represented as

E = −∇φ , (3.6)

where φ is the electric potential given in volts.

3.2 Thermodynamic framework of constitutive
modelling

In this section, a framework for deriving constitutive models for electromechanical be-
haviour using a thermodynamical framework is discussed. The notation •̇ represents
the time derivative. From the first law of thermodynamics, i.e. the law of conservation
of energy, one obtain the relations

ρU̇ = σ : ε̇−D · Ė + r −∇ · q , (3.7)

where ρ represents the mass density of the material, U represents the internal energy, r
represents the heat supplied to the system per unit time and unit volume and where q
represents the heat flux in the material. In eq.(3.7) the left hand side represents the rate
of stored internal energy per volume, the first term on the right hand side represents
the input mechanical power, the second term represents the electrical power, the third
term is the heat supply per unit time and unit volume and the last term represents the
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divergence of heat flux. The second law of thermodynamics expressed in form of the
Clausius-Duhem inequality is given by

ρ η̇ − r

θ
+
∇ · q
θ
− q · ∇θ

θ2
≥ 0 (3.8)

where η represents the entropy and θ represents the temperature. Using eq.(3.7) the
Clausius-Duhem inequality can be reformulated as

ρ[θη̇ − U̇ ] + σ : ε̇−D · Ė ≥ 0 . (3.9)

3.2.1 Strain driven model

The strain is considered as a control variable along with the other control variables as,
e.g. the electric field. A thermodynamic free energy potential ψ is introduced as a
function of control variables and internal variables as

ψ(θ, ε, εi,E,P i) = ρ[U − θη] (3.10)

so that

ψ̇ = ρ[U̇ − θη̇ − ηθ̇] (3.11)

where εi and P i are irreversible strain and remnant polarisation, respectively. For
isothermal conditions, the rate of temperature is zero, i.e. θ̇ = 0, and for the uniform
temperature distribution, the gradient of the temperature is zero, i.e. ∇θ = 0. Along
with these conditions and from eq.(3.11), eq.(3.9) reduces to

σ : ε̇−D · Ė − ψ̇ ≥ 0 (3.12)

where the left hand side of the equation is the rate of dissipation and is denoted by D .
From the fact that ψ is a function of ε, εi,E and P i, ψ̇ can be written as,

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂E
· Ė +

∂ψ

∂εi
: ε̇i +

∂ψ

∂P i
· Ṗ i

. (3.13)

Substituting eq.(3.13) by eq.(3.12) gives

[
σ − ∂ψ

∂ε

]
: ε̇−

[
D +

∂ψ

∂E

]
· Ė − ∂ψ

∂εi
: ε̇i − ∂ψ

∂P i
· Ṗ i ≥ 0 . (3.14)
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Here, the strain and electric field are control variables and so ε̇ and Ė can be taken an
arbitrarily value. Therefore, the coefficients of these variables must vanish in order to
satisfy the inequality constraint. Implying this on eq.(3.14) gives

σ =
∂ψ

∂ε
, (3.15)

−D =
∂ψ

∂E
, (3.16)

D = −∂ψ
∂εi

: ε̇i − ∂ψ

∂P i
· Ṗ i ≥ 0 . (3.17)

By specifying the free energy potential ψ, constitutive equations can be constructed by
using eq.(3.15),(3.16) and (3.17).

3.2.2 Stress driven model

Most of the experimental studies on ferroelectric material performed on the material
are under controlled stress environment. To mimic this situation, the models are also
developed as stress driven model. In a similar fashion to strain driven models, an energy
potential ψ∗ is introduced as

ψ∗(σ, εi,E,P i) (3.18)

Both ψ, ψ∗ can be transformed to one another by using the Legendre transformation.
This transformation is given as follows

ψ∗(σ, εi,E,P i) = σ : ε− ψ(ε, εi,E,P i) . (3.19)

From this relation, the time derivative of these two energy potentials can be related as

ψ̇∗ = σ : ε̇+ σ̇ : ε− ψ̇ (3.20)

Using this relation together with the dissipation inequality given in eq.(3.12) results in

−ε : σ̇ −D · Ė + ψ̇∗ ≥ 0 . (3.21)

Formulating the energy potential ψ∗ in terms of control variables and internal variables
results in

ψ̇∗ =
∂ψ∗

∂σ
: σ̇ +

∂ψ∗

∂E
· Ė +

∂ψ∗

∂εi
: ε̇i +

∂ψ∗

∂P i
· Ṗ i

. (3.22)

32



3.3 Constitutive model for bulk PZT

Substituting eq.(3.22) by eq.(3.21) gives

−
[
ε− ∂ψ∗

∂σ

]
: σ̇ −

[
D − ∂ψ∗

∂E

]
· Ė +

∂ψ∗

∂εi
: ε̇i +

∂ψ∗

∂P i
· Ṗ i ≥ 0 . (3.23)

With the argument that the rate of external variables can be arbitrarily chosen, equating
the coefficients of these variables to zero in order to satisfy the inequality constraint in
eq.(3.23) gives

ε =
∂ψ∗

∂σ
, (3.24)

D =
∂ψ∗

∂E
, (3.25)

D =
∂ψ∗

∂εi
: ε̇i +

∂ψ∗

∂P i
· Ṗ i ≥ 0 . (3.26)

From these results, a constitutive relations for a stress driven model can be obtained.
In the same way, a stress driven model could be modified into a strain driven model
by using a Legendre transformation. Even though the stress driven model resembles
the experimental situation, strain driven models are preferred for the purpose of model
implementation in the context of the finite element method.

3.3 Constitutive model for bulk PZT

In this section, the constitutive model for the non-linear response of ferroelectric ce-
ramics under isothermal conditions is briefly reviewed. Rate-dependent response and
polarisation processes are addressed. Ponderomotive forces are neglected and the stress
tensor is assumed to be symmetric. A thermodynamic potential, defined as electric
enthalpy per unit volume, is introduced as

ψ = 1
2

[ ε− εi ] : E : [ ε− εi ]− ‖P
i‖

P i
s

E · e : [ ε− εi ]

− 1
2
E · ε ·E − P i ·E + ψ̄(P i) , (3.27)
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wherein εi denotes the irreversible strain contribution due to switching and where P i is
the corresponding polarisation contribution which, in the following, is introduced as an
internal variable. Moreover, the underlying constitutive tensors are assumed as

E = λ I ⊗ I + 2µ Isym , (3.28)

ε = − 2 γ I , (3.29)

e = − β1 a⊗ I − β2 a⊗ a⊗ a− 1
2
β3 [ I ⊗ a+ I ⊗ a ] . (3.30)

The vector a represents the polarisation direction P i/‖P i‖. The scalars P i
s , λ, µ, γ,

β1, β2 and β3 are material parameters. The initial reference state is assumed to be
stress-free with vanishing dielectric displacements. The energetic part ψ̄ represents the
contribution stored by the internal variables and may be interpreted as a hardening-type
function. It is assumed to depend only on the internal state variables of the material
and is specified as

ψ̄ = − a ‖P i‖ arctanh

(
‖P i‖
Ps

)
+
aPs

2
ln

(
1− ‖P

i‖2

P 2
s

)
. (3.31)

Based on this, the local dissipation contribution takes the representation

D = σ : ε̇−D · Ė − ψ̇

=

[
σ − ∂ψ

∂ε

]
: ε̇−

[
D +

∂ψ

∂E

]
: Ė − ∂ψ

∂εi
: ε̇i − ∂ψ

∂P i
: Ṗ

i

≥ 0 .

(3.32)

Applying standard arguments of continuum thermodynamics, cf. Colemann and Noll
[26], the stresses and dielectric displacements are introduced as

σ =
∂ψ

∂ε
= E : [ ε− εi ]− ‖P

i‖
P i
s

E · e , (3.33)

−D =
∂ψ

∂E
= − ‖P

i‖
P i
s

e : [ ε− εi ]− ε · E − P i . (3.34)

In the following, irreversible strains are assumed to possess a one to one relation to the
remnant polarisation, i.e.

εi =
3

2

εis
P i 2
s

[P i ⊗ P i ] : P , (3.35)

where εis is a material parameter and the fourth-order symmetric deviatoric projection
tensor is defined as P = Isym − 1

3
I ⊗ I. Note, that εi is assumed to be quadratic
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in the remnant polarisation P i. With this assumption at hand, the local dissipation
contribution remaining reduces to

Dred = −
[
∂ψ

∂εi
:
∂εi

∂P i
+

∂ψ

∂P i

]
· Ṗ i

=

[
3
εis
P i 2
s

[σ : P ] · P i − ∂ψ

∂P i

]
· Ṗ i ≥ 0 . (3.36)

Following the work by Miehe and Rosato [84], the quantity energetically conjugate to the
remnant polarisation is approximated such that its stress-based contribution is neglected
and, moreover, the simplification

Ê = − ∂ψ

∂P i
≈ E − ∂ψ̄

∂P i
= E −

[
a arctanh

(
‖P i‖
P i
s

)]
P i

‖P i‖
(3.37)

is used, which results in Dred ≈ Ê · Ṗ
i ≥ 0. Next, a switching threshold function Φ(Ê)

is introduced that controls the activation of domain switching. In the case of reversible
processes Φ < 0 holds, whereas Φ ≥ 0 is permitted for rate-dependent irreversible
processes. The particular switching function adopted is

Φ =
Ê · Ê
E2
c

− 1 = 0 , (3.38)

wherein the coercive electric field value Ec is a material parameter. With these relations
in hand, (associated) Perzyna-type evolution equations are adopted which results in

Ṗ
i
=
〈Φ〉m

η

∂Φ

∂Ê
=
〈Φ〉m

η

2

E2
c

Ê , (3.39)

with 〈•〉 = 1
2

[ •+ |• | ] denoting the Macauley brackets, so that the simplified dissipation

inequality reduces to a quadratic form in Ê. The material parameters η > 0 as well as
m > 0 influence the rate-dependent response of the electromechanical model.

In view of the numerical integration scheme to update the internal variable P i, an
implicite Euler backward algorithm is applied. Considering a finite time interval with
∆t = tn+1− tn > 0, the actual remnant polarisation P i

n+1 can be determined iteratively
from the residual form

P i
n+1 − P i

n −∆t λn+1
2

E2
c

Ê
(
En+1,P

i
n+1

)
= 0 , (3.40)

where λn+1 = 〈Φn+1〉m/η . As this work proceeds, quantities without any index related
to time are referred to tn+1.

An algorithmic sketch of a constitutive driver for the discussed constitutive model is
given in Tab. 5.1. This algorithm solves for ε and D for given σext and E, where σext

refers to the given external stresses.
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Table 3.1: Algorithmic sketch of the constitutive driver for the rate dependent response of ferroelectric
bulk material.

Given: σext
n+1,En+1, εn,P

i
n

Set: εn+1 = εn, P i
n+1 = P i

n

Compute: Rl, Rg

DOWHILE: ‖Rg‖ ≥ tolg
DOWHILE: ‖Rl‖ ≥ toll

Compute: σn+1,Dn+1 using Eq. (6.2) and (6.3)

Rl = P i
n+1 − P i

n −∆t λn+1
2

E2
c

[
En+1 +

∂ψ̄

∂P i
n+1

]

P i
n+1 ← P i

n+1 −
[

dRl

dP i
n+1

]−1
·Rl

END
Rg = σext

n+1 − σn+1

εn+1 ← εn+1 −
[

dRg

dεn+1

]−1
: Rg

END

3.4 Results

This section presents experimental and simulation results for bulk PZT for different
electrical loading frequencies. This includes calibration of the underlying material pa-
rameters. Material parameters related to the linear piezoelectric behaviour are taken
from the manufacturer datasheet, whereas the parameters for inelastic rate-dependent
behaviour are obtained from a calibration procedure based on experimental data. To
be specific, a least squares functional in terms of differences between measured and
simulated response is used and minimised over the set of material parameters. This cal-
ibartion scheme simultaneously includes experimental data for all frequencies considered
within one single least squares functional so that only one set of material parameters is
identified for all loading frequencies. The specific functional used is

f = min
κ

{∑p

j=1
wj
[
Ssim
j (κ)− Sexp

j

]2}
(3.41)

where κ = {Ec, P i
s , ε

i
s, a, η} is the set of material parameters to be identified. The values

Ssim
j refer to the result of the simulation and Sexp

j are experimentally determined values
at the same time step. The parameter m is set to be 1 while the calibration procedure
is performed. Moreover, p represents the number of data points accounted for and
ωj are additional weighing factors. For the experimentally determined values, Sexp

j ,
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Table 3.2: Material parameters for bulk PZT.

param. name unit value

λ Lamé parameter kN/m2 91.6 × 106

µ Lamé parameter kN/m2 18.86 × 106

β1 Piezoelectric coupling parameter C/m2 3.84

β2 Piezoelectric coupling parameter C/m2 −17.44

β3 Piezoelectric coupling parameter C/m2 −17.76

γ Electric permittivity C2/(kN m2) −8.11 × 106

Ec Coercive electric field kV/m 1.34

P i
s Saturation polarisation C/m2 0.311 × 103

εis Saturation strain - 1.854 × 10−3

a Hardening parameter C/m2 3.02−1

m Viscosity shape exponent - 1

η Viscosity shape exponent m2/(C s) 6.25 × 10−2

the experimental data of ferroelectric response and butterfly curve at electrical loading
frequencies of 1 Hz, 5 Hz, 10 Hz, and 25 Hz are used. The least square functional used
for the parameter calibration simultaneously includes the data of the hysteresis loops
and butterfly curves of all loading frequencies considered. Due to the rate dependent
effect, the unsteady state part of the simulation result is omitted by applying continuous
cycles of electrical loading until the steady state results are achieved. The loading
cycle for the simulation is given in Fig. 3.1. The last cycle of the simulation results,
which reflects the steady state simulation results, are used as Ssim for the material
parameter identification. The material parameters calibrated for the bulk PZT material
are summarised in Tab. 5.2.
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Figure 3.1: Loading cycle for bulk PZT.
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Figure 3.2: Rate dependent ferroelectric hysteresis at electrical loading of 1 Hz, 5 Hz, 10 Hz and 25 Hz:
(a,c) experimental data and (b,d) simulation of hysteresis loops and butterfly curves for bulk PZT.

The simulation results for the ferroelectric behaviour, as represented by typical hys-
teresis and butterfly curves, are discussed for different electrical loading frequencies,
namely 1 Hz, 5 Hz, 10 Hz, and 25 Hz; see Fig. 3.2. The simulation results show a good
agreement with the experimental data. From the comparison between experimental
data and simulation results of ferroelectric hysteresis curves, it can be seen that the
simulation results capture the remnant polarisation very well for all frequencies consid-
ered. The experimental results show the increase in the coercive electric field as the
frequency of the loading increases. This effect is also observed in the simulation results.
Since poled ferroelectric specimens are used for the experiments, the polarised state is
considered as the reference state for the strain. Therefore, for the comparison between
the experimental data and the simulation results of butterfly curves, the remnant strain
of the simulation results is shifted to zero strain. From this comparison, the simulation
results reasonably match with the experimental data. The change in strain at low fre-
quencies of loading due to polarisation switching is observed to be smaller within the
simulation results than for the experiments. Within the experiments at 1 Hz, the com-

38



3.4 Results

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Electric Field in V/mm

C
h

a
n

g
e

 i
n

 E
le

c
tr

ic
 D

is
p

la
c

e
m

e
n

t

 

 

0 − experiment

90 − experiment

180 − experiment

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Electric Field in V/mm

C
h

a
n

g
e

 i
n

 E
le

c
tr

ic
 D

is
p

la
c

e
m

e
n

t

 

 

0 − simulation

45 − simulation

90 − simulation

135 − simulation

180 − simulation

(a) experiment (b) simulation

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3
x 10

−3

Electric Field in V/mm

C
h

a
n

g
e

 i
n

 s
tr

a
in

 

 

0 − experiment

90 − experiment

180 − experiment

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3
x 10

−3

Electric Field in V/mm

C
h

a
n

g
e

 i
n

 s
tr

a
in

 

 

0 − simulation

45 − simulation

90 − simulation

135 − simulation

180 − simulation

(c) experiment (d) simulation

Figure 3.3: Polarization rotation curves of experiments(a,c) and simulation results(b,d) for various
loading angles between the direction of polarisation and the direction of electrical loading for bulk
PZT.

pressive strain goes up to 2.1 × 10−3 during the polarisation switching. The simulated
strains, however, approach a value of up to −1.8× 10−3.

Moreover, polarisation rotation tests are simulated for different angles. The initial
conditions are assumed such that the material is poled in a certain direction and the
electric field is applied at an angle to this initial poling direction. Simulations are
performed for the applied electric field for the angles 0◦, 45◦, 90◦, 135◦ and 180◦. The
change in electric displacement and the change in strain are calculated and compared
with the related experimental data. From the comparison given in Fig. 3.3, the change
in electric displacement due to the polarisation rotation test is very well captured. Even
though the comparison of change in strain is in good agreement, the polarisation rotation
at 180◦ does not perfectly match the experimental data.
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3 A single surface model for ferroelectric ceramics

3.5 Summary and conclusions

From the experimental results, the frequency dependence of the ferroelectric behaviour
is very well observed. As the frequency increases, the remnant polarisation and remnant
strain decrease. This behaviour is due to the fact that, at higher rate of loading, the time
taken for the domain switching process becomes comparable with the time taken for one
complete cycle of loading. As a result, at a higher frequencies, even before the completion
of domain switching process, the external loading reverses the applied direction and
consequently attenuates the completion of domain switching. Due to this fact, as the
frequency of loading increases, the process of domain switching reduces. Therefore,
a notable reduction of polarisation and strain is observed as the frequency of loading
increases. Moreover, the study of frequency dependence is important for the design
of large displacement actuators by providing the limitation of displacement output for
the required frequency of actuation. Therefore, a rate dependent ferroelectric model is
required in order to analyse such cases. To capture the loading frequency dependent
behaviour, a rate dependent ferroelectric model has been developed. The material
parameters are then predicted using a parameter identification procedure. With these
identified parameters, the simulation results are then compared with the experimental
data. From the simulation results, the experimental data of ferroelectric hysteresis
curves are very well captured by the model. This model could also be extended to
implement within a finite element framework. In chapter 7, this model will be used for
predicting the effective ferroelectric behaviour of 1-3 piezocomposites. Even though, this
model could capture the rate dependent ferroelectric behaviour, it lacks in predicting
the asymmetric butterfly hysteresis behaviour and also minor hysteresis loop due to the
change in maximum applied electric field. In the following chapter, a model able to
predict these behaviour is introduced.
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4 A multi-surface model for
ferroelectric ceramics

The model introduced in the previous chapter is able to capture the rate dependent
response of ferroelectric behaviour. Concerning the behaviour of minor ferroelectric
hysteresis and asymmetric butterfly hysteresis, however, that model is limited. There-
fore, a new model is presented in this chapter, which is able to capture minor ferroelectric
hysteresis and asymmetric butterfly hysteresis behaviour. In this context, a multisur-
face ferroelectric model is introduced. This chapter starts with the motivation for the
multi-surface model along with a discussion of experimental results. Following that, a
modelling framework for the constitutive response is introduced. Finally, the simulation
results are presented together with the comparison to experimental data. This chapter
is concluded with a discussion on further extension of this model.

4.1 Motivation for multi-surface model and
experimental data

In a polycrystalline ferroelectric material, ferroelectric hysteresis behaviour is caused
due to the ferroelectric domain switching. Upon applying an electrical load, a defined
potential for the switching criteria reaches the critical value. Once the potential reaches
this critical value, domain switching takes place. In a phenomenological model, the
domain switching phenomenon is a result of the change in remnant polarisation. This
domain switching does not take place in all the domains simultaneously and therefore
requires different switching criteria for different grains. The reasons for varying switch-
ing criteria for different grains are the orientation of the domains, size of the grain and
interface effects from adjacent grains. Due to these reasons, at the macroscopic scale,
hardening behaviour of the ferroelectric switching is observed. In a fully poled mate-
rial, undergoing ferroelectric switching with medium amplitude of the external cyclic
electrical field, domains with low threshold limit switch with respect to the applied field
which results in the hysteresis. At the same time, the remaining domains remain to be
oriented in poled direction. Due to these non-switching domains, a polarisation offset
can be observed, which results in a shift of the hysteresis curve with respect to the
electric field axis. This offset polarisation can be seen in the results of the experimental
investigation carried out at the laboratory at the Department of Applied Mechanics at
the Indian Institutie of Technology Madras, shown in Fig. 4.1.

41



4 A multi-surface model for ferroelectric ceramics

(a)

−2000 −1000 0 1000 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Electric Field in V/mm

E
le

c
tr

ic
 D

is
p

la
c
e

m
e
n

t 
in

 C
/m

2

(b)

−2000 −1000 0 1000 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Electric Field in V/mm

S
tr

a
in

(c)

−2000 −1000 0 1000 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Electric Field in V/mm

E
le

c
tr

ic
 D

is
p

la
c

e
m

e
n

t 
in

 C
/m

2

(d)

−2000 −1000 0 1000 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Electric Field in V/mm

S
tr

a
in

(e)

−2000 −1000 0 1000 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Electric Field in V/mm

E
le

c
tr

ic
 D

is
p

la
c

e
m

e
n

t 
in

 C
/m

2

(f)

−2000 −1000 0 1000 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Electric Field in V/mm

S
tr

a
in

Figure 4.1: Experimental data for dielectric hysteresis (a, c, e) and butterfly hysteresis (b, d, f) of
PZT5A1 for a linearly increasing and decreasing electric field (triangular shaped cyclic loading) with
amplitudes of 500 V/mm, 1250 V/mm and 2000 V/mm [79].
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4.2 Constitutive model

In this work, ferroelectric behaviour of a piezoelectric material is experimentally
investigated for various loading amplitudes. The amplitudes 500 V/mm, 1250 V/mm
and 2000 V/mm are chosen such that the behaviour shows minor hysteresis loops,
major hysteresis loops and asymmetric butterfly hysteresis. The test samples used for
the experiments are disc specimens of PZT5A1 SP502 with a 10 mm diameter and 1
mm thickness, provided by CeramTec GmbH. A bipolar cyclic electric field is applied
at 1 Hz. For an illustration of the experimental setup, we refer to Jayendiran et al.
[55]. To measure the dielectric hysteresis, a Sawyer tower circuit is used. This circuit
measures only the relative electric displacement with respect to the initial polarisation.
Therefore, a constant initial polarisation is chosen to shift the reference state of the
polarisation so that the offset polarisation is zero for large electrical loading amplitudes.

Offset polarisation in dielectric hysteresis as well as asymmetric behaviour in the
butterfly hysteresis are also observed in the ferroelectric material which has undergone
electrical fatigue, see [77], as shown in Fig. 4.2. From this figure, it is observed that
upon increasing the maximum amplitude of the bipolar cyclic electrical loading, the
offset polarisation reduces. At a later stage when the maximum amplitude decreases,
the offset polarisation remains zero.

In order to model the asymmetric behaviour of fatigued specimen, the offset polarisa-
tion is introduced as a material parameter by Nuffer et al. [90]. The total polarisation
is additively decomposed into switching polarisation and offset polarisation. For the
simulation of asymmetric behaviour in fatigue, spontaneous polarisation is considered
as one internal variable which evolves with respect to the applied electric field and the
offset polarisation which evolves with respect to the number of loading cycles. In this
regard, two internal variables are introduced which both evolve independently. In a
similar fashion, more than one independent remnant polarisation contribution can be
introduced for asymmetric ferroelectric behaviour due to the amplitude variation. In
this context, a Mroz-type multi-surface model, see Mroz [87], is used with irreversible
polarisation instead of irreversible plastic strains.

As this work proceeds, a constitutive model for ferroelectric material with multi-
switching surface is developed. Later, the model is implemented for the numerical
analysis. The material parameters are identified based on experimental results. In [77],
where material which has undergone electrical fatigue is investigated, a difference in
ferroelectric behaviour has been observed for increasing and decreasing electric loading.
Such loading is also used for the simulation analysis for the motivation of extending
the model to fatigue analysis. To show the capability in capturing the behaviour for
multiaxial loading, simulation results of polarisation rotation curves are presented.

4.2 Constitutive model

In order to develop a constitutive model within a thermodynamic framework, an energy
function in terms of state variables is introduced. In this work, along with the external
state variables, i.e. strain ε and electric field E, remnant polarisation are considered as
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4 A multi-surface model for ferroelectric ceramics

(a) (b)

(c) (d)

Figure 4.2: Ferroelectric hysteresis behaviour under bipolar electrical loading of a fatigued specimen
of PIC 151 with increasing (a,b) and decreasing (c,d) amplitude of the maximum applied electric field,
taken from Lupascu [77].

44



4.2 Constitutive model

internal state variables. For the multi-surface modelling approach proposed, the total
remnant polarisation P i

T is additively decomposed into a set of N independent renmant
polarisation contributions P i

1,...,N . The relation between the total polarisation and the
set of remnant polarisation is given as

P i
T = P i

0 +
N∑

j=1

P i
j . (4.1)

In a prepoled material, certain domains require very large applied electric fields along
with a temperature rise in order to switch from the poled direction. In order to account
for these freezed domains, a constant offset polarisation is introduced as P i

0. Based on
the loading history and the external load, this offset polarisation will be chosen. This
offset polarisation can be ignored for unpoled material. Remnant strains arising due to
the domain switching are considered to be dependent on the total remnant polarisation.
Therefore this strain is derived from a one to one relation which is given as

εpi =
3 εis
2

[
‖P i

T‖
P i
s

]3/2
[a⊗ a ] : P, (4.2)

where a is defined as the direction of remnant polarisation given as a = P i
T/‖P i

T‖. The
parameters P i

s and εis are the saturation remnant polarisation value and the saturation
strain value, respectively. Instead of linear, [59], or quadratic, [65], power relations in
eq.(4.2), the value 3/2 has been chosen which in view of predicting experimental data
by the model proposed as this work proceeds turned out to be reasonable. To account
for ferroelastic behaviour, an additional irreversible strain εsi can be considered so that
the total irreversible strain εi is additively decomposed as

εi = εpi + εsi . (4.3)

4.2.1 Energy functions and flux terms

As a function of independent state variables (at constant temperature), the free energy
per unit volume is introduced as

ψ(ε,E,P i
1, ...,P

i
N) = 1

2
[ ε− εi ] : E : [ ε− εi ]− ‖P

i
T‖

P i
s

E · e : [ ε− εi ]

− 1
2
E · ε · E − P i

T ·E + ψ̄1(P
i
1, ...,P

i
N) + ψ̄2(ε

si) . (4.4)
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4 A multi-surface model for ferroelectric ceramics

The last two terms in the energy potential in eq.(4.4), ψ̄1 and ψ̄2, represent the free en-
ergy stored by the remnant polarisation contribution and can be considered as hardening
contributions of the internal variables. The term ψ̄1 is specified as

ψ̄1 =
N∑

j=1

− aj ‖P i
j‖ arctanh

(
‖P i

j‖
αjP i

s

)
+
αjaj P

i
s

2
ln

(
1−
‖P i

j‖
2

[αjP i
s ]
2

)
, (4.5)

see Schroeder et al. [100], wherein the scalar values αj are the factors which represent the
fraction of polarisation associated to the respective internal variable and the values aj are

hardening parameters. The scalars αj > 0 have to be chosen such that [1−
∑N

j=1 αj]P
i
s =

‖P i
0‖. Based on the work by Landis [72], see also Klinkel [65], the derivative of the

contribution ψ̄2 can be introduced as

∂ψ̄2

∂εsi
=

3∑

a=1

h εsia
[ 1 + 2 εsia/ε

i
s ] [ 1− εsia/εis ]

na ⊗ na , (4.6)

wherein h is a material parameter and εsia and na represent the eigenvalues and eigen-
vectors of εsi, respectively.

Following standard arguments of continuum thermodynamics, cf. Colemann and Noll
[26], the stresses and dielectric displacements take the representation as

σ =
∂ψ

∂ε
= E : [ ε− εi ]− ‖P

i
T‖

P i
s

et ·E , (4.7)

−D =
∂ψ

∂E
= − ‖P

i
T‖

P i
s

· e : [ ε− εi ]− ε · E − P i
T . (4.8)

4.2.2 Evolution equations of internal variables

Evolution equations of internal variables are obtained from maximizing the dissipation
contribution. The procedure for developing the evolution equation is based on the work
by Miehe and Rosato [84]. The local dissipation contribution is given as the sum of the
product of all internal variables with their energy conjugates. A rate dependent model
shall be established which, from an algorithmic point of view, has the advantage that
the current loading state does not need to satisfy the switching function itself (i.e. the
constraints Φj ≤ 0 and Φs ≤ 0) as in the case of rate independent response. Hence, to
deal with the rate dependent behaviour, a penalty function is added and the dissipation
function is introduced as

D =
N∑

j=1

Êj · Ṗ
i

j + σ̂ : εsi− 1

ηj [mj + 1 ]
〈Φj〉mj+1− 1

ηs [ms + 1 ]
〈Φs〉ms+1 ≥ 0 (4.9)
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with 〈•〉 = 1
2

[ •+ | • | ] denoting the Macauley brackets. The material parameters ηj > 0
and ηs > 0 as well as mj > 0 and ms > 0 influence the rate-dependent response of the
electromechanical model. The functions Φj represent the switching criteria given for
each remnant polarisation and introduced as

Φj =
Êj · Êj

jE2
c

− 1 . (4.10)

The coercive values jEc are material parameters for the corresponding yield surface. The
function Φs represents the switching criterion for the irreversible strain and is introduced
as

Φs =
σ̂ : σ̂

σ2
c

− 1 , (4.11)

wherein σc represents the coercive stress value. The energy conjugate of remnant polar-
isations, Êj, and the energy conjugate of irreversible strain, σ̂, are defined as

Êj = − ∂ψ

∂P i
j

≈ E − ∂ψ̄

∂P i
j

, (4.12)

σ̂ = − ∂ψ

∂εsi
. (4.13)

In the present work, the main focus is placed on the ferroelectric behaviour of the
material. Hence, the ferroelastic contributions are neglected in the following. Based on
the maximum dissipation hypothesis, evolution equations for the internal variables P i

j

are obtained from the derivatives of eq.(4.10) with respect to Êj, i.e.

Ṗ
i

j = λj
∂Φj

∂Êj

= λj
2
jE2
c

Êj = λj
2
jE2
c

[
E − ∂ψ̄j

∂P i
j

]
, (4.14)

wherein λj = η−1j 〈Φj〉mj . Based on eq.(4.5), the last contribution in eq.(4.14) takes the
representation

∂ψ̄j

∂P i
j

= aj arctanh

(
‖P i

j‖
αjP i

s

)
P i
j

‖P i
j‖
. (4.15)

4.2.3 Graphical illustration of the multi-surface model

In this section, an illustration of the constitutive model is highlighted in order to discuss
the ability of the model capturing different phenomena exhibited from the experimental
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4 A multi-surface model for ferroelectric ceramics

investigation of the material studied. Fig. 4.3 shows a modified single switching surface
in the space of the electrical field.

O

B

Ec

E3

Ê

E2

A

E

φ = 0

∂P iψ̄

Figure 4.3: Illustration of the switching surface in the space of the electrical field.

This modified switching surface is given in the following equation as

φj = jE2
c Φj . (4.16)

The circle in Fig. 4.3 represents the projection of the modified switching surface in
E2−E3 plane. Point ’B’ represents the state of the current applied electrical field with
E2 = E · e2 and E3 = E · e3. Point ’A’ represents the center of the yield surface. The
distance of point ’A’ from the origin can be interpreted as the magnitude of remnant
polarisation, cf. eq.(4.15). However, the polarisation value is limited to a saturation
polarisation by choosing an appropriate hardening function. Fig. 4.4 illustrates the
relation between the magnitude of OA and the normalised polarisation ‖P i‖/P i

s. The
radius of the yield surface in Fig. 4.3 does not change and remains equal to Ec in order
to represent kinematic hardening. As point ’B’ remains within the switching surface,
switching phenomena do not occur and therefore the relation between the electric field
and strain to electric displacement and stress will be linear as given in eq.(4.7) and (4.8).
When the external electric field is applied at a level such that point ’B’ goes beyond the
switching surface, the switching surface moves towards the loading point ’B’ such that
the switching surface reaches the fixed loading point, i.e. the fixed value of electric field,
asymptotically. As a result, the center of the yield surface ’A’ moves to a new position
which leads to the evolution of remnant polarisation.

Fig. 4.5(a) shows a similar graphical illustration of the multi-surface modelling ap-
proach. Switching surfaces with different radius represent different threshold limits for
each switching surface. For illustration purposes, the number of switching surfaces is
chosen to be 4.
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Figure 4.4: Relation between the magnitude of OA and the normalised magnitude of polarisation.

Fig. 4.5-4.12 show the multi-switching surface on an electric field and the evolution
of the surfaces during the various stages of loading processes. In each of these figures,
subfigures (a) represent the switching surfaces and the load point in the domain of the
electrical field; subfigures (b) represent the distribution of magnitude in each remnant
polarisation along the e3 direction, which corresponds to the direction of the external
electric field. Subfigures (c) and (d) represent the dielectric hysteresis and butterfly
hysteresis for associated loading processes, respectively.

4.2.3.1 Evolution from unpoled to poled states

Fig. 4.5-4.8 represent the process of the ferroelectric material taken from the unpoled
to poled state. For an unpoled material, the yield surfaces are held concentric to the
origin in the electric field coordinate as shown in Fig. 4.5(a). At this state, each rem-
nant polarisation of the material is zero as shown in Fig. 4.5(b). However, the total
polarisation P i

T is non-zero due to the contribution of P i
0. As the load increases, see

Fig. 4.6, the switching surface moves along the loading point and therefore the associ-
ated remnant polarisations evolve. Upon unloading, see Fig. 4.7, the switching surfaces
φ1 and φ2 move along the loading path and at the same time the switching surfaces φ3

and φ4 remain unmoved. Hence, the magnitude of P i
1 and P i

2 has been reduced. From
Fig. 4.8, upon loading again, P i

1 and P i
2 evolve and result in a hysteresis behaviour due

to unipolar loading, which is an observable phenomenon in experiments.

4.2.3.2 Minor hysteresis loop

In a poled material, upon applying a cyclic electric field at a small magnitude, a small
dielectric hysteresis loop is observed which is known as minor hysteresis loop. Fig. 4.9
and Fig. 4.10 show the illustration for a minor hysteresis loop under an extreme loading
condition along direction e3. During this cyclic loading, only the switching surfaces φ1

and φ2 reach the switching limit and therefore the corresponding remnant polarisations
P i

1 and P i
2 change between positive and negative values along the direction e3. However,
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Figure 4.5: Unpoled state of material at load free condition. (a) switching surface, (b) polarisation
distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

the switching limit is not reached by other switching surfaces and therefore there is
no change in the remnant polarisation of P i

2 and P i
3. As a result, the net remnant

polarisation remains positive for the whole loading cycle. A relatively small change
in remnant polarisation due to this loading gives rise to a small hysteresis loop and
therefore the minor hysteresis is observed.

4.2.3.3 Asymmetrical butterfly hysteresis

Fig. 4.11 and 4.12 illustrate an asymmetrical butterfly hysteresis loop for prepoled ma-
terial and electrical loading along the direction e3. During the bipolar cyclic electric
field loading with a medium magnitude, the switching surfaces φ1 and φ2 reach their
switching limit and therefore the remnant polarisations P i

1 and P i
2 evolve along with

cyclic loading. However, the switching limits of surfaces for P i
3 and P i

4 are not reached.
Therefore the magnitude of P i

3 and P i
4 do not change. This results in a total remnant

polarisation of larger magnitude in the poling direction than in the opposite direction.
Due to this unequal magnitude of remnant polarisation between the poling direction and
its opposite direction, the butterfly hysteresis loop shows an asymmetrical behaviour.
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Figure 4.6: Initially unpoled material under an applied electric field. (a) switching surface, (b) polari-
sation distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

4.3 Simulation of ferroelectric behaviour

This section discusses the simulation results of ferroelectric behaviour for the proposed
model. The algorithmic sketch for the numerical simulation is given in the appendix. In
the first part of this section, based on the experimental data, material parameters for
the model are identified and the results are compared. In the second part, a qualitative
prediction of decaying offset polarisation of electrically fatigued specimen is discussed.

4.3.1 Parameter identification based on experimental data for
ferroelectric hysteresis at different loading levels

The simulations studied in this subsection refer to the same loading conditions as the
experimental data shown in Fig. 4.1. For an unpoled material, the centers of the yield
surfaces are chosen to coincide with the origin in the space of the electric field – in
other words, the remnant polarisation vanishes identically. In order to consider the
material as a poled specimen, a unipolar electric field of up to 2000 V/mm is applied at
1 Hz within the simulations and the resulting remnant polarisation is considered as the
initial remnant polarisation for the subsequent examples. Thereafter, the appropriate
amplitude of bipolar electric field is applied. For this analysis, the number of remnant
polarisations N is taken to be 4. Material parameters related to the linear piezoelectric
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Figure 4.7: Initially unpoled material at a state of reverse loading. (a) switching surface, (b) polarisation
distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

behaviour are taken from the manufacturer datasheet, whereas the parameters for ferro-
electric behaviour are obtained from a calibration procedure based on the experimental
data shown in Fig. 4.1. Viscosity related parameters are chosen so that quasi rate in-
dependent behaviour is obtained. The material parameters for the PZT5A1 material
are calibrated based on a least square minimisation approach and are summarised in
Tab. 4.1.

Fig. 4.13 shows the comparison of results from experiments and simulations. From
these result, both the minor hysteresis and major hysteresis in the experiments are
captured very well within the simulation. It is also observed that both offset polarisation
as well as asymmetric behaviour is very well captured.

4.3.2 Simulation of decaying offset polarisation of an electrically
fatigued specimen

In Lupascu [77], a fatigued specimen is studied under varying amplitudes of electrical
loading. By increasing the electrical loading, the specimen is observed to be regaining
its symmetric behaviour within the butterfly hysteresis. At the same time, an offset in
the dielectric hysteresis for a lower amplitude of electrical loading is observed. Upon
continuing the experiment by decreasing the electrical loading, the material response
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Figure 4.8: Initially unpoled material at the state of reloading. (a) switching surface, (b) polarisation
distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

shows less asymmetry and the offset in the dielectric hysteresis is also reduced. Fig. 4.14
shows the loading path for the numerical simulation.

The experimental results considered are shown in Fig. 4.2. The offset polarisation
in the electrically fatigued material is induced due to the fact that the domains are
oriented in a particular direction. This phenomenon of fixed domains is similar to
phenomena that occur during the poling process. Therefore, this offset polarisation is
equivalently replaced by an initial remnant polarisation within the simulations. With
this initial condition, the electrical loading with increasing and decreasing maximum
amplitude of electrical loading is applied. The simulation results for this loading are
shown in Fig. 4.15(a,b). Following this, the amplitude of electrical loading is reduced.
The ferroelectric behaviour of this loading path is given in Fig. 4.15(c,d). The results are
qualitatively well comparable with the experimental results, in particular the presence
of offset in dielectric hysteresis and asymmetry in butterfly hysteresis when increasing
the electrical loading and the reduced offset in dielectric hysteresis and asymmetry in
butterfly hysteresis during the decreased electrical loading are captured. The reduction
in offset upon slowly decreasing the electrical loading level is due to the movement of the
yield surface to arrange its center near to the origin. From the simulation results, the
multi-surface model on ferroelectrics can be taken as a good start in further developing
the constitutive model for ferroelectric materials which undergo electrical fatigue.
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Figure 4.9: Minor loop: loading in opposite direction to the poling direction. (a) switching surface,
(b) polarisation distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

4.3.3 Polarisation rotation test

In this section, the numerical results of polarisation rotation simulations are discussed.
To perform this simulation, the initial conditions are assumed such that the specimen
is poled and the electric field is applied at an angle to this initial poling direction. The
particular angles considered are 00, 450, 900, 1350 and 1800. The change in electric
displacement and the change in strain, both projected onto the direction of the applied
electric field, are calculated and the results are shown in Fig. 4.16. From these simulation
results, it is observed that the model is able to capture the material behaviour under
multiaxial loading, even though this experimental data is not considered within the
parameter identification procedure.

4.4 Summary and conclusion

In this chapter, a multisurface ferroelectric modelling approach is introduced, which
is able to capture minor loop as well as asymmetric hysteresis behaviour. In view
of the numerical implementations, the model’s ability to predict experimental data is
shown. It has also been shown that the model could mimic the behaviour of fatigued
specimen. Therefore, this modelling approach can be extended to the simulation of
fatigue behaviour. From the experimental results, Fig. 4.1, the lowest strain value on
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Figure 4.10: Minor loop: reverse loading in the direction of initial poling. (a) switching surface, (b)
polarisation distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.

each wing from the butterfly hysteresis curve differ from each other. This difference
decreases as the maximum amplitude of electrical loading increases. However, such
an effect is not observed in the simulation results. This character can be seen as a
result of additional coupling effects along the poling direction. A modification of the
coupling part in the energy function can therefore be an improvement to this multi-
surface model.
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Figure 4.11: Asymmetrical loop: loading in opposite direction to the poling direction. (a) switching
surface, (b) polarisation distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.
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Figure 4.12: Asymmetrical loop: reverse loading in the direction of initial poling. (a) switching surface,
(b) polarisation distribution, (c) dielectric hysteresis and (d) butterfly hysteresis.
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Table 4.1: Material parameters for the multi-surface model for ferroelectric ceramics.

param. denomination unit value

λ Lamé parameter kN/m2 91.6 × 106

µ Lamé parameter kN/m2 18.86 × 106

β1 Piezoelectric coupling parameter C/m2 2.7

β2 Piezoelectric coupling parameter C/m2 −10.9

β3 Piezoelectric coupling parameter C/m2 −11

γ Electric permittivity C2/(kN m2) −8.11 × 106

1Ec Coercive electric field kV/m 0.39

2Ec Coercive electric field kV/m 0.75

3Ec Coercive electric field kV/m 1.1

4Ec Coercive electric field kV/m 1.43

P i
s Saturation polarisation C/m2 0.311 × 103

εis Saturation strain - 2.781 × 10−3

a1 Hardening parameter C/m2 0.662

a2 Hardening parameter C/m2 0.415

a3 Hardening parameter C/m2 0.331

a4 Hardening parameter C/m2 0.336

α1 polarisation factor - 0.15

α2 polarisation factor - 0.56

α3 polarisation factor - 0.19

α4 polarisation factor - 0.05

P i
0 constant offset polarisation C/m2 0.05× P i

s e3

mi Viscosity shape exponent - 1

ηi Viscosity shape exponent m2/(C s) 6.25 × 10−2
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Figure 4.13: Experimental data and simulation results for dielectric hysteresis (a, c, e) and butterfly
hysteresis (b, d, f) of PZT5A1 for a linearly increasing and decreasing electric field (triangular shaped
cyclic loading) with the amplitude of 500 V/mm, 1250 V/mm and 2000 V/mm.
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Figure 4.14: Loading curve on the fatigued specimen with (a) increasing and (b) decreasing maximum
amplitude of the electric field.
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Figure 4.15: Simulation results of ferroelectric hysteresis behaviour on bipolar electrical loading on
fatigued specimen with increasing (a, b) and decreasing (c, d) amplitude of maximum applied electric
field.
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Figure 4.16: Polarization rotation curves: simulation (a, b) and experimental results (c, d), [80], for
various loading angles between the direction of polarisation and the direction of electrical loading.
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5 An anisotropic switching model
including external stress effects

During the application of displacement actuators, the material undergoes a stress load
along with the electrical loading. For soft piezoelectric materials, the additional stress
load influences the ferroelectric nature of the material. Therefore, with respect to de-
signing an actuator, a constitutive model is important which could capture the effects
of stress in ferroelectric behaviour. Keeping this in mind, in this chapter, a ferroelec-
tric constitutive model is developed, which is also able of capturing the ferroelastic
behaviour as well as mechanical depolarisation. From the experimental results on mul-
tiaxial loading, the pre-poled material shows the anisotropic behaviour in switching
condition. To capture this anisotropic behaviour, an elliptical yield function is intro-
duced. This chapter begins with the thermodynamic formulation of the model. In the
results section, various properties of the model are presented by means of representa-
tive simulation results. To obtain a qualitative comparison with the experimental data,
various experimental results will also be given in this section.

5.1 Thermodynamical modelling framework

In order to consider the behaviour of ferroelastic hysteresis along with the ferroelectric
hysteresis, an additional internal variable εi along with the remnant polarisation P i

is introduced as in [65]. With that additional internal variable, a thermodynamical
potential as free energy per unit volume, is introduced as

ψ = ψ?(ε, εi,E,P i) + ψ̄(εi,P i)

This potential is additively decomposed into the reversible part ψ∗ and the irreversible
part ψ̄. In the ferroelastic hysteresis, the material exert a change in remnant strain with-
out any change in remnant polarisation. Hence, in the consideration of the additively
decomposed remnant strain εi = εpi + εsi, the first part is treated as the contribution
for the irreversible strain due to polarisation, and the second term is treated as the
ferroelastic part of the irreversible strain. The first term is derived from the assumed
one to one relation between irreversible strain and the irreversible electric field, namely

εpi =
3

2

εis
P i 2
s

[P i ⊗ P i ] : P. (5.1)
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The scalars P i
s and εis are the saturation remnant polarisation and saturation strain

values respectively. To be able to consider the linear piezoelectric behaviour in the
reversible regime, the free energy potential is given as

ψ = 1
2

[ ε− εi ] : E : [ ε− εi ]− |P
i|

P i
s

E · e : [ ε− εi ]

− 1
2
E · ε · E − P i ·E + ψ̄(εsi,P i) . (5.2)

We consider the case of rate-dependent problems so that a class of dissipation functions
with reversible admissible range A can be governed by the level-set function Φ. This
results in the dissipation contribution

D = − ∂ψ

∂εsi
: ε̇si − ∂ψ

∂P i
· Ṗ i −

n∑

i=1

1

ηi [mi + 1 ]
〈Φi〉mi+1 ≥ 0 (5.3)

with the constants ηi > 0 and mi > 0 interpreted as material parameters associated with
the viscosity or rather rate-dependency of the electromechanical process [84]. Eq.(5.3)
motivates the definition of the work conjugate variables of the internal state variables
as

σ̂ = − ∂ψ

∂εsi
= σ − ∂ψ̄

∂εsi
, (5.4)

Ê = − ∂ψ

∂P i
= E − ∂ψ̄

∂P i
. (5.5)

With these definitions at hand, rewriting the dissipation function (5.3) yields

D = σ̂ : ε̇si + Ê · Ṗ i −
n∑

i=1

1

ηi [mi + 1 ]
〈Φi〉mi+1 ≥ 0 . (5.6)

The switching threshold functions Φi control the activation of domain switching. In this
case the number of the switching threshold function n is assumed to be 2, where the first
function Φ1 shall be referred to ferroelastic switching phenomena and the second one
shall be used for the ferroelectric switching and mechanical depolarisation. In the case
of reversible processes Φi < 0 holds, whereas Φi > 0 is allowed for irreversible processes.

5.1.1 Ferroelastic switching

The threshold function representing ferroelastic switching is introduced as

Φ1 =
3 σ̂ : P : σ̂

2hσ2
c

− 1 , (5.7)

64



5.1 Thermodynamical modelling framework

wherein σ2
c is the material parameter which represents the coercive value of mechanical

stress. In this proposed model, the hardening contribution on ferroelastic deformation is
assumed to be isotropic. This hardening is included by introducing parameter h which
is given as

h = 1 + 2 arctanh

(
2 εsi : εsi

3 ε2s

)
. (5.8)

5.1.2 Ferroelectric switching and mechanical depolarisation

The threshold function representing the evolution of remnant polarisation is introduced
as

Φ2 =
[Q · Ê] · [Q · Ê]

E2
c

+ ξ f
Ê

i
· P i

σ2
c Ps

− 1 . (5.9)

The first term in this equation represents the ferroelectric switching and the second
term represents the mechanical depolarisation. From the experimental investigation on
multiaxial loading by Zhou et al. [127], it has been argued that the switching surface
changes from circular at unpoled state to elliptical at poled state. To include this shape
change of the switching surface, a scaling operator Q is introduced and given as

Q =
I − T

1− a · T · a
(5.10)

where

T =
k

P i 2
s

[P i ⊗ P i ] : P (5.11)

with k being a material parameter associated with a positive scalar value. The scaling
operator Q is introduced such that the scaling factor along the direction a is 1, i.e. Q ·
a = a. Therefore, during the study of parameter identification, the material parameters
for uni-axial loading can be independently identified without multiaxial loading data.
The material parameter ξ, as a negative scalar value, is introduced to fit the mechanical
depolarisation behaviour. Considering the fact that mechanical depolarisation occurs
only in polarised ceramics under a compression stress along the poling direction, the
function f , as given in [65], is defined as

f =
[
3
2
σ : P : M

]2
if σ : P : M < 0

f = 0 if σ : P : M > 0
(5.12)

with M = a ⊗ a. Eq.(5.12) states that the function f is larger than zero if a state
of compressible stresses along the direction a exists. It is noted that the deviatoric
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projection is used in this function to consider the mechanical depolarisation as volume
preserving process. The postulate of the maximum dissipation is represented by

D = sup
σ̂,Ê

{
σ̂ : ε̇si + Ê · Ṗ i − 1

η1 [m1 + 1 ]
〈Φ1〉m1+1 − 1

η2 [m2 + 1 ]
〈Φ2〉m2+1

}
. (5.13)

Based on this, the evolution equations for the internal variables are given by

ε̇si = λ1
∂Φ1

∂σ̂
= λ1

3

hσ2
c

P : σ̂ (5.14)

Ṗ
i
= λ2

∂Φ2

∂Ê
= λ2

2

E2
c

[Qt ·Q · Ê] + λ2 ξf
P i

σ2
c Ps

(5.15)

wherein λi = η−1i 〈Φi〉mi .

5.1.3 Irreversible part of the free energy

Since isotropic hardening is assumed for the ferroelastic contribution, the irreversible
part of the free energy ψ̄ is introduced as a function of the remnant polarisation. There-
fore, the same energy function from the model discussed in chapter 3 is adopted as

ψ̄ = − a arctanh

(
‖P i‖
P i
s

)
+
aP i

s

2
ln

(
1− ‖P

i‖
P i
s

)
. (5.16)

5.1.4 Integration algorithm

A numerical simulation of a path dependent material requires a state updating scheme.
Accordingly, with a given initial value of P i and εsi and for a given electrical E(t) and
mechanical loading σext(t), the response of the material is simulated. For numerical
integration, the discrete time step is used. In this procedure, starting from an updated
state at time step tn, the current state at time step tn+1 is calculated. The algorithm
for this procedure is given in Tab. 5.1.

5.2 Numerical results

In the numerical examples, ferroelectric material is simulated under different electrome-
chanical loading to show the ability of the constitutive model to capture various be-
haviour. Tab. 5.2 provides the material parameters used for this analysis.
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5.2 Numerical results

Table 5.1: Sketch of the algorithm of the constitutive driver for the rate dependent response of ferro-
electric material.

Given: σext
n+1,En+1, εn,P

i
n, ε

si
n

Set: εn+1 = εn, P i
n+1 = P i

n, εsin+1 = εsin
Compute: Rl, Rg

DOWHILE: ‖Rg‖ ≥ tolg
DOWHILE: ‖Rl1‖ ≥ toll1 or ‖Rl2‖ ≥ toll2

Compute: σn+1,Dn+1 using equations (6.2) and (6.3)

Rl1 = P i
n+1 − P i

n −∆t λ1 n+1
2

E2
c

[Qt ·Q · Ên+1] + λ1 n+1 ξf
P i
n+1

σ2
c Ps

Rl2 = εsin+1 − εsin −∆t λ2 n+1
3

hσ2
c

P : σn+1

P i
n+1 ← P i

n+1 −
[

dRl1

dP i
n+1

]−1
·Rl1

εsin+1 ← εsin+1 −
[

dRl2

dεsin+1

]−1
: Rl2

END
Rg = σext

n+1 − σn+1

εn+1 ← εn+1 −
[

dRg

dεn+1

]−1
: Rg

END
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5 An anisotropic switching model including external stress effects

Table 5.2: Material parameters for the rate dependent ferroelectric model.

param. value param. value

λ 70.5 × 106 kN/m2 γ −8.11 × 10−6 C2/kN m2

µ 14.51 × 106 kN/m2 P i
s 0.311 × 103 C/m2

β1 2.7 C/m2 εis 2.554 × 10−3

β2 −10.9 C/m2 η 6.25 × 10−2

β3 −11 C/m2 m 1

Ec 1 kV/mm σc 50 MPa

ξ −2.7 a 3.04−1 C/m2

k 0.5

5.2.1 Purely electrical loading

In this example, and maintaining a stress free condition, only the triangular cyclic
electric field is applied. This cyclic electric field begins from 0 kV/mm and cycles
between ±2 kV/mm in the loading frequency of 1 Hz. As initial conditions, an unpoled
state of the material has been assumed. Fig. 5.1 shows both dielectric hysteresis and
butterfly hysteresis. From the comparison between experimental data and simulation
results, it can be seen that the hysteresis behaviour is very well captured. The data
also shows the saturation behaviour on remnant strain and remnant polarisation, as
observed in the experiments.

5.2.2 Purely mechanical loading

In this section, the simulation of material being subjected to compressive stresses is
performed. In this example, the capability of the model to capture the ferroelastic
behaviour as well as the mechanical depolarisation behaviour is analysed. To analyse
these behaviours, a compressive loading is applied. From the stress free state, the loading
is taken to −300 MPa in a rate of −300 MPa/sec. Consequently, it is unloaded to a
stress free state again in the same rate of loading. For observing ferroelastic behaviour,
the unpoled material state is considered as the initial condition. For the observation
of the mechanical depolarisation behaviour, the state of poled material is used. In
order to obtain an initially poled material, first an electrical field with the maximum
amount of 2 kV/mm is applied at the rate of 8 kV/mm/sec. The remnant polarisation
remnant strain values are chosen as initial condition for the subsequent simulation under
mechanical loading. Fig. 5.2 shows the change in electrical displacement and strain for
the applied compressive stresses. From the qualitative comparison between simulation
and experiments, it can be seen that the model reasonably matches the experiments
results.
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Figure 5.1: Comparison between experiment and simulation of dielectric hysteresis (a,b) and butterfly
hysteresis (c,d) [124].
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Figure 5.2: Comparison between experiment and simulation of ferroelastic hysteresis (a,b) and me-
chanical depolarisation (c,d) [124].
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5.2.3 Electromechanical loading

In this numerical example, for a simultaneous loading of both electrical field and me-
chanical stress, the simulation is performed. For a comparison study with experiments,
a cyclic electric field under mechanically preloaded loading condition is used. The cyclic
electric field between ±2 kV/mm is applied at 1 Hz. For this example the applied
compression stresses are 25 MPa and 50 MPa. Fig. 5.3 shows the comparison between
simulation and experiments of the hysteresis loop of ferroelectric ceramics. From the
results, it can be observed that the model is able to capture the decrease in remnant
polarisation as the compressible stress increases. The experiment also shows that the
decrease in the area of hysteresis loop of the butterfly hysteresis for larger compressible
stress. This behaviour could also be captured very well within the simulations.
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Figure 5.3: Comparison between experiment and simulation of dielectric hysteresis (a,b) and butterfly
hysteresis (c,d) under different stress level [124].
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5.2.4 Polarisation rotation

An important behaviour in polarisation rotation in the experiment is observed in so far
as the material with a poling angle of 1350 is observed to have a switching behaviour
prior to the material with a poling angle of 1800. In order to simulate this behaviour,
an anisotropic switching surface is introduced in this model. From the experimental
data, for a pre-poled material, the ferroelectric switching surface is approximated by
an elliptically shaped function as shown in Fig. 5.4. For a qualitative comparison, the
simulations are performed with the poling angles set to 00, 450, 900, 1350, and 1800.
Fig. 5.5 shows the experiment [127] and simulation of the polarisation rotation curve
for various angles. In this result, the curve with angle 1350 rises prior to the curve with
angle 1800 as observed in the experiment. The model also captures the increase in the
saturation limit of the change in electrical displacement as the poling angle increases.
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Figure 5.4: Modelling (a) and experimental prediction (b) of ferroelectric switching surface [127].

5.3 Summary and conclusion

In order to predict the influence of switching behaviour due to external stresses, a fer-
roelectric model is developed in this chapter. In addition, the model is formulated such
that it can predict the anisotropic nature of switching functions. From the simulation
results, the model is able to predict various behaviours of ferroelectric materials such
as ferroelectric hysteresis with and without the external stress, ferroelastic hysteresis,
polarisation rotation and mechanical depolarisation. The model is designed so that it
can be incorporated into a finite element framework.
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Figure 5.5: Polarisation rotation by simulation (a) and experimental results (b) [127].
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6 A temperature dependent model for
ferroelectric ceramics

6.1 Introduction

From the ferroelectric model introduced in chapter 3, it can be understood that the
numerical simulation requires two iteration loops, where one is a global iteration and
the other one is a local iteration to solve the evolution equation of remnant polarisa-
tion. This chapter presents an alternative approach for a rate independent model to the
numerical simulation such that the remnant polarisation can be calculated without a
local iteration even for a non-linear hardening function. Based on the application, the
piezoelectric material may have to work in a different ambient temperature. Due to the
heat dissipation behaviour of the material, its temperature could increase. Therefore,
in order to account for this variation of material temperature during the applications,
temperature dependent piezoelectric and ferroelectric behaviour has to be studied. In
this chapter, a temperature dependent ferroelectric model is introduced. As the tem-
perature increases near the Curie temperature, the ferroelectric hysteresis behaviour
changes to antiferroelectric hysteresis behaviour. In a poled material, the remnant po-
larisation of the material decreases to null as the temperature increases above the Curie
temperature. This behaviour is called thermal depolarisation. To account for these
temperature dependent behaviour, a temperature dependent model is introduced. As a
simplification, the heat flux contributions are neglected in this model. In the first part
of this chapter, an alternative ferroelectric modelling approach is discussed and finite
element simulation results using this approach for an electrical loading on a plate with
hole are presented. Following this, the model is modified to capture temperature de-
pendent ferroelectric behaviours such as thermal depolarisation as well as the transition
from ferroelectric hysteresis to antiferroelectric hysteresis.

6.2 Constitutive model

This section discusses the electromechanical rate independent constitutive relation of
ferroelectric materials. As this model is a modification of the model introduced in
chapter 3, the energy terms and the flux terms are adopted from the same model. For
the evolution of internal variables, the alternative approach has been discussed. The
proof for this approach to satisfy the dissipation inequality is also provided in this
section.
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6 A temperature dependent model for ferroelectric ceramics

6.2.1 Energy and flux terms

The free energy potential as introduced in chapter 3 is restated as,

ψ = 1
2

[ ε− εi ] : E : [ ε− εi ]− ‖P
i‖

P i
s

E · e : [ ε− εi ]

− 1
2
E · ε ·E − P i ·E + ψ̄(P i) . (6.1)

From this energy potential, the stresses and the electric displacement are derived as

σ =
∂ψ

∂ε
= E : [ ε− εi ]− ‖P

i‖
P i
s

E · e , (6.2)

−D =
∂ψ

∂E
= − ‖P

i‖
P i
s

e : [ ε− εi ]− ε · E − P i . (6.3)

6.2.2 Evolution of internal variable

For the evolution of the internal variable P i, the rate of change of internal variables has
to be evaluated such that it has to satisfy the inequality constraints obtained from the
switching function and the dissipation inequality. In this model, the switching function
is chosen to be,

Φ = ‖Ê‖ − Ec (6.4)

where

Ê = E − ∂ψ̄

∂P i
. (6.5)

At this stage, a new quantity is introduced which is defined as

G :=
∂ψ̄

∂P i
. (6.6)

Similar to rate independent plasticity-type theory, the switching criteria for this model
is expressed as Φ ≤ 0. In order to identify whether the state of the system satisfies
the switching criteria at a discrete time step tn+1, for known state values at tn, the
following procedure is used. By assuming P i

n+1 = P i
n, a trial switching function Φtrial

is calculated. If the trial switching function satisfies the switching criteria, the value
of P i remains unchanged. Otherwise, the remnant polarisation P i has to be evaluated
such as to satisfy the switching criteria. The function Φtrial can be written as,

Φtrial =

∥∥∥∥En+1 −
∂ψ̄

∂P i
n

∥∥∥∥− Ec = ‖En+1 −Gn‖ − Ec . (6.7)
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6.2 Constitutive model

If the value of Φtrial is greater than 0, then the internal variables must be updated such
that Φ is equal to 0, i.e.

Φ = ‖En+1 −Gn+1‖ − Ec = ‖En+1 −Gn −∆G‖ − Ec = 0 . (6.8)

From the triangular inequality, eq.(6.8) can be reduced to the following equation

| ‖En+1 −Gn‖ − ‖∆G‖ | − Ec ≤ 0 . (6.9)

Reducing the outer modulus of eq.(6.9) results in the following relation

± [‖En+1 −Gn‖ − ‖∆G‖]− Ec ≤ 0 . (6.10)

From eq.(6.10), the possible range of ‖∆G‖ can be derived such as to satisfy the con-
dition Φ = 0. This range is given as

Φtrial = ‖En+1 −Gn‖ − Ec ≤ ‖∆G‖ ≤ ‖En+1 −Gn‖+ Ec (6.11)

In the present method, the value of ‖∆G‖ is chosen to be minimum, i.e. ‖∆G‖ = Φtrial.
The following section discusses the necessary condition for this method to satisfy the
dissipation inequality.

6.2.3 Dissipation inequality

For a rate independent problem, the dissipation rate inequality condition on the evolu-
tion of internal variable is given as

D = Ê · Ṗ i ≥ 0 . (6.12)

For a discrete time step, this dissipation function can be rewritten as

D = [En+1 −Gn −∆G] ·
[
P i
n+1 − P i

n

]
. (6.13)

If ‖∆G‖ is chosen such that ‖∆G‖ = ‖En+1−Gn‖−Ec, then the directions of ∆G and

En+1 −Gn should be identical. As a result, the direction of Ê will also coincide with
the direction of ∆G. Hence, Ê can be written as β∆G, where β is a positive scalar
value. Therefore the dissipation inequality can be written as

D = β∆G ·
[
P i
n+1 − P i

n

]
= β [Gn+1 −Gn] ·

[
P i
n+1 − P i

n

]
. (6.14)

From the definition ofG given in eq.(6.6), the relation between the remnant polarisation
P i and G is given as

P i = K(‖G‖) G
‖G‖

= ν
G

‖G‖
= µG , (6.15)
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where K is a scalar valued function and ν = K as well as µ = K/‖G‖. From this
relation, the change in remnant polarisation can be written as,

P i
n+1 − P i

n = µn+1Gn+1 − µnGn . (6.16)

By substituting this relation, the dissipation function given in eq.(6.14) can be rewritten
as

D = β [Gn+1 −Gn] · [µn+1Gn+1 − µnGn]

= β[µn+1‖Gn+1‖2 + µn‖Gn‖2 − [µn+1 + µnGn+1] ·Gn] ≥ 0 . (6.17)

From the Cauchy-Schwarz inequality condition, given as −Gn+1 ·Gn ≥ −‖Gn+1‖‖Gn‖,
this disspation function can be transformed as

D ≥ β[µn+1‖Gn+1‖2 + µn‖Gn‖2 − [µn+1 + µn]‖Gn+1‖ ‖Gn‖] ≥ 0 . (6.18)

By rearranging this equation, one can obtain the dissipation function as

D ≥ β[µn+1‖Gn+1‖ − µn‖Gn‖] [‖Gn+1‖ − ‖Gn‖] (6.19)

= β[νn+1 − νn] [‖Gn+1‖ − ‖Gn‖] ≥ 0 . (6.20)

To satisfy the dissipation inequality condition given in Eq.(6.21), the sign of νn+1 − νn
and ‖Gn+1‖ − ‖Gn‖ has to be identical. This can be obtained by choosing the scalar
function K so as to satisfy the following condition.

∂K

∂‖G‖
≥ 0 . (6.21)

To evaluate the remnant polarisation, the algorithmic procedure using the discussed
method is summarised as

Gn+1 = Gn + 0.5 [Φtrial + |Φtrial|]
En+1 −Gn

‖En+1 −Gn‖
, (6.22)

P i
n+1 = K(‖Gn+1‖)

Gn+1

‖Gn+1‖
. (6.23)

6.3 Numerical simulation of ferroelectric behaviour

To model the ferroelectric behaviour, an appropriate hardening function is introduced in
this section. With this function, the model is implemented in a finite element framework
to solve an inhomogeneous boundary value problem.
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6.3.1 Hardening function

To obtain a saturation ferroelectric behaviour, the hardening function is chosen as an
asymptotic function which approaches the saturation polarisation value as the value of
‖G‖ increases. The following function is chosen to obtain such a saturation behaviour

K = Ps tanh

(
‖G‖

a

)
(6.24)

where the scalar value a is a hardening parameter as used in the model discussed in
chapter 3.

6.3.2 Results

To predict ferroelectric behaviour by the model proposed, loading under a cyclic electric
field is simulated with a maximum loading amplitude of ±2000 V/mm. The material
parameters for this model correspond to those used in chapter 3. For the applied electric
field, the obtained results of the simulation of ferroelectric behaviour are highlighted in
Fig. 6.1. From these results, it could be observed that the non-linear hardening as well
as the saturation effect of remnant polarisation are very well captured by the model
without a local iteration procedure.
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Figure 6.1: Rate independent ferroelectric behaviour.

This framework is extended to a finite element formulation in order to solve an
inhomogeneous boundary value problem. As a boundary value problem, an externally
applied electric field on a plate with a hole is considered. Using symmetry properties, one
quadrant of the plate is considered. The electrical and mechanical boundary conditions
for this problem along with the dimensions are given in Fig. 6.2.

The problem is solved by using a three-dimensional finite element formulation. The
general finite element framework for electromechanical problems is summarised in ap-
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φ = 0V

φ = φext

R10

20

20

(a) (b)

e2

e3

(c)

Figure 6.2: Boundary conditions for a plate with hole: (a) electrical boundary condition (b) mechanical
boundary condition with dimensions in mm and finite element mesh for a plate with hole (c).

pendix A. Tetragonal elements are used for the analysis. The finite element mesh for
this problem is given in Fig. 6.2 (c). The external electrical voltage φext is applied as fol-
lows. From the zero voltage, φext is increased up to 30kV . The voltage is then dropped
to zero. Simulation results are given in Fig. 6.3.
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6.3 Numerical simulation of ferroelectric behaviour

(a) Electric displacement D3 in C/m (b) Electric displacement D3 in C/m

(c) Strain ε33 (d) Strain ε33

(e) Displacement along e3 in mm (f) Displacement along e3 in mm

Figure 6.3: Simulation of a plate with hole: (a,c,e) results under loading, (b,d,f) results after unloading.
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6.4 Temperature dependent ferroelectric model

To obtain the temperature dependent hardening behaviour, two modifications are in-
cluded in the introduced model. From the study of [78], the coercive electric field
decreases as the temperature increases. To represent this effect, the coercive electric
field value is given as a function of temperature as

Ec = [1− C] E0
c (6.25)

with

C =

〈
θ − 300

θc − 300

〉
(6.26)

where θ is the temperature of the material and where θc is the Curie temperature of the
material. The scalar function C is chosen such that the coercive electric field approaches
to zero as the temperature reaches the Curie temperature. Such a function is required
in order to capture the thermal depolarisation.

6.4.1 Hardening function

As the temperature increases close to the Curie temperature, the behaviour of the
material changes from ferroelectric to anti-ferroelectric hysteresis behaviour. To include
this effect, the following hardening function is chosen,

K = Ps tanh

(
‖G‖
a
− C

)
− Ps tanh

(
−‖G‖
a
− C

)
. (6.27)

At a lower temperature, the value of C will be zero and recaptures the ferroelectric effect.
As the temperature rises, the value of C increases along with it. Thus, it influences the
hardening function to obtain the anti-ferroelectric behaviour.

6.4.2 Numerical simulation of thermal depolarisation

Thermal depolarisation is a phenomenon which occurs in a poled material. Therefore,
for a numerical simulation, the initial condition has to be taken as a poled. This initial
condition is obtained by applying an applied electric field upto 2 kV/mm at a tempera-
ture of θ = 300 K. The Curie temperature of the material is assumed to be θc = 400 K.
For simulating the thermal depolarisation, the temperature variable is increased from
300 K to 400 K. The results obtained of temperature depolarisation are presented in
Fig. 6.4. The result shows the decrease in electric displacement of the poled mate-
rial which approaches zero as the temperature increases uo to the Curie temperature.
Thus, the obtained result matches the experimental data of mechanical depolarisation
behaviour as shown in Fig 1.9.
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Figure 6.4: Simulation result of thermal depolarisation.

6.4.3 Simulation of ferroelectric hysteresis

To simulate the ferroelectric behaviour for various temperature, the response at cyclic
electric field (max. ±2 kV/mm) for a constant temperature is calculated. Chosen tem-
peratures for the numerical simulation are 300 K, 350 K and 400 K. The simulation
results for various temperatures are given in Fig. 6.5. As the temperature increases, the
ferroelectric behaviour changes to antiferroelectric behaviour, as observed from experi-
mental investigations.

6.5 Summary and conclusion

In this chapter, an alternative approach to solve the evolution equation in ferroelectric
model has been introduced in order to improve the numerical efficiency. The model
was then implemented in a finite element framework and presented the results for in-
homogeneous boundary value problem were presented. Later, the model was extended
to represent the behaviour of temperature dependency. From the simulation results,
it has been shown that the discussed model is able predict the temperature dependent
behaviour of ferroelectric ceramics such as thermal depolarisation and anti-ferroelectric
behaviour.
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(a) 300 K (b) 300 K
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(c) 350 K (d) 350 K
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Figure 6.5: Simulation results of dielectric hysteresis (a,c,e) and butterfly hysteresis (b,d,f) at temper-
atures of 300 K, 350 K and 390 K.
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Predicting the effective behaviour of ferroelectric composite is very important in the
improvement of ferroelectric applications. To capture the behaviour within a non-linear
regime, finite element approaches are commonly used. In this chapter, a semi-analytical
approach is used to calculate the effective behaviour of 1-3 composite. To have a com-
paritive study, the finite element homogenisation framework is presented and related
simulation results are discussed. Then, both the homogenisation methods are compared.
In the first part of this chapter, elementary homogenisation techniques such as the Voigt
and Reuss approach are discussed. Thereafter, a simple homogenisation method, par-
ticularly for 1-3 composite, is discussed. Then the simulation results obtained for this
simple homogenisation method for various frequencies and volume fractions are pre-
sented. These simulation results are also compared with experimental data. In the
second part of this chapter, the finite element homogenisation technique is discussed.
Following that the results obtained from this technique is compared with experimental
data. In the final part, a comparitive study between both the semi-analyitcal method
and the finite element homogenisation method is addressed.

7.1 Homogenisation methods

Voigt and Reuss are two well known homogenisation methods commonly used to pre-
dict the effective behaviour of composites. However, these procedures consider only the
volume fraction of the constituents and ignore other factors such as the distribution of
constituents, interfacial effects, etc. Despite of these procedures’ simplification, these
methods provide the range of the values of the effective properties. To consider the con-
stituent distribution of the material, a simple homogenisation procedure is introduced.
In this section, after the Voigt and the Reuss homogenisation procedure, a formulation
for the simple homogenisation approach is discussed.

7.1.1 Voigt assumption

Within the Voigt approach, the strains and the electric field are assumed to be uniform
in the material body considered. Consequently, the strain and the electric field are
identical in both the matrix and the fiber material. This assumption leads to that the
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7 Simulation of 1-3 piezocomposites

stress and electric displacement of the composite are different in the matrix material
and the fiber material. This assumption can be represented as

[
ε
E

]
=

[
fε

fE

]
=

[
mε

mE

]
, (7.1)

[
σ
D

]
= vf

[
fσ

fD

]
+ vm

[
mσ

mD

]
, (7.2)

where fσ,mσ, fD,mD, fε,mε, fE,mE, vf , vm are the stresses in the fiber, the stresses in
matrix, the electric displacement in the fiber, the electric displacement in the matrix,
the strains in the fiber, the strains in the matrix, the electric field in the matrix, the
electric field in the matrix, the volume fraction of the fiber and the volume fraction of the
matrix, respectively. Combined with the constitutive relation for both fiber and matrix
and for given strains and the electric field, the stresses, and the electric displacement
for the fiber and the matrix material and also the stresses and the electric displacement
for the composite can be calculated.

7.1.2 Reuss assumption

Contrary to the voigt assumption, the stresses and the electric displacement are assumed
to be uniform throughout the material. So, the stresses and the electric displacement
of the composite are identical to the stresses and electric displacement of the matrix
and the fiber material. The strains and the electric field of the matrix, the fiber and
the composite are related such that the weighted sum of the strain and the electric field
of the matrix and fiber are equal to thestrains and the electric field in the composite,
respectively. These relations can be represented as

[
σ
D

]
=

[
fσ

fD

]
=

[
mσ

mD

]
, (7.3)

[
ε
E

]
= vf

[
fε

fE

]
+ vm

[
mε

mE

]
. (7.4)

Combined with the constitutive relation for both fiber and matrix and for given strains
and the electric field, the stresses, and the electric displacement for the fiber and the
matrix material and also the stresses and the electric displacement for the composite
can be calculated.
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7.1.3 Simple homogenisation approach

All state variables and their conjugate flux terms are decomposed into a matrix part and
a fibre part in combination with related homogenisation assumptions. In this context,
volume fractions related to the matrix and fibre contributions are introduced. The
constitutive relations applied to the fibre contributions are those introduced for bulk
PZT, so that rate-dependent switching processes are accounted for at sufficiently high
loading levels. The resulting non-linear system of equations representing the constitutive
response of the 1-3 composite is iteratively solved for given loading conditions.

We assume Voigt-type conditions for the electric field in loading direction as well as
for the related strains, i.e.

ei · ε · ej = ei · fε · ej = ei · mε · ej for (i, j) ∈ {(1, 2), (2, 1), (3, 3)} , (7.5)

E · ek = fE · ek = mE · ek for k ∈ {3} , (7.6)

wherein the index f refers to the fibre contributions and wherein the index m indicates
matrix contributions. The related stresses and dielectric displacements follow as

ei · σ · ej = vf ei · fσ · ej + vm ei · mσ · ej for (i, j) ∈ {(1, 2), (2, 1), (3, 3)} , (7.7)

D · ek = vf fD · ek + vm mD · ek for k ∈ {3} , (7.8)

wherein vf ≥ 0 denotes the volume fraction of PZT fibres and vm ≥ 0 characterises the
volume fraction of the matrix with vf + vm = 1. Moreover, Reuss-type conditions are
assumed in the remaining directions, resulting in

el · σ · eo = el · fσ · eo + el · mσ · eo for (l, o) ∈ {(1, 1), (2, 2), (2, 3), (7.9)

(3, 2), (1, 3), (3, 1)} ,

D · ep = fD · ep + mD · ep for p ∈ {1, 2} , (7.10)

so that the related strains and electric field contributions follow as

el · ε · eo = vf el · fε · eo + vm el · mε · eo for (l, o) ∈ {(1, 1), (2, 2), (2, 3), (7.11)

(3, 2), (1, 3), (3, 1)} ,

E · ep = vf fE · ep + vm mE · ep for p ∈ {1, 2} . (7.12)

With these assumptions at hand, along with the constitutive relations, the stresses and
strains as well as the dielectric displacements and the electric field in the individual
constituents and the entire composite can be calculated for given macroscopic loading
and boundary conditions.
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7.2 Homogenisation algorithm for nonlinear behaviour

The aim of this algorithm is to compute the response of the stresses and the electric
displacement of the composite for a given strain and the electric field. At loading step
tn+1, the strains and the electric field are known as they are the input quantities for this
algorithm. Since the remnant polarisation at tn+1 is unknown, the remnant polarisation
at tn is taken as a trail value. The trail value of remnant polarisation is updated
iteratively in the algorithm, if the switching condition is violated. For given loading
conditions together with one of the homogenisation models discussed above, the stresses
and the electrical displacement of the composite, matrix and fiber are computed. From
the field variables obtained for fiber, the switching criterion is checked. Internal variables
are then updated according to the switching criterion. While updating the internal
variables, the homogenisation assumptions are satisfied parallely. Thus at the end of
each iteration, the stresses and the electric displacement of the composite are obtained
for the updated remnant polarisation. This procedure is summarized in Tab. 7.1.

Table 7.1: Algorithmic sketch of the constitutive driver for rate dependent response of the ferroelectric
composite material.

Given: σext
n+1,En+1, εn, fP

i
n(remnant polarisation of the fiber)

Set: εn+1 = εn, fP
i
n+1 = fP

i
n

Compute: Rl, Rg

DOWHILE: ‖Rg‖ ≥ tolg
DOWHILE: ‖Rl‖ ≥ toll

Compute:
σn+1, fσn+1,mσn+1,Dn+1, fDn+1,mDn+1,

fεn+1,mεn+1, fEn+1,mEn+1, fÊn+1

using equations (6.2) and (6.3) along with the homogenisation
equations (7.1)-(7.2) or (7.3)-(7.4) or (7.5)-(7.12) according to
the assumed homogenisation approach.

Rl = fP
i
n+1 − fP

i
n −∆t λn+1

2

E2
c

[
En+1 +

∂ψ̄

∂fP
i
n+1

]

fP
i
n+1 ← fP

i
n+1 −

[
dRl

dfP
i
n+1

]−1
·Rl

END
Rg = σext

n+1 − σn+1

εn+1 ← εn+1 −
[

dRg

dεn+1

]−1
: Rg

END
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7.3 Finite element homogenisation procedure

To predict the non-linear behaviour of a composite, the finite element method is the
commonly used procedure. In this section, the rate dependent ferroelectric model dis-
cussed in the chapter 3 is applied to a homogenisation procedure for 1-3 ferrocomposites.
The simulation has been performed for various volume fraction under different frequency
of loading.

In order to simulate effective properties of a 1-3 piezocomposite by means of the finite
element formulation discussed, a discretisation of a Representative Volume Element
(RVE) type specimen shall be considered. In comparing the elastic properties of matrix
material and fiber material, the volume fraction is more influential than the shape
of the fiber for the boundary value problems considered in this work. Therefore a
square fiber is chosen to simplify the RVE and also to accommodate the composites
with different volume fractions. This RVE includes areas of bulk PZT and areas of
matrix material, which is assumed to be isotropic and linear elastic. Accordingly, the
discretisation, repectively the constitutive relations referred to individual finite elements,
depends on the underlying volume fraction of PZT fibres. In view of the cartesian axes
illustrated in Fig. 7.1, the mechanical boundary conditions chosen include u3|x3=min = 0.
Moreover, the displacements u3|x3=max, u1|x1=min, u1|x1=max, u2|x2=min and u2|x2=max shall
be uniform. For the respective surfaces, the latter conditions are implemented in terms
of a linear constraint. Electrical boundary conditions are prescribed by φ|x3=min = 0
and φ|x3=max = φext.

Since the response of the RVE-type specimen is homogeneous in the direction of
electrical loading, only one element in thickness direction is used for the discretisation.
The total discretisation consists of 256, 256 and 324 hexahedral elements for fiber volume
fraction of 80 %, 65 %, 35 %, respectively. The effective response of the composite is
obtained by volume-averaging quantities of interest such as 〈σ〉B and 〈D〉B with

〈•〉B =
1

vB

∫

B
• dv . (7.13)

Matrix

Fibre

e2
e3

e1

Figure 7.1: Finite element mesh representing a piezocomposite with a PZT volume fraction of 35 %.
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7.4 Simulation results

The piezocomposites are simulated in two ways. First the simple homogenisation ap-
proach is applied. For the matrix material, a linear uncoupled electroelastic material
model has been considered. The related material parameters are shown in Tab. 7.2.
With this assumption, the piezocomposites are simulated for various electric loading
frequencies such as 1 Hz, 5 Hz, 10 Hz, 25 Hz, and for various fibre volume fractions
such as 0.8, 0.65, 0.35. The finite element simulations are referred to the same loading
and volume fractions and the simulation results are compared with the experimental
data. The electric loading cycle applied is given in Fig. 3.1. The simulation results
of the last full cycle are compared with experimental data. This comparison between
the simulation results obtained using a simple homogenisation approach and the finite
element method along with experimental data for the fibre volume fraction of 0.8, 0.65,
0.35 is given in Fig. 7.2, 7.3 and 7.4, respectively.

It is observed from the comparison that the simulation results obtained from the
simple homogenisation approach and finite element approach are quasi-identical. How-
ever, a small deviation in the butterfly hysteresis results of these two approaches can
be seen in the simulation for the volume fraction of 0.35 at 1 Hz. It has been observed
that the change in strain during the polarisation switching is larger in the finite element
approach than in the simple homogenisation approach.

Table 7.2: Material parameters for matrix material.

param. name unit value

λ Lamé parameter kN/m2 1.67 × 106

µ Lamé parameter kN/m2 1.115 × 106

γ Electric permittivity C2/(kN m2) −0.02 × 106
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Figure 7.2: Rate-dependent ferroelectric hysteresis at 1 Hz, 5 Hz, 10 Hz and 25 Hz: for a fibre volume
fraction of 0.8 (a) experiment, (c) simple homogenisation approach and (e) FEM; related butterfly
curves: (b) experiment, (d) simple homogenisation approach and (f) FEM.
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Figure 7.3: Rate-dependent ferroelectric hysteresis at 1 Hz, 5 Hz, 10 Hz and 25 Hz: for a fibre volume
fraction of 0.65 (a) experiment, (c) simple homogenisation approach and (e) FEM; related butterfly
curves: (b) experiment, (d) simple homogenisation approach and (f) FEM.
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(a) experiment, vf = 0.35 (b) experiment, vf = 0.35
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Figure 7.4: Rate-dependent ferroelectric hysteresis at 1 Hz, 5 Hz, 10 Hz and 25 Hz: for a fibre volume
fraction of 0.35 (a) experiment, (c) simple homogenisation approach and (e) FEM; related butterfly
curves: (b) experiment, (d) simple homogenisation approach and (f) FEM.
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7.5 A comparitive study between two approaches

To obtain a quantitative comparison between simulation results and the experiments, the
difference in the results of both approaches on total change in remnant polarisation, and
total change in strain for different frequencies and volume fractions are plotted as shown in
Fig. 7.5 and 7.6, respectively. From the comparison plot, it could be observed that the total
change in remnant polarisation shows a reduction as the volume fraction of fiber reduces. The
simulation results could capture this reducing behaviour. The total change in strain is observed
to remain unchanged as the volume fraction decreases as for as the frequency remains the same.
This behaviour is successfully captured by the simulations. However, some deviations in this
trend could be observed in the experimental results at vf = 0.8. Nevertheless, the change in
behaviour of the composite for different frequencies is successfully captured in both simulation
approaches.
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Figure 7.5: Comparison plot of maximum change in remnant polarisation between experiment, simple
homogenisation and FEM for different frequencies and volume fractions.
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Figure 7.6: Comparison plot of maximum change in strain between experiment, simple homogenisation
and FEM for different frequencies and volume fractions.

7.6 Summary and conclusion

In this chapter, a rate dependent constitutive model for ferroelectric material behaviour is used
to capture the constitutive behaviour of PZT fibres in a piezocomposite and is combined with
a simple homogenisation approach. Moreover, a finite element approach for a homogenisation
approach is discussed. Thereafter, the experimental data for piezocomposites at different
electrical loading frequencies and the results obtained for both simulation approaches are
compared. The prediction of the simple homogenisation approach and finite element analysis
for various volume fractions is in good agreement with the experimental results. The results
of the simple homogenisation approach and the finite element analysis are almost identical.
However, there is a notable difference for electrical loading 1 Hz and for 35% volume fraction,
see Fig. 7.4(d,f). This difference results from the tensile stress exerted on the fibre material
due to kinematic interactions with the matrix material in the lateral direction. In this chapter,
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the matrix material used for the analysis is soft in nature as opposed to the fibre. In the case of
a matrix material with higher stiffness, the effect of the tensile stress on the fibre in the lateral
direction is expected to be more pronounced. This effect can, in general, be captured more
appropriately within a finite element analysis than in the simple homogenisation approach. In
addition to the effect of lateral stresses, the stresses can also cause mechanical depolarisation.
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8 Summary and future work

The present work deals with the formulation and numerical implementation of phenomeno-
logical models of ferroelectric ceramics. At first, a thermodynamic framework for an elec-
tromechanical model along with the principle field theories is introduced. A rate dependent
ferroelectric model was then developed and compared with experimental data. The results
showed that the model was able to capture the effect of loading frequencies very well. A
multisurface model was then introduced to capture the minor ferroelectric hysteresis as well
as the asymmetric butterfly hysteresis which was observed in the experiments. The numerical
results were then compared with experimental data. From the presented numerical results,
it became evident that the model was able to capture different behaviour patterns due to
the changes in maximum applied electric field. It was also shown that the model was able
to capture a decreasing offset polarisation which has been observed in the ferroelectric mate-
rial which was undergone electrical fatigue. Later, with the idea of extending the introduced
model to capture additional phenomena such as ferroelastic hysteresis as well as mechani-
cal depolarisation, a ferroelectric model was introduced with an additional internal variable.
This model was formulated so as to be able to capture the anisotropic behaviour in ferro-
electric switching. Simulation results were then compared qualitatively to experimental data
taken from the literature. A rate independent ferroelectric model was then introduced. The
model is formulated such that it was able to capture the ferroelectric behaviour for nonlinear
hardening without an iteration procedure solving for the internal variables. Due to such an
algorithmic formulation, the numerical efficiency of the model could be improved. The model
was then implemented in a finite element framework and an inhomogeneous boundary value
problem was solved. Later, this model was extended to capture the temperature dependent
behaviour, especially the thermal depolarisation and antiferroelectric behaviour. Simulation
results showed the model’s capability of capturing these temperature dependent behaviour.
Finally, the introduced rate dependent model was used in a homogenisation method to de-
termine the behaviour of ferrocomposites. Two different methods were introduced where one
was a semianalytical method and where the other one used the finite element method. The
simulation results were then compared with experimental data for various loading frequencies
and the results compared very well.

Various models introduced in this work are quite efficient and well capable of capturing
different kinds of behaviour of ferroelectric ceramics. As a future work, the essential features
of these models could be brought together into a single robust model in order to obtain an all
purpose model for capturing various phenomena. The formulation of analytical tangent opera-
tor for all the introduced models within the implementation in a finite element framework will
be a considerable improvement in numerical efficiency. In ferromagnetism, ferromagnetic hys-
teresis behaviour under external stress is very similar to anti-ferroelectric hysteresis behaviour
[63]. Therefore, the model which can capture anti-ferroelectric behaviour could be extended
to include ferromagnetic behaviour as well.
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A Notes on the finite element
formulation

In this appendix, a finite element formulation for the simulation of the composite is sum-
marised. The global representation of the local balance equations (3.1,3.4) in weak form
results in

∫

B
u∗ · [∇ · σ + b ] dv = 0 ,

∫

B
φ∗ [∇ ·D − q ] dv = 0 , (A.1)

wherein u∗ and φ∗ denote suitable test functions; see, amongst others, Denzer and Menzel [33]
and Dusthakar et al [28]. As this work proceeds, the body forces b and charge densities q will
be neglected. Straightforward application of integration by parts and the divergence theorem
render the well-established representations

∫

B
σ : ∇u∗ dv −

∫

∂B
t · u∗ da = 0 ,

∫

B
D · ∇φ∗ dv −

∫

∂B
dφ∗ da = 0 , (A.2)

with t = σ · n and d = D · n, whereby n is the outward normal unit vector.

Since both types of degrees of freedom, i.e. the displacement and the electric potential,
enter the formulation in terms of their gradients in space only, identical shape functions are
used to approximate these fields. On the level of an individual finite element one obtains

uh =
∑nen

i
N i ui,

φh =
∑nen

i
N i φi,

uh∗ =
∑nen

i
N i ui∗,

φh∗ =
∑nen

i
N i φi∗.

(A.3)

so that the gradients of these approximations follow straightforwardly. Moreover, an isopara-
metric framework is adopted.

Next, let Anel

e=1 represent the assembly operation over all elements. This allows us to
represent the coupled non-linear system of equations in residual form as

rIu =

nel

A
e=1

∫

Be
σ · ∇NA dv −

nel

A
e=1

∫

∂Be
NA tda = 0 ∀ I = 1, . . . , nnp ,

rJφ =

nel

A
e=1

∫

Be
D · ∇NC dv −

nel

A
e=1

∫

∂Be
NC dda = 0 ∀ J = 1, . . . , nnp .

(A.4)
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A Notes on the finite element formulation

Application of a standard Newton scheme results in the iterative updates rIu l+1 = rIu l + ∆rIu
and rJφ l+1 = rJφ l + ∆rJφ with iteration index l and

∆rIu =
∑nnp

K=1

drIu
duK

·∆uK +
∑nnp

L=1

drIu
dφL

∆φL ,

∆rJφ =
∑nnp

K=1

drJφ
duK

·∆uK +
∑nnp

L=1

drJφ
dφL

∆φL .

(A.5)
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