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1 Zusammenfassung  

Das reference interaction site model RISM
[1,2,3,4]

 gewinnt für die Berechnung von Solvenz-

struktur und -thermodynamik zunehmend an Bedeutung. Bei RISM handelt es sich um ein 

statistisches Lösungsmittelmodell, das zu den impliziten Lösungsmittelmodellen gehört. Die-

ses basiert auf der Integralgleichungstheorie. Eine seiner zentralen Größen ist die bridge func-

tion, welche die Qualität der Berechnungen deutlich beeinflusst. Ungeachtet ihrer Bedeut-

samkeit ist die bridge function in der Regel nicht bekannt und wird lediglich angenähert. Die-

se Arbeit befasst sich mit der Erhöhung der Genauigkeit mit Hilfe von RISM berechneter Lö-

sungsmittelthermodynamiken. Der Einfluss der bridge function auf das chemische Exzesspo-

tential wird untersucht. Im Anschluss werden die Ergebnisse dazu verwendet, eine vielfältig 

einsetzbare Korrektur für mittels RISM berechnete freie Enthalpien zu erstellen. Die sich stel-

lenden Fragen sind: 

 Was ist der Effekt der bridge function auf die freie Solvatationsenthalpie? 

 Wie lässt sich dieser Effekt präzise quantifizieren? 

 Kann dieses auf Systeme mit unbekannten/genäherten bridge functions übertragen 

werden? 

Diese Arbeit über die Berechnung des Beitrags der bridge function zum chemischen Exzess-

potential ist in zwei Teile gegliedert. Der erste Teil befasst sich mit einfachen Modellfluiden. 

Die direkten und indirekten Einflüsse der bridge function werden anhand des Lennard-

Jones (LJ) und des repulsiven Weeks-Chandler-Anderson (WCA) Fluids untersucht. Anhand 

dieser simplen Modelle werden verschiedene geschlossene, bridge-abhängige Funktionale 

und deren numerische Stabilität diskutiert. Da die bridge function des WCA-rep Fluids bis 

dahin unbekannt war, wurde sie mit Moleküldynamik-Simulationen bestimmt. Im zweiten 

Teil werden die Ergebnisse aus dem ersten Teil auf wässrige Lösungen übertragen. Hierzu 

wird eine semi-empirische Korrektur der freien Hydratationsenthalpien für das embedded 

cluster reference interaction site model (EC-RISM
[5]

) parametrisiert. 

In dieser Arbeit werden drei Themenbereiche behandelt:  

Berechnung von bridge functions: Mittels Molekulardynamik-Simulationen wurde die 

bridge funiiton des WCA-rep Fluids bestimmt. Das durch das Lösungsmittel bedingte Poten-

zial der mittleren Kräfte, das auf ein Dimer wirkt, wurde verwendet um die bridge function 

bei kleinen Abständen zu ermitteln. Die bridge function des WCA-rep Fluids wurde mit der 

des LJ Fluids verglichen. Zwei verschiedene Methoden zur Invasion der Orstein-Zernike Ge-
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lichung wurden gegenübergestellt. Die bridge function wurde bei unterschiedlichen Dichten 

und Temperaturen berechnet, die jeweils flüssigen Zuständen des LJ Fluids entsprechen. 

Berechnung chemischer Exzesspotentiale mit bridge functions: Mithilfe der bridge func-

tions wurde geschlossene von der bridge function-abhängige Funktionale evaluiert um das 

chemische Exzesspotential zu bestimmen. Das chemische Excesspotential beim Übergang des 

WCA-rep Fluid zum LJ Fluid konnte mit hoher Genauigkeit berechnet werden. Die HNC clo-

sure erwies sich als eine gute Näherung als sie um ein bridge-abhängiges Funktional erweitert 

wurde. Es wurden zwei verschiedene geschlossene Ausdrücke untersucht. Obwohl beide Kor-

rekturen nicht erfolgreich waren, ähnelten sich die Dichten der chemischen Exzesspotentiale. 

Der Effekt der bridge function auf das chemische Exzesspotential wurde anhand des Zero-

Separation-Theorems harter Kugeln
[6,7,8,9]

 untersucht. 

Semi-empirische Korrekturen: Nach der Multiplikation mit einem semi-empirischen Faktor 

entspricht das partielle Molvolumen näherungsweise dem bridge-abhängigen Funktional. Dies 

gilt besonders für neutrale Moleküle und bei Ionen muss ein weiterer Ladungsabhängiger 

Faktor hinzugefügt werden. Mit dieser Korrektur kann RISM mit anderen modern impliziten 

Lösungsmittelmodellen vergleichbare Ergebnisse erzielen. Die Rechnungen mit Ionen sind 

sogar genauer. Um eine optimale Korrelation mit experimentellen Daten zu erhalten wurden 

weitere Korrekturfaktoren getestet. Die Vorhersagekraft der Modelle wurde anhand mehrerer 

Trainings- und Testdatensäte validiert. Die Korrektur wurde für verschiedene quantenmecha-

nische Theorieniveaus und Basissätze sowie verschiedene closures und Suszeptibilitätsfunkti-

onen parametrisiert. Ähnlich den SMx
[10,11,12]

 Modellen können auch bei der partiellen Molvo-

lumenskorrektur im Vakuum optimierte Molekülgoemotrien verwendet werden ohne, dass 

diese weiterer Optimierungen bedürfen. Einer Untersuchung der chemischen Zusammenset-

zung ergab, dass die freie Energiekorrektur am besten mit Molekülen funktioniert, die Sauer-

stoff und Chlor enthalten. Die Korrelation mit den experimentellen Daten verschlechtert sich 

wenn das Molekül Stickstoff-, Fluor-, Brom- oder Phosphoratome enthält. 

Die Ergebnisse zeigen, dass RISM zur genauen Berechnung chemischer Exzesspotentiale und 

freier Hydratationsenthalpien geeignet ist. Die HNC
[13,14]

 closure und PSE-k
[15]

 closures profi-

tieren vom Hinzufügen eines bridge-abhängigen Terms zu ihren chemischen Exzesspotential-

funktionalen. Da eine Verwendung der bridge function häufig zur Divergenz von RISM-

Rechnungen führt, ist die gezeigte nachträgliche Korrektur der freien Enthalpie vorteilhaft. 
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1 Abstract 

For the calculation of solvation thermodynamics and structures the reference interaction site 

model RISM
[1,2,3,4]

 is a theory with raising importance. RISM is a statistical solvent model 

that belongs to implicit solvation models. It is based on integral equation theory. A central 

property in RISM is the bridge function which heavily influences the quality of the calcula-

tions. Regardless of its importance the bridge function is usually unknown and approxima-

tions are used instead. This work is about improvement of the accuracy of solvation thermo-

dynamics properties calculated with RISM. The influence of the bridge function on the excess 

chemical potential is studied and findings are used to build a widely usable correction for 

RISM calculated free energies. Hence the questions of this work are: 

 What is the influence of the bridge function on the free energy of solvation? 

 How can this influence be quantified accurately? 

 Can this be transferred to systems with unknown/approximate bridge functions? 

This work about the calculation of bridge function contributions to the excess chemical poten-

tial is divided into two parts. Part one is about simple model fluids. Here the bridge functions 

of the Lennard-Jones (LJ) fluid and the repulsive Weeks-Chandler-Anderson (WCA-rep) fluid 

were used to study the direct and indirect bridge function contributions. At the example of 

these simple model fluids certain bridge dependent closed form expressions for the excess 

chemical potential and their numerical stability are discussed. Since the bridge function of the 

WCA-rep was unknown so far, it was calculated from molecular dynamics (MD) simulations. 

The second part is about a generalization of the results from part one to aqueous solutions. 

Here a semi-empirical correction of hydration free energies is parametrized for the embedded 

cluster reference interaction site model (EC-RISM
[5]

). 

In this thesis three main subjects have been discussed: 

Calculation of Bridge functions: The bridge function of the WCA-rep fluid was calculated 

using molecular dynamics simulations. The solvent induced potential of mean forces on a 

constrained dimer was used to extract the bridge near zero separation. The bridge function of 

the WCA-rep fluid is compared to the LJ fluid. The Ornstein–Zernike equation was inverted 

in different ways (directly in reciprocal space or iteratively in real space) to find the most ro-

bust methodology. The bridge dependent functional is based on a parametric representation of 

the bridge function which is influenced by the thermodynamic state. So the calculations were 
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performed at different densities and temperatures corresponding to liquid states of the LJ flu-

id. 

Calculation of excess chemical potentials with bridge functions: The information about the 

bridge function was used to calculate excess chemical potentials with closed form bridge de-

pendent expressions for the excess chemical potential. The transition free energies from the 

WCA-rep fluid to the LJ fluid were calculated with high accuracy. In combination a bridge 

dependent functional the HNC closure proved to be a good approximation for the exact clo-

sure. Two different closed form expressions were tested to calculate exact chemical potentials 

of the LJ fluid. Though both corrections were unsuccessful, the excess chemical potential 

density was similar. With the zero separation theorem
[6,7,8,9]

 of hard sphere fluids the effect of 

the bridge function on the excess chemical potential was studied. 

Semi-empirical corrections: The partial molar volume can be used to approximate the bridge 

dependent functional by using a semi-empirical scaling factor. This works well for neutral 

molecules. For ions an additional charge dependent term is needed. This correction is compet-

itive with other state of the art implicit solvent models especially in the treatment of ions. It 

was tested which additional correction terms can be used to further improve the agreement of 

the calculations with experimental data. The predictive power was confirmed by multiple 

reparametrizations with training and test compounds. The partial molar volume correction 

was benchmarked with various combinations of quantum mechanical levels of theory and ba-

sis sets. Also different closures and susceptibility functions within the reference interaction 

site model were tested. Similar to the SMx
[10,11,12]

 models vacuum optimized structures can be 

used for the calculations with great success without the need of further geometry optimiza-

tions. A classification of the molecules by atom types shows that the correction works best for 

molecules containing oxygen and chlorine. The correlation with the experimental solvation 

free energies is slightly worse when nitrogen, fluorine, bromine or phosphorous are part of the 

molecule.  

The results from the presented studies show that the reference interaction site model can be 

used for the accurate calculation of excess chemical potentials and solvation free energies. 

The HNC
[13,14]

 closure and the PSE-k
[15]

 closures greatly benefit from the addition of a bridge 

dependent term to their respective excess chemical potential functional. An addition of the 

bridge function to the RISM iteration often leads to a divergence of the calculation which may 

be a consequence of a validation of a mathematical constraint called LambertW
[16]

 condition. 

Hence the subsequent correction of converged calculations is beneficial. The semi-empirical 

correction presented here is well suited for this purpose. 
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2 Introduction 

A major part of chemistry takes place in solution. Together with experimental measures a the-

oretical description of solvation phenomena is an approach to gain insight into solvation relat-

ed subjects. In a theoretical framework solvation can be modeled in two different ways. In the 

explicit solvation models all solvent molecules are treated individually. These models can be 

very accurate but they are also time-consuming. An alternative are the implicit solvent models 

which describe the solvent by macroscopic properties. These models provide the results faster 

but include more approximations. Beside the popular continuum solvation models, the statis-

tical solvation models like the reference interaction site model RISM belong to the implicate 

solvation models. RISM describes the solvent by means of local density fluctuations. 

The major goal of this work is to increase the accuracy of thermodynamic predictions made 

with the reference interaction site model. This will be done by means of two different ap-

proaches. The first part uses the best possible physical description of simple model fluids to 

correct excess chemical potentials. The second part is about the description of aqueous sys-

tems and uses a semi-empirical correction based on the results of part one. 

First, the physical basis of the bridge function and bridge function dependent corrections of 

the excess chemical potential are described. This function is a central quantity in the reference 

interaction site model. It is hard to measure and its influence is not completely understood yet. 

The bridge functions of two model fluids are compared and bridge function properties are dis-

cussed from a thermodynamic perspective. Tasks in this part are to 

 implement the formalism for the calculation of bridge function contributions, 

 identify the effects of the bridge function on the excess chemical potential, 

 generalize the findings from the models for the usage of real solvents and solutes. 

In the second part the findings of the model fluid studies are transferred to aqueous solutions. 

In this part the focus is shifted to the applicability of the reference interaction side model. A 

method is proposed that corrects RISM calculated solvation free energies of small molecules 

without increasing the computational burden. Experimental solvation free energies are used to 

parameterize this semi-empirical correction. Tasks of this part are to 

 correct RISM calculated solvation free energies, 

 estimate the expected error, 

 build a reproducible workflow featuring a small expected error. 
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3 Theoretical Background 

A large amount of chemical reactions and processes takes place in solution. In this chapter 

some basic concepts of solvation and theoretical approaches towards them will be presented. 

3.1 Free energy of solvation 

Chemical reactions are influenced by the environment they take place in. The presence of sur-

rounding atoms and molecules and their physical properties influence the path a reaction fol-

lows. Hence a proper description of the educts, products and the surrounding medium is nec-

essary for the prediction of chemical processes like reactions, binding, enrichment, aggrega-

tion, pattern formation and many more. 

Referring to chemical reactions, a central quantity within those predictions is the Gibbs free 

energy  of reaction ΔRG°. It is defined as the difference between products and educts. In the 

gas phase this property only depends on the properties of educts and products of a reaction. In 

solutions also the solvent has to be taken into account. This is often done by construction of a 

thermodynamic cycle, dividing the reaction into simpler sub reactions (see figure 1).  

 

Figure 1: Thermodynamic cycle of the reaction A→B in the gas phase (top) and in so-

lution (bottom). 

A reaction in solution may be separated (Asolv→Bsolv) into three sub-reactions: 

 reaction of the educts to the products (Avac→Bvac) in the gas phase, 

 transfer of all educts into the gas phase (Asolv→Avac), 

 transfer of products from the gas phase into solution (Bvac→Bsolv). 

The free energy related to the transfer of a molecule from the gas phase into a solvent is called 

free energy of solvation. Assuming that the vibrational and rotational contributions are negli-
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gible (they approximately cancel), the free energy of solvation of a molecule with a frozen 

geometry can be approximated by
[5] 

µEG solvsolv ΔΔΔ reorg  . (3.1) 

Here ΔsolvE
reorg

 is the solvent introduced polerization energy of the solute due to an elecrionc 

reorgnisation. It is calculated from ΔsolvE
reorg

 = Esolv – Evac wich are the quantum mechanical 

energies in solution and in the gas phase. The excess chemical potential (of a one component 

fluid) μ
ex

  is defined as 

idex µµµ  . (3.2) 

So it is the difference between the chemical potential of the system and the chemical potential 

of the corresponding ideal gas. The chemical potential is defined as 

...
,,













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












TVTp N

A

N

G
µ  (3.3) 

with N being the number of particles in the system, V, p and T being the volume, pressure and 

the temperature respectively. 

The excess chemical potential describes the change of the free energy when introducing an 

infinitesimally small change in the number of particles in the solvent in a frozen state. Since 

the smallest possible change to a system is adding (or removing) a single particle, the excess 

chemical potential defines the process of transferring a particle from an interaction free envi-

ronment (gas phase) into the solvent. Since the excess chemical potential has to be calculated 

for all molecules in the reaction, the ability to predict it fast and accurately is desirable. 

The free energy depends on the conditions under which the process is executed. Hence stand-

ard conditions were defined (for example by the IUPAC). In this work “°” denotes a quantity 

at 298.15 K and 1 atm for a process in the gas phase and 298.15 K and 1 mol/l for a process in 

solution, which is a common standard state in the American literate. The IUPAC convention 

uses 1 bar as the standard pressure. Another convention used is the Ben-Naim standard sta-

te
[17]

, it will be denoted with a “
#
”. It defines the concentration as 1 M in both phases and as-

sumes ideality. This means a given free energy value corresponds to an ideal gas at a concen-

tration of 1 mol/l dissolving as an ideal solution at a concentration of 1 mol/l. The solvent is 

treated as an ideal solution
[17,18]

. 
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Due to this convention the ideal terms of the chemical potential cancel when inserting equa-

tion (3.2) in equation (3.1). Only the excess chemical potential remains 

exreorgΔΔ µEG solvsolv  . (3.4) 

The transition free energy from one state to the other is given by the free energy difference of 

an ideal gas at 1 atm and 1 mol/l. It can be calculated from 

)ln()ln(Δ
#

#

c

c
RTKRTG


 . (3.5) 

The concentration coefficient is given by 

K 15.298Kmol J 314.8

m J 100133.1

m10

mol
1

atm 1
l

mol
1

11

35

33-

#








RT

c

c
. (3.6) 

Here R is the ideal gas constant. This results in 

)46.24ln(Δ # RTG  . (3.7) 

It is possible calculate solvation free energies at both standard states form the energies and 

chemical potentials of single particles (see chapters 3.3 and 3.4 for information about calcula-

tions of molecular energies) 

.ΔΔΔ

ΔΔ

##

exreorg#





GGG

µEG

solvsolv

solvsolv
 (3.8) 

From chapter 4 on all thermodynamic quantities will use the Ben-Naim standard and the “
#
” 

will be left out for the sake of readability. 

When a molecule is flexible, there may be more than one conformation that contributes to the 

free energy. In this case the contributions of all conformations C can be averaged using parti-

tion functions to generate a conformational free energy
[19]
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 (3.9) 

As described in the next chapters, the free energy of solvation can be calculated using various 

methods and theories. Most of these models include some kind of parametrization using ex-

perimental datasets. In this case the ensemble contributions are often implicitly included into 

the parametrization (see 
[20]

 and 
[21]

 for further discussions). 
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In a solvation process under the Ben-Naim standard conditions the excess chemical potential 

does not depend on the ensemble. Hence the change of the Helmholtz free energy ΔsolvA
#
 

equals the change of the free energy ΔsolvG
#
.
 

3.2 Free energy of reactions 

When looking at the thermodynamic cycle in figure 1 the excess chemical potential is used on 

the left hand site for a process in the direction from solvent to vacuum and on the right hand 

site for the other direction. This means that only the difference of the excess chemical poten-

tials Δµ
ex

(A→B)=µ
ex

(A)-µ
ex

(B) and difference of electronic energies in the solvent 

ΔEsolv(A→B) = Esolv(B) - Esolv(A) are of importance.  

A direct calculation of Δµ
ex

(A→B) by estimation of the excess chemical potentials of both 

reactants will be systematically wrong in most cases. When A and B are similar compounds 

these errors may compensate when the difference is calculated. This means the calculation of 

free energies of reactions is often more accurate than the calculation of raw free energies of 

solvation. 

To maximize the effect of error compensation in the prediction of free energies of reactions it 

is beneficial to focus on reactions that only introduce a small change to the observed mole-

cule. Good examples for these types of reactions are proton transfer reactions. Therefore pre-

diction of acidity constants (pKa) or tautomer ratios are good benchmark cases for the calcula-

tion of free energies. The acidity constants   of many substances have be measured so for. 

Therefore they are often used as an experimental reference. Since acidity constants are famil-

iar to most chemists, they will be used as an example for the calculations of free energies and 

excess chemical potential and polarization energies in the chapter. Also at the end of this 

chapter some statistical measures will be given to evaluate the quality of calculated free ener-

gies. 

An alternative to the measurement of acidity constants is the in silico calculation. The calcula-

tion is necessary when the measurement is complicated or even impossible with state of the 

art techniques. Therefore the calculation of acidity constants is an important task for computa-

tional chemistry.  It can be used for theory benchmarks as well as for actual research. The 

thermodynamic cycle used for the calculation of an acidity constant is shown in figure 2. 



 10 .......................................... Free energy of reactions ...............................................  

Optimizing free energy functionals in integral equation theories  

 

Figure 2: Thermodynamic cycle of the dissociation of the acid HA. 

The free energy of the dissociation in gas phase ΔRG°vac is usually approximated by the differ-

ence in the electronic energy of the acid HA and the corresponding base A
-
. This energy dif-

ference can be calculated via quantum mechanics. The solvation free energies are calculated 

for all educts and products applying any kind of solvation model. 

Thus the free energy of the reaction is given by 

)H()H()A()A(

)HA()HA(Δ
ex

solv

ex

solv

ex

solv

 



μEμE

μEGR

 

(3.10) 

and all gas phase energy terms cancel. The excess chemical potential of the proton µ
ex

(H
+
)  

cannot be computed by the means of electronic structure calculation methods or measured di-

rectly. However, it can be extrapolated from a series of ion water cluster solvation free ener-

gies. Usually the experimental values of 265.9 kcal/mol by Tissandier et al.
[22]

 for the solva-

tion free energy of the proton and of 6.28 kcal/mol by Liptak and Schields
[23]

 for the vacuum 

free energy of the proton are used. 

When the free energy is known as seen in (3.10) the acidity constant is given by 

 G
RT

K RΔ
)10ln(

1
p a . (3.11) 

When benchmarking theoretical calculations, a comparison of calculated and experimental 

free energies can be derived from equations (3.10), (3.7) and (3.11) by  

kcal/mol.28.6kcal/mol9.265
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ex

solv

ex
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









μEμEG

GKRTG

R

R

 (3.12) 

Other approaches towards the calculation of acidity constants are used that do not rely on ex-

perimental energies of the proton. In this case multiple acidity constants are used instead. As 

an example differences of acidity constants or a linear regression models can be used
[19,24]

. 
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When only the difference of the acidity constants of two acids is needed (ΔpKa or also called 

pKa-Shift), the contribution of the proton cancels.  

To calculate the acidity constant of a target acid with this method, a reference acid with a 

known acidity constant is needed. In this case ΔpKa of target and reference acid can be calcu-

lated. Due to error compensation, this method works best when target and reference are simi-

lar. 

When the pKa-values of several reference compounds are known, a linear regression model 

can be applied. In this case a “raw” pKa is calculated from 

))A()A()HA()HA((
)10ln(

1
)raw(p ex

solv

ex

solva

 


 μEμE
RT

K . (3.13) 

Then the “raw” pKa is used in a linear model with the experimental values
[19,24]

 

bKaK )raw(p~)exp(p aa
. (3.14) 

Additionally the quality of the model can be measured by this approach. The ideal value of a 

is one and the ideal value of b is correlated with the excess chemical potential of the proton. 

Additional measures for the quality of a linear model are the root mean squared error RMSE 

and the coefficient of determination R
2
. These measures will be used in chapter 7. 

Another important process is the complexation of a solute. Complexation is important in 

many fields such as catalysis and biochemistry. For a physical or theoretical chemist, com-

plexation of a solute by the solvent is a tool to study solvation phenomena and benchmarking 

of solvation methods which will be discussed in the next chapter. 

The experimental value of the solvation free energy of the proton by Tissandier et al.
[22]

 was 

calculated using the so called cluster pair approximation
[22,25,26]

. In this method the solvation 

free energy of ion solvent clusters are measured for different ions and different numbers of 

complexing molecules to extrapolate the solvation free energy of the bare proton. 

As shown in figure 3, the complexation free energy of a molecule in the solvent by an explicit 

solvent molecule is expected to be zero. This cycle can be used to validate solvation state the-

ories as discussed in chapter 7.3.3.2. 
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Figure 3: Thermodynamic cycle of the complexation of a molecule M with a water 

molecule in the gas phase (top) and in aqueous solution (bottom). 

3.3 Modelling the effect of solvation in silico 

Thermodynamically the effect of solvation is modelled by excess chemical potentials. To cal-

culate those, a description of the solvent is needed. This will be called a solvent model. 

3.3.1 Fluids 

The solvent itself is the most important component when modelling solvation effects. In this 

work three solvents (Lennard-Jones fluid, Weeks-Chandler-Anderson fluid and water) will be 

treated. The Lennard-Jones fluid and the Weeks-Chandler-Anderson fluid are simple fluids 

that serve as model systems. They are used to study the fundamentals of solvation and for a 

better understanding of the related phenomena. They can be used to identify limitations and 

advantages of solvent models. Then the gained insight is used to improve the theoretical de-

scription of water and especially aqueous solvation free energies. 

The Lennard-Jones fluid (LJ) is a (very simple) model for noble gases. The LJ fluid is a 

simple monoatomic solvent without charges or dipole moments. However it includes attrac-

tive interactions to model the effect of dispersion.  

In the LJ fluid the interaction potential uLJ between two atoms is given by 


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. 

(3.15) 

This formula describes attractive and repulsive interaction between two particles. The LJ po-

tential is short ranged (in comparison to the Coulomb potential). The distance between the 

atoms (separation) is r, ε is the well depth of the potential and σ is the distance at which the 

interaction changes from repulsion to attraction.     
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The LJ potential asymptotically approaches zero. To speed up the calculation of the interac-

tion potential cutoffs are commonly used. Beyond a certain separation, the interaction poten-

tial is ignored. These truncations introduce discontinuities to the calculations.  

To avoid them a potential switching can be performed. Here the potential is slowly switched 

of as the separation reaches the cutoff. In chapter 6.3 the LJ potential in the MD simulations 

was multiplied which a function interpolating between one at an inner cutoff and zero at the 

outer cutoff distance
[27,28]
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When describing LJ fluids one usually uses reduced units. The separation is expressed in 

terms of multiples of σ and the energy is given in multiples of ε. Then the state of the LJ fluid 

is described by the reduced temperature T* and the reduced number density ρ*
[29]

 

.*

,*

3

B

ρσρ

ε

Tk
T




 (3.17) 

When reduced units are used, every LJ fluid has the same properties independent of the actual 

values of σLJ and εLJ.  

There are equations of state for the LJ fluid (LJEoS)  that are purely based on empirical fits. 

They can be used to calculate thermodynamic properties like the excess chemical potential, 

the Helmholtz energy, the inner energy and the pressure of the LJ fluid at different liquid 

states. 

One of them is the modified Benedict-Webb-Rubin (MBWR) equation of state
[30,31]

. This is 

an equation with 33 adjustable parameters. The MBWR equation is fitted to results from three 

different simulation techniques of the LJ fluid at different temperatures and densities: 

 MD simulations, 

 Monte Carlo (MC) simulations, 

 particle insertion simulations. 

The refined version of the MBWR
[31]

 can predict the Helmholtz free energy, the Gibbs free 

energy, the pressure, virial coefficients and the inner energy in the range of 0.7 < T* < 6. The 

MBWR is parametrized at all densities that belong to a fluid state within the given tempera-

ture range. 
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The authors
[31]

 performed the simulations with a 4σ cutoff and potential shifting. They applied 

long range tail corrections to calculate the pressure and inner energy. 

This solvent is discussed together with the WCA-rep solvent in chapters 5 and 6. 

The Weeks-Chandler-Anderson (WCA) fluid can be derived from the LJ fluid by a parti-

tioning of the LJ interaction into an attractive and a repulsive part. The partitioning scheme 

was developed by Weeks, Chandler and Anderson
[32]

. This hypothetical fluid is an important 

system for density functional theory because it allows for perturbation based approaches to-

wards the LJ fluid
[33,34,35]

.  

The repulsive potential is given by 






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σrεru
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Consequently the attractive part is 
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
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This solvent is discussed together with the LJ fluid in chapters 5 and 6.  

Water is probably the most important solvent on earth. It consists of one oxygen atom and 

two hydrogen atoms. The hydrogens are quite small in comparison to the oxygen. Water has a 

large dipole moment and a fairly high relative dielectric constant (εr=78). The complex granu-

larity caused by hydrogen bonding complicates the modelling. Since phenomena like hydro-

gen bonding of hydrophobic hydration are not even fully understood yet, modelling of water 

is not an easy task.  

In this work the (M)SPC/E water model is used. It is a three site water model, which means, 

that the water molecule is build up from three interaction sites, each centered on one of the 

atoms. The centers are connected by rigid bonds. The centers interact with the environment 

using LJ and Coulomb interactions. There are different versions of the SPC/E water model. 

Here the SPC/E
[36] 

optimized for Ewald summation techniques and the MSPC/E
[37,38,39]

 water 

model, which was parameterized for integral equation theory are used. The force field param-

eters and the topology of these modes are summarized in table 1. 

For a further discussion of this solvent see chapter 7. 
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Table 1: Force field parameters and geometry of the SPC/E and MSPC/E water model. 

 SPC/E MSPC/E 

qO -0.8476 -0.8476 

qH 0.4238 0.4238 

σO / Å 3.166 3.166 

σH / Å 0.000 1.000 

εO / kcal mol-1 0.1553 0.1553 

εH / kcal mol-1 0.0000 0.0560 

H-O-H angle  109.47° 109.47° 

O-H distance / Å 1.0 1.0 

3.3.2 Solvation models 

There are various approaches towards a theoretical description of the solvent. However, they 

can be assigned to one of two general classes.  The first general approach is to surround the 

solute by a large number of solvent molecules. This is called an explicit solvation model. The 

members of the other class model the solvent via its (equilibrium) properties. This is called an 

implicit solvation model. Examples for implicit solvation models are the continuum based ap-

proaches which will be shown in chapter 3.5 and the statistical solvent models based on inte-

gral equation theory as described in chapter 4. 

In an explicit solvation model, the solvent is built up from a large number of individual sol-

vent molecules. An ensemble of solvent configurations is generated. This is usually done in 

molecular dynamics (MD) simulations. 

These methods are time consuming because the ensemble of solvent configurations is of infi-

nite size and all the relevant regions have to be sampled. Additionally the number of solvent 

atoms has to be large enough. Otherwise finite size effects will be introduced. On the other 

side each molecule added increases the computational burden. 

Explicit solvent models allow for the investigation of solvation phenomena with atomic (or 

even electronic in case of quantum mechanics) resolution. One of the main approximations to 

the calculations is that the configuration sampling is complete. Therefore a critical part of the 

error introduced is of a statistical nature and can be minimized by increasing the amount of 

calculations. 

An alternative to explicit solvation models are implicit solvation models. They describe the 

solvent by its macroscopic properties. This accelerates the calculations, since there is no sam-
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pling of solvent degrees of freedom and the interactions within the solvent are not needed for 

these kinds of calculations. But usually there are approximations within such a model that in-

troduce a systematic error. 

3.4 The excess chemical potential 

The excess chemical potential is a central property for the description of chemical processes 

in solution. Unfortunately µ
ex

 calculations are not straightforward. The excess chemical po-

tential is an equilibrium property that includes entropic contributions. To calculate these equi-

librium properties, averaging over all (or at least “enough”) possible solvent configurations is 

necessary. This introduces either a combinatorial restriction or a sampling component to the 

calculation or further approximations are needed to cover this part. 

Additionally the solvent itself usually is not the focus of research interest. However, in most 

cases the interaction between a solvent and a solute or the influences of the solvent on a reac-

tion is studied. The number of all solvent atoms is usually much larger than the number of so-

lute atoms. If the solvent is treated in the same way as the solute much computational time is 

used on the solvent, which is usually the rather uninteresting part of the system. 

3.4.1 Databases with experimental excess chemical potentials 

As discussed previously, experimental datasets are important for the generation of theoretical 

models. The quality of a solvation model may be benchmarked against such a dataset, or the 

model itself may be parameterized with them. Models that supplement theoretical calculation 

with parameterized quantities from experimental datasets are called semi-empirical. 

The Minnesota Solvation Database (MNSol)  is a database containing the free energies of 

solvation. It was compiled by Cramer, Thrular and coworkers
[18]

. Among others, it consists of 

over 500 aqueous solvation free energies of small molecules. This has already been used for 

the parameterization of semi-empirical models such as SMx
[10,11,12]

. 

3.4.2 Thermodynamic integration 

As shown in (3.3) the excess chemical potential is the change of free energy when adding a 

single particle with a frozen geometry to a system. It can be calculated by integration of all 

energy contributions along the path of the particle into the solvent. The path integral can be 

converted into coupling parameter integration. Here the system is extended by hypothetical 

coupling parameter λ. At the beginning (λ=0) the system is not perturbed. At λ=1 the 

additional particle is comlpetly added to the system. Along this path the interactions between 
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system and solute are gradually coupled and consequently the interaction is scaled from zero 

to the full interaction 


1

0

ex ),(
d

),(d
dd r

r
r λg

λ

λu
λµ . (3.20) 

This approach is called thermodynamic integration TI.  

3.4.2.1 Thermodynamic integration in molecular dynamics simulations 

A thermodynamic integration method is often used in combination with MD simulations. The 

solvent configurations of an explicit solvent model are sampled along the coupling parameter 

path. The excess chemical potential can be calculated from the trajectory average of the inter-

action potential derivative by 

λ
λ

λU
µ

Tpλ

d
);(

)(
1

0
,;

v
u

ex

 




r
r . (3.21) 

Usually 10 to 20 simulations with different values of λ are performed. Then the derivative of 

the complete system interaction potential U with respect to λ is calculated and averaged over 

the trajectory. The complete system interaction potential U can be approximated by a sum of 

pair potentials u. The excess chemical potential is given by numerical integration of (3.21). 

3.4.2.2 Coupling parameter dependent potentials 

For the LJ potential (3.15) the most straightforward way is to multiply the ε parameter with 

the coupling parameter 
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However this leads to very sharp and repulsive potentials at small values of λ. This results in 

unstable simulation whenever particles come close to each other. To avoid these numerical 

hurdles one introduces an artificial distance between the scaled particle and the solvent
[40]

. 

This can be thought of as if the particle would be introduced from a 4 dimensional hyperspace 

into the 3 dimensional simulation cell. The fourth dimension is the coupling parameter. This 

is called soft core scaling. 
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The Lennard-Jones potential can be extended by a soft core scaling in many different ways. 

The one chosen here is taken from AMBER 12
[41]
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The factor aλ is the distance between solute and solvent along the fourth dimension. Since the 

excess chemical potential is a state function it does not depend on the coupling parameter path 

in equation (3.21). Therefore the a parameter can be chosen freely, but it may influence the 

stability of the simulation.  

For the WCA-rep potential (see chapter 3.3.1) an analogous coupling parameter-dependent 

representation can be formulated  
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However when using soft core scaling, the cutoff distance should be scaled as well. Otherwise 

an attractive force is introduced into the system and the potential limit for infinite separation 

will not be zero. 

3.4.2.3 Combination of coupling parameter dependent potentials 

The interaction potential may consist of two or more additive potential terms. For example an 

atom could be described by the WCA-rep potential to model Pauli repulsion. Then a WCA-atr 

potential is added to model dispersions and finally a charge term is added using Coulomb in-

teraction. In the following the handling of those additive potentials in the context of coupling 

parameter integration is described. 

Since the excess chemical potential is a state function, it can be calculated from a multistep 

process. For each step a partial excess chemical potential is calculated and summed to give 

the full excess chemical potential. This is necessary when purely attractive potentials are part 

of the simulation. For every λ and small separations, one has to take care that the repulsive 

potentials dominate the interaction at close separation. Otherwise the system will contract in 

an unphysical way. Therefore thermodynamic integrations of systems with Coulomb poten-

tials (e.g. polar solutes in water) are usually treated with two separate simulations. In a first 

step the excess chemical potential of uncharged system (a pure LJ system) is calculated. The 

charging free energy is calculated by scaling the Coulomb potential followed by another cou-

pling parameter integration.  
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In a similar way the free energy of transition from the WCA-rep fluid to the LJ fluid can be 

calculated with such a coupling parameter-dependent potential 

)()(),( atr-WCArep-WCALJ ruλrurλu  . (3.25) 

This forms the basis for analytical perturbation theory. 

3.5 Dielectric continuum techniques  

A popular class of implicit solvent models treats the solvent as a dielectric continuum. The 

solute is placed into a cavity in the continuum. The interaction potential of the cavity and the 

solute can be calculated from the Poisson-Boltzmann equation. The potential can be used in 

the Hamiltonian of quantum mechanics (QM) calculations and MD simulations. In this case 

the free energy of solvation can be separated into the contributions
[42,43,44]

 of the electrostatic 

solute-solvent interaction ΔsolvGel, the cavitation formation energy Gcav, the dispersive solute-

solvent interaction ΔsolvGcav and the entropic contributions from molecular motion ΔsolvGmm. 

mmdiscavel ΔΔΔΔ GGGGG solvsolvsolvsolv 
. (3.26) 

Different versions of this technique exist. They differ for example in the way the Poisson 

equation is solved, the cavity is formed and how the terms in equation (3.26) are calculated, 

approximated or neglected. 

Commonly used dielectric continuum models are used in MD simulations are the generalized 

Born model GB
[45]

 and the analytically linearized Poisson Boltzmann ALPB
[46]

 model. Both 

models are approximations that allow for a fast evaluation of the Poisson-Boltzmann equa-

tion. The SMx models
[47,48,49]

 use the generalized Born method in combination with quantum 

mechanics. They allow for a very accurate calculation of solvation free energies and are opti-

mized for a broad spectrum of basis sets and theory levels. All these models (GB and ALPB) 

use atom centric point charges to model the interaction between the solute and the solvent. 

In QM calculations a commonly uses implicit solvation model is the polarizable continuum 

model (PCM) in one of several variants
[43]

. These techniques solve the Poisson equation using 

apparent surface charges. These charges are spread on the surface of the cavity to model sol-

vent induced polarization effects. The PCM variants differ in the way the how the apparent 

surface charges are calculated. 

In chapter 7, the integral equation formalism variant IEF-PCM
[50,51,52]

 of the polarizable con-

tinuum model will be used. The IEF-prefix will be omitted. IEF-PCM uses integrals over 

Green functions instead of discrete sums to calculate the potential energy.  
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Further widely used variants of PCM models are the conductor like screening model 

COSMO
[53]

 (also called C-PCM) and its extension COSMO-RS
[54]

 which are mentioned in 

chapter 7. In COSMO the solvent is modeled as an ideal conductor (ε = ∞). This eases the 

calculations of the surface charge distribution but the distribution has to be scaled by an em-

pirical correction function to get the charge distribution for a real solvent (that is not an ideal 

conductor). The quality of the empirical correction gets worse the lower the dielectric con-

stant of the solvent is
[43]

. COSMO-RS was developed to deal with solvent granularity and di-

rectional effects such as H bonds which are needed for a proper treatment of water.  

In all models presented so far the cavity in the solvent is calculated from predefined atom ra-

dii. In the self-consistent continuum solvation model (SCCS)
[55,56] 

the cavity is defined in an 

alternentive way. Here an isodensity surface is calculated at a given threshold and everything 

inside the surface is considered to be inside the cavity. An extension of SCCS is the charge-

asymmetric nonlcally determined local-electric solvation model CANDLE
[57]

. With this mod-

el calculation of solvation free energies of ions is more accurate. 
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4 Integral equation theory 

Integral equation based solvation models belong to the class of statistical solvation models. 

The solute is modeled by its interaction potential with the solvent. The solvent is modelled by 

its density susceptibility function. This function describes how a fluid’s local density changes, 

when an external potential is applied to the fluid. Integral equation based solvent models ac-

count for solvent granularity. As an example RISM is able to model the effect of H-bonds. So 

it is an implicit solvent model which shows more detail than the dielectric continuum tech-

niques but less than an explicit solvent model would provide. In theory integral equation 

based solvent models provide the same information about equilibrium properties as an MD 

simulation. 

In integral equation theory the solvent is models by local density derivations using classical 

density functional theory
[58]

. Here the thermodynamic properties of a (simple and inhomoge-

neous) liquid are expressed as a functional of the local density. For example the in the grand 

canonical ensemble the grand potential Ω is given by 

 .)()]([Ω rrr dρμρANμA  (4.1) 

Density functional theory says that the real density minimizes the grand potential. Hence the 

real density can be calculated by setting the functional derivative of (4.1) equal to zero 

)eq(
)(

Ω
0

ρρ
δρ

δ




r

. (4.2) 

From equation (4.2) Ornstein-Zernike OZ equation may be derived using non-trivial algeb-

ra
[58,59]

. For a simple homogenius fluid the OZ is   

  'd)'()'()()( rrhrrcρrcrh . (4.3) 

Here r is the spatial vector and r = |r| is the separation. It relates the total correlation function 

(TCF or h(r)) to the direct correlation function (DCF or c(r)). The direct correlation function 

can be interpreted as the correlation between two particles that is not mediated by other parti-

cles. The long range asymptotic of this function is similar to the interaction potential between 

those particles. The total correlation function is closely related to the pair distribution function 

(PDF or g(r))   

1)()(  rgrh   (4.4) 
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where r is the distance. In most cases neither the total nor the direct correlation functions of a 

system are known. Therefore a second equation connecting h and c is needed. For this pur-

pose the closure relation 

)]()()()(exp[1)( rBruβrcrhrh  , (4.5) 

which is a direct result of equation (4.2)
[58,59]

 is used. Here the correlation functions are linked 

to the interaction potential u(r) and the bridge function B(r) . The correlation functions, bridge 

function and pair potential of the LJ fluid are shown in figure 4. The closure relation will be 

discussed in chapter 4.3 and the bridge function will be discussed in chapter 4.4. The inverse 

temperature β is calculated form the Boltzmann constant kB and the temperature T by β = 1 / 

(kB T). Often the indirect correlation function (ICF or t(r)) is introduced.  

)()()( rcrhrt  . (4.6) 

So far the Ornstein-Zernike equation only holds for homogenous and monoatomic solvents. 

The molecular OZ
[60,58]

 (MOZ) equation is an extension of the OZ equation which allows for 

a treatment of ridged polyatomic systems. For a solute at a given point in space with a given 

orientation, integration is performed over all the space coordinates as well as all three angular 

coordinates describing the relative orientations between solute and solvent. This results in a 

six dimensional integral
[61,62]

. 

4.1 The reference interaction site model 

To reduce the computational burden needed for solving the (molecular) Ornstein-Zernike 

equation the reference interaction site model (RISM)[
63

,
64

]was introduced. In contrast to the 

MOZ, in RISM a factorization of the integration of spatial and angular coordinates is assumed 

and the angular integration is performed analytically. To do so, the direct correlation function 

is approximated by a sum of partial site-site direct correlation functions. This isotropic ap-

proximation means that the solvent is assumed to rotate freely, ignoring all privileged orienta-

tions
[58]

. 

This approach leaves a three dimensional integral over the space coordinates which is solved 

numerically. This numerical solution can be calculated in two different ways called 1D-

RISM
[65,66]

 and 3D-RISM
[1,67,4]

. 
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Figure 4: Pair potential uLJ, pair distribution function g, direct correlation function c 

and bridge function B of the LJ fluid at the reduced density of ρ* = 0.85 and the reduced 

temperature T* = 0.72. For details of the calculation see chapter 5. 

4.1.1 1D-RISM 

In the reference interaction site model the solvent is assumed to be built from spherical inter-

action sites. In the case of a mono atomic fluid the three dimensional integral of the space co-

ordinates reduces to a one dimensional integration for symmetry reasons. 

To get the pair distribution function of molecular liquids the solvent is decomposed into 

spherical components (interaction sites). The geometry of the solvent molecules is modelled 

by the so called intramolecular correlation function. The intramolecular correlation function is 

a distribution function that describes the distance distribution of each pair of sites inside the 

molecule. When the molecule is described as a rigid body of integration sites, the intramolec-

ular correlation function ωγγ’ between the solvent interaction sites γ and γ’ is given by 

2

'

'

'
4

)(
)(

γγ

γγ

γγ
rπ

rrδ
rω


 . (4.7) 

Here δ is the Dirac delta function. For a single solute molecule u with the solute interaction 

sites α in a molecular solvent v with the solvent interaction sites γ, the integral equation (ac-

cording to RISM) is 

  
' '

2'''1' ''d'd)''()'''()'()(
γ α

γγγααααγ χcωrh rrrrrrrr . (4.8) 
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This is called the 1D-RISMuv equation.  It depends on the susceptibility function χ of the pure 

solvent which is defined as  

)()()( ''' rhρrρωrχ γγγγγγ  . (4.9) 

The susceptibility can be calculated using the Percus trick. Here the pure solvent is treated as 

a system of one solvent molecule in the solvent of interest. Then there are no more solute-

dependent terms in (4.9) and it can be solved together with a closure relation. This approach is 

called one dimensional solvent solvent reference interaction site model. (1D-RISMvv).  

The result of the 1D-RISMvv is the pair distribution function of the pure solvent. This can now 

be used to calculate the pair distribution function of any solute in this solvent. 

For the treatment of large anisotropic molecules, 1D-RISMuv may lead to poor description of 

local solvent densities near the solvent due to the radial averaging
[68]

. A spatial (grid) localiza-

tion of regions with increased (or decreased) density is not possible. Since this information is 

often required for molecular modelling the 3D-RISM
[1,4,67]

 was developed. 

There are two extensions to the RISM formalism. The first one is the extended RISM 

(XRISM). It was developed by Hirata and Rossky
[69]

. XRISM is an ad hoc generalization of 

RISM to molecules. The problem of XRISM is that unlike in reality, the dielectric constant ε 

of every solvent is given by the dielectric constant of a polar the ideal gas
[58]

 

2

D
3

4
1 πβρμε  . (4.10) 

Here µD is the diploe moment of a solvent molecule. To overcome this, the dielectrically con-

sistent RISM
[70,71]

 (DRISM) was developed. Here an additional term is added to the closure 

relation (similar to a bridge function) that accounts for screening effects. 

4.1.2 3D-RISM 

3D-RISM
[3,4]

 is an extension of 1D-RISM. Here the spatial distribution of the solvent density 

is not averaged and information about 3D solvent distribution is gained. In 3D-RISM, for eve-

ry solvent site γ, the equation (4.8) is partially solved by omission of integration of orienta-

tional coordinates 




'

'

1

' 'd)'()'()(
γ

γγγγ χρch rrrrr . (4.11) 

The solvent susceptibility function can be calculated with 1D-RISMvv. To avoid the approxi-

mations in the 1D-RISMvv formalism, the solvent susceptibility can be taken from other 



 ................................................ Integral equation theory ..........................................  25 

 Daniel Tomazic  

sources, for example from pair distribution functions from MD simulations. However, the 

susceptibility function calculated from external sources keep the approximation that the direct 

correlation function is built from a sum of site-site direct correlation functions. 

4.2 Solute solvent interaction potentials 

In equation (4.5) the interaction potential between solute and solvent (or two solvent mole-

cules in the vv case) is needed. This is usually calculated using usual interaction pairwise po-

tentials and force fields. A probe of every solvent site is placed on all positions in the vicinity 

of the solute and the interaction energy is calculated. In most cases LJ interaction and Cou-

lomb interaction are used. The parameters of the LJ potential are taken from force fields and 

the partial charges are calculated via quantum mechanics or taken from a force field. 

In the EC-RISM
[5]

 approach the partial charges of the solute are calculated in an iterative pro-

cess. Quantum mechanics and RISM calculations are performed successively. Hence the re-

sulting partial charges account for the solvent induced polarization of the solute. 

In EC-RISM the solvation free energy is approximated by 

exΔΔ μEG polslov  . (3.4)  

The excess chemical potential is the change in free energy when a rigid molecule with a fro-

zen solution phase electronic structure is inserted at infinite dilution. It is calculated from 

RISM as explained in chapter 4.5. The quantum mechanical energy difference ΔpolE is given 

by 

vacsolvΔ EEEpol  . (4.12) 

It can be interpreted as the per-particle polarization energy of a molecule during the solvation 

process. The energy is evaluated using the solution phase wave function of the molecule. The 

wave function is calculated using the Hamiltonian 
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(4.13) 
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Here Hu is the standard molecule Hamiltonian in quantum mechanics and Huv describes the  

solute-solvent interaction. The subscripts n, e denote nuclei and electrons. The q denotes the 

embedding point charges modeling the solvent environment. The charge field is calculated 

from the total correlation functions from 3D-RISM. The density of the charge field ρq is given 

by 

 
γ

γγγq hρqρ )1)(()( rr . 
(4.14) 

The solvent-site density is given by ργ and the solvent site partial charge is qγ. 

EC-RISM begins with an initial guess of the partial charges of the molecule. This can be done 

using vacuum QM calculations. Then a RISM calculation is performed and the embedding 

charge field is calculated using equation (4.14). A QM calculation is performed with the up-

dated Hamiltonian according to equation (4.13). From the QM calculation updated partial 

charges are calculated and the embedding cluster is recalculated. This is repeated until the 

solvation free energy of the molecule (3.4) is converged. 

4.3 Closure relation with approximated bridge functions 

The integral equation shows the response of a solvent after perturbation of the correlation 

function. Now another equation is needed that models this perturbation introduced by the so-

lute which applies an external potential u to the solvent. This is modeled by the closure rela-

tion. This equation can be given in the one-dimensional case as well as in the three-

dimensional case.  

1D-RISM 

)]()()()(exp[1)( rBruβrcrhrh   (4.5) 

3D-RISM 

)]()()()(exp[1)( rrrrr Buβchh   (4.15) 

Equation (4.15) can also be used in the 1D-RISM case. Equation (4.5) is identical to (4.15)  in 

1D-RISM due to symmetry. In the remainder of this chapter all equations are only displayed 

for the one dimensional case. The three dimensional case is analogous. Here B is a function 

that is called bridge function due to the formal similarly with the bridge function in classical 

density functional theory and integral equation theory. This function will be discussed in 

chapter 4.4. The bridge function B is usually not known, some approximate closures were in-

troduced in the literature. Some of them will be presented in the next chapters. 
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4.3.1 The hypernetted chain approximation 

The approximation that the bridge function can be neglected (B(r) = 0) is called the hypernet-

ted chain approximation
[13,14]

 (HNC). The HNC approximation is appropriate for longer 

ranged interactions since the bridge function vanishes with growing interaction distance. 

However for real systems like water the HNC leads to unphysical oscillations of the pair dis-

tribution function at high separations
[72]

 showing the effect of the missing long range bridge 

function. 

4.3.2 Partial series expansion 

The reference interaction site model and hypernetted chain approximation closure system of 

equations (RISM/HNC) often has convergence issues. To avoid some of them, the closure is 

partially expressed as a Taylor series
[73,74,15]

.    
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Here k is an order parameter of the series expansion. If k = 1 the closure is equal to the Ko-

valenko-Hirata closure (KH)
 [73,74]

. With increasing order, the partial series expansion of order 

k (PSE-k) approaches the HNC.  

4.3.3 Verlet closure 

The Verlet closure
[75]

 is a semi-empirical closure relation. It was developed to reproduce the 

pressure of hard sphere systems. Several variants of this closure exist. Here two of them are 

presented which will be relevant for this work.  

The first variant of the Verlet closure is the original form of the closure. It can be used for so-

lutes without long range interactions   















)(8.01

)(

2

1
)(

2

rt

rt
rBV . (4.17) 

When long ranged interactions are present, (e.g. because the solvent is charged) a renormali-

zation of the indirect correlation function t is needed
[76,77]

. A possible modified Verlet closure 

including a renormalization (see chapters 4.4.1 and 4.5) is 
[78] 
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Here t*=t-βuWCA-atr is the renormalized indirect correlation function and ξ is an adjustable pa-

rameter.  
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4.3.4 Reference hypernetted chain approximation 

When the bridge function of a similar fluid is known, instead of the exact bridge function of 

the fluid of interest, the reference HNC closure can be used. Here the solvent is modelled as a 

solvent with the artificial potential u
ref

=u+B
ref

 where u is the potential energy of the solvent 

and B
ref

 is the bridge function of the reference fluid. With this reference potential the HNC 

closure is solved
[79]

. As a reference fluid the hard sphere fluid can be used since its bridge 

function is known from Monte Carlo simulations
[80]

. 

An example for such an approach is the RISM/HNC-BF0 theory
[81]

, where a two-step process 

is used. In the first strep, the charges solvent are removed. Then the RISM/Verlet approxima-

tion is used to calculate BV of the resulting short ranged system. In the second step, the bridge 

function of the charged system is approximated by the bridge function of the uncharged sys-

tem. 

4.4 Bridge function 

The bridge function is one of the central missing links in integral equation theory. It is a non-

local usually unknown functional. When using diagrammatical expressions within integral 

equation theory, the bridge function is given by an infinite sum of high dimensional integrals 

which usually does not converge after the first few elements
[82,83]

. In practice this approach 

towards the bridge function cannot be utilized in reasonable computational time. Therefore 

usually closures with approximate bridge functions are used. In this chapter the properties of 

these bridge functions and other approaches towards its calculation are discussed. 

4.4.1 Properties of the bridge function 

For a simple liquid the bridge function has a proper representation when described as a func-

tion of the separation. However this representation is usually not useful in RISM because of 

two reasons. Firstly the bridge is rarely known (see chapter 5.1) and hard to approximate in 

this representation. An example of this representation is the repulsive bridge correction
[84]

. 

Secondly this representation cannot be used for the calculation of thermodynamics as shown 

in chapters 4.5 and 6. To avoid the first issue, the bridge function can be approximated as a 

function of correlation functions (h, c, t). In this case the explicit dependence on the separa-

tion of the correlation functions and the bridge function is used to generate a parametric repre-

sentation. At every separation the value of the bridge function is assigned to the value of a 

correlation function. Such an approximation allows for a relatively simple handling of the 
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bridge function in the RISM
[76]

. The Verlet closure, which was discussed in chapter 4.3.3, is a 

good example for a parametric closure. 

In the RISM formalism, the bridge function is not correct in the sense of classical functional 

theory. The RISM site-site bridge function does not minimize the grand potential. However, 

the bridge function is formulated ad hoc in an analogous way to classical functional theory. 

Duh and Haymet
[76]

 chose the indirect correlation function as a basis for the parametric repre-

sentation. The graph of this representation is called a Duh Haymet plot. When the bridge 

function of the LJ fluid is plotted as a function of the indirect correlation function, the Duh 

Haymet plot has loops at high separation and hooks at close separation
[85]

. Hence this repre-

sentation is not a function but a functional representation of the bridge function. At the exam-

ple of a 2-2 electrolyte Duh and Haymet
[76]

 proved that the loops in the representation can be 

avoided when a renormalization is done. Here a specifically chosen long range potential is 

subtracted from the direct correlation function. When this is done in the correct way
[86]

 this 

does not affect the result of the RISM but can speed up the calculation.  

S. Kast
[16]

 found an upper limit of the bridge function when it is represented as a function of 

the renormalized direct correlation function c* = c + βu. This is a consequence of the Lam-

bert W function and hence a mathematical constraint to the bridge function. The Lambert W 

condition says that the bridge function is greater than the renormalized direct correlation func-

tion. If the total correlation function is zero, the bridge function is exactly the renormalized 

direct correlation function. 

The bridge function is important for the calculation of excess chemical potentials with RISM. 

This is discussed in the chapters 4.5 and 6. 

4.4.2 Non-diagrammatic definition of the bridge function 

One can interpret the bridge function as the part of the potential of mean forces W or PMF  

that is not captured by the direct interaction u or any of the correlation functions (h, c, t).  

When the closure equation (4.5) is divided by the Boltzmann weighted interaction (βu), one 

gets the cavity distribution function
[58]

 γ. Similar to the pair distribution function g, the cavity 

distribution function describes the distribution between two non-interacting cavities in the 

solvent. The cavities are not allowed to move within the solvent and the solvent atoms cannot 

be placed inside the cavity. However the cavities may overlap  

]exp[)]()()(exp[)( vWβrBrcrhrγ  . (4.19) 
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here W
v
 is the solvent component of the so called potential of mean forces PMF . Hence the 

mean force F
v
 on a cavity (or molecule

87
) in a distance r to another cavity (or molecule) is 

given by 

r

W
F

d

d v
v  . (4.20) 

F
v
 only measures the attraction or repulsion on the cavity that is introduced by the solvent it-

self. For a simple fluid, the potential of mean forces W between two molecules at a distance r 

can be calculated from W
V
 and their interaction pair potential

[58]
 from   

)()()( v rurWrW  . (4.21) 

The potential of mean forces is given by 

)()()()()()( v ruβrBrhrcrWβruβWβ  . (4.22) 

This allows for the calculation of the bridge function 

).(*)()()()( rtWβruβrhrcWβrB   (4.23) 

4.4.3 Calculation of bridge functions 

The approach based on the potential of mean forces from chapter 4.4.2 can be used to calcu-

late bridge functions. Here an inversion of the closure is performed 

)()()()](ln[)( ruβrhrcrgrB  . (4.24) 

Commonly the pair distribution function is calculated from MD simulations, but with the 

problem that the area inside the core of the solute atoms is hardly computable in a straight-

forward manner. Here the distribution function is (almost) zero and the bridge function is su-

perseded by the repulsive potential. Therefore using equation (4.24) the bridge function can 

only be calculated outside the core of the solute. As an example for the LJ fluid, the pair dis-

tribution function is non-zero roughly when r > σLJ. Therefore when using MD simulations, 

the bridge function can only be calculated easily in this area. 

Equation (4.24) also contains the direct correlation function. This function can be calculated 

from the pair distribution function by an inversion of either the Ornstein-Zernike equation 

(4.3) or the RISM equations (4.8) or (4.11)
[72,80,88,85,89]

. 

To calculate the bridge function inside the core, the cavity correlation function γ or the solvent 

mediated potential of mean forces W
v
 can be used. 

The bridge function of some fluids had been calculated inside and outside the core in the past. 

One of them is the bridge function of the LJ fluid. It was calculated inside the core by Llano-
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Restrepo and Chapman
[89]

. They used a Monte-Carlo simulation to calculate the pair distribu-

tion function and the cavity correlation function. The bridge function was calculated similarly 

to equation (4.19)
1
. 

A similar approach can be used with constrained dynamics simulations. Here a dimer of two 

solvent atoms with a fix distance is treated within a MD simulation. The projection of the 

mean solvent mediated force along the binding axis can be calculated from 
[87]
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Here r12 is the distance between the two atoms of the solvent dimer. The position of the dimer 

atoms is given by r and the bracket means the trajectory average. Then the solvent mediated 

potential of mean forces is given via integration of the forces 

)'('d)( vv rFrrW
r

 . (4.26) 

Note that the upper integration limit is problematic since we can only treat a limited range of 

constraint distances by MD simulations. By splitting W
v
 into 
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with variable rx we can circumvent this issue by explicit PMF simulation of the first term on 

the right hand site and taking the second term directly from the simulated PDF of the pure liq-

uid by 
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The bridge function is then obtained by supplementing 

)()()()(1)()(v rBrtrBrcrgrWβ  . (4.29) 

with an direct correlation function from inverting the Ornstein-Zernike equation. 

4.5 Thermodynamics 

As shown in chapter 3.4.2 the excess chemical potential can be calculated from a thermody-

namic integration. All properties in equation (3.20) (u and g) are either input or the result of a 

RISM calculation. Similar to MD simulations, RISM calculations can be performed at differ-

ent values of the coupling parameter λ, followed by a numerical integration. This was for ex-

                                                 
1
 The following part is taken from Tomazic, D.; Hoffgaard, F.; Kast, S. Chemical Physics Letters 2014, 591, 

237-242. 
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ample done by Chiles and Rossky
[90]

 to calculate the potential energy surface of an SN2 reac-

tion in water. 

Singer and Chandler derived a closed (without an infinite sum) and direct (without coupling 

parameter integration) expression for the excess chemical potential for RISM calculations 

with the HNC closure
[91]

. An analytical integration of (3.20) for the HNC closure leads to 
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and 
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In the following chapters equations (4.30) and (4.31) will be referred as the HNC-functionals 

of the excess chemical potential µ
HNC

 and the Helmholtz free energy A
HNC

. These functionals 

may be evaluated with correlation functions calculated from non-zero bridge functions. As an 

example the HNC-functional excess chemical potential of a RISM calculation with the modi-

fied Verlet closure is 
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In the following equations µ
HNC

 will be used to describe the HNC part in the general closed 

form expression of the excess chemical potential. In these equations the functionals are evalu-

ated with the correlation functions calculated with bridge functions. 

If a non-zero bridge function is used, the bridge function contributes to the excess chemical 

potential. This means that the functional for excess chemical potential has two parts, the 

bridge dependent functional Δµ
B
 and the HNC functional µ

HNC
. 

BB µchµchµ Δ],[],[ BB

HNC

BB  . (4.33) 

The bridge dependent functional is given by
[92,39]
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The bridge dependent functional can have a different expression dependent of the formulation 

of the bridge function. In this case the functional can be calculated from the bridge function 

and other correlation functions. 
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Unfortunately certain closure relations will introduce a path dependence into equation 

(3.20)
[92]

. This leads to excess chemical potentials that are no longer state functions. This is 

called thermodynamic inconsistence. It is possible to define criterions for the bridge function 

which will lead to thermodynamically consistent excess chemical potentials
[78,93,94]

. Accord-

ing to S. Kast
[78]

 a bridge function has to be defined in dependence of either t-βu, h or c+βu or 

certain combinations thereof to get rid of the path dependence. 

The identification of path independent bridge functions is the result of a general formalism
[78]

. 

The sufficient condition for path independency is the existence of an exact differential of the 

excess chemical potential hence the variation vanishes 
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In this case the excess chemical potential is given by 
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CL are Lagrange constraints imposed by the closure (equation (4.5)), the definition of the indi-

rect correlation function (equation (4.6)) and the integral equation (equation (4.3)).  
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In this equation p, v and q are Lagrange parameters and the r and λ dependency of t, h, c, u, B, 

and g is left out for the sake of readability. The closure dependent Lagrange parameters are 

accessible by calculation of the partial derivatives of equation (4.36) and setting them to zero 

according to equation (4.35). 

Then the solvation free energy is calculated using the partial derivative of µ with respect to h.  
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When equation (4.38) is multiplied with (h+1) the integral of the first term of the right hand 

side is equal the excess chemical potential when compared with equation (3.20) 
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Kast and Kloss
[15]

 derived a closed form expression for bridge functions given as a function of 

the renormalized indirect correlation function t* 
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Using this equation they derived the excess chemical potential for the PSE closures 
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Here Θ is the Heaviside step function. 

An alternative way to express the bridge dependent functional is the g(B) integration which is 

the result of integration by substitution of equation (4.34) 
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The partial molar volume VM of the solute can be calculated from combination
[95,96]

 of IE the-

ory with Kirkwood-Buff theory
[97]

. Kirkwood-Buff theory expresses thermodynamic proper-

ties in terms of integrals of correlation functions. For the two-component system of a solute 

particle u in a simple solvent v at infinite dilution the partial molar volume of the solute is 

given by 

  rrcρr
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4
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2

M
. (4.43) 

Here κ is the compressibility of the solvent.  
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5 Bridge function of simple fluids 

In chapter 4.4 the general properties and possible ways towards the calculations of bridge 

functions were explained. Anyways the bridge function is so far only known for few simple 

fluids. In this chapter the calculation of the bridge function of the WCA-rep fluid is presented 

and the results are discussed. Additionally this bridge function is compared to the bridge func-

tion of the LJ fluid published by Llano-Restrepo and Chapman
[89]

: 

The interest in this context is fourfold
2
: 

 tabulating accurate data including the inner-core region in comparison with the full LJ 

case for possible use by the IE community, 

 establishing direct molecular dynamics (MD) simulations of the potential of mean 

force (PMF) between constrained atom pairs 
[87] 

as a means for treating the difficult 

region, 

 comparing the established direct (reciprocal space) inversion of the OZ equation as 

e.g. used in 
[98,72]

 with an iterative real space variant 
[99,100,101]

, 

 analyzing the parametric dependence of the thus obtained bridge function on a renor-

malized ICF t*=t-βu, which has been proven to be a possible candidate for a thermo-

dynamically consistent bridge function parametrization
[78,15]

. In particular, such a 

functional form satisfies the state function condition of the free energy to be independ-

ent of the coupling parameter integration path. This will (in principle) allow for an ac-

curate calculation of solvation thermodynamics. 

5.1 Fluids with known bridge function 

The bridge function of the LJ fluid and the hard sphere fluid are known within the core and 

outside
[89,80]

. The bridge function of LJ mixtures
[85]

 is known as well. 

For a fluid consisting of dipolar sticks, the angular dependency of the relative orientation of 

two dipoles on the bridge function is known
[102]

. 

For water, methanol and ethanol the site-site bridge functions are known outside of the core 

only
[103,104,72]

. 

                                                 
2
 The following part and parts of chapter 5.2 are taken from Tomazic, D.; Hoffgaard, F.; Kast, S. Chemical Phys-

ics Letters 2014, 591, 237-242. 
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5.2 The bridge function of the WCA-rep fluid 

The bridge function of the WCA-rep fluid was calculated using the constrained dimer method 

described in chapter 4.4.3. In equation (4.29) the direct correlation function is needed. It is 

calculated by an inversion of the OZ equation. In case of the repulsive WCA fluid two ap-

proaches are possible. These are the direct inversion and the iterative inversion. 

Direct inversion 

In contrast to molecular site IEs and in the absence of long range interactions the direct inver-

sion of the OZ equation in reciprocal space is unproblematic
[98]

. Starting with the Fourier 

transform (FT) of the TCF (assumed to be known over a sufficiently long range where it has 

practically decayed to zero), 

 1)(FT)(ˆ MD  rgkh  
(5.1) 

the ICF is given by 
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The resulting ICF enters (4.29) together with simulated PMF data in order to obtain B includ-

ing the inner core region. 

Iterative inversion 

The alternative is an iterative, real space inversion
[99, 100, 101]

 based on 

 )()())(ln()()( MD rtruβrgrfrB   (5.3) 

which, upon insertion in (4.5), basically leads to a constraint on the solution of the 

OZ / closure system in that g is set to the MD values over a specified range. Here, f(r) defines 

a switching function (cubic polynomial) varying between 0 and 1 in a transition region be-

yond which the HNC approximation is assumed to be valid. In practice this means that the OZ 

equation is solved together with (5.3) as effective closure relation, implying a grand canonical 

long range correction to the PDF. If B would be extracted in this way, the core region would 

be undefined due to the reasons discussed above. Here, we use this approach solely in order to 

obtain the ICF, which is then inserted similar to the direct approach together with simulated 

PMF data for extracting B via (4.29). 

5.2.1 Computational details 

MD simulations were performed with LAMMPS 
[105]

 in the canonical ensemble using the No-

sé-Hoover thermostat 
[106,107]

 and a time step of 5 fs for a range of states corresponding to 
[89]

. 

LJ parameters were σ = 2.79 Å and ε = 0.0709 kcal mol
-1

 resembling a liquid neon model
[108]
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(note that all results are specified in reduced units, i.e. for density ρ* = ρσ
3
 and temperature T* 

= kBT/ε). Initially, the atoms were placed randomly inside the simulation volume and then 

preequilibrated in the microcanonical ensemble starting with zero velocities by limiting the 

maximum displacement per time step to 0.1 Å for 2.5 ps. Similar to the simulation setup in
[89]

 

the LJ potential was smoothly switched to zero using a cubic polynomial between 8 and 10 Å 

for production purposes unless specified otherwise. For reference PDF data (used for direct 

and iterative inversion as well as for PMF long range offset determination) and for explicit 

PMF simulations two different setups were used. The former was calculated from production 

runs based on 15000 atoms; for the latter, the mean forces were recorded for two constrained 

atoms out of a total of 5002 (to check convergence, for a single state in addition 15000 sol-

vent atoms were simulated) employing the SHAKE algorithm
[109]

. 

PDF data was computed after 5 ps microcanonical and 250 ps canonical ensemble equilibra-

tion periods from simulations over 5 ns using 10000 snapshots up to a distance of 30 Å with a 

bin size of 0.06 Å. Since the tail of the PDF oscillates around one for distances between 20 Å 

and 30 Å no long range correction of the PDF was applied. To estimate the error we calculat-

ed for a single one state (T* = 1.0 ρ* = 0.8) the PDF standard error for every 100 snapshots, 

finding 0.004 in the area of the first peak and around 0.0005 between 20 Å and 30 Å. The re-

sulting data were therefore used without further smoothing. For PMF calculations, 195 dis-

tances between 0.01 Å and 19.9 Å were evaluated in steps of 0.03 Å for (0.01-0.1) Å, 0.05 Å 

for (0.1-6) Å, 0.1 Å for (6-10) Å, 0.3 Å for (10-19.9) Å. 25000 snapshots of 12.5 ns produc-

tion simulation were evaluated after a 117.5 ps equilibration phase in the canonical ensemble. 

The mean statistical error of the PMF for all states was found to be below 0.0005 kcal mol
-1

. 

For the long range PMF offset, the forces were integrated for 15 different values of rx between 

4.4 and 10 Å followed by averaging over the results. To check the accuracy of the calcula-

tions we also derived the PDF from the PMF and determined the maximum deviation from the 

directly simulated PDF. The largest value for all state points was 0.06; the maximum mean 

deviation was about 0.004. 

The IE calculations were performed on a logarithmic grid of 512 points ranging from 

5.9810
-3

 Å to a maximum distance of 164.02 Å for the same densities and temperatures as in 

the MD simulations, employing the Talman method for the fast Fourier transform
[110]

 includ-

ing zero padding over twice as many points. The IE solutions were converged by the modified 

direct inversion of iterative subspace (MDIIS) method
[111]

 to a threshold of max(Δc) < 10
-5

 

between two successive iteration steps. For the iterative inversion of the OZ / closure equation 
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the switch function in (5.3) turned off the reference PDF between 17 and 21 Å. The direct in-

version of the simulated PDF was performed on a linear grid from 0 Å to 19 Å with a spacing 

of 0.1 Å. The simulated PDF was interpolated to the target grids using cubic spline interpola-

tion whereby it was set to 1 for r > 30 Å. The iterative inversion requires a potential energy 

which was chosen as identical to the one applied in the MD simulations. For testing the ex-

tracted bridge functions they were truncated at 7 Å before reinserting into the OZ/closure 

equations. Here, the full LJ potential was applied in order to allow for a comparison with ref-

erence LJ data. 

5.2.2 Analysis of the methodology 

Figure 5 illustrates the solvent-mediated component of the PMF for both, the full LJ and the 

repulsive part of the WCA potential (WCA-rep). The statistical noise is apparently negligible 

as expected from the size of the simulation systems. Overall, the shape of the PMF curves in 

the LJ and the WCA-rep case are similar while larger discrepancies are found for the core re-

gion; the long range part of W
v
 is apparently only marginally influenced by the presence of a 

long range attractive interaction tail. For each state the close contact value of W
v
 is slightly 

more attractive for WCA-rep than for LJ while the intermediate range at slightly larger dis-

tances than the potential minimum (at around 1.12 σ) is more repulsive for LJ than for WCA-

rep. 

The two variants for bridge extraction, direct reciprocal space and iterative real space inver-

sion were tested for the LJ fluid in direct comparison with reference data by Llano-Restrepo 

and Chapman
[89]

 as illustrated in Figure 6. Overall there is a close agreement between the var-

ious approaches with the largest discrepancies in the depletion zone between the first and the 

second RDF maximum at around r/σ = 1.5. For certain thermodynamic states, larger discrep-

ancies between our and reference data are found in the second depletion region. These differ-

ences are of a similar order of magnitude as those found by varying the simulation particle 

number and cutoff distances, as shown in Figure 7. In general, the cutoff effect is more im-

portant than the finite size effect for our simulations; 5000 solvent particles are apparently 

sufficient for production purposes. The reference data
[89]

 was generated based on a much 

smaller simulation system which might explain why our bridge data are systematically slight-

ly higher in the core region. The increase of statistical error with larger pair distance is appar-

ently responsible for the increasing discrepancies at longer range. 
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Figure 5 Solvation contribution to the PMF as a function of pair distance for various 

states represented by different line styles as specified in the panels; A LJ fluid, B repul-

sive WCA fluid, C enlarged comparison of LJ and repulsive WCA results for ρ* = 0.85 

and T* = 0.72. 
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Figure 6 Bridge data for the LJ fluid as a function of pair distance for various states 

represented by different line styles as specified in the panels; A from iterative inversion, 

B,C comparison of iterative (real space) and direct (reciprocal space) inversion, and 

with reference data by Llano-Restrepo and Chapman
[89]

. 

The small local differences do not significantly influence the internal energy as derived from 

IE-computed PDFs obtained by inserting bridge data directly into the closure. Results are 

summarized in Table 1 where we also compare with data from an analytical equation of state 

of the LJ fluid
[31]

. In summary, the iterative and the direct inversion methods are practically 
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equivalent and reliable. In practice, the iterative variant is simpler to apply to more complex 

systems described by site-site IEs since it avoids problems of ill-conditioned matrices 
[72]

. 

Table 2 Reduced excess internal energy Ured = U
ex

/(Nε) of the LJ fluid for various states ob-

tained from solving the OZ/closure equation with bridge data from different sources, iterative 

(“iter”) and direct (“direct”) inversion, reference data by Llano-Restrepo and Chapman
[89]

 

(“ref”) in comparison with results from the analytical LJ equation of state (“EoS”)
[31]

. 

*ρ  *T  EoS

redU  iter

redU  direct

redU  ref

redU  

0.4 1.5 -2.70892 -2.70534 -2.70356 -2.69072 

0.6 1.5 -3.96024 -3.96508 -3.96128 -3.97364 

0.7 1.5 -4.58747 -4.57796 -4.57650 -4.57259 

0.8 1.5 -5.13638 -5.11805 -5.11622 -5.13568 

0.9 1.5 -5.52627 -5.50659 -5.50820 -5.48975 

0.8 1.0 -5.52345 -5.53666 -5.53153 -5.52463 

0.8 0.81 -5.71954 -5.70218 -5.70468 -5.70838 

0.85 0.72 -6.12489 -6.11456 -6.11788 -6.11703 

 

5.2.3 Analysis of bridge functions 

Figure 8 shows bridge data from iterative inversion for the WCA-rep in comparison with the 

LJ case. Overall, the shapes are quite similar, more so for smaller densities and higher tem-

peratures as expected. The limiting value of B for vanishing distance is systematically smaller 

for LJ compared to WCA-rep. Most significant differences are again found in the first deple-

tion region. 

The key property of bridge functions that we want to examine in this work is related to its 

parametrization as a function of correlation functions. Since the work by Duh and Haymet
[33]

 

it is well known that no universal bridge parametrization by the ICF alone exists independent 

of the thermodynamic state. To this end they established a parametric representation of B as a 

function of t for corresponding distances (“Duh-Haymet plot”). On the other hand, as shown 

earlier
[78,15]

 a bridge function that depends on a renormalized ICF t*=t-βu belongs to a class of 

bridge models that satisfies the criterion of path independence of the coupling parameter inte-

gration leading to the free energy. We have demonstrated this property numerically by explic-

it integration of a modified Verlet (VM) fit to LJ reference bridge data
[78]

 where the ICF was 

renormalized by the long range WCA component only. Such an approach is equivalent to 

scaling the interaction between the WCA-rep and LJ cases studied in this work. It turned out 
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that good results are obtained in this way which raises the question as to why this is the case. 

Now numerical evidence is provided since as expected a – at least state-specific – universal 

bridge parametrization between the WCA-rep and the LJ potentials for the latter approach is 

given. 

 

Figure 7 Bridge data for the LJ fluid from direct inversion under various simulation 

conditions (different particle numbers N and inner/outer ranges rin/rout of the switching 

function that turns off interactions) as a function of pair distance for ρ* = 0.9 and T* = 

1.5; A,B represent different plot ranges. An 8/10/12/15 Å distance in the real simulated 

system corresponds to reduced distances r/σ of about 2.87/3.58/4.30/5.38. In the inset, 

the orange line corresponding to the larger system is indistinguishable from the lowest 

curve. 

Figure 9 depicts the modified (i.e. renormalized) Duh-Haymet plot for the LJ case. In contrast 

to the non-renormalized case there is a characteristic turn on the positive side which correlates 

roughly with the first maximum of the PDF, i.e. with the onset of the repulsive core. The 

curves continue on the left towards the limiting value at close contact; the attractive region is 

located around the origin. The bridge function shows apparently a bifurcation into two differ-

ent functional dependencies. However, even in the attractive region (panel C of Figure 9) the 

bridge function can obviously not be fully described by a single function of t*, although a 
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modified Verlet fit (which means a single function ansatz) appears to work well
[78]

. The most 

remarkable observation is, however, that all curves almost coincide in the attractive regions, 

independent of the thermodynamic state. 

 

 

Figure 8 Bridge data from iterative inversion as a function of pair distance for various 

states represented by different line styles as specified in the panels; A for the repulsive 

WCA fluid, B,C comparison of repulsive WCA and full LJ fluids. 
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Figure 9. Bridge data for the LJ fluid from different inversion methods as a function of 

the renormalized ICF t*=t-βu for various states represented by different line styles as 

specified in the panels; A, B, C represent different plot ranges. 

An analysis of the repulsive WCA case in comparison sheds more light on this situation. The 

numerical inversion results are shown in Figure 10. It turns out that all curves again almost 

coincide in the attractive potential region. The situation of Ref. 
[78]

 here corresponds to the 

transition between the solid and the dashed lines in the upper branch in panel B. The underly-

ing assumption for a valid coupling parameter integration over a specific functional form of 

B(t*) is that this form is independent of the potential details, in this case for both the WCA-
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rep and the full LJ cases. Figure 10 shows that this is indeed the case in the attractive, upper 

branch region. This is supported by the superimposed curve (dotted lines) of the VM closure 

parametrization presented in 
[78]

 which led to a successful free energy prediction. The VM 

bridge model practically coincides with both, the WCA-rep and the LJ bridges as a function 

of the respective ICFs in the attractive region. The WCA-rep bridge data obtained in this work 

therefore in retrospect validate the approach chosen earlier. The correspondence and the asso-

ciated partial universality, however, break down in the repulsive core region. Implications for 

free energy functionals including bridge functions for the general case covering the full poten-

tial are the topic of ongoing work. 

5.2.4 Concluding remarks 

We have shown that explicit PMF simulations of constrained pairs yield reliable bridge func-

tion data inside the repulsive potential regions of the LJ and the repulsive WCA fluids, irre-

spective of the inversion approach (based on real or reciprocal space formalisms). Due to the 

nonlocality and nonlinearity of the OZ equation in conjunction with the closure relation it is 

very difficult to control the impact of statistical noise and other simulation features on the re-

sulting bridge data. Even very accurate simulation data as obtained in this work result in small 

differences in the final target values due to practically uncontrollable propagation of error. For 

simple first order thermodynamic quantities such as the internal energy this is apparently un-

problematic, whereas it remains to be seen if this is also the case for the free energy. 

Improvement could possibly be achieved by smoothly interpolating the PMF approach to B in 

the core region with the direct inversion method applicable in regions where B is not super-

seded by the potential. We have not attempted such a method, nor have we played with 

smoothing techniques which all will yield further different results without a means to objec-

tively measure the “correctness”. Another source of concern is the use of a directly inverted 

ICF (which would not be sufficient to obtain B in the core directly) in the context of a PMF-

based bridge definition, an inconsistency which has also been noted earlier
[33]

. While there is 

reason to trust such an approach due to the insensitivity of the ICF to the core bridge function, 

many important questions arise. It has for instance to be clarified why correlation functions 

obtained by solving OZ/closure equations with adequate bridge data do not respond to the lat-

ter in the core region while at the same time this very core region has substantial impact on 

the free energy
[112,8]

. This problem together with attempts to understand the partial universali-

ty of the bridge functions in the attractive potential region and the discrepancies in the repul-

sive part are important areas for future research. 
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Figure 10 Bridge data for the repulsive WCA and for the LJ fluids from iterative inver-

sion as a function of the renormalized ICF t*=t-βu for various states represented by dif-

ferent line styles as specified in the panels; A pure WCA-rep results for all states, B, C 

comparison with LJ data and with a partially (long range) renormalized bridge model 

described by the modified Verlet closure VM, parametrized corresponding to the free 

energy extraction approach of Ref 
[78]

. 
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6 Bridge function and RISM: Thermodynamics 

As described in chapter 4.5 the thermodynamic properties in RISM calculations depend on the 

bridge function. In chapter 5 the exact bridge functions of some model fluids were given. The 

central goal of this chapter is to combine these facts to improve RISM calculations. 

As pointed out by Kast
[78]

 a bridge function has to be defined in dependence of either t* = t-

βu, h or c* = +βu or certain combinations thereof to get rid of the path dependence of the ex-

cess chemical potential as discussed in chapter 4.5.. If the bridge function is given as a 

function of the renormatized indirect correlation function the excess chemical potential in 1D-

RISM is given by 

  
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The 3D-RISM functional is analog (without the 4πr
2
 term and integration over r instead of r). 

If the bridge function is given as a function of the total correlation function the formula for the 

excess chemical potential is
[113] 
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B

dd)(
4

)]([
0

2HNC
. (4.42) 

In both cases the bridge function B and the “partner function” (t* or g) depend on the separa-

tion r. Hence the equations (4.40) and (4.42) may be interpreted as a parametric function for 

every separation r. 

In this chapter possible properties implied by this formalism and possible applications will be 

discussed. In the first part the equations (4.40) and (4.42) are discussed in relation to the zero 

separation theorem
[6,7,8,9]

. Then the validity of equation (4.40) is proven using the example of 

an alchemical transition process. Finally the equations (4.40) and (4.42) are used for absolute 

free energy calculation attempts. This chapter is exclusively about monoatomic simple fluids. 

In this case the reference interaction site model is exactly the Ornstein-Zernike equation. The 

term RISM will be used (instead of Ornstein-Zernike) for the sake of consistency with the 

other chapters. 
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6.1 Zero separation theorem 

For a hard sphere fluid it is know that the excess chemical potential is directly related to the 

bridge function and the indirect correlation function at zero separation
[8]

 

)0()0(ex  rtrBµβ . (6.1) 

Lee and Shing demonstrated that there are similar relations for all other fluids. But in this case 

they also depend on the interaction potential of the fluid
[8]

. Hence when using equation (4.40) 

or (4.42) for the calculation of excess chemical potentials a major contribution of the bridge 

function to the excess chemical potential is expected at low or zero separation. 

6.2 Helmholtz energies 

The equations (4.40) and (4.42) only apply to the excess chemical potential. In this chapter it 

will be demonstrated that a generalization to the Helmholtz energies is not straightforward. 

The Helmholtz energy can be calculated from 1D-RISM by 
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6.3 Alchemical transition free energies 

S. Kast
[78]

 used a path integration to prove that path independence may be enforced, when the 

renormalized indirect correlation function is used to describe the bridge function. In his paper 

the Helmholtz energy of the LJ fluid was calculated using the WCA partitioning scheme. The 

Helmholtz energy of the repulsive core was approximated by the Helmholtz energy of a hard 

sphere fluid using the Carnahan-Starling
[114]

 equation of state. Then the Helmholtz energy was 

calculated for the transition of the repulsive core to the LJ fluid. This was modeled using a 

coupling parameter path along which the attractive part of the LJ fluid was gradually switched 

on. The bridge function was chosen as a modified Verlet closure 
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(4.18) 

with the adjustable parameter ζ and  

atr-WCA* uβtt  . (6.2) 

The excess chemical potential of this transition is calculated using equation (4.40). The results 

are compared to MD simulations. The excess chemical potential change is given by 

],,[],,[*)]([Δ 000111 BchμBchμtBµ  . (6.3) 
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Here the state “1” denotes the final state where all atoms in the system interact by using the 

LJ potential (u = uLJ). State “0” is the initial state where one WCA-rep particle is placed in a 

LJ solvent. An insertion of equation (4.40) in equation (6.3) leads to 
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The bridge function is described by a modified Verlet bridge function with the same coeffi-

cients for the LJ and WCA-rep fluid. One can separate the λ dependent parts of the integration 

by definition of two auxiliary functions SVM and TVM 
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In this case the modified Verlet closure (chapter 4.3.3) is used to replace the h(r)+1 term. 

Then Δµ[B(t*)] is given by 
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The differences h, h
2
, c and hc terms of the SVM functions are self-explanatory. The t* integral 

TVM of the LJ fluid is 
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The t* integral T0
VM of the LJ WCA-rep fluid is 
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The difference T1
VM – T0

VM is given by 

)].*;(*exp[*d

)]*;(*exp[*d)]*;(*exp[*d

0

)(*

)(*

0

)(*

0

0

)(*

0

0

VM

1

VM

1

0

01

rtBuβtt

rtBuβttrtBuβttTT

rt

rt

rtrt








 (6.9) 

Hence equation (6.6) turns into 
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In the following chapters the excess chemical potential will be evaluated using different clo-

sures, bridge functions and excess chemical potential functionals. To allow for an easy identi-

fication how the excess chemical potential is calculated here, the following conventions will 

be used. 

 F describes the excess chemical potential functional. F[HNC] means equation (4.30), 

F[PSE] means equation (4.41), F[B(t*)] means equation (4.40) and F[g(B)] means 

equation (4.42). 

 B defines the closure or the source of the bridge function used in the RISM calcula-

tion. B[HNC] is the bridge function from the HNC closure (B(r) = 0). B[MD] means 

the RISM calculations were performed with a bridge function extracted from MD 

simulations. 

 χ is the solvent susceptibility function used in the RISM calculation. This is only im-

portant for RISMuv calculations. 
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As an example the excess chemical potential calculated with the HNC functional of a RISMuv 

calculation in the LJ solvent with a bridge function from MD simulations is µ(F[HNC], 

B[MD], χ[LJ]). 

In RISM the free energy is calculated from an integration of spatial coordinates r. For exam-

ple see equations (4.30), (4.40) or (6.10). The integrand is called excess chemical potential 

density ρµ. As an example the excess chemical potential density of the HNC functional is 

)()()(
2

1
)(

2

1 2HNC rcrcrhrhρµ  . (6.11) 

6.3.1 Computational details 

The free energy simulations were performed using LAMMPS
[105]

. The force field parameters 

were set to εLJ = 0.0709 kcal/mol and σLJ = 2.79 Å for both the LJ and the WCA-rep fluid. In 

the case of the LJ fluid a potential cutoff at 10 Å was used. The thermodynamic integration 

was performed along a linear path. The path was sampled at 11 points between λ = 0.01 and λ 

= 0.99 (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99). The partially coupled 

systems were calculated using cubic spline potentials. The potential was calculated on a linear 

grid of 10,000 points between 0.01 Å und 10 Å. 

Table 3: States of the LJ and WCA-rep fluids used in the MD simulations calculated 

with equation (3.17) from the reduced temperature and density. The temperature was 

calculated with εLJ = 0.0709 kcal/mol as well as kB = 0,001987 kcal/mol and the density 

was calculated with σLJ = 2.79 Å.  

T* ρ* T / K ρ / Å
3
 

1.5 0.4 53,52 0,01842 

1.5 0.6 53,52 0,02763 

1.5 0.7 53,52 0,03223 

1.5 0.8 53,52 0,03684 

1.5 0.9 53,52 0,04144 

1.0 0.8 35,68 0,03684 

0.81 0.8 28,90 0,03684 

0.72 0.85 25,69 0,03914 

 

Each simulation was equilibrated for 50 ps and then simulated for 500 ps starting from a ran-

dom distribution of the particles. The time step was set to 1 fs. The simulations were per-

formed in the NVT ensemble using a Nose-Hoover thermostat
[106,107]

. The density and tem-
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perature was set to the combinations listed in table 3. All simulations were performed with 

3000 particles. For the calculation of excess chemical potentials the interaction of one particle 

with every other particle was scaled. For the Helmholtz energy the potentials of all interac-

tions were scaled. The errors of the simulated thermodynamic properties were estimated using 

blocking analysis
[115]

. 

1D-RISM calculations were done on a 512 point logarithmically spaced grid ranging from 

0.0059 Å to 164.022 Å. The LJ parameters were set to εLJ = 0.079 kcal/mol and σLJ= 2.79 Å 

as in the MD simulations. No cutoff was applied to the LJ potential. Two 1D-RISM calcula-

tions were performed to calculate the excess chemical potential: 

1. 1D-RISMvv for the LJ fluid as a representation of the final state, 

2. 1D-RISMuv for one WCA-rep particle in the LJ fluid. This corresponds to the starting 

point of the calculation of excess chemical potential. 

The 1D RISM calculations were performed two times. First with the HNC closure and second 

with the modified Verlet closure with the ζ parameters taken from S. Kast
[78]

. The RISM itera-

tions were performed until changes of the direct correlation functions fell below 10
-5

 at all 

separations from one iteration to the next. 

6.3.2 Results 

Table 4 shows the excess chemical potentials of the transition of a WCA-rep participle to a LJ 

participle in the LJ fluid. The excess chemical potentials from MD simulations are in good 

agreement with the RISM calculations of both closures (HNC and modified Verlet), when the 

t* integration is added. Figure 11 shows the excess chemical potential calculated with the 

HNC functional and corrected with the Verlet bridge functional. In panel A the Verlet closure 

was used in the RISM calculations. Using the conventions form page 50 the excess chemical 

potentials are µ(F[HNC], B[VM], χ[LJ]) in green and µ(F[B(t*)], B[VM], χ[LJ]) in red. The 

susceptibility function χ[LJ] was calculated with the modified Verlet closure as well. In panel 

B the HNC closure was used for the RISMuv calculations and the RISMuu calculations (for the 

susceptibility function). Here the excess chemical potentials µ(F[HNC], B[HNC], χ[LJ]) in 

green and µ(F[B(t*)], B[HNC], χ[LJ]) in red are shown. In both cases the bridge dependent t* 

functional (red) with the Verlet bridge function improves the RISM calculations. Surprisingly 

the correction works better when paired with the HNC closure (panel B) than with the Verlet 

closure (panel A). 
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Figure 11: Excess chemical potential change for the alchemical transition of a WCA-

rep particle to a LJ particle at different densities and temperatures. The green circles use 

the HNC functional of the excess chemical potential and the red circles use a correction 

of the excess chemical potential based on the t* integral with simulated bridge func-

tions. Panel A shows the results for 1D-RISM with the modified Verlet closure and the 

HNC functional (red) or t* functional (green). Green: µ(F[HNC], B[VM], χ[LJ]), red: 

µ(F[B(t*)], B[VM], χ[LJ]). Panel B shows the results for 1D-RISM with the HNC clo-

sure. Green: µ(F[HNC], B[HNC], χ[LJ]), red: µ(F[B(t*)], B[HNC], χ[LJ]). 

Figure 12 shows the excess chemical potential density ρµ at different states divided into the 

contributions of HNC functional and the Verlet bridge dependent functional. The contribution 

of the bridge dependent functional is small but it improves the accuracy of the calculations in 

all cases. The bridge functional peaks at a separation corresponding to the LJ and WCA σ pa-

rameter. This is the area where the LJ and WCA-rep potential are most different. The func-

tional is zero close to zero separation. The bridge functions of the LJ fluid and the WCA-rep 

fluid are similar in this area. In table 4 the transition excess chemical potentials calculated 

with the modified Verlet closure and t* integration is compared to the results from MD simu-

lations and 1D-RISM/HNC. The analytical evolution of the t* integral is an improvement 

over the HNC. In the present case, the modified Verlet closure is a good approximation for 

the bridge function and works well in combination with the t* integration for the bride de-

pendent functional. 

6.4 Absolute excess chemical potentials 

The bridge dependent functional can correct excess chemical potentials for the transition of a 

WCA-rep to a LJ particle. This chapter is about the calculation of absolute excess chemical 

potentials at the example of the LJ fluid. In the previous chapter the initial state “0” was the 
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WCA-rep fluid and the final state “1” was the LJ fluid. Hence initial and final states were 

similar and the calculations may benefit from error canceling. Now the initial state is the po-

tential free homogeneous fluid. This is a more general but also more complicated case. 

Table 4: Excess chemical potential difference Δµ
ex

 / εLJ of the transition of a WCA-rep 

particle to a LJ particle in the LJ fluid at different states. The values were calculated 

from MD simulations, 1D-RISM with the modified Verlet closure and t* integration at 

the bridge dependent functional and 1D-RISM with the HNC closure. 

T* ρ* MD Verlet HNC 

1.5 0.4 -0.36 ± 0.01 -0.38 -0.42 

1.5 0.6 -0.590 ± 0.006 -0.614 -0.672 

1.5 0.7 -0.714 ± 0.005 -0.739 -0.794 

1.5 0.8 -0.843 ± 0.004 -0.866 -0.908 

1.5 0.9 -0.965 ± 0.002 -0.991 -1.010 

1.0 0.8 -0.840 ± 0.004 -0.867 -0.915 

0.81 0.8 -0.837 ± 0.004 -0.867 -0.918 

0.72 0.85 -0.90 ± 0.06 -0.93 -0.97 

 

 

Figure 12: Excess chemical potential density ρμ of the transition of a WCA-rep particle 

to a LJ particle in the LJ fluid. The state is ρ* = 0.8 and T* = 1.0. The 1D-RISM calcu-

lations were done with the modified Verlet closure. The free energy is given for the 

HNC functional µ(F[HNC],B[VM],χ[LJ]) (red), the bridge dependent functional using a 

t* integration µ(F[B(t*)-HNC],B[VM],χ[LJ]) (blue) and the sum of both 

µ(F[B(t*)],B[VM],χ[LJ]) (green). The free energy density is shown for the usage in 

equations (4.30) and (4.40). Hence the special factor 4πr
2
 is not included. 
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6.4.1 Parametric bridge functions 

The bridge function of the LJ fluid can be given as a parametric function of the renormalized 

indirect correlation function. In this case the excess chemical potential is given by equation 

(4.40). Since t* is a parametric function of the separation r, all integration in (4.40) can be 

separated into an in-core contribution from zero separation to a border rb and from this border 

to infinite separation. As described in chapter 4.4.1 and in figure 13 A the graph of B[t*] vs t* 

cannot be described by a single function. However the attractive region (corresponding to 

separations bigger than the LJ σ parameter) can be approximated using a modified Verlet fit. 

The repulsive part can be modeled as a spline. Therefore the border rb can be adjusted to the 

value where the Verlet function is replaced by the spline function. 

 

Figure 13: Comparison of different bridge dependent functionals. Panel A shows the t* 

integration and panel B the g(B) integration. In both panels a parametric representation 

of the bridge function and a correlation function is show. The parts of the parametric 

functions corresponding to separations smaller than 1.1 σLJ are labeled as inside core. 

6.4.1.1 Computational details 

The 1D-RISM calculations were performed on a logarithmically spaced grid of 512 points 

ranging from 0.00155 σ to 48.1709 σ. The bridge function was taken from literature
[89,78]

, ei-

ther in the form of fitted ζ parameters for the VM closure or directly as a function of the sepa-

ration. The border rc was set to the separation corresponding to the maximum of the bridge 

function. The inside core bridge function was interpolated to the calculation grid using splines 

of order one without smoothing. The bridge function closer to the core than known from liter-

ature, was set to the first known value. The bridge function beyond the border was set to the 

modified Verlet closure using the Verlet parametrization form 
[78]

. The t* integration of both 

branches was performed numerically. 
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6.4.1.2 Results 

The parametric description of the bridge function as a spline and via the Verlet function is 

shown in figure 13 A. The Verlet fit describes the outside core region well. The spline func-

tion is a good representation of the bridge inside the core in the parametric description. How-

ever, when the parametric dependency is resolved, the resulting bridge functions are not in 

perfect agreement with the published data (MD). Therefore the bridge function is evaluated in 

the parametric for a given t* and this value is plotted against the separation r corresponding to 

t*. This bridge function can then be compared with the original simulation data. The paramet-

ric resolved bridge function shows a discontinuity between the spline and the Verlet represen-

tation at the border of the core. The spline representation is inaccurate at low separations be-

tween the known values sowing that linear splines do not have the correct interpolation prop-

erties after the parametric dependency is resolved. This is shown in figure 14 A, B and C. 

The excess chemical potential calculated with t* integration (equation (4.40)) and the LJEoS 

(see chapter 3.3.1) is shown in table 5. The t* integration is an improvement over the HNC. 

The g(B) integration is comparable to the HNC results and does not improve the accuracy of 

the excess chemical potentials. The excess chemical potential density contribution of the t* 

integration is relatively small inside the core. At the border the free energy density has an arti-

ficial peak as seen in panel D of figure 14. 

Table 5: Excess chemical potential μ
ex

 / εLJ of the LJ fluid. The calculations were per-

formed with 1D-RISM and the modified Verlet closure using the t* and g(B) integration 

and with 1D-RISM using the HNC closure. The 1D-RISM results are compared to the 

reference values from the LJEoS. The RMSE to the reference is given. 

State T* ρ* referecne t* integration g(B) integration HNC 

1 1.5 0.4 -1.94 -2.12 0.29 -1.79 

2 1.5 0.6 -1.63 -1.89 -3.12 -0.77 

3 1.5 0.7 -0.6 -0.66 -7.27 0.96 

4 1.5 0.8 1.43 4.9 -1.61 3.97 

5 1.5 0.9 4.87 9.53 -7.67 8.73 

6 1.0 0.8 -2.27 -0.5 -5.67 -0.05 

7 0.81 0.8 -3.86 -1.26 -8.55 -1.78 

8 0.72 0.85 -3.93 1.2 -8.19 -1.38 

   RMSE 2.96 8.35 7.92 

 



 ............................... Bridge function and RISM: Thermodynamics .........................  57 

 Daniel Tomazic  

An alternative to the t* integration is the g(B) integration as described in equation (4.42). A 

plot of the total correlation function as a function of the bridge function is panel B in figure 

13. This functional is well behaved inside the core, but the oscillations of the total correlation 

function make the description of bigger separations complicated. However, a numerical eval-

uation of this integral may be performed to the separation where the oscillations of the total 

correlation function begin. The excess chemical potentials of the LJ fluid calculated this way 

are listed in the g(B) column of table 5. The results show little correlation with the LJEoS. 

However, at large separation, the excess chemical potential density corresponds to the density 

of the t* integration. This is an indication that the mathematical and physical basics described 

by Kast and Kloss
[15]

 are correct in contrast to what is expected from the missing agreement 

with the LJEoS. The numerical integration of the parametric functions seems to be the prob-

lem. However, the contribution of the bridge function inside the core may be underestimated 

in the g(B) integration. 

Finally it can be said that the calculation of the excess chemical potential of the LJ fluid with 

the t* integration was an improvement over the HNC. However, the resulting errors remain 

substantial. The g(B) integration has a similar performance when compared to the HNC. Both 

bridge dependent functionals are numerically sensitive, but the underlying fits are well be-

haved. 

From the zero separation theorem one has to expect that the value of the bridge function at 

zero separation is important for the calculation of excess chemical potentials. This is not sup-

ported by the excess chemical potential densities. The HNC functional density is much bigger 

than the density of the bridge dependent functional. The bridge function does not appear in 

the HNC functional. It is not directly influenced by the value of the bridge function. The indi-

rect contributions of the bridge function to the HNC functional will be discussed in chapter 0. 
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Figure 14: Panel A, B and C show the bridge function of the LJ fluid calculated from 

the modified Verlet closure and the spline in comparison to the simulated bridge func-

tion. Panel D shows the excess chemical potential density of the LJ fluid calculated us-

ing different bridge functions B and excess chemical potential functionals F. The free 

energy density is shown for the usage in equations (4.30), (4.40) and (4.42). Hence the 

factor 4πr
2
 is not included. 
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6.4.2 Relation of the excess chemical potential and the Helm-

holtz energy 

S. Kast proposed
[113]

 that the Helmholtz energy can be corrected in a similar way like the ex-

cess chemical potential. The equations (4.40) and (4.42) show that the excess chemical poten-

tial can be calculated by 

B

BB μchµµ Δ],[HNCex  . (6.12) 

For the Helmhotz energy a similar relation should exist  
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The reason for this is that the λ integral in equation (4.34) is common in the expressions of 
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If this assumption is true, there has to be a bridge function that fulfills the relation 

μchμchAA BBBB  ],[]),[(2 HNCHNC . (6.15) 

To test this assumption, a genetic algorithm was used to find a bridge function that fulfills 

equation (6.15). The bridge form Llano-Restrepo and Chapman
[89]

 was used as a starting point 

of the optimization. The RISM calculations were performed as described above with a re-

duced temperature of 0.72 and a reduced density of 0.80. Within each iteration of the optimi-

zation the bridge function was “mutated” at random position and the functions with a higher 

“fitness” than the starting bridge functions were “recombined”. The “fittest” bridge function 

of all trials in one iteration was used as a starting point for the next iteration. The “fitness” 

was measured by the squared difference between the right hand side and the left hand side of 

equation (6.15). As “mutations” ten values of the bridge function between the first and 400
th

 

(of a total of 512 grid points) grid points were randomly chosen. A Gaussian distributed per-

turbation with a standard deviation of 0.05 was added at these positions of the bridge function. 

The “recombination” step was done by the formation of random pairs between the bridge 

functions. The arithmetic average of the bridge functions was formed. The number of pairs 

was equal to the number of bridge functions selected for the recombination. A total of 530 

iterations were performed. 

The right hand side and left hand side of equation (6.15) are shown in table 6. The results 

show that there is a bridge function that fulfills the condition of equation (6.15). However, 
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figure 15 shows that this bridge function and the resulting pair distribution functions are sub-

stantially different to the results from the MD simulation. Therefore it is likely that the as-

sumption of equation (6.15) has to be discarded. Though the formula of ΔA
B
 and Δµ

B
 are sim-

ilar, the scaling of hB is different when only on particle is introduced (µ) and when all parti-

cles are introduced (A) leading to different numerical values of the integral. However as 

shown in the next chapter the energy evaluation can be very sensitive against changes of the 

bridge function. This and the relatively simple genetic algorithm used here may have influ-

enced the results. 

Table 6: Comparison of the expected values of the bridge dependent functionals for the 

excess chemical potential and the Helmholtz energy. The bridge function was iteratively 

modified to match the result of both expressions. The corresponding bridge function and 

pair distribution function are shown in figure 15. 

 2(A - A
HNC

[hB,cB]) / εLJ µ
HNC

[hB,cB] - µ / εLJ 

after 530 iterations 14.32 15.50 

reference bridge function 13.90 22.23 

 

 

Figure 15: Panel A: Comparison of the bridge function from MD simulations (green) 

and the bridge function optimized for consistency of the excess chemical potential and 

Helmholtz energy (red) . Panel B: The resulting pair distribution functions. 

The comparison of the bridge functions in figure 15 (panel A) shows a prominent peak at 1.2 

Å. In this point the numerical stability of the RISM calculation seems to be surprisingly high. 

This is, together with a second smaller peak at 2.5 Å (and the region inside the core), the only 
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region where significant changes of the bridge function are tolerated. Consequently these re-

gions are drastically changed to reach the optimization target. 

6.4.3 Test of the zero separation theorem 

As one can see in 6.4.1.2 the excess chemical potential densities of the bridge dependent func-

tionals do not contribute significantly to the excess chemical potential at zero separation. With 

the zero separation theorem it is possible to estimate whether these functionals must have an 

influence or not. When the HNC functional describes the excess chemical potential at zero 

separation without a contribution of the bridge dependent functional, the value of the bridge 

function close to zero has to have a huge impact on the HNC functional due to the zero sepa-

ration theorem. To be able to study this, perturbations were added to the bridge at close sepa-

rations and the HNC functional was evaluated. 

A normally distributed noise with the standard deviation σ was added to parts (between r1 and 

r2) of the bridge function of Llano-Restrepo and Chapman
[89]

. See figure 16 A as an example. 

The resulting bridge function was smoothed using approximate splines with a smoothing co-

efficient
[116,117]

 α (see figure 16). The modified bridge was used in 1D-RISM calculations as 

described before. As seen in figure 16 B the perturbation has little impact on the HNC func-

tional when it is located inside the core only. However, a perturbation in the area beyond the 

σLJ parameter influences the HNC functional. As expected, the excess chemical potential may 

be raised or lowered by the perturbation. 

In the closure relation the bridge competes with the pair potential. At lower separations than 

σLJ the LJ potential energy is much higher than the bridge which renders the bridge function 

insignificant. As an example the bridge of the LJ fluid at T*=0.72 and ρ* = 0.80 is about 30 

while βu(r = σLJ/2) is about 20.000 εLJ. This means that the closure relation does not transport 

local information about the birdge funciton at close seperation to the correlation function. 

Therefore the bridge function at zero distance does not affect the HNC functional of the 

excess chemical potential. However, since RISM involves a convolution, the correlation 

functions at zero seperation are affected by the bridge in general. The HNC functional is 

sensitive towards perturbations from about a distance of σLJ onwards. In case of an absolute 

pertubation (such as in this study) the response increases with the seperation. Here the 

absolute values of the bridge function and the interaction potentials are small so the 

perturbation has a higher relative effect. This is shown in table 7. Since the HNC functional is 

unaffected by the bridge function at zero separation, this influence at zero sepertion has to 

come from the bridge dependent functional. This is a central statement of the zero seperation 
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theorem. Here exists a central issue of the g(B) integral. Inside the core, the pair distribution 

function g rapidly approaches zero. Consequently an integration of g over B will not include 

the value of B at small separation because g is zero at these points. 

 

Figure 16: Panel A: Randomly perturbed bridge functions between 1.0 σLJ and 2.5 σLJ. 

Panel B: resulting excess chemical potentials. The bars show the parameters of the per-

turbation and the green circles are excess chemical potentials calculated with the HNC 

functional of the bridge perturbation labeled blue or red. The bar colors are: Red: Per-

turbation with the standard deviation of σ = 0.0036 and a smoothing of α = 0.01 be-

tween 0.036 σLJ and σLJ. Blue: Perturbation between 2.0 σLJ and 3.6 σLJ with the same 

σLJ and α. The states (1-8) correspond to table 5. From the free energies of state 5 a val-

ue of 15 ε
-1

 was subtracted from all excess chemical potentials to match the plotted 

range. 

As a conclusion both discussed bridge dependent functionals (the t* integration and the g(B) 

integration) have different drawbacks. The t* integration requires integration over the renor-

malized indirect correlation function. Since this value approaches minus infinity at close sepa-

ration and the bridge function has a finite but non-zero value at zero separation, the integra-

tion is prone to divergence. Also there is the transition from the inside core area to the outside 

core area where a discontinuity of the integration is introduced. The g(B) integration does not 

fulfill the zero separation theorem and ignores the out of core area. To provide a purely physi-

cally based approach towards the calculation of correct excess chemical potentials of the LJ 

fluid, the fundamentals of RISM are not well enough understood yet. As a consequence this 

work will now focus on how RISM can be improved using knowledge of the system itself or a 

similar reference system. Therefore a semi-empirical combination of RISM derived quantities 

with quantities from other sources like experimental data will be used. 
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In this case the partial molar volume (4.43) is an obvious choice. It can be calculated by inte-

gration over the direct correlation function. The direct correlation function (figure 4) has a 

very basic similarity with the free energy density (figure 14). Most importantly, it is non-zero 

in the core and decays to zero with increasing separation. Hence a scaled and eventually shift-

ed integral over the direct correlation function may be a good approximation of the free ener-

gy density. In the next chapter a semi-empirical correction based on the partial molar volume 

for EC-RISM is parameterized and discussed. 

Table 7: Standard deviation of the HNC functional of the excess chemical potential 

when a randomly perturbed bridge function is used. The perturbation is a Gaussian 

noise with σ = 0.0036 σLJ and an approximate spline smoothing with α = 0.01 between 

r1 and r2. The states (1-8) correspond to table 5. 

r1 r2 1 2 3 4 5 6 7 8 

0.036 σLJ σLJ 0,0011 0,0020 0,0028 0,0038 0,0054 0,0018 0,0012 0,0012 

σLJ 2 σLJ 0,0147 0,0242 0,0305 0,0286 0,0495 0,0293 0,0185 0,0208 

2σLJ 3.58 σLJ 0,0920 0,1376 0,1606 0,1833 0,2052 0,1222 0,0767 0,0932 
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7 Semi-empirical corrections of RISM free energies 

As shown in the previous chapters, excess chemical potentials calculated by using HNC-type 

closures (like PSE-k) are inaccurate. A proper description of the bridge function contributions 

to the excess chemical potential is needed. Anyway at the moment there is no straightforward 

way to calculate this contribution even for simple fluids. Since the physical background is not 

yet completely understood, semi-empirical correction can be used to approximate the bridge 

function contributions to the free energies. In this chapter free energies of small organic mole-

cules are calculated using EC-RISM. A semi-empirical correction for these energies is derived 

using experimental hydration free energies from the Minnesota solvation database
[18]

. 

7.1 Calculation of small molecule hydration free energies 

The calculation of solvation free energies of small molecules is one of the challenges for theo-

retical chemistry nowadays. Many research groups have published about this and even con-

tests like the SAMPL
[118,119,120,121]

 challenges took place. This chapter gives an overview of 

physics based (semi-empirical) predictions of solvation free energies of small molecules. 

Then the focus is shifted to studies using the reference interaction site model. 

An overview of the performance of the prediction of hydration free energies is given in the 

concluding paper to the SAMPL4 contest
[121]

. In the conclusions the authors say that “many 

methods are apparently converging on robust, predictive protocols with RMS errors under 1.5 

kcal/mol”. Also they “find a relatively wide range of methods perform quite well on this test 

set, with RMS errors in the 1.2 kcal/mol range for several of the best performing methods”. 

The experimental solvation free energies were within 20 kcal/mol (as a comparison the range 

of solvation free energies of the Minnesota solvation database is about 100 kcal/mol). Here it 

is important to take note of the fact that this is a blind study. The RMSEs of the protocols will 

be lower for the training sets. 

The free energy of solvation can be calculated by using molecular dynamics in combination 

with free energy simulation techniques. MD simulations usually ignore atom polarizability, 

but take the flexibility of the molecule into account and use explicit solvation. Shivakumar
[122]

 

et al. reported a mean unsigned error of 0.7 kcal/mol in a study of 239 neutral small molecules 

using the OPLS2.0 force filed. Fennell
[123]

 et al. used MD simulations with a set of 504 small 

neutral molecules with the GAFF force field to compare implicit and explicate solvation mod-
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els. With an implicit solvent model (GB) they achieved a RMSE of 2.8 kcal/mol and with ex-

plicit TIP3P water the RMSE decreased to 1.2 kcal/mol. 

The combination of implicit solvation models with quantum mechanics was successfully used 

by many authors to predict solvation free energies. Sundararaman and Goddard published the 

CANDLE solvation model
[57]

. The benchmarked dataset consisted of 240 neutral molecules, 

51 cations and 55 anions. They reported a mean unsigned error of 1.8 kcal/mol. 

The Minnesota solvation database was frequently used for the parameterization of solvent 

models. Cramer and Truhlar who compiled this database used it to parameterize the 

SMx
[47,48,49]

 models. For SM8 the mean unsigned errors of solvation free energies in aqueous 

solutions are 0.55 kcal/mol for neutral molecules and 3.20 kcal/mol for ions
[11]

. They also re-

ported mean unsigned errors for IEF-PCM (neutral molecules: 4.87 kcal/mol, ions: 12.40 

kcal/mol) C-PCM (neutral molecules: 1.57 kcal/mol, ions: 8.40 kcal/mol) and PB (neutral 

molecules: 2.28 kcal/mol, ions: 4.00 kcal/mol) and COSMO (neutral molcules: 2.76 kcal/mol, 

ions: 8.90 kcal/mol) for the same dataset in this paper. 

Klamt et al proved in a follow up work
[124]

 that these errors of the PCM and COSMO based 

methods may be decreased to a level close to SM8 for the subset of neutral molecules. In their 

work they calculated the solvation free energies of the neutral molecules with the level of the-

ory used in the parametrization of PCM and COSMO. This reduced the mean unsigned error 

of COSMO-RS to 0.48 kcal/mol. 

Dupont, Andreussi and Marzari focused on the prediction of free energies of solvation of ions 

with the self- consistent continuum solvation (SCCS) model. They motivated this study
[56]

 

with the words “applications of SMx
[47,48,49]

 or related models
[125,126,127]

 that lead to mean ab-

solute errors below 1 kcal/mol (often around 0.5 kcal/mol) for neutral molecules give errors 

for charged species that are at least 4 kcal/mol.” In their study they were able to improve the 

mean absolute error of the anions in the MNSol to 2.27 kcal/mol and the error of the cations’ 

solvation free energies averaged at 5.54 kcal/mol. 

As shown above, the coupling of quantum mechanics to implicit solvent models is on a prom-

ising trail towards chemical accuracy. However the development is focused on continuum 

solvation models and derivatives thereof. The reference interaction site model (RISM) is an 

alternative implicit solvation model which provides the user a different set of information than 

the continuum models. RISM gives access to the solvent distribution functions and is well 

suited for the prediction of relative free energies
[5, 19,128, 24]

. However absolute free energies 
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are usually inaccurate due to inherent approximations within RISM. Recently, quite some 

work has been done by different groups to improve the free energies of solvation calculated 

with RISM. A promising approach is the semi-empirical correction of the excess chemical 

potential based on the partial molar volume. The partial molar volume is scaled with an ad-

justable factor and eventually a constant offset. This was first done by Palmer, Frolov, Ratko-

va and Fedorov in 2010
[129]

. They showed for a test set of 120 organic molecules that the pre-

diction error (µ
RISM

 - µ
exp

) depends linearly on the partial molar volume. They proposed a cor-

rection model with a standard deviation of 0.76 kcal/mol on a training set and 0.99 kcal/mol 

on a test set. In a follow up paper
[130]

 the authors showed that this correction also works on 

other datasets. They used a set of 21 druglike molecules and predicted their solvation free en-

ergies with the semi-empirical correction trained a set of 163 neutral molecules. These results 

show the universal nature of the correction, since the model was able to extrapolate to the on 

average lower solvation free energies of the druglike molecules. 

Truchon, Pettitt and Labute further investigated the universality of the correction. They 

showed that the Ng
[131]

 closure can be used instead of PSE-1. The also showed that the opti-

mal coefficients are similar for LJ spheres and organic molecules. However they found that a 

reparametrization was necessary since they used a bigger data set (504 organic molecules) and 

a different water model. 

Sergiievskyi et al
[132,133,134]

introduced a thermodynamic ensemble correction for RISM based 

on the partial molar volume. This parameter free correction is based on the addition of the 

transfer free energy from the grand canonical to the isobaric-isotherm ensemble. With this 

correction they were able to improve the quality of solvation free energies of 500 organic 

compounds calculated with RISM in comparison to experimental and simulation data. How-

ever there is a debate about correctness of the underlying thermodynamics.  

Kinoshita et al studied the quality of partial molar volumes of amino acids calculated with the 

reference interaction site model
[81]

. They found that the partial molar volume is well described 

by 3D RISM/HNC and 1D RISM/HNC-BF0. In the case of 1D RISM the HNC-BF0 closure 

greatly increases the quality of the partial molar volume calculations. 

7.2 Computational details 

In this study a semi-empirical correction of free energies of solvation calculated with EC-

RISM is developed. Towards this goal the findings of the earlier chapters will be used to iden-

tify a solid physical basis for this correction. 
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As shown in chapter 6 the excess chemical potential calculated using the reference interaction 

site model can be corrected by a bridge dependent functional. The free energy density of this 

functional is negative at small separations and rapidly vanishes beyond the σLJ for the Lennard 

Jones fluid. The bridge function inside the core has proven to have little impact on the HNC 

functional of the excess chemical potential. The in-core contributions to the excess chemical 

potential are located in the bridge dependent functional. Unfortunately the bridge functions of 

many relevant systems are still unknown. The bridge function can be approximated by various 

closures. 

In this work the PSE-k closures are used and the bridge dependent functional is approximated 

using a semi-empirical correction. The free energy density is approximated by the direct cor-

relation function, because this function is relative short ranged and has non-zero values inside 

the core. The direct correlation function is already calculated within RISM. This leads to a 

correction that can be rapidly evacuated. 

As shown in equation (4.43) the partial molar volume can be calculated from an integration of 

the direct correlation function. Consequently this quantity is a well suited to approximate the 

bridge dependent functional. The approach chosen in the work is very similar to the approach 

by Palmer et al. and Truchon et al. which are described on page 66. 

7.2.1 Model formulation of the partial molar volume correction 

With the previously mentioned facts free energy correction models can be proposed. Plausible 

formulations are shown in table 8. Here models with up to 9 linear coefficients c will be used. 

The minimal model (P2) has two adjustable parameters. One is used to fit the free energy con-

tribution of the partial molar volume (cV). In chapter 7.3.2 we will see that anions and cations 

need another adjustable parameter. Hence a second parameter cq is added to fit charge contri-

butions to the free energy of solvation. This parameter replaces the charge contributions to the 

partial molar volume
[135]

. Since the effect is the same magnitude and of opposite sign for ani-

ons and cations one parameter for all sorts of ions should be sufficient. The opposite sign will 

be introduced by the formal charge of the molecule. 

To increase the flexibility of the model more parameters can be added. In the P3 model there 

is an adjustable constant (intercept) added. Hence this coefficient cI is able to correct the free 

energy for errors not associated with the partial molar volume. 
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A variant of the P3 model is the P3NI model. Instead of an intercept, the excess chemical po-

tential calculated by RISM is scaled with an adjustable parameter cµ. In the case of the HNC 

functional this has a sound physical background. Since the HNC functional is evaluated on 

correlation functions based on incorrect bridge functions this coefficient can be used to com-

pensate for this. If the PSE-k functional is used, the cµ parameter can be interpreted as a long 

ranged correction for the incorrect bridge function, while the short ranged correction is ap-

plied by taking the partial molar volume into account using the cV parameter. 

Table 8: Semi-empirical correction models of EC-RISM free energies. Here µ
RISM

 is an 

excess chemical potential calculated with the reference interaction site model. In this 

work it can either be the HNC functional (4.32) or the PSE-k functional (4.41). The ad-

justable parameters are labelled with c. With the exception of cI (which is an intercept) 

the subscript associates the parameter to a quantity. VM is the partial molar volume, q is 

the formal charge of the molecule and Esolv is the electronic energy of the molecule in 

solution after the EC-RISM cycle. Δµ
PSE-k

 is defined in equation (4.41). The free energy 

of solvation is given by ΔGsolv = µ
ex

 + Esolv - Evac. Due to the usage of the Ben Naim 

standard state
[17]

 (see chapter 3.1) the ideal gas term in equation (3.1) cancels. 

name model 

P2 MolM

RISMex

P2 qcVcµµ qV   

P3 IqV cqcVcµµ  MolM

RISMex

P3  

P3NI MolM

RISMex

P4NI qcVcµcµ qVµ   

P4 IqVµ cqcVcµcµ  MolM

RISMex

P4  

P4G solsolMsol

RISM8ex

P4G ))(101( EcqcVcEµcµ IqVG  
 

P4PSE IV

k

µµ cVcµcµcµ  

M

PSE

d

HNCex

P4PSE Δ  

P5 IqV

k

µµ cqcVcµcµcµ  

MolM

PSE

d

HNCex

P5 Δ  

P9 




















cations

anions

neutrals

,M,

RISM

,

,M,

RISM

,

0,M0,

RISM

0,

ex

P9

IVµ

IVµ

IVµ

cVcµc

cVcµc

cVcµc

µ  

The P4 model is a combination of both of the P3 models. 

The P4G model takes the electronic energy of the solute into account. Since this value is usu-

ally orders of magnitudes higher than the excess chemical potential, small parameter changes 

have a huge effect on the result. To increase the numerical stability of the fitting process, the 

coefficient is not directly used to scale the sum of excess chemical potential and electronic 
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energy. It is used within the term (1+10
-8

 cG).This model may be able to compensate for errors 

in the electronic energy during the EC-RISM cycle. 

The P4PSE model does not use the solvent charge as a parameter. Instead the PSE-k function-

al is used. Since the PSE-k closures are known for a good representation of long ranged inter-

actions, this functional may be able to discriminate between anions, cations and neutral mole-

cules. In this case one is likely to end up with a more predictive model because the PSE-k 

functional is certainly more unique of each solvent molecule than the solvent charge. The re-

sulting model is assumed to be less dependent of the training dataset.  

In the P5 model the combination of the charge term with the PSE-k functional leads to a very 

flexible model. 

The P9 model is similar to the P4 model, but instead of a constant charge dependent term, it 

uses different parameter sets for anions, cations and neutral molecules. 

Each EC-RISM free energy of solvation model will be parametrized using the levels of theory 

B3LYP
[136,137]

, B3LYP-D3
[138]

 and MP2
[139]

. The basis sets used are 6-31+G*, 6-311+G**
[140]

 

and aug-cc-pVDZ
[141,142]

. The 3D RISM part of the EC-RISM calculations will be performed 

with the closures PSE-1, PSE-2, PSE-3 and HNC-BF0. The susceptibility function which de-

fines the solvent model was calculated from SPC/E water using 1D-RISM/HNC or MD-

simulations (see chapter 7.2.3 for details). In the case of 1D-RISM/HNC the MSPC/E model 

(see chapter 3.3.1) was used instead. When the HNC-BF0 closure was used, the susceptibility 

function was calculated using 1D RISM/HNC-BF0. The combinations of these settings are 

shown in table 11. In the work (especially in the figures) the Pople basis sets 6-311G** and 6-

31G* will be referred to as P-TZ and P-DZ while the Dunning basis set aug-cc-pVDZ will be 

called D-DZ. 

In this work, two variants of the models P2, P3, P3NI, P4, P4G and P9 will be discussed. 

Each one uses another approximation towards the excess chemical potential calculated by 

RISM (µ
RISM

). In the first variant it is assumed that the real bridge function is close to the 

PSE-k bridge function. In this case, the excess chemical potential is the sum of the HNC func-

tional (µ
HNC

, equation (4.32)) of the excess chemical potential and the bridge dependent term, 

which then is approximated by the scaled partial molar volume. In the second variant, the PSE 

solution is taken as given and the scaled partial molar volume is used to correct the theory it-

self. Then the PSE functional (µ
PSE-k

, equation (4.41)) of the excess chemical potential is used 

and corrected by the scaled partial molar volume. 
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An important part of the calculation of the solvation free energy is the energy of the molecule 

in the gas phase. This will be called the reference energy. In this work the reference will be 

calculated with two approaches. In the first approach the geometries are optimized in gas 

phase and all relevant local minimum energy conformations are taken into account. This will 

be called vacuum reference geometries in this work. The usage of vacuum reference geome-

tries is from the physics perspective the optimal way. However this can be time consuming. 

As an alternative the molecule geometry may be assumed the same optimal geometry in the 

gas and solvent phase. Then any structural reorganization contributions to the solvation free 

energies are ignored, but the calculation of a set of gas phase geometries is not needed. In the 

assumption the geometry of the solvated molecule itself is used as reference. Consequently 

this approach will be called “self reference” geometries. 

 

Figure 17: Ensemble averaging methods. Red: Partition functions. Here the complete 

set of geometries is used in EC-RISM and for the free energy calculation with the par-

tial molar volume correction. Blue: EC-RISM minimum. The EC-RISM calculations 

are performed with all conformations. The partial molar volume correction is only ap-

plied to the lowest EC-RISM free energy. Orange: QM Minimum. The EC-RISM cal-

culations are only performed with a single geometry. The one with the lowest QM ener-

gy is chosen. 

For flexible molecules there are conformational contributions to the solvation free energy. To 

handle these contributions an ensemble of conformations has to be calculated and an averag-
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ing has to be performed. However, by doing so the vibrational and rotational contributions to 

the free energy are still ignored. In the work this ensemble is built in three different ways. 

Firstly, the conformational contributions are neglected and the optimal geometry is assumed 

to be the same for EC-RISM and the previous optimization in PCM
[43]

 solvent or vacuum. In 

this case the EC-RISM calculations are only done with the global minimum energy structure 

from the QM. This ensemble will be called “PCM”. The second approximation is neglecting 

conformational contributions and assuming that the global minimum energy structure from 

the previous optimizations is different from EC-RISM. Therefore in the EC-RISM ensemble 

all local minima are used in the EC-RISM calculation and only the lowest energy from this 

step is considered. The third way is the usage of partition functions (PF) as described in equa-

tion (3.2) to consider the conformational contributions. This approach is similar to the EC-

RISM ensemble, but instead of using the global minimum only, the contributions of all local 

minima are taken into account. An overview of the averaging methods is given in figure 17. 

In the EC-RISM and PF ensembles there is a difference between the self and the vacuum ref-

erence. When vacuum geometries are used, the ensemble averaging is done first and the refer-

ence energy is subtracted. When the self reference model is used, the energy is subtracted be-

fore applying the ensemble averaging. In the case of vacuum reference geometries the con-

formational ensemble (“PF”,”EC-RISM”,”PCM”) was generated in the same way the ensem-

ble was generated in solution. 

For the parametrization strategy EC-RISM and PF averaging have the disadvantage that they 

make the optimization process a non-linear problem. Hence in this work all optimizations 

were performed numerically as described in chapter 7.2.4. For example the minimization of 

the P2 model in the PF ensemble and with gas phase reference geometries the is given by 

}.,)Δ()min{(

,]/)(exp[ln

,]/)(exp[ln

2

MNSol

2

vac

C

MolCM,

RISMsol

C

qVsolvvacsolv

C

vac

C

qVCsolv

ccGGG

RTERTG

RTqcVcµERTG











 (7.1) 

The mathematical formulas of all models are shown in table 8. These models are trained with 

the experimental free energies of solvation of the Minnesota solvation database ΔslovGMNSol. 

To increase the readability a shorthand notation will be used. The conditions under that a 

model was generated will be shown in an identifier like: 

Model(Geom
x
y, QM/Theory/Basis Set, B[closure], χ[susceptibility], F[functional], {ensemble}) 
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The labels in the identifier have the meaning of 

 Model: the mathematical expessions from table 8, 

 Geom: Defines the geometries used in the calculations. The solvation state geometry is 

labeled with x. It is described in table 9. The vacuum reference state is labeled y. 

When the geometry is the same in the gas (self reference) as it is in the liquid phase it 

is labeled l. When vacuum optimized geometries are used instead, the label is g. Pos-

sible combinations of x and y are shown in table 10. 

 QM: Defines the QM settings during the EC-RISM calculations, 

 B: Defines the closure/bridge function used in the EC-RISM calculations, 

 χ: Labels the susceptibility function used in the EC-RISM calculations, 

 F: Defines the free energy functional used in the model. Possible choices are HNC and 

PSE referring to equations (4.32) and (4.41), 

 {}: Defines the method used for ensemble averaging. 

As an example the identifier 

P3NI(Geomg
PCM

, QM/MP2/aug-cc-pVDZ, B[PSE-3], χ[MD], F[HNC], {PF}) 

means that the P3NI model was trained with the Geom
PCM

 dataset, gas phase optimized refer-

ence energies, at the MP2 level of theory using a aug-cc-pVDZ basis set (short: D-DZ) with 

the PSE-3 closure and the simulated solvent susceptibility functions. In the model the HNC 

functional was used and the calculations were done with multiple conformations of the same 

molecule and a partition function was used for the ensemble averaging. 

The Minnesota solvation database contains molecules with multiple rotatable bonds. Hence a 

workflow is needed that accounts for this flexibility. This can be done by calculation of all 

relevant local minimum energy conformations. It is likely that there are multiple local mini-

mum energy conformations. Hence the ensemble has to be averaged. 

In this work a workflow is used that produces a small number of conformations for every 

molecule which are (potentially) local minima on the potential energy surface. For the calcu-

lation of solvation free energies we need two sets of conformations since this energy is asso-

ciated with the process of transferring a molecule from the gas phase into a solvent. Conse-

quently a set of gas phase optimized conformations and a set of conformations optimized in 

solution are needed for every molecule. 
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The solvent optimized conformations are treated with EC-RISM. They are used together with 

the gas phase energies calculated from the gas phase optimized conformers to train the free 

energy of solvation model (see figure 19). 

The first step in the development of the semi-empirical model is a systematic screening of pa-

rameters within EC-RISM calculations to identify the optimal setup for free energy calcula-

tions. Then the performance of several free energy correction models which again depend on 

multiple parameters is tested. 

Hence this work is based on a high dimensional nonlinear optimization process. The parame-

ters to be optimized are: 

 conformer generation  

o starting points of atom coordinates, 

o geometry optimization conditions in gas phase and solution, 

o selection of representative conformers, 

 EC-RISM quantum mechanics 

o level of theory, 

o basis set, 

 EC-RISM integral equation 

o closure, 

o solvent model, 

 partial molar volume correction of the free energy 

o calculation of the partial molar volume, 

o empirical fit coefficients of the model, 

o conformer free energy contribution averaging. 

The workflow and the parameters included will be discussed in detail in the following sec-

tions. 

7.2.2 Conformer generation 

The first step in the workflow towards the calculation of free energies is the generation of 

conformers as initial guesses. The goal is to get diverse sets of conformations without the 

need of extensive calculations. The ideal result of the workflow yields at least one confor-

mation-guess close to all real relevant local energy minimum conformation. These guesses 

then can be optimized with a more elaborate theory.  
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In this work the conformations were generated by using three dimensional embedding based 

on distance geometry
[143,144,145]. 

This means the conformations are built up by an optimization 

of random distance matrices. In this approach the possible maximum and minimum distances 

are constrained towards standard distances in molecules (see chapter 9.1). 

The Minnesota solvation database provides M06-2X/MG3S optimized geometries for all mol-

ecules. These geometries were used to generate the topology of all molecules. The molecules 

in the Minnesota solvation database have up to 30 rotatable bonds. Therefore an exhaustive 

search of all conformations is not possible. As a compromise between computational effort 

and thorough scan of the conformational space 200 conformations were generated for each 

molecule using a distance geometry embedding
[143]

 using the default settings of RDKit
3
.
 

The
 
next step is the optimization of the geometry of each conformer. This step has to be done 

twice: once in solution to prepare the EC-RISM calculation and once in vacuum to get the en-

ergy of the molecule in the gas phase. 

In this work a scripted workflow by P. Kibies
[146]

 was used for the classical mechanics and 

force field based minimization. These conformations were optimized using the GAFF
[147,148]

 

force field 1.5 of AMBER 12
[41]

 and AM1-BCC charges. In the case of the molecules in solu-

tion the optimizations were done in ALPB
[46]

 water. The energy minimizations were per-

formed down to a maximum gradient norm of 10
-4

 kcal mol
−1

 Å
−1

.  

Since a quantum mechanics treatment of 200 conformations of over 500 molecules is too de-

manding, a filtering for representative conformers was needed at this point. Initial tests with 

various clustering algorithms implemented in g_cluster from the GROMACS 4.6.3 software 

suite
[149]

 did not provide a consistent and stable setup. All tested settings yielded either one 

single cluster for most molecules or one cluster for each conformation of most molecules. 

Therefore instead of a clustering based approach another algorithm was used to select possible 

minima. The force field minimized structures were sorted by their force field energy and the 

lowest energy conformation is considered the first local minimum. Now the RMSD to the 

next higher energy conformation is calculated. If this has an RMSD bigger than 0.1 Å this 

conformation is considered a new local minimum. Then this is repeated for all conformers 

with an energy not greater than the energy of the lowest energy conformer plus 5 kcal/mol. A 

conformer is considered as a local minimum when its RMSD to every other local minimum 

structure is bigger than 0.1 Å. 

                                                 
3
 http://www.rdkit.org/ 



 .......................... Semi-empirical corrections of RISM free energies ....................  75 

 Daniel Tomazic  

The selected minima were then further optimized using quantum mechanical energy minimi-

zation. The optimizations were performed with Gaussian 09
[150]

. Every conformation was op-

timized under different conditions resulting in four datasets. They are shown in table 9. 

Table 9: Datasets used for the parametrization of the partial molar volume correction. 

Each dataset consists of all molecules in the MNSol (for aqueous solutions) optimized 

under using different QM levels of theory. The Geom
MNSol

 dataset was provided by the 

database
[18]

. These optimizations were done after the force field minimizations were 

performed in ALPB water. For the available reference geometries (force field minimiza-

tions in the gas phase) see table 9. 

name of the dataset optimization conditions 

Geom
0
 B3LYP/6-311+G** 

Geom
PCM

 B3LYP/6-311+G**/PCM 

Geom
D3

 B3LYP-D3/6-311+G**/PCM 

Geom
DZ

 B3LYP/6-31+G*/PCM 

Geom
MNSol

 M06-2X/MG3S 

 

With all datasets a final filtering step was performed similar to the one after the force field 

minimizations. This time the energy cutoff was 3 kcal/mol. For the PCM optimizations the 

default settings for water were used. After this second filtering step there were still some mol-

ecules left with more than 100 conformations. This was considered as too many confor-

mations of EC-RISM calculations. Hence for all molecules only the five lowest energy con-

formations were used in the subsequent EC-RISM calculations. With a cap at five clusters, 

80% of the molecules of the MNSol have all identified conformers included into the EC-

RISM calculations. Additions of further molecules will not significantly raise this percentage. 

This is shown in figure 18. 

A fifth dataset was included as an external reference. The conformations provided by the 

Minnesota solvation database were used for this purpose. These geometries were previously 

used for the training of semi-empirical solvation models with the Minnesota solvation data-

base
[11] by other groups. Hence this dataset is well suited for the comparison of this model 

with published ones. It will be referred to as Geom
MNSol

. 
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Figure 18: Conformer distribution in the MNSol. Panel A: The histogram shows the 

number of molecules for every amount of conformations. Panel B: The integral of the 

histogram shows the percentage of molecules that have equal or less conformers than 

the number on the x-axis. 

The gas phase optimizations were not performed for all datasets. The “g” labeled datasets, 

which are physically more consistent (see the model identifier on page 71), are only available 

for Geom
0
 and Geom

PCM
. An overview of the datasets is shown in table 10. A schematic 

overview of the workflow is shown in figure 19. 

Table 10: Combinations of geometry optimization (dataset) and reference geometries 

used in this work. The “l” datasets used the same geometry in solution and as a refer-

ence. These geometries were optimized in with a force field in ALBP water the further 

optimized as shown in table 9. When compared with figure 19 this corresponds to the 

blue and purple path. The “g” datasets used force field ALPB optimizations followed by 

a QM optimization as described in table 9 in solution and force field gas phase optimi-

zation followed by an optimization as a reference. The QM optimization was done with 

the same level of theory and basis set but without PCM. This is shown by the blue and 

red path in figure 19. 

Geoml
0
 Geomg

0
 

Geoml
PCM

 Geomg
PCM

 

Geoml
D3

  

Geoml
DZ

  

Geoml
MNSol
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Figure 19: The workflow used to calculate solvation free energies. The left site shows 

the optimization of the molecules in solution and the right side shows the generations of 

gas phase references. The QM optimization step was performed at four different levels 

(see first four rows of table 9). After the QM optimization an additional filtering was 

performed as described on page 75 limiting the number of conformations used in EC-

RISM to five. The reference energies of the Geomg datasets were calculated according 

to the red arrow. The calculations with self references (Geoml) used the gas phase opti-

mized structures. In this case the gas phase energy E
vac

 was calculated directly from the 

optimized geometries on the left side (purple arrow).  

7.2.3 EC-RISM 

With every geometry dataset, EC-RISM calculations were performed for the five lowest ener-

gy conformations of each molecule. The EC-RISM calculations were done with a set of fixed 

parameters and a set of parameters that was used to screen for optimal calculation conditions. 

The quantum mechanics part of the EC-RISM cycle was done with Gaussian03
[151]

. 

In all EC-RISM calculations the solvent density was set to 0.03333 Å
-3

 and the temperature 

was adjusted to 298.15 K. The compressibility κ of water calculated be to 0.450183 Å/J 

(0.450183 10
-9

 Pa
-1

). This value was calculated with the formula  

p

ρ

ρ
κ






1
. (7.2) 

The pressure p dependent water density ρ was taken from 
[152]

. The εLJ and σLJ parameters of 

the solvent molecule’s atoms were taken from the GAFF
[147,148]

 force field 1.5. The solute 

solvent potential was calculated utilizing Lorentz-Berthelot mixing rules. Partial charges were 
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calculated from the quantum mechanics electrostatic potential using the CHelpG
[153]

 scheme. 

The radius of Br atoms was set to 1.3 Å. 

The RISM calculations were considered converged when the maximum residual of the direct 

correlation function fell below 10
-5

 for two consecutive iterations. A modified direct inversion 

of the iterative subspace (MDIIS)
[111]

 was used to improve the convergence of the 

RISM/closure system of equations. 

The initial guess of the partial charges were generated using the target level of theory (see be-

low and table 11). The iterations were performed at HF level of theory. The EC-RISM itera-

tion was stopped when the change of the sum of quantum mechanics solvent energy and the 

excess chemical potential fell below 0.01 kcal/mol. The iteration was performed on a cubic 

uniformly spaced grid with a point, point distance of 0.3 Å and a 12.5 Å solvent buffer in each 

direction. After the final iteration the grid was extended to 15 Å for a final evaluation of the 

excess chemical potential. 

The parameters which were screened were the final level of theory of the EC-RISM calcula-

tion where MP2, B3LYP and B3LYP-D3 were used. The D3 corrections to the B3LYP calcu-

lations were applied with the program dftd3
[138,154]

 using BJ-damping
[155]

. Three different ba-

sis sets were tested: aug-cc-pVDZ, 6-311+G** and 6-31+G*. The closures were set to PSE-1, 

PSE-2, PSE-3 or HNC-BF0. The solvent susceptibility function of water was calculated in 

three different ways: with 1D DRISM
[70,71]

/HNC, extracted from MD simulations and with 1D 

DRISM/HNC-BF0. An overview of all combinations is shown in table 11. 

The first susceptibility function (HNC) was created using the DRISM/HNC method. The wa-

ter model used in this case was a modified version of the SPC/E water model
[36]

 with small σLJ 

parameters assigned to the hydrogen atoms σLJ(H) = 1.0 Å
[37,38]

. The dielectric constant was 

set to 78. A modified direct inversion of the iterative subspace (MDIIS)
[111]

 was used to im-

prove the convergence of the RSIM/closure system of equations. Convergence was assumed 

when the maximum residual of the direct correlation function fell below 10
-8

. The calculations 

were performed on a logarithmically spaced grid
[110]

 ranging from 0.0059 Å to 164.02 Å. This 

solvent susceptibility function was the same as used in 
[19]

. 

The susceptibility function of the MD solvent model was calculated from a trajectory of 

SPC/E. The simulations and the calculations of the pair distribution functions were performed 

by D. Horinek. The trajectory built from 50000 snapshots of a 20 ns MD simulation in 

GROMACS
[156]

 version 4.6.5. The simulations were performed with 17440 SPC/E water mol-
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ecules at 298.15 K and 1 bar. A stochastic velocity rescaling thermostat was used in combina-

tion with a Parrinello-Rahman barostat. The simulations used a 6-12 Lennard-Jones potential 

with a 10 Å cutoff. A smooth particle-mesh Ewald summation
[157]

 with a real space cutoff of 

10 Å was used to calculate the electrostatic interactions. A time step of 1.5 fs was used and 

the water geometry was constrained using SETTLE
[158]

. The pair distribution function of wa-

ter was calculated on an equally spaced grid of 1992 points with a grid point distance of 0.002 

Å. It was calculated from a single precision trajectory. 

The χ[MD] solvent susceptibility was calculated by S. Kast and P. Kibies using an iterative 

inversion of the OZ equation as described in chapter 5. The pair distribution function was in-

terpolated on the logarithmic grid using a smoothing spline. The smoothing factor was set to 

the number of MD grid points and the statistical uncertainty was calculated from 195 samples 

of the 20 ns trajectory. The pair distribution function was set to zero when the grid point was 

closer to zero than 0.002 Å and is was set to the HNC solution for separations greater than the 

half of the box size of the MD simulation. The transition from the MD simulation based clo-

sure to the HNC was done within 1 Å using a cubic polynomial. The convergence tolerance 

was increased to 10
-4

.  

The susceptibility of the HNC/BF0 water model was calculated in a two-step process. With 

the exception of the following settings the calculations were done in the same way das for the 

HNC solvent susceptibility function. In the first step all partial charges were set to zero. The 

Verlet closure was used with a convergence criterion of 10
-5

. In the second step, the bridge 

function of the first step was used with a reference HNC approach. The charges of SPC/E wa-

ter were reassigned to the atoms. The dielectric constant was set to 78.4. The bridge function 

from step one was added to the solute solvent interaction potential and a RISM/HNC calcula-

tion was performed with the same settings as used in the first step. 

From every conformation of each molecule used in EC-RISM a 3D-RISM calculation was 

performed with all partial charges set to zero. These non-polar calculations were done with 

the same settings for 3D-RISM as used in the EC RISM calculations. The partial molar vol-

ume of the uncharged (non-polar) molecules was calculated as well.  
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Table 11: Number of successfully performed EC-RISM calculations using different 

EC-RISM settings and geometries for neutral molecules, cations, anions and the total 

number. This is an overview of all combinations of screened EC-RISM parameters used 

in this work for every geometry dataset (see table 9). When B3LYP is the level of theo-

ry, the D3 dispersion energy was calculated as well. 

Geom 
level of 

theory 
basis set closure 

suscep-

tibility 

function 

neutrals cations anions all 

0 

B3LYP 6-311+G** 

PSE-1 
HNC 339 45 73 457 

Sim 340 45 73 458 

PSE-2 
HNC 339 45 73 457 

Sim 339 45 73 457 

PSE-3 
HNC 339 43 73 455 

Sim 339 45 72 456 

MP2 

6-311+G** 

PSE-1 
HNC 355 49 82 486 

Sim 363 49 82 494 

PSE-2 
HNC 348 49 82 479 

Sim 345 45 73 463 

PSE-3 
HNC 353 47 82 482 

Sim 350 47 74 471 

aug-cc-pVDZ 

PSE-1 
HNC 305 45 72 422 

Sim 323 44 78 445 

PSE-2 
HNC 302 44 71 417 

Sim 319 35 63 417 

PSE-3 
HNC 301 44 71 416 

Sim 321 29 74 424 

D3 

B3LYP 6-311+G** 
PSE-1 HNC 368 47 78 493 

PSE-3 HNC 253 21 39 313 

MP2 aug-cc-pVDZ 

PSE-1 HNC 255 47 77 379 

PSE-2 HNC 253 45 69 367 

PSE-3 HNC 313 43 69 425 

DZ 
B3LYP 6-31+G* PSE-2 HNC 375 47 79 501 

MP2 aug-cc-pVDZ PSE-3 HNC 327 47 76 450 

MNSol MP2 aug-cc-pVDZ PSE-3 HNC 324 48 77 449 
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Table 11 continued 

Geom 
level of 

theory 
basis set closure 

Suscepti-

bility 

function 

neutrals cations anions all 

PCM 

B3LYP 6-311+G** 

PSE-1 
HNC 345 49 76 470 

Sim 374 50 80 504 

PSE-2 
HNC 366 46 67 479 

Sim 369 47 76 492 

PSE-3 
HNC 357 49 80 486 

Sim 356 50 79 485 

MP2 

6-311+G** 

PSE-1 
HNC 352 50 80 482 

Sim 354 50 80 484 

PSE-2 
HNC 355 50 80 485 

Sim 358 49 79 486 

PSE-3 
HNC 355 49 80 484 

Sim 351 48 77 476 

aug-cc-pVDZ 

HNC HNC-BF0 211 5 5 221 

PSE-1 
HNC 334 50 79 463 

Sim 325 49 78 452 

PSE-2 
HNC 284 50 76 410 

Sim 329 50 79 458 

PSE-3 
HNC 325 50 77 452 

Sim 326 50 77 453 

 

7.2.4 Applying the partial molar volume correction models 

As shown in table 8, several variants of a semi-empirical correction of free energies of solva-

tion were tested in this work. 

For every EC-RISM setup in table 11 (including the DFT-D3 corrections) all models in table 

8 were parameterized. The model generation was done in several variants: 

 µ
RISM

 

o HNC functional and closure is one of PSE-k or VM dependent of the setup, 

o PSE functional only for setups with PSE-k closure, 

 conformational ensemble averaging  

o global minimum of the EC-RISM calculations, 
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o global minimum after the PCM optimization step, 

o partition function, 

 gas phase reference 

o own geometry l (neglecting conformational changes at the transition from the 

gas phase to the solvent), 

o gas phase optimized geometries g (only Geomg
PCM 

and Geomg
0
). 

The choice of the reference state determined the parametrization strategy. When the gas phase 

optimized geometries were used, the following steps were made: 

 guess initial parameters (cµ = 1, cv = 1, cq = 0, cI = 0), 

 calculate gas phase energy of the molecule 

o Gconf
vac

 =Econf
vac  

o ensemble average ( Gmol
vac

 = PF[{ Gconf
vac

}]) or global minimum ( Gmol
vac

 = 

min[{Gconf
vac

}]) of all conformations. Since the Energy of the reference state is 

not dependent on the partial molar volume correction this can be pre-calculated 

and hence does not affect the linearity of the optimization. 

 calculate free energy in solution 

o Gconf
solv

 =Econf
solv  + µ

conf
ex  

o calculate µ
conf
ex  using any model in table 8 

o ensemble average (Gmol
solv

 = PF[{Gconf
solf

}]) or global minimum (= min[{Gconf
solf

}]) 

of all conformations. Here the non-linearity of the optimization is introduced. 

 calculate ΔG
solv

,= Gmol
solf

 - Gmol
vac

 

 calculate total square of errors: 

 
mol

solv

exp

solv

calc

2 ]mol[Δ]mol[ΔΔΔ GGG , 

 minimize ΔΔG
2
 by variation of model coefficients. 

When the conformation’s own geometry was used, the following steps were made: 

 guess initial parameters (cµ = 1, cv = 1, cq = 0, cI = 0), 

 calculate gas phase energy of the conformations of each molecule 

o Gconf
vac

 =Econf
vac , 

 calculate free energy in solution of each conformer 

o Gconf
solv

 =Econf
solv  + µ

conf
ex , 

o calculate µ
conf
ex  using any model in table 8, 

 calculate ΔG
solv

, 
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 Calculate ensemble average or global minimum of all conformations 

o ΔGmol
solv

 = PF[{ΔGconf
vac

}] or ΔGmol
vac

 = min[{ΔGconf
vac

}], 

 calculate total square of errors 

o  
mol

solv

exp

solv

calc

2 ]mol[Δ]mol[ΔΔΔ GGG , 

 minimize ΔΔG
2
 by variation of model coefficients. 

The minimization was done using a BFGS algorithm. The molecules from table 12 were ex-

cluded from the optimization process. 

Table 12: Some molecules of the Minnesota solvation database have diastereomers or 

E and Z conformers. In these cases the free energy of solvation depends on the relative 

conformation. To avoid errors these molecules were excluded from the parametrization. 

database ID reason 

0020cis multiple stereo centers and diastereomers 

0028Epe E / Z isomeres 

0171Zdi E / Z isomeres 

0172Edi E / Z isomeres 

0234Emb E / Z isomeres 

0235Zmb E / Z isomeres 

0440pho multiple stereo centers and diastereomers 

c091 parametrization and convergence issues 

i091 parametrization and convergence issues 

test1014 multiple stereo centers and diastereomers 

test1018 multiple stereo centers and diastereomers 

test1019 E / Z isomers 

test1029 multiple stereo centers and diastereomers 

test1030 multiple stereo centers and diastereomers 

test1033 multiple stereo centers and diastereomers 

test1035 multiple stereo centers and diastereomers 

 

7.3 Results 

The partial molar volume correction was successfully parameterized with the Minnesota solv-

ation database. This chapter summarizes and discusses the generation of the compounds, the 

parametrization and resulting models. At first the conformer generation and EC-RISM calcu-

lations are discussed. The information from the EC-RISM calculations is used to identify how 
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the partial molar volume correction can be applied and the effect of the solvent induced polar-

ization is reviewed. In the second part the results of the partial molar volume correction are 

discussed. The overall performance measured by the RMSE and differences between neutral 

molecules and ions are identified. Then the settings of the QM calculations, the 3D RISM cal-

culations and the correction itself are discussed. The correction is compared to other implicit 

solvation models and the robustness of the parametrization is checked. Finally the RMSE of 

substance classes is discussed and some general suggestions are given how the models can be 

used to minimize the expected error of EC-RISM calculations with the partial molar volume 

correction. In total 20372 QM minimizations (including all conformers) and 44083 EC-RISM 

calculations were performed. This resulted in 4228 different models and 3543960 free ener-

gies. 

7.3.1 Conformer generation and geometry optimizations  

The first step was the generation and force field optimization of the 533 molecules in the 

MNSol. For six molecules (test1030, i050, i051, i052, i053 and i088) the parametrization with 

the GAFF force field could not be applied automatically so these molecules were not included 

in any of the following steps. The first geometrical selection step yielded 265 molecules with 

only one conformation, 447 molecules with less than ten conformations. 40 molecules were 

left with at least 25 conformations. Nine iodine containing molecules were not used in the 

QM optimizations since iodine cannot be described with the basis set used in this work. 

In the subsequent QM optimizations for 514 molecules one or more conformations were suc-

cessfully optimized with B3LYP/6-311+G**. In case of B3LYP/6-311+G**/PCM it were 513 

molecules, in case of B3LYP-D3/6-311+G**/PCM 508 molecules and in case of B3LYP/6-

31G* 509 molecules. 

The EC-RISM calculations were performed with the five lowest energy local minimum ge-

ometries of every molecule. The numbers of converged calculations for each calculation type 

are shown in table 11. 

7.3.2 EC-RISM 

This chapter gives an answer to the question how the difference from the solvation free ener-

gies calculated with EC-RISM to experimental values can be used to formulate a correction 

model. 



 .......................... Semi-empirical corrections of RISM free energies ....................  85 

 Daniel Tomazic  

So far the EC-RISM has proven to be useful for the prediction of changes in the free energy 

of solvation
[5,19,128,24]

. However, the prediction of absolute free energies of solvation with 

RISM has significant systematic errors. In figure 20 the calculated free energy of solvation is 

plotted against the experimental values from the of the MNSol database. The correlation of 

theory and experiment is low. 

 

Figure 20: Calculated free energy of solvation plotted against the experimental values 

from the of the MNSol database. The EC-RISM calculations were performed with the 

Geom
0
 dataset at the B3LYP/6-311+G**/EC-RISM-PSE-3 level with the HNC solvent 

model. The PCM was done at the same level. At this point the reader is reminded that 

PCM is able to perform much better on this dataset if the computational setting is cho-

sen accordingly to the parametrization of PCM
[124]

, which here is not the case. 

An important question is how to compensate the error introduced by the EC-RISM calculation 

by employing the partial molar volume correction. A linear correlation between the difference 

of the calculated free energies and the experimental with the partial molar volume calculated 

by RISM is necessary for this. The correlation of the partial molar volume and the energy dif-

ference is shown in figure 21. 
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Figure 21: Plot of the partial molar volume against the error of EC-RISM calculations. 

Neutral molecules are labeled green, anions blue and cations red. All calculations use the 

PSE-k functional for the evaluation of the excess chemical potential. Figure A shows Ge-

om
DZ

 dataset with B3LYP/6-31+G*/PSE-1(EC-RISM) with the HNC solvent model. The 

dots denote VM of the final iteration, crosses denote VM of the first iteration (vacuum). 

Figure B shows Geom
PCM

 dataset with MP2/aug-cc-pVDZ/PSE-3(EC-RISM) with the 

HNC solvent model. The dots correlate VM of the final iteration, crosses denote VM of the 

uncharged molecule, the circles display that the EC-RISM cycle was performed with the 

BF-0 closure. Figure C shows Geom
0
 dataset with MP2/aug-cc-pVDZ/PSE-3(EC-RISM). 

The dots are with the HNC solvent model and the crosses are calculated with the MD sol-

vent susceptibility. Figure D shows the Geom
MNSol

 dataset with MP2/aug-cc-pVDZ/PSE-

3(EC-RISM) with the HNC solvent model. The cross marked calculations use the HNC 

functional for the evaluation of the excess chemical potential. The dots mark usage of the 

PSE-k functional. 
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There is a multi-linear dependence of the error from the partial molar volume. Neutral mole-

cules and cations have a much smaller variance within the data (in the y-direction) than the 

anions. Therefore a partial molar volume correction is expected to work better for cations and 

neutral molecules. The influence of the theoretical setup is rather small. Neither the free ener-

gy functional nor the susceptibility change the result significantly (panel C and D of figure 

21). In case of PCM geometries (panel A and B of figure 21) the partial molar volumes are 

slightly bigger. The MD solvent susceptibility function decreases the partial molar volume 

slightly. The partial molar volume of charged molecules needs an additional term that de-

pends only on the total charge of the molecule and not on any other properties
[135]

. Conse-

quently the contributing of a monovalent cation is equal in magnitude and opposite in sign to 

the contribution of a monovalent anion. This is results in the multi-linear behavior in figure 20 

and figure 21. Hence introducing a charge dependent term to the models has a solid physical 

background. 

The calculations with the BF-0 closure (panel B of figure 21) had serious convergence issues, 

especially in case of the ions. Anyways this closure drastically decreases the y axis variance 

of the neutral molecules. At least for the neutral molecules, this closure may be a promising 

candidate. Since the accurate treatment of ions in the free energy correction model is a major 

goal of this work this promising path will only be followed shortly in chapter 7.3.11. 

Using the non-polar partial molar volumes decreases the x-axis diversity of the data as seen in 

panel C of figure 21. Since these calculations require an additional RISM step and are unlike-

ly to increase the quality of the resulting models this approach is discarded. 

Figure 21 also shows that the partial molar volume is not able to discriminate between anions, 

cations and neutral molecules. The values of the anions tend to be a bit smaller. When looking 

only at the x axes in figure 21, one cannot see a clear cluster for the anions. Hence the charge 

of the molecule has to be included into the parameterization of the free energy correction. 

So far
[129,130,131]

 the partial molar volume correction was used in combination with 3D RISM 

only. This means that solvent induced polarization of the molecules is ignored. However the 

polarization energy ΔE
Pol

 ranges from -0.61 kcal/mol to 25.04 kcal/mol for neutral molecules 

and from -5.25 kcal/mol 67.17 kcal/mol for ions. For the partial molar volume correction to 

work, the partial molar volume has to over-compensate the lack of polarizability. This is pos-

sible, if the polarizability has a linear correlation with the partial molar volume. As seen in 

figure 22 this is partially the case. However the trend is different for anions. So the anions will 
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require a different parametrization. The correlation between partial molar volume and polari-

zation energy is not optimal. Therefore calculation of the polarization energy with EC-RISM 

can improve a partial molar correction. 

The polarization of a molecule is penalized due to the induced charge separation. As expected 

the penalty is highest for cations which tend to have high charge densities. The polarization 

energy during the transfer of a molecule into water should positive. However, in the MD sol-

vent (panel A of figure 22) this value is negative of some cations and a meaningful amount of 

anions. This means that polarity of the molecule is decreased in the solvent, what appears to 

be an artificial event possibly introduced by the combination of DRISM with the simulated 

susceptibility functions. 

7.3.3 Partial molar volume correction 

The optimal model coefficients were calculated for 4228 combinations of computational pa-

rameters. Unfortunately in the 84 setups with the HNC/BF0 closure the iterations are likely to 

fail. Hence the amount of converged ions is very small in these cases. The HNC/BF0 calcula-

tions were therefore excluded in the following part and are discussed in chapter 7.3.11. 

 

Figure 22: Polarization energy of the molecules in the MNSol plotted against the partial 

molar volume. The calculations were done with the Geom
PCM

 dataset using MP2/aug-

cc-pVD/EC-RISM-PSE-3 with the simulated susceptibility function (A) and the HNC 

susceptibility function (B). 

7.3.3.1 Overview 

The RMSE of the optimal models for the complete Minnesota Solvation database range from 

1.9 kcal/mol to more than 8 kcal/mol. The minimum and maximum RMSE for each model is 
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shown in table 13. The group containing the models P2, P3 and P4G as well as the group con-

taining P3NI, P4, P5 and P9 models show similar performances within a group. The RMSE in 

the second group are about 0.2 kcal/mol lower. Cations are described better than anions. This 

is expected from the findings in chapter 7.3.2. Since the amount of anions and cations is 

smaller than the number of neutral molecules (see table 11), the overall mean error is close to 

the mean error of the neutral molecules. 

Table 13: Overview of the highest and lowest RMSE (kcal/mol) of solvation free ener-

gies from the MNSol calculated for every model. For a comparison with continuum 

solvation models see chapter 7.3.5. More information about the lowest RMSE of each 

model is given in the appendix (The result tables. See chapter 9.3 and the following 

chapters). Here the setup corresponding to the RMSE is given as well. In most cases the 

MP2 level of theory yields the lowest RMSE. 

 
all molecules anions cations neutrals 

model min max min max min max min max 

P2 2.18 6.45 3.68 8.68 2.99 11.53 1.21 6.37 

P3 2.18 4.82 3.67 6.02 2.71 7.39 1.16 4.06 

P3NI 2.04 5.91 3.45 5.07 2.53 3.87 1.18 6.27 

P4 2.00 3.94 3.36 4.94 2.54 3.59 1.12 3.96 

P4G 2.18 4.82 3.67 6.02 2.68 7.38 1.16 4.06 

P4PSE 3.00 8.03 5.19 12.16 3.61 20.04 2.02 4.89 

P5 1.97 3.94 3.40 4.60 2.53 3.66 1.14 3.96 

P9 1.89 3.85 3.07 4.56 2.21 3.40 1.10 3.95 

 

By looking at the minimum RMSE for each model one can postulate some initial hypotheses 

about the effect of certain parameters. A comparison of the P2 and P3 model shows that the 

intercept has very little benefit. The minimal RMSE of neutral molecules decreases by 

0.05 kcal/mol. In both cases, the computational setups are similar. Both use the Geom
PCM

 da-

taset, the MP2/6-311+G** level of theory for the quantum mechanics, the PSE-1 closure, 

vacuum reference geometries and HNC functional for the energy evaluation. The added inter-

cept benefits the simulated susceptibility function and the P2 model works better with the 1D 

RISM/HNC susceptibility. Table 14 shows that using this setup the intercept has almost no 

influence on the HNC RMSEs. 

The P4 model has a significantly lower RMSE (RMSE(P4) = 2.00 kcal/mol) than the P3 mod-

el (RMSE(P2) = 2.18 kcal/mol). The added parameter to the excess chemical potential cµ 
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seems to have a much bigger impact than the addition of an intercept. When comparing the 

P3NI model with the P4 importance of the cµ is further supported. For the P4 and P3NI mod-

els the ideal settings are the same. In contrast to those models without this parameter, the 

PSE-3 closure and the PSE-3 functional for the energy evaluation are optimal. The simulated 

susceptibility performs better than the 1D RISM/HNC solvent model. 

Table 14: RMSE of the P2 and P3 model calculated using the Geom
PCM

 dataset, the 

MP2/6-311+G** level of theory for the quantum mechanics, the PSE-1 closure, vacuum 

reference geometries and HNC functional for the energy evaluation. 

susceptibility function ensemble P2 P3 

HNC 

EC-RISM 2.24 2.24 

PCM 2.24 2.24 

PF 2.23 2.23 

Sim 

EC-RISM 2.28 2.20 

PCM 2.28 2.20 

PF 2.30 2.22 

 

The added five parameters to the P9 model when compared with the P4 model further in-

crease the accuracy of the model. However the RMSE is only 0.11 kcal/mol lower than the 

RMSE of the P4 model. The P9 model does not improve the quality of the description of the 

neutral molecules but it has a great impact on the ions. 

The P4G model has almost the same characteristics as the P3 model. This shows that the add-

ed parameter has no effect. The result is physically and numerically plausible. The P4G model 

scales the electronic energy of the molecule which is several orders of magnitudes higher than 

the excess chemical potential. Therefore the correction has either a huge impact or the almost 

no impact.  

The P5 and the P4PSE model each include a separate parameter for the PSE-k functional cdµ. 

In the P4PSE model this parameter is supposed to compensate the lack of a charge parameter. 

This model fails in the description of ions. Since the number of cations in the MNSol database 

is much smaller than the amount of anions, the optimization leans towards a better description 

of the anions. Hence the cations have a much bigger RMSE what is therefore probably an arti-

fact of the optimization and the unbalanced training database. Within the P5 model the cdµ is 

used to add some more flexibility to the calculation. The improvement of the minimal RMSE 

is quite small, but the ideal setup changes. In the case of the Geom
PCM

 dataset, the MP2/6-
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311+G** level of theory for the quantum mechanics, the PSE-1 closure, MD susceptibility, 

vacuum reference geometries and PSE-k functional for the energy evaluation (the optimal set-

tings of the P4 model) cannot be used for the P5 model, since the cdµ parameter needs evalua-

tion of the HNC functional. So a direct comparison of the best models is not possible. The P5 

model works well with the PSE-2 closure. Using the previously mentioned setup the decrease 

of the RMSE is 0.08 kcal/mol from P4 to P5 with the PSE-2 closure (RMSE(P5) = 2.01). For 

the PSE-3 closure the difference is only about 0.02 kcal/mol (RMSE(P5) = 2.02). 

Figure 23 show the RMSE of the P2, P3, P4 and P9 of the full database (anions, cations and 

neutral molecules) calculated using various computational setups. These are the RMSE of the 

results of the optimization of the models. 

At first one can see that an increase in the amount of parameters in the model will lower the 

RMSE of the model in all cases. The P4 and P9 model show consistent RMSE for almost all 

conditions, while the RMSE of P2 and P3 shows high variance over different levels. These 

out layers usually include an evaluation of the PES-k functional (labelled µ
ex

 in the figures). 

Also these models do not work well when the MD simulation solvent susceptibility (labelled 

Sim in the figures) function is used. 

Also from figure 23 can be seen that the MP2 level of theory is usually better than B3LYP. It 

has lower RMSE differences between the models and the RMSE is less dependent of the other 

settings. This is a promising result. Since the quantum mechanics calculations are independent 

of the evaluation of the reference interaction site model, the partial molar volume correction is 

not expected to have an influence on the electronic energies. This means higher quality elec-

tronic energies calculations are supposed to improve the overall correction. If this is not the 

case the partial molar volume correction will over-compensate those errors. When B3LYP 

calculations are required, usage of the simulated solvent susceptibility functions with the P4 

model is suggested for all geometries.  

Figure 24 shows the P3, P3NI, P4G, P4 and P5 models. The P3 and the P4G model have simi-

lar RMSE for all setups. Between the P4 and P3NI models a similar relation exists. The P5 

model has slightly lower RMSE than the P4 model. The difference between these models is 

relatively big when the simulated solvent susceptibility function is used in combination with 

MP2 and the PSE-1.  
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Figure 23: RMSE in kcal/mol of the free energy of solvation of the MNSol calculated 

with variants of the partial molar volume correction. This figure includes all generated 

variants for the P2, P3, P4 and P9 model with the EC-RISM ensemble, excluding EC-

RISM calculations with the Verlet closure and calculations with Geom
D3

/B3LYP-D3. 

Most of the later figures focus on subsets of this plot. The identifier corresponding to 

the shown models is Model(Geomref
Geom, QM/LoT/BS, B[clos], χ[χ], F[µ], {EC-RISM}). 
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Figure 23 continued 
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Figure 24: RMSE in kcal/mol of the free energy of solvation of the MNSol calculated 

for the P3, P3NI, P4Gm P4 and P5 models with the identifier Model( Geomref
Geom , 

QM/LoT/BS, B[clos], χ[χ], F[HNC], {EC-RISM}). All models use the HNC functional 

since it is required for the P5 model. 



 .......................... Semi-empirical corrections of RISM free energies ....................  95 

 Daniel Tomazic  

7.3.3.2 Ionic and neutral molecules 

The RMSE of the overall dataset can be separated into a subset for the anions, cations and 

neutral molecules, which is seen in figure 25. Neutral molecules show a lower RMSE than 

anions and cations. This agrees with the findings from SMx
[10,11]

 studies. 

For the P3NI, P4 and more accurate models the anions always show higher RMSE than the 

cations. For the P3 model, 51 setups have higher cation RMSE. They use the Geom
PCM

 or 

Geom
0
 dataset exclusively in combination with the simulated solvent susceptibility functions. 

These 51 setups are among the worst RMSE for the complete datasets using the P3 model. 

The lowest RMSE is 2.55 kcal/mol. There are more than 50 variants of the P3 model with a 

lower RMSE. 

The Minnesota solvation database consists of 112 ions and 31 ionic water clusters. The clus-

ters are composed of one water molecule in the optimal geometry to the ion. These clusters 

are benchmarks how well a model handles explicitly placed water molecules (see chapter 3.2). 

This is important for continuum based implicit solvation models since this a way to introduce 

a solvation shell like structure to the calculations. In RISM this in not needed. The solvation 

shells are included in the local solvent density fluctuations. Table 15 shows that the RMSE of 

clustered and bare ions are comparable. This indicates that the partial molar volume correc-

tion is able to handle explicitly placed water molecules. However they are not needed for the 

calculations. EC-RISM proves to be very flexible in the case of neutral molecules. If the in-

teraction between a water molecule and the solvent is studied and the solvent molecule is ex-

plicitly included the expected error of the calculation does not increase much. 

If the solute is charged the addition of a water molecule can be beneficial especially when the 

ion is a cation. In most cases an addition of water molecules is not needed. However, the per-

formance of the clustered molecules may be improved. In this work EC-RISM calculations 

were done with GAFF parameters on the oxygen and hydrogen atoms of the water molecules. 

Using the MSPC/E parameters should lead to a more consistent parametrization and may im-

prove the accuracy. 
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Figure 25: RMSE in kcal/mol of the free energy of solvation of the MNSol. The results 

are shown for anions, cations, neutral molecules and the complete dataset. Results are 

shown for the P3 and P4, models with the identifier Model(Geomref
Geom, QM/LoT/BS, 

B[clos], χ[χ], F[µ], {EC-RISM}) 
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Figure 25 continued 
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Figure 25 continued 
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Table 15: RMSE values in kcal/mol of charged molecules in the vicinity of explicitly 

placed water molecules and bare molecules. The corresponding identifier is 

el(Geomg
PCM, QM/MP2/6-311+G**, B[PSE-3], χ[HNC], F[HNC], {EC-RISM}).  

 all ions anions cations 

model clustered bare clustered bare clustered bare 

P2 5.20 4.78 5.41 4.88 3.45 4.65 

P3 4.58 4.02 4.81 4.32 2.44 3.59 

P3NI 3.97 3.55 4.05 3.94 3.35 2.98 

P4 3.98 3.55 4.07 3.92 3.32 3.00 

P4G 4.56 4.01 4.79 4.32 2.45 3.56 

P4PSE 9.33 12.45 5.86 8.20 20.94 16.40 

P5 3.64 3.51 3.67 3.74 3.47 3.18 

P9 3.18 3.03 3.24 3.11 2.70 2.92 

 

7.3.4 Influence of the setup 

Previously the overall performance of the partial molar volume correction was discussed. 

Now the influence of the settings of the calculations (the theoretical setup) is analyzed. This 

means parts of the complete dataset (see figure 23) will be focused and discussed under dif-

ferent aspects. Therefore subsets of the complete dataset are analyzed to identify critical 

points in the EC-RISM setting for the partial molar volume correction. 

This chapter is divided into three parts. The partial molar volume correction is based firstly on 

the QM, secondly on the 3D-RISM (both form the EC-RISM cycle) and thirdly on the way 

how the correction is applied. In the first part the geometry optimization, level of theory and 

the basis set are discussed. The 3D-RISM part focusses on the closure and the susceptibility 

function. Finally the RMSE is compared between the models. The models themselves are in-

fluenced by the conformational ensemble, the reference geometry and the excess chemical 

potential functional. These settings will be discussed. 

7.3.4.1 Quantum mechanics setting and optimization 

The quantum mechanics were performed in a two-step process. First the geometries were op-

timized using different levels of theory, basis sets and solvent models. Then the EC-RISM 

calculations were done at three levels of theory and three different basis sets. The datasets can 

be separated into two classes. The Geom
0
 and Geom

MNSol
 sets were optimized in vacuum, 

while the other datasets were optimized in PCM solvent. 
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Figure 26 shows the RMSE for different setups with a focus on the dataset. For the overall 

dataset, the difference in RMSE introduced by the dataset is usually within 0.1 kcal/mol. Ex-

ceptions are low parameter models like the P2 model which show a slight preference of vacu-

um geometries. Here the RMSE of the vacuum optimized models is about 0.3 kcal/mol small-

er. The RMSE of neutral molecules are usually lower for the vacuum optimized structures. 

Cations are best described by the Geom
0
 dataset and anions should be optimized using PCM. 

Surprisingly the vacuum reference geometries and the molecules using the own geometry as a 

reference structure have very similar RMSE. Using vacuum optimized geometries as a refer-

ence for the solvation free energy is expected to be more accurate because it allows for the 

treatment of molecule reorganization during solvation. For most molecules in the database, 

this energetic contribution does not seem to be negligible. 

Figure 27 shows the influence of the level of theory by comparing MP2 to B3LYP and 

B3LYP-D3. In all cases, MP2 has lower RMSE than the density functional based methods. 

The benefit of MP2 is reduced by increasing the number of parameters in the model. This in-

dicates that the high coefficient models may be slightly over-parametrized, since they over-

come deficits of the quantum mechanics calculations. This is dangerous because these deficits 

may depend on the database diversity quite heavily. In this case the models may not work 

well on other databases. 

The increase in accuracy due to MP2 does also vary with the charge of the molecules. For cat-

ions, the P9 model performs almost equally with MP2 and B3LYP. The differences between 

MP2 and B3LYP are higher for neutral molecules than for ions. This indicates that the ionic 

solvation free energies may have high experimental errors that are artificially “modeled” 

(over-fitted) with the partial molar volume correction under certain conditions. 
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Figure 26: Influence of the dataset. RMSE in kcal/mol of the free energy of solvation of 

the MNSol calculated for the P2, and P4 models with the identifier Model(Geomref
Geom, 

QM/MP2/aug-cc-pVDZ, B[PSE-3], χ[HNC], F[µ], {ens}). 
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Figure 27: Influence of the level of theory. RMSE in kcal/mol of the free energy of 

solvation of the MNSol calculated for the P2, P4, and P9 models with the identifier 

Model(Geomg
0, QM/LoT/aug-cc-pVDZ, B[PSE-3], χ[HNC], F[µ], {ens}).  
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Figure 28: Influence of a D3 correction. RMSE in kcal/mol of the free energy of solva-

tion of the MNSol, calculated for models with the identifier Model( Geomg

Geom
, 

QM/LoT/BS, B[PSE-3], χ[χ], F[µ], {EC-RISM}). 

A D3 correction seems to be not beneficial when coupled with the partial molar volume cor-

rection as shown in figure 28. The combination of B3LYP-D3 with the Geom
D3

 dataset is not 

possible since the Geom
D3

 vacuum reference geometries are not available and the D3 correc-

tion cancels in case of Geoml
D3. 
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When comparing the aug-cc-pVDZ basis set with the 6-311+G** basis set one finds a similar 

dependency of the error as in case of the level of theory. More parameter models (like P4, P5 

or P9) disguise the effect of the basis set. Both basis sets have comparable RMSE for the neu-

tral molecules. As seen in figure 29 the differences are about 0.2 kcal/mol in case of the P2 

model and 0.1 kcal/mol for the P4 and P9 models. The aug-cc-pVDZ has lower RMSE than 

the Pople basis sets. 

 

Figure 29: Influence of the basis sets aug-cc-pVDZ and 6-311+G**. RMSE in kcal/mol 

of the free energy of solvation of the MNSol calculated for the P2, P4, and P9 models 

with the identifier Model(Geomg
0, QM/MP2/BS, B[PSE-3], χ[HNC], F[µ], {ens}). 

This changes for ionic molecules. The Dunning basis set still has lower RMSE with the P2 

model. However the Pople basis set is better with the P4 and P9 model. When using the aug-

cc-pVDZ with ions, the PCM minimum energy structures should be used for the calculations. 

For the Pople basis set the choice of the minimum energy structure is not as important. For 

cations using the Pople basis set will decrease the RMSE about 0.4 kcal/mol. For anions this 

effect is rather small with a change of only about 0.1 kcal/mol. 
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The aug-cc-pVDZ and 6-311G** basis set are both relatively big and therefore not useable for 

bigger molecules. Therefore a partial molar volume correction was parameterized with a 

smaller basis set during optimization and EC-RISM. Also the EC-RISM calculations were 

done with the PSE-2 closure where convergence is more likely. Using the P9 model the Ge-

om
DZ

 dataset with the 6-31+G* yields a slightly lower RMSD than the Geom
PCM

 dataset with 

the 6-311+G** basis set. However the difference is smaller than 0.1 kcal/mol. In the case of 

either the P4 or the P9 model, the Geom
PCM

 dataset with the 6-311+G** has lower RMSE of 

about 0.2 kcal/mol (figure 30). 

 

Figure 30: Influence of the basis sets 6-31+G* and 6-311+G**. RMSE in kcal/mol of 

the free energy of solvation of the MNSol calculated for the P2, P4, and P9 models with 

the identifier Model(Geoml
DZ, QM/B3LYP/BS, B[PSE-2], χ[HNC], F[µ], {ens}). 
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7.3.4.2 3D RISM setting 

Two RISM related settings were tested in this work. The first is the PSE order, the second is 

the susceptibility. The PSE order has little influence on the RMSE of neutral molecules. In 

some cases when the simulated susceptibility function is used, the RMSE calculated with the 

PSE-1 closure is slightly higher. The PSE-1 closure is the best choice in comparison to the 

other closures in combination with the P2 and B3LYP/6-311+G** and the HNC functional. In 

this case a D3 correction does not make a difference. 

In the case of the ions, the RMSE differences between the closures are higher. The differences 

are still small when the P4 or a similar model (P3NI, P5 or P9) is used. However, within the 

P2 model the choice of the closure is relevant. If the simulated susceptibility functions are 

used in combination with the PSE functional of the excess chemical potential, then the RMSE 

calculated with the PSE-1 closure is higher than the RMSE of PSE-2 and PSE-3 closure. If 

however the HNC functional is used with the simulated solvent susceptibilities then PSE-1 is 

better than PSE-2 and PSE-3. In this case the RMSE is comparable to the P4 model. When the 

P2 model is used with the HNC solvent model, an increase in PSE-order will also increase the 

RMSE. The only exception is the MP2/aug-cc-pVDZ level with HNC functional where the 

PSE-2 closure is better. 

For the P9 model the difference in RMSE for the HNC and simulated susceptibility is about 

0.03 kcal/mol for neutral molecules. When the P4 model is used, the difference increases to 

0.1 kcal/mol for MP2 and almost 0.4 kcal/mol for B3LYP. When using the P4 model, one 

may apply the closure with the best convergence behavior for each individual system without 

a loss in accuracy. At the B3LYP level the simulated solvent susceptibility functions should 

be used. 
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Figure 31: Influence of the closure. RMSE in kcal/mol calculated for models with the 

identifier Model(Geomg
Geom, QM/LoT/BS, B[PSE-2], χ[χ], F[µ], {EC-RISM}). 



 108 ....................................................... Results ...............................................................  

Optimizing free energy functionals in integral equation theories  

7.3.4.3 Partial molar volume correction settings 

Figure 32 shows a comparison between the RMSE of all eight models. The left panel shows 

the models without a cµ parameter (P2, P3, P4G) together with the P4PSE model which has 

no cq parameter. These models have higher RMSE than the other models which are shown in 

the right panel. Hence these parameters are important for the fitting. From a comparison of the 

panels the effects of these parameters can be estimated. The difference is highest for Ge-

om
PCM

 dataset when used in combination with the simulated susceptibility function. When the 

HNC functional is used with the PSE-1 closure, the differences between the P2 model and the 

P3NI model are small. When the PSE functional is used, the PSE order has only a small influ-

ence on the difference between the RMSE. The level of theory has a relatively small impact. 

The choice of the chemical potential functional is not as important when the models in the 

right panels are used as when the models in the left panels are used. For the P3NI model the 

absolute difference is between 0.003 and 0.243 kcal/mol. For the P3 model the absolute dif-

ference may reach 1.8 kcal/mol. With the exception of the P9 model, the HNC functional has 

lower than average RSME. 

The last two parameters in the setup are the reference geometry of the vacuum calculations 

and the way how the conformational ensemble is averaged. There is hardly any difference be-

tween the different ways of ensemble averaging. Usage of the vacuum optimized reference 

structures lowers the RMSE on the PCM optimized datasets. This is an expected result. The 

process is closer to the physical process since it includes a structural reorganization of the 

molecule during the transfer into the solvent. However in the Geom
0
 dataset the optimization 

protocol is similar for the molecule in gas phase and solution. Therefore the RMSE of this da-

taset is hardly lowered by the usage of vacuum reference geometries. This is shown in figure 

33. 

The P3NI, P4, P5 and P9 models can be used to correct solvation free energies calculated with 

EC-RISM. These models have comparably low RMSE. The RMSE of the P3NI, P4 and P5 in 

close proximity and tend to vary between the setups. The P9 model has the lowest RMSE and 

the result is less dependent of the setup. The best setups for each model are shown in table 16 

and table 17. The RMSE of other well performing setups for each model are given in the re-

sults tables in the appendix (chapter 9). In the next chapters further features of the models are 

discussed and advices are given which model can be used under certain conditions (chapter 

7.3.13). 
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Figure 32: Influence of the model and the excess chemical potential functional. RMSE 

in kcal/mol of the free energy of solvation of the MNSol calculated all models with the 

identifier Model(Geoml
Geom

, QM/LoT/BS, B[clos], χ[χ], F[µ], {EC-RISM}). The P4PSE 

and P5 models cannot be evaluated with the PSE functional and therefore every other 

data point is missing for these models. 
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Figure 29 continued 
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Table 16: Root mean squared errors (kcal/mol) in solvation free energy of the Minnesota solvation database calculated by using 

different solvent models. For each model the setup with the lowest RMSE is given. All calculations were done with MP2. 

model dataset basis set closure χ ref µ ensemble all ions anions cations neutrals 

P2 Geom
PCM

 6-311+G** PSE-1 HNC g HNC PF 2.18 3.56 3.68 3.35 1.33 

P3 Geom
PCM

 6-311+G** PSE-1 HNC g HNC PF 2.18 3.57 3.67 3.39 1.32 

P3NI Geom
PCM

 6-311+G** PSE-3 Sim g PSE PF 2.04 3.26 3.45 2.95 1.32 

P4 Geom
PCM

 6-311+G** PSE-3 Sim g PSE PF 2.0 3.21 3.37 2.95 1.29 

P4G Geom
PCM

 6-311+G** PSE-1 HNC g HNC PF 2.18 3.56 3.67 3.39 1.32 

P4PSE Geom
PCM

 6-311+G** PSE-1 Sim g HNC EC-RISM 3.0 4.72 5.25 3.68 2.02 

P5 Geom
PCM

 6-311+G** PSE-2 Sim g HNC PF 1.97 3.2 3.4 2.84 1.22 

P9 Geom
PCM

 6-311+G** PSE-3 Sim g PSE PF 1.89 3.03 3.08 2.95 1.21 

Table 17: Root mean squared errors (kcal/mol) in solvation free energy of the Minnesota solvation database calculated by using 

different solvent models. For each model the setup with the lowest RMSE is given. All calculations were done with B3LYP. 

model dataset basis set closure χ ref µ ensemble all ions anions cations neutrals 

P2 Geom
PCM

 6-311+G** PSE-1 HNC g HNC PF 2.69 3.66 3.9 3.26 2.23 

P3 Geom
0
 6-311+G** PSE-1 Sim g HNC EC-RISM 2.65 3.97 4.39 3.18 1.96 

P3NI Geom
0
 6-311+G** PSE-3 Sim g PSE PF 2.53 3.68 4.07 2.98 1.96 

P4 Geom
0
 6-311+G** PSE-3 Sim g PSE PF 2.51 3.62 3.98 2.96 1.96 

P4G Geom
0
 6-311+G** PSE-1 Sim g HNC EC-RISM 2.65 3.97 4.39 3.18 1.96 

P4PSE Geom
PCM

 6-311+G** PSE-1 Sim g HNC EC-RISM 3.2 4.94 5.46 3.95 2.3 

P5 Geom
0
 6-311+G** PSE-3 Sim g HNC PF 2.49 3.53 3.91 2.85 1.98 

P9 Geom
D3

 6-311+G** PSE-3 HNC l PSE PCM 2.09 3.14 3.52 2.33 1.69 
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Figure 33: Influence of the reference geometry and ensemble. RMSE in kcal/mol of the 

models with the identifier Model(Geomref
Geom

, QM/LoT/BS, B[clos], χ[χ], F[µ], {ens}).  
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7.3.5 Comparison to other solvent models 

When comparing the partial molar volume correction to other solvent models, the SMx mod-

els by Cramer and Truhlar are probably the best references, since these models are para-

metrized with the same experimental dataset.  

In the literature usually the mean unsigned error MUSE is used instead of RMSE. The MUSE 

is usually smaller than the RMSE but it tends to prefer models with some outliers while an 

RMSE based parametrization of the model will avoid them. With the SM8 model a MUSE of 

1.32 kcal/mol was calculated for the complete database
[11]

. The subset of ions reached a 

MUSE of 3.20 kcal/mol. The neutral molecules reached 0.55 kcal/mol. The lowest MUSE of 

the partial molar volume correction are between 1.45 and 4.78 dependent of the used model. 

For neutral molecules the SMx models yield smaller errors than the partial molar volume cor-

rection. However in the partial molar volume correction this error might be reduced by an op-

timization of the LJ parameters. Here they were taken from the GAFF force field. A tuning of 

the ε and σ parameters can reduce the error if molecule classes which are discussed in chapter 

7.3.10. In contrast to the partial molar volume correction the LJ parameters are needed in the 

EC-RISM cycle. Such an optimization will need much more computational resources. The 

partial molar volume correction is more accurate in the description of ions than the SMx mod-

els. 

The number of parameters is an important property of a semi-empirical model. The partial 

molar volume correction uses between two and nine parameters for the modeling together 

with the non-bonded parameters of the GAFF force field. The GAFF force field has more than 

30 types for the atoms C, N, O, H, S, P, F, Cl, Br and I. Hence there are over 60 parameters 

(σLJ and εLJ for every atom type) used for the description of the solute solvent interactions in 

this work. They were not optimized. As an example COSMO-RS uses five global parameters 

and one for every element (independent of any atom type) and SM8 uses multiple per-element 

parameters and even element-element specific parameters (108 in total). 

During this work the GAFF parameters were used without any modifications. Hence the cor-

rection has as many adjusted parameters as the used model. It is likely that an optimization of 

the solvent atom interactions is able to reduce the MUSE of the neutral molecules to a similar 

value like COSMO-RS or SM8. 
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Table 18: Mean unsigned errors (kcal/mol) in solvation free energy of the Minnesota 

solvation database calculated by using different solvent models. The “all” entry of SM8 

was calculated from the arithmetic mean of the “neutrals” and “all ions” entries. The 

number counts were taken from the paper. The identifier is Model(Geoml
MNSol

, QM/ 

MP2/ aug-cc-pVDZ, B[PSE-3], χ[HNC], F[HNC], {EC-RISM}). The optimal setup for 

every model is shown in table 19 and table 20. Please note that COSMO-RS is the only 

solvent model that was not parameterized with the Minnesota solvation database. En-

tries that are not reported are labeled with --. 

 all all ions anions cations neutrals 

SM8
[11]

 1.32 3.20 -- -- 0.55 

SM6
[10]

 1.86 4.38 -- -- 0.54 

COSMO-RS
[124]

 -- -- -- -- 0.58 

P2 1.70 3.49 3.84 2.93 0.99 

P3 1.68 3.25 3.71 2.52 1.06 

P3NI 1.60 3.14 3.74 2.19 0.99 

P4 1.58 3.13 3.73 2.18 0.96 

P4G 1.68 3.25 3.71 2.52 1.06 

P4PSE 4.78 9.48 5.97 15.04 2.92 

P5 1.58 3.10 3.66 2.21 0.98 

P9 1.45 2.68 2.90 2.34 0.96 
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Table 19: Mean unsigned errors (kcal/mol) in solvation free energy of the Minnesota solvation database calculated by using differ-

ent solvent models. For each model the setup with the lowest MUSE is given. All calculations were done with MP2. 

model dataset basis set closure χ ref µ ensemble all ions anions cations neutrals 

P2 Geom
0
 aug-cc-pVDZ PSE-1 HNC g PSE PF 1.52 2.98 3.19 2.63 0.94 

P3 Geom
0
 aug-cc-pVDZ PSE-1 HNC g PSE PF 1.45 2.89 3.16 2.45 0.88 

P3NI Geom
PCM

 6-311+G** PSE-2 Sim g PSE PF 1.45 2.65 2.83 2.38 1.0 

P4 Geom
PCM

 6-311+G** PSE-2 Sim g PSE PF 1.42 2.59 2.73 2.36 0.97 

P4G Geom
0
 aug-cc-pVDZ PSE-1 HNC g PSE PF 1.45 2.89 3.16 2.45 0.88 

P4PSE Geom
PCM

 6-311+G** PSE-1 Sim g HNC EC-RISM 2.02 3.27 3.64 2.67 1.56 

P5 Geom
PCM

 aug-cc-pVDZ PSE-2 Sim g HNC PF 1.36 2.61 2.82 2.27 0.88 

P9 Geom
PCM

 6-311+G** PSE-2 Sim g PSE PF 1.33 2.42 2.46 2.35 0.93 

Table 20: Mean unsigned errors (kcal/mol) in solvation free energy of the Minnesota solvation database calculated by using differ-

ent solvent models. For each model the setup with the lowest MUSE is given. All calculations were done with B3LYP. 

model dataset basis set closure χ ref µ ensemble all ions anions cations neutrals 

P2 Geom
0
 6-311+G** PSE-1 HNC g HNC PF 2.0 3.14 3.6 2.41 1.58 

P3 Geom
0
 6-311+G** PSE-1 Sim l HNC EC-RISM 1.98 3.22 3.65 2.53 1.54 

P3NI Geom
0
 6-311+G** PSE-3 Sim g PSE PF 1.87 2.93 3.29 2.34 1.49 

P4 Geom
0
 6-311+G** PSE-3 Sim g PSE PF 1.86 2.88 3.25 2.3 1.5 

P4G Geom
0
 6-311+G** PSE-1 Sim l HNC EC-RISM 1.98 3.22 3.65 2.53 1.54 

P4PSE Geom
0
 6-311+G** PSE-1 Sim g HNC PF 2.3 3.93 4.56 2.91 1.71 

P5 Geom
0
 6-311+G** PSE-3 Sim g HNC PF 1.85 2.8 3.17 2.22 1.52 

P9 Geom
D3

 6-311+G** PSE-3 HNC l PSE PCM 1.6 2.49 2.79 1.98 1.35 
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7.3.6 Training and test molecules 

A trained model has to be tested against a group of molecules which was not part of the para-

metrization to allow for an estimate of the expected error. To do this the Minnesota solvation 

database was divided into a test set to train the parametrization and a test set to measure the 

quality of the parametrization with an external source. The MNSol was divided into 15 groups 

of similar compounds. These groups are in shown in table 27. From each group 10 % or at 

least two of the molecules (rounded up) were randomly chosen and placed in the test set. This 

was done ten times individually to generate ten sets of test and training molecules. 

In figure 34 the RMSE of the complete dataset is compared to the RMSE of the average 

RMSE of all training and test sets. The RMSE of the full dataset is always within 1.5 times 

the standard deviation of all the training sets. The difference is always smaller than 5%. The 

average RMSE of the test sets is within (one time) the standard deviation of the overall 

RMSE. 

These results show that the models are reliable. One can expect that the error of an unknown 

compound is close to the RMSE of the chosen model. 

 

Figure 34: RMSE in kcal/mol for the complete MNSol, the average of all training sets 

and all test set. The standard deviation for all averages is labelled. The identifier is 

Model(Geomg

Geom
, QM/LoT/6-311+G**, B[PSE-3], χ[HNC], F[HNC], {EC-RISM}). 

7.3.7 Distributions of prediction errors 

When building a statistical model the residuals (in the case the error of the molecules) should 

be normally distributed after the fitting process. Then the error can be assumed to stem from 

some kind of random noise. To test this, the error quantiles were correlated to the quantiles of 

a normal distribution and the coefficients of determination were calculated.  



 .......................... Semi-empirical corrections of RISM free energies ..................  117 

 
Daniel Tomazic 

The coefficients of determination are between 0.883 and 0.999 for most of the parameteriza-

tions. Only the HNC/BF-0 setup shows a lower correlation. Here the coefficients of determi-

nation are between 0.747 and 0.992. The low correlations appear here when the P4PSE model 

is used. This is not surprising, since the PSE functional has no physical meaning in this case. 

When the average determination per model is calculated, the P3NI, P4, P5 and P9 models 

have the highest correlations with values between 0.974 and 0.977. The P3 and P4G models 

have values of 0.964 and the P2 and P4PSE model have values of 0.954 and 0.956. From this 

perspective all models are well behaved. 

 

Figure 35: The inset plot shows the error quantiles plotted against the theoretical quan-

tiles of a normal distribution. The main figure shows the corresponding histograms. 

Red: P4PSE(Geoml

PCM
, QM/MP2/aug-cc-pVDZ, B[HNC-BF0], χ[HNC-BF0], F[HNC], 

{EC-RISM}); Green: P9( Geomg

PCM
, QM/B3LYP/6-311+G**, B[PSE-2], χ[MD], 

F[HNC], {EC-RISM}); Blue: P2(Geomg

0
, QM/MP2/aug-cc-pVDZ, B[PSE-2], χ[MD], 

F[PSE], {EC-RISM}). 

7.3.8 Model parameters 

In this chapter the optimized coefficients of the models are discussed. There are two questions 

to be answered. At first the parts of the setup heavily influencing the parametrization are iden-

tified. In a second step the model coefficients are correlated along the different setups. Lists 

with all coefficients for each model can be found in the supporting information. The units of 

the coefficients are given in table 29 in the appendix. 

The mean standard deviation of the coefficients within a part of the setup gives insight into 

the importance of this part. When for example the choice of the dataset is important for the 
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parametrization, the coefficients will not change much between different parametrizations us-

ing the same dataset. Hence the standard deviation in each dataset is small in comparison to 

the overall standard deviation. For the P4 and P9 model this is shown in figure 36. Here only 

the Geom
PCM

 and Geom
0
 datasets are discussed. They have similar amounts of setups and will 

not lead to an overestimation of certain parameters. 

In case of the two datasets, the internal variations are relatively big. Within all models, there 

is no coefficient with a mean standard deviation smaller than 80 % of the absolute standard 

deviation. All coefficients differ much between the setups. The most stable coefficient within 

the datasets is the cI coefficient. Therefore cI changes significantly between the optimization 

conditions. This can be useful for the calculation of relative free energies. The calculation of 

free energy changes will be correct, even if the needed setup is not parameterized for the de-

sired dataset, but for a different one. Due to the difference in the calculation of relative free 

energies, the systematically shifted effect of the cI coefficient will cancel. 

The choice of the ensemble or reference geometry does not introduce variance. Hence the 

used ensemble and reference geometry have almost no impact on the parametrization. A simi-

lar statement can be made about the influence of the chemical potential functional. However, 

at the low coefficient models the relative standard deviation may drop below 90 % for some 

coefficients. The stability of the parametrization against changes in the chemical potential is 

surprising. Since the HNC functional and the PSE-k functional lead to different chemical po-

tentials, a bigger effect of this coefficient was expected. 

When looking at the QM settings of the EC-RISM calculations, level of theory and basis set 

have a big impact on the parametrization. Compared to the influence of the level of theory the 

influence of the basis set is smaller. 

The 3D-RISM related settings, closure and susceptibility function both have a big impact on 

the parametrization. The different closures and susceptibility functions seem to produce very 

different free energies before the corrections are applied. Hence using a different closure or 

solvent model as used during the parametrization will be prone to errors. 
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Figure 36: Mean standard deviation of every parameter over all setups within each in-

fluence. The standard deviation is relative to the overall standard deviation of all influ-

ences. This is labelled by the black line. On top is the P4 model, bottom is the P9 mod-

el. 

In an ideal model every part transports a unique part of information. In this case the coeffi-

cients are independent of each other. In table 21 to table 24 the cross correlation matrices of 

the parameters were calculated. The majority of the correlation coefficients is independent. 

Not surprisingly correlation is more likely in models with four and more parameters. Greater 

correlation coefficient absolute values than 0.7 appear in the P4 model, the P4PSE, the P5 and 

the P9 model. In the P4 model, there is an anti-correlation between cV and cq. In the P4PSE 

and the P5 model these values are also close to minus one (-0.66 and -0.73). Higher scaling 

coefficients of the partial molar volume reduce the need of the charge term. Unfortunately, the 
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coefficient does not increase with the level of theory of the calculations. One will not get rid 

of charge dependent parameter by increasing the level of theory. 

The P4PSE and P5 models have further coefficient correlations. In the P4PSE model there is a 

strong correlation between cµ and cdµ. In the P5 model cµ correlates the cq. P9 model has nine 

coefficient correlation coefficients greater than 0.7 (absolute values). Among them are cI,0 and 

cI,+ as well as cµ,0 and cµ,+. This is in agreement with earlier findings. The cations are well de-

scribed by most of the models. So it is expected, that the correction of the cations is similar to 

the neutrals’. In each group, there is a correlation between the volume coefficient and the in-

tercept. In all three cases this coefficient is greater than 0.8. In this model the intercept coeffi-

cients play the role of the charge coefficient in the other models. Therefore this result is com-

parable to the high correlation between cV and cq in the P4 model. Finally all parameters with-

in the anion and cation groups are correlated. In the case of the anions this correlation is really 

high with absolute coefficients greater than 0.9. From the perspective of coefficient correla-

tion, the P4PSE, P5 and P9 models seem to be over-parametrized.  

There are potentially over-parameterized models and some parts of the setup have little influ-

ence on the parametrization. This is important for users of the partial molar volume correc-

tion. For the sake of readability this important information is discussed in separate chapters. 

The question what model should be used with which setup is discussed in chapter 7.3.13. 

What can be done if the needed model is not parameterized is shown in chapter 7.3.9.  

Table 21: Coefficient correlations in the P2, P3 and P3NI model. 

 P2 
 

 P3 
 

 P3NI 

 cV cq  cV cq cI  cµ cV cq 

cV 1.00 -0.56  cV 1.00 -0.27 -0.53  cµ 1.00 -0.46 0.46 

cq -0.56 1.00  cq -0.27 1.00 -0.61  cV -0.46 1.00 -0.57 

    cI -0.53 -0.61 1.00  cq 0.46 -0.57 1.00 
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Table 22: Coefficient correlations in the P4 and P4G model. 

 P4 
 

 P4G 

 cµ cV cq cI  cG cV cq cI 

cµ 1.00 -0.54 0.50 0.24  cµ 1.00 0.16 -0.36 0.15 

cV -0.54 1.00 -0.45 -0.86  cV 0.16 1.00 -0.28 -0.52 

cq 0.50 -0.45 1.00 0.01  cq -0.36 -0.28 1.00 -0.61 

cI 0.24 -0.86 0.01 1.00  cI 0.15 -0.52 -0.61 1.00 

 

Table 23: Coefficient correlations in the models using the PSE-k functional 

 P4PSE 
 

 P5 

 cµ cdµ cV cI  cµ cdµ cV cq cI 

cµ 1.00 0.78 -0.66 -0.57  cµ 1.00 -0.57 -0.73 0.82 0.03 

cdµ 0.78 1.00 -0.52 -0.42  cdµ -0.57 1.00 0.28 -0.22 0.05 

cV -0.66 -0.52 1.00 -0.12  cV -0.73 0.28 1.00 -0.63 -0.64 

cI -0.57 -0.42 -0.12 1.00  cq 0.82 -0.22 -0.63 1.00 -0.14 

      cI 0.03 0.05 -0.64 -0.14 1.00 

 

Table 24: Coefficient correlations in the P9 model 

     P9     

 cµ,0 cV,0 cI,0 cµ,- cV,- cI,- cµ,+ cV,+ cI,+ 

cµ,0 1.00 -0.72 0.30 0.31 -0.23 0.15 0.80 -0.63 0.68 

cV,0 -0.72 1.00 -0.83 -0.25 0.24 -0.14 -0.61 0.87 -0.60 

cI,0 0.30 -0.83 1.00 0.00 -0.09 0.00 0.24 -0.69 0.29 

cµ,- 0.31 -0.25 0.00 1.00 -0.95 0.96 0.65 -0.42 0.50 

cV,- -0.23 0.24 -0.09 -0.95 1.00 -0.93 -0.60 0.40 -0.45 

cI,- 0.15 -0.14 0.00 0.96 -0.93 1.00 0.55 -0.40 0.50 

cµ,+ 0.80 -0.61 0.24 0.65 -0.60 0.55 1.00 -0.77 0.89 

cV,+ -0.63 0.87 -0.69 -0.42 0.40 -0.40 -0.77 1.00 -0.86 

cI,+ 0.68 -0.60 0.29 0.50 -0.45 0.50 0.89 -0.86 1.00 

 

7.3.9 Applying suboptimal parametrizations 

In this part the result of the partial molar volume correction is calculated on incorrect setups. 

The change of the RMSE is a measure for the robustness of the correction. Additionally a user 
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of the correction gets a hint which correction he or she can use when the calculations were not 

performed with a parameterized model. 

Table 25: Mean RMSE (kcal/mol) changes when a suboptimal model is applied. Every 

model shown here uses vacuum reverence geometries and the EC-RISM ensemble. 

When not explicitly mentioned, the HNC solvent model was used. 

data parametrization mean min max 

PSE-2 PSE-1 1.0 0.09 3.08 

PSE-3 PSE-1 1.41 0.15 4.38 

B3LYP MP2 1.52 1.01 2.2 

6-311+G** aug-cc-pVDZ 0.09 0.03 0.15 

Geom
PCM

 Geom
0
 0.65 0.04 2.02 

Sim HNC 13.1 0.02 88.47 

 

Table 25 shows how the use of a wrong parameter set can have little up to significant effects 

on the RMSE. Using the aug-cc-pVDZ basis set instead of the 6-311+G** basis set does not 

increase the RMSE by much more than 0.1 kcal/mol. However, using the MP2 model with 

B3LYP data will likely raise the RMSE by more than 1.0 kcal/mol. The closure shows inter-

esting trends. As expected the RMSE changes more from PSE-3 to PSE-1 than from PSE-2 to 

PSE-1. When using a wrong closure model to the data, a correction with the HNC functional 

has to be avoided. This is shown in table 26. 

Table 26: Mean RMSE changes when a wrong closure is used. The added error is big-

ger for the HNC functional models. 

data parametrization mean(µ
HNC

) mean(µ
ex

) 

PSE-2 PSE-1 1.66 0.23 

PSE-3 PSE-1 2.35 0.35 

 

The level of theory is important when the Geom
0
 parametrization is used with the Geom

PCM
 

dataset. The B3LYP models are more forgiving. The mean RMSE increase is 0.09 kcal/mol 

for B3LYP while it is 1.22 kcal/mol for MP2. 

Applying the wrong solvent susceptibility function model to the data is likely to introduce a 

high error to the calculations. If the desired parametrization is not available yet and a subop-

timal (parameterized for a different setup) model has to be used instead, the QM calculations 
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should be as accurate as possible. The MP2/aug-cc-pVDZ average error is increased by 0.96 

kcal/mol while the MP2/6-311+G** average error is 8.51 kcal/mol and the average error of 

the B3LYP is 29.83 kcal/mol. 

7.3.10 Errors within substance classes 

As already seen in the case of the ions, the accuracy of the free energy correction model dif-

fers between substance classes. In the following the differences of RMSE between groups are 

discussed. The EC-RISM calculations were done with MP2/aug-cc-pVDZ/EC-RISM/PSE-3 

with the HNC solvent model. The correction was applied using the same geometry as a refer-

ence and the HNC functional. The global minimum was selected from the EC-RISM calcula-

tions. 

The MNSol is divided into 15 groups of molecules. Group one consists of the three molecules 

hydrogen, ammonia and water. The groups two, three and four are molecules containing hy-

drogen, carbon, oxygen and nitrogen. The groups five to nine and 15 are halogenated mole-

cules. The groups ten, eleven and twelve have heavier atoms like sulfur, phosphorus and sili-

con. Group 13 consists of bare ions and in group 14 are water ion clusters. 

Figure 37 shows the RMSE of groups two, three and four on the left panel, the groups five, 

six and seven are placed on the right panel. Nitrogen containing molecules show higher than 

average errors. Neutral molecules benefit from an optimization under vacuum conditions. 

Within group two (compounds containing H, C and O) the correction works best for hydro-

carbons, aldehydes and ketones. Better than average RMSE have hydroxyl and bifunctional 

molecules. The highest errors have the esters. There is a notable difference in the performance 

of the vacuum datasets (Geom
0
 and Geom

MNSol
) and the PCM optimized datasets. This is most 

dominant for the carboxylic acids. Here the RMSE of the vacuum datasets (Geom
0
 ≈ 0.43 

kcal/mol and Geom
MNSol

 ≈ 0.33 kcal/mol) is about 1.3 kcal/mol smaller than in the other cases 

(RMSE ≈ 1.7 kcal/mol). 

In group three (compounds containing H and/or C and N) aromatic nitrogen heterocycles have 

below average RMSE (< 0.95 kcal/mol), while nitriles (>1.7 kcal/mol) and hydrazines 

(>2.5 kcal/mol up to 3.29 kcal/cal) have substantially higher RMSE than the average 

(1.44 kcal/mol to 1.58 kcal/mol). 
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In group four the amides and urea derivatives have higher RMSE than nitrohydrocarbons and 

other bifunctional molecules. The difference between these groups is smaller in the vacuum 

optimized datasets. 

When comparing halogenated molecules (groups five to nine) chlorine substituted molecules 

have low RMSE with the P4 and P9 model. In contrast to the previous classes, fluorine substi-

tuted molecules are better described with the PCM optimized datasets. Multihalogenated car-

bons have relatively low RMSE ranging from 0.72 kcal/mol for the Geom
0
 dataset to 

1.11 kcal/mol for the Geom
MNSol

 dataset. The group of halogenated bifunctional compounds, 

containing at most H, C, N, O, F, Cl and Br shows an interesting trend. In contrast to group two 

and three, in this case the nitrogen containing molecules have an at least 0.5 kcal/mol lower 

RMSE than the compounds that have oxygen atoms. 

 

Figure 37: RMSE in kcal/mol for different subclasses of the dataset. The classification 

corresponds to the classes 2, 3, 4, 5, 6 and 7 of the Minnesota solvation database. The 

identifier is Model(Geoml

Geom
, QM/MP2/aug-cc-pVDZ, B[PSE-3], χ[HNC], F[HNC], 

{EC-RISM}). 

In figure 38 there are RMSE of molecules with heavier atoms in the left panel and RMSE of 

ionic molecules in the right panel. The molecules containing sulfur (group ten) have an RMSE 

profile similar to most of the previously mentioned groups. Again the vacuum geometries are 

better than the PCM optimized geometries. This is enhanced, when phosphorus is part of a 

molecule. In this case the RMSE of the vacuum optimized molecules is about one kcal/mol 

lower than in case of the other datasets.  
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Figure 38: RMSE in kcal/mol for different subclasses of the dataset. The classification 

corresponds to the classes 10, 11, 12, 13 and 14 of the Minnesota solvation database. 

Among the clustered molecules in the ion column is also a neutral water-water cluster. 

The identifier is Model( Geoml

Geom
, QM/MP2/aug-cc-pVDZ, B[PSE-3], χ[HNC], 

F[HNC], {EC-RISM}). 

In the right panel of figure 38 the RMSE of ions is compared to neutral molecules. The differ-

ences between clustered and unclustered molecules have been discussed in chapter 7.3.3. Now 

the focus is on the subclasses of the ionic molecules. The free energy correction works rela-

tively well for molecules with nitrogen and without oxygen. This is similar to the groups of 

halogenated molecules. Together this indicates that polar molecules with nitrogen are well 

modelled with the RISM partial molar volume correction, while nitrogen atoms in an apolar 

environment are not. Another group that is relatively well described, is the group of the halo-

genated ions which often have below average RMSE. Ions with sulfur are not well described. 

Here the RMSE is always higher than 5.0 kcal/mol. In contrast to neutral molecules the PCM 

optimized datasets are better than the vacuum optimized datasets. 

7.3.11 Partial molar volume correction with the Verlet closure 

The Verlet closure used with the HNC-BF0 formalism has proved to enhance the accuracy of 

partial molar volumes calculated with 1D RISM
[81]

. In this chapter the partial molar volume 

correction is parameterized with the HNC-BF0 closure. Table 11 shows that only for five ani-

ons and five cations the EC-RISM iteration was successful. Therefore the ion contribution to 

the RMSE is smaller in comparison to other models leading to lower RMSE overall. For a 

meaningful comparison of the Verlet closure with the other models, the RMSE for all models 

was calculated only for those molecules where iteration converged with the Verlet closure. 

The results are shown in figure 39. The RMSE calculated with the Verlet closure are slightly 

better than the results of PSE-2 and PSE-3 when the P3NI or P4 models are used. The P2 and 

P3 model performs better with the PSE-k closures. The P5 and P4PSE models are excluded 
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since the PSE-functional has no physical meaning when the Verlet closure is used. Due to the 

small amounts of anions and cations, the P9 model was discarded as well. 

The HNC-BF0 closure does not improve the RMSE significantly. The higher computational 

costs and convergence issues of the HNC-BF0 closure are not justified. 

 

Figure 39: RMSE of the partial molar volume correction with the Verlet closure. The 

RMSE of the other models was calculated on the reduced subset of molecules which 

converged in the EC-RSIM calculations. The EC-RISM calculations were performed 

with the Geom
PCM

 dataset at MP2/6-311+G**/EC-RISM level with the vacuum opti-

mized geometries as a reference. Only the minimum energy structure of the EC-RISM 

calculations was considered. The free energy was calculated using the HNC functional. 

7.3.12 Validation with an external dataset 

As an external validation of the parametrization the partial molar volume correction was ap-

plied to calculate pKa values of another dataset. The dataset was compiled by J. Heil from 
[159]

 

and consists of 39 small molecule pKa values including anilines, heterocycles, indoles, phe-

nols, pyrroles and thiols. 

The molecules in the database were optimized by J. Heil using B3LYP/6-311+G**/PCM. The 

solvation free energies of these conformations were calculated using MP2/6-311+G**/EC-

RISM-PSE-3.  Then a partial molar volume correction with the P3NI model was applied using 

the parametrization for the HNC functional, vacuum reference geometries and the EC-RISM 

ensemble. 

The reaction free energies were calculated from the experimental values using equation 

(3.11). The theoretical reaction free energies were calculated as shown in chapter 3.2 using 

the experimental values for the proton solvation free energy and gas phase free energy. The 

results are shown in figure 40 and table 28 in the appendix. 
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Figure 40: Reaction free energies calculated from experiential pKa values and the par-

tial molar volume correction. The molecules used here were not part of the parametriza-

tion database. Outlaying molecules are labeled with triangles and stars. The green points 

are PSE-3 free energies (before a partial molar volume correction); the red points have 

the partial molar volume correction P3NI applied. 

The partial molar volume correction reduces the systematic error of the prediction significant-

ly. The correction works well for most molecules. The exceptions are 4-aminopyridine and 

pyrroles. 4-aminopyridine is an out layer in both cases. The pyrroles are the only group of 

molecules where the correction worsens the results. Though the ΔG values are slightly closer 

to the experimental values after the correction, this group is no longer aligned with the other 

molecule groups as it is the case for the uncorrected PSE-3 data. The partial molar volume 

correction works well for thioles and phenols. These groups are out layers before the correc-

tion. They are in line after the correction is applied. The RMSE for the complete dataset is 

3.90 kcal/mol and decreases to 1.20 kcal/mol when the pyrroles and 4-aminopyridine are ex-

cluded. The results show that the partial molar volume correction works well for other da-

tasets except the MNSol. 

7.3.13 Concluding remarks 

The P3NI model has proven to reproduce the free energies of the Minnesota solvation data-

base with a RMSE of 2.11 kcal/mol (see figure 41). It is the model with the best relation be-

tween the number of adjustable parameters and minimal RMSE. Therefore it is the recom-

mended model for the calculation of solvation free energies with EC-RISM and a partial mo-
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lar volume correction. In chapter 9.3 the setups that work best with the P3NI model are listed. 

For some exemplarily conditions the identifiers of well performing setups are given. 

When B3LYP/6-311+G** is used, the molecules should be prepared with vacuum optimiza-

tions. If possible the MD simulation derived susceptibility function should be used. In this 

case the excess chemical potential functional should be the PSE functional (µ
PSE

). 

P3NI(Geomg

0
, QM/B3LYP/6-311+G**, B[PSE-k], χ[MD], F[PSE], {PF}) 

In the case of ions, PSE-2 or PSE-3 in combination with vacuum reference geometries is best.  

P3NI(Geomg

PCM
, QM/B3LYP/6-311+G**, B[PSE-2], χ[MD], F[PSE], {PF}) 

When only neutral molecules are considered, PSE-1 is the optimal functional and the mole-

cules geometry should be used as reference. 

P3NI(Geoml

0
, QM/B3LYP/6-311+G**, B[PSE-1], χ[MD], F[PSE], {PF}) 

When the HNC solvent model is required, PSE-1 and the HNC functional should be used. Us-

age of vacuum reference geometries and vacuum geometry optimizations are recommended in 

this case. 

P3NI(Geomg

0
, QM/B3LYP/6-311+G**, B[PSE-1], χ[HNC], F[HNC], {PF}) 

When MP2 calculations are feasible, PCM optimized geometries should be used with PSE-2, 

the simulated susceptibility functions, vacuum reference geometries and the PSE functional 

for the excess chemical potential. 

P3NI(Geomg

PCM
, QM/MP2/6-311+G**, B[PSE-2], χ[MD], F[PSE], {PF}) 

Only few settings were tested with the smaller 6-31+G* basis set. For this basis set usage of 

the HNC functional is recommended. 

P3NI(Geoml

DZ
, QM/B3LYP/6-31+G*, B[PSE-k], χ[HNC], F[HNC], {PF}) 
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Figure 41: Root mean squared error RMSE in kcal/mol of solvation free energies from 

the Minnesota solvation database calculated with EC-RISM and the P3NI partial molar 

volume correction. The inner cycle shows the RMSE and the outer the calculation con-

ditions. The A layer describes the QM geometry optimizing in the gas pase with 

B3LYP/6-311+G** Geom
0
 and using with B3LYP/6-311+G**/PCM Geom

PCM
. The B 

layer shows the level of theory of the EC-RISM calculations: B3LYP/6-311+G** and 

MP2/6-311+G**. The C layer defines the closure in EC-RISM. The way the solvent 

susceptibility function was calculated is show in layer D. It was calculated using 1D-

RISM/HNC or a molecular dynamics simulation. The outer layer E shows the function-

al that was used for the partial molar volume correction. All calculations use vacuum 

reference geometries and partition functions. P3NI(Geomg
A, QM/B/6-311+G**, B[C], 

χ[D], F[E], {PF}) 



 130  ...................................................... Results ...............................................................  
 

Optimizing free energy functionals in integral equation theories  

8 Conclusion 

In this work the major goals to rationalize and, possibly, correct systematic prediction errors 

for free energies calculated within molecular integral equation theories such as RISM were 

achieved. Starting with fundamental analyses of missing terms in typical approximations for 

simple fluids a practically usable prediction model for aqueous solvation was developed. This 

was possible by combining external data (MD simulations and experimental databases) within 

a properly parametrized RISM formulation.  

This work is divided in three parts. In the first two parts it was shown how knowledge from 

MD simulations can on one hand be used to extract relevant missing information, in particular 

the so-called bridge function. On the other hand, attempts were formulated and evaluated to 

make direct use of these data for predicting free energies of simple liquids. The Lennard-

Jones (LJ) and the repulsive Weeks-Chandler-Anderson (WCA-rep) potentials for simple flu-

ids were taken as models for these investigations.  

The effect of the bridge function on thermodynamic properties calculated with the Ornstein-

Zernike equation was studied to increase the accuracy. To do so, the bridge function of the 

WCA-rep fluid was calculated from MD simulations and compared to the bridge function of 

the LJ fluid. Regions where bridge functions between the two fluids are similar in certain par-

ametric representations were identified. This knowledge was used to calculate the excess 

chemical potential for the transition of a WCA-rep particle to a LJ particle with high precision 

by addition of a bridge dependent functional. The knowledge gained about the properties of 

those functionals and the numerical stability of their integration turned out to be crucial for 

the further improvement of the reference interaction site model. 

Moving on to practical predictions for realistic solvents, it was demonstrated that the approx-

imate bridge functions from the HNC and PSE-k closures can be used to calculate solvation 

thermodynamics accurately by addition of a correction term. More specifically, the partial 

molar volume based semi-empirical correction of solvation free energies for more complex 

systems was successfully integrated with the EC-RISM quantum solvation model. By imple-

menting and testing a vast variety of combinations of quantum-chemical and RISM levels of 

theory for various forms of correction models, and in contrast to popular continuum models, 

RISM-predicted hydration free energies now also cover ionic molecules with good accuracy. 
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In more detail, the semi-empirical correction for hydration free energies calculated with EC-

RISM was parameterized also by considering conformational flexibility. Models for charged 

solutes require at least one parameter for the partial molar volume and another one for the mo-

lecular charge. Scaling the RISM excess chemical potential by a third parameter improves the 

accuracy substantially. With these parameters a root mean squared error (RMSE) of 2.04 

kcal/mol can be reached when the correction is parameterized using the entire Minnesota 

solvation database for aqueous solutions including ions. For neutrals alone, the accuracy is 

comparable with other state of the art solvent models such as SM8 and COSMO-RS (which 

are typically highly parametrized to a larger extent than the approach chosen here). However, 

it outperforms other methods when ionic solvation free energies are to be determined. The 

correction works well for a verity of QM levels of theory, basis sets and optimization proto-

cols as well as for different 3D RISM closures and solvent susceptibility functions. 

Further progress based on optimizing particularly the non-bonded dispersive/repulsive solute-

solvent interactions and generalization to other solvents will be a promising approach to ex-

tend the scope of integral equation applications in chemistry. 
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9 Appendix 

9.1 Distance geometry in chemical modelling 

Distance geometry describes systems with known distances between members, while their 

actual positions are unknown. In chemistry this can be applied to the generation of conformers 

for a molecule. The distances in molecules are defined by atom radii, bond lengths, bond an-

gels and other topological properties of the molecule. This information can be taken from li-

braries of crystal- and NMR structures. When the geometry of a molecule is guessed based on 

these distances the following steps can be performed
[160]

: 

9.1.1 Identify distance constrains 

As an initial step the highest and lowest possible distance between two atoms is specified. For 

atoms connected by a chemical bond this is straight forward using knowledge from crystal 

and NMR structures. Minimum and maximum distance specifications can be very complicat-

ed when the atoms are not connected directly. In this case they are mostly calculated using the 

triangle inequality. This results in poorly approximated distance limits. Though this is the 

most important step of the workflow, it is also the least well solved step[
161

]. 

9.1.2 Embedding 

In the next step a random distance matrix is generated that fulfills all constrains found in 

chapter 9.1.1. Since different matrices will lead to different conformations, this step defines 

the conformation of the molecule. The quality of the sampling of the conformational space is 

therefore dependent on the algorithm that generates the distance matrix. 

The distance matrix is built by setting the value of a randomly chosen distance to a randomly 

chosen value between the upper and lower limit. The random distance is biased towards the 

lower and upper limits to enhance the sampling. Than the distance limits are recalculated as in 

chapter 9.1.1 with the one distance (and the lower and upper limit) set to the random value. 

This is repeated until all distances in the system have a value assigned to them.  

When the distance matrix is know the functional 





i ij

ijji d 22
2

)( xx . (9.1) 
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is minimized using standard linear algebra. Here i and j point at the atoms, x is the position of 

the atom and d is the entry of the distance matrix. Usually the minimization is performed in a 

way that the center of masses of the molecule is placed in the origin. 

9.1.3 Refinement 

Due to the sum of squares nature of equation (9.1), it is not guaranteed that all constrains are 

fulfilled in an embedded geometry. Additionally there may be information about the molecule 

like chirality, bond or torsion angels that may was not utilized in steps 9.1.1 and 9.1.2. This 

information can be used to clean up the geometry. Often an energy minimization similar to 

MD simulations is performed.  

9.2 Additional tables to chapter 7 
Table 27: Composition of training and test sets 

name number training set test set 

compounds containing H and/or C and O 133 119 14 

compounds containing H and/or C and N 45 40 5 

compounds containing H, C, N, and O 43 38 5 

compounds containing H,C, and F 8 6 2 

compounds containing H,C, and Cl 31 27 4 

compounds containing H,C, and Br 14 12 2 

multihalogen hydrocarbons 12 10 2 

Halogenated bifunctional compounds, 

containing at most H, C, N, O, F, Cl, Br 
36 32 4 

compounds containing S, but not P 29 26 3 

phosphorus compounds 25 22 3 

iodine compounds 9 7 2 

kations 52 46 6 

anions 60 54 6 

kation Solute-water clusters 8 6 2 

anion Solute-water clusters 23 20 3 
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Table 28: Protonation free energy ΔrG
# 

of different molecules in kcal/mol. The experi-

mental values were taken from
[159]

. The values in the PSE-3 and P3NI columns were 

calculated using MP2/6-311+G**/EC-RISM-PSE-3. The PSE-3 values are uncorrected 

the P3NI values were corrected with the P3NI model of the partial molar volume correc-

tion. 

molecule  experimental PSE-3 P3NI 

4-chloroaniline 7.35 -6.08 6.31 

4-methoxyaniline 8.99 -5.06 7.83 

4-nitroaniline 3.26 -8.06 4.01 

aniline 8.17 -5.57 7.16 

p-toluidine 8.85 -5.34 7.59 

2-aminopyridine 11.03 -3.69 10.26 

2-aminothiazole 9.26 -5.18 8.49 

2-methylimidazole 12.81 -1.91 12.38 

3-aminopyridine 10.08 -3.97 10.15 

4-aminopyridine 15.13 -9.6 2.69 

4-methylpyridine 10.08 -3.44 10.57 

benzimidazole 9.81 -5.51 8.7 

imidazole 11.44 -3.18 10.88 

isoquinoline 9.26 -4.43 9.64 

melamine 8.72 -7.25 6.71 

pyrazine 2.85 -8.93 3.88 

pyrazole 5.3 -9.09 4.37 

pyridine 9.12 -4.19 9.59 

pyrimidine 3.67 -10.31 3.07 

quinoline 8.44 -5.13 8.91 

thiazole 5.71 -7.28 6.12 

1-methylindole -1.24 -12.73 1.52 

2-methylindole 1.48 -11.6 2.49 

3-methylindole -4.38 -15.34 -1.45 

indole -3.02 -14.99 -1.07 
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Table 28 continued 

molecule experimental PSE-3 P3NI 

4-aminophenol 14.72 -6.53 14.49 

4-chlorophenol 15.4 -5.29 14.85 

4-fluorophenol 15.81 -5.57 14.84 

4-hydroxybenzaldehyde 12.26 -5.24 13.95 

4-methoxyphenol 15.95 -5.76 15.19 

4-methylphenol 16.22 -5.35 15.45 

4-nitrophenol 11.72 -4.36 14.21 

phenol 15.54 -5.65 14.98 

1-me-pyrrol -2.06 -13.92 -10.17 

2-me-pyrrol 1.62 -11.56 -10.0 

3-me-pyrrol 0.53 -12.2 -9.14 

pyrrol -3.29 -15.5 -11.81 

ethanethiol 16.36 -8.57 12.56 

methanethiol 15.95 -7.91 13.04 

 

Table 29: Units of the confidents of the partial molar volume correction models. The 

elementary charge is labelled e. -- means that the coefficient is dimension less. 

name unit 

cV 3Åmol

kcal
 

cq 
emol

kcal
 

cI 
mol

kcal
 

cµ -- 

cG -- 

cdµ -- 
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9.3 Lowest RMSE to the P3NI model 
Result 1: RMSE in kcal/mol calculated with the P3NI model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim vac PSE PF 2.53 2.98 4.07 1.96 

0 PSE-2 Sim vac PSE PF 2.54 3.02 4.08 1.94 

0 PSE-3 Sim vac PSE PCM 2.55 2.73 4.15 2.0 

0 PSE-3 Sim vac PSE EC-RISM 2.56 2.95 4.1 1.99 

0 PSE-3 Sim vac HNC PF 2.56 3.04 4.14 1.96 

Result 2: RMSE in kcal/mol calculated with the P3NI model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim self HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim self HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim self PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim self PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim self HNC PF 2.68 3.18 4.68 1.88 

Result 3: RMSE in kcal/mol calculated with the P3NI model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.69 3.25 3.9 2.23 

0 PSE-1 HNC vac HNC PF 2.69 3.26 4.27 2.08 

0 PSE-1 HNC vac HNC EC-RISM 2.72 3.22 4.34 2.11 

PCM PSE-1 HNC vac HNC EC-RISM 2.73 3.21 3.95 2.28 

D3 PSE-1 HNC vac HNC PF 2.74 3.26 3.88 2.33 

Result 4: RMSE in kcal/mol calculated with the P3NI model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC self HNC EC-RISM 2.74 3.21 4.53 2.06 

0 PSE-1 HNC self HNC PCM 2.76 3.22 4.58 2.08 

0 PSE-1 HNC vac HNC PF 2.69 3.26 4.27 2.08 

0 PSE-1 HNC vac HNC EC-RISM 2.72 3.22 4.34 2.11 

0 PSE-1 HNC self HNC PF 2.78 3.19 4.56 2.12 
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Result 5: RMSE in kcal/mol calculated with the P3NI model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim vac PSE PF 2.52 2.99 4.07 1.95 

0 PSE-2 Sim vac PSE PF 2.53 3.02 4.08 1.93 

0 PSE-3 Sim vac PSE PCM 2.53 2.73 4.15 1.98 

0 PSE-3 Sim vac PSE EC-RISM 2.54 2.95 4.1 1.96 

0 PSE-2 Sim vac PSE EC-RISM 2.54 2.97 4.11 1.95 

Result 6: RMSE in kcal/mol calculated with the P3NI model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim vac HNC EC-RISM 2.62 3.18 4.51 1.85 

0 PSE-1 Sim vac HNC PF 2.62 3.23 4.47 1.87 

0 PSE-1 Sim vac PSE PF 2.56 3.09 4.3 1.87 

0 PSE-1 Sim vac PSE EC-RISM 2.57 3.04 4.33 1.88 

0 PSE-1 Sim vac HNC PCM 2.66 3.2 4.56 1.9 

Result 7: RMSE in kcal/mol calculated with the P3NI model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.67 3.25 3.88 2.21 

0 PSE-1 HNC vac HNC PF 2.68 3.26 4.27 2.07 

PCM PSE-1 HNC vac HNC EC-RISM 2.69 3.2 3.93 2.23 

0 PSE-1 HNC vac HNC EC-RISM 2.7 3.21 4.33 2.08 

0 PSE-1 HNC vac HNC PCM 2.73 3.21 4.37 2.12 

Result 8: RMSE in kcal/mol calculated with the P3NI model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC vac HNC PF 2.68 3.26 4.27 2.07 

0 PSE-1 HNC vac HNC EC-RISM 2.7 3.21 4.33 2.08 

0 PSE-1 HNC vac HNC PCM 2.73 3.21 4.37 2.12 

PCM PSE-1 HNC vac HNC PF 2.67 3.25 3.88 2.21 

PCM PSE-1 HNC vac HNC EC-RISM 2.69 3.2 3.93 2.23 

 



 138  ..................................... Lowest RMSE to the P3NI model ..............................................  
 

Optimizing free energy functionals in integral equation theories 

Result 9: RMSE in kcal/mol calculated with the P3NI model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-3 Sim vac PSE PF 2.04 2.95 3.45 1.32 

PCM PSE-2 Sim vac PSE PF 2.04 2.96 3.52 1.27 

PCM PSE-2 Sim vac PSE EC-RISM 2.07 2.89 3.56 1.33 

PCM PSE-3 Sim vac PSE PCM 2.07 2.9 3.51 1.36 

PCM PSE-3 Sim vac PSE EC-RISM 2.07 2.89 3.49 1.37 

Result 10: RMSE in kcal/mol calculated with the P3NI model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-3 Sim vac PSE EC-RISM 2.11 2.97 3.65 1.29 

PCM PSE-3 Sim vac PSE PF 2.11 3.05 3.62 1.29 

PCM PSE-2 Sim vac PSE PF 2.11 3.04 3.64 1.26 

PCM PSE-2 Sim vac PSE EC-RISM 2.12 2.97 3.68 1.28 

PCM PSE-3 Sim vac PSE PCM 2.13 2.98 3.69 1.3 

Result 11: RMSE in kcal/mol calculated with the P3NI model and MP2/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 Sim vac PSE PF 2.13 2.97 3.87 1.26 

0 PSE-2 HNC vac PSE PF 2.28 2.93 4.22 1.27 

PCM PSE-2 Sim vac PSE PF 2.04 2.96 3.52 1.27 

0 PSE-2 HNC vac HNC PF 2.25 3.01 4.1 1.27 

PCM PSE-1 HNC vac HNC PF 2.11 3.11 3.64 1.28 

Result 12: RMSE in kcal/mol calculated with the P3NI model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC vac PSE PF 2.26 3.06 3.98 1.18 

PCM PSE-2 HNC vac HNC PF 2.21 3.12 3.81 1.18 

0 PSE-2 HNC vac PSE PF 2.3 3.09 4.28 1.19 

D3 PSE-2 HNC vac HNC PF 2.27 3.26 3.85 1.2 

D3 PSE-2 HNC vac PSE PF 2.3 3.18 3.95 1.2 
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Result 13: RMSE in kcal/mol calculated with the P3NI model, MP2/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.11 3.11 3.64 1.28 

PCM PSE-1 HNC vac PSE PF 2.12 3.04 3.59 1.35 

PCM PSE-2 HNC vac HNC PF 2.13 3.04 3.71 1.31 

PCM PSE-1 HNC vac HNC EC-RISM 2.14 3.04 3.7 1.32 

PCM PSE-1 HNC vac HNC PCM 2.16 3.04 3.74 1.34 

Result 14: RMSE in kcal/mol calculated with the P3NI model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac PSE PF 2.18 3.13 3.74 1.34 

D3 PSE-3 HNC vac HNC PF 2.2 3.27 3.89 1.27 

D3 PSE-3 HNC vac PSE PF 2.21 3.21 3.97 1.26 

PCM PSE-2 HNC vac HNC PF 2.21 3.12 3.81 1.18 

PCM PSE-1 HNC vac PSE EC-RISM 2.21 3.07 3.81 1.39 

Result 15: RMSE in kcal/mol calculated with the P3NI model, MP2/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC vac PSE PF 2.28 2.93 4.22 1.27 

0 PSE-2 HNC vac HNC PF 2.25 3.01 4.1 1.27 

PCM PSE-1 HNC vac HNC PF 2.11 3.11 3.64 1.28 

0 PSE-3 HNC vac PSE PF 2.25 2.58 4.3 1.29 

0 PSE-1 HNC vac HNC PF 2.3 3.09 4.25 1.29 

Result 16: RMSE in kcal/mol calculated with the P3NI model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC vac HNC PF 2.21 3.12 3.81 1.18 

PCM PSE-2 HNC vac PSE PF 2.26 3.06 3.98 1.18 

0 PSE-2 HNC vac PSE PF 2.3 3.09 4.28 1.19 

0 PSE-3 HNC vac PSE PF 2.33 3.1 4.36 1.2 

D3 PSE-2 HNC vac HNC PF 2.27 3.26 3.85 1.2 
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Result 17: RMSE in kcal/mol calculated with the P3NI model, B3LYP/6-31+G* and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC self HNC PCM 3.12 3.33 4.35 2.75 

DZ PSE-2 HNC self HNC EC-RISM 3.27 3.4 4.4 2.96 

DZ PSE-2 HNC self PSE PCM 3.27 3.36 4.63 2.88 

DZ PSE-2 HNC self HNC PF 3.31 3.38 4.45 2.99 

DZ PSE-2 HNC self PSE EC-RISM 3.43 3.45 4.67 3.09 

Result 18: RMSE in kcal/mol calculated with the P3NI model, B3LYP/6-31+G* and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC self HNC PCM 3.12 3.33 4.35 2.75 

DZ PSE-2 HNC self PSE PCM 3.27 3.36 4.63 2.88 

DZ PSE-2 HNC self HNC EC-RISM 3.27 3.4 4.4 2.96 

DZ PSE-2 HNC self HNC PF 3.31 3.38 4.45 2.99 

DZ PSE-2 HNC self PSE EC-RISM 3.43 3.45 4.67 3.09 

9.4 Lowest RMSE to the P2 model 
Result 19: RMSE in kcal/mol calculated with the P2 model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.69 3.26 3.9 2.23 

0 PSE-1 HNC vac HNC PF 2.72 3.49 4.31 2.07 

0 PSE-1 Sim vac HNC EC-RISM 2.73 3.49 4.63 1.92 

PCM PSE-1 HNC vac HNC EC-RISM 2.73 3.26 3.96 2.27 

D3 PSE-1 HNC vac HNC PF 2.74 3.26 3.88 2.33 

Result 20: RMSE in kcal/mol calculated with the P2 model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim self HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim self HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim self PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim self PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim self HNC PF 2.68 3.18 4.68 1.88 
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Result 21: RMSE in kcal/mol calculated with the P2 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.69 3.26 3.9 2.23 

0 PSE-1 HNC vac HNC PF 2.72 3.49 4.31 2.07 

PCM PSE-1 HNC vac HNC EC-RISM 2.73 3.26 3.96 2.27 

D3 PSE-1 HNC vac HNC PF 2.74 3.26 3.88 2.33 

D3 PSE-1 HNC self HNC PCM 2.76 3.25 4.08 2.3 

Result 22: RMSE in kcal/mol calculated with the P2 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC self HNC EC-RISM 2.78 3.5 4.57 2.05 

0 PSE-1 HNC self HNC PCM 2.8 3.5 4.63 2.06 

0 PSE-1 HNC vac HNC PF 2.72 3.49 4.31 2.07 

0 PSE-1 HNC vac HNC EC-RISM 2.77 3.55 4.4 2.09 

0 PSE-1 HNC self HNC PF 2.82 3.55 4.61 2.1 

Result 23: RMSE in kcal/mol calculated with the P2 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC vac HNC PF 2.67 3.25 3.88 2.21 

PCM PSE-1 HNC vac HNC EC-RISM 2.69 3.24 3.93 2.22 

0 PSE-1 Sim vac HNC EC-RISM 2.71 3.5 4.63 1.88 

0 PSE-1 HNC vac HNC PF 2.71 3.48 4.31 2.05 

0 PSE-1 Sim vac HNC PF 2.74 3.63 4.62 1.9 

Result 24: RMSE in kcal/mol calculated with the P2 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim vac HNC EC-RISM 2.71 3.5 4.63 1.88 

0 PSE-1 Sim vac HNC PF 2.74 3.63 4.62 1.9 

0 PSE-1 Sim vac HNC PCM 2.75 3.52 4.68 1.93 

0 PSE-1 HNC vac HNC PF 2.71 3.48 4.31 2.05 

0 PSE-1 HNC vac HNC EC-RISM 2.74 3.53 4.39 2.06 
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Result 25: RMSE in kcal/mol calculated with the P2 model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.67 3.25 3.88 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.24 3.93 2.22 

0 PSE-1 HNC g HNC PF 2.71 3.48 4.31 2.05 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.53 4.39 2.06 

PCM PSE-1 HNC g HNC PCM 2.75 3.24 3.96 2.25 

Result 26: RMSE in kcal/mol calculated with the P2 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.71 3.48 4.31 2.05 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.53 4.39 2.06 

0 PSE-1 HNC g HNC PCM 2.78 3.53 4.43 2.1 

PCM PSE-1 HNC g HNC PF 2.67 3.25 3.88 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.24 3.93 2.22 

Result 27: RMSE in kcal/mol calculated with the P2 model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.35 3.68 1.33 

PCM PSE-1 HNC g HNC EC-RISM 2.24 3.38 3.76 1.39 

PCM PSE-1 HNC g HNC PCM 2.26 3.39 3.79 1.4 

PCM PSE-1 Sim g HNC EC-RISM 2.28 3.3 4.02 1.37 

PCM PSE-1 Sim g HNC PF 2.29 3.43 4.01 1.35 

Result 28: RMSE in kcal/mol calculated with the P2 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g PSE PF 2.31 3.21 4.23 1.24 

0 PSE-2 HNC g HNC EC-RISM 2.32 3.1 4.31 1.22 

0 PSE-2 HNC g HNC PCM 2.32 3.1 4.28 1.26 

0 PSE-2 HNC l HNC PCM 2.32 3.07 4.32 1.25 

0 PSE-2 HNC g HNC PF 2.32 3.21 4.26 1.21 
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Result 29: RMSE in kcal/mol calculated with the P2 model and MP2/6-311+G**. The 

data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.42 3.42 4.42 1.28 

0 PSE-2 Sim g HNC PF 3.26 6.45 5.59 1.29 

0 PSE-2 Sim g HNC EC-RISM 3.23 6.3 5.59 1.31 

0 PSE-2 Sim l HNC PCM 3.26 6.38 5.73 1.31 

0 PSE-2 HNC l HNC PCM 2.45 3.22 4.58 1.32 

Result 30: RMSE in kcal/mol calculated with the P2 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.35 3.38 4.08 1.21 

0 PSE-2 HNC g HNC PF 2.32 3.21 4.26 1.21 

0 PSE-3 Sim g PSE PF 3.19 7.99 5.18 1.22 

0 PSE-2 HNC g HNC EC-RISM 2.32 3.1 4.31 1.22 

0 PSE-3 Sim l HNC EC-RISM 3.06 7.0 5.23 1.23 

Result 31: RMSE in kcal/mol calculated with the P2 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.35 3.68 1.33 

PCM PSE-1 HNC g HNC EC-RISM 2.24 3.38 3.76 1.39 

PCM PSE-1 HNC g HNC PCM 2.26 3.39 3.79 1.4 

PCM PSE-1 HNC l HNC PCM 2.31 3.28 4.07 1.4 

PCM PSE-1 HNC l HNC EC-RISM 2.32 3.24 4.0 1.5 

Result 32: RMSE in kcal/mol calculated with the P2 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g PSE PF 2.31 3.21 4.23 1.24 

0 PSE-1 HNC g PSE EC-RISM 2.32 3.1 4.28 1.27 

0 PSE-2 HNC l HNC PCM 2.32 3.07 4.32 1.25 

0 PSE-2 HNC g HNC EC-RISM 2.32 3.1 4.31 1.22 

0 PSE-2 HNC g HNC PF 2.32 3.21 4.26 1.21 
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Result 33: RMSE in kcal/mol calculated with the P2 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.42 3.42 4.42 1.28 

0 PSE-2 HNC l HNC PCM 2.45 3.22 4.58 1.32 

0 PSE-2 HNC g HNC EC-RISM 2.42 3.25 4.44 1.33 

PCM PSE-1 HNC g HNC PF 2.18 3.35 3.68 1.33 

0 PSE-2 HNC g HNC PCM 2.41 3.25 4.4 1.34 

Result 34: RMSE in kcal/mol calculated with the P2 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.35 3.38 4.08 1.21 

0 PSE-2 HNC g HNC PF 2.32 3.21 4.26 1.21 

0 PSE-2 HNC g HNC EC-RISM 2.32 3.1 4.31 1.22 

0 PSE-2 HNC l HNC EC-RISM 2.33 3.04 4.39 1.23 

PCM PSE-2 HNC g HNC PCM 2.37 3.22 4.15 1.24 

Result 35: RMSE in kcal/mol calculated with the P2 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.83 5.09 5.43 3.16 

DZ PSE-2 HNC l HNC PF 3.97 4.92 5.46 3.41 

DZ PSE-2 HNC l HNC EC-RISM 3.98 5.04 5.47 3.39 

DZ PSE-2 HNC l PSE PCM 4.37 6.24 6.32 3.47 

DZ PSE-2 HNC l PSE PF 4.5 6.06 6.33 3.72 

Result 36: RMSE in kcal/mol calculated with the P2 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.83 5.09 5.43 3.16 

DZ PSE-2 HNC l HNC EC-RISM 3.98 5.04 5.47 3.39 

DZ PSE-2 HNC l HNC PF 3.97 4.92 5.46 3.41 

DZ PSE-2 HNC l PSE PCM 4.37 6.24 6.32 3.47 

DZ PSE-2 HNC l PSE EC-RISM 4.52 6.19 6.35 3.71 
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9.5 Lowest RMSE to the P3 model 
Result 37: RMSE in kcal/mol calculated with the P3 model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.65 3.18 4.39 1.96 

0 PSE-1 Sim g HNC PF 2.66 3.27 4.36 1.98 

0 PSE-1 Sim l HNC EC-RISM 2.66 3.19 4.54 1.91 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.45 1.98 

0 PSE-1 Sim l HNC PF 2.67 3.15 4.56 1.94 

Result 38: RMSE in kcal/mol calculated with the P3 model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 

Result 39: RMSE in kcal/mol calculated with the P3 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.69 3.28 3.89 2.23 

0 PSE-1 HNC g HNC PF 2.72 3.53 4.31 2.06 

D3 PSE-1 HNC g HNC PF 2.73 3.3 3.85 2.32 

PCM PSE-1 HNC g HNC EC-RISM 2.73 3.28 3.96 2.27 

D3 PSE-1 HNC g HNC PCM 2.75 3.31 3.92 2.32 

Result 40: RMSE in kcal/mol calculated with the P3 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 2.78 3.55 4.57 2.03 

0 PSE-1 HNC l HNC PCM 2.8 3.55 4.62 2.05 

0 PSE-1 HNC g HNC PF 2.72 3.53 4.31 2.06 

0 PSE-1 HNC g HNC EC-RISM 2.77 3.58 4.39 2.08 

0 PSE-1 HNC l HNC PF 2.82 3.6 4.6 2.09 
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Result 41: RMSE in kcal/mol calculated with the P3 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.63 3.19 4.39 1.93 

0 PSE-1 Sim g HNC PF 2.65 3.28 4.36 1.96 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.44 1.97 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.22 

Result 42: RMSE in kcal/mol calculated with the P3 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.63 3.19 4.39 1.93 

0 PSE-1 Sim g HNC PF 2.65 3.28 4.36 1.96 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.44 1.97 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

Result 43: RMSE in kcal/mol calculated with the P3 model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.22 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

PCM PSE-1 HNC g HNC PCM 2.74 3.27 3.95 2.25 

Result 44: RMSE in kcal/mol calculated with the P3 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

0 PSE-1 HNC g HNC PCM 2.78 3.58 4.43 2.09 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.22 
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Result 45: RMSE in kcal/mol calculated with the P3 model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.39 3.67 1.32 

PCM PSE-1 Sim g HNC PF 2.2 3.16 3.74 1.4 

PCM PSE-1 Sim g HNC EC-RISM 2.2 3.06 3.78 1.42 

PCM PSE-1 Sim g HNC PCM 2.22 3.06 3.83 1.43 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.29 

Result 46: RMSE in kcal/mol calculated with the P3 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 2.22 3.18 3.78 1.37 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

PCM PSE-1 HNC g PSE EC-RISM 2.23 3.07 3.83 1.41 

PCM PSE-1 HNC g PSE PCM 2.25 3.07 3.87 1.42 

0 PSE-1 HNC g PSE EC-RISM 2.25 3.08 4.14 1.21 

Result 47: RMSE in kcal/mol calculated with the P3 model and MP2/6-311+G**. The 

data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-2 HNC g HNC PCM 2.25 2.98 4.12 1.25 

0 PSE-2 HNC l HNC PCM 2.3 2.94 4.33 1.25 

0 PSE-2 HNC g HNC EC-RISM 2.26 2.97 4.17 1.25 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.29 

Result 48: RMSE in kcal/mol calculated with the P3 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.25 3.18 3.93 1.16 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

0 PSE-2 HNC g HNC PF 2.26 3.19 4.14 1.17 

0 PSE-2 HNC g HNC EC-RISM 2.28 3.1 4.21 1.19 

PCM PSE-2 HNC g HNC PCM 2.28 3.07 4.02 1.2 
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Result 49: RMSE in kcal/mol calculated with the P3 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.39 3.67 1.32 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.29 

PCM PSE-1 HNC g PSE PF 2.23 3.28 3.71 1.45 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-1 HNC g PSE PCM 2.24 2.94 4.03 1.36 

Result 50: RMSE in kcal/mol calculated with the P3 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 2.22 3.18 3.78 1.37 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

PCM PSE-1 HNC g PSE EC-RISM 2.23 3.07 3.83 1.41 

0 PSE-1 HNC g PSE EC-RISM 2.25 3.08 4.14 1.21 

0 PSE-1 HNC g PSE PCM 2.25 3.09 4.11 1.23 

Result 51: RMSE in kcal/mol calculated with the P3 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-2 HNC l HNC PCM 2.3 2.94 4.33 1.25 

0 PSE-2 HNC g HNC EC-RISM 2.26 2.97 4.17 1.25 

0 PSE-2 HNC g HNC PCM 2.25 2.98 4.12 1.25 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.29 

Result 52: RMSE in kcal/mol calculated with the P3 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.25 3.18 3.93 1.16 

0 PSE-2 HNC g HNC PF 2.26 3.19 4.14 1.17 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

0 PSE-2 HNC g HNC EC-RISM 2.28 3.1 4.21 1.19 

PCM PSE-2 HNC g HNC EC-RISM 2.26 3.07 3.97 1.2 
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Result 53: RMSE in kcal/mol calculated with the P3 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.6 3.82 4.91 3.22 

DZ PSE-2 HNC l HNC PF 3.76 3.68 4.96 3.46 

DZ PSE-2 HNC l HNC EC-RISM 3.77 3.8 4.97 3.46 

DZ PSE-2 HNC l PSE PCM 4.05 4.41 5.6 3.57 

DZ PSE-2 HNC l PSE PF 4.2 4.25 5.65 3.81 

Result 54: RMSE in kcal/mol calculated with the P3 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.6 3.82 4.91 3.22 

DZ PSE-2 HNC l HNC EC-RISM 3.77 3.8 4.97 3.46 

DZ PSE-2 HNC l HNC PF 3.76 3.68 4.96 3.46 

DZ PSE-2 HNC l PSE PCM 4.05 4.41 5.6 3.57 

DZ PSE-2 HNC l PSE EC-RISM 4.22 4.38 5.66 3.81 

9.6 Lowest RMSE to the P4 model 
Result 55: RMSE in kcal/mol calculated with the P4 model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim g PSE PF 2.51 2.96 3.98 1.96 

0 PSE-2 Sim g PSE PF 2.51 2.99 3.99 1.95 

0 PSE-3 Sim g PSE PCM 2.52 2.69 4.06 2.0 

0 PSE-3 Sim g PSE EC-RISM 2.53 2.92 4.01 1.99 

0 PSE-3 Sim g HNC PF 2.53 3.01 4.04 1.96 

Result 56: RMSE in kcal/mol calculated with the P4 model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 
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Result 57: RMSE in kcal/mol calculated with the P4 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.67 3.25 4.19 2.07 

0 PSE-1 HNC g HNC EC-RISM 2.69 3.2 4.25 2.1 

PCM PSE-1 HNC g HNC PF 2.69 3.24 3.87 2.24 

0 PSE-1 HNC g HNC PCM 2.71 3.2 4.29 2.12 

0 PSE-1 HNC l HNC EC-RISM 2.71 3.19 4.46 2.05 

Result 58: RMSE in kcal/mol calculated with the P4 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 2.71 3.19 4.46 2.05 

0 PSE-1 HNC l HNC PCM 2.73 3.21 4.51 2.06 

0 PSE-1 HNC g HNC PF 2.67 3.25 4.19 2.07 

0 PSE-1 HNC g HNC EC-RISM 2.69 3.2 4.25 2.1 

0 PSE-1 HNC l HNC PF 2.74 3.16 4.47 2.1 

Result 59: RMSE in kcal/mol calculated with the P4 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim g PSE PF 2.5 2.97 3.98 1.94 

0 PSE-3 Sim g PSE PCM 2.5 2.69 4.05 1.98 

0 PSE-2 Sim g PSE PF 2.5 3.0 3.99 1.93 

0 PSE-3 Sim g PSE EC-RISM 2.51 2.92 4.0 1.96 

0 PSE-2 Sim g PSE EC-RISM 2.51 2.94 4.01 1.95 

Result 60: RMSE in kcal/mol calculated with the P4 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.6 3.15 4.42 1.87 

0 PSE-1 Sim g PSE PF 2.53 3.06 4.18 1.87 

0 PSE-1 Sim g PSE EC-RISM 2.53 3.0 4.2 1.88 

0 PSE-1 Sim g HNC PF 2.61 3.21 4.4 1.88 

0 PSE-1 Sim g PSE PCM 2.56 3.02 4.24 1.91 
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Result 61: RMSE in kcal/mol calculated with the P4 model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.66 3.26 4.19 2.06 

PCM PSE-1 HNC g HNC PF 2.67 3.25 3.85 2.22 

0 PSE-1 HNC g HNC EC-RISM 2.67 3.2 4.24 2.06 

PCM PSE-1 HNC g HNC EC-RISM 2.68 3.19 3.89 2.24 

0 PSE-1 HNC g HNC PCM 2.7 3.2 4.28 2.1 

Result 62: RMSE in kcal/mol calculated with the P4 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.66 3.26 4.19 2.06 

0 PSE-1 HNC g HNC EC-RISM 2.67 3.2 4.24 2.06 

0 PSE-1 HNC g HNC PCM 2.7 3.2 4.28 2.1 

PCM PSE-1 HNC g HNC PF 2.67 3.25 3.85 2.22 

PCM PSE-1 HNC g HNC EC-RISM 2.68 3.19 3.89 2.24 

Result 63: RMSE in kcal/mol calculated with the P4 model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-3 Sim g PSE PF 2.0 2.95 3.37 1.29 

PCM PSE-2 Sim g PSE PF 2.0 2.94 3.41 1.26 

PCM PSE-3 Sim g PSE PCM 2.03 2.88 3.43 1.33 

PCM PSE-3 Sim g PSE EC-RISM 2.03 2.88 3.4 1.35 

PCM PSE-3 Sim g HNC PF 2.03 3.01 3.36 1.32 

Result 64: RMSE in kcal/mol calculated with the P4 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-3 Sim g PSE PF 2.08 3.04 3.55 1.28 

PCM PSE-2 Sim g PSE PF 2.08 3.03 3.57 1.26 

PCM PSE-3 Sim g PSE EC-RISM 2.08 2.96 3.58 1.29 

PCM PSE-2 Sim g PSE EC-RISM 2.09 2.95 3.6 1.28 

PCM PSE-3 Sim g PSE PCM 2.1 2.96 3.62 1.3 
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Result 65: RMSE in kcal/mol calculated with the P4 model and MP2/6-311+G**. The 

data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g PSE PF 2.23 2.97 4.19 1.15 

0 PSE-2 HNC g HNC PF 2.19 3.05 4.04 1.16 

0 PSE-3 HNC g PSE PF 2.21 2.6 4.27 1.2 

0 PSE-3 HNC g HNC PF 2.18 2.64 4.17 1.2 

0 PSE-1 HNC g PSE PF 2.17 3.02 3.95 1.21 

Result 66: RMSE in kcal/mol calculated with the P4 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g PSE PF 2.24 3.07 4.0 1.12 

PCM PSE-2 HNC g HNC PF 2.2 3.14 3.81 1.13 

0 PSE-2 HNC g PSE PF 2.27 3.12 4.26 1.13 

0 PSE-3 HNC g PSE PF 2.31 3.13 4.35 1.15 

D3 PSE-2 HNC g PSE PF 2.28 3.21 3.94 1.16 

Result 67: RMSE in kcal/mol calculated with the P4 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 2.06 3.06 3.52 1.26 

PCM PSE-1 HNC g HNC PF 2.07 3.14 3.54 1.24 

PCM PSE-2 HNC g HNC PF 2.09 3.07 3.68 1.23 

PCM PSE-1 HNC g HNC EC-RISM 2.09 3.05 3.6 1.29 

PCM PSE-1 HNC g PSE EC-RISM 2.11 2.98 3.59 1.36 

Result 68: RMSE in kcal/mol calculated with the P4 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 2.15 3.13 3.71 1.29 

D3 PSE-3 HNC g HNC PF 2.18 3.3 3.88 1.24 

PCM PSE-1 HNC g PSE EC-RISM 2.19 3.06 3.78 1.35 

D3 PSE-3 HNC g PSE PF 2.2 3.24 3.96 1.23 

PCM PSE-2 HNC g HNC PF 2.2 3.14 3.81 1.13 
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Result 69: RMSE in kcal/mol calculated with the P4 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g PSE PF 2.23 2.97 4.19 1.15 

0 PSE-2 HNC g HNC PF 2.19 3.05 4.04 1.16 

0 PSE-3 HNC g PSE PF 2.21 2.6 4.27 1.2 

0 PSE-3 HNC g HNC PF 2.18 2.64 4.17 1.2 

0 PSE-1 HNC g PSE PF 2.17 3.02 3.95 1.21 

Result 70: RMSE in kcal/mol calculated with the P4 model, MP2/aug-cc-pVDZ and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g PSE PF 2.24 3.07 4.0 1.12 

PCM PSE-2 HNC g HNC PF 2.2 3.14 3.81 1.13 

0 PSE-2 HNC g PSE PF 2.27 3.12 4.26 1.13 

0 PSE-3 HNC g PSE PF 2.31 3.13 4.35 1.15 

D3 PSE-2 HNC g PSE PF 2.28 3.21 3.94 1.16 

Result 71: RMSE in kcal/mol calculated with the P4 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.12 3.32 4.35 2.75 

DZ PSE-2 HNC l HNC EC-RISM 3.27 3.4 4.4 2.96 

DZ PSE-2 HNC l PSE PCM 3.27 3.36 4.63 2.88 

DZ PSE-2 HNC l HNC PF 3.31 3.38 4.44 2.99 

DZ PSE-2 HNC l PSE EC-RISM 3.43 3.45 4.67 3.09 

Result 72: RMSE in kcal/mol calculated with the P4 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.12 3.32 4.35 2.75 

DZ PSE-2 HNC l PSE PCM 3.27 3.36 4.63 2.88 

DZ PSE-2 HNC l HNC EC-RISM 3.27 3.4 4.4 2.96 

DZ PSE-2 HNC l HNC PF 3.31 3.38 4.44 2.99 

DZ PSE-2 HNC l PSE EC-RISM 3.43 3.45 4.67 3.09 

 



 154  ...................................... Lowest RMSE to the P4G model ...............................................  
 

Optimizing free energy functionals in integral equation theories 

9.7 Lowest RMSE to the P4G model 
Result 73: RMSE in kcal/mol calculated with the P4G model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.65 3.18 4.39 1.96 

0 PSE-1 Sim g HNC PF 2.66 3.27 4.35 1.98 

0 PSE-1 Sim l HNC EC-RISM 2.66 3.19 4.54 1.91 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.45 1.98 

0 PSE-1 Sim l HNC PF 2.67 3.15 4.56 1.94 

Result 74: RMSE in kcal/mol calculated with the P4G model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 

Result 75: RMSE in kcal/mol calculated with the P4G model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.69 3.27 3.88 2.24 

0 PSE-1 HNC g HNC PF 2.72 3.53 4.31 2.06 

D3 PSE-1 HNC g HNC PF 2.73 3.31 3.86 2.31 

PCM PSE-1 HNC g HNC EC-RISM 2.73 3.28 3.96 2.26 

D3 PSE-1 HNC g HNC EC-RISM 2.75 3.39 3.97 2.29 

Result 76: RMSE in kcal/mol calculated with the P4G model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 2.78 3.55 4.56 2.03 

0 PSE-1 HNC l HNC PCM 2.8 3.55 4.63 2.04 

0 PSE-1 HNC g HNC PF 2.72 3.53 4.31 2.06 

0 PSE-1 HNC g HNC EC-RISM 2.77 3.58 4.4 2.08 

0 PSE-1 HNC l HNC PF 2.82 3.6 4.61 2.08 
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Result 77: RMSE in kcal/mol calculated with the P4G model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.63 3.19 4.39 1.93 

0 PSE-1 Sim g HNC PF 2.65 3.28 4.36 1.96 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.43 1.97 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.21 

Result 78: RMSE in kcal/mol calculated with the P4G model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 2.63 3.19 4.39 1.93 

0 PSE-1 Sim g HNC PF 2.65 3.28 4.36 1.96 

0 PSE-1 Sim g HNC PCM 2.67 3.2 4.43 1.97 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

Result 79: RMSE in kcal/mol calculated with the P4G model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.21 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

PCM PSE-1 HNC g HNC PCM 2.74 3.27 3.95 2.24 

Result 80: RMSE in kcal/mol calculated with the P4G model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.71 3.53 4.3 2.04 

0 PSE-1 HNC g HNC EC-RISM 2.74 3.57 4.38 2.05 

0 PSE-1 HNC g HNC PCM 2.78 3.58 4.43 2.09 

PCM PSE-1 HNC g HNC EC-RISM 2.69 3.27 3.92 2.21 

PCM PSE-1 HNC g HNC PF 2.67 3.28 3.87 2.21 
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Result 81: RMSE in kcal/mol calculated with the P4G model and MP2/6-311+G**. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.39 3.67 1.32 

PCM PSE-1 Sim g HNC PF 2.2 3.16 3.73 1.41 

PCM PSE-1 Sim g HNC EC-RISM 2.2 3.06 3.78 1.42 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.28 

PCM PSE-1 Sim g HNC PCM 2.22 3.06 3.82 1.43 

Result 82: RMSE in kcal/mol calculated with the P4G model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE EC-RISM 2.21 3.06 3.85 1.36 

PCM PSE-1 HNC g PSE PF 2.21 3.18 3.79 1.37 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

PCM PSE-1 HNC g PSE PCM 2.24 3.07 3.87 1.41 

PCM PSE-2 HNC g HNC PF 2.25 3.18 3.93 1.16 

Result 83: RMSE in kcal/mol calculated with the P4G model and MP2/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-2 HNC g HNC EC-RISM 2.26 2.95 4.18 1.24 

0 PSE-2 HNC g HNC PCM 2.25 2.98 4.13 1.25 

0 PSE-2 HNC l HNC PCM 2.3 2.94 4.33 1.25 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.28 

Result 84: RMSE in kcal/mol calculated with the P4G model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.25 3.18 3.93 1.16 

0 PSE-2 HNC g HNC PF 2.26 3.19 4.14 1.17 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

0 PSE-2 HNC g HNC EC-RISM 2.28 3.1 4.21 1.19 

PCM PSE-2 HNC g HNC PCM 2.28 3.06 4.01 1.19 
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Result 85: RMSE in kcal/mol calculated with the P4G model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.18 3.39 3.67 1.32 

0 PSE-1 HNC g PSE PF 2.22 3.06 4.0 1.28 

0 PSE-1 HNC g PSE PCM 2.23 2.93 4.05 1.31 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-1 HNC g PSE EC-RISM 2.23 2.93 4.08 1.3 

Result 86: RMSE in kcal/mol calculated with the P4G model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 2.21 3.18 3.79 1.37 

PCM PSE-1 HNC g PSE EC-RISM 2.21 3.06 3.85 1.36 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

PCM PSE-1 HNC g PSE PCM 2.24 3.07 3.87 1.41 

0 PSE-1 HNC g PSE PCM 2.25 3.09 4.11 1.23 

Result 87: RMSE in kcal/mol calculated with the P4G model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.23 3.1 4.11 1.19 

0 PSE-2 HNC g HNC EC-RISM 2.26 2.95 4.18 1.24 

0 PSE-2 HNC l HNC PCM 2.3 2.94 4.33 1.25 

0 PSE-2 HNC g HNC PCM 2.25 2.98 4.13 1.25 

0 PSE-2 HNC l HNC EC-RISM 2.32 2.89 4.39 1.28 

Result 88: RMSE in kcal/mol calculated with the P4G model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.25 3.18 3.93 1.16 

0 PSE-2 HNC g HNC PF 2.26 3.19 4.14 1.17 

0 PSE-1 HNC g PSE PF 2.23 3.16 4.06 1.17 

PCM PSE-2 HNC g HNC PCM 2.28 3.06 4.01 1.19 

0 PSE-2 HNC g HNC EC-RISM 2.28 3.1 4.21 1.19 
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Result 89: RMSE in kcal/mol calculated with the P4G model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.6 3.82 4.9 3.22 

DZ PSE-2 HNC l HNC PF 3.73 3.67 4.94 3.42 

DZ PSE-2 HNC l HNC EC-RISM 3.77 3.8 4.97 3.45 

DZ PSE-2 HNC l PSE PCM 3.96 4.32 5.49 3.49 

DZ PSE-2 HNC l PSE PF 4.14 4.18 5.6 3.74 

Result 90: RMSE in kcal/mol calculated with the P4G model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 3.6 3.82 4.9 3.22 

DZ PSE-2 HNC l HNC PF 3.73 3.67 4.94 3.42 

DZ PSE-2 HNC l HNC EC-RISM 3.77 3.8 4.97 3.45 

DZ PSE-2 HNC l PSE PCM 3.96 4.32 5.49 3.49 

DZ PSE-2 HNC l PSE PF 4.14 4.18 5.6 3.74 

9.8 Lowest RMSE to the P4PSE model  
Result 91: RMSE in kcal/mol calculated with the P4PSE model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 Sim g HNC EC-RISM 3.2 3.95 5.46 2.3 

PCM PSE-1 Sim g HNC PF 3.21 3.98 5.4 2.34 

PCM PSE-1 Sim g HNC PCM 3.23 3.96 5.52 2.32 

PCM PSE-1 Sim l HNC PCM 3.26 3.93 5.67 2.32 

0 PSE-1 Sim l HNC EC-RISM 3.28 3.97 5.95 2.15 

Result 92: RMSE in kcal/mol calculated with the P4PSE model and B3LYP/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 
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Result 93: RMSE in kcal/mol calculated with the P4PSE model, B3LYP/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 6.05 11.13 10.15 3.16 

0 PSE-1 HNC g HNC PF 6.07 11.14 10.07 3.22 

0 PSE-1 HNC l HNC PCM 6.07 11.17 10.16 3.19 

0 PSE-1 HNC l HNC PF 6.08 11.15 10.21 3.19 

D3 PSE-1 HNC g HNC PF 6.1 11.58 10.03 3.2 

Result 94: RMSE in kcal/mol calculated with the P4PSE model, B3LYP/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 6.05 11.13 10.15 3.16 

D3 PSE-3 HNC l HNC EC-RISM 6.75 19.94 8.84 3.17 

PCM PSE-1 HNC g HNC EC-RISM 6.17 11.16 10.4 3.17 

PCM PSE-1 HNC g HNC PCM 6.35 11.14 10.5 3.17 

D3 PSE-1 HNC g HNC EC-RISM 6.13 11.6 10.16 3.17 

Result 95: RMSE in kcal/mol calculated with the P4PSE model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 Sim g HNC EC-RISM 3.18 3.93 5.43 2.27 

PCM PSE-1 Sim g HNC PF 3.19 3.96 5.38 2.32 

PCM PSE-1 Sim g HNC PCM 3.21 3.94 5.49 2.31 

0 PSE-1 Sim g HNC EC-RISM 3.27 3.99 5.85 2.18 

0 PSE-1 Sim g HNC PF 3.29 4.03 5.8 2.24 

Result 96: RMSE in kcal/mol calculated with the P4PSE model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC EC-RISM 3.27 3.99 5.85 2.18 

0 PSE-1 Sim g HNC PF 3.29 4.03 5.8 2.24 

0 PSE-1 Sim g HNC PCM 3.32 4.01 5.88 2.25 

PCM PSE-1 Sim g HNC EC-RISM 3.18 3.93 5.43 2.27 

PCM PSE-1 Sim g HNC PCM 3.21 3.94 5.49 2.31 
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Result 97: RMSE in kcal/mol calculated with the P4PSE model, B3LYP-D3/6-

311+G** and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 6.07 11.14 10.06 3.2 

0 PSE-1 HNC g HNC EC-RISM 6.09 11.16 10.18 3.17 

0 PSE-1 HNC g HNC PCM 6.1 11.17 10.15 3.21 

PCM PSE-1 HNC g HNC PF 6.13 11.15 10.25 3.17 

PCM PSE-1 HNC g HNC EC-RISM 6.15 11.18 10.34 3.15 

Result 98: RMSE in kcal/mol calculated with the P4PSE model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC EC-RISM 6.15 11.18 10.34 3.15 

PCM PSE-1 HNC g HNC PCM 6.33 11.11 10.44 3.16 

PCM PSE-1 HNC g HNC PF 6.13 11.15 10.25 3.17 

0 PSE-1 HNC g HNC EC-RISM 6.09 11.16 10.18 3.17 

0 PSE-1 HNC g HNC PF 6.07 11.14 10.06 3.2 

Result 99: RMSE in kcal/mol calculated with the P4PSE model and MP2/6-311+G**. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 Sim g HNC EC-RISM 3.0 3.68 5.25 2.02 

PCM PSE-1 Sim g HNC PF 3.0 3.74 5.19 2.04 

PCM PSE-1 Sim l HNC EC-RISM 3.05 3.63 5.43 2.05 

PCM PSE-1 Sim g HNC PCM 3.05 3.7 5.34 2.05 

PCM PSE-1 Sim l HNC PCM 3.08 3.67 5.52 2.04 

Result 100: RMSE in kcal/mol calculated with the P4PSE model and MP2/aug-cc-

pVDZ. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 Sim g HNC EC-RISM 3.17 3.77 5.63 2.06 

PCM PSE-1 Sim g HNC PF 3.18 3.82 5.57 2.1 

PCM PSE-1 Sim l HNC EC-RISM 3.2 3.65 5.74 2.08 

PCM PSE-1 Sim g HNC PCM 3.22 3.79 5.71 2.07 

PCM PSE-1 Sim l HNC PF 3.23 3.64 5.79 2.11 
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Result 101: RMSE in kcal/mol calculated with the P4PSE model and MP2/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 3.24 3.67 6.06 2.02 

0 PSE-1 Sim g HNC EC-RISM 3.24 3.75 5.95 2.02 

PCM PSE-1 Sim g HNC EC-RISM 3.0 3.68 5.25 2.02 

0 PSE-1 Sim g HNC PF 3.24 3.81 5.88 2.04 

PCM PSE-1 Sim l HNC PCM 3.08 3.67 5.52 2.04 

Result 102: RMSE in kcal/mol calculated with the P4PSE model and MP2/aug-cc-

pVDZ. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 3.43 3.79 6.48 2.03 

PCM PSE-1 Sim l HNC PCM 3.24 3.7 5.84 2.05 

0 PSE-1 Sim g HNC EC-RISM 3.46 3.97 6.44 2.05 

PCM PSE-1 Sim g HNC EC-RISM 3.17 3.77 5.63 2.06 

0 PSE-1 Sim l HNC PF 3.46 3.77 6.51 2.07 

Result 103: RMSE in kcal/mol calculated with the P4PSE model, MP2/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 5.72 10.68 8.45 3.44 

PCM PSE-1 HNC g HNC EC-RISM 5.77 10.7 8.57 3.46 

PCM PSE-1 HNC g HNC PCM 5.79 10.78 8.58 3.46 

PCM PSE-1 HNC l HNC EC-RISM 5.81 10.62 8.81 3.5 

0 PSE-1 HNC g HNC PF 5.81 11.11 8.72 3.32 

Result 104: RMSE in kcal/mol calculated with the P4PSE model, MP2/aug-cc-pVDZ 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 5.77 10.21 8.84 3.43 

0 PSE-1 HNC g HNC PF 5.78 10.56 8.65 3.41 

PCM PSE-1 HNC g HNC PF 5.78 10.78 8.66 3.38 

0 PSE-1 HNC l HNC PCM 5.79 10.25 8.85 3.43 

0 PSE-1 HNC g HNC PCM 5.8 10.55 8.76 3.4 
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Result 105: RMSE in kcal/mol calculated with the P4PSE model, MP2/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 HNC g HNC PF 6.6 16.26 7.53 3.21 

0 PSE-3 HNC l HNC EC-RISM 6.73 16.37 8.03 3.21 

0 PSE-3 HNC g HNC EC-RISM 6.67 16.41 7.7 3.22 

0 PSE-3 HNC g HNC PCM 6.66 16.41 7.6 3.23 

0 PSE-3 HNC l HNC PF 6.79 16.48 8.09 3.27 

Result 106: RMSE in kcal/mol calculated with the P4PSE model, MP2/aug-cc-pVDZ 

and the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-3 HNC l HNC EC-RISM 7.05 17.06 7.99 3.24 

DZ PSE-3 HNC l HNC PCM 7.04 16.98 7.86 3.29 

DZ PSE-3 HNC l HNC PF 7.11 17.17 8.08 3.29 

0 PSE-3 HNC g HNC PCM 6.61 15.76 7.61 3.29 

PCM PSE-3 HNC g HNC EC-RISM 6.92 16.52 7.91 3.3 

Result 107: RMSE in kcal/mol calculated with the P4PSE model, B3LYP/6-31+G* and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 6.87 15.84 9.7 3.27 

DZ PSE-2 HNC l HNC EC-RISM 6.9 15.8 9.85 3.28 

DZ PSE-2 HNC l HNC PF 6.94 15.87 9.91 3.3 

Result 108: RMSE in kcal/mol calculated with the P4PSE model, B3LYP/6-31+G* and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 6.87 15.84 9.7 3.27 

DZ PSE-2 HNC l HNC EC-RISM 6.9 15.8 9.85 3.28 

DZ PSE-2 HNC l HNC PF 6.94 15.87 9.91 3.3 
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9.9 Lowest RMSE to the P5 model 
Result 109: RMSE in kcal/mol calculated with the P5 model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim g HNC PF 2.49 2.85 3.91 1.98 

0 PSE-3 Sim g HNC PCM 2.5 2.63 3.98 2.02 

0 PSE-2 Sim g HNC PF 2.51 2.95 3.94 1.97 

0 PSE-3 Sim g HNC EC-RISM 2.51 2.83 3.94 2.01 

0 PSE-1 Sim g HNC PF 2.52 2.98 4.12 1.91 

Result 110: RMSE in kcal/mol calculated with the P5 model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 

Result 111: RMSE in kcal/mol calculated with the P5 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.67 3.25 4.2 2.07 

PCM PSE-1 HNC g HNC PF 2.67 3.25 3.98 2.18 

0 PSE-1 HNC g HNC EC-RISM 2.69 3.2 4.29 2.08 

PCM PSE-1 HNC g HNC EC-RISM 2.7 3.21 4.06 2.2 

0 PSE-1 HNC l HNC EC-RISM 2.71 3.2 4.51 2.02 

Result 112: RMSE in kcal/mol calculated with the P5 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l HNC EC-RISM 2.71 3.2 4.51 2.02 

0 PSE-1 HNC l HNC PCM 2.73 3.21 4.53 2.05 

0 PSE-1 HNC l HNC PF 2.73 3.16 4.53 2.06 

0 PSE-1 HNC g HNC PF 2.67 3.25 4.2 2.07 

0 PSE-1 HNC g HNC EC-RISM 2.69 3.2 4.29 2.08 
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Result 113: RMSE in kcal/mol calculated with the P5 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-3 Sim g HNC PF 2.48 2.85 3.9 1.96 

0 PSE-3 Sim g HNC PCM 2.49 2.63 3.98 2.0 

0 PSE-3 Sim g HNC EC-RISM 2.49 2.83 3.93 1.98 

0 PSE-2 Sim g HNC PF 2.5 2.96 3.93 1.96 

0 PSE-2 Sim g HNC EC-RISM 2.51 2.92 3.98 1.96 

Result 114: RMSE in kcal/mol calculated with the P5 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g HNC PF 2.51 2.98 4.12 1.9 

0 PSE-1 Sim g HNC EC-RISM 2.52 2.93 4.14 1.9 

0 PSE-1 Sim g HNC PCM 2.55 2.94 4.18 1.94 

0 PSE-2 Sim g HNC PF 2.5 2.96 3.93 1.96 

0 PSE-2 Sim g HNC EC-RISM 2.51 2.92 3.98 1.96 

Result 115: RMSE in kcal/mol calculated with the P5 model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.66 3.25 3.95 2.16 

0 PSE-1 HNC g HNC PF 2.66 3.26 4.2 2.05 

PCM PSE-1 HNC g HNC EC-RISM 2.67 3.2 4.02 2.15 

0 PSE-1 HNC g HNC EC-RISM 2.67 3.21 4.28 2.05 

PCM PSE-2 HNC g HNC PCM 2.7 3.34 4.02 2.27 

Result 116: RMSE in kcal/mol calculated with the P5 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g HNC PF 2.66 3.26 4.2 2.05 

0 PSE-1 HNC g HNC EC-RISM 2.67 3.21 4.28 2.05 

0 PSE-1 HNC g HNC PCM 2.7 3.2 4.3 2.09 

PCM PSE-1 HNC g HNC EC-RISM 2.67 3.2 4.02 2.15 

PCM PSE-1 HNC g HNC PF 2.66 3.25 3.95 2.16 
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Result 117: RMSE in kcal/mol calculated with the P5 model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 Sim g HNC PF 1.97 2.84 3.4 1.22 

PCM PSE-3 Sim g HNC PF 1.98 2.83 3.43 1.25 

PCM PSE-1 Sim g HNC PF 1.99 2.89 3.42 1.24 

PCM PSE-2 Sim g HNC PCM 2.01 2.78 3.45 1.3 

PCM PSE-1 Sim g HNC PCM 2.01 2.81 3.43 1.3 

Result 118: RMSE in kcal/mol calculated with the P5 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 Sim g HNC PF 1.99 2.87 3.49 1.14 

PCM PSE-3 Sim g HNC PF 2.0 2.8 3.59 1.15 

PCM PSE-2 Sim g HNC EC-RISM 2.01 2.81 3.5 1.22 

PCM PSE-2 Sim g HNC PCM 2.02 2.81 3.53 1.2 

PCM PSE-3 Sim g HNC EC-RISM 2.02 2.76 3.59 1.2 

Result 119: RMSE in kcal/mol calculated with the P5 model and MP2/6-311+G**. The 

data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.19 3.06 4.02 1.16 

0 PSE-2 Sim g HNC PF 2.03 2.81 3.74 1.18 

0 PSE-1 HNC g HNC PF 2.15 3.04 3.93 1.19 

PCM PSE-1 HNC g HNC PF 2.02 3.08 3.45 1.2 

0 PSE-3 Sim g HNC PF 2.07 2.79 3.81 1.22 

Result 120: RMSE in kcal/mol calculated with the P5 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 Sim g HNC PF 2.04 3.12 3.93 1.14 

PCM PSE-2 Sim g HNC PF 1.99 2.87 3.49 1.14 

0 PSE-3 Sim g HNC PF 2.07 2.97 3.9 1.15 

PCM PSE-2 HNC g HNC PF 2.19 3.16 3.77 1.15 

PCM PSE-3 Sim g HNC PF 2.0 2.8 3.59 1.15 
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Result 121: RMSE in kcal/mol calculated with the P5 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.02 3.08 3.45 1.2 

PCM PSE-1 HNC g HNC EC-RISM 2.06 3.01 3.51 1.27 

PCM PSE-1 HNC g HNC PCM 2.07 3.01 3.55 1.28 

PCM PSE-2 HNC g HNC PF 2.08 3.13 3.59 1.24 

PCM PSE-2 HNC g HNC EC-RISM 2.11 3.06 3.64 1.3 

Result 122: RMSE in kcal/mol calculated with the P5 model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g HNC PF 2.14 3.14 3.7 1.26 

PCM PSE-1 HNC g HNC EC-RISM 2.16 3.08 3.77 1.31 

PCM PSE-1 HNC g HNC PCM 2.18 3.08 3.8 1.31 

D3 PSE-3 HNC g HNC PF 2.18 3.33 3.84 1.25 

PCM PSE-2 HNC g HNC PF 2.19 3.16 3.77 1.15 

Result 123: RMSE in kcal/mol calculated with the P5 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.19 3.06 4.02 1.16 

0 PSE-1 HNC g HNC PF 2.15 3.04 3.93 1.19 

PCM PSE-1 HNC g HNC PF 2.02 3.08 3.45 1.2 

0 PSE-3 HNC g HNC PF 2.17 2.72 4.05 1.23 

0 PSE-2 HNC l HNC PCM 2.26 2.96 4.24 1.23 

Result 124: RMSE in kcal/mol calculated with the P5 model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g HNC PF 2.19 3.16 3.77 1.15 

0 PSE-1 HNC g HNC PF 2.22 3.18 4.05 1.16 

D3 PSE-2 HNC g HNC PF 2.26 3.28 3.82 1.16 

0 PSE-2 HNC g HNC PF 2.26 3.18 4.14 1.16 

PCM PSE-2 HNC g HNC EC-RISM 2.21 3.1 3.83 1.18 

 



 ............................................................. Appendix .....................................................  167 

 
Daniel Tomazic 

Result 125: RMSE in kcal/mol calculated with the P5 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 2.86 3.41 4.11 2.41 

DZ PSE-2 HNC l HNC EC-RISM 2.98 3.43 4.21 2.56 

DZ PSE-2 HNC l HNC PF 3.0 3.41 4.26 2.58 

Result 126: RMSE in kcal/mol calculated with the P5 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 2.86 3.41 4.11 2.41 

DZ PSE-2 HNC l HNC EC-RISM 2.98 3.43 4.21 2.56 

DZ PSE-2 HNC l HNC PF 3.0 3.41 4.26 2.58 

9.10 Lowest RMSE to the P9 model 
Result 127: RMSE in kcal/mol calculated with the P9 model and B3LYP/6-

311+G**.The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

D3 PSE-3 HNC l PSE PCM 2.09 2.33 3.52 1.69 

D3 PSE-3 HNC l HNC PCM 2.09 2.35 3.49 1.7 

D3 PSE-3 HNC l PSE EC-RISM 2.17 2.52 3.44 1.84 

D3 PSE-3 HNC g HNC PCM 2.17 2.23 3.45 1.84 

D3 PSE-3 HNC g PSE PCM 2.17 2.21 3.48 1.83 

Result 128: RMSE in kcal/mol calculated with the P2 model and B3LYP/6-311+G**. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim l HNC EC-RISM 2.64 3.19 4.65 1.83 

0 PSE-1 Sim l HNC PCM 2.69 3.21 4.74 1.86 

0 PSE-1 Sim l PSE EC-RISM 2.6 3.07 4.48 1.86 

0 PSE-1 Sim l PSE PCM 2.63 3.08 4.57 1.88 

0 PSE-1 Sim l HNC PF 2.68 3.18 4.68 1.88 
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Result 129: RMSE in kcal/mol calculated with the P9 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

D3 PSE-3 HNC l PSE PCM 2.09 2.33 3.52 1.69 

D3 PSE-3 HNC l HNC PCM 2.09 2.35 3.49 1.7 

D3 PSE-3 HNC l HNC EC-RISM 2.17 2.55 3.42 1.86 

D3 PSE-3 HNC g PSE PCM 2.17 2.21 3.48 1.83 

D3 PSE-3 HNC g HNC PCM 2.17 2.23 3.45 1.84 

Result 130: RMSE in kcal/mol calculated with the P9 model, B3LYP/6-311+G** and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC l PSE EC-RISM 2.33 2.88 3.92 1.68 

D3 PSE-3 HNC l PSE PCM 2.09 2.33 3.52 1.69 

D3 PSE-3 HNC l HNC PCM 2.09 2.35 3.49 1.7 

0 PSE-1 HNC l HNC EC-RISM 2.39 2.97 4.04 1.72 

0 PSE-1 HNC g PSE PF 2.29 2.94 3.66 1.72 

Result 131: RMSE in kcal/mol calculated with the P9 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 Sim g PSE PCM 2.18 2.59 3.26 1.81 

PCM PSE-2 Sim g PSE EC-RISM 2.19 2.88 3.22 1.79 

PCM PSE-2 Sim g PSE PF 2.2 2.93 3.22 1.78 

PCM PSE-2 HNC g PSE PCM 2.2 2.84 3.5 1.74 

PCM PSE-2 Sim g HNC PCM 2.21 2.63 3.32 1.83 

Result 132: RMSE in kcal/mol calculated with the P9 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 Sim g PSE EC-RISM 2.27 2.91 3.67 1.69 

0 PSE-2 Sim g PSE EC-RISM 2.24 2.84 3.57 1.7 

0 PSE-1 Sim g PSE PF 2.29 2.99 3.66 1.7 

0 PSE-2 Sim g PSE PF 2.26 2.92 3.57 1.71 

0 PSE-1 HNC g PSE PF 2.29 2.96 3.66 1.71 
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Result 133: RMSE in kcal/mol calculated with the P9 model, B3LYP-D3/6-311+G** 

and the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g PSE PCM 2.2 2.84 3.5 1.74 

PCM PSE-2 HNC g PSE PF 2.21 2.91 3.47 1.77 

PCM PSE-2 HNC g PSE EC-RISM 2.21 2.83 3.45 1.79 

PCM PSE-2 HNC g HNC PCM 2.22 2.9 3.48 1.76 

PCM PSE-2 HNC g HNC EC-RISM 2.23 2.9 3.43 1.81 

Result 134: RMSE in kcal/mol calculated with the P9 model and B3LYP-D3/6-

311+G**. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-1 HNC g PSE EC-RISM 2.28 2.89 3.67 1.71 

0 PSE-1 HNC g PSE PF 2.29 2.96 3.66 1.71 

0 PSE-2 HNC g PSE EC-RISM 2.29 2.8 3.68 1.74 

0 PSE-2 HNC g PSE PF 2.3 2.87 3.69 1.74 

PCM PSE-2 HNC g PSE PCM 2.2 2.84 3.5 1.74 

Result 135: RMSE in kcal/mol calculated with the P9 model and MP2/6-311+G**. The 

data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-3 Sim g PSE PF 1.89 2.95 3.08 1.21 

PCM PSE-1 Sim g PSE PF 1.89 2.99 3.13 1.18 

PCM PSE-2 Sim g PSE PF 1.89 2.94 3.13 1.19 

PCM PSE-1 HNC g PSE PF 1.89 2.95 3.1 1.18 

PCM PSE-3 Sim g HNC PF 1.9 3.01 3.07 1.23 

Result 136: RMSE in kcal/mol calculated with the P9 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-3 HNC l PSE PCM 1.98 2.84 3.34 1.25 

PCM PSE-3 HNC g PSE PF 1.98 2.97 3.34 1.2 

D3 PSE-3 HNC g PSE PF 1.99 3.11 3.37 1.21 

PCM PSE-3 HNC l PSE PCM 1.99 2.84 3.33 1.28 

PCM PSE-2 HNC g PSE PF 1.99 2.98 3.3 1.1 
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Result 137: RMSE in kcal/mol calculated with the P9 model and MP2/6-311+G**. The 

data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 Sim g PSE PF 1.93 2.97 3.39 1.12 

0 PSE-2 HNC g HNC PF 2.01 2.96 3.51 1.14 

0 PSE-2 HNC g PSE PF 1.99 2.87 3.5 1.14 

0 PSE-2 Sim g HNC PF 1.96 3.06 3.43 1.14 

0 PSE-3 Sim g PSE PF 1.95 2.97 3.41 1.16 

Result 138: RMSE in kcal/mol calculated with the P9 model and MP2/aug-cc-pVDZ. 

The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g PSE PF 1.99 2.98 3.3 1.1 

0 PSE-2 HNC g PSE PF 2.04 3.02 3.6 1.12 

D3 PSE-2 HNC g PSE PF 2.07 3.1 3.39 1.13 

PCM PSE-2 HNC g HNC PF 2.03 3.06 3.34 1.13 

0 PSE-3 HNC g PSE PF 2.04 3.02 3.58 1.13 

Result 139: RMSE in kcal/mol calculated with the P9 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-1 HNC g PSE PF 1.89 2.95 3.1 1.18 

PCM PSE-2 HNC g PSE PF 1.91 2.9 3.16 1.22 

PCM PSE-2 HNC g HNC PF 1.92 2.98 3.14 1.22 

PCM PSE-1 HNC g PSE EC-RISM 1.92 2.88 3.11 1.26 

PCM PSE-1 HNC g PSE PCM 1.92 2.88 3.12 1.26 

Result 140: RMSE in kcal/mol calculated with the P9 model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-3 HNC l PSE PCM 1.98 2.84 3.34 1.25 

PCM PSE-3 HNC g PSE PF 1.98 2.97 3.34 1.2 

PCM PSE-2 HNC g PSE PF 1.99 2.98 3.3 1.1 

D3 PSE-3 HNC g PSE PF 1.99 3.11 3.37 1.21 

PCM PSE-3 HNC l PSE PCM 1.99 2.84 3.33 1.28 
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Result 141: RMSE in kcal/mol calculated with the P9 model, MP2/6-311+G** and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

0 PSE-2 HNC g HNC PF 2.01 2.96 3.51 1.14 

0 PSE-2 HNC g PSE PF 1.99 2.87 3.5 1.14 

0 PSE-1 HNC g PSE PF 1.99 2.93 3.49 1.16 

PCM PSE-1 HNC g PSE PF 1.89 2.95 3.1 1.18 

0 PSE-3 HNC g PSE PF 1.95 2.51 3.51 1.19 

Result 142: RMSE in kcal/mol calculated with the P9 model, MP2/aug-cc-pVDZ and 

the HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

PCM PSE-2 HNC g PSE PF 1.99 2.98 3.3 1.1 

0 PSE-2 HNC g PSE PF 2.04 3.02 3.6 1.12 

D3 PSE-2 HNC g PSE PF 2.07 3.1 3.39 1.13 

0 PSE-3 HNC g PSE PF 2.04 3.02 3.58 1.13 

PCM PSE-2 HNC g HNC PF 2.03 3.06 3.34 1.13 

Result 143: RMSE in kcal/mol calculated with the P9 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of all molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l HNC PCM 2.28 2.82 3.63 1.77 

DZ PSE-2 HNC l PSE PCM 2.29 2.77 3.71 1.75 

DZ PSE-2 HNC l HNC EC-RISM 2.3 2.81 3.6 1.82 

DZ PSE-2 HNC l PSE EC-RISM 2.31 2.76 3.68 1.81 

DZ PSE-2 HNC l HNC PF 2.34 2.76 3.61 1.89 

Result 144: RMSE in kcal/mol calculated with the P9 model, B3LYP/6-31+G* and the 

HNC solvent model. The data is sorted by RMSE of neutral molecules. 

Geom closure χ ref. µ ensemble all cations anions neutrals 

DZ PSE-2 HNC l PSE PCM 2.29 2.77 3.71 1.75 

DZ PSE-2 HNC l HNC PCM 2.28 2.82 3.63 1.77 

DZ PSE-2 HNC l PSE EC-RISM 2.31 2.76 3.68 1.81 

DZ PSE-2 HNC l HNC EC-RISM 2.3 2.81 3.6 1.82 

DZ PSE-2 HNC l PSE PF 2.35 2.71 3.68 1.88 
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