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Abstract

The paper deals with a semi-parametric regression problem under de-

terministic and regular design which is observed with errors. We first

linearise the problem using a sieve approach and then apply the total

penalised maximum likelihood estimator to the linearised model. Suf-

ficient conditions for
√
n -consistency and efficiency under parametric

assumption are derived and a possible misspecification bias under dif-

ferent smoothness assumptions on the design is analysed. The Monte

Carlo simulations show the performance of the estimator with simulated

data.
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2 Regression with errors in variables

1 Introduction

Consider a classical regression model

Yi = f(Xi) + εi , i = 1, . . . , n, (1.1)

which describes the relation between the response variable Y and the independent vari-

able X ∈ Rd Here Yi, i = 1, . . . , n, are independent observations of Y and εi,

i = 1, . . . , n, stand for the measurement errors, which are assumed to be i.i.d. ran-

dom variables. We consider the situation when the regressors Xi are observed with

some errors as well. Measurement error (or errors-in-variables) models have been exten-

sively studied over the last decades, see, e.g., the monographs of Schneeweiß and Mittag

(1986), Fuller (2009), Cheng and Van Ness (1999), Wansbeek and Meijer (2000), and

Carroll et al. (1995). In particular, the last book deals almost exclusively with nonlinear

regression models. According to the usual interpretation of measurement error models,

Y is an observable variable depending on the regressor vector X, here via a nonlinear

regression function f . The variable X , however, is not directly observable. Instead a

perturbed vector Z ∈ Rd is observed, which is related to X via

Zi = Xi + σνi, i = 1, . . . , n,

where σ2 stands for the noise variance in the regressors Zi , and νi are standardised

random errors. The aim is to estimate the regression function f from the observations

(Yi, Zi) . The models (1.1) obviously faces an identification problem: if the distribution of

the errors-in-regressors νi is unknown, the function f cannot be recovered consistently.

Some information about the distribution of the νi can helpful in this context. Indeed,

taking the expectation of (1.1) reveals that the conditional mean of Yi is a convolution

of the regression function f with some kernel corresponding to the distribution of the

νi :

IE
[
Y
∣∣X] =

∫
f(X + x)ϕσ(x)dx

Here ϕ(x) is the density of the νi ’s and ϕσ(x) = σ−1ϕ(x/σ). To recover f , one has

to make a deconvolution which leads to an ill-posed inverse problem (see, e.g. Fan et al.

(1991)). Note that the classical assumption that (νi) are normally distributed is in some

sense the worst-case and the function f can only be recovered with a log n accuracy

in this case. We refer to Butucea and Taupin (2008) for the detailed discussion and the

overview of the literature on this problem. In this paper we suggest a new approach to

this problem which treats the unobserved regressors (Xi) as a high-dimensional nuisance

parameter. Such a model is characterised by an increasing number of nuisance parameters
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and a fixed number of parameters of interest. It is well known that in models with an

increasing number of nuisance parameters usual estimation procedures may fail to be

consistent. The main problem tackled here is the elimination of the nuisance parameters

in such a way that the estimating procedure delivers
√
n -consistent estimators. While

in linear models the total least squares approach gives, under some conditions on the

design, consistent and efficient estimators for the parameter of interest, the situation is

much more involved in the case of nonlinear models.

For simplicity we assume below that d = 1 and the function f is univariate. We

apply the linear sieve approach which approximates the target function f as a linear

combination of the fixed basis functions Ψ(x) = (ψ1(x), . . . , ψp(x)) :

f(x) ≈ f(x,θ) = Ψ(x)>θ =

p∑
m=1

θmψm(x).

The function f(x,θ) is described by the vector θ = (θ1, . . . , θp)
> and the estimation

problem for the function f is equivalent to estimation of θ . Suppose for a moment that

the errors εi are i.i.d. standard normal and the errors νi are i.i.d. zero mean normal

with the variance σ2 . Then the log-likelihood for the full parameter υ = (θ,X) with

X = (X1, . . . , Xn) reads as follows:

L(υ) = L(θ,X) = −1

2
‖Y − Ψ(X)>θ‖2 − 1

2σ2
‖Z −X‖2

Here Ψ(X) is the p×n -matrix with entries ψm(Xi) for m = 1, . . . , p and i = 1, . . . , n .

Even if d = 1 , the parameter dimension is p+n and it is larger than the sample size. So

we need to reduce the complexity of estimation of the high-dimensional nuisance vector

X. Let φ1, . . . ,φn are n orthonormal vectors in Rn, i.e., it holds φ>i φj = δij , then

we can always represent the vector X in the form

X = η1φ1 + · · ·+ ηnφn

for an unknown vector η ∈ Rn. We assume that X can be approximately spanned by

first q � n of φj , i.e.

X ≈ η1φ1 + · · ·+ ηqφq = Φη, η ∈ IRq, Φ =
(
φ1, . . . ,φq

)
. (1.2)

This leads to the following quasi-log-likelihood parametrized by υ = (θ,η)

LΦ(υ) = LΦ(θ,η)
def
= L(θ, Φη) = −1

2
‖Y − Ψ(Φη)>θ‖2 − 1

2σ2
‖Z − Φη‖2, (1.3)

with the total dimension p + q and dimension of the target parameter p . Note, for

example, that the equality X = Φη with φ1, . . . ,φq being the first q vectors of Haar
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basis means the aggregation of points, which is equivalent to repeated measurements

model Fuller (2009). In general X 6= Φη and we need some conditions that allow to

control bias caused by dimension reduction.

2 Main results

Let us consider the following auxiliary semiparametric model

Y = f∗ + ε, Z = X∗ + σν, (2.1)

with f∗ = (f(X∗1 ), . . . , f(X∗n))>, where X∗ = (X1, . . . , Xn) is the true (unknown)

design. Let us approximate f via f(x,θ) =
∑p

m=1 θmψm(x) with θ ∈ IRp. The model

(2.1) can be viewed as a sieve approximation for the original model (1.1). In the next

sections we study the properties of this sieve maximum likelihood approach.

Note that non-concavity of the log-likelihood (1.3) is a problem from both optimiza-

tion and statistical points of view. In Section 3 we suggest to conduct an iterative

optimization procedure starting from the plug-in estimator:

υ̃(pl) = (θ̃
(pl)

, η̃(pl))

θ̃
(pl)

=
(
Ψ̃ Ψ̃>

)−1
Ψ̃Y , Ψ̃ = Ψ(Φη̃(pl)),

η̃(pl) = Φ>Z.

This is typically a good initial estimator of the full parameter υ∗ = (θ∗,η∗). However, in

order to proceed with semiparametric theory, we need to have at least one stationary point

of the likelihood, which is close to the true point with high probability, see Section 4.7.

Since υ̃(pl) is usually already close to υ∗ , we suggest to define the estimator as the closest

stationary point of the likelihood to plug-in υ̃(pl) :

υ̃ = arg min
υ=(θ,η)∈IRp+q :
∇LΦ(υ)=0

∥∥Ψ̃>(θ − θ̃
(pl)

)
∥∥2 + σ−2‖η − η̃(pl)‖2, (2.2)

and, similarly,

η̃θ∗ = arg min
η∈IRq :

∇ηLΦ(θ
∗,η)=0

‖η − η̃(pl)‖.

2.1 Consistency and efficiency

Suppose that θ∗ ∈ IRp η∗ ∈ IRq are two vectors and (ψm), (φm) are two sieves such

that the following conditions hold.
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(i) Suppose that for each i = 1, . . . , n, and each s = 0, 1, 2 it holds

|f (s)(Xi)| =
∣∣Ψ (s)(Xi)

>θ∗
∣∣ =

∣∣ p∑
m=1

θ∗mψ
(s)
m (Xi)

∣∣ ≤ Cf,s.

(ii) Assume that the eigenvalues of the matrix

Ψ(Φη∗)Ψ(Φη∗)>

n

belong to the interval [f, F] for fixed positive constants f and F ;

(iii) For each s = 0, 1, 2 , there are some fixed constants µ1,s ≤ µ2,s ≤ . . . µp,s such that

each function ψm(x) fulfills for all x

|ψ(s)
m (x)| ≤ µm,s . (2.3)

(iv) The orthogonal vectors φj fulfil ‖φj‖ = 1 and

max
i=1,...,n

q∑
j=1

φ2ij ≤
v2q
n
,

where vq , as we will see, typically depends on q.

(v) The error of approximating f∗ via Ψ(Φη∗)>θ∗ is not large, in the sense that

�
def
= ‖f∗ − Ψ(Φη∗)>θ∗‖ ≤

√
n.

(vi) Errors (εi), (νi) are zero mean mutually independent and satisfy for some 0 < νε ≤
1 , i = 1, . . . , n, and each λ

log IE exp(λεi) ≤
λ2ν2ε

2
, log IE exp(λνi) ≤

λ2ν2ε
2

,

which implies max{Var(ε),Var(ν)} ≤ ν2ε IIn.

(vii) With f from (ii) and µm,s from (iii), it holds for some wp,2 ≥ wp,1 ≥ wp,0 > 0 ,

f−1
p∑

m=1

µ2m,s ≤ w2
p,s, s = 0, 1, 2, p ∈ N.

Moreover,

σwp,1
√
p+ q + x .

√
n, � . w−1p,1

√
n,

� ≤ (wp,2vq)
−1/2√n, � ≤ v−1q

√
n,
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where expression “. ” means inequality up to a small constant depending on σ ,

Cf,1 , Cf,2 , f and νε only. It is worth to mention, that in typical situations

wp,s � ps+
1
2 and the two last inequalities are likely to be fulfilled, while the first

two require n two be large enough relatively to p and q .

Main notations The semiparametric Fisher information matrix reads as follows,

D̆2
θθ

.
= D2

θθ −AθηD
−2
ηηA

>
θη, (2.4)

where

D2
θθ

.
= Ψ(Φη∗)Ψ(Φη∗)>,

Aθη
.
= Ψ(Φη∗) diag

{
Ψ ′(Φη∗)>θ∗

}
Φ,

D2
ηη

.
= σ−2Iq + Φ> diag

{
Ψ ′(Φη∗)>θ∗

}2
Φ.

Set

♦(x) � σ
(
wp,1 + vq + wp,2vq

√
n−1(p+ q + x)

)
(p+ q + x)n−1/2 +�. (2.5)

Theorem 2.1. Under the above assumptions, there exists random vector ξ̆ ∈ IRp satis-

fying for each x ≥ 0,

IP
(
‖ξ̆‖ > √p+

√
2x
)
≤ 2e−x,

such that the following statements hold.

• If ♦2(x)/p→ 0 , then θ̃ is root-n consistent and IE‖θ̃ − θ∗‖2 � p/n .

• If ♦(x) → 0 , then θ̃ is root-n asymptotically normal and the Fisher expansion

holds

∥∥D̆θθ

(
θ̃ − θ∗

)
− ξ̆
∥∥ ≤ ♦(x)

on a set with probability at least 1− 6e−x.

• If p♦2(x)→ 0 , then the Wilks expansion holds

∣∣LΦ(θ̃, η̃)− LΦ(θ∗, η̃θ∗)− ‖ξ̆‖2/2
∣∣ ≤ √p♦(x)

on a set with probability at least 1− 6e−x.
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Discussion Note, that the estimator θ̃ depends on the matrix Φ through the linear

subspace {Φη : η ∈ IRq} . It is reasonable to expect that the condition (iv) is actually a

condition for the span of columns of Φ . Indeed, if we have another orthonormal matrix

Φ̃ , that generates the same subspace, then there is S such that

Φ̃ = ΦS, S>S = II.

Introduce

V (Φ)
def
= n max

i=1,...,n
‖Φi‖2,

where Φ1, . . . , Φn are the rows of the matrix Φ . Then, the rows of matrix Φ̃ are ΦiS

and we have

V (Φ̃) = n max
i=1,...,n

‖ΦiS‖2 = V (Φ), (2.6)

since S is orthogonal. Thus, the value V (Φ) remains the same for all orthogonal matrices

Φ representing the same subspace. Now let us analyse the value vq from the condition

(iv). Since Φ is orthonormal, we have tr(Φ>Φ) = q . On the other hand,

nmax
i≤n
‖Φi‖2 ≥

n∑
i=1

‖Φi‖2 = tr(ΦΦ>),

implying

vq ≥
√
q. (2.7)

Below we show two examples with vq �
√
q .

Example 2.1. A possible representation of a “smooth” design X∗ can be given by

X∗i = g(i/n), g : [0, 1]→ IR, i = 1, . . . , n, (2.8)

with smoothness of the function g(t) corresponding to that of X∗ . Suppose we are given

an orthonormal basis {hm(t)}∞m=1 with 〈hi, hj〉L2[0,1] = δij . Consider the corresponding

sieve approximation of the function g :

g(t) ≈
q∑

m=1

ηmhm(t).

This corresponds to Φ in (1.2) defined as follows,

φm =

√
1

n

(
hm

(
1

n

)
, . . . , hm(1)

)
, Φ =

(
φ1,φ2, . . . ,φq

)
. (2.9)
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These vectors satisfy condition (iv), but fail to be orthogonal. Nevertheless, due to or-

thogonality of the basis (hm(t), m = 1, . . . , q) under mild conditions we can orthogonalize

Φ without much loss in V (Φ).

Lemma 2.2. Suppose, that each hm is twice differentiable and

‖h(s)m ‖∞ ≤ Asms, s = 0, 1, 2.

If A2
0q/n + (A0A2 + A2

1)q
3/(6n2) ≤ 1

2 , then the matrix Φ in (2.9) can be transformed

into Φ̃ , such that Φ̃>Φ̃ = IIq and V (Φ̃) ≤ 2V (Φ) .

Example 2.2. Another example is given by Haar basis, which might be relevant to

image processing, when the function g(t) in (2.8) is piecewise smooth. Suppose that

n = 2k and consider the sequence of partitions S(0), S(1), . . . , S(k) of the set of indices

N = {1, 2, . . . , n} . First, we have S(0) = {A(0)
1 = N} — the whole set. Further, S(l+1)

is made by splitting each A
(l)
j ∈ S(l) into two equal parts A

(l+1)
2j−1 and A

(l+1)
2j . Denoting

S(l) = {A(l)
1 , . . . , A

(l)

2l
} , we have

A
(1)
1 =

{
1, . . . , n/2

}
,

A
(1)
2 =

{
n/2 + 1, . . . , n

}
,

A
(2)
1 =

{
1, . . . , n/4

}
,

A
(2)
2 =

{
n/4 + 1, . . . , n/2

}
,

A
(2)
3 =

{
n/2 + 1, . . . , 3n/4

}
,

A
(2)
4 =

{
3n/4 + 1, . . . , n

}
,

. . .

. . .

Continuing the sequence we get for l ≤ k− 1 and 1 ≤ r ≤ 2l that A
(l)
r =

{
(r− 1)n/2l +

1, . . . , rn/2l} . Note, that #A
(l)
r = n2−l . Now, denoting by φ(i) the i th component of

the vector φ , introduce

φ1(i) =
1√
n
, φ2l−1+r(i) =

√
2l−1

n


1, i ∈ A(l)

2r−1,

−1, i ∈ A(l)
2r ,

0, otherwise

where, obviously, each j = 2, . . . , n, is uniquely representable as j = 2l−1 + r with

1 ≤ l ≤ k and 1 ≤ r ≤ 2l−1 . By the construction, (φj)
n
j=1 is an orthonormal basis in

IRn . Moreover, it’s easy to see, that for q = 2l the span of vectors φ1, . . . ,φq is

{X ∈ IRn : Xi is constant over each A ∈ S(l)},

and that the projector ΦΦ> on that subspace, when applied to X ∈ IRn , averages values

Xi over i ∈ A for each A ∈ S(l) . By (2.6) we can consider any other orthonormal Φ̃ ,
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generating the same subspace. One of them is

Φ̃ =

√
2l

n



n/2l︷ ︸︸ ︷
1 1 . . . 1

n/2l︷ ︸︸ ︷
0 0 . . . 0 . . .

n/2l︷ ︸︸ ︷
0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0

. . .

0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1


,

for which condition (v) is satisfied with vq =
√

2l =
√
q , which is exactly the lower bound

(2.7). Note, that when n is not a power of 2 , one can make the same sequence of partition

dividing at each step A
(l−1)
r into A

(l)
2r−1 and A

(l)
2r such that

∣∣#A(l)
j − #A

(l)
j+1

∣∣ ≤ 1 for

each l ≤ log2 n , j < 2l .

2.2 Application to composite function estimation

Consider a regression model of the form

Yi = f
(
g(i/n)

)
+ εi, Zi = g(i/n) + νi, i = 1, . . . , n, (2.10)

where f and g are two real valued functions. Here the problem is to estimate the function

f from the observations (Y1, Z1), . . . , (Yn, Zn). This problem is related to the problem of

composite function estimation which recently got much attention in the literature (see,

e.g. Juditsky et al. (2009) and references therein). However our main interest here lies in

estimating the function f and not the whole composite function f(g(·)). Let us apply

finite-dimensional sieve approximations to f and g :

f(x) ≈ fp(x) =

p∑
m=1

θmψm(x), g(x) ≈ gq(x) =

q∑
m=1

ηmφm(x).

Thus, our problem is reduced to a parametric model (2.1) with parameter (θ,η) ∈ IRp+q

and the estimator f̃p,q of f is given by θ̃ from (2.2) corresponding to Φ given in (2.9):

f̃p,q(x) = Ψ(x)>θ̃ =

p∑
m=1

θ̃mψm(x).

The performance of the estimator depends on the values p, q and on the accuracy of

corresponding sieve approximation. One can describe the dependence of the bias of f̃p,q

on the values of p and q through the so-called Sobolev elipsoids

Sψ(β,Q) =

{
f(x) =

∞∑
m=1

θmψm(x) : θ ∈ `2,
∞∑
m=1

m2βθ2m ≤ Q2

}
.

We refer to Tsybakov (2009) for the proof of the following result.
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Lemma 2.3. Let f ∈ Sψ(β,Q), then

‖f − fp‖2 ≤ Qp−β. (2.11)

Moreover, if β > s + 1/2 and each ψm(x), is s ≥ 0 times continuously differentiable

with ‖ψ(s)
m ‖∞ ≤ Ams, m = 1, 2 . . . for some A > 0 , then

‖f (s)p ‖∞ ≤
AQ√

2(β − s)− 1
, ‖f (s) − f (s)p ‖∞ ≤

AQ√
2(β − s)− 1

p−(β−s)+
1
2 . (2.12)

In order to apply Theorem 2.1, we need to check conditions (i) - (vi). Here we

introduce a list of conditions for the nonparametric problem, which ensure those of the

reduced parametric problem.

(a) The bases (ψm) and (φm) satisfy, for some A > 0 and each s = 0, 1, 2,

‖ψ(s)
m ‖∞ ≤ Ams, ‖φ(s)m ‖∞ ≤ Ams;

(b) f ∈ Sψ(β,Q) and g ∈ Sφ(βX , Q) ;

(c) Ψ(X∗)Ψ(X∗)> ≥ (fn)IIp ;

(d) for some C0 and each interval I ⊂ IR it holds

1

n

n∑
i=1

1I{X∗i ∈ I} ≤ C0 max

(
µ(I),

1

n

)
,

where µ(I) is the length of the interval.

Discussion Let us remark on the assumption (c). One may argue that this condition is

not exactly nonparametric, as it depends on the dimension p . In that case we suggest to

consider another condition, that seems more interpretable. The following lemma states,

that if the the points X∗i are dense enough on the interval [0, 1] , then (c) is satisfied.

Lemma 2.4. Let (ψm) satisfy (a). Suppose, that with some constant c0 > 0 and some

small enough δ > 0 it holds

1

n

n∑
i=1

1I
{
X∗i ∈ I

}
≥ c0

(
µ(I)− δp−2

)
for each interval I ⊂ [0, 1]. Then we have,

n−1Ψ(X∗)Ψ(X∗)> ≥ c0
(
1− α(δ)

)
IIp,

with α(δ)→ 0 as δ → 0 .
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Let us check other conditions of Theorem 2.1. Condition (v) follows from the following

lemma.

Lemma 2.5. Let (a) and (d) hold, and (b) be satisfied with β, βX > 3/2 . Then,

‖f∗ − Ψ(X∗)>θ∗‖ ≤ C
1/2
0 Q

√
np−β +

C
1/2
0 AQ√
β − 3/2

p−β+1,

and

‖Φη∗ −X∗‖ ≤ Q
√
nq−βX +

AQ√
βX − 3/2

q−βX+1.

Additionally, if p, q ≤
√
n , then it holds

‖f∗ − Ψ(X∗)>θ∗‖ ≤ Q′
√
np−β, ‖Φη∗ −X∗‖ ≤ Q′

√
nq−βX , (2.13)

with Q′ = C
1/2
0 Q

(
1 + A√

min{β,βX}−3/2

)
not depending on p, q and n .

Condition (i) follows from inequality (2.12), and the rest of the conditions can be

checked straightforward. Manipulating with the error term ♦(x) , given in (2.5), we can

show the following result.

Proposition 2.6. Let β > 2.5 and βX > 3/2 . Then, by choosing

p
def
= n

1
2β+1 , q

def
= pβ/βX = n

β
2ββX+βX ,

we get the standard non-parametric rate of convergence

‖f − f̃p,q‖2 .IP n−
β

2β+1 .

This rate is in fact optimal over the class Sψ(β,Q).

A stronger assumption, that f is Hölder smooth on [0, 1], i.e. f ∈ Σ(β, L) (see,

e.g. Tsybakov (2009)) for some β > 0 and ψm(x) = cos(2πmx) , yields f ∈ S(β, L/πβ)

and the corresponding inequality (2.11). However, one can get a better bound in the

sup-norm

‖f (s) − f (s)p ‖∞ ≤ L′p−(β−s) ln p,

for some L′ not depending on p and β > s (compared to β > s + 1/2 in (2.12)).

Thus, such an assumption helps to “relax” the conditions β > 2.5 and βX > 3/2 in the

Proposition 2.6. Assume that

(a’) both basis are trigonometric: ψm(x) = φm(x) = cos(2πmx) ;
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(b’) f ∈ Σ(β, L) and g ∈ Σ(βX , L) .

and the conditions (c), (d) remain the same. Then we have the following proposition.

Proposition 2.7. Assume (a’), (b’), (c) and (d). Let β > 2 and βX ≥ 3/2 . Then, by

choosing

p
def
= n

1
2β+1 , q

def
= pβ/βX = n

β
2ββX+βX ,

we get the standard non-parametric rate of convergence

‖f − f̃p,q‖2 .IP n−
β

2β+1 .

This rate is in fact optimal over the class Σ(β, L).

3 Simulation results

Consider first a semiparametric regression model (2.10) with

f(x) =

p∑
k=1

θ∗m cos(πmx)

and

g(x) =
∞∑
k=1

cos(πkx)

k2β
= (−1)β−1(2π)2β

B2β(x/2)

2(2β)!
, x ∈ [0, 1]

for some natural β, p > 0, where Bm(x) is a Bernoulli polynomial of order m. Note

that g ∈ Scos(2β + 1/2, Q) for some Q > 0. The aim is to estimate the function f, i.e.,

the vector θ∗ = (θ∗1, . . . , θ
∗
p) based on the sample (Y1, Z1), . . . , (Yn, Zn). We assume that

the errors εi, νi, i = 1, . . . , n, in (2.10) are normal i.i.d. with zero mean and variance

0.1 . We consider the following sieve approximation for g

g(x) ≈ gq(x) =

q∑
m=1

η∗m cos(πmx)

with η∗m = m−2β. In order to compute the corresponding ML estimates for θ∗ and

η∗ = (η∗1, . . . , η
∗
q ) we use the following strategy. First we compute a preliminary plug-in

estimate η(0) for η∗ by applying the standard least-squares approach to the linear model

Zi = gq(i/n) + νi, i = 1, . . . , n.

A preliminary estimate θ(0) for θ∗ is then obtained from the model

Yi = f
(
g(0)q (i/n)

)
+ εi, i = 1, . . . n,
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with g
(0)
q (x) =

∑q
m=1 η

(0)
m φm(x). Then we maximize the ML function

LΦ(θ,η) = −‖Y − Ψ(Φη)>θ‖2 − ‖Z − Φη‖2

iteratively over θ and η starting at (θ(0),η(0)). To minimize LΦ(θ,η) over η, we use

the Levenberg-Marquardt algorithm (minpack.lm library in R). Such alternation maxi-

mization procedure usually converges rather quickly. In Figure 3.1 we show the boxplots

of the weighted norm (n/p)‖θ∗ − θ(10)‖2 based on 1000 independent samples each of

length n from an EIV model with parameters θ∗ = (1, . . . , 1), β = 2, q = 5 as function

of n (left) and p (right). A stable behaviour can be observed for increasing values of n

and p supporting the results of Theorem 2.1. Next we turn to a nonparametric model
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Figure 3.1: Left: the boxplots of the loss (n/p)‖θ∗− θ(10)‖2 as a function of the sample

size n. Right: the boxplots of the loss (n/p)‖θ∗− θ(10)‖2 as a function of the dimension

p.

with

f(x) =
∞∑
k=1

sin(πkx)

k2α+1
= (−1)α−1(2π)2α+1B2α+1(x/2)

2(2α+ 1)!
, x ∈ [0, 1],

where α = 3. In Figure 3.2 we show the empirical error ‖Y − Ψ(Φη(10))>θ(10)‖2/n as

function of p and q for n = 100. Clear minima can be observed in each plot and their

locations are in accordance with the results of Proposition 2.6. As also can be seen, the

dependence of estimation error on the dimension q of the nuisance parameter η is much

weaker then on p (at least in the case of large p and q ). Figure 3.3 graphically shows

500 realisations of the estimate f̃p,q for n = 100 (left) and n = 500 (right) and suitably

chosen p, q.
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Figure 3.2: Left: the boxplots of the empirical loss (1/n)‖f − Ψ(Φη(10))>θ(10)‖2 as a

function of the dimension p. Right: the boxplots of the loss (1/n)‖f−Ψ(Φη(10))>θ(10)‖2

as a function of the dimension q.
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Figure 3.3: Function f(x) (red) together with 500 estimates based on 500 independent

samples each of the length n = 100 (left) and n = 500 (right) with properly chosen p

and q.

4 Proofs

This section is organized as follows. First, we apply general finite sample theory imposed

in Spokoiny (2012) and Andresen and Spokoiny (2013) to parametric problem (2.1),
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which will lead us to the proof of Theorem 2.1. Then, we present proofs for the rest of

statements, in the order in which they appear above.

4.1 Main objects

We start with describing main objects that will be helpful through the whole paper. The

stochastic term ζΦ(θ,η) is easy to describe:

ζΦ(θ,η) = LΦ(θ,η)− IELΦ(θ,η) = ε>Ψ(Φη)>θ + σ−1ν>Φη.

Below we denote by Ψ (s)(X) the matrix with the entries ψ
(s)
m (Xi) which is obtained by

entry-wise differentiation of Ψ(X) . For a vector a = (ai) ∈ IRn , the notation diag(a)

means a n×n diagonal matrix with the diagonal entries ai . Then the score ∇ζΦ(θ,η)

can be written in the block-wise form as

∇ζΦ(θ,η) =

(
∇θζΦ(θ,η)

∇ηζΦ(θ,η)

)
=

(
Ψ(Φη)ε

σ−1Φ>ν + Φ> diag
{
Ψ ′(Φη)>θ

}
ε

)
.

Here diag{Ψ ′(X)>θ} means the diagonal matrix with the diagonal entries
∑

m θmψ
′
m(Xi) .

The Hessian of the stochastic component reads as

∇2ζΦ(θ,η) =

(
0 Ψ ′(Φη) diag(ε) Φ

Φ> diag(ε)Ψ ′(Φη)> Φ> diag
{
Ψ ′′(Φη)>θ

}
diag(ε) Φ

)

The lower right block of this matrix is diagonal with the diagonal entries
∑

m θmψ
′′
m(Xi)εi

for i = 1, . . . , n (not taking into account left and right multiplying by Φ ).

Further, the expected log-likelihood reads (up to a constant term) as

−2IELΦ(θ,η) = ‖f∗ − Ψ(Φη)>θ‖2 + σ−2‖Φη −X∗‖2.

The related matrix D2(θ,η) is

D2(υ) = −∇2IELΦ(θ,η) =

(
D2

θθ(υ) Aθη(υ)

A>θη(υ) D2
ηη(υ)

)
,

where

D2
θθ(υ) = Ψ(Φη)Ψ(Φη)>,

Aθη(υ) = Ψ(Φη) diag
{
Ψ ′(Φη)>θ

}
Φ+ Ψ ′(Φη) diag

{
f∗ − Ψ(Φη)>θ

}
Φ,

D2
ηη(υ) = σ−2IIq + Φ> diag

{
Ψ ′(Φη)>θ

}2
Φ+ Φdiag

{
Ψ ′′(Φη)>θ

}
diag

{
f∗ − Ψ(Φη)>θ

}
Φ,
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and define also

D2
θθ = Ψ(Φη∗)Ψ(Φη∗)>,

Aθη = Ψ(Φη∗) diag
{
Ψ ′(Φη∗)>θ∗

}
Φ,

D2
ηη = σ−2IIq + Φ> diag

{
Ψ ′(Φη∗)>θ∗

}2
Φ,

which are the blocks of the matrix

D2 =

(
D2

θθ Aθη

A>θη D2
ηη

)
.

The matrix D2 is defined in a that way to be close to D2(υ∗) , but is more convenient

to work with.

Finally, we need to measure distance between υ ’s. Motivated by the view of D2

define

H2
0 =

(
D2

θθ 0

0 σ−1IIq

)
,

and the local vicinity for parameter (θ,η) among projection (θ∗,η∗ = Φ>X∗)

Υ◦(r) = {υ = (θ,η) : ‖H0(υ − υ∗)‖2 = ‖Dθθ(θ − θ∗)‖2 + σ−2‖η − η∗‖2 ≤ r2}.

4.2 Auxiliary lemmas

The first lemma describes the variability of the matrix Ψ(X) .

Lemma 4.1. For any vector γ ∈ IRp with ‖γ‖ ≤ 1 , it holds with wp,s from (2.3)∥∥Ψ (s)(X)>D−1θθγ
∥∥
∞ ≤

wp,s√
n
, s = 0, 1, 2

Proof. By Cauchy-Schwartz inequality

|Ψ (s)(Xi)
>D−1θθγ|

2 ≤ ‖D−1θθγ‖
2 ×

p∑
i=1

ψ(s)
m (Xi) ≤ f−1

p∑
i=1

µ2m,s.

In addition, we need to bound the value Ψ (s)(X)>θ on the neighbourhood of θ∗ .

Lemma 4.2. For s = 0, 1, 2 and any θ ∈ IRp satisfying ‖Dθθ(θ − θ∗)‖ ≤ r and each

X ∈ IR it holds ∣∣Ψ (s)(X)>(θ − θ∗)
∣∣ ≤ wp,s r√

n
,

∣∣Ψ (s)(X)>θ
∣∣ ≤ Cf,s +

wp,s r√
n
.
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Proof. Using previous lemma with γ = r−1Dθθ(θ − θ∗) ,

∣∣Ψ (s)(X)>(θ − θ∗)
∣∣= ∣∣Ψ (s)(X)>D−1θθ ×Dθθ(θ − θ∗)

∣∣ ≤ rwp,s√
n
,

and the second follows by
∣∣Ψ (s)(X)>θ

∣∣ ≤ ∣∣Ψ (s)(X)>θ∗
∣∣+
∣∣Ψ (s)(X)>(θ − θ∗)

∣∣ .
In particular, if r ≤

√
n/wp,s , then |Ψ (s)(X)>θ| ≤ Cf,s + 1 .

Lemma 4.3. If σ−1‖X −X∗‖ ≤ r , then it holds for s = 0, 1, 2

∥∥{Ψ (s)(X)− Ψ (s)(X∗)
}>
D−1θθγ

∥∥ ≤ σwp,s+1 r√
n

,

∥∥{Ψ (s)(X)− Ψ (s)(X∗)
}>
θ∗
∥∥ ≤ σ Cf,s+1 r.

Proof. We have with some X ′ on the line connecting X , X∗

{Ψ (s)(X)− Ψ (s)(X∗)}>D−1θθγ = (X −X∗)> diag
{
Ψ (s+1)(X ′)>D−1θθγ

}
,

and the first inequality by Lemma 4.1.

By analogy, the second inequality follows from
∣∣Ψ (s+1)(X ′)>θ∗

∣∣ ≤ Cf,s+1 and

{Ψ (s)(X)− Ψ (s)(X∗)}>θ∗ = (X −X∗)> diag
{
Ψ(X ′)>θ∗

}
.

The next lemma checks identifiability condition (I) of Andresen and Spokoiny (2013).

Lemma 4.4. Define

ρ =

√√√√ C2
f,1

σ−2 + C2
f,1

.

Then,

∥∥D−1θθAθηD
−1
ηη

∥∥ ≤ ρ, D2 ≥ (1− ρ)H2
0 , D2 ≤ (1− ρ)−1H2

0 .

Proof. Define, D̃2
ηη = D2

ηη − σ−2IIq . Then,

D̃2 =

(
D2

θθ Aθη

A>θη D̃2
ηη

)
=

(
Ψ(Φη∗)Ψ(Φη∗)> Ψ(Φη∗) diag

{
Ψ ′(Φη∗)>θ∗

}
Φ

Φ> diag
{
Ψ ′(Φη∗)>θ∗

}
Ψ(Φη∗) Φ> diag

{
Ψ ′(Φη∗)>θ∗

}2
Φ

)

=

(
Ψ(Φη∗)

Φ> diag
{
Ψ ′(Φη∗)>θ∗

} )( Ψ(Φη∗)

Φ> diag
{
Ψ ′(Φη∗)>θ∗

} )> ,
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meaning that D̃2 is nonnegative and ‖D−1θθAθηD̃
−1
ηη‖ ≤ 1 . Thus,

‖D−1θθAθηD
−1
ηη‖ ≤ ‖D̃ηηD

−1
ηη‖ ≤ ‖diag{Ψ ′(Φη∗)>θ∗}2(σ−2 + diag{Ψ ′(Φη∗)>θ∗}2)−1‖1/2,

which is less than ρ since the function x/(σ−2 +x) is non decreasing and |Ψ ′(X)>θ∗| ≤
Cf,1 by the condition (i). So, by this inequality we have

D2 ≥ (1− ρ)

(
D2

θθ 0

0 D2
ηη

)
≥ (1− ρ)H2

0 .

Further, using D2
ηη ≤ (1 + σ2C2

f,1)H
2
σ = (1− ρ2)−1H2

σ we get

D2 ≤ (1 + ρ)

(
D2

θθ 0

0 D2
ηη

)
≤ (1 + ρ)(1− ρ2)−1H2

0 .

Lemma 4.5. The vector b = D−1∇LΦ(υ∗) satisfies ‖b‖ ≤ ‖f∗ − Ψ(Φη∗)>θ∗‖ .

Proof. The explicit expression for the vector is as follows

∇IELΦ(υ∗) =

(
Ψ(Φη∗)

(
f∗ − Ψ(Φη∗)>θ∗

)
Φ> diag

{
Ψ ′(Φη∗)>θ∗}

(
f∗ − Ψ(Φη∗)>θ∗

) )

=

(
Ψ(Φη∗)

Φ> diag
{
Ψ ′(Φη∗)>θ∗}

)(
f∗ − Ψ(Φη∗)>θ∗

)
.

Define A = Ψ(Φη∗) , B = Φ> diag
{
Ψ ′(Φη∗)>θ∗} . Then,

D2 =

(
AA> AB>

AB> σ−2IIp +BB>

)
≥

(
A

B

)(
A

B

)>
.

Hence,

‖D−1∇IELΦ(υ∗)‖ ≤
∥∥∥D−1( A

B

)∥∥∥× ‖f∗ − Ψ(Φη∗)>θ∗‖ ≤ ‖f∗ − Ψ(Φη∗)>θ∗‖.

4.3 Local perturbation of D2(υ)

What follows relates to condition (L0) of Andresen and Spokoiny (2013). Our purpose

is to bound ‖H−10 (D2(υ) − D2)H−10 ‖ for υ ∈ Υ◦(r) . The result will depend on the

smoothness of design basis Φ . It holds,

V (Φ) = sup
γ∈IRq , ‖γ‖=1

‖Φγ‖∞, vq ≥ n1/2V (Φ),
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and we only use vq through inequality ‖Φγ‖∞ ≤ vq√
n
‖γ‖ for each γ ∈ IRq .

Lemma 4.6. Let r satisfies r ≤
√
n/wp,1 . Then υ ∈ Υ◦(r) yields

‖H−10 (D2(υ)−D2)H0‖ ≤ δ(r)

def
= C∗∗σ

wp,1 + vq +
wp,2vqr√

n√
n

{r +�},

where

� = ‖f∗ − Ψ(Φη∗)>θ∗‖,

C∗ = (σ ∨ 1)×
(
Cf,1 ∨ Cf,2 + 1

)
,

C∗∗ = 8C∗ ∨ 3(C∗)2.

Proof. For α = (β,γ) ∈ IRp+q with ‖α‖ ≤ 1 we have

∣∣α>H−10 (D2(υ)−D2)H−10 α
∣∣ ≤ ∣∣β>D−1θθ (D2

θθ(υ)−D2
θθ)D−1θθβ

∣∣
+2σ

∣∣β>D−1θθ (Aθη(υ)−Aθη)γ
∣∣+ σ2

∣∣γ>(D2
ηη(υ)−D2

ηη)γ
∣∣.

We will proceed with each term separately. First,

β>D−1θθ

{
D2

θθ(υ)−D2
θθ

}
D−1θθβ

= β>D−1θθ

{
Ψ(Φη)Ψ(Φη)> − Ψ(Φη∗)Ψ(Φη∗)>

}
D−1θθβ

= 2γ>D−1θθ

{
Ψ(Φη)− Ψ(Φη∗)

}
Ψ(Φη∗)>D−1θθγ +

∥∥{Ψ(Φη)− Ψ(Φη∗)
}>
D−1θθγ

∥∥2
≤ 2σwp,1r√

n
+

(
σwp,1r√

n

)2

≤ 3σwp,1r√
n

.

Second, we use decomposition

Aθη(υ)−Aθη = Ψ(Φη∗) diag{(Ψ ′(Φη)− Ψ ′(Φη∗))>θ∗}Φ

+Ψ(Φη∗) diag{Ψ ′(Φη∗)>(θ − θ∗)}Φ

+(Ψ(Φη)− Ψ(Φη∗)) diag{Ψ ′(Φη)>θ}Φ

+Ψ ′(Φη) diag{f∗ − Ψ(Φη)>θ}Φ.
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Define the following vectors,

a = (Ψ ′(Φη)− Ψ ′(Φη∗))>θ∗,

b = Ψ(Φη∗)>D−1θθβ,

c = Ψ ′(Φη∗)>(θ − θ∗),

d = (Ψ(Φη)− Ψ(Φη∗))>D−1θθβ,

e = Ψ ′(Φη)>θ,

g = Φγ

h = Ψ ′(Φη)>D−1θθβ,

k = f∗ − Ψ(Φη)>θ,

‖a‖ ≤ Cf,2r,

‖b‖∞ ≤ wp,0/
√
n, ‖b‖ = 1,

‖c‖∞ ≤ wp,1r/
√
n,

‖d‖ ≤ σwp,1r/
√
n,

‖e‖∞ ≤ Cf,1,

‖g‖ ≤ 1,

‖h‖∞ ≤ wp,1/
√
n,

‖k‖ ≤ C∗r +�,

where the inequalities follow from Lemmas 4.1, 4.2 and 4.3. Then,

∣∣β>D−1θθ (Aθη(υ)−Aθη)γ
∣∣ =

∣∣b> diag(a)g + b> diag(c)g + d> diag(e)g + h> diag(k)g
∣∣

=

∣∣∣∣∣
n∑
i=1

biaigi + bicigi + dieigi + hikigi

∣∣∣∣∣
≤ ‖b‖∞‖a‖‖g‖+ ‖b‖‖c‖∞‖g‖+ ‖d‖‖e‖∞‖g‖+ ‖h‖∞‖k‖‖g‖

≤
{
C∗wp,0r + wp,1r + C∗wp,1r + wp,1(C

∗r +�)
}
/
√
n

≤ 3C∗wp,1√
n
{r +�},

taking into account that wp,0 ≤ wp,1 .

Third, we write,

D2
ηη(υ)−D2

ηη = Φ> diag
{(
Ψ ′(Φη)>θ

)2 − (Ψ ′(Φη∗)>θ∗)2}Φ
+Φ> diag{Ψ ′′(Φη)>θ} diag{f∗ − Ψ(Φη)>θ}Φ.

Define,

a = Ψ ′(Φη)>θ + Ψ ′(Φη∗)>θ∗,

b =
(
Ψ ′(Φη)− Ψ ′(Φη∗)

)>
θ∗,

c = Ψ ′(Φη)>(θ − θ∗),

d = Ψ ′′(Φη)>θ,

e = f∗ − Ψ(Φη)>θ,

g = Φγ,

‖a‖∞ ≤ 2C∗,

‖b‖ ≤ C∗r,

‖c‖∞ ≤ wp,1r/
√
n,

‖d‖∞ ≤ C∗ + wp,2r/
√
n,

‖e‖ ≤ C∗r +�,

‖g‖∞ ≤ vq/
√
n, ‖g‖ = 1.
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Then,∣∣γ>(D2
ηη(υ)−D2

ηη)γ
∣∣ =

∣∣∣g> diag{a} diag{b+ c}g + g> diag{d} diag{e}g
∣∣∣

=

∣∣∣∣∣
n∑
i=1

(g2i aibi + g2i aici + g2i diei)

∣∣∣∣∣
≤ ‖a‖∞‖g‖∞‖g‖‖b‖+ ‖a‖∞‖c‖∞‖g‖2 + ‖d‖∞‖g‖∞‖g‖‖e‖

≤
{

4(C∗)2vq + 2C∗wp,1 + C∗wp,2vq/
√
n
}r +�

n1/2

Putting all together gives the required bound.

4.4 Check of exponential moments of derivatives

The following two lemmas check (ED1) and (ED2) of Andresen and Spokoiny (2013),

respectively.

Lemma 4.7. For υ ∈ Υ◦(r) it holds for each γ ∈ IRp+q

log IE exp
(
γ>H−10 ∇ζΦ(υ)

)
≤ ν1(r)2‖γ‖2

2

with ν1(r) =
√

2νε [1 + σCf,1 + σwp,1r/
√
n] .

Proof. We have for γ = (α,β) , α ∈ IRp and β ∈ IRq

log IE exp
(
γ>H−10 ∇ζΦ(υ)

)
= log IE exp

(
α>D−1θθΨ(Φη)ε

+β>Φ>ν + σβ>Φ> diag
{
Ψ ′(Φη)>θ

}
ε
)

≤ ν2ε‖u‖2

2
+
ν2ε‖β‖2

2
,

with u = α>D−1θθΨ(Φη) + σβ>Φ> diag
{
Ψ ′(Φη)>θ

}
. By Lemma 4.3 we get

‖α>D−1θθΨ(Φη)‖ ≤ ‖α>D−1θθΨ(Φη∗)‖+ ‖α>D−1θθ {Ψ(Φη)− Ψ(Φη∗)}‖

≤ (1 + σwp,1r/
√
n)‖α‖

Then, we use Lemma 4.2 to get ‖β>Φ> diag
(
Ψ ′(Φη)>θ

)
‖ ≤ (Cf,1 + wp,1r/

√
n)‖β‖ .

Summing up we get the required statement.

Lemma 4.8. Suppose υ ∈ Υ◦(r) . Then it holds for each γ1,2 ∈ IRp+q

log IE exp
(
γ>1 H

−1
0 ∇

2ζΦ(υ)H−10 γ2

)
≤ ν2(r)2‖γ1‖2‖γ2‖2

2

with ν2(r)2 =
√

3ν2εσ [wp,1 + σ(Cf,2 + wp,2r/
√
n)vq] /

√
n .
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Proof. Let γi = (αi,βi) , αi ∈ IRp and βi ∈ IRq , i = 1, 2 . Define then bi = Φβi .

By orthonormality of columns of Φ we have ‖bi‖ = ‖βi‖ and by condition (v) we have

‖bi‖∞ ≤ vq√
n
‖βi‖ .

So, by generalized Hölder’s inequality we have

log IE exp
(
γ>1 H

−1
0 ∇

2ζΦ(υ)H−10 γ2

)
≤ log IE exp

(
σα>1 D

−1
θθΨ

′(Φη) diag(ε) b2 + σα>2 D
−1
θθΨ

′(Φη) diag(ε) b1

+σ2b>1 diag
{
Ψ ′′(Φη)>θ

}
diag(ε) b2

)
≤ 1

3
log IE exp

(
3σα>1 D

−1
θθΨ

′(Φη) diag(ε) b2

)
+

1

3
log IE exp

(
3σα>2 D

−1
θθΨ

′(Φη) diag(ε) b1

)
+

1

3
log IE exp

(
3σ2b>1 diag

{
Ψ ′′(Φη)>θ

}
diag(ε) b2

)
.

Let’s deal with each term separately. For α ∈ IRp, b = Φβ ∈ IRn we have

α>D−1θθΨ
′(X) diag(ε)b = u> diag(ε)b =

n∑
i=1

uibiεi,

where u> = α>D−1θθΨ
′(Φη) by Lemma 4.1 satisfy ‖u‖∞ ≤ wp,1‖α‖/

√
n . Thus,

log IE exp
(

3σα>D−1θθΨ
′(Φη) diag(ε)b

)
=

n∑
i=1

log IE exp(3σuibiεi)

≤ 9ν2εσ
2‖u‖2∞‖b‖2

2

≤
9ν2εσ

2w2
p,1‖α‖2‖β‖2/n

2
.

Further,

b>1 diag
(
Ψ ′′(Φη)>θ

)
diag(ε)b2 =

n∑
i=1

b1,ikiεi

with k = diag
{
Ψ ′′(Φη)>θ

}
b2 , which by Lemma 4.2 and condition (v) satisfy ‖k‖∞ ≤

(Cf,2 + wp,2r/
√
n)

vq√
n
‖β2‖. This brings us to

log IE exp
(

3σ2b> diag
(
Ψ ′′(Φη)>θ

)
diag(ε)b

)
≤

9σ4(Cf,2 + wp,2r/
√
n)2

C2
Φ
n ‖β1‖2‖β2‖2

2
.
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Bringing those inequalities together we get

log IE exp
(
γ>1 H

−1
0 ∇

2ζΦ(υ)H−10 γ2

)
≤ 3ν2εσ

2

2

[w2
p,1

n

(
‖α1‖2‖β2‖2 + ‖α1‖2‖β2‖2

)
+σ2(Cf,2 + wp,2r/

√
n)2

C2
Φ

n
‖β1‖2‖β2‖2

]
≤

3ν2εσ
2
[
w2
p,1 + σ2(Cf,2 + wp,2r/

√
n)2v2q

]
‖γ1‖2‖γ2‖2

2n
.

4.5 Large deviation bound

In this section we state large deviation inequality for the full estimator (θ̃, η̃) . First, we

check concentration of the plug-in estimator.

Lemma 4.9. It holds with probability at least 1− 4e−x ,

υ̃(pl) =
(
θ̃

(pl)

, η̃(pl)
)
∈ Υ◦(r1),

where r1 = 4(1 + σCf,1)νε
√
p+ q + x .

Proof. First of all, we have with probability 1− 2e−x ,

σ−1‖η̃(pl) − η∗‖ ≤ νε(
√
q +
√

2x).

Then, using Lemma 4.3 with
σνεwp,1(

√
q+
√
2x)√

n
≤ 1

6 by condition (vii),

Ψ̃ Ψ̃> ≥ D2
θθ/2,

∥∥(Ψ̃ − Ψ(Φη∗))>θ∗
∥∥ ≤ σCf,1νε(√q +

√
2x).

So,

Ψ̃>(θ̃
(pl)

− θ∗) = Ψ̃(Ψ̃ Ψ̃>)−1Ψ̃
(
Y − Ψ(Φη∗)>θ∗ + (Ψ(Φη∗)− Ψ̃)>θ∗

)
,

and, since
∥∥(Ψ̃ Ψ̃>)−1/2Ψ̃

∥∥ = 1 , we have

∥∥Ψ̃>(θ̃
(pl)

− θ∗)
∥∥ ≤ ∥∥(Ψ̃ Ψ̃>)−1/2Ψ̃ε

∥∥+ σCf,1νε(
√
q +
√

2x),

where conditioned on Z , we have
∥∥(Ψ̃ Ψ̃>)−1/2Ψ̃ε

∥∥ ≤ νε(√p+
√

2x) with probability at

least 1− 2e−x .

Further we find a stationary point of log-likelihood as a maxima over the set

Υ◦(R0), R0
def
=

√
n

2σwp,1
.
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Lemma 4.10. It holds with probability at least 1− e−x ,

sup
υ∈Υ◦(R0)\Υ◦(r2)

LΦ(υ)− LΦ(υ∗) ≤ 0, (4.1)

where

r2 = C0{
√
p+ q + x ∨�},

C0 = 96νε
[
2(σCf,1 ∨ 1) + 1

]
(σCf,1 + 3/2).

Proposition 4.11. Let

2σC0wp,1{
√
p+ q + x ∨�} ≤

√
n.

Then, we have with probability at least 1− 5e−x

(θ̃, η̃), (θ∗, η̃θ∗) ∈ Υ◦(r0),

where r0 = f−1F(r1 + r2) + r1.

Proof. The given inequality means R0 > r2 , thus the maximum of LΦ(υ) over Υ◦(R0)

lies inside Υ◦(r2) with probability at least 1− e−x and, therefore, is a stationary point.

So, we have such a point at most r1 + r2 far from the plug-in estimator. Thus, the

closest stationary point to plug-in satisfies w.h.p.

‖H0(υ̃ − υ∗)‖ ≤ f−1F(r1 + r2) + r1.

Obviously, the same arguments work for (θ∗, η̃θ∗) .

Remark 4.1. The inclusion υ̃, υ̃θ∗ ∈ Υ◦(r0) implies

υ̂θ∗ =
(
θ̃, η̃θ∗ −D−2ηηA

>
θη(θ̃ − θ∗)

)
∈ Υ◦(3r0),

since

‖H0(υ̂θ∗ − υ∗)‖ ≤ r0 + σ−1‖η̃θ∗ − η∗‖+ ‖HσD
−2
ηηA

>
θη(θ̃ − θ∗)‖

≤ 2r0 + ‖HσD
−1
ηη‖ × ‖D−1ηηA

>
θηD

−1
θθ ‖ × ‖Dθθ(θ̃ − θ∗)‖

≤ 3r0,

where ‖D−1ηηA
>
θηD

−1
θθ ‖ ≤ ρ < 1 from Lemma (I) . This strange object we need to show

Wilks expansion.



belomestny, d., klochkov, e., and spokoiny, v. 25

To proof Lemma 4.10 we are going to straightforwardly use Theorem 2.1 of Andresen

and Spokoiny (2013), which requires two conditions: the first one controls the stochastic

part of LΦ(υ) − LΦ(υ∗) and the second one controls it’s expectation. Bounding the

stochastic part requires check of the exponential moments of the score ∇ζΦ(υ) , which is

done by Lemma 4.7. Now we need to check that −IE
[
LΦ(υ)−LΦ(υ∗)

]
grows quadrati-

cally.

Lemma 4.12. Let A, b > 0 satisfy

[
4(σCf,1 ∨ 1) + 2

]√
b + 2A−2 ≤ 1. (4.2)

Then, υ ∈ Υ◦(R0) with r = ‖H0(υ − υ∗)‖ ≥ A� implies

−2IE
[
LΦ(υ)− LΦ(υ∗)

]
≥ br2.

Proof of Lemma 4.10. First,

log IE exp
{
γ>H−10 ∇ζΦ(υ)

}
≤ ν21(R0)‖γ‖2

2
, υ ∈ Υ◦(R0),

where ν21(R0) is given in Lemma 4.7. Since R0 ≤ w−1p,1
√
n/2 , we can take

ν1(R0) ≤ ν1
def
=
√

2νε
(
3/2 + σCf,1

)
.

Further, setting A2 = 2b−1 = 16
[
2(σCf,1 ∨ 1) + 1

]2
in Lemma 4.12, we have by the

theorem mentioned above, that (4.1) holds, when

r2 ≥
6ν1
b

√
2(p+ q) + x,

which finishes the proof.

Proof of Lemma 4.12. We need to show that for υ = (θ,η) with ‖H0(υ−υ∗)‖ = r and

A� ≤ r ≤ R0 it holds,

‖f∗ − Ψ(Φη)>θ‖2 + σ−2‖η − η∗‖2 − ‖f∗ − Ψ(Φη∗)>θ∗‖2 ≥ br2. (4.3)

We have,

f∗ − Ψ(Φη)>θ = Ψ(Φη∗)>(θ − θ∗) + (Ψ(Φη)− Ψ(Φη∗))>(θ − θ∗)

+(Ψ(Φη)− Ψ(Φη∗))>θ∗.
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Denote,

xθ = Ψ(Φη∗)>(θ − θ∗),

xη = σ−2(η − η∗),

y1 = (Ψ(Φη)− Ψ(Φη∗))>(θ − θ∗),

y2 = (Ψ(Φη)− Ψ(Φη∗))>θ∗,

y3 = f∗ − Ψ(Φη∗)>θ∗,

rθ
def
= ‖xθ‖,

rη
def
= ‖xη‖,

‖y1‖ ≤ σn−1/2wp,1rθrη,

‖y2‖ ≤ σCf,1rη,

‖y3‖ = �.

Then (4.3) rewrites as

‖xθ + y1 + y2 + y3‖2 + r2η −�2 ≥ b
(
r2θ + r2η

)
.

If r2η − �2 ≥ b
(
r2θ + r2η

)
then (4.3) is obviously satisfied. Otherwise, defining b̂

def
=

b +A−2 , we have

rη ≤
√

2b̂ rθ, � ≤
√

2A−1rθ.

Further, σ−1‖η − η∗‖ ≤ (2σwp,1)
−1√n and therefore, ‖y1‖ ≤ rθ/2 . So,

rθ − ‖y1‖ − ‖y2‖ − ‖y3‖ ≥
(

1− 1

2
− σCf,1

√
2b̂−

√
2A−1

)
rθ.

We need to show that the last expression to square is at least br2θ +�2 ≤ {b+ 2A−2}r2θ
and the proof is finished by checking that (4.2) ensures

1

2
− σCf,1

√
2b̂−

√
2A−1 ≥

√
b̂ +A−2.

4.6 Local linear approximation of the score

We start with the linear approximation of gradient of the likelihood. Define for υ ∈ Υ◦(r)

the following process

χ̆(υ)
def
= D̆−1θθ ∇̆θLΦ(υ)− ξ̆ + D̆θθ(υ − υ∗),

where operator ∇̆θ = ∇θ −AθηD
−2
ηη∇η , ξ̆ = D̆−1θθ ∇̆ζΦ(υ∗) and D̆θθ defined in (2.4).

In what follows we will also exploit function

zp+q(x) =
√

2(p+ q) + x,

which is involved in the concentration inequalities for suprema of empirical processes.
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Lemma 4.13. On a set C(x, r) ⊂ Ω of probability at least 1− e−x it holds

sup
υ∈Υ◦(r)

∥∥χ̆(υ)
∥∥ ≤ ♦(x, r) +�,

where

♦(x, r) = 2(1− ρ)−1/2
{

6ν2(r)zp+q(x) + δ(r)
}
r

and � = ‖f∗ − Ψ(Φη∗)>θ∗‖ from the condition (vi).

Proof. Define the process, corresponding to the linear approximation of ∇LΦ(υ) among

the biased point υ∗ ,

χ(υ)
def
= D−1{∇LΦ(υ)−∇LΦ(υ∗) +D2(υ − υ∗)}.

We can split this vector into two terms, the expectation and the stochastic part. First,

using IE∇LΦ = ∇IELΦ we get

IEχ(υ) = D−1{∇IELΦ(υ)−∇IELΦ(υ∗) +D2(υ − υ∗)},

which using (L0) and (I) can be easily bounded, see details in Andresen and Spokoiny

(2013),

‖IEχ(υ)‖ ≤ 2(1− ρ)−1/2rδ(r).

Using Theorem 4.1 of Andresen and Spokoiny (2013) along with Lemma 4.8, the value∥∥H−10 {∇ζΦ(υ) − ∇ζΦ(υ∗)}
∥∥ is bounded by 6ν2(r)

√
2(p+ q) + x uniformly over υ ∈

Υ◦(r) with porbability at least 1− e−x . To sum up, we get on a set C(x, r) ⊂ Ω

sup
υ∈Υ◦(r)

∥∥χ(υ)
∥∥ ≤ ♦(x, r)

def
= 2(1− ρ)−1/2

{
3ν2(r)zp+q(x) + δ(r)

}
r,

where IP (C(x, r)) ≥ 1− e−x . Define,

b = D−1∇LΦ(υ∗), ‖b‖ ≤ ‖f∗ − Ψ(Φη∗)>θ∗‖,

with the inequality following from Lemma 4.5. Then, for Π̆θ
def
=
(
IIp −AθηD

−2
ηη

)
we

have ∇̆θ = Π̆θ∇ and the proof is finished by

χ̆(υ) = D̆−1θθ Π̆θD
{
χ(υ) + b

}
,

where we have ‖D̆−1θθ Π̆θD‖ = 1 , since the matrix is orthonormal.
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4.7 Semiparametric Fisher and square-rootWilks

The goal of the Fisher expansion is approximation D̆θθ(θ̃− θ∗) ≈ ξ̆ , which can be done

as follows. Once we have large deviation bound (θ̃, η̃) ∈ Υ◦(r0) with high probability,

we can apply Lemma 4.13 with υ = υ̃ , which using ∇LΦ(υ̃) = 0 gives

‖D̆θθ(θ̃ − θ∗)− ξ̆‖ ≤ ♦(x, r0) +�,

on the set {υ̃ ∈ Υ◦(r0)} ∩ C(x, r0) , which is of probability at least 1− 4e−x .

Remark 4.2. We don’t require r0 to be exactly as in Proposition 4.11, the global

concentration can be held by any other means and we only require Υ◦(r0) to contain the

estimator (θ̃, η̃) with high probability.

Semiparametric square-root Wilks approximates the distribution of
{

2LΦ(υ̃, υ̃θ∗)
}1/2

,

by the the distribution of ‖ξ̆‖ . This might be shown via quadratic approximation of the

likelihood. The Lemma 4.13 helps to ensure it.

Lemma 4.14. Define,

α(θ,η) = LΦ(θ,η)− LΦ
(
θ∗,η −D−2ηηA

>
θη(θ − θ∗)

)
−
{
D̆θθ(θ − θ∗)

}>
ξ̆ +

∥∥D̆θθ(θ − θ∗)
∥∥2/2.

Then if (θ,η) ∈ Υ◦(r) , it holds (pointwise)

|α(θ,η)|∥∥D̆θθ(θ − θ∗)
∥∥ ≤ sup

(θ,η)∈Υ◦(r)
‖χ(θ,η)‖.

Proof. For a given pair (θ,η) define η̆ = η−D−2ηηAθηθ and L̆Φ(θ,η) = LΦ(θ, η̆), such

that ∇θL̆Φ(θ,η) = ∇̆θLΦ(θ, η̆) . Define the approximating process

ᾰ(θ,η)
def
= L̆Φ(θ,η)− L̆Φ(θ∗,η)− {D̆θθ(θ − θ∗)}>ξ̆ + ‖D̆θθ(θ − θ∗)‖2/2.

Note, that ᾰ(θ∗,η) ≡ 0 for all η . Thus, by mean value theorem
∣∣ᾰ(θ,η)

∣∣ ≤ ‖D̆θθ(θ −
θ∗)‖ × supθ◦∈[θ,θ∗]

∥∥D̆−1θθ∇θᾰ(θ◦,η)
∥∥ . Calculating the derivative gives

D̆−1θθ∇θᾰ(θ,η) = D̆−1θθ ∇̆θLΦ(θ, η̆)− ξ̆ + D̆2
θθ(θ − θ∗) = χ(θ, η̆),

which gives the desired result after noticing, that α(θ, η̆) = ᾰ(θ,η) .

As we mentioned in Remark 4.1, it holds (θ̃, η̃),
(
θ̃, η̃θ∗ −D−2ηηAθη(θ̃ − θ∗)

)
∈ Υ◦(3r0)

with probability ≥ 1− 3e−x . So, define

♦(x)
def
= ♦(x, 3r0) +�.
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Then by Lemmas 4.13, 4.14 we have on the set C(x, 3r0)∩{υ̃, υ̃θ∗ ∈ Υ◦(r0)} the following

chain of inequalities, with ũ = D̆θθ(θ̃ − θ∗)

LΦ(υ̃)− LΦ(υ̃θ∗) ≤ LΦ(θ̃, η̃)− LΦ
(
θ∗, η̃ −D−2ηηA

>
θη(θ̃ − θ∗)

)
≤ ũ>ξ̆ − ‖ũ‖2

/
2 +♦∗(x)‖ũ‖

≤ ‖ũ‖2/2 + ‖ũ‖
{
‖ũ− ξ̆‖+♦∗(x)}

≤ ‖ũ‖2/2 + 2‖ũ‖♦(x),

and on the other hand,

LΦ(υ̃)− LΦ(υ̃θ∗) ≥ LΦ

(
θ̃, η̃θ∗ −D−2ηηAθη(θ̃ − θ∗)

)
− LΦ(θ∗, η̃θ∗)

≥ ‖ũ‖2/2− 2‖ũ‖♦(x),

which together gives

∣∣∣{2LΦ(υ̃, υ̃θ∗)}1/2 − ‖ũ‖
∣∣∣ ≤ ∣∣2LΦ(υ̃, υ̃θ∗)− ‖ũ‖2

∣∣
‖ũ‖

≤ 4♦(x),

where we have used that on the same subset of Ω it holds ‖ũ − ξ̆‖ ≤ ♦∗(x) from the

Fisher expansion. Using this inequality one last time gives∣∣∣{2LΦ(υ̃, υ̃θ∗)}1/2 − ‖ξ̆‖
∣∣∣ ≤ 5♦(x).

4.8 Proof of Theorem 2.1

From Proposition 4.11 we have r0 �
√
p+ q + x ∨� . From Lemma 4.6 and Lemma 4.8

we have,

♦(x) � σ(wp,1 + vq)r
2
0√

n
+
σwp,2vqr

3
0

n
+�,

.
σ(wp,1 + vq)(p+ q + x)√

n
+
σwp,2vq(p+ q + x)3/2

n

+ �+
σ(wp,1 + vq)�2

√
n

+
σwp,2vq�3

n

. σ
(
wp,1 + vq + wp,2vq

√
n−1(p+ q + x)

)
(p+ q + x)n−1/2 +�,

by use of the inequalities given by condition (vii). It remains to check, that

log IE exp
(
γ>ξ̆

)
≤ ν2ε‖γ‖2

2
, γ ∈ IRp.
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Note, that D2 corresponds to Var
(
∇ζΦ(υ∗)

)
, when the errors εi , νi are standard

normal. In general, one can easily check, that for ξ = D−1∇ζΦ(υ∗) and for each γ ∈
IRp+q it holds

log IE exp
(
γ>ξ

)
≤ ν2ε‖γ‖2

2
.

Now, the moments for the ξ̆ follow by applying this inequality to D̆−1θθ Π̆
>
θ Dγ , since

D̆−1θθ Π̆
>
θ D is an orthonormal matrix.

4.9 Proof of Lemma 2.2

Define N = Φ>Φ and Φ̃ = ΦN−1/2 . Since N is symmetric, Φ̃>Φ̃ = N−1/2ΦΦ>N−1/2 =

II . Moreover, applying trapezoidal rule for integrating γ(t) = hm(t)hk(t), we get

|Nmk − δmk| = |φ>mφk − δmk| =

∣∣∣∣∣ 1n
n∑
i=1

hm(i/n)hk(i/n)−
∫ 1

0
hm(t)hk(t)dt

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

γ(i/n)−
∫ 1

0
γ(t)dt

∣∣∣∣∣
=
|γ(1)− γ(0)|

2n
+

∣∣∣∣∣ 1n
n∑
i=1

γ
(
(i− 1)/n

)
+ γ(i/n)

2
−
∫ 1

0
γ(t)dt

∣∣∣∣∣
≤ ‖γ‖∞

n
+
‖γ′′‖∞
12n2

.

Using the inequalities ‖γ‖∞ ≤ A2
0 and

‖γ′′‖∞ = ‖hmh′′k + h′′mhk + 2h′mh
′
k‖∞ ≤ A0A2m

2 + 2A2
1mk +A0A2k

2 ≤ 2(A0A2 +A2
1)q

2,

we get that the absolute value of each element of the matrix N − II is less or equal to

δ =
A2

0
n +

(A0A2+A2
1)q

2

6n2 . Thus,

‖N − II‖ ≤ ‖N − II‖Frob = ‖vec(N − II)‖2 ≤
√
q2‖vec(N − II)‖∞ ≤ qδ ≤

1

2
,

with the last inequality following from the conditions of the lemma. Thus, ‖N−1‖ ≤ 2

and

C(Φ̃) = nmax
i≤n
‖N−1/2Φi‖2 ≤ n‖N−1‖max

i≤n
‖Φi‖2 ≤ 2C(Φ).

4.10 Proof of Lemma 2.4

For h ∈ C1[0, 1] and N ∈ N we have,∫ 1

0
h(x)dx ≤ 1

N

N∑
j=1

min
x∈[ j−1

N
, j
N )
h(x) +

‖h′‖∞
N

.
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Take N < δ−1p2 . By condition of the lemma, each interval
[
j−1
N , jN

)
contains at least

c0n
(
1
N − δp

−2) points. So,

1

N
min

x∈[ j−1
N
, j
N )
h(x) ≤ (1−Nδp−2)−1

c0n

∑
X∗i ∈

[
j−1
N
, j
N

)h(X∗i ),

which, by summing over j = 1, . . . , N , gives

∫ 1

0
h(x)dx ≤

(
c0(1−Nδp−2)

)−1
n

n∑
i=1

h(X∗i ) +
‖h′‖∞
N

.

Fix arbitrary unit vector γ ∈ IRp and set h(x) = (Ψ(x)>γ)2 . By (a) we have∫ 1

0
h(x)dx = 1, ‖h′‖∞ ≤ 2A2p2,

and taking N(δ) = b(1− δ)δ−1p2c

1

n

n∑
i=1

h(X∗i ) ≥ c0
(
1− α(δ)

)
, α(δ) =

(
1− 2A2p2

N(δ)

)
(1−N(δ)δp−2).

Since N(δ) ≥ δ−1p2 − p2 − 1 ,

α(δ) ≤ (δ + δp−2)

(
1− 2A2δ

1− δ

)
.

It is left to notice, that
1

n

n∑
i=1

h(X∗i ) = γ>
[
n−1Ψ(X∗)Ψ(X∗)>

]
γ .

4.11 Proof of Lemma 2.5

For any h ∈ C1[0, 1] it holds

‖h‖22 ≥
1

n

n∑
j=1

max
x∈[ j−1

n
, j
n ]
h(x)2 − 2‖h‖∞‖h′‖∞

n
.

The amount of points X∗i lying in
[
j−1
n , jn

]
is bounded by C0 , so it holds

max
x∈[ j−1

n
, j
n ]
h(x)2 ≥ C−10

∑
X∗i ∈[

j−1
n
, j
n ]

h(X∗i )2,

which brings us to

‖h‖22 ≥ −
2‖h‖∞‖h′‖∞

n
+

1

C0n

∑
i≤n

h(X∗i )2.
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Applying this to h = f − fp , using
√
x+ y ≤

√
x+
√
y and Lemma 2.3, gives

‖f∗ − Ψ(X∗)>θ∗‖ ≤ C
1/2
0

√
n‖f − fp‖2 + (2C0)

1/2
√
‖f − fq‖∞‖f ′ − f ′q‖∞

≤ C
1/2
0 Q

√
np−β +

(2C0)
1/2AQ√

2β − 3
p−β+1.

Further, since ‖Φη∗ −X∗‖2 =
∑

i≤n(gq(i/n) − g(i/n))2. , we use arguments above

and Lemma 2.3 to show

‖Φη∗ −X∗‖ ≤
√
n‖gq − g‖2 +

√
2‖gq − g‖∞‖(gq − g)′‖∞

≤ Q
√
nq−βX +

√
2AQ√

2βX − 3
q−βX+1.

4.12 Proof of Proposition 2.6

First we check the conditions of Theorem 2.1.

(i). Due to (a) and Lemma 2.3, we have for β > 2.5 and s = 0, 1, 2

‖f (s)p ‖∞ ≤ Cf,s =
AQ√

2(β − s)− 1
.

(ii). We need to transfer condition (c) from the matrix F = Ψ(X∗)Ψ(X∗)> to the

matrix D2
θθ = Ψ(Φη∗)Ψ(Φη∗)> . By Lemma 4.1 it holds,

∥∥F−1/2[Ψ(X∗)− Ψ(Φη∗)
]∥∥

op
≤ n−1/2wp,1‖X∗ − Φη∗‖

≤ Cp3/2q−βX ,

where the last inequality follows from wp,1 = f−1/2Ap3/2 . So, for a unit vector γ ∈ IRp ,

since ‖γ>F−1/2Ψ(X∗)‖ = 1 , it holds

∣∣γ>F−1/2(D2
θθ − F)F−1/2γ

∣∣ ≤ δ (2 + δ) ,

where δ = Cp3/2q−βX . We have then,

D2
θθ ≥ (1− δ(2 + δ))F ≥ f(1− δ(2 + δ))(nIIp),

which ensures condition (ii), since p3/2q−βX = n−(β−3/2)/(2β+1) is small.

(iii). By (a) we can take µm,s = Ams .

(iv). Using Lemma 2.2, we get this condition satisfied with C
Φ̃

= 2A
√
q. Indeed

CΦ = n‖Φi‖2 =

q∑
m=1

φ2m(i/m) ≤ A2q.
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(v). We have by (2.13)

� = ‖f∗ − Ψ(Φη∗)>θ∗‖ ≤ Cf,1‖Φη∗ −X∗‖+ ‖f∗ − Ψ(X∗)>θ∗‖

≤ C
√
n(p−β + q−βX ),

and � ≤
√
n for large enough p and q .

(vii). Taking wp,s = Aps+
1
2 the conditions are satisfied, since p3/2

√
(p+ q)/n is

small.

Using n−1D̆2
θθ ≥ (1 − ρ)fIIp , which is given by By Lemma 4.4 and condition (ii),

Theorem 2.1 provides us with

‖θ̃ − θ∗‖ .IP
√
p

n
+∆p,q,

where

∆p,q =
σ(p3/2 + q1/2)(p+ q)

n
+ σ(p3/2 + q1/2)(p−β + q−βX )2 + q−βX + p−βX .

Since f̃p,q(x) = Ψ(x)>θ̃ and fp(x) = Ψ(x)>θ∗ , we have ‖f̃p,q − fp‖2 = ‖θ̃ − θ∗‖.
Further, using ‖f − fp‖2 . p−β , given by Sobolev condition, we arrive at

∥∥f − f̃p,q∥∥2 .IP √ p

n
+ p−β + q−βX

+

{
σ(p3/2 + q1/2)(p+ q)

n
+ σ(p3/2 + q1/2)(p−β + q−βX )2

}
.

The choice of p and q provides√
p

n
= p−β = q−βX = n

− β
2β+1 .

Next, we deal with the second term from the figure braces,

(p3/2 + q1/2)(p−β + q−β)2 � n
3
2∨

β
2βX

−2β

2β+1 ≤ n
−β

2β+1 ,

where the inequality holds since β ≥ 2 > 3/2 and 2βX ≥ 3 > 1 . Finally, we let us deal

with the term

(p3/2 + q1/2)(p+ q)

n
� p5/2 + q3/2 + p3/2q

n

= n

(
5
2
∨ 3β

2βX
∨
(

3
2
+ β
βX

)
−2β−1

)
/(2β+1) ≤ rn(β) = n−β/(2β+1),
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with the inequality equivalent to the union of the following inequalities

5

2
− 2β − 1 ≤ −β,

3β

2βX
− 2β − 1 ≤ −β,

3

2
+

β

βX
− 2β − 1 ≤ −β

⇔



3

2
≤ β,

3

2
β ≤ ββX + βX ,

1

2
βX + β ≤ ββX

⇔


β ≥ 3

2
,

(β + 1)(βX − 3/2) ≥ −3

2
,

(β − 1/2)(βX − 1) ≥ 1

2
,

where all of the last one are true, since β ≥ 2 and βX ≥ 3/2 .
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Carroll, R., Ruppert, D., and Stefanski, L. (1995). Measurement error in nonlinear

models. number 63 in monographs on statistics and applied probability.

Cheng, C.-L. and Van Ness, J. W. (1999). Statistical regression with measurement error.

John Wiley & Sons.

Fan, J., Truong, Y. K., and Wang, Y. (1991). Nonparametric function estimation involv-

ing errors-in-variables. Springer.

Fuller, W. A. (2009). Measurement error models, volume 305. John Wiley & Sons.

Juditsky, A. B., Lepski, O. V., and Tsybakov, A. B. (2009). Nonparametric estimation

of composite functions. The Annals of Statistics, pages 1360–1404.

Schneeweiß, H. and Mittag, H.-J. (1986). Lineare Modelle mit fehlerbehafteten Daten.

Physica-Verlag Heidelberg-Wien.

Spokoiny, V. (2012). Parametric estimation. Finite sample theory. Ann. Statist.,

40(6):2877–2909. arXiv:1111.3029.

Tsybakov, A. (2009). Introduction to Nonparametric estimation. Springer New York.

Wansbeek, T. J. and Meijer, E. (2000). Measurement error and latent variables in econo-

metrics, volume 37. Elsevier Amsterdam.



 



 


