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Abstract

A fundamental principle in condensed matter physics is the effective description in terms of
quasiparticles. The high-energy part of the system is accounted for by renormalized properties
of the quasiparticles, providing both, an accurate description and interpretation of the relevant
low-energy physics. We consider two classes of methods suited to provide effective quasipar-
ticle descriptions in the thermodynamic limit: (non-perturbative) linked-cluster expansions
((N)LCEs) and continuous unitary transformations (CUTSs). We focus specifically on the combi-
nation of both methods, providing a different perspective and solutions to existing challenges.
LCEs provide high-order series expansions in a perturbation parameter, by combining effective
Hamiltonians determined on finite clusters. We introduce a white-graph expansion for the
method of perturbative continuous unitary transformations when implemented as an LCE. The
essential idea behind an expansion in white graphs is to perform an optimized bookkeeping
during the calculation by exploiting the model-independent effective Hamiltonian in second
quantization and the associated inherent cluster additivity. This approach is shown to be
especially well suited for microscopic models with many coupling constants, since the total
number of relevant graphs is drastically reduced. The white-graph expansion is exemplified for
a two-dimensional quantum spin model, illustrating its efficiency.

In NLCEs, the perturbative treatment of finite clusters is replaced by a numerical exact
(block) diagonalization. While LCEs are restricted due to their perturbative nature, the non-
perturbative variant is not. In graph-based continuous unitary transformations (gCUTS), the
block diagonalization is achieved by a non-perturbative CUT performed on finite clusters. The
central objective of this thesis is a modification of the gCUT scheme, allowing to treat two
kinds of major issues, denoted by pseudo and genuine decay, occuring for NLCEs due to the
non-perturbative treatment of clusters.

Indeed, one finds surprising effects caused by the non-perturbative renormalization. In particular,
we identify a fundamental challenge for any non-perturbative approach based on finite clusters
resulting from the reduced symmetry on graphs, most importantly the breaking of translational
symmetry when targeting the properties of excited states. This can be traced back to the
appearance of intruder states in the low-energy spectrum, which represent a major obstacle
in quasi-degenerate perturbation theory. Here, a generalized notion of cluster additivity is
introduced, which is used to formulate an optimized scheme of gCUTs, allowing to solve and to
physically understand this major issue. Most remarkably, our improved scheme demands to
go beyond the paradigm of using the exact eigenvectors on graphs. We demonstrate that the
modified scheme is correct in the non-perturbative regime.

Even at quantum criticality, the scheme gives valid results. To determine the critical behavior,
one must rely on extrapolation schemes. We introduce a generic approach to extract critical
properties from sequences of numerical data which is directly relevant for NLCEs. The scheme
is applied to the quantum phase transition between the dimerized and the isotropic spin 1/2
Heisenberg chain.

Finally, we investigate a scenario where the gapped quasiparticle excitation is not stable for all
momenta, i.e., the one-particle mode merges with the continuum for certain momenta and one
observes quasiparticle decay. In this case, intruder states merging with the low-energy spectrum
on finite clusters represent genuine physics of the system. Again, a proper renormalization on
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Abstract

finite clusters satisfies the generalized cluster additivity. Our adjusted renormalization approach
performed on finite clusters does not necessarily lead to a full decoupling of the quasiparticle
subspaces and the remaining interactions are part of the effective description. The resulting
effective Hamiltonian can be analyzed to describe quasiparticle decay in the thermodynamic
limit. The modified scheme is applied to four-leg spin 1/2 Heisenberg ladders, providing insights
into the spectral properties.

Overall, this thesis presents several important developments for the derivation of effective
quasiparticle pictures in quantum spin models via perturbative and non-perturbative LCEs,
opening various opportunities for future investigations.
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Kurze Zusammenfassung

Ein fundamentales Prinzip in der Physik kondensierter Materie ist die effektive Beschreibung
anhand von Quasiteilchen. Dem Hochenergie-Anteil des Systems wird durch renormalisierte
Eigenschaften der Quasiteilchen Rechnung getragen, was sowohl zu einer akkuraten Beschrei-
bung als auch zu einer direkten Interpretation der relevanten Niederenergiephysik fithrt. Zwei
Methodenklassen stehen im Zentrum dieser Arbeit: (nicht-perturbative) linked-cluster Enwick-
lungen {Englisch: (non-perturbative) linked-cluster expansions ((N)LCEs)} und kontinuierliche
unitére Transformationen { Englisch: continuous unitary transformations (CUTs)}. Ziel dieser
Arbeit ist es, durch die Kombination beider Methodenklassen einen neuen Blickwinkel und
Losungen aktueller Problemfelder zu bieten.

Durch Kombinationen effektiver Hamiltonians, die auf endlichen Clustern bestimmt werden,
lasst sich in LCEs eine Hochordnungsreihentwicklung bestimmen. Wir fithren fiir die Anwen-
dung der perturbativen kontinuierlichen unitdren Transformationen im Rahmen einer LCE
eine Wei3-Graph Entwicklung ein. Die grundlegende Idee einer solchen Entwicklung ist eine
optimierte Buchhaltung wihrend der Rechnung. Hierbei werden der modellunabhéngige effek-
tive Hamiltonian in zweiter Quantisierung und die damit verkniipfte Cluster-Additivitat direkt
ausgenutzt. Wir zeigen, dass dieser Ansatz besonders dann effizient ist, wenn das mikroskopische
Modell mehrere Kopplungskonstanten aufweist, da sich dadurch die Zahl der relevanten Graphen
drastisch reduzieren lasst. Die Weifl-Graph Entwicklung und deren Effizienz werden anhand
eines zwei-dimensionalen Quanten-Spin Modells verdeutlicht.

In NLCEs wird die perturbative Berechnung auf endlichen Graphen durch eine nicht-perturbative
(Block)-Diagonalisierung ersetzt. Daher ist diese Entwicklung nicht durch einen pertur-
bativen Parameter beschrankt. Bei graphen-basierten kontinuierlichen unitdren Transfor-
mationen {Englisch: graph-based continuous unitary transformations (gCUTs)} wird die
Blockdiagonalisierung durch eine nicht-perturbative CUT erreicht. Nicht-perturbative Effekte
fithren hierbei zu zwei Problemfeldern, dem kiinstlichen und dem echten Zerfall. Die zentrale
Zielsetzung dieser Arbeit ist es, die gCUT-Methode derart zu modifizieren, dass beide Fille
behandelt werden kénnen.

Durch die nicht-perturbative Renormierung enstehen erstaunliche Effekte. Wir zeigen ein
grundlegendes Problem bei der Bestimmung von Eigenschaften angeregter Zusténde auf, das
durch die gebrochene Translationssymmetrie entsteht. Dies lasst sich auf Zustédnde, sogenannte
Eindringlinge, im Niederenergiespektrum zuriickfithren, was ein wesentliches Problem in quasi-
entarteter Storungsrechnung darstellt. Ein verallgemeinertes Konzept der Cluster-Additivitét
wird eingefiihrt, mittels dessen sich dieses Problem l6sen und auch physikalisch verstehen lésst.
Bemerkenswerterweise ist es hierbei notig, sich iiber das Paradigma exakter Eigenvektoren
auf Graphen hinwegzusetzen. Es wird gezeigt, dass das modifizierte Schema selbst im nicht-
perturbativen Regime korrekte Ergebnisse liefert.

Selbst bei Quanten-Kritikalitét liefert das neue Schema valide Resultate. Um kritisches Verhal-
ten bestimmen zu kénnen, miissen Extrapolations-Methoden verwendet werden. Wir fithren
einen allgemeinen Ansatz zur Bestimmung kritischer Eigenschaften aus numerischen Sequenzen,
wie sie in NLCEs vorliegen, ein. Dieses neue Schema wird zur Bestimmung des Quanten-Phasen-
Ubergangs zwischen der dimerisierten und der isotropen Spin 1/2 Heisenberg-Kette angewendet.
Zum Schluss untersuchen wir den Fall eines Systems mit Anregungsliicke, dessen Quasiteilchen
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Anregung nicht fiir alle Impulse stabil ist, d.h., die Ein-Teilchen Mode mischt in das Mehrteilchen-
Kontinuum fiir bestimmte Impulse und es entsteht Quasiteilchen-Zerfall. In diesem Fall
spiegeln die Eindringlinge im Niederenergiespektrum echte Physik wider. Wiederum geniigt
eine angemessene Renormalisierung der verallgemeinerten Cluster-Additivitéat. Der angepasste
Renormalisierungs-Ansatz fithrt nun nicht mehr zu einer Entkopplung der Quasiteilchen-
Unterrdume und die verbleibende Wechselwirkung ist Teil der effektiven Beschreibung. Der
entstehende effektive Hamiltonian kann analysiert werden, um Quasiteilchen-Zerfall im ther-
modynamischen Limes zu beschreiben. Der so modifizierte Ansatz wird fiir die Spin 1/2
Vierbein-Leiter verwendet, um die spektralen Eigenschaften zu bestimmen.

Zusammengefasst werden in dieser Arbeit verschiedene wichtige Entwicklungen zur Bestim-
mung von effektiven Quasiteilchen-Bildern in Quanten-Spin Modellen mittels perturbativer
und nicht-perturbativer LCEs dargestellt. Hierdurch eréffnen sich vielfaltige Moglichkeiten fiir
zukiinftige Untersuchungen.






Chapter 1

Introduction

When your only tool is a hammer, everything looks like a nail.
- Daniel Dennett

A fundamental challenge in condensed matter theory is the description of strongly-correlated
quantum lattice models. Here, correlations and collective behavior play a central role making
it notoriously hard to find an adequate description. Besides the development of analytical
tools, these challenges lead to a large treasure of strong numerical tools, which represent a
central cornerstone of condensed matter physics by now. Experiments, analytical approaches
and numerical techniques cannot be considered as independent branches since they continuously
stimulate and complement each other. Therefore, progress in the vast research field of condensed
matter physics stems from the combined approach of experiment, analytical descriptions and
numerical tools, producing a mutual momentum steadily pushing the limits of our overall
understanding of nature.

In physics, a central notion is constituted by the broad concept of quasiparticles, going back to
a work by Landau in 1957 [1]. Landau’s work initially aimed at the description of liquid *He at
low temperatures via quasi-free fermions with renormalized parameters due to the interaction.
The so-called Fermi liquid theory was soon realized to be applicable to other interacting fermion
systems, most notably the electrons in a metal. The description of metals by Fermi liquids is so
powerful that metals deviating from this behavior are even referred to as non-Fermi liquids [2].
Most importantly, Landau’s approach introduces a groundbreaking notion where the collective
excitations of the microscopic models can be understood as dressed versions of elementary
excitations without interactions. Necessarily, the ground state of the system must be adiabat-
ically connected to the interaction free system. The characterization of low-energy physics,
i.e., the ground state, elementary excitations etc., in terms of these quasiparticles is of central
importance in condensed matter physics and beyond. If this characterization succeeds, the
fundamental mechanisms determining the corresponding physics of the system are understood.
Famous examples of this concept in condensed matter physics are for instance lattice vibrations
called phonons [3, 4], excitons in semiconductors [5], magnons [6, 7] and triplons [8-10] in
quantum magnets as well as orbitons in Mott insulators [11].

This concept and interpretation is primarily associated with perturbative and analytical ap-
proaches like diagrammatic techniques, spin wave theory [6, 7] or bond operators [8, 9]. In
contrast, numerical techniques often provide plain data of a target quantity which must be
interpreted thereafter. This category applies for instance to exact diagonalization, quantum
Monte Carlo (QMC) simulations [12, 13] or density matrix renormalization group [14] (DMRG).
However, there are numerical techniques where the quasiparticle picture constitutes the starting
point of the numerical approach. Such a biased foundation is connected to an unambiguous
interpretation of the resulting data in terms of these quasiparticles. Consequently, both classes
of approaches can be viewed as complementary tools. In a broader sense, each numerical
technique has individual strengths and advantages but also biases, limitations and blind spots.
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Consequently, a large arsenal of advanced complementary numerical tools is clearly desirable.
In this thesis, we focus on methodological developments of numerical tools yielding effective
quasiparticle Hamiltonians in terms of hardcore bosons. For demanding parameter regimes,
especially when the quasiparticle picture becomes indistinct, an adequate description via quasi-
particles becomes both challenging and interesting in any regard.

By construction, the quasiparticle picture becomes indistinct at quantum criticality. An effective
quasiparticle description of the system close to or even at quantum criticality is very demanding,
but allows to characterize quantum phase transitions.

Another fascinating scenario where the quasiparticle picture is eroded is the so-called spon-
taneous quasiparticle decay. Quasiparticle decay was first predicted [15] and experimentally
observed [16, 17] for superfluid “He. Here, an energy-momentum threshold exists where the
quasiparticle description breaks down, i.e., the single-particle pole is absent in the Green’s
function for certain momenta k > k..

Indeed, similar behavior exists for quantum lattice models. Here, the discrete (bosonic) ele-
mentary excitation enters the multi-particle continuum leading to quasiparticle decay for the
corresponding momenta, which can be experimentally observed in one-dimensional [18-21] or
two-dimensional [22-26] systems. Theoretical approaches to describe quasiparticle decay in
quantum magnets range from Fermi’s golden rule [27], diagrammatic techniques [28-31], Bethe
Ansatz [32], and specifically designed quasiparticle renormalization techniques [33]. These
methods are suited to provide a description in terms of the decaying quasiparticle inside
the continuum and differ conceptually from other techniques, which can also be applied in
this scenario like exact diagonalization techniques [34], quantum Monte Carlo analysis [35] or
high-order series expansions [36, 37].

To derive an effective quasiparticle description in challenging regimes defined by quantum-phase
transitions or quasiparticle decay, further development of the current numerical approaches is
desirable. At the core of our consideration lay two techniques, each applicable for the description
in terms of quasiparticles in form of sophisticated effective quasiparticle Hamiltonians: (Numer-
ical) linked-cluster expansions ((N)LCEs) and continuous unitary transformations (CUTS).
CUTs, introduced in 1994 by Wegner [38], are perfectly suited for this purpose since they
provide a generic and systematic scheme to perform a unitary transformation, allowing, inter
alia, to derive effective Hamiltonians.

Generically, the quasiparticle picture used in the effective description is constituted by one
part of the Hamiltonian while the other part can be viewed as a perturbation, coupling the
different quasiparticle (QP) channels. The CUT continuously decouples the QP channels which
"dresses’ the quasiparticles resulting in an effective description. The decoupled QP blocks can
be investigated separately, allowing for an intuitive understanding of the underlying physics in
terms of these dressed quasiparticles. Such an effective Hamiltonian provides convenient access
to complicated quantities, i.e., one-particle dispersions [39], multi-particle interactions (bound
states) and dynamical correlation functions [10, 40-43].

By construction, the application of such a CUT is non-trivial and requires the introduction
of reasonable truncations, resulting in different variants of CUTs [39, 44-48]. In contrast to
the other CUT variants, both approaches applied in this thesis involve the calculation on finite
clusters which is the natural link to (N)LCEs.

In LCEs, high-order series expansions of various physical quantities can be derived directly
in the thermodynamic limit by performing calculations on finite systems. The applications of
high-order series expansion range from zero-temperature properties like the ground-state energy
[49, 50], order parameters, or entanglement entropies [51] to high-temperature expansions, which
give access to thermodynamic quantities [52]. Interestingly, it took until 1996 to set up similar
expansions for the physical properties of elementary excitations like one-particle dispersions



[53], two-particle interactions [54, 55] or dynamical correlation functions [56, 57], i.e., physical
properties which are of direct importance for the interpretation of inelastic neutron or inelastic
light scattering experiments.

The usefulness of high-order series expansions is limited due to its perturbative nature. It is
therefore desirable to reflect on non-perturbative linked-cluster expansions (NLCEs) [58-62].
The essential idea behind all NLCEs is a non-perturbative treatment of clusters, achieved via an
exact (block) diagonalization, yielding results in the thermodynamic limit after an appropriate
embedding procedure. Indeed, many exciting developments have been achieved in this direction
recently, e.g., the derivation of effective low-energy spin models [46, 63, 64], the calculation of
entanglement entropies [65] or the extension to time-dependent quantities out of equilibrium
[66, 67]. Recently, NLCEs are introduced to study many-body localization transitions in a
disordered system with continuous non-perturbative disorder [68]. Overall, NLCEs are a strong
tool for the investigation of quantum lattice models with a vast range of applications without
finite-size effects.

The methods applied in this thesis combine the concepts of CUTs and (N)LCEs: The pertur-
bative variant of this approach is given by perturbative continuous unitary transformations
(pCUTS) [39] but implemented as an LCE, in other words, the (normal-ordered) effective
Hamiltonian is determined on finite clusters via pCUTs and the results are combined to gain
the result in the thermodynamic limit.

The non-perturbative variant is called graph-based continuous unitary transformations (gCUTS)
introduced by Yang and Schmidt [46] in 2011. Here, the CUT is solved non-perturbatively on
finite clusters via a numerical integration on matrix level, yielding an effective cluster-dependent
Hamiltonian. Analogously, these results are combined to constitute the effective Hamiltonian
in the thermodynamic limit.

The underlying CUT separates the considered approaches from all other (N)LCE approaches in
literature. The leading principle of this thesis is to exploit the properties provided by the CUT
to develop optimized versions of LCEs/pCUTs and NLCEs/gCUTs, respectively.

Generically, all numerical tools exhibit a systematic truncation parameter, e.g. the perturbation
order in high-order series expansions or the considered system sizes in exact diagonalization
techniques and NLCE approaches. The size of this parameter is a measure for the fluctuations
taken into account and more accuracy is gained by increasing the respective truncation parame-
ter. Consequently, a significant increase in this truncation parameter is a major objective of
further developments of a given method. Indeed, developments in this direction represent one
central route pursued in this thesis concerning specifically pCUTs/LCEs. The efficiency of all
(perturbative) LCEs is based on a topological identification process: If subclusters of the infinite
lattice can be mapped onto each other by a simple renumeration of sites, these clusters are
topologically identical. Obviously, it suffices to restrict the calculation to topological distinct
clusters (graphs), resulting, specifically for more than one dimension, in an extremely effective
calculation process.

However, if multiple couplings are present, these couplings inhibit topological equivalence. In
these cases, especially relevant for experimental realizations with several coupling constants,
the maximally available order is significantly reduced. In this thesis, we introduce another kind
of graph expansion, a so-called white-graph expansion, which overcomes the latter limitation to
a great extent by a fundamental reorganization of the calculation process [69].

Due to the rather recent invention, the room for understanding and developments is
considerably larger for NLCEs and gCUTs in particular. In gCUTs, substantial progress
is achieved by introducing an efficient truncation scheme on finite clusters. This practically
doubles the maximal number of manageable supersites, which represents a remarkable improve-
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ment with respect to the exponential scaling of the Hilbert space. Yet, in NLCEs, more decisive
and fundamental challenges exist.

One challenge concerns the extrapolation techniques. Powerful extrapolation schemes, cor-
responding to an extrapolation to an infinite order in the perturbation parameter, exist in
the established field of high-order series expansion. These extrapolation schemes represent
sophisticated resummation techniques allowing to extract critical properties like critical points
and, most importantly, critical exponents. In contrast, NLCEs and all non-perturbative methods
provide sequences of data points. While first extrapolation schemes are applied for NLCEs
[62, 65], to the best of our knowledge, no similar extrapolation scheme for the extraction of
critical exponents is available. That is, no access to these fundamental physical quantities exist.
We propose a new extrapolation scheme for NLCE techniques and similar methods. In this
scheme, the numerical data points are mapped to a series expansion in a pseudo perturbation
parameter. As a result, one can implement the standard series expansion techniques, which
gives, as we argue, access to critical points as well as critical exponents.

Both developments aim at a direct or indirect enhancement of the fluctuations included in
the final results, which is of obvious interest for all numerical tools. However, this strategy
is not a panacea, because it is essential that the proper fluctuations are considered. While
this statement may appear mundane, the implementation is surprisingly non-trivial. This
particularly refers to the derivation of an effective description in terms of quasiparticles in
NLCE approaches: while the quasiparticle picture is sharp and well-defined for small values of
the couplings, this identification can become ambiguous for larger values of the couplings if
there exists an energetic overlap between different quasiparticle sectors on finite clusters. Then,
only non-perturbative renormalizations of the initial Hamiltonian are capable of separating
the quasiparticle subspaces on finite cluster. The fundamental challenges associated with
these scenarios require a reconsideration of the underlying core concepts of NLCE approaches.
Remarkably, the nature of such an energetic overlap can be two-kind, leading to two quite
distinct central issues:

i) As a core component, all LCEs share that the physical system on clusters has a reduced
symmetry compared to the infinite system, e.g. the translational symmetry is broken by
construction. For the perturbative LCEs, the full symmetry is nevertheless restored after
embedding and exactly the same fluctuations present in the thermodynamic limit are taken
into account. However, as we demonstrate in this thesis, this inherent symmetry reduction
represents a fundamental challenge for any non-perturbative approach based on finite clusters
when calculating excitation energies of elementary excitations. Namely, intruder states enter
the low-energy spectrum leading to a break down of the standard approach. This challenge is
solved by an adapted version of gCUTs [70]. Fascinatingly, this generalization requires not to
use the exact eigenvectors on graphs, revealing once more the non-trivial connection between
finite systems and the thermodynamic limit in quantum many-body systems.

ii) A fundamentally different scenario is present if the energetic overlap observed on finite
clusters is genuine, i.e., it corresponds to quasiparticle decay in the thermodynamic limit and
represents physics of the system. This overlap demands a modified renormalization approach
on finite clusters. In 2011, Fischer and Uhrig introduced a CUT suited to describe the system
by means of an effective Hamiltonian in terms of the decaying quasiparticles [33]. Our objective
is the implementation of a similar approach relying on NLCEs. While the CUT implemented
by Fischer and Uhrig is applied in operator space, in gCUTs, the CUT is performed on finite
clusters on matrix level. This leads to different challenges but also opportunities, which arise
for the treatment of quasiparticle decay via NLCEs. This allows to provide a complementary
perspective on this issue.



This thesis is structured as follows:
In chapter 2, the basics of the methods under consideration are described. First, we introduce
a setup, defining the objectives of the effective descriptions. Then, we describe (N)LCEs and
CUTs, providing insights into the underlying concepts of both approaches.
In chapter 3, we discuss pCUTs, focussing on the implementation of pCUT as an LCE. On this
basis, we introduce the white-graph expansion, designed to provide high-order series expansions
if multiple couplings are present, which is demonstrated by an application to a two-dimensional
system.
In chapter 4, we discuss the gCUT-method which builds the center of the thesis. First, we
discuss the general gCUT scheme, suited to describe systems if no decay on clusters is present
and introduce an efficient truncation scheme. On this basis, we discuss the treatment of both
pseudo and genuine decay on finite clusters by following the notion of generalized cluster
additivity, which we introduce. In addition to that, a novel extrapolation technique for NLCEs
is presented and these various developments are demonstrated in the applications.
Finally, we provide a conclusion of the work covered in this thesis in chapter 5.






Chapter 2

Basics of the applied methods

In this chapter, the basics of the methods used in this thesis are discussed. First, we are going to
introduce a setup describing the general structure of the systems under consideration combined
with the objectives of our methods.

2.1 The setup

We consider a generic quantum lattice Hamiltonian H at zero temperature. By decomposing
the original lattice into a superlattice of supersites, one can always rewrite ezactly H as [71]

N
H="Ho+ Y \VI . (2.1)

j=1

Here, a supersite might be a spin, two linked spins like a dimer, or any other finite set of
linked sites which can be easily diagonalized. Then, the unperturbed part of H is diagonal in
supersites i of the lattice. While the perturbative approach used in this thesis is restricted to
an equidistant spectrum of a supersite, the non-perturbative variant is not. A generalization to
non-equidistant spectra is straightforward.

In the following, we assume the local spectrum to be equidistant. Then,

Ho = Eo +Zﬁ,aﬁ-,a

Eoy+Q | (2.2)

where F( denotes a constant and the sum over « runs over all excited local degrees of freedom.
The operator Q@ counts the number of excitations which are viewed as quasiparticles with different
flavors «. This interpretation in terms of quasiparticles is fundamental for the approach because
the objective is to transfer the quasiparticle picture defined by Hy to the full Hamiltonian H.
By construction, the approach is only well defined as long as no quantum phase transition
occurs as a function of {\;} and it is only capable of detecting second-order phase transitions.
We begin our considerations for the Hamiltonian and continue with the spectral density of
observables.

2.1.1 Effective Hamiltonian

In the following, the full Hamiltonian H is expressed and understood in terms of these quasi-
particles. The unperturbed ground state |ref) is interpreted as the vacuum and is given as
the product state |ref) = (0)...|0) with |0) being the lowest state of a supersite. Accordingly,
fZa|ref> creates a local excitation of type a on supersite i.
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Supersites interact via the perturbation V=3 j )\jV(j). The sum over j runs over all N

perturbation parameters A;. The different operators V) build the bonds of the lattice, so that
one can assign a different "color" for each perturbation parameter ;. Keeping in mind the
applications, it is reasonable to restrict the discussion to Hamiltonians where the perturbation
V couples two supersites. A generalization to perturbations which couple an arbitrary number
of supersites is straightforward. Furthermore, if the different colors of the links are not of direct
relevance, the different perturbation parameters A; are substituted by a single perturbation
parameter A.

One can rewrite Eq.(2.1) as

N
H=Ho+ > Tn . (2.3)

n=—N

so that [Q,T,,] = nT,. Physically, the operator T,, = Zj )\jTé]) corresponds to all operators
where the change of energy quanta with respect to Hg is exactly n. The maximal (finite) change
in energy quanta is called =/N. Generically, H is expressed in normal-ordered form with respect
to Hop as H = He + Hue using annihilation (creation) operators fl(z

He = Eo(N+ Y. af?(\) i f5+he+... (2.4)
.3,
Hoe = Y TNl fl+he+.., (2.5)
.3,0,8

where dots refer to other particle-conserving (non-conserving) terms in H. (Hyc), consisting
of more than two operators. The goal is then to derive a renormalized particle-conserving
Hamiltonian Heg = H. accounting for the influence of H,. quantitatively.

Her = Eo(N)+ D a7\ flof,5+he+... (2.6)

.3,

The approximation is introduced by the truncations necessary to determine the relevant operator
coefficients of the effective Hamiltonian. The quality of this approximation defines essentially
the applicability of these approaches.

Note, that the normal ordering of the operators decomposes the effective Hamilton operator
Hefr as

Her = Hetr0 + Hemr,1 + Her2 + Hegz + .-, (2.7)

where Heg ., is an n-particle irreducible operator irrelevant for the (n — 1)-QP channel. The
prefactors of operators not relevant for the QP-channels under consideration are therefore not
calculated.

The quasiparticle conservation of the effective Hamiltonian implies a direct interpretation and
intuitive understanding of the physics in terms of these quasiparticles. Note that these particles
can be viewed as dressed versions of the particles defined by the unperturbed Hamiltonian.
The effective Hamiltonian of the form Eq.(2.6) represents a substantial simplification, since
fundamental quantities like a one-particle dispersion can be determined straightforwardly. The
Hamiltonian separates into different particle-blocks because the associated degrees of freedom
are already integrated out and each QP channel can be investigated separately; the many-body
problem is reduced to an effective few-body problem.

The underlying assumption behind the effective description is that the desired low-energy is

10
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dominated by the low-particle physics. If this is the case, it suffices to restrict the considerations
to a rather small number of quasiparticles n. Typical QP channels considered range from n =0
to n = 3. The accurate derivation of the relevant operator coeflicients but also the analysis of
the QP channels become more complex with increasing n.

The zero-particle state defines the ground state and the ground-state energy Ey()) is directly
provided by the effective Hamiltonian.

The analysis of higher QP channels is performed in Fourier space. The one-particle states of
Eq.(2.6) are essentially, i.e., up to the flavor o and the localization within the unit cell, defined
by the momentum. Typically, this enables an analytical solution of the one-particle subspace.
On the contrary, the multiple-particle subspaces are typically analyzed by subsequent numerical
analysis. The n-particle states are essentially defined by the total momentum and (n — 1)
relative distances between the particles. The maximally manageable relative distances define
the quality of the analysis which can become unsatisfactory for larger values of n.

2.1.2 Effective spectral densities

A strength of this approach is that the simplification to effective few-body problems also applies
for spectral densities defining experimentally relevant static and dynamic structure factors.
To this end, the associated observables must be included in the mapping-procedure. These
observables carry a momentum k defined by the general form

= \/Lﬁ Zexp(Ik’r‘j)(’)rj (2.8)

where 7; defines the location where the observable O, acts and N refers to the number of
unit cells. The observable is expressed by the annihilation (creation) operators of the initial
Hamiltonian

O(k) Z WO NK) flof g+ he 4+ —— Z Yo Nk) flofl 5+ hee. +(2.9)
,J,0,8 i,j,,8

consisting in general of QP-conserving and non-conserving parts. To perform calculations
within the effective description, the observable must be expressed in the same operators as the
effective Hamiltonian:

(e} ) 1 Yale! P P
Outlk) = \F Z b7 (k) fiafm—s—h.c.—k...Jr\/—N > Tk fLF s+ hee. 42.10)

i,5,00,3 i,J,a,0

Note that the effective observables are in general not quasiparticle conserving.
Therefore, the normal ordering decomposes the effective observable Og as

Octr = Oert,0,0 + Ocrr0,1 + Oerr0,2 + Ocg0,3 + - - - (2.11)
+ Ocrr1,0 + Ocst1,1 + Ocri2 + Oeirz+ - - - (2.12)
+.

where Oegt Am,n is an n-particle irreducible operator changing the number of particles by Am.
The spectral density of the observable at zero temperature can be calculated by the momentum
and energy resolved spectral density

I(kw) = —%Im (GO (kw)) (2.13)

11
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with the zero-temperature Green’s function

pp ey el IV 214)

GOt (kw) = (0107(k)

Here, |0) denotes the ground state of the system. The calculation of this structure factor can
be performed for the effective system by
1
w— (Hegg — Eo) +1-07F
1

1 — —
| flOlg ok ~ Oeft,n,0(k)|ref) ) (2.16
52—t (10l g7 Oernolleh ) (216

= Y I9(kw) (2.17)

Lnlke) = —+tm ((E10k(H) Ol ) (215)

Here, |r~ef> denotes the ground state in the effective description, i.e, the (dressed) reference state.
The spectral density decomposes into spectral densities 19 (k) of the n-QP channel which can
be investigated independently.

The analysis of the spectral density is performed in Fourier space and becomes more complex
with increasing n. The one-particle spectral density takes the form

Iv?(k7w) = Z |Ak,m‘25(w - wm(k)) ’ (218)

where the sum runs over all one-particle bands w,, (k) numerated by m. For quasiparticle
sectors n > 1, the effective spectral density can be investigated via a Lanczos analysis and a
continued fraction analysis [72].

We waive a detailed discussion of the effective Hamiltonian in Fourier space and the Lanczos
and a continued fraction analysis, because it does not advance the understanding significantly.
Instead, we refer the well-disposed reader to any of the numerous works [29, 73, 74].

2.1.3 Energetic overlap

Finally, we would like to briefly present limits of the presented approach and possible solutions.
The approach is well-justified and works well when the considered particle sectors are energeti-
cally well separated. However, the quality of the approximation can become poor in the more
demanding case when the QP sectors are energetically very close. Then, interactions between
the different QP sectors become considerable and the approximation of operator sequences can
become poor.

In the more severe cases, QP sectors do overlap energetically and the separation of these QP
channels is not possible; the quasiparticle picture begins to dissipate. One observes spontaneous
quasiparticle decay. The term spontaneous is often used to emphasize that this phenomenon
occurs at T' = 0 and is separated from the thermal broadening observed for finite temperatures
[75-77]. However, since we consider only systems at 7' = 0, the term is dropped in the following.
To illustrate a standard scenario of quasiparticle decay, we consider a Hamiltonian of the form

H= Hsym + CHasym 5 (219)
with
N
Hom=Ho+X Y. T, (2.20)

n=—N,n even

12
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N

Hosym =2 Tn . (2.21)

n=—N,n odd

For the special case ( = 0, the absence of terms connecting the even and the odd number of
quasiparticles results in parity conservation. This property generically can be traced back to a
symmetry of the system which is broken by H.sym. In these situations, it is possible that the
QP sectors are energetically well separated for Hgym only due to the symmetry. Then, small
values of ¢ lead to an instant overlap of the QP sectors and the challenge is to define a justified
continuation of the effective description in these cases, specifically for the one quasiparticle sector.
Let us stress, that symmetry breaking is only one of the mechanism leading to quasiparticle
decay [78], however, also with regard to the applications, we focus the discussion on this scenario.

A solution in this case is provided by an approach introduced by Fischer and Uhrig in [33].
To maintain a valid effective description in these cases, non-conserving terms must be left in the
effective Hamiltonian defining remaining QP-block interactions. As a result, the QP channels
cannot be analysed separately. The maximal number of QPs included in the analysis define a
truncation affecting also the lower-QP channels.

This kind of approach was first implemented by Fischer and Uhrig where only the (m = 0)-
irreducible operators are decoupled from the remainder. The one-particle sector is analysed
simultaneously with the two-particle and three-particle sector via a Lanczos algorithm to
determine spectral densities. Inspired by this scheme, we choose a similar approach and develop
it further in the context of NLCEs. In our approach, the CUT on finite clusters is designed to
separate all states which do not overlap energetically and only states which overlap energetically
remain coupled. As a consequence, the scheme is also suited to describe quasiparticle-continuum
level-repulsion.

With this, we conclude the presentation of the setup and the objectives of the method. Several
approaches exist to derive an effective Hamiltonian of the form Eq.(2.6) and the corresponding
effective observables Eq.(2.10).

One route is provided by CUTs, i.e., the Hamiltonian is continuously transformed to the effective
Hamiltonian via a generator scheme driving the transformation. The different variants of CUTs
are essentially classified by the truncation scheme applied.

Another route can be understood in the context of (N)LCE, i.e., the effective Hamiltonian in
the thermodynamic limit is composed of effective Hamiltonians derived on finite clusters. The
methods applied in this thesis are love children of both approaches. Therefore, it is reasonable
to expand on (N)LCE and CUT approaches first before introducing the approaches in detail.

2.2 Linked-cluster expansions and non-perturbative
linked-cluster expansions

This section provides an introduction to linked-cluster expansions (LCEs), yielding high-order
series expansions in a perturbation parameter and the non-perturbative extensions called
non-perturbative linked-cluster expansions or numerical linked-cluster expansions (NLCEs). For
further reading we refer to detailed introductions to LCEs in [79] or [80]. A short introduction
to NLCEs can be found in [62].

The general concept behind any LCE and NLCE is to decompose physical quantities in the
thermodynamic limit into a sum of reduced contributions from finite linked clusters. This
principle is based on the linked-cluster theorem. The linked-cluster theorem is not a theorem

13



Chapter 2 Basics of the applied methods

in a rigorous sense and is understood very broadly as a concept. The standard approach to
many-body perturbation theory is an expansion in terms of connected space-time perturbation
theory diagrams analogous to Feynman diagrams in quantum field theory. Here, however, the
term linked cluster refers to a spatially connected lattice and we define a cluster of the infinite
system as a finite subset of supersites and their linking bonds.

For (N)LCEs, the linked-cluster theorem is a consequence of the so-called cluster additivity
which builds the basis for the subtraction scheme essential to LCEs and NLCEs. To make the
term cluster additivity more tangible for the moment: It simply means that the target quantity
on a disconnected cluster splits into the sum of connected clusters.

LCEs and NLCEs exhibit a rich spectrum of applications showing that (N)LCEs are a highly
versatile approach. The reason for this lies in the simple requirements for these approaches; the
quantities of interest in the thermodynamic limit must exist on finite clusters. Consequently,
(N)LCEs will probably also be applicable for many other challenges in the future. LCEs rely
on a small expansion parameter not present in NLCE approaches. In this sense, NLCEs are
less restricted than LCEs.

We begin this chapter with a quick review of the historical background and the developments
of LCEs and NLCEs. Afterwards, the important concept of cluster additivity is discussed in
detail.

2.2.1 Historical background

In the following, we are going to present the historical background of (a) LCEs and (b) NLCEs.
The objective is to give insights into the application area and the status of the current literature.
Specifically, open problems addressed in this thesis are pointed out.

Linked-cluster expansions

High-order series expansions are an important tool in statistical physics. Typically, the
linked-cluster theorem is used to determine the correct expression of physical quantities up to
high orders in a perturbation parameter by performing calculations on finite linked clusters.
Historically, such LCEs date back to the 1950’s and 1960’s [81-84], where high-temperature
series for extensive thermodynamic quantities have been determined. Similarly, extensive
zero-temperature ground-state properties like the ground-state energy or susceptibilities can
be calculated via LCEs as first proposed by Nickel in 1980 and implemented by Marland in
1981 [49]. Further progress has been made steadily over the years [50, 52, 85, 86]. The targeted
quantities are extensive and therefore the cluster additivity lying at the core of all LCEs is
trivially fulfilled. This property allows to compute these quantities per site for an infinite system
by combining the reduced quantities of linked clusters. The reduced contribution of a cluster
is obtained by subtracting reduced contributions of all subclusters to avoid double counting.
Consequently, a reduced contribution corresponds to the fluctuations which are specific to a
given cluster.

For non-extensive quantities like excitation energies, however, LCEs are more complicated and
for a long time the calculation of an energy gap was only achieved by a deficient scheme which
also needed unlinked clusters [52]. It took until 1996 when Gelfand set up a true linked-cluster
expansion for a one-particle dispersion [53]. Gelfand realized that quantum fluctuations of
the vacuum have to be subtracted from one-particle hopping amplitudes to perform proper
linked-cluster expansions. Yet, unrealized at that time, this approach in terms of similarity
transformations on graphs violates the cluster additivity and is therefore inapplicable when
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the ground state and the targeted excitation-subspace are characterized by identical quantum
numbers. In 2000, it has been shown that the use of orthogonal transformations on graphs
restores the cluster additivity and therefore allows for a consistent calculation of many-particle
excitation energies [54, 55, 79].

At the same time, an alternative route to linked-cluster expansions has been established by
the method of pCUTs [39], allowing for the calculation of high-order series expansions for
many-particle excitation energies as well as spectral densities [87]. In contrast to the other
approaches mentioned above, in pCUTs, a quasiparticle conserving effective Hamiltonian in
second quantization is derived model-independently. The method requires that the unperturbed
part of the Hamiltonian has an equidistant spectrum and that the system is bounded from
below. Interestingly, this method fulfills the cluster additivity by construction. In recent years,
pCUTs were indeed used as linked-cluster expansions, i.e. a full graph decomposition has been
implemented to calculate relevant matrix elements. Important examples are the derivation
of effective low-energy spin models for the Hubbard model on the triangular and honeycomb
lattice [63, 88], the calculation of the one-magnon gap for the fully-frustrated transverse field
Ising model on the triangular and kagome lattice [89], the treatment of topological phase
transitions of perturbed non-Abelian string-net models on the honeycomb lattice [90, 91], or
the determination of the one-triplon dispersion of coupled Heisenberg dimers on hypercubic
lattices for arbitrary dimension [92]. Overall, linked-cluster expansions constitute an efficient
tool with a vast variety of applications.

The numerical power of all (perturbative) linked-cluster approaches, especially in more than
one dimension, relies on a full graph decomposition. To this end, the lattice is divided into
small subclusters on which the actual calculations are carried out. Afterwards, results in the
thermodynamic limit are obtained by embedding the finite-cluster results into the infinite
system properly.

Let us consider two different subclusters of the lattice. If a simple renumeration of the sites
maps the Hamiltonian of the first cluster to the Hamiltonian of the second cluster, these clusters
are called topologically equivalent. Obviously, the calculation can be restricted to topologically
distinct clusters called graphs, yielding a highly efficient approach.

However, the number of topologically relevant graphs grows exponentially with the order of the
series expansion as well as with the total number of different coupling constants. Consequently,
it becomes very hard to reach sufficiently high orders for problems with several expansion
parameters. This is especially relevant for the comparison with experimental data where
typically different coupling strengths are important and have to be determined.

In this chapter, we introduce a new kind of graph expansion, a so-called white-graph expansion,
which overcomes the latter limitation to a great extent [69]. The white-graph expansion benefits
directly from the underlying framework provided by the effective pCUT Hamiltonian in second
quantization.

This short outlook concludes the perturbative part of the historical overview. The second part
deals with the non-perturbative counter-part of the LCE approach.

Non-perturbative Linked Cluster Expansions

The essential idea behind all NLCEs is a non-perturbative treatment of graphs, achieved via an
exact (block) diagonalization, yielding results in the thermodynamic limit after an appropriate
embedding procedure.

Interestingly, the underlying idea can be traced back to 1984 introduced by Irving and Hamer
as a so-called exact linked-cluster expansion (ELCE). Irving and Hamer simply replaced the
series expansion of the ground-state energy per cluster by the corresponding numerical exact
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value for this cluster [50]. In principle, it is possible to modify all high-order series expansions
via LCEs in this fashion. However, the power of this concept remained unheeded for some time
but received more attention recently and many exciting developments have been achieved in
this direction.

NLCEs can be used to obtain temperature-dependent properties of quantum lattice models
[68-62], where the main advantage of NLCEs compared to the standard perturbative high-
temperature expansions is the lack of a small parameter in the series. Consequently, it is
possible to access arbitrarily low temperatures for models with short-range correlations.
Furthermore, the approach can be extended to determine time-dependent quantities out of
equilibrium accessible directly in the thermodynamic limit [66, 67]. In addition to that, NLCEs
are applied to a system with random disorder, extracting several thermodynamic properties in
a disordered average [93]. Additionally, NLCEs can be used as a tool to calculate the bipartite
entanglement entropies [65]. Here, NLCEs are shown to be one of the few methods capable of
accurately calculating universal properties of arbitrary Renyi entropies at higher dimensional
critical points.

Recently, NLCEs are introduced as an accurate tool to study many-body localization transition in
a disordered system with continuous non-perturbative disorder [68]. Furthermore, a combination
of NLCE techniques with density matrix renormalization group calculations is also successfully
applied [94]. The general idea to combine NLCEs with other numerical methods is an interesting
and quite promising route.

Distinct from the calculation of extensive quantities is the derivation of effective low-energy
models via NLCEs as considered in this thesis. Here, degrees of freedom are separated in order
to gain a renormalized effective description of the system. First approaches in this direction
can be traced back to the derivation of low-energy Hamiltonians by contractor renormalization
group (CORE) [95-97]. Historically, this method is related to the real-space renormalization
group approaches. In contrast, another approach for the derivation of effective low-energy
Hamiltonians via NLCEs are gCUTs which can be understood in the context of CUTs [46].
Both NLCE schemes are successfully applied for the derivation of effective low-energy spin
models, yielding convergent results in the non-perturbative regime [63]. The methods are based
on a (block) diagonalization on finite clusters, defining a renormalized effective low-energy
model on the cluster. The effective models on the finite clusters are embedded into the lattice to
obtain the effective low-energy model in the thermodynamic limit. The underlying assumption
of this renormalization is a separation of degrees of freedom on the finite cluster. As we describe
in the course of this thesis, this assumption is not always justified.

Following this historical summary, we well focus on the core concept of (N)LCE approaches,
the cluster additivity.

2.2.2 Cluster additivity

Let us call two clusters A and B disconnected, if they do not have any (super)sites in common
and there is no bond linking (super)sites from cluster A and B. For a disconnected cluster
C = AU B, any operator/quantity defined on this cluster MY is called cluster additive if it
can be expressed as

MEC=MA"@18 + 140 M5B, (2.22)
so that MY splits into a part associated with the Hilbert space $ ($P) of subcluster A (B).

The reduced contribution of M is gained by the subtraction of subgraph contributions. If
Eq.(2.22) is fulfilled, the subtraction of the subclusters located in A (B) cancel exactly with
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MA@ 18 (14 © MPB). Hence, the reduced contribution of M vanishes, i.e., it vanishes for
all disconnected clusters and the expansion can be carried out considering linked clusters only.
The Hamiltonian H¢ is cluster additive by definition since there is no link connecting sites
from cluster A and cluster B. As a consequence, the ground-state energy itself obeys Eq.(2.22)
implying a proper LCE for the ground-state energy. Moreover, the same holds for all extensive
quantities.

This is less trivial when targeting quantities of an effective low-energy model. Obviously, it is
essential that the effective Hamiltonian is cluster additive. While the cluster additivity of the
effective Hamiltonian seems almost evident, there are indeed scenarios where some approaches
may yield effective Hamiltonians which are not cluster additive.

Given a cluster additive effective Hamiltonian, it demands a proper interpretation of the matrix
elements calculated on the graphs and the corresponding extraction of the coefficients. This
extraction process corresponds to a normal ordering of the operators drawn from the matrix
elements. By construction, only normal-ordered operators obey the cluster additivity. In
order to determine these normal-ordered operator on a given cluster, matrix elements of lower

particle-states must be subtracted. This rather technical procedure is described in the appendix
[A.1].

Cluster additivity of the effective low-energy Hamiltonian

It seems physically intuitive that the effective Hamiltonian is cluster additive, because the
clusters A and B are physically separated systems which should be reflected in the effective
description. Contrary to this intuition, the cluster additivity is not trivially fulfilled. However,
for pCUTs, the effective Hamiltonian is indeed always cluster additive which naturally arises from
the flow equation approach. In CUTs, the effective Hamiltonian is derived by the integration
of the flow equation O, H(¢) = [n(¢),H(¢)]. The initial Hamiltonian H(¢ = 0) is transformed
continuously to an effective Hamiltonian given by H(¢ = co). The approach is discussed in
detail in [2.3].

Let us assume

HOC =HO* @182 + 112 H(O)P . (2.23)

Using the generator scheme applied in pCUTs (see Eq.(2.41)) or the other standard generator
scheme (see Eq.(2.35)), Eq.(2.23) directly implies

n(0)° =n)* @ 17 + 14 @ n(0)? (2.24)
and one finds, using Eq.(2.23) and Eq.(2.24),

IHOA © 17 + 14 @ OH(O)® = [H(0) n(O)]° (2.25)

= [HOOF @ 17 + 14 @ [H(0).n(6))". (2.26)

The flow equation splits into a flow on cluster A and a flow on cluster B. The initial Hamiltonian

H(¢ = 0) is cluster additive by definition. Consequently, the effective Hamiltonian Heg derived

by the flow equation is indeed always cluster additive if Eq.(2.24) is fulfilled. Moreover, the
same argumentation can be applied for the effective observables Og derived via:

200 217 + 11 2 9,0(0)" = [0(£),n(0)]° (2.27)

= [0(O) )" © 17 + 11 @ [0()n(0)]". (2.28)
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Interestingly, to the best of our knowledge, this proof of the cluster additivity does not exist in
current literature. For pCUTs, one can proof that the structure of the effective Hamiltonian
originates from nested operators, guaranteeing a proper linked-cluster expansion [98]. However,
the latter results from the cluster additivity property above.

While the cluster additivity of the effective Hamiltonian results naturally from the CUT ap-
proach, this is different for other (N)LCE approaches.

A different route of approaches can be grouped under the term matrix perturbation theory.
The initial calculation in this field was performed by Gelfand in 1996 [53]. It is based on a
similarity transformation S applied to the initial Hamiltonian to derive an effective Hamiltonian.
Therefore, the effective Hamiltonian exhibits the same eigenvalues order by order as the initial
Hamiltonian. For the systems investigated in Ref.[53], the excitations are protected by a
quantum number from the ground state. Thus, the Hamiltonian separates into two blocks,
where the excitation is located on cluster A (B). As a consequence, there are no hopping
elements from cluster A to cluster B, ensuring the cluster additivity of this approach.

If, however, the excited states are not protected by a quantum number from the ground state,
one obtains indeed hopping elements from cluster A to cluster B and the approach does not
work. There are two related approaches, namely a 'two-block’ orthogonal transformation and a
‘multi-block’ orthogonal transformation, designed to address this challenge [79]. The so-called
‘two-block’ orthogonal transformation is computationally efficient but is still found to fail in
some cases. While the reasons for this are not yet fully understood, one can rely on the
computationally more demanding 'multiblock’ orthogonal transformation which seems to work
in all relevant cases.

The same subtleties are also present for the derivation of effective models via NLCEs. Here, two
methods are currently available in the literature [46, 95]. The cluster additivity of the effective
Hamiltonian in the gCUT procedure relies essentially on the interplay of the commutator
in the flow equation Eq.(2.31) and the generator at use. While the quasiparticle generator
schemes obey Eq.(2.24), this is not guaranteed for modifications of the standard scheme. Note,
that the same generator scheme must be used on every graph to achieve a consistent subtraction.
The other NLCE approach for deriving effective low-energy models is the contractor-renormalization
group (CORE). Former CORE applications involved the description of connected range-IN
interactions in a truncated Hilbert space [95-97].

Additionally, an effective quasiparticle description as outlined in 2.1 can also be achieved via
CORE [99]. To the best of our knowledge, there is no investigation of the cluster additivity
of the CORE approach in literature. The CORE procedure is discussed in the appendix A.2
focussing on the cluster additivity for both application fields. It is found, that the description
of the connected range-N interactions in a truncated Hilbert space might violate the cluster
additivity. However, this issue can be resolved by changing the orthogonalization procedure
involved in the calculation. It might be interesting to investigate if this improves the results of
CORE.

The derivation of quasiparticle descriptions requires, again, the separation of the ground state
and the corresponding excitations via a quantum number. This is consistent with the perturba-
tive LCE approaches, since the diagonalization-projection process in CORE can be viewed as a
similarity transformation on the cluster. The unitary transformation in gCUTs is more costly
but provides more information.

Finally, it should be noted that cluster additivity is sufficient for perturbative LCEs only.
For non-perturbative NLCEs, a generalization of this concept is necessary in order to avoid
non-perturbative artifacts leading to a breakdown of this method [70]. The generalization is
introduced in 4.2.1.

With this, the fundamental concepts of (N)LCEs are explained. Next, we describe the underlying
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principles of CUTs, finishing the basics of the procedure.

2.3 Continuous Unitary Transformations

Unitary transformations can be used to change the basis of a system in order to find a
simpler and better suited description of the problem. A textbook example of such a unitary
transformation is the bosonic Bogoliubov transformation arising in linear spin-wave theory of
quantum antiferromagnets [6]. Clearly, finding such a transformation a priori is not always
possible and one alternative route are continuous unitary transformations (CUTs), which were
proposed by Wegner [38] in 1994. A similar approach was proposed independently by Glazek
and Wilson [100] during the same period.

CUTs represent a schematic way of performing a unitary transformation to find an effective
description of the system. The CUTs map the initial Hamiltonian H by

H(0) = UT(0) H U() (2.29)

to the transformed Hamiltonian H(¢) . As indicated by the name, the unitary transformation
U(¢) depends on the continuous flow parameter £. Here, H(¢ = 0) = H corresponds to the
initial system and Heg := H(£ = 00) is the resulting effective system. In this thesis, we associate
Hest = ﬂnc, i.e., the effective Hamiltonian corresponds to the desired effective description in
terms of quasiparticles.

The transformation is driven by the antihermitian generator n(¢):
uU) =n)U(L) . (2.30)

The generator is defined by a scheme of the general form n(¢) = n[H(¢)]. Combining Eq.(2.29)
and Eq.(2.30) leads to the so-called flow equation

ML) = [n(0),H@O)] (2.31)

which must be solved in order to obtain the effective Hamilton operator. So for a given model
and generator scheme, the challenge of finding the effective description by means of a unitary
transformation is transferred to the integration/solution of the flow equation, building therefore
the centerpiece of all CUT methods.

During the flow, the Hamiltonian defines the next infinitesimal transformation to be performed
on itself by the indicated feedback structure via the generator scheme 7n(¢) = n[H(¢)]. It is
essential that the generator scheme leads to a convergent flow, i.e., fix points of the differential
equation defined by limy_, o [7(¢),H(¢)] = 0.

Note that the generator scheme applied in the CUT defines the shape of the effective Hamilto-
nian to a certain extent. If the targeted low-energy physics is energetically well separated from
the remainder, well-engineered generator schemes are available in the literature [39, 101]. If,
however, both subspaces do overlap energetically, modifications of the quasiparticle generator
schemes are required which is subject of ongoing investigations [33, 70, 102] and is also one of
the main focuses of this thesis.

Analogously to the Hamiltonian, one can transform observables in order to describe experimen-
tally accessible quantities such as dynamical correlation functions. The associated observable O
must be transferred to the same basis, which implies

alo(g) = [7](5)70(5)] ) (2'32)
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Figure 2.1: Left: Schematic representation of the initial Hamiltonian. The colored blocks are block
diagonal with respect to the number of quasiparticles. Off diagonal matrix elements are represented
by grey blocks. Each block couples to a finite number of different blocks resulting in an initial band
diagonality. Right: The resulting Hamiltonian derived via CUTs is block diagonal with respect to
the number of quasiparticles. The colour coding indicates the admixture of bare particles in the
vacuum of the effective system.

where O(¢ = 0) corresponds to the initial observable and O.g := O(¢ = 00) is the observable
within the effective description. Since the generator depends on the Hamiltonian, it is typically
reasonable to perform both integrations simultaneously.

We conclude that the CUT method provides a perfect tool for the applications described in
section 2.1. Unfortunately, for a given generator scheme, the solution of the flow equations
Eq.(2.31) and Eq.(2.32) is highly non-trivial. In general, the commutator produces new terms
which are not contained in the original Hamiltonian, resulting in an infinite set of coupled
differential equations. This is the reason why one has to introduce an adequate truncation
scheme which represents the main task of this method, leading to a variety of approaches. In
short, the crucial points of this method are the choice of the generator scheme, yielding a proper
low-energy description, and of a truncation scheme, capturing the relevant (low-energy) physics
of the system.

It should be mentioned that the application fields of flow equations go beyond the scope of
this brief overview. Flow equations find applications inter alia in the description of real time
dynamics [103, 104] or in the effective description in k-space for gapless bosonic excitations
[48, 105] or are applied to the Kondo model [106-108].

In the following, we are going to restrict the discussion to the scenario described in section
2.1, i.e., the derivation of effective low-energy models at T = 0 with an underlying (local)
quasiparticle picture. For the applications under consideration, there are, essentially, two
generator schemes (and their modifications) in use. We briefly discuss the properties of the two
main generator schemes on matrix level independently of the CUT variant in the next section.
Thereafter, the different CUT variants - classified by the way the flow equation is solved and
the associated truncation scheme - are discussed.

2.3.1 Generator schemes

The aim of the CUT is to transform a Hamiltonian of the system to an effective Hamiltonian
via the integration of the flow equation Eq.(2.31). Our objective is the derivation of an effective
description in terms of quasiparticles implying that the effective Hamiltonian is block diagonal
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with respect to the number of quasiparticles. The convergence can therefore be determined by
the sum over the squares of the non-block diagonal elements, also called residual off-diagonality
(ROD) [44]:

ROD := Y [Hucil? (2.33)
0,J
= Tr (Hoe)® - (2.34)

Consequently, any valid generator scheme under consideration must satisfy lim,_, ., ROD(¢) = 0.
It may be added that the ROD is not only relevant for the investigation of generator schemes. In
applications, the flow equation is integrated numerically and the integration can be terminated
if the ROD falls below a threshold value. Furthermore, the behavior of the ROD during the
flow can give indications of the underlying physics.

The initial Hamiltonian is band diagonal because only a finite number of particles is created
(annihilated) by the perturbation. The CUT rotates away the elements connecting different
particle sectors restoring the quasiparticle picture given by the unperturbed Hamiltonian.
The particles of the effective system represent the actual particles of the system and can be
viewed as dressed versions of the bare particles defined by the initial system. The procedure is
schematically shown in figure 2.1.

In the following, we investigate this property for the two main generator schemes used in this
field on matrix level. A scheme providing a generalization to infinite systems is discussed
in Ref.[109]. To this end, we choose an initial basis which is block diagonal with respect to
the number of particles defined by Hy. In other words, the particle conserving part of the
Hamiltonian H.(¢) is block diagonal.

An important quantity during the integration is given by the eigenvalues of the different particle
blocks during the flow. Let €"(¢) be the i-th eigenenergy of the m-particle block of H.(¢). For
£ = 0, the energies are determined by the contributions of the initial block-diagonal elements.
This corresponds exactly to the contributions included in first-order perturbation theory and so
el™(¢ = 0) can simply be identified with the eigenenergies provided by first-order perturbation
theory in A.

During the flow, the renormalization effects of the different blocks are continuously incorpo-
rated. Since the effective Hamiltonian is quasiparticle conserving and connected to the initial
Hamiltonian via a unitary transformation, the eigenvalues (¢ = oo) can be identified with the
actual eigenvalues of the system (neglecting truncation errors). This reflects the more general
concept that each n-particle block can be investigated separately recovering the correct physics.
While the possible values of (¢ = co) must recover the spectrum of the system, it is not
specified which eigenvalues are connected to which particle block. Hence, the development of
the subblock energies with £ is an essential characteristic of a generator scheme. These diagonal
elements are of crucial importance for the quality of the effective model and the challenges
addressed in this thesis. The following discussion of the generator schemes focuses on the ROD
in combination with the behaviors of the subblock energies £;".

Wegner generator
The generator scheme originally proposed by Wegner [38] is given by
" = [Ha,Hua] = [Ha,H], (2.35)

where Hq refers to the diagonal and H,q to the non-diagonal part of the Hamiltonian. This
generator scheme achieves, up to degeneracies, a full diagonalization up to degeneracies; for
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the considered block diagonalization the term diagonal can be redefined with respect to the
number of quasiparticles, i.e., all quasiparticle conserving terms are viewed as diagonal.

For the sake of simplicity, we discuss the original scheme while all statements can be generalized
to the modified generator scheme achieving the block diagonalization. In a given basis (defined
by the eigenstates of the initial Hamiltonian) the Hamilton operator is now considered in matrix
representation and the Wegner generator reads

ny = Z’fi(si,khk,j - Zh’i,k’sk(sk,j (2.36)
k k
= (EZ' - Ej)hi’j 5 (237)

where €; = h;; refers to the diagonal elements at a given value ¢. For the generator scheme
aiming at block diagonalization, these elements can be identified with the subblock energies &I
in the corresponding basis as defined above.

To proof that the generator scheme indeed leads to a full diagonalization up to degeneracies,
one can examine the sum over the squares of the non-diagonal elements [38]. By investigating
the trace of H2, one ends up with

- Z ikl = 22 (er — &) hiihige (2.38)

k,i#k ki

The square of the absolute values of the off-diagonal elements never increases and decreases with
¢ as long as the right side is not zero. If g, # &; (" # 5;‘) for all elements, a full diagonalization
(block-diagonalization) is performed. Contrary, non-diagonal elements which connect states
with the same diagonal elements do not have to vanish. In practice, the transformation becomes
numerically unstable and demanding when the difference between two diagonal elements becomes
very small.

Another fundamental consequence is that the order of the diagonal energies cannot be switched
during the flow:

(£=0)

gl = (£=0)=¢e;(l=00) <e;({=00) (2.39)
e(e=0)

<¢gj =
<ef(l=0)=¢e"({=00) <ej(l=00). (2.40)

This implies that a change in the order of the initial diagonal elements as a function of X leads to
an abrupt change of the effective Hamiltonian which is physically deeply unsatisfying. A change
in the order of the initial diagonal elements does not correspond to a drastic change of the
physics. The initial diagonal elements represent only the first-order perturbation theory, fully
ignoring the renormalization via interactions of the different quasiparticle blocks. The interaction
between different particle blocks is generically repulsive and the first-order perturbation theory
typically overestimates the energetic overlap. For this reason, we consider this class of generator
schemes to be unfavorable for the considered applications.

Another inconvenience arises from the fact that the band diagonality of the initial Hamiltonian
is not conserved during the flow. That is, interactions not present in the initial system are
generated and the Hamiltonian loses its simple structure. Both issues are absent in the generator
scheme discussed in the following.

Quasiparticle generator

In 1997, Stein introduced a new generator scheme aiming at the derivation of a block diagonal
effective low-energy Hamiltonian for the Hubbard model [101]. Stein’s ansatz allows a strong
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coupling expansion for the Hubbard model and can be viewed retrospectively as the first
introduction of the quasiparticle generator restricted to a specific set up.

In order to introduce a generator scheme which keeps the band diagonality, a new generator
performing a full diagonalization of matrices was proposed by Mielke in 1998 [110]. Mielke
proved several properties of this generator scheme including the conservation of the band
diagonality during the flow. Even though no degenerate subspaces are decoupled, the scheme is
closely related to the approach introduced by Stein.

Finally, Stein’s approach was extended and generalized in 1999 by Knetter and Uhrig with
the so-called quasiparticle conserving generator n® [39]. This generator scheme relies on a
quasiparticle picture defining the generator elements. Using n?, Knetter and Uhrig provided
the possibility to derive high-order series expansions when the unperturbed Hamiltonian Hg is
equidistant and the system is bounded from below.

All these generators can be viewed to be variants of an identical scheme. For these generator
schemes, the band diagonality of the initial Hamiltonian is conserved, and, most importantly,
the order of the diagonal energies of the effective system is not defined by the order of the
initial eigenvalues [33, 111]. This generator scheme builds the basis for all the applications in
this thesis and will be discussed next.

Let Q be the operator counting the number of excitations, i.e., Qi) = ¢;|i) if |i) is a g;-particle
state. One defines the generator scheme in the eigenbasis of @) as

”z’?j =sen(g; — ¢)Hij (2.41)

where ¢; denotes the number of quasiparticles of state i. For a system bounded from below,
one can proof that the final Hamiltonian obeys [Q,H(o0)] = 0, i.e., the number of elementary
excitations is a conserved quantity after the transformation and the quasiparticle picture is
restored [39].

The ¢-dependence during the CUT lies in analogy to the time dependence within the Heisenberg
picture in the operators while the states are static. Thus, arbitrary operators A transform via
A(¢) = UT(£)AU (¢). However, the operator Q yields the interpretation of the states which are
static. Therefore, the operator is not transformed by the CUT and one can simply identify
QM) =Q(t=0).

This means that the definition of a quasiparticle is transformed during the CUT. The particles
for £ = 0 can be identified with the particles of the initial Hamiltonian Eq.(2.5) while the
particles for £ = oo can be identified with the dressed particles of the effective Hamiltonian
Eq.(2.6).

In the following, we discuss the behavior of the subblock energies. If the ground state is unique,
this generator scheme maps the zero-particle state, i.e., the vacuum, to the ground state of the
system [111].

The proof can be generalized showing that this generator scheme transforms the Hamiltonian in
such a way that all subblock energy eigenvalues are ascending by their QP number, i.e., m <n
directly implies 7" (£ = 00) < €}/ (£ = 00) [33].

This sorting of the eigenvalues is the main difference of this generator scheme when compared
to the Wegner generator scheme where the order of the initial subblock eigenvalues is equivalent
to the order of the eigenvalues of the final effective Hamiltonian. This follows from the fact
that the ROD never increases with ¢ for the Wegner generator scheme. Consequently, the ROD
can indeed increase with ¢ for the quasiparticle generator scheme which indicates that subblock
energies of different quasiparticle blocks are sorted by the generator.

Note that the states are only sorted within subspaces of the Hilbert space having the same
quantum numbers. Specifically, the maximum of the one-particle dispersion can be energetically
above the minimum of the multi-particle continuum if these points are located at different
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momenta. For each momentum one can identify the one-particle state with the lowest energy.
This sorting often reflects a physical intuition since one identifies the lowest energies of the
system with the lowest number of excitations. However, subtleties exist when QP subspaces
overlap energetically and it is no longer possible to separate the degrees of freedom. A standard
example for this would be the decay of the one-particle mode in the continuum for certain
momenta. Then, the quasiparticle generator defines the minimum of a given momenta as the
one-particle mode. This rigorous identification can cause a break down of this approach for
non-perturbative truncations. Nevertheless, an adapted generator scheme where for example
the corresponding elements in the generator are eliminated can provide a possible remedy [33].
Obviously, the number of possible modifications is manifold and a major challenge addressed in
this thesis is the definition of a suited systematic and appropriate modification.

Following this brief discussion of the main generator schemes, we give an overview over the
different CUT variants in literature, completing the chapter of the CUT approach.

2.3.2 Variants of continuous unitary transformations

For clarity, we briefly recapitulate the set up and objectives. We start with a Hamiltonian
Eq.(2.5) which defines a quasiparticle picture. Our aim is to derive a quasiparticle conserving
Hamiltonian such, that the relevant low-energy physics can be understood in terms of these
particles. One way of deriving such an effective Hamiltonian is by means of the CUT method
relying on the generator schemes discussed above. In order to perform the CUT, one must
solve the flow equation Eq.(2.31). To this end truncations are inevitably involved since the
commutator generates new terms implying an infinite set of coupled differential equations.
Different approaches for the solution of the flow equation exist, defining the different CUT
variants. These different variants will be discussed in the following, putting the methods
developed during this thesis in context of the existing literature.

Perturbative continuous unitary transformations

Given the initial Hamiltonian Eq.(2.1), a perturbative truncation seems natural. Indeed, this
ansatz was one of the first computationally demanding approaches [39]. For the so-called per-
turbative continuous unitary transformations (pCUTs), the Hamiltonian H and the generator
n? are expanded to a certain order in the perturbation parameter \ and the flow equation is
solved model-independently. All terms up to a given order in A are taken into account, so no
truncation error is made up to this order. However, this method is restricted to an equidistant
spectrum of Hy, limiting its applications.

The resulting Hamiltonian can be determined model-independently. Yet, as a consequence, the
Hamiltonian is not normal-ordered and the desired model dependent low-energy physics has to
be extracted in a second step. This step involves the calculation on finite clusters which is the
natural link to LCEs. Herein lies the actual art and different approaches are possible. Since the
pCUT method is applied in this thesis, it is discussed in detail in chapter 3.

Self-similar continuous unitary transformations

Another approach is given by the self-similar continuous unitary transformations (sCUTs). The
Hamiltonian is kept in a self-similar form defined by a truncated basis of (normal-ordered)
operators 9; selected in the beginning of the calculation [45, 112, 113]. The Hamiltonian and
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the generator are then described as linear combinations of these operators:
HE) =D g:i(0)o; (2.42)
i

Operators generated by the commutator not included in the basis are neglected. Therefore, the
flow equation Eq.(2.31) defines a finite set of differential equations for the coefficients g;(¢) of
the basis operators:

Agi(l) = Zai,j,kgj (O)ge(f) . (2.43)
ik

The differential equation system is then solved numerically. The truncation scheme is therefore
on the level of operators kept in the basis. It can be chosen for instance by the locality of
the operators, i.e., all operators involving lattice sites with a distance larger than dy,.x are
neglected. Furthermore, the number of excitations affected by the operator is another possible
truncation. One problem of this approach is that typically several truncations are introduced
simultaneously which aggravates the problem of a well-controlled truncation.

It should be noted, that recently a promising truncation scheme for sCUT approaches in
momentum-space is introduced in Ref.[48]. Here, a schematic truncation is provided by scaling
arguments.

Enhanced perturbative continuous unitary transformations

The essential idea of enhanced perturbative continuous unitary transformations (epCUT) is to
enhance the application of perturbative continuous unitary transformations to non-equidistant
spectra in Ho [47]. To this end, the flow equation is solved - similar to sCUTs - numerically and
on the operator level. The objective is to gain series expansions for the desired target quantity,
e.g. the ground-state energy or a one-particle dispersion. The coefficients g;(¢) are therefore
not a single number but are replaced by a series expansion. The truncation is introduced in the
coefficients a; ; ;, with respect to the recoupling effect to the target quantities concerning the
order of the expansion parameter. Hence, one applies a truncation of the differential equation
system with respect to the expansion parameter rather than a truncation of the operator
basis as it is done in the sCUT approach. Although the results for equidistant spectra in
‘Ho are equivalent to the results produced by pCUTs, the realization of this method differs
fundamentally and in this respect the method is more closely affiliated with the sSCUT methods.

Directly evaluated enhanced perturbative continuous unitary transformations

Directly evaluated enhanced perturbative continuous unitary transformations (deepCUT) [47]
were developed as a by-product of the implementation of epCUTs. One can use the perturbative
truncation of epCUT to set up a finite set of coupled differential equations, evaluate them for
a certain value of the perturbation parameter A and solve these equations. This scheme is
called deepCUT and turns out to be a robust extrapolation of the perturbative results [47, 102].
In contrast to the sSCUT methods, this approach has a well-controlled truncation parameter
making this scheme more robust and powerful. The method has been successfully applied to
the Ionic Hubbard model on a chain [114, 115] and in two dimensions [116]. This method
represents the strongest method in this lineage.
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graph-based continuous unitary transformations

Clearly separated from these approaches, where the flow equation is solved on the operator
level, are the graph-based continuous unitary transformations (gCUTS) introduced in 2011 by
Yang and Schmidt [46]. Here, the flow-equation is solved on finite clusters and the result in the
thermodynamic limit is obtained by a summation of the finite-cluster results. The Hamiltonian
on a finite system can be represented by a matrix, so that, in principle, the flow-equation can
be solved without any truncation error. Hence, the error of the approximation is induced only
by the finite spatial range of the fluctuations taken into account. This method represents the
main focus of this thesis and is discussed in 4.

Let us close this chapter with some final remarks about CUTs. The perturbative truncation
applied in pCUTs or epCUTs yields unique results and no artifacts of the specific truncation
scheme or the CUT method are present. However, depending on the parameter regime, this may
be different for CUTs based on truncations which are not purely perturbative. In a parameter
regime where the quasiparticle subspaces are energetically well separated, all approaches work
well and no artifacts are present. In parameter regimes where this is not the case, the description
is by construction more demanding.

As mentioned above, a sorting of the eigenvalues can cause the ROD to increase indicating an
energetic overlap of the subspaces. For sSCUT and deepCUT, this may even result in divergencies
of the ROD which prohibits the derivation of an effective model in these scenarios. Solutions
are based on modifications of the standard quasiparticle generator scheme avoiding the sorting
property to some extent:

Firstly, one can simply eliminate all terms in the generator which couple the one-particle mode
with the other QP channels. Renormalization effects of these terms are considered to be small
and are included in a second evaluation process where the coupled one- two- and three-particles
subspaces are diagonalized simultaneously in a numerical fashion [33].

Secondly, one can apply a variational determination of the generator elements in order to
prevent a divergence of the ROD [102]. In this scheme, the quasiparticle blocks are (almost)
completely decoupled.

For gCUTs, the problem of divergencies of the ROD is avoided since the flow equation is solved
on a finite system and no divergencies can appear. However, artifacts of this approach manifest
in convergence problems with the cluster sizes. As described in 2.2, these problems arise when
the low-energy subspace overlaps energetically with the remainder and the possible nature of
this overlap is twofold. Firstly, the overlap is characterized as genuine decay if the energetic
overlap on finite clusters corresponds to an energetic overlap in the thermodynamic limit. This
situation is similar to the scenario described above for sCUT and deepCUT.

Secondly, the overlap can be characterized as pseudo decay if it is only caused by the broken
translational invariance of the finite cluster. This is an artifact inherent to all NLCE approaches
and not present for sSCUT and deepCUT. Consequently, a solution of this artifact is even more
mandatory.

The idea is to develop modifications the standard quasiparticle generator in order to treat
pseudo and genuine decay. A full decoupling of the subspaces on the finite clusters is in both
scenarios not desired. Consequently, a variational approach in form of [102] is not taken into
consideration. In contrast to [33], it is also not sufficient to eliminate all terms in the genera-
tor which couple the one-particle mode with the remainder, since renormalization effects are
substantial. Consequently, a modification must eliminate certain elements from the generator.

The golden thread of this thesis is to exploit attributes provided by CUT calculations in
order to address the challenges arising in the (N)LCE scheme.
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This is done for the perturbative variant pCUT and the non-perturbative counterpart gCUT in
different ways. Firstly, we are going to describe the combination of pCUTs with LCEs to define
a new scheme called white-graph expansion, allowing an efficient calculation for systems with
multiple coupling types [69].

Secondly, the continuous transformation during the flow is utilized to implement modified
generator schemes which address both pseudo and genuine decay within the gCUT scheme.
The understanding and treatment of pseudo decay represents major progress for NLCEs in
general. The conceptual ideas allow to identify and fully eliminate these artificial effects [70].
The treatment of genuine decay via NLCEs breaks new ground for this approach. A reasonable
continuation of the results in the parameter regime showing genuine decay is introduced. Con-
sequently, these developments for the gCUT scheme represent the main achievement of this thesis.
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Chapter 3

Perturbative Continuous Unitary
Transformations

In this chapter, we describe the combination of LCEs and pCUTs to set up a new kind of graph
expansion, so-called white-graph expansion. The content of this chapter is already published in
Ref. [117] and Ref.[69].

Perturbative continuous unitary transformations are an effective tool for the calculation
of high-order series expansions. In contrast to other tools for calculating high-order series
expansions like LCEs via matrix perturbation theory [79] or the enhanced version called epCUT
[47], the method is restricted to an equidistant spectrum in Hy. The method can be applied
to calculate one-particle dispersions [39], multi-particle interactions, spectral properties like
spectral densities and dynamic structure factors [10, 40-43] or effective spin models [88].

The application consists essentially of two steps: i) the perturbative order-by-order solution of
the flow equation Eq.(2.31) yielding an effective Hamiltonian and effective observables. ii) a
non-trivial extraction of the effective low-energy physics.

The first step depends only on the structure of the perturbation, namely, how many particles
at most are created (annihilated) by the perturbation. In this sense, the obtained solution is
model independent.

However, this generality comes at the price of a complex model dependent extraction process
because the effective operators are not normal-ordered, i.e., the desired matrix elements have to
be extracted in a separate step. The real challenge lies in the second step which introduces the
model-dependent physics and therefore typically represents the bottle-neck of the calculations.
The extraction process is based on the linked-cluster theorem which allows the determination
of matrix elements in the thermodynamic limit by applying the effective operators to finite
clusters. At the end of this process a normal-ordered low-energy Hamiltonian is obtained.
Essentially, two approaches are possible: in the standard straight-forward approach the cal-
culation can be carried out on a single sufficiently large cluster, see e.g. [10, 39, 40, 118, 119].
The advantage of this approach is that the implementation is straightforward and details of the
operator structure are irrelevant for the general scheme.

For two or more dimensions, this approach is typically unfavorable because one runs into
memory problems and a full cluster decomposition is the method of choice [88-91]. It is then
even possible to use this idea and determine quantities in arbitrary dimensions [92].

Let us also mention that a hybrid, a decomposition into rectangular clusters, has been also
successfully introduced for the pCUT method recently[98]. A rectangular cluster expansion
seems to be especially well suited for non-perturbative extensions of linked-cluster expansions,
since a typical length scale can be assigned to each rectangular graph, which is much less trivial
when performing a full graph decomposition [65, 70].

The computational efficiency of the full cluster decomposition is based on a topological identi-
fication process, namely, fluctuations which correspond to the same graph can be identified
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with each other. As a result, only a small subset of topologically distinct fluctuations must
be calculated, resulting, especially for more than one dimension, in an extremely effective
calculation process. However, if multiple couplings are present, these couplings inhibit topologi-
cal equivalence. In these cases, especially relevant for experimental realizations with several
coupling constants, the maximally available order is significantly reduced (see e.g. Ref.[120]).
In this chapter, we introduce a new scheme, a so-called white-graph expansion, addressing this
issue relying on a reordering of the calculation process.!

In the following, we start with a brief review of the solution of the flow equation, which builds
the basis of every pCUT approach. Then, we discuss the extraction of the low-energy physics
from the resulting effective Hamiltonian, leading naturally to the concept of a full graph decom-
position. Finally, we introduce the white-graph expansion as applied in this thesis followed by
an application to a two-dimensional quantum spin 1/2 model of coupled XXZ-ladders.

3.1 Perturbative solution of the flow equation

Continuous unitary transformations are a tool for the derivation of effective low-energy models.
The transformation is driven by the so-called flow equation Eq.(2.31) which can in general only
be solved by introducing a truncation scheme. In this chapter, we describe the perturbative
solution of the flow equation [39] yielding the correct effective Hamiltonian for a given order. It
should be noted, that the scheme can only be applied if Hj is equidistant and bounded from
below.

Here, the flow equation Eq.(2.31) is solved via the perturbative ansatz

HANEO=Ho+ Y A 0 Y Fem)T(m), (3.1)
Z], kj=k |m|=k
implying, according to Eq.(2.41),

AN = Z AN ST F(6m)sgn (M(m)) T(m). (3.2)
ij,, |m|=Fk

The following notations have been introduced

m = (my,ma,...,mg) (3.3)
m; € {0,+£1,42,...,£N} (3.4)
jm] = & (3.5)

T (1) = Ty, Ty Tog - - - Ton, (3.6)

k
m) = Zml (3.7

This ansatz leads to recursive differential equations for the real functions F(I;m) with the
initial conditions F(0,m) = 1 for |m| =1 and F(0,m) = 0 for |m| > 1. Due to the structure
of the recursive equations, they can be solved in principal analytically. The calculation of the

11t should be noted, that this concept corresponds to an idea already introduced in the authors Diploma thesis
[121]. However, the final intellectual step of separated white-graph results is introduced here, providing a
considerably faster evaluation process and a new perspective.
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analytic functions F' can be performed on a computer up to a certain order np,x limited by the
computation time and the memory usage only. The solution leads to an effective Hamiltonian
of the form

= k
Ha(() =Ho+ Do My Y, Cm)T(m), (38)
>, ki=k lm|=k " m;=0
with C(m) € Q. The restriction ), m; = 0 reflects the particle-conserving property of the final

Hamiltonian. The summands can be viewed as virtual fluctuations of the new dressed particles
defined by the effective Hamiltonian.

In a similar manner one can calculate other physical quantities with pCUT [87]. To this end,
the same unitary transformation has to be applied to any observable O of interest

POUAED _ opa):0,.0(000:01 (39
Using the perturbative ansatz
O(N1D = 3 M
ZJ_ kj=k
k+1
> > Glmi)O(m; i) (3.10)
=1 |m|=k

with

Om;i) =Ty Ty OTp, o . Trny. s (3.11)

-1

one obtains recursive differential equations for the functions G(¢; m,i). The final result is given
by

[e e}

Our({N}) = Y A
ijj:k
k1 )
Z Z C(m;1)O(m; i), (3.12)
=1 |m|=k

with C(m,i) = G(¢ = oo;m,i) € Q. In contrast to the effective Hamiltonian, effective observables
are not quasiparticle conserving.

The coefficients C(m) and C(m; i) are independent of the model and can be straightforwardly
applied to all the problems matching the requirements of the pCUT method. This generality
is only possible at the expense of the second model-dependent extraction process described
next for the effective Hamiltonian Heg. The treatment of effective observables can be done in
complete analogy.

3.2 Perturbative continuous unitary transformations as a
linked-cluster expansion

Since the effective operators like Heg are not normal-ordered, matrix elements defining the
effective model are not directly accessible. In order to calculate the desired matrix elements, the
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Figure 3.1: All fluctuations involving the highlighted links are pooled together in this representation.
The overall contribution of these fluctuations to the hopping element ¢; ; in the thermodynamic
limit (left panel) can be identified with a reduced contribution of a disconnected cluster (right panel)
vanishing due to the linked cluster theorem. The figure is taken from Ref.[69].

effective Hamiltonian Heg can be applied to a finite cluster yielding the correct contributions
in the thermodynamic limit for a given order and matrix element. This crucial property
results from the linked cluster theorem which states that only linked processes have an overall
contribution to cluster additive quantities. The cluster additivity of the effective Hamiltonian
results directly from the CUT approach (see 2.2.2).

We restrict the discussion to Hamiltonians where the perturbation couples always two supersites.
The coupling between supersites is represented by a link in the cluster and the operator can be
decomposed as

To=> Tui (3.13)
l

where 7,; affects only the two supersites which are connected by the link [ in the effective
lattice. In other words, the operator 7,,; acts on the link /. The sum runs over all links of the
lattice. Inserting this decomposition into Eq.(3.8) yields

oo kNA
Het({N}) = Hot+ D A A0
ijj:k

Z C(m) Z Tmp,lq -+ - Tmy,li (314)

|m|=k Zimizo ly... 0y

In practice, however, the Hamiltonian is applied using Eq.(3.8). Each summand of order k can
be understood as a virtual fluctuation involving the links [y ...[;. The links form a pattern
which can be assigned to a cluster consisting of these links and adjacent sites. If the fluctuation
pattern corresponds to a disconnected cluster, the overall contributions annihilate each other
and such fluctuation patterns can be discarded, see also figure 3.1.

If the links (and the adjacent sites) form a connected cluster C, the process is called linked
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Figure 3.2: The fluctuation pattern indicated by the highlighted links corresponds to fluctuations
associated with the vacuum. These fluctuations are irrelevant for the local one-particle hopping
element ¢;; in the thermodynamic limit (left panel). The figure is taken from Ref.[69].

and the Hamiltonian can be rewritten as a sum over these linked clusters

Hea(N)) =Ho+ Y A0 3
Z]_ kj=k |m|=k ZI_ m;=0

ZC(m) Z T,y - - Ty, - (315)
Ck

1h.. 1,1 Uz2...lk:c,c

Note that there are also fluctuation patterns which correspond to a lower QP channel since not
all excitations are involved in the fluctuation as illustrated in figure 3.2. These fluctuations
cancel via the subtraction scheme required for the normal ordering (see A.1).

A linked-cluster expansion arises therefore naturally from the pCUT approach. The simplest
approach is to design a sufficiently large cluster which incorporates all the relevant linked
fluctuations of a desired order and to carry out the calculation on this single cluster. Yet, the
calculation based on this approach still incorporates a lot of unlinked processes resulting in an
unnecessary computational overhead. Furthermore, these processes are kept in the memory
during the calculation which usually defines the highest possible order.

It is therefore typically favorable to use a full cluster decomposition. To this end the
contribution of (small) clusters is calculated by applying Heg to all clusters determining the
corresponding matrix elements which requires a minimal memory usage. Contributions of
smaller subclusters have then to be subtracted in order to gain the reduced contributions of the
cluster and to avoid double counting of fluctuations. Hence, after the subtraction, every link [;
in Eq.(3.15) is involved at least once.

The matrix elements in the thermodynamic limit are then determined by summing up all
the reduced contributions of these subclusters. The efficiency of this approach is based on the
identification of clusters by means of the topology which implies that the calculation can be
restricted to a much smaller set of topologically distinct clusters called graphs.
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3.2.1 Generating relevant graphs
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Figure 3.3: Three different labelings of the same graph are depicted with the corresponding adjacency
matrices and the resulting keys. The first labeling corresponds to the canonical labeling and the
resulting key is the graph key. The figure is taken from Ref.[69].

In the following, we briefly outline the underlying concepts of the topological identification
by means of a canonical labeling. The identification process is oriented on the details given in
Ref.[79].

First, we consider a system where all (super)sites are coupled by identical undirected bonds.
In this case, a cluster is fully determined by an (arbitrary) numeration of the sites and the
bonds linking the sites. A cluster of n sites can be represented by an n x n adjacency matrix
Mg, j with

— 1, if sites i and j are connected by a bond (3.16)
Y0, else. ’

Two clusters are called topologically equivalent, if a simple renumeration of the sites yields the
same adjacency matrix in both cases. Obviously, it is sufficient to restrict the calculation to
topologically distinct clusters (graphs) because the results can easily be mapped via a relabeling.

In order to identify clusters as topologically equivalent, it is reasonable to introduce a
canonical labeling which is distinct from other labelings. To this end, one identifies the
off-diagonal elements m; ; (i < j) as the binary bits of an integer number with the order
(m12,M1,3,...M1p...Mp_1,) serving as a key. The labeling which maximizes this key cor-
responds to the canonical labeling and defines the graph, see also figure 3.3 for examples. If
two clusters are topologically equivalent, they are assigned to the same graph. In practice, it is
necessary to find the labeling which maximizes the key efficiently. We do not go into technical
details for the implementation. For further reading we refer to Ref.[79].

Using the graph key, it is possible to schematically produce the required connected graphs by
successively adding links to a given set of graphs. Furthermore, the number of graphs relevant
for the calculation can be additionally reduced. Obviously, it is sufficient to include only graphs
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3.3 White-graph expansion

that can be embedded into the lattice under consideration, i.e. if the lattice contains clusters
corresponding to this graph.

By construction, the reduced contribution of a graph of n links starts at most at order n.
Hence, for a given order n, only connected graphs of up to n links have to be considered.
Depending on the problem, further selection rules can help to reduce the number of relevant
graphs because the presence of conserved quantities might result in further constraints for a
given order.

3.2.2 Calculation on graphs

The next step is to perform the actual calculation on graphs, i.e. Heg is evaluated to determine
the relevant low-energy matrix elements. For the implementation, one typically chooses the
eigenbasis of Q, i.e. every basis state can be identified with a defined distribution of bare
excitations. During the application of the operator sequences in Heg the intermediate states
are represented as linear combinations of these basis states

)= asli) - (3.17)

The basis states |j) are represented by integer numbers where the information of the basis
states is encoded bitwise in the bit representation of an integer as known for instance from
exact diagonalization. In this basis, the action of the operators in Eq.(3.13) affects only a small
number of bits allowing for a fast access and modifications via bitwise operations.

Compared to the dimension of the full Hilbert space, the number of terms in an intermediate
state is small. Therefore, it is useful to use associative arrays consisting of a key (the state
represented by an integer) and an associated value (the coefficient «; represented by a rational
number). This is also illustrated in figure 3.4(a).

The desired matrix elements are then given as series expansions with rational coefficients.
In order to gain cluster additive quantities for the embedding, the normal ordering is applied,
followed by the subtraction of subclusters contributions.

3.2.3 Graph embedding

Finally, the graphs are embedded into the infinite lattice, i.e. all realizations of a given graph on
the lattice are produced recovering all the clusters in Eq.(3.15) via the appropriate relabeling.
The contributions of the cluster additive quantities are added up accordingly. Note that the
contributions of all linked clusters in Eq.(3.15) are incorporated while the actual calculation
is performed on a massively smaller subset of topologically distinct clusters. The embedding
procedure is straightforward and technical details of the implementation can be found in Ref.[79].

Typically, the bottleneck of the calculation is defined by the derivation of the effective model
on the graphs via pCUTs. Hence, the efficiency of this approach is based on the identification
of clusters and the associated reduction of the number of clusters involved in the calculations.

3.3 White-graph expansion

Up to now, we have described the essential steps to set up a linked-cluster expansion with the
pCUT method. This standard scheme becomes inefficient when the physical system possesses
many linktypes corresponding to perturbation parameters A;, which is for example relevant
when fitting experimental data with microscopic calculations. These linktypes function as
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another topological attribute which can be incorporated in the usual scheme by generalizing
m;,; € {0,1...n} for n linktypes. Clearly, this leads to an exponential growth of relevant graphs
needed for the calculation. However, as we demonstrate in the following, one can circumvent
this inconvenience by a so-called white-graph expansion.

The underlying principle of the white-graph expansion is to ignore the different linktypes
(colors) for the topological classification of the clusters. The white-graph number is simply
defined using Eq.(3.16) and the calculation is restricted to topologically distinct clusters in
this sense. However, the contributions of clusters in Eq.(3.15) cannot be gained by a simple
mapping of the sites because the contributions do differ depending on the color pattern of the
links. To this end, additional information is tracked during the pCUT calculation on the single
graphs allowing to restore the contribution of each cluster exactly from the calculation on white
graphs.

3.3.1 The calculation on white graphs

The additional bookkeeping can be interpreted as an enhanced or generalized monomial;
additional values n are assigned to the links to keep track of the relevant information. The
latter can be comprised in a single object M (n) which can be viewed as a generalized monomial.
The choice of M(n) is problem-dependent and must be adjusted for each application. If the
links differ only with respect to the coupling strength, it is sufficient to track how often each link
was active in the operator sequence applied to the current state. For more complex problems,
more information must be tracked and this approach may become unfavorable in scenarios
where a lot of linktypes are involved and the non-zero matrix elements differ greatly between
the linktypes. However, in principle, it is always possible to track the relevant information.

Evaluated for a given link pattern, the generalized monomials must yield an actual polynomial
in the multiple perturbation parameters of the different couplings such that the result corresponds
exactly to the calculation on a cluster having this very link pattern. This allows for the
subsequent evaluation necessary for the embedding procedure.

As indicated by the name, the generalized monomials obey

and the intermediate states during the calculation are then expressed as linear combinations of
these elements:

) =Y aMmali) - (3.19)

Note that the action of an operator in Eq.(3.13) affects the generalized monomials M (n;) and
the state |j) independently; similarly to the action on product wave functions.

As in a standard pCUT set up, it is reasonable to use associative arrays to represent the
intermediate states. The information of a generalized monomial can analogously be encoded
bitwise. In a naive implementation, the state combined with the generalized monomial defines
the key and the associated amplitude «; ; corresponds to the value as visualized in figure 3.4(b).

In an improved implementation, one can make use of the product structure of the generalized
monomials as well as of the intermediate states and factorize the representation:

=31 (Z ai,iji)) . (320)
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Figure 3.4: (a) The standard representation of intermediate states |¥) following Eq.(3.17) so that o
corresponds to a rational number. (b) Standard calculation on white graphs using the generalized
monomials as written in Eq.(3.19). (c) Improved calculation on white graphs following Eq.(3.20)
which uses the product structure of the generalized monomials. The figure is taken from Ref.[69].

The effect of the operators on the state |j) can be calculated independently of the effect on
the appendant sum of generalized monomials. Consequently, numerous redundant search,
comparison, and shift operations are avoided. The implementation of this approach requires
two nested containers. The key of the first container is defined by the state |j) while the
value is given by a second container. The second container is defined by a key comprising the
information of the generalized monomial M (n;) and the value corresponds to the amplitude
«; ; of this generalized monomial and the state. This is illustrated in figure 3.4(c).

For an efficient performance, we recommend a simple modification of this procedure. As
shown in subsection 3.2, the reduced contribution of a graph involves each link at least once.
This property can help to reduce the computational effort immensely. The objective is to
calculate the reduced contribution of a cluster directly without relying on a second subtraction
step.

We consider the calculation in order £ on a graph consisting of n links. Let y; ; denote how
often a link j appeared in the operator sequences comprised in the monomial M (n;). This
information is typically tracked anyway and cause no computational overhead. We define

- : fig = pig — 1, if iy >1
i = i.; with 3.21
S 21
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Chapter 3 Perturbative Continuous Unitary Transformations

One can discard all intermediate generalized monomials M (n;) where p; > k — n.

Evidently, this is specifically relevant if the number of links n is close or equal to the order
k, i.e. for graphs with a large number of links. By construction, these graphs represent the
majority of graphs making this modification extremely valuable.

Finally, the matrix elements of the Hamiltonian are given as linear combinations of the gener-
alized monomials. The generalized monomials of these matrix elements build the centerpiece of
this approach carrying the relevant information for the embedding of the white graphs described
in the following.

3.3.2 Embedding white graphs

For the embedding procedure of a standard linked-cluster expansion, all realizations of a given
graph on the lattice are produced recovering all the clusters in Eq.(3.15) via the according
relabeling and the contributions of the clusters are added up. Analogously for the white-graph
embedding, all realizations of a given graph on the lattice are generated. In order to recover the
contributions of all clusters in Eq. 3.15, the information of the link pattern must be incorporated
in a second evaluation step. The matrix elements on the white graphs are given as sums of
generalized monomials. Evaluated for a given link pattern, the generalized monomials yield a
polynomial in the multiple perturbation parameters recovering the result of the calculation on
a cluster corresponding to the given link pattern. The resulting contributions are added up for
all embeddings recovering the correct result in the thermodynamic limit.

3.4 Coupled two-leg XXZ Heisenberg ladders

In order to illustrate the functioning and usefulness of a white-graph expansion, we discuss in
this section the calculation of one-magnon dispersions for the ordered state of a two-dimensional
quantum spin model of coupled two-leg XXZ ladders involving four different perturbation
parameters. The microscopic model in terms of spin 1/2 operators reads

zZ Z )\ X X
H= > J, [si Si+5 (5585 +5757) (3.22)
v:(8:3)

and is depicted in figure 3.5(I). The different couplings J,, correspond to rung (leg) exchange

Jrung (Jieg) of the two-leg ladders, the inter-ladder exchange Jin, and a spin-anisotropy A. This

Hamiltonian was recently shown to be relevant for the quantum magnet CoH;1gNoCuBry dis-

playing long-range Néel order and gapped magnon excitations [117]. The structure is illustrated

in figure 3.5(IT). We exploit the white-graph expansion to set up a high-order series expansion

for the one-magnon dispersion. This allows to determine the exchange couplings of the system

to be Jigg = 0.60(2) meV, Jryng = 0.64(9) meV, Jin, = 0.19(2) meV with the spin-anisotropy

A = 0.93(2), according to inelastic neutron-scattering measurements [117].

To calculate the one-magnon dispersion, we perform a sublattice rotation to obtain a ferromagnetic
reference state for the Ising case A = 0, which transforms Eq. (3.22) to

H= > J, [—st; - % (Sf5F+5757)] (3.23)
'7a<i)j>

We then introduce hardcore-boson operators a/, and a,, (?JI, and Eu), which create and annihilate
a magnon at site A (B) of rung v above the ferromagnetic reference state, obtaining the
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Figure 3.5: (I) Illustration of the quantum spin model of coupled two-leg XXZ ladders. Filled circles
represent quantum spin 1/2 which are linked by various solid lines illustrating the different exchange
couplings Jrung, Jieg, and Jing. The black box shows the two-site unit cell of the system corresponding
to the rungs of the ladder and dx (dy) refers to the distance between two neighboring rungs belonging
to different (same) ladders. (II) (a) Crystal structure of CogH1sN2CuBry, in which the ladder chain
extends along the b axis. Outlined is a nuclear unit cell. (b) Projection onto a plane perpendicular
to the b axis, showing the proposed interladder couplings. Different lines stand for the different
bonds. Red and yellow lines indicate the intraladder coupling Jrung and interladder coupling Jint,
respectively. Black arrows indicate the directions of the spins. The parallelogram is a projection of a
magnetic unit cell. Figure (I) is taken (up to adjustments of notation) from Ref.[70] and figure (II)
is taken from Ref.[117].

hardcore-boson Hamiltonian

R

Y [0+ A T2+ Topa)] (3.24)

where J = Jiog + (Jrung + Jint)/2, N is the number of unit cells, Al = ala,, and i Al = =0blb,.
The sums are taken over all rungs. The operators T}, ,,, with T}, _» = T,i L, are given by

To = —Zrungh@a® — i@l
—Tleg (A,(ja) (a) —I—n(b) ,(/J)réy) (3.25)
and
Ty4+2 = wrungAiBi*zmtBiai-i-éx
—Tleg (&l&lHy + IS,T,I}ZHy) , (3.26)
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Figure 3.6: The number of white (colored) graphs are shown as filled black (cyan/grey) circles as a
function of the perturbative order m for the model of coupled two-leg XXZ Heisenberg ladders. The
dashed cyan/grey curve represents a fit a exp (bm) through the data points corresponding to colored
graphs. The figure is taken from Ref.[69].

where z, = J,Y/JN, and dz (dy) is the distance between two neighboring rungs belonging to
different ladders (the same ladder).

At this point let us replace x, — T~ with 7 € [0,1] so that 7 = 1 corresponds to our physical
system Eq.(3.24) and 7 = 0 functions as a well defined starting point for perturbation theory.
Indeed, the resulting Hamiltonian can be rephrased as

H
ne{—2,0,2}

which corresponds exactly to Eq.(2.1) and meets all criteria relevant to apply the pCUT method
as described above: i) The unperturbed Hamiltonian at 7 = 0 is equidistant, ii) the unperturbed
spectrum is bounded from below, and iii) the perturbation is decomposed in T}, operators. One
can therefore map Eq.(3.27) to an effective model, Hesr, which conserves the number of magnons.
The one-magnon sector Hé}f), which is of our interest here, corresponds to an effective hopping
Hamiltonian for the magnons in real space and is therefore fully determined by the one-magnon
hopping amplitudes. The corresponding one-magnon sector Hgsf) can then be simplified by a
Fourier transformation to

H =3 (" (R)afay, + w0 (R)SLB,) (3.28)
k

where w® (k) and w?(k) denote the two one-magnon branches stemming from the two-site unit
cell. Here, we have determined both one-magnon branches by series expansion up to 13th order
in all parameters 7z.,. At this order one has to treat 2709 white graphs in total. Clearly, the
number of graphs with color is many orders of magnitude larger and a related calculation is
well beyond any realistic set up. This is further highlighted in figure 3.6 where the number of
colored and white graphs is displayed against the perturbative order m. Since the different
linktypes differ only with respect to their coupling strengths, the additional information n
tracked during the calculation on white graphs must incorporate how many times each link is
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Figure 3.7: Illustration of two different fluctuation patterns contributing to the local one-particle
hopping element ¢;; in the thermodynamic limit (left panel) for the quantum spin model of coupled
two-leg XXZ ladders. The solid lines correspond to the different exchange couplings J., Jj, and
Jint. The occurrence of a link in Eq.(3.15) is visualized by an arc defining the fluctuation pattern.
All fluctuations with this pattern are pooled together in this representation. Both fluctuations are
associated with topologically distinct graphs Gi and G2 (right panel) solely because their colorings
are different. Decomposing the results of the calculation with respect to the fluctuation pattern
allows to gain both contributions by embedding a single white graph G¥"* and ’evaluating’ the
resulting coloring. The evaluation yields polynomials in the different perturbation parameters J,.
The figure is (up to adjustments of notation) taken from Ref.[69].

acted on by the perturbation parameters J,. This is in fact identical to the approach where all
links of a graph have different coupling constants and the result is given as a multi-variable
polynomial. Finally, during the embedding procedure, the coupling constants of the graph
are matched with the ones of the specific graph realizations on the lattice. This is visualized
for the local one-particle hopping element ¢; ; in figure 3.7. Let us stress that the results for
the one-magnon dispersions are given analytically in all physical parameters x, , |, Zint, and
A. Scanning through a large variety of parameter sets, which is often needed when fitting
experimental data, is then straightforward as long as convergence in 7 up to 7 = 1 is given: the
values for the different couplings just have to be inserted into the analytical expression.

Physically, the series in 7 do converge well for small values of A. First, both limits 7 =0
and A = 0 have exactly the same ground state as well as the same one-magnon excitations.
Only the multi-magnon energies differ. Second, quantum fluctuations are strongly suppressed
for small A and/or 7. We find that bare series in 7 are quantitatively converged up to 7 =1
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A7l

Figure 3.8: One-magnon gap A/j as a function of 7 for the isotropic square lattice Jieg = Jrung =
Jint = A = 1 for different bare series and different (biased) DlogPadé extrapolants. Inset: Zoom close
to 7 = 1. The figure is taken from Ref.[69].

for A < 0.8. For larger values of A\, one has to rely on extrapolation schemes like DlogPadé
extrapolation (see Ref.[122] or discussion in section 4.3).

This is especially true for the most demanding case of the one-magnon low-energy gap
A = min, (w*(k),w’(k)) at A = 1. In DlogPadé extrapolation one constructs various extrap-
olants [L,M] where L (M) denotes the order of the numerator (denominator) and one requires
L+ M =m — 1 where m denotes the maximal perturbative order. In the case of a physical
phase transition, the DlogPadé extrapolation displays poles which allows to deduce the critical
exponent zv for every extrapolant [L,M]. The quality of the DlogPadé extrapolation can be
further improved when the location of a quantum critical point is known exactly. This is true
in our case since the only physical point of the expansion is 7 = 1. For this case one can
bias the DlogPadé extrapolation. This yields extrapolants B [L,M] having a pole at 7 = 1 by
construction. In the following, we exemplify a typical behavior of A for the isotropic Heisenberg
model on the square lattice with Jieg = Jrung = Jins = A = 1. This isotropic point is known
to have gapless Goldstone bosons due to the breaking of SU(2) symmetry in the long-range
ordered Néel ground state. One therefore expects that the one-magnon gap A is gapped for
all values 7 < 1 and vanishes at 7 = 1. As outlined in Refs. [123, 124], the quantum critical
behavior is mean-field like, i.e. one has critical exponents v = 1/2 and z = 1. Our results for the
one-magnon gap are displayed in figure 3.8. The bare series is reliable up to 7 < 0.85 predicting
an unphysical gap for 7 = 1.

This situation is strongly improved using DlogPadé extrapolation. Essentially all extrapolants
show a pole close to 7 &~ 1. Taking all [L,M] of highest order L + M = 12 with L > 3 and
L > 3, the average pole is found at 79 = 1.004 with an average critical exponent zv ~ 0.52
very close to the expected value 1/2. The quality of the extrapolation gets even better when
biasing the extrapolants such that they exhibit a pole at exactly 7 = 1. In this case one finds
an average critical exponent zv &~ 0.499. Overall, we therefore find quantitative agreement even
in the most demanding quantum critical regime using our high-order series expansion. Let us
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Figure 3.9: False-color map of the measured spectra along the ladders and perpendicular to the
ladders along. Red and yellow lines show the fit of the one-magnon dispersion. The figure is taken
from Ref.[117].

stress that similarly well converged results can be directly deduced in all parts of the (large)
parameter space.

This is especially important in comparison to experiment. Unfortunately, DlogPadé extrapola-
tions do not provide good approximations for the whole momentum axis. Therefore, we perform
Padé extrapolations of w7 (k) and w3(k). The reason for casting w; (k) and w3(k), instead
of wa (k) and wg(k), as Padé approximants is that the one-magnon energy gap A = w(0,0) of
a square-lattice antiferromagnet vanishes at A = 1 with a square-root singularity [123, 124].
In other words A? is a linear function of A close to the critical point. This behavior of A? is
ensured by expressing w2 (k) as a Padé approximant.

To compare the calculation with the experimental data of the inelastic neutron-scattering
measurements, we (i) shift the two magnon dispersions wq (k) and wg(k) by k = (0,7) and (ii)
fold the resulting dispersions into the reduced BZ in the y direction, because the unit cell of the
Néel-ordered state comprises four sites before the sublattice rotation. We choose the exchange
constants J, and the spin-anisotropy A such that the calculated curves lie within experimental
error bars. The results are in excellent agreement with the observed dispersions, as shown in
figure 3.9.

Finally, we want to remark, that the one-magnon physics in this parameter regime cannot be
captured adequately by a simple leading-order calculations and it requires advanced technical
tools to obtain sufficiently accurate results. In addition to that, only analytical series-expansion
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results allow for a fast scanning of the large parameter space, showing clearly the uitility of the
white-graph expansion.

3.5 Conclusions

In this chapter we have introduced the so-called white-graph expansion for the method of per-
turbative continuous unitary transformations when implemented as a linked-cluster expansion.
The essential idea behind this expansion is an optimal bookkeeping during the calculation
on graphs which is possible due to the presence of the model-independent effective pCUT
Hamiltonian in second quantization. Our approach is especially useful when the microscopic
model under consideration has several expansion parameters. This case usually represents a
major challenge for any kind of linked-cluster expansion due to the proliferating number of
linked graphs. Indeed, each expansion parameter corresponds to a distinct color in the graph
expansion. The white-graph expansion overcomes this challenge to a great extent, since the
actual calculation is performed on white graphs and the coloring is done after the calculation
as a final step.

We are strongly convinced that this white-graph expansion is useful in many situations, e.g. mi-
croscopic models in three dimensions or systems with long-rang interactions being notoriously
complicated for linked-cluster expansions. Finally, it would be interesting whether other types
of linked-cluster expansions like for example Takahashi’s degenerate perturbation theory [125]
or matrix perturbation theory [79] can be also reformulated as a white-graph expansion.

The white-graph expansion relies on the utilization of the underlying CUT framework to set
up a modified LCE scheme. In the next chapter, we discuss the exploitation of the underlying
CUT framework, to define a modified NLCE approach.
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Chapter 4

Graph-based Continuous Unitary
Transformations

In this chapter we focus on the combination of CUTs (see also 2.3) with the underlying concepts
of NCLEs (see also 2.2). This approach, introduced by Yang and Schmidt in 2011, is called
graph-based continuous unitary transformations (gCUTs) and provides a scheme to derive
effective low-energy models if at least one degree of freedom is gapped [46].

On the one hand, gCUTs can be interpreted as a schematic real-space truncation scheme for
CUTs. On the other hand, gCUTs can be viewed as an NLCE where the quantities of interest
are derived on finite clusters by a CUT and then embedded into the lattice to gain the result in
the thermodynamic limit. Using this method, a smooth derivation of the quantities, which is
inherent to CUTs, is combined with a physically intuitive real-space truncation of NLCEs.
The objectives of this chapter are twofold: (i) The general gCUT scheme is presented where
the focus is laid on technical developments and findings going beyond the initial gCUT scheme
introduced in [46]. (ii) Following this, the quasiparticle generator scheme is modified to address
the challenges arising from non-perturbative renormalization on clusters. Namely, the scheme
is modified to treat both, pseudo decay (see 4.2.3 and genuine decay (see 4.2.4).

4.1 General scheme

In this section, we are going to present the general scheme which is applicable if neither pseudo
nor genuine decay is present during the calculation. We are going to start by introducing a
recipe for gCUTs to highlight the main steps of the approach. Afterwards, these steps are
elaborated on, introducing further improvements.

4.1.1 Recipe

A recipe for applying gCUTs is described in the following and is presented in the style of the
CORE algorithm given in [96]. Both methods differ only with respect to the derivation of the
effective model on the finite cluster. While CORE relies on an exact diagonalization of the
low-energy spectrum followed by projection operations into the desired subspace, gCUTs are
based on a CUT applied to finite clusters.

The recipe for gCUTs reads:

e Choose a small cluster (e.g., rung, plaquette, triangle, etc.) and diagonalize it. These
small clusters build the supersites and impose the quasiparticle picture. The lowest state
of these effective sites is identified with the absence of a quasiparticle while the excitations
are identified with the presence of a quasiparticle on the respective supersite. (see also
2.1)
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e Choose a consistent and systematic pattern of clusters consisting of up to IV supersites
which cover the whole lattice for N — oco. Topologically equivalent clusters can be
identified with each other.

e For each cluster C do:

— Represent the Hamiltonian H¢ and observables O¢ as matrices in a suited (truncated)
basis

— Perform the CUT with a suited generator scheme via numerical integration of the
flow equation Eq.(2.31): HC T HE

— Extract the low-energy Hamiltonian A€ on the cluster. Lower QP channels must be
subtracted (see appendix A.1)

— Perform the same transformation for observables and identify the low-energy part of
the observables 6¢ accordingly

— Determine the reduced contributions of the cluster by subtracting the reduced
contributions of all connected subclusters:

he =he =Y he,, (4.1)

Csub

b =bc— Y Oc, - (4.2)
C

sub

e Finally, the effective Hamiltonian and the effective observable are given by a cluster
expansion

gCUT __ 7
HEY = "he
c
gCUT __ A
Oeff - Z oc
c

where the sum runs over all clusters C of the lattice. The sum implies that all the operator
coefficients are added up defining the effective Hamiltonian (effective observables) in the
thermodynamic limit of the form Eq.(2.6) (Eq.(2.10)).

e Bon appetit!

This recipe builds the basic framework for any gCUT calculation. As always, the devil is in the
details.

First, the systematic pattern of clusters chosen for the cluster expansion does affect the quality
of the expansion severely. The optimal pattern is problem dependent and still a question of
ongoing research [65, 126].

Second, the truncation of the basis is essential for reaching sufficiently large graph lengths.
While the first gCUT calculations were carried out using the full untruncated basis [46, 63|, we
introduce truncation schemes, allowing to reach significantly larger cluster sizes. The truncations
are described in 4.1.3 and have been applied recently for the derivation of effective spin models
[64].

Lastly, the flow equation on each cluster must be solved relying on a suited generator scheme.
The development of suited generator schemes to treat pseudo decay and genuine decay represents
the main focus of this thesis and is addressed in detail in 4.2.3 and 4.2.4.

If neither pseudo nor genuine decay is present, the standard quasiparticle generator scheme
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Eq.(2.41) represents a well-engineered generator scheme. However, in order to introduce
truncations, a moderate modification of the scheme is advisable.

It is useful to continue by first describing the matrix representation of the Hamiltonian and the
observables to build the basis for further discussion.

4.1.2 Matrix representation

In gCUTs, the Hamiltonian is represented on matrix level which depends on the basis chosen
for the representation. In the following, we want to discuss the choices of the basis suited for
the calculations. These choices of the basis are not separated from the choice of the generator
scheme. The definition of the generator scheme sets constraints for the choice of the possible
bases. As indicated above, the applications rely on modifications of the quasiparticle generator.
The matrix representation given in Eq.(2.41) requires that each basis state of the initial system
is an eigenstate of Q.

In order to extract the prefactors of the effective hopping operators after the CUT, it is
appropriate that these prefactors are identical to the matrix elements of the low-energy block.
This implies, oftentimes, that the basis states building the low-energy block after the CUT
must be eigenstates of the operators 7; o = ﬁaﬁa, i.e., the states can be identified with a
defined pattern of excitations.

It seems natural to build the whole basis in this fashion because the matrix elements of the
initial Hamiltonian in this basis are directly provided by the representation of the Hamiltonian
of the form Eq.(2.5). Indeed, the first calculations were performed in this basis [46, 63]. We
refer to this basis choice as the standard basis.

However, to perform the CUT, the valid subspace of different bases in accordance with Eq.(2.41)
is defined by the constraint that each basis state is an eigenstate of Q. A unitary transformation
Ublock transfers within this subspace, if Q = UglockQUblock. One finds

H(l) = blockH(f)Ublock (4.3)

ii(f) = blockn(é)Ublock (4.4)
deH(L) = [H(£),n(0)] (4.5)
= OH(6) = [H(0).7(0)] (4.6)

with 7(£) = n[H(¢)] i.e., the identical generator scheme can be applied relying on the transformed
Hamiltonian. Most importantly, Heg = UIJ)rlockHCHUblock’ which means that the results gained
in different bases are connected by the corresponding unitary transformation and are therefore
equivalent. Furthermore, one finds for the residual off-diagonality (ROD)

ROD = Y [Hy(O)] = Tr (H2) (4.7)
1,5,9: 745
=Tr (M) = D IHy(OF . (4.8)
i7j5‘1i7£Qj

In other words, the ROD is equivalent for any of these bases and one is free to transform
between them. It is even possible to change the basis during the flow if it is appropriate.

In all these possible bases, the particle conserving part of the Hamiltonian H.(¢) is block
diagonal. As discussed in 2.3, the eigenvalues of these subblocks serve as crucial characteristics
of the transformation. Consequently, the basis which diagonalizes the subblocks defined by
H.(¢) is specifically relevant. We refer to this basis as subblock basis. Note that this basis choice
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is /-dependent and therefore requires a change of basis during the flow.

The freedom of choice with respect to the basis for the matrix representation is an essential
property allowing, inter alia, to make use of the spatial symmetries by transforming to a suited
basis (see 4.1.4) or to introduce truncation schemes as discussed in the following.

4.1.3 Truncation of the basis

In the following, we introduce a systematic and efficient truncation scheme for the basis. With-
out any form of truncation, matrices of the size Dg x Dg must be treated, where Dg denotes
the dimension of the considered Hilbert space. Then, the integration of the flow equation has
generally order Df memory complexity and order D} time complexity. In contrast, CORE
relies on an exact diagonalization for the low-energy spectrum. Consequently, memory and
time complexity are of order Dy and significantly larger system sizes can be treated via CORE.
gCUTs rely on a CUT on each cluster, which yields more information compared to the similarity
transformation applied in CORE. As a result and in contrast to CORE, gCUTs are applicable
if the excitations are not protected by a quantum number from the ground state (see 2.2.2).
Still, if both methods are applicable, they yield comparable results making this gap in length
scales of the clusters unsatisfying. This suggests that the information necessary to set up the
effective model via the CUT should mostly be contained in a small proportion of the basis. The
idea of a truncation of the basis is to utilize this fact to reduce the size of these matrices in
order to reach cluster sizes comparable to CORE.

Generator scheme 7@P™

In initial applications, the whole Hilbert space was considered without any form of truncation
[46, 63]. One reason for this is the robust straight-forward implementation of CUTs via the
standard basis. Furthermore, the generator scheme 7®F in matrix representation imposes that
each basis state has a defined number of quasi particles (see Eq.(2.41)). This complicates
possible truncation schemes furthermore and causes unfavorable restrictions. However, one can
avoid these constraints by relying on a slightly modified generator scheme.

Typically, one is only interested in the low-energy block and therefore it is sufficient to decouple
the desired low-energy physics from the remainder. To this end, one can introduce a new
generator n@F™ which only decouples the (n < m)-particle blocks while the (n > m)-particle
blocks are not decoupled.

The corresponding modification is simple; all states with more than m particles are reinterpreted
as (m + 1)-particle states:

di = qis ifg <m

4.9
@G =m-+1, else. (4.9)

0% ™ = (G — gj)hi; with {

Indeed, this generator scheme yields valid results for the targeted (n < m)-particle block and
the results are even identical to the results gained via nF. A proof for this property is given in
Ref. [33].

We remark that, in contrast to sCUT approaches, the different generators will always yield
the same transformation because the CUT is performed on matrix level on a finite cluster.
Interestingly, for m = 0, the generator can be identified with a generator scheme defined by
Dawson et al. [127].
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A related modification of the quasiparticle generator scheme has been developed for sCUT and
deepCUT approaches [29, 33, 102, 113, 116]. The generator scheme is denoted by 7y, and is
constructed with the same underlying principle that only the m lowest quasiparticle subspaces
are decoupled.

Following the discussion given in [33], we stress that both schemes are not identical. The
generator scheme n@F™ applied in gCUTs is naturally defined on the level of matrix elements.
In contrast, 7., is defined with respect to normal-ordered operators, i.e., elements within higher
quasiparticle channels associated with (n < m)-particle irreducible operators are additionally
considered. The generator scheme 7,,.,, is designed to prevent divergencies during the numerical
integration.

In contrast, the purpose of n?F™ is to facilitate possible truncations. Any linear combination
of (n > m) particle states is a valid basis state, which is clearly a favorable position for any
truncation scheme.

Block-Lanczos truncation

The objective of the truncation is to approximate the low-energy matrix elements of the
effective Hamiltonian as good as possible by a truncated basis. Let the low-energy states of the
unperturbed Hamiltonian Ho be denoted by {|n°)}. Necessarily, these low-energy states must
be included in the basis since they build the low-energy matrix. As a consequence, these states
must be the starting point of any truncation.
The importance of a possible basis state is then defined by the influence of this state on
the low-energy matrix after the CUT. To estimate this influence before the CUT, one can
investigate the matrix elements of the initial Hamiltonian. It is reasonable to view the size of
the matrix elements between the basis states with the low-energy states {|n°)} as a measure
for the importance of these states. Note that two states can be coupled indirectly via multiple
matrix elements. Taking this criterion as an underlying principle to set up the basis leads to a
block-Lanczos like truncation.
We want to construct the basis successively maximizing the size of the matrix elements.
The states {|7!)} = {H|n)} maximize this overlap via construction. The states can be
orthonormalized to the states {|n°)} via Gram-Schmidt {|7')} — {|n')} and included in the
basis. Then, the matrix elements of the remaining states not included in the current basis with
{|n®)} vanish. These states only couple indirectly via {|n')}.

The same argumentation can now be applied to the states {|n')} and so on. Interestingly, this
scheme can be viewed as a variant of a scheme known as the block Lanczos algorithm with the
states {|n°)} as starting vectors [128].

{In")} = {H|n")}

{‘ﬁi+1>} Gram Schmidt {|nz+1>}
t—1+1

This is repeated until a cut-off ¢ = iy, or a maximal basis size dya.x is reached. The resulting
Hamiltonian is sketched in figure 4.1 (a). If the norm after orthogonalization is beyond a
threshold eqg for a basis state, it is advisable to discard the state from the basis (eqs = 10711).
Furthermore, it is expedient to perform the Gram-Schmidt orthonormalization multiple times
to ensure orthogonality.

The procedure builds up the basis systematically and in each step the size of the relevant matrix
elements is maximized. Also, the quality of the truncation is regulated by a single parameter,
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Figure 4.1: Schematic representation of the truncated bases. The color coding indicates the importance
of the states with respect to the result of the effective low-energy model. (a) Basis generated via the
block-Lanczos algorithm. The importance of the different states decreases with the depth of the
Lanczos algorithm. (b) The basis generated via the block-Lanczos algorithm additionally expanded
by the accurate low-energy states {|ni5)}, which are typically of significant importance.

which allows for direct convergence tests. _
As a further beneficial characteristic, the states {|n*)} obey the symmetries shared by both
{|n°)} and the Hamiltonian. The implementation of symmetries is discussed in detail in 4.1.4.

Extended block Lanczos truncation

The block-Lanczos truncation scheme already represents a valid truncation scheme. However, it
is crucial for the effective low-energy model that the corresponding low-energy states are captured
accurately in the basis. While this works rather well when the system is in the perturbative
regime, the accuracy of this approach can become unsatisfying in the non-perturbative regime.
This affects specifically the approximation of the high-energetic low-energy states.

This issue can be addressed by additionally including the m lowest states of the full Hamiltonian
‘H to the basis in order to incorporate an accurate low-energy spectrum. The low-energy
eigenstates {|ni%)} can be gained via standard exact diagonalization (ED) algorithms, such as
a restarted iterative version of block-Lanczos algorithm described above, Davidson algorithm
[129] or Jacobi-Davidson algorithm [130]. The low-energy eigenspectrum is determined up to an
accuracy egp = 10711, The states {|ni9%)} are included via Gram Schmidt orthonormalization
in the basis generated by the block-Lanczos algorithm. The resulting truncation scheme is
sketched in figure 4.1 (b).

In this scheme, the eigenvalues within the low-energy matrix are accurate and not affected
by increasing dpyax. Instead, increasing d,.x corresponds to a unitary transformation within
the decoupled low-energy block. In other words, the states {|n')}, with i > 0, only affect how
the states {|n°)} are transformed by the CUT to the low-energy states, suggesting a faster
convergence with dp,,x in comparison with the pure block-Lanczos approach described above.
Let njow denote the number of low-energy states. On the one hand, it is advisable to choose
m > Njow because the low-energy subspace may overlap with the remainder and accuracy is
generally improved. On the other hand, the accurate determination of the low-energy eigenstates
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is computationally costly. In applications, we choose m = \_%nlowj.

Finally, it should be noted that it is useful to perform the ED for the low-energy spectrum before
the generation of the basis via the block-Lanczos scheme. During the ED procedure, maximally
mgp vectors are stored where mgp is larger than m by a significant factor. Therefore, the
maximal number of states which are stored simultaneously, i.e., the overall memory usage, is
minimized by performing the ED for the low-energy spectrum first.

In summary, relying on a slightly modified generator scheme, the truncated basis is generated via
a block-Lanczos algorithm starting with the low-energy states of the unperturbed Hamiltonian.
More accuracy is gained by additionally including the lowest energy states of the full Hamiltonian.

4.1.4 Symmetries

In the following we are going to discuss the incorporation of symmetries in the gCUT scheme,
where the focus is laid on the implementation of the truncation scheme discussed in 4.1.3. The
Hamiltonian of the finite cluster often possesses certain symmetries and therefore conserved
quantities. It is typically suggestive to exploit these conserved quantities for any numerical
procedure, because the implementation of the symmetries usually helps to reduce memory
complexity, time complexity and numerically stabilizes the procedure.

The gCUT procedure on a single cluster essentially splits into two different parts. A first
part where the Hamiltonian (and the observables) are generated in a truncated basis and a
second part where the flow equation is solved by numerical integration. The memory usage of
the procedure is determined by the first part of the gCUT calculation and can be drastically
reduced by implementing symmetries.

Furthermore, the computational effort is substantially reduced for both parts of the calculation.
While the implementation of the second part is not directly affected by the implementation of
symmetries, the size of the relevant matrices can be considerably reduced. Equally relevant,
the procedure is stabilized by the incorporation of symmetries.

States from symmetry sectors not associated with the low-energy model do not contain relevant
information. However, they can affect the stability of the procedure because defective eigenvalues
mix with the low-energy spectrum. Even though the matrix elements between the symmetry
sector of the targeted low-energy subspace and the other symmetry sectors should be zero in
principle, these interactions can become significant during the numerical integration. For this
reason alone, the implementation of symmetries is advisable in gCUTs.

The implementation of symmetries concerns most importantly how the states are represented
in a symmetrized basis and how the action of the Hamiltonian in this basis is determined.
Furthermore, the considered observables and the extraction process of the low-energy physics
must be adjusted as described subsequently.

Symmetrized basis state representation

The truncation scheme described in 4.1.3 consists basically of the same steps which are involved
in ED techniques. In these respects, the implementation of the scheme is closely oriented to the
implementation of these techniques. This includes specifically the exploitation of symmetries.
The following discussion focuses mainly on the basic concepts to motivate and explain the
underlying structure of the implementation. For further reading we refer to Ref. [131].

The main task is to effectively combine the numerical representation of the states in a sym-
metrized basis and the calculation of the action of the Hamiltonian, which is defined in the
standard basis.

The action of the Hamiltonian of the basis states represented in the standard basis can be
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calculated very efliciently. To this end, we consider a system where the local Hilbert space of a
supersite has dimension djo. = 2%, n € N.!

Consequently, n bits suffice to specify the state of a supersite. In the standard basis, a basis
state of a cluster consisting of m supersites is than defined by (n - m) bits. Therefore, each
basis state can be represented by an integer number. Using the bit representation, the action of
the terms in the Hamiltonian affects only a small number of bits allowing for a fast access and
modifications via bitwise operations.

The numerical representation of basis vectors via vectors of size 2™ is straightforward. One
simply identifies the index of the vector with the integer-representation of the state and the
value defines the corresponding amplitude.

The objective is to transfer the numerical representation of the states and the rapid evaluation
of the terms in the Hamiltonian in the standard basis to the symmetric basis. Symmetries for
the systems under consideration are:

z

e magnetization conservation: S¢; constant,

e spatial reflection symmetry: parity conserved,
e full SU(2) spin symmetry: S2, conserved — spin inversion symmetry.

Among these symmetries, the first two are implemented routinely in ED programs. The full
SU(2) symmetry is in general rather hard to implement. However, for the calculations under
consideration the provided SU(2) symmetry allows to study the SZ, = 0 channel only. Conse-
quently, a global spin inversion which maps S* — —S% can be exploited. This symmetry splits
the representations with even total spin (symmetric) and odd total spin (anti-symmetric).
Let dgym denote the size of the subspace defined by the exploited symmetries and accordingly
dsq denotes the dimension of the full Hilbert space. In ED, the vectors of the size dgyr, are
typically manageable while the vectors of size dgy are not.

First, we consider the total magnetization only. The implementation can be generalized to
every additive quantity which is conserved. Each basis state of the standard basis has a defined
magnetization and it is straightforward to decide if a state is part of the considered subspace.
These states define a vector of size dmae. For these vectors, the identification of the index with
the integer-representation, as described for the standard basis, is not possible. However, an
additional integer-list of size dmag allows to store the corresponding integer-representation of
these indices.

Using these integer-lists, the Hamiltonian can be, in full analogy to the standard basis, applied
to the bit-representation of each vector index. In turn, the resulting bit-representations must be
assigned to the corresponding indices to define the resulting vector. An effective implementation
is non-trivial; naive implementations are either memory efficient and time-consuming (binary
search, ordered list of size dmag) Or computationally efficient but memory-intense (list of size
dg1, integer-representation = list index).

However, an elegant and very efficient way to determine the index of a bit representation is
provided by the so-called Lin tables [132]. The essential idea is that the additive characteristic
of the conserved quantity allows to determine the index by dividing the system into (two) small

1
subsystems (two lists of size df‘ffl, integer-representation = two list indices). In this thesis, the
magnetization conservation is treated relying on Lin-tables.

LFor the dimerized spin 1/2 ladder structures considered in this thesis, this is indeed the case (n = 2). In
cases where only the inequality djo. < 2™ can be fulfilled by n € N, the implementation requires additional
bookkeeping.
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The remaining symmetries are spatial reflection symmetries and the spin-inversion symmetry.
These symmetries are associated with parities in real space and spin-space, respectively. In
contrast to the total magnetization SZ;, the associated subspaces are not defined by a fraction
of the original basis, instead, (anti)-symmetrized linear combinations of the original basis states
build the subspaces.

The set of basis states of such linear combinations define an orbit. Incorporating additional
information, it is possible to restrict the calculation to one representative state per orbit only
because the remaining combinations correspond to symmetry operations with known (relative)
phase factors. Consequently, the omitted calculations are redundant. In analogy to the charac-
terization of a graph via a canonical labeling (see 3.2.1), the representative can be identified
with the state which maximizes the integer representation.

Similar to the discussion above, a list of size dgym can be used to provide the bit representation
of each representative for the vector indices. The Hamiltonian is applied to these bit repre-
sentations yielding in general other bit representations of states which are not representatives.
In order to define the resulting vector, one must determine the index of the corresponding
representative in the resulting vector in combination with possible phase factors and the number
of states of this orbit. The latter two represent necessary information to determine the correct
results while restricting the calculation to representatives.

It is possible to gain the corresponding representative by applying all the symmetry operations
to maximize the integer representation. This naturally gives access to the corresponding phase
factor and number of states associated with this orbit. Finally, the index can be determined via
a binary search in a list of size dsym. The procedure is memory efficient but computationally
costly.

However, in gCUTs it is reasonable to increase the computational efficiency at the expense
of memory usage. In standard ED applications, only information about a very small number
of extremal eigenvalues and eigenvectors of the eigenproblem is required. Hence, standard
ED implementations require to keep n ~ 10° — 10! vectors in the memory at the same time.
Consequently, the procedure is sensitive to memory overheads of O(dmag)-

This is different for the gCUT scheme where typically n ~ 102 — 103 vectors must be stored
simultaneously and rather few spatial symmetries are provided. As a consequence, the overhead
which is produced by storing additional lists of size diag for the corresponding vector index and
phase factor is relatively small in gCUTs. Therefore, the bit-representation is transferred via
lin-tables to a list index. This list index is used to determine the phase factor, normalization
factor and the vector index using additional lists of size dmag-

Additional symmetries

The magnetization, spatial symmetries and spin-flip symmetries are included directly on the
level of the states. In contrast, the full SU(2) symmetry is not implemented on the level of the
numerical representation of the basis states. However, the symmetry is respected in the sense
that the block-Lanczos like approach described in 4.1.3 conserves the symmetries shared by the
low-energy states and the Hamiltonian. As a result, the SU(2) symmetry is conserved, up to
numerical errors, on the level of the Hamiltonian.

Still, specifically at the determination of the low-energy spectrum for the expanded block-
Lanczos scheme, defective eigenstates with other total spin values can enter the low-energy
spectrum. This can affect the stability of the integration procedure and it is desirable to
discard these eigenstates already during the iteration process of the respective ED algorithm.
In principle, one can determine the eigenvalue of S2, of the low-energy states to decide if the

53



Chapter 4 Graph-based Continuous Unitary Transformations

state is associated with the considered total spin-channel. Yet, the application of S2 includes

a lot of terms and is computationally expensive. By applying Siot twice in succession less
terms must be calculated in each step but the symmetries of the Hamiltonian are broken by
the intermediate step (spin-flip symmetry, SZ ;).

However, a computationally efficient solution is provided by investigating the overlap of these
states {|ni9%)} with the bare low-energy states {|n°)} defined by Hy. The defective eigenstates
are assigned to other QP channels and the overlap with the bare low-energy states should

vanish. We define

a; =Y [(nggh ;Ind) I, (4.10)
J

where \n?) denotes the j-th bare low-energy state and |n!b9f§l> denotes the i-th low-energy
eigenvector obtained via ED. One finds o; > 1072 for the proper eigenstates and «o; < 10710
for the defective eigenstates. During the iteration procedure determining the exact low-energy
spectrum, the states with a; < . (. = 1077) are discarded guaranteeing that the incorporated
low-energy spectrum of the effective Hamiltonian is determined by the considered symmetry
channel only.
To sum up, using additional bookkeeping, the vectors are kept in a symmetrized basis while the
action of the Hamiltonian is performed on bit representations with a rapid bitshift operation.
Symmetries not already included in the basis states are respected by the block-Lanczos scheme
and by additionally defining a critical overlap a. for the exact eigenvectors.

Observables

The spatial reflection symmetries provided by the cluster split the representation of the
Hamiltonian into symmetric and anti-symmetric channels with respect to these symmetries.
The gCUT calculation is performed for each symmetry channel separately by using a sym-
metrized basis. However, in order to calculate experimentally relevant quantities like dynamic
structure factors, it is necessary to additionally calculate low-energy matrix elements of effective
observables. Also, the treatment of decay via adjusted generator schemes relies on these matrix
elements.

Let the relevant observables O; be numbered by an index j which indicates the action of the
observable on the respective site or link.

The relevant matrix elements relate to O;(¢)|0) where |0) denotes the vacuum and O;(¢) =
UT(0)O;U(¢) the transformed observable. Note that the observables O; are not symmetric.
Consequently, the operator basis defined by the observables O; is transformed accordingly, such
that the observable separates into symmetric and anti-symmetric parts. Then, O; sym »|0) can
be assigned a symmetry channel n and the determination of the observable separates into the
different channels.

Extraction of the low-energy physics

Finally, one must extract the relevant amplitudes of the hopping operators. These amplitudes are
defined in the ’original’ unsymmetric low-energy matrix and a corresponding retransformation
of the basis must be performed. To this end, it is useful to distinguish between two classes of
symmetries.

The first class of symmetries is defined by quantum numbers which have a specified value for the

low-energy model itself, e.g., by the total magnetization SZ;, = 0. The physics corresponding
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to other quantum numbers is irrelevant for the derivation of the effective model. Possible
exceptions are calculations relevant to the subtraction of lower-QP channels (see A.1).

The second class of symmetries divides the low-energy model on the finite cluster into different
symmetry sectors, e.g., a reflection symmetry on a cluster splits the low-energy model into a
symmetric and anti-symmetric sector. One has to loop over these symmetry channels to extract
the relevant information.

Let the states |i) denote the (unsymmetric) low-energy states of the system which define the
desired low-energy matrix. These states satisfy the first class of symmetries and not the second
class of symmetries.

Let the corresponding (anti)-symmetrized low-energy states of symmetry sector m be denoted
by |isym,m). With this, one finds

Y Y Y )
m,i’ m/,j’
= (iligym,m) (Eym,m ] Fym,m) (Gégm,m |7) (4.12)
Z ym, ym, ym, ym,
m,i’,j’

The CUT calculations are performed in the symmetrized basis for all the relevant symmetry
sectors and the results are combined to gain the desired effective result.
Analogously, the operator basis of the considered observables must be desymmetrized.

4.2 Treatment of decay

In this section, we describe the treatment of decay on finite clusters to obtain proper results in
the thermodynamic limit. This section builds the central element of this thesis. Fundamental
concepts are challenged, new concepts are introduced and at the end of this process, two
modified gCUT schemes are defined, suited to treat pseudo and genuine decay.

In the standard terminology, one cannot observe decay on finite clusters, since only well-defined
eigenfunctions exist on finite clusters. However, this expression points to an analogy of decay
in the thermodynamic limit, namely, an energetic overlap of the different quasiparticle blocks.
Since one can always identify the lowest states of the system with the lowest quasiparticle
states and fill the basis from below, also the term energetic overlap requires more explanation.
Energetic overlap must be defined with respect to a reference point: Here, we consider two
different effective quasiparticle blocks of an effective Hamiltonian of the form Eq.(2.6) to
overlap energetically, if only a non-perturbative renormalization of the initial Hamiltonian is
able to separate the respective quasiparticle channels. Of course, no rigorous line separating
perturbative and non-perturbative renormalization effects exists. In the context of gCUTs, this
identification line can be reasonably drawn by the flow itself: small values of ¢ are identified
with a perturbative renormalization and large values of ¢ are associated with a non-pertubative
renormalization.

On the finite cluster, the overlap can be caused by two different effects. If the energetic overlap
is just an artifact of the broken translational symmetry, it is referred to as pseudo decay. If,
however, the energetic overlap reflects quasiparticle decay on finite clusters, it is referred to
as genuine decay. Both situations are physically quite different, yet, we will show that both
breakdowns can be understood by the same principles.

In the following, we are going to investigate the reasons for these breakdowns and also present a
guideline to solve these issues by a proper generalization of cluster additivity. In particular, we
are going to revisit the concept of cluster additivity and we introduce and motivate a mandatory
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Figure 4.2: (a) Sketch of two clusters A and B which are linked by a single bond of strength x.
(b) Sketch of the eigenvalues F as a function of z for the joined system A 4+ B linked by a single
bond. (Inset) Zoom on the first anti-level crossing. Dashed lines represent the appropriate evolution
of eigenvalues respecting the generalized notion of cluster additivity. Both figures are taken from
Ref.[70].

generalization of this concept for NLCEs when deriving effective low-energy models. On this
basis, the applied gCUT schemes are deduced.

4.2.1 Generalized cluster additivity

Cluster additivity is sufficient to perform an NLCE if the targeted low-energy physics on each
cluster is energetically well-separated from the remainder. One can simply rely on an exact
(block) diagonalization on finite clusters and combine the finite cluster contributions to gain
the result in the thermodynamic limit. By contrast, the treatment of such an overlap demands
additional care, because non-perturbative effects play a major role.

For clarification, we consider a cluster C' consisting of two subclusters A and B which are linked
by only one link of coupling strength x as illustrated in figure 4.2(a). For = = 0, the cluster
additivity ensures a proper subtraction of all quantities and the reduced contribution vanishes,
which is the conceptual starting point. One aims at evaluating the reduced contribution for
x = X because this corresponds to the cluster C' in the actual calculation.

Any quantity M like the effective Hamiltonian Eq.(2.6) on this cluster 7:{5J takes then the
form

M= MA218 + 14 @ MP + M,, (4.13)
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where M, gives rise to the reduced contribution of cluster C.

We consider the case of energetic overlap on cluster C. Then, one prototypical evolution of the
eigenenergies of H® is displayed in figure 4.2(b). One observes two regimes: For small z, the
change of eigenvalues and eigenvectors is smooth while, for larger x, there are characteristic
anti-level crossings starting from xz. where eigenenergies and eigenvectors change drastically. At
each anti-level crossing, the definition of a quasiparticle changes abruptly, i.e., these anti-level
crossings can affect M severely in an unphysical fashion. This drastic change in the target
quantity M¢ undermines the underlying concept of the subtraction scheme, which can either
impede convergence considerably or even lead to a complete breakdown of NLCEs for A 2 z..
Therefore, one has to generalize the notion of cluster additivity by demanding that any physical
quantity M like the effective Hamiltonian 7'2? is sufficiently smooth as a function of z for
0 < x < \. For a single anti-level crossing at ., this can be naturally discussed by focusing
on the two involved energy levels as sketched in the zoom of figure 4.2(b). Denoting the
two eigenvectors for < z. as |i) and [j), the eigenvectors at (or close to) x. are entangled
superpositions of |i) and |j). Sharp anti-level crossings should now be replaced by true level
crossings as indicated by the dashed lines in figure 4.2(c). The dashed lines represent the
cured eigen-energies identified with the diagonal elements (i|H|i) of the disentangled vectors |i).
Depending on the underlying physics, this replacement can be imperative to avoid a complete
breakdown of the approach. As a direct consequence, one cannot use the exact eigenvectors as
it is done so far in all implementations of NLCEs.

Pseudo decay

Let us consider a physical system where the one-particle mode is stable, i.e., the one-particle
dispersion is below any relevant many-particle continuum for any momentum, and the maxi-
mum of the one-particle dispersion is larger than the minimum of the many-particle energies.
This happens for instance when the one-particle mode is protected by a symmetry from the
two-particle continuum and the relevant continuum is the three-particle continuum as visualized
in figure 4.3(a). In addition to that, this occurs if the one-particle gap is sufficiently small, i.e.,
specifically close to or at quantum phase transitions.

On the open clusters, no energetic separation between one-particle states and multi-particle
states is given. The corresponding states are protected by the translational symmetry in the
thermodynamic limit which implies that the interaction between these states is zero. Yet, this
protection is a priori not at work on open clusters and one expects a finite (and very small)
interaction between these states. To gain the proper results in the thermodynamic limit, one has
to ignore this interaction, which corresponds exactly to the replacement of anti-level crossings
with true level crossings, as discussed above.

For pseudo decay, this replacement is mandatory to avoid artificial entanglement between
certain states having different quantum numbers in the thermodynamic limit. In other words,
the smooth behavior of all quantities in the thermodynamic limit must be reflected by the
effective model derived on the finite cluster. If one relies on an effective low-energy model as
suggested by adiabatically tracking anti-level crossings, the approach completely breaks down.
Finally, it should be noted that the translational invariance is recovered by the embedding
procedure and therefore the remaining artificial interactions cancel out and one obtains the
decoupled low-energy mode.
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A

k

Figure 4.3: (a) Sketch of a one-particle dispersion (solid magenta line) and the three-particle
continuum (cyan surface). The maximum of the one-particle dispersion (dashed magenta line) is
energetically above the minimum of the three-particle continuum (dashed blue line). (b) Sketch of
an open cluster and the corresponding spectrum. The color coding indicates the affiliation to the
one-particle and multi-particle states respectively.

Genuine decay

Diametrically opposed to pseudo decay is genuine decay on clusters. In these cases, the energetic
overlap on finite clusters reflects the energetic overlap also present in the thermodynamic limit.
We consider the Hamiltonian of the form Eq.(2.19) and a scenario where the one-particle mode
overlaps energetically with the two-triplon continuum for ¢ = 0.

Then one can distinguish two different scenarios [28, 29]:

i) If ¢ is very small, the situation is clearly associated with quasiparticle decay. Consequently,
a suitable effective low-energy model should not decouple the one-particle mode from the
continuum.

ii) If ¢ is large, the one-particle mode is pushed out of the two-particle continuum, i.e., the
effective low-energy model should yield a decoupled one-particle mode.

Naturally, this is also reflected by the physics and the effective low-energy models on the finite
cluster. Both scenarios are in accordance with the generalized cluster additivity, which helps to
understand possible convergence problems.

The generalized cluster additivity demands that the functions M, should be sufficiently smooth
as a function of z for 0 < & < A. If the interaction of the states |i) and |j) is small, the
anticrossings are extremely sharp. In these cases, relying on the exact eigenfunctions can yield
erratic results and it is physically reasonable to replace the anti-crossings by crossings. In
the other limiting case of large (, the interactions of the states |i) and |j) are large and the
anticrossings can hardly be identified as such. Then it is physically reasonable to use the actual
eigenfunctions.

For intermediate scenarios, the situation is less clear. The challenge is to set up a systematic
procedure which satisfies the physical intuition of both limiting cases. In contrast to pseudo
decay, a rigorous characterization of disentangled states is surely not possible, because a well-
defined one-particle mode does not exist in the thermodynamic limit. This means that the
continuation of the states is to some extent ambiguous and one must define criteria for this
continuation.
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4.2 Treatment of decay

Note, that the interblock interactions do not cancel during the embedding procedure since a
decoupled one-particle mode does not exist. These remaining elements moderate the decay and
lead to a finite broadening of the spectral density inside the continuum.

The remaining challenge is to identify the disentangled states |¢) on a cluster. A systematic
disentanglement of specific levels involved in artificial anti-level crossings is a priori a very
complicated task and it is by far not obvious that a general solution exists. We will show that
this is indeed possible by relying on a modified gCUT approach as discussed next, focussing on
the underlying ideas and the basic structure of the treatment of decay.

4.2.2 Basic framework

As discussed in 4.2.1, the derivation of effective low-energy models via the standard NLCE
schemes is only well-defined/valid if the eigenstates associated with the low-energy model
are energetically well beneath the remainder for each cluster involved in the calculation. An
energetic overlap of the subspaces on the other hand is identified with decay (pseudo decay or
genuine decay) on finite clusters not treated adequately by the standard NLCE schemes relying
on an exact (block)-diagonalization.

A guideline to treat both types of decay properly is given by the so-called generalized cluster
additivity. This guideline demands the substitution of sharp anti-level crossings by true level
crossings implying that one cannot rely on the exact eigenvectors (see 4.2.1).

In gCUTs, the block-diagonalization on finite clusters is performed via a CUT which is de-
termined by the generator scheme applied. Consequently, the mean to prevent a full block-
diagonalization within the gCUT scheme is given by (small) modifications of the quasiparticle
generator schemes. Perfectly suited for this purpose as a starting point is the quasiparticle
generator Eq.(2.41) designed to achieve a full separation of the different particle-blocks. The
quasiparticle generator sorts the subblock eigenvalues with respect to the number of quasiparti-
cles and this sorting property must be avoided if particle subspaces overlap energetically. To this
end, one can eliminate certain elements from the generator scheme. If one sets 173 = —nj% =0,
the states ¢ and j are not separated by the CUT leaving a finite matrix element h;; after the
CUT. Note, that the matrix elements eliminated from the generator must be ignored in the
determination of the ROD in order to define a suited measure of convergence.

The adequate treatment of decay within gCUTs requires to identify the relevant matrix elements
and to eliminate them on an appropriate scale in £. This elimination process relies on the
implementation of suited weights which helps to define the desired low-energy states. The
definition of the respective weights differ for pseudo and genuine decay. However, the general
procedure and its underlying concepts are identical for both approaches.

In the following, we discuss these general ideas. First, we identify a region in ¢ suited for the
elimination of these matrix elements. Second, we define the basis suited for the elimination
process during integration. Building on this, the general procedure is described.

A matter of time

The generator elements are identified and set to zero during the flow in order to treat the decay
adequately. The identification of the 'right’ value of ¢ for the elimination of a matrix elements
seems problematic. Fortunately, there exists a region of intermediate values of ¢, which defines
appropriate values for the elimination. This is based on two reasons: i) the decay is caused by
small interactions and ii) the CUT naturally separates the decoupling of strongly interacting
and weakly interacting states with respect to the ¢-scale:
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Figure 4.4: (a) Sketch of the initial diagonal elements and the resulting final diagonal elements
in dependence of the initial difference Ae. The sketch is divided into three different regions as
indicated by the color coding. (b) Three graphs are presented affiliated with the three regions of (a)
as indicated by the color coding. Each graph shows the evolution of the diagonal elements &1 2(¢)
for a suited value of Ae and different values of his.

i) Pseudo decay is just an artifact of the broken translational symmetry. Therefore, the
interaction which causes the decay is artificial and expected to be small. In contrast, genuine
decay is caused by genuine interactions. Still, the replacement of anti-level crossings by level
crossings is only reasonable if these crossings are sharp, i.e., if the corresponding interaction is
small. Broad anticrossings caused by large interactions do not represent decay but repulsive
inter-block interaction.

ii) For small values of ¢, the CUT is dominated by large interactions while the larger values of ¢
are dominated by small interactions. In analogy to the anticrossings, the essential properties of
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the CUT can be understood by investigating a simple two-level system

H=(7 M) . (4.14)

hi2 e2
The CUT is performed using the quasiparticle generator n°F Eq.(2.41):

QP _ ( 0 Sgn(‘]l_‘H)hlZ) , (415)

n sgn(gz2—q1)hi2 0

where ¢; < ¢o, i.e., we associate €1 with a lower QP channel than 5. Energy shifts are irrelevant
and for convenience we choose €1 + €2 = 0 yielding

A
£1/2(¢) = £3tanh (C’Z + arctanh (;)) c (4.16)

with Ae = £1(0) — £2(0) and C = \/4h12(0)2 + (Ae)2.
The velocity of the transformation at £ = 0 is given by

9ie12(0) =0 = £2h12(0)> . (4.17)

This indicates already that small interactions are integrated on larger ¢-scales than large
interactions. The development of the diagonal elements ¢, ,5(¢) depends additionally on the
initial values €;/5. To discuss the behavior of the diagonal elements £ /5(¢) with ¢ in more
detail, it is reasonable to divide the initial conditions & /5(¢ = 0) into three regions as sketched
in figure 4.4 (a)).

Indeed, the resulting (anti-)crossing in figure 4.4(a) relates to the (anti-)crossing depicted
in figure 4.2 (b). One can identify the initial condition with the proper disentangled system
obtained for intermediate values of £. Then, the artificial entanglement is integrated continuously
into the effective description for large values of /.

The three regions differ with respect to the qualitative behavior of £1/5(f). For each region, the
{-dependence of the subblock energies is shown for appropriate initial values €/, and different
interaction strengths in figure 4.4 (b). The three regions are qualitatively defined as:

(I) The region before the anticrossing (g1 —e2 & —/(e1 — €2)% + 4h3,): The eigenvalues and the
respective diagonal elements are sufficiently similar and the region is already treated adequately
by the standard quasiparticle generator scheme.

(II) The region of the anticrossing (g1 ~ €2): The initial diagonal elements are not similar to
the eigenvalues of the system. The interaction results in a level repulsion which is integrated on
relatively large f-scales [ ~ f.op. The overall level repulsion decreases while /ycp, increases with
decreasing interaction strengths.

(IIT) The region after the anticrossing (g1 — €2 ~ /(61 — 2)? + 4h3,): The eigenvalues and
the respective diagonal elements are sufficiently similar but the order of the initial diagonal
elements is switched. As a result, the quasiparticle generator scheme resorts these eigenvalues.
For small values of ¢, the diagonal elements are relatively constant and than switched at £ ~ £
(Lerit < lrep). The value of £ increases with decreasing interaction strength.

For the quantum many body systems under consideration, the behavior is of course much more
complex. Still, the same basic mechanisms are present and smaller interactions are integrated
on larger /-scales than large interactions. Consequently, to treat decay, modifications of the
quasiparticle generator scheme relate to the intermediate and large values of £ defined by the
corresponding value of /... Next, we describe an optimal basis chosen for the numerical
integration to treat decay.
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A matter of perspective

By construction, the modifications of the generator scheme in gCUTs are defined on matrix
level and not in terms of coefficients of (normal-ordered) operators as in the sCUT approaches
[33, 102]. Consequently, the choice of the basis plays a fundamental role because the generator
scheme is defined with respect to the given basis.?2 In one basis, the defective inter-block
interaction can be completely incorporated in a single matrix element h;; while the defective
part can be distributed over several matrix elements in another basis. In the first case, it is
sufficient to simply put a single generator element to zero. This is evidently favorable over the
determination of a complicated "equilibrium" as required in the latter case. Note that such a
well-suited basis corresponds to a basis of the desired disentangled eigenstates.

In 4.1.2, we introduce the standard basis and the subblock basis which are arguably the two most
natural basis choices in gCUTs. In the standard basis, the matrix elements can be identified
with coefficients of (not normal-ordered) operators while the subblock basis diagonalizes the QP
conserving part H.(¢) of the Hamiltonian providing the subblock energies of the different particle
block. The anticrossings are naturally described and understood in terms of eigenenergies.
Consequently, the subblock basis is clearly more appropriate for the treatment of decay than
the initial standard basis.

The compelling argument for the subblock basis is provided by the CUT itself. As described
in 2.3.1, the characteristics of the generator schemes are defined by the development of the
subblock energies during the flow. The modifications must be designed to affect the development
of these subblock eigenvalues accordingly. Therefore, the subblock basis is the natural basis for
the considered modifications.

Conceptual approach

The concept of this approach relies on the combination of the subblock basis with the considera-
tions with regard to the different £ scales. For small values of ¢, the CUT is dominated by large
interactions; the defective interactions are small and incorporated at intermediate values of
£~ L. As aresult, the CUT can be performed without modifications of the generator scheme
up to intermediate value of ¢ = lyyiten With lowiten < feris- Then, the large interactions are
almost completely incorporated by the CUT and the small interactions causing the decay are not
integrated yet. Consequently, the intermediate Hamiltonian is close (yet not sufficiently close)
to the proper effective Hamiltonian. At this point, the basis states of the subblock basis are, up
to small interactions, eigenstates of the system. The remaining interblock-interactions include
specifically defective interactions, i.e, these states are close to the disentangled eigenstates.
Therefore, each defective interaction is mainly contained in a single matrix element.

The objective is then to apply a modified generator scheme for £ > lgyitcn, such, that only the
remaining proper interactions are integrated out while the defective interactions are not. This
is achieved by setting (only) the defective generator elements in the subblock basis to zero. In
order to decide whether the according generator elements should be eliminated, one must rely
on additional weights and evaluate how the elimination of a generator element affects these
weights. However, a large portion of the matrix elements can be excluded a priori by energetic
considerations. Only elements associated with region II and region III must be considered. Let

2Interestingly, the tensorial optimization described in [102] can also be viewed to rely on other operator bases
for the definition of the generator scheme. The resemblance of both overall modification concepts can be
interpreted as ’convergent evolution’ supporting the current direction.
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4.2 Treatment of decay

e’ (¢) be the i-th eigenenergy of the n-particle block. If
7 (£) + Avicinity > €5"(£) (4.18)

with m > n, the respective interaction between these states can be defective. The parameter
Avicinity > 0 must be chosen such, that the elements associated with region II are included, i.e.,
Avicinity is determined essentially by the size of the defective interactions.

All other interactions can be integrated out because they represent either innocuous defective
interactions before the anticrossing (region I) or proper interactions also present in the thermo-
dynamic limit.3

If Avicinity is chosen too small, defective matrix elements associated with region II are not
eliminated and if Ayicinity is chosen too large, possibly wrong elements are eliminated.

In most cases, there exists a relatively large intervall of values Ayicinity Which satisfy both
requirements. This can be different if multi-particle continua inducing repulsive interactions
become energetically very close.

For ¢ > lgyitch, the relevant matrix elements are tested for every Runge Kutta step. Generator
elements can either be eliminated or re-activated. Additional modifications like sign-changes or
continuous adaptations of these elements are not considered.

It should be noted that the modifications of the generator elements are only applied between
the discrete Runge Kutta steps. However, such discretization errors are typically expected to be
small. Furthermore, implied by the approach, these errors only relate to relatively small matrix
elements having a small effect on the current transformation. Consequently, on expand of the
mathematical beauty, we waive a complex correction procedure of these discretization errors.

With this, the basic concepts of the procedure are introduced. Note that the underlying idea
behind this approach is that the transformed Hamiltonian is close to the desired effective
Hamiltonian at ¢ = lyywitcn With lewiten < ferit- In this sense, we assume £.,5; to be sufficiently
large which defines a limitation of the presented scheme.

For actual applications of the scheme, a rather technical but relevant additional step must be
introduced.

Definition of the subblocks in a truncated basis

The truncation scheme introduced in 4.1.3 relies on a slightly modified generator scheme n®F:™
replacing the physical meaning of the quasiparticle number by a more convenient definition.
The unphysical definition of the quasiparticle blocks does not affect the results of the general
scheme. However, this can be different for the modifications introduced to treat decay because
the quasiparticle subblocks represent relevant physical information. Therefore, the truncated
basis must be adjusted accordingly.

The generator scheme 7%F"™ (see Eq.(4.9)) used for the truncation scheme simply redefines the
n-particle states with n > m as (m + 1)-particle states. By applying the scheme analogously,
the entire (m + 1)-particle block is diagonalized.

While the subblock energies 7'(¢) behave identical for n < m in both generator schemes, the
(m + 1)-particle subblock energies behave fundamentally different. All the interactions of the
(n > m)-particle states are integrated out instantly by the diagonalization leading to a drastic
reduction of the subblock energies. Accordingly, for low values of ¢ these energies represent the
lowest energies of the system by far (see figure 4.5(a)).

3This gives rise to the interesting conceptual question concerning the treatment of pseudo decay. It is not
evident, if the interaction with states associated with different momenta in region I is only harmless, or if
the collective influence of these high-energetic states is again proper.
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Figure 4.5: Sketch of the different Hamiltonians for m = 1. The color coding indicates the size
of the matrix elements. (a) The unperturbed Hamiltonian Hp in the initial basis does not allow
to define physical quasiparticle blocks and the entire multi-particle states are simply defined as
2QP states. This results in unphysical subblock energy reduction of the subblock energies for the
resulting Hamiltonian H(¢ = 0) shown on the right. (b) In contrast, the diagonalized unperturbed
Hamiltonian Hj, allows to define the QP blocks by rounding the diagonal elements. The resulting
subblock energies for the resulting Hamiltonian H'(¢ = 0) behave more physical.

While this behavior has only marginal effect if the defective interactions are very small and
treatable on large f-scales, this difference can become relevant if the interactions are larger.
However, in order to still rely on the truncation scheme introduced in 4.1.3, one can perform a
simple basis transformation before the CUT to define the particle blocks. In the basis provided
by the truncation scheme, the initial unperturbed Hamiltonian H, is only diagonal with respect
to the low-energy block defined by the states {|n")}. By contrast, the remaining block is
non-diagonal with respect to Hy and it is not possible to define quasiparticle blocks within this
basis, but one can simply diagonalize the unperturbed Hamiltonian Hg to define a better suited
basis. Generically, the eigenvalues are not integer numbers. Still, by rounding the eigenvalues
for the definition of the particle number, a valid particle-block structure can be restored. Let
‘H'o denote the diagonalized unperturbed Hamiltonian. The basis is arranged such that the
eigenvalues (diagonal elements) are sorted in ascending order and one defines the QP number
of the basis state |¢) by rounding the diagonal element:

0= 00),,] - (1.19)

The procedure is visualized in figure 4.5(b). Most importantly, the Hamiltonian gained via this
scheme converges with increasing dyax to the original scheme of the untruncated basis.
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This concludes the description of the basic procedure providing the general framework. However,
the treatment of decay relies on weights which function as key indicators to decide if a generator
element should be eliminated or reactivated. The corresponding weights can be affiliated with
the respective symmetries and therefore require a specific definition for pseudo and genuine
decay as addressed next.

4.2.3 Pseudo decay

In the following, we want to describe the treatment of pseudo decay relying on the basic
procedure described in 4.2.2. To apply this approach, we first introduce suited weights to define
the disentangled low-energy states. Followed by a discussion of these weights and their physical
interpretation, we address the resulting implementation.

Reduced weights

The artificial anticrossing observed on finite clusters are only caused by the broken translational
invariance. The states involved in artificial anticrossings are mainly affiliated with different
momenta in the thermodynamic limit which suggests that it is possible to construct a quantity
which helps to define the respective states.

Indeed, such a quantity is provided by the reduced n-QP weights. In CORE, the reduced n-QP
weight of an eigenstate |v) is defined by

W, n = (7,n|p,n) (4.20)
with

(1§ EeEnl) P
|V,n>—<1 ZH: - ) O : (4.21)

Gram Schmidt Normalized projected state

where P, projects on the n-particle subspace of the unperturbed Hamiltonian Hy. The sum runs
over all eigenstates |z) associated with the effective n-QP block having a smaller eigenenergy.
The determination of the reduced weight consists of two parts. The determination of the
(normalized) projection of the state on the n-particle subspace followed by a Gram Schmidt
orthogonalization.

This not very intuitive quantity appears in the CORE procedure in the context of exact
eigenvectors. To transfer the definition in terms of eigenstates to the gCUT procedure, the
eigenstates are replaced by the basis states of the subblock basis and the eigenenergies are
replaced by the subblock energies. For each basis state, the sum runs over all subblock basis
states of the n-QP block with a sufficiently smaller subblock energy defining an ¢-dependent
weight W, ,(¢). The sum is taken over all n-QP states |¢) which satisfy

E? (E) + Avicinity < 5?(‘6) ) (422)

where Ayicinity is introduced to account for the antilevel crossings associated with region II
(m > n). Note that the basis states must be transferred to the initial basis representation at
¢ = 0 to perform the proper projection operation because the projection operator refers to bare
particles. This can be done by additionally tracking the unitary transformation during the
CUT.

In the following, we want to discuss the reduced weights addressing the different aspects:
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Figure 4.6: (a) Sketch of an open chain with an additional coupling of strength (1 — {¢)\ which allows
to tune between open boundary conditions and periodic boundary conditions. (b) Sketch of the
eigenspectrum for ¢; = 0 in dependence of the discrete momenta k,,. The color coding indicates the
affiliation to the one-particle (magenta) or the multi-particle blocks.

i) This quantity naturally arises in the CORE procedure. While there exists no direct physical
interpretation of this weight, it can be viewed as a measure of the proportion of new information
for the n-QP block provided by the eigenstate |v) within the CORE scheme.

Applications show that states with a weight close to zero must be discarded from the procedure
to gain proper results [96]. In contrast, the other states typically have a significant larger weight
Wyn ~ 1.

These findings can be interpreted in the context of generalized cluster additivity and a single
antilevel crossing as depicted in figure 4.4. A weight close to zero is caused by an artificial anti-
level crossing and signals a defective state with a lower eigenenergy (region IIT). Consequently,
if this state is not discarded from the basis, the approach breaks down. In contrast, a weight
W, n ~ 1 signals a proper eigenstate |v) (region I).

Note that region II is not treated adequately by the exact eigenstates of the system and
the associated weights are smaller but not close to zero. From the behavior in region I and
region III we conclude that the correct linear combination must maximize the weight of the
disentangled low-QP state (W, , ~ 1) and minimize the reduced weight of the disentangled
high-QP state (W, ,, ~ 0). Therefore, the reduced QP weights provide a way to rigorously
define the disentangled eigenstates. In gCUTs, the modifications of the generator scheme are
designed to serve this objective by adjusting the generator elements accordingly.

ii) To provide more insight into the physical mechanisms behind the properties, we reconsider
an open chain on supersites coupled with A. Here, we additionally introduce a coupling of
strength Aper = (1 — () A connecting both ends of the chain (see figure 4.6(a)). The parameter
¢; allows to tune between periodic boundary (; = 0) and open ({; = 1) boundary conditions.
We want to investigate the reduced one-particle weights for this system in a parameter regime
with pseudo decay but without genuine decay.
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For (; = 0, the translational invariance separates the system into different sectors with respect
to the momenta and no pseudo decay occurs. For each momentum sector, no energetic overlap
between the low-energy states and the other multi-particles states exists and one can simply
identify the lowest eigenstate with the one-particle state of the effective low-energy model (see
figure 4.6(b)).

If, however, one does not explicitly label the states with respect to the momentum, an energetic
overlap exists in principle. Still, the proper one-particle states can be identified via W3 1 because
one finds exactly W; 1 = 1 for the one-particle states and W ; = 0 for all other states. The
reason for this is that the projected state Zf’n|y) still have a defined momentum which is reflected
in the scalar products during the Gram Schmidt orthogonalization. This demonstrates that the
reduced weights naturally extract this momentum property.

If we consider small deviations from the fully symmetric systems ( = ¢, the translational
invariance of the system is broken and the proper one-particle states cannot be identified by
labeling the states with a momentum. Yet, an identification of the proper one-particle states is
still possible relying on the reduced weights. Surprisingly, the empirical data suggest that this
identification process can even be transferred to open boundary conditions (¢; = 1). The latter
implies an interpretation in terms of standing waves.

iii) Next, we consider the system in the perturbative and the ¢ = 0 limit. In first-order
perturbation theory in A for the eigenenergies, the effective Hamilton operator is given by
HW = Hy + A\Tj. The diagonalization of this Hamiltonian corresponds exactly to the subblock
description at £ = 0 and the resulting n-particle weights of the n-QP subblock are identical to
one. This guarantees the perturbative starting point and suggests a well-controlled behavior of
the reduced weights for small values of /.

vi) Finally, it should be noted, that an orientation on the reduced one-particle weights breaks
the cluster addivitiy in a rigorous sense, if the ground state is not separated by the one-particle
states by a quantum number of the system (see discussion in the appendix A.2). This is never
the case in the considered applications. Nevertheless, we investigated this quantity for such cases
and find very similar behavior and no problems of this approach are observed. In the authors
opinion, this property reflects that the generalized cluster additivity is more complex since it
relates to the full cluster and not simply two disconnected clusters. The pure case of two dis-
connected clusters represents a good intellectual starting point, however, the actual calculations
are always performed on connected cluster clusters and the properness of the transformation is
decided on these clusters. Specifically a momentum related property cannot relate to these cases.

Implementation

In the following, we want to describe the implementation of the reduced-weight generator
scheme. First, one must define the parameter {gyitcn, defining the point in ¢, from which the
generator element modification is applied. This parameter must be sufficiently large, so that the
basis states within the subblock basis are close to the disentangled states. Simultaneously, the
parameter must be chosen sufficiently small, so that the influence of the artificial interactions
on the effective model is weak. In the case of pseudo decay, the scale of £ is relatively
large. Consequently, a relatively large window of proper values of fgyitcn exists, allowing a plain
definition of lyyitch. The parameter £ has the dimension of inverse energy and we simply choose
to define fgyiten as an inverse energy scale. The initial energy scale of the Hamiltonian H(A = 0)
is given by the elementary excitation energy which is normalized to one. Consequently, we
simply choose lgyitch = 1. The results obtained in this thesis are robust with respect to fswitch -
However, if a more accurate definition of switch is required in future applications, we refer to
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the definition in applied in treatment of genuine decay (see 4.2.4).

Let Hpp(¢) denote the Hamiltonian in the subblock basis, which is connected to the initial
Hamiltonian H by the transformation of the CUT (which is also represented in the sub-block
basis) followed by an ¢-dependent unitary transformation Ugp(¢) which diagonalizes the QP
blocks:

Hen () = Ul (OUT (OHU ()Usnp (¢) (4.23)
The subblock basis state |) in the initial basis are consequently given by
(@) = Uk (U (O) 1) (4.24)

To estimate the influence of of the generator element n%, one performs a single step of size &
with the generator
5

My o = =000 + 8 o850 M3 (4.25)

This revokes the contribution of the element 775 in linear order and defines the new transformation
Us() =U) + U5, +0(57) (4.26)
yielding the corresponding basis states

|1s(0)) = ULp (OUL(0)|1). (4.27)

We consider the case ¢; = n and q¢; = m > n. For the disentangled eigenstates, we expect
Wi n ~ 1 while Wj,, ~ 0. Strong deviations from that can be caused by a defective generator
element 7);; (77]»,»). Consequently, if Wi, , > Wi, or Wy, , < Wj,, the generator element ng
is considered defective and is eliminated. If, however,W;, , < W;,, and Wj, , > W;,, the
generator element is reactivated.

As previously mentioned, a detection of possibly critical matrix elements via Eq.(4.18) can
become problematic. At quantum criticality, multi-particle continua are on top of the one-
particle dispersion. This is also reflected by the physics on the finite cluster. A lot of states
merge with the low-energy spectrum and, additionally, states associated with similar momenta
become energetically very close. Therefore, a simple distinction between proper and defective
interactions candidates by means of Ayicinity can become problematic and it can happen that
proper matrix elements are eliminated. Close to quantum criticality, one additionally requires

(1Pl ()]

= > Agcalar > (4.28)

VIGOI.1i0) G0 Ba(0)]
with a suited value Agcalar- If the system is not close to criticality, these values are small,
because the states which are energetically close relate to the different momenta. However, if the
system is close to quantum criticality, one finds indeed states on the finite cluster, where the
overlap is significantly larger. The corresponding matrix elements are genuine and are not to
be eliminated. If the overlap is larger than Agcalar- Next, we describe the treatment of genuine
decay.
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4.2 Treatment of decay

4.2.4 Quasiparticle decay

The treatment of quasiparticle decay within the gCUT scheme relies on the basic procedure
described in section 4.2.2 which requires the definition of generalized weights defining the desired
effective low-energy states.

First, we discuss the objective of the modification in the case of quasiparticle decay with respect
to the thermodynamic limit and on this basis we introduce a suited weight defined on finite
clusters. Subsequently, we present the implementation of the resulting scheme.

Spectral weight

For pseudo decay, the classifying weight is given by the reduced n-particle weight W; , with
Wipn ~1 (W, ~0),if state |¢) is an disentangled m-particle state with m =n (m > n).
In genuine decay, the states involved in the anticrossing are associated with the same momentum
in the thermodynamic limit and represent in this sense valid continuations of the eigenfunctions.
In accordance with that, one finds in these cases for the relevant states W; , ~ 1 for both m =n
and m > n. Therefore, the reduced n-particle weight is not suited in the case of genuine decay.
To specify the suited weights in the case of quasiparticle decay, it is useful to define the objective
of the modification first and deduce the relevant weight from that.
To this end, we discuss a prototypical scenario associated with genuine decay of the one-particle
mode. We consider an initial Hamiltonian of the form Eq.(2.19) for { = 0, i.e., the Hamiltonian
separates into a channel with an even and odd number of quasiparticles. For simplicity, we
consider a one-dimensional system with a single supersite per unit cell and only one flavor of
excitations.
We examine a scenario where the one-particle mode is energetically beneath the two-particle
continuum for the momentum region k > k. and energetically inside the two-particle continuum
for the other momentum region k < k.. Due to the parity-symmetry, the one-particle mode is
stable for the whole momentum axis.

Next, we considere an observable O(k) which is split into a symmetric (O, ) and an anti-
symmetric part (O.), i.e.,

04 (k) =Y Ty with m = 2n;, n; € Z (4.29)
O_(k) = Ty withm =2n;+ 1L, m, €Z |, (4.30)
m

where T}, (T_,,) creates (annihilates) n (bare) quasiparticles. Then, the effective spectral density
Eq.(2.17) of the one-particle mode T ? ~ (k,w) is given by a (prominent) delta-function while the
corresponding spectral density of the two-particle continuum 120 ~(k,w) is zero. Such a scenario
is sketched in figure 4.7 (a). (Correspondingly, [20+ (k,w) is finite while If%’ (k,w) is zero.)

Next, we introduce a small asymmetry in the Hamiltonian ({ = ¢) inducing spontaneous
quasiparticle decay for the one-particle mode for k < k.. For these momenta, no prominent
delta-function exists and, consequently, no distinct definition of a one-particle mode exists either.
However, one observes a sharp resonance inside the two-particle continuum (see figure 4.7 (b)).
The standard NLCE/CUT approach brutally defines the minimum of the each momentum
as the one-particle mode. Not only is this definition physically counter intuitive, but it can
also lead to severe convergence problems in NLCE approaches for small values of ¢. This
quasi-breakdown of the approach relates to genuine decay on finite clusters. It is physically
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(a) ¢=0

low high
Ik, w) e——

k[x]

Figure 4.7: Sketch of a one-particle dispersion (dashed magenta line) and the two-particle continuum
(solid cyan line). The spectral density I(k,w) is represented by the color coding. (a) The one-particle
dispersion is protected by a symmetry from the two-particle continuum, i.e., the dispersion is stable for
all momenta and the spectral density is given by a delta function (illustrated with finite broadening).
(b) The symmetry protecting the one-particle dispersion from the two-particle continuum is broken
by a small term in the Hamiltonian. Consequently, for k < k., the delta-function is replaced by a
resonance inside the continuum. The standard approach identifies the minimum for all momenta as
the one-particle dispersion (dashed magenta line) while the physical more reasonable continuation
of the one-particle dispersion is located at the resonance (dotted blue line). (c) The symmetry
protecting the one-particle dispersion from the two-particle continuum is broken by a large term in
the Hamiltonian and the one-particle dispersion is pushed out of the continuum.

highly plausible to identify the position of the resonance with the decaying one-particle mode.
If we introduce a large asymmetry in the Hamiltonian, the one-particle dispersion is pushed out
of the two-particle continuum (see figure 4.7 (¢)). The task is to find a consistent continuation
of the effective description from ¢ = 0 to ¢ # 0 in both scenarios. Consequently, it is not
sufficient to simply ignore the terms associated with ¢ in the generator or to apply the standard
quasiparticle generator scheme. We want to adjust the CUT performed on finite clusters via
systematic modifications of the generator scheme such, that the one-particle mode is located at
the resonance if one observes decay and corresponds to the one-particle dispersion if it is pushed
out of the continuum. In both cases, the one-particle mode is expected to carry a significant
amount of spectral weight. Consequently, in is reasonable to assume that this property distincts
the one-particle states on finite cluster from the two-particle states on finite cluster. It turns
out, that this prototypical scenario can be too simplified, yet, it functions as a reasonable
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reference point. The corresponding spectral weight on finite cluster is given by:

OC‘

L0 =>2 3" [nlog,, |0 (4.31)
j ienQP
-y 1% (4.32)
1€EnQP

Here, |0) denotes the ground state of the system in the initial basis. The first sum runs over
the observables where the index j simply numerates the different observables Of 4/ acting
on different sites, links etc.. The second sum runs over the n-QP subblock basis states, which
are denoted by [|i(¢)). Accordingly, these subblock basis states must be also represented in the
initial basis (see Eq.(4.24)).

The resulting spectral weight I 0/ (¢ = 00) defines a cluster additive quantity describing the

n,tot

spectral weight captured in the n-particle subspace. For (A = 0, one finds 1°- (l=00)=0if

n,tot
the value of n is even and I- (L= ) = 0 if the value of n is odd.

n,tot
For small values of ¢\, one expects . tot (£ =00) > n+1 tot (L = 00) for odd values of n and
accordingly I, tot (l =00) > ° nt1.t0t (£ = 00) for even values of n. Deviations from this indi-

cates quasipartlcle decay on finite clusters i.e., the quantities represent the desired generalized

weights.

In particular, to treat decay of the one-particle dispersion inside the two-particle continuum, one
(e}

o
investigates I; ¢ (¢) and to treat decay between the two-particle states (two-particle continuum

C
and two-particle bound states) in the three-particle continuum, one relies on Is & (0).
These spectral weights represent the counterpart to the reduced weights W ,,. Indeed, concep-
tually, both generalized weights stem from considerations of a purely symmetric case ({ = 0,
¢t = 0) where they uniquely define the desired states. This identification process via these
weights is transferred to ¢ # 0 and (; # 0, respectively. Moreover, the validity of both ap-
proaches is perturbatively guaranteed.
However, there are fundamental differences: In the case of pseudo decay, the symmetry is fully
restored after the embedding procedure. For quasiparticle decay, this is not the case and the
remaining interactions moderate the decay and are accounted for by a subsequent analysis of
the coupled QP channels.

Definition of (gyitch

The transformation is performed without modifications up to £ = fswitecn Where the large
interactions are already integrated out and the eigenfunctions are therefore relatively close
to the disentangled eigenfunctions of the desired effective description. Then, the generator
elements are modified in order to maximize the corresponding spectral weight in the targeted
n-particle subspace.

Note, that it is the CUT integration process which allows to separate defective interactions
from proper interactions because they are integrated on different ¢ scales. In this context,
proper interactions denote interactions which are large and lead to a level repulsion in the
thermodynamic limit. In contrast, defective interactions are considered to be small and induce
quasiparticle decay in the thermodynamic limit. We want to prevent these interactions from
unphysically affecting the definition of the particle-subspace. Of course, a rigorous definition
of these terms is not possible and our classification relies on the respective ¢-scale of these
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Chapter 4 Graph-based Continuous Unitary Transformations

interactions, i.e., the classification applied in the scheme is ultimately determined by the
definition of lsyitcn. An adequate definition of fgyiten 1S therefore of particular importance in
the case of genuine decay.

C

The spectral weight I 10 ot (£) is designed to provide a suited definition for this ¢-scale. The weight
increases for small values of ¢ because the bare low-energy states are continuously transformed
in the direction of the disentangled low-energy states. These states represent the low-energy
states of the system and therefore typically carry a large portion of the overall spectral weight.

C

At £ =lmax, I 10 ot (£) becomes maximal and decreases for larger values of ¢, which can be partly
attributed to génuine decay. Consequently, we choose lsywitch = fmax-

Note that this generator scheme violates the cluster additivity in a rigorous sense, because
different values of fgyitcn for different clusters imply that different generator schemes are
applied. A cluster additive scheme would be defined by choosing fswitcn independent of the
cluster size, for instance by averaging f,,.x over the different clusters or by defining it as the
inverse of a typical energy scale of the considered Hamiltonian. Still, a cluster-adjusted (and
symmetry-channel adjusted) fswitch 1S more consistent with the concept that it defines a scale
of the current transformation, which can vary from cluster to cluster and symmetry-channel to
symmetry-channel respectively.

The scheme applied in this thesis can be improved by defining basis-state dependent values, i.e.,
the testing procedures are activated for each subblock basis state |i) individually via lswitch,q-

C

A plausbile definition is therefore provided by the maximum of IZ-O ~(¢). Nevertheless, these
quantities are not cluster additive either, but one can introduce a cluster additive substitute by

-0 . c 2

17 () = [((O)|OF 4 _[0()] (4.33)
where |0(¢)) is the dressed vacuum of the current transformation represented in the initial basis,
i.e., |0(¢ = 00)) is the actual ground state. This quantity will, by construction, decrease at first.
Consequently, values of lsyitch,; can be defined by inflection points of these quantities.
It should be noted that such a definition is in principle applicable, but should be treated with
care. As we discuss in the applications (see 4.4.1), one observes sharp antilevel crossings in
{ for the subblock energies and the corresponding basis states. In a short intervall in ¢, two

. . . . R o -0°
basis states are essentially interchanged, which leads to pseudo-maxima in I, ~ (¢) and I, ~ (¢)
respectively. Consequently, such artificial maxima must be ignored which requires careful

treatment and additional sophisticated checks. We are (so far) not able to resolve this issue.
C

To implement a simple and robust scheme, we simply define lsyitcnh as the maximum of I 10 tots
since the total spectral weight is not affected by anti-crossings within a QP channel. This
definition reflects a physical intuition and represents a good approximation. In addition to that,
it should be noted, that this effect is irrelevant for quasi one-dimensional cluster expansions
considered in this thesis, since the final result is only constituted by the two largest clusters of
the expansion (see also discussion in Ref.[133]).

Elimination process

The relevant matrix elements are determined relying on Eq.(4.18). Because the defective
interactions in genuine decay are not a pure artifacts, one should choose generically larger
values for Ayicinity compared with pseudo decay. The principles of the elimination process are
similar to the treatment of pseudo decay, but one focuses on the respective spectral weight and
not the reduced QP-weights.
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We denote the Hamiltonian in the subblock basis as Hpp (£), connected to the initial Hamiltonian
‘H by the transformation of the CUT and the subblock diagonalization:

Hap (0) = Uy (OUT(OHU(OUsp () . (4.34)
The subblock basis state |) in the initial basis are consequently given by
1(0)) = Uk (OUT (0) ). (4.35)

We want to investigate the linear contributions of the generator element 773 To this end, one
performs an infinitesimal step of size d; with the generator n° defined by

o g =—(8iir0550 + 8i g my (4.36)

This step revokes the linear contributions of the generator element 773 and defines a new
transformation

Us(0) = U) + U015, + O(67) (4.37)
yielding the corresponding basis states
13(0)) = Ul (OUF (0) 1)- (4.38)

The resulting spectral weight is given by

L0 =3 3 1is0]0g, o) (4.39)

J 1enQP
and one investigates the quantity
AT = In :o/t (é) 6 In :()/t_é(g) (440)
=23 > (i|U)Usp(0)OS,_|0)(iU()n Usp ()OS, ,_[0) + O(5,) (4.41)
j i€EnQP

If AI > ea, the generator element 7; ; is eliminated, if AI < e, the generator element is
reactivated. A threshold ea = 1079 is just chosen to prevent random activation elimination
sequences. In practice, one calculates Ugp (E)OJ Y |0) first. Because 1’ consists only of two
elements, this allows for a fast testing procedure for the matrix elements satisfying Eq.(4.18).
As previously mentioned, the identification of possibly defective generator elements via Eq.(4.18)
can become problematic. In the considered case, a prototypical scenario is given by level
repulsions leading to a depression of the one-particle dispersion, i.e., these interactions are
genuine and to not lead to quasiparticle decay. If the two-particle continuum is energetically
close to the one-particle dispersion, the corresponding states on the finite clusters are also
energetically close. If the matrix elements are falsely eliminated, the resulting one-particle
dispersion in the thermodynamic limit is still coupled to the two-particle continuum. However,
this effect is treated by the subsequent evaluation process, which renormalizes the one-particle
dispersion. If the renormalization is only moderate, the approach is considered to valid. (So
far, a counterpart similar Eq.(4.28) is missing in current applications.)
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4.3 Extrapolation techniques

In the preceding section, the treatment of pseudo decay is presented. This renders previously
infeasible calculations close to or even at quantum criticality possible. Since this regime is
associated with a divergence of the correlation length, extrapolation schemes become essen-
tial. However, in current literature, effective extrapolation techniques for NLCEs are missing,
specifically with regard to critical exponents. In this section, we describe the extrapolation
techniques which can be used to extrapolate the results obtained via pCUTs (gCUTs) to
infinite order (infinite cluster sizes). First, we give a brief introduction into well-established
extrapolation techniques for series expansions. On this basis, we discuss the possibility to apply
these techniques to NLCEs.

4.3.1 Series expansion

A decisive feature for high-order series expansions is the presence of powerful extrapolation
techniques. For a more detailed overview over this vast topic, we refer the interested reader to
a well-written introduction by Guttmann [122].

We consider a series expansion of the form

FO) =Y A" = ag + aid + a2) + ... apA™, (4.42)
n>0

with A € R and a; € R. The function F(\) represents an approximant of the actual function
F()\) = lim, o F()). Here, F(\) may represent the excitation gap, the entanglement entropy
or any other quantity accessible via LCEs. Naturally, depending on the quantity and the value
of A\, the approximation can become deficient.

The fundamental idea behind extrapolation schemes is the derivation of extrapolants from F'()\).
These extrapolants are functions whose form differ from the plain series expansion, which leads
to a better approximation, i.e., the form of the extrapolant is generically more suited to mimic
the behavior of the actual physical function F'()\) than a plain series.

A standard extrapolation scheme is the Padé extrapolation defined by

Pr(\ + 1A+ +prAt
PIL/M]p = L(A)  po+p1 PL

= = 4.43
Qu(A) w+ar+...quIM (4.43)

with p; € R and ¢; € R and ¢y = 1. The latter can be achieved by reducing the fraction. The
real coefficients are fully defined by the condition that the Taylor expansion of P[L/M]r (in A
around A = 0) up to order L + M (L + M < m) recovers the corresponding Taylor expansion
of the original series F(X).

Naturally, Padé extrapolants are more versatile than a plain series and are specifically suited
for scenarios where a rational function is approximated. Poles of an extrapolant can either
reflect physics of the system or they can simply be an artifact of the extrapolation technique.
If such a spurious pole is located close to or between A = 0 and the considered A value, the
corresponding extrapolant is called defective and should be discarded.

There is no single blueprint distinguishing physical and defective poles and this must be decided
in the respective context and matched with the expectations. The extrapolation is considered
to work if several combinations of L and M yield similar results. Specifically relevant is the
convergence of the families defined by L — M = const. Pade extrapolants constitute a valid
extrapolation scheme, however, especially close to quantum criticality, the rational functions
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fail to capture the characteristic behavior.

In these cases, it is advisable to implement the so-called Dlog-Padé extrapolation, which are
applicable to quantities of definite sign like energy gaps or spectral weights. Most importantly,
this scheme allows the extraction of critical exponents, i.e., the extrapolants are suited to
describe power-law behavior.

If one assumes power-law behavior near a critical value )., the function F()) close to A is
given by

FO\) ~ <1 - ;) A(N). (4.44)
If A(N) is analytic at A = A, we can write
- N A\ ¢ N
FO)~ (1-1 ) Abes (1 LO(1 - rC)) . (4.45)
Near the critical value A., the logarithmic derivative is then given by
. d -
D(A):=—F 4.4
() i= o W F() (4.46)
_
-~ FW)
N {14+ 0\ = A}
T “r

In the case of power-law behavior, the logarithmic derivative D()) is expected to exhibit a
single pole. In this case, Padé extrapolations are perfectly suited to approximate D()\). These
extrapolants are defined by the corresponding series D()), which is, due to the derivative, only
known up to order m — 1, i.e., L+ M < m — 1. The resulting Dlog-Padé approximants of F'(\)
are then defined by

dP[L/M]r()\) = exp ( / ) P[L/M]p dA’) (4.47)

and represent physically grounded extrapolants in the case of a second-order phase transition.
The poles of P[L/M]p(A) can either indicate a critical value A, or be spurious. In practice,
this is decided essentially by the location of these poles. The corresponding critical exponent of
a pole \. is given by

Pr(\)

A0 (49

A=Ae

If the exact value of ). is known, one can obtain better estimates of the critical exponent by
defining

a*(A) = (Ac = A)D(X)
~a+ O —A),

where D()) is given by Eq.(4.46). Then

P[L/M]~

a=x, @ (4.49)
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perturbative limit Phase 1

Phase 2
1

T

% N M

Figure 4.8: Sketch of the anticipated phase diagram in the parameters A and 7. The perturbative
series expansion is carried out from the A = 0 limit on the physical axis (7 = 1.0). The NLCE
expansion in 7 is carried out for an arbitrary but fix value of A from the 7 = 0 limit. The phase
transition from Phase 1 to Phase 2 can be induced by increasing A or 7.

yields a (biased) estimate of the critical exponent.

Finally, it should be noted that Dlog-Padé extrapolants can also prove to be proper extrapolants
if no phase-transition is described. In the next section, we describe how these extrapolation
schemes can be applied to numerical data sequences obtained via NLCEs.

4.3.2 Non-perturbative linked-cluster expansion

In contrast to the purely perturbative LCE approaches, NLCEs yield numerical data sequences
for a defined value of A\. Since each cluster is treated non-perturbatively, no perturbative
parameter limiting the applicablity exits. Yet, only a finite set of clusters can be treated numer-
ically which sets a characteristic length scale £ of quantum fluctuations captured. Consequently,
if the physical system has a finite correlation length, the NLCE converges as long as & ~ L.
Specifically at quantum critical points with £ — oo, one must rely on extrapolation techniques.
One form of extrapolation of NLCE results relies on an appropriate scaling in £ [65]. A
challenge of these scalings is the assignment of a length scale to a given cluster in more than
one dimension. It is possible to extract universal properties relying on scaling arguments. It
seems, at least in principle, possible to extract the critical exponent v in a similar fashion. The
other extrapolation relies on the e-Wynn and related methods [59, 62]. This method does not
require a length scale, yet, this approach does not provide any critical exponents.

In a work of Bernu and Misguich [134], the expansion for entropy in the inverse-temperature
variable is converted to an expansion for entropy in the internal energy, allowing to build
the ground-state energy and low-temperature power-law behavior into the extrapolation of
high-temperature expansion. Our considerations are in a similar direction.

We suggest a scheme, addressing specifically the power-law behavior close to quantum criticality.
The fundamental idea behind the approach is a reformulation of the data sequences as a series
expansion in a pseudo parameter, allowing to utilize standard series expansion extrapolation
techniques to extract critical properties. The reformulation does not rely on a length scale, yet,
the series extrapolation schemes can be physically motivated. Most importantly, in addition to
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critical points, this scheme provides access to critical exponents.

Let Ky denote the quantity of interest (e.g. excitation gaps, spectral weights) obtained via
an NLCE calculation including up to N supersites for the coupling strength A. The values of
Ky are, in principle, expected to converge with increasing N as long as A < A.. Next, we
introduce the parameter

bnv_1a=Knx— Ky_1, (4.50)
representing the contributions specific to N-site clusters (Ko, = 0). We can simply rewrite

N-1

Knx= Y bux=box+bia+-+by 1 (4.51)
n>0

With this, we can define the function

GA(T) =) buat" =box +biaT+ -+ by at™, (4.52)

n>0

with m = Npax — 1. The pseudo parameter 7 functions as a substitute for the missing expansion
parameter and one aims at G (7 = 1) = lim,,_.oc G\(7 = 1). It is therefore possible to apply
the wide range of series expansion extrapolation techniques in 7.

Indeed, the exptrapolation techniques applied to data sequences in Ref.[59] and Ref.[62] are
identical to Padé extrapolations evaluated at 7 = 1.0. However, as we argue in the following,
Dlog Padé extrapolations are perfectly suited for this purpose if the system is close to quantum
criticality.

Following Eq.(4.52), the results of an NLCE expansion can be interpreted as an expansion in
7 from the local cluster limits 7 = 0. But in addition to that, the cases 7 =1 and 7 # 1 can
be identified with the same physical system in an extended parameter space as visualized in
figure 4.8. In NLCEs, the local cluster limit is closely related to the perturbative limit and the
expansion is carried out starting from a specific phase.*.Due to the close relation between the
limit 7 — 0 and A — 0, it is suggestive that the same phase transition from Phase 1 to Phase 2
is induced by increasing A and 7 respectively and no intermediate phases occur in 7. (If this
assumption does not hold, the NLCE approach seems overall problematic.)

For values of A close to criticality, one expects that 7. is close to one, i.e., G5(7) must be
evaluated close to criticality and it is therefore reasonable to apply Dlog Padé extrapolations to
obtain approximations of G A(7 = 1). If the extrapolation yields 7. < 1.0 (7. > 1.0), one deduces
A > A (A< A). Thus, a scheme of the form A\;y; = T’zl allows an iteration to determine A..
Most importantly, due to the universality of the critical exponents, it is possible to extract
the critical exponent by applying Eq.(4.48) or Eq.(4.49) (GA(7) = F())), at least if A is in the
vicinity of A..

We stress that this extrapolation scheme does not require any additional numerical overhead
and relies solely on the data available. Moreover, the same argumentation can be applied to
other numerical techniques which yield converging sequences of numerical data points with
a similar relation between the limit 7 — 0 and A — 0. A prototypical example for this is
deepCUT [47], a numerical CUT approach which relies on a quasi-perturbative truncation.

4See for instance discussion of low-field NLCE and high-field NLCE in Ref.[65]
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4.4 Applications

In this section, we discuss the applications of the modified gCUT schemes, illustrating the
different methodological developments. We begin with a discussion of the general scheme and
the treatment of pseudo decay for the two-leg spin 1/2 Heisenberg ladder in 4.4.1. Afterwards,
gCUTs are applied to describe the quantum phase transition between the dimerized and the
isotropic spin 1/2 Heisenberg chain, relying on the extrapolation scheme introduced in 4.4.2.
Finally, we discuss the treatment of quasiparticle decay in the thermodynamic limit using a
modified gCUT scheme in 4.4.3.

4.4.1 Two-leg Heisenberg ladders - pseudo decay

In this section, we discuss the application of the (optimized) gCUT scheme with respect to
the general scheme and the treatment of pseudo decay, focussing on one-particle properties.
Particularly suited for this purpose are isolated two-leg spin 1/2 Heisenberg ladders. The model
is depicted in figure 4.9(a).

Two-leg spin 1/2 Heisenberg ladders represent a prototypical example of a one-dimensional
valence-bond solid [135], i.e., the ground state does not break any symmetry and possesses
no magnetic order. Interestingly, this system stays gapped for all values of the leg-coupling
A [136, 137] and the elementary excitations can be understood in terms of dressed triplets
called triplons [10]. Being additionally relevant for superconductivity [138], the two-leg ladder
system became of massive theoretical [42, 54-57, 139-142] and experimental interest [143-157].
Note, that the system can be modified by an additional ring exchange to match experiments
on cuprate ladders [57, 158, 159]. Essential for the low-energy physics of this system are also
characteristic two-triplon bound states [54-57, 140, 141].

For a large parameter intervall, the two-leg ladder exhibits large interactions without quasi-
particle decay [47]. However, as we demonstrate in the following, depending on the coupling
strength, the system can exhibit pseudo decay on finite clusters. Consequently, this system
provides a perfect play-ground for gCUTs. Moreover, results of deepCUT [47] and CORE
[99] for the one-triplon dispersion are available, allowing to compare our results with related
techniques. Moreover, DMRG data [157, 160] allow for an unbiased check.

The model

The considered Hamiltonian of the two-leg Heisenberg ladder is given by

H=> S:8+X) 8:5;, (4.53)
(i.7) (6.7)’
N—_—— N—_——
Ho v

where the first (second) sum represents the intra-dimer (inter-dimer) couplings. The different
couplings are illustrated in figure 4.9(a).

The dimers form the supersites of the expansion. For A = 0, the ground state is given by a
product state of singlets |s) on these dimers and the excitations are local triplets |t*) with
a = {£1,0} and an energy gap A = 1.0. This defines a quasiparticle picture in terms of triplets,
i.e., the local excitations are identified with the presence of a hardcore boson with falvour «
and the ground state is given by a vacuum. We aim at an effective description in terms of these
quasiparticles.
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Figure 4.9: (a) Ilustration of the considered model. The Hamiltonian is studied from the dimerized
limit A = 0. The system exhibits a translational symmetry Tr and the reflection symmetry I:Zp splits
the Hamiltonian into a channel with even (odd) number of triplons. (b) Illustration of a ladder
segment (N = 4). The reflection symmetry R is also exploited during the CUT calculations.

To this end, the Hamiltonian Eq.(4.53) must be represented in terms of triplets. The degeneracy
of the local triplets leaves a degree of freedom for the local basis. In this context, it is advisable
to sort the triplets with respect to the magnetization in S,-direction in order to efficiently
exploit S ;. Consequently, the local basis of a dimer is given by

) = 5 (| 11) = [11)) (4.54)
%) = 5 (111 +111) (4.55)
[t =111) (4.56)
1) =1 11)- (4.57)

Since the system displays a reflection symmetry Rp around the center of the dimers, the system
is divided into a channel of even and odd numbers of triplets, i.e., the Hamiltonian is expressed
in terms of these triplets by

H=3N+Ho+A(T_2+Tp+1T2), (4.58)

where N is the total number of dimers, Hy counts the number of triplets and T),, (T_,,) creates
(annihilates) in total m triplets on neighboring dimers. The local matrix elements are shown in
table 4.1.

Our objective is to derive a quasiparticle conserving effective Hamiltonian. The quasiparticles
in the targeted effective description are dressed versions of the initial triplets and are referred
to as triplons [10]. In particular, we aim at the one-triplon subspace, i.e., the desired effective
Hamiltonian takes then the form

Her = BoA)+ Y. as(N)tl,5at50 +hec. (4.59)

1,0,

where tj’a (; o) creates (annihilates) a triplon with magnetization a on dimer i. Due to the
SU(2) invariance, the hopping elements as(\) are independent of the triplon flavor a. A Fourier
transformation yields the one-triplon dispersion w(k).

Finally, the clusters of the two-leg ladder correspond to simple ladder segments of length £,
as sketched in figure 4.9(b). The gCUT calculation is performed up to Npax = 12 dimers. One
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Table 4.1: Two-leg ladder: Representation of the local operators 7, which act on the links of the
super lattice, in the considered triplet basis.

observes a strong even-odd effect with respect to £ for the two-leg ladder. This can be traced
back to the antiferromagnetic ordering wave vector of the gap A(k = 7). We reduce this effect
by averaging the results via w”(k) — 3 (w®(k) + w71 (k)).

Before going into details of the obtained results, we briefly discuss the symmetries exploited
for the finite-cluster calculations. We implement the magnetization Sf,; and the triplet-parity
simultaneously using Lin tables. Due to the SU(2) symmetry, we can restrict the calculation to
the SZ,, = 0 channel. Then, a global spin inversion mapping S* — —S57% splits the Hamiltonian
into a symmetric and an anti-symmetric channel. Note, that the respective channel depends
on the targeted low-energy states but also on the number of dimers of the considered cluster.
For instance, for N even (odd) the singlet product state is symmetric (anti-symmetric) with
respect to the spin inversion.

Finally, we exploit the reflection symmetry Ry on each cluster, separating the calculation of the

effective one-particle model into an symmetric (anti-symmetric) part.

General scheme

In the following, we want to discuss the results derived via gCUTs, relying on the general
scheme described in 4.1. Before discussing the calculation for a specific value of A in detail, we
briefly discuss the resulting one-particle dispersions qualitatively.

Up to intermediate values of A (A < 1.0), one obtains sound results for the one-particle disper-
sion, as depicted in figure 4.10(a). With respect to the considered energy scales, the results
are converged in N. For small values of A, the form of w(k) corresponds roughly to a cosine
band. However, for intermediate values of A, the form changes qualitatively and the dispersion
exhibits a maximum at k ~ 7 and the gap A = w(k = 7) remains relatively large. In addition
to that, one observes a characteristic dip at k ~ 0, reflecting the proximity of the three-triplon
continuum due to large triplon-triplon interactions [142].

In contrast, for slightly larger values of A (A = 1.25, A = 1.5), the results obtained via the
general scheme become abruptly erratic, as shown in figure 4.10(b). The results do not converge
with N, quite the contrary, the erratic effects become even more severe with increasing N. This
behavior can be traced back to pseudo decays on finite clusters.

The treatment of pseudo decay via an optimized version of gCUTs is addressed in 4.4.1. First,
we want to describe the general scheme and focus on the isotropic ladder with A = 1.0. In this
case, the system does not exhibit pseudo nor genuine decay for the one-particle states and it is
suited to demonstrate the general gCUT scheme while the proper description of the one-particle
dispersion is not trivial.
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Figure 4.10: The one-particle dispersion w(k) is shown for different values of the coupling A. The
solid (dashed) line shows w obtained using the maximal cluster size Nmax = 12 (Nmax = 10.) (a) The
one-particle dispersion is depicted for A = 0.5 (black), A = 0.75 (cyan) and A = 1.0 (magenta). (b)
The one-particle dispersion is depicted for A = 1.0 (black), A = 1.25 (cyan) and A = 1.5 (magenta).

We begin with a brief exemplary discussion of the behavior of the characteristic quantities
on a single cluster, to provide a picture of these quantities if no decay is present. Then, we
discuss the resulting one-particle dispersion with respect to the convergence of both the cluster
expansion and the truncation schemes applied on finite clusters.

CUTs on finite clusters We begin by discussing exemplarily the CUT on an intermediate sized
N = 10 ladder segment on the basis of the characteristic quantities. The subblock energies ;(¢)
are depicted in figure 4.11(a). For small values of ¢, one observes that the subblock energies
decrease, which reflects the renormalization effect of the interaction on the low-energy states.
Moreover, for £ ~ 1.3, one observes a sharp anticrossing in ¢ within the 1QP block.
Physically, this behavior is related to the maximum of the one-particle dispersion at kpax =~ 5,
arising due to the interaction with the three-particle continuum. To illustrate this, we denote
the dispersion of first-order perturbation theory in A by w (k) and the actual dispersion by
w(k). The first-order perturbation theory does not account for this interaction effect and,
therefore, w(¥ (k) is given by a cosine and does not exhibit a dip. Consequently, one finds
W (k1) > w® (kpay) and w(ky) < w(kmay) for the momenta k; < kpyay suppressed by the
three-particle continuum.

This behavior in the thermodynamic limit is also reflected by the physics on finite clusters. For
¢ =0, the subblock diagonalization corresponds to first-order perturbation theory in A, i.e., the
subblock energies €7 (¢ = 0) are identical to the first-order eigenenergies (— w)(k)). During
the integration, the interactions with higher QP-blocks are continuously integrated, resulting
in a decoupled one-QP block (— w(k)). Since the finite-cluster states can be associated with
different momenta in the thermodynamic limit, the order of the corresponding states is switched
during the integration. In analogy to anticrossings associated with decay, one observes sharp
anticrossings in ¢ within the one-QP subblock.
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Figure 4.11: The behavior of the characteristic quantities of the basis states in dependence of ¢ is
shown for N = 10-cluster and the symmetry channel Ry = 1 for the coupling A = 1.0. (a) The
subblock energies €;(¢) are shown for the 1QP basis states (red) and the lowest 2QP basis states
(cyan). (b) The reduced 1-QP weights W; 1(¢) (red) and bare 1-QP weights W*(¢) (black) are
shown for the 1QP basis states. The vertical dashed line illustrates cross ~ 1.3.

For larger values of £, the subblock energies converge and the 1QP subblock energies represent
the smallest energies of the system (g; = 1,¢; > 1 = &;(¢) < ¢;(¢)), i.e., no pseudo decay is
present.

To further illustrate the CUT performed on finite cluster, we introduce the bare one-particle
weights Wffre(ﬁ) = (i(¢)|Py]i(£)). Here, the operator P; projects onto the one-particle subspace,
i.e., WPire(£) measures the part of the bare one-particle states of the dressed state |i(¢)). The

7

reduced one-particle weights W 1(¢) and the bare one-particle weights W#(¢) are shown in
figure 4.11(b). One observes that the bare one-particle weights drop fast, indicating that the
system is in a non-perturbative regime.® In contrast, the reduced one-particle weights remain
large up to £ — oo, indicating that the reduced one-QP weights are a distinguished quantity to
identify the disentangled one-particle states.

This finishes the finite-cluster discussion. We remark that the behavior of these quantities is
prototypical for this parameter regime. However, this changes qualitatively, if decay is present.

Convergence In the following, we want to discuss the convergence of the results. The initial
gCUT scheme relies on the standard basis [46, 63] (see 4.1.2) without any form of truncation.
Consequently, convergence relates only to the maximal number of sites considered in the
calculation. However, the size of the matrices defining the flow equation grows exponentially
fast, becoming the bottle neck of the calculation. Therefore, it is reasonable to introduce
truncations of the basis on each cluster to reach significantly larger cluster sizes (see 4.1.3).
Then, the convergence with respect to this truncation scheme must also be considered. As we
demonstrate, it is possible to obtain accurate results with a truncated basis extremely smaller
than the original one. This gives access to substantially larger cluster sizes Nyax = 12.

5The bare one-particle weights become almost evenly distributed over the states forming the low-energy
spectrum, i.e., the bare weights are not suited to identify the disentangled one-particle states.
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Figure 4.12: Left panel: For A = 1.0, the error of the one-triplon dispersion Aw(k,dmax) induced by
the truncation of the basis is shown in dependence of the momentum k for various values of the
basis size dmax ( dmax = 50 (red), dmax = 75 (cyan), dmax = 100 (magenta), dmax = 150 (blue)).
Solid (dashed) lines refer to the extended block lanzcos truncation (block lanzcos truncation). Right
panel: For A = 1.0, the difference of the one-particle dispersion Aw(k,Nmax) between the £ = Nmax
and £ = 12 calculation is shown in dependence of the momentum k for various values of Npyax (

Nmax = 8 (red), Nmax = 9 (cyan), Nmax = 10 (magenta), Nmax = 11 (blue)).

To discuss the convergence, the obtained one-particle dispersion w(k,dmax,Nmax) is viewed as a
function of the maximal basis size dpyax and the maximal number of dimers Ny,.. Then, either
dmax OF Npax are fixed to the maximal value and the other parameter is varied to estimate the
convergence in this parameter.

We start by discussing the convergence with respect to dyax for the block-Lanczos truncation
(BLT) and the extended block-Lanczos truncation (EBLT). To this end, we define

Aw(k,dmax) = w(k,dmax,Nmax = 12) — w(k,dmax = 300, Nipax = 12), (4.60)

where the results of w(k,dmax = 300,Ny,ax = 12) are obtained via EBLT and are numerically
converged. The behavior of Aw(k,dmax) is depicted in figure 4.12(a) for both truncation schemes
and different values of dax-

One observes that the results obtained with EBLT converge considerably faster than the
results obtained via BLT. It is noticeable that the convergence of the BLT becomes slow for
small momenta. For these momenta, the one-particle dispersion is high in energy and close
to the three-particle continuum. As expected, the accurate determination of corresponding
high-energetic one-particle states on finite clusters via BLT is problematic. In contrast, the
EBLT enforces an accurate low-energy spectrum on the cluster. Therefore, the convergence of
the dispersion does not show such a characteristic behavior and converges more robust and
faster than the BLT scheme. This relates specifically to the energetically challenging regimes,
where the EBLT guarantees a more robust approach. In the following applications, we therefore
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use the EBLT scheme.

Nevertheless, both truncation schemes converge with dyax. For dpax = 150, the results obtained
via BLT are converged up to € < 1075 and the results obtained via EBLT are even converged
up to e < 10710 which is sufficiently small.

The maximal number of dimers treated in gCUTs using the standard basis is given by
Nmax = 6 [161] and the corresponding Hilbert space dimension in the SZ ;=0-channel is given by
Dg = 61!—26!! = 924. Consequently, the number of manageable supersites via gCUTs is practically
doubled, which is a major improvement with regard to the exponential growth of the Hilbert
space. The treatment of Ny, = 12 dimers via the standard basis is obviously infeasible, since
it would require the treatment of Dg X Dg matrices with Dg = % = 2704156. Moreover,
it is noticeable that the matrices involved in the truncated Np.x = 12 calculation are even
smaller than the matrices of the initial Ny, = 6 calculation. Therefore, the computational
challenge of the gCUT procedure generically shifts away from the actual CUT the clusters
towards the truncation scheme.

Next, we investigate the convergence with Npy.x. Accordingly, we define
Aw(k,Nmax) = w(k,Nmax,dmax = 300) — w(k,Nmax = 12,dmax = 300). (4.61)

The behavior of Aw(k,Npnax) is shown in figure 4.12(b). One observes, that the results converge
with increasing Nyax. Moreover, Aw(k,Npy.x) is dominated by an oscillation. To be precise,
one observes % oscillations for the intervall k = [0,7]. The cluster expansion up to Npax
dimers involves hopping elements over maximally (Ny.x — 1) sites. The contribution of this
hopping element to the dispersion is consequently responsible for the oscillation, reflecting
that boundary effects are stronger for this hopping element. As a consequence, Aw(k,Npax)
alternates for k = 0, while it converges slowly for k = .

Finally, it should be noted that the errors related to the truncation in Np,.x are significantly
larger than the errors induced by the basis truncation in dyax. Consequently, we drop the
additional parameter dy.x and guarantee that the truncation errors induced by the basis
truncation are negligible compared to the errors induced by the finite cluster sizes. Yet, if
extrapolations in Ny.x are applied, the influence of d.x may become more relevant. It is
therefore advisable to investigate the convergence of the final result with respect to dpax.
The considerations with respect to the convergence clearly indicate, that the description by
means of the standard gCUT scheme does not fail due to the finite cluster sizes or the basis
truncation. Since no effects for these parameter regimes are present in the thermodynamic
limit, the break down of the approach is purely caused by artifacts of the finite-cluster approach.
This issue is clearly unsatisfying and will be addressed next.

Pseudo decay

In the following, we want to describe the treatment of pseudo decay using gCUTs. Relying on
the reduced-weight generator scheme, the results are fully cured from the artifacts stemming of
the finite-cluster approach.

To test these results, a comparison to other methods is reasonable. To this end, we discuss
two different values of A, namely A = 2.0 and A = 5.0. For A = 2.0, deepCUT [47] and CORE
results [99] for the one-particle dispersion are available. For A = 5.0, we compare our results
of the one-triplon dispersion to DMRG results for the dynamic structure factor. The gCUT
calculations are performed using dmax = 250 with Ayicinity = 0.1 (A = 2.0) and Ayicinity = 0.2
(A = 5.0) respectively.

We begin by discussing the behavior of the characteristic quantities exemplarily for the quasi-
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Figure 4.13: The characteristic quantities of the CUT are depicted for N = 10, Ry = 1 and A = 2.0. (a)
The subblock energies €;(¢) of the one-particle (red) and two-particle (cyan) are shown in dependence
of ¢ for the quasiparticle generator scheme (solid line) and the reduced-weight generator scheme
(dashed line). (b) The reduced one-particle weights W ., (¢) are shown for the quasiparticle generator
scheme (solid red line) and the reduced-weight generator scheme (dashed cyan line).

particle generator scheme and the reduced-weight generator scheme to give insights into the
underlying physics. Subsequently, we discuss and compare the obtained one-triplon dispersion.

CUTs on finite clusters To demonstrate the difference between the deficient quasiparticle
generator scheme Eq.(4.9) and the reduced-weight generator scheme (see 4.2.3) in the case of
pseudo decay, we discuss the corresponding CUT on a finite cluster by means of the subblock
energies ¢;(¢) and the reduced 1QP-weights W; 1(¢). We choose a suited combination N = 10
and Ry = 1 with A = 2.0.

The results of the subblock energies €;(¢) are shown in figure 4.13(a). Up to intermediate values
of ¢, the qualitative behavior of the subblock energies is similar to the case A\ = 1.0 and both
generator schemes yield equivalent results and the subblock energies seemingly converge.

Yet, a fundamental difference is that the subblock energies are not sorted with respect to
the number of QPs, i.e., €;(¢) > ¢;(¢) with ¢; = 1 and ¢; = 3. The 1QP subspace overlaps
energetically with the three-particle subspace and one observes pseudo decay. Consequently,
the subblock energies are resorted by the quasiparticle generator at large ¢-scales (Leyix ~ 20).
In contrast, the reduced-weight generator scheme detects the pseudo decay and eliminates the
respective element from the generator leading to a physically more reasonable development of
the subblock energies.

The artificial nature of this overlap is supported by the behavior of the reduced 1QP-weights
W, 1 depicted for the one-particle basis states in figure 4.13(b). For small and intermediate
values of ¢, the reduced weights are large and close to one for both generator schemes. At
£ ~ Lerit, the reduced weight of the one-particle state involved in the resorting drops virtually to
zero, indicating that states associated with different momenta are switched by the quasiparticle
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Figure 4.14: (a) Results obtained for the one-triplon dispersion w(k) obtained for A = 2.0 and different
values of N: N = 12 (black solid line), N = 10 (cyan dashed line), N = 8 (magenta dotted line).
(b) Deviations dw(k) induced by setting Avicinity = 0.075 (cyan solid line), lswitch = 1.5 (magenta
dashed line), dmax = 200 (black dotted line)

generator scheme. By construction, the reduced-weight generator scheme fully prevents this
artificial resorting leading to robust results in the thermodynamic limit.

We stress that the behavior of these characteristic quantities is qualitatively identical for all
systems exhibiting pseudo decay. Consequently, the reduced-weight generator scheme provides
a possibility to treat pseudo decay. Finally, to benchmark our approach, a comparison to other
methods is performed next.

Comparison to other methods In the following, we want to discuss the resulting one-triplon
dispersion for A = 2.0, relying on the optimized version of gCUT. It should be recalled that
this parameter regime is fully inaccessible using the general scheme relying on the quasiparticle
generator. The one-triplon dispersion using the reduced-weight generator scheme is depicted
for different values of Npax in figure 4.14(a). The qualitative form of the dispersion and the
convergence with N indicate a robust scheme without artifacts stemming from the finite-cluster
approach being noticeable. The gap of the dispersion is located at k = 7 and, moreover, the
dispersion exhibits a prominent maximum at k ~ 7.

The results are obtained using the reduced-weight generator scheme with flgwiten = 1.0,
Avicinity = 0.1 and dmax = 250. To estimate the uncertainty connected to the approach,
one can vary each parameter and investigate the resulting deviations dw(k), as depicted in
figure 4.14(b). One finds dw(k) < 1073, which is considerably smaller than the uncertainty
induced by the truncation in Npy.x. Moreover, it is noticeable that the low-energy physics at

~ m is barely affected.

In the following, we want to compare the results of the one-triplon dispersion obtained via
the modified gCUT scheme with results of the one-triplon dispersion available for deepCUT
and CORE. The truncation parameter in gCUTs and CORE is given by the maximal cluster
size N, the truncation parameter in deepCUT relates to the order in the perturbation pa-
rameter used to set up the differential equation system and is in the following also denoted by N.
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Figure 4.15: (a) The one-triplon dispersion w(k) obtained via gCUT, deepCUT [47] and CORE [99]
is shown for A = 2.0 and different values of N. (b) The corresponding shifted one-triplon dispersion
Aw(k) is depicted to provide a better energetic resolution. The green symbol denotes the according
value of DMRG [160].

All three methods yield, qualitatively, the same behavior of the dispersion, as shown in figure
4.15(a). To compare the results quantitatively, we define the difference

Aw(k) = w(k) — wgcur,N=12(k), (4.62)

where wgCUT,N:u(kz) denotes the result obtained via gCUT using N = 12 dimers. Note that
wgcuT,N=12(k) is not the exact result and that subtraction is only performed to increase the
energetic resolution. In figure 4.15(b), Aw(k) is shown for different methods and different values
of the truncation parameter N. The (shifted) DMRG data at k = 7 is provided by Nase [160].
For large values of k, the results of all three methods converge to similar results which are all
in accordance with the DMRG data.b

For intermediate values of k, the gCUT and deepCUT results are similar and consistent
with each other. In contrast, for these intermediate momenta, one observes bumps in the
dispersion obtained via CORE. The form of the dispersions suggests that these deviations stem
from artifacts of the finite-cluster approach in CORE. The CORE method relies on the exact
eigenvectors of the finite clusters, i.e., the generalized cluster additivity is violated in Region II
(see figure 4.4). This should not lead to a full break down of the approach, yet, one expects
erratic but moderate deviations consistent with the obtained behavior. Nevertheless, it cannot
be completely ruled out that the deviations are simply due to missing convergences of the
applied diagonalization method.

For small values of k, CORE and gCUT yield converging results. In contrast, the dispersion
obtained via deepCUT is significantly larger, yet, with increasing order, the results become
closer to the results of gCUT and CORE. This behavior is consistent with the convergence of
the truncation scheme. The physics at k ~ 0 is caused by strong interaction processes which is

6At k = 7, one can perform a scaling in A/ for the gCUT, yielding results in full agreement with DMRG [70].
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Figure 4.16: (a) The one-triplon dispersion w(k) is depicted for A = 5.0 and different values of N:
N = 12 (black solid line), N = 10 (cyan dashed line), N = 8 (magenta dotted line). (b) The
one-triplon dispersion w(k) for A = 5.0 (N = 12) is plotted on top of the corresponding dynamic
structure factor obtained via DMRG [157].

difficult to capture adequately by a perturbative truncation. Unfortunately, no DMRG data for
A = 2.0 are available, but a comparison to DMRG data for A = 1.72 and A = 5.0 [157] suggests,
that gCUT and CORE converge indeed to the correct value.
We note that the optimized gCUT scheme yields robust results for the whole momentum axis
and no artifacts of the finite-cluster approach are observable on the relevant energy scales.
Finally, we investigate the results obtained via the optimized gCUT scheme for A = 5.0. For
this value in A, DMRG data for the dynamic structure factor are available [157]. In figure
4.16(a), the results obtained via gCUTs for the one-particle dispersion are depicted for different
values of Nyax. One observes a robust convergence with Np,.x even for this very large value of
A. The maximum at k ~ 7§ is very large (w(k = ) ~ 8). Interestingly, the gap at k = 7 and
the value at &k = 0 are approximately constant, which is fully consistent with gapless spinon
excitations spectrum for decoupled chains, as discussed in 4.4.2.
In figure 4.16(b), the one-triplon dispersion (Npax = 12) is plotted with the corresponding
DMRG data for the dynamic structure factor. Note that the DMRG results are plotted in units
of A because A becomes the dominant energy scale, i.e., the results can also be interpreted as
(weakly) coupled Heisenberg chains.
The one-triplon dispersion is located at the resonance of the dynamic structure factor obtained
via DMRG, indicating agreement between both methods. This also implies that the quasiparticle
interpretation in terms of triplons is valid for all momenta even in the weakly coupled chain
limit. Our method therefore yields even in challenging regimes with very large values of the
coupling constants correct results and the artifacts of the finite-cluster expansion are fully
eliminated. Next, we investigate the most demanding case of quasiparticle condensation, where
the triplon quasiparticle picture breaks down and a quantum phase transition occurs. For
two-leg Heisenberg spin 1/2 ladders no such phase transition occurs for any value of A, because
a finite coupling between two Heisenberg spin 1/2 chains directly leads to a finite energy gap
[136, 137]. In contrast, isolated Heisenberg chains are gapless. Indeed, one can study isolated
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Figure 4.17: (a) Ilustration of the considered model. The Hamiltonian is studied from the dimerized

limit A = 0. The system exhibits a translational symmetry Tk. (b) Ilustration of a chain segment
(N = 3). The reflection symmetry R; is exploited during the CUT calculations.

Heisenberg chains starting from a limit of isolated dimers, i.e., the translational symmetry is
broken on the level of the Hamiltonian. At the isotropic point, the translational symmetry
is restored and the triplons condense inducing a quantum phase transition. Here, we focus
specifically on the novel extrapolation technique introduced in 4.3.

4.4.2 Dimerized Heisenberg chain - quantum phase transition

To demonstrate the applicability of the extrapolation techniques, we study the (dimerized)
Heisenberg spin 1/2 chain, which is depicted in figure 4.17(a). At the isotropic point A\ = 1.0,
the model is exactly solveable by Bethe Ansatz [162-164, 164]. Moreover, the corresponding
excitation spectrum is exactly known [165] and is constituted by fractional spinon excitations
carrying a spin 1/2 [166].

The ground state at finite dimerization A\ < 1 is adiabatically connected to the product state
of singlets on the dimers. For A — 1, one observes a quantum phase transition between the
valence bond solid and the gapless Heisenberg chain. Here, the triplon quasiparticle picture
breaks down and the spinon description is appropriate [167]. The one-triplon exciations closes
with a critical exponent vz = 2/3 [168, 169].

The regime A < 1 is accessible via an effective description in terms of triplons [10, 39, 170].
Interestingly, a spectral weight analysis using high-order series expansion shows that the one-
triplon weight vanishes at criticality while almost all of the weight is shifted to the two-triplon
channel [10, 171]. This indicates that a discription in terms of triplons is still valid even at
criticality.

Finally, it should be noted that a large number of compounds is succesfully described by
(frustated) Heisenberg chains at finite [172-175] and without dimerization [176-178].

The Model

The Hamiltonian is given by

H=> SS;+X)_ S:S;, (4.63)
(i.7) (i,5)’
Ho Vv
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47’0
|t0’i1,8> — *|S,to’i1>
tO’til PN |ti1,t0>
|ti1,ti1> PN |ti1,ti1>
|ti17t$1> e |t07t0> - |ti1at$1>
1t°,t%) © [ttt + [ttt
47‘1
s, th)[ths)  — [t1,60) — [¢0,¢1)
‘Sat(1)>a|t07i9> - |t;7t71> - |t717t(1)>
‘57t7 >a|t7 ,S> - |t 1 >_ |t717t >
47’2
|575> _ |t15t71> — |t07t0> + |t717t1>

Table 4.2: Dimerized chain: Representation of the local operators 7,, which act on the links of the
super lattice, in the considered triplet basis.

where the first (second) sum represents the intra-dimer (inter-dimer) couplings. The different
couplings are illustrated in figure 4.17(a). In contrast to the two-leg ladder, there is no reflection
symmetry separating the system into channels of even- and odd-triplet number. Consequently,
the Hamiltonian takes the form

H=3N+Ho+ AT+ Ty +To+T1+ 1), (4.64)

where N denotes the number of dimers, H, counts the number of triplets and T, (T_,,) creates
(annihilates) in total m triplets on neighboring dimers. The local matrix elements are shown in
table 4.2.

The objective is to derive an effective low-energy Hamiltonian of the form

Het = Eo(\)+ D as(N) g4t +he (4.65)
1,0,

where fj’a (; o) creates (annihilates) a triplon with magnetization o on dimer 7. Due to the
SU(2) invariance, the hopping elements as(\) are independent of the triplon flavor a. Again, a
Fourier transformation yields the one-triplon dispersion w(k). Here, we are specifically interested
in the one-triplon gap A at the critical point A = 1.
The gCUT is carried out using chain segments of dimers as depicted exemplarily in figure
4.17(b). The calculation is performed up to Npax = 12 dimers.
The reflection symmetry R; divides the calculation on each cluster into a symmetric and an
anti-symmetric channel. The implementation of this reflection symmetry is straightforward
in the spin-S, basis. However, in the dimer basis, additional signs occur since each singlet is
anti-symmetric under this reflection symmetry. As a result, the phase alternates for the n-QP
channels in the dimer basis, which must be regarded in the implementation.

Results

In the following, we investigate the one-dispersion w(k) at the critical point A = 1 obtained
via gCUTs up to clusters with N = 12 dimers and compare it to the exactly known spinon
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Figure 4.18: (a) The one-triplon dispersion w(k) obtained via gCUT using clusters up to N dimers
is shown with the exact spinen dispersion. (b) The difference Aw(k) (see Eq.(4.67)) is plotted for
various values of N and different basis truncations dmax.-

dispersion. Afterwards, we investigate the corrresponding one-triplon gap A derived via gCUTs,
to determine the critical exponent vz, providing a proof of principle for the novel extrapolation
technique introduced in section 4.3. In addition to that, the scheme is applied to analyze
deepCUT data for A up to perturbative order n = 12, kindly provided by Mohsen Hafez and
Gétz Uhrig.”

One-triplon dispersion The gCUT is performed at the critical point A = 1.0, making a proper
description of the system very challenging. On a single cluster, a lot of states merge with
the low-energy spectrum and distinction between genuine and defective interactions becomes
difficult.

We choose Ayicinity = 0.2 and additionally implement Eq.(4.28) with Agatar = 0.5. While the
latter clearly stabilizes the calculation, one still observes a noticeable uncertainty. This can be
illustrated by investigating different basis truncations dpmayx.

For A = 1.0, the exact one-spinon dispersion [165] is given by

Wspinon(k’) = g Siﬂ(?k). (466)

Here, k denotes the momentum with respect to the dimerized chain. Consquently, it is scaled
by a factor two to account for the doubled unit cell size in the dimerized case. It should be
noted, that spinons can only be created in pairs. Consequently, the triplon corresponds to the
lower band edge, also given by Eq.(4.66). The resulting one-triplon dispersion w(k) is plotted
for N =10 and N = 12 together with the exact spinon dispersion in figure 4.66(a). One finds
good agreement between both dispersions. To increase the energetic resolution, we define the
difference

Aw(k) = w(k) - Wspinon(k) s (467)

"It should be noted that orders n > 12 are in principle accessible by implementing symmetries.
8With increasing values of dmax, the number of states merging with the low-energy spectrum becomes even
larger, aggravating the problem of a distinction.

91



Chapter 4 Graph-based Continuous Unitary Transformations

which is shown for different values of N and different basis truncations dy.x. The influence
induced by the uncertainty of the elimination process is observable. Nevertheless, for N = 12,
the obtained one-triplon dispersion is very close to the spinon dispersion for & 2> 0.37w. However,
for smaller values of k£ and specifically close to zero momentum, the approximation becomes
poor. This is expected, since the correlation length diverges at A = 1, leading to a gapless
excitation spectrum. Consequently, one must rely on additional extrapolation techniques which
help to extract the critical behavior, as we discuss in the following.

L-M=0 L-M=1L-M=-1 (b)
ypax =200 —g— —5— CUT dmax =200 —o— —o—
dmax = 150 I P g dmax = 150 VA .

L-M=0 L-M=1L-M=-1

0.8~ b

0.75F N\ |

0.95|- .
t | | | L L | L L | L | L L
4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
L+M L+M
¢ L-M=0 L-M=1L-M=-1 (d) L-M=0 L-M=1L-M=-1
deepCUT o o deepCUT o o
1.15 T T T T T T T T T

0.74

L+M

L+M

Figure 4.19: (a) Critical points 7. of Ax=1.0(7) obtained via Dlog Padé extrapolations of the gCUT
results. (b) Critical exponents vz of Ax—1 o(7) obtained via biased Dlog Padé extrapolations of
the gCUT results. The dashed grey line represents the analytical result. (c¢) Critical points 7. of
Ax=1.0(7) obtained via Dlog Padé extrapolations of the deepCUT results. (d) Critical exponents
vz of Ax=1.0(7) obtained via biased Dlog Padé extrapolations of the deepCUT results. The dashed
grey line represents the analytical result.

One-triplon gap To perform an extrapolation of the one-triplon gap, we formulate the gap

as an expansion in 7 (see Eq.(4.52)). The aim is to extrapolate the resulting series Ay (7) to
infinite order. We argue that the series should vanish like Ay o (7. — 7)¥#, making Dlog Padé
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extrapolations the method of choice.
The resulting critical values 7. obtained via Dlog Padé extrapolations of Ax(7) (A = 1) are
shown for gCUT in figure 4.19(a) and for deepCUT in figure 4.19(c). Defective extrapolants
are omitted and we consider only the three families with |L — M| < 1. Since the calculation
is performed at the critical point, one expects 7. =~ 1.0. Indeed, this is consistent with the
convergence of the obtained critical values.
Next, we consider the extraction of critical exponents. To this end, we implement Eq.(4.49)
with 7. = 1. The resulting critical exponents are depicted in figure 4.19(b) for gCUTs and in
figure 4.19(d) for deepCUT. Indeed, the results are consistent with the critical exponent of the
system and one reaches the actual value by two percent (gCUT) and five percent (deepCUT),
which is for a sophisticated quantity like the critical exponent fairly accurate.
In gCUTs, the critical value is approached with increasing order from above, which corresponds
to the typical behavior obtained in high-order series expansions. This is the opposite for
deepCUT data and it would be interesting to investigate this behavior for other systems.
Following the investigation of quasiparticle condensation, we consider a very different scenario
in the next section. We focus on a situation where the quasiparticle is not stable for all momenta
and the challenge of finding an adequate effective low-energy model is tackled relying on the
spectral weight generator.

4.4.3 Four-leg Heisenberg ladder - genuine decay

In this section we demonstrate the treatment of quasiparticle decay via gCUTs. In particular,
we investigate four-leg spin-1/2 Heisenberg tubes from a dimerized limit with an additional
asymmetry parameter, allowing to tune between fully periodic tubes and open four-leg Heisen-
berg ladders (see figure 4.20(a)). The system exhibits both, strong interaction effects and
quasiparticle decay. The strength of the quasiparticle decay is controlled by the asymmetry
parameter (. Therefore, the system is perfectly suited to examine the properties of the modified
gCUT scheme. In contrast to the preceding discussions, the objective is to determine the
low-energy part of the dynamic structure factor. This is done by the spectral weight generator
and a subsequent diagonalization of the coupled one- and two-triplon sector.

The investigation of n-leg ladders (n > 2) is generically interesting, since it allows to study the
transition from one-dimensional to two-dimensional systems. Fascinatingly, one finds surprises
on the way [179] since even-leg and odd-leg spin 1/2 ladders behave fundamentally different:
Even-leg spin 1/2 ladders are gapped while odd-leg spin 1/2 ladders are not [180, 181]. For
odd-leg ladders, this relates to the Lieb-Schultz-Mattis theorem [182-184] while the gap of
even-leg ladders can be interpreted in support of Haldanes conjecture [185].

It should be noted that the systems considered in this chapter can be interpreted in this context:
spin 1/2 Heisenberg chains are gapless (see 4.4.2) and two-leg spin ladders exhibit a finite
spin gap (see 4.4.1). The two-leg ladder exhibits a reflection symmetry with respect to the
centers of the dimers, resulting in a parity conservation of the triplons. The four-leg ladder
exhibits such a reflection symmetry with respect to the centers of the dimers only for ( = 0.
For ¢ # 0, this symmetry is absent. Overall, the four-leg spin ladder is significantly closer to
the two-dimensional system than the two-leg Heisenberg ladder.

We focus the discussion on four-leg ladders, which is motivated by the compound LasCusO5 [186—
188]. The system is considered to be a potential realization of isolated (open) four-leg spin ladders
[189]. Structurally, the system is related to two-leg Heisenberg ladders (La,Cajq—,Cug4Oy1,
x € 4,5,5.2 and 6 [149, 151]) as well as to the undoped high-temperature super conductors
LayCuOy, which is well described by the Heisenberg model on the square lattice [190]. Therefore,
this system is a perfect platform to investigate the dimensional crossover from one to two
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dimensions experimentally.

The ground state of the Heisenberg four-leg ladder can be understood as a short-range resonant
valence bond [181, 191]. The ground state is adiabatically connected to the product state of
singlets on the dimers (see figure 4.20(a) for A = 0) and in this sense, the term valence bond
solid also seems appropriate.

Numerous calculations were performed to estimate the spin gap A for isotropic couplings
(A =1, ¢ =0) from extrapolations of finite-cluster calculations to the infinite system. Exact
diagonalization calculations on periodic systems up to £ = 4 rungs yield the estimate A = 0.245
[192] while calculations up to £ = 6 rungs yields A a2 0.27 [193]). In contrast, density-matrix
renormalization group calculations [181] determined the excitation gap to be A =~ 0.19 with a
ground-state correlation length £ ~ 4 — 6 (£ = 24, open). Most recently, Ramos et al. deter-
mined the excitation gap via density-matrix renormalization group as A ~ 0.15 [194] (£ = 40,
open). In addition to that, we performed exact-diagonalization calculations up to clusters of
length £ = 8 (periodic), which yields an estimate for the spin gap A ~ 0.16. While these
calculations give a good estimation of the spin gap, little is known of the spectral properties
of open four-leg ladders like the dispersion of the elementary excitation, bound states or the
dynamic structure factor S(k,w).

For the sake of completeness, it should be noted that inelastic neutron scattering on the com-
pound CuyCly - DgC4SO2 [195] induced rather recent investigations of fully frustrated four-leg
tubes [196-198].

Here, we focus on unfrustrated four-leg ladders. While most of the research focuses on ground
state properties and the excitation gap, we aim at the dynamic structure factor in terms of
triplon excitations. Our non-perturbative approach is not restricted to small values of A, yet,
a complete quasiparticle description in terms of triplons is challenging, since one observes
quasiparticle decay for certain momenta. This issue is addressed and solved by the modified
gCUT scheme.

We begin this section by introducing the model and the basics of the approach. Afterwards,
the CUTs on finite clusters are discussed exemplarily for the quasiparticle and the new spectral
weight generator scheme. Following this, the resulting spectral properties are reviewed and
interpreted.

The model

We want to investigate four-leg Heisenberg tubes starting from the dimerized limit. The
corresponding Hamiltonian is given by

H=> SiS;+A> SiS;+A1-¢) > SiS; . (4.68)
(i.4)

(i,9) (i,5)’

The different couplings are illustrated in figure 4.20(a). The first sum runs over the dimers
of the model, constituting the quasiparticle picture in terms of triplons and the second sum
introduces the inter-dimer couplings of an open four-leg ladder. Consequently, the additional
third sum runs over the periodic links closing the four-leg tubes, i.e., the parameter ¢ allows to
tune between periodic (¢ = 0) and open (¢ = 1) boundary conditions.

The system displays a reflection symmetry ]:22, dividing the system into a symmetric and
an anti-symmetric channel. In the case ( = 0, the system exhibits an additional reflection
symmetry Rp with respect to the center of the dimers.? This reflection symmetry divides the

9The 180°-rotational symmetry associated with the periodic boundary conditions is given by the product of
both reflection symmetries, which thus provides no additional information.
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Figure 4.20: (a) Illustration of the considered model. The Hamiltonian is studied from the dimerized
limit A = 0. Besides the translational symmetry Tr, the system exhibits a reflection Ri. The
parameter ¢ allows to tune between periodic boundary conditions (¢ = 0) and open boundary
conditions (¢ = 1). For ¢ = 0, another reflection symmetry Rg is present. (b) Example of a cluster
with £ = 3 super rungs. The clusters considered in the expansion exhibit two reflection symmetries
Rcl and f%l exploited in the calculation.

system into channels of even and odd number of triplets similar to the two-leg ladder. To be
precise, the Hamiltonian Eq.(4.68) takes the form

H=3N+MHo+ A (Tl_‘zg + T+ Tgleg) F AL+ Q) (TU98 + Ty + T,")

+ X (T + 1) (4.69)
where N denotes the number of dimers, Ho counts the number of triplets and T8/™"8 (T'°8/mn8)
creates (annihilates) n triplets by acting on the rungs/legs of the four-leg tube. Heisenberg
links which couple identical dimers aggregate to a single link in the super lattice. While the
super lattice of the two-leg ladder is given by a chain of dimers, the effective lattice of the
four-leg tube is given by a two-leg ladder of these supersites (dimers).

The operators are again decomposed via
Trlleg/rung _ Z Tleg/“mg (4.70)

n,l
l

into operators acting on the leg-links/rung-links [ of the effective lattice. The Hamiltonian in
terms of triplets is defined by the action of these operators on a single link in the triplet-basis
(see table 4.3).

To respect as many symmetries of the model in the thermodynamic limit as possible, we perform
the cluster expansion using super rungs, i.e., the two dimers of the unit cell build the elementary
piece of the expansion. Therefore, the considered clusters can be viewed as chains in these super
rungs. Such a cluster is exemplified for N = 6 dimers, i.e., £ = 3 superrungs, in figure 4.20(b).
While the translational symmetry is broken, the reflection symmetries R; and R, devide the
calculation on each cluster into four different symmetry sectors. Similar to the two-leg ladder,
a strong even-odd effect is present and it is reasonable to reduce this effect again by averaging
the obtained effective model for £ and £ — 1.

A fundamental difference to the two-leg ladder is the asymmetry ¢, which induces processes
between the odd-triplet and even-triplet channels. The Hamiltonian corresponds to the form
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Table 4.3: Four-leg ladder: Representation of the local operators 7.""8 (7.8), which act on the rungs
(legs) of the super lattice in the considered triplet basis.

Eq.(2.19), indicating that one may observe quasiparticle decay and the strength of the decay
can be varied with (.

The term Eq.(4.69) induces an interaction between the one- and two-triplon channels already in
first order in A\. However, it should be noted that the resulting two-triplet state is anti-symmetric
with respect to R». Consequently, this process only occurs in first order in the anti-symmetric
channel while it is absent in the symmetric channel for the initial Hamiltonian. Nevertheless,
these terms are generated during the CUT. Accordingly, the resulting interaction between the
one- and two-triplon states is expected to be considerably weaker in the symmetric channel
compared to the anti-symmetric one.

The objective is to implement a modified gCUT scheme to derive an effective description in
terms of triplons which allows to describe quasiparticle decay. The approach is defined by
the spectral weight generator, relying on the spectral weight of an appropriate observable as
guidance for the transformation. Of course, it is always possible to simply define an observable
which consists of the suited creation operators and annihilation operators. However, here a
natural candidate is given by the observables

1
Oliern(k) = —= Z exp(Ikr;)S], (4.71)
’ N j€ left dimers !
1
Og,right (k) = \/N Z eXp(Ikrj)S;{,Q (472)

J€ right dimers
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1
O 1ot (F) = Z exp(Tkr;)S7, (4.73)
, \/N J€ left dimers ’
Og,right(k) = \/» Z exp(Ikrj)SzQ ) (4.74)

j€ right dimers

where the sum runs over the left (right) dimers of the system and A denotes the number of
unit cells. The parameter k represents the momentum of the observable in ladder direction and,
correspondingly, r; denotes the coordinate of dimer j in ladder direction. Here, SZI (.5'3772) with
v € z,y,z acts on the upper (lower) spin of dimer j. The choice of this observable guiding the
transformation is motivated by the corresponding dynamic structure factor relevant for neutron
scattering experiments.

Due to the SU(2) invariance of the system, we can choose v = z. This choice is advisable,
since the action of the observable flips the eigenvalue of the spin-flip symmetry S, — —S, while
the magnetization is unchanged. This allows the exploitation of both symmetries during the
calculation.

The local observables are expressed in terms of triplets by

CL(f i it E g

=2 (tj,o T 0T tatia — tj,—ltj,—1> (4.75)
_1(_ft g ot p gt g

2= 3 (*tj,o —tiottiatin — tj,—ltj7—1) ; (4.76)

where tj, o (fza) creates (annihilates) a triplet of magnetization S* = « on site j. To satisfy
Eq.(4.29) and Eq.(4.30), the observables are (anti-)symmetrized with respect to R¢

Osienn(k) = 25 (Of (k) £ O3 1o (B) (4.77)
Oi,right(k) = % ( iright(k) + Og,right(k)) . (478)

Finally, it is reasonable to (anti-)symmetrize the observables also with respect to R,, which
allows to investigate the response of each symmetry channel independently:
Ox (k) =
O+,—(k) =

s

5 (O et (k) + O rigne (k) (4.79)
(O:t,left (k) - O:I:,right(k)) . (480)

sk o

Using the modified gCUT scheme, an effective description in terms of triplons is derived for the
Hamiltonian and the observables in order to determine the effective spectral density Eq.(2.16)
for the coupled one- and two-triplon sector. The resulting effective Hamiltonian takes the form

Her = Bo(AO)+ D (A0l 1, +he. (4.81)

7,0,x

+ > DD R O Wek stk it (4.82)

5€{0...2} ae{-S5...S} i,5,m,n

+ Y Y imNOTIO, L e (4.83)

ac{-1...1} i,m,n

where tj?a (t?a) creates (annihilates) a triplon of magnetization « on site ¢ and the operator TifT

(‘Zf’ja ) creates (annihilates) two triplons on sites ¢ and j with total spin S and magnetization
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SZ.. = a. We restrict the considerations to S = 1 with a = 0, which is sufficient to determine

the dynamic structure factor. In this case, one has

ot 1oy

i \7@( iatj 1
In the effective Hamiltonian, the first term (4.81) describes the one-triplon dynamics, the second
term (4.82) denotes the two-triplon irreducible operator (two-triplon interaction) and (4.83) is
a one-triplon irreducible operator inducing interactions between adjacent quasiparticle channels
(n > 1). We consider specifically the interactions between the one- and the two-triplon channel,
which moderate the quasiparticle decay of the one-triplon mode. Higher triplon interactions
are neglected in the effective description.
To determine the dynamic structure factor at zero temperature, one must determine all operators

of Oeg creating particles out of the vacuum. The effective observable takes the form

A

—tl ) (4.84)

1 o
Octton(k) = > Bi(AC ko0, 0)t o+ hec. (4.85)
1
+ = Va0 ke T +he (4.86)
,J

with o = + and e = +. All operators creating more than two triplons are neglected.

The observable O, 1 is symmetric with respect to the reflection symmetry EQ, while O,
is anti-symmetric. Therefore, the action of Oes o + does not change the eigenvalues of R, while
Ocfr,o,— flips the eigenvalue of Rs.

While the reflection symmetry EC is broken by ¢, one still expects Oesr,— o|0) to contribute
mainly to the one-triplon sector while O+ ¢|0) contributes mainly to the two-triplon sector.
To determine the effective spectral density I.g(k,w) (see Eq.(2.16)), the effective Hamiltonian
is Fourier transformed and Eq.(2.16) is analysed for the different sectors (Ry = +1) via a
continued fraction analysis (see for instance [29, 73, 74]). In this thesis, only the (coupled) one-
and two-triplon channel is considered, i.e., contributions of higher QP channels are neglected.
To estimate the validity of the approach, one can determine the total spectral weight captured
in the considered one- and two-triplon channels. Let the spectral weight within the n-triplon
channel be denoted by Wigt , with

W= [ 5 [(i0umon (k)02 (487

1€nQP
Wiotn = WO== + WO+ 4 WO+ 4 WO+ (4.88)

> Wiotm = 2. (4.89)
n

The latter is often referred to as the sum rule. The proportion of the considered one- and
two-triplon states

Wiot,1 + Whiot,2

Ligo = S W, (4.90)
n tot,n
Wiot,1 + Whiot,2
= Qb 02 491
: (4.91)

gives an estimate of the relevant low-energy physics captured in the current description.
It should be noted that a Fourier transformation of the terms in Eq.(4.81) yields two almost
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decoupled one-triplon dispersions @y (k) with Ry = 1 and &_(k) with Ry = —1.1° Both
one-triplon dispersions define the two-triplon continua. In the Ry = —1 channel, the relevant
continuum is defined by

wy (k) =04 (k—k1) +o_(k1). (4.92)
In the R; = 1 channel, two relevant continua exist, which are defined by

w,,,(k) =w_(k—k1)+w_(k) (4.93)
iy (k) = B (k — k) + 4 (k). (194

The objective of the modified gCUT scheme is to derive an effective Hamiltonian, such that:
i) if no quasiparticle decay is present, @, (k) corresponds to the actual one-triplon dispersion,
i.e., all coefficients ¢; j m (A,¢) are zero.

ii) if quasiparticle decay exists for certain momenta k, @(k) should lay on top of the corresponding
resonance in the dynamic structure factor, indicating the decaying one-triplon mode.
Naturally, both objectives are not exactly fulfilled when the modified gCUT scheme is ap-
plied to determine spectral densities. However, the subsequent evaluation process relies on a
simultaneous analysis of the one- and two-triplon subspace including these interaction terms,
which therefore renormalizes the almost decoupled one-triplon dispersions. The renormalized
one-triplon dispersion is then identified either with i) the (shifted) delta-function or with ii)
the (shifted) resonance in the continuum. Note, that the two-triplon continua are not renor-
malized by the current scheme and the upper and lower bounds of these continua are only
constituted by the almost decoupled one-triplon dispersions. Therefore, it is essential, that the
renormalization effects are not too large so that the bare one-triplon dispersions are already
good approximations.

Overall, the size of the renormalization effects can be viewed as a measure for the quality of
the approach. For the considered parameter sets, one finds that the one-triplon mode in the
anti-symmetric channel does not decay. Consequently, it is possible to calculate the dispersion
w_ (k) via the quasiparticle generator scheme, allowing to estimate the quality of the approach
via a fully independent check.

It should be noted that it is not possible to simply perform the calculation in the anti-symmetric
channel with the quasiparticle generator and in the symmetric channel with the spectral weight
generator, because the subtraction scheme performed for the two-triplons states (see A.1) cou-
ples both channels. This would yield erratic behavior including artifacts like pseudo bound states.

CUT on finite clusters

To give insights into the behavior of the spectral weight generator and the resulting CUT, we
discuss the qualitative behavior of the characteristic quantities during the CUT for both the
quasiparticle and the spectral weight generator scheme examplary for a finite system. These
characteristic quantities are the subblock energies €7 (¢), the reduced one-QP weights W; 1 (¢)

(e}
and the spectral weights on finite clusters IZ-O /7% (¢), defined in full correspondence to Eq.(4.32).
We restrict the discussion to an intermediate system size (N = 6), since this system already
exhibits non-trivial physics while the small number of low-QP states allows a convenient
discussion of the relevant quantities.

10Here, &_ (k) is generically lower than @4 (k), as can be seen already in first-order perturbation theory.
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Figure 4.21: Illustration of the CUT performed for the N = 6-cluster (L = 3 super rungs), the
symmetry channel R = —1, R; = 1 and the parameters A\ = 1.0 and ¢ = 0.05. The behavior of
the subblock energies £;(£), the reduced one-particle weight W; 1(¢), the anti-symmetric spectral

C C

weights I :9 =7 (¢) and the symmetric spectral weights I ZO 7 (¢) of the basis states are depicted in
dependence of £. The red (cyan) lines refer to 1QP (2QP) basis state. Solid lines show the behavior
for the quasiparticle generator while the dashed lines refer to the corresponding behavior for the
spectral weight generator. The vertical grey dashed line illustrates fswiten &~ 2.46 of the spectral
weight generator.

One-particle decay We begin the discussion by focussing on a prototypical example of quasi-
particle decay. To this end, we choose A = 1 with a relatively small asymmetry ¢ = 0.05 and
the symmetry channel R, = —1, Ry = 1. Note, that the symmetry associated with RC is only
present for ( = 0 and cannot be exploited. In the considered symmetry channel, only a single
one-QP state exists and we restrict the discussion to this one-QP state and the lowest two-QP
state. The corresponding characteristic quantities are depicted in figure 4.21.
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One observes that both subblock energies €7 (¢) decrease for small values of ¢. This behavior is
generic and reflects the repulsive interaction with higher QP channels. Both subblock energies
seemingly converge, yet, the two-particle state is energetically below the one-particle state.
Because the interaction between both states is associated with the small asymmetry induced by
¢, it relates to large f-scales. Indeed, for intermediate values of £, both subblock eigenvalues
are switched by the quasiparticle generator scheme. In contrast, the spectral weight generator
prevents this unphysical behavior. Qualitatively, the behavior of the subblock energies is very
similar to the scenario of pseudo decay. However, the underlying physics in the thermodynamic
limit differ fundamentally, which is also reflected in the reduced weights.

Both states represent the lowest states in the respective QP sector, i.e., W; ;1 = 1. In other
words, pseudo decay can simply not occur for the one-particle mode on this cluster in the
considered symmetry channel. The reason for this behavior is therefore fundamentally different.
The relevant weights to detect quasiparticle decay are the respective spectral weights. As

C

intended, the spectral weight Iio ~*(0) of the one-particle state is large while it is basically zero
for the two-particle state. Furthermore, as anticipated, one finds that the spectral weight of the
one-particle state increases for small values of ¢, indicating that the 'naked’ low-energy states
contain less spectral weight than the actual low-energy states. Therefore, the transformation
increases the spectral weight of the basis states. For the quasiparticle generator, the spectral
weight of the one-particle mode reaches a maximum at fgyiten = 2.46 and the resorting of these
states switches the associated spectral weights. The spectral weight of the one-particle state
drops to zero while the weight is shifted to the two-particle state. In contrast, the spectral
weight generator detects the decrease of the spectral weight and eliminates the corresponding
matrix element from the generator, i.e., the spectrcal weight shift is fully prevented.

By construction, the symmetric spectral weight I lo ~*(¢) is mainly contained in the two-particle
sector. The weight of the two-particle states increases for small values of £. In analogy to the
symmetric spectral weight, the resorting of the quasiparticle generator switches both spectral
weights, resulting in an unphysical weight distribution. This is prevented by the spectral weight
generator.

One can conclude, that the modified generator scheme is suited to treat quasiparticle decay in
the intended way if it is caused by a small asymmetry. Physically more demanding and more
interesting is the treatment of large asymmetries, which we discuss in the following. For this
purpose, we choose a large asymmetry ¢ = 1 and the same symmetry channel R = —1, Ry =1
and set A = 1.0. The characteristic quantities are depicted in figure 4.22.

The terms induced by the asymmetry are much larger and affect the transformation already
for smaller values of £. In particular, one does not observe a quasi-converged region in ¢ of
the subblock energies for the quasiparticle generator. The resorting takes place at relatively
small {-scales, as indicated by the minimum of the two-particle subblock energy. Moreover, the
subblock energies are not only sorted by the quasiparticle generator, but the interaction results
in a noticeable level repulsion. In contrast, the spectral weight generator yields a qualitative
different development of the subblock energies by eliminating the corresponding generator
element for ¢ > lgywiten With fewiten = 1.42. The resulting subblock energies are not sorted with
respect to the number of QPs, indicating an energetic overlap of the QP channels.

Again, the reduced one-QP weight does not provide any information and more insight is gained
by the spectral weights. For small values of ¢, the behavior of the anti-symmetric spectral

C
weights Iio ~*(¢) is qualitatively identical to the case of small asymmetries. The weight of the
one-particle state increases while the weight of the two-particle subblock energy is (relatively)
small. For the quasiparticle generator, the resorting of the subblock energies leads to a large
drop of the spectral weight of the one-QP state, which is shifted to the two-QP state. Finally,
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Figure 4.22: Illustration of the CUT performed for the N = 6-cluster (L = 3 super rungs), the
symmetry channel Rq = —1, R; = 1 and the parameters A = 1 and ¢ = 1. The behavior of the
subblock energies £;(¢), the reduced one-particle weight W; 1(£), the anti-symmetric spectral weights

C

Cc
]io —%(£) and the symmetric spectral weights I, :9 % (£) of the basis states are depicted in dependence
of £. The red (cyan) lines refer to 1QP (2QP) basis state. Solid lines show the behavior for the
quasiparticle generator while the dashed lines refer to the corresponding behavior for the spectral
weight generator. The vertical grey dashed line illustrates fswiten = 1.42 of the spectral weight
generator.

the spectral weight of the one-QP state converges to a finite value. Surprisingly, the spectral
weight generator is able to prevent this shift of spectral weight to a great extent. Basically,

C
the same features are present for the symmetric spectral weights I, ZO +*(£), only the roles are
interchanged.
The spectral weight distribution obtained with the spectral weight generator is surprisingly
sharp and justifies the elimination of the corresponding matrix element during the flow. It should
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be noted that this behavior is again prototypical. Let us also remark that the corresponding
features are also present for the decay of two quasiparticles.

Level repulsion Let us investigate an example where the corresponding system in the ther-
modynamic limit does not exhibit quasiparticle decay. As demonstrated in the applications,
the anti-symmetric one-triplon mode is stable for the whole momentum axis for A = 1.0 and
¢ = 1.0, i.e., the interactions induced by ( result in a level repulsion pushing the one-particle
mode below the two-particle continuum. We examine the corresponding CUT on a finite cluster
for the symmetry channel R, = 1, Ry = —1 setting A = 1.0 and ¢ = 1.0. The characteristic
quantities are depicted in figure 4.23.

The subblock energies 7'(¢) of the one-particle and two-particle block decrease for small values
of ¢. For the quasiparticle generator, one observes a minimum in ¢ for the lowest two-particle
subblock energy. This effect is clearly non-perturbative and would not be captured by a
perturbative approach. The corresponding matrix element is eliminated from the spectral
weight generator and, consequently, the minimum caused by the level repulsion is absent; the
interactions are misidentified as defective.

The reduced one-QP weights W; 1 (¢) become relatively small for both generator schemes indicat-
ing a highly non-perturbative and challenging parameter regime. The level repulsion also affects
the behavior of the cspectral weight. The level repulsion results in a drop of the anti-symmetric

spectral weight IZ-O 7 (¢) of the corresponding one-particle state while the spectral weight is
gained by the two-particle states. This weight shift is absent for the spectral weight generator
scheme. o

While the resulting symmetric spectral weight Il-(9 *~(¢) is mainly contained in the two-QP
channel for the spectral weight generator, the level repulsion results in a shift between the
different channels for the quasiparticle generator scheme.

In this sense, the spectral weight generator achieves the objectives on the finite-cluster calculation.
There is no qualitative difference of the behavior of the characteristic quantities. It is (so far)
not possible to decide on a cluster if the corresponding one-particle mode is stable or decays.
Unfortunately, a counterpart similar to Eq.(4.28) is missing. If an interaction is viewed as
artificial or proper is, ultimately, decided by the ¢-scale of the respective interaction. For large
level repulsions, this can lead to a scenario where the corresponding mode in the thermodynamic
limit is stable while generator elements are eliminated, leaving finite proper interactions after
the CUT on the cluster. However, it should be noted that the subsequent evaluation process
allows to retroactively integrate these interactions.

Dynamic structure factor

In order to both demonstrate the properties of the modified gCUT scheme and provide an
understanding of the spectral properties of the four-leg ladder in dependence of the two
parameters A and (, we investigate three prototypical points of the system:

1. moderate couplings, open system (A = 0.5, ¢ = 1.0)

2. large couplings, quasi-periodic system (A = 1.0, ¢ = 0.05)

3. large couplings, open system (A = 1.0, ( =1.0) ,

103



-6.5

1.2

Chapter 4 Graph-based Continuous Unitary Transformations

A=1.0,¢(=1.0 1 QP @
Ry=1Ri=-1 ----1QP i
1S
-
0 5 10 15 20
14
0.16
0.14
E 0.12
01
| I
O+
o 008
~
L g 0.06
0.04
& """""""" 0.02
: : - 0
0 5 10 15 20

Figure 4.23: Illustration of the CUT performed for the N = 6-cluster (L = 3 super rungs), the
symmetry channel R = 1, Ri = —1 and the parameters A = 1 and ¢ = 1. The behavior of the
subblock energies ¢;(£), the reduced one-particle weight W; 1(£), the anti-symmetric spectral weights
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K3

of £. The red (cyan) lines refer to 1QP (2QP) basis state. Solid lines show the behavior for the
quasiparticle generator while the dashed lines refer to the corresponding behavior for the spectral
weight generator. The vertical grey dashed line illustrates fswiten = 0.89 of the spectral weight

generator.

which provides a good overview of the underlying physical effects. The calculations are per-
formed with Ayicinity = 1.0A and dmax = 350. The basis truncation suffices to capture the
relevant low-energy physics of the dynamic structure factor. The relatively large value of
Avicinity accounts for much larger interactions in comparison to pseudo decay. If Ayicinity
is chosen too small, it becomes erratic if an interaction is switched of or not, impeding the

convergence of the cluster expansion.
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Open four-leg ladders (A = 0.5) We begin by discussing the spectral weights for the open
four-leg ladder (¢ = 1.0) and moderate dimer-couplings A = 0.5. The system already exhibits
several interesting features even for this moderate value of X\. The spectral densities are shown
for N = 8 in figure 4.24 and for N = 12 in figure 4.25.

The results are essentially converged with N with respect to the considered energy scales. While
there are still some small shifts of the spectral density within the two-triplon continuum from
L =4 to L = 6, the results allow for a quantitative analysis.

One obtains I1g2 ~ 98%, indicating, that the spectral weight is captured accurately by the
current description. The distribution is given by Wl(z;j’ = 1.05, WS&’* ~ 0.75, ng{ =0.10
and WSE* = (.08, i.e., the spectral weight is mainly contained in the anti-symmetric Rc—sector
associated primarily with the one-particle mode.

First, we focus on the R; = 1 channel. As previously mentioned, the interaction between the
one-triplon and the two-triplon sector is expected to be significantly smaller in this symmetry
channel. In accordance with that, one observes that the interactions do not lead to a depression
of the almost decoupled one-triplon dispersion @, (k) by the two-triplon continuum but lead
to quasiparticle decay instead. The almost decoupled one-triplon dispersion w. (k) becomes
minimal at & = 7 and maximal at k& = 0, while merging with the continuum for k& < k. (k. =~ 7).
Moreover, for momenta k = 0.6w, a bound state emerges from the two-triplon continuum
w_,_(k) and exhibits a small binding energy. In addition to that, for k¥ > 0.87, the two-particle
continuum @4 4 (k) lies completely above the lower two-particle continuum @_ _ (k) and another
bound state is formed.

For 19--+(k,w), the spectral weight for k > k. is contained mainly in the one-triplon sector. For
k < k¢, the one-triplon dispersion merges with the continuum and the delta-function is replaced
by a resonance. Interestingly, close to k., the resonance is broad and becomes more pronounced
for £ — 0, which is generically observed for this system. Following the argumentation given
in [29], this behavior is caused by the two-particle interactions, i.e., the bound state plays an
important role in this mechanism. Notably, the almost decoupled one-triplon dispersion @ (k)
lies on top of the resonance as intended by the modified generator scheme.

By contrast, the spectral density 79++ (k,w) is dominated by the two-particle continuum while
the spectral weight gathered by the one-triplon mode is very small. The spectral weight is
mainly located at larger values of k£ and vanishes for £ — 0. The reason for this is that the cor-
responding observable at k = 0 corresponds to the total magnetization, i.e., O4 4 (k = 0) o< SE;.
Accordingly, the action of the observable on the ground state (SZ,, = 0) vanishes. The spectral
density is mainly located at the low edge of the lower two-particle continuum @_ _ (k) as well
as both bound states.

Next, we discuss the Ry = —1 channel. The almost decoupled one-triplon dispersion @_ (k)
becomes maximal at k = 0 and minimal at k = 7, defining the gap of the system A = 0.43(1).
One observes that the almost decoupled one-triplon dispersion @_ (k) merges with the continuum
for small momenta. This overlap is just an artifact of the spectral weight generator wrongly
eliminating matrix elements, since the renormalized one-particle dispersion does not merge with
the continuum and is pushed out of the two-particle continuum. The one-triplon dispersion
w_(k), which is determined via the quasiparticle generator scheme, is in full agreement with
the renormalized one-triplon dispersion. The terms connecting the one-triplon mode with the
two-triplon states are therefore properly included by the coupled Lanczos analysis leading to
the correct renormalization.

In 19—~ (k.w), the spectral weight from the one-triplon mode is transferred into the two-particle
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Figure 4.24: The spectral densities 19—+ (kw), 1°++(kw), I°=~ (kw) and I°+~ (kw) derived
via gCUTs with £ = 4 are depicted for A = 0.5, ( = 1.0. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,
respectively.

continuum for k < 0.47. Vice versa, for 19+~ (k,w), one observes a spectral-weight shift from
the two-particle bound state/two-particle continuum to the one-particle mode, carrying a finite
spectral weight for & < 0.47. Similar to the investigation of the anti-symmetric two-leg ladders
in Ref. [29, 33] , we find, that boundstate and triplon-triplon interactions play a fundamental
role for the low-energy physics and the behavior of the one-triplon mode.
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Figure 4.25: The spectral densities 19—+ (k,w), 19+ +(kw), 1=~ (kw) and I°+— (kw) derived
via gCUTs with £ = 6 are depicted for A = 0.5, { = 1.0. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,
respectively.

Overall, one observes very different physics with respect to the one-triplon mode in both
symmetry channels. In the anti-symmetric channel, the one-triplon dispersion is depressed
by the two-triplon continuum and does not merge with the continuum. A comparison to the
one-triplon dispersion obtained via the quasiparticle generator scheme is in full agreement with
the renormalized one-triplon dispersion. In the symmetric channel, the one-triplon dispersion
does merge with the continuum and one observes decay. Here, the one-triplon dispersion @ (k)
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lies exactly on top of the resonance. The modified gCUT scheme is capable of deriving an
effective model which describes both cases simultaneously.

Quasi-periodic four-leg ladders (A = 1.0) Next, we discuss the system for large inter-dimer
couplings A = 1.0 with a small asymmetry. For A = 1.0, the system is in a non-perturbative
regime and an effective description is challenging. For the fully symmetric case ( = 0, the
I%C—symmetry divides the system into an channel of even and odd number of triplons. Therefore,
the quasiparticle generator scheme is identical to the spectral weight generator and no quasi-
particle decay exists. The system is already treated adequately by the standard gCUT scheme.
However, for any finite value of {, the results obtained via the quasiparticle generator scheme
change abruptly and reasonable results for the dynamic structure factor are only accessible via
the spectral weight generator.

The spectral densities are shown for £ = 4 in figure 4.26 and for £ = 6 in figure 4.27. While the
value of the dimer-coupling is large, the small asymmetry facilitates the description, resulting
in a robust convergence with L.

One obtains I1g2 ~ 93%, indicating, that the spectral weight is captured mainly by the current
description. It is reasonable to assume, that most of the remaining weight is in the three-particle
continuum. The distribution is given by Wl(zc;" = 1.05, W&;’* ~ 0.32, szlg” = 0.33 and
Wl%é* = 0.16, i.e., the spectral weight is not mainly contained in the anti-symmetric sector.
The reason for this will become clear in the following.

Again, we begin focussing on the R; = 1 channel. As before, one observes quasiparticle decay
for the almost decoupled one-triplon dispersion @ (k), which is located inside the two-triplon
continuum for momenta k < k. (k. =~ 0.67). The dispersion is relatively flat and symmetric
with respect to the maximum located at k ~ 7. Additionally, one observes a bound state with
a small binding energy emerging for k 2> 0.67.

Due to the small asymmetry ¢ = 0.05, the spectral density 19—+ (k) is clearly dominated by the
one-triplon sector. The almost decoupled one-triplon dispersion @y (k) enters the continuum at
k. =~ 0.6m and a very pronounced resonance is observable for k£ < k. since the decay induced by
¢ is very weak.

Accordingly, the spectral density 79++ (k) is dominated by the two-particle continuum and the
bound state while the spectral weight carried by the one-triplon dispersion w. (k) is basically
zero. As aforementioned, due to S, conservation, the spectral weight vanishes for & — 0. The
spectral weight is mainly located at the lower edge of the lower two-particle continuum @_ _ (k)
and in the corresponding bound states.

In the anti-symmetric channel Ry = —1, one does not observe quasiparticle decay. The almost
decoupled one-triplon dispersion @_ (k) exhibits a minimum at k¥ = 7 and a maximum at k =0
which is located close to the two-triplon continuum we _ 4 (k) but @_ (k) does not merge with the
two-triplon continuum. However, one observes a sharp (anti-)crossing at kerossing ~ 0.27 with a
two-particle bound state, and it is a matter of interpretation if the renormalized one-triplon
mode is the lower or the upper state for k < Kkcrossing. The almost decoupled one-triplon
dispersion obtained via the spectral weight generator replaces the anti-crossing with a crossing
and we adapt this interpretation. The two-triplon bound state involved in the crossing is rather
flat, exhibits a maximum at kpax = 5 and is symmetric with respect to the maximum located
at kmax. The binding energy Apinding ~ 0.3 is relatively large.

The one-triplon dispersion w_ (k) is also determined via the quasiparticle generator scheme. In
principle, the resulting one-triplon dispersion should correspond to @_ (k) for k > kcrossing and
to the two-triplon bound state for k < Kcrossing. However, one observes clear deviations from
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Figure 4.26: The spectral densities 1€+ (k,w), 19+ (kw), 1=~ (kw) and I°+~ (k,w) derived via
gCUTs with £ = 4 are depicted for A = 1.0, ¢ = 0.05. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,
respectively.

this behavior for small values of k, caused by an impeded convergence due to the violation
of the generalized cluster additivity. The impact is rather moderate, since the two-particle
bound state and w_ (k) are energetically very close. In the symmetric channel, the violation
of the generalized cluster additivity is more severe and leads to a complete breakdown of the
approach and it is not possible to obtain a reasonable one-triplon dispersion by the quasiparticle
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Figure 4.27: The spectral densities 1€+ (k,w), I9++ (kw), 1=~ (kw) and I°+~ (k,w) derived via
gCUTs with £ = 4 are depicted for A = 1.0, ¢ = 0.05. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,
respectively.

generator.

As expected, the symmetry is only broken weakly by the small asymmetry and therefore the
(anti-)symmetrized observables essentially divide the spectral density into parts of even and
odd number of quasiparticles. Consequently, the spectral density /-~ (k.w) is dominated by
the one-particle dispersion while 79+ (k,w) is dominated by the two-triplon bound state. For
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k < 0.257, small parts of the spectral weights are shifted between the quasiparticle sectors due
to the (anti-)crossing.

The remarkable resemblance between the spectral densities 19+~ (k.w) and I19-+ (k,w) is not
a coincidence. For ( = 0.0, the system exhibits a 90° rotational symmetry and the spectral
densities 19+~ (k) and 19—+ (k) must be equivalent. By construction, the symmetry is not
regarded in the ansatz since the quasiparticles are located at the dimers. If one compares the
results for ( = 0.05, the anti-symmetric two-triplon S = 1 bound state can be identified with
the symmetric one-triplon mode. This explains the weight distribution discussed above. Note,
that the spectral density of the two-triplon continuum in 7€--+(k,w) would correspond to the
three-triplon continuum in 1€-+ (k) and is therefore not included in the description.

We conclude that the modified gCUT scheme is perfectly suited for the effective description
for small asymmetries (. Following this, we discuss the open isotropic four-leg ladder having
couplings and large asymmetries.

Open isotropic four-leg ladders (A = 1.0) Finally, we discuss the case of large inter-dimer
couplings A = 1.0 with a large asymmetry (¢ = 1.0, open system). For these parameter values,
the interaction effects induced by ¢ become considerable and soften the distinction between
the one- and two-triplon sector via the respective observables. This parameter regime is very
challenging and inaccessible by high-order series expansion or the quasiparticle generator scheme.
Still, while the results obtained via the optimized gCUT scheme are not yet fully converged on
the considered energy scales, one obtains a robust convergence with increasing £. The results
are shown for £ = 4 in figure 4.28 and for £ = 6 in figure 4.29. One observes many substructures
within the two-particle continuum and it should be noted that the spectral densities of these
structures are often very small and only visible due to the logarithmic scaling in the colorplot,
i.e., they can possibly be irrelevant artifacts of the approach.

One obtains I1g2 ~ 92%, indicating, that the spectral weight is again captured in this param-
eter regime mainly by the current description. The distribution is given by Wﬁ;{ = 0.96,
Wiyt &~ 0.44, W™ = 0.26 and W, = 0.19.

As before, we start with a discussion of the symmetric channel (R; = 1). In accordance with
the previous considerations, one observes quasiparticle decay of the symmetric almost decoupled
one-triplon dispersion @y (k). For large momenta k, the two-triplon continuum w_ _(k) is
energetically very close to the one-triplon mode @, (k). Depending on N, one even observes an
energetic overlap. Yet, since the interactions of the one-triplon dispersion and the two-triplon
continuum are weak, the results of the almost decoupled one-triplon dispersion @ (k) are still
very robust.

For the spectral density 1°-+(k,w), we find that the renormalized one-triplon dispersion is
depressed by the continuum and loses all spectral weight for smaller momenta k. The almost
decoupled one-triplon dispersion w, (k) enters the continuum at k. = 0.67. In the vicinity of
k., the spectral density stemming from the one-triplon dispersion results in a broader signature
in the two-triplon continuum. However, for smaller values of k, this resonance becomes more
pronounced and can be exactly identified with @, (k).

The spectral density 9++ (k.w) exhibits no resonance associated with @, (k). Moreover, one
observes that the suppressed renormalized one-triplon dispersion does not lose all its weight
before entering the continuum leading to local increase of the spectral density. In addition to
that, a broad structure inside the two-particle continuum is obtained for k& = 0.5, which could
indicate traces of the two-triplon bound state present for the other considered parameter sets.

In the anti-symmetric channel (R; = —1), one does not observe quasiparticle decay. Instead,
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Figure 4.28: The spectral densities 19—+ (kw), 1°++(kw), I°=~ (kw) and I°+~ (kw) derived
via gCUTs with £ = 4 are depicted for A = 1.0, ( = 1.0. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,

respectively.

the almost decoupled one-triplon dispersion w_ (k) is pushed by the two-triplon continuum for
small values of k£ and the dispersion exhibits a maximum at k ~ 7. The renormalization effects
of remaining inter-block interactions lead to a further (moderate) depression of the one-triplon
dispersion for £ < 7. In addition to that, a two-triplon bound state is formed for large values
of k, merging into the continuum at k. ~ %77‘.
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Figure 4.29: The spectral densities 19—+ (kw), 1°++(kw), 1=~ (kw) and I°+~ (kw) derived
via gCUTs with £ = 4 are depicted for A = 1.0, ¢ = 1.0. The dashed lines refer to the corresponding
(almost decoupled) one-triplon dispersion and upper- and lower bounds of the two-triplon continua,
respectively.

For 19—+~ (k.w), much of the spectral weight is located for k > %ﬂ' at the one-triplon dispersion.
However, for k 2 %w, significant parts of the spectral weight are transferred to the two-triplon
continuum leading to signatures of this interaction in the continuum, indicating traces of the
¢ = 0 one-triplon mode, which are only observable for £ = 6.

In contrast, for 79+~ (k,w), one obtains the opposite effect that the spectral weight is located
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for k 2 %71' mainly at the two-triplon continuum and the bound state. For k 2> %77, significant
parts of the spectral weight are shifted from the bound state to the one-triplon mode, carrying
significant weight for k& < 0.57.

Let us close this discussion with some final remarks. The optimized gCUT scheme allows
for a (semi) quantitative discussion of the spectral density even at challenging parameter
values, which is considered to be relevant for the experimental realization of LasCuyOs. In
the anti-symmetric channel, the one-triplon dispersion is suppressed by the continuum and in
the symmetric channel, the one-triplon dispersion decays. We stress that this was not even
qualitatively predictable by high-order series expansion [121]. Our modified gCUT scheme is
able to treat both scenarios in a single effective description. In addition to that, we find first
evidence of bound states within the framework of the approximation. Note, that quasiparticle
decay between two-triplon and three-triplon states is not captured by the current description. In
the near future, a comparison to quantum Monte Carlo [199] data can be utilized to benchmark
the results with an unbiased method. The combination of both complementary techniques
together with experiments represents a promising route for future research.

4.5 Chapter summary and conclusion

In this section, we summarize the methodological developments of gCUTs achieved in the scope
of this thesis. The gCUT method combines CUTs and NLCEs and represents a non-perturbative
tool to determine effective low-energy models if at least one degree of freedom is gapped [46].
Several methodological developments are introduced, addressing a wide range of challenges in
NLCEs and non-perturbative CUTs in general.

4.5.1 General scheme

The first important development concerns the truncation of the basis for the finite-cluster
calculations. The truncation scheme introduced in 4.1.3 is highly efficient and can be identified
with a block Lanzcos algorithm complemented by the exact low-energy spectrum. The latter
enforces the exact low-energy spectrum on the cluster which is shown to significantly increase
the convergence. Furthermore, the truncation of the basis is combined with the exploitation of
symmetries on finite clusters similar to exact diagonalization techniques, making the approach
both more robust and efficient.

The efficiency of this truncation scheme is demonstrated for the one-triplon dispersion of the
isotropic two-leg ladder (see 4.4.1). We conclude that the new approach is vastly superior to the
untruncated standard basis, since the truncated basis allows to double the number of maximally
manageable supersites. While these developments are rather technical, they are highly relevant
for the applicability of gCUTs, making the method a competitive tool, specifically in comparison
to CORE.

4.5.2 Generalized cluster additivity

However, it turns out that a simple enhancement of the considered fluctuation length is
insufficient. When deriving effective low-energy models via gCUTs, one often finds a hard
boundary separating a parameter regime where the low-energy physics is, at least in principle,
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accessible via the standard gCUT scheme from a regime where this is rigorously not the case.
The latter can be traced back to an energetic overlap of different quasiparticle sectors on
finite clusters, which is absent in the thermodynamic limit due to the momentum conserva-
tion. In other words, this overlap ist just an artifact of the approach, inherently breaking
the translational symmetry. This energetic overlap is identified with pseudo decay on finite
clusters. The quasiparticle generator applied in gCUTs sorts the states energetically ascending
with the quasiparticle number. Consequently, the wrong fluctuations are considered in the
calculation leading to a breakdown of the approach. While the cluster additivity is in fact
satisfied by the approach, the underlying principles connected to this concept are violated.
We introduce the concept of generalized cluster additivity, which provides insights into the
underlying mechanisms of this breakdown in the context of NLCEs and provides a guideline to
possible solutions. Interestingly, this scheme demands to go beyond the paradigm of using the
exact eigenvectors on clusters.

A physically entirely different scenario is present, if the energetic overlap on finite clusters
corresponds to an energetic overlap also present in the thermodynamic limit, i.e., one observes
true quasiparticle decay. Then, the energetic overlap on finite clusters is identified as genuine
decay. In contrast to pseudo decay, the implementation does not inevitably lead to a break
down of the approach, yet, the convergence of the approach is affected. Again, the generalized
cluster additivity allows to understand convergence problems that can occur and defines possible
remedies.

While the underlying physics differs fundamentally, the reasons for the convergence problems
and solutions are related. The basic idea is to ignore the defective interactions which are
responsible for the breakdown of the approach when deriving the effective model. In the case of
pseudo decay, these interactions must annihilate when the translational invariance is restored
by the embedding procedure, while, in the case of genuine decay, the interactions are part of
the effective description and moderate the quasiparticle decay.

We introduce two modified versions of gCUTs relying on two different generator schemes to treat
pseudo and genuine decay, respectively. The modified generator schemes are designed to cure the
quasiparticle picture on the finite clusters restoring the convergence of the approach. To ignore
an interaction during the transformation, the corresponding element must be eliminated from
the generator. The defective interactions are very small and therefore affect the transformation
mainly on large /-scales of the transformation, i.e., it suffices to identify these interactions at
intermediate values of £. Another central element of the modification is the subblock basis, in
which each defective interaction can be identified with a single element. Finally, the elimina-
tion relies on suited weights which are designed to uniquely identify the proper low-energy states.

4.5.3 Pseudo decay

In the case of pseudo decay, the reduced weights W, ; are perfectly suited to identify and
understand this breakdown. The transformation is performed by the quasiparticle generator up
to a value fLgywiten and then possibly defective interactions are eliminated from the generator
scheme by relying on energetic considerations and the influence on the reduced weights.

To demonstrate the validity of the treatment of pseudo decay, the modified gCUT scheme
is applied to determine the one-triplon dispersion of the two-leg Heisenberg spin 1/2 ladder.
Up to leg-couplings A < 1, the standard gCUT scheme gives proper results. However, for
larger values of A, the obtained results become erratic due to pseudo decay. By contrast, the
results obtained via the modified gCUT scheme are completely cured from any finite cluster
artifacts. A comparison of our results to deepCUT [47] and CORE [96] clearly indicates, that
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the gCUT method becomes compatible even in the previously inaccessible parameter regime.
Furthermore, the modified gCUT scheme is applied to determine one-triplon dispersion for
A = 5.0. The resulting one-triplon dispersion is robust and in full agreement with corresponding
dynamic structure factors obtained via DMRG [157]. To conclude, even in the regime of large
leg-couplings, the new approach yields robust and proper results, demonstrating the validity of
the approach. The uncertainty induced by the elimination process is negligible in these cases.

4.5.4 Quantum criticality

The optimized gCUT scheme allows to treat systems close to or even at quantum criticality.
At quantum criticality, one generically expects pseudo decay since the multi-particle continua
become energetically extremely close, which is also reflected by the physics of the finite cluster.
A large number of states merges with the low-energy spectrum and the optimized gCUT scheme
allows to treat this behavior in principle. However, it becomes difficult to distinguish between
possibly defective interactions and genuine interactions relying on energetic considerations
(Eq.(4.18)). In these cases, the approach can be made more robust by additionally regarding
momentum-related considerations (Eq.(4.28)).

To investigate the modified gCUT scheme at quantum phase transitions, we investigate the
one-triplon dispersion of the dimerized Heisenberg chain. At quantum criticality, the obtained
one-triplon dispersion is surprisingly close to the exactly known dispersion. This supports the
general treatment of pseudo decay. Still, one observes a noticeable uncertainty of the approach
as illustrated by the comparison of different basis truncation parameters. While such effects are
expected, other criteria, which render the approach more robust, even at quantum criticality,
are desirable for future applications.

Of special interest close to or at quantum criticality is the excitation gap. Critical behavior is
associated with a divergence of the correlation length £ — oo and one must rely on extrapolation
techniques to obtain gapless behavior. Yet, in current literature, only few extrapolation tech-
niques for NLCEs exist and no extrapolation scheme providing critical exponents exists so
far. We introduce a novel scheme to extrapolate the results obtained via NLCEs and related
numerical techniques giving access to critical points and critical exponents. The applicability of
the extrapolation scheme is tested for the one-triplon gap of the dimerized Heisenberg chain
with a known critical exponent v = 2/3. The extrapolation scheme is applied to the one-triplon
gap yielding critical exponents, which are indeed in good agreement with the actual value. This
result supports the validity of the new extrapolation technique.

4.5.5 Genuine decay

To treat quasiparticle decay, one cannot rely on the reduced weights suited to detect pseudo
decay. Instead, the spectral weights of (anti-)symmetrized observables are applied to identify
the proper low-energy states during the CUT. Interactions which are considered to lead to
quasiparticle decay are not integrated out and are part of the effective description. These terms
are regarded in a subsequent evaluation process of the coupled quasiparticle sectors and describe
the quasiparticle decay in the thermodynamic limit, similar to the approach introduced by
Fischer and Uhrig [33].

However, in contrast to the latter, the CUT is performed on finite clusters and not in operator
space. Another conceptual difference is that the matrix elements between the one- and two-
particle sector are included in the CUT and all states which do not overlap energetically are
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separated by the transformation. Here, the energetic overlap refers to intermediate points of
the continuous renormalization process defined by the flow-parameter £. Due to the structure
of the underlying CUT, this allows to distinguish between large and small interactions. As a
result, the approach is designed to describe systems where the one-particle mode decays inside
the continuum and the opposite scenario where the quasiparticle mode is depressed by the
continuum.

We apply the modified gCUT scheme to the four-leg spin 1/2 Heisenberg ladder to demonstrate
the possibility to treat quasiparticle decay within an NLCE approach. An effective description
in terms of triplons is derived to determine the dynamic structure factor up to two triplons.
Generically, one observes quasiparticle decay of the one-triplon mode in the symmetric channel
while the one-triplon dispersion in the anti-symmetric channel is depressed by the two-triplon
continuum. Both cases are captured by our approach and even in challenging parameter regimes,
the method gives reasonable and consistent results.

While the low-energy spectrum of the isotropic open four-leg is inaccessible to standard (N)LCE
schemes, our modified approach provides an interpretation in terms of (decaying) triplons and
two-triplon bound states. These predictions are relevant for neutron scattering experiments of
the compound LasCusOs.

Overall, we conclude, that considerable progress has been achieved for gCUTs and NLCEs
in general. There is potential for improvement with respect to the elimination processes in
the treatment of both pseudo and genuine decay. Still, substantial understanding of both
phenomena, pseudo and genuine decay, is gained and modified versions of gCUTs provide valid
results for systems inaccessible by standard NLCEs.
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Chapter 5

Conclusion and outlook

In this section, we revise the investigations considered this thesis and provide an outlook for
future studies. The main focus of this thesis is the further development of two methods suited
to derive effective low-energy Hamiltonians. The approaches can be viewed as a combination of
LCEs with CUTs and NLCEs with CUTs, respectively. A generic aspect of these developments
is the exploitation of properties provided by the CUT approach on the cluster. Moreover,
both modifications can also be understood as a change of perspective. The calculation on
finite clusters is considered in the context of the determination of the effective system in the
thermodynamic limit.

For linked-cluster expansions, this leads to a reordering of the calculation process where the
calculation on finite clusters is kept rather general to extract as much information as possible
from a single cluster calculation. Our approach is specifically useful when the microscopic
model under consideration has several expansion parameters. This case usually represents
a major challenge for any kind of linked-cluster expansion, due to the proliferating number
of linked graphs, as each expansion parameter corresponds to a distinct color in the graph
expansion. The white-graph expansion overcomes this challenge to a great extent, since the
actual calculation is performed on white graphs and the coloring is done after the calculation
as a final step in the embedding procedure.

This is especially relevant for the comparison with experimental data where typically different
coupling strengths are important and have to be determined [117]. This also includes demanding
frustrated systems in three dimensions with multiple couplings [200]. In addition to that, the
white-graph expansion opens up a new perspective of the applicability of high-order series
expansions. If the couplings of the calculation can be easily matched with the couplings of
the lattice, it is suggestive to apply white-graph expansions to systems with disorder, for
instance by embedding the white graphs into (large) finite systems and an evaluation of the
resulting effective model similar to the bond-operator approach in [201]. Moreover, one can
apply the white-graph expansion to systems with long-range interactions [202] being notoriously
complicated for linked-cluster expansions. In both cases, similar to calculations in d dimensions
[92], the actual challenge of the calculation is expected to shift away from the calculation of the
graphs and towards the embedding procedure.

The white-graph expansion relates ultimately to the efficiency of the approach. For the non-
perturbative counterpart called gCUT, more fundamental challenges are addressed. Since
gCUTs are both a non-perturbative CUTs with a finite cluster truncation and an NLCEs relying
on a CUT for the finite cluster results, the challenges of gCUTs concern both classes of methods.
One issue present for both classes of methods is the lack of a strong extrapolation scheme similar
to high-order series expansions providing critical exponents. In this thesis, we introduce a novel
scheme to extrapolate the results obtained via NLCEs and related numerical techniques. While
the mapping of the data sequences to a series in a pseudo parameter changes the perspective,
our approach is specifically designed to describe systems close to or even at criticality. Most
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importantly, the scheme allows to extract critical exponents, providing both classes of methods
with a key to these fundamental physical quantities.

A transfer to other NLCE schemes, for instance to determine the entanglement entropy [65],
is straight forward. The determination of critical exponents would be specifically interest-
ing for the determination of possibly new universality classes for systems not described by
Landau’s theory similar to [90]. In addition to that, it is appealing to investigate if these
considerations can be translated to time-dependent properties calculated via NLCEs [66] or
many-body (de)localization [68].

The central issue addressed in this thesis concerns the proper derivation of effective low-energy
models. It is not as obvious as it may seem to identify the adequate low-energy model for a
given truncation. As the name already indicates, the effective models are designed to describe
the low-energy part of the spectrum. Consequently, in the standard NLCE approach, the
low-energy parts of the system should form the effective description on the clusters which are
then combined to define the effective model in the thermodynamic limit.

As a guiding principle, this approach is well-justified, yet, subtleties arise when the low-energy
part of the system overlaps energetically with the remainder. The rigorous sorting property
of the quasiparticle generator in the CUT follows exactly this standard notion and leads to
unphysical effects resulting in a breakdown of the approach. In gCUTs, we have identified two
quite distinct scenarios in which such an overlap can occur:

i) the energetic overlap is just an artifact of the broken translational symmetry of the finite
clusters and

ii) the energetic overlap corresponds to an energetic overlap also present in the thermodynamic
limit.

We have implemented two modified gCUT schemes which are suited to treat both cases
adequately. In the case of energetic overlap, the issue of the proper low-energy model should
not be answered by energetic considerations alone. In these cases, it is advisable to define
reasonable quantities which help to identify the correct low-energy physics. Naturally, the
effective low-energy model cannot be derived relying solely on these additional quantities and
both aspects must be reconciled.

This challenge is at least partly solved by the CUT itself. In CUTs, the transformation is
defined by a continuous flow parameter ¢. With increasing values of ¢, the initial system (£ = 0)
is transformed continuously into the effective description (¢ = o0). Up to intermediate values of
¢, the CUT is performed using the standard scheme relying on energetic considerations only;
for larger values of ¢, additional considerations are taken into account.

The issue of energetic overlap in the effective description relates to all non-perturbative methods
suited to derive effective low-energy models. This effect observed in gCUTs can be viewed as a
finite-cluster correspondence to divergencies which represent a fundamental challenge for other
CUT approaches [33, 102]. It seems reasonable to assume that these issues concern possibly all
non-perturbative derivations of effective low-energy models. Possibly, the underlying central
notions constituted in this thesis can function as a platform for further CUT developments.
It should be noted that the occurrence of quasiparticle decay and the renormalization effects
are of ongoing experimental interest [21, 24-26, 203, 204], affirming the importance of our
developments.

Moreover, effective models are widely used in various fields of quantum physics [205-207], and
their derivation often suffers from the appearance of intruder states in the low-energy spectrum
which may cause either discontinuities or spurious behaviors [208, 209]. Thus, our algorithm
might also be used in different fields, for instance quantum chemistry, in order to produce
continuous physical results.

Finally, we want to stress the conceptual issues associated with pseudo decay. Our findings
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are clearly important in a much more general manner, since the same kind of problem is
expected to arise for any separation of degrees of freedom like for many-particle excitations,
dynamical correlation functions, or the derivation of effective low-energy models using clusters
with reduced symmetry, as done in any NLCE, CORE, or gCUT calculation. This applies e.g.
to the derivation of effective spin models in the Mott phase of Hubbard models separating
charge and spin degrees of freedom [63, 64].

It might be worth investigating whether similar problems are also present in high-temperature
or non-equilibrium NLCEs as well as in cluster dynamical mean-field theory which all break
translational symmetry on clusters. An NLCE study performed to determine the ground-state
energy indicates similar finite cluster artifacts present even for such a well-defined quantity
[126].

This thesis reveals not only challenges of NLCEs but also a central advantage of NLCE
approaches over purely perturbative LCE approaches. While the final results obtained via
high-order series expansions are unique, non-perturbative results are not. This allows an
additional control over the results, making the approach more versatile. We believe that this
freedom should be used in the future.
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Appendix A
Appendix

A.1 Extracting the cluster additive quantities
It is physically intuitive to decompose the Hamilton operator Heg as
Heg=Ho+H1+Ho+Hs+ ..., (A.l)

where H,, is an n-particle irreducible operator. In the notation of the second quantization, the
operators in real space read

Ho := Epl (A.2)
Hi= Y @ V) flafis (A-3)
1,50,
— za1,a2,81,6 ff F o f
Ha = Z a?llxizé?jlv.lh 2()\) fi1,041fi2,042fj1,ﬂ1 sz,ﬁz (A4)
i1,42,51,J2,01,2,01,02
(A.5)
_ Fon BB\ F foF F
Hn T Z azalllié,]lljn (A) fihal o ‘finvan fjhﬁl e fjann ’ (AG)

110l J1eJn, Q1 Q81 B

where 1 is the identity operator. The local operator fja (fi ) creates (annihilates) a particle

of flavor «v at site i. Assuming Heg is cluster additive, the reducible operators are also cluster
additive:

HC =HA@1P 4140 HE . (A7)

The operators directly accessible via the calculation on the cluster are, by contrast, not in the
normal-ordered form Eq.(A.6) but are given as matrix elements of Heg. Let M|,, denote that the
operator M is restricted to the n-particle space. The elements extracted from the calculations
on a single cluster are given by Heg|, as the matrix elements of Heg in the n-particle subspace.
The equation

Hegtln = Higln © 17 + 14 @ Hiln (A.8)

cannot be fulfilled, since the number of particles to which the identities 14 and 17 are applied
is not fixed, i.e., Heg|n is not cluster additive. In this sense, the notation in second quantization
is mandatory for the concept of cluster additivity and a proper normal ordering is imperative:

Holo := Hestlo
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Hilr = Hestlt — Ho|x
Hz\z = Heff|2 - H0|2 - H1|2

(A.9)

n—1
Hn‘n = Heﬂ|n - Z Hz|n . (AIO)
1=0

For H,, all the contributions of Heg coming from the action on m particles (m < n) are
subtracted and hence H,|,, vanishes.

A.2 Contractor renormalization group

In this section, we give a brief discussion on the contractor-renormalization group (CORE)
technique, specifically with respect to the cluster additivity. CORE was first introduced bei
Morningstar and Weinstein in 1996 [210]. The essential idea of CORE is to derive an effective
Hamiltonian that reproduces the low-energy spectrum of the original Hamiltonian. While the
CORE approach can be used analytically, CORE can also be used as a sophisticated numerical
tool [63, 95, 96, 211].

Similar to gCUT, the method is applied on finite clusters to determine an effective cluster-
dependent Hamiltonian. These exact effective Hamiltonians are combined to define the effective
description in the thermodynamic limit.

The numerical CORE method has been used mainly for effective low-energy descriptions or
range-N interactions as outlined in Ref.[96]. Here, we discuss how CORE can be exploited to
derive effective quasiparticle descriptions. The derivation of the effective particle Hamiltonians
is achieved by modifying the CORE-algorithm outlined in Ref. [96] :

e Choose a small cluster (e.g., rung, plaquette, triangle, etc.) and diagonalize it. These
small clusters build the effective sites of the quasiparticle picture. The lowest state of
these effective sites is referred to as the vacuum while the excitations are identified with
the quasiparticles (see also 2.1).

e For each connected clusters C' consisting of N supersites obtain the low-energy spectrum
of the full Hamiltonian H® (the low-energy states |i) with eigenenergies ;).

e The eigenstates are projected on the subspace with dimension d = N consisting of the
tensor product states having one excitation only: [i) = P;|i). The states are orthonormal-
ized |i) — |i1). The orthonormalized states define a basis of dimension d. It may happen
that some of the eigenstates have a small projection or vanish after the orthogonalization
it might be necessary to explicitly compute more than just the lowest d eigenstates.

e Next, the effective Hamiltonian for this cluster is built as

hSe=> (ei —eo)liL)(iLl, (A.11)

i<d

where gq is the ground-state energy of the system on cluster C'. The Hamiltonian yields
the one-particle hopping elements since the |i) ) only consist of one-particle states.
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e Determine the reduced contributions of the cluster by subtracting the reduced contributions
of all connected subclusters:

he = he — Z he,.. (A.12)
(A.13)

e Finally, the effective Hamiltonian and the effective observable are given by a cluster
expansion

CORE _ § 7
Heff — hC
C

where the sum runs over all clusters C of the lattice. The sum implies that all the operator
coeflicients are added up defining the effective Hamiltonian in the thermodynamic limit

It is essential that the effective Hamiltonian h); obeys the so-called cluster additivity. In
the following, we argue that the CORE method in general does not yield a cluster additive
effective Hamiltonian. Let us consider a disconnected cluster C = AU B with AN B = (. By
construction, the initial Hamiltonian is given by the cluster additive form in the form

H=H*®1% + 11 @ HE. (A.14)

We investigate, if the resulting effective Hamiltonian can also be written in a cluster additive
form. First, we discuss the cluster additivity for standard CORE applications for deriving
range-N interactions. Afterwards, we investigate the cluster additivity for the derivation of an
effective quasi-particle description.

A.2.1 Low-energy descriptions

CORE is often applied to determine range-N interactions. Here, the first m states of a supersite
are considered to be relevant for the low-energy physics. Consequently, the projection P projects
on the subspace spanned by the truncated Hilbert space of dimension m®, where N is the
number of supersites on the considered cluster. A prototypical example for this is the derivation
of an effective spin model starting from a Hubbard model. The projected low-energy states are
the states without double occupancy defining a truncated Hilbert space. The resulting effective
description corresponds to an effective spin model.

The eigenfunctions and eigenvalues of H4 (H?) are given by

HAiYa = €i,ali)a (A.15)
HE\j)p =<8l - (A.16)

The eigenfunctions of the full Hamiltonian H are given by the product states
Hli)alj)p = (ei,a +€58)0)ald)B (A.17)

and one finds

N

Pli)a = |i)a (A.18)
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Plj)s =j)s (A.19)

Pli)alj)s = [i)ali) 5 (A.20)

Finally, these state are orthonormalized. This is done using Gram Schmidt orthonormalization
and the order of the procedure is determined by the eigenenergies of the states starting

with the lowest. The orthogonalization method should fulfill the following constraint: If the
orthogonalized states on the single cluster A (B) be given by

[i)a —liL)a (A.21)

s —lils (A.22)

then the orthogonalized states on the disconnected cluster should be given by
i) ali) s — i) alis) B (A.23)

In Gram Schmidt, the eigenenergies are successively orthonormalized in ascending order with
the energy. We believe that this step might violate the cluster additivity because the order of
the procedure depends on the sum of both systems, which links two disconnected clusters. We
consider scenario where an infinitesimal tuning of A changes the order of two pairs:

€i1,4(A) +€51,8(A) < €iz,a(A) +€j2,8(A) (A.24)

ei1,A(A+0x) +j1,B(A+0x) > iz, a(A +0x) + 52, 5(A 4 0x) (A.25)

Consequently, the resulting effective Hamiltonian derived on cluster C' changes discontinuously
while the effective Hamiltonian derived only on cluster A (B) is not affected. This indicates,
that, in a rigorous sense, the cluster addivitiy might be violated. We stress, that the states
are almost orthogonal before the orthogonalization process, suggesting, that the effect of the
orthonormalization procedure is rather small. However, we believe that this issue can be solved

by using overlap matrices to orthogonalize the respective states. For this procedure, one has to
calculate the overlap matrix defined by

Sij = (ilj)-
The orthogonal states are given by

1
liL) = Si,jg |J>

In the case of the disconnected clusters, the overlap matrix is given by
S=54w88 (A.26)

and the inverse matrix (and its square root) are given by

STh= (s e (5P (A.27)
1 1 1
S72 = (8172 @ (SB) 2 (A.28)
(A.29)
1
and, thus, applying S~ 2 yields
[Dali)p — li)alin)s - (A.30)
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Then, the effective Hamiltonian reads

Hep = Z (€i,a +¢5,8) |gL>A|5L>B<5L\A<5L|B

J
=Y ealin)alilal3 + > enli) (13"
i J
with 15 = > 17)5(1L|p and 15 = 3", [i1)p(i1 |4 which is the identity in the considered
subspace. Hence, this is the desired cluster additive form. Next, we discuss the cluster additvity
for effective quasiparticle descriptions.

A.2.2 Quasiparticle description

For the sake of simplicity, the investigation is restricted to the derivation of one-particle
dispersions and a generalization is straightforward.
We consider a system with a unique ground state

HA|0>A =¢20,4[0) 4 (A.31)
HB|0>B = 50,B|0>B (A.32)
H|0)4|0) 5 = (£0,4 + €0,5)[0)4]0) 5. (A.33)

For A = 0 the ground state can be viewed as a vacuum and excitations can correspondingly be
interpreted in terms of quasiparticles. Let the spectrum of the Hamiltonian H{)“ (HOB ) contain
N (M) lowest degenerate excitations, namely the quasiparticles, which are (for sufficiently
small values of A) associated with the lowest excitations of the full Hamiltonian

HAi) g = €5,410)4, i=1,...,N (A.34)
(HPj)s =€jBli)m, G=1,...,M) (A.35)
The relevant N + M low-energy states of the whole system are then given by
H|i)al0)p = (4,4 +€0,8)|9)al0)g i=1,...,N (A.36)
H|0)alj)B = (0,4 +€;,8)|0)ali)s j=1,....,.M . (A.37)

The action of the projector a critical part of the procedure. Let Po denote the projector on the
A = 0 ground state and P, is correspondingly the projector on the first excited states of Hy.
With these definitions the projection on the combined cluster is given by

Pili) al0) 5 = (Pr]i)a)(Pol0) ) + (Poli) a) (P1]0) ) (A.38)
P1(0)al5) B = (P1[0).4)(Pol5) B) + (Pol0).a) (P1]5) B)- (A.39)

To obtain a cluster additive Hamiltonian, Py|i)a (Polj)5) or Pi|0)4 (P1|0)5) have to vanish.
If the excited states are separated by a quantum number from the ground state, this is indeed
true. In the scope of this thesis, CORE-data for the one-triplon dispersion of the two-leg spin
1/2 Heisenberg ladder are compared to gCUT data. Here, the one-triplon states (S = 1) a
protected from the vacuum (S = 0) by the total spin S. We stress that the cluster additivity is
violated if this is not the case.

If the states |i) 4|0) and |0) 4|j) 5 are separated by the quantum numbers defined for each cluster
A and B, it is easily shown that the Gram Schmidt orthogonalization yields

1) al0) B — [i1)al0)B (A.40)
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0)alj)s — 101)alis) B (A.41)

and the effective Hamiltonian reads (including the subtraction of the ground-state energy)

HEORE = Z(Ei,A —e0,4)i1)a(iL]al0L) (015 (A.42)
i<N

+ Z (5.8 —c0,8)7)B(JL]B101)a(0L|a . (A.43)
Jj<M

which is the desired form.
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