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In many fields of statistical analysis, one is not only interested in estimation
of model parameters, but in a prediction for future observations. For stochastic
processes, on the one hand, one can be interested in the prediction for the further
development of the current, i.e. observed, series. On the other hand, prediction
for a new series can be of interest. This work presents two Bayesian prediction
procedures based on the transition density of the Euler approximation, that in-
clude estimation uncertainty as well as the model variance. In a first algorithm,
the pointwise predictive distribution is calculated, in a second, trajectories will
be drawn. Both methods will be compared and analyzed with respect to their
advantages and drawbacks and set in contrast to two commonly used prediction
approaches.

Keywords: Stochastic differential equation, (jump) diffusion, predictive distribution.

1 Introduction

In many research areas, stochastic processes play an important role in stochastic modeling.
There is much research done in the field of estimation of the model parameters, see, for
example, Bayesian estimation in Donnet et al. (2010); Fuchs (2013); Rifo and Torres (2009).

If the process is defined by a stochastic differential equation (SDE), in many cases, an
explicit solution is not available. Without an analytical representation of the process in each
time point, a distribution is missing as well, and Bayesian prediction is not straightforward.
Usually the SDE is approximated, for example with the Euler scheme, and an iterative tran-
sition density is available. In this case, prediction for the next observation is computable. In
many areas, predictions for a far future is desired.

In the frequentist estimation, in many cases, a predictive distribution is not calculable and,
therefore, trajectories are simulated from the model with point estimates plugged in, see, for
example, Chiquet et al. (2009). This procedure neglects the estimation uncertainty, since the
point estimation is treated as the true value. In the case of large sample sizes, the estimation
uncertainty is small and this approach might work. In Vidoni (2004), a predictive density
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for time discrete stochastic processes is calculated, but prediction is only made for the next
observation. In the Bayesian approach, it is common to take samples from the posterior
and simulate with each of them one trajectory. All trajectories together form prediction
samples, see, for example, Weinberg et al. (2007). As we will see in the remainder of this
work, this procedure leads to large prediction intervals. If only point predictions are desired,
this approach might work. But if prediction intervals are of interest, they are desired to be
precise, i.e. small while being reliable.

In the case of an explicit solution, a distribution of the process variable in each time point is
available and can be taken to calculate the Bayesian predictive distribution. This is done, for
example, for the Ornstein-Uhlenbeck and the Cox-Ingersoll-Ross process in a mixed effects
model in Dion et al. (2016). But in the case of approximated variables with Euler, this
prediction can be imprecise for large time differences, because the approximation becomes
inaccurate.

In the following, a novel approach to predict stochastic processes, based on the Euler
approximation, is presented. This procedure is valuable for general diffusions as well as for
jump diffusions, including the estimation uncertainty as well as possible uncertainties from
latent variables. We will first present an algorithm leading to a pointwise distribution of the
interesting observation variable, and afterwards, a second algorithm yields a vector of process
variables, i.e. a trajectory.

In the next section, the model is presented and estimation is shortly motivated. Afterwards,
the Bayesian prediction procedure is explained. In Section 4, a simulation study compares
the presented methods to the two mentioned commonly used sampling methods. Afterwards,
the results are summed up and a short outlook is given.

2 Model

In this work, we consider the stochastic process {Yt, t ∈ [0, T ]} on the time interval [0, T ]
defined by the SDE given by

dYt = b(φ, t, Yt) dt+ s(γ, t, Yt) dWt + h(η, t, Yt) dNt, Y0 = y0, (1)

where {Wt, t ∈ [0, T ]} denotes a Brownian motion on [0, T ] and {Nt, t ∈ [0, T ]} denotes a non-
homogeneous Poisson process (NHPP) with cumulative intensity function Λξ(t), which has to
be bounded on [0, T ]. Both, Brownian motion and Poisson process, have to be stochastically
independent.

In the following, we assume to have observations in time points 0 ≤ t0 < t1 < ... < tn ≤ T .
In some applications, the Poisson process variables are observed. In that case, the parameter
to estimate are θ = (φ, γ2, η, ξ). If the Poisson process is unobserved, this is a latent variable,
which has to be estimated too, and θ = (φ, γ2, η, ξ,Nt1 , ..., Ntn).

If an explicit solution of the SDE is available, a distribution p(Yt|θ), for each time point t
is accompanied and the predictive distribution

p(Yt|Y(n)) =

∫
p(Yt|θ)p(θ|Y(n)) dθ

comes along. But if an explicit solution it not available, the process has to be approximated.
Well known and widely used is the Euler approximation, see for example Platen and Bruti-
Liberati (2010) or for ordinary diffusions Fuchs (2013) or Kloeden and Platen (1992). Define
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the Euler approximated variables by

Y0 = y0(φ), (2)

Yi = Yi−1 + b(φ, ti−1, Yi−1) ∆i + s(γ, ti−1, Yi−1)
√

∆i ξi + h(η, ti−1, Yi−1)∆Ni,

ξi ∼ N (0, 1), ∆Ni ∼ Pois (Λξ(ti)− Λξ(ti−1)) ,

∆i = ti − ti−1, i = 1, ..., n.

In the following, we denote the vector of Euler approximated variables with Y(n) = (Y0, Y1, ..., Yn).
The observed variables, therefore, are assumed to be realisations of Y(n). Dependent on the
Poisson process variables, the likelihood is the product of normal densities. In most cases,
the true underlying transition density is not normal. A good overview of possibly resulting
problems can be seen in Sørensen (2004) or Beskos et al. (2006) for the case h(η, t, y) = 0.
However, the scope of this work is prediction. This is based on the same discretized variables
as used in the estimation, which circumvents the problem of possibly biased estimations.

A good overview of Bayesian estimation for diffusion processes can be found in Fuchs
(2013). For jump diffusions with an unobserved Poisson process, a filtering problem occurs.
This is tackled, for example, in Roberts and Papaspiliopoulos (2004); Rifo and Torres (2009)
and Hermann and Ruggeri (2016). In many cases, one does not have an explicit representa-
tion of the posterior p(θ|Y(n)) but simulates from it with MCMC methods and gets samples
θ∗1, ..., θ

∗
K ∼ p(θ|Y(n)) from the posterior distribution.

3 Prediction

For a prediction for Y ∗ as the Euler approximated variable for Yt∗ in t∗, we can approximate
the predictive density by

p(Y ∗|Y(n)) =

∫
p(Y ∗|Y(n), θ) · p(θ|Y(n)) dθ ≈

1

K

K∑
k=1

p(Y ∗|Y(n), θ∗k).

For prediction of the further development of the process, the Markov property p(Y ∗|Y(n), θ) =
p(Y ∗|Yn, θ) can be used. In the case of prediction for a new series, Y ∗ is independent of the
observations variables, and p(Y ∗|Y(n), θ) = p(Y ∗|θ).

In the following, two versions of Bayesian prediction for the model in (1), are presented.
The first algorithm considers the predictive distribution of one point of interest, that can
lie far away from the last observed value. The problem, that the Euler approximation can
become inaccurate for large time differences, will be tackled. A second algorithm is presented
to sample a trajectory vector. Sampling from an arbitrary multivariate distribution is not
self-evident. Both algorithms can be used equally for the prediction of a new series as well as
for prediction of the further development of the series. We declare the specific points with a
and b in the algorithms.

Let us assume, we want to predict the process in time point t∗ � tn, resp. t∗ � t0. As
mentioned, for large time distances, the Euler approximation can be inaccurate. Therefore,
the idea is to go in M steps to the interesting value and each include the predictive distribution
of the last step. Therefore, we choose a sampling partition {t0, tn} 3 τ0 < τ1 < ... < τM = t∗,
for example

τm = m ·∆∗ + tn, m = 0, ...,M, ∆∗ :=
t∗ − τ0
M

.
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Let p(Y ∗m+1|Y ∗m, θ) denote the transition density of the Euler approximated variables Y ∗0 ∈
{y0, Yn}, Y ∗1 , ..., Y ∗M = Y ∗ in τ0, τ1, ..., τM . In the following, we denote with θ∗1, ..., θ

∗
K samples

from the posterior distribution p(θ|Y(n)) for the models without latent variable, which is the
case for general diffusions, i.e. h(η, t, y) = 0. For the jump diffusion, prediction for the Poisson
process variables Nτ1 , ..., NτM has to be made first, see for example Hermann et al. (2015), and
θ∗1, ..., θ

∗
K contain the posterior samples of the parameters as well as the prediction samples

of the Poisson process variables. We sample from the pointwise predictive distribution by
running the following algorithm.

Algorithm 1
Take samples θ∗1, ..., θ

∗
K from the posterior distribution p(θ|Y(n)), respectively from the pre-

dictive distribution of the Poisson process.

(i) Set m = 1 and

(ia) Y
∗(k)
0 := Yn, k = 1, ...,K, prediction for the current series,

(ib) Y
∗(k)
0 := y0, k = 1, ...,K, prediction for a new series.

(ii) Draw K samples

Y ∗(1)m , ..., Y ∗(K)
m ∼ 1

K

K∑
k=1

p
(
Y ∗m|Y

∗(k)
m−1, θ

∗
k

)
.

(iii) If m = M stop,
else m = m+ 1 and go to step (ii).

This algorithm yields samples from the predictive distribution p(Y ∗m|Y(n)),m = 1, ...,M for
each of the points τ1, ..., τM , but no trajectories. This can be seen as follows. For M = 2 it is

Y
∗(r)
1 ∼ 1

K

K∑
k=1

p
(
Y ∗1 |Y

∗(k)
0 , θ∗k

)
≈
∫
p(Y ∗1 |Y ∗0 , θ)p(θ|Y(n)) dθ = p(Y ∗1 |Y(n)), r = 1, ...,K

for Y ∗0 ∈ {y0, Yn}. In the second step it is

Y
∗(r)
2 ∼ 1

K

K∑
k=1

p
(
Y ∗2 |Y

∗(k)
1 , θ∗k

)
≈
∫
p(Y ∗2 |Y ∗1 , θ)p(Y ∗1 , θ|Y(n)) d(Y ∗1 , θ) = p(Y ∗2 |Y(n))

for r = 1, ...,K. There are three approximations in one step as can be seen by

p(Y ∗2 |Y(n)) =

∫
p(Y ∗2 |Y ∗1 , θ)p(Y ∗1 , θ|Y(n)) d(Y ∗1 , θ)

≈
∫
p(Y ∗2 |Y ∗1 , θ)p(Y ∗1 |Y(n))p(θ|Y(n)) d(Y ∗1 , θ) (3)

≈ 1

K1K2

K1∑
k1=1

K2∑
k2=1

p
(
Y ∗2 |Y

∗(k1)
1 , θ∗k2

)
(4)

≈ 1

K

K∑
k=1

p
(
Y ∗2 |Y

∗(k)
1 , θ∗k

)
. (5)
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Approximation (3) is related to the facts that p(Y ∗1 , θ|Y(n)) = p(Y ∗1 |θ, Y(n))p(θ|Y(n)) and
p(Y ∗1 |θ, Y(n)) = p(Y ∗1 |Y ∗0 , θ) for Y ∗0 ∈ {y0, Yn}. Therefore, approximation (3) is reduced to
the approximation of p(Y ∗1 |Y ∗0 , θ) ≈ p(Y ∗1 |Y(n)). For very large n, the posterior density gets
very sharp and converges for n→∞ to a point distribution in the point that frequentists call
the true parameter. Therefore, the approximation (3) is just a finite sample approximation.

Example 1
We will give an example to illustrate this by the process (1) with h(η, t, y) = 0, s(γ, t, y) = γ
and b(φ, t, y) = φy. It is approximated by

Yi = Yi−1(1 + φ∆i) + γ
√

∆i ξi, i = 1, ..., n

with Y0 = y0 and ξi ∼ N (0, 1). We fix y0 = 0.5, φ = 0.1 and γ = 0.01 for the simulation and
assume prior distributions φ ∼ N (0.1, 0.12) and γ2 ∼ IG(3, 2 · 0.012).

We simulate one random sample of the process in t0 = 0, ..., t104 = 1 and estimate φ
and γ2 in a Gibbs sampler each with the first 100, the first 103 and the whole data series.
In Figure 1 on the left side, we see in black the density of Y1, namely the density of the
N (y0 · (1 + φ∆1), γ

2∆1) distribution. The colored lines each show the predictive densities
p(Y ∗1 |Y(n)) with n ∈ {100, 103, 104} and evolve to p(Y ∗1 |θ). The blue predictive density with
the sample size of 104 is nearly the same as the true one. For comparison, the same figure
can be seen on the right side of Figure 1 for a second example.

Example 2
We consider process (1) with h(η, t, y) = 0, s(γ, t, y) = γy and b(φ, t, y) = φy. It is approxi-
mated by

Yi = Yi−1(1 + φ∆i) + γYi−1
√

∆i ξi, i = 1, ..., n

with Y0 = y0 and ξi ∼ N (0, 1). We simulate random samples of the process with y0 = 1, φ = 2,
γ = 1 and assume prior distributions φ ∼ N (2, 22) and γ2 ∼ IG(3, 2 · 1).

The differences between the four curves, see the right side of Figure 1, is very small because
of the small estimation uncertainty in comparison to the model variance.

Approximation (4) is explained by the density approximations
p(Y ∗1 |Y(n)) ≈ 1

K1

∑K1
k1=1 1{Y ∗(k1)

1 }(Y
∗
1 ) and p(θ|Y(n)) ≈ 1

K2

∑K2
k2=1 1{θ∗k2}

(θ), which can be arbi-

trary good according to the choice of K1 and K2.
Approximation (5) is due to the fact, that approximation (4) is computationally very costly.

In Figure 2 we compare the two versions with K = K1 = K2 = 1000. There is no difference
identifiable between the two curves. The calculations were made with an Intel(R) Core(TM)
i5-3470 CPU (3.20GHz), 8 GB RAM, Windows 7 64bit. For comparison, version (5) took
2.62 seconds versus 1689.54 for version (4).

For arbitrary M , we can assume Y
∗(k)
M−1 ∼ p(Y ∗M−1|Y(n)), k = 1, ...,K, and with induction

follows

Y
∗(r)
M ∼ 1

K

K∑
k=1

p
(
Y ∗M |Y

∗(k)
M−1, θ

∗
k

)
≈
∫
p(Y ∗M |Y ∗M−1, θ)p(Y ∗M−1, θ|Y(n)) d(Y ∗M−1, θ) = p(Y ∗M |Y(n))

for r = 1, ...,K with the same approximations as described before.
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Figure 1: Comparison of the predictive densities for sample sizes n ∈ {100, 103, 104} to the
true density from the model definition; (left) the N (0.5 · (1 + 0.1∆1), 0.1∆1) den-
sity and (right) the N (1 + 2∆1,∆1) density; posterior and predictive density each
approximated by 104 samples.

The following algorithm is made for the case that trajectories are the value of interest. Here,
it is possible not to draw exactly M samples from the trajectory, but to choose a critical value
yc and to stop if it is reached. In addition, it is possible to draw L 6= K samples.

Algorithm 2
Take the samples θ∗1, ..., θ

∗
K ∼ p(θ|Y(n)) from the posterior, respectively from the predictive

distribution of the Poisson process variables. For one trajectory sample, repeat the following
steps.

(i) Set m = 1 and

(ia) Y ∗0 := Yn, prediction for the current series,

(ib) Y ∗0 := y0, prediction for a new series.

(ii) Draw one sample

Y ∗m ∼
1

K

K∑
k=1

p
(
Y ∗m|Y ∗m−1, θ∗k

)
.

(iii) If m = M (or Y ∗m ≥ yc) stop,
else m = m+ 1 and go to step (ii).

For notation simplicity, in the following, we restrict to the case of M trajectory entries.
Repeating the algorithm L times, leads to L independent samples of p(Y ∗1 , ..., Y

∗
M |Y(n)). This

can be seen as follows. At first, it is

p(Y ∗m|Y ∗m−1, Y(n)) =

∫
p(Y ∗m|Y ∗m−1, θ)p(θ|Y ∗m−1, Y(n)) dθ

≈
∫
p(Y ∗m|Y ∗m−1, θ)p(θ|Y(n)) dθ (6)

≈ 1

K

K∑
k=1

p
(
Y ∗m|Y ∗m−1, θ∗k

)
.
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Figure 2: Investigation of approximation (5) with Example 1, approximation of den-

sity with 104 samples; in red: 1
K1K2

∑K1
k1=1

∑K2
k2=1 p

(
Y ∗2 |Y

∗(k1)
1 , θ∗k2

)
, in black:

1
K

∑K
k=1 p

(
Y ∗2 |Y

∗(k)
1 , θ∗k

)
, K = K1 = K2 = 1000.

The last approximation is the same as in (4). Approximation (6) again is a finite sample
approximation. For large n, one sample Y ∗m−1 does not effect the posterior. By the way, Y ∗m−1
is itself drawn by the predictive distribution based on the same posterior samples. Therefore,
even in finite sample sizes, the effect is negligible.

Afterwards, it is approximated

Y ∗1 ∼p(Y ∗1 |Y(n))
Y ∗2 ∼p(Y ∗2 |Y ∗1 , Y(n))

...

Y ∗M ∼p(Y ∗M |Y ∗M−1, Y(n))

and, therefore, the joint density is

p(Y ∗1 , ..., Y
∗
M |Y(n)) = p(Y ∗1 |Y(n)) · p(Y ∗2 |Y ∗1 , Y(n)) · ... · p(Y ∗M |Y ∗M−1, Y(n))

and we get samples from p(Y ∗1 , ..., Y
∗
M |Y(n)) with Algorithm 2.

4 Simulation study

To see the difference between Algorithm 1 and 2, we will compare them in a simulation study.
100 series are simulated from Example 2 with n = 50 and t ∈ [0, 1], and the parameters
are estimated. Based on the likelihood, a Metropolis within Gibbs sampler, see Robert and
Casella (2004), is conducted. A Metropolis Hastings step for φ is made in each iteration. For
γ2, the inverse gamma distribution is conjugate, which yields an analytically available full
conditional posterior. With K = 104 samples from the posterior distribution, we will compare
four prediction methods. The first two are the presented ones in Algorithm 1 and 2. The third
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method is simulation of K trajectories from the model based on the point estimation, here
the posterior mean, as often used in the frequentist approach and will, therefore, be named
frequentist sampling in the following. The fourth one is common in Bayesian analysis, where
each of the K posterior samples is taken to simulate one trajectory from the model. All K
trajectories also form a prediction, where pointwise mean or quantiles could be used for point
prediction or prediction intervals. We will name it posterior sampling in the following.

The methods used in this work are implemented in an R package BaPreStoPro, see R Core
Team (2015), available on github.com/SimoneHermann/BaPreStoPro.

We need a criterion for the quality of the procedure. The coverage rate is one obvious
criterion, since the level has to be held. But the interval size is also interesting. Gneiting and
Raftery (2007) propose an interval score, which is a combination between interval size, which
should be small, and coverage rate, which should be equal to or larger than the level 1 − α,
given by

S(l, u, y) = u− l +
2

α
(l − y)1(−∞,l)(y) +

2

α
(y − u)1(u,∞)(y).

l denotes the lower and u the upper bound of the interval and y the true, i.e. the observed,
value. In the case of a non-covering interval, the deviance from the respective bound is highly
penalized by the deviance itself multiplied with 2

α .
We see in Figure 3(a) the first simulated series with the corresponding prediction intervals

for the four methods. All methods have the lower bound in common. But the upper interval
bounds differ. The posterior sampling, i.e. the blue line, leads to the biggest intervals
which is not surprising since we simulate with all the posterior samples instead of integrating
out. The difference between the red and the green lines, i.e. the Algorithm 2 and the
frequentist sampling, is small. The procedures are comparable, the only difference is, that
Algorithm 2 includes the estimation uncertainty, whereby the frequentist sampling only takes
the point estimations into account and the only uncertainty stems from the model. The
smallest intervals are given by the black line, i.e. Algorithm 1, which is also not surprising,
because it calculates pointwise instead of simultaneous predictions. The results of all the 100
series can be seen in Figures 3(b), 3(c) and 3(d). Because of the large coverage rates, see
Figure 3(c), there is almost no difference between the interval size and the score. In both
Figures, 3(b) and 3(d), the black line, i.e. Algorithm 1, has the smallest sizes and scores,
followed by the red lines, i.e. Algorithm 2. The frequentist sampling surprisingly has larger
intervals and the posterior sampling, as expected, has the largest intervals. Except a small
deviance in the beginning for the black and the red line, all prediction intervals hold the level.

The same simulation study was made for Example 1 as well. The differences between the
Algorithms 1, 2 and frequentist sampling were not visually noticeable. The small difference
between Algorithm 1 and 2 can be caused by the small model variance. This, in addition,
leads to a small estimation uncertainty and, therefore, the frequentist sampling is comparable.

Algorithm 1 has also been investigated in a simulation study for six growth curves for
drift function b and constant variance function s(γ, t, y) = γ, and applied to crack growth in
aluminum alloy in Hermann et al. (2016).

Since the methods have to be applicable, running times are an interesting fact in the
decision for one procedure. We test for Example 1 with n = 50 the running times with the
sampling algorithms inversion method and rejection sampling, see Devroye (1986), both on a
fixed vector of candidates (discrete) and free in an interval (continuous). We take K = 2000
samples from the posterior and calculate in each step K = L = 2000 simulations from the
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Figure 3: Comparison of the prediction methods in Algorithms 1 and 2, and the posterior
and frequentist sampling, each depicted for time points t1 = 0.02, ..., t50 = 1, for
the diffusion model in Example 2.

predictive distribution to have a fair comparison. In addition, in each procedure, the candidate
area to sample Y ∗m+1 is chosen in the same way by[

K
min
k=1

Y ∗(k)m + b(φ̂, τm, Ŷ
∗
m)∆∗ − 5s(

√
γ̂2, τm, Ŷ

∗
m),

K
max
k=1

Y ∗(k)m + b(φ̂, τm, Ŷ
∗
m)∆∗ + 5s(

√
γ̂2, τm, Ŷ

∗
m)

]
with φ̂ and γ̂2 the point estimation, i.e. the posterior mean, and Ŷ ∗m = 1

K

∑K
k=1 Y

∗(k)
m .

In the case of vectorial sampling, we fix for comparison C ∈ {5 000, 10 000} points yl =
y1 < y2 < ... < yC = yu between lower and upper bound of the interval. In the other case,
for the inversion method, we apply binary search until a fineness degree of yu−yl

C to have a
fair comparison. Again, the calculations are made with an Intel(R) Core(TM) i5-3470 CPU
(3.20GHz), 8 GB RAM, Windows 7 64bit.

In Table 1, the resulting running times are displayed, averaged over 10 runs. We clearly
see the advantage of Algorithm 1 that turns out in the vectorial sampling.
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Algorithm 1 Algorithm 2
vectorial

C = 5000 C = 10000 C = 5000 C = 10000 C = 5000 C = 10000
Rejection sampling 68.77 141.30 354.97 359.62 349.39 356.93
Inversion method 85.47 172.14 445.68 491.02 398.23 443.01

Table 1: Overview of the running times of the two presented algorithms for the different
sampling methods.

Additionally, we investigate the four prediction methods, Algorithm 1 and 2, frequentist
and posterior sampling, for the full jump diffusion model.

Example 3
We will give an example by the process (1) with b(φ, t, y) = φ, s(γ, t, y) = γ, h(η, t, y) = ηy

and Λξ(t) =
(
t
ξ2

)ξ1
. It is approximated by

Yi = Yi−1 + φ∆i + γ
√

∆i ξi + ηYi−1∆Ni, i = 1, ..., n

with Y0 = y0, ξi ∼ N (0, 1) and ∆Ni ∼ Pois(Λξ(ti)− Λξ(ti−1)). We fix y0 = 0.5, φ = 0.2, γ =
0.5, η = 0.1, ξ = (2, 0.2) and estimate non-informative, i.e. φ ∼ p(φ) = 1, η ∼ p(η) = 1, γ2 ∼
p(γ2) = 1 and ξ ∼ p(ξ) = 1.

We run a simulation study with 100 series from Example 3 with sample size n = 100 and
t ∈ [0, 1]. For the estimation, we assume the Poisson process to be observed and conduct a
Metropolis within Gibbs sampler for the parameter θ = (φ, γ2, η, ξ).

For Algorithm 1, we sample predictions for ∆Ni ∼ 1
K

∑K
k=1 p(∆Ni|Λξ∗k(ti) − Λξ∗k(ti−1)) in

each step with p(·|λ) being the density of the Poisson distribution with parameter λ. For
Algorithm 2, we simulate trajectories for the Poisson process variables. This is done by
sampling trajectory samples of the event times T ∗1 < T ∗2 < ... with Algorithm 2 until τM is
reached. The trajectory samples of the Poisson process can be calculated as follows

N∗t = {j : T ∗j ≤ t < T ∗j+1}. (7)

In Figure 4, we see the results. From the coverage rates, it is difficult to make a qualitative
comparison. The sizes and the interval score draw the same picture. The red lines show, that
Algorithm 2 has the smallest interval sizes, followed by Algorithm 1 and frequentist sampling.
The difference between Algorithm 1 and frequentist sampling is hardly noticeable, since the
green line overdraws the black line. To investigate this effect, the same simulation study was
made with Algorithm 1 based on the same trajectory-wise sampling for the Poisson process
as for Algorithm 2. The result is, that the black and the red line are equal, see Figure 5,
where the red line overdraws the black one.

In summary, we can state, that the trajectory-wise Poisson process sampling brings the
best results for the jump diffusion. But, if we compare the running times, the procedure to
get the results for the black lines in Figure 4, took between 699 and 1183 seconds, whereas
the procedure for the black lines in Figure 5 took between 5576 and 12116 seconds.
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(d) Average interval score

Figure 4: Comparison of the prediction methods in Algorithms 1 and 2 and the posterior and
frequentist sampling, each in time points t1 = 0.01, ..., t100 = 1, for Example 3.
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Figure 5: Interval score for Example 3 with Algorithm 1 based on trajectory-wise samples for
the Poisson process vector, see (7).
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5 Conclusion

A Bayesian prediction approach has been presented for stochastic processes defined by their
differential equation, which is approximated with the Euler scheme. The model variance
as well as estimation uncertainty is included and, in the case of the jump diffusion, the
uncertainty of the Poisson process as well. Two algorithms have been presented, one for a
pointwise predictive distribution, and a second for the prediction of a trajectory. We showed
in a simulation study, that both procedures lead to a reliable and precise prediction.

It will be future work to investigate other approximation schemes than the one of Euler.
There is also a wide field of time-discrete autoregressive process models, where the presented
methods could be applicable.
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