
EXCLI Journal 2015;14:935-947 – ISSN 1611-2156 
Received: March 27, 2015, accepted: August 03, 2015, published: August 10, 2015 

 

 

935 

Original article: 

EFFICIENT ONE-POT SYNTHESIS, MOLECULAR DOCKING AND  
IN SILICO ADME PREDICTION OF BIS-(4-HYDROXYCOUMARIN-3-

YL) METHANE DERIVATIVES AS ANTILEISHMANIAL AGENTS 
 
Zahid Zaheera,*, Firoz A. Kalam Khana, Jaiprakash N. Sangshettia, Rajendra H. Patilb 

 
a Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Dr. Rafiq 

Zakaria Campus, Aurangabad 431 001(MS), India 
b Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, (MS),  

India 
* Corresponding author: E-mail: zahidzresearch@gmail.com (Zahid Zaheer) 
 
http://dx.doi.org/10.17179/excli2015-244 

 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/). 

 

ABSTRACT 

Bis-(4-hydroxycoumarin-3-yl) methane derivatives 3(a-l) were synthesized from 4-hydroxycoumarin and substi-
tuted aromatic aldehydes using succinimide-N-sulfonic acid as catalyst and evaluated for their in vitro antileish-
manial activity against promastigotes form of Leishmania donovani. Compounds 3a (IC50= 155 μg/mL), 3g 
(IC50= 157.5 μg/mL) and 3l (IC50= 150 μg/mL) were shown significant antileishmanial activity when compared 
with standard sodium stibogluconate (IC50= 490 μg/mL). Also, synthesized compounds 3(a-l) did not show cyto-
toxicity against HeLa cell line upto tested concentrations. Further, molecular docking study against Adenine 
phosphoribosyltransferase of Leishmania donovani showed good binding interactions. ADME properties were 
analyzed and showed good oral drug candidate like properties. The synthesized compounds were also shown 
good drug likeness and drug score values when compared with drugs currently used in therapy. The present 
study has helped us in identifying a new lead that could be exploited as a potential antileishmanial agent. 
 
 
Keywords: antileishmanial activity, Leishmania donovani promastigotes, molecular docking 
study, ADME properties, drug likeness, drug score 
 
 
 

INTRODUCTION 

Leishmaniasis is parasitic disease caused 
by different species of the genus Leishmania 
protozoan and transmitted to humans by the 
bite of female phlebotomine sand fly (Chap-
puis et al., 2007). According to WHO esti-
mates, there are at least 3-5 million clinical 
cases among the 12 million infected individ-
uals are living in endemic areas (Desjeux, 
2001). Visceral leishmaniasis (VL or Kala-
azar) is the most devastating form of leish-
maniasis and caused by the invasion of the 
reticuloendothelial system (spleen, liver and 

bone marrow) by the haemo flagellate proto-
zoan parasite Leishmania donovani (L. do-
novani) (Ashford et al., 1992). VL causes 
hepatosplenomegaly, fever, and weight loss 
and could be fatal if left untreated (Richard 
and Werbovetz, 2010). The disease is widely 
distributed in the Indian subcontinent and 
South-West Asia (Sundar, 2001). Also, there 
are growing numbers of reports of Leishma-
nia/human immunodeficiency virus (HIV) 
co-infections across the world. Leishmania-
HIV co-infection has been an increasing 
problem in countries such as Ethiopia, Su-
dan, Brazil and India where both infections 
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are becoming more and more prevalent 
(Cruz et al., 2006; Desjeux et al., 2001).  

The primary chemotherapy of leishmani-
asis has been based on the use of pentavalent 
antimonial drug like sodium stibogluconate 
(SSG) (Santos et al., 2008). SSG was the 
most effective antileishmanial drug; howev-
er, over the years, its efficacy declined and 
unfortunately developed resistance in most 
of the areas where failure rates of up to 65 % 
have been reported (Croft et al., 2006). Fur-
thermore, the long course of treatment with 
SSG often causes side effects such as myal-
gia, pancreatitis, cardiac arrhythmia and hep-
atitis leading to the reduction or cessation of 
treatment (Rajiv et al., 2012). Second line 
drugs include pentamidine and amphotericin 
B, but these drugs have not experienced 
widespread use due to the severe toxicities 
and high costs (Cagnoni, 2002). Up to now, 
no vaccine has been approved for human use 
(Grenfell et al., 2010; Noazin et al., 2008). 
Therefore, there is an urgent need to speed 
up the development of new, inexpensive, ef-
fective and safe drugs for the treatment of 
leishmaniasis and discovering of new lead 
compounds for this disease is a pressing 
concern for global health programs. 

Coumarins are one of the best known ox-
ygenated heterocycle and present as a struc-
tural motif in numerous natural products. 
Compounds containing coumarin moiety ex-
hibit wide range of biological activities in-
cluding antiviral (Lee et al., 1998), anticoag-
ulant (Jung et al., 2001), anti-HIV (Hesse 
and Kirsch, 2002), antioxidant (Melagraki et 
al., 2009), and anticancer (Jung et al., 2004) 
activities. There are several examples of 
coumarin derivatives like scoporane (Arango 
et al., 2010), 3-(1-dimethylallyl)-decursinol 
(Iranshahi et al., 2007), auraptene and farne-
siferol (Ferreira et al., 2010) (Figure 1) iso-
lated from various families of plants, which 
have been tested and found to be effective 
against the promastigote form of Leishmania 
parasite. Some synthetic coumarins such as 
4-arylcoumarins have been reported to ex-
hibit potent activity against L. donovani 
(Pierson et al., 2010). 

 
Figure 1: Natural coumarins effective against 
promastigote form of Leishmania parasite 
 
 

We have selected our title compounds 
bis-(4-hydroxycoumarin-3-yl) methanes for 
development and assessment of antileishma-
nial activity against L. donovani. The com-
pounds have been reported to exhibit activi-
ties like antioxidant activity (Singh et al., 
2010) and antimicrobial activity (Tangmouo 
et al., 2005) but have not previously been 
tested against any Leishmania species. In re-
cent years, succinimide-N-sulfonic acid as a 
catalyst has drawn much interest in different 
organic reactions due to its experimental 
simplicity (Shirini and Khaligh, 2012a, b, 
2013). To our best knowledge, there is no 
report in the literature on the preparation of 
bis-(4-hydroxycoumarin-3-yl) methanes us-
ing succinimide-N-sulfonic acid as catalyst.  

Due to the lack of effective antileishma-
nial drugs and in continuation of our earlier 
work to identify active compounds (Khan et 
al., 2015; Sangshetti et al., 2014a, b, 2015), 
we decided to synthesize and test the effi-
ciency of bis-(4-hydroxycoumarin-3-yl) me-
thanes 3(a-l) for antileishmanial activity 
against the promastigote form of L. donovani 
parasite. We had also tested the cytotoxicity 
study of synthesized compounds against 
HeLa cell lines. The computational parame-
ters like docking study, ADME prediction, 
drug likeness and drug score of synthesized 
compounds were also performed. The results 
suggest that the compounds could be ex-
ploited as an antileishmanial drug. 
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MATERIALS AND METHODS 

Experimental 
4-Hydroxycoumarin, substituted aro-

matic aldehydes and solvents were obtained 
from Sigma/Avra synthesis and used without 
further purification. The synthetic protocols 
employed for the synthesis of bis-(4-
hydroxycoumarin-3-yl) methanes 3(a-l) are 
presented in Figure 2. The homogeneity of 
the compounds was monitored by ascending 
thin layer chromatography (TLC) on silica 
gel-G (Merck) coated aluminum plates, visu-
alized by iodine vapor. The melting points 
were determined in open capillary tubes. 1H 
NMR and 13C NMR spectra were recorded 
on 300MHz BRUKER spectrometer and 
100MHz BRUKER spectrometer, respective-
ly. Chemical shifts are reported in parts per 
million (ppm), using TMS as an internal 
standard. Mass spectra were taken with Mi-
cromass-QUATTRO-II of WATER mass 
spectrometer. Elemental analyses (C, H, and 
N) were undertaken with a Shimadzu’s 
FLASHEA112 analyzer and all analyses 
were consistent with theoretical values 
(within 0.4 %). 

 

 
Figure 2: Synthesis of bis-(4-hydroxycoumarin-
3-yl) methanes 3(a-l) 

 

General procedure for the synthesis of bis-
(4-hydroxycoumarin-3-yl) methanes 3(a-l) 

A mixture of a 4-hydroxycoumarin (2 
mmol), aldehydes (1 mmol) was refluxed in 
ethanol (15 ml) using succinimide-N-
sulfonic acid (10 mol %) as catalyst for 10-
15 min. After completion of the reaction as 
monitored by TLC analysis, the solid formed 
was filtered and dried. The crude product 
was crystallized by using isopropyl alcohol 
(IPA) to afford the pure product. All the 
compounds 3(a-l) were prepared similarly by 
treating 4-hydroxycoumarin with corre-
sponding aldehydes. 

3,3'-(Phenylmethylene)bis(4-hydroxy-2H-
chromen-2-one) (3a) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.39 (1H, s, OH), 7.78−7.39 
(8H, m, aromatic H), 7.32-7.10 (5H, m, aro-
matic H), 6.19 (1H, s, CH), 5.15 (1H, s, 
OH); 13C NMR (100 MHz, DMSO-d6) δ: 
162.70, 160.90, 152.29, 141.60, 131.81, 
130.30, 128.69, 127.88, 125.95, 123.62, 
118.22, 116.90, 100.79, 36.71; ES-MS m/z: 
413.10 [M+H+]; Elemental Analysis for 
C25H16O6. Calcd.: C, 72.81; H, 3.91; Found: 
C, 72.83; H, 3.90. 

 

3,3'-((4-Chlorophenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3b) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.32 (1H, s, OH), 7.84−7.42 
(8H, m, aromatic H), 7.37-7.17 (4H, m, aro-
matic H), 6.24 (1H, s, CH), 5.20 (1H, s, 
OH); 13C NMR (100 MHz, DMSO-d6) δ: 
168.80, 161.90, 152.50, 142.50, 131.30, 
130.55, 128.70, 127.22, 125.46, 123.52, 
118.65, 116.30, 100.19, 35.79; ES-MS m/z: 
447.06 [M+H+]; Elemental Analysis for 
C25H15ClO6. Calcd.: C, 67.20; H, 3.38; 
Found: C, 67.24; H, 3.36. 

 

3,3'-((2,6-Dichlorophenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3c)  

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.30 (1H, s, OH), 7.81−7.40 
(8H, m, aromatic H), 7.35-7.16 (3H, m, aro-
matic H), 6.29 (1H, s, CH), 5.18 (1H, s, 
OH); 13C NMR (100 MHz, DMSO-d6) δ: 
164.32, 160.88, 153.19, 138.50, 135.77, 
128.50, 127.54, 126.82, 125.44, 123.68, 
118.45, 116.28, 103.29, 26.79; ES-MS m/z: 
481.28 [M+H+]; Elemental Analysis for 
C25H14Cl2O6. Calcd.: C, 62.39; H, 2.93; 
Found: C, 62.41; H, 2.92. 

 

3,3'-((4-Fluorophenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3d)  

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.33 (1H, s, OH), 7.41−7.25 
(8H, m, aromatic H), 7.17-7.05 (4H, m, aro-
matic H), 6.09 (1H, s, CH), 5.18 (1H, s, 
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OH); 13C NMR (100 MHz, DMSO-d6) δ: 
167.15, 162.19, 159.90 151.92, 140.00, 
131.60, 128.55, 125.40, 123.55, 118.55, 
116.36, 115.30, 100.29, 34.95; ES-MS m/z: 
431.09 [M+H+]; Elemental Analysis for 
C25H15FO6. Calcd.: C, 69.77; H, 3.51; Found: 
C, 69.80; H, 3.50. 

 

3,3'-((4-Methoxyphenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3e) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.33 (1H, s, OH), 7.66-7.31 
(8H, m, aromatic H), 7.25−7.09 (4H, m, ar-
omatic H), 6.31 (1H, s, CH), 5.24 (1H, s, 
OH), 3.60 (3H, s, OCH3); 

13C NMR (100 
MHz, DMSO-d6) δ: 164.85, 161.49, 157.19, 
152.17, 136.46, 129.84, 128.69, 125.13, 
123.48, 118.50, 116.11, 114.32, 103.21, 
58.85, 39.79; ES-MS m/z: 443.11 [M+H+]; 
Elemental Analysis for C26H18O7. Calcd.: C, 
70.58; H, 4.10; Found: C, 70.60; H, 4.09. 

 

3,3'-((3,4-Dimethoxyphenyl)methylene)-
bis(4-hydroxy-2H-chromen-2-one) (3f) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.37 (1H, s, OH), 7.75-7.37 
(8H, m, aromatic H), 7.26−7.15 (3H, m, ar-
omatic H), 6.20 (1H, s, CH), 5.13 (1H, s, 
OH), 3.72 (3H, s, OCH3), 3.64 (3H, s, 
OCH3); 

13C NMR (100 MHz, DMSO-d6) δ: 
162.80, 158.50, 152.50, 149.70, 146.80, 
135.93, 128.80, 125.66, 122.83, 119.98, 
116.35, 114.81, 112.43, 101.53, 56.58, 
36.72; ES-MS m/z: 473.12 [M+H+]; Ele-
mental Analysis for C27H20O8. Calcd.: C, 
68.64; H, 4.27; Found: C, 68.62; H, 4.28. 

 

3,3'-((2,4-Dimethoxyphenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3g)  

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.36 (1H, s, OH), 7.70-7.35 
(8H, m, aromatic H), 7.24−7.18 (3H, m, ar-
omatic H), 6.42 (1H, s, CH), 5.11 (1H, s, 
OH), 3.91 (3H, s, OCH3), 3.74 (3H, s, 
OCH3); 

13C NMR (100 MHz, DMSO-d6) δ: 
163.55, 161.10, 159.19, 156.72, 146.53, 
131.45, 129.10, 125.28, 123.38, 118.28, 
116.36, 112.36, 106.85, 101.03, 59.21, 

55.48, 30.89; ES-MS m/z: 473.45 [M+H+]; 
Elemental Analysis for C27H20O8. Calcd.: C, 
68.64; H, 4.27; Found: C, 68.65; H, 4.26. 

 

3,3'-((2,5-Dimethoxyphenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3h)  

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.34 (1H, s, OH), 7.65-7.39 
(8H, m, aromatic H), 7.22−7.10 (3H, m, ar-
omatic H), 6.39 (1H, s, CH), 5.38 (1H, s, 
OH), 3.86 (3H, s, OCH3), 3.42 (3H, s, 
OCH3); 

13C NMR (100 MHz, DMSO-d6) δ: 
166.19, 161.87, 156.46, 152.58, 149.29, 
130.28, 125.10, 123.37, 123.38, 122.70, 
118.25, 116.13, 114.73, 112.21, 104.59, 
100.89, 60.63, 55.27, 33.01; ES-MS m/z: 
473.19 [M+H+]; Elemental Analysis for 
C27H20O8. Calcd.: C, 68.64; H, 4.27; Found: 
C, 68.66; H, 4.27. 

 

3,3'-((3,4,5-Trimethoxyphenyl)methylene)-
bis(4-hydroxy-2H-chromen-2-one) (3i) 

Light yellow solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.34 (1H, s, OH), 7.80-7.41 
(8H, m, aromatic H), 7.31−7.12 (2H, m, ar-
omatic H), 6.28 (1H, s, CH), 5.41 (1H, s, 
OH), 3.68 (3H, s, OCH3), 3.51 (3H, s, 
OCH3) 3.12 (3H, s, OCH3); 

13C NMR (100 
MHz, DMSO-d6) δ: 165.33, 160.98, 156.84, 
152.04, 136.50, 132.57, 128.39, 125.43, 
122.32, 119.04, 116.21, 106.40, 102.31, 
64.20, 56.87, 37.42; ES-MS m/z: 503.13 
[M+H+]; Elemental Analysis for C28H22O9. 
Calcd.: C, 66.93; H, 4.41; Found: C, 66.90; 
H, 4.42. 

 

3,3'-((4-Hydroxy-3-methoxyphenyl)methy-
lene)bis(4-hydroxy-2H-chromen-2-one) (3j) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.37 (1H, s, OH), 7.87-7.56 
(8H, m, aromatic H), 7.35−7.27 (3H, m, ar-
omatic H), 6.25 (1H, s, CH), 5.76 (1H, s, 
OH), 5.35(1H, s, aromatic OH), 3.69 (3H, s, 
OCH3); 

13C NMR (100 MHz, DMSOd6) δ: 
166.68, 163.65, 152.24, 148.44, 146.98, 
131.59, 128.89, 125.52, 123.84, 122.35, 
118.88, 116.38, 115.83, 111.60, 104.21, 
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55.57, 35.65; ES-MS m/z: 459.10 [M+H+]; 
Elemental Analysis for C26H18O8. Calcd.: C, 
68.12; H, 3.96; Found: C, 68.18; H, 3.95. 

 

3,3'-((4-Cyanophenyl)methylene)bis(4-
hydroxy-2H-chromen-2-one) (3k) 

White solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.34 (1H, s, OH), 7.73-7.42 
(8H, m, aromatic H), 7.31−7.25 (4H, m, ar-
omatic H), 6.31 (1H, s, CH), 5.38 (1H, s, 
OH); 13C NMR (100 MHz, DMSOd6) δ: 
165.86, 162.46, 154.42, 148.70, 132.10, 
128.78, 124.98, 122.21, 120.54, 118.37, 
117.43, 115.76, 109.82, 103.07, 36.51; ES-
MS m/z: 438.19 [M+H+]; Elemental Analysis 
for C26H15NO6. Calcd.: C, 71.39; H, 3.46; N, 
3.20; Found: C, 71.42; H, 3.47; N, 3.21. 

 

3,3'-((4-(Dimethylamino)phenyl)methy-
lene)bis(4-hydroxy-2H-chromen-2-one) (3l)  

Yellow solid; 1H NMR (300 MHz, 
DMSO-d6) δ: 16.33 (1H, s, OH), 7.80-7.39 
(8H, m, aromatic H), 7.30−7.21 (4H, m, ar-
omatic H), 6.48 (1H, s, CH), 5.87 (1H, s, 
OH), 3.06 (6H, s, CH3); 

13C NMR (100 
MHz, DMSOd6) δ: 167.30, 163.37, 153.81, 
149.07, 133.90, 129.18, 127.19, 125.64, 
123.54, 120.18, 116.13, 112.54, 104.11, 
41.34, 36.20; ES-MS m/z: 456.14 [M+H+]; 
Elemental Analysis for C27H21NO6. Calcd.: 
C, 71.20; H, 4.65; N, 3.08; Found: C, 71.18; 
H, 4.67; N, 3.10. 

 
Biological evaluations 

In vitro antileishmanial activity 
The assay for in vitro antileishmanial ac-

tivity on culture of L. donovani pro-
mastigotes (NHOM/IN/80/DD8) was carried 
out in 96-well tissue culture plates. The pro-
mastigotes culture was maintained at 22 οC 
in modified RPMI 1640 pH 7.4 (without 
phenol red) with 10 % FCS medium. Drug 
dilutions were prepared in DMSO and ap-
propriate concentration of each drug was 
used in triplicate. Plates were incubated at 22 
oC for 72 h and evaluated using modified 
MTT assay, where the conversion of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) to formazan by mitochon-
drial enzymes served as an indicator of cell 
viability and the amount of formazan pro-
duced was directly proportional to the num-
ber of metabolically active cells. According-
ly, absorbance at 492 nm represented the 
number of live cells. The concentration that 
decreased cell growth by 50 % (IC50) was 
determined by graphic interpolation. Pen-
tamidine and sodium stibogluconate were 
used as standard drugs (Dutta et al., 2005). 

 

In vitro cytotoxicity study 
Cytotoxic study of the synthesized com-

pounds against HeLa cell line were evaluated 
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) method. 
HeLa cells were seeded in a 96-well culture 
plate; 100 mL of a 105 cell/mL suspension in 
each well in RPMI 1640 supplemented with 
10 % FCS culture medium. After incubation 
at 37 °C in a 5 % CO2 incubator for 24 h, test 
compounds with serial concentration (upto 
400 µg/mL) were added. The cells were in-
cubated for 72 h, followed by addition MTT 
solution (5 mg/mL) to each well and further 
cultivated for 4 h. The absorbance of each 
well at 550 nm was determined by a micro-
plate spectrophotometer. The cells were also 
seen under the microscope (Zeiss, Germany) 
at 10X magnification (Denizot and Lang, 
1986). 
 
Computational studies 

Docking study  
Docking study was performed using 

VLife MDS 4.3 package (Vlifesciences, 
2015). With this purpose, crystal structure of 
Adenine phosphoribosyltransferase of L. do-
novani (PDB ID: 1QB8) (Phillips et al., 
1999) was obtained from the Protein Data 
Bank in order to prepare protein for docking 
study. Docking procedure was followed us-
ing the standard protocol implemented in 
VLife MDS 4.3 package and synthesized 
compounds 3(a-l) were docked (GRIP batch 
docking) against three dimensional structure 
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of Adenine phosphoribosyltransferase pro-
tein. 

 

ADME properties 
A computational study of synthesized 

compounds 3(a-l) was performed for predic-
tion of ADME properties. In this study, we 
have calculated molecular volume (MV), 
molecular weight (MW), logarithm of parti-
tion coefficient (miLog P), number of hy-
drogen bond acceptors (n-ON), number of 
hydrogen bonds donors (n-OHNH), topolog-
ical polar surface area (TPSA), number of 
rotatable bonds (n-ROTB) and Lipinski’s 
rule of five (Lipinski et al., 2001) using 
Molinspiration online property calculation 
toolkit (Molinspiration, 2015). Absorption 
(% ABS) was calculated by: % ABS= 109-
(0.345×TPSA) (Zhao et al., 2002). 

 

Drug likeness and drug score 
We have also determined the drug like-

ness and drug score of synthesized com-
pounds 3(a-l) and compared with standard 
drugs (pentamidine, sodium stibogluconate 
amphotericin B and miltefosine) using OSI-
RIS property explorer online toolkit 
(http://www.organic-chemistry.org/prog/peo). 

 
RESULTS AND DISCUSSION 

Chemistry 
Succinimide-N-sulfonic acid catalyst was 

prepared as reported previously by the reac-
tion of succinimide with chlorosulfonic acid 
(Shirini and Khaligh, 2011). In our study, 
successful synthesis of bis-(4-hydroxy-
coumarin-3-yl) methanes (Figure 2) was 
achieved using succinimide-N-sulfonic acid 
as catalyst in ethanol. For the synthesis of 
bis-(4-hydroxycoumarin-3-yl) methane de-
rivatives 3(a-l), we first optimized the effect 
of catalyst load. The reaction of 4-
hydroxycoumarin (2.0 mmol) (1) and ben-
zaldehyde (1.0 mmol) (2) in ethanol (15 mL) 
was used as model reaction (compound 3a). 
We used succinimide-N-sulfonic acid cata-
lyst at various loads such as 5 mol %, 10 mol 
%, and 15 mol %. From the result (Table 1), 

it is observed that use of 10 mol % succin-
imide-N-sulfonic acid is more useful giving 
the product up to 98 % yield. The synthetic 
protocol was then extended for synthesis of 
all bis-(4-hydroxycoumarin-3-yl) methane 
derivatives 3(a–l) using 4-hydroxycoumarin 
and various substituted aromatic aldehydes. 
The physical data of the synthesized com-
pounds are presented in Table 2. All the re-
actions proceeded well (10-15 min) in etha-
nol and gave good yields (90-98 %). The pu-
rity of the synthesized compounds was 
checked by TLC and melting points were 
determined in open capillary tubes. All syn-
thesized derivatives 3(a-l) were well charac-
terized by means of 1H NMR, 13C NMR, 
Mass, and elemental analysis and spectral 
data confirmed the proposed structures. 

 
Table 1: Effect of succinimide-N-sulfonic acid 
(catalyst) loading on yield and reaction time for 
3a 

Entry Catalyst 
Quantity 
(mol %) 

Time 
(min) 

Yield 
a (%) 

1 No catalyst 0 60 42 

2 
Succinimide-
N-sulfonic 
acid 

5 30 85 

3 
Succinimide-
N-sulfonic 
acid 

10 10 98 

4 
Succinimide-
N-sulfonic 
acid 

15 10 98 

a Isolated yield of the pure product 
 
 

Biological evaluations 

In vitro antileishmanial activity 
The assay for in vitro antileishmanial ac-

tivity was carried out on cultures of L. do-
novani promastigotes. The concentration that 
decreased cell growth by 50 % (IC50) was 
determined by graphic interpolation and data 
obtained depicted in Table 3. Compounds 
3(a-l) showed varying degree of antileish-
manial activity with IC50 ranging between 
150 to 320 μg/mL. Amongst all tested com-
pounds 3a, 3g, 3h, 3j and 3l were found to 
be most promising compounds showing IC50 
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value of 155, 157.5, 197.5, 197.5 and 150 
μg/mL, respectively. All the synthesized 
compounds showed better activity than 
standard sodium stibogluconate (IC50= 490 
μg/mL) against L. donovani promastigotes. 

A representation of the effect of compound 
3l on the L. donovani promastigotes is given 
in Figure 3 and revealed that organisms lost 
its viability as seen by irregular shape mor-
phology of the same. 

 
 

Table 2: Physical data for bis-(4-hydroxycoumarin-3-yl) methane derivatives 3(a-l) 

Entry Ar 
Molecular 
formula 

Time 
(min) 

Yield 
(%) 

Rf 
value 

M.p. (οC)* 

3a Phenyl C25H16O6 10 98 0.42 228−230  
(Karimian et al., 2013)

3b 4-Chlorophenyl C25H15ClO6 12 98 0.45 252−254  
(Karimian et al., 2013)

3c 2,6-Dichlorophenyl C25H14Cl2O6 15 90 0.48 176−178 (Al-Kadasi and 
Nazeruddin, 2012)

3d 4-Fluorophenyl C25H15FO6 10 91 0.44 212−214  
(Karimian et al., 2013)

3e 4-Methoxyphenyl C26H18O7 10 93 0.38 242−244  
(Karimian et al., 2013)

3f 3,4-Dimethoxyphenyl C27H20O8 10 95 0.40 266−268  
(Karimian et al., 2013)

3g 2,4-Dimethoxyphenyl C27H20O8 13 90 0.52 206−208 
3h 2,6- Dimethoxyphenyl C27H20O8 15 95 0.55 182−184 

3i 3,4,5-Trimethoxyphenyl C28H22O9 10 93 0.48 
240−242  
(Tabatabaeian et al., 2012) 

3j 
4-Hydrox-3-methoxy-
phenyl 

C26H18O8 10 94 0.45 252−254 

3k 4-Cyanophenyl C26H15NO6 15 98 0.54 240−242  
(Karimian et al., 2013)

3l 4-Dimethyaminophenyl C27H21NO6 15 90 0.62 222−224  
(Karimian et al., 2013)

Solvent of recrystallization was isopropanol; Eluants used in TLC were ethyl acetate: n-hexane (8:2) 
for all compounds; * The melting points have been compared with literature melting points. 

 

 

 

 
Figure 3: In vitro antileishmanial activity of compound 3l against L. donovani promastigotes 
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Table 3: In vitro antileishmanial evaluation and molecular docking statistics of bis-(4-hydroxycouma-
rin-3-yl) methane derivatives 3(a-l) 

Entry IC50 (μg/mL) 

Docking result against Adenine phosphoribosyltransferase  
L. donovani  
Binding energy 
(Kcal/mol) 

Hydrogen bonds  Hydrophobic bonds 

3a 155.00 -69.51 4 (ARG37; ARG82) 1(ALA150) 
3b 312.50 -69.38 3 (ARG37; GLY153) 3 (ALA124; THR151) 
3c 320.00 -57.51 2 (ARG37) 1(ALA150) 
3d 295.00 -68.04 2 (ARG37; GLY153) 2 (ALA124; THR151) 

3e 217.50 -70.73 2 (ARG37) 
11 (LEU149; ALA150; THR151; 
GLY152; GLY153; THR154; 
ALA155)  

3f 275.00 -70.47 2 (ARG37) 
18 (LEU149; ALA150; THR151; 
GLY152; GLY153; THR154; 
ALA155) 

3g 157.50 -69.68 3 (ARG37; ALA150) 1 (ALA150) 

3h 197.50 -75.19 4 (ARG37; ARG82) 

15 (ARG37; ARG82; VAL148; 
LEU149; ALA150; THR151; 
GLY152; GLY153; THR154; 
ALA155) 

3i 262.50 -70.39 1 (ARG37) 
16 (LEU149; ALA150; THR151; 
GLY152; GLY153; THR154; 
LEU181) 

3j 197.50 -71.11 3 (ARG37; GLY153) 3 (ALA124; THR151) 
3k 225.00 -68.10 2 (ARG37) 3 (ALA124; THR151) 
3l 150.00 -74.31 2 (ARG37) 5 (VAL39; ALA124; LEU181) 
STD 1 490.00 - - - 
STD 2 5.50 - - - 

IC50 represents mean values of three replicates; Standard errors were all within 10 % of mean. STD 1: 
Sodium stibogluconate; STD 2: Pentamidine 
 
 
 

Structure activity relationship revealed 
that 4-hydroxycoumarin ring is required for 
activity. From activity data (Table 3), an-
tileishmanial activity mainly depends upon 
the presence of substituent on phenyl ring. 
Compound without any substituent on phe-
nyl ring (3a) has shown promising activity 
(IC50= 155 μg/mL). Substitution of electron 
withdrawing group (-Cl or -F) on phenyl 
ring 3b, 3c and 3d leads to decrease in ac-
tivity (IC50= 312.5, 320 and 295 μg/mL, re-
spectively). Compounds with –OCH3 group 
on phenyl ring 3e, 3f, 3g, 3h and 3i have 
shown moderate activity (IC50= 157.5 to 275 
μg/mL). Compounds with o–OCH3 group on 
phenyl ring 3g and 3h are having good activ-
ity as compared to compounds with m–OCH3 

and p–OCH3 group 3e, 3f and 3i. Introduc-
tion of p-N(CH3)2 group on phenyl ring 3l 
leads to most potent compound (IC50= 150 
μg/mL) amongst the synthesized compounds. 

In vitro cytotoxicity study 
Cytotoxic study of the synthesized com-

pounds 3(a-l) against HeLa cell line was 
evaluated by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) 
method. None of the synthesized compounds 
were cytotoxic at concentration upto 400 μg/ 
mL. A representation of cytotoxic effect of 
compound 3l on HeLa cell is provided in 
Figure 4. 
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Figure 4: Cytotoxic study of compound 3l against HeLa cell line 

 

Computational studies  

Docking study 
Coumarin derivatives like isopimpinellin 

are reported to act as antileishmanial by in-
hibiting the Adenine phosphoribosyltransfer-
ase enzyme (Napolitano et al., 2003). Molec-
ular docking study of the synthesized com-
pounds 3(a-l) was performed against Adenine 
phosphoribosyltransferase of L. donovani to 
understand the binding interactions and dock-
ing calculation and hydrogen bonds/hydro-
phobic bonds interactions are shown in Table 
3. All the synthesized compounds had shown 
good binding energy (-57.51 to -75.19 Kcal/ 
mol) for Adenine phosphoribosyltransferase. 
The results showed that 4-hydroxybiscou-
marin core of these compounds held in the 
active site of enzyme by forming hydrogen, 
hydrophobic and van der Waals interactions. 
Amino acids ARG37, ARG82, ALA150 and 
GLY153 had formed hydrogen bonding and 
amino acids like ARG37, VAL39, ARG82, 
ALA124, VAL148, LEU149, ALA150, 
THR151, GLY152, GLY153, THR154, 
ALA155 and LEU181 had formed hydropho-
bic interactions with 4-hydroxybiscoumarin 
core of compounds. On the basis of activity 
data and docking result, it is predicted that 
synthesized compounds 3(a-l) may have po-
tential to inhibit Adenine phosphoribosyl-

transferase. The interactions of the com-
pound 3a and 3l with Adenine phosphoribo-
syltransferase are shown in Figure 5. 

 

ADME properties 
A computational study of synthesized 

compounds 3(a-l) was performed for predic-
tion of ADME properties. The value obtained 
is depicted in Table 4. It is observed that all 
the synthesized compounds exhibited a good 
% ABS ranging from 64.03 to 74.19 %. Fur-
thermore, compounds 3b, 3c and 3i violated 
only one Lipinski’s rule of five. None of the 
active compounds 3a, 3g, 3h, 3j and 3l vio-
lated Lipinski’s parameters. A molecule like-
ly to be developed as an orally active drug 
candidate should show no more than one vio-
lation of the following four criteria: miLog P 
(octanol-water partition coefficient) ≤ 5, mo-
lecular weight ≤ 500, number of hydrogen 
bond acceptors ≤ 10 and number of hydrogen 
bond donors ≤ 5 (Ertl et al., 2000). All the 
active synthesized compounds 3a, 3g, 3h, 3j 
and 3l followed the criteria for orally active 
drug and therefore, these compounds may 
have a good potential for eventual develop-
ment as oral agents and may be potentially 
active new antileishmanial drug candidate. 
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Figure 5: Docking of compound 3a (Left panel) and compound 3l (Right panel) with Adenine phos-
phoribosyltransferase of L. donovani (PDB ID: 1QB8). Ligands are shown in red color. Hydrogen 
bonds are shown in green color. Hydrophobic bonds are shown in sky blue color. 
 
 
Table 4: Pharmacokinetic parameters important for good oral bioavailability of bis-(4-hydroxycouma-
rin-3-yl) methane derivatives 3(a-l) 

Entry 
% 
ABS 

TPSA 
(A2) 

n-
ROTB 

MV MW miLog P 
n-ON  
acceptors 

n-OHNH 
donors 

Lipinski’s 
violations 

Rule - - - - < 500 ≤ 5 < 10 < 5 ≤ 1 

3a 74.19 100.87 3 348.81 412.39 4.50 6 2 0 

3b 74.19 100.87 3 362.34 446.84 5.20 6 2 1 

3c 74.19 100.87 3 375.88 481.28 5.78 6 2 1 
3d 74.19 100.87 3 353.74 430.38 4.68 6 2 0 
3e 71.01 110.11 4 374.35 442.42 4.58 7 2 0 
3f 67.82 119.34 5 399.90 472.44 4.16 8 2 0 
3g 67.82 119.34 5 399.90 472.44 4.56 8 2 0 
3h 67.82 119.34 5 399.90 472.44 4.56 8 2 0 
3i 64.63 128.58 6 425.44 502.47 4.15 9 2 1 
3j 64.03 130.34 4 382.37 458.42 3.86 8 3 0 
3k 65.98 124.67 3 365.67 437.40 4.27 7 2 0 
3l 73.08 104.11 4 394.71 455.46 4.62 7 2 0 

% ABS: percentage absorption; TPSA: topological polar surface area; n-ROTB: number of rotatable 
bonds; MV: molecular volume; MW: molecular weight; miLog P: logarithm of partition coefficient of 
compound between n-octanol and water; n-ON acceptors: number of hydrogen bond acceptors; n-
OHNH donors: number of hydrogen bonds donors 
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Drug likeness and drug score 
In this work, we used the OSIRIS proper-

ty explorer for calculating the fragment-based 
drug likeness of all the synthesized com-
pounds 3(a-l) and other antileishmanial drugs 
(currently used in therapy) including pentam-
idine, sodium stibogluconate, amphotericin B 
and miltefosine (Table 5). Our theoretical 
data showed that all the synthesized com-
pounds (except compound 3k) presented a 
drug likeness value higher than the com-
pounds currently used in therapy. In this 
study, we also verified the drug score, which 
combines drug likeness, clog P, log S, mo-
lecular weight and toxicity risks in one value 
and that may be used to consider the com-
pound overall potential to qualify for a drug. 
Our data (Table 5) showed that all the syn-
thesized compounds (except compound 3k) 
presented a very close value to pentamidine, 
sodium stibogluconate amphotericin B and 
miltefosine. 

 
Table 5: Drug likeness and drug score of bis-(4-
hydroxycoumarin-3-yl) methane derivatives 3(a-l) 
compared to standard drugs 

Entry 
Drug 
likeness  

Drug score

3a 2.54 0.28 
3b 3.78 0.35 
3c 2.30 0.20 
3d 1.82 0.31 
3e 2.44 0.33 
3f 4.24 0.34 
3g 1.97 0.27 
3h 2.26 0.32 
3i 4.96 0.32 
3j 2.25 0.35 
3k -5.92 0.18 
3l 1.95 0.22 
Pentamidine -5.35 0.45 
Sodium stibogluconate -1.88 0.40 
Amphotericin B 0.14 0.26 
Miltefosine -54.74 0.30 
 
 

CONCLUSIONS 

In conclusion, synthesis of bis-(4-hydro-
xycoumarin-3-yl) methane derivatives 3(a-l) 
has been presented and synthesized com-
pounds were investigated for antileishmanial 
activity. We have reported succinimide-N-

sulfonic acid as efficient catalyst for the one-
pot synthesis of bis-(4-hydroxycoumarin-3-
yl) methanes in ethanol. The products were 
obtained in excellent yields and the reaction 
times were significantly short. Compounds 
3a, 3g, and 3l were most active for antileish-
manial activity when compared with sodium 
stibogluconate and may serve as a lead com-
pounds for further studies. Molecular dock-
ing study showed good binding of these 
compound to the active site of Adenine phos-
phoribosyltransferase of L. donovani. Also, 
none of the synthesized compounds were cy-
totoxic to HeLa cell line upto the concentra-
tion 400 μg/mL. Furthermore, analysis of the 
ADME parameters showed good drug like 
properties and can be developed as oral drug 
candidate. Drug likeness values of synthe-
sized compounds were better than com-
pounds currently used in therapy. Also, drug 
score values of compounds were very close 
to standard drugs (pentamidine, sodium 
stibogluconate, amphotericin B and miltefo-
sine). Thus, present study helps us in identi-
fying bis-(4-hydroxycoumarin-3-yl) me-
thanes as new lead that could be exploited as 
a potential antileishmanial agent. 
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