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In many applications, stochastic processes are used for modeling. Bayesian
analysis is a strong tool for inference as well as for prediction. We here present
an R package for a large class of models, all based on the definition of a jump
diffusion with a non-homogeneous Poisson process. Special cases, as the Poisson
process itself, a general diffusion process or a hierarchical (mixed) diffusion model,
are considered. The package is a general tool box, because it is based on the
stochastic differential equation, approximated with the Euler scheme. Functions
for simulation, estimation and prediction are provided for each considered model.

Keywords: Bayesian estimation, Euler-Maruyama approximation, hierarchical (mixed) model,
hidden Markov model, (jump) diffusion, stochastic differential equation.

1 Introduction

Time-continuous stochastic processes are widely used for modeling in many areas, for example
in biometrical applications, see Donnet et al. (2010); Ditlevsen and Gaetano (2005), finance,
see Genon-Catalot et al. (2000), material fatigue, see Hermann et al. (2016b); Hermann and
Ruggeri (2016), or many others.

If one specific model is considered, maybe with an explicit solution of the stochastic dif-
ferential equation (SDE), inference often is tailored to the specific model properties. This
leads to specialized software implementations that often are not easy to generalize or trans-
ferable to other models. The here presented package is based on the general definition of
the SDE with arbitrary drift, variance and jump high function of a jump diffusion process.
This leads to a large area of application fields. The methods presented in the following, are
implemented in R, see R Core Team (2015), in the package BaPreStoPro, which is available
on github.com/SimoneHermann/BaPreStoPro.

There is a wide range of models, that will be considered. In some applications, data are
collected at different individuals and, therefore, several series in possibly different time points
have to be modeled. A hierarchical model might be suitable in this case, see for example
Hermann et al. (2016b). Dependent on the kind of measurement, the diffusion itself might
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be observed not directly but noisy. In this case, a hidden Markov model can be suitable, see
Donnet et al. (2010). There are also applications with jumps in the data series, where a jump
diffusion can be of interest, see Hermann et al. (2016a); Platen and Bruti-Liberati (2010).

The models considered in the following are based on the process {Yt, t ∈ [0, T ]} described
by the stochastic differential equation

dYt = b(φ, t, Yt) dt+ s(γ, t, Yt) dWt + h(θ, t, Yt) dNt, Y0 = y0(φ), (1)

where {Wt, t ∈ [0, T ]} denotes a Brownian motion and {Nt, t ∈ [0, T ]} a non-homogeneous
Poisson process (NHPP) with cumulative intensity function Λξ(t), which has to be bounded
on [0, T ].

The process {Yt, t ∈ [0, T ]} can be a general diffusion with h(θ, t, y) = 0 or the NHPP itself
with b(φ, t, y) = s(γ, t, y) = y0(φ) = 0 and h(θ, t, y) = 1. We denote the whole parameter
vector with ϑ = (φ, γ2, θ, ξ) with φ ∈ Rp, γ2 ∈ (0,∞), θ ∈ R and ξ ∈ Rq.

We assume to observe the process discretely in time points 0 ≤ t0 < t1 < ... < tn ≤ T .
In Hermann (2016), a Bayesian prediction approach based on the Euler approximation is
presented. The approximated variables are given by

Y0 = y0(φ), (2)

Yi = Yi−1 + b(φ, ti−1, Yi−1) ∆i + s(γ, ti−1, Yi−1)
√

∆i ζi + h(θ, ti−1, Yi−1)∆Ni,

ζi ∼ N (0, 1), ∆Ni ∼ Pois (Λξ(ti)− Λξ(ti−1)) ,

∆i = ti − ti−1, i = 1, ..., n,

see Platen and Bruti-Liberati (2010). In the following, we denote the vector of Euler approx-
imated variables with Y(n) = (Y0, Y1, ..., Yn).

In the next section, the estimation is shortly motivated for the considered models. Af-
terwards, the Bayesian prediction procedure is explained. In Section 4, the functions of the
package are illustrated.

2 Models

2.1 Diffusion

In the following, an estimation procedure based on the Euler approximation of the process
defined by the SDE (1) with h(θ, t, y) = 0 is given. We here restrict to the simple case
of estimation with the transition density of the Euler approximated variables in (2). Fuchs
(2013) presents a data augmentation approach for the estimation based on the SDE in the
case of large inter-observation times in the data.

The transition distribution is given in the Bayes model

Yi|Yi−1, φ, γ
2 ∼ N (Yi−1 + b(φ, ti−1, Yi−1) ∆i, s

2(γ, ti−1, Yi−1)∆i), i = 1, ..., n

φ|mφ, Vφ ∼ N (mφ, Vφ), Vφ = diag(v2
1, ..., v

2
p)

γ2|aγ , bγ ∼ IG(aγ , bγ).

In the case of nonlinear function b, a Metropolis Hastings (MH) algorithm for φ is suitable,
see Robert and Casella (2004). For generalization, only this case is considered. Parts of φ,
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which are linear in b, could be estimated with a conjugate prior, see, for example, Donnet
et al. (2010).

In the case of a specific variance function s(γ, t, y) in the form s(γ, t, y) = γ · s̃(t, y), a
full conditional posterior can be calculated. Examples are s̃(t, y) = 1 with constant variance
behavior or s̃(t, y) = t to have a variance structure dependent on the time or s̃(t, y) = y that
leads to an autoregressive variance dependent on the current value of the process.

In this case, the full conditional posterior of γ2 is given by

γ2|Y(n), φ ∼ IG

(
aγ +

n

2
, bγ +

1

2

n∑
i=1

(Yi − Yi−1 − b(φ, ti−1, Yi−1)∆i)
2

s̃2(ti−1, Yi−1)∆i

)
.

In the package, only the variance function s(γ, t, y) = γ · s̃(t, y) is considered. In the case
of a general function s(γ, t, y), estimation of γ2 could be conducted through a MH algorithm
as well.

Sampling from the posterior of both parameters φ and γ2 jointly, is performed with a
Metropolis within Gibbs sampler, see Robert and Casella (2004).

2.2 Hierarchical diffusion model

We here consider the parameter φ to be a random effect and have one realisation for each
series. We here restrict to the Gaussian mixture distribution, extensions would be future
work.

For the special cases of the Ornstein-Uhlenbeck and the Cox-Ingersoll-Ross process with
explicit representation, inference and prediction for the hierarchical diffusion model is im-
plemented in the R package mixedsde, see Dion et al. (2016b) and explained in Dion et al.
(2016a).

We define the Euler approximated Bayes model

Yij |Yi−1,j , φj , γ
2 ∼ N (Yi−1,j + b(φj , ti−1,j , Yi−1,j) ∆ij , γ

2s̃2(ti−1,j , Yi−1,j)∆ij), i = 1, ..., nj

φj |µ,Ω ∼ N (µ,Ω) i.i.d., j = 1, ..., J, Ω = diag(ω2
1, ..., ω

2
p)

µ|mµ, Vµ ∼ N (mµ, Vµ), Vµ = diag(v2
1, ..., v

2
p)

ω2
r |aω,r, bω,r ∼ IG(aω,r, bω,r), r = 1, ..., p

γ2|aγ , bγ ∼ IG(aγ , bγ)

with ∆ij = tij − ti−1,j and Y0j = y0(φj), j = 1, ..., J . Denote with Y(nj ,j) the jth observation
vector and Y(n·,J) all the observations {Yij}i=1,...,nj ,j=1,...,J . The estimation procedure can also
be found in Hermann et al. (2016b) for fixed y0 = y0(φ).

Since Y0j depends on the random effect, the likelihood is given by

p(Y(n·,J)|φ1, ..., φJ , γ
2) =

J∏
j=1

p(Y0j |φj)
nj∏
i=1

p(Yij |Yi−1,j , φj , γ
2)

with p(Y0j |φj) = 1y0(φj)(Y0j).
We assume a conjugate normal prior distribution of µ with mean mµ and diagonal variance

matrix Vµ. In Hermann et al. (2016b), the matrix representation of the posterior distribution
can be found. Since Vµ and Ω are assumed to be diagonal in our model, we can calculate the
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posterior distribution for each component of µ. The full conditional posterior distribution is
given by

µr|φ1, ..., φJ ,Ω ∼ N

( 1

v2
r

+
J

ω2
r

)−1
mµ,r

v2
r

+

J∑
j=1

(φj)r
ω2
r

 ,

(
1

v2
r

+
J

ω2
r

)−1
 , r = 1, ..., p

with (φj)r being the rth component of φj .
In the case of correlations between the parameters, i.e. non-diagonal matrix Ω, one could

take the Wishart prior distribution, which is also conjugate to the normal likelihood, see, for
example, Donnet et al. (2010). Choosing the inverse gamma distribution for the diagonal
elements, we get the conditional posterior distribution

ω2
r |(φ1)r, ..., (φJ)r, µr ∼ IG

αω,r +
J

2
, βω,r +

1

2

J∑
j=1

((φj)r − µr)2

 , r = 1, ..., p.

The full conditional posterior of γ2 is similar to the single series model given by

γ2|Y(n·,J), φ1, ..., φJ ∼ IG

aγ +

J∑
j=1

nj
2
, bγ +

1

2

J∑
j=1

nj∑
i=1

(Yij − Yi−1,j − b(φj , ti−1,j , Yi−1,j)∆ij)
2

s̃2(ti−1,j , Yi−1,j)∆ij

 .

After choosing starting values φ∗j0, j = 1, ..., J, for the MH steps and µ∗0, Ω∗
0 and γ2∗

0 for
the Gibbs sampler, we draw for k = 1, ...,K from

φ∗jk ∼ p(φj |Y(nj ,j), γ
2∗
k−1, µ

∗
k−1,Ω

∗
k−1), j = 1, ..., J

µ∗k ∼ p(µ|φ∗1k, ..., φ∗Jk,Ω∗
k−1)

Ω∗
k ∼ p(Ω|φ∗1k, ..., φ∗Jk, µ∗k)

γ2∗
k ∼ p(γ2|Y(n·,J), φ

∗
1k, ..., φ

∗
Jk).

2.3 Hidden diffusion model

If the diffusion process is noisy observed, a hidden Markov model can be suitable. In this
case, assume the Bayes model

Zi|Yi, σ2 ∼ N (Yi, σ
2), i = 0, ..., n

Yi|Yi−1, φ, γ
2 ∼ N (Yi−1 + b(φ, ti−1, Yi−1) ∆i, γ

2s̃2(ti−1, Yi−1)∆i), i = 1, ..., n

φ|mφ, Vφ ∼ N (mφ, Vφ), Vφ = diag(v2
1, ..., v

2
p)

γ2|aγ , bγ ∼ IG(aγ , bγ)

σ2|aσ, bσ ∼ IG(aσ, bσ).

We introduce the additional short notation for the vector Z(n) = (Z0, ..., Zn). The model fits
in the class of state-space models in the literature and several filtering approaches for the
latent variable Y(n) are available. In the package, the particle Gibbs sampler is implemented,
see Andrieu et al. (2010).
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The full conditional posterior distribution of γ2 is exactly the same as in Section 2.1. The
posterior of φ can be calculated by

p(φ|Z(n), Y(n), γ
2, σ2) ∝ p(φ|Y(n), γ

2, σ2) · p(Z(n)|φ, Y(n), γ
2, σ2)

= p(φ|Y(n), γ
2) · p(Z0|y0(φ), σ2) ·

n∏
i=1

p(Zi|Yi, σ2)

∝ p(φ) · p(Y(n)|φ, γ2) · p(Z0|φ, σ2),

where p(Z0|φ, σ2) is the density of the N (y0(φ), σ2) distribution.
Finally, with the inverse gamma prior for σ2 we get the full conditional posterior

σ2|Z(n), Y(n) ∼ IG

(
aσ +

n+ 1

2
, bσ +

1

2

n∑
i=0

(Zi − Yi)2

)
.

Choose starting parameters θ∗0 = (φ∗0, γ
2∗
0 , σ2∗

0 ) and conduct the particle Gibbs sampler for
k = 1, ...,K through

Y
(k)

(n) ∼ p(Y(n)|Z(n), φ
∗
k−1, σ

2∗
k−1, γ

2∗
k−1)

φ∗k ∼ p(φ|Z(n), Y
(k)

(n) , σ
2∗
k−1, γ

2∗
k−1)

γ2∗
k ∼ p(γ2|Y (k)

(n) , φ
∗
k)

σ2∗
k ∼ p(σ2|Z(n), Y

(k)
(n) ),

where in the first iteration, Y
(1)

(n) is drawn by an ordinary sequential Monte Carlo algorithm

(SMC), because no fixed trajectory is given, and afterwards a conditional SMC is used, see
Andrieu et al. (2010).

2.4 Hidden hierarchical diffusion model

This model is an extension of the hierarchical model in Section 2.2, which is noisy observed.
We define the Euler approximated Bayes model

Zij ∼ N (Yij , σ
2), i = 0, ..., nj , j = 1, ..., J

Yij |Yi−1,j , φj , γ
2 ∼ N (Yi−1,j + b(φj , ti−1,j , Yi−1,j) ∆ij , γ

2s̃2(ti−1,j , Yi−1,j)∆ij), i = 1, ..., nj

φj |µ,Ω ∼ N (µ,Ω), j = 1, ..., J, Ω = diag(ω2
1, ..., ω

2
p)

µ|mµ, Vµ ∼ N (mµ, Vµ), Vµ = diag(v2
1, ..., v

2
p)

ω2
r |aω,r, bω,r ∼ IG(aω,r, bω,r), r = 1, ..., p

γ2|aγ , bγ ∼ IG(aγ , bγ)

σ2|aσ, bσ ∼ IG(aσ, bσ)

with Y0j = y0(φj), j = 1, ..., J . Denote with Z(nj ,j) the jth observation vector and Z(n·,J) all
the observations {Zij}i=1,...,nj ,j=1,...,J .

Analogously to the single series model, estimation of the latent variables Y(n1,1), ..., Y(nJ ,J)

is the crucial estimation step and will be conducted by the conditional SMC algorithm in
each of the particle Gibbs sampler iterations.
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Estimation for φ1, ..., φJ is analogously to the single series model for each j = 1, ..., J
conditional on γ2 and σ2. Estimation of µ,Ω and γ2 are the same as for the hierarchical
diffusion model in Section 2.2. The full conditional posterior of σ2 is similar to the single
series model given by

σ2|Z(n·,J), Y(n·,J) ∼ IG

aσ +

J∑
j=1

nj + 1

2
, bσ +

1

2

J∑
j=1

nj∑
i=0

(Zij − Yij)2

 .

2.5 Jump diffusion

In Hermann et al. (2016a), the SDE (1) with the special cases

b(φ, t, y) = φy, s(γ, t, y) = γy, h(θ, t, y) = θy

is presented. Merton (1976) introduced this model with a homogeneous Poisson process
(HPP), i.e. Λξ(t) = ξt, to model stock returns. The SDE has a unique strong solution, which
is given by

Yt = y0 · exp

(
φt− γ2

2
t+ γWt + log(1 + θ)Nt

)
(3)

for θ > −1, see Øksendal and Sulem (2005). As mentioned, inference and prediction for
this process is done in Hermann et al. (2016a) for observed NHPP and in Hermann and
Ruggeri (2016) for unobserved HPP. Inference for this process is implemented in the package
separately.

Based on the Euler approximated variables in (2), the parameter vector ϑ = (φ, γ2, θ, ξ)
and definition ∆Ni = Nti −Nti−1 , we assume the Bayesian model

Yi|Yi−1,∆Ni, ϑ ∼ N (Yi−1 + b(φ, ti−1, Yi−1)∆i + h(θ, ti−1, Yi−1)∆Ni, s
2(γ, ti−1, Yi−1)∆i)

Nti ∼ Pois(Λξ(ti)), i = 0, ..., n

φ ∼ p(φ)

γ2 ∼ p(γ2)

θ ∼ p(θ)
ξ ∼ p(ξ).

In the package, arbitrary density functions can be chosen for each parameter. Conditional
on the Poisson process variables N(n) = (Nt0 , ..., Ntn), the likelihood for the parameters φ, γ2

and θ is the product of normal distribution densities. For the likelihood of ξ, we define the
event times of the Poisson process by Ti = min{t : Nt = i}, i = 1, ..., Ntn . The likelihood is
given by

p(N(n)|ξ) = e−Λξ(tn) ·
Ntn∏
i=1

λξ(Ti),

see also Ŕıos Insua et al. (2012).
Estimation of the parameters φ, γ2, θ and ξ is implemented with a Metropolis within Gibbs

sampler, if the Poisson process is observed. Of course, for special cases of functions b, s and
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h, full conditional posteriors could be analytically available, possibly with conjugate priors.
But, for generalization, this will not be done here.

In many cases, the Poisson process can not be directly observed and is, therefore, latent.
In the following, we consider a filtering procedure for the process given in (1) for the Euler
approximated variables, in the case of an unobserved Poisson process. One step is included
in the Gibbs sampler for the estimation of N(n).

Define ∆Λξ,i := Λξ(ti) − Λξ(ti−1) and ∆Yi = Yti − Yti−1 . We reduce the problem to the
posterior of the independent differences ∆Ni ∼ Pois(∆Λξ,i). It is

∆Yi|∆Ni, Yi−1, φ, γ
2, θ ∼ N

(
b(φ, ti−1, Yi−1)∆i + h(θ, ti−1, Yi−1)∆Ni, s

2(γ, ti−1, Yi−1)∆i

)
.

Therefore, the posterior density for ∆Ni is given by

p(∆Ni|∆Yi, Yi−1, φ, γ
2, θ, ξ)

∝
exp(−∆Λξ,i)

(∆Ni)!
(∆Λξ,i)

∆Ni
1√

2π∆is(γ, ti−1, Yi−1)
·

exp

(
−(∆Yi − b(φ, ti−1, Yi−1)∆i − h(θ, ti−1, Yi−1)∆Ni)

2

2s2(γ, ti−1, Yi−1)∆i

)
,

which is not a density of a known distribution family. For all i = 1, .., n, sampling from the
posterior is done with inversion method, see Devroye (1986) on a candidate set {0, ..., R}, R ∈
N.

After choosing starting values, the Metropolis within Gibbs sampler unites all estimation
steps.

2.6 Jump regression

Analogously to the jump diffusion, in Heeke et al. (2016), a regression model including a
NHPP has been considered and is for this reason implemented in the package as well. The
corresponding Bayes model is given by

Yi ∼ N (f(ti, Nti , θ), γ
2s2(ti))

Nti ∼ Pois(Λξ(ti)), i = 0, ..., n,

θ|mθ, Vθ ∼ N (mθ, Vθ)

γ2|aγ , bγ ∼ IG(aγ , bγ)

ξ ∼ p(ξ) = 1.

Here, s2(t) is a time dependent variance function. Conditional on the Poisson process vari-
ables N(n), we have a regression model, whose parameters can be estimated based on the
likelihood, which is a product of normal distribution densities. Because of the possibly non-
linear regression function we have no closed form of the posterior of θ. Therefore, a Metropolis
within Gibbs sampler will be used, whereby

γ2|Y(n), N(n), θ ∼ IG

(
aγ +

n+ 1

2
, bγ +

1

2

n∑
i=0

(Yi − f(ti, Nti , θ))
2

s2(ti)

)
.
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The Gibbs sampler unites the three estimation steps as follows

θ∗k ∼ p(θ|Y(n), N(n), γ
2∗
k−1)

γ2∗
k ∼ p(γ2|Y(n), N(n), θ

∗
k)

ξ∗k ∼ p(ξ|N(n)), k = 1, ...,K.

It is future work to extend the estimation also to the case of unobserved Poisson process
variables. A particle Gibbs sampler might be suitable.

In the package, a general nonlinear regression model and its hierarchical version are also
implemented. The Bayes model and the prior distributions are analogously to the diffusion
and the hierarchical diffusion model.

3 Prediction

In Hermann (2016), two Bayesian prediction methods are presented. One for a pointwise
predictive distribution and one for a predictive distribution of the trajectory. For a better
understanding, we shortly present the algorithms without going into theoretical details.

We assume to predict the process in time point t∗ � tn, resp. t∗ � t0. For large time
distances, the Euler approximation can be inaccurate. Therefore, the idea of the algorithm
is to go in M steps to the interesting value and each include the predictive distribution of
the last step. This means, in time points {t0, tn} 3 τ0 < τ1 < ... < τM = t∗, predictions
are calculated. Let p(Y ∗

m+1|Y ∗
m, ϑ) denote the transition density of the Euler approximated

variables Y ∗
0 , ..., Y

∗
M in τ0, ..., τM . In the specific model, the hierarchical and the jump models,

the first step is to predict the latent variables, the random effect in the hierarchical model
and the Poisson process in the jump models. In the following, ϑ∗k, k = 1, ...,K will denote the
vector of posterior and predictive samples jointly.

Algorithm 1
Take samples ϑ∗k, k = 1, ...,K from the posterior distribution p(ϑ|Y(n)), respectively from the
predictive distribution of latent variables.

(i) Set m = 1 and Y
∗(k)

0 := Yn, k = 1, ...,K (prediction for the current series) or Y
∗(k)

0 :=
y0, k = 1, ...,K (prediction for a new series).

(ii) Draw K samples

Y ∗(r)
m ∼ 1

K

K∑
k=1

p
(
Y ∗
m|Y

∗(k)
m−1, ϑ

∗
k

)
, r = 1, ...,K.

(iii) If m = M stop
else m = m+ 1 and go to step (ii).

Sampling in step (ii) is done with inversion method, see Devroye (1986). This algorithm
yields samples from the predictive distribution p(Y ∗

m|Y(n)),m = 1, ...,M for each of the points
τ1, ..., τM , but no trajectories. The following algorithm is made for the case that trajectories
are the value of interest. Here, it is possible not to draw exactlyM samples from the trajectory,
but to choose a critical value yc and to stop if it is reached. In addition, it is possible to draw
L 6= K samples.
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Algorithm 2
Take the samples ϑ∗k, k = 1, ...,K resulting from the Gibbs sampler displaying p(ϑ|Y(n)),
respectively from the predictive distribution of latent variables. For l = 1, ..., L repeat the
following steps.

(i) Set m = 1 and Y
∗(l)

0 := Yn (prediction for the current series) or Y
∗(l)

0 := y0 (prediction
for a new series).

(ii) Draw one sample

Y ∗(l)
m ∼ 1

K

K∑
k=1

p
(
Y ∗
m|Y

∗(l)
m−1, ϑ

∗
k

)
.

(iii) If m = M (or Y
∗(l)
m ≥ yc) stop

else m = m+ 1 and go to step (ii).

In the package, two additional prediction approaches are implemented. At first, usual in
frequentist estimation, the point estimations, i.e. the posterior mean, are plugged in the model
definition and trajectories are simulated to form a prediction. At second, usual in Bayesian
estimation, each sample from the posterior is plugged in and the process is simulated once.

4 Implementation

The package BaPreStoPro is structured as follows. For each of the models, there is one S4
model class as can be seen in the second column of Table 1.

Model Class object
simulate & estimate plot & predict

diffusion Diffusion est.Diffusion

hierarchical diffusion mixedDiffusion est.mixedDiffusion

hidden diffusion hiddenDiffusion est.hiddenDiffusion

hierarchical hidden diffusion hiddenmixedDiffusion est.hiddenmixedDiffusion

NHPP NHPP est.NHPP

jump diffusion jumpDiffusion est.jumpDiffusion

jump diffusion (3) Merton est.Merton

jump regression jumpRegression est.jumpRegression

regression Regression est.Regression

hierarchical regression mixedRegression est.mixedRegression

Table 1: Overview of the class names for the corresponding methods.

They all are constructed by the function set.to.class with the main input parameter
class.name, denoting the name of the model class, and the input parameters parameter,
prior, start, b.fun, s.fun, h.fun, sT.fun, y0.fun, fun, Lambda and
priorDensity. prior is optional, if missing, it is calculated from the list entries of parameter
so that mean and standard deviation of the prior distribution are equal to the values of
parameter. Analogously, start, if missing, is set equal to parameter. b.fun defines the
function b(φ, t, y) in all (jump) diffusion models, s.fun defines the function s(γ2, t, y), and
h.fun the function h(θ, t, y) in the jump diffusion model. sT.fun stands for the variance
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function s̃(t, y) in the (mixed) diffusion models as well as for s2(t) in the (mixed) regression
models. y0.fun denotes the starting value function y0(φ) for the hidden and mixed diffusion
models. fun is the regression function f(t,Nt, θ) in the jump regression and f(φ, t) in the
(mixed) regression model. Lambda is for all models, containing the NHPP, the cumulative
intensity function Λξ(t). priorDensity is for the jump diffusion model a list of prior densi-
ties, for the Merton model and the NHPP a prior density for ξ, defaults are non-informative
approaches.

For each of the model classes, a simulation method simulate is available. With the respec-
tive data set, method estimate can be applied to the model class with the additional input
parameters t, i.e. the time vector, data, denoting the respective data set, which can be a
vector, a matrix or a list in the respective model, and the number of Markov chain iterations,
nMCMC. In addition, there is the possibility to choose the proposal standard deviation for the
MH algorithms, propSd. If adapt = TRUE, this proposal standard deviation is just the start-
ing one and is adapted after every 50 iterations, if the acceptance rate is smaller than 30% or
larger than 60%, see for adaptive MCMC Rosenthal (2011). The proposal density itself can
also be chosen between the normal and the log-normal distribution, proposal = "normal"

or "lognormal". Output of the estimate method is a new S4 class composed of "est." and
the model class name, see Table 1.

This estimation class object is input parameter in the method predict. One of the
main input parameters is pred.alg and denotes the prediction algorithm. Algorithm 1
(default) is named "Distribution". Algorithm 2 is implemented with the pred.alg =

"Trajectory". As mentioned, two additional sampling prediction algorithms are imple-
mented. With pred.alg = "simpleTrajectory", the point estimates, i.e. the posterior
mean, are calculated and based on these values, the process is just simulated. With pred.alg

= "simpleBayesTrajectory", the process is simulated with each posterior sample once. Sec-
ond main input parameter is which.series, where one can decide between "new", i.e. τ0 = t0,
and "current", i.e. τ0 = tn. An overview can be seen in Table 2.

Algorithm 1 Algorithm 2
τ0 = t0 predict( , pred.alg = "Distribution",

which.series = "new")

predict( , pred.alg = "Trajectory",

which.series = "new")

τ0 = tn predict( , pred.alg = "Distribution",

which.series = "current")

predict( , pred.alg = "Trajectory",

which.series = "current")

Table 2: Overview of the presented prediction methods in Section 3, implemented in method
predict.

Diffusion

We will illustrate the main methods of the package with an example. It will not be possible
to show all implemented methods in one article, so we restrict here to a detailed explanation
for the diffusion model. Usage for the other models is analogously. For two special cases, we
show special features, for the mixed model and the jump diffusion.

Example 1
We consider process (1) with h(θ, t, y) = 0, s(γ, t, y) = γy and b(φ, t, y) = φy. It is approxi-
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mated by

Yi = Yi−1(1 + φ∆i) + γYi−1

√
∆i ζi, i = 1, ..., n

with Y0 = y0 and ζi ∼ N (0, 1). We simulate random samples of the process with y0 = 1, φ = 2,
γ = 1 and n = 50.

We translate that to code:

b.fun <- function(phi, t, y) phi * y

sT.fun <- function(t, y) y

model <- set.to.class("Diffusion", parameter = list(phi = 2, gamma2 = 1),

b.fun = b.fun, sT.fun = sT.fun)

t <- seq(0, 1, by = 0.01)

Y <- simulate(model, seed = 123, t = t, y0 = 1)

The simulated trajectory can be seen in Figure 1. There is an optional input parameter mw,
default is 1, whose inverse serves as mesh width for simulating time-continuity of the process.
For example, if mw = 10, nine points are equidistantly added between each two points of t

and the process is simulated on the finer time grid. Afterwards, every tenth simulated point
is given out as simulated series. We here restrict to mw = 1 to avoid biased estimations.

Estimation is done by the method estimate as follows:

est <- estimate(model, t, Y, 21000)

plot(est)
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Figure 1: Trajectory created with method simulate for the diffusion model.

Output of the method estimate for class object Diffusion is a new class object
est.Diffusion, which contains all information of the model as well as the data and the
estimation results. In addition, it contains a proposal for the thinning rate and the burn-in
phase. Both are input parameters in the following methods, but if they are missing, the
proposed values are taken.

The proposed burnIn is calculated by dividing the Markov chains into 10 blocks and calcu-
late the 95% credibility intervals and the respective mean. Starting in the first one, the block
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is taken as burn-in as long as the mean of the current block is not in the credibility interval
of the following block or vice versa. The thinning rate is proposed by the smallest lag, which
leads to a chain autocorrelation of less than 80%. It is not easy to automate these choices, so
it is highly recommended by the author to verify the chains manually.

The Markov chains are visualized with method plot, which has several options for input
parameter style, namely chains, acf and density. The first one can be seen in Figure
2, the second one shows the autocorrelation functions for the chains and the third one the
resulting posterior densities. Another important input parameter is reduced. If it is set to
TRUE, the chains are reduced by the burn-in phase and the thinning rate, both optional input
parameters.
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Figure 2: Markov chains produced by method estimate and visualized with method plot for
the diffusion process in Figure 1.

Class object est.Diffusion is used for method predict. Thinning rate and burn-in phase
are also input parameters in the method predict.

burnIn <- 1000

thinning <- 2

pred <- predict(est, burnIn = burnIn, thinning = thinning,

b.fun.mat = function(phi, t, y) phi[,1]*y)

Since the function b.fun is stored in the est.Diffusion object, the input parameter b.fun.mat
is not necessary but the algorithm gets much faster with the matrix-wise function definition. If
plot.prediction = TRUE, the 1-level prediction intervals are plotted with the observation
series used for estimation. This leads to Figure 3(a). Default value for the input parameter
pred.alg, i.e. the prediction algorithm, is "Distribution", which denotes the pointwise
prediction Algorithm 1.

One important input parameter of method predict is which.series. Default is "new",
which leads to prediction of a new series, starting in the first point of the observation series.
The second option is "current", which yields a prediction of the further development of the
observed series. If no vector of time points is specified (also an input parameter, t), the
input variable M2pred can be used (default: 10), which is the number of points that will be
predicted with the median of the observation time distances. This can be run as follows:

pred.current <- predict(est, b.fun.mat = function(phi, t, y) phi[,1]*y,

which.series = "current", M2pred = 20)
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(b) which.series = "current"

Figure 3: 95% prediction intervals of method predict, visualized, if input parameter
plot.prediction is TRUE (default).

The result can be seen in Figure 3(b). Default values for the starting points of the prediction
is for which.series = "new" the starting point of the observed series, and for which.series
= "current" the last observation point. If desired, this can be changed with the input

parameter y.start, which denotes the point Y
∗(k)

0 , k = 1, ...,K.
Algorithm 2 is implemented with the input parameter pred.alg = "Trajectory". Here, it

could also be desired to choose L 6= K, implemented with sample.length. Default is L = K.
In Hermann (2016), the two presented prediction methods are compared to two commonly
used sampling procedures. For the first one, pred.alg = "simpleTrajectory", the point
estimates, i.e. the posterior mean, are plugged in the model definition and sample.length,
default is the number of posterior samples K, trajectories are drawn. For the second one,
pred.alg = "simpleBayesTrajectory", each of the K posterior samples is plugged in the
model definition and one trajectory is drawn. If sample.length is specified and smaller than
K, the first sample.length posterior samples are taken.

There is one additional feature of method predict. For comparison, a one step Euler pre-
diction is implemented, which would be similar to Algorithm 1 with M = 1. In that case,
sampling is not necessary and quantiles can be calculated directly. With Euler.interval =

TRUE, for each of the time points, level/2 and 1-level/2 quantiles of the predictive distri-
bution are calculated.

Mixed diffusion

We simulate a model similar to Example 1, but in a mixture model. Here, we can also assume
the starting point to be random, i.e. y0(φ) = φ2 and b(φ, t, y) = φ1y. Now, for similar model
as before, we choose µ = (2, 1) and Ω = diag(1, 0.04). We sample J = 50 series as follows.

J <- 50

mu <- c(2, 1)

Omega <- c(1, 0.04)

phi <- cbind(rnorm(J, mu[1], sqrt(Omega[1])), rnorm(J, mu[2], sqrt(Omega[2])))

gamma2 <- 1

y0.fun <- function(phi, t) phi[2]

b.fun <- function(phi, t, y) phi[1] * y
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sT.fun <- function(t, y) y

model <- set.to.class("mixedDiffusion", y0.fun = y0.fun,

b.fun = b.fun, sT.fun = sT.fun,

parameter = list(phi = phi, mu = mu, Omega = Omega, gamma2 = gamma2))

t <- seq(0, 1, by = 0.01)

series <- simulate(model, seed = 123, t = t, plot.series = FALSE)

The variable series is a J × 101 matrix. To estimate with the whole data set, this can be
also input for the parameter data for the method estimate. In this case, all series are equally
long, i.e. n1 = ... = nJ and all series are observed in the same time points. Otherwise, it is
possible to include a list.

t.list <- lapply(1:(J-1), function(i) t)

t.list[[J]] <- t[1:50]

data.list <- lapply(1:(J-1), function(i) series[i,])

data.list[[J]] <- series[J, 1:50]

est <- estimate(model, t.list, data.list, 11000)

For the hierarchical models, there is an additional style option, called "int.phi" meaning
the credible intervals for the random effects. The point in the middle of the intervals mark the
posterior median. In addition, input parameter par2plot, which is a logical vector, contains
TRUE for every parameter to be plotted and FALSE otherwise. For comparison with starting
or prior values or, in a simulation study with the chosen values, phi itself can be included.

cr <- plot(est, style = "int.phi", phi = phi, par2plot = c(T, F))

legend("bottomleft", c("true value", "posterior median", "95% credible interval"),

col = c(2, 1, 1), lty = c(-1, -1, 1), pch = c(20, 20, -1), cex = 0.7)

sum(cr[[1]][1,] <= phi[,1] & cr[[1]][3,] >= phi[,1])

The result can be seen in Figure 4. Except one, all credible intervals include the simulated
values.

Now, we want to make a prediction for the further development of the last, i.e. the Jth,
series.

pred <- predict(est, t = t[50:101], which.series = "current", ind.pred = J,

b.fun.mat = function(phi, t, y) phi[,1]*y,

burnIn = 1000, thinning = 2)

lines(t[51:101], series[J, 51:101], lty = 2)

We can see the result in Figure 5. The solid black line marks the part of the Jth series that is
used for estimation. The dotted line is the simulation part that is skipped in the estimation
and prediction is made for. The red lines are the 95% prediction intervals. Output of the
method predict is a 5 000×52 matrix containing 5 000 samples of the predictive distribution
in each of the 52 time points.
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Figure 4: 95% credible intervals for the first component of the random effect in the mixed
model, created with plot(..., style = "int.phi").
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Figure 5: 95% prediction intervals for the last series of the mixed diffusion model.

Jump diffusion

One additional example will be given by a jump diffusion. This model is only implemented
for the case φ ∈ R as one-dimensional parameter.

Example 2
We consider the process (1) with b(φ, t, y) = φ, s(γ, t, y) = γ, h(θ, t, y) = θy and Λξ(t) =(
t
ξ2

)ξ1
. It is approximated by

Yi = Yi−1 + φ∆i + γ
√

∆i ζi + θYi−1∆Ni, i = 1, ..., n

with Y0 = y0, ζi ∼ N (0, 1) and ∆Ni ∼ Pois(Λξ(ti)− Λξ(ti−1)). We fix y0 = 0.5, φ = 0.2, γ =
0.5, θ = 0.1, ξ = (2, 0.2).

We translate the model to the language of the package:
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b.fun <- function(phi, t, y) phi

s.fun <- function(gamma2, t, y) sqrt(gamma2)

h.fun <- function(theta, t, y) theta * y

Lambda <- function(t, xi) (t/xi[2])^xi[1]

model <- set.to.class("jumpDiffusion",

parameter = list(phi = 0.2, gamma2 = 0.25, theta = 0.1, xi = c(2, 0.2)),

b.fun = b.fun, s.fun = s.fun, h.fun = h.fun, Lambda = Lambda)

t <- seq(0, 1, by = 0.01)

series <- simulate(model, seed = 123, t = t, y0 = 0.5, plot.series = FALSE)

In the jump diffusion model, there are two possibilities: firstly, the Poisson process is not
observed. This would be implemented by

est.hidden <- estimate(model, t, series$Y, 11000)

plot(est.hidden, par2plot = c(rep(F, 5), T), reduced = T)

lines(t, series$N, lwd = 2, col = 2)

legend("topleft", c("filtered", "simulated"), col = 1:2, lwd = 1:2)

As mentioned, method plot has input parameter par2plot, which contains TRUE for every
parameter to be plotted and FALSE otherwise. The order for the jump diffusion model is
(φ, θ, γ2, ξ,N(n)). This leads to Figure 6, which compares the filtered trajectories of the
Poisson process with the simulated series in red.
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Figure 6: Estimation of the latent Poisson process variable in the jump diffusion model. In
red: the simulated series.

Secondly, in the case of observed Poisson process variables, both observation vectors Y(n)

and N(n) have to be joint in a list with variables Y and N.

For the prediction of the jump diffusion with the presented methods in Section 3, it can be
decided for each of the processes, the latent Poisson process as well as for the jump diffusion, if
Algorithm 1 or 2 is desired. We have already seen the input parameter pred.alg, which is here
for the prediction of the jump diffusion. The additional input parameter pred.alg.N denotes
the prediction algorithm for the Poisson process and can be chosen between "Distribution"

and "Trajectory". In the first case, pointwise sampling from the predictive distribution
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of the independent differences is conducted. In the second case, Algorithm 2 is run for the
event times of the process. Default is "Trajectory", since the combination pred.alg =

"Trajectory" and pred.alg.N = "Distribution" does not make sense and is avoided to
be accidentally chosen. The parameter Lambda.mat again is, similar to b.fun.mat in the
diffusion model, to fasten the sampling algorithm.

5 Data example

Sixty-eight replicate constant amplitude tests in aluminum alloy were carried out to investigate
the fatigue crack propagation. In each of these tests, the number of cycles that leads to
fixed crack lengths, was observed. See for details Virkler et al. (1979). Against the natural
assumption that something is observed at fixed times, here the time is the dependent and the
crack length the independent variable. Therefore, from the crack length will be treated as
time vector t.

The Virkler data comes as a data frame of 164 rows and 69 columns where the first column
contains the crack lengths (in mm) and the 68 following the series of observed times in load
cycles up to a fixed crack length.

In Hermann et al. (2016b), a hierarchical diffusion model has been applied to the data and
the most suitable function turned out to be b(φ, t, y) = φ2

t (φ1 − y). We here start with the
starting parameter for µ given in Hermann et al. (2016b) and take the first 10 series for a
pre-estimation. In the mentioned article, a constant variance function is assumed. We here
try an autoregressive variance structure. For that reason, the process may not start in 0 and
the first point of the series is skipped.

data("Virkler")

Y <- t(Virkler[-1,-1]/10000)

t <- Virkler[-1,1]

J <- nrow(Y)

b.fun <- function(phi, t, y) phi[2]/t * (phi[1]-y)

sT.fun <- function(t, y) y

mu <- c(25, 1.8)

Omega <- c(1, 0.1)

gamma2 <- 0.1

model_pre <- set.to.class("mixedDiffusion", b.fun = b.fun, sT.fun = sT.fun,

parameter = list(phi = matrix(mu, 10, 2, byrow = TRUE),

mu = mu, Omega = Omega, gamma2 = gamma2))

K <- 21000

est_pre <- estimate(model_pre, t, Y[1:10,], K) # pre-estimation

We define the model class new based on the posterior means.

mu <- apply(est_pre@mu[seq(1001, K, by = 10),], 2, mean)

Omega <- apply(est_pre@Omega[seq(1001, K, by = 10),], 2, mean)
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gamma2 <- mean(est_pre@gamma2[seq(1001, K, by = 10)])

model <- set.to.class("mixedDiffusion", b.fun = b.fun, sT.fun = sT.fun,

parameter = list(phi = matrix(mu, J, 2, byrow = TRUE),

mu = mu, Omega = Omega, gamma2 = gamma2))

As mentioned, since we do not define prior and starting values, the prior parameter are chosen
so that mean and standard deviation are equal to the values defined in parameter and the
starting values as well. Since we have good prior knowledge through the pre-estimation, we
could also define smaller prior variances to strengthen the prior influence.

For comparison to the chosen values above, the posterior means are µ̂ = (28.6, 1.04), Ω̂ =
(11.985, 0.078) and γ̂2 = 5.63 ·10−4, which differ widely from the starting values and the prior
means from the beginning.

In addition, we assume the last series to be observed up to the 100th point and want to
make predictions for the further development of the current series.

J <- J-10

Y <- Y[-(1:10),]

t.list <- lapply(1:(J-1), function(i) t)

t.list[[J]] <- t[1:100]

data.list <- lapply(1:(J-1), function(i) Y[i,])

data.list[[J]] <- Y[J, 1:100]

est_new <- estimate(model, t.list, data.list, K)

pred_new <- predict(est_new, t = t[100:163], which.series = "current",

ind.pred = J, burnIn = 1000, thinning = 10,

b.fun.mat = function(phi, t, y) phi[,2]/t * (phi[,1]-y))

lines(t[101:163], Y[J, 101:163], lty = 2)

In Figure 7, we see the 95% prediction intervals, which contain the corresponding observed
values.
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Figure 7: Prediction intervals for the last series of the Virkler data (in red), dotted lines: the
predicted observations.
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6 Discussion

The presented package BaPreStoPro yields a general tool box for estimation and prediction of
stochastic processes driven by a Brownian motion and a non-homogeneous Poisson process,
defined by their stochastic differential equation. Arbitrary drift, variance and jump high
functions can be applied.

Currently, estimation is based on the likelihood dependent on the observation variables. If
there are different, and partially large, time distances, the Euler approximation can become
inaccurate. For continuous diffusions, Fuchs (2013) proposes a data augmentation approach
for the estimation based on the SDE in the case of large inter-observation times in the data.
This could enrich the estimation procedure of the package.

It is also thinkable to include other mixture distributions than the Gaussian for the hierar-
chical models or even a Bayesian nonparametric estimation approach for the mixture density.
In addition, for the diffusion models, the location parameters are always assumed to have a
normal prior distribution. This could be extended by a general choice of the user as done for
the jump diffusion model, which also allows for a non-informative approach.

Currently, the whole package is implemented in R. In some models, as for example the
hidden diffusion models with estimation based on a filtering algorithm, running times become
large for a reliable evaluation, which means a high number of Markov chain iterations. It will
be future work to outsource parts of the implementation to other languages like C.
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