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ABSTRACT 

Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance 
of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. 
The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as 
sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical 
diagnostic biomarkers and drug targets. 
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INTRODUCTION 

Like in other organs liver homeostasis re-
lies on the interplay between extracellular, 
intracellular and intercellular signaling. The 
latter is mediated by gap junctions which 
arise from the interaction of 2 hemichannels, 
also called connexons of adjacent cells, each 
connexon being composed of 6 connexin 
(Cx) proteins. More than 20 different con-
nexin variants have been identified, all 
which are named after their molecular 
weight as predicted by cDNA sequencing 
and expressed in kilodaltons (Bai and Wang, 

2014), and that are produced in a tissue-
specific way. In liver, 5 different connexin 
species are detectable (Figure 1). Parenchy-
mal liver cells, the hepatocytes, abundantly 
produce Cx32 and small quantities of Cx26. 
By contrast, Cx43 is the predominant con-
nexin species present in nonparenchymal 
liver cells, including stellate cells, Kupffer 
cells, and sinusoidal endothelial cells 
(Fischer et al., 2005). Cx37 and Cx40 are the 
major connexins harbored by liver vascula-
ture (Chaytor et al., 2001; Fischer et al., 
2005; Hernández-Guerra et al., 2014; 
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Shiojiri et al., 2006). Nevertheless, gap junc-
tions are mainly, if not uniquely, found be-
tween hepatocytes (Spray et al., 1994). Gap 
junctions provide a pathway for the intercel-
lular flux of small and hydrophilic substanc-
es, including adenosine triphosphate (ATP), 
cyclic adenosine monophosphate and inositol 
triphosphate, as well as several ions (Alexan-
der and Goldberg, 2003; Dbouk et al., 2009; 
Decrock et al., 2009). By doing so, gap junc-
tional intercellular communication (GJIC) 
has been found critical for the performance 
of vital functions in liver, such as plasma 
protein synthesis (Yang et al., 2003) and xe-
nobiotic biotransformation (Neveu et al., 
1994; Shoda et al., 1999, 2000). 

About 15 years ago, a novel group of 
connexin-like proteins was discovered, the 
pannexin (Panx) family, with 3 members 
characterized thus far. Pannexins do not 
form gap junctions, but rather assemble in a 
configuration reminiscent of connexin hemi-

channels. They facilitate paracrine signaling 
by controlling the exchange of substances 
like ATP between the cytosol and the extra-
cellular environment (Panchin et al., 2000). 
A number of reports published in recent 
years have demonstrated Panx1 expression 
in liver tissue, in particular produced by 
hepatocytes (Bruzzone et al., 2003; Csak et 
al., 2011; Ganz et al., 2011; Kim et al., 2015; 
Xiao et al., 2012) and Kupffer cells (Sáez et 
al., 2014). Other studies showed the presence 
of Panx2 protein in mouse liver (Le Vasseur 
et al., 2014) and rat hepatocytes (Li et al., 
2008). Although their physiological roles in 
liver remain to be established, pannexin-
mediated communication has already been 
associated with liver pathology. In fact this 
paper will review the current knowledge re-
garding the involvement of connexins, pan-
nexins and their channels in liver injury, in 
casu occurring in the context of liver disease 
and toxicity. 

 

 
Figure 1: Expression of connexins and pannexins in liver cells 
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Table 1: Expression of connexins and pannexins in liver cells 

Liver cell 
Cx/Panx  

expression 
Reference 

Hepatocyte 
Cx32, Cx26, 
Panx1, Panx2 

Bruzzone et al., 2003; Csak et al., 2011; Fischer et al., 2005; 
Fowler et al., 2013; Ganz et al., 2011; Kim et al., 2015;  
Kumar and Gilula, 1986; Kuraoka et al., 1993;  
Le Vasseur et al., 2014; Li et al., 2008; Nicholson et al., 1987; 
Paul, 1986; Xiao et al., 2012; Zhang and Nicholson, 1989  

Kupffer cell 
Cx43, Cx26, 
Panx1 

Eugenin et al., 2007; Fischer et al., 2005; Sáez et al., 2014 

Stellate cell Cx43, Cx26 Fischer et al., 2005; Hernández-Guerra et al., 2014 

Sinusoidal en-
dothelial cell 

Cx43, Cx32, 
Cx26 

Fischer et al., 2005; Hernández-Guerra et al., 2014 

Cholangiocyte Cx43, Cx32 Bode et al., 2002 

Hepatic artery 
endothelial cell 

Cx43 
Chaytor et al., 2001; Hernández-Guerra et al., 2014;  
Shiojiri et al., 2006 

 

 
ACUTE LIVER INJURY 

Acute liver failure is a clinical syndrome 
from a variety of causes resulting from rapid 
loss in hepatocyte function, typically associ-
ated with coagulopathy and encephalopathy 
in a patient without preexisting liver disease. 
Upon administration of prototypical liver 
toxicants including thioacetamide, aceta-
minophen, D-galactosamine or carbon tetra-
chloride, to Cx32-lacking rodents, decreased 
aminotransferase serum levels and less liver 
damage is observed in comparison with 
wild-type littermates (Asamoto et al., 2004; 
Naiki-Ito et al., 2010; Patel et al., 2012). 
Along the same line, hepatocytes originating 
from Cx32-deficient mice show reduced cell 
death when treated with acetaminophen in 
vitro (Saito et al., 2014). This points to a role 
for Cx32-based signaling either in spreading 
noxious messengers or in the removal of 
dead cells in order to restore the homeostatic 
balance. In contrast to this is a recent report, 
describing protective effects of Cx32 in acet-
aminophen-triggered liver toxicity, possibly 
linked to the trafficking of glutathione be-
tween hepatocytes via gap junctions 
(Igarashi et al., 2014). This can be reconciled 
with the well-known decay of Cx32 produc-
tion and concomitant reduced channel activi-
ty upon exposure of hepatocytes to liver tox-
icants both in vitro and in vivo (Vinken et al., 

2009; Maes et al., 2016). Hepatocellular gap 
junctions persist in the early phases of centri-
lobular necrotic cell death induced by thio-
acetamide in rat, yet they fade away during 
the subsequent restorative proliferative re-
sponse. In a later stage, gap junctions initial-
ly emerge in perinecrotic areas and ultimate-
ly in all zones (Kojima et al., 1994). Of note, 
in liver of rodents overdosed with aceta-
minophen, Cx43 is upregulated and de novo 
expressed in hepatocytes (Naiki-Ito et al., 
2010, Maes et al., 2016). In rat liver, this 
Cx43 expression is colocalized with caspase 
3, suggesting a role for Cx43 in cell death. 
However, a recent study showed that Cx43-
deficient mice display increased liver cell 
death, inflammation and oxidative stress in 
comparison to wild-type littermates after ac-
etaminophen overdose (Maes et al., 2016). 
Furthermore, high Cx43 immunoreactivity is 
observed around inflamed and necrotic areas 
in a rat model of acute-on-chronic liver fail-
ure (Balasubramaniyan et al., 2013). 

 
LIVER STEATOSIS 

Non-alcoholic fatty liver disease 
(NAFLD) is currently the most common 
chronic liver disease worldwide. NAFLD is 
defined by the presence of liver fat accumu-
lation exceeding 5 % of hepatocytes in the 
absence of significant alcohol intake. As 
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such, NAFLD encompasses a broad histo-
pathological spectrum, ranging from steato-
sis to non-alcoholic steatohepatitis (NASH) 
and even liver cancer (Loomba and Sanyal, 
2013; Willebrords et al., 2015). NASH re-
lies, at least in part, on the activation of in-
flammasomes, being multiprotein complexes 
involved in innate immunity and caspase 1 
processing, which in turn leads to cleavage 
and extracellular release of interleukin 1 beta 
and interleukin 18 (Wree et al., 2014). Panx1 
channels have been repeatedly found to facil-
itate inflammasome activation (Pelegrin and 
Surprenant, 2006, 2007). As a matter of fact, 
these pores support ATP release during 
lipoapoptosis induced by saturated free fatty 
acids in cultured hepatocytes, which is a 
hallmark of NASH. Panx1 channels are 
therefore thought to play a critical role in in-
flammation associated with lipotoxic liver 
injury (Xiao et al., 2012). Interestingly, ad-
ministration of lipopolysaccharide (Ganz et 
al., 2011) as well as ischemia-reperfusion 
(Kim et al., 2015) elevate hepatic Panx1 lev-
els in mice. 

 
HEPATITIS 

Hepatitis refers to a general inflammato-
ry response of the liver to a number of fac-
tors, such as drugs or viruses (Vinken et al., 
2013). Hepatitis patients present reduced 
amounts of Cx32 in the liver (Nakashima et 
al., 2004; Yamaoka et al., 2000), a feature 
that can be reproduced in rodents when treat-
ed with lipopolysaccharide (Correa et al., 
2004; Gonzalez et al., 2002; Temme et al., 
2000). Deterioration of Cx32 expression 
hereby results from mRNA degradation 
(Theodorakis and De Maio, 1999). Down-
regulation of Cx32 production by proin-
flammatory cytokines in cultures of primary 
hepatocytes is controlled by nuclear factor 
kappa beta signaling and mitogen-activated 
protein kinase, and is accompanied by abro-
gation of GJIC (Yamamoto et al., 2004). He-
patic Cx26, however is positively affected by 
proinflammatory stimuli both in vitro and in 
vivo (Temme et al., 2000, 1998). Likewise, 
Cx43 expression and GJIC become enhanced 

in cultures of primary stellate cells and Kup-
ffer cells in inflammatory conditions (Euge-
nin et al., 2007; Fischer et al., 2005). Cx43 
hereby moves from the cytosol to the mem-
brane surface in order to assemble into func-
tional gap junctions. Upregulated Cx43 pro-
duction also occurs during liver inflamma-
tion in vivo (Eugenin et al., 2007; Gonzalez 
et al., 2002). This is thought to reflect the ac-
tivation of Kupffer cells, which assists in the 
removal of debris and apoptosis of damaged 
hepatocytes following inflammation 
(Eugenin et al., 2007).  

 
CHOLESTASIS 

Acute or chronic impairment of bile flow 
from the liver to the duodenum is referred to 
as cholestasis. Upon cholestasis, hepatocytes 
adopt a brownish-green stippled appearance 
within the cytoplasm, which reflects bile ac-
cumulation. Canalicular bile plugs between 
hepatocytes or within bile ducts may also be 
observed, representing bile that has been ex-
creted and that is obstructed in the duct. Be-
cause of increased pressure, such bile duct 
plugs may cause rupture and hence spilling 
of bile into surrounding tissue. This can in-
duce hepatic necrosis and inflammation 
(Vinken et al., 2013). Cholestasis can be ex-
perimentally induced by bile duct ligation. 
This is associated with decreased gap junc-
tion quantities and low Cx32 amounts in the 
liver (Balasubramaniyan et al., 2013; Fallon 
et al., 1995; Gonzalez et al., 2002; Kojima et 
al., 2003), which is mediated by the p38 mi-
togen-activated protein kinase (Kojima et al., 
2003). Cx26 levels also drop, while Cx43 
production increases following bile duct li-
gation (Balasubramaniyan et al., 2013; 
Fallon et al., 1995).  

 
LIVER FIBROSIS 

Fibrosis is a wound-healing response to 
various types of injury, whereby quiescent 
stellate cells transform into proliferative, fi-
brogenic and contractile myofibroblast-like 
cells. This is associated with a cascade of bi-
ochemical events, such as proinflammatory 
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cytokine release and extracellular matrix 
deposition, all which result in drastic pheno-
typic changes, including scarring. The final 
stage of fibrosis is called cirrhosis and is 
considered irreversible (Crespo Yanguas et 
al., 2016; Friedman, 2008, 2010; Lee et al., 
2015). Cx32 steady-state protein levels are 
reduced in cirrhosis patients, a process that 
goes hand in hand with its relocalization in 
the cytoplasm of hepatocytes (Nakashima et 
al., 2004; Yamaoka et al., 2000, 1995). Fur-
thermore, upregulated Cx43 production has 
been observed in human cirrhotic liver tissue 
(Hernández-Guerra et al., 2014). These find-
ings are identical to those in rodents follow-
ing chronic administration of thioacetamide 
or carbon tetrachloride (Nakata et al., 1996). 
In Cx43-lacking mice, strongly reduced cell 
death and hepatocellular injury is observed 
after treatment with carbon tetrachloride 
(Cogliati et al., 2011). The latter induces 
translocation of both Cx26 and Cx43 from 
the plasma membrane to the cytoplasm and 
nuclei of sinusoidal endothelial cells, a sce-
nario that is equally seen for Cx32 in hepato-
cytes. Perinuclear residing of Cx26 and 
Cx43 also occurs in cultures of spontaneous-
ly activated primary stellate cells (Fischer et 
al., 2005). This could underlie the establish-
ment of heterologous communication be-
tween stellate cells and hepatocytes under 
these conditions (Rojkind et al., 1995), 
whilst homologous GJIC in cultured hepato-
cytes is suppressed by carbon tetrachloride 
(Saez et al., 1987). Collectively, these obser-
vations suggest distinct roles for connexins 
in each liver cell type in the process of fibro-
genesis (Oloris et al., 2007). 

 
LIVER CANCER 

Chronic liver disease may burgeon into 
the onset of liver cancer, mainly hepatocellu-
lar carcinoma (HCC). GJIC is strongly re-
duced in HCC cells (Mesnil et al., 2005; 
Yang et al., 2003; Yano et al., 2001). This is 
paralleled by cytoplasmic Cx32 localization, 
which is believed to promote motility and 
metastatic potential (Li et al., 2007). De-
crease of Cx26 production in HCC has been 

related to epigenetic modifications, in partic-
ular DNA methylation (Shimizu et al., 2007; 
Tsujiuchi et al., 2007). Concomitantly, Cx43 
gradually appears in the cytoplasm and at the 
plasma membrane of HCC cells (Kru-
tovskikh et al., 1994; Oyamada et al., 1990; 
Wang et al., 2013b). In fact, the extent of cy-
toplasmic Cx43 localization corresponds 
with the malignant potential of the liver tu-
mor (Kawasaki et al., 2007). In addition, 
Cx43 expression in HCC is linked to migra-
tion, invasion and metastatic ability (Ogawa 
et al., 2012). Silencing of Cx43 production in 
liver cancer cells inhibits proliferation and 
favors the differentiated phenotype, whereas 
the opposite has been observed in HCC cells 
that artificially overexpress Cx43. Not sur-
prisingly, Cx32 amounts and gap junction 
activity inversely correlate with Cx43 pres-
ence in HCC cells. Cx43 is therefore consid-
ered a hepatic oncogene (Zhang et al., 2007). 
By contrast, Cx32 acts as a liver tumor sup-
pressor, a notion that is supported by the ob-
servation that Cx32 knockout rodents display 
increased susceptibility to chemically in-
duced hepatocarcinogenesis (Dagli et al., 
2004; Igarashi et al., 2013). 

 
CONCLUSIONS 

Because of its unique localization and 
position in the organism, the liver is a major 
target for systemic toxicity and disease 
(Vinken et al., 2013). Connexins are goal-
keepers in hepatic homeostasis and hence are 
routinely involved in liver pathology. They 
act both as sensors and effectors in this pro-
cess. Regarding the former, a general obser-
vation in liver disease is that Cx32 produc-
tion gradually decreases at the expense of 
Cx43 (Krutovskikh et al., 1994; Oyamada et 
al., 1990; Wang et al., 2013b). This renders 
Cx43 a potential biomarker that can be used 
for diagnostic purposes. In addition, con-
nexins can also represent drugable targets 
due to their active role in liver pathogenesis. 
Research in this direction is nowadays chal-
lenged with the complex multifaceted com-
munication capacities of connexins. Indeed, 
in the last decade, it has become clear that 
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connexin hemichannels not only are the 
structural building blocks of gap junctions, 
but also are equally signaling entities on 
their own. They specifically establish a cir-
cuit for trafficking of messengers, such as 
ATP, between the cytosol and the extracellu-
lar space, similar to pannexin-based commu-
nication. Unlike their full channel counter-
parts however, hemichannels have a low 
open probability (Chandrasekhar and Bera, 
2012; D'hondt et al., 2014; Decrock et al., 
2009). In fact, although heavily debated and 
still highly criticized, it seems that hemi-
channels specifically open during pathologi-
cal circumstances, which is another differ-
ence with gap junctions. In this respect, hem-
ichannels consisting of Cx32 and to a lesser 
extent of Cx43, but not their corresponding 
gap junctions have been found to drive 
hepatocyte cell death (Vinken et al., 2010, 
2012). Therefore, inhibition of hemichannels 
could introduce a novel strategy for the clin-
ical management of liver disease. This also 
holds true for pannexin channels that under-
lie inflammatory processes, including in liver 
disease (Csak et al., 2011; Diezmos et al., 
2013; Ganz et al., 2011; Gulbransen et al., 
2012; Xiao et al., 2012). Focus should there-
by be put on the development of pharmaco-
logical inhibitors of hemichannels and pan-
nexin channels. Most of the currently availa-
ble inhibitors of these channels are not able 
to distinguish between connexin and pannex-
in signaling on the one hand and between 
hemichannel communication and GJIC on 
the other hand (Bodendiek and Raman, 
2010). An exception includes the group of 
so-called mimetic peptides, which reproduce 
specific amino acid sequences in the connex-
in protein structure. Some of these mimetic 
peptides have the ability to inhibit hemi-
channels without affecting gap junctions 
(Abudara et al., 2014; Iyyathurai et al., 2013) 
and have been found to protect against cell 
death in vivo (Wang et al., 2013a). Similarly, 
specific pannexin mimetic peptides are able 
to counteract inflammation and cell death 
(Orellana et al., 2011; Pelegrin et al., 2008). 
Such compounds should be further explored 

in future, as they may open new avenues for 
the clinical treatment of liver disease. 
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