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A novel thermodynamic modeling strategy of stable solid alloy phases is

proposed based on segmented regression approach. The model considers several

physical effects (e.g. electronic, vibrational etc.) and is valid from 0K up to

the melting temperature. The preceding approach has been applied for several

pure elements. Results show good agreement with experimental data at low

and high temperatures. Since it is not a first attempt to propose a ”universal”

physical-based model down to 0K for the pure elements as an alternative to

current SGTE description, we also compare the results to existing models.

Analysis of the obtained results shows that the newly proposed model delivers

more accurate description down to 0K for all studied pure elements according

to several statistical tests.
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1 Introduction

It is important to have an accurate description of the pure elements before starting a cal-

culation of the thermodynamic properties and phase diagrams of alloy systems. Therefore,

models for the Gibbs energy of pure elements, based on the heat capacities are one of

the key components for successful thermodynamic optimization based on the CALPHAD

method.

Currently in CALPHAD applications the temperature dependence of the heat capacity

is described by high-order polynomials with adjustable parameters fitted to experimental

data [8]. This approach to fit coefficients has been developed to cover high temperatures

above 298.15K and should not be used to describe any low temperature data. The effort to

extend that description to low temperatures demands more physical modeling which takes

into account the available experiments and theoretical data. The CALPHAD community

discussed this problem in 1995 during a Ringberg Workshop [5] and proposed a ”universal”

model to describe the thermodynamic properties over the whole temperature range down

to 0K. This model considers several physical effects of the heat capacity. Such models

should improve the present thermodynamic models used in the SGTE description of pure

elements and the predictive capability of the CALPHAD method.

An attempt in this direction was performed by Chen and Sundman [6] applied to bcc,

fcc, liquid and amorphous phases for the pure Fe. The more recent work in development of

physical sounded models for the crystalline phase of pure elements was performed during

a Ringberg Workshop’2013 by Palumbo et al. [20]. Following the ideas from [5], [6] and

[20] a new model for the heat capacity of pure elements which considers several physical

effects has been proposed in this work.

Moreover, we applied already existing physically-based models [5], [6] to model of the

heat capacity data of the considered pure elements, Cr, Fe and Al. Afterwards all models

have been compared with each other and the most appropriate model has been chosen based

on the analysis of statistical goodness-of-fit measures. The model parameters associated

with some physical constants have been validated with collected experimental data.

1.1 The heat capacity of pure elements

The heat capacity is a fundamental state property and describes the amount of energy

needed to increase the temperature of a known quantity of material by 1 K. The heat

capacity is measured in J/(mole K). Various physical contributions of the heat capacity

are presented in Fig. 1. Overview of these physical effects is given in classical textbook of

G. Grimvall [12].

From a mathematical point of view we are interested in the analytical form of the func-

tions which can be used to describe temperature dependence of each physical effect drawn

in Fig. 1 and the range where this effect could appear. Therefore, according to the review

given in [12] three different types of the mathematical functions can be applied for the
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Figure 1: Physical contributions of the heat capacity: A - electronic heat capacity, B -
phonon contribution, C - harmonic vibrational phonon contribution, D - CP−CV
contribution, E - explicit anharmonic contribution to CV , F - electronic contribu-
tion, G - correction factor, H - vacancies formation, M - magnetic heat capacity

modeling of the various contributions to the heat capacity.

The main part of the heat capacity can be explained by phonon contributions (B) and

the harmonic vibrational phonon contribution (C). Such effects can be described by Debye

(1) or Einstein model (2) and with increase of the temperature asymptotically will reach

value of 3R according to the Dulong-Petit law (see Fig. 2)

CDeb
P (T, θD) = 9R

( T
θD

)3
∫ θD/T

0

x4ex

(ex − 1)2
dx (1)

CEin
P (T, θE) = 3R

(θE
T

)2 eθE/T

(eθE/T − 1)2
(2)

where θD and θE are Debye and Einstein temperature respectively.

The Debye model (1) reproduces the correct temperature dependence proportional to

T 3 at very low temperatures, but has more complicated mathematical form and should

be approximated by some series expansion [14], [9]. In contrast to Debye model (1), the

Einstein model (2) can be easily implemented in thermodynamic databases, but it does

not deliver such accurate description at the low temperatures (see Fig. 2).

The contributions to the heat capacity, (A), (D), (E), (F), and (G), presented in Fig. 1

can be modeled using linear function depending on the temperature. Two of these con-

tributions (A) and (F) describe the effect of the electronic heat capacity at low and high

temperatures correspondingly. Therefore, the linear function used for the description of

the electronic Cp at low temperatures cannot be applied for the modeling of the high

temperature range.
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Figure 2: Debye vs. Einstein. Predicted heat capacity as a function of temperature.

The magnetic contribution (M) to the heat capacity should be considered for elements

with magnetic ordering as for example Iron or Nickel. This physical effect is currently de-

scribed by Inden-Hillert-Jahr model [15]. A more accurate approximation for the magnetic

heat capacity has been proposed by Chen and Sundman [6] and its further improvement

by Xiong et al.[26].

Cmagn
P = RT · g(τ) ln(β + 1), (3)

g(τ) =


0.63570895

A

(
1
p
− 1
)(

2τ 3 + 2 τ
9

3
+ 2 τ

15

5
+ 2 τ

21

7

)
, τ ≤ 1

1
A

(
2τ−7 + 2 τ

−21

3
+ 2 τ

−35

5
+ 2 τ

−49

7

)
, τ ≥ 1

(4)

where

A = 0.33471979 + 0.49649686
(1

p
− 1
)

(5)

Here τ = T/T ∗, where T ∗ is Curie temperature TC for ferromagnetic materials or Neel

temperature TN for antiferromagnetic materials, β is the average magnetic momentum

per atom and p is the structure factor, defined as the ratio of the magnetic enthalpy in

the paramagnetic state to the total magnetic enthalpy. For the body-central cubic (bcc)

structure, the accepted SGTE value is p = 0.4, while for the face-centered cubic (fcc) and

hexagonal closed-packed (hcp) structure p = 0.28 is used. Chen and Sundman re-optimized

the structure parameter p for the bcc phase and set its value to 0.37.

1.2 Model proposed during Ringberg Workshop’1995

The main idea behind the model proposed during a Ringberg Workshop in 1995, in the

following abbreviation ”RW”, is based on consideration of physical contributions to the

heat capacity [12] which were shortly described above. The Debye or Einstein model has
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been applied to fit the heat capacity data at the low temperatures, while using a polynomial

to model the temperature dependencies above 298.15K.

CRW
P (T,θRW ) = C

Deb/Ein
P (T ) + aT + bT 2 + Cmagn

P (T ), (6)

where T is temperature, θRW = (θD/θE, a, b) is the vector of the unknown model parame-

ters to be estimated, C
Deb/Ein
P (T ) is the heat capacity describing phonon contribution using

Debye (1) or Einstein model (2), Cmagn
P is magnetic contribution of the heat capacity. The

parameters θD (or θE), a and b are physically motivated.

The first term C
Deb/Ein
P (T ) in the proposed model (6) is used to model the contribution

from harmonic vibration. There was no concrete recommendation whether the Debye

or Einstein model should be used. The second aT term in (6) is related to electronic

excitations and low order aharmonic corrections. The third term bT 2 contains the next

order anharmonic corrections. The last term in equation (6), Cmagn
P (T ), considers the

contribution from magnetic ordering.

The proposed model was applied to five pure elements Ag, Cu, Mo, Ti, Sn and one com-

pound CaCl2 and showed significant improvement of prediction quality at low temperatures

[5].

1.3 Chen-Sundman model

In 2001, Chen and Sundman [6] applied a modeling concept proposed in [5] to the lattice

stability of pure Fe based on Einstein model, in the following abbreviation ”CS”, and

described CP of the bcc phase at low temperatures by further modification of (6) into

CCS
p (T,θCS) = 3R

(
θE
T

)2
eθE/T

(eθE/T − 1)2
+ aT + bT 4 + Cmagn

P (T ), (7)

where θCS = (θE, a, b) is the vector of the unknown model parameters to be estimated and

Cmagn
P (T ) is the magnetic contribution to the heat capacity modeled by equation (3).

They found that the 4th power of the third term would make it easier to fit the high

temperature experimental data of the heat capacity for the pure Fe. They also suggested

to use more terms in approximation of the Inden model (3) for description of the magnetic

heat capacity [6].

The first attempt to improve the thermodynamic description of a binary system by

adoption of the Chen-Sundman model (7) has been demonstrated in [27] and binary Fr-Cr

phase diagram has been calculated down to 0K. The most recent application of Chen-

Sundman model (7) are the calculated Fe-C binary system [19] and the thermodynamic

description of pure Mn [4].
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1.4 Segmented regression model for the heat capacity of pure

elements

Following recommendations of Ringberg Workshop’1995 [5] and results of the work per-

formed by Chen and Sundman [6], we propose a new model, in the following abbreviation

”SR”, for describing temperature dependence of the heat capacity of the pure elements,

which considers relevant physical effects. Since these contributions appear in different tem-

perature ranges [12] and can be described by different functions, the segmented regression

methodology [24] was applied to develop a mathematical model for the heat capacity of

the pure elements.

The proposed model for the temperature dependence of the heat capacity for pure ele-

ments consists of three terms

CSR
P (T,θSR) = C

Deb/Ein
P (T ) + Cbcm

P (T ; β1, β2, τ, γ) + Cmagn
P (T ), (8)

where the first term is defined in (1) and (2), θSR = (θD or θE, β1, β2, τ, γ) is the vector

of the unknown parameters to be estimated. The second term Cbcm
P (T ; β1, β2, τ, γ) is used

for the decomposition of physical effects described by linear functions at low and high

temperatures. For this purpose we used the bent-cable model,

Cbcm
P (T ; β1, β2, τ, γ) = β1T + β2 · q(T ; τ, γ), (9)

where the term q is defined by

q(T ; τ, γ) =
(T − τ + γ)2

4γ
1{|T − τ | ≤ γ}+ (T − τ)1{T > τ + γ}. (10)

and 1{·} is indicator function, e.g. 1{T > τ + γ} = 1 if T > τ + γ and 0 otherwise.

Graphically, the bent-cable model is presented in Fig. 3.

The bent-cable model (9) is a continuous segmented model with four parameters β1, β2, τ, γ.

The incoming linear phase has a slope of β1 and a intercept 0. The outgoing linear phase

has a slope of β1 + β2 and intercept of −β2τ . These two linear segments are smoothly

jointed in the points τ − γ and τ + γ by quadratic bend with half-weight γ > 0. If γ = 0,

then the bent-cable model reduces to a non-differentiable broken stick that is plotted on

the left side of Fig. 4a. For large values of γ the bent-cable model approximates into the

well-known quadratic model that is presented on right side of Fig. 4b.

1.5 Statistical approach for the model selection

An important aspect of approach proposed in this paper is the consistent application of

statistical methodology to optimize the free parameters of the model and to select the most

appropriate model that accurately describes the experimental data with a good predictive

properties. Usually, physical based models are preferred to any formal mathematical de-
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Figure 3: The full bent-cable model (9)

scription. In the ideal case, the investigator who collects or generates the data should use

an appropriate model for the specific of the experiment. If it is not possible to decide which

model is the most appropriate based on the expert knowledge, some kind of quantitative

statistical measure can be applied to compare competing models.

Usually the parameters in a given model are estimated by the least squares method,

which determines parameter values, say θ̂n, minimizing the residual sum of squares over

parameter space Θ that is

θ̂n = arg min
θ∈Θ

n∑
i=1

(yi − CP (Ti,θ))2. (11)

Here n is a number of observations and yi and CP (Ti,θ) are experimental and estimated

values of the heat capacity at the temperature Ti, i = 1, ..., n.

The goodness-of-fit statistics are now calculated for each considered model (6)-(8). One

of such statistics that are quite often used for a comparison of different fits is the residual

standard error (RSE), which is a measure between the data and fitted regression curve

defined as

RSEj =

√∑n
i=1 (yi − Cj

P (Ti, θ̂
j

n))2

n− pj − 1
. (12)

Here Cj
P (Ti, θ̂

j

n) is the estimated heat capacity at temperature Ti with jth model and pj

is the number of the parameters and θ̂
j

n is the vector of the estimated parameters in the

jth model. The upper index j ∈ {SR,CS,RW} denotes the model under consideration

when SR, CS and RW denote the segmented regression, Chen-Sundman and the Ringberg

models respectively.

Alternative measures of goodness-of-fit are Akaike’s information criteria (AIC) and the
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Figure 4: The bent-cable model: partial cases

Bayesian information criteria (BIC) defined as

AICj = n ln
n∑
i=1

(yi − Cj
P (Ti, θ̂

j

n))2 + pj, (13)

BICj = n ln
n∑
i=1

(yi − Cj
P (Ti, θ̂

j

n))2 + pj lnn. (14)

Compared to the RSE-criterion the AIC and BIC criteria have the advantage that the

model complexity (here the number of parameters pj) is taken into account as penalty

term. Thus one tries to find a model with a small residual standard error and a small

number of parameters. This could prevent the so-called the effect of overfitting [23].

The decision rule is quite simple for all these criteria. The model with the smallest value

of statistic is the most appropriate one. The measures RSE (12), AIC (13) and BIC (14)

have been used in this work as objective goodness-of-fit measures for selection of the most

appropriate model from statistical points of view.

2 Test of the segmented regression approach

The results for each selected pure element Cr, Al and Fe will be reported in following

manner. The estimates of the model parameters with the corresponding confidence inter-

vals are displayed in several tables. The 95%-confidence interval for rth component of the

parameter vector θ = (θr), r = 1, ..., p is of the form

CI[θr] = θ̂r ± t0.975
n−p · ŝθr (15)
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where t0.975
n−p is the upper 0.975 quantile of the t-distribution with n− p degrees of freedom

and ŝθ is the standard error of θ̂r [24].

The width of the confidence region is closely related to the sample size. Rough speaking

a large confidence interval means that absolute error of estimate is large. Conversely a

narrow confidence interval means that the absolute error of the parameter is small. If a

confidence interval contains the values 0 this means that the corresponding parameter is

not significant. In regression analysis this means that corresponding parameter could be

eliminated from the considered model.

Analogously to the confidence intervals for the parameters θr, r = 1, ..., p of the regression

model, a 95% pointwise condifence interval for the modeling function CP (Ti,θ) can be

computed as follows

CI[CP (Ti, θ)] = CP (Ti, θ̂)± t0.975
n−p · ŝCP

, (16)

where ŝCP
is the standard error of the estimate CP (Ti, θ̂).

For a prediction of a new observation at temperature Ti one usually uses a prediction

interval which is defined by

PI[CP (Ti, θ)] = CP (Ti, θ̂)± t0.975
n−p

(
(RSE)2 + ŝ2

CP

)1/2
, (17)

where RSE is defined in (12).

Similar calculations and analysis of the reported results have been performed also with

the models (6) and (7). In a second step the obtained fits have been compared visually on

the basis of the RSE, AIC and BIC criteria in order to find the most appropriate model.

This is defined as model for which at least two of the three criteria are minimal. To our best

knowledge this is the first attempt to compare and analyze the existing physically-based

models in the literature with each other.

Moreover, taking into account that some of the estimated parameters of the proposed

model (8) are physically motivated, the validation of their values has been performed based

on available experimental values.

2.1 General modeling remarks

Although, it is a well-known fact that Debye model deliver a more accurate description

in low temperatures, we should take into account that it is still an issue to implement

Debye model in its integral form or even as a series representation in the currently used

TDB format. In order to perform the thermodynamic calculation and build the phase

diagram down to 0K, we need an analytical expression of the Gibbs energy. For this

reason we include both models in our comparison and fitted the heat capacity data for

each considered model with Debye and Einstein functions respectively. This allows us to

obtain the differences in the enthalpies between the fits with Debye and Einstein for low

temperatures and to justify the analytical expression of the Gibbs energy function obtained

9



with the SR including Einstein model (see Section 3).

For pure Cr we report results for the SR model including the Debye and Einstein function

to demonstrate the differences in low temperatures. Finally, for pure Al and Fe results will

only reported for the Debye function.

2.2 Programming implementation and computational remarks

The models (6), (7) and (8) have been implemented in the software language R and their

parameters have been estimated using nonlinear least squared method. R is a open-source

software environment for statistical computing and graphics [21]. Calculations have been

performed using three R-packages: nls2 [13], nlstool [3] and investr [11].

Numerical integration procedure already implemented in the R allows us to use the Debye

model for the phonon contribution of the heat capacity directly in its integral form. This

is the first attempt to include the Debye model directly in the calculation of the thermo-

dynamic properties. Another approach to consider phonon contributions using tabulated

values of the Debye functions has been proposed by Palumbo et al. [20].

2.3 Pure chromium (Cr)

The SR model is used for a fit of the heat capacity data for the pure Cr. We did not

consider the magnetic term Cmagn
p (T ), because a contribution from magnetic ordering in

case of the pure Cr according to [2] is not significant. The most recent investigation of the

magnetic properties for the pure Cr using ab-initio calculations is reported in [16].

A comparison between the experimental and predicted heat capacities from SR model is

shown in Fig. 5. The fits from the SR model show a good agreement with the experimental
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Figure 5: Fitted heat capacity of pure Cr using SR model with a Debye (blue line) and
Einstein (red line) model
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data over the entire temperature region (see Fig. 5a). These two fitted lines coincide almost

everywhere except low temperatures (see Fig. 5b), where the combination of the bent-cable

model (9) and Debye function (1) delivers more accurate description. This agrees with the

classical theory on the physical effects in the heat capacity [12]. Moreover, an analysis of

the measures RSE, AIC and BIC reported in Tab. 3 confirms this fact as well. The minimal

values of all calculated goodness-of-fit measures are achieved for the SR model. The values

of estimated models parameters with their confidence intervals for the SR model (8) are

given in Tab. 2. To evaluate the uncertainties of the fitted SR model with a Debye, the

confidence and prediction intervals defined in (16) and (17) are displayed on Fig. 6a and

Fig. 6b respectively.

0 500 1000 1500 2000

0
10

20
30

40
50

60

Temperature, T [K]

H
ea

t c
ap

ac
ity

, C
p 

[J
/m

ol
*K

]

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●
●
●
●
●●
●●
●
●●
●●
●●
●
●●
●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

[27SIM]
[34JAE]
[37AND]
[50ARM]
[52EST]
[56RAY]
[58KRA]
[58MAR]
[60BEA]
[62CLU]
[65KAL]
[65KOH]
[79KEM]

(a) Confidence band

0 500 1000 1500 2000

0
10

20
30

40
50

60

Temperature, T [K]

H
ea

t c
ap

ac
ity

, C
p 

[J
/m

ol
*K

]

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●
●●
●
●
●
●●
●●
●
●●
●●
●●
●
●●
●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

[27SIM]
[34JAE]
[37AND]
[50ARM]
[52EST]
[56RAY]
[58KRA]
[58MAR]
[60BEA]
[62CLU]
[65KAL]
[65KOH]
[79KEM]

(b) Prediction band

Figure 6: Fitted by SR model (8) heat capacity of pure Cr with the confidence and predic-
tion intervals

Author Reference θD, K calc. θE ,K T, K

Andersson (1937) [1] 485 346 (c) 56 - 300
Esterman (1952) [10] 418±20 298 (c) 1.8 - 4.2
Wolcott (1952) [25] 585-564 418-403 (c) 0 - 20
Rayne (1956) [22] 630±30 450 (c) 1.5 - 4.2
Clusius (1962) [7] 580 414 (c) 14 - 22
- Franzosini 493±6 352 (c) > 100
Levant (1990) [17] 510±20 364 (c) 10 - 297

This work
- BCM with Debye 493 [480, 506] 352 (c) entire range
- BCM with Einstein 499 (c) 356 [347, 366] entire range

Table 1: Fitted by SR (8) and experimental values of θD, K of pure Cr

The obtained values for such physical parameters as the Debye θD temperature together

with several collected experimental data are reported in Tab. 1. Einstein temperature θE

has been evaluated using the well-known relationship θD ≈ 0.714θE given in [6]. Note that
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the differences in estimated parameters values between the two SR models are insignificant

(see Tab. 2) which verifies the consistency of the performed calculations. Analysis of these

values shows that both θD and θE are strongly dependent on the temperature range selected

for the investigation. The calculated Debye tempature is in good agreement with values

reported in [1], [7] and [17], who used larger temperature ranges for their calculations as

other authors (see [10], [25], [22] and [7]). The contributions of each component of the SR

model is illustrated in Fig. 7.
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Figure 7: Components of the SR model for pure Cr. Blue line: CDeb
p (T, θ̂D) +

Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂), green line: CDeb

p (T, θ̂D), red line: Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂) (solid

red lines: linear segments, dashed red line: quadratic segment)

In addition to the fitting of the experimental heat capacity data by the SR model (8),

the RW (6) and CS (7) models have been applied and compared with results for pure Cr

reported above. The estimated parameters values with corresponding confidence intervals

for CS and RW models are presented in Tab. 2.

In Fig. 8 and Fig. 9 we compare the SR model with the two alternative physically-based

models (7) and (6) could not provide the same level of the accuracy as the proposed SR

model in particular in the medium and high temperature range (see Fig. 8b and Fig. 9b).

On the other hand, in the low temperature all models yield similar results. The calculated

heat capacity is slightly underestimated by the RW model in the middle and high temper-

ature range (see Fig. 9) and the CS model overestimates in the high temperature region

(see Fig. 8a). The visual advantages of the new SR model are confirmed by a quantitative

comparison on the basis of the goodness-of-fit measures RSE, AIC and BIC introduced in

Section 1.5, which are summarized in Tab. 3. We observed that the SR model (8) with

Debye term is most appropriate for modeling the heat capacity of pure Cr. The second

most appropriate model is the SR with Einstein function.

For completeness the SR model with Einstein function has been included in Tab. 3.

We observed a larger RSE that compared to the SR model with Debye term, which is

12



Model Parameter
incl. Debye term incl. Einstein term

Value
Confidence Interval

Value
Confidence Interval

2.5% 97.5% 2.5% 97.5%

SR

θ̂D (or θ̂E) 493.20 484.34 502.01 356.40 350.16 362.73

β̂1 · 103 5.456 4.99 5.925 4.779 4.270 5.288

β̂2 · 102 1.942 1.57 2.312 2.010 1.591 2.430
τ̂ 1072 982.09 1162.68 1035 926 1144
γ̂ 372.60 225.29 519.91 441.5 282.42 600.65

CS
θ̂D (or θ̂E) 492.20 484.54 499.91 359.90 354.430 365.363
â · 103 5.325 5.045 5.604 5.140 4.861 5.419

b̂ · 1012 1.569 1.463 1.676 1.642 1.535 1.749

RW
θ̂D (or θ̂E) 463.70 454.56 472.94 338.30 332.31 344.38
â · 103 1.244 0.640 1.848 0.747 0.186 1.309

b̂ · 106 6.183 5.704 6.662 6.587 6.139 7.035

Table 2: Pure Cr: The estimated parameters values with corresponding confidence intervals
of SR, CS and RW models

consistent with the fact that the Einstein model cannot describe the low temperatures

regime correctly. Only the RW model shows a lower RSE with Einstein instead of Debye

in general, which shall not be analyzed here further. In the future we will only consider

the Debye model as the ”optimal” choice. Only for reason of numeric efficiency the use of

Einstein model might be justified in high temperature regime if the low temperature error

is considered in the integration constant of the Gibbs energy.

Statistics
SR CS RW MA-Model

Debye Einstein Debye Einstein Debye Einstein Debye Einstein

RSE 0.90 0.91 0.92 0.94 1.01 0.98 SR SR
AIC 1170 1183 1194 1210 1274 1245 SR SR
BIC 1194 1207 1210 1226 1290 1262 SR SR

Table 3: Calculated RSE, AIC, BIC statistics for the SR, CS and RW models and the
selected most appropriate model (MA-Model) for pure Cr

2.4 Pure aluminum (Al)

In this section we investigate the performance of the different models analyzing the heat

capacity data for pure Al. As pure Al is nonmagnetic, we use Cmagn
p (T ) = 0 for all models.

We observe from Fig. 10 that the new SR model provides a very good fit of the ex-

perimental data for the entire temperature range (Fig. 10a) and the main part of the

low temperature region (Fig. 10b). The estimated parameter values with corresponding

confidence intervals for the fitted SR are reported in Tab. 4.

The different components CDeb
P and Cbcm

P of the SR are displayed in Fig. 11 while the

corresponding confidence and prediction intervals are shown on Fig.12a and Fig.12b re-

spectively.

13
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(a) entire temperature range

0 50 100 150 200 250 300

0
5

10
15

20

Temperature, T [K]

H
ea

t c
ap

ac
ity

, C
p 

[J
/m

ol
*K

]

●●●

●●

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●
●●
●
●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●●

●●●●
●●●

●●
●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●

●●● ● ● ●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●

[27SIM]
[34JAE]
[37AND]
[50ARM]
[52EST]
[56RAY]
[58KRA]
[58MAR]
[60BEA]
[62CLU]
[65KAL]
[65KOH]
[79KEM]

(b) low temperatures

Figure 8: Comparison of the fitted SR and CS models for pure Cr. Blue line: the SR
model, red line: the CS model.
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(b) low temperatures

Figure 9: Comparison of the fitted SR and RW models for pure Cr: Blue line: the SR
model, red line: the RW model

In Fig. 13 and 14 we compare the new SR model with the RW and CS models. The

fitted heat capacity with the RW and SR models deliver similar results and describe exper-

imental data well over entire temperature range (see Fig.14a). In contrast, the CS model

slightly overestimates the experimental heat capacity data in the high temperatures which

is demonstrated on Fig.13a. This fact also has been confirmed by analysis of the selected

goodness-of-fit measures, RSE, AIC and BIC. The minimal values of all selected measures

belong to the SR model. The estimated parameters with the corresponding confidence

intervals for the RW and CS models are reported in Tab. 4.
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(a) low and high temperatures
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(b) low temperatures

Figure 10: Fitted heat capacity of pure Al using SR model

Model Parameter
incl. Debye term incl. Einstein term

Value
Confidence Interval

Value
Confidence Interval

2.5% 97.5% 2.5% 97.5%

SR

θ̂D (or θ̂E) 390.30 382.84 397.75 280.70 272.97 288.48

β̂1 · 103 2.724 0.961 4.488 0.326 -3.537 4.188

β̂2 · 103 6.090 4.084 8.095 9.446 5.310 13.581
τ̂ 227.00 164.56 289.44 215.20 134.13 296.31
γ̂ 21.67 -253.60 296.94 75.79 -79.21 230.80

CS
θ̂D (or θ̂E) 403.80 399.24 408.33 294.50 291.08 297.90
â · 103 5.315 4.959 5.671 5.002 4.617 5.387

b̂ · 106 3.304 2.243 4.364 4.133 2.974 5.292

RW
θ̂D (or θ̂E) 396.50 391.48 401.54 288.00 284.34 291.63
â · 103 3.047 2.246 3.848 2.051 1.213 2.889

b̂ · 106 5.191 3.914 6.468 6.712 5.364 8.059

Table 4: Pure Al: The estimated parameters values with corresponding confidence intervals
of SR, CS and RW models

Statistics
SR CS RW MA-Model

Debye Einstein Debye Einstein Debye Einstein Debye Einstein

RSE 0.631 0.665 0.658 0.726 0.643 0.698 SR SR
AIC 963 1016 1003 1102 980 1063 SR SR
BIC 988 1041 1020 1118 997 1080 SR SR

Table 5: The calculated goodness-of-fit measures, RSE, AIC and BIC, for the SR, CS and
RW models fitted to pure Al data
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Figure 11: Components of the SR model for pure Al. Blue line: CDeb
p (T, θ̂D) +

Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂), green line: CDeb

p (T, θ̂D), red line: Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂) (solid

red lines: linear segments, dashed red line: quadratic segment)
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(a) Confidence band
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(b) Prediction band

Figure 12: Fitted by SR model heat capacity of pure Al with the corresponding confidence
and prediction intervals
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(a) entire temperature range
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(b) low temperatures

Figure 13: Comparison of the fitted SR and CS models. Blue line: the SR model, red line:
the CS model.
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(a) entire temperature range
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(b) low temperatures

Figure 14: Comparison of the fitted SR and RW models. Blue line: the SR model, red line:
the RW model.
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2.5 Pure iron (Fe)

In this section we compare the different approaches modeling the heat capacity data for

pure Fe where we include a magnetic effect in all models which has been described by

equation (3) in Chen and Sundman [6]. In Fig. 15 we show the results for the new SR

model and observe a reasonable fit in the low and high temperature regions. The estimated
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(a) low and high temperatures
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(b) low temperatures

Figure 15: Fitted heat capacity of pure Fe using the SR model

parameter values together with their confidence intervals in the SR model are reported in

Tab.6. The parameter values from the fit of the SR model with Debye term do not differ

substantially from these SR model with Einstein function which confirms a consistency of

our calculations. Values of such physical parameters as Debye θD temperature have been

compared with each other using a well-known relationship θD ≈ 0.714θE given in [6].

Model Parameter
incl. Debye term incl. Einstein term

Value
Confidence Interval

Value
Confidence Interval

2.5% 97.5% 2.5% 97.5%

SR

θ̂D (or θ̂E) 421.50 393.05 449.93 307.80 288.34 327.34

β̂1 · 103 7.177 6.770 7.584 7.218 6.811 7.624

β̂2 · 103 1.683 0.242 3.124 1.676 0.232 3.120
τ̂ 1526 1333.40 1719.11 1525 1330.46 1720.14
γ̂ 85.72 -530.68 702.13 87.23 -528.51 702.96

CS
θ̂D (or θ̂E) 417.60 389.08 446.11 305.40 285.83 324.92
â · 103 6.668 6.121 7.215 6.704 6.159 7.249

b̂ · 106 4.237 2.459 6.013 4.263 2.489 6.037

RW
θ̂D (or θ̂E) 412.50 383.50 441.59 301.80 281.98 321.64
â · 103 5.422 4.211 6.632 5.418 4.217 6.619

b̂ · 106 1.822 0.892 2.751 1.860 0.935 2.784

Table 6: Pure Fe: The estimated parameters values with corresponding confidence intervals
of the SR, CS and RW models
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The different components of the SR model are displayed in Fig. 16 while the confidence

and prediction intervals are shown on Fig. 17a and Fig. 17b respectively. The confidence
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Figure 16: Components of the SR model. Black line: CDeb
p (T, θ̂D) +Cbcm

p (T ; β̂1, β̂2, τ̂ , γ̂) +

Cmagn
p (T ), blue line: CDeb

p (T, θ̂D)+Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂), green line: CDeb

p (T, θ̂D),

red line: Cbcm
p (T ; β̂1, β̂2, τ̂ , γ̂) (solid red lines: linear segments, dashed red line:

quadratic segment)
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(a) Confidence band
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(b) Prediction band

Figure 17: Fitted heat capacity by SR model with the corresponding confidence and pre-
diction intervals

interval presented in Fig.17a is narrow and the fitted SR has been estimated precisely. The

prediction intervals covers almost all experimental heat capacity data of pure Fe and shows

a range where a new data point could appear. Since the experimental data used for the

fitting are strongly heterogeneous and in some cases even contradictory to each other, it is

not surprising that we obtain larger prediction interval for pure Fe as in case of Cr and Al.
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Next we compare the CS and RW models with the new SR model. The estimated

parameters with the confidence intervals for these models are reported in Tab. 6 and the

corresponding fits are shown in Fig. 19 and Fig.18. The CS model and the SR deliver

similar results and describe experimental data well in low and high temperature ranges

(see Fig.18). In contrast, the RW model slightly underestimates heat capacity data in

middle temperature range (see Fig.18a).
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(a) entire temperature range
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(b) low temperatures

Figure 18: Comparison of the fitted SR and CS models for pure Fe: Blue line: the SR
model, red line: the CS model.
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(b) low temperatures

Figure 19: Comparison of the fitted SR and RW model for pure Fe. Blue line: the SR
model, red line: the RW model.

The analysis of the RSE, AIC and BIC for the different models confirms this conclusion

from visual inspection. The SR model has been selected as the most appropriate model for

the fitting of the heat capacity data of pure Fe according to the minimal values of the RSE

20



and AIC measures. However, according to the analysis of the obtained BIC values, the CS

model also has been identified as a reasonable function. However, this is not a surprising

observation as initially the CS model has been developed for modeling the heat capacity

of pure Fe. It is therefore remarkable that the SR model provides the same accuracy as

the CS model.

Statistics
SR CS RW MA-Model

Debye Einstein Debye Einstein Debye Einstein Debye Einstein

RSE 4.378 4.38 4.396 4.397 4.415 4.415 SR SR
AIC 4564.4 4565.2 4568.9 4569.3 4575.9 4575.9 SR SR
BIC 4592.5 4593.2 4587.7 4588.0 4594.6 4594.6 CS CS

Table 7: The goodness-of-fit measures of the SR, CS and RW models for pure Fe

3 Modeling Gibbs energy by segmented regression

According to the analysis of the obtained fitted results for pure Cr, Al and Fe, the proposed

SR model has been selected as the most appropriate model in comparison to other two

physically-based models, CS and RW. For the considered physically-based models a more

accurate description of the experimental heat capacity is provided by the Debye function.

The difference between the formulations with Debye (1) and Einstein (2) is significant for

low temperatures. For middle and high temperatures the Debye and Einstein functions

yield similar results. Therefore, since it is still an issue to implement the Debye model

into TDB format, the explicit expression for thermodynamic quantities, enthalpy H(T ),

entropy S(T ) and Gibbs energy G(T ) will be derived for the SR model where the Einstein

function is used for the description of the phonon contribution in the heat capacity.

3.1 Analytical expression of Gibbs energy, G(T ), for segmented

regression model

The thermodynamic functions G(T ), S(T ), H(T ) and Cp(T ) provide the starting point for

the construction and theoretical investigation of unary and binary phase diagrams. These

properties are related by the well-known equation

G(T ) = H(T )− T · S(T ), (18)

where the enthalpy H(T ) and the entropy S(T ) can be derived from the heat capacity

through the formulas

H(T ) =

∫
Cp(T )dT and S(T ) =

∫
Cp(T )

T
dT (19)
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The proposed segmented model for the heat capacity (8) contains three terms

CSR
p (T ) = CEin

p + Cbcm
p + Cmagn

p (20)

where Cmagn
p is described by (3)-(5) as proposed by Chen and Sundman [6] and

CEin
p = 3R

(θE
T

)2 eθE/T

(eθE/T − 1)2
, (21)

Cbcm
p =


β1T, T < α− γ

β1T + β2
(T−α+γ)2

4γ
, α− γ ≤ T ≤ α + γ.

β1T + β2(T − α), α + γ < T

(22)

Since Chen and Sundman provided the analytical expression for magnetic Gmagn and Ein-

stein GEin terms of the Gibbs energy, we just refer for more details to their paper [6].

The mathematical expression for the bent-cable term of the enthalpy is obtained from the

segmented model for the heat capacity (22) using the relation (19)

H(T ) =


β1

T 2

2
, T < α− γ

β1
T 2

2
+ β2

(T−α+γ)3

12γ
, α− γ ≤ T ≤ α + γ,

β1
T 2

2
+ β2

T (T−α)
2

+ β2

(
γ2

6
+ α2

2

)
, α + γ < T

(23)

After the collection of the coefficients according to the same order of power for the T terms,

the bent-cable part of H(T ) will have the following form

Hbcm(T ) =


c

(H)
1 T 2, T < α− γ

a
(H)
2 + b

(H)
2 T + c

(H)
2 T 2 + d

(H)
2 T 3, α− γ ≤ T ≤ α + γ,

a
(H)
3 + b

(H)
3 T + c

(H)
3 T 2, α + γ < T

(24)

where the coefficients c
(H)
1 , a

(H)
2 , b

(H)
2 , c

(H)
2 , d

(H)
2 , a

(H)
3 , b

(H)
3 , c

(H)
3 are connected with the esti-

mated parameters of the bent-cable mode β1, β2, α, γ by the relationship

c
(H)
1 =

β1

2
,

a
(H)
2 =

−β2

12γ
(α− γ)3, b

(H)
2 =

β2

4γ
(α− γ)2, c

(H)
2 =

β1

2
− β2

4γ
(α− γ), d

(H)
2 =

β2

12γ
,

a
(H)
3 =

β2

2

(γ2

3
+ α2

)
, b

(H)
3 = −β2α, c

(H)
3 =

β1 + β2

2
.
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Analytical expression for the entropy S(T ) can be derived in similar way and the second

term in the expression is given for the Gibbs energy (18) by

T · S(T ) =


c

(S)
1 T 2, T < α− γ

b
(S)
2 T + c

(S)
2 T 2 + d

(S)
2 T 3 + e

(S)
2 T ln(T ), α− γ ≤ T ≤ α + γ,

b
(S)
3 T + c

(S)
3 T 2 + e

(S)
3 T ln(T ), α + γ < T

(25)

where the coefficients c
(S)
1 , b

(S)
2 , c

(S)
2 , d

(S)
2 , e

(S)
2 , b

(S)
3 , c

(S)
3 , e

(S)
3 are connected with the estimated

parameters of the bent-cable mode β1, β2, α, γ by the relationship

c
(S)
1 = β1,

b
(S)
2 = (α− γ)2

(3k2

8γ
− k2

4γ
ln(α− γ)

)
, c

(S)
2 = β1 −

k2(α− γ)

2γ
,

d
(S)
2 =

β2

8γ
, e

(S)
2 =

β2

4γ
(α− γ)2

b
(S)
3 = −3β2α

2
− β2

4γ

(
(α− γ)2 ln(α− γ)− (α + γ)2 ln(α + γ)

)
, c

(S)
3 = β1 + β2

e
(S)
3 = −β2α.

Therefore, the bent-cable part of the total Gibbs energy G(T )bcm at 101,325Pa can be

evaluated from the the heat capacity Cp(T )bcm expression (22) using equations (18), (19)

as

G(T ) =


c1T

2, T < α− γ

a2 + b2T + c2T
2 + d2T

3 + e2T ln(T ), α− γ ≤ T ≤ α + γ.

a3 + b3T + c3T
2 + e3T ln(T ), T > α + γ

(26)

Here coefficients c1, a2, b2, c2, d2, e2, a3, b3, c3, e3 in expression for the Gbcm (26) can be de-

rived directly from the estimated values of parameters β1, β2, α, γ

c1 = −β1

2
,

a2 = − β2

12γ
(α− γ)3, b2 = (α− γ)2

(
− β2

8γ
+
β2

4γ
ln(α− γ)

)
, c2 = −β1

2
+
β2

4γ
(α− γ),

d2 = − β2

24γ
, e2 = −β2

4γ
(α− γ)2

a3 =
1

6
β2γ

2 +
1

2
β2α

2, b3 =
β2α

2
+
β2

4γ

(
(α− γ)2 ln(α− γ)− (α + γ)2 ln(α + γ)

)
,

c3 = −1

2
(β1 + β2), e3 = β2α.
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3.2 Verification of results from physical point of view

The consistency of underlying fitting results from a physical point of view has been per-

formed by calculating the relative enthalpy H −H298.15 that can be derived directly from

the fitted heat capacity Cp(T ) [18].

H(T )−H298.15 =

∫ T

298.15

CP (T )dT (27)

Since the proposed SR model with the Debye term (1) has been selected as the most-

appropriate model for the description of the heat capacity data, we calculate relative en-

thalpies using equation (27) and compare it with the collected experimental data. The

predicted relative enthalpies and experimental results for pure Cr, Al and Fe are presented

in Fig. 20, Fig. 21 and Fig. 22 respectively. In all cases we observe good predictions by

the SR model. No data on the relative enthalpy at the temperatures below 298.15K were

found in the literature.

Additionally, the enthalpy H298.15 and entropy S298.15 at the room temperature has been

calculated and compared with the values reported in [8] and [20]. The corresponding

results are presented in Tab.8 which also gives a comparison with the values from SGTE

description [8] for pure Al, Cr and Fe. We can observed slightly higher values of H298.15

for all considered models (6), (7), (8). The values of standard enthalpy calculated with

segmented regression model (8) are in good agreement with current SGTE data.

Reference model Cr bcc Fe bcc Al fcc

Dinsdale (1991) [8] SGTE 4050.0 4489.0 4540.0

Present work SR with Debye 4064.34 4583.94 4557.89
SR with Einstein 4068.93 4598.39 4565.24
CS with Debye 4064.46 4584.97 4579.18
CS with Einstien 4059.18 4596.36 4583.12
RW with Debye 4096.48 4576.04 4567.47
RW with Einstein 4089.82 4585.27 4564.81

Table 8: Calculated standard enthalpy H298.15

The calculated standard entropies S298.15 for Cr bcc, Fe bcc and Al fcc in comparison

with first-principles and assessed standard entropy S298.15 from [20] are presented in Tab.9.

Assessed values are from current SGTE description [8]. QE are values computed using

Quantum Espresso and density functional perturbation theory, VASP are values computed

using VASP and the supercell method. QHA refers to the quasiharmonic approximation,

QHA+ el to the quasiharmonic approximation including the electronic contribution. For

more details and description of these methods we refer to [20]. Calculations performed by

integration of the SR model (8) for Cp(T ) from 0K up to 298 K (NLS) provide reliable

results for the thermodynamic properties such as the entropy and show good agreement

with first-principle calculation reported by Palumbo et al. [20]. Slightly higher values
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Figure 20: Calculated and experimental relative enthalpy H −H298.15 for pure Cr

Figure 21: Calculated and experimental relative enthalpy H −H298.15 for pure Al
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Figure 22: Calculated and experimental relative enthalpy H −H298.15 for pure Fe
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Reference method details Cr bcc Fe bcc Al fcc

Dinsdale (1991) [8] assessed 23.54 27.28 28.30

Palumbo (2013) [20] QE calc.QHA 23.07 26.58 27.42
calc.QHA+el. 23.72 27.41 27.70

VASP calc.QHA 23.03
calc.QHA+el. 23.50

Present work NLS SR with Debye 24.02 28.18 28.46
SR with Einstein 23.34 27.51 27.69
CS with Debye 24.03 28.24 28.47
CS with Einstein 23.24 27.54 27.73
RW with Debye 24.41 28.23 28.44
RW with Einstein 23.60 27.51 27.66

Table 9: Calculated standard entropy S298.15

for the relative entropy are obtained by application of the models (6), (7) and (8) with

the Debye function for description of the phonon contributions. Comparison between

experimental and calculated relative enthalpy H(T ) − H298.15 is shown in Fig. 20 and

delivers good agreement from the room temperature, 298.15K, up to the high temperatures.

No data on the relative enthalpy at the temperatures below 298.15K were found in the

literature.

4 Conclusion

A novel physically-based segmented model for the description of the thermodynamic prop-

erties of the pure elements down to 0K has been proposed, which is based on a combination

of a statistical fit of the heat capacity data with several physical models. The thermody-

namic properties of pure Cr, Al and Fe have been modeled by a segmented regression model

and the proposed method provides very good prediction of experimental data. The new

segmented model has been compared with already existing physically-based formulations

and it is demonstrated for all selected pure elements that it is most appropriate for the

description of the heat capacity data with respect to to several statistical criteria, which

measure the quality of a statistical fit to experimental data.
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