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Abstract

This article deals with the right-tail behavior of a response distribution FY conditional on a
regressor vector X “ x restricted to the heavy-tailed case of Pareto-type conditional distri-
butions FY py| xq “ P pY ď y| X “ xq, with heaviness of the right tail characterized by the
conditional extreme value index γpxq ą 0. We particularly focus on testing the hypothesis
H0,tail : γpxq “ γ0 of constant tail behavior for some γ0 ą 0 and all possible x.
When considering x as a time index, the term trend analysis is commonly used. In the recent
past several such trend analyses in extreme value data have been published, mostly focusing on
time-varying modeling of location and scale parameters of the response distribution. In many
such environmental studies a simple test against trend based on Kendall’s tau statistic is ap-
plied. This test is powerful when the center of the conditional distribution FY py|xq changes
monotonically in x, for instance, in a simple location model µpxq “ µ0 ` x ¨ µ1, x “ p1, xq1,
but the test is rather insensitive against monotonic tail behavior, say, γpxq “ η0 ` x ¨ η1. This
has to be considered, since for many environmental applications the main interest is on the tail
rather than the center of a distribution. Our work is motivated by this problem and it is our
goal to demonstrate the opportunities and the limits of detecting and estimating non-constant
conditional heavy-tail behavior with regard to applications from hydrology.
We present and compare four different procedures by simulations and illustrate our findings on
real data from hydrology: Weekly maxima of hourly precipitation from France and monthly
maximal river flows from Germany.

Keywords: Heavy tails; Extreme Value Index; Regression model; Relative excesses; Flood
frequency; Precipitation

1 Introduction

In recent years considerable attention has been devoted to the analysis of abrupt change-points
and smooth changes in the distribution of environmental variables Y such as amounts of pre-
cipitation, sea storm heights and river flows. While change-points are motivated by human
intervention, for instance, the relocation of a measurement station or the construction of a river
dam, the analysis of smooth changes has gained attention due to the climate change debate.
In the latter context the term trend is used, which is usually associated with a smooth mono-
tonic change over time. More generally, the conditional distribution of Y given some regressor
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variables X “ x, x P X , may be of interest. Then the interest might by in the change of the
conditional distribution over the regressor space X .
For many environmental applications the main interest is in the frequency of hazardous events,
e.g., extreme precipitations and floods. Accordingly, there is a number of articles introducing
methodology for change-points [Jarušková and Rencová, 2008; Kim and Lee, 2009; Dierckx and
Teugels, 2010; Dupuis et al., 2015; Bücher et al., 2015; Kojadinovic and Naveau, 2015] and
regression/trend analysis [Chavez-Demoulin and Davison, 2005; Wang and Tsai, 2009; Gardes
and Girard, 2010; Dierckx, 2011; Wang et al., 2012; Wang and Li, 2013; Einmahl et al., 2016;
de Haan et al., 2015] of extremes, just to name a few recent contributions. For a case study and
an overview of many flood trend analyses we refer to Mediero et al. [2014].
Our work is motivated by hydrological applications, where we aim at detecting smooth mono-
tonic relationships between covariates X and the upper tail behavior of river discharges or
precipitations Y , in particular, temporal trends in the tail behavior. The methods considered
here are limited to the case of heavy-tailed response distributions FY , which are characterized
by a right tail behavior decreasing of polynomial order controlled by the so-called extreme value
index γ ą 0.
From a methodological point of view, this article is related to Wang and Tsai [2009] and Wang
and Li [2013]. These authors propose different tail estimation procedures, the former based on
parametric extreme value index regression and the latter based on quantile regression in the tail
region. We study a new procedure that can be viewed as L-estimation from regression quantiles.
This, in turn, is a regression analogue of ordinary L-statistics, with “L” shorthand for linear
combination of order statistics. It is known that estimation from certain L-statistics offers both
robustness and high efficiency [Bickel and Lehmann, 1975].
Our main interest is in testing the hypothesis H0,tail : γpxq “ γ0 for some unknown γ0 ą 0 of a
constant heavy-tail behavior over all possible regressor values x P X . For that purpose, we also
study a modification of Kendall’s tau test statistic, where we apply the popular Mann-Kendall
test (see Kendall [1948]; Yue et al. [2002]; Chebana et al. [2013]; Mediero et al. [2014] and the
references therein) to a properly selected upper fraction of the sample.
We compare the performance of four different procedures that are constructed to detect devia-
tions from H0,tail and that are supposed to hold their nominal level in an asymptotic sense with
sample size tending to infinity. Besides the power of the tests, it is equally important to study
their nominal level under H0,tail in finite-sample experiments. It turns out that, under H0,tail,
the avoidance of a false alarm (rejection of H0,tail) is particularly challenging if a location µpxq
or scale parameter σpxq of the conditional distribution is not constant in x. This is studied in
more detail in our simulations section.
The importance of avoiding those false alarms is highlighted in another simulation experiment
concerned with the comparison of estimation errors: It is highlighted that the additional source
of uncertainty originating from the estimation of non-constant tail behavior γpxq ‰ γ0 is large.
Since sample lengths are very limited in many applications from hydrology, it is often less erro-
neous (in terms of MSE) to choose a simpler model and work under H0,tail, even in experiments
with a pronounced violation of the simplification.
The remainder of this article is organized as follows: Section 2 introduces the model and de-
scribes the idea of selecting samples from the tails. New methods for the analysis of conditional
tails are presented in Section 3 and compared by simulation in Section 4. Applications to French
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weekly precipitation and to river flow data from the Mulde basin are presented in Section 5.

2 Heavy tails and relative excesses

In the literature there are different characterizations of the term heavy-tailed. One of them
often used in the literature on extremes identifies the right tail of a distribution function F as
heavy, if, for y Ñ8, its tail decay F̄ pyq “ 1´ F pyq Ñ 0 is of polynomial order. More precisely,
F is called heavy-tailed to the right, if

F̄ pyq “ y´1{γ ¨ Lpyq, y ą 0, (1)

for some parameter γ ą 0 called extreme value index and function L : R` Ñ R` satisfying
limtÑ8 Lptyq{Lptq “ 1 for all y ą 0. γ controls the heaviness of the right tail, with finite (resp.
infinite) r-th moment

ş8

0 yr dF pyq for γ ă 1{r (resp. γ ą 1{r). The canonical example, the
Pareto distribution function with support on r1,8q, is obtained if we let L ” 1 and this is why
the family of all distributions satisfying (1) is also called Pareto-type.
It turns out that this family is very rich containing many common distributions. E.g., Student’s
tν with γ “ 1{ν, Fisher’s Fm,` with γ “ 2{`, the Burrpc, rq with γ “ 1{pcrq, the generalized
extreme value GEV pµ, σ, ξq and generalized Pareto distributions GP pσ, ξq with positive shape
ξ “ γ. In fact, the family of Pareto-type distributions coincides with the Fréchet domain of
attraction [de Haan and Ferreira, 2006, Theorem 1.2.1]: F satisfies (1) if and only if there exist
an ą 0, bn P R such that limnÑ8 F

npany`bnq “ Gγpyq for all continuity points y of the extreme
value distribution Gγ and γ ą 0.

From a theoretical point of view, the characterization in (1) says absolutely nothing about F
restricted to the interval p´8, us, for arbitrary constants u P R. Thus, provided there are no
further assumptions on F , statistical inference on the extreme value index γ of a Pareto-type
distribution F should be based only on the largest observations representing F on the tail region
pu,8q.
Let Y be a random variable with distribution function F pyq “ PpY ď yq as in (1) and let u ą 0
be a real number. The random variable Zu “ Y {u satisfying Y ą u is called relative excess over
the threshold u. From relation (1) we obtain

P pZu ď z| Y ą uq “ 1´
F̄ puzq

F̄ puq
ÝÑ 1´ z´1{γ “ Pγpzq for z ą 1, uÑ8. (2)

In words this means that relative excesses over large thresholds u approximately follow a simple
parametric law, which depends only on the extreme value index γ of F . The limit Pγ is given by
a Pareto distribution function commonly parameterized Paretopαq with parameter α “ 1{γ ą 0,
the so called tail index.

The interest of the present article is in the conditional behavior of extremes. Let pY,Xq be a
random element, where Y is now called response and X “ p1, X1, . . . , Xdq

1 a vector of regressors
with range on a compact set X Ă Rd`1. We assume that the conditional distribution of Y given
X “ x is of Pareto-type, that is,

FY py| xq “ P pY ď y| X “ xq “ 1´ y´1{γpxq ¨ Lpy| xq, (3)
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where γ : X Ñ R` is strictly positive and Lp ¨ | xq a slowly varying function for each x P X .
Firstly, our main interest is in the statistical inference on γ, particularly, in testing hypothesis

H0,tail : γpxq “ γ0 for some γ0 ą 0 and all x P X (4)

of heavy-tail behavior constant in x and, secondly, we are also interested in the estimation of
the conditional tail behavior under additional parametric assumptions on γpxq.

Suppose that the sample pYi,Xiq, i “ 1, . . . , n, consists of independent copies of pY,Xq. The
first question to be answered for the analysis of conditional heavy tails is: How to select relative
excesses under assumption (3)? A practical solution of this problem is discussed in the following
two subsections.

2.1 How to choose the threshold conditional on X “ x

In usual tail analysis a threshold u P R is set to split the support of a univariate distribution F
into a lower moderate and an upper extreme part (right tail). A natural choice is a quantile up “
F´1ppq for some high probability p P p0, 1q. Because here we consider conditional distributions, it
is meaningful to choose a conditional quantile uppxq “ F´1Y pp| xq in analogy to the unconditional
case.
In practice the conditional distribution is unknown and thus F´1Y pp| xq needs to be estimated.
Here we follow a parametric quantile regression approach: Suppose that the conditional p-
quantile of gpY q given X “ x follows a linear model

F´1gpY qpp| xq “ inf
 

z : FgpY qpz| xq ě p
(

“ x1βp,

where g is a monotone increasing function on the domain of Y and where βp P Rp`1 is an
unknown parameter vector called p-th regression quantile.

Example 1. (i: Location-scale model) The following data generating process is frequently applied
in the quantile regression literature. Let X be a random vector on Rd`1 and µ,σ P Rd`1
such that X1σ ą 0 almost surely. Let ε be a random variable independent of X and define
Y “ X1µ`X1σ ¨ ε. Then we have

F´1Y pp| xq “ x1µ` x1σ ¨ F´1ε ppq “ x1βp

with βp “ µ` σF´1ε ppq.
(ii: Conditional Pareto) Suppose now that Y given X “ x follows a Pareto-type distribution
defined in (3) with Lpy| xq “ σpxq1{γpxq, σpxq “ x1ξ ą 0 and γpxq “ x1θ ą 0 for some
deterministic vectors ξ,θ P Rd`1. This distribution is also called two-parametric Pareto with
scale σpxq and shape αpxq “ 1{γpxq. Then we have

F´1logpY qpp| xq “ σpxq ´ logp1´ pq ¨ γpxq “ x1βp

with βp “ ξ ´ logp1´ pq ¨ θ.
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A consistent M -estimator of βp studied in the seminal article of Koenker and Bassett [1978] is
defined by

β̂p “ arg min
bPRd`1

n
ÿ

i“1

ρp
`

gpYiq ´X1i ¨ b
˘

, (5)

where ρppyq “ y ¨ pp ´ 1tyď0uq is the p-quantile loss function. Since conditional quantiles are

invariant up to monotone increasing transformations, i.e. F´1gpY qpp| xq “ g
`

F´1Y pp| xq
˘

, we set

ûppxq “ F̂´1Y pp| xq “ g´1
´

x1β̂p

¯

. (6)

If we let p “ pk,n “
n´k
n`1 with corresponding estimator denoted by uk,n “ ûpk,n , we almost get k

out of n elements pYi,Xiq with Yi ą uk,npXiq (in simulations mostly between k ´ 2 and k ` 2).
In what follows, we neglect this small deviation from k. For notational simplicity, we suppose
that we get exactly k out of n excesses if we choose p “ pk,n.

The assumption that the conditional quantile is linear after some known transformation g might
be too restrictive. A more flexible approach studied in Mu and He [2007] and also applied in
Wang and Li [2013] is based on the family tgλ : R` Ñ R | λ P Ru of Box-Cox transformations

gλpyq “

#

yλ´1
λ , if λ ‰ 0

logpyq , if λ “ 0
.

In the previous reference it is assumed that the conditional p-quantile of gλpY q given X “ x
follows a linear model, where the parameter λ “ λp is unknown. Interestingly enough, Teugels
and Vanroelen [2004] showed that the extreme value index γ˚pxq of gλpY q conditional on X “ x
satisfies γ˚pxq “ λ ¨ γpxq P R, provided (3) holds.
Mu and He [2007] proposed the consistent estimator

λ̂p “ arg min
λPR

n
ÿ

i“1

rRnpxi, λ, pqs
2 (7)

of λp, where

Rnpx, λ, pq “
1

n

n
ÿ

j“1

1pxj ď xq ¨
”

p´ 1
´

gλpYjq ď x1iβ̂p,λ

¯ı

and β̂p,λ is computed by (5) with g “ gλ.
In summary, the following routine can be applied to select k out of n relative excesses from a
sample pYi,Xiq, i “ 1, . . . , n, and for a fixed number k ă n:

1. Set p “ pk,n “
n´k
n`1 and compute λ̂ by (7).

2. Solve (5) with g “ gλ̂ and let upxq “ uk,npxq “ g´1
λ̂

´

x1β̂p

¯

.

3. Identify all 1 ď i1 ă . . . ă ik ď n with Yij ą upXij q and let pZk,j ,Xk,jq, j “ 1, . . . , k,
denote the sample of relative excesses Zk,j “ Yij{upXij q with corresponding regressors
Xk,j “ Xij .

For single regressors X “ p1, Xq1 we write pZk,j , Xk,jq instead of pZk,j , p1, Xk,jq
1q.
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2.2 How to select the tail sample size k

After discussing the shape of the threshold function u for fixed k, we now turn to the selection
of k representing the number of relative excesses included in the tail analysis. Wang and Tsai
[2009] proposed a data driven selection of k based on the minimization of a discrepancy measure.
Similar to them, we let

k˚ “ arg min
1ďkăn

Dnpkq “ arg min
1ďkăn

1

k

k
ÿ

j“1

ˆ

Ûk,j:kpγ̂k,nq ´
j

k ` 1

˙2

(8)

where Ûk,1:kpγ̂k,nq ă . . . ă Ûk,k:kpγ̂k,nq are order statistics from a sample computed by Ûk,jpγ̂k,nq “
exp p´ logpZk,jq{γ̂k,npXk,jqq, j “ 1, . . . , k, and γ̂k,npxq is an estimator of γpxq computed from
pZk,j ,Xk,jq, j “ 1, . . . , k.
The minimization in (8) is interpreted as a solution to a trade-off problem: On the one hand,
large numbers k worsen the approximation of Zk,j being Paretop1{γpXk,jqq distributed and thus,
of Uk,j “ exp p´ logpZk,jq{γk,npXk,jqq being uniformly distributed. On the other hand, too small
numbers k decrease the efficiency of estimator γ̂, which, in turn, deteriorates the approximation
of Ûk,jpγ̂k,nq being uniformly distributed.

3 New estimator and tests

In this section we suppress the previous approximation and instead simply assume that the
sample pZk,j ,Xk,jq, j “ 1, . . . , k, consists of independent and identically distributed variables
with PpZk,j ď z| Xk,j “ xq “ 1´ z´1{γpxq. A similar idea and some theoretical background for
this simplification is presented in Beirlant et al. [2006, Chap. 7.3]. A more rigorous justification
in a related problem is given in Wang and Tsai [2009]. There it is shown that the asymptotic
normality of their estimator remains valid also without the previous simplification but with an
additional bias h included in the mean of the limiting distribution. For practical reasons, since
the estimation of h requires detailed information on the tail that is very hard to obtain, the bias
usually is set to zero in finite-sample applications [Resnick, 2007; Wang and Tsai, 2009; Wang
and Li, 2013].

3.1 L-estimation under linearity γpxq “ x1η and related tests

Let pZ,Xq be a random element on Rˆ Rd`1 satisfying

FZpz| xq “ PpZ ď z| X “ xq “ 1´ z´1{γpxq with γpxq “ x1η

for all x P X and some deterministic vector η “ pη0, η1, . . . , ηdq
1 P Rd`1. It follows that

F´1logpZqpp| xq “ ´γpxq ¨ log p1´ pq “ x1βp

for βp “ ´ log p1´ pq¨η and all p P p0, 1q. In words, conditional quantiles are linear in covariates
x, which allows us to estimate γpxq by linear quantile regression [Koenker, 2005]: Let pZj ,Xjq,
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j “ 1, . . . , k, denote independent copies of pZ,Xq and

β̂p “ arg min
bPRd`1

k
ÿ

j“1

ρp
`

logpZjq ´X1j ¨ b
˘

with ρppuq “ u ¨
`

p´ 1tuď0u
˘

. By setting η̂p “ ´β̂p{ logp1´ pq we obtain an estimator of η for
each p P p0, 1q. Restricting on one probability p obviously is not a satisfactory solution to our
estimation problem. Instead we are going to gather information from estimates η̂p for multiple
probabilities p P p Ă p0, 1q. From Theorem 2 in Appendix A and the model assumptions stated
above, we easily obtain the following result:

Proposition 1. Let p “ tp1, . . . , p`u Ă p0, 1q denote a finite set of distinct probabilities and
suppose that J “ EpXX1q and H “ E pXX1{X1ηq P Rpd`1qˆpd`1q exist with H positive definite.
Then, under the assumptions from above and for k Ñ8, we have that

?
k
`

η̂1p1 ´ η1, . . . , η̂1p` ´ η1
˘1 D
ÝÑ N p0,Ωpq,

where Ωp “ Ap b pH
´1JH´1q and Ap P R`ˆ` is defined through its entries

aij “ appi, pjq “
pi ^ pj ´ pi ¨ pj

p1´ piqp1´ pjq logp1´ piq logp1´ pjq
, 1 ď i, j ď `,

and with b denoting the Kronecker product.

Proof. Recall that η̂p “ ´ logp1 ´ pq´1β̂p and η “ ´ logp1 ´ pq´1βp for all p P p0, 1q. Weak
convergence towards a multivariate normal distribution follows directly from Theorem 2 from
the appendix. It remains to verify that Ωp is the corresponding covariance matrix.
Under the conditions from the present section we have that fp¨|xq and F p¨|xq are the density
and distribution function, respectively, of logpZq conditional on X “ x, which is exponential
with parameter 1{γpxq. Following the notation from Theorem 2, we have that Hp “ p1´ pq ¨H
with Hp defined in (14), which, for k Ñ8, gives us

Cov
”?

k pη̂pi ´ ηq ,
?
k
`

η̂pj ´ η
˘

ı

ÝÑ appi, pjq ¨H
´1JH´1.

l

As a direct application, we are able to derive the limiting distribution of so called L-estimators
η̂pp,wq “

ř`
i“1wi¨η̂pi of η, where w “ pw1, . . . , w`q is a vector of weights satisfying

ř`
i“1wi “ 1.

We obtain

?
k pη̂pp,wq ´ ηq

D
ÝÑ N

`

0, BwΩpB
1
w

˘

“ N p0,Σp,wq , (9)

where Bw “ pw1 ¨ Id`1, . . . , w` ¨ Id`1q P Rpd`1qˆpd`1q` and Id`1 P Rpd`1qˆpd`1q is the identity on
Rpd`1q.
As a second application, it is straightforward to construct test statistics for linear hypotheses
of the form H : Cη “ 0 vs. A : Cη ‰ 0, where C P Rmˆpd`1q is a given matrix. In the
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simulations section, where we use d “ 1, the statistic TL “
?
kη̂1{σ̂1 as a test for H0,tail vs.

H1,tail is referred to as the L-test.

We close this section with three important remarks:

i): Selection of `, p and w
Next to be answered is how to choose the number ` P N, a set of probabilities p P p0, 1q` and the
corresponding weights w “ pw1, . . . , w`q

1 with
ř`
j“1wj “ 1. Let us first consider the last issue.

Suppose that ` and p P p0, 1q` are fixed and let η̂pp,wq “ pη̂0, η̂1, . . . , η̂dq
1. Then, for arbitrary

weights w and for each component η̂j , we have that

Var rη̂js « cj{k ¨w
1Apw, j “ 0, . . . , d,

where cj ą 0 does not depend on p and w. It is therefore sensible if we choose

wopt “ woptppq “ arg min
w

w1Apw “
`

11A´1p 1
˘´1

¨A´1p 1,

where 1 “ p1, . . . , 1q1 P R`. This is the solution of the previous minimization problem obtained
by the Lagrange multipliers technique. Note also that the optimal solution wopt is the same for
all d` 1 components.
Let us now turn to the selection of the number ` and the set p P p0, 1q`. From a theoretical
point of view, since wj “ 0 is possible in the previous minimization, the more probabilities
pj we include the better the estimation. However, from several simulation experiments in the
semi-parametric setting (3) we found that the choice of a moderate number of, say, ` “ 20 prob-
abilities equally spaced in the upper half r1{2, 1´ 1{40s performs well and including additional
probabilities did not improve the efficiency.

ii): Deterministic regressors and non-identically distributed observations
So far, we considered samples pZj ,Xjq, j “ 1, . . . , k, as independent and identically distributed,
but sometimes this framework does not cover the actual problem: Suppose that Xi “ xi is a
deterministic sequence of regressors, for instance, regression over the (rescaled) time domain.
Rescaling is needed for technical reasons. Then, in many situations, the observations Zj , j “
1, . . . , k, may still be considered as independent but not identically distributed (i.ni.d.). Thanks
to the theory on quantile regression processes based on sequences of such observations [Koenker,
2005, Sec. 4.3], it is still possible to apply the results from the previous section: Let Zj have
a Pareto distribution with extreme value index γpxjq “ x1jη ą 0, j P N. Then the assertion of
Proposition 1 holds even in this i.ni.d. case if we define J and H by

J “ lim
kÑ8

1

k

k
ÿ

j“1

xjx
1
j and H “ lim

kÑ8

1

k

k
ÿ

j“1

xjx
1
j{xjη,

provided these two limits exist. So, from a computational point of view, there is no difference
to the former case of i.i.d. observations.

iii): Application to samples from the conditional tail
Initially we started with random elements pY,Xq with conditional distribution defined in (3).
Assuming that γpxq “ x1η ą 0 holds for all x P X and some unknown η P Rd`1, our main
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interest is in statistical inference on η. Following the introductory lines of Section 3, it is
sensible to apply estimator η̂pp,wq on the sample pZk,j ,Xk,jq, j “ 1, . . . , k, from Subsection
2.1, which are approximately distributed like pZ,Xq. The estimator is denoted by η̂Lk,n “

η̂Lk,npp,wq. It is left for future research to prove that a statement similar to (9) holds also in
this approximate setting, presumably with an additional bias h in the mean of the limit but
with the same limiting covariance matrix. In applications it is common to ignore a possible
bias h and the covariance matrix is estimated by plugging in Jk,n “

1
k

řk
j“1Xk,jX

1
k,j and

Hk,n “
1
k

řk
j“1Xk,jX

1
k,j{η̂

L
k,npXk,jq for J and H, respectively.

3.2 Kendall’s tau tail-test

In the single regressor setting X “ p1, Xq1, Kendall’s tau test [Kendall, 1948] is a simple rank
based test against dependence. More precisely, let C denote the copula of pX,Y q. Then we have
that

τpX,Y q “ 4 ¨

ż

r0,1s2
Cpu, vqdCpu, vq ´ 1 (10)

defines Kendall’s correlation coefficient. τpX,Y q is a margin-free dependence coefficient with
´1 ď τpX,Y q ď 1 and τpX,Y q “ 0 for independent variables X and Y . The empirical counter-
part of (10) is tn “

2
npn´1q ¨ Sn with

Sn “
ÿ

1ďiăjďn

sgnpYj ´ Yiq ¨ sgnpXj ´Xiq

and sign function

sgnpzq “

$

&

%

1 , z ą 0
0 , z “ 0

´1 , z ă 0
.

The statistic Sn is used to test H0,ind : X and Y are independent. Under H0,ind it is known
that the distribution of Sn is well approximated by N p0, σ2nq with σ2n “ npn ` 1qp2n ` 5q{18,
provided P pXi “ Xjq “ P pYi “ Yjq “ 0 for i ‰ j [Kendall, 1948; Yue et al., 2002].
Because here the interest is in the tail behavior of Y conditional on X, we propose the test
statistic

Sk,n “
ÿ

1ďiăjďk

sgnpZk,j ´ Zk,iq ¨ sgnpXk,j ´Xk,iq, (11)

which is Kendall’s test for the sample pZk,j , Xk,jq, j “ 1, . . . , k, of relative excesses and their
regressors (see Section 2.1). Critical values are computed based on the presumed approximation

Sk,n
D
« N p0, σ2kq.
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4 Simulation study

4.1 Detection of conditional heavy-tail behavior

In this section we focus our attention on the problem of testing hypothesis H0,tail of constant
heavy-tail behavior stated in (4). The following questions are the main sources of our motivation:

i) Is it realistically possible to distinguish between trends in γpxq and trends in, say, con-
ditional location µpxq or scale σpxq at constant shape γpxq “ γ0? In other words: Do
the tests keep their nominal level under H0,tail even in more challenging scenarios than
conditional distributions constant in x?

ii) Under what circumstances is it possible to detect deviations from H0,tail with satisfactory
power?

It has to be considered that models with non-constant tail behavior γpxq ı γ0 suffer from this
additional source of uncertainty, especially when the focus is on the right tail, say, the estimation
of high quantiles of the conditional distribution. On the one hand, it might be important to
take a non-constant γpxq into account. On the other hand, it might be even more important to
preserve simplicity in order to keep estimation uncertainty as small as possible.
We restrict our attention to the case d “ 1. We consider scenarios with non-constant conditional
location, scale or shape. Anyway, data are generated independently in i by

Yi “ X1iµ`X1iσ ¨ εi, 1 ď i ď n, (12)

where Xi “ p1, Xiq
1 is a random vector with second component Xi uniformly distributed on X “

r´1, 1s, and with nonrandom parameter vectors µ “ pµ0, µ1q
1 and σ “ pσ0, σ1q

1. Furthermore,
the variables εi satisfy

P pεi ď y| Xi “ xq “ exp
´

´r1` γpxq ¨ ys´1{γpxq
¯

, y ą ´1{γpxq,

for some nonrandom vector η “ pη0, η1q
1. All in all, this means that the variables Yi conditional

on Xi “ x are generalized extreme value (GEV) distributed with location µpxq “ x1µ, scale
σpxq “ x1σ ą 0 and shape γpxq “ x1η ą 0. Recall that the shape of the GEV is also its extreme
value index. Since we are dealing with relative excesses, all the methods are scale but not
location invariant. Studying many river flow time series from Saxony in Germany we found that
a ratio of about µ0{σ0 “ 2 is common, which, for simplicity, is used throughout the simulation
experiments.
For convenience, we denote the hypotheses of constant location and constant scale by

H0,loc : µ1 “ 0 and H0,scale : σ1 “ 0,

respectively. Corresponding alternatives with non-zero slope µ1 ‰ 0 and σ1 ‰ 0 are denoted by
H1,loc and H1,scale, respectively. Intersections are abbreviated as

Ha,b,c “ Ha,loc XHb,scale XHc,tail for a, b, c P t0, 1u,

where H0,tail : η1 “ 0 and H1,tail : η1 ‰ 0.
We compare the finite-sample performance of
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Figure 1: Rejection rates of four different tests computed from 4000 samples generated by
process (12) under (top) scenarios Hab0 involving the null H0,tail and (bottom) scenarios Hab1

involving the alternative H1,tail. Samples were generated by (12) with sample length n “ 500
and parameters set to µ0 “ 2, σ0 “ 1 and η0 “ 0.4. Under H1,b,c, Ha,1,c and Ha,b,1 we set
µ1 “ µ0{4 “ 0.5, σ1 “ σ0{4 “ 0.25 and η1 “ η0{2 “ 0.2, respectively. Note that the y-axis is on
square root scale.

3S: a test based on the three-stage test statistic in (18),

K: the test based on the Kendall’s tau statistic (11),

L: a two-sided t-test based on the weak limit of estimator η̂1 in (9) and

TIR: a two-sided t-test based on the weak limit of estimator θ̂1 in (17) with h1 “ 0.

These tests are used to check H0,tail vs. H1,tail at a nominal level of 5%. The simulation results
are presented in Figure 1. We computed rejection rates (y-axis) of the null for different values of
the tuning parameter k (x-axis) and for six scenarios Ha,b,c, involving (top) three Ha,b,0 under
the null and (bottom) the others Ha,b,1 under the alternative. Rejection rates are computed from
4000 independent samples for each scenario with sample length n “ 500. In all experiments we
set µ0 “ 2, σ0 “ 1 and η0 “ 0.4. Under scenarios H1,b,c, Ha,1,c and the alternatives Ha,b,1 we
used µ1 “ µ0{4 “ 0.5, σ1 “ σ0{4 “ 0.25 and η1 “ η0{2 “ 0.2, respectively. Note also that the
rejection rates on the y-axis are given on square root scale.
The performance under the null is presented on the upper half of Figure 1. It is particularly
interesting to study the impact of the tuning parameter k on the size of the tests. Recall that
our tail model assumptions are built in such a way that the justification of the approximation
improves with smaller values of k. Indeed, the size of the tests is close to 5% for k being around
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Figure 2: Conditional quantile curves F´1pp| xq for probability levels p P

t0.25, 0.5, 0.75, 0.9, 0.95, 0.99u and for a few selected scenarios defined in Section
4.1.

50 to 100 in all the considered scenarios under the null. The performance under H0,1,0 and H1,0,

is particularly interesting. There the tests K and TIR are too liberal for all values of the tuning
parameter k. The overall best performance under the null is given by test L followed by 3S,
which hold their nominal level of 5% for a reasonable range of k values.
Under the alternatives Ha,b,1 presented on the lower half of Figure 1, we observe that the power
of tests 3S, L and TIR is very similar, with a slight advantage of test TIR. The fact that test K
has the lowest power is not surprising, since this test is based on the weakest model assumptions.
The same experiments with sample lengths n “ 200 and n “ 1000 led to qualitatively the same
results and are thus not reported here.

4.2 Selection of k

This part of the simulations is devoted to the adaptive selection of k, for instance, rule (8). The
simulation results depicted in Figure 3 are computed under H0,0,1 with observations generated
by (12), where X is uniformly distributed on r´1, 1s, µ “ p2, 0q1, σ “ p1, 0q1 and η “ p0.4, η1q

1.
We compared several versions of the L-estimator γ̂Lp1q of γp1q “ η0` η1: The L-estimator with
pLq k “ t2n2{3u, pL˚q k˚ from (8), pL˚2q k “ t0.75k˚u and pL˚3q k “ t1.25k˚u. k “ t2n2{3u is

Table 1: Rejection rates of hypothesis H0,tail computed from 4000 samples under several
scenarios under the null identical with those from the top of Figure 1. The nominal level is 5%.

L L˚ TIR TIR˚ K K˚

H0,0,0 3.9 3.1 4.3 5.3 4.9 4.9
H0,1,0 7.5 10.6 9.5 15.9 10.2 13.8
H1,0,0 7.5 12.0 9.3 15.4 11.0 14.6
H1,1,0 3.3 3.6 4.1 5.3 5.2 5.1
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Figure 3: Comparison of L-estimators γ̂Lp1q of γp1q “ η0`η1 based on 1000 independent samples
of DGP (12) with µ “ p2, 0q1, σ “ p1, 0q1, η “ p0.4, η1q and sample length n “ 500 for different
selection rules of k: pLq k “ t2n2{3u, pL˚q k “ k˚, pL˚2q k “ t0.75 ¨k˚u and pL˚3q k “ t1.25 ¨k˚u,
where k˚ is a data-adaptive rule defined in (8). The dashed line corresponds to the true value.
The corresponding mean squared errors are given by pη1 “ 0q 0.0113, 0.0126, 0.0124, 0.0176,
pη1 “ 0.1q 0.0091, 0.0096, 0.0104, 0.0108 and pη1 “ 0.2q 0.0085, 0.0087, 0.0099, 0.0074.

the asymptotically optimal choice for independent and identically GEV-distributed observations
[Gomes and Pestana, 2007] and indeed, this choice led to the best results in our simple scenarios
with GEV innovations. In practice, however, we may not always expect that the observations
stem from a known parametric family and it may be preferable to choose a data adaptive rule.
Overall, we found that the performance of the L-estimator with k “ k˚ from (8) is quite similar
to that with the asymptotically optimal choice. The modifications pL˚2q and pL˚3q perform
worse.
Finally, we have also compared the size of the L, TIR and K tests with k “ t2n2{3u and those
with a data-adaptive rule for k. For the TIR test we have used the rule proposed in Wang and
Tsai [2009] and for the remaining two tests the rule (8) was applied. Data were generated under
the same scenarios like in the top of Figure 1. Table 1 presents the simulation results computed
from 4000 independent samples of size n “ 500. The size of the tests is reasonably close to the
nominal level of α “ 5% under scenarios H0,0,1 and H1,1,0. The tests are too liberal under H0,1,0

and H1,0,0, which is even worse with data-adaptive selection of k.

4.3 Estimation of conditional heavy-tail behavior

In view of the potential applications with its focus on high quantiles and typically rather limited
observation lengths, we may ask: Is it meaningful to consider conditional heavy-tail behavior
in hydrological applications, or is it better to rely on less complex models (work under H0,tail)
even if this simplification is not true?
More precisely, we evaluate the following questions:
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Figure 4: Comparison of estimators of γp1q “ η0`η1 based on 1000 independent samples of DGP
(12) with µ “ p2, 0q1, σ “ p1, 0q1, η “ p0.4, η1q and with sample length n “ 500 and k “ tn2{3u.
The corresponding mean squared errors are given by pη1 “ 0q 0.0140, 0.0145, 0.0046, 0.0089,
pη1 “ 0.1q 0.0144, 0.0175, 0.0060, 0.0142 and pη1 “ 0.2q 0.0166, 0.0234, 0.0238, 0.0300.

i) What is the effect of conditional heavy-tail behavior γpxq “ η0 ` xη1 on quantiles of the
conditional distribution?

ii) What about estimation efficiency? Under what circumstances (sample length, degree of
heavy-tail variability) is it worthwhile to estimate non-constant heavy-tail behavior?

Figure 2 illustrates the shape of the conditional distribution as a function of the regressor
x P r´1, 1s on different quantile levels. We have selected a few scenarios, which were already
applied in the simulations from the previous section. Particular attention should be paid to
scenario H0,0,1 with trend γpxq “ 0.4 ` 0.2x in the shape but constant location µpxq “ 2 and
scale σpxq “ 1. Note that the lower 75% of the conditional distribution is almost unchanged
over the whole regressor space, while, say, the 99%-quantile drastically increases by more than
150%. In contrast to that, a pure trend in location pH1,0,0q or in scale pH0,1,0q has a rather
moderate effect on the different quantiles of the conditional distribution.
For the evaluation of question ii), suppose that hypothesis H0,0,1 is met with observations gen-
erated by (12), where again X is uniformly distributed on r´1, 1s, µ “ p2, 0q1, σ “ p1, 0q1 and
η “ p0.4, η1q

1. Think of r´1, 1s representing the rescaled time period in which we have collected
our observations. Suppose that we are interested in todays heavy-tail behavior, that is, in the
estimation of γp1q “ η0 ` η1 at time x “ 1. We compare the following estimators:

L: Estimator γ̂Lp1q “ η̂L0 ` η̂
L
1 with η̂L defined in Section 3.1.

TIR: Estimator γ̂TIRp1q “ exppθ̂TIR0 ` θ̂TIR1 q with θ̂TIR defined in Section B.1.

Hill: The usual Hill estimator from Hill [1975], which assumes that η1 “ 0 holds.
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Ad.: An adaptive procedure, which applies the TIR-estimator if the TIR-based test rejects
H : η1 “ 0 at a level of 10%. Otherwise, the Hill estimator is used.

Figure 4 shows the simulation results for scenario H0,0,1 with (left) η1 “ 0, (middle) η1 “ 0.1
and (right) η1 “ 0.2. Boxplots are computed from 1000 independent repetitions with sample
length n “ 500 and a fixed effective sample size of k “ tn2{3u. As expected, we observe that
the estimation of an additional trend η1 (estimators L, TIR and partly the adaptive method)
has to be paid by a large increase of estimation variability. The Hill estimator is the only one
that assumes η1 “ 0, which results in an increasing estimation bias with increasing η1 ą 0. In
terms of mean squared errors (see caption of Figure 4), estimators L and TIR are preferable
over Hill only in scenario η1 “ 0.2. The adaptive method is preferable in none of the considered
cases. The same experiments with alternative rules for the selection of k and also with n “ 1000
(not reported here) did not change our conclusions. For n “ 200 (not reported here) the simple
Hill estimator is preferable in all three scenarios. Summing up, the estimation of non-constant
conditional heavy-tail behavior is useful only if η1 is large relative to n, which, for typical
applications from hydrology, presumably is not the case.

5 Applications

5.1 Weekly maxima of hourly precipitation in France

The left-hand side of Figure 5 displays two series of n “ 228 weekly maxima of hourly precipi-
tation measured during the fall season at the stations Nevers and Niort in France. We are going
to analyze whether the right-tail behavior changes over time or not. Recently, Kojadinovic and
Naveau [2015] found some evidence for change-points in both time series. Even more, if these
maxima are regarded as (approximately) GEV distributed, the approach from the previous ref-
erence suggests that the change-point in the Nevers series is due to a change in the tail behavior
and that of the Niort series is due to a change in location and scale.
The fact that a change in the tail behavior is present only in the first series is also confirmed
by our analysis. The right-hand side of Figure 5 depicts the p-values of the L-test versus
k P t10, 11, . . . , 100u for both of the series. Small p-values for a wide range of k values between
20 and 50 suggest that there is indeed a change in the tail behavior of the first series. The
graph for the second series does not show evidence for a change in the right-tail behavior. In
addition, from the application of the usual Mann-Kendall test [Kendall, 1948; Yue et al., 2002]
with resulting p-values of p “ 0.20 for Nevers and p “ 0.03 for Niort, respectively, we confirm
that there is evidence for a monotonic change in the location of the second series.

For practitioners, the previous analysis raises the question of how to include the results into,
say, the estimation of high quantiles. Let us start with the second series from Niort. Since there
is no evidence against γpxq “ γ0 for all x but instead some evidence against constant location,
we slightly modify the extrapolation formula of Weissman [1978] and set

F̂´1pp|xq “ uk,npxq ¨

ˆ

k

np1´ pq

˙γ̂0

, p ą 1´
k

n
,
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Figure 5: (Left) Weakly maxima of hourly precipitation during the fall season from 1993 to 2011
at the stations Nevers and Niort in France and (right) p-values of the L-test versus k between
10 and 100. The dashed line corresponds to a level of 5%.

where uk,npxq is defined in Section 2.1 and γ̂0 “
1
k

řk
j“1 logpZk,jq is computed from relative

excesses Zk,j above uk,npXk,jq. For instance, if we choose k “ k˚ “ 84 from (8), we obtain
γ̂0 “ 0.52 with estimated 95%- confidence interval of r0.41, 0.63s.
We continue with the time series from Nevers. At first, since we have found some weak evidence
against constant tail behavior, we might want to apply the L-estimator from Section 3.1, which,
by Proposition 1, for k “ k˚ “ 97 and for time axis rescaled on x P r´1, 1s, gives us γ̂pxq “
η̂0 ` η̂1x with

η̂ “ p0.56, 0.14q1 and estimated variability yVar
”?

kpη̂ ´ ηq
ı

“

ˆ

0.34 0.16
0.16 0.99

˙

.

Note that the 95%-confidence interval for η1 is rather wide with r´0.04, 0.24s. From our experi-
ence gained from simulation experiments reported in Section 4.3, we suggest to follow a simpler
approach. Because of the large uncertainty of η̂1 relative to that of η̂0 and because of the very
limited sample length of n “ 228, it is expected that the overall estimation error decreases if we
mistakenly set η1 “ 0, that is, if we estimate the tail behavior under the assumption γpxq “ γ0.
Applying the same estimator as for the Niort series with k “ k˚ “ 97, we obtain γ̂0 “ 0.54 with
estimated 95%-confidence interval of r0.43, 0.65s.

5.2 Monthly maximal flows at the Mulde river basin in Germany

We analyze river flow series from 16 stations located at the Mulde basin in Germany. A con-
venient way to eliminate temporal dependence, which is strongly present in the raw data, is
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by considering only monthly maximal flows. For illustrative purpose, our longest time series of
monthly maximal flows is depicted on the left-hand side of Figure 6. The series was observed at
station Wechselburg1 from November 1909 to October 2012.
Besides the popular annual maxima approach, where only the largest out of twelve monthly
maxima in each year is taken into account, there is an increasing interest in the hydrological
literature on methods based on all values above some selected threshold [see, e.g., Cunnane,
1973; Madsen and Rosbjerg, 1997; Roth et al., 2016, and the references therein]. Practitioners
usually choose a threshold such that, on average, more than one value per year is left for the
estimation of the tail. The hope from this is an increase in estimation efficiency, compared to
estimation based only on annual maxima. However, in the previous references it assumed that
the observations are identically distributed. Recently, Einmahl et al. [2016] showed consistency
of classical tail estimators under slightly weaker assumptions called heteroscedastic extremes,
but still they need that the tail behavior, i.e., the extreme value index γ is the same for all
observations.
In analogy to the previous subsection, we first check whether the extreme value index of monthly
maximal flows is constant over the whole observation period. We computed p-values of the test
based on the L-estimator for all 16 time series, with (8) employed for a data-adaptive selection
of k. Ignoring the multiple testing issue, weak evidence against stationary tail behavior is found
only for the series from station Streckewalde with a p-value of 0.051. So, for the moment, it
seems safe to assume that most of our series are stationary in their tail behavior.

It is evident that a serious source of non-stationarity is due to seasonal variability within a year.
In what follows, this is further investigated in terms of tail behavior:
We rearranged the monthly maximal flows according to their appearance within a hydrological
year, which, for the series from Wechselburg1, is depicted on the right-hand side of Figure 6. In
Germany the j-th hydrological year starts in the first day of November of the pj´1q-th calendar
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Figure 6: Monthly maximal flows observed at station Wechselburg starting from November
1909 till October 2012 in (left) chronological order and (right) ordered according to their day of
appearance in the German hydrological year.
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year and ends in the last day of October of the j-th calendar year. November first and October
31st correspond to day 1 and 366, respectively, on the x-axis of the right-hand side of Figure
6. Let xi P t1, 2, . . . , 366u denote the hydrological day of the monthly maximal flow Yi with
corresponding extreme value index γpxiq ą 0, which is supposed to depend only on the hydro-
logical day xi, i “ 1, . . . , n “ 1236. At first, a linear model γpxq “ η0 ` η1x cannot be plausibly
assumed because of the natural period length of one year. One would rather expect a smooth
model with the endpoint constraint γp1q “ γp366q, which is not covered by the methodology
considered here. Still, our L-test is able to detect non-constant tail behavior γpxq ‰ γ0 if γpxq
exhibits a monotonic behavior on a broad part of the regressor space. In fact, from descriptive
data analysis, we suspect that γpxq increases from early winter to the middle of summer followed
by an decrease in October. For empirical evidence, we computed the L-test with k selected by
rule (8) for all 16 series. Again ignoring the multiple testing, evidence against stationary tail
behavior is found for stations Niederstriegis1, Nossen1 and Borstendorf with p-values of about
0.001, 0.04 and 0.03, respectively. Weak evidence was found for station Goeritzhain with a
p-value of about 0.09.
In Great Britain, Switzerland, the United States and some other countries from the northern
hemisphere the hydrological year starts in the first October and ends on the last day of Septem-
ber. Interestingly enough, if we compute xi according to this alternative definition and if we
apply the same procedure on the modified series, we even obtain six p-values below the 5% and
two other below the 10% significance level.

Since practitioners usually are interested in estimation and not in testing, the question is how
to proceed with the analysis. Estimation under seasonal variability of river flows and related
problems have already been addressed, for instance, in Schumann [2005], Strupczewski et al.
[2012], RulfovÃ¡ et al. [2016] and the references therein: Two or more groups of homogeneous
observations, say, winter and summer flows, are identified. Afterwards, distributions are esti-
mated under the i.i.d. assumption individually for each group. The final model is constructed
assuming independence between the groups. It thus might be of interest to check whether there
is evidence against stationary tail behavior during winter and summer, respectively.
The L-test with data-adaptive selection of k applied to flows from the hydrological summer (May
till October) does not provide evidence against stationary tail behavior during the summer. The
application to flows from the hydrological winter (November till April) gives us only one p-value
below 5% and another one below the 10% significance level. At first, this result sounds logical,
since it is consistent with the idea that heterogeneity is mainly caused by the diversity of physio-
logical causalities: Melting snow in the winter and heavy rainfalls in the summer time. We thus
may expect that observations within each season are homogeneous in their tail behavior. But
note also that the decreased evidence against stationary tail behavior might be also explained
by a lack of power, since the sample is cut in half for testing on each season. E.g., for the
Wechselbur1 series, instead of n “ 1236 only n{2 “ 618 observations are left for estimation of
winter and summer distributions, respectively.
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6 Conclusion and outlook

The analysis of trends in hydrological time series is motivated by a changing climate and by
anthropogenic interference with nature, for instance, the dynamic process of urbanization during
the past centuries. Little attention has been devoted to the analysis of trends in the tails in the
applied literature, even though the primal interest lies on, say, high quantiles of distributions.
Our work tries to fill this gap in case of heavy tails of Pareto-type. It turns out that satisfactory
inference on non-constant tail-behavior is difficult under typical circumstances in hydrology,
because of the rather limited observation lengths. In many of the scenarios considered in our
simulations it is advisable to ignore trends in tail-behavior in order to reduce the dominating
estimation variability at the cost of a rather small bias. For instance, we believe that estimation
of annual maximal flow distributions based on the block maxima method should be carried out
under the assumption of stationary tail behavior.
Our work might be extended to regional estimation under the assumption of regional heavy-
tail homogeneity [Kinsvater et al., 2016]. For statistical inference in such a regional setting it
is, in contrast to pure local estimation studied here, of practical importance to derive theory
under semi-parametric assumptions in order to be able to estimate the dependence between local
estimates. This indeed is a challenging problem left for future research.
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A Quantile regression process

Let Y denote a random variable called response and X “ p1, X1, . . . , Xdq
1 a random vector called

regressor with support covered by a compact set X Ă Rd`1. Throughout this section we suppose
that the conditional distribution F py|xq “ P pY ď y| X “ xq of Y given X “ x satisfies

F´1pp| xq “ infty : F py|xq ě pu “ x1βp (13)

for all x P X , probabilities p P I Ă rε, 1 ´ εs and an unknown vector-valued function p ÞÑ βp,
p P I, with βp P Rd`1 called p-th regression quantile [Koenker and Bassett, 1978]. The left-hand
side of (13) is called generalized inverse or quantile of F p¨|xq in p P I. It coincides with the usual
inverse of a function, provided the inverse exists. Theoretical aspects and many applications of
linear quantile regression are presented in Koenker [2005].
Let pYi,Xiq, i “ 1, . . . , n, denote independent copies of pY,Xq. Estimator

β̂p “ arg min
bPRd`1

n
ÿ

i“1

ρp
`

Yi ´X1i ¨ b
˘
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with ρppyq “ y¨pp´1tyď0uq is called empirical regression quantile. The following result establishes

asymptotic normality of
?
n
´

β̂p ´ βp

¯

uniformly in p P I, i.e., in the function space p`8pIqqd`1

[van der Vaart and Wellner, 1996].

Theorem 2 (Angrist et al. [2006]). Suppose that, uniformly in x P X , the conditional density
fpy|xq exists, is bounded and uniformly continuous in y. Suppose further that E}X}2`δ ă 8 for
some δ ą 0 and that

J “ E
“

XX1
‰

and Hp “ E
“

XX1 ¨ fpF´1pp|Xq|Xq
‰

(14)

exist with Hp positive definite for all p P I. Then, for nÑ8, we have that

´

Hp

?
n
´

β̂p ´ βp

¯¯

pPI

D
ÝÑ Z (15)

in p`8pIqqqd`1, where Z is a centered Gaussian process with ErZppqZpqq1s “ pp^ q ´ p ¨ qq ¨ J .

The previous result allows us to estimate the joint distribution of several empirical regression
quantiles. Let p “ tp1, . . . , p`u Ă I denote a set of probabilities. Then, for n Ñ 8, we
immediately obtain that

?
n
´

β̂p1 ´ βp1 , . . . , β̂p` ´ βp`

¯1 D
ÝÑ N p0,Σpq ,

where Σp is defined piecewise through

lim
nÑ8

Cov
”?

n
´

β̂pi ´ βpi

¯

,
?
n
´

β̂pj ´ βpj

¯ı

“ ppi ^ pj ´ pi ¨ pjq ¨H
´1
pi JH

´1
pj .

This result is used to prove Proposition 1.

B Conditional heavy-tail behavior - competing methods

B.1 Tail index regression (TIR) by Wang and Tsai [2009]

Wang and Tsai [2009] study model (3) with αpxq “ 1{γpxq “ exppx1θq for some unknown
parameter vector θ P Rd`1. They propose the estimator

θ̂un “ arg min
θPRd`1

n
ÿ

i“1

“

exppX1iθq ¨ logpYi{unq ´X1iθ
‰

¨ 1pYi ą unq (16)

with regressor independent threshold un Ñ8 for nÑ8. (16) can be viewed as an approximate
maximum likelihood approach based on the weak approximation of logpY {unq given X “ x
and Y ą un to an exponential distribution with mean 1{αpxq. Let k “

řn
i“1 1pYi ą unq be

the effective sample size in (16) and Σ̂un “
1
k

řn
i“1XiX

1
i1pYi ą unq. Under certain technical

assumptions, Wang and Tsai [2009] prove

?
k ¨ Σ̂1{2

un ¨

´

θ̂ ´ θ
¯

D
ÝÑ N ph, Id`1q (17)
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for some vector h and pd ` 1q-dimensional identity matrix Id`1. The estimation of the bias
h requires detailed information on the tail, which is hardly available and thus set to zero in
applications.
However, Wang and Tsai [2009] do not consider regressor dependent thresholds un like in Section
2.1, which in practice is important to account for regression effects in e.g. the center of the
distribution. In order to reduce this problem, we suggest to apply their estimation procedure
on the sample pZk,j ,Xk,jq, j “ 1, . . . , k, as given in Section 2.1. That is, replace θ̂un by

θ̂TIRk,n “ arg min
θPRd`1

k
ÿ

j“1

“

exppX1k,jθq ¨ logpZk,jq ´X1k,jθ
‰

and Σ̂un by Σ̂k,n “
1
k

řk
j“1Xk,jX

1
k,j .

B.2 Three-stage procedure by Wang and Li [2013]

An alternative regression approach focusing on high conditional quantiles F´1Y pp| xq, p P r1´ε, 1q,
for some small number ε ą 0 is proposed in Wang and Li [2013]. Their method is based on the
assumption that

F´1gλpY q
pp| xq “ x1βp

holds for some λ P R, Box-Cox transformation gλ, regression quantiles βp P Rd`1 and all
p P r1´ ε, 1q. They propose an estimator of γpxq based on a three-stage procedure:

1. Set p “ pk,n “
n´k
n`1 and compute λ̂ as in Section 2.1.

2. Let pn´j,n “
j

n`1 for j “ 1, . . . ,m with m “ n ´ tnηu and η “ 0.1. For j “ 1, . . . ,m,

estimate F´1Y ppn´j,n| xq by the right hand side of (6) with g “ gλ̂ and p “ pn´j,n. De-
note these estimates by q̂jpxq, j “ 1, . . . ,m. If q̂jpxq is not increasing in j, apply the
rearrangement procedure of Chernozhukov et al. [2010].

3. For some integer k ă m, estimate γpxq by

γ̂k,npxq “
1

k ´ tnηu

k
ÿ

j“tnηu

logpq̂n´jq ´ logpq̂n´kq.

Thus γ̂k,npxq is Hill’s estimator [Hill, 1975] applied to the sample of q̂pxq values, which can be
seen as pseudo observations from FY p ¨ | xq. Wang and Li [2013] also propose a test statistic

Tn “
1

n

n
ÿ

i“1

pγ̂k,npXiq ´ γ̂pq
2 , γ̂p “

1

n

n
ÿ

i“1

γ̂pXiq, (18)

as a test for hypothesis H0,tail in (4). If H0,tail, EpXq “ p1, 0, . . . , 0q
1 P Rd`1 and either γ˚pxq “

0 or a certain homogeneity assumption are met, Wang and Li [2013] show under additional

technical assumptions that kTn
D
Ñ γ2χ2

d holds. They also derive the limiting distribution under
heterogeneity, which in practice involves the estimation of additional parameters. For more
details we refer to Wang and Li [2013, Th. 3.3 and Cor. 3.1].
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