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1. Introduction 

 

1.1. Immobilization of enzymes at aqueous-solid interfaces 

 

 Enzymes are mainly proteins with catalytic properties. They are responsible for 

accelerating biochemical reactions at optimal environmental conditions, which usually are 

neutral pH values, ambient pressure and more often ambient temperature.  Usually an enzyme 

mechanism is very specific for a particular reaction pathway enabling yields with high 

enantiomeric excess [1]. Therefore, enzymes are very attractive to use in biotechnological, 

pharmaceutical, and biomedical processes. The greatest disadvantage of using enzymes, 

compared to chemical catalysts, is their relatively low stability and their relatively high cost. 

There are many examples of expensive enzymes that are worth being recovered from the 

reaction media to be reused in many cycles. Using filtration or centrifugation, enzymes are 

easily removed from a reaction mixture, when the enzymes are immobilized on carrier 

particles large enough to be retained or sedimented [2-3]. Particles are preferred over planar 

surfaces where a high amount of enzymes is needed. These particles may have a rough 

surface or are porous to increase the specific surface area. In research, biological samples are 

often immobilized on planar solid supports for imaging and spectroscopic analysis, even with 

single-molecule resolution [4]. It is of great interest to study the structure, dynamics and 

biological function of such samples. In this case, enzymatic activity might also be interesting 

to happen in the region of an aqueous-solid interface. 

 Enzymes are adapted to a certain type of cell environment, even though their native 

folded tertiary structure is only marginally stable in relation to an unfolded state [1,5]. The 

standard Gibbs energy change of unfolding, ΔG°, of many proteins is around 20 – 60 kJ mol-1, 

similar to the strength of a few hydrogen bonds. This means that any deviation from the 

protein’s natural environment can lead to structural change or even complete unfolding of the 

protein. Since any biological activity, in particular with enzymes, is strongly related to the 

native structure of the protein, even partial unfolding has to be avoided. Perturbation of the 

natural environment of a protein can be caused by a change of the solvent composition, e.g., 

the pH-value, the ionic strength, or the presence of co-solvents. Consequently, the contact of a 

protein with an aqueous-solid interface represents a major perturbation of the protein 

environment. The aqueous-solid interface interaction can cause the replacement of water 

molecules by the artificial interface at the protein surface, especially when it is a hydrophobic
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surface. In addition, an aqueous-solid interface may provide different pH-values, when 

dissociated chemical groups are present, or different ionic strength, when it has charged 

groups. Thus, any adsorption and/or immobilization of enzymes at aqueous-solid interfaces 

may lead to some changes in the protein’s conformation [6-8]. The interaction with a solid 

surface can slow down the dynamics of a protein, and the overall enzymatic activity may be 

decreased by an unfavorable orientation of the enzyme molecules, since the active site can be 

blocked either by the material surface or by neighboring enzyme molecules [9]. As seen in 

figure 1. 

 

 

Figure 1. Proteins adsorbed on planar surface. Ex.: Scheme of a biochip.  Different proteins can be 

adsorbed on a planar surface creating a biochip. At the bottom line the Y shaped figures represent 

antibodies, at the middle line coil shaped proteins are represented and at the top line there are globular 

enzymes with the active site exposed.    

 

1.2. Current strategies to overcome loss of enzyme function at interfaces 

 

 As written in the section above, there are some advantages of enzyme immobilization on 

carrier particles [2,3]. It allows the removal of the enzymes from reaction mixtures and then 

their reutilization, and it prevents enzyme aggregation [3]. Even lipophilic enzymes can be 
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used in the aqueous phase, when they are attached to hydrophobic surfaces [10]. Some 

disadvantages of using immobilized enzymes appear from a low mass transfer to and from the 

interface and partitioning effects controlling the distribution of substrate and product 

molecules in the bulk phase and the interfacial layer. These factors can be reduced by stirring 

the solution and using carrier particles with a high specific surface area. Interestingly, charged 

interfaces can have a beneficial effect, when attractive forces to the substrate molecules are 

present, e.g. the enzymatic activity of α-chymotrypsin was found to be enhanced on a 

negatively charged polyelectrolyte layer compared to a positively charged one [11]. The 

curvature of the adsorbent surface also seems to have an effect on the enzymatic activity, 

since high curvature surfaces, e.g. smaller carrier particles, cause less denaturation [12]. 

Despite that, maybe the most important issue regarding the preservation of protein 

conformation and enzyme activity upon immobilization is the surface hydrophobicity. 

Proteins strongly adsorb on hydrophobic surfaces [13]. In this case, conformational changes 

are more likely to happen due to hydrophobic interactions between the protein side chains and 

the adsorbent surface. Therefore, hydrophilic surfaces are more often required in order to 

preserve enzymatic activities. This can be achieved by a surface modification, for example, 

with poly(ethylene glycol), collagen, chitosan, poly(acrylic acid), or heparin, and by tethering 

the enzymes with a flexible chain to the material surface [2,14]. Genetic engineering could 

also be applied to virtually create any mutant enzyme that is perfectly adapted to the 

interfacial environment. 

  It will be detailed in this work, besides all these strategies already listed here, that 

application of pressure can be a new complementary, synergistic or even compensating tool to 

increase the activity of enzymes immobilized at aqueous-solid interfaces. 

 

1.3. Effect of pressure on enzymes in solution 

 

 Pressure can have two major effects on enzymes, since enzymes have a folded 

conformation and are also reaction catalysts. Although a folded protein has a very well packed 

and dense structure, some void volumes and cavities can remain inside, which are filled by 

water upon unfolding [15]. Therefore, there is a negative volume change, ΔV, related to the 

unfolding of proteins, at least at ambient temperatures. Other contributions to ΔV are 

discussed in the literature, such as electrostriction upon exposure of charged and polar 

residues to the solvent [16-18]. In fact, the standard Gibbs energy change of unfolding, ΔG°, 

is lowered as the pressure is increased according to (Δ𝐺°/Δ𝑝)T = ΔV.  This destabilization 
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very often leads to protein unfolding at pressures of several 1000 bar and the correspondent 

loss of enzyme activity. The native state of proteins covers an elliptical region in the p,T-

diagram; i.e., any movement away from the center of this region by a change in temperature 

and/or pressure is destabilizing the native state (decrease of ΔG°) and vice versa. 

 On the other hand, it has been shown that the catalytic properties of enzymes are pressure 

sensitive. Below the pressure of unfolding enzymatic reactions can be accelerated or 

decelerated [19,20]. In a simple case, Michaelis-Menten kinetics can be used to explain the 

mechanism of product formation [21]: 

 

S + E  ES P + E 

 

where S is the substrate, E the enzyme, ES the enzyme-substrate complex, and P the product. 

The rate of product formation is then given by: 

 

𝑣 = 𝑘*[𝐸]./.01
[𝑆]

𝑆 +	𝐾6
 

 

where k2 is the rate constant of the second step, KM is the Michaelis constant, [S] is the 

substrate concentration, and [E]total is the total enzyme concentration. 

 Under pressure, low volume states are preferred over high volume states. Thus, a 

chemical equilibrium is shifted in the direction of negative volume change of reaction. This 

may apply to the equilibrium (first step) of the Michaelis-Menten mechanism. In addition, a 

transition state is favored under pressure, when it has a smaller volume than the reactants. 

This is expressed as negative activation volume. The activation volume, ΔV#, is related to the 

change of the rate constant, k, with pressure, p, according to [18-19]: 

 

𝜕 ln 𝑘
𝜕𝑝 :

	= 	−
𝛥𝑉#

𝑅𝑇  

 

 Applying Michaelis-Menten kinetics, k = k2, when the substrate concentration is large, 

and k = k2/KM, when [S] is small. The corresponding activation volumes are illustrated in 
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figure 2. ΔV# can be obtained from a plot of ln k vs. p. In the literature, positive and negative 

activation volumes are reported for enzymes under various conditions [19]. 

Figure 2.  Volume change diagram of a hypothetical enzymatic reaction. When the transition state, ES*, has 

a larger volume than the enzyme-substrate complex, E+S, the activation volume, ΔV#, is positive, and the 

transition state is disfavored by pressure. In contrast, a negative activation volume is existent, when the transition 

state, ES*, has a smaller volume than E+S. ΔV# is negative, and the transition state is favored by pressure, i.e., an 

acceleration of the enzymatic reaction is observed. 
 

 At higher pressures, the reaction mechanism will probably change, if a reaction pathway 

of lower volume exists. Pressure selects reaction mechanisms, where strong hydrogen bonds 

occur or polar groups become hydrated. Even the hydration of non-polar groups is facilitated 

by pressure [18]. 

 Finally, there are some selected examples from the literature that must be explored. 

Pressure experiments on the enzymatic activity of the strawberry peroxidase, which catalyzes 

the oxidation of substrate by H2O2, have shown that pressurization at 4000 bar for five 

minutes increased the rate of oxidation [22]. In a similar way, pressurization caused an 

impressive activation of carrot peroxidase after a one-minute treatment at 4000-5000 bar [23]. 

It is important to note that in these studies enzyme activity has been measured at ambient 

pressure after pressure treatment. Thus, only irreversible pressure-induced structural changes 

are probed. In situ measurements, i.e., studying the enzyme activity under pressure, would 

provide much larger effects and more significant findings. The enzymatic activity at high 

pressures of α-chymotrypsin (α-CT), which hydrolyses peptide bonds, has also been studied. 

In the temperature range of 10-65 °C, a maximum rate constant of hydrolysis by α-CT has 
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been found at 45 °C and 2000 bar [24]. Moreover, an increase in pressure at 20 °C results in 

acceleration of the hydrolysis catalyzed by α-CT, reaching a 6.5-fold increase in activity at 

4700 bar. At 50 °C and 3600 bar, the activity is more than 30 times higher [25].  
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1.4. Motivation of the work 

 

 In the present work, the effects of pressure on HRP and α-CT free and adsorbed at aqueous-solid 

interfaces, such as silica nanoparticles (figure 3) and chemically modified planar surfaces, were 

explored. Using well-chosen models, we aim to understand the way pressure influences enzymatic 

reactions at interfaces as well as to explore how pressure can be used to compensate limitations in 

enzyme activity at interfaces by favoring low-volume transition states and reaction pathways. Another 

target of this study is the role surface geometry and chemistry could play for the activation volume. 

The results of these investigations may help to optimize enzyme´s catalytic activity at interfaces in 

biotechnological processes. 

 

 

 

Figure 3. Free and adsorbed protein under pressure. On the left side, a protein solution is pressurized and all 

pressure effects are related to the natural pressure sensibility of this protein.  On the right side, an adsorbed 

protein solution is pressurized and, in this case, the effect of the interface on the protein stability and dynamics 

should also be taken in account. 
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1.5. Alpha-chymotrypsin 

 

α-Chymotrypsin (α-CT) is a protease of the subgroup of the serine proteases. Having 

246 amino acid residues and a molar mass around 25 kDa, α-CT has one active site per 

enzyme molecule. In nature, α-CT is produced by the mammalian pancreas, starting from a 

zymogen called α-chymotrypsinogen. When this zymogen enters the intestine, it is converted 

into α-CT by trypsin, and active α-CT starts its own cleavage reactions. [26] 

 α-CT promotes the cleavage of peptide bonds by hydrolysis preferentially with substrates 

that have tryptophan, tyrosine, phenylalanine and leucine	 amino acids residues, which are 

cleaved at the carboxyl terminal. [26]. 

Being a member of the serine proteases, α-CT starts its hydrolysis reaction through a 

nucleophilic attack against a carbonyl group. This attack is made by the serine 195 residue, 

which is located in the active pocket, and α-CT binds covalently with the substrate creating 

the intermediate state complex. The catalytic triad of α-CT is constituted by the serine 195, 

histidine 57 and aspartic acid 102. [27] 

One can divide the activity of α-CT into two steps: an initial fast reaction and a steady-

state phase, where it follows the Michaelis-Menten kinetics. The α-CT two-step activity is 

also known as Ping-Pong mechanism (Figure 4). At first, α-CT promotes the acylation 

reaction and then the slow deacylation reaction, which is the rate limiting step of the global 

reaction. [26] The acetylated enzyme state is very stable and it can even be isolated [28]. 

According to literature, it has an isoelectric point about 9, with a positive net charge at neutral 

pH values and it has 6 tryptophans residues, according to PDB 1GL0. 

 

 

Figure 4. α-CT crystal structure (PDB: 1GL0) and its kinetic mechanism. 
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 Since α-CT hydrolysis happens preferentially close to aromatic amino acid residues, 

several synthetic substrates were developed to probe its activity, such as the Ala-Ala-Phe-7-

amid-4-methylcoumarin [29]. The enzyme recognizes the peptide sequence and cleaves the 

peptide bond between the phenylalanine residue and the 7-amino-4-methylcoumarin (7-AMC) 

group (Figure 5). After the hydrolysis, the 7-AMC molecule is released and it is highly 

fluorescent [29].     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reaction between α-CT and Ala-Ala-Phe-7-AMC releasing the product 7-AMC. 
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1.6. Horseradish peroxidase  

 

 Horseradish peroxidase (HRP) is a metalloenzyme, carrying a prosthetic heme group, and 

it is found in the root of the horseradish plant. [30, 31]. With 308 amino acid residues, the 

HRP molecule has a molar mass of around 33 kDa, but one 33 kDa polypeptide chain is 

bonded with 8 neutral carbohydrates chains, making the native HRP structure to have a total 

of 44 kDa. The net charge of HRP at neutral pH-values is very close to 0 [61, 62] and one 

tryptophan residue, according to PDB 1HCH. 

 HRP has in its structure one iron atom, located in the middle of the porphyrin ring of 

the heme group, and two additional calcium atoms. The iron atom has two binding sites 

available, one under the heme group and one above. The sixth position of the iron´s 

octahedral is the active site of HRP [30]. The HRP´s histidine 170 (His170) forms coordinate 

bond to the heme iron atom. When HRP is catalyzing a reaction, one oxygen from the 

hydrogen peroxide binds to the iron atom, then two electrons are transferred from a given 

substrate to the heme group, and finally a water molecule is released after uptake of two 

protons [30,32], as seen in figure 6.  

 

 

 

Figure 6. HRP crystal structure (PDB: 1HCH) and its mechanism. 
 

A very good and efficient substrate for HRP is the commercial Amplex Red®. In the 

presence of HRP, the Amplex® Red molecule reacts with hydrogen peroxide, in a 1:1 

stoichiometry, producing the oxidation product called resorufin, that can be measured by 

fluorescence or absorbance spectroscopy [33], as seen in figure 7. 
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Figure 7. Reaction between HRP and Amplex Red® releasing the product resorufin. 
 

1.7. Physical adsorption on surfaces  

 

 Reversible immobilization of enzymes on surfaces can be achieved using a very simple 

method, physical adsorption (Figure 8). It is induced by very weak non-specific interaction, 

e.g. van der Waals, hydrogen bond and hydrophobic interactions [34-36]. Reversible 

immobilized enzymes are easily removed from the surfaces and this allows the support to be 

recycled and reloaded with new enzymes [34]. To this end, physical adsorption requires just 

the incubation of the enzyme solution on the surface during a certain amount of time [37]. The 

pH of the enzyme solution is very relevant, since the enzyme surface has charges [38]. This 

can induce adsorption on any ion exchange carrier [39]. But when the surface is highly 
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charge, it can also create some distortions in the kinetics, due to partitioning and/or diffusion 

problems [34]. 

 Overall, the physical adsorption technique is commercially attractive and a renewable 

method to fix enzymes due to its low cost and simplicity [34]. 

 

 

Figure 8. Examples of fixing proteins on surfaces with physical adsorption technique. From left to right: 

adsorption, entrapment and cross-linking. Adapted from Mohamed et al, 2015 [34]. 

 

1.8. Silica nanoparticles 

 

 Ludox® is a commercial trademark for all types of silica nanoparticles from DuPont. 

There are several types of modifications, sizes and properties of these particles, with a unique 

name for each of them.  

 The particles are discrete uniform spheres of silica which have no internal surface area or 

detectable crystallinity. Most are dispersed in an alkaline medium, which reacts with the silica 

surface to produce a negative charge. Because of the negative charge, the particles repel one 

another resulting in a stable suspension. 
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1.8.1. Ludox CLâ 

 

 Ludox CLâ is a colloidal silica in which each particle is coated with a layer of alumina. 

This coat converts the charge of the particle from negative to positive. It is also freeze stable 

and can be recovered after being frozen by thawing and remixing. It has 12 nm of diameter, 

230 m2/g of specific surface area and it is stored at pH 4.5 at 30% wt%. (DuPont data sheet). 

 

 

Figure 9. Ludox CL® interface scheme. 
 

1.8.2. Ludox AMâ 

  

 Ludox AMâ is a colloidal silica in which some silicon atoms have been replaced by 

aluminum atoms. This creates a fixed negative charge independent of pH, resulting in 

particles very stables in neutral pH range. It has 12 nm of diameter, 220 m2/g of specific 

surface area and it is stored at pH 8.9 at 30% wt% (DuPont data sheet). 

 

SiO2	
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Figure 10. Ludox AM® interface scheme. 

 

1.9. Planar surfaces 

 

 In contrast to the nanoparticles, which have a spherical surface, a planar solid substrate 

creates a different geometry for adsorption and it has its own advantages. 

 The planar surfaces are easily modified by chemicals and therefore many types of 

surfaces can be created on the same solid substrate [40]. For example, planar quartz can be 

modified to receive either a poly(styrene) (PS) film as well as polyelectrolyte multilayers, 

creating hydrophobic and hydrophilic surfaces, respectively (Figure 11). 
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Figure 11. Proteins adsorbed on modified planar surfaces. From left to right: proteins adsorbed on a bare 

quartz, on a PS modified quartz and on a polyelectrolyte multilayer modified quartz. 
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2. Materials & methods 

 

2.1. List of materials  

 

Chemical / Code Manufacturer 

Amplex Red® 

 Hydrogen Peroxide/Peroxidase Assay Kit 

/ A22188 

Thermo Fisher 

Alpha-chymotrypsin from bovine pancreas 

/ C7762 

Sigma-Aldrich 

Calcium chloride / 1.02378.0500 Merck 

Hydrochloric acid 25% / 1.00316.1000 Merck 

EnzChek ® Peptidase/Protease Assay Kit / 

E33758 

Thermo Fisher 

Ludox AM / 420875 colloidal silica 

particles 

Sigma-Aldrich 

Ludox CL / 420883 colloidal silica particles Sigma-Aldrich 

Trizma® (TRIS base) / T1503 Sigma-Aldrich 

Sodium phosphate monobasic/ 33198-8 Sigma-Aldrich 

Di-sodium hydrogen phosphate 

dodecahydrate 

 / 1.06579.0500 

Merck 

Hydrogen peroxide / 216763 Sigma-Aldrich 

Amplex Red® / A12222 Thermo Fisher 
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Amicon® Ultra 0.5 mL centrifugal filter / 

Ultracel® 50k 

Millipore 

Deuterium oxide / 41648 Sigma-Aldrich 

Horseradish peroxidase / 01-2001 Thermo Fisher 

Ala-Ala-Phe-7-amido-4-methylcoumarin / 

A3401 

Sigma-Aldrich 

N-p-tosyl-L-phenylalanine chloromethyl 

ketone / T4376 

Sigma-Aldrich 

Poly(styrene) / 331651 Sigma-Aldrich 

Poly(ethyleneimine) / P3142 Sigma-Aldrich 

Poly(allylamine hydrochloride) / 28322-3 Sigma-Aldrich 

Poly(styrene sulfonate) / 243051 Sigma-Aldrich 

Sodium azide / S2002 Sigma-Aldrich 

PlusOne® Silver staining kit, protein / 17-

1150-01 

GE Healthcare 

SigmaMarker™  

low range, mol wt 6,500-66,000 Da  / 

M3913 

Sigma-Aldrich 

Ammonium persulfate / A3678 Sigma-Aldrich 

Rotiphorese® Gel 40 (29:1) / A515.2 Carl Roth 

N,N,N′,N′-Tetramethylethylenediamine / 

T9281 

Sigma-Aldrich 

Sodium dodecyl sulfate / L3771 Sigma-Aldrich 
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Equipment and Software Manufacturer 

K2 fluorimeter ISS 

High pressure fluorescence cell ISS 

Centrifuge Eppendorf 

UV-VIS spectrometer / UV-1800 Shimadzu 

Nicolet IR Spectrometer / 6700 Thermo Fisher 

GRAMS 8.0 Thermo Fisher 

Origin 9.0 Origin Labs 

ImageJ NIH USA 

Quartz prism / Corning 7980 Micros Präzisionsoptik 

High pressure TIRF cell House made (Koo & Czeslik 2012) 

X-ray reflectometer / Seifert XRD 3000TT  GE Inspection Technologies 

Spin Coater / KW-4A CHEMAT TECHNOLOGY 

Mini-Protean® Kit Bio-Rad 

High pressure stopped-flow system / 

HPSF-56  

HiTech Scientific 
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2.2. Methods 

 

2.2.1. Fluorescence spectroscopy 

 

Fluorescence methods are based on the excitation of molecules, by UV or 

visible light, which are able to dissipate this energy by emitting 

electromagnetic radiation. Molecules with this ability are known as fluorophores. 

Fluorescence methods are well known for requiring very few amounts of sample and/or very 

diluted concentrations to be detected, if compared with other spectroscopies methods, such as 

UV-VIS spectroscopy [41,42]. 

The fluorescence experiments were done using K2 fluorimeters from ISS. A high-

pressure stainless steel vessel, also from ISS, was used to pressurize liquid samples up to 3000 

bar. Samples were placed in cylindrical quartz bottles and sealed with a flexible plastic foil 

fixed by a rubber O-ring. Then, the bottle was placed in the middle of the high pressure 

vessel. This vessel has three sapphire windows and was connected to a manual pump and 

gauge. In all experiments, water was used as pressure medium. For temperature control, a 

water bath was connected to the high-pressure vessel. There was a dead time of maximum 2 

minutes between the sample mixing, e.g. substrate with enzyme, and data collection. The 

excitation light hits and crosses the sample cuvette, and the fluorophor emission light is 

collected at 90o in relation to the excitation beam, as seen in figure 12.  
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Figure 12. High pressure fluorescence spectroscopy. The white light enters the monochromator, which is set 

to a specific wavelength. This selected beam leaves the monochromator and hits the sample, passing through it. 

The fluorophores are excited and start emitting fluorescence in all directions. There is an output, placed 90o in 

relation to the excitation beam, which leads to a second monochromator. This last monochromator will select the 

specific wavelength of the fluorescence emitted that will hit the detector.   

 

2.2.2. FTIR spectroscopy 

 

The Fourier transform infrared spectroscopy (FTIR) method takes advantage that 

infrared light is absorbed by molecular vibrations. This occurs exactly when the light 

frequency and the molecular vibration frequency coincide. These frequencies of absorption 

and their intensities can be altered with minimal changes in the chemical environment, where 

these molecular vibrations are located, e.g. polarity, inter- and intramolecular interactions, etc. 

This makes the FTIR method a very powerful tool to follow, for example, any changes in 

secondary structure that may occur with a given protein. In this case, the amide I band can be 

used to probe the secondary structure of proteins [43,44]. 

The infrared absorption spectra were recorded using a Nicolet 6700 Fourier transform infrared 

spectrometer from Thermo Fisher Scientific with a resolution of 2 cm−1. The sample solutions 

were analyzed in a diamond anvil cell, which is connected to a water bath circuit for 

temperature control. Fine powdered barium sulfate was added to the sample as an internal 

pressure calibrant. Pressure changes were quantified by the shift of the barium sulfate 
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stretching vibration band, at 983 cm−1, to higher wavenumbers, which is related to the 

pressure in the system. [45]. Deuterium dioxide was used as the solvent for all experiments, 

and the background with buffer was collected and subtracted from all spectra. 

 

 
Figure 13. High pressure Fourier transform infrared spectroscopy. The IR beam crosses the diamond anvil 

cell hitting the sample with the pressure calibrant, BaSO4. Some chemical bond vibrations will attenuate the IR 

radiation, and this difference is seen in the absorbance of each wavenumber in the spectrum. Pressure can be 

used to perturb this system and may cause some absorbance changes in the spectrum as well as wavenumber 

shifts.    
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2.2.3. UV-VIS spectroscopy 

 

 A UV-1800 UV-VIS spectrometer from Shimadzu was used to collect absorbance 

kinetics or spectra. During the measurements, a water bath connected to the cuvette holder 

kept the temperature constant. The cuvettes were all made of quartz. 

 

Figure 14. UV-VIS spectroscopy. A white light passes through a monochormator, which will select a specific 

wavelength. The monochromatic light hits the sample and some light can be absorbed by the sample, reducing 

the transmission. The detector is positioned after the sample and it will detect the amount of light transmitted 

from different samples in relation to a control.  

 

2.2.4. TIRF spectroscopy 

 

 Total internal reflection fluorescence (TIRF) spectroscopy is a very useful method to 

study molecules and events at planar liquid-solid interfaces. In TIRF, as well as in 

conventional fluorescence, fluorophores are excited, but in different ways. In conventional 

fluorescence, the excitation beam hits directly the sample solution and passes through it. On 

the other hand, in TIRF, the excitation beam enters in an optical prism and it is internally 

totally reflected, because the prism has a higher index of refraction than the liquid phase (n1 > 

n2). Total internal reflection occurs below the critical angle qc (measured from the interface, n1 

cos qc = n0). The totally reflected beam generates an evanescent wave, which penetrates the 
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liquid phase hitting the fluorophores at this surface. The penetration depth of this evanescent 

wave is given by an exponential decay of the electrical field amplitude: 

 

                                                   𝐸 𝑧 = 𝐸B	exp	(−𝑧	/	𝑑) [6] 

 

where d is the penetration depth: 

 

                                                         
2
01

22
1 cos2 nn

d =                                                   

[7] 

 

λ is the wavelength of the excitation, and q1 is the angle of the exciting beam from the 

interface.  

 In this way, d depends on the excitation wavelength, and this also shows how close the 

fluorophores must be to the solution-prism interface to get excited by the evanescence wave. 

This is also called the sensitive area of a TIRF experiment. This makes TIRF a very 

interesting method, since it excludes most part of the interference caused by the adjacent 

solution [46]. 

 To perform high-pressure TIRF experiments, a high-pressure TIRF cell was used to 

pressurize samples up to 2500 bar [47]. The cell has 3 output windows made of sapphire. 

Through the first window comes the excitation beam. A second window is the output of the 

totally reflected beam. And through the last one comes out the fluorescence generated by the 

fluorophores excited by the evanescent wave. This cell hosts a 0.6 cm3 sample cuvette, which 

completely separates the sample from the external pressure medium, water. The sample 

interface has an active area of around 1.5 cm2.  
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Figure 15. High pressure total internal reflection fluorescence spectroscopy. A white light passes through a 

monochromator, where monochromatic light is selected. Then, this monochromatic light hits the prism placed 

inside the high pressure cell (left), and the light is totally reflected (right). By this total reflection, an evanescent 

wave is created on the surface of the prism and excites fluorophores close to the surface. These fluorophores 

emit fluorescence that passes through a second monochromator and hits the detector. [47]. 

 

 The cell was assembled in a K2 fluorimeter for data collection. The cell was connected to 

a water bath circuit to maintain the internal temperature constant. The dead time of this HP-

TIRF experiment was 4 minutes, and the pressurization process was always in the rate +250 

bar in 10 seconds. 

 

2.2.5. Surface techniques 

 

2.2.5.1. Spin-coating  

 

Spin-coating is a simple and useful technique applied to modify a planar surface. It 

can quickly produce very uniform films of various thickness. Using a spin-coater KW-4A 

from Chemat Technology, a well clean planar substrate, such as a dove quartz prism, is 

positioned in the center plate of the machine. A solution containing a given polymer, e.g. 

poly(styrene), is added on the top of the prism for a first step of adsorption. Then a spin of 

around 2000 RPM is applied to create a very thin and homogeneous film on the substrate. 
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Then, this coated substrate is incubated at 110 oC to dry the surface and smooth out any 

imperfection. 

 

Figure 16. Modification of a planar surface using the spin-coating technique. 

 

2.2.5.2 Polyelectrolyte multilayer deposition 

 

Thin polymer films can be assembled by simply using the layer-by-layer technique 

[48-50]. In this method, the film is made just by dipping a substrate, e.g. quartz prism, into 

solutions containing a polycation and a polyanion multiple times, interchangeably. From the 

polycation to polyanion solution, the sample must be rinsed extensively with water. Each step 

adds a few polyelectrolyte molecules that adsorb on the surface of the substrate, allowing a 

controlled assembling of a polyelectrolyte multilayer. This kind of modified surface permits a 

strong immobilization of proteins and, due to its fluid and hydrated properties, creates a very 

mild environment for biomolecules, such as proteins. 
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Figure 17. Modification of a planar surface with the layer-by-layer technique. 

 

2.2.6. X-ray reflectivity 

 

The characterization of surfaces, films and multilayers can be done by X-ray 

reflectivity experiments. The principle of this technique is based on an X-ray beam pointed to 

a given surface, where the incident angle is the same as the reflected angle. If the reflected X-

ray is different from the incident beam, there are imperfections on the surface or, in the case 

of an interface placed over the surface of the solid substrate, oscillation fringes will be 

formed. This shows the constructive and destructive interference of two different reflected 

beams hitting the detector. Thus, the thickness and the roughness of the interface can be 

estimated [51].  

The X-ray reflectometer used was a Seifert XRD 3000 TT from GE Inspection 

Technologies operated with the Mo-Kα wavelength (0.71 Å). The raw data is converted to 

reflectivity curves by normalization of the reflected X-ray intensity to the incident intensity. 

Then, the curves are scaled as a function of wavevector transfer Q = (4π/λ) sinθ, where λ is 

the wavelength and θ is the angle of incidence. 
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Figure 18. X-ray reflectivity of a planar surface. 

 

2.2.7. High pressure stopped-flow system 

 

 The stopped-flow technique is suited to follow fast processes that happen right after 

mixing two or more components, such as enzymatic reactions, which start when enzyme and 

substrate are mixed together. It generates a signal that changes with time, e.g. in enzyme 

kinetics studies, binding of molecules, FRET experiments, etc. The principle is that very small 

volumes of at least two solutions are injected by sample syringes into a mixer chamber to start 

the process. Also rapidly, this recently mixed solution enters into the observation cell. This 

liquid influx stops by the limit set in the so-called stop-syringe. Before stopping, a very 

homogenized solution is generated in the observation chamber. The dead time between 

sample mixing and data collection is in the order of milliseconds. 

 In a high pressure stopped-flow system (HP-SF), the observation chamber has 3 sapphire 

windows. Each window is connected to one optical fiber cable. The first one is used for the 

input of light that comes from the excitation monochromator. A second fiber is set 180o in 

relation to the input, used for UV-VIS transmittance/absorbance detection. Finally, there is a 

third fiber, 90o in relation to the input window, used for fluorescence detection. In all studies 

in this work, the transmittance/absorbance output window was used. All this apparatus is 

confined inside a stainless steel autoclave vessel that can be pressurized up to 2000 bar 

(Figure 19). 

 This instrument permits the investigation of the very first seconds of enzyme reaction 

bringing to light more details that are hidden in other more conventional techniques, such as 

the high pressure fluorescence, described above. In addition, and also very important, the 
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mixing of a substrate and an enzyme happens already under pressure rather than pressurizing 

a reaction that has already started. 

 

 

Figure 19. Single mixing stopped-flow system. 
 

2.2.8. SDS-PAGE 

 

Polyacrylamide gel electrophoresis (PAGE) is a widely used technique. It separates 

and helps to estimate/visualize the length and weight of proteins as well as other 

biomolecules. PAGE experiments can be performed in two different ways, with or without 

denaturant. When a chemical denaturant is added, e.g. sodium dodecyl sulfate (SDS), the 

protein will unfold, creating an unordered linear chain. Each protein will have different 
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mobility in the gel, and therefore small proteins will migrate faster and reach down the gel, 

while larger proteins will migrate slower and stay on upper areas of the gel [52]. This 

technique is suitable for visualizing the cleavage of proteins. The native state band will have 

reduced intensity while bands corresponding to smaller sizes will appear.  

 

 

Figure 20. Polyacrylamide gel electrophoresis. The protein sample is denaturated and negatively charged by 

the denaturant sample buffer at the cathode side of the gel. When inside the electrophoresis chamber, a voltage is 

applied and the proteins migrate to the positive end (anode). Different lengths will develop different mobility, 

and therefore larger protein will find more resistance to migrate through the gel. 
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3. Activation volumes 

of enzymes adsorbed 

on silica particles 
Reprinted with permission from V. Schuabb, C. Czeslik, Langmuir 2014, 30, 15496-15503. 

Copyright 2014 American Chemical Society. 
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3.1. Background 

 

Enzymes are very special proteins that can catalyze reactions, but one disadvantage of 

enzymes is their low stability and the high costs associated with their use and maintenance, if 

compared with other chemical catalysts. One good strategy is to recover and reuse these 

enzymes in several reaction cycles. This can be possible when these enzymes are immobilized 

on carrier particles that would easily help in filtration or sedimentation processes [2,3]. 

However, this attachment on particles could change the protein’s chemical environment and 

structure, which could lead to denaturation [6]. Besides that, the interaction between the 

enzyme and the solid substrate could change the dynamics [53], and/or the enzyme’s active 

site could be orientated in a way that blocks the income of substrate molecules. 

Many strategies were proposed to preserve the enzymatic activity at interfaces. [2,3], 

e.g. the use of hydrophilic surfaces, the incorporation of an enzyme into porous materials, and 

genetic engineering can be helpful to overcome limited enzymatic activity at aqueous-solid 

interfaces. In this work, pressure will be explored as a new tool to control and maybe enhance 

the activity of enzymes. Before that, it is good to remember that pressure can act in two 

different ways on proteins. First, it can induce protein denaturation and, second, it can alter 

the reaction rate acting on the enzyme’s catalytic properties. Even a well folded and densely 

packed protein has some void volumes and cavities, which can be filled by water upon 

unfolding. Thus, there is a negative volume change, ΔV, associated with the unfolding of 

proteins (at least at ambient temperatures) [16,17]. In addition, electrostriction upon exposure 

of charged and polar residues to the solvent can contribute to ΔV [16]. There is a volume 

decrease, unfolding of the protein and loss of activity at several kbar. 

 Interestingly, the catalytic properties of enzymes have been shown to sensitively 

depend on pressure below the pressure of unfolding [19, 20, 54]. The transition state of the 

reaction is favored under pressure, when it has a smaller volume than the enzyme-substrate 

complex. This is also known as a negative activation volume, ΔV#. The ΔV# is related to the 

change of the rate constant, k, with pressure p [20, 54]:  

 

𝜕 ln 𝑘
𝜕𝑝 :

	= 	−
𝛥𝑉#

𝑅𝑇  
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Positive and negative activation volumes are illustrated in figure 2. Depending on the 

sign of the activation volume enzymatic reactions can be accelerated (negative activation 

volume) or slowed down (positive activation volume) if pressure is applied on this system. 

 In this chapter, two enzymes were studied, horseradish peroxidase (HRP) and α-

chymotrypsin (α-CT). The catalytic property of peroxidases is the oxidation of a substrate by 

H2O2. Some reports have shown that the carrot peroxidase loses its activity up to 2000 bar, 

but displayed higher activity at 5000 bar [23]. In the case of HRP, an inactivation is observed 

up to 5000 bar, but it seems this pressure effect depends on the type of substrate used [55]. 

One report shows increased activity of HRP, when this enzyme is immobilized in a 

phospholipid film [56]. The second model studied here, as mentioned above, is α-CT. This 

enzyme is a protease and has the property of hydrolyzing peptide bonds. This enzyme is very 

well known to have its activity increased by high pressure [24, 25]. It is increased by a factor 

of 6.5 when pressurized to 4700 bar at 20 oC [25]. Besides that, α-CT can also be activated by 

simply fixing it on a polyelectrolyte surface with opposite charge in relation to the substrate 

[57]. If α-CT adsorbs on oppositely charged particles, positively charged substrates are 

preferred, showing that electrostatic interactions are very important for the binding of a 

substrate and the release of a product [58]. 

Thus, HRP and α-CT are good candidates for the study of combined effects of high 

pressure and aqueous-solid interfaces.  

 

3.2. Experimental details 

 

3.2.1. Enzymes and substrates 

 

HRP and Amplex Red® substrate (10-acetyl-3,7-dihydroxyphenoxazine) were 

purchased from Thermo Fisher Scientific (Assay Kit A22188).  

α-CT from bovine pancreas was purchased from Sigma-Aldrich (C7762). The 

EnzCheck® Peptidase/Protease Assay Kit from Thermo Fisher Scientific (Assay Kit E33758) 

was used to probe the protease activity of α-CT.  

Ludox AM and Ludox CL colloidal silica particles were purchased from Sigma-

Aldrich and used for immobilization of the enzymes. From dynamic light scattering 

experiments, diameters of about 30 nm and 180 nm have been found for Ludox AM and 

Ludox CL silica particles, respectively [59]. Ludox AM silica particles have a negative 
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surface charge, and Ludox CL silica particles are coated with alumina converting their charge 

from negative to positive. 

 

3.2.2. Enzymatic assays 

 

The experiments were done with α-CT free in solution as well as with it adsorbed on 

Ludox AM silica nanoparticles. α-CT was adsorbed on silica particles by mixing stock 

solutions of α-CT (40 µL of a 6.8 mg mL-1 solution) and Ludox AM (100 µL of a 1.21 g mL-1 

solution) in 1 mL buffer solution (20 mM Tris-HCl, pH = 7.8) and incubating the mixed 

solution at 4 °C for 3 hours. This time was set to achieve maximum protein adsorption and 

better reproducibility of kinetic results.  

The total area of Ludox AM was calculated for 100 µL of a 1.31 g mL-1 solution. 

From the density of 1.31 g mL-1 and the surface area of 288 m2 g-1, a surface area of 26.1 m2 

in 100 µL solution of silica particles can be calculated. 250 µL of a 2 mg mL-1 α-CT solution 

were applied to adsorb. α-CT has a molar mass of 25000 g mol-1 that corresponds to a mean 

radius of r = 1.9 nm using a specific volume of 0.7 cm3 g-1. From this radius, a footprint area 

of πr2 = 1.1·10-17 m2 per molecule can be estimated. There are 1.2·1016 molecules in 250 µL 

that have a total footprint area of 0.13 m2. The surface coverage is then 0.13/26.1 = 5.10-3.  

To probe the enzymatic activity of free or adsorbed α-CT (in the absence or presence 

of silica particles), samples contained 5 µg mL-1 of α-CT, 20 mM Tris-HCl buffer (pH = 7.8), 

and 1.57 mg mL-1 EnzCheck substrate. This substrate consists of a fluorophore and a 

quencher moiety that are covalently connected via an amino acid chain. Upon chain cleavage 

by α-CT, the quencher separates from the fluorophore that is then free to emit fluorescence 

[60]. Experiments were carried out with a K2 fluorescence spectrometer from ISS 

(Champaign, Illinois, USA) with a high pressure sample cell from ISS. Fluorescence was 

excited at 502 nm with a Xe arc lamp and detected at 528 nm in photon counting mode. All 

measurements were performed at 20 °C. 

HRP was also probed free and adsorbed on Ludox CL silica nanoparticles. The 

adsorbed HRP was prepared by mixing stock solutions of HRP (1.1 µL of a 23 µg mL-1 

solution) and Ludox CL (100 µL of a 1.23 g mL-1 solution) in 1 mL buffer solution (50 mM 

sodium phosphate, pH = 7.4) and incubating the mixed solution at 4 °C for 3 hours. 

The total surface area available for adsorption of HRP was calculated for 100 µL of 

Ludox CL solution with a density of 1.23 g mL-1. From the density of 1.23 g mL-1 and the 

surface area of 230 m2 g-1, a surface area of 28 m2 in 100 µL solution of silica particles was 
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calculated. Then, 1.1 µL HRP solution of a 23 µg mL-1 was added. HRP has a molar mass of 

44000 g mol-1 that corresponds to a mean radius of r = 2.3 nm using a specific volume of 0.7 

cm3 g-1. From this radius, a footprint area of πr2 = 1.7·10-17 m2 per molecule can be estimated. 

There are 3.5·1011 molecules in 1.1 µL that have a total footprint area of 6·10-6 m2. The 

surface coverage is then 6·10-6/28 = 2·10-7. 

To probe the enzymatic activity of free or adsorbed HRP (in the absence or presence 

of silica particles), samples contained 1.16 µg mL-1 of HRP (0.026 µM), 50 mM sodium 

phosphate buffer (pH = 7.4), 50 µM Amplex Red substrate, and 1 mM H2O2. HRP catalyzes 

the oxidation of the Amplex Red substrate to the resorufin product by H2O2. Because 

resorufin is fluorescent, it can be quantified easily [60]. Fluorescence was also measured 

using the K2 fluorescence spectrometer. Fluorescence of resorufin was excited at 530 nm and 

detected at 585 nm. All measurements were performed at 25 °C. 

 

3.2.3. Degree of adsorption 

 

Ludox CL silica particles have a positive surface charge due to alumina coating and 

interact with negatively charged amino acid residues of HRP. The net charge of HRP at 

neutral pH-values is very close to 0 [61, 62]. α-CT, which has a small positive net charge at 

neutral pH-values (the isoelectric point is at pH = 9) [63,64] can bind to the negatively 

charged Ludox AM silica particles. To determine the degree of enzyme adsorption on the 

silica particles, we have used Millipore Amicon Ultra centrifugal filters 50.000 MW (50 kDa 

or 7-10 nm). Only free, non-adsorbed enzyme molecules, can pass the filter. Consequently, 

silica particles with adsorbed enzyme molecules are retained by the filter (Figure 21).  
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Figure 21. Amicon® ultrafiltration devices. In this centrifugal devices, there is a membrane, which has a very 

defined pore size. During the centrifugation, only molecules smaller than the pore size can pass and bigger 

molecules will be retained. As seen above, free enzymes can easily pass the membrane. However adsorbed 

enzymes are retained because the nanoparticle is larger than the pore.   

 

The filters were loaded with the mixed solutions of enzymes and silica particles. After 

centrifugation at 14000 g for 10 min at 4 °C, the filtrates were analyzed for free enzymes. By 

UV-spectroscopy, no free HRP or α-CT could be detected. Moreover, no enzymatic activity 

of HRP or α-CT could be detected in the filtrate when carrying out the enzymatic assays 

described above. The fluorescence intensity did not change with time upon addition of the 

corresponding substrate (Figure 22). Thus, within the results obtained using UV- and 

fluorescence spectroscopy, it can be said that all enzyme molecules are adsorbed in the 

presence of the silica particles. 
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Figure 22. Activity measurements of adsorbed α-CT and HRP before and after ultrafiltration. The degree 

of enzyme adsorption on silica particles has been tested by activity measurements. The mixed solution of 

enzyme molecules with silica particles has been centrifuged through Millipore Amicon Ultra centrifugal filters 

with a pore size of 50 kDa. Free, non-adsorbed enzyme molecules can pass this filter. However, no significant 

enzymatic activity has been detected in the filtrates indicating that all enzyme molecules are adsorbed on the 

silica particles. In the case of HRP on silica, the small increase of the fluorescence intensity of the filtrate must 

be assigned to the direct oxidation of Amplex Red by H2O2. The same increasing fluorescence intensity is 

observed, when Amplex Red and H2O2 are added to a pure buffer solution. 
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3.2.4. Data collection and analysis 

 

Fluorescence intensity is proportional to the fluorophore concentration, c. Thus, the 

rate of product formation, dc/dt, is proportional (not equal) to the slope of the fluorescence 

intensity plotted as a function of time (Figure 23). To remove all instrumental factors 

affecting the fluorescence intensity, the slope observed under pressure, r, has been normalized 

to the slope observed under ambient pressure, r0. Each fluorescence assay started with a few 

minutes of data collection at 1 bar followed by a 1-2 min period, during which the pressure 

has been increased, and a further time period under high pressure. The ratio of the slopes 

measured directly before and after the pressure change can be related to the ratio of the 

corresponding rate constants, because the concentrations are very similar before and after the 

pressure change: 

 

00 k
k

r
r
=  

 

The meaning of the rate constants is discussed below. It follows from the equation 

below that a plot of ln(r/r0) as a function of pressure, p, should yield a curve, whose slope 

contains the activation volume: 

 

𝜕 ln(𝑟/𝑟B)
𝜕𝑝 :

	= 	−
𝛥𝑉#

𝑅𝑇  

 

This equation can be applied to all pressures, p, and does not require a constant 

activation volume. When the activation volume is pressure dependent, a change in the slope 

of ln(r/r0) vs. p is observed.  
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Figure 23. Typical fluorescence data recorded to probe the enzymatic activity of α-CT and HRP. The 

fluorescence intensity has been measured at 1 bar and after pressure increase. The slope of the data is 

proportional to the rate of the enzymatic reaction. The slopes before and after the pressure increase have been 

determined by linear fits. 

 

 In addition, the raw slope, rraw(p), taken from the fit under high pressure (Figure 24), 

has been corrected for the pressure dependence of the fluorescence quantum yield of the 

product. This has been measured using an enzymatic assay with free HRP or α-CT (without 
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silica particles) that was allowed to run for about five hours until the fluorescence intensity of 

the product has reached a constant value, and no additional product was formed anymore. 

Then, the fluorescence intensity of this assay was measured as a function of pressure. After 

normalization to 1 bar (Figure 24), the fluorescence intensity, I(p), was used to correct the raw 

slope, rraw(p), by calculating r(p) = rraw(p)/I(p). 

 

 

   
Figure 24. Pressure dependence of fluorescence intensity of the assay product of EnzChek and resorufin. 

The pressure dependence of the fluorescence intensity of an enzyme product has been assessed by analyzing the 

enzyme assay after about five hours, when the fluorescence intensity of the product has reached a constant value. 

This steady-state fluorescence intensity was measured as a function of pressure and was normalized to 1 bar. 
 

3.2.5. FTIR spectroscopy 

 

Infrared absorption spectra of HRP and α-CT were recorded using a Nicolet 6700 

Fourier transform infrared spectrometer from Thermo Fisher Scientific at a spectral resolution 

of 2 cm-1. Sample solutions were analyzed in a thermostatted diamond anvil cell. Barium 

sulfate was added to the sample as an internal pressure sensor. All spectra were corrected for 

background measured with buffer solution, in this case D2O was used as solvent. 
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3.3. Results and discussion 

 

3.3.1. Pressure stability of HRP and α-CT 

 

In this study, the enzymatic activities of HRP and α-CT were performed using 

enzymatic assays under pressures up to 2000 bar at 25 or 20 °C, respectively. It is helpful to 

separate pressure effects on the enzyme kinetics from pressure effects on the protein 

conformation. Free HRP and 𝛼-CT do not unfold in solution in this pressure range [65-67]. 

However, in the adsorbed state, the conformational stability of proteins is usually lowered. 

This means that the temperature and pressure of protein unfolding are significantly lowered 

after adsorption at an aqueous-solid interface [59, 68, 69]. Thus, we have analyzed the 

conformation of HRP and α-CT when they are adsorbed on silica particles and, for 

comparison, free in solution as a function of pressure. Using FTIR spectroscopy in 

combination with a diamond anvil cell, the amide I’ band (in D2O) has been recorded. This 

band is known to be sensitive for the secondary structure of a protein. Any change in the 

secondary structure leads to a change of the band shape, because the amide I’ band is a 

superposition of the infrared absorption bands of the various secondary structure elements, 

which have all individual wavenumbers [44]. In figure 25, the amide I’ bands of HRP and α-

CT both in the adsorbed state on silica particles and free in solution are plotted. Apparently, 

no major change of the band shape of the amide I’ bands can be observed, when pressure is 

increased up to 2 kbar, indicating stable secondary structures of the enzymes. Indeed, the 

pressure of unfolding has been reported to be 12 kbar in the case of HRP [65] and about 4 

kbar in the case of α-CT [66, 67]. 

 

 



Chapter	3:	Activation	volumes	of	enzymes	adsorbed	on	silica	particles	
______________________________________________________________________________________________________	
	

	 47	

 

  
 
Figure 25. Amide I’ band in the FTIR spectra of free and adsorbed α-CT and HRP (selected data). Each 

diagram contains three overlapping amide I′ bands in the pressure range 1−2300 bar indicating the pressure 

stability of the secondary structures. Data curves refer to 1 bar (solid line), 1000 bar (dashed line), and 2300 bar 

(dotted line). 

 

 In addition, the tertiary structure of α-CT was probed by recording the Trp 

fluorescence band (unfortunately, the Trp fluorescence of HRP was too weak to observe due 

to intramolecular Trp heme energy transfer [70]. A red shift of the Trp fluorescence band 

indicates an exposure of buried Trp residues to water in the course of protein unfolding. These 

experiments were done using ISS K2 fluorimeters. The spectra cover 300-450 nm. As can be 

seen in figure 26, the Trp bands of free and adsorbed α-CT do not shift with pressure clearly 

indicating an intact tertiary structure up to 2000 bar. For comparison, the Trp band of α-CT 

has also been measured as a function of temperature (Figure 26). Here, a pronounced red-shift 

of this band is observed upon thermal unfolding. Thus, pressure-induced changes of the 

enzyme kinetics of HRP and α-CT are not related to any pressure-induced partial unfolding of 

these enzymes. 
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Figure 26. Tryptophan fluorescence of α-CT as a function of pressure and temperature. Effect of pressure 

on the Trp fluorescence spectrum of α -CT: free in solution and adsorbed on silica particles. Each diagram shows 

7 overlapping spectra in the pressure range 1 – 2000 bar. There is no red-shift of the spectra with increasing 

pressure indicating the pressure stability of the tertiary structure of free and adsorbed α -CT. 

 

3.3.2. Pressure effects on the enzymatic activity of free and adsorbed α-CT 

 

α-CT from bovine pancreas has a molar mass of about 25,000 g mol-1 and an 

isoelectric point of about 9 giving a positive net charge to the enzyme at neutral pH-values 

[63,64]. However, α-CT binds to and is active on both negatively and positively charged 

surfaces of polyelectrolyte layers [11]. α-CT cleaves peptide bonds, preferentially those 

formed by the aromatic amino acids Trp, Tyr, and Phe [27]. It hydrolyzes a peptide bond via 

an initial nucleophilic attack of the residue Ser195, which is located in the active site. The 

mechanism is of Michaelis-Menten type [27]: 
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Here, S is the substrate, which is hydrolyzed into the products P1 and P2. As described 

in the Materials and methods section, we have used a large concentration of substrate (a few 

mg mL-1) that is saturating the enzyme (a few µg mL-1). In this case, the rate of the enzymatic 

reaction is determined by step 2 and step 3 with a rate constant of kcat = k2k3/(k2+k3) [54]. It 

has been proposed that k2 is small and rate-limiting for a peptide hydrolysis (this study), 

whereas k3 is small and rate-limiting for an ester hydrolysis [24, 25, 27]. A back reaction is 

also avoided by high substrate concentration. Therefore, the ΔV#-values of α-CT, as observed 

in this study, probably refer to step 2 in the reaction scheme, where the enzyme is acylated 

(P2-α-CT) and an amine (P1) is released. 

 In figure 27, logarithmic plots of the normalized fluorescence slopes, r/r0, are shown 

for α-CT free in solution. The change of ln(r/r0) with pressure, p, is proportional to the 

negative activation volume, -ΔV#. Apparently, the logarithmic plot is not consistent with a 

constant activation volume over the whole pressure range studied. Indeed, pressure dependent 

activation volumes are described as the more usual case [71]. The activation volume is the 

difference of the volumes of the transition state and the E+S mixture, ΔV# = VES* - VE+S. If 

these volumes, VES* and VE+S, have different compressibility, a change of ΔV# with pressure is 

the result. In our case, the curved data in figure 27 can be approximated with two linear 

ranges from 1 to 500 bar and from 500 to 2000 bar. These linear ranges yield activation 

volumes of -67 mL mol-1 (1 – 500 bar) and -15 mL mol-1 (500 – 2000 bar). 
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Figure 27. Pressure dependence of the enzymatic activity of free α-CT. The slopes of the plots are 

determined by linear fits. They are proportional to the negative activation volume. Each error bar covers the 

results of two independent measurements. r and r0 are the slopes of the fluorescence intensity as a function of 

time under high and ambient pressure, respectively. 

 

A negative activation volume indicates that the volume of the transition state is 

smaller than the volume of the E+S. In this way, high pressure favors the formation of the 

transition state, because the activation free energy is lowered by pΔV#. The outcome is a faster 

enzymatic reaction. Negative activation volumes of α-CT have also been found in the 

literature [24,25]. Taniguchi et al. report activation volumes in the range from -4.4 to -35 mL 

mol-1 for the enzyme deacylation (step 3 in the reaction scheme) [24]. Mozhaev et al. have 

studied the acylation of the enzyme (step 2 in the reaction scheme) and observed an activation 

volume of about -10 mL mol-1 at 20 °C and -25 mL mol-1 at 50 °C [25]. These values are in 

good agreement with our value of -15 mL mol-1 above 500 bar at 25 °C. However, the 

strongly negative activation volume observed in this study below 500 bar has not been 

resolved so far. 

 The corresponding data of the α-CT catalysis in the adsorbed state on silica particles 

are shown in figure 28. Remarkably, as found for free α-CT, adsorbed α-CT has a non-
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constant activation volume in the pressure range of 1- 2000 bar. There is a slight increase of 

the enzymatic rate up to 500 bar reaching a maximum at about 750 bar. At higher pressures, 

the enzymatic rate is decreasing with increasing pressure. From linear fits, activation volumes 

of -4 mL mol-1 (1 – 500 bar) and +5 mL mol-1 (1000 – 2000 bar) can be determined (Figure 

28). When comparing the data of free α-CT (Figure 27) with those of adsorbed α-CT (Figure 

28), similar pressure profiles can be observed except for an overall reduction of the slopes and 

a corresponding increase of the activation volumes upon adsorption of α-CT on silica 

particles. Apparently, adsorption adds a positive contribution to the activation volume. 

 

 

Figure 28. Pressure dependence of the enzymatic activity of adsorbed α-CT. The slopes of the plots are 

determined by linear fits. They are proportional to the negative activation volume. Each error bar covers the 

results of two independent measurements. r and r0 are the slopes of the fluorescence intensity as a function of 

time under high and ambient pressure, respectively. 

 

A volume diagram of α-CT catalysis is given in figure 29. Activation volumes are 

illustrated as arrows pointing from the E+S mixture to the transition state (ES*). In the 

literature, sources of activation volumes are discussed [16, 19, 20, 72]. Exposure of 
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hydrophobic and charged amino acid residues to water during the formation of the transition 

state will cause a higher hydration density and a negative activation volume. Indeed, Mozhaev 

et al. have attributed the observed negative activation volume of α-CT to the increased 

hydration of the transition state dipole [25]. Moreover, conformational changes of the enzyme 

forming the transition state can be linked to the generation or the filling of void volumes 

inside the enzyme. 

 

 
Figure 29. Activation volumes of free and adsorbed α-CT (not to scale, ΔV# given in mL mol-1). In both 

cases, the activation volume depends on the pressure. The E+S mixture is compressed in a stronger way than the 

transition state (ES*). The volume levels at low and high pressures are arranged assuming a volume reduction of 

both E+S and ES* by pressure. 
 

 In both cases of free and adsorbed α-CT, more positive activation volumes were 

observed in the higher pressure range. This may be explained by a stronger compression of 

the E+S relative to the ES*, as illustrated in the volume diagram (Figure 29). If VE+S is 

compressed in a stronger way than VES*, the activation volume, which is the difference VES* - 

VE+S, becomes larger. From conformational studies, it is clear that α-CT does not undergo 

significant changes in the secondary and tertiary structure in the pressure range of 1 – 2000 

bar (Figure 25, 26). However, we could speculate that the substrate binding leaves some void 

volume at ambient pressure. At about 500 bar, the substrate molecule might be pushed deeply 

into the enzyme pocket in a way that the fitting is optimized and VES* becomes smaller. 

 Upon adsorption of α-CT on the silica particles, the activation volumes are increased 

(Figure 29). It is likely that an increase of the transition state volume, VES*, is the reason for 

this finding. When an enzyme is catalyzing a chemical reaction, conformational flexibility of 
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the enzyme is mandatory. However, in the adsorbed state, this conformational flexibility will 

be reduced. As a consequence, the transition state might have a non-perfect, distorted 

geometry with an increased void volume, which increases VES* and ΔV# of α-CT in the 

adsorbed state. Moreover, the location of water molecules in the active site of the enzyme 

appears to be a crucial factor. There might be gaps in the transition state that are just too small 

to accommodate a water molecule. However, a clear molecular picture of the immobilization 

and pressure effects on the α-CT catalysis is not possible at this point. 

 

3.3.3. Pressure effects on the enzymatic activity of free and adsorbed HRP 

 

For comparison, we have also studied the effect of pressure on the catalytic activity of 

free and adsorbed HRP. HRP has a molar mass of about 44,000 g mol-1, is mainly α-helical, 

and binds heme as prosthetic group [30, 31]. HRP catalyzes the oxidation of a substrate by 

H2O2. The mechanism is based on the initial binding of an oxygen atom from H2O2 to the iron 

atom of heme. Then, two electrons are transferred successively from the substrate to the heme 

group, and a water molecule is finally released after uptake of two protons [30, 32]: 

 

 
 

This mechanism is much more complex than the peptide cleavage by α-CT. The two 

intermediates in the above scheme are denoted as compound I and compound II. In this study, 

HRP catalyzes the oxidation of the Amplex Red® substrate by hydrogen peroxide to the 

product resorufin. Resorufin is detected by its fluorescence. In the enzymatic assay, a large 

excess of hydrogen peroxide (1 mM) and Amplex Red (50 µM) that bind to HRP (0.026 µM) 

was used. This excess disfavors the back reaction and ensures the maximum enzymatic rate. 

The rate-limiting steps will be the successive transfers of two electrons from an Amplex Red 

molecule to the heme group. Recent single molecule fluorescence experiments are consistent 

with a two-electron mechanism, where the two electrons originate from a single Amplex Red 

molecule and fluorescent resorufin is formed while it is still confined in the enzyme [73]. 

Alternatively, it has been proposed that HRP oxidizes an Amplex Red molecule by a one-

electron transfer only. Afterwards, the formed non-fluorescent radical intermediate is released 

from the enzyme and reacts to resorufin by dismutation [74]. 
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The measured enzymatic activity of HRP using Amplex Red as the substrate is shown 

in figure 30. The observed slope of the product fluorescence, r, is plotted as a function of 

pressure, p, on a logarithmic scale. In both cases, free HRP and adsorbed HRP, the slope of 

the product fluorescence and thus the associated rate constant of product formation decreased 

as the pressure increased. This indicates positive activation volumes, which increase the 

activation free energies by the amount pΔV#. As found for α-CT, the plots of ln(r/r0) vs. p 

(Figures 30 and 31) are non-linear suggesting non-constant activation volumes of free and 

adsorbed HRP in the pressure range 1 – 2000 bar. To estimate activation volumes, we have 

divided the studied pressure range into a lower and higher pressure range in a similar way as 

described above for α-CT. From the linear fits (Figure 30), we can derive activation volumes 

of +16 mL mol-1 (1 – 500 bar) and +2 mL mol-1 (500 – 2000 bar) in the case of free HRP.  

 

 

Figure 30. Pressure dependence of the enzymatic activity of free HRP. The slopes of the plot are determined 

by linear fits. They are proportional to the activation volume. Each error bar covers the results of four 

independent measurements. r and r0 are the slopes of the fluorescence intensity as a function of time under high 

and ambient pressure, respectively. 
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For adsorbed HRP, corresponding values of +27 mL mol-1 (1 – 250 bar) and +2 mL 

mol-1 (250 – 1500 bar) are obtained (Figure 31). All activation volumes obtained in this way 

are summarized in a volume diagram (Figure 32). 

 

 
Figure 31. Pressure dependence of the enzymatic activity of adsorbed HRP. The slopes of the plot are 

determined by linear fits. They are proportional to the activation volume. Each error bar covers the results of 

four independent measurements. r and r0 are the slopes of the fluorescence intensity as a function of time under 

high and ambient pressure, respectively. 

 

Overall, the volume profiles of free and adsorbed HRP appear to be similar (Figure 

32). Presumably, the mechanism of the enzymatic reaction does not change upon adsorption, 

and no large distortion of the active site occurs when HRP interacts with the silica particles. 

However, in contrast to α-CT, activation volumes of HRP tend to be smaller at higher 

pressures. Above 500 bar, an activation volume of only +2 mL mol-1 indicates that the 

volumes of the transition state and E+S are very similar, and pressure has little effect on the 

enzymatic rate. Apparently, pressure can compress the transition state stronger than the E+S 

leading to a reduction of the activation volume, ΔV# = VES* - VE+S. 
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Figure 32. Activation volumes of free and adsorbed HRP (not to scale, ΔV# given in mL mol-1). In both 

cases, the activation volume depends on the pressure. ES* is compressed in a stronger way than E+S. The 

volume levels at low and high pressures are arranged assuming a volume reduction of both E+S and ES* by 

pressure.  

 

 So far, molecular interpretation of the volume diagrams given in figure 32 is difficult. 

Assuming that the transfers of two electrons from Amplex Red to HRP are rate-limiting, it 

can be concluded that E+S grows in volume to form the transition state, where the electron 

transfer can happen, because VES* > VE+S. Probably, electron transfer requires some shift of 

Amplex Red away from the optimum binding position thereby creating some void volume. 

However, at pressures above 500 bar, the increased volume of the transition state is 

suppressed resulting in VES* » VE+S. This finding is supported by earlier compressibility 

measurements of HRP in the low and high pressure range [75]. Below 100 bar, HRP has a 

large compressibility, whereas HRP is less compressible at higher pressures. It has been 

concluded that the enzyme has soft domains at ambient conditions, which are compressed and 

become rigid at higher pressures [75]. Thus, a larger compressibility of HRP at ambient 

conditions is linked to a larger density fluctuation, which could be the reason for the larger 

activation volumes of free and adsorbed HRP that are observed below 500 bar (Figure 32). At 

higher pressures, a rigid compressed structure of HRP is consistent with little volume change 

during the oxidation of Amplex Red®. 
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3.4. Conclusions 

 

The effect of pressure on the enzymatic activity of free and adsorbed α-CT and HRP 

has been studied.  

In the case of free α-CT, it is known that the enzymatic rate increases with increasing 

pressure. This effect could be confirmed by the present study, but a more pronounced pressure 

activation of free α-CT at lower pressures up to 500 bar was observed. Upon adsorption on 

silica particles, a positive contribution is added to the activation volume of α-CT. However, 

up to 500 bar, the activation volume of adsorbed α-CT is still negative and the enzymatic 

activity can still be enhanced by the application of pressure. These findings demonstrate a 

new potential strategy to optimize enzymatic reactions on carrier particles. 

On the other hand, the observed activation volumes of HRP are generally positive and 

similar in the free and the adsorbed state. However, above about 500 bar, very small 

activation volumes are observed, only. Although molecular interpretations of the activation 

volumes determined in this study are difficult, the obtained volume profiles provide some 

framework for mechanistic discussions.  

The observed pressure-dependence of the activation volumes of α-CT and HRP 

suggest that the transition state of HRP is more compressed under pressure than E+S, whereas 

the E+S of α-CT is more compressed under pressure than the ES*. Apparently, the transition 

state of α-CT is rather rigid and cannot easily be compressed, whereas the transition state of 

HRP exhibits some void volume. 
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4. Effect of interfacial 

properties on the activation 

volume of adsorbed enzymes 
 

The work of the present study has been published and subsequently reprinted from 

Colloids and Surfaces B: Biointerfaces 140 (2016) 497–504, Schuabb, V., Cinar, S. and 

Czeslik, C., “Effect of interfacial properties on the activation volume of adsorbed enzymes” 

with permission from Elsevier. Copyright (2016) Elsevier B. V. 
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4.1. Background 

 

Enzymes can be immobilized on solid surfaces [2,3], and enzymatic reactions on 

surfaces can be studied by surface-sensitive methods. In applied biotechnology, enzymes 

immobilized on particles can be recovered from the reaction mixture by centrifugation, 

sedimentation, filtration or magnetic forces [76] and can be reused, which is very relevant 

regarding expensive enzymes. However, any immobilized protein might have some degree of 

conformational change and/or denaturation by interaction with any given artificial surface 

[6,77]. One good alternative to create a native-like chemical environment for immobilized 

enzymes are hydrophilic and soft surfaces, such as PEG and polysaccharides [78-80]. 

However, even in the folded state, an immobilized enzyme can lose part of its activity, 

especially if the active site is blocked by the interface or the conformational dynamics are 

slowed down. 

As written in chapter 3, enzymatic activities depend on temperature and pressure. 

Higher temperatures lead to faster chemical reactions. In the case of enzymes, this chemical 

principle is limited by the temperature of unfolding of the enzyme, where any activity is lost. 

Applying pressure, on the other hand, will slow down or accelerate enzymatic reactions 

depending on the sign of the activation volume, ΔV#. 

Many factors could affect the catalytic rate of adsorbed enzymes. Beside temperature 

and pressure, the nature of the interface will play a key role. There are several studies in the 

literature where enzymatic activities have been determined at various aqueous-solid interfaces 

under ambient pressure [2,3]. For example, a higher activity of subtilisin BPN’ was observed 

on hydrophilic surfaces as compared to hydrophobic surfaces [81]. In addition, enzymes have 

also been embedded in polymer layers, such as polyelectrolyte multilayers and brushes, where 

a high degree of activity can be preserved [82-84]. In contrast, adsorption of α-CT on titania 

particles leads to a substantial loss of enzyme activity [85]. Thus, it is very interesting to 

understand the effect of pressure on adsorbed enzymes by changing the nature of the interface 

in a systematic way. 

This is the first study that comprises the pressure effect on α-CT and HRP adsorbed on 

hydrophilic, hydrophobic, positively and negatively charged surfaces. The enzymatic rates of 

both enzymes have been determined by UV absorption spectroscopy at 1 bar and by total 

internal reflection fluorescence (TIRF) spectroscopy from 1-2000 bar, where a quartz prism 

was used as the adsorbent material. TIRF spectroscopy is a surface-sensitive method that will 

not detect molecules free in solution [46]. Besides that, the surface of a quartz prism can be 
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easily modified with any sort of polymer films and polyelectrolyte multilayers applying spin-

coating or the layer-by-layer deposition technique [48]. The TIRF experiments up to 2000 bar 

have been carried out using a home-built high pressure cell described recently [47]. In 

addition, all modified surfaces have been characterized and verified by X-ray reflectometry 

(XRR), which probes the electron density profile of an interface [86] Also, the secondary 

structures of the adsorbed enzymes were monitored by attenuated total reflection Fourier 

transform infrared (ATR-FTIR) spectroscopy [87]. The shape of the amide I band in a protein 

FTIR spectrum is sensitive to its secondary structure [44].  

 

4.2. Experimental details 

 

4.2.1. Proteins and chemicals 

 

HRP was purchased from Thermo Fisher Scientific (cat. No. 01-2001), and bovine 

pancreas α-CT was purchased from Sigma-Aldrich (cat. No. C7762). The substrates, Amplex 

Red® (10-acetyl-3,7-dihydroxyphenoxazine) and Ala-Ala-Phe-7-amido-4-methylcoumarin, 

were obtained from Thermo Fisher Scientific (cat. No. A12222) and Sigma-Aldrich (cat. No. 

A3401), respectively. Aqueous NH3 solution, aqueous H2O2 solution, NaN3, N-p-tosyl-L-

phenylalanine chloromethyl ketone, poly(styrene) (PS), poly(ethyleneimine) (PEI), 

poly(allylamine hydrochloride) (PAH), and poly(styrene sulfonate) (PSS) were all purchased 

from Sigma-Aldrich. 

 

4.2.2. Enzymatic assays 

 

The enzymes were dissolved in 20 mM Tris base buffer solution, which is known to 

have a low reaction volume and low pressure sensitivity [88]. A solution of 1.25 µg mL-1 

HRP at pH = 7.4 was deposited on the adsorbent surfaces for three hours at 4 °C. Then, the 

surface was washed with buffer solution. Only irreversibly adsorbed enzyme molecules 

should remain. The reaction mixture contained 150 µM Amplex Red and 1 mM H2O2 in 

buffer solution at pH = 7.4. HRP catalyzes the oxidation of the substrate Amplex Red into the 

product resorufin by H2O2. Because resorufin absorbs UV light and is fluorescent, it can be 

quantified easily. Enzyme kinetics were recorded by TIRF emission at 585 nm (excitation at 

530 nm) and UV absorption at 530 nm at 25 °C.  



						Chapter	4:	Effect	of	interfacial	properties	on	the	activation	volume	of	adsorbed	enzymes	
______________________________________________________________________________________________________	
	

	 63	

Alternatively, a solution of 0.5 mg mL-1 α-CT at pH = 7.8 was deposited on the 

adsorbent surfaces for three hours at 4 °C. After washing the surface with buffer solution, the 

reaction mixture containing 500 µM Ala-Ala-Phe-7-amido-4-methylcoumarin at pH = 7.8 was 

added. α-CT hydrolyzes this substrate molecule into the product 7-amino-4-methylcoumarin 

(7-AMC). The rate of 7-AMC formation was measured at 20 °C by TIRF (exc. at 380 nm, em. 

at 480 nm) and UV absorption at 380 nm. 

 

4.2.3. Interfaces 

 

The quartz prisms used for TIRF spectroscopy and XRR are made of fused silica 

(Corning 7980) and were obtained from Micros Präzisionsoptik (Schmiedefeld, Germany). 

They were cleaned in concentrated nitric acid overnight. The internal reflection elements used 

for ATR-FTIR spectroscopy consist of Si and have been purchased from Resultec 

(Illerkirchberg, Germany). They were cleaned in a 1:1:5 mixture of NH3 (30 %), H2O2 (30 %) 

and H2O at 70 °C for 15 min before modification. The bare silica surfaces of both materials 

were used for enzyme adsorption. Using the spin-coating technique, a thin film of PS was 

made on one side of the prism by simply spin-coating a 15 mg mL-1 PS solution in toluene at 

2000 rpm. The polyelectrolyte multilayers were prepared by successive incubation with 

aqueous solutions (layer-by-layer) of PEI (0.01 M monomer concentration), PSS (0.01 M 

monomer concentration with 1 M NaCl), and PAH (0.01 M monomer concentration with 1 M 

NaCl). Each layer deposition was carried out for 20 min followed by intensive rinsing with 

pure water [48]. 

 

4.2.4. Instrumental techniques 

 

TIRF spectroscopy was applied to determine enzymatic rates over time under different 

pressures and for all modified surfaces. It was carried out using the K2 fluorometer from ISS 

(Champaign, Illinois, USA). It was operated in photon-counting mode with a Xe arc lamp as 

light source. The setup of the high-pressure TIRF sample cell has already been described in 

detail [47] and the description can be found in section 2.2.4.. The temperature was kept 

constant using an external water bath. 

The intensity of the fluorophores was corrected for the pressure dependence of the 

fluorescence quantum yield of the product (Figure 33). It was measured using an enzymatic 

assay with HRP or α-CT (adsorbed on quartz surface). The assay was allowed to run for about 
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five hours until the fluorescence intensity of the product reached a constant value, and no 

additional product was formed. Then, the fluorescence intensity of this assay was measured as 

a function of pressure. After normalization to 1 bar (Figure 33), the fluorescence intensity, 

I(p), was used to correct the raw slope, rraw(p), by calculating r(p) = rraw(p)/I(p). 

 

 

 
Figure 33. Pressure dependence of total internal reflection fluorescence intensity of the assay products. 

The pressure dependence of the fluorescence intensity of an enzyme product has been assessed by analyzing the 

enzyme assay after about five hours, when the fluorescence intensity of the product has reached a constant value. 

This steady-state fluorescence intensity was measured as a function of pressure and was normalized to 1 bar. The 

error bars cover the scattering of three independent measurements. 

 

UV-VIS absorption measurements were carried out to determine absolute enzyme 

activities, observing changes the concentration of the product over a given time period. The 

UV-1800 spectrometer from Shimadzu (Duisburg, Germany) was used. 

The thickness of a polymer layer prepared on a quartz prism surface (PS film, 

polyelectrolyte multilayer) was estimated by XRR. The same quartz prisms used for TIRF 

experiments were deployed for XRR, and the surface modifications were prepared in identical 
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ways. The Seifert XRD 3000 TT reflectometer from GE Inspection Technologies 

(Ahrensburg, Germany) was used, which was operated with the Mo-Kα wavelength (0.71 Å). 

The raw data were then converted into reflectivity curves by normalization of the reflected X-

ray intensity to the incident intensity. They are scaled as a function of wavevector transfer, Q 

= (4π/λ) sin θ, where λ is the wavelength and θ is the angle of incidence. 

ATR-FTIR spectroscopy was used to estimate potential changes of the secondary 

structure content of an enzyme induced by adsorption on the different chemically modified 

surfaces. The ATR accessory includes a water-jacketed sample cell from Pike Technologies 

(Madison, Wisconsin, USA), which was placed in the sample compartment of a Nicolet 6700 

FTIR spectrometer from Thermo Fisher Scientific. Constant temperature of the sample is 

maintained by a water flow circulating through the water jacket. During all measurements, the 

sample was kept under D2O solution. The measurements were performed at a spectral 

resolution of 2 cm−1. Before enzyme immobilization on the ATR Si crystal, a background 

spectrum was recorded that was subtracted from the following sample spectrum. In the case of 

a polymer layer on the crystal, the background spectrum includes any contribution from the 

polymer. 

 

4.3. Results and discussion 

 

4.3.1. Sample characterization 

 

The enzyme activity measurements were performed at four different aqueous-solid 

interfaces. The adsorbent materials were bare quartz, quartz covered with a PS film, quartz 

covered with a PEI-(PSS-PAH)2-PSS multilayer, and quartz covered with a PEI-(PSS-PAH)2-

PSS-PAH multilayer. In this way, a polar (bare quartz), a hydrophobic (PS film), a negatively 

charged (PSS ending multilayer), and a positively charged (PAH ending multilayer) surface 

have been prepared. HRP has a net charge of about 0 at neutral pH-values [62,88], whereas α-

CT has a small positive net charge at neutral pH-values due to an isoelectric point at pH = 9 

[63,64]. 

The successful preparation of the polymer layers on the quartz prisms was checked at 

the air by XRR (Figure 34). Kiessig fringes can be observed in all cases, which result from the 

interference of the X-ray beams reflected at the air-polymer interface and the polymer-quartz 

interface. There is a simple relation between the width of the Kiessig fringes, ΔQ, and the 

total thickness of the polymer layer, d, given as [86]: 
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Δ𝑄 =
2𝜋
𝑑  

 

In the case of a PS film, a thickness of about 590 Å has been determined using 

equation above. The PSS ending multilayer has about 140 Å of thickness (23 Å per layer), 

and the PAH ending multilayer has about 170 Å of thickness (24 Å per layer), as measured in 

the dry state at the air (Figure 34). These values were reproduced within ±10 Å from 4 

independent measurements and are similar to literature values [90]. Therefore, the surface 

modifications appear to be successful. 

 

 
Figure 34. X-ray reflectivity of quartz surfaces modified with a PS film and polyelectrolyte multilayers 

ending with PSS and PAH. The data were recorded at the air. 

 

Furthermore, the secondary structure of α-CT and HRP, adsorbed at the aqueous-solid 

interfaces mentioned above, was investigated by following changes of the amide I’ band 

collected using the ATR-FTIR technique (performed by Süleyman Cinar). The amide I’ band 

(the prime indicates D2O as the solvent) of proteins in the infrared spectrum between 1700 – 
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1600 cm-1 is mainly related to the C=O stretching mode of the peptide bonds. The exact 

wavenumber of this mode depends on the type of secondary structure the peptide bonds are 

involved in [44]. Thus, the shape of the amide I’ band is sensitive to the overall secondary 

structure content of protein molecules under a specific condition. 

As seen in figure 35, both α-CT and HRP essentially retain their secondary structures 

at all aqueous-solid interfaces studied here, as judged from the maximum wavenumber and 

the shape of the amide I’ band of these enzymes. The FTIR spectra shown in figure 35 were 

obtained in transmission mode in the case of the free enzymes and in ATR mode in the case 

of the adsorbed enzymes. The aqueous-solid interfaces were incubated with the enzyme 

solutions for 20 min followed by rinsing with Tris buffer solution. Thus, only irreversibly 

adsorbed enzyme molecules are detected. Unfortunately, in the case of HRP, the degree of 

adsorption is rather low leading to a low signal-to-noise ratio. However, the preservation of 

native secondary structure of proteins upon adsorption at aqueous-solid interfaces has already 

been reported before. For example, it has been observed that α-CT, HRP, lysozyme and 

ribonuclease A do not change their secondary structures upon adsorption on silica particles 

[91,92]. It is interesting to note that even the hydrophobic PS surface does not induce major 

changes on the secondary structures of α-CT and HRP (Figure 35), whereas polyelectrolyte 

multilayers are known to maintain the structure and activity of adsorbed and embedded 

protein molecules in many cases [50,82,83,93]. 

 

 
Figure 35. Amide I’ bands of α-CT and HRP, recorded both free in solution and irreversibly adsorbed at 

various aqueous-solid interfaces (performed by Süleyman Cinar). Samples were analyzed in D2O pD = 7, at 1 

bar and 25◦C. The vertical lines indicate the maximum wavenumbers of the free enzymes in solution. 
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4.3.2. Enzyme activities at different interfaces 

 

Absolute activities of α-CT and HRP irreversibly adsorbed on quartz, a PS film, a PSS 

and a PAH ending multilayer were determined by incubation of these surfaces with 600 µL 

enzyme-free reaction mixture containing the substrate. After 250 s at 1 bar and 25 °C, the 

inhibitor NaN3 for HRP or N-p-tosyl-L-phenylalanine chloromethyl ketone for α-CT was 

added to stop the enzymatic reaction, and the concentration of the formed product was 

measured by UV spectroscopy. All observed UV absorbance are listed in table 1. 

 

 
 

Table 1. Activities of α-CT and HRP adsorbed on quartz, a PS film, a PSS and a PAH ending multilayers. 
Each data represents the concentration of product formed in a 600 µL enzyme-free reaction mixture that is in 

contact with the interface over 250 s at 1 bar and 25 oC. The data were obtained by UV absorption measurements 

and normalized to the value of the water–quartz interface. Each error is calculated from four independent 

measurements. 

 

As seen in table 1, α-CT activity is highest on quartz and a PSS ending multilayer, 

which are both hydrophilic and negatively charged. In contrast, maximum HRP activity is 

found on a hydrophobic PS film. Generally, the values listed in table 1 depend on a series of 

issues. High values are expected, if there is a high degree of enzyme adsorption, a low degree 

of denaturation, little dynamic restrictions and little blocking of the active site by neighboring 

enzyme molecules or the interface. From the ATR-FTIR spectra shown in figure 35, it is 

suggested that the reduced activity of α-CT on a PS surface could be explained by the reduced 

degree of adsorption. Furthermore, it has been observed that α-CT can be activated by 

polyelectrolytes that are oppositely charged to the substrate [57]. Here, we use a positively 

charged substrate molecule, Ala-Ala-Phe-7-amido-4-methylcoumarin, which is partially 

protonated at the NH2 and NH groups. In agreement with that study [57], the enzymatic 

activity is smaller on positively charged PAH as compared to negatively charged PSS (Table 

1). Moreover, it has also been reported that α-CT activity is four times higher on a negatively 
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charged polyelectrolyte multilayer than on a positively charged polyelectrolyte multilayer 

[94], which is also in good agreement with our results (Table 1). In the case of HRP, the 

degree of adsorption on the various surfaces seems to be similar, as can be estimated from the 

ATR-FTIR spectra in figure 35. Thus, the enhanced activity of HRP on a PS surface is 

probably related to lowered activation energy due to interactions with the PS surface. 

 

4.3.3. Activation volume of α-CT 

 

α-CT hydrolyzes peptide bonds, preferentially those formed by aromatic amino acids 

[27]. After the binding of the substrate molecule, which is Ala-Ala-Phe-7-amido-4-

methylcoumarin in this study, the cleavage of the peptide bond and the product release, which 

is the fluorescent 7-AMC, can be described by Michaelis-Menten mechanism [54]: 

 

 
 

 Assuming that the adsorbed α-CT molecules are saturated by the substrate molecules, 

S, which are present in a relatively high concentration (500 µM), the rate of the enzymatic 

reaction is determined by step 2 and step 3. The turnover number can be expressed by the 

equation kcat = k2k3/(k2+k3) [54]. It has been proposed that k2 is small and rate-limiting (kcat » 

k2) for a peptide hydrolysis, as studied here, whereas k3 is small and rate-limiting for an ester 

hydrolysis [27]. Therefore, the ΔV#-values of α-CT, as reported in this study, can refer to step 

2 in the reaction scheme, where the enzyme is acylated (Ala-Ala-Phe−α-CT) and 7-AMC is 

released. In the case of [S] < KM, ΔV# is the difference between the volumes of the transition 

state, VES*, and the reagents, VE+S.   

The formation of 7-AMC was recorded by TIRF spectroscopy here. The analysis of 

the fluorescence signal to extract an activation volume followed the procedure described 

recently [91]. Briefly, any fluorescence intensity is proportional to the fluorophore 

concentration, c. Thus, the rate of product formation, dc/dt, is proportional (not equal) to the 

slope of the fluorescence intensity that is plotted as a function of time (Figure 36).  
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Figure 36. Total internal reflection fluorescence intensity as a function of time showing enzymatic activity 

of α-CT at water-quartz interface (typical data). The fluorescence intensity has been measured at 1 bar and 

after pressure increase. The slope of the data is proportional to the rate of the enzymatic reaction. The slopes 

before and after the pressure increase have been determined by fits over the highlighted time intervals. 
 

To remove all instrumental factors affecting the fluorescence intensity, the slope 

observed under pressure, r, has been normalized to the slope observed under ambient 

pressure, r0. Each enzymatic assay started with a few minutes of data collection at 1 bar 

followed by a 1−2 min period, during which the pressure has been increased, and a further 

time period under high pressure. The slope at 1 bar, r0, was always constant and has been 

determined by a linear fit. The slope under high pressure, r, has often been observed to be 

unstable immediately after the pressure increase, which might indicate a structural relaxation 

of the enzyme. Thus, we left a time interval of 1 min after pressure increase before evaluating 

the slope, r. The ratio of the slopes measured before and after the pressure change can be 

related to the ratio of the corresponding rate constants: 

 

00 k
k

r
r
=  
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So, the activation volume can be calculated by, 

 

𝜕 ln(𝑟/𝑟B)
𝜕𝑝 :

	= 	−
𝛥𝑉#

𝑅𝑇  

 

 
Figure 37. α-CT pressure dependent enzymatic activity when adsorbed on quartz. r is the rate of product 

formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure TIRF spectroscopy. 

Error bars cover the scattering of two measurements at 500 bar, three at 1000 bar, four at 1500 bar. 

 

In figures 37-40, plots of ln(r/r0) as a function of pressure, p, are given for α-CT 

adsorbed on bare quartz, a PS film, a PSS ending multilayer and a PAH ending multilayer 

under aqueous solution. Apparently, in the case of the water-quartz interface (Figure 37), the 

pressure dependence of adsorbed α-CT enzymatic activity was not constant. This finding is in 

favorable agreement with previous studies of α-CT free in solution and adsorbed on 

negatively charged silica particles [91]. Below 1000 bar, pressure strongly activates α-CT on 

planar quartz (Figure 37). A negative activation volume of ΔV# = -29 mL mol-1 was obtained 

from a linear fit in this lower pressure range. In contrast, no pressure dependence of α-CT 

enzymatic activity on planar quartz was detected at 1000 – 2000 bar (Figure 37). Generally, 
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there is no reason to assume that the activation volume of an enzyme is constant and thus 

independent of pressure. As mentioned above, the activation volume is the difference of the 

volumes of the transition state and the enzyme-substrate mixture, ΔV# = VES* - VE+S. If these 

two states have different compressibility, then ΔV# is pressure dependent. As concluded 

before, the enzyme-substrate mixture seems to be more compressible than the transition state 

of α-CT in solution and adsorbed on silica [91]. It was observed that the reduced pressure 

dependence of α-CT activity at the water-quartz interface above 1000 bar (Figure 37) could 

not be explained by a reduced degree of α-CT adsorption, because a reduced pressure 

dependence was also observed for non-adsorbed α-CT [91]. Furthermore, the degree of 

protein adsorption at the silica-water interface has been found to increase with pressure [95]. 

 

 
Figure 38. α-CT pressure dependent enzymatic activity when adsorbed on PS film. r is the rate of product 

formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure TIRF spectroscopy. 

Error bars cover the scattering of at least two independent measurements. 

 

The effect of pressure on the enzymatic activity of α-CT adsorbed on water-PS 

interface is very different from α-CT activity when adsorbed at the water-quartz interface 

(Figure 38). Within the experimental errors, a linear fit over the whole studied pressure range 
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yields a positive activation volume of +10 mL mol-1, indicating that pressure inactivates α-CT 

when adsorbed on hydrophobic PS. 

 

 
Figure 39. α-CT pressure dependent enzymatic activity when adsorbed on PSS ending multilayers. r is the 

rate of product formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure 

TIRF spectroscopy. Error bars cover the scattering of at least two independent measurements. 

 

It is also interesting to compare the pressure effects on the activity of α-CT, when 

adsorbed on the negatively charged water-PSS interface (Figure 39) or the positively charged 

water-PAH interface (Figure 40). Whereas a positive slope of ln(r/r0) vs. pressure could be 

observed in the case of the water-PSS interface, virtually no pressure effect was found in the 

case of the water-PAH interface (Figure 40). Again, within the experimental errors, constant 

activation volumes are consistent with both plots. The activation volume of α-CT on PSS is    

-23 mL mol-1, very similar to that found on quartz (Figure 37). 
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Figure 40. α-CT pressure dependent enzymatic activity when adsorbed on PAH ending multilayers. r is 

the rate of product formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure 

TIRF spectroscopy. Error bars cover the scattering of at least two independent measurements. 

 

All data in figures 37-40 suggest that α-CT can be activated by pressure, when it is 

adsorbed on a negatively charged surface like quartz and PSS. However, α-CT was also 

activated by pressure, when it was free in aqueous solution, where negative activation 

volumes of -67 mL mol-1 below 500 bar and -15 mL mol-1 at 500 – 2000 bar were reported 

[91]. Similarly, Mozhaev et al. have found values of about −10 mL mol−1 at 20 °C and −25 

mL mol−1 at 50 °C for free α-CT [25]. Thus, a negatively charged adsorbent surface seems to 

have less impact on the stereochemistry of the transition state of step 2 in the mechanism of α-

CT catalysis than a positively charged or a hydrophobic adsorbent surface. 

In general, an increase of the activation volume can easily be explained by a small 

distortion of the active site due to adsorption of the enzyme. When small void volumes in the 

transition state are generated that cannot accommodate a water molecule (18 mL mol-1), then 

VES* and ΔV# will increase. Another reason for an increased activation volume could be 

restricted dynamics of the active site due to immobilization of the enzyme at the interface. 
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When 7-AMC leaves the active site, water molecules must enter. This replacement requires 

some intermediate void volume, when the active site is rather rigid. Indeed, strong 

hydrophobic interactions between a PS surface and α-CT could induce a small distortion and 

restricted dynamics of the active site, which is consistent with the most positive activation 

volume of α-CT observed in this study. 

 

 
 

Figure 41. Activation volumes of α-CT adsorbed on quartz, a PS film, a PSS ending and a PAH ending 

multilayer (not to scale, ΔV# given in mL mol-1). The activation volume depends on the pressure and on the 

surface chemistry.  

 

4.3.4. Activation volume of HRP 

 

Besides α-CT, we have also studied horseradish peroxide (HRP). A peroxidase is an 

enzyme that catalyzes the oxidation of a substrate by H2O2. HRP binds heme as prosthetic 

group. The mechanism of catalysis is rather complex and can be summarized in the scheme of 

section 3.3.3 in this present work [30,32]. In the enzymatic assay, relatively high 

concentrations of H2O2 (1 mM) and Amplex Red® (150 µM) and a very low concentration of 

HRP (1.25 µg mL-1) were used to incubate the adsorbent surface. The rate-limiting steps are 

probably the successive transfers of two electrons from the Amplex Red molecule to the 

heme. There is some evidence from single molecule fluorescence experiments that there is a 

distribution of conformations and a breathing motion of the active site of HRP, when the 

bonded substrate is converted into product [73]. 
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HRP has been adsorbed on bare quartz, a PS film, a PSS and a PAH ending multilayer. 

After rinsing with buffer solution and adding reaction mixture, the product formation, 

resorufin, was detected by TIRF spectroscopy at 1 bar and under high pressures. The analysis 

of the time-dependent fluorescence intensity in terms of the slopes at 1 bar, r0, and at elevated 

pressure, r, has been carried out in the same way as described above for α-CT.  

In figures 42-45, plots of ln(r/r0) as a function of pressure, p, are given for HRP 

adsorbed at these four different interfaces. 

 

Figure 42. HRP pressure dependent enzymatic activity when adsorbed on quartz. r is the rate of product 

formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure TIRF spectroscopy. 

Error bars cover the scattering of two independent measurements. 
 

In the case of HRP at the water-quartz interface, there is no significant pressure 

dependence of the rate of product formation up to 1500 bar (Figure 42). This observation is 

very similar to the behavior found earlier for HRP adsorbed on silica particles, where a very 

small activation volume of about +2 mL mol-1 has been found in the pressure range of 250 – 

1500 bar [91]. 
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Figure 43. HRP pressure dependent enzymatic activity when adsorbed on PS film. r is the rate of product 

formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure TIRF spectroscopy. 

Error bars cover the scattering of two independent measurements. 
 

 Remarkably, when HRP is adsorbed on a hydrophobic PS film, application of 

pressure leads to a strong activation of this enzyme (Figure 43). From a linear fit in the 

pressure range of 1 – 2000 bar, a negative activation volume of -35 mL mol-1 was determined. 

So far, pressure inactivation has been reported for HRP in solution. Thus, immobilization of 

HRP on PS can reverse this pressure effect.  
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Figure 44. HRP pressure dependent enzymatic activity when adsorbed on PSS ending multilayers. r is the 

rate of product formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure 

TIRF spectroscopy. Error bars cover the scattering of two independent measurements. 
 

In contrast, when HRP is adsorbed on charged hydrophilic polyelectrolyte multilayers, 

pressure always inhibits the enzymatic activity, regardless of the sign of the charges. Positive 

activation volumes of +19 mL mol-1 on PSS (Figure 44) and +16 mL mol-1 on PAH (Figure 

45) ending multilayers were deduced from linear fits. 
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Figure 45. HRP pressure dependent enzymatic activity when adsorbed PAH ending multilayers. r is the 

rate of product formation under pressure, and r0 is the rate at 1 bar. The data were obtained by high-pressure 

TIRF spectroscopy. Error bars cover the scattering of two independent measurements. 
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Figure 46. Activation volumes of HRP adsorbed on quartz, a PS film, a PSS ending and a PAH ending 

multilayer (not to scale, ΔV# given in mL mol-1). The activation volume depends on the surface chemistry.  

 

Remarkably, the activation volume of both enzymes, α-CT and HRP, strongly depends 

on the kind of interface used for immobilization (Figure 41 and 46). In contrast to α-CT, 

where a hydrophilic negatively charged environment enables pressure-induced enzyme 

activation, HRP activity is enhanced by pressure at a hydrophobic surface. At this point, we 

cannot give any molecular details about the origin of these findings. However, in the case of 

α-CT, a more positive activation volume at all interfaces studied can be observed as compared 

to that found in solution, which can be explained by a distortion or restricted dynamics of the 

active site at an interface, as outlined above. In the case of HRP, the activation volume 

decreases upon adsorption at the water-PS interface. This opposite behavior could be 

explained by an increased volume of the enzyme relative to that of the transition state, VES*, 

thereby making the activation volume ΔV# = VES* - VE+S more negative. 

It is interesting to see that negative activation volumes of α-CT and HRP were 

observed at the same interfaces that showed larger activities at 1 bar (Table 1, Figure 41 and 

46). It is not straightforward to explain this observation. The activation free energy, ΔG#, can 

be decomposed into the activation energy, ΔU#, the activation volume, ΔV#, and the activation 

entropy, ΔS#: 
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∆𝐺# = 	∆𝑈# + 𝑝∆𝑉# − 𝑇∆𝑆 

 
If ΔV# is small or even negative, then ΔG# is reduced. At 1 bar, a negative activation 

volume of -18 mL mol-1 (size of a water molecule) contributes pΔV# = -1.8 J mol-1 to ΔG#, 

which can be neglected. Only at high pressures, pΔV# becomes significant. For example, at 

1000 bar and 298 K, the rate constant increases by a factor of two due to a small negative 

activation volume of -18 mL mol-1. Thus, there are no simple thermodynamic arguments 

relating a negative activation volume to fast enzyme kinetics at 1 bar. However, a negative 

activation volume indicates a tight packing of the reaction components in the transition state. 

This allows for strong favorable interactions that might be responsible in part for small 

activation energies, i.e. fast enzymatic reactions at 1 bar. 

 

4.4. Conclusions 

 

The enzymatic activities and activation volumes of α-CT and HRP were successfully 

measured at four different aqueous-solid interfaces (polar, non-polar, negatively and 

positively charged). For both enzymes, the activation volume is strongly dependent on the 

kind of interface used for immobilization.  

In the case of HRP, even a negative activation volume and a corresponding pressure 

activation of the enzyme has been found on a hydrophobic PS surface, in contrast to free 

HRP, which is deactivated by pressure [91].  

α-CT, when adsorbed on planar quartz, shows a similar pressure-dependence of its 

activity as α-CT on silica particles [91]. According to the results of this study, a negative 

activation volume of α-CT seems to be associated with negatively charged hydrophilic 

surfaces, as those of silica particles, quartz and PSS. Moreover, large enzymatic activities 

were measured at interfaces where negative activation volumes were observed.  

At this point, mechanistic details of the enzymatic reactions at the various interfaces 

cannot be given on the molecular level. However, pressure could be a useful tool to enhance 

enzymatic activity by choosing the right interfacial properties for enzyme immobilization. 
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5. Advantages of adsorbing 

α-CT on silica nanoparticles 

- A high-pressure stopped-

flow study 
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5.1. Background 

 

As seen in chapter 3 and 4, pressure can enhance the activity of adsorbed enzymes due to 

negative activation volumes [91]. Also, the chemistry of the adsorbent surface plays an 

important role in the activation volume profile [40]. Taking the example of α-CT on quartz 

and on PSS-ending polyelectrolyte multilayers, both are negatively charged surfaces, it was 

demonstrated that the activation volume is negative [40], as found on silica nanoparticles 

Ludox AM [91]. All these measurements were done with fluorescence spectroscopy 

techniques, such as high pressure fluorescence, used in chapter 3, and high pressure TIRF, 

used in chapter 4. Both fluorescence techniques have a dead time of 4-5 minutes, due to the 

high pressure cell assembling. In order to follow the enzymatic activity from its very 

beginning, the stopped-flow technique was used in this work.  

Stopped-flow experiments have proven to be a very powerful method to follow enzymatic 

reactions over the very first seconds [96]. As explained in section 2.2.7., the stopped-flow 

equipment can mix the enzyme and substrate solutions in the observation chamber and record 

the data immediately, with very few seconds of delay and a resolution on the order of ms. In 

this chapter, the stopped-flow technique was used as a different approach to monitor the 

activity of free and adsorbed enzymes. The activity of α-CT, free and adsorbed on Ludox AM, 

was analyzed using the same Ala-Ala-Phe-7-AMC substrate mentioned in chapter 4. 

However, the release of the product, 7–AMC, was followed using UV-VIS absorbance at 370 

nm as a function of time. 

The stopped-flow equipment used in this work was a high pressure stopped-flow 

instrument (HP-SF). The entire stopped-flow system is built inside a high-pressure autoclave 

and it allows kinetics up to 2000 bar. The HP-SF system brought additional and important 

information to this study. It pressurizes the samples before mixing, in contrast to the 

experiments in chapters 3 and 4, where samples ran for some time at 1 bar and were then 

pressurized while already mixed. When pressurizing the enzyme and substrate solutions 

before mixing, the molecules adopt new thermodynamic and conformational states, and later 

they are mixed in the observation chamber. Besides that, this equipment recorded the α-CT 

kinetics using the UV-VIS absorbance, and for the first time the activation volume was 

calculated from an absolute scale method. 

It has been shown in the literature, that trypsin is adsorbed on mesoporous silica. After 20 

days 70% of initial native state retained in contrast to the solution where 45% retained due to 

autolysis [97]. These findings strongly suggest that α-CT, as well as other proteases, could be 
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protected from autolysis by simply adsorbing the proteases on a surface, and this would also 

create conditions for recycling this enzyme for several reaction cycles. Therefore, the 

autolysis activity of free vs adsorbed α-CT as a function of time was also analyzed in this 

work by polyacrylamide gel electrophoresis (PAGE).     

 

5.2. Experimental details 

 

5.2.1. Proteins and chemicals 

 

Bovine pancreas α-CT (cat. No. C7762), the substrate Ala-Ala-Phe-7-amido-4-

methylcoumarin (cat. No. A3401), and Ludox AM colloidal silica particles (cat. No. 420875) 

were purchased from Sigma-Aldrich. The SDS-PAGE silver staining kit, PlusOne™ Silver 

Staining kit for proteins, was purchased from GE Healthcare (cat. No. 17-1150-01). 

 

5.2.2. Enzymatic assays 

 

The calculus of the surface area coverage of the silica particles followed the 

description in chapter 3 and was adapted for this work as can be seen below: 

Ludox AM: 100 µL of a 1.31 g mL-1 solution. From the density of 1.31 g mL-1 and the 

surface area of 220 m2 g-1, a surface area of 28,8 m2 in 100 µL solution of silica particles can 

be calculated (1:11). 

α-CT:  molar mass of 25000 g mol-1 that corresponds to a mean radius of r = 1.9 nm using a 

specific volume of 0.7 cm3 g-1. From this radius, a footprint area of pr2 = 1.1·10-17 m2 per 

molecule can be estimated. Covering 1% of Ludox AM area, 1100 µL solution (1:11 Ludox 

AM:Buffer) will permit the use of 0.73 mg of protein, which is 26,5 µM, in a volume of 1100 

µL. 

UV-VIS absorption measurements of α-CT were carried out to determine absolute 

enzyme activities as a function of substrate concentration. This was done to estimate the 

kinetic parameters of α-CT free and adsorbed on Ludox AM. A UV-1800 spectrometer from 

Shimadzu (Duisburg, Germany) was used. 

To determine the Michaelis-Menten contant, KM, of α-CT for Ala-Ala-Phe-7-AMC, 

stock solutions of 123.75 mM Ala-Ala-Phe-7-AMC and 1 mg mL-1 α-CT were prepared. The 

concentrations of Ala-Ala-Phe-7-AMC tested were 5 µM, 25 µM, 50 µM, 75 µM, 100 µM, 
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300 µM, 500 µM, 1000 µM and 1500 µM with a final enzyme concentration of 0.05 mg mL-1. 

The reaction buffer used was 20 mM TRIS-HCl (pH 7.8). The UV absorbance was recorded 

at 370 nm during 100 s, at 20oC. All samples had their background corrected before the 

addition of α-CT. The reaction dead time was 15 s. 

To determine the KM of α-CT-Ludox AM for Ala-Ala-Phe-7-AMC, stock solutions of 

123.75 mM Ala-Ala-Phe-7-AMC and 0.031 mg mL-1 α-CT adsorbed on Ludox AM were 

prepared. The concentrations of Ala-Ala-Phe-7-AMC tested were 0 µM, 50 µM, 100 µM, 250 

µM, 500 µM, 1000 µM and 1500 µM with a final enzyme concentration of 0.015 mg mL-1. 

The reaction buffer was 20 mM TRIS-HCl pH 7.8, and the absorbance at 370 nm was 

recorded at 20oC for 100 s. Ludox-AM particles increase the light scattering, therefore 

background solutions were recorded using a quartz cuvette, buffer and Ludox-AM without 

enzyme for each substrate concentration. This background absorption was then subtracted 

from the respective kinetic signal. The reaction dead time was 15 s. 

The calculations of the kinetic parameters were done by converting the absorbance 

signal into molar concentration. The molar extinction coefficient of 7- AMC is ε= 15000, 

according to the molecule data sheet given by Sigma-Aldrich [99,100]. The kinectic velocity, 

v, was then calculated during the time interval in which all measurements were linear. The 7-

AMC absorbance was converted into µM, and divided by the time in second, then normalized 

to the enzyme concentration in µM. This gives v/[E]total in s-1 (µM µM-1 s-1). All data were 

fitted with the Michaelis-Menten model in Origin 9.0 software, and KM and kcat were 

estimated. 

For the HP-SF, 0.4 mg of α-CT is dissolved in 4 mL of 20 mM TRIS-HCl buffer (pH 

7,8) or in 4 mL of 20 mM TRIS-HCl buffer (pH 7,8) with Ludox-AM (1:11). This dilution 

creates a 0.1 mg ml-1 or 1.25 µM enzyme solution. The protein is left to adsorb on Ludox AM 

in 20 mM TRIS-HCl buffer (pH 7.8) during 3 hours at 4 oC. After this period, the adsorbed 

enzyme is ready to be used in the kinetic assays. The substrate solutions of 1 mM or 3 mM 

Ala-Ala-Phe-7-amido-4-methylcoumarin were also prepared in 4 mL of 20 mM TRIS-HCl 

buffer (pH 7,8). The TRIS base buffer is known for a low reaction volume and low pressure 

sensitivity [88].  

In the high pressure stopped-flow system, there are two syringes. One syringe was 

filled up with enzyme solution (α-CT free or adsorbed on Ludox AM) and the other syringe 

was filled with substrate solution (1 mM or 3 mM Ala-Ala-Phe-7-AMC). After a 1:1 mixing 

in the observation chamber, the final concentrations were half of what it is in the syringes. 

The reactions were recorded at 20oC, during 100 s and in the pressure range from 1 to 2000 
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bar, in 500 bar steps. The absorbance was collected with the monochromator set at 370 nm, 

and the instrumental offset was corrected to force all samples to start at 0 absorbance at time 0 

s. The equipment used was a High Pressure Stopped Flow System HPSF-56 from HiTech 

Scientific.  

After offset correction, the curves were all fitted in the initial time interval when the 

increase of the signal was linear, and the slopes for each condition were determined. The ratio 

of the rates measured at 1 bar and higher pressures can be related to the ratio of the 

corresponding rate constants: 

 

00 k
k

r
r
=  

 

The meaning of the rate constants is discussed below. A plot of ln(r/r0) as a function 

of pressure, p, yields a curve whose slope contains the activation volume, as seen in chapters 

3 and 4: 

 

𝜕 ln(𝑟/𝑟B)
𝜕𝑝 :

	= 	−
𝛥𝑉#

𝑅𝑇  

 

This equation can be applied to all measured pressures, p, and does not require a 

constant activation volume. When the activation volume is pressure dependent, a change in 

the slope of ln(r/r0) vs. p is observed. 

 Reversibility tests of the enzyme activity were done after the complete pressure 

dependent reaction set at 1, 500, 1000, 1500, 2000 bar. After the 2000 bar-kinetics, the 

pressure was slowly reduced to 1 bar, which was about 1 hour after the first reaction started, 

and again 1 bar-reactions were recorded. The slope of these kinetics curves were then 

compared to the first 1 bar kinetics of the experiment set. 

 

5.2.3. Autolysis and SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

monitor the autolysis of free and adsorbed α-CT. 0.15 mg mL-1 (6 µM) α-CT was diluted in 

20 mM TRIS-HCl (pH 7.8) or 20 mM TRIS-HCl (pH 7.8) with Ludox AM (1:11). α-CT, free 

and adsorbed on Ludox-AM, was incubated over 24 hours at room temperature, and samples 

were analyzed at different times: 0 minute, 10 minutes, 30 minutes, 60 minutes, 120 minutes, 
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240 minutes, and one last sample after 24 hours. Then, the denaturant sample buffer, Laemmli 

buffer, was added to each sample and stored at -80 oC. 30 µL of these samples were analyzed 

by 18% SDS-PAGE using a Bio-Rad Mini-Protean™ Kit. The protein bands were stained 

using the GE silver staining kit, following the manufacturer´s protocol. Gel images were 

captured with the AlphaImager Mini equipment from ProteinSimple. The images were 

analyzed by the image processing software ImageJ from NIH-USA. In this software, the 

intensity of each band is quantified [98]. The intensities were normalized to the time 0 sample 

and plotted as a function of time.  

 

5.3. Results and discussion 

 

5.3.1. Determination of KM and kcat 

 

The activities of free and adsorbed α-CT were successfully measured at different 

substrate concentrations. In figure 47, the enzymatic activity shows a substrate concentration 

dependence from 0 to 1500 µM. It indicates that the enzyme is not completely saturated by 

Ala-Ala-Phe-7-AMC below 1500 µM.   
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Figure 47. Enzymatic activity of α-CT measured with different Ala-Ala-Phe-7-AMC concentrations. The 

analyzed data is indicated by the grey rectangle. The absorbance increase is substrate concentration dependent, 

which indicates that free α-CT was not completely saturated below 1500 µM at 20 oC, during 100 s. The reaction 

mixture contained 0.05 mg mL-1 of enzyme, the substrate concentration varied from 5 to 1500 µM. The dead 

time is 15 s. The error bars cover the scattering of two independent measurements. 

 

On the other hand, adsorbed α-CT (Figure 48) increased its activity up to 500 µM of 

substrate. At higher concentrations, the enzymatic rates did not show significant 

enhancement. It is important to notice that any concentration above 1500 µM was excluded 

due to the lack of solubility of the substrate Ala-Ala-Phe-7-AMC in water.  
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Figure 48. Enzymatic activity of α-CT adsorbed on Ludox AM® measured with different Ala-Ala-Phe-7-

AMC concentrations. The analyzed data is indicated by the grey rectangle. The absorbance increase is 

dependent on the substrate concentration, which indicates that adsorbed α-CT is not completely saturated below 

1500 µM at 20 oC, during 100 s. The reaction mixture contained 0.015 mg mL-1 of enzyme, the substrate 

concentration varied from 5 to 1500 µM. The dead time is 15 s. The error bars cover the scattering of two 

independent measurements. 
 

The data points highlighted in gray, at figures 47 and 48, were used to calculate the 

enzyme kinetic rates. Through a non-linear fit, using the Michaelis-Menten equation [100], 

KM and kcat could be determined. In figure 49, the Michaelis-Menten plots of free and 

adsorbed α-CT related to the substrate Ala-Ala-Phe-7-AMC are shown. The plots clearly 

show that the adsorbed enzyme has a higher velocity. According to the fit parameters, 

adsorbed α-CT has a KM equal to 704 ± 46 µM, and the free α-CT has a KM of 779 ± 140 µM. 

However, kcat, was significantly increased due to adsorption. kcat of adsorbed α-CT is 5,27 ± 

0,24 s-1, in contrast to kcat of free α-CT, which is 0,75 ± 0,10 s-1. If the enzyme efficiency 

(kcat/KM) is calculated [100], then it is possible to say that the adsorbed state is approximately 

8 times more efficient than the free enzyme. It has been shown in literature that the efficiency 
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of enzymes can be increased after interacting with surfaces. Trypsin encapsulated in 

liposomes had greater activity than in solution, and it was 2 orders of magnitude higher [101]. 

Similar results for trypsin were found using fluorescence microscopy [102]. Horseradish 

peroxidase activity was found to have hundred-fold higher activity when encapsulated in 

polymersomes [103]. Also, α-CT trapped inside vesicles has a catalytic turnover 14 times 

higher than in solution [100]. Our findings are in good agreement with these reports in 

literature. The increase of activity of adsorbed α-CT has nothing to do with major structural 

changes. The adsorption of α-CT on Ludox AM nanoparticles does not affect its secondary 

and tertiary structures [91]. Therefore, the more pronounced activity in the adsorbed state 

could only be related to a small conformation arrangement during the adsorption process, and 

this new conformational state could achieve higher enzymatic rates.  

 

 
Figure 49. Michaelis-Menten plot of α-CT free and adsorbed on Ludox AM® for Ala-Ala-Phe-7-AMC. 

The calculated parameters for free α-CT are KM = 779 ± 140 µM and kcat = 0,75 ± 0,10 s-1. The parameters for 

adsorbed α-CT are KM = 704 ± 46 µM and kcat = 5,27 ± 0,24 s-1.  The error bars cover the scattering of two 

independent measurements. In the case of α-CT on Ludox AM data at [S] > 500 µM do not follow Michaelis-

Menten kinetics, probably due to light scattering at aggregated particles.  
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5.3.2. High-pressure stopped-flow experiments 

 

The activity of α-CT was successfully measured in the HP-SF system when free in 

solution and adsorbed on silica nanoparticles with two different substrate concentrations of 

500 µM and 1500 µM. 

 

 
Figure 50. High pressure stopped-flow kinetics of α-CT free and adsorbed on Ludox AM® with 500 µM of 

Ala-Ala-Phe-7-AMC (selected data). The analyzed data is indicated by the grey rectangle.  
 

As can be seen in figures 50 and 51, at 500 µM and 1500 µM substrate concentrations, 

the total activity at 1 bar of α-CT in solution was linear during the first 100 s of reaction. On 

the other hand, adsorbed α-CT shows a very fast signal increase during the first 30 seconds, 

reaching the detection limit after 50 seconds. This suggests that there is a strong reaction 

acceleration due to adsorption at 1 bar, in agreement with the results found with the UV-VIS 

measurements described in the section above (Figures 47-48). When pressure increases, both 

free and adsorbed α-CT respond positively, increasing their enzymatic rates. This is in 

agreement with previous pressure studies on this enzyme [40,91]. The effect of pressure on 



Chapter	5:	Advantages	of	adsorbing	a-CT	on	silica	nanoparticles		
______________________________________________________________________________________________________	
	

	 94	

adsorbed α-CT seems to be more prominent in the first 500 bar range, and less effective after 

1000 bar. This result is in good agreement with the results found by Schuabb & Czeslik in 

2014, using the same system. On the other hand, free α-CT was sensitive to pressures up to 

2000 bar. 

 

 
Figure 51. High pressure stopped-flow kinetics of α-CT free and adsorbed on Ludox AM® with 1500 µM 

of Ala-Ala-Phe-7-AMC (selected data). The analyzed data is indicated by the gray rectangle. 

 

As compared to 500 µM of substrate (Figure 50), at 1500 µM of substrate (Figure 51), 

the free and adsorbed α-CT enzymatic rates are similar to each other.  As shown in the figure 

49, at 1500 µM, both adsorbed and free α-CT are almost saturated by substrate. However, 

they have different pressure responses. The adsorption is the major factor in the difference 

between these two catalytic states of α-CT. 
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5.3.3. Activation volumes 

 

Since the kinetics of free and adsorbed α-CT are sensitive to pressure, the activation 

volumes of these reactions were calculated.  

Free α-CT, with 500 µM of substrate, shows a two-step pressure activation. Activity 

increases with pressure up to 2000 bar, and there is no leveling off, as shown in figure 52. 

 

 
Figure 52. Pressure dependence of free α-CT enzymatic activity with 500 µM of Ala-Ala-Phe-7-AMC. The 

error bars cover the scattering of three independent measurements. 

 

 In contrast, the adsorbed α-CT displays a more significant pressure effects below 1000 

bar and very little response after this pressure point (Figure 53). These two results are in very 

good accordance with Schuabb & Czeslik (2014), when the same profile was observed for 

free and adsorbed α-CT, using fluorescence spectroscopy. The activation volume of each case 

was calculated. With 500 µM, 𝛥𝑉# for free α-CT is about -6 mL mol-1 up to 500 bar, and from 

500-2000 bar, 𝛥𝑉# is -2.4 ± 0.1 mL mol-1. 

 



Chapter	5:	Advantages	of	adsorbing	a-CT	on	silica	nanoparticles		
______________________________________________________________________________________________________	
	

	 96	

 
Figure 53. Pressure dependence of α-CT enzymatic activity when adsorbed on Ludox AM® with 500 µM 

of Ala-Ala-Phe-7-AMC. The error bars cover the scattering of three independent measurements. 

 

Adsorbed α-CT has a 𝛥𝑉# about -8 ± 1 mL mol-1 up to 1000 bar, and from 1000-2000 bar 

𝛥𝑉# is 0.3 ± 0.6 mL mol-1. This result is in agreement with data published in 2014 by Schuabb 

& Czeslik. The profiles are similar, showing in solution a progressive increase of activity as 

pressure increases (negative activation volume) and, with the adsorbed enzyme, an increase 

from 1 to 1000 bar (negative activation volume) and a reduced pressure activation from 1000 

to 2000 bar (more positive activation volume). The most significant difference between the 

current results and those published in 2014 are the 𝛥𝑉# values. The data published in 2014 

showed larger activation volumes, around -60 mL mol-1 for free α-CT. In figure 52, an 

activation volume of -6 mL mol-1 for free α-CT is found. One possible reason for this 

deviation could be that, different protease substrates were used. In the study of by Schuabb 

and Czeslik (2014) a peptide from the EnzChek protease kit, whose sequence and structure 

are protected and not available, was used. The substrate used here was the Ala-Ala-Phe-7-

AMC. The structural difference between these two substrates might be responsible for the 

difference in the activation volume values. At small [S], the activation volume is the 
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difference between E+S and ES*. The volume of the substrate and how it interacts with the 

enzyme can also contribute to this difference in volume. The simple fact that one substrate 

could attract one more water molecule than the other substrate into the active site, could cause 

a distortion of 18 ml mol-1 [40]. On the other hand, in the HP-SF system both molecules are 

pre-pressurized before being mixed. This can also be responsible for lower volumes of the 

reactants, since some void volumes might have been filled before the reaction. Furthermore, 

in the literature, small values of the activation volume of α-CT were also found using UV 

absorbance spectroscopy and the HP-SF technique [104]. This also reinforces the idea that a 

pre-pressurization of the reactants could in fact play a role in reducing activation volume 

values. In contrast, in the study published in 2014, the molecules were mixed at 1 bar, left to 

react for a small period of time, and were then pressurized. Another possible reason for the 

different 𝛥𝑉# values could be a difference between the methods. Any comparison between the 

results from a relative scale method, such as fluorescence, with a quantitative method as the 

UV absorbance, can lead to some deviations. Furthermore, the HP fluorescence data are 

corrected for the pressure dependence of the quantum yield, which might be a source of error.  
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Figure 54. Pressure dependence of the enzymatic activity of free α-CT with 1500 µM of Ala-Ala-Phe-7-

AMC. The error bars cover the scattering of three independent measurements. 

 

When the substrate concentration is increased up to 1500 µM, 𝛥𝑉# for free α-CT is -3.7 ± 

0.2 mL mol-1 from 1-2000 bar. 𝛥𝑉# for adsorbed α-CT is -14 ± 1.0 mL mol-1 from 1-1000 bar, 

and 𝛥𝑉# from 1000-2000 bar is -2.5 ± 1.0 mL mol-1 (Figure 54 and 55). 
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Figure 55. Pressure dependence of the enzymatic activity of α-CT when adsorbed on Ludox AM® with 

1500 µM of Ala-Ala-Phe-7-AMC. The error bars cover the scattering of three independent measurements. 

 

The activation volume plot of adsorbed α-CT with 1500 µM of substrate is very similar to 

the plot with 500 µM of substrate. But different 𝛥𝑉# values are encountered. The higher 

substrate concentration almost doubles the negative activation volume value for the adsorbed 

α-CT, going from -8 ml mol-1 with 500 µM to -14 mL mol-1 with 1500 µM up to 1000 bar. On 

the other hand, from 1000 to 2000 bar similar activation volumes for both substrate 

concentrations were found, as seen in figure 56.   

Activation volumes for free and adsorbed α-CT are in the same order as found with 500 

µM of substrate. Alternatively, with 1500 µM of substrate, free α-CT is lacking the strong 

pressure activation in the lower pressure range. Only in this case, we can surely say that the 

enzyme is saturated by the substrate and the activation volume refers to the step ES-complex 

à ES* transition state. 

Apparently, in all other cases, higher pressures lead to smaller (less negative) activation 

volumes. This finding suggests that the E+S mixture or the ES-complex is more compressible 

than the ES* transition state. α-CT has the so-called ping-pong type of kinetic mechanism. 
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This mechanism requires a new substrate to bind to the enzyme, and this promotes the release 

of the second product [105]. This step could be faster with higher substrate concentrations, 

and adsorbed enzymes could have a better interaction with the substrate.  At this point, there 

is no molecular explanation for these findings, and more specific methods would be necessary 

to help understanding these events. 

Figure 56. Activation volumes of α-CT free and adsorbed on Ludox AM® with 500 and 1500 µM of Ala-

Ala-Phe-7-AMC (not to scale). 
 

5.3.4. Reversibility 

 

Additional information can be easily extracted from HP-SF experiments, such as the 

reversibility of the pressure response.  In figure 57, free and adsorbed α-CT shows the same 

enzymatic rate at 1 bar before and after 2000 bar pressurization. The slopes of each activity 

are overlaid before and after pressure treatment, proving that there is no irreversible pressure 

induced effect on free neither on adsorbed α-CT. This is desirable, when an enzymatic system 

is projected to run several reaction cycles under pressure. 
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Figure 57. Reversibility test of α-CT free and adsorbed on Ludox AM® before and after pressurization up 

to 2000 bar (selected data). 

 

5.3.5. Autolysis 

 

The autolysis activity of free and adsorbed α-CT was successfully measured using the 

SDS-PAGE method. As seen in figure 58, after 24 hours, almost 80% of adsorbed enzyme is 

still in the uncleaved state, whereas around 20% of free α-CT. In the literature, this is also 

reported for trypsin adsorbed on mesoporous silica, when after 20 days the immobilized 
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trypsin shows 70% of initial state in contrast to the dissolved trypsin that shows only 45% 

[97]. These findings strongly suggest the idea that immobilization of α-CT, as well as other 

proteases, could be a tool in order to protect proteases against autolysis, and this could create 

conditions for recycling these enzymes.  

 

 

 
Figure 58. Autolysis test of α-CT free and adsorbed on Ludox AM®. Top: the 25 kDa band of free and 

adsorbed α-CT as a function of time (selected data). Bottom: the intensity of the 25 kDa band as a function of 

time. The error bars cover the scattering of two independent measurements. 
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5.4. Conclusions 

 

 The enzyme activity of free and adsorbed α-CT was successfully measured with Ala-

Ala-Phe-7-AMC as the substrate using UV-VIS spectroscopy and the HP-SF technique.  

Through UV-VIS spectroscopy, KM and kcat of both free and adsorbed α-CT were determined. 

Free α-CT has a KM of approximately 780 µM, whereas adsorbed α-CT has a KM of 

approximately 705 µM. The kinetic rate constant kcat for free α-CT is 0.75 s-1 and for adsorbed 

α-CT 5.27 s-1.  

Activation volumes of free and adsorbed α-CT were determined for the first time using the 

HP-SF technique in UV-VIS mode. Two substrate concentrations were tested giving an 

insight of substrate concentration dependence of the activation volume. 𝛥𝑉# of free α-CT with 

500 µM of substrate is -6 mL mol-1 from 1 to 500 bar and from 500 to 2000 bar 𝛥𝑉# is -2.4 

mL mol-1. 𝛥𝑉# of adsorbed α-CT with 500 µM of substrate is -8 mL mol-1 from 1 to 1000 bar 

and from 1000-2000 bar ΔV# is 0.3 ± 0.6 mL mol-1. Increasing the substrate concentration up 

to 1500 µM, ΔV# for free α-CT is -3,7 mL mol-1 from 1-2000 bar. ΔV# for adsorbed α-CT is -

14 mL mol-1 from 1 to 1000 bar and from 1000 to 2000 bar it is -2,5 mL mol-1 (Figures 54 and 

55). 

It is important to highlight that the increase of the substrate concentration from 500 to 

1500 µM almost doubled the negative activation volume of adsorbed α-CT, from 1 to 1000 

bar. The pressure acceleration is reversible in the free and adsorbed state, as the enzyme had 

the same activity before and after 2000 bar treatment.  

The autolysis of free and adsorbed α-CT was also monitored, and the results clearly show 

that the adsorption of α-CT strongly protects the enzyme, keeping higher amount of native 

conformation for longer periods.  

Overall, these results explored some advantages of adsorbing enzymes on nanoparticles. 

The adsorption of α-CT promotes higher kinetic rates, reversible activation by pressure due to 

negative activation volumes, and drastic reduction of the autolysis of α-CT.
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 An enzyme is a special type of protein with a catalytic property. This specialty has been 

improved in order to catalyze biochemical reactions, usually under mild conditions, such as 

neutral pH-values, ambient pressure and ambient temperatures. Usually they are very specific 

for a particular reaction pathway enabling yields with high enantiomeric excess [1]. 

Therefore, enzymes are very attractive for use in biotechnological, pharmaceutical, and 

biomedical processes. The greatest disadvantage of using enzymes, compared to chemical 

catalysts, is their relatively low stability and their relatively high cost. There are many 

examples of expensive enzymes that are worth being recovered from the reaction media to be 

reused in many cycles. Using filtration or centrifugation, enzymes are easily removed from a 

reaction mixture, when the enzymes are immobilized on carrier particles large enough to be 

retained or sedimented [2-3].  

 Making contact with an aqueous-solid interface represents a major perturbation of the 

environment of a given protein, because this surface can replace water molecules at the 

protein surface, especially when it is a hydrophobic surface. In addition, an aqueous-solid 

interface may provide a different pH-value, when dissociating chemical groups are present, 

and a different ionic strength, when it is carrying charged groups. Thus, any adsorption of 

proteins and immobilization of enzymes at aqueous-solid interfaces may lead to some changes 

in the conformation of the protein [6-8]. The interactions with a surface can also slow down 

the dynamics of a protein, and the overall enzymatic activity at interfaces may be decreased 

by an unfavorable orientation of the enzyme molecules too, when the active site is blocked 

either by the material surface or by neighboring enzyme molecules [9]. 

 As detailed in this work, the application of pressure is a new complementary, synergistic 

or even compensating tool to increase the activity of enzymes immobilized at aqueous-solid 

interfaces. Pressure can have two major effects on enzymes, since enzymes are proteins with a 

folded conformation and are reaction catalysts. There is a negative volume-change, ΔV, 

related to the unfolding of proteins, leading to a pressure-induced unfolding. On the other 

hand, the catalytic properties of enzymes have been shown to sensitively depend on pressure, 

below the pressure of unfolding. There are several examples, where pressure accelerates or 

decelerates enzymatic reactions [19,20]. Under pressure, low volume states are preferred over 

higher volume. A transition state is favored under pressure, when it has a smaller volume than 

the reactants. This is expressed as negative activation volume, ΔV#. Pressure experiments on 

the enzymatic activity of the strawberry peroxidase have shown that there is an increased rate 

of oxidation after pressure treatment at 4000 bar for five minutes [22]. In a similar way, 

pressurization caused an impressive activation of carrot peroxidase after a one-minute 



Chapter	6:	Global	summary	
______________________________________________________________________________________________________	
	

	 108	

treatment at 4000-5000 bar [23]. The enzymatic activity of α-chymotrypsin at high pressures 

has also been studied. In the temperature range of 10-65 °C, a maximum rate constant of 

hydrolysis by α-chymotrypsin has been found at 45 °C and 2000 bar [24]. Moreover, an 

increase in pressure at 20 °C results in an acceleration of the hydrolysis catalyzed by 

α-chymotrypsin, reaching a 6.5-fold increase in activity at 4700 bar. At 50 °C and a pressure 

of 3600 bar, the activity is higher more than 30 times [25].  

 In the present work, we explored the effects of pressure on enzymes immobilized at 

aqueous-solid interfaces such as silica nanoparticles and planar surfaces with different 

chemical modifications. Using well-chosen models, horseradish peroxidase and alpha-

chymotrypsin, we show the way pressure influences enzymatic reactions at interfaces and 

explore the question how pressure can be used to compensate limitations in enzyme activity at 

interfaces by favoring low-volume transition states and reaction pathways. Another target of 

this study is the role of surface chemistry in the activation of a given reaction.  

 

Activation volumes of enzymes adsorbed on silica particles  

 

In the first part of the thesis, enzymes were immobilized on silica nanoparticles. The 

activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase 

(HRP), when they are adsorbed on silica particles and free in solution, have been determined. 

The secondary structures of these enzymes were monitored by FTIR spectroscopy. 

The results show no major change due to adsorption up to 2000 bar. The tertiary structure of 

α-CT was measured by tryptophan fluorescence spectroscopy, and it was revealed that it 

remains the same from 1 up to 2000 bar. So, the adsorption on silica nanoparticles did not 

create any change in the structure of α-CT and HRP, and therefore, any pressure effect will be 

related to the enzyme kinetics.  

 The kinetic experiments have been carried out using fluorescence assays under 

pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied 

pressure, suggesting different compressibilities of the enzyme-substrate mixture and the 

transition state.  

The volume profiles of free and adsorbed HRP are similar. Free HRP has an activation 

volume of +16 mL mol-1 from 1 to 500 bar and +2 mL mol-1 from 500 to 2000 bar. Adsorbed 

HRP has +27 mL mol-1 from 1-250 bar and +2 mL mol-1 from 250 to 2000 bar. Presumably, 

the mechanism of the enzymatic reaction does not change upon adsorption, and no large 

distortion occurs, when HRP interacts with the silica nanoparticles. Above 500 bar, an 
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activation volume of +2 mL mol-1 indicates that the volumes of ES* and E+S are very similar, 

and pressure has little effect on the enzymatic rate.  

For α-CT, larger activation volumes (more positive values) are found in the adsorbed 

state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on 

silica particles, is characterized by a negative activation volume. Free α-CT has an activation 

volume of -67 mL mol-1 from 1 to 500 bar and -15 mL mol-1 from 500 to 2000 bar. Adsorbed 

α-CT has an activation volume of -4 mL mol-1 from 1 to 500 bar and +5 mL mol-1 from 500 to 

2000 bar. This is the first report in the literature that shows an activation of an adsorbed 

enzyme by pressure. This finding demonstrates that pressure is new strategy to optimize 

enzymatic reactions on carrier particles. 

  

Effects of interfacial properties on the activation volume of adsorbed enzymes  

 

We saw previously that pressure can have a positive influence on adsorbed enzymes 

kinetics. In this second part, the enzymatic activities of α-CT and HRP that are adsorbed on 

various chemically modified planar surfaces have been studied, and the combined effects of 

surface chemistry and pressure on the kinetics of adsorbed enzymes have been evaluated. The 

enzymes were adsorbed on bare quartz, hydrophobic poly(styrene) (PS), positively charged 

poly(allylamine hydrochloride) (PAH), and negatively charged poly(styrene sulfonate) (PSS).  

The secondary structures of these enzymes were monitored by Fourier transform 

infrared (FTIR) spectra collected in attenuated total reflection (ATR) mode. The results do not 

indicate major adsorption induced conformational changes of the enzymes at any interface 

studied. 

The activity measurements of the enzymes at the aqueous-solid interfaces were 

determined by using high-pressure total internal reflection fluorescence (TIRF) spectroscopy.  

Apparently, the pressure response of the adsorbed enzymes strongly depends on the 

interfacial chemistry. α-CT can be activated by pressure on negatively charged surfaces like 

quartz and PSS. The activation volume of α-CT found on quartz is -29 mL mol-1 from 1 to 

1000 bar and -1 mL mol-1 from 1000 to 2000bar, on a PS film +9 mL mol-1, on a PSS-ending 

multilayer -23 mL mol-1 and on a PAH-ending multilayer +3 mL mol-1. 

On the other hand, HRP is activated by pressure on the hydrophobic PS film. The 

activation volume of HRP found on quartz is -6 mL mol-1 from 1 to 2000 bar, on a PS film     

-35 mL mol-1, on a PSS-ending multilayer +19 mL mol-1 and on a PAH-ending multilayer +16 

mL mol-1. 
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In addition, the absolute activities of α-CT and HRP on quartz, PS, PAH and PSS were 

determined by UV absorption at ambient pressure. Remarkably, large activities are found on 

those surfaces that are associated with negative activation volumes.  

Overall, the results of this study show that pressure is again a useful tool to enhance 

enzymatic activity especially in combination with the right adsorbent material. 

 

Advantages of adsorbing α-CT on silica nanoparticles – A high-pressure stopped-flow study  

 

 In this last chapter, a different approach to track the activity of adsorbed enzymes on 

surfaces was used. The stopped-flow technique was used to monitor the activity of α-CT free 

and adsorbed on Ludox-AM. By monitoring the UV-VIS absorbance of the reaction product 

as a function of time. Furthermore, another important aspect of using adsorbed enzymes, 

especially in the case of proteases, was tested as a function of time, the autolysis activity. 

First KM and kcat were determined with UV-VIS spectroscopy. The activity of α-CT is 

strongly accelerated due to adsorption. The adsorption seems to induce a higher affinity for 

the substrate, as KM for adsorbed state was 704 µM, whereas for the free enzyme it was 779 

µM. The kinetic rate constant kcat, was 5.27 s-1 and 0.75 s-1, in the adsorbed and free state, 

respectively. 

By increasing the substrate concentration, from 500 to 1500 µM, the negative activation 

volume of the adsorbed α-CT almost doubled, from -8 to -14 mL mol-1 from 1 to 1000 bar, 

followed by a pressure insensitive range from 1000-2000 bar. In the case of free α-CT, the 

increase of the substrate concentration did not change the ΔV# values in a major way. This 

pressure acceleration is reversible in both cases, having the same enzymatic activity before 

and after 2000 bar treatment.  

The autolysis of the enzyme was also followed, in the adsorbed and free states. The 

adsorption of α-CT strongly protects the enzyme, increasing the amount of uncleaved enzyme 

for longer periods. 

All these results together brought to light some of the advantages of adsorbing an enzyme, 

especially, if the intention is to recycle this system for several times. This work has shown 

that, in the case of α-CT, the adsorption brought higher kinetic rates. Adsorbed α-CT is also 

activated by pressure, and this pressure activation appears to be reversible. Also due to 

adsorption, the rate of autolysis was drastically reduced. In fact, this work has proven that the 

adsorption of a protein, especially in the case of proteases, could be interesting for a more 

efficient and reusable system. 
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Enzyme sind Proteine mit katalytischer Eigenschaft. Sie können biochemische 

Reaktionen bei Umgebungsbedingungen beschleunigen, die in der Regel neutrale pH-Werte, 

Umgebungsdruck und –Temperatur sind. Dabei sind Enzyme gewöhnlich hoch wirkungs- 

sowie substratspezifisch und können somit Ausbeuten mit hohem Enantiomerenüberschuss 

erzielen [1]. Deshalb sind sie sehr attraktiv und nützlich für vielerlei biotechnologische 

Anwendungen sowie in pharmazeutischen und biomedizinischen Prozessen. Ein großer 

Nachteil der Verwendung von Enzymen im Vergleich zu chemischen Katalysatoren stellt ihre 

relativ geringe Stabilität und ihre relativ hohen Herstellungskosten dar. Es gibt viele Beispiele 

von teuren Enzymen, die aus den Reaktionsmedien aufwendig zurückgewonnen werden, um 

sie in weiteren Zyklen wiederzuverwenden. Sie können z.B. unter Verwendung von Filtration 

oder Zentrifugation problemlos aus einer Reaktionsmischung isoliert werden, wenn sie auf 

Trägerpartikeln immobilisiert sind und das Trägermaterial groß genug für die 

Separationsmethode ist [2-3]. 

Der Kontakt eines Proteins in wässriger Lösung mit einer Feststoffoberfläche stellt 

eine große Störung der Proteinumgebung dar. Adsorptive Wechselwirkungen des Proteins mit 

einer wässrig-festen Grenzfläche können zu einer Verdrängung von Oberflächenwasser 

führen; dies gilt insbesondere, wenn die Feststoffoberfläche hydrophob ist. Zusätzlich kann 

eine wässrig-feste Grenzfläche abweichende pH-Werte besitzen, wenn dissoziierte chemische 

Gruppen vorhanden sind, sowie eine unterschiedliche Ionenstärke, wenn sie geladene 

Gruppen aufweist. Auf diese Weise können Adsorption von Proteinen und Immobilisierung 

von Enzymen an wässrig-festen Grenzflächen Konformationsänderungen im Biomolekül 

verursachen und die Proteindynamik verlangsamen [6-8]. Ferner kann die Wechselwirkung 

mit einer festen Oberfläche die gesamte enzymatische Aktivität durch eine ungünstige 

Orientierung der Enzymmoleküle verringern; denn die aktive Stelle kann entweder von der 

Materialoberfläche oder durch benachbarte Enzymmoleküle blockiert sein [9]. 

Die Anwendung hydrostatischen Drucks, wie in der vorliegenden Arbeit gezeigt, ist 

ein neues, komplementäres, synergistisches oder gar kompensierendes Werkzeug, um die 

Aktivität von Enzymen, die an wässrig-festen Grenzflächen immobilisiert sind, zu erhöhen. 

Enzyme sind Proteine mit einer gefalteten nativen Konformation und stellen 

Reaktionskatalysatoren dar. Die Anwendung hydrostatischen Drucks kann im Wesentlichen 

auf zwei verschiedene Art und Weisen die Enzymaktivität modulieren. Die Proteinentfaltung 

geht zumeist mit einer negativen Volumenänderung, ΔV, einher, die bei Druckerhöhung 

begünstigt wird, was zur druckinduzierten Entfaltung führt. Auf der anderen Seite wurde 

gezeigt, dass die katalytischen Eigenschaften von Enzymen druckempfindlich sind: Unterhalb 
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des Entfaltungsdruckes können enzymatische Reaktionen sowohl beschleunigt als auch 

verlangsamt werden [19,20]. Beim erhöhten Druck werden Zustände mit geringen Volumen 

gegenüber Zuständen, die größere Volumina aufweisen, bevorzugt. Übergangszustände, die 

ein kompakteres Volumen als ihre Reaktanten besitzen, werden unter Druck begünstigt, so 

dass enzymatische Reaktionen mit negativen Aktivierungsvolumina ΔV# beschleunigt werden. 

Für die enzymatische Aktivität der Peroxidase aus der Erdbeere wurde gezeigt, dass ihre 

Oxidationsgeschwindigkeit nach einer Druckbehandlung bei 4000 bar für 5 min erhöht wurde 

[22]. In ähnlicher Weise wurde eine signifikante Aktivierung der Peroxidase aus Karotten 

durch eine einminütige Druckbehandlung bei 4000-5000 bar beobachtet [23]. Die 

Druckuntersuchung an α-Chymotrypsin im Temperaturbereich von 10-65 ° C zeigte ebenfalls, 

dass ihre enzymatische Aktivität für die Hydrolysereaktion eine maximale 

Geschwindigkeitskonstante bei 45 °C und 2000 bar aufwies [24]. Weiterhin konnte gezeigt 

werden, dass eine Druckerhöhung bis zu 4700 bar bei 20 °C zu einer 6,5-fachen 

Beschleunigung der Hydrolyse-Aktivität von α-Chymotrypsin führte, und die Aktivität wurde 

bei 50 °C und 3600 bar um das 30-fache gesteigert [25]. 

In der vorliegenden Arbeit wurde die Auswirkung von hohen hydrostatischen Drücken 

auf adsorbierte Enzyme an wässrig-festen Grenzflächen wie Silica-Nanopartikeln und 

chemisch modifizierten planaren Oberflächen untersucht.  An den Modellenzymen 

Meerrettich-Peroxidase und α-Chymotrypsin wurden die Druckeinflüsse auf enzymatische 

Reaktionen an Grenzflächen studiert. Bei Enzymreaktionen mit low volume-

Übergangszuständen kann die Anwendung von hohen hydrostatischen Drücken die durch 

Enzymadsorption verursachte Aktivitätshemmung kompensiert werden. Ferner zeigt diese 

Arbeit den Einfluss der Oberflächenchemie auf das Aktivierungsvolumen einer gegebenen 

Reaktion auf.  

 

“Activation volumes of enzymes adsorbed on silica particles” 

 

Im ersten Teil dieser Arbeit wurden die ausgewählten Enzyme auf Silica-Nanopartikel 

immobilisiert. Die Aktivierungsvolumina der beiden Enzyme α-Chymotrypsin (α-CT) und 

Meerrettich-Peroxidase (HRP), adsorbiert an Silica-Nanopartikeln und frei in Lösung, wurden 

bestimmt. Die Sekundärstrukturen dieser Enzyme wurden durch Fourier-Transformations-

Infrarot-Spektroskopie (FTIR) überwacht, und die Ergebnisse zeigten, dass die adsorbierten 

Proteine keine wesentliche Änderung in ihren Sekundärstrukturen bis zu 2000 bar aufwiesen. 

Komplementär wurde die Stabilität der Tertiärstruktur von α-CT mithilfe der Tryptophan-
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Fluoreszenz-Spektroskopie bestimmt, und es ergab, dass diese bis 2000 bar stabil blieb. Auf 

diese Weise wurde zunächst sichergestellt, dass eine Adsorption an Silica-Nanopartikel keine 

Strukturveränderung dieser Proteine induzierte, und dass der Druckeinfluss sich 

ausschließlich auf die Enzymkinetik auswirken sollte. Die Reaktionskinetik wurde mithilfe 

der Fluoreszenzspektroskopie verfolgt und bis zu einem Druck von 2000 bar gemessen. Unter 

allen Bedingungen wurde eine Abhängigkeit der Aktivierungsvolumina von dem 

angewandten Druck gefunden, was auf verschiedene Kompressibilitäten der Enzym-Substrat-

Mischung und des Übergangszustandes hindeutet.  

Für das Enzym HRP waren die Profile der Aktivierungsvolumina für die freie und 

adsorbierte Form ähnlich. Freie HRP besaß ein Aktivierungsvolumen von +16 mL mol-1 von 

1 bis 500 bar und +2 mL mol-1 von 500 bis 2000 bar. Das Aktivierungsvolumen der 

adsorbierten HRP wurde auf +27 mL mol-1 für 1-250 bar und auf +2 mL mol-1 für 250-2000 

bar bestimmt. Dieser Vergleich zeigt, dass der Mechanismus der enzymatischen Reaktion 

vermutlich durch die adsorptive Wechselwirkung mit den Silica-Nanopartikeln nicht 

verändert wird. Bei Drücken oberhalb von 500 bar deutet das geringe Aktivierungsvolumen 

von +2 mL mol-1 daraufhin, dass die Volumina von ES* und E+S sehr ähnlich sind, so dass 

sich die Druckanwendung nur geringfügig auf die Enzymaktivität auswirkt.   

Für das Enzym α-CT wurden größere Aktivierungsvolumina (mehr positive Werte) im 

adsorbierten Zustand gefunden. Freies α-CT wies ein Aktivierungsvolumen von -67 mL mol-1 

im Druckbereich von 1 bis 500 bar und eins von -15 mL mol-1 von 500 bis 2000 bar auf. 

Adsorbiert an Silica-Nanopartikeln ging die enzymatische Umsetzung bis zu etwa 500 bar mit 

einem negativen Aktivierungsvolumen einher, während bei weiterer Druckerhöhung ein 

positives Aktivierungsvolumen beobachtet wurde. Adsorbiertes α-CT hatte ein 

Aktivierungsvolumen von -4 mL mol-1 von 1 bis 500 bar und +5 mL mol-1 von 500 bis 2000 

bar. Mit diesen Ergebnissen wurde zum ersten Mal in der Literatur gezeigt, dass 

Enzymreaktionen an wässrig-festen Grenzflächen durch Druckanwendung aktiviert werden 

können. Somit könnte Druckanwendung eine neue Strategie darstellen, um enzymatische 

Reaktionen auf Trägerpartikeln zu optimieren.   

 

“Effects of interfacial properties on the activation volume of adsorbed enzymes”  

 

In der ersten Studie konnte gezeigt werden, dass sich der Druckeffekt positiv auf die 

Aktivität von adsorbierten Enzymen auswirken kann. Im zweiten Teil dieser Arbeit wurde der 

kombinierte Effekt von Druck und verschiedenen chemisch modifizierten planaren 
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Oberflächen auf die enzymatische Aktivität von α-CT und HRP untersucht. Die Enzyme 

wurden an eine blanke Quarzoberfläche, eine hydrophobe Polystyrol- (PS), eine positiv 

geladene Polyallylamin-Hydrochlorid (PAH)- und eine negativ geladene Polystyrolsulfonat 

(PSS)-Schicht adsorbiert. 

Die Sekundärstrukturen der adsorbierten Enzyme wurden durch FTIR im 

abgeschwächten Totalreflexion (ATR)-Modus überprüft. Eine Adsorption an die untersuchten 

Grenzflächen verursachte keine signifikanten Konformationsänderungen der Enzyme. Die 

Enzymaktivität an der wässrig-festen Grenzfläche wurde mithilfe der Hochdruck-

Totalreflexionsfluoreszenzspektroskopie (TIRF) charakterisiert. Die Drucksensitivität der 

adsorbierten Enzyme hing stark von den chemischen Eigenschaften der Grenzfläche ab. Auf 

negativ geladenen Oberflächen wie Quarz und PSS konnte z.B. α-CT durch Druckapplikation 

aktiviert werden. Dabei wurden Aktivierungsvolumina von -29 mL mol-1 für 1-1000 bar und -

1 mL mol-1 für 1000-2000 bar für die Quarz-immobilisierte Variante gefunden. Auf PS-Film 

zeigte α-CT ein Aktivierungsvolumen von +9 mL mol-1, auf Multischichten mit einer PSS-

Endung -23 mL mol-1 und mit einer PAH-Endung +3 mL mol-1. Dagegen wurde HRP auf dem 

hydrophoben PS-Film durch Druckapplikation aktiviert. Das Aktivierungsvolumen betrug 

dabei -35 mL mol-1. Für Quarz und Multischichten mit PSS- oder PAH-Endung waren die 

Aktivierungsvolumina -6 mL mol-1, +19 mL mol-1 und +16 mL mol-1 von 1 bis 2000 bar. 

Ferner wurden die absoluten Aktivitäten von α-CT und HRP auf Quarz, PS, PAH und PSS 

durch UV-Absorption bei Umgebungsdruck bestimmt. Dabei wurden große Aktivitäten auf 

den Oberflächen gefunden, die mit negativen Aktivierungsvolumina verbunden sind. 

Insgesamt zeigen die Ergebnisse dieser Studie wieder, dass die Druckapplikation ein 

nützliches Werkzeug darstellt, um enzymatische Aktivität zu erhöhen, vor allem in 

Kombination mit der richtigen Adsorptionsoberfläche. 

 

“Advantages of adsorbing α-CT on silica nanoparticles – A high-pressure stopped-flow 

study “ 

 

In diesem letzten Kapitel wurde die Enzymaktivität von α-CT adsorbiert auf Ludox 

AM mithilfe der Hochdruck-Stopped-Flow Technik charakterisiert. Dabei wurden freies und 

immobilisiertes α-CT im UV-VIS Absorptionsmodus bis 2000 bar vermessen. Ferner wurde 

ebenfalls die Autolyse-Aktivität der adsorbierten Protease, frei in Lösung und immobilisiert 

an Ludox AM, analysiert. Die Ergebnisse zeigten, dass die Enzymaktivität des α-CT durch die 

Adsorption stark beschleunigt wurde. Die KM- und kcat-Werte der beiden Bedingungen 
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wurden unter Verwendung von herkömmlicher UV-VIS-Spektroskopie bestimmt. 

Adsorbiertes α-CT hat einen KM-Wert von 704 µM, während das freie Enzym einen KM-Wert 

von 779 µM aufwies. Weiterhin wurde der kcat-Wert durch die Adsorption um das 8-fache 

erhöht, mit 0.75 s-1 für freies und 5.27 s-1 für adsorbiertes α-CT.  

Weiterhin wurden zwei Substratkonzentration, 500 µM und 1500 µM, verwendet, 

Adsorbiertes α-CT zeigte bei der Substratkonzentration von 500 µM ein 

Aktivierungsvolumen von -8 mL mol-1 für 1-1000 bar, gefolgt von einem 

druckunempfindlichen Bereich von 1000 bis 2000 bar. Die Erhöhung der 

Substratkonzentration auf 1500 µM verursachte eine Verringerung des Aktivierungsvolumens 

auf -14 mL mol-1 für 1-1000 bar und -2.5 mL mol-1 für 1000 bis 2000 bar. Der Druckeffekt 

war in allen Fällen reversibel. Nach einer Dekompression zurück auf Umgebungsdruck zeigte 

das Enzym die gleiche Aktivitätsrate wie vor der Druckkompression.   

Die Rate der Autolyse von freiem und adsorbiertem α-CT wurde mithilfe der SDS-

PAGE quantifiziert. Die Ergebnisse deuteten darauf hin, dass die Adsorption das Enzym stark 

vor der Autolyse schützt, sodass die Menge des ungeschnittenen Proteins für eine längere Zeit 

unverändert blieb. 

Insgesamt zeigt diese Studie, dass im Falle von α-CT, durch die Adsorption eine 

höhere Affinität für das Substrat und höhere kinetische Raten erzielt werden konnten. Ferner 

wurde adsorbiertes α-CT durch Druckanwendung aktiviert. Dieser Effekt war vollständig 

reversibel.  Auch wurde aufgrund der Adsorption die Rate der Autolyse des Enzyms drastisch 

reduziert.  

Zusammenfassend hat diese Arbeit gezeigt, dass Adsorption von Enzymen, 

insbesondere von Proteasen, an wässrig-festen Grenzflächen eine gute Strategie für einen 

effizienten Mehrwegeinsatz darstellt.  
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