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Numerical Techniques for the Simulation of PDEs on Surfaces for Biomathematical
Problems

Abstract. The aim of this thesis is to design new algorithmic tools with which the
biomathematical models on stationary and evolving-in-time surfaces can be studied and
to perform related numerical analysis.

Surface PDEs models can describe several engineering applications, e.g., in fluid mechan-
ics, modeling of membranes and image processing. The equations which describe biolog-
ical phenomena are strongly coupled nonlinear systems of PDEs. The modeling of more
realistic biological applications can generate complex systems of equations defined on sur-
faces. The domain in which the PDEs are defined can often be a challenging morphology
and analytical solution for such complicated dynamical systems are not available. Nev-
ertheless numerical solutions for such biomathemtical problems are possible and require
fast, highly accurate and efficient solvers.

The present work analyzes the numerical treatment of PDEs on surfaces and provides a
flexible numerical framework to solve PDEs on a stationary quadrilateral mesh.

The developed numerical approach combines the level set methodology for the implicit de-
scription of stationary and evolving surfaces with the Eulerian finite element formulation.
The theory of level set methods utilizes the Eulerian formulation for partial differential
equations, instead of looking at boundary motion from a natural geometric Lagrangian
perspective. In order to formulate the mathematical equations, we present the necessary
foundation in the context of evolving surfaces. The most significant advantages of the
proposed scheme are the curvature-free calculation, i.e., the mean curvature is no more
explicitly calculated. Moreover, it allows the coupling of PDEs defined on surfaces with
those defined in a bulk region.

An adequate numerical scheme has to be free of numerical instabilities. The problem in
hand is convection dominated which occurs due to the chemotaxis model, the transport
of the cell density and surface evolution. The solution can produce non-physical spurious
oscillations and can diverge from the realistic solution profiles. It is known that the pure
Galerkin formulation is not sufficient to solve PDEs on surfaces with biomathematical ap-
plications. The positivity preserving scheme is obtained by using flux-corrected transport
schemes of TVD and FCT-types, so that the constructed scheme is stable and positivity
preserving.

The developed numerical scheme is validated by solving several problems of biomathe-
matical models on surfaces. The discussed test cases are taken from mathematical biology
of pattern formation, e.g., the numerical solution of the Schnakenberg model on a non-
trivial stationary surface in three dimensional Euclidean space and the transport of cell
density on a sphere. Furthermore, we demonstrated the coupling of the Koch-Meinhardt
reaction-diffusion model of the Turing-type with the evolution of level sets, where the nor-
mal velocity of a surface resp., level set is proportional to the numerical solution of the



model.

The numerical results support the reliability of the proposed computational framework in
terms of numerical convergence and capturing of expected solution profiles. The compu-
tational and analytical complexity significantly increase for realistic applications. Thus,
the developed approach can readily be employed for biological applications that involve
PDEs on evolving surfaces. This numerical scheme is also applicable to three dimensional
models which is mandatory when considering real-life applications.

Keywords: Evolving Surfaces; Level Set; Finite Element Method; FCT/TVD; Chemo-
taxis; Patterns Formation.

Dortmund, March 10, 2016
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Introduction

This chapter provides a brief account on the motivation of the research work in-
troducing few generalizations about the partial differential equations on surfaces.
In addition, their applications in biological science including pros and cons of dif-
ferent techniques to solve partial differential equations on evolving surfaces. A
brief summary of the mathematical development of chemotaxis and pattern form-
ing models is presented. The subsequent section is followed by a concise note on
notations used as well as an outline of the research dissertation.

1.1 Motivation

Mathematics is the foundation of all science and possesses the quality to make links
with other fields of science, like biology, physics, technology and each interaction
with new research area introduces and develops new mathematical challenges to
work. For instance, mathematical biology is one such example. It is an emerg-
ing subject, Murray| [[79} [80]] recently published on this topic. The involvement of
mathematics in bio-science is important, as the biology depends on qualitative and
quantitative studies of mathematical objects. Mathematics exhibits a strong quality
to transform a complex natural phenomena into mathematical equations, then uses
a wide range of techniques to analyze different variables. Therefore the complexity
of biological science makes the involvement of mathematics inevitable.

Recently, computer simulations have been intensively applied in life-science such
as bio-engineering, bioinformatics and biomathematics. The applications of math-
ematical biology are rapidly growing yet remain an underexplored area and at-
tracting a large number of researchers [[73| (74, 78}, 194, 98, 101} 117, [134] to study
several biological models with advances in computing. The computational value of
simulation is cost-effective and faster than laboratory based practical experiments,
consequently, the interdisciplinary research will produce useful outcome.

The experimental work is an important component in determination of the bi-
ological mechanisms, moreover, the theoretical investigation established for the
simulation of mathematical models has a key role in developmental biology, e.g.,
to name few contributions, cf. [38, [73} 78, 98| 1117, [130-132]]. It is always use-
ful to interpolate and simulate a realistic data set through computational science.
The mathematical modeling and simulation provide an essential tool, which can




CHAPTER 1. INTRODUCTION

be used to investigate and test the hypothesis, to predict and propose a testable
solution. In addition, focusing on certain parameters of a biological system can
demonstrate how some components lead to enigmatic phenomena. It is harder to
perceive such intuitions in laboratory as compared to simulations. The characteri-
zation and modeling of simple biological phenomena often lead to a formidable set
of mathematical equations. The analytical solution of such systems is often highly
complicated to perform. Besides the complication of mathematical equations, the
lack of theoretical results compels us to use numerical simulations for investigat-
ing such models. Consequently, an advanced numerical simulation to study the
biological models will be developed.

1.2 Preliminaries

Here, we will provide a general overview on most commonly used symbols and
notations throughout this work. In order to keep a section self-contained, for newly
used terms we will define the corresponding symbols and notations in the context
of each section.

1.2.1 General notation

Let us suppose that Q C RY, where the dimension (d = 1,2,3,...) the spatial com-
putational domain Q with boundary dQ. The spatial variable x = (x!,x*,x3,...) €
Q. Consider I'(¢) as an evolving in time surface, further assume that the evolving
surface I" does not exceed the underlying stationary domain, i.e., I' C Q. The tem-
poral variable is denoted by 7, where I = [0,7] C R with T > 0 is a suitable time
interval for the solution. Hence, the entire space-time domain is described through
(x,1) e Q1.
The divergence operator defined on a vector field £ is given by

d agi
v-g:; R

For a function p € C?(Q), we can define the gradient operator:

%) ap\"
Vp = —p, . P .
dx! x4
The usual Laplacian operator defined through
A:=V.V

for a differentiable function p, as:




1.3. SURFACE PDES AND RELATED TECHNIQUES

The gradient and divergence on a surface including Laplace-Beltrami operator will
explicitly defined in The most frequently used notations are provided in tabu-
lar form (Table {1.1)) , other symbols will be described whenever they are required.

bold letters, a, b, ¢ and d

a,band c
d
X
t
1=10,T]
m

bold face A, B, C, ...
Greek letters o, 3, 7, ...
(1),

Ar

Q

Qy,

(p,¢;c)
(Pns Cnscn)

vector value functions

scalar values

spatial dimension, e.g.,d =1,2,3...

spatial variable, i.e., x = (x!,x%,...) € R?

temporal variable

temporal interval

time level index e.g., p"*! = p(m + At)

block matrices

scalar value functions

continuous evolving surface and the discrete counterpart
Laplace-Beltrami operator

spatial domain

discretized domain

fixed mesh size

normal vector

continuous space of function and its discrete counterpart
nodal basis function, ¢; € Vj, fori =1,2,...,N

d.o.f. number of degrees of freedom

continuous coefficients vectors

finite element functions

Table 1.1: General notations

1.3 Surface PDEs and related techniques

A large class of natural phenomena occur on evolving in time surfaces (e.g., in
biology; biological membrane, animal skin, general growth and etc.), besides the

3




CHAPTER 1. INTRODUCTION

usual Euclidean domain Q. Thus the modeling of partial differential equations
(PDEs) on the general manifolds is significant [38, (62} [116, [139]. In addition,
PDEs on surfaces have a wide range of applications, to name few in flow prob-
lem; surfactant flow by |Stone| [[116], flows over topography, atmospherics flow
on the surface of the Earth and virtual weathering [24]. In computer science, we
have image processing, medical imaging [22]], computer vision, computer-aided
design and computer graphics, which are mostly involved in creation and opti-
mization of engineering problems. In biology which is the main purpose of this
thesis, the study of PDEs on biological surfaces is a rapidly growing interdisci-
plinary field of research, which generated new fields like computational biology
or biomedical-engineering. A myriad number of research problems in this field
are highly challenging due to mathematical and biological constraints on surfaces,
but the results have quite promising implications in developmental biology. Since
computational fluid dynamics (CFD) is a well developed field with several compu-
tational tools. Thus to make use of existing tools of CFD we treat the mathematical
models of a bio-membrane as fluid interface. The interface is commonly used for
shape recognition of DNA, in biological pattern formation [74} 78| 83}, 94, [129]
(will be discussed in §1.4.2), tissue regeneration in wound healing and brain imag-
ing in MRI [19} (79, 180]]. In short, partial differential equations on surfaces arise in a
variety of natural applications. This thesis is dedicated mainly to study mathemat-
ically and numerically partial differential equations on stationary and evolving in
time surfaces of pattern forming models. For the case of surface partial differential
equations the domain will be curved, or more precisely, a surface PDE is a partial
differential equation whose domain is an d-dimensional curved (surface I') living
in R?*! . For example, the Poisson equation on a surface:

—Arp =g, on I
Here Ar is the Laplace-Beltrami operator, the surface equivalent to the Laplace
operator. Mathematical details will be addressed in next chapter. The simplest
unsteady case, we consider is the heat equation on a surface,

aalt) - AFP+8, on FXT;

p(70) = Po, on TI.

Suppose that the boundary of the surface is empty. For the case of non-empty
boundaries of the surface, one can assume and impose the required boundary con-
ditions. Now consider partial differential equations on an evolving d-dimensional
surface I'(¢) for ¢ € [0, T]. For example, the transport equation on evolving in time
surface:

88;) = Arphp+g, on (1) xT.

Here, the derivative ‘9;—:) is due to the evolution of surface I'(¢), which is responsible
for additional terms involving convection due to surface evolution. Derivation of

4




1.3. SURFACE PDES AND RELATED TECHNIQUES

the surface related equation will be discussed in the subsequent Chapter [2] The
material derivative on the surface is defined as:

*

d .
af:atp—'—pvr(t)'va

the evolution of I'(¢) can be obtained by the Leibniz formula. In addition, d°p =
d;p +v - Vp denotes the advective surface material derivative. The surface velocity
v = Vn + vy can be decomposed into velocity components in the normal direction
Vn , with n to be a surface outward normal vector, and velocity in the tangential
direction is vg.

To solve these problems efficiently, one requires advanced mathematical mod-
eling with fast, efficient and robust computational algorithms, which cover natural
phenomena with physical characteristics on manifolds. Now we give an overview
of the surface related numerical techniques and description of gradual develop-
ments in this direction.

Curves and surfaces belong to a class of manifolds which have an implicit
or parametric representation. With a good representation in hand, we can define
systems of PDEs on manifolds using differential tangential calculus and Rieman-
nian geometry. For instance, we may assume curves or surfaces as lower dimen-
sional manifolds which are embedded in the physical space, known as hypersur-
face. PDEs on a surface can be computed through different techniques, the most
frequently used techniques include: level set methods [1}, 91, (108}, (109} [111]], fast
marching method [110}111], phase field method [35}164]], closest point representa-
tion [67H69, 105} [121]], parametrization and triangulation of the surface [33], bulk
surface finite element method (FEM) [34)], ALE surface FEM approach for surface
PDEs and diffuse interface (36, 37], fully discrete FEM for evolving surface [28]].
In some cases, combination of two or more approaches are used to solve surface
PDEs. Each of the above mentioned methods and representation has its own advan-
tages and disadvantages and are mostly dependent on the nature of the particular
problem.

In parametrization methods a smooth coordinate system is imposed on the sur-
face, the differential operators are expressed within these coordinates, afterwards
the resulting equations are discretized. In other words, in this method manifolds
are represented using a geometrical mapping from a parametric domain to phys-
ical space. Parametrization of the surface has few draw-backs as well, it may be
challenging to derive for complicated geometries on manifolds. It requires surface
patching, to connect several characterization neighborhood, sometime it is chal-
lenging to derive a new parametrization for each surface patch. The construction
of the coordinate system can be complicated involving more non-constant coeffi-
cients and derivative terms, which may introduce artificial singularities at the poles
in spherical coordinates [[105]. It is revealed that surface parametrization mostly
introduces distortion either in some area or through some angles [40]]. Triangula-
tion of the surface can be effective for particular classes of equations. In general,
it lacks some essential geometric properties, e.g., it does not posses a well-defined
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CHAPTER 1. INTRODUCTION

surface characteristics [47]]. Surface normal and curvature are not clearly defined.
Numerical properties like convergence of the scheme on triangulated surfaces are
not clear as compared to Cartesian grids [47].

Ruuth and Merriman| [105] discussed that the closest point method represen-
tation of surface give some advantages. Namely, it is more flexible to represent
both open and closed surfaces without an orientation. They also noticed that ob-
jects having co-dimension two or higher, such as points, curves and collection of
surfaces can be naturally accommodated using the closest point representation.

Phase field method is extensively used to model interfacial motion in multi-
phase flow [35} 98] 99]]. To capture a diffuse interface it transforms Lagrangian
coordinates into Eulerian formulation. It is used to solve PDEs on implicitly de-
fined surfaces, which is mainly based on diffuse interface methods. The authors
(98], 99]] represented the surface by half of the level set of a phase field variable ¢
defined on the surface I contained in the domain Q C R?for d =1,2,3. They in-
troduced the so-called diffuse interface function, which allows to rewrite parabolic
and elliptic PDEs defined on surfaces into PDEs defined on simple Euclidean do-
main. This function is assumed to vanish outside the diffuse interface. This method
is closely related to level set approaches to solve Eulerian representation of surface
defined PDEs.

In the last few decades, the level set method [91,1111]] has been used as a numer-
ical technique for dynamically evolving manifolds. It is a great tool to solve prob-
lems involving changes in topology like surface deformation. In level set methods
the surface I' is represented as zero level set of a function ¢ defined in R?. One can
rewrite PDEs in Eulerian coordinate and solve this new representation on a fixed
Cartesian grid in a neighborhood of I'(z). The Eulerian presentation of PDEs on
a surface can be derived simply by replacing surface derivatives with projections
of derivatives in the embedding Euclidean space. The level set approach avoids
the non convenient parametrization and triangulation of the surface, e.g., the nor-
mal n and mean curvature H can be calculated, simply by taking derivatives of
the level set function ¢ . This approach also avoids the numerical evaluation of the
curvature. Although the proposed method solves the resulting equations in one
dimension higher, it can be solved in a fixed domain [27]]. The level set method
has been suggested by |Dziuk and Elliott| [27] for complex morphology, where the
parametric approach may not be adequate to find solutions of PDEs on surfaces.

The application of PDEs on surface is interesting because they possess a vari-
ety of quite promising applications in several areas, such as fluid dynamics, solid
mechanics, image processing and multi-phase flow. The level set method is suc-
cessfully implemented for the numerical study of a high-order 3-D technological
flow problem with optimization [128]], a unified model for etching, deposition,
and lithography [1]], reaction-diffusion systems on deforming surface [3], image
processing [70], transport equation on evolving implicit surface [27]], chemotaxis
model on stationary surface [113] and in 3-D brain aneurysm capturing [23].

Consequently, we will employ the level set method to describe PDEs on sur-
face, which allows implicit prescription of the surface I'(¢) , more detailed descrip-

6




1.4. APPLICATION OF SURFACE PDES

tion on the method will be discussed in Chapter[2]

Literature review reveals that PDEs on surface can give some undesirable and
non-physical results [27]. In this context we use high-order flux correction ap-
proaches for advective dominated problems. The surface convection produce wig-
gles and kinks, which requires use of the numerical stabilization to avoid non-
physical solutions. We use algebraic flux correction (AFC) of FCT/TVD-type to
get a positivity preserving solution. More information on algebraic flux correction
based finite element method of FCT/TVD-type can be found in [60, (61} [76] and
Galerkin FEM discretization in the later chapters.

1.4 Application of surface PDEs

In case of more realistic modeling problems, most of the time, we have to solve
PDEs which live on an evolving manifold. For the solution of PDEs on surfaces
with aforementioned biological properties, theoretical and numerical challenges
may be faced. The standard conservation laws for PDEs on evolving surface dif-
fer from that of domain defined PDEs. One has to prescribe the motion of the
interface. Consequently, the modeling of physical phenomena on surfaces requires
in-depth command in differential geometry. It is challenging to construct numeri-
cal schemes for the surface-driven PDEs. The construction of robust, efficient and
accurate solvers for the system of PDEs on surface I, is needed. Since the convec-
tion of the surface evolution may create numerical kinks, we require a stabilized
numerical scheme with positivity preserving property for the solution. The solvers
should be able to deliver an appropriate numerical solution in a reasonable time
frame. The spatio-temporal discretization and suitable coupling between equa-
tions have to be taken under consideration with construction and implementation
of a high-order and positivity preserving technique for convection and chemotaxis
dominated equation. It is realized that the evolution of the surface I'(¢) at each
time instant has to preserve the area. The occurrence of sharp edges in the bound-
ary and surface discontinuity may lead to undesirable numerical solutions. The
implicit implementation of the level set approach to prescribe the interface is not
straightforward.

Boykov et al.|[[7] discussed an integral solution to the surface PDEs. The pro-
posed method is able to compute gradient flows on hypersurface w.r.t. a general
class of energy functional. This approach can handle the topological changes of
the evolving interface, like level set method. The suggested method is able to use
an implicit representation of the surface via geo-cut. A Galerkin formulation of
the matched interface boundary method for the elliptic interface problems can be
found in [138], they captured the interface via two sets of elements in two sub-
domains. |Olshanskii et al.| [90], |Chernyshenko and Olshanskii| [[16]], [Olshanskii
and Reusken| [85, [87]] derived and studied a variational formulation for a class of
PDEs on evolving surface, for interested readers in well posedness and stability of
solutions, error analysis we refer to their work on evolving surfaces [[86, [88-90].

7




CHAPTER 1. INTRODUCTION

The purpose of the thesis is to propose a level set based finite element method
with FCT/TVD stabilization for the PDEs on an evolving in time surfaces I'(7).
We mainly discuss the modeling of surface PDEs, in addition we will suggest some
improvement for the existing techniques to treat PDEs on surface. Furthermore, we
will address the application of PDEs on evolving surface in computational biology,
particularly we will demonstrate a number of simulation for chemotaxis and pattern
formation.

The thesis encompasses two closely related phenomena of mathematical biol-
ogy, chemotaxis and pattern formation. In the first part, the mathematical deriva-
tion and a priori error analysis for the surface PDEs are mapped. The second seg-
ment is devoted to illustrate underlying physical mechanisms through numerical
simulation on surface. The mathematical models are studied and simulated using
FCT/TVD stabilized implicit finite element level set based schemes.

We explain the theoretical background and mathematical development focusing on
the numerical state of the art for two biological phenomena, namely chemotaxis
and Turing patterns in this section.

1.4.1 Chemotaxis

Chemotaxis mechanism

Chemotaxis is derived from Greek suffix -taxis which means arrangements. It is
a bio-chemical phenomenon, which gives a particular movement of chemicals in
response to the stimuli [81]. The chemicals are either moving towards (chemo-
attractant) or away (chemo-repellent) from the source, it can be food or environ-
mental danger, respectively. To understand the terminology of chemotaxis we can
rely on commonly used -taxis suffix, to name few, e.g., photo-taxis (movement
w.r.t. light), geo-taxis (gravitational attraction) and etc. Chemotaxis describes and
dictates the direction, according to gradient of chemical substances. It could be
either positive or negative chemotaxis, depending on the direction to the chemi-
cal gradient. The movement is controlled through the chemo-sensitivity param-
eter. In biological science, we take a simple example of the bacterium E. COLI,
which obeys chemotaxis, swims towards a favorable environment in search of
food (chemo-attractant) and moves away from unfavorable environment like toxin
(chemo-repellent), depending upon the chemo-sensitivity parameter .
Chemotaxis is a peculiar behavior, which exists in a wide variety of living
organism, ranging from macro- to micro-organisms, in their motile response to
chemical stimuli [117]. For example, in nature it helps many species e.g., turtles
to travel over thousands of miles for its breeding. This happens through detection
of some chemical stimuli. In addition, several species of sharks have the ability
to sense blood in water, being miles away from the actual source. Chemotaxis
is intensively used throughout biology e.g., in the immune systems the leukocyte
cell; which are produced in response to bacteria is based on chemotaxis mech-
anism. Theoretical results show that chemotaxis processes occur during healing

8




1.4. APPLICATION OF SURFACE PDES

of wound [48]]. Chemotaxis is naturally composed of two correlated but indepen-
dent processes called motility and directionality, which are regulated under cellular
stimuli. Now the mathematical development in chemotaxis will be addressed.

Mathematical development

The mathematical investigation of chemotaxis started in early 1970 after the pio-
neering work of Keller and Segel|[[54}[55]. They studied the mathematical modeling
of slime mold aggregation, actually they were inspired by a tiny character called
Dicty amoebae. Later on, they observed that E. COLI is traveling at a constant
speed when the bacteria are placed in one end of a tube containing sources. The
bacteria move towards higher concentrations of chemical [56] due to chemotaxis
mechanisms. Mathematically, the most general model for chemotaxis phenom-
ena can be described by the following system of reaction-diffusion advection or
chemotaxis like equations 114} [117].

a&i = DLAC =V [xiw.(c,p)c'] + f'(c,p) in Q@x T,
9*pJ 4 . o ) ,
- = Djrp! ~ Vi) (zhwhie.p)p!) +¢/(e.p) on T(1) x T (1.7)

Here y is the chemo-sensitivity parameter, ¥ > 0 shows chemo-attractant and y <0
indicates chemo-repellent. The description of such model will be discussed in
Chapter|[3] For a certain parameter setting in the system and (L.7), we can get
a desired model of reaction-diffusion and/or chemotaxis.

Minimal model

From the general system of equations (1.6) and (I.7) e.g., for the following set of
parameters

ivj:17 D2:17 Xcl‘:x: ch:Vp and fi(C,p):O,
D=1, zh=x Wy=0. wd g(cp)=—ctp,
the minimal model of chemotaxis reads
¢ = Ac—V-(xcVp) in QxT,
pr = DPAp—c+p on I'xT.

The historical development of the minimal model of chemotaxis can be found in
(170
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Kinetic model

We obtain the following kinetic model:
¢ = V- (DVe)=V-(cxVp)+c(l—c)(c—a) in QxT,
pr = Ap—oap+conl'xT,

for the following parameter setting in the general system of equations and

"
i=1, Di::DCu %:‘:X7 wlc:Vp and fi(c,p):c(l—c)(c—a)7
j=1, Di;:l, xﬁ{:l, w{;:O and g/(c,p) = —ap +c.

Mostly complex patterns formation occur due to the kinetic models [11} 113,117}
120].

Mimura-Tsujikawa model

We get the Mimura-Tsujikawa model [73} 113} 118}, [120] on surface:

¢ = D°Ac—oc+Bp inQxT,
a*
B DP AP V- (xPVre) +p(1-p) on T(1) X T

We arrive at this model by considering the following coefficients in the general
system of equations:

i=1, D.=D, xi=x, w.=0 and f'(c,p)=—ac+pp,

j=1, Dy=D", xi=x, wh=Vc and g'(c,p)=p(1-p).

This model admits evolving patterns, which will be discussed in

From the introductory text and mathematical formulation on chemotaxis, we
can deduce that it is working under signaling mechanisms based on source terms.
The source can be food and/or environmental threat, broadly speaking, in cell biol-
ogy via this process a cell migrates along a shallow chemo-attractant gradient. For
more details on signaling mechanisms for regulation of chemotaxis, we refer to
'Wu| [[137]]. Furthermore, Willard and Devreotes| [[136] noted that the social amoe-
bae, (cf. DICTYOSTELIUM DISCOIDEUM) rely on chemotaxis signaling to find
food for survival during starvation. Thus chemotaxis models can be used in several
bio-medical applications. One of the useful applications of chemotaxis signaling
is chemotherapy to control the growth of the cancerous cells e.g., see |Condeelis
et al.| [21]. The laser ablation experiments have also allowed identification of sen-
sory neurons and inter-neurons. The molecular neurogenetics of chemotaxis in C.
ELEGANS including the identification of sensory neurons are important for animals
life. In addition, the molecular and cellular analysis of chemotaxis in C. ELEGANS

10
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are assumed to be a model mechanism. Moreover, Mori and Ohshima| [[77] pro-
vide more significant implications for the molecular basis of sensory systems in
animals.

Keller and Segel [56] published their seminal work on chemotaxis in early
1970. Since 1980’s state of the art work has been published on the numerical solu-
tion of several chemotaxis models. Some interesting mathematical questions arise
in the context of the chemotaxis-driven systems, e.g., the modeling of the chemo-
taxis and angiogenesis [[112], the global existence of solution to a chemotaxis hy-
perbolic and parabolic models [142]], the random walks, aggregation and collapse
[92]], blow-ups in the Keller-Segel model [39], nonlinear aspects in chemotaxis
[17], existence of solution [140] and etc.

In a series of articles, [Tyson et al.| [131} [132] studied the chemotaxis bacte-
rial patterns in liquid medium and also introduce the fractional step methods to
a chemotaxis model. |Aida et al. [2] discussed a lower estimate for a chemotaxis
growth system, they also showed that the numerical computation of the model
contained several pattern solutions. In a series of articles, a flexible and algebraic
flux-corrected finite element solver for chemotaxis is developed by [Strehl et al.
[118, [119]. The 3-D chemotaxis model is studied in [120], it is also assuring
the positivity preserving property. The statistical and mathematical modeling of
chemotaxis on stationary surfaces for 2-D and 3-D are discussed by [Strehl| [117],
more details on blow-up and its remedy such as flux correction techniques on sev-
eral chemotaxis models including Keller-Segel model can be found in their joint
work [[113}[118-120]] as well.

For general understanding of mathematical development in chemotaxis mecha-
nisms we refer to the seminal work of |Keller and Segel| [54,55]]. The mathematical
modeling and numerical investigation of chemotaxis model on stationary surface
can be found in [[1174119]].

A large part of the aforementioned work has been studied on Euclidean do-
mains. The modeling and implementation gets complicated to study an evolving
surface. Mostly natural phenomena evolve in time. For example, biological sur-
faces like animal coat and membranes also evolve in time. To model such problems
in a realistic way; we will rely on basic concepts and mechanisms of differential
geometry and application [[14} [15 96]. The complexity of the physical model in-
creases due to that of evolving surface, the mathematical modeling of the phenom-
ena on surface adds extra terms in the equation [116l], which are challenging to
solve numerically. The convection due to surface evolution and Laplace-Beltrami
operators increases the difficulty level to find the solution of the problem. [Elliott
et al.| [38]] described a mathematical modeling and finite element solution of the
cell motility and chemotaxis on evolving surface. They also discussed the interac-
tion of several factors that act normal to the surface including internal and external
forces which may be produced due to pressure or internal chemical reactions and
polarization of the cell membrane. We will suggest and develop a stabilized finite
element level set method for stationary and evolving in time surface with possible
application for advection or chemotaxis like PDEs.

11




CHAPTER 1. INTRODUCTION

1.4.2 Turing-type instability

Biology of patterns emerged as an enthralled branch of research after the ground
breaking work of A. Turing (1952) on morphogenesis [129]. Morphogenesis is
a part of embryology dealing with forms and pattern formation [4]. The con-
cept of Turing patterns has been applied to a wide variety of systems, the di-
verse areas include astrophysics formation of galaxies [84], ecology [107], hy-
drodynamics [[135]], material science [S8]], signaling network [98]] and physics of
semi-conductors [4].

Apart from the above discussed applications, the pattern formation in biology
is a wide research field with several open questions, such as the understanding of
pattern formation in zygote, animal coat [78], spots on butterfly [83]], and many
more underexplored areas to work. A large area of experimental and theoretical
research is devoted to understand the science of pattern. Alan Turing in his sem-
inal work [[129] proposed that under certain conditions, chemicals can react and
diffuse in such a way that they can produce steady state patterns, known as Turing
instability. Although conventionally diffusion is treated as a stabilizing factor but
in diffusion-driven instability it plays an important new role. A diffusion based in-
stability occurs if the homogeneous steady state is stable to small perturbations in
the absence of diffusion, but unstable to a small spatial perturbation in the presence
of diffusion, as presented by Painter| [94].

The classical work of Turing (1952) showed that many different patterns in
nature can be modeled by a simple system of reaction-diffusion equations. In gen-
eral, the biological membrane are not stationary. They are evolving in time, in
consequence, we model such phenomena to investigate the biological models on
evolving in time surfaces. The numerical experiments suggest that similar reaction-
diffusion systems posed on evolving biological surfaces can exhibit a diffusion-
driven instability of spatially uniform structures and thus lead to spatial patterns
and forms, an example of such a model comes from the growth of solid tumors and
patterns of animal skin.

The mathematical model of the diffusion-driven Turing type instability on a
surface I'(7) can be found through exploring the following system of equations:

a*
L = DPAp+£(p.C) on D) < T, 1.10
a*
E — DEArg L a(p.) on T() T,

where d*p /dt and 9* £ /dt are time derivatives, which take into account the evolu-
tion of I'(#) , and the Laplace-Beltrami operator Ar;y on I'(¢) will be discussed in
details in next chapters. The corresponding initial and boundary conditions need to
be provided, which vary with respect to physical models. The unknown functions
p(x,t) and §(x,¢) are however defined on the surface-time domain I'(¢) x T and are
solutions of the system and li respectively. The parameters D and D¢
are the positive diffusion coefficients, f(p, &) and g(p,§) are the reaction-kinetic

12




1.4. APPLICATION OF SURFACE PDES

terms which are responsible for the interactions between the two surface concen-
trations. The reactive-kinetic itself is responsible for a large number of models,
for example, the Schnakenberg model and activator and inhibitor model or Koch-
Meinhard reaction-diffusion model, will be discussed in the subsequent chapters.
In case of the Schnakenberg model [65]], the reactive terms reads:

fp.O)=va—p+p*¢) and g(p,&)=y(b—p?¢),

where ¥,a and b are positive constants. A thorough numerical investigation of
this model will be discussed in Furthermore, [Koch and Meinhardt [57]
introduced the following reactive kinetic model:

fp.8)=aip(1-ng?) =C(1-rp),

¢(p.0) = BiL (1+“[;1”pc) p(—rl),

here o and f3; are constants. A rigorous numerical study of the Koch-Meinhardt
reaction-diffusion model will be addressed in

Numerical investigation of similar models has been studied by [Bergdorf et al.
[S] using Lagrangian particle methods based on the level set technique and by Bar-
reira et al.| [3]] using surface finite element method. A closely related model for
brain growth was studied numerically by |[Lefevre and Mangin| [[63]]. The reaction-
diffusion equations have been widely used for pattern-formatting process in biol-
ogy, the patterns based on diffusion-driven Turing instability are obtained from a
spatially uniform state developed via approximating a 2-D system, as discussed
by |Ouyang and Swinney| [93]. The dynamics of Turing-type mechanism for yeast
cell polarity are studied by |Goryachev and Pokhilko| [45]. As the study of Turing
patterns is influential and important for the understanding of the biological forms,
here on detail biomathematical study of the phenomena, we refer interested read-
ers to the extensive work of [Murray| [78, [79]]. In addition, the experimental basis
for Turing patterns was initially observed by [Castets et al.| [[13] through reaction of
CHLORIDE IONIC MALONIC ACID. |Gierer and Meinhardt [42] extended the idea
of diffusion-driven instability through a paradigm-shift, and introduced principals
for activation/inhibition models. [Neilson et al.| [81] and [Elliott et al.| [38] further
extended the same idea in cell motility using a fourth order geometric reaction-
diffusion system known as the Meinhardt model [42]].

The analytical and numerical investigation of Turing patterns shows that they
are highly dependent on several factors including the geometry of the domain and
initial condition [[79, 80} 94, [133]]. The patterns are developed only under partic-
ular points of parametric space, or so-called Turing space used by Painter [94].
This shows that an adjustment of parameter setting is essential to catch well devel-
oped forms of Turing patterns. In developmental biology, the complexity of animal
coats attracted many interdisciplinary researchers, to name few, French and Brake-
field| [41]] and Nijhout|[83]]. They explored the mechanism behind eye-spot patterns
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CHAPTER 1. INTRODUCTION

on the butterfly wings. The characterization of several diffusion-driven Turing in-
stability on evolving domains are investigated by [Venkataraman| [[133]] and Hetzer
et al.|[50].

In the current work, we develop numerical simulation techniques for math-
ematical models of PDEs on the stationary and evolving in time surfaces. We
demonstrate extensive numerical experiments based on underlying biological mech-
anism and principles which exhibit patterning. The pattern formation can be help-
ful in understanding the complex biological problems.

1.5 Outline

The main focus of this thesis is the mathematical modeling and construction of
a level set based FCT/TVD finite element method for the solution of PDEs on
evolving manifolds. Stabilized FEM solution of the advection-diffusion-reaction
equation with application to realistic biological problems is addressed. We will
introduce the Galerkin FEM methods, and provide a short note on trial and test
spaces, L? (Q) and H' (Q)-errors and order of convergence analysis. Moreover, we
will address derivation of PDEs on surfaces including theoretical results, based on
proofs of theorems and lemmas. These results will be used throughout the thesis
to treat PDEs on surfaces. Finally we will be able to construct and deliver a ro-
bust and accurate FEM based numerical scheme for surface PDEs. The remaining
chapters are outlined as follows:

In Chapter [2| we present the basic mathematical definitions, proofs of sev-
eral lemmas and theorems which will be used throughout the thesis. We introduce
the derivation of the PDEs on surfaces, including the geometrical quantities like
curvature, normal, tangent, mean curvature H and etc. In addition, the gradient,
divergence and Laplace-Beltrami operators for PDEs on surfaces are defined. We
derive the transport equation on the surface, because most equations in the sub-
sequent chapters are based on this fundamental equation. In addition, proofs of
related formulae, to name few, mean curvature formula, coarea formula, integra-
tion by parts on surface for scalar and vector functions are discussed.

The Chapter[3|demonstrates the discretization techniques. We will discuss ba-
sics of the finite element method for spatial discretization of PDEs, for temporal
discretization we will discuss some commonly used schemes, the implementation
of such schemes can be found in FEATFLOW ﬂ The Laplace-Beltrami operator for
surface PDE:s is introduced and the basic algorithms of required stabilization tech-
niques for convective dominated surface PDEs are shown. We prove results related
to a priori error estimates for this formulation and finally the surface triangulation
will be addressed as well.

Ihttp://www.featflow.de
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1.5. OUTLINE

In Chapter H] we present the numerical simulation of the partial differential
equations on surfaces. We discuss both PDEs on stationary and evolving in time
surfaces. We design a physically motivated positivity preserving finite element
method to provide an accurate and robust numerical scheme for surface PDEs. To
avoid non-physical oscillations due to surface convection or chemotaxis like PDEs,
we further extend the methods with FCT/TVD stabilization schemes. We study the
Galerkin approach with and without stabilization and analyze the results. The nu-
merical accuracy of the solution profiles are demonstrated. The content of Chapter
]and Chapter[3]including some numerical results from Chapter {| were published
as joint article with A. Sokolov and S. Turek in a research article in journal of com-
putational and applied mathematics [114]].

In Chapter [5 we focus on the application of the finite element method for
surface PDEs to the mechanisms of the Turing patterns. We design efficient and
robust level set based FEM for different models which exhibit Turing patterns on
the surface. Moreover, we investigate the accuracy of the method for the solution
of the discretized systems arising from biological applications. The contents and
numerical results from this chapter are archived in an internal report at department
of applied mathematics, TU-Dortmund co-author with A. Sokolov, R. Strehl and
S. Turek [[115]].

In Chapter[6] we summarize surface finite element methods focusing on bio-
logical applications studied in this work and present future works as an outlook of
the current research. The conclusion and future outlook are summarized for fur-
ther possibility on extension of the work for more realistic biological problems on
surfaces.

15







Part 1

Derivation of PDEs on surface
and discretization scheme

17







Nature is a book written in the
language of mathematics.

G. Galilei, Il Saggiatore, 1632

Modeling of the surface defined PDEs

In this chapter, we introduce the basic differential geometry concepts including def-
initions and derivations of surface related equations. Moreover, these concepts are
used to derive and discuss few peculiar characteristics of PDEs on surfaces. Since
we used different meshes to reflect the smooth geometry of two/three dimensional
surfaces embedded in R? for d = 2,3. We know that mesh are not smooth enough
to notice the instinct characteristics in R, particularly for 4 > 3. In consequences,
to implement PDEs on evolving manifolds we are using the differential calculus
on manifolds. Roughly speaking, the manifolds locally look like d-dimensional
Euclidean domain in R?. We provide a short and brief note on the basic language
of differential geometry. Thus starting with definition of the surface and explain
the theory of surface related literature. There are a large number of advance tech-
niques to encounter PDEs on surfaces, most commonly used methods include the
level set approaches [108, [111], the parametrized boundary methods [29]] and the
phase field methods [99]]. In the present work we use the level set methods to cap-
ture the interface of PDEs on an evolving manifold. Moreover, results concerning
to level set methods will be derived. In addition, we provide proof of theorems and
lemmas to treat surface PDEs with the level set methods.

2.1 Mathematical modeling

Definition 1. (Surface)
A smooth surface is a subset T C R3 such that each point has a neighborhood
U C T and a mapping define from an open setV C R*> asx:V — R3,

o The function X is a bijection that continuously maps V into U and the inverse
function exists and continuous. In other way, the mapping x:V — U is a
homeomorphism.

e The function x(u',u?) has derivatives of all orders.

dx.
du!

dx

2.2 are linearly independent at

e The first derivative, s.t., X| = and Xp =

all points.

The map X is known as local parametrization or local chart on the surface. The
above properties identify that the surface I is continuous, invertible and smoothly
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embedded to the ambient space. The differential dx is represented by the Jacobian
of x(u',u?), which maps the directions in the parametric domain to elements in the
tangent space T,I" at any arbitrary point p.

Hypersurface is the generalization of the ordinary surface in 3-dimensional
space and the dimension of a hypersurface is one less than that of its ambient
space.

Definition 2. Hypersurface and space of tangent vector:

Let o € R andT € R be a level set of function ¢ i.e., T =T, := {x €R3 ¢(x) =},
where ¢ is a C*-function. Then T is called a C*-hypersurface, if V¢ # 0 at all
points on T.

The tangent space T,1" to a smooth surface I" at a point p is spanned by the two
vectors X1 and X, which are orthogonal to (V¢),, .

The tangent space contains all directional derivatives of curves on the manifold
passing through the point p. Given that X(7) : (—€,€) C R — " with x(0) = p then
% € T, as illustrated inﬁgure

Now, we have motivation to define two main properties of the surface, known
as the first and second fundamental forms. These properties are quite interesting
and helpful to calculate characteristics of mathematical entities on the surface.

2.1.1 The first fundamental form

In differential geometry the first fundamental form of a surface in R¢ induce canon-
ically by taking the inner product of a general velocity vector with itself. Once con-
structed a parametrization of a curve it will allow us to calculate surface properties
such as arc length, area and curvature of the curve.

Let s be the parametric arc length of curve %, the parametrization of ¢ is define
by:

¢ = {x(u'(1),u*(1)), where 7€ [a,b]CR}.

We have the following relation on the surface
ds? = <X (ul(f),uz(l’)) X (MI(T),uz(T))>d‘L'2,

here, X is derivative with respect to variable 7. We define the following transforma-
tion
— 1 2 . d
x=x(u (7),u” (1)) : 1 — R

dx
du!

du! du? du' du?
2 au au wn “w 2
ds —<X1<dr>+X2<dT>,X1<dT>+X2<dT>>dT.

Simply using chain rule, and denoting x; = and xp = % we have
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2.1. MATHEMATICAL MODELING

The tangent space generates the surface through 7,I" = span{xi,x,} at point p
implies that x;,x, € TT.

du'du? du! du? du*du?
2 2 2 2
ds® = <X1,X1> (d’b'z >dT +2<X1,X2> (dT ) (dl‘ >d’L’ —|—<X1,X2> ( P >d’f .

In the simplified form, we have

ds® = (x,x1) (du")? + 2 (x1,%2) (du") (di®) + (x2,%2) (du?)?.

curve ¢

Figure 2.1: Parametrization of curve %'.

ds? :E(du‘)2+2qu‘du2+G(du2)2,
with E = g1 = (X1,X1), F = g12 = (X1,X2) and G = g2 = (X2, Xy) are coefficients

of the first fundamental form. The matrices are much systematic to compute and
evaluate thus the matrix form of the first fundamental form is given by:

2o oy (&0 g2 [du!
ds* = (du'  du?) (g21 gzz) ( du2> :
The equations and are useful representation of the first fundamental
form.These are mostly used to measure the arc length of the curve. From equation
we can clearly observe that the first fundamental form is a quadratic and
bi-linear form. In addition, the first fundamental form is used to encodes angle
between curves on the surface. It is closely tied with the isometries of the surface.
The coefficients of the first fundamental form are represented through the following

matrix:
@G — {gij} _ (811 gn) -

821 822
Where ¢ is known as Riemannian metric, will be used to determine geometric
values of the hypersurfaces/manifolds.
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2.1.2 The second fundamental form

Suppose we have a surface in R, assume that we push or pull the surface along
in the normal direction. Then we will get a family of surfaces. On the one hand,
the first fundamental form will calculate the arc length and on the other hand, the
second fundamental form will encodes how the arc length changes, as the surface
moves along the normal direction.

Let x(u',u?) parametrization of a curve for d = 2 and assume that the initial

value x(0,0) = 0. Since x| = % and xp = % for simplicity we are assuming
I dx(u',u?) - dx(u',u?) and xos — dx(u',u?)
T T duladt 0 T T duldu? 27 T dildi2

The Taylor series expansion at (0,0) gives

1
x(ul,u?) = X(O,O)—i—xl(O,O)dul+X2(O,O)du2+Exll(O,O)(dul)z

+ x12(0,0)du'du’ + %XZZ(O,O)(duz)Q + 0 ((du')?, (du*)*)(2.5

tangent plane

Figure 2.2: x; and x; generating the tangent plane

Let n be the normal vector to 7,I" at point p. Since the tangent space of I" is
T,I" = span{x;,X,} then we have

(x1,n) = (x2,m) = 0.

Now taking the dot product of equation (2.5) with the normal vector 1, we have

(x(u',u*),n) = (x(0,0),n) + (x(0,0),n) du’ + (x2(0,0), ) du* + % (x11(0,0),n) (du')?

+ (x12(0,0),n) du' du® + % (x22(0,0),n) (du*)* + O ((du")?, (du*)?) .
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Using the initial value and the fact that x; and x, are in the tangent plane, we get
the following relation for the second fundamental form.

1=2(x(u",u?),n) = (xi1,n) (du')* +2 (x12,n) du' du* + (x2,m) (du*)?,

here denoting the coefficients b1; = (x11,n), bio = (X12,1) and by = (X2, M) .
The matrix representation is given by

biy b du'
- 1 2 1 b
11 = (du du ) (b21 b22> <du2> .
Where the coefficients of the second fundamental form are represented through the
following matrix
(b b2

g = (3 32).
The second fundamental form is a quadratic form, defined on the tangent space.
Moreover, a surface can be uniquely determined through the coefficients of first
and second fundamental form. A general description and interpretation including

advance applications of the fundamental forms can be found in an extensive work
of |Chase[14] and |Pressley[96].

Definition 3. If the fundamental forms are vanishing at a point, then the surface is
planar at that point.
If coefficients of the second fundamental form are zero, then

XN =X Ny =Xy N =Xp -1y =0,

here, n1 =n,;1 and ny =n 2. As we know that X| and X, are linearly independent
(e.g., see definition and span the tangent plane this implies that we must have
n and ny orthogonal to the tangent plane [I4)]. Since n| and n; lie in the tangent
plane. Therefore, ny = ny, = 0, which implies that the normal vector n is constant.
Then (x-n), =X -n+x-0=0+0=0, similarly (x-n),, = 0. It follows that at
p the surface is tangent to the plane up to third order.

2.2 Differential operators on surface

We are interested to give more insight into the formulation of differential operators
on surface I' in the local coordinates. Now having on hands the surface properties
based on fundamental forms, we will define and derive few useful differential oper-
ators on surface. Using vector calculus we can calculate gradient and divergence on
surfaces for a differentiable function that will enable us to define Laplace-Beltrami
operator Ar on surfaces.
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2.2.1 Integration over the surface

To integrate over the surface I', we define a differentiable function f using atlas on
a surface. Let f: ' — R, using the fundamental forms we can measure the length
of a curve on the surface by integrating the length of derivatives over an interval
I € R. The norm of the vector in the parametric space w.r.t. metric induced by ¥.
The integral of a function is weighted by the infinitesimal area elements du'du?.
Where to integrate a function over I', we have to deform the area accordingly. The
area spanned by x; and x; in parametric space is mapped to the area ‘X] X xz’ on
the tangent space of the surface.

(X1,X2) = |x1|[x2|cos®.

‘X] X Xa| = [X1[x2[sin®.
Where O is angle between xjand x;, simply squaring and adding equations (2.7))
and (2.8), we obtain

(x1,%2)° + [xg ><X2‘2 1
- )

[x1[?[x2|?
plugging the coefficients of the first fundamental form (2.4), we get

‘xl X Xz‘ = \/|x1|2|x2|2 —(x1,%0)* = Vder4.

This calculation shows that the mapped area on the tangent space is related by
coefficients of the fundamental forms. Thus the integration over a coordinate chart
produce area defined by

42%:/1 2f(ul,uz) det (u',u?)du' du®.

This integration is independent of parametrization and can be extended to the whole
space [12} 49]. In addition, it is possible to define an inner product on the space of
square integrable function on the surface.

(f,h) = /u1 /uzf(ul,#)h(ul,uz),/derg(ul,MZ)dulduz. 210

Now we will use the integration over surface induced by metric ¢ to derive
and calculate gradient, divergence and Laplace-Beltrami operators on the surfaces
(12,15} 149, [103]].

2.2.2 The gradient on surface

The gradient maps a function p : R? — R representing the direction of greatest in-
crease in the function p and its magnitude corresponds to the slope of the function.
Thus the gradient in the Euclidean space R¢ is defined as:

ap ap\’
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The gradient of a function is also used to determine the directional derivatives dp,,
at a point p in the direction of the vector £ € R? :

(Vp(p).&) =dpy(£), VEER 212

A simple way to calculate the directional derivative dp,(§) is by directly observing
its behavior over variable T

d
| p(p+TE). 213

dpp(é) = dz

In a more general way, the generalized gradient for a surface using definition 2]
given that y(7) : (—¢€,€) — I’ C R fulfill the criteria y(0) = p, then 7(0) =& € T,,T".

dpy(&) = |, p(H(D)). 214

drt

Now this equation can be used for Riemannian manifold with metric 4. Thus the
directional derivative dp, (&) exists and fulfilling the conditions of 7. We can define
gradient on manifold after reconstructing equation (2 into manifold notations,
assuming that the function p € I'| the gradient is characterlzed by the following
relation

G (Vrp(p).€) =dpy(§), VEET,T.

To fulfill the above relations, this equation implies that one gradient exists for all
& € T,I'. Now to calculate the gradient on hypersurface, we define a local chart
with basis d;. Since the gradient is an element of the tangent space we can write in
the linear combination of the basis functions

d
Vrp = Z air?i
i=1

similarly it is true for the £ € T,,I"

since the directional derivatives are linear, now using the local coordinates u' we
can define as

d d
de(E) = Zg dpp Z au’ 2.16

The equation (2 can now be used to determine the values of the coefficients a'
by starting from equatlon (2.13),

VFP 5 Z gl]éla/ 217
i,j=1
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d _yad? 2.18
pp(g)_25 aui7 .
i=1
therefore, using equations (2.15), (2.17) and (2.18) we have
d ) 9P
Z&M:§§\Mj 219
ij=1
This implies that
9p
du!
-
G.a=|"1, 2.20
)
oud

where a = (a',...,a?)". After inverting the matrix ¢, the elements of the inverse

of g;; are g"/ we obtain an expression for the elements of a

a=g’l. ||, 2.21

thus we get the coefficients a' as:

a=3 g5 2.22

Finally, combining these terms, the gradient on the surface Vrp is define through
the following relation:

d ) ) d ap'
Vrp = Z a'd; with d = Z g”?. 2.23
ij=1 ij=1 u

2.2.3 The divergence on surface

The divergence is physically assumed as flow of material. It is an operator defined
on a vector field £ : RY — R, it converts a vector field into a scalar field. The
formula in a usual R? is given by

d 0 éi

ve=y)

=

2.24

u’

S5)

In general, the divergence at a point measure the suction and injection. Actually,
it interprets the flow field, where the direction and the control volume of the flow
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in a certain point is defined through the corresponding vector. Then the divergence
operator will compute the current change in volume under the influence of vector
field &.

Let p is a smooth function with compact support over a vector field &, the
divergence is defined as the negative adjoint operator to the gradient [[12} 49, [103]],

For integration over surface in R?, we have
/ p-divedx — —/ (Vrp, &) dx. 2.26
R4 R

The equation (2.26)) now can be changed into manifold by introducing ¢ (Vrp, &)
instead of (Vrp, &) and replacing dx = Vdet9dT .

/ p-divéVdet9dlT = — / G (Vrp, &) Vdet9dr . 2.27
T r

d
/ p-divéVdetddl = / Z " Vdet4dr . 2.28
r :1

Using integration by parts
d
/p -divevder%dl = /ﬁzf,- (zj"-\/dezg) ar. 2.29
r r j=ou

If the support of all p contain in the local coordinates, the formula for the diver-
gence of a vector field on the manifold is given by

d
divg = det%z ( Nderd). 2.30

This expression is independent of parametrization.

2.2.4 The Laplace-Beltrami operator

The Laplace-Beltrami operator [[12}, (15149} [103]] on surface is defined for a contin-
uous function p € C? is define through the following relation

Ar (.) = diVFVr(.) R

using equations of the gradient (2.23) and the divergence (2.30) on surface, the
Laplacian in the local coordinate is define as follows:

d 0
A = Vdetd - gV . — ). 2.31
rP \/det Z‘ ( ¢ & 8u’>
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This is the parametric representation of the Laplace-Beltrami operator. Roughly
speaking, the Laplace operator can be seen as a generalization of the second order
derivative p”. Using finite difference this derivative defined as

. 2.32

v . px+h)—=2p(x)+p(x—h)
pr = Jim 22

In numerical community, mesh is used as a discrete counterpart of the continuous
surface, the Laplacian operator is applied to each vertex on mesh. For example for
a function p defined in (2.32)), the vector value represents the difference between
the vertex and its neighboring vertices. Using the vectors representation, we can
construct mesh of the surface. In addition, by constructing the location and set of
vertices we can obtain a smooth deformation of the mesh.

Lemma 2.2.1. The gradient on surface Vrp(x) in equation depends only
on the values of the function p on the boundary T N U, , where Us C RI*! is a
neighborhood of x.

Proof. The proof of the lemma follows from [29]], here it is sufficient to show that
p is identically equal to zero on 'NU,, = Vrp(x) = 0.

Define y: (—€,&) — RY*! such that y(0) = x,y(—€,&) C T NUe and Y (0) =
Vip(x). Since p(¥(1)) = p(y(x)) = 0,Y]| < &.

This leads to:
0=Vp(x) Y (0) = (Vrp(x) + Vp(x) n(x)n(x)) - Vrp(x) = [Vrp(x),
this concludes proof of the result. O

Now we will derive and discuss formula for curvature established from the
geometrical properties such as the fundamental forms §2.1.1H2.1.2]

Lemma 2.2.2. (Curvature in terms of fundamental forms)

Let the natural parametrization of a curve by x(u'(s),u?(s)), n is normal vector
and X, and X,z are derivatives w.r.t. u' and u?, for simplicity we will assume X,
and Xy respectively. Calculating derivatives w.r.t. arc length s, we have

du! du?
'~ xy M(S)JrX2 u”(s)

X ds ds ’
du'(s) 2 du' (s) du?(s) du?(s) 2 d’u'(s) d’u?(s)
"
= 2 .
X Xll( ds > X T s +X22< ds > e e

Let’s assume X' (u!(s),u*(s)) = % and x" (u' (s),u*(s)) = %, since x| and x; are

in the tangent plane i.e., X1,Xo L n. Now taking inner product with the normal
vector n, we have

u(s)\? u*(s) du' (s

(x",n) = (xu,m) (dd(s)> +2<X‘2’">dds( )ddi )
u2 s 2 2142 s 2u2 s

+ (x22,m) <dds()> + (xq,n) d dsz( ) + (xp,m) d dsz( )
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Since x| and x; are in the tangent plane. In consequences, the last two terms will
vanish and X1, = Xp1, thus we get

1 2 1 1
<X//,n> _ <X11,’n,> (dudis)> —|—2<X12,’n> duds(s) dudﬁs)
di(s)\
+<X227n> ( d.S(' )> .
Using coefficients of the second fundamental form §2.1.2]
du'(s) 2 du' (s) du?(s) du?(s) ?
! =b 2b b
<Xan> 11( s >+ 2= s -1-22( ds >7
1
(dud aw?) (011 D12 (4
(X', n) = bar_b) \du 2.33
e ds? ’ :

Since X" has two components, the coefficients with X; for i = 1,2 are in the tangent
plane and x;; for i,j = 1,2 are in the normal plane. The tangential component
brings the geodesic curvature and the normal component provide the normal cur-
vature. The dot product of equation (2.33) results a useful relation of Frenet-Serret
formula [44)], X" = kn, where n is the normal vector to the curve.

As we know for the curvature
K (n,n) = x|n|[nlcos(6) = &,
we have the following relation,

al Ba
= . 2.34
K ds?

Through the natural parametrization of a vector curve,

ds = ||dx(s)]| = \/{dx,dx),

ds = \/<x1du1 +xodu?, x1du' + xdu?).

In the simplified form

ds =\ (x1,%1) (dul)? +2 (1, %a) du i + (x3, %) (du2) .
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ds* =a"%a, 2.35
combining and , we have the relation for the mean curvature

al Ba
n— ", 2.
K TGq 36

Where a” is the matrix of the parametrized vectors and “a'” is the respective

transpose matrix. |Goldman, [44|] articulated the following form of the mean curva-
ture:

H = trace ((2) (g_l)) .

Where & and 4 are coefficients matrices of first and second fundamental forms
§2.1.1H2.1.2] respectively.

Lemma 2.2.3. (Weingarten equation)

Let T is a surface with a parametric representation x(u',u*) and the first and sec-
ond fundamental forms coefficients are given by gy and by, for i,k = 1,2. Then the
partial derivative of the surface normal vector ny satisfies the following relation,

ng = —bix; for ik=1,2. 2.37

Proof. Since n is unit normal

X1 X Xp
n=—— .
[[x1 X X2 |

We have for the normal vectors,
n-n=1,

after taking derivatives it can be perceived that n; is in the tangent plane. Thus we
can express them in the linear combination of vectors x; and Xj.

ny = —Cix; for ik=1,2. 2.38
It follows from and definition of the second fundamental form coefficients
| = §IC} = g ginCy = gVx; -x,C}  for k=1,2,
where 7 is a dummy index. Thus
Ci = g"x; - x,Cp = g"'xj -y = —g"by = —b, for k=1,2. 2.39

Using (2.39) in (2.38) concludes that the partial derivative of surface normal vector
satisfy Weingarten equation. O
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2.3 Transport equation on surface

Definition 4. (Surface velocity function)
Let us introduce a time parameter t, to define the evolution of surface. Consider
I'(¢) as the surface at any time t with coordinate X, and assume for d =3,

v: () x [0,00) — R?
is a vector field on I'(t). The surface evolution equation can be obtained as:

% =v, t>0. 2.40
ot
Where v(x(u',u®,t)) specifies the velocity of the each point of surface known as
velocity function. In general, v may depends on space variable and the mean
curvature. For simplicity, the surface evolution is transformed along the normal
direction assuming that all forces are acting in the normal direction.

The transport of the physical particle in the system model through a generic
transport (advection/convection-diffusion) equation. The derivation is established
from the assumptions of [Stone| [L16], | Xu and Zhao| [139] and [Huang et al.| [51].
The transport equation on a simple domain €2 is relatively easy to drive as compare
to those on the surface I'. In case of surface few extra terms appear due to evolution
of the surface. The scalar conservation law for surface partial differential equation
discussed here is also based on assumptions of |Dziuk et al.| [31]].

Consider an interfacial element I'(¢) which lies on R?. The surface is continu-
ously deforming and embedded in R?*!. For d = 2 assuming that the interface is
deforming with the motion of surface active agent which remains on the interfacial
element. Let p the mass per unit area, from conservation laws we have

i ([, par) = o
dr \Jr()

where dA is the surface area. Let X is a fixed point of the initial configuration
and define two new independent parameters (u',u?). The parametric form of the
interfacial element at any time ¢ is given by ['(¢) := {x(u',u?,¢)|(x',x*) € Ag}. For
a fixed domain like Ag the interfacial element is ['(0) := {xq(u!,u?)|(u',u?) € Ao}.
This derivation of transport equation is based on the Lagrangian approach with
the evolution in time interface. Assume that the deforming interface is sufficiently
smooth and differentiable so that the unit tangent vectors and corresponding normal
vectors 1 can independently be expressed as:

Jx Jx Jx Jx
57 53 TI X T OX o OX
n= 25— 2% and n— — Do (242
ox 9x [T X | |ox o ox
du! du? ul 7 Ju?
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Since the interface immersed in a three dimensional space and moves with velocity
v, from definition @) v is defined by

ox(u',u?,t)

_ 12
5 =v(x(u ,u",t)). 2.43

An initial fixed point of reference is x(u!,u?,0) = xo(u', u?).

Lemma 2.3.1. The material time derivative of the surface element is defined as

d|dx Jx Jox oOx
—|=— X ==|=(Vr-v)|=— X =—|. 2.44
dr | oul i (Vr-v) ol " o
Where the surface divergent is defined in [ 16] by the following relation
IJx || Ix
oul | |92
Vewe (2% 5y OV p, ) 122 ] 245
a1 In OX o %
du! du?

Where by and by are the tangential unit vectors normal to T| and T, given by

b]an’L'] and szszn. 2.46

Proof. Let a, b, c and d denote the time dependent vectors in RY, for d =3 we
can use the following identity

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c). 2.47

Since n-n = 1, we have

dn
2 .n=0. 2.48
dt "

As we know that the cross product of two vectors is a new vector perpendicular to
the plane

ox  0x ‘ Jx  0Ox

Using Eqs. (2.48)- (2.49) and definition 4] with chain rule in the LHS of Eq. (2.44)),

we get
_ o d(ox 0%
- dr \ du' = Jdu?
— . 482)( Xﬁ _|_ . éx aZX
= M\ Grau Ca2) T\ oul " 9o

- M\ 0w "o M\ C o)

Jx  Ox

d|ox 0%
Jul = du?

dt
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2.3. TRANSPORT EQUATION ON SURFACE

In the above expression, using definition of the normal vector (2.42)) and applying
the identity (2.47), we get the following equation

9x 9%
dul " Jdu?

d
dt

B

- Jx Ix
‘WXW

, 2.50

where

Ox dv [9x\> dx v [Ix\> Ix Ix [dIx dv Ix v

From definition of the surface divergence (2.45)), we get

d|dx Jx
from equations (2.50) and (2.52)), we have
B
Vrrv=———. 2.53
Ix Ix 2
aul X 92
O

Remark 1. In this remark we will show this definition of the surface divergence
defined through equations and is consistent with the following equa-
tion.

Vrrv=(I-n®n)V-v 2.54

For simplification in notations we assume z¥

as the parameter for surface with
2! = u' and 2 = u? and the third parameter 7> is used for the parameter along
the normal direction. As we used X' as the Cartesian coordinates and e; the cor-
responding unit vectors for i = 1,2. The position and velocity vectors are defined
by
x=u'e;, v=vie, fori=1,2.

We used the co-variants and contra-variants notation to deal with the non-Cartesian
coordinates.

gk:aleh i=1,2and k=1,2,3. 2.55
adzk
k
gk:a—?ei, i=1,2and k=1,2,3. 2.56
du'

The orthogonality property is given as:

g"'gj = 51’:, 2.57
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here 51.] is the Kronecker delta function, comparing with , we have

n=2L =122
g1] |&2]
2 1
g g
b= b=
g%’ 'l
3
no 8 _ 8
‘83‘ ’g ’ )

Using equations —([2.56) and keeping in view that e; are constant unit vectors,
we have

d(e;-v) J(e-v) IF dv d , Jv

V.ov= A= == = . 2.58
R W o w9k ou & oF
Similarly, we have
v v
Vo=—-—¢=—-—g 2.59
U= ou 98

using the orthogonality property and expanding the dummy index k =1,2,3,
we have

dv
n-Vo-n=n- Wg nm=mn-:

v

3

= 2.
=g PEL 60

Using equations (2.53), (2.56), (2.58) and ([2.60) in equation (2.54) will give
v, dv 5 dv 5 Jdv

V-v—n-Vv-n= gﬁ+g 82+g EE g.giZ3
v v
1 2
= by — by —. 2.61
&' |Ig1]b2 aﬁﬂg | 182| b1 P
From equation ([2.57), we have
|g1|]g1]1'1-b2:|g1|\g1\12-b1 =1 2.62

Using relations from (2.46)), we have
T-by=1-(hxn)=n- (T XT) =|7 X T,
and
T-bhhy=n- (1 xn)=n-(71 X)) =|11 X .

Through these calculations, we have

o
Jul

1

— 2.63
|T1 X o]

18'81] = [8%]Ig2] =

8u2 /’ 8u2
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2.3. TRANSPORT EQUATION ON SURFACE

Plugging the value from equation into equation and keeping in view
the equation (2.54), we have

9x
du!

ox  0Ox

V-v—n-V'u-n:H /‘au B

9x
du?

} (bz % |y ‘9”)
8 8’52

which concludes that these two representations are consistent.

Lemma 2.3.2. Now fto derive the transport equation for p on surface using the law
of conservation of mass (|2.41)), we have

d
0 = — / dA |,
dt<r<r>p >

d Jdx ox
= — t —— | du'du®
o L PO o |
D 8x ax 8x ox
= — du'd —— |du'di?
/r(o)Dtp ul " 92| “*/ dt aul " iz |
where the usual material derivative is defined as:
dp
“p= v
P~ o VP,
Using equation and after taking common, we obtain
ap Jx  0x
0 — /(0) (a—i—v Vp +p(Vr- v))‘a X o duldu,

_ Ip
= /F(t) (at%—v-Vp—l—p(Vr-v))dA.

Since I'(t) is arbitrary, we obtain the the following equation

d

a—[;+v-Vp+p(Vr-v) _—
Using the fact that the surface active agent transport only along the interface, so
the tangential component vanishes as we know that the gradient and the normal

vector are in the same direction, the above equation becomes
0
8—’t’+v-vpp+p(vp-v) )

This lemma leads to an important result known as Leibniz formula for partial
differential equation on surfaces.

Lemma 2.3.3. (Leibniz formula)
Let us assume that p is a function define on the surface I" such that the following
equation holds

d
o o= [ @rp+pVr-v). 2.65
dt Jr r
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where 9 pis given by

a’p = %’ZJerp. 2.66

As v = Vn + vs are the normal and tangential components of velocity, then we
have

Vr~’lJ:Vr'(VTL+’lJS):VFV‘TL—FVVF-’I’Z-FVF-vs. 2.67

Since VrV € TT which is perpendicular to nv, thus the first term will vanish. As we
know the mean curvature is define by H = —Vr-n, (see remark[2.3]). Thus we get

the following form of equation (2.67)
pVr-v=—-VHp +pVF-(’05). 2.68
For the second term v - Vrp, we have

v-Vrp:(Vn+vS)Vrp:Vn-Vp—i—vSVp:V:;Z—i—vS-Vp 2.69

in case velocity is only along the normal direction, then we have v=Vn (i.e., vs =
0), thus finally we get v-Vrp = Vg—fl

d B ap ap
dt/rp—/r<at+Van—pVH+Vr~(pvs)>. 2.70

A similar proof of Leibniz formula on parametric surface can be found in [20]].

Theorem 2.3.4. Let us assume that T' C RT is a hypersurface (e.g., see definition
with smooth boundary dT, for p € C' from [29]], we have the following relation

/VppdA:/pHndA+/ pnyrdA. 2.71
r r or

Where H is the mean curvature and nyr is the co-normal vector which is normal
to the boundary o1 and tangent to the surface T'.

Proof. Let p is a function and U is the neighborhood of I", then

applying chain rule
813 d+1 aak

Here 7 is the tangential derivative along surface, from equation (2.13) for k =
1,...,d, we get

i\T:T{]p(}/(':)). 2.73

D = dpp<€> - dr
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From (2.13) the manifold representation reads as:

D=9 (Vep(p),€) VEETT. 2.74
Using (2.72), we have
It 9
o= o (X = d(mu() ) = 8 = (0)me(x) —d(x) Hulx).

Here 6" is the Kronecker delta function and H is the mean curvature, which can be

calculated through derivatives of the normal. The matrix (akf ) jk=1,....d+1 Maps any

vector along the tangent vector. We have

VP () = (I —d()H(x)Vrp(a(x)).

We obtain that Vp = Vrp(x) for x €T, using Gauss theorem for p on the -
neighborhood of U, , we have

Vﬁdx:/9 prgy, (x)dA(x).
Ue

Ue
We have that dUe = I'(e) UT'(—€) U.# (g), where .4 = {x+rnp|s € IT,r €
[—&.e]}
1 1 i
28/(15 (I —d(x)H(x))Vp(a(x))dx = 28/1_(8)p(x)n1—(x)d,4(x)
_218/r(_8)p( x)nr(x)dA(x) + 218/ ()p(x)nap(x)dA(x), 275

Where n is the normal vector, nyr is the co-normal to I and both do not depend
on €. Taking limit € — 0 on both sides of the equation, we have for the left hand
side as:

lim / (I — d(x)H(x))Vp(a(x))dx = /F Vip (x)dA(x). 2.76

e—=02€ Ju

The limits of the right hand side is given by

28/ B () (x)dA (x /p () dA(x) 277

For the last term on the right hand side of the (2.75) as the integrand does not
dependent on €, we have

Jim / B (x)nar(x)dA(x) / p(X)mar(X)dA(x). 278
e—02€
Here equations (2.76)), (2.77) and conclude the required result. O
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Remark 2. In case of compact hypersurface I' does not have a boundary i.e.,
dl" = 0, the last term in the right hand side of vanishes and we get

/ VrpdA = / pHRdA. 279
r r
Theorem 2.3.5. (Green formula on surface)
/Vrf- VrgdA = — / fArgdA +/a fVrg -nyrdA. 2.80
r r r

Proof. Using theorem (2.3.4)) and the summation convention that are appearing for
double indices, we have

/ Vrf-VrgdA = / 9if%igdA = / 2:(f%:g)dA — / 2,28
r r r r
:/f.@ianidA—F/ f.%gn,;ridA—/fArgdA.
r ar r

Since ;g is in the tangent plane, thus Z;g-n = 0. Where ¥, is tangential deriva-
tive given in (2.73)) and (2.74). This formula is known as Green’s formula on the
surfaces and concludes the result. O

2.4 Level set method

We used the level set methods to describe the evolution of hypersurfaces. The the-
ory of level set methods utilize the view point of Eulerian partial differential equa-
tion, instead of looking at boundary motion from a natural geometric Lagrangian
perspective. In consequences, a powerful numerical technique for analyzing and
computing interfaces emerged that can undergo through topological changes. In
the current work the level set methods involve to solve a problem of interest on
surface I". The interface is represented by the zero-contour of the level set function
¢ (see figure 2.3)). The technical strength of the methods come from its ability to
manipulate and change in topology of the interface. Using an implicit representa-
tion of a surface, its evolution can be written in terms of partial differential equation
which will be used to define interface of the surface. The evolution of the interface
of I' can be captured through level set methods. Assume that ¢(x,#) represents
the level set function and the interface separating one region from another. We
assumed that I'(r) C Q is a compact smooth connected and oriented hypersurface
in R?, for d = 3 there exists a smooth level set function

<0 ifxisinside I'(z),
o(x,1)=¢=0 ifxel(), 2.81
>0 if xisoutside I'(z).
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The gradient of the implicit function ¢ is defined by

T
vo- (26,28 20)"

dx17 9x2 9x3

The gradient of ¢ is perpendicular to the isocontours of ¢ and point in the direction
of an increasing ¢ . The zero-level set or zero-isocontour (¢ = 0) shown in figure
is the interface of the surface. For any point in the zero-level set or zero-
isocontour of ¢, the V@ evaluate a vector that points in the same direction as the
local unit normal vector n to the interface.

zero level set

d(x,t)

Figure 2.3: Isocontours of level set function @ (x,7) where I'(¢) is represented as
zero-level set function. The left picture is showing that each point on interface is
moving along the normal direction.

Definition 5. (Normal vector)
A vector n € R4 is called a unit normal vector at the point p €T if n L T,I'.
The normal vector through the gradient of the level set function ¢ is defined by:

= Ve 2.82

Vol
Since the implicit level set representation of the interface embeds the interface in
a domain of one dimension higher [91]. It can be helpful to get more information
through this representation. For instance, instead of defining the unit normal n
(2-82)) for points on interface, we can extend it from the €-neighborhood of the
interface I to the whole domain Q.

2.4.1 Formulation of level set

The surface evolution in level set technique is formulated as a partial differen-
tial equation. A discretization is required to numerically simulate the continuous
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problem. To achieve a numerically stable solution the stabilization methods have
to be incorporated into the discretization. The level set technique is uses to ad-
dress the problem of moving closed surface denoted by I' in the normal direc-
tion with a velocity function v. The function v varies its values depending on
local or global measurements. Here v is the velocity of the interface which can be
determined through forces acting on the surface such as chemo-attractive/chemo-
repulsive forces, bending of surface due to curvature and etc. The value of v can be
described analytically as well. The function ¢ is used to capture the motion of the
interface in time. In this scenario, the motion of the interface is not in its tangential
direction, for simplicity the tangential motions can be ignored. The surface evolu-
tion should be independent of the parametrization as well. Let us assume I'(7) is
the family of closed surfaces, where ¢ represents the time variable and x(x', x%, x*)
parametrized the surface. Keeping in view the notion of moving interface for any
physical quantity p on an evolving surface can be formulated in the following
equations
dp

§+'v'V1—p+p(Vr-v) = 0 where peI(r),

with an initial condition

p(x,1=0)=py where pyeT,

here v is the velocity of a point on the surface in the normal direction 7 which
is defined at each point on the surface I'. Instead of choosing a parametrization of
the surface I', the idea behind the level set formulation is to define the interface
implicitly as the zero-level of ¢ :

(1) = {x|¢(x,1) = 0} . 2.84

The equation of motion derive after looking at a particle on the front with path
x(1). The level set function ¢ (x,7) is vanishing at the position of the particle as the
particle is part of the surface I' itself:

o(x(t),r) =0. 2.85
Using chain rule in equation (2.85)) the derivative in time of ¢ is:

¢ dx
—+4+V t),t)-— =0
where v = % is the velocity of the interface define in equation li Thus we get
the following relation for the level set:
¢
— Vo =0. 2.87
ot Ve
The equation (2.87) does not explicitly evolve the parametrized surface but de-
scribes the change of a function in time. This is defined in full space dimension

2.86
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through initial conditions (2.83). The level set equation not only evolves the inter-
face I' in time, which is assumed to be the zero-level set of ¢ but in general evolves
all isocontours define by ¢. Hence the function ¢ has to be extended from the em-
bedded surface to the entire space. The numerical construction together with finite
element method will be part of further discussion. The mathematical formulation
construction of scheme and numerical implementation of the level set method in-
cluding the historical note on origin of the technique can be found in [108H111].
The potential applications of the level set methods include, computational geome-
try, fluid mechanics, combustion, grid generation, computer vision, seismic analy-
sis, material science and manufacturing of semi-conductor, an extensive literature
review can be found in [1} 18} 20, [23, 91, (108, 111} [128]].

Level set as sign distance function

The implicit surface is described through a function ¢ (x,¢) on the surface. The
function is vanishing at the interface known as zero-level set ¢ (x,7 = 0). The values
at all other points are arbitrary because they have no influence on the position of
the surface. In order to achieve the best computational stability, we take care that
@ (x,t) is not too shallow or steep. In results, ¢(x,z) can be chosen as the sign
distance function. To allow a partition the sign is set to positive on one side of the
interface and negative on the other side, the surface is assumed to be closed and
orientable.

—dist(x,T"), ifxisinside I'(r),

O(x,1) =14 =0, ifxeI(r), 2.88
dist(x,I"),  if xis outside I'(¢).

Level set method is handy during surface evolution, the topological changes occur
because of the evolution are not necessary to model explicitly. It is obvious that the
topological change of surface I" does not imply the topological change of ¢ (x,?).
We can describe several geometrical entities in terms of level set function, such as
velocity vector V defined in remark (8), the normal vector n definition (5) and the
mean curvature H §(2.5). The numerical state of the art for computing the distance
function includes, the sweeping methods [[104], the fast marching technique [[110]
and the closest point method [71]].

Remark 3. If ¢ = d(x,1) is signed distance function from X to T to be defined as

—inf|x—y| ifxisinsideT,
yel'
dx)=<=0 ifxerl, 2.89
inf [x —y| if X is outside T,
yel'

then without loss of generality, we have

Vo (x,1)|=1. 2.90
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Remark 4. The result can be satisfied in a general sense. Since it is not
true for all points which are equidistant from at least two points on the interface.
Although, mathematical equations that are true in a general sense can be used in
numerical calculations as long as they do not destroy the numerical method entirely
when they fail.

Example: A signed distance function is an implicit function such that |§ (x)| =
d(x) for all x. Let us take an example of a signed distance function as a represen-
tation of the unit sphere is a 2-D surface embedded in R?

¢(x) = [x[|*—1=0, 2.01

where ||x||> = (x")2 + (x?)2 + (x*)2. Note that property (2.90) is true for the signed
distance functions (2.91)). It is well understood that the signed distance function
enables us to find the closest point a(x) on I" to a point x € R4+ by taking

a(x) =x—¢(x,t)n. 2.92

Now we define an e-neighborhood around the interface to make the closest point
mapping unique. Let U, be an open set in R?*! is a volumetric neighborhood
around the interface, can be defined like

Ue = {x € R""! such that |¢(x)| < €}, 2.93
where € is small enough to guarantee uniqueness of the mapping
a(x):Ug —T.

This mapping allows to introduce a global coordinate system around the interface
of the surface I" as for every point x € U, we can assign the Fermi like coordinates
¢(x) and a(x). Here, we have to notice that n(x) = n(a(x)) for every point x € U.
Also, any function & defined on I can be extended to U as h.(x) = h(a(x)).

Corollary 1. If ¢ = d(x) then n = V¢ is an orthogonal vector w.r.t. surface T.

Let us assume x : Us C R? — T is a coordinate patch for d = 2, define (u',u?)
as the coordinate variables of U, with definition of the level set function, we have

o (x(u',u?)) =0, V(u',u?) € Ue.

Differentiating with respect to ! and u”, we have

¢ = (V. x1) =0,
¢ = (V,x2) =0.
Since x is a coordinate patch x; and x, are two linearly independent vectors in 7T

As V¢ is perpendicular to both of them, this implies that it must be in parallel to
the normal. Finally normalizing and choosing a conventional sign we obtain the
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inward and outward normal vectors to an evolving surface I'(¢) expressed through
the level set function:

Now = Vo /|V|. 2.96

Such that |V¢| # 0 and a projection 7 on I'(¢) using equation (2.82)), we have

Vo V¢
Ir=I-nn=1-—— ——. 2.97
Ve[~ [Vl
Zr is the projection onto the tangent space TT". In case if ¢ (+) is chosen as a signed
distance function (2.88)) then |Vo| =1.

2.5 Differential operators and level set approach

The purpose of this section is to derive the most basic results for differential op-
erators on surface. These results can be useful in finite element discretization of
the surface defined PDEs. The timely use of these remarks will reduce the math-
ematical complexity. In case of such a physical model using these constraints the
numerical implementation of the system will be similar to those of the Euclidean
domain.

The gradient and divergence for a scalar function £ on Q and a tangential vector

field £ on I", can be obtained from eqs.(2.23) and (2.30) as:
Vil = PrVE=(I-n®n)VE 2.98
Vr-é&€ = VE=(I-n®n)V-€£ 2.99
As Vr and Vr(-) denote the intrinsic gradient and divergence operators, respec-
tively. These operators are well-defined for any scalar and vector quantities on
surface I'.
Consider V€ denotes a vector within R¢ that is tangent to the surface I, in

case it is constant along the normal. The gradient along the surface give results of
usual gradient operator, stated in the following remark.

Remark 5. Consider function & € R? for d = 3, it is constant along directions
normal to the surface. Then we have at the surface,

Vi = Ve

Proof. Since

Vré = PVE.

Where the projection operator on I is define as:

Pr = (I-n®n).
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Plugging equation (2.102) in equation (2.101), we have
Vré = (I-n®n)VE. 2.103

Using the following formula for dyadic tensor product

a®b-c = a-(b,c) 2.104

we get
Vi = VE—nen-VE, 2.105
= Vé&—n-(n,VE). 2.106

Where (n,VE) = V,,& . Since & is constant along the direction normal to I", this
term will vanishes, consequently we have

vré = V¢ 2.107

This statement elaborate that a function that is constant in the normal direction n
only varies along the surface I".

O

In the following result we will show under certain conditions, the divergence
defined on surface get characteristics of the usual divergence.

Remark 6. For any vector field € € R? that is tangent at surface T, and also
tangent at all surfaces displaced by a fixed distance from I'. In other words, all
surfaces defined as distance functions in terms of level sets, then the divergence
defined at the surface

Vi€ = V.¢ 2.108

Proof. Since the projection operator to the surface is define by

Pr = I-nen

Vr-§ = (I-n®n)V-§
Using the associative property of dot product [S1]]
Vré = V-E-n@(V-En),
since £ € TT then £-n =0, we have
Vr§ = V&

This condition says that a flux directed along the surface I" can only spread outward
in the surface directions. O
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Now we can define the Laplace-Beltrami operator (2.31) on I'(¢) . In general, it
is the gradient of divergence of a function on the surface, given by

Ar€ =Vr-Vré = V. PrVE.

Remark 7. Assuming that the surface divergence of a vector equal to the regular
divergence of its projection Pr to the curve, then the Laplace-Beltrami operator
can be defined as:

Vr-Vpé =V-Vré =V - PrVE. 2.113
Proof. The surface gradient operator is defined by:
Vr(e) = (I-n®n)-V(e),
= V(o)—(n®n)-V(e),
= V(e)—=(n-V(e))-

n.

Now to show the following quantity
Vr-Vr§=V-vrg,
we have

Vr-§ = (V=(n-V)-n)C,
= V{-(n-V)n-{,
= V{-nVn).

Let’s assume { = V& and substituting this value, we have

Vr-Vrg = V-(Vrg)—n-V(n-Vrf),

here taking the second term n -V (n - Vr€) , we have

(n-Vrg) = n-(VE—(n-V&)n),
= n-VE—(n-Vé)n-n,

= n-Vé—(n-V§),
= 0.
Thus we get
Vr-Vré = V-Vr&.
This concludes the remark. O
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The velocity vector V (x,7) can be calculated using the level set function ¢ (x(z),?),
in case the level set function is given, we can easily obtain the velocity vector using
the following remark.

Remark 8. 7o calculate the velocity V (X,t) vector in terms of the level set function
O (x(t),t) let us consider a curve ¢

c=0(x(r),r) V x(r)eI(r). 2.114
Differentiating w.r.t. time variable't’ and using definition (E])
0= ¢ (x(¢),1) +x:(1)- VP (x(¢),1),

0= 4i(x(1),1) +v-VO(x(1),1).

Since surface is moving in the normal direction, v = Vn and using definition of
the outward normal , we get

Vo(x(1),1) - Vo(x(2),1)
Vo (x(1),1)] '

The velocity in terms of the level set function §(X,t) as:

_ ¢t(x>t)
V(x,1) = Vo)

The remarks [ and [0 use level set formulation for simplification of PDEs de-
fined on surface. These results are useful in mathematical formulation and FEM
discretization of PDEs on evolving-in-time surface.

0= ¢ (x(t),t)+V-

Remark 9. Let ¢ is the level set function ¢ € C* and n is the normal vector; then
the time derivative is define as

Vo (x)|=n-V¢,.

Proof. Using definition (5)) with straight forward chain rule, provide proof. O

Mean curvature

We already study curvature related formulae in here we introduce once
again the notion of mean curvature, which is used for FEM level set formulation of
geometric PDEs. It is used in modeling and computation of the curvature depen-
dent interface motion governed through surface defined PDEs. Several versions of
curvature formula for implicit curves and surfaces are presented by (Goldman, [44].
Another variant of the formula discuss in remark [10]to calculate mean curvature,
can be found in a book by Gilbarg & Trudinger [43, Chap. 14].
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Remark 10. Assume that we have a level set function ¢ € C*(Q) as ¢ : RY — R
and define a curve x : R — RY. The codomain of the curve for d =2 is T, =
{(x",x%)|¢ (x',x*) = r} where r is a constant. The curve X is parametrization by
arc length so, we have ||x'|| = 1. Then the curvature of the curve is define as

H=—Vin=—Vr o

Where ¢ = ¢ (x(s)).

Proof. Let the curve is parametrized by its arc length

%' (s)]] = 1.

The derivative w.r.t. arc length s gives,

d
= 4 (¥ X))
0=2(x"(s),x'(s)) .
As x/(s) and x” () are perpendicular to each others. Assuming x”(s) # 0, thus the

unit normal vector locally defined to the fields x is nn := HE::E ;H Since x parametrizes

the level set function ¢ and V¢ is orthonormal to its level set function, then the nor-

mal vector reads as follows:
X// ( S)

BTN

Since the curvature is defined using Frenet-Serret formula [44]]
H=|]x"(s)|| = [{(x"(s),n)| = 4 (x'(s),n) — x’(s),in
ds ds
as x'(s) is in the tangent plane, consequently,

n= (v,

Since [|n(s)|| = 1, it follows like X'(s) as (n, %n> =0, thus £ n is in the tangent
plane and multiple of x/(s) . So,

Jicrl =[G em)

)

)

thus
| a v
oefao- ke
Now to prove that |Vr-n| = ||4<n(s)||.
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Let us define an arbitrary vector field with differential Z;€ .
£ :RYxRY.

Let (b))%, are orthonormal basis of R, then

d
Vr-€=) (Z&(bi),bi) -
i=1

Since divergence is defined as the trace of the Levi Civita connection, we have

here Z;n is the differential of n, in the above equation the first term is zero as
vector and its differential are perpendicular to each others, which holds due to
extension of the level set function.

o]

Using (2.118)) and (2.120)), conclude the results. O

Remark 11. The surface I is called minimal at a point Xo iff H(Xo) =0, VX € Q.

L
ds

= <x’(s) , jsn> = (xX'(s),%m(s)) + (n(s), Zin(s)) ,

2.5.1 Surface PDEs formulae

The aim of this section to derive few useful formulae for computation of the geo-
metric partial differential equations. These are the Coarea formula the Eu-
lerian integration by parts [2.5.2] and implicit surface Leibniz formula[2.5.3] These
formulae can be found in Dziuk and Elliott [27, 29].

Theorem 2.5.1. This theorem is known as Coarea formula.

Let for each t € [0,T], ¢(t,-) : Q@ — R be Lipschitz continuous and assume that
for each r € (info@,supa®) the level set ', = {x|¢(x,-) = r} is a smooth d-
dimensional hypersurface in R, Suppose p : Q — R is continuous and inte-

grable. Then
Sup.
/ “(/ p>dr:/p|v¢y. 2121
i T, Q

nfo

Proof. Let Q C R for d = 3, ¢ is a level set function and ¢ € C*>(Q) such that
|IV@| # 0 and I', = {x|¢(x,-) = r}. Since |V@| # O this implies that there exists
V.0 # 0. Without loss of generality, we can assume for the case d = 1,2,3 and
V3¢ = ¢x3 # 0.

¢(xl,x2,x3) =,

Gdx' + ¢odx® + ¢3dx® =0, 2.122
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with the condition ¢ (x,7) = 0, from equation (2.122)), we have

dx® = —ﬁ’“ldx1 — f;"zdxz. 2.123

3 3

Since the metric is

(dx")? + (dx*)* + (dx*)* = Volume . 2.124
Using (2.123)) in (2.124), we have

2 2 42 2
(1 + x2]> (dx')? — 2%7;‘2(dxl)z(dxz)2 + (1 + ¢";> (dx®)? =Vol. (2125
x3 3

x3

Where the coefﬁc1ents of the ﬁrst fundamental form are o

1+ ¢2 , 81 =281= ¢¢j’2 and g»n = 1+ . Since the determinant
3

of the first fundamental form is defined by, det(¥) := g = g1 1822 — g3, thus

2
X & AL
(1+2> <1+2 -5 2.126

x3 x3
0 90 |VYl
g=1+ 3+ =) 2127
3 3 %

Since |V - €3] = |¢,3|dx>

sup \V/
/ Q</ ) /p||¢¢’|¢x3|dxldx2dx3=/pv¢|dx. 2128
infg X3 Q
sup
/ Q</r p>dr:/gp|V¢|dx. 2129

nfg

This concludes proof of the Coarea formula on hypersurface. For more general
proof and discussion on coarea formula, we kindly refer to Nicolaescu| [82]. 0

Lemma 2.5.2. (Eulerian integration by parts)
Assume that the following quantities exist. For a scalar function p and a vector
field Q we have

[ VeIVl =~ [ pHniVol+ [ p(nog—n-naan)Vel,
/va)-Qrwr=—/QHQ-nWH/mQ-(nag—n-nagnwm, 2.131

/QVr(t)'QPWW + /QQ'Vr(z)P!W’\:
—/QQ'TZPHWW + /aQQ-(nag—n-nagn)PWM

where nyq is an outward normal to Q.
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o . 2 .

Proof. Let us use the Einstein notations d; = % and o; = ﬁ and derive the
i 1OXj

desired results, following similar procedure like in [27].

Some basic calculations using chain rules and definition of Hessian matrix, we get

Vol = ndud =(2%°¢n);,
Voldinge = 8,-k¢—nk(.@2¢n)j,|v¢]H:—Tr(.@2¢)+n-(92¢)n,

where H is the mean curvature and 22 ¢ is the Hessian matrix of second derivatives
defined as:

%¢ 2%¢ %¢
oxloxT  IxoZ T oxloxd

R 0%¢ 22¢
PRy = | IFoxT o T 9x20xd
oxdox!  Jxddx? dxddxd

This matrix describes the local curvature and 7r(-) is the trace of the matrix, here
we use the summation convention for repeated indices. From definition of Vr in
equation (2.98), we get the left hand side (LHS) of equation (2.130)) as:

LHS = [ Vriyp|Vel = [ 1V6|(Vp—n-Vpn).
Using the standard integration formula on Q
whs) = ~ [ palvel+ [ pan(min, (Vo) + [ pIVl((naa)i—mi(n-nan)),
= I+11+1I,

and the integration by parts in the // term is given by
II= / p (nTr(2%9)+(2°¢n); —n- P*¢nn;) .
Q

Combining / and /I and using formula for the mean curvature, produce the desired
results. ]

Lemma 2.5.3. (Implicit surface Leibniz formula)
Let p be an arbitrary level set function defined on Q such that the following for-
mula exists.

d .
& | P1vol= [@rp+pVry - 0)IVol~ [ pv-malVel. (2133

Proof. On the one hand, we already proved the Leibniz formula in for trans-
port equation on the surface and on the other hand, here we show the implicit
surface Leibniz formula from [Dziuk and Elliott| [27, 29]

d
& [ p1vol= [ pivol+pavel, 2.134
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for the second term in the integrand using the results from equation (2.116), we
have

Vo =n- -V, 2.135
plugging (2.133)) in (2.134), we get

d
E/Qp]Vq)\:/Q(p,W(b]—i-pn-V(f),):I—i-H. 2.136

From remark [8] we have the following relation for the velocity vector V (x,1):

(PI(X?t)
Vix,1) = — %l (2.137)
Vo (x,1)|
Using integration by parts on the second term in RHS of equation (2.136):
1= (pn)vo = — [ Vpeng [ pVren-g - [ pn-ngas,
Q Q Q oQ
= HI+IV+V, 2138

using (2.137)) we obtain
III:—/QVp~n¢,:/QVp~n’;f;|V¢]:/9Vp-nV\V¢|, 2139

from the mean curvature definition and using equation (2.117)), we have

B _ dp Ix
IV_—/QpV-n-@ = /Qer-(—n%gg—/gp’v nHv,

_ HY? vo = [ po.

v
v:_/ pn-nyad = —/ pn-nanV¢:—/ Pn'nagvllvw,
2Q 2Q 2Q W¢|
_ —/a pr-nyanu|Ve). 2141

Q

Using values from equations (2.139)—(2.141) in (2.138)), we get
I1I= /Q(pn) V¢ = /QVp -nV|Ve| —I—/Qp'v-nH|V¢|
- Agpn-nagnvwm.
Now using the Eulerian divergence formula (2.131])

| po-nt|Vo|= [ Vr-(pv) V9]~ [ po-(nan—n-nagn) v9|(2143)
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Substituting (2.143)) in equation (2.142))
[om) Vo = [ Vp-nvivgl
Q Q
+ [ Ve(pv)lVol— [ pv-(nag—n-noqn) V9
Q o0

_ / pun-nyan|Vel. 2144
a2Q
After canceling similar terms from equation (2.144) and equation (2.136)), we have
d n
<[ ovol = [ (pvel+ [ Vp-nvive
Q Q Q
+ [ Vrpo)vel~ [ pvenaaivel. (2145
Since we have

VVp-n+Vry - (pv) =v-Vp+pVry) v 2.146

d
S pvel = [(pIVol+v-VorpVry v,
Q Q
_ /(mpv-nag|v¢|. 2147
hence proved the desired result. O

2.6 Conclusion

We sketched the mathematical formulation including preliminary concepts on sur-
face PDEs. One of the essential parts of this chapter is the derivation of the model
equations to understand the peculiar characteristics of the surface PDEs. We will
study the model in the subsequent part of the thesis, which usually takes the form of
a coupled reaction-diffusion-advection equation posed on a continuously evolving-
in-time surface. We formulated the properties of the level set equation and derive
the most frequently used physical quantities on the surface using the level set func-
tion ¢. We conclude the chapter after deriving large numbers of formulae on the
surface. The notion of weak formulation and finite element method will employ
these formulae for surface PDEs. However the approximation of the finite element
solution remains unanswered, thus finally we searched for solutions in the Sobolev
spaces which are considered to be the natural spaces for solutions of elliptic PDEs
[27]).
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Discretization techniques

The aim of this chapter is to introduce discretization of the derived mathematical
models. These mathematical formulations reflect a vast variety of well-defined
physical models. Here the surface finite element method (FEM) is used for spatial
discretization. The FEM discretization is used directly on the surface geometry
without further transformation. Furthermore, the level set technique is applied in
the surface embedding space. We employ the temporal discretization using vari-
ants of O-schemes. In addition, we introduce the idea of algebraic flux corrected
stabilization techniques of FCT and TVD-types. Moreover, we address the surface
triangulation and theory on a priori error estimate.

3.1 General model for surface PDEs

3.1.1 Convection-diffusion reaction equations

Mathematically the most generic model for unsteady convection-diffusion/advection
chemotaxis like phenomena with chemical reaction can be described by the follow-
ing system of equations.

act

= = DIAC V- [xiwi (e, p)c'] + fi(c,p) in QX T,
%o/ . ‘ o . ‘
8’; = DhArp’ = Vg - (xpwh(e.p)p’) +¢/(c,p) on T(t) x T

Let’s briefly clarify the physical meaning of few terms appearing in the generic
model. The concentration of the species ct (x,t) for i =1,...,d are defined in the
whole domain Q and are solutions of . The rate of change term % is the net
gain and loss of concentration per unit time. In contrast to ¢', the unknown func-
tions p/(x,t) for j = 1,...,n live on the surface I'(t) C Q and are possible solutions
of (3.2). The parameter x is known as chemo-sensitivity if ¥ > 0 called chemo-
attractant and x < O indicates chemo-repellent, we assume mostly the chemo-
attractant case. The terms —V - [xiwi(c,p)c'] and =V, - (xjwp(c, p)p’) are
the convective terms provide transport of ¢ and p, respectively, with a velocity
function w. The functions fi(c,p) and g/(c, p) are the reactive kinematic terms.
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These terms play a vitally important role in patterns formation. The diffusive terms
D} and D;, indicate the uniform spatial distribution of ¢ and p, respectively. Where
% is a surface material derivative, which takes into account the evolution of I'(z)
defined as:

P _ ..
o5 =P HPVr v,

a'p=adp+v-Vp.

Where v - Vp denotes the advective surface material derivative with surface veloc-
ity v.

The generic structure of mathematical model based on system of equations (3.1)-
suggest an organized approach to get solution through discretization, sim-
ulation and mathematical analysis. A systematic strategy will only facilitate in
mathematical development, implementation of scheme and numerical testing of
biological phenomena. The general system (3.1)—(3.2) will be helpful in choos-
ing mathematical models of our own choice to find solution of surface defined
PDEs. Besides the conceptual simplicity, it provides an easy way to investigate
the solution behavior for different cases. One can simply design test cases to find
pure-convection, diffusion and/or heat equations on surfaces. We can deduce even
more simple cases to investigate the solution profile analytically. The correspond-
ing initial and boundary conditions have to be provided.

here

3.1.2 Initial and boundary conditions

The system of differential equations (3.1)—(3.2) may describes a wide range of
problems depending on initial and/or boundary conditions. This additional infor-
mation is essential to complete the problem statement. Thus the problem’s state-
ment would be able to articulate a realistic problem starting in a finite interval of
time within a well-defined domain. The assumed domain and time intervals of a
physical model mostly considered keeping in view the restriction of numerical and
computational resources. The choice of initial and/or boundary values is also es-
sential to the well-posedness of any problem [S9]. The physical domain and initial
conditions are vital for observation of structures of biological patterns [[74].

Let Q C R? is a bounded domain and [0, T] is a finite time interval. In case of
IBVP to treat time derivatives we must define the initial distribution in time.

c(x,t=0)=cp VX€EQ,
p(x,t=0)=py VxeTl.

Additionally, for the physical terms such a concentration describe on the domain
Q with surrounding medium it is essential to prescribe suitable conditions at the
boundary dQ. In case, the values are known we can prescribe the Dirichlet type
boundary condition otherwise a given normal flux depending on convective and/or
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diffusive parts can be prescribed on the complementary boundary part, known as
Neumann boundary condition. In the case for I', to treat the close surface I" for
instance, if I" is empty which implies that the I" has no boundary then defining a
boundary condition makes no sense. This would be the case when I is bounding
surface of the domain, although we never seriously used this case. Furthermore, if
I" is non-empty then we may impose boundary conditions similar to flat surface as
defined in [29]. For the case of homogeneous Dirichlet boundary conditions, we
have

c(x,t)=0 on JQ, p(x,t)=0 on T,

similarly, the no-flux condition as:

n-Ve=0 on 09Q, n-Vrp=0 on T.

3.2 Temporal discretization

The evolving partial differential equations on surfaces are unsteady problems. These
PDEs are parabolic or hyperbolic in nature. To achieve an efficient and robust
method for such kinds of partial differential equations, we must rely on semi-
discrete method like finite difference or method of line. Thus to solve initial bound-
ary value problem (IBVP), we require the basic techniques to solve both spatial and
temporal discretization. The temporal discretization are settled through variants of
0-schemes. Other possible time stepping schemes for evolving surface PDEs could
be high order Runge-Kutta time discretization by |Gottlieb et al.| [46] and Dziuk
et al.|[32] and/or backward difference method by [Lubich et al.| [[66] for parabolic
type partial differential equation on surface including error estimates, stability and
regularity of the method may be needed as well. For temporal discretization it is
essential to choose an appropriate time stepping scheme. Different combination of
schemes have their own advantages and disadvantages. For discretization in time
the interval [0, 7] is defined with the following stepping procedure.

0="<¢'o.cM=T

The time steps k = At = ! — " in most cases is uniform and can be defined
ast™ =mAt VYm=0,1,...,M. The value of the approximate solution with nodal
value i at time value " is denoted by

P = pi(t™).

Because of initial condition li the value of pl.0 = p(0) is supposed to be known
value. The time stepping methods initialized the vector in discrete form, e.g., p° =
{p?} and simultaneously use p” = {p!"} as initial value for the computation of the
p"tl = {p;"+l }. This process is fast and requires less computational memory than
coupled space and time discretization.
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3.2.1 Time stepping methods
The 6-schemes

Let’s assume an initial value problem of the following form:

?;+f(/?,t) = 0, V>0,
p(0) = po, 3.10

where p(¢) € R? and the dimension d = 1,2,3. The f(p,t) may contains the dis-
cretized spatial derivatives, reactive terms and boundary conditions. Suppose that
p™ is the value of p at time instance r = " and Ar = k = "' — ™, then we can
solve for p = p”*!. The simplest time stepping schemes are based on finite differ-
ence discretization of time derivative.

pm+l+9kf( m+1 m+l) :p’"—(l—e)kf(pm,tm),

here 6 is taken in the interval [0,1] is called an implicitness parameter. The ex-
plicit time-stepping schemes, can be obtained for 6 = 0 in (3.11]) which has been
commonly applied to the steady-state problems. The proposed method can produce
instability in the solution profile and may requires a very small time step to provide
a robust and efficient numerical solution. The explicit scheme is as follows:

p" 4 kf (p™ ") = p™.

The implementation and parallelization of explicit schemes is much easier, and
has low cost per time steps. A very small time steps is required for stability of
the solution profile, mostly in the case where velocity or the mesh size are vary-
ing strongly [[100]]. In the choice of time-stepping methods, implicit schemes (for
6 = 1 in equation (3.T1))) are most preferable. The implicit methods have become
more feasible because of linear and nonlinear solvers. This category of schemes
frequently use either simple first order backward-Euler scheme or more preferably
the second order Crank-Nicholson (CN). These two methods are included as part
of the one-step 0-schemes as given below

pm+1+kf( m+1 m+1) :pm

Backward Euler method is only first order accurate but it is strongly A-stable,
which implies that the numerical solution is bounded. The backward Euler method
is used for the present study of the mathematical model.

From equation (3.11)) the Crank-Nicholson (CN) method reads as:

k

pm+1+ f( m+1 m+1):pm_§f(pm’tm)'

This scheme is a second order accurate sometimes suffers from numerical instabil-
ities as well. CN is not strongly A-stable it possesses weak damping properties.
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The implicit schemes are stable over a wide range of time steps sometimes they are
unconditionally stable. They constitute excellent iterative solvers for steady-state
problem. The implementation and parallelization are challenging, these types of
schemes have a very high cost per time step. It is insufficiently accurate for truly
transient problems at large Ar and convergence of linear solvers may deteriorates
as time step increases.

Fractional 6-Schemes

The fractional-6-scheme divide the time step into the following consecutive sub
steps thus introducing new variable 6 = o0k = B Ok.

pm+6+§f (pm+9’tm+6) Bekf( m m)

pm+9+§f (pm+1797tm+179> m+9 Bekf( )

pm+1+9f( m+1 m+1) m+1 0 Bekf( m+176’tm+176>.

Choosing the value of 6 in the following manners.

0=1- % and 6 = 1 —26 with o = % and B =1 — a. It is strongly A-stable
and possesses the full smoothing property which is critically important for the case
of rough initial and/or boundary conditions. Further, it contains a minor amount
of numerical dissipation, which is helpful in the damping of temporal oscillations.
The theoretical and numerical study of fractional 8-scheme including the choice
of 0, modified time-stepping and a posteriori error estimation are discussed in [[72}
100,124} [1235]]. The fractional 8-schemes combine several desirable properties like
strongly A-stable and second order accurate. Strictly speaking, it brings together
the advantages of Crank-Nicholson and Backward-Euler methods.

Modified fractional step schemes

A modified 6-scheme with comparatively larger time steps can be written in a three
consecutive sub steps. Here 6 =1 — %ﬁ and p° = pg for all m > 0 and p™ is known.

pm“*"Jrekf(pm*e m+6> o,

e 1—0 . 201,
p +9:TP +9+TP )

pm+1+9kf( m+1 m+1) :pm+179'

The promising attributes of this type of 8-schemes include strongly A-stable, fully
implicit, second and nearly third order accurate and the boundedness of the numer-
ical solution [[100, [125]]. Based on this discussion the backward Euler method has
been used for the temporal discretization.
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3.3 Spatial discretization

Recently, finite element method is emerged as a strong numerical technique to
solve differential equations with practical applications. In the initial stages the
method was successfully employed in aerodynamics, within a short span of time it
became famous among researchers in structure mechanics, fluid mechanics, engi-
neering, applied mathematics and numerics communities. The technique provides
an approximate solution to a large class of physical problems governed by partial
differential equations. For a brief historical development and applications of finite
element method for variety of problems, we refer interested reader to [Braess|S|]
and [Zienkiewicz| [143]. Finite element method is most flexible to apply w.r.t.
geometries ( domain shape) and boundary conditions. The convergence of the
solution can be improved while choosing an appropriate basis function and high
mesh refinement. FEM provide system of algebraic equations which can be solved
through efficient and accurate direct and/or iterative solvers from open source soft-
ware tools like FEATFLOW.
Literature review reveals that there are large class of finite element method [106}
143]] further description is beyond the scope of this section. Although, in the sub-
sequent sections we introduce Galerkin finite element method and modification in
the matrix representation to include the stabilization techniques. We restrict the
presentation to a sample linear elliptic problem. Assuming a sufficiently smooth
boundary, we show error bounds of order #* in the H'-norm and order #**! in the
L?-norm, where k is the degree of polynomial for the underlying finite element
space and /4 is the fixed length of the mesh.

The standard finite element approximation is mainly based on the Galerkin
FEM formulation through method of weighted residuals.

Method of weighted residual

The solution of p must belong to some special class of space of function which
are continuous and contain first and second order derivatives. In other words, it
must be smooth to get a wide class of admissible functions. First of all, we develop
weak formulation. The generalized solution is supposed to satisfy the weak form.
Here we would like to notice some of the integrals that arise during finite element
approximation. Let us assume % denote the residual of a simple PDE derived from
system of the differential equations (3.I)—(3.2) with a source function g.

Zlpn] = pn+v-Vou+ppVrgp) -v—g. 3.12
A solution p; should be sufficiently smooth. If p is an exact solution then we

get Z[p] = 0. In the weighted residual formulation we multiply the residual by a
suitable test function and integrate over the computational domain.

/%’[p]de:O, forall veV,
Q
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with V is the space of test function vanishing on the Dirichlet boundary condition.
This can be obtained if the projection of the residual is orthogonal to all test func-
tions v € V. Using Green’s formula for integration by parts and substitution of
boundary conditions (3.7)-(3.8) lead to weak form of the solution. The residual
formulation is handy to shift derivatives from the function of trial space p onto the
test function. In consequence, we obtain linear and/or bi/tri-linear forms will be
discussed in The classical residual approximation is applicable in Galerkin
finite element method which is applied for a large class of mathematical problems
in comparison to other numerical counterparts.

3.4 Laplace-Beltrami equation

For simplicity of the problem let us assume the Poisson equation on an arbitrary
surface. We start via describing the prerequisite assumption for weak formulation
on the surface and provide proofs of related lemmas and theorems. The state-of-
the-art literature on surface PDEs can be found in [27} 29, 31} 97].
Consider

p: =R,

~Arp+ep=fonT,

with f € L*(T'), constant ¢ > 0 and [ fd" = 0 in order to guarantee uniqueness of
solutions assume p € H'(T), then the weak formulation of (3.13) reads:

/r(vrp-vr<p+cp<p)dr:/rf<pdr 3.14

Here to achieve the desire solution, we state the following lemma [27} 29} 31 (97]].

Lemma 3.4.1. There exists a unique solution p € H' (") for ifT € C? and
p € H?(T) with the bound

el < 1f 12 - 3.15
Moreover, we introduce a bilinear form af(-,-) as:
a(-,-) :HY([)x HY() = R

and a linear form /(-) as:
I(): HY(I) = R,

the bilinear and linear forms from equation (3.14) as:

a(p,(p) 2:/FVFP-Vr‘(de. 3.16

() = /qu)dr. 3.17
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Using the notations from (3.16)) and (3.17) the equation (3.14) becomes:

a(p,p)=1(p) forall pcH(I). 3.18

Where ¢ is the basis function and the transport property of the basis function is
stated in the following remark.

Remark 12. Let ¢ : ', — R is the nodal basis function and @, is the value of basis
function at node j and satisfying the following transport property [25] 129, 31} 197)].

9 ¢;=0. 3.19

Proof. Since for the nodal basis function, we have
¢ (X (1).1) = 8. 3.20
Where 8 ; is the Dirac delta function. The differentiation w.r.t. time variable, gives

d ; d

0= 0; (x(0),1) = = 9 (x'(1).1) + Vs (x'(0),0) - {(0).. 3.21

Introducing V), as the discrete velocity function, we have

O:i%@WWWV%@WNWMﬂMOZJW. 3.22

Hence this result prove an important property of nodal basis function. O

Discrete Laplace-Beltrami equation

To find the discrete counterpart of the equation ([3.14)) through finite element method,
given a triangulation of the discrete surface I';,. We take a continuous piecewise bi-
linear (Q)) finite element space on I', and pj, € S, such that

Sp:={@, €C([}): @ulc € Q1 forall elements},

/r (Vrpn-Vr, ¢n +CPh(Ph)UlF:/F fondly,, 3.23
h h

assuming frh fdU, =0 if ¢=0 and f € L?*(}) with some approximation
of f which is assumed to satisfy:

| fllza,) < cllfllzm) - 3.24
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3.4.1 Surface PDEs

Now we provide a general advection/reaction-diffusion equation of an evolving
surface PDE. We use the mathematical formulation from the preceding chapter [2]
The following parabolic chemotaxis-like PDE on an evolving-in-time surface can
be derived from the general model described in with the following pa-
rameter setting:

J=1 D;):Dv %[]):;{7 W{):Vl—‘(l‘)c and gJ(C,p):g(p),

we get
a*p
ot

= DAr()p — Vru) - (xpVree) +8(p) on I(t) x T 3.25

ot

Where the derivative

on the left hand side is due to evolution of surface I'(¢)

can be defined as:
a*p

o a'p +pVF(t) v

the Leibniz formula defined in equation (2.63) states in the following manner:

d
el = 30+ 0oV - 3.27
dr /F(t)P /I“(t) tPTPVre v

here d°p = d,p + v - Vp denotes the advective surface material derivative. The
surface velocity v = Vn + v can be decomposed into velocity components in the
normal direction Vn (where n is the surface outward unit normal vector) and the
tangential component vg, respectively. Using the relations:

Vrrv=Vr-Vn4+vs=VrV-n+VVr-n+Vr-vs=VVr-n+Vr-vg=—VH+Vr-vg,

d
v-Vp :Vn-Vp+vS-Vp:Va—p+vS-Vp.
n
Where H is mean curvature discussed in (2.117) and V is the velocity defined
in (2.1T5) along the normal. The equation (3.25) can be rewritten in the following
form

d
dip+wvs-Vp—VHp vl +pPVrg) - vs = DAryp — Vg - (XPVrw)e) +8(p) -

an
Simply in terms of the surface material derivative, we have

9°p+pVr-v=DAryp — Vg - (xpVree) +8(p) -

The numerical treatment of the general model §(3.1)) or the recently derived equa-
tion can be complemented by usual prescription of initial conditions
and certain boundary conditions e.g., Dirichlet boundary condition (3.7), homo-
geneous Neumann boundary condition (3.8) and/or a mixed-type boundary con-
ditions. Now we will derive the variational formulation for the obtained equation

(3:29) on surface.
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3.4.2 Variational formulation

The finite element formulation derived here is based on the conventional Galerkin
type FEM, known as evolving surface finite element method [26] [29) 33| [114].
We will discuss the fully discretized finite element scheme for the general model
Moreover, we keep in hand the formulation derived through the level set
approach to capture the evolution of the interface. Let us proceed with the
weak formulation of the equation assuming that the solution p exists in
some sufficiently regular space V. We multiply the equation (3.29) by a suitable
test function @. Let ¢ €V, C V, now compute integral of the equation over the
underlying computational domain €. Here ¢ denotes test function assume the
level set function ¢ € C*(Q), then using the Coarea formula (2.121) we can write
the variational formulation of (3.29) as:

/Q(at°P+PVr-U)(PW¢\ = /Q(DAr(z)P—Vr(t)'(XPVr(z)C))fp\V(P\

+ /Qg(p)rp\WI. 3.30

Due to the implicit surface Leibniz formula from lemma [2.5.3|the left hand side is
calculated as:

. d
/(8tp+er<t>-v)<pIV¢| = j/p¢|V¢\
Q tJo

—/p3t’<p|V¢! + /pfpv-naQ!VM- 3.31
Q JoQ

In general the boundary integral cannot be neglected. Numerical experiments re-
veals that the non-inclusion of boundary integral into the numerical scheme can
cause kinks and wiggles in the solution near boundaries [114]. This non-physical
behavior may spread throughout the domain as time evolves. Since

(DVr(yp — xPVre) m=0,

integration by parts in (2.132)) gives
/Q(Dvr(z)l) —xPVrpe) - Ve o|Vo| =

_/Q OVr@ - (DVF(t)P —XPVr(f)C)IWI

+AQ(DVF(t)p —XPVru)c) naa|Vel. 3.32

The boundary integral

/aQ(DVr(t)P —XPVrp)c) nyae|Vel
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on the right hand side of cannot be neglected in general sense as well. Its
numerical treatment though can be performed in a similar way to the boundary in-
tegral [5,P@v-nyo|Ve| in the equation (3.31). For brevity, everywhere in this
work we assume that the boundary dQ is aligned with some level set I, and there-
fore (DVr)p — xpVr()c) - maq = 0. Applying (2.133) and (3.32) to (3.30), we
obtain

d
E/p(P|V¢‘+/(DVF(t)p_xpVF(t)C)'VF(I)(p|V¢| =
Q Q

|parolvel— | pov-naalVel+ [ sip)plVel. (333
Q aIQ Q

For the discretization in space we use conforming bilinear/trilinear finite elements
with the corresponding space of test functions Q;, = span{ @, ..., @y }. Therefore,
using the transport property of test function from remark [I2] we have

and the semi-discretization problem for (3.33) reads: Find pj, € Qj, such that

d
E/QPMPWW+/Q(Dvr(z)Ph—XPVr(z)C)'Vr(z)(PW¢| = 3.35

/phv-WP!Vm—/ ph(Pv-nag!WH/g(p)fp\W\ Yo € 0.
JQ 2Q Q

Fully-discrete scheme of the implicit version:

Given p;" at the #"'-th time instance and the time step Az = "1 — ™ then solve

for p;l”H

1 ) m
et oIV 4 [ (DVpeppt = wept) - Vi g]V9™
_/Qp;,n+lvm+l'V(P‘V¢m+l‘+/89PZ1+1(P’Um+I‘naQ’V¢m+l|

1
— . [pirolver+ [ golvenl 3.36
Q Q

for all ¢ € S;. Using {¢;} as test functions for quadrilateral finite elements in
space. The matrix form of the equation (3.36)) is given as follows:

[M(|Vo" ™) + AL(D|VY" ) — ArK (w" V™))
— ANV )+ ArR([V" )] oyt

— M(Vo" )il + M G(|V9")). 3.37
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Where M (-) denotes the consistent mass matrix, L(-) is the discrete Laplace-
Beltrami operator, K (-) is the discrete on-surface advection operator with the lin-

earized velocity w”, IN(-) is the discrete operator due to the surface evolution,

R(-) is the discrete boundary integral and the discrete kinetic term G(-) with the
entries defined by the formulae

M =mj(y) = /Q<Pi(Pj1I/-
L=1j(y) = /QphrVq?i'V(leI/-
K =kj(y) = /Qﬁoi";b'l)hl“q)j'

N =nij(¢) = /Q‘Pi’”mH‘V‘PjW

~ N o |
N i o ©| |®©

R=rj(y) = /aQ(Pi‘PijH'naQ‘l/-

G=gi(y) = /Q(Pigill/-

w
~
w

Where the matrices K (-), IN(-) and R(-) can cause to produce oscillatory solution
consequently, in the next section the stabilization has been discussed.

3.5 Stabilization

In case of surface PDEs the inclusion of boundary integral, the surface convec-
tion and convective dominated problem like chemotaxis require a stabilized FEM
to achieve an adequate solution. In principal, the actual difference between the
exact solution of the partial differential equation and an approximate solution ob-
tained through numerical techniques is the sum of the numerical errors. Strictly
speaking, none of the numerical solution can replace the closed-form solution but
an improved numerical technique with reduction of errors (iteration, round off and
discretization errors) can bring the numerical solution nearer to its analytic coun-
terpart. The following criteria with a rigorous analysis are mainly concerned with
the stabilization of a numerical solver to achieve a robust and an accurate physical
solution.

Consistency:

The truncation error should vanish or mathematically the discretization of a par-
tial differential equation should converge to the exact solution as the mesh size h
approaches zero.

Stability of algorithm:

The numerical errors which occur due to solution of discretized partial differential
equation should not increase.
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Convergence:

The numerical solution should approach the exact solution of the partial differential
equation and must converge as the mesh size approach to zero. From equivalence
theorem the consistency and stability of the numerical scheme give convergence of
the solution. For practical interest, the experimental order of convergence can be
investigated numerically by comparing the results computed on a series of succes-
sively refined grids. Numerical results concerned to experimental order of conver-
gence will be shown in the subsequent chapters.

Conservation laws:

The discretization of the PDEs must obey the laws of conservation of mass, mo-
mentum and energy. In other words it should avoid artificial source and sink at the
discrete level.

Boundedness or positivity preserving:

The solution of the problem needs to be bounded, the physical quantities like con-
centration and densities must be non-negative and should avoid non-physical os-
cillations and spurious wiggles.

Stabilization of the convective terms is essential to achieve a physically accu-
rate solution. These terms are occurring due to surface convection and chemotaxis-
type PDEs. In the CFD circle, FEM upwinding [123]], FEM streamline-diffusion
[53] and algebraic flux correction of FCT/TVD types [61}1114,118,[120] are among
most frequently used techniques to achieve a physically accurate solution. Here we
briefly introduce the AFC techniques.

3.5.1 Algebraic flux correction

In this section, we illustrate and develop the algebraic flux correction (AFC) with
Galerkin finite element formulation for solution of the surface PDEs with con-
vective dominated problems. We will develop multidimensional high resolution
finite element schemes on the surface. Numerical experiments suggest that the
pure Galerkin method produces oscillatory solutions as a result of surface con-
vection. Consequently, we have to eliminate the negative off-diagonal coefficients
from fully discrete transport operator and employ a central space discretization of
oscillatory convective terms. This technical modification of the convective term
provide a low order scheme which is nonoscillatory but highly diffusive. In order
to over-come this drawback, a compensating antidiffusion is added to the solution.
We will thoroughly discuss two closely flux correction techniques which are used
in this thesis for convective dominated surface PDEs. These techniques are known
as algebraic flux correction methods of FCT and TVD-types based on implicit fi-
nite element methods.
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In principal, each numerical scheme has its own limitation on applicability
sometimes only suitable to specific problems. In case of geometries (e.g., evolving-
surface) with complex physical phenomena (convection/advection/chemotaxis) with
a variety of discretization schemes we may get non-physical solutions. In conse-
quences, we need algebraic flux correction algorithms. In short, the main purpose
is to design the AFC methods to achieve a positivity preserving finite element so-
lution for PDEs on surface.

The high resolution nonlinear schemes of AFC for convective dominated prob-
lems are introduced by Boris and Book [6]. Furthermore, |[Zalesak|[[141]] proposed
a general framework to design flux-corrected transport based on fully multidimen-
sional linear high and low order approximation. [Moller et al.|[[75 [76] and Kuzmin
[60] added further development in the algorithm and extended it for large class of
flow problems and chemotaxis like PDEs [[118}1120]. The foundation of the current
AFC technique is mainly based on that of [Moller [75]], [Kuzmin| [60], Kuzmin and
Turek|[61], Moller et al.|[76] and |Strehl et al.|[[118,/120]. From these literature we
concluded that the introduction of modern front capturing techniques put forward
set of mathematical constraints on the discrete solution to give a physically accu-
rate solution through preventing the evolution of spurious over and under-shoots in
the vicinity of steep gradient [[75,[76].

Now we present a short description of the embedding of the FCT/TVD-stabilized
algorithm into the implicit algorithm (3.36) more precisely into its discrete coun-
terpart written in the matrix form (3.37).

The following algorithm will use in the process.

e High order schemes may fail to produce the desired results.
e Low order schemes may provide desired results but can be less accurate.

e A schematic process to decompose the difference between the above into
sum of skew-symmetric inter-nodal fluxes can be manipulated keeping in
view mass conservation.

e Finally, a mechanism to adjust the antidiffusive fluxes in an adaptive way so
that the imposed limitations can be satisfied for a given solution.

In case of AFC we adopt an algebraic technique to design a high resolution
method which consists of certain mathematical constraints on discrete operators
to get favorable matrix properties. Let us assume the semi-discrete scheme of the
form

dpi _

i —Zc,-j(pj—p,-) c,-j20 Vj;'él 3.44

i.j

Harten’s TVD theorem suggests that the above equation hold local extremum di-
minishing (LED). After time discretization such schemes are still positivity-preserving
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provided that the solution converge to steady state and satisfy an algebraic system
of the form.

Mp"*' = Bp" +¢"(p), 3.45

where M = {m;;} is M-matrix, B = {b;;} and g(p) = {gi(p)} have no neg-
ative entries. These condition lead to positivity of the previous solution to the new
one.

p" >0 = p" =M 'Bp™+g¢"(p)] > 0. 3.46

If this spatial discretization is local extremum diminishing then the coefficients
of the off-diagonal entries of both matrices have right sign. The positivity condi-
tion for the diagonal entries of B yields a readily computable upper bound in an
admissible time step.

1+A(1—6)mincl >0, for 0<6<1.

In general these algebraic constraints are sufficient but not necessary condition
for numerical scheme to be LED or positivity preserving. Godunov theorem states
that linear schemes satisfying these conditions are at most first order. In case of a
high order discretization which may fails to satisfy the above mentioned conditions,
thus can be adjusted with AFC method.

The fundamental steps of the AFC technique can be drawn in the following
patterns.

Consider an unsteady continuity equation for a scalar quantity p transported by a
known velocity field v.

a—p—i—V-(vp):O. 3.48

ot
After semi-discretization in space by Galerkin finite element method the above
equation transformed with vector at nodal values

Mcdi =Kp, 3.49
dt

where M¢c = {m;;} represents the consistent mass matrix and K = {k;;} is the
discrete counterpart of continuous transport operator. For linear discretizations
the mathematical constraints (3.44) and (3.45) can be obtained through discrete
upwinding scheme [61} [76]. In the semi-discretized FE scheme (3.49) we can
impose the following matrix manipulation. First of all, we use mass lumping and
replace the consistent mass matrix M by lumped mass matrix M. Secondly,
to avoid the negative off-diagonal entries add artificial diffusion operator D = d;;.
This post processing convert equation (3.49) into the following form

ML% =%p where ¥=K-+D. 3.50
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As shown by Moller| [[75]], [Kuzmin and Turek|[[61]] the positivity constraints can
be readily enforced at the discrete level using a conservative manipulation of the
matrices M = {m;;} and K = {k;;} assuming that the source term g"(p) does not
cause problem to positivity. The former is approximated by its diagonal counterpart
M constructed using row-sum mass lumping

My :=diag{m;} where m;= Zm[j(|V¢>|). 3.51
J

Now all negative off-diagonal entries of K are eliminated by adding an artificial
diffusion operator D. To obey conservation principals, this matrix must be sym-
metric with zero row and column sums. For any pair of neighboring nodes i and j
the entry d;; is defined as [61, (73]

max{—k;;,0,—kj;}, JF#1

~Ydp, j=i 3.52
ki

d,‘j:

It is clear that d;; = d ;. Thus the result is a positivity-preserving discretization of
low order.

The addition of artificial diffusion d;; leads to over diffusive solution . In order
to avoid the formation of non-physical undershoots and overshoots, the raw antid-
iffusive fluxes f;; should be multiplied by a suitable correction factor.

The equation (3.50) is rewritten as follows:

MLd—p =Zp+f(p) where f(p)=)Y aifij, 3.53

d i

here 0 < a;; < 1 is a correction factor. Keeping in view the positivity constraints
the main task of flux limiter is to get an optimal value of each correction factor
and to remove the artificial diffusion [75,76]. In case of o;; = 0, we get low order
scheme and for @;; = 1 the high order scheme.

Consider py, is a positivity preserving solution and by construction of the dif-
ference between the residual of the low order scheme and that of the underlying
Galerkin approximation, denoted by F' as follows:

m+1 m
Pn_— —Pn

F= (M, — Mc([99))

—Dp! 3.54

admits a conservative decomposition into a sum of skew-symmetric antidiffusive
fluxes

d C

F = ;fl} where f,‘j = [mijdt —i—dij] (ph,- —phj) = —fj,' Vj#i. 3.55
JFL

To obtain a high resolution solution profile while maintaining the scheme positivity-

preserving, we apply the limiting process. It means that each flux is multiplied by a
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solution-dependent correction factor ¢;; € [0, 1] and is inserted into the right-hand
side of the nonoscillatory low-order scheme. The original Galerkin discretization
corresponds to the setting ;; := 1. It may be used in those regions where the nu-
merical solution is smooth and well-resolved. The parameter setting @;; := 0 is
appropriate in the neighborhood of steep fronts. Roughly speaking, we can say
that the flux limiting is of the TVD-type, if the antidiffusive flux limiting takes
into account only modification of the convective operator K, i.e. F = —D p,’1"+1.
Otherwise, we can say that the flux limiting is of the FCT-type, if the antidiffusive
flux limiting takes into account including modification of the convective operator

K and the corresponding modification of the mass matrix M i.e.,

Pt —ppr
At

F = (M~ M([V9)) —Dppt.

In essence, the off-diagonal entries of the sparse matrices M and K are replaced
by

m;‘j = oyjmij and k;kj = kl‘j—i- (1 — (X,‘j)dij
while the diagonal coefficients of the flux-corrected Galerkin operators are given
by
m;kl =m;— Z o;jm;; and k;kl = k,‘,‘ — Z(l — OCl‘j)d,'j.

J# J#

In the implicit FEM-FCT schemes [61,75] the optimal values of @;; are determined
using Zalesak’s algorithm [141]. The limiting process begins with canceling all
fluxes that are diffusive in nature and tend to flatten the solution profiles. The
required modification is:

fij==0 it fij(pn;— pn;) >0,

where pj, is a positivity-preserving solution of low order [61} [75].
The remaining fluxes are genuinely antidiffusive and the computation of the
correction factor ;; involves the following algorithmic steps:

(a) Compute the sums of positive/negative antidiffusive fluxes into node i

s{ =Y max{0,£;}, S =Y min{0, f;}.
J# i

(b) Compute the distance to a local extremum of the auxiliary solution py,

Qz+ = max{O,r?;llx(phj - phi)}’ Q = min{o??;?(phj - phi)}'

(c) Compute the nodal correction factors for the net increment to node i

.OF O~
R = min l,lejr , R; =min l,lei :
AIS; AIS;
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(d) Check the sign of the antidiffusive flux and apply the correction factor
o — min{R;", R; }, if f;; >0,
Y min{R;, RT}, otherwise.
Summary of AFC test cases

To summarize this section we present the flow chart of required algebraic ma-
nipulations of the FCT/TVD stabilization technique for the implicit fully-discrete
scheme

1. Obtain the low-order scheme

My + ALDIVO" )~ AL (Ve oyt

= Myp}! + ArG([V9")),

by performing mass lumping M — M} and transforming the high-order
operator K into its nonoscillatory low-order counterpart .Z by adding a dis-
crete diffusion operator D stated in (3.50).

2. Remove excessive diffusion where possible by adding the limited antidiffu-
sion operator F (o)

[My + AL(DIVY" ) —arZ([V™ ! |)]pj ! + F ()

= Mypj +AG(|Ve™)),

where F () is constructed according to the limiting process described above
and a’s are found from algorithmic steps (a)—(d).

Latter in the numerical experiments we need to distinguish the following five
test cases:

e The implicit scheme without stabilization (IS) corresponds to (3.37).

e The explicit scheme without stabilization (ES) corresponds to

[M(|V¢m+l|) + AIL(D|V(Pm+1|)—AIK(W’"|V¢m+1|)
+ MR(IV"™ ) pptt = M(IVe™ |yt
+ AN |VO"|)pl + AtG(|V9™)).

e The implicit scheme without boundary term (ISwB) corresponds to (3.37))

[M([V" ') + AL(DIVY™|)— AK (w"|Ve™ )
_ AtN(vm+l|V¢m+1D]pZ1+l

= M(Ve"|)pf + AG(|V9"). 3.59

70




3.6. SURFACE TRIANGULATION

e The implicit scheme with TVD stabilization (IS-TVD) corresponds to (3.57))
where F(a) is of the TVD-type.

e The implicit scheme with FCT stabilization (IS-FCT) corresponds to (3.57))
where F(a) is of the FCT-type.

The level set methodology and the algebraic nature of the flux-corrected schemes,
TVD and FCT methods will be implemented for the equation (3.36) without further
major changes (one should operate with proper M (-), L(-) and K (-) matrices).
Nevertheless, there are certain FCT schemes which necessitate the evaluation of
p during the antidiffusive flux-limiting e.g., Gradient-based slope limiting
in [60]. In this case the corresponding projection onto the tangential space 71" is
required. Numerical tests showed that the solution of the TVD scheme is less aCClll-
m+ m
rate as compared to that of FCT algorithm: neglecting the (M — M (|V¢|)) %
term results in a smeared solution. Therefore, the FCT-based algorithms are prefer-
able in this case.

Positivity constraints are enforced using a nonlinear blend of high- and low-order
approximations through an algebraic manipulation of the matrices M and K. The
limiting strategy is fully multidimensional and applicable to (multi-)linear finite
element discretizations on unstructured meshes. The approach was successfully
tested for domain-defined equations for chemotaxis in 2- and 3-spatial dimen-
sions, e.g., [Sokolov et al.| [113] and |Strehl et al.| [120]] for chemotaxis equations
which are defined on stationary surfaces. For detailed presentation of the FEM-
FCT methodology, including theoretical study such as stability analysis, positivity
preserving, mass conservation, convergence including technical implementation
details like data structures, matrix assembly can be found in related publications,
such as |Kuzmin| [[60], [Kuzmin and Turek [61], Moller et al.|[76] and |Strehl et al.
[118, [120].

3.6 Surface triangulation

The most widely used numerical schemes for the approximation of partial differ-
ential equations are finite difference, finite volume and finite element methods. All
these schemes use a triangulated geometry to approximate the numerical solution.
The finite difference method approximate the solution by replacing the continuous
PDEs with finite difference operators defined on triangulated mesh. Similarly, the
finite element method is used to approximate solutions of the problems in varia-
tional forms [8]]. The triangulation is used to transform continuous problem of the
infinite dimensional space into an appropriate finite dimensional discrete form. Al-
though we solve the discrete problem on a stationary mesh, to deal with complex
geometries the solution can be approximated on a moving grids e.g., Budd et al.
[10] and |[Huang and Russell([52]].

Consider an open connected subset I' C Q in R? for d = 1,2,3. The idea to
cover the surface I' C Q with a finite number of sets of triangles/squares 7; of
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simple shape. The domain Q = U 7, with 7 = {T}}. This decomposition will

be used to transform the contlnuous partial differential equations from the integral
form into its discrete sum. The surface triangulation used here, is based on an
extensive work of [Budd et al. [10]], [Dziuk and Elliott [26] 29] 30], 97
and [31]. The triangulation structure must fulfill the following basic
criteria:

e T, T; =0 for k # [. The T} are squares in this case.

e The domain is union of the all possible squares, i.e., Q= |J .

(a) no refinemnet (b) one level refinemnet

(c) two levels refinemnet (d) three levels refinemnet

(e) four levels refinemnet (f) five levels refinemnet

Figure 3.1: Three dimensional visualization of surface going through successive
global refinement.

Thus without loss of generality, the sides of square are taken to be parallel
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the coordinate axis. As 7 are squares and I' C Q is a polygon, such a configu-
ration of the mesh on surface will be called triangulation, even in the case of the
square/rectangle etc. The 7 are called elements, their sides the edge and the un-
known values are calculated at the vertices known as mesh nodal values.

Now we are able to discuss the triangulation of the surface partial differential
equations. In the process of triangulation and discretization the continuous surface
I' is replaced by its discrete counterpart, in most cases we replace it by piece-
wise polynomial surface I'y,. This process may introduce a geometric error between
I'" and I';, discussed in In the earliest stage of triangulation we construct a
polyhedral approximation of I" with restriction on the nodes {T]}IIV:1 of I', to lie on
continuous surface I'. In general there are different ways to construct triangulation,
for instance by hand we can draw a coarse or macro sketch of triangulation. In this
case, the elements could be large and may not be sufficient to capture the essential
characteristics of surface. Particularly, I'j lie in the neighborhood Ug, in results
the triangulation process can be refined using some known strategies such as bi-
sectional refinement or triangulation. To ensure that our new triangulation still
satisfies basic assumptions on surface, thus all newly created nodes are projected
onto the surface. The triangulation .7}, of ', are assumed to be closed d-simplices
defined in R?*! in particular can be line segments or polygonal curve (d = 1),
triangles or polyhedral (d = 2) and tetrahedrons (d = 3). Here % is defined to be
maximum diameter of elements in .7}, (e.g., see Dziuk and Elliott| [29])

h:=max{diam(E) : E € (%,)}. 3.60

It is assumed that the triangulation .7}, is a quasi-uniform triangulation, wherein I,
be a family of polyhedral approximation of surface I" with 42 > 0 for each triangle
I Then the family {7} is said to be quasi-triangulation then 3 3; > 0 such that

min {diamBg : E € (7},)} > Bih daim T,

exists for all 27 where Bg is the largest ball contained in £ [29]. Consequently,
the triangulation .7, is said to be quasi-uniform triangulation I, if it is part of
quasi-uniform family of triangulated surface. As the nodes of I';, lie on I" and the
regularity of triangles .7}, can be considered as an interpolent of I to estimate any
geometric error [9] 29| 97]. The interpolated surface I'; is Lipschitz surface, in
consequences we can define H'(I';,) with integration on I';. Let pj, is the discrete
counterpart of the continuous function p , reads as:

on: T —R.
The continuous gradient operator (2.98) of the function p , is defined by
Vrp=Vp—(Vp-n)n.
Thus the element-wise discrete gradient operator is defined as

VP = VPr— (VP - 1p) 1o
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For each E € .9}, with n defined along outward normal direction. The Vpj, is any
arbitrary extension of Vp, away from I';,. The projection operator defined in the

continuous case (2.102))
Zr(x) = ([-nen),Vxel
can be replaced with the discrete counterpart:

Zr,(x) = (I-nmen,),Vxely. 3.62

(c) d.o.f. 1746, lev. 2 (d) d.o.f. 13090, lev. 3

(e) d.o.f. 101442, lev. 4 (f) d.o.f. 798854, lev. 5

Figure 3.2: 3-D visualization of mesh with an increase in d.o.f. at successive
refinement. Each square is split into four parts using a bisectional refinement.

The continuous piecewise finite element space on I';, will be replaced through
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the surface finite element space denoted by S), and defined as:
Sy 1= {(phEC(Fh)Z(Ph‘EEQl(E),VEE%}. 3.63

The set of figures (3.1)—(3.2) are showing different levels of mesh refinement for
the surface. At each refine level a square is partition into four different equal size
squares. The figure is showing mesh of the sphere without any refinement
with 42 degrees of freedom. The figure [3.2(b)| shows the first level of mesh refine-
ment with d.o.f. 250. Similar, figures are representing grid refinement
levels 2,3,4 and 5 with 1746, 13090, 101442 and 798854, respectively, are the
corresponding numbers of degrees of freedom.

3.7 Error analysis

In this section, we prove error bound for the numerical solution of the surface finite
element method based on those of |Dziuk and Elliott [26} 29, 30]], Ranner| [97]] and
Dziuk et al.| [31]. In addition, we formulate the error between the solution of the
continuous space and its discrete counterpart. We start with the basic definition of
the LP-space and corresponding norms.

Definition 6. The (L”-space)

Let LP(I") denote the space of measurable function with respect to the d-dimensional
Hausdorff measure (surface measure dA) the space of measurable functions are
defined with a finite norm ||p ||,y where the LP-norm is defined by

1
i P
1Pllm = ( / |p\PdA) 3.64

for p < eothe LP(T') is a Banach space. Now we can extract the following results.
Remark 13. From equation we deduce the following useful remarks.

e for p =2 a Hilbert space. Roughly speaking, L* is the space of square
integrable functions.

e In the interval 1 < p < o the spaces C°(T') and C'(T') are dense in LP(T").
e For p = e in (3.64) means the essential supremum norm.

Now we will define the H' () space and corresponding norm for the approxi-
mate solution.

Definition 7. The H'(Q)-space The Sobolev space of order 1 on Q the space
H'(Q) is defined in [30] by

H'(Q)={peL*(Q), Vpel’(Q)}.
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The space H' (Q) is endowed with the norm defined by the inner product

d
(p.c) o= /Q (pc+28ip8ic> dQ
i=1

and the corresponding norm is noted as:

1/2
Ipliva = /ppha = ( [, IoPax+ [ vpRaa) .

Lemma 3.7.1. There exists a unique solution py, to the problem that satisfies

the following bound
onllar o,y < cllfll2 -

This lemma is similar to that of (3.4.1) and it is essential for the well-posedness of
solution.

We can define the discrete bilinear and linear forms, in the following way:
ah(-,-) 2ShXSh—>R

lh(-):Sh—HR{

using these relations we have the discrete forms:

an(Pn, Pn) 32/r Vr,Pn -V, @ + cpr@rdly, 3.66
h

In(on) :=/F fondTy. 3.67
h

This formulation leads to the following form of (3.23), find p,, € S), such that

ah(ph,(ph):l((p) for all Pn € Sp. 3.68

Lemma 3.7.2. (Strang Lemma)

LetVy, CV and a(-,-) is bilinear form on'V XV and L (-) linear form on'V. Further-
more, let ay, (+,-) is bilinear form Vi, x V,, and linear forms 1, (-) in Vj,, defined in
(3-66) and (3.67), respectively. Assuming that each pair satisfies the Lax-Milgram
theorem. In addition, suppose that p € V and py, € Vj, satisfy (3.18) and (3.68),
respectively. We will define a norm || - ||, induced by the bilinear form a(-,-) as
follows

1
Iplla:=a(p,p)2 for peV.
Define Fj, : V;, — R by

ﬂ

Fi(@n) :==a(p —pn, @), .69
then

. F(w
1o —pulle <2 inf [lp—valla+ sup R 3.70
eVi wiev o} [walla
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Proof. Let for any v, € Vj,,

A

e —=pulla < llp=vallatlvi—pulla
1
||P —Vh||a +a(Vh —Ph,Vh _Wh)z

a(vy— pp,w
< lp=villa+ sup M
weevnfor  walla

a — W
WhEVh\{O} Hwh”u

IN

IN

O]

Assume that we have a Hilbert space (H, (-,-)) and a Banach space (Z,|| - ||z)
with Z C V C H with continuous inclusion. This implies that for 1 € H the func-
tional is defined as:

(@) =N, 9)y,
is a bounded linear functional on V with

[ Zn(@) < Inlla @l < cllnlallely.

Hence, there exists a unique solution z € V of

a(Q,z)=Zy(e) forall @eV.

Assume that the solution z € Z satisfies the bound
zllz < clnlla- 3.72

Moreover, we assume that for all v € Z there exist v; € V}, satisfying
lv—vplla < ch|v]z. 3.73

Lemma 3.7.3. (Aubin-Nitsche Lemma)
Let the above assumptions (3.71)—(3.73) hold and suppose e € V. Define F, : V;, —
R by

Fi(on) =ale,on), 3.74
then

lelli < chllela+  sup Ei(@n) 375
onevin o} 1nlla

Proof. Since e € V C H, from the assumptions (3.71) and (3.72) there exist a
unique z € Z such that

a(@,z) = Z.(p) forall ¢@ecV,
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and
zllz < cllelln-

Using assumption (3.73), we know there exists z;, € Vj, with
Iz = z4ll < chllz]|z.
We calculate,

lelf = (e.€)u,
= a(ez),
= a(e,z—z;‘l)—l—a(e,z};),

ale,
< <ch||e||a+ sup “””)quz,

oreVi\{0} lonlla

aie, ®p
< <ch||e||a+ sup “”’))uenH.

oV \{0} lonlla

or

HeHH H€HH_ ChHeHa—i— sup a(e7(ph) S 0,
oncvi(0r |1Pnlla

since ||e||z > 0, we have

lellu < chllelat sup 2P
oncvi\ (0} |1Pnlla

hence the required result. O

Lemma 3.7.4. Let z € H*(T') and consider that the lift of the nodal interpolate of
zislz e Sél is a well defined function in S;; satisfies the following bound:

= Bl vy < chlzIl3 (D). 3.76
Proof. The proof of this approximation property can be found in [27, 97]. U

Lemma 3.7.5. Let Wy, ®;, € S, with lift wy,, @y, € S;v then the following geometric
bound holds:

la (wn, @) — an (Wa, @1) || < k|| Vrwyl|Z (D) | Vr@allZ(T). 3.77

Proof. This lemma in known as geometric bound, proof can be found in [27} 97].
O

78




3.7. ERROR ANALYSIS

Lemma 3.7.6. Let ) € H'(T') and %), C Q, we have
Inle2(cz,) < ch'2Inl3(Q). 3.78

Theorem 3.7.7. Let p € H?(T) be the solution and let py, € Sy, be the solution
of . Assume that the result of approximation property holds. Then we
have the following estimate defined in [97)],

10— Pullzey + BIVE (P = pn) |2y < PPN f N2y 3.79

Proof. Let us consider the space V = H'!(T") and the finite element space V}, = Sil.
The notations for the continuous form of the problem (3.66) and fit exactly
for bilinear form a(-,-) and the linear form [ (-), respectively. Consequently, we
have the following results

an(Wn, Qp) ::/r Vr,Wi. - Vr, 0n + W, @pdly,,
h

w(Pn) == /r fondly,

with wy, = Whl and ¢, = (p,ll.
For Fj,(@y) = a(p — pn, ¢p) using the well-posed bound for stability from lemma
(3.7.1) together with the geometric bounds (3.7.5).

Fi(on) = a(p—pn, @) =1(0n) —a(pn ¢n),

= (1(@) = ln(Pn)) + (an (P, Pr) — a(pn, Pn)),
|| FIIZI@all e oy + <21l owll e oy | @l
Ch2Hf||L”(PhHH1(F)

IA A

The Strang Lemma §3.7.3| gives

Fi,(w
Ip Pl < inf lp — sl +e_sup Fnlwn)
wpevi\ oy [Walla (o)

The first term is known as approximation error, which is bounded via approxima-
tion property lemma §3.7.4] gives

inf [lp = villg ) < 10 =1 ||y < chllp ey < ehll 1l

V€S,

Bringing together (3.80) and (3.81)), we get the following approximation error:

10 = Pallz oy < chll fllar

To find the L? estimates we use the abstract Aubin-Nitsche lemma with H = L2 (T")
and Z = H? (T) . The regularity results in lemma §3.4.1{leads to the dual regularity
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and the approximation property of §3.7.4] gives the equation (3.73)). Substituting
€= p — Pp, we get

F
10— pullaw < chllp —pullney + sup P (33
onevi\ {03 1@l ()

The first term in (3.83) is bounded using the H'-norm bound defined in equation

(382

chllp = pillinry < If .
Using (3.84) and (3.80) we get the following result:
lp = pallezr) < e[ fllry. 3.85

Which concludes the proof of an important theorem for the numerical calculation.
These error estimates will be conformed using the numerical results.

O

3.8 Conclusion

In this chapter, we investigated the generic model for surface PDEs, based on these
discretizations in the later chapters we can deduce the reaction-diffusion equations
for pattern forming models and reaction-diffusion-advection for chemotaxis like
PDEs. We discussed thoroughly the applicability of the spatial and temporal dis-
cretization for these models. The FEM level set based discretization of the Laplace-
Beltrami operator has been addressed. The variational formulations for the model
equations are derived as well, including the boundary integral in the discretized
model. We developed the basic algorithm for the algebraic flux correction tech-
nique of FCT and TVD-types, in order to avoid non-physical solutions, which oc-
curs due to inclusion of boundary integral, surface convection and/or chemotaxis,
The surface triangulation is shown with number of degrees of freedom at different
mesh level. We concluded the chapter with deriving an important formulae on a
priori error analysis. The theoretical results derived here are part and parcel for
the justification to the assumptions we make on the continuous model in order to
obtain the numerical approximation. In conclusion, in this chapter we proposed a
fully implicit finite element method level set based numerical scheme for systems
of reaction-diffusion-convection/chemotaxis equations on an evolving-in-time sur-
face. The scheme is positivity preserving, which is guaranteed through the inclu-
sion of the FCT and TVD stabilization technique. Based on the derived scheme, in
the next chapter, the behavior of the numerical solution will be explored.
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Numerical results and outlook
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Nothing in biology makes sense
except in the light of evolution.

Theodosius Dodzhansky

Numerical results

In this chapter, we highlight the software setup and present the results of numerical
experiments which are obtained through a variant of test examples for the surface
PDEs. The spatial and temporal discretization schemes including stabilized finite
element method with necessary formulations will be used directly from the Chapter
The numerical evidence presents the efficiency and accuracy of the developed
schemes. Some of these results appeared in a research article [[114]]. ﬂ

4.1 Introduction

We have established the theory of an algebraic flux-corrected finite element level
set based scheme for solution of a class of partial differential equations on station-
ary and evolving-in-time surfaces. The proposed numerical scheme is positivity
preserving. Now we will propose and analyze our numerical method to approxi-
mate the solution of PDEs on surface.

In general, the modeling of a physical phenomena with biological applications
are complex and highly nonlinear partial differential equations. There is no sys-
tematic way to find an exact analytic solution for such kind of PDEs. Therefore, we
look for a computational or numerical approximation of the solution. The numeri-
cal approximation can be constructed after discretization of the continuous model
into its discrete counterpart. Then the resulting discrete equations can be solved
computationally.

A large class of numerical methods are proposed for approximation of the geo-
metric partial differential equations. In this chapter we will use conforming bilinear
and trilinear finite elements, based on the constructed scheme in Chapter (3).

4.1.1 Software and implementation

The numerical simulations are implemented using Finite Element Analysis Tool
FEATFLOW for flow problems. It is an open source multipurpose software package.
The proposed numerical scheme are implemented in the open source FEM-library

TA. Sokolov, R. Ali, S. Turek, An AFC-stabilized implicit finite element method for partial
differential equations on evolving-in-time surfaces, J. Comput. Appl. Math. 289, 101-115
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FEATFLOW, which is developed and maintained at the department of applied math-
ematics at TU Dortmund. The downloading of the software and the corresponding
applications is possible to find in FEATFLOW web page ﬂ

The FEATFLOW library is build up on the FORTRAN77 and FORTRANO90,
mainly focusing on unstructured quadrilateral and hexahedral meshes applicable to
2-D and 3-D problems, respectively. The FEATFLOW uses nonconforming para-
metric/nonparametric finite element method with rotated bi/tri-linear shape func-
tions for spatial discretization. The temporal discretization, e.g., see are im-
plemented with a variant of 8-schemes, namely, explicit schemes such as Forward-
Euler and implicit-schemes like backward-Euler, Crank-Nicholson, fractional step
6-schemes, modified step 6-schemes and more depending mainly on the nature
of the problems. This work has been implemented using the fully implicit 8-
schemes for temporal discretization. In the numerical process, the continuous
model is transformed into its discrete counterpart using spatio-temporal discretiza-
tion, which can be solved through direct or indirect solvers. The B10-APP (bio-
logical applications) solver provide implementation of problem through iterative
algorithm and preconditioners can be chosen from Krylov space techniques such
as conjugate gradient method (CG), biconjugate gradient method (BCG), biconju-
gate gradient stabilized method, generalized minimal residual method (GMRES)
and etc.

The applications of FEATFLOW library include, just to name few, chemotaxis
related problem [113, 117120, level set method [Turek et al.|[128]], fluid-structure
interaction [102} 1126, [127]], hemodynamics [[101}, [134]], Lattice Boltzmann tech-
nique, least square method, multi-phase flow, fictitious boundary method. The
software library is in a constant evolution, capable to solve compressible and/or
incompressible flow of Newtonian and non-Newtonian fluid models with magneto-
hydrodynamics, heat/mass transfer, with optional hardware oriented advance par-
allel programming.

The numerical simulations are implemented in B10-APP section of FEAT li-
brary. This application is capable to solve a wide variety of biological problems,
such as chemotaxis, patterns forming models in two and three dimensional geom-
etry. The application provide efficient, flexible and positivity preserving schemes
for PDEs on stationary and evolving surfaces [[113-115} [117H120]. The proposed
framework is further extended it the an algebraic flux-corrected FEM level set
based scheme to solve partial differential equations on stationary and evolving sur-
faces.

The meshes for the physical domains and surface triangulation are generated
mainly through Grid DEVISOR (Design and Visualization Software Resourceﬂ
The visualization of the graphical results are performed with GMV (General Mesh
Viewerﬂ and ParaVieWEl

Zhttp://www.featflow.de

3http ://www.feast.uni-dortmund.de/downloads.html
4http://www.generalmeshviewer.com
Shttp://www.paraview.org
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4.2. NUMERICAL EXPERIMENTS

4.2 Numerical experiments

This section aims to describe the numerical setup with visualization and numerical
computation of the discretized scheme. The problem in hand is visualized through
mesh generation of geometry. The numerical results will provide the solution pro-
files and the order of convergence for the proposed numerical schemes.

4.2.1 Visualization and computation

We are using the partial differential equations to describe physical phenomena on
surface. As we mentioned earlier, the analytic solution for such models are of-
ten complicated to achieve, sometimes it is challenging to build up a numerical
scheme to capture the solution behavior. To get the numerical insight for govern-
ing equations through a geometrical view, we solve the discretized problem on a
given surface geometry represented by mesh. The mesh generation is compara-
tively easy for the domain of rectangular/square shape and even more challenging
for 3-D geometry with curvalinear boundaries. The represented mesh can be struc-
tured/unstructured and block-structured depending on complexity of the physical
problem.

Based on triangulation in the unknowns (d.o.f) of the discrete problems
are associated with a computational grid/mesh, which comprises number of sub-
domains of the whole domain. These sub-domains are intervals in 1-D, triangles
or quadrilaterals in 2-D and tetrahedral or hexahedrals in 3-D geometries.

The discrete solution is initially defined on a mesh, using this initial profile at
each time step a new solution is obtained, then the solution is interpolated for the
next step. The newly generated solution may contains different number of nodes
as compared to previous mesh.

In the numerical community, three grid adaptation are commonly used, depend-
ing on the prescription of nodes for a fixed and/or moving grid/mesh. Generally,
the numerical algorithm can be categorized into Eulerian, Lagrangian and arbi-
trary Eulerian-Lagrangian (ALE) techniques. The most common refinement is /-
refinement, where a static mesh use and also capable to add/remove nodes from the
existing mesh. The second refinement is p-refinement, where a local polynomial is
employed for the finite element discretization of partial differential equation. The
order of the polynomial is increased and/or decreased to adapt the method w.r.t.
smoothness of the solution. The combination of both refinement is known as the
hp-refinement. However, the Ahp-refinement may be complex and challenging to
get desire solution. For example, the calculation of error estimates, which heav-
ily rely on certain assumptions. Thus there are variety of refinement techniques
exist, we use an Eulerian approach. The theoretical and practical aspects of the
Eulerian surface defined partial differential equations, are studied by [Dziuk and
Elliott|[26} 29,130]] and [31,/97]]. Another approach can be the moving mesh, which
posses greater values and applications, interested readers are kindly refer to Budd
et al.[[10] and |Huang and Russell| [52].
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4.2.2 Laplace-Beltrami on evolving surface

Here to solve numerical examples corresponding to surface PDEs with different
configurations. We use the already constructed scheme of spatial discretization by
finite element method including temporal discretization For instance,
we solve partial differential equation on surface around a narrow band using FEM-
level set based method with pure Galerkin (without further modification in the
constructed matrices), AFC methods of flux-corrected transport (FCT) and
total variation diminishing (TVD) schemes.

Consider reaction-diffusion equations on an evolving surface:

a*
af +ap=DArpp  on I(r).

Where ap is reactive kinetic. We observe that in this particular example ¢ does not
influence the physical significance, thus we may assume o = 0. Furthermore, we
use different values of o in rest of our study, keeping in view the importance of re-
active kinetics in biological applications of pattern formations. On right hand side
of equation (4.1I)), we have Laplace-Beltrami operator (see and diffusion
coefficient D. The first term on left hand side of equation(@.I)) is surface material
derivative defined as:

9% .
al{) :atP+PVF(t)‘Ua
here d°p is given as:
d
3p =5 +v-Vp.

Using the Leibniz formula from lemma

d :
& [p=[(rp+pvr-v).

after employing equations (4.2), (.3) and (#.4), we can obtain the following sim-
plified equation on surface.

d
aflt)—l-v-Vp—Fer‘v—i—Otp:DAr(,)p on I'(z).

As we use the level set methods to capture evolution of surface, for details descrip-
tion and formulation of level set methodology we kindly refer to
Consider the following initial prescription of the level set function:

o (x,7) = |x| — (1.0+ b1 sin(50)),

here b is an arbitrary constant, in this example we choose b = 10, ¢ is time variable
and the angle © is define as:

O = atan2(x*,x").
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where the definition of atan2(x? x') stated as follows:

[N

arctan if x! >0,

atan2(x*,x') = ,
L)-m if ¥ <0 and x' <O,

(%)

xl

arctan (i—?) +7 if x>0 and x' <0,
arctan( >

+2 if x>0 and x'=0.

and the initial condition p(r = 0) = py,

0  otherwise.

10 if[x—(0,1)7|=0,
o P

The assumed computational domain is

Q={xecR?>:05< [x| <1.5}.

Figure 4.1: Geometric illustration of the computational domain Q = Q;, UQ,,, UT"

To get more insight to see the oscillations on the solution profile we will re-
duce the domain (e.g., see fig. four-fold and denote it by €. The figures
show the evolution of the level set function ¢(x,?) at different time
instances. Figure[4.2(a)|shows the initial prescription of the level set function. Fig-
ures[4.2(b)l B.2(c)|and .2(d)| are calculated at 7 = 0.01,0.02 and 0.05, respectively.
It is worth noting that the level set function ¢ (x,7) evolves in a regularized manner,
applications of evolving level set in image processing are presented by (Chunming
et al.| [20].
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(a) level set, t = 0.00

(c) level set, t = 0.02 (d) level set, t = 0.05

Figure 4.2: The evolution of the level set function @ (x,¢) (a) initial value (b) ¢ at
0.01 (c) ¢ at (0.01) and (d) ¢ at 0.05 The colour stands for values of p between
maximum (red) and minimum (blue).

Figure shows the initial solution, from left to right in the rows we have an
increase in the diffusion coefficients D = 107>, 1072, 1.0, respectively. Similarly
in the column we have the levels of mesh refinement, i.e., level = 3, ..., 8, respec-
tively. We did not include the solution profiles at certain levels, either they do not
possess physical significance in this study or to avoid redundancy of results. A
similar procedure is used in case of algebraic flux correction of FCT/TVD-type to
approximate solutions.

Figures show the results obtained through standard Galerkin
scheme (SG). It can be observed that for level 5 (which corresponds to 16640
d.o.f) we get kinks at solution profile even with a comparatively high diffusion
coefficients. Furthermore, in some cases such a high diffusion are inappropriate
for certain physical models. If we increase the level of refinements from 3 to 8§,
consequently the quality of the solution improve. But in results the computational
costs of the numerical solution will increase exponentially. We noticed that even at
8th-level of refinement using a small diffusion coefficient we get oscillations in the
solution close to steep gradient. Numerical oscillations in the solution profile of the
Galerkin scheme with different experiments are clearly shown. In consequences,
this system of partial differential equations on surface requires an alternative ac-
curate and efficient technique to get solutions with low computational cost in a
reasonable time frame.
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(a) initial solution

(b) lev. 4, D=107°

(k) lev. 8, D=1077 1) lev. 8, D=10"2 (m) lev. 8, D=1.0

Figure 4.3: The pure Galerkin method, o¢ = 0.0, at T = 0.05 with fixed time step
At = 0.0005, left to right an increase in diffusion coefficient and top to bottom

an increase in mesh refinement levels. The light blue represents the value of p =
—0.85and red p =0.85
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(a) initial solution

(b) lev. 4, D=1073 (c) lev. 4, D=10"2 (d) lev. 4,D=1.0

(e) lev. 6,D=1077 (f) lev. 6, D= 1072 (g) lev. 6,D=1.0

(h) lev. 7,D=1077 @) lev. 7, D= 1072 () lev. 7,D=1.0

(k) lev. 8, D=107" () lev. 8, D= 1072 (m) lev. 8, D= 1.0

Figure 4.4: The TVD scheme, at T = 0.05 with fixed time step Ar = 0.0005, left
to right an increase in diffusion coefficient and top to bottom an increase in mesh
refinement levels. Blue represents the value of p = —1.0 andred p = 1.0
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(a) initial solution

(b) lev. 3, D=107° (c) lev. 3, D= 1072 (d) lev. 3,D=1.0

(e) lev. 4, D= 1077 (f) lev. 4, D= 102 (2) lev. 4,D=1.0

(h) lev. 7,D=107? (i) lev. 7, D= 1072 () lev. 7,D=1.0

(k) lev. 8, D=1077 ) lev. 8, D=10"2 (m) lev. 8, D=1.0

Figure 4.5: The FCT scheme, at 7 = 0.05 with fixed time step Ar = 0.0005, left
to right an increase in diffusion coefficient and top to bottom an increase in mesh
refinement levels. Blue represents the value of p = —1.0 andred p = 1.0
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S 6

(a) lev. 4, D=1073 (b) lev. 4, D= 102 (©) lev. 4,D=1.0

S 6

(d) lev. 5,D=1077 (e) lev. 5, D= 1072 (f) lev. 5,D=1.0

= ¥

(g) lev. 6,D=10"° (h) lev. 6, D= 1072 @) lev. 6,D=1.0

(i) lev. 7, D= 105 () lev. 7, D= 102 @) lev. 7,D=1.0

=S

(m) lev. 8, D= 1077 (n) lev. 8, D=10"2 (0) lev. 8, D=1.0

Figure 4.6: The pure Galerkin method, € = 0.125, a = 0.0, at T = 0.05 with
fixed time step Ar = 0.0005, left to right an increase in diffusion coefficient and
top to bottom an increase in mesh refinement levels. Blue represents the value of
p=—10andredp=1.0
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(a) lev. 3,D=1073 () lev. 3,D =102 () lev. 3,D=1.0

f

(d) lev. 4,D=1077 (e) lev. 4, D= 1072 (f) lev. 4,D=1.0

(g) lev. 5,D=10"° (h) lev. 5, D= 1072 @) lev. 5,D=1.0

() lev. 6,D=10"? (k) lev. 6, D=10"2 M) lev. 6,D=1.0

Figure 4.7: The TVD scheme, € =0.125, ¢ = 0.0, at T = 0.05 with fixed time step
At = 0.0005, left to right an increase in diffusion coefficient and top to bottom an
increase in mesh refinement levels. Blue represents the value of p = —1.0 and red
p=1.0
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O ¢

(a) lev. 3,D=1073 (b) lev. 3,D =102 (c) lev. 3,D=1.0

&

(d) lev. 4,D=10773 (e) lev. 4, D= 102 (f) lev. 4,D=1.0

(g) lev. 5,D= 103 (h) lev. 5, D= 102 @) lev. 5,D= 1.0

() lev. 6,D=10"2 (k) lev. 6, D=10"2 M lev. 6,D=1.0

Figure 4.8: The FCT scheme, € = 0.125, oo = 0.0, at T = 0.05 with fixed time step
At = 0.0005, left to right an increase in diffusion coefficient and top to bottom an
increase in mesh refinement levels.

The obtained solutions in figures are achieved through the TVD-
schemes and 4.4(a) as the respective initial solution. In addition, we have a similar

arrangement of solution profile with FCT schemes figures4.5(b)H4.5(m)} with cor-
responding initial solution These numerical results are calculated at time
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instance T = 0.05 with a fixed time step At = 0.0005. In these graphical repre-
sentation of solution, to avoid redundancy of relatively similar results we ignored
some figures concerns to mesh levels of refinement. With these test cases, we can
conclude that the surface evolution due to convective term always leads to oscilla-
tions in the vicinity of I'-band, especially for steep gradients of p with coarse mesh
refinements. The proposed AFC-based schemes of TVD and/or FCT-types yield
a smooth, positivity preserving and physically suitable numerical solution. At the
same time TVD and FCT-schemes deliver smooth, oscillatory-free and an accurate
solutions with low computational cost.

As the interface of the I'(¢) is represented through zero-level set function ¢ (x,z =
0), thus we are concerned to the solution profile close to the interface I'(r). We per-
form similar experiments to investigate the effects of the surface convection in case
of small domain denoted by &, which is approximately six times relatively smaller
than the actual domain defined in (4.8)). These experiments show that an increase
in the value of diffusion coefficient D can bring solution profile almost identical to
the initial solution. In case of Q.-domain for small values of € we are unable to
get smooth solution profile which makes the use of stabilization techniques manda-
tory. We presented in figures the standard Galerkin scheme for the
small value of the €, in the Q¢—domain. Similarly, figures are shown
for the TVD-scheme and figure for the FCT-type schemes. In fig-
ures 4.6(m)|and |4.6(n)| we can observe that for the diffusion coefficients D = 1073
and D = 1072 we get oscillations even at 8th-level of mesh refinement. But we
obtained a formidable solution profile in case of FCT and TVD-schemes, at mesh

refinement level 5, e.g., see figures 4.8(g)H4.8(h)| and figures with
diffusion coefficients D = 1075 and D = 102.

4.2.3 Surface PDE with different configuration

To check the accuracy and applicability of our numerical scheme, we performed
more numerical tests for PDEs on surfaces. The following examples with numeri-
cal configurations are modified form of the article [27], where the authors did not
include the boundary integrals and noticed that the boundary integral can cause
numerical oscillations and suggested a stabilization scheme to avoid non-physical
solution. We have experienced the same results using pure Galerkin scheme in-
cluding the boundary integral expression in the weak formulation.

Lets solve the following partial differential equation posed on evolving surface:

PP _ pacyp(sn) +ales)  on T()

Where I'(¢) is prescribed by the zero level set of the function
¢o(x,1) = |x| — 1.0+sin(47)(|x| —0.5)(1.5 —|x]). 4.10

The computational domain is same as previous configuration. It is a circular disc
with parameters Q = {x € R?: 0.5 < |x| < 1.5}. The boundary of the domain 9
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is aligned with a curve from the family I',.. The analytical solution is chosen to be

1
p(x,1) =e /. % 4.11

Since I'(#) is time-dependent, applying mathematical formulation of surface PDEs
from §3.4.1] the equation (4.9) transforms into
ap
atp~|—vs-Vp~|—V%—VHp+pr-vS—App:g(x,t).S 4.12
Where H is the mean curvature of I'(z) and therefore H = —1/|x| . Substituting the
tangential component of the velocity vs = 0 into (#.12)), we get

8,p+V§—Z—VHp—App:g(x,t). 4.13

(a) The initial solution and mesh, level 2 (b) The analytical solution

W2
Al

(¢) The numerical solution, level 3 (d) boundary kinks, level 2

Figure 4.9: (a) initial solution and mesh (b) the analytic solution @[) (c) the
numerical solution (d) the screen shot of implicit scheme with boundary inte-
gral(ISwB), the boundary integral causes kinks near boundaries. The 2nd and 3rd
levels of mesh refinement consists of 288 and 1088 degrees of freedom, respec-
tively. Blue represents the value of p = —0.95 and red p = 0.95
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The function p(x,¢) from (4.11) solves the equation on the surface
dip —Arp = 0.

Therefore, using the mean curvature values, we found the following expression for
8(x,1)

ap
an

g=V

0.956
ED.S

-0,
-0.956-

(a) IS scheme (b) IS-TVD scheme

(¢) IS-FCT scheme (d) no boundary kinks

Figure 4.10: The numerical solutions obtained by adoption of the fully implicit
scheme defined in equation @) (a) is implicit scheme, (b) and (c) are solu-
tions of implicit schemes of TVD and FCT-types, resp. (d) the numerical kinks at
boundary are vanished.

As an initial condition, we set pinit = P (X,7 = 0) = sin(40), where ® € [0, 27].
The © is an angle between x'-axis and x = (x!,x?)7, defined in equation (@) The
tangential velocity of the surface is vg = 0. Since ®; = 0, the normal component
of the surface velocity is also vanishing. The mean value of py vanishes at every
level set I, , hence the solution tends to zero as time approaches infinity. But this
occurs at a rate depending on the radius of the circle due to different circles have
different diffusion coefficients.
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In figures {4.9(c)|and 4.9(d)| we demonstrate numerical results after the 100th itera-
tion in time with a fixed time step Ar = 0.0005. The results obtained by a scheme,
which include the boundary integral term. Here explicit and implicit schemes re-
veal the same artifact in the numerical solution. The artificial kinks near the bound-
ary of the domain can propagate in time to the entire domain causing deterioration
of the numerical solution. In figures [#.10(a)|, 4. 10(b)|and [4.10(c)| we show numeri-
cal results, which are obtained by the implicit scheme (3.36). One can clearly see
much better profiles of the numerical solution. The 3rd level of the mesh refine-
ment is used. In figure 4.10(a)| we demonstrate the numerical solution of
without any stabilization. In figure d.10(b)| the TVD and in figure 4.10(c)| the FCT
stabilization techniques are applied.

Numerical test with different tangential velocity

In previous example we have assumed that the tangential velocity is zero. To vali-
date our FEM-level set scheme we take an exmaple from [27]. In this test example,
everything is similar to last numerical configuration §4.2.3| but the tangential ve-
locity of the surface is defined as:

vs — 10020 4.14

Vol

0.965 Eﬁo‘s

Z04

k mg

(b) att =0.002

(c) att =0.045 (d) att=0.1

Figure 4.11: Numerical solution at various time instances, with fixed time step
At =0.0001
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The numerical results at different instances are shown. The figure 4.11(a)|is
showing the initial solution, figures 4.11(b)Ii4.11(b)| and 4.11(b)are showing solu-
tion at ¢t = 0.002, 0.045, 0.1, respectively.

4.2.4 Order of convergence

Now based on aforementioned test cases, we can provide a positivity preserving
scheme embedded with FCT and TVD stabilization. Furthermore, in order to show
results on error analysis, we calculate the L?(Q.) and H'(Q,) norms of error and
experimental order of convergence (EOC). The corresponding L2(Q.) and H' (Q,)
norms are defined by (cf. [27]) the following formulae:

1
2
)

LZ(.QS)—GI'I‘OI' = <‘-ng‘~/9 (panalyt(x7t) _pnum(Xat))z |V¢|>

1
2

1
Hl (QS)'error = <|.Q.| /Q (VFPanalyt(XJ) - Vl"pnurn(xal‘))2 |V¢ |>
£ £

The tables (4.1)), (4.2) and (4.3)) are showing the L?(Q¢) and H'(Q)-errors using
the corresponding norms

L*(Q¢) = || Panatyt — pallz2r) and H'(Qe) = ||V Panaiyt — VPl ) -

Thus, all tables validate the high order of spatial convergence i.e., our numerical
scheme approximately is of second order in L? and first order in H'.

Let us denote the numerical error {E;};—o .y in the finite element level set
based scheme on a series of uniform refinements of a triangulation {.7 }i—o . n.

(EOC) is assumed to be measure of the rate of convergence of the scheme, when
the maximum mesh size iy — 0.

The experimental order of convergence are calculated using the following formula
Dziuk and Elliott| [26]], Ranner| [97]] and |Venkataraman)| [[133]].

Eiti
E;

log (h;;‘

log (
EOC(Eijs1,hijr1) =
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lev. ‘ d.o.f ‘ L?(Q¢) -errors ‘ EOC ‘ H'(Q,) -errors ‘ EOC

e=0.5
2 288 | 2.60532E-003 - 3.61167E-002 -
3 1088 | 6.76148E-004 | 1.946 | 1.80981E-002 | 0.996
4 | 4224 | 1.79701E-004 | 1.911 | 9.15163E-003 | 0.983
5 | 16640 | 4.93317E-005 | 1.865 | 4.68961E-003 | 0.964
e=0.25
2 288 | 1.65152E-003 - 2.44530E-002 -
3 1088 | 4.12974E-004 | 1.999 | 1.22096E-002 | 1.00
4 | 4224 | 1.02201E-004 | 2.014 | 6.10269E-003 | 1.00
5 | 16640 | 2.44469E-005 | 2.063 | 3.05108E-003 | 1.00
€=0.125
2 288 | 1.28775E-003 - 1.95126E-002 -
3 1088 | 3.21906E-004 | 2.000 | 9.74873E-003 | 1.001
4 | 4224 | 7.90935E-005 | 2.025 | 4.82267E-003 | 1.015
5 | 16640 | 1.90064E-005 | 2.057 | 2.42365E-003 | 0.992

Table 4.1: The fully implicit scheme (3.36), L*>(Q¢) and H'(Q;) errors, order of
convergence and number of degrees of freedom in €.

The experimental order of convergence and numbers of degrees of freedom
(d.o.f) are calculated at 100th iteration with a fixed time step At = 0.0005. The
tables (4.3) and (#.2)) are shown to check the convergence of the established im-
plicit FCT and TVD schemes. The tables assure the convergence of the AFC-type
schemes for surface PDEs. The analysis of L? and H'-errors confirm the theory
of the error analysis (see equations(3.82)—(3.85) for PDEs on surface. To
get more insight we calculate the errors close to steep gradient after modifying
the given domain Q. Let us denote the area of the strip inside annular domain
0.5 < Q< 1.5, where € = 0.5. Numerical results for € = 0.25 and € = 0.125 are
calculated as well. Here again our goal is to get numerical results for smaller value
of € to know solution behavior close to the steep gradient.

lev. | d.of | L*(Q) -errors | EOC | H'(Q¢) -errors | EOC
e=05

288 | 5.04310E-003 - 7.59220E-002 -
1088 | 1.28061E-003 | 1.9775 | 3.81000E-002 | 0.9947
4224 | 3.26672E-004 | 1.9709 | 1.93023E-002 | 0.9810
16640 | 8.47900E-005 | 1.9459 | 9.97292E-003 | 0.9527

|9, I SRS I \S)

Table 4.2: The TVD scheme for L?(Q,) and H'(Q)—errors, order of convergence
and number of degrees of freedom in €.
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lev. ‘ d.o.f ‘ L?(Q) -errors ‘ EOC ‘ H'(Q,) -errors ‘ EOC
€=0.5

288 | 5.00131E-003 - 7.59073E-002 -
1088 | 1.27154E-003 | 1.9757 | 3.81005E-002 | 0.9944
4224 | 3.24777E-004 | 1.9691 | 1.93052E-002 | 0.9808
16640 | 8.43970E-005 | 1.9442 | 9.97574E-003 | 0.9525

[V, I SOV I \)

Table 4.3: The FCT scheme for L2(Q,) and H' (Q,)-errors, order of convergence
and number of degrees of freedom in Q.

4.2.5 Transport of species on surface

Consider transport of species p on the surface I'. In this numerical example we
would like to demonstrate that numerical stabilization of certain PDEs on surfaces
is inevitable even for simple equations. Consequently, we consider the following

transport equation
dp +v-Vrp =0,

on the 3-dimensional geometry of a unit sphere I' = {x : |x| = 1}. Applying the
level set methodology, we solve the transport equation (4.15]) on level sets I', C Q.
For the sake of simplicity, the computational domain € is chosen to be a union of
all level sets I', with r € [0.5,1.5]. We assume the following initial condition

10 if |x—(0,0,1)7| <0.3
p(x,1) = ifx=(0.0,1)7 <03, 4.16
0 else.
The advective velocity vector-field is defined by
v={x'0,—x*}T.

The mesh is constructed by refining the coarsest level via connecting opposite mid-
points several times. We provide the number of cells and degrees of freedom at
every level of refinement in the table (#.4).

level ‘ cells d.o.f.
0 24 42
1 192 250
2 1536 1746
3 12288 13090
4 98304 101442
5 786432 798 850
6 6291 456 6340866

Table 4.4: Levels of mesh refinements, cells and number of degrees of freedom on
the computational domain Q.
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(a) initial solution (b) pure Galerkin method
(c) TVD (d) FCT

Figure 4.12: The numerical results for the transport problem, with fixed time step
At =0.001. Blue represents the value of p = —1.0 and red p = 10

For this numerical experiments we use a grid of trilinear finite elements at the
5th level of mesh refinement and edges of hexahedrals are aligned with the level
sets. For corresponding reconstruction of level set processes we refer to[Turek et al|
(128].

We have presented two sets of figures and figures
for species p(x,7) on surface I'. On one hand the first set of figures are showing the
specie on the surface, on the other hand the second set of figures are drawn through
cutline over x*-axis. The figure shows the initial condition for p(x,7).
The numerical solution for the pure Galerkin scheme at an exemplary time-point
T = 0.2 is demonstrated in figure f.12(b)] We can clearly observe an artificial
oscillations and negative values of p(x,¢) near region of steep gradient when the
specie p(x,t) is traveling on surface, see ﬁgure These nonphysical values
grow rapidly as time evolve, which leads to the divergence of the algorithm and
termination of the simulation. showed that the pure Galerkin
scheme for chemotaxis problems on stationary surfaces cannot guarantee the pos-
itivity preserving and smoothness of the solution. The corresponding FCT/TVD
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methodology enable to stabilization of this type of problems and deliver a suffi-

ciently accurate solution, see figures 4. 12(c)|and[4.12(d)] as well as

(a) initial solution (b) pure Galerkin

1 1 H o 08 1 16

(c) TVD stabilization (d) FCT stabilization

Figure 4.13: Visualization of the solution profile for initial, pure Galerkin, TVD
and FCT schemes using cutline along the x3-axis.

In addition, we observe that the boundary integral term [;op Qv - ny0|V9|
can also leads to undesired kinks near the boundary of the computational domain,
which can also spread through the entire domain and spoil the numerical solution.
An advective term to the surface evolution requires special numerical treatment
as well. We show that the pure Galerkin discretization without any stabilization
method can leads to artificial oscillations in numerical solutions, especially in the
regions with steep gradients.
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4.3 Conclusion

A large class of biological and biomedicine problems involve modeling of par-
tial differential equations on manifolds. Recent advancements in developmental
biology demand a robust and efficient mathematical technique to find an accurate
solution for a realistic model. Such mathematical models includes PDEs on surface
and their coupling with domain-defined PDEs. Most biological problems involve
evolution and growth. Thus it is essential to execute the modeling of partial dif-
ferential equations on evolving in time surface [114} [115]. In case of evolving
surface we have more complex models describing the surface e.g., the surface con-
vection causes non-physical oscillatory solution. The level set methodology allows
for coupling of these mathematical models and provides a systematic procedure to
capture the interface. The complexity of the problem substantially increases when
the surface and its corresponding level set function are non-stationary. Then we
have to treat the surface convection carefully and also we need a robust technique
for stabilization of the advective terms appeared due to deformation of the surface,
boundary integral, chemotaxis and advective surface material derivatives. In this
chapter, we drawn attention to the non-physical solution due to surface convection
and inclusion of the boundary integral in the finite element formulation.

In addition, we provided a brief introduction on software implementation and
visualization of the numerical solution. We carefully analyzed the scheme with
inclusion of boundary integral, pure Galerkin methods, and with FCT/TVD stabi-
lized scheme. From a number of numerical experiments we concluded that sta-
bilization is necessary for the surface PDEs. We shown numerical results for the
Q.-domain, to get more insight to the oscillatory solution. We presented numerical
results showing the accuracy of the mathematical method. The experimental order
of convergences in L>(Q,) and H'(Q,) errors, are calculated for pure Galerkin,
FCT and TVD methods, respectively.

The employed mathematical techniques including the level set method, finite
element discretization in space and TVD/FCT stabilization of convective and/or
advective (chemotaxis) terms with implicit Euler technique for temporal discretiza-
tion are extended for the 3-dimensional space.
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Nature uses only the longest
threads to weave her patterns.

Richard P. Feynman

Pattern forming models

This chapter addresses the mathematical background and mechanism behind pat-
terns forming models. We introduce the reaction-diffusion system of equations
and provide linearization for the nonlinear reactive terms. In addition, we study
the order of convergence for patterns forming models. We demonstrate numerical
simulations based on finite element level set techniques for a collection of mathe-
matical models, which exhibit patterns. These models are defined for both station-
ary and evolving in time surfaces. Some of the contents and numerical results of
this chapter are already archived in [[115]].

5.1 Introduction

In general there is a variety of patterns forming models, in particular the biological
patterns can arise due to chemotaxis and/or Turing-type instabilities. The pattern-
formation mechanisms based on chemotaxis are discussed by Mimura and Tsu-
jikawal [73] and [Painter|[94]. The diffusion-driven patterns can be developed based
on Turing mechanisms [129]. The Turing patterns in the beginning of has
been introduced. In his seminal work on morphogenesis, Turing| [129] reveals that
chemicals reacts and diffuse in such a way they get steady state patterns. How-
ever in his original work he did not consider the effects of geometry and growth,
although these processes have a vital role in the development of any organism. It is
certain that the mechanism of patterns in animal world are not clearly understood,
either experimentally or theoretically. |Murray| [79, [80] suggests that the mecha-
nism must be genetically controlled. Thus we have to focus on the genetic coding
behind patterns. One of the open question in mathematical biology is that how ge-
netic codes are physically translated to forms. Large group of researchers both from
experimental and theoretical communities [[13} /4142 79, 180, 183,93 194} 98! [107]
are concerned with the understanding of the mechanism.

It has been discussed that the reaction-diffusion equations exhibit Turing-type
instabilities [129]. [Miura and Maini| [74] reviewed the sensitivity of patterns form-
ing models. They reported that domains, initial and boundary conditions can in-
fluence patterns. An important feature of their model addresses the understanding
in symmetry of similar size of forms. If the domain size vary the number of struc-
ture can change as well. Simply if the domain changes the number of structures
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(patterns) increases. This concludes that the number of structures are domain-
dependent, e.g., see [741194,[133]. The system develop steady state patterns by am-
plifying specific wavelengths of small fluctuations in the initial guess. Although
the solution of the system globally exist, if one change the initial condition, the
final structure more or less remains the same. As mentioned in the earlier, the pat-
terns forming mechanisms play a very important role in bio-medical applications.
The driven factors of patterns occurrence could be chemotaxis or Turing instability.
In this chapter we will focus on systems of Turing-instability type and chemotaxis.
The reason is two-fold: on the one hand, there is a wide range of applications for
such patterns forming systems (see, e.g., protein-protein interaction on a cell mem-
brane by |Goryachev and Pokhilko| [45]], Ratz and Roger| [98]). On the other hand,
these are convenient systems to verify the usability of the numerical scheme.

Now we will introduce the conservation law for reaction-diffusion chemotaxis
models, which are fundamental equations mainly used to describe patterns in na-
ture.

5.1.1 Reaction-diffusion chemotaxis equation

The reaction-diffusion equation are applied to study the patterns formations. Con-
sider I to be an arbitrary surface enclosed in a domain Q. According to general
conservation law the rate of change of the amount of material in a domain Q is
equal to the rate of flow of the material across I" into € added by any reaction g of
the material within the domain Q2 [80]. We have

d
2 / p(x,1)dQ = —/ J-dT' + / ¢(p)dQ,
at Ja r Ja
where p is the concentration of the species. The flux of the material is denoted by

J. Assuming that p is continuous and using the divergence theorem to the surface,
we obtained the following relation:

d
/ {p(x,t) —i—V-J—g} dQ =0,
o|dt
since the domain is arbitrary, we get the conservation law for p as:
d
S PN +V T =g
This equation holds for general flux transport J.

Chemotaxis model

First taking the chemotaxis phenomena in the system, we can simply define the
chemotaxis flux

J = Jiifr + Jchemos
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the flux is represented as:
Jdiff = —V-DCVC, and Jchemo = —pXVC.
J=-V-DVe—pyVe.

Where D¢ is diffusion coefficient of the chemical. The system can be chemo-
attractant or chemo-repellent depending on the chemo-sensitivity parameter y. Us-
ing these fluxes the Mimura-Tsujikawa chemotaxis reaction-diffusion system will

be discussed in

Reaction-diffusion model
For a classical diffusion case, the generalization of the flux transport is define as:
J = Jair = —DPVp,

here DP is diffusion of the cell p. Now from (5.1)) the reaction-diffusion equation
for classical model reads:

2 p(x.6) = V- (D°Vp) +5(p).

Where g(p) is reactive kinetic representing growth or reduction, it can depends on
p, spatial variable x and time variable ¢. Most reaction-diffusion models vary in
nature depending on the choice of reactive terms. The diffusion coefficient DP is
a matrix depending on p and X. In case of no cross diffusion among species it can
simply be a diagonal matrix [79} 80]]. In this study, we assume DP independent of
the spatial variable x, for anisotropic diffusion e.g., see [[122], we have

P
5P (x.1) = DPV-Vp +g(p).

The equation can be generalized for more practical phenomena in nature, such
as interaction of multi-species or chemicals, each has its own density or concentra-
tion, reaction and diffusion coefficients. Hereafter, we are concerned mainly with
mathematical models for two variables p and { on surface I

a*p

ot = DpAFP+f(PaC) OHFXT,
9*¢ ¢
5> = D*Arl+g(p.f) onTxT.

Where f(p,&) and g (p, §) are the reactive kinetics. The reaction terms are highly
nonlinear in nature for most cases. For example the Schnakenberg model [65] of
reaction-diffusion equation on a surface reads as follows:

dp

— = Arp+yla—p+pf) onIxT,
%f = DArC+7y(b—p*) on T xT.
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In next section, we discuss linearization of the reactive kinetics based on the Taylor
series expansion. The discretization is based on the finite element level set schemes
developed in Chapter 3]

5.1.2 Linearization of nonlinear reactive terms

Turing systems are often characterized by intricately coupled nonlinear reaction-
diffusion equations. Hence, their appropriate treatment in a numerical framework
is an important task. In the following we consider the system of reaction-diffusion
equations — with IT'(r) being developed according to level set defined
in (2.87). We employ the Taylor series expansion to handle the nonlinear re-
action terms after splitting the time interval T = [0,¢M] by discrete time instants
0 <t' < ... <™ and denoting the time step size by At = ¢! —¢™

m+1 __ ym
f(pm-t,-l’cm—&-l) ~ f(Pm, Cm) _}_Vf(pzn’Cm) . (ngrl _gm> 3

m+1 _ ym
o(p™1,C ) . g(p™,C) + V(p™, EM) - (’gmﬂ - g’) -

Herein the superscript m denotes the evaluation of the underlying function at the
time instant t = ™. We further assume that both f(-) and g(-) can be (naturally)
prolonged from I'(¢) to the outer region.

By employing the numerical scheme (3.37)) together with formulas and

we end up with a linear system of equations for the discrete solution x"+! = (p,’l"Jrl , ,’1"“ T

where p;, and {, represent the finite element coefficient vectors of p and ¢ as be-
fore:

A(x™)x" T = p(x™), 5.10

where the matrix A(-) on the left-hand-side and the vector b(-) on the right-hand-
side are defined as

M+At<DPL—N—|—R—FP) _AtFE
Ax™) =
_AtGP M+Ar(D€L—N+R—GC)

and
Mo} + &t (F — FPpy — F4p)
b(x™) =
MG+ 81 (G - GPpp — GEG)

Here we use the notations (3.38))—(3.42) to define entries of matrices M, L, N and
R and dropped their dependencies. Moreover, we define the discrete counterparts
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of the reaction terms as follows:
F = flf G 1VO") with f(pi1 G V0" = [ Fpir. Gl vor.
G =2g(p, Gy, V™)) with g(pZ'ZC}Z’,\WmI)=/Qg(p;’fﬂéﬁ1)¢ilv¢m\,
FP = fP(p, Ci' [V9™]) - with f”(p?,C;T,!VW"D=/Q3pf(p;’l",éﬁ")<pi<pjlv¢ml,
FE = (G IVorl) it fE(opt G V0" = [ Ot (pir, gy V6",
G? =" (pil, i, IV9™])  with g”(px’lﬁéi",lwm\)=/Qf9pg(p;2"7<§£”)¢i¢jlv¢m!,
G* =g (P, i, V9"])  with gg(p;’?,é;i",\wml)=/Q8gg(p/’1”,éﬁ")<pi<pjlv¢ml-

The system ([5.10) has to be solved in every time step.
Let us summarize the main algorithmic steps required to perform one iteration in
time for finding the corresponding solutions at #"*!:

1. Update the recent position of the surface I'(#"+1) = {x : ¢(x,#™*!) = 0} by
solving the transport for the level set function ¢ (x,"!). equation

%?+U-V¢:0,

This algorithmic step is done by applying the finite element discretization
in space and the implicit Euler scheme in time with optional
flux-corrected stabilization of the convective term v - V¢@. Here, we do
not explicitly explain the corresponding regularization and reinitialization
techniques. Although the analysis of a proper choice is highly demanding
and problem dependent. For exemplary studies in this direction the interested
readers are therefore kindly referred to corresponding literature, e.g., [Turek
et al.|[128]].

2. Calculate the gradient of the level set function V¢™*!. Reassemble matrices,
which depend on [V¢"*+!| or v"*!. If necessary, perform linearization of the
reactive terms, based on (5.8)) and (5.9).

3. Solve the system of linear equations li for the tuple (p™+!, {m+ T,

5.2 Numerical results on patterns forming models

In this section we will undertake the convergence studies for patterns forming
model in finite element method framework demonstrating the applicability of the
coupled finite element level set scheme to selected examples. In the following
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section the spatial convergence of the scheme is validated by consider-
ing an example of the heat equation on a curve which is prescribed by the zero
level set of the function ¢ (x,7). In the next section the numerical solution
of the Schnakenberg model on a nontrivial stationary surface in the three dimen-
sional Euclidean space are shown. In we exhibit the coupling of the Koch-
Meinhardt reaction-diffusion model of the Turing-instability type with the evolu-
tion of the level sets, where the velocity is proportional to the numerical solution
of the model. The section is devoted to demonstrate the patterns formation
due to chemotaxis-type model.

5.2.1 Convergence study

Let us consider a case study of the convergence of the finite element level set based
scheme. For validation purposes we solve the two dimensional heat equation on
a pulsating circle as suggested by Dziuk and Elliott| [27]. The underlying compu-
tational domain € is an annular region with outer radius 1.5 and inner radius 0.5,
denoted by R}:2, such that

Q = %gz{x:@2£)6R2o5<Man}.
The analytical reference solution is prescribed as:

ot/ &)

: 512
x|

p(x1) =

and solve the heat equation on surface I'(¢) :

d"p(x,1)

5, =Arwpx1)+f(p).
Where on the right hand side f(p) must be calculated accordingly. The pulsating
circle is determined by the zero level sets of the following analytical reference
function

o(x,t) = |x|—1+sin(4¢)(|x| —0.5)(1.5—|x]).

This function is numerically approximated by solving the corresponding level set

transport equation starting with the initial solution ¢(x,0) = |x| — 1 from

equation (5.13). The finite element discretization of follows the regular

Galerkin approach with first order implicit time integration (Implicit Euler). The

transport velocity is determined to fit the analytical reference solution, i.e., ¢ solves
¢

v Vo = 0

where v = (v',1?) is given by

1 (x!) 4cos(4t)(|x| —0.5)(1.5—|x|) 3

= = - _ N2 /1x
N 1+ 2sin(4)(1 — |x|) ¢xl( )*/1xl,
2 = _(x2) 4cos(4t)(|x] —0.5)(1.5— |x|) _ —ﬂ(xz)z/];q
x| 1+ 2sin(47)(1 — |x]) 0.2 :
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We use p(x,0) as an initial condition for the simulation and monitor the numerical
approximations to the analytical reference solution at the corresponding instance
of time. The following numerical data is obtained after 100 time steps with a fixed
time stepping of Ar = 0.0001. This choice accounts for the purpose of document-
ing the numerical convergence in terms of the spatial discretization and neglecting
errors in time. We monitor the numerical error to the reference solutions p and ¢,

defined in (5.12) and (5.13)), respectively. In figure we capture the L? and H'

error of p in the annular region R(l):é% as we are interested mainly in the error close

to the zero level set which is located at |x| ~ 0.99.

5
grid level grid level

Figure 5.1: Reduction of the numerical L? (left) and H! (right) error of p in the

annular strip Ré:é%g for successive grid levels. The reference second and first order

of convergence is visualized in terms of the bottom-left triangles, respectively.
Figure depicts the Lé error of p, where

3@ = {p|ip.p)e <=}

with the following definition of the inner product and induced norm (cf. [27])

P, 8o /QPC!W!,

IPllz@ = \/{P:P)o

Note that this norm is consistent with the definition of the mass matrix in (3.38]).
The choice of this norm is motivated by the anticipation that |V¢| is approximately
equal to 1 due to sign distance property at the zero level set. In this case Lé

is an approximation of L?(I"). The next plots in ﬁguredocument the L? and H'
errors of the level set function ¢ in the restricted annular region R(l):é%.

All figures validate the high order of spatial convergence, i.e., the scheme is of
second order in L? and first order in H' for both solutions p and ¢. This can be

readily observed from the decline of the corresponding plots.

111




CHAPTER 5. PATTERN FORMING MODELS

5
5
107 [

5
grid level

Figure 5.2: Reduction of the numerical Lé error of p for successive grid levels.
The reference second order of convergence is visualized in terms of the bottom-
left triangle.

10° T T T T T 10"

107

RN D

10° L L L L L 107

Figure 5.3: Reduction of the numerical L? (left) and H' (right) error of ¢ in the
annular strip R(l):é%g for successive grid levels. The reference second and first order

of convergence is visualized in terms of the bottom-left triangles, respectively.

5.2.2 Schnakenberg model on the stationary surface

In this example we consider the performance of the solver for Schnakenberg model
of the Turing-type instability on stationary surface. For this purpose we compute
the numerical solution of the Schnakenberg model on a stationary surface I', which
mathematically reads as follows

dp

e Arp+7y(a—p+p*¢) on T x T, 5.14
9¢ _ 2
5 = DArg +y(b—p“f)onT'xT. 5.15

Where a, b are constants and Y is showing the relative strength of the reaction
terms. The increase in Y may results an increase in the activity of some rate of the
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reaction-kinetics. An increase in 7y can also be assumed a decrease in the diffu-
sion coefficients. The diffusion coefficient for D > 1, will provide the concept of
local activation and inhibition. This is a generic spatial mechanism essential for
the spatial patterning. It is obvious to assume that the diffusion coefficient of the
inhibition must be larger than that of the activator.

Now for the underlying computational domain Q we choose the cube Q =

(—2.5,2.5)3. The zero level set of the function ¢(-) implicitly prescribes the sta-
tionary surface I" of an animal-like geometry. The presented numerical results are
courtesy of [93].
For certain parameter settings it is known that the solution (p,{)” of the sys-
tem (5.14)—(5.13)) reveals instabilities due to Turing-type effects. The objective
of the following numerical assay is to verify that the finite element method level
set scheme can capture these instabilities.

(b)

1.86

WLH

| SRS

0.279:

(c) (@

Figure 5.4: (a) Mesh with an embedded zero-level set prescription of I (b) Initial
condition for p (c) values of p and (d) values of { at ¢t = 1.0 for the parameter-
setting ¥ = 25.0, D = 10.0.

The configuration reads as follows: We take the constants as

set the initial conditions p (X, = 0) = p;n;, and & (x, = 0) = {;;r as arandom small
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perturbation from the steady state point (0,0)7 i.e.,

Pinit = 1.0+rand - 10_2,
Cinir = 1.0 +rand - 10_2,

with rand to be a random number in the interval [—1.0, 1.0]. We start from the time
point t = 0 and proceed in time with the time step Ar = 0.005 until = 1.0, i.e., per-
forming 200 iteration steps. The mesh of the underlying geometry embedded with
zero level set function placed as surface I' in The random initial condition
of pPinir is presented in[5.4(b)l For the parameter setting ¥ = 25, D = 5 we observe
that the numerical solution converges back to its steady state (0,0)7. Whereas for
parameter settings Y =25, D = 10 and y = 85, D = 10 we obtain patterns that arise
due to Turing instabilities, see figures [5.4(c)|and [5.4(d)l

5.2.3 Koch-Meinhardt model on an evolving surface

We consider the following reaction-diffusion model for Turing on evolving surface
from [Koch and Meinhardt [57]]:

8£
ot

= Blé(”iﬂé)+p<m—r2c>+DCAr<f>€on I(t) % 1{5.17)

= oup (1-r18*) =& (1—r2p) +DPApyp on I'(t) x T, 5.16

Where the surface I'(¢) is the unit circle situated at the origin of the coordinate sys-
tem. The surface evolves in time with the velocity field v. Again, it is known that
under certain conditions on the parameters the Koch-Meinhardt reaction-diffusion
model exhibits a Turing instability.

This example shall prove that the finite element level set scheme allows to study
the complex patterns formations on a surface those deformations are monitored by
the solution of a PDE system (such as the Koch-Meinardt model (5.16)—(5.17)
given above). Therefore we choose the velocity v of I'(¢) to be proportional to p,
1.€., we set

v = 00lpn, 5.18

with n = Vo(x,1)/|V@(x,t)| denoting the outward normal defined in equation
(2.82) at a certain level set. While solving the transport equation for the level
set function ¢, we assume that its zero level set is located at a significant dis-
tance away from dQ and therefore the boundary dQ does not influence a position
of [(t™!) = {x : ¢(¢"*! ,x) = 0} during the time point ™! (i.e., no prescrip-
tion of ¢ on JQ is required). We choose the annular region R(l)zg as underlying
domain as its inner and outer boundaries are aligned with some initial level set
[t =0) = {x]¢(x,r = 0) = r}.
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o

=}

(a) mesh (b) p(x,t =0)

Figure 5.5: (a) Mesh of a four-fold refinement, (b) initial condition for p.

The parameter setting in (5.16)—(5.17) is taken to be as follows

DP =0.88- 6, D¢ =5.16- 6,
8 = 0.0045, 7 = —0.899,
a; =0.899, B =—0.91.

The time-step is taken to be At = 0.001. For the spatial discretization we use an
‘almost’ uniform mesh of 262 144 quadrilaterals which corresponds to a seven-fold
mesh refinement. This level of refinement results in an overall of 263 168 degrees
of freedom. Exemplary, in figure we depict the level 4 mesh resulting from
a four-fold mesh refinement. As a particular example of emergence of complicated
patterns we choose the following sinusoidal initial conditions for p and §, see

figure[5.5(b)}

sin <1o(x1 +x2)), if x! € [~1.25,-0.75] U[~0.25,0.25] U[0.75,1.25],

0, else.

p(x) li=0=

cos (10(x‘ +x2)>, if x! € [~1.25,-0.75] U[—0.25,0.25] U[0.75,1.25],

0, else.

E(x) li=0=

Concerning the evolution of the level set function @ (-), we solve the level set trans-

port equation (5.T1)) with the velocity as defined above in equation (5.18). Initially
we prescribe the solution ¢ (x,0) to satisfy

¢(x,0) = |x|—1.0. 5.19
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].2]7[1 ’
2 w
-1.25-

(a) patr=0.2 (b) level set ¢ atr =0.2

268
E
EU
=2
3 72I

(c)patr=1.0 (d) level set ¢ atz =1.0

—

-16.4

(e) patr=2.0 (f) level set ¢ atr =2.0

Figure 5.6: Numerical solutions for p and ¢ in the £-band Q; of the width € =0.15
at different time points.

The numerical solution of the system (5.16)—(5.17) reveals classical characteristics
of Turing-type instabilities. Herein the solutions’ maxima and minima increase
and decrease, respectively, as time evolves. The coupling of (5.16)—(5.17) with
the transport equation (5.11)) through (5.18)) leads to the deformation of the level
sets I', which in turn influences the system (5.16)—(5.17). Figure [5.6] depicts the
dynamics of the numerical solution for p and ¢ in a I'-band of width 0.15. As time
evolves we recognize a strong deformation of the level sets in the vicinity of large
values of the solution p as expected by the choice of the level set velocity (5.18).
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5.2.4 Chemotaxis patterns formation on a sphere

Now we will discuss chemotaxis patterns forming model from the reaction-diffusion
advection equations (I.8) and (1.9), we have

¢ = DAc—ac+Pp in Q,

a*
B = DPANp -V (2pVre) +p(1-p) onT.

For a stationary surface with the following parameter setting
D=1, DP=0.0625, a=320, B=1 and yx=38.5,

we have an example of chemotaxis patterns formation from Mimura and Tsujikawa
[[73]] and [Sokolov et al.|[[L13]]

¢ = Ac—320c+p in Q

0.0625Arp — 8.5V - (pVrc)+p(1—p) onT.

o:p

Here we show coupling of a surface-defined equation with an equation which is de-
fined in the entire domain . For this reason, we solve the Mimura-Tsujikawa-type
model [[73)[113] which describes the propagation of motile cells of E coli, in such
a way that the cell density p travels along a membrane I' C €, while the chemoat-
tractant ¢ lives in Q e.g., wherein the cell density p can be naturally prolongated to
Q as well. The initial conditions are chosen as follows

p(x,t=0) = 1+o0(x),
c(x,t=0) = 1/32,

where o (x) is defined as

0.2, if |x—(5,0,0)7|<1.5,

o(x) = .
0, otherwise.

We prescribe zero-flux boundary conditions on boundary for ¢ and p. As we are

always interested for the solution on surface, thus as a computational domain we

take

Q={x:48<|x/ <52}

and I' = {x : |x| = 5} which is defined by the zero level of the level set function
defined

6= /()2 + (22 + (2 5.0
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(@ t=0.0 (b) t =0.21
(c) t=0.42 (d)r=1.08

(e)t=2.16 () t=432

Figure 5.7: Chemotaxis patterns formation on a sphere with fixed time step At =
0.01.

The numerical scheme is able to capture the complex dynamics of the cell
density. As [113] noticed that for the case, when p € Q%, d =
2,3, we observe a similar behavior, but now on a sphere. Namely, placed in a
point x = (5,0,0)7, the initial concentration of bacteria propagates along I in
a moving wave-patterns as a response to the chemosensitivity parameter ), see
figures 5.7(f)} Here the algebraic flux-corrected method of FCT-type to
preserve the positivity of the cell density. Figure is the initial configura-
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tion and figures|[5.7(b) are the screen shots of chemotaxis patterns taken for
t=0.21,0.42,1.08, 2.16 and 4.32 with fixed time stepping Ar = 0.01.

5.3 Conclusion

This chapter introduced pattern forming models, such as Turing-type instabilities
and chemotaxis. These models mostly involve nonlinear reactive kinetics. We pro-
vide linearization of nonlinear reaction terms using the Taylor series expansion.
Advancing the developed schemes from previous chapter, we provided matrix rep-
resentation of the finite element coefficient vectors. Moreover, the main idea on
algorithmic steps are summarized, it required to perform iteration in time for find-
ing the corresponding solutions. The performed convergence studies and numerical
results are illustrated graphically.

This numerical framework can be used for systems of the reaction-diffusion equa-
tions on stationary and evolving in time surfaces. The proposed framework com-
bines the level set methodology for the implicit description of the time dependent
surface I' = I'(¢), the Eulerian finite element formulation for the numerical treat-
ment of partial differential equations and the flux-corrected transport schemes for
the numerical stabilization of arising advective/chemotaxis and convective (due to
surface evolution) terms, respectively.

The numerical results support the reliability of the proposed computational frame-
work based on numerical convergence and capturing of expected solution profiles.
The developed methodology is applied to realistic biological phenomena such as
Schnakenberg model on stationary surface and Koch-Meinhardt model on evolving
in time surface and a modified Mimura-Tsujikawa model for chemotaxis patterns-
formation on a sphere. The scheme is capable to capture complex dynamics of cell
for biomathematical models on surfaces. This approach can readily be employed
for more complex biological applications that involve PDEs on surfaces.

This framework is also applicable to three dimensional models which is mandatory
considering real-life applications. Since the computational and analytical complex-
ity significantly increases in three dimensional case.
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Summary and outlook

This work is mainly focused on the study of reaction-diffusion-convection/advection
types of equations with biological applications. It is concerned with the biological

pattern forming models of chemotaxis and Turing-type systems. These systems

of equations were posed on stationary and evolving in time surfaces. Mathemati-

cally, such models consist of coupled reaction-diffusion equations for the case of

Turing-type models and reaction-diffusion-advection equations to describe chemo-

taxis phenomena. The coupled systems of equations are mostly defined on a bulk

surface.

In general, the main results of this work are confined to the mathematical mod-
eling and numerical simulation of the surface defined PDEs. On one hand, a rig-
orous mathematical foundation to treat surface defined PDEs is provided. On the
other hand, an accurate and robust numerical scheme for the solution of reaction-
diffusion-convection equations on stationary and evolving in time surfaces are pre-
sented. The frequently used formulae are proved to treat geometrical partial dif-
ferential equations. A numerical framework based on the finite element level set
method to solve surface PDEs with possible biological applications is provided.

A brief note on the mathematical foundation with widely used theoretical re-
sults of surface defined PDEs and its applications are highlighted as well. The
peculiar characteristics based on proofs of theorems, lemmas and remarks are pro-
vided to analyze the nature of the surface PDEs. The state of the art numerical
framework is built for such kind of highly nonlinear partial differential equations
on stationary and evolving surfaces.

In addition, the numerical analysis gives a rigorous justification to use the AFC
technique for PDEs on the surface. Our results illustrate that one can overcome
the pervasive role of the surface convection, which influences the solution profile
and produces non-physical oscillations. In most researches the surface boundary
integral is not included, but this study contains the boundary integral term as well.
Based on illustrative numerical experiments it has been observed that the standard
Galerkin is not sufficient to achieve a physically accurate solution for such models.

A brief summary including pros and cons of different numerical techniques to
solve surface defined PDEs is provided. For the presented numerical investigation,
the level set approach has been used. Thus the interface is captured through a
level set function @(x,#). The surface I is aligned with a zero level set function
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@ (x,t = 0). It further developed our interest to study the nature of solution profile
in the ambient space of I'(¢), which is assumed to be the zero level set function.
In addition, an illustrative observation for the case of reduced domain Q. in the
neighborhood of the surface I" is taken under consideration. It has been concluded
that the solution profile close to the steep gradient is full of spurious kinks, in the
absence of the stabilization schemes.

The numerical results of the study suggest the development of a stabilized nu-
merical scheme for partial differential equation on an evolving domain. Conse-
quently, an algebraic flux correction (AFC) scheme has been constructed and im-
plemented for several test cases. The numerical oscillations are eliminated using
the AFC techniques of FCT (flux-correction transport) and TVD (total variation di-
minishing) schemes. The numerical evidence for the optimal order of convergence
for the proposed scheme has been derived and discussed.

The L*(Q¢) and H'!(Q,)-error norms are calculated and confirmed the order of
convergence as second order in L?(Q,) and first order in H'(Q,). The numerical
results are further supported through an extensive computational experiment, in
which one seeks not only to validate the theoretical results but also examine some
of the interesting phenomena that arise due to the nature of surface defined PDEs.
Such as the effects of convective terms, evolution of the domain and change in the
region close to the interface of surface I'.

In the last part of the study, we simulated and investigated pattern forming
models of Turing-type instability and chemotaxis on surface. The novelty of the
approach is the incorporation of complex realistic biomathematical models on
surfaces. The biological models include the Schnakenberg model and the Koch-
Meinhardt model of Turing-type instabilities and the modified Mimura-Tsujikawa-
type for chemotaxis pattern formation on surfaces. Here an Eulerian finite element
method for spatial discretization has been taken and the temporal discretization is
performed through backward Euler scheme. An illustrative numerical simulation
has been carried out on 2- and 3-D models for stationary and evolving surfaces
having different numerical configuration and mesh geometries.

As an outlook we indicate the possible future research in the field of numerical
treatment of reaction-diffusion and/or chemotaxis model on surface.

e General surface evolution: In this study there are few assumptions on the
evolution of surface I'(¢) . These are somehow natural to assume for mathe-
matical problems posed on the surface. In more general cases, these assump-
tions and constraints on evolution bring limitations in the physical models
e.g., for unknown growth rates and/or concentration-driven growth, in such
cases the surface evolution leads to topological changes. These phenom-
ena occur more often in biological systems e.g., tumours growth, biological
membrane, animal skin and cell motility. Consequently, the mathematical
modeling and analysis of reaction-diffusion-convection equations posed on
surface with more complex evolution could be an interesting direction to
work.
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o Reinitialization of the level set function: The evolution of surface I is
considered with as a zero level set function ¢(x,7). The movement of the
interface captured through the level set function. The evolution often dis-
tort the level set function when its slope is too high or too flat close to the
interface. In principal, a small change in level set function may affect the
location of the interface, which may lose the regularity in the neighborhood
of the interface. The static sign distance function is not sufficient to correctly
capture the interface. Therefore, an important area for future research is re-
lying on the improvement of the reinitialization for the level set function.
Other possible way could be the development of an alternative techniques
such as phase field method.

o Adaptive approaches: In the present study, we use uniform mesh refine-
ment and uniform time stepping schemes for solution. But the adaptive
refinement of the numerical schemes is currently more required. For ex-
ample, the adaptive mesh refinement can enhance the computational ability
and storage capacity. It can be helpful to have a commanding grid resolution
to communicate characteristics of solution at a specific location of geometry
(mesh). Thus a combination of a FEM-stabilized adaptive mesh refinement
with an adaptive time stepping scheme for general models would be an in-
teresting task.

e Curvature-driven models: The biological surfaces (i.e., membranes, an-
imal coat, tumour growth) are growing subjects. The curvatures play an
important role for modeling and finding the solution for such sort of surface
defined PDEs models. Besides both static and evolving deformation of sur-
face, a newly developed technique based on energy variational formulation
(Willmore flow model) can be employed for pattern forming models.

o Generalized Keller-Segel model: The nature of general biological models
are complicated e.g., in case of an interactive multiple species in the pres-
ence of several chemo-attractant/repellents. The problems of multi-species
and multi-chemo models exist in nature and mathematical models has been
discussed in current work. The theoretical and numerical analysis of such
a complex mathematical model can be extremely difficult to perform, as it
consists of significantly increasing number of parameters.

e Parallelization: The modeling of general biological models could be very
complex set of coupled partial differential equations. Sometimes even the
advanced multi-core processors are not sufficient to perform numerical sim-
ulations. Consequently, the numerical solution of such system requires a full
parallelization of the developed numerical software. Consequently, paral-
lelization of numerical software for general models, and use of high perfor-
mance computing could be an interesting work to apply for coupled PDEs.
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