
Development and application of methods for spatio-temporal 

perturbation and analysis of protein interactions via 

intracellular protein microarrays 
 

 

 

Technische Universität Dortmund 

Fakultät für Chemie und Chemische Biologie 

 

 

 

PhD Dissertation 

 

 

 

Zur Erlangung des akademischen Grades eines 

Doktors der Naturwissenschaften 

(Dr. rer. Nat.) 

 

vorlegt von 

Master of Technology 

 

Muthukumaran Venkatachalapathy 

 

aus Villupuram, Tamil nadu (India.) 

 

 

Dekan: Prof. Dr. Insa Melle 

1.Gutachter: Priv. Doz. Dr. Leif Dehmelt 

2.Gutachter: Prof. Dr. med. Jan G. Hengstler 

 

 



	 2	

 

 

 
 
 
 

“This work is dedicated to my father, for his infinite and unconditional love  

towards my mother and our family.“ 

 
 
 
 
 
 

 
 
 

 

 

“Sire greatest boon on son confers, who makes him meet, 

In councils of the wise to fill the highest seat” 

 

                                                 --- Thiruvalluvar (Couplet 67) 

 

 

 

 

 

 

 

 

 

 

 



	 3	

Ich versichere hiermit, dass ich die vorliegende Dissertation selbständig und ohne 

unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegeben 

Quellen und Hilfsmittel benutzt, sowie wörtliche und sinngemäße Zitate kenntlich 

gemacht. 

 

 

 

...................................                                                    ............................... 

 

Ort, Datum                                                                      Unterschrift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

                                  	



Eidesstattliche Versicherung (Affidavit) 
 
 
______________________________   _____________________________ 
Name, Vorname      Matrikel-Nr. 
(Surname, first name)     (Enrolment number) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
____________________     _________________________ 
Ort, Datum       Unterschrift 
(Place, date)      (Signature) 
 
 
Titel der Dissertation: 
(Title of the thesis): 
 
____________________________________________________________________________ 

____________________________________________________________________________ 

____________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the PhD thesis is 
the official and legally binding version. 
 
 
__________________________    _______________________ 
Ort, Datum       Unterschrift 
(Place, date)      (Signature) 

Belehrung: 

Wer vorsätzlich gegen eine die Täuschung über Prü-
fungsleistungen betreffende Regelung einer Hochschul-
prüfungsordnung verstößt, handelt ordnungswidrig. Die 
Ordnungswidrigkeit kann mit einer Geldbuße von bis zu 
50.000,00 € geahndet werden. Zuständige Verwaltungs-
behörde für die Verfolgung und Ahndung von Ordnungs-
widrigkeiten ist der Kanzler/die Kanzlerin der Techni-
schen Universität Dortmund. Im Falle eines mehrfachen 
oder sonstigen schwerwiegenden Täuschungsversu-
ches kann der Prüfling zudem exmatrikuliert werden, § 
63 Abs. 5 Hochschulgesetz NRW. 
 
Die Abgabe einer falschen Versicherung an Eides statt 
ist strafbar.  
 
Wer vorsätzlich eine falsche Versicherung an Eides statt 
abgibt, kann mit einer Freiheitsstrafe bis zu drei Jahren 
oder mit Geldstrafe bestraft werden, § 156 StGB. Die 
fahrlässige Abgabe einer falschen Versicherung an 
Eides statt kann mit einer Freiheitsstrafe bis zu einem 
Jahr oder Geldstrafe bestraft werden, § 161 StGB. 
 
Die oben stehende Belehrung habe ich zur Kenntnis 
genommen: 

Official notification: 

Any person who intentionally breaches any regulation of 
university examination regulations relating to deception 
in examination performance is acting improperly. This 
offence can be punished with a fine of up to EUR 
50,000.00. The competent administrative authority for 
the pursuit and prosecution of offences of this type is the 
chancellor of the TU Dortmund University. In the case of 
multiple or other serious attempts at deception, the 
candidate can also be unenrolled, Section 63, paragraph 
5 of the Universities Act of North Rhine-Westphalia. 
 
 
The submission of a false affidavit is punishable.  
 
 
Any person who intentionally submits a false affidavit 
can be punished with a prison sentence of up to three 
years or a fine, Section 156 of the Criminal Code. The 
negligent submission of a false affidavit can be punished 
with a prison sentence of up to one year or a fine, 
Section 161 of the Criminal Code. 
 
I have taken note of the above official notification. 

Ich versichere hiermit an Eides statt, dass ich die vorlie-
gende Dissertation mit dem Titel selbstständig und ohne 
unzulässige fremde Hilfe angefertigt habe. Ich habe 
keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt sowie wörtliche und sinngemäße Zitate 
kenntlich gemacht.  
Die Arbeit hat in gegenwärtiger oder in einer anderen 
Fassung weder der TU Dortmund noch einer anderen 
Hochschule im Zusammenhang mit einer staatlichen 
oder akademischen Prüfung vorgelegen. 

I hereby swear that I have completed the present 
dissertation independently and without inadmissible 
external support. I have not used any sources or tools 
other than those indicated and have identified literal 
and analogous quotations.  

The thesis in its current version or another version has 
not been presented to the TU Dortmund University or 
another university in connection with a state or 
academic examination.* 



ZUSAMMENFASSUNG 

	

	 4	

ZUSAMMENFASSUNG 
 

Zahlreiche zelluläre Prozesse, wie zum Beispiel die Adhäsion and Migration, 

benötigen dynamische Änderungen spezialisierter Filamente, welche zusammen als 

Zytoskelett bezeichnet werden. Diese dynamischen Änderungen werden durch 

Signalproteine, wie zum Beispiel die Rho Familie von kleinen GTPasen in Raum und 

Zeit kontrolliert. In dieser Arbeit wird die Entwicklung und Anwendung von Techniken 

präsentiert, um die Aktivität von Rho GTPasen in Raum und Zeit zu stören und zu 

messen. Zunächst wird die Entwicklung von miniaturisierten, intrazellulären Protein 

Interaktions Arrays beschrieben. Mit dieser Technik konnten zwei unterschiedliche 

Protein Interaktionen simultan in individuellen, lebenden Zellen verfolgt werden, um 

Zell-Zell Varianz in der dynamischen Antwort auf akute pharmakologische Störungen 

aufzudecken. Um diese intrazellulären Interaktions Arrays zu generieren wurden bio-

orthogonale, artifizielle Rezeptoren verwendet, welche die normale Zellfunktion nicht 

stören. Um die Prozessierung dieser Rezeptoren im sekretorischen Pathway zu 

optimieren, wurde deren Design durch systematische Deletions Analysen und 

Einfügen von Linkern und Glycosylierungs-Stellen optimiert. Diese Optimierung hat 

zu einer signifikanten Verbesserung der Plasma Membran Insertion der artifiziellen 

Rezeptoren geführt. Um Protein Aktivitäten in lebenden Zellen zu stören, wurde eine 

neue Klasse von artifiziellen Rezeptoren, sogenannte 'ActivatorPARCs', generiert, 

welche auf der subzellulären Re-lokalisation durch chemisch-induzierte Dimerisierung 

basieren. Die Rekrutierung dieser ActivatorPARCs in subzelluläre Bereiche der 

Plasma Membran erlaubte die Störung der Rho GTPase Aktivität in Raum und Zeit. 

Um die Geschwindigkeit dieser Störung zu beschleunigen, und um eine flexiblere 

Kontrolle der räumlichen Störungen zu ermöglichen, wurden ActivatorPARCs 

generiert, welche auf photochemisch-induzierter Dimerisierung basieren. Die laterale 

Diffusion des unaktivierten Photodimerizierungsmoleküls wurde durch kovalente 

Bindung an immobilisierte Rezeptoren eliminiert. Dies ermöglichte 'Molecular activity 

painting', eine neue Technik, durch welche akute und stabile Störungen direkt mit 

Licht in lebenden Zellen 'gemalt' werden können. Die Anwendung dieser Techniken 

zur direkten Analyse der räumlich-zeitlichen Signalausbreitung in zellulären 

Reaktionsnetzwerken wird diskutiert. 
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ABSTRACT 

Many processes in mammalian cells, including adhesion and migration, require 

dynamic rearrangements of specialized filament structures, which are collectively 

called the cytoskeleton. Those dynamic rearrangements are controlled in space and 

time by signaling proteins, including the Rho family of small GTPases. In this thesis, 

the development and application of techniques to measure and perturb the activity of 

RhoGTPases in space and time is presented. First, a miniaturized, intracellular 

protein interaction array was developed to study multiple protein interactions inside an 

individual living cell. Using this technology, two distinct protein interactions were 

simultaneously monitored in individual cells to uncover cell-to-cell variance in their 

dynamic response to acute pharmacological perturbation. To generate those 

intracellular interaction arrays, bio-orthogonal artificial receptors were used that do 

not perturb normal cellular function. To optimize the processing of those receptors on 

the secretory pathway, their design was systematically improved by deletion analysis 

and insertion of linkers and glycosylation motifs. Those optimizations lead to a 

significant improvement of the plasma membrane targeting of artificial receptors. To 

perturb protein activities in living cells, a new class of optimized artificial receptors, 

termed ‘ActivatorPARCs’ was generated, that are based on subcellular targeting via 

chemically induced dimerization. Recruitment of ActivatorPARCs to subcellular 

regions in the plasma membrane enabled perturbation of RhoGTPase activity in 

space and time. To increase the speed of this perturbation and to enable more 

flexible control of spatial perturbations, ActivatorPARCs that are based on photo 

chemically induced dimerization were generated. Lateral diffusion of the uncaged 

photodimerizer was eliminated by covalent linkage on immobilized receptors. This 

enabled 'Molecular activity painting', a novel technique, in which rapid and stable 

perturbations can be directly “painted” with light inside individual living cells.  The 

application of those tools to directly study spatio-temporal signal propagation in 

cellular reaction networks is discussed. 
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INTRODUCTION 

 

One of the most important challenges of modern biomedical research is to 

understand how dynamic cellular processes such as cell migration, morphology and 

adhesion are controlled by protein interactions. Protein interactions can either form 

the basis of structural assemblies, such as cytoskeletal filaments, or they can form 

network motifs, that include positive or negative feedback regulation. Individual 

protein interactions are interconnected to form a higher order network that controls 

overall cell behavior. One example for highly interconnected protein interactions are 

RhoGTPases and their signal networks. RhoGTPase signal networks regulate actin 

and microtubule polymerization, leading to cell protrusion and retraction, thereby 

controlling cell migration and cell morphology [Figure 1.1]. RhoGTPase signal 

networks also play an important role in disease related processes, such as cancer 

cell metastasis. This thesis presents novel perturbation approaches to unravel protein 

interaction networks in dynamic cellular processes.  
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Figure 1.1: RhoGTPase signal networks control cell shape. Rac1, Cdc42 and RhoA are 
the best characterized RhoGTPase family members and are known to regulate cytoskeletal 
dynamics. These proteins interact with many other proteins to perform their function: they are 
modulated by upstream regulators, including growth factor receptors, they can influence each 
other via crosstalk and they can activate actin and microtubule regulators that control 
cytoskeletal dynamics and thereby alter the shape of cells.  

 

1.1 Control of cell shape by the cytoskeleton  

The cytoskeleton is a complex dynamic network of filaments and tubules that are 

formed throughout the cell. Cytoskeletal filaments are composed of actin, 

microtubules and intermediate filaments. These dynamic cytoskeletal filaments are 

organized into structures that can span the entire cell; yet, the individual proteins are 
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just a few nanometers in size. Those large, relatively stable cytoskeletal structures 

are thus built by the repetitive self-assembly of smaller, diffusible subunits within cells. 

1.2 Polymerization of actin filaments 

Actin filaments have the ability to polymerize rapidly at the leading edge of the 

protruding cell and they depolymerize preferentially near the trailing rear edge. 

Nucleation of actin filaments predominantly takes place in the plasma membrane and 

is frequently regulated by external signals. Polymerization of actin filaments leads to 

cell protrusion during migration. Two main types of nucleators control the rate-limiting 

step of this process. a) Formins b) Arp2/3 (TD Pollard et al 2007). Formin nucleators 

like mDia2 and mDia3 possess two actin-binding sites, which undergo conformational 

changes to promote actin growth in a linear fashion. Arp2/3 is highly concentrated on 

the leading edge. Binding of Arp2/3 complex to the sides of already formed actin 

filaments promote extension of new actin filament from its pointed end at a 70° angle, 

thereby forming a highly cross-linked dendritic actin filament network. The nucleation 

promoting factors WAVE/Scar, WASP and N-WASP activate the Arp2/3 mediated 

actin polymerization. By controlling the nucleation, polymerization and interaction 

between actin filaments, those regulators control the formation of different kinds of 

cell surface projections, including spiky bundles called filopodia [Allan Hall et al, 

1998] [Figure 1.3d] and flat protrusive sheet-like structures called lamellopodia 

[Figure 1.3c] 
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1.3 Protrusion-retraction cycles in cell migration 

Cell protrusion formed due to actin polymerization is responsible for cell migration and 

formation of new focal adhesions in the leading edge [Figure 1.2a-b]. However, cell 

translocation also requires disassembly of adhesions at the rear end for cell retraction 

[Figure 1.2d]. This process is driven by the activity of myosin motors that shift anti-

parallel actin filaments against each other, leading to cell contraction. This so-called 

actomyosin activity is found near the leading edge of cells, where it alters actin flow 

and plays a role in modulating the direction of migration, near the trailing edge, where 

it generates stress fibres that drive cell retraction [Mattila et al., 2008].  
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Figure 1.2: Cell protrusion and retraction cycle a. Actin dependent cell protrusion is driven 
by lamellopodia and filopodia formation at the leading edge. These dynamic structures are 
generated as a result of elongated barbed actin ends pushing towards the plasma membrane 
b. Cellular extensions create new adhesions under the leading edge c. Actomyosin 
contraction forces and focal adhesion linked stress fibers translocate the nucleus and cell 
body forward and mediate substrate attachment d. Trailing edge of the cell retracts after the 
disassembly of adhesions at the rear end and pulling of retraction fibres to move the cell 
forward. Picture Source: Mattila et al., 2008 

 

1.4 Control of cytoskeletal dynamics by RhoGTPases 

Rho GTPases are best known for their ability to control regulators that modulate the 

assembly, disassembly and spatio-temporal arrangement of actin filaments [M 

Raftopoulou et al.,  2004]. In a seminal study in Swiss 3T3 fibroblasts, it was found 
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that activation of Rho resulted in the formation of contractile actomyosin filaments in 

the cell center, which are called stress fibers [Alan Hall, 1998]. Conversely, activation 

of Rac and Cdc42, the other two major members of the Rho GTPase family, gave rise 

to a meshwork of actin filaments in the cell periphery, including lamellopodia [Figure 

1.3c], membrane ruffles and actin-rich, finger-like extensions called filopodia [Figure 

1.3d]. These findings provided strong evidence for a key regulatory role of Rho 

GTPases in controlling the organization of the actin cytoskeleton [L Van Aelst., 1997 

& Alan Hall 2000]. 

 

Figure 1.3: Activation of individual RhoGTPases in Neuro-2A cells. Phenotypic 
responses due to the activation of Rho, Rac and Cdc42: stress fibers, lamellopodia and 
filopodia formation. Picture source: Alan Hall et al, 1998 

 

Rho GTPases exist in two forms: An active, GTP-bound or inactive GDP-bound state. 

Switching between those states is mainly controlled by Guanine nucleotide exchange 

factors (GEFs) and GTPase-activating proteins (GAPs). Guanine nucleotide 

dissociation inhibitors (GDIs) extract Rho proteins from the membranes and solubilize 

them in cytosol [Jaffe AB et al, 2005] [Figure 1.4]. In order to activate GTPases, 

GEF proteins promote nucleotide exchange by removing the bound GDP nucleotide, 

thus allowing the binding of the more abundant GTP [Jaffe AB et al, 2005]. To 

inactivate Rho GTPases, GAPs provide a catalytic arginine to enable GTP 
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hydrolyzing activity, which results in the GDP-bound state GDIs interact only with the 

prenylated Rho GTPases and inhibit GTP hydrolyzing activity and nucleotide 

exchange activities of Rho Proteins [Dovas et al., 2005]. 	

 

Figure 1.4: Schematic representation of a RhoGTPase signal module. The inactive GDP 
bound RhoGTPase is switched into the active form if a corresponding GEF is activated by an 
input stimulus. The GTP bound RhoGTPase activates effector proteins that lead to a 
response. Conversely, GAPs inactivate RhoGTPases to close the regulatory cycle. The 
inactive RhoGTPase associates preferentially with RhoGDI to solubilize the RhoGTPase in 
the cytosol. Picture source: Jaffe AB et al., 2005 

 

Interestingly, the activity of RhoGTPases is dynamically regulated in subcellular 

regions, but unfortunately most of the information available in the literature was 

obtained from bulk measurements using techniques that do not consider those spatial 

and temporal dimensions. [O Pertz, 2010]. In order to overcome these limitations, 

fluorescent biosensors and acute perturbation methods were developed to monitor 
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and modulate Rho GTPase signaling with high spatio-temporal resolution [Nalbant  

et al., 2004, Pertz  et al., 2006, Machacek et al., 2009, Wu et al.,  2009, Peng Liu et 

al., 2014].  

1.5 Crosstalk between RhoGTPases 

To coordinate their activity in space and time, it is thought that Rho GTPases 

influence each other via complex cross-talk mechanisms. This crosstalk can occur at 

different levels [Guilluy et al, 2009]. For example, activation of one Rho GTPase 

could turn off another Rho GTPase via specific GEF inactivation. Alternatively, 

activation of a GAP by one Rho GTPase could also lead to inactivation of another 

RhoGTPase. Conversely, the activation of a GEF or the inactivation of a GAP can 

activate another Rho GTPase. Finally, one RhoGTPase can interfere with the 

downstream signaling of another RhoGTPase by inactivating or activating a shared 

target or effector protein. 

Several studies proposed specific GAPs, GEFs and downstream effectors in the 

regulation of the crosstalk among RhoGTPases. For example, crosstalk mechanisms 

that are thought to regulate Rac1 and RhoA are summarized in [Guilluy et al, 2009] 

[Figure 1.5].  However, the crosstalk may vary depending on the subcellular location 

and could also vary depending on the functional context or between specific cell types 

[Pertz O et al, 2010]. Thus, studying how RhoGTPases communicate with each other 

in space and time is important to understand how dynamic cytoskeletal filaments are 

organized in dynamic cell behaviors, such as cell migration [Figure 1.5].   
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Figure 1.5: Crosstalk between Rac1 and RhoA: Schematic representation of proposed 
crosstalk mechanisms between Rac1 and RhoA GTPases. Picture Source: Guilluy et al, 
2009. 

 

1.6 Current state of techniques for the analysis of protein interactions  

The yeast two-hybrid system (Y2H) is a very efficient classical method to study 

protein interactions. It was used to screen large libraries to build proteome interaction 

networks (Brückner A et al., 2009) via the complementation of a transcriptional 

activator. However, this feature limited the yeast two-hybrid system to study protein 

interactions that can take place in nucleus of yeast cells. Another variant of this 

technique, called the protein fragment complementation assay (PCA) (Piehler et al., 

2005), overcame this limitation by probing interactions at the plasma membrane, a 

subcellular region that harbors about 30% of the interactions expected to occur in the 

mammalian proteome. Both Y2H and PCA confer high false positive hit rates, which 

stimulated new ideas to study protein interactions. More recently, mass spectrometry 

methods were developed for high-throughput analysis of protein interactions in cell 

extracts (Aebersold R et al, 2003). However, dynamic networks of protein 
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interactions that are organized in space and time determine cell phenotype and 

behavior. Therefore, such techniques that are based on large numbers of cells from 

extracts only offer a very limited view of dynamic protein interaction networks. In 

contrast, fluorescent resonance energy transfer (FRET) can be used to directly 

monitor and measure static and dynamic protein interactions inside living cells 

(Socher E et al., 2013). However, FRET is limited by the spectral properties of the 

fluorescent proteins, therefore only one or few protein interactions can be measured. 

To directly analyze interconnected protein activities in dynamic signal networks, 

multiple protein interactions need to be analyzed simultaneously in individual cells. 

Hence, there is a demand for novel methods that overcome those limitations. An 

example for interconnected proteins in dynamic signal networks is the RhoGTPases 

and their interactions with each other and downstream effectors [Hanna et al 2013].  

1.7 Current state of techniques for the perturbation of protein interactions in 

living cells 

One of the classical ways to determine the function of a gene is by altering its activity 

and monitoring the phenotypic response. Genes and their products were manipulated 

at different organizational levels using specialized perturbation approaches. Each 

method has advantages and limitations. For example, Zinc finger nucleases, 

transcription activator like effector nucleases (TALENs) and clustered repeats of 

interspaced palindromic repeats (CRISPR) were used to edit genes on the genomic 

level via site-specific homologous recombination (Gaj et al., 2013). Even though 

these genetic manipulation methods are specific and robust, they are difficult to 

implement, time consuming, irreversible and they have very slow effects on 

phenotype based on the turnover of the associated gene products. Transcript level 



INTRODUCTION 

	

	 24	

gene silencing with siRNA treatment is easier to implement compared to genetic 

manipulation but still restricted by the relatively slow turnover of most proteins. 

Furthermore, siRNA methods are often restricted due to low efficiency of knockdown 

and non-specific target effects [Aagard et al 2007]. On the other hand, direct 

targeting of proteins via small molecules can be acute and is usually simple to 

perform, but can be limited due to specificity and associated off-target effects 

[Milstein et al., 2013]. An optimal manipulation strategy should offer the following 

attributes i) robustness ii) rapid onset iii) specificity iv) tunability v) reversibility vi) easy 

to implement vii) cheap viii) spatially controlled [Rakhit et al., 2014].  

Combining chemical and genetic perturbation strategies provides the advantage of 

small molecules to perturb protein activity rapidly and reversibly with the advantage of 

molecular biology to specifically address a selected protein of interest. Rapamycin 

induced FKBP and FRB dimerization is the classical implementation of this 

“chemically induced dimerization” strategy and was used in various contexts to study 

cellular processes (Brown, E. J et al., 1994, Derose R et al., 2013). However, 

unspecific binding of Rapamycin to mTOR kinase lead our group to develop a novel 

bio-orthogonal chemically induced dimerization (CID) system together with Dr. 

Yaowen Wu, that enabled rapid dimerization of eDHFR-FKBP’ fused proteins upon 

addition of the small molecule SLF-TMP’ [Peng Liu et al, 2014] [Figure 1.6]. The 

reversibility of this system, with fast reaction times, low cytotoxicity, minimal 

perturbation of endogenous proteins and the possibility to integrate with other 

chemically induced dimerization strategies made it an interesting tool to perturb 

protein activities in living cells [Peng Liu et al, 2014]. 
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Figure 1.6: Schematic representation of a novel, reversible chemical inducible 
dimerization system. Two proteins (eDHFR and FKBP’) are brought together in order to 
localize a protein of interest to a desired subcellular localization. Addition of competitor 
dissociates this interaction, thereby causing the proteins to dissociate. Picture source: Peng 
Liu et al., 2014 

 

As light can be confined to a small spot, light inducible dimerization systems offer the 

possibility to manipulate proteins both in space and time (Levskaya et al., 2009, 

Kennedy et al., 2010, Karginov et al., 2011, Ballister et al., 2014, Zimmermann et 

al., 2014, Gautier et al., 2014, van Bergeijk et al, 2015). However, current 

approaches for light inducible dimerization are limited by diffusion of photoactivated 

molecules, in particular if photoactivation is performed on soluble molecules in the 

cytosol or on mobile proteins within the plasma membrane.  

Novel methods were required to induce stable perturbation and analyze RhoGTPase 

activity in spatio temporal resolution.  Combining protein arrays with photochemically 

induced dimerization strategies can address our objective. This thesis discuss about 

the advanced perturbation methods and analysis that can be applied to discover the 

crosstalk mechanisms between RhoGTPases that can be used to build RhoGTPase 

signal network. 
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2.1 Materials  
 
2.1.1 Chemicals and Reagents for Molecular cloning 
 

Reagents Trademark 
Absolute ethanol AnalaR Normapur 

Acetic acid Sigma Aldrich 
Acetone Sigma Aldrich 

Adenosine-5’-Phosphate Sigma Aldrich 
Agarose Carl Roth GmbH 

Ampicillin sodium salt Carl Roth GmbH 
Antartic Phosphatase New England Biolabs 

Atto 740 Biotin ATTO-Tec-GmbH 
3-aminopropyltriethoxy-silane Sigma Aldrich 

BSA Serva 
Dimethyl sulfoxide Carl Roth GmbH 

Disodium hydrogen phosphate Sigma Aldrich 
dNTP mix Fermentas 

Doxycycline Clontech 
DPBS PAN Biotech GmbH 

EGF-Biotin MPI-Dortmund 
Ethidium bromide Carl Roth GmbH 

Ethylenediaminetetra-acetic acid Sigma Aldrich 
Formaldehyde Carl Roth GmbH 

Forskolin Sigma Aldrich 
Glycerol Sigma Aldrich 

Hoechst 33342 Sigma Aldrich 
IBMX Thermo-fischer Scientific 

Isopropanol Carl Roth GmbH 
Isoproterenol Sigma Aldrich 

Kanamycin sulfate Carl Roth GmbH 
Nuclease free water Ambion 

PBAG Sigma Aldrich 
PEG 1000 Sigma Alrich 

Potassium chloride Sigma Aldrich 
Propranolol Sigma Aldrich 

Sodium Chloride Sigma Aldrich 
Sodium hydroxide Sigma Aldrich 
Sodium acetate J.T.Baker 

Tris base Sigma Aldrich 
Tris HCl Sigma Aldrich 

Triton-X-100 SERVA Electrophoresis GmBH 
Tween-20 Merck 
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2.1.2 Enzymes and Antibodies 
 

Enzymes and Antibodies Trademark 
Accuprime Pfx DNA polymerase Thermofischer 

AgeI New England Biolabs 
Alexa Fluor 488 goat-anti mouse 

Antibody 
Molecular Probes 

Alexa Fluor 488 goat-anti rabbit 
Antibody 

Molecular Probes 

Alexa Fluor 568 goat-anti mouse 
Antibody 

Molecular Probes 

Alexa Fluor 568 goat-anti rabbit 
Antibody 

Molecular Probes 

ApaI New England Biolabs 
BamH1 New England Biolabs 
BsrE1 New England Biolabs 

Calf intestinal phosphatase Thermofischer 
DNA ligase New England Biolabs 

EcoRI New England Biolabs 
EcoRV New England Biolabs 

Goat polyclonal Anti-[HA] antibody 
(Biotinylated) 

Abcam 

HindIII New England Biolabs 
NheI New England Biolabs 
NotI New England Biolabs 

Phusion High fidelity DNA polymerase New England Biolabs 

PmlI New England Biolabs 
PvuI New England Biolabs 

Rabbit polyclonal Anti-[VSVG] antibody 
(Biotinylated) 

Abcam 

SacI New England Biolabs 
SacII New England Biolabs 
XbaI New England Biolabs 
XhoI New England Biolabs 
XmaI New England Biolabs 
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2.1.3 Primers  
 

Oligos Type Sequence 
NotI DA-KRC 

Forward 

 

Forward 
(494) 

TAGCGGCCGCCAATGATCAGTCTGATTGCGGCG TTAG 

XhoI DA-KRC 
Reverse 

 

Reverse 
(495) 

ACCTCGAGTTACCGCCGCTCCAGAATCTCAAAGCA ATA 

NheI DA KRC 
BFP forward 

 

Forward 
(496) 

CCACTGCTAGCATGAGCGAGCTGATTAAGGAGAA 

 

 
NotI DA KRC 
BFP Reverse 

 

Reverse 
(497) 

TACGCGGCCGCTTAACCGGAACCGCCGGAT 

 

NheI mcitrine 
Forward  

Forward 
(498) 

AAGCTAGCATGGTGAGCAAGGGCGAGGAGC 

mcitrine 
Reverse AccI 

Reverse 
(499) 

AATCCGGATGTACAGCTCGTCCATGCCGAG 

NheI CCL 
mcitrine CCL 

Forward 

 

Forward 
(500) 

AAGCTAGCCTGGCCGCCGCCTATAGCAG 

AccI CCL 
mcitrine CCL 

Reverse 

 

Reverse 
(501) 

AATCCGGAGCTGCTCAGAATGCTGCTATAC 

 

AccI SNAPf 
pDisplay 
Forward 

 

Forward 
(502) 

TATCCGGACTCAGATCTCGAGCTATGGACAAAGACTGC
GAAATGAAG 

Not_SNAPf 
pDisplay 
Reverse 

 

Reverse 
(503) 

GCACGCGCTGCGGCCGCTCATTAATTAACCT 
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Forward AccIII 
Halotag 

Forward 
(504) 

CTTCCGGAATGGCAGAAATCGGTACTGGCTTT 

 
Reverse BamH1 

Halotag 
Reverse 
(505) 

ATGGATCCGGTGGCTACGTAACCGGAAAT 

 
Forward 

AccIII_Halotag 
Forward 
(506) 

CTTCCGGAATGGCAGAAATCGGTACTGGCTTT 

 

Reverse SacII 
baitPARC 

Reverse 
(507) 

CACCGCGGTTAGGCTACGTAACCGGAAATCTC 

 

Strongsignal 
adapter 

Forward-Pho 

 

Forward 
(508) 

ATCATGAACTTTATCCCAGTCGACATTCCACTCTTGATG
ATCTTCCTTGTGACAACTGGGGGCTCAGCGGG 

 

Strongsignal 
adapter 

Reverse-Pho 

 

Reverse 
(509) 

GGCCCCCGCTGAGCCCCCAGTTGTCACAAGGAAGATCA
TCAAGAGTGGAATGTCGACTGGGATAAAGTTCATGAT 

 

 

EcoRV Strong 
signal seq 
Forward 

 

Forward 
(510) 

GGAAGATATCGAGGTGTGGCAGGCTTG  

ApaI Strong 
signal seq 
Reverse 

Reverse 
(511) 

TAGGGCCCCCGCTGAGCCCCCAGTTGTCA 

NheI DA KRC 
BFP Forward 

Forward 
(512) 

TCGCCACCGCTAGCATGAGCGAGCTGATTAAGGAGAA 

 

NheI DA KRC 
BFP Reverse 

 

Reverse 
(513) 

GGGGGGGCTAGCATGAGCGAGCTGATTAAGGAGAA 

XbaI Ephrin 
CCL mcitrine 
CCL Forward 

 

Forward 
(514) 

AATCTAGATTGGCGGTGATTGGCGGCGTGG 
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NheI Ephrin 
CCL mcitrine 
CCL Reverse 

 

 

Reverse 
(515) 

AAGCTAGCGCTGCTCAGAATGCTGCTATAC 

NheI Adapter 
Forward delBFP 

 

Forward 
(516) 

CTAGCGGCGGTACCGGTGGTACCGGTT 

AccII Adapter 
Reverse delBFP 

 

Reverse 
(517) 

CCGGAACCGGTACCACCGGTACCGCCG 

NheI Adapter 
AccII Forward 
delBFP delD1 

 

Forward 
(518) 

CTAGCAAGGCGC 

NheI Adapter 
AccII Reverse 
delBFP delD1 

 

Reverse 
(519) 
 

GGCCGCGCCTTGCTAG 

AccI Adapter 
NotI Forward 

delD1 

 

Forward 
(520) 

CCGGAAGAGCGC 

AccI Adapter 
NotI Reverse 

delD1 

 

Reverse 
(521) 

GGCCGCGCTCTT 

PvuI BFP 
Forward 

Forward 
(522) 

CGATCGATGAGCGAGCTGATTAAGGAGAA 

 

PvuI BFP 
Reverse 

Reverse 
(523) 

CGATCGATTAAGCTTGTGCCCCAGTTTG 

eDHFR 
sitedirected 

Forward 
(524) 

CCGGCCTGGAGTCTAGGATCAGTCTGATTG 
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Forward  

eDHFR 
sitedirected 

Reverse 

Reverse 
(525) 

CAGACTGATCCTAGACTCCAGGCCGGC 

 

ApaI mcherry 
eDHFR Forward 

Forward 
(526) 

ATGGGCCCATGGTGAGCAAGGGCGAG 

 
BamH1 Halotag 
CAAX Reverse 

Reverse 
(527) 

ATGGATCCGAGATTTCCGGTTACGTAGCC  

 
SNAPf GSGS 

Annealing 
Forward 

Forward 
(528) 

AAACTCGAGGTTAATGCTTCTGGCGGTTCAGGGGGACC
CGGGTAAGC 

SNAPf GSGS 
Annealing 
Reverse 

Reverse 
(529) 

GGCCGCTTACCCGGGTCCCCCTGAACCGCCAGAAGCA
TTAACCTCGAGTTT 

6xKGP Linker 
Forward 

Forward 
(530) 

GTGGCCCCGGCGGCAAGAAGAAGAAGAAGAAGCCCGG
CG 

6xKGP Linker 
Reverse 

Reverse 
(531) 

CTAGCGCCGGGCTTCTTCTTCTTCTTCTTGCCGCCGGG
GCCAC 

6xKGS Linker 

Forward 

Forward 
(532) 

GTGGCAGCGGCGGCAAGAAGAAGAAGAAGAAGAGCGG
CG 

6xKGS Linker 

Reverse 

Reverse 
(533) 

CTAGCGCCGCTCTTCTTCTTCTTCTTCTTGCCGCCGCTG
CCAC 

XmaI 2*SNAPf 
Forward  

Forward 
(534) 

AGCCCGGGATGGACAAAGACTGCGAAATGAAGCGC 

 
NotI 2*SNAPf  

Reverse  
Reverse 
(535) 

TTCACCGCGGCCGCTTACCC 
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2.1.4 Plasmids  
 

Plasmids Description of the construct Source/Creator 

pDisplay Hemagglutinin displayed on the 
surface with multiple cloning sites 

in the intracellular part 

 

Invitrogen  
[pDisplay Invitrogen 

manual,2010, 
Chestnut JD, 1996] 

pCMV-Tet3G Regulator plasmid of 
Tet-On®3G system 

Clontech 

pTRE3G Response plasmid of 
Tet-On®3G system 

Clontech 

pTRE3G [mcherry] [cat-α] Response plasmid of Tet-On®3G 
system fused with catalytic subunit 
of cAMP dependent protein kinase 

A. 

This thesis 

HA Titin bait  

[GFP][RI-α] 

To the pDisplay vector, a Titin 
linker is added over the 

extracellular part and the 
intracellular part is fused with 
green fluorescent protein and 
Regulatory subunit of Protein 

Kinase I 

baitPARC 1.0 

[Gandor et al,2013] 

VSVG Titin bait  

[TFP][RII-β]  

 

To the pDisplay vector, a Titin 
linker is added over the 

extracellular part and the 
intracellular part is fused with 
green fluorescent protein and 
Regulatory subunit of Protein 

Kinase II 

baitPARC 2.0 

[Gandor et al,2013] 

VSVG bait  

[empty] 

Titin, mTFP and RII-b] is removed 
from baitPARC 2.0 

 

Micheal Orlich 

VSVG bait  

[TFP] 

Titin and RII-b is removed from 
baitPARC 2.0 

 

Micheal Orlich 

VSVG bait  

[RII-β] 

Titin and mTFP is removed from 
baitPARC 2.0 

 

Micheal Orlich 

VSVG Titin bait  

[TFP] 

RII-b is removed from baitPARC 
2.0 

 

Micheal Orlich 

VSVG Titin bait  

[RII−β] 

mTFP is removed from baitPARC 
2.0 

 

Micheal Orlich 
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VSVG Titin  

[empty] 

RII-b  and mTFP is removed from 
baitPARC 2.0 

 

Micheal Orlich 

VSVG bait  

[TFP] [RII−β] 

Titin is removed from baitPARC 
2.0 

 

Micheal Orlich 

VSVG Titin GSGS  

bait [TFP][RII-β]  

Glycine based ‘small’ linker is 
added between the 

transmembrane domain and mTFP 
sequence to baitPARC 2.0 

 

Martin Kares 

VSVG Titin GSGS-L bait 

[TFP][RII-β]  

Glycine based ‘long’ linker is 
added between the 

transmembrane domain and mTFP 
sequence to baitPARC 2.0 

 

Martin Kares 

VSVG −glyco-Titin  

bait [TFP][RII−β] 

Glycosylation signal added in front 
of the titin linker to baitPARC 2.0 

 

Darius Kaszta 

VSVG Titin−glyco-   

bait [TFP][RII-β]  

Glycosylation signal added at the 
back of titin linker to baitPARC 2.0 

 

Darius Kaszta 

VSVG −glyco-Titin−glyco-  

bait [TFP][RII-β] 

Glycosylation signal added in front 
and back of the titin linker to 

baitPARC 2.0 
 

Darius Kaszta 

VSVG Titin activator 

[TagBFP][eDHFR]  

RII-b bait protein from the 
baitPARC 2.0 

is replaced with eDHFR 

This thesis 

(activatorPARC 

1.0) 

VSVG Titin GSGS activator 

[TagBFP][eDHFR] 

Glycine linker is added to the 
activatorPARC 1.0 

Martin Kares 

(activatorPARC1.

1) 

VSVG Titin GSGS activator 

[mCitrine][eDHFR] 

BFP fluorescent protein is 
replaced with monomeric citrine in 

Activator 1.1 

This thesis 

(activatorPARC 

1.2) 

VSVG Titin GSGS activator  

[ccl Citrine][eDHFR] 

BFP fluorescent protein is 
replaced with coiled coiled linker 

citrine  in Activator 1.1 

This thesis 

(activatorPARC1.

3) 

VSVG –glycol-Titin−GSGS 

activator [TagBFP][eDHFR] 

Glycosylation signal sequence is 
added to Activator 1.1 

This thesis 

(activatorPARC1.

4) 
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VSVG –glyco-Titin−GSGS 

activator [ccl Citrine] [eDHFR] 

Glycosylation signal sequence is 
added to activatorPARC 1.3 

This thesis 

(activatorPARC1.

5) 

VSVG –glyco-Titin−GSGS 

activator [TagBFP]  [eDHFR] 

KPS positively charged linker is 
added to activatorPARC 1.4 

This thesis 

(activatorPARC 

1.6) 

VSVG -glyco-Titin−GSGS 

activator [ccl-Citrine-ccl] 

[eDHFR] 

KPS positively charged linker is 
added to activatorPARC 1.5 

This thesis 

(activatorPARC 

1.7) 

VSVG - glyco-Titin−GSGS 

activator [ccl-Citrine-ccl] 

[SNAPf] 

E.coli Dihydrofolate reductase is 
replaced with SNAPf protein in 

activatorPARC 1.7 

This thesis 

(activatorPARC 

2.0) 

VSVG -glyco-Titin−GSGS 

activator [ccl-Citrine-ccl] 

[Halotag] 

E.coli Dihydrofolate reductase is 
replaced with Halotag protein in 

activatorPARC 1.7 

This thesis 

(activatorPARC 

3.0) 

VSVG -glyco-Titin−GSGS 

activator [TagBFP] [Halotag] 

E.coli Dihydrofolate reductase is 
replaced with Halotag protein in 

activatorPARC 1.6 

This thesis 

(activatorPARC 

3.1) 

TagBFP-2xeDHFR-CAAX TagBFP linked to 2 copies of E.coli 
Dihydrofolate reductase and C-

terminus of K-Ras (-CAAX) 

Abram Calderon 

mTurquoise2-NES-2xFKBP-

Rac1Q61LΔCAAX 

mTurquoise2 linked with nuclear 
export signal to 2 copies of FK506 
binding protein and constitutively 

active mutant of Rac 

Abram Calderon 

mTurquoise2-NES-2xFKBP-

Cdc42Q61LΔCAAX 

mTurquoise2 linked with nuclear 
export signal to 2 copies of FK506 
binding protein and constitutively 

active mutant of Cdc42 

Abram Calderon 

delCMV-mCherry-RBD mCherry linked to GTPase binding 
domain (GBD) of Rhotekin 

Abram Calderon 

delCMV-mCherry-p67phox  

(aa1-203) 

mCherry linked to the Rac1 
GTPase binding domain (GBD) of 

p67phox 

Abram Calderon 

delCMV-mCherry-WASP-GBD 
mCherry linked to the Cdc42 

GTPase binding domain (GBD) of 
WASP 

Abram Calderon 

pmCitrine-N1 mCitrine MPI Dortmund 

Ubiquitin-Actin-Cherry mCherry labeled actin Melanie Graßl 
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EGFP-CAAX Green fluorescent protein is fused 
with C-terminus of K-Ras (-CAAX) 

MPI Dortmund 

TagBFP-Halotag-CAAX TagBFP linked to a copy of 
Halotag sequence and C-terminus 

of K-Ras (-CAAX) 

This thesis 

mCitrine-eDHFR Citrine fluorescent protein fused 
with a single copy of E.coli 

Dihydrofolate reductase 

Dr. Yaowen Wu, 

CGC Dortmund 

mCitrine-eDHFR-

RacQ61LΔCAAX 

mCitrine linked with a single copy 
of eDHFR is fused with constitute 

mutant of Rac 

This thesis 

mCitrine-eDHFR-NES-

RacQ61LΔCAAX 

mCitrine linked with a single copy 
of eDHFR is fused with nuclear 
export signal and a constitute 

mutant of Rac 

This thesis 

mCitrine-FKBP’-NES-

RacQ61LΔCAAX 

mCitrine linked with a single copy 
of FKBP is fused with nuclear 
export signal and a constitute 

mutant of Rac 

This thesis 

mCitrine-eDHFR-NES- 

GEFH1C53 

mCitrine linked with a single copy 
of eDHFR and GEF-H1 mutant 

This thesis 

mTurquoise2-2xFKBP-

GEFH1C53 

mTurquoise2 linked with two 
copies of FKBP and GEFH1 

mutant 

Wiebke 

Obermann 

mCherry-eDHFR-NES-

RacQ61LΔCAAX 

mCherry linked with a single copy 
of eDHFR is fused with nuclear 
export signal and a constitute 

mutant of Rac 

This thesis 

EGFR-mTFP EGFR fused with turquoise 
fluorescent protein 

MPI Dortmund 

EphA2 ccl-mCitrine-ccl Ephrin fused with citrine 
fluorescent protein via coiled 

coiled linker 

Ola Sabet 

Halotag GFP mito mCherry 

eDHFR 

Bicistronic expression of halotag 
fused with green fluorescent 
protein and fused with cherry 

eDHFR 

pERB217 
Addgene 
(#61500) 
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Plasmid Source of backbone Insert 

 
TagBFP Halotag CAAX 

 

Double digestion of (BspE1 
and BamH1) TagBFP-

2xeDHFR-CAAX 

PCR amplification of 
Halotag-mito-eDHFR-
mcherry (504 and 505) 

 
baitPARC TagBFP Halotag 

Double digestion of (BspE1 
and SacII) baitPARC-

glycotag-KPS-TagBFP-
2xeDHFR. 

PCR amplification of 
Halotag-mito-eDHFR-
mcherry (506 and 507) 

 
mCitrine eDHFR 

Rac1Q61LΔCAAX 
 

Double digestion of (MfeI 
and XbaI) mCitrine-eDHFR. 

Double digestion of (MfeI 
and XbaI) mTurquoise2-

NES-2xFKBP- 
Rac1Q61LDCAAX 

 
 

mCitrine NES 2xFKBP 
Rac1Q61LΔCAAX 

 

Double digestion of (NheI 
and XhoI) mCitrine-eDHFR. 

Double digestion of (NheI 
and XhoI) mTurquoise2-

NES-2xFKBP- 
Rac1Q61LDCAAX 

 

mCitrine NES eDHFR 
Rac1Q61LΔCAAX 

 

Double digestion of (XhoI 
and BamH1) mCitrine-NES-
2xFKBP-Rac1Q61LDCAAX 

Double digestion of (XhoI 
and BamH1) mCitrine-

eDHFR-Rac1Q61LDCAAX 
 

 
baitPARC CCL citrine 

Halotag 

Double digestion of (BspE1 
and SacII) baitPARC-CCL-

citrine-2xeDHFR 

Double digestion of (BspE1 
and SacII) baitPARC-

TagBFP-Halotag 

 
Cherry NES eDHFR 
Rac1Q61LΔCAAX 

Double digestion of (NheI 
and BsrGI) mCitrine-NES-
eDHFR-Rac1Q61LDCitr 

Double digestion of (NheI 
and BsrGI) delCMV-RBD-

mcherry 

 
mCitrine eDHFR GEF-H1 

 

Double digestion of (XbaI 
and MfeI) mCitrine-eDHFR 

Double digestion of (XbaI 
and MfeI) mTurquoise-NES-

eDHFR-GEFH1 
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2.1.5 Buffers  
 

Buffers & Kits Trademark 
Accuprime Pfx Reaction Mix New England Biolabs 
Antartic Phosphatase buffer New England Biolabs 

Big dye terminator New England Biolabs 
6x DNA loading buffer Thermo Scientific 

Gene ruler 1kb Fermentas 
LB agar plates MPI Dortmund 

LB medium MPI Dortmund 
Ligation buffer New England Biolabs 

NucleoBond Xtra Midiprep Kit Macherey-Nagel 
QIAprep ®Spin Miniprep Kit Qiagen 

QIAprep ®Spin PCR Purification Kit Qiagen 
QIAprep ®Gel Extraction Kit Qiagen 

Restriction buffers (1-4) New England Biolabs 
 
1xPBS Buffer 137 mM NaCl 

2,68 mM KCl 
8,10 mM Na2HPO4 · 7 H2O 

1,47 mM KH2PO4 
pH = 7,4 

1x TAE Buffer 40 mM Tris-Acetate 
1 mM EDTA 

pH = 8,3 
6x DNA loading Buffer 50 % Glycerol 

0,25 % Bromophenolblue 
Cos7 Culture Media 440 mL DMEM Phenolred 

10 % (v/v) FBS 
1 % (v/v) L-Glutamine 

1 % (v/v) Penicillin/Streptomycin 
 

Hela Culture Media 435 mL DMEM Phenolred 
10 % (v/v) FBS 

1 % (v/v) L-Glutamine 
1 % (v/v) Penicillin/Streptomycin 

1 % (v/v) Non essential aminoacids 
Imaging Media 90 % (v/v) DMEM 

10 % (v/v) FBS 
LB Media dH2O 

10 g/L Tryptone 

10 g/L NaCl 
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5 g/L Beef extract 
pH = 7,4 

LB Agar Plate – (Ampicillin) LB-Sterile medium 
1,5 % Agar 

100 mg/L Ampicillin 
LB Agar Plate – (Kanamycin) LB-Sterile medium 

1,5 % Agar 

100 mg/L Kanamycin 
MESTBS Buffer 20mM Tris 

150mM NaCl 
4.5% (w/v) milk powder 

5mM EDTA 
1 mg/ml herrings sperm DNA 

0.2% (w/v) NaN3 
pH 7.35 

N2a Culture Media 435 mL DMEM Phenolred 
10 % (v/v) FBS 

1 % (v/v) Sodium Pyruvate 
1 % (v/v) L-Glutamine 

1 % (v/v) Penicillin/Streptamycin 
 

DPBS-EDTA 200 mg/L KCl 
200 mg/L KH2PO4 

8 g/L NaCl 

1,15 g/L Na2HPO4 

10 mM EDTA 
Trypsin-EDTA 0,02 % EDTA 

0,05 % Trypsin 
TETBS Buffer 20mM Tris‐HCl 

5mM EDTA 
150mM NaCl 
0.05% Tween 

pH 7.5 
U2OS Culture Media 435 mL DMEM Phenolred 

10 % (v/v) FBS 
1 % (v/v) L-Glutamine 

1 % (v/v) Penicillin/Streptomycin 
1 % (v/v) Non essential aminoacids 
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2.1.6 Cell culture reagents 
 

Cell Culture Trademark 
Bovine Insulin Sigma aldrich 

Collagen Sigma aldrich 
DMEM PAN Biotech GmbH 

DNA MB (fish sperm) Roche 
DPBS PAN Biotech GmbH 

Fetal Bovine Serum PAN Biotech GmbH 
Fugene Pro-mega 

L-Glutamine PAN Biotech GmbH 
Lipofectamine Invitrogen 
MEM Eagle PAN Biotech GmbH 

NEAA Carl Roth GmbH 
Trypsin EDTA PAN Biotech GmbH 

Xtremegene TM 9 Roche Diagnostics GmbH 
 
 
2.1.7 Cell lines 
 

Cos-7 African monkey kidney cells ATCC 
HEK-293 Human embryonic kidney cells ATCC 

Hela Human cervical cancer cells ATCC 
MCF-7-EGFR Human breast cancer cells ATCC 

SOC Escherichia coli ATCC 
Top 10 Escherichia coli Invitrogen 
U2OS Human osteosarcoma ATCC 

XL Gold Escherichia coli Stratagene 
 
 
 
 
2.1.8. Materials and Equipment 
 

Materials and Equipments Trademark 
0.45 µm Filter Millipore 

10cm petridishes Sarstedt 
1cm holed mattek TU Dortmund, Workshop 

8 well labtek Thermo fischer scientific 
Burner WLD-TEC GmBH 
Butane Campingaz 

Gel Camera Samsung 
Cell scraper Sarstedt 
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2.1.9. Softwares 
 

Centrifuge machine Eppendorf 
Electrophoresis unit Bio-RAD 

Freezer (-152°C) Sanyo 
Vials (500ul, 1500ul, 2000ul) Sarstedt 

Falcon tubes Thermo-scientific 
Gel imaging device Biostep GmbH 

Gloves Blossom Europe 
Haemocytometer Brand GmbH 
Heating DRI block Techne 
Humidity chamber Prof Niemeyer lab 

Lens cleaning tissue Whatman 
Immersion Oil Type-F Olympus 

Mattek MatTek Corporation 
Micro-pippettes (1ml,100ul, 10ul 

and 2.5ul 
Eppendorf 

Micro-pippette tips Star lab 
Microscope coverslip & Slides Roth GmbH 

Nano-drop Thermo-scientific 
Parafilm Carl Roth GmbH 

PCR cycle Eppendorf 
pH meter Mettler Toledo 

Rotor (Swing-bucket) Eppendorf 
Scalpels Braun 

Serological pipettes (5,10,25ml) Sarstedt 
Shaking mixer Eppendorf 

Short spin centrifuge VWR 
Silicone  MED RTV ASC Applied Science Corporation 

Microscope (Cell culture) Nikon 
Sterile Syringe Braun 
Insulation tape Tesla 

Tough tags/Spots Microtube 
UV lamp Biostep GmbH 

Vortex device Scientific instruments 
Water bath Koettermann 

Softwares Inventor 
Adobe Photoshop Adobe systems 

ApE Wayne Davis 
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2.1.10 Microscopes 
 
Microscopes Configuration Trademark 
wide-field 
Microscope 
(MPI-Dortmund) 

Filters: BFP/GFP/RFP. 
Camera: Hamamatsu ER 

Objective: UPlans APO 60x NA 
Software: Scan^R 

 

Olympus 

wide-field/TIRF 
Microscope 
(TU-Dortmund) 

Filters: BFP/GFP/RFP, TBFP/TGFP/TRFP (Triple 
TIRF), TBFP/TCFP/TYFP/TRFP (QuadTIRF) 

Camera: Hamamatsu Image EM CCD 
Objective: PlanApo 60xOil TIRF (NA-1.45) 

Software: Cell^R 

Olympus 

 
 
2.2 Methods 

2.2.1 DNA Recombinant Technology 

To generate new plasmid constructs, the following steps were followed: An aliquot of 

frozen E. Coli cells in the glycerol stock was inoculated overnight to isolate a fresh 

batch of plasmid constructs.  Two plasmid DNAs with common restriction recognition 

sites were cut using respective restriction enzymes to create compatible sticky ends. 

When the plasmids lacked common restriction sites, primers were designed with 

respective restriction sites and a PCR reaction was performed.  In some cases, 

commercially available single stranded short oligonucleotides were annealed to form 

double stranded linkers/adapters, which were used instead of PCR products.  

Phosphatases were used to de-phosphorylate the 5’ end of one of the DNA 

fragments. Short single stranded oligonucleotides without a phosphate group were 

also used for linker sequence cloning; In that case, the de-phosphorylation step was 

Cell Profiler Broad Institute 
Cell R Olympus 

Graphpad Prism GraphPad Software Inc. 
ImageJ Wayne Rasband 
Labview National Instruments 
Office Microsoft 
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neglected. Via the ligation reaction compatible sticky ends were assembled into the 

desired plasmid of interest. Ligated plasmids were subjected to heat transformation 

and were plated onto selective antibiotic LB agar plates overnight. The following day, 

Plasmid DNA was recovered through the Qiagen Miniprep Kit procedure. Finally, the 

DNA concentration was measured using the Nanodrop device and a restriction 

digestion was performed followed by DNA sequencing for construct validation. 

Polymerase chain reaction 

For PCR, Primers were designed which were around 18-30 nucleotides long. Melting 

temperatures of complementary regions of forward and reverse primers were 55-65°C 

and within 5°C of each other with a GC content of around 40-60%. Recognition 

sequences for restriction enzymes and 2-4 additional nucleotides were added to the 

5’ end for efficient restriction enzyme digestion. Primer sequences were chosen to 

avoid secondary structure formation and intra/inter primer homology to would lead to 

primer dimers. DNA vector sequences were viewed, edited and annotated using the 

open source software ApE (Paradis E et al 2004). PCR reactions comprised three 

steps which include denaturation of the template DNA at 98°C, annealing of primers 

to the template at 55-60°C followed by extension of the primer at 72°C. 

PCR Volume Final 
Concentration 

Template 
DNA 

1.0µl 0.2ng/µl 

Forward 
Primer 

1.0µl 0.5µM 

Reverse 
Primer 

1.0µl 0.5µM 

Accuprime 
polymerase 

0.5µl 0.0125U/µl 

Accuprime 
buffer 

10µl 1X 
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Nuclease 
water 

86.5µl  

Total 100µl  
 

PCR Cycle 

Repetitions T° [C] Time 
5 98° 3 min 

25 98° 15 
sec 

68° 30 
sec 

72° 15 
sec 

1 72° 8 min 
1 4 ∞ 

 
Once the PCR reaction finished, PCR products were purified using the Qiagen PCR 

Purification Kit protocol as described in the manual.  

Restriction digestion 

Type II restriction enzymes can recognize specific DNA sequences. In general, 

restriction digestion was carried out at 37°C for 3 hours.  The table below shows an 

example of a double digestion reaction. 

Contents Volume Final 
Concentration 

Vector 3.5 µl 3 µg 

Restriction 
enzyme 1 

1.0µl 10 units 

Restriction 
enzyme 2 

1.0µl 10 units 

Buffer 2.0µl 1X 

Nuclease 
free H2O 

12.5µl  

Total 20µl  

 



MATERIALS & METHODS 

	

	 44	

In a de-phosphorylation step, the phosphate groups were removed from the 5’ ends 

of the vector DNA to prevent self-annealing during ligation. 10 units of Calf intestinal 

or alkaline phosphatase were added for the de-phosphorylation. Before this, the 

restriction enzymes were deactivated in a heat block at 65°/80°C based on the 

restriction enzyme used. 

Gel electrophoresis 

1g of agarose dissolved in 100ml of TAE buffer was placed inside a microwave for 2 

minutes. Later, 2-3 drops of Ethidium bromide was added to this solution. Once the 

gel was casted, DNA samples were mixed with loading dye and were loaded onto the 

gel. 1kb gene ruler DNA was loaded in a similar fashion in the gel for size reference. 

The voltage in the electrophoresis unit was set to be around 85V. In this method, 

DNA was segregated based on the size. Once the sample dye markers reached half 

way, the electrophoresis was stopped and the gel was carefully carried to the dark 

room for gel extraction using a UV lamp. DNA was extracted from the gel using the 

long wavelength UV lamp (366 nm) and was subjected to QIAGEN gel extraction for 

DNA isolation and purification. 

Ligation 

DNA Ligase was used to ligate two distinct DNA segments that were restricted with 

the same set of restriction enzymes at 16°C overnight. To calculate the amount of 

vector and insert DNA for the ligation, we used the formula below.  

 

Transformation 
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Heat competent XL Gold or TOP 10 E. coli cells were thawed on ice and 5ul of the 

control and ligated sample were added in separate vials and gently mixed with a 

pipette tip. After 5 minutes on ice, the tubes were subjected to a heat shock at 42°C 

for 2 minutes, followed by incubation on ice for 2 minutes. Then, 1 ml of fresh LB 

medium was added under sterile conditions and incubated in a shaker at 37°C. After 

an hour, an aliquot of the culture was spread using a Drigalski-spatula onto agar 

plates containing selective antibiotics and incubated at 37°C overnight.  

Overnight culture  

Single bacterial colonies were transferred to a culture tube containing 6ml of LB 

media supplemented with the matching antibiotic (Ampicillin or Kanamycin) and 

incubated at 120rpm at 37°C overnight.  

Preparation of glycerol stocks  

Under sterile conditions, 500ul of exponentially growing bacteria (~0.5 OD) or 

overnight culture were mixed with 500ul of 50% glycerol, and frozen at -80°C for long-

term storage. 

Plasmid DNA isolation 

Plasmid was isolated using the Qiagen Miniprep kit following the manufacturers 

instructions starting from 6 ml overnight cultures. Elution was performed with 30ul of 

EB buffer. Concentration of the plasmid DNA was measured using the Nano drop 

device. 

 

Mammalian cell culture and transfection 

Cos7 cells, Hela, N2a and U2OS cells were used for live cell experiments. When the 

cells reached 70-80% confluency, they were split using trypsin-EDTA and were 

incubated at 37°C for 7-10 minutes.  
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For DNA transfection, we used lipofectamine 2000 (N2a and U2OS cells) and 

Xtremegene 9 (Cos7 and Hela cells). Transfection was performed according to the 

manufacturers protocol using a ratio of 1:3 (DNA: transfection reagent). 

 

2.2.2 Preparation of Functionalized arrays  

The collaborating groups of Prof Christof M.Niemeyer and Dr. Michael Hirz at the 

Karlsruhe Institute of Technology (KIT) mostly performed the following procedures. 

Those methods were previously published [Reisewitz et al 2010, Gandor et al, 

2013, Arrabito et al 2013]. 

Silanization procedure 

The microscope coverslips were cleaned with absolute EtOH, and incubated with 3-

aminopropyltriethoxy-silane (APTS, Sigma-Aldrich) solution containing 93% EtOH, 

5% ddH2O and 2% APTS for 4hours. Once the aminosilylation was complete, the 

coverslips were washed with EtOH and acetone for 10mins. This was followed by a 

drying step for 15 mins at 110°C and finally the coverslips were stored at -20°C over 

night. Using the sandwich method, the activated coverslips were coated with PBAG 

overnight, washed with acetone and dried under nitrogen. 

 

Preparation of DNA array culture dishes 

Molecular ink containing reactive 5’ amino modified single stranded oligonucleotide 

was mixed with glycerol, Tween 20 and TE buffer and passed through the 

microfluidics chamber. Aligned cantilevers or PDMS pens were used to transfer the 

DNA from the microfluidic chamber onto the microscopic coverslips using dip-pen 

nanolithography (DPN) or polymer-pen nanolithography (PPN). Forces during printing 
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ranged between 50-150mN. After overnight incubation at room temperature, the 

samples were stored at -20°C. 

 

DNA directed immobilization 

Process A: A brown eppendorf tube containing 1µl of 10uM aF10 DNA conjugated 

streptavidin was mixed with 9 µl of diluted anti-VSVG antibodies (1:5) and kept under 

shaker for 15 minutes.  To the same tube, 15 µl of Biotin-Cy7 fluorescent dye was 

added and kept under shaker for 15 minutes. This is followed by the addition of 20 ml 

of TETBS-Biotin buffer (20mM TrisHCl, 5mM EDTA, 150mM NaCl, 0.05% Tween, 

800 µM Biotin, pH 7.5) was incubated in the shaker for 30 minutes. 

 

Process B: Amino modified F10 oligonucleotides printed on the coverslip (KIT 

sample) was taken from the freezer and stored at room temperature for 10 minutes.  

The coverslip was glued to the 1 cm holed mattek using tissue grade RTV silicone 

adhesive. Once the glue has dried, the mattek was washed with TETBS buffer. 

(20mM Tris‐HCl, 5mM EDTA, 150mM NaCl, 0.05% Tween, pH 7.5). 50 µl of MESTBS 

buffer (20mM Tris, 150mM NaCl, 4.5% (w/v) milk powder, 5mM EDTA, 1 mg/ml 

herrings sperm DNA, 0.2% (w/v) NaN3, pH 7.35) was added to the center of the 

mattek for blocking. The mattek was placed with the wetted tissue paper humidity 

chamber and was subjected to shaking (150rpm). After 30 minutes, the mattek was 

subjected to three-time wash off with DPBS. 45 µl of the ssDNA-Streptavidin-

Biotinylated-Antibody complex mixture from Process A was added on to the center of 

the mattek for efficient DNA hybridization and placed in the shaker for 60 – 90 
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minutes. This is followed by gentle wash offs with DPBS. After this step, the array 

sample was ready to get incubated with living cells. 

 

2.2.3 PBS-EDTA treatment to detach cells 

Cos7 Culture and Imaging Medium were warmed at 37°C.  DPBS-EDTA was 

equilibrated to room temperature. Old Cos7 growth medium was removed from the 

10cm petridish gently without perturbing the adherent transfected cells.  First, the 

cells were washed with 5 ml PBS-EDTA.  Later, fresh 5 ml PBS-EDTA was added to 

the cells and the dish was incubated for 7-10 min at 37°C. After this, cells were gently 

detached from the plate with a small cell scraper. 10 ml Cos7 growth medium was 

added to the cell plate in the presence of 5 ml PBS– EDTA. The resulting liquid 

solution was pipetted up and down few times to reduce cell aggregation and was 

added to a 50 ml Falcon tube.  This tube was led to centrifugation at 1000 rpm for 10 

minutes. Supernatant was carefully removed and 10 ml of Cos7 growth medium was 

added to the falcon tube again to dilute the EDTA content in the tube. Centrifugation 

of the same tube was performed at 1000 rpm, 10 minutes. Supernatant was carefully 

removed and the pellets were suspended in 200-500 µl of imaging Medium. Cell 

number was calculated using Haemo-cytometer and Cell counter.  50-100 µl of these 

living cells were carefully added in the middle of the prepared dish containing the 

array. Cells were allowed to settle for 1-2 hours.  Further, 2 ml of fresh Cos7 growth 

medium was added and the sample was kept over night at 26°C. A day later, imaging 

was performed after the replacement of old Cos7 growth medium with imaging media. 
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2.2.4 Immunofluorescence 

Cells were fixed by incubating with warm 4% formaldehyde solution and incubated at 

37°C for 20 minutes. This was followed by three-time wash out with PBS without triton 

detergent.  Blocking the unspecific binding was carried out with 125 ml of 2% warm 

BSA for 30 minutes. BSA was replaced with 125 ml (1 primary antibody: 1000 PBS) 

of anti VSVG antibody from the rabbit. After 60 minutes incubation, three time PBS 

wash out was carried out followed by incubation with appropriate fluorophore labeled 

(488/565nm) secondary antibody for 90 minutes.  Final step involves washing out with 

PBS thrice and storing the sample at 4°C for further imaging. 

 

2.2.5 Microscopy 

The configuration of the Olympus TIRF set up is summarized in section (2.1.10). 

Imaging was performed either at 26°C or 37°C with imaging media containing 10% 

serum. The critical angle was set to match the maximum fluorescence signal of a test 

sample. Images were processed using ImageJ and assembled using Photoshop. 

Images of antibody patterns were always acquired using widefield microscopy. 

Expect if noted otherwise, all other images were obtained using TIRF Microscopy. 
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3. RESULTS 

3.1 Development of intracellular protein interaction arrays  

and artificial receptor constructs 

To generate intracellular protein interaction arrays, we developed artificial receptors 

that can transfer a pattern of surface linked antibodies into a corresponding array of 

bait proteins in the plasma membrane [Figure 3.1a].  These artificial receptors were 

referred to as BaitPARCs (bait Presenting Artificial Receptor Constructs). The 

extracellular domain of BaitPARCs contains an antibody epitope, which interacts with 

surface-immobilized antibodies. This interaction enriches BaitPARCs to a pattern of 

antibodies. The identity of distinct BaitPARCs was encoded by their position within 

the array. BaitPARCs were co-expressed with a cytosolic prey protein, which was 

fused to a fluorescent protein. The interaction between immobilized BaitPARCs and 

this prey protein was monitored using TIRF (Total Internal Reflection Fluorescence) 

microscopy. This is possible, as the exponentially decaying evanescent field in this 

microscope selectively excites only those fluorophores that are in close proximity to 

the plasma membrane within 50-200nm [D Axelrod 2001] [Figure 3.1a]. Thus, 

proteins that directly interact with BaitPARCs in the plasma membrane are excited 

efficiently and cytosolic proteins only contribute a weaker background fluorescent 

signal. It is therefore possible to detect the interaction between the cytosolic prey 

protein and the BaitPARC with a high signal to noise ratio.   

 

 

Footnote: Results shown from 3.1 till 3.1.4 were published in Gandor et al, 2013 
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Figure 3.1: Protein interaction arrays inside living cells. a. Schematic Representation of a 
living cell expressing Bait-Presenting Artificial Receptor Constructs (baitPARCs) growing on 
an array of distinct antibodies (Antibody-DNA complexes A-D). These antibodies immobilize 
and enrich corresponding baitPARCs in the plasma membrane. Prey fused with a fluorescent 
protein is expressed in the cytosol. Bait-prey interactions are monitored via Total Internal 
Reflection Fluorescence Microscopy (TIRFM). The evanescent field generated in this 
microscope excites only the fluorophores that are in close proximity to the cell surface. b. 
BaitPARCs were designed with an extracellular region that displays a viral epitope on the cell 
surface, and an intracellular domain that displays a bait protein to the cytosol. Figure source: 
Gandor et al, 2013  

 

3.1.1 Design of BaitPARCs 

As represented in Figure 3.1b, Bait PARCs are composed of an intracellular domain 

with an arbitrary bait fused to a fluorescent protein, a transmembrane domain derived 

from PDGFR (Gronwald et al, 1987) (Platelet Derived Growth Factor Receptor), and 

an extracellular domain that displays an epitope that directs the enrichment of the 

artificial receptors to the immobilized antibody microstructures. In addition, four 

repeats of the Titin Ig domain I27 were added between the transmembrane domain 

and the epitope to act as a spacer to minimize steric hindrance between the cell 

periphery and the surface during epitope-antibody interaction. BaitPARCs were 

specifically designed to minimally perturb endogenous cellular processes and 

function. The extracellular I27 linker is derived from the intracellular protein Titin and 
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was therefore expected not to interact with any extracellular surface proteins. The 

PDGFR transmembrane domain is only known to interact with the bovine 

pappilomavirus E5 protein, which is not present in uninfected cells. Importantly, the 

viral epitopes (VSVG from Vesicular Stomatitis Virus G protein and HA from 

Haemagglutinin) are also not expressed in uninfected cells. Therefore, neither the 

epitope-antibody interaction nor the transmembrane domain or the viral epitopes are 

expected to exert perturbations that alter normal biological processes inside cells. 

Known interactions of baitPARCs with the cellular machinery are limited to those that 

are essential for plasma membrane targeting of baitPARCs, i.e. interactions of the 

cleaved signal peptide sequence with signal receptor particle (SRP) and the 

transmembrane domain with the lipid bilayer to direct baitPARCs into the secretory 

pathway. 

3.1.2 BaitPARC patterning via immobilized Antibody arrays  

DNA directed immobilization (DDI) offers the possibility to generate distinct 

micrometer sized antibody array patterns. First, amino modified single stranded 

oligonucleotides were immobilized on a glass surface via DPN (Dip Pen 

Nanolithography) (Reisewitz S et al 2010, Arrabito G et al 2013). Our collaborators 

in the Niemeyer group at the Karlsruhe Institute of Technology (KIT) performed the 

DPN step and the generation of DDI reagents, and detailed descriptions of those 

methods are presented elsewhere (Niemeyer et al., 1999, Arrabito G et al., 2013, 

Stephanie Reisewitz 2013). Here, DPN was used to print oligonucleotides onto a 

glass surface using an AFM tip via capillary force, in order to create patterns in sub-

micrometer dimensions. Complementary oligonucleotides conjugated with 

streptavidin were incubated with biotinylated antibodies and this functional complex 



RESULTS 

	

	 53	

was allowed to hybridize with the immobilized oligonucleotide strand [Figure 3.2a].  

Micrometer-sized patterns with two distinct antibodies were immobilized using distinct 

DNA streptavidin conjugates coupled with respective biotinylated antibodies and 

fluorophores [Figure 3.2b].  In previous experiments of Silke Gandor, another PhD 

student from our group, arrays of single immobilized antibody type were generated 

that had an average feature diameter of 4.5±0.5µm and an average feature distance 

of 11.4±1.4 µm from neighboring spots (Silke Gandor, unpublished and Stefanie 

Reisewitz, 2013). The recruitment of Bait PARCs to antibody arrays was measured by 

calculating the relative enrichment according to the following equation: 

 

This relative enrichment represents the local enrichment of BaitPARCs in microarray 

structures. E=100% means no enrichment, while E=200% represents a 2-fold 

enrichment in spots compared to the surrounding regions.  Living cells expressing 

BaitPARCs that displayed the VSVG epitope on the cell surface showed a relative 

enrichment of 265±55% when cultured with anti-VSVG microstructures. In the context 

of this thesis, we extended those previous studies and generated multifunctional 

arrays by targeting two distinct streptavidin conjugates to two distinct, immobilized 

oligonucleotides via their corresponding capture oligonucleotides. To reduce the 

number of distinct fluorophores that need to be distinguished via microscopy, the 

antibody identity was encoded with a single fluorophore (Cy7) via fluorophore 

intensity as shown in Figure 3.2c (Anti HA – low intensity Cy7 and Anti-VSVG – high 
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intensity Cy7). Two distinct bait PARCs were enriched in corresponding anti-VSVG 

and anti-HA microstructures with a factor of 289±125% and 322±127% respectively. 

 

Figure 3.2: DNA directed immobilization. a. Schematic representation illustrating the 
concept of DNA directed immobilization. Distinct single stranded DNA oligos (Oligo 1 & Oligo 
2) are printed on a glass surface via DPN. To this surface, respective complementary 
oligonucleotides conjugated with functional antibody complexes are added to create antibody-
functionalized arrays. b. Immobilization of two distinct oligonucleotide microstructures labeled 
with Atto 568 and Atto 740 fluorophores c. Anti-HA and Anti-VSVG arrays were distinguished 
based on Atto 740 fluorescence intensity. Living cells cultured on top of these antibody arrays 
shows enrichment of individual baitPARCs (RI-α & RII-β). Figure source: Gandor et al, 
2013 

 

3.1.3 Monitoring multiple protein interactions inside living cells via baitPARC 

arrays 

As a proof of concept to study multiple protein interactions using baitPARCs, the well-

established signal transduction pathway via the second messenger cAMP was 

employed. In cells, cAMP levels are increased by activation of adenylyl cyclase 
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following agonist-mediated activation of G-Protein coupled receptors (GPCR). 

Alternatively, direct activation of adenylate cyclase via forskolin and/or inhibition of 

phosphodiesterases via IBMX can also stimulate cellular cAMP levels [C Guirland et 

al., 2003]. Binding of cAMP to regulatory subunits of the cAMP dependent Protein 

Kinase A (PKA) disrupts the interaction with the associated catalytic subunit [Wong et 

al., 2003]. Here, two distinct regulatory subunits, RI-α and RII-β, of the cAMP 

dependent Protein Kinase A were fused to distinct bait PARCs, which displayed HA 

and VSVG epitopes on the extracellular domain. The catalytic subunit cat-α was 

expressed in the cytosol and was used as a prey protein. RI-α, RII-β containing 

baitPARCs and cat-α were fused with the spectrally separable fluorophores EGFP, 

mTurquoise and mCherry respectively. The two distinct baitPARCs were named HA 

RI-α-PARC [EGFP] and VSVG RII-β PARC [mTurquoise]. The prey fusion protein is 

referred to as cat-α [mCherry]. First attempts to express all three proteins in cells 

were not successful, presumably due to superfluous, unregulated catalytic subunit. 

This problem was overcome by controlling catalytic subunit expression using a Tet-

inducible system (Gossen M et al 1992). Furthermore, the cell incubation 

temperature had to be reduced to 26°C to facilitate plasma membrane targeting of 

baitPARCs (see also section 3.15). Together, these optimizations enabled co-

expression of both baitPARCs and the prey protein. To quantify the interaction of the 

bait with the prey, we calculated the bait-prey recruitment via the following formula: 
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Here, the enrichment factor Ebait is used as a normalization factor to account for 

differences in the primary recruitment of bait proteins to spots. Ebait is 1 if all receptors 

are recruited to spots and 0 if they are all distributed evenly. First, we observed the 

interaction of the prey with both the regulatory subunits of cAMP dependent Protein 

Kinase A [Figure 3.3a]. This interaction between the bait and prey was lost upon β-

adrenergic receptor stimulation via isoproterenol. This shows, that the activation of G-

protein coupled receptors increases intracellular cAMP levels, thereby disrupting the 

bait-prey interaction. Interestingly, the bait-prey dissociation displayed an adaptive 

response, possibly due to receptor desensitization and cAMP hydrolysis by 

phosphodiesterases [Vandamme et al., 2012]. Further pharmacological treatments 

with Forskoline/IBMX elevated the total cellular cAMP concentration, which lead to 

strong and persistent dissociation of the catalytic and regulatory subunits [Figure 

3.3b]. After repeated drug washout, the bait-prey interaction was restored. This 

reversible and maximal stimulation can be used to determine the dynamic range of 

this cAMP sensor system. 
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Figure 3.3: Kinetics of bait-prey interaction during pharmacological stimulation a. 
Merged false color image in the center, showing cells 1-5 with patterned RI and RII 
baitPARCs. Association and dissociation kinetics of the cat-α-RI-α/RII-β interactions were 
plotted during pharmacological treatment for each individual cell b. Left: Microscopic images 
showing successful immobilization of anti-HA and anti-VSVG antibodies and enrichment of 
the corresponding RI-α and RII-β baitPARCs to this immobilized antibody array. Right: 
Kymograph analysis showing no change in the signal corresponding to immobilized RI-α 
baitPARC during pharmacological stimulation, while prey fluorescence was modulated during 
pharmacological stimulation. Figure source: Gandor et al, 2013. 
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3.1.4 Correlative analysis of multiple bait-prey interaction dynamics 

To directly compare the interaction between the two distinct regulatory subunits and 

the catalytic subunit in distinct cells, we normalized the bait-prey recruitment R also to 

the total intensity of the prey protein. This normalization was based on the following 

formula: 

 

 

This measurement of the normalized recruitment showed preferred association of cat-

α with RII-β over RI-α in resting cells (Figure 3.4a). This preference cannot be 

explained by differences in affinity of the prey with these two bait proteins, as in vitro 

studies show a slightly higher affinity of RI-α over RII-β in the absence of cAMP (Kd 

for RI-α: 0.19nM; RII-β: 0.6nM) [Herberg et al., 1996].  However, the effective cAMP 

concentration to dissociate the regulatory subunit is lower for RI-α vs RII-β (EC50 for 

RI-α: 101nM; RII-β: 610nM) [Herberg et al., 1996].  This suggests that the cellular 

resting concentration of cAMP is sufficiently high to disrupt the association of cat-

a with RI-α, while the interaction with RII-β is less affected. Furthermore, 

reassociation of cat-α and RI-α after isoproterenol treatment was also slower 

compared to the reassociation of cat-α and RII-β (RI-α: t1/2=2.45±0.85 min; RII-β: 

1.23±0.46 min), suggesting that the lower effective concentrations of cAMP for 

reassociation of the cat-α/RI-α interaction is reached later than the higher effective 

concentrations to dissociate the cat-α/RII-β interaction. Thus, these kinetic 
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measurements provide a reasonable explanation for the differential normalized 

recruitment of the catalytic subunit to the two regulatory subunits.  

 

Figure 3.4: Correlation of multiple bait-prey interactions a. Normalized bait prey 
recruitment in resting cells suggests that catalytic subunit interacts with RII-β 
preferentially when compared to RI-α b. Correlation analysis shows positive temporal 
cross-correlation of the interaction of the catalytic subunit with the two distinct 
regulatory subunits after stimulation of β-adrenergic receptors with isoproterenol. 
Figure source: Gandor et al, 2013 

 

Additionally, we observed significant cell-to-cell variance [Figure 3.4a] in response to 

β-adrenergic receptor stimulation, which was presumed to be due to varying strength 

of adaptive mechanisms in underlying signal networks [Vandamme et al., 2012]. 

Protein interaction studies that are based on ensemble measurements fail to extract 

this variance information thereby losing the opportunity to study differences between 

individual cells with respect to the dynamic relationship among the distinct regulatory 

subunits. In addition, in cell ensemble interaction studies, this dynamic relationship 

among regulators is averaged over many cells, which blurs temporal response 
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profiles to perturbations. Here, by studying protein interactions inside individual cells, 

our array technology can offer a more focused view on relations that exist among 

different signal network components. Indeed, cross-correlation analysis [Figure 3.4b] 

of the interaction of the catalytic subunit with the two distinct regulatory subunits after 

stimulation of β-adrenergic receptors shows higher temporal cross-correlation in two 

individual cells (cell 2 and cell 5) as compared to the average of 7 cells (dotted line). 

This highlights that single cell analyses can overcome the blurring of temporal 

response profiles due to cell-to-cell variance. 

3.1.5 Optimization of baitPARC plasma membrane localization 

In the experiments above, plasma membrane targeting of RI-α and RII-β baitPARCs 

was improved by culturing the cells at low temperature (26°C). At the optimal growth 

temperature of COS7 cells (37°C), a large fraction of baitPARCs was present in 

intracellular membranes, presumably due to inefficient folding during processing in 

the secretory pathway. Even at low temperatures, plasma membrane localization of 

artificial receptors was low compared to naturally occurring receptors, such as EGFR 

or Ephrin receptors. Extending the application of baitPARCs to perturb and study 

signal networks therefore required optimization of plasma membrane targeting.  

3.1.5.1 Deletion analysis to characterize the initial baitPARC design 

Three segments of baitPARCs might contribute to the inefficient plasma membrane 

localization and were therefore investigated via deletion mutant analysis. These three 

segments of interest are the 4xtitin spacer, the fluorescent tag and the bait protein. 

Under my supervision, a Bachelor student generated and characterized a set of 

deletion constructs by removing single and multiple segments of the parental 
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construct RII-β baitPARCs as shown in the list below (Michael Örlich, 2013) [Figure 

3.4a]. In order to quantify the plasma membrane fraction of each construct, the VSVG 

epitope that exist in all those constructs was used for immunofluorescence staining. 

The plasma membrane fraction was calculated by dividing the average, background-

corrected fluorescence intensity of the individual construct in a cell region that only 

contained the plasma membrane by the average background-corrected fluorescence 

intensity of the entire cell (Figure 5). 

	

 

Figure 3.5: Calculation of the plasma membrane fraction. Widefield microscopy image of 
fixed Cos7 cell that expressed unoptimized baitPARC (left) and the control pDisplay vector 
(Right). The entire cell was selected using the threshold function of ImageJ (yellow outline). 
The plasma membrane region of the cell was selected based on uniform plasma membrane 
and background signals. The average fluorescence intensity of the plasma membrane region 
(red square region highlighted with an orange arrow) was divided by the average 
fluorescence intensity of the entire cell to measure the plasma membrane fraction. Enlarged 
regions show the expression of the receptor in the plasma membrane.  

 

To increase the dynamic range in our optimization procedure, we cultured cells at 

(37°C), which resulted in only minimal (5-10%) plasma membrane targeting of the 

original parental baitPARC construct. This analysis revealed that the empty VSVG 
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bait-PARC lacking all three non-essential segments localized very effectively to the 

plasma membrane with an average fraction of >50% [Figure 3.6b].  

Re-addition of the Titin-linker reduced the plasma membrane fraction only minimally 

(Empty vs +Titin) [Figure 3.6b]. Conversely, a construct lacking only the Titin-linker 

from the original parental construct showed no improvement in plasma membrane 

fraction (Control vs +mTFP/RII-β) [Figure 3.6b]. Interestingly, re-addition of the RII-β 

or mTFP segments reduced plasma membrane localization. This effect was even 

stronger, if both segments were present. It was not surprising that linking a cytosolic 

signaling protein such as RII-β to a transmembrane receptor might affect its transport 

to the plasma membrane, as endogenous interactions with RII-β binding proteins 

might perturb processing in the secretory pathway. We were however surprised that 

the presence of a fluorescent protein, that does not have any known interactions with 

endogenous proteins, interferes with processing in the secretory pathway. We 

reasoned that this effect might be due to a relatively short linker sequence between 

the transmembrane domain and the fluorescent protein tag. 
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Figure 3.6: Optimization of baitPARC plasma membrane localization a. Graphical 
representation of the VSVG-bait-PARC based deletion mutants derived from the original 
baitPARC b. Quantitative analysis of plasma membrane fraction calculated for each 
corresponding construct (**: p<0.001; ***: p<0.0001; ns: not significant; one-way ANOVA and 
Tukey's Multiple Comparison Test; n>=26 cells from 3 independent experiments). Figure 
source: Michael Orlich, 2013 

 

3.1.5.2 Introduction of additional linker sequences 

We therefore decided to add a longer linker sequence at this position. Flexible 

glycine-rich linkers are recommended to facilitate efficient folding of adjacent regions 

due to its small side chain and high degree of flexibility (X Chen et al., 2012). Under 

my supervision, another bachelor student inserted a glycine linker sequence between 

the transmembrane domain and the fluorescent protein of VSVG RII-β PARC 

(mTurquoise) (Martin Kares, 2014). This new construct showed a small but 

significant improvement in the plasma membrane fraction [Figure 3.7c-d] 

 

3.1.5.3 Introduction of Glycosylation motifs 

Glycosylation is an important posttranslational modification that is employed in the 

endoplasmic reticulum to target transmembrane proteins either to the plasma 
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membrane or degradation in lysosomes. Specifically, N-glycans (Glc3Man9GlcNAc2) 

are attached on Asn-X-Ser/Thr motifs by the enzyme Oligosacchryl transferase (OST) 

during translocation of the nascent translated protein in the ER (Khalkhall et al., 

1975). During glycosylation, monoglycosylated proteins are produced by 

glucosyltransferase (UGGT).  CNX and CPT chaperones interact with these 

glysosylated proteins to prevent protein aggregation by retaining them in the ER and 

thereby promote folding (Anelli et al., 2008). Under my supervision, another Bachelor 

student added glycosylation motifs to the construct VSVG-RII-β PARC (mTurquoise) 

and tested if their addition improved the plasma membrane fraction of baitPARCs 

(Darius Kazeska, 2014). This analysis revealed that addition of the glycosylation 

group after the titin linker showed significant improvement in the plasma membrane 

fraction compared to the construct without any glycosylation signal sequence [Figure 

3.7a-b]. Interestingly there was no improvement in localization when the glycosylation 

signal sequence was placed before the titin linker. 
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Figure 3.7: Optimization of plasma membrane fraction of baitPARCs a-b. Graphical 
representation of baitPARC constructs with a glycine linker and their respective plasma 
membrane fraction values  c-d. Graphical representation of baitPARCs constructs with one or 
multiple glycosylation motifs and their corresponding plasma membrane fractions calculated 
for each corresponding construct (**: p<0.001; ***: p<0.0001; ns: not significant; one-way 
ANOVA and Tukey's Multiple Comparison Test; n>=30 cells from 3 independent 
experiments). Figure source: (Martin Lucas, 2014) (Darius Kazeska, 2014) 

	
	
 
3.1.6 Development of activatorPARCs 
 
In order to extend the applications of our artificial receptor design, we developed 

constructs to acutely target proteins to subcellular regions in the plasma membrane. 

Acute plasma membrane targeting of signal molecules increases their local 

concentration and this can be used to modulate the activity of their effector proteins 

[Figure 3.8] In analogy to baitPARCs described above, we named those constructs 

activator Presenting Artifical Receptor Constructs (activator PARCs).   
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Figure 3.8: Concept of heterodimerization between a cytosolic and plasma membrane 
targeted protein. 
 

These constructs were derived from VSVG-RII-β PARC (mTurquoise) by exchanging 

the bait RII-β with the heterodimerization domains eDHFR (E.coli Dihydrofolate 

reductase), SNAP-Tag (Figure 3.10c) or Halo-Tag (Figure 3.10d) Optimal plasma 

membrane localization of activatorPARCs was especially important, as acute 

targeting to activatorPARCs to internal membranes that can get very close to the 

plasma membrane might induce activation in undesired regions. Fortunately, just 

replacing the mTFP and RII-β segments with TagBFP and eDHFR increased plasma 

membrane targeting more than 3-fold (compare 5-10% for VSVG RII-β PARC 

(mTurquoise) in Figures 7a-d with ~30% for VSVG eDHFR PARC (TagBFP) in 

Figure 8a. This might be due to the bio-orthogonal nature of eDHFR  (Peng Liu et al, 

2014). In contrast to RII-β, eDHFR is not thought to interact with endogenous proteins 

in mammalian cells and might therefore be less affected by processing in the 

secretory pathway. Based on our previous optimization of baitPARCs and earlier 
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studies on transmembrane translocation efficiency (Heijne et al., 1988, Lerch-Bader, 

M et al., 2008), and fluorescent protein folding (Schröder M et al., 2005, Prydzk et 

al., 2013), variants of the initial activatorPARC design were generated (Figure 8a). 

As expected, addition of linker sequences next to the transmembrane domain and a 

glycosylation motif significantly improved the plasma membrane fraction. 

Unexpectedly, exchanging the TagBFP with monomeric Citrine, we observed a 

significant decline in plasma membrane fraction. Previous studies showed that folding 

of citrine fluorescent protein can be a problem if expressed at 37°C (Griesbeck et al., 

2001). It was previously shown that coiled-coil linkers can promote folding of 

recombinant proteins (Yoshizumi et al., 2011).  Therefore, we introduced such a 

linker to connect the mCitrine fluorescent protein to activatorPARCs. This significantly 

improved the plasma membrane fraction to a similar extent as the corresponding 

TagBFP-based construct. Another study showed that positively charged residues at 

the cytoplasmic side of the transmembrane domain could promote membrane 

insertion of transmembrane domains (ML Bader et al., 2008). Addition of such a 

positively charged linker indeed increased the plasma membrane fraction of 

activatorPARCs to reach an average of ~60-70% [Figure 3.9b]. 
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Figure 3.9: Optimization of plasma membrane fraction in activatorPARCs a. Graphical 
representation of activator PARC constructs with additional linkers and different fluorescent 
proteins b. Corresponding plasma membrane fraction calculated for each corresponding 
construct (**: p<0.001; ***: p<0.0001; ns: not significant; one-way ANOVA and Tukey's 
Multiple Comparison Test; n>=24 cells from 3 independent experiments)	
	
 

We then used this optimized activatorPARC design (second generation) to generate 

variants that contain the SNAPf and Halotag hetero-dimerization domains. All those 

variants showed very efficient plasma membrane targeting [Figure 3.10 b-d]. 
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Figure 3.10: Optimization of bait/activator PARCs for plasma membrane localization. 
The original RII-β presenting baitPARCs design shows only poor plasma membrane targeting 
if expressed at 37°C. ActivatorPARCs presenting eDHFR, SNAPf or Halotag 
heterodimerization domains, which were based on an improved design containing a 
glycosylation motif and an optimized linker, are efficiently targeted to the plasma membrane. 
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3.2 Application of artificial receptor constructs: Analysis of Rho 

GTPase signal processing in living cells 

Rho GTPases are thought to regulate their spatio-temporal activity by mutual 

crosstalk (Guilluy et al, 2009). To better understand, how activity patterns arise from 

such crosstalk, we aimed to directly investigate how Rho GTPases influence each 

other. To reach this goal, Abram Calderon, a PhD student in our lab, developed 

biosensors to monitor the activity of  the major Rho GTPases Rac1, RhoA and Cdc42 

(Abram Calderon 2014). Each of these biosensors were based on a GTPase binding 

domain (GBD) from an effector protein that was specific for one of those Rho 

GTPases (Pertz O et al, 2010). The GBD was fused with the mCherry fluorescent 

protein and expression was controlled by the weak delCMV promotor. The effector 

proteins in the biosensors were p67phox (aa 1-203) for Rac1, WASP (aa 201-231) for 

Cdc42 and Rhotekin (aa 8-89) for RhoA. Abram Calderon also developed a novel 

chemically induced dimerization system in colloboration with Dr. Yaowen Wu 

(Chemical Genomic Centre, Dortmund) (Abram Calderon 2014, Liu P et al, 2014). 

In this method, addition of the small molecule (SLF’-TMP) enabled dimerization 

between the two proteins eDHFR (E.coli dihydrofolate reductase) and FKBP’ (F36V 

mutant of FKBP). This system was used to globally perturb Rho GTPase activity by 

targeting constitutively active mutants that lack a membrane anchor to the plasma 

membrane. This lead to the formation of Rac1, Ccd42 and RhoA specific phenotypes, 

including actin-based cell protrusions and cell contraction in the neuronal cell line 

Neuro2a (Abram Calderon 2014,  Liu P et al  2014).  
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Neuro2a cells are highly motile and only weakly adherent. Presumably due to these 

features, those cells were not compatible with surface modifications to pattern bait- or 

activatorPARCs. We therefore extended those studies by first applying Rho GTPase 

sensors and perturbation techniques in the COS7 cell line. We then used 

activatorPARCs to combine local perturbations of Rho GTPases with global Rho 

GTPase activity measurements.  

 

3.2.1 Global RhoGTPase activity perturbation and activity measurements in 

COS7 cells  

To study the crosstalk between Rho GTPases in COS7 cells, constitutively active 

mutants of Rac1 or Cdc42 lacking the membrane anchor (Q61L mutants of Rac1 or 

Cdc42 were targeted to the plasma membrane via chemically induced dimerization, 

and the corresponding activity was measured using Rac1 or Cdc42 biosensors. As 

expected, dimerizer addition induced targeting of constitutively active Rho GTPases 

to the plasma membrane, which was reversed upon competitor addition (Figure 

3.11a,d). We also observed an increase in Rac or Cdc42 sensor signals that mirrored 

the perturbation kinetics. (Figure 3.11c,e). 
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Figure 3.11: Global Rac1 and Cdc42 activity perturbation and activity measurements in 
COS7 cells. a,d. Observation of plasma membrane targeting of constitutively active 
RhoGTPases to the plasma membrane via TIRF microscopy. The targeting was reversed 
upon competitor treatment. b,e. The RhoGTPase activity sensor signal mirrored plasma 
membrane targeting of active RhoGTPase. C,f. Normalized RhoGTPase perturbation and 
corresponding sensor intensity measurements (n>=10 cells from 3 independent experiments). 

 

From these experiments it became clear that global perturbation of RhoGTPases can 

also be performed in COS7 cells. Also, by combining these perturbation experiments 

with the corresponding Rho GTPase biosensors, we can investigate responses to 

those perturbations. Using different combinations of perturbation and biosensors (i.e 

Rac perturbation in combination a Cdc42 sensor), we can investigate the crosstalk 

between Rho GTPases.  

We next investigated a RhoA-myosin based signal network that was identified in a 

collaborative project with Prof. Perihan Nalbant (University of Duisbürg-Essen). This 



RESULTS 

	

	 73	

signal network is based on a positive feedback, in which RhoA activates its own 

activator GEF-H1, and a time-delayed negative feedback, in which RhoA activates its 

own inhibitor, myosin and associated RhoGAPs. This signal network leads to pulses, 

oscillations and propagating waves of Rho activity in U2OS (Osteosarcoma) cells 

(Melanie Grässl, 2016).  

In order to directly study the role of GEF-H1 in Rho activity dynamics, a bachelor 

student under my supervision, targeted an active mutant of GEF-H1 (GEFH1C53R) to 

the plasma membrane via chemically induced dimerization (Wiebke Obermann, 

2015). This GEF-H1 mutant interferes with the interaction with microtubules, which 

usually serves as a negative regulator of GEF-H1 activity (Krendel M et al 2002).  

As expected, targeting of the Rho-specific GEF-H1 to the plasma membrane lead to 

increased Rho activity (Figure 3.12a-b). Interestingly, this response was only 

transient and even stronger pulses and propagating waves were observed after 

releasing GEF-H1 from the membrane following competitor addition (two sharp green 

peaks in Figure 3.12d). The observed response dynamics are expected from the 

underlying feedback loops: The transient Rho activity response could be due to the 

time-delayed activation of the Rho inhibitor myosin and the suppressed spontaneous 

Rho dynamics during GEF-H1 plasma membrane targeting could be due to the static 

GEF-H1 localization after chemically-induced dimerization that breaks the dynamics 

of the feedback cycles. 
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Figure 3.12: Modulation of spontaneous Rho dynamics by GEF-H1 plasma membrane 
targeting a-b. Microscopy images of U2OS cells showing recruitment of GEF-H1 to the 
plasma membrane and respective Rho sensor dynamics. Treatment with a competitor shows 
detachment of GEF-H1 and strong local Rho activity pulses c. Kymograph analysis of GEFH1 
and Rho sensor dynamics. d-e. Intensity plot for GEF-H1 and Rho sensor activity over time 
from a single cell (d) and average measurements from 16 cells (e). 

3.2.2 Local RhoGTPase activity perturbation via ActivatorPARCs in 

combination with activity measurements in COS7 cells 

Next, we combined activatorPARCs (chapter 3.16) with chemically induced 

dimerization (chapter 3.2) to induce spatio-temporal perturbations of RhoGTPase 

activity. Such local perturbations can be combined with global activity measurements 

to directly investigate spatio-temporal signal propagation in living cells. For those 

experiments, we could capitalize on our optimized eDHFR-based activatorPARCs 

that were enriched by 900-1000% to spots containing VSVG antibodies (Figure 

3.13c, 3.14c). This relative enrichment was ~3 times better compared to the un-

optimized baitPARCs, which showed an enrichment of ~300%.  
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After addition of dimerizer, constitutively active RhoGTPases were targeted to 

optimized activatorPARCs (Figure 3.13d, 3.14d). As expected, addition of the 

competitor reversed this targeting and the corresponding activity sensors mirrored 

those kinetics (Figure 3.13e, 3.14e), similarly as in global perturbation experiments 

(Figure 3.11 a-b, d-e). This shows that local, reversible RhoGTPase activity 

perturbation and corresponding activity measurements can be achieved by combining 

activatorPARCs with chemically induced dimerization. 

 

Figure 3.13. Localized Perturbation and Sensor response of constitutively active Rac. 
a. Immobilized Anti-VSVG-Cy7 arrays on a glass surface b. COS7 cells plated on top of 
antibody arrays showed enrichment of eDHFR activatorPARCs c. Quantification of the 
relative enrichment (n=10 cells from 3 independent experiments) d. Addition of the dimerizer 
induced recruitment of constitutively active Rac to activatorPARC patterns e. Rac sensor 
activity measurements mirrored recruitment of active Rac1 to spot patterns. f,g. Kymograph 
analysis of the perturbation and activity response kinetics, h, i, j. Quantitative analysis of 
plasma membrane fraction (*: p<0.01**: p<0.001; ***: p<0.0001; ns: not significant; one-way 
ANOVA and Tukey's Multiple Comparison Test; n>=10 cells from 3 independent experiments) 
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Figure 3.14: Local Perturbation and sensor measurement of constitutively active 
Cdc42. a. Immobilized Anti-VSVG-Cy7 arrays on a glass surface b. COS7 cells plated on top 
of antibody arrays showed enrichment of eDHFR activatorPARCs c. Quantification of the 
relative enrichment (n=10 cells from 3 independent experiments) d. Addition of the dimerizer 
induced recruitment of constitutively active Cdc42 to activatorPARC patterns e. Cdc42 sensor 
activity measurements mirrored recruitment of active Cdc42 to spot patterns f,g. Kymograph 
analysis of the perturbation and activity response kinetics h. i. j. Quantitative analysis of 
plasma membrane fraction (*: p<0.01**: p<0.001; ***: p<0.0001; ns: not significant;: not 
significant; one-way ANOVA and Tukey's Multiple Comparison Test; n>=10 cells from 3 
independent experiments) 

 

Interestingly, we observed differences between the kinetics of the perturbations vs the 

responses of Rac and Cdc42 at distinct spot positions (Figure 3.15, 3.16). In the case 

of the Rac perturbation, in some spots, the Rac sensor showed on average a more 

positive, on other spots it showed a more negative response. Those differences could 

either point to feedback mechanisms or differences in the saturation of the underlying 

cellular reactions.   
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Figure 3.15: Position-dependent Rac1 activity responses to Rac1 perturbation a. 
Pseudo color image of a living cell showing the Rac perturbation (red) and corresponding 
sensor response (green). Circled spots are color-coded based on a more positive (red), 
neutral (black) or more negative (blue) sensor response during perturbation b. Normalization 
to the initial fluorescence intensities (t0=0-5min) shows overall strength of the perturbation 
(orange) and response (purple) in distinct spots. c. Normalization to both the initial (t0=0-
5min) and the maximal fluorescence intensities (t=0-40min) shows relative differences in the 
kinetics. d. Curves are classified based on differences in the initial response: positive (red), 
neutral (black) and negative (blue). Mean values and standard deviation of the difference 
between sensor and perturbation in the initial phase of the perturbation (10 min). 
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Figure 3.16: Position-dependent Cdc42 activity responses to Cdc42 perturbation a. 
Pseudo color image of a living cell showing the Cdc42 perturbation (red) and corresponding 
sensor response (green). Circled spots are color-coded based on a more positive (red) or 
neutral (black) sensor response during perturbation b. Normalization to the initial 
fluorescence intensities (t0=0-5min) shows overall strength of the perturbation (orange) and 
response (purple) in distinct spots. c. Normalization to both the initial (t0=0-5min) and the 
maximal fluorescence intensities (t=0-40min) shows relative differences in the kinetics. d. 
Curves are classified based on differences in the initial response: positive (red) and neutral 
(black). Mean values and standard deviation of the difference between Sensor and 
Perturbation in the initial phase of the perturbation (10 min). 
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3.2.3 Light controlled local RhoGTPase activity perturbation via 

photochemically induced dimerization 

Together with the group of Dr.Yaowen Wu, we aimed to develop a light-inducable 

dimerization strategy that could allow faster subcellular targeting with increased 

spatial control. To reach this goal, a co-worker of Dr. Yaowen wu, Dr. Xi Chen 

developed a cell permeable and photoactivatable dimerizer called ‘pTMP-Cl’. This 

dimerizer contains a trimethoprim (TMP) moiety that was caged by a photo labile 6-

nitroveratroyloxycarbonyl (NVOC) group, linked to a chlorohexyl group via a 

Polyethylene glycol linker (PEG). First, the chlorohexyl moiety can form a covalent 

bond with a Halotag domain (Los G et al 2008). Once the stable covalent bond is 

established, the NVOC group from the photodimerizer can be removed by illumination 

at a wavelength of 405nm (Klán et al, 2013). After photouncaging, the free TMP 

moiety can bind to eDHFR fused to a protein of interest. After initial characterization 

of this targeting system in the lab of Dr. Yaowen Wu, we decided to use it for local 

plasma membrane targeting of Rho GTPases. 

Neuro-2a cells were transfected with the following constructs: 1) The Halotag fused to 

the plasma membrane targeting CAAX-Box derived from K-Ras (Halotag-TagBFP-

CAAX), 2) dominant active Rac1 lacking its membrane anchor fused to eDHFR 

(eDHFR-mCitrine-NES-Rac1Q61LDac1Q). To reduce Rac localization to the nucleus, 

an additional nuclear export signal sequence (NES) was added to this construct 

(Abram Calderon, 2014). TIRF Microscopy was used to monitor the photo-induced 

recruitment of the eDHFR fusion protein to the plasma membrane (Figure 3.17a). 

Recruitment kinetics was determined both for an empty eDHFR-mCitrine construct 

(t1/2=48ms, 30% increase) and for the fusion with the active Rac mutant, which was 
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considerably slower (t1/2=780ms, 50% increase) (Figure 3.17b). This is expected, as 

the larger Rac containing fusion protein should diffuse slower to the site of activation. 

To our knowledge, this is the fastest targeting kinetics that was observed for any CID 

or pCID system (Kennedy M et al., 2010). 

	

Figure 3.17: Recruitment kinetics of plasma membrane mediated targeting via pCID: a. 
Representative examples of Neuro-2a cells showing plasma membrane targeting of 
fluorescently labeled eDHFR alone and fused to constitutively active Rac (Rac1Q61LΔCAAX) 
(above) at the site of photo activation (white arrows). b. Recruitment kinetics of Rac and 
empty construct were used to calculate respective half times after exponential fitting.  

We next tested, if plasma membrane targeting of constitutively active Rac leads to the 

expected phenotype: lamellopodium formation. To increase the local plasma 

membrane targeting, we uncaged the dimerizer in the same subcellular region 

repeatedly. Interestingly, targeting of active Rac induced localized lamellopodia 

formation and resulted in directed cell migration towards the region of Rac uncaging 

(Figure 3.18c). For every pulse, we observed a rapid decline in fluorescence signal, 

presumably due to lateral diffusion of CAAX-box based Halotag targeting domain 
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(Figure 3.18d). Kymograph analysis (Figure 3.18e) was used to measure cell 

protrusion and retraction velocity at the leading and trailing edge (Figure 3.18f). 

	

Figure 3.18: Directed cell migration controlled by photo-induced localized plasma 
membrane targeting of active Rac a. Concept of photochemically induced dimerization b. 
Representative TIRF image of a Neuro-2a cell expressing fluorescently labeled eDHFR-
active Rac lacking the membrane anchor. The green circles mark regions 1 and 2 used for 
fluorescent intensity measurements. White arrows represent the regions used for kymograph 
analysis c. Sequential TIRF images showing local recruitment of eDHFR-mCitrine-NES-
Rac1Q61LΔCAAX to the plasma membrane after individual laser photo activation pulses d. 
Quantitative analysis of plasma membrane recruitment in regions 1 and 2 labeled in a e. 
Kymograph analysis showing the cell protrusion and retraction in the leading and trailing edge 
f. Graph of Cell protrusion velocity at the leading edge and trailing edge of Neuro-2a cells 
(**:p<0.01; paired student’s t-test; n=6 cells from 3 independent experiments). 

We next studied how acute, global plasma membrane targeting of GEF-H1 by photo 

uncaging affects Rho signal activity. In order to achieve this, the active mutant of 

GEF-H1 described in chapter 3.2.1 was fused to eDHFR (mCitrine-eDHFR-
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GEFH1C53R) and co-expressed in Hela cells with the Halotag fused to a plasma 

membrane anchor (Halotag-TagBFP-CAAX), and a Rho activity sensor (delCMV-

Rhotekin-mCherry). Photo uncaging at two subsequent time points resulted in a 

moderate and minor increase in the targeted GEF-H1 signal, respectively (Figure 

3.19a). This perturbation induced a strong and moderate increase in Rho activity at 

those two time points (Figure 3.19b). Interestingly, we also observed a delayed but 

very efficient adaptive response of Rho activity following those perturbations (Figure 

3.19e). A slower adaptive response was observed after slow GEF-H1 plasma 

membrane targeting via chemically induced dimerization (see chapter 3.2.1). 

	

Figure 3.19: Adaptive Rho activity responses upon acute GEF-H1 plasma membrane 
recruitment via photochemically induced dimerization a-b. Global recruitment of GEF-H1 
and Rho dynamics upon photouncaging in Hela cells c. Graph of the GEF-H1 andRho sensor 
signal intensity over time. d. Localization of the Halotag construct with a CAAX-box 
membrane anchor. 
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3.2.4 Stable, localized plasma membrane targeting via activatorPARCs  

Even though active Rac was locally recruited to the plasma membrane, as shown in 

Figure 3.18d, fluorescence intensity decreased after each laser pulse presumably 

due to lateral diffusion of the CAAX box membrane anchor. Lateral diffusion was 

clearly observed in Figure 3.17a.  In order to completely suppress lateral diffusion, 

we generated a HaloTag-containing activator PARC (VSVG-HaloTag PARC 

[mCitrine]) (See also Figure 3.10) to replace the CAAX box-based dimerization 

domain. We then transfected those receptors in Cos7 cells together with constitutively 

active Rac fused to eDHFR (mCherry-eDHFR-NES-Rac1Q61LDCher) and plated 

those cells on anti-VSVG-Cy7 arrays. We found that these receptors were enriched 

by up to ~400% (average ~250%) to spots containing the VSVG antibodies (Figure 

3.20f). Blue light (405nm) illumination at the spot region leads to rapid and localized 

targeting of the eDHFR fusion protein (Figure 3.20b). Kymograph images revealed 

stable and sustained recruitment of this dimerization partner for more than 15 minutes 

(Figure 3.20c). Recruitment to artificial receptors neither showed detectable loss in 

fluorescence signal nor lateral diffusion after photo activation (Figure 3.20d). The 

stable recruitment was restricted to a narrow region and no recruitment was observed 

a few micrometers away from the site of photoactivation. We were also able to induce 

stable anchoring of the targeted protein to multiple distinct spots in a single living cell. 

Interestingly, while plasma membrane targeting of active Rac to a diffusible 

dimerization domain lead to lamellipodium formation and directed cell migration, 

targeting to immobile receptors did not induce a strong cellular phenotype. 

Presumably this is due to the inability of targeted Rac1 to reach the very leading edge 

of the cell, which might be necessary to induce lamellipodia.  
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Figure 3.20: Stable, localized targeting of active Rac to the plasma membrane via 
activatorPARC a. Anti-VSVG-Cy7 arrays were able to enrich ActivatorPARCs inside living 
cells b. Representative TIRF images showing stable plasma membrane targeting of 
constitutively active Rac (mCherry-eDHFR-NES-Rac1Q61LΔCAAX) after photouncaging 
(blue arrow: site of photoactivation) c. Kymograph analysis of region marked in b showed 
stable and sustained plasma membrane targeting of constitutively active Rac d. Intensity 
profile shows sustained recruitment of active Rac to the illuminated spot region (blue arrow in 
b) and not in the region next to it (red arrow in b) e. Sequential uncaging of photo dimerizer in 
multiple spots leads to highly localized targeting of constitutively active Rac g. Average 
relative enrichment in Cos7 cells (n =24)  f. Quantitative analysis of plasma membrane 
fraction calculated before and after uncaging (***: p<0.0001; one-way ANOVA and Tukey's 
Multiple Comparison Test; n>=24 cells from 3 independent experiments). 
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Figure 3.21: Graph showing slow and fast targeting of RacQ61L via CID and pCID, 
respectively.  

 

In comparison to CID where the maximal perturbation of RhoGTPases takes place in 

tens of minutes, pCID can induce a much faster perturbation of RhoGTPases at the 

timescale of seconds (Figure 3.21).  

 

Figure 3.22: Recruitment kinetics of Halotag-CAAX, mobile Halotag-PARC and immobilized 
Halotag-PARC after photoactivation.  
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Halotag anchored to the plasma membrane with a CAAX box showed rapid loss of 

signal after photoactivation via uncaging (Figure 3.22). In comparison, immobilized 

Halotag PARC on arrays displayed stable perturbation (Figure 3.22), whereas cells 

expressing mobile Halotag PARC in the absence of surface immobilized antibodies 

did not enable a stable perturbation after photoactivation (Figure 3.22). This 

demonstrates the importance of the immobilization step to induce a stable 

perturbation of RhoGTPases.  
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Appendix 

4.1 Antibody immobilization in mm-size spots for subcellular protein targeting 

Under my supervision, another Bachelor student generated mm-size Cy7-labeled 

spots of immobilized anti-VSVG antibodies. Details about the protocol to fabricate 

those spots can be found in his thesis (Jan Wolffgramm, 2015). The idea behind 

fabricating those structures was that i) they are easier to make, as they do not require 

sophisticated lithography devices. ii) Cell polarization can be induced if cells attach at 

the border of those spots. Living Cos 7 cells expressing eDHFR-based Activator 

PARCs (VSVG-eDHFR PARC (CCL Citrine)), dominant active Rac fused to FKBP 

(mTurquoise-FKBP-RacQ61CAAX) and a Rac activity sensor (delCMV-phoxp67-

mCherry) were plated on those structures. Selected cells growing at the spot interface 

displayed strong enrichment (average 1000%) of activatorPARC and those were 

subjected to chemically induced dimerization (Figure 4.1g). Addition of the small 

molecule dimerizer induced plasma membrane targeting of active Rac1 to one side of 

the cell (Figure 4.1c). Subsequent addition of the competitor reversed plasma 

membrane targeting. As expected, Rac sensor activity mirrored Rac targeting kinetics 

(Figure 4.1e). In the small set of 5 cells that were analyzed in those experiments, a 

small trend but no significant change in the plasma membrane targeting and sensor 

response were detected (Figure 4.1h,i). More robust results might be obtained after 

further optimization of the antibody immobilization protocol. This was not possible 

within this thesis due to time considerations. 
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Figure 4.1: Antibody immobilization in mm-size spots for subcellular protein targeting 
a. Immobilized Anti-VSVG-Cy7 big spot on a glass surface b. COS7 cells plated on top of 
antibody arrays showed enrichment of eDHFR activatorPARCs c, e. Recruitment of active 
Rac mutant and Rac sensor during chemically induced dimerization d, f. Kymograph analysis 
of the perturbation and activity response kinetics g. Quantification of the relative enrichment 
(n= 5 cells from 1 independent experiment) h,i.  Quantitative analysis of Rac Perturbation and 
Rac sensor response during perturbation (paired student-t-test;  n>=5 cells)  

4.2 Characterization of polymer pen printed micropatterns 

Initially the arrays for studying multiple protein interactions were immobilized using 

Dip Pen Nanolithography. However, using this technology, the generation of 5x5 

arrays’ using a 12-pen silicon nitride cantilever tip was time consuming. To solve this 

problem, a custom-made, low-cost plotter device was developed by Prof Christof 

Niemeyer (KIT), Prof. Neyer (TU Dortmund) and co-workers. The 12-pen Silicon 

nitride tip was replaced with a 5184-polymer pen array and a micro fluidic device was 

developed to deliver DNA-based ink to the pen array (Arrabito et al., 2014). Dr. 
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Giuseppe Arrabito, a postdoctoral researcher in Prof. Niemeyer’s lab used this 

polymer pen nanolithography device to fabricate immobilized EGF arrays. We used 

those arrays in collaboration with them to study how EGF affects EGF receptor 

activity. MCF-7 cells that stably express EGFR-EGFP were plated on immobilized 

EGF arrays and displayed local enrichment of EGF receptors. We also found that 

those receptors were phosphorylated via immunofluorescence staining using 

phospho-specific antibodies (Figure 4.2). We concluded that the arrays fabricated via 

Polymer Pen Nanolithography were of high quality and can be used to address cell 

biological questions for example concerning EGFR signaling (Arrabito G et al., 2014).  

 

Figure 4.2: Activation of EGFR by surface immobilized EGF ligands. Our new plotter 
device was used to immobilize EGF ligands on glass substrates. DNA directed immobilization 
enabled the fabrication of the functionalized EGF arrays with single stranded DNA-
streptavidin conjugates. Addition of biotinylated Cy7 dye facilitated the visualization of the 
EGF arrays. MCF-7 cells stably expressing EGFR-EGFP were plated onto functionalized 
EGF arrays were imaged in TIRF microscopy. Phospho-specific antibodies and alexa-
conjugated antibodies in immunostaining revealed increased phosphorylation of EGFR at 
tyrosine residue 1068 within immobilized EGF spots. Picture source: Arrabito G et al., 2014 
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4.3 Molecular activity painting  

We also developed a novel method for stable, light-induced, plasma membrane 

targeting of proteins on a surface that is homogenously coated with antibodies. We 

named this method “Activator-Painting”. This painting strategy is based on the 

photochemically induced dimerization concept that was already explained in section 

3.2.4. Here, a homogenous surface is easily produced and thereby overcomes the 

requirement of the time-consuming lithography step. Basically, the activated surface 

is incubated with reactive single stranded DNA to immobilize antibodies 

homogenously on the whole surface (Figure 4.3b; see also Section 2.2.2) via a 

similar procedure, large spots in millimeter range can also be generated (Figure 4.3c), 

which can be used for cell polarization experiments. Antibody concentration 

measured via Cy7 intensity was compared between the homogenous and millimeter 

spot sample. Interestingly, the micrometer spots contained several fold lower antibody 

concentration compared to the homogeneous sample that was reflected in weaker 

Cy7 intensity (Figure 4.3) 

Using those surfaces, we observed rapid, localized, stable targeting of GEF-H1 to the 

plasma membrane. Due to the homogenous immobilization of the antibody over the 

whole cell surface, uncaging can be performed in any geometrical shapes like spots 

or squares of distinct sizes, and even lines or symbols as shown in Figure 4.3. This 

method can be used to manipulate regulatory networks within sub-regions of the 

plasma membrane. 
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Figure 4.3: Molecular Activitiy Painting (MAP).  a. Immobilization of Anti-VSVG in 1 µm 
size spots shows spatially controlled enrichment of HalotagPARCs and recruitment of GEF-
H1 only in the region of photoactivation b-c. Homogenous immobilization of anti-VSVG 
antibodies and patterning of big spots (200 µm) faciliatated photouncaging and strong GEF-
H1 recruitment in any defined shape.  
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5. DISCUSSION 

5.1 Simultaneous monitoring of multiple protein reactions using intracellular 
protein interaction arrays 

In this work, we demonstrate simultaneous monitoring of multiple protein interactions 

inside individual living cells. In particular, we analyzed the correlation among the 

interactions between the two regulatory subunits RI-α or RII-β and the catalytic 

subunit cat-α of the cAMP dependent protein kinase A. This analysis showed that cat-

α binds preferentially to the regulatory subunit RII-β in living, unperturbed cells 

(Figure 3.4). Those measurements also pointed out cell-to-cell variance in the 

correlation between the response of RI-α or RII-β to pharmacological perturbation of 

β-adrenergic signaling (Figure 3.4). Other methods like surface plasmon resonance, 

mass spectrometry fail to address cell-to-cell variance as they are based on large 

ensembles of lysed cells.  

An important prerequisite for successful measurements with this technique is an 

efficient enrichment of baitPARC at immobilized antibody patterns. This process was 

quantified using the relative enrichment, which is dependent on several experimental 

parameters, including i) the density of immobilized DNA, ii) the concentration of the 

antibody in the functionalization complex, iii) the affinity and accessibility of the 

epitope-antibody interaction at the cell surface/substrate interface, iv) the expression 

level of the baitPARC and v) the fraction of baitPARCs in the plasma membrane. In 

our proof of concept study (Gandor et al, 2013), RII-β based VSVG-baitPARCs were 

enriched by a factor of 289±125% . After optimization of the receptor design an 

enrichment of up to 908.2±77.89% was achieved for the VSVG-e-DHFR PARCs. The 

relative enrichment obtained for VSVG-eDHFR PARCs differed largely between 



DISCUSSION 

	

	 92	

independent experiments that used DNA arrays from different batches. As all other 

factors are likely similar, we presume that the density of the immobilized DNA strongly 

affected the enrichment in these experiments. To directly evaluate this effect, 

simultaneous surface immobilization of an identical DNA strand tagged with a 

fluorophore can act as a reference to measure DNA density for individual 

experiments. We indirectly evaluated DNA immobilization by measuring fluorescence 

intensity of the Cy7-labeled functionalization complex and indeed observed that the 

amount of this complex is critical for efficient receptor enrichment. Also, the 

relationship between distinct epitopes and the respective relative enrichment of the 

corresponding receptors remains unknown. This is particularly difficult to address, as 

distinct antibody complexes and immobilized oligonucleotides cannot be easily 

compared based on fluorophore intensity. The optimal number of epitopes on 

receptors for maximal enrichment is also not known. Initial experiments suggested 

that three epitope repeats (3xVSVG) are advantageous compared to a single VSVG 

epitope (Silke Gandor, PhD thesis), but a quantitative measurement of the relative 

enrichment corresponding to those constructs was not yet performed. 
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Figure 5.1: Extended multiplexing for studying protein interaction networks. a. A red 
spot in a 3x3 subarray acts as a reference spot for the remaining immobilized 8 spots (Scale 
bar: <10µm). b. A living cell plated on the array representing the baitPARC enrichment of 
distinct 3x3 checkerboard patterns. 

An important limitation for multiplexing is the size and spacing of spot structures. A 

typical mammalian cell with a ~30 µm average diameter can roughly accommodate 

less than 10 spots with an average size of 4-5 µm, spaced within a distance of 10 µm. 

Theoretically, structures that are spaced apart by the diffraction limit can be 

distinguished by standard microscopy techniques. For the wavelengths used in this 

study (up to 600nm) this limit is close to 200nm for high aperture objectives, but the 

practical limit is closer to ~500nm. We were able to immobilize DNA spots with a 

diameter of about 500nm and a spot to spot distance of ~2-3 microns. With this spot 

distance more than 50 distinct spots could be present within the area of a single 

typical cell. Theoretically, this could be used to study more than 50 distinct protein 

interactions in a single cell. Alternatively, a smaller number of protein interactions 

could be observed repeatedly in 3x3 or 4x4 subarrays, enabling the analysis of the 

spatial organization of signal networks. It is to be noted that the first spot in each 

subarray should have a unique color or shape which can be used to assign the 

identity of bait proteins based on their position (Figure 5.1). 

Extended multiplexing also requires multiple, distinct baitPARCs that specifically 

interact with their corresponding immobilized antibodies. In principle, the bait-PARC 

technology can be scaled up to study more proteins by generating distinct receptors 

that display distinct epitopes, such as the myc-tag, FLAG-tag and V5-tag. The need 

for multiple distinct epitopes in the baitPARCs can also be overcome by directed 

protein evolution (Packer et al., 2015). A particularly promising generic approach 
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could be based on replacing the epitope-antibody interaction with specific TALE-DNA 

or Zinc finger-DNA interaction pairs (Mali et al., 2013) (Figure 5.2). TALE and Zinc 

finger proteins are known to interact with specific DNA sequences. Those domains 

could therefore replace epitopes on bait-PARCs, which could directly be recruited to 

surface immobilized oligonucleotides without the need for antibodies. Thus, the 

limited number of commercial epitope-specific antibodies could be overcome either by 

directed protein evolution or by replacing epitopes with specific oligonucleotide 

binding domains. 

To be useful for studying signal networks in cells, neither the artificial receptors nor 

the immobilized antibodies should interfere with cellular function. This was achieved 

by designing artificial receptors based on protein domains that do not interact with 

endogenous signal pathways and by using antibodies directed against viral epitopes 

that are not present in uninfected cells (Gandor et al., 2013). In other words, the 

artificial receptors were designed to be bio-orthogonal with respect to endogenous 

cell functions and widely applicable to selected proteins of interest. During the course 

of the development of artificial receptors by Silke Gandor (Gandor et al, 2013), an 

Austrian research group developed a similar strategy (Schwarzenbacher et al., 

2008). However, in that study, the interaction between the CD4 receptor and the 

associated regulator LCK was measured. Thus, this study did not use a bio-

orthogonal, artificial receptor to pattern the protein interaction partners in cells and 

was therefore restricted to this particular biological question of CD4 receptor 

interactions. Furthermore, this study was also limited to study a single protein 

interaction inside a single living cell.  
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Another popular method to study protein interactions in living cells is fluorescence 

resonance energy transfer (FRET) (Masi et al., 2010). However, FRET can only be 

used to study one to few protein interactions inside living cells due to the spectral 

limitations of available FRET fluorophore pairs. These limitations are overcome in our 

array technology, which can be used to study multiple protein interactions inside living 

cells with minimal perturbation of endogenous proteins. 

The presented array technology also has its limitations: 1) Preparation of arrays is 

laborious, time-consuming and requires specific training for several specialized 

techniques, including the immobilization of DNA oligonucleotides using 

nanolithography, conjugation of streptavidin with the complementary DNA, DNA 

directed immobilization and special cell handling procedures for cell transfer to 

functionalized arrays. In principle, most of these laborious tasks can be automated for 

large-scale production, for example by combining the technology of polymer-pen 

nanolithography (Arrabito et al., 2014) with standardized surfaces and advanced, 

microscopy-based control mechanisms. 2) This method is limited to study protein-

protein interactions that can occur near the plasma membrane and which therefore 

can be monitored with TIRF microscopy. 3) Cells prefer to spread on patterns of 

immobilized antibodies, which can constrain their dynamic behavior. This can limit 

studies of rapidly migrating cells like fibroblasts or neuronal precursors. 4) The 

generation of functionalized antibody arrays and the associated analysis of protein 

interactions involves sophisticated lithography methods and advanced microscopy 

techniques. Thus, the application of this method is relatively expensive. By 

demonstrating the assembly of a relatively low-cost plotter device (~15.000 Euro; 

Arrabito et al., 2014) we make this technology much more accessible, as TIRF 
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microscopy is already available in many modern imaging facilities. Furthermore, the 

lithography step can be bypassed by direct immobilization of biotin with a pipette tip 

(Section 4.1). Large antibody spots generated with this procedure can be used to 

induce polarization in one side of individual cells. However, this cost effective strategy 

is currently limited to analyze only one protein interaction per cell. 

 

Figure 5.2: Comparsion of epitope-based and zinc-finger based baitPARCs. The limited 
number of commercially available biotinylated epitope-specific antibodies can be overcome 
by replacing the epitope-antibody interaction with the Zinc finger-DNA interaction. 

 

5.2 Targeting and folding of baitPARCs in the secretory pathway  

Just as any other transmembrane or secreted protein, bait PARCs are transported to 

the plasma membrane via the secretory pathway. For efficient plasma membrane 

targeting, BaitPARCs were designed to have a single transmembrane domain derived 

from platelet growth factor receptor (PDFR), and an N-terminal secretory signal 

sequence. During protein translation, this signal sequence of the nascent baitPARC 

polypeptide is recognized by the Signal Recognition Particle (SRP), which halts the 
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translation process. SRP bound polypeptide interacts with the ER bound SRP 

receptor and reinitiates the translation. This complex is then taken over by the Sec61 

complex, which enables the translocation of the baitPARC transmembrane domain 

through the ER membrane and the removal of the signal sequence by signal 

peptidases (Alberts B, 2002).  

In general, protein translation inside the cell occurs at the rate of ≈2–8 amino acid 

residues per second (Alberts B, 2002). Elongation of the nascent protein chain 

should not occur more rapidly than the folding capacity of the ER. If unfolded 

baitPARCs are present, a cascade of signaling events is triggered that indicates 

stress in the ER, which in turn leads to the activation of the unfolded protein response 

(Anelli et al., 2008). The folding kinetics of the baitPARCs are currently unknown. 

Presumably, the slowest folding rate of the baitPARC domains (titin, fluorescent 

protein and bait/activator) will be rate limiting for the folding of the overall structure of 

assembled baitPARCs.  

During the optimization of baitPARCs, we frequently observed entrapment of 

receptors in the ER, presumably due to misfolding and blockage of entry into the 

secretory pathway. We solved this problem by generating constructs with functional 

linkers that directly or indirectly improved protein folding of individual domains.  It 

should be noted that, fluorescent proteins isolated form cold-water organisms like 

jellyfish or corals exhibit improved folding when expressed at temperatures below the 

optimal growth of mammalian cells (26°C) (Ward WW, 1998). Indeed, our 

experiments suggest that fluorescent proteins contribute to folding problems in 

baitPARCs, which were improved by lower temperature expression. In principle, 

protein folding can also be improved via other strategies, such as the addition of 
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chemical chaperones (Bandyopadhyay A et al., 2012) or co-expression of protein-

based Chaperones like BiP that shield the hydrophobic residues of baitPARC and 

protect cells from ER stress and allow continuous expression of mRNAs (Morris et 

al., 1997).  

Replacing the conventional fluorescent proteins with Super folder GFP (SF-GFP) or 

FFTS-YFP could be used to further increase baitPARC folding and plasma 

membrane targeting. Those GFP variants show remarkable re-folding kinetics. For 

example, the yellow fluorescent protein variant FFTS-YFP folds 9 times faster than 

the original Venus variant (Aliye, N. et al., 2014). SF-GFP folds 3.5 times faster than 

the original GFP variant (Pédelacq, J.D et al., 2006). 

The largest effect on plasma membrane targeting was observed for the bait- or 

activator protein inside artificial receptors. This is not surprising, as arbitrary proteins 

of interest might not fold well if they are fused to other domains or linkers.  In contrast, 

the SNAPf and Halotag proteins are well-characterized protein domains that were 

found to fold in various contexts, including fusion proteins (Stagge F et al 2013). 

Indeed, replacing the regulatory subunit of PKA with those domains in 

activatorPARCs likely contributed to their excellent plasma membrane fraction levels 

(Figure 3.9) 

5.3 Optimization of baitPARC folding 

In order to improve the plasma membrane fraction of the baitPARCs, a glycosylation 

motif, an extended glycine linker, a coiled-coiled linker and a positively charged 

sequence were inserted between baitPARC domains. Those modifications 

significantly improved the plasma membrane fraction from -30% to -70%.  
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i) Introducing the flexible glycine linkers between the transmembrane domain and the 

fluorescent protein of the baitPARC might have improved the mobility of the 

connecting functional domains by providing them higher degree of freedom (Chen et 

al., 2013). 

ii) A core oligosaccharide structure is added to the glycosylation motif (Asn-X-Ser/Thr 

residue) of the baitPARC chain by oligosaccharyl transferase. This initiates the 

process of N-glycosylation. Protein folding is enhanced by glycosylation in several 

ways. Based on Schröder et al., 2005, addition of a hydrophilic carbohydrate moiety 

to the baitPARC increases the solubility of this fusion protein. Presence of a glycosyl 

group in the baitPARC increases its hydration volume and shields it from the 

surrounding proteins. This post-translational modification stabilizes the conformation 

of baitPARC via an oligosaccharide-peptide backbone interaction. Finally, sugar 

residues in the glycosyl group are trimmed sequentially and this step is regulated by 

the lectin machinery of the CNX/CNT cycle. This cycle constantly monitors protein 

conformations and acts as protein quality control machinery in the ER to decide the 

destiny of the baitPARC (Schröder et al., 2005). As a result, the properly folded 

baitPARC is transported to the Golgi and follows the secretory pathway and the 

misfolded baitPARC is targeted to the lysosome for degradation via ERAD (Anelli et 

al, 2008).  

iii) According to the positive inside rule, positively charged residues are predominantly 

found in the cytoplasmic side of membrane proteins (Heijne G et al., 1988). Addition 

of six lysine residues after the hydrophobic stretch of the transmembrane domain in 

baitPARCs significantly improved plasma membrane targeting. This is thought to be 

due to an increase in the membrane insertion efficiency and improved formation of 
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transmembrane helices by lowering the associated free energy (Lerch-Bader M et 

al., 2008).  

iv) Dill et al., 1990 described protein folding as a process to maximize the quantity of 

buried non-polar groups in the protein core. The amphipathic nature and non-

polar/polar periodic properties of coiled-coiled linkers helps them to assemble within 

their hydrophobic areas, which can enhance folding of nearby proteins. Indeed, 

including a coiled-coiled linker at both ends of the fluorescent protein increased 

plasma membrane targeting. 

In addition to those optimization steps, using a stronger secretory signal sequence 

could improve the interaction between the nascent baitPARC polypeptide and the 

SRP during translation at the ER. This step might thereby further increase the 

transport efficiency of baitPARCs along the secretory pathway. Furthermore, a blue 

fluorescent protein that was optimized for processing in the lumen of the ER, called 

SecBFP2, might be able to replace the current fluorescent proteins if it is localized to 

the N-terminal region of baitPARCs (Costanini et al., 2015). 

5.4  Acute control of RhoGTPase activity by ligand induced dimerization 

In the last decades, several chemical ligands that induce dimerization of two proteins 

were developed (DeRose et al., 2013). Among those, Rapamycin induced 

dimerization is best characterized. Rapamycin, a macrolide natural product, induces 

the interaction between the proteins FKBP and the FRB domain of the mTOR kinase 

when added to cells. This FKBP-FRB complex formation occurs within minutes, and it 

is driven by a low nanomolar affinity between the components (Banaszynski L et al., 

2006). Even though it was widely applied, the interaction of Rapamycin with the 
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endogenous mTOR and FKBP proteins also leads to side effects (Wehrens et al., 

2008). Another disadvantage of this system is its poor reversibility (Peng Liu et al, 

2013).  

In order to address these limitations, a novel bio-orthogonal, chemically induced 

dimerization (CID) strategy was developed. Here, addition of the small molecule SLF’-

TMP enabled the hetero-dimerization of two proteins, eDHFR and FKBP’ (Liu P et 

al., 2014). Unlike the Rapamycin system, the dimerizer does not interact with 

endogenous variants of those proteins in mammalian cells. Hence it is supposed to 

minimally perturb cellular function and therefore it is considered to be bio-orthogonal. 

Another attractive feature of this method is its reversible hetero-dimerization of 

eDHFR-FKBP’ within minutes.  

Using this CID approach, Abram Calderon induced plasma membrane targeting of 

fluorescent protein tagged active RhoGTPase mutants (Rac1Q61L and Cdc42Q61L) 

in N2a cells. Interestingly, he observed the formation of structures that are typical for 

the corresponding Rho GTPase, such as lamellopodia, filopodia and cell contraction.  

Rho GTPase biosensors developed by Abram Calderon enabled direct activity 

measurement of Rac and Cdc42 RhoGTPase during plasma membrane targeting 

(Abram Calderon, 2014) (Figure 3.11). Unfortunately, Cos7 cells showed no 

significant phenotypic changes. This could be due the lack of spontaneous cell 

polarization in COS7 cells, which in turn could be due to missing signal activities that 

promote those phenotypic responses. 

5.5 Integrating artificial receptors with CID for discovering feedback loops 
among RhoGTPases 
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In order to measure the crosstalk between RhoGTPases, we combined protein 

interaction arrays with the chemically induced dimerization system. Cos7 cells plated 

on anti-VSVG antibody arrays showed strong enrichment of VSVG-eDHFR PARCs. 

Addition of the chemical dimerizer induced plasma membrane targeting of 

constitutively active Rac and Cdc42 with high spatio-temporal precision (Figure 3.13-

3,14). In principle, this method could be used to detect positive or negative feedback 

loops that might regulate Rho GTPases. Our preliminary analysis shows that 

differences in the perturbation and response kinetics can be measured independently 

on individual spots of an intracellular array. Such differences could hint to the 

presence of regulatory mechanisms, including feedback loops, which can then be 

further investigated by combined long-term perturbations via siRNA or the CRISPR-

CAS system. 

Due to time constraints, we were only able to perturb Rac and Cdc42 and monitor 

their corresponding sensor activity. Controlling a specific Rho GTPase (i.e. Cdc42) 

activity locally in the presence of sensors for distinct GTPases (i.e. Rac and/or Rho) 

could provide information about the crosstalk between individual RhoGTPases. 

One key disadvantage with this combined array-CID system is the time required to 

achieve a stable perturbation. This kinetics was in the range of several minutes, 

which might be caused by slow diffusion of the dimerizer to enter the cell and slow 

encounter with the immobilized interaction partner. It should be noted that this slow 

CID plasma membrane targeting and de-targeting is much slower that many aspects 

of Rho GTPase signaling, which is thought to occur at the sub-second timescale 

(Pertz O, 2009).	
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5.6 A light based strategy induces rapid perturbation of RhoGTPases 

In order to achieve rapid perturbation of RhoGTPases, we developed photochemically 

induced dimerization in collaboration with Dr. Xi Chen and his group leader Dr. 

Yaowen Wu. Although this method shares a similar principle with chemically induced 

dimerization, here two desired proteins (Halotag-eDHFR) are brought to close 

proximity only upon un-caging of the photoactivatable dimerizer (pTMP-Cl). This 

photocaged dimerizer is covalently linked to a membrane localized Halo-Tag. Unlike 

CID, activation kinetics in pCID are only limited by uncaging kinetics and intracellular 

diffusion of the dimerization domains and it does not dependent on the relatively slow 

diffusion of the dimerizer into the cell. 	

Photoactivation via a 405nm laser un-caged the dimerizer and targeted the protein 

(mCitrine-eDHFR-NES-Rac1Q61L) rapidly to the plasma membrane in Cos7, N2a, 

U2OS and Hela cells. Confined and focused spots of 405nm blue light enabled local 

perturbation of the desired protein. 

The density of the dimerization domain in the plasma membrane and the exposure 

time determines the recruitment efficiency after photoactivation. However, laser 

power also needs to be optimized to maximize uncaging and to minimize side 

reactions, for example from phototoxicity. Even though the cell lines Cos7, Hela and 

U2OS showed strong and local plasma membrane targeting of the constitutively 

active Rac mutant to a CAAX membrane anchor, we did not observed lamellopodia or 

filopodia formation in those cells. On the other hand, in N2a cells, plasma membrane 

targeting of active Rac induces robust lamellipodia formation.  A similar cell-type 

specific effect was also observed with CID (Inoue T et al., 2005, Liu P et al., 2014).  
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One key limitation of this pCID method was lateral diffusion of the CAAX box based 

plasma membrane anchor, leading to the loss of signal a few minutes after photo-

activation (Figure 3.18d). Lateral diffusion is only partially overcome by applying 

multiple irradiation pulses of blue light, which resulted in the formation of localized 

membrane ruffling or cell protrusions.  

5.7 Application of immobilized artificial receptors with pCID controls the spatio 

temporal activity of RhoGTPases 

We solved the problem of lateral diffusion by replacing the CAAX box membrane 

anchor with immobilized Halotag-PARCs. Cos7 cells expressing Halotag-PARCs 

showed robust enrichment in antibody spot patterns and stable recruitment of active 

Rac mutant upon photo uncaging. Uncaging of the dimerizer on a CAAX box 

membrane anchor induced a 50-60% increase in recruitment of active Rac whereas 

recruitment to activatorPARC increased only by 30%. This is possibly due to the 

higher expression levels of the Halotag-CAAX construct in comparison to the Halotag-

PARCs. On the other hand, Halotag-PARCs were enriched by a factor of 265.6-

68.76%, which could have partially compensated for the reduced expression level. 

Local activation of active Rac showed significant activation within regions as small as 

3.59±0.55 µm. As in the other methods, stable plasma membrane recruitment of 

active Rac showed minor or no traces of lamellopodia formation. A key limitation of 

this method is the need to synthesize the photocaged dimerizer and a relatively slow 

reversibility within minutes.  

In conclusion, local, acute plasma membrane targeting of Rho GTPases or their 

regulators by this method enables the direct measurement of signal processing in 
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living cells, including the elucidation of Rho GTPase crosstalk and its spatio-temporal 

relation to effector signaling. 
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