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Abstract 

 

A particular attractive approach toward the synthesis of densely functionalized hetero- 

and carbocyclic products involves the incorporation of rearrangement steps into transition-

metal-catalyzed cycloisomerization cascade reactions. In this context, the diverse reactivity of 

gold- and platinum-catalyzed transformations has attracted much interest for the development 

of cascade reaction patterns. The activation of allenes with a homogeneous catalyst sets the stage 

for a cyclization by intramolecular attack of various nucleophiles, affording highly useful carbo- 

or heterocyclic products. Among various methods for the synthesis of these heterocycles, the 

gold- or platinum-catalyzed transformations of allenes play an important role in synthetic 

organic chemistry. 

 

 

In this context, we described a novel method for the preparation of highly substituted 

cyclopentadiene derivatives by gold- and platinum-catalyzed [1,2]-migratory 

cycloisomerization cascade reactions of 1,1-disubstituted vinylallenes. In addition to this, we 

have developed a new approach for the synthesis and gold-catalyzed cyclization of 

difunctionalized allenes, which afford new routes to functionalized heterocyclic products. Those 

heterocycles are part of many bioactive natural compounds and building blocks in synthetic 

organic chemistry. 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Kurzfassung 

 

Ein besonders attraktiver, synthetischer Zugang zu hoch funktionalisierten hetero- und 

carbozyklischen Verbindungen ist die Integrierung von Umlagerungsschritten in 

Übergangsmetallkatalysierte Zykloisomerisierungskaskadenreaktionen. In diesem 

Zusammenhang hat die vielfältige Reaktivität von Gold- und Platinkatalysatoren ein hohes 

Interesse in der Entwicklung von Kaskadenreaktionen erhalten. Die Aktivierung von Allenen 

mit homogenen Katalysatoren schaffte die Voraussetzung für die Zyklisierung, bei der durch 

intramolekulare Angriffe verschiedenster Nukleophile wertvolle carbo- und heterozyklische 

Verbindungen entstehen. Neben den bisherigen Synthesemethoden dieser Heterozyklen spielen 

gold- und platinkatalysierte Reaktionen von Allenen eine wichtige Rolle in der synthetischen, 

organischen Chemie.  

 

Im Rahmen dieser Arbeit wird eine neue Methode für die Herstellung hochsubstituierter 

Cyclopentadiene durch gold- und platinkatalysierte Kaskadenreaktionen von 1,1-

disubstituierten Vinylallenen vorgestellt. Weiterhin wurde eine neue Methode für die 

Darstellung und goldkatalysierte Zyklisierung difunktionalisierter Allene entwickelt, welche 

neue Möglichkeiten für die Synthese funktionalisierte Heterozyklen eröffnet. Diese 

Heterozyklen sind sowohl Bestandteil bioaktiver Naturstoffe als auch wichtige 

Synthesebausteine in der organischen Chemie. 
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Preface 

 

Allenes are an important class of compounds and have gained increasing attraction as interesting 

building blocks in synthetic organic chemistry. The activation of allenes with a homogeneous catalyst sets 

the stage for cyclization by intramolecular attack of various nucleophiles, affording highly useful carbo- and 

heterocyclic products by formation of new C-O, C-N, C-S and C-C bonds. 

The results of our investigations in this context form the subject matter of the thesis entitled “Novel 

Strategies for the Synthesis and Cycloisomerization Reactions of Functionalized Allenes”. The thesis 

is divided into four chapters which are presented as independent units and therefore the structural formulas, 

schemes, figures and references are numbered chapter-wise. In each chapter, a brief introduction of literature 

examples is followed by present study, conclusion and experimental part.  

The thesis starts with a brief introduction into allenes and literature methods for the synthesis of 

functionalized allenes and further metal-catalyzed cycloisomerization reactions to afford synthetically 

valuable carbo- and heterocycles depending on the substituents on the nucleophilic moiety. Also, the 

importance and usage of cyclopentadienes was discussed in this chapter. 

In the second chapter, the novel gold- and platinum-catalyzed [1,2]-migratory cycloisomerization 

cascade reaction of 1,1-disubstituted vinylallenes was discussed. The reaction allows the regioselective 

formation of highly substituted cyclopentadiene derivatives. The developed gold- and platinum-catalyzed 

reactions are complement to each other depending on the electronic nature of the substituents in the 

migrating groups. 

In chapter 3, we have demonstrated the efficient Cu(I)-catalyzed cross-coupling reactions of 

alkynes, propargyl alcohols, propargyl amines and propargyl epoxides with diazo compounds. The desired 

hydroxy-, amino- and epoxy-functionalized allenes were obtained in good yields. The synthesized allene 

derivatives were subjected to gold-catalyzed cycloisomerization reactions to afford synthetically valuable 

heterocycles depending on the substituents on the nucleophilic moiety. 

A summary of the work, also in German, is given at the end of the thesis as the last chapter. 

 

 

 

 

 



 

 

 



3 
 

CHAPTER 1 
 

Introduction 

 

1.1 Allenes  

 

Allenes are of an important class of organic compounds, which are characterized by two cumulated 

carbon-carbon double bonds. The history of allenes dates back to 1874. At that time, the correct core 

structure of allenes was predicted for the first time by Jacobus H. Van’t Hoff.[1] This predictive work was 

so extreme for the scientists due to the their unique structure, due to the fact that, allenes have been 

considered mostly chemical curiosities for a long period. The first report for the synthesis of an allene, 

pentadienoic acid, was carried out by Burton and Pechmann in 1887[2], which was an attempt to prove the 

nonexistence of this class of compounds. Nearly 70 years later, the structure of the allene was confirmed by 

the use of IR and Raman spectroscopy for structural investigation of the characteristic allenic C-C vibration 

at around 1950 cm-1.[3]   

Till today, numerous of natural products and pharmaceuticals containing the allene moiety have 

been discovered.[4] Selected examples of naturally occurring allenes and pharmaceuticals are shown in 

Scheme 1.1 and 1.2. For example, the allenic carotenoid Fucoxanthin 1.1 which occurs in brown algae and 

diatomees and exhibits high energy transfer efficiencies to chlorophyll during the initial process of 

photosynthesis, was isolated in 1942 by Willstätter and Page.[5]  The closely related carotenoid Peridinin 1.2 

                                                           
[1] H. van’t Hoff, La Chimie dans l’Espace, Bazendijk: Rotterdam, 1875. 
[2] B. S. Burton, H. V. Pechmann, Ber. Dtsch. Chem. Ges. 1887, 20, 145-149. 
[3] E. R. H. Jones, G. H. Mansfield, M. L. H. Whiting, J. Chem. Soc. 1954, 3208-3212. 
[4] Review: A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196-1216. 
[5] a) R. Willstätter, H. J. Page, Justus Liebigs Ann. Chem. 1914, 404, 237-271; b) S. Okumura, T. Kajikawa, K. Yano, S.         

Sakaguchi, D. Kosumi. H. Hashimoto, S. Katsumura, Tetrahedron Lett. 2014, 55, 407-410; c) T. Kajikawa, S. Okumura, T.      

Iwashito, D. Kosumi. H. Hashimoto, S. Katsumura, Org. Lett. 2012, 14, 808-811. 
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which plays an important role in the photosystem of dinoflagellates was isolated in 1890 by Schütt.[6] The 

synthesis of these carotenoids is still a fascinating challenge for the organic chemist.  Before the discovery 

of Fucoxanthin 1.1, Mycomycin 1.3 was the only known natural allene isolated by Johnson and Burdon[7] 

in 1947 from the Norcardia acidophilus, which shows strong antibiotic activity against Mycobacterium 

tuberculosis. Naturally occurring bromoallene, Laurallene 1.4 was isolated as a main constituent from the 

marine red alga Laurencia nipponica Yamada in 1977 by Kurosawa[8] and much attention has been paid to 

the total synthesis of this type naturally occurring bromoallenes.[9] The grasshopper ketone 1.5[10] was 

isolated as a defense substance of the Nord American grasshopper. The first synthesis of racemic 

grasshopper ketone was described in 1969 and numerous syntheses has also been developed.[11]   

 

 

 

Scheme 1.1. Selective examples of allene containing natural products. 

 

                                                           
[6] F. Schütt, Ber. Dtsch. Bot. Ges. 1890, 8, 9-32. 
[7] a) E. A. Johnson, K. L. Burdon, J. Bacteriol. 1947, 54, 281-293; b) W. D. Celmer, I. A. Solomons, J. Am. Chem. Soc. 1952, 74, 

2245-2248; c) W. D. Celmer, I. A. Solomons, J. Am. Chem. Soc. 1952, 74, 3838-3842.  
[8]  A. Fukuzawa, E. Kurosawa, Tetrahedron Lett. 1979, 2797-2800. 
[9] R. Kinnel, A. J. Duggan, T. Eisner, J. Meinwald, Tetrahedron Lett. 1977, 3913-3916; b) K. S. Feldman, C. C. Mechem, L. 

Nader, J. Am. Chem. Soc. 1982, 104, 4011-4012; c) M. T. Crimmins, E. A. Tabet, J. Am. Chem. Soc. 2000, 122, 5473-5476; c) J. 

lshihara, Y. Shimada, N. Kanoh, Y. Takasugi, A. Fukuzawa, A. Murai, Tetrahedron 1997, 53, 8371-8382. 
[10] M. Ito, Y. Yamano, S. Sumiya, A. Wada, Pure Appl. Chem. 1994, 66, 939-946. 
[11]  K. Mori, Tetrahedron Lett. 1973, 723-726; b) K. Mori, Tetrahedron 1974, 1065-1072; c) M. Ito, Y. Hirata, K. Tsukida, N. 

Tanaka, K. Hamada, R. Hino, T. Fujiwara, Chem. Pharm. Bull. 1988, 36, 3328-3340. 
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The potential biological activities of allenic compounds are also of interest in pharmaceutical 

chemistry. For example, allenic nucleoside Adenallene 1.6 and Cyctallene 1.7 were found efficiently inhibit 

in vivo replication and cytopathic of human immunodeficiency viruses HIV.[12] Entropstil 1.8[13] is a potent 

inhibitor of gastric acid section and effective agent for the treatment of gastrointestinal disease (Scheme 

1.2). 

 

 

Scheme 1.2. Selective examples of pharmacologically active allenes. 

 

1.2 Synthesis of Allenes 

 

During the last few decades, the chemistry of allenes has witnessed a rapid development in target 

oriented organic synthesis which mainly include isomerization reaction of alkynes, reaction of aldehydes 

with terminal alkynes and metal-mediated reactions of propargylic compounds.[14] The earliest methods 

were mainly based on the isomerization reactions of the corresponding alkynes or propargyl derivatives. 

Over the past 30 years, the use of organometallic reagents for the synthesis of allenes has been highly 

developed.[15]  

The basic reaction types for metal-mediated syntheses of allenes 1.10, 1.12 and 1.14 are outlined in 

Scheme 1.3 and consist of SN2´ nucleophilic substitution reactions of propargylic electrophiles 1.9, 

furthermore 1,4-additions to unfunctionalized enynes 1.11 and 1,6-addition reactions to acceptor-substituted 

enynes 1.13. 

                                                           
[12] J. Zemlicka, Nucleosides Nucleotides, 1997, 16, 1003-1012; b) J. Zemlicka, Pharmacol Ther. 2000, 85, 251-266; c) S. 

Hayashi, S. Phadtare, J. Zemlica, M. Matukura, H. Mitsuya, S. Broder, Proc. Nat. Acad. Sci, 1988, 85, 6127-6131. 
[13] a) H. Carpio, G. F. Cooper, J. A. Edwards, J. H. Fried, G. L. Garay, A. Guzman, J. A. Mendez, J. M. Muchowski, A. P. 

Roszkowski, A. R. Van Horn, D. Wren, Prostaglandins 1987, 33, 169-180; b) G. F. Cooper, D. L. Wren, D. Y. Jackson, C. C. 

Beard, E. Galeazzi, A. R. V. Horn, T. T. Li, J. Org. Chem. 1993, 58, 4280-4286.  
[14] Modern Allene Chemistry (Eds.: N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004.  
[15] N. Krause, A. H. Röder, Tetrahedron 2004, 60, 11671-11694. 
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Scheme 1.3. Fundamental reaction types in the metal mediated synthesis of allenes. 

 

One of the most developed methods for the synthesis of functionalized allenes is the reaction of 

propargylic derivatives with organocopper reagents using stoichiometric or catalytic amount of copper salts. 

The first example of allene synthesis using an organocuprate was documented by Rona and Crabbe[16] in 

1968 for the reaction of propargylic acetates 1.15 with lithium dialkylcuprates which afforded allenes 1.16 

with moderate to good yields (Scheme 1.4). Besides acetates the method has been successfully applied to 

benzoate, carbonate, sulfonate, ether, acetal, halide, oxirane and aziridine-substituted propargylic 

substrates.[14] 

 

 

Scheme 1.4. Allene synthesis via SN2´ substitution of propargylic acetates 1.15 with cuprates. 

 

For the synthesis of natural product Panacene 1.18, the chiral propargyl mesylate 1.17 was treated 

with lithium dibromocuprate.[17] An analogous protocol was used in the synthesis of Kumausallene 1.19 by 

                                                           
[16] a) P. Rona, P. Crabbe, J. Am. Chem. Soc.1968, 90, 4733–4734; b) P. Rona, P. Crabbe, J. Am. Chem. Soc. 1969, 91, 3289–3292. 
[17] K. S. Feldman, C. C. Mechem, L. Nader, J. Am. Chem. Soc. 1982, 104, 4011-4012. 
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Overman et al.[18], as well as by Crimmins and co-workers in their synthesis of Isolaurallene[19] 1.20 (Scheme 

1.5). 

 

 

Scheme 1.5. SN2’ substitution reactions of chiral propargyl mesylates for the synthesis of 

natural products 1.18-20. 

Moreover, the synthesis of hydroxyallenes has a particular important role since they can be 

transformed into other hetero-substituted allenes and valuable heterocyclic compounds which are 

extensively used as synthetic building blocks. The SN2` substitution of the propargylic oxiranes with 

organometallic reagents is one of the most useful methods for the synthesis of allenic alcohols. In 1974, 

Vermeer et al.[20] described the formation of allenic alcohol 1.22 by the reaction of alkynyl epoxide 1.21 

with Grignard reagents in the presence of catalytic amount of copper salts. In the absence of CuI, a complex 

mixture of products was obtained (Scheme 1.6).  

 

 

                                                           
[18] T. A. Grese, K. D. Hutchinson, L. E. Overman, J. Org. Chem. 1993, 58, 2468-2477.  
[19]  a) M. T. Crimmins, K. A. Emmintte, J. Am. Chem. Soc. 2001, 123, 1533-1534; b) M. T. Crimmins, K. A. Emmintte, A. L. Choy, 

Tetrahedron 2002, 58, 1817-1834. 
[20] P. Vermeer, J. Meijere, C. De Graaf, H. Schreurs, Recl. Trav. Chim. Pays-Bas 1974, 93, 46-47. 
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Scheme 1.6. Cu-catalyzed SN2´ substitution of propargyl oxiranes 1.21. 

Later on, Alexakis et al.[21] demonstrated that both diastereoisomers could be obtained by changing 

the halogen atom of the Grignard reagents in the copper-catalyzed SN2´ substitution reaction (Scheme 1.7). 

 

 

Scheme 1.7. Anti/syn stereoselective SN2´ substitution of propargylic electrophiles 1.23. 

 

Furthermore, when the strategy was applied to enantiomerically pure or enriched oxiranes, the 

corresponding α-hydroxyallenes could be obtained easily in stereochemically defined form. In 1983, 

Oehlschlager et al.[22] reported the SN2´ substitution reaction of a chiral propargyl epoxide 1.26 with 

organocuprates, afforded the allenes 1.27 and 1.28 as  syn–anti mixtures in the absence of any additives. If, 

however, the reaction was carried out in the presence of dimethyl sulfide, high anti-stereoselectivities were 

obtained with both lithium and magnesium cuprates (Scheme 1.8).  

 

                                                           
[21] A. Alexakis, I. Marek, P. Hangeney, J. F. Normant, Tetrahedron Lett. 1989, 30, 2387-2390. 
[22] A. C. Oehlschlager, E. Czyzewska, Tetrahedron Lett. 1983, 24, 5587–5590. 
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Scheme 1.8. Influence of dimethyl sulfide on the SN2´ substitution of propargyl oxirane 1.26. 

The stereochemical outcome of the reaction is controlled by the interaction of a copper-centered d-

orbital with σ and π* orbitals of the substrate. This leads to the formation of a σ-copper(III) species 1.30, 

which furnishes the anti-substitution product 1.31 after reductive elimination (Scheme 1.9). 

 

 

Scheme 1.9. Mechanistical model for the anti-stereoselective SN2´ substitution of propargylic electrophiles. 

Propargylic compounds also undergo several transformations in the presence of palladium catalysts. 

The palladium-catalyzed reactions of propargylic electrophiles can be understood by analyzing the (σ-

allenyl)palladium intermediate 1.33. This intermediate is capable of undergoing further transformations 

such as insertion of alkenes or alkynes, transmetallation of hard carbon nucleophiles such as Grignard 

reagents or methyl hydrides or insertion of CO to yield allene derivatives (Scheme 1.10). 
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Scheme 1.10. Palladium-catalyzed reactions of propargylic electrophiles. 

The reactions of propargyl electrophiles with organoboron compounds were investigated by 

Yoshida et al.[23] in the reaction between propargyl alcohols 1.37 and arylboronic acid 1.38 with palladium 

catalyst (Scheme 1.11).  

 

 

Scheme 1.11. Palladium-catalyzed reactions of propargyl alcohols 1.37 with arylboronic acids. 

In addition to this, palladium complexes also catalyze the reaction of propargylic oxiranes 1.40 with 

substituted arylboronic acids 1.41, in which anti-substituted 4-aryl-2,3-allenols 1.42 were obtained in high 

diastereoselectivity[24] (Scheme 1.12). 

 

                                                           
[23] M. Yoshida, T. Gotou, M. Ihara, Tetrahedron Lett. 2004, 45, 5573-5575.  

[24] M. Yoshida, H. Ueda, M. Ihara, Tetrahedron Lett. 2005, 46, 6705-6708. 
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Scheme 1.12. Palladium-catalyzed reactions of propargyl oxiranes 1.40 with arylboronic acids. 

 

In 1985, Wenkert et al.[25] published the reaction of Grignard reagents with propargyl alcohols 1.43 

in the presence of a nickel catalyst. Excellent yields were obtained with 10 mol % NiCl2(dppp) (Scheme 

1.13).  

 

 

Scheme 1.13. Nickel-catalyzed reaction of propargyl alcohols 1.43 and Grignard reagents. 

Iridium complexes also catalyze the reaction of propargyl acetates 1.45 with silyl enol ethers which 

gives allenic products 1.46 (Scheme 1.14).[26]  

 

 

Scheme 1.14. . Iridium-catalyzed substitution of propargyl acetates 1.45 with silyl enol ethers. 

 

 

                                                           
[25] E. Wenkert, M. H. Leftin, E. L. Michelotti, J. Org. Chem. 1985, 50, 1122-1124. 
[26] I. Matsuda, K. Komori, K. Itoh, J. Am. Chem. Soc. 2002, 124, 9072-9073. 
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Vinyl-substituted allenes are reactive compounds in various cycloaddition and cyclization reactions. 

They exhibit particularly a higher activity and selectivity in Diels-Alder reactions, because their 

configurational equilibrium is more on the side of the s-cis conformer, a prerequisite for a [4+2] 

cycloaddition reaction to occur effectively, than in 1,3-dienes.[27] In spite of their synthetic utility in organic 

reactions, there are only a few methods that can generate vinylallene structures. 

In 1999, Krause et al.[28] developed a regioselective 1,5-SN2´´ type reaction of (E)-2,4-enyne 

acetates 1.47 with various lithium dialkylcuprates affording the vinylallenes 1.48 as a mixture of E- and Z- 

isomers (Scheme 1.15).  

 

 

Scheme 1.15. 1,5-SN2´´ type Substitution reaction of enyne acetates 1.47 with dialkylcuprates. 

The method was also applied to (E)-2,4-enyne oxirane 1.49, which was treated with Me2CuLi.LiI 

or t-Bu2CuLi.LiCN. The substrate reacted cleanly with the tert-butylcuprate to afford the alkylated 

vinylallene 1.50 with a primary hydroxyl group, whereas its reaction with the lithium dimethylcuprate 

reagent proceeded without coupling and led to exclusive reduction to a vinylallene 1.51 (Scheme 1.16). [28] 

 

Scheme 1.16. 1,5-SN2´´ type substitution reaction of enyne oxiranes 1.49 with dialkyl cuprates. 

                                                           
[27] D. Bond, J. Org. Chem. 1990, 55, 661-665. 

[28] a) N. Krause, M. Purpura, Eur. J. Org. Chem. 1999, 1, 265-275; b) N. Krause, M. Purpura, Angew. Chem. Int. Ed. 2000, 39, 

4355-4356. 
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In 2011, Chen et al.[29] reported that diazo compounds generated in-situ from N-tosylhydrazone salts 

in the presence of a base, act as a nucleophile and react with the propargylic carbonates 1.52 to form 

vinylallenes 1.53 in the presence of [Pd2(dba)3] (Scheme 1.17). 

 

 

Scheme 1.17. Synthesis of vinylallene 1.53 by N-tosylhydrazone salt. 

 

 1.3 Homogeneous Gold Catalysis 

 

Gold has been used for thousands of years in jewelry and currency with the advantage of impressive 

durability. Gold has also found application as precious metal for the industrial processes due to its resistance 

against oxidation from air and moisture. Gold has an excellent conductivity which makes it a key component 

in electronics and many other high-tech applications. It is well-known that gold has been used in the field 

of medicine and dentistry due to its non-allergenic and non-toxic characteristic properties. However, gold 

had not been recognized as a catalyst for the chemists until last few decades. Obviously, this can be attributed 

to the fact that chemists used to consider gold as a chemically inert and very expensive metal.  

In 1976, Thomas et al.[30] reported the first homogeneous gold-catalyzed reaction for the hydration 

of alkynes promoted by tetrachloroauric acid in aqueous methanol and obtained the corresponding ketones 

by Markovnikov addition as major products. After one decade, in 1986, Ito and Hayashi[31] described an 

aldol-type reaction between aldehydes and isocyanate using a chiral ferrocenylphosphine-gold(I) complex 

that afforded substituted, nonracemic oxazolines with high diastereoselectivity and enantioselectivity. In 

1998, Teles et al.[32] demonstrated the extraordinary high reactivity of cationic Au(I)-phosphine complexes 

in the hydroalkoxylation of alkynes which was the actual turning point for homogeneous gold catalysis and 

the potential of gold salts to act as soft carbophilic Lewis acids caught the attention of the scientific 

community (Scheme 1.18).  

                                                           

[29] Z. Chen, X. Duan, L. Wu, S. Ali, K. Ji, P. Zhou, X. Liu, Y. Liang, Chem. Eur. J. 2011, 17, 6918-6921. 
[30] R. O. C. Norman, W. J. E. Parr, C. B. Thomas, J. Chem. Soc. Perkin. Trans. 1, 1976, 1983-1987.  
[31] Y. Ho, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405-6406.  
[32] J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998, 37, 1415-1418. 
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Scheme 1.18.  Early investigations on homogeneous gold catalysis. 

 

Since these pioneering works, the area of homogeneous gold catalysis finally undergoes widespread 

investigations, covering a broad spectrum of transformations in organic synthesis. The last decade has been 

the “booming time” for homogeneous gold catalysis. The ability of gold catalysts to act as carbophilic Lewis 

acids and hence to chemoselectively activate π-bonds towards nucleophilic attack initiates numerous 

investigations of incredible variety to form different carbo- and heterocyclic motifs that are now easily 

accessible.[33]  

 

 1.4 Gold-Catalyzed Cycloisomerization Reactions of Functionalized 

Allenes 

 

The homogeneous catalysis of organic reactions by gold complexes has received significant 

attention in recent years due to its extraordinary reactivities and selectivities in various transformations. The 

activation of allenes with a homogeneous gold catalyst sets the stage for a cyclization by intramolecular 

                                                           
[33] a) Reviews; A. Corman, A. Leyva-Perez, M. J. Sabater, Chem. Rev. 2011, 111, 1657-1712; b) M. Rudolph, A. S. K. Hashmi, 

Chem. Commun. 2011, 47, 6536–6544; c) H. C. Shen, Tetrahedron 2008, 64, 3885-3903. 
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attack of various nucleophiles, affording highly useful carbo- and heterocyclic products by formation of 

new C-O, C-N, C-S and C-C bonds[34]. 

In 2000, the first gold-catalyzed addition of heteroatom nucleophiles was reported by Hashmi,[34] 

who reported the cycloisomerization of allenyl ketones to the corresponding furans by the use of only 1 

mol% AuCl3 in acetonitrile. The use of the gold catalyst entails a number of advantages to operate the 

reaction in shorter reaction time, milder reaction conditions and very low catalyst loading compared with 

the other transition metal-catalyzed reactions (silver[35] and palladium[36]). Despite of a number of 

advantages of Hashmi´s[34] pioneering report, variable amounts of undesired dimerization product were also 

obtained. In 2006, Che et al.[37] described the first gold(III) porphyrin-catalyzed cycloisomerization reaction 

of allenyl ketones in excellent yield with preventing the formation of undesired dimerization products 

(Scheme 1.19).  

 

 

Scheme 1.19. [Au(TPP)]Cl-catalyzed cycloisomerization of allenyl ketones 1.56. 

Along this line, Gevorgyan and co-workers[38] reported the gold-catalyzed regiodivergent 

cycloisomerization of bromoallenyl ketones to isomeric bromofurans 1.61 and 1.63, in which the structure 

of the product is highly dependent on the oxidation state of the gold catalyst (Scheme 1.20).  

 

                                                           
[34] A. S. K. Hashmi, L. Schwarz, J. H. Choi, T. M. Trost, Angew. Chem. Int. Ed. 2000, 39, 2285-2288. 
[35] a) J. A. Marshall, E. D. J. Robinson, J. Org. Chem. 1990, 55, 3450-3451; (b) J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994,      

59, 7169-7171; (c) J. A. Marshall, C. A. Sehon, J. Org. Chem. 1995, 60, 5966-5968. 
[36] (a) A. S. K. Hashmi, Angew. Chem., Int. Ed. 1995, 34, 1581-1583. (b) A. S. K. Hashmi, T. L. Ruppert, T. Knöfel, J. W. Bats, J. 

Org. Chem. 1997, 62, 7295-7304. 
[37] C. Y. Zhou, P. W. H. Chan, C. M. Che, Org. Lett. 2006, 8, 325-328. 
[38] A. W. Sromek, M. Rubina, V. J. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500-10501. 
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Scheme 1.20. Gold-catalyzed cycloisomerization of bromoallenones 1.58. 

The possibility of using chiral substrates was achieved by replacing the keto with a hydroxy group 

by Krause et al.[39] They reported the highly efficient synthesis of chiral 2,5-dihydrofurans 1.65 from α-

hydroxyallenes 1.64 by using 5 mol% AuCl3 in dichloromethane, which takes place with complete axis-to-

center chirality transfer, and is therefore, ideally suited for target oriented stereoselective synthesis (Scheme 

1.21).  

 

 

Scheme 1.21. Gold(III) chloride-catalyzed cyclization of α-hydroxyallenes 1.64. 

The mechanism of this transformation proceeds through the coordination of the carbophilic gold 

catalyst to an allenic double bond to afford a π-complex, which undergoes a 5-endo-cyclization resulting in 

the formation of a vinylgold intermediate. Subsequent protodeauration leads to the desired product with 

regeneration of the gold catalyst (Scheme 1.22). 

                                                           
[39] A. Hoffmann-Röder, N. Krause, Org. Lett. 2001, 3, 2537-2538.  
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Scheme 1.22. Mechanism of the gold-catalyzed cycloisomerization of α-hydroxysubstituted allenes. 

The method was also extended to an efficient gold-catalyzed 6-endo-trig cycloisomerization of β-

hydroxyallenes 1.66 to dihydropyrans 1.67 where both Au(I) and Au(III) were found to be efficient 

precatalysts (Scheme 1.23).[40]  

 

 

Scheme 1.23. Gold(I)-chloride-catalyzed cyclization of β-hydroxyallenes 1.66. 

This method is compatible with various functional groups present in the substrate and found many 

applications in natural product synthesis. For example, Volz and Krause reported the synthesis of chiral 

dihydrofuran 1.69 as a subunit of β-carboline alkaloids (‒)-isocyclocapitelline 1.70 from the corresponding 

allenic diol 1.68 by using only 0.05 mol % of AuCl3 in THF (Scheme 1.24).[41] 

 

                                                           
[40] B. Gockel, N. Krause, Org. Lett. 2006, 8, 4485-4488. 
[41] F. Volz, N. Krause, Org. Biomol. Chem. 2007, 5, 1519-1521. 
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Scheme 1.24. Synthesis of β-carboline alkaloid (‒)-Isocyclocapitelline 1.70. 

In 2008, Hammond et al.[42] found that stable vinylgold complexes 1.72 can be isolated from the 

reaction of cationic gold species with allenoates 1.71 which provides a direct evidence for the proposed 

mechanism of the gold-catalyzed allene cyclization. By combining the high reactivity of gold for 

cycloisomerization reactions together with its transmetallation ability with palladium, Hashmi et al.[43] 

showed that organogold complexes participates in Pd/Au dual-metal catalyzed cross-coupling reactions 

which provides C-C bond formation as an alternative to protodemetallation (Scheme 1.25).  

 

 

Scheme 1.25.  Synthesis and transmetallation of organogold(I) complexes 1.72. 

With the success of palladium-catalyzed cross-coupling reactions of organogold compounds, Blum 

et al.[44] established the dual-metal catalyzed transformation of allylic allenoates 1.74 to allylated 

butenolides 1.78 with catalytic amount of Pd and Au complexes. The allyl oxonium intermediates 1.75 

undergo deallylation in the presence of the Pd(0) catalyst. The subsequent nucleophilic attack of the 

resulting σ-vinylgold intermediate 1.76 at the π-allyl palladium species 1.77 and reductive elimination 

afforded the final product 1.78 with the regeneration of the cationic gold species (Scheme 1.26).  

 

                                                           
[42] L. P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642-17643. 
[43] A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Rudolph, T. D. Ramamurthi, F. Rominger, Angew. Chem. Int. Ed. 2009, 48, 

8243-8247. 
[44] Y. Shi, K. E. Roth, S. D. Ramgren, S. A. Blum, J. Am. Chem. Soc. 2009, 131, 18022-18023. 
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Scheme 1.26. Tandem Au/Pd-catalyzed cycloisomerization of allenoates 1.74. 

The activation of allenes by gold catalysts toward nucleophilic attack has also opened a new route 

to C-N bond formation. In 2004, Morita and Krause[45] reported the first intramolecular endo-selective 

hydroamination of α-aminoallenes 1.78 to 3-pyrrolines 1.79 by using AuCl3 with complete axis-to-center 

chirality transfer. Gold(I) precatalyst such as AuCl and AuI showed a higher reactivity in case of 

hydroamination of unprotected α-aminoallenes (Scheme 1.27). 

 

 

Scheme 1.27. Gold-catalyzed cycloisomerization of α-aminoallenes 1.78. 

Encouraged by the observation on the gold-catalyzed cycloisomerization of hydroxy- and amino- 

functionalized allenes, Krause et al.[46] extended the method to gold-catalyzed synthesis of heterocycles with 

two heteroatoms from the allenic precursors such as hydroxylamines and hydroxylamine ethers. In all cases, 

the nitrogen atom acts as a nucleophile and attacks the allene in 5- or 6-endo mode depending on the gold 

catalyst and the protecting group at nitrogen (Scheme 1.28). 

                                                           
[45] a) N. Morita, N. Krause, Org. Lett. 2004, 6, 4121-4123; b) N. Morita, N. Krause, Eur. J. Org. Chem. 2006, 4634-4641. 
[46] C. Winter, N. Krause, Angew. Chem. Int. Ed. 2009, 48, 6339-6342. 
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Scheme 1.28. Gold-catalyzed cycloisomerization of allenic hydroxylamines 1.80 and hydroxylamine ethers 1.82. 

Later on, the same group extended the method to the cycloisomerization of α-thioallenes 1.84 which 

was the first example of a gold-catalyzed C-S bond formation.[47] The coordination of the gold catalyst to 

the sulfur atom of the α-thioallenes is probably more pronounced than its coordination to the other 

heteroatoms, which is responsible for a lower reactivity (Scheme 1.29). 

 

 

Scheme 1.29. Gold-catalyzed cycloisomerization of α-thioallenes 1.84. 

 

 

                                                           
[47] N. Morita, N. Krause, Angew. Chem. Int. Ed. 2006, 45, 1897–1899. 
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1.5 Cyclopentadienes 

 

Cyclopentadienes (Cps) are very useful synthetic intermediates in organic and organometallic 

chemistry. They display a wide reactivity for the construction of fused ring systems via inter- and 

intramolecular Diels-Alder reactions (Scheme 1.30).[48]  

  

 

Scheme 1.30. Diels-Alder reaction of Cp with various dienophiles. 

In addition to this, cyclopentadienes are used as precursors for the preparation of transition-metal 

complexes in coordination chemistry.[49] Therefore, methods to access these substrates are highly desirable. 

Cyclopentadiene 1.87 can be obtained by thermal decomposition of dicyclopentadiene 1.86 at high 

temperature (Scheme 1.31).[50] Apart from unsubstituted cyclopentadiene, the preparation of substituted 

cyclopentadienes is not easy due to their low stability, and the facile migration of the endocyclic double 

bonds. Consequently, synthesis of highly substituted cyclopentadienes is an important subject of synthetic 

chemistry. 

 

 

Scheme 1.31. Thermal decomposition of dicyclopentadiene 1.86. 

                                                           
[48] a) G. O. Jones, V. A. Guner, K. N. Houk, J. Phys. Chem. A 2006, 110, 1216-1224; b) H. Yoon, W. Chae, Tetrahedron Lett. 

1997, 38, 5169 – 5172. 
[49] Reviews: a) R. L. Halterman, Chem. Rev. 1992, 92, 965-994; b) U. Siemeling, Chem. Rev. 2000, 100, 1495 – 1526. 
[50] B. Moffett, Org. Synth. Coll. 1963, 4, 238. 
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After the discovery of ferrocene in the area of coordination chemistry, Cps have been among the 

most important ligands because minor modification on the Cp ligands can provide a significant change in 

the structure and reactivity of the metallocence complexes.[51] Scheme 1.32 illustrates some of the common 

transition metal Cp structures. Complexes having two Cp ligands are classified as metallocenes, and those 

bearing one, two, or three additional ligands are termed tilted or bent metallocenes. Compounds having one 

Cp ligand but two, three, or four additional ligands are called half-sandwich or piano stool complexes.  

 

 

Scheme 1.32. Examples of Cp complexes. 

Electron-donating or electron withdrawing groups influence the properties and reactivities of Cp 

metal complexes. Electron-donating groups increase the electron density around the metal center, making 

the metal less electrophilic. Electron-withdrawing groups decrease the electron density of the metal center, 

making the metal more electrophilic. Steric effects occur when the Cp substituent is bulky enough to control 

the orientation of reacting molecules as they approach the metal (Scheme 1.33).[52] 

 

 

 

                                                           
[51] M. Horacek, J. Pinkas, J. Merna, R. Gyepes, P. Meunier, J. Organomet. Chem. 2009, 694, 173-178; b) W. C. Finch, E. V. 

Anslyn, R. H. Grubbs, J. Am. Chem. Soc. 1988, 110, 2406-2414; c) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-

472; d) M. E. Rerek, F. Basolo, J. Am. Chem. Soc. 1984, 106, 5908-5912. 
[52] a) N. Dodo, Y. Matsushima, M. Uno, K. Onitsuka, S. Takahashi, J. Chem. Soc., Dalton Trans. 2000, 35-41; b) Z. Liu, I. R. 

Canelon, A. Habtemariam, G. J. Clarkson, P. J. Sadler, Organometallics 2014, 33, 5324−5333; c) J. Risse, B. Dutta, E. Solari, R. 

Scopelliti, K. Severin, Z. Anorg. Allg. Chem. 2014, 640, 1322-1329. 
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Scheme 1.33. Selected examples of Cp-ligated transition-metal complexes. 

 

1.6. Definition of the Research Problem 

In recent years, homogeneous transition metal-catalyzed organic reactions have received significant 

attention due to their extraordinary reactivities and selectivities. One of these transformations is the 

activation of allenes with homogeneous gold catalyst which promotes the cyclization by intramolecular 

attack of various nucleophiles, affording highly useful carbo- and heterocyclic products by formation of 

new C-O, C-N, C-S and C-C bonds. As a consequence, the development of practical synthetic approaches 

to access these target molecules is of our major interest. 

In the first part, we developed gold- or platinum-catalyzed [1,2]-migratory cycloisomerization 

cascade reaction of 1,1-disubstituted vinylallenes which provides a regioselective access to highly 

substituted cyclopentadiene derivatives. 

 

 

Scheme 1.34. Transition metal-catalyzed 1,2-migratory cycloisomerization of vinylallenes. 
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Extensive investigations of the transition metal-catalyzed reactions of diazo compounds have led to 

the development of valuable synthetic method. Although significant progress has been made in this field, 

the development of highly efficient catalytic transformations via transition metal carbene intermediates is 

still an important and attractive area in modern synthesis. In the second part, we perform the Cu(I)-catalyzed 

cross-coupling reaction of alkynes with diazo compounds for the synthesis of functionalized allenes. 

 

 

Scheme 1.35. Cu(I)-catalyzed cross-coupling reaction of alkynes with diazo compounds. 

The new allene derivatives thus formed are subjected to gold-catalyzed cycloisomerization reaction 

to afford heterocyclic products by formation of new C-O and C-N bonds depending on the substituents on 

the nucleophilic moiety. 

 

 

Scheme 1.36. Gold-catalyzed cycloisomerization of functionalized allenes. 

Also, we have developed a gold-catalyzed cycloisomerization reaction of epoxy-functionalized 

allenic ester to afford functionalized furan derivatives containing a stereogenic center. 

 

 

Scheme 1.37. Gold-catalyzed cycloisomerization of epoxy-functionalized allenic ester. 
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2.1 Introduction 

 

2.1.1 Recent Developments on Gold-Carbenoid Structures 

 

The use of gold complexes as carbophilic π-acids has become a powerful tool for building molecular 

complexity in a number of reactions. Gold carbenes or gold carbenoids, which indicates the carbocationic 

nature of this species, have been widely proposed as key and reactive intermediates in a range of gold(I)-

catalyzed transformations.[53] Recent theoretical and experimental investigations polarized the discussion 

about the nature of carbene or cationic character of organogold species (Scheme 2.1).[54] Although some of 

the mechanistic pathways have been investigated by DFT calculations, labeling and kinetic studies, isolation 

of the key intermediates still one of the most important challenges in this field of research.  

 

 

Scheme 2.1.Carbene and carbocation resonance forms of gold carbenes . 

 

Recently, the isolation and structural characterization of gold carbenoids has provided a new insight 

into the nature of the key gold(I) species. In 2008, Hammond and coworkers [55] were the first to report the 

isolation of vinylgold intermediate 2.1 and provided experimental evidence to support the postulated 

mechanisms of many Au-catalyzed reactions (Scheme 2.2). Since then, a number of cationic gold carbenoid 

complexes have been isolated. For example, Brooner and Widenhoefer[56] reported the first example of a 

heteroatom stabilized gold cyclopropylcarbene complex 2.2. Later the non-heteroatom stabilized complex 

2.3[57] was also reported in which the carbene moiety is incorporated into an aromatic cycloheptatrienylidene 

framework and stabilized by π-delocalization. In 2014, Straub[58] reported a fully characterized non-

heteroatom stabilized gold-carbene complex 2.4. In this complex, the dimesityl carbene moiety is combined 

                                                           
[53] a) E. J. Numez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350. 
[54] a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Gaddord, F. D. Toste, Nature Chem. 2009, 1, 482-486; b) Y. Wang, 

M. E. Muratore, A. M. Echavarren, Chem. Eur. J. 2015, 21, 7332-7339. 
[55] L. P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642-17643. 
[56] R. E. M. Brooner, R. A. Widenhoefer, Chem. Commun. 2014, 50, 2420-2423. 
[57] R. J. Harris, R. A. Wiedenhoefer, Angew. Chem. Int. Ed. 2014, 53, 9369-9371. 
[58] M. W. Hussong, F. Romiger, P. Krämer, B. F. Straub, Angew. Chem. Int. Ed. 2014, 53, 9372-9375. 
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with a bulky NHC fragment, resulting in very strong steric shielding of gold carbenoid structure. Another 

example of gold-carbenoid complex 2.5 was reported by Miqueu, Amgoune and Bourissou[59] by taking the 

advantage of peculiar electronic properties of the [(DPCb)Au]+ (DPCb = o-carborane diphosphines) 

fragment which stabilized the carbene complexes with participation of gold fragment via π-backdonation. 

 

 

 

Scheme 2.2. Examples of gold-carbenoids.  

 

In this context, Fürstner[60] have developed an efficient method for the synthesis of gold carbenoids 

from Fischer carbene complexes which are known to undergo a facile carbene transfer upon treatment with 

appropriate Au(I) sources (Scheme2.3).[61] They have found that in the reaction of 2.6a (Ph2C=Cr(CO)5) 

with [(Cy3P)Au]NTf2, the formation of gold carbenoid 2.8a could not be observed, whereas the reaction of 

p-methoxy-substituted carbene 2.6b afforded the gold carbenoids 2.8b. Similarly, Widenhoefer [57] reported

                                                           
[59] M. Joost, L. Estevez, S. M. Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2014, 53, 14512-14516.    
[60] G. Seidel, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 4807-4811.    
[61] R. Auman, E. O. Fischer, Chem. Ber. 1983, 114, 1853-1857.  
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a failed attempt to form gold carbenoid complex 2.10 through the hydride abstraction from gold diphenyl 

methane precursor 2.9 (Scheme2.3).  

These results demonstrate the importance of strongly electron-donating substituents for the 

stabilization of gold-carbenoid intermediates by resonance delocalization and indicate that the [LAu] 

fragment alone is not able to impart sufficient stability onto a gold carbenoid center (Scheme 2.3). 

 

 

 

 

Scheme 2.3. Synthesis of gold-carbenoids.  
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2.1.2 Migratory Cycloisomerization Reactions of Allenes 

A particular attractive approach toward the synthesis of densely functionalized hetero- and 

carbocyclic products involves the incorporation of molecular rearrangement steps into transition-metal-

catalyzed migrative cycloisomerization cascade reactions.[62] In this context, the diverse reactivity of gold- 

and platinum-catalyzed transformations have attracted much interest in the development of cascade reaction 

patterns. Most of these transformations include 1,2-migration to an adjacent metal-carbenoid center. 

Generally, the migratory aptitude follows the order H > aryl > alkyl. In the presence of available hydrogen 

atoms in the adjacent position, mostly a clean 1,2-hydride shift takes place to the metal-carbenoid center 

(Scheme 2.4, eq 1). Alternatively, introduction of a migratory group other than hydrogen provides an easy 

route for the synthesis of diverse functionalized products (Scheme 2.4, eq 2). Furthermore, the reactive 

metal-carbenoid intermediates could undergo further cascade transformations such as cyclopropanation or 

cyclization depending on the substituent pattern. 

 

 

Scheme 2.4. Migration in metal -carbene.  

Cycloisomerization of allenes provides highly efficient routes toward hetero- and carbocycles 

which in many cases involves a 1,2-hydrogen shift.[63] A migratory cycloisomerization sequence towards 

multisubstituted furans has been developed by Gevorgyan and co-workers[64] by introducing a migratory 

group other than hydrogen into the allenic terminus. 

They have found that the reaction of 4,4-diphenyl-substituted allenyl ketone 2.11 in the presence of 

Ph3PAuOTf proceeded smoothly to provide furans 2.12 and 2.13 through a cycloisomerization-migration 

sequence. The issue of selectivity with regard to aryl and alkyl group migration was also studied by the 

authors. Selective migration of the phenyl over the methyl group was observed. In contrast to the disfavored 

                                                           
[62] a) J. Sun, M. P. Conley, L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2006, 127, 9705-9710; b) H. Kusama, H. Funami, J. Takaya, 

N. Iwasawa, Org. Lett. 2004, 6, 605-608; c) G. Li, X. Huang, L. Zhang, Angew. Chem. Int. Ed. 2008, 47, 346-349.    
[63] N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994-2009.  
[64] a) A. W. Sromek, M. Rubina, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500-10501; b) J. T. Kim, A. V Kel’in, V. 

Gevorgyan, Angew. Chem. Int. Ed. 2003, 42, 98-101; c) A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195-5197; 

d) A. S. Dudnik, A. W. Srorek, M. Rubina, J. T. Kim, A. V. Kel’in, V. Gevorgyan, J. Am. Chem. Soc. 2008, 130, 1440-1452. 
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methyl group migration, migration of the ethyl group competed with the phenyl group which resulted in the 

formation of 2.3:1 mixture of the corresponding furans (Scheme 2.5). 

 

 

Scheme 2.5. Gold(I)-catalyzed migratory cycloisomerization of allenones 2.11 .  

 

According to their proposed mechanism, the reaction proceeded through the activation of a carbon-

carbon double bond of the allene 2.11 with π-philic cationic gold complexes toward the nucleophilic attack 

of a carbonyl oxygen lone pair to form cyclic oxonium intermediate 2.15. The furan 2.12 was obtain via 

subsequent [1,5]- and/or [1,2]- alkyl shift with the regeneration of the gold precatalyst (Scheme 2.6).  

 

 

Scheme 2.6. Proposed mechanism for the synthesis of furans 2.12 .  

More recently, Ma and co-workers[65] reported the gold- and platinum-catalyzed reaction of 1-

(indol-2-yl)-2,3-allenols 2.18 which provides an efficient route to substituted carbazoles involving 1,2-alkyl 

                                                           
[65] a) W. Kong, Y. Qui, X. Zhang, C. Fu, S. Ma, Adv. Synth. Catal. 2012, 354, 2339-2347; b) Y. Qui, C. Fu, X. Zhang, S. Ma, 

Chem. Eur. J.  2014, 20, 10314-10322. 
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or -aryl migration via metal-carbene intermediate 2.19 (Scheme 2.7). Their investigations were mainly 

focused on the competition between the aryl/alkyl and alkyl/alkyl group migration. Selective 1,2-migration 

was achieved by using non-equivalent 4,4-dialkyl-substituted allenols, equivalent 4,4-dialkyl-substituted 

allenols and 4-alkyl-4-aryl-substituted allenols providing the formation of desired carbazoles in moderate 

to high yield with both catalytic systems (Au(I) and Pt(II)).  However, they have found that no reaction 

occurred when 4,4-diphenyl-substituted allenols were subjected to the Pt(II)-catalyzed reaction procedure 

whereas with the Au(I)-catalyzed procedure 4,4-diphenyl-substituted allenols had not been tested. 

 Their DFT calculations indicated that the energy barrier of the aryl migration is lower than the that 

of the competing methyl and ethyl group migration, which is in accordance with their experimental results. 

Also the energy barrier of the methyl group migration was calculated as higher than the competing ethyl, 

propyl, isopropyl, and cyclopropyl migration.  

 

 

Scheme 2.7. 1,2-Migratory cyclization reactions of 1 -indol-2,3-allenols.  
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2.1.3 Vinylallenes as Nazarov Precursor 

The Nazarov cyclization is a 4π electrocyclization process used for the synthesis of five-membered 

rings that are part of the many biologically active natural products.[66] In the classical Nazarov cyclization a 

divinyl ketone 2.22 converts to a cyclopentenone derivative by activation with a Lewis acid or Brønsted 

acid. A 4-π electrocyclic conrotatory ring closure of the pentadienyl cation 2.23 yields the oxoallyl cation 

2.24 which undergoes a deprotonation and tautomerization to yield the cyclopentenone derivative 2.25 

(Scheme 2.8).  

 

 

Scheme 2.8. Representative pathway of classical Nazarov cyclization.  

 

Several research groups have discovered important advances of the Nazarov cyclization by taking 

the advantage of vinylallene derivatives 2.26 as an alternative precursor to access the key pentadienyl cation 

intermediate 2.27 (Scheme 2.9).[67] 

 

 

Scheme 2.9. Oxidation-initiated Nazarov cyclization pathway of vinylallenes.  

For example, the group of Frontier developed an oxidation-initiated cyclization method of alkoxy-

substituted vinylallenes 2.30 to produce cyclopentenones 2.33 with high diastereoselectivity (Scheme 

2.10).[68] They showed that the regio- and stereoselectivity of the oxidation can be controlled by using 

                                                           
[66] a) N. Shimada, C. Stewart, M. A. Tius, Tetrahedron, 2011, 67, 5851-5870; b) A. J. Frontier, C. Collison, Tetrahedron, 2005, 

61, 7577-7606; c) M. A. Tius, Eur. J. Org. Chem. 2005, 2193-2206; c) T. N. Grant, C. J. Reider, F. G. West, Chem. Commun. 2009 

5676-5688; d) W. T. Spencer, T. Vaidya, A. J. Frontier, Eur, J. Org. Chem. 2013, 3621-3633. 
[67] a) P. E. Harrington, M. A. Tius, J. Am. Chem. Soc. 2001, 123, 8509-8514; b) M. A. Tius, Chem. Soc. Rev. 2014, 43, 2979-3002; 

c) M. A. Tius, Acc. Chem. Res. 2003, 36, 284-290. d) Z. Li, R. J. Boyd, D. J. Burnell, J. Org. Chem. 2015, 80, 12535-12544. 
[68] W.T.Spencer, M.D.Levin, A.J.Frontier, Org Lett. 2013, 13, 414-417.  
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alkoxy-substituted vinylallenes, which occurred on the more electron-rich internal allene double bond and 

through the less sterically demanding face.  

 

Scheme 2.10. Oxidation-initiated Nazarov cyclization of vinylallenes.  

The method was applied in a total synthesis of (±)-Rocaglamide (Scheme 2.11).[69]  

 

 

Scheme 2.11. Key step in the Frontier`s synthesis of  (±)-Rocaglamide. 

 

Furthermore, the transition metal-catalyzed cyclization of vinylallene derivatives 2.26 has been 

reported as an efficient way to access cyclopentadiene derivatives 2.36, which are key intermediates in 

organic synthesis and useful ligands in organometallic chemistry (Scheme 2.12).[70]  

                                                           
[69] J. A. Malona, K. Coriou, A. J. Frontier, J. Am. Chem. Soc. 2009, 131, 7560-7561. 
[70] a) J. H. Lee, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46, 912-914; b) H. Funami, H. Kusama, N. Iwasawa, Angew. Chem. Int. 

Ed. 2007, 46, 909-911. 
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Scheme 2.12. Metalla-Nazarov cycliza tion of vinylallenes.  

 

2.1.4 Transition Metal-Catalyzed Cyclization of Vinylallenes 

 

At the beginning of the 2000’s, the synthetic potential of the metal-assisted acetoxy-group migration 

in propargylic carboxylates came to the surface which offers a mild and selective access to a variety of 

products.[71] In particular, gold-catalyzed migratory cycloisomerization reactions of propargylic 

carboxylates have attracted considerable attention. The Toste group was the first to report that propargylic 

esters 2.39 could undergo an Au-catalyzed [2,3]-rearrangement via 1,2-acyl migration leading to alkenyl 

gold carbenoids 2.41.[72] The group of Zhang reported the possibility of [3,3]-rearrangements through either 

1,2- or 1,3-acyl migration leading to the generation of allenic intermediates 2.42.[73] These intermediates 

contain multiple reaction sites and can undergo various useful transformations which allow to synthesis of 

diverse organic products (Scheme 2.13).[74] 

                                                           
[71] a) A. Fürstner, P. Hannen, Chem. Commun. 2004, 2546-2547; b) M. J. Johansson, D. J. Gorin, S. T. Staben, F. D. Toste, J. Am. 

Chem. Soc. 2005, 127, 18002-18003; c) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc.  

2004, 126, 8654-8655; d) A. Fürstner, A. Hannen, Chem. Eur. J. 2006, 13, 3006-3019.  
[72] X. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802-5803. 
[73] L. Zhang, J. Am. Chem. Soc. 2005, 127, 16804-16805; 
[74] S. Wang, G. Zhang, L. Zhang, Synlett, 2010, 692-706; c) M. Yu, G. Zhang, L. Zhang, Adv. Synth. Catal. 2007, 349, 871–875. 



2 Gold- and Platinum-Catalyzed [1,2]-Migratory Cycloisomerization Cascade Reactions of Vinylallenes 
 

 

35 
 

 

Scheme 2.13. Gold-catalyzed propargylic ester rearrangements.  

 

In 2006, Zhang and co-workers took advantage of this method and developed a highly efficient 

method for the synthesis of cyclopentenones.[75] The proposed reaction mechanism involves an 1,3-acyloxy 

migration for the in situ generation of vinylallene 2.44, which in the presence of a gold catalyst transforms 

into the pentadienyl cation 2.45. The Metalla-Nazarov 4π-electrocyclic ring closure of the pentadienyl 

cation 2.45 affords Au-containing cyclopentenylic cation 2.46, which is in resonance with Au carbenoid 

species 2.47. Subsequent 1,2-hydrogen shift and further hydrolysis yields the cyclopentenone 2.49 with the 

regeneration of cationic gold catalyst. This reaction proceeds well with various cyclic and acyclic substrates 

providing an access to synthetically useful cyclopentenones in good to excellent yields. 

                                                           
[75] L.Zhang, S.Wang, J. Am. Chem. Soc. 2006, 128, 1442-1443. 
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Scheme 2.14. Tandem Au(I)-catalyzed 3,3-reaarangement and Nazarov cyclization.  

The group of Malacria and Fensterbank developed an efficient strategy for the synthesis of 

polycyclic compounds starting from propargyl acetates or vinylallenes (Scheme 2.15).[76] The method 

involves three consecutive gold-catalyzed elemental steps which are the [3,3]-rearrangements of propargyl 

acetates 2.50 to corresponding vinylallenes 2.51, a subsequent Metalla-Nazarov cyclization and the 

electrophilic cyclopropanation by trapping the gold-carbene intermediates with a pendant double bond. This 

reaction provides an excellent chirality transfer by using enantioenriched propargyl acetates or vinylallenes.  

 

 

                                                           
[76] G. Lemiere, V. Gandon, K. Cariou, T. Fukuyama, A. L. Dhimane, L. Fensterbank, M. Malacria, Org. Lett. 2007, 9, 2207-2209. 
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Scheme 2.15. Gold-catalyzed synthesis of polycyclic products via vinylallenes.  

 

A related work was reported by Liu and Bhunia[77] for the synthesis of tricyclic ketone 2.61 .The 

reaction sequence involves an atypical gold-carbenoid-induced 1,5-hydride shift from the acetal moiety. On 

the basis of their deuterium-labeling and crossover experiments, they proposed that the substrate, initiated 

by the activation of the allene 2.56 with the gold catalyst, undergoes a Nazarov-type cyclization to give 

intermediate 2.57 that has a phenyl group trans to the adjacent methyl group to minimize steric hindrance. 

A following 1,5-hydride shift from the acetal moiety to the metal carbene center provides intermediate 2.59. 

Subsequent cyclization of the allyl gold intermediate 2.59 with the oxonium cation furnished the tricyclic 

bridged product 2.61 (Scheme 2.16). 

 

                                                           
[77] S. Bhunia, R. S. Liu, J. Am. Chem. Soc. 2008, 130, 16488-16489.  
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Scheme 2.16. Gold-catalyzed cascade synthesis of tricyclic compounds.  

 

In 2007, Toste and Iwasawa independently reported a significant process for the synthesis of 

cyclopentadienes 2.67 from the vinylallenes 2.62.[71] According to their experimental evidence, treatment 

of the vinylallenes with Au(I)- or Pt(II)-catalysts provides a regioselective access to functionalized 

cyclopentadienes 2.67 in good to excellent yields. 

They proposed that coordination of the catalyst to the allene moiety produces a pentadienyl cation 

intermediate 2.64 which undergoes a Nazarov-type 4π-electrocyclization to give the allyl cation 2.65 and/or 

its carbene counterpart 2.66. Then, a formal 1,2-H shift in the metal-carbenoid intermediate 2.66 furnished 

the cyclopentadiene 2.67 with the regeneration of active metal catalyst (Scheme 2.17). 
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Scheme 2.17. Gold-catalyzed conversion of vinylallenes into cyclopentadienes.  

The possibility of trapping the cationic intermediate was studied by both groups in different ways 

such as using an additional alcohol functionality in the absence of hydrogen at the allene terminus, a 1,1-

disubstituted vinylallene or a bicyclic vinylallene. In the case of an additional alcohol functionality, the 

gold-catalyzed cycloisomerization reaction of vinylallene 2.68a, which bears a methyl group at the allene 

terminus instead of hydrogen, afforded the formation of tetrahydrofuranyl product 2.70, whereas the 

hydrogen-bearing vinylallene 2.68b undergoes a formal 1,2-hydrogen shift to give the cyclopentadiene 2.71 

(Scheme 2.18). 

 

 

Scheme 2.18. Trapping strategies of intermediate 2.69 .  

Furthermore, the Pt(II)-catalyzed cyclization of 1,1-dimethyl-substituted vinylallene 2.72 afforded 

cyclopropanation product 2.74. The platinum carbene intermediate 2.73 inserted into a neighboring C-H 

bond of the methyl group rather than undergoing a 1,2-methyl migration. Also, a ring-enlargement process 
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was observed when the method was applied to the bicyclic vinylallene 2.75 (Scheme 2.19). At this point it 

can be concluded that these results prove the presence of metal-carbene intermediates. 

 

 

 

Scheme 2.19. C-H insertion and 1,2-alkyl shift in metal -carbenoids.  
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2.2 Present study 

 

A survey of the literature reveals that the migratory cycloisomerization cascade reaction sequence 

is a challenging approach for the synthesis of densely functionalized carbo- and heterocyclic products. In 

this context, the diverse reactivity of gold- and platinum-catalyzed transformations has attracted much 

interest in the development of cascade reaction patterns. Most of these cascade reactions involve a 1,2-

migration in the metal-carbenoid intermediates. However, various factors controlling the 1,2-migration of 

the different groups in metal-carbenoid intermediates have not been established systematically. Therefore, 

the development of new strategies for further understanding the migratory aptitude and the reactivities of 

the metal carbenoid intermediates is of major interest.  

Furthermore, cyclopentadienes are useful substrates for Diels-Alder reactions and also important 

ligands in organometallic chemistry for the preparation of transition-metal complexes. Although there have 

been numerous reports in the literature, the synthesis of highly substituted cyclopentadienes is still an 

important subject of organometallic chemistry, in which an even minor modification on the Cp ligands can 

provide a significant change in the catalytic activities of the metallocene complexes. 

Herein, we have developed a metal-catalyzed 1,2-migratory cycloisomerization cascade reaction of 

vinylallenes providing a regioselective access to highly substituted cyclopentadiene derivatives (Scheme 

2.20). In this part of our studies, the effects on the 1,2-migratory cycloisomerization process such as 

electronic properties of the migrating group and also the nature of the metal catalysts will be discussed.  

 

 

Scheme 2.20. Transition metal -catalyzed 1,2-migratory cycloisomerization of vinylallenes.  

 

 

 

 



2 Gold- and Platinum-Catalyzed [1,2]-Migratory Cycloisomerization Cascade Reactions of Vinylallenes 
 

 

42 
 

2.3 Result and Discussion 

 

The 1,1-disubstituted vinylallenes 2.82 required for our studies were prepared according to a 

procedure previously established by Artok and co-workers.[78] Palladium-catalyzed 1,5-substitution 

reactions of 2-en-4-yne carbonates 2.81 with arylboronic acids allowed the introduction of different 

substituents in the allenic system. The method is applicable for both (E)- and (Z)-configured enyne 

substrates and gave the 1,1-disubstituted vinylallenes with an exclusively (E)-configuration. The method 

tolerates various arylboronic acids having different electron-withdrawing or electron-donating substituents. 

 

 

Scheme 2.21. Pd-catalyzed reaction of the enyne carbonate with organoboronic acids.  

 

2.3.1 Gold(I)-Catalyzed 1,2-Migrative Cycloisomerization Reactions of 

Vinylallenes.  

 

The vinylallene 2.82a was initially chosen as a model substrate to determine appropriate reaction 

conditions for the formation of the desired cyclopentadiene derivatives. For initial experiments, treatment 

of vinylallene 2.82a with the Au(III) salts, such as AuBr3 and AuCl3 in various solvents, such as DCM, THF 

or toluene at room temperature showed no catalytic activity (Table 2.1, entries 1-2), whereas employment 

of the Au(I) salt AuCl in the presence of DCM resulted in decomposition of the starting vinylallene 2.82a 

into a complex product mixture (Table 2.1, entry 3). Similarly, when the catalytic system was modified to 

Ph3PAuCl in combination with silver salts such as AgOTf, AgBF4 and AgSbF6 in DCM, the starting 

compound 2.82a was consumed in 10-15 min to afford an inseparable mixture of unassigned products (Table 

2.1, entries 4-6), whereas THF and toluene gave no conversion even at higher reaction temperature (Table 

2.1, entries 7,8).  

 

                                                           
[78] M. Ucuncu, E. Karakus, M. Kus, G. E. Akpinar, O. A. Artok, N. Krause, S. Karaca, N. Elmaci, L. Artok, J. Org. Chem. 2011, 

76, 5959-5971. 
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Vinylallene 2.82b, bearing a butyl substituent in the R1 position was also subjected to the same 

reaction conditions. Similar to the reactions of 2.82a, in the presence of a catalytic amount of Ph3PAuCl in 

combination with different silver salts in DCM inseparable mixture of unassigned structures with no desired 

cyclization products were obtained (Table 2.1, entries 9-11). 

Furthermore, 1,1-diphenyl substituted vinylallene 2.82c was also subjected to the same reaction 

conditions. This also resulted in the formation of non-separable product mixtures (Table 2.1, entries 12-15). 
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Table 2.1. Attempted cycloisomerization reactions of 2.82a-c.[a] 

 

Entry Compound R1 Catalyst Cat. [%] Solvent Time Yield[%] 

1 2.82a Me AuCl3 5 -b 1 d -c 

2 2.82a Me AuBr3 5 -b 1 d -c 

3 2.82a Me AuCl 5 CH2Cl2 20 min -d 

4 2.82a Me Ph3PAuCl / AgSbF6 10 CH2Cl2 15 min -d 

5 2.82a Me Ph3PAuCl / AgOTf 10 CH2Cl2 15 min -d 

6 2.82a Me Ph3PAuCl / AgBF4 5 CH2Cl2 15 min -d 

7 2.82a Me Ph3PAuCl/ AgSbF6 10 THF 1 d -c 

8 2.82a Me Ph3PAuCl / AgSbF6 10 Toluene 1 d -c 

9 2.82b Bu Ph3PAuCl / AgSbF6 10 CH2Cl2 15 min -d 

10 2.82b Bu Ph3PAuCl / AgOTf 10 CH2Cl2 15 min -d 

11 2.82b Bu Ph3PAuCl / AgBF4 5 CH2Cl2 15 min -d 

12 2.82c Ph AuCl 5 CH2Cl2 20 min -d 

13 2.82c Ph Ph3PAuCl / AgSbF6 10 CH2Cl2 15 min -d 

14 2.82c Ph Ph3PAuCl / AgOTf 10 CH2Cl2 15 min -d 

15 2.82c Ph Ph3PAuCl / AgBF4 5 CH2Cl2 15 min -d 

[a] The reaction was carried out using 0.3 mmol of 2.82a-c in 5.0 mL of solvent at RT under argon. [b] CH2Cl2, THF, and 

toluene were tested. [c] No conversion of starting material. [d] Decomposition of the starting material to unassigned 

products. 
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In spite of all these disappointing results obtained with vinylallenes 2.82a-c which contained at least 

one unsubstituted phenyl group on the terminal allenyl carbon, an additional attempt was performed with 

the vinylallene 2.82e bearing an ortho-methoxy phenyl group. We were pleased to find that the treatment 

of vinylallene 2.82e gave promising results; although AuCl, AuCl3 and AuBr3 failed to convert 2.82e (Table 

2.2, entries 1-3), its treatment with the Ph3PAuCl (5 mol%)/AgOTf (5 mol%) combination in DCM afforded 

the corresponding cyclopentadiene product 2.83e in 30% isolated yield after 30 min at room temperature 

(Table 2.2, entry 4). Encouraged by this promising result, different silver salts were also tested.  The yield 

of 2.83e could be increased to 67% by the use of AgBF4 in a relatively short reaction time, 10 min, at room 

temperature (Table 2.2, entry 5). The substitution of the silver salt with AgSbF6, gratifyingly, further 

improved the process and thus led the formation of the product 2.83e in 83% yield in 5 min (Table 2.2, entry 

6). 

It seems that DCM is a suitable solvent type for the reaction system.  When the reaction was carried 

out in the presence of 1,2-dichloroethane (DCE), the desired cyclopentadiene was obtained in relatively low 

yield, 65% in 5 min (Table 2.2 entry 7), whereas tetrahydrofuran (THF) and toluene were found to be 

inefficient at room temperature (Table 2.2, entries 8,9). A complete decomposition to unidentified products 

was observed when the reaction was performed at 100 °C in toluene, (Table 2.2, entry 10). 

A reduction of the catalyst loading to 2% or increasing to 10% resulted in similar yields (78% and 

80%, respectively) (Table 2.2, entries 11,12). The control experiments revealed that Ph3PAuCl and AgSbF6 

have no activity when they are used individually (Table 2.2, entries 13,14). 

An N-heterocyclic carbene ligated gold(I) complex, IPrAuCl (A), in combination with AgSbF6 also 

afforded cyclopentadiene 2.83e in a good yield (69%) after 15 min at room temperature (Table 2.2, entry 

15). Similarly, catalyst B also catalyzed the reaction and cyclopentadiene 2.83e was obtained in moderate 

yield of 61% within 20 min (Table 2.2, entry 16). However, complex C failed to catalyze the reaction (Table 

2.2, entry 17).  
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Table 2.2. Effect of Au precatalysts on the cycloisomerization of. [a] 

 

Entry Catalyst Cat. [%] Solvent Time Yield[b] 

1 AuCl3 5 -[c] 5 h -[d] 

2 AuBr3 5 -[c] 5 h -[d] 

3 AuCl 5 CH2Cl2 5 h -[e] 

4 Ph3PAuCl / AgOTf 5 CH2Cl2 30 min 30 

5 Ph3PAuCl / AgBF4 5 CH2Cl2 10 min 67 

6 Ph3PAuCl / AgSbF6 5 CH2Cl2 5 min 83 

7 Ph3PAuCl / AgSbF6 5 DCE 5 min 65 

8 Ph3PAuCl / AgSbF6 5 THF 1 d -[d] 

9 Ph3PAuCl / AgSbF6 5 toluene 1 d -[d] 

  10[f] Ph3PAuCl / AgSbF6 5 toluene 1 d -[e] 

11 Ph3PAuCl / AgSbF6 10 CH2Cl2 5 min 78 

12 Ph3PAuCl / AgSbF6 2 CH2Cl2 10 min 80 

13 Ph3PAuCl 5 CH2Cl2 1 d -[d] 

14 AgSbF6 5 CH2Cl2 1 d -[d] 

15 A/ AgSbF6 5 CH2Cl2 15 min 69 

16 B/ AgSbF6
 5 CH2Cl2 20 min 61 

17 C 5 CH2Cl2 1 d -[d] 

[a] The reaction was carried out using 0.3 mmol of 2.82e and in 5.0 mL of solvent at RT under nitrogen. 

[b] Isolated Yield [c] THF, toluene, CH2Cl2 were tested. [d] No conversion [e] Decomposition of the 

starting material to unassigned products. [f] Reaction was conducted at 100 °C. 
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Having determined that the vinylallene is reactive in the cycloisomerization process provided that 

its allenyl terminus is substituted with a highly electron rich phenyl ring, we next investigated the effect of 

other groups on the scope of the process for vinylallenes containing a 2-MeOC6H4 group. The method was 

also well applicable to the vinylallene 2.82f carrying a phenyl group (R1) on the allenyl carbon that is 

common to the 2-methoxyphenyl group, which afforded the corresponding product 2.83f in a high yield 

(90%) within 3 min (Scheme 2.22).  

 

 

Scheme 2.22. Effect of variation of R1 group on the gold(I)-catalyzed [1,2] -

migration/cycloisomerization reaction.  

 

Interestingly however, the vinylallene 2.82d having a methyl group on R1 converted to a complex 

mixture and thus revealed no selectivity toward the desired product 2.83f or any cyclopropanated product 

which was reported to form via the insertion of the metal-carbenoid intermediates into neighboring carbon-

hydrogen bond of the methyl group (Scheme 2.23). 
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Scheme 2.23. Possible cyclopropanation pathway in gold -carbenoid intermediates.  

 

The reactions with vinylallenes having butyl or isopropyl groups on internal allenyl carbon R3 or 

alkenyl carbon R4 proceeded evidently with selective [1,2]-migration of methoxy-substituted phenyl ring 

but at a lower rate, affording the corresponding products in moderate yields, typically in the range of 50-

60% (Scheme 2.24). These results could be explained by steric repulsion of the bulky groups in the Nazarov-

type cyclization step. 

 

 

Scheme 2.24. Effect of R3 and R4 substituents on the reaction.  

 

Inspired from these results, a variety of vinylallenes bearing non-equivalent two aryl groups (R1, 

R2) on the allenyl carbon was examined. The importance of the methoxy substituent on the phenyl group 

was also obvious for the success of the method. While the vinylallenes with a Ph/EWG-C6H4 (EWG: 

electron withdrawing group) combination of substituents (2.82k, 2.82n) and even the one with moderately 

electron rich phenyl ring (2-MeC6H4, 2.82p) were all inert to gold-catalysis procedure (resulted in complex 

product mixtures), those with a 2-MeOC6H4 group were found to be suitable for the synthesis of 

cyclopentadienes (Scheme 2.25). The vinylallenes 2.82l and 2.82m having a fluorine-substituted phenyl 
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group along with its 2-MeOC6H4 partner provided cyclopentadiene products 2.823l and 2.83m in moderate 

yields. However, relatively low yields of products were obtained from the reactions of chloro-substituted 

phenyl ring (2.82o) and ortho-tolyl group (2.82p). 

 

 

Scheme 2.25. Effect of the methoxy substituent on the gold(I) -catalyzed [1,2]-migratory 

cycloisomerization reactions.  

 

2.3.2. Platinum(II)-Catalyzed [1,2]-Migratory Cycloisomerization Reactions of   

Vinylallenes 

After having determined the importance of electron-rich aryl groups on the [1,2]-migration aptitude 

in gold-catalyzed reactions, we also wanted to explore the cycloisomerization of vinylallenes in the presence 

of a platinum catalyst.  

We began our investigations relying on our findings from the gold(I)-catalyzed [1,2]-migratory 

cascade cycloisomerization reaction. Throughout the initial stages of our work on the platinum-catalyzed 

method, all our attempts for the optimization using vinylallenes 2.82e and 2.82f which were suitable 

substrates for the gold-catalyzed cyclization, unfortunately failed. Both Pt(II) and Pt(IV) catalysts were 
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used. DCM, THF, and toluene were the solvents tested and the reactions were performed either at room 

temperature or elevated temperatures up to 100 C. But in each case, either the substrate was recovered or 

resulted in decomposition (Table 2.3).  

 

Table 2.3 Screening of conditions[a] 
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Entry Compound Cataylst Solvent Temp[°C] Time Yield[%] 

1 2.82e PtCl4 CH2Cl2 RT 1 d -[b] 

2 2.82e PtCl4 THF RT 1 d -[b] 

3 2.82e PtCl4 THF 65 1 d -[b] 

4 2.82e PtCl4 toluene RT 1 d -[b] 

5 2.82e PtCl4 toluene 100 1 d -[c] 

6 2.82e PtCl2 toluene RT 1 d -[b] 

7 2.82e PtCl2 toluene 80 30 min -[c] 

8 2.82e PtCl2 toluene 100 10 min -[c] 

9 2.82f PtCl4 toluene 100 1 d -[c] 

10 2.82f PtCl2 CH2Cl2 RT 1 d -[b] 

11 2.82f PtCl2 THF 65 1 d -[b] 

12 2.82f PtCl2 toluene RT 1 d -[b] 

13 2.82f PtCl2 toluene 80 30 min -[c] 

14 2.82f PtCl2 toluene 100 10 min -[c] 

15 2.82e - toluene 100 1 d -[b] 

a] The reaction was carried out using 0.3 mmol of 2.82 in 5.0 mL of solvent under argon. [b] 

No conversion. [c] Decomposition of starting material.  
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However, we have realized later that the incompatibility of the platinum-catalyzed method, on 

contrary to its gold-catalyzed version, is specific to vinylallenes 2.82e and 2.82f. We have found upon 

further study that, in fact vinylallenes, whether or not bearing a methoxyphenyl group, are applicable 

substrates.  

1,1-Diphenyl-substituted vinylallene 2.82c also did not show any activity in DCM, THF, and 

toluene at room temperature, and in refluxing THF in the presence of PtCl2 (Table 2.4, entries 1-4). 

Nevertheless, increasing the reaction temperature to 80 °C in toluene led to the formation of the desired 

cyclopentadiene 2.83c in 45% yield within 5h (Table 2.4, entry 5). A higher reaction temperature of 100 °C 

gave the same yield (45%) in shorter reaction time (2h) (Table 2.4, entry 6).   

 

Table 2.4 Screening the conditions. 

 

Entry Solvent Temp [°C] Time Yield[%] 

1 CH2Cl2 r.t 1 d -[c] 

2 THF r.t 1 d -[c] 

3 THF 65 1 d -[c] 

4 toluene r.t 1 d trace 

5 toluene 80 5 h 45[b] 

6 toluene 100 2 h 45[b] 

[a] The reaction was carried out using 0.3 mmol of 2.82c and in 5.0 mL of 

solvent under argon. [b] Isolated Yield [c] No conversion.  

 

The reaction tolerates both electron rich (2.82p) and electron deficient (2.82k, 2.82n) R1 and R2 aryl 

groups, which led to cyclopentadienes 2.83p (51%), 2.83k (45%) and 2.83n (51%) in moderate yields, 

whereas the gold(I)-catalyzed method had not tolerated these vinylallenes. Furthermore, in contrast to 2.82f 

a number of methoxyphenyl-substituted vinylallenes was also tolerated by the method and produced 

cyclopentadienes 2.83l, 2.83m, 2.83r, and 2.83t in 45-56% yield. In addition, the Pt(II)-catalyzed 

cyclization of the 2.83s, bearing a bulky 2-naphtyl substituent, afforded the cyclopentadiene 2.83r in 33% 

isolated yield within 2h.  
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Scheme 2.26. The scope of the Pt(II) -catalyzed reaction of vinylallenes.  

 

On the basis of these results, a plausible reaction mechanism for the Au(I)- and Pt(II)-catalyzed 

[1,2]-migratory cycloisomerization cascade reaction of vinylallenes is proposed in the Scheme 2.27. The 

reaction should proceed through the coordination of the metal to the allenyl moiety which results in the 

formation of pentadienyl cation intermediate A. This undergoes a Nazarov-type 4π-electrocyclization to 

give the cationic intermediate B in resonance with the metal-carbenoid intermediates C. The metal-

carbenoid intermediate C is assumed to undergo a 1,2-aryl migration to give the cyclopentadiene D with the 

regeneration of the metal catalyst. The formation of only a single regioisomer of the cyclopentadienes 2.83 

clearly proved a formal [1,5]- sigmatropic hydrogen shift as illustrated in the intermediate F.  

The effect of the methoxy substituent for the gold-catalyzed cycloisomerization reaction can be 

explained by the importance of the aryl rings for the stabilization of the gold-carbenoid intermediates by 

resonance delocalization in accordance with the reports by Fürstner[61] and Widenhoefer[57].  
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Scheme 2.27. Proposed reaction mechanism.  
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2.4 Conclusion 

 

In this part of our study, we have developed a metal-catalyzed [1,2]-migratory cycloisomerization 

cascade reaction of 1,1-disubstituted vinylallenes which provides a regioselective access to highly 

substituted cyclopentadiene derivatives. Although there have been numerous reports for the synthesis of 

cyclopentadienes, the efficient preparation of highly substituted derivatives is still an important subject of 

organometallic chemistry, in which an even minor modification on the cyclopentadienyl ligands can provide 

a significant change in the structure and catalytic activity of metallocene complexes. 

Based on our experimental evidence, it was found that the method involves a metalla-Nazarov 4π-

electrocyclization sequence, a subsequent [1,2]-aryl migration to afford a metal-carbenoid species and a 

[1,5]-sigmatropic hydrogen shift. 

Our results show that the substituents on the migrating aryl group have a strong impact on the Au(I)-

catalyzed cascade cycloisomerization procedure. The method provides a selective 1,2-aryl migration profile 

where the migrating aryl group contains a strongly electron-donating methoxy substituent. The effect of the 

substituents provides an interesting input for further understanding of the nature of the gold-carbenoid 

species and their reactivity in [1,2]-migration sequences. Furthermore, the gold-catalyzed method tolerates 

a variety of substituents on the alkenyl allenyl moieties which allows the synthesis of differently substituted 

cyclopentadiene derivatives.   

In contrast to the Au(I)-catalyzed method, the Pt(II)-catalyzed cyclization has a wider substrate 

scope and shows no limitation on the electronic properties of the migrating group. 
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2.5 Experimental Part 

 

General Remarks: 

Reactions were performed under an argon atmosphere unless noted otherwise. Gold and silver salts 

were purchased from Sigma-Aldrich, Chempur, and Fluorochem. 1,2-Dichloroethane, dichloromethane, 

toluene, and tetrahydrofuran were dried with a solvent purification system MBraun SPS-800. Pd2(dba)3-

CHCl3 complex was synthesized in the laboratory.[79] All boronic acid reagents were purchased from ABCR, 

Across Organics, Sigma Aldrich, Carbolution Chemicals, and TCI. (E)-3-Methylpent-2-en-4-in-1-ol and 

(Z)-3-Methylpent-2-en-4-in-1-ol were obtained from DSM. Column chromatography was carried out with 

silica gel 60 Å (0.040-0.063), which was purchased from Macherey-Nagel.  

 

Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker DPX300 spectrometer 

operating at 300 MHz for proton and 75 MHz for carbon nuclei, a Bruker DRX400 spectrometer operating 

at 400 MHz for proton and 100 MHz for carbon nuclei, a Bruker DRX500 and a Varian Inova 500 

spectrometers operating at 500 MHz for proton and 125 MHz for carbon nuclei. Chemical shifts were 

determined relative to the residual solvent peaks (CHCl3: δ=7.26 for protons, δ=77.16 for carbon atoms; 

C6H6: δ=7.16 for protons, δ=128.06 for carbon atoms). The signals of the major component of a product 

mixture are marked with an asterisk (*). Reactions were monitored by thin layer chromatography.  

 

Low resolution mass spectra were recorded with a Thermo TSQ spectrometer. High resolution mass 

spectrometry (ESI) was performed on an Thermo LTQ Orbitrap coupled with a Accela HPLC system.  

 

 

 

 

 

 

 

                                                           
[79] T. Ukai, H. Kawazura, Y. Ishu, J. Organomet. Chem. 1974, 65, 253-266. 
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2.5.1 Synthesis of (Z)-enyne carbonates 2.81a-g[80] 

 

2.5.1.1 General procedure for the synthesis of (Z)-enyne alcohols 2.88a-d 

 

 

Scheme 2.28. Synthesis of Z-enyne alcohols 2.88a-d  

 

To the mixture of (Z)-pent-2-en-4-yn-1-ol 2.84 (1.0 eq) and 3,4-dihydropyran (1.15 eq) was added 

p-toluenesulfonic acid monohydrate (0.01 eq) and stirred for 1 h at room temperature. The mixture was 

diluted with dry THF (2 mL/1 mmol) and cooled to -78 °C. At that temperature n-BuLi (2.5 M solution in 

hexane, 2.0 eq) was added via syringe. After stirring the reaction mixture for 1 h at 0 °C, alkyl iodide (2.0 

eq) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 

overnight. The reaction was quenched with sat. NH4Cl solution and extracted with Et2O. The organic phase 

was washed with water, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue 

was used in the following step without any other purification. [81] 

A solution of the preceding crude compound 2.85 (1 eq) in methanol (3 mL/1 mmol) was treated 

with p-toluenesulfonic acid (0.3 eq) and stirred at RT for 60 min. Then, trimethylamine was added (0.6 eq), 

and the solution was concentrated under reduced pressure. The mixture was taken into dichloromethane and 

washed with water. The combined extracts were washed with brine, dried over MgSO4, filtered, and 

                                                           
[80] a) G. E. Akpinar, M. Kus, M. Ucuncu, E. Karakus, L. Artok, Org. Lett. 2011, 13, 748-751; b) E. S. Karagoz, M. Kus, G. E. 

Akpinar, L. Artok, J. Org. Chem. 2014, 79, 9222-9230. 
[81] J. F. Betzer, F. Delaloge, B. Muller, A. Pancrazi, J. Prunet, J. Org. Chem. 1997, 62, 7768-7780. 
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concentrated under reduced pressure. The product 2.86 was purified by column chromatography on silica 

gel.[82] 

To the solution of 2.86 (1 eq) in dry diethyl ether (3 mL/1 mmol), activated MnO2 (30 eq) was 

added, and the mixture was stirred for overnight at room temperature. After filtration through celite, the 

solution was concentrated under reduced pressure. [83]  

The crude aldehyde 2.87 (1 eq) was dissolved in anhydrous THF (3 mL/1 mmol) and ethereal 

solution of R3MgCl (1.2 eq) was added dropwise at -78 °C. The cooling bath was removed and the reaction 

was allowed to warm room temperature in 2 h. The mixture was hydrolyzed at -40 °C by dropwise addition 

of sat. NH4Cl solution. After extraction with diethyl ether, the combined organic layers were washed with 

water, dried over MgSO4, filtered and concentrated under reduced pressure. The product 2.88 was purified 

by column chromatography on silica gel. 

 

2.5.1.2 General procedure for the synthesis of Z-Enyne alcohols 2.88e 

 

 

Scheme 2.29. Synthesis of Z-enyne alcohols 2.88e-f.  

 

To a solution of 1-hexyne (5.7 mL, 50 mmol) in THF (100 mL) under a nitrogen atmosphere, n-

BuLi (22.5 mL, 2.5 M solution in hexane, 56.25 mmol) was added dropwise at -78 °C. After stirring 30 min. 

at -78 °C, methylchloroformate (5.2 mL, 66.5 mmol) was added in one portion. The reaction was stirred for 

30 min at -78 °C and allowed to reach room temperature over a period of three hours. The reaction was 

quenched with saturated aqueous NH4Cl and extracted with EtOAc. The combined organic extracts were 

                                                           
[82] M. Purpura, N. Krause, Eur. J. Org. Chem. 1999, 267-275. 
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dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column 

chromatography (pentane: Et2O = 100:1) to give 2.89 as a pale yellow oil (5.1 g, 72% yield).[83]   

To a solution of alkynoic ester 2.89 (36 mmol) and acetic acid (230 mmol, 13.2 mL) was added 

sodium iodide (8.6 g, 57.6 mmol.) and stirred for 3 h at 115 °C. After completion of the reaction, the brown 

mixture was transferred while hot to a separatory funnel containing water (200 mL). The reaction flask was 

washed with a mixture of water (50 mL) and diethyl ether (100 mL). The washings were combined in a 

separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether. The 

combined organic phases were treated sequentially with saturated aqueous sodium bicarbonate, aqueous 

sodium thiosulfate (1 M), and brine, then were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The product was purified by column chromatography on silica gel (8.4 g, 87%;).[84] 

A mixture of 2.90 (8.4 g, 31.3 mmol), PdCl2(PPh3)2 (220 mg, 0.313 mmol), and CuI (0.16 mmol, 

30 mg) in Et3N (4 mL/1 mmol) was stirred for 10 min at room temperature under Ar, and then, to this 

mixture was added 1-hexyne (2.7 mL, 32.9 mmol). The mixture was stirred at room temperature for 3h. 

Water was added to the reaction mixture and then extracted with Et2O. The combined organic layers were 

dried over MgSO4. The solvent was evaporated in vacuo and the product was purified by column 

chromatography on silica gel to give 2.91 (6.4 g, 92%).[85] 

A dry, three-necked, round-bottomed 250-mL flask equipped with an internal thermometer, a rubber 

septum, and a nitrogen atmosphere, was charged with 2.91 (6.4 g, 28.8 mmol) and dry dichloromethane (60 

mL). The stirred solution was cooled to -78 °C and diisobutylaluminum hydride (31.7 mL, 31.7 mmol, 1M 

in hexane solution) was added dropwise with a syringe at such a rate that the temperature would not exceed 

-75 °C. After stirring for 30 min at -78 °C, MeMgCl (10.6 mL, 31.7 mmol, 3.0 M in THF) was added 

dropwise at -78 °C with a syringe. The cooling bath was removed and the reaction mixture was allowed to 

warm to room temperature. The mixture was hydrolyzed at -20 °C by dropwise addition of 1 M aqueous 

solution of hydrochloric acid (57 mL), followed by addition of diethylether (85 mL). The organic layer was 

separated, the aqueous layer was extracted with ether, and the combined extracts were dried over MgSO4. 

The solvent was evaporated in vacuo. The product was purified by column chromatography on silica gel. 

(82%).[86] 

 

 

                                                           
[83] I. N. Michaelides, B. Darses, D. J. Dixon, Org. Lett. 2011, 13, 664-667. 
[84] E. Piers, T. Wong, P. Coish, C. Rogers, Can. J. Chem. 1994, 72, 1816. 
[85] R. Takeuchi, K. Tanabe, S. Tanaka, J. Org. Chem. 2000, 65, 1558-1561. 
[86]  I. Marek, C. Meyer, J. F. Normant, Org. Synth. 1998, Coll. Vol. 9, 510.  
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2.5.1.3 General procedure for the synthesis of Z-Enyne alcohols 2.88f-g 

 

To a solution of aryl iodide (1 eq.), Z- or E-enyne alcohol (1.1 eq) in Et3N (3 eq) was stirred for 10 

min at room temperature under Ar then, to this mixture PdCl2(PPh3)2 (1 mol%), and CuI (5 mol%) was 

added. The mixture was stirred at room temperature for 3 h. Water was added to the reaction mixture and 

then extracted with Et2O. The combined organic layers were dried over MgSO4. The solvent was evaporated 

in vacuo and the product was purified by column chromatography on silica gel. (yields: R1= Ph, R2= Me, 

72%; R1= 2-OMe-C6H4, R2= Me, 68%). 

 

2.5.1.4 General Procedure for the Preparation of Enyne Carbonates 2.81a-h.[88] 

 

 

 

To a mixture of propargylic alcohol 2.88 (1.0 eq) in DCM (1.5 mL/1 mmol) was added pyridine (8 eq) and 

methylchloroformate (3 eq) at 0 °C. The reaction mixture was stirred at 0 °C for 3 h. The reaction was 

quenched by the addition of water, extracted with DCM and dried over MgSO4. The solvents were removed 

in vacuo, and the residue was purified by column chromatography (cyclohexane/NEt3 (1 vol. %)). yields: 

2.81a, 82%; 2.81b, 85%; 2.81c, %77; 2.81d, %72, 2.81e, %82; 2.81f, %90; 2.81g, %92).[87] 

The spectrometric data of the starting enyne carbonates 2.81a-f can be found elsewhere.[81]  

 

 

                                                           
[87] S. C. Zhao, K. G. Ji, L. Lu, T. He, A. X. Zhou, R. L. Yan, S. Ali, X. Yuan, Y. M. Liang, J. Org. Chem. 2012, 77, 2763−2772. 



2 Gold- and Platinum-Catalyzed [1,2]-Migratory Cycloisomerization Cascade Reactions of Vinylallenes 
 

 

60 
 

 (Z)-6-(2-Methoxyphenyl)-4-methylhex-3-en-5-yn-2-yl methyl carbonate 2.81h. 

 

1H NMR (500 MHz, C6D6) δ: 7.45 (dd, J = 7.6, 1.9 Hz, 1 H), 6.97 (dt, J = 8.2, 1.5 Hz, 1 H), 6.68 (t, J = 7.5 

Hz, 1 H), 6.42 (d, J = 8.4 Hz, 1 H), 6.00 (m, 1 H), 5.48 (m, 1 H), 3.31 (s, 3H), 3.28 (s, 3 H), 1.93 (d, J = 1.5 

Hz, 3 H), 1.07 (d, J = 6.5 Hz, 3 H). 

13C NMR (125 MHz, C6D6) δ: 160.7, 155.7, 135.7, 133.9, 129.8, 128.3, 128.0, 122.7, 120.6, 113.4, 111.0, 

95.9, 85.8, 71.3, 55.2, 54.1, 20.2, 18.1. 

 

2.5.2 General Procedure for the Synthesis of Vinylallenes 2.82a-t[79] 

 

 

 

A mixture of Pd2(dba)3CHCl3 (3% Pd) and PPh3 (12%) in dry THF (5 mL/1 mmol) was stirred for 

15 min under Ar. Then, the dry THF (10 mL/1 mmol) solution of enyne carbonate (1 eq), boronicacid (2 

eq), and degassed water (1.2 mL/1 mmol) was added successively. The mixture was stirred magnetically in 

a preheated oil bath at 65 °C. After the TLC control indicated complete consumption of the starting material, 

the THF was evaporated, and the residue, which contains proper amount of water was taken into Et2O and 

removed by extraction. The extracts were dried over MgSO4, filtered, and concentrated under reduced 

pressure.  Then, the residue was purified by column chromatography (cyclohexane/ethyl acetate) to give 

desired vinylallenes. 
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(E)-(3-Methylhexa-1,2,4-triene-1,1-diyl)dibenzene (2.82c) 

 

 

 

Following the general procedure 2.5.2, from 2.81f (2.44 g, 10 mmol) and phenyl boronicacid (2.42 g, 20 

mmol), 2.64c was obtained (1.97 g, 8 mmol, 80 %) as white solid after column chromatography 

(cyclohexane:EtOAc =100:2).    

 

1H NMR (400 MHz, C6D6) δ: 7.63 - 7.57 (m, 4 H), 7.30 - 7.24 (m, 4 H), 7.22 - 7.16 (m, 2 H), 6.27 (dq, J= 

15.6, 1.6 Hz,1H), 5.60 (dq, J = 15.6, 6.7 Hz, 1 H), 1.94 (s, 3 H), 1.71 (dd, J = 6.8, 1.8 Hz, 3 H). 

13C NMR (100 MHz , C6D6) δ: 209.5, 137.9, 129.2, 129.1, 128.8, 128.2, 127.9, 127.5, 127.4, 125.4, 110.1, 

103.5, 18.4, 15.6.;  

HRMS (ESI, m/z, [M+H]+): 247.14813 (calculated), 247.14813 (found). 

 

(E)-1-Methoxy-2-(7-methyldeca-5,6,8-trien-5-yl)benzene (2.82e) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81b (2.24 g, 10 mmol), of 2-Methoxybenzeneboronic 

acid (3.04 g, 20 mmol), 2.82e (2.1 g, 8 mmol, 80 %) was obtained as colorless oil after column 

chromatography (cyclohexane: EtOAc = 100:2). 

 

1H NMR (500 MHz, C6D6): δ 7.37 (dd, J = 7.3, 1.9 Hz, 1 H), 7.07 (ddd, J = 7.8, 1.5, 0.5 Hz, 1H), 6.87 (td, 

J = 7.5, 1.1 Hz, 1 H), 6.57 (d, J = 8.0 Hz, 1 H), 6.33 (qd, J = 16.0, 1.5 Hz, 1H), 5.46 (dq, J = 15.6, 6.5 Hz, 

1 H), 3.34 (s, 3 H), 2.62 (td, J = 7.5, 1.5 Hz, 2 H), 1.89 (s, 3 H), 1.65 (dd, J =6.7, 1.7 Hz, 3 H), 1.58 (quin, 

J = 7.5 Hz, 2 H), 1.41 (sxt, J = 7.5 Hz, 2 H), 0.88 (t, J = 7.5 Hz, 3 H). 

13C NMR (125 MHz, C6D6): δ 207.3, 157.6, 131.0, 130.5, 128.5, 128.4, 123.3, 121.0, 111.6, 103.5, 100.3, 

55.2, 33.1, 30.8, 22.8, 18.4, 16.0, 14.2. 

HRMS (ESI, m/z, M+): 257.18999 (calculated), 257.18991 (found). 
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(E)-1-Methoxy-2-(3-methyl-1-phenylhexa-1,2,4-trien-1-yl)benzene (2.82f) 

 

 
 

Following the general procedure 2.5.2, starting from 2.81f (2.44 g, 10 mmol), of 2-Methoxybenzeneboronic 

acid (3.04 g, 20 mmol), 2.82f (2.15 g, 7.8 mmol, 78 %) was obtained as white solid after column 

chromatography (cyclohexane:EtOAc = 100:2). 

 

1H NMR (400 MHz, C6D6): δ 7.48 (d, J = 7.3 Hz, 1 H), 7.43 (dd, J = 7.4, 1.6 Hz, 1 H), 7.15 - 7.10 (m, 3 

H), 7.03 (tt, J = 7.4, 1.2 Hz, 1H), 6.89 (td, J = 7.5, 1.1 Hz, 1 H), 6.59 (d, J = 8.3 Hz, 1 H), 6.27 (dq, J =15.6, 

1.4 Hz, 1H), 5.48 (dq, J =15.6, 6,6 Hz, 1 H), 3.20 (s, 3 H), 1.88 (s, 3 H), 1.61 (dd, J = 6.7, 1.9 Hz, 3 H).  

13C NMR (100 MHz, C6D6): δ 209.1, 157.9, 138.3, 132.1, 129.6, 129.1, 128.5, 128.2, 127.9, 127.5, 126.8, 

126.7, 124.8, 121.0, 111.5, 106.1, 102.7, 55.1, 18.4, 15.6. 

HRMS (ESI, m/z, [M]+): 276.15087 (calculated), 276.15029 (found) 

 

(E)-1-Methoxy-2-(7-(prop-1-en-1-yl)undeca-5,6-dien-5-yl)benzene (2.82g) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81e (1.3 g, 5 mmol), of 2-Methoxybenzeneboronic 

acid (1.52 g, 10 mmol), 2.82g (1.15 g, 3.8 mmol, 76 %) was obtained as colorless oil after column 

chromatography (cyclohexane:EtOAc = 100:2). 

 
1H NMR (400 MHz, C6D6): δ 7.39 (dd, J = 7.4, 1.6 Hz, 1H), 7.07(td, J = 7.8, 1.8 Hz, 1H), 6.88(td, J = 7.5, 

1.1 Hz, 1H), 6.56(d, J = 8.3 Hz, 1H), 6.36(d, J = 15.6 Hz, 1H), 5.55(dt, J = 15.6, 7.0 Hz, 1H), 3.34(s, 3H), 

2.65(t, J = 7.6 Hz, 2H), 2.06(q, J = 6.8 Hz, 2H), 1.94 (s, 3H), 1.59(quin, J = 7.5 Hz, 2H), 1.41(spt, J = 15.0 

Hz, 2H), 1.19-1.36(m,4H), 0.86(dt, J = 16.6, 7.2 Hz, 6H). 

13C NMR (100 MHz, C6D6): δ 207.6, 157.6, 130.6, 129.8, 129.1, 128.5, 128.3, 128.0, 121.0, 111.6, 103.5, 

100.4, 55.2, 33.2, 32.3, 30.9, 22.9, 22.8, 16.2, 14.4, 14.3. 
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HRMS (ESI, m/z, [M+H]+): 299.23694 (calculated), 299.23677 (found). 

 

(E)-1-Methoxy-2-(7-methyltrideca-5,6,8-trien-5-yl)benzene (2.82h) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81c (2.1 g, 8 mmol), of 2-Methoxybenzeneboronic 

acid (2.43 g, 16 mmol), 2.82h (1.8 g, 6 mmol, 75 %) was obtained as colorless oil after column 

chromatography (cyclohexane:EtOAc = 100:2). 

 

1H NMR (400 MHz, C6D6): δ 7.40 (dd, J = 7.40, 1.6 Hz, 1H), 7.21 - 7.15 (m, 3 H), 6.88 (td, J = 7.6, 1.2 

Hz, 1H), 6.56 (d, J = 8.3 Hz, 1H), 6.37 (d, J = 5.8 Hz, 1H), 5.55 (dt, J = 15.5, 6.9 Hz, 1H), 3.34 (s, 3H), 

2.65 (t, J = 7.4 Hz, 3H), 2.06 (dq, J = 13.3, 6.8 Hz, 2H), 1.59 (quint, J = 7.4 Hz, 2H), 1.41 (sext, J = 15.3 

Hz, 2H), 1.19-1.36 (m, 4H), 0.862 (dt, J = 7.3,16.6 Hz, 4H). 

 13C NMR (100 MHz, C6D6): δ 207.5, 157.5, 130.5, 129.7, 129.0, 128.4, 128.2, 127.9, 120.9, 111.5, 103.4, 

100.3, 55.1, 33.1, 32.2, 30.8, 22.8, 22.7, 16.1, 14.3, 14.2. 

HRMS (ESI, m/z, M+): 299.23694 (calculated), 299.23724 (found). 

 

(E)-1-(7,10-Dimethylundeca-5,6,8-trien-5-yl)-2-methoxybenzene (2.82i) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81d (2.1 g, 8 mmol), of 2-Methoxybenzeneboronic 

acid (2.43 g, 16 mmol), 2.82i (1.45 g, 5 mmol, 63 %) was obtained as colorless oil after column 

chromatography (cyclohexane:EtOAc = 100:2). 

 

1H NMR (500 MHz, C6D6): δ 7.40-7.37 (m, 1 H), 7.06 (dt, J = 7.7, 1.7 Hz, 1 H), 6.87 (t, J = 7.5 Hz, 1 H), 

6.56 (d, J = 8.4 Hz, 1 H), 6.33 (td, J = 16.0, 1.5 Hz, 1 H), 5.54 (dd, J = 15.7, 6.9 Hz, 1 H), 3.34 (s, 3 H), 
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2.64 (tt, J = 7.5, 1.8 Hz, 2 H), 2.29 (dsext, J = 6.5, 0.5 Hz, 1 H), 1.94 (s, 3 H), 1.58 (quin, J = 7.5 Hz, 2 H), 

1.41 (sxt, J = 7.5 Hz, 2 H), 0.96 (dd, J = 6.9, 3.8 Hz, 6 H), 0.88 (t, J = 7.3 Hz, 3 H). 

13C NMR (125 MHz, C6D6): δ 207.6, 157.6, 135.9, 130.5, 128.5, 128.3, 127.0, 120.9, 111.6, 103.3, 100.2, 

55.2, 33.1, 31.9, 30.8, 22.9, 22.9, 22.8, 16.1, 14.2. 

HRMS (ESI, m/z, [M+H]+): 285.22129 (calculated), 285.22120 (found). 

 

(E)-1-Fluoro-2-(3-methyl-1-phenylhexa-1,2,4-trien-1-yl)benzene (2.82k) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81f (2.44 g, 10 mmol), of 2-Fluorophenylboronic 

acid (2.8 g, 20 mmol), 2.82k (1.8 g, 7 mmol, 70 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:3). 

 
1H NMR (500 MHz, C6D6): δ 7.42 (d, J = 7.6 Hz, 2 H), 7.29 (dt, J = 7.4, 1.7 Hz, 1 H), 7.13 (t, J = 7.6 Hz, 

2 H), 7.06-7.01 (m, 1H), 6.90 - 6.79 (m, 3 H), 6.18 (dq, J = 16.0, 1.5, 1H), 1.83 (s, 3 H), 1.58 (dd, J = 1.9, 

6.9 Hz, 3 H). 

13C NMR (125 MHz, C6D6): δ 209.5, 162.0, 160.1, 158.6, 137.5, 132.1, 132.1, 129.4, 129.3, 128.8, 128.4, 

127.7, 127.3, 125.8, 125.6, 125.5, 124.4, 124.3, 116.3, 116.2, 103.7, 103.6, 18.4, 15.4.;  

HRMS (ESI, m/z, [M+H]+): 265.13871 (calculated), 265.13870 (found). 

 

(E)-1-Fluoro-2-(1-(2-methoxyphenyl)-3-methylhexa-1,2,4-trien-1-yl)benzene (2.82l) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81g (1.92 g, 7 mmol), of 2-Fluorophenylboronic acid 

(1.96 g, 14 mmol), 2.82l (1.18 g, 4 mmol, 57 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:5). 
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1H NMR (400 MHz, C6D6): δ 7.41 (dt, J = 7.6,1.6 Hz, 1H), 7.30 - 7.24 (m, 1 H), 7.09 (dt, J = 7.8 Hz, 1 H), 

6.89 - 6.75 (m, 4 H), 6.55 (dd, J = 8.4, 1.2 Hz, 1 H), 6.30 (dq, 15.5, 1.4 Hz, 1H), 5.46 (dq, J = 15.6, 6.7 Hz, 

1 H), 3.20 (s, 3 H), 1.89 (s, 3 H), 1.59 (dd, J = 6.8, 1.8 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 211.2, 162.1, 159.7, 157.7, 131.4, 130.8, 130.7, 129.4, 128.9, 128.4, 127.1, 

127.0, 126.9, 124.8, 124.0, 124.0, 121.0, 116.2, 115.9, 111.6, 101.1, 55.2, 18.4, 15.6.;  

HRMS (ESI, m/z, [M+H]+): 295.14927 (calculated), 295.14942 (found). 

 

(E)-1,2-Difluoro-4-(1-(2-methoxyphenyl)-3-methylhexa-1,2,4-trien-1-yl)benzene (2.82m) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81g (1.92 g, 7 mmol), of 3,4-difluorophenylboronic 

acid (2.2 g, 14 mmol), 2.82m (1.38 g, 4.4 mmol, 63%) was obtained as white solid after column 

chromatography (cyclohexane:EtOAc = 100:5). 

 
1H NMR (400 MHz, C6D6): δ 7.32 (dd, J = 1.8, 7.5 Hz, 1 H), 7.23 (ddd, J = 11.8, 7.8, 2.3 Hz, 1 H), 7.11 

(ddd, J = 8.2, 7.5, 1.9 Hz, 1 H), 6.93-6.89 (m, 1 H), 6.86 (td, J = 7.4, 1.2 Hz, 1 H), 6.69 (dt, J = 10.1, 8.5 

Hz, 1 H), 6.54 (d, J = 8.3 Hz, 1 H), 6.15 (dq, J = 15.5, 1.6 Hz, 1 H), 5.46 (dq, J = 15.6, 6.7 Hz, 1 H), 3.17 

(s, 3 H), 1.79 (s, 3 H), 1.59 (dd, J = 6.7, 1.6 Hz, 3 H).  

13C NMR (100 MHz, C6D6): δ: 208.9, 157.7, 152.2, 152.0, 150.9, 149.7, 149.6, 148.4, 135.6, 131.9, 129.5, 

128.8, 125.8, 123.2, 123.2, 121.1, 117.1, 117.0, 116.0, 115.9, 111.6, 104.8, 103.4, 55.0, 27.3, 18.4, 15.4.;  

HRMS (ESI, m/z, [M+H]+): 313.13985 (calculated), 313.13999 (found). 
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(E)-1-Chloro-2-(3-methyl-1-phenylhexa-1,2,4-trien-1-yl)benzene (2.82n)  

 

 

 

Following the general procedure 2.5.2, starting from 2.81f (1.7 g, 7 mmol), of 2-chlorophenylboronic acid 

(2.19 g, 14 mmol), 2.82m (1.2 g, 4.4 mmol, 63 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:2). 

 

1H NMR (400 MHz, C6D6): δ 7.37 (dd, J = 8.3, 1.3 Hz, 2 H), 7.26 (ddd, J = 9.2, 7.7, 1.6 Hz, 2 H), 7.14 - 

7.09 (m, 2 H), 7.02 (1H, J = 7.4, 1.4 Hz, 1H), 6.88 (dt, J = 7.5, 1.3 Hz, 1 H), 6.80 (dt, J = 7.8, 1.8 Hz, 1 H), 

6.25 (qd, J = 15.6, 1.7 Hz, 1 H), 5.49 (qd, J = 15.6, 6.7 Hz, 1 H), 1.85 (s, 3 H), 1.59 (dd, J = 6.5, 1.8 Hz, 3 

H).;  

13C NMR (100 MHz, C6D6): δ 208.2, 137.3, 136.6, 134.6, 132.3, 130.2, 128.9, 128.8, 128.7, 128.3, 127.4, 

127.2, 127.0, 125.9, 106.8, 104.2, 27.3, 18.4, 15.2. 

HRMS (ESI, m/z, [M+H]+): 281.10914 (calculated), 281.10915 (found). 

 

(E)-1-Methyl-2-(3-methyl-1-phenylhexa-1,2,4-trien-1-yl)benzene (2.82p) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81f (1.22 g, 5 mmol), of 2-methylphenylboronic acid 

(1.35 g, 10 mmol), 2.82p (1.2 g, 3.4 mmol, 67 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:1). 

 

1H NMR (400 MHz, C6D6): δ 7.40 - 7.35 (m, 3 H), 7.13 - 7.08 (m, 5 H), 7.01 (tt, J = 7.2, 1.2 Hz, 1H), 6.20 

(qd, J = 15.6, 1.8 Hz, 1 H), 5.48 (qd, J = 15.6, 6.7 Hz, 1 H), 2.25 (s, 3 H), 1.82 (s, 3 H), 1.61 (dd, J = 6.5, 

1.8 Hz, 3 H). 
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13C NMR (100 MHz, C6D6): δ 207.6, 138.0, 137.0, 137.0, 130.9, 130.7, 129.1, 128.8, 128.3, 127.9, 127.4, 

127.1, 126.4, 125.3, 108.0, 103.0, 20.5, 18.4, 15.5. 

(ESI, m/z): 261.1, 233.1, 219.1, 181.1, 146.0, 105.1, 100.1. 

 

(E)-1-Methoxy-2-(3-methyl-1-(o-tolyl)hexa-1,2,4-trien-1-yl)benzene (2.82r) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81g (1.65 g, 6 mmol), of 2-methylphenylboronic acid 

(1.6 g, 12 mmol), 2.82r (1.28 g, 3.8 mmol, 63 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 

1H NMR (400 MHz, C6D6): δ 7.40 - 7.35 (m, 1 H), 7.26 (dd, J = 7.5, 1.8 Hz, 1 H), 7.12 - 7.01 (m, 4 H), 

6.80 (dt, J = 7.5, 1.3 Hz, 1 H), 6.55 (d, J = 8.0 Hz, 1 H), 6.34 (qd, J = 15.6, 1.6 Hz, 1H), 5.46 (qd, J = 15.6, 

6.6 Hz, 1 H), 3.25 (s, 3 H), 2.39 (s, 3 H), 1.87 (s, 3 H), 1.63 (dd, J = 6.7, 1.6 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 209.8, 157.7, 138.6, 136.6, 130.8, 130.8, 130.1, 130.0, 128.5, 128.3, 127.2, 

126.1, 124.1, 120.9, 111.8, 103.8, 100.0, 55.4, 21.0, 18.5, 15.7. 

HRMS (ESI, m/z, [M+H]+): 291.17434 (calculated), 291.17455 (found). 

 

(E)-2-(3-Methyl-1-phenylhexa-1,2,4-trien-1-yl)naphthalene (2.82s) 

 

 
 

Following the general procedure 2.5.2, starting from 2.81f (1.22 g, 5 mmol), of 2-Naphthylboronic acid (1.7 

g, 10 mmol), 2.82s (0.92 g, 3.1 mmol, 62 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:5). 
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1H NMR (400 MHz, C6D6): δ 8.20 (d, J = 7.6 Hz, 1 H), 7.68 - 7.61 (m, 2 H), 7.54 (dd, J = 6.9, 1.1 Hz, 1 

H), 7.41 - 7.38 (m, 2 H), 7.28 (dd, J = 8.2, 7.1 Hz, 1 H), 7.20 (dquin, J = 7.6, 1.5 Hz, 2 H), 7.08 - 7.04 (m, 

2 H), 6.99 (tt, J = 7.3, 1,0 Hz, 1H), 6.24 (m, 1H), 5.47 (dq, J = 15.6, 6.6 Hz, 1 H), 1.84 (s, 3 H), 1.59 (dd, J 

= 6.7, 1.7 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 208.6, 138.3, 135.4, 134.6, 132.9, 129.1, 128.8, 128.7, 128.3, 128.3, 128.3, 

127.9, 127.5, 127.1, 126.7, 126.4, 126.1, 126.0, 125.5, 107.4, 103.2, 18.4, 15.6. 

HRMS (ESI, m/z, [M+H]+): 297.16378 (calculated), 297.16395 (found). 

 

(E)-1-Chloro-2-(1-(2-methoxyphenyl)-3-methylhexa-1,2,4-trien-1-yl)benzene (2.82t) 

 

 

 

Following the general procedure 2.5.2, starting from 2.81h (1.92 g, 7 mmol), of 2-chlorophenylboronic acid 

(2.19 g, 14 mmol), 2.82t (1.37 g, 4.4 mmol, 63 %) was obtained as white solid after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 

1H NMR (400 MHz, C6D6): δ 7.32 (dt, J = 7.6, 1.9 Hz, 2 H), 7.26 (dd, J = 7.9, 1.1 Hz, 1 H), 7.06 (ddd, J = 

8.5, 7.5, 1.8 Hz, 1H), 6.84 (dtd, J = 10.4, 7.5, 1.1 Hz, 2 H), 6.77 (dt, J = 7.6, 1.6 Hz, 1H), 6.54 (d, J = 8.3 

Hz, 1 H), 6.34 (qd, J = 15.6, 1.8 Hz, 1 H), 5.47 (qd, J = 15.6, 6.7 Hz, 1 H), 3.23 (s, 3 H), 1.90 (s, 3 H), 1.60 

(dd, J = 6.7, 1.6 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 210.5, 157.7, 138.0, 133.8, 131.4, 131.0, 130.3, 129.4, 128.8, 128.2, 127.9, 

126.7, 124.8, 121.0, 111.8, 102.9, 101.3, 55.4, 18.5, 15.4. 

HRMS (ESI, m/z, [M+H]+): 311.11972 (calculated), 311.11988 (found). 
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2.5.3 General Procedure A; The Gold-Catalyzed [1,2]-Migratory 

Cycloisomerization of Vinylallenes 

 To a solution of vinylallene (0.3 mmol) in 4 ml of dry DCM were added Ph3PAuCl (5 mol%) and 

(5 mol%) AgSbF6 under nitrogen atmosphere. The reaction mixture was stirred at room temperature and 

monitored by TLC. After completion, the reaction mixture was filtered over celite, washed with Et2O. The 

solvents were evaporated under reduced pressure. The residue was purified by column chromatography 

(cyclohexane/dichloromethane) to give the cyclopentadiene 2.83.  

 

2.5.4 General Procedure B; The Platinum-Catalyzed [1,2]-Migratory 

Cycloisomerization of Vinylallenes. 

To a solution of vinylallene (0.3 mmol) in 5 ml of dry toluene were added 10 mol% PtCl2 under 

nitrogen atmosphere. The mixture was stirred magnetically in a preheated oil bath at 100 °C and monitored 

by TLC. After completion, the reaction mixture was cooled down to room temperature and filtered over 

celite, washed with Et2O and solvent was evaporated under reduced pressure. The solvents were evaporated 

under reduced pressure and the residue was purified by column chromatography (cyclohexane/ DCM) to 

give the cyclopentadiene 2.83. 

 

(3,5-Dimethylcyclopenta-2,5-diene-1,2-diyl)dibenzene (2.83c) 

 

 

 

Following the general procedure B, starting from 2.82c (73.9 mg, 0.3 mmol), 2.83c (35 mg, 0.14 mmol, 45 

%) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5) and slowly 

crystallized in cyclohexane. 

1H NMR (400 MHz, C6D6): δ 7.14 - 7.05 (m, 8 H), 7.00 (tt, J = 7.2, 1.8 Hz, 2H), 2.73 (s, 2 H), 1.95 (s, 6 

H). 
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13C NMR (100 MHz, C6D6): δ 142.2, 137.3, 136.3, 130.0, 128.4, 128.2, 128.1, 127.9, 126.4, 49.9, 14.5. 

Spectral data agreed with previous data.[88] 

  

1-(5-Butyl-2,4-dimethylcyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83e) 

 

 
 

Following the general procedure A, starting from 2.82e (76,9 mg, 0.3 mmol), 2.83e (65.3 mg, 0.25 mmol, 

83 %) was obtained as yellow oil after column chromatography (cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (400 MHz, C6D6): δ 7.22 (dd, J = 7.3, 1.8 Hz, 1 H), 7.14(m, 1H), 6.93 (td, J = 7.4, 1.2 Hz, 1 H), 

6.64 (d, J = 8.0 Hz, 1 H), 3.30 (s, 3 H), 2.72 (s, 2 H), 2.40-2.34 (m, 2 H), 1.94 (s, 3 H), 1.89 (s, 3 H), 1.34 

(quin, J = 7.3 Hz, 2 H), 1.23 (sxt, J = 7.4 Hz, 2 H), 0.77 (t, J = 7.3 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 157.9, 141.6, 140.4, 135.9, 132.2, 131.7, 128.4, 128.3, 128.2, 127.9 120.7, 

111.0, 54.8, 49.0, 32.0, 26.4, 22.9, 14.5, 14.2, 13.7. 

FTIR (max/cm-1): 3050, 1996, 1968, 1639, 1476, 1434, 1359, 1286, 1156, 1103, 1002, 931, 755, 691. 

HRMS (ESI, m/z, [M+H]+): 257.18999 (calculated), 257.19033 (found). 

 

1-(2,4-Dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83f) 

 

 

 

Following the general procedure A, starting from 2.82f (82.9 mg, 0.3 mmol), 2.83f (75 mg, 0.27 mmol, 90 

%) was obtained as colorless solid after column chromatography (cyclohexane:CH2Cl2 = 100:5) and slowly 

crystallized in cyclohexane. 

 

                                                           
[88] M. Horacek, J. Dinkas, J. Merna, R. Gyepes, P. Meunier, J. Organomet. Chem. 2009, 694, 173-178. 
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1H NMR (500 MHz, C6D6): δ 7.21 - 7.17 (m, 3 H), 7.09 - 7.04 (m, 3 H), 6.97 (tt, J = 7.5, 1.5 Hz, 1 H), 6.86 

(dt, J = 7.4, 1.0 Hz, 1 H), 6.47 (d, J = 8.0 Hz, 1 H), 3.00 (s, 3 H), 2.76 (ABq, J = 5.6, 5.5 Hz, 2H), 2.00 (s, 

3 H), 1.94 (s, 3 H). 

13C NMR (125MHz, C6D6): δ 157.7, 143.0, 139.9, 138.1, 136.5, 135.0, 131.7, 129.1, 128.4, 127.7, 127.0, 

126.0, 120.6, 111.2, 54.5, 49.7, 14.6, 14.5. 

FTIR (max/cm-1): 3073, 3051, 2989, 2932, 2904, 2868, 2855, 2831, 1607, 1597, 1585, 1578, 1488, 1462, 

1431, 1380, 1247, 1142, 1116, 1023, 756, 700. 

HRMS (ESI, m/z, [M+H]+): 277.15869 (calculated), 277.15888 (found). 

 

1-(2,5-Dibutyl-4-methylcyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83g) 

 

 

 

Following the general procedure A, starting from 2.82g (89.5 mg, 0.3 mmol), 2.83g (49 mg, 0.17 mmol, 55 

%) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5).  

 
1H NMR (400 MHz, C6D6): δ 7.22 (dd, J = 7.3, 1.8 Hz, 1 H), 7.12 - 7.15 (m, 1 H), 6.93 (td, J = 7.4, 1.2 Hz, 

1 H), 6.64 (d, J = 8.3 Hz, 1 H), 3.31 (s, 3 H), 2.81 (s, 2 H), 2.36 - 2.46 (m, 4 H), 1.92 (s, 3 H), 1.47 (quin, J 

= 7.6 Hz, 2 H), 1.35 (sxt, J = 7.3 Hz, 4 H), 1.23 (sxt, J = 7.2 Hz, 2 H), 0.92 (t, J = 7.2 Hz, 3 H), 0.78 (t, J = 

7.3 Hz, 3 H). 

13C NMR (100 MHz, C6D6): δ 158.0, 141.6, 140.3, 137.5, 136.3, 131.8, 128.5, 127.6, 120.8, 111.1, 54.9, 

46.8, 33.5, 32.4, 28.7, 26.5, 23.4, 23.1, 14.7, 14.5, 14.3.  

FTIR (max/cm-1): 3073, 2996, 2954, 2926, 2870, 2856, 2833, 1642, 1579, 1489, 1456, 1434, 1378, 1244, 

1116, 1051, 1030, 751. 

HRMS (ESI, m/z, [M+H]+): 299.23694 (calculated), 299.23726 (found). 
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1-(4,5-Dibutyl-2-methylcyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83h) 

 

 

 

Following the general procedure A, starting from 2.82h (89.5 mg, 0.3 mmol), 2.83h (53 mg, 0.18 mmol, 60 

%) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5).  

 

1H NMR (400 MHz, C6D6): δ7.21 (dd, J = 7.2, 1.8 Hz, 1H), 7.14 (dd, J = 8.2, 1,8 Hz, 1H), 6.93(td, J = 7.4 

Hz, 1H), 6.65(d, J = 8.0 Hz, 1H), 3.31(s, 3H), 2.80(s, 2H), 2.35-2.45(m, 4H), 1.92(s, 3H), 1.46 (sxt, J = 7.6 

Hz, 2H), 1.35(spt, J = 7.5 Hz, 4H), 1.23(sxt, J = 7.5 Hz, 2H), 0.92(t, J = 7.3 Hz, 3H) , 0.77(t, J = 7.3 Hz, 

3H). 

13C NMR (100 MHz, C6D6): δ 158.0, 141.5, 140.2, 137.4, 136.2, 131.7, 128.4, 127.5, 120.7, 111.0, 54.8, 

46.7, 33.4, 32.3, 28.6, 26.4, 23.3, 23.0, 14.6, 14.4, 14.2.  

FTIR (max/cm-1): 3415, 2955, 2931, 2870, 2861, 2835, 1708, 1597, 1579, 1490, 1460, 1434, 1241, 1116, 

1049, 1026, 752.;  

HRMS (ESI, m/z, [M+H]+): 299.23694 (calculated), 299.23719 (found). 

 

1-(5-Butyl-4-isopropyl-2-methylcyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83i) 

 

 

 

Following the general procedure A, starting from 2.82i (85.3 mg, 0.3 mmol), 2.83i (48.3 mg, 0.17 mmol, 

56 %) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5).  

 

1H NMR (500 MHz, C6D6): δ 7.20 (dd, J = 7.5, 2.1 Hz, 1 H), 7.13 (dd, J = 8.0, 1.9 Hz, 1 H), 6.92 (t, J = 

7.5 Hz, 1 H), 6.64 (d, J = 8.4 Hz, 1 H), 3.30 (s, 3 H), 2.99 (spt, J = 7.0 Hz, 1 H), 2.80 (s, 2 H), 2.45 - 2.31 

(m, 2 H), 1.92 (s, 3 H), 1.35 (quin, J = 7.5 Hz, 2 H), 1.23 (sxt, J = 7.5 Hz, 2 H), 1.11 (dd, J = 12.6, 6.9 Hz, 

6 H), 0.78 (t, J = 7.3 Hz, 3 H). 



2 Gold- and Platinum-Catalyzed [1,2]-Migratory Cycloisomerization Cascade Reactions of Vinylallenes 
 

 

73 
 

13C NMR (125 MHz, C6D6): δ 158.0, 143.3, 140.1, 140.0, 136.0, 131.7, 128.4, 127.5, 120.7, 111.0, 54.8, 

42.4, 32.5, 27.6, 26.3, 24.3, 23.9, 23.0, 14.6, 14.1. 

HRMS (ESI, m/z, [M+H]+): 285.22129 (calculated), 285.22108 (found). 

 

1-(2,4-Dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)-2-fluorobenzene (2.83k) 

 

 

 

Following the general procedure B, starting from 2.82k (79.3 mg, 0.3 mmol), 2.83k (40.5 mg, 0.15 mmol, 

51 %) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (500 MHz, C6D6): δ 7.18 - 7.13 (m, 2 H), 7.07 (t, J = 7.6 Hz, 2 H), 7.01 - 6.94 (m, 2 H), 6.82 - 

6.78 (m, 2 H), 6.74 - 6.69 (m, 1 H), 2.71 (s, 2 H), 1.93 (s, 3 H), 1.90 (s, 3 H). 

13C NMR (125 MHz, C6D6): δ 161.6, 159.7, 142.2, 138.9, 137.1, 136.4, 136.2, 132.2, 132.1, 129.5, 128.7, 

128.6, 128.3, 128.1, 126.5, 125.3, 125.2, 123.8, 123.7, 115.9, 115.7, 49.8, 14.6, 14.4. 

HRMS (ESI, m/z, [M+H]+): 265.13871 (calculated), 265.13845 (found) 

 

1-Fluoro-2-(5-(2-methoxyphenyl)-2,4-dimethylcyclopenta-1,4-dien-1-yl)benzene (2.83l) 

 

 

 

Following the general procedure A or B, starting from 2.82l (88.3 mg, 0.3 mmol), 2.83l (45.0 mg, 0.15 

mmol, Yield; procedure A=B= 51 %) was obtained as white solid after column chromatography 

(cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (400 MHz, C6D6) δ: 7.25 (dd, J = 7.4, 1.9 Hz, 1 H), 7.03 (dt, J = 7.8, 1.8 Hz, 1 H), 6.86 (t, J = 

7.4 Hz, 2 H), 6.80 - 6.73 (m, 1 H), 6.64 (br.s, 1H), 6.41 (d, J = 8.3 Hz, 1 H), 3.05 (s, 3 H), 2.71 (s, 2 H), 

1.96 (s, 3 H), 1.93 (s, 3 H). 
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13C NMR (100 MHz, C6D6): δ 161.7, 157.5, 139.7, 137.8, 136.6, 131.5, 126.4, 126.5, 125.8, 123.2, 120.4, 

115.4, 115.2, 110.8, 54.3, 49.5, 14.8, 14.5. 

HRMS (ESI, m/z, [M+H]+): 295.14927 (calculated), 295.14877 (found). 

1,2-Difluoro-4-(5-(2-methoxyphenyl)-2,4-dimethylcyclopenta-1,4-dien-1-yl)benzene (2.83m) 

 

 
 

Following the general procedure A or B, starting from 2.82m (93.7 mg, 0.3 mmol), 2.83m (49.7 mg, 0.16 

mmol, yields; procedure A=B=53 %) was obtained as white solid after column chromatography 

(cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (400 MHz, C6D6): δ 7.11 (dd, J = 7.3, 1.8 Hz, 1 H), 7.06 (dt, J = 7.8, 1.9 Hz, 1 H), 6.95 (ddd, J = 

11.9, 8.0, 1.8 Hz, 1 H), 6.86 (dt, J = 7.4, 1.0 Hz, 1 H), 6.64 - 6.52 (m, 2 H), 6.41 (d, J = 8.3 Hz, 1 H), 2.94 

(s, 3 H), 2.67 (d, J = 5.0 Hz, 2 H), 1.87 (s, 3 H), 1.84 (s, 3 H). 

13C NMR (100 MHz, C6D6): δ 157.4, 151.4(d), 147.8(d), 140.8, 139.2, 136.8, 136.0, 135.1, 131.5, 128.7, 

126.1, 125.0, 124.9, 120.7, 117.7(d), 116.4(d), 111.0, 54.3, 49.6, 14.4, 14.3. 

FTIR (max/cm-1): 3065, 2970, 2927, 2869, 1715, 1001, 1515, 1491, 1433, 1273, 1246, 1116, 1026, 757. 

HRMS (ESI, m/z, [M+H]+): 313.13985 (calculated), 313.13987 (found). 

 

1-Chloro-2-(2,4-dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)benzene (2.83n) 

 

 

 

Following the general procedure B, starting from 2.82m (84.2 mg, 0.3 mmol), 2.83m (43.0 mg, 0.15 mmol, 

51 %) was obtained as colorless oil after column chromatography (cyclohexane:CH2Cl2 = 100:5). 
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1H NMR (500 MHz, C6D6): δ 7.17 (tt, J = 8.0, 1.5 Hz, 3H), 7.06 (t, J = 7.6 Hz, 2 H), 7.00 - 6.94 (m, 2 H), 

6.78 (dt, J = 7.5, 1.5 Hz, 1 H), 6.72 (dt, J = 7.5, 1.5 Hz, 1 H), 2.77 (ABq, J = 5.6, 3.6 Hz, 2H), 1.95 (s, 3 H), 

1.85 (s, 3 H). 

13C NMR (125 MHz, C6D6): δ 142.3, 140.3, 138.1, 137.1, 136.9, 136.0, 134.6, 132.0, 129.7, 129.5, 128.4, 

128.2, 128.0, 126.5, 126.4, 49.6, 14.5. 

FTIR (max/cm-1): 3056, 1964, 2923, 2854, 1713, 1606, 1491, 1471, 1430, 1376, 1258, 1125, 1062, 1032, 

842, 747, 697. 

HRMS (ESI, m/z, [M+H]+): 281.10903 (calculated), 281.10915 (found). 

 

1-(2,4-Dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)-2-methylbenzene (2.83p) 

 

 

 

Following the general procedure B, starting from 2.82p (78.3 mg, 0.3 mmol), 2.83p (39.2 mg, 0.15 mmol, 

51 %) was obtained as yellow oil after column chromatography (cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (400 MHz, C6D6): δ 7.18 - 7.11 (m, 3 H), 7.06 - 7.01 (m, 4 H), 7.00 - 6.97 (m, 1 H), 6.97 - 6.92 

(m, 1 H), 2.78 (ABq, J = 7.1, 6.8, Hz, 2H), 2.03 (s, 3 H), 1.98 (s, 3 H), 1.81 (s, 3 H). 

 13C NMR (100 MHz, C6D6): δ 142.5, 137.5, 137.3, 137.0, 136.1, 135.9, 130.6, 130.2, 129.4, 128.3, 128.0, 

127.2, 126.4, 125.8, 49.6, 20.1, 14.7, 14.3. 

HRMS (ESI, m/z, [M+H]+): 261.16378 (calculated), 261.16412(found). 
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1-(2,4-Dimethyl-5-(o-tolyl)cyclopenta-1,4-dien-1-yl)-2-methoxybenzene (2.83r) 

 

 

 

Following the general procedure A or B, starting from 2.82r (87.0 mg, 0.3 mmol), 2.83r (Procedure A; 9.5 

mg, 0.033mmol, 11 %; Procedure B; 44.4 mg, 0.15 mmol, 51 %,) was obtained as colorless oil after column 

chromatography (cyclohexane:CH2Cl2 = 100:5). 

1H NMR (400 MHz, C6D6): δ 7.35-6.86 (m, 6H), 6.79 (td, J = 7.2, 1.2 Hz, 1H), 3.10 (br.s., 3H), 2.95-2.67 

(m, 2H), 2.28 (s, 3H), 1.95 (s, 3H), 1.84 (s, 3H). 

13C NMR (100 MHz, C6D6): 157.4, 143.0, 137.8, 136.6, 135.1, 131.7, 129.8, 126.7, 125.1, 120.2, 110.7, 

54.3, 49.2, 20.1, 14.7(br) 

HRMS (ESI, m/z, [M+H]+): 291.17394 (calculated), 291.17434(found). 

 

2-(2,4-Dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)naphthalene (2.83s) 

 

 

 

Following the general procedure B, starting from 2.82s (89.1 mg, 0.3 mmol), 2.83s (29.6 mg, 0.1 mmol, 33 

%) was obtained as yellow oil after column chromatography (cyclohexane:CH2Cl2 = 100:5). 

 

1H NMR (400 MHz, C6D6) δ:  8.03 (d, J = 8.4 Hz, 1 H), 7.61 (d, J = 7.7 Hz, 1 H), 7.54 (d, J = 7.7 Hz, 1 

H), 7.27 (ddd, J = 8.4, 6.6, 1.8 Hz, 1 H), 7.22 - 7.17 (m, 3 H), 7.09 - 7.06 (m, 2 H), 6.89 - 6.86 (m, 2 H), 

6.80 (tt, J = 7.5, 1.2 Hz, 1 H), 2.88 (ABq, J = 4.9, 4.7 Hz, 2H), 2.03 (s, 3 H), 1.75 (s, 3 H). 

13C NMR (100 MHz, C6D6): δ 143.3, 141.0, 138.0, 137.1, 136.1, 135.7, 134.2, 132.9, 129.3, 128.7, 128.4, 

127.9, 127.8, 127.4, 126.8, 126.4, 125.9, 125.8, 125.6, 49.8, 14.7, 14.6. 
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HRMS (ESI, m/z, [M]+): 296.15595 (calculated), 296.15582 (found). 

 

1-Chloro-2-(5-(2-methoxyphenyl)-2,4-dimethylcyclopenta-1,4-dien-1-yl)benzene (2.83t) 

 

 
 

Following the general procedure A or B, starting from 2.82t (93.0 mg, 0.3 mmol), 2.83t (Procedure A; 7.7 

mg, 0.025 mmol, 8 %; Procedure B; 47.5 mg, 0.15 mmol, 51 %,) was obtained as colorless oil after column 

chromatography (cyclohexane:CH2Cl2 = 100:5). 

HRMS (ESI, m/z, [M.]+): 310.11189 (calculated), 310.11301(found). 
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3.1 Copper-Catalyzed Cross-Coupling Reaction of Diazo Compounds 

 

The rich chemistry of diazo compounds has been extensively explored in a variety of organic 

transformations and has found many applications in synthetic organic chemistry.[89] They can be 

dediazonized to highly reactive free carbene intermediates or metal carbenoids under transition metal 

catalysts.[90]  

Recently, the use of diazo compounds as a coupling partner in transition metal-catalyzed cross-

coupling reactions has attracted much interest. It is well known that the Cu(I)-catalyzed carbene transfer 

reaction of unsaturated compounds usually provide cyclopropanation products.[91] On the contrary, in 2004, 

Fu et al.[92] developed an efficient method for the synthesis of 3-alkynoates 3.3 by Cu(I)-catalyzed cross-

coupling reaction of terminal alkynes with diazo compounds under mild reaction condition. They showed 

that 5 mol% CuI in the presence of CH3CN was an efficient catalytic system to access 3-alkynoates 3.3 with 

high yield (Scheme 3.1). Although, in this coupling reaction, 3-allenoate derivatives 3.4 were formed as 

minor products, later on the method became important work for the synthesis of allene derivatives. 

 

 

Scheme 3.1.Cu(I)-catalyzed cross-coupling reaction of alkynes with diazo compounds. 

Inspired by this report, over the last five year enormous efforts have been devoted to the synthesis 

of allenes by Cu(I)-catalyzed cross-coupling reaction of alkynes and diazo compounds. [93] 

                                                           
[89] Rewievs; a) T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091-1160; b) M. P. Doyle, M. A. McKervey, T. Ye, Modern 

Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley-Interscience, New York; 1998; c) D. M. Hodgson, F. Y. T. 

M. Pierrard, P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50-61; d) X. Zhao, Y. Zhang, J. Wang, Chem. Commun. 2012, 48, 10162-

10173; e) N. R. Candeias, P. Paterna, P. M. P. Gois, Chem. Rev. 2016, 116, 2937-2981. 
[90] Rewievs; a) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861-2903; b) M. P. Doyle, D. C. Forbes, Chem. Rev. 

1998, 98, 911-935; c) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417-424; d) A. Padwa, M. D. Weingarten, Chem. Rev. 

1996, 96, 223-269; e) P. M. P. Gois, C. A. M. Afonso, Eur. J. Org. Chem. 2004, 3773-3788; f) M. P. Doyle, R. Duffy, M. Ratnikov, 

L.Zhou, Chem. Rev. 2010, 110, 704-724; g) S. F. Zhu, Q.L. Zhou, Acc. Chem. Res. 2012, 45, 1365-1377; h) H. M. L. Davies, D. 

Morton, Chem. Soc. Rev. 2011, 40, 1857-1869. 
[91] G. Bartoli, G. Bencivenni, R. Dalpozzo, Synthesis, 2014, 46, 979-1029. 
[92] A. Suarez, G. C. Fu, Angew. Chem. Int. Ed. 2004, 43, 3580-3582. 
[93]  a) Y. Tang, Q. Chen, X. Liu, G. Wang, L. Lin, X. Feng, 2015, 54, 9512-9516; b) K. Liu, C. Zhu, J. Min, S. Peng, G. Xu, J. Sun, 

Angew. Chem. Int. Ed, 2015, 127, 13154-13159; c) C. Wang, F. Ye, C. Wu, Y. Zhang, J. Wang, J. Org. Chem, 2015, 80, 8748-

8757. 
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In 2011, Fox and co-workers[94] reported a one pot method directly 2,4-disubstituted allenoates 3.6 

by coupling reaction of terminal alkynes 3.1 with α-substituted diazoesters 3.5 (Scheme 3.2). The success 

of this relied on using a base and an excess amount of the diazo compound, which were necessary for the 

isomerization of alkynoate to allenoate products. The desired 2,4-disubstituted allenoates 3.6 were obtained 

as major products with high selectivity over alkynoates when at least 2 eq of the α-diazoester and 1 eq of 

base were used. The effect of using an excess amount of the diazo compound was explained by isolating 

one of the side products which was characterized as azine.  

 

 

 

In order to probe the function of the azine, a control experiment was conducted by adding the azine 

into the reaction medium which gave rise to an isomerization of the alkynoate to the allenoate. This result 

showed that, the azine acted as a base and promoted this isomerization. Accordingly, it was that the addition 

of a base improved the selectivity of the one pot reaction. Furthermore, the substituents on the α-diazoester 

showed a strong influence on this reaction. A larger amount of the diazo compound (6 eq) was necessary 

when methyl- or ethyl-substituted diazo compounds were used, which were more susceptible to azine 

formation, whereas the addition of 2 eq of the phenyl-substituted diazo compound was sufficient. 

 

 

Scheme 3.2. Cu(I)-catalyzed one pot synthesis of allenoates 3.6. 

 

 

                                                           
[94] M. Hassink, X. Liu, J. M. Fox, Org. Lett. 2011, 13, 2388-2391.  
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A plausible reaction mechanism was proposed based on the results obtained from the reaction of 

copper acetylide 3.8 with diazo compound 3.7. The acetylide was transformed into hexadeca-7,9-diyne 3.9 

and neither allenoate nor alkynoate products were detected, which showed that the initial formation of the 

copper acetylide is not involved in the reaction pathway (Scheme 3.3). 

 

 

Scheme 3.3. Reaction of copper acetylide with diazo compound. 

 

Therefore, the plausible reaction mechanism should involve the formation of a carbenoid 

intermediate 3.10 from the reaction of the Cu-chelate with α-diazoester 3.5. Then, insertion of the copper 

carbenoid 3.10 into the C-H bond of the terminal acetylene 3.1 to generate the intermediate 3.11 and 

subsequent reductive elimination gives alkynoate 3.12 with the regeneration of the Cu-chelate. At the final 

stage, the alkynoate 3.12 is converted to allenoate 3.6 via base mediated isomerization (Scheme 3.4). 

 

 

Scheme 3.4. Proposed mechanism of the Cu(I)-catalyzed one pot synthesis of allenoates. 
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Furthermore, Wang et al.[95] developed an efficient protocol for the synthesis of allenes via Cu(I)-

catalyzed coupling of alkynes with diazo compounds generated in situ from N-tosylhydrazones 3.13 in the 

presence of a base. Depending on whether N-tosylhydrazones derived from an aldehyde or a ketone were 

used, the Cu-catalyzed cross-coupling reaction with alkynes provides a convenient route for the synthesis 

of di- and trisubstituted allenes.[96a,b] The method was also extended to the synthesis of terminal allenes 3.16 

by using ethyne as a coupling partner (Scheme 3.5).[96c] 

 
 

Scheme 3.5. Cu(I)-catalyzed coupling of alkynes and N-tosylhydrazones. 

 

Mechanistically, the reaction of Cu-acetylide 3.17 (formed from the terminal alkyne 3.1) with diazo 

compound 3.18 (generated in situ from the N-tosylhydrazone 3.13) provided the formation of Cu-carbene 

species 3.19. Migratory insertion of the alkynyl group to the carbene, followed by protonation of 

intermediate 3.20, resulted in the formation of allene 3.22 with the regeneration of the Cu(I) catalyst 

(Scheme 3.6). Alternatively, if the protonation occurs at the carbon atom attached to copper, the alkyne 

product 3.21 would be formed and isomerized to allene 3.22 with the assistance of a base (Scheme 3.6). 

                                                           
[95] a) M. L. Hossain, F. Ye, Y. Zhang, J. Wang, J. Org. Chem. 2013, 78, 1236-1241; b) Q. Xiao, Y. Xia, H. Li, Y. Zhang, J. Wang, 

Angew. Chem. Int. Ed. 2011, 50, 1114-1117; c) F. Ye, C. Wang, X. Ma, M. L. Hossain, Y. Xia, Y. Zhang, J. Wang, J. Org. Chem. 

2015, 80, 647-652.  
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Scheme 3.6. Proposed mechanism of the Cu(I)-catalyzed coupling of alkynes and N-tosylhydrazones. 

 

3.2 Gold-catalyzed Cycloisomerization Reactions of Allenes 

 

Heterocycles are an important class of compounds which are mostly used in pharmaceutical 

industry, and found as structural units in a variety of natural products. Among various methods for the 

synthesis of heterocycles, gold-catalyzed transformations of allenes play an important role in synthetic 

organic chemistry. Gold catalysts selectively activate allenes because of their soft and carbophilic character. 

The gold-catalyzed cycloisomerization of functionalized allenes is a valuable method for the synthesis of 

five- or six-membered oxygen-, nitrogen- and sulfur-containing heterocycles. These heterocycles can be 

obtained in a stereoselective manner either from chiral allenes by axis-to-center chirality transfer or from 

achiral allenes by using chiral gold catalysts. 

In this area, Krause et. al.[64] reported highly regio- and stereo-selective gold-catalyzed 

cycloisomerization reactions of allenes 3.23 bearing nucleophilic substituents in the α- or β-position to 

afford the desired five- or six-membered heterocycles 3.24 (Scheme 3.7).  

 

 

Scheme 3.7. Gold-catalyzed cycloisomerization of α- or β-heterosubstituted allenes. 
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The mechanism of these transformations proceed through the coordination of the carbophilic gold 

catalyst to an allenic double bond to afford π-complex 3.25, which undergoes a 5-endo-cyclization resulting 

in the formation of 3.26. Subsequent protodeauration leads to the desired product 3.24 with regeneration of 

the gold catalyst (Scheme 3.8).  

 

 

Scheme 3.8. Mechanism of the gold-catalyzed cycloisomerization of α- or β-heterosubstituted allenes. 

 

Allenoates 3.27 can also undergo a gold-catalyzed cycloisomerization to afford γ-lactones 3.28 or 

stable vinyl gold species 3.29 depending on the substituents in the ester moiety. Hammond et. al.[96] reported 

that cationic gold compounds can react with primary alkyl-substituted allenoates to form stable organogold 

complexes 3.29 which are converted to the desired γ -lactones 3.28 after treatment with acid. In contrast to 

this, Shin et. al.[97] reported that if the reaction was carried out with tertiary alkyl-substituted allenoates, γ -

lactones 3.28 were formed directly (Scheme 3.9). 

 

                                                           
[96] L. P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642-17643.  
[97] J. E. Kang, E. S. Lee, S. Park. S. Shin, Tetrahedron. Lett. 2005, 46, 7431-7433. 
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Scheme 3.9. Gold-catalyzed cycloisomerization of allenoates. 

Although several methods have been reported for the gold-catalyzed cyclization of functionalized 

allenes, epoxy-functionalized allenes have not been explored well. Only in the gold-catalyzed cascade 

reaction of acetoxylated alkynyloxiranes 3.30, oxirane-substituted allene intermediate were discussed. 

 

 

Scheme 3.10. Gold(I)-catalyzed cycloisomerization of acyloxylated alkynyl oxiranes. 
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3.3 Definition of Research Problems 

 

Due to their easy conversion to furans and the other heterocyclic compounds, functionalized 

allenes are of great importance in synthetic chemistry. The development of synthetic routes that 

allow the facile assembly of substituted allenes under mild conditions still remains an important 

objective. As a consequence, the development of practical synthetic approaches to access these 

target molecules is of major interest. Extensive investigations of transition metal-catalyzed reactions 

of diazo compounds have led to the development of valuable synthetic method. Although significant 

progress has been made in this field, the development of highly efficient catalytic transformations 

via transition metal carbene intermediates is still an important and attractive area in modern 

synthesis. In the first part of this study, we performed Cu(I)-catalyzed cross-coupling reaction of 

alkynes with diazo compounds for the synthesis of functionalized allenes (Scheme 3.11). 

 

 

Scheme 3.11.Cu(I)-catalyzed cross-coupling reaction of alkynes with diazo compounds. 

 

In the second part of this study, the gold-catalyzed cycloisomerization of hetero-substituted 

allenes have been described (Scheme 3.12). Because of their soft and carbophilic character, gold 

catalysts are particularly well suited for the selective activation of allenes in the presence of other 

reactive functionalities. The gold-catalyzed cyclization reactions of allenes by intramolecular 

nucleophilic attack has received more attention and allows the formation of C-O, C-N, and C-S 

bonds.  

 



3 Synthesis and Gold-Catalyzed Cycloisomerization Reactions of Difunctionalized Allenes 
 

 

87 
 

 

Scheme 3.12. Gold-catalyzed cycloisomerization of functionalized allenes. 

 

3.4 Results and Discussion 

 

3.4.1 Synthesis of Substrates 

 

3.4.1.1 Synthesis of Tetrasubstituted Hydroxyallenoates 

 

The 2,4-disubstituted allenoates 3.36a-c were synthesized by Cu(I)-catalyzed cross-

coupling reaction of terminal alkynes with α-diazoesters according to slightly modified literature 

condition.[79] Based on the original procedure, when a 1:1-mixture of terminal alkyne and ethyl 

diazoacetate is subjected to the Cu(I)-catalyzed cross-coupling reaction in the absence of a base, the 

formation of the 3-alkynoate would be favored over the formation of the 3-allenoate. On the other 

hand, Fox et al described that the use of diazo compounds in excess amounts in the presence of a 

base would bring about the isomerization of alkynoates to allenoates. 

Accordingly, application of Fu`s Cu(I)-catalyzed cross-coupling procedure for the reaction 

of phenyl acetylene and α-methyl-α-diazoester (1.1 eq, 3.34) in the presence of 10 mol% CuI in 

CH3CN at room temperature afforded predominantly alkynoate 3.35a and allenoate 3.36a in a ratio 

of 9:1 in 66% combined yield, which could not be separated by column chromatography. Increasing 

the amount of α-methyl-α-diazoester to 1.5 eq or 2.0 eq had no influence on the product distribution, 

albeit improved the combined yields (79 and 85%, respectively). Finally, addition of 2 eq of 

triethylamine into the reaction medium, increased the selectivity of the process in the favor of 

allenoate 3.36a and only small amount of alkynoate 3.35a was observed. A further treatment of this 

mixture in the presence of 2 eq triethylamine in chloroform, led to complete disappearance of 3.35a 

and thus the allenoate 3.36a could be isolated in pure form in 90% yield. The allenoates 3.36b and 

3.36c were also synthesized according to the same procedure (Scheme 3.13). 
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Scheme 3.13. Synthesis of allenoates 3.36a-c. 

 

The allenoates 3.36d and 3.36e were synthesized according to the literature procedure by 

Wittig reaction of acyl chlorides in good yields (Scheme 3.14).[98] 

 

 

Scheme 3.14. Synthesis of allenoates 3.36d-e. 

 

                                                           
[98] R. W. Lang, H. J. Hansen, Org. Synth. 1990, 7, 232-236. 
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The tetrasubstituted allenes 3.37b-e were synthesized from trisubstituted allenoates 3.36b-

e, which bear a γ-hydrogen at the allenic carbon.[99] The allenes 3.37b-e were obtained in good yields 

by aldol reaction of allenoates 3.36b-e with aldehydes in the presence of TBAF (Scheme 3.15).  

 

 

Scheme 3.15. Synthesis of tetrasubstituted allenes 3.37b-e. 

Furthermore, for the synthesis of di- and trisubstituted allenoates 3.40a-d, propargyl 

alcohols 3.38 were subjected to the Cu(I)-catalyzed cross-coupling reaction with diazo compounds 

3.34 (Scheme 3.16). The coupling reaction of ethyl diazoacetate with propargyl alcohol, gave 

alkynoate 3.39a as a major product with small amount of the desired allene 3.40a (<10%) in 16 h 

(70% combined yield). Subsequent treatment of the isolated mixture with triethylamine at room 

temperature in chloroform gave the desired allene 3.40a in 90% yield after 16 h. Alternatively, direct 

addition of 2 eq triethylamine into the reaction medium, provided a one pot access to desired allene 

3.40a in 85% yield. Di- and trisubstituted allenoates 3.40b-d were also synthesized according to the 

same procedure. 

                                                           
[99] B. Xu, G. B. Hammond, Angew. Chem. Int. Ed. 2008, 47, 689-692. 
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Scheme 3.16. Synthesis of di- and trisubstituted allenes 3.40a-d. 

 

3.4.1.2 Synthesis of Amino-functionalized Allenoates 

 

Our initial attempts for the synthesis of amino-functionalized allenoate 3.44 from alkoxy-

functionalized allenoate 3.37d by Mitsunobu reaction[100] was disappointing, resulting in the 

decomposition of the starting material at the first stage of the method which involved treatment of 

3.37d with DEAD, PPh3, and phthalimide. Therefore, we tried to synthesize the allene 3.42 by 

applying the Cu(I)-catalyzed cross-coupling condition to N-protected amine 3.43. Reaction with α-

methyl-α-diazoester afforded allene 3.42. Reaction together with alkynoate 3.41 (10:3). 

Unfortunately, attempts for the phthalimide deprotection with hydrazine hydrate to obtain allene 

3.43 resulted in decomposition of starting material (Scheme 3.17). 

                                                           
[100] B. Gockel, Dissertation, Dortmund University of Technology, 2006. 
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Scheme 3.17. Attempts for the synthesis of allene 3.44. 

 

Then, we tested whether the Cu(I)-catalyzed cross-coupling method could be applied to 

propargyl amines for the synthesis of the amino-functionalized allenoates 3.46. The N-protected 

propargyl amine 3.45 was synthesized from the corresponding propargyl alcohol and subjected to 

the Cu(I)-catalyzed cross-coupling reaction in the presence of a base. 

The treatment of N-protected propargyl amine 3.45 with of α-methyl-α-diazoester 3.34a 

under our standard condition afforded allene 3.46a in 75% yield after 16 h. The method was also 

effective in the synthesis of α-butyl- and α-isopropyl-substituted diazoesters and allenes 3.46b and 

3.46c were obtained in good yields (3.46b, 77%; 3.46c, 85%) (Scheme 3.18). 
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Scheme 3.18. Synthesis of amino-functionalized allenoates 3.46a-c. 

 

3.4.1.3 Synthesis of Allenyl Oxiranes 

For the scope of the method, the study was extended for the synthesis of epoxy-

functionalized allenes. Although several methods have been reported for the functionalization of 

allenes, epoxy-functionalized allenes have not been explored well and only few examples have been 

revealed in the literature.[101] Therefore, the development of synthetic routes for epoxy-

functionalized allenes, which are also found in nature[102], would be highly valuable. 

The Cu(I)-catalyzed cross-coupling reaction of propargylic oxirane 3.47 with α-methyl-α-

diazoester 3.34a led to the formation of corresponding epoxy-functionalized allene 3.48a in 65% 

yield. Interestingly, the method could also be applied in the absence of a base and no alkynoate 

product formation was observed. Allene 3.34b was also synthesized in 68% according to the same 

procedure by using α-butyl-α-diazoester 3.34b (Scheme 3.19). 

 

                                                           
[101] M. Sasaki, Y. Kondo, T. Moro-ishi, M. Kawahata, K. Yamaguchi, Org. Lett. 2015, 17, 1280-1283. 
[102] C. J. Tang, Y. Wu, Tetrahedron 2007, 63, 4887-4906. 
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Scheme 3.19.Synthesis of allenyl oxiranes 3.48. 

 

3.4.2 Gold-Catalyzed Cycloisomerization of Functionalized Allenes 

 

In order to optimize the reaction conditions, tetrasubstituted hydroxyallenoate 3.37d was 

treated with various gold catalysts in different solvents and at varying temperatures (Table 3.1). 

Treatment of allene 3.37d with 10 mol% of AuCl3 in DCM at room temperature afforded 2,5-

dihydrofuran 3.49a in 55% yield after 2 days (Table 3.1, entry 1). Similarly, the use of 10 mol% of 

AuBr3 gave slightly higher yield of 3.49a (67%) after 2 days (Table 3.1, entry 2). When the same 

reaction was carried out in diethyl ether, the desired product could be obtained in 56% yield within 

2 days (Table 3.1, entry 3). Only trace amounts of the product were produced when the reaction was 

carried out in THF at room temperature (Table 3.1, entry 4). A complete conversion was achieved 

with 66% yield at an elevated temperature (60 °C) after 30 min (Table 3.1, entry 5). Cationic gold 

complexes exhibited better catalytic activities. Treatment of allene 3.37d with 5 mol% of 

Ph3PAuCl/AgOTf in DCM gave the desired product in 78% yield after 3 h at room temperature 

(Table 3.1, entry 6). A comparable result was obtained when the reaction was carried out in toluene 

which gave the 3.49a in 80% yield after 3h (Table 3.1, entry 7). Changing the silver salt to AgBF4 

did not affect the reaction but using AgSbF6 decreased the reaction time to 1 h and provided 2,5-

dihydrofuran carboxylate 3.49a in a yield of 83% (Table 3.1, entries 8-9).  Increasing the 

temperature to 50 °C accelerated the reaction considerably (15 min) and gave a slightly higher yield 

(90%) (Table 3.1, entry 10). The highest yield was achieved when the reaction was carried out by 

using Ph3PAuCl/AgSbF6 in toluene at 70 °C, which gave the desired product 3.49a in excellent yield 

(95%) after only 3 min of reaction time (Table 3.1, entry 11). The effect of the catalyst loading on 

the reaction duration and yield was also examined. The amount of catalyst could be reduced to 2 
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mol% which only increased the reaction time to 25 min for complete conversion and did not cause 

a significant decrease of the yield (92%) (Table 3.1, entry 12). Not surprisingly, neither Ph3PAuCl 

nor AgSbF6 alone catalyzed the reaction. (Table 3.1, entries 13-14). 

Table 3.1 Optimization of the gold-catalyzed cycloisomerization of 3.37d[a] 
 

 

Entry Catalyst Cat.[%] Solvent Temp[°C] Time Yield[b] 

1 AuCl3 10 DCM RT 2 d 55 

2 AuBr3 10 DCM RT 2 d 67 

3 AuBr3 10 Et2O RT 2 d 56 

4 AuBr3 10 THF RT 1 d trace 

5 AuBr3 10 THF 60 30 min 66 

6 Ph3PAuCl/ AgOTf 5 DCM RT 3 h 78 

7 Ph3PAuCl/ AgOTf 5 toluene RT 3 h 80 

8 Ph3PAuCl/ AgBF4 5 toluene RT 3 h 73 

9 Ph3PAuCl/AgSbF6 5 toluene RT 1 h 83 

10 Ph3PAuCl/AgSbF6 5 toluene  50 15 min 90 

11 Ph3PAuCl/AgSbF6 5 toluene 70 3 min  95 

12 Ph3PAuCl/AgSbF6 2 toluene 70 25 min  92 

13 Ph3PAuCl 5 toluene 70 1 d -c 

14 AgSbF6 5 toluene 70 1 d -c 

[a] The reaction was carried out using 0.3 mmol of 3.37d and in 5.0 mL of solvent under nitrogen. [b] 

Isolated yield. [c] No conversion. 
 

 

 

With the optimized conditions in hand, the scope of the gold-catalyzed cycloisomerization 

was investigated. The hydroxyallenoates were converted to the corresponding 2,5-dihydrofuran 

carboxylate derivatives 3.49a-e in excellent yields (91-95%), (Scheme 3.20). The reactions were 

generally completed within 3 to 20 min depending on the size of the substituents. Varying the 

substituents in the R3 position from methyl (3.37d), butyl (3.37b) to isopropyl (3.37c), the reaction 

required slightly longer reaction time to achieve complete conversion but the yields were still 
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excellent (3.49b, 92%; 3.49c, 91%). The method was also suitable for trisubstituted allene 3.40c 

providing the desired furan 3.49e in 84% yield after 20 min reaction time. The attempts for the 

cycloisomerization of the cyclohexyl-substituted allene 3.40d resulted in the formation of a complex 

product mixture. It is important to note that when the reaction was conducted with diastereomerically 

enriched allene 3.37b (90:10) complete axis-to-center chirality transfer was observed and the 

product 3.49d was obtained diasteroselectively (90:10). 

 

 

Scheme 3.20. Scope of the gold-catalyzed cycloisomerization. 

 

However, under the optimized reaction conditions, the gold-catalyzed cycloisomerization 

reaction of disubstituted hydroxyallene esters 3.40a and 3.40b did not give the corresponding 

dihydrofuran derivatives and resulted in the formation of complex product mixtures. Various gold 

catalysts in different solvents were tested (Table 3.2). Treatment of these compounds with 10 mol% 

AuCl in DCM, THF or toluene at various temperatures did not afford any conversion even after 5 d 

reaction time (Table 3.2, entries 1-3,10,11). Employment of Au(III) salts such as AuCl3 or AuBr3 

under various conditions also failed to catalyze the reaction (Table 3.2, entries 4-9, 12-14). Addition 

of 2,2′-bipyridine, which may activate the allene by partial deprotonation, also did not afford any 

conversion (Table 3.2, entries 15-16). Furthermore, the use of cationic gold catalysts PPh3AuNTf2 

and A did not show any catalytic activity even at a pro-longed reaction time (Table 3.2, entries 17-

19). 
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Table 3.2 Attempt to optimize gold-catalyzed cycloisomerization of 3.40a [a] 

 

Entry Compounds Catalyst Cat. [%] Solvent Temp Time Yield[b] 

1 3.40a AuCl 10 DCM RT 5d - 

2 3.40a AuCl 10 THF 60 2d - 

3 3.40a AuCl 10  toluene 75 2d - 

4 3.40a AuCl3 10 DCM  RT 2d - 

5 3.40a AuCl3 10 DCM 40 1d - 

6 3.40a AuCl3 10 THF RT 2d - 

7 3.40a AuBr3 10 DCM RT 1d - 

8 3.40a AuBr3 10 THF 50 1d - 

9 3.40a AuBr3 10 toluene 70 1d - 

10 3.40b AuCl 10 DCM RT 5d - 

11 3.40b AuCl 10  toluene 75 2d - 

12 3.40b AuCl3 10 DCM  RT 2d - 

13 3.40b AuBr3 10 DCM RT 1d - 

14 3.40b AuBr3 10 toluene 70 1d - 

15 3.40a AuCl3/2,2′-bipyridine 10 DCM RT 1d - 

16 3.40a AuBr3/2,2′-biyridine 10 DCM RT 2d - 

17 3.40a Ph3PAuNTf2 5 DCM RT 2d - 

18 3.40a Ph3PAuNTf2 5 THF 50 2d - 

19 3.40a A 5 DCM RT 2d - 

[a] The reaction was carried out using 0.3 mmol of 3.40 and in 5.0 mL of solvent under nitrogen. [b] No conversion. 
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Furthermore, when the α-amino functionalized allene 3.46a was subjected to the optimized 

reaction conditions, the desired 2,5-dihydropyrrole 3.50a was obtained in excellent yield, 93%, after 

1.5 h. Interestingly, the method did not tolerate substituents in the R1 position. The reactions of the 

allenes 3.46b (R1 = Bu) and 3.46c (R1 = i-Pr) resulted in the formation of complex product mixtures. 

 

 

Scheme 3.21. Gold-catalyzed cycloisomerization of amino-functionalized allenoates 3.46. 

 

In addition to this, compared to Au(I)-catalyzed cycloisomerization reactions of hydroxy- 

and amino-functionalized allenes, the cycloisomerization of epoxy-functionalized derivatives take 

place under milder conditions. When the epoxy-functionalized allene 3.48a was treated with 10 

mol% Ph3PAuCl/AgSbF6 in DCM at room temperature the furan 3.51a was obtained in good yield 

(87%) after only 5 min of reaction time (Scheme 3.22). The method was also suitable for allene 

3.48b providing the furan 3.51b in 90% yield after 5 min reaction time. Mechanistically, the reaction 

should proceed through the activation of the allene by the coordination of the carbophilic gold 

catalyst to an allenic double bond. Nucleophilic attack of the epoxide oxygen at the central allenic 

carbon atom followed by a cyclization-elimination process affords the furan 3.51 with the 

regeneration of the gold catalyst.  
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Scheme 3.22. Gold-catalyzed cycloisomerization of α-epoxy functionalized allene 3.48 

 

3.5 Conclusion 

 

In the first part of this study, we have developed the Cu(I)-catalyzed cross-coupling 

reactions of alkynes, propargyl alcohols, propargyl amines and propargyl epoxides with diazo 

compounds. The reactions tolerate diverse functionalities and the desired functionalized allenes 

were obtained in good yields. The synthesized allene derivatives were subjected to gold-catalyzed 

cycloisomerization reactions to afford synthetically valuable heterocycles depending on the 

substituents on the nucleophilic moiety. 

 

3.6 Experimental 

 

General Remarks: 

Unless otherwise stated, all reactions were carried out in heat dried glassware under nitrogen 

atmosphere. Gold and silver salts were purchased from Sigma-Aldrich, Chempur and Fluorochem. 

1,2-Dichloroethane, dichloromethane, toluene, and tetrahydrofuran were dried with a solvent 

purification system MBraun SPS-800. Column chromatography was carried out with silica gel 60 Å 

(0.040-0.063), which purchased from Macherey-Nagel. Reactions were monitored by thin layer 

chromatography on Silica Gel 60 F254 from Merck.  
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Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker DPX300 spectrometer 

operating at 300 MHz for proton and 75 MHz for carbon nuclei, a Bruker DRX400 spectrometer 

operating at 400 MHz for proton and 100 MHz for carbon nuclei, a Bruker DRX500 and a Varian 

Inova 500 spectrometer operating at 500 MHz for proton and 125 MHz for carbon nuclei. Chemical 

shifts were determined relative to the residual solvent peaks (CHCl3: δ=7.26 for protons, δ=77.16 

for carbon atoms; C6H6: δ=7.16 for protons, δ=128.06 for carbon atoms). The signals of the major 

component of a product mixture are marked with an asterisk (*). 

 

Low resolution mass spectra were recorded with a Thermo TSQ spectrometer. High 

resolution mass spectrometry (ESI) was performed on an Thermo LTQ Orbitrap coupled with a 

Accela HPLC system.  

 

3.6.1 Synthesis of Diazoesters 

 

3.6.1.1 General Procedure for Synthesis of α-alkyl-α-diazoester 3.34a-c 

 

 

 

The 3.34 was synthesized according to literature procedure.[103] A solution of corresponding 

acetoacetate (1.0 eq) in diethylether (1 mL/3 mmol) was added dropwise to a suspension of NaH 

(2.0 eq) in dry Et2O (1 mL/1 mmol) at room temperature. The solution was cooled in water bath and 

TsN3 (1.2 eq) was added dropwise. The reaction mixture was diluted with Et2O (1 mL/1 mmol) and 

stirred for 45 min.  The precipitates were filtered over celite by washing with Et2O and the filtrate 

was extracted with water. The organic layer was dried over MgSO4 and concentrated under vacuum 

without applying heat. If necessary, the desired compound can be purified by column 

chromatography (pentane/Et2O = 8/1).  

 

 

                                                           
[103] S. Bachman, D. Fielenbach, K. A. Jorgensen, Org. Biomol. Chem. 2004, 2, 3044-3049. 
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Synthesis of α-methyl-α-diazoester 3.34a 

 

 
 

Following the general procedure 3.6.1.1, α-methyl-α-diazoester 3.34a was synthesized starting from 

commercially available ethyl 2-methylacetoacetate (50 mmol, 7.21 g). The crude product was 

purified by column chromatography (pentane:Et2O = 8:1) to afford α-methyl-α-diazoester 3.34a 

(3.46 g, 27 mmol, %54) as a yellow oil.  

Spectral data agreed with previous data.[103] 

 

1H NMR (300 MHz, CDCl3):  4.20 (q, J = 7.3 Hz, 2 H), 1.94 (s, 3 H), 1.28 - 1.23 (t, J = 6.9 Hz, 

3H). 

 13C NMR (75 MHz, CDCl3):  168.1, 60.9, 14.6, 8.5. 

 

Synthesis of α-butyl-α-diazoester 3.34b 

 

 

Following the general procedure 3.6.1.1, α-butyl-α-diazoester 3.34b was synthesized starting from 

ethyl 2-butylacetoacetate (30 mmol, 5.7 g). The crude product was purified by column 

chromatography (pentane:Et2O = 8:1) to afford α-butyl-α-diazoester 3.34b (3.57 g, 21 mmol, 70 %) 

as a yellow oil.  

 

1H NMR (500 MHz, CDCl3):  4.20 (q, J = 7.1 Hz, 2 H), 2.29 (t, J = 7.5 Hz, 2 H), 1.51 - 1.44 (sept, 

J = 7.5Hz, 2 H), 1.41 - 1.32 (sept, J = 7.5Hz, 2 H), 1.26 (t, J = 7.1 Hz, 3 H), 0.92 (t, J = 7.3 Hz, 3 

H). 

13C NMR (125 MHz, CDCl3):  167.7, 60.8, 29.8, 22.8, 22.0, 14.6, 13.8. 
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Synthesis of α-iso-propyl-α-diazoester 3.34c 

 

 

Following the general procedure 3.6.1.1, α-iso-propyl-α-diazoester 3.34c was synthesized starting 

from ethyl 2-isopropylacetoacetate (28 mmol, 4.8 g). The crude product was purified by column 

chromatography (pentane:Et2O = 8:1) to afford α-iso-propyl-α-diazoester 3.34c (2.34 g, 15 mmol, 

53 %) as a yellow oil.  

Spectral data agreed with previous data.[103]  

 

1H NMR (400 MHz, CDCl3):  4.21 (q, J = 7.2 Hz, 2H), 2.74 (sept, J = 6.8 Hz, 1H), 1,26 (t, J = 

7.2, 3H), 1.14 (d, J = 6.8 Hz, 6H). 

13C NMR (100 MHz, CDCl3):  167.3, 60.7, 29.8, 20.6, 14.6. 

 

3.6.1.2 Synthesis of Ethyl diazoacetate 3.34d 

 

 

Ethyl diazoacetate was synthesized according to the literature procedure.[104] Glycine ethyl ester 

hydrochloride (50 mmol, 7 g) was dissolved in water (15 mL) and dichloromethane (30 mL), and 

cooled to -10 °C. Aqueous sodium nitrite solution (1.15 eq, 4.43 M) was prepared and cooled to 0 

°C in an ice bath, then was added to the solution of glycine ethyl ester hydrochloride. To this 

solution, 5% H2SO4 (4.6 mL) was added dropwise, and the solution was stirred for 10 min at -10 °C. 

The organic layer was poured into 5% sodium carbonate at 0 °C. The aqueous layer was extracted 

with dichloromethane, and the organic extracts were combined. Then, the combined solution was 

shaken thoroughly and the pH was checked to be ensure that it was alkaline. The solution was dried 

over MgSO4 and concentrated under reduced pressure without applying heat. The product was 

obtained as a pale yellow oil (3.6 g, 32mmol, 64 %).  

Spectral data agreed with previous data.[104] 

                                                           
[104] S. A. Moore, D. E. G. Shuker, J. Label. Compd. Radiopharm. 2011, 54, 855-858.  
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3.6.2 General Procedure for Cu(I)-Catalyzed Cross-Coupling Reaction 

 

 

 

Method A: To a stirred solution of corresponding alkyne (1 eq) in CH3CN (3 mL/1 mmol) was 

added corresponding diazo compound (2 eq) and CuI (10 mol%). After stirring for 5 h at room 

temperature, the reaction mixture was directly filtrated over celite and washed with Et2O. After 

removal of solvent, the residue was purified by column chromatography to give the mixture of 

corresponding 2,3-alkynoate and 2,3-allenoate. Then, the mixture diluted in CHCl3 (3 mL/1 mmol) 

and Et3N (3 eq) was added. After stirring for 12 h, the reaction mixture was concentrated under 

reduced pressure and purified by column chromatography to give the corresponding allene. 

 

Method B: To a stirred solution of corresponding alkyne (1 eq) in dry CH3CN (3 mL/1 mmol) was 

added corresponding diazo compound (2 eq), CuI (10 mol%) and Et3N (2 eq) subsequently. After 

stirring for 12 h at room temperature, the reaction mixture directly filtrated over celite and washed 

with Et2O. The solvents were removed reduced pressure. The residue was purified by column 

chromatography to give the corresponding allene. 

 

 

 

Method C: To a stirred solution of propargyl oxirane 3.47[105] (1 eq) in dry CH3CN (5 mL/1 mmol) 

was added corresponding diazo compound (2 eq). After stirring for 2 h at room temperature, the 

reaction mixture directly filtrated over celite and washed with Et2O. The solvents were removed  

                                                           
[105] C. Gronniert, S. Kramer, Y. Odabachian, F. Gagosz, J. Am. Chem. Soc. 2012, 134, 828-831.  
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reduced pressure. The residue was purified by column chromatography (cyclohexane/NEt3 (1 vol. 

%): EtOAc: 100/2) to give the corresponding allene. 

 

Ethyl 2-methyl-4-phenylbuta-2,3-dienoate 3.36a 

 

 

Following the general procedure 3.6.2-Method A using 3.34a (2.56 g, 20 mmol), phenyl acetylene 

(1.02 g, 10 mmol), and CuI (190 mg, 10 mol%), a mixture of alkynoate 3.35a and allenoate 3.36a 

(4:1) was obtained (8 mmol, 85 % combined yield). Then, the mixture was diluted in CHCl3 (24 ml) 

and Et3N (3.3 mL, 24 mmol) was added to afford 3.36a (1.31 g, 6.5 mmol, 90%). 

 

1H NMR (300 MHz, CDCl3):  7.36 - 7.18 (m, 5 H), 6.46 (q, J = 2.9 Hz, 1 H), 4.20 (m, 2 H), 1.99 

(d, J = 2.9 Hz, 3 H), 1.25 (t, J = 7.1 Hz, 3 H) 

13C NMR (75 MHz, CDCl3):  212.4, 167.2, 132.6, 128.9, 127.7, 127.6, 127.4, 99.5, 97.3, 61.2, 

15.2, 14.4. 

 

Ethyl 2-butyl-4-phenylbuta-2,3-dienoate 3.36b 

 

 

Following the general procedure 3.6.2-Method A using 3.34b (3.40 g, 20 mmol), phenyl acetylene 

(1.02 g, 10 mmol), and CuI (190 mg, 10 mol%), a mixture of alkynoate 3.35b and allenoate 3.36b 

(4:1) was obtained (8.3 mmol, 83 % combined yield). Then, the mixture was diluted in CHCl3 (18 

mL) and Et3N (3.42 mL, 24.9 mmol) was added to afford 3.36b (1.83 g, 7.5 mmol, 90%). 

 

1H NMR (300 MHz, CDCl3):  7.36 - 7.20 (m, 5 H), 6.51 (t, J = 2.9 Hz, 1 H), 4.24 - 4.15 (m, 2 H), 

2.41 - 2.31 (m, 2 H), 1.51 - 1.29 (m, 4 H), 1.24 (t, J = 7.2 Hz, 3 H), 0.88(t, J = 7.2, 3 H). 

13C NMR (75 MHz, CDCl3):  212.1, 166.9, 132.8, 128.9, 127.7, 127.3, 104.7, 98.4, 61.1, 30.3, 

28.7, 22.5, 14.4, 14.0. 
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Ethyl 2-isopropyl-4-phenylbuta-2,3-dienoate 3.36c 

 

 
 

Following the general procedure 3.6.2-Method A using 3.34c (2.1 g, 13.5 mmol), phenyl acetylene 

(685 mg, 6.7 mmol), and CuI (127.3 mg, 10 mol%), a mixture of alkynoate 3.35c and allenoate 

3.36c (4:1) was obtained (6 mmol, 78 % yield). Then, the mixture was diluted in CHCl3 (18 mL) 

and Et3N (2.47 mL, 18 mmol) was added to afford 3.36c (1.73 g, 7.5 mmol, 90%). 

 

1H NMR (300 MHz, CDCl3):  7.36 - 7.19 (m, 5 H), 6.57 (d, J = 2.2 Hz, 1 H), 4.21 (dq, J = 2.4, 

7.1 Hz, 2 H), 2.86 (dspt, J = 2.1 Hz, 1 H), 1.25 (t, J = 7.1 Hz, 3 H), 1.13 (dd, J = 7.0, 8.1 Hz, 6 H). 

13C NMR (75 MHz, CDCl3):  210.9, 166.5, 132.8, 128.9, 127.7, 127.1, 111.4, 99.6, 61.1, 28.4, 

22.4, 22.1, 14.4. 

 

3.6.3 General Procedure for Synthesis of 3.36d-e 

 

 

 

The 2,3-allenoates 3.36d-e were prepared according to the literature procedure.[106] 

The appropriate ylide or phosphonium salt (1 eq) was dissolved in dichloromethane (2 mL/1 mmol) 

and flushed with nitrogen. The yellow solution was cooled to 0 °C and triethylamine (1.3 eq) was 

added slowly. After 10 min, the solution of acyl chloride (1.1 eq) in dichloromethane (1 mL/1 mmol) 

was added dropwise to the vigorously stirred solution. The solution was allowed to warm RT. 

Progress of the reaction was monitored by TLC and approximately after 12 h, the mixture was 

evaporated under reduced pressure. The precipitate was removed by filtration over celite and the 

                                                           
[106] G. Chai, Z. Lu, C. Fu, S. Ma, Adv. Synth. Catal. 2009, 351, 1946-1954. 
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filtrate was concentrated under reduced pressure. The crude product was purified by column 

chromatography (cyclohexane:EtOAc = 100:4) to afford 2,3-allenoates 3.36d-e.  

 

Ethyl 2-methylpenta-2,3-dienoate 3.36d 

 

 

 

Following the general procedure 3.6.3, the reaction of [1-(ethoxycarbonyl)ethyl]-

triphenylphosphonium bromide (17.7 g, 40 mmol), NEt3 (7.25 mL, 5.3 g, 52 mmol), and propionyl 

chloride (3.85 mL, 4.07 g, 44 mmol) afforded 3.36d (4.2 g, 30 mmol, 77%) as a yellow oil. 

Spectral data agreed with previous data.[107] 

 
1H NMR (400 MHz, CDCl3):  5.45 - 5.37 (m, 1H), 4.17 (q, J = 7.0 Hz, 2 H), 1.84 (d, J = 3.0 Hz, 

3 H), 1.73 (d, J = 7.3 Hz, 3 H), 1.26 (t, J = 7.0 Hz, 3 H). 

13C NMR (100 MHz, CDCl3):  210.7, 168.1, 95.2, 88.6, 60.9, 15.4, 14.4, 13.4. 

 

Ethyl 2-methylocta-2,3-dienoate 3.36e 

 

 

Following the general procedure 3.6.3, the reaction of ethyl(triphenylphosphoranylidene)propionate 

(11.6 g, 32 mmol), NEt3 (7.25 mL, 5.3 g, 52 mmol), and hexanoyl chloride (4.92 mL, 4.74 g, 35.2 

mmol) afforded 3.36e (4.74 g, 26 mmol, 80%) as a yellow oil. 

Spectral data agreed with previous data.[106] 

 
1H NMR (400 MHz, CDCl3):  5.45 - 5.38 (m, 1 H), 4.21 - 4.11 (m, 2 H), 2.09 (q, J = 6.8 Hz, 2 

H), 1.84 (d, J = 3.0 Hz, 3 H), 1.46 - 1.29 (m, 4 H), 1.25 (t, J = 7.2 Hz, 3 H), 0.88 (t, J = 7.2 Hz, 4 

H). 

13C NMR (100 MHz, CDCl3):  210.1, 168.2, 95.6, 93.8, 60.9, 31.0, 27.7, 22.0, 15.4, 14.4, 13.9. 

                                                           
[107] P. Selig, W. Raven, Org. Lett. 2014, 16, 5192-5195. 
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3.6.4 General Procedure for Synthesis of Tetrasubstituted Allenes 3.37b-e  

 

 
 

The tetrasubstituted allenes 3.37b-e were prepared according to the literature procedure.[100] 

To a mixture of corresponding 2,3-allenoate 3.36 (1 eq) and THF (1 mL/1 mmol) at 0 °C, a solution 

of TBAF (2 eq, 1 M solution in THF) was added dropwise. The reaction mixture was stirred for 1,5 

h at 0 °C. Then, aldehyde (1.15 eq) was added dropwise. Progress of the reaction was monitored by 

TLC and approximately after 3 h of stirring at 0 °C, the reaction mixture was quenched with 

saturated NH4Cl solution and stirred for an additional 10 min at 0 °C. The resulting mixture was 

extracted with Et2O, washed with brine, and dried over MgSO4. The solvent was concentrated under 

reduced pressure and the crude product was purified by column chromatography 

(cyclohexane:EtOAc) to afford the allene 3.37. 

 

Ethyl 2-(3-hydroxy-2,3-diphenylprop-1-en-1-ylidene)hexanoate 3.37b 

 

 

 

Following the general procedure 3.6.4 using 3.36b (1.22 g, 5 mmol), TBAF (10.0 mL, 10 mmol, 1 

M solution in THF), and benzaldehyde (610.2 mg, 0.58 mL, 5.75 mmol), 3.37b was obtained (1.4 

g, 4 mmol, 87 %, dr = 48:52) after column chromatography (cyclohexane:EtOAc = 7:1). 

 

1H NMR (400 MHz, CDCl3):  7.60 - 7.56 (m, 1 H), 7.54 - 7.49 (m, 1 H), 7.45 - 7.40 (m, 1 H), 

7.38 - 7.20 (m, 7 H), 5.85* (s, 1 H), 5.79 (s, 1 H), 4.35 - 4.18 (m, 2 H), 2.41 - 2.35 (virt, m, 1 H), 

2.33 - 2.17 (virt, m, 1 H), 1.57 - 1.43 (virt, m, 1 H), 1.40 - 1.33 (virt, m, 1 H), 1.33 - 1.24 (virt, m, 2 

H), 1.34 (td, J= 7.2, 3.8 Hz, 3H), 0.89* (t, J = 7.3 Hz, 3 H), 0.85 (t, J = 7.3 Hz, 3 H). 

13C NMR (100 MHz, CDCl3):  211.1/210.3*, 167.0/166.9*, 141.6, 133.5/133.3*, 128.8/128.7* (d), 

128.5, 128.4, 127.9, 127.4, 127.2, 126.7, 114.6/114.5*, 106.8/105.8*, 73.7/73.3*, 61.3/61.2*, 

30.5/30.3*, 28.8/28.6*, 22.6/22.5*, 14.5/14.4*, 14.0/14.0*. 
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HRMS (ESI, m/z, [M+H]+): 351.19547 (calculated), 351.19619 (found). 

 

Ethyl 5-hydroxy-2-isopropyl-4,5-diphenylpenta-2,3-dienoate 3.37c 

 

 

 

Following the general procedure 3.6.4 using 3.36c (1.15 g, 5 mmol), TBAF (10.0 mL, 10 mmol, 1 

M solution in THF), and benzaldehyde (610.2 mg, 0.63 mL, 5.75 mmol), the allene 3.37c was 

obtained (1.3 g, 3.9 mmol, 79 %, dr = 48:52). 

 
1H NMR (400 MHz, CDCl3):  7.60 - 7.56 (m, 1 H), 7.53 - 7.45 (m, 2 H), 7.40 - 7.27 (m, 7 H), 

5.86 (s, 1 H), 5.82 (s, 1 H), 4.36 - 4.16 (m, 2 H), 2.84 (hept, J = 6.8 Hz,1 H), 2.71 (hept, J = 6.8 Hz,1 

H), 1.35 (t, J = 7.2 Hz, 3 H), 1.17 (d, J = 6.8 Hz, 1.5 H), 1.11 (d, J = 6.8 Hz, 1.5 H), 1.04 (d, J = 6.8 

Hz, 1.5 H), 0.82 (d, J = 6.8 Hz, 1.5 H). 

13C NMR (100 MHz, CDCl3):  210.2/209.3*, 166.6, 141.7/141.6*, 133.4/133.4*, 128.8/128.7*, 

128.5/128.3*, 128.2/128.0*, 127.9/127.8*, 127.4/127.3*, 127.0/126.8*, 116.1/115.8*, 113.2/112.4*, 

73.7/73.2*, 61.2/61.1*, 28.6/28.4*, 22.3/22.1*, 21.8, 14.4/14.4*  

HRMS (ESI, m/z, [M+H]+): 337.17982 (calculated), 337.18051 (found). 

 

Ethyl 5-hydroxy-2,4-dimethyl-5-phenylpenta-2,3-dienoate 3.37d  

 

 
 

Following the general procedure 3.6.4 using 3.36d (2.0 g, 14.3 mmol), TBAF (28.6 mL, 28.6 mmol, 

1 M solution in THF), and benzaldehyde (1.75 g, 1.81 mL, 16.45 mmol), the allene 3.37d was 

obtained (2.95 g, 12 mmol, 84 %, dr = 48:52). 

 

1H NMR (400 MHz, CDCl3):  d = 7.50 - 7.44 (m, 2 H), 7.39 - 7.27 (m, 3H), 5.30* (s, 1 H), 5.18 

(s, 1 H), 4.29 - 4.13 (m, 2 H), 3.60 - 2.9 (br. s., 1 H), 1.92* (s, 3 H), 1.91 (s, 3 H), 1.67* (s, 3 H), 

1.65 (s, 3 H), 1.36 - 1.29 (m, 3 H). 
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13C NMR (125 MHz, CDCl3):  207.3/206.9*, 168.2/168.1*, 141.4/141.3*, 128.4, 128.3, 

128.0*/127.7*, 126.9/126.4*, 106.6/106.3*, 97.8/96.9*, 75.1/74.9*, 61.1/61.1*, 15.4/15.3*, 14.4/14.3*, 

13.5. 

HRMS (ESI, m/z, [M+H]+): 247.13287 (calculated), 247.13313 (found). 

 

Ethyl 4-(hydroxy(phenyl)methyl)-2-methylocta-2,3-dienoate 3.37e 

 

 
 

Following the general procedure 3.6.4 using 3.36e (1.82 g, 10 mmol), TBAF (20.0 mL, 20 mmol, 1 

M solution in THF), and benzaldehyde (1.22 g, 1.27 mL, 11.5 mmol), the allene 3.37e was obtained 

(2.36 g, 8.2 mmol, 82 %, dr = 48:52). 

 

The diastereomers were separated by column chromatography (cyclohexane:EtOAc = start from 

15:1 to 4:1) obtaining as colorless oils. 

 

Major diastereomer: 

 1H NMR (500 MHz, CDCl3):  7.49 - 7.42 (m, 2 H), 7.39 - 7.28 (m, 3 H), 5.17 (s, 1 H), 4.27 - 4.15 

(m, 2 H), 1.93 (s, 3 H), 1.96 - 1.89 (m, 2 H), 1.41 - 1.19 (m, 7 H), 0.83 (t, J = 7.6 Hz, 3 H).  

13C NMR (125 MHz, CDCl3):  207.1, 168.0, 141.6, 128.4, 128.4(d), 127.9, 127.9(d), 126.6, 112.0, 

99.2, 74.7, 61.0, 29.7, 27.7, 22.3, 15.4, 14.4, 13.9. 

Minor diastereomer: 

 1H NMR (400 MHz, CDCl3):  7.44 - 7.40 (m, 2 H), 7.36 - 7.31 (m, 2 H), 7.30 - 7.27 (m, 1 H), 

5.26 (s, 1 H), 4.24 - 4.17 (m, 2 H), 2.03 - 1.91 (m, 2 H), 1.89 (s, 1 H), 1.39 -1.24 (m, 7 H), 0.82 (t, J 

= 7.2 Hz, 3 H).   

13C NMR (100 MHz, CDCl3):  206.7, 168.2, 141.7, 128.4, 128.3, 128.1, 127.1, 126.5, 112.0, 99.6, 

74.7, 61.0, 29.5, 28.3, 22.2, 15.4, 14.4, 13.9. 

HRMS (ESI, m/z, [M+H]+): 289.17982 (calculated), 289.18013 (found). 
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Ethyl 5-hydroxypenta-2,3-dienoate 3.40a 

 

 

 

Following the general procedure 3.6.2-Method B using 3.34d (2.28 g, 20 mmol), 2-Propyn-1-ol 

(560 mg, 10 mmol), CuI (190 mg, 10 mol%), and Et3N (1.46 mL, 20 mmol) the allenoate 3.40a was 

obtained (1.22 g, 8.5 mmol, 85 %).  

 

1H NMR (400 MHz, CDCl3):  5.78 (q, J = 6.3 Hz, 1 H), 5.71 - 5.65 (m, 1 H), 4.21 (d, J = 3.5 Hz, 

2 H), 4.16 (dq, J = 1.4, 7.2 Hz, 2 H), 3.50(br. s., 1 H), 1.24 (t, J = 7.2 Hz, 3 H). 

13C NMR (100 MHz, CDCl3):  211.7, 166.2, 96.5, 90.0, 61.3, 59.1, 14.2. 

HRMS (ESI, m/z, [M+H]+): 143.07027 (calculated), 143.07065 (found). 

 

Ethyl 5-hydroxyhexa-2,3-dienoate 3.40b 

 

 
 

Following the general procedure 3.6.2-Method B using 3.34d (3.43 g, 30 mmol), but-3-yn-2-ol 

(1.05 g, 1 mL, 15 mmol), CuI (285 mg, 10 mol%), and Et3N (2.2 mL, 30 mmol) the allenoate 3.40b 

was obtained (1.76 g, 11.2 mmol, 75 %). 

 

1H NMR (500 MHz, CDCl3):  5.79 - 5.73 (m, 1 H), 5.73 - 5.68 (m, 1 H), 4.53 - 4.44 (m, 1 H), 

4.19 (dq, J = 1.5, 7.0 Hz, 2 H), 1.36 (t, J = 5.9 Hz, 3 H), 1.27 (t, J = 7.5 Hz, 3H). 

13C NMR (125 MHz, CDCl3):  211.1/210.9*, 166.0/166.0*, 101.4/101.2*, 90.7/90.3*, 65.5/65.4*, 

61.3/61.2*, 23.4/23.2*, 14.3. 

HRMS (ESI, m/z, [M+H]+): 157.08592 (calculated), 157.08641 (found). 
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Ethyl 5-hydroxy-2-methylhexa-2,3-dienoate 3.40c 

 

 

 

Following the general procedure 3.6.2-Method B using 3.34a (3.85 g, 30 mmol), but-3-yn-2-ol 

(1.05 g, 1 mL, 15 mmol), CuI (285 mg, 10 mol%), and Et3N (2.2 mL, 30 mmol) the allenoate 3.40c 

was obtained (2.05 g, 12 mmol, 80 %). 

 

1H NMR (500 MHz, CDCl3):  5.63 - 5.57 (dsext, J = 1,2, 2,8 Hz 1 H), 4.45 (dquin, J = 1.9, 6.2 

Hz, 1 H), 4.22 - 4.13 (m, 2 H), 1.88 (dd, J = 0.6, 2.9 Hz, 3 H), 1.34 (dd, J = 3.1, 6.4 Hz, 3 H), 1.26 

(dt, J = 1.5, 7.2 Hz, 3 H). 

13C NMR (125 MHz, CDCl3):  208.7/208.5*, 167.6/167.6*, 99.8, 98.4/98.3*, 65.8, 61.3/61.2*, 

23.5/23.4*, 15.2, 14.3.  

HRMS (ESI, m/z, [M+H]+): 171.10157 (calculated), 171.10145 (found). 

 

Ethyl 4-(1-hydroxycyclohexyl)-2-methylbuta-2,3-dienoate 3.40d 

 

 
 

Following the general procedure 3.6.2-Method B using 3.34a (1.92 g, 15 mmol), 1-ethynyl-1-

cyclohexanol (931 mg, 7.5 mmol) and CuI (143 mg, 10 mol%), and Et3N (1.1 mL, 15 mmol) the 

allenoate 3.40d was obtained (1.1 g, 4.5 mmol, 60 %). 

 

1H NMR (500 MHz, CDCl3):  5.59 (q, J = 2.8 Hz, 1 H), 4.25 - 4.10 (m, 2 H), 1.89 (d, J = 3.0 Hz, 

3 H), 1.70 - 1.60 (m, 4 H), 1.47-1.37 (m, 6 H), 1.26 (t, J = 7.2 Hz, 3 H). 

13C NMR (125 MHz, CDCl3):  208.9, 167.6, 102.7, 98.6, 72.0, 61.1, 38.5, 38.4, 25.6, 22.7, 22.6, 

15.1, 14.4. 

HRMS (ESI, m/z, [M+H]+): 247.13047 (calculated), 247.13095 (found). 
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Ethyl 2-methyl-5-((4-methylphenyl)sulfonamido)hexa-2,3-dienoate 3.46a 

 

 
 

Following the general procedure 3.6.2-Method B using 3.34a (2.56 g, 20 mmol mmol), N-(but-3-

yn-2-yl)-4-methylbenzenesulfonamide[108] (2.23 g, 10 mmol), CuI (190 mg, 10 mol%), and Et3N 

(1.47 mL, 20 mmol), 3.46a was obtained (2.42 g, 7.5 mmol, 75 % yield). 

 
1H NMR (500 MHz, CDCl3):  7.76 (dd, J = 2.3, 8.4 Hz, 2 H), 7.30 (d, J = 7.3 Hz, 2 H), 5.43 (dq, 

J = 2.0, 5.5 Hz, 0.5 H), 5.37 (dq, J = 2.9, 5.5 Hz, 0.5 H), 4.69 (d, J = 8.0 Hz, 0.5 H), 4.63 (d, J = 8.0 

Hz, 0.5 H), 4.21 - 4.12 (m, 2 H), 4.09 - 3.97 (m, 1 H), 2.42 (s, 3 H), 1.81 (d, J = 3.1 Hz, 1.5 H), 1.75 

(d, J = 3.1 Hz, 1.5 H), 1.27 - 1.25 (m, 6 H). 

13C NMR (125 MHz, CDCl3):  209.0/208.7*, 167.1/167.0*, 143.6/143.6*, 138.0/138.0*, 129.9, 

127.2/127.2*, 99.8/99.2*, 97.7/97.3*, 61.3/61.3*, 48.3/47.8*, 22.2/21.9*, 21.6, 14.9/14.9*, 14.3.  

HRMS (ESI, m/z, [M+H]+): 324.12715 (calculated), 324.12641 (found). 

 

Ethyl 2-butyl-5-((4-methylphenyl)sulfonamido)hexa-2,3-dienoate 3.46b 

 

 

 

Following the general procedure 3.6.2-Method B using 3.34b (1.7 g, 10 mmol), N-(but-3-yn-2-yl)-

4-methylbenzenesulfonamide (1.12 g, 5 mmol), CuI (95 mg, 10 mol%), and Et3N (0.75 mL, 10 

mmol), 3.46b was obtained (1.39 g, 3.8 mmol, 77 % yield). 

 

Major diastereomer; 

1H NMR (500 MHz, CDCl3):  7.76 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 5.45 (td, J = 

3.0, 5.8 Hz, 1 H), 4.74 (br. s., 1 H), 4.20 - 4.10 (m, 2 H), 4.02 (sxt, J = 6.5 Hz, 1 H), 2.42 (s, 3 H), 

2.20 - 2.14 (m, 2 H), 1.37 - 1.28 (m, 4 H), 1.27 - 1.22 (m, 6 H), 0.88 (t, J = 6.9 Hz, 3 H). 

13C NMR (125 MHz, CDCl3):  205.5, 166.8, 143.6, 138.1, 129.8, 127.2, 104.8, 98.7, 61.2, 47.9, 

30.3, 28.1, 22.4, 22.0, 21.6, 14.3, 14.0. 

                                                           
108] H. Song, Y. Liu, Q. Wang, Org. Lett. 2013, 15, 3274-3277.     
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Minor diastereomer; 

1H NMR (500 MHz, CDCl3):  7.77 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 5.51 - 5.48 (m, 

1 H), 4.70 (br. s., 1 H), 4.21 - 4.11 (m, 2 H), 4.10 - 4.00 (m, 1 H), 2.43 (s, 3 H), 2.21 - 2.06 (m, 2 H), 

1.34 - 1.18 (m, 10 H), 0.91 - 0.83 (m, 3 H) 

13C NMR (125 MHz, CDCl3): 208.6, 166.9, 143.6, 138.0, 129.8, 127.2, 104.5, 98.4, 61.2, 48.2, 

30.3, 28.2, 22.4, 21.9, 21.6, 14.3, 14.0. 

HRMS (ESI, m/z, [M+H]+): 366.17336 (calculated), 366.17480 (found). 

 

Ethyl 2-isopropyl-5-((4-methylphenyl)sulfonamido)hexa-2,3-dienoate 3.46c 

 

 
 

Following the general procedure 3.6.2-Method B using 3.34c (1.56 g, 10 mmol), N-(but-3-yn-2-

yl)-4-methylbenzenesulfonamide (1.12 g, 5 mmol), CuI (95 mg, 10 mol%), and Et3N (0.75 mL, 10 

mmol), 3.46c waa obtained (1.5 g, 4.25 mmol, 85 % yield). 

 

1H NMR (500 MHz, CDCl3):   d = 7.77 (dd, J = 1.9, 8.4 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 5.56 

(dd, J = 2.3, 5.0 Hz, 0.5 H), 5.54 (dd, J = 2.3, 5.7 Hz, 0.5 H), 4.70 (d, J = 8.0 Hz, 0.5 H), 4.67 (d, J 

= 8.0 Hz, 0.5 H), 4.20 - 4.12 (m, 2 H), 4.09 - 3.96 (m, 1 H), 2.71 - 2.60 (m, 1 H), 2.42 (s, 3 H), 1.42 

(s, 3 H), 1.28 - 1.19 (m, 6 H), 1.01 - 0.96 (m, 6 H). 

13C NMR (125 MHz, CDCl3):  207.5/207.5*, 166.5/166.4, 143.6, 138.1/138.1, 129.9, 127.2, 

111.4/111.2, 99.9/99.7, 61.1, 48.1/47.9, 27.6/27.5, 27.1, 22.2, 21.9/21.9, 21.6, 14.3. 

HRMS (ESI, m/z, [M+H]+): 352.15826 (calculated), 352.15796 (found). 
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Ethyl 2-(2-(3-methyl-2-phenyloxiran-2-yl)vinylidene)hexanoate (3.48a) 

 

 

 

Following the general procedure 3.6.2-Method C using 3.34b (1.02 g, 6 mmol), propargyl oxirane 

3.47 (474.6 mg, 3 mmol), CuI (57.1 mg, 10 mol%), 3.48a was obtained (585.6 mg, 1.95 mmol, 65 

% yield). 

 
1H NMR (500 MHz, C6D6):  7.40 - 7.35 (m, 2 H), 7.34 - 7.26 (m, 3 H), 5.57 (t, J = 2.7 Hz, 4 H), 

4.35 - 4.12 (m, 2 H), 3.43 - 3.36 (q, J = 5.5 Hz, 1 H), 2.07 (m, 2 H), 1.35 (t, J = 7.1 Hz, 3 H), 1.19 - 

1.12 (m, 4 H), 1.12 - 1.08 (m, 7 H), 1.07 (d, J = 5.4 Hz, 3 H), 0.82 - 0.77 (m, 3 H) 

13C NMR (125 MHz, C6D6):  213.0, 166.2, 136.6, 128.5, 128.1, 128.0, 104.6, 100.1, 63.5, 61.7, 

61.0, 30.6, 28.7, 22.3, 14.6, 14.5, 14.2. 

 

Ethyl 2-methyl-4-(3-methyl-2-phenyloxiran-2-yl)buta-2,3-dienoate (3.48b) 

 

Following the general procedure 3.6.2-Method C using 3.34a (128.1 mg, 1 mmol), propargyl 

oxirane 3.47 (316.4 mg, 2 mmol), CuI (190.4 mg, 10 mol%), 3.48b was obtained (167.9 mg, 0.65 

mmol, 65 % yield). 

1H NMR (500 MHz, C6D6): 7.41 - 7.31 (m, 5 H), 5.65 (q, J = 3.2 Hz, 1 H), 4.29 - 4.12 (m, 2 H), 

3.42 - 3.38 (m, 1 H), 1.67 (d, J = 2.9 Hz, 3 H), 1.30 (t, J = 7.2 Hz, 3 H), 1.00 (d, J = 5.5 Hz, 3 H) 

13C NMR (125 MHz, C6D6):  213.1, 167.1, 137.0, 128.8, 128.7, 128.7, 128.2, 128.1, 118.2, 99.5, 

99.2, 63.9, 62.4, 61.8, 15.0, 14.8, 14.7. 
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3.6.5 General Procedure for Gold-Catalyzed Cycloisomerization of Hydroxy- and 

Amino-functionalized Allenes 

To a solution of allene (0,3 mmol) in 5 ml of dry toluene was added 10 mol % Ph3PAuCl 

and 10 mol% AgSbF6. The mixture was stirred magnetically in a preheated oil bath at 70 °C and the 

reaction was monitored by TLC. After completion, the mixture was allowed to cool down to room 

temperature and filtered over celite. The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography with cyclohexane/EtOAc furnishing the 

corresponding products. 

 

 

Ethyl 2,4-dimethyl-5-phenyl-2,5-dihydrofuran-2-carboxylate 3.49a 

 

 
 

Following the general procedure 3.6.5, using 3.37d (73.8 mg, 0.3 mmol, dr = 48:52), 3.49a (70.11 

mg, 0.28 mmol, 95%, dr = 48:52) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 

1H NMR (400 MHz, CDCl3): 7.32 - 7.27 (m, 2 H), 7.25 - 7.18 (m, 3 H), 5.62/5.58* (s, 1 H), 5.54 

(s, 1 H), 4.22 - 4.09 (m, 2 H), 1.60/1.50* (s, 3 H), 1.47/1.45* (s, 3 H), 1.22 (t, J = 7.2 Hz, 3 H). 

13C NMR (125 MHz, CDCl3):  173.9/173.4*, 141.3/140.1*, 140.0/139.9*, 128.5/128.4*, 

128.2/128.1*, 127.4/127.3*, 124.9/124.9*, 91.1/91.0*, 89.8/89.5*, 61.2/61.1*, 25.1/25.0*, 14.3/14.3*, 

12.6/12.5* 

HRMS (ESI, m/z, [M+H]+): 247.13287 (calculated), 247.13311 (found). 
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Ethyl 2-methyl-4,5-diphenyl-2,5-dihydrofuran-2-carboxylate 3.49b 

 

 
 

Following the general procedure 3.6.5, using 3.37b (105 mg, 0.3 mmol, dr = 48:52), 3.49e (96.6 

mg, 0.28 mmol, 92%, dr = 48:52) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 
1H NMR (400 MHz, CDCl3):  7.44 - 7.17 (m, 10 H), 6.42* (d, J = 22.8, 1 H), 6.42 (d, J = 18.8 

Hz, 1 H), 6.27* (d, J = 42.4 Hz, 1 H), 6.27 (d, J = 42.4 Hz, 1 H), 4.32-4.19 (m, 2H), 2.16-1-91 (m, 

2H), 1.55-1.25 (m, 4H), 1.34* (t, J = 7.2 Hz, 3 H), 1.26 (t, J = 7.2 Hz, 3 H), 0.94*(t, J = 6.8 Hz, 3H), 

0.90 (t, J = 7.2 Hz, 3H). 

 13C NMR (100 MHz, CDCl3):  d = 173.5/173.3*, 143.1*/142.4, 140.3/140.2*, 132.6*/132.3, 

128.97*/128.89, 128.87*/128.80, 128.8, 128.78*/128.75, 128.62*/128.53, 127.3*/127.2, 126.5*/ 

125.6, 93.5*/93.3, 89.7*/89.1, 61.7/61.6*, 38.7/38.3*, 26.7*/26.2, 23.3/23.2*, 14.8/14.6*, 

14.5/14.3*.       

HRMS (ESI, m/z, [M+H]+): 351.19547  (calculated), 351.19621 (found). 

 

Ethyl 2-isopropyl-4,5-diphenyl-2,5-dihydrofuran-2-carboxylate 3.49c 

 

 
 

Following the general procedure 3.6.5, using 3.37c (100.8 mg, 0.3 mmol, dr = 49:51), 3.49c (91.7 

mg, 0.27 mmol, 91%, dr = 48:52) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 

1H NMR (400 MHz, CDCl3):  7.44 - 7.17 (m, 10 H), 6.42* (d, J = 2.0 Hz, 1 H), 6.40* (d, J = 2.5 

Hz, 1 H), 6.33 (d, J = 2.5 Hz, 2 H), 6.18 (d, J = 2.0 Hz, 1 H), 4.35-4.18 (m, 2 H), 3.74 (q, J = 7.0 

Hz, 1 H), 1.34 (t, J = 7.0 Hz, 3 H), 1.29 (t, J = 7.0 Hz, 3 H), 1.05 (d, J = 7.0 Hz, 3 H), 1.00* (d, J = 

7.0 Hz, 3 H). 
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13C NMR (100 MHz, CDCl3):  173.5*/173.3, 143.4*/143.0, 140.4/140.0*, 132.8*/132.4, 129.4, 

128.9/128.8*, 128.78/128.77*, 128.6/128.5*, 127.3/127.1*, 126.6*/124.7, 96.9/96.4*, 90.4/88.6*, 

61.5*/61.4, 36.1/34.4*, 17.9/17.7*, 17.7/17.0*, 14.8/14.6*. 

HRMS (ESI, m/z, [M+H]+): 337.17982  (calculated), 337.17955 (found). 

 

Ethyl 4-butyl-2-methyl-5-phenyl-2,5-dihydrofuran-2-carboxylate 3.49d 

 

 
 

Following the general procedure 3.6.5, using 3.37e (86.4 mg, 0.3 mmol, dr = 90:10), 3.49d (82.1 

mg, 0.28 mmol, 95%, dr = 90:10) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 

1H NMR (500 MHz, CDCl3):  7.31 - 7.25 (m, 3 H), 7.25 - 7.18 (m, 2 H), 5.58 (s, 1H), 4.24 - 4.08 

(m, 2H), 1.76 - 1.70 (m, 2 H), 1.61 (s, 3 H), 1.50* (s, 3 H), 1.39 - 1.13 (m, 4 H), 1.22 (t, J = 7.1 Hz, 

3 H), 0.77 (t, J = 7.5 Hz, 3 H). 

13C NMR (125 MHz, CDCl3):  174.0/173.5*, 146.2/144.9*, 140.3/140.2*, 128.5/128.4*, 

128.3/128.2*, 127.6*/127.5, 123.9/123.8*, 90.6/90.4*, 89.9*/89.6, 61.23*/61.17, 29.5*/29.4, 

26.7/26.6*, 25.3*/25.1, 22.43*/22.35, 14.36/14.3*, 13.94*/13.91. 

HRMS (ESI, m/z, [M+H]+): 289.17982 (calculated), 289.18021 (found). 

 

Ethyl 2,5-dimethyl-2,5-dihydrofuran-2-carboxylate 3.49e 

 

 
 

Following the general procedure 3.6.5, using 3.40c (51.0 mg, 0.3 mmol, dr = 49:51), 3.49e (42.84 

mg, 0.25 mmol, 84%, dr = 49:51) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 
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1H NMR (400 MHz, CDCl3):  5.85 - 5.82 (m, 1 H), 5.81 - 5.77 (m, 1 H), 5.10 - 4.98 (m, 1 H), 

4.15 (q, J = 7.3 Hz, 2 H), 1.53/1.49* (s, 3 H), 1.30 (d, J = 6.5 Hz, 3 H), 1.25 (dt, J = 3.8, 7.2 Hz, 3 

H). 

13C NMR (125 MHz, CDCl3):  173.6/173.6*, 133.3/132.7*, 129.9/129.7*, 90.0/90.0*, 83.0/83.0*, 

66.0, 61.2, 25.9/24.7*, 22.4/21.9*, 14.3/14.2*. 

HRMS (ESI, m/z, [M+H]+): 171.10157 (calculated), 171.10088 (found).  

 

Ethyl 2,5-dimethyl-1-tosyl-2,5-dihydro-1H-pyrrole-2-carboxylate 3.50a 

 

 
 

Following the general procedure 3.6.5, using 3.46a (96.9 mg, 0.3 mmol, dr = 46:54), 3.49e (42.84 

mg, 0.25 mmol, 84%, dr = 40:60) was obtained as a colorless oil after column chromatography 

(cyclohexane:EtOAc = 100:5). 

 
1H NMR (500 MHz, CDCl3):  7.79 (t, J = 9.0 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 5.72 (dd, J = 

6.1, 1.9 Hz, 1 H), 5.69* (dd, J = 6.1, 1.9 Hz, 1 H), 5.52* (t, J = 6.0 Hz, 1 H), 5.51 (t, J = 6.0 Hz, 1 

H), 4.73 (qt, J = 6.5, 2.0 Hz, 1 H), 4.59* (qt, J = 6.5, 2.0 Hz, 1 H), 4.21 (q, J = 7.0, 2 H), 4.18* (q, 

J = 7.0 Hz, 2 H), 2.41 (s, 3 H), 1.82 (s, 3 H), 1.67* (s, 3 H), 1.48* (d, J = 6.5 Hz, 3 H), 1.29 (t, J = 

7.5 Hz, 3 H), 1.29* (t, J = 7.5 Hz, 3 H) 1.17 (d, J = 6.5 Hz, 3 H). 

 13C NMR (125 MHz, CDCl3): 172.2/172.0*, 143.2/143.1*, 139.7/139.2*, 133.2/132.2*, 

130.4/129.8*, 129.5/129.5*, 127.6/127.4*, 76.3/75.5*, 63.9/63.5*, 61.9/61.9*,25.2, 23.0, 22.1, 

21.7/21.6*, 14.1.  

HRMS (ESI, m/z, [M+H]+): 324.12696 (calculated), 324.12682 (found). 

 

3.6.6 General Procedure for the Gold-Catalyzed Cycloisomerization of 

Epoxy-functionalized Allenes  

To a solution of allene (0,3 mmol) in 5 ml of dry DCM was added 10 mol % Ph3PAuCl and 

10 mol% AgOTf. The mixture was stirred magnetically at room temperature and the reaction was 

monitored by TLC. After completion, filtered over celite, the solvent was removed under reduced 
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pressure and the crude product was purified by column chromatography with cyclohexane/EtOAc 

furnishing the corresponding products. 

 

Ethyl 2-(5-methyl-4-phenylfuran-2-yl)hexanoate (2.51a) 

 

 
 

Following the general procedure 3.6.6, using 3.48a (90 mg, 0.3 mmol), 3.51a (78.4 mg, 0.26 mmol, 

87%) was obtained as a colorless oil after column chromatography (cyclohexane:EtOAc = 100:5). 

1H NMR (500 MHz, C6D6): 7.30 - 7.26 (m, 2 H), 7.19 (t, J = 7.6 Hz, 2 H), 7.11 - 7.06 (m, 1 H), 

6.42 (s, 1 H), 4.05 - 3.94 (m, 2 H), 3.76 (t, J = 7.6 Hz, 1 H), 2.20 - 2.10 (m, 1 H), 2.15 (s, 3 H), 2.03 

- 1.93 (m, 1 H), 1.37 - 1.17 (m, 4 H), 0.94 (t, J = 7.1 Hz, 3 H), 0.83 - 0.79 (t, J = 7.0 Hz, 3 H). 

13C NMR (125 MHz, C6D6): 171.8, 151.2, 147.1, 134.7, 128.8, 128.4, 128.2, 128.0, 126.5, 122.3, 

108.5, 60.8, 46.0, 31.4, 30.0, 22.8, 14.2, 14.1, 12.9 

 

Ethyl 2-(5-methyl-4-phenylfuran-2-yl)propanoate (2.51b) 

 

 

Following the general procedure 3.6.6, using 3.48b (77.5 mg, 0.3 mmol), 3.51b (69,7 mg, 0.27 

mmol, 90%) was obtained as a colorless oil after column chromatography (cyclohexane:EtOAc = 

100:5). 

1H NMR (500 MHz, C6D6):  7.31 - 7.28 (m, 4 H), 7.20 - 7.15 (m, 1H), 6.24 (s, 1 H), 4.12 (q, J = 

7.0 Hz, 2 H), 3.71 (q, J = 7.1 Hz, 1 H), 2.35 (s, 3 H), 1.46 (d, J = 7.3 Hz, 3 H), 1.20 (t, J = 7.0 Hz, 3 

H). 
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13C NMR (125 MHz, C6D6):  173.0, 151.3, 147.1, 134.4, 128.7, 127.6, 126.4, 121.7, 107.6, 61.3, 

39.7, 27.1, 16.1, 14.4, 13.3. 
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CHAPTER 4 
 

 

Summary 

A particular attractive approach toward the synthesis of densely functionalized hetero- and 

carbocyclic products involves the incorporation of rearrangement steps into transition-metal-

catalyzed cycloisomerization cascade reactions. In this context, the diverse reactivity of gold- and 

platinum-catalyzed transformations has attracted much interest for the development of cascade 

reaction patterns. The activation of allenes with a homogeneous catalyst sets the stage for a 

cyclization by intramolecular attack of various nucleophiles, affording highly useful carbo- or 

heterocyclic products. Among various methods for the synthesis of these heterocycles, the gold- or 

platinum-catalyzed transformations of allenes play an important role in synthetic organic chemistry. 

The thesis entitled ‘Novel Strategies for the Synthesis and Cycloisomerization Reactions of 

Functionalized Allenes’ describes new routes to functionalized carbo- and heterocyclic products 

by formation of C-O, C-N, and C-C bonds with transition metal catalysis in high yields and 

selectivities. A brief introduction to allenes and cyclopentadienes and their application in organic 

synthesis is presented in Chapter 1. 

Chapter 2 deals with metal-catalyzed [1,2]-migratory cycloisomerization cascade reactions of 

1,1-disubstituted vinylallenes which provides a regioselective access to highly substituted 

cyclopentadiene derivatives. We achieved 8-90 % yield of highly functionalized cyclopentadienes 

2.83 using a Ph3PAuCl/AgSbF6 catalytic system. The method provides a selective 1,2-aryl migration 

profile where the migrating aryl group contains a strongly electron-donating methoxy substituent. 

The effect of substituents provides an interesting input to further studies of the nature of the gold-

carbenoid species and their reactivities in [1,2]-migration sequences. The effect of the methoxy 

substituent on the gold-catalyzed cycloisomerization reaction can be explained by the importance of 

the aryl rings for the stabilization of the gold-carbenoid intermediates by resonance delocalization 

in accordance with the reports by Fürstner[61] and Widenhoefer[57]. Furthermore, the gold-catalyzed 

method tolerates a variety of substituents on the alkenyl and the allenyl moieties which serves for 

the synthesis of differently substituted cyclopentadiene derivatives. 
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After having determined the importance of electron-rich aryl groups on the [1,2]-migration 

aptitude in gold-catalyzed reactions, the cycloisomerization reaction was extended to platinum 

catalysts. We have found that, vinylallenes, whether or not bearing a methoxyphenyl group, are 

suitable substrates. The Pt(II)-catalyzed cyclization has a wider substrate scope and showed no 

dependence on the electronic properties of the migrating group. 

 

 

 

Chapter 3 deals with Cu(I)-catalyzed cross-coupling reactions of alkynes, propargyl 

alcohols, propargyl amines and propargyl epoxides with diazo compounds. The desired di- and 

trifunctionalized allenes were obtained in good yields. The tetrasubstituted hydroxyallenoates were 

obtained by aldol reaction of allenoates with aldehydes in the presence of TBAF in good yields. 

 

 

 

The synthesized allene derivatives were subjected to gold-catalyzed cycloisomerization 

reactions to afford synthetically valuable heterocycles depending on the substituents on the 
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nucleophilic moiety. When hydroxy-functionalized allenoates were subjected to cycloisomerization 

reaction under Ph3PAuCl/AgSbF6 catalysis, the corresponding 2,5-dihydrofuran carboxylate 

derivatives were obtained in excellent yields. In order to understand the stereochemical outcome of 

the process, the reaction was conducted with diastereomerically enriched allene 3.37b (dr= 90:10). 

A complete axis-to-center chirality transfer was observed and the product 3.49d was obtained 

diasteroselectively (dr= 90:10). When the procedure was applied to disubstituted (R2 = R3 = H) 

allene derivatives, the reaction resulted in complex product mixtures. The trisubstituted (R2 = H, R3 

= Me) amino-functionalized allene was subjected to Ph3PAuCl/AgSbF6 catalyzed 

cycloisomerization reaction, and the desired dihydropyrrole was obtained in 93 % yield.  

 

 

 

Although several methods have been reported for the gold-catalyzed cyclization of 

functionalized allenes, epoxy-functionalized allenes have not been explored so far. We investigated 

the gold-catalyzed cycloisomerization reaction of epoxy-functionalized allene 3.48a. To our delight, 

the Ph3PAuCl/AgSbF6 catalyzed reaction resulted in the formation of furan 3.51a in 87 % yield.  

 

 

In conclusion, we have developed new approaches for the synthesis of highly substituted 

cyclopentadienes derivatives which are very useful synthetic intermediates in organic and 

organometallic chemistry. In addition to this, the developed method for the synthesis and cyclization 

reactions of difunctionalized allenes afford new routes to functionalized heterocyclic products which 

are found in bioactive natural compounds. 

 



4 Zusammenfassung 
 

 

123 
 

Zusammenfassung 

 

Ein besonders attraktiver, synthetischer Zugang zu hoch funktionalisierten hetero- und 

carbozyklischen Verbindungen ist die Integrierung von Umlagerungsschritten in 

übergangsmetallkatalysierten Zykloisomerisierungskaskadenreaktionen. In diesem Zusammenhang 

hat die vielfältige Reaktivität von Gold- und Platinkatalysatoren ein hohes Interesse in der 

Entwicklung von Kaskadenreaktionen erhalten. Die Aktivierung von Allenen mit homogenen 

Katalysatoren schaffte die Voraussetzung für die Zyklisierung, bei der durch intramolekulare 

Angriffe verschiedenster Nukleophile wertvolle carbo- und heterozyklische Verbindungen 

entstehen. 

Neben den bisherigen Synthesemethoden dieser Heterozyklen spielen gold- und 

platinkatalysierte Reaktionen von Allenen eine wichtige Rolle in der synthetischen, organischen 

Chemie. Die Arbeit mit dem Titel ‘Novel Strategies for the Synthesis and Cycloisomerization 

Reactions of Functionalized Allene’ beschreibt neue Wege, wie funktionalisierte carbo- und 

heterozyklische Verbindungen durch die Bildung neuer C-O, C-N und C-C Bindungen mit Hilfe 

von Übergangsmetallkatalysatoren in hohen Ausbeuten und Selektivitäten dargestellt werden 

können. Eine kurze Einführung zu Allenen und Cyclopentadienen sowie ihre Anwendungen in der 

organischen Synthese wird in Kapitel 1 dargestellt. 

Kapitel 2 handelt von metallkatalysierten, [1,2]-umlagernden Zykloisomerisierungs-

kaskadenreaktionen von 1,1-disubstituierten Vinylallenen, welche einen regioselektiven Zugang zu 

hoch substituierten Cyclopentadienderivaten bieten. Wir erhielten 8-90 % Ausbeute an hoch 

funktionalisierten Cyclopentadienen 2.83 unter Verwendung des Ph3PAuCl/AgSbF6 Kataly-

satorsystems. Diese Methode ermöglichte eine selektive 1,2-Arylumlagerung, wenn die 

delokalisierte Arylgruppe einen stark elektronschiebenden Methoxysubstituenten aufwies.  

Dieser Substituenteneffekt leistet einen nützlichen Beitrag zum weiteren Verständnis der 

Natur von Goldcarbenoidspezies und ihrer Reaktivität in [1,2]-Umlagerungen. Der Effekt des 

Methoxysubstituenten auf die goldkatalysierte Zykloisomerisierungsreaktion kann auf das Streben 

des Arylrings das Goldcarbenoidintermetidat durch Rensonanzdelokalisierung zu stabilisieren 

zurückgeführt werden. Dies stimmt mit Berichten von Fürstner[61] und Widenhoefer[57] überein. 

Darüber hinaus toleriert die goldkatalysierte Variante eine Vielzahl von Substituenten an den 

Alkenyl- und Allenylresten, welche vorteilhaft für die Synthese unterschiedlich substituierter 

Cyclopentadienderivate sind.  
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Nachdem die Bedeutung der Methoxygruppe auf die goldkatalysierte [1,2]-Umlagerung 

bekannt war, wurden die Untersuchungen zu Zykloisomerisierungsreaktionen auf 

Platinkatalysatoren ausgeweitet. Wir stellten fest, dass Vinylallene unabhängig davon, ob sie eine 

Methoxyphenylgruppe tragen oder nicht, geeignete Substrate darstellten. Zudem ermöglichte die 

Pt(II)-katalysierte Variante die Umsetzung einer weitaus größeren Menge an Vinylallenen und 

zeigte keine Abhängigkeit von den elektronischen Eigenschaften der umlagernden Gruppe.  

 

 

 

Kapitel 3 befasst sich mit Cu(I)-katalysierten Kreuz-Kupplungsreaktionen von Alkinen, 

Propargylalkoholen, Propargylaminen und Propargylepoxiden mit Diazoverbindungen. Die 

gewünschten di- und trifunktionalisierten Allene konnten in guten Ausbeuten erhalten werden. Die 

tetrasubstituierten Hydroxyallenoate wurden in einer Aldol-Reaktion von Allenoaten mit Aldehyden 

in Anwesenheit von TBAF und mit guten Ausbeuten erzeugt. Die dargestellten Allenderivate 

wurden in der goldkatalysierten Zykloisomerisierung eingesetzt, um synthetisch wertvolle 

Heterozyklen mit verschiedenen Substituenten an den nukleophilen Resten zu erhalten.  
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Wurden hydroxyfunktionalisierte Allenoate unter Verwendung des Ph3PAuCl/AgSbF6 

Katalysatorsystems in der Zykloisomerisierungsreaktion umgesetzt, so konnten die entsprechenden 

2,5-Dihydrofurancarboxylate in exzellenten Ausbeuten erhalten werden. Um das stereochemische 

Ergebnis dieser Reaktion zu verstehen, wurde die Umsetzung mit dem 

Diastereomerenangereicherten Allen 3.37b durchgeführt. Hierbei wurde ein vollständiger Achse-

zu-Zentrum Chiralitätstransfer beobachtet und das Produkt 3.49d konnte mit einer hohen 

Diastereomerenselektivität (dr = 90:10) isoliert werden. Wurde die Methode auf disubstituierte 

Allenderivate (R2 = R3 = H) angewandt, führte die Reaktion zu komplexen Produktgemischen. Das 

trisubstituierte (R2 = H, R3 = Me) aminofunktionalisierte Allen lieferte hingegen in der 

Ph3PAuCl/AgSbF6-katalysierten Zykloisomerisierung das gewünschte Dihydropyrrol mit einer 

Ausbeute von 93%.  

 

 

 

Obwohl mehrere Methoden für die goldkatalysierte Zyklisierung von funktionalisierten 

Allenen bekannt sind, blieben epoxyfunktionalisierte Allene bislang unerforscht. Wir haben die 

goldkatalysierte Zykloisomerisierungsreaktion der epoxyfunktionalisierten Allene 3.48a daher 

näher untersucht. Erfreulicherweise ergab die Ph3PAuCl/AgSbF6-katalysierte Reaktion die Bildung 

von 3.51a mit einer Ausbeute von 87%. 

 

 

Zusammenfassend haben wir einen neuen Zugang zur Synthese hoch substituierter 

Cyclopentadienderivaten entwickelt, die sehr nützliche synthetische Intermediate in der organischen 

und metallorganischen Chemie darstellen. Zusätzlich ergeben sich durch die hier aufgezeigten 

Methoden zur Synthese und Zyklisierung von Allenen neue Synthesewege zu funktionalisierten 

heterozyklischen Verbindungen, deren Strukturen in bioaktiven Naturstoffen vorkommen.
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