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fications. This accommodates the idea that one kind of model might be highly

appropriate for inferences on a particular focus parameter, but not for another.

Using the FIC concept that is developed by BEHL, CLAESKENS and DETTE (2014)

for quantile regression analysis, and the estimation of the rebound effect in in-

dividual mobility behavior as an example, this paper provides for an empirical

application of the FIC in the selection of quantile regression models.
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1 Introduction

Common model selection methods, such as the AKAIKE (1974) criterion (AIC)

and the SCHWARZ (1978) criterion (SIC), do not require the specification of any

purpose of inference, that is, a focus parameter. This also holds true for alterna-

tive model selection methods, such as goodness-of-fit tests, which are proposed

by, among many others, DETTE (1999), DETTE, PODOLSKIJ and VETTER (2006),

and PODOLSKIJ and DETTE (2008). However, conditional on the underlying pur-

pose, some specifications might be better suited than others in terms of estima-

tion efficiency with respect to the focus parameter. Recognizing this argument,

CLAESKENS and HJORT (2003) designed the Focused Information Criterion (FIC)

for the targeted search of parametric regression models that are estimated using

maximum-likelihood methods, thereby explicitly taking the purpose of inference

into account (BEHL, CLAESKENS, DETTE, 2014:602).

This is of high relevance in many fields of applied research, such as esti-

mating the well-known direct rebound effect, which captures the behaviorally

induced offset in the reduction of energy consumption following efficiency im-

provements (e. g. SORRELL, DIMITROUPOULOS, 2008; FRONDEL, PETERS, VANCE,

2008). To this end, alternative focus parameters are estimated in the context of in-

dividual transportation: First, the efficiency elasticity of mobility demand s:

ηµ(s) :=
∂ ln s
∂ ln µ

, (1)

reflecting the relative change in mobility demand s due to a percentage increase

in efficiency µ (see e. g. BERKHOUT et al., 2000),1 and, second, the negative of the

1In line with the economic literature (e. g. FRONDEL, VANCE, 2013), energy efficiency is defined
here by

µ =
s
e
> 0,

where the efficiency parameter µ characterizes the technology with which a service demand s is
satisfied and e denotes the energy input employed for a service such as mobility. For the specific
example of individual conveyance, parameter µ designates fuel efficiency, which can be measured
in terms of vehicle kilometers per liter of fuel input. The efficiency definition reflects the fact that
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fuel price elasticity of mobility demand, ηpe(s):

ηpe(s) :=
∂ ln s

∂ ln pe
. (2)

While ηµ(s) is the most natural definition of the direct rebound effect, the

negative of the fuel price elasticity ηpe(s) is frequently the preferred measure for

various reasons (FRONDEL, RITTER, VANCE, 2012), most notably because of the

likely endogeneity of efficiency variable µ. For instance, if a more efficient car

is purchased in response to a job change that results in a longer commute, fuel

efficiency would not be exogenous (see e. g. SORRELL, DIMITROUPOULOS, SOM-

MERVILLE, 2009:1361). To avoid endogeneity bias, it would be wise to refrain

from including this variable in any model specification aiming at estimating the

response to fuel price effects, as fuel efficiency may be a bad control (ANGRIST

and PISCHKE, 2009:63).

Using the FIC developed by BEHL, CLAESKENS and DETTE (2014) for quan-

tile regression analysis and building on FRONDEL, RITTER and VANCE (2012),

who investigate the heterogeneity of the rebound effect in individual mobility

behavior on the basis of quantile regressions, this paper provides for an empiri-

cal application of the FIC in the selection of quantile regression models.2 It will

become evident from our empirical illustration that model selection may depend

on the percentiles of the dependent variable under scrutiny.

Because of its usefulness in balancing modeling bias against estimation

variability, the FIC has been increasingly applied in the realm of statistics (see

e. g. CLAESKENS, CROUX, VAN KERCKHOVEN, 2007, CLAESKENS, HJORT, 2008,

and HJORT, CLAESKENS, 2006), but this concept appears to be virtually unknown

the higher the efficiency µ of a given technology, the less energy e = s/µ is required for the
provision of a service. The above efficiency definition assumes proportionality between service
level and energy input regardless of the level – a simplifying assumption that may not be true
in general, but provides for a convenient first-order approximation of the relationship of s with
respect to e.

2R code is available from the authors upon request.
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in the economics literature, particularly in transport economics. The contribu-

tions of BEHL et al. (2012, 2013) represent the sole exceptions for the literature

on economic modeling, while the analysis of BROWNLEES and GALLO (2008) is a

rare example originating from financial economics.

The general idea underlying the FIC, which ultimately results from estimat-

ing the mean squared error of the modeling bias (CLAESKENS, HJORT, 2003:902),

is to study perturbations of a parametric model, with the known parameter vec-

tor γ0 := (γ0
1, ..., γ0

q)
T as the point of departure. A variety of models may then

be considered that depart from γ0 in some or all of q directions: γ 6= γ0. On

the basis of parameter estimates of the altogether 2q (sub-)models that candidate

model will be selected for which the FIC is minimal for a given focus parameter

Λ = Λ(γ).

By minimizing the FIC, one captures the trade-off between modeling bias,

which, by definition, is zero for the most general model for which γi 6= γ0
i for

i = 1, ..., q, and relative estimation variability, which, by definition, is zero for

the most restricted model for which γi = γ0
i for i = 1, ..., q. For the sake of

simplicity, in our empirical example on how to estimate the direct rebound effect,

we will confine ourselves to q = 1. That is, we choose between just 2q = 2 model

specifications, where the unrestricted specification includes the critical variable

fuel efficiency µ, while the restricted specification does not.

The following Section 2 provides for a concise introduction into the concept

of the FIC. Section 3 presents the regression method, followed by the presentation

of the empirical example in Section 4. The last section summarizes and concludes.

2 The Example of the Rebound Effect

To illustrate the concept of the FIC with the empirical example of the heterogene-

ity in individual mobility behavior, we follow FRONDEL, RITTER, and VANCE
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(2012) and choose the negative of the fuel price elasticity of transport demand,

−ηpe(s), for the identification of the rebound effect, although theory would sug-

gest estimating the efficiency elasticity ηµ(s) to directly capture the rebound. In

line with FRONDEL, RITTER, and VANCE (2012), however, we argue that the in-

direct way to elicit the rebound effect via estimating fuel price elasticities is em-

pirically advantageous, as fuel prices typically exhibit sufficient variation and, in

contrast to fuel efficiency, can be regarded as parameters that are largely exoge-

nous to individual households. In short, our preferred focus parameter Λ for the

empirical identification of the direct rebound effect is given by Λ := −ηpe(s).

To capture heterogeneity in the rebound response, we estimate the condi-

tional quantile function (CQF) of the logged monthly vehicle kilometers traveled,

log(s), for a given percentile τ ∈ (0, 1), using quantile regression methods devel-

oped by KOENKER and BASSETT (1978):

Qτ(log(si)|pei , zi) = α(τ) + αpe(τ) log(pei) + zT
i αz(τ)

= (α0(τ))Txi , (3)

where log(pe) designates logged fuel prices, log(µ) denotes logged efficiency and

xi := (1, log(pei), zi, log(µi))
T, with T indicating the transposition of a vector. z

is a vector of control variables, such as household income, employment status

of adult household members and number of children, and α0(τ) is defined by

α0(τ) := (ξ(τ), γ0)T with ξ(τ) := (α(τ), αpe(τ), αz(τ))T. As efficiency µ is not

included as a regressor in model (3), γ0 = αµ = 0.

Instead from specification (3), where efficiency µ is omitted, the rebound ef-

fect is frequently estimated from a wider model that includes the likely endoge-

nous efficiency variable µ:

Qτ(log(si)|pei , µi, zi) = α(τ) + αpe(τ) log(pei) + αT
z (τ)zi + αµ(τ) log(µi)

= (α f ull)Txi , (4)
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where α f ull := (ξ(τ), γ(τ))T and γ(τ) := αµ(τ).

Adopting the terminology of CLAESKENS and HJORT (2003), specification

(3) is called the narrow or null model, as efficiency variable µ is lacking, whereas

it is included in the full model (4). Using the terminology introduced in the pre-

vious section, by estimating the full model, we depart from αµ = γ0 = 0 in just

q = 1 direction: γ(τ) = αµ(τ) 6= 0.

In our example, in which model (3) is nested in specification (4) and we

choose between only these two models, the quantile regression formulae for the

FIC adopt a straightforward shape that strongly resembles those for specifica-

tions that are estimated using maximum-likelihood methods (see e. g. BEHL et

al., 2013). Following BEHL, CLAESKENS, and DETTE (2014), the FIC for the null

model is given by

FIC0 := ωT
I BBTωI , (5)

where for q = 1, as in our case, bias vector B :=
√

n(γ − γ0) degenerates to a

scalar: B =
√

nγ(τ).

The FIC depends on focus parameter Λ via vector ωI , which is defined by

ωI := I10 I−1
00

∂Λ
∂ξ
− ∂Λ

∂γ
= I10 I−1

00
∂Λ
∂ξ
− ∂Λ

∂αµ
,

and also simplifies to a scalar, as our focus parameter Λ is given by

Λ(α f ull(τ)) = −αpe(τ) = −ηpe(s). (6)

Hence, ∂Λ
∂αµ

= 0 and
∂Λ
∂ξ

= (0,−1, 0)T. (7)

From the definition of ωI and derivative (7), it follows that ωI equals the

negative of the second element of matrix I10 I−1
00 , with I10 and I00 belonging to the
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information matrix

I :=

 I00 I01

I10 I11

 , (8)

whose components are defined as follows:

I00 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) x0
i (x

0
i )

T, I01 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) x0
i log(µi),

I10 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) (x0
i )

T log(µi), I11 := lim
n→∞

1
n ∑n

i=1 fi(εi|xi) log(µi)
2,

where x0
i := (1, log(pei), zi)

T and fi(εi|xi) denotes the unknown conditional den-

sity of the error term εi := log(si) − (α f ull)Txi, which has to be estimated by

smoothing techniques that are explained in the subsequent section.

As becomes evident from the formula for ωI , information matrix I is a key

element for the calculation of the FIC in quantile regression analysis, whereas

for specifications that are estimated by maximum-likelihood methods, the well-

known Fisher information measure represents such a key element (BEHL et al.,

2012). Information matrix I also plays an important role for the asymptotic co-

variance matrix V defined by

V := τ(1− τ)I−1VxI−1, (9)

where Vx is a covariance matrix that is based on the vector x f ull
i of the explanatory

variables of the full model:

Vx := lim
n→∞

1
n

n

∑
i=1

xi(xi)
T.

For the FIC formula for the full model, we need the inverse of the asymptotic

covariance matrix V:

V−1 =
1

τ(1− τ)
IVx

−1I =

 J00 J01

J10 J11

 ,
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with the dimensions of the block matrices J00, J01, J10, and J11 equaling those of

matrices I00, I01, I10, and I11, respectively. On this basis, the FIC formula for the

full model reads:

FIC f ull = ωT
J VωJ , (10)

where V captures the relative estimation variability and ωJ is defined similar to

ωI :

ωJ := J10 J−1
00

∂Λ
∂ξ
− ∂Λ

∂αµ
.

In the one-dimensional case q = 1 investigated here, due to ∂Λ
∂αµ

= 0 and ∂Λ
∂ξ

=

(0,−1, 0)T, ωJ degenerates to the negative of the second element of the vector

J10 J−1
00 .

The FIC formula (10) reflects the fact that for the full model, there is no mod-

eling bias by definition: B = 0, whereas relative estimation variability V vanishes

by definition for the null model and, hence, does not emerge from formula (5). In-

stead, modeling bias B becomes the pivotal factor in FIC formula (5) for the null

model. In short, the FIC formulae for the null and full models reveal the trade-off

between modeling bias and estimation variability.

3 Estimation Method

For obtaining estimates of FIC0 and FIC f ull, linear minimization problems have

to be solved, as is typical for quantile regression methods (KOENKER, 2005). For

instance, estimates of parameter vector α f ull(τ) result from the following mini-

mization problem:

min
α f ull

(
∑

ri>0
τ · ri + ∑

ri<0
(1− τ) · |ri|

)
, (11)

where underpredictions ri := log(si) − Qτ(log(si)|pei , µi, zi) = log(si) −

(α f ull)Txi > 0 are penalized by τ and overpredictions ri < 0 by 1− τ. This is
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reasonable, as for large τ one would not expect low estimates Q̂τ and vice versa,

so that these incidences have to be penalized accordingly.

Just as ordinary least squares methods fit a linear function to the dependent

variable by minimizing the expected squared error, quantile regression methods

fit a linear model by minimizing the expected absolute error, using the asymmet-

ric loss function ρτ(r) := 1(r > 0) · τ · r + 1(r ≤ 0) · (1− τ) · |r|, where the indi-

cator function 1(r > 0) indicates positive residuals r and 1(r ≤ 0) non-positive

residuals. ρτ(r) is called ‘check’ function, as its graph looks like a check mark.

For τ = 0.5, in particular, the parameter estimates result from the mini-

mization of the sum of the absolute deviations of ri. This special case of a median

regression is perfectly in line with the well-known statistical result that it is the

median that minimizes the sum of the absolute deviations of a variable, whereas

it is the mean that minimizes the sum of squared residuals, being a special case of

OLS estimation. It is also well known that the median is more robust to outliers

than the mean. This property translates to both median and quantile regressions

in general, which have the advantage that they are more robust to outliers than

mean (OLS) regression methods.

Conditional on pe, µ, and x, the conditional quantile functions (CQFs) given

by (3) and (4) depend on the distribution of the corresponding error terms εi via

the inverse distribution function F−1
εi

(τ). In the special case of homoscedasticity,

that is, if the error terms εi were to be independent and identically distributed

(iid) and, hence, the density of the errors and their inverse distribution function

do not vary across observations ( fi(εi) = f (εi) and likewise F−1
εi

(τ) = F−1
ε (τ)),

the CQFs exhibit common slopes, differing only in the intercepts α(τ). In this

case, there is no need for quantile regression methods if the focus is on marginal

effects and elasticities, such as ηpe(s), as these are given by the invariant slope

parameters, e. g. αpe(τ) = αpe . In general, however, the CQFs Qτ will differ at

different values τ in more than just the intercept and may well be even non-linear

in x.
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It also bears noting that in the special case of homoscedasticity, the asymp-

totic covariance matrix V would collapse to

V =
τ(1− τ)

f 2(F−1(τ))
Vx
−1. (12)

This strongly reminds of the covariance matrix of an ordinary least squares es-

timator given by σ2Vx
−1. Note that in formula (12), the term τ(1 − τ) reflects

the asymptotic variance of the check function ρτ. This term takes its maximum

for τ = 0.5, but gets small for percentiles close to 0 and 1. In this case, the term

τ(1− τ) may be dominated by factor f 2(F−1(τ)), leading to less precise param-

eter estimates, whereas the variance of the parameter estimates gets smaller for

quantiles close to the median.

An important step in obtaining estimates of FIC0 and FIC f ull is to find suit-

able estimators for the matrix I. To this end, smoothing techniques can be applied.

BEHL, CLAESKENS, and DETTE (2014), as well as KIM and WHITE (2003), propose

to use the estimator

Î =
1

2ĉnn

n

∑
i=1

1{−ĉn≤ε̂i≤ĉn}xixT
i , (13)

where ĉn denotes a bandwidth that has to be determined by data-driven proce-

dures, such as Cross Validation, and n denotes sample size.

4 Empirical Illustration

The data used in this illustrating example is drawn from regular surveys on the

mobility behavior of German households (MOP, 2016). Households that partici-

pate in a survey are requested to fill out a questionnaire eliciting general house-

hold information, such as household income and the number of employed house-

hold members, person-related characteristics, and relevant aspects of everyday

travel behavior. In addition, for a period of six weeks in the spring, households
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are requested to record detailed travel information for every car in the house-

hold, such as the price paid for fuel with each visit to a gas station, the liters of

fuel consumed, and the kilometers driven. (For more details on the database, see

FRONDEL, RITTER, and VANCE, 2012.)

We use this travel survey information to derive both the regressors and the

dependent variable s, which is given by the total monthly distance driven in kilo-

meters. On the basis of survey information that covers thirteen years, spanning

1997 through 2009, a period during which real fuel prices rose 1.97% per annum

on average, we estimate the focus parameter Λ(τ) = −ηpe(s) = −αpe using quan-

tile regression methods, thereby obtaining estimates of the rebound effect that

depend on the percentile τ (Table 1).

Table 1: Quantile Regression Estimates on the Rebound Effect given by Focus
Parameter Λ(τ) = −ηpe(s) resulting from the null model (3) and the full model
(4).

τ Λ̂0(τ) Λ̂ f ull(τ)

0.1 0.898 (0.114) 0.869 (0.114)

0.3 0.714 (0.076) 0.686 (0.076)

0.7 0.551 (0.068) 0.493 (0.068)

0.9 0.561 (0.080) 0.551 (0.080)

Number of obs. 4,097 4,097

Note: Standard errors are in parentheses.

In line with FRONDEL, RITTER, and VANCE (2012), who estimated the re-

bound effect on the basis of the null model, we also find for the full model sub-

stantially smaller rebound effects for households with a high travel intensity, ir-

respective of the model specification. This outcome is in perfect accord with our

expectations: To the extent that those who drive more are more dependent on car

travel, we would expect them to exhibit less responsiveness to changes in fuel

prices than those who drive less. Yet another source of heterogeneity in the re-

bound estimates is the kind of model specification: although the discrepancies

across the null and the full model are not statistically significant, the magnitudes
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of the rebound estimates differ substantially, indicating that model selection is of

great importance in our example.

In this respect, we now employ the FIC formulae presented in Section 2

to decide on whether efficiency variable µ should be included in specifications

employed to estimate focus parameter Λ(τ) = −ηpe(s), that is, the direct rebound

effect. The unanimous recommendation of the FIC across all percentiles (Table 2),

including those not reported, is to account for variable µ in the estimation of the

rebound effect. After all, the FIC values for the full model (4) are always lower

than those for the null model (3), with the difference of the FIC values between

both models being larger for the lower percentiles than for higher τ. In qualitative

terms, the same recommendation with respect to model selection results from the

most common classic model selection criterion, the AIC, which is defined for a

linear quantile regression of y on x as follows:

AIC(τ) = n log

(
1
n

n

∑
i=1

ρτ(yi − xT
i β)

)
+ p,

where p denotes the number of coefficients belonging to vector β.

Table 2: FIC and AIC Values for the Quantile Regression of the null model (3)
and the full model (4).

FIC AIC

Null Full Null Full

τ Model Model Model Model

0.1 55.03 53.47 -8,872.67 -8,955.82

0.3 25.25 23.41 -6,379.66 -6,475.37

0.7 20.00 18.87 -6,679.76 -6,749.86

0.9 26.46 26.09 -9,627.59 -9,653.20

To demonstrate that FIC and AIC may well yield divergent recommenda-

tions, we now present another example in which we compare four models, where

in one model both µ and the household income are omitted, as, frequently, in-

come information is lacking in empirical studies. While the recommendations of
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both FIC and AIC are the same for the majority of percentiles (Table 3), they differ

for τ = 0.9, for which the AIC prefers the full model (4), whereas the FIC recom-

mends selecting the model in which income is omitted. That the AIC chooses

the full model (4) does not come as a surprise, as AIC tends to select exhaustive

models for large sample sizes. Furthermore, there are also divergent recommen-

dations across percentiles τ: for low percentiles, the FIC selects the full model (4)

including both µ and household income, but it prefers the model without house-

hold income for higher percentiles.

Table 3: Quantile Regression Estimates of the FIC, AIC, and the Rebound Effect
given by Focus Parameter Λ(τ) = −ηpe(s).

Λ̂(τ) V̂ar(Λ̂(τ)) B̂ias2 FIC AIC

τ = 0.1:

Model without Income nor µ 1.278 0.1536 0.1226 95.03 -803.81

Model without Income, but with µ 0.904 0.1624 0.0003 55.98 -806.32

Model (3) with Income, but without µ 1.381 0.1537 0.1120 91.41 -819.51

Model (4) with both Income and µ 0.708 0.1625 0 55.91 -824.39

τ = 0.3:

Model without Income nor µ 0.865 0.0876 0.1503 81.84 -567.27

Model without Income, but with µ 0.599 0.0926 0.0002 31.92 -584.61

Model (3) with Income, but without µ 0.853 0.0877 0.1421 79.02 -566.50

Model (4) with both Income and µ 0.566 0.0927 0 31.89 -585.88

τ = 0.7:

Model without Income nor µ 0.590 0.0724 0.1013 59.73 -578.03

Model without Income, but with µ 0.584 0.0765 0.0000 26.31 -600.68

Model (3) with Income, but without µ 0.645 0.0724 0.0988 58.91 -577.47

Model (4) with both Income and µ 0.556 0.0766 0 26.34 -600.27

τ = 0.9:

Model without Income nor µ 1.030 0.1002 0.0438 49.53 -836.17

Model without Income, but with µ 0.916 0.1059 0.0000 36.42 -844.87

Model (3) with Income, but without µ 0.933 0.1002 0.0417 48.82 -837.08

Model (4) with both Income and µ 0.819 0.1060 0 36.46 -845.68

Note: These results are based on MOP survey information for the years 1997 and 1998 and a total of n = 344 observations.
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5 Summary and Conclusion

The well-known direct rebound effect captures the behaviorally induced offset

in the reduction of energy consumption following efficiency improvements. To

investigate the heterogeneity of the rebound effect in mobility demand across dif-

ferent percentiles of the distribution of distance traveled, we have used quantile

regression methods and the Focused Information Criterion (FIC) introduced by

BEHL, CLAESKENS and DETTE (2014) for quantile regression analysis to choose

between competing model specifications in which the endogenous variable en-

ergy efficiency µ is either omitted or included.

The FIC is conceived for targeted model searches, whereas conventional

model selection criteria, such as the Akaike criterion (AIC), are mainly designed

to find a model that is optimal in a general sense, regardless of a specific purpose

of the data analysis. The empirical example presented in the previous section has

illustrated that, first, the recommendations of the FIC differ across percentiles

and, second, they deviate from those of the AIC in that the FIC selects a smaller

model for the estimation of the rebound effect for high percentiles. Given that

the FIC is precisely designed for purpose-specific model selection, we follow this

recommendation, arguing that whenever a model is to be chosen that is optimal

for the estimation of a certain parameter of interest, such as the rebound effect

here, the FIC is a good choice.
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