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1 Introduction

Completeness of a family of distributions is often imposed for the identification of econo-

metric models. Examples include the nonparametric IV regression model (Newey & Powell

(2003), Darolles et al. (2011)), the nonclassical measurement error model (Hu & Schennach

(2008), Carroll et al. (2010), Song (2011)) and the nonparametric IV quantile regression

model (Chernozhukov & Hansen (2005)). See Andrews (2011) for additional examples and

references.

In this paper we provide a characterization of completeness in terms of the dependence

function (copula) between random variables. We provide sufficient conditions for a family

of Archimedean copulas to be (boundedly) complete. Certain Archimedean copula families

do not fulfill the typical assumptions imposed in nonparametric IV models. We provide con-

ditions such that the nonparametric IV regression model with an Archimedean dependence

structure is identified.

Let X and Z be two random variables with marginal distributions FX and FZ , respec-

tively, and let Z be the support of Z. Let θ ∈ Θ be a parameter vector with parameter

space Θ and let H be a predefined function space. We say that the family of functions

P := {φz,θ(x); z ∈ Z, θ ∈ Θ} is H -complete (with respect to X) if for all h(x) ∈H

∫
h(x)φz,θ(x)dx = 0 a.s. [FZ ], ∀θ ∈ Θ ⇒ h(x) = 0 a.s. [FX ]. (1)

If φz,θ does not depend on a random variable Z or parameter vector θ, we write φθ and φz,

respectively.

In econometric applications, the elements of P are density functions. Lehmann (1986)

considers φθ(x) = fX(x; θ), where fX is the density of X. For the identification of the

nonparametric IV regression model we have φz(x) = fX|Z(x|z), where fX|Z denotes the con-

ditional density function, see Newey & Powell (2003) and Hu & Shiu (2012). Chernozhukov
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& Hansen (2005) consider φz(x) = w(x, z)fX|Z(x|z), with w(x, z) a pre-defined function, for

the identification of the nonparametric IV quantile regression model.

In these examples it is typically assumed that H = Lp(X) := {h(x) :
∫
|h(x)|pdFX <

∞}, p ∈ {1, 2, . . .}. In that case P is said to be Lp-complete if (1) holds for p ∈ {1, 2, . . .}.

In particular, if p = 1 then P is said to be complete; If p = ∞, then P is said to be

boundedly complete. Bounded completeness is weaker than completeness. Some examples of

incomplete but boundedly complete families can be found in Mattner (1993).

If H = Lp(X) and P = C0(R), the space of continuous functions on R with compact

support, then completeness of P follows from Duistermaat & Kolk (2010, p.37). Lehmann

(1986) shows completeness if P is an exponential family. Mattner (1992, 1993) considers

location families.

The identification of the nonparametric IV regression model requires completeness of

{fX|Z(x|z; θ); z ∈ Z, θ ∈ Θ}. The completeness condition is often accompanied by assuming

that the joint distribution of X and Z, FXZ , has a square integrable density. This ensures

the existence of the singular value decomposition of certain integral operators, see Darolles

et al. (2011, p.1546) and Horowitz (2011, p.355). It also provides a sufficient condition for

FXZ to have a density of the form considered in Andrews (2011), see also Lancaster (1958).

The square integrable assumption often requires that the copula density of X and Z is

square integrable. Since a copula density that is square integrable cannot have tail depen-

dence (see Beare (2010, Theorem 3.3)), the additional identification assumption excludes

such a dependence structure. In section 2 we show that the completeness condition can be

fully characterized in terms of the copula function. Furthermore, we show that the family of

Archimedean copulas is boundedly complete (under certain regularity conditions). A copula

which satisfies our assumptions and allows for tail dependence is for example the Clayton

copula. We provide additional conditions under which we can identify the nonparametric IV

regression model with an Archimedean dependence structure, see section 3. In section 4 we
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examine the properties of a popular estimator under such a dependence structure.

2 Characterization of completeness

Let X and Z be two random variables with marginal distributions FX and FZ , respectively.

Let fX and fZ denote the density, fXZ the joint density, fX|Z the conditional density and

c(u, v) the copula density function. Then the following holds a.s.[FZ ]

fX|Z(x|z) =
fXZ(x, z)

fZ(z)
= c(FX(x), FZ(z))fX(x).

This equation relates the conditional density function to the copula density. For ease of

notation we omit the parameter vector θ.

The identification of the nonparametric IV regression model requires completeness of the

family {fX|Z(x|z; θ); z ∈ Z, θ ∈ Θ}. The next theorem characterizes completeness in terms

of the family of copula densities of X and Z. The proof can be found in the Appendix.

Theorem 2.1. Suppose the copula C and joint distribution function FXZ of X and Z are

absolutely continuous, then the family F := {fX|Z(·|z; θ); z ∈ Z} is complete if and only if

the family C := {c(u, v; θ); v ∈ [0, 1], θ ∈ Θ} is complete with respect to U = FX(X).

We consider the class of strict Archimedean copulas. Let φ(u) : [0, 1] → [0,∞] be a

continuous, strictly decreasing, convex function such that φ(0) = ∞ and φ(1) = 0. The

copula C(u, v) is called a strict Archimedean copula if

C(u, v) = φ−1(φ(u) + φ(v)).

The function φ is the called the generator of C(u, v), see Nelson (2006, p.110-112).

We proof bounded completeness of a family of Archimedean copula densities under the
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following assumption:

Assumption 1.

A.1 φ(t), t ∈ (0, 1), is twice continuously differentiable.

A.2 φ′′(t), t ∈ (0, 1), is strictly positive.

A.3 limt↓0 φ(t)/φ′(t) = 0.

Remark 2.2.

(i) Genest & MacKai (1986, Theorem 1) show that the copula C(u, v) with twice differ-

entiable generator function is absolutely continuous if and only if Assumption A3 is

satisfied. Under Assumption 1, the copula C(u, v) has density function

c(u, v) = −φ
′′(C(u, v))φ′(u)φ′(v)

[φ′(C(u, v))]3
.

(ii) Beare (2012) imposes similar conditions on the generator function to analyze the geo-

metric ergodicity in Markov chains whose dependence is characterized by an Archimedean

copula.

Under Assumption 1 we have, using a change of variables ũ := −φ(u) and ṽ := φ(v),

∫ 1

0

h(u)c(u, v)du = −
∫ 1

0

h(u)
φ′′(C(u, v))φ′(u)φ′(v)

[φ′(C(u, v))]3
du

= φ′(v)

∫ 0

−∞
h(φ−1(−ũ))

φ′′[φ−1(ṽ − ũ)]

[φ′(φ−1(ṽ − ũ))]3
du

= φ′(v){(g × ψ)}, (2)

where

g(t) :=

 −h(φ−1(−t)) t ≤ 0

0 otherwise
and ψ(t) := −φ′′[φ−1(|t|)]/[φ′(φ−1(|t|))]3.
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Under Assumption 1 we have that φ′(s) < 0 and φ′′(s) > 0 for all s ∈ [0, 1]. Hence, ψ(t) > 0

for all t ∈ R. Note that we also defined ψ(t) > 0 for t < 0. This does not affect the value of

the integral (2) but is useful to prove completeness. Figure 1 illustrates ψ(t) for the generator

functions that occur in Example 2.5 below.
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Figure 1: The function ψ(t) for the Clayton and Gumbel copula. The copula parameter θ
has been selected such that Kendall’s τ equals 0.25, 0.5 and 0.75, respectively.

Since φ′(v) ∈ (−∞, 0) for v ∈ (0, 1], we have for v ∈ (0, 1] that

∫
h(u)c(u, v)du = 0⇒ h(u) = 0

is equivalent to

(g × ψ) = 0⇒ g(ũ) = 0. (3)

Hence, a necessary and sufficient condition for (bounded) completeness of the family CA :=

{c(u, v) = −φ′′(C(u, v))φ′(u)φ′(v)/[φ′(C(u, v))]3} is (bounded) completeness of the location

family LA := {ψ(ṽ − t), t ∈ R; ṽ ∈ (0,∞)}.

A necessary and sufficient condition for the bounded completeness of location families,
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is that the characteristic function of ψ does not contain any zeros. In the remainder of the

paper, we assume therefore that
∫∞
0
|ψ(t)|dt <∞.

We proof the following result:

Theorem 2.3. Let CA be a family of strict Archimedean copula densities satisfying Assump-

tion 1 for all θ ∈ Θ. Then the family CA is boundedly complete with respect to U if and only

if ∣∣∣∣ 1

φ′(1)

∣∣∣∣ > ξ2k̂(ξ), for all ξ ∈ R

where k̂(ξ) =
∫∞
0
φ−1(t) cos(ξt)dt.

Remark 2.4. Note that 1
φ′(1)

= ∂
∂t
φ−1(t)

∣∣
t=0

. Therefore, the bounded completeness of a fam-

ily of Archimedean copulas depends solely on the behavior of the inverse generator function

φ−1(t).

We verify Assumption 1 for several copula families.

Example 2.5.

1. Consider the Clayton family with generator function

φ(u) =
1

θ
(u−θ − 1), θ ∈ [−1,∞)\{0}.

For θ ∈ [−1, 0) the generator function φ is not strict. For θ ∈ (0,∞) Assumption 1

holds. We verified the condition in Theorem 2.3 numerically for fixed θ ∈ (0,∞). The

lower tail dependence parameter of the Clayton copula is given by λL = 21/θ (see Nelson

(2006, p.215)). Hence, the family C1 = {c(u, v; θ) : φθ(u) = 1
θ
(u−θ − 1), θ ∈ (0,∞)},

is boundedly complete and allows for copulas with lower tail dependence.

2. Consider the Gumbel family with generator function

φ(u) = (− ln t)θ, θ ∈ [1,∞).
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Assumption 1 is satisfied for all θ ∈ [1,∞). However,
∫∞
0
|ψ(t)|dt is not finite. There-

fore, we cannot use Theorem 2.3.

The identification of the nonparametric IV regression model requires that the family CA

is complete. We proof completeness under the following additional conditions:

Assumption 2.

B.1 There exist finite M and r such that for all t the following holds [Fv]-almost surely

ψ(t+ w) ≤M(1 + |t|2)rψ(w), w ∈ R. (4)

B.2 Let A be some finite set. Then ψ̂(t) is infinity often differentiable in R\A.

Remark 2.6.

(i) Mattner (1992) uses these conditions to proof completeness of location families. d’Haultfoeuille

(2011) uses these conditions for the identification of nonparametric instrument variable

models (see Remark 3.1 below).

(ii) A sufficient condition for Assumption B.1 is the existence of some real m, M and r > 0

such that

0 < m ≤ ψ(t)(1 + |t|)r ≤M <∞, (5)

see Mattner (1992, Proposition 1.2).

From Mattner (1992, Theorem 1.1) we obtain

Theorem 2.7. Under Assumption 1 and 2, the family of strict Archimedean copula densities

CA is complete.

We verify Assumption 2 for the copulas of Example 2.5.
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Example 2.8.

1. Consider the family of Clayton copulas with φ(u) = 1
θ
(u−θ − 1), θ ∈ (0,∞). Then,

−φ′′[φ−1(t)]/(φ′[φ−1(t)])3 = (θ + 1)(tθ + 1)−(2θ+1)/θ. Hence, for θ ≥ 1 choose r ≤

(2θ + 1)/θ. Then ψ(t)(1 + |t|)r is bounded. Hence, condition (5) is satisfied and from

Theorem 2.7 we have that the family of Clayton copulas with θ ∈ [1,∞) is complete

provided Assumption B.2. is satisfied.

To verify Assumption B.2, we have to show that ψ̂(t) is an analytic function on R\A.

The Paley-Wiener theorems provide conditions on ψ(t) such that ψ̂ is analytic, see e.g.

Strichartz (2003, p.119-125).

Define q(t) := −φ′′[φ−1(t)]/(φ′[φ−1(t)])3, t ∈ [0,∞). Then

∫ ∞
0

|q(t)|2 dt =

∫ ∞
0

|(θ + 1)(tθ + 1)−(2θ+1)/θ|2dt

=

[
−(θ + 1)2

3θ + 2
(tθ + 1)−

3θ+2
θ

]∞
0

<∞

for all θ ∈ [1,∞). Hence, from Strichartz (2003, Theorem 7.2.4) we have that q̂(ξ) :=∫∞
0
F (t) exp(ξt)dt is analytic. Therefore, ψ̂(ξ) = q̂(ξ) + q̂(−ξ) is analytic as well.

2. We already showed that the family of Gumbel copulas is not boundedly complete and,

hence, not complete.

3 Identification

In this section we consider the identification of the function h(·) in the nonparametric in-

strumental variable regression model

Y = h(X) + ε, E(ε|Z) = 0 (6)
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where Y is the dependent variable, X an endogenous regressor, ε an disturbance and Z an

instrument variable.

Newey & Powell (2003) show that the function h(·) is identified if and only if the family

of densities {fX|Z(·)} is complete. Darolles et al. (2011, p.1546), Horowitz (2011, p.355),

among others, also assume that the joint density fXZ of X and Z is square integrable. If X

and Z are uniformly distributed (e.g. after a transformation), then it follows from

fXZ(x, z) = c(F (x), F (z))fX(x)fZ(z)

that the copula density is square integrable. Since a copula density that is square integrable

cannot have tail dependence (see Beare (2010, Theorem 3.3)), this assumption excludes the

dependence structures of Example 2.5.

We make the following assumption:

Assumption 3. The copula of X and Z is an Archimedean copula

C(u, v) = φ−1(φ(u) + φ(v))

where φ satisfies Assumption 1 and 2.

Remark 3.1.

(i) Bücher et al. (2012) developed statistical tests for the hypothese that the copula of X

and Z is an Archimedean copula.

(ii) d’Haultfoeuille (2011) also analyses the identification of (6). Instead of Assumption 3

he assumes that the regressor and instrument variable are related through

X = µ(ν(Z) + ζ)
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where µ and ν are functions and ζ a disturbance.

The following result follows than immediately from Theorem 2.7 and Newey & Powell

(2003, Proposition 2.1).

Corollary 3.2. The model (6) is identified under Assumption 3.

4 Estimation

We consider the the estimation of h(·) in the non-parametric IV regression model (6). To

illustrate the effect of a non-square integrable density, we simulate the following data gener-

ating process (DGP)

Y = h(X) + ε

X = 0.1Φ−1(V ) + ζ (7)

Z = Φ−1(U)

where (U V ) ∼ C(u, v) and ε = −0.5ζ + ν, ν ∼ N(0, (0.05)2) and ζ ∼ N(0, (0.27)2). The

function h(X) is equal to X2. Note that the DGP is closely related to the one considered in

Darolles et al. (2011).

The function C(u, v) is the Gaussian copula with correlation parameter ρ or an Archimedean

copula with parameter θ. We choose the parameter θ such that the linear correlation is equal

to ρ.

We estimate the function h(·) using the estimation method proposed in Horowitz (2011).

Note that the data generating process does not satisfy the assumptions made in Horowitz

(2011) if the copula density is not square integrable. We used Legendre-type polynomials as

basis functions. All estimates are based on 3 basis functions.
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We perform 10000 replications of n = 1000 observations of the DGP (7) and calculate

for each run the sum of squared errors (SSE)

1

n

n∑
i=1

(yi − ĥ(xi))
2.

where ĥ denotes the nonparametric estimate of h(·).

Table 1 shows some summary statistics of the SSE. The average SSE is relatively large

due to a couple of outliers. For the 0.9-quantile we have that the Clayton copula is somewhat

higher and the Gumbel copula is somewhat lower compared to the Gaussian copula.

n = 1000, ρ = 0.5 n = 1000, ρ = 0.9
copula Gaussian Clayton Gumbel Gaussian Clayton Gumbel
parameter 0.50 1.00 1.50 0.90 4.97 3.48
upper tail 0.00 0.00 0.41 0.00 0.00 0.78
lower tail 0.00 0.50 0.00 0.00 0.87 0.00
q(0.10) 17.144 17.247 16.645 17.481 17.688 17.438
q(0.25) 22.153 22.776 21.446 19.756 20.197 19.738
q(0.50) 34.602 36.818 32.805 23.041 24.548 23.191
q(0.75) 92.282 102.583 76.733 28.300 33.519 28.675
q(0.90) 520.389 584.254 402.426 38.250 61.728 39.535

Table 1: Simulated sum of squared errors of data generating process (7) with ρ = 0.5 and
0.9. Function h(·) nonparametrically estimated using the estimation procedure of Horowitz
(2011). 10000 replications.

5 conclusion

In this paper we provide a characterization of completeness in terms of the dependence

function (copula) between random variables. Simulations shown that the quantile of some

Archimedean copulas are higher compared to the Gausian copula.
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A Proofs

Proof of Theorem 2.1: For all θ ∈ Θ the following holds a.s. [FZ ]

∫ ∞
−∞

h(x)fX|Z(x|z; θ)dx =

∫ ∞
−∞

h(x)
fX,Z(x, z; θ)

fZ(z)
dx

=

∫ ∞
−∞

h(x)fX(x)c(FX(x), FZ(z); θ)dx.

”⇒” Suppose F is complete. Then

∫
h(x)fX(x)c(FX(x), FZ(z); θ)dx = 0 a.s [FZ ], ∀θ ∈ Θ ⇒ h(x) = 0 a.s [FX ]. (8)

We have for all k(u) ∈ Lp(U)

∫ 1

0

k(u)c(u, v; θ)du = 0 a.s.[FV ] ⇐⇒
∫
k(FX(x))fX(x)c(FX(x), FZ(z); θ)dx = 0 a.s [FZ ]

From (8) we have k(FX(x)) = 0 a.s.[FX ] or k(u) = 0 a.s.[FU ].

”⇐” Suppose the family C is complete. For any z ∈ Z we have

∫
h(x)fX|Z(x|z; θ)dx =

∫
h(x)fX(x)c(FX(x), FZ(z); θ)dx

=

∫
h(F−1X (u))fX(F−1X (u))c(u, v; θ)

1

fX(F−1X (u))
du

where we used that the transformation u = FX(x) is piecewise regular. Since C is complete,

we have h(F−1X (u)) = 0 a.s. and hence h(x) = 0 a.s.[FX ].
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Proof of Theorem 2.3

From (3) we have that a necessary and sufficient condition for the bounded completeness

of CA is the bounded completeness of the location family LA. From an adaptation of the

proof of ?, Theorem 2.4 (see d’Haultfoeuille (2011)) we have that a necessary and sufficient

condition for bounded completeness is that the Fourier transform of ψ̂(ξ) of ψ(ξ) does not

contain any zeros.

We have

ψ̂(ξ) =

∫ ∞
−∞

ψ(t) exp(−iξt)dt

= −
∫ ∞
−∞

φ′′(φ−1(|t|))
[φ′(φ−1(|t|)]3

exp(−iξt)dt

= −{q̂(ξ) + q̂(−ξ)}

where

q̂(ξ) :=

∫ ∞
0

φ′′[φ−1(t)]

[φ′(φ−1(t)]3
exp(−iξt)dt.

Using a change of variables t = φ(u) we obtain

q̂(ξ) =

∫ ∞
0

φ′′(φ−1(t))

[φ′(φ−1(t))]3
exp(−iξt)dt

= −
∫ 1

0

φ′′(u)

[φ′(u)]2
exp(−iξφ(u))du

= −
∫ 1

0

∂

∂u

(
− 1

φ′(u)

)
exp(−iξφ(u))du

= −

{[
−exp(−iξφ(u))

φ′(u)

]1
0

−
∫ 1

0

[
− 1

φ′(u)
(−iξφ′(u)) exp(−iξφ(u))

]
du

}

= −

{[
−exp(−iξφ(u))

φ′(u)

]1
0

− iξ
∫ 1

0

exp(−iξφ(u))du

}
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Note that φ(1) = 0, exp(iξφ(u)) is bounded and limt↓0 φ
′(t) = −∞ implies that

[
−exp(−iξφ(u))

φ′(u)

]1
0

= − 1

φ′(1)
.

Furthermore,

∫ 1

0

exp(−iξφ(u))du = [u exp(−iξφ(u))]10 −
∫ 1

0

u(−iξφ′(u)) exp(−iξφ(u))du

= 1 + iξ

∫ 1

0

uφ′(u) exp(−iξφ(u))du

= 1− iξ
∫ ∞
0

φ−1(t)φ′(φ−1(t)) exp(−iξt) 1

φ′(φ−1(t))
dt

= 1− iξ
∫ ∞
0

φ−1(t) exp(−iξt)dt.

Also

q̂(ξ) =
1

φ′(1)
+ iξ − (iξ)2

∫ ∞
0

φ−1(t) exp(−iξt)dt.

Finally

ψ̂(ξ) = −{q̂(ξ) + q̂(−ξ)}

= −
{

2

φ′(1)
+ ξ2

∫ ∞
−∞

φ−1(|t|) exp(−iξt)dt
}

= −
{

2

φ′(1)
+ 2ξ2k̂(ξ)

}
.

where

k̂(ξ) :=

∫ ∞
0

φ−1(t) cos(ξt)dt.

Note that φ′(1) < 0. Since φ(·) is convex and strictly decreasing we have that φ−1 is

convex. The convexity of φ−1 implies that its Fourier-cosine transform k̂(ξ) is positive (see

Tuck (2006)).
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For ξ = 0 we have then that ψ̂(ξ) = − 2
φ′(1)

> 0. Therefore, the characteristic function

ψ̂(ξ) does not contain any zeros if and only if

∣∣∣∣ 1

φ′(1)

∣∣∣∣ > ξ2k̂(ξ)

for all ξ ∈ R.
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