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multiplicative bias correction method. The estimator is easy to implement, and
its convergence properties are delivered by various approximation techniques on
incomplete gamma functions. Based on the jump-size estimator, two versions
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1 Introduction

The objective of this paper is to develop new estimation and testing procedures of

discontinuity in density functions with support on R+. Inference on possibly dis-

continuous densities has been explored in nonparametric statistics: examples include

Liebscher (1990), Cline and Hart (1991), and Chu and Cheng (1996), to name a few.

Discontinuity in densities is also of economic importance and interest. Local ran-

domization of a continuous running variable is a key requirement for the validity of

regression discontinuity designs (“RDD”); if the value of the running variable falls into

the left and right of the cutoff strategically, then treatment effects are no longer point

identified due to self-selection. Therefore, detection of discontinuity in the density of

the running variable at the cutoff suggests evidence of such strategic behavior or ma-

nipulation in RDD. Nonetheless, estimation and inference on jump-size magnitudes

of densities at discontinuity points have not attracted interest in econometrics up

until recently. McCrary (2008) applies a bin-based local linear regression method

to estimate jump sizes. Subsequently, Otsu, Xu and Matsushita (2013) propose two

versions of empirical likelihood-based inference procedures grounded on binning and

local likelihood methods. While our proposal can be viewed as an extension of these

articles, it has a unique feature. In our approach, jump sizes are estimated by means

of density estimation techniques using the kernels obtained through truncating asym-

metric kernels at a given (dis)continuity point, unlike nonparametric regression or

local likelihood approaches using standard symmetric kernels.

Before proceeding, it is worth explaining why we specialize in asymmetric kernel

smoothing. Empirical studies on discontinuity in densities frequently pay attention

to the distributions of economic variables such as (taxable or relative) incomes (Saez,

2010; Bertrand, Kamenica and Pan, 2015), wages (DiNardo, Fortin and Lemieux,
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1996), school enrollment counts (Angrist and Lavy, 1999) and proportion of votes for

proposed bills (McCrary, 2008). The distributions, if they are free of discontinuity

points, can be empirically characterized by two stylized facts, namely, (i) existence

of a lower bound in support (most possibly at the origin) and (ii) concentration of

observations near the boundary and a long tail with sparse data. When estimat-

ing such densities nonparametrically using symmetric kernels, we must rely either on

a boundary correction method and an adaptive smoothing technique (e.g., variable

bandwidth methods) simultaneously, or on back-transforming the density estimator

from the log-transformed data to the original scale. The former is apparently cumber-

some, and density estimates by the latter often behave poorly (e.g., Cowell, Ferreira

and Litchfield, 1998) although the method is popularly applied in empirical works.

Asymmetric kernels with support on R+ have emerged as a viable alternative that can

accommodate the stylized facts. Although there are various classes of asymmetric

kernels, for the sake of simplicity and due to popularity this study focuses exclusively

on the gamma kernel by Chen (2000)

KG(x,b) (u) =
ux/b exp (−u/b)
bx/b+1Γ (x/b+ 1)

1 (u ≥ 0) ,

where x (≥ 0) and b (> 0) are the design point and smoothing parameter, respect-

ively.

When the density has a discontinuity point, the jump-size magnitude at the point

can be defined as the difference between left and right limits of the density at the

point. While nonparametric regression (McCrary, 2008) and empirical likelihood

(Otsu, Xu and Matsushita, 2013) methods have been applied to estimate the jump

size, we attempt to have our jump-size estimator preserve appealing properties of the

gamma kernel. Accordingly, we split the gamma kernel into two parts at the discon-

tinuity point, and make each part a legitimate kernel by re-normalization. The left
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and right limits of the density can be estimated by two truncated kernels. Although

the estimators are consistent and their variance convergences are usual O
¡
n−1b−1/2

¢
where n is the sample size, their bias convergences are O

¡
b1/2

¢
, not the usual O (b)

rate. Then, we apply the multiplicative bias correction technique by Terrell and

Scott (1980) to eliminate the undesirable O
¡
b1/2

¢
biases without inflating the or-

der of magnitude in variance. Moreover, we take particular care of choosing the

smoothing parameter. Specifically, the method of power-optimality smoothing para-

meter selection by Kulasekera and Wang (1998) is tailored to inference problems on

discontinuous densities.

Our proposal has three contributions to the literature. First, unlike the binned

local linear (“BLL”) estimation by McCrary (2008), our kernel truncation approach

always generates nonnegative density estimates and is free from choosing bin widths.

Our jump-size estimator is also easy to implement. Since it has a closed form, non-

linear optimization as in Otsu, Xu and Matsushita (2013) is unnecessary. While

incomplete gamma functions are key ingredients in our estimator, standard statist-

ical packages including GAUSS, Matlab and R prepare a command that can return

values of the functions either directly or in the form of gamma cumulative distribution

functions.

Second, in delivering convergence results of asymmetric kernel estimators, we util-

ize the mathematical tools and proof strategies that are totally different from those

for nonparametric estimators smoothed by symmetric kernels. Asymptotic results

throughout this paper are built upon a few different approximation techniques on

incomplete gamma functions; such proof strategies are taken for the first time in the

econometric literature, to the best of our knowledge.

Third, we also present estimation theory of the entire density in the presence

3



of a discontinuity point. Indeed, Imbens and Lemieux (2008) argue importance of

graphical analyses in empirical studies on RDD, including inspections of densities

of running variables. It is demonstrated that density estimators smoothed by the

truncated gamma kernels admit the same bias and variance approximations as the

gamma kernel density estimator does. Furthermore, the truncated gamma-kernel

density estimator is shown to be consistent even when the true density is unbounded

at the origin.

The remainder of this paper is organized as follows. Section 2 presents estimation

and testing procedures of the density at a known discontinuity point c (> 0). As

an important practical problem, a smoothing parameter selection method is also

developed. Our particular focus is on the choice method for power optimality. In

Section 3, we discuss how to estimate the entire density when the density has a

discontinuity point. Convergence properties of density estimates are also explored.

Section 4 conducts Monte Carlo simulations to evaluate finite-sample properties of

the proposed jump-size estimator and test statistic. An empirical application on the

validity of RDD is presented in Section 5. Section 6 summarizes the main results of

the paper. Proofs are provided in the Appendix.

This paper adopts the following notational conventions: for a > 0, Γ (a) =R∞
0
ta−1 exp (−t) dt is the gamma function; for a, z > 0, γ (a, z) = R z

0
ta−1 exp (−t) dt

and Γ (a, z) =
R∞
z
ta−1 exp (−t) dt = Γ (a) − γ (a, z) denote the lower and upper in-

complete gamma functions, respectively; 1 {·} signifies an indicator function; and

b·c denotes the integer part. Lastly, the expression ‘Xn ∼ Yn’ is used whenever

Xn/Yn → 1 as n→∞.
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2 Estimation and Inference for Discontinuity in

the Density

2.1 Setup

Suppose that we suspect discontinuity of the probability density function (“pdf”)

f (x) at a given point x = c (> 0), which is assumed to be interior throughout. Also

let

f− (c) := lim
x↑c
f (x) and f+ (c) := lim

x↓c
f (x) ,

be the lower and upper limits of the pdf at x = c, respectively. Our parameter of

interest is the jump-size magnitude of the density at c

J (c) := f+ (c)− f− (c) .

To check whether f is (dis)continuous at c, we first estimate J (c) nonparametrically

and then proceed to a hypothesis testing for the null of continuity of f at c, i.e.,

H0 : J (c) = 0, against the two-sided alternative.

2.2 An Issue in Estimating Two Limits of the Density

To develop a consistent estimator of J (c), we start our analysis from estimating two

limits of the density at c. Let {Xi}ni=1 be a univariate random sample drawn from

a distribution that has the pdf f . When f is indeed discontinuous at c, a reas-

onable method would be to estimate f− (c) and f+ (c) using sub-samples
©
X−
i

ª
:=

{Xi : Xi < c} and
©
X+
i

ª
:= {Xi : Xi ≥ c}, respectively. Instead of relying on non-

parametric regression or local likelihood methods, we split the gamma kernel into two

parts at c, namely,

KG(x,b) (u) := K
L
G(x,b;c) (u) +K

U
G(x,b;c) (u) ,
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where

KL
G(x,b;c) (u) =

ux/b exp (−u/b)
bx/b+1Γ (x/b+ 1)

1 (0 ≤ u < c) and

KU
G(x,b;c) (u) =

ux/b exp (−u/b)
bx/b+1Γ (x/b+ 1)

1 (u ≥ c) .

However, neither KL
G(x,b;c) (u) nor K

U
G(x,b;c) (u) is a legitimate kernel function in the

sense that Z ∞

0

KL
G(x,b;c) (u) du =

γ (x/b+ 1, c/b)

Γ (x/b+ 1)
andZ ∞

0

KU
G(x,b;c) (u) du =

Γ (x/b+ 1, c/b)

Γ (x/b+ 1)
.

Therefore, we make scale-adjustments to obtain the re-normalized truncated kernels

as

K−
G(x,b;c)

(u) =
Γ (x/b+ 1)

γ (x/b+ 1, c/b)
KL
G(x,b;c) (u) and

K+
G(x,b;c)

(u) =
Γ (x/b+ 1)

Γ (x/b+ 1, c/b)
KU
G(x,b;c) (u) .

These kernels yield estimators of f− (c) and f+ (c) as

f̂− (c) =
1

n

nX
i=1

K−
G(x,b;c)

(Xi)
¯̄̄
x=c

=
1

n

nX
i=1

K−
G(c,b;c)

(Xi) and

f̂+ (c) =
1

n

nX
i=1

K+
G(x,b;c)

(Xi)
¯̄̄
x=c

=
1

n

nX
i=1

K+
G(c,b;c)

(Xi) .

To explore asymptotic properties of these estimators, we make the following as-

sumptions. For notational conciseness, expressions such as “f± (c)” are used through-

out, whenever no confusions may occur.

Assumption 1. The random sample {Xi}ni=1 is drawn from a univariate distribution

with a pdf f having support on R+.
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Assumption 2. The second-order derivative of the pdf f is Hölder-continuous of

order ς ∈ (0, 1] onR+\ {c}. Also let f (j)− (c) := limx↑c djf (x) /dxj and f
(j)
+ (c) :=

limx↓c djf (x) /dxj for j = 1, 2. Then, f± (c) > 0 and
¯̄̄
f
(2)
± (c)

¯̄̄
<∞.

Assumption 3. The smoothing parameter b (= bn > 0) satisfies b + (nb)
−1 → 0 as

n→∞.

Assumptions 1 and 3 are standard in the literature on asymmetric kernel smooth-

ing (e.g., Chen, 2000; Hirukawa and Sakudo, 2015). The condition “(nb)
−1 → 0” in

Assumption 3 is required for the estimation of the entire density that will be discussed

in Section 3, whereas a weaker condition “
¡
nb1/2

¢−1 → 0” suffices for Propositions 1

and 2 and Theorem 1 below. Moreover, an equivalent to Assumption 2 can be found

in McCrary (2008) and Otsu, Xu and Matsushita (2013). In particular, Hölder-

continuity of the second-order density derivative f (2) (·) in Assumption 2 implies that

there is a constant L ∈ (0,∞) such that

¯̄
f (2) (s)− f (2) (t)

¯̄
≤ L |s− t|ς , ∀s, t ∈ [0, c) and¯̄

f (2) (s0)− f (2) (t0)
¯̄
≤ L |s0 − t0|ς , ∀s0, t0 ∈ [c,∞) .

The proposition below refers to bias and variance approximations of f̂± (c). It

is worth emphasizing that all convergences results in this paper are built upon a

few different approximation techniques on incomplete gamma functions; such proof

strategies are taken for the first time in the econometric literature, to the best of our

knowledge. Moreover, for the purpose of our subsequent analysis, the bias expansion

is derived up to the second-order term.
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Proposition 1. Under Assumptions 1-3, as n→∞,

Bias
n
f̂± (c)

o
∼ ∓

r
2

π
c1/2f

(1)
± (c) b1/2 +

½µ
1− 4

3π

¶
f
(1)
± (c) +

c

2
f
(2)
± (c)

¾
b, and

V ar
n
f̂± (c)

o
∼ 1

nb1/2
f± (c)√
πc1/2

.

Proposition 1 implies that f̂± (c) are consistent for f± (c), and that their variance

convergence has a usual rate of O
¡
n−1b−1/2

¢
. Nevertheless, the bias convergence

is O
¡
b1/2

¢
, which is slower than the usual O (b) rate. This is an outcome of one-

sided smoothing. If f were continuous at c and smoothing were made on both sides

of the design point c using the gamma kernel, the nearly symmetric shape of the

kernel would cancel out the O
¡
b1/2

¢
bias.1 In reality, because data points used for

estimating f± (c) lie only on either the left or right side of c, the O
¡
b1/2

¢
bias never

vanishes. It follows that when J (c) is estimated by Ĵ (c) := f̂+ (c) − f̂− (c), it also

has an inferior O
¡
b1/2

¢
bias. Therefore, our goal is to propose an estimator of J (c)

with an O (b) bias and an O
¡
n−1b−1/2

¢
variance.

2.3 Bias-Corrected Estimation and Inference

To improve the bias convergence in estimators of f± (c) from O
¡
b1/2

¢
to O (b) while

the order of magnitude in variance remains unchanged, we propose to employ a mul-

tiplicative bias correction (“MBC”) technique. As in Hirukawa (2010), Hirukawa and

Sakudo (2014, 2015), and Funke and Kawka (2015), the MBC method proposed by

Terrell and Scott (1980) is adopted.2 The method eliminates the leading bias term

by constructing a multiplicative combination of two density estimators with differ-

1This can be also seen by combining two estimators f̂± (c) as a weighted sum.
2Aforementioned articles also apply another MBC method proposed by Jones, Linton and Nielsen

(1995). However, it appears that the method fails to eliminate the O
¡
b1/2

¢
bias. Their MBC

estimator of f− (c), for example, can be written as

f̆− (c) := f̂− (c) ᾰ− (c) := f̂− (c)

(
1

n

nX
i=1

K−
G(c,b;c)

(Xi)

f̂− (Xi)

)
,
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ent smoothing parameters. In our context, for some constant δ ∈ (0, 1), the MBC

estimators of f± (c) can be defined as

f̃± (c) =
n
f̂±,b (c)

o1/(1−δ1/2) n
f̂±,b/δ (c)

o−δ1/2/(1−δ1/2)
,

where f̂•,b (x) and f̂•,b/δ (x) signify the density estimators using smoothing parameters

b and b/δ, respectively. Not only are f̃± (c) nonnegative by construction, but also their

bias and variance convergences are usual O (b) and O
¡
n−1b−1/2

¢
rates, respectively,

as documented in the next proposition. The proof is similar to the one for Theorem

1 of Hirukawa and Sakudo (2014), and thus it is omitted.

Proposition 2. Under Assumptions 1-3, as n→∞,

Bias
n
f̃± (c)

o
∼

µ
1

δ1/2

¶⎡⎢⎣ c
π

⎧⎪⎨⎪⎩
³
f
(1)
± (c)

´2
f± (c)

⎫⎪⎬⎪⎭−
½µ
1− 4

3π

¶
f
(1)
± (c) +

c

2
f
(2)
± (c)

¾⎤⎥⎦ b, and
V ar

n
f̃± (c)

o
∼ 1

nb1/2
λ (δ)

f± (c)√
πc1/2

,

where

λ (δ) :=

³
1 + δ3/2

´
(1 + δ)

1/2 − 2√2δ

(1 + δ)
1/2
³
1− δ1/2

´2
is monotonously increasing in δ ∈ (0, 1) with

lim
δ↓0

λ (δ) = 1 and lim
δ↑1

λ (δ) =
11

4
.

Proposition 2 suggests that as δ ↓ 0 (δ ↑ 1) or in case of oversmoothing (under-

smoothing), the bias increases (decreases) and the variance decreases (increases). It

is a common practice in nonparametric kernel testing that the bias is made asymp-

totically negligible via undersmoothing, and thus what matters for inference is the

where ᾰ− (c) serves as the ‘bias correction’ term. However, f̂− (x) (x < c) has an O (b) bias, as
stated in Theorem 2, so does ᾰ− (c). Therefore, the O

¡
b1/2

¢
bias in f̂− (c) never vanishes, and thus

we do not pursue this type of MBC.
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size of λ (δ). Because of no minimum in λ (δ), the choice of δ is left as an exercise in

Monte Carlo simulations.

It also follows that J (c) can be consistently estimated as J̃ (c) := f̃+ (c)− f̃− (c).

The next theorem refers to the limiting distribution of J̃ (c).3

Theorem 1. Under Assumptions 1-3, as n→∞,

√
nb1/2

n
J̃ (c)− J (c)−B (c) b+ o (b)

o
d→ N (0, V (c)) , (1)

where

B (c) =

µ
1

δ1/2

¶⎡⎢⎣ c
π

⎧⎪⎨⎪⎩
³
f
(1)
+ (c)

´2
f+ (c)

−

³
f
(1)
− (c)

´2
f− (c)

⎫⎪⎬⎪⎭
−
½µ
1− 4

3π

¶³
f
(1)
+ (c)− f (1)− (c)

´
+
c

2

³
f
(2)
+ (c)− f (2)− (c)

´¾¸
V (c) = λ (δ)

½
f+ (c) + f− (c)√

πc1/2

¾
,

and λ (δ) is defined in Proposition 2. In addition, if nb5/2 → 0 as n→∞, then (1)

reduces to

√
nb1/2

n
J̃ (c)− J (c)

o
d→ N (0, V (c)) .

As indicated in Proposition 2, J̃ (c) has anO (b) bias and anO
¡
n−1b−1/2

¢
variance.

Observe that for a given δ, the variance coefficient decreases as c increases, i.e., as the

discontinuity point moves away from the origin. We can also find that the leading

bias term B (c) b cancels out if f has a continuous second-order derivative at c.

Theorem 1 also implies that given a smoothing parameter b = Bn−q for some

constants B ∈ (0,∞) and q ∈ (2/5, 1) and Ṽ (c), a consistent estimate of V (c), the
3It is possible to use different constants δ− and δ+ and/or different smoothing parameters b−

and b+ for f̃− (c) and f̃+ (c), as long as b− and b+ shrink to zero at the same rate. For convenience,
however, we choose to employ the same δ and b.
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test statistic is

T (c) :=

√
nb1/2J̃ (c)q
Ṽ (c)

d→ N (0, 1) under H0 : J (c) = 0.

Moreover, as documented in the next proposition, the test is consistent. Observe

that the power approaches one for local alternatives with convergence rates no faster

than n1/2b1/4, as well as for fixed alternatives.

Proposition 3. Under Assumptions 1-3, as n→∞, Pr {|T (c)| > Bn}→ 1 under

H1 : J (c) 6= 0 for any non-stochastic sequence Bn satisfying Bn = o
¡
n1/2b1/4

¢
.

Our remaining tasks are to present examples of Ṽ (c) and to propose a choice

method of b. The latter is discussed in the next section, whereas there are a few

candidates of Ṽ (c). Replacing f± (c) in V (c) with their consistent estimates f̃± (c)

immediately yields

Ṽ1 (c) := λ (δ)

(
f̃+ (c) + f̃− (c)√

πc1/2

)
.

Alternatively, it is possible to compute the gamma kernel density estimator at c

f̂ (c) :=
1

n

nX
i=1

KG(x,b) (Xi)
¯̄
x=c

=
1

n

nX
i=1

KG(c,b) (Xi) .

By (A4) and (A6), we have

γ (c/b+ 1, c/b)

Γ (c/b+ 1)
=
1

2
+O

¡
b1/2

¢
and

Γ (c/b+ 1, c/b)

Γ (c/b+ 1)
=
1

2
+O

¡
b1/2

¢
.

It follows that

f̂ (c) =
γ (c/b+ 1, c/b)

Γ (c/b+ 1)
f̂− (c) +

Γ (c/b+ 1, c/b)

Γ (c/b+ 1)
f̂+ (c)

p→ f+ (c) + f− (c)
2

.

As a consequence, we can obtain another estimator of V (c) as

Ṽ2 (c) := λ (δ)

(
2f̂ (c)√
πc1/2

)
.

11



2.4 Smoothing Parameter Selection

How to choose the value of the smoothing parameter b is an important practical prob-

lem. McCrary (2008) proposes the choice method which closely follows the literature

on the BLL smoothing. Moreover, in the literature on RDD, Imbens and Kalyanara-

man (2012) and Porter and Yu (2015, Section 5.4) discuss methods of choosing the

smoothing parameter. All these proposals rely on either a cross-validation criterion

or a plug-in approach, and thus they stand on the idea of estimation-optimality. How-

ever, once our priority is given to testing for continuity of the pdf f at a given point c,

such approaches cannot be justified in theory or practice, because estimation-optimal

values may not be equally optimal for testing purposes. Here we have a preference

for test-optimality and thus adopt the power-optimality criterion by Kulasekera and

Wang (1998), whose idea is also applied in Hirukawa and Sakudo (2016).

Below Procedure 1 of Kulasekera and Wang (1998) is tailored to our context.

The procedure is a version of sub-sampling. Let n− and n+ be the numbers of

observations in sub-samples
©
X−
i

ª
and

©
X+
i

ª
, respectively, where n ≡ n−+n+. Also

assume that
©
X−
i

ªn−
i=1

and
©
X+
i

ªn+
i=1

are ordered samples. Then, the entire sample

{Xi}ni=1 =
©©
X−
i

ªn−
i=1
,
©
X+
i

ªn+
i=1

ª
can be split into M sub-samples, where M =Mn is

a non-stochastic sequence that satisfies 1/M +M/n→ 0 as n→∞. Given such M ,

(k−, k+) := (bn−/Mc , bn+/Mc) and k := k− + k+, the mth sub-sample is defined as

{Xm,i}ki=1 :=
½n
X−
m+(i−1)M

ok−
i=1
,
n
X+
m+(i−1)M

ok+
i=1

¾
, m = 1, . . . ,M.

The test statistic using the mth sub-sample {Xm,i}ki=1 becomes

Tm (c) :=

√
kb1/2J̃m (c)q
Ṽm (c)

, m = 1, . . . ,M,

where J̃m (c) and Ṽm (c) (which is either Ṽ1,m (c) or Ṽ2,m (c)) are the sub-sample ana-

logues of J̃ (c) and Ṽ (c), respectively. Also denote the set of admissible values for
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b = bn as Hn :=
£
Bn−q, Bn−q

¤
for some prespecified exponent q ∈ (2/5, 1) and two

constants 0 < B < B <∞. Moreover, let

π̂M (bk) :=
1

M

MX
m=1

1 {Tm (c) > cm (α)} ,

where cm (α) is the critical value for the size α test using the mth sub-sample. We

pick the power-maximized b̂k = B̂k−q = argmaxbk∈Hk π̂M (bk), and the smoothing

parameter value b̂n := B̂n
−q follows.

We conclude this section by stating how to obtain b̂n in practice. Step 1 reflects

thatM should be divergent but smaller than both n− and n+ in finite samples. Step

3 follows from the implementation methods in Kulasekera and Wang (1998). Finally,

Step 4 corresponds to the case for more than one maximizer of π̂M (bk).

Step 1: Choose some p ∈ (0, 1) and specify M = bmin {np−, np+}c.
Step 2: Make M sub-samples of sizes (k−, k+) = (bn−/Mc , bn+/Mc).
Step 3: Pick two constants 0 < H < H < 1 and define Hk =

£
H,H

¤
.

Step 4: Set cm (α) ≡ zα and find b̂k = inf {argmaxbk∈Hk π̂M (bk)}
by a grid search.

Step 5: Recover B̂ by B̂ = b̂kk
q and calculate b̂n = B̂n

−q.

3 Estimation of the Entire Density in the Presence

of a Discontinuity Point

3.1 Density Estimation by Truncated Kernels

We are typically interested in how the shape of the pdf looks like, as well as whether it

has a discontinuity point. Imbens and Lemieux (2008) strongly recommend graphical

analyses in empirical studies on RDD, including inspections of densities of running

variables. If the test in the previous section fails to reject the null of continuity of the

pdf f at the cutoff c, the entire density may be re-estimated by the gamma kernel,

for example. How should we estimate the entire density if the test rejects the null?
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The answer to this question is simple. It suffices to compute f̂− (x) or f̂+ (x)

as an estimate of f (x), depending on the position of the design point x. To put it

in another way, f̂− (x) (f̂+ (x)) can be employed whenever x < c (x > c), provided

that c is the only point of discontinuity in f , as documented in the theorem below.

Although only the bias-variance trade-off is provided there, asymptotic normality of

the estimators can be established similarly to Theorem 1.

Theorem 2. Suppose that Assumptions 1-3 hold. Then, for x > c, as n→∞,

Bias
n
f̂+ (x)

o
∼

n
f (1) (x) +

x

2
f (2) (x)

o
b, and

V ar
n
f̂+ (x)

o
∼ 1

nb1/2
f (x)

2
√
πx1/2

.

On the other hand, for x < c, as n→∞,

Bias
n
f̂− (x)

o
∼

n
f (1) (x) +

x

2
f (2)

o
b, and

V ar
n
f̂− (x)

o
∼

(
1

nb1/2
f(x)

2
√
πx1/2

if x/b→∞
1
nb

Γ(2κ+1)

22κ+1Γ2(κ+1)
f (x) if x/b→ κ ∈ (0,∞) .

Theorem 2 indicates no adversity when f (x) for x 6= c is estimated by f̂± (x).

Observe that f̂± (x) admit the same bias and variance expansions as the gamma

kernel density estimator f̂ (x) does. A rationale is that as the design point x moves

away from the truncation point c, data points tend to lie on both sides of x and each

truncated kernel is likely to behave like the gamma kernel. We can also see that

the variance coefficient decreases as x increases. The shrinking variance coefficient

as the design point x moves away from the origin reflects that more data points can

be pooled to smooth in areas with fewer observations. This property is particularly

advantageous to estimating the distributions that have a long tail with sparse data,

such as those of the economic variables mentioned in Section 1.
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3.2 Convergence Properties of f̂− (x) When the Density Is

Unbounded at the Origin

Clusterings of observations near the boundary are frequently observed in the distribu-

tions with positive supports. In the study of RDD, Figure 1 of Bertrand, Kamenica

and Pan (2015) suggests that the distribution of wives’ relative income within house-

holds has a clustering of observations near the origin, as well as a sharp drop at the

point of 1/2 (i.e., the point at which wives’ income shares exceed their husbands’).

Similarly, in Figure 5 of McCrary (2008), the distribution of proportion of votes for

proposed bills in the US House of Representatives appears to be unbounded at the

boundary of 100%, as well as a sharp discontinuity at the point of 50%.4

The following two theorems document weak consistency and the relative conver-

gence of f̂− (x) when f (x) is unbounded at x = 0.

Theorem 3. If f (x) is unbounded at x = 0, Assumptions 1 holds and b+(nb2)
−1 →

0 as n→∞, then f̂− (0) p→∞.

Theorem 4. Suppose that f (x) is unbounded at x = 0 and continuously differ-

entiable in the neighborhood of the origin. In addition, if Assumption 1 holds and

b+ {nb2f (x)}−1 → 0 as n→∞ and x→ 0, then¯̄̄̄
¯ f̂− (x)− f (x)f (x)

¯̄̄̄
¯ p→ 0

as x→ 0.

It has been demonstrated by Bouezmarni andScaillet (2005) and Hirukawa and

Sakudo (2015) that the weak consistency and relative convergence for densities un-

bounded at the origin are peculiar to the density estimators smoothed by the gamma

4The arguments in this section are still valid for this case, if we transform the original data X to

X 0 := 1−X and apply them to the transformed data X 0.

15



and generalized gamma kernels. The theorems ensure that f̂− (x) is also a proper

estimate for unbounded densities. We can deduce from Theorems 2-4 that all in all,

appealing properties of the gamma kernel density estimator are inherited to f̂± (x).

4 Finite-Sample Performance

It is widely recognized that asymptotic results on kernel-smoothed tests are not well

transmitted to their finite-sample distributions, which reflects that omitted terms in

the first-order asymptotics on the test statistics are highly sensitive to their smooth-

ing parameter values in finite samples. On the other hand, there is growing liter-

ature that reports nice finite-sample properties of the estimators and test statistics

smoothed by asymmetric kernels. Examples include Kristensen (2010) and Gos-

podinov and Hirukawa (2012) for estimation and Fernandes and Grammig (2005),

Fernandes, Mendes and Scaillet (2015), and Hirukawa and Sakudo (2016) for testing.

To see which perspective dominates, this section investigates finite-sample perform-

ance of the estimator of the jump-size magnitude and the test statistic for discontinu-

ity of the density via Monte Carlo simulations.

4.1 Jump-Size Estimation

First, we focus on the estimator of the jump-size magnitude J (c). As true densities,

those of the following two asymmetric distributions are considered:

1. Gamma: f (x) = xα−1 exp (−x/β)1 (x ≥ 0) / {βαΓ (α)} , (α, β) = (2.75, 1) .
2. Weibull: f (x) = (α/β) (x/β)

α−1
exp {− (x/β)α}1 (x ≥ 0) , (α,β) = (1.75, 3.5) .

Shapes of these densities can be found in Figure 1. For each distribution we choose

two suspected discontinuity points c, namely, 30% quantile (“30%”) and median

(“Med”); see Table 1 for exact values of the points. Because the gamma and Weibull

densities have modes at 1.7500 and 2.1567, respectively, the two points for each dens-
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ity are located on the left- and right-hand sides of the mode. The sample size is

n ∈ {500, 1000, 2000}, and 1, 000 replications are drawn for each combination of the

sample size n and the distribution.

The simulation study compares finite-sample performance of our jump-size es-

timator J̃ (c) with McCrary’s (2008) BLL estimator ĴM (c). The latter employs

the triangular kernel K (u) = (1− |u|)1 (|u| ≤ 1), and the bandwidth is chosen by

the method described on p.705 of McCrary (2008). For the former, the smooth-

ing parameter b is selected by the power-optimality criterion for two test statistics

Ti (c) :=
√
nb1/2J̃ (c) /

q
Ṽi (c) for i = 1, 2, where the definition of Ṽi (c) is given in

Section 2.3. Implementation details are as follows: (i) all critical values in π̂M (bk) are

set equal to z0.025 = 1.96; (ii) (p, q) are predetermined by (p, q) = (1/2, 4/9); (iii) the

interval for bk is Hk = [0.05, 0.50]; and (iv) three different values of the mixing expo-

nent δ are considered, namely, δ ∈ {0.49, 0.64, 0.81}, so that the exponents on f̂±,b (c)

and f̂±,b/δ (c) to generate f̃± (c) are (10/3,−7/3), (5,−4) and (10,−9), respectively.

FIGURE 1 AND TABLE 1 ABOUT HERE

Table 1 presents as performance measures the bias (“Bias”), standard deviation

(“StdDev”) and root-mean squared error (“RMSE”) of each estimator over 1000

Monte Carlo samples. Since the densities are continuous at c actually, the per-

formance measures are calculated on the basis of J (c) = 0. Moreover, only the

performance measures with the smoothing parameter b selected for T2 (c) are repor-

ted, because there is no substantial difference between values of b chosen for T1 (c)

and T2 (c).

It can be immediately found that the RMSE shrinks with the sample size, which

indicates consistency of each estimator. Although the Bias of ĴM (c) is larger than

that of J̃ (c), the StdDev of the former is smaller, and as a consequence it tends to
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yield a smaller RMSE. We can also see that J̃ (c) has extremely small biases for all

cases, which confirms that the MBC technique leads to huge bias reduction. The

bias-variance trade-off in terms of δ within J̃ (c) (as Proposition 2 suggests) can be

also observed.

4.2 Testing for Discontinuity

Second, size and power properties of the test statistic T (c) are investigated. In what

follows, T1 (c) and T2 (c) are compared with McCrary’s (2008) test statistic based

on the difference between logarithms of two density estimates, denoted as TM (c).

Implementation details of each test statistic are the same as described above. The

Monte Carlo design in this section is inspired by Otsu, Xu andMatsushita (2013). Let

X be drawn with probability γ from the truncated gamma or Weibull distribution

with support on [0, c) and with probability 1 − γ from the one with support on

(c,∞). Unless γ = Pr (X ≤ c), the gamma or Weibull pdf is discontinuous at

c. Also denote the measure of discontinuity as d := Pr (X ≤ c) − γ, where d ∈

{0.00, 0.02, 0.04, 0.06, 0.08, 0.10} and d > 0 (⇔ J (c) > 0) suggests a jump of the pdf

at c. For each statistic, the empirical rejection frequencies of the null H0 : J (c) = 0

for d = 0 and d > 0 indicate its size and power properties, respectively.

TABLES 2-3 ABOUT HERE

Table 2 presents size properties of T1 (c) and T2 (c). Each test statistic exhibits

mild under-rejection of the null except a few cases, and the rejection frequencies of

T2 (c) are closer to the nominal ones. The rejection frequencies tend to decrease with

δ, and substantial over-rejection of the null is not observed for δ = 0.81. Considering

that δ = 0.81 also yields nearly unbiased estimates of J (c), we set δ equal to this

value for power comparisons.
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Table 3 reports power properties of T1 (c) and T2 (c), in comparison with TM (c).

Panel (A) refers to the results from the gamma distribution. It can be observed that

the rejection frequency of each test statistic for a given d > 0 approaches to one with

the sample size n, which indicates consistency of each test. Both T1 (c) and T2 (c)

exhibit good power properties without inflating their sizes, and T2 (c) appears to be

more powerful than T1 (c). In contrast, TM (c) exhibits considerable size distortions,

and nonetheless its power properties look inferior to those of T1 (c) and T2 (c). It may

be argued that the gamma distribution is too advantageous to T1 (c) and T2 (c) in that

both rely on the gamma kernel. Hence, the simulation study based on the Weibull

distribution could be fair, and the results are reported in Panel (B). Indeed, the size

properties of TM (c) are dramatically improved. However, it is still outperformed in

terms of power properties by T1 (c) and T2 (c). Again in this case, it appears that

T2 (c) has better power properties than T1 (c). A possible rationale is that because

Ṽ2 (c) tends to be smaller than Ṽ1 (c), as suggested in Proposition 2, T2 (c) is likely

to have a large value (i.e., tends to reject the null more often) than T1 (c) under the

alternative.

In sum, Monte Carlo results confirm the following two respects. First, the MBC

technique achieves huge bias reduction, and the jump-size estimator J̃ (c) yields nearly

unbiased estimates. Second, the test statistics T1 (c) and T2 (c) exhibit nice power

properties without sacrificing their size properties, whereas the latter appears to be

more powerful than the former. It is also worth emphasizing that the superior

performance is based simply on first-order asymptotic results. Therefore, assistance

of size-adjusting devices such as bootstrapping appears to be unnecessary, unlike most

of the smoothed tests employing conventional symmetric kernels.

19



5 Empirical Illustration

This section applies our estimation and testing procedures of discontinuity in dens-

ities to real data. We employ the data sets on fourth and fifth graders of Israeli

elementary schools used by Angrist and Lavy (1999). The data sets are made public

on the Angrist Data Archive web page, and they are often utilized in empirical ap-

plication parts of the closely related literature (e.g., Otsu, Xu and Matsushita, 2013;

Feir, Lemieux and Marmer, 2016).

Following Maimonides’ rule, Israeli public schools make each class size no greater

than 40. As a result of strategic behavior on schools’ and/or parents’ sides, the

density of school enrollment counts for each grade may be discontinuous at multiples

of 40. Then, setting the cutoff c = 40, 80, 120, 160 for enrollment densities of fourth

and fifth graders, we estimate the jump size and conduct the test for the null of

continuity at each cutoff. Specifically, the results from our truncated gamma-kernel

approach are compared with those from McCrary’s (2008) BLL method. T2 (c) with

δ = 0.81 is chosen as our test statistic because of its better finite-sample properties.

The smoothing parameter for our approach and the bandwidth for the BLL method

are chosen in the same manners as in Section 4.

FIGURE 2 AND TABLE 4 ABOUT HERE

Table 4 presents estimation and testing results on discontinuity in enrollment dens-

ities, where f̂M− (c) and f̂
M
+ (c) are BLL estimates of left and right limits of the density

at the cutoff c, respectively. For convenience, density estimates with (possible) dis-

continuity points at c = 40, 120 are plotted in Figure 2. Table 4 shows remarkable

differences between estimation results from McCrary’s (2008) and our procedures.

The former finds upward jump estimates only at c = 40 for each grade. On the other
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hand, the latter yields upward jump estimates at c = 40, 80 and downward jump (or

drop) estimates at c = 120, 160 for each grade. In addition, Figure 2 illustrates that

the truncated gamma density estimators tend to capture peaks and troughs more

clearly. Testing results also differ. While McCrary’s (2008) test rejects the null of

continuity at the cutoff only for three cases (i.e., c = 40, 120 for fourth graders and

c = 40 for fifth graders), rejections of the null by our test include additional two cases

(i.e., c = 160 for fourth graders and c = 120 for fifth graders) as well as the three

cases. This appears to reflect better finite-sample power properties of T2 (c) reported

in Section 4.

6 Conclusion

This paper has developed estimation and testing procedures on discontinuity in dens-

ities with positive support. Our proposal is built on smoothing by the gamma kernel.

To preserve its appealing properties, we split the gamma kernel into two parts at a

given (dis)continuity point and construct two truncated kernels after re-normalization.

The jump-size magnitude of the density at the point can be estimated nonparamet-

rically by two truncated kernels and the MBC technique by Terrell and Scott (1980).

The estimator is easy to implement, and its convergence properties are explored by

means of various approximation techniques on incomplete gamma functions. Given

the jump-size estimator, two versions of test statistics for the null of continuity at a

given point are also proposed, and a smoothing parameter selection method under the

power-optimality criterion is tailored to our testing procedure. Furthermore, estim-

ation theory of the entire density in the presence of a discontinuity point is provided.

It is demonstrated that density estimators smoothed by the truncated gamma ker-

nels admit the same bias and variance approximations as the gamma kernel density
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estimator does. Monte Carlo simulations indicate that the jump-size estimator is

nearly unbiased when there is no jump in the true density, and that the test statistics

with power-optimal smoothing parameter values plugged in enjoy more power than

McCrary’s (2008) BLL-based test does, without sacrificing their size properties.

We conclude this paper by noting a few research extensions. First, the assumption

of a single (known) point of discontinuity may be relaxed. It is worth investigating

the cases for more than one (known) point of discontinuity or those for even unknown

(finite) number of discontinuity points. For the latter, locations of discontinuity

points are estimated first and then the corresponding upper and lower limits of the

density can be evaluated at each estimated location. Second, while our focus has

been exclusively on univariate densities, the discontinuity analysis may be extended

to multivariate densities.

A Appendix

A.1 List of Useful Formulae

The formulae below are frequently used in the technical proofs.

Stirling’s formula.

Γ (a+ 1) =
√
2πaa+1/2 exp (−a)

½
1 +

1

12a
+O

¡
a−2
¢¾

as a→∞. (A1)

Recursive formulae on incomplete gamma functions.

γ (a+ 1, z) = aγ (a, z)− za exp (−z) for a, z > 0. (A2)

Γ (a+ 1, z) = aΓ (a, z) + za exp (−z) for a, z > 0. (A3)

Identity among gamma and incomplete gamma functions.

γ (a, z) + Γ (a, z) = Γ (a) for a, z > 0. (A4)
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A.2 Proof of Proposition 1

To save space, we only provide approximations to the bias and variance of f̂− (c).

Using (A3), (A4) and (A5) gives the results for f̂+ (c) in the same manner. The

proof utilizes the following asymptotic expansion:

γ (a, a)

Γ (a)
=
1

2
+

1√
2π

½
1

3a1/2
+

1

540a3/2
+O

¡
a−5/2

¢¾
as a→∞. (A5)

This can be obtained by either letting x ↓ 0 in equation (1) of Pagurova (1965) or

putting η = 0 in equation (1.4) of Temme (1979). Then, putting z = a in (A2) and

then substituting (A1) and (A5), we have

γ (a+ 1, a)

Γ (a+ 1)
=

γ (a, a)

Γ (a)
− a

a exp (−a)
Γ (a+ 1)

=
1

2
+

1√
2π

µ
−2
3
a−1/2 +

23

270
a−3/2

¶
+O

¡
a−5/2

¢
. (A6)

Bias. By the change of variable v := u/b,

E
n
f̂− (c)

o
=

Z c

0

uc/b exp (−u/b)
bc/b+1γ (c/b+ 1, c/b)

f (u) du =

Z a

0

f (bv)

½
va exp (−v)
γ (a+ 1, a)

¾
dv,

where a := c/b and the object inside brackets of the right-hand side is a pdf on the

interval [0, a]. Then, a second-order Taylor expansion of f (bv) around bv = c (from

below) yields

E
n
f̂− (c)

o
= f− (c) + bf

(1)
− (c)

½
γ (a+ 2, a)

γ (a+ 1, a)
− a

¾
+
b2

2
f
(2)
− (c)

½
γ (a+ 3, a)

γ (a+ 1, a)
− 2aγ (a+ 2, a)

γ (a+ 1, a)
+ a2

¾
+Rf̂−(c), (A7)

where

Rf̂−(c) :=
b2

2

Z a

0

n
f
(2)
− (ξ)− f (2)− (c)

o
(v − a)2

½
va exp (−v)
γ (a+ 1, a)

¾
dv

is the remainder term with ξ = θ (bv) + (1− θ) c for some θ ∈ (0, 1).
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We approximate the leading bias terms first. Using (A2) recursively, we have

γ (a+ 2, a) = (a+ 1) γ (a+ 1, a)− aa+1 exp (−a) , and

γ (a+ 3, a) = (a+ 2) (a+ 1) γ (a+ 1, a)− 2 (a+ 1) aa+1 exp (−a) .

It follows from (A1) and (A6) that

γ (a+ 2, a)

γ (a+ 1, a)
− a = 1− a

a+1 exp (−a)
Γ (a+ 1)

½
γ (a+ 1, a)

Γ (a+ 1)

¾−1
= −

r
2

π
a1/2 +

µ
1− 4

3π

¶
+O

¡
a−1/2

¢
, and

γ (a+ 3, a)

γ (a+ 1, a)
− 2aγ (a+ 2, a)

γ (a+ 1, a)
+ a2 = a+ 2− 2a

a+1 exp (−a)
Γ (a+ 1)

½
γ (a+ 1, a)

Γ (a+ 1)

¾−1
= a+O

¡
a1/2

¢
.

Substituting these into the second and third terms on the right-hand side of (A7) and

recognizing that a = c/b, we obtain

bf
(1)
− (c)

½
γ (a+ 2, a)

γ (a+ 1, a)
− a
¾
+
b2

2
f
(2)
− (c)

½
γ (a+ 3, a)

γ (a+ 1, a)
− 2aγ (a+ 2, a)

γ (a+ 1, a)
+ a2

¾
= −

r
2

π
c1/2f

(1)
− (c) b1/2 +

½µ
1− 4

3π

¶
f
(1)
− (c) +

c

2
f
(2)
− (c)

¾
b+ o (b) .

The remaining task is to demonstrate that Rf̂−(c) = o (b). It follows from Hölder-

continuity of f (2) (·) and v ≤ c/b = a that
¯̄̄
f (2) (ξ)− f (2)− (c)

¯̄̄
≤ L |ξ − c|ς = Lθςbς (a− v)ς .

Using Hölder’s inequality and the fact that va exp (−v) /γ (a+ 1, a) is a density on

[0, a], we have

¯̄̄
Rf̂−(c)

¯̄̄
≤ Lθς

2
b2+ς

Z a

0

(a− v)2+ς
½
va exp (−v)
γ (a+ 1, a)

¾
dv

≤ Lθς

2
b2+ς

∙Z a

0

(a− v)3
½
va exp (−v)
γ (a+ 1, a)

¾
dv

¸(2+ς)/3
,
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whereZ a

0

(a− v)3
½
va exp (−v)
γ (a+ 1, a)

¾
dv = a3 − 3a2γ (a+ 2, a)

γ (a+ 1, a)
+ 3a

γ (a+ 3, a)

γ (a+ 1, a)
− γ (a+ 4, a)

γ (a+ 1, a)

= O
¡
a3/2

¢
by using (A1) and (A6) repeatedly. Finally, substituting a = c/b yields

¯̄̄
Rf̂−(c)

¯̄̄
≤ O ¡b2+ς¢O ©b−(1+ς/2)ª = O ¡b1+ς/2¢ = o (b) ,

which establishes the bias approximation.

Variance. In

V ar
n
f̂− (c)

o
=
1

n
E
n
K−
G(c,b;c)

(Xi)
o2
+O

¡
n−1

¢
,

we make an approximation to E
n
K−
G(c,b;c)

(Xi)
o2
. By the change of variable w :=

2u/b and a = c/b,

E
n
K−
G(c,b;c)

(Xi)
o2

=

Z c

0

u2c/b exp (−2u/b)
b2(c/b+1)γ2 (c/b+ 1, c/b)

f (u) du

= b−1
γ (2a+ 1, 2a)

22a+1γ2 (a+ 1, a)

Z 2a

0

f

µ
bw

2

¶½
w2a exp (−w)
γ (2a+ 1, 2a)

¾
dw,

where the object inside brackets of the right-hand side is again a pdf. As before, the

integral part can be approximated by f− (c) + O
¡
b1/2

¢
. Moreover, it follows from

(A6), the argument on p.474 of Chen (2000) and a = c/b that the multiplier part is½
γ (2a+ 1, 2a)

Γ (2a+ 1)

¾½
γ (a+ 1, a)

Γ (a+ 1)

¾−2½
b−1Γ (2a+ 1)
22a+1Γ2 (a+ 1)

¾
=

b−1/2√
πc1/2

+ o
¡
b−1/2

¢
.

Therefore,

V ar
n
f̂− (c)

o
=

1

nb1/2
f− (c)√
πc1/2

+ o
¡
n−1b−1/2

¢
. ¥
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A.3 Proof of Theorem 1

The proof requires the following lemma.

Lemma A1.

E
n
K±
G(c,b;c)

(Xi)
o3
= O

¡
b−1
¢
.

A.3.1 Proof of Lemma A1

To save space, we concentrate only on E
n
K−
G(c,b;c)

(Xi)
o3
. By the change of variable

t := 3u/b and a = c/b,

E
n
K−
G(c,b;c)

(Xi)
o3

=

Z c

0

u3c/b exp (−3u/b)
b3(c/b+1)γ3 (c/b+ 1, c/b)

f (u) du

= b−2
γ (3a+ 1, 3a)

33a+1γ3 (a+ 1, a)

Z 3a

0

f

µ
bt

3

¶½
t3a exp (−t)
γ (3a+ 1, 3a)

¾
dt,

where the integral part is f− (c) + O
¡
b1/2

¢
as before. On the other hand, by (A1)

and (A6), the multiplier part can be approximated by½
γ (3a+ 1, 3a)

Γ (3a+ 1)

¾½
γ (a+ 1, a)

Γ (a+ 1)

¾−3½
b−2Γ (3a+ 1)
33a+1Γ3 (a+ 1)

¾
=

2√
3πc

b−1 + o
¡
b−1
¢
,

which establishes the stated result. ¥

A.3.2 Proof of Theorem 1

Let

f̂±,b (c) = E
n
f̂±,b (c)

o
+
h
f̂±,b (c)−E

n
f̂±,b (c)

oi
:= I±b (c) + Z

±, and

f̂±,b/δ (c) = E
n
f̂±,b/δ (c)

o
+
h
f̂±,b/δ (c)−E

n
f̂±,b/δ (c)

oi
:= I±

b/δ
(c) +W±.

Then, by a similar argument to the proof for Theorem 1 of Hirukawa and Sakudo

(2014) and Proposition 2,

J̃ (c) =
©
I+b (c)

ª 1

1−δ1/2
n
I+
b/δ
(c)
o− δ1/2

1−δ1/2 − ©I−b (c)ª 1

1−δ1/2
n
I−
b/δ
(c)
o− δ1/2

1−δ1/2

+

µ
1

1− δ1/2

¶n³
Z+ − δ1/2W+

´
−
³
Z− − δ1/2W−

´o
+RJ̃(c),
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where it can be shown that the remainder term RJ̃(c) = op
¡
n−1/2b−1/4

¢
. Because

E (Z±) = E (W±) = 0,

E
n
J̃ (c)

o
∼ ©

I+b (c)
ª 1

1−δ1/2
n
I+
b/δ
(c)
o− δ1/2

1−δ1/2 − ©I−b (c)ª 1

1−δ1/2
n
I−
b/δ
(c)
o− δ1/2

1−δ1/2

∼ J (c) +B (c) b,

where

B (c) =

µ
1

δ1/2

¶⎡⎢⎣ c
π

⎧⎪⎨⎪⎩
³
f
(1)
+ (c)

´2
f+ (c)

−

³
f
(1)
− (c)

´2
f− (c)

⎫⎪⎬⎪⎭
−
½µ
1− 4

3π

¶³
f
(1)
+ (c)− f (1)− (c)

´
+
c

2

³
f
(2)
+ (c)− f (2)− (c)

´¾¸
.

Therefore,

√
nb1/2

n
J̃ (c)− J (c)

o
=
√
nb1/2

h
J̃ (c)−E

n
J̃ (c)

oi
+
√
nb1/2

h
E
n
J̃ (c)

o
− J (c)

i
=
√
nb1/2

µ
1

1− δ1/2

¶n³
Z+ − δ1/2W+

´
−
³
Z− − δ1/2W−

´o
+
√
nb1/2 {B (c) b+ o (b)}+ op (1) ,

where the second term on the right hand side becomes asymptotically negligible if

nb5/2 → 0.

The remaining task is to establish the asymptotic normality of the first term.

Due to the disjunction of two truncated kernels K±
G(c,b;c)

(·), the asymptotic variance

of the term, denoted as V (c), is just the sum of asymptotic variances of f̃± (c) given

in Proposition 2. Hence, we need only to establish Liapunov’s condition. Denoting

Z± =

nX
i=1

µ
1

n

¶h
K±
G(c,b;c)

(Xi)−E
n
K±
G(c,b;c)

(Xi)
oi
:=

nX
i=1

µ
1

n

¶
Z±i , and

W± =

nX
i=1

µ
1

n

¶h
K±
G(c,b/δ;c)

(Xi)−E
n
K±
G(c,b/δ;c)

(Xi)
oi
:=

nX
i=1

µ
1

n

¶
W±
i ,
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we can rewrite the term as

√
nb1/2

µ
1

1− δ1/2

¶n³
Z+ − δ1/2W+

´
−
³
Z− − δ1/2W−

´o
=

nX
i=1

r
b1/2

n

µ
1

1− δ1/2

¶n³
Z+i − δ1/2W+

i

´
−
³
Z−i − δ1/2W−

i

´o
:=

nX
i=1

Yi.

It follows from 0 < δ < 1 that

E |Yi|3 ≤ b3/4

n3/2

µ
1

1− δ1/2

¶3
E
¡¯̄
Z+i
¯̄
+
¯̄
W+
i

¯̄
+
¯̄
Z−i
¯̄
+
¯̄
W−
i

¯̄¢3
.

Because the expected value part is O (b−1) by Lemma A1, E |Yi|3 = O
¡
n−3/2b−1/4

¢
.

It is also straightforward to see that V ar (Yi) = O (n
−1). Therefore,Pn

i=1E |Yi|3
{Pn

i=1 V ar (Yi)}3/2
= O

¡
n−1/2b−1/4

¢→ 0,

or Liapunov’s condition holds. This completes the proof. ¥

A.4 Proof of Proposition 3

The proof closely follows the one for Proposition 1 of Hirukawa and Sakudo (2016). It

follows from Theorem 1 that E
n
J̃ (c)

o
= J (c) +O (b), V ar

n
J̃ (c)

o
= O

¡
n−1b−1/2

¢
and Ṽ (c)

p→ V (c), regardless of whether H0 or H1 may be true. Therefore, J̃ (c) =

J (c) +O (b) +Op
¡
n−1/2b−1/4

¢ p→ J (c) 6= 0 under H1, and thus |T (c)| is a divergent

stochastic sequence with an expansion rate of n1/2b1/4. The result immediately

follows. ¥

A.5 Proof of Theorem 2

To demonstrate this theorem, we must rely on different asymptotic expansions, de-

pending on the positions of the design point x and the truncation point c. For

notational convenience, put (a, z) = (x/b, c/b). The proof requires the following

lemma.
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Lemma A2. For a > 0 and z > max {1, a},

Γ (a+ 1, z) ≤
½
za exp (−z) + exp (−z) for 0 < a ≤ 1
(a+ 1) za exp (−z) + Γ (a+ 1) exp (−z) for a > 1

.

A.5.1 Proof of Lemma A2

For 0 < a ≤ 1, it follows from an elementary inequality on the upper incomplete

gamma function (e.g., equation (1.05) on p.67 of Olver, 1974) and z > 1 that

Γ (a, z) ≤ za−1 exp (−z) ≤ exp (−z) . (A8)

Then, by (A3),

Γ (a+ 1, z) = za exp (−z) + aΓ (a, z) ≤ za exp (−z) + 1 · exp (−z) .

Next, for a > 1 and a ∈ N, using (A3) recursively yields

Γ (a+ 1, z) = za exp (−z)
½
1 +

a

z
+
a (a− 1)
z2

+ · · ·+ a (a− 1) · · · 2
za−1

¾
+a (a− 1) · · · 2 · 1 · Γ (1, z) ,

where the sum inside the brackets is bounded by a (≤ a+ 1). Then, by (A8),

Γ (a+ 1, z) ≤ (a+ 1) za exp (−z) + Γ (a+ 1) exp (−z) .

Finally, for a > 1 and a /∈ N, we have

Γ (a+ 1, z) = za exp (−z)
½
1 +

a

z
+
a (a− 1)
z2

+ · · ·+ a (a− 1) · · · (a− bac+ 1)
zbac

¾
+a (a− 1) · · · (a− bac)Γ (a− bac , z) .

where the sum inside the brackets is bounded by bac + 1 (≤ a+ 1). Because 0 <

a− bac < 1, Γ (a− bac) > 1 and thus

a (a− 1) · · · (a− bac) = Γ (a+ 1)

Γ (a− bac) ≤ Γ (a+ 1) .

Therefore, again by (A8),

Γ (a+ 1, z) ≤ (a+ 1) za exp (−z) + Γ (a+ 1) exp (−z) . ¥
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A.5.2 Proof of Theorem 2

(i) On f̂− (x):

We consider different approximations to incomplete gamma functions depending on

the position of x. When x/b → ∞, z > a and a, z → ∞ hold. Hence, the case for

a > 1 of Lemma A2 applies, and thus

Γ (a+ 1, z)

Γ (a+ 1)
≤ (a+ 1)

½
za exp (−z)
Γ (a+ 1)

¾
+ exp (−z) .

It follows from (A1) and ρ := a/z ∈ (0, 1) that

za exp (−z)
Γ (a+ 1)

=

½
1 +O (a−1)√

2π

¾
a−1/2 exp

½
a ln

µ
e

ρe1/ρ

¶¾
= O

∙
a−1/2 exp

½
a ln

µ
e

ρe1/ρ

¶¾¸
, (A9)

where e/
¡
ρe1/ρ

¢ ∈ (0, 1) holds. Then,
Γ (a+ 1, z)

Γ (a+ 1)
= O

∙
a1/2 exp

½
a ln

µ
e

ρe1/ρ

¶¾¸
.

On the other hand, when x/b → κ ∈ (0,∞), putting a → κ and z → ∞ in Lemma

A2 yields

Γ (a+ 1, z)

Γ (a+ 1)
= O {zκ exp (−z)} .

By (A4), we finally have

γ (a+ 1, z)

Γ (a+ 1)
= 1 +

½
O
£
a1/2 exp

©
a ln

¡
e/
¡
ρe1/ρ

¢¢ª¤
if x/b→∞

O {zκ exp (−z)} if x/b→ κ
. (A10)
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Bias. By (A9), (A10), and (a, z) = (x/b, c/b),

γ (a+ 2, z)

γ (a+ 1, z)
− a

= 1− z
a+1 exp (−z)
Γ (a+ 1)

½
γ (a+ 1, z)

Γ (a+ 1)

¾−1
= 1 +

½
O
£
a1/2 exp

©
a ln

¡
e/
¡
ρe1/ρ

¢¢ª¤
if x/b→∞

O {zκ exp (−z)} if x/b→ κ

= 1 +

½
O
£
b−1/2 exp

©
(x/b) ln

¡
e/
¡
ρe1/ρ

¢¢ª¤
if x/b→∞

O {b−κ exp (−c/b)} if x/b→ κ
, and

γ (a+ 3, z)

γ (a+ 1, z)
− 2aγ (a+ 2, z)

γ (a+ 1, z)
+ a2

= a+ 2− (z − a+ 2) z
a+1 exp (−z)
Γ (a+ 1)

½
γ (a+ 1, z)

Γ (a+ 1)

¾−1
= a+ 2 +

½
O
£
a3/2 exp

©
a ln

¡
e/
¡
ρe1/ρ

¢¢ª¤
if x/b→∞

O {zκ+1 exp (−z)} if x/b→ κ

=
x

b
+ 2 +

½
O
£
b−3/2 exp

©
(x/b) ln

¡
e/
¡
ρe1/ρ

¢¢ª¤
if x/b→∞

O {b−κ−1 exp (−c/b)} if x/b→ κ
.

Then, by the argument in the proof of Proposition 1, in either case,

E
n
f̂− (x)

o
= f (x) +

n
f (1) (x) +

x

2
f (2) (x)

o
b+ o (b) .

Variance. In

E
n
K−
G(x,b;c)

(Xi)
o2
= b−1

γ (2a+ 1, 2z)

22a+1γ2 (a+ 1, z)

Z 2z

0

f

µ
bw

2

¶½
w2a exp (−w)
γ (2a+ 1, 2z)

¾
dw,

the integral part is f (x) + O (b) in either case. It also follows from (A10) and the

argument on p.474 of Chen (2000) that the multiplier part is½
γ (2a+ 1, 2z)

Γ (2a+ 1)

¾½
γ (a+ 1, z)

Γ (a+ 1)

¾−2½
b−1Γ (2a+ 1)
22a+1Γ2 (a+ 1)

¾
=

(
b−1/2
2
√
πx1/2

+ o
¡
b−1/2

¢
if x/b→∞

b−1Γ(2κ+1)
22κ+1Γ2(κ+1)

+ o (b−1) if x/b→ κ
.

Therefore,

V ar
n
f̂− (x)

o
=

(
1

nb1/2
f(x)

2
√
πx1/2

+ o
¡
n−1b−1/2

¢
if x/b→∞

1
nb

Γ(2κ+1)

22κ+1Γ2(κ+1)
f (x) + o (n−1b−1) if x/b→ κ

. ¥
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(ii) On f̂+ (x):

We may focus only on the case for interior x. However, it seems difficult to derive

a sharp bound on γ (a+ 1, z) or Γ (a+ 1, z) for the case of a > z and a, z → ∞

based directly on (A2) or (A3). Instead, we turn to the series expansion described

in Section 3 of Ferreira, López and Pérez-Sinusía (2005), which is valid for the case

of a > z, a, z →∞ and a− z = O (a). The expansion is

γ (a+ 1, z) = za+1 exp (−z)
∞X
k=0

ck (a)Φk (z − a) ,

where the definitions of {ck (a)} and {Φk (z − a)} can be found therein. Because

the sum is shown to be convergent, the order of magnitude in γ (a+ 1, z) /Γ (a+ 1)

is determined by the one in za+1 exp (−z) /Γ (a+ 1). It follows from (A1) and ρ0 :=

z/a ∈ (0, 1) that
za+1 exp (−z)
Γ (a+ 1)

=

∙
ρ0 {1 +O (a−1)}√

2π

¸
a1/2 exp

½
a ln

µ
ρ0e
eρ

0

¶¾
= O

∙
a1/2 exp

½
a ln

µ
ρ0e
eρ

0

¶¾¸
,

where ρ0e/eρ
0 ∈ (0, 1) is again the case. Then, by (A4),

Γ (a+ 1, z)

Γ (a+ 1)
= 1 +O

∙
a1/2 exp

½
a ln

µ
ρ0e
eρ

0

¶¾¸
.

The bias and variance of f̂+ (x) can be approximated as above. ¥

A.6 Proof of Theorem 3

Both this proof and the proof of Theorem 4 require three lemmata below.

Lemma A3. For α > 0 and a sufficiently small b > 0, pick some design point

x ∈ [0,αb]. Then, for η ∈ (0, c),Z η

0

K−
G(x,b;c)

(u) du =

Z η

0

ux/b exp (−u/b)
bx/b+1γ (x/b+ 1, c/b)

du→ 1

as b→ 0.

32



Lemma A4. For the design point x defined in Lemma A3, let

{Ki}ni=1 :=
n
bK−

G(x,b;c)
(Xi)

on
i=1
.

Then,

0 ≤ Ki ≤ C := max {1,αα}
½

Γ (α+ 1)

γ (α+ 1,α)

¾½
1

Γ (a∗)

¾
,

where Γ (a∗) := mina>0 Γ (a) ≈ 0.8856 for a∗ ≈ 1.4616.

Lemma A5.(Hoeffding, 1963, Theorem 2) Let {Xi}ni=1 be independent and

ai ≤ Xi ≤ bi for i = 1, 2, . . . , n. Also write X̄ := (1/n)
Pn

i=1Xi and μ := E
¡
X̄
¢
.

Then, for ² > 0,

Pr
¡¯̄
X̄ − μ

¯̄
≥ ²¢ ≤ 2 exp(− 2n2²2Pn

i=1 (bi − ai)2
)
.

A.6.1 Proof of Lemma A3

By the change of variable v := u/b, the integral can be rewritten asZ η/b

0

vx/b exp (−v)
γ (x/b+ 1, c/b)

dv =
γ (x/b+ 1, η/b)

γ (x/b+ 1, c/b)
.

Because η/b ↑ ∞ and 0 ≤ x/b ≤ α, (A10) establishes that

γ (x/b+ 1, η/b)

γ (x/b+ 1, c/b)
=

Γ (x/b+ 1) +O {b−α exp (−η/b)}
Γ (x/b+ 1) +O {b−α exp (−c/b)} → 1. ¥

A.6.2 Proof of Lemma A4

By construction, Ki ≥ 0 holds. In addition, since the gamma kernel has its mode at

the design point x (Chen, 2000, p.473), Ki is bounded by

bK−
G(x,b;c)

(x) =
³x
b

´x/b
exp

³
−x
b

´½ Γ (x/b+ 1)

γ (x/b+ 1, c/b)

¾½
1

Γ (x/b+ 1)

¾
. (A11)

For 0 ≤ x/b ≤ α, (x/b)
x/b ≤ max {1,αα} and exp (−x/b) ≤ 1. Moreover, γ (a, z) /Γ (a)

for a, z > 0 is monotonously increasing in z and decreasing in a; see, for example,
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Tricomi (1950, p.276) for details. Because c is an interior point, αb ≤ c or α ≤ c/b

holds. Hence,

Γ (x/b+ 1)

γ (x/b+ 1, c/b)
≤ Γ (α+ 1)

γ (α+ 1,α)
.

Finally, it is known that Γ (a∗) := mina>0 Γ (a) ≈ 0.8856 for a∗ ≈ 1.4616. Therefore,

the right-hand side of (A11) has the upper bound

max {1,αα} · 1 ·
½

Γ (α+ 1)

γ (α+ 1,α)

¾½
1

Γ (a∗)

¾
:= C. ¥

A.6.3 Proof of Theorem 3

This proof largely follows the one for Theorem 5 of Hirukawa and Sakudo (2015).

Without loss of generality, for α > 0 and a sufficiently small b > 0, pick some design

point x ∈ [0,αb]. Then, the proof completes if the following statements hold:

f̂− (x) = E
n
f̂− (x)

o
+ op (1) . (A12)

E
n
f̂− (x)

o
= E

n
f̂− (0)

o
+ o (1) . (A13)

E
n
f̂− (0)

o
→ ∞. (A14)

Below we demonstrate (A12)-(A14) one by one. First, (A13) immediately follows

from the continuity of K−
G(x,b;c)

(u) in x. Second, when f (x)→∞ as x→ 0, it holds

that for any A > 0, there is some η ∈ (0, c) such that f (x) > A for all x < η. For

the given η, Lemma A3 implies that

E
n
f̂− (0)

o
>

Z η

0

K−
G(0,b;c)

(u) f (u) du > A

Z η

0

K−
G(0,b;c)

(u) du→ A,

which establishes (A14). Third, for {Ki}ni=1 defined in Lemma A4, denote their

sample average as K̄ := (1/n)
Pn

i=1Ki. Then, it follows from Lemmata A4 and A5

that for ² > 0,

Pr
³¯̄̄
f̂− (x)−E

n
f̂− (x)

o¯̄̄
≥ ²
´
= Pr

¡¯̄
K̄ −E (Ki)

¯̄
≥ b²¢

≤ 2 exp

½
−2
³ ²
C

´2
nb2
¾
→ 0.
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Therefore, (A12) is also demonstrated, and thus the proof is completed. ¥

A.7 Proof of Theorem 4

This proof largely follows the one for Theorem 5.3 of Bouezmarni and Scaillet (2005).

As in the proof of Theorem 3, pick some x ∈ [0,αb]. Then, the proof is boiled down

to establishing the following statements:¯̄̄̄
¯̄E
n
f̂− (x)

o
− f (x)

f (x)

¯̄̄̄
¯̄→ 0, and (A15)

¯̄̄̄
¯̄ f̂− (x)−E

n
f̂− (x)

o
f (x)

¯̄̄̄
¯̄ p→ 0, (A16)

as n→∞ and b, x→ 0.

We demonstrate (A15) first. An inspection of the proof for Theorem 5.3 of

Bouezmarni and Scaillet (2005) reveals that (A15) is shown if their conditions A.2,

A.3 and A.5 are fulfilled. Now we check the validity of three conditions. First,

because
R∞
0
f (x) dx = 1 and f (x)→∞ as x→ 0, there are constants 0 < C < C <

∞ such that Cx−d ≤ f (x) ≤ Cx−d for some d ∈ (0, 1) as x → 0. Accordingly,

f (1) (x) = O
¡
x−d−1

¢
for a small value of x. These imply that x

¯̄
f (1) (x)

¯̄
/f (x) ≤

O (1), and thus A.2 follows. Second, A.3 has been already established as Lemma

A1. Third, let the random variable U be drawn from the distribution with the pdf

K−
G(x,b;c)

(u). Then, by 0 ≤ x/b ≤ α and the expansion techniques used in the proof

of Theorem 2, V ar (U) ≤ O (b)→ 0, and thus A.5 also holds.

Furthermore, it follows from Lemmata A4 and A5 that for K̄ defined in the proof

of Theorem 3 and for ² > 0,

Pr

⎛⎝¯̄̄̄¯̄ f̂− (x)−E
n
f̂− (x)

o
f (x)

¯̄̄̄
¯̄ ≥ ²

⎞⎠ = Pr
¡¯̄
K̄ −E (Ki)

¯̄
≥ bf (x) ²¢

≤ 2 exp

½
−2
³ ²
C

´2
nb2f2 (x)

¾
→ 0.
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Therefore, (A16) is also demonstrated, and thus the proof is completed. ¥
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Figure 1: Shapes of True Densities for Monte Carlo Simulations

Figure 2: Density Estimates of School Enrollments

Note. In each panel, solid and dashed lines are density estimates via the truncated
gamma kernels and the binned local linear method, respectively. The “×” symbols
indicate binned data points.
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Table 1: Biases, Standard Deviations and RMSEs of Estimators of J (c)

Estimator

J̃ (c) with δ

Distribution c n ĴM (c) 0.49 0.64 0.81

Gamma 1.7057 500 Bias -0.0381 0.0019 0.0011 0.0006

(30%) StdDev 0.0461 0.0786 0.0812 0.0837

RMSE 0.0598 0.0786 0.0812 0.0837

1000 Bias -0.0335 0.0019 0.0010 0.0006

StdDev 0.0331 0.0588 0.0607 0.0626

RMSE 0.0471 0.0588 0.0607 0.0626

2000 Bias -0.0283 0.0006 0.0002 -0.0000

StdDev 0.0250 0.0430 0.0445 0.0458

RMSE 0.0377 0.0430 0.0445 0.0458

2.4248 500 Bias -0.0407 -0.0011 -0.0011 -0.0011

(Med) StdDev 0.0480 0.0626 0.0648 0.0668

RMSE 0.0629 0.0626 0.0648 0.0668

1000 Bias -0.0323 -0.0012 -0.0012 -0.0013

StdDev 0.0353 0.0463 0.0479 0.0494

RMSE 0.0479 0.0463 0.0479 0.0494

2000 Bias -0.0240 -0.0004 -0.0004 -0.0004

StdDev 0.0271 0.0351 0.0363 0.0374

RMSE 0.0362 0.0351 0.0363 0.0374

Weibull 1.9419 500 Bias -0.0235 0.0024 0.0012 0.0005

(30%) StdDev 0.0416 0.0665 0.0684 0.0704

RMSE 0.0478 0.0665 0.0684 0.0704

1000 Bias -0.0187 0.0035 0.0013 0.0005

StdDev 0.0302 0.0500 0.0509 0.0523

RMSE 0.0355 0.0502 0.0509 0.0523

2000 Bias -0.0144 0.0017 0.0003 0.0001

StdDev 0.0225 0.0367 0.0372 0.0383

RMSE 0.0267 0.0367 0.0372 0.0383

2.8386 500 Bias -0.0246 0.0006 0.0004 0.0002

(Med) StdDev 0.0405 0.0534 0.0552 0.0569

RMSE 0.0474 0.0534 0.0552 0.0569

1000 Bias -0.0195 0.0002 -0.0001 -0.0003

StdDev 0.0290 0.0394 0.0408 0.0421

RMSE 0.0350 0.0394 0.0408 0.0421

2000 Bias -0.0149 0.0007 0.0005 0.0004

StdDev 0.0218 0.0299 0.0309 0.0319

RMSE 0.0264 0.0299 0.0309 0.0319
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Table 2: Finite-Sample Size Properties of Test Statistics for Discontinuity

(%)

T1 (c) with δ T2 (c) with δ

Distribution c n Nominal 0.49 0.64 0.81 0.49 0.64 0.81

Gamma 1.7057 500 5% 3.2 3.1 3.1 4.4 4.0 3.7

(30%) 10% 7.5 7.5 7.8 8.8 8.8 8.6

1000 5% 3.9 3.9 3.9 6.1 4.6 4.4

10% 8.4 8.2 8.2 10.7 9.2 8.9

2000 5% 3.5 3.6 3.7 4.2 3.9 3.9

10% 8.1 8.2 8.4 8.8 8.5 8.7

2.4248 500 5% 3.3 3.6 3.6 3.8 3.9 4.0

(Med) 10% 7.9 7.8 7.7 8.7 8.6 8.5

1000 5% 3.7 3.8 3.9 4.1 4.2 4.3

10% 8.0 8.2 8.0 8.6 8.6 8.6

2000 5% 4.7 4.7 4.8 4.9 5.0 5.1

10% 8.8 8.9 9.0 9.4 9.4 9.5

Weibull 1.9419 500 5% 3.2 3.2 3.3 6.2 4.9 4.1

(30%) 10% 7.7 7.8 7.9 10.7 9.4 9.0

1000 5% 4.0 4.2 4.2 10.2 6.4 5.2

10% 8.2 8.3 8.4 14.7 10.7 9.4

2000 5% 3.8 3.7 3.8 7.7 4.4 4.0

10% 8.3 8.4 8.3 12.4 9.0 8.5

2.8386 500 5% 3.6 3.6 3.5 3.9 4.0 3.9

(Med) 10% 7.8 7.7 7.7 8.5 8.5 8.3

1000 5% 3.7 3.8 3.8 4.0 4.2 4.2

10% 8.1 8.1 8.2 8.7 8.4 8.6

2000 5% 4.7 4.7 4.8 4.9 5.0 5.0

10% 8.9 9.0 9.2 9.4 9.4 9.6
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Table 3: Finite-Sample Power Properties of Test Statistics for Discontinuity

(A) Gamma Distribution (%)

d

c n Test Nominal 0.00 0.02 0.04 0.06 0.08 0.10

1.7057 500 TM (c) 5% 4.6 1.4 2.2 9.2 28.9 55.1

(30%) 10% 10.1 4.1 6.1 17.9 43.5 68.7

T1 (c) 5% 3.1 4.5 10.7 17.9 85.9 98.1

10% 7.8 9.4 17.0 26.8 88.5 99.2

T2 (c) 5% 3.7 14.2 44.7 60.7 93.8 98.8

10% 8.6 19.0 53.6 63.9 97.2 99.7

1000 TM (c) 5% 6.9 1.5 4.4 22.0 58.7 87.5

10% 13.6 4.1 9.5 35.3 72.9 93.1

T1 (c) 5% 3.9 6.6 12.8 37.1 98.7 100.0

10% 8.2 12.4 21.4 46.0 99.0 100.0

T2 (c) 5% 4.4 13.9 50.3 90.8 99.5 100.0

10% 8.9 19.2 54.9 92.7 99.9 100.0

2000 TM (c) 5% 9.9 1.6 11.7 52.1 90.1 99.5

10% 19.2 4.5 21.1 66.6 95.6 99.8

T1 (c) 5% 3.7 8.4 36.8 98.8 100.0 100.0

10% 8.4 15.2 44.1 99.2 100.0 100.0

T2 (c) 5% 3.9 25.1 90.2 99.5 99.9 100.0

10% 8.7 30.4 94.7 99.9 99.9 100.0

2.4248 500 TM (c) 5% 9.3 3.5 2.6 4.4 9.1 18.7

(Med) 10% 17.4 8.8 6.0 8.7 16.5 29.7

T1 (c) 5% 3.6 4.4 7.1 12.3 20.6 30.1

10% 7.7 9.1 13.4 21.1 31.0 42.5

T2 (c) 5% 4.0 4.8 7.7 13.6 21.9 32.7

10% 8.5 9.8 14.5 22.4 32.3 44.2

1000 TM (c) 5% 11.5 4.0 3.5 9.2 23.1 46.4

10% 20.1 8.9 7.5 16.0 36.1 61.7

T1 (c) 5% 3.9 5.0 10.4 20.7 35.5 53.2

10% 8.0 10.4 18.3 32.1 49.0 65.8

T2 (c) 5% 4.3 5.6 11.3 22.2 36.8 55.0

10% 8.6 11.1 19.2 33.1 50.3 67.0

2000 TM (c) 5% 12.0 3.6 7.1 23.9 55.6 83.9

10% 20.7 8.0 13.8 36.0 68.3 91.6

T1 (c) 5% 4.8 7.7 18.1 37.8 60.7 80.2

10% 9.0 13.9 28.3 50.2 72.6 87.9

T2 (c) 5% 5.1 8.2 18.9 38.8 61.7 85.5

10% 9.5 14.6 29.2 51.4 73.5 90.7
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Table 3 (Continued)

(B) Weibull Distribution (%)

d

c n Test Nominal 0.00 0.02 0.04 0.06 0.08 0.10

1.9419 500 TM (c) 5% 3.4 1.9 4.0 11.8 28.5 48.8

(30%) 10% 7.6 5.0 9.0 21.2 41.2 61.8

T1 (c) 5% 3.3 4.9 14.4 19.1 85.0 97.1

10% 7.9 9.5 19.8 26.9 88.8 98.6

T2 (c) 5% 4.1 16.7 42.4 57.5 90.6 97.8

10% 9.0 21.8 53.0 61.0 95.5 99.2

1000 TM (c) 5% 4.2 2.2 7.5 26.3 55.0 79.3

10% 8.8 5.2 15.4 39.3 68.2 87.4

T1 (c) 5% 4.2 6.5 12.9 42.1 98.4 99.9

10% 8.4 12.4 21.2 49.1 99.1 100.0

T2 (c) 5% 5.2 17.5 51.0 88.5 98.9 99.9

10% 9.4 23.2 56.5 91.1 99.7 100.0

2000 TM (c) 5% 4.5 3.1 18.2 53.7 84.9 97.5

10% 9.5 7.1 30.1 66.6 91.5 99.0

T1 (c) 5% 3.8 8.3 53.7 98.8 100.0 100.0

10% 8.3 14.8 58.0 99.5 100.0 100.0

T2 (c) 5% 4.0 33.2 87.4 98.8 99.9 100.0

10% 8.5 39.1 93.0 99.6 100.0 100.0

2.8386 500 TM (c) 5% 4.6 2.5 3.0 6.0 12.6 24.4

(Med) 10% 9.4 6.1 6.6 11.8 22.2 36.8

T1 (c) 5% 3.5 4.5 7.2 12.3 19.9 29.1

10% 7.7 9.2 13.7 21.2 30.3 41.1

T2 (c) 5% 3.9 4.8 7.6 14.6 22.1 43.6

10% 8.3 9.7 14.4 22.9 32.2 51.9

1000 TM (c) 5% 5.7 2.5 4.8 12.7 31.0 55.2

10% 11.2 6.2 9.1 22.5 45.0 68.7

T1 (c) 5% 3.8 5.1 10.2 20.2 34.3 50.9

10% 8.2 10.7 18.1 31.5 47.3 63.8

T2 (c) 5% 4.2 5.7 11.3 21.3 36.7 61.7

10% 8.6 11.3 19.0 32.5 48.9 70.6

2000 TM (c) 5% 6.6 3.1 10.0 31.8 63.9 87.6

10% 12.7 6.7 17.7 46.0 76.1 93.3

T1 (c) 5% 4.8 7.8 18.0 36.2 58.6 79.8

10% 9.2 14.1 28.1 49.0 70.8 87.1

T2 (c) 5% 5.0 8.1 18.6 37.8 64.7 99.2

10% 9.6 14.6 28.7 49.9 74.6 99.5

Note. The value of δ for each of T1 (c) and T2 (c) is set equal to 0.81.
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Table 4: Estimation and Testing for the Discontinuity of Densities of School
Enrollments

Binned Local Linear Method Truncated Kernel Method

n c f̂M− (c) f̂M+ (c) ĴM (c) TM (c) f̃− (c) f̃+ (c) J̃ (c) T2 (c)

(a) Fourth Graders:

2059 40 0.0046 0.0096 0.0050 5.61 0.0034 0.0098 0.0064 5.76

80 0.0103 0.0097 -0.0006 -0.62 0.0086 0.0090 0.0003 0.24

120 0.0061 0.0039 -0.0022 -3.35 0.0063 0.0044 -0.0020 -3.55

160 0.0011 0.0009 -0.0003 -0.84 0.0013 0.0005 -0.0008 -2.88

(b) Fifth Graders:

2029 40 0.0055 0.0114 0.0059 6.29 0.0042 0.0116 0.0074 6.28

80 0.0107 0.0098 -0.0009 -0.98 0.0087 0.0103 0.0017 1.25

120 0.0054 0.0045 -0.0009 -1.20 0.0057 0.0043 -0.0014 -2.84

160 0.0014 0.0011 -0.0003 -0.80 0.0014 0.0010 -0.0004 -1.28

Note. The value of δ for T2 (c) is set equal to 0.81. Values of test statistics in bold
faces indicate significance at the 5% level.
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