
Efficient Numerical Methods for the

Simulation of Particulate and Liquid-Solid

Flows

Dissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

(Dr. rer. nat.)

Der Fakultät für Mathematik
der TU Dortmund vorgelegt von

Raphael Münster

im Februar 2016

Dissertation

Efficient Numerical Methods for the Simulation of Particulate and Liquid-
Solid Flows

Fakultät für Mathematik
Technische Universität Dortmund

Erstgutachter : Prof. Dr. S. Turek
Zweitgutachter : Prof. Dr. H. Müller

Tag der mündlichen Prüfung: 21.07.2016

Contents

Contents iii

List of Tables vii

1 Introduction 1

1.1 Introduction . 1
1.2 Aims, Requirements and Scientific Context of this Work 5
1.3 Chapter Overiew and Structure of this Work 6

2 Meshing 9

2.1 Introduction to Meshes . 9
2.2 Surfaces . 11
2.3 Computational Meshes . 13

2.3.1 Structured Mesh . 14
2.3.2 Unstructured Mesh . 14

3 Rigid Body Simulators 17

3.1 Introduction . 17
3.1.1 Overview of Rigid Body Simulator Design 19

3.2 The Broad Phase . 26
3.3 Spatial-Temporal Coherence Analysis 35

3.3.1 The Contact Graph . 36
3.4 The Narrow Phase Module . 41

3.4.1 Contact Sets . 41
3.4.2 Distance Computation . 43

3.5 The Contact Generation Module . 49

4 Efficient Contact Solvers for Rigid Body Simulation 53

4.1 Particles . 53
4.1.1 Equations of Motion for Particles 53
4.1.2 Particle Rotation . 54
4.1.3 Linear and Angular Momentum 55
4.1.4 Work, Energy and Kinetic Energy 56

4.2 Rigid Bodies . 56

iii

4.2.1 Local Coordinate Space and World Coordinate Space 57
4.2.2 Moment of Inertia Tensor 58
4.2.3 Equations of Motion for Rigid Bodies 61
4.2.4 Friction . 62

4.3 Single Body Collision Model . 64
4.4 Multi-Body Collision Models . 66

4.4.1 Introduction . 66
4.4.2 Velocity-based Multi-Body Collision 68
4.4.3 Linear Complementarity Problems 73
4.4.4 DEM-Based Contact Force Calculation 74
4.4.5 Sequential Impulses Model 76

5 FEATFLOW Solver Overview 81

5.1 Introduction . 81
5.2 Governing Equations for Fluid Flow 83
5.3 Numerical Method . 85

5.3.1 Multigrid FEM-FBM . 85
5.3.2 Time Discretization by Fractional-Step-θ Scheme 86
5.3.3 Space Discretization by Finite Element Method 86

5.4 Liquid-Solid Interface . 87
5.4.1 Introduction . 87
5.4.2 Fast Point Location in Unstructured Meshes 88
5.4.3 GPU-based Point Location in Unstructured Meshes 90

5.5 Introduction to Mesh Deformation 90
5.6 PDE-Based R-Adaptivity Mesh Deformation Algorithm 91
5.7 Non-PDE based Mesh Deformation 96

6 Results 101

6.1 Introduction . 101
6.2 Sphere Sedimentation towards a Solid Wall 102

6.2.1 Definition of the Test Case 102
6.2.2 Simulation Results . 103
6.2.3 Comparison with other CFD-Codes 105

6.3 Oscillating Cylinder in a Channel . 110
6.3.1 Setup of the Benchmark . 110

6.4 Sphere Sedimentation with Mesh Adaptation 118
6.5 Numerical Simulation of Swimming at Low Reynolds Numbers . . . 121

6.5.1 Introduction of the Test Case 121
6.6 Virtual Wind Tunnel . 128

6.6.1 Test Case Description . 128
6.6.2 Simple Car Test . 128
6.6.3 Realistic Car Test . 130

6.7 Particulate Flow Tests . 132

6.7.1 The DGS Configuration . 132
6.7.2 Direct Numerical Simulation of a Fluidized Bed 136
6.7.3 Complex Particles Test . 137

6.8 GPU Acceleration for Distance Maps and Inner Sphere Representations 142
6.9 Conclusions and Future Work . 145

Bibliography 147

List of Tables

6.1 Fluid properties for the different test cases 102
6.2 Fluid and particle properties . 105
6.3 Number of mesh elements for different adaptation techniques 111
6.4 Number of mesh elements and vertices for sedimentation test 119
6.5 Number of mesh elements and vertices for virtual wind tunnel test . . 128
6.6 Fluid and particle properties . 136
6.7 Richardson-Zaki indices for different Rep 137
6.8 Number of vertices for the point containment tests 142

vii

Chapter 1

Introduction
Efficient Numerical Methods for the

Simulation of Particulate and Liquid-Solid

Flows

1.1 Introduction

This work is concerned with the numerical simulation of particulate flows and liquid-

solid flow problems with complex geometries. Particulate flows are a subtopic of the
larger field of computational fluid dynamics (CFD), which is concerned with the nu-
merical solution of certain fluid equations on computer hardware. Some well-known
test configurations in the CFD community are the calculation of the flow around a
cylinder and, as an extension of this, the flow around an airfoil. The scientific method-
ology in CFD applications can in general be summarized as follows:

• Theoretic Modelling : Describes the problem to be simulated as a set of equa-
tions.

• Discretization : The simulation domain is discretized by covering it with a com-
putational mesh. The mathematical equations can then be evaluated on computer
hardware in the degrees of freedom of the computational mesh.

• Numerical Solution : The system of equations is solved by a numerical solution
scheme.

• Postprocessing : The solution values are processed by a visualization software
that helps the user to access the data intuitively and analyze it.

1

2 CHAPTER 1. INTRODUCTION

As we have mentioned the simulation of particulate flows is a subfield of CFD, some
classic examples of particulate flow applications include the simulation of single par-
ticle sedimentation trying to compute accurate results for the particle’s terminal free
fall velocity or to simulate well-known particle interaction phenomena like drafting,
kissing and tumbling (see figure 1.1 for graphical examples). Before we turn to the
specific, detailed methods proposed and used in this work, we want to introduce and
discuss the most important vocabulary and real-life applications in this field of research
in order to provide an intuitive introduction to the topic. Particulate flows which al-
ternatively can also be called particle-laden flows are characterized by a number of
solid, rigid particles which are immersed into a carrier fluid. Thus, they are a special
class of multi-phase flow problems that consist of two phases, the dispersed phase (the
particles) and the liquid as carrier phase. When we talk about particulate flows we,
in general, think of the particle phase consisting of particles with a simple geometry
like spheres or ellipsoids. In case the geometry of the solids immersed into the fluid is

(a) Flowfield visualization around a
simple particle

(b) Drafting, kissing and tumbling
timeline from left to right, top to bottom

Figure 1.1: Prototypical examples of particulate flows

more complex, we talk about the more general class of liquid-solid flows. Typically,
more complex geometries are considered when the flow around technical components
or machinery used in various engineering applications needs to be simulated. When
we try to assign a specific scientific category to the simulation of particulate and liquid-
solid flows, we realize that multiple scientific disciplines are involved in this field of
research, i.e. numerical mathematics, computer science, engineering, physics or chem-
ical engineering. This aspect makes the study and simulation of particulate flows an
interesting, challenging topic that connects researchers as well as scientific and indus-
trial projects from various scientific backgrounds.
It is not surprising that realistic prototypical particulate flow applications are as well
based on the aforementioned scientific disciplines. Examples for typical particulate
flow applications include :

• Fluidized-bed reactors

• Separation and recycling of industrial waste

• Processing of natural oils

2

CHAPTER 1. INTRODUCTION 3

• Abrasive spraying.

These prototypical applications are characterized by a fluid medium interacting with
multiple immersed rigid particles. The particles themselves are typically thought of as
not only rigid, but also of a simple, in many cases spherical, shape. Also the number of
particles in such applications usually ranges from hundreds to several ten thousands.
Particulate flow applications in the broader sense involve more complex geometries
than simple spheres. These applications we call general liquid-solid flows. In these

(a) Streamline flowfield around a
helix geometry

(b) Liquid-Solid simulation
of a twin screw geometry

Figure 1.2: Examples of liquid-solid flows with complex geometries

cases the focus of the simulation is usually to determine some specific features that
a geometry has on the flow around it. Another difference compared to particulate
flow simulations is that the number rigid objects is limited to a few objects, often not
more than one. This is because the computational resources are limited and we aim to
resolve the complex geometry by the mesh as fine as possible so that the interaction
of geometry and fluid can be captured as well as possible. These kinds of liquid-solid
simulations have a place in industrial production and planning processes. Different
kinds of geometrical designs can be tested in the virtual testing environment without
having to actually construct several prototypes for experiments and unnecessary waste
of resources can be avoided. Apart from testing the influence of a specific prototype
geometry on the application, the virtual testing environment can be used in following
steps of the development pipeline (see figure 1.3) to optimize the the most promising
geometry design with regard to the needs of the application. Some typical examples of
these kinds of liquid-solid and virtual prototyping applications, some of which we will
encounter in the course of the work, are:

• Virtual wind tunnels

• Virtual stenting

• Aneurysm rupture prediction

• Virtual work piece design and optimization.

3

4 CHAPTER 1. INTRODUCTION

In many virtual prototyping applications the geometry of the prototype is a quantity
of interest and closely related to the desired features of the prototype. It is there-
fore of high importance in the simulation to accurately capture even small details of
the prototype geometry. Another highly desired feature is the ability to easily change
the prototype geometry and to quickly adjust the simulation accordingly. A software
package that is able to handle particulate flow and liquid-solid virtual prototyping ap-
plications usually consists of a CFD-solver for the fluid part of the problem and of a
coupled solver for the particle or rigid body problem. In our work we use as CFD-
solver the FEATFLOW [27] solver package. The extension and the efficient coupling
of the FEATFLOW solver with software components that allow the simulation of a
wide range of particulate flow problems with complex geometries and liquid-solid vir-
tual prototyping applications that are able to resolve even small details of prototype
geometry are the main focus of this work.

CAD Virtual

Prototype

Basic

Functionality

Testing

Multi -

Parameter

Optimization

Practical

Veri�cation

Performance

Evaluation
Final Product

Update
Prototype

Update
Prototype

Initial Design

Idea

Software Hardware

Figure 1.3: Workflow diagram for virtual prototyping

The idea of virtual prototyping is to aid engineers in product design (see figure 1.3).
Without virtual prototyping the design of a product prototype can be a time and re-
source consuming process and one is reliant on the experience of the engineer to
achieve the desired result with a minimal number of actual prototypes produced. With
virtual prototyping availabe even without extensive experience the possibility to eval-
uate an initial design idea is provided by simulations. Recent research confirms the
claim that the use of virtual prototyping can not only reduce the resources spent for
the production processes, but can also improve the quality of the final result [36]. The
virtual prototypes in simulations are usually represented by CAD (computed aided de-
sign) geometries, in the form of surface triangulations, the simulation framework then
needs to process this geometry in the simulation and generate the computational mesh
that discretizes the simulation domain. In the course of the simulation special tech-

4

CHAPTER 1. INTRODUCTION 5

niques need to be applied to increase the numeric efficiency of the simulation software.
These can be the adaptation of the computational mesh to the shape of the geometry
with these techniques the small scale details of the geometry can be captured and re-
solved in the simulation.
One of the main challenges in the proposed endevors is to develop a system that is able
to provide accurate solutions to the problems and at the same time to satisfy demands
with regards to compute time. The compute time required to provide competitively ac-
curate results in thie earlier days of numerical flow simulation was not unusually seen
to rise up to several months. With the help of more efficient theoretical methods and
advances in compute hardware these compute times of the old days can be significantly
reduced. The rise and availability of parallel hardware and compute clusters have led
to the development of (massively) parallel CFD-software. These parallel CFD-solvers
usually employ a domain decomposition approach that divides the simulation domain
in several subdomains which in turn are then assigned to a CPU on the compute cluster.
Following this development is the integration of special massively parallel hardware
into these clusters like GPUs (graphics processing unit), multicore-CPUs and even pro-
grammable gaming console hardware. The advantage of these types of hardware is the
ability to perform thousands of computations in parallel thanks to their high number of
compute units. The potential acceleration of simulation codes is however not directly
available. In order to gain performance by parallel hardware the algorithmic founda-
tion of the software has to be such that it actually has the required data parallelism and
independence to compute results simultaneously. It is the task of software developers
to adjust their simulation codes accordingly.

1.2 Aims, Requirements and Scientific Context of this

Work

The aim of this work is to design and couple a software module with the FEATFLOW
software package that is able to provide the possibility to handle particulate flow simu-
lations with simple spherical as well as complex shaped particles. The said additional
software module should also be able to handle the virtual prototype applications where
prototypes can be evaluated in a simulation and the geometric design of the prototype
can be changed comfortably. Especially in the case of virtual prototype and liquid-
solid applications with complex geometries methods that increase the numerical ef-
ficiency and accuracy by adapting the mesh to the detail of the geometry should be
included. Furthermore, the evaluation of the methods implemented in this work is of
great importance. As basis of this evaluations we will choose well-known benchmark
test cases and experiments. For particulate flow applications the design of a rigid body
simulation framework that is able to handle the interaction of multiple rigid bodies is
central. The realistic practical applications that the particulate flow solver should be
able to handle include the class of fluidized particle beds, particle sedimentation and

5

6 CHAPTER 1. INTRODUCTION

other typical examples that mainly originate from chemical engineering applications.
The particulate flow solver should furthermore be tested in scenarios where there is in-

Basic CFD tool � FeatFlow

(robust, parallel, efficient)

Numerical features:

� Q2P1 FEM scheme for particulate flow

� Use of unstructured meshes

� Fictitious Boundary (FBM) methods

� Newton-Multigrid solvers

Solve for velocity and pressure applying FBM-conditions

Integration of Motion Equations

Calculate hydrodynamic force and torque

Contact Detection and Force Calculation

Mesh Adaptation

Figure 1.4: Overview of the FEATFLOW software package and the components that
are part of this work. The topics marked in blue are the components that will be added
or extended in the contact of this work. The arrows pointing from the GPU hardware
indicate in which components hardware acceleration will be added.

teraction between multiple non-spherical particles in order to demonstrate and validate
its capabilities in this still challenging class of applications. In the field of liquid-solid
flows the general methodology how small scale details of the complex geometries are
intended to be captured should be explained and analyzed. The validity and operabil-
ity of the method should be tested in configurations with complex geometries (virtual
wind tunnels, medical applications, etc.). With regard to the relation between theoretic
approaches and their implementation the choice of methods in this work should al-
ways have in mind that the methods should be applicable and well suited for a parallel
hardware implementation which is demanded by the domain decomposition approach
that the parallel FEATFLOW solver uses. The interaction between the FEATFLOW
solver, the additional components and extensions of existing components that will be
dealt with in this work are depicted in figure 1.4. Additionally, the extension and partly
the implementation of components of the software on massively parallel hardware like
GPUs should be considered. That is, the choice of methods should be such that an im-
plementation on GPU hardware is directly possible or several alternative approaches
should be discussed that are suited to traditional CPU implementations and those that
are more suited to GPU implementations.

1.3 Chapter Overiew and Structure of this Work

In this section we want to provide a short overview of the different chapters of this
work and give a brief summary of each chapter. Our work is structured in a way that
the different parts of it correspond logically to the components that are necessary to
achieve the desired aims. The theory of the methods is described for each module
of the final software package, whereas the validation test and simulation results are
grouped in the final chapter.

6

CHAPTER 1. INTRODUCTION 7

In the first chapter we take a deeper look into the meshing aspect of our particulate
flow solver. We briefly summarize basic theory and terminology of meshes and dis-
cuss the differences between basic mesh types that will be used in our work. The
terminology is important to understand the acceleration structures used in several al-
gorithms in the following chapters as well as for basic concepts of mesh adaption.

In our introduction to rigid body simulators we start with an overview of approaches to
the design of such simulators. Special focus we will lay on the modular design of rigid
body simulators. The chapter then continues to introduce the different modules of a
modular rigid body simulator on a higher level, to explain their general functionality as
well as their role and interaction with the software framework. After the general intro-
duction of the modular components of the simulator we proceed to discuss the details
and the theoretic concepts that are necessary to implement the different components in
an efficient way. The components that will be discussed in detail are the broad phase
module with its search data structures, the spatial temporal coherence analysis with its
contact graph data structure and the narrow phase/contact generation module with its
geometric algorithms to compute the contact information.

The following chapter focuses on a highly important module of the rigid body sim-
ulator which is the contact solver or contact force module. The module plays a central
role in the simulation as it enables the simulation to handle multiple colliding particles
which is a key feature in particulate flow simulations. The chapter begins with a short
review of the necessary concepts from physics required to derive the mathematical for-
mulation of contact forces. Based on these concepts and their relation to the contact
force formulation a representation of rigid bodies in our simulations is proposed that
is well suited to the context of our problem formulation. Different solution schemes
for the contact forces are mentioned such as the constrained-based formulation, the
sequential impulses formulation and a DEM-based approach which is well suited to an
implementation on GPUs.

For the constrained-based approach to the contact force problem a special kind of
mathematical problem arises: the linear complementarity problem. In a following sec-
tion we briefly talk about the general theory of the linear complementarity problems
(LCP) and formulate a solution strategy.

In the penultimate chapter we give a short summary of the FEATFLOW solver pack-
age and the algorithmic parts of it that we are going to use. The general flow equations
are given and the basic solution methods is stated. Also the setup of the domain de-
composition method and the partitioning into domains that are processed in parallel is
touched. The fictitious boundary method (FBM) which is used as the interface tracking
method and to couple the fluid equations with the equations of motion is introduced.
Furthermore, we present efficient algorithms that are able to solve interface tracking

7

8 CHAPTER 1. INTRODUCTION

related problems in parallel as a new liquid-solid interface component of the FEAT-
FLOW software package. We finish the chapter with a look at techniques that allow
the adaptation of meshes to geometries that represent the solid objects in our liquid-
solid simulations. We take a look at PDE and non-PDE based methods for adapting
meshes to objects.

In the final chapter we want to evaluate and validate the methods mentioned in the
previous chapters. The test cases presented include validation tests for a single parti-
cle to focus on the accuracy of the hydrodynamic force computation. Benchmarks for
multiple particles and rigid bodies to test and compare the contact force solver to re-
sults of other research groups for the benchmark. As benchmark for the single particle
configuration we have the well-known benchmark of ten Cate [13] that is concerned
with the sedimentation of a single sphere towards a wall, our results will be compared
to experiments as well as to the simulation results of other research groups. As multi-
ple particle benchmark we have a fluidized bed test case by Aguilar et al.[1] where we
compare the results for multiple particle based on statistic measures. Furthermore, we
will be demonstrating the accuracy and the advantages of force computations with grid
deformation with a simple oscillating cylinder benchmark and more complex realistic
applications like the behavior of a microswimmer in a non-newtonian fluid at a low
Reynold’s number. The ability of the mesh deformation method to capture small scale
details will be demonstrated in a virtual wind tunnel scenario.

Finally, we provide a list of literature references used in our work.

8

Chapter 2

Meshing
Terminology and Basic Theory

2.1 Introduction to Meshes

In this work we will encounter meshes in different contexts, one of them is to rep-
resent the surface of an object in a rigid body simulation or of a geometry around
which we want to calculate the flow field. In a Finite Element simulation the domain
and the immersed geometries are discretized by a so called computational mesh. The
computational mesh covers the simulation domain with cells or elements. In 2D these
elements are usually quadrilaterals and in 3D the usual choice of element type is the
hexahedral element. That is formally surfaces are composed from polygons and vol-
umes are constructed from Polyhedrons. The set of elements that cover the domain is
in turn called the mesh. An alternative nomenclature for mesh is cell complex, but in
this work we will continue to use the word mesh. For surface meshes that represent
objects in a simulation triangles are the usual choice. We will now summarize the ba-
sic topological terminology and basic theory of meshes, the content in the following
sections can be found in a more detailed and extended manner in the works of Kinsey
[45] and Edelsbrunner[23]. As the first basic definition we will revisit the mesh:

A mesh M is composed of a finite number of n-dimensional cells:

M = {ω : ω is a element}.

The dimension of a mesh is equal to the highest cell dimension in the mesh. A cell
of a mesh is the mesh component the inner of which is homeomorphic to the inner
set of an n-dimensional disk. The boundary of a cell is composed of cells of lower
dimension, these lower dimensional cell boundaries are called faces. For these rela-
tionship between faces and cells we can also use the notation σ < τ to indicate that

9

10 CHAPTER 2. MESHING

σ is a face of cell τ . A polyhedron for example is a cell that is composed of polyg-
onal faces(two-dimensional cells), edges (one-dimensional cells) and vertices (zero-
dimensional cells).

In order to construct a mesh we combine and connect cells of equal dimension: ver-
tices are connected to vertices and edges are connected to adjacent edges. By |M| we
refer to the set of points of mesh M:

|M| = {x : x ∈ σ ∈ M, σ is a cell in M.}

|M| is also called the underlying space of M. In order to define a topological structure
for meshes, for every vertex in |M| a defined neighborhood relationship has to exist.
In the example of a single cell mesh consisting of one polyhedral cell, we examine
the neighborhood relationship. This mesh is composed of polygonal faces which in
turn are composed of edges that are formed by connecting vertices. Here, we adopt
the notion that vertices in the mesh correspond to the vertices in the lower dimensional
cells that are used to construct the mesh.

For a vertex v that is located in the inside of a polygon, the neighborhood of v is
an arbitrary disk that is entirely located in the inside of the polygon. If the vertex v is
on an edge e that was contructed by unification of edges e0...en then the corresponding
vertex v has to be present on every edge ei. The unification of half-disk neighborhoods
of the vertices v0...vn leads to the neighbor relationship that is depicted in figure 2.1.
Furthermore, we see that in case that a vertex v is contructed from polygon vertices
v0, ...,vn the neighborhood of v is composed of the different disc- or half-disc neigh-
borhoods of v0, ...,vn.

Figure 2.1: In the figure we unify the edges e0, e1 and e2, the resulting cell complex
or mesh is on the right. The vertex v that has been produced by unifying the other
vertices also has a neighborhood that is the result of the unification of v0, v1 and v2.
Vertex v is an inner vertex and has a disk neighborhood that is fully inside before and
after the edge unification [45].

10

CHAPTER 2. MESHING 11

2.2 Surfaces

The surfaces that we will use in the course of this work are manifolds, this is why we
take a closer look at their properties. An n-dimensional manifold is a topological space
in which every vertex has a neighborhood that is topologically equivalent to an open
n-dimensional disk. The manifold definition also requires that two distinct points have
disjoint neighborhoods. A 2-manifold is called a surface. If a manifold has a boundary
then there exist vertices that have a neighborhood that is topologically equivalent to an
open n-dimensional disk or half-disk. If a vertex has neither an open disk nor open
half-disk neighborhood then it is called non-manifold. If a surface has one or more
non-manifold vertices then the surface is called a non-manifold surface, see also figure
2.3 for examples of non-manifold surfaces.

A bounded manifold can be either orientable or non-orientable. Here the notion of
being orientable or not is a global criterion, which cannot be defined by local features
only. A surface is orientable if it does not contain a Moebius Strip [23]. A Moebius
Strip can be explained by considering an (n+ 1)-dimensional object moving along an
n-manifold. If the the object is located on one side of the n-manifold and on its travel-
ling path it revisits a neighborhood, but this time from the other side, then this path is a
Moebius Strip and the surface is not orientable. In a less abstract way a Moebius Strip
can also be thought of as a strip of paper that is twisted and then glued together at an
opposing pair of edges (see figure 2.2). The surfaces used to construct two-dimensional
meshes are orientable, the cells of these meshes are triangles or quadrilaterals, which
are connected by vertices or edges. Vertices or edges that are not part of a polygon
should not be part of the mesh in the terminology that we have summarized in this
section. From basic graph theory the adjacency and incidency relationships are im-
portant for our considerations. Adjacency is the neighborhood relation between same

(a) Planar representation of a
Moebius Strip

(b) Moebius Strip visualization

Figure 2.2: A Moebius Strip can be created by twisting and connecting the edges of a
planar strip, see also [23, 45].

type mesh components whereas incidency is the neighborhood relation between mesh

11

12 CHAPTER 2. MESHING

components of a different type. Using this terminology we call two polygons adjacent
if there is an edge that is incident to both polygons. Using the incidency relationship
we can define the notion of the stencil: the stencil of a vertex is the set of edges and
polygons that are incident to the vertex:

Stencil τ = {σ ∈ K|τ < σ}

The degree or valency of a vertex v is the number of vertices vi that is adjacent to v,
meaning there exists an edge that connects v to vi.

A manifold in the context of polygonal surfaces defines a configuration where for ev-
ery edge a maximum of two surfaces are incident to that edge and for every vertex of
the manifold only a single ring of surfaces is connected to the vertex. Furthermore, the
Euler-Poincare equation

V − E + F = 2− 2G

where V is the number of vertices, E the number of edges, F the number of faces and
G the number of holes has to be satisfied for manifold surfaces. Cell complexes that
do not satisfy the beforementioned manifold criteria are shown in figure 2.3.

Having discussed the topology and connectivity of polygonal surfaces in two di-

Figure 2.3: From left to right: manifold surface, non-manifold at an edge and non-
manifold at a vertex.

mensions, we can begin to extend our considerations to the three-dimensional case.
The concept of orientable manifolds remains the same for the extension to three di-
mensions and these orientable manifolds will be used in three-dimensional meshes for
discretization by a finite element mesh in order to solve flow equations and as second
purpose to represent three dimensional objects. These objects can be represented by a
3D surface mesh that describes the boundary surface of the object. The terminology
that we have established before for two-dimensional meshes can naturally be extended
to meshes consisting of polyhedral cells such as tetrahedrons, pyramids, prisms and
hexahedrons (see figure 2.4).

12

CHAPTER 2. MESHING 13

2.3 Computational Meshes

In the preceeding section we have examined and introduced meshes from the point of
view of topology. This work however is related to the numerical solution of flow equa-
tions on a mesh. Therefore a physical domain is discretized by our computational mesh
in order to provide a finite set of elements where the related equations can be solved
by an appropriate numerical solution technique. The process of generating meshes that
are well suited for using them in a numerical simulation is called mesh generation and
can be called a scientific discipline on its own right. The use of meshes is necessitated
by the fact that the partial differential equations, that describe the physical phenomena
that we want to simulate can be solved analytically only for very basic cases on simple
domains. In order to solve realistic problems the domain needs to be discretized by a
computational mesh so that the system of equations can be discretized. Some of the
most popular mesh-based numerical solution techniques for PDEs include the Finite
Volume method, the Finite Difference method and the Finite-Element method. The
reason why we have briefly summarized the very basic foundation of meshes and their
topology is that it allows us to formally introduce structured and unstructured meshes.
In the remainder of this introduction to computational meshes we will examine struc-
tured and unstructured meshes and discuss their properties. In a numerical simulation
the choice of mesh type and element type is dependent on the numerical simulation
scheme and the concrete problem that needs to be solved. Not only the type of mesh
employed is problem-dependent, but also the generation of the topological mesh struc-
ture depends on the type of physical problem and its specific features, the compute
hardware that is available, the desired accuracy of the result, the available compute
time and findings from previous simulations with different meshes. We can conclude
from this list of dependencies that mesh generation is a highly complex topic involving
requirements from various backgrounds.

Triangle

Quad

Tetrahedron Pyramid

Hexahedron

Prism

0 1

2

0

1

2

3

0

1

2
3

4

0 1

23

0 1

2
3 4

5

0
1

23

4 5

67

Figure 2.4: Typical mesh elements used in computational meshes.

13

14 CHAPTER 2. MESHING

2.3.1 Structured Mesh

A structured mesh is characterized by the feature that the degree vertices, the number
of vertices adjacent to a mesh vertex, is the same throughout the whole mesh or in other
words that it has a regular connectivity (with the exception of boundary vertices). The
storage of such a mesh in computer memory can be realized by a simple array of cells.
This most simple type of storage is discouraged in case the mesh is to refined in the
course of the application, because new vertices need to be inserted which makes addi-
tional storage of connectivity information neccessary. Usual choices of elements in a
structured mesh include quadrilateral elements in 2D and hexahedral elements in 3D.
Elements like tetrahedrons are in general not used in structured meshes. The reason
for this is that tetrahedrons require more elements to fill a domain with elements. The
advantages of tetrahedrons, their ability to represent complex geometries better, do
not play a significant role in structured meshes. As the approach in structured meshes
to approximate geometries better is by additional refinement levels while keeping the
mesh structure simple which is easier to do with regular hexahedral elements.

There exist different subtypes of structured meshes that are used as computational
meshes which mainly include equidistant cartesian meshes, rectilinear and curvilinear
meshes these are illustrated in figure 2.5. The equidistant cartesian meshes have many
advantageous properties: they have a uniform element size and it is possible to eas-
ily locate an arbitrary point in the mesh, that is a relation between a location in space
and an element can be established easily. For rectilinear and curvilinear meshes estab-
lishing this relation is also possible, but slightly more difficult. In terms of memory
representation of such meshes this means that an element index in a data structure can
be efficiently computed based on coordinates in space:

p 7→ i (array index) ,p ∈ R
3. (2.1)

Equidistant cartesian meshes are often used for parallel finite volume, finite differ-
ence or general high performance computing schemes because of their easy genera-
tion, memory access patterns and simple domain decomposition capabilities. Besides
their use in these applications equidistant structured meshes are used as acceleration
structures for geometric computations where there are employed as a means to subdi-
vide space. These properties make equidistant cartesian meshes and variants popular
choices for spatial subdivision structures intended for acceleration of geometric calcu-
lations or other application specific geometric queries (visibility determination, point
containment, distance or intersection queries).

2.3.2 Unstructured Mesh

In an unstructured mesh the vertices in general do not have a predefined uniform ver-
tex degree. In principle this means that an arbitrary number of cells can be incident
to a vertex. The freedom of not being confined to a uniform vertex valency allows

14

CHAPTER 2. MESHING 15

(a) Equidistant carte-
sian mesh

(b) Rectilinear mesh (c) Curvilinear mesh

Figure 2.5: Structured meshes used as computational meshes, from left to right:
equidistant structured mesh, rectilinear mesh and curvilinear mesh.

for better geometry resolution by the mesh, which is especially helpful in the case of
complex geometries. Furthermore, unstructured meshes can employ connector ele-
ments to gradually reduce the level of refinement in a grid from domain areas where
a high mesh resolution is required to domain areas where such a high mesh resolu-
tion is not needed (see figure 2.6). This property is a clear advantage over structured
meshes where the mesh resolution can only be increased globally or by local vertex re-
distribution without changing the connectivity of the mesh. The choice of unstructured
meshes in order to better approximate complex-shaped geometries introduces some
difficulties as well. Complex geometries are often explicitly defined by a set of coor-
dinates in space or by an explicit or implicit analytic function. Using an unstructured
mesh there is in general no easy way to introduce a mapping from positions in space
to element indices in computer memory. Which means that calculations that involve
geometric information about the object that is represented by the mesh may need to
resort to exhaustive search procedures if no measure are taken to add this feature to the
class of unstructured meshes. Possible solutions to this problem are discussed in the
following chapters. Standard choices for cell geometries in unstructured meshes are
hexahedrons, tetrahedrons or prisms.

In comparision to structured meshes more memory is needed to store an unstructured
grid for a numerical simulation. The additional memory is required because the con-
nectivity is not defined implicitly anymore and thus neighborhood information needs
to be stored explicitly.

15

16 CHAPTER 2. MESHING

A

�

B

�

Figure 2.6: Unstructured 2D mesh where the mesh edges are aligned with an inner
circle. We have marked some vertices with different degrees to that are used as anchor
for connector elements (A) or as elements that approximate the circle geometry with
its edges (B).

16

Chapter 3

Rigid Body Simulators
Design and Algorithms

3.1 Introduction

Rigid body dynamics are concerned with simulating the physical behavior of multi-
ple rigid bodies and their interaction. A rigid body simulator is a generalization of a
particle physics simulator as particles are seen as point masses with a simple geomet-
rical shape. A true rigid body can then be distinguished from a particle as they appear
in ideally arbitrary shapes and can have different material properties. Rigid bodies
themselves are an idealization of general deformable bodies. However, the study of
deformable bodies is not part of this work and we regard particles and rigid bodies
as the building blocks for the theoretical methods used in constructing our rigid body
framework.
As we have mentioned before numerical simulations are more and more becoming an
integral part in many professions as well as development and construction processes. A
quest for larger, faster, more complex and more realistic simulations is clearly visible.
Such complex simulations usually involve not only one simulator or only one sim-
ulation paradigm, but they couple multiple different simulators like CFD-simulators,
rigid body simulators, chemical simulations, laser optics simulations or physically-
based rendering. These different simulators can then be called the individual mod-
ules of a more complex physical simulation, here the different simulator modules may
themselves again exhibit a modular design. This is especially true for our rigid body
framework, adopting a modular design enables us to easily use different methods for
the individual parts of our simulator such as collision detection strategies, collision
force solvers or time-stepping schemes. Additionally, the modular approach helps to
present the theoretical methods of the different parts of the simulator in a structured

17

18 CHAPTER 3. RIGID BODY SIMULATORS

manner.

We start off with an overview of rigid body simulators and modular design possibili-
ties, afterwards we will turn to the collision detection module (called the broad phase)
which heavily focusses on different grid structures that allow us to accelerate distance
and proximity calculations. The grid data structures presented for collision detection
are furthermore used in other areas of our framework as acceleration data structures
for general geometric problems. The collision detection module consists of the broad
phase, a middle phase and the narrow phase. The following component that will be
discussed is the middle phase. The middle phase is an intermediate step in the simula-
tor that over time collects relational information between the rigid bodies like collision
states as well as cached information of the collision states to speed up computation and
other quantities that evolve of the time of the simulation. The idea of the middle phase
has in recent rigid body simulator designs been extended [37, 25] to be active not only
as the name middle phase suggests between the broad and the narrow phase, but also
to be active after the narrow phase and after the calculation of contact forces. This
extended idea of a module that tracks relational information about rigid bodies has
been associated with the term spatial-temporal analysis module [25]. As next module
of the simulator we will deal with the narrow phase. The narrow phase is the part of
the collision detection module that computes all the neccessary input for the collision
response solver. The information computed in the narrow phase is mainly of geomet-
rical nature such as the point of contact between two rigid bodies, contact normals and
similar quantities. The outline of the rigid body simulator we are going to contruct is
shown in figure 3.1.

The topic of calculating a collision response when our detection module has reported
a collision will be dealt with in chapter 4 because it is a larger complex module.

The integration of the equations of motion will be dealt with in the collision response
chapter as this step is tightly coupled with the collision response. The discussion of
the implication of the local time-stepping of the rigid body simulator in the case when
it is an embedded module as part of a particulate flow simulation will also be delayed
until the collision response chapter as the dependency between those two topics is very
strong.

The goal we want to pursue is to build a rigid body simulator that is able to be integrated
in different simulation frameworks that want to extend their original simulator with
rigid body simulation. In order to provide such an interface to a rigid body simulator an
efficient approach is to only exchange the relevant physical quantities that are needed
for either side of the simulation. Our approach to accomplish this is the addition of a
module called the external force module which will act as the interface between the
CFD-solver and the rigid body simulator, the detailled realization of this module will
be explained in chapter 5.

18

CHAPTER 3. RIGID BODY SIMULATORS 19

��oad Phase

N��ro� ���se

Spatial-Temporal

 o�	�	e
	

Analysis

Motion Integration

External Force Module

Collision Detection

Collision Response

Integration Step

Collision Force Solver

Rigid Body Simulator

Time-Step Control

Figure 3.1: Rigid Body Simulator Outline

3.1.1 Overview of Rigid Body Simulator Design

In this introductory section we want to discuss design considerations for rigid body
simulators from a high-level abstraction point of view, in other words we are not fo-
cussed on details, but general aspects. We said, a rigid body simulator consists of sev-
eral modules, a module is a component that fulfills a specific task in the simulator, each
module may be broken down into submodules. On the highest level the structure of a
rigid body simulator is shown in figure 3.2 which is the standard since the introduction
of modern day rigid body simulation [56, 6]. We see that in its basic form a rigid body

Collision

Detection

Collision

Respone

Integration

Step

Figure 3.2: Simplified simulation loop of a rigid body simulator.

simulator consists of a collision detection module, a collision response module and a
module that handles the integration of motion equations for the rigid bodies and thus
results in an updated position of the objects in the simulation. This is the modular rigid
body simulator setup that was proposed by Erleben [25]. The advantage of this setup

19

20 CHAPTER 3. RIGID BODY SIMULATORS

is that different methods and algorithms can be ’plugged’ in as modules to customize
the simulator for the specific simulation task that should be performed. For example
the collision response module can be realized by very different approaches like:

1. Constrained-based methods[5, 6]

2. Penalty-based methods [83, 21, 99, 98, 65, 44]

3. Impulse- or Sequential Impulse-based methods [37, 56]

4. DEM-based methods[8, 66, 57, 39]

5. Hybrids and combinations of the above methods [53].

The collision detection module from figure 3.2 is a purely geometry-related compo-
nent, the modules collision response and integration are related to the physics simula-
tion. Therefore it is possible to group them in a larger simulation. We will briefly give
a general overview of these modules to illustrate their basic functionality, interaction
and discuss design decisions before explaining the detailed theory and methods used.
We start by looking at the submodules Timestep-Control and Motion Integration of the
Integration module as shown in figure 3.1.

Timestep-Control Module

The timestep-control module controls the start and length of the simulation. The mod-
ule closely interacts with the motion integration and the collision response solver. The
timestep size is chosen according to the fixed or adaptive time-stepping policy. One
possibility to implement the adaptive time-stepping strategy in rigid body simulation
is the backtracking approach [3, 55]. The idea of this method is to step forward in
time by a user-defined timestep ∆t until the collision detection module reports a col-
lision. Usually when the we step forward like this the reported collision will involve
interpenetrating rigid bodies which is an undesired state. When an interpenetrating
collision is reported the simulation will then rewind back to the last known point in
time that was free of penetrating rigid bodies which is why this scheme is also called
retroactive detection (RD) [74]. The simulation then steps forward in time with a
smaller time step and the procedure will be repeated until the exact point of touch-
ing, non-interpenetrating contact is found and can then be handled by the collision
response solver. This process is similar to numerical root finding algorithms. Another
type of adaptive time-stepping scheme is based on continous collision detection (CCD)
[69, 70].
In CCD an estimate for the earliest time of impact (TOI) between the candidates for
collision that have been determined by the broad phase is calculated. These time of
impact values are then stored in a heap data structure. The time-stepping algorithm
then chooses the timestep ∆t as the difference between the current time and the TOI
estimate of the collision pair on top of the heap data structure. The simulation will then

20

CHAPTER 3. RIGID BODY SIMULATORS 21

step forward in time and update the TOI estimates in the heap. It is important to note
that in this scheme the TOI estimate is conservative meaning that it will usually calcu-
late an estimated TOI that is smaller than the actual time of impact between the rigid
bodies. This way it is guranteed that an interpenetrating configuration does not occur.
Fixed time-stepping always step forward by a constant time step ∆t. Therefore they
are the most simple and least computationally expensive schemes, but these methods
have their drawbacks. Fixed time-stepping schemes usually result in interpenetrating
rigid bodies or even in the case of very large time steps in missed collisions, an effect
which is also called tunneling (see figure 3.3). When a fixed time-stepping scheme is
used it is absolutely neccessary to use a sufficiently small time step so that deep pene-
trations do not occur and use a robust collision response solver that can deal with small
interpenetrations.
In our situation where the rigid body simulator is embedded into the CFD-simulation

(a) Collision missed by the
system due to large time step
size

(b) Collision can be de-
tected and reported with
a smaller time step

Figure 3.3: The tunneling effect

the time stepping of the CFD takes precedence over the rigid body simulator. In almost
all cases the time step of the CFD-solver for non-stationary simulations will be small
enough or even smaller than the value that is required for the rigid body simulator to
use a fixed time-stepping scheme and still avoid deep interpenetrations and unphys-
ical states. In this case no significant benefits are achieved by using other schemes
than the fixed time-stepping scheme. In case the CFD-solver uses an adaptive time-
stepping scheme we can still observe the phenomenon that maximal timestep size of
the CFD-solver in the adaptive scheme is more than adequate for the rigid body sim-
ulator, so again the rigid body simulator can step forward using the same timestep as
the CFD-solver.

Motion Integration Module

The motion integration module and the timestep-control module are closely related.
The timestep-control module takes the current timestep size ∆t and passes this value
to the motion integration module. The motion integration module itself handles the

21

22 CHAPTER 3. RIGID BODY SIMULATORS

position update of the rigid bodies in the simulation. The update is computed by a
solver for ordinary differential equations (ODE) that solves the equations of motion.
The execution of the motion integration module is usually the last step in the simula-
tion loop of the rigid body simulator. In order for the motion integration module to
function properly collisions have to be detected, appropriate collision forces and even-
tually other external forces have to be calculated. The motion integration module is
also responsible for caching information about the previous positions and state of the
physics world in case that a backtracking time scheme is used.

External Force Module

This module is responsible for the calculation of any external forces that might act
on the rigid bodies in the simulation. In our special case of coupling a CFD-solver
with a rigid body simulator these forces will, of course, be the hydrodynamic forces
that are acting on the bodies interacting with the fluid. So an interface to the CFD-
solver has to be created that can be queried for the forces acting on a body based on
its current velocity, position, orientation and the neccessary physical properties like
density, mass and volume. The result of the query will then be the hydrodynamic
force Fh and the torque Th acting on the rigid body. The functionality of the interface
between the CFD-solver and the rigid body solver is shown graphically in figure 3.4.
The internal realization of the force computation in the CFD-solver is an important
topic. For the computation of the hydrodynamic forces the cells of the computational
mesh of the CFD-solver are examined to see if they coincide with the interior of a rigid

Broad Phase

Narrow Phase

Spatial-Temporal

 Coherence

Analysis

Motion Integration

External Force Module

Collision Detection

Collision Response

Integration Step

Collision Force Solver

Rigid Body Simulator

Time-Step Control

External Force Module

R��
���
Hydr��������
For���

Apply

Hydrodynamic

Forces

Trigger Collision

Response Solver

Solve Navier-Stokes

Equations

Compute Hydrodynamic

Forces

Update Positions and

Boundary Conditions

CFD-Solver

Figure 3.4: Rigid Body Simulator Outline

body, after having determined all the cells that constitute the interior of a rigid body

22

CHAPTER 3. RIGID BODY SIMULATORS 23

the hydrodynamic forces can be calculated. It is clear that a brute force approach to
solve this problem results in an algorithm with a complexity of O(nm) where n is the
number of cells in the computational mesh of the CFD-solver and m is the number of
particles. So the external force modules techniques are needed to reduce the cost of this
operation. Possible solutions are the overlaying of the compuational mesh of the CFD-
solver with a spacial search grid structure which allows an operation that is not possible
with the unstructured grids that are used by the CFD-solver. This operation is the
determination of cell indices in the mesh data structure based on geometric coordinates
as we have seen in eq. 2.1. The availibity of such an operator would eliminate the need
to search the whole mesh and reduce the search to only a few cells around each rigid
body. Further strategies to reduce the compute time of the hydrodynamic forces is the
caching of the cells that are inside of the rigid body and then a fast update procedure
can be invoked everytime the objects move. The acceleration techniques play a cruical
role in the concrete implementation of the external force module as this step has the
potential to slow down the simulation greatly if it is not efficiently implemented.

Collision Response Module

The collision response module is called when all force computations for the rigid bod-
ies are finished. With all the force information available a total force acting on each
rigid body can be computed which will be used in the collision response solver. The
purpose of the collision response solver is to compute a physical reaction to the colli-
sion of rigid bodies and to impose the non-penetration constraint. The non-penetration
constraint enforces that no pair of rigid bodies is occupying the same volume and thus
displaying deep interpenetrations. Due to numerical inaccuracies it is nearly impos-
sible to enforce absolutely no penetrations at all no matter how small it may be. It
is advantageous to relax the non-penetration constraint and allow some small amount
of penetration, otherwise a collision response solver will just fail to find a solution in
some numerically critically situations or, in general, use an unneccessary amount of
compute time in order to correct some neglegible penetration effects. A collision re-
sponse is usually computed in form of an impulse. An impulse is a force that triggers
an instantaneous (discontinuous) change in the motion of the rigid body. Let us imag-
ine the simulation of a ball falling towards the ground: gravity is acting on the ball
and accelerating the ball towards the ground. When the ball is making contact with
the ground the collision detection module detects this and adds a signal for the colli-
sion response module to compute the forces for this collision. The collision response
solver will then calculate an impulse that not only prevents the ball from penetrating
the ground, but also enforces a reaction with respect to a chosen collision model. In
this case the collision response might calculate an impulse for an elastic collision. The
impulse is then applied to the ball and it instantaneouly changes its velocity. Impulses
in general are calculated according to a certain contact model. There exist different
classes of contact models that differ with regard to their accuracy of representing the
actual physical behavior of colliding bodies and the computational cost that is required

23

24 CHAPTER 3. RIGID BODY SIMULATORS

to solve the contact model. The most accurate contact models consider a full deforma-
tion law which computes the compression and expansion of a rigid body during a col-
lision based on partial differential equations (PDE). Other contact models are based on
algebraic laws that lead to a system of equations which can then be efficiently solved.
These equations are based on the known physical pre-collision states and desired post-
collision states. We can then solve these equations for the post-collision states to get
our impulses. Furthermore there are incremental collision models that build up the
collision forces over a certain collision time which can then be integrated to get the ac-
cumulated collision force. To compute the forces by an incremental model is usually
more computationally expensive than using an algebraic law, but these models do not
require a solver for a system of equations. In our implementation we included incre-
mental and algebraic models for collision forces. Introducing another PDE-solver for
the rigid body collision besides the CFD-solver would be too expensive for the type of
applications we plan to handle with our setup. When i.e. several thousands of collision
problems have to be solved the percentage of the computation time for a single time
step of the simulation that has to be spent in the collision response module would be too
high. Impulses themselves can be applied to rigid bodies either simultaneously [37] or
sequentially [57, 55]. Simultaneous application of impulses leads to a system of equa-
tions where the impulses for a specific collision pair i are affected by the impulses of
collision pairs ij that are connected to the pair i. This way impulses are computed and
applied in a single time step. For sequential application of impulses the impulses are
applied pairwise and the propagation of impulses takes place over several time steps.
Usually, for sequential application of impulses a lower time step is required.

Collision Detection Module

The collision detection module call follows the motion integration. Once updated po-
sitions are computed the collision detection checks for new possible collisions. The
purpose of the module is to provide in every time step a list of the pairs of rigid bod-
ies that are in a colliding state and to calculate all neccessary geometrical information
required by the collision response module. Different approaches to collision detection
exist: the continuous collision detection (CCD) approach is based on the premise to
prevent interpenetrating collisions by trying to determine the earliest time of impact of
a pair of rigid bodies and then step forward in time with an appropriate time step to
the time of impact and trigger the collision response solver. The other approach is to
allow for small interpenetrations, use a contact tolerance (based on distance) for that
two bodies are considered in a colliding state, employ a linearized contact condition
[73] which can be regarded as a heuristic to determine a colliding state or use hybrids
of these criterions. The collision detection module has clearly defined submodules:

1. Broad Phase Collision Detection

2. (Middle Phase Collision Detection)

3. Narrow Phase Collision Detection

24

CHAPTER 3. RIGID BODY SIMULATORS 25

4. Contact Point Determination

5. Spatial-Temporal Coherence Analysis.

The Spatial-Temporal Coherence Analysis module was introduced by Erleben [25] and
partly by Guendelman [37] as they share the same data structure, the contact graph.
It can be said that this module contains the full functionality of what some call the
middle phase where bookkeeping about the relation of pairs of rigid bodies is done
and their state is tracked over several time steps, also quantities that develop over time
are tracked, additionally Erleben extended and enriched this module with an analysis
of collision pairs by means of a contact graph that adds valueable information that can
be used in different ways to improve the simulation. The implication is that in a setup
where a STC module is used the middle phase is obsolete. In the following sections
we will briefly introduce the different components of the collision detection module.

Broad Phase Module

In the Collision Detection module the colliding pairs of rigid bodies are determined,
here one problem immediately comes to mind: in the worst case the number of in-
tersections checks that need to be performed is n(n−1)

2
where n is the total number of

objects. While there is no way to reduce the worst case complexity, we can reduce
the number of checks that needs to be done on average significantly. Because only
one rigid body can occupy a volume at a certain time the worst case configuration
where every object is in contact with all others is highly unlikely. In most situations a
rigid body can possibly only collide with a limited number of rigid bodies in its spatial
neighborhood. The task of the broad phase is to reduce the number of checks required
severly by excluding those pairs of rigid bodies that cannot possibly collide, which
is of great importance for the performance of the simulation, because for those pairs
we do not need to perform the narrow phase collision tests which contain computa-
tionally expensive geometrical intersection tests. The typical approach to this problem
is to use search or pruning data structures like uniform grids, hierarchical grids, tree-
based structures or use sweep and prune strategies. We will discuss our choice of data
structure in section 3.2 as well as other low-levels details of the broad phase imple-
mentation.

Narrow Phase Module

The narrow phase module takes as an input the list of potentially colliding pairs that
have been determined by the broad phase. Let us recall that it is not the task of the
broad phase to finally decide whether two rigid bodies are colliding, but to exclude
those pairs of rigid bodies that cannot collide at the current time of the simulation from
further processing. It remains to be the task of the narrow phase to finally and precisely
answer the question whether the pairs of rigid bodies that come from the broad phase
are really in colliding contact. The narrow phase module contains algorithms that can

25

26 CHAPTER 3. RIGID BODY SIMULATORS

determine intersections between numerous different analytical geometrical shapes or
shapes that are represented as surface triangulations. These algorithms usually can
additionally compute information that is important for the computation of collision
forces like contact normals.

Contact Point Determination Module

The contact point determination module is closely tied to the narrow phase and often
part of the contact point determination is already done in the narrow phase. In these
cases the contact point determination module bundles and completes the neccessary
information. The main task of this module is to compute the points of contact or the
contact points between two colliding rigid bodies and the contact normal. The contact
points are important because these are not only required in the computation of the
collision forces, but are also the points where the collision force is applied to the rigid
body. Additionally, the collision normal is required because it is needed to define the
direction in which the contact force should act. If contact information over several
time steps is available like the collision force in the last time step, contact, distance
or penetration depth information then it is also added to this bundle, as it will help to
simplify or accelerate the computation.

Spatial-Temporal Coherence Analysis Module

In a simulator according to the design of Guendelmann or Erleben after the motion
integration step the STC analysis module is triggered. This module is a collection
of methods that analyze different relations and collision states of the rigid bodies and
quantities that develop over time in order to cache the results of the analysis for the next
time step so they can be used to accelerate computations in the narrow phase, contact
determinations and collision force solver. One of the central instruments that Guen-
delmann and Erleben introduced is the so called contact graph. A contact graph can
help to identify the collision state of rigid bodies over time, to identify contact groups
and to provide geometrical information that can help to speed up the collision response
solver. Contact groups are independent connected components of rigid bodies, inde-
pendent groups of rigid bodies have the advantage that they can in principle be handled
in parallel. Furthermore, if the contact graph provides information on the spatial rela-
tion between rigid bodies this information can be used to calculate the propagation of
collision forces more efficiently. The STC module is an optional module that is mainly
introduced for efficiency reasons.

3.2 The Broad Phase

The broad phase is the module which is first called in the simulation loop of our rigid
body simulator. The module is concerned with providing an efficient solution to the
n-body collision problem that in all, but the most malign cases avoids the worst case

26

CHAPTER 3. RIGID BODY SIMULATORS 27

complexity of n(n−1)
2

collision checks. The way to severly reduce the number of col-
lision checks in the broad phase is to use acceleration data structures that allow us to
quickly generate proximity information between potentially colliding rigid bodies and
to efficiently exclude those pairs of rigid bodies that cannot possibly collide in the cur-
rent time step. The data structures that are constructed to aid these calculations parti-
tion the 3D space (and hence are often called spacial partitioning structures), this way
we can infer that rigid bodies can only collide if they are located in the same or directly
neighboring partition of the simulation space. In rigid body simulators the candidates
for spatial partitioning data structures that are usually considered are grids, trees and
spatial sweeping techniques [24]. In this section we will explore which choice of data
structure is best suited to the needs of rigid body simulator that we wish to construct.

Uniform Grids

A popular choice of spatial partitioning structure is a uniform grid that covers the
simulation domain with cells of a fixed size. Each cell gets assigned the objects of the
simulation it contains. If the cell size is chosen properly with respect to the size of the
rigid bodies, these grids allow us to only consider for collision tests only objects that
are assigned to the same cell and to the neighboring cells which would be a total of
27 cells in 3D. The implementation of a simple uniform grid would lead to an array
(representing each cell of the grid) of linked lists (used to store the rigid bodies). The
advantages of uniform grids are their simplicity and the efficiency of mapping between
coordinates in the simulation domain and elements of the grid. This most simple form
of unifom grids however suffers from serious disadvantages. The first issue is related
to the fixed cell size, when the size of the grid is fixed and the size of our rigid bodies is
not, situations can arise where the grid is too fine (when the object is to large compared
to the cell size), or the grid can be too coarse compared (objects too small for the cell
size) or even too fine and too coarse at the same time when the size of the objects
is significally different. We illustrate the different situations in figure 3.5. This first
problem of simple uniform grids can be handled by using a hierarchy of uniform grids
where objects of different sizes are assigned to different grid levels which use different
cell sizes. All that we need to do is to overlap the cells not only with the neighbors,
but also with the cells on the other levels in the hierarchy to find potential collisions.
Another problem is that potentially a simulation domain can be very large and objects
like particles can be small in comparison to the domain size, this way a grid with a
sufficiently small cell size is needed leading to a large number of cells and hence more
memory usage. Since we are thinking in terms of a rigid body simulator coupled with
a CFD-solver we need to conserve resources as also the CFD-component manages a
sophisticated grid structure that potentially can consume a lot of memory. We also note
that often a lot of the cells of the uniform grid may not be containing any objects when
the rigid bodies in simulation gather in a specific part of the domain. For these issues
the idea of a hashed grid storage offers an elegant solution.

27

28 CHAPTER 3. RIGID BODY SIMULATORS

(a) (b)

(c) (d)

Figure 3.5: In case: (a) the grid is too fine, (b) the grid is too coarse, (c) grid too coarse
with regard to geometric complexity, (d) the grid is too coarse and too fine, see also
[24].

Hash Grids

The typical implementation of a uniform grid is an array of the cells of the grid with
each entry of the array being a linked list that contains the objects that are associated
with this cell. A hash grid on the other hand maps each cell of the grid to a set of n so
called buckets by a hash function h:

h : (x, y, z) 7→ {0...(n− 1)}. (3.1)

We have thus created a grid that can potentially contain an infinity number of cells,
this is why hash grids are also called infinite grids. Thus infinite grids have the con-
venient property that they do have an open boundary, so any special case handling for
boundary cases is not neccessary. The mapping hash function determines how likely
hash collisions can occur, for well-suited sophisticated hash functions we refer to [61].
A hash collision also means that more collision tests than neccessary are performed
when hash collisions are not treated, because we will have objects that are in the same
bucket, but not in the same cell that we wanted to check. If however hash collisions
occur they can be handled by either closed hashing or open hashing [61, 24]. In open
hashing the bucket itself contains a linked list of entries for each of the cells in the
bucket whereas in closed hashing the bucket contains directly the entires themselves.

28

CHAPTER 3. RIGID BODY SIMULATORS 29

If the entries of a bucket contain an identifier for the cell they are supposed to be in.
Then the closed hashing strategy can be used and all relevant operations like deletion,
update, insertion can be performed directly without any additional overhead. Also no
unneccessary collision tests need to be performed because those objects in the bucket
with different cell identifiers can directly be skipped. To avoid problems arising from
different object sizes the hash grid structure can be organized hierachically.

Alternatives: Sweep and Prune, Trees

Sweep techniques usually perform sweeps of the simulation domain in the direction
of the world coordiante axes checking for possible bounding box interval operlap of
the objects. The tests for bounding box overlaps are performed at discrete locations
in space using fixed steps. Sweep and prune algorithms do not maintain a grid data
structure like the other approaches we have discussed [24].

Discussion

Sweep line techniques have the advantage of not needing additional memory to store
i.e. a grid and they also offer a good speedup. The argument against the use of sweep-
ing techniques are that the methods that use a search grid data structure have more to
offer. The search grid can be used for multiple purposes in the simulation like provid-
ing the ability to map coordinates in the simulation domain to grid cells, to accelerate
distance and point classification computations. So the cost of using additional memory
is balanced by the additional functionality and performance in other components of the
simulation that is gained by using it.

Collision Testing with Hierarchical Hash Grids

We will now examine in detail how collision tests can be efficiently performed with
hierarchical uniform hash grids. When using a grid for collision testing the following
question have to be answered:

• How should the grid cell size be chosen?

• How should the objects be assigned to the cells of the grid?

• How many grid levels are needed?

• Should a fixed number of grid levels be used or could grid levels be added on the
fly?

• How to efficiently test for collisions?

• How update the search structure when the objects change position?

29

30 CHAPTER 3. RIGID BODY SIMULATORS

The first step in building the grid structure is determining how many grid levels are
needed. This is directly dependent on the number of different object sizes that are
present in the simulation. In order to determine the number of grid levels needed
different heuristics exist. We can for example use as many grid levels so that on any
given level we do not have objects in a cell whose bounding volumes differ by more
than a certain percentage λ where we empirically see good results for λ ≈ 0.25. When
building the grid structure it is generally advantageous to look at the bounding volumes
of the objects rather than the real geometry with all possible details as we are interested
only in quickly pruning away objects that cannot possibly collide. Another question
when building the grid is how exactely the object cell relation should be established.
We already explained that in the broad phase we look only at the bounding volumes
of the objects. Let us assume we are using spherical bounding volumes for the objects
(see figure 3.6). As we can see in figure 3.6 a spherical bounding volume may be a

(a) Two prototypical rigid bodies (b) Spherical bounding vol-
umes for our rigid bodies

Figure 3.6: Objects and their bounding volumes

better geometrical approximation for some objects and for other objects they may be
very different from the actual geometry of the object, but for a broad phase collision
check this is still sufficient. Also the use of bounding spheres has the advantage that it
is a bounding volume that is not affected by the rotation of the object as i.e. would be
the case with axis-aligned bounding boxes. We could then assign objects to cells with
respect to the center of the bounding sphere, but: should we also store the objects in the
cells that are overlapped by the bounding sphere? Storing the objects only in the cell
where the bounding sphere center is located would result in a lower number of entries
per grid cell on average and it would require for each cell to check the neighboring
cells to find all potential collisions. Moreover, if we proceeded this way the collision
detection system would detect collisions between one and the same pair of objects
multiple times, which is an undesireable effect from this method and we would have to
add measures to filter out those multiple reported collision pairs. We will show how we
have to set up our grid so that we can store an object only in the cell where the center
of its bounding volume is located and how we can be sure that it is sufficient to check
only the 26 neighbors of the cell to find all potential collisions. For each level l of the

30

CHAPTER 3. RIGID BODY SIMULATORS 31

grid we set the cell size to be hl, we then make sure that for every object oli on level l
with bounding sphere bs(oli) and bounding sphere radius rad(bs(oli)) the equation:

hl > 2 · rad(bs(oli)), ∀l, ∀i ∈ {0...nl − 1}, (3.2)

where nl is the number of objects on level l, is fulfilled. This way we can be sure that
any pair of objects on any given level cannot collide if they are separated by more than
one cell (see figure 3.7).

Figure 3.7: Pruning method: objects that are separated more than one cell cannot
collide.

With a grid set up like we discussed before the procedure to find all potential collisions
using our grid can be formulated as follows:

Algorithm 1: Basic procedure for finding potential collisions in a uniform grid
Data: grid G
Result: list<CollisionPair> broadPhaseCollisions
begin

foreach cell c in grid G do

if !c.empty() then

foreach neighbor n of c do

foreach potential collision pair p do

broadPhaseCollisions.pushback(p)

A problem with the basic algorithm 1 is that it also reports some collision pairs multiple
times because it always checks all neighbors for each cell. Another possibility would
be to traverse the objects of the simulation instead the cells of the grid, find for each
object the cell it contains and check each neighbor of this cell. This would prevent us
from traversing potentially emtpy grid cells, but still not solve the problem of detecting
collisions multiple times. To solve this problem we can traverse the grid in a structured
manner moving from one cell to a directly adjacent cell so that we can skip checking

31

32 CHAPTER 3. RIGID BODY SIMULATORS

basically half of the neighboring cells because we have already performed the tests
when we were processing the last cell. We illustrate this way of checking the grid in
figure 3.8.

� B C

D X E

F G H

� B C

D X E

F G H

� B C

D X E

F G H

� B C

D X E

F G H

� B C

D X E

F G H

Figure 3.8: For the currently active blue cell only the grey neighbors are checked. We
see that if we traverse the grid in the depicted way, we only need to check half of the
neighbors for each cell.

We have so far described how to check for potential collisions using a single grid level.
When we are dealing with a simulation where there are objects of different sizes we
will be using hierarchical grids. The basic procedures that we have explained for a
single level still apply in the case of hierarchical grids, what is missing is how to check
for potential collisions between objects that are stored in different grid levels. We will
start handling this aspect by looking at the related question of how many grid levels
are needed in a simulation and how the cell sizes for the grid levels are chosen. As
we have mentioned before, we can use heuristics to generate as many grid levels so
that the sizes of objects on any level do not differ by more than a certain threshold
percentage λ. If we build our grid levels this way we can be sure that there are never
too many objects in a cell because of equation 3.2 and that the cell size in each level is
well suited to the size of the objects in that level. It is however possible that in some
levels of the grid there will only be a few objects, but here the advantages of the hash
grid structure pay off because in a hash grid the number of allocated cells is directly
proportional to the number of objects in the grid.

Finding Potential Collisions in a Grid Hierarchy

When using a grid hierarchy instead of a single grid the procedure for each level is still
the same as illustrated in figure 3.8, but we still need to check in the other levels of the
grid for potential collisions. For a grid G with n grid levels with lmax being the level
with the largest cell size and lmin being the level with the smallest cell size we could
either start the basic procedure at lmax or lmin and then locate the current object in

32

CHAPTER 3. RIGID BODY SIMULATORS 33

the lower or respectively higher levels and add potential collision pairs for the objects
in the found cell and its neighbors. The exact procedure is described in algorithm 2.
An illustration of algorithm 2 is provided in figure 3.9.

Algorithm 2: Procedure for finding potential collisions using a hierarchy of grids
Data: hierarchicalGrid G
Result: list<CollisionPair> broadPhaseCollisions
begin

for i = lmin to lmax do

foreach cell c in G.level(i) do

if !c.empty() then

foreach object o in c do

foreach pair (o, x) with x in c or in neighbors(c) do

broadPhaseCollisions.pushback((o, x))

for j = i to lmax do

co=G.level(j).getCell(o)
foreach pair (o, xj) with xj in co or in neighbors(co) do

broadPhaseCollisions.pushback((o, xj))

Figure 3.9: 1D Illustration of hash grid search: For object A the grey colored cells are
tested and the pairs (A,B), (A,C), (A,E) and (A,F) are added to the list of potential
collisions.

Updating the Data Structure

We have so far answered the majority of the central questions about the design and
implementation of hierarchical hash grids that we have listed in the beginning of this
section. The last missing concept arises from the fact that since we are concerned with
simulating moving objects we need to update the positions of our objects in the search
grid data structure. In other words, we need to change the object-cell relation in case

33

34 CHAPTER 3. RIGID BODY SIMULATORS

the center of an objects bounding sphere has left its old cell and moved into a new
cell. The update procedure has to be called in every time step of the simulation. Two
approaches for updating the search structure come to mind:

• The search structure is cleared every time that the positions are updated and then
all objects are inserted into the search structure again.

• We recalculate for every object the hash value for the current position of the
object. We then compare if the newly computed hash value still corresponds to
the cell that the objects is currently associated with. If the value is the same then
the cell association can remain the same, if the value is different the object has
to be deleted from the current cell and reassigned to the cell that corresponds to
the new hash value.

The advantages of the simple first approach are that it can be easily implemented and
the clearing operation can be executed very efficiently in O(m) where m is the number
of buckets on a given level. The reinsertion procedure is the same as initially filling
the search structure and can be done in O(n) where n is the number of objects in the
simulation. For the second approach we only need to compute the hash function and
in case that the object gets assigned a different value than in the previous time step,
we need to delete it from its current cell which can be done efficiently if the list-based
implementation of the hash grid is used and reassign it. Furthermore, we can expect
that a large number of objects remains in the same cell since the time step is usually so
small that an object only moves a fraction of its size in one time step. Thus, nothing
needs to be done for these objects. The second approach then can be handled in only
O(n) which makes it superior to the first approach.

Additional Applications for Uniform Meshes in the Simulation Framework

In this final section of our broad phase analysis we want to discuss the use of our hash
grid structure in concrete applications and present alternative choices that may be more
effective in some situations. First of all we want to revisit the choice of bounding vol-
ume that is used to represent an object in the broad phase. If we are dealing with a
standard particulate flow simulation that contains only rigid spherical particles then of
the choice of a spherical bounding volume is ideal. For other geometrical shapes or
other use cases of search grids a different choice of bounding volume may be more ef-
ficient. Another use case of uniform grids in our context is related to the computational
mesh of the CFD-simulation. In our framework the mesh used in the CFD-simulation
to discretize the simulation domain belongs to class of unstructured meshes. In an un-
structured mesh the number of elements that is connected to a vertex of the mesh is
irregular. Furthermore, a mapping from spatial coordinates to elements is in general
not possible. For calculations that depend on the position of the rigid bodies and the
elements of the unstructured mesh that are intersected by the rigid bodies it would of-
ten be more efficient if a mapping like in equation 2.1. With such a mapping available

34

CHAPTER 3. RIGID BODY SIMULATORS 35

the elements that are intersecting with the rigid bodies can be found efficiently. The
unstructured mesh of the CFD-simulation is also hierarchically organized, but usually
we are interested in the cells intersecting with the rigid bodies on the finest level of
the unstructured mesh. However, even for this level of the unstructured grid the cell
sizes can differ when mesh adaptation is used. In this situation a hierarchical uniform
grid that contains the elements of the finest level of the unstructured mesh of the CFD-
simulation can be used to establish the mapping from a position in space to an element
of the mesh. The general procedure of inserting the elements of the CFD mesh into
the hierarchical uniform is analogous to that of inserting the bounding spheres of rigid
bodies into a grid, but as the elements of the CFD mesh are hexahedral cells this choice
of bounding volume may not be ideal. As the hexahedral cells are geometrically more
similar to an axis-aligned bounding box (AABB), the choice of an AABB as bounding
volume for the elements of the mesh may be advantageous. Also the setup procedure
can be slightly modified in case we use AABBs as bounding volumes.
We will now present an alternative setup procedure for hierarchical uniform meshes
when AABBs are used as bounding volumes to be inserted into the mesh. A hierarchi-
cal uniform grid can be constructed in such a way that the cell size of two successive
grid levels differs by a constant factor h. We then can compute the cell size of level i
as

hi = h0 · h
i. (3.3)

In this setup we insert elements into the uniform grid based on the size of the longest
edge of their AABB emax. Elements that fulfill h0 · h

i−1 ≤ emax < h0 · h
i are assigned

to grid level i− 1. A reasonable choice for the constant scaling factor h is h = 2. We
know that for a finite element mesh even when mesh adaptation is used the difference
between the minimum element size and maximum element size is usually bounded by
a factor of 10-20. This way a grid hierarchy with at most 5-10 levels is built. The
details of how uniform grids can be used to accelerate calculations involving the finite
element mesh are given in section 5.4.

3.3 Spatial-Temporal Coherence Analysis

The STC analysis module, as it is termed by Erleben, is acting at different times of
the simulation. In earlier simulator designs analysis of spatial-temporal relations be-
tween rigid bodies was restricted to fewer functions than those defined in, for example
bookkeeping of collision states or caching of contact points. These tasks can be han-
dled between the broad phase and the narrow phase, respectively between the narrow
phase and contact determination. This is why this reduced form of spatial-temporal
relations between rigid bodies is also called middle phase. The extended form of the
middle phase, the STC analysis, acts after the broad phase, after the narrow phase,
after contact determination and after collision response to cache contact force results.
The STC builds and manages a data structure called contact graph to store the contact
information between rigid bodies.

35

36 CHAPTER 3. RIGID BODY SIMULATORS

3.3.1 The Contact Graph

The use of contact graphs in rigid body simulation has become more and more wide
spread and its functionality was extended to accelerate various calculations. One of
the first uses of the contact graph was to find the connected components of the graph.
These connected components of the graph correspond to a set of rigid bodies that
are in contact, but do not interact with other rigid bodies outside of the connected
component. This way in the contact force computation these connected components
can be handled as independent units and the problem can be broken down into smaller
independent problems. Another use of contact graphs is found in shock-propagation
[80, 26]. We refer to shock-propagation as the forwarding of a contact force that arises
when a rigid body collides with a connected set of rigid bodies. The contact graph is
used to arrange the pairwise numerical contact force calculation in such a way that it
propagates the force through the set of rigid bodies in a way that corresponds to the
geometric arrangement of the rigid bodies (see figure 3.11). In our implementation
we use a contact graph to compute connected components, relational collision states,
store geometric contact points and cache contact forces which can be used as an initial
solution for the contact force solver to speed up computation.
Formally, a contact graph is an undirected graph G(V,E) where the set of nodes V
corresponds to the rigid bodies in the simulation. Relational information between rigid
bodies are represented by the set of edges E of the graph. An edge between two
nodes of the graph is added when the broad phase collision detection reports a potential
collision or a close proximity, meaning the two rigid bodies are located in the same of
neighboring cells of the broad phase search grid (see figure 3.10).

B

�0

�2

�3

�1

�4

(a) Dynamic bodies stacked onto a fixed body

��

��

��

�� ��

B

(b) Contact graph corre-
sponding to the rigid body
configuration

Figure 3.10: A contact graph example: We see a fixed rigid body with some dynamic
rigid bodies stacked onto it. In the corresponding contact graph we use red nodes for
dynamic bodies and blue nodes for fixed bodies.

Furthermore, we see that the nodes of the contact graph can have different properties.
In figure 3.10 we see so called dynamic rigid bodies which are rigid bodies that are
allowed to move freely and fixed rigid bodies which are in our context as boundaries

36

CHAPTER 3. RIGID BODY SIMULATORS 37

A0

A1

A2

A3

A4

A0

A1

A2

A3

A4

Shock-

Propagation

B

C

C

Figure 3.11: A stacked heap of rigid bodies is resting on a fixed rigid body B. When
the heap is hit by body C a force is applied and propagates through the heap. Most
collision force solvers show better convergence behavior when the collision forces per
pair are calculated in an order that corresponds to their geometrical configuration (here:
(C,A4), (A4,A3), (A3,A2), (A2,A1), (A1,A0), (A0,B)).

of the computational domain or as solid immovable obstacles in the domain. Just as
nodes also the edges of the contact graph can have different properties, an edge can be
a broad phase close proximity, a newly detected colliding state or a touching state that
already persists over the course of many time steps.

Building the Contact Graph: Insertion and Removal of Edges

As we have said before the STC module with its main data structure of the contact
graph is activated at several stages of the simulation. The first activation is after the
broad phase when the list of current potential collision pairs is available. The contact
graph is updated with this broad phase information which is useful because edges
can be directly removed if the broad phase collision detection revealed that in the
current time step the involved rigid bodies are at a sufficiently large distance from
each other to not be part of a collision. The broad phase considers two bodies to be
sufficiently distant when they are more than one cell of the broad phase grid. Although
this criterion is just a simple heuristic, it proves to be reliable in practice because our
simulations are usually set up in a way that objects only move a fraction of the cell size
per time step. The removal of edges at this early stage is useful to reduce the iteration
range in the following calculations that involve iterations over all edges. Potential
collision pairs found by the broad phase that are not present in the contact graph are
added as new edges into the graph. Furthermore, we might not directly want to remove
edges in this stage in case the bodies where in contact in the not too distant past. The
reasoning behind this is that the bodies can come into contact again and for this case
we still want to have the cached contact information available.

37

38 CHAPTER 3. RIGID BODY SIMULATORS

Connected Components and independent Contact Groups

A contact group is a set of rigid bodies that is linked by contacts between the rigid
bodies. In the contact graph such a configuration corresponds to a connected compo-
nent in the graph. The interesting properties of contact groups is that they represent
a closed, independent unit when computing contact forces, meaning the rigid bodies
in one contact group do not interact with rigid bodies from other contact groups. We
thus can break down the computation of contact forces into smaller independent units.
Since a contact group is basically a connected component in the contact graph they
can be calculated by classical procedures to find connected components with some
minor modifications. The need to modify the connected component algorithm arises
from the fact that if a link between two or more otherwise not connected components
is established by an edge between a dynamic rigid body and a fixed rigid body, this
edge can not be used in the connected component algorithm and we treat the respec-
tive components as not connected. We see an example of independent contacts groups
in figure 3.12 and the modified connected component procedure in algorithm 3. The
slight modifications notwithstanding the complexity of the modified connected com-
ponents algorithm remains O(|V|+ |E|).

Algorithm 3: Entry Point function of the connected component search.
Data: Contact Graph G(V,E)
Result: For all v ∈ V the number of the connected component is assigned
begin

group = 0
foreach node v in V do

v.contactGroup = group

foreach node v in V do

if v.contactGroup == 0 then

group = group+ 1
depthFirstSearchCG(v,group)

Procedure depthFirstSearchCG(v,group)

begin

v.contactGroup = group
foreach w in v.getNeighbors() do

if w.rigidBodyType! = fixed then

if w.contactGroup == 0 then
depthFirstSearchCG(w,group)

38

CHAPTER 3. RIGID BODY SIMULATORS 39

A0

A1

A2

A3

C0C1

D0

D1

D2

D3

D4

B

(a) Example configuration of different contact groups

A0

A1

A2

A3

B
C!

C"

D0 D1 D2 D3

D4

(b) Contact graph with the different contact groups of the
example configuration

Figure 3.12: We see groups of rigid bodies on top of the fixed rigid body B. We see
three different contact groups: the green objects, the blue objects and the dark orange
objects, each group including the fixed body B. Although there is a path in the contact
graph between the groups, it is ignored because we encounter the fixed body B on the
path.

Benefits and Usage of Contact Groups and Graphs

Contact groups can be used when computing the contact forces, depending on the type
of the contact solver these can have a runtime complexity that is non-linear. Especially

39

40 CHAPTER 3. RIGID BODY SIMULATORS

in these cases breaking down the contact force problem into smaller independent units
can be beneficial to avoid larger problem sizes. The independent units of the contact
force problem are exactly the different contact groups.
The contact forces calculated in one step of the contact solver are stored for each colli-
sion pair in the edges of the conact graph. When in the next iteration of the simulation
loop the same collision pair is reported again, the contact forces computed in the previ-
ous iteration can be used to warm start and to accelerate the convergence of the contact
solver [25].
But not only contact forces are cached in the edges of the contact graph, also narrow
phase contact point information is available in the edges of the contact graph. Another
optimization possibility is to use this information to reduce the expensive geometric
calculations that are done in the narrow phase or at least to make these geometric
calculations easier. Since we have available the contact points, contact normals, the
positions in the current and previous time step, we can test for example if the con-
tact normal is still well enough oriented in the current time step to valid and then skip
this computation in the current step and reuse the old data. When thinking in terms
of the STC module and its main data structure the contact graph, these steps are the
part of the simulation where the STC module is called during the narrow phase and
before the contact determination. We see that the STC module is updated and called
for optimization purposes at different stages of the simulation as we have outlined in
the beginning of this section. A schematic overview of the simulation loop of the rigid
body simulator with all its modules we discussed so far is depicted in figure 3.13.

Br#$% &'$(e

Narr#) &'$se

M*+,*- .-+/56ation

E7+/6nal Forc/ M*89le

Collision Detection

Collision Response

I:;<=>?tion Step

Collision Force Solver

R@D@G HJGK L@OPQSTJU

Vime-Step Control

Spatial-Wemporal

Y#'Z[ence

\]$^_(`(

Figure 3.13: Activation of the STC at various stages in the simualtor.

40

CHAPTER 3. RIGID BODY SIMULATORS 41

3.4 The Narrow Phase Module

The narrow phase module’s position in the simulation loop of the rigid body solver is
directly before the contact solver. The reason for this is that basically all collision force
models require geometric information about the collision between the rigid bodies in
order to compute the resulting collision forces. The challenging aspect of the narrow
phase is to provide efficient, accurate and reliable methods to compute the geometrical
information needed for the contact solver for arbitrary geometries. The reliability as-
pect aims at the property of a particular narrow phase algorithm to guarantee a result,
as we do not want to rely on fallback procedures and unnecessary computations.
In our simulation we set our aim to be able to simulate arbitrarily shaped rigid bod-
ies and their interaction. For this we need a way of representing simple particles,
complex particle shapes, various obstacles in the domain, simple and complex domain
boundaries as well as complex rigid body geometries. With the goal being to be able
to represent arbitrary geometries in our simulation we consider using the following
geometry representations for different configurations:

• Spheres: simple particles, obstacles, etc.

• Convex analytical shapes: cylinders, boxes, ellipses, conical sections, etc. for
particles or obstacles

• Planes, boxes: simple domain boundaries, obstacles

• Surface triangulations: complex shapes, complex domain boundaries.

Another important question concerning the narrow phase is how a collision between
rigid bodies is actually described geometrically. In the simple case of two spherical
particles colliding this question is trivial. Let us assume we are dealing with two
touching spherical particles s0, s1 with center positions x0, x1 and radii r0, r1. Then
the normal of the contact is n = |x1 − x0|, the contact points are p0 = x0 + r0n and
p1 = x1 − r1n. So in this simple case the geometric contact information consists of
the contact normal, the distance (which is zero in the case of touching spheres) and a
contact point on the surface of each spherical particle. For more complex scenarios the
situation is more difficult as figure 3.14 illustrates.

3.4.1 Contact Sets

As we have shown, the intersection between two complex 3-dimensional geometries
is often a complex entity like a surface or in the case that there is an overlap even a
volume. The real full analytic description of an intersection we call the full contact

set. However, computing collision forces with a full contact set is a complex and
expensive computation. The contact laws that we will be using operate on a reduced

contact set that consist of discrete contact points, while still these contact laws offer
very good accuracy and can be computed rapidly and efficiently. Reducing the contact

41

42 CHAPTER 3. RIGID BODY SIMULATORS

(a) Full surface for a box-box inter-
section

(b) Reducing the contact information
to discrete points

Figure 3.14: The full intersection between the two boxes in (a) is a surface, for effi-
ciency purposes this full contact set is reduced to the intersection of the top quadrilat-
eral of the box with the end points of the edges of the other box.

set is often done by using only the points at the boundary edges of the contact surface
instead of using the contact surface (see figure 3.14). While for most contact laws
we only need to compute a set of contact points with corresponding contact normals
it is often beneficial to compute and store additional information that will allow us to
accelerate computations in other stages of the simulation, especially considering that
we will get the additional information along the way of computing the principal contact
information. So to summarize we compute the following contact information:

• an ID identifying the two rigid bodies on the collision pair,

• the contact points on the surface of the rigid bodies,

• a contact normal for each contact point,

• the distance between the rigid bodies (which does not have to be zero),

• optionally for slightly penetrating contacts: the penetration depth.

In the following we will focus on the question of how to compute the contact informa-
tion that we have just outlined and the choice of algorithms for the different geometry
representations. We have mentioned before that cached contact sets can be used to
accelerate the computation of contact information, we will at first discuss the general
case when no stored contact information is available. The input to our narrow phase

42

CHAPTER 3. RIGID BODY SIMULATORS 43

algorithms comes from the broad where we added potential collisions pair in case
they are in the same cell or in directly adjacent cells of the broad phase grid and their
bounding volumes do overlap. The fact that the bounding volumes of two rigid bodies
overlap does not yet prove that there is a collision (see figure 3.15). To finally deter-
mine whether a collision occurred or not, we need a different criterion which could be
a non-empty intersection or a very small or even negative signed distance.

Figure 3.15: The bounding volumes of our objects overlap, but the real geometries do
not collide.

3.4.2 Distance Computation

The first step in determining whether we consider two rigid bodies from a broad phase
collision pair as colliding is checking the minimal distance between them. Comput-
ing minimal distance between convex shapes can be done very efficiently using the
Gilbert-Johnson-Keerthi algorithm (GJK) [29, 24]. The GJK-algorithm does a good
job of finding the pair of points on the surfaces of two convex shapes for that the dis-
tance is minimal. Passing just the single pair of closest points as a contact set to the
contact solver is incorrect in many cases. In the examples in figure 3.14 or in the
stacked boxes in figure 3.10 we need at least the end points of the edges, the reduced
contact set, in order to get a valid solution from the contact solver. If the contact force
would be applied in only a single contact point in these cases it would cause the box to
rotate (see figure 3.16) and the box stack to collapse while in reality a stable box stack
would be the physical solution. The advantage of the GJK-algorithm is however that
it yields a definite result to our question whether we should consider the pair of rigid
bodies to be colliding or not. Either the minimum distance tells us that the rigid bodies
are separated by a distance that is large enough so that we do not need to consider the
pair in our contact solver or it tells us that there is an intersection. We then need a way
to enrich the solution produced by the GJK-algorithm to yield a contact set that will
produce a valid result in the contact solver. For boxes this could be the Voronoi Clip

43

44 CHAPTER 3. RIGID BODY SIMULATORS

(a) Single contact point point configuration

(b) Stabilization by multiple contact points

Figure 3.16: A box C is resting on top of box B. In order for the contact solver to
produce correct results, we need to compute an appropriate contact set. If only a single
contact point is generated, we introduce a rotation of C into the box B because the
information passed to the contact solver is too limited to fully describe the contact
configuration. When two contact points are given the contact solver is able to balance
out the contact and gravity forces to produce a stable configuration.

(V-Clip) algorithm by Mirtich [54] or variants of it. In our simulator complex non-
convex shapes are represented by surface triangulations which can potentially consist
of tens or hundreds of thousand triangles. These numbers basically require algorithms
for distance or contact set computation that have efficient runtime complexity with re-
gard to the number of triangles. Our solution for these cases is to adopt the concept
of signed distance map which appears in literature in the works of Guendelman [37].
Signed distance maps are a classical trade-off that offers favorable algorithmic com-
plexity at the cost of increased memory usage. A signed distance map is basically a
cartesian grid around the surface triangulation. In a preprocessing step the distance for
all the points in the distance map can be calculated using any distance algorithm for
meshes. Then in the simulation we can transform the shapes into the coordinate system
of the signed distance map, locate the points in O(1) and get the distance via trilinear
interpolation. We can additionally store normals in every point of the distance map
and also produce valid contact normals using interpolation. If we set up the distance
maps like we have explained they provide all the necessary information to compute

44

CHAPTER 3. RIGID BODY SIMULATORS 45

distances and contact sets and contact normals for collisions between mesh geometries
and any other geometry representation. The downside of using distance maps are addi-
tional memory costs and that the accuracy of the distance computaion is dependent on
the resolution of the distance map, so higher accuracy comes at the price of increased
memory. At this stage we have summarized all the tools we need to forumlate the
general narrow phase procedure: As we see in algorithm 4 we first check whether we

Algorithm 4: General Narrow Phase procedure
Data: list<CollisionPair> broadPhaseCollisions
Result: list<CollisionPair> narrowPhaseCollisions
begin

foreach CollisionPair p in broadPhaseCollisions do

if p.boundingV olumes.overlap() then

if evaluateContactCondition(p) then

narrowPhaseCollisions.pushback(p)

are dealing with a broad phase collision pair (a pair whose bounding volumes overlap)
or a pair of rigid bodies that satisfied the contact condition. The contact condition tells
us whether we should consider the pair in the contact solver. The simplest cases of the
contact condition are when the rigid bodies are touching or slightly intersecting, for
these cases we directly compute the contact information. More complicated are those
cases where the rigid bodies are not exactly touching or penetrating, but are very close.
It is advisable to add those pairs to the contact solver or otherwise we would run the
risk of penetrations when stepping from one time step to the next when the contact
solver determines forces that cause two rigid bodies to move closer together without
having them as a collision pair. The details on how to formulate the contact condition
are given in chapter 4. An example configuration of when a pair of rigid bodies should
be added as a contact pair in the collision solver is when they are very close is shown
in figure 3.17. The methods we have mentioned so far enable us to compute distances
and contact information for the different geometric shapes and geometry representa-
tions we have mentioned in the beginning of this section, we can summarize these as
follows:

• Simple particles: analytic solution,

• convex/convex or convex/particle: GJK + Minkowski portal,

• Particles/meshes/boundaries: analytic or distance maps,

• mesh/convex: distance map

• mesh/mesh: distance map

45

46 CHAPTER 3. RIGID BODY SIMULATORS

Figure 3.17: We see a situation where three spheres B1, B2, B3 are in touching con-
tact. The sphere B0 is moving on collision course to the other spheres, beginning with
sphere B1, but a small separation distance remains. If the velocity and the time step are
configured in such a way that the sphere B0 travels more than the separation distance
in the current time step, we would get an interpenetration. If this is the case we can add
a contact pair (B0, B1) in order to prevent a penetration and trigger the computation of
contact forces in the current time step.

Distance Maps

As we have seen distance maps play an important role especially when handling more
complex geometries, so we will take a look at their definition, generation and appli-
cation in more detail. A distance map consists of a rigid body geometry that is rep-
resented as a surface triangulation and an axis-aligned boundary box for the surface
mesh. The axis-aligned bounding box is then expanded by a certain threshold distance
for that we want to compute distance information. This step would be redundant if we
only wanted to compute distances for collision checking as for any point that is farther
away from the geometry as the bounding box we would not need distance information,
but as we need distances for other computations in our simulation framework the ex-
pansion of the bounding box is needed. We then create a structured cartesian grid in the
bounds defined by the bounding box of surface mesh. We proceed to compute distance
information for every point in this grid and store this information in the vertices of the
grid. If we then want to compute the distance of a query point x to the geometry we
would locate the point in the structured grid (the distance map) and read the distance
stored in the nearest vertex of the grid or compute it by trilinear interpolation [43]. In
order to use these distance maps for moving rigid bodes, the distance map is calculated
in the local space of the rigid body, the space whose origin is the center of mass of the
rigid body and whose axes correspond to the principal axes of the rigid body. Since we
store the transformation matrices Ri of our rigid bodies at all times, we can transform
points xj that define our shapes into the coordinate system of the rigid body and then
perform our distance map point location in the local coordinate system of the rigid
body:

R(x) = RT
i · x.

In order to compute the distance map in the preprocessing step we can use methods
based on AABB trees or GPU-based techniques, if time is of no concern in the prepro-

46

CHAPTER 3. RIGID BODY SIMULATORS 47

cessing then even brute force approaches can be used. The final procedure to compute
distance maps is outlined in algorithm 5.

Algorithm 5: Procedure for building a distance map for a geometry
Data: Geometry g, threshold λ
Result: DistanceMap map
begin

box = g.getBoundingBox()
box.size += λ
map = createStructuredGrid(g,box)
foreach vertex v in map do

p = v.getCoordinates()
v.distance = computeDistance(g,p)

Figure 3.18: Example of a distance map for a surface mesh: The distance map is a
structured grid that stores precomputed information like distances and normal vectors
to the surface. The precomputed information will then be available for calculations
during the simulation.

Distance maps for complex objects do not only provide an efficient way to calculate
collision information between complex geometries, but they can also be used for the
computation of distance fields on the grid. Distance fields in our context are mainly
used to control mesh deformation techniques in order to concentrate mesh vertices near
the surface of an object. The mesh deformation algorithms need precise distance infor-
mation so that the vertices can be relocated at the correct positions, since the distance

47

48 CHAPTER 3. RIGID BODY SIMULATORS

map provides precise distances in a predefined vicinity around the object, they are well
suited for accelerating local deformation techniques that operate on the vertices in a
certain distance around the object and pull these vertices closer to the surface. In these
local deformation schemes precise distances for vertices that are outside of the local
area of interest are not needed, so for these vertices an approximation of the distance
is sufficient for example the distance to the axis-aligned bounding box of the object.

Another data structure that deserves attention in the context of calculating collisions
between complex objects are inner sphere (see figure 3.19) representations of complex
geometries [96, 84, 94, 97, 95]. These data structures represent the volume of com-
ples objects by a set of inner spheres. In some of the construction procedures the inner
spheres are non-overlapping which reduces the amount of spheres used to represent the
object. The advantages of inner sphere representations are that the point classification
used in the interface tracking of the CFD-simulation can be handled in a complexity
that is independent on the number of vertices in the grid if a mapping from spatial
coordinates to grid elements is available, because we need to test only the vertices that
are located inside the spheres that make up our object, all that we need is a procedure to
access the vertices of the grid that are inside the spheres in constant time. How to build
the data structures that provide this feature we have explained in previous sections.
The disadvantage of inner sphere representations to distance maps is that they do not
provide us with precise distance information around the surface of the object because
of the sphere representation. Furthermore, inner sphere representations need to be
transformed as the objects change position and orientation, and because of this cannot
make use of precomputed information that can be read in constant time as is the case
with distance maps. So in a simulation where distance fields are needed the distance
maps have a clear advantage over inner sphere representations, if fast point classifica-
tion is more important then an inner sphere representation may be more suitable. It is
possible to easily create inner sphere representations on the basis of a distance map by
choosing the bounding spheres of the cells of the distance map that are located inside
our geometry.

Data structures such as distance maps and inner sphere representations map very well
to GPU implementations, the structured grid can either be implemented as a 3D texture
or straightforward as a CUDA array [16, 60]. For the distance map all that is required
is a transformation of a point by matrix multiplication followed by a value lookup.
These kinds of operations are extremely efficient on the GPU and can be executed in
parallel by different GPU threads. An inner sphere representation would be a CUDA
array of sphere structures and additionally the transformation matrix and the vertices
of the computational mesh are needed. A GPU implementation for inner sphere would
then assign threads to each sphere and each thread would perform the test which points
of the mesh are inside the radius of the individual sphere.

48

CHAPTER 3. RIGID BODY SIMULATORS 49

Figure 3.19: Inner Sphere Representation: the volume of the object is approximated
with spheres of different size. Several inner sphere construction methods exist, the
displayed version was produced by the Coll-Det software package [15, 95].

Narrow Phase Acceleration: Contact Caching

In the preceeding section we several times mentioned the caching (storing between
time steps) of contact information in order to accelerate narrow phase computations.
Distance computation via the GJK algorithm can easily be accelerated by storing the
pair of vertices with minimal distance. A quick recap of the GJK algorithms brings
to mind that it iteratively generates points on the surface of the pair of rigid bodies
that converge to the minimal pair of vertices. If we provide an initial solution to this
procedure using the pair of vertices we have cached from the previous time steps the
number of iterations that it takes the GJK to converge can usually be drastically re-
duces, in many situations we can even expect it to converge in one step.

3.5 The Contact Generation Module

The contact generation module is closely connected with the broad phase module. The
narrow phase algorithms determine whether we consider a broad phase collision pair
as a colliding contact in the contact solver and hence it computes a minimum distance
between the rigid bodies and the vertices with the minimum distance as contact points.
With the help of these vertices a contact normal can be calculated. Depending on the
algorithm and the involved geometries the narrow phase sometimes already does the
work of the contact generation module for example in the case of simple spherical
particles colliding all contact information is already available after the narrow phase.
For box-box collision Mirtich’s V-Clip algorithm [54] or its variants are used then also
all contact information is available. For some geometries however some work still
remains to generate a (reduced) contact set that produces viable results in the contact
solver. Especially when the narrow phase uses the GJK for distance calculation the

49

50 CHAPTER 3. RIGID BODY SIMULATORS

output of a pair of vertices with minimum distance is often not enough for the contact
solver to produce a valid result. For these cases the contact determination module is
called to generate additional contact points and contact normals to provide the contact
set that is needed by the contact solver which is usually the reduced contact set that
consists of the end points of the edges of the intersection surface. In figure 3.20 we
illustrate a configuration where the single contact point on each surface is not enough
to produce a contact set that will satisfy the contact solver. This is why our contact
module contains methods to compute intersections between the various shapes used in
the simulation and processes them in such a way that we can obtain a proper reduced
contact set. Generally a contact determination step is needed when our narrow phase
algorithm does not already include a proper reduced contact set which is our case is
mainly the case for GJK outputs from general convex shape collisions. An overview
of how to find efficiently calculate intersections for these shapes can be found in the
works of Eberly [76, 22] or Erikson [24]. Still we have to answer the question what

Figure 3.20: The GJK algorithm only generates one contact point in its standard form
that is based on the minimum distance (the green point for example). Applying the
contact only in that point would not result in a stable configuration. Generating contact
points on the edges of the intersection surface helps to stabilize the configuration and
produce the desired result where one cylinder is resting on top of the other cylinder.

happens when the narrow phase considers a pair of rigid bodies colliding, but in fact
they are still separated by a small distance ǫ. In this case we have the ’collision’ normal
available from the two points with the minimum distance on the surface of each body.
We can then artificially produce an intersection by projecting the surface of one rigid
body onto the surface of the other one in the direction of the contact normal. This
enables us to use our standard algorithms for intersection and computation of contact

50

CHAPTER 3. RIGID BODY SIMULATORS 51

information.

51

52 CHAPTER 3. RIGID BODY SIMULATORS

52

Chapter 4

Efficient Contact Solvers for Rigid

Body Simulation

In this chapter will focus on the module that is responsible for producing a physical
response to collisions between rigid bodies in our simulation. We will present different
models to implement a contact solver, analyze them and discuss their strengths, short-
comings and their preferred area of application. In order to build a solid foundation
to introduce the theory of collision models, we summarize the basic concepts from
physics that are necessary for an understanding of collision models. For a more de-
tailed and extended treatment of these concepts from physics and classical mechanics
we would like to direct the reader to the works of Goldstein [34] or Kuypers [46].

4.1 Particles

A particle is an object with a constant mass m, a position x and an orientation θ. These
properties make the particle the simplest object (an idealization) that allows the study
of motion and are the reason why a particle is often referred to as a point mass. If a
particle moves, some of its properties change and are thus dependent on time.

4.1.1 Equations of Motion for Particles

The time dependent quantities that determine the motion of a particle over time are
the position x(t), the velocity v(t) and the acceleration a(t). These are related in the
following way:

v(t) =
∂x(t)

∂t
(4.1)

a(t) =
∂v(t)

∂t
=

∂2x(t)

∂t
(4.2)

According to Newton’s second law of motion particle acceleration is caused by the
force F(t) acting on the particle. When studying the motion of a particle it is then

53

54
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

necessary to calculate the total force or net force Fnet(t) acting on a particle which
is the sum of all individual forces Fi(t) acting on the particle. The relation between
Newton’s second law of motion, the net force Fnet(t) and the particle acceleration a(t)
is as follows:

F(t) = ma(t) (4.3)

Fnet(t) =
∑

i

Fi(t) (4.4)

a(t) =
Fnet(t)

m
(4.5)

4.1.2 Particle Rotation

The angular motion of a particle in 3D is described by a vector ω(t) that points into the
direction of the axis the particle rotates around and the speed of rotation. Analogously,
θ(t) defines an axis of rotation and an angle around it to describe the current orientation
of the particle. The SI physical unit for angular velocity is radians per second, for
different purposes it is useful to be able to convert this into the linear velocity which
can be done using the following relation:

v(t) = ω(t)× r(t), (4.6)

here r(t) is a vector from the center of rotation to the particle position x(t) . The
resulting linear velocity vector is normal to both the axis of rotation and r(t) following
from the cross product properties. The geometric interpretation of this relationship is
depicted in figure 4.1. The magnitude of this linear velocity v(t) is

a× r

b

r

P

O

Figure 4.1: Rotation of a particle around an axis

|v(t)| = |ω(t)| |r(t)| sin(β), (4.7)

54

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 55

where β is the angle between ω(t) and r(t) with |r(t)| sin(β) being the part of the
displacement vector r(t) that is normal to rotation axis. The relation of angular accel-
eration to angular velocity is similar to that of linear acceleration to linear velocity:

α(t) =
∂ω(t)

∂t
(4.8)

a(t) = α(t)× r(t) (4.9)

The force that actually causes a particle to rotate around an axis of rotation is the torque

τ (t):
τ (t) = r(t)× F(t), (4.10)

so the vector τ (t) is normal to r(t) and F(t) and thus points in the direction of the axis
of rotation.

4.1.3 Linear and Angular Momentum

The product of the mass and velocity of a particle is called linear momentum p(t):

p(t) = mv(t), (4.11)

from this relation follows that a force which causes a change of particle velocity also
induces a change of linear momentum:

F(t) = ma(t) =
m∂v(t)

∂t
=

∂p(t)

∂t
. (4.12)

A change in linear momentum is referred to as linear impulse and is defined as constant
force F acting over a certain period of time ∆t:

J =

∫

Fdt =

∫

madt =

∫

m
dv

dt
dt =

∫

dp. (4.13)

In many models for the forces arising from a collision between particles or rigid bodies
the impulse is the physical quantity that is computed in order to induce the velocity
change arising from the collision. So the constant force that is acting over a period
of time ∆t (the collision time) can be regarded as the collision force that resolves the
collision. The angular equivalent to linear momentum is the angular momentum L(t)
which is related to the linear momentum in a similar way as force is related to torque:

τ =
∂L(t)

∂t
(4.14)

L(t) = r(t)× p(t). (4.15)

Just as the linear impulse is used to calculate collision forces, an angular impulse that
represents the rotational part of the collision force is used in its determination. The
angular impulse is a change in angular momentum and is determined by a torque force
acting over the collision time ∆t:

τ∆t = I∆ω = ∆L. (4.16)

Here I is the particle inertia which will generalize to a tensor for general rigid bodies.

55

56
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

4.1.4 Work, Energy and Kinetic Energy

When a force is acting on an object and causes a displacement of this object then work

is done. If the object moves a distance d in direction s an amount of work ∆W is done,
this amount of work can also be expressed as the product of force and velocity over the
time it takes to travel the distance d:

∆W = F · ds = F · v dt, (4.17)

over the whole trajectory of the object this leads to:

W =

∫ t1

t0

F · v dt =

∫
x(t1)

x(t0)

F · ds. (4.18)

The energy of a particle is its stored capability to do work, the kinetic energy:

E =
1

2
m |v|2 , (4.19)

which is important for modeling collisions as elastic of plastic collisions. In an elastic
collision the kinetic energy is conserved and in an elastic collision a part of the kinetic
energy is consumed.

4.2 Rigid Bodies

Having introduced the basic physical concepts for particles, we can start focusing on
rigid bodies. In quantum mechanics a rigid body is defined as a system of particles or
point masses in which the distance between each possible pair of different particles is
invariant in time. According to this definition of rigid bodies the mass of a rigid body
can be calculated by summing up the individual point masses:

m =
∑

i

mi (4.20)

A concept of great importance for the study of rigid bodies is the center of mass:

xcm(t) =

∑

i mixi(t)
∑

i mi

=

∑

i mixi(t)

m
(4.21)

The importance of the center of mass can be illustrated in the case of external forces
acting on the rigid body. When an external force acts on a rigid body it causes the body
to move and the position of xcm changes. The external force can be calculated as the
sum of the forces on the particles that make up the rigid body. This total force can then
be used to calculate the acceleration of the center of mass which can be used to obtain

56

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 57

the new position of the center of mass:

F(t) =
∑

i

miai(t) =
∑

i

mi

d2xi(t)

dt2
(4.22)

=
d2

dt2
mxcm(t) = macm(t), (4.23)

where acm is the acceleration. The same is true for other quantities like the linear
momentum and the angular momentum. While the definition of a rigid body as a
collection of discrete point masses is useful, there is a definition in classical mechanics
that describes a rigid body as a continuous mass distribution over its volume:

m =

∫

V

ρ(x) dV, (4.24)

where ρ(x) is the density function of the body at position x. In the continuous defini-
tion of a rigid body the center of mass is given by the volume integral:

xcm =

∫

V
ρ(x)x dV

m
, (4.25)

the different definitions of rigid bodies allow for different ways of representing a rigid
body in a simulation. It may even depend on the specific application which represen-
tation is best used for the task at hand. What makes rigid body simulation significantly
more complex than particle simulation is the fact that a rigid body can rotate around
itself. It has three translational and three rotational degrees of freedom which need to
be tracked in the simulation. Apart from tracking the rotation of a rigid body the ques-
tion in what kind of coordinate system rotation and orientation of a rigid body should
be represented needs to be discussed. Natural choices for coordinate systems would be
the local coordinate space or world coordinate space.

4.2.1 Local Coordinate Space and World Coordinate Space

In the local coordinate space the rigid body’s center of mass is equal to the origin of
the local coordinate system and the principal axes of the rigid body are aligned with
the x-y-z-axes. When the rigid body rotates, the axes of the local coordinate system
change their orientation as well. Thus, the axes of the local coordinate system always
stay aligned with the principal axes of the rigid body. The world coordinate system is
fixed, it is equivalent to the coordinate system of the simulation domain and acts as the
reference to which all globally defined coordinate information refers to. In a rigid body
simulation calculations are done in both local and world coordinate space depending
on which coordinate system is beneficial for the specific task. The orientation of a
rigid body can be represented by a vector where each component of the vector stands
for the angle of rotation around the respective coordinate axis. These angles around
the coordinate axes are called euler angles. Euler angles suffer from a problem called

57

58
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

gimbal lock that can occur in a numerical simulation when two axes align which causes
a loss of one degree of freedom [93]. More promising alternatives are rotation matrices
or quaternions [79]. These rotation matrices not only store the current orientation, they
are also used to transform the rigid body from local coordinates to world coordinates.
A quaternion is a hyper-complex number that represents a rotation in three-dimensional
space, it can also be converted to a rotation matrix and be used to transform local
coordinates to world coordinates.

Xbody Ybody

Zbody

Zworld

Yworld

Xworld

Figure 4.2: A rigid body in world space coordinates with its local coordinate axes

4.2.2 Moment of Inertia Tensor

Having established how rotations are represented we can turn to the concept of inertia.
Inertia is the resistance of an object to change its state of motion. For translational mo-
tion the mass m describes the resistance to a change in velocity, the angular equivalent
in 2D for mass is the mass moment of inertia:

L(t) = Iω(t) (4.26)

I = mr2, (4.27)

here in the two-dimensional case I is a scalar. In the three-dimensional case a single
scalar is not enough to fully describe the inertial behavior of a rigid body. For example
an object that is long and thin shows different rotational behavior depending on what
axis it rotates around. In general a three-dimensional object that is not symmetric with
respect to its principal axes does not display the same rotational behavior for each axis.
We will now briefly illustrate the derivation of how the concept of mass moment of
inertia is established in 3D. We assume that a rigid body rotates around the origin
of the coordinate system and we denote by ri = (xi, yi, zi)

T the position of the i-th

58

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 59

particle of our rigid body. If we sum up the individual angular momentum Li for each
particle, we obtain the angular momentum of the rigid body:

L =
∑

i

Li =
∑

i

ri × pi

=
∑

i

ri × (mivi)

=
∑

i

miri × (ωivi)

=
∑

i

mi





xi

yi
zi



×









ωxi

ωyi

ωzi



×





xi

yi
zi







 .

From here we can expand the cross-products which yields:

L =
∑

i

mi





(y2i + z2i)ωxi
− xiyiωyi − xiziωzi

−yiziωxi
+ (x2

i + z2i)ωyi − yiziωzi

−zixiωxi
− ziyiωyi + (x2

i + y2i)ωzi



 .

In the next step our aim is to write the vector L as the result of a matrix-vector multi-
plication which we can achieve by reordering the equation:

L =





∑

i mi(y
2
i + z2i) −

∑

i mixiyi −
∑

i mixizi
−
∑

i miyizi +
∑

i mi(x
2
i + z2i) −

∑

i miyizi
−
∑

i mizixi −
∑

i miziyi +
∑

i mi(x
2
i + y2i)









ωxi

ωyi

ωzi





=





Ixx −Iyx −Izx
−Ixy Iyy Izy
−Ixz −Iyz Izz



ω = Iω. (4.28)

The 3 × 3 matrix I in equation (4.28) is the 3D analogon to mass moment of inertia
and is also called the moment of inertia tensor. The elements of the diagonal of I are
the moment of inertia coefficients:

Ixx =
∑

i

mi(y
2
i + z2i)

Iyy =
∑

i

mi(x
2
i + z2i)

Izz =
∑

i

mi(x
2
i + y2i),

here Ixx represents the inertia for a rotation around the x-axis of the rigid body while
Iyy, Izz fulfill the same role for the y- and z-axis.

59

60
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

The off-diagonal entries are called the products of inertia:

Ixy =
∑

i

mixiyi

Ixz =
∑

i

mixizi

Iyz =
∑

i

miyizi.

The products of inertia can be interpreted in a physical way as a measure of the im-
balance of mass distribution of the rigid body. If the rigid body is perfectly symmetric
with respect to its principal axes (i.e. a sphere), the products of inertia are zero and I

takes the form of a diagonal matrix. Furthermore, we can observe from their definition
that the moment of inertia tensor I is always symmetric and has positive entries on
the diagonal. Knowledge of the products of inertia also allows us to define the term
principal axes or principal axes of inertia. The principal axes of a rigid body are the
three mutually orthogonal axes of a coordinate system for which the products of inertia
become zero. A method how such axes can be obtained for any rigid body using the
Principal Axis Transformation is described by Strang [82].

So far we have shown the formulas for the moment of inertia tensor for rigid bodies
that are composed of discrete particles. When we consider rigid bodies as a continuous
volume, the discrete sum is replaced by an integral of the density distribution ρ(x) over
the volume of the rigid body:

Ixx =

∫

V

ρ(x)(y2i + z2i)dV

Iyy =

∫

V

ρ(x)(x2
i + z2i)dV

Izz =

∫

V

ρ(x)(x2
i + y2i)dV

Ixy =

∫

V

ρ(x)xiyidV (4.29)

Ixz =

∫

V

ρ(x)xizidV

Iyz =

∫

V

ρ(x)yizidV.

Another property of the moment of inertia tensor is that it is always dependent on a
specific center of rotation. So if we calculate I with respect to the center of mass
of the rigid body, the tensor will remain constant in local coordinates, regardless of
the position of the body in the world coordinate system of the simulation domain. In
a rigid body simulation it may be necessary to use the moment of inertia tensor in
world coordinates. In order to avoid recomputing the tensor every time it is needed in

60

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 61

a specific calculation the tensor can be transformed into the world coordinate system
by a similarity transformation using the orientation information stored in the rotation
matrix R(t):

Iw(t) = R(t)IR(t)T (4.30)

We can now discuss how we can obtain the center of mass and the moment of inertia
tensor of a rigid body in practice. For basic rigid body geometries like spheres, boxes
or cylinders the center of mass is the geometric center of the object and the moment
of inertia tensor in local coordinates can be obtained from literature [34, 46]. If we as-
sume the presence of a finite element framework alongside of our rigid body simulator,
as is case in our plan, we can use it to evaluate the volume integrals in equations (4.25,
4.29). At first we need to find the center of mass of the rigid body, then we translate
the rigid body to the origin of the coordinate system so that the local coordinate sys-
tem and the world coordinate system coincide. In this configuration we can use the
FEM-framework to calculate the integrals for the moment of inertia tensor, the exact
procedure is described in algorithm 6.

Algorithm 6: Center of Mass and Moment of Inertia Tensor
Data: obj, mesh
Result: com, moi,vol
begin

com = (0,0,0)
vol = 0
for i = 1 to mesh.nel do

PointClassification(mesh, i, obj)

for i = 1 to mesh.nel do

if obj.PointInObject(mesh.elements[i])==solid then

evalComEquation(i,com)
vol+=mesh.getElementVolume(i)

for i = 1 to mesh.nel do

if obj.PointInObject(mesh.elements[i]) == solid then

evalMoiTensorEquation(i, com,moi)

4.2.3 Equations of Motion for Rigid Bodies

A main component of a rigid body simulator is a solver for the rigid body equations of
motion. To update the position and the orientation of a rigid body in our simulation we

61

62
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

need to solve a system called the Newton-Euler equations:

ṙ = v

v̇ =
F

m
(4.31)

q̇ = Qω

ω̇ = I−1(τ − ω × (Iω)),

here τ is the time-derivative of the angular momentum:

τ (t) =
dL(t)

dt
=

dI(t)ω(t)

dt
=

dI(t)

dt
ω(t) + I(t)

dω(t)

dt
, (4.32)

the time-derivative dI(t)
dt

ω(t) is complicated to compute and we refer to Eberly [22] for
a derivation. With these results we obtain:

τ (t) = ω(t)× (I(t)ω(t)) + I(t)
dω(t)

dt
(4.33)

4.2.4 Friction

The surface of a rigid body cannot always be considered as perfectly smooth. When
two perfectly smooth rigid bodies touch and move in parallel directions to each other
there will not be any force between those rigid bodies because the smoothness of their
surfaces ensures a perfect glide. In reality, as we pointed out before, the assumption of
perfectly smooth surfaces cannot generally be made. Surfaces generally have a certain
degree of roughness to them. If two such surfaces were in contact and moving parallel
to each other a force would arise because of the roughness of the surfaces that resists
to the parallel movement of the rigid bodies. This force is called friction.

The friction force is modeled by Coulomb’s law of friction. In this model the fric-
tion force is dependent on the external forces (i.e. gravity) that initiate the contact
between the two rigid bodies’ surfaces and the coefficient of friction µ which is a mea-
sure for the roughness of the surface of a rigid body. The coefficient of friction is
usually determined by experimental measurements. The prototypical situation of a
frictional contact is a ball rolling down an inclined plane. The external force of gravity
is pulling the ball straight down towards the earth core. A normal force Fn is acting in
the normal direction of the inclined plane in order to prevent the ball from penetrating
the plane. The friction force is acting in a direction parallel to the surface of the plane
against the downward motion of the ball. An illustration of these forces is shown in
the free body diagram in figure 4.3.
In the Coulomb model a distinction is made between static friction and dynamic fric-

tion.

62

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 63

Figure 4.3: Illustration of the forces acting on a ball rolling on an inclined plane

Static Friction

In the situation that a ball is resting on a plane surface and a force is applied that
wants to move the ball in a tangential direction to the plane there is also a force that is
opposing the tangential force. This force is the resistance to initiate movement and is
called the static friction Fs. The maximum static friction is

‖Fs,max‖ = µs‖Fn‖, (4.34)

here µs is the coefficient of static friction. This relation tells us that as long as the
applied force is below ‖Fs,max‖ the body will not start to move. When the applied
force grows larger than ‖Fs,max‖ movement is initiated and the friction regime changes
from static friction to dynamic friction.

Dynamic Friction

In the case that a tangential motion between two rigid bodies is initiated we are in the
dynamic friction regime. The direction of the dynamic friction force is in the opposite
direction as the tangential movement as was the case for static friction. The magni-
tude of the dynamic friction is characterized by the normal force and the coefficient of

dynamic friction µd:
‖Fd‖ = µd‖Fn‖. (4.35)

Typically, the coefficient of dynamic friction is smaller than the coefficient of static
friction which is understandable by intuition that a body that is already moving is
showing less resistance than a body that has to be transferred from resting state to
moving state.

Friction in 3D

In the three-dimensional case a frictional contact is described by a contact plane and
a normal force vector similarly to the 2D case (see figure 4.4). The contact plane
itself is defined by two tangential vectors tu and tv. The friction force then lies in the
contact plane spanned by tu and tv. The friction force Ffriction can be written as a

63

64
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

Figure 4.4: A frictional contact in 3D

linear combination of the tangential vectors Ffriction = tufu + tvfv, where fu and fv
are the magnitudes of the tangential forces. In 3D the Coulomb friction model can be
formulated as:

f 2
x + f 2

y ≤ µ2f 2
n. (4.36)

The geometrical interpretation of equation (4.36) is a cone with the apex at the point
of contact and base in the direction of the normal force as shown in figure 4.5. The
Coulomb model also states that the sum of the friction force Ffriction and the normal
force lies in the friction cone F = Fn + Fu + Fv.

Figure 4.5: Illustration of the forces acting on a ball on an inclined plane

4.3 Single Body Collision Model

In the discussion of our simulator modules we arrived at the point that a set of contact
points, a set of collision normals and possibly distance information was calculated, the
union of these quantities we called the contact set or reduced contact set. In this section
we will resume at this point and introduce a model that is capable of describing con-
tact configurations and calculating contact forces that resolve a collision between one
single pair of rigid bodies, meaning that the contact forces will prevent non-physical
penetration of rigid bodies by changing the velocity accordingly. In figure 4.6 we see

64

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 65

p1

B1

B2

r12

r11

n1

r2

r1

Figure 4.6: In the figure a prototypical collision between two rigid bodies B1,B2 with
contact point p1 and contact normal n1. The vectors r11, r12 point from the center of
mass to the contact point.

a collision between two rigid bodies and the associated contact set. The first term that
we need to look at in the context of computing collision forces is the relative velocity
of two rigid bodies A, B, velocities vA, vB and angular velocities ωA, ωB :

vAB = (vA + ωA × rA − (vB + ωB × rB)). (4.37)

Here rA, rB are vectors from the center of the respective rigid body to the contact point.
From the relative velocity we can compute the relative normal velocity that allows us
to classify the collision state of the rigid bodies:

n · vAB = vAB,n.

Based on the value of the relative velocity we can see whether a pair of rigid bodies is
on a collision course, in a resting state or in a state where the distance along the normal
direction increases and the bodies separate:

n · vAB < 0 : colliding

n · vAB = 0 : touching

n · vAB > 0 : separating.

The relative velocity in normal direction tells us the change of the distance in normal
direction is going to decrease (< 0), remain the same (= 0) or increase (> 0) (see
figure 4.7). The idea is that for a pair of rigid bodies that has been reported by the
collision detection system as sufficiently close and where the relative normal velocity
is smaller than zero to change the velocity and the angular velocity of the rigid bodies

65

66
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

Figure 4.7: Based on the sign of the relative normal velocity we can determine the
contact configuration of a pair of rigid bodies.

by an impulse:

vA(t+∆t) = vA(t) +
fn

mA

(4.38)

ωA(t+∆t) = ωA(t) + I−1
A (rA × fnA) (4.39)

vB(t+∆t) = vB(t)−
fn

mB

(4.40)

ωB(t+∆t) = ωB(t) + I−1
B (rB × fnB). (4.41)

Here we compute the so called post-impulse velocities vA(t+∆t),vB(t+∆t) as well
as the corresponding post-impulse angular velocities of our rigid bodies in the next
time step by applying an impulse fn

m
to them that will cause the pre-impulse velocity

to change in a way that a physical non-penetration collision state in the next time step
is achieved. The pre-impulse and post-impulse velocities are often written as v− and
v+. The magnitude f of the impulse can be computed as:

f =
−(1 + ǫ)(nA(vA − vB) + ωA(rA × nA)− ωB(rB × nB))

m−1
A +m1

B + (rA × nA)T I−1
A (rA × nA) + (rB × nB)T I−1

B (rB × nB)
(4.42)

The value ǫ ∈ [0, 1] is the coefficient of restitution which is used to model a possible
loss of kinetic energy that can occur during collision. A perfectly elastic collision (all
kinetic energy is conserved) corresponds to ǫ = 1 and a perfectly inelastic collision
(all kinetic energy in normal direction is lost) corresponds to ǫ = 0.

4.4 Multi-Body Collision Models

4.4.1 Introduction

In particulate flow simulations multiple collisions need to be handled at the same time.
The single-body collision model that we have introduced in the previous section is
the basis for deriving models that are able to handle multiple particle collisions at the
same time. Another interpretation of multiple collisions at the same time is handling
multiple contact points at the same time where the contact force f0 at a contact point

66

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 67

c0 is influenced by the contact force f1 at another contact point c0 (see figure 4.8).
Different approaches exist for dealing with multiple collisions and the following are

Figure 4.8: A collision situation with multiple contact points. Four colliding bodies
with different contact points are shown. From intuition it should become clear that the
contact force value in contact points c0, c1 is dependent on how much force body D
exerts onto body A by pushing on it in contact point c5. A similar situation exists for
contact points c2, c3 and c4.

used in this work:

1. Constrained-based methods

2. Impulse- or Sequential Impulse-based methods

3. DEM-based methods

In constrained-based rigid body simulation we formulate a set of constraints that our
rigid bodies have to fulfill in order to achieve physical behavior of our rigid bodies.
The constrained-based methods can be divided into acceleration-based methods and
velocity-based methods. The difference between these methods is the physical quan-
tity according to which the mathematical formulation of the constraint is done. The
downside of acceleration-based formulations is that they suffer from indeterminacy,
inconsistency [81, 4] and the so called small time step problem as has been pointed
out by Milenkovic and Schmidl [75, 74]. Approaches that operate on the velocity level
instead of the acceleration level do not suffer from these problems [25]. In a velocity-
based formulation the effect of a force is seen over an interval equivalent to the time
step size. So, if we knew the true contact force ft(t) then we can write the impulse J

as the integral:

J =

∫ ∆t

0

ft(t)dt.

67

68
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

We can rewrite this as
∫ ∆t

0

m
dv

d
dt =

∫ ∆t

0

ft(t)dt

m(v∆t − v0) = J.

This leads to the impulse J which can be applied to yield the new velocity. The force
in the velocity-based formulation can be obtained by

J = ∆tf .

In order to find the new position we can then just apply an integration scheme with the
updated velocity, which will lead to the same result as if we knew the true force ft and
evaluated the time integral over the time step and from there on continued to solve for
the new velocity and position.

Impulse-based methods are used and described in the works of Mirtich [56] or Guen-
delman [37]. Sequential impulse methods solve the problem of multiple contact points
by iterating the force calculation in a single time step of the simulation until the rel-
ative normal velocities in all contact points is such that no non-physical interpene-
trations can appear in the next time step. The difference between sequential impulse
and constraint-based methods is subtle, it is also possible to call sequential impulse
methods a different type of a constraint solver. When the impulses computed in a se-
quential impulse solver aim to satisfy for example a non-penetration constraint, then
this is indeed just a different constraint solver. Instead of assembling a system of con-
straints and then solving them simultaneously in sequential impulses the constraints
are solved sequentially and the procedure is iterated until the changes in the impulse
values between successive iterations become small enough to characterize the proce-
dure as converged. In DEM-based methods a soft sphere collision model is evaluated
for each pair of colliding bodies in each time step [50]. In DEM-simulations the time
step size ∆t is usually very small in order to propagate collision forces occurring from
multiple particle collisions.

4.4.2 Velocity-based Multi-Body Collision

For our particulate flow solver we opted to explore other possibilities than the tradi-
tional ’short range repulsive forces’ [88] that are found in many particulate flow codes
for collision treatment. The traditional short range repulsive force model in its stan-
dard form has no handling for multiple contact points on one rigid body and some
configurations like stable stacking are hard to achieve with a model that applies forces
based on distance only. So one of our choices to avoid such limitations is the model
from rigid body simulation that is based on the works of Baraff [7], Sauer and Schoe-
mer [73]. The advantage of the model is that it can handle multiple contact points and
arbitrary rigid bodies, it is also well suited to support geometries that are defined by

68

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 69

surface triangulations, analytic descriptions or even level-set representations. At first
we will formulate the Newton-Euler equations of motions for a system of rigid bodies
as it was proposed in the model of the before-mentioned authors. For a system of n
rigid bodies with K contact points we arrive at the following system of equations:

ṙi = vi (4.43)

q̇i =
1

2
ωiqi (4.44)

v̇i = m−1
i

∑

jk=i

fk −m−1
i

∑

ik=i

fk +m−1
i f exti (4.45)

ω̇i = I−1
i

∑

jk=i

rkj × fk − I−1
i

∑

ik=i

rki × fk − I−1
i ωi × Iiωi + I−1

i τ
ext
i . (4.46)

Where the vectors vi are the linear velocity of the rigid bodies, qi the orientation of the
rigid bodies, ωi the angular velocities, fk the contact forces in the k-th contact point,
vext
i and τ

ext
i the sum of external forces, respectively external torques acting on our

rigid bodies. The external forces and torques in this formulation of the Newton-Euler
equations are where we can insert the hydrodynamic force and torque that the fluid in
our CFD-simulation exerts on the rigid bodies.

In Matrix-Vector form we can write the system as:

ṡ = Su (4.47)

u̇ = M−1(CNf + f ext). (4.48)

Here s ∈ R
7n is the vector which describes both position and orientation of the rigid

bodies at the same time:
s = [r1,q1, ..., rn,qn]

T . (4.49)

Furthermore, u ∈ R
6n is the vector that groups the linear velocity and the angular

velocity:
u = [v1,ω1, ...,vn,ωn]

T . (4.50)

The vector f ∈ R
k has the contact forces as its components:

f = [f1, ..., fK]
T . (4.51)

The external forces and external torques f ext ∈ R
6n are grouped in the vector:

f ext =
[
f ext1 , τ ext

1 − ω1 × I1ω1, ..., f
ext
n , τ ext

n − ωn × Inωn

]T
. (4.52)

Since we represent orientations as quaternions we need a way to update our orientation
in matrix form in order to write this update in matrix vector form. So the multiplication

69

70
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

of 1
2
ωiqi can be written as Qiωi with qi = [si, xi, yi, zi] ∈ R

4 and Qi:

Qi =
1

2







−xi −yi −zi
si zi −yi
−zi si xi

yi −xi si






. (4.53)

We can group the Qi in another matrix S ∈ R
7n×6n:

S =










13×3 0
Q1

. . .
13×3

0 Qn










. (4.54)

Moreover, M ∈ R
6n×6n is the matrix that has the rigid body masses as entries:

M =










mi13×3 0
I1

. . .
mn13×3

0 In










. (4.55)

The K contact normals can be represented as a matrix N ∈ R
3K×K :

N =






n1 0
. . .

0 nK




 . (4.56)

The matrix C ∈ R
6n×3K a matrix that represents a contact condition:

Clk =







−13×3 for l = 2ik − 1

−r×kik for l = 2ik
13×3 for l = 2jk − 1

r×kjk for l = 2jk
0 else

. (4.57)

Where the matrix r× ∈ R
3×3 with r×a = r× a for a, r ∈ R

3 is

r× =





0 −r3 r2
r3 0 −r1
−r2 r1 0



 . (4.58)

70

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 71

The Newton-Euler equations, discretized by an explicit Euler scheme, can be written
in matrix-vector form as:

st+∆t = st +∆tSut+∆t, (4.59)

ut+∆t = ut∆tM−1(CNf t+∆t + f ext). (4.60)

Special attention we would like to draw to the matrix C. This matrix has as many
columns as contact points, the number of rows is equal to the number of rigid bodies.
By multiplication with the matrix PT

k ∈ R
3K×3

PT
k =









0 0 0
0 0 0
0 0 0



 , . . . ,





0 0 0
0 0 0
0 0 0



 ,





1 0 0
0 1 0
0 0 1



 ,





0 0 0
0 0 0
0 0 0



 , . . . ,





0 0 0
0 0 0
0 0 0









(4.61)
the k-th contact condition can be extracted from the matrix C.

nT
kP

T
kC

Tu = nT
k (vjk + ωjk × rkjk)− nT

k (vik + ωik × rkik) (4.62)

If the rigid bodies Bik und Bjk are touching in a contact point pk the following condi-
tion is fulfilled:

nT
kP

T
kC

Tut+∆t ≥ 0 complementary to fk ≥ 0 (4.63)

This condition is called the complementarity condition. The meaning of complemen-
tarity is here that either there is no colliding contact (nT

kP
T
kC

Tut+∆t > 0) and because
of this the contact forces are zero (fk = 0) or there is a contact (nT

kP
T
kC

Tut+∆t = 0)
and hence there are contact forces active (fk > 0).
The complementarity condition was formulated by Sauer and Schoemer [73] in such
a way that potentially colliding, meaning very close, contacts are considered, which is
advantageous when larger time step sizes are used. In this form the complementarity
condition is:

nT
kP

T
kC

Tut+∆t ≥
νk
∆t

complementary to fk ≥ 0. (4.64)

The detailed calculation of the νk is described in the works of Sauer and Schoemer
[73]. Let ν = [ν1, ..., νn]

T ∈ R
K and νk = 0 for all touching contacts then a comple-

mentarity condition for potential and touching contacts can be formulated as:

NTCTut+∆t ≥
ν

∆t
complementary to f ≥ 0 (4.65)

By substituting eq. (4.60) into eq. (4.65) we get:

NTCT (ut +∆tM−1(CNf t+∆t + f ext))−
ν

∆t
≥ 0. (4.66)

By reordering the terms we arrive at:

NTCTM−1CN
︸ ︷︷ ︸

A

∆tf t+∆t

︸ ︷︷ ︸

x

+NTCT (ut +∆tM−1 + f ext)−
ν

∆t
︸ ︷︷ ︸

b

≥ 0. (4.67)

71

72
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

So the final problem is of the form:

Ax+ b ≥ 0 complementary to x ≥ 0 (4.68)

with A ∈ R
K×K and x,b ∈ R

K . This is the well known linear complementarity
problem (LCP) [18]. The entries of the matrix A are calculated as follows:

Alk = δilikn
T
l (

1

mik

13×3 − r×lilI
−1
ik
r×kik)nk (4.69)

− δiljkn
T
l (

1

mjk

13×3 − r×lilI
−1
jk
r×kjk)nk (4.70)

− δjlikn
T
l (

1

mik

13×3 − r×ljlI
−1
ik
r×kik)nk (4.71)

+ δjljkn
T
l (

1

mjk

13×3 − r×ljlI
−1
jk
r×kjk)nk, (4.72)

here δ is the Kroneckerdelta. The system matrix A which has been built in the de-
scribed form is positive-definite [25] and the associated LCP can be solved with effi-
cient iterative methods like the projected Gauss-Seidel (PGS) or projected conjugate
gradients [18, 25]. In order to formulate the contact problem as a LCP including fric-
tion, equation 4.69 has to be extended. The formulation here is based on the formu-
lations described in the work of Erleben [25] and Sauer and Schoemer [73]. This
standard formulation of the LCP for frictional contacts can described as:




DTCTM−1CD DTCTM−1CN E

NTCTM−1CD NTCTM−1CN 0

−ET µ 0



 ·





∆tβ
∆tf
λ



+





DTCT (ut +∆tM−1fext)
NTCT (ut +∆tM−1fext)−

ν
∆t

0





≥ 0

complementary to





∆tβ
∆tf
λ



 ≥ 0

Here D is a matrix representing the geometrical configuration of the friction cone
approximation for the colliding bodies, M is the mass matrix of the bodies, C the
matrix of contact conditions, N the matrix of normal vectors for the contacts. The
problem is then solved for f and β which are vectors containing as components the
magnitude of the normal and frictional impulses. Alternatively, a similar non-linear
complementarity problem formulation (NCP) as described by Slicowitz, Niebe and
Erleben [80] can be used which can be solved using a projected Gauss-Seidel (PGS)
solver. Apart from the complementarity problem based formulations, we can use a
solution technique for the contact force problem called sequential impulses (SI) as
described by Guendelman [37]. Another model that is implemented in our code is
a model based on the work of Harada [39] in which rigid bodies are modeled by a
particle method. Contact forces are then calculated using a discrete element method
(DEM) approach.

72

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 73

4.4.3 Linear Complementarity Problems

After having formulated the contact force problem as a linear complementarity prob-
lem we want to present the basic theory and a way of solving LCPs. For a detailed
discussion of LCPs we refer to the work of Cottle, Pang and Stone [18]. The LCP is
defined by a given matrix A ∈ R

n×n and a vector b ∈ R
n. We should then find vectors

b ∈ R
n and w ∈ R

n such that

w = Ax− b (4.73)

x ≥ 0 (4.74)

w ≥ 0 (4.75)

where x and w satisfy the complementarity condition.

xTw = 0 (4.76)

The task of finding a solution to an LCP is an NP-hard problem, but the works of Cottle
et al. or Murty [18, 59] include solvers that have expected polynomial complexity.
These solvers can be classified as direct or pivoting solvers or as iterative methods.
In our work we will resort to iterative matrix solvers for the LCP. The general form
for an iterative solver is based on splitting methods. An example for a direct LCP
solver would be Lemke’s Algorithm [49, 4]. A problem with Lemke’s algorithm is
though that in the basic implementation the method can terminate without a result
which makes fall-back solver necessary.
Iterative solvers for linear equations such as the Jacobi method, Gauss-Seidel method,
successive over relaxation method or conjugate gradient method [77] can be modified
to solve LCPs as shown by Erleben [25] or Catto [14]. The advantage of iterative
solvers is that they can always return an approximate solution and they can use results
from previous time steps as an initial solution which has been shown to increase their
performance [25]. We will now briefly summarize how to extend the classic Jacobi
type iterative solvers to solve LCPs. Iterative methods usually rely on splitting the
matrix A of linear equations. To arrive at a general equation for an iterative matrix
solver we decompose the system matrix A into a strict lower triangular matrix L, a
diagonal matrix D, and a strict upper triangular matrix U:

A = L+D+U. (4.77)

The general problem of a system of linear equations is:

Ax = b, (4.78)

we can now substitute equation 4.77 into 4.78 to arrive at:

(L+D+U)x = b

Dx = b− (L+U)x

x = D−1b−D−1(L+U)x. (4.79)

73

74
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

In order to compute the i−th component of the solution vector, we can write:

xi =
bi −

∑i−1
j=0 Li,jxj −

∑n−1
j=i+1Ui,jxj

Ai,i

, (4.80)

from this we can derive the iterative scheme:

xk+1
i =

bi −
∑i−1

j=0 Li,jx
k+1
j −

∑n−1
j=i+1 Ui,jx

k+1
j

Ai,i

. (4.81)

The iterative scheme in equation (4.81) is the Jacobi method, moreover Murty [59]
shows that a general iteration scheme for jacobi type solvers is given by:

xk+1 = λ(xk − ωEk(Axk − b+Kk(xk+1 − xk))) + (1− λ)xk. (4.82)

To arrive at the Jacobi method we choose Ek = D−1, ω = 1, Kk = 0 and λ = 1 in
equation (4.82):

xk+1 = D−1(b− (L+U)xk). (4.83)

In order to extend the general iterative method to LCPs we need a clamping operation
that for a vector x ∈ R

n and lower limits lo ≤ 0 and upper limits hi ≥ 0 with
lo,hi ∈ R

n we can write (x)+ to denote:

x+
j = max(min(xj, hij), loj) ∀j ∈ {0...n− 1}. (4.84)

With the concept of clamping we can write a general iterative LCP solver as:

xk+1 = λ(xk − ωEk(Axk − b+Kk(xk+1 − xk)))+ + (1− λ)xk. (4.85)

Murty [59] has shown that if A is symmetric positive-definite the general scheme con-
verges to a solution of the corresponding LCP. For detailed derivation and proofs of the
general iterative LCP scheme we refer to [59]. Just as with the general form of solvers
for a system of linear equations we can derive the Jacobi type solvers from it. For the
Gauss-Seidel iterative LCP solver we choose λ, ω = 1, Kk = L and Ek = D−1:

xk+1 = (D−1(b− (Lxk+1 +Uxk)))+. (4.86)

The LCP solver variants of the iterative linear equation solvers are called Projected

Jacobi (PJ), Projected Gauss-Seidel (PGS) and Projected SOR (PSOR) because the
clamping operation can also be interpreted as a projection operation.

4.4.4 DEM-Based Contact Force Calculation

The discrete element method (DEM) is used in several particle simulation applications
i.e. granular material simulation. The main idea of the method is to model soft sphere

74

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 75

collisions by applying a spring model for particle compression and decompression on
contact. The method for granular materials is described in the works of Mishra [57], a
general overview of the concepts of the DEM is given by [50, 66]. At its core the DEM
is concerned only with spherical particles and not with arbitrarily shaped rigid bodies,
this is why we will take a look at the basic model first and then show the extension
of the DEM approach to handle rigid body simulations. The forces collision between
two spherical particles is computed be considering the simple contact model shown in
figure 4.9. A collision normal is constructed based on the difference vector between

Figure 4.9: Simple contact information in the DEM.

the two sphere centers. In the DEM a small particle overlap is used to model the soft
sphere properties of compression and decompression. The model that we use here was
proposed by Harada [39], who had the goal in mind to create a rigid body simulation
method that is well-suited to implementation on GPU hardware. The DEM models
a soft sphere collision by calculating several force components. A repulsive force in
normal direction is calculated by:

Fi,s = −k(d− |rij|)
rij

|rij|
, (4.87)

here Fi,s is the force at the contact between the i-th and j-th particle in normal direction
which is described by a linear spring model. The parameters of the linear spring model
are the spring coefficient k, the dampening coefficient η, the particle radius d, the
relative position rij (and |rij| is the contact normal in the DEM context) and the relative
velocity vij . In the DEM tangential forces are modeled by:

Fi,t = kt · uij,t (4.88)

where kt is the friction coefficient and uij,t is the relative tangential velocity:

uij,t = uij − (uij ·
rij

|rij|
)
rij

|rij|
. (4.89)

Additionally, the DEM introduces a dampening force:

Fi,d = ηuij. (4.90)

In the DEM the contact forces for the i-th particle are gathered from all surrounding
particles that fulfill the contact condition which is easily evaluated for spherical parti-
cles. In the context of our simulation framework this would be the particles in the cells

75

76
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

of our broad phase grid that are neighbors of the cell that the i-th particle is in. The
total forces acting on a particle are then evaluated by:

Fi,c =
∑

collisions(i)

(Fi,s + Fi,d + Fi,t) (4.91)

Ti,c =
∑

collisions(i)

(ri × (Fi,s + Fi,d + Fi,t)). (4.92)

The contact force calculation with the DEM is described in algorithm 7. The com-
putation of contact forces with the DEM is done only in a pairwise manner and thus
requires a smaller time step for the particle or rigid body solver then the LCP or se-
quential impulse based methods in order to accomplish proper propagation of shocks.
The DEM can be extended to rigid bodies by representing rigid bodies by inner spheres
(see figure 4.10). The details of this extension are found in the works of Harada [39].

Figure 4.10: Approximation of rigid bodies by spheres

Algorithm 7: Contact force computation with the DEM
Data: ContactGraph G, Particles P
Result: Contact force for all particles
begin

foreach particleNode p in G do

foreach edge e of p in G do

p.force += CalculateForce(e)

4.4.5 Sequential Impulses Model

The idea of sequential impulses is described in the works of Guendelman [37] and
Catto [14]. The model is related to the LCP formulation in the sense that it also handles
multiple contact points in one time step, but it does so in a sequential manner. The idea
here is to do multiple sequential iterations of the pairwise impulse calculation that we
showed before. This allows forces from dependent contact points to propagate through
linked contact points (see figure 4.11). The model applies a normal force by computing

76

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 77

a normal impulse f for each contact point where the impulse magnitude f is calculated
as in equation (4.42). The normal impulse is then:

f =
fn

m
, (4.93)

where n is the collision normal of the contact point and m the mass of the rigid body
that the impulse is applied to. The translational and angular velocity are then updated
as in equation (4.41). The normal force will then keep the rigid bodies separated and
prevent penetrations.

Friction in the Sequential Impulses Model

Frictional forces do not act in normal direction, but in tangential direction. In the
sequential impulses model we would need a way to express a frictional force by an
impulse. How to compute an impulse that represents a frictional force can be found in
the works of Hahn [38]. This is done by a modified update of the pre-impulse relative
velocity to the post-impulse relative velocity for a pair (A,B) of rigid bodies:

vAB,+ = vAB,− +Kf (4.94)

f = K−1(vAB,+ − vAB,−). (4.95)

Thus, the matrix K needs to be computed to arrive at the impulse:

vAB,+ − vAB,− = (vB,+ + ωB,+ × rB − vA,+ + ωA,+ × rA)

− (vB,− + ωB,− × rB − vA,− + ωA,− × rA)

= (vB,+ − vB,− + (ωB,+ − ωB,−)× rB)

− (vA,+ − vA,− + (ωA,+ − ωA,−)× rA)

4.42
= (

f

mB

+ (I−1
B (rB × f))× rB)− (

−f

mA

+ (I−1
A (rA ×−f))× rA)

=
1

mB

f − (r×BI
−1
B r×B)f +

1

mA

f − (r×AI
−1
A r×A)f

= (
1

mB

13×3 − r×BI
−1
B r×B

︸ ︷︷ ︸

KB

+
1

mA

13×3 − r×AI
−1
A r×A

︸ ︷︷ ︸

KA

)f

= (KB +KA)f = Kf . (4.96)

Then Hahn assumes that friction is static without tangential movement:

vAB,+ = −ǫ(vAB,−n)n. (4.97)

Thus the impulse acts not only in normal direction, but also in tangential direction and
we can write:

f = K−1(vAB,+ − vAB,−) = K−1(−ǫvAB,−n− vAB,−). (4.98)

77

78
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

We can then extract the normal and tangential components of the impulse by:

f = fn + ft (4.99)

fn = (fn)n (4.100)

ft = f − n. (4.101)

The assumption that friction is static is only valid if:

ft ≤ µ‖fn‖. (4.102)

If equation (4.102) is not fulfilled then the impulse f is not in the friction cone and thus
not valid. Hahn uses dynamic friction in this case by clamping the friction component
to the maximally allowed dynamic friction:

f = fn + µ‖fn‖
ft

‖ft‖
. (4.103)

An alternative to Hahn’s approach has been presented by Guendelman [37] who uses
a different method to compute friction in case that the static friction condition is not
met:

t =
vAB,− − vAB,nn

‖vAB,− − vAB,nn‖
. (4.104)

An impulse can then be computed by:

ft = fn− µft, (4.105)

where the task is now to find the impulse magnitude f which can be achieved by:

vAB,− = vAB,n,− + nTKf . (4.106)

By substituting f by equation (4.105) and using vAB,+ = −ǫvAB,n,−n we get:

f =
−(ǫ+ 1)vAB,−n

nTK(n− µt)
(4.107)

Iteration

As we said in the sequential impulse method the computation of impulses is iterated
multiple times in every time step to mimic the the behavior of simultaneous methods.
The iteration process can be repeated for a fixed number of iterations or we could
check an iteration criterion like the norm of the vector of all relative normal velocities.
If this value is close enough to zero it is safe to step the simulation forward in time.
The procedure how to compute contact forces with sequential impulses in described in
algorithm 8.
Theoretically, the sequential impulses model should yield similar behavior as the LCP
formulation that we have mentioned before. The sequential impulses model is based

78

CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY
SIMULATION 79

Algorithm 8: Contact force computation with sequential impulses
Data: ContactGraph G
Result: Contact force for all rigid bodies
begin

while EvaluateConvergenceCriterion() not TRUE do

foreach rigidBodyEdge e in G do

foreach ContactPoint cp in e do

cp.force += CalculateForce(e, cp)

Figure 4.11: Dependent contact points in the sequential impulses method

on the same normal, tangential and frictional force computations. The difference be-
tween the approaches lies in the solving procedure, whereas in the constrained-based
formulation a linear complementarity problem is solved with an iterative solver that
solves a system of coupled equations, in the sequential impulses version we evaluate
the forces in a pairwise fashion and immediately apply the forces at the contact point
to get the updated velocities. These pairwise updates are iterated in a loop until our
convergence criterion is met. This procedure has an advantage over the LCP formu-
lation which is that the pairwise treatment of the contact points is a breakdown into
local subproblems. In the LCP formulation there is one global matrix and it is not
immediately clear how this matrix can be logically broken down into smaller matrices.
In the context of parallel computing an approach that can be easily broken down into
subproblems is advantageous as there subproblems are the basis for the distribution of
the computation to different compute nodes.

79

80
CHAPTER 4. EFFICIENT CONTACT SOLVERS FOR RIGID BODY

SIMULATION

80

Chapter 5

FEATFLOW Solver Overview
Designing an Efficient Liquid-Solid

Interface

5.1 Introduction

For the numerical solution of the fluid flow in our particulate flow simulation we use
the FEATFLOW solver. The FEATFLOW solver package is a parallel solver for the in-
compressible Navier-Stokes equation and is able to handle Newtonian, non-Newtonian
and viscoelastic fluids. For many realistic applications it is necessary not only to sim-
ulate the fluid flow, but also some kind of immersed geometry. In order to handle solid
geometries in a fluid some kind of interface capturing or interface tracking method
is needed. In the FEATFLOW solver this interface method is the fictitious boundary
method (FBM) [88]. When we explore the history of particulate flow simulations we
see that several numerical simulation techniques for particulate flow have been de-
veloped in the past. In these methods, the fluid flow is governed by the continuity
and momentum equations, whereas for the particles the governing equations are the
Newton-Euler equations of motion. Another general aspect found in many particulate
flow solving schemes is the computation of the hydrodynamic force between the parti-
cle and the fluid. For an accurate computation of these forces the fluid flow needs to be
finely resolved by the mesh around the immersed rigid bodies. The historic origins of
finite element based particulate flow simulations in Newtonian and viscoelastic fluids
can be found in the works of Hu, Joseph et al. [40, 41], Galdi [28] or Maury [51].
Their approach can be characterized by the use of unstructured grids and an Arbitrary

Lagrangian-Eulerian (ALE) technique. Then both the fluid and solid equations of mo-
tion are written as a single coupled variational formulation. When as a consequence of
the ALE the mesh becomes too distorted at a certain time step a new mesh is generated

81

82 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

and the flow field is projected onto the new mesh. In such schemes, the positions of
the particles and grid nodes are updated explicitly, while the velocities of the fluid and
the solid particles are determined implicitly.
Another approach is based on so called fictitious domains, an idea that was originally
introduced by Glowinski, Joseph, Patankar et al. [32, 63, 31, 33]. In this Eulerian
method the presence of an additional domain inside the computational domain is sim-
ulated, the fictitious domain. We thus introduce a boundary between these domains,
this boundary is mathematically realized by adding appropriate terms to the model. In
this approach to particulate flow simulation, the particle domain is treated as a fluid
with additional constraints to impose rigid body motion inside of the fictitious do-
main. Several different implementations of this general principle exist, the variants
differ mainly in the mathematical realization of the boundary, the way the rigid motion
is imposed on the particle domain or in the numerical solution process of the prob-
lem. A common ground of all the fictitious domain type methods is that they allow
the use of a fixed grid which does not require remeshing. The idea goes back to to
Glowinski, Joseph, Patankar et al. [32, 63, 31, 33], who proposed a approach based
on a distributed Lagrange multiplier (DLM)/fictitious domain method for the direct
numerical simulation of large number of rigid particles in fluids. In the DLM method,
the entire fluid-particle domain is assumed to be a fluid and then the particle domain
is constrained to rigid body motion. The fluid-particle coupling is treated implicitly
using a combined weak formulation in which the mutual forces cancel [42]. The fol-
lowing work by Patankar and Sharma [64, 78] represents an improvement in terms of
solution time, which was achieved by an efficient projection scheme. The fictitious
domain method is also used in the 3D particulate flow simulations of Boenisch [10],
Cottet/Coquerelle [17] and Blasco [9].

The FEATFLOW group developed and refined the multigrid fictitious boundary method
(FBM) for the direct simulation of particulate flows [89, 88, 90, 58]. In the multigrid
FBM the motion of solid particles is modeled by the Newton-Euler equations. Based
on the boundary conditions applied at the interface between the particles and the fluid
which can be seen as an additional constraint to the governing Navier-Stokes equa-
tions, the fluid domain can be extended into the whole domain which covers both fluid
and particle domains. The FBM can be regarded as a fictitious domain method and
it shares the feature that a fixed grid can be used, eliminating the need for remeshing.
An underlying problem with fictitious domain methods that use a fixed mesh is that the
boundary approximation is of low accuracy only. Especially in three space dimensions,
the ability of the fictitious domain methods to deal with the interaction between fluid
and rigid particles accurately is limited when the only way to achieve better geome-
try resolution is by regular refinement. A possible approach to improve the geometry
resolution is to keep the structure of the mesh and to perform a local alignment of the
mesh vertices with the physical boundary of the solid particles by a mesh adaptation
method, such that the boundary approximation error can be significantly decreased.

Apart from finite element based methods also flow solvers based on the Lattice-Boltzmann

82

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 83

method [47] or Finite-Volume method can be used as fluid solvers in particulate flow
scenarios [72].
In the context of particulate flow simulation one of the most important aspects of the
flow solver is the accurate computation of the hydrodynamic forces. In particular these
forces are the drag and the lift forces, which act on the surface of the rigid body. This
gives rise to some problems, that have to be overcome in order to effectively use the
FBM. These problems are that the surface of the rigid body is implicitly represented
by a fixed mesh, so the quality of the surface approximation and consequently the
accuracy of the drag/lift calculations depend on the refinement level of the grid. Fur-
thermore, the surface is represented implicitly, so the surface integral formulation of
the drag and lift forces cannot be used directly in the FBM framework. In the 2D case
our remedy for the latter problem was to integrate over the area occupied by the rigid
body rather than integrating over the boundary of the rigid body. In the 3D case this
generalizes to a volume integral formulation. Furthermore, the accuracy of the geom-
etry shape representation by the mesh can be improved by mesh adaptation methods,
which are able to significantly improve results in the 2D case [90]. In the case of mov-
ing rigid bodies a moving mesh formulation of the Navier-Stokes equations is needed.

Another important aspect for particulate flow simulation is collision treatment which
traditionally in the FEATFLOW solver was handled by a repulsive force model [89].
In this work all the collision handling and detection in the FEATFLOW solver will be
replaced by the methods in chapter 3. Other collision models that are used in different
particulate flow solver frameworks include the work of Maury [52], Ardekani/Rangel
[2] or Lefebvre [48].

5.2 Governing Equations for Fluid Flow

In our numerical particulate flow simulations, we assume that the fluids are immiscible
and Newtonian. Furthermore, we assume that the particles are not-deformable and
thus rigid. We can then consider the flow of N rigid particles with masses Mi (i =
1, . . . , N) in a fluid with density ρf and viscosity ν. By Ωf (t) we identify the domain
occupied by the fluid at time t, and by Ωi(t) the volume of the domain by the i-th
particle. We can then describe the motion of an incompressible fluid in Ωf (t) by the
Navier-Stokes equations,

ρf

(
∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 , ∇ · u = 0 ∀ t ∈ (0, T), (5.1)

where σ is the total stress tensor in the fluid phase defined as

σ = −p I+ µf

[

∇u+ (∇u)T
]

. (5.2)

Where I is the identity tensor, µf the dynamic viscosity, p the pressure and u is the
fluid velocity. We denote by ΩT = Ωf (t) ∪ {Ωi(t)}

N
i=1 the entire computational do-

83

84 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

main which shall be independent of t. Dirichlet- and Neumann-type boundary con-
ditions can be imposed on the outer boundary Γ = ∂Ωf (t). Since Ωf = Ωf (t) and
Ωi = Ωi(t) always depend on t, we will omit it in the following equations. The equa-
tions that govern the motion of each particle are the Newton-Euler equations, i.e., the
translational velocities Ui and angular velocities ωi of the i-th particle are given by:

Mi

dUi

d t
= (∆Mi)g + Fi + F′

i , Ii
dωi

d t
+ ωi × (Iiωi) = Ti , (5.3)

where Mi is the mass of the i-th particle; Ii is the moment of inertia tensor of the i-th
particle about its center of mass; ∆Mi is the mass difference between the mass Mi

and the mass of the fluid occupying the same volume; g is the gravity vector; F′
i are

collision forces acting on the i-th particle due to other particles which come close to
each other. Fi and Ti are the hydrodynamic forces and the torque about the center of
mass acting on the i-th particle which are calculated by

Fi = (−1)

∫

∂Ωi

σ · n dΓi , Ti = (−1)

∫

∂Ωi

(X−Xi)× (σ · n) dΓi, (5.4)

where σ is the total stress tensor in the fluid phase defined by equation (5.2), Xi is the
position of the mass center of the i-th particle, ∂Ωi is the boundary of the i-th particle,
n is the outward pointing normal vector of boundary ∂Ωi. The position Xi of the i-th
particle is obtained by integration of the kinematic equation

dXi

d t
= Ui. (5.5)

The angular velocity ωi and the angle θi are calculated from the angular acceleration
ai and torque Ti of the i-th particle using the following equations:

Ti = Iiai (5.6)
dωi

dt
= ai (5.7)

dθi

dt
= ωi (5.8)

We plug equation (5.7) into equation (5.6), then multiply by the moment of inertia
tensor I−1

i and integrate the torque to get the angular velocity ωi.The angle θi can
hence be calculated by integrating the angular velocity. No-slip boundary conditions
are applied at the interface ∂Ωi between the i-th particle and the fluid, i.e., for any
X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X−Xi) . (5.9)

84

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 85

5.3 Numerical Method

5.3.1 Multigrid FEM-FBM

The multigrid FEM-FBM [88, 91, 87] is based on a multigrid FEM background grid
which covers the whole computational domain ΩT and can be chosen independently
from the particles of arbitrary shape, size and number. It starts with a coarse mesh
which may already contain many of the geometrical details of Ωi (i = 1, . . . , N),
and it employs a fictitious boundary indicator (see [87]) which sufficiently describes
all fine-scale structures of the particles with regard to the fluid-particle matching con-
ditions of equation (5.9). Then, all fine-scale features of the particles are treated as
interior objects such that the corresponding components in all matrices and vectors
are unknown degrees of freedom which are implicitly incorporated into all iterative
solution steps (see [91]). Hence, by making use of equation (5.9), we can perform
calculations for the fluid in the whole domain ΩT . The considerable advantage of the
multigrid FBM is that the total mixture domain ΩT does not have to change in time,
and can be meshed only once. The domain of definition of the fluid velocity u is ex-
tended according to equation (5.9), which can be seen as an additional constraint to the
Navier-Stokes equations (5.1), i.e.,







∇ · u = 0 (a) for X ∈ ΩT ,

ρf
(
∂ u

∂ t
+ u · ∇u

)
−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X−Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(5.10)

For the study of interactions between the fluid and the particles, the calculation of the
hydrodynamic forces acting on the moving particles is very important. From equation
(5.4), we can see that surface integrals over the surfaces of the particles appear in the
calculation of the forces Fi and Ti. However, in the presented multigrid FBM method,
the shapes of the surfaces of the moving particles are implicitly imposed in the fluid
field. If we reconstruct the shapes of the surface of the particles, it is not only a time
consuming work, but also the accuracy is only of first order due to a piecewise constant
interpolation from our indicator function. In order to resolve the shape, we perform
the hydrodynamic force calculations using a volume based integral formulation. To
replace the surface integral in equation (5.4) we introduce a function αi,

αi(X) =

{

1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi

(5.11)

where X denotes the coordinates. An interesting property of this function is that the
gradient of αi is zero everywhere except at the surface of the i-th particle, and approx-
imates the normal vector ni of surface of the i-th particle in a weak sense. This allows
us to write:

Fi = −

∫

ΩT

σ · ∇αi dΩ, Ti = −

∫

ΩT

(X−Xi)× (σ · ∇αi) dΩ . (5.12)

85

86 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

In the finite element framework this can then be evaluated as

Fi = −
∑

T∈Th,i

∫

ΩT

σh ·∇αh,i dΩ, Ti = −
∑

T∈Th,i

∫

ΩT

(X−Xi)× (σh · ∇αh,i) dΩ

(5.13)
where αh,i(X) is the finite element interpolant of α(X) and Th,i the elements that are
intersected by the i-th particle.

5.3.2 Time Discretization by Fractional-Step-θ Scheme

The fractional-step-θ scheme is a strongly A-stable time stepping approach which has
the full smoothing property that is important in the case of rough initial or boundary
data [85]. We first semi-discretize the equations (5.10) (a) and (5.10) (b) in time by
the fractional-step-θ scheme. Given un and the time step K = tn+1 − tn, then solve
for u = un+1 and p = pn+1. In the fractional-step-θ-scheme, one macro time step
tn → tn+1 = tn +K is split into three consecutive substeps with θ̃ := αθK = βθ′K,

[I + θ̃N(un+θ)]un+θ + θK∇pn+θ = [I − βθKN(un)]un

∇·un+θ = 0 ,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ = [I − αθ′KN(un+θ)]un+θ

∇·un+1−θ = 0 ,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 = [I − βθKN(un+1−θ)]un+1−θ

∇·un+1 = 0 ,

(5.14)

where θ = 1−
√
2
2
, θ′ = 1− 2θ, and α = 1−2θ

1−θ
, β = 1− α, N(v)u is a compact form

for the diffusive and convective part,

N(v)u := −ν ∇ ·
[
∇u+ (∇u)T

]
+ v · ∇u . (5.15)

Therefore, for equation (5.14), we have to solve in each time step nonlinear problems
of the type:

[I + θ1KN(u)]u+ θ2K∇p = f , f := [I − θ3KN(un)]un , ∇·u = 0 . (5.16)

For equation (5.10) (c), we take an explicit expression:

un+1 = Un
i + ωn

i × (Xn −Xn
i) . (5.17)

5.3.3 Space Discretization by Finite Element Method

For the spatial discretization we choose a finite element approach that is based on a
suitable variational formulation [86]. We introduce a finite element mesh Th consisting
of hexahedrons to cover the whole computational domain Ω , where h characterizes the
maximum edge length of the elements of Th. To obtain the fine mesh Th from a coarse

86

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 87

mesh T2h, we simply apply a regular refinement to the hexahedral cells that splits each
hexahedron into 8 new hexahedrons. We define polynomial trial functions for velocity
and pressure, for the corresponding spaces Hh and Lh we should achieve numerically
stable approximations for h → 0, meaning they should satisfy the inf -sup (LBB)
condition [30]

min
qh∈Lh

max
vh∈Hh

(qh,∇ · vh)

‖qh‖0‖∇vh‖0
≥ γ > 0 (5.18)

with a mesh-independent constant γ. As finite element we choose the Q2/P1 ele-
ment pair for space discretization and as FEM stabilization techniques we use edge-,
resp., face-oriented stablization. For further details on the discretization and solution
approach we refer to [86] and to [62, 20] for details of the stabilization for the Q2/P1
element pair.

5.4 Liquid-Solid Interface

5.4.1 Introduction

As explained earlier the nodes of the computational mesh need to be marked as solid
or liquid nodes as part of creating the indicator (see equation (5.11)) function before
the physical equations can be solved. A node is classified as a solid node in case it
is located inside the solid geometry or on its surface. The problem (see figure 5.1)
is relatively simple to solve in case we are dealing with a regular or structured mesh
and simple solid geometries like spheres or ellipsoids. A structured quadrilateral or
hexahedral mesh is defined as a subdivision of 2- or 3-dimensional Euclidean space
by congruent quadrilaterals or hexahedrons. In the 2D case every cell of the mesh
can be addressed by a pair of indices (i, j). The coordinates of the nodes of the mesh
are (i · ∆x, j · ∆y), as a datastructure to store such structured 2D mesh usually 2D
arrays are chosen with a direct mapping between array indices and cell indices. Let us
assume we want to solve the node classification problem for a mesh with n nodes and
m solid bodies. The most simple and most naive way of solving the node classification
problem would loop over all nodes of the mesh and then compute for every solid if the
node is inside the solid body. The complexity of this naive approach is O(n ·m).
The naive approach can be improved by using the direct relation between the node
indices and the coordinates of the node. If we assign a minimal bounding box to a
solid it is sufficient to only consider the nodes that are inside of the bounding box as
candidates for nodes that could be inside of the real solid geometry. The pseudo-code
description for this simple point classification method is outlined in algorithm 9. This
way the number of nodes that need to be checked for each solid object can be reduced
to a constant number, the complexity of this the point classification method is then
reduced to O(m). In these considerations the algorithmic complexity of determining
whether the coordinates of a node of the mesh are located inside the solid object are
considered to be constant which is valid for most simple geometric shapes.

87

88 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

Figure 5.1: Illustration of the point classification problem, the nodes inside of the circle
need to be marked as solid nodes

5.4.2 Fast Point Location in Unstructured Meshes

The point classification problem is more complex for the class of unstructured meshes.
Unstructured meshes are characterized by an irregular connectivity, such that a node of
the mesh can have any number of neighboring nodes. The complications arise from the
fact that for an unstructured mesh there is no mapping from the geometric location of
the nodes to indices in the mesh data structure. The data structure used in FEATFLOW
to store an unstructured mesh is in essence a list-based data structure where for each
element of the mesh a list of neighbors is stored. Additional complication arises from
the domain decomposition approach that is used in FEATFLOW, so that in fact we are
dealing with submeshes in each domain which as a union form the whole domain. This
decomposition introduces additional irregularity in terms of the geometric shape of the
subdomains and the number of neighboring elements in the boundary region of two
subdomains. As we can see in figure 5.2 the geometrical shape of the subdomains is not
limited to regular shapes like axis-aligned boxes or similar. The standard FEATFLOW
mesh data structure does not allow us to efficiently traverse nodes as was the case in
the example of the structured grid. Without extended information this would require
checking all n nodes of our mesh to solve the point classification problem. In algorithm
9 we saw that using a bounding box representation of a solid object provided us with
the possibility to check only a small number of nodes for each solid object. In order to
use this approach for unstructured meshes we need to introduce an additional search
grid that allows us to quickly determine the elements of the mesh that intersect with
the bounding box representation of the solid object. A well suited choice of search

88

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 89

Algorithm 9: Simple Bounding Box Point Classification for Structured Meshes
Data: x0, x1, y0, y1, obj, mesh
Result: mesh.marker
begin

x0 :=
⌊
obj.boundingBox.xmin

mesh.cellSize

⌋

x1 :=
⌈
obj.boundingBox.xmax

mesh.cellSize

⌉

y0 :=
⌊
obj.boundingBox.ymin

mesh.cellSize

⌋

y1 :=
⌈
obj.boundingBox.ymax

mesh.cellSize

⌉

for i = x0 to x1 do

for j = y0 to y1 do

if obj.PointInObject(mesh.nodes[i][j]) then

mesh.marker[i][j] := solid

grid would be the hash grid data structure which we have introduced in chapter 3. We
use a hash grid for each subdomain of the decomposition and set its bounding box to
the bounding box of the subdomain. As we have seen in figure 5.2 the shapes of the
subdomain can be irregular and thus some parts of the subdomain bounding box are
not filled with cells in the particular subdomain. An advantage of using the hash grid
data structure is that no cells will be created in this empty region and thus no memory
is wasted. We can then insert the vertices or cells (as needed) into the search grid
and then perform the same procedure as in algorithm 9 in each of the subdomains in
parallel.

1

2

3 4
Figure 5.2: Domain Decomposition in FEATFLOW: Whole domain (left), domain
decomposed in 4 subdomains (right)

89

90 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

5.4.3 GPU-based Point Location in Unstructured Meshes

If GPU hardware is available then the PointInObject test can be performed efficiently
on the GPU. The only change that needs to be done for a GPU version is to generate
data structures that allow an efficient implementation of the PointInObject test on the
GPU like the distance map data structure or the inner sphere data structure (see chapter
3). We can then depending on the application setup either manage the hash grid data
structure on the GPU or we can transfer the points of the computational mesh that are
located inside the bounding box of the current object to the GPU and then launch a
CUDA thread for every vertex of the mesh to perform the PointInObject test.

5.5 Introduction to Mesh Deformation

When performing calculations on computational meshes involving an immersed geom-
etry the quality of the geometry resolution by the mesh is directly related to the accu-
racy of the corresponding calculation. In order to improve the quality of the geometry
resolution one possible approach is to increase the resolution by regular refinement of
the mesh. This however has as a consequence that in the case of a hexahedral mesh
all element based calculations increase by a factor of 8 because a single cell is divided
into 8 smaller cells. Another possibility is to locally refine the elements that repre-
sent the surface of the immersed geometry which only slightly increases the number
of new elements because we do not refine globally. This approach which is called h-

adaptivity creates hanging nodes between those elements which are refined and those
which remain as they are. The introduction of hanging nodes requires special numer-
ical treatment which is not implemented in all modules of the FEATFLOW solver so
that this option may not always be available. Another mesh adaptation approach is to
keep the mesh connectivity as it is, but to redistribute the existing nodes in a way that
they resolve the immersed geometry better. This way of improving the mesh resolution
of an object is called r-adaptation. In our work we will explore the class of r-adaptation
techniques to improve the resolution of our geometries by the mesh. This type of mesh
adaptations techniques often relies on the concept of a monitor function, a function
that provides a mathematical description of the desired deformation. The design and
calculation of monitor functions often involves computing the distance to the objects
as this is a good criterion of adaptation because it is desirable to redistribute the nodes
into those regions where the distance to the object is low. We can furthermore make a
distinction between techniques that require additional partial differential equations to
be solved and those that do not involve PDEs.

90

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 91

(a) Adaptation to a circle by regular refinement

(b) Adaptation to a circle by r-adaptivity

(c) Mesh adaptation to an airfoil by h-adaptivity

Figure 5.3: Different types of mesh adaptation

5.6 PDE-Based R-Adaptivity Mesh Deformation Algo-

rithm

In this section we will briefly summarize the basic aspects of PDE-based mesh adap-
tation. Assume the domain Ω is covered by a regular grid T0. The aim of r-adaptivity

91

92 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

class grid deformation algorithms that follow the schemes of Moser [19], Liao [12] or
Grajewski [35] is to to compute a bijective mapping Ψ : Ω → Ω that satisfies:

g0(x)|JΨ(x)| = f(Ψ(x)), x ∈ Ω and ∂Ω → ∂Ω (5.19)

Here the function g0 is the cell size distribution of the cells in the initial grid T0. Thus,
the function g0 is often referred to as the area function. The computed mapping Ψ per-
forms a transformation Ψ : x → xnew of the grid points x ∈ T0 to new coordinates xnew

and thus a transformation of the initial grid T0 to the target grid Tgoal. The function f is
the so called monitor function which describes the desired cell size distribution on the
target grid Tgoal. Examining equation (5.19) we notice that the term |JΨ(x)| represents
the relative growth of the grid cells around the vertex x and the product g0(x)|JΨ(x)|
the absolute cell size distribution after deformation. The functions f and g0 are both
computed on the original grid T0. To compute the function g0, we need cell size dis-
tribution values in the vertices x of the grid T0. To obtain these values we take the
average cell size values of the elements that are incident to a vertex x. Before we state
the outline of the grid deformation algorithm, we still have to choose an appropriate
monitor function f . According to Grajewski [35] a basic grid deformation algorithm
can thus be stated as in algorithm 10. The gradient of v in eq. (5.22) we obtain by
computing an approximate solution vh using finite elements and applying a gradient
recovery technique to it, which yields a recovered gradient Gh(vh). Grajewski’s analy-
sis [35] showed that the gradient recovery method has almost no influence on the result
of the computed deformation. The initial value problem (IVP) in (5.22) can be solved
by standard methods for example an explicit euler scheme, but the solution of the IVP
involves a ’hidden’ geometrical problem. Examining the IVP, we notice that in each
time step the FEM functions Gh(vh), f̃ and g̃0 have to be evaluated. These functions
are defined on the initial grid T0 and in order to evaluate them, it is necessary to know
in which element the grid point, in which we want to evaluate the functions is located.
This element is known with certainty only in the first time step. After the first time step
the grid point may have already moved to a different element. From this fact arises a
point location problem. Specifically, this means that we have to search and find the
element that a point is located in, in every time step but the first. This problem is eas-
ily solvable if T0 is a regular structured grid. In this case the element indices can be
determined by analyzing the coordinates of the vertex. If T0 is an unstructured grid the
task is more difficult and we will briefly revisit the most popular strategies for this task.

Brute Force: Starting with the element Iold that contained the point in the last time
step we loop over all elements until we have found the element that contains the point.
The complexity of this algorithm is O(NV T ·NEL) in the worst case. This algorithm
cannot be used for any practically relevant problems as a standard search strategy,
because of its unacceptable runtime. However, it may serve as a fallback strategy if
everything else fails.

Raytracing Search: We start checking the old element Iold whether it still contains

92

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 93

Algorithm 10: Basic grid deformation algorithm (BDM)
Data: f ,g0
Result: Ψ
begin

1. Compute Scaling factors cf and cg for f and g0 such that:

cf

∫

Ω

1

f(x)
dx = cg

∫

Ω

1

g0(x)
= |Ω| (5.20)

2. Let f̃ =
cf
f

and g̃0 =
cg
g0

denote the reciprocal functions of f and g0.
Compute v : Ω → R by solving

− div(v(x)) = f̃(x)− g̃0(x), x ∈ Ω and v(x) · n = 0 for x ∈ ∂Ω, (5.21)

where n is the outward pointing normal vector of the domain boundary ∂Ω

3. Find the new position xnew for each grid point x by solving the following initial
value problem

ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x (5.22)

where η(y, s) is defined as

η(y, s) :=
∇v(y)

sf̃(y) + (1− s)g̃0(y)
, y ∈ Ω, s ∈ [0, 1] (5.23)

4. Define Ψ(x) := ϕ(x, 1) = xnew

93

94 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

the point. If this is not the case we connect the mid point of the old element with the
new location of the grid point. We have thus created a search path along which we can
track the path the grid point has moved and check the elements along this path. This is
done by performing an intersection test between the faces of the current element and
the search line. If the line intersects with a face we continue to track the line in the
neighbor of the element in that face. This procedure is repeated until we have found
the element that contains the grid point.

We will demonstrate the setup and application of the method to a simple test problem.
The results of the numerical solution of the test problem with the BDM are illustrated
in figure (5.4). The problem is formulated as follows:

The unit square Ω = [0, 1]2 is covered with a regular tensor product grid T0. Apply the

BDM to T0 using the monitor function f :

f(x) = min{1,max{
‖d− 0.25‖

0.25
, ε}} (5.24)

The parameter ε is the ratio of the smallest element to the largest element on the de-
formed grid and is set to 0.1 for the test problem. The choice of ε plays an important
role for the adaptation process. Decreasing the so called shape parameter ε causes the
algorithm to concentrate a higher number of grid points around the circle defined by
the test monitor function. The BDM is likely to run into numerical problems because
it is a one step method that can potentially prescribe a harsh deformation that may
lead to solver problems for the Laplace problem or the IVP. Therefore in [35] a robust
deformation method was proposed, that can break up a considerably harsh adaptation
process in several less harsh adaptation steps. Algorithmically this is realized by in-
troducing a blended monitor function fs, where fs is a linear combination of f and
g0:

fs(x) := sf(x) + (1− s)g0(x), s ∈ [0, 1] (5.25)

The blending parameter s is increased in every adaptation step, so that the blended
monitor function fs resembles the original f more and more with each adaptation step.
Furthermore, the composition of the mappings computed in the adaptation steps, yields
the desired mapping Ψ. For the computation of the individual adaptation steps we can
resort to the BDM. The ideas and concepts discussed so far allow us to state the outline
of the robust deformation method (RDM). A remedy for this it is possible to apply a
grid smoothing technique like laplacian smoothing after the adaptation steps.

94

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 95

(a) The equidistant start grid T0 (b) Grid after application of the
BDM

(c) Solution of equation (5.21) (d) The recovered gradient of vh

(e) Monitor function for the test
problem

(f) Area distribution around the ver-
tices of the deformed grid

Figure 5.4: Results of the BDM for the test problem (’grid adaption to a circle’)

95

96 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

Algorithm 11: Robust deformation method
Data:
Result: Ψ
begin

Ψ0 := Id
na := ComputeNumberOfAdaptSteps(f, g0, γ0)
S := ComputeBlendingParameters(f, g0, γ0)
for i = 1 to na do

Ψi := BDM(fS(i), gi−1) ◦Ψi−1

gi := fS(i)

Ψ := Ψna

5.7 Non-PDE based Mesh Deformation

As an alternative to the PDE-based mesh adaptation we would like to introduce a way
of adapting the mesh to a geometry without having to solver PDEs. Our mesh adap-
tation technique that is used to achieve this increased resolution around immersed ge-
ometries is based on laplacian smoothing. Laplacian smoothing in its basic form is
represented by the following equation:

xnew = (1− ω) · x+
ω

e(x)
·

e(x)
∑

j=1

xj, (5.26)

where e(x) is the number of edges connected to the vertex x. This can be modified into
an adaptation procedure by introducing special weights that cause vertices in a certain
region around the surface of the geometry to be pulled closer to the surface. The mesh
adaptation formulation of the laplace smoother then reads:

xnew
i = (1− ω) · xold

i + ω ·

e(i)∑

j=1,n

wjx
old
j

e(i)∑

j=1

wj

for i = 1, n (5.27)

where w(x) is the weight distribution function which in the basic formulation 5.26 is
equal to 1 for all nodes. The key concept of how a laplacian smoother can be used for
mesh adaptation is modification of the weight distribution w(x) by combining it with a
so called monitor function M(x). The monitor function M(x) is specific to the prob-
lem and composed with specific deformation goals in mind. For hydrodynamic force
computation these goals are usually to increase the mesh resolution locally around the
surface of a particle, but to leave mesh elements of the computational domain that
are far away from the particle relatively unchanged. This deformation goal makes the
signed distance d(x) of the mesh nodes to the particle surface a good choice for M(x).

96

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 97

The monitor function can then be further modified in order to amplify the weight of
mesh nodes near the particle surface and decrease the weight gradually as the distance
from the particle increases until the standard weight of 1 is applied at a certain dis-
tance from the particle. To construct such a function the signed distance d(x) needs
to be combined with hat-function or similar function such as depicted in figure 5.5,
the result of combining d(x) with M(x) is then set as the weight distribution w(x).
This kind mesh adaptation by weighted laplacian smoothing corresponds the afore-

(a) The weights for the laplace smoother are generated by combining the
signed distance d(x) with a hat function

(b) Visualization of w(x) on the undeformed mesh

Figure 5.5: Generation of the weight distribution function w(x)

mentioned laplace-κ approach, the procedure how to perform this kind of adaptation
is shown in algorithm 12. The laplace-α mesh adaptation technique differs from this
approach by a projection step of mesh nodes directly onto the particle surface that is

97

98 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

executed on the coarse mesh level (see figure 5.6) and then prolongated to the finest
mesh level where in each refinement step the projection is done for new nodes that are
generated from edges from the preceding mesh level. Additionally, in each refinement
step a few iterations of weighted smoothing are applied. With the laplace-α approach

Figure 5.6: Projection of coarse grid nodes onto the surface of the object

highly precise and smooth results for the hydrodynamic forces can be achieved, but
also some challenges exist. The nodes that are projected to the surface of a particle
follow the movement of the particle which is the key to the accuracy of the method,
on the other hand this behavior becomes problematic if the particle moves longer dis-
tances as the quality mesh elements can begin to deteriorate as they get distorted by the
particle movement (see figure 5.7). A strategy to avoid this kind of mesh quality dete-
rioration with the laplace-α method is to dynamically detect this effect by evaluating
mesh quality measures and in case of the mesh quality is considered not good enough
to proceed the solution will be projected onto the undeformed mesh by accurate pro-
jection techniques like the L2 projection and then align a new set of mesh nodes to the
particle surface that would produce mesh elements of better quality.

98

CHAPTER 5. FEATFLOW SOLVER OVERVIEW 99

Algorithm 12: Non-PDE based Adaptation
Data: Mesh m, int stepsOnLevel[]
Result: mesh.coords
begin

for l = 1 to m.levelmax do

for i = 1 to stepsOnLevel[l] do

distF ield = computeDistanceField(m,l)
n = verticesOnLevel(l)
for j = 1 to n do

xj,old = m.coords.getVertexOnLevel(j,l)
m.newCoords[j] = laplaceKappa(xj,old,distF ield,mesh)

prolongateCoordinates(m,m.newCoords)
updateCoordsOnLevel(m.coords,m.newCoords,l)

99

100 CHAPTER 5. FEATFLOW SOLVER OVERVIEW

(a) Laplace-α technique t = t0: ball starts to fall

(b) Laplace-α technique t = t1: the fixed nodes on the surface follow the
ball

(c) Laplace-α technique t = t2: elements in front of the ball start to get
distorted

Figure 5.7: A falling ball with laplace-α deformation
100

Chapter 6

Results

6.1 Introduction

In this section we will test the framework that we have set up in various configurations.
We at first want to show the general validity of our particulate flow fictitious bound-
ary method in well-known benchmark configurations. Our first tests deal with single
particle benchmarks for terminal velocity and sedimentation velocity. The tests ana-
lyze the velocity of the particle, the kinetic energy of the particle for different particle
diameters as well as for different Reynolds numbers. We will then proceed to exam-
ine the influence of mesh adaptation on the calculation of the hydrodynamic forces
in a benchmark configuration for an oscillating cylinder and for particle sedimenta-
tion. Mesh adaptation is also tested for a prototypical virtual wind tunnel scenario
which will demonstrate the increase of geometry resolution by the mesh when using
mesh adaptation. An advanced configuration shows the swimming of a macro-scallop
swimmer in a non-newtonian fluid. The swimming mechanism is based on reciprocal
motion of the swimmer. Mesh adaptation is employed to increase the resolution of the
swimmer and to get more accurate results for the hydrodynamic forces that act on the
swimmer. The computed result of the swimmer is compared to an experiment with a
real swimmer. Sedimentation examples with complex shaped particles are presented to
show the possibilities of our frame work to handle complex geometries. The proposed
acceleration techniques to various parts of the FEATFLOW solver are briefly analyzed
to test whether they yield the expected results.

101

102 CHAPTER 6. RESULTS

6.2 Sphere Sedimentation towards a Solid Wall

6.2.1 Definition of the Test Case

The sphere sedimentation towards a solid wall benchmark of ten Cate et al.[13] is
a well-known test configuration for Liquid-Solid solvers. We used the FEATFLOW
solver with the FEM-FBM to simulate this configuration and present the results in this
section. At first we briefly summarize the configuration of the benchmark. The com-
putational domain for this test case is a boxed-shaped container with the following
dimensions depth×width× height = 100× 100× 160 mm. In this domain a spher-
ical particle is placed with the initial position of its center located at (50, 50, 127.5).
The diameter of the spherical particle is dp = 15 mm and the density is ρp = 1120
kg/m3. The physical properties of the fluid such as the fluid density ρf and viscosity
νf are varied in order to test the solver at different Reynolds numbers. The experi-
ments performed by ten Cate focus on four main test cases which are referred to as
E1-E4. The corresponding simulations are called S1-S4. In table (Tab. 1) the different
configurations are summarized, where u∞ denotes the maximum sedimentation veloc-
ity in a container of infinite height and Re refers to the Reynolds number, calculated
as Re = dpu∞ρf/νf . The simulations S1-S4 are carried out over a total simulation

Table 6.1: Fluid properties for the different test cases

Case ρf νf u∞ Re
nr [kg/m3] [Ns/m2] [m/s] [-]
E1 970 0.373 0.038 1.5
E2 965 0.212 0.06 4.1
E3 962 0.113 0.091 11.6
E4 960 0.058 0.128 31.9

time of 5.0 seconds. We store various data for each case. Most importantly we store
the velocity of the particle up, the height of the particle h, the kinetic energy of the
fluid domain Ekin,f and the kinetic energy of the spherical particle Ekin,p. To calculate
Ekin,p we use the standard kinetic energy equation for rigid bodies:

Ekin,p =
1

2
mu2 (6.1)

The kinetic energy of the fluid is defined as:

Ekin,f =

∫

Ω

ρfu
2dΩ (6.2)

In a finite element framework this can be efficiently evaluated as:

Ekin,f = UTMρU (6.3)

102

CHAPTER 6. RESULTS 103

(a) The coarse mesh is pre-adapted to
the particle along the z-axis

(b) The mesh resolution increases es-
pecially in the particle region

Figure 6.1: Configuration of the computational mesh for the benchmark

6.2.2 Simulation Results

In this section we present the results of the simulations S1-S4 using the multigrid FEM-
FBM. The computational domain was discretized using an unstructured mesh T with
different levels of refinement. The coarse mesh is constructed in a way that the mesh
resolution along the expected trajectory of the particle is greatly increased. A x-y-slice
of the mesh is shown in figure 6.1a. The complete 3D mesh is then generated by this
mesh element using extrusion. The coarse grid T1 consists of 2100 vertices and 1216
hexahedral elements, we computed the results on refinement level 4 which corresponds
to grid T4 with 1075200 vertices 622592 elements, a x-y-slice of the fine mesh is shown
in figure 6.1b to illustrate the resulting mesh resolution. The simulations were run for
a total simulation time of 5.0 seconds using a time step size ∆t = 0.001. At first
we examine the sedimentation velocity observed in the simulations S1- S4 and then
compare this data to the experimental and simulation data provided by ten Cate. The
sedimentation velocity is shown in figure 6.2 on the maximum mesh resolution level
T4. To compare the simulation data with the data obtained in the experiment ten Cate
used the ratio of the maximum velocity measured in the experiment to the theoretically
determined maximum sedimentation velocity and the ratio of the maximum velocity in
the simulation to the theoretical maximum. We computed these values and summarized
the comparison of our values to those of the experiment and simulation by ten Cate in
table 6.2.
We analyzed particle position data as well and plotted the particle trajectories in fig-
ure 6.3. The particle trajectory is measured in the dimensionless height of the gap
between the particle and the bottom wall of the domain h/dp. The values obtained for
the sedimentation velocity and particle trajectories compare very well to those of the
experiment and the simulations of ten Cate in all of test cases S1-S4. Characteristic
features of the particle behaviour like the velocity plateau that is reached in the S1 case
or the relatively abrupt deceleration of the particle in the S4 case are clearly visible.

103

104 CHAPTER 6. RESULTS

0 1 2 3 4 5
t[s]

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u
[m

/s
]

Re=1.5

PIV=1.5

Re=4.1

PIV=4.1

Re=11.6

PIV=11.6

Re=31.9

PIV=31.9

Figure 6.2: Sedimentation velocity at different Reynolds numbers.

Furthermore, the method is able to capture flow features like the deceleration phase
of the particle in cases S1-S3 when it close to the bottom wall of the domain without
the introduction of additional forces on a sub-mesh level. We attribute this to the high
mesh resolution that the method is able to handle efficiently.

Influence of Mesh Refinement

To demonstrate the validity of our multigrid framework, we computed the S3 and S4
cases on different levels of mesh refinement. The underlying assumption is that the ac-
curacy of the results should improve in case that the mesh refinement level is increased.
In figure 6.4 (for case S4) we display the sedimentation velocity computed on differ-
ent refinement levels. In order to evaluate the result a line indicating the maximum
velocity measured in the experiment is inserted.
We can observe that as the mesh refinement increases the maximum velocity reached
in the simulation gets closer to that of the experiment in both of the analyzed cases.
Additionally, the shape of the curves seems to get closer to those published by ten
Cate. This behaviour is a strong indication that the underlying multigrid framework is
working as expected.

104

CHAPTER 6. RESULTS 105

Table 6.2: Fluid and particle properties

Re umax/u∞ umax/u∞ umax/u∞

Featflow ten Cate Experiment
1.5 0.945 0.894 0.947
4.1 0.955 0.950 0.953

11.6 0.953 0.955 0.959
31.9 0.951 0.947 0.955

0 1 2 3 4 5

t

0

1

2

3

4

5

6

7

8

h
/d

p

S1 Trajectory

S2 Trajectory

S3 Trajectory

S4 Trajectory

Figure 6.3: Particle Trajectory for the different test cases

6.2.3 Comparison with other CFD-Codes

We include a comparison of our results for the sedimentation velocity (figure 6.5) and
the kinetic energy (figures 6.6,6.7) with simulation results from the research group of
Sommerfeld and Ernst which were produced by a Lattice-Boltzmann code, as well as
the original simulation results of ten Cate.

Particle and Fluid Kinetic Energy

The data calculated for the kinetic energy of the fluid and the particle also closely
matches the experimental data and the simulations of ten Cate. For the test cases S2
and S3 we do not have the original results from ten Cate available, so for these cases

105

106 CHAPTER 6. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t[s]

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u
_z

[m
/s

]

Re=31.9 Multigrid Analysis

uz T_2

uz T_3

uz T_4

uexp

Figure 6.4: Sedimentation velocity evolution for different mesh refinement levels

we only show the comparison between our results and those of the Lattice-Boltzmann
calculations by Sommerfeld.

Conclusions of the Sphere Sedimentation Benchmark

The results show that our method is able to handle the sphere sedimentation case well
and produce results that compare very well to the PIV readings of the original exper-
iments as well as to simulation results from the group of ten Cate and from the group
of Sommerfeld you employ a Lattice-Boltzmann approach. The multigrid framework
seems to work as expected and we already see accurate results for the benchmark at a
refinement level that is two levels below the maximum level used in our computations.
Regarding the kinetic energy plots we observe that the simulation results of ten Cate
differ from both our results and the results of the Sommerfeld group. We suppose that
the results of newer simulation from our side and that of the Sommerfeld group were
able to resolve the domain better and thus more accurately, which might suggest that
these newer results are actually an improvement on the original calculation. If we ob-
serve that other groups as well come closer to our results and those of the Sommerfeld
group this would add further evidence to our suggestion.

106

CHAPTER 6. RESULTS 107

0 1 2 3 4 5
t[s]

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u
[m

/s
]

Re=1.5

PIV=1.5

Re=1.5 LBM

Re=4.1

PIV=4.1

Re=4.1 LBM

Re=11.6

PIV=11.6

Re=11.6 LBM

Re=31.9

PIV=31.9

Re=31.9 LBM

Figure 6.5: Sedimentation velocity compared to PIV readings and to LBM simulations
the Sommerfeld group

107

108 CHAPTER 6. RESULTS

0 1 2 3 4 5
t

0.00e+00

1.00e-06

2.00e-06

3.00e-06

4.00e-06

5.00e-06

6.00e-06

7.00e-06

E
k
in

Ekin Fluid

Ekin Particle

Ekin Fluid TC

Ekin Particle TC

Ekin Fluid LBM

Ekin Particle LBM

(a) Kinetic energy for the test case S1

0 1 2 3 4 5
t

0.00e+00

2.00e-06

4.00e-06

6.00e-06

8.00e-06

1.00e-05

1.20e-05

1.40e-05

1.60e-05

E
k
in

Ekin Fluid

Ekin Particle

Ekin Fluid LBM

Ekin Particle LBM

(b) Kinetic energy for the test case S2

Figure 6.6: Time evolution of the kinetic energy for the fluid and the particle (S1,S2)

108

CHAPTER 6. RESULTS 109

0 1 2 3 4 5
t

0.00e+00

5.00e-06

1.00e-05

1.50e-05

2.00e-05

2.50e-05

3.00e-05

E
k
in

Ekin Fluid

Ekin Particle

Ekin Fluid LBM

Ekin Particle LBM

(a) Kinetic energy for the test case S3

0 1 2 3 4 5
t

0.00e+00

1.00e-05

2.00e-05

3.00e-05

4.00e-05

5.00e-05

6.00e-05

7.00e-05

E
k
in

Ekin Fluid

Ekin Particle

Ekin Fluid TC

Ekin Particle TC

Ekin Fluid LBM

Ekin Particle LBM

(b) Kinetic energy for the test case S4

Figure 6.7: Time evolution of the kinetic energy for the fluid and the particle (S3,S4)

109

110 CHAPTER 6. RESULTS

6.3 Oscillating Cylinder in a Channel

This benchmark setup features an oscillating cylinder in a brick-shaped channel. The
quantities of interest for this particular case are the drag and lift forces acting on the
cylinder (diameter D = 0.1) and respectively the drag and lift coefficients measured
over time. The oscillating cylinder movement is governed by a sinusoidal function
that changes only the x-coordinate of the cylinder center (Xc, Yc) whereas the y- and
z-coordinates stay constant. The initial position of the cylinder (X0 = 1.1, Y0 =
0.2, Z0 = 0.1025) is used to calculate the position of the cylinder at time t as (Xc(t) =
X0 + A · sin(2πft), Yc(t) = Y0, Zc(t) = Z0), where A = 0.25 and f = 0.25 are the
amplitude and frequency of the oscillating position function. The size of the computa-
tional domain is (2.2 × 0.41 × 0.1025), which means that the cylinder is not located
directly in the middle of the y-range so that a non-zero lift is generated. The fluid
parameters for this benchmark are given by a kinematic viscosity of ν = 10−3m2/s
and a density of ρ = 1kg/m3 with the fluid being at rest initially. As a reference for
this benchmark we use the 2D simulations conducted by Wan, Turek and Rivkind [92],
where the drag and lift were calculated on a body-aligned mesh meaning that the circle
in their case was build directly into the mesh. In order to make the results compara-
ble with 3D simulations the drag and lift coefficients (cd, cl) need to be scaled by the
thickness of the channel and are thus calculated by:

cd =
2Fd

ρU
2
DT

, cl =
2Fl

ρU
2
DT

(6.4)

where Fd and Fl are the hydrodynamic drag and lift forces, D the diameter of the
cylinder and T the thickness of the domain.

6.3.1 Setup of the Benchmark

In this test case we want to compare the results of our mesh adaptation technique in
comparison to a standard FBM approach where the geometry resolution is improved
by regular refinement of the mesh. The quantities we will focus on in this benchmark
are the hydrodynamic drag and lift forces. The geometry resolution obtained by the
different methods is shown in figure 6.9 for the regular refinement approach, in figure
6.10 for the Laplace-κ approach and in figure 6.11 for the Laplace-α approach. In
our simulation we will compute several cycles of the cylinders oscillating left-right
motion and measure the drag and lift forces and compute cd and cl. The number of
elements for the different mesh levels used in the computation are summarized in table
6.3. We see that the regular refinement approach is refined once more than in the
case that we use mesh adaptation techniques. A 2D slice of the coarse mesh of the
computation and the initial location of the cylinder are shown in figure 6.8, from this
slice a 3D mesh is generated by extrusion. On these meshes we compute several cycles
of the cylinders periodic motion for all the standard FBM as well as the Laplace-κ and
Laplace-α approaches. In both cases with mesh adaptation the mesh is ’regularized’

110

CHAPTER 6. RESULTS 111

using a few steps of standard Laplacian smoothing after each time step, before it is then
again adapted to the new position of the cylinder. This mesh regularization provides
a better base mesh for the following adaptation and usually results in a more uniform
adaptation over time as opposed to the case where a strongly adapted mesh is used as
the base for the next adaptation step.

Table 6.3: Number of mesh elements for different adaptation techniques

LEVEL 4 5
Standard FBM - 1310720

Laplace-κ 181220 1310720
Laplace-α 181220 1310720

Figure 6.8: Coarse grid used for the oscillating cylinder benchmark and initial location
of the cylinder

Discussion of the Achieved Geometry Resolution

We can see from figures 6.9, 6.10 and 6.11 that even though the standard FBM ap-
proach is one level higher in mesh refinement that the surface of the cylinder is not
resolved as smoothly as in the cases when we use mesh adaptation. In the case of
Laplace-κ adaptation we observe that the mesh vertices are located near the surface
of the cylinder. Although we see that vertices are near the surface, we also see that
the faces of the elements are not located exactly on the surface which would lead to
an even better geometry approximation. We demonstrate in figure 6.10 by the cells
colored in green the boundary cells of the surface. The actual cylinder geometry only
intersects these cells in a way that the faces of the cells are not aligned with the cylin-
der geometry which is the difference to the second adaptation technique that we use,
the Laplace-α technique. For this technique we see that by the placement of the faces

111

112 CHAPTER 6. RESULTS

(a) Cylinder appears round, but with slightly jagged edges in a two-color
map

(b) Mesh resolution around the cylinder

Figure 6.9: Cylinder resolution by the standard FBM regular refinement strategy

of the mesh directly onto the surface of the cylinder we achieve a perfect resolution of
the cylinder.

Comparison of the 3D Results for Laplace-α to the 2D Results

When we compare the results computed with the Laplace-α with the 2D results of Wan
et al. we can observe over the course of all computed cycles excellent argreement and
a highly smooth curve of the development of the drag coefficient cd. The drag curve
for Laplace-κ shows some oscillations in comparisons to the Laplace-α method, but
it still agrees with the 2D very well. The oscillations occur at the turning point of the
cylinders motion from negative x-direction to positive x-direction.

For the lift results we see the trend observed for the drag continue: the curve for the
Laplace-α technique matches the 2D results excellently. The Laplace-κ approach dis-
plays more oscillations than for the drag, but it still agrees very well with the results
from Wan and those of the Laplace-α calculations. The increase in oscillations com-

112

CHAPTER 6. RESULTS 113

(a) Cylinder appears round in a two-color map

(b) The mesh nodes are concentrated near the surface of the cylinder

Figure 6.10: Cylinder resolution for the Laplace-κ adaptation

pared to the drag computation is to be expected because the lift value in this case is
a numerically much smaller number which can increase the strength of the oscillations.

Comparison with the standard FBM Approach

When we compare the standard FBM approach to the results computed with mesh
adaptation techniques (figure 6.14) we can see a good agreement in the drag curves in
all computed cycles in the ascending and descending parts of the curve. At the peak
and low points of the curve we can see more and higher amplitude oscillations than
for the Laplace-κ and Laplace-α results. Additionally, the standard FBM curve does
not match the values of the Laplace-κ and Laplace-α computations at the low and high
points of the curve. For the lift curves (see figure 6.15) we see a significant difference
in the amplitude of the oscillations for the standard FBM approach compared to the
Laplace-κ as well as the Laplace-α lift curves. But not only do we observe an increase
in oscillations, we as well can see that although the general shape of the lift curve for
the standard FBM approach matches that of the Laplace-α approach the standard FBM

113

114 CHAPTER 6. RESULTS

(a) Cylinder appears round in a two-color map

(b) The mesh nodes are located exactely on the surface of the cylinder

Figure 6.11: Cylinder resolution for the Laplace-α adaptation

tends to overshoot some values which leads to larger values in the extreme points of
the lift curve.

Comparison of Cd and Cl for Laplace-α and Laplace-κ Adaptation

When looking at the differences for the Laplace-α and Laplace-κ curves we that they
differ the most in the stage shortly after the sign of the cylinder velocity is changing
from positive to negative and vice versa (see figure 6.16). This can be explained by
the fact that when the motion of the cylinder changes some of the mesh nodes change
their status from solid to fluid abruptly or the nodes change from positive velocity
to negative velocity from one time step to the other which leads to the oscillations
observed expecially in the case of the standard FBM where these situations arise far
more often than in the case of the Laplace-κ approach. The Laplace-α approach does
not suffer from these problems because the nodes never change from fluid to solid.

114

CHAPTER 6. RESULTS 115

2 4 6 8 10 12 14
t[s]

−3

−2

−1

0

1

2

3
C
d

Drag Coefficient Cd comparison 3D to 2D

Laplace-κ

Laplace-α

Wan2D

Figure 6.12: Drag coefficient comparision between Wan’s and our results.

2 4 6 8 10 12 14
t[s]

−0.04

−0.02

0.00

0.02

0.04

C
l

Lift Coefficient Cl comparison 3D to 2D

Laplace-κ

Laplace-α

Wan2D

Figure 6.13: Lift coefficient comparision between Wan’s and our results.

115

116 CHAPTER 6. RESULTS

Conclusions of the Benchmark

We can safely conclude that both mesh adaptation techniques Laplace-α and Laplace-
κ offer a significant improvement over the standard FBM approach with regard to
the computation of the hydrodynamic forces. The force curves are clearly smoother
which will lead to better results during the numerical integration of the equations of
motion when particles are allowed to move freely. Also the geometry resolution is
clearly superior with mesh adaptation and as the results in figures 6.9, 6.10 and 6.11
demonstrate the effect of mesh adaptation can be considered more than one level of
regular refinement for the case at hand. The convergence test shown in figure 6.17
confirms that we are dealing with converged results.

2 4 6 8 10 12 14 16
t[s]

−3

−2

−1

0

1

2

3

C
d

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
t[s]

Standard FBM

Laplace-κ

Laplace-α

Figure 6.14: Drag curves for the standard FBM, Laplace-α and Laplace-κ calculations

116

CHAPTER 6. RESULTS 117

5 10 15 20
t[s]

−0.10

−0.05

0.00

0.05

0.10
C
l

Standard FBM

Laplace-κ

Laplace-α

Figure 6.15: Drag curves for the standard FBM, Laplace-α and Laplace-κ calculations

−4
−3
−2
−1
0
1
2
3
4

C
d

−0.04

−0.02

0.00

0.02

0.04

C
l

2 4 6 8 10 12 14
t[s]

0.8

0.9

1.0

1.1

1.2

1.3

1.4

x

Figure 6.16: Drag and lift curves combined with a position plot of the cylinder

117

118 CHAPTER 6. RESULTS

−3

−2

−1

0

1

2

3

C
d

2 4 6 8 10 12 14
t[s]

−0.04

−0.02

0.00

0.02

0.04

C
l

Laplace-α LVL4

Laplace-α LVL5

Figure 6.17: Laplace-α results for two grid levels, showing converged calculations

6.4 Sphere Sedimentation with Mesh Adaptation

We want to test the influence of mesh adaptation on the sphere sedimentation bench-
mark. We choose the Laplace-κ mesh adaptation technique as it is more general and
more easily applied, while the Laplace-α technique might yield better results we might
run into the problems depicted in section 5.7. In the case of the oscillating cylinder we
saw by using mesh adaptation the differences in results in comparison to regular re-
finement can be rated as about one level of refinement. It has to be kept in mind that
in the last case even if the curves for drag and lift showed more oscillations without
mesh deformation, the average values corresponded closely to the results with mesh
deformation. In sedimentation the force values are integrated over time and we arrive
at the particle velocity, we suggest that also for this quantity the results should improve
with mesh deformation, but since the integration itself is an averaging process the dif-
ferences might not be as significant as in the oscillating cylinder case. For these tests
we use a different mesh because the mesh for the sphere sedimentation test was already
extremely refined in the region of the particle by certain connector elements that allow
for a transition from larger cells on near the boundary and in the flow region to smaller
cells in the region near the particle and in the assumed trajectory of the particle (see
figure 6.1a). The number of vertices and elements for the meshes used in shown in
figure 6.4

The results of our computations with mesh adaptation are shown in figure 6.18 com-

118

CHAPTER 6. RESULTS 119

Table 6.4: Number of mesh elements and vertices for sedimentation test

LEVEL 2 3 4
Vertices 112128 897024 3823696

Elements 131956 1310720 3588096

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time[s]

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u
[m

/s
]

Settling Velocity S4 with Mesh Adaptation

lvl4

PIV

lvl2 def

lvl3 def

lvl3

(a) Settling velocity for S4 with mesh adaptation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t[s]

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u
[m

/s
]

Settling Velocity S3 with Mesh Adaptation

lvl4

PIV

lvl2 def

lvl3 def

lvl3

(b) Settling velocity for S3 with mesh adaptation

Figure 6.18: Comparing settling velocity for regular refinement with mesh adaptation

119

120 CHAPTER 6. RESULTS

pared to the results for the regular refinement FBM approach. We see that the LVL2
as well as the LVL3 computations closely match the solution of the regular refinement
approach at LVL4. The LVL3 curve is however only a slight improvement to the LVL2
solution curve. Furthermore, we see that both the LVL2 and the LVL3 curves capture
the deceleration phase of the particle better than the LVL4 curve. For the deceleration
phase the results with mesh adaptation are clearly superior to the calculation without
it. We see that these observations hold true for both test cases S3 and S4, so there is
consistency of the beneficial behavior of mesh adaptation. The resolution of the sphere
surface for a slice of the mesh achieved by the different approaches is shown in figure
6.19. We see that although the LVL4 regular refinement calculation has a much higher
number of elements the shape of the sphere is still not as smooth as in the cases with
mesh adaptation and we can still see the sharp jagged edges of the mesh. The small
improvement between the LVL2 and LVL3 calculations with mesh adaptation we at-
tribute to the already well resolved geometry shape that is achieved on LVL2. The
LVL3 results with regular refinement are inferior to the LVL2 and LVL3 calculations
with mesh adaptation in all aspects.

120

CHAPTER 6. RESULTS 121

(a) Regular refinement

(b) Laplace-κ LVL2

(c) Laplace-κ LVL3

Figure 6.19: Sphere geometry resolution for a slice of the mesh

6.5 Numerical Simulation of Swimming at Low Reynolds

Numbers

6.5.1 Introduction of the Test Case

The analysis of swimming mechanisms of biological microswimmers is a current topic
in biology, physics and engineering. The aim of such studies is to understand the un-
derlying mechanisms and to apply them to synthetic microswimmers that can be used
for special purposes in a wide range of biomedical or engineering applications. The
swimming of biological swimmers is governed by Purcell’s scallop theorem [67] as a
consequence of which they generally execute non-reciprocal motions in low Reynolds
number fluids in order to propel themselves forward. The theorem furthermore states
that if a swimmer applies a geometrically reciprocal swimming mechanism, that is a

121

122 CHAPTER 6. RESULTS

motion which is identical when reversed, then the net displacement of such a swimmer
has to be zero. In case of non-Newtonian fluids, which are present in most biomedical
applications, the scallop theorem does not apply anymore. A swimming mechanism
that is based on reciprocal motion should be possible in these fluids. Such a swim-
mer is simulated in this section using the FBM technique, the results are compared to
experimental data for the same configuration as well as to some theoretical consider-
ations. The real swimmer that was used in the experiment is called a macro-scallop
with a total length of l = 22mm. The real macro-scallop has a head in which two
motors are embedded that power the motion of the macro-scallop’s shells. The shells
are made of carbon fiber sheets that are 0.3mm thick and 16mm × 14mm in length
and width. The schematics of real the macro-scallop swimmer are depicted in figure
6.20. Further information on the configuration of this simulation can be found in [68].
A full cycle of the opening/closing motion of the swimmer is configured to be 4s. In

Figure 6.20: Schematics of the macro-scallop and illustration of the reciprocal shell
motion.

theory [68] such a swimmer is expected to exhibit a positive net displacement D/l,
where D is the total forward displacement (see figure 6.21) of the swimmer and l the
length of the swimmer, in case the closing speed of the shells is higher than the open-

122

CHAPTER 6. RESULTS 123

ing speed: ωc > ωo and the surrounding fluid is non-Newtonian. The value of the net
displacement is also dependent on the relation p = ωc

ωo
and the angles αo, αc that are

formed between the shells of the swimmer at the opened and at the closed position.
For the swimmer in the experiment these angles are set to αo = 237° and αc = 10°.
As a control experiment the macro-scallop swimmer was tested in silicone oil which
can be classified as a highly viscous Newtonian fluid. The precise description of the
silicone oil is: (Dow Corning 200/12,500 cSt, VWR, UK).

D

Figure 6.21: A single cycle of the macro-scallop is 4s long. We sketch the forward
displacement D from which we calculate D/l.

The shear thickening fluid was produced by fumed silica suspensions (8% w/w). The
Fumed silica powder (Aerosil®150, Evonik, Germany) was mixed thoroughly with
poly(propylene glycol) (PPG, Mw=725, Sigma-Aldrich) and the resulting solution was
then degassed for three hours. Then dynamic viscosity measurements were performed
which can be used to establish a viscosity function. The viscosity function of the shear-
thickening fluid that was obtained by the measurements is shown in figure 6.22a. We
can see the viscosity function shows a very steep gradient for shear rates between 3
and 9. In the simulation this steep gradient can cause the solver to diverge and in order
to improve the reliability of the solver we slightly modified the viscosity function such
that we left the minimum and maximum values intact, but made the change more grad-
ually over a larger shear rate interval as is shown in figure 6.22b. As we can see the
dynamic viscosity of this shear thickening fluid is in the range of [0.9, 22] Pa · s and
its density is ρ = 1051 kg ·m−3. In the simulation the swimmer geometry was slightly

123

124 CHAPTER 6. RESULTS

10-2 10-1 100 101 102

Shear rate γ̇ [s−1]

100

101

V
is

co
si

ty
 η

 [
P
a
·s

]

Viscosity function

µ=0. 34γ̇3. 34− 1

(a) Dynamic viscosity measurements from experi-
ments

10
-2 10

-1
10

0 10
1

10
2

Shear rate df [sg 1]

10
0

10
1

V
is

c
o

s
it

y
 h

[P
a

·s
]

Viscosity funct ion

Approxim at ion

(b) Approximation of the viscosity function

Figure 6.22: Viscosity function in the experiment and its approximation in the simula-
tion

changed as well, it is identical in total length and with regard to the length and width
of the shells, but the simulation uses a pseudo 2D approach in such a way that the
thickness of the computational domain and the swimmer is set to a small value. Addi-
tionally, the geometry of the swimmer’s head was changed from a triangular shape to a
circular shape. The shells of the swimmer are modelled by thin boxes. The pseudo 2D
setup of the computational domain and the swimmer geometry used in the simulation
are shown in figure 6.23.
The figure shows as well how our Laplace-κ method is used to concentrate more ver-
tices of the mesh near the surface of the swimmer geometry in order to achieve more
accurate results for the hydrodynamic forces. In between time steps as in the test
case of the oscillating cylinder we regularize the mesh by applying standard Laplacian
smoothing and then adapting with the Laplace-κ approach again. In our simulations
we computed three complete opening/closing cycles. The simulation volume was 45
mm x 90 mm x 1 mm, using 60000 time steps of ∆t = 0.0002s.
In figure 6.24 we demonstrate the motion of the simmer for a full 4s cycle in 6 frames.
A cycle consists of a slow opening half-cycle and a fast closing half-cycle which is es-
sential for the swimmers forward propulsion [68]. We expect the swimmer to display
a positive forward displacement as the configuration shown in figure 6.24 is that of a
shear thickening fluid. The net displacement can be seen by comparing the swimmer
position for the start frame at 0s and for the final frame of the cycle at 4s. The propul-
sion mechanism becomes clear by examining the viscosity of the fluid for the frame at
0.3s of the fast closing cycle and for the frame at 2.4s of the slow opening cycle. In
both frames the opening angle of the shells is the same, but the higher closing angular
velocity produces a higher velocity gradient and hence a higher shear rate, which in
turn results in a higher fluid viscosity between the shells compared to the slower open-

124

CHAPTER 6. RESULTS 125

(a) Thin pseudo 2D domain

(b) Mesh adaptation to the swimmer

Figure 6.23: Mesh and geometry setup for the swimmer simulation

ing motion. Because of this viscosity difference the forward displacement during the
closing half-cycle is higher than the backward motion during the opening half-cycle.
The computed results for the displacement of the swimmer are shown in figure 6.25.
As a control of our simulation and as a check for consistency we also compare exper-
iment data for a swimmer in a Newtonian fluid with a simulation using a Newtonian
fluid. For the Newtonian case a net displacement that is sufficiently close to zero is ex-
pected as the scallop theorem is in effect which should be reproduced by the numerical
simulation. The displacement curves (figure 6.25) of the simulation show excellent
quantitative agreement with the experimental data in both the Newtonian and shear
thickening cases. The simulation results demonstrate that the net propulsion is a result
of the viscosity differences during the two half-cycles, which is caused by differential
apparent fluid viscosity under asymmetric shearing conditions. Furthermore, we see
that our framework is able to handle cases of complex moving geometry accurately as
was intended.

125

126 CHAPTER 6. RESULTS

Figure 6.24: Closing and opening half-cycle of the swimmer motion with the corre-
sponding viscosity and velocity fields.

126

CHAPTER 6. RESULTS 127

Figure 6.25: The displacement curves of the asymmetric actuated macro-scallop in
shear thickening (blue) and Newtonian fluid (green) for 3 cycles. Simulation results
(dashed lines) are consistent with experimental data (solid lines), where the macro-
scallop exhibits net displacement in the shear thickening fluid but no net displacement
in the Newtonian fluid.

127

128 CHAPTER 6. RESULTS

6.6 Virtual Wind Tunnel

6.6.1 Test Case Description

For this test we want to demonstrate how our mesh adaptation techniques can be used
to improve the resolution of geometry details in a virtual wind tunnel scenario. We
insert a car geometry into a box-shaped tunnel like mesh. We create a patch around
the region where the car is inserted that has a higher mesh resolution in order to reduce
the total number of elements. We then use several steps of the Laplace-κ adaptation
to concentrate mesh nodes near the surface of the car. An unadapted slice of the mesh
is shown in figure. The number of nodes in the mesh at several refinement levels are
given in table 6.5. We then compare the resolution of the details of the car for regular
refinement with the geometry resolution achieved by the mesh adaptation approach.
For this test case we focus more on the meshing aspect than on the flow simulation, but
as a second test we show a more complex car model and compute a prototypical flow
around it and show how the flow interacts with the car details by computing streamlines
around the car.

Table 6.5: Number of mesh elements and vertices for virtual wind tunnel test

LEVEL 3 4
Vertices 55648 394728

Elements 43520 348160

Figure 6.26: Slice of the mesh that is adapted to the simple car model

6.6.2 Simple Car Test

For the simple car we compare a 3D iso-volume representation of the car as ’seen’ by
an adapted mesh to an iso-volume representation of the car as seen by a non-adapted
mesh. The iso-volume representation serves as an indicator which details of the car

128

CHAPTER 6. RESULTS 129

Figure 6.27: Top: original car geometry (colored with distance function), middle:
mesh adaptation, bottom: no adaptation

129

130 CHAPTER 6. RESULTS

are visible to the flow solver so that a flow that takes these geometric details of the
car into account can be computed. A mesh slice of the adapted mesh is shown in
figure 6.26. We can already see in this mesh slice that vertices of the mesh have been
relocated closer to the surface of the car and even into cavities. More consequences
of mesh adaptation are revealed by the iso-surface representation in figure 6.27. These
representations were built for the LVL4 mesh for both the non-adapted and adapted
case. We see that in the non-adapted version the structure of the mesh is clearly visible
still in the geometry representation. The windshield in the non-adapted version is not
smooth at all and the steps of the hexahedral elements is visible. Cavities like in inlets
for the front lights and the front grille are not captured nearly as accurately as in the
adapted version. The side mirrors are not correctly seen by the non-adapted mesh, all
that is present of the side mirrors are some unconnected elements. This is due to the
fact that at this resolution level not enough faces of the elements are fully (meaning all
vertices of the face) considered to be solid. In case of the iso-volume of the adapted
mesh we can see that all major details of the car are captured and even small scale
details like the inlets on the front and the side mirrors are captured using the same
total number of vertices and cells. We can observe however that the features are a bit
smoothed out and not as sharp as in the original. We attribute this to the fact that the
adaptation approach only concentrates mesh nodes near the surface, but does not but
them directly onto the surface.

6.6.3 Realistic Car Test

The car in the first test was not highly aerodynamic by current standards and had a lot
of sharp edges in its geometry which makes such a type of car actually a good candidate
to be represented by a regular refinement mesh. If a car is more aerodynamic with a
more curved surface design the difference between a regular refinement and a mesh
adaptation approach should be more visible. In figure 6.28 we see slices of the mesh
with a regular regular refinement approach and with a mesh adapted version. Already
in this side view of the car the mesh adapted version reveals many more geometric
details of the car that are either not visible at all or only slightly visible in the regular
refinement version. As before the hexahedral mesh structure is clearly visible in the
inclined windshield of the car. The profile of the car in the side view is much smoother
in the adapted version whereas in the non-adapted version the shape still contains sharp
edges because of the underlying mesh structure. A simulation result with a streamline
visualization is shown in figure 6.29. We see that the streamlines flow around the car
details accurately.

130

CHAPTER 6. RESULTS 131

(a) Base mesh without deformation

(b) Mesh adapted to the car model

Figure 6.28: Side profile of the realistic car model

Figure 6.29: Streamline visualization of the flow around the car, streamlines interact
with small scale car details

131

132 CHAPTER 6. RESULTS

6.7 Particulate Flow Tests

6.7.1 The DGS Configuration

The next series of tests demonstrate the capabilities to handle particulate flow config-
urations. The first test case is a sedimentation setup that should display certain flow
property of particle sedimentation. For sedimentation setups we choose the particle
density to be higher than the density of the fluid. When particles sediment for exam-
ple from the top of a domain to the bottom of the domain under the effect of gravity
the fluid is pushed aside by the particles and fluid flow from the bottom to the top
can be observed. The DGS configuration is an in-house particulate flow sedimentation
computation that should reproduce this simple characteristic behavior. The effect is
amplified by arranging the particles in a way that the liquid upstream caused by the
sedimenting particles pass through the particle bed. An upstream flow through the
particle bed would cause the particles themselves to move up again against the sedi-
mentation direction essentially causing a twirl in the fluid and the particles. This is the
flow feature that we want to observe in this configuration. The setup of the domain
in dimensionless numbers is [0, 1] × [0, 0.25] × [0, 1], the fluid density is ρf = 1.0,
νf = 1.0 × 10−3, particle density ρp = 1.2 and particle radius of rp = 0.0125. The
initial configuration of the simulation is shown in figure 6.32a.

DGS Results

We show the particle behavior over the course of the simulation in figure 6.32. We
can see a rise in the particle bed as it gets hit by the liquid upstream. The twirl and the
cause of its formation are shown in two different planes in figure 6.31. The upstream of
liquid along the sides of the domain to the top is clearly visible. We have visualized the
twirl in the particle bed by means of vector arrows a surface LIC which tends to make
twirling motions in a velocity field more visible. Furthermore, we show the evolution
of the particle z-coordinate for three particles in figure 6.30. We see that each of the
three particles gets hit by liquid upstream at least once causing the z-coordinate to
increase before it finally settles at the bottom.

132

CHAPTER 6. RESULTS 133

0 100 200 300 400 500
time

0.0

0.2

0.4

0.6

0.8

1.0

z

Time evolution of the particle z-coordinate

p1

p2

p3

Figure 6.30: Z-coordinate evolution for three particles

133

134 CHAPTER 6. RESULTS

(a) YZ-Slice: Showing the twirl with surface LIC and vector visualization

(b) XZ-Slice: Fluid upstream caused by particle sedimentation

Figure 6.31: DGS: Twirl formation

134

CHAPTER 6. RESULTS 135

(a) Initial particle distribution and beginning sedimentation

(b) Liquid upstream causes twirling in particle bed

(c) Liquid upstream continues as particles fall

Figure 6.32: DGS particle sedimentation timeline

135

136 CHAPTER 6. RESULTS

6.7.2 Direct Numerical Simulation of a Fluidized Bed

Definition of the Test Case

This test case is based on experimental work conducted by Aguilar, Zenit and Mas-
bernat [1]. The aim of their study was to analyze the role of particle-particle and
particle-wall collisions in a fluidized bed. A fluidized bed is a system where a solid
particles are immersed into a fluid in the form of a particle bed. The particles are then
suspended by an upward fluid flow. In case the flow velocity exceeds a certain thresh-
old called the mimimum fluidization velocity the particle bed is fluidized. The particle
agitation is a result of the hydrodynamic forces, particle-particle and particle-wall col-
lision forces. The setup of the experiment consists of a cylindrical glass column with a
height of 60 cm and 8 cm in diameter. The fluid and particle properties are summarized
in table 6.6. A fluidization velocity of u0 = 0.12 m · s−1 is uniformly imposed over

Table 6.6: Fluid and particle properties

Particles Pyrex beads dp = 6 mm ρp = 2230 kg/m3

Fluid KSCN solution νf = 3.8× 10−3 Pa · s ρf = 1400 kg/m3

a whole cross-section of the fluid inlet. Other important properties of the system are
the theoretical terminal velocity ut = 0.226 m · s−1 and the particle Reynolds number
Rep = 500 which is defined as

Rep =
ut · dp · ρf

νf
(6.5)

One of the quantities measured in the experiment is the evolution of the particle bed
height. The height of the particle bed in turn can be used to determine the particle solid
concentration. The solid concentration αp in the fluidized bed is calculated using the
following equation:

αp(t) =
Np4/3πR

3
p

πR2
chb(t)

(6.6)

where Rc is the radius of the cylinder and Np is the total number of particles in the
fluidized bed. The solid particle concentration αp in the fluidized bed can be used
to validate the results of the simulation by comparison to the Richardson-Zaki [71]
correlation. This relation describes a way to calculate the sedimentation velocity of a
cloud of uniform particles in a liquid. In such a system the sedimentation velocity of
a particle is influenced by the hydrodynamic forces arising from the sedimentation of
the surrounding particles, the upward fluid flow and the displacement of the fluid by
the particles. It was observed that the sedimentation velocity of a particle under such
circumstances can be expressed as the free fall velocity of particle ut multiplied by a
correction factor that is dependent on the solid concentration αp in the particle cloud:

u0 = ut(1− αp)
m (6.7)

136

CHAPTER 6. RESULTS 137

where m is an empirical exponent called the Richardson-Zaki index that is based on the
particle Reynolds number Rep. The appropriate value for m in our case can be found
in table 6.7 as determined by Richardson and Zaki. The Richardson-Zaki relation can

Table 6.7: Richardson-Zaki indices for different Rep

Rep m
Rep ≤ 0.2 4.6

0.2 < Rep < 1 4.4Re−0.03
p

1.0 < Rep < 500 4.4Re−0.1
p

500 ≤ Rep 2.4

additionally be used to calculate the solid concentration αp in a fluidized bed system
by solving for αp:

αp,rz = 1− (
u0

ut

)
1

m . (6.8)

In our computations we reduced the height of the domain to 20 cm in order to save
compute time, but kept the solid fraction the same which should yield same result.
As a validation test the value of αp,rz for m = 2.4 in our case can then be compared
against the average solid concentration measured in the simulation. The averaged solid
concentration in our simulation was found to be equal to 2.2 which not only compares
well to the reference correlation, but also to the experiments by Aguilar [1] and the
simulation of Corre et al. [11]. The evolution of the solid concentration and the bed
height is shown in figure 6.33.

2 4 6 8 10 12 14
Time[s]

8

9

10

11

12

13

14

15

Be
d

he
ig

ht
[c

m
]

2 4 6 8 10 12 14
Time[s]

0.14

0.16

0.18

0.20

0.22

0.24

0.26

So
lid

 fr
ac

tio
n
α
p

Figure 6.33: Time evolution of bed height and solid fraction αp

6.7.3 Complex Particles Test

This last section of our particulate flow tests we devote to the capabilities of our frame-
work to handle particles or rigid bodies with non-spherical shapes. For the tests with

137

138 CHAPTER 6. RESULTS

complex particles we use the distance map data structure to compute collision infor-
mation. As test case for non-spherical rigid bodies we take a configuration with dog-
shaped rigid bodies falling through a funnel obstacle and finally landing in a basket.
The results of falling dog-shaped rigid bodies is shown in figure 6.34. Using the dis-
tance maps we see that our framework is able to detect and handle the collisions with
these geometries without non-physical penetrations.
As another test computation with non-spherical geometries we consider the sedimen-
tation of 1000 stick-like particles in a fluid, stick-like shapes are often used in fiber
simulations or similar applications. In order to resolve the stick-like particles we used
a mesh consisting of 4194304 elements and 4474992 vertices. In order to introduce
some irregularity to the sedimentation we added a solid rigid immovable sphere in do-
main with that the sedimenting sticks will collide and bounce off. The result of this
sedimentation simulation is shown in figures 6.35, 6.36.

138

CHAPTER 6. RESULTS 139

(a)

(b)

(c)

(d)

Figure 6.34: Example with complex geometries

139

140 CHAPTER 6. RESULTS

(a)

(b)

Figure 6.35: Example with fiber-like geometries

140

CHAPTER 6. RESULTS 141

Figure 6.36: Example with fiber-like geometries

141

142 CHAPTER 6. RESULTS

6.8 GPU Acceleration for Distance Maps and Inner Sphere

Representations

In this section we want to test the most important acceleration features that we have in-
tegrated to accelerate the liquid-solid interface in the FEATFLOW solver. An integral
part of calculating the hydrodynamic forces is the point containment test. We need it
to determine the boundary elements in the mesh for a rigid body. The test is trivial for
simple geometries, but for complex geometries the situation is more difficult, since it
has to be performed for every rigid body in the simulation we have to choose efficient
techniques. We will test the distance map algorithm as well as the inner sphere algo-
rithm for meshes with different numbers of vertices. The different mesh resolutions
are given in table 6.8.

Table 6.8: Number of vertices for the point containment tests

Level 1 2 3 4 5
Vertices 35937 117649 274625 912673 2146689

The number of vertices actually exceed the number of nodes that we have to deal
with in real life computation. In our FEATFLOW framework we rarely have to deal
with more than 100000 vertices per compute node. To see the scaling behavior of
the algorithm we used higher number of nodes. For the inner sphere computations
the inside of the geometry is modeled by spheres with the diameter of the cell size of
the mesh. The results of the computations and a comparison between CPU and GPU
versions are shown in figures 6.37, 6.38, 6.39 and 6.40.
We see that GPU versions of the algorithms significantly outperform the single CPU
version of algorithms. The asymptotic scaling behavior of the algorithms is linear as
expected, although for the distance map algorithm clear linear scaling sets in for higher
numbers of vertices only. Although the CPU version gets outperformed by the GPU
version it offers execution times that are fast enough for all realistic configurations
where number of vertices per compute node is usually below 50000. If distance calcu-
lation is not a issue then the inner sphere representation leads to faster computations
and similar results if the inner sphere representation is configured in such a way that
the boundary spheres’ diameter is about the same as the mesh cell size. If precise dis-
tance information is required the distance map data structure is preferred because with
the inner sphere representation it is difficult to precisely model the exact boundary as
spheres and artifacts of the spherical structure are to be expected when the distance
information is used for mesh deformation. In the case of mesh adaptation the distance
map offers the advantage that the distance information is more precise because it stores
a distance function on a grid which can be precisely recovered using interpolation and
furthermore precision can be increased by increasing the resolution of the distance
map.

142

CHAPTER 6. RESULTS 143

35937 117649 274635 912673 2146689

N

0

2

4

6

8

10

12
t[

m
s]

Distance Map: CPU vs GPU

CPU

GPU

Figure 6.37: Compute time of the distance map algorithm on the CPU and GPU

0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+06

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t[
m

s]

Distance Map GPU Time

GPU

Figure 6.38: Compute time of the distance map algorithm for different mesh resolution
levels

143

144 CHAPTER 6. RESULTS

3136 11712 29560 104736 254960

N

0

2

4

6

8

10

12

14

16

18
t[

m
s]

Inner Sphere: CPU vs GPU

CPU

GPU

Figure 6.39: Compute time of the inner sphere algorithm on the CPU and GPU, on the
x-axis we plot the number of spheres. The number of vertices of the grid is given in
table 6.8

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

t[
m

s]

Inner Sphere GPU Time

GPU

Figure 6.40: Compute time of the distance map algorithm for different number of
spheres

144

CHAPTER 6. RESULTS 145

6.9 Conclusions and Future Work

The results presented in this section show that the created simulation framework is ca-
pable of handling a wide range of particulate flow and liquid-solid simulations. The
particle sedimentation tests show that results from experimental data can be reproduced
accurately and also in accordance with other results of simulations from other research
groups. The results show clearly the validity of the multigrid approach as the simula-
tion results improve with increased mesh resolution. Additionally, we see how mesh
adaptation can be used to increase the accuracy of results at lower refinement levels by
redistribution of mesh nodes. For the sedimentation case the results with mesh adap-
tation at mesh refinement level l are comparable to the results of a regular refinement
approach at about level l + 2. This is a huge improvement as the number of mesh
elements on level l + 2 is 64 times higher and getting about the same accuracy at level
l would save the compute time proportionally. In general we expect mesh adaptation
approaches to increase the accuracy as much as one single step of regular refinement
which still is highly beneficial. Great potential was demonstrated by the Laplace-α
mesh adaptation technique which projects mesh vertices directly on the surface of an
immersed geometry. This kind of adaptation produced in all respects much smoother
results than a regular refinement approach and even improved on the results produced
by Laplace-κ like adaptation techniques that concentrate mesh nodes near the surfaces.
We can expect that if such smooth curves are used as an input to the equations of mo-
tion which are then integrated we would get highly precise results for velocity and
position. The simulations of the macro-scallop swimmer demonstrate the ability of
our simulation framework to handle complex moving geometries, to increase the res-
olution of these geometries by the mesh and again show how experimental findings
can be confirmed by our simulations. The case is especially interesting as we are not
only dealing with completely rigid geometry that keeps it shape, but with an immersed
geometry that has its on propulsion mechanism by performing a certain motion. The
result that our simulations were able to reproduce the results of the experimental swim-
mer allows for the justified assumption that our simulation framework would be able
to handle different classes of self-propelled objects or different swimming approaches
(moving flagellas, etc.) in a fully 3D simulation. The test cases of mesh adaptation to
car geometries in a virtual wind tunnel setup show how the mesh adaptation approach
can help to resolve small scale features of geometries. When trying to represent com-
plex geometries the main difficulty often consists in the representation of geometry
details that are relatively small compared to the total size of the immersed object. If
only regular refinement is available it would be necessary to refine the mesh globally
until the small scale details of the geometry can be captured by the cells of the mesh.
Using mesh adaptation we can use refined mesh patches and redistribution of mesh
nodes to move additional nodes into the area of interest of our simulation. We saw that
just by relocating nodes we were able to capture details of the geometry with the mesh
that were not represented in the computational mesh without adaptation and hence they
would have no influence on the fluid. We also saw some possible areas for improve-

145

146 CHAPTER 6. RESULTS

ment as well when we realized that the mere concentration of mesh nodes helps to
capture smaller details of the geometry, but they would be ’smoothed’ because we just
move nodes closer to the surface of the geometry and not align faces of the mesh with
the immersed geometry which would mean that the geometry would be exactly cap-
tured by the mesh including sharp edges that exist in the geometry. Our tests in the field
of particulate flow show that the expected flow behavior can be reproduced by our sim-
ulations. The proposed methods for collision detection and collision force calculation
could be integrated well into the simulation framework and allowed for comfortable
and easy addition of complex obstacles, particles and boundaries in the simulation.
The proposed methods for collision detection and collision force calculation could be
integrated well into the simulation framework and allowed for comfortable and easy
addition of complex obstacles, particles, rigid bodies and boundaries into the simula-
tion. The questions how to couple the two simulation modules of CFD and rigid body
simulation in the most efficient way how to setup domain decomposition and how to
handle load balancing between the two simulation components definitely is a natural
expansion of the aspects covered in this work and a topic of future research. Rigid bod-
ies with complex shapes can be easily added by using distance maps or inner sphere
representations. The next logical expansion in the field of complex shaped particles
would be rigid particles that have mechanical joints so that parts of the geometry can
move on their own or can be moved by the fluid, these new features would also be re-
lated to the simulation of objects with propulsion mechanisms that we have mentioned
before. To summarize the next expansion steps to this work we mention the extension
of Laplace-α mesh adaptation to general particulate flow setups which would require
remeshing when the elements get too distorted as shown in section 5.7 and a projection
of the old solution to the new mesh structure after remeshing. To expand on the pro-
posed particulate flow and liquid-solid techniques we would focus on adding methods
to simulate mechanical joints in our rigid bodies while keeping the assumption that
the body is non-deformable. Also we consider it a natural extension to move more
parts of the liquid-solid interface to the GPU as it has shown significant acceleration
potential and it goes hand in hand with the acceleration of CFD simulators which are
also expected to move more parts to the GPU if such hardware is available.

146

Bibliography

[1] AGUILAR-CORONA, A., R. ZENIT and O. MASBERNAT: Collisions in a liquid

fluidized bed. International Journal of Multiphase Flow, 37(7):695–705, Septem-
ber 2011.

[2] ARDEKANI, A. M. and R. H. RANGEL: Numerical investigation of particle-

particle and particle-wall collisions in a viscous fluid. Journal of Fluid Mechan-
ics, 596:437–466, 1 2008.

[3] BARAFF, D.: Curved Surfaces and Coherence for Non-penetrating Rigid Body

Simulation. SIGGRAPH Comput. Graph., 24(4):19–28, Sept. 1990.

[4] BARAFF, D.: Coping with Friction for Non-penetrating Rigid Body Simulation,
1991.

[5] BARAFF, D.: Dynamic Simulation of non-penetrating Rigid Bodies. PhD thesis,
1992.

[6] BARAFF, D.: Fast Contact Force Computation for Nonpenetrating Rigid Bod-

ies. In Proceedings of the 21st Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’94, pp. 23–34, New York, NY, USA, 1994.
ACM.

[7] BARAFF, D.: Physically based modeling: Rigid body simulation.. Tech. Rep.,
Siggraph 2001 Course Notes, Pixar Animation Studios, http://www-2.cs.
cmu.edu/~baraff/sigcourse, 2001.

[8] BICANIC, N.: Discrete Element Methods. John Wiley and Sons, Ltd, 2004.

[9] BLASCO, J., M. C. CALZADA and M. MARÍN: A Fictitious Domain, Parallel

Numerical Method for Rigid Particulate Flows. J. Comput. Phys., 228(20):7596–
7613, Nov. 2009.

[10] BÖNISCH, S. and V. HEUVELINE: On the numerical simulation of the insta-

tionary free fall of a solid in a fluid.. Computers and Fluids, 36(9):1434–1445,
2007.

147

http://www-2.cs.cmu.edu/~baraff/sigcourse
http://www-2.cs.cmu.edu/~baraff/sigcourse

148 BIBLIOGRAPHY

[11] C. CORRE, J.L. ESTIVALEZES, S. V. and O. SIMONIN (eds.): Direct Numerical

Simulation of a Liquid-Solid Fluidized Bed. 7th ICMF, Tampa, Florida, 2010.

[12] CAI, X.-X., B. JIANG and G. LIAO: Adaptive grid generation based onthe least-

squares finite-element method. Computers and Mathematics with Applications,
48(7-8):1077–1085, 2004.

[13] CATE, A. TEN, C. H. NIEUWSTAD, J. J. DERKSEN and H. E. A. VAN DEN

AKKER: Particle imaging velocimetry experiments and lattice-Boltzmann sim-

ulations on a single sphere settling under gravity. Physics of Fluids (1994-
present), 14(11):4012–4025, 2002.

[14] CATTO, E.: Iterative Dynamics with Temporal Coherence. http://

www.bulletphysics.com/ftp/pub/test/physics/papers/

IterativeDynamics.pdf.

[15] Coll-Det Library. http://cgvr.cs.uni-bremen.de/research/

colldet/index.shtml.

[16] COOK, S.: CUDA Programming: A Developer’s Guide to Parallel Computing

with GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
ed., 2013.

[17] COQUERELLE, M. and G. H. COTTET: A Vortex Level Set Method for the Two-

way Coupling of an Incompressible Fluid with Colliding Rigid Bodies. J. Com-
put. Phys., 227(21):9121–9137, Nov. 2008.

[18] COTTLE, R., J. PANG and R. STONE: The linear complementarity problem.
Society for Industrial Mathematics, 2009.

[19] DACOROGNA, B. and J. MOSER: On a partial differential equation involving

the jacobian determinant. Annales de l’institut Henri Poincare (C) Analyse non
lineaire, 7(1):1–26, 1990.

[20] DAMANIK, H.: Monolithic FEM techniques for viscoelastic fluids. PhD Thesis,
TU Dortmund, 2011.

[21] DRUMWRIGHT, E.: A Fast and Stable Penalty Method for Rigid Body Simulation.
IEEE Transactions on Visualization and Computer Graphics, 14(1):231–240, Jan.
2008.

[22] EBERLY, D. H. In Game Physics (Second Edition). Morgan Kaufmann, Boston,
Second Edition ed., 2010.

[23] EDELSBRUNNER, H., M. J. ABLOWITZ, S. H. DAVIS, E. J. HINCH, A. ISER-
LES, J. OCKENDON and P. J. OLVER: Geometry and Topology for Mesh Gen-

eration (Cambridge Monographs on Applied and Computational Mathematics).
Cambridge University Press, New York, NY, USA, 2006.

148

http://www.bulletphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf
http://www.bulletphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf
http://www.bulletphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf
http://cgvr.cs.uni-bremen.de/research/colldet/index.shtml
http://cgvr.cs.uni-bremen.de/research/colldet/index.shtml

BIBLIOGRAPHY 149

[24] ERICSON, C. In Real-Time Collision Detection, The Morgan Kaufmann Series
in Interactive 3D Technology. Morgan Kaufmann, San Francisco, 2005.

[25] ERLEBEN, K.: Stable, Robust, and Versatile Multibody Dynamics Animation.
PhD thesis, University of Copenhagen, 2004.

[26] ERLEBEN, K.: Velocity-based shock propagation for multibody dynamics ani-

mation. ACM Trans. Graph., 26, June 2007.

[27] FEATFLOW. http://www.featflow.de/.

[28] GALDI, G. P. and V. HEUVELINE: Lift and Sedimentation of Particles in the

Flow of a Viscoelastic Liquid in a Channel. Preprints SFB 359, Nr. 04-36,
Universität Heidelberg, 2004. http://www.iwr.uni-heidelberg.de/
sfb359/PP/Preprint2004-36.pdf.

[29] GILBERT, E., D. JOHNSON and S. KEERTHI: A fast procedure for computing

the distance between complex objects in three-dimensional space. Robotics and
Automation, IEEE Journal of, 4(2):193–203, 1988.

[30] GIRAULT, V. and P.-A. RAVIART: Finite Element Methods for Navier-Stokes

Equations: Theory and Algorithms. Springer Publishing Company, Incorporated,
1st ed., 2011.

[31] GLOWINSKI, R., T. W. PAN, T. I. HELSA, D. D. JOSEPH and J. PÉRIAUX: A

Fictitious Domain Approach to the Direct Numerical Simulation of Incompress-

ible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow. J.
Comput. Phys., 169(2):363–426, May 2001.

[32] GLOWINSKI, R., T.-W. PAN, T. HESLA and D. JOSEPH: A distributed Lagrange

multiplier/fictitious domain method for particulate flows. International Journal of
Multiphase Flow, 25(5):755 – 794, 1999.

[33] GLOWINSKI, R., T.-W. PAN, V. LORENZO HECTOR JUAREZ and E. DEAN:
Numerical Methods for the Simulation of Incompressible Viscous Flow: An In-

troduction. In CAPASSO, V. and J. PÉRIAUX (eds.): Multidisciplinary Methods

for Analysis Optimization and Control of Complex Systems, vol. 6 of Mathemat-

ics in Industry, pp. 49–175. Springer Berlin Heidelberg, 2005.

[34] GOLDSTEIN, H., C. P. POOLE and J. L. SAFKO: Classical Mechanics (3rd

Edition). Addison-Wesley, 3 ed., June 2001.

[35] GRAJEWSKI, M., M. KÖSTER and S. TUREK: Numerical analysis and imple-

mentational aspects of a new multilevel grid deformation method. Applied Nu-
merical Mathematics, 60(8):767–781, 2010. doi:10.1016/j.apnum.2010.03.017.

149

http://www.featflow.de/
http:/ / www.iwr.uni-heidelberg.de/ sfb359/ PP/ Preprint2004-36.pdf
http:/ / www.iwr.uni-heidelberg.de/ sfb359/ PP/ Preprint2004-36.pdf

150 BIBLIOGRAPHY

[36] GROUP, A.: Simulation-Driven Design Benchmark Report: Getting it Right the

First Time. Tech. Rep., Aberdeen Group Inc., http://www.reden.nl/
bestanden/Aberdeen_Simulation_Driven_Design.pdf, 2010.

[37] GUENDELMAN, E., R. BRIDSON and R. FEDKIW: Nonconvex rigid bodies with

stacking. ACM Trans. Graph., 22:871–878, July 2003.

[38] HAHN, J. K.: Realistic Animation of Rigid Bodies. SIGGRAPH Comput. Graph.,
22(4):299–308, June 1988.

[39] HARADA, T., M. TANAKA, S. KOSHIZUKA and Y. KAWAGUCHI: Real-time

coupling of fluids and rigid bodies. Proc. of the APCOM, pp. 1–13, 2007.

[40] HU, H., D. JOSEPH and M. CROCHET: Direct simulation of fluid particle mo-

tions. Theoretical and Computational Fluid Dynamics, 3(5):285–306, 1992.

[41] HU, H. H., N. A. PATANKAR and M. Y. ZHU: Direct Numerical Simulations

of Fluid-solid Systems Using the Arbitrary Langrangian-Eulerian Technique. J.
Comput. Phys., 169(2):427–462, May 2001.

[42] JOSEPH, D. D., R. BAI, R. GLOWINSKI and V. SARIN: Fluidization of 1204

spheres: simulation and experiments. J. Fluid Mech, pp. 169–191, 2002.

[43] KAUFMAN, A., D. COHEN and R. YAGEL: Volume Graphics. Computer,
26(7):51–64, July 1993.

[44] KAČIĆ-ALESIĆ, Z., M. NORDENSTAM and D. BULLOCK: A Practical Dynam-

ics System. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation, SCA ’03, pp. 7–16, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[45] KINSEY, L.: Topology of Surfaces. Undergraduate Texts in Mathematics.
Springer-Verlag, 1993.

[46] KUYPERS, F.: Klassische Mechanik: mit über 300 Beispielen und Aufgaben mit

Lösungen. Lehrbuch Physik. John Wiley & Sons, Limited, 2008.

[47] LADD, A. J. C. and R. VERBERG: Lattice-Boltzmann Simulations of Particle-

Fluid Suspensions, 2001.

[48] LEFEBVRE, A.: Numerical simulation of gluey particles. ESAIM: Mathematical
Modelling and Numerical Analysis, 43:53–80, 1 2009.

[49] LLOYD, J.: Fast Implementation of Lemke’s Algorithm for Rigid Body Contact

Simulation. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the

2005 IEEE International Conference on, pp. 4538–4543, April 2005.

150

http://www.reden.nl/bestanden/Aberdeen_Simulation_Driven_Design.pdf
http://www.reden.nl/bestanden/Aberdeen_Simulation_Driven_Design.pdf

BIBLIOGRAPHY 151

[50] MATUTTIS, H. and J. CHEN: Understanding the Discrete Element Method: Sim-

ulation of Non-Spherical Particles for Granular and Multi-body Systems. Wiley,
2014.

[51] MAURY: Direct Simulations of 2D Fluid–Particle Flows in Biperiodic Domains.
J. Comput. Phys., 156:325–351, 1999.

[52] MAURY, B.: A time-stepping scheme for inelastic collisions. Numerische Math-
ematik, 102(4):649–679, 2006.

[53] MIRTICH, B.: Hybrid Simulation: Combining Constraints and Impulses. In in

Proceedings of First Workshop on Simulation and Interaction in Virtual Environ-

ments. Press, 1996.

[54] MIRTICH, B.: V-Clip: Fast and Robust Polyhedral Collision Detection. ACM
Trans. Graph., 17(3):177–208, July 1998.

[55] MIRTICH, B. and B. MIRTICH: Rigid Body Contact: Collision Detection to

Force Computation. Tech. Rep., MITSUBISHI ELECTRIC RESEARCH LAB-
ORATORIES, 1998.

[56] MIRTICH, B. V.: Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD thesis, 1996. AAI9723116.

[57] MISHRA, B. and R. K. RAJAMANI: The discrete element method for the simu-

lation of ball mills. Applied Mathematical Modelling, 16(11):598 – 604, 1992.

[58] MÜNSTER, R., O. MIERKA and S. TUREK: Finite element-fictitious boundary

methods (FEM-FBM) for 3D particulate flow. International Journal for Numeri-
cal Methods in Fluids, 69(2):294–313, 2012.

[59] MURTY, K.: Linear Complementarity, Linear and Non Linear Programming.
Sigma series in applied mathematics. Heldermann Verlag, 1988.

[60] NICKOLLS, J., I. BUCK, M. GARLAND and K. SKADRON: Scalable Parallel

Programming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[61] OTTMANN, T. and P. WIDMAYER: Algorithmen und Datenstrukturen, vol. 4.
Spektrum, 2002.

[62] OUAZZI, A.: Finite Element Simulation of Nonlinear Fluids with Application to

Granular Material and Powder. PhD Thesis, TU Dortmund, 2005.

[63] PATANKAR, N., P. SINGH, D. JOSEPH, R. GLOWINSKI and T.-W. PAN: A new

formulation of the distributed Lagrange multiplier/fictitious domain method for

particulate flows. International Journal of Multiphase Flow, 26(9):1509 – 1524,
2000.

151

152 BIBLIOGRAPHY

[64] PATANKAR, N. A. and N. SHARMA: A fast projection scheme for the direct

numerical simulation of rigid particulate flows. Communications in Numerical
Methods in Engineering, 21(8):419–432, 2005.

[65] PLATT, J. C. and A. H. BARR: Constraints Methods for Flexible Models. SIG-
GRAPH Comput. Graph., 22(4):279–288, June 1988.

[66] PÖSCHEL, T. and T. SCHWAGER: Computational granular dynamics : models

and algorithms. Springer-Verlag, 2005.

[67] PURCELL, E. M.: Life at low Reynolds number. American Journal of Physics,
45:3–11, 1 1977.

[68] QIU, T., T.-C. LEE, A. MARK, K. MOROZOV, R. MÜNSTER, O. MIERKA,
S. TUREK, A. LESHANSKY and P. FISCHER, P. FISCHER: Swimming by recip-

rocal motion at low Reynolds number. Nature Communications, 5, 11 2014.

[69] REDON, S., A. KHEDDAR and S. COQUILLART: Fast Continuous Collision De-

tection between Rigid Bodies. Computer Graphics Forum, 21(3):279–287, 2002.

[70] REDON, S., Y. J. KIM, M. C. LIN and D. MANOCHA: Fast Continuous Colli-

sion Detection for Articulated Models. In Proceedings of the Ninth ACM Sympo-

sium on Solid Modeling and Applications, SM ’04, pp. 145–156, Aire-la-Ville,
Switzerland, Switzerland, 2004. Eurographics Association.

[71] RICHARDSON, J. F. and W. N. ZAKI: Sedimentation and fluidisation: Part I.
Chemical Engineering Research and Design, 75, 1997.

[72] SARKAR, S., M. VAN DER HOEF and J. KUIPERS: Fluid-particle interaction

from lattice Boltzmann simulations for flow through polydisperse random arrays

of spheres. Chemical Engineering Science, 64(11):2683 – 2691, 2009.

[73] SAUER, J., D. BENZ AG, E. SCHÖMER, U. D. SAARLANDES and L. P. HOTZ:
A constraint-based approach to rigid body dynamics for virtual reality applica-

tions. In In Proceedings of the VRST 1998, 1998.

[74] SCHMIDL, H.: Optimization-based animation. PhD thesis, 2002.

[75] SCHMIDL, H. and V. J. MILENKOVIC: A Fast Impulsive Contact Suite for Rigid

Body Simulation. IEEE Transactions on Visualization and Computer Graphics,
10(2):189–197, Mar. 2004.

[76] SCHNEIDER, P. J. and D. EBERLY: Geometric Tools for Computer Graphics.
Elsevier Science Inc., New York, NY, USA, 2002.

[77] SCHWARZ, H. R.: Numerische Mathematik. Oxford, Clarendon Press, 1997.

152

BIBLIOGRAPHY 153

[78] SHARMA, N. and N. A. PATANKAR: A Fast Computation Technique for the

Direct Numerical Simulation of Rigid Particulate Flows. J. Comput. Phys.,
205(2):439–457, May 2005.

[79] SHOEMAKE, K.: Animating Rotation with Quaternion Curves. SIGGRAPH
Comput. Graph., 19(3):245–254, July 1985.

[80] SILCOWITZ-HANSEN, M., S. NIEBE and K. ERLEBEN: A nonsmooth nonlinear

conjugate gradient method for interactive contact force problems. The Visual
Computer, 26(6-8):893–901, 2010.

[81] STEWART, D. E.: Rigid-Body Dynamics with Friction and Impact. SIAM Rev.,
42(1):3–39, Mar. 2000.

[82] STRANG, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009.
Third Edition.

[83] TANG, M., D. MANOCHA, M. A. OTADUY and R. TONG: Continuous Penalty

Forces. ACM Trans. Graph., 31(4):107:1–107:9, July 2012.

[84] TEUBER, J., R. WELLER, G. ZACHMANN and S. GUTHE: Fast Sphere Packings

with Adaptive Grids on the GPU. In In GI AR/VRWorkshop, Würzburg, Germany,
September 2013.

[85] TUREK, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic

and Computational Approach. Springer, Berlin, 1999.

[86] TUREK, S., O. MIERKA, S. HYSING and D. KUZMIN: Numerical Methods for

Differential Equations, Optimization, and Technological Problems: Dedicated to

Professor P. Neittaanmäki on His 60th Birthday, ch. Numerical Study of a High
Order 3D FEM-Level Set Approach for Immiscible Flow Simulation, pp. 65–91.
Springer Netherlands, Dordrecht, 2013.

[87] TUREK, S., D. WAN and L. RIVKIND: The Fictitious Boundary Method for the

Implicit Treatment of Dirichlet Boundary Conditions with Applications to Incom-

pressible Flow Simulations. In Challenges in Scientific Computing - CISC 2002,
vol. 35 of Lecture Notes in Computational Science and Engineering, pp. 37–68.
Springer Berlin Heidelberg, 2003.

[88] WAN, D. and S. TUREK: Direct numerical simulation of particulate flow via

multigrid FEM techniques and the fictitious boundary method. International Jour-
nal for Numerical Methods in Fluids, 51(5):531–566, 2006.

[89] WAN, D. and S. TUREK: An Efficient multigrid-FEM Method for the Simulation

of Solid-liquid Two Phase Flows. J. Comput. Appl. Math., 203(2):561–580, June
2007.

153

154 BIBLIOGRAPHY

[90] WAN, D. and S. TUREK: Fictitious Boundary and Moving Mesh Methods for the

Numerical Simulation of Rigid Particulate Flows. J. Comput. Phys., 222(1):28–
56, Mar. 2007.

[91] WAN, D., S. TUREK and L. RIVKIND: An Efficient Multigrid FEM Solution

Technique for Incompressible Flow with Moving Rigid Bodies. In FEISTAUER,
M., V. DOLEJSI, P. KNOBLOCH and K. NAJZAR (eds.): Numerical Mathematics

and Advanced Applications, pp. 844–853. Springer, Berlin, 2003. Enumath 2003
Prague; ISBN-Nr. 3-540-21460-7.

[92] WAN, D., S. TUREK and L. RIVKIND: An efficient multigrid FEM solution

technique for incompressible flow with moving rigrid bodies. Ergebnisberichte
des Instituts für Angewandte Mathematik, Nr. 245, FB Mathematik, Universität
Dortmund, Nov. 2003.

[93] WATT, A. and M. WATT: Advanced Animation and Rendering Techniques.
ACM, New York, NY, USA, 1991.

[94] WELLER, R.: New Geometric Data Structures for Collision Detection. Disserta-
tion, University of Bremen, Germany, october 2012.

[95] WELLER, R. and G. ZACHMANN: Inner Sphere Trees for Proximity and Penetra-

tion Queries. In 2009 Robotics: Science and Systems Conference (RSS), Seattle,
WA, USA, June 2009.

[96] WELLER, R. and G. ZACHMANN: ProtoSphere: A GPU-Assisted Prototype-

Guided Sphere Packing Algorithm for Arbitrary Objects. In ACM SIGGRAPH

ASIA 2010 Sketches, pp. 8:1–8:2, New York, NY, USA, Dec. 2010. ACM.

[97] WELLER, R. and G. ZACHMANN: Inner Sphere Trees and Their Application to

Collision Detection. In COQUILLART, S., G. BRUNNETT and G. WELCH (eds.):
Virtual Realities, ch. 10, pp. 181–202. Springer (Dagstuhl), 2011.

[98] WITKIN, A., K. FLEISCHER and A. BARR: Energy Constraints on Parameter-

ized Models. SIGGRAPH Comput. Graph., 21(4):225–232, Aug. 1987.

[99] YAMANE, K. and Y. NAKAMURA: Stable penalty-based model of frictional con-

tacts. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, pp. 1904–1909, May 2006.

154

	Contents
	List of Tables
	Introduction
	Introduction
	Aims, Requirements and Scientific Context of this Work
	Chapter Overiew and Structure of this Work

	Meshing
	Introduction to Meshes
	Surfaces
	Computational Meshes
	Structured Mesh
	Unstructured Mesh

	Rigid Body Simulators
	Introduction
	Overview of Rigid Body Simulator Design

	The Broad Phase
	Spatial-Temporal Coherence Analysis
	The Contact Graph

	The Narrow Phase Module
	Contact Sets
	Distance Computation

	The Contact Generation Module

	Efficient Contact Solvers for Rigid Body Simulation
	Particles
	Equations of Motion for Particles
	Particle Rotation
	Linear and Angular Momentum
	Work, Energy and Kinetic Energy

	Rigid Bodies
	Local Coordinate Space and World Coordinate Space
	Moment of Inertia Tensor
	Equations of Motion for Rigid Bodies
	Friction

	Single Body Collision Model
	Multi-Body Collision Models
	Introduction
	Velocity-based Multi-Body Collision
	Linear Complementarity Problems
	DEM-Based Contact Force Calculation
	Sequential Impulses Model

	FEATFLOW Solver Overview
	Introduction
	Governing Equations for Fluid Flow
	Numerical Method
	Multigrid FEM-FBM
	Time Discretization by Fractional-Step- Scheme
	Space Discretization by Finite Element Method

	Liquid-Solid Interface
	Introduction
	Fast Point Location in Unstructured Meshes
	GPU-based Point Location in Unstructured Meshes

	Introduction to Mesh Deformation
	PDE-Based R-Adaptivity Mesh Deformation Algorithm
	Non-PDE based Mesh Deformation

	Results
	Introduction
	Sphere Sedimentation towards a Solid Wall
	Definition of the Test Case
	Simulation Results
	Comparison with other CFD-Codes

	Oscillating Cylinder in a Channel
	Setup of the Benchmark

	Sphere Sedimentation with Mesh Adaptation
	Numerical Simulation of Swimming at Low Reynolds Numbers
	Introduction of the Test Case

	Virtual Wind Tunnel
	Test Case Description
	Simple Car Test
	Realistic Car Test

	Particulate Flow Tests
	The DGS Configuration
	Direct Numerical Simulation of a Fluidized Bed
	Complex Particles Test

	GPU Acceleration for Distance Maps and Inner Sphere Representations
	Conclusions and Future Work

	Bibliography

