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Abstract

Closed-form expressions for unconditional moments, cumulants and polyspectra of order

higher than two are derived for non-Gaussian or nonlinear (pruned) solutions to DSGE

models. Apart from the existence of moments and white noise property no distribu-

tional assumptions are needed. The accuracy and utility of the formulas for computing

skewness and kurtosis are demonstrated by three prominent models: Smets and Wouters

(AER, 586-606, 97, 2007) (first-order approximation), An and Schorfheide (Econom.

Rev., 113-172, 26, 2007) (second-order approximation) and the neoclassical growth model

(third-order approximation). Both the Gaussian as well as Student’s t-distribution are

considered as the underlying stochastic processes. Lastly, the efficiency gain of includ-

ing higher-order statistics is demonstrated by the estimation of a RBC model within a

Generalized Method of Moments framework.

Keywords: higher-order statistics, cumulants, polyspectra, pruning, GMM

JEL: C10, C51, E1

1. Introduction

Most macroeconomic time series do not follow the Gaussian distribution but are

rather characterized by asymmetry and thick tails. For instance, consumption price
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indices and interest rates can typically be described by skewed distributions, whereas

consumption exhibits excess kurtosis compared to a normal distribution. Furthermore,

growth rates are seldom Gaussian, a point emphasized by Fagiolo et al. (2008). Current

workhorse DSGE models are, however, linearized and one assumes the normal distri-

bution for the underlying stochastic innovations and structural shocks (e.g. Smets &

Wouters (2007)). This typical approach is attractive, since the resulting state space

representation is a linear Gaussian system. Using the Kalman filter one can then use

either Maximum Likelihood (see e.g. Andreasen (2009)) or Bayesian (see e.g. An &

Schorfheide (2007)) methods to efficiently estimate these models in a full-information

estimation strategy. In a limited-information estimation strategy (General Method of

Moments (GMM), Simulated Method of Moments (SMM) or Indirect Inference, see e.g.

Ruge-Murcia (2007)) estimation is focused on the first two moments of data, since a

Gaussian process is completely characterized by its mean and (co-)variance. This, how-

ever, cannot capture important features of macroeconomic time series behavior. Ascari

et al. (2015) show that simulated data from standard linearized DSGE models with ei-

ther Gaussian or Laplace distributed shocks fail to replicate asymmetry and thick tails

we observe in real data. Accordingly, Christiano (2007) finds strong evidence against the

normality assumption based on the skewness and kurtosis properties of residuals in an

estimated VAR. Implications of models that are not able to depict asymmetry and heavy

tails in their data-generating-process are hence not reliable and should be used only with

care for policy evaluation. DSGE models should therefore not only replicate the first two

moments of data, but also higher-order statistics such as skewness and kurtosis.

Basically, there are two complementary approaches to overcome this shortcoming.

For one, we can discard the Gaussianity assumption. Accordingly, Curdia et al. (2014)

and Chib & Ramamurthy (2014) estimate standard linear DSGE models with Student’s

t-distributed shocks and conclude that these models outperform their Gaussian coun-

terparts. On the other hand, we can relax the linearity assumption and use a nonlinear

solution to the DSGE model. In both cases it is natural to analyze whether we are able to

exploit information from higher-order moments for the calibration, estimation and iden-

tification of parameters. Researchers in mathematics, statistics and signal processing

have developed tools, called higher-order statistics (HOS), to solve detection, estima-
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tion and identification problems when the noise source is non-Gaussian or we are faced

with nonlinearities; however, applications in the macroeconometric literature are rather

sparse. Introductory literature and tutorials on HOS can be found in the textbooks of

Brillinger (2001), Nikias & Petropulu (1993), Priestley (1983) and the references therein.

The basic tools of HOS are cumulants, which are defined as the coefficients in the Taylor

expansion of the log characteristic function in the time-domain; and polyspectra, which

are defined as Fourier transformations of the cumulants in the frequency-domain. Cu-

mulants and polyspectra are attractive for several reasons. For instance, all cumulants

and polyspectra of a Gaussian process of order three and above are zero, whereas the

same applies only to odd product-moments. Furthermore, the cumulant of two statisti-

cally independent random processes equals the sum of the cumulants of the individual

processes (which is not true for higher-order moments). And lastly, cumulants of a white

noise sequence are Kronecker delta functions, so that their polyspectra are flat (Mendel,

1991). For a mathematical discussion of using cumulants instead of moments in terms

of ergodicity and proper functions, see Brillinger (1965). Note that if two probability

distributions have the same moments, they will have the same cumulants as well.

In this paper, we derive closed-form expressions for unconditional third- and fourth-

order moments, cumulants and corresponding polyspectra for non-Gaussian or nonlinear

DSGE models. We limit ourselves to fourth-order statistics, since third-order cumulants

and the bispectrum capture nonlinearities (or non-Gaussianity) for a skewed process,

whereas the fourth-order cumulants and the trispectrum can be used in the case of a

non-Gaussian symmetric probability distribution. Regarding the approximation of the

nonlinear solution to DSGE models we focus on the pruning scheme proposed by Kim

et al. (2008) and operationalized by Andreasen et al. (2016), since the pruned state

space (PSS from now on) is a linear, stationary and ergodic state space system. In the

PSS, however, Gaussian innovations do not imply Gaussian likelihood, leaving scope for

higher-order statistics to capture information from nonlinearities and non-Gaussianity.

This paper is not the first to provide closed-form expressions for unconditional mo-

ments in higher-order approximated and pruned solutions to DSGE models. Schmitt-

Grohé & Uribe (2004) implicitly use pruning in their code to compute unconditional first

two moments for a second-order approximation. Likewise Lan & Meyer-Gohde (2013a)
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provide methods to compute unconditional first two moments based on Volterra series ex-

pansions. Closest to our approach (and which we take as a starting point) is Andreasen

et al. (2016). They show how to set up the PSS for any order of approximation and

provide closed-form expressions and code to compute unconditional first two moments

in the PSS. These three algorithms, however, rely on the Gaussian distribution as the

underlying shock process (not necessarily conceptually but at least in the corresponding

algorithms), whereas our symbolic script files can be used for any distribution provided

the relevant moments exist.1 Our paper is the first to provide closed-form expressions

(and code), for the computation of unconditional higher-order moments, cumulants and

polyspectra.

Accordingly, we demonstrate our procedures by means of the Smets & Wouters (2007)

model for a first-order approximation, the An & Schorfheide (2007) model for a second-

order approximation and the canonical neoclassical growth model, e.g. Schmitt-Grohé

& Uribe (2004), for a third-order approximation. For all models we consider both the

Gaussian as well as Student’s t-distribution with thick tails as the underlying shock

process and compare our theoretical results with simulated higher-order moments. We

focus particularly on skewness and excess kurtosis in our simulations, since these are

typical measures an applied researcher would like to match in a calibration exercise. On

the other hand auto- and cross-(co-)skewness as well as kurtosis may contain valuable

information in an estimation exercise, see e.g. Harvey & Siddique (2000). Therefore, we

illustrate our analytical expressions for higher-order statistics within a GMM estimation

exercise. We demonstrate the efficiency gain of including third-order product moments in

the estimation of a Real Business Cycle (RBC) model with habit formation and variable

labor.

The paper is structured as follows. Section 2 sets up the general DSGE framework

and discusses linear as well as nonlinear solution methods. The derivations of the PSS

are given in section 3. A univariate example is used make the procedure of pruning

illustrative. In section 4, we provide formal definitions and establish notation regarding

1We extensively tested our procedures with the ones in Andreasen et al. (2016) and found that when

using the Gaussian distribution and the same algorithm for Lyapunov equations the first two moments

are identical.
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univariate and multivariate cumulants and polyspectra. In this manner, we are able to

derive closed-form expressions for unconditional moments, cumulants and polyspectra

up to order four for linear and nonlinear (pruned) solutions to DSGE models in section

4. The accuracy and utility of the formulas for computing skewness and kurtosis are

demonstrated in section 6. In the following section 7 we illustrate the efficiency gain

of including higher-order statistics within a GMM estimation. Section 8 concludes and

points out interesting applications for the proposed algorithm and results. Our DYNARE

toolbox for the computation of higher-order statistics and for the GMM estimation is

model-independent and works for DSGE models solved up to a third-order approxima-

tion.2

2. DSGE framework and solution method

The models under study belong to the family of discrete-time rational expectations

models, which can be cast into a system of nonlinear first-order expectational difference

equations f . This model class encompasses competitive equilibria and dynamic program-

ming problems, as well as models with finitely many heterogenous agents. Let Et be the

expectation operator conditional on information available at time t, then

Etf (xt+1, yt+1, ut+1, xt, yt, ut) = 0 (1)

is called the general DSGE model with states xt, controls yt and exogenous shocks ut.

This is basically a mixture of the DYNARE framework (innovations enter nonlinearly, no

distinction between states and controls) and the framework of Schmitt-Grohé & Uribe

(2004) (innovations enter linearly, distinction between states and controls). It can be

shown that both frameworks are equivalent. For the sake of notation, it is assumed that

all control variables are observable. Furthermore, as mentioned in the introduction, we

focus on moments and cumulants up to order four, therefore we assume that the vector yt

(t = 1, . . . , T ) is stationary to at least order four. This assumption requires observables

to have finite and constant first, second, third and fourth moments, that only depend

2Replication files and an online appendix with additional expressions can be found on the homepage

of the author.
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on the time difference but not on time itself. This is basically an extension of the usual

covariance stationarity assumption. See Priestley (1983, p. 105) for a formal definition of

stationary up to order four, whereas the literature on ARCH(∞) discusses some practical

aspects of fourth-order stationarity (see e.g. Teyssiére & Kirman (2011, Ch. 1) and the

references therein). Accordingly, the vector of innovations ut is at least nth-order white

noise with finite and temporally uncorrelated higher moments, where n depends on the

order of approximation of the solution. The exogenous shocks are required to have at

least finite fourth moments for a first-order approximation, finite eighth moments for a

second-order approximation and finite twelfth moments for a third-order approximation.

In other words, ut is at least a fourth-, eighth- or twelfth-order white noise process, such

that our assumption of yt being stationary of order four is fulfilled. Note that apart

from the existence of moments and white noise property no distributional assumptions

are needed.

Introducing an auxiliary parameter σ ≥ 0, called perturbation parameter, that scales

the risk in the model, the solution of such rational expectation models is characterized by

a set of decision rules, g and h, called policy-functions, that solve (at least approximately)

the system of equations f :

xt+1 = h(xt, ut+1, σ), (2)

yt+1 = g(xt, ut+1, σ). (3)

In particular, σ = 1 corresponds to the stochastic model (1) and σ = 0 to the deter-

ministic model where we drop the expectational operator in (1). Assuming existence

and differentiability, the approximations of the policy functions are a straightforward

application of Taylor series expansions around the nonstochastic steady state given by

x̄ = h(x̄, 0, 0), ȳ = g(x̄, 0, 0) and ū = 0. Formal conditions for the existence and stability

of the steady state are given in Galor (2007). The third-order Taylor approximation to
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the state equation (2) is:

x̂t+1 = hxx̂t + huut+1

+
1

2
Hxx (x̂t ⊗ x̂t) +Hxu (x̂t ⊗ ut+1) +

1

2
Huu (ut+1 ⊗ ut+1) +

1

2
hσσσ

2

+
1

6
Hxxx (x̂t ⊗ x̂t ⊗ x̂t) +

1

6
Huuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Hxxu (x̂t ⊗ x̂t ⊗ ut+1) +

3

6
Hxuu (x̂t ⊗ ut+1 ⊗ ut+1) +

3

6
Hxσσx̂t +

3

6
Huσσut+1,

(4)

whereas the corresponding approximation of the control equation (3) reads:

ŷt+1 = gxx̂t + guut+1

+
1

2
Gxx (x̂t ⊗ x̂t) +Gxu (x̂t ⊗ ut+1) +

1

2
Guu (ut+1 ⊗ ut+1) +

1

2
hσσσ

2

+
1

6
Gxxx (x̂t ⊗ x̂t ⊗ x̂t) +

1

6
Guuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Gxxu (x̂t ⊗ x̂t ⊗ ut+1) +

3

6
Gxuu (x̂t ⊗ ut+1 ⊗ ut+1) +

3

6
Gxσσx̂t +

3

6
Guσσut+1.

(5)

x̂t = xt − x̄ and ŷt = yt − ȳ denote deviations from steady state. hx, hu, gx and gu are

the gradients of h and g with respect to states and shocks. These matrices constitute the

solution matrices of the first-order approximation. Hxx is a nx × n2
x matrix containing

all second-order terms for the ith state variable in the ith row, whereas Gxx is a ny ×n2
x

matrix containing all second-order terms for the ith control variable in the ith row. Hxu,

Hux, Gxu and Gux are accordingly shaped for the cross terms of states and shocks, and

Huu and Guu contain the second-order terms for the product of shocks. hσσ and gσσ are

the Hessians of h and g with respect to the perturbation parameter σ. The third-order

matrices Hxxx, Huuu, Hxxu, Hxuu, Hxσσ, Huσσ and the corresponding matrices for the

controls follow the same notation. In a second-order approximation these third-order

terms are zero. Note that all matrices are evaluated at the nonstochastic steady state.

There are several methods and algorithms for calculating the first-order solution ma-

trices based on linear quadratic equations and Jordan/Schur decompositions, see Ander-

son (2008) for a comparison of algorithms, which are basically all equivalent and differ

only (slightly) in computational burden. Furthermore, all check the Blanchard & Kahn

(1980) conditions that are necessary in order to have a unique stable trajectory. The
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higher-order solution matrices can be calculated by inserting the policy functions (2)

and (3) into the model equations (1) and noting that the expression is known at the

nonstochastic steady state. Therefore, all derivatives of f must be 0 when evaluated

at the nonstochastic steady state. Using the implicit function theorem one can derive

systems of linear equations from which the second- and third-order solution matrices are

computed.

Going beyond traditional first-order linearization methods is attractive for several

reasons. For one, it offers a way to model time-varying risk premia in models with

stochastic volatility (e.g. Fernández-Villaverde et al. (2015)) or rare desasters (e.g. An-

dreasen (2012)). In these models, a third-order approximation is the lowest possible

order to get any time variation in returns and risk premia, since in a first-order ap-

proximation returns are not affected by the uncertainty σ in the model, whereas in a

second-order approximation σ only shifts returns. Furthermore, higher-order approxi-

mations are necessary for welfare analysis, the canonical reference being Kim and Kim

(2003) who show that a first-order approximation may cause spurious welfare reversals.

Lastly, higher-order approximations may also provide additional restrictions to enhance

parameter identifiability as shown by An & Schorfheide (2007), Mutschler (2015) or van

Binsbergen et al. (2012).

Perturbation methods have gained much popularity, particularly for models with

many state variables, due to their low computational expense and clear structure based

on the implicit function theorem. However, the assumption of differentiability is hard to

verify in practice. Moreover, the solution is inherently local and only valid in the prox-

imity of the steady state. Therefore, perturbation methods have their shortcomings in

models with complex structures such as occasionally binding constraints, regime switch-

ing, multiple equilibria, and large shocks. Even though the literature evolves to apply

perturbation methods in these contexts – occasionally binding constraints are tackled by

Guerrieri & Iacoviello (2015), regime switching by Maih (2015) and multiple equilibria

by Lubik & Schorfheide (2004) – global solution methods remain a more accurate and

powerful way to compute the solution in these environments. Fernández-Villaverde et al.

(2016) review projection methods, whereas value and policy function iteration are dis-

cussed in Cai & Judd (2014) and Rust (1996). Global solution methods suffer from the
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curse of dimensionality, i.e. the computational complexity rises rapidly in the number of

state variables. For instance, constructing the grid can be very cumbersome and time-

consuming in models with many variables, even though Grüne et al. (2015) or Maliar

& Maliar (2015) have recently provided algorithms to improve on this issue. A good

computational reference for projection, value and policy function iteration, Smolyak, en-

dogeneous grid and envelope condition methods is Maliar & Maliar (2014). Also hybrid

approaches (e.g. combining projection and perturbation methods as in Maliar et al.

(2013)) seem promising to reduce the curse of dimensionality. In a nutshell, there is a

trade-off between speed and accuracy. Perturbation methods are fast and easy to imple-

ment, yet only locally accurate, whereas global solution methods are slow and harder to

implement, yet provide a globally accurate solution. Nevertheless, perturbation remains

the workhorse solution method and will be used in the rest of the paper. Note that the

perturbation solution is also an excellent initial guess for global solution algorithms.

3. Pruning

Various simulation studies show, that Taylor approximations of an order higher than

one may generate explosive time paths, even though the first-order approximation is

stable. These explosive sample paths arise because the higher-order terms induce addi-

tional fixed points for the system, around which the approximated solution is unstable.

Consider for illustration the univariate example of Kim et al. (2008, p. 3408) with one

state variable and one shock. The second-order approximation around the steady state

x̄ = 0 is given by

xt+1 = hxxt +Hxxx
2
t + huut+1, (6)

where it is assumed that |hx| < 1, hu > 0 and Hxx > 0. Note that in (6) there are two

fixed points: the steady state x = 0 and another (artificial) one at x = (1 − hx)/Hxx.

If a (large) shock sets xt above the latter fixed point, the system will tend to diverge.

“This is likely to be a generic problem with quadratic expansions – they will have extra

steady states not present in the original model, and some of these steady states are likely

to mark transitions to unstable behavior” (Kim et al., 2008, p. 3408). Thus, the model

may be neither stationary nor imply an ergodic probability distribution, both of which
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assumptions are essential for calibration, estimation and identification. To circumvent

this explosiveness Samuelson (1970) and Jin & Judd (2002) assume a bounded support

for ut. Another approach is to use the pruning scheme, in which one omits terms from

the policy functions that have higher-order effects than the approximation order. In our

example, we (artificially) decompose the state vector into first- and second-order effects

(xt = xft+1 + xst+1), then (6) becomes

xft+1 + xst+1 = hxx
f
t + hxx

s
t +Hxx(xft )2 + 2Hxxx

f
t x

s
t +Hxx(xst )

2 + huut+1. (7)

The idea of pruning is to set up the law of motions for xft containing only effects up

to first order and for xst containing only effects up to second-order. In other words,

we prune terms in (7) that contain xft x
s
t (a third-order effect) and (xst )

2 (a fourth-

order effect), whereas there are no higher-order effects in ut+1. The pruned solution

xft+1 = hxx
f
t + huut+1 and xst+1 = hxx

s
t + Hxx(xft )2 can then be rewritten as a linear

state space system:
xft+1

xst+1

xf
2

t+1


︸ ︷︷ ︸

zt+1

=


hx 0 0

0 hx Hxx

0 0 h2
x


︸ ︷︷ ︸

A


xft

xst

xf
2

t


︸ ︷︷ ︸

zt

+


hu 0 0

0 0 0

0 2hxhu h2
u


︸ ︷︷ ︸

B


ut+1

xft ut+1

u2
t+1 − σ2

u


︸ ︷︷ ︸

ξt+1

+


0

0

h2
uσ

2
u


︸ ︷︷ ︸

c

,

with an extended state vector zt and an extended vector of shocks ξt, where we add

and subtract the variance σ2
u of ut to get E(ξt) = 0. Note that, even if ut is Gaussian,

ξt is clearly not normally distributed. Pruning ensures stability, since |hx| < 1. The

solution used, however, is no longer a policy function of the original state variables. This

may seem an ad-hoc procedure, but it can also be theoretically founded as a Taylor

expansion in the perturbation parameter (Lombardo & Uhlig, 2014) or on an infinite

moving average representation (Lan & Meyer-Gohde, 2013b).

The example generalizes to the multivariate case. That is, for a third-order ap-

proximation, we decompose the state vector into first-order (x̂ft ), second-order (x̂st ) and

third-order (x̂rdt ) effects, (x̂t = x̂ft + x̂st + x̂rdt ), and set up the law of motions for these

variables, preserving only effects up to first-, second, and third-order respectively (see
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the technical appendix of Andreasen et al. (2016) for more details):

x̂ft+1 = hxx̂
f
t + huut+1, (8)

x̂st+1 = hxx̂
s
t +

1

2

[
Hxx

(
x̂ft ⊗ x̂

f
t

)
+ 2Hxu

(
x̂ft ⊗ ut+1

)
+Huu (ut+1 ⊗ ut+1) + hσσσ

2
]
,

(9)

x̂rdt+1 = hxx̂
rd
t +Hxx

(
x̂ft ⊗ x̂st

)
+Hxu (x̂st ⊗ ut+1) +

3

6
Hxσσx̂

f
t +

3

6
Huσσut+1

+
1

6
Hxxx

(
x̂ft ⊗ x̂

f
t ⊗ x̂

f
t

)
+

1

6
Huuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Hxxu

(
x̂ft ⊗ x̂

f
t ⊗ ut+1

)
+

3

6
Hxuu

(
x̂ft ⊗ ut+1 ⊗ ut+1

)
.

(10)

The law of motions for the controls can be derived analogously (see the online appendix).

Proposition 1 (Pruned state space). Given an extended state vector zt and an extended

vector of innovations ξt, the pruned solution to a DSGE model can be rewritten as a linear

time-invariant zero mean state space system:

z̃t+1 = Az̃t +Bξt+1, (11)

ỹt+1 = Cz̃t +Dξt+1, (12)

where a tilde denotes deviations from the unconditional mean: z̃t := zt − E(zt) with

E(zt) = (Inz −A)−1c and ỹt := yt − E(yt) with E(yt) = ȳ + C · E(zt) + d.

Proof. See Andreasen et al. (2016). The online appendix contains the exact expressions

for A, B, C, D, c and d in a first-, second- and third-order approximation.

It is easy to show that the stability of the system is govern by the first-order ap-

proximation, i.e. if all Eigenvalues of hx have modulus less than one, the pruned state

space is then also stable. In other words, all higher-order terms are unique and all Eigen-

values of A have also modulus less than one. Furthermore, ξt is zero mean white noise

with finite moments. As shown in the univariate case, in higher-order approximations

ξt is non-Gaussian, even if the underlying process ut is normally distributed, therefore

leaving scope for higher-order statistics to contain additional information for calibration,

estimation and identification.
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4. Cumulants and polyspectra

We will now provide the formal definition and our notation regarding cumulants and

polyspectra. First, note that the joint product moments of n real random variables

x1, . . . , xn of order k = k1 + k2 + · · ·+ kn are defined as (see Nikias & Petropulu (1993,

Ch. 2)):

E
[
xk11 · x

k2
2 · · · · · xknn

]
= (−i)k ∂

kΦ (ω1, ω2, . . . , ωn)

∂ωk11 ωk22 . . . ωknn

∣∣∣
ω1=ω2=···=ωn=0

,

where

Φ (ω1, ω2, . . . , ωn) ≡ E [exp{i (ω1x1 + ω2x2 + · · ·+ ωnxn)}] (13)

is their joint characteristic function and i the imaginary unit. The joint cumulants of

the same set of random variables of order k, Cum
[
xk11 , x

k2
2 , . . . , x

kn
n

]
, are defined as the

coefficients in the Taylor expansion of the natural log of (13) (see e.g. Brillinger (1965)):

Cum
[
xk11 , x

k2
2 , . . . , x

kn
n

]
= (−i)k ∂

k ln{Φ (ω1, ω2, . . . , ωn)}
∂ωk11 ωk22 . . . ωknn

∣∣∣
ω1=ω2=···=ωn=0

.

Obviously, there is an intimate relationship between moments and cumulants: If two

probability distributions have identical moments, they will have identical cumulants as

well. Therefore, cumulants can be expressed by moments and vice versa, for instance:

C1,x1 ≡ Cum [x1] = E[x1],

C2,x1
≡ Cum [x1, x1] = E[x2

1]− E[x1]2,

C3,x1 ≡ Cum [x1, x1, x1] = E[x3
1]− 3E[x2

1]E[x1] + 2E[x1]3,

C4,x1
≡ Cum [x1, x1, x1, x1] = E[x4

1]− 4E[x3
1]E[x1]− 3E[x2

1]2 + 12E[x2
1]E[x1]2 − 6E[x1]4.

Assuming mean zero variables, this simplifies to C1,x1 = 0, C2,x1 = E[x2
1], C3,x1 = E[x3

1]

and C4,x1 = E[x4
1] − 3E[x2

1]2. We note that for symmetric probability distributions all

odd moments and cumulants are identical to zero, whereas for the Gaussian case all

cumulants of order greater than second are also zero.

In the multivariate case, we adopt the compact notation of Swami & Mendel (1990)

and store all product-moments of a mean zero vector-valued process in a vector using

Kronecker products. For example, the second moments (and cumulants) of z̃t can either

12



be stored in a nz×nz matrix E(z̃t · z̃′t) =: Σz or in the n2
z×1 vector E(z̃t⊗ z̃t) = vec(Σz);

this notion naturally carries over to higher orders. Formally, the kth-order (k=2,3,4)

cumulants of the kth-order stationary, mean zero vector process z̃t (t1, t2, t3 ≥ 0) are

given by the nkz vectors Ck,z as

C2,z(t1) := E[z̃0 ⊗ z̃t1 ],

C3,z(t1, t2) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ],

C4,z(t1, t2, t3) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ⊗ z̃t3 ]− C2,z(t1)⊗ C2,z(t2 − t3)

− P ′nz (C2,z(t2)⊗ C2,z(t3 − t1))− Pnz (C2,z(t3)⊗ C2,z(t1 − t2)) ,

where Pnz = Inz ⊗ Un2
z×nz and Un2

z×nz is a (n3
z × n3

z) permutation matrix with unity

entries in elements [(i − 1)nz + j, (j − 1)n2
z], i = 1, . . . , n2

z and j = 1, . . . , nz, and zeros

else. That is, the second cumulant is equal to the autocovariance matrix and the third

cumulant to the autocoskewness matrix. The fourth-order cumulant, however, is the

fourth-order product-moment (autocokurtosis matrix) less permutations of second-order

moments. In general, for cumulants higher than three, we need to know the lower-order

moments or cumulants.

Assuming that Ck,z(t1, . . . , tk−1) is absolutely summable, the kth-order polyspectrum

Sk,z is defined as the (k-1)-dimensional Fourier transform of the kth-order cumulant

Sk,z(ω1, . . . , ωk−1) :=
1

(2π)k−1

∞∑
t1=−∞

· · ·
∞∑

tk−1=−∞
Ck,z(t1, . . . , tk−1) · exp{−i

k−1∑
j=1

ωjtj},

with ωj ∈ [−π;π] and imaginary i (see Swami et al. (1994) for further details). The

second-, third- and fourth-order spectra are called the power spectrum, bispectrum and

trispectrum, respectively. The power spectrum corresponds to the well-studied spectral

density, which is a decomposition of the autocorrelation structure of the underlying pro-

cess (Wiener-Khinchin theorem). The bispectrum can be viewed as a decomposition of

the third moments (auto- and cross-skewness) over frequency and is useful for consider-

ing systems with asymmetric nonlinearities. In studying symmetric nonlinearities, the

trispectrum is a more powerful tool, as it represents a decomposition of (auto- and cross-)

kurtosis over frequency. Furthermore, both the bi- and trispectrum will be equal to zero

for a Gaussian process, such that departures from Gaussianity will be reflected in these

higher-order spectra.
13



5. Higher-order statistics for the pruned state space system

Reconsider the PSS in proposition 1. Note that this system is a zero mean linear time-

invariant state space system. Standard results from VAR(1) systems and insights from

HOS can be used, regarding the computation of unconditional cumulants and polyspectra

of states, controls and stochastic innovations. The kth-order cumulants of ξt are

Ck,ξ(t1, . . . , tk−1) =

Γk,ξ if t1 = · · · = tk−1 = 0,

0 otherwise,

and corresponding polyspectra Sk,ξ(ω1, . . . , ωk−1) = (2π)1−kΓk,ξ are flat. Γk,ξ is com-

puted using symbolic expressions and script files, which are independent of the dis-

tribution of ut. A description of the algorithm is given in the online appendix. We

make use of the fact, that Γk,ξ can be partitioned into several submatrices which can

be computed symbolically element-by-element, but contain many duplicate entries. For

instance, note that E[ξt⊗ ξt⊗ ξt] is of dimension n3
ξ , but the number of distinct elements

is nξ(nξ + 1)(nξ + 2)/6, because ξi,tξj,tξk,t = ξj,tξi,tξk,t = ξi,tξk,tξj,t and so forth. We

can use special matrix algebra analogous to the duplication matrix, called triplication

and quadruplication matrix (Meijer, 2005), to ease the computations for higher-order

product-moments of ξt, where we remove each second and later occurrence of the same

element. Letting [⊗kj=1X(j)] = X(1) ⊗ X(2) ⊗ · · · ⊗ X(k) for objects X(j), Swami &

Mendel (1990) show that the cumulants of the state vector z̃t,

Ck,z(t1, . . . , tk−1) = [⊗k−1
j=0A

tj ] · Ck,z(0, . . . , 0),

are given in terms of their zero-lag cumulants,

Ck,z(0, . . . , 0) = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ,

which can be computed efficiently using iterative algorithms for generalized Sylvester

equations (see Appendix A). Furthermore, there is considerable symmetry (by using ap-

propriate permutation matrices); in particular, all second-order cumulants can be com-

puted from t1 > 0, all third-order cumulants from t1 ≥ t2 > 0 and all fourth-order

cumulants from t1 ≥ t2 ≥ t3 > 0. Since there is a linear relationship between ỹt and

14



z̃t−1 in (12), we obtain closed-form expressions for the kth-order cumulants of control

variables. That is, for tj > 0

Ck,y(0, . . . , 0) = [⊗kj=1C]Ck,z(0, . . . , 0) + [⊗kj=1D]Γk,ξ,

Ck,y(t1, . . . , tk−1) = [⊗kj=1C]Ck,z(t1, . . . , tk−1).

Regarding the computation of polyspectra, consider the vector moving average represen-

tation (VMA) of z̃t =
∑∞
j=0A

jBξt−j . Using equation (12) and lag operator L, we obtain

the VMA for our controls:

ỹt =

∞∑
j=0

CAjBξt−j−1 +Dξt = Hξ(L
−1)ξt,

with transfer function Hξ(z) = D+C (zInz −A)
−1
B for z ∈ C. Setting zj = e−iωj , with

imaginary i and ωj ∈ [−π;π], we obtain the Fourier transformations of the cumulants of

ỹt, i.e. the power spectrum S2,y, bispectrum S3,y and trispectrum S4,y:

S2,y(ω1) = (2π)−1
[
H(z−1

1 )⊗H(z1)
]

Γ2,ξ,

S3,y(ω1, ω2) = (2π)−2
[
H(z−1

1 · z
−1
2 )⊗H(z1)⊗H(z2)

]
Γ3,ξ,

S4,y(ω1, ω2, ω3) = (2π)−3
[
H(z−1

1 · z
−1
2 · z

−1
3 )⊗H(z1)⊗H(z2)⊗H(z3)

]
Γ4,ξ.

Again, there is considerable symmetry easing the computations. To approximate the

interval [−π;π], we divide it into N subintervals to obtain N + 1 frequency indices with

ωs denoting the sth frequency in the partition. The bispectrum can be computed from

s1 ≤ s2 and the trispectrum from s1 ≤ s2 ≤ s3 (sj=1,. . . ,N + 1; j = 1, 2, 3), since these

determine all other spectra through permutations. The computations of the bispectrum

can be accelerated further by noting that the sum ωs1 + ωs2 contains many duplicate

elements, since ωsj ∈ [−π;π]. Thus, one does not need to do the computations for all

N(N + 1)/2 runs, but rather for a much smaller set. Similarly, there is no need to

evaluate all N(N + 1)(N + 2)/6 possible values of ωs1 + ωs2 + ωs3 for the trispectrum

but only the unique values. See Chandran & Elgar (1994) for a thorough discussion of

principal domains of polyspectra.
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Table 1: Smets and Wouters (2007): First-Order State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t

shocks (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S)

ea 0.213 0.213
(0.000)

0.355 0.355
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 −0.001
(0.066)

6 5.310
(10.01)

eb 3.427 3.427
(0.000)

5.712 5.712
(0.000)

0 0.000
(0.000)

0 0.000
(0.000)

0 −0.001
(0.063)

6 4.773
(4.865)

eg 0.371 0.371
(0.000)

0.618 0.618
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 −0.001
(0.068)

6 4.696
(4.468)

eqs 0.362 0.362
(0.000)

0.603 0.603
(0.000)

0 −0.000
(0.000)

0 −0.000
(0.000)

0 −0.004
(0.063)

6 5.160
(7.250)

em 0.057 0.057
(0.000)

0.096 0.096
(0.000)

0 −0.000
(0.000)

0 0.000
(0.000)

0 0.001
(0.069)

6 4.938
(6.300)

epinf 0.021 0.021
(0.000)

0.035 0.035
(0.000)

0 0.000
(0.000)

0 0.000
(0.000)

0 0.000
(0.067)

6 4.897
(5.231)

ew 0.044 0.044
(0.000)

0.073 0.073
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 0.001
(0.065)

6 5.715
(27.31)

observables (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S)

labobs 159.4 159.4
(8.317)

265.7 265.4
(14.10)

0 0.001
(0.017)

0 −0.001
(0.031)

0 −0.007
(0.142)

0.762 0.606
(0.814)

robs 17.41 17.42
(0.773)

29.02 28.99
(1.307)

0 0.001
(0.016)

0 0.000
(0.036)

0 −0.005
(0.128)

0.926 0.736
(0.875)

pinfobs 3.031 3.030
(0.164)

5.052 5.050
(0.281)

0 0.001
(0.018)

0 0.000
(0.034)

0 −0.007
(0.152)

0.648 0.525
(0.773)

dy 47.88 47.90
(0.643)

79.81 79.82
(1.266)

0 −0.000
(0.008)

0 −0.001
(0.048)

0 0.001
(0.068)

3.992 3.156
(3.649)

dc 55.93 55.95
(0.693)

93.22 93.26
(1.324)

0 −0.000
(0.008)

0 −0.000
(0.051)

0 0.001
(0.068)

4.061 3.225
(3.275)

dinve 50.93 50.95
(0.951)

84.88 84.95
(2.037)

0 −0.000
(0.008)

0 −0.001
(0.054)

0 0.001
(0.070)

3.589 2.984
(4.754)

dw 0.586 0.588
(0.012)

0.979 0.979
(0.023)

0 0.000
(0.008)

0 0.002
(0.125)

0 0.004
(0.071)

3.109 2.580
(4.740)

Theoretical (T) and simulated (S) statistics for stochastic innovations and observables. Simulations with 1000

replications with 10000 data points each (after discarding 1000 points) and using antithetic shocks. Standard

deviations of Monte Carlo statistics are in parentheses. Runtime for theoretical statistics is 0.8 seconds and

for simulated statistics 170 seconds on a standard desktop machine.

6. Monte Carlo analysis

In this section we demonstrate the formulas by a Monte Carlo analysis using three

well-known DSGE models: Smets & Wouters (2007) for a first-order approximation (see

table 1), An & Schorfheide (2007) for a second-order approximation (see table 2) and

the neoclassical growth model as in Schmitt-Grohé & Uribe (2004) for a third-order

approximation (see table 3). It is well known that simulating higher-order moments one

requires a large sample size as well as many simulation runs, since one deals with outliers

taken to the powers of three and above. Bai & Ng (2005) derive sampling distributions

for the coefficients of skewness and kurtosis for serially correlated data. They also assume
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Table 2: An and Schorfheide (2007): Second-Order Pruned State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t

shocks (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S)

eR 9e-6 9e-6
(0.000)

1.2e-5 1.2e-5
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 −0.002
(0.069)

1.2 1.184
(0.390)

eg 3.6e-5 3.6e-5
(0.000)

4.6e-5 4.6e-5
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 −0.001
(0.064)

1.2 1.186
(0.377)

ez 4e-6 4e-6
(0.000)

5e-6 5e-6
(0.000)

0 0.000
(0.000)

0 −0.000
(0.000)

0 0.004
(0.065)

1.2 1.173
(0.338)

observables (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S)

YGR 1.252 1.252
(0.030)

1.632 1.634
(0.043)

0.157 0.293
(0.017)

0.305 0.452
(0.059)

0.143 0.188
(0.084)

1.335 1.394
(0.772)

INFL 7.728 7.727
(0.300)

9.940 9.953
(0.384)

0.029 0.102
(0.014)

0.053 0.135
(0.020)

0.006 0.015
(0.096)

0.346 0.357
(0.204)

INT 10.71 10.71
(0.671)

13.77 13.81
(0.890)

0.010 0.083
(0.024)

0.019 0.101
(0.028)

0.001 0.006
(0.170)

0.097 0.091
(0.199)

Theoretical (T) and simulated (S) statistics for stochastic innovations and observables. Simulations with 1000

replications with 10000 data points each (after discarding 1000 points) and using antithetic shocks. Standard

deviations of Monte Carlo statistics are in parentheses. Runtime for theoretical statistics is 4.1 seconds and

for simulated statistics 1054 seconds on a standard desktop machine.

stationarity up to eighth order and show in a simulation exercise of an AR(1) process

that test statistics for skewness have acceptable finite sample size and power, whereas for

kurtosis the size distortions are tremendous. Bao (2013) provides some further results on

finite sample biases. Therefore, for each model, we simulate 1000 trajectories of the PSS

with 10000 data points each (after discarding 1000 points) and using antithetic shocks to

reduce the Monte Carlo sampling variation (all settings can be adjusted in the DYNARE

toolbox). We use the original parametrization of the models, however, we impose both

the Gaussian as well as Student’s t-distribution as the underlying shock processes. For

the Smets & Wouters (2007) model we set the degrees of freedom equal to 5, for the An &

Schorfheide (2007) model to 9 and for the neoclassical growth model to 15, since these are

the lowest numbers for which the assumption of 4th order stationarity is fulfilled. We then

compute the sample variance, skewness and excess kurtosis of the stochastic innovations

and observables of each trajectory and average over all Monte Carlo runs. Note that the

second-order zero-lag cumulant of yt is equal to the covariance matrix. Skewness can

either be computed via standardized product moments or via the ratio of the third zero-

lag cumulant and the 1.5th power of the second zero-lag cumulant. Furthermore, excess

kurtosis is the fourth zero-lag cumulant normalized by the square of the second-order
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Table 3: Neoclassical Growth Model: Third-Order Pruned State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t

(T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S)

ea 1 1.000
(0.000)

1.182 1.182
(0.000)

0 −0.000
(0.000)

0 −0.000
(0.000)

0 −0.000
(0.064)

0.667 0.660
(0.183)

c 0.710 0.704
(0.012)

0.843 0.843
(0.014)

0 −0.116
(0.012)

−0.235 −0.189
(0.025)

0.057 0.020
(0.074)

0.608 0.547
(0.207)

Theoretical (T) and simulated (S) statistics for stochastic innovations and observables. Simulations with 1000

replications with 10000 data points each (after discarding 1000 points) and using antithetic shocks. Standard

deviations of Monte Carlo statistics are in parentheses. Runtime for theoretical statistics is 0.5 seconds and

for simulated statistics 1683 seconds on a standard desktop machine.

cumulant. Lastly, we compare these to their theoretical counterparts using the formulas

derived in section 5. We also report standard deviations of the statistics in the simulation

and running times. Tables 1 to 3 summarize the results. For a first-order approximation

the empirical variance, skewness and excess kurtosis are very close to their theoretical

values no matter which distribution is imposed on the shocks. However, for the thick

tailed Student’s t-distribution with 5 degrees of freedom, we see large standard errors. In

higher-order approximations the discrepancies in the skewness and in particular excess

kurtosis are even more evident: matching higher-order moments in simulation studies is

hard. This is already evident in the statistics of the underlying stochastic innovations

which are directly drawn from a random number generator (even though their variation

is already reduced by antithetic shocks and quadratic resampling). We therefore would

need to increase the sample size or redo the exercise with more replications. However,

increasing the number of Monte Carlo runs as well as sample size would on the one hand

increase the precision but on the other hand also the computational time as can be seen

by the execution times in the tables. For an applied researcher who uses a try-and-error

approach to match third-order or fourth-order characteristics of a variable in a calibration

exercise this is unfeasible. Hence, we conclude that our expressions are a convenient and

fast way to compute higher-order statistics for linear and nonlinear (pruned) solutions

to DSGE models.
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7. GMM estimation with higher-order statistics

GMM is arguably the most convenient and general way of estimation of an economic

model that can be equally applied in a variety of frameworks. We take Andreasen et al.

(2016)’s approach to use the pruned state space representation for a GMM estimation and

extend it to include third- and fourth-order product moments as additional instruments.

We follow Ruge-Murcia (2013) in the exposition of the GMM estimator, i.e. we are

concerned with the set of p moment conditions:

M(θ) =

(
1

T

T∑
t=1

m(yt)− E [m(θ)]

)
, (14)

where {yt} denotes a sample of T observations of data. 1
Tm(yt) are statistics computed

using the time average of some functions of the data, while E[m(θ)] is the theoretical

counterpart of the same statistics predicted by the economic model. In particular, we

estimate DSGE models solved up to third order by using the following unconditional

moments:3 (1) sample means, i.e. m1 (yt) = yt, (2) contemporaneous covariances, i.e.

m2 (yt) = vech (yty
′
t), (3) own auto-covariances, i.e. m3 (yt) = {yi,tyi,t−j}nyi=1 for various

values of j, (4) own third-order product moments, i.e. m4 (yt) = {yi,tyi,tyi,t}nyi=1, and

(5) own fourth-order product moments, i.e. m5 (yt) = {yi,tyi,tyi,t}nyi=1. Note that we

compute product moments from the cumulants derived in section 5. Hence, the total set

of moments used in the estimation is given by:

m (yt)≡
(
m1 (yt)

′
, m2 (yt)

′
, m3 (yt)

′
, m4 (yt)

′
, m5 (yt)

′)′
.

The GMM estimator is defined as θ̂ = arg minθM(θ)′WM(θ). Intuitively, one tries to

find the estimate that solves the empirical analogous of the moment conditions as close as

possible, where the p×p positive-definite weighting matrix W defines what close means.

If p < nθ the model is under-identified and we need to find additional instruments for

3Basically, we extend (and adapt to DYNARE) the GMM toolbox of Andreasen et al. (2016) to include

information from third- and fourth-order statistics as well as the possibility to use the multivariate

Student’s t-distribution as the underlying shock process. Note that we also change the algorithm to

compute the first two unconditional moments as demonstrated in section 5. We extensively tested our

procedures and found that in the case of the Gaussian distribution and first two moments our results are

identical. We thank Martin Andreasen for providing this toolbox as open source software on his website.
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the estimation. If p = nθ, then the model is exactly-identified: The weight-matrix does

not play any role, since there is a unique solution to the quadratic form. If p > nθ, then

the model is over-identified. The weight-matrix picks those moment-conditions that lead

to a more precise estimation. Hansen (1982) shows, that the optimal weight matrix is

given by the inverse of the covariance-matrix of the empirical counterpart of the moment

conditions. Note, however, that p ≥ nθ is only a necessary condition for identification. A

sufficient condition for local identification requires that the rank of D ≡ ∂E(m(θ))
∂θ′ is equal

to nθ. Formal criteria for checking the full rank assumption of the expected Jacobian

are provided by Iskrev (2010), Komunjer & Ng (2011) or Qu & Tkachenko (2012) for

a first-order approximation and by Mutschler (2015) for higher-order approximations.

Given the regularity conditions in Hansen (1982) one can show that the GMM estimator

is consistent and asymptotically normal:

√
T (θ̂ − θ)→ N(0, (D′WD)

−1
D′WSWD (D′WD)

−1
), (15)

where S =
∑∞
s=−∞ [m(yt)− E(m(yt))] [m(yt−s)− E(m(yt−s))]

′
. The optimal weight

matrix is given by W = S−1 and the corresponding GMM estimator has the smallest

possible variance among all possible positive-definite weighting matrices. In the over-

identified case, we are also able to formally test the hypothesis, that the model is able to

describe the data generating process (J-Test). To sum up, either because of identification

concerns or the ability to perform a model specification test, researchers are in search for

good instruments used in the GMM estimation. Usually one can add lagged variables in

the estimation, we propose, alternatively or additionally, to include unconditional third-

and fourth-order product moments (or cumulants). Of course, one has to be careful of

using too many instruments, a point emphasized by Mavroeidis (2005).

We will now illustrate our closed-form expressions for the GMM estimation of a RBC

model with variable labor and internal habit formation solved by a third-order approxi-

mation. The model has nine parameters: the depreciation rate δ, the discount factor β,

the internal consumption habit parameter b, the consumption curvature parameter ηc,

the labor supply curvature parameter ηl, the weight of leisure in the utility parameter θl,

the elasticity parameter in the production function α, the autoregressive coefficient of the

productivity shock ρA and its standard deviation σA. We fix ηl = 1 and θl = 3.48 and

estimate all other parameters with two estimators, one based on m1, m2 and m3 with one
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lagged autocovariance (called GMM2) and one including additionally m4 (called GMM3),

that is including contemporaneous third-order product moments in the estimation. We

use a two-step estimation procedure. In the first step, the sample mean of the moments

is used to estimate E[m(θ)] and the corresponding weighting matrix is obtained by using

a 20-lag (Whitney K. Newey, 1987) Heteroscedasticity and Autocorrelation Consistent

(HAC) estimate of the variance of the moment conditions with a Bartlett kernel. We note

that different HAC estimates can differ and distort the estimation in finite samples, see

Den Haan & Levin (1997) for a discussion. In the second step, we use the consistent first

step estimate to compute the optimal weighting matrix. Both steps are iterated twice.

We investigate the finite sample bias and standard error of both estimators for sample

sizes T = 250 (see table 4) and T = 600 (see table 5) with 150 replications. To this end,

we simulate artificial data for consumption, investment and labor given the third-order

pruned state space for δ = 0.025, β = 0.984, b = 0.5, ηc = 2, α = 0.667, ρA = 0.979 and

σA = 0.0072.

Table 4: Bias and standard deviation given sample size T = 250

GMM2 GMM3

Standard Error Standard Error

Parameter Bias Asymptotic Monte Carlo Bias Asymptotic Monte Carlo

δ -0.001302 0.002759 0.005162 -0.001481 0.002310 0.004753

β 0.001014 0.002918 0.005068 0.001292 0.002448 0.004836

b -0.003630 0.009959 0.017911 -0.001655 0.007979 0.015121

ηc -0.002246 0.008127 0.007931 -0.007331 0.007025 0.014380

α 0.006913 0.012972 0.025378 0.007441 0.010457 0.022517

ρA -0.002622 0.005543 0.006191 -0.002433 0.004831 0.006072

σA -0.000519 0.000520 0.001539 -0.000504 0.000456 0.001367

Bias and standard error from Monte Carlo simulation. GMM2 is based on first two moments, GMM3 on first

three moments. The standard error is, on the one hand, computed given the asymptotic distribution (15),

and on the other hand, it is equal to the variation of the estimates.

The bias of both estimators is negligibly small and only reflects simulation error. It

decreases in magnitude as T increases due to the consistency of the GMM estimators.

The standard errors decrease as T increases, the asymptotic one is generally smaller

than the one based on the variation of the estimates. Note that GMM3 standard errors

are slightly smaller than the corresponding ones of GMM2, independent of the sample
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Table 5: Bias and standard deviation given sample size T=600

GMM2 GMM3

Standard Error Standard Error

Parameter Bias Asymptotic Monte Carlo Bias Asymptotic Monte Carlo

δ -0.000321 0.002030 0.003130 -0.000604 0.001804 0.002888

β 0.000199 0.002265 0.003290 0.000547 0.001992 0.003082

b 0.000407 0.006688 0.011130 0.000721 0.005934 0.009681

ηc -0.003468 0.005320 0.007895 -0.005867 0.004869 0.009903

α 0.001590 0.008910 0.014365 0.002804 0.007898 0.013069

ρA -0.002636 0.003773 0.004940 -0.002397 0.003458 0.004732

σA -0.000361 0.000382 0.000899 -0.000391 0.000347 0.000823

Bias and standard error from Monte Carlo simulation. GMM2 is based on first two moments, GMM3 on first

three moments. The standard error is, on the one hand, computed given the asymptotic distribution (15),

and on the other hand, it is equal to the variation of the estimates.

size. This is not surprising, since we use more moments in GMM3, therefore it is more

efficient. Lastly, we comment on execution time. Each replication takes on average less

than a minute to simulate data and optimize the GMM criterion function.

8. Conclusion

The contribution of this paper is twofold. First, a theoretical contribution, as we de-

rive expressions for unconditional moments, cumulants and polyspectra for non-Gaussian

or nonlinear (pruned) solutions to DSGE models. Since higher-order cumulants and

polyspectra measure the departure from Gaussianity, these expressions can provide means

to gain more information for calibration and estimation. Accordingly, Mutschler (2015)

shows that this approach imposes additional restrictions, which can be used to identify

parameters that are unidentified in a first-order approximation with Gaussian innova-

tions. The estimation of non-Gaussian DSGE models or ones solved by higher-order

approximations is typically done by means of (Bayesian) Sequential Monte Carlo (SMC)

methods. This methodology, however, is time consuming (and difficult to implement)

because it relies heavily on artificial sampling to evaluate the likelihood function. As

an alternative, the proposed GMM estimator is possibly more transparent (and faster)

than SMC and therefore useful for teaching and communication. The trade-off with

GMM is that it is not necessary to specify correctly the joint distribution of the random
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variables, but the price paid for this flexibility is a loss of asymptotic efficiency relative

to full information methods like Maximum Likelihood or Bayesian SMC. Nevertheless,

GMM is generally more robust to misspecification (Ruge-Murcia, 2007). There are still

some issues which need to be improved for a serious empirical application. Calculation

of the gradient of the moments can be difficult, however, we need it in order to calculate

the variance and weighting matrix. Numerical derivatives are a tricky business, since

different approaches can produce quite different estimates for the variance matrix even

though the estimates for the parameters are very close. Therefore it is advisable to use

Mutschler (2015)’s approach to compute analytically the gradient in closed form. Having

this may also provide means to derive a continuously updating weight matrix (Hansen

et al., 1996) instead of a two-step or iterative GMM procedure.

The second contribution is a computational one and useful for applied researchers, as

we provide a DYNARE toolbox which (1) implements our procedures up to a third-order

approximation and (2) performs a GMM estimation including statistics up to fourth-

order. The algorithms are independent of the distribution - apart from assumptions on

the existence of relevant moments and white-noise property. In this sense, we provide

explicit code to evaluate the analytic script files for the Gaussian as well as Student’s t-

distribution as the underlying shock process. The Student’s t distribution is particularly

interesting because of its thick tail property. We experimented with generalized extreme

value distributions like the Laplace or skew normal distribution, as we only need a pro-

cedure to evaluate joint moments either analytically or numerically. DYNARE’s solution

algorithm, however, is not meant to work with asymmetric distributions, as some terms

in the Taylor approximation are wrongly set to zero, see Andreasen (2012).

In conclusion, we will now point to some further applicabilities and extensions of

our results. Asymmetric distributions are an important feature in models with down-

ward nominal wage rigidity (Schmitt-Grohé & Uribe, 2013; Kim & Ruge-Murcia, 2011).

Our methods are naturally applicable to analyze risk premia in models with stochastic

volatility (Fernández-Villaverde et al., 2015) or rare disasters (Gabaix, 2012; Gourio,

2012). Our approach can be used to estimate these models with GMM, an exercise left

for future research. Moreover, a further application regards the formation of priors for

the parameters of DSGE models in a Bayesian estimation context. It is straightforward
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to extend Del Negro & Schorfheide (2008)’s method for constructing prior distributions

from beliefs about steady state relationships and second moments of the endogenous

variables to include higher-order moments as well. Lastly, an estimation based on the

bispectrum and trispectrum is left for future research, starting points are Sala (2015) and

Qu & Tkachenko (2012) who estimate linearized DSGE models in the frequency domain

using the spectral density matrix.

Appendix A. Using generalized Sylvester equations for cumulants

The zero-lag cumulants (k=2,3,4)

Ck,z = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ

require the inversion of the big matrix
(
Inkz − [⊗kj=1A]

)
. Since Ck,z and Γk,ξ are vectors,

we can use properties of the Kronecker-product and rewrite the equations to

[ C2,z
nz×nz

] = A[ C2,z
nz×nz

]A′ +B[ Γ2,ξ
nξ×nξ

]B′,

[ C3,z
n2
z×nz

] = (A⊗A)[ C3,z
n2
z×nz

]A′ + (B ⊗B)[ Γ3,ξ
n2
ξ×nξ

]B′,

[ C4,z
n2
z×n2

z

] = (A⊗A)[ C4,z
n2
z×n2

z

](A⊗A)′ + (B ⊗B)[ Γ4,ξ
n2
ξ×n

2
ξ

](B ⊗B)′,

where [
n×m

] reshapes a n · m vector into a n × m matrix. In other words, we reduce

the inversion problem to a generalized Sylvester equation, which can be efficiently solved

using a doubling or fixed-point algorithm.
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