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4 1 INTRODUCTION

1 Introduction

This thesis introduces new statistical methods for a class of autoregressive (AR)

processes based on data depth. In particular, we introduce methods to allow sta-

tistical inference for explosive and non-linear AR processes. The motivation for our

proposals is due to experiments of Maurer and Heeke (2010). The main aim of

these experiments is a fundamental research of the properties of crack growth in

prestressed concrete under low loading. By application of a physical formula, the

class of non-linear AR processes given by

Yn = Yn−1 + θ1Y
θ2
n−1 + θ3 + En

defines a reasonable model choice. However, this full model, applied to our data,

leads to identification problems. Hence, we consider models given by

Yn = Yn−1 + θ1Yn−1 + En,

Yn = Yn−1 + θ1Yn−1 + θ3 + En,

Yn = Yn−1 + θ1Y
θ2
n−1 + En,

here. The experiments imply specific properties on the processes and errors which

cannot be covered by standard assumptions. As a consequence, classical AR esti-

mators and tests cannot be applied directly. Therefore, we propose methods which

can deal with this specific properties based on data depth. These properties are

summarised as follows:

• The observed processes are explosive.

• The observed processes have upward jumps.

• The underlying processes are inhomogeneous in term of parameter changes.

• The observed processes are potentially right-censored.

In particular, we derive outlier robust estimators, tests and confidence sets for the

parameters of the underlying crack growth process. Further, we define a method to

analyse the changes in the parameters of this process which allows us to propose

change point detection algorithms. To allow a calculation of the uncertainty of

the failure times, we define a prediction method for the future development of the

observed processes. Further, we introduce confidence sets for the values of the

process at specific times and at different stress levels to extrapolate the censored
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5 1 INTRODUCTION

series. In combination, this allows us to calculate a S-N curve, relating the lifetime

and stress, based on the available data. We also discuss the efficient implementation

of the proposed methods and illustrate their advantages in comparison with standard

methods by simulation studies.

To illustrate further fields of application, we also discuss a change point detection for

oil prices which are typically modelled by autoregressive processes with parameters

close to the unit-root case.

Specific Features of Crack Growth in Prestressed Concrete

The data from the Maurer and Heeke (2010) experiments inherits features which

should be taken into account in a statistical analysis. These features can be seen in

Figure 1 where the data from one of the experiments is depicted. The first feature
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Fig. 1: Crack width in [mm] from the TR02 experiment by Maurer and Heeke (2010).

we observe is that the process shows explosive or exponential growth. This is not

surprising, since we observe crack growth under cyclic loading without any mainte-

nance. Hence the crack monotonically grows in time. Further, by the accumulation

of damage, the speed of growth increases, too. Statistically, this leads to our as-

sumption of explosive processes to model crack growth.

The second feature are jumps in the process. Since the complete tension wire, incor-

porated into the beam, consists of 35 singular twisted wires, we can see a jumping

behaviour in the crack growth process every time one of the single wires breaks.

5



6 1 INTRODUCTION

Typically, we do not observe a failure of all wires until total failure of the beam.

However, some of these wires break and lead to upward jumps of the crack width

process, since the beam loses a large amount of stability when such a wire breaks.

Statistically, we treat these jumps as outliers, since a direct modelling of the occur-

rence times and jump heights is difficult for approximately eight to fifteen jumps in

each experiment and five available experiments under non constant parameters only.

These outliers are strictly positive and hence lead to asymmetric error assumptions,

since the observed jumps only lead to increasing crack widths.

For the next feature, we consider the process without jumps, as depicted in Fig-

ure 2. We generated this process by consideration of the increments and manually

removing the increments around points in time when tension wires break. These

times are known, since they can be verified by measurements of microphones. In
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Fig. 2: Adjusted crack width in [mm] from the TR02 experiment by Maurer and
Heeke (2010). We subtracted the jumps by clearing the data at the recorded jump
times.

the adjusted crack width series we see that the process dynamics, in particular the

growth parameter, changes within the experiment. This means that we have to deal

with different phases of the dynamics in the underlying process. Hence, we also need

to assure that the proposed models and methods enable us to define a change point

detection algorithm to deal with the observed crack width series.

The fourth feature of the crack growth series just applies censored series. Since the

experiments are quite long, and hence expensive, we need to deal with censored
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7 1 INTRODUCTION

series. In censored cases the experiments were aborted before total failure could be

observed. With the final aim to derive the relation between the applied loads and

lifetime, we need to predict the failure times for these censored experiments. Un-

fortunately, censoring and low-loading is highly correlated, since low loads lead to

slow crack growth what induces long experiments. Hence, this problem will appear

more often, if we conduct experiments in the interesting load range. This means

that we need a model and statistical methods which allow a prediction for censored

series. Quite related to this task, we also have to derive methods to measure the

uncertainty of the failure time of the fully observed series, to generate confidence

intervals for the arrival times at critical crack widths.

The features are summarised as follows:

• Explosive processes.

• Upward jumps.

• Parameter changes.

• Potential right censoring.

The thesis will discuss models and statistical methods to allow inference under these

conditions.

Outline

Section 2 deals with the statistical methods which we derive in this thesis. We start

with the formulation of the applied models by a short review of the engineering lit-

erature considering crack growth. Then, we give an overview about robust methods

and robust regression and define test statistics for our models, based on data depth.

For these statistics, we derive asymptotic distributions and propose tests as well as

parameter confidence intervals. Finally, we present results on the consistency of the

proposed tests. The implementation and examples of the introduced methods are

shown in Section 4. We give details on the implementation of the test statistics

and introduce algorithms to calculate confidence regions and estimates. Further,

we propose approaches to detect parameter changes in the considered models and a

prediction scheme for one of our models. To illustrate the performance of our meth-

ods, we afterwards present comparative simulation studies for the proposed methods

in Section 5. The final analysis of the available crack growth series is presented in

Section 6. We first show some results from the application of an unrestricted version

of a crack growth model and discuss the limitations of these results. Then, we derive
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8 1 INTRODUCTION

a curve for the relationship of applied load and the time of failure for prestressed

concrete by the application of the proposed methods. Since the theoretical results

are not limited to crack growth series, we present another real world application

in which our proposals can be applied. In particular, we give another example of

the proposed change point detection method on oil price series. Section 7 gives an

outlook and presents some further research topics related to this thesis.

In the Appendix, we present additional simulation results, poofs and a package

which makes the proposed methods applicable in the programming language R, see

RCoreTeam (2015). This package is available for installation via the online reposi-

tory github at https://github.com/ChrisKust/rexpar.git.

8
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9 2 LITERATURE OVERVIEW

2 Literature Overview

In this Section, we define the main statistical models and test statistics. Then, we

derive some central properties to propose tests which can be applied to define phase

change detection and prediction methods for growth processes.

2.1 Modelling of Crack Growth

In literature, various approaches to describe fatigue stochastically have been dis-

cussed. Thereby, different general ideas are applied to introduce physical assump-

tions and uncertainty. In this thesis, we focus on methods which aim to describe

the stochastic crack length or width process directly. The basic formula for a large

group of models was introduced by Paris and Erdogan (1963) who describe crack

growth under cyclic loading by

da

dN
= C ·∆Km, (1)

whereby a denotes the crack length or width, N is the number of load cycles and

∆K is the load intensity factor. C and m are constants which are related to the

experimental setting and material. The load intensity factor is given by ∆K =

∆σ ·G ·
√
π · a, where G is a geometry parameter and ∆σ is the actual load intensity

applied in the experiment. This equation is called Paris-Erdogan equation or

Paris-Law. Intuitively, it states that the rate of crack growth depends on the

actual crack size and the experimental constants. Hence, a crack is assumed to grow

faster, if it is large. This, in particular, is in line with the observed behaviour in the

Maurer and Heeke (2010) experiments, described in the previous section. Since we

are interested in the statistical properties of the model, rather than in a physical

interpretation, it is convenient to translate (1) to a time dependent relation and

to reduce the parameters. This, in particular, avoids identification problems, if all

parameters are unknown. Hence, we rewrite (1) to

da

dN
= C ·


∆σ ·G ·

√
π · a

m
= C̃ · am/2 = C̃ · aC2 , (2)

with C̃ = C ·(∆σG
√
π)m and C2 =

m
2
. Further, we want to relate the crack growth to

time instead of load cycles. Since we observe the load cycles in a constant frequency

9



10 2 LITERATURE OVERVIEW

and amplitide, we can adjust (2) by multiplication with a constant and get

da(t)

dt
= C1 · a(t)C2 . (3)

In the modified Paris-Erdogan equation (3), crack growth is purely deterministic.

Due to microstructures and technical limitations, it is more convincing to consider

a stochastic component in the model. Therefore, we switch to a more general for-

mulation to describe a random crack size A(t) in time t by

dA(t)

dt
= F (A(t), X(t)), (4)

wherebyX(t) is a stochastic process and F (·, ·) is a deterministic function setting the

stochastic process and the crack growth process in relation. This general formulation

was, for example, proposed by Chiquet et al. (2009).

In literature, models defined by (4) differ in several ways. The function F can be

varied and the process X(t) can be defined differently.

A direct combination of the process and a stochastic component was proposed by

Sobczyk (1987). Here, instead of a deterministic function, F is a functional. The

process is defined by

dA(t)

dt
= J(t)dN(t), (5)

whereby N(t) is a Poisson process and J(t) can be reduced to (Jn)n∈N, a series of

independent and identically distributed non-negative random variables, describing

random jump heights at the points in time tn, where the Poisson process jumps.

By solving (5), we get A(t) =
N(t)

n=1 Jn. If the involved jump-height distributions

are known, the density of the arrival times at fixed crack lengths can be derived to

analyse the process in more detail, including estimation and prediction.

Often F is related to Paris-Erdogan type functions. Then, X(t) is defined by pro-

cesses which allow a solution of the arising Stochastic Differential Equation (SDE).

Chiquet et al. (2009) apply their general proposal (4) by

dA(t)

dt
= C1 · A(t)C2 ·X(t),

whereby they limit X(t) to a Markov process with finite state space. Based on

this limitation, they derive a transformation which allows the estimation of the

parameters.

2.1 Modelling of Crack Growth 10



11 2 LITERATURE OVERVIEW

Sobczyk (1987) also presents a model based on the modified Paris-Erdogan equation.

Thereby, he uses a deterministic function with multiplicative errors and defines

dA(t)

dt
= F̃ (A(t)) ·X(t).

Reduced to F̃ (A(t)) = C1A(t)
C2 , different approaches for X(t) were discussed in

literature. Spencer et al. (1989) define X(t) = exp(Z(t)), whereby dZ(t)
dt

= −ξZ(t)+
W (t) is a white noise with drift. Sobczyk (1979) proposes X(t) to be modelled as

purely white noise and Lin et al. (1985) propose X(t) to be defined by a Poisson

process with random jump heights. The model of Yang and Manning (1990) proposes

a very simple formulation of X(t), assuming X(t) to be defined by Log-Normal

random variables. Their approach is used by Wu et al. (2001) to solve the resulting

model and to allow the modelling of the probability for exceedances of critical crack

sizes. Zio and Zoia (2009) also assume a Log-Normal process for X(t) and propose

an estimation based on Bayes methods.

By allowing X(t) to be the sum of a deterministic process and a purely stochastic

part, Sobczyk (1987) specifies (4) to

dA(t)

dt
= C1 · A(t)C2 + C3 · A(t)C2 ·X(t). (6)

Since we can modify X(t) by more complicated deterministic functions, (6) can be

expressed more generally by

dA(t)

dt
= F1(A(t)) + F2(A(t)) ·X(t)

with two deterministic functions F1 and F2. Snaidy et al. (1998) combine the Poisson

random driver with the linear extension of X(t) and propose to apply (6) with

X(t) =

 t

0

M(x)e−β(t−x)dN(x),

whereby M(x) > 0 is a function defining the amplitude of the error process and

β ∈ R is an additional decay parameter. Snaidy et al. (1998) derive solutions of the

respective SDE for specific choices of C2 .

2.1 Modelling of Crack Growth 11



12 2 LITERATURE OVERVIEW

2.2 A Modification of the Snaidy et al. (1998) Model

In our approach, we also start with the modified Paris-Law (3). Similar to Snaidy

et al. (1998), we extend the Law to

dA(t)

dt
= α1A(t)

α2 +
dV (t)

dt
, (7)

whereby V (t) is a stochastic error process and α1, α2 > 0. In comparison to the

formulation of Snaidy et al. (1998), we do not model an influence of the actual

crack size on the uncertainty of the error process. Further, we express the error

process by its increments, making a discretisation more feasible. By assuming that

V (t) is a Brownian motion, the analysis of this model can be performed by known

methods from stochastic analysis, when for example α2 = 1. For more complicated

settings, assumptions on the error process can also lead to theoretically and practi-

cally feasible processes. The properties of crack growth in prestressed concrete, as

discussed in the previous section, make it necessary to restrict the growth process

to be increasing and to allow V (t) to include jumps or at least to be defined by a

skewed distribution. This contradicts the assumption of normally distributed errors

and Brownian error processes. Through the approximation of the process by the

Euler-Maruyama scheme, see Kloeden and Platen (1992), the problem translates to

a non-linear discrete time autoregressive (AR) process Yn.

Lemma 1. Let tn = t0 + nh, n ∈ N be an equidistant partition of time. If V (t) has

independent and identically distributed increments, the Euler-Maruyama approxi-

mation of a stochastic process defined by (7) is given by

Yn = Yn−1 + θ1Y
θ2
n−1 + θ3 + En,

with Yn = A(tn), θ1 = hα1, θ2 = α2 and θ3 = med(V (t + h) − V (t)). Further,

med(En) = 0 holds.

2.2 A Modification of the Snaidy et al. (1998) Model 12



13 2 LITERATURE OVERVIEW

Proof. By the Euler-Maruyama approximation of (7) we get

A(t+ h)− A(t)

h
≈ α1A(t)

α2 +
V (t+ h)− V (t)

h

⇔A(t+ h)− A(t) ≈ hα1A(t)
α2 + V (t+ h)− V (t)

⇔A(t+ h) ≈ hα1A(t)
α2 + A(t) + V (t+ h)− V (t)

⇔A(t+ h) ≈ θ1A(t)
θ2 + A(t) + Ẽ(t+ h)

t=t0+nh⇔ Yn+1 ≈ θ1Y
θ2
n + Yn + Ẽn+1

⇔Yn+1 ≈ θ1Y
θ2
n + Yn +med(Ẽn+1) + Ẽn+1 −med(Ẽn+1)

⇔Yn+1 ≈ θ1Y
θ2
n + Yn + θ3 + En+1,

if h is fixed and the process is observed in equidistant times tn = t0 + nh for n ∈ N,
t0 ∈ R.

Remark 2. Note that the Euler-Maruyama approximation is a simple and poten-

tially biased approximation method. However, this thesis will focus on the resulting

stochastic model to derive statistical methods for the class of resulting processes.

More adequate approximations, like the Milstein scheme, sampling methods or local

linearisation methods lead to more difficult stochastic models which are not consid-

ered in this thesis but could be an issue for further research.

The assumptions on crack growth processes imply that Y0 = y0 > 0 for a non-

random initial crack length and that Yn > Ym for n > m. We further assume that

Ẽn ≥ 0 holds. To have med(En) = 0, we centre the errors. The med(En) = 0

assumption later will be a major key to allow robust estimation and asymptotic

results for statistics based on our models. To guarantee a growth process including

these errors, we assume errors which are bounded on their negative side. Otherwise

the growth assumption can be violated.

Lemma 3. Assume the conditions of Lemma 1, θ1 > 0, θ2 > 1. Yn > Yn−1 for all n ∈
N i.e. the process is strictly increasing, if and only if

En > −θ1yθ20 − θ3 for all n ∈ N.

Proof. Solving Yn − Yn−1 > 0 delivers

En > −θ1Y θ2
n − θ3.

2.2 A Modification of the Snaidy et al. (1998) Model 13



14 2 LITERATURE OVERVIEW

Since we have Yn > Yn−1 and θ1 > 0, θ2 > 1, this implies

En > −θ1yθ20 − θ3 ∀ n ∈ N.

For the converse consider

En > −θ1yθ20 − θ3 ∀ n ∈ N.

Then

Y1 − Y0 = θ1y
θ2
0 + θ3 + E1 > 0.

Hence, Y1 > Y0. We can assume that Yn > Yn−1 for n ≤ N and fixed and known N .

Then, by induction

YN+1 − YN = θ1Y
θ2
N + θ3 + EN+1

ind.
> θ1y

θ2
0 + θ3 + EN+1 > 0.

In this thesis, we analyse some partial models with one and two parameters defined

by

Yn = Yn−1 + θ1Yn−1 + En, (8)

Yn = Yn−1 + θ1Yn−1 + θ3 + En, (9)

Yn = Yn−1 + θ1Y
θ2
n−1 + En, (10)

with (En)n being a series of i.i.d. errors satisfying med(En) = 0, En > −θ1yθ20 − θ3

and (Yn)n a growth process. The models (8) and (9) are autoregressive processes

of order one without and with intercept. Model (10) is a non-linear autoregressive

process. In contrast to usual assumptions, we observe growth processes, what in-

duces some conditions on the parameters and errors. In particular, we have to deal

with explosive autoregressive processes here. Further, low loading implies that the

interesting experiments could approach the unit root case, leading to the analysis

of mildly explosive processes.

Considering the data from our crack growth experiments, we assume that the er-

rors can be asymmetric and possess heavy tails. This restricts the application of

standard methods for estimation and testing for autoregressive processes. Hence,

we will propose a depth based statistic for the discussed models which imposes very

mild conditions on the errors and takes the growth assumption into account.

2.2 A Modification of the Snaidy et al. (1998) Model 14



15 2 LITERATURE OVERVIEW

2.3 Data Depth and Regression

In this section, we give a short introduction to depth based estimation and testing

before we propose the central statistics for this thesis. Data depth was originally

introduced to generalise the median in a multivariate setting.

Depth to Generalise Location Measures

The first known depth notion was proposed by Tukey (1975). It is defined by

HD(z, µ) = min
u∈Rd,∥u∥=1

#{zi ∈ {z1, ...zN}|uT zi ≤ uTµ},

whereby z = (z1, ...., zN) is a sample of N points in Rd and µ ∈ Rd is a parameter,

see Struyf and Rousseeuw (1999). For a one dimensional value µ ∈ R and a sample

z = (z1, ..., zN), zi ∈ R half-space depth is

HD(z, µ) = min{#{n|µ ≤ zn},#{n|µ ≥ zn}}.

Hence, the parameter with maximal depth coincides with the median in this case.

Even if Tukey (1975) was the first to name generalisations of multivariate rank

methods depth, nowadays there are several depth notions based on older results.

The oldest depth notion goes back to Mahalanobis (1936). Here, a depth is defined

by taking the inverse of the squared distances of a data point to the (multivariate)

mean, weighted by the dispersion matrix. The sample version is defined by

MD(z, µ) = (1 + (µ− z̄)T Σ̂−1
z (µ− z̄))−1,

whereby z = (z1, ..., zN) is a given sample of values zi ∈ Rd and µ ∈ Rd is a parameter

of interest. z̄ is the mean vector and Σ̂z is the empirical covariance matrix of the

dataset z. Here, depth is measured by a distance of the considered point to the

centre of a distribution. The Oja depth (see Oja, 1983) is defined by the expected

volume of simplexes defined by d < N variables and the considered point µ. The

empirical version is given by

OD(z, µ) =


N

d

−1

1 +


1≤n1<...<nd≤N

vol(S(µ, zn1 , ..., znd
))

−1

,

whereby vol(S(z1, ..., zk)) is the volume of the k−1 dimensional simplex S(z1, ..., zk)

with vertices z1, ..., zk, see Liu et al. (1999). Figuratively, the Oja depth measures the

2.3 Data Depth and Regression 15



16 2 LITERATURE OVERVIEW

depth of a point µ by summation of the areas of all simplexes which can be formed

by combinations of d points from the sample and µ as fixed vertex. Another simplex

based depth notion is the simplicial depth by Liu (1990). Here, depth is defined

by the probability of a considered point to be covered by simplexes formed from

d + 1 dimensional subsets of the variables (Z1, ..., ZN). In the sample version one

can replace the probability by the empirical distribution. The empirical simplicial

depth is given by

SD(z, µ) =


N

d+ 1

−1 
1≤n1<...<nd+1≤N

1{µ∈S(zn1 ,...,znd+1
)}.

A generalised version of simplicial depth will be introduced in Definition 6, since it

is an essential ingredient for our methods. A general overview about depth notions

for multivariate data analysis is given in Liu et al. (1999).

Depth Based on Quality Functions and Regression

With respect to regression models, extensions of the depth concept exist. A general

framework was defined by Rousseeuw and Hubert (1999) who defined regression

depth. The general idea is to define depth as a function of the parameter θ evaluated

at observations zn. Then, a parameter with depth of zero can be defined as a non-

fit which describes a situation where a parameter can be considered as arbitrary

bad fit with respect to its qualitative fit within the set of observations. Regression

depth then is defined as the number of observations which have to be removed to

make a parameter θ a non-fit. In their work, Rousseeuw and Hubert (1999) present

more precise formulas for specific regression models and show that a maximal depth

concept can be defined. Lin and Chen (2006) also applied the method to generalised

linear models under similar conditions.

We use a specific depth, following Mizera (2002), which allows a general application

to arbitrary quality functions.

Definition 4. For z = (z1, ..., zN), with zn ∈ Rk, θ ∈ Rd and a function Q(θ, zn) :

Rd×k → R, we define tangential depth of θ with respect to an observation vector

z and quality function Q as

dQT (θ, z) =
1

N
min
u∈Rd

#


n

u⊤∂Q(θ, zn)∂θ
≥ 0


. (11)

This definition generalises well known depth notions like half space depth or local

2.3 Data Depth and Regression 16
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depth for specific choices of Q.

Remark 5. Note that the parameter with maximal depth is not necessarily unique.

The advantage of the depth notion is that the concept easily can be translated to

multidimensional parameters and more complex problems by appropriate quality

functions.

A more convenient definition of tangential depth can be formulated, if one notices

that taking the minimum over all u ̸= 0 just means to check all half-spaces containing

0 on their boundary. Since the length of u has no influence on the sign, one can

replace (11) as follows

dQT (θ, z) =
1

N
min

∥u∥=1,u∈Rd
#


n

u⊤∂Q(θ, zn)∂θ
≥ 0


.

As proposed by Müller (2005) for likelihood depth, Wellmann and Müller (2010)

for orthogonal regression and Wellmann et al. (2009) for polynomial regression, a

simplicial depth notion can be defined based on arbitrary depth notions.

Definition 6. Simplicial depth for a parameter θ ∈ Rd, based on observations

z = (z1, ..., zN) and an arbitrary depth notion dA is defined by

ddAS (θ, z) =
1
N
d+1

 
1≤n1<...<nd+1≤N

1{dA(θ,(zn1 ,...,znd+1
)>0}.

Often simplicial depth is a U-statistic. Therefore, the indicator 1{dA(θ,(zn1 ,...,znd+1
))}

has to define a proper kernel function. This can typically be achieved by the choice

of the involved depth notions. But just in few cases this U-statistic is not degener-

ated. For instance Denecke and Müller (2011, 2012, 2014b,a) present applications,

where this is the case. In the degenerated and the non-degenerated case appropriate

limit theorems, see for example Witting and Müller-Funk (1995), can be applied.

These theorems imply that simplicial depth converges in distribution and the limit

is often defined by functions of Normal distributions or of χ2 distributions respec-

tively. In the degenerated case the kernel of the U-statistic has to be decomposed

to allow asymptotic results. This was for example used in Kustosz and Müller (2014).

2.3 Data Depth and Regression 17
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3 Depth Based Estimators for Autoregressive Mod-

els

The application for our models is based on the work for regression models. While

in the one parameter case the results will be similar to linear regression through the

origin, the two parameter models require new methods to derive limit distributions.

The general approach in this thesis can be summarised as follows.

Assume that a dataset y = (y1, ..., yN)
⊤ ∈ RN , x = (x1, ..., xN)

⊤ ∈ RN is given.

We denote the complete data by z = (z1, ..., zN)
⊤ = ((x1, y1)

⊤, ..., (xN , yN)
⊤)⊤ and

analyse a model

yn = f(xn, θ) + ϵn

with parameter θ ∈ Rd and (ϵn)n a series of independent and identically distributed

errors with unknown distribution, satisfying med(ϵn) = 0. To measure the quality of

the fit of a parameter, we first define a real valued quality function Q(θ, zn). Then,

we use tangential depth to define a depth notion for our models. Plugging the

resulting expression into simplicial depth delivers a possibility to derive asymptotic

distributions.

This allows us to define estimators, tests and confidence regions by the following

statements.

Definition 7. For an arbitrary depth notion dA(θ, z), the maximum depth esti-

mate is defined by

θ̂(z) = argmax
θ∈Rd

dA(θ, z).

If we can derive the asymptotic distribution for an appropriate transformation

TA(θ, z) of an arbitrary depth notion dA, asymptotic tests can be defined.

18
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Theorem 8. (see Müller, 2005)

If TA(θ, Z) has a continuous limit distribution, an asymptotic α level test for H0 :

θ ∈ Θ0 is defined by φ : RN×2 → {0, 1} with

φ(z) =


1 , if sup

θ∈Θ0

TA(θ, z) ≤ qα

0 else
,

whereby qα is the α quantile of the limit distribution of TA(θ, Z).

Proof. For a random sample Z,

lim
N→∞

PZ
θ0


z ∈ RN×2|φ(z) = 1


= lim

N→∞
PZ
θ0


z ∈ RN×2

sup
θ∈Θ0

TA(θ, z) ≤ qα


≤ lim

N→∞
PZ
θ0


z ∈ RN×2|TA(θ0, z) ≤ qα


= lim

N→∞
Pθ0(TA(θ

0, Z) ≤ qα)

= α

holds for all θ0 ∈ Θ0.

This theorem states that if we can define an appropriate test statistic TA(θ, z) with

known asymptotic distribution, a test for H0 : θ ∈ Θ0 is defined, by rejection, if all

parameters in Θ0 are rejected. To apply this theorem for the proposed simplicial

depth statistics, we have to assure that TA(θ, z) = h(dA(θ, z)), whereby h is a strictly

monotone function of the depth. By the link between one-point hypothesis tests and

confidence regions, we can also define depth based confidence regions.

Corollary 9. Consider α level tests φθ0(z) = 1{TA(θ0,z)≤qα} for H0 : θ = θ0 as

defined in Theorem 8. Let Θ be an appropriate parameter space. If TA(θ, Z) has a

continuous limit distribution, an asymptotic (1−α) confidence region for θ is given

by

Θ̂α(z) = {θ ∈ Θ|TA(θ, z) > qα} .

19
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Proof. For all θ0 ∈ Θ, we have

lim
N→∞

PZ
θ0


z ∈ RN×2

θ0 ∈ Θ̂α(z)


= lim
N→∞

PZ
θ0


z ∈ RN×2|TA(θ0, z) > qα


= 1− lim

N→∞
PZ
θ0


z ∈ RN×2|TA(θ0, z) ≤ qα


= 1− lim

N→∞
Pθ0

TA(θ

0, Z) ≤ qα


= 1− α

for z = (z1, ..., zN) and Z = (Z1, ..., ZN).

3.1 Linear AR(1) Process without Intercept

The first model for which we propose a depth based statistic is the one parameter

model defined by (8). The main results can be found in Kustosz and Müller (2014).

As proposed in Section 2.3, we first have to define a quality function. Since the

squared residuals appear as a good quality function in case of normally distributed

errors in linear regression, we define

Q(θ1, zn) = (yn − yn−1 − θ1yn−1)
2 = rn(θ, y)

2,

whereby zn = (yn, yn−1), n ∈ {1, ..., N} and rn(θ, y) := (yn − yn−1 − θ1yn−1), n ∈
{1, ..., N} are the residuals. Further, y = (y0, ..., yN)

⊤ is an observation of the

underlying autoregressive process and y0 > 0 is fixed and known. With respect to

the model, we consider θ := θ1 in this section to simplify notation. The derivative

of the quality function then is

∂Q(θ, zn)

∂θ
= −2(yn − yn−1 − θ1yn−1)yn−1.

Considering the error conditions from Lemma 3 and assuming y0 > 0 delivers that

yn > 0 for all n ∈ N. Inserting this into tangential depth for the AR(1) process

3.1 Linear AR(1) Process without Intercept 20
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without intercept leads to

dAR
T (θ, z) =

1

N
min
|u|=1

# {n |u(−2(yn − yn−1 − θ1yn−1)yn−1) ≥ 0} (12)

=
1

N
min

u∈{−1,1}
# {n |u(−2(yn − yn−1 − θ1yn−1)yn−1) ≥ 0}

=
1

N
min

u∈{−1,1}
# {n |u((yn − yn−1 − θ1yn−1)yn−1) ≥ 0}

=
1

N
min {# {n |((yn − yn−1 − θ1yn−1)yn−1) ≥ 0}

,# {n |((yn − yn−1 − θ1yn−1)yn−1) ≤ 0}}

=
1

N
min {# {n |(yn − yn−1 − θ1yn−1) ≥ 0}

,# {n |(yn − yn−1 − θ1yn−1) ≤ 0}}

=
1

N
min {# {n |rn(θ, y) ≥ 0} ,# {n |rn(θ, y) ≤ 0}} .

We see that tangential depth just depends on the signs of the residuals in this

model. Even if the limit distribution of tangential depth under H0 : θ = θ0, with

med(En) = 0 can be derived quite easily, the properties of this statistic are not

appropriate to analyse growth processes. Tests based on tangential depth coincide

with simple sign tests. These tests have a huge drawback at finite samples for

growth processes. This drawback is discussed in Section 5 in more detail. Plugging

tangential depth into simplicial depth and using the growth assumptions allows

an improvement of the tangential depth based tests. Simplicial depth for AR(1)

processes without intercept based on tangential depth can be defined by

dAR
S (θ, y) =

1
N
2

 
1≤n1<n2≤N

1{dAR
T (θ,(zn1 ,zn2 )>0}. (13)

Note that the simplicial depth can be regarded as function of y = (y0, ..., yN)
⊤, i.e.

the underlying observed process, instead of z = (z1, ..., zN)
⊤, since for autoregres-

sive models xn = yn−1 holds. Tangential depth is larger than 0 for two tuples of

observations zn1 , zn2 if and only if the respective residuals change signs or one of the

residuals is zero. The depth statistic dAR
S can be calculated more explicitly.

Theorem 10. For the autoregressive process of order one without intercept defined

by

Yn = Yn−1 + θ1Yn−1 + En,

3.1 Linear AR(1) Process without Intercept 21
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we have

dAR
S (θ, y) =

1
N
2

 
1≤n1<n2≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0} + 1{rn1 (θ,y)<0,rn2 (θ,y)>0} (14)

+(1− 1{rn1 (θ,y)̸=0}1{rn2 (θ,y) ̸=0})

.

We refer to dAR
S as complete simplicial depth for the autoregressive process

without intercept.

Proof. By (12), dT (θ, (zn1 , zn2)) > 0 holds if and only if

min {#{n ∈ {n1, n2}|rn(θ, y) ≥ 0},#{n ∈ {n1, n2}|rn(θ, y) ≤ 0}} > 0.

This minimum is zero, if rn(θ, y) > 0 for both n ∈ {n1, n2} or, if rn(θ, y) < 0 for

both n ∈ {n1, n2}, since then one of the sets consists of two and the other of zero

elements. The expression is larger than zero, if one of the residuals is non-negative

and the other residual is non-positive or, if at least one residual is zero. This happens

in three cases which can be summarised by

1{rn1 (θ,y)>0,rn2 (θ,y)<0} + 1{rn1 (θ,y)<0,rn2 (θ,y)>0} + 1− 1{rn1 (θ,y)̸=0}1{rn2 (θ,y)̸=0}.

Replacing the indicators over the tangential depth in (13) by the upper expression

provides (14).

In application, the terms where one residual is exactly zero can be neglected. From

the theoretical point of view, these events have probability zero for continuous data.

However, empirical depth deterministically assigns a value larger than zero to them,

because they appear as edges of considered simplexes. Therefore, these points have

a fixed positive value of depth, what contradicts the fact of singular points having a

probability of zero in the limit. Additionally, the depth from these edges counts all

simplexes starting at the edge, what introduces jumps in the depth shape. Example

11 illustrates the problem when a simple location model is considered. This prop-

erty was already observed by Burr et al. (2004) who proposed another modification

which gives additional weight to points in the interior of the simplexes and thereby

overcomes some of the related problems.

Example 11. Consider simulated data from a linear AR(1) process without intercept

with N (0, 0.1) errors, θ1 = 1.1, N = 10 and y0 = 1.1 as depicted in Figure 3.

The ten available observations lead to nine residuals and nine parameters satisfying
yn

yn−1
− 1 = θ1 which coincides with rn(θ, y) = 0. If we evaluate dAR

S as proposed in

3.1 Linear AR(1) Process without Intercept 22



23 3 DEPTH BASED ESTIMATORS FOR AUTOREGRESSIVE MODELS

● ●

●

●
●

●

●

●

●

●

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

n

y n

Fig. 3: Simulated AR process without intercept.

(14), we get an empirical depth shape as presented by the red function in Figure 4.

We see that at the jump locations, which coincide with values of θ given by yn
yn−1

− 1,

the empirical depth shape shows spikes. These spikes result from the fact that each

parameter, given by yn
yn−1

−1 is the edge of several simplexes which are disjoint, except

for this edge, but are contributing to the depth function. This inflates the value of

the empirical simplicial depth. When we neglect these points and evaluate depth on

a fine grid the resulting empirical depth is given by the dashed black lines.

Remark 12. In our application, the problem described above leads to regions of

constant depth, surrounded by singular points of remarkably higher depth. This

introduces discontinuities in the resulting confidence regions. Hence, we propose a

version of simplicial depth, neglecting rn(θ, y) = 0, leading to a deflation of depth at

these points. In particular, the term

(1− 1{rn1 (θ,y)̸=0}1{rn2 (θ,y) ̸=0})

is neglected. Note that in this case we still have spikes at these points, but with lower

depth than in the surrounding parameters. However, convex hulls then lead to more

reliable confidence regions.

Considering limit theory, this modification makes no difference for data with con-

tinuous distribution, since we have a probability of zero at these points. Further, the

effect can be neglected, if the data is recorded at a higher accuracy than the parameter

grid, since we do not evaluate at such points then. Hence, the problem can also be

handled by a careful implementation of the statistic. In cases where the candidates
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Fig. 4: Resulting depth by considering and neglecting edges for one simulated AR
process.

coincide with the edges, the test statistic or the candidate set should be adjusted, for

example as we propose in Section 4.1.

According to the definition of depth, a parameter implies a good model fit, if depth

is maximal. This leads to the following definition.

Definition 13. The maximum simplicial depth estimator for θ := θ1 in model

(8) is defined by

θ̂AR(y) = argmax
θ>0

dAR
S (θ, y).

Under the assumption that P(En = 0) = 0, and considering Remark 12, we can

treat simplicial depth as a U-statistic with kernel

ψ(x1, x2) = 1{x1<0}1{x2>0} + 1{x1>0}1{x2<0}. (15)

By a spectral decomposition and calculation of the conditional expectation of the

kernel, simplicial depth appears to be a degenerated U-statistic for which the Theo-

rem of Hoeffding (see Witting and Müller-Funk, 1995) can be applied. This provides

the following statement.
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Theorem 14. For the autoregressive process of order one without intercept defined

by

Yn = Yn−1 + θ1Yn−1 + En,

with P(En ≥ 0) = 1
2
= P(En ≤ 0) and En ≥ −θ1y0, θ1 > 0, simplicial depth under

the true parameter θ0 := θ01 satisfies

N


dAR
S (θ0, (Y1, ..., YN))−

1

2


d→ 1

2
− 1

2
X2,

for N → ∞ and X ∼ N (0, 1).

Proof. See Kustosz and Müller (2014). The main argument is the theorem of

Hoeffding (see Witting and Müller-Funk (1995), Satz 7.183, p. 650 as well as p.

155). Based on the observation that the simplicial depth statistic is a degenerated

U-statistic, a spectral decomposition, as in Müller (2005), can be applied to derive

the limit distribution.

With these results, we can define tests and confidence intervals for explosive AR(1)

processes without intercept based on simplicial depth.

To derive asymptotic tests for H0 : θ ∈ Θ0, Theorem 14 can be used.

Corollary 15. An asymptotic α-level test for H0 : θ ∈ Θ0 for model (8) under the

conditions of Theorem 14 is defined by φ : RN+1 → {0, 1} with

φ(y) =


1 , if sup

θ∈Θ0

N(dAR
S (θ, y)− 1

2
) < 1

2
− 1

2
qχ2

1
(1− α)

0 else
, (16)

whereby qχ2
m
(γ) is the γ quantile of the χ2 distribution with m degrees of freedom.

Proof of Corollary 15. (see Kustosz and Müller, 2014)

For θ0 ∈ Θ0 we have

lim
N→∞

Pθ0


sup
θ∈Θ0

N


dAR
S (θ, (Y0, . . . , YN))−

1

2


<

1

2
− 1

2
χ2
1(1− α)


≤ lim

N→∞
Pθ0


N


dAR
S (θ0, (Y0, . . . , YN))−

1

2


<

1

2
− 1

2
χ2
1(1− α)


= P


−1

2
(X2 − 1) <

1

2
− 1

2
χ2
1(1− α)


= P(−X2 + 1 < 1− χ2

1(1− α))

= P(−X2 < −χ2
1(1− α)) = P(X2 > χ2

1(1− α)) = α.
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By considering the link between tests and confidence intervals the next corollary

immediately follows.

Corollary 16. Under the assumptions of Theorem 14 an asymptotic (1− α) confi-

dence interval for θ1 is given by

Θ̂AR
1−α(y) =


θ > 0

N(dAR
S (θ, y)− 1

2
) ≥ 1

2
− 1

2
qχ2

1
(1− α)


. (17)

Proof of Corollary 16. The assertion follows from the application of Corollary 15

and the relation of point tests and confidence intervals in Corollary 9.

The next statement shows how the empirical depth functions behave with respect

to monotonicity. This statement later will be useful to compute depth and to un-

derstand the behaviour of the empirical depth under non-constant model parameters.

Lemma 17. Let be κn := yn
yn−1

, κn ̸= κm for n ̸= m, with n,m ∈ {1, ..., N} and

κ(1) < ... < κ(N) the ordered set of κ1, ..., κN for an observed autoregressive process

without intercept y = (y0, ..., yN). Then dAR
S (θ, y) is maximal if and only if

θ ∈



κ(N

2
) − 1, κ(N

2
)+1 − 1


for N ∈ 2N

κ(N−1
2

) − 1, κ(N+1
2

) − 1

∪

κ(N+1

2
) − 1, κ(N+3

2
) − 1


for N ∈ 2N+ 1

.

Remark 18. We use the open sets to avoid the usage of parameters which coincide

with roots of the residuals, since then depth is potentially deflated, as discussed in

Remark 12.

Proof of Lemma 17. At first, we observe that changes in dAR
S (θ, y) can only appear,

if the residuals rn(θ, y) change signs. For an observed process y = (y0, ..., yN) these

sign changes can be determined by

θn + 1 = κn :=
yn
yn−1

.

Now, consider the ordered set of these locations of sign changes denoted by κ(n) =

θ(n) + 1. One can easily show that dAR
S (θ, y) = 0 for θ + 1 = κ < κ(1) and for

θ+1 = κ > κ∗(N), since then for any κ < κ(1), we have κ < κ(n) for all n ∈ {1, ..., N}
and hence for n0 being the index of κ(1), i.e. κ(1) =

yn0

yn0−1
,

yn − κyn−1 > yn − κnyn−1 = yn −
yn
yn−1

yn−1 = 0 ∀n ∈ {1, ..., N}.
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Analogously, we get yn − κyn−1 < 0 ∀ n ∈ {1, ..., N} for κ > κ(N).

We now prove that there is a set defined by [θ(n0), θ(m0)] with θ(n0) = κ(n0) − 1 and

θ(m0) = κ(m0) − 1, n0 < m0, so that

dAR
S (θ, y) > dAR

S (θ(m0)+1, y) and d
AR
S (θ, y) > dAR

S (θ(n0)−1, y)

for all θ ∈ [θ(n0), θ(m0)]. To see this, the order of the candidate parameters can be

used. Due to the symmetry of dAR
S (θ, y) in the residual signs, we can calculate depth

directly based on the ordered parameters κ(n) which are determined by the obser-

vations.

Crossing κ(1) delivers the first contribution to the depth statistic. For κ = θ + 1 ∈
(κ(1), κ(2)) we have

yn0 − yn0−1 − θyn0−1 = yn0 − κyn0−1 < yn0 − κ(1)yn0−1 = yn0 − κn0yn0−1 = 0

for n0 being the index of the observations defining the first candidate parameter, i.e.
yn0

yn0−1
= κ(1), and

yn − yn−1 − θyn−1 = yn − κyn−1 > yn − κ(2)yn−1 ≥ yn − κnyn−1 = 0

∀ n ∈ {1, ..., N}\{n0}, since κn ≥ κ(2). This means that rn0(θ, y) < 0 and rn(θ, y) >

0 ∀n ∈ {1, ..., N} \ {n0}. Now the symmetry of the terms in the statistic can be

used to see that

dAR
S (θ, y) = c(N)


n1<n2

1{rn1 (θ,y)<0}1{rn2 (θ,y)>0} + 1{rn1 (θ,y)>0}1{rn2 (θ,y)<0}

= c(N)
N

n=1

1{rn(θ,y)<0}

N
m=1

1{rm(θ,y)>0}, (18)

whereby c(N) = 1/

N
2


is the scaling constant. By (18), we see that dAR

S (θ, y) just

depends on the number of negative residuals which can be uniquely determined by

the interval for κ due to the order κ(n). Hence, for example, for κ ∈ (κ(1), κ(2)) we

have

dAR
S (κ− 1, y) = c(N) · 1 · (N − 1) =

N − 1
N
2

 . (19)
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For a general θ or κ, we can compute

dAR
S (κ− 1, y) = dAR

S (θ, y) = c(N) · k · (N − k) = c(N)(Nk − k2), (20)

with k being defined by the number of negative residuals for κ ∈ (κ(k), κ(k+1)).

Considering the function given by (20) as continuous in the number of negative

residuals k, this can be used to show that a unique maximising interval exists, since

the function

f(k) = (kN − k2)c(N)

has a unique maximum in k = N
2

for k ∈ R. Since we just have k ∈ {0, ..., N},
we need to take the discrete structure of the empirical depth function into account.

Therefore, we need to differentiate the solution for odd and even numbers of resid-

uals.

For N ∈ 2N, we find one maximising interval given by (κ(N
2
), κ(N

2
)+1). To show

this, observe that an even number N of residuals gives an even number of candi-

dates. Further N/2 is an integer. For κ ∈ (κ(N
2
), κ(N

2
)+1), we then have κ > κ(n) for

n ∈ {1, ..., N
2
} which are N/2 candidates and κ < κ(n) for n ∈ {N

2
+ 1, ..., N} which

are also N/2 candidates. This means that we have exactly N/2 negative and N/2

positive residuals. Crossing one of the boundaries of the interval turns one residual

and therefore reduces depth.

Note that the maximal depth on this interval using (18) is given by c(N) · N
2
· N

2
=

c(N) · N2

4
, what is the same value as the maximum of f given by the continuous

optimisation problem.

For N ∈ 2N + 1, we need to combine two maximising intervals, since an equal

separation of residuals with positive and negative signs is not possible. We now

can have N−1
2

positive and N+1
2

negative residuals, and vice versa. The interval

(κ(N−1
2

), κ(N+1
2

)) leads to N+1
2

negative residuals and N−1
2

positive residuals. Con-

sidering the next possible interval by crossing κ(N+1
2

), defined by (κ(N−1
2

), κ(N+1
2

)),

turns one sign and we get N−1
2

negative residuals and N+1
2

positive residuals. For

parameters outside of these intervals another sign change reduces the depth below

its maximal possible value again.

Note that here the maximal depth using (18) is given by c(N)·N+1
2

·N−1
2

= c(N)·N2−1
4

,

what is below the theoretical value given by c(N) · N2

4
.

Remark 19. A closed form solution of the maximal empirical depth for the linear

3.1 Linear AR(1) Process without Intercept 28
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autoregressive model without intercept can be given by c(N)(kN −k2) with k = ⌊N
2
⌋.

Lemma 17 gives a simple method to calculate the parameter with maximal simplicial

depth for the autoregressive model without intercept.

Corollary 20. Using the notation from Lemma 17, the maximum simplicial

depth estimator for θ in model (8) is

θ̂AR(y) ∈



κ(N

2
) − 1, κ(N

2
)+1 − 1


for N ∈ 2N,

κ(N−1
2

) − 1, κ(N+1
2

) − 1

∪

κ(N+1

2
) − 1, κ(N+3

2
) − 1


for N ∈ 2N+ 1.

An interesting observation is that this property also holds, if yn is not strictly in-

creasing or, if the process consists of phases defined by multiple autoregression pa-

rameters, as can be seen in the examples in Section 5.

3.2 Linear AR(1) Process with Intercept and Non-linear

AR(1) Process

Extending the model to an AR(1) process with intercept is not straightforward.

While the construction of simplicial depth can be performed similar to the one

parameter case, the derivation of the limit distribution gets more complicated. We

now consider the model defined by (9). In this section, we simplify notation by

θ = (θ1, θ3) in the context of the linear model or θ = (θ1, θ2) in the context of the

non-linear model. Remind that zn = (yn, yn−1)
⊤ and that the final statistics can be

regarded as functions in y = (y0, ..., yN)
⊤, also. By the same intuition as in Section

3.1, we define the quality function by the model residuals via

Q(θ, zn) = (yn − yn−1 − θ1yn−1 − θ3)
2 = rn(θ, y)

2. (21)

To define tangential depth, we now need to derive the quality function in two pa-

rameters. This leads to

∂Q(θ, zn)

∂θ1
= −2rn(θ, y)yn−1

∂Q(θ, zn)

∂θ3
= −2rn(θ, y).
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Hence, tangential depth for an AR(1) process with intercept is defined by

dARi
T (θ, y) = min

∥u∥=1,u∈R2
#

n|(u1, u2) · (yn−1, 1)

⊤ · rn(θ, y) ≥ 0

.

This expression is less trivial than the purely residual dependent expression in the

one parameter case. Nevertheless, one can show that for growth processes simplicial

depth, based on tangential depth, reduces to the evaluation of the residuals. Since

the results for the non-linear model are identical to the linear model with intercept

when the residuals are replaced, we formulate the main theorems for both cases here.

Therefore, preliminary calculations for the non-linear model given by (10) have to

be done.

The quality function for the non-linear model is

Q(θ, zn) = (yn − yn−1 − θ1y
θ2
n−1)

2 = rn(θ, y)
2 (22)

with derivatives

∂Q(θ, zn)

∂θ1
= −2rn(θ, y)y

θ2
n−1

∂Q(θ, zn)

∂θ2
= −2rn(θ, y)θ1y

θ2
n−1 log(yn−1).

Hence, tangential depth here is

dnAR
T (θ, y) = min

∥u∥=1,u∈R2
#

n|(u1, u2) · (yθ2n−1, θ1y

θ2
n−1log(yn−1))

⊤ · rn(θ, y) ≥ 0


= min
∥u∥=1,u∈R2

#

n|(u1, u2) · (1, θ1log(yn−1))

⊤ · rn(θ, y) ≥ 0

.

Note that here a strictly positive process is not a simplification but necessary to

allow the application of tangential depth.

Similar to the linear autoregressive model with intercept, it is possible to show that

tangential depth is larger than zero if and only if a set of residuals based on three

tuples of observations has alternating signs. Hence, simplicial depth for the non-

linear autoregressive model reduces to the expression for the linear autoregressive

model by replacing the residuals. To see this, we use the following result from

Kustosz et al. (2016b).

Theorem 21. For a model given by

yn = g(θ, xn) + En, n ∈ {1, ..., N}
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with zn = (xn, yn) ∈ R2, θ ∈ RK and (En)n a series of independent and identically

distributed errors, consider v(θ, xn) :=
∂
∂θ
g(θ, xn) and tangential depth, given by the

criterion u⊤ ∂Q(θ,zn)
∂θ

= u⊤ · v(θ, x) · rn(θ, z) ≤ 0 with u ∈ RK. Let be x1 < x2 < . . . <

xK+1 ∈ IR and assume the following conditions for wu : [x1, xK+1] → IR given by

wu(x) = u⊤ · v(θ, x):

A) wu has at most K − 1 sign changes on [x1, xK+1] for all u ∈ RK.

B) For any s ∈ {−1, 1}K+1 with at most K−1 sign changes, there exists u0 ∈ IRK

with sgn(wu0(xn)) = sn for n ∈ {1, . . . , K + 1}.

Then dT (θ, z) > 0 holds if and only if (r1(θ, z), . . . , rK+1(θ, z))
⊤ has alternating signs

or at least one of the residuals is zero.

Proof. The proof is given in Kustosz et al. (2016b).

Theorem 22.

a) For model (9) and yn > yn−1 for all n, simplicial depth reduces to

dARi
S (θ, y) =

1
N
3

 
1≤n1<n2<n3≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} (23)

+1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0}

+1− 1{rn1 (θ,y)̸=0}1{rn2 (θ,y)̸=0}1{rn3 (θ,y)̸=0}

,

whereby rni
are the residuals defined by (21).

b) For model (10) and yn > yn−1 for all n, simplicial depth reduces to

dnAR
S (θ, y) =

1
N
3

 
1≤n1<n2<n3≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} (24)

+1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0}

+1− 1{rn1 (θ,y)̸=0}1{rn2 (θ,y)̸=0}1{rn3 (θ,y)̸=0}

,

whereby rni
are the residuals defined by (22).

We refer to dARi
S as complete simplicial depth for the autoregressive process with

intercept and to dnAR
S as complete simplicial depth for the non-linear autoregres-

sive process.

Proof. The proof is given in Kustosz et al. (2016b). The main idea is, to characterise

dARi
T > 0 in (25) by the number of sign changes in the residuals with Theorem

21. The assertion then follows directly. For dnAR
S , we have to consider wu(x) =
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u1x
θ2 +u2θ1x

θ2log(x) with respect to the possible sign changes. Therefore, it suffices

to calculate the roots of wu, assuming u1, u2 > 0, x > 0 and θ1, θ2 ̸= 0. We get

u1x
θ2 + u2θ1x

θ2 log(x) = 0

⇔u1x
θ2 = −u2θ1xθ2 log(x)

⇔u1 = −u2θ1 log(x)

⇔ u1
−u2θ1

= log(x)

⇔ exp(
u1

−u2θ1
) = x.

Since one can in addition show that wu has exactly one extremum at x = exp(− 1
θ2
−

u1

u2θ1
) which is a minumum, if u2θ1θ2 > 0 and a maximum, if u2θ1θ2 < 0, see Kustosz

et al. (2016b), proof of Lemma 2, pp. 31, u2 can always be used to satisfy B) in

Theorem 21. In particular, the choice of u2 allows to flip the signs in the two regions

of wu(x). This completes the assertion for the non-linear model.

Definition 23. Under the assumptions of Theorem 22 and by dismissing of the

rni
(θ, y) = 0 cases, see Remark 12, we redefine equations (23) and (24).

a) For model (9) and yn > yn−1 for all n, simplicial depth reduces to

dARi
S (θ, y) =

1
N
3

 
1≤n1<n2<n3≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} (25)

+1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0}


whereby rni
are the residuals defined by (21).

b) For model (10) and yn > yn−1 for all n, simplicial depth reduces to

dnAR
S (θ, y) =

1
N
3

 
1≤n1<n2<n3≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} (26)

+1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0}


whereby rni
are the residuals defined by (22).

The definition of the simplicial depth estimator is similar to the one parameter

model.
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Definition 24. For models (9) and (10) maximum simplicial depth estima-

tors are defined by

θ̂ARi(y) ∈ argmax
θ∈R2

dARi
S (θ, y)

and

θ̂nAR(y) ∈ argmax
θ∈R2

dnAR
S (θ, y).

Again, simplicial depth has a form similar to a U-Statistic. The kernel is defined by

ψ(e1, e2, e3) = 1{e1>0,e2<0,e3>0} + 1{e1<0,e2>0,e3<0}.

The limit theorem of Hoeffding cannot be applied directly, since the kernel is not

symmetric. In particular, the limit distribution is a sum of integrated χ2
1 processes.

Theorem 25. For models (9) and (10) with P(En ≥ 0) = 1
2
= P(En ≤ 0), Yn almost

surely strictly increasing, Y0 = y0, θ1 > 1, the respective simplicial depth under the

true parameter θ0 satisfies

N


dmod
S (θ, Y )− 1

4


d→ 3

4
+

3

4
X2

2 (0)−
3

2

 2

−2

X2
1 (t)dt,

whereby X(t) = (X1(t), X2(t))
⊤ is a centred Gaussian process on [−2, 2] with con-

tinuous paths and covariance matrix

Cov(X(s), X(t)) (27)

=

 1

0
1(−0.5,0.5] (x− s)1(−0.5,0.5] (x− t) dx

 1

0
1(−0.5,0.5] (x− s) drx 1

0
1(−0.5,0.5] (x− t) dx 1


.

Thereby dmod
S (θ, y),mod ∈ {ARi, nAR} are given by (25) and (26), respectively.

Proof. The proof is given in Kustosz et al. (2016a) for the AR(1) process with

intercept only. In this paper general residuals, satisfying med(En) = 0 under the

null hypothesis, are considered. Hence, the result also holds for the non-linear

autoregressive model used here. It suffices to observe that the resulting depth is

given by (26) and just depends on the model residuals. Simplicial depth is related to

a U-Statistic, but has an asymmetric kernel so that standard results for U-statistics

cannot be used. By appropriate approximations and the median assumption on

the errors, a construction similar to a proof for degenerated U-statistics can be
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applied.

Compared with the first limit theorem an analytic expression for the quantiles of this

limit distribution is not available. Therefore, we present a method to approximate

the limit distribution to generate tables of the distribution’s quantiles for application,

see Section 4.1. Analogously to the last section, tests and confidence intervals can

be constructed.

Corollary 26. An asymptotic α-level test for H0 : θ ∈ Θ0 ⊂ R2 for models (8) and

(10) under the conditions of Theorem 25 is defined by φ : RN+1 → {0, 1} with

φ(y) :=


1 , if sup

θ∈Θ0

(N(dmod
S (θ, y)− 1

4
)) < qG(α)

0 else
, (28)

whereby qG(γ) is the γ quantile of the distribution ofW := 3
4
+3

4
X2

2 (0)−3
2

 2

−2
X2

1 (t)dt,

with X(t) = (X1(t), X2(t))
⊤ a centred Gaussian process on [−2, 2] with continuous

paths and covariance matrix defined by (27) and dmod
S (θ, y),mod ∈ {ARi, nAR} is

the appropriate simplicial depth for the considered model.

Finally, confidence intervals can be constructed.

Corollary 27. Under the assumptions of Theorem 25 asymptotic (1−α) confidence
regions for θ in models (9) and (10) are given by

Θ̂mod(y) =


θ ∈ R2

N

dmod
S (θ, y)− 1

4


≥ qG(α)


. (29)

Thereby dmod
S (θ, y),mod ∈ {ARi, nAR} is the appropriate simplicial depth for the

considered model.

In case of the two parameter model a property of neighbouring maximising regions,

as in the autoregressive process without intercept, does not hold. Note that we

use the term neighbouring instead of connected, since the straights dividing these

regions are given by the roots of the residuals and do not have the same depth as

the enclosed regions. A statement under extremely strict assumptions is presented

in the following lemma. First, we introduce the convex hull following Luenberger

(1969).

Definition 28. (see Luenberger, 1969, p. 17 and p.18)

i) A set K ⊆ V in a linear vector space V is said to be convex, if given x1, x2 ∈ K,
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all points of the form αx1 + (1− α)x2 for α ∈ [0, 1] are in K.

ii) Let S ⊆ V be an arbitrary set in a linear vector space V . The convex hull of

S, denoted by conv(S), is the smallest convex set K containing S. In other words,

conv(S) is the intersection of all convex sets K ⊆ V containing S.

Lemma 29. Let y = (y0, ..., yN) be an observation from an autoregressive process

with intercept given by (9). Assume that an intercept condition, yn > ym for all

n > m, θ1, θ3 > 0, an intersection condition,

yn − ym
yn−1 − ym−1

>
yn − yk

yn−1 − yk−1

for m < k < n and a root condition

yn
yn−1

<
ym
ym−1

for all m < n hold. Then dARi
S (θ, y) has a connected maximising parameter region

given by

Θmax ∈ int conv


θi,j, i ∈


2N

3
+ 1,

2N

3


, j ∈


N

3
,
N

3
+ 1


for N ∈ 3N,

Θmax ∈ int conv


θi,j, i ∈


2N + 1

3
+ 1,

2N + 1

3


, j ∈


N − 1

3
,
N − 1

3
+ 1


∪ int conv


θi,j, i ∈


2N + 1

3
+ 1,

2N + 1

3


, j ∈


N + 2

3
,
N + 2

3
+ 1


∪ int conv


θi,j, i ∈


2N − 2

3
+ 1,

2N − 2

3


, j ∈


N − 1

3
,
N − 1

3
+ 1



for N ∈ 3N+ 1,

Θmax ∈ int conv


θi,j, i ∈


2N − 1

3
+ 1,

2N − 1

3


, j ∈


N + 1

3
,
N + 1

3
+ 1


∪ int conv


θi,j, i ∈


2N − 1

3
+ 1,

2N − 1

3


, j ∈


N − 2

3
,
N − 2

3
+ 1


∪ int conv


θi,j, i ∈


2N + 2

3
+ 1,

2N + 2

3


, j ∈


N + 1

3
,
N + 1

3
+ 1



for N ∈ 3N+ 2,

whereby θi,j = {θ|ri(θ, y) = rj(θ, y)} and int conv(x1, ..., xN) denotes the interior of
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the convex hull, spanned by the points x1, ..., xN .

Proof. First, note that each tupelo of subsequent observations zn = (yn, yn−1) defines

a line θ3 = a · θ1 + b which separates parameters leading to negative and positive

values of the respective residual rn(θ, y). These lines can be calculated by solving

rn(θ, y) = 0 for n ∈ {1, ..., N} leading to

yn − yn−1 − θ1yn−1 − θ3 = 0

⇔θ3 = yn − yn−1 − θ1yn−1

⇔θ3 = yn − κyn−1,

with κ := θ1 + 1. An example based on 3 residuals is depicted in Figure 5.

>>> >><

<>>

<<>

<><

><<

<<<

θ3

κ

yn3

yn2

yn1

yn3

yn3−1

yn2

yn2−1

yn1

yn1−1
0

Fig. 5: Residual signs for the linear AR(1) growth model with intercept.

One can easily see that the lines intersect the θ3 axis at yn and the κ axis at yn
yn−1

.

Due to the growth assumption, the intersections on the θ3 axis are ordered by the

indexes of the respective residuals. Further, the intersections on the κ axis, have

to be ordered in reverse, due to our assumptions. Based on these lines, we have
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positive residuals for parameters below the respective line and negative residuals

for parameters above. The general idea to find the maximising region is depicted

in Figures 6,7 and 8. Since the lines are ordered with respect to their index n,

we see that for parameters above all lines we just observe negative residuals. For

parameters below all lines, we only have positive residuals. All other combinations

appear, if the lines intersect. Due to the ordering, the first intersection of the N

line appears, when the rN(θ, y) line intersects the rN−1(θ, y) line. This changes the

last residual to a positive one, leaving all remaining residuals negative. By crossing

the remaining lines rN−2(θ, y),...,r1(θ, y), the residuals are subsequently turned to

positive ones. Due to the assumption

yn − ym
yn−1 − ym−1

>
yn − yk

yn−1 − yk−1

for m < k < n, rN−1(θ, y) can just intersect the remaining lines

rN−2(θ, y), ..., r1(θ, y), if it crossed the rN(θ, y) line already. Hence, the last residual

is fixed with a positive sign for all further combinations caused by a sign change

of rN−1(θ, y). Continuing this over all residuals, the only possible sign structures

for growth processes are given by k positive signs, followed by j negative signs and

completed by N −k− j positive signs again. This has two implications. First of all,

there is a boundary region defined by the rN line and the region where all residuals

are positive, where no sign changes appear. Hence, on an infinite boundary region,

depth is zero. Further, we can determine the regions where depth can be maximal

by the sign change order. To do this, we maximise the function

f(k, j) = kj(N − k − j),

for k, j ∈ N and k + j < N . We start with

f(k, j) = kjN − k2j − kj2

and the derivatives

∂f

∂k
= jN − 2kj − j2,

∂f

∂j
= kN − 2kj − k2.
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These partial derivatives are 0, if and only if

jN − j2 = kN − k2

⇔j(N − j) = k(N − k).

Since j, k,N ∈ N this can only hold for k = j or k = (N − j). We can exclude

k = (N − j), since then f(N − j, j) = 0. Hence, we can reduce the function and

maximise f̃(k) = k2(N − 2k) instead. We now have

∂f̃

∂k
= 2kN − 6k2,

what is 0, if and only if k = 0 or k = N
3
. The second derivative proves that for k = 0

we have got a minimum and for k = N
3
a maximum. Since k, j, (N − k − j) have to

be natural numbers, the finite sample solution needs to by analysed with respect of

the divisibility of N by 3.

The case N ∈ 3N is illustrated in Figure 6. Here the optimal solution is given by

k = N
3
= j ∈ N. Hence i = N − j − k = N

3
∈ N, too. We get an unique division of

the residuals in a group of N/3 positive signs, followed by N/3 negative signs and

completed by N/3 positive signs again. The respective region is bounded by the

lines from the residuals at positions 2N
3

+ 1, 2N
3
, N

3
+ 1 and N

3
. Leaving this region

violates the optimality criterion and reduces depth. This implies that we have got

a neighbouring maximising region given by the claimed formula, since such a seg-

mentation is only possible on this region under the stated assumptions.

In Figure 7, the situation for N ∈ 3N+ 1 is presented. Due to the discrete number

of residuals, we cannot segment the residuals to groups with N/3 elements here. We

either need to reduce k to the next integer or increase it likewise. Then possible divi-

sions of residual signs are for example given by (N −1)/3 positive residuals followed

by (N + 2)/3 negative residuals and completed by (N − 1)/3 residuals. However,

each permutation of

N−1
3
, N+2

3
, N−1

3


leads to the same depth. Further, all of these

permutations can appear under our assumptions.

To clarify, if k = j =

N
3


= (N − 1)/3 or k = j =


N
3


= (N +2)/3 should be used,

we calculate depth in both cases.

For k = j = (N − 1)/3, depth is given by a constant scaling factor c(N) =
33 ·


N
3

−1
multiplied by (N − 1)2 · (N + 2), since i = N − k− j = (N + 2)/3. For

k = j = (N + 2)/3 depth is calculated by c(N) · (N + 2)2(N − 4). Comparing the
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n=9

n=8

n=7

n=6

n=5

n=4

n=3

n=2

n=1

κ

θ3

Fig. 6: Sign change example for N = 9.
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polynomials gives

(N − 1)2(N + 2) > (N + 2)2(N − 4)

⇔(N − 1)2 > (N + 2)(N − 4)

⇔N2 − 2N + 1 > N2 − 4N + 2N − 8

⇔N2 − 2N + 1 > N2 − 2N − 8

⇔1 > −8,

so that the solution given by k = j = (N − 1)/3 is maximal for all N ∈ N.
To analyse, if the resulting regions are neighbouring, we now observe that the max-

imising regions have to divide the residuals to permutations of

N−1
3
, N+2

3
, N−1

3


.

There are three permutations and hence three possible sets which appear by evalu-

ation of the intersects of the bounding residuals. For the first permutation
N−1
3
, N+2

3
, N−1

3


, the interesting residuals are rN−1

3
(θ, y), rN−1

3
+1(θ, y),

rN−N−1
3

+1(θ, y), rN−N−1
3
(θ, y). Due to our assumptions, a sign change for the first

two residuals from rN−1
3
(θ, y) > 0 to rN−1

3
+1(θ, y) < 0, combined with a sign from

rN−N−1
3
(θ, y) < 0 to rN−N−1

3
+1(θ, y) > 0 is the only possible way to observe such

a division. The region bounded by this restriction hence gives a parameter region

with maximal depth.

Since we have two further permutations, the combinations of their bounding resid-

uals give two more regions with maximal depth. These regions are automatically

neighbouring, since the central region, given by the first permutation, can be reached

from the two remaining regions by changing of one residual only.

The situation for N ∈ 3N+ 2 is presented in Figure 8.

Similar calculations as in the N ∈ 3N + 1 case show that here the possible regions

are defined by permutations of

N+1
3
, N−2

3
, N+1

3


. Again, three regions with maximal

depth appear which are neighbouring through a central region.

Remark 30. By solving the equations in θ, the values θi,j defining the edges of the

maximising regions can be calculated explicitly. This is presented in Section 4.3.

Further note that empirical depth coincides with the extremal value of the continuous

optimisation function, if N ∈ 3N holds. Otherwise, maximal empirical depth is given

by

c(N) · ((N − 1) · (N + 2) · (N − 1)) for N ∈ 3N+ 1
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n=9

n=8
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n=1

κ

θ3

Fig. 7: Sign change example for N = 10.
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n=9
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n=5

n=4
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n=2

n=1

κ

θ3

Fig. 8: Sign change example for N = 11.
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or

c(N) · ((N + 1) · (N − 2) · (N + 1)) for N ∈ 3N+ 2,

whereby c(N) =

33 ·


N
3

−1
.

In contradiction to the one parameter case, where the order of the observation vector

was not important, here the maximising regions can change, if the ordering does not

hold. If the process is defined by multiple parameters, we also can observe multiple

maximising regions. The second case for example appears, if the parameters change

within the observed process.

Remark 31. Simplicial depth for the autoregressive process with intercept, defined

by (9), can have several local maxima, if the model assumptions are violated.

The reason for the violation of this property is the additional degree of freedom

introduced by the intercept parameter. In comparison to the one parameter model

the fits can now be shifted in addition to a tilting. Further, the simplicial depth

statistics are not symmetric. Hence, the effect of a change in θ does not only depend

on simple intervals defined by the parameter but on regions defined by multiple

parameters. The next example shows that in case of inhomogeneous models depth

now shows multimodal contours. In particular, this shows that simplicial depth now

is not a proper depth notion as defined by Zuo and Serfling (2000).

Example 32. In this Example, we show the validity of Remark 31. Consider a

realisation of an autoregressive process which changes its parameters from a growth

parameter close to κ = 1.05 to a parameter close to κ = 1.55 and θ3 = 0.1, whereby

κ = θ1 + 1, interrupted by a single downward jump between these two phases, as

shown in Figure 9 (a).

The simulated data is given by y = (2.90, 3.04, 3.32, 3.57, 1.90, 3.22, 5.12, 8.10)⊤. The

process starts in y0 = 2.9 and jumps down to y5 = 1.9 at the change point. For the

independent errors, we used N (0, 0.01) distribution. In Figure 9 (b), we show the

values of yn against yn−1. We observe two clusters of points. They can be identified

by the parameters from the two different phases. Fits from these parameters, θa =

(1.05, 0.1)⊤ and θb = (1.55, 0.1)⊤ are represented by the black lines in Figure 9 (b).

The red lines are fits from 50 randomly drawn parameters which are in the regions

with maximal depth.
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(a) Simulated process
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(b) yn against yn−1

Fig. 9: Fits of an autoregressive process with two phases and downward jump. The

left figure shows the observed process. The right figure depicts yn versus yn−1, the

true parameter fits, represented by the black lines and fits from the regions with

maximal depth, shown by the red lines.

In Figure 10, we show the lines defined by rn(θ, y) = 0, i.e. θ3 = yn − κyn−1 =

yn − yn−1 − θ1yn−1 and evaluate the empirical depth on a grid defined by [−2, 4]2

with accuracy 0.001. The lines, set by the roots of the residuals, are not ordered,

since the process is not monotonically increasing. Further two potential regions with

high depth appear.
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Fig. 10: Depth contour of the process depicted in Figure 9. The dashed lines show

the parameter constellations for which the residuals are zero. The black regions are

the regions with maximal depth.

Depth is maximised in two regions which are not connected. This happens, since

the different phases and the downward jump change the residual order. This can in

particular be seen in Figure 9 (b), where the red lines are given by yn = κyn−1 + θ3

and (κ, θ3) are randomly drawn parameters with maximal depth. It is interesting to

mention that even if the regions are not connected the value of depth in this regions is

0.3428571 =

7−1
3

· 7+2
3

· 7−1
3


· 1

(73)
and hence really maximal. Further, the parameter

region with maximal depth for θ3 < 0 is not bounded, while the region for θ3 > 0 is.

In case of the non-linear autoregressive process the results on a connected maximising

region are even more restrictive than in the linear case. The statement can be found

in the following Lemma.

Lemma 33. The simplicial depth for the non-linear autoregressive process is maxi-

mal at a connected region, if yn > yn−1, ym − ym−1 > yn − yn−1 for all m > n and

the conditions for the order of potential candidates hold for the linearisation

log


yn
yn−1

− 1


− θ̃2log (yn−1) = θ̃1,

where θ̃1 = log(θ1) and θ̃2 = (θ2 − 1). Thereby, the conditions translate to an

intercept condition

log


yn
yn−1

− 1


> log


ym
ym−1

− 1


for all m < n,
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an intersection condition

log


yn
yn−1

−1

− log


ym

ym−1
−1


log (yn−1)− log (ym−1)
>
log


yn
yn−1

−1

− log


yk

yk−1
−1


log (yn−1)− log (yk−1)
for all m < k < n,

and a root condition

log


yn
yn−1

−1


log (yn−1)
<
log


ym
ym−1

−1


log (yn−1)
for all m < n.

Proof. The proof simply follows by the arguments of Lemma 29 by observing that

yn = yn−1 + θ1y
θ2
n−1

can be translated to residual lines by

log


yn
yn−1

− 1


− (θ2 − 1)log(yn−1) = log(θ1).

Under the growth conditions, we again introduce conditions, so that these lines are

ordered by increasing intercepts and decreasing slopes, as in the linear case and

hence can prove the assertion on neighbouring maximising regions.

As in the linear case simple counterexamples for this property can be constructed,

for example, if the underlying process has changing parameters.

Remark 34. Even if we have got restricted possible sign structures for growth pro-

cesses, all of our depth notions dAR
S , dARi

S and dnAR
S also indicate maximal depth for

completely alternating signs. So far, we cannot prove this assertion, but in case of

real world applications this case appears often. In these cases, we cannot claim that

depth is maximised at a unique connected region, but empirical results show that this

implication is very likely, as long as a process with long term growth and homoge-

neous parameters is observed. The proof remains an objective for future research.

3.3 Simplified Depth Notions

Especially when constructing confidence regions, a problem in applying simplicial

depth statistics is the computation time. A single evaluation of the full depth

notion for the two parameter case is of order N3. Since our confidence intervals are

formulated in a general form, which requires the evaluation of depth on a parameter

grid for an application, it is desirable to define a reasonable grid based on the
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available observations. This restricts the evaluations of the depth statistic and

improves the computational efficiency of our methods. A data based grid will be

discussed in the Section 4.3 which deals with the implementation. In advance, in

Section 4.1 we describe an algorithm, which is more efficient than a straightforward

calculation of simplicial depth, to allow a fast computation of the statistics. From

a theoretical point of view, we will reduce the computational costs from a third

direction. We define simplified simplicial depth statistics which are closely related

to the full simplicial depth expressions dAR
S , dARi

S , and dnAR
S . By derivation of the

limit distributions, we propose estimators, tests and confidence intervals. Since

the confidence intervals via full simplicial depth often are subsets of the intervals

based on the simplified notions, we will be able to restrict the candidate set by a

remarkably faster evaluation of the simplified statistics in advance of the calculation

based on the full depth notions. The simplified depth notions will work for both

cases, the one and two parameter models, as well as for a full model with θ ∈ R3.

In Kustosz et al. (2016b), we show that even more complex models can be handled

by these depth notions.

After introducing the new depth notions d1S, d
2
S and d3S, we will refer to them as

simplified simplicial depth in this thesis. The formulas for the simplified depth

notions are given in a general form by setting Zn = (Xn, Yn), zn = (xn, yn), θ ∈ RK

and rn(θ, z) being the residuals of the respective models. This, for example, also

allows the application of the statistics to general regression models. Remind that

in case of autoregressive processes, we set zn = (yn, yn−1). Further, diS(θ, z) then

can be considered as diS(θ, y) for i ∈ {1, 2, 3}. However, to allow a more general

application, we use the z notation in this section.

d1S - Nonoverlapping Subsequent Subsets

The first simplified depth statistic can be defined by

d1S(θ, z) :=
1
N

K+1

 ⌊ N
K+1⌋
n=1


K+1
k=1

1{r(K+1)(n−1)+k(θ,z)(−1)k>0}

+
K+1
k=1

1{r(K+1)(n−1)+k(θ,z)(−1)k+1>0}


.

Instead of evaluating all possible permutations of the ascending indexed residuals,

now just subsequent residuals without overlapping are evaluated. This, in particular,

avoids dependent terms in the statistic. An example is given in Figure 11. This
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1st term not alternating

2nd term not alternating

0

0

r1 r2 r3 r4 r5 r6

Fig. 11: Illustration of the d1S statistic.

statistic obviously is a part of the full simplicial depth statistic. In the figure, the

evaluation for a sample with seven observations for a two dimensional parameter is

depicted. We hence have N = 6 residuals and K = 2. So just ⌊6/3⌋ = 2 terms

have to be evaluated. Since the relevant groups have no sign changes, the resulting

d1S depth in this example is zero. A big advantage of this statistic is that the limit

distribution under the true parameter can be derived easily when independent errors

are assumed.

Theorem 35. If θ0 ∈ RK is the true parameter with Pθ0(rn(θ
0, Z) > 0) = 1

2
=

Pθ0(rn(θ
0, Z) < 0) for all n = 1, ..., N then

N

K + 1


d1S(θ

0, Z)− (1
2
)K

(1
2
)K(1− (1

2
)K)

d→ N (0, 1)

for N → ∞.

Proof. Note that rn(θ, Z) = En holds, if θ is the underlying parameter.

Set

Vn :=
K+1
k=1

1{r(K+1)(n−1)+k(θ,Z)(−1)k>0} +
K+1
k=1

1{r(K+1)(n−1)+k(θ,Z)(−1)k+1>0}.

Then Vn, n ∈ {1, . . . ,


N
K+1


}, are independent variables with Bernoulli distribution

satisfying P(Vn = 1) = (1/2)K , so that the assertion follows from the central limit

theorem (CLT), see e.g. van der Vaart (2007), Proposition 2.17, p. 16.

Since the limit distribution is well known, we can define asymptotic tests and con-
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fidence intervals. This test can be applied in all situations in which a simplicial

depth based on a K dimensional parameter is appropriate. For our application, we

just define the resulting test for the three autoregressive models. Note that in this

situation we have N + 1 observations and N residuals and z can be replaced by y.

Corollary 36. An asymptotic α-level test for H0 : θ ∈ Θ0 for model (8) under the

conditions of Theorem 14 or models (9) and (10) under the conditions of Theorem

25, is defined by φ : RN+1 → {0, 1} with

φ(y) =


1 , if sup

θ∈Θ0


N

K+1

 d1S(θ,y)−( 1
2
)K√

( 1
2
)K(1−( 1

2
)K)

< qN (0,1)(α)

0 else
, (30)

whereby qN (0,1)(γ) is the γ quantile of the Standard Normal distribution.

Thereby, rn(θ, y) is defined by the appropriate model residuals and Θ0 ⊂ RK.

The confidence intervals can be directly constructed by the following statement.

Corollary 37. Under the assumptions of Corollary 36, an asymptotic (1− α) con-

fidence region for θ is given by

Θ̂1(y) =

θ ∈ RK




N

K + 1


d1S(θ, y)− (1

2
)K

(1
2
)K(1− (1

2
)K)

≥ qN (0,1)(α)

 , (31)

whereby the residuals and the parameter dimension have to be defined as appropriate

by the respective models.

It is also possible to calculate the exact distribution under H0, if N is fixed and

known. This simply follows from the arguments in the proof of Theorem 35. Instead

of the application of the CLT, one can use the distribution of Vn to derive the

distribution of the sum in the simplicial depth statistic.

Corollary 38. If θ0 ∈ RK is the true parameter with Pθ0(rn(θ, Z) > 0) = 1
2
=

Pθ0(rn(θ, Z) < 0) for all n ∈ {1, ..., N} then
N

K + 1


d1S(θ, Z) ∼ Bin


N

K + 1


, (1/2)K


.

Proof. After rescaling with


N
K+1


, we just have a sum of independentBin(1, (1/2)K)

random variables. Hence, the sum is Bin


N
K+1


, (1/2)K


distributed.

By application of this corollary, exact tests for the simplified depth notion can be

constructed.
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d2S - Overlapping Subsequent Subsets

If it is desirable to account for dependency in the simplicial depth statistic, another

version can be defined by

d2S(θ, z) :=
1

N −K

N−K
n=1


K+1
k=1

1{rn−1+k(θ,z)(−1)k>0}

+
K+1
k=1

1{rn−1+k(θ,z)(−1)k+1>0}


.

This statistic again uses blocks of K+1 residuals for a K dimensional parameter but

allows overlapping residual blocks. An example is given by Figure 12. In contrast

to the first proposal, now a simple CLT is not applicable. But since we consider

subsequent blocks of residuals the dependency is limited and hence a modified CLT

can be applied.
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1st term, not alternating

2nd term, not alternating

3rd term, alternating

4th term, not alternating

0

0

0

0

r1 r2 r3 r4 r5 r6

Fig. 12: Illustration of the d2S statistic.

The example with N = 6 residuals shows that we now have N − 2 = 4 terms which

are checked in the test statistic. The third term consists of residuals with alternating

signs, so that we have a contribution to d2S depth here. Hence, the resulting d2S depth

is 1
4
.

Theorem 39. If θ0 ∈ RK is the true parameter with Pθ0(rn(θ
0, Z) > 0) = 1

2
=

Pθ0(rn(θ
0, Z) < 0) then

√
N −K

d2S(θ
0, Z)−


1
2

K
(1
2
)K · [3− (1

2
)K−1 ·K − 3 · (1

2
)K ]

d→ N (0, 1),

for N → ∞.

Proof. Note that rn(θ, Z) = En holds, if θ is the underlying parameter.
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Set

Vn :=
K+1
k=1

1{rn−1+k(θ,Z)(−1)k>0} +
K+1
k=1

1{rn−1+k(θ,Z)(−1)k+1>0}.

Then Vn, n ∈ {1, ..., N − K}, are Bernoulli variables with P (Vn = 1) = (1/2)K .

By centering to Xn = Vn − (1
2
)K , we get a series of stationary random variables

with E[Xn] = 0 and E[|Xn|3] < ∞. So the limit theorem of Hoeffding (1948) for

m-dependent random variables can be applied, since Xi and Xj are dependent if

and only if the corresponding index sets are overlapping. This implies that V1, V2, ...

is K-dependent. To calculate the variance component in the limit distribution, we

need to calculate E(X1Xd) for d ∈ {1, ..., K + 1} and get

A = E[X2
1 ] +

K+1
d=2

2 · E[X1Xd].

For d > K + 1 the terms are zero, since the underlying events are independent.

For d ∈ {1, ..., K + 1}, we have

E[X1Xd] = E


V1 −


1

2

K


Vd −

1

2

K


= E [V1Vd]−

1

2

2K

=


1

2

K+d−1

−

1

2

2·K

.

By insertion of the explicit expressions for the expected values, A can be calculated
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by

A =
K+1
d=2

2 ·


1

2

K+d−1

−

1

2

2K

+


1

2

K

1−


1

2

K


=


1

2

K

K−1
d=0


1

2

d

−K


1

2

K−1

+ 1−

1

2

K


=


1

2

K

2−


1

2

K−1

−K


1

2

K−1

+ 1−

1

2

K


=


1

2

K

3−K


1

2

K−1

−

1

2

K−1
1 +

1

2



=


1

2

K

3−


1

2

K−1

·K − 3 ·

1

2

K

.

As for the first simplified statistic the limit distribution can be used to define tests

and confidence regions for all considered models.

Corollary 40. An asymptotic α-level test for H0 : θ ∈ Θ0 for model (8) under the

conditions of Theorem 14 or models (8) and (10) under the conditions of Theorem

25 is defined by φ : RN → {0, 1} with

φ(y) =


1 , if sup

θ∈Θ0


1

N−K

 d2S(θ,y)−( 1
2)

K

√
( 1
2
)K ·[3−( 1

2
)K−1·K−3·( 1

2
)K ]

< qN (0,1)(α)

0 else

, (32)

whereby qN (0,1)(γ) is the γ quantile of the Standard Normal distribution.

Thereby, rn(θ, y) is defined by the appropriate model residuals and Θ ⊂ RK.

Analogously, we get the confidence regions.

Corollary 41. Under the assumptions of Corollary 40, an asymptotic (1− α) con-

fidence region for θ is given by

Θ̂2(y) =

θ ∈ RK




1

N −K


d2S(θ, y)−


1
2

K
(1
2
)K · [3− (1

2
)K−1 ·K − 3 · (1

2
)K ]

≥ qN (0,1)(α)

 ,

(33)

whereby the residuals and the parameter dimension has to be defined as appropriate.
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Here, the calculation of an exact distribution of the test statistic is a harder task

than for independent terms. We again can state that the terms in d2S are Bernoulli

variables, but the summation to Binomial variables is not straightforward, since the

terms are overlapping and hence dependent. The main problem is a combinatorial

task which increases in the number of observations.

A solution is so far not available. To allow tests based on the exact distribution, we

hence deliver approximations of the exact distributions instead which are available

in the rexpar package. This approximations are based on the simple fact that the

residuals have median zero under H0. We simulate residuals based on independent

Bernoulli distributed variables on {−1, 1} and calculate the test statistic based on

these residuals. By a sufficient number of repetitions, the resulting values of the

test statistic approximates the exact distribution of d2S under H0. This distribution

clearly differs from a binomial distribution, as can be seen in Example 42.

Example 42. We approximate the exact distribution of (N − 2)d2S for K = 2, N =

1000. Figure 13 shows the resulting approximaton and the Binomial distribution

with N − 2 and p = 1/4 which results, if we treated the terms in d2S as independent.

200 250 300

0
.0

0
0
.0

2
0
.0

4

value

re
l.
 f
re

q
.

Fig. 13: Simulated exact distribution of the sum in the d2S statistic for N = 1000

under H0, depicted by the black lines and a Bin(N − 2, 1/4) distribution, depicted

by the red lines.

Both distributions are centred around 250 what coincides with the expected value of

1/4 for the rescaled statistic. The exact statistic is flatter than a binomial distribu-

tion. Hence, a significant effect on the distribution caused by dependence is apparent.

In particular, the critical values are influenced by the dependency.

d3S - Subsets with Fixed Point in Centre

The third simplification will be restricted to the two parameter case. The residual

blocks considered here consist of one residual of the first half of the data, one residual
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of the second half and the residual in the middle. To get conditional independence,

we use the central residual in all blocks and all remaining residuals just once. The

statistic is defined by

d3S(θ, z) :=

1
N−1
2

 ⌊N−1
2 ⌋

n=1


1{rn(θ,z)>0} 1


r⌊N+1

2 ⌋(θ,z)<0

 1{rN−n+1(θ,z)>0}

+ 1{rn(θ,z)<0} 1

r⌊N+1

2 ⌋(θ,z)>0

 1{rN−n+1(θ,z)<0}


.

Here, the limit distribution again follows based on the CLT. An illustration is given

in Figure 14.

1st term not alternating

2nd term not alternating

0

0

r1 r2 r3 r4 r5 r6

Fig. 14: Illustration of the d3S statistic.

In the example, we have to evaluate ⌊5/2⌋ = 2 groups of residuals. Both groups do

not have alternating signs. Hence, d3S depth is zero.

Theorem 43. If θ0 ∈ R2 is the true parameter with Pθ0(rn(θ
0, Z) > 0) = 1

2
=

Pθ0(rn(θ
0, Z) < 0) then

N − 1

2


d3S(θ

0, Z)− 1
4

3
16

d→ N (0, 1)

for N → ∞.
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Proof of Theorem 43. Note that rn(θ
0, Z) = En holds, if θ0 is the true underlying

parameter.

Set

Vn = 1{rn(θ,Z)>0} 1

r⌊N+1

2 ⌋(θ,Z)<0

 1{rN−n+1(θ,Z)>0}

+1{rn(θ,Z)<0} 1

r⌊N+1

2 ⌋(θ,Z)>0

 1{rN−n+1(θ,Z)<0}.

Again, Vn are Bernoulli variables, here with Pθ0(Vn = 1) = 1/4. To apply the CLT,

we need to assure independence of V1, ..., V⌊N−1
2

⌋. At first, note that

Pθ0


Vn = 0

E⌊N+1
2

⌋ > 0


=Pθ0 ({En > 0, EN−n+1 > 0} ∪ {En > 0, EN−n+1 < 0}

∪{En < 0, EN−n+1 > 0}|E⌊N+1
2

⌋ > 0


=Pθ0 (En > 0, EN−n+1 > 0) + Pθ0 (En > 0, EN−n+1 < 0) + Pθ0 (En < 0, EN−n+1 > 0)

=
3

4
= Pθ0(Vn = 0),

since E1, ..., EN are independent. Analogously, we obtain

Pθ0


Vn = 0

E⌊N+1
2

⌋ < 0

=

3

4
= Pθ0(Vn = 0)

and

Pθ0


Vn = 1

E⌊N+1
2

⌋ < 0

= Pθ0


Vn = 0

E⌊N+1
2

⌋ > 0

=

1

4
= Pθ0(Vn = 1).

Therefore, independence of E1, ..., EN implies that Vn and Vm with n < m < ⌊N+1
2

⌋
are conditionally independent given E⌊N+1

2
⌋ so that

Pθ0(Vn = k, Vm = l)

=Pθ0


Vn = k, Vm = l

E⌊N+1
2

⌋ > 0

Pθ0


E⌊N+1

2
⌋ > 0


+Pθ0


Vn = k, Vm = l

E⌊N+1
2

⌋ < 0

Pθ0


E⌊N+1

2
⌋ < 0


=Pθ0


Vn = k

E⌊N+1
2

⌋ > 0

Pθ0


Vm = l

E⌊N+1
2

⌋ > 0

· 1
2

+Pθ0


Vn = k

E⌊N+1
2

⌋ < 0

Pθ0


Vm = l

E⌊N+1
2

⌋ < 0

· 1
2

=Pθ0(Vn = k)Pθ0(Vm = l),
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for k, l ∈ {0, 1}. Hence, Vn and Vm are independent. Similarly, we obtain the

independence of V1, ..., V⌊N−1
2

⌋.

The tests and confidence intervals can be formulated as follows.

Corollary 44. An asymptotic α-level test for H0 : θ ∈ Θ0 for model (8) under the

conditions of Theorem 14 or models (9) and (10) under the conditions of Theorem

25 is defined by φ : RN+1 → {0, 1} with

φ(y) =


1 , if sup

θ∈Θ0


N−1
2

 d3S(θ,y)−
1
4√

3
16

< qN (0,1)(α)

0 else
, (34)

whereby qN (0,1)(γ) is the γ quantile of the Standard Normal distribution.

Thereby, rn(θ, z) is defined by the appropriate model residuals and Θ ⊂ RK.

Remark 45. Note that we just give the limit proof for K = 2 here. However, for

each even K a similar statistic can be proposed. The proof of a limit theorem can

be conducted analogously.

The confidence sets can be constructed by the following corollary.

Corollary 46. Under the assumptions of Corollary 44, an asymptotic (1− α) con-

fidence region for θ is given by

Θ̂3(y) =

θ ∈ RK




N − 1

2


d3S(θ, y)− 1

4
3
16

≥ qN (0,1)(α)

 , (35)

whereby the residuals and the parameter dimension has to be defined as appropriate.

Again, we can calculate the exact distribution under H0, if N is fixed and known by

using the distribution of the terms in the statistic.

Corollary 47. If θ0 ∈ RK is the true parameter with Pθ0(rn(θ, Z) > 0) = 1
2
=

Pθ0(rn(θ, Z) < 0) for all n ∈ {1, ..., N} then
N − 1

2


d3S(θ, Z) ∼ Bin


N − 1

2


, (1/2)K


.

Proof. By the calculations in the proof of Theorem 43, we can rescale the statistic

by

N−1
2


to a sum of conditionally independent Bernoulli variables with identical

distribution. Hence, the sum is a Binomial variable with the stated parameters.

By application of this corollary, exact tests for the simplified depth notion can be

constructed.

3.3 Simplified Depth Notions 57



58 3 DEPTH BASED ESTIMATORS FOR AUTOREGRESSIVE MODELS

3.4 Consistency

In this section, we address the consistency of the proposed tests. Thereby, we

will restrict on explosive processes, as necessary for our main application. The

central results are discussed in Kustosz and Müller (2014), Kustosz et al. (2016a)

and Kustosz et al. (2016b).

First of all, we need to define consistency for the depth based tests.

Definition 48. A test φ(θ, y) for H0 : θ ∈ Θ0 is consistent at all θ∗ ∈ Θ \Θ0, if

lim
N→∞

Pθ∗(φ(θ
0, Y ) = 1) = 1 ∀θ0 ∈ Θ0.

For full simplicial depth the consistency of the resulting tests can be derived as in

Kustosz et al. (2016a). Therefore, we have to restrict the parameter space to the

explosive case. We then can prove the assertion for specific one sided hypothesis

and the one point null hypothesis. We start with the linear model without intercept

defined by (8). Thereby, we consider κ = θ1 +1 to simplify notation without loss of

generality.

Theorem 49. If the errors satisfy En ≥ y0 − τy0 + c ∀n, y0 > 0, c > 0, τ > 1, Y0 =

y0,Θ = [τ,∞), θ01 > τ and we consider

Θ0 = {θ1 ∈ Θ|θ1 ≥ θ01} or Θ0 = {θ01},

then the test given by (16) is consistent at all θ∗ ∈ Θ \Θ0.

We need the following Lemma.

Lemma 50. If the errors satisfy En ≥ y0 − κy0 + c ∀n, y0 > 0, c > 0, θ > 1 and

Y0 = y0, then Yn is strictly increasing with

Yn ≥


n−1
k=0

κk


c+ y0

almost surely.

Proof. This easily follows by induction. For n = 1 we have

Y1 =κY0 + E1

≥κy0 + y0 − κy0 + c

=c+ y0.
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Then

Yn =κYn−1 + En

≥κ


n−2
k=0

κk


c+ y0


+ En

=


n−1
k=1

κk


c+ κy0 + En

≥


n−1
k=1

κk


c+ κy0 + y0 − κy0 + c

=


n−1
k=0

κk


c+ y0.

by induction.

Now, we can prove the consistency.

Proof of Theorem 49. We have to show that

lim
N→∞

Pθ∗


sup
θ∈Θ0


N(dAR

S (θ, Y∗)−
1

2
)


≥ q(α)


= 0,

whereby q(α) is the α quantile of the distribution given by 1
2
− 1

2
X2 and X ∼ N (0, 1).

Pθ∗ denotes the probability measure induced by the processes under θ∗ and Y∗ are

the respective processes. We start with the one-sided hypothesis. The general idea is

to apply the Chebychev inequality. To do this, some preliminary steps are necessary.

First, note that

sup
θ∈Θ0


1{rn1 (θ,Y∗)>0,rn2 (θ,Y∗)<0} + 1{rn1 (θ,Y∗)<0,rn2 (θ,Y∗)>0}


≤sup

θ∈Θ0


1{rn1 (θ,Y∗)>0} + 1{rn2 (θ,Y∗)>0}


(36)

≤1{rn1 (θ
∗,Y∗)>(θ0−θ∗)Yn1−1} + 1{rn2 (θ

∗,Y∗)>(θ0−θ∗)Yn2−1}.

Under the conditions on the errors Yn is a growth process. Hence, for each γ > 0,

we can find N0, such that

Yn ≥ (
n−1
k=0

κk)c+ y0 ≥ γ

for all n ≥ N0,see Lemma 50. Since θ0 > θ∗, we can select γ with (θ0 − θ∗)γ > ρ for
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ρ satisfying Pθ∗(rn(θ, Y∗) > ρ) < 1
4
− δ for δ ∈ (0, 1

4
). If we now define

H(rn1(θ
∗, Y∗), rn2(θ

∗, Y∗)) = 1{rn1 (θ
∗,Y∗)>ρ} + 1{rn2 (θ

∗,Y∗)>ρ},

we see that

sup
θ∈Θ0


1{rn1 (θ,Y∗)>0,rn2 (θ,Y∗)<0} + 1{rn1 (θ,Y∗)<0,rn2 (θ,Y∗)>0}


≤H(rn1(θ

∗, Y∗), rn2(θ
∗, Y∗))

for all n > N0. Further

Eθ∗ [H(rn1(θ
∗, Y∗), rn2(θ

∗, Y∗))] (37)

=Eθ∗

1{rn1 (θ

∗,Y∗)>ρ} + 1{rn2 (θ
∗,Y∗)>ρ}


=P(rn1(θ

∗, Y∗) > 0) + P(rn2(θ
∗, Y∗) > 0)

<
1

2
− 2δ =

1

2
− δ′

for n1, n2 > N0 and a δ, δ′ > 0. To control the expected value and the variance term,

we need to consider the terms for n ≤ N0 also. Hence, we define

M0 = {(n1, n2)|N0 < n1 < n2}

and use the fact that the terms of the full simplified depth statistic are already

bounded by 1. Hence,

sup
θ∈Θ0


N


dAR
S (θ, Y∗)−

1

2



≤ N
N
2


N

2


−

N −N0

2


+


(n1,n2)∈M0


H(rn1(θ

∗, Y∗), rn2(θ
∗, Z∗))−

1

2


:=T

We now have

Eθ∗(T )

=
N
N
2


N

2


−

N −N0

2


+


(n1,n2)∈M0


Eθ∗ [H(rn1(θ

∗, Z∗), rn2(θ
∗, Z∗))]−

1

2

 .
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By (37), we can select N1 > N0 with

Eθ∗(T ) ≤ −Nδ′′

for a δ′′ > 0, since for N large enough
N−N0

2


N
2

 N→∞−→ 1

and 
N−N0

2


N
2


−

N−N0

2

 N→∞−→ 0.

In addition, we have

varθ∗(T ) ≤ ϵN2


δ′′ +

qα
N2

2

,

since H is bounded by 2 and for all ϵ > 0 one can select N2 > N1, such that

δ′′ + qα
N2

> 0 holds.

Now, we can apply the Chebychev inequality for all N ≥ N2 and get

Pθ∗


sup
θ∈Θ0


N


dS(θ, Y∗)−

1

2


≥ qα


≤ Pθ∗


T ≥ qα


≤ Pθ∗


|T − Eθ∗(T )| ≥ qα − Eθ∗(T )



≤ Pθ∗


|T − Eθ∗(T )| ≥ qα +N δ′′


≤
ϵN2


δ′′ + qα

N2

2
N2


δ′′ + qα

N

2 ≤
ϵ

δ′′ + qα

N2

2

δ′′ + qα

N2

2 = ϵ.

For the point hypothesis the proof can be conducted analogously through defining

H by

H(rn1(θ
∗, Y∗), rn2(θ

∗, Y∗)) = 1{rn1 (θ
∗,Y∗)>0,rn2 (θ

∗,Y∗)<0} + 1{rn1 (θ
∗,Y∗)<0,rn2 (θ

∗,Y∗)>0}

for θ∗ > θ0.

Theorem 51. If the errors satisfy En ≥ y0 − τy0 + c ∀n, y0 > 0, c > 0, τ > 1, Y0 =
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y0,Θ = [0,∞)× [τ,∞), θ02 ≥ 0, θ01 > τ and we consider

Θ0 = {(θ1, θ2)⊤ ∈ Θ|θ1 ≥ θ01} or Θ0 = {(θ01, θ02)}

then the test given by (28) is consistent at all θ∗ ∈ Θ \Θ0.

Proof. The proof can be found in Kustosz et al. (2016a) and is analogue to the proof

of Theorem 49.

Since we want to work with the simplified statistics, the consistency of these tests

has to be proven. In Kustosz et al. (2016b) a more general setting, allowing K-

dimensional parameters and a wider range of models, is considered. The consistency

for the methods in this thesis follows as corollary from these general results. We

now regard a general model defined by

yn = yn−1 + g(yn−1, θ) + en.

To assure consistency for explosive AR processes we have following theorem.

Theorem 52. For each b ∈ R there exists N0 ∈ N, so that Xn ≥ b∀n ≥ N0 almost

surely. Then, the tests for H0 : θ = θ0 for autoregressive processes based on the

simplified depth notions d1S and d2S are consistent at all θ∗ ∈ Θ \ Θ0, if one of the

following conditions hold:

(i) ∃c ̸= 0 : g(Xn, θ
0)− g(Xn, θ

∗) = c ∀n = 1, .., N,N ∈ N.

(ii) lim
n→∞

g(b, θ0)− g(b, θ∗) ∈ {−∞,∞}.
In case of (ii) d3S is consistent, too.

Proof. The proof is presented in Kustosz et al. (2016b).

Note that the condition on N0 implies that XN
N→∞→ ∞ in probability.

Lemma 53. For general linear and non-linear autoregressive growth processes of

order one defined by

yn = yn−1 + g(yn−1, θ) + en

with yn > yn−1 and θ assuring an explosive process, the tests defined on simplified

simplicial depth are consistent.

Proof. See Kustosz et al. (2016b), Examples 5.1 - 5.6.
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Corollary 54. For the linear model with and without intercept and for the non-

linear autoregressive model the tests (30), (32) and (34) are consistent under the

assumptions of Theorem 52. Further, the simplified simplicial depth tests are con-

sistent for growth models defined by Yn = Yn−1 + θ1Y
θ2
n−1 + θ3 + En.

Proof of Corollary 54. Here, we just have to show that the conditions of Theorem

52 hold for autoregressive processes defined by our two parameter models. Since

we consider growth processes the function g(·, θ0) − g(·, θ∗) is unbounded, so that

condition (ii) of Theorem 52 follows directly.

In Kustosz et al. (2016b), we also show that the conditions of Theorem 52 hold

for various other models. Further, the reduction to alternating signs of residuals is

formalised in a more general way. This allows the application of simplicial depth

based tests to a wide range of different growth models. The additional statement

in the last corollary further allows us to apply the full simplified depth tests to the

full model with θ ∈ R3.

3.4 Consistency 63



64 4 COMPUTATIONAL ASPECTS

4 Computational Aspects

In this section, we discuss the implementation of the proposed tests and confidence

sets for parameters of explosive autoregressive processes. Thereby, we will discuss

some further statistical properties of the empirical versions of simplicial depth to

reduce the computational costs. First, we will show how to implement the main

statistics. Then, we will propose a data driven calculation scheme for confidence in-

tervals and finally propose how to calculate full simplicial depth confidence intervals

by using the simplified depth notions.

4.1 Calculation of Test Statistics

In this section, we discuss the implementation of the test statistics in R as applied in

the package rexpar (RobustEXPlosiveAutoRegression) which is available at github

at the current stage of development. The package can be downloaded from https:

//github.com/ChrisKust/rexpar.git.

Implementation of Simplicial Depth for One-Parameter Models

In case of the one parameter model, we use a simplification of (14), neglecting the

rn(θ, y) = 0 terms, given by

dAR
S (θ, y) =

1
N
2

 
1≤n1<n2≤N

1{rn1 (θ,y)>0,rn2 (θ,y)<0} + 1{rn1 (θ,y)<0,rn2 (θ,y)>0} (38)

=
2

N(N − 1)


N

n1=1

1{rn1 (θ,y)>0} ·
N

n2=1

1{rn2 (θ,y)<0}


.

Therefore, we need to assume that P(En = 0) = 0 holds, what does apply in our set

of assumptions. Then, the simplification follows by straight forward calculations.

The representation of dAR
S by (38) makes the implementation easy, since the residuals

have to be evaluated once and then just the indicator sums have to be multiplied.

Hence, the implementation can be based on matrix and vector operations.

Algorithm 55.

Given: Observation y = (y0, ..., yN)
⊤, Parameter θ ∈ R.

1. Define ys1 = (y1, ..., yN)
⊤ and ys2 = (y0, ..., yN−1)

⊤.

2. Calculate r = (r1, ..., rN)
⊤ = ys1 − θys2 by matrix operations.

2. Calculate r+ as boolean vector with r+ = 1(r > 0).

3. Calculate r− analogously with r− = 1(r < 0).
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4. Calculate the sums of r+ and r−.

5. Multiply the resulting sums and rescale by 2
N(N−1)

.

Thereby 1(r > 0) is a vector of dimension of r with values 1 at positions n with

rn > 0 and values 0 otherwise.

Implementation of Simplicial Depth for Two-Parameter Models

For the two parameter statistics, we apply a different calculation method, since a

simple multiplication of indices is not directly possible when N gets large. The main

aim is to evaluate
1≤n1<n2<n3≤N


1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} + 1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0}


. (39)

To allow this in reasonable time, we will use specific matrices and parallel computa-

tion. In general, we evaluate

N
3


groups of residuals which leads to a N3 complexity

when simplicial depth is calculated. A simple loop based calculation therefore re-

sults in high computation times. To avoid loops in the two inner sums, we propose

a matrix based calculation, when n1 is fixed. Therefore, we define two matrices

M1(r, k) :=


rk+1(θ, y) ... rk+1(θ, y) rk+1(θ, y)

rk+2(θ, y) ... rk+2(θ, y) 0
... . .

. ...

rN−1(θ, y) 0 ... 0

 ∈ R(N−k−1)×(N−k−1)

and

M2(r, k) :=



rk+2(θ, y) rk+3(θ, y) rk+4(θ, y) ... rN(θ, y)

rk+3(θ, y) rk+4(θ, y) ... rN(θ, y) 0

rk+4(θ, y) ... . .
. ...

... . .
. ...

rN(θ, y) 0 ... 0



∈ R(N−k−1)×(N−k−1)

which can be evaluated relatively fast. The first matrix M1 is calculated similar

to a standard triangular matrix but with zeroes under the lower counter-diagonal.

The second matrix is a so called Hankel matrix which allows the calculation of the
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complete inner sums by matrix operations. Both matrices depend on the residuals

vector r = (r1, ..., rN)
⊤ and an index k. Since the matrices start at a specific index,

redundant calculations by using more residuals then needed can be avoided and the

calculation is increasingly fast depending on the first residual rk, whereby k is defined

by the actual value of the index n1. This first residual is used in a remaining outer

loop. To utilise modern computer capabilities this loop can additionally be divided

by parallel computation. Below, a summary of the algorithm for an evaluation

of (39) with an observed process y = (y0, ..., yN) and θ ∈ R2 fixed and known is

presented.

Algorithm 56.

Given: Observation y = (y0, ..., yN)
⊤, Parameter θ ∈ R2.

1. Define ys1 = (y1, ..., yN)
⊤ and ys2 = (y0, ..., yN−1)

⊤.

2. Calculate r = (r1, ..., rN)
⊤ = ys1 − θ0 − θ1y

s2 by matrix operations.

3. Predefine a list of vectors starting at the k-th residual, with k = 1, ..., N − 3. A

list element is given by (rk, ..., rN).

4. Parallel evaluate the terms of (39) for each list element from 3.

For fixed k = 1, ..., N − 3 proceed as follows:

4.1. Generate M1(r, k), i.e. based on (rk+1, ..., rN−1).

4.2. Generate M2(r, k), i.e. based on (rk+2, ..., rN).

4.3. Generate a matrix M by

M(r, k) :=1{rk>0} · 1(M1(r, k) < 0) ◦ 1(M2(r, k) > 0)

+1{rk<0} · 1(M1(r, k) > 0) ◦ 1(M2(r, k) < 0),

where 1{rk≶0} is the simple one dimensional indicator and 1(Ml ≶ 0), l ∈ {1, 2}
is a component wise indicator, i.e. (1(Ml(r, k) > 0))i,j := 1{Mli,j

(r,k)>0}. Further ◦
defines a component wise multiplication, i.e. (Ml(r, k) ◦Mm(r, k)i,j = (Mli,j(r, k) ·
Mmi,j

(r, k)i,j). Thereby the resulting element is a matrix with dimension (N − k −
1)× (N − k − 1) again.

4.4. Calculate the sum of all elements of M .

Each solution of the parallel loop is the partial sum for n1 = k fixed in (39).

5. Calculate the sum of the parallel results and add the evaluation for the residual

set (rN−2, rN−1, rN).

6. Finally rescale the sum by

N
3


.
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first index

second index

third index

final statistic

sequential calculation

calculation of residuals

splitting of residuals

first indexfirst index

matrix based calc.

matrix based calc.

matrix based calc.

collection of results

parallel calculation

Fig. 15: Flow diagram of the parallel and loop based calculation.

Figure 15 illustrates a comparison of the sequential method with the parallel imple-

mentation. Both algorithms start with the calculation of residuals. The upper track

to the final statistic shows the loop based calculation. The simple arrows show op-

erations which are done with vector methods. The double struck arrows show steps

where loops are applied. The sequential method uses two nested loops to calculate

the sign changes for all relevant combinations of residuals. The lower track illus-

trates the parallel calculation. The parallel method splits the residuals and loops

over the first index. Then the inner loops are replaced by vectorised calculations.

The remaining loop can be split into chunks which are computed parallel. After a

collection of the parallel results the final statistic can be computed.

In Section 5.6, a simulation study illustrating the performance gain by the matrix

based calculation and parallel computation is presented.

Implementation of Simplified Depth Statistics

The calculation of the simplified statistics is similar to the one dimensional case.

Here, we just use the fact that we have to evaluate the residuals in subsequent

blocks. Then, the calculations reduce to matrix operations again. Since we do not

have to consider the full set of all combinations of indices with increasing order the

matrix methods work for reasonably large N .

Algorithm 57.

Given: Observation y = (y0, ..., yN)
⊤, Parameter θ ∈ R2.

1. Define ys1 = (y1, ..., yN)
⊤ and ys2 = (y0, ..., yN−1)

⊤.

2. Calculate r = (r1, ..., rN) = ys1 − θ0 − θ1y
s2 by matrix operations.
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3. Calculate sets of shifted residuals by r1 = r[from = 1, by = 3, to = N − 2],

r2 = r[from = 2, by = 3, to = N − 1] and r3 = r[from = 3, by = 3, to = N ].

4. Calculate the terms of the depth statistic by

I = 1(r1 > 0) · 1(r2 < 0) · 1(r2 > 0) + 1(r1 < 0) · 1(r2 > 0) · 1(r2 < 0).

5. Calculate d1S by summation over I and rescaling with 1
⌊N

3
⌋ .

To calculate d2S the vectors defining the residuals which we have to evaluate have to

be replaced. Hence we use a modification of the algorithm for d1S.

Algorithm 58. Replace 3. in Algorithm 57 by:

3a. Calculate sets of shifted residuals by r1 = r[from = 1, by = 1, to = N − 2],

r1 = r[from = 2, by = 1, to = N − 1] and r3 = r[from = 3, by = 1, to = N ].

For d3S step 3. of Algorithm 57 has to be replaced by

Algorithm 59. Replace 3. in Algorithm 57 by:

3b. Calculate sets of shifted residuals by r1 = r[from = 1, by = 1, to = ⌊N+1
2

⌋],
r2 = r[val = ⌊N+1

2
⌋, times = ⌊N+1

2
⌋] and r3 = r[from = N, by = 1, to = ⌊N+1

2
⌋+1].

By application of the implemented functions, the proposed tests can be evaluated.

Therefore, we need to know the quantiles of the limit distributions. In case of χ2

and Normal distributions they are known. In Section 4.2, we present a simulation

method for the limit distribution of the simplicial depth statistics with θ ∈ Rd, d > 1.

Examples of the Implemented Simplicial Depth Statistics

To illustrate the resulting statistics, we give some examples based on simulated data.

Example 60. Consider the data generating model given by

Yn = θ1 · Yn−1 + Yn−1 + En,

with θ1 = 0.01, y0 = 15, En
i.i.d.∼ N (0, 0.1). We simulate the process with N = 100

and thereby get a realisation as presented in Figure 16.
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Fig. 16: Realisation of an explosive AR(1) process without intercept.

Now, depth can be evaluated on a grid. Since we know that the true parameter is 0.01,

we evaluate a parameter grid of M + 1 parameters given by θ1,0 = −0.1, θ1,m+1 =

θ1,m + 0.01 and θ1,M = 0.1. The resulting function dAR
S (θ, y) with variable θ is

depicted in Figure 17.
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Fig. 17: Empirical depth curve of the simulated AR(1) process without intercept.

The maximal depth is achieved on the interval [0.01023, 0.0106]. Due to the evalua-

tion via signs of residuals no unique maximum exists. The maximal depth is attained

at a connected subset of the parameter space.

Example 61. Consider the data generating model given by

Yn = θ1 · Yn−1 + Yn−1 + θ3 + En,

with θ1 = 0.01, θ3 = 0, y0 = 15, En ∼ N (0, 0.1) i.i.d. We simulate the process with

N = 100 and thereby get a realisation as presented in Figure 16. Since we know
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that the true parameter is (0.01, 0) we evaluate a grid given by θ1,0 = −0.1, θ1,m+1 =

θ1,m + 0.001, θ1,M = 0.1 for θ1 and θ3,0 = −1, θ3,v+1 = θ3,v + 0.001 and θ3,V = 1 for

θ3. The resulting function dARi
S (θ, y) with variable θ is depicted in Figure 18.
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Fig. 18: Empirical depth curve of the simulated AR(1) process with intercept.

The maximal depth is achieved for the parameter (0.006, 0.11). The deviation to the

true parameter is a random small sample effect. Depth is also quite large close to

the true parameter.

The most important observation is that empirical simplicial depth defines a piecewise

constant function which is centred at a maximum that appears to be asymptotically

located at the true parameter. This property unfortunately is just proven under

growth assumptions, see Sections 3.1 and 3.2. Otherwise, simplicial depth for models

with parameter dimension larger than one is not necessarily increasing with respect

to a centre.

Remark 62. Note that the last observation in particular contradicts the conditions

for depth functions, as introduced by Zuo and Serfling (2000). Hence, formally

simplicial depth is not necessarily a proper depth function when our assumptions

are violated.

4.2 Limit Distribution

Approximation of the Limit Process for Two Dimensional Parameters

An important step in this thesis is the calculation of the quantiles for the limit

distribution of the simplicial depth with two dimensional parameters. In particular,
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we need the quantiles of the distribution ofW := 3
4
+ 3

4
X2

2 (0)− 3
2

 2

−2
X2

1 (t)dt, whereby

X(t) = (X1(t), X2(t)))
⊤ is a centred Gaussian process defined by the covariance

matrix (27).

In Figure 19, a simulation of the paths of this bivariate process is depicted. The

solid line represents the variable X1(t) which starts in 0 at t = −0.5 and returns to

0 at t = 1.5. The dashed line is a simulation of X2(t). This process is a draw from a

N (0, 1) distribution and is constant over time. Note that the two processes meet at

t = 0.5 due to the underlying covariance structure. To generate such simulations we

−2 −1 0 1 2

−
1
.5

−
0
.5

0
.5

1
.5

t

X
i(

t)

X1(t)
X2(t)
t = 0.5

Fig. 19: Simulation of a path of the limit process.

rearrange the two-dimensional process and use the fact thatX2(0) is determined by a

N (0, 1) random variable. This can be seen in the reduced form representation of the

limit process in the proof of Lemma 3.1 in Kustosz et al. (2016a). The component

which defines X2(t) is 1
N

N
n=1Φ(En), whereby Φ(x) = 1{x<0} − 1{x>0} and (En)n

are errors from a distribution with med(En) = 0. The central limit theorem assures

that this component converges to a N (0, 1) distribution. In addition, we see that

this component does not depend on t. With this observation, we can prove the

following statement which is useful to simulate the limit distribution.

Theorem 63. For a centred Gaussian process (Y (t))t∈T and Y (t) = (Y (1)(t), Y (2)(t))⊤,

with covariance matrix given by

cov(Y (s), Y (t)) =


cst cs

ct 1


,
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where

cst =

 1

0

1{x−s∈(−0.5,0.5]}1{x−t∈(−0.5,0.5]}dx,

cs =

 1

0

1{x−s∈(−0.5,0.5]}dx,

ct =

 1

0

1{x−t∈(−0.5,0.5]}dx,

consider a grid t = (t1, ..., tn). Then Y (2)(ti) = Y ∗ for all i ∈ {1, ..., n}, whereby
Y ∗ ∼ N (0, 1) and Y R,(1) := (Y (1)(t1), ..., Y

(1)(tn))
⊤ conditioned on

(Y (2)(t1), ..., Y
(2)(tn))

⊤ = (y∗, ..., y∗)⊤ has a multivariate Normal distribution with

mean vector

µR =


ct1
...

ctn

 · y∗

and covariance matrix

ΣR = (ctitj − cti · ctj)i,j∈{1,...,n}.

Proof. The underlying process Y (t) = (Y (1)(t), Y (2)(t))⊤ is a bivariate Gaussian

process. Hence, the process is also a Gaussian for all index sets (t1, ..., tn). We set

Y := (Y (1)(t1), Y
(2)(t1), Y

(1)(t2), Y
(2)(t2), ..., Y

(1)(tn), Y
(2)(tn))

⊤

for an arbitrary but fixed index set (t1, ..., tn). This random variable possesses a

multivariate normal distribution with a zero mean function and a covariance matrix

determined by ctitj , cti , ctj .First, note that cti = ctiti .

The mean vector of Y is given by µ. The covariance structure is defined by

Σ =


Σt1t1 Σt1t2 ... Σt1tn

Σt2t1 Σt2t2 ... Σt2tn

... ... ...

Σtnt1 Σtnt2 ... Σtntn

 ,
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with

Σtitj =


ctitj cti
ctj 1


.

To allow the computation of the conditional distribution based on the second margin,

we need to rearrange the process. This can be done by a linear transformation based

on an invertible matrix C, defined by

C :=



1 0 0 0 ... 0 0

0 0 1 0 ... 0 0

... ... ... ... ... ... ...

0 0 ... ... ... 1 0

0 1 0 0 ... 0 0

0 0 0 1 ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ... 0 1


.

This matrix rearranges Y to

Y R = CY = (Y (1)(t1), ..., Y
(1)(tn), Y

(2)(t1), ..., Y
(2)(tn))

⊤.

By Theorem 2.4.1. in Anderson (1958), Y R is multivariate normally distributed

with mean µR = Cµ and covariance matrix ΣR = CΣC⊤. Since Y ∼ N (0,Σ), we

have Y R ∼ N (0,ΣR) and calculate

ΣR = CΣCT =


Σ̃11 Σ̃12

Σ̃21 Σ̃22


,

4.2 Limit Distribution 73



74 4 COMPUTATIONAL ASPECTS

where

Σ̃11 = (ctitj)i,j =


ct1 ct1t2 ... ct1tn

ct2t1 ct2 ... ct2tn

... ... ... ...

ctnt1 ctnt2 ... ctn

 ,

Σ̃12 = (cti)i,j =


ct1 ct1 ... ct1

ct2 ct2 ... ct2

... ... ... ...

ctn ctn ... ctn

,

Σ̃21 = (ctj)i,j = Σ̃T
12 =


ct1 ct2 ... ctn

ct1 ct2 ... ctn

... ... ... ...

ct1 ct2 ... ctn

,

Σ̃22 = (1)i,j =


1 1 ... 1

1 1 ... 1

... ... ... ...

1 1 ... 1

.

All matrices have dimension n× n and hence ΣR is a 2n× 2n matrix. From Kustosz

et al. (2016a) we know that Y (2)(t) is constant for all t and hence can set Y (2)(t) =

Y ∗. Further, we know that Y (2)(t) = Y ∗ ∼ N (0, 1). This is in line with Σ̃22. By

application of Theorem 2.5.1. from Anderson (1958), we can conclude that the

distribution of Y R conditioned on the last n components is multivariate Normal

with mean µR and covariance which can be calculated by the parts of ΣR.

Formally, for Y R,(1) := (Y (1)(t1), ..., Y
(1)(tn))

T and Y R,(2) = (Y (2)(t1), ..., Y
(2)(tn))

⊤,

we know that

Y R,(1)|

Y R,(2) = (y(2)(t1), ..., y

(2)(tn)) = (y∗, ..., y∗)


∼ N (Σ̃12Σ̃
−
22(y

∗, ..., y∗)⊤, Σ̃11 − Σ̃12Σ̃
−
22Σ̃21)

holds.

Since Σ̃22 is non-invertible, we have to use a generalised inverse here. A simple

choice is I = (δ11(i, j))i,j=1,...,n.

Hence, it is

µR = Σ̃12Σ̃
−
22(y

∗, ..., y∗)⊤ = (ct1 , ..., ctn)
T · y∗
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and

ΣR = Σ̃11 − Σ̃12Σ̃
−
22Σ̃21

= Σ̃11 −


ct1 ct1 ... ct1

ct2 ct2 ... ct2

... ... ... ...

ctn ctn ... ctn




1 0 ... 0

0 0 ... 0

... ... ... ...

0 ... ... 0



ct1 ct2 ... ctn

ct1 ct2 ... ctn

... ... ... ...

ct1 ct2 ... ctn



= Σ̃11 −


ct1 0 ... 0

ct2 0 ... 0

... ... ... ...

ctn 0 ... 0



ct1 ct2 ... ctn

ct1 ct2 ... ctn

... ... ... ...

ct1 ct2 ... ctn



= Σ̃11 −


c2t1 ct1ct2 ... ct1ctn

ct2ct1 c2t2 ... ct2ctn

... ... ... ...

ctnct1 ctnct2 ... c2tn



=


ct1 ct1t2 ... ct1tn

ct2t1 ct2 ... ct2tn

... ... ... ...

ctnt1 ctnt2 ... ctn

−


c2t1 ct1ct2 ... ct1ctn

ct2ct1 c2t2 ... ct2ctn

... ... ... ...

ctnct1 ctnct2 ... c2tn



=


ct1 − c2t1 ct1t2 − ct1ct2 ... ct1tn − ct1ctn

ct2t1 − ct2ct1 ct2 − c2t2 ... ct2tn − ct2ctn

... ... ... ...

ctnt1 − ctnct1 ctnt2 − ctnct2 ... ctn − c2tn


= (ctitj − ctictj)i,j.

The last equality holds, since ctiti = cti .

Theorem 63 is applied in the rexpar package to simulate the bivariate Gaussian

limit process. Thereby, we can reduce the simulation on one random draw of the

constant part y∗, and then just have to simulate a univariate Gaussian process,

based on µR and ΣR, as given by the Theorem. To approximate the distribution of

the limit process which is of interest, we finally have to approximate the distribution

of W := 3
4
+ 3

4
X2

2 (0)− 3
2

 2

−2
X2

1 (t)dt. This can be done by Riemann sums based on
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the simulated processes given by

WL :=
3

4
+

3

2
x2(t0)

2 − 3

2

L−1
l=0

1

2


x1(tl+1)

2 + x2(tl)
2

(tl+1 − tl), (40)

whereby (x1(ti), x2(ti)) for i = 1, ..., L are discrete realisations of the bivariate Gaus-

sian process X = (X1, X2) at L points in time (t1, ..., tL).

In the supplementary rexpar package the quantiles of this distribution are given for

probabilities at three decimal spaces in the SimQuantiles matrix. These quantiles

were calculated based on 200000 simulated processes on a grid with step size 0.001

for the interval [−0.5, 1.5]. The remaining part of the process is constant and hence

does not need to be simulated in the time domain. Taking the empirical quantiles

yields the distribution presented in Figure 20 and the values in Table 1.
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Fig. 20: Quantiles of the approximate distribution of W .

α 0.005 0.01 0.025 0.05 0.1 0.2

qα -2.6543216 -2.2403956 -1.6791727 -1.2545411 -0.8270908 -0.4032076

Tab. 1: Simulated quantiles of the integrated Gaussian process.

Approximation of the Limit Process for K Dimensional Parameters

A procedure which we later will use to check the limit distributions, see Section 5.7,

is also quite useful for all cases where the limit distribution could not be derived,
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yet. Since we assume that under H0 the errors have a zero median, we simply

can approximate the limit distribution by an appropriate simulation of the residual

signs.

For the simplicial depth statistic with parameter θ ∈ RK , we have to evaluate


1≤n1<...<nK+1≤N


K
k=1

1{rnk
(θ,y)(−1)k>0} +

K
k=1

1{rnk
(θ,y)(−1)k+1>0}


.

Since under H0 we have med(En) = 0, the limit is approximated by

lim
N→∞


1≤n1<...<nK+1≤N


K
k=1

1{Enk
(−1)k>0} +

K
k=1

1{Enk
(−1)k+1>0}


.

Even if the actual error distribution is unknown, the med(En) = 0 assumption

suffices to generate simulations, since we just need to evaluate the signs of the

residuals. These signs can be simulated as Bernoulli variables, so that

lim
N→∞


1≤n1<...<nK+1≤N


K
k=1

1{Enk
(−1)k>0} +

K
k=1

1{Enk
(−1)k+1>0}



= lim
N→∞


1≤n1<...<nK+1≤N


K
k=1

1{Bnk
(−1)k>0} +

K
k=1

1{Bnk
(−1)k+1>0}


, (41)

whereby (Bn)n∈N is a series of i.i.d. Bin(1, 1/2) random variables on {−1, 1}. To

generate a simulation of the depth statistic hence set

dSim(N,K) :=
1
N
K

 
1≤n1<...<nK+1≤N


K
k=1

1{Bnk
(−1)k>0} +

K
k=1

1{Bnk
(−1)k+1>0}



and define

ZSim(N,K) = N(dSim(N,K)− E(dS)).

The expected value of the full simplicial depth thereby can be calculated quite easily,

since it just depends on the number of sign changes.

Due to the summation it is still computationally costly to generate one draw of

this distribution for large K. Further a large N is necessary to approximate the

limit. Nevertheless, this method delivers a possibility to achieve approximate limit

distributions for K > 2, when the theoretical results are not available. In Section
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5.7, we analyse the validity of the method in a simulation study.

4.3 Calculation of Confidence Regions for Linear AR(1) Mod-

els

To calculate confidence regions, we use the definitions (17), (29), (31), (33), and

(35). Since the calculation of the test statistics still takes some time for long series,

a grid based calculation which leads to many evaluations of the depth statistics

is inefficient. Fortunately, the empirical depth allows a pre-selection of candidate

points, since it is a piecewise constant function.

Candidates for the Linear Model Without Intercept

To define reasonable candidates, one first has to notice that each of the proposed

depth notions just changes value, if rn(θ, y) changes sign. For a fixed vector of

observed data y = (y0, ...yN) the sign changes can be expressed as functions of the

parameter θ.

In model (9), we just have one parameter. Hence, each sign change of the residuals

is associated to one parameter which can be calculated by

yn − θ1yn−1 − yn−1 = 0

⇔ θ1 =
yn
yn−1

− 1. (42)

More precise, a residual defined by (yn, yn−1) is negative, if θ1 <
yn

yn−1
−1 and positive,

if θ1 >
yn

yn−1
− 1. Based on tupelo of such parameters, one can specify candidates.

From two residuals, one gets two sign change parameters θ1,1, θ1,2. Without loss of

generality assume θ1,2 > θ1,1. Since the residuals are just relevant if they change

sign, one can also consider the centre of each interval, defined by

θ1,C :=
θ1,2 + θ1,1

2
.

By evaluation of all possible residuals, defined by the data y and θ1,n = yn
yn−1

− 1 for

n ∈ {1, ..., N}, one gets the candidate set

Θ
dAR
S

cand =


θ1,i + θ1,j

2

i, j ∈ {1, ..., N}, θ1,i > θ1,j


. (43)

Allowing θ1,i = θ1,j would evaluate depth in the jump points also.
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Remark 64. In (43), one can replace
θ1,i+θ1,j

2
by

θ1,(i)+θ1,(i+1)

2
, with θ1,(1) < θ1,(2) <

... < θ1,(N) being the ordered set of candidate parameters. Then, the resulting can-

didate set is smaller but allows the calculation of the depth at each constant part.

However, for a construction of confidence sets it is more interesting to have points

close to the jumps of the depth function. This can for example be achieved by addi-

tional candidates in the jump locations. But then, we have to notice that by definition

of depth, we get spikes in these points. Further, it is useful to add θ1,(1) and θ1,(N)

to the candidate set. Thereby, the boundaries of the depth shape are considered in a

proper way.

A simple alternative is to evaluate the points where the parameters change sign and

to shift the parameter slightly to explore the complete depth contour. This avoids

the calculation problems at the parameters with rn(θ, y) = 0 and approximates

depth to a fixed precision. We define a second candidate set by

Θ
dAR,ϵ
S

cand =


θ1,n ± ϵ

n ∈ {1, ..., N}


(44)

for a fixed ϵ > 0. This candidate set is even smaller than the first proposed set but

relies on an ϵ which has to be small enough so that no relevant parameter ranges are

skipped. This can be controlled by calculation of the differences resulting from the

edges calculated by (42) and setting ϵ < min {|θ1,i − θ1,j| | i ̸= j, i, j ∈ {1, ..., N}}.
We choose ± in the candidate set to have parameters on both sides of each jump

of the depth function. For large samples it suffices to consider candidates given by

(42) evaluated at all observations.

Example 65. For a linear AR process without intercept defined by y0 = 15, θ1 = 0.01

and N (0, 0.1) errors, a simulated process is presented in Figure 21.
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Fig. 21: Simulated AR(1) process, θ1 = 0.01, y0 = 15 with N (0, 0.1) errors.

To evaluate the full depth function, we calculate dAR
S on a very fine grid defined by

{−0.1,−0.0999,−0.0998, ..., 0.0999, 0.1}. Further, we calculate depth for the param-

eters defined by (43) marked by grey squares, for the approach proposed in Remark

64 marked by green dots, and for the second set (44) marked by red circles. The

results can be seen in Figure 22.
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Fig. 22: Empirical depth for a simulated AR(1) process, θ = 0.01, y0 = 15 with

N (0, 1) errors.

We see that for a reliable application of the first candidate set given by (43) it is nec-

essary to include the minimal and maximal candidate, since they are not apparent,

if just the differences are calculated. The set based on Remark 64 discovers every

depth level, but does not allow a precise detection of the jump locations. The second
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set explores the depth shape more efficient. We selected ϵ = 0.00001. While the set

(43) results in many candidates, the ϵ based algorithm defined by set (44) detects the

jumps in a very precise and efficient way.

Candidates for the Linear Model With Intercept

A similar idea allows us to define candidates for the two parameter models. In the

linear case, the sign changes are defined by straight lines set by parameters satisfying

rn(θ, y) = yn − yn−1 − θ1yn−1 − θ3 = 0 (45)

for n ∈ {1, ..., N}. Hence, we now have half-space generating straights which are

determined by the roots of the residuals. Based on two residuals, one can find the

intersections of such straights.

Lemma 66. Consider two tuples of observations (yn, yn−1) and (ym, ym−1) with roots

of the residuals defined by

rn(θ, y) = yn − yn−1 − θ1yn−1 − θ3 = 0,

rm(θ, y) = ym − ym−1 − θ1ym−1 − θ3 = 0.

Then the lines, defining the sign changes of the residuals, intersect in (θ∗1, θ
∗
3) with

θ∗1 =
ym − yn

ym−1 − yn−1

− 1

and

θ∗3 =
yn − ym

ym−1 − yn−1

yn−1 + yn.

Proof. To calculate θ∗1 set

yn − yn−1 − θ1yn−1 − θ3 = ym − ym−1 − θ1ym−1 − θ3

⇒ yn − yn−1 − θ1yn−1 = ym − ym−1 − θ1ym−1

⇒ θ1(ym−1 − yn−1) = ym − ym−1 − yn + yn−1

⇒ θ∗1 =
ym − yn

ym−1 − yn−1

− 1.

4.3 Calculation of Confidence Regions for Linear AR(1) Models 81



82 4 COMPUTATIONAL ASPECTS

By insertion of θ∗1 into the root equation for n, we get

yn − yn−1 − θ∗1yn−1 − θ3 = 0

⇒ yn − yn−1 −


ym − yn
ym−1 − yn−1

− 1


yn−1 = θ3

⇒ (−1) · ym − yn
ym−1 − yn−1

yn−1 + yn = θ3

⇒ yn − ym
ym−1 − yn−1

yn−1 + yn = θ∗3.

Three residuals define a simplex with vertices defined by the intersection of the root

equations. Since we know that the respective residual sign is constant at each half-

space, a reasonable choice of candidate points is given by the points surrounded by

simplexes formed by each set of three residuals. In particular, for explosive processes

this is the only region where we can observe alternating signs. This can be seen for

a set of three residual sign dividing straights under the assumption that we observe

growth processes. In Figure 5 (see Section 3.2) this situation is depicted.

From equation (45), one can simply conclude that each residual sign dividing line

can be interpreted as a function of θ1 defining θ3, if (yn, yn−1) is fixed. So, the regions

defining all possible outcomes of signs for three residuals can be simply explored by

examination of points around the three resulting vertices. Further, it follows that

the respective residual has a negative sign, if parameter combinations above this

straight are considered and a positive sign for parameter combinations below, as

long as yn > yn−1 holds for all n. This can be seen by

rn(θ, y) =yn − (θ1 + 1)yn−1 − θ3 ⋚ 0

⇔yn − κyn−1 ⋚ θ3,

with κ = θ1+1. If yn > yn−1 > 0 holds, the half-space generating set is defined by a

function fn(κ) = θ3 which has an intercept yn and a slope (−1) · yn−1 so that it is a

decreasing linear function passing the points (0, yn) and ( yn
yn−1

, 0). If yn > yn−1, then
yn

yn−1
> 1, so that the second intersection with the axis coincides with a positive value

for κ. One then can see that alternating signs just appear, if we consider candidates

inside of a simplex defined by the three data generated vertices (see Figure 5). We

define θn,m =


ym−yn
ym−1−yn−1

− 1, yn−ym
ym−1−yn−1

yn−1 + yn


and thereby get a first candidate
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set by

Θ
dARi,ϵ
S

cand =


θn,m ± ϵ

n,m ∈ {1, ..., N}, n ̸= m


, (46)

whereby here ϵ = (ϵ1, ϵ2) and ± denotes the usage of each combination of both signs.

Therefore, a circular grid can be evaluated. Another candidate set for the linear two

parameter model can be defined by the inner points of these simplexes via

Θ
dARi
S

cand =


1

3
(θi,j + θi,k + θj,k)

i, k, j ∈ {1, ..., N}, i ̸= j, i ̸= k, j ̸= k


. (47)

For this set, we need to prove that the candidates are points in the simplex with

vertices θi,j, θi,k and θj,k.

Lemma 67. Consider a triangle with edges A,B,C ∈ R2 and define S := 1
3
(A +

B + C) ∈ R2. Then S ∈ conv(A,B,C) holds.

Proof. The proof can be found in Appendix A.4.

Example 68. In this example, we compare the candidate sets and grid based eval-

uation of depth in a two parameter example. Consider the model

Yn = θ1Yn−1 + Yn−1 + θ3 + En,

with y0 = 1, θ1 = 1.05, θ3 = 0.2 and En ∼ N (0, 0.03) for N = 5 observations. We

get a set of 4 resulting residuals. The candidate set (47) is then constructed from

four different residuals. The vertices, defined by equation (45), are depicted as red

crosses in Figure 23.
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Fig. 23: Candidate set for a linear AR(1) model with intercept. The (△) show the

candidates defined by the inner points of candidate simplexes ,see (47). The (+) are

the candidates evaluated at the vertices of the data generated simplexes. The grey

points are the parameters in the grid with depth larger than zero.

From these six vertices, we can calculate 20 interior points, marked by the triangles,

as proposed in the candidate set (47). This already completely explores the depth

function. Its values are given by coloured levels in the figure. Thereby, the dark

points have a depth of 1/2 and few points at θ3 between 0.20 and 0.25 have a depth

of 1/4. To calculate full depth for this example the depth function was evaluated on

a grid with a precision of 0.001.

For an implementation of the ϵ sets defined by (46), we use a construction based on

each combination of three nearby vertices to reduce redundant candidates. First,

we calculate all distances from the vertices used in (47). Then, for each candidate

vertex θi,j, we select the closest candidates θi,ja , θ
i,j
b based on euclidean distances.

For this three points, we then calculate an interior ϵ candidate for θi,j by

θi,jcand = θi,j + ϵ · (θi,ja + θi,jb − 2 · θi,j).

Thereby, ϵ has to be small enough to assure that θi,jcand is in the simplex defined by

{θi,j, θi,ja , θ
i,j
b }. To assure this, it is helpful to use a representation of θi,jcand given by

θi,jcand = θi,j + ϵ′ ·


θi,ja + θi,jb

2


− θi,j


.

In this representation ϵ′ ∈ (0, 1) automatically implies that the candidate point is
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in the relevant simplex. We restrict ϵ′ ∈ (−1
3
, 1
3
). Then the resulting point is in the

centre of the triangle or outside of it. In our application, we will evaluate θi,jcand with

±ϵ′ and 0 < ϵ′ < 1
3
fixed, to explore two directions of each candidate.

Example 69. If we apply the ϵ candidate set, with ϵ = 0.001, to Example 68, we

get the candidate set presented in Figure 24.
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Fig. 24: Candidate set with ϵ = 0.001 for a linear AR(1) model with intercept. The

(♢) show the points from the epsilon candidate set and (+) are the candidates at

the interception of the root equations. The grey points are the parameters in the

grid with depth larger than zero.

It is clearly visible that the candidate set now can be explored very efficiently by just

few candidate points. The advantage to candidate set (46) is that we just need 12

points in which depth has to be evaluated, while the set (47) results in 40 candidates.

Parameter Confidence Set for the Linear Model Without Intercept

Having the candidates at hand, we can construct confidence regions for growth mod-

els by simplicial depth. Since we already know that depth is piecewise constant and

we can identify all constant regions by candidate parameters close to the jump loca-

tions, confidence intervals can be constructed by an evaluation of the appropriately

scaled and centred statistics on data generated candidate sets. Then, the convex hull

delivers complete and simultaneous confidence regions for the model parameters.

Corollary 70. An empirical (1 − α) confidence region based on the full simplicial
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depth for the AR(1) model without intercept is given by

Θ̂AR
1−α(y) =


min{θ ∈ Θ

dAR
S

cand|θ ∈ Θ̂1−α(y)},max{θ ∈ Θ
dAR
S

cand|θ ∈ Θ̂1−α(y)}

,

whereby Θ̂(y) is defined as in (17). Alternatively, the confidence regions can be

constructed by replacing Θ
dAR
S

cand by Θ
dAR
S ,ϵ

cand .

Proof. Since the candidate sets approximate the empirical depth shape, we asymp-

totically explore the complete depth function which is related to the asymptotic

limit distribution to restrict the confidence set. Hence, the definition results in

a finite sample approximation of the depth shape compared with the asymptotic

distribution for testing.

Note that the application of the ϵ method allows a finite sample correction by se-

lecting ϵ very low. Then the bounds of the confidence region can be approximated

more precise.

Example 71. In the situation of Example 65 a 95% confidence interval is given by

[0.00585, 0.01614]

for Θ
dAR
S

cand candidate set and by

[0.00468, 0.01616]

for the Θ
dAR
S ,ϵ

cand set with ϵ = 0.00001.

Parameter Confidence Set for the Linear Model With Intercept

To construct confidence sets for two parameter models, we use convex hulls of pa-

rameters which are the boundary of the two-dimensional non-rejection area. This

leads to the following formula.

Corollary 72. An empirical (1 − α) confidence region based on the full simplicial

depth for the AR(1) model with intercept is given by

Θ̂ARi
1−α(y) = conv(Θ̃1−α(y)), (48)

whereby Θ̃1−α(y) is the set of all candidates in Θ
dARi
S

cand or Θ
dARi
S ,ϵ

cand which are in the

confidence regions for the linear AR(1) model with intercept defined by (29).
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We give another example for the constructed confidence regions based on the linear

AR(1) model with intercept.

Example 73. Consider a model given by

Yn = θ1 · Yn−1 + Yn−1 + θ3 + En,

whereby θ1 = 0.01, θ3 = 0.1 and En ∼ N (0, 0.1). For y = (y0, ...y100) with y0 = 15,

we can construct 1− α confidence regions based on dARi
S . An example is depicted in

Figure 25. Thereby, we used the candidate set (46) with ϵ = 1 · 10−19 · (1, 1)⊤. The

size of ϵ was set to a value below of the minimal euclidean distance of two candidate

points.
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Fig. 25: Confidence region for a linear AR(1) process with intercept. The black dots

are the candidate points which are contained in the confidence region. The red lines

indicate the boundary of the interval. The green dot shows the true parameter.

Even if the candidate sets already reduce the number of evaluations of the depth

statistics, the total number of evaluations depends on the number of observations. To

allow an additional reduction of the candidates, one can exploit that the confidence

sets based on the simplified depth notions are related to the full simplicial depth

sets. Since the order of terms in the simplified statistics is N compared to NK

for the full depth statistics, the calculation of the simplified confidence regions can

be used to restrict the candidate set. Hence, we define additional constructions

for confidence regions derived from the simplified depth statistics. The empirical
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confidence regions based on the simplified statistics are constructed similarly to the

regions for the full simplicial depth.

Corollary 74. An empirical (1−α) confidence region based on the simplified depth

notions diS for the AR(1) model with intercept is given by

Θ̂i,ARi
1−α (y) = conv(Θ̃1−α(y)),

whereby Θ̃1−α(y) is the set of all candidates Θ
dARi
S

cand or Θ
dARi,ϵ
S

cand which are in the confi-

dence region based on diS for the linear AR(1) model with intercept.

Remark 75. The candidate sets for the simplified depth notions can be reduced by

consideration of intersections from relevant groups of residuals based on the defini-

tions of the statistics. However, since the full candidate set includes these values,

we do not analyse further candidate reductions here.

Since the computation of the full depth regions is based on the calculation of the

full depth statistic which computationally is more complicated than the calculation

of the simplified notions, we propose another definition of confidence regions. We

restrict the candidates for the full depth set to the set of values which are included

in the confidence regions from the simplified notions. Based on the upper Corollary,

we modify Corollaries 72 and 74 to the following reduced intervals.

Conjecture 76. An empirical (1− α) confidence region for the AR(1) model with

intercept is given by

Θ̂ARi
1−α(y) = conv(Θ̃1−α(y)),

whereby conv(M) denotes the convex hull of M and M̄ is the closure of M . Further,

Θ̃1−α(y) is the set of all candidates in a diS confidence region with (1− α) level for

the linear AR(1) model with intercept for i ∈ {1, 2, 3}.

In Section 5.3, we show a simulation study which supports the conjecture.

4.4 Calculation of Confidence Regions for the Non-Linear

AR Model

Candidates for the Non-Linear Model

To define a candidate set for the non-linear model, a similar reasoning as in the

linear case can be applied. Again, the root equation of the residuals is a central
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object. In the non-linear case it is given by

rn(θ, y) = yn − yn−1 − θ1y
θ2
n−1 = 0. (49)

By checking the intersections of three curves given by (49), one gets surrounded sets

of parameters for which the residual signs alternate.

Lemma 77. Consider two tupelo of observations (yn, yn−1) and (ym, ym−1) with roots

of the residuals defined by

rn(θ, y) = yn − yn−1 − θ1y
θ2
n−1 = 0,

rm(θ, y) = ym − ym−1 − θ1y
θ2
m−1 = 0.

Then the lines, defining the sign changes of the residuals, intersect in (θ∗1, θ
∗
2) with

θ∗2 =
log( yn−yn−1

ym−ym−1
)

log( yn−1

ym−1
)

and

θ∗1 =
yn − yn−1

y
θ∗2
n

.

Proof. Here, we first solve for θ2. We start with the root equations rn(θ, y) = 0 and

rm(θ, y) = 0. Solving these for θ1 delivers

yn − yn−1

yθ2n−1

= θ1

and

ym − ym−1

yθ2m−1

= θ1.

4.4 Calculation of Confidence Regions for the Non-Linear AR Model 89



90 4 COMPUTATIONAL ASPECTS

Hence, the lines intersect, if

⇔ yn − yn−1

yθ2n−1

=
ym − ym−1

yθ2m−1

⇔ yn − yn−1

ym − ym−1

=
yθ2n−1

yθ2m−1

⇔ yn − yn−1

ym − ym−1

=


yn−1

ym−1

θ2

⇔ log


yn − yn−1

ym − ym−1


= θ2 · log


yn−1

ym−1



⇔
log


yn−yn−1

ym−ym−1


log


yn−1

ym−1

 = θ∗2.

For θ1 we use θ∗2 and the root-equation for n. We get

yn − yn−1 − θ1y
θ∗2
n−1 = 0

⇒yn − yn−1 = θ1y
θ∗2
n−1

⇒yn − yn−1

y
θ∗2
n−1

= θ∗1.

To calculate the candidates, we set

γ(n,m) :=
log


yn−yn−1

ym−ym−1


log


yn−1

ym−1


and define

θn,m :=


yn − yn−1

y
γ(n,m)
n

, γ(n,m)


.

Approximating the non-linear candidate sets by simplexes with edges, defined by

the root-equations for the residuals, delivers the following candidate set:

Θ
dnAR
S

cand =


1

3
(θi,j + θi,k + θj,k)

i, j, k ∈ {1, ..., N}, i ̸= j, i ̸= k, j ̸= k


.
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In Figure 26, the non-linear situation is depicted. For convenience, we express the

root equations by θ1 = fn(θ2) with

θ1 =
yn − yn−1

yθ2n−1

here. Thereby, it is easy to see that with growth assumptions on (yn)n and yn > 0,

we get intercepts at yn − yn−1 for θ2 = 0 and asymptotes at 0 for θ2 tending to

infinity. One can also easily verify that the functions are strictly decreasing under

growth assumptions.

<<<
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>><

><>

>>>

<<> <>>

θ1

θ2

n1

n2 n3

0

0

Fig. 26: Residual signs for the non-linear AR(1) growth model. The lines annotated

with ni are the curves given by the equation yni
− yni−1 − θ1y

θ2
ni−1 = 0 with n1 <

n2 < n3 and yn < ym for n < m. The signs in the enclosed regions show the signs

of the respective residuals r1, r2, r3.

Again, the region with alternating signs coincides with the enclosed region. By linear

approximation, we can use the centre point of a triangle to find reasonable candi-

dates. Otherwise, the alternative candidate set definition can be used. Analogously
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to the previous models, an ϵ set for the non-linear model can be defined by

Θ
dnAR,ϵ
S

cand =


θn,m ± ϵ

n,m ∈ {1, ..., N}, n ̸= m


.

For large sample sizes it suffices to check the vertices of the resulting simplexes.

Hence the computation of empirical depth can be reduced to a countable set of

candidates.

Parameter Confidence Set for the Non-Linear Model

For the non-linear model, we need to change the approximation method to define

the bounds of the confidence regions based on the evaluated candidates. This is

necessary, since in the linear model it is sufficient to consider a linear boundary

representation which already describes equi-depth lines with respect to each param-

eter combination. For the non-linear model this equi-depth lines are curves given

by the model equation. The calculation of these curves is computationally costly.

On the other hand, convex hulls would not approximate the non-linear boundaries,

defined by these curves. Since a full computation of these curves does not improve

the results compared with its computational costs, we approximate the bounds by

using so called Alpha-Shapes. Since α in this thesis is referring to the levels of tests

and confidence intervals, we change the notation for the geometrical Alpha-Shapes

to τ shapes here.

A τ shape is a generalised convex hull for scatter data. It was introduced by Edels-

brunner et al. (1983). First, we define a simplex.

Definition 78. For k + 1 vectors u0, ..., ud ∈ Rn,n ≥ k + 1 with u1 − u0, ..., uk − u0

being linearly independent, a k dimensional simplex is defined by

∆ =


x =

k
i=0

βiui


k

i=0

βi = 1, βi ≥ 0∀i ∈ {0, ..., k}


.

To define τ shapes, we consider a set of points denoted by S ∈ Rd+1. Thereby, the

points are assumed to be in general position. Then, for each subspace T ⊂ S with

dimension dim(T ) = k + 1 < dim(S) = d + 1 and |T | = k + 1, the convex hull ∆T

is a k dimensional simplex. This allows us to define τ shapes by τ balls and subsets

of S.

Definition 79.

(i) For τ ∈ (0,∞) the τ ball bτ is defined as open ball with radius τ .
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(ii) An τ ball bτ is empty, if bτ ∩ S = ∅.
(iii) A k dimensional simplex ∆T is τ exposed, if there exists an empty τ ball bτ

with T = δbτ ∩ S, whereby δbτ is the boundary of bτ .

Figuratively, a τ exposed subset of S is a k dimensional simplex which forms a τ

ball that does not contain any other points of S in its interior.

To define a τ shape we define its boundary.

Definition 80. For a set of points S with dim(S) = d + 1, the boundary of the τ

shape Sτ is defined by

δSτ = {∆T |T ⊂ S, dim(T ) = |T | ≤ d,∆T τ exposed}.

So, the boundary of the τ shape is the union of all k dimensional simplexes with

0 ≤ k ≤ d which are τ exposed. Since the total boundary of Sτ consists of boundaries

of simplexes one can show that δSτ coincides with the boundary of a polytope. For

us, τ shapes are useful due to the following statement.

Lemma 81. For a set of points in general position, S with dim(S) = d + 1 and

τ ∈ (0,∞)

lim
τ→0

Sτ = S

and

lim
τ→∞

Sτ = conv(S)

holds.

Proof. For τ → 0, we can choose τ small enough, so that every singular point in S

is τ exposed in a non-trivial simplex. Then the resulting shape just consists of the

points in S and simplexes, shrinking to these points.

For τ → ∞, we can select τ larger than the radius necessary to include all points

of S. Then no simplex in this ball can be τ exposed anymore. But also no further

points can exclude conv(S), so that the limit of the τ shape is the maximal simplex

formation conv(S).

So, a τ shape can be used to explore a scatter structure more precise than a convex

hull, but more coarse than by using all points. This helps us to construct confidence

regions for the non-linear AR process based on the candidate points.
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Corollary 82.

(i) An empirical (1 − α) confidence region based on full simplicial depth for the

non-linear AR(1) model is given by

Θ̂nAR
1−α (y) = convτ (Θ̃1−α(y)),

whereby convτ (M) denotes the τ shape of M with an appropriate localisation pa-

rameter τ . Further, Θ̃1−α(y) is the set of all candidates in the diS confidence region

with 1−α level for the non-linear AR(1) model or one of the unrestricted candidate

regions Θ
dnAR
S

cand or Θ
dnAR
S ,ϵ

cand .

(ii) The empirical (1 − α) confidence regions for the simplified notions are defined

by replacement of dnAR
S by the simplified notions diS.

4.5 Implementation of the Proposed Confidence Sets

Algorithms

We now want to present algorithms to implement the confidence regions. The algo-

rithm for the one parameter confidence intervals is a straightforward implementation.

Algorithm 83.

Given: Observation y = (y0, ..., yN).

1. Calculate the candidate set given by (43) or (44).

2. Evaluate the test given by (16) on each candidate.

3. Mark all non-rejected candidates.

4. Define the confidence interval by the minimal and maximal non-rejected can-

didates.

When two dimensional parameters are considered the construction is similar to the

one parameter case for the simplified depth notions. For the full depth, we apply

further steps to allow a faster calculation.

Algorithm 84.

Given: Observation y = (y0, ..., yN), Parameter τ in case of the non-linear model.

1. Calculate the candidate set given by (46) or (47).

If a simplified statistic was selected then proceed with:

(a) Evaluate the tests on each candidate.
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If the full simplicial depth is selected proceed with:

(a) Initialise a multi-core cluster, if available. Else use one core.

(b) Evaluate the test parallel on each candidate.

If the full simplicial depth with parameter preprocessing is selected proceed with:

(a) Evaluate the d1S confidence region.

(b) Restrict the candidates to all candidates in the d1S confidence region.

(c) Initialise a multi-core cluster, if available. Else use one core.

(d) Evaluate the test parallel on each candidate in the restricted set.

2. Mark all non-rejected candidates.

3. Define the confidence region.

• Based the convex hull for the linear model,

• Based on the τ shape for the non-linear model,

with all non-rejected candidates.

Thereby, Algorithm 84 applies to the linear and the non-linear models by appli-

cation of the appropriate formulas for the residuals and the appropriate candidate

sets. Note that the preprocessing is not recommended for the non-linear model.

The proposed approach has some central advantages. Due to the candidate cal-

culation, we have a data generated grid of relevant parameters. This avoids the

evaluation of an unknown grid in R or R2 to calculate depth. Further, the sim-

plified depth notions allow faster approximations of the relevant set for full depth

calculation, since the candidates can be reduced by the evaluation of test statistics

which are easier to calculate than the full depth. Finally, the algorithm introduces

flexibility, since the test statistics can be applied to various models, if the residu-

als can be calculated. Then just some technical assumptions, like in our case the

growth assumption, have to be checked to allow an application of the confidence set

algorithm. In particular, we are able to construct parameter confidence sets without

assumptions on the exact distributions of the data and the errors.

Examples of Implemented Confidence Sets

The first example compares the full depth confidence regions with the regions defined

by the simplified statistics for the linear autoregressive model with intercept.
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Example 85. In continuation of Example 73, we calculate the 95% confidence re-

gions for dARi
S and the three simplified notions diS, i ∈ {1, 2, 3}. In Figure 25, the

resulting regions are depicted. It is obvious that all regions are concentrated around

the true parameter.
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Fig. 27: Confidence regions for a linear AR(1) process with intercept based on

different test statistics. (∗) is the true parameter.

The dARi
S region defines the narrowest region. This is not surprising, since the dARi

S

statistic also defines a much sharper test, as will be shown in the next sections. The

d2S confidence region appears to be the best region defined by the simplified statistics,

followed by the d1S version. The d3S version leads to the widest region, since a large

deviation on the diagonal can be observed.

In Figure 28, full simplicial depth confidence regions based on different levels are

depicted.
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Fig. 28: dARi
S confidence regions for a linear AR(1) process with intercept based on

different levels. (∗) is the true parameter.

We see that, as expected, a higher level (1 − α) produces larger confidence regions.

In Figure 29, we present confidence regions for increasing sample sizes at a level of

95%.

−1.0 −0.5 0.0 0.5 1.0

0.
96

0.
98

1.
00

1.
02

1.
04

θ3

θ 1

N = 50     
N = 75    
N = 100    

Fig. 29: dARi
S confidence regions for a linear AR(1) process with intercept based on

different sample sizes N . (∗) is the true parameter.

Again, as expected, the confidence regions shrink to the true parameter, if the sample

size increases. For low sample sizes, the confidence sets do not necessary include
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the true parameter, due to random deviations.

The next example shows, how the confidence regions in the non-linear case can be

applied.

Example 86. Now, we consider a non-linear model defined by

Yn = Yn−1 + θ1Y
θ2
n−1 + En,

with θ1 = 0.01, θ2 = 1.01, En ∼ N (0, 0.1) and y0 = 15. First, we compare the

confidence regions for a simulated process with N = 100 based on the different test

statistics and a 95% level. The result can be found in Figure 30. We used τ = 0.8

in all simulations.
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Fig. 30: Confidence regions for a non-linear AR(1) process based on different test

statistics. (∗) is the true parameter.

We see that the confidence regions reflect the non-linearity of the data. The full depth

defines the smallest confidence region and is surrounded by all simplified regions. In

Figure 31, confidence regions for different levels α based on full simplicial depth are

depicted.
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Fig. 31: dnAR
S confidence regions based on full simplicial depth for a non-linear AR(1)

process with different confidence levels α. (∗) is the true parameter.

The confidence regions are large when a high level is selected. In Figure 32, the

confidence intervals for increasing series length on a level of 90% are depicted.
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Fig. 32: dnAR
S confidence regions based on full simplicial depth for a non-linear AR(1)

process with different sample size N . (∗) is the true parameter.

Here, we see that the confidence regions shrink to the true parameter, if the sample

size increases. This indicates a consistency of constructed confidence regions.
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4.6 Estimation

Algorithms

The candidate set, proposed for the calculation of confidence regions, can also be

used for parameter estimation. For estimation, we need to maximise depth in the

parameter θ. Since we already know that depth just changes in the candidate points,

we can restrict our maximisation to the candidate sets. Unfortunately, these sets

define a very irregular grid and the objective function is piecewise constant. Hence,

standard optimization procedures have difficulties to find global maxima.

We propose a data based optimisation method which uses the candidate set and

appropriate distance measures to iterate. Thereby, the global maximiser of depth

can be found relatively fast while the number of evaluations of the depth statistics

can be held low.

For the one parameter model no real optimisation is necessary, since the candidates

with maximal depth can simply be calculated as the median of the candidate points.

From this inner interval all neighbouring candidates have to be checked until depth

decreases. The resulting interval then defines the complete set of parameters with

maximal depth.

The optimisation procedure for the linear model with two parameters is defined by

the following algorithm.

Algorithm 87.

Given: Observation y = (y0, ...yN).

1. Calculate the candidate points.

2. Calculate a starting value θ(0) based on the component wise medians of the

candidates.

3. Calculate the distances of all candidates from the starting value θ(0) (Thereby

the norm on which the distances are based can be varied).

4. Restrict the candidates to values close to the starting value. Therefore, we

define a maximal distance by an accuracy parameter a.

5. Calculate depth for all restricted candidates.

6. Begin an iterative optimisation until the maximum number of iteration is

reached or the change of the maximum is below of a critical value ϵter. For

k ∈ {1, ..., Kmax} perform the following loop.
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(a) Calculate candidate parameters Θcand = {θ ∈ Θ : ∥θ − θ(k−1)∥ < a}

(b) Calculate depth for the restricted candidates.

(c) Set θ(k) = argmax
θ∈Θcand

dARi
S (θ, y) as the depth maximising parameter on the

new restricted candidate set.

(d) If k = Kmax or ∥θ(k) − θ(k−1)∥ < ϵter, end iteration.

7. If multiple candidates have maximal depth, a point in the convex hull spanned

by them is the resulting depth maximiser.

Since this algorithm does not depend on the actual model, it can be applied to the

linear and non-linear model by usage of the appropriate candidate sets and depth

functions. The estimators are implemented in the rexpar package.

Examples of the Depth Based Estimators

Example 88. In the situation of Example 65, the estimation function results in

θ̂(y) = 0.009471 by using an accuracy parameter of a = 0.1 defining the search

regions and ϵter = 0.000001 for the termination criterion. The result is unified by

taking the mean of all candidates with maximal depth. The estimate comes from

two considered candidates with maximal depth given by 0.009470 and 0.009472. It

converges after two iterations. The result is in the full set of parameters with max-

imal depth. The complete region can be explored by using an accuracy parameter

a = 1 in the algorithm. Thereby, all candidates are evaluated. Then, we get four

candidates with maximal depth given by 0.009472, 0.008941, 0.009470, 0.011560 and

can conclude that depth is maximal on the interval [0.008941, 0.011560]. An unified

solution, by taking the mean, then is θ̂(y) = 0.009861.

Example 89. To illustrate the usage of the two dimensional estimators, we con-

sider a linear AR(1) model with intercept defined by (θ1, θ3) = (0.01, 0.2), i.i.d.

N (0, 0.1) errors and a series length of N = 25. Here, the simplicial depth es-

timate results in θ̂(y) = (0.023880561,−0.000350437) as unified maximising can-

didate point. Thereby, the algorithm was applied on the vertices of the candi-

date simplexes only, to reduce the computational costs. The estimate results in

dARi
S (θ̂(y), y) = 0.2281197 which is below the asymptotic maximal depth value of

1
4
. To check, if we missed relevant points by the reduction to the vertices of the

candidate simplexes, we also estimate depth by consideration of larger candidate

sets. When we use the inner points of all possible simplexes the size of the can-

didate set and hence the computation time increases. But we also get a better
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estimate θ̂(y) = (0.02439084, 0.01530349) with dS(θ̂(y), y) = 0.3083004. By ap-

plication of the ϵ candidate set, we can reduce the computational costs and get

θ̂(y) = (0.02317518, 0.01259367) with dARi
S (θ̂(y), y) = 0.3083004. So, both results

are indifferent with respect to depth maximisation. Thereby, the estimator results

are unified by selection of one maximising candidate which first component is the

median of the first components from all maximising candidates and the second is the

respective θ3 to the maximising first component.

To answer the question, if the methods really have converged to the true maximising

region, we relax the search precision parameter, which was set to 0.1 so far, to a value

of 1. Then, all candidates are evaluated to maximise depth. In case of the ϵ candi-

date set, we now get θ̂(y) = (0.01998668, 0.08941891) with dS(θ̂(y), y) = 0.3094297.

By using the inner points of all simplexes we get θ̂(y) = (0.01998668, 0.08941891)

with dS(θ̂(y), y) = 0.3094297. This shows that the simplification methods work quite

reliable, but we have to pay the cost of a lower precision.

Remark 90. The separate estimation procedure is only interesting, if the estimation

of the region with maximal depth is of main interest. As far, as confidence regions

are of interest, the region with maximal depth is included in the the resulting sets and

a separate maximisation algorithm is not necessary. However, an improved version

of the confidence set construction can use this fact in reverse. By a fast estimation

of the region with maximal depth, the confidence regions can be explored from the

inside. This can additionally reduce the computational costs of the confidence region

construction, since the calculation can be stopped, if the set is explored completely.

An implementation of this idea is future work.

4.7 Change Point Detection

Algorithms for a Heuristic Change Point Detection

The basic idea to detect change points in growth processes, based on the proposed

depth based statistics, is to compare the estimates and confidence intervals based on

data ranges covering the period before and after a potential change point. By rolling

windows, a complete series can be examined for change points. In an univariate

setting the idea can be described as follows.
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full data
1st candidate check
2nd candidate check

...

8th candidate check

Fig. 33: Phase change candidates from (x1, ..., xM). The black dots illustrate the

complete data. The red dots are the considered candidate points. The green dots

define the data for the respective pre-candidate window and the blue dots are set

by the post-candidate window.

Under the assumption that the underlying process is observed at equidistant points

in time and denoted by y = (y0, ..., yN), we preselect candidates x1, ..., xM ,M < N

from the observed series which we want to check as change points. These candidates

can be all observations or a thinned set, for example to speed up computation.

In Figure 33, the full set of observations is depicted as the series of black dots on the

top of the figure. The candidates, which are also observations, are marked as red

dots. Now, for each candidate a left- and a right hand side window of observations

is considered. In the first step, we see the first four observations from the left hand

window and the observations six to ten form the right hand window with respect to

the first candidate. Based on these two windows we check, if the first candidate is

a potential change point by two alternative rules. The first rule just checks, if the

left hand and right hand side parameter confidence regions overlap by calculation

of the regions based on the two non overlapping observation windows. The second

rule calculates the parameter confidence regions and the parameter estimates for

each window and then checks, if the left hand side estimate is covered by the right

hand side confidence region and vice versa. This can be quickly done by calculation

of the estimates and applying the depth based tests to the estimates and the non-

respective data. If both estimates are rejected, we identify the candidate point as a

potential change point.

The algorithm then proceeds by checking the next candidate with the same method.

After all candidates are checked, a series of marked potential change points is avail-

able. Since we assume that the real underlying process is continuous, it is possible

that subsequent candidates are marked as change points. This for example happens,

if there is a continuous transition between two phases. Therefore, we apply a post

processing to collect subsequent change points and marking just one point at the

median observation index as resulting change point. Another post processing step
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robustifies the results to avoid fragments which are detected as change points when

the errors are positive or negative in sequence.

We now give a more detailed definition of the detection algorithms. The first algo-

rithm defines a change point by non-overlapping confidence regions.

Since theoretical results on the proposed change point detection algorithms are be-

yond the scope of this thesis, we define the methods as heuristic algorithms here.

Algorithm 91.

Given:

• (x1, ..., xM) set of candidate points as subset from the observation (y0, , ..., yN),

M < N .

• Bandwidth b ∈ N.

• Level α ∈ (0, 1).

• Post processing parameters m and mp, whereby mp ∈ (0, 1) is the percentage

of length of m-th change point cluster as sensitivity parameter.

With these parameters the algorithm is defined by:

1. Select a candidate xi.

2. Define a pre-xi set y
− := (yj−b, yj−b+1, ..., yj−1), with j denoting the index of

the observation yj which is related to the candidate xi.

3. Define a post-xi set y
+ = (yj+1, yj+1, ..., yj+b), with j denoting the index of the

observation yj which is related to the candidate xi.

4. Calculate a pre-xi confidence interval based on y− denoted by Θ̂−
α,b,i(y

−) .

5. Calculate a post-xi confidence interval based on y+ denoted by Θ̂+
α,b,i(y

+) .

6. Mark j as potential change point, if

Θ̂+
α,b,i(y) ∩ Θ̂−

α,b,i(y) = ∅.

7. Loop over i.

8. Check marked possible change points for successive subsets with respect to

(x1, ..., xM).
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9. Set a minimal amount of successive possible change points k to define a re-

sulting change by mp of the length of the m-longest detected successive set of

possible change points.

10. Neglect possible change points, if less then k successive possible change points

define the corresponding subset.

11. For remaining successive possible change points store the median of the indices

forming a possible candidate group as change point.

The second algorithm defines change points as candidates for which the estimates

are not covered by the non respective confidence regions.

Algorithm 92.

Given:

• (x1, ..., xM) set of candidate points as subset from the observation (y0, , ..., yN),

M < N .

• Bandwidth b ∈ N.

• Level α ∈ (0, 1).

• Percentage of length mp of m-th change point cluster as sensitivity parameter.

With these parameters the algorithm is defined by:

1. Select a candidate xi.

2. Define a pre-xi set y
− := (yj−b, yj−b+1, ..., yj−1), with j denoting the index of

the observation yj which is related to the candidate xi.

3. Define a post-xi set y
+ = (yj+1, yj+1, ..., yj+b), with j denoting the index of the

observation yj which is related to the candidate xi.

4. Calculate a pre-xi estimate θ̂−b,i(y
−).

5. Calculate a post-xi estimate θ̂+b,i(y
+).

6. Mark j as potential change point, if

φ(θ̂−b,i(y
−))(y+) · φ(θ̂+b,i(y

+))(y−) = 1

7. Loop over i.
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8. Check marked possible change points for successive subsets with respect to

(x1, ..., xM).

9. Set a minimal amount of successive possible change points k to define a re-

sulting change by mp of the length of the m-longest detected successive set of

possible change points.

10. Neglect possible change points, if less then k successive possible change points

define the corresponding subset.

11. For remaining successive possible change points store the median of the indices

forming a possible candidate group as change point.

Both detection algorithms do not crucially depend on the fact, if we consider the

linear models or the non-linear one. Nevertheless, the implementation is slightly

different when non-linear processes are considered. In particular, the calculation of

confidence intervals and estimators has to be modified to allow a valid approximation

as discussed in the previous section.

While Algorithm 91 depends on the calculation of confidence regions, Algorithm

92 just needs the result of the depth based estimator and the respective depth

to compare the result with the quantile of the asymptotic distribution. Hence,

change points can be computed faster by the second algorithm. The estimation

of parameters by simplicial depth has been discussed in Section 4.6. A simulation

study on the performance of the methods is presented in Section 5.

Especially in case of parameters with more than one dimension this approach is

quite promising, since an interesting property of simplicial depth can be used.

While in the one dimensional case, simplicial depth for AR processes is automatically

unimodal (see Lemma 29) due to the symmetry of the test statistic, this does not

happen in the two parameter case (see Remark 31), if the parameter for example

changes in the observed process. This observation introduces additional information

for real world applications. If the resulting empirical depth, calculated by the full

sample, is significantly lower than the theoretical maximal value or, if the empirical

depth shape is not unimodal, one can assume phase changes. To have a preliminary

estimate of the number of these changes, the empirical depth shape can be evaluated

with variable θ. The number of modes then can be used to get a starting guess for the

number of phases in the observed process. To detect the change locations, the phase

change detection algorithms can be applied. Another possibility is the application

of local depth, as proposed by Agostinelli and Romanazzi (2011) or Paindaveine and

Van Bever (2013) to estimate the number of modes of the local depth distribution.
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Here, appropriate versions of local simplicial depth have to be calculated. Then,

the preliminary estimation by modes in the depth shape can even be applied to one

parameter models.

Examples of the Implemented Change Point Detection Methods

We start with an example based on nearly deterministic time series for the linear

model without intercept. For the first examples, we just evaluate the method based

on Algorithm 92.

Example 93. In Figure 34, the detection for a time series with little noise and true

change points at observations 100 and 200 is depicted. In the upper subfigure, the

series of estimates and confidence sets are presented. The blue dots show the left

hand side estimates while the red dots illustrate right hand side estimates. Further,

dashed lines illustrate the respective confidence sets. In the lower subfigure, the series

is shown. The green lines indicate potential change points detected by our method.

We can observe that two large sets of succeeding potential change points are detected.

In addition, three sets of just few succeeding points exist.
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Fig. 34: Change point identification for nearly deterministic series.

To reduce the influence of random sequences from succeeding positive or negative

residuals, we introduce a rule to neglect small sets of succeeding potential change

points. The largest set of marked points defines the minimal number of succeeding
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values to define a change point which can be detected by our method by a percentage

mp of its size. Since in our example the second block of potential change points is

nearly as big as the largest, two sets of possible points define the resulting change

points. To account for the continuity of the original series, we do not declare each

candidate as change point, but the median of all indices forming a group of succeeding

possible candidates. In the example, the first change point is detected at observation

105 and the second at observation 200.5.

The next examples show the performance of the method in repeated and more

realistic situations.

Example 94. In this example, we examine the method when the errors are normally

distributed and one true change point exists. For all simulations, we use errors de-

fined by En ∼ N (0, 0.2) and a growth parameter κ1 = 1.001 for observations 1

to 200 and κ1 = 1.005 for observations 201 to 400. Hence, we have got one true

change point at observation 201. In Figure 35 an example series with the identified

change points is depicted. We apply α = 0.01, b = 49,m = 1,mp = 0.5 and eval-

uate every data point as possible change point (i.e. (x1, ..., xM) := (yb+1, ..., yN−b+1)).
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Fig. 35: Example series with identified change point, Normal case.
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Now, the confidence sets and estimates are clearly visible in the upper subfigure. In

particular, one can clearly observe the phases where the estimates and confidence

sets do not overlap, leading to the identified potential change points. In the example,

several fragments are identified as possible change points. Since the largest segment

consists of many succeeding candidates, this series of succeeding candidate points

results in a singular change point. This change point at observation 197 is close to

the true change point at observation 200.

To compare the general performance of the method, we also evaluate the results from

1000 simulated series. Here, we examine, if the true change point is detected and, if

the amount of detected change points is correct. Therefore, we evaluate the locations

of all detected change points from all simulations in one histogram and, in addition,

the amount of detected change points per simulation in a second histogram. For the

first example, the results are depicted in Figure 36. Thereby, the tuning parameters

of detection method are selected as above.
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Fig. 36: Change points in 1000 series with Normal errors.

The left sub-figure shows the frequencies of the detected change points from all simu-

lations. We see that in 180 of 1000 simulations no change point was detected. In all

remaining simulations at least one change point could be discovered. The frequencies

imply that the position of the change point can be estimated quite well. The detected

change point locations clearly have a maximum at the true value and are symmetric

with respect to this value. Nevertheless, the frequencies do not tend to 0, if points

far away of the true change point are considered. A reason for this behaviour can
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be found in the right sub-figure. This figure shows the frequency of the amount of

detected points for each simulation. We see that in over 500 of 1000 simulations

just one change point was identified. In nearly 200 simulations 2 change points were

detected. In the remaining 120 observations 3 to 23 change points appeared. This

shows that a part of the distribution problem in the left plot is caused by addition-

ally identified change points. In this case, more carefully selected parameters could

improve the method, since a wrong bandwidth or sensitivity mp can lead to this false

identifications.

The next example shows an application in case of atypical error distributions and

multiple change points.

Example 95. We simulate a process which starts with parameter κ1 = 1.003 and

a N (0, 0.2) error distribution for the first 100 observations. Then, the parameter

switches to κ1 = 1.001 and the error distribution to a contaminated N (0, 0.2) er-

ror distribution with jumps at Pois(1/100) distributed points in time and a N (5, 1)

distributed jump height for 200 observations. The parameter changes again at ob-

servation 300 to κ1 = 1.005 and the error distribution changes to a F(10, 1.928,−2)

distribution. An example series is given in Figure 37.
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Fig. 37: Example series with identified change point, different errors.
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The identified change points, with a bandwidth of b = 49 observations, a level of

α = 0.01 and a sensitivity parameter mp = 0.1 for the threshold defining minimal

clusters, are at observations 97.5 and 290. These values are close to the true change

points. In the example, we can observe that the second cluster is remarkably larger

then the first. This shows that the selection of mp is crucial for a good performance

of the change point detection.

In Figure 38, results form 1000 simulations with the same parameters, but with a

shifted first change point to observation 200 , are shown.
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Fig. 38: Change points in 1000 series with varying errors.

In the histogram we see that the change point at 300 can be detected very well by our

method. The change point at 200 can also be detected, but in a smaller proportion of

all simulations. This is also reflected by the right sub-figure which shows that in 500

simulations just one change point is detected while two change points are indicated

in 300 experiments. In the remaining 200 simulations, the method shows three to

11 change points with decreasing frequency.

Since the parameter mp has to be user specified, it limits the flexibility of our

algorithm. It seems very likely that an application of local depth, see Agostinelli and

Romanazzi (2011) and Paindaveine and Van Bever (2013), is promising to compute

estimates of the expected number of phase changes which then can be used to

estimate mp automatically from the data. This issue is future work.
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4.8 Prediction as Phase-Wise Model

Since in fatigue experiments the point in time of failure is of particular interest,

we propose a method which allows prediction for the class of growth processes dis-

cussed here. The general idea is to apply the depth based estimators and confidence

intervals and to include the empirical depth function to consider properties of the

parameter distribution. The errors then are incuded by a non-parametric bootstrap-

ping.

General Idea of the Prediction Method

The prediction proposed here follows a simple heuristic. We do not have proofs

considering the bootstrap validity so far. However, simulation studies imply that our

construction results in approximately valid prediction intervals which can compete

with pure bootstrapping approaches. The main modification of a pure bootstrapping

thereby is that we correct the estimation of the model parameters by simplicial depth

and, in addition, also correct the simulative distribution of the parameters by usage

of the empirical depth.

We just define the prediction in the one parameter model. The growth parameter

θ based on a dataset y = (y0, ..., yN) can be estimated by maximising depth in

θ1. Depth defines a function of the parameter which is monotonically increasing

from zero to its maximum achieved in the set of maximising parameter values and

then is monotonically decreasing to zero again. A large deviation of θ to the true

parameter leads to a value of the simplicial depth of zero, what coincides with a

non-fit as defined by Rousseeuw and Hubert (1999). By consideration of an interval

[θmin, θmax]

as set of all parameter values for which depth is larger than zero, we get a set of

parameters which are likely to have produced the dataset, as far as the supposed

model is valid. This interval is obviously larger than a confidence interval for θ but

bounded due to the non-fit definition. Furthermore, we know that a parameter gives

a good fit, if dAR
S is maximal. With this intuition, we can suppose that a parameter

with a large value for dAR
S (θ, y) is more probable to have produced the observed data,

than a parameter with a low value for dAR
S (θ, y). Hence, we can interpret dAR

S (θ, y)

as an function describing the probability of a good fit of θ given y.

For reliable prediction intervals, we need a density for the parameter. Since the
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distribution of max
θ∈R

dAR
S (θ, y) is not available for arbitrary distributed data Y , we

use the depth function as an alternative to model a parameter distribution.

We begin with the definition of a set of possible parameters by a depth based interval

defined by

θmin(y) = min{θ ∈ R|dAR
S (θ, y) > 0},

θmax(y) = max{θ ∈ R|dAR
S (θ, y) > 0}.

Based on the data, we assume that parameters in [θmin, θmax]
C posses a probability

of zero. To allow parameter bootstrapping for prediction, we need to derive a proper

parameter distribution. Therefore, we transform

T (θ|y) = N


dAR
S (θ, y)− 1

2


to a density. We need to assure f(θ) ≥ 0 and


Θ
f(θ)dθ = 1. Hence, we define

T̃ (θ|y) = T (θ|y)−min
θ∗∈R

T (θ∗|y)

and

D(θ|y) = T̃ (θ|y)
R T̃ (θ

∗|y)dθ∗
.

Since the test statistic T̃ is piecewise constant for a finite observation vector y, we

set 
R
T̃ (θ|y)dθ =


θ∈Θ̃

T̃


θi+1 + θi

2

y (θi+1 − θi)

for a grid Θ̃ covering [θmin, θmax]. This grid can be defined by the jump points of the

empirical depth set calculated in (42). Finally, we calculate an empirical distribution

by

F (θ|y) =


θi∈Θ̃,θi≤θ

D(θi, y).

Implementation of the Predicion Method

Based on this empirical distribution, we can simulate the parameters. To construct

prediction intervals, we proceed as follows.
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Algorithm 96.

The aim is to generate R simulated continuations of an observed proces y =

(y0, ..., yN) up to index Nf ∈ N, Nf > N .

1. Calculate F (θ|y) based on y = (y0, ..., yN).

2. Draw random parameters θ̃r, r ∈ {1, ..., R} by application of the inversion

method on F .

3. For each θ̃r calculate the residuals e1,r(θ̃r, y), ..., eN,r(θ̃r, y).

4. Continue the process (yn)n∈N by yn+1,r = θ̃ryn,r + ẽn,r for n ∈ {N, ..., Nf − 1},
whereby ẽn,r is a random draw from (e1,r(θ̃r, y), ..., eN,r(θ̃r, y)) with replacement.

Remark 97. For the construction from Algorithm 96, we so far cannot prove the

validity of the prediction level theoretically. The main problem, compared to a pure

bootstrapping approach is that we plug-in the empirical distribution F (θ|y). This on
the one hand has an advantage for skewed error distributions, since it robustifies the

estimate and simultaneously corrects the location of our empirical distribution. On

the other hand it complicates the calculation of the level for the resulting prediction

interval, since the residuals depend on the draws of the parameter and hence on F .

A theoretical validation is future work and will not be addressed in this thesis. How-

ever, we present a simulation study in Section 5 which indicates a validity empiri-

cally.

Now, the predicted value of the process at index Nf can be given. The construction

is based on the empirical quantiles of the bootstrap continuations of the process

following Efron (1979).

Definition 98.

(a) The predicted distribution of the process values at observation Nf > N based on

Algorithm 96 is given by the empirical distribution of

yNf = (yNf ,1, ..., yNf ,r).

A mean predicted process value for yNf
then is

ŷNf =
1

R

R
r=1

ỹNf ,i.
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(b) The empirical distribution of the predicted time of arrival at a critical process

value C > max{y0, ..., yN} is given by the distribution of

nC = (nC,1, ..., nC,R),

whereby

nC,r = inf{n > N |yn,r ≥ C}, r ∈ {1, ..., R}.

The mean predicted time of arrival at C then is

n̂C =
1

R

R
r=1

nC,i.

(c) The empirical prediction interval of the process value at observation Nf is given

by the empirical quantiles of yNf . The empirical prediction interval of the time of

arrival at C is given by the empirical quantiles of nC.

Since this method defines very large confidence intervals, we propose two alternative

approaches to construct F .

Construction 99.

The standard method for prediction is given by F setting

θmin = min

θ ∈ R|F (θ|y) > 0} = min{θ ∈ R|dAR

S (θ, y) > 0


and

θmax = max{θ ∈ R|F (θ|y) > 0} = max{θ ∈ R|dAR
S (θ, y) > 0},

whereby these sets coincide by the construction of F as proposed in Algorithm 96.

We also propose a variation by replacement of θmin by

min


θ ∈ R

N dAR
S (θ, y)− 1

2


>

1

2
− 1

2
qχ2

1
(1− α)


and θmax by

max


θ ∈ R

N dAR
S (θ, y)− 1

2


>

1

2
− 1

2
qχ2

1
(1− α)


,

where qχ2
1
(γ) is the γ quantile of the χ2 distribution with one degree of freedom.
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Then F (θ|y) is constructed, restricted on [θmin, θmax] by setting dAR
S (θ|y) = 0 on

[θmin, θmax]
C .

The prediction intervals are much sharper by application of the restricted distribu-

tion function. However, the simulations in Section 5.4 show that they still hold the

level.

Examples of the Proposed Predicion Method

Example 100. To illustrate the prediction method, we consider a process defined

by

Yn = θ1 · Yn−1 + Yn−1 + En,

whereby θ1 = 0.004, En
i.i.d.∼ N (0, 0.1) and y0 = 15. We observe a realisation with

length N = 200. We consider the process y = (y0, ..., y100) as observed part and want

to predict the process length at observation 200 and the time of arrival at a length

of 30. The application of the prediction method with α = 0.05 and 1000 simulated

continuations is presented in Figure 39.

Fig. 39: Example of the prediction method. The black line shows the observed

process and the green lines are continuations based on the bootstrap algorithm.

The value of the process at observation 200 is y200 = 31.59334. The mean estimate

of the process at observation 200 is 33.65158 and the median 33.56702. These values

are close to the true value. Moreover the 95% prediction interval for the length at

observation 200 is [27.72690, 39.82446].

For the time of arrival at a value of 30, we get an mean estimate of 175.098 and a

median estimate of 172.5. The prediction interval is given by [146, 223]. The true

time of the first arrival at a process value of 30 is 173.
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Limitations of the Prediction Algorithm

In case of the two parameter models, an analogue algorithm seems promising. The

central problem here is that we first have to transform the two dimensional empirical

depth to a density and then want to generate random draws of two parameters.

For this purpose it is not sufficient to draw from a uniform distribution, since the

empirical distribution function itself then is two dimensional and the solution of

F (θ) = u is not uniquely determined but consists of a set of parameters θ = (θ1, θ2)

or θ = (θ1, θ3). This case is future work at this stage of our research and therefore

is neither included in the theses nor in the supplementary R package.

4.9 Used R Packages

The main functions are written in the programming language R, see RCoreTeam

(2015). In the implementation of our methods, we use of some R packages on matrix

calculations, Alpha shapes and parallel computation, available in the R repository

CRAN.

In the rexpar package, implementing the proposed methods for depth based anal-

ysis of growth processes, we use the following external packages.

The matrixcalc package was used to generate the matrices for the calculations of

the depth statistics, see Novomestky (2012). To use parallel computation methods,

we apply the parallel functions from the parallel package. Further, the calculation

of the Alpha shapes is based on functions from the alphahull package, see Pateiro-

Lopez and Rodriguez-Casal (2015). To simulate the limit distribution in the two

parameter case, we further use functions from the MASS package, see Venables and

Ripley (2002).

In the simulation studies, we use some additional packages which implement the

known estimators. These packages were the MASS, robustbase, and nlstools pack-

ages, see Venables and Ripley (2002); Rousseeuw et al. (2015); Baty et al. (2015).

Further, the methods in the comparison of the change point detection are imple-

mented in the strucchange and the segmented packages, see Zeileis et al. (2002);

Muggeo (2008).

For the prediction comparisons, we use the BootPR package, see Jae (2014).

Since most of the calculations were performed at high performance clusters (HPCs),

we use functions from the snow and Rmpi packages to allow parallel computation on

these clusters, see Yu (2002); Tierney et al. (2013). Further, some parallel compu-

tations use the BatchJobs package, see Bischl et al. (2015) which allows an efficient

parallel computation of identical tasks on HPCs.

4.9 Used R Packages 117



118 5 SIMULATION STUDIES

All extensive calculations were performed on the cluster of the Faculty of Statis-

tics and on the Linux High Performance Cluster (LiDOng) of the TU Dortmund

University.

5 Simulation Studies

In this section, we present simulation results to analyse the performance of the pro-

posed estimators, tests and further methods in comparison to existing approaches.

Some of the results can be found in Kustosz and Müller (2014); Kustosz et al.

(2016a,b). However, all comparisons were extended to a consistent set of methods

and all additional studies illustrating the effect of the sample size and violations of

the model are completely new in this thesis. Thereby, this thesis does not attempt

to show that the new methods are a gold standard for growth models. The aim is to

present the applicability of simplicial depth compared to standard methods, for ex-

ample as used in engineering, to illustrate the robustness properties under restricted

information on the error distribution.

5.1 Estimators

We present simulation studies to compare the performance of the proposed estima-

tors with existing methods.

Linear Model Without Intercept

In the one parameter case, we compare the proposed estimators with the standard

Ordinary Least Squares (OLS) estimator defined by

argmin
θ1∈R

N
n=1

(yn − θ1yn−1−yn−1)
2,

which was proposed by Mann and Wald (1943) for autoregressive processes. Further,

we take robust estimators into account. A natural choice in many applications is a

M-estimator. This robust alternative for the least squares approach was introduced

by Huber (1973). For autoregressive processes of order one without intercept this

estimator is defined by

argmin
θ1∈R

N
n=1

ρ(
yn − θ1yn−1−yn−1

ŝ
),
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whereby ŝ is an estimate of the residuals standard deviation and ρ a robustifying

function. In case of innovation outliers, which we consider in this thesis, Denby and

Martin (1979) show that the M-estimator is very efficient under symmetric errors.

The restriction to this kind of outliers follows from the fact, that we aim to model

crack growth experiments, where the jumps result in innovation outliers only. In

our application, we define ρ by the well known Huber function with truncation

parameter k = 1.345.

Another quite simple robust estimator can be defined by the least absolute deviations

of the model. This also is a specific M-estimator with ρ(x) = |x|. It is defined by

argmin
θ1∈R

N
n=1

|yn − θ1yn−1−yn−1|.

Here, all deviations of the residuals are weighted linearly. Hence the effect of outliers

is reduced, if a med(En) = 0 assumption holds.

For more details on robust estimation in time series models, we refer to Maronna

et al. (2006).

In all simulations, we generate 1000 AR(1) processes with the given parameters

and apply seven different estimators to each simulated series. The first simulations

show the performance of the estimators for explosive AR(1) processes with normally

distributed errors and small sample size. In Figure 40, we see the results for seven

estimators based on En ∼ N (0, 0.1), θ1 = 0.01 and N = 10 observations per process.
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Fig. 40: Estimator performance for linear AR processes without intercept with N =

10 observations and parameter θ1 = 0.01 based on N (0, 0.1) errors.

We see that all robust estimators perform very well. The OLS estimator shows a

clear bias and hence systematically deviates from the true parameter value. The
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bias of the OLS estimator also was reported by Kaufmann and Kruse (2013).

For larger sample sizes the bias of the OLS estimator decreases. In Figure 41, we

see results for series with length N = 250.
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Fig. 41: Estimator performance for linear AR processes without intercept with N =

250 observations and parameter θ1 = 0.01 based on N (0, 0.1) errors.

The OLS estimator still shows a small bias, while the robust alternatives perform

very well. Now differences in the variance of the robust estimators can be observed.

The M-estimator appears to be best in the set of our considered candidates followed

by the LAD estimator. The full simplicial depth estimator shows a slightly worse

performance. Not surprisingly, the simplified depth estimators are outperformed by

the full simplicial depth version and hence by the other robust alternatives. In the

set of the simplified depth estimators the d1S and d2S versions are comparably good

while the d3S estimator shows a worse performance. This can also be verified by the

mean squared errors (MSE) of the estimators for our simulations presented in Table

2.

N dS d1S d2S d3S LAD M OLS

10 2784.85 2784.85 2784.85 2784.85 2677.30 1937.65 8.76 · 106

250 6.30 14.85 12.08 30.96 4.02 2.79 10.41

Tab. 2: MSE ·108 for linear AR processes without intercept with parameter θ1 = 0.01

based on N (0, 0.1) errors.

In Appendix A, we show the results for stationary processes and the unit root case.

Since our primary aim was to propose estimators which can be applied, if the errors

are not necessary normally distributed, the second set of simulations shows results

from situations where the errors possess a normal distribution but are contaminated
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by random outliers to certain amount. Therefore, we define the errors by

En = Xn + Pn · Jn − c,

whereby Xn ∼ N (0, 0.1), Pn ∼ Pois( 5
100

), Jn ∼ N (5, 1) and c = 0.007127 is a con-

stant to correct the median of En. We denote this distribution by CN (0, 0.1). Fur-

ther Xn, Pn and Yn are assumed to be independent. Due to c we have med(En) = 0.

En now has a skewed distribution, since we introduce jumps with a high probability

for positive jump heights. By the parameter of the Poisson distribution, we further

know that the contamination rate is approximately 5% in our simulations.

In Figure 42, the results for small samples are depicted.
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Fig. 42: Estimator performance for linear AR processes without intercept with N =

10 observations and parameter θ1 = 0.01 based on CN (0, 0.1) errors.

The small sample results are similar to the non-contaminated case. All simplicial

depth estimators show the same performance. Further, the LAD estimator slightly

outperforms the simplicial depth estimators, while the M-estimator performs slightly

worse due to some highly outlying estimates. The OLS estimator completely fails,

since it is affected by the skewed error distribution. These results also are in line

with the MSE presented in Table 3. In Figure 43, the results for larger samples are

depicted.
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Fig. 43: Estimator performance for linear AR processes without intercept with N =

250 observations and parameter θ1 = 0.01 based on CN (0, 0.1) errors.

Here, the LAD shows the best results. The M-estimator and the full simplicial depth

estimator also preform quite well. The simplified depth notions are outperformed

by the other robust estimators, but show reliable results. The OLS estimator clearly

improves in the larger sample but is still more biased than the presented alternatives.

N dS d1S d2S d3S LAD M OLS

10 2808.80 2808.80 2808.80 2808.80 2635.43 6417.32 13 · 106

250 1.59 3.56 2.71 8.06 0.96 0.78 42.61

Tab. 3: MSE ·108 for linear AR processes without intercept with parameter θ1 = 1.01

based on CN (0, 0.1) errors.

In the last set of examples, we want to show how the estimators behave, if we

drop the normal distribution completely. Hence, we define the errors by the Fréchet

distribution with density

fα,β,γ(x) =
γ

α


x− β

α

−1−γ

exp


−

x− β

α

−γ


and parameters α = 1.928, β = −2, γ = 10. So, again med(En) = 0 holds.

In Figure 44 the small sample results are depicted.
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Fig. 44: Estimator performance for linear AR processes without intercept with N =

10 observations and parameter θ1 = 0.01 based on F(1.928,−2, 10) errors.

We again can observe the superior performance of the robust estimators. Again, in

the small sample no real differences are visible. The LAD is slightly better than

the remaining robust alternatives and the M-estimator appears to show a small

deviation in the median estimate compared to the other estimators. In Figure 45,

the results for N = 250 observations are shown.

dS dS
1

dS
2

dS
3

LAD M ols

0
.0

0
8

0
.0

0
9

0
.0

1
0

0
.0

1
1

Fig. 45: Estimator performance for linear AR processes without intercept with N =

250 observations and parameter θ1 = 0.01 based on F(1.928,−2, 10) errors.

Here, we see that the LAD estimator again performs best. The full simplicial depth

estimator also performs quite well. The M-estimator has a clear bias due to the

symmetric truncation based on the Huber function. The simplified depth notions

define reliable, but weaker estimators than the full simplicial depth. Again, the OLS

improves but still is clearly more inefficient than the alternative methods.
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N dS d1S d2S d3S LAD M OLS

10 3788.73 3788.73 3788.73 3788.73 3361.19 3500.49 6.99 · 106

250 5.12 12.07 9.71 24.04 3.22 5.94 10.64

Tab. 4: MSE ·108 for linear AR processes without intercept with parameter θ1 = 1.01

based on F(1.928,−2, 10) errors.

The mean squared errors in Table 4 support the interpretation from the boxplots.

As already remarked, Kaufmann and Kruse (2013) analysed the bias of the OLS

estimator in AR models when the parameter is close to the unit root. This bias is

also visible in the median absolute bias of the proposed estimators for the parameter

κ = θ1+1 in Figure 46. Thereby the results are based on 100000 simulated estimates

for autoregressive processes without intercept and parameters ranging from 0.9 to

1.1. The unit root case is κ = 1.
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Fig. 46: Median bias of different estimators close to the unit root for linear autore-

gressive processes without intercept, N = 100 and N (0, 0.2) errors.

We see that the bias of the considered estimators decreases to zero for parameters

tending to infinity. The bias of the OLS estimator has a maximum at the unit root

and it quickly decreases to zero for values of the parameter which are larger than

one. For parameters lower than one the decrease is slower. The M-estimator and

the LAD estimator behave similar to each other. Close to the unit root their bias

increases and remains quite stable for parameters lower than one. The full simpli-

cial depth estimator shows a better performance. In particular, for values below one
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it outperforms all other considered estimators in terms of the median bias. This

changes for parameters below 0.9. Then the M and LAD estimators perform better.

The simplified depth estimators are also quite interesting. The d1S and d2S estima-

tors have a quickly increasing bias for parameters below one, while the d3S estimator

shows a good performance for θ ≈ 0.9 as well. As can be seen in the previous simu-

lation studies, this comes with a high variance.

Similar results can be seen for contaminated errors, as presented in Figure 47.

Thereby, we use a contaminated Normal distribution and a Gumbel error distri-

bution G(α, β) defined by the continuous density function

f(x) =
1

α
exp


−

x− β

α


+ exp


−

x− β

α


.

In our example, we apply α = 10 and β = −3.665129. Thereby, the error distribution

has an approximate median of zero, since the median of a Gumbel distribution is

given by β − αln(ln(2)).
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Fig. 47: Median bias of different estimators close to the unit root for linear autore-

gressive processes without intercept, N = 100.

We, in addition, can see that the M-estimator is biased when we consider a heavily

asymmetric error distribution. On the other hand bias of the full simplicial depth

reduces then. Further, the d3S bias for κ < 1 is higher for asymmetric errors.

Summarising, we see that for the linear AR(1) model without intercept the OLS

estimator shows remarkable problems close to the unit root. Hence, it should not be

applied and robust estimators can be considered to reduce this bias. Thereby, not

only our proposals are promising. Especially the LAD estimator shows a very good
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performance. The major shortcoming for our purpose is that the limit distribution of

the test statistic in this case depends on the error distribution (see e.g. Knight, 1998).

Since we only want to assume that we have independent errors with med(En) = 0

we cannot derive tests for this estimator directly.

Linear Model With Intercept

Now, we want to compare our estimators for the linear AR(1) model with intercept.

Again, the alternative methods are defined by the OLS estimator, the M-estimator

and the LAD estimator. Therefore, we just have to adjust the residuals in the

definitions for the extended model. The OLS estimator is now defined by

argmin
θ=(θ1,θ3)∈R2

N
n=1

(yn − θ1yn−1−yn−1 − θ3)
2.

For the M-estimator we now use

argmin
θ=(θ1,θ3)∈R2

N
n=1

ρ(
yn − θ1yn−1−yn−1 − θ3

ŝ
).

The least absolute deviations estimator is defined by

argmin
θ=(θ1,θ3)∈R2

N
n=1

|yn − θ1yn−1−yn−1 − θ3|.

Since we observe two parameters now, the comparisons are based on higher sample

sizes. We compare the estimators for N ∈ {100, 500}. Further, we again consider

different error distributions. In Figure 48, the results of 1000 repeated estimations

for a process with θ1 = 0.00125368, θ3 = 0.02392, y0 = 15 and N (0, 0.2) errors are

depicted. The parameters were randomly chosen and define a growth process.
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Fig. 48: Estimator performance for linear AR processes with intercept and N = 100

observations based on (θ1, θ3) = (0.00125368, 0.02392) with N (0, 0.2) errors.

We see that the OLS and M-estimators perform best. The LAD estimator shows

a slightly worse performance followed by the simplified depth estimators which de-

liver reliable results but have a higher variance than the other proposals. The full

simplicial depth estimator preforms as well as the LAD estimator. Due to the small

sample size all estimators show deviations from the simulation parameters. If we

increase the sample size to N = 500, the results are similar.
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Fig. 49: Estimator performance for linear AR processes with intercept and N = 500

observations based on (θ1, θ3) = (0.00125368, 0.02392) with N (0, 0.2) errors.

In Figure 49, we see that the OLS and M-estimators are performing very well and

slightly better than the LAD estimator. All proposals do no show any remarkable

bias. The depth based estimators show clearly higher variances than the remaining

proposals. The full simplicial depth estimator thereby is comparable to the LAD

estimator and is outperformed by the OLS and M-estimators.

If we again turn to error distributions which are skewed, the situation clearly
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changes. Small sample results are shown in Figure 50.
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Fig. 50: Estimator performance for linear AR processes with intercept and N = 100

observations based on (θ1, θ3) = (0.00125368, 0.02392) with G(10,−3.665129) errors.

Now, the OLS estimator is biased in both parameters. The remaining estimators

show a lower bias. The LAD and M-estimators also have larger distances to true

values compared to the simplicial depth versions. The full simplicial depth estimator

has a bias similar to the LAD estimator, but a slightly lower variance. In Figure 51

the results for a larger sample size are shown.
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Fig. 51: Estimator performance for linear AR processes with intercept and N = 500

observations based on (θ1, θ3) = (0.00125368, 0.02392) with G(10,−3.665129) errors.

While the OLS estimator is consistent in the estimation of θ1, as well as the M-

estimator and both estimators show a remarkable low variance, they fail to esti-

mate the intercept parameter θ3 systematically. The reason for this problem comes

from the asymmetric error distribution which leads to a systematic bias due to the

E[En] = 0 assumption which does not hold in this example. The LAD estimator
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again performs best. The depth based estimators are also unbiased in both param-

eters but have higher variances than the LAD estimator. The full simplicial depth

estimator shows a low variance, but a higher deviation for the estimate of the inter-

cept than the LAD.

In Figures 52 and 53, the results for simulations with contaminated normally dis-

tributed errors are presented.
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Fig. 52: Estimator performance for linear AR processes with intercept and N = 100

observations based on (θ1, θ3) = (0.00125368, 0.02392) with CN (0, 0.2) errors.
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Fig. 53: Estimator performance for linear AR processes with intercept and N = 500

observations based on (θ1, θ3) = (0.00125368, 0.02392) with CN (0, 0.2) errors.

Here, the OLS estimator again fails, due to the skewed error distribution. The M-

estimator performs very well, as well as the LAD and dS estimators. Again, the dS

estimator shows a slightly worse performance for the θ1 estimate. The simplified

estimators are ranked as in the previous studies.

Summarising, we see that the simplified depth based estimators allow to estimate
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explosive AR processes with a lower bias than the standard methods, even if the error

distributions are asymmetric. However, we cannot outperform the LAD estimator by

the depth methods. Nevertheless, the depth based estimators have the advantage to

allow a construction of simultaneous confidence regions and tests for the parameters

of the model without knowledge of the exact error distribution, as proposed in

Section 4.3.

Non-Linear Model

In the non-linear case, we use the least squares approach, our depth based estimators

and the least absolute deviation estimator as well as an M-estimator for non-linear

models. Hence, we skip the definitions with the remark that it suffices to replace

the residuals by the non-linear version. The results are quite similar to the two

parameter model in the linear case.
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Fig. 54: Estimator performance for non-linear AR processes with N = 100 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with N (0, 0.2) errors.
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Fig. 55: Estimator performance for non-linear AR processes with N = 100 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with CN (0, 0.2) errors.
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Fig. 56: Estimator performance for non-linear AR processes with N = 100 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with F(1.928,−2, 10) errors.
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Fig. 57: Estimator performance for non-linear AR processes with N = 500 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with N (0, 0.2) errors.
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Fig. 58: Estimator performance for non-linear AR processes with N = 500 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with CN (0, 0.2) errors.
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Fig. 59: Estimator performance for non-linear AR processes with N = 500 observa-

tions based on (θ1, θ2) = (0.009392, 1.00225368) with F(1.928,−2, 10) errors.

In Figures 54 to 59, we see that the depth based estimators are very reliable for all

considered error distributions. Thereby, the simplified notions have higher variance

than the full simplicial depth estimator and the LAD. The LAD and M-estimators

have remarkable problems to estimate the parameters for low sample sizes. Further,

the OLS estimator has a high variance in case of normal errors and is biased in case of

asymmetric error distributions. For larger sample sizes, we clearly see the superiority

of the full simplicial depth and LAD estimators. They are followed by the simplified

depth estimators which are also consistent, but show a higher uncertainty. The M

and OLS estimators are both heavily biased for skewed errors, but very competitive

in case of N (0, 0.2) errors.
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5.2 Tests

In this section, we compare the power of the proposed tests with standard methods.

Linear Model Without Intercept

For the linear model without intercept, we extend the comparisons presented in

Kustosz and Müller (2014) by the power of the simplified depth tests. The definition

of the tests based on simplicial depth was presented in Sections 3.1, 3.2 and 3.3. We

compare our tests with a test based on

TN(θ) = (θ̂ − θ)

 N
n=1

y2n−1,

with

θ̂ =

N
n=1 ynyn−1N
n=1 y

2
n−1

− 1

following Anderson (1959) who has shown that for normally distributed errors TN

has an approximate normal distribution with mean zero and known variance σ2

under H0 : θ = θ0. Further, we compare the test with a simple sign test for AR

processes studied by Huggins (1989). Here, the test statistic is given by

QN(θ) =
N

n=1

sgn(Yn − (1 + θ)Yn−1)

and has an exact distribution given by 2(BN − N
2
), with BN being binomial dis-

tributed with parameters N and 1
2
under H0.

In Figure 60, simulated power functions for processes with N (0, 0.2) errors and

N = 300, tested for H0 : θ = 0.002 are presented. For each parameter the power

function is based on 10000 simulated processes. In case of normally distributed

errors the OLS test outperforms all proposed alternatives. This is not surprising,

since it assumes the correct error distribution and therefore is not faced with any

loss of efficiency by milder assumptions. The full simplicial depth test and the sign

test are identical here. This happens, since we assume to observe growth processes,

what reduces the test statistic of the full simplicial depth test to an evaluation of

residuals. The full simplicial depth test can be improved by using the full derivatives

of the quality function. In equation (12), we dropped the multiplication with yn−1,

since under H0 the process (Yn) is strictly positive. Hence, we defined full simplicial
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Fig. 60: Simulated power functions based on linear AR(1) processes without inter-
cept, N (0, 0.2) errors and length of N = 300 tested with H0 : θ = 0.002.

depth based on the residuals only. Assuming a probability of zero for En = 0 and

Yn = 0 one can also use

d
AR(1)
S (θ, y) =

1
N
2

 
1≤n1<n2≤N

1{rn1 (θ,y)yn1−1≥0,rn2 (θ,y)yn2−1≤0} (50)

+1{rn1 (θ,y)yn1−1≤0,rn2 (θ,y)yn2−1≥0},

what changes the statistic, if yn can change sign. Under H1, especially for θ < 0, this

really can happen. We also examine the performance, when (50) is applied instead

of (14). Note that under H0 the limit does not change. The critical values remain

the same. The power of the modified test is depicted as red dashed line in Figure

60. We see that the modified dS test performs similar to the sign test and the full

simplicial depth test, when θ > 0 is considered, but outperforms these two tests for

θ < 0. This happens, since alternating signs and negative values of the process now

are considered. The simplified depth tests show a good power for θ > θ0 but behave

relatively poor for θ < θ0. This also happens due to potential negative values of yn.

Thereby the d2S test is better than the d1S test, followed by the d3S test. In Figure 61,

we see the power functions in case of contaminated normal errors. Now, the OLS

5.2 Tests 135



136 5 SIMULATION STUDIES

−0.04 −0.02 0 0.02 0.04

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

θ

P
o
w

e
r

dS

dS
mod

dS
1

dS
3

dS
2

Huggins

OLS

Fig. 61: Simulated power functions based on linear AR(1) processes without inter-
cept, CN (0, 0.2) errors and length of N = 300 tested with H0 : θ = 0.002.

test completely fails, since it is biased by the asymmetric error distribution. The full

simplicial depth test and the sign test again are identical. The modified simplicial

depth test here just slightly outperforms the full simplicial depth test. In the Figure,

this is not visible, since it happens in the range of θ < 0. In case of contamination

the simplified tests also perform well for θ < θ0, since the process grows faster, due

to positive jumps. Hence, values of yn < 0 are less frequent. The ranking of the

power from the simplified depth tests is the same as in the non contaminated case.

When the error distribution is heavily skewed the modified depth test is superior to

the other proposals, as shown in Figure 62. Here, we consider errors with a Gumbel

distribution. We see that the sign and full simplicial depth tests behave identical

and have low power for θ < θ0. The modified test statistic improves the power in

this parameter region. The OLS test completely fails due to the bias caused by

the error distribution. Further, the simplified tests are not reliable for θ < θ0, but

perform well for θ > θ0.

Figure 63 shows the results for processes with a sample size of N = 1000.
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Fig. 62: Simulated power functions based on linear AR(1) processes without inter-
cept, G(10,−3.665129) errors and length of N = 300 tested with H0 : θ = 0.002.

The results are the same as for the smaller sample size. The OLS test is just reliable

for normally distributed errors. It is outperformed by the full simplicial depth, the

modified simplicial depth and the sign test for the remaining error distributions.

The modified simplicial depth can improve the test for θ < 0, if yn can be lower

than zero. In this case the simplified depth tests break down for θ < θ0. If the

process is strictly positive, the simplified depth tests also perform well.
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(a) Normal errors
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(b) cont. Normal errors
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Fig. 63: Power of the tests for N = 1000.
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Linear Model With Intercept

To evaluate the power when an intercept is included, we extend the applied tests

to the two parameter case by replacement of the residuals to the two parameter

expressions. This can be simply done for the sign test and results in the same

distribution underH0. The results for the simplicial depth based tests were discussed

in Section 3.3. For the OLS test, we need limit distributions for explosive AR

processes. A derivation is presented by Wang and Yu (2013). Thereby, the critical

values are based on an asymptotic independence of the marginal estimators. Since

we assume that the exact error distribution is unknown, we apply the OLS test under

the assumption of normally distributed errors in all examples. The following results

were partially presented in Kustosz et al. (2016a). Here, we extend the simulations

by the simplified depth notions.

We compare the test based on simplicial depth for H0 : θ = θ0 using θ0 = (θ01, θ
0
3)

⊤ =

(0.01, 0.2)⊤ with five other tests. We evaluate the power of the six tests on a grid

defined by θ3 ∈ [−0.15, 0.52] with mesh size 0.01 and θ1 ∈ [0, 0.021] with mesh size

0.0003. For each grid point, we simulate R = 100 processes of length N = 100

with the underlying parameter combination and with starting value y0 = 15. As

in the one parameter case we consider three different distributions for the errors:

a normal distribution with mean zero and variance 0.01, a contaminated normal

distribution given by An + Pn · Bn, whereby An ∼ N (0, 0.1), Bn ∼ N (5, 1) and

Pn ∼ Pois(5/100) are independent random variables for each n, and a Fréchet

distribution with parameters α = 1.928, β = −2, γ = 10.
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(a) dS (b) d1S

(c) d2S (d) d3S

(e) OLS (f) Sign

Fig. 64: Power of the tests based on normally distributed errors.

Figure 64 shows the power functions for normally distributed errors. Thereby, the

horizontal and vertical lines denote the components of θ0 so that their intersection is

θ0. One can clearly see that the OLS test performs best under normally distributed

errors. This is not surprising, since it assumes the correct error distribution. The

sign test behaves quite well close to the alternative. Unfortunately, in case of ex-

plosive processes the power also decreases when a combination of θ3 and θ1 leads to

residuals which have a poor fit but have a median of zero. This for example happens,
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if the first half of residuals is positive and the second half is negative. As a result,

this test is very unstable in case of explosive AR(1) processes. The dS test clearly

outperforms the simplified depth tests. It also has a better performance than the

OLS test in direction of a diagonal with positive slope, but accepts a wider range of

values on a diagonal with negative slope.

In Figure 65, the comparison for errors with the contaminated normal distribution is

depicted. Figure 66 provides the comparison for errors with the Féchet distribution.

Now, the simplicial depth test performs clearly best. The OLS test suffers from

heavy bias due to the skewed error distributions and the sign test still shows the

identifiability problem. In Figures 114, 115, 116, which can be found in Appendix A,

we compare the tests evaluated on the diagonal given by θ3 = 50.7−50·(θ1+1), where

the slope of the diagonal is negative. The straight line goes from (−0.325, 1.0205)

to (0.725, 0.9995) through H0 defined by θ̃ = (θ3, θ1) = (0.2, 1.01)T for a model

expression in κ = θ1 + 1 and θ̃0 = (θ03, κ
0). In the Figures, the x-axis is defined

by the parameter λ ∈ [0, 1] from the parametric form of the straight line given by

(0.725, 0.9995)T + λ · (−1.05, 0.021)T . On this line λ = 0.5 coincides with H0. Here,

the main advantage of the full simplicial depth compared to the sign test is clearly

visible. Additionally, these figures show how the new test outperforms the OLS test

in the case of non-normal errors where the OLS test in particular does not keep the

level anymore.

Summarising, we see that the dS test can be applied to explosive AR(1) processes

under quite general conditions and does not suffer of systematic failure or heavy

bias in case of skewed errors or outliers. Further, by the price of additional com-

putational costs, the full simplicial depth statistic defines a test with higher power

than the simplified statistics based on simplicial depth.
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(a) dS (b) d1S

(c) d2S (d) d3S

(e) OLS (f) Sign

Fig. 65: Power of the tests based on errors with contaminated normal distribution.
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(a) dS (b) d1S

(c) d2S (d) d3S

(e) OLS (f) Sign

Fig. 66: Power of the tests based on errors with Fréchet distribution.

Non-Linear Model

For the non-linear model, we again use the appropriate versions of the proposed

tests. The sign test again can be applied by replacement of the residuals. The same

argument holds for the OLS test. To compute a test based on the assumption of

normal errors, we use asymptotic confidence intervals, defined by Beale (1960) or

Ritz and Streibig (2008). Thereby, we use the implementation form the R package
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nlstools by Baty et al. (2015). The results of this thesis extend the results pre-

sented in Kustosz et al. (2016b).

We evaluate a process defined by

Yn = Yn−1 + θ1Y
θ2
n−1 + En.

The null hypothesis is given by H0 : θ = (θ01, θ
0
2) with θ01 = 0.005 and θ02 = 1.002.

We examine processes with a starting value of y0 = 15 and a length of N = 500.

Example processes are depicted in Figure 67.
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Fig. 67: Realizations of non-linear AR(1) processes with θ1 = 0.015, θ2 = 1.002, y0 =

15 and two different error distributions

To evaluate the power of tests for H0 : θ = θ0 := (θ01, θ
0
2)

⊤, a grid defined by

[−0.02, 0.1]× [0, 2] with a step width of 0.0001 for θ1 and 0.01 for θ2 is considered.

On each grid point the processes are generated 100 times to simulate the power of

the test at a 5% level for processes with a length of N = 500 observations. The

resulting power functions for normal errors are depicted in Figure 68.
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(a) dS (b) d1S

(c) d2S (d) d3S

(e) NLS (f) Sign

Fig. 68: Simulated power for N (0, 0.1) errors under the non-linear AR(1) Model.

The simulated relative number of rejections of H0 : θ = (0.015, 1.002) based on

different values of θ = (θ0, θ1) is depicted. The errors are simulated as N(0, 0.1)

random variables. The processes have a length of N = 500 observations. The

parameters for the null hypothesis are marked by the dashed lines.

One can observe that the depth based tests have power functions which are increasing

to one when the parameter deviates from H0 : θ = (0.015, 1.002). Due to the model,

the power functions are not symmetric. The NLS test shows the best results for

normally distributed errors. It is directly followed by the dS test. It appears,

as if the d3S test slightly outperforms the d2S test followed by the d1S version. By

consideration of a wider parameter range, a systematic shortcoming of the sign test
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gets obvious. The sign test again does not reject parameters, for which half of the

residuals are negative and half are positive, even if the model fit is poor. This is

discussed in more detail in the following remark 101. A closer look at the levels, as

presented in Kustosz et al. (2016b), reveals a problem of the NLS test. Due to the

necessary approximation of the non-linear model, the NLS test hardly holds the level

at H0 for normally distributed errors. In case of non-normal errors, it completely

fails to keep the level at any evaluated point.

Remark 101. The residuals of a process Ỹ defined by θ = (θ1, θ2) ̸= (θ01, θ
0
2) = θ0

are given by rn(θ
0, Ỹ ) = En + θ1Ỹ

θ2
n−1 − θ01Ỹ

θ02
n−1. If the errors are assumed to be

approximately zero, then rn(θ
0, Ỹ ) ≶ 0 holds approximately if and only if θ1 ≶

θ01Ỹ
θ02−θ2
n−1 . Since Ỹ is strictly increasing, we obtain for θ2 < θ02 that

θ01Ỹ
θ02−θ2
0 < ... < θ01Ỹ

θ02−θ2
⌊N/2⌋−1 < θ1 < θ01Ỹ

θ02−θ2
⌊N/2⌋ < ... < θ01Ỹ

θ02−θ2
N

implies rn(θ
0, Ỹ ) > 0 for n ∈ {1, ..., ⌊N/2⌋} and rn(θ

0, Ỹ ) < 0 for n ∈ {⌊N/2⌋ +
1, ..., N}. Similarly, if θ2 > θ02 then

θ01Ỹ
θ02−θ2
0 > ... > θ01Ỹ

θ02−θ2
⌊N/2⌋−1 > θ1 > θ01Ỹ

θ02−θ2
⌊N/2⌋ > ... > θ01Ỹ

θ02−θ2
N

implies rn(θ
0, Ỹ ) < 0 for n ∈ {1, ..., ⌊N/2⌋} and rn(θ

0, Ỹ ) > 0 for n ∈ {⌊N/2⌋ +
1, ..., N}. For θ2 → ∞, the interval


θ01Ỹ

θ02−θ2
⌊N/2⌋ , θ

0
1Ỹ

θ02−θ2
⌊N/2⌋−1


reduces to one point, so

that only few θ1 can satisfy θ01Ỹ
θ02−θ2
⌊N/2⌋−1 > θ1 > θ01Ỹ

θ02−θ2
⌊N/2⌋ for large θ2. The opposite

is the case for θ2 → 0, where the interval

θ01Ỹ

θ02−θ2
⌊N/2⌋−1, θ

0
1Ỹ

θ02−θ2
⌊N/2⌋


becomes larger,

explaining the widening of the area with low power of the sign test for small θ2.

For an error distribution which is contaminated with positive outliers in 5% of all

cases, the resulting power functions are presented in Figure 69. As in the non-

contaminated case the region of the depth based tests with low power is bounded

while the sign test shows a systematic problem for a range of parameters with small

θ2. In general, the power functions are steeper, since the jumps lead to a faster

growing process, what is exploited by the proposed tests. The NLS test now does

not hold the level and hence is not a 1− α level test anymore.
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(a) dS (b) d1S

(c) d2S (d) d3S

(e) NLS (f) Sign

Fig. 69: Simulated power for CN (0, 0.1) Errors under the non-linear AR(1) Model.

The simulated relative number of rejections of H0 : θ = (0.015, 1.002) based on

different values of θ = (θ0, θ1) is depicted. The errors are simulated as contaminated

N(0, 0.1) random variables, whereby in a fraction of 5% variables with a N(5, 1)

distribution are added. The parameters for the null hypothesis are marked by the

dashed lines.

Summarising, we see that the full simplicial depth allows us to test the parameter

of growth processes with a high power, independent of the exact error distribution

and model. Hence, in case of sparse information on the model, e.g. when just few

experiments are available and more experiments are very costly, the depth based

tests deliver an interesting alternative to the standard approaches to test the pa-
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rameters simultaneously. In addition, the simplified depth notions can be applied

as less costly robust alternatives, when the dS depth is appropriate.

5.3 Confidence Intervals

In this section, we demonstrate that the proposed parameter confidence intervals

perform as expected by calculation of the empirical coverage rates in different situ-

ations.

Coverage Rates for the Linear Model Without Intercept

Starting with the linear model without intercept, we compare the coverage rates of

the confidence intervals based on dS and diS for a growth parameter of θ1 = 0.005

and different error distributions, as well as sample sizes

N ∈ {10, 50, 100, 200, 250, 500, 750, 1000}. The first comparison shows the coverage

rates when the errors are normally distributed with mean 0 and standard deviation

0.2. The results are depicted in Figure 70. Thereby, we simulate the confidence

intervals R = 10000 times for each sample size N and calculate the coverage rates

by the relative number of simulations in which the true parameter is located in the

confidence interval.
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Fig. 70: Coverage rates for the depth based tests with different sample sizes for

linear AR(1) processes without intercept and θ1 = 0.005, En ∼ N (0, 0.2).

The coverage rates are close to the desired level of γ = 95%.

Applying contaminated normal errors delivers Figure 71.
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Fig. 71: Coverage rates for the depth based tests with different sample sizes for

linear AR(1) processes without intercept and θ1 = 0.005, En ∼ CN (0, 0.2).

The results are similar to the non-contaminated case. The full depth intervals are

closer to the pre-set level for sample sizes larger than N = 500.

The last simulation, depicted in Figure 72, shows the results for Fréchet distributed

errors, leading to the same conclusions.
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Fig. 72: Coverage rates for the depth based tests with different sample sizes for

linear AR(1) processes without intercept and θ1 = 0.005, En ∼ F(1.928,−2, 10).

We can sumarise that the full depth confidence intervals are more reliable than the

simplified notions. Nevertheless, the simplified depth notions asymptotically also

hold the level and just show small deviations of the pre-set values.
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Coverage Rates for the Linear Model With Intercept

A similar study for the linear model with intercept is shown in Figure 73.
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(c) F(1.928,−2, 10)

Fig. 73: Coverage rates for the depth based tests with different sample sizes for

linear AR(1) processes without intercept and θ1 = 1.005, θ3 = 0.1.

Coverage Rates for the Non-Linear Model

Evaluations for the non-linear model are presented in Figure 74.
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(c) F(1.928,−2, 10)

Fig. 74: Coverage rates for the depth based tests with different sample sizes for

non-linear AR(1) processes and θ1 = 0.01, θ2 = 0.005.

We can conclude that the asymptotic results support our proofs and the method

really delivers (1− α) confidence sets for the parameters.

Relation Between Full and Simplified Depth Confidence Intervals

Reconsidering the examples in Section 4.5 leads to a proposal for faster calculation

of full simplicial depth confidence sets. For all considered models, the dS confidence

regions were covered by the simplified versions in the presented examples. If this

would be true in general, we could reduce the candidates for a calculation of the dS

confidence regions to candidates which are already included in the confidence set of
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the smallest region from the simplified notions. Since we do not have theoretical

results on the relation of the different confidence regions, we propose to base the

improved algorithm to calculate dS confidence intervals on the d1S statistic, to assure

the consideration of all relevant candidates. Since the d1S confidence regions define

the smallest confidence regions in our set of test statistics, but also are very likely

to cover the full simplicial depth confidence regions completely. This can be also

motivated empirically by the following simulation studies for the linear models with

and without intercept, as well as for the non-linear model.

Relation for the Linear Model Without Intercept

Rate of overlapment Mean size of regions
d1S d2S d3S d1S d2S d3S dS

N (0, 0.2) 81.2% 83.0 % 83.8 % 0.0105 0.0085 0.1134 0.0041
CN (0, 0.2) 81.5% 81.9 % 83.5 % 0.007 0.0068 0.0085 0.0027

F(1.928,−2, 10) 81.9% 82.9 % 82.3 % 0.0108 0.0084 0.0112 0.004
results when we just check bounds

N (0, 0.2) 95.1% 91.3 % 96.2 % 0.0105 0.0085 0.1134 0.0041
CN (0, 0.2) 94.7% 87.8% 97.0% 0.007 0.0068 0.0085 0.0027

F(1.928,−2, 10) 94.7% 89.5% 96.7% 0.0108 0.0084 0.0112 0.004

Tab. 5: Covarage of the full depth confidence set by reduced depth based confidence
sets for the linear model without intercept with θ1 = 0.01, y0 = 15, N = 100, based
on 1000 simulations.

Table 5 shows, how often the full simplicial depth confidence regions are completely

covered by the confidence regions based on the simplified notions for the linear model

without intercept. To generate these numbers, we simulated the underlying process

1000 times and calculated the four confidence sets for each simulation. Then, we

counted the number of simulations for which the full depth regions are completely

covered by the regions based on the simplified notions. In addition, we give the mean

sizes of the resulting intervals. We see that the rates of the overlapping are quite

high. The d3S statistic has the highest rates for both considered sample sizes. This

coincides with the largest intervals, measured by the mean distance of the endpoints,

in all simulations. The lowest coverage rates are resulting from the d2S statistic which

also has the smallest confidence intervals in the set of simplified statistics. The full

simplicial depth has the smallest confidence sets in total.

Another interesting observation for the linear process without intercept is that the

results change when we just check, if the boundaries of the full depth intervals are
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fully included in the maximal and minimal parameter from the simplified sets. In

this case the rates rise remarkably. A closer look at the simulations reveals the

following reason. Due to the evaluation of the exact candidate set, we deflate depth.

Hence, the confidence set might be not connected. As a result, the intervals do not

cover the full simplicial depth region in these cases, if all parameters are checked

individually. This can be corrected by taking the minimal and maximal values.

Then the discontinuity problem at the candidate points is avoided.

Our proposal for the linear model without intercept is, to evaluate the d1S intervals to

reduce the candidates for the construction of confidence sets based on full simplicial

depth. This allows a precise and fast evaluation of the full depth interval in about

95% of all applications.

Relation for the Linear Model With Intercept

The relation of confidence sets for the linear model with intercept is studied in

Table 6. Here, the d2S statistic has the highest coverage rates. In addition the size

of the intervals is low, compared to the d1S and d3S intervals. Hence, we propose to

base the candidate preselection on the d2S intervals in case of linear AR processes

with intercept. However, the d1S results do not appear much worse. This results

in a reliable and fast construction of full depth confidence sets in about 90% of

applications.

Rate of overlapment Mean size of regions
d1S d2S d3S d1S d2S d3S dS

N (0, 0.2) 89.2 % 92.2 % 77.5 % 31.44 8.27 5169.81 0.55
CN (0, 0.2) 86.4 % 89.4 % 69.6 % 35.05 11.63 1841.30 0.36

F(1.928,−2, 10) 88.1 % 89.8 % 75.0 % 17.04 7.28 752.95 0.50

Tab. 6: Covarage of the full depth confidence set by reduced depth based confidence
sets for the linear model with intercept with θ1 = 0.001, θ3 = 0.1, y0 = 15, N = 100,
based on 1000 simulations.

Relation for the Non-Linear Model

In Table 7 the same study for the non-linear model is presented. Now, the coverage

rates are clearly lower. The sizes are quite uninformative, since the non-linearity

leads to large distances. Due to rates below 70 % for all simplified notions in the

non-linear model, a preselection of candidates for full depth by pre-evaluation cannot

be recommended.

Summarising, we can claim that in the linear models the simplified notions can be
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used with some caution. For exact results, one should be aware that by a pre-

evaluation of the simplified statistics potential candidates for the dS regions could

be neglected. For the non-linear model a pre-selection cannot be recommended.

Rate of overlapment Median size of regions
d1S d2S d3S d1S d2S d3S dS

N (0, 0.2) 67.5 % 69.2 % 25.7 % 7.26 · 1094 9.15 · 1074 4.31 · 1088 5 · 103
CN (0, 0.2) 63.8 % 68.2 % 23.9 % 1.58 · 1071 1.63 · 1053 2.30 · 1072 4.98 · 101

F(1.928,−2, 10) 66.2 % 69.7 % 24.1 % 9.39 5.17 4.08 1.37

Tab. 7: Coverage of the full depth confidence set by reduced depth based confidence
sets for the non-linear model with θ1 = 0.01, θ2 = 1.002, y0 = 15, N = 100.

5.4 Prediction

In this section, we show empirically that our bootstrapping procedure appears to

be valid even if we are not able to prove this validity theoretically so far. At the

same time, we compare the coverage rates of our prediction intervals with existing

methods based on bias correction and bootstrapping as presented in Kim (2003,

2001); Kilian (1998) and Thombs and Schuchany (1990).

Alternative Prediction Methods

The Bootstrap-after-Bootstrap (BaB) prediction introduced by Kim (2001), follow-

ing Kilian (1998), calculates a bias corrected parameter estimate by application of a

bootstrapping scheme and then, based on the first bootstrap, computes bootstrap-

ping confidence intervals as proposed by Efron (1979).

The second method follows Thombs and Schuchany (1990) who propose simple boot-

strap prediction (BS) intervals based on the OLS estimator. A similar approach was

proposed by Stute and Gründer (1993) for explosive autoregression explicitly. The

third method (BC) uses the approach of Shaman and Stine (1988); Stine and Shaman

(1989) who introduce a bias corrected estimator for the coefficient of AR processes.

By the extension of Kim (2003) this leads to bootstrap prediction intervals based

on mean unbiased estimators.

Comparative Simulation Study

Our simulation study covers three different error distributions and three sample

sizes. We compare the size of the prediction intervals and the coverage rates of the

true value. The results for N = 100 are presented in Tables 8, 9 and 10. Thereby,

5.4 Prediction 153



154 5 SIMULATION STUDIES

in all simulations we performed 1000 repetitions.

depth BaB BS BC
coverage rate 95.5% 75.4 % 94.7% 90.5%
size of interval 3.91 4.94 4.58 4.45

Tab. 8: Prediction for the linear model without intercept for N = 100 observations,
θ1 = 0.01, y0 = 15, En ∼ N (0, 0.2) and a prediction at Nf = 115, γ = 0.95.

depth BaB BS BC
coverage rate 93.8% 85.1 % 91.8% 87.4%
size of interval 18.84 20.28 26.51 20.50

Tab. 9: Prediction for the linear model without intercept for N = 100 observations,
θ1 = 0.01, y0 = 15, En ∼ CN (0, 0.2) and a prediction at Nf = 115, γ = 0.95.

depth BaB BS BC
coverage rate 92.5% 75.2 % 93.1% 90.6%
size of interval 5.66 6.70 6.62 6.48

Tab. 10: Prediction for the linear model without intercept for N = 100 observations,
θ1 = 0.01, y0 = 15, En ∼ G(10,−3.665129) and a prediction at Nf = 115, γ = 0.95.

For short term prediction, the simplicial depth based method shows the smallest

prediction intervals with quite reliable coverage rates, see Tables 8, 9 and 10. The

bootstrap prediction has similar coverage rates, but also larger prediction intervals.

The remaining methods are always worse than the simplicial depth prediction and

the bootstrap prediction.

For larger forecast horizons, we get the results presented in Tables 11, 12 and 13.

While the coverage rates of the simplicial depth prediction fall just slightly below the

rates from bootstrap prediction, the size of the simplified depth prediction intervals

now increases. The bootstrap method is clearly superior here. Nevertheless, the

simplified depth prediction is quite reliable and appears to be a valid prediction

method. We also want to compare the effect of a larger sample size. The results are

depicted in Tables 14, 15 and 16 for short term prediction.

In Tables 17, 18 and 19 results for a larger prediction horizon are presented.
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depth BaB BS BC
coverage rate 91.1% 49.4 % 94.1% 73.1%
size of interval 11.55 14.21 4.59 14.88

Tab. 11: Prediction for the linear model without intercept for N = 100 observations,
θ = 1.01, y0 = 15, En ∼ N (0, 0.2) and a prediction at Nf = 150, γ = 0.95.

depth BaB BS BC
coverage rate 90.3% 68.1 % 91.1% 73.6%
size of interval 46.53 54.91 26.46 58.07

Tab. 12: Prediction for the linear model without intercept for N = 100 observations,
θ = 1.01, y0 = 15, En ∼ CN (0, 0.2) and a prediction at Nf = 150, γ = 0.95.

depth BaB BS BC
coverage rate 91.0% 51.1 % 93.7% 73.3%
size of interval 16.60 20.29 6.58 21.34

Tab. 13: Prediction for the linear model without intercept for N = 100 observations,
θ = 1.01, y0 = 15, En ∼ G(10,−3.665129) and a prediction at Nf = 150, γ = 0.95.

depth BaB BS BC
coverage rate 96.3% 0 % 93.4% 99.8%
size of interval 5.51 207.02 3.77 479.72

Tab. 14: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ N (0, 0.2) and a prediction at Nf = 515, γ = 0.95.

depth BaB BS BC
coverage rate 96.1% 0 % 93.8% 99.7%
size of interval 20.26 416.91 21.48 1244.77

Tab. 15: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ CN (0, 0.2) and a prediction at Nf = 515, γ = 0.95.

depth BaB BS BC
coverage rate 96.7% 0 % 93.5% 99.9%
size of interval 7.28 280.65 5.44 667.74

Tab. 16: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ G(10,−3.665129) and a prediction at Nf = 515, γ = 0.95.

depth BaB BS BC
coverage rate 96.4% 0 % 94.4% 0%
size of interval 20.38 312.70 3.78 934.95

Tab. 17: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ N (0, 0.2) and a prediction at Nf = 550, γ = 0.95.
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depth BaB BS BC
coverage rate 96.6% 0 % 93.2% 0%
size of interval 51.47 743.76 21.38 2423.63

Tab. 18: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ CN (0, 0.2) and a prediction at Nf = 550, γ = 0.95.

depth BaB BS BC
coverage rate 97.3% 0 % 94.3% 0%
size of interval 25.24 443.98 5.43 1310.82

Tab. 19: Prediction for the linear model without intercept for N = 500 observations,
θ = 1.01, y0 = 15, En ∼ G(10,−3.665129) and a prediction at Nf = 550, γ = 0.95.
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We can conclude that in case of the short term forecast the simplicial depth predic-

tion is at least comparable with the bootstrap prediction. It is more conservative,

but therefore also holds the level. When a larger prediction horizon is considered,

the intervals of the simplicial depth prediction are clearly larger than the bootstrap

intervals. This again happens with coverage rates above γ, while the rates for the

bootstrap prediction are below the desired level. The proposed prediction methods

have not been developed for models with multiple parameters so far. The main issue

to be solved in this context is an appropriate modification of the random parameter

generation as discussed in Section 4.8. This is an aim for future research.

5.5 Change Points

In this chapter, we compare our heuristic change point detection procedures with

existing methods.

Compared Change Point Detection Methods

To compare our methods with other available proposals, we use the R packages

strucchange and segmented. These sources implement common change point de-

tection methods for time series. Further, we compare both proposed variations of the

depth based change point detection Algorithms 91 and 92. We refer to the method

based on non-overlapping confidence sets, defined by Algorithm 91 as Method 1 and

to the estimator based method from Algorithm 92 as Method 2.

The strucchange package implements results discussed by Bai and Perron (1998,

2003). The application is also addressed by Zeileis et al. (2003). The general ap-

proach to detect the change points is based on a model dependent residual sum of

squares. Thereby this sum is minimised with respect to potential change points

(i1, ..., im) in the observed data. The actual algorithm in the package uses the

Bellman principle, as proposed by Bai and Perron (2003) to allow a dynamic pro-

gramming algorithm.

The second proposal from literature, available via the segmented package, is based

on the results of Muggeo (2003). Here, a break point detection for general regres-

sion models is presented. Based on the first order Taylor expansion, piecewise linear

models are constructed for which an iterative breakpoint detection procedure is

formulated.
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Comparison for one Change Point and Normal Errors

In Figure 75 a simulated series with N = 100 observations and a breakpoint at

n = 50 is depicted. The comparison of the detection methods, based on multi-

ple realisations of this process, are presented in Figure 76. Thereby, we consider

random draws from a linear autoregressive model with intercept and parameters

θ1 = 0.01, θ3 = 0 for n ∈ {1, ...50} and θ1 = 0.02, θ3 = 0 for n ∈ {51, ..., 100}.
The errors are independent and identically N (0, 0.2) distributed. For the change

point detection based on simplicial depth, we applied the tests based on the statistic

for the AR parameter θ1 only and the full test for a model with intercept θ3. All

methods are preformed on an α = 0.05 level. For the post-processing, we neglected

all potential change point clusters with a length below 75% of the longest detected

cluster in the depth based algorithms.
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Fig. 75: Simulated AR(1) process with parameter θ1 = 0.01 at n ∈ {1, ..., 50} and

parameter θ1 = 0.02 for n ∈ {51, ..., 100}. En ∼ N (0, 0.2) and θ3 = 0.

In Figure 76 (l), we see that the algorithm from the segmented package detects

exactly one change point in each simulation. The reason is that the algorithm

uses a preliminary estimate for a singular breakpoint and hence deterministically

detects one change in each simulation. The distribution of the detected change

points from this algorithm is centred around a value of 40, instead of the true

value of 50, and shows an asymmetry with many values between 60 and 80. The

strucchange algorithm shows a much lower deviation from the true value at 50

but it does not detect change points in every simulation. In particular, Figure 76

(k) shows that in about 40 of the 100 simulations no change point was detected.

Further in few simulations multiple change points are detected by this method. The

depth based methods also show a distribution of the detected change points which

is concentrated around the true change point location at observation 50. Instead of

a high rate of non-detection, Method 1 detects multiple change points more often,
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than the strucchange algorithm. The cases, where no change point is detected, are

lower than the strucchange results for all proposals. However, the variance of the

location estimates is higher than the variance from the strucchange estimates. The

one-dimensional depth methods possess a lower variance than the two dimensional

ones. This is not surprising, since the two dimensional proposals need to consider

two parameters, while the one dimensional methods assume θ3 = 0, what is correct

in our simulation study. All depth based methods also detect multiple change points

in few cases.
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Fig. 76: Change points from R = 100 simulations of processes defined by θ1 = 0.01

at n ∈ {1, ..., 50} and θ1 = 0.02 for n ∈ {51, ..., 100}, En ∼ N (0, 0.2), θ3 = 0.
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Comparison for one Change Point and Contaminated Normal Errors

In Figure 77, the results based on contaminated normal errors are presented.
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Fig. 77: Change points from R = 100 simulations of processes defined by θ1 = 0.01

at n ∈ {1, ..., 50} and θ1 = 0.02 for n ∈ {51, ..., 100}, En ∼ CN (0, 0.2), θ3 = 0.
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The depth based methods still show a good performance in estimating the location

of the change point. Again, the variance based on one-dimensional models is lower

than for two-dimensional models. The number of detected change points is one for

nearly all of the simulations based on the depth methods. Multiple change points

are just detected in very few simulations. The strucchange method is influenced

by the jumps in the series introduced by the contamination. Hence, more than one

change point is detected quite often, because the jumps caused by contamination

are misspecified as change points. This also has an effect on the poor estimates of

the change point location. The method available through the segmented package

performs quite similar to the non-contaminated case. The true number of change

points is again correct due to the parameters used for the algorithm. The variance

increases due to the jumps what indicates that the contamination also influences

the estimates in this approach.
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Comparison for one Change Point and Fréchet Errors

The next example, see Figure 78, shows an evaluation based on Fréchet errors.
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Fig. 78: Change points in R = 100 simulations of processes defined by θ1 = 0.01 at

n ∈ {1, ..., 50} and θ1 = 0.02 for n ∈ {51, ..., 100}, En ∼ F(1.928,−2, 10), θ3 = 0.
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In this case, the robust methods preform very well again. The variances of the

location estimates are comparable to the contaminated case. The number of detected

multiple change points increases. The location of the true change point is also nearly

perfectly estimated by the strucchangemethod. Unfortunately, this just happens in

40 % of the simulations. In more than 50 % no change can be detected. This ratio is

remarkably lower for all of the depth methods. As expected, the segmented method

also is detecting exactly one change point for Fréchet errors. The distribution of

the estimated locations is quite similar to the simulations with normally distributed

errors. In particular, it is again biased.

Comparison for Two Change Points and Normal Errors

The last simulation study shows the performance of the methods, if multiple change

points exist. Thereby, we reduce our attention to simulations with normal error

distribution. To generate an example, we extend the process considered above by a

third phase with parameters θ1 = 0.01 and θ3 = 0.1 for 50 observations. The results

are depicted in Figure 79. We do not consider the one-dimensional models anymore,

since we also assume a change in the intercept parameter θ3.
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Fig. 79: Change points in R = 100 simulations processes defined by (θ1, θ3) =

(0.01, 0) at n ∈ {1, ..., 50}, (θ1, θ3) = (0.02, 0) for n ∈ {51, ..., 100} and (θ1, θ3) =

(0.01, 0.1) for n ∈ {101, ..., 150}, En ∼ N (0, 0.2).
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The stucchange method performs very well. It detects the locations of the change

points with a high precision and further detects both changes in over 40% of the

simulations. In about 55% at least one change can be detected. In few remaining

simulations three changes are detected. The segmented method again shows biased

location estimates. Further, by the preliminary guess of one change point, just

one point is detected in each simulation. The depth based methods also detect

the change point locations quite well, but fail to detect multiple change points

automatically. In case of the depth based methods the detection fails, because the

parameters are poorly tuned. Hence, in most of the simulations just one change

point is detected. This in particular happens, since the length of the candidate

clusters differs, what leads to neglected change points, due to our robustification

step.

Parameter Tuning for Depth Methods

To illustrate the tuning problem in case of the depth methods, we have also evaluated

the same processes with the information that we expect two change points. The

results are depicted in Figure 80.
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Fig. 80: Change points in R = 100 simulations of processes defined by (θ1, θ3) =

(0.01, 0) at n ∈ {1, ..., 50}, (θ1, θ3) = (0.02, 0) for n ∈ {51, ..., 100} and (θ1, θ3) =

(0.01, 0.1) for n ∈ {101, ..., 150}, En ∼ N (0, 0.2), mp = 2.

With the additional information, the change points are detected in all cases now.

However, the numbers of detected change points is still quite low. The variance

of our proposals is still higher than the variance of the strucchange results. The

reason is that we detect two points in each simulation, and hence also have more

observations of change point locations. The second method thereby results in slightly

more additional change points but also has a higher precision with respect to the

detected change point locations.

Summarising, we can state that the depth based methods deliver very flexible and

comparative methods for change point detection in growth processes. The proposed

methods are quite flexible, since they also can be applied to the non-linear model

without any additional cost. In further work, we aim to develop a way for an optimal

parameter selection. Thereby, local depth or the simplicial depth shape itself can

be applied to preliminary estimate the expected number of change points. Further,

a training for the bandwidth parameters has to be proposed. So far, we select the

parameters based on a trade-off with respect to precision and computation time.
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5.6 Runtimes

To illustrate the performance gain resulting from proposed the calculation method

in Section 4.1 compared to a straightforward loop calculation, we perform a short

simulation study. Therefore, we evaluate the simple algorithm to calculate the

full simplicial depth for two-dimensional parameters programmed with nested loops

and compare it to the proposed algorithm in case of a vectorisation without usage

of parallel calculations and with parallel calculations on two cores. The study is

preformed on a LENOVO L420 with Intel(R) Core(TM) i3.2310M CPU(2.10GHz),

4GB RAM, Windows 7 64bit. Thereby, we calculate the test statistic for series

of length N ∈ {50, 100, 500, 1000} and repeat the calculations 1000 times for each

series length to estimate the average runtime. The resulting average runtimes for

the evaluation of one depth statistic are presented in Table 20. It is clearly visible

N 50 100 500 1000
avg. time 1 CPU 0.049 0.20 14.67 117.30
avg. time 2 CPU 0.020 0.114 11.59 96.86
avg. time loop 0.187 1.491 181.64 n.a.

Tab. 20: Average runtime (seconds), 1000 repetitions for each scenario.

that the matrix based algorithm comes with a large increase of performance. Even

for a short series of N = 50 observations the matrix based algorithm reduces the

calculation time by 74% of the loop based method. The difference appears to be

not linear in N . The runtime is reduced by 92% for a sample size of N = 500.

The reduction based on the application of multiple cores results in a lower increase

of efficiency. Of course the advantage of the matrix based calculation is clearly

visible. For a sample size of N = 50 the computation time is reduced by 90%

of the loop based algorithm and by 60% of the matrix based algorithm without

multiple cores. But in case of N = 500 observations the reduction by parallel

computing just results in 21% of the runtime from the simple matrix based method.

Nevertheless, the time is reduced by 94% of the loop based algorithm. The reason for

the decreasing improvement by parallel computation is a poor management of the

memory in the current stage of development of our functions. So far, the residuals

are exported to the utilised cores in total. Since this happens multiple times in

the algorithm, depending on the sample size, the parallel method loses performance

due to this operations with respect to memory usage. In further revisions of the

package, we will address this issue, either by an adjusted approach to utilise the

available cores in R directly or by C implementations which allow a more efficient

memory management.

5.6 Runtimes 168



169 5 SIMULATION STUDIES

5.7 Limit Distribution

Validity of the Limit Distribution

To check the validity of the derived limit distribution, we present a short simulation

based comparison under the null hypothesis. Therefore, we calculated dARi
S (θ0, y)

for 10000 processes of length N = 1000 and a parameter θ = (θ1, θ3) = (0.001, 0.02)

for an linear AR(1) process with intercept to compare the empirical distribution of

N(dARi
S (θ, y)− 1

4
) with the approximative results from WL, see (40). The simulated

processes to calculate dARi
S were based on Normal errors and on Gumbel errors with

med(En) = 0. A comparison is presented in Figure 81.
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Fig. 81: Histograms of limit and statistic. The histograms from dS are based on

10000 simulated statistics. The theoretical distribution is approximated by the

bivariate Gaussian limit process based on 200000 simulated paths.

We see that the distributions look quite similar. Further, two sample Kolmogorov-

Smirnov (KS) tests (Conover, 1971, pp. 309) show that equal distributions cannot

be rejected, when we systematically test sub samples from the simulated distribu-

tions. The analysis is restricted to sub samples, since a KS test is too sensitive to

small deviations in large sample comparisons. Therefore, we test 1000 sub samples,

each with 50 randomly drawn simulations, against the full approximated limit dis-

tribution. The size of the sub samples is selected low enough, to allow an exact

evaluation of the KS test. Then, we count the number of rejections based on an 5%

level based on the KS test. The results are presented in Table 21.
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Error distribution Normal Gumbel

Relative number of rejections 0.057 0.066

Tab. 21: Relative number of rejections of the KS test on a 5% level by comparison

with the full approximated limit distribution based on 1000 repetitions.

We see that for nearly 95% of the sub samples equal distributions cannot be rejected

in both comparisons. This strongly supports the validity of our limit distribution.

Reliability of the Simulation for Arbitrary Parameter Dimensions

To check the reliability of the simulation scheme for parameters with arbitrary pa-

rameter dimension K, introduced in Section 4.2, we compare quantiles of the ap-

proximated limit for the two dimensional processes with the results from a simula-

tion based on Bernoulli variables. Therefore, we simulated 1000 values of the test

statistics based on equation (41) with N = 1000 and K = 2 for each simulation.

In Figure 82, we compare the histogram from the approximated asymptotic distri-

bution with a histogram from the simulated and correctly rescaled limit based on

Bernoulli variables.
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Fig. 82: Histograms of limit and simulated limit.

We see that there are some deviations of the distributions, but the general shape

is quite similar. A KS test, comparing the resulting distributions, has a p-value of
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0.2073. Hence, we cannot reject equal distributions here. This supports the validity

of the simulation scheme.

For K > 2 the choice of N and the number of simulations to explore the limit dis-

tribution should be carefully checked, for example by an evaluation of the variation

between sub-samples, to assure that the limit is approximated precise enough.
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6 Real Data Examples

6.1 Maurer and Heeke Data - Model Choice

Technical Details and Assumptions

Maurer and Heeke (2010) conducted fatigue experiments on prestressed concrete

under cyclic loading. Their main focus was to analyse the crack growth under

low loading, since in this field no fundamental research results are available. One

reason for this is that low loading directly leads to long experiments which are very

costly. Hence, Maurer and Heeke (2010) just present a limited amount of potentially

censored experimental results. We propose statistical methods which nevertheless

allow inference on their data with respect to the relation of stress and lifetime.

The experimental specimen were prestressed concrete beams as presented in Figures

83 and 84. Prestressed concrete beams are solid concrete blocks, where a tension

wire is incorporated to increase the stability of the beam. A typical wire consists of

multiple twisted metallic wires. In our case 35 single wires were used per complete

tension wire. The location of the tension wire in each beam is illustrated in Figure

84 by the dashed line.

Fig. 83: TR02 experiment of Maurer and Heeke (2010).

Thereby,material for the tension wires was won from wires of an Autobahn bridge

at the BAB A1 near Hagen in Germany after its demolition. From the eleven meter

tension wires, new five meter tension wires were produced and incorporated into

new concrete beams. In total, five experimental beams could be produced. Details

on the selection of the wires and the production can be found in Maurer and Heeke

(2010).
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To observe fatigue under experimental conditions a test station was designed. This

test station is depicted in Figure 84.

Press

W

Concrete Beam

Observed Crack

Tension Wire

Fig. 84: Test station used for crack growth experiments.

By application of a cyclic load by the press, horizontal loads were induced to the test

specimen so that a calculable load was applied to the tension wire at the crack tip. At

the way recorder (seeW in Figure 84) the width of this initiated crack was measured.

Further, data from elongation recorders and microphones was collected. In our

models, we just consider the recorded crack width data a(t) at time t. Thereby, t

is the time, recorded at equidistant points which are defined by the load cycles. In

total, results from five experiments denoted by TR01, TR02, TR03, TR04 and TR05

are available. The experiments were conducted under different loads and technical

settings. The most important parameters can be found in Table 22.

Prestressing Max. load Min. load Amplitude ∆σ Sample

tension [kN] Fmax [kN] Fmin [kN] FAmp [kN] [N/mm2] Size

TR01 179.3 342 250 46 200 2806

TR02 179.3 454 250 102 455 502

TR03 234.0 477 388 44.5 200.3 7739

TR04 234.0 456 388 34 150 11748

TR05 234.0 432 388 22 98 12401

Tab. 22: Parameters of the Maurer and Heeke (2010) experiments.
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Fig. 85: Fully observed rack growth time series by Maurer and Heeke (2010).

While in experiments TR01, TR02 and TR03 the total failure of the concrete beams

could be observed TR04 and TR05 are censored experiments. The duration of

experiment TR01 was 29 days. TR02 just needed 2 days until total failure. For

TR03 data was recorded for 26 days. The censored experiments were aborted after

42 and 89 days without a total failure.

To derive the relation between applied load and the number of load cycles until

failure, including point-wise confidence intervals by the available data, we need a

method to construct prediction intervals for the fully observed series and also a

method to complete the censored experiments. The choice of these methods, which

we introduce in Section 2, is limited by the properties of crack growth.

The fully observed series are depicted in Figure 85. Due to the experimental condi-

tions, we can formulate central assumptions on the data generating process.

F1 Since we observe fatigue without maintenance, the long term process should

be non-decreasing.

F2 Due to the incorporated tension wires, positive jumps in the process can be

observed. These jumps appear, if one of the M tension wires, whereby M is

fixed and known, breaks.

F3 Since we work under experimental conditions, the starting value y0 is fixed

and known.

F4 There are observation and measurement errors with median zero.

These assumptions induce that the experiments always result in growth processes,

due to the fact F1. Since the observed processes are very long, compared to a low
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number of tension wires and since we do not have experiments under repeated condi-

tions, we are not able to estimate the frequency and height of the jumps introduced

by tension wires, mentioned in F2. Hence, we combine the errors defined by F4 with

the jumps which are just apparent for less than 2.5 % of the data for TR02 and less

than 1% for TR01 and TR03. Therefore, we assume that we observe a skewed error

distribution with a median equal to zero. Fact F3 allows us to apply our theory

based on non-random starting values. Note that with random starting values, some

of the arguments which guarantee growth processes need to be carefully checked.

Our main aim is to derive a S-N curve, relating the applied loads ∆σ, or S for stress

in engineering, to the lifetime in load cycles, denoted by N .

Discussion of the Full Three Parameter Model

Since the complete model was defined by the three parameter discrete approximation

of the stochastic Paris-Law, we first analyse the crack growth data for the full model

given by

Yn = θ3 + Yn−1 + θ1Y
θ2
n−1 + En, (51)

with med(En) = 0. By the derivatives with respect to the parameters, we can

calculate tangential depth. The derivatives for the usual quality function given by

the squared residuals

Q(θ, z) = (yn − yn−1 − θ1y
θ2
n−1 − θ3)

2

are given by

∂Q(θ, z)

∂θ1
= −2yθ2n−1rn(θ, y),

∂Q(θ, z)

∂θ2
= −2θ1y

θ2
n−1log(yn−1)rn(θ, y),

∂Q(θ, z)

∂θ3
= −2rn(θ, y).

Hence, tangential depth is

dARc
T (θ, z) = min

∥u∥=1,u∈R3
#

n|(u1, u2, u3) · (yθ2n−1, θ1y

θ2
n−1log(yn−1), 1)

⊤ · rn(θ, z) ≥ 0

.

(52)
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If we denote

wu(y)rn(θ, y) = u⊤ν(y)rn(θ, y)

with ν(y) = (yθ2n−1, θ1y
θ2
n−1log(yn−1), 1)

⊤, we have to analyse the roots of wu(y) to

allow a simplification of the full simplicial depth to sign changes of residuals by

Theorem 21. In particular, the roots of

wu(x) = u1x
θ2 + u2θ1x

θ2log(x) + u3

= (u1 + u2θ1log(x))x
θ2 + u3 (53)

have to be checked. This can be done as in Kustosz et al. (2016b). Therefore we

apply the following Lemma.

Lemma 102. If θ1 ̸= 0, θ2 ̸= 0, then wu : [0,∞) → IR given by (53) has the

following properties:

a) wu has exactly one extremum at x = exp

− 1

θ2
− u2

u3θ1


for all u = (u1, u2, u3)

⊤ ∈
IR3 with u3 ̸= 0.

b) For all 0 < ξ1 < ξ2, there exists a vector u+ ∈ IR3 with wu+(ξ1) = wu+(ξ2) = 0 and

wu+(x) > 0 for all x ∈ (ξ1, ξ2) and a vector u− ∈ IR3 with wu−(ξ1) = wu−(ξ2) = 0

and wu−(x) < 0 for all x ∈ (ξ1, ξ2).

Proof. The proof is given in the Examples section of Kustosz et al. (2016b).

Lemma 102 proves that the conditions of Theorem 21 are satisfied. This simplifies

the simplicial depth statistic.

Corollary 103. For model (51) and yn > yn−1∀n simplicial depth can be simplified

to

dS(θ, z∗) =

1
N
4

 
1≤n1<n2<...<n4≤N


1 {rn1(θ, z) > 0, rn2(θ, z) < 0, rn3(θ, z) > 0, rn4(θ, z) < 0}

+ 1 {rn1(θ, z) < 0, rn2(θ, z) > 0, rn3(θ, z) < 0, rn4(θ, z) > 0}

+ 1−
4

k=1

1 {rnk
(θ, z) ̸= 0}


,

if θ1, θ2 ̸= 0.

Proof. See section 5.4. in Kustosz et al. (2016b).
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This corollary allows us to apply the full simplicial depth and the simplified depth

notions to the extended model for K = 3. Since we know the limit distributions for

our statistics in this case, all proposed methods based on the simplified depth notions

can be applied. The consistency can be simply checked as in the example section

presented in Kustosz et al. (2016b). An important restriction in of the evaluation

of the method is that parameters leading to stationary processes with sign changes

have to be excluded. This, in particular, means that for testing H0 : θ ∈ Θ0

versus H1 : θ ∈ Θ1, the parameter range has to be restricted to Θ0 ∪ Θ1 = Θa,

whereby Θa is the set of all parameters which guarantee explosive or at least non-

negative processes. Since at least the selection of θ3 thereby directly depends on

the error distribution, Θa cannot be determined in general, if we assume that the

error distribution is unknown. The resulting parameters and confidence sets should

be checked carefully to exclude such solutions. A simple possibility to restrict the

parameters is to set Θa = (0,∞)× (0,∞)× (0,∞). Note that this excludes possible

parameters, when for example θ3 < 0 is overcompensated by θ1, θ2 large enough

for y0 > 0 and appropriate errors. Here, we set Θa = (0,∞) × (0,∞) × (a,∞)

for simulations, allowing a < 0, as reasonable space for θ and advise to check the

results for violations of the growth assumption. The main problem of this model for

application is the influence of θ2. If θ2 is close to zero the effect of the autoregressive

parameter reduces to a constant. This follows from the definition of the residuals

rn(θ, y) = yn − yn−1 − θ1y
θ2
n−1 − θ3.

Applied to data for which the differences alternate around a constant value, we get

a positive value of depth if

rn((θ1, 0, θ3)
⊤, y) = yn − yn−1 − θ1 − θ3

alternate. Obviously, this solution is not identifiable for (θ1, θ3). Unfortunately, this

happens for the Maurer and Heeke (2010) data. Hence, the resulting depth based

confidence sets are unbounded, if the full model is applied.

To illustrate this problem, we evaluate d1S and d2S. In the application, we set a = −1

and calculate depth on a grid defined by [0, 1]×[0.1, 2.5]×[−1, 1] with steps of 0.01 in

each interval. This defines 4.892.541 grid points on which we evaluate the simplified

depth statistics. Another necessary modification is caused by the inhomogeneity

of the data. Due to the low variance of the time series and due to inhomogeneous

parameters, the resulting confidence intervals have to be computed on very high
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levels to contain any parameters. To avoid such problems, we add random noise to

the data to introduce slightly more variance. This overrides small changes in the

parameters and thereby connects phases of slightly differing parameters. Due to the

increase of the general depth level, then reliable and non-trivial confidence sets can

be constructed at reasonable levels. But however, parameters in the confidence sets

for the full model lead to unit root processes. This means that no information on

the actual growth can be won.

This major problem is depicted in Figure 86.
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Fig. 86: 1− 1 · 10−14 parameter confidence set for TR01 series based on d1S and the
three parameter model.

Here, we see the (1 − 1 · 10−14) confidence set for the TR01 series based on all

observations beginning at index 431 and ending at index 2517. Obviously, the

resulting parameters either satisfy θ1 = 0 or θ2 = 0, what results in pure white noise

processes. For lower levels no parameters are included in the confidence set.

A simple noise generation by addition of N (0, 0.001) errors leads to larger confidence

sets. Now, we can evaluate the 5% level. However, the unit root processes are

included in the confidence sets, but now also non-trivial solutions can be found. In

particular, the depth maximising parameters on the considered grid now are located

on a curve and are non-trivial, see Figure 87.

By additional analysis, we see that the resulting parameters in the 95% confidence

set are results from robust fits with respect to the residuals, what can be seen in

Figure 88. Here, subsequent observations yn against yn−1 are depicted. Further, the

fit via the autoregressive relation based on the parameters with maximal depth (red

lines) and from parameters in the 95% confidence set (grey lines) are shown. All fits

from the confidence interval are not affected by the outliers. The green line shows
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Fig. 87: 95% parameter confidence set for TR01 series with noise based on d1S and
the three parameter model.

the fit of a least squares estimator for the three parameter model which is more

affected by the jumps in the process. Similar results can be observed for TR02 and

TR03 and both considered statistics. The results are presented in the Appendix A.

In case of d2S the intervals are slightly larger and the influence by outliers seems to

be more pronounced.

Summarising, we see that the usage of a unknown θ2 leads to identification problems,

since a parameter value close to zero implies variable solutions for (θ1, θ3) with

constant and positive depth. Unfortunately, the calculated confidence sets include

a continuous transition to this parameter region. Hence, the resulting confidence

sets are unbounded and imply results which are random walks with drift expressed

in a solution which is not unique. These random walks then do not include any

information about the process, except for the drift level. The remaining information

is transferred to the unknown errors with median zero.

Hence, we cannot apply the full model to the Maurer and Heeke (2010) data.

Application Based on a Two Parameter Model

To resolve this identification problem, we reduce the model. To allow an influence

of θ2, we include a constant in the new model, but assume it to be fixed and known.

This reduces the model to a variation defined by

Yn = Yn−1 + θ1Y
c
n−1 + θ3 + En,
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Fig. 88: Fits from the 95% parameter confidence set for TR01 series with noise based
on d1S and the three parameter model. The unfilled dots are the true observations
(yn−1, yn). The parameters which maximise depth define the red dashed lines. The
green line is a fit defined by the OLS estimate for the three parameter model.

under the same assumptions, as used for the two parameter autoregressive models

in Section 2.3. By usage of the quality function

Q(θ, z) = (yn − yn−1 − θ1y
c
n−1 − θ3)

2 =: rn(θ, y)
2

and its derivatives

∂Q(θ, z)

∂θ1
= −2ycn−1rn(θ, y),

∂Q(θ, z)

∂θ1
= −2rn(θ, y),

it directly follows that for yn > 0 for all n simplicial depth, based on tangential

depth, reduces to the two parameter simplicial depth

dARcr
S (θ, y)

=
1
N
3

 
1≤n1<n2<n3≤N

1{rn1 (θ,y)>0,rn2 (θ,y)<0,rn3 (θ,y)>0} + 1{rn1 (θ,y)<0,rn2 (θ,y)>0,rn3 (θ,y)<0},

if we again neglect the terms resulting from zero residuals. Hence, the limit theorems

for the full and simplified depth in the two parameter case can be applied, if the

residuals are calculated based on the appropriate model equation.
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In the final application, we assume that c = 1 holds and analyse the data in the

linear AR(1) setting with and without intercept, to allow prediction based on the

algorithm proposed in Section 4.8.

6.2 Heuristic Derivation of a S-N Curve

Main Research Questions

Our modelling approach can be applied to analyse questions considering the available

crack growth time series. Thereby, we assume that the Paris-Erdogan equation holds

and that the processes can be described by our models. We want to answer the

following questions.

Q1 Are the parameters constant over time?

Q2 How are the parameters changing over the experiments due to the non identical

experimental settings?

Q3 Is it possible to predict future values of the processes and is it possible to

continue the censored processes?

Q4 Can we construct a S-N curve relating lifetime and stress?

Summary of the Analysis Approach

We use the results from Sections 2 and 4 to propose a heuristic derivation of a S-N

curve for prestressed concrete. On the way, we answer the first questions raised

above. Note that the results cannot be interpreted as reliable derivation of this

curve, since the number of available experiments is very low, but nevertheless the

method can be applied when more data is available to deliver reliable results.

Based on our recent arguments, we base the derivation on the linear processes, since

they allow the analysis of change points and prediction for the observed series. The

censored series will be used to approximate the time of failure under low loading by

the available methods.

The general idea is structured as follows.

First, we analyse the available data with respect to potential parameter changes in

our model. Therefore, we apply the linear one and two parameter models. Under

the assumption that the processes are homogeneous between these changes, we then

analyse critical crack widths dependent on the actual loading in each experiment.

Thereby, we will be able to detect in which phases the censored experiments are at
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the censoring times. A simple model then allows us to derive critical crack widths

for the phase changes of the censored series. To allow prediction for the censored

series, we propose simple models to extrapolate the jump heights and the jump

frequencies.

Finally, we apply the prediction methods based on simplicial depth to generate

prediction intervals for the uncensored series and a modified version which relies on

the extrapolated parameters for the censored series.

This will define a Wöhler curve with point-wise prediction intervals.

Application of the Methods

In Figure 89, we see the five observed series. The series TR01, TR02 and TR03 are

not censored, while TR04 and TR05 are. Thereby, we declare a series as censored,

if it does not reach a crack width of 3 mm which we define a total failure here. To

analyse the data on an equal scale, the step widths are adjusted to be identical for all

series. Therefore, we have 570 observations for TR01, 70 for TR02, 1241 for TR03,

929 for TR04 and 1994 for TR05 now. Since at the beginning of each experiment
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Fig. 89: Maurer and Heeke experiments.

the crack growth is unstable we distinguish a first initialisation phase which needs

to be detected by visual inspection and is given by the engineers and a supercritical
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phase where the crack explodes and which we want to detect by our algorithms.

To do this, we apply the one and two dimensional change point detection methods

to the series TR01, TR02 and TR03. The results are depicted in Figure 90. Since

the end of the first phases, the initialisation, is too close to the beginning of the

series, we have to define it by hand for TR01 and TR02. In case of TR03 it is

auto-detected. The second phase is set to the first points, where all of the methods

detect changes consistently, since the results are quite unstable. Thereby, we get

the results given in Table 23.

Experiment Change Point 1 Change Point 2
TR01 31 484
TR02 10 55
TR03 51 944

Tab. 23: Change points in full experiments.

The crack widths at the change point observation indexes are the critical values for

the phase changes in our simulations. To get critical values for TR04 and TR05, we

define a simple model by

cwcp1,TRi
= α1 ·∆σTRi

+ α2 · σmax,TRi
+ En,

whereby cwcp1,TRi
is the crack width at the first change point and σmax,TRi

and ∆σTRi

are the respective maximal loads and load ranges for the experiments TR0i, i ∈
{1, 2, 3, 4, 5}. We get a reasonable fit by the linear model, as shown in Figure 91. A

similar model for the second change point can be defined by

cwcp2 = α1 ·∆σTRi
+ α2 · cwcp2,TRi

+ En

with a fit shown in Figure 92. Applied to the loads of TR04 and TR05 we get the

values for the critical crack widths as presented in Table 24.

Experiment Width at Change Point 1 Width at Change Point 2
TR04 0.863 1.501
TR05 0.111 1.101

Tab. 24: Change points in censored experiments.

Hence, we can assume that both censored experiments are still in the first phase,

but beyond initialisation, since TR04 is censored at a crack width of 1.433 mm and

TR05 is censored a width of 0.972 mm. In principal, prediction intervals for the full

series already can be constructed based on the available methods and information.
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But however, for TR04 and TR05, we neither can bootstrap from residuals in the

second phase, since it is not observed, nor we can estimate the parameters in this

phase. Hence, we use a heuristic extrapolation based on the results for TR01, TR02

and TR03 series.

Comparing the empirical simplicial depth shapes in the one parameter case for the

three series, restricted on the second and third phase, in Figure 93 we see that the

main difference between the phases is a shift of the maximal depth. Further, depth

gets a bit wider. Here, this widening will be neglected for simplicity. The shift can

be modelled by a linear model. We define it by

max2dSTRi
= α1 ·max1dSTRi

+ α0 + En.

Since we can calculate the simplicial depth shape for TR04 and TR05 in the first

phase, an extrapolated empirical depth can be defined by shifting the phase one

results as suggested by the linear model. The fit is shown in Figure 94.

We also have to model the jumps. To allow a non-parametric usage of the errors, we

assume that in each phase the occurrence of jumps is triggered by a homogeneous

Poisson process. Such a process is defined as follows.

Definition 104. A stochastic process (Nt)t≥0 is called Poisson process with in-

tensity parameter λ ∈ R+, if

(i) P(N0 = 0) = 1

(ii) (Nti −Ntj)i,j∈N, 1 ≤ j < i ≤ N independent for each index set 0 < t1 < ... < tN

(iii) Nt −Ns ∼ Pois(λ(t− s)).

For more details on Poisson processes see Ross (1996, pp. 59).

In our application, we assume that the parameters change when we switch the phase.

By a linear model given by

λ2,TRi
= α1λ1,TRi

+ α0 + En

the parameters of the Poisson process can be extrapolated based on observed jumps

in the first phase. Again, the fit is quite reliable, when the model is applied to

TR01, TR02 and TR03, see Figure 95. We now want to use the residuals from the

first phase for a bootstrap procedure in the second phase. Therefore, we estimate

a scaling parameter which is defined by the change in the mean of the increments

between two phases. This allows us to rescale the jump heights in the simulations of
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the censored series. The model for the scaling parameters is defined on a log scale

by

scale2,TRi
= α1ln(scale1,TRi

) + α0 + En.

The resulting fit is depicted in Figure 96. We then inflate the bootstrapping residu-

als for the censored series by a multiplication with this scaling parameter. Applied

to TR04 and TR05, we get scaling and jump parameters for the second phases.

With these parameters, we can predict the processes TR04 and TR05. By the simple

prediction method, we can also generate prediction intervals for TR01, TR02 and

TR03.

To calculate prediction intervals at a 95% level, based on a three step procedure, we

adjust the nominal levels to αn = 0.01695. For the completely observed series, we

simulate each process starting at a known value up to the critical value for the first

phase and then starting from the beginning of the second phase up to the critical

value of 3. This gives us two independent empirical distributions for the arrival at

the second phase and the arrival at the point, where the test concrete beam fails.

These distributions are based on (1− α) prediction intervals. By drawing from the

intervals independently and combining the times we get an empirical interval for

the time of failure. Therefore, for each interval 1000 Paths are generated. Then, for

each combination, 100.000 Samples are constructed.

The results, measured in load cycles are presented in Table 25.

Experiment Lower Bound Upper Bound Median True Value
TR01 363 917 604 599
TR02 42 90 66 75
TR03 819 1536 1182 1227

Tab. 25: 95 % prediction intervals for the fully observed series.

The empirical densities for prediction are presented in Figure 97. Since we use a

bootstrapping scheme to generate processes for prediction, we also can analyse the

empirical distributions defined by the arrival times at the critical crack sizes. We

see that the predictive densities are lightly skewed but show a similar shape for

TR01, TR02 and TR03. To allow prediction for TR04 and TR05 we use the extrap-

olation parameters to rescale the residuals and to generate the jumps by simulated

processes. In Figure 98, we see some of the simulated paths. These resulting ar-

rival densities are given in Figure 99. While the prediction for TR04 resembles the

results for TR01 to TR03, the results for TR05 show heavier tails. This is caused
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by a higher probability of very slow growth. Nevertheless, we still have explosive

processes here, so that a time of failure and a prediction interval can be computed.

The results are given in Table 26.

Experiment Lower Bound Upper Bound Median
TR04 767 1520 1133
TR05 3903 22702 7334

Tab. 26: 95 % prediction intervals for the censored series.

Summarising, we now have prediction intervals for all series and can construct the

Wöhler curve by plotting the load cycles on a logarithmic scale with base 10 against

the load amplitude ∆σ. The curve is presented in Figure 100. The resulting S-N

curve has some interesting implications. The results for the completely observed

experiments can be connected by a line, as expected. The median failure times for

TR01 and TR03, which were performed under similar load amplitudes, but differ-

ent maximal load levels, are comparable. The only difference is that the prediction

intervals for TR03 are smaller, what is caused by the higher applied maximal and

minimal loads. The forecast interval for TR04 is located on a line continuing the

connection of the observed experiments. This induces that TR04 is following the

same fatigue characteristics as TR01 to TR03. The result for TR05 is more sur-

prising. Here, the connection to TR04 is a line with a lower slope parameter. This

implies that the fatigue characteristics lead to a significantly slower degradation

than in the remaining experiments. The upper bounds for TR05 are located at over

8.000.000 load cycles, what coincides with a time of 277 days. However, the data

does not allow a valid prognosis for lower loads, since we use data from the first

phase to extrapolate the unobserved parts of the crack growth series.

We now can give answers to the main questions.

By the change point detection methods and the analysis of the depth shapes, we

know that the parameters are not constant over time in the individual experiments.

Further, by the depth shapes and the jump frequencies, we can claim that the pa-

rameters are changing, depending on the applied loads. Hence, they differ due to

non identical experimental settings. By bootstrapping and extrapolated parameters,

it is possible to continue the processes in a consistent way. Thereby, a S-N curve

can be constructed.

The central result is that with respect to the available data, we cannot verify the

existence of a long term reliability bound for prestressed concrete, but observe a

decline in the fatigue characteristics under low loading, leading to higher reliabil-

ity than expected by a linear relation. This probably extends to an asymptote for
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∆σ > 0, when lower loadings are applied. To verify this assumptions experiments

under lower loads remain necessary. A possible application of our result could be

a proposal for designs of experiments with upper bounds based on our confidence

intervals.
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Fig. 90: Change points in full series.
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ŵ

c
p
2
T

R
i

Fig. 92: Model for second change point. The black line starts at 0 and has slope 1.
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6.3 Change Points in Oil Prices

In this section, we apply our model to detect parameter changes in an oil price series.

Modelling Assumption

Starting with the fact that oil is a non-regenerative resource, the price of oil can be

modelled by rules introduced by Hotelling (1931). These rules imply that the mean

price follows an exponential model with a positive recovery rate. Simple calculations

yield that a discretely observed oil price process can be modelled by an autoregressive

process. Due to the positive recovery rates, this process should be explosive. Hence,

we are able to apply our tests and estimators to detect changes in the parameter of

such an explosive oil price process robustly.

The main argument in Hotellings’ theory on the price path of non-regenerative

resources is that the owner of a good, in this case oil, has to decide how to sell the

good which he as in a storage to maximise earnings over time. If he sells the good to

fast, he will be out of it in times of high demand and low supply, and hence cannot

profit of high prices. If he sells his good to slow, he can run into unsold amounts

of the good when the price reaches a boundary, where a substitute comes into the

market.

A central assumption is that the owner of the good aims to maximise the future

profit. Thereby, he has to take the interest rate δ into account. One unit of the

good is discounted to its present value by e−δt. The theory of Hotelling shows that

under a quite simple model the optimal price path is given by

dpt
dt

= c · pt,

what can be translated to a discrete model via

pt+1 = θ1pt + θ3 + Et+1

for the oil price.

Application to Brent Oil Prices

This allows us to apply our methods for linear autoregressive processes to oil prices, if

we assume that we have a growth process. Note that theoretically this assumption

should hold, if the rule is true. Empirically, the oil prices also show periods of
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decrease, what contradicts this assumption. But as we at least can assume a strictly

positive process with exponential long term growth, we apply our phase change

detection method here, to analyse the price path for structural changes. We already

pointed out that close to the unit root slightly decreasing processes can also be

treated by our models.

The application of the change point detection for a linear AR(1) model with intercept

is depicted in Figure 101. Both methods were applied to daily spot prices in Euro

for European Brent Oil available for all trading days from 20th of May 1987 to the

1st of June 2015. Hence, we apply our methods on a series of 7166 daily prices.

Since no prices are available on non trading days, the AR(1) process was defined by

indices on the trading days only. To apply the methods, we selected a bandwidth of

30 days and evaluated the prices on each trading day. Change point clusters below

the length of 50 % of the largest cluster were excluded to achieve robust results.

For many of the changes it is difficult to relate them with crucial dates, since the
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Fig. 101: Change points in the Brent Oil Prices detected by simplicial depth statis-
tics for linear AR(1) processes with intercept. Source: U.S. Energy Information
Administration (Dec 2015).

oil market does not always react suddenly to political tensions or specific events.

In addition, the reasons for oil price changes are of different kinds, as political

tensions, nature events, demand and supply changes and many more. Nevertheless,

the changes often appear in phases which can be related to some events. The figure

shows that the detected change points in fact divide the process with respect to

falling and rising phases quite well. This indicates that with 30 day windows the
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phases could have been also detected by our methods. We now give some reasons

for the detected changes.

The first jointly detected change is in July 1987. Here, the price behaviour in fact

changes due to the end of the role of Saudi Arabia as swing producer of oil supply.

The next joint change point is detected in 2002. The change of the process can be

explained by a change form a stagnation due to the 9/11 Attacks to an explosive

behaviour caused by speculations. The next two changes appear in the ascending

process in 2004 and identify a phase of low spare capacity. The last change 2013

can be explained by an significant increase in the production capacity of the US oil

supply and a general stabilisation of the oil market.

The remaining points were just detected by one of the proposed methods. Thereby

the second method detects changes in the slope parameter, as 1999 or 1994, quite

well. These changes are affected by political tensions in Iraq and the end of the

Asian financial crisis. Further, the changes of the price dynamics in the Sub-Prime

Crisis after 2009 are detected by the second method. The first method also detects

the most prominent of these changes but at slightly different points in time. In

general, the behaviour of the prices show significant changes in the autoregressive

relationship switching from explosive to random walk or even decreasing behaviour

remarkably often. Due to the good performance close to the unit root, our change

point detection might be quite interesting for application in finance, since prices

often show such mildly explosive behaviour, if for example non-regenerative goods

are considered.
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7 Summary and Outlook

We introduced simplicial depth based statistics to allow inference for specific au-

toregressive growth processes. This thesis solves some questions for (non-linear)

autoregressive processes of order one. As a result, we proposed a formal framework

to analyse crack growth in prestressed concrete via autoregressive models. Fitting

to this framework, we extended ideas from regression depth to autoregressive pro-

cesses to allow statistical inference. This included the definition of estimators, tests

and confidence regions for the discussed models. In particular, our methods were

also outlier robust and distribution free, with respect to the model errors and can

be extended to more general growth models, as for example polynomial regression

or the Michelis-Menten model. By appropriate simplifications, we also proposed

variations of the test statistics to allow fast, but less efficient evaluations for large

samples. In the thesis we have shown that the methods are not necessarily uniformly

best solutions but work very reliable under the conditions set by our experimental

data. This, in particular, means that the estimators lose efficiency under standard

assumptions like normally distributed errors and are not as efficient as standard ro-

bust estimators in symmetric contamination cases, but are superior, if we consider

asymmetric contaminated errors or atypical skewed error distributions. Thereby, we

also have shown that the introduced methods are reliable in case of linear and non-

linear autoregressive processes of order one for errors satisfying med(En) = 0 and in

addition to this are distribution free, with respect to the exact error distributions

allowing a wide range of applications.

The simulations of the methods have shown that depth methods can be quite useful

to achieve reliable results when reasonable doubts on standard assumptions, like

symmetric or centred normally distributed errors, exist. In such cases, we pay the

price of a slightly higher uncertainty and of computation time but the results are

robust with respect to outliers and asymmetry.

Beyond the theoretical achievements introduced in this theses, we also presented

solutions to compute the proposed methods. Thereby, we proposed vectorised and

parallel calculation schemes for the resulting test statistics. Further, we analysed the

properties of simplicial depth for autoregressive processes, to allow a data driven se-

lection of candidates. Based on these candidates, the calculation of estimates could

be improved by using data driven optimisation, instead of user defined grids. Ad-

ditionally, these candidates allowed an efficient calculation of confidence sets, since

they define the boundaries of these sets in a data driven way. Finally, we also could

construct change point detection and prediction methods, based on our implemen-
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tations which allowed us to apply the methods to fundamental research questions

in engineering.

In case of crack growth in prestressed concrete, assumptions like centred symmetric

errors are violated in a natural way. Hence, our method can be assumed to be more

reliable than an application of standard methods. Due to our implementation of

estimators, tests and prediction methods, we were able to propose a way which es-

timates a S-N curve for censored experiments. The resulting curve clearly deviates

from a linear relation of load and lifetime on a log scale for the experiment under

low loading as actually assumed by standard hypothesis in construction engineer-

ing. This indicates that the fatigue dynamics are about to change for load below of

100N/m. However, based on the low number of replications and experiments, more

reliable results are just possible, if we generate more data under repeated conditions

to validate the methods and preliminary results.

The application on oil prices illustrates an application on data from non-negative

autoregressive processes close to the unit-root. This makes the methods an interest-

ing choice for a wider range of real world applications, including financial products

and economic examples where such processes appear quite often.

Beside of these results, the thesis also raises some further research questions.

A central further step beyond the thesis is the derivation of the asymptotic distri-

bution of the simplicial depth statistic for a parameter dimension larger than two.

In this case the limit of


n1<...<nk+1


k

j=1

1{(−1)jEnj (θ,y)>0)} +
k

j=1

1{(−1)j−1Enj (θ,y)<0)}



has to be derived. As in the two parameter case, the main task will be an asymp-

totic symmetrisation of the test statistic, to make the application of the continuous

mapping theorem available. So far, for the case with θ ∈ Rd, d > 2 at least approx-

imations of the quantiles can be simulated by using the median zero assumption on

the residuals.

Even with the limits at hand, models with high parameter dimension lead to ad-

ditional problems. The complexity of the calculation increases in the parameter

dimension, since larger groups of residuals have to be compared. This restricts the

usage of matrix based methods in the implementation and hence makes it necessary

to discuss implementations with a more efficient memory allocation. Therefore, it

will be useful to revise the presented functions and to implement them in, for ex-

ample, C to allow a faster computation.
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Since this thesis was aimed to introduce methods to be applied to a specific problem

in engineering, we also neglected a deeper analysis of the robustness of the proposed

methods. Of course, the definition of the test statistic and the simulations indicate

that the method should be robust to innovation outliers, and to a certain extend

to additive outliers also, but so far no theoretical results on influence functions or

breakdown points are available. This should be addressed in future work.

The proposed extensions for prediction and phase change detection also leave some

interesting open questions. In case of prediction, we already have shown that the

method appears to deliver valid prediction intervals. Here, a theoretical result on

the bootstrap validity is desirable. In case of the change point detection, a method

based on CUSUM depth statistics or a deeper understanding of joint confidence

regions could improve the results and allow valid change point tests.

The error distribution also leaves an issue which could be addressed theoretically in

future work. We assume to observe an error process which induces med(En) = 0.

Further, we allow skewed error distributions. Hence, it is very likely that the con-

tinuous time error process can be modelled by some Lévy-Process with restricted

parameters. Thereby, the restriction has to consider the median zero assumption

and the growth conditions. It would be desirable, if in combination of the intercept

of the model, the Lévy-Triple of potential processes could be specified.

Summarising, this work presents a consistent package for estimation, testing, pa-

rameter inference, prediction and change point detection of growth processes under

mild conditions on the underlying error distribution. It includes theoretical results

on the statistics and empirical verifications for the derived prediction and change

point detection algorithms. Additionally, all methods are implemented in R and

hence available for further usage. Due to the general results, an application to

several other models and problems is possible.
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A Additional Simulations

In this Section we present the results of additional simulations which examine the

performance of our methods in cases for which the methods are not verified by

theoretical results or which extend the results presented in the main thesis.

A.1 Estimation

The first simulations show the estimators for the linear AR(1) model without inter-

cept, when the underlying autoregression parameter implies a stationary or a unit

root process.

We begin with the stationary case. In Figures 102 and 103 the estimator compar-

isons are presented in boxplots. In Table 27 the comparison of mean squared errors

is presented.
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Fig. 102: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 0.99 based on N (0, 0.1) errors.

206



207 A ADDITIONAL SIMULATIONS

dS dS1 dS3 dS2 LAD M ols

0
.9

6
0
.9

7
0
.9

8
0
.9

9
1
.0

0
1
.0

1

Fig. 103: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 0.99 based on N (0, 0.1) errors.

N dS d1S d2S d3S LAD M OLS

10 3.28 · 10−5 3.28 · 10−5 3.28 · 10−5 3.28 · 10−5 43.26 · 10−5 2.27 · 10−5 9.42 · 10−2

250 1.00 · 10−5 2.00 · 10−5 4.68 · 10−5 1.60 · 10−5 6.31 · 10−6 4.13 · 10−6 1.44 · 10−5

Tab. 27: MSE for linear AR processes without intercept with parameter κ1 = 0.99

based on N (0, 0.1) errors.

The results are quite similar to the explosive case. In the small sample the ro-

bust estimators perform very well, while the OLS estimator suffers a rather large

small sample bias. For the larger sample size the improvement of the robust estima-

tors is low, while the OLS clearly improves towards the true value. In general the

M-estimator shows the best performance while our robust alternatives are slightly

worse.

For the unit-root process we get the results presented in Figures 104 and 105.
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Fig. 104: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 1 based on N (0, 0.1) errors.
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Fig. 105: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 1 based on N (0, 0.1) errors.

In the unit root case the M-estimator performs best. The relation between all other

estimators is qualitatively the same as without contamination. The only remarkable

effect is that the OLS estimator now suffers a very large bias which is just weakly

corrected by increasing sample sizes.

The comparison of the estimators for contaminated normal errors in stationary or

unit root processes is presented in Figures 106, 107 and 110, 111. For the Fréchet

distributed errors the results can be found in Figures 108, 109 and 112, 113.
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Fig. 106: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 0.99 based on CN (0, 0.1) errors.
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Fig. 107: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 0.99 based on CN (0, 0.1) errors.
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Fig. 108: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 0.99 based on F(1.928,−2, 10) errors.
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Fig. 109: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 0.99 based on F(1.928,−2, 10) errors.
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Fig. 110: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 1 based on CN (0, 0.1) errors.
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Fig. 111: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 1 based on CN (0, 0.1) errors.
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Fig. 112: Estimator performance for linear AR processes without intercept with

N = 10 observations and parameter κ1 = 1 based on F(1.928,−2, 10) errors.
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Fig. 113: Estimator performance for linear AR processes without intercept with

N = 250 observations and parameter κ1 = 1 based on F(1.928,−2, 10) errors.

The simulations indicate that even if we were not able to prove the consistency of

the estimators in the unit root and stationary case, the proposed estimators work

quite well in these situations.

A.2 Tests

The following figures show projections of the power functions in the two-parameter

linear AR(1) model. The results are discussed in Section 5.
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Fig. 114: Power evaluated along θ = (0.725, 0.9995)⊤+λ(−1.05, 0.021)⊤ for normally
distributed errors.
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Fig. 115: Power evaluated along θ = (0.725, 0.9995)⊤ + λ(−1.05, 0.021)⊤ for errors
with contaminated normal distribution.
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Fig. 116: Power evaluated along θ = (0.725, 0.9995)⊤ + λ(−1.05, 0.021)⊤ for errors
with Fréchet distribution.
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A.3 Applications

The next figures show the confidence sets for the three parameter model based on

the d1S and d2S statistic for TR01, TR02 and TR03.
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Fig. 117: 95% parameter confidence set for TR01 series with noise based on d2S and
the three parameter model. The red dots maximise the depth.
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Fig. 118: Fits from the 95% parameter confidence set for TR01 series with noise
based on d1S and the three parameter model. The unfilled dots represent the data by
(yn−1, yn). The parameters which maximise depth define the red fitted lines. The
green line is a fit defined by the OLS estimate for the three parameter model.
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Fig. 119: 95% parameter confidence set for TR02 series with noise based on d1S and
the three parameter model. The red dots maximise the depth.
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Fig. 120: Fits from the 95% parameter confidence set for TR02 series with noise
based on d1S and the three parameter. The unfilled dots represent the data by
(yn−1, yn). The parameters which maximise depth define the red fitted lines. The
green line is a fit defined by the OLS estimate for the three parameter model.
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Fig. 121: 95% parameter confidence set for TR02 series with noise based on d2S and
the three parameter model. The red dots maximise the depth.
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Fig. 122: Fits from the 95% parameter confidence set for TR02 series with noise
based on d2S and the three parameter model. The unfilled dots represent the data by
(yn−1, yn). The parameters which maximise depth define the red fitted lines. The
green line is a fit defined by the OLS estimate for the three parameter model.
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Fig. 123: 95% parameter confidence set for TR02 series with noise based on d1S and
the three parameter model. The red dots maximise the depth.
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Fig. 124: Fits from the 95% parameter confidence set for TR03 series with noise
based on d1S and the three parameter model. The unfilled dots represent the data by
(yn−1, yn). The parameters which maximise depth define the red fitted lines. The
green line is a fit defined by the OLS estimate for the three parameter model.

0.0 0.2 0.4 0.6 0.8 1.0−
1

.0
−

0
.8

−
0

.6
−

0
.4

−
0

.2
 0

.0

0.0

0.5

1.0

1.5

2.0

2.5

θ1

θ
2θ

3

Fig. 125: 95% parameter confidence set for TR02 series with noise based on d2S and
the three parameter model. The red dots maximise the depth.
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Fig. 126: Fits from the 95% parameter confidence set for TR03 series with noise
based on d2S and the three parameter model. The unfilled dots represent the data by
(yn−1, yn). The parameters which maximise depth define the red fitted lines. The
green line is a fit defined by the OLS estimate for the three parameter model.
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A.4 Proofs

In this section, the proofs of miscellaneous subsidiary statements are given.

Proof of Lemma 67. Denote A = (A1, A2), B = (B1, B2) and C = (C1, C2). Then

the line from A to B can be written as

LAB : P = (P1, P2) = A+ λ · (B − A), λ ∈ R.

For λ = 1
2
we are at the middle of LAB. Denote this point by MAB := A/2 + B/2.

Then the straight from MAB to C is defined by

LMABC : (1/2)(B + A) + µ[C − (1/2)(B + A)], µ ∈ R.

Analogously one can calculate

LMACB : (1/2)(C + A) + ν[B − (1/2)(C + A)], ν ∈ R

and

LMCBA(1/2)(C +B) + τ [A− (1/2)(C +B)], τ ∈ R.

The lines LMABC and LMACB intersect at µ = ν = τ = 1
3
, since

(1/2)(B + A) + (1/3)[C − (1/2)(B + A)]

=B/2 + A/2 + C/3−B/6− A/6

=(1/3) · (A+B + C),

(1/2)(C + A) + (1/3)[B − (1/2)(C + A)]

=C/2 + A/2 +B/3− C/6− A/6

=(1/3) · (A+B + C).

and

(1/2)(C +B) + (1/3)[A− (1/2)(C +B)]

=C/2 +B/2 + A/3− C/6−B/6

=(1/3) · (A+B + C).
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This coincides with the centroid S. Considering the last combination LMCBA delivers

the same result. Since the straights from LMABC , LMACB and LMCBA are inside

conv(A,B,C) for µ, ν, τ ∈ (0, 1), we conclude that S ∈ conv(A,B,C) holds.

B The rexpar Package

In this part of the Appendix we shortly go through the functionality of supplemen-

tary rexpar package which is available for R in a github repository and includes

the main functions introduced in this thesis.

The description is divided into central functions, important helper functions and

auxiliary functions. For details on the arguments of the functions the documen-

tation of the rexpar package can be used. The package can be downloaded at

https://github.com/ChrisKust/rexpar.git in the recent version. Here, we de-

scribe the main function, used in this thesis.

B.1 Main Functions

We start with the main test statistics.

dS lin1(theta,y,mod)

This function calculates the full simplicial depth for the autoregressive process with-

out intercept for a fixed AR parameter theta and an observed process y. The mod

argument allows to apply the modified weighted version for stationary processes.

dS lin2(theta,res,y,ncores,model,cpow)

This function calculates the full simplicial depth for a parameter theta and an ob-

served process y for a specified type of model. Alternatively, one can also directly

plug-in residuals without a model choice by the argument res. At the current stage,

we have implemented the linear autoregressive model with intercept and the non-

linear two parameter autoregressive model. The ncores argument allows the usage

of multiple cores to calculate the test statistic. In case of the two parameter model

with fixed power, cpow can be used to set a fixed power parameter.

dS1 lin2(theta,y,model)

This function calculates the simplified simplicial depth, defined by subsequent non-

overlapping blocks of residuals (d1S in this thesis) for each of the three models and a

given parameter theta and on observation vector y. The model thereby is specified

in the argument model.

222
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dS2 lin2(theta,y,model, res)

This function calculates the simplified simplicial depth defined by the central ob-

servation and increasing/decreasing indices for the remaining residuals (d3S in this

thesis) for each of the three models and a given parameter theta and on observation

vector y. The model thereby is specified in the argument model. Alternatively, one

can also directly plug-in residuals without a model choice by the argument res

dS3 lin2(theta,y,model,res)

This function calculates the simplified simplicial depth defined by the groups of sub-

sequent residuals with overlapping (d2S in this thesis) for each of the three models

and a given parameter theta and on observation vector y. The model thereby is

specified in the argument model. Alternatively, one can also directly plug-in resid-

uals without a model choice by the argument res

Now we turn to the tests.

dS lin1 test(thetaN,alpha,y,mod)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case on a linear autoregressive process without intercept.

The mod argument allows a weighting of the residuals for stationary processes.

dS lin2 test(thetaN,alpha,y,ncores)

This function implements the test for H0 : θ = thetaN with level alpha applied

to an observation vector y in case of a linear autoregressive process with intercept.

Thereby the ncores argument can be used to perform a multicore computation.

dS nlin test(thetaN,alpha,y,ncores)

This function implements the test for H0 : θ = thetaN with level alpha applied

to an observation vector y in case of a nonlinear autoregressive process with two

parameters. Thereby the ncores argument can be used to perform a multicore

computation.

dS1 lin1 test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a linear autoregressive process without intercept

based on the simplified notion d1S. It allows the usage of the approximate normal

limit distribution or an exact calculation of the quantiles of the distribution under

H0 by the argument exact.

dS2 lin1 test(thetaN,alpha,y,exact)
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This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a linear autoregressive process without intercept

based on the simplified notion d3S. It allows the usage of the approximate normal

limit distribution or an exact calculation of the quantiles of the distribution under

H0 by the argument exact.

dS3 lin1 test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a linear autoregressive process without intercept

based on the simplified notion d2S. It allows the usage of the approximate normal

limit distribution or an exact calculation of the quantiles of the distribution under

H0 by the argument exact.

dS1 lin2 test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied

to an observation vector y in case of a linear autoregressive process with intercept

based on the simplified notion d1S. The argument exact allows the usage of the

exact distribution of d1S to calculate the critical values.

dS2 lin2 test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied

to an observation vector y in case of a linear autoregressive process with intercept

based on the simplified notion d3S. The argument exact allows the usage of the

exact distribution of d3S to calculate the critical values.

dS3 lin2 test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied

to an observation vector y in case of a linear autoregressive process with intercept

based on the simplified notion d2S. The argument exact allows the usage of the

exact distribution of d2S to calculate the critical values.

dS1 nlin test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a nonlinear autoregressive process based on the

simplified notion d1S. The argument exact allows the usage of the exact distribution

of d1S to calculate the critical values.

dS2 nlin test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a nonlinear autoregressive process based on the
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simplified notion d3S. The argument exact allows the usage of the exact distribution

of d3S to calculate the critical values.

dS3 nlin test(thetaN,alpha,y,exact)

This function implements the test for H0 : θ = thetaN with level alpha applied to

an observation vector y in case of a nonlinear autoregressive process based on the

simplified notion d2S. The argument exact allows the usage of the exact distribution

of d2S to calculate the critical values.

The estimators are implemented in the following functions.

est lin1(y,maxit,candy,acc,plots,eps,unique,notion)

This function estimates the parameter of a linear autoregressive process without

intercept based on one of the proposed depth statistics, specified by notion for an

observed process y. Thereby several optimisation parameters can be set. The maxit

argument specifies the maximal number of iterations. By the candy argument the

user can specify, if all candidates are considered by the calculation of the edges of

the residual simplexes or if inner points should be considered. The acc argument

defines an accuracy parameter to determine the size of search regions in the itera-

tive procedure. The plots option allows to turn on plots of the evaluations in the

iterative procedure. The eps parameter specifies a search step, if inner points of

the candidate simplexes are evaluated. The unique argument reduces the result of

the estimator to one value, instead of a complete set in the maximising region by

selecting a central observation in the set.

est lin2(y,maxit,candy,candy eps,perc,acc,plots,

normtype,pv,wgt,unique,notion,opt rude)

This function estimates the parameter of a linear autoregressive process with in-

tercept based on one of the proposed depth statistics, specified by notion for an

observed process y. Thereby several optimisation parameters can be set. The maxit

argument specifies the maximal number of iterations. By the candy argument the

user can specify, if all candidates are considered by the calculation of the edges of

the residual simplexes or if inner points should be considered. The candy eps option

allows to define an alternative way to explore the candidate region based on small

steps away from the edges. The prec parameter defines a precision value which is

used as soft stopping criterion in the algorithm. The acc argument defines an ac-

curacy parameter to determine the size of search regions in the iterative procedure.

The plots option allows to turn on plots of the evaluations in the iterative proce-

dure. The parameters nortype,pv and wgt are used to define the search regions in
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the iterative algorithm. The unique argument reduces the result of the estimator to

one value, instead of a complete set in the maximising region by selecting a central

observation in the set. The opt rude option uses the candidate parameters just for

a starting guess and then tries to optimise depth by a Nelder-Mead algorithm. This

is not reliable for the linear model but useful in the nonlinear case.

est nlin1(y,maxit,candy,perc,acc,plots,

normtype,pv,wgt,unique,notion,opt rude)

This function estimates the parameter of a non-linear autoregressive process based

on one of the proposed depth statistics, specified by notion for an observed pro-

cess y. Thereby several optimisation parameters can be set. The maxit argument

specifies the maximal number of iterations. By the candy argument the user can

specify, if all candidates are considered by the calculation of the edges of the resid-

ual simplexes or if inner points should be considered. The prec parameter defines

a precision value which is used as soft stopping criterion in the algorithm. The acc

argument defines an accuracy parameter to determine the size of search regions in

the iterative procedure. The plots option allows to turn on plots of the evaluations

in the iterative procedure. The parameters nortype,pv and wgt are used to define

the search regions in the iterative algorithm. The unique argument reduces the

result of the estimator to one value, instead of a complete set in the maximising

region by selecting a central observation in the set.The opt rude option uses the

candidate parameters just for a starting guess and then tries to optimise depth by

a Nelder-Mead algorithm. This is not reliable for the linear model but useful in the

non-linear case.

The confidence set construction is also implemented in three functions.

lin1 CI(y,level,plots,notion,eps)

The function calculates confidence intervals for the linear autoregressive process

without intercept given by an observation vector y for a desired level. The plots

option produces a figure which shows the evaluated candidates and the resulting

regions. The desired depth statistic can be set by notion. The eps argument de-

fines an ϵ for the candidate selection to shift the candidates from the roots of the

residuals.

lin2 CI(y,level,plots,notion,ncoresC,mid)

The function calculates confidence regions for the linear autoregressive process with

intercept given by an observation vector y for a desired level. The plots option

produces a figure which shows the evaluated candidates and the resulting regions.
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The desired depth statistic can be set by notion. The ncoresC option allows the

usage of a multicore computation. The mid argument allows a calculation of candi-

dates set by the centre points of the candidate simplexes, instead of a slight shifting

from the edges by default.

nlin CI(y,level,plots,notion,ncoresC,addPar,spar)

The function calculates confidence regions for the non-linear autoregressive process

given by an observation vector y for a desired level. The plots option produces a

figure which shows the evaluated candidates and the resulting regions. The desired

depth statistic can be set by notion. The ncoresC option allows the usage of a mul-

ticore computation. The addpar argument allows to add the resulting confidence

set to an existing plot. Further the spar value sets the parameter which defines the

smoothness of the resulting Alpha shape which approximates the confidence set.

The changepoint and prediction methods are not fully implemented in the pack-

age, but for some cases they are available.

changepoints lin2(y,level,bw,sw,plots,method,ncoresCP,mincper,mincp)

This function implements the change point detection for a linear autoregressive

model with two parameters. Thereby the observation vector y is used. The con-

fidence sets applied are calculated on a preset level for each segment defined by

a bandwidth bw and in steps with step-width sw. The plots option shows the

resulting change points if desired. The method option switches between the classi-

fication via non intersecting confidence regions and the estimator based approach.

By ncoresCP a parallel computation can be performed. The parameters mincper

and mincp are tuning parameters which allow to specify a minimal expected number

of change-points and a minimal percentage of the largest cluster of changepoints to

define a parameter change. Another function, changepoints lin2 cl replaces the

argument ncoresCP by an argument cluster and allows to apply the method on a

predefined cluster for parallel computation also. This is in particular useful, if the

method is applied on a high performance cluster.

changepoints lin1(y,level,bw,sw,plots,method,ncoresCP,mincper,mincp)

This function implements the change point detection for the linear model without

intercept. The arguments are as in the changepoints lin2(...) function. Here a

cluster version is not available.

predict lin1(y,CritLen,CritTime,NSim,alpha,restrict)

This function implements a bootstrapping based prediction procedure based on
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an observed linear autoregressive process without intercept y for a critical value

CritLen or a specific point in time CritTime based on NSim simulated processes.

Further prediction intervals with a specified level alpha are constructed. The

restrict option allows the usage of the truncated empirical depth shape to simu-

late the parameters.

B.2 Interesting Helper Functions

This section briefly describes helper functions which are used in the package for

various reasons. Here we skip the detailed description of all arguments. The full

function descriptions can be found in the documentation of the R package.

We begin with some functions which are useful to generate the limit distribution of

the full simplicial depth with two dimensional parameter.

simulateGP(g,sigma)

This function simulates the two-dimensional Gaussian process which is the limit dis-

tribution of the two parameter simplicial depth statistics. Thereby a mean vector g

and a covariance matrix sigma have to be specified appropriately. The covariance

matrix can be calculated by the sigmaMat(t,nclust) function. This function needs

a vector of indices t and can be performed on multiple cores by the nclust option.

The mean vector can be computed by muVec(t,y). Again t is the time index set

and y is a scaling parameter.

Once the Gaussian process is simulated the limit distribution can be calculated by

the following function. LimitApprox(g,Y)

This function approximates the integral given in Kustosz et al. (2016a) on a given

grid t and an observed bivariate Gaussian process Y.

The quantiles of a simulations as presented in Kustosz et al. (2016a) is stored in the

SimQuants matrix.

We also have got functions to simulate processes based on the distributions, used in

this thesis.

RandomARMod lin2(nobs,intercept,arp,start,cont,sd)

This function simulates a linear autoregressive process of length nobs with intercept

parameter intercept and autoregression parameter arp starting at start with an

error distribution given by cont. The parameter sd sets the standard deviation in

case of normal errors. For other error distribution, it is neglected.
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RandomARMod nlin1(nobs,arp,power,start,cont,sd)

This function simulates a nonlinear autoregressive process of length nobs with power

parameter power and autoregression parameter arp starting at start with an error

distribution given by cont. The parameter sd sets the standard deviation in case

of normal errors. For other error distribution, it is neglected.

The package also includes functions to calculate the residuals based on the proposed

models.

resARMod lin2(theta,dat)

This function calculates the residuals of a linear autoregressive process with inter-

cept based on an observed process given by dat and a parameter theta.

resARMod nlin1(theta,dat)

This function calculates the residuals of a nonlinear autoregressive process based on

an observed process given by dat and a parameter theta.

B.3 Internal Functions and Auxilliary Functions

The following list summarises some remaining functions which are subroutines of

the main functions or auxiliary functions used for examples or further work.

The first functions implement some results to apply OLS test statistics for explosive

autoregressive processes with intercept.

• ols expl(y) (estimation)

• ols ts(y,thetaT) (test statistic)

• ols test(theta0,y,alpha) (resulting test)

• power ols(thetas,N,R,sv,cont,theta0,alpha) (power simulation study)

The next set of functions allows implements the candidate parameters sets for the

empirical depth evaluation for the different model equations.

• lin1 theta(dat) (canditate edges for linear model without intercept)

• lin1 theta eps(dat,eps) (inner points of candidate intervals for linear model

without intercept)

• lin2 theta f(dat) (candidate edges for linear model with intercept)
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• nlin1 theta f(dat) (candidate intersections for non-linear model)

• Tri Eps(y,perc,eps) (inner points in candidate simplices for the linear model

with intercept based on small steps away from edges)

• Tri Eps dist(y,perc,eps)(inner points in candidate simplices for the linear

model with intercept based on small steps away from edges with check)

• Tri Mid(y,perc,candy) (inner points in candidate simplices for the linear

model with intercept based on center points of simplices)

• Tri Mid n1(y,perc,candy) (inner points in candidate simplices for the non-

linear model based on center points of approximated simplices)

• convex hull intersect(points1,points2,alpha,y1,y2,notion,plots) (con-

vex hull calculation to connect results from candidate evaluation to confidence

region)

• convex hull plot(x,y,col) (function to plot convex hull based on points

x,y)

• straight intersect(v1,v2,v3,v4,plots) (calculation of the intersections

from straights)

• eps ind(Mat,iX,eps) (internal function to calculate points in simplices)

• eps ind dist(v1,Mat,eps) (internal function to calculate points in simplices)

• mind(Mat,iX) (function to calculate center of a simplex)

To implement the prediction method we make use of the

draw from depth(depthI,testvec,lower,upper) function which allows us to draw

from an empirical depth shape with restriction on a lower and upper bound.

The next set of functions is necessary to simulate the Gaussian limit process. In

implements some of the functions which are necessary for the covariance matrix.

• find1(x,pars)

• find2(x,pars)

• intfun2(t2,t1)

The next two functions are used to speed up the computation of the complete

simplicial depth by matrix operations.
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• inv tri(Matrix)

• oner(resid)

The follow ups(dat,mincper,steps,mincp) function collects some calculations

used in the change point detection procedure.

The Ele Norm(Cvec,center,pv,nortype,wgt) function evaluates the distance of a

point to another point with respect to a specified norm. It is used in the estimation

procedure to speed up computation.

Finally the dS lin2 loop(theta,y) function calculates full simplicial depth for the

linear model with intercept by a simple loop implementation. It is used for runtime

comparisons.

The complete package is available via

https://github.com/ChrisKust/rexpar.git.
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Promotionsverfahren erfolglos beendet habe und dass keine Aberkennung eines bere-

its erworbenen Doktorgrades vorliegt.

Christoph Falkenau


	Introduction
	Literature Overview
	Modelling of Crack Growth
	A Modification of the Snaidy1998 Model
	Data Depth and Regression

	Depth Based Estimators for Autoregressive Models
	Linear AR(1) Process without Intercept
	Linear AR(1) Process with Intercept and Non-linear AR(1) Process
	Simplified Depth Notions
	Consistency

	Computational Aspects
	Calculation of Test Statistics
	Limit Distribution
	Calculation of Confidence Regions for Linear AR(1) Models
	Calculation of Confidence Regions for the Non-Linear AR Model
	Implementation of the Proposed Confidence Sets
	Estimation
	Change Point Detection
	Prediction as Phase-Wise Model
	Used R Packages

	Simulation Studies
	Estimators
	Tests
	Confidence Intervals
	Prediction
	Change Points
	Runtimes
	Limit Distribution

	Real Data Examples
	Maurer and Heeke Data - Model Choice
	Heuristic Derivation of a S-N Curve
	Change Points in Oil Prices

	Summary and Outlook
	Additional Simulations
	Estimation
	Tests
	Applications
	Proofs

	The rexpar Package
	Main Functions
	Interesting Helper Functions
	Internal Functions and Auxilliary Functions


