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Abstract
The influence of Artificial Intelligence (AI) and Machine Learning on our everyday lives has

been growing constantly over the past decades. Applications in both areas have attracted much
attention and several of them depend on Probabilistic Graphical Models (PGMs). Furthermore,
the emerging interest in methods originating from the Statistical Relational Learning (SRL)
community has added to this underlying trend over the past ten years. In many cases, the
combination of logic and probability is superior to relying on only either of the two. However,
with problems becoming larger and more complex, inference and learning are still major issues
in PGMs and in particular in the context of models derived from SRL formalisms. On the
other hand, many problems in SRL are specified in such a way that symmetries arise from the
underlying model structure. Exploiting these symmetries during inference, which is referred to
as “lifted inference”, has lead to significant efficiency gains.

The idea of lifted inference is not solely applicable to relational probabilistic models though.
We provide several enhanced versions of known algorithms that show to be liftable too and
thereby apply lifting in “non-standard” settings. For example, we show how to use lifted
message passing in a decimation procedure for solving satisfying problems. By doing so, we
extend the understanding of the applicability of lifted inference and lifting in general.

The majority of research on lifted inference has so far been concentrating on PGMs with
binary random variables. Certainly, these models are not the universal remedy to all problems
in AI and in fact represent only a small subset of all PGMs. In many cases, we wish to model
variables over a large domain, or even infinite range, even if this introduces new challenges to
the complexity. Often, common formalisms become unsuitable and even efficient approximative
inference is intractable. However, we can still transfer ideas from SRL and lifting to other
approaches that are more suitable in this context. In this regard, we show that algorithms
solving multiclass labeling problems can benefit from SRL-like weighted rules and lifted inference

— which are both non-standard techniques in this area. Here, weighted rules induce sparse and
symmetric problems from which Label Propagation, an effective labeling algorithm, can benefit.

We use our novel Label Propagation approach in combination with an innovative Web-based
data harvesting pipeline to label author-paper-pairs with geographic information in online
bibliographies. This results is a large-scale transnational bibliography containing affiliation
information over time for roughly one million authors. By counting the number of migration
hops of researchers, we can infer mobility patterns in migration from this database. We find
distributions fitting the data well which have also been found describing human and social
phenomena in other areas. In this line of research, we also show that the Web provides a rich
set of additional data sources where similar patterns can be found in the spread of information
and content on the Web. These findings share one commonality: all datasets were build upon
counting.

Although counting is done literally everywhere, mainstream PGMs have widely been ne-
glecting count data. In the case where the ranges of the random variables are defined over the
natural numbers, crude approximations to the true distribution are often made by discretization
or a Gaussian assumption. To handle count data with positive and negative dependencies,
we introduce Poisson Dependency Networks (PDNs). PDNs are defined over a set of local
probability distributions and we obtain a joint distribution via sampling, allowing us to answer
various probabilistic queries. Additionally, PDNs do not only allow to describe dependencies
between count random variables but also allow to make predictions for unseen instances. Hence,
we provide a new class of non-standard PGMs naturally handling count data.
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CHAPTER 1

Introduction

Providing machines with some kind of intelligence and enabling them to operate in a smart
manner has been a longstanding goal of mankind and the field of Artificial Intelligence (AI).
We can clearly see that AI and also Machine Learning are affecting our everyday lives more and
more, and their ample capabilities have just begun to have an impact. Until today, robotics
has been widely recognized as the driving force behind AI and Machine Learning but there is a
much wider range of applications that can and will benefit from these techniques: for instance
those within the predominant era of Big Data. In this context, not only areas such as medicine
and biology, but also whole branches of computer science like computer vision, natural language
processing, and information retrieval, to name only a few, have been revolutionized by AI. This
again has been facilitated by today’s mass storage capabilities which make storage fast and
cheap. Besides these areas of research, we are starting to see many applications throughout the
industry enjoying the great advantages of Machine Learning. Both, eCommerce and mobile
commerce for instance, are increasingly depending on Machine Learning. Recommender systems,
as a common and wide-spread example, help to objectify advertisement in these branches
to leverage the effectiveness of newsletters and banners. The foundation of detecting latent
patterns — for example in data of human behavior — in any of the aforementioned sciences
and applications would not have been possible without the help of statistical learning.

Although a lot of progress has been made over the past decades, much remains to be done in
the future if we are to reach the goals we all imagine — namely those of applying intelligent
algorithms into a real-world context. Due to the low costs of data storage and computational
power, many companies have started gathering tons of data. They are, however, unable to
discover latent knowledge and information due to the missing expertise, which also prevents
them from generating revenue from the available data. There seems to be an agreement that
large amounts of data are a crucial key to AI. However, it still remains to be answered if
Big Data is really the skeleton key to all AI problems. This is where Machine Learning is
starting to play a fundamental role by learning descriptive models from data and to use the
derived models to make predictions on unseen instances. Nevertheless, Big Data also poses
new challenges for Machine Learning in terms of complexity. In many of these cases, we do not
see a single instance in isolation but instead a set of objects all interacting with each other.
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Often, several of these objects are of the same type, such as customers in databases throughout
the retail industry. In these cases, we are interested in predicting characteristics of customers:
for example their churn or buying behavior [157, 85, 204].

One crucial effect that is often present in these kind of situations is autocorrelation [102]
which is the statistical dependence between such interacting entities or objects of the same
type. Friends for example may share similar interests. If one person buys a specific item,
it could be worthwhile recommending this item to their friends. Here, friendship as such
implies a relational structure between objects, or database entries, and thereby introduces
dependencies. This holds in many other situations and the data we observe on an everyday basis
is inherently relational, making the common assumption in Machine Learning of identically
and independently distributed instances not suitable. Instead, this type of data asks for
collective classification and regression. Jensen et al. [103] discuss this issue in particular for
relational probabilistic models and conclude that collective approaches can greatly reduce the
error in prediction with comparable results to non-relational approaches in the absence of
autocorrelation.

Modeling links, such as the aforementioned example of friendship, is a common pattern in
relational databases which belong to the most widespread form of data storage representing
structured information. The field of Inductive Logic Programming [44] is concerned with
learning logical rules from such databases that hold throughout the entire knowledge base.
It must be noted however that real-word data often underlies uncertainty which additionally
makes modeling and learning far more complex. For example, intelligent customer relationship
management and marketing databases wish to store uncertain information on customers such as
churn and buyer conversion likelihoods. And again, we can assume that the decisions made by
customers related to each other are not independent. Models describing relational data under
uncertainty have become more popular than ever and this trend is also visible in the increasing
usage of probabilistic databases [216]. Early work in this area already combined relational
query languages with probabilistic models [221], allowing developers familiar with SQL to
specify complex probabilistic models. However, accessible and fast inference in these problem
settings is crucial for the applicability of such modern AI and Machine Learning approaches.
A broader application of such technologies will hopefully not only facilitate further advances
in AI and computer science in general, but also trigger new data storages that are capable of
handling Big Data under uncertainty.

There is a wide a range of approaches and algorithms capable of learning from observations
which also provide extensions that carry over to the relational or multivariate setting. One
particular class of models that can learn from different types of data and represent general
interactions between observations, are Probabilistic Graphical Models (PGMs). PGMs model
the probability distribution of the observed data and allow to collectively infer missing values
from the underlying joint distribution. The impact of PGMs on AI has been huge and has
also been valued by the ACM recently by awarding Judea Pearl the Turing Award in 2011.
Pearl’s work on Bayesian Networks, a subset of PGMs, and Belief Propagation, which is an
inference algorithm within these models, commenced a new era within probabilistic reasoning.
A significant part of the work at hand is also based on Belief Propagation and the idea of
message passing for inference.

Large-scale databases with millions of customers comprise difficult challenges for learning and
inference in PGMs with theoretical results limiting both in the exact case. Correspondingly,
various approaches have been presented to make inference tractable. One, namely the exploita-
tion of symmetries in the data, has been receiving a lot of attention in recent years. Its general
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idea is to group indistinguishable objects together and to operate on the resulting clusters.
Roughly speaking, this means that not every customer in a database is distinct in terms of
the underlying problem and many customers exhibit the same characteristics. So, instead of
making predictions on an individual level, we can now work on the clusters of customers. This
can reduce the problem size by orders of magnitude and hence significantly reduce the required
time for inference. In the Statistical Relational Learning (SRL) community, this approach is
known as lifting or lifted inference. So far, lifted inference has been focusing on relational PGMs
with mostly binary random variables and several of these lifted inference approaches are based
on message passing. However, lifting is also useful in other settings and binary PGMs often
limit the expressiveness or make statements overly complex. To further highlight these current
limitations of PGMs and lifting, we now present three examples to motivate the contributions
of this thesis.

1.1 Illustrating “non-standard” PGMs and Lifted Inference

Our focus is on PGMs and lifted inference approaches in “non-standard” settings. We will now
provide three illustrative examples which will highlight our contributions and exemplify our
understanding of these “non-standard” settings.

Lifted SAT — Lifted Message Passing Beyond Probabilistic Inference

One of AI’s key challenges in moving ahead is closing the gap between logical and statistical
AI. While logical AI has mainly focused on complex representations of knowledge, statistical
AI has concentrated on the aspects of uncertainty. However, intelligent agents and systems
must be able to handle both, namely the complexity and the uncertainty of the surrounding
real world. While extending relational data with probabilities has been pursued in many
research areas, PGMs have become one of the most successful approaches to combine logic
with probabilities and have greatly contributed to the recently emerging fields of SRL [66] and
Statistical Relational AI (StarAI)1 [116].

Lifted inference algorithms, exploiting the relational structure of models, have rendered large
and previously intractable probabilistic inference problems quickly solvable. In these cases, the
logical representation is merged into the PGM whereupon the probabilistic inference algorithm
is applied. In this regard it is worthwhile asking if the idea of lifting is applicable to algorithms
solving logical problems that operate on similar concepts as probabilistic inference algorithms.
As the following example suggests:

lifted message passing is not limited to probabilistic inference algorithms.

And taking this one step further, we will now indicate how instances of the Boolean satisfiability
problem (SAT) [193] can be solved more efficiently based on lifted inference, hence, connecting
logical and statistical AI in a “non-standard” setting.

SAT is one of the well known NP-complete [41] problems and efficiently solving particular
classes of SAT instances contributes in many ways. Problems from knowledge representation,
planning, scheduling, model checking, and many more, can all be reduced to SAT. A SAT
problem poses the question if a given formula in propositional logic evaluates to True. Here,
we assume that the formula is given in conjunctive normal form (CNF), i.e., a conjunction of

1www.starai.org
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1 2 3 4

2 ? ? ?

3 ? ? ?

4 ? ? ?

(a) Problem

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

(b) Possible Solution

Figure 1.1: (a) Normalized Latin square of size four. Any solution fills the missing cells, denoted
by a “?”, in such a way that each row and each column uses each number (color) exactly once.
One possible solution is depicted in (b).

disjunctions. This assumption is very common and does not impose any restrictions, since any
formula can be converted into CNF. A solution to a SAT problem is an assignment to variables
such that the underlying Boolean formula evaluates to True. Similar to lifted inference in
relational models, we can exploit symmetries in the structure of propositional formulas when
solving SAT problems and thus solve the underlying problem more efficiently. However, in
contrast to many relational lifted inference approaches, we tackle the problem from the opposite
point of view and follow a bottom-up approach.

We will now give a concrete example of a SAT problem and indicate how it can be solved.
Figure 1.1a shows an example of a Latin square2 which is akin to the popular Sudoku game.
Similar to Sudoku, in a Latin square the goal is to label every unknown cell in such a way
that each column and each row uses every number exactly once. In Figure 1.1a, this is further
highlighted by using different colors for each number. The depicted example has a size of four
with an additional constraint being that the first row and column are already labeled. Such a
Latin square with a natural ordering in its first column and row is also called normalized3. We
can now define a set of propositional clauses that describe the labeling problem more precisely
based on the following constraints:

• Every cell is labeled with exactly one number.

• Every number occurs only once in every row.

• Every number occurs only once in every column.

Finding a solution to a Latin square can also be considered as finding a solution of a CNF
respecting these specific constraints. Each variable in the CNF corresponds to the labeling
of a specific cell with a particular color. While a normalized Latin square of size four has 21
variables, this number grows cubically with the size of the problem. Hence, one cannot simply
try all combinations to find a solution to the problem we are trying to solve.

If we look at the formulas of a CNF representing a Latin square, we see that the clauses for
each cell look similar and all cells are constraint likewise. As we will see below, this insight can
be advantageous in iterative problem solving procedures which can be used to find solutions to
SAT problems. This can be illustrated by representing the CNF as a graph which comes with
the benefit of giving us a “neighborhood”-concept and hence some kind of relational information.
To be more precise, we define the CNF by means of a factor graph (see Section 2.1.1 for a

2en.wikipedia.org/wiki/Latin_square
3Other Latin squares with different constraints can be found at http://www.cs.ubc.ca/~hoos/SATLIB/

Benchmarks/SAT/QG/qg.descr.html
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Figure 1.2: (left) Latin square of size four represented as a factor graph. The colors indicate
clusters of variables that are constrained the same way. (right) Comparison of ground and
lifted Latin squares for reasonable sizes. The ground problems grow cubically while the number
of lifted variables remains constant.

detailed description of factor graphs). Figure 1.2(left) shows the factor graph representation for
the Latin square of size four. Each variable is depicted as a circle and each square represents
a clause. Each clause is connected to its variables via an edge. Dashed edges indicate that a
variable appears negated in a clause.

Looking at the graph more closely, we see that the factor graph is symmetric and one can
form different clusters of variables which are distinguished by colors. Note that these colors
do not correspond to the colors which are used to color the Latin square itself in Figure 1.1.
Symmetries in the factor graph arise from the fact that variables assigning the same label to
different cells in the Latin square are constrained in the same way by the propositional formulas.
An algorithm that finds such clusters based on sending messages in the graph will be explained
in Section 2.4.1. For now, however, keep in mind that identically colored variables in the factor
graph behave the same way. We will now indicate how the knowledge about these clusters
speeds up the inference process.

Common approaches to solving SAT problems choose a variable heuristically, set its value to
either True or False, simplify the CNF, and choose the next variable to clamp. Usually, the
heuristic needs to be evaluated for each variable to make a locally optimal choice. Having a
symmetric problem as the one described here, we can group the variables in such a way that
we only have to evaluate the heuristic for each cluster because we know that each variable in a
cluster behaves identically. For our current example, all variables in a cluster of the same color
behave identically. Hence, we only need to apply the heuristic once to a single variable from
this cluster.

This might not be impressive in the case of such a small problem. Therefore, let us have a
look at Latin squares of increasing size. Figure 1.2(right) shows a comparison of ground and
lifted Latin squares for realistic problem sizes. We see that the number of ground variables
(dark green) increases cubically as stated above (note the log-scale of the plot). In contrast, the
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Paper 1

Paper 2

Paper 3

Figure 1.3: Extract of an online bibliography enriched with geographic information. A node
corresponds to an author-paper-pair and dotted boxes refer to a paper written by the enclosed
authors. The labels reflect the geographic location of an author while having written the
particular paper and edges connect either co-authors or nodes of the same author for different
papers.

number of lifted variables (light green) remains constant which is quite remarkable. Nevertheless,
this is a common observation made in the lifted inference literature. In the case of probabilistic
inference, it is often observed that the ground run time grows exponentially while the lifted
run time only increases polynomially with growing problem sizes. At this point we should
also mention that the level of compression drastically decreases once we clamp variables and
simplify the model. In the worst case, we can no longer lift the model after simplification
and detecting clusters becomes an unnecessary overhead. This aligns with setting evidence in
PGMs where lifted inference for the unconditioned probability is fast but with evidence being
set, the potential for lifting decreases.

The concept of lifting will be used throughout various parts of this thesis and will be applied
in new areas apart from probabilistic inference in relational PGMs. We will return to the
problem of lifted satisfiability in Section 3.1 where we will discuss and evaluate different problem
instances in greater detail. More specifically, we will show that lifted inference can speed up
SAT solving but also asks for new algorithms exploiting symmetries efficiently when variables
are clamped. In this context, we will also discuss the problem of clamping in detail and we
will propose algorithms that are capable of exploiting symmetries after setting evidence (see
Section 3.2 and Section 3.3).

Lifted Labeling — Label Propagation on Lifted Matrices

The first example showed how instances of logical problems contain symmetries and illustrated
how these symmetries can be exploited during problem solving. The idea of coloring the CNF
is tightly connected to the message passing algorithm that is used in the decimation framework.
However, this computational view on lifting can also introduce additional complexity as it
requires changes to the messages being sent around (see Chapter 3). When looking at other
problems and algorithms, we will see that symmetries in the problem structure itself can be
exploited in such a way that the inference algorithm remains unaffected. This way, lifting
can be seen as a preprocessing step. In a nutshell, the underlying graph can be lifted by
algebraic means and the inference procedure, a sequence of matrix-matrix-multiplications,
remains unchanged but now uses lifted matrices. In contrast to much of the existing literature,
we show that

lifting is not limited to binary variables and does not necessarily require the modifi-
cation of the ground algorithm.
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Figure 1.4: The prediction of traffic flows can be naturally realized by graphical models over
count random variables. Dark red spots indicate a high traffic flow and the black arcs indicate
how traffic segments influence each other.

We will now explain this idea for a labeling task with possibly thousands of labels. Let us
assume that we want to label entities in a database. For example, one is interested in labeling
the authors in a bibliography with their affiliations while writing a particular paper. Figure 1.3
illustrates this idea for a small database extract. Here, each node corresponds to an author of
a paper while country flags are used as an approximation to an author’s affiliation. Unknown
affiliations are left blank. The dotted boxes enclose authors of the same paper. Each edge in the
graph connects either two nodes corresponding to authors of the same paper, or two nodes of
the same author but for different papers. The edges are supposed to model a similarity between
nodes. Taking a closer glance, the presented graph encodes the intuition that neighboring
nodes are more likely to share the same label. With this information we can now propagate
the initial labels throughout this graph based on the edges. This is achieved by representing
the graph and the initial labeling as matrices. Iteratively multiplying the label matrix with
the similarity matrix results in a distribution over the labels for each node. This algorithm is
known as Label Propagation [260].

In symmetric examples such as the one depicted in Figure 1.3, we can lift both of the involved
matrices by algebraic operations returning two compressed datastructures. Interestingly, these
lifted matrices can directly be used for the multiplications instead. The same label distribution
as in the ground case can be read off the label matrix of reduced size. This idea of Lifted
Label Propagation will be discussed in Section 5.3 in more detail. However, using a Gaussian
similarity function, as it is often done, results in a dense similarity matrix, hence, limiting the
applicability of Label Propagation in large-scale settings. Therefore, we resort in Section 5.1
to SRL concepts and define the similarity matrix based on logic formulas akin to relational
PGMs.

Count Data — Graphical Models Beyond Multinomial and Gaussian Random Variables

The previous example has already shown a labeling task where the alphabet can be fairly
large, albeit, still finite. In many other cases, we are confronted with variables defined over the
natural numbers, i.e., discrete but infinite. Most of the existing PGMs are either multinomial or
Gaussian, and thus ill-suited to represent the natural numbers appropriately in many situations.
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Range Inference Learning Lifting

Chapter 3 {0, 1} BP, SP, WP, LM max. LL Color Passing
Chapter 5 {0, . . . , d} LP min. entropy saucy
Chapter 7 N MCMC max. LL via GTB ongoing work

Table 1.1: This thesis covers different types of probabilistic graphical models and algorithms
along with it. This table gives a brief overview on the approaches used in each technical chapter.

Extending PGMs to variables defined over the natural numbers is necessary to
represent a large class of problems adequately.

To underline the necessity and benefits of such models, let us present a new example from
the domain of traffic flow prediction. Figure 1.4 shows a map extract displaying the vehicular
traffic from 38 stationary detectors located on the Cologne orbital freeway stretch adding up
to 50 km in Germany. Each detector counts the number of cars passing by per minute and
is naturally represented as a count random variable. Here, dark red detectors indicate high
traffic and possibly a network congestion. An observation of the entire network for a certain
point in time can be seen as one sample from a joint probability distribution of count random
variables. Modeling this distribution requires to learn the dependencies between individual
traffic segments.

Existing PGM approaches to such problems either discretize the count data into bins or follow
a Gaussian approximation. Both techniques solely approximate the true nature of the counts.
We therefore introduce in Chapter 7 a new class of PGMs based on Poisson distributions. These
Poisson Dependency Networks (PDNs) are capable of learning dependencies between count
random variables and inference in these models is based on a simple sampling procedure.

The black edges in Figure 1.4 feature the dependencies between detectors learned by a
PDN. One can easily see that the dependencies of a highway segment do not solely depend
on neighboring segments close by, but also on critical highway segments in other regions.
Besides describing the traffic flow in the network, we can now also make predictions for missing
datapoints or future situations. For example, detectors may often fail due to technical issues or
construction sites. When these detectors are offline, we can use PDNs to fill in the missing
counts. The ideas of modeling traffic based on counts has been further pursued in [96] and
within the collaborative research center SFB 876, project B44.

1.2 Outline and Summary of Contributions

This thesis makes several contributions to inference and learning in PGMs by applying ideas
from relational PGMs and lifted inference to non-standard settings. The examples in the
previous section have already illustrated our understanding of non-standard settings and we
will now summarize the content of this thesis in greater detail. Table 1.1 gives an overview
how the models in the main technical chapters differ and how different inference and learning
approaches are used accordingly. As we have seen in the previous three examples and as it
is further shown in Table 1.1, the main technical chapters focus on random variables with
different ranges, i.e., binary, multiclass, or count random variables. Depending on the range of

4sfb876.tu-dortmund.de/SPP/sfb876-b4.html
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the variables, different inference and learning approaches will be used in each chapter. The
idea of lifting is a recurring concept and will be discussed for each case. The content and
contributions of Chapters 2 to 7 can be summarized as follows:

Chapter 2 To prepare the ground for what is to follow, Chapter 2 gives an overview on PGMs,
including inference and learning algorithms. Chapter 2 furthermore explains the idea
of lifted inference in detail because the specific contributions of Chapter 3 rely on the
idea of lifted message passing. In this context, Chapter 2 explains probabilistic inference
based on message passing and describes one of the most prominent lifted message passing
algorithms in detail. This chapter will also comment on more advanced lifting techniques,
such as informed Lifted Belief Propagation published in:

K. Kersting, Y. El Massaoudi, B. Ahmadi, and F. Hadiji. Informed Lifting
for Message-Passing. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI), 2010.

Since much of the lifted inference literature focuses on relational PGMs, Chapter 2 will
also summarize the most well known formalisms in this area.

Chapter 3 While much of the early literature on lifted inference was primarily focusing on
lifted variants of Variable Elimination and Belief Propagation, Chapter 3 introduces
lifted versions of message passing algorithms beyond lifted Belief Propagation. We
extend the understanding of lifting by introducing additional lifted versions of existing
inference algorithms including Warning Propagation and Survey Propagation. Warning
Propagation and Survey Propagation are message passing algorithms used to solve SAT
problems; the lifted counterparts were published in:

F. Hadiji, K. Kersting, and B. Ahmadi. Lifted message passing for satisfiability.
In Working Notes of the AAAI Workshop on Statistical Relational AI (StarAI),
2010.

As the introductory examples in the previous section already indicated, lifting is most
effective in the unconditioned case, i.e., when no evidence is given or no variable has been
clamped yet. However, iterative approaches to solving SAT instances clamp one or more
variables in every iteration and therefore ask for lifting algorithms that can efficiently
handle incremental evidence. To this end, we introduce a framework that is fitted to such
sequential clamping approaches. This framework was previously published in:

F. Hadiji, B. Ahmadi, and K. Kersting. Efficient Sequential Clamping for
Lifted Message Passing. In Proceedings of the 34th Annual German Conference
on Artificial Intelligence (KI), 2011.

In particular, the proposed decimation approach tries to lift a clamped model more
efficiently by adapting the unconditioned lifted model. To do so, it makes use of additional
information from the network structure in form of shortest path distances. This Shortest-
Path-Sequences lifting has been published in:

B. Ahmadi, K. Kersting, and F. Hadiji. Lifted Belief Propagation: Pairwise
Marginals and Beyond. In Proceedings of the 5th European Workshop on
Probabilistic Graphical Models (PGM), 2010.

Message passing algorithms as such work in an iterative way by exchanging messages
to optimize an algorithm-specific criterion. In certain cases, this optimization obeys a
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monotonic behavior which can be interpreted as a process approaching evidence. We
cut this process short and set the evidence during the message passing already, before
the algorithm has completely converged. We show that such a likelihood maximization
algorithm is liftable, yet requires a new lifting approach to handle the new evidence during
the message passing itself. The lifted version of this maximum a posteriori inference
algorithm together with the adapted lifting algorithm was published in:

F. Hadiji and K. Kersting. Reduce and Re-Lift: Bootstrapped Lifted Likeli-
hood Maximization for MAP. In Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI), 2013.

Combining these contributions, we extend the applicability of lifting to new areas and
establish lifting in these settings as a novel approach to reduce run time. We furthermore
propose new lifting schemes that cope with incrementally growing sets of evidence to
exploit symmetries even more effectively.

Chapter 4 The algorithms in Chapter 3 are based on message passing. When lifting these
algorithms, the ground message passing algorithms have to be modified to respect the
lifted model. Chapter 4 presents an alternative view on probabilistic inference without
message passing. Instead, it reviews the well known semi-supervised Label Propagation
algorithm. Label Propagation is used to label a graph based on a matrix representation
of the similarity between nodes and a set of initially known labels. This algorithm
features a probabilistic interpretation as well and returns a distribution over labels for
each node in the graph. While Chapter 3 handles binary PGMs only, Label Propagation
can naturally process large label alphabets and hence solve multiclass labeling problems.
In the next step, we review connections between graph theory and lifted probabilistic
inference that have been established recently, to ultimately motivate a lifted version of
Label Propagation in the subsequent chapter.

Chapter 5 Standard Label Propagation commonly uses a Gaussian function to model the
similarity between nodes. This results in a dense similarity matrix which does not scale to
large graphs with millions of nodes. Relational PGMs have been shown to easily describe
dependencies between related objects by using first-order logic as a template language. We
apply these ideas to Label Propagation and define similarity matrices based on weighted
logical rules. Such a rule-based approach for Label Propagation entails several advantages.
First, logical rules allow an intuitive problem definition as knowledge can be encoded
more easily with the help of domain experts. Second, logical rules often lead to much
sparser similarity matrices compared to the standard setting where a Gaussian function
is used. As our empirical results show, this relational Label Propagation still produces
high accuracy labels. At this point, one may reflect upon whether Label Propagation
is liftable too, especially when using a rule-based similarity function. In this regard we
show that the interplay of graph theory and lifting algorithms can be applied to Label
Propagation and we prove that Label Propagation can be lifted in terms of algebraic
operations; the Lifted Label Propagation algorithm has recently been accepted in:

F. Hadiji, M. Mladenov, C. Bauckhage, and K. Kersting. Computer Science
on the Move: Inferring Migration Regularities from the Web via Compressed
Label Propagation. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI), 2015.
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Lifted Label Propagation results in a much faster labeling algorithm with less memory
consumption. Furthermore, lifting becomes a single pre-processing step that does not
require modifying the ground version. Hence, Lifted Label Propagation can be combined
with any other method making Label Propagation more efficient.

Chapter 6 In Chapter 5, we use lifted relational Label Propagation to label large-scale online
bibliographies with geographical attributes. Starting with a freely available online
bibliography, we harvest additional information from the Web to add initial seed affiliation
of authors to our database. Label Propagation is then used to fill in the missing affiliation
information, resulting in a database of several million papers and authors augmented with
geographical tags. Having such a vast resource at hand, Chapter 6 will point out that
several interesting patterns and regularities can be found in this dataset. We show how to
derive several statistical regularities and patterns from these geo-augmented bibliographies
by fitting simple distributions to the data based on the maximum likelihood estimation
principle. Our findings encompass distributions describing the migration behavior of
researchers, as well as a general model for the academic job market. Excerpts of these
patterns and regularities have been included in the IJCAI-15 publication referred to above
and a full analysis has been made publicly available at:

F. Hadiji, K. Kersting, C. Bauckhage, and B. Ahmadi. GeoDBLP: Geo-
Tagging DBLP for Mining the Sociology of Computer Science. arXiv preprint
arXiv:1304.7984, 2013.

Such an analysis of human behavior is applicable to various other kinds of datasets and we
further highlight how we have used such techniques to describe the attention to Internet
memes [14] and the spread of viral videos [15].

Chapter 7 While Chapter 3 focuses on binary variables and Chapter 5 deals with multiclass
problems, Chapter 6 furthermore highlights that we are still missing the setting with
variables defined over infinite ranges. This gap is filled in Chapter 7 where we take a closer
look at random variables defined over the natural numbers and count data in general.
While Chapter 6 fits distribution to count data for descriptive purposes, Chapter 7
presents models that allow a prediction conditioned on observations. Although counting
is key to describing various observations and statistics, there is little work on PGMs
for random variables defined over the natural numbers so far. We therefore introduce a
different class of PGMs, namely Poisson Dependency Networks (PDNs), that is tailored
towards count data based on Poisson distributions, as previously existing graphical
models were mainly focusing on discrete and finite data or Gaussian random variables.
Although PDNs consist of a set of local conditional Poisson distributions, we show how
to sample from the joint distribution with the help of a Gibbs sampler. Besides answering
probabilistic queries, these samples can also be used to predict counts of unseen instances.
In order to efficiently learn PDNs, we resort to Gradient Tree Boosting (GTB). GTB has
successfully been used in a large variety of applications where a stepwise optimization
is performed by summing together the output of simple basis functions. Besides the
additive case, which relies on a step-size specified by the user, we also present the first
approach to multiplicative GTB to improve convergence. This multiplicative GTB shows
to be an effective alternative in many cases that does not require the tuning of a step-size.
This new class of PGMs has recently been published in:

11



Introduction

F. Hadiji, A. Molina, S. Natarajan, and K. Kersting. Poisson Dependency
Networks: Gradient Boosted Models for Multivariate Count Data. Machine
Learning Journal, 2015.

We further touch upon relational extensions for this model class and also describe how
lifting could be implemented to motivate future work in this area.

We conclude in Chapter 8 by summarizing the main aspects of this thesis, presenting the
lessons learned during the development of this thesis, and suggesting possible directions for
future work. A list of selected publications in which the author was involved can be found in
Section 1 of the Appendix which also details the author’s specific contributions to each paper.

The reader may notice that the chapters are not equally dense. In particular, Chapter 3 is
comparably more extensive. This primarily rises from the fact that much of this thesis was
motivated by the initial work on lifting as described in Chapter 3. The work therein started to
look at lifting in “non-standard” settings, however, still focusing on message passing algorithms
in binary PGMs. While this work evolved, many of the ideas presented in Chapters 4 to 7 were
developed, extending PGMs and ideas from lifting by additional dimensions. Therefore, we
propose as a future research question to investigate lifting in the probabilistic count models
presented in Chapter 7 which in combination would once again emphasize the core contributions
of this thesis.
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CHAPTER 2

From Probabilistic Inference to Lifted Message Passing

There are a couple of definitions and ideas that return in each of the following chapters and
will be summarized in the current chapter. This mainly focuses on the definition of PGMs and
particular instantiations of this formalism. It also includes the main challenges in PGMs and
state-of-the-art approaches for solving them. A discussion on inference and learning in PGMs
requires basic ideas from probability theory. Similarly, relational PGMs depend on terminology
from logic. We will now describe these ideas and concepts in greater detail.

2.1 Probabilistic Graphical Models

In this section, we give a short introduction to PGMs and define our notation. For a more
detailed review of PGMs, we refer the interested reader to [124, 237]. Generally, PGMs combine
ideas from graph theory and probability theory. Let us assume that we are given a graph
G = (V,E) where V = {V1, V2, . . . , Vn} is a set of vertices and E ⊆ V × V is a set of edges.

Each edge eij connects two vertices Vi, Vj ∈ V . In the most general form, we consider
undirected edges between the nodes. In order to define a PGM, we further assume that we have
a random variable Xi associated with every vertex Vi ∈ V . Each variable Xi is defined over a
range Xi. Throughout this thesis we will consider different ranges, starting from binary ones,
e.g., Xi = {0, 1}, over discrete but finite ones, e.g., Xi = {0, 1, . . . , d}, to discrete and infinite
ones, e.g., Xi = N. We will also touch upon continuous ranges along the way, i.e., Xi = R+,
because the Gaussian setting for instance is related to the discrete case in many ways and
various concepts carry over. Let xi represent a possible instantiation of random variable Xi,
i.e., xi ∈ Xi. We define a vector of n random variables as X = (X1, X2, . . . , Xn) and x as its
instantiation. We now associate a potential function or compatibility function φc with every
clique c of the graph G. A clique is a fully connected subset of vertices in G and we define the
set of all cliques in G as C. By Xc, we refer to the variables contained in clique c. Based on
these potential functions, we can formulate the following factorization of a joint probability
distribution:

p(X = x) =
1

Z

∏
c∈C

φc(xc) . (2.1)
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(a) Example MRF

X1 X2
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(b) Example BN

X1 X2

X3

(c) Example DN

Figure 2.1: A visual comparison of the different probabilistic graphical models that are covered
in this thesis.

Here, each function φc is a non-negative function over a subset of the variables Xc, i.e.,
φc : X1 × . . . × X|xc| → R+. Z =

∑
x∈X1×...×Xn

∏
c∈C φc(xc) is a normalization constant,

ensuring that p(·) is a valid probability distribution. The product of positive functions, or
possibly even local probability distributions, in Equation (2.1) together with a graph defines
what is known as a Markov Random Field (MRF). A small example MRF is depicted in
Figure 2.1a. This relationship between a graph and a probability distribution goes back to the
theorem of Hammersley-Clifford [89, 19]. The theorem of Hammersley-Clifford states that we
can find such a factorization over cliques for every positive probability distribution, i.e., where
we have ∀x : p(X = x) > 0. This highlights the great expressiveness of MRFs and gives the
theoretical foundations. Furthermore, the factorization of the graph describes the conditional
independencies of the distribution. By this, the graph G, or equivalently the MRF, tells us that
variable Xi is independent of all other variables in the graph given its direct neighbors nb(i),
i.e., P (xi|x\i) = P (xi| nb(i)). Here, x\i refers to a random vector x with variable Xi removed.
This is the so called local Markov-property and Xi’s neighbors are also called Markov blanket.

It is important to note that C does not have to be the set of maximal cliques because any
set of non-maximal cliques can be converted to a set of maximal cliques. Additionally, we also
consider a single node as a clique which often simplifies the model specification. In fact, every
MRF can be equally represented by a pairwise MRF, i.e., a model with pairwise potential
functions only. We also want to note that the distribution in Equation (2.1) can be equivalently
represented as a log-linear model:

p(X = x) =
1

Z

∏
c

exp(wc · gc(xc)) =
1

Z
exp

[∑
c

wc · gc(xc)
]
, (2.2)

where the features gc(·) are arbitrary functions over (a subset of) the configuration x and wc
is a feature weight. We will come back to this model below where we describe MRFs based
on weighted logical rules (see Section 2.3.1). In these cases, each gc corresponds to a function
returning the truth value of a logical rule and wc defines its weight.

Using yet another reformulation of the MRF definition, we obtain a Gibbs distribution which
is often used in statistical Physics:

p(X = x) =
1

Z
exp

[
−
∑
c

Ec(xc)
]

=
1

Z
e−E(x) , (2.3)

where E(xc) > 0 is the energy associated with the variables in clique c. By setting Ec(xc) =
− ln(φc(xc)), we obtain again our original form of the MRF. Energy-based formulations
become interesting when one seeks for the most likely configuration of the distribution because
maximizing the probability now equals minimizing the total energy.
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We have now seen different representations of MRFs which all assumed some kind of potential
functions, or more specifically in case of the log-linear representation, the MRF was based on
feature functions gc and the corresponding weights wc (a.k.a canonical parameters). However,
as we will see next, we can also parameterize the MRF in a different way. One can also view
the distribution defined by the factorization in terms of a mean parameterization which is
immediately related to the inference problems introduced in Section 2.2. We can define for
each φc a mean parameter E[φc(Xc)] =

∑
xc
φc(xc)p(xc) which is then used to define a vector

of mean parameters over all potential functions (E[φ1(X1)], . . . ,E[φ|C|(X|C|)]). We can now
also define the set of all realizable mean parameters as:

M =

{
τ ∈ R|C| | τ =

∑
x

φ(x)p(x) for some p(x) ≥ 0,
∑
x

p(x) = 1

}
.

Here, φ = (φc, c ∈ C) ∈ R|C| is the vector of all potential functions and M defines a convex
polytope. We can assume without loss of generality that an MRF is pairwise, i.e., it contains
only unary and pairwise feature functions. A procedure that transforms MRFs of arbitrary
arity to a pairwise form is given in [237, E.3]. For such a pairwise MRF over G = (V,E), the
mean parameters correspond to the marginal probabilities p(Xi) and p(Xi, Xj) for connected
variables. In this case, we have

M(G) =
{
τ ∈ R|C| | ∃p s.t. τi = p(xi) ∀i ∈ V and τij = p(xi, xj) ∀(i, j) ∈ E

}
, (2.4)

and refer to M(G) as the marginal polytope. These marginals, and marginals over any subsets
of variables, are of great interest because one often wants to answer probabilistic queries in the
form of p(Xa = xa). Unfortunately, the number of constraints required to describeM(G) grows
exponentially and therefore obtaining the mean parameterization efficiently is not possible in
most cases. Indeed, determining the mean parameterization from the canonical representation
amounts to probabilistic inference and is one of the main challenges in PGMs. The mapping in
the opposite direction has an interesting interpretation as well and can be seen as parameter
learning [237]. To reduce the number of required constraints, and hence the complexity, linear
program relaxations have been proposed that focus on local constraints only. In particular,
with the constraints∑

xi

τi = 1 ∀i ∈ V ,
∑
xj

τij = τi ,
∑
xi

τij = τj ∀(i, j) ∈ E , (2.5)

we can define the local marginal polytope

ML(G) =
{
τ ∈ R|C| | Conditions of Equation (2.5) hold.

}
,

which outer bounds M(G). But more importantly, ML(G) requires only a linear number
of constraints in the number of edges. The marginal poltytopes M(G) and ML(G) will be
of greater interest in Section 3.3 where we will refer to an algorithm that adds additional
constraints to the polytope, in order to implement a fast approximate inference algorithm. For
more information on the mean parameterization and the marginal ploytope, we refer to [237,
Section 3.4].

Besides the undirected MRFs, there is another very popular class of PGMs, namely Bayesian
networks (BNs) [124]. Here, the joint probability distribution is represented by means of a
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directed, acyclic graph. Again, there is a node in the graph associated with each variable in
the probability distribution. However, due to the fact that the graph is directed, we now have
a set of parents for each node, referred to pa(Xi), instead of a Markov blanket as in MRFs.
Each variable Xi is conditionally independent of its non-descendants in the network given its
parents. This means that the marginal conditional probability distribution of each variable is
specified by a probability table over the variable itself and its parents. The joint distribution of
a BN is then defined as:

p(x) =
n∏
i=1

p(Xi|pa(Xi)) . (2.6)

We saw for undirected models that the theorem by Hammersley and Clifford established the
connection between an undirected graph and a probability distribution. Similarly, we have for
BNs the representation theorem [124, Theorem 3.1 and 3.2] that connects a directed, acyclic
graph with the factorization in Equation (2.6). An example of a BN is depicted in Figure 2.1b.
Looking again at Equation (2.1), we can construct an MRF based on the conditional probability
tables of an BN. We represent each conditional probability p(Xi|pa(Xi)) by a potential function
over Xi ∪ pa(Xi), resulting in Z = 1. However, the structure of the MRF is not identical to
the BN’s graph, as we have to connect all parents of a node. This conversion is often referred
to as moralization and the resulting graph is called a moral graph. For example, if we moralize
the BN in Figure 2.1b, we obtain the undirected model in Figure 2.1a which is completely
connected. This example already highlights that we lose some of the independence information
when transforming a BN into an MRF. The nodes X1 and X2 are marginally independent,
however, it is not possible anymore to read off this information from the completely connected
MRF. For more information on the connection between BNs and MRFs, as well as the encoded
independencies, we refer the reader to [124, Section 4.5]. Nevertheless, every probability
distribution defined by a BN can be encoded as an MRF as well.

Although BNs already impose restrictions on the graphical structure of the problems compared
to MRFs, parameter and structure learning is still a tough challenge. Hence, models were
proposed that combine advantages of both models but fail to define a consistent probability
distributions in closed form. Nevertheless, these models still perform well on various tasks
and reduce complexity of learning and inference significantly. One example of such models are
Dependency Networks (DNs) [90] which we find in between BNs and MRFs. DNs are defined
as a set of local conditional probabilities that may contain cycles where each local conditional
probability distribution is learned independently. An example of a DN is depicted in Figure 2.1c.
We will describe DNs in larger detail in Chapter 7, as these models play a central role for our
approach of handling count data, i.e., random variables over the natural numbers. Chapters
3 and 5 are mainly concerned with MRFs, although the work in Section 3.3 is solving the
inference problem by transforming the original MRF into a mixture of simple BNs. While
Chapter 3 is mainly concerned with binary MRFs, Chapter 5 looks at multinomial MRFs which
however have an equivalent Gaussian representation in the case of binary variables.

As we have seen above, we can use graphs to formulate BNs, MRFs, and DNs. However, in
many cases a different type of graph is more expressive as we will see next. This formalism,
called factor graph, can represent all three types of models and hence factor graphs represent
the main formalism to visualize graphical models in this thesis.
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f1

X1 X2f2

f3
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Figure 2.2: Example factor graph. Circles denote variable nodes and squares denote factors.

2.1.1 Factor Graphs

As we have seen in the previous section, there are different ways of defining graphical models.
MRFs are represented by undirected graphs, while directed graphs are used for BN. However,
there is also a formalism that is capable of representing both types of models, namely factor
graphs [128]. Hence, factor graphs present an important formalism in this work, as several of our
problems can be formulated in a unified way. Additionally, the factor graph formalism is more
expressive than undirected graphs, since it can distinguish between pairwise and higher-order
interactions. In a undirected graph, cliques of size two cannot be distinguished from cliques of
size three. For example, the MRF shown in Figure 2.1a could very well represent a pairwise
factorization p(x) = φ1(x1, x2)φ2(x1, x3)φ3(x2, x3), as well as a single clique φ1(x1, x2, x3).
However, this circumstance would not be visualized appropriately with the corresponding
underlying graph. More formally, a factor graph is a bipartite graph G = (V,E) that expresses
the factorization of a joint probability distribution for p(X) as in Equation (2.1). Here, V is
the set of nodes, which contains a variable node for each variable Xi ∈ X and a factor node for
each φc ∈ C. There is an edge (i, c) ∈ E between the variable node for Xi and the factor node
corresponding to φc if and only if the variable is in the range of the function associated with
the factor. Since G is bipartite, there are no edges connecting two variable nodes or two factor
nodes. In our figures, we will be denoting variables nodes as circles and factor nodes as squares.
An example of a factor graph is depicted in Figure 2.2. Additionally, factor graphs also provide
a probabilistic view on CNFs as we have seen in Figure 1.2: the marginals of the variables in a
factor graph representing a CNF give the probability of the variable being True, respectively
False, when all solutions to the problem in G are chosen uniformly, i.e., unweighted.

2.2 Inference and Learning in Graphical Models

This thesis covers different facets of inference and learning in PGMs. Therefore, we will now
summarize the main challenges in this area. Assuming that the structure of a PGM and
its parameters are already given, we are facing different inference tasks in order to answer
probabilistic queries. However, in other settings we are starting solely with a dataset of
empirical observations for which we first need to learn an appropriate PGM. Resulting form
these different scenarios, we distinguish the following main challenges:
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• Probabilistic Inference: Answering probabilistic queries for one or more variables is
referred to as probabilistic inference. We can further split probabilistic inference into the
following two subclasses:

– Marginal Inference: In many situations, we are interested in the marginal probability
of a single node p(Xi = xi) = Z−1

∑
x\i

∏
c φc(xc). In other cases, we might also

need the probabilities of a subset of variables, i.e., p(Xc = xc), or the probability
of an entire joint configuration p(X = x). Depending on the algorithm, different
of these quantities are provided or can be read-off easily. In the case of BNs, the
joint probability can be determined easily, while this requires the computation of the
normalization constant Z in MRFs. For BNs we have Z = 1. As seen above, Z is
defined as the sum over exponentially many configurations which already indicates
the hardness of its computation. Indeed, it can be shown that exact inference, i.e., the
decision problem P (Xi = xi) > 0, is NP-complete [124]. The proof follows a reduction
from the 3-SAT problem which is known to be NP-complete. In correspondence to
this results, it can also be shown that computing the marginal probability P (Xi = xi)
itself is #P-complete [191]. Here, the proof follows a reduction from the model
counting problem for 3-SAT. It can also be shown that probabilistic inference
amounts to weighted model counting [34] which gives yet another connection to SAT
related problems and their weighted extensions. Due to the hardness of inference in
general, one often resorts to approximate inference algorithms. Parameter learning
typically relies on computing the marginal probabilities and hence, efficient learning
is also most often done in an approximate fashion.

– MAP inference: In other cases, we are not interested in the exact probability of
a configuration but instead want to find the most likely one. The maximum a
posteriori (MAP) inference amounts to finding the most probable assignment x∗

to all unobserved variables, i.e., the mode of the possibly conditioned distribution.
More formally, the task of MAP inference is defined as

x∗ = arg max
x

p(x).

In general, this problem is NP-complete [203] as well. Still, MAP inference is a
challenging and crucial task in solving different problems and it has applications
in various domains such as image processing [251], entity resolution [206], and
dependency parsing [144], among others. Here, the MAP assignment presents a
solution to a specific problem and one is also required to use approximation algorithms
in most situations. Important for MAP inference is the notion of max-marginals
which are defined as follows:

m(xi) = max
{x|xi=xi}

p(x) (2.7)

Many algorithms solve the MAP inference problem by calculating the max-marginals
first. Having the max-marginals, one can decode the MAP configuration under
certain assumptions [124, Section 13.1]. To be more precise, if each variable Xi

achieves a unique max-marginal x∗i = arg maxxi∈Xim(xi), i.e., is unambiguous, then
x∗ = (x∗1, . . . , x

∗
n). We have seen above that the joint probability of an MRF can
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equally be formulated based on an energy function (see Equation (2.3)). Therefore,
the problem of MAP inference can equally be formulated as energy minimization:

arg max
x

p(x) = arg max
x

ln p(x) = arg min
x

− ln p(x)

= arg min
x

ln(Z) + E(x)

= arg min
x

E(x) .

We can drop the normalization constant ln(Z) because we are just interested in a
minimizing configuration. Moving to the log-domain has several advantages, e.g.,
we can avoid numerical instabilities of the multiplication and so on.

• Learning: We can further decompose the general learning task into two subclasses:

– Parameter Learning : Given an MRF, we are required to choose the potential
functions or parameters, e.g., the weights wc in Equation (2.2). In generative
learning, one typically uses a training dataset and obtains the optimal parameter
values by maximizing the log-likelihood over this training dataset. This approach is
called maximum likelihood estimation (MLE) and assumes in the most simple case
a fully observed dataset. Often, this already requires several calls to an inference
procedure which highlights the importance of efficient marginal inference. For
efficiency reasons, one often optimizes the pseudo-log-likelihood [20] instead of
the true log-likelihood. In several situations, we can split the variables X of an
MRF in observed and latent variables, i.e., variables that are always given (E) and
variables that will be predicted based on the observed ones (Y). Here, we can use
discriminative learning that optimizes only the conditional log-likelihood p(Y|E)
instead of p(X). A more detailed discussion of generative and discriminative models
can be found in [217]. In Chapter 7, we will learn the parameters of conditional
probability distributions and touch upon the issue of parameter learning in greater
detail. MLE is typically done in supervised learning, however, in some situations,
we are only given one mega-example which is additionally not fully labeled. We find
ourselves in such a situation in Chapter 5 where we use an semi-supervised algorithm
to solve a graph labeling problem. In this case, learning can be done via entropy
minimization instead of MLE, as we will describe in Section 5.5. This combines the
knowledge of known labels and the structure of the entire problem, however, it also
introduces the assumption that parameters leading to low entropy are desirable.

– Structure Learning : The most challenging problem is structure learning because it
also subsumes parameter learning as a subroutine. Here, we start solely with a given
dataset and do not know the structure of the MRF in advance. Many structure
learning algorithms start with an empty network or a network consisting of trivial
potentials. In an iterative procedure, the existing potentials are refined or new
potentials are generated based on the existing ones. A score function determines
which new potentials are added to the model. Once the refinement process cannot
improve the model anymore, the learning algorithm stops. Due to its high complexity,
structure learning is often neglected and a structure is proposed in joint work with
domain experts. With an exception in Chapter 7, we assume a given structure as
well. The models proposed in Chapter 7 suggest a simple and efficient local learning
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approach in which local models are learned independently. These local models can
then be combined via MCMC methods to infer the structure and dependencies of
the joint probability distribution. This approach circumvents the hard problem
of finding a consistent structure immediately and instead reconstructs the joint
distribution based on the local models.

In the following two subsections, we will briefly summarize algorithms that aim to solve
the challenges above but we will focus on marginal and MAP inference. Often, only slight
modifications have to be made to a marginal inference algorithm in order to apply it to MAP
inference. We will present examples of exact and approximate inference algorithms and give
a high level view without many details or examples. In later chapters, we will discuss a few
algorithms selectively and explain them in greater detail while also relating these approaches to
our own technical contributions. This overview focuses on inference algorithms in PGMs with
multinomial variables. Inference algorithms for PGMs with Gaussian or Poisson distributed
variables are going to be discussed in later chapters together with our contributions in that
area.

2.2.1 Exact Inference

We begin by briefly covering the most prominent exact inference algorithms before discussing
approximate algorithms. When we are interested in the marginal distribution of one or more
variables X′ ⊆ X, we can calculate p(x′) via

p(x′) =
∑
y

p(y,x′) =
∑
y1

. . .
∑
y|Y|

∏
c

φc(xc) .

We can avoid summing over all configurations of Y = X \X′ explicitly by a clever reordering of
the terms. The products in the sum over the joint configurations are based on the factorization.
The reordering is possible due to the fact that not each factor φc is defined over all variables
in Y. This allows us to eliminate one variable Y ∈ Y at a time to compute p(x′) at the
end. This idea was originally presented for BNs in [257], however, it is generally applicable
to factor graphs, and the algorithm is known as Variable Elimination (VE). The elimination
of a variable is based on summing out a variable Y from a factor φc which is also know as
factor marginalization. Summing out a variable from the entire factorization requires first
the computation of the factor product of all factors containing Y . We can then sum out the
variable from this newly constructed factor, creating yet a new factor not dependent on Y
anymore. This new factor is used in the elimination of the following variables and the efficiency
of VE relies on this dynamic programming paradigm. The runtime of the algorithm depends
on the elimination ordering of the variables. Finding an optimal ordering of the variables is an
NP-hard problem though. Nevertheless, several heuristics have been presented that achieve
good results empirically. VE can be used for MAP inference as well. This requires replacing
the sum my the max-operator in the elimination process. Further details on VE can also be
found in [124].

As a second example of an exact inference algorithm, we will now describe the Junction
Tree (JT) algorithm. The description of the VE algorithm was already based on the idea of
factor manipulations. The idea behind the JT algorithm is similar but uses the notion of
message passing. We will see through the entire theses that the idea of message passing occurs
frequently in inference algorithms and makes description of these convenient. We need to
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introduce a few definitions before we are ready to explain the JT algorithm. Let us recall that
we have defined an undirected graph G = (V,E) with nodes V and edges E. A cluster graph is
a graph where nodes correspond to subsets of variables in V and two nodes are connected by an
undirected edge if and only if the intersection of their subsets is non-empty. Correspondingly,
we define a cluster tree as cluster graph having a tree structure. A cluster tree has the running
intersection property, if for all cluster Ci and Cj with X ∈ Ci and X ∈ Cj , we have X ∈ Ck for
every Ck on the path between Ci and Cj . A cluster tree satisfying the running intersection
property is called a clique tree or junction tree. Interestingly, applying VE to an MRF over G
induces a cluster graph over V which is necessarily a tree and which also satisfies the running
intersection property. The root of this tree is a cluster containing Xi if VE was run to compute
p(Xi). This tree implicitly defines a direction and VE can be seen as a message passing on
this cluster tree where messages are passed from the leafs upwards to the root. A message
send from Ci to Cj corresponds to a manipulated factor akin to VE. This factor is constructed
by multiplying Ci’s incoming messages and Ci’s initial potential, and then summing out all
variables not in the intersection of Ci and Cj . After all messages have been propagated to
the root, we can do a similar message passing the other way around. From this upward and
downward message passing we obtain a calibrated clique tree where each clique has incoming
messages from both sides. The clique tree can be seen as another reparameterization of the
MRF that allows to read off marginal probabilities of the cliques easily, and hence, also the
calculation of single node marginals. Compared to VE, JT is the method of choice, when
we want to compute the marginals of several variables because we can reuse computations
along the edges. The message passing implies that we can implement inference efficiently with
a junction tree. However, we have not discussed yet, how we obtain the tree in general. In
particular, how to construct a junction tree without running VE first. To this end, we call a
graph triangulated if every cycle of length four or longer has a chord. A chord joins two nodes
in the cycle that are not adjacent. It can now be shown that a graph has a junction tree if
and only if it is triangulated. Therefore, we need to triangulate the graph first. Unfortunately,
finding the optimal triangulation is NP-hard. Once we have a triangulated graph, we can read
off the maximal cliques from this graph and construct a new undirected graph based on these
maximal cliques. We then set the weight of an edge connecting Ci and Cj as the size of the
intersection of both cliques. Running an maximum spanning tree algorithm on this graph gives
us the desired tree for running the JT algorithm. The efficiency of the JT algorithm depends
on the treewidth of the junction tree. The treewidth is the size of the maximal clique over all
possible triangulations of a graph and the JT algorithm is exponential in that number. In cases
where we are interested in MAP inference, we can adapt the JT algorithm in a similar way as
VE is adapted for this task.

Both, VE and JT are only feasible if the network is sparse, i.e., has low treewidth. Therefore,
we will now turn our attention to approximate inference algorithms as these are the only ones
applicable in large-scale settings. In the following subsection, we will introduce some of the
most prominent examples of approximate inference algorithms. This will lead us to other
message passing algorithms as well. In particular, we will see Belief Propagation (BP) which is
an exact message passing algorithm if the underlying graph is a tree.

2.2.2 Approximate Inference

In most settings, in particular when using relational PGMs, exact inference algorithms are
not feasible. Therefore one often resorts to approximate inference algorithms. One class of
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approximate inference algorithms are sampling based methods. There is a large choice of
sampling approaches including rejection sampling, importance sampling, and Markov chain
Monte Carlo (MCMC) methods, to name only a few. The general idea behind sampling
algorithms is to obtain a set of samples drawn from the distribution p(X). As a representative
of the MCMC methods, we will now briefly describe Gibbs sampling and we refer to [21,
Chapter 11] and [124, Chapter 12] for a general overview of sampling methods. Gibbs sampling
is a very simple yet widely applied technique. Gibbs sampling [64] is an MCMC method
and serves as a simple approximate inference technique for problems where the conditional
probability of a variable given its Markov blanket can be computed easily. Starting with an
initial value of the unobserved variables, we iterate over all of these variables in a pre-defined, or
alternatively random, order. For each variable, we sample a new value based on its conditional
probability distribution given its neighbors. In many BNs and MRFs, every sampling step can
be done fast because one can easily sample from the conditional distribution if all parents,
respectively neighbors, are observed. Iterating once over all variables in the network is often
referred to as a sweep. These sweeps are then computed for a fixed number of iterations. The
more iterations we make, the less influence does the initial state of the variables have and we
are approximating the true posterior distribution. To reduce the bias of the initial state, a
burn-in phase is usually incorporated into the sampling process. From the MCMC algorithms’
point of view, the Gibbs sampler is a particular instance of the Metropolis-Hastings algorithm
with a constant acceptance probability equal to one, i.e., all samples are accepted. Gibbs
sampling will be used in different parts of this thesis because the MRFs in use allow to easily
sample from the required conditional distributions. For example, we will see in Chapter 7 how
Gibbs sampling is used to generate samples for count random variables that are assumed to
be conditionally Poisson distributed. Another interesting MCMC approach worth mentioning
is slice sampling. This sampling algorithm also finds applications in PGM inference and is
referred to in Section 2.3.1 again.

While MCMC methods have been among the most popular approximate inference algorithms
for a long time, an increasing interest in alternatives to MCMC has been seen starting in
the late nineties of the last century. A large class of these inference algorithms are message
passing based approaches. These algorithms exchange messages between nodes in the graph, or
respectively between nodes and factors in a factor graph, until a convergence criterion is met.
Probably the most famous algorithm in this group is Belief Propagation (BP) [177]. BP is
exact on tree structured problems and has also shown good performance on loopy graphs [158].
Similar to VE and JT, BP can easily be adapted to compute max-marginals, i.e., to solve MAP
inference problems, which is referred to as max-product BP as opposed to sum-product BP
for marginal inference. We will describe BP in Section 2.4.1 in detail because it is of major
importance for this thesis. There exists an extension to BP for Gaussian MRFs as well which is
referred to as Gaussian BP (GaBP) [246]. It was shown that running GaBP on specific graphs
amounts to running a power iteration approach. We will shed more light into this connection
in Chapter 5 because we will use this power iteration method for running Label Propagation, a
graph labeling algorithm, in a large-scale labeling task.

Variational Inference approaches approximate a complex target distribution by a simpler
distribution for which running inference is tractable. The goal is then to find a distribution
from a family of simpler distributions that is as close as possible to the original one. Hence, the
task of inference can be seen as an optimization problem where the objective is the distance
between the true distribution and the approximation. Probabilistic queries are then answered
by using the simpler distribution as a proxy. Variational methods include approaches such as
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Expectation Propagation [150] and Mean Field approximations [105]. However, also BP was
later understood to fall into this paradigm and described in terms of the Bethe approximation
to the free energy [253]. In general, variational inference subsumes a lot of different algorithms
and ideas, and as Jordan et al. [105] state “there is as much art as there is science in our
current understanding of how variational methods can be applied to probabilistic inference”.
Therefore, a full coverage of variational inference is beyond the scope of this introduction and
we refer the reader to [105] and [124, Chapter 11] for more details.

For approximate inference algorithms it is worthwhile to explicitly point out several MAP
inference algorithms. For example, Boykov et al. [25] use graph cuts to find minimal energy
assignments for a class of MRFs which are frequently found in computer vision problems. The
MAP problem for multinomial random variables has an equivalent formulation as an integer
linear program over the marginal polytope M(G) (see Equation (2.4)). Of course, it has the
same complexity as the original problem and hence it is intractable. The relaxation of this
problem does not require the indicator variables to be integer anymore. Nevertheless, these
linear program relaxations come with the benefit that solutions are guaranteed to be optimal if
the solution found is integer. Although the linear program can be solved in polynomial time, it
is often impossible to use standard solvers due to the huge number of constraints necessary to
specify the problem. Therefore, several approaches have been introduced that make use of the
specific structure of the linear program for MAP.

One example of such an approach is Tree-Reweighted BP (TRWBP) [239] which is a message
passing algorithm akin to max-product BP. However, the messages are slightly altered and
extended by edge-appearance probabilities. If all of these probabilities are one, then TRWBP
reduces to standard BP. The intuition of TRWBP is to reformulate the original MAP problem
into a convex combination of tree-structured problems. Each subproblem is represented as
a spanning tree and the appearance probability of each edge is based on the distribution
over the trees. We have already mentioned above max-product BP and its correctness for
tree-structured problems. Therefore, TRWBP can be seen as a combination over a tractable
subclass of problems. TRWBP is especially interesting because it finds the same solutions as a
linear program relaxation and hence connects a well known message passing algorithm in the
spirit of BP with linear programs.

A comparison of TRWBP and CPLEX, a well known yet commercial linear program solver,
can be found in [251]. Yanover et al. show that TRWBP is not only faster than CPLEX
for many examples, but also capable of solving large instances which CPLEX cannot handle.
Lastly, there is also a sum-product variant of TRWBP presented by Wainwright et al. [238].
Yarkony et al. [252] present a TRWBP variant that is based on covering trees (CT). By using
covering trees instead of spanning trees, the number of parameters in TRWBP is reduced while
the same bounds on the MAP are achieved. However, it is necessary to introduce copy-nodes
which have to be aligned by means of optimization to obtain a consistent solution.

As described, the CT-based approach is capable of reducing the number of required parameters
compared to the original TRWBP by using a single tree instead of a distribution over spanning
trees. Globerson and Jaakkola [70] present with Max Product Linear Programming (MPLP) an
approximate MAP inference algorithm that also relies on the linear program relaxation but is
parameter free and still guaranteed to converge. It is again a message passing algorithm and in
its structure similar to max-product BP. It can be seen as block coordinate descent in the dual
of the linear program relaxation. In each iteration, block coordinate descent fixes all variables
except for a subset and optimizes over this subset.
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Approaches such as TRWBP and covering trees can see seen as two instances of a more
general paradigm. The idea of decomposing the original MRF into tractable sub-structures can
be found in various other inference and learning approaches as well, and is the fundamental idea
in dual decomposition [212], also known as Lagrangian relaxation. Here, the original problem is
decomposed and inference is run repeatedly on the sub-problems. The local solutions to each
sub-problem are then combined into one global solution.

Instead of a decomposition of the original problem, we can also further constrain the feasible
joint probability distributions in M(G). By doing so, we obtain approaches such as the
likelihood maximization approach in [129]. We will return to this algorithm in Section 3.3
where we will explain it in detail and also describe the message updates precisely.

So far, we have made roughly the distinction between marginal and MAP inference algorithms.
However, there exist also approaches that somewhat combine the ideas of both inference types.
For example, the Perturb-and-MAP random fields by Papandreou and Yuille [175]. In this
approach, noise is injected into the factors and afterwards MAP inference is run. By doing this in
multiple rounds, uncertainty is induced into the MAP solutions and the process approximates
Gibbs sampling. Hence the results can be used for parameter learning and probabilistic
reasoning. After this brief overview on inference algorithms, we will now summarize some of the
ideas that have been proposed to combine logics and PGMs. These template languages describe
PGMs compactly and also promote the concept of lifted inference which will be explained
afterwards.

2.3 Probabilistic Relational Models

We will now describe a class of approaches for defining and representing PGMs. Most of
them can be understood as a template language for PGMs based on logical rules. These
relational PGMs do not specify dependencies on the object level, i.e., propositional level, but
instead model the dependencies on the object-type level, i.e., first-order level. This means that
variables in PGMs get typed and objects of the same type get the same parameters (parameter
tying). Having these models and languages at hand, it will be much easier to describe certain
problem classes later on. Many of these models can be related to the field of SRL, and Getoor
and Taskar [66] give an excellent introduction to SRL. Getoor and Taskar summarize the
necessary background on graphical models and discuss several approaches based on directed and
undirected models. Another more recent overview of several relational probabilistic models is
presented in [121]. Kimmig et al.’s survey is centered around the general concept of parametric
factors, i.e., par factors, and the corresponding par factor graphs. Par factor graphs [180]
generalize the concept of factor graphs (see Section 2.1.1) by defining potentials over vectors of
random variables. Additionally, a set of constraints can be defined on the grounded random
variables for each par-factor. Therefore, par factor graphs also relate to the ideas of parameter
tying because a set of grounded variables shares the same potential function. We will now
briefly discuss several of these relational approaches and explain a specific one in greater
detail, namely Markov Logic Networks (MLNs), as these will be used throughout this thesis for
different experiments.

As before, we can distinguish directed and undirected approaches, in addition relational
extensions to Dependency Network have been proposed as well. Similar to Section 2.1, we will
start off by discussing relational undirected models. Before doing so, we will briefly provide a
minimal background on first-order logic because the basic principles of logic are required to

24



2.3 Probabilistic Relational Models

formulate and understand approaches such as MLNs. We have seen an example of logic already
in Section 1.1. Propositional logic was used to define solutions to Latin squares. A drawback
of propositional logic is the fact that we had to define rules for each cell separately. Instead,
first-order logic aims at reasoning about groups of objects of the same type. Due to this, one
often speaks about “lifting”1 a propositional model to the first-order case.

We will restrict our introduction to first-order logic to the terminology that is required for
defining relational PGMs, which is essentially based on the contents given in [188, Section 3]. A
first-order formula is constructed using constants, variables, functions, and predicates. However,
here we will restrict ourselves to finite, function-free first-order logic. Constants represent
objects in our domain and are typed. For example, one type of objects could be “person” with
objects Anna, Bob, and so on. A logical variable x, which is also typed, ranges over the domain
of objects and can take on values from this domain. Predicates define attributes of objects
or relations between objects depending on the arity. For example, a unary predicate smokes

specifies the smoking habits of a single person but friends models friendship between two
persons. We assume typed predicates where each argument can have a different type.

To construct formulas, we apply logical operators and quantifiers recursively to atoms. An
atom is a predicate applied to a tuple of terms and a term can be a constant or a variable. A
ground term is a term not containing any variables and correspondingly, a ground atom is a
predicate whose arguments are all ground terms. Hence, x and Anna are terms and friends(x,

Anna) is an atom, while friends(Bob, Anna) is a ground atom. Assuming that F1 and F2

are formulas, we have the following operators ¬F1 (negation), F1 ∧ F2 (conjunction), F1 ∨ F2

(disjunction), F1 ⇒ F2 (implication) and F1 ⇔ F2. An atom is a formula and an operator
applied to one or more formulas is again a formula. A formula F is satisfiable if there exists at
least one world in which F evaluates to true. A world assigns a truth value to each possible
ground atom. Lastly, variables in a formula F can be universally or existentially quantified.
An universally quantified formula ∀x : F is true if and only if F holds for every possible
instantiation of x. An existentially quantified formula ∃x : F is true if there exists at least one
instantiation of x for which F holds. We have already seen in the introduction of this thesis
that propositional satisfiability problems are most often specified in conjunctive normal form.
This also holds for first-order formulas and requires rewriting implications and equivalences,
but also includes the removal of existential quantifiers, i.e., Skolemization. With this minimal
introduction to logic and the basics of probability theory from above, we are now ready to
discuss relational probabilistic models.

In the following, we will see different graphical models where variables usually correspond
to predicates and model the true state of a logical predicate with probabilities. Although
several of the approaches discussed in this section rely on logic, we will start with a logic-free
undirected relational approach called Conditional Random Fields (CRFs) [130]. CRFs can be
seen as a template based approach for constructing MRFs. CRFs apply the idea of parameter
tying and explicitly divide the variables into latent and observed variables. This separation of
the variables leads to discriminative training which optimizes the conditional likelihood of the
latent labels given the observed features. To name a few examples, CRFs have successfully
been used in various sequence labeling tasks such a named entity recognition and part of speech
tagging where parameters are tied over the vocabulary.

1Lifted inference originates from the idea to run inference on relational probabilistic models, without fully
grounding the first-order model.
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Relational Markov Networks (RMNs), introduced in [221], extend MRFs to work with
relational data and formulate dependencies on the relational level. To this end, Taskar et al. use
relational clique templates which are defined over a set of typed object variables, a constraint over
the objects formulated as boolean formula, and a set of attributes of the objects. These clique
templates can be mapped to relational queries, such as SQL-queries, and are used to construct
the underlying propositional MRFs. Each clique template has a potential and corresponds to
a set of cliques in the MRF. Inspired by CRFs, RMNs also use discriminative learning for
conditional MRFs. During training, the conjugated gradient method is combined with BP to
approximate the gradient. Datasets such as WebKB, a corpus of hypertext documents, are well
suited to be represented by RMNs due to their relational structure. RMNs allow collective
classification, for example of documents, in this dataset.

A different approach to relational MRFs based on logical rules are MLNs [188]. Instead
of SQL, an MLN uses first-order logic (FOL) to define a set of rules which are then used
to instantiate a ground MRF. Compared to classical Inductive Logic Programing (ILP)
approaches, the formulas in an MLN are weighted and factors in the corresponding ground
MRF are constructed based on the weighted formulas. Section 2.3.1 will explain MLNs in
detail.

We will now shift our focus to directed relational models. Relational Bayesian Networks
(RBNs)2 [67, 59] use relational schemata over classes and relations to describe skeletons with
fixed and probabilistic attributes. An RBN then defines a probability distribution over all
possible instantiations of a skeleton which is again a ground BN and, hence, the conditional
probability tables are defined over the parent set of a variable. In RBNs however, parents can
also be aggregates of random variables, such as the mean value of a set. Friedman et al. apply
standard inference and learning algorithms from the propositional case to the instantiated
RBNs. However, in parameter learning the concept of parameter tying is used to ensure
that each attribute is identically parameterized and additional constraints are imposed on the
structure learner to guarantee an acyclic network. Neville and Jensen note in [167] that RBNs
do not learn autocorrelation well because dependencies between variables of the same type
would induce cycles in the grounded network.

In Bayesian Logic Programs (BLPs) [113, 111] one component consists of Bayesian clauses
over Bayesian predicates in Prolog and the second component is a set of conditional probability
tables associated with these Bayesian clauses. The domain of a Bayesian predicate does not
necessarily have to be binary but instead can have any finite range. Next to the conditional
probability tables, combining rules are required if a ground atom is head in several clauses.
These combining rules return a single combined conditional probability table. The BLP can
now be used to derive a directed dependency graph where nodes correspond to ground atoms.
Edges are added based on the clauses whenever one node corresponds to the head of a clause
and the other node is contained in the body. This dependency graph represents a BN and
hence defines the joint probability distribution of the BLP.

We have already discussed the advantages and disadvantages of MRFs and BNs in the
previous section which motivated Heckerman et al. to introduce DNs. Relational Dependency
Networks (RDNs) [167] are an relational extension of Heckerman et al.’s DNs which use
relational probability tables. Each local conditional probability distribution is learned with

2The name Relational Bayesian Networks was originally introduced by Jaeger in [100]. However, this formalism
does not act as a template language for the instantiation of ground BNs. Instead, the states of the random
variables correspond to instantiations of relations. So this is not immediately a probabilistic relational model
in the spirit of the other approaches mentioned in this section.
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λ1 : smokes(x)⇒ cancer(x)

λ2 : friends(x,y)⇒ (smokes(x)⇔ smokes(y))

Table 2.1: Formulas used in the Smokers-and-Friends-MLN.

friends(A,A) smokes(A) smokes(B) friends(B,B)

friends(A,B)

friends(B,A)

cancer(A) cancer(B)

Figure 2.3: Smokers-and-Friends MLN.

a relational learner such as a Relational Bayesian Classifier [169] or a Relational Probability
Tree [168]. This local pseudo-likelihood optimization makes learning in the relational case
tractable. Again, RDNs only approximate the joint probability distribution and are not
guaranteed to be consistent. Similar to the non-relational case, a consistent RDN is a model
for which the conditional probabilities can be derived from the joint distribution using rules of
probability theory. Consistent RDNs are equivalent to the RMNs mentioned above. In RNDs,
inference is also done via Gibbs sampling on the grounded graph.

The concepts of relational PGMs are better understood with help of an example, therefore
we will now pick up on MLNs, discuss these in detail, and present a small running example.

2.3.1 Markov Logic Networks

One of the most well established frameworks in the area of probabilistic models are MLNs [188]3.
MLNs are probabilistic relational models that are defined by weighted first-order formulas.
More precisely, an MLN is a set of pairs (Fi, wi) where Fi is a first-order formula and wi ∈ R is
the formula’s weight. In addition, we have a set of typed constants C = {C1, . . . , C|C|}. We
can now use the MLN to define an MRF. We add one binary variable to the MRF for every
ground predicate in the MLN, e.g., smokes(Anna). The value of the random variable models
the truth state of the ground predicate. Due to the finite set of constants, this results in a
finite set of random variables. Furthermore, we add one potential φi to the MRF for each
possible grounding of a formula, e.g., smokes(Anna)⇒ cancer(Anna). The potential is defined
as exp(wi · gi) where gi is a feature function for the formula fi. Hence, gi is defined over all
ground predicates appearing in the formula and evaluates to 1 if the formula is satisfied and
to 0 otherwise. Essentially, MLNs serve as a template engine for MRFs that allow to easily
model independencies based on logical rules. The resulting joint probability of the MRF is a
log-linear model and looks as follows:

p(x) =
1

Z
exp

(∑
i

wi · ni(x)

)
,

3A reference implementation of MLNs, including various inference and learning algorithms, is available online:
alchemy.cs.washington.edu
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λ1 : smokes(x,t)⇒ cancer(x,t)

λ2 : friends(x, y, t)⇒ (smokes(x, t)⇔ smokes(y, t))

λ3 : cancer(x, t)⇔ cancer(x, succ(t))

λ4 : smokes(x, t)⇔ smokes(x, succ(t))

λ5 : friends(x, y, t)⇔ friends(x, y, succ(t))

Table 2.2: Formulas used in the Smokers-and-Friends DMLN.

with ni(x) corresponding to the number of true groundings of formula Fi. We will now give a
small toy example of an MLN that will be used below for experiments on synthetic datasets.

Example 2.1. One of the most prominent toy examples is the Smokers-and-Friends MLN.
Intuitively, it models a social network containing friendships between persons and their
smoking habits. It also describes the influence of friendships on smoking habits and the
implication of smoking causing cancer. The minimal rules that define this MLN are depicted
in Table 2.1. The MRF that is obtained by grounding this MLN in the presence of two
persons only is shown in Figure 2.3. Given a partial observation of the predicates, MAP
inference asks for the assignment to the remaining variables. A marginal query such as
p(cancer(Anna) = 1) returns the probability that “Anna” has cancer given a specific network.

The truth state of a predicate may also depend on the time. For example, a person is usually
not born having cancer but instead sickens while aging. Similarly, a smoker can quit smoking
in the future. Both examples require the predicates to be extended by a discrete time step,
e.g., smokes(x, t). Although the additional time step t allows us to specify the predicates for
specific points in time, we still need another mechanism that allows us to connect predicates
of two subsequent time steps. To achieve this, a successor function succ(t) is added which
maps point t to t+ 1. The resulting framework is called Dynamic MLNs (DMLNs) and the
Smokers-and-Friends MLN from above can be extended as follows.

Example 2.2. The introduction of a time step and the successor function allows us to
formulate the Smokers-and-Friends MLN over time. The new rules are depicted in Table 2.2.
Besides the rules from the static MLN extended by a time step (1 & 2), we have three new
rules based on the succ-function. These rules define the behavior of the predicates over
subsequent time steps.

In Chapter 3, several experiments will be based on MLNs. Additionally, we will introduce a
graph construction algorithm for Label Propagation in Section 5.1 that is based on weighted
logics similar to MLNs. We will now briefly discuss inference and learning in MLNs.

Inference and Learning in MLNs

The most straightforward way to run inference in MLNs is to ground the network and then
run a standard marginal or MAP inference algorithm from the MRF literature, such as BP
or Gibbs sampling. Interestingly, MAP inference in MLNs can equally be achieved by solving
a weighted MAX-SAT problem. However, several other algorithms specifically designed for
MLNs have been introduced in recent years as well. One of the most well known ones is MC-
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SAT [181] which combines ideas from satisfiability solving with MCMC techniques. Technically
speaking, MC-SAT makes use of slice sampling and samples a new state with the help of
SampleSAT [243]. An interesting MAP inference approach is the cutting plane based algorithm
introduced by Riedel [190]. Inspired by cutting plane methods from Operations Research, the
algorithm avoids instantiating the full ground MLN and instead only adds ground formulas as
long as the current solution can be further improved. By doing so, the corresponding MRF
remains often much smaller and inference is more efficient. This cutting plane algorithm is
already one approach avoiding the instantiation of the entire MRF. Ground MLNs quickly
become very large and hence staying on the first-order level is desirable. Lifted inference, which
will be explained in the next section, tries to avoid shattering the model as much as possible to
remain on the lifted level and is therefore a popular technique to speed up inference algorithms
for MLNs. Looking from a different angle, lifted inference tries to exploit symmetries by avoiding
to ground identical propositional parts and grouping together indistinguishable variables and
formulas. Evidence, however, can lead to models where lifted inference reduces completely to
ground inference because evidence destroys symmetries in many situations. Lifted inference
and handling evidence in PGMs will be of major interest throughout different chapters of this
thesis. A different approach to speeding up inference in MLNs is the Frog algorithm presented
by Shavlik and Natarajan [200]. Potentially, Frog could be combined with lifted inference and
is particular useful when subsequent queries for the same MLN are necessary. The algorithm
specifically looks at the evidence and by doing so, reduces the size of the grounded MLN. It
exploits the fact that the count of formulas satisfied by the evidence remains unchanged for
subsequent queries. Compared to lifting, a key advantage of this approach is its independence
from the inference algorithm and it can be seen as a general preprocessing step.

Running inference assumes that the structure and parameters are given. However, in many
situations it is not trivial to choose appropriate weights. In the extreme case, it is even
impossible to specify the structure, i.e., the logical rules, of an MLN. Instead, we are only
given a relational database representing a single mega training example. Based on this training
database, we can use classical ILP techniques to infer rules for our MLN. For example, in early
work on MLNs, Claudien [45] was used by Richardson and Domingos [188] to learn a set of
first-order clauses. However, it was shown by Kok and Domingos [123] that directly optimizing
a pseudo log-likelihood score often gives better results than a purely logic-based approach.
Their approach starts with all unit clauses and then adds additional literals to the clauses as
long as the log-score improves. This is a very common approach in MLN structure learning. A
search algorithm proposes new candidate formulas by altering the current ones, and a score
function determines which of the new formulas to add to the MLN. Recently, there has also
been observed a surge in structure learning approaches based on decision and regression trees.
Decision trees [118, 140] have the advantage that learning is done very fast and each path to a
leaf can be seen as a feature combining different variables and values. In a similar line of work,
Khot et al. [119] use gradient tree boosting to learn the parameters and the structure of MLNs.
Gradient tree boosting elegantly combines parameter and structure learning with the help of
regression trees. We will follow the idea of gradient tree boosting in Section 7.3 where we will
show that pseudo log-likelihood optimization and tree-based learning also work well for learning
probabilistic count models based on Dependency Networks. We already touched upon the idea
of lifted inference and indicated how lifting can reduce run time in PGMs. We will now review
several different lifted inference approaches and present Belief Propagation in detail.
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2.4 Lifted Inference

Although approximate inference techniques are already quite efficient, many graphical models
contain a lot of symmetries which are not exploited by those algorithms. Recent years have
witnessed a surge of interest in lifted probabilistic inference [110, 121], handling whole sets of
indistinguishable objects together. The terms “lifting” and “lifted inference” are being used
across different fields in computer science and have different meanings within each field. Here,
we refer to lifting as the general concept of compressing a model, e.g., an MRF, and applying
a possibly modified inference algorithm on the lifted model. In most cases, the compression
is a pre-processing step and can be achieved by different means. One should note however
that many lifted inference algorithms require an adaption of the ground algorithm to run on
the lifted level. Taking a slightly different approach, there are lifted inference algorithms that
integrate the compression of the model into the actual inference algorithm (see Section 2.4.2
for such online lifted approaches).

Lifting inference essentially follows an upgrade paradigm. That is, most lifted inference
approaches take a well known propositional inference algorithm and adapt it to run on a more
compact representation that exploits symmetries in the graphical structure of the original model
for a given query at hand. Especially for relational models, such as MLNs, lifting has been
proven successful in rendering large, previously intractable, probabilistic inference problems
quickly solvable by handling whole sets of indistinguishable objects together. Generally, there
are different lines of work and we mainly distinguish here two of them. Lifting can be done
“top-down” — starting at the most lifted level and shattering the lifted model against itself and
the evidence until a modified inference approach can run safely on the model [180, 46, 209] —
or in a “bottom-up” fashion — starting at the propositional level and lifting that model to
obtain a representation as compact as possible [114, 171]. As we will see, the advantage of
bottom-up lifting is that these approaches can also be applied to problem formulations for
which a first-order representation does not exist. For example, images in computer vision
are presented in a propositional form but still may contain symmetries that are desirable to
be exploited during inference. On the other hand, for relational representations the model
has to be grounded first which can already result in intractable problem sizes. Top-down
algorithms handle these models more elegantly but struggle with problems naturally presented
in propositional form. Fundamental to all lifting approaches is the concept of counts. These
counts allow a lifted variant to simulate the calculations of its ground version and summarize
the symmetries in the model. However, we will also see in Chapter 5 that counts can be
integrated in the model right away and hence it is possible to use a vanilla version of the
ground algorithm. Several of the inference algorithms discussed in the previous section also
have lifted versions. As before, we will start with the description of lifted versions of exact
inference algorithms and then continue with the approximate ones.

Exact Lifted Inference

Section 2.2.1 described VE as an example of an exact inference algorithm. In [180, 46, 149, 219]
lifted versions of VE have been presented, also known as First-Order Variable Elimination
(FOVE). For example, Poole [180] shows how to reason over a group of objects instead of only
individual ones. All of these FOVE approaches can be considered as top-down approaches. Using
bisimulation to compress the underlying graph structure, Sen et al. [197] follow a bottom-up
approach and focus on queries in probabilistic databases. Another class of exact algorithms are
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knowledge compilation approaches such as Gogate and Domingos [73] and Van den Broeck et al.
[230]. For example, Van den Broeck et al. compile weighted first-order theories, such as MLNs,
into first-order deterministic decomposable negation normal form (d-DNNF) circuits which can
then be used in lifted weighted model counting. However, compared to the propositional case,
conditioning, i.e., integrating observed knowledge, of first-order d-DNNFs is more complex and
not always feasible. Van den Broeck and Davis [228] prove that conditioning on propositions
and unary relations can be done efficiently while conditioning higher-arity relations is #P-hard.
These exact inference approaches are often extremely complex, so far do not easily scale to
realistic domains, and hence have only been applied to rather small and artificial problems.
Therefore, we will now turn our attention to approximate lifted inference algorithms which are
also of greater interest for this thesis.

Approximate Lifted Inference

Similar to [197], Sen et al. [198] introduced an approximate lifting approach based on approx-
imate bisimulation which is also based to the VE algorithm. It essentially groups together
random variables if they have similar computation trees, the tree-structured “unrolling” of
the underlying graphical model rooted at the nodes. The simplest and most efficient lifted
inference approaches are lifted BP approaches which easily scale to realistic domains. Motivated
by Jaimovich et al. [101], Singla and Domingos [209] developed the first lifted BP variant
tailored towards MLNs. Subsequently, Kersting et al. [114] generalized Singla and Domingos’
approach to any factor graph over finite random variables. Similar to Sen et al., lifted BP
approaches also group together random variables that have identical computation trees, but
now use the more efficient Lifted Belief Propagation (LBP) update equations on the lifted
factor graph. We will discuss the lifted versions of BP together with its ground algorithm in
Section 2.4.1 in greater detail.

While initial work on lifted inference was mainly focusing on lifted VE or lifted BP, approaches
lifting MCMC algorithms have been recently presented as well. This includes in particular
lifted Gibbs sampling. Motivated by the fact that inference in graphical models can be seen as
a special case of probabilistic theorem proving, Gogate and Domingos [73] provide an algorithm
for approximate probabilistic theorem proving based on sampling. Gogate and Domingos
reduce the probabilistic theorem proving to lifted weighted model counting and show how to
combine the algorithm with importance sampling. This yields an unbiased estimator for the
exact ground weighted model count. Gogate et al. [74] further improve on this lifted importance
sampling approach by exploiting additional symmetries and introducing an informative proposal
distribution.

Niepert [171] presents a different approach to lifted MCMC by introducing orbital Markov
chains, and an orbital Gibbs sampler in particular. To find symmetries in a PGM, an undirected
auxiliary graph is constructed and colored. It is assumed that the PGM is defined based on
weighted clauses and the auxiliary graph is then constructed based on properties of these
weights and clauses. It is shown that the automorphism group of the colored graph allows to
read off the permutation group of the original PGM which defines the symmetries in the model.
The permutation group induces an orbit partition and it is shown that variables, respectively
factors, in the same orbit have similar properties as clustered variables, respectively factors,
in lifted BP. More precisely, they send and receive identical messages and also have identical
marginal distributions. However, the approach that is taken by lifted BP to partition the nodes
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does not return an orbit partition. In Section 2.4.1, we will describe lifted BP’s partitioning
algorithm in greater detail.

Another lifted Gibbs sampler was proposed by Venugopal and Gogate [234] who lift the
blocked Gibbs sampling. Compared to a regular Gibbs sampler, the blocked Gibbs sampler
groups variables together in the ground case, i.e., the blocks, and samples all variables from a
given block instead of single variables. Venugopal and Gogate form clusters of atoms such that
exact probabilistic theorem proving in each cluster is feasible. It is also shown that the clusters
can be constructed in such a way that the lifting rules of probabilistic theorem proving can be
applied, and hence, lifting in the sampling approach is achieved.

A recent lifted sampling approach for MLNs based on importance sampling was presented by
Venugopal and Gogate [236]. To generate samples from the proposal distribution, Venugopal
and Gogate use compressed MLNs [235], which avoid grounding the full MLN. To avoid the
full grounding in the computation of the importance weight as well, a second sampler is used
to sample a finite number of groundings for each formula.

Van den Broeck and Niepert [229] extend the idea of sampling based lifted inference to
models with only approximate symmetries. A mixture of Markov chains is presented where the
base, i.e., ground, Markov chain is mixed with a chain operating on approximate symmetries.
Van den Broeck and Niepert discuss different heuristics for finding approximate symmetries
which, however, is still an ongoing research question.

There is also a variety of lifted variational inference approaches. For example, Choi and
Amir [38] present relational hybrid models where random variables can either be discrete or
continuous. To compute marginal probabilities in these models, a lifted relational variational
inference algorithm is used that first finds a variational approximation of the model and then
uses latent variable elimination to calculate the posterior distribution. Alternatively, a lifted
MCMC algorithm is suggested when the variable elimination approach is assumed to require
too much time.

As in the case of ground inference, we will now also specifically discuss a few of the lifted
MAP inference algorithms. The lifted MAP approach presented by Apsel and Brafman [9]
identifies groups of variables that are assigned the same value in a solution and exploits the
fact that these variables can be merged. Consequently, only one of them has to be considered.
This idea is very similar to the idea of lifting a factor graph as in lifted BP, however, Apsel
and Brafman approach the problem of finding the clusters differently and particularly work on
the relational level, i.e., top-down.

Bui et al. [30] follow a bottom-up approach to MAP inference and use the theory of group
actions to formally define symmetries in graphical models. Bui et al. exploit the symmetries
found in approximate variational MAP inference, e.g., local linear program relaxations.

Mladenov et al. [151] presented the first approach to lifted linear programming which is
particularly interesting because it allows to run an off-the-shelf linear program solver. In a
follow up work, Mladenov et al. [152] also showed how to obtain lifted message passing based
on linear programming by reparameterization of ground MRFs. It is shown how double edges
prevent the application of standard message passing algorithms on lifted MRFs in the case
of linear programming relaxations and the idea of linear programming equivalence between
MRFs is introduced. Two MRFs are linear programming equivalent if they share the same
lifted graph. Given an MRF to solve, the proposed approach then tries to find a more compact
linear programming equivalent MRF by means of reparameterization. This is essentially done
by resolving the double edges in the lifted program, resulting in a compact reparameterized
ground MRF which can be solved with off-the-shelve ground solvers.
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Instead of a linear program relaxation and similar to the ideas in [190], Noessner et al.
[172] compile MAP queries in MLNs to integer linear programs and apply cutting plane
inference. Additionally, cutting plane aggregation is used to exploit symmetries in the model
by aggregating ground formulas and compiling the corresponding constraints more compactly.
Essentially, Noessner et al. group clauses that have the same weight and share sub-clauses.
Next to linear programs and integer linear programs, Sarkhel et al. [194] present an approach
where the task of MAP inference in MLNs is encoded as an integer polynomial program. Each
variable in the program represents an assignment to a set of indistinguishable variables. This
clustering can reduce the search space and hence decrease the run time of the solver. The
integer polynomial program is solved by conversion to an integer linear program, followed by
running probabilistic theorem proving for MAP inference.

Besides the lifted MAP algorithms seen so far, we will present a novel approach based on
message passing in Section 3.3. This new lifted inference algorithm is based on the likelihood
maximization approach presented in [129]. Our approach can be seen as a bottom-up approach
which is not tied to any of the relational model frameworks and can be run on any discrete
MRF. Nevertheless, we face the same issues with evidence in lifting akin to many of the
previously described approaches. Generally, handling evidence plays a central role in lifted
inference. With more incoming evidence, the models typically become less symmetric and
lifting potential decreases. In Section 3.2 and Section 3.3, we will present different approaches
to handle evidence in lifted inference. An interesting point of view on evidence and lifting is
presented in [201]. As by Sheldon et al. described, aggregated evidence on all objects, e.g.,
in the form of contingency tables, can be seen as lifted evidence. Sheldon et al. refer to it as
“evidence at the population level”.

When being used as a subroutine, lifted inference can also speed up parameter learning [4, 232]
because the ground inference algorithm can be replaced by a more efficient lifted inference
algorithm. If one is also required to learn the model structure, it can be beneficial to consider
only liftable models during structure learning as suggested in [233]. After this overview of
several recent lifted inference approaches, we will now describe one particular algorithm in
greater detail, namely Lifted Belief Propagation (LBP). LBP can be seen as the origin for
several algorithms developed in the work at hand.

2.4.1 Belief Propagation and Its Lifted Versions

One of the most well known message passing approaches is BP [177] which is also known as
the sum-product-algorithm. BP is a simple message passing algorithm for marginal and MAP
inference in MRFs. In the case of MAP inference, it is also referred to as max-product BP.
Given a probability distribution over some random variables as in Equation (2.1), sum-product
BP computes the single node marginal probabilities and the marginal probabilities over the
variables in each clique. Similarly, the algorithm can also compute the max-marginals of the
variables and factors with only slight modifications to the messages. The algorithm can be
described elegantly via messages passing in a factor graph [128]. The computed marginal
probability distributions are exact and BP runs in linear time if the factor graph is cycle-free,
i.e., the graph is a tree. Otherwise, BP is still a well-defined algorithm that approximately
solves these problems. Running BP on a cyclic graph is often referred to as Loopy BP. However,
in this thesis, we do not explicitly distinguish between running BP on a tree or a cyclic graph,
hence, we use the term BP for its variant on trees, as well as the loopy approximation. In
cases where we need to explicitly distinguish both version, we will make it clear in the context.
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Although BP has no guarantees of convergence, nor of giving the correct results, in practice it
often does perform well, and can be much more efficient than other methods [158]. We will
now describe BP in terms of operations on a factor graph.

BP works by sending messages between variable nodes and their neighboring factor nodes,
and vice versa. The message from a variable i to a factor a is

µi→a(xi) =
∏

b∈nb(i)\{a}

µb→i(xi)

where nb(i) is the set of factors i appears in. The message from a factor to a variable is

µa→i(xi) =
∑
¬{i}

fa(xa) ∏
j∈nb(a)\{i}

µj→a(xj)

 (2.8)

where nb(a) are the arguments of factor a, and the sum is over all configurations of xa having
xi fixed, denoted as ¬{i}. The messages are usually initialized to 1. Upon convergence, or a
fixed number of iterations, one can calculate the unnormalized belief b(·) of each variable Xi

based on these messages:

b(xi) = bi =
∏

a∈nb(i)

µa→i(xi) .

In a similar way, one can calculate b(xa) = ba, i.e., the marginal beliefs for the variables
involved in factor a. Evidence, i.e., variables for which the state is known in advanced, can
directly be incorporated into the factors. We set fa(xa) = 0 for states xa that are incompatible
with the evidence. Algorithm 1 shows how these message updates are used in the BP algorithm.
The messages are iteratively computed in a fixed order for a previously defined maximum
number of iterations. If the messages converge earlier, i.e., the maximum difference in the
messages falls below a threshold, the algorithm is terminated.

If one is interested in MAP inference, one can simply change the formula sent from factor to
a variable as follows:

µa→i(xi) = max
¬{i}

fa(xa) ∏
j∈nb(a)\{i}

µj→a(xj)


The only difference is the replacement of the sum by the max-operator. For this reason,

the message equations are also referred to as max-product. Instead of the marginals of the
distribution, the max-marginals are now calculated.

As mentioned above, BP is not necessarily correct on graphs with cycles. We will now just
briefly comment on known theoretical insights on BP’s quality and approaches to increase its
approximation quality. It has been shown that BP can only converge to stationary points of
the Bethe free energy. To increase the accuracy of BP, Generalized Belief Propagation has been
introduced [253] which allows to converge to other free energy approximations as well. For
more details, we refer the reader to [253] and the references in there. One should also note that
BP does not only provide us with the pseudo-marginals. Resulting form Bethe’s free energy
approximation [254], it is also possible to calculate an estimate on the partition function Z
based on BP’s beliefs.
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2.4 Lifted Inference

Input: Factor graph G, maximum iterations T , convergence threshold π
Output : Vector b containing variable beliefs b(xi) and factor beliefs b(xa)

1 while t < T and ε > π do
2 for a← 0 to |F| − 1 do
3 for i ∈ nb(a) do
4 calcNewMessage(a, i); /* µi→a and µa→i */

5 end

6 end
7 for a← 0 to |F| − 1 do
8 for i ∈ nb(a) do
9 updateMessage(a, i); /* Possibly apply damping */

10 end

11 end
12 ε← −∞; /* Stores the maximum difference between iterations */

13 for i← 0 to |X| − 1 do
14 bnewi ← beliefV(i);
15 ε← max(ε, ‖bnewi − bi‖∞);
16 bi ← bnewi

17 end
18 for a← 0 to |F| − 1 do
19 bnewa ← beliefF(a);
20 ε← max(ε, ‖bnewa − ba‖∞);
21 ba ← bnewa

22 end
23 t← t+ 1;

24 end
25 return b

Algorithm 1: BP with parallel updates.

Besides the fact that BP is not correct on loopy graphs, it is also known that BP has
problems with near deterministic factors as they induce long distance dependencies. Contrary
to that general statement, BP has been successfully applied to SAT problems [126] and solved
hard random k-SAT problems. The key to the success in such problem is to effectively cope
with the problem of convergence. One particular simple but effective approach to improve
the convergence behavior of BP is damping. Here, the message in iteration t is replaced by a
weighted average of the messages from the previous iteration and the current one, i.e.,

µi→a(xi)
(t) = (1− ε) · µi→a(xi)(t) + ε · µi→a(xi)(t−1)

This slight modification of the messages often prevents oscillation and helps in cases with
near-deterministic factors [126].

There are several other aspects of BP that have an impact on its convergence. First, the
update schedule of the messages plays an important role in convergence. In the flooding or
parallel message protocol, which is often used and well performing, messages are passed from
each variable to all corresponding factors and back at each step. I.e., first a pass over all
variables is made to compute the messages send to the neighboring factors and in a subsequent
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Figure 2.4: Lifting a factor graph without evidence by running Color Passing (CP). From left
to right, top to bottom, the steps of running CP on the factor graph in Figure 2.2. The colored
small circles and squares denote the groups and signatures produced during the algorithm.

pass over all factors, the messages are calculated the other way around. Here, BP iterates over
the variables in a predefined order and the new marginals of the current iteration are not used
before the next iteration. In a sequential update schedule, the updated messages of the current
iteration also affect the calculation of the other messages in the same iteration. In a sequential
random update schedule, the order of the variables is not predefined and instead randomly
chosen in each iteration.

Although BP is already quite efficient, many graphical models produce inference problems
with a lot of symmetries which are not exploitable by BP. For example, looking again at
the factor graph depicted in Figure 2.2 and assuming that the factors f1 and f2 are identical,
the graph is symmetric and variables X1 and X2 are distributed identically. Technically, this
also requires that X1 and X2 are exchangeable in the three factors, i.e., the tables of the
factors also exhibit symmetries. We will further discuss this issue with an additional example
in Figure 2.6. To exploit such symmetries, different lifted versions of BP have recently been
proposed [209, 114] that can make use of the knowledge about symmetry in the graph. Here, we
focus on Counting Belief Propagation, the approach by Kersting et al., because the algorithm
directly runs on factor graphs while the approach by Singla and Domingos specifically focuses
on MLNs, and hence requires a relational formalism. The factor graph representation allows us
to apply the ideas of lifting to a wider range of problems as we will see later. Although the
approach by Kersting et al. was originally referred to as Counting BP, we will refer to it as
Lifted Belief Propagation (LBP) in the following to have a uniform naming scheme for lifted
inference algorithms. The acronym LBP was originally introduced in Singla and Domingos’s
work. Nevertheless, if nothing else is mentioned, we will refer to Kersting et al.’s lifted extension
of BP whenever we write LBP because it is more generally applicable.

Let us now illustrate LBP in detail. LBP runs in two steps:
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2.4 Lifted Inference

Input: Factor graph G, evidence Y
Output : Lifted factor graph G

1 colorsV → initVariableColors(G, Y);
2 colorsF → initFactorColors(G);
3 while colors change do
4 signatures ← [ ];
5 for a← 0 to |F| − 1 do
6 signatures[a] ← [ ];
7 for i ∈ nb(a) do
8 signatures[a].append(colorsV[i ]);
9 end

10 signatures[a].append(colorsF[a]);

11 end
12 colorsF ← updateFactorColors(signatures);
13 signatures ← [ ];
14 for i← 0 to |X| − 1 do
15 signatures[i ] ← [ ];
16 for a ∈ nb(i) do
17 signatures[i ].append(colorsF[a]);
18 end
19 signatures[i ].append(colorsV[i ]);

20 end
21 colorsV ← updateVariableColors(signatures);

22 end
23 return createLiftedFactorGraph();

Algorithm 2: Color Passing as proposed by Kersting et al. [114]

1. In a first step, which is called lifting, LBP automatically groups together nodes and
factors that send and receive the same messages during an iteration of BP.

2. Then, it runs a modified BP on the lifted, i.e., compressed, graph.

As shown empirically by Singla and Domingos as well as by Kersting et al., this can
significantly speed up inference. More importantly, Kersting et al. have shown that the lifting
step can be viewed as a Color Passing (CP) approach. This view abstracts from the type of
messages being sent and, hence, highlights one of the main contributions of this thesis: CP can
be used to lift other message passing approaches as well. Before we will show how to lift other
message passing algorithms, we will describe CP in more detail.

CP simulates message passing, keeping track of the nodes and factors which send the same
messages, and groups these nodes and factors together correspondingly. Specifically, let G be a
given factor graph with variable and factor nodes as described in Section 2.1.1. Initially, all
variable nodes fall into d+ 1 groups (one or more of these may be empty) — known states s1,
. . . , sd, and unknown — represented by colors. For ease of explanation, we will represent the
groups by colored circles, say red. Since we are not dealing with evidence here, all variables
receive initially the same color. All factor nodes with the same associated potentials also fall
into one group represented by colored squares. For the factor graph in Figure 2.2 the situation
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X1 f1

f2

X2

Figure 2.5: The resulting lifted factor graph G after running CP as illustrated in Figure 2.4.
We use fraktur letters such as G, X, and f to denote the lifted graphs, nodes, and factors. For
details, see main text.

is depicted in Figure 2.4 (step 1). Here, we assume that the potential functions of the upper
two factors are identical (light blue) and differ from the lower factor’s one (green). Now, each
variable node sends a message to its neighboring factor nodes saying “I am of color red” (step
2). Each factor node sorts the incoming colors into a vector according to the order the variables
appear in its arguments. The last entry of the vector is the factor node’s own color, represented
as light blue, respectively green, squares in Figure 2.4 (step 3). Based on these signatures, the
colors of the factors are newly determined and sent back to the neighboring variables nodes
(step 4), essentially saying “I have communicated with my neighbors”. The variable nodes
stack the incoming signatures together and form unique signatures of their one-step message
history (step 5). Variable nodes with the same stacked signatures, i.e., message history, are
grouped together. To indicate this, we assign a new color to each group (step 6). In our running
example, only variable node X3 changes its color from red to yellow. This process is iterated
until no new colors are created anymore.

Algorithm 2 shows the pseudo code for the CP algorithm. The algorithm is very similar to
the BP algorithm, however, instead of calculating beliefs, new colors for each factor and each
node are calculated in every iteration. While Algorithm 1 shows BP with the flooding protocol,
the CP in Algorithm 2 follows a parallel protocol as well. The calculation of new colors is
not made explicit in the pseudo code and we will now describe the functionality of Line 12
and Line 21. Essentially, all factors obtain the same color that have the same color signature.
In cases where the positions of the variables do not matter in the factor function, i.e., the
associated function or table is symmetric, we can sort the incoming colors. However, this is not
generally possible. For the new variable colors, we can always sort the incoming colors in the
signature. We will touch upon this issue later again when we describe a CP variant specifically
tailored for CNFs and lifted satisfiability in Section 3.1.

The final lifted factor graph, denoted by G, is constructed by grouping all nodes with the same
color into so called clusternodes Xi and all factors with the same color signatures into so called
clusterfactors fa. Additionally, we define the function X(Xi) which returns the clusternode
or color of ground variable Xi. Correspondingly, we define for ground factors the function
f(fa). Clusternodes, respectively clusterfactors, are sets of nodes, respectively factors, that send
and receive the same messages at each step of carrying out the message passing on G. These
sets form a partition of the nodes in G. In our case, variable nodes X1, X2 and factor nodes
f1, f2 are grouped together into clusternode X1 = {X1, X2} and clusterfactor f1 = {f1, f2}.
The others sets are singletons (X2 and f2) as shown in Figure 2.5. Equivalently, function X(.)
evaluates to the same value for X1 and X2, i.e., X(X1) = X(X2) = X1. Now, we are essentially
ready to run Step 2, i.e., the modified message passing on the lifted factor graph.
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Before we explain the lifted message updates in detail, we will comment how CP distinguishes
from related approaches. The algorithm to lifted BP that was presented by Singla and Domingos
in [209] differs from the one explained above in several ways. In first place, it was defined
for MLNs and makes use of the first-order formulas over which an MLN is defined. On the
one hand, this makes the approach possibly more efficient because it does not always require
a full grounding of the network and remains on the lifted level all the time. On the other
hand, the approach by Kersting et al. is more general as it operates directly on the factor
graph and hence can be applied in many more settings. It can be used to lift problems that
are not defined based on FOL formulas. Additionally, one can also view the CP algorithm
more from a graph-theoretic point of view. As shown in [151], CP finds the coarsest equitable
partition (CEP) of the graph which is also known as the total degree partition. We will further
discuss this context in Chapter 4 where we describe how the lifting can be detached from the
message passing. Furthermore, there are several other approaches for finding the CEP. For
example, instead of applying the CP algorithm on the graph, one can also find the CEP by
defining a nonlinear continuous optimization problem and solve this problem instead [117].

For the modified BP on the lifted graph G, the basic idea is to simulate BP carried out on
G now on G. An edge from a clusterfactor fa to a clusternode Xi in G essentially represents
multiple edges in G. Let c(a, i) be the number of identical messages that would be sent from
the factors in the clusterfactor fa to each node in the clusternode Xi if BP was carried out on
G. The message from a clustervariable Xi to a clusterfactor fa is

µi→a(xi) = µa→i(xi)
c(a,i)−1 ·

∏
b∈nb(i)\{a}

µb→i(xi)
c(b,i) ,

where nb(i) now denotes the neighbor relation in the lifted graph G. The c(a, i)− 1 exponent
reflects the fact that a clustervariable’s message to a clusterfactor excludes the corresponding
factor’s message to the variable if BP was carried out on ground graph G. I.e., we prevent
double counting the message µa→i. In a similar fashion, the belief of a variable can be calculated
on the lifted graph. The unnormalized belief of Xi, which is identical to any of the beliefs for
nodes in Xi, is computed as follows:

bi(xi) =
∏

a∈nb(i)

µa→i(xi)
c(a,i) .

Evidence is incorporated as in standard BP by setting f(x) = 0 for states x that are incompatible
with the observations.

However, we advocate here in favor of a more general form of the lifted messages to account
for several issues. Compared to the equations presented in [114], this more general form will
allow to compare LBP messages more easily to other lifted algorithms. In first place, we want
to stress the fact that the position of a variable in a factor needs to be distinguished. The
function associated with a factor does not necessarily have to be commutative. Secondly, there
are two different types of counts. One count is responsible for keeping track of identical factors
connected to a variable, the other one counts identical variables in the range of a factor. We
will begin by explaining the issue of positions in factors by a small example factor graph.

Example 2.3. Looking at Figure 2.6(middle), we see a small factor graph with three
variables and three factors. It is important to note that in this example the factor functions
are not commutative (Figure 2.6(left)), i.e., it matters if a variable is fi’s first or second
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⇒
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Figure 2.6: Simple factor graph highlighting the requirement of distinguishing positions in
lifting. All factors fa are identical, however, in this example they are not commutative, i.e.,
fa(0, 1) 6= fa(1, 0). Therefore, it matters if a variable appears as the first or the second argument
in the function. The edge-labels indicate the position of a variable in the factor.

f1

X1 X2 X3

⇒

f1

X1

vc = 3
fc = 1

Figure 2.7: Simple factor graph highlighting the requirement of having two different kinds of
counts opposed to just a single count. The factor in this graph is connected to three variables
of the same type, i.e., vc = 3. In contrast, each variable is only connected to a single factor,
i.e., fc = 1.

argument. A simple example could be a factor representing the logical rule Xi → Xj .
Looking at the graphical representation of the lifted graph (Figure 2.6(right)), one cannot
see that different messages for the edges at different positions were exchanged in the ground
graph.
To remedy this issue, we will add an indicator of the position to the formulas. In the LBP

algorithm, the loop calculating the new messages has to be extended to iterate over all possible
positions of a variable in a particular factor. The more general form of the message send from
a clusternode to a clusterfactor looks as follows:

µi→a,p(xi) =
∏

b∈nb(i)

∏
p′∈pos(b,i)

µb→i,p′(xi)
fc(b,i,p′)−δabδpp′ (2.9)

with pos(b, i) representing all different positions a variable Xi can take on in a factor fb. Instead
of a multiplicative term in front of the product over the neighbors, we integrate the self-loop
into the product directly by ranging over “nb(i)”. Note that factor fa is not excluded from the
range anymore. This saves us a separate handling of the positions for the self-loops. This also
moves the prevention of double counting (previously “c(a, i)− 1”) into the product term and
we only have to subtract in cases where we send a message to the same variable (δab) at the
same position (δpp′). Also note that we have renamed the counts from “c” to “fc”. The reason
for this renaming is that we have to distinguish two types of counts. We will underline this
requirement with the help of a small example as well.

Example 2.4. Figure 2.7(left) depicts a very simple factor graph with a single factor f1

over three variables. If we assume that positions do not matter in this factor, the lifted
factor graph looks like the one shown in Figure 2.7(right). The counts must now reflect that
f1 is connected to three variables of the same type in the ground network. However, each
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of the variables is only connected once to the factor. Therefore, we distinguish the variable
count vc = 1 from the factor count fc = 3.
We will now give the formula for the lifted message from a clusterfactor to a clustervariable

which highlights the usage of the variable count vc. Again, we will be distinguishing different
positions of a message:

µa→i,p(xi) =
∑
¬{i}

fa(xa)
∏

j∈nb(a)

∏
p′∈pos(a,j)

µj→a,p′(xj)
vc(a,j,p′)−δijδpp′


Here, the variable count vc(i, a) is the count of identical variables connected to a ground factor

represented by a. Factor a received vc(i, a) identical messages from its neighbors. Similarly,
the factor count fc(a, i) in Equation (2.9) represents the number of equal ground factors that
send messages to a variable at a given position. It counts the number of neighbors of type
a that ground variable i was connected to in the ground graph G. It counts the number of
identical messages that variable i was receiving. Introducing positions and different counts into
the formulas explicitly, makes it more difficult to read the formula on the one hand, however,
on the other hand it becomes easier to verify the correctness of messages on the lifted graph
and makes the complexity of the messages more obvious.

As mentioned above, there are different update schedules for the BP equations. In the case
of LBP, we always assume a parallel schedule because otherwise we cannot guarantee that
messages are always identical in the ground and lifted factor graph.

This idea of lifting BP via CP does not only apply to the multinomial variant of BP. In fact,
Ahmadi et al. [3] have shown that GaBP can be lifted in a similar way, resulting in a lifted BP
algorithm for Gaussian MRFs.

Before moving on, we want to comment on the run time of CP. One can see that CP is a
form of the 1-dimensional Weisfeiler-Lehman algorithm. It follows from the arguments in [202]
that the complexity of one iteration of CP is linear in the number of edges of the factor graph.
This makes use of efficient sorting based on counting sort. Hence, for h iterations, we have a
run time of O(h|E|). Depending on the structure of the network, we can require up to |V |
iterations.

2.4.2 Advanced Lifting Techniques

In many situations, exact lifting is either not applicable or not well suited. In other settings we
are required to repeatably lift a network and want to make use of the previous runs of CP. For
these and other scenarios, advanced lifting techniques have been developed and are of interest
of current research. We will here discuss some these approaches.

Approximate Lifting

In many applications, in particular if LBP is not applied to relational models without evidence,
the underlying factor graph is not perfectly symmetric. For this reason, different approaches
to approximate lifting have been proposed. The most simple way of approximating the exact
lifting is by early stopping the CP.

Instead of running CP until convergence, we stop the exchange of new colors early. By doing
so, we prevent that the model is completely shattered to the ground case. It is interesting
to note that early stopping can lead to fractional counts. For example, after running CP on
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Figure 2.8: A chain-MRF leads to fractional counts when Color Passing is stopped early

the graph shown in Figure 2.8 for two iterations, we obtain for the variables a coloring of
(1, 2, 2, 2, 1), similarly we obtain the coloring of (1, 2, 2, 1) for the factors. If we now extract
the lifted graph from this coloring, we see that we obtain fractional counts. This is due to the
fact that not all variables in the cluster with color 2 are connected to factors with the same
color. This information has not been propagated yet. To be more precise, variables X2, X3,
and, X4 have the same colors but are connected in some cases to a factor with color 1 and in
other cases to factors of color 2. In the end, this leads to a count of 2/3 for f1 and 4/3 for f2.
However, the sum of the counts is sill correct, i.e., 2.

Akin to early stopping based on CP, de Salvo Braz et al. [47] presented Anytime LBP.
Anytime LBP follows the top-down lifting paradigm and shatters the model iteratively. Starting
from a query predicate, Anytime LBP adds neighboring predicates of the query in each iteration
to the model which can be seen as the unrolling of the computation tree. This can be done on
the lifted level until newly added neighbors require a shattering.

In [115], we presented an approach to approximate lifting which also refines the lifting in
each iteration of inference and is close to the approach by de Salvo Braz et al. [47]. However,
our approach works in a bottom-up fashion and is again independent of a first-order formalism.
Intuitively, the proposed algorithm informed Lifted Belief Propagation (iLBP) interleaves lifting
with BP iterations. More precisely, iLBP first runs a single iteration of CP on the ground
graph and this is followed by a single iteration of BP on the resulting lifted graph. The graph is
now lifted again based on the BP messages of this first iteration, i.e., variables and factors are
clustered together if their difference in beliefs is small. This process is iteratively repeated until
now new clusters arise. Essentially, iLBP is replacing CP’s syntactic criterion for comparison by
a real-valued similarity measure. iLBP is particularly well suited in situations where standard
LBP is not efficient because the CP poses an overhead. This can be for example the case
when BP converges in very few iterations. In iLBP, nodes can be grouped together that have
different computation trees but similar beliefs. By adjusting the definition of “difference in
messages”, we can force the algorithm to produce more or fewer clusters. iLBP finds smaller
factor graphs, hence further speeding up inference, without a decrease in performance, as it
has been shown empirically on different datasets. For example. iLBP has been successfully
used on the content distribution problem in peer-to-peer networks.

More recently, Singla et al. [211] further analyzed early stopping in their top-down lifting
approach from [209] and also introduced noise-tolerant hypercubes. Similar to iLBP, the
noise-tolerant hypercubes allow for marginal errors in the clusternodes by forming coarser
factor graphs. I.e., variables are clustered together that are separated in the original lifted BP
approach. In the framework of bisimulation, Sen et al. [198] use binning of factors that are
within an user-specified distance to approximate lifting.

It has been shown in [4] that shattering a large graph into pieces gives opportunities for
lifting in an online training settings. This piecewise approach breaks long-range dependencies
and removes asymmetries that prevented lifting of the entire graph. Instead of training on the
entire graph, the pieces are used as mini-batches and lifting can be applied to these.
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Online Lifted Inference

In many applications one has to apply lifted inference to a sequence of problems with only
little differences between each of the subproblems. Here, it is desirable to avoid lifting from
scratch for each subproblem. One particular instance of such a setting is the case where only
the evidence changes in each subproblem. A few algorithms have been proposed that try to
become more efficiently by exploiting symmetries across inference instances [2, 3, 165]. So far,
these algorithms have concentrated to efficiently obtain a lifted data structure for subsequently
following inference instances with changes in knowledge, i.e., evidence. We will make use of
such ideas and extend these for our purposes in Chapter 3. In contrast to existing approaches
approaches, we will show in Section 3.3 how changing evidence during a single inference run
can be exploited as well.

We have seen in this section how probabilistic inference algorithms can benefit from lifting. In
particular, we have seen how BP can be lifted by using modified update equations running on a
compressed factor graph. Before we will present our contributions in form of new lifted message
passing algorithms and modified lifting procedures in Chapter 3, we will briefly summarize
quality measures that will be used throughout this thesis for comparison and evaluation.

2.5 Quality and Error Measures

To measure the quality of an assignment in MAP inference, one often uses a Log-Likelihood (LL)
based score. For an MRF as defined above with p(X = x) = 1

Z

∏
c∈C φc(xc), we define the log

score as:

ll score(x) = ln

(∏
c∈C

φc(xc)

)
=
∑
c∈C

ln (φc(xc)) (2.10)

This score ignores the normalization constant and can be seen as the unnormalized joint
probability of an assignment. A different approximation is taken, when using a pseudo log-
likelihood score:

pll score(x) =

n∑
i=1

ln p
(
Xi = xi| nb(Xi) = xnb(Xi)

)
, (2.11)

where nb(Xi) are the neighbors of Xi and hence define the Markov blanket of Xi. The
probability of Xi given its Markov blanket can be easily calculated by local information.
Instead of the absolute value, a normalized version of the pll score is often given.

For comparing two probability distributions, it is also useful to consider measures specifically
defined for that purpose. One particular example of such a measure is the Kullback-Leibler diver-
gence. Assuming an unknown distribution p(x) and a learned distribution q(x) approximating
p, the KL divergence is defined as:

KL(p||q) =
∑
x

p(x) ln

(
q(x)

p(x)

)
(2.12)

One should note that the KL divergence is not symmetric and therefore the distinction of p
and q is important. The KL divergence also has a nice information theoretic interpretation. It
measures the information lost when approximating p by q. For a more detailed discussion we
refer to [124, A.1.3]. For example, we will use the KL divergence in Chapter 6 to compare the
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fit of different distributions on observed data and pick the best one based on the minimum
divergence.

In other situations, we want to compare a set of learned parameters or predicted regression
values to a gold-standard. Here, the Root-Mean-Square Error (RMSE) is a performance measure
which is often used:

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (2.13)

where x̂i amounts to the gold-standard value and xi is the learned or predicted value. We will
see in Chapter 7 that we can easily extend this measure to the multivariate case if we want to
measure the quality of predictions over n variables in m datacases.

In binary classification tasks, we wish to use yet another error measure. One can consider
using the accuracy, i.e., the number of correctly classified instances divided by the total number
of instances. However, especially with highly unbalanced classes, this is not appropriate. For
example, in Chapter 7, we will evaluate different algorithms on a network discovery task on
very sparse graphs. Here, an algorithm always returning False will achieve fairly high accuracy.
A better score in such settings is the F1-score:

F1 score = 2
p · r
p+ r

(2.14)

which is the harmonic mean of the precision p and recall r. Recall is the number of true
positives divided by the sum of true positives and false negatives. Precision is the number of
true positives divided by the sum of the true positives and false positives.
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CHAPTER 3

Lifted Message Passing Beyond Lifted Belief Propagation

Inference in probabilistic graphical models remains one of the major challenges in AI and
Machine Learning. Due to its theoretical complexity, exact inference is not tractable in most
cases. But even approximate inference is too slow in various cases and a lot effort has been put
into speeding up approximate inference as well. This chapter will pick up the ideas from lifted
inference in Section 2.4 and further contribute to that area of research. Lifted message passing
has so far been concentrating on probabilistic inference. We will add to this development and
present a lifted version of an existing MAP inference algorithm (Section 3.3). However, we will
also show that message passing algorithms for tasks beyond probabilistic inference are liftable
as well. More precisely, we show how popular message passing algorithms for satisfiability
solving can be lifted (Section 3.1). In addition, we will present several improvements over
existing lifting algorithms that apply to probabilistic inference as well as satisfiability solving
(Section 3.2). The contributions of this section have been published mainly in [82, 83, 81].

Although this chapter covers several different aspects of lifting and corresponding inference
algorithms, we can list a handful of papers that were most influential to the work that is to
follow:

• Kersting et al. [114]: Color Passing for the lifting of a factor graph and Lifted Belief
Propagation based on the compressed network.

• Braunstein et al. [27]: Decimation framework with ground Warning Propagation and
ground Survey Propagation.

• Kumar and Zilberstein [129]: Likelihood Maximization approach for MAP inference that
works as an iterative optimization procedure.

In particular, the work by Kersting et al. was very influential for this thesis and its contents
have already been described in detail in Section 2.4.1.

We proceed as follows. To begin with, we return to the idea of lifted satisfiability from the
introduction (cf. Section 1.1) and explain in Section 3.1 the concepts of lifted satisfiability in
greater detail. This will also motivate the requirement of an adapted compression algorithm for
factor graphs to fully exploit lifting in SAT. This algorithm is introduced in Section 3.2 where
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we also explain how to integrate it into the lifted SAT framework and how it can be applied
beyond satisfiability. In Section 3.3, we will show that iterative optimization algorithms based
on lifting can often benefit from re-lifting during inference and we present a lifted version of
Kumar and Zilberstein’s Likelihood Maximization algorithm. Before viewing lifted inference
from a different angle in Chapter 4, we summarize the contributions of the current chapter.

3.1 Lifted Satisfiability

We now return to our example from the introduction and give more details on concepts behind
lifted satisfiability. Besides the fact that solving satisfiability problems is key to all kinds
of problems, SAT solving, or sampling satisfying assignments, also plays a key role in some
inference algorithms for relational probabilistic models such as MC-SAT [181]. Using message
passing algorithms for satisfiability has been investigated from different points of view. Besides
algorithms tailored specifically for SAT, approaches based on BP have been used as well. The
AAAI conference in 2008 also featured a tutorial dedicated to satisfiability based on message
passing1. This tutorial summarizes several approaches and gives a good introduction to this
topic. Having observed the success and impact of lifted inference in relational models, we will
now show that lifting is also beneficial in SAT solving by developing lifted versions of two
message passing algorithms for satisfiability, namely Warning Propagation (WP) and Survey
Propagation (SP). In addition, we will show that a number of simplifications are possible
compared to the lifted version of BP when the underlying problem is a CNF.

The main drawback of existing lifted inference approaches, such as LBP, is the fact that they
are not tailored towards combinatorial problems. In many real-world applications, however, the
problem formulation does not fall neatly into the pure probabilistic inference case. Problems
may very well have a component that can be well-modeled as a combinatorial problem, hence,
taking it outside the scope of standard LBP approaches. Besides that, satisfiability of Boolean
formulas is one of the classical AI problems and the idea of “reduction to SAT” is a powerful
paradigm for solving problems in different areas. Ideally, lifted inference should be efficient here,
too, exploiting as many symmetries as possible. Indeed, driven by the same question of reasoning
with both probabilistic and deterministic dependencies, but for the non-lifted case, Poon and
Domingos [181] developed MC-SAT that combines ideas from MCMC and satisfiability. It still
proceeds by first fully instantiating the first-order theory and then essentially staying at the
propositional level. LazySAT [207] is a lazy version of WalkSAT taking advantage of relational
sparsity. Recently, Poon et al. [182] have shown that this idea of lazy inference goes beyond
satisfiability and can be combined with other propositional inference algorithms such as BP.
However, the link has not been explored on the lifted (message passing) level.

In this section, we therefore revisit lifted message passing algorithms this time for combi-
natorial problems. Specifically, we focus on Boolean satisfiability problems consisting of a
formula F representing a set of constraints over n Boolean variables, which must be set such
that all constraints are satisfied. It is one of the most — if not the most – studied problems
in computer science and AI and several other NP-complete problems can be reduced to it.
SAT has applications in several important areas such as automated deduction, cryptanalysis,
modeling biological networks, hardware and software verification, planning, and Machine

1Lukas Kroc, Ashish Sabharwal, and Bart Selman: “Satisfied by Message Passing” (www.aaai.org/
Conferences/AAAI/2008/aaai08tutorials.php)
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3.1 Lifted Satisfiability

Learning, among others. Hence, pushing the boundary of practical solvability of SAT has far
reaching practical consequences.

In fact, we develop a lifted version of an exciting algorithm for solving combinatorial problems,
namely Survey Propagation (SP). SP was introduced by Mézard et al. [147] and can easily
solve SAT problems with one million variables in a few minutes on a desktop computer. SP
has particularly attracted a lot attention because it was able to solve difficult problems. A
SAT problem is generally accepted to be difficult if it lies in the crossover regime between the
“SAT” and “UNSAT” classes. With an increasing number of constraints, the problem is more
likely to be in the “UNSAT” class and the exact crossover point for k-SAT has so far been only
estimated by numerical experiments. Braunstein and Zecchina [26] and Maneva et al. [141]
have shown that SP can be viewed as a form of BP, hence, somehow suggesting that lifting SP
is possible. As noted by Kroc et al. [125], SP’s remarkable effectiveness — the performance is
clearly beyond the reach of mainstream SAT solvers — has created the impression that solving
hard combinatorial instances requires SP but BP would have little success. Kroc et al. [126],
however, have shown that “the gap between BP and SP narrows” as the number of variables
per clause increases. This is also supported by Montanari et al. [153] showing good performance
of a combination of BP and Warning Propagation (WP), a message passing algorithm for SAT
that is simpler than SP but also less powerful. Therefore, we also show how to lift WP and
provide a complete picture of lifted message passing algorithms for SAT, which is the main
contribution of the current section. Let us again summarize the individual contributions of this
section:

(C3.1) We apply the idea of lifted inference to the problem of SAT solving, thus exploiting
the structure of combinatorial problems by techniques known from probabilistic inference
in relational models.

(C3.2) We provide a lifted version of WP and derive the lifted update equations in detail.

(C3.3) In the same spirit as lifting WP, we also provide a lifted version of the more powerful
SP algorithm.

These contributions significantly advance the understanding of lifted message passing and put
an unified, lifted treatment of combinatorial and probabilistic problems within reach.

We proceed as follows. We first provide background on Boolean formulas, show how factor
graphs can be used to represent those, and then discuss (lifted) message passing for SAT.
Specifically, we show how LBP’s Color Passing algorithm, which compresses the original factor
graph, can be used for SAT problems and show how a simplified version can be used for lifting
WP and SP. We then introduce both Lifted Warning Propagation (LWP) and Lifted Survey
Propagation (LSP), i.e., the modified message passing equations used on the lifted factor graph.
Again, we argue that they are simpler than the ones for LBP. Before concluding, we present
the results of our experimental evaluation where we show that running lifted message passing
within the standard decimation approaches for SAT can achieve remarkable efficiency gains.

3.1.1 CNFs and Factor Graphs

Without loss of generality, we assume that a Boolean formula is represented in CNF. Every
Boolean formula can be converted to CNF with help of De Morgan’s law and the distributivity
law. However, in practice this can lead to an exponential blow up of the formula. A CNF is
a conjunction of disjunctions of Boolean literals. A literal is either a negated or unnegated
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X1 X2f2
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vc = (1, 1)
fc = (1, 1)

vc = (0, 2)
fc = (0, 1)

vc = (0, 1)
fc = (0, 1)

Figure 3.1: (left) (X1 ∨ ¬X2) ∧ (¬X1 ∨X2) ∧ (X1 ∨X2 ∨X3) represented as a factor graph.
Circles denote variable nodes and squares denote clauses. A dashed line indicates that the
variable appears negated in a clause; otherwise we use a full line. (right) The resulting lifted
CNF after running the Color Passing algorithm as illustrated in Figure 2.4.

propositional variable. Specifically, a CNF consists of n variables X = {X1, . . . , Xn} with
xi ∈ {False, True} and m clauses C = {C1, . . . , Cm} constraining the variables. A clause Ca
is defined over a subset of the variables Xa =

{
Xa,1, . . . , Xa,|Ca|

}
and — this will turn out to

be convenient for formulating the message passing update formulas — a corresponding list of
their signs which is denoted as sa =

{
sa,1, . . . , sa,|Ca|

}
with

sa,i =

{
−1, if Xa,i unnegated

1, if Xa,i negated
(3.1)

A solution to a CNF is an assignment to all variables in X such that all clauses in C are
satisfied, i.e., evaluate to True. As an example, consider the following CNF, consisting of three
variables, three clauses, and seven literals:

(X1 ∨ ¬X2) ∧ (¬X1 ∨X2) ∧ (X1 ∨X2 ∨X3) .

A possible solution to that formula is X1 = True, X2 = False, X3 = True.
Every CNF can be represented as a factor graph (see [128]). The factor graph representing

the example CNF from above is shown in Figure 3.1(left). For CNFs, there is a one-to-one
mapping between the variables in the CNF and the variable nodes in the factor graph, as
well as the clauses and factor nodes. Therefore, we will not distinguish between logical and
probabilistic variables explicitly. We have a factor fa for each clause Ca ∈ C. We use a dashed
line between a variable Xi and a factor fa whenever the variable appears negated in a clause,
i.e., si,a = 1, otherwise a full line. The factor functions fa(xa) are defined in a such a way that
they return a value of 1 if the corresponding clause evaluates to True for xa and 0 otherwise.
With this definition, the normalization constant Z amounts to the number of solutions of the
CNF and each satisfying assignment of X has the same probability, i.e., 1/Z.

Before deriving lifted message updates for WP and SP in the next sections, let us first
illustrate lifting in the case of CNFs. As we will see, CP and its outcome, the lifted factor
graph, are simpler for the CNF case compared to the LBP case. As we have seen above, we can
use the CP algorithm to lift a ground factor graph. Of course, this is also possible for a factor
graph representing a CNF. Again, for the lifted satisfiability approach, CP on a factor graph
representing a CNF is the first step. For such a factor graph, the domain of each variable has
size d = 2 and the initial coloring of the factors just distinguishes clauses with different number
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of negated and unnegated variables. I.e., two clauses fall into the same group if both have the
same number of positive and negative literals because the logic operator ∨ is commutative.
But more importantly, as we will show next, the lifting can actually be simplified in the case of
CNFs.

First, we can employ a more efficient color signature coding scheme. The initial grouping of
the factors solely depends on the zero state of their corresponding clause. Additionally, the
factor nodes do not have to sort the incoming colors according to the positions of the variables,
instead only the sign of a variable matters, i.e., only two positions exist. One position for the
variables appearing unnegated in the clause and a second position for the negated variables. We
have seen in the case of the BP lifting that we have to distinguish arbitrarily many positions
(see Example 2.3 for details).

Second, we can employ simplified counts. Because there are only two positions, we store two
values: counts for the negated position and for the unnegated position. We do not have to
manage a complex structure with counts for different positions as in the case of LBP anymore.
Reconsider Figure 3.1(right). Here, the count associated with the edge between X1 and f1 is
(1, 1) because X1 represents ground variables that appeared positive and negative in ground
factors represented by f1. Second, there is the variable count vc. It corresponds to the number
of ground variables that send messages to a factor at each position. In the ground network, the
factor f3 is connected to three positive variables, but two of them are represented by a single
clusternode in the lifted network. Hence, we have vc = (0, 2) for the edge between X1 and f2
because f2 is now the representative of f3. So, for lifted CNFs, all counts in the factor graph
are of dimension two only.

Having the lifted CNF at hand, we can now run LBP on this lifted graph. However, there are
other ground message passing algorithms available that are more appropriate for solving CNFs.
We will show that these algorithms can be lifted too. First, we will describe the approach based
on LBP, before we will then derive the lifted versions of WP and SP which are designed to
operate on factor graphs for CNFs directly.

3.1.2 Belief Propagation for Satisfiability

The introductory example in Section 1.1 already referred to a heuristic used in solving SAT
problems which is applied to each variable. In the introduction, however, this heuristic was
left unspecified. One possible heuristic can be the single node marginal probabilities p(Xi).
If we chose the potentials of the factors as described above, running sum-product BP on a
factor graph representing a CNF has a nice and intuitive explanation. The beliefs of a state
give the approximate marginal probability of a variable being in that state in a solution to the
underlying CNF. Additionally, the partition function estimates the number of solutions for a
given CNF. Of course, these values are only guaranteed to be correct for tree-structured CNFs.
We will now exemplify, how results can diverge from the true values on a loopy graph.

Example 3.1. Looking at the CNF in our running example (cf. Figure 3.1(left)), we can
find the corresponding truth tables of the clauses in Table 3.1. One can easily verify that
the CNF has three solutions in total and each variable has a probability of 2/3 being True

in a solution. However, as already discussed, BP is not exact on loopy graphs. The beliefs
computed by sum-product BP diverge highly from the true marginals (also shown in Table 3.1).
Therefore, it is of little surprise that the estimated partition function is not exact either. The
computed value is Z = 2.00 as apposed to the correct value of 3. On the other hand, the
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x1 x2 x3 f1 f2 f3
∏
fi

0 0 0 1 1 0 0
1 0 0 1 0 1 0
0 1 0 0 1 1 0
1 1 0 1 1 1 1
0 0 1 1 1 1 1
1 0 1 1 0 1 0
0 1 1 0 1 1 0
1 1 1 1 1 1 1

p(xi = 1) 0.67 0.67 0.67
sum-product BP b(xi = 1) 0.98 0.98 0.50

m(xi = 1) 0.50 0.50 0.50
max-product BP b(xi = 1) 0.50 0.50 0.50

Table 3.1: Exemplifying BP on a CNF. The marginals give the probabilities of each variable for
being in a specific state in a satisfying assignment. One can see that the BP approximation is
of low quality in this example.

computed max-marginals are correct but give less insights than the marginal probabilities.
Of course, we can apply LBP on this factor graph as well, to obtain the marginals more
efficiently. We can see from the table that the beliefs of X1 and X2 are identical. This
matches our expectation when looking at the lifted CNF in Figure 3.1(right).
Although BP is not exact, it can still be used to solve satisfiability problems. In particular,

the approximate BP marginals have been used successfully in decimation procedures to find
a satisfying solution [153]. Decimation procedures make iteratively use of the BP marginals.
As we can see from Example 3.1, the marginals are not exact, but at least the tendency of X1

and X2 towards the True state is correct. Besides this, BP can also be used for approximative
model counting [127]. We will now describe the concept of BP-guided decimation in detail.

3.1.3 Decimation Based SAT Solving

The example in the previous section already shows that having solely BP at hand is usually
not sufficient to solve complex CNFs. Nevertheless, we can run BP, or similar message passing
algorithms as we will see in the next sections, on this problem and use the fixed points of
the algorithm to obtain insights about satisfying configurations. However, in most cases the
information about the fixed points is not sufficient to obtain an entire satisfying configuration.
Still, the output of the algorithm, i.e., the beliefs, will point us in the right direction to find a
solution in many cases. This idea was already motivated by the example in Example 3.1 and
Table 3.1. The general paradigm of applying this idea iteratively is known as decimation and
will now be explained in detail. Many complex inference tasks, such as finding a satisfying
assignment to a Boolean formula or computing joint marginals of random variables, can be
cast into a sequence of simpler ones. This is achieved by selecting and clamping variables
one at a time and running inference after each selection. SAT problems can be solved using
a decimation procedure based on BP [153]. For SAT problems, decimation is the process of
iteratively assigning a truth value to k variables (often a single variable only) in X. This
results in a factor graph which has these variables clamped to a specific truth value. We can
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then simplify the factor graph G accordingly, obtaining a smaller factor graph representing
a simplified formula with n − k variables. Now, we repeatedly decimate the formula in this
manner, until all variables have been clamped. In the end, either a satisfying assignment
has been found or a contradiction has been detected. This procedure heavily depends on the
strategies for choosing variables to fix and the corresponding states. In a BP guided decimation,
BP is run on the (simplified) factor graph and a variable is picked based on the approximated
marginals. Usually, the variable with the highest probability for one state is picked and clamped
accordingly. This variable is often referred to as the most magnetized variable. This popular
approach can be seen as a general idea of turning the complex inference task into a sequence of
simpler ones by selecting and clamping variables one at a time and running inference again
after each selection.

Example 3.2. Looking at our running example in Figure 3.1 and the marginal probabilities
in Table 3.1, we would pick either X1 or X2 if the decimation was using BP as heuristic. In
case X1 was picked, we would set X1 = True and simplify the formula. In this simple case,
we would already obtain a formula of the form (X2) and would not need a second iteration
of BP to completely solve the problem.

The concept of decimation can be lifted as well. In the following sections, we will describe
how an efficient lifted decimation procedure can be realized. In first place, we will be using
lifted message passing to speed up each iteration. However, this requires lifting from scratch
in each iteration, possibly canceling some of the benefits of lifting. Therefore, we will also
introduce a more efficient lifting algorithm in the second step that makes use of the current
lifting when producing the lifted graph for the following iteration. Additionally, BP is not
the only message passing algorithm that can be used to obtain insights about the state of
a variable in a satisfying configuration. We will see how Survey Propagation is capable of
computing indicators for each variable upon which one can pick a variable to clamp as well.
We will propose a lifted variant of this algorithm which also requires the introduction of counts.
As described above, and shown in Example 3.2, fixing variables often allows a simplification of
the formula. This simplification can be casted into a message passing algorithm as well and
amounts to applying Warning Propagation on the factor graph. Having Warning Propagation
at hand, we implement the decimation completely by means of a factor graph and message
passing. BP and Survey Propagation can be combined with Warning Propagation to simplify
the CNF after having variables clamped. We will show that Warning Propagation is liftable as
well and can be run on the lifted factor graph, yielding a decimation with all operations on the
lifted level.

3.1.4 Lifted Warning Propagation

Clauses consisting of a single literal only, i.e., factors with an edge to exactly one variable Xi

only, are called unit clauses. A unit clause fixes the truth value of Xi. The process of fixing
all variables appearing in unit clauses and simplifying the CNF correspondingly is called Unit
Propagation [256]. Casted into the message passing framework [27, 153], it is known under the
name of Warning Propagation (WP).
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Figure 3.2: CNF containing unit clauses depicted as factor graph.

Intuitively, a message µa→i = 1 sent from a factor to a variable says: “Warning! The variable
i must take on the value satisfying the clause represented by the factor a.” As shown by
Braunstein et al. [27], this can be expressed mathematically as follows:

µa→i =
∏

j∈nb(a)\{i}

θ(µj→asa,j)

where nb(a) is the set of variables that are constrained by a and θ(x) = 0 if x ≤ 0 and θ(x) = 1
if x > 0. sa,j is the sign of an edge and defined in Equation (3.1). The message from a variable
to a factor is:

µi→a =

 ∑
b∈nb+(i)\{a}

µb→i

−
 ∑
b∈nb−(i)\{a}

µb→i


where nb+(i), respectively nb−(i), is the set of factors in which i appears unnegated, respectively
negated. The exchange of messages is repeated until the messages converge or a maximum
number of iterations has been reached. If the message passing converges, a set of warnings can
be read off this fixed point.

To be more precise, let us assume that µ∗a→i are the fixed point warnings. We can now
calculate for every variable the local field Hi and the contradiction number ci which are defined
as follows:

Hi = −
∑

b∈nb(i)

sb,i · µ∗b→i,

and

ci =

{
1, if

(∑
b∈nb+(i) µ

∗
b→i

)(∑
b∈nb−(i) µ

∗
b→i

)
> 0

0, otherwise

The local field indicates the preferred state of a variable. If Hi > 0, Xi should be set to
True, and for Hi < 0, Xi prefers False, otherwise no preference is expressed by the warnings.
However, it can happen that a variable receives conflicting warnings which is indicated by the
contradiction number. The contradiction number is non-zero if and only if a variable receives
warnings for both possible states.

The initialization of the messages can either be done at random and each message is set to
µa→i ∈ {0, 1} with equal probability. Alternatively, we set all messages to zero which shows to
be beneficial in the case of lifting and exploiting symmetries. Similar to BP, we have to specify
a schedule which is used to update the messages. Here, we will use a parallel schedule and a
fixed order of the variables.

Example 3.3. To illustrate the effectiveness of WP, we consider a small example. Given
the CNF (¬X1∨X2)∧ (X2∨¬X3∨¬X4)∧ (X3)∧ (X4) (see Figure 3.2 for the corresponding
factor graph). One can easily verify that this CNF constrains variables X2, X3, and X4 to be
positive to satisfy the problem and X1 can take on any value. Assume that all messages are
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initially being set to 0. Let us take a look at the WP messages sent from factors f3 and f4 to
its neighbors. Since these factors have only a single neighbor, the product is over the empty
set, and hence the factors can only be satisfied by the neighbors taking on the satisfying state.
This results in a warning µa→i = 1 being sent from f3 and f4 to its neighbors. This warning
now effects the message being send from f2 to X2. Now, the product over the neighbors of
f2 excluding X2 is equal to one, indicating a warning being sent from f2 to X2. Factor f2

informs X2 that it has to take on the value satisfying f2. On the other hand, the message
µf1→X1 remains zero, since f1 is automatically satisfied by X2 and does not further constrain
X1. The algorithm converges to a fixed point after two iterations. Calculating the local fields,
we obtain H1 = 0, H2 = −(−1 · 1) = 1, H3 = −((1 · 0) + (−1 · 1)) = 1, and similarly H4 = 1.
This highlights how WP can solve the CNF in this case similar to unit propagation but as a
message passing formulation.

If we run sum-product BP on this graph, the marginals and partition function are exact
because of the tree structure. We can read off the solution from the beliefs in a similar way.
The marginals of X2, X3, and X4 are all equal to (0.0, 1.0), indicating that these variables
have to be True in a solution. Additionally, the marginal of X1 is equal to (0.5, 0.5) which
shows in this problem that X1 can take on both values with equal probability. Lastly, the
partition function correctly amounts to Z = 2 because there are only two solution.

WP is also guaranteed to converge if the underlying factor graph is a tree. Additionally,
if at least one of the contradictory numbers ci is equal to 1 in the tree case, the represented
problem is not satisfiable.

Example 3.3 also exemplifies how symmetries in an CNF lead to identical messages. We can
see that the messages being sent from X2 to f1 and from X3 to f1 are identical. The same
holds for the messages the other way around. We can now apply the CP algorithm to any CNF
and use modified WP messages on the lifted graph. The Lifted Warning Propagation (LWP)
equations take the following form2:

µa→i,p =
∏

j∈nb(a)

∏
p′∈pos(a,j)

θ(µj→a,p′sp′)
vc(a,j,p′)−δijδpp′

with pos(a, j) ⊆ {0, 1} referring to a negated or unnegated position of a variable Xj in a clause
fa. Furthermore, we have sp′ = 1 if p′ = 0 and sp′ = −1 if p′ = 1. This is a position dependent
version of the sa,j from above. Note that the set of positions pos(a, j) contains only those
positions with a variable count (vc) greater than zero. Here, the variable count corresponds to
the number of ground variables that send messages to a factor at each position. Because there
are only two positions — a variable may occur at any position in negated or unnegated form

— we store two values: counts for the negated position and for the unnegated position. The
Kronecker deltas take care of the “\{i}” in the product’s range of the ground formula. They
reduce counts by one when a message is sent to the node itself at the same position, i.e., they
prevent double counting of messages.

To exemplify the idea of positions and variable counts, reconsider the lifted factor graph in
Figure 3.1(right), “pos” contains a non-zero value for both positions for the variable count
of edge X1 − f1. This is due to the fact that the factors f1 and f2 contain a negated and an
unnegated variable in the ground factor graph. On the other hand, for the edge X1 − f2 the
variable counts are only positive for the unnegated position because f3 contains only unnegated
variables in the ground network. In the ground network, the clause f3 was connected to three

2We define 00 = 1 in cases where θ(x) = 0 and vc(a, j, p′) − δij,pp′ = 0.
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positive variables, but two of them are now represented by a single clusternode (X1) in the
lifted network. Hence, we have variable count vc = (0, 2) for the edge between X1 and f2.
Remember that ground factor f3 is now represented by the clusterfactor f2. Intuitively, this
already indicates that the lifted formula simulates WP on the ground network. It even becomes
more clear when we run it on the ground network shown in Figure 3.1(left). In this case, there
is exactly one position with a variable count greater than zero for each neighbor j of factor a.
In other words, pos(a, j) is a set containing only a single position for which the count is always
1. In turn, the second product can be dropped, none of the δ.. can be 1, and both formulas
coincide. Similarly, one can intuitively check that the following formula in the other direction
is correct for the lifted case:

µi→a,p =

 ∑
b∈nb(i),

fc(b,i,1)>0

µb→i (fc(b, i, 1)− δabδp1)

−
 ∑

b∈nb(i),
fc(b,i,0)>0

µb→i (fc(b, i, 0)− δabδp0)


Again, the δs take care of the “\{a}” in the original ground formulation and fc is a factor
count. The factor count represents the number of equal ground factors that send messages to
the variable at a given position. The “fc(b, j, 1/0) > 0” simulates the ground sets “nb+/−(j)”.

The role of the factor count can again be understood best when looking at Figure 3.1. Here,
the factor count associated with the edge between X1 and f1 is (1, 1) because X1 represents
the ground variables corresponding to X1 and X2. Both ground variables were involved once
negated and once unnegated in the two factors represented by f1. This leads to a positive
factor count for both positions. Using this correspondence, the proof that applying the lifted
formulas to the lifted graph gives the same results as WP applied to the ground network follows
essentially from the one for the LBP in [209].

If we are interested in solving CNFs, we make use of WP in every iteration. By fixing one or
several variables, other variables in the formula may now be implied directly by unit clauses.
WP allows us to find these variables easily and at lower computational costs then running a
more expensive inference algorithm such as BP. Of course, we could just run unit propagation
on the simplified formula. However, with help of the message passing formulation, we were able
to develop a lifted variant that directly operates on the lifted factor graph. This enables us now
to do the simplification on the lifted level, getting us closer to a completely lifted decimation.

3.1.5 Lifted Survey Propagation

After we have seen the WP algorithm and its lifted version, we will now shift our focus to
Survey Propagation (SP) [147, 27] and its lifted equations. SP has been very successful in
solving large and difficult random CNFs. The difficulty of an k-CNF is often measured by the
ratio of the number of clauses and the number of variables. A CNF with only few constraints
and many variables is said to be under-constraint and it is likely that the problem has many
solution where one of them can easily be found. Contrary, a CNF with a very large number of
clauses is over-constraint and more likely to be unsatisfiable. It is conjectured that this ratio
splits the space of all k-SAT problems in mainly satisfiable and unsatisfiable instances. The
threshold or crossover point is often referred to as ac. The ratio ac plays an important role in
k-SAT satisfiability and its theoretical analysis. Usually, SAT solvers have the longest running
time in the region around ac. There have been various experimental studies to determine ac,
e.g., in [43] for random 3-SAT problems where Crawford and Auton estimate ac to be around
4.258.
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However, we are interested in applying SP to non-random instances in order to speed up
the message passing with help of lifting. SP has a nice interpretation in terms of warnings
being sent in WP. SP assumes that WP has multiple fixed points and surveys represent the
probability of a warning being send. More precisely, the intuition of a message µa→i sent from
a factor to a variable is that of a “survey” which represents the probability that a warning, as
in WP, is sent from factor a to variable i. In comparison to WP, where the value of a warning
was binary only, i.e., µa→i ∈ {0, 1}, the corresponding message in SP is real µa→i ∈ [0, 1]. The
ground SP message being sent from a factor to a variable looks as follows [27]:

µa→i =
∏

j∈nb(a)\{i}

[
µuj→a

µuj→a + µsj→a + µ∗j→a

]
This message is a ratio of three different types of messages being sent from variables to factors.
Besides the messages for the unsatisfied (µu) and the satisfied (µs) case, there exists also a
message for the arbitrary/undecided case (µ∗). This is often referred to as the “don’t care”-state.
The three messages from variables to factors are defined the following way:

µui→a =

1−
∏

b∈nbua(i)

(1− µb→i)

 ∏
b∈nbsa(i)

(1− µb→i)

µsi→a =

1−
∏

b∈nbsa(i)

(1− µb→i)

 ∏
b∈nbua(i)

(1− µb→i)

µ∗i→a =
∏

b∈nb(i)\{a}

(1− µb→i)

where nbua(i) = nb+(i) and nbsa(i) = nb−(i) \ {a} if sa,i = 1, while nbua(i) = nb−(i) and
nbsa(i) = nb+(i) \ {a} if sa,i = −1. Similar to BP and WP, the initialization of messages can
be done at random or with an initial fixed value. The different update schedules for BP which
were describe in Section 2.4.1 can also be used for SP. In [27] for example, sequential random
updates are suggested. If the message passing converges, we want to read off assignments from
the surveys in the same spirit as it can be done from the warnings in WP. For SP, we calculate
positive and negative biases of the variables:

W+
i =

b+i
b+i + b−i + b∗i

,

W−i =
b−i

b+i + b−i + b∗i
,

where b+i , b−i , and b∗i are defined as follows:

b+i =

1−
∏

a∈nb+(i)

(1− µ∗a→i)

 ∏
a∈nb−(i)

(1− µ∗a→i)

b−i =

1−
∏

a∈nb−(i)

(1− µ∗a→i)

 ∏
a∈nb+(i)

(1− µ∗a→i)

b∗i =
∏

a∈nb(i)

(1− µ∗a→i)
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Each bias expresses the tendency of a variable to be either in the negated or unnegated state.
Looking at the absolute difference of both biases, one can find the most biased variable which
has the strongest tendency to be in a particular state.

It is difficult to give a simple example of SP akin to Example 3.3 for WP. On trees, it has
been shown that SP reduces to WP [27], and is therefore exact. For cyclic graphs with ac < 3.9,
it has been reported that SP converges to a set of trivial messages, i.e., “don’t care” states [27].
Therefore, meaningful examples quickly grow large and we now continue with the equations
for Lifted Survey Propagation (LSP) and explain how the ground equations from above are
rewritten to run on the lifted level. Essentially, the SP equations can be lifted in a similar
way as for WP. That is, we apply rewriting rules such as “\{i}”7→”δijδpp′” to the ground SP
equations. This yields the following LSP equations. A message sent from factor a to a variable
i at position p is defined as follows:

µa→i,p =
∏

j∈nb(a),
p′∈pos(a,j)

[
µuj→a,p′

µuj→a,p′ + µsj→a,p′ + µ∗j→a,p′

]vc(a,j,p′)−δijδpp′

Messages sent from variable i to factor a at position p becomes:

µui→a,p =

1−
∏

b∈nb(i),
p′∈pos(b,i),p′ 6=p

(1− µb→i,p′)fc(b,i,p′)−δab

 ∏
b∈nb(i),

p′∈pos(b,i),p′=p

(1− µb→i,p′)fc(b,i,p′)−δab

µsi→a,p =

1−
∏

b∈nb(i),
p′∈pos(b,i),p′=p

(1− µb→i,p′)fc(b,i,p′)−δab

 ∏
b∈nb(i),

p′∈pos(b,i),p′ 6=p

(1− µb→i,p′)fc(b,i,p′)−δab

µ∗i→a,p =
∏

b∈nb(i),
p′∈pos(b,i)

(1− µb→i,p′)fc(b,i,p′)−δabδpp′

Indeed, we have to be a little bit more careful. For messages from factors to variables, we
use exactly the same rules. For the messages from variables to factors, however, we use slightly

different rules. The set “b ∈ nb
u/s
a (i)” maps to “b ∈ nb(i), p′ ∈ pos(b, i), p′ 6= p”, respectively

to “. . . , p′ = p”, for the message sent at position p. This ensures that we consider exactly
those neighbors of i which tend to make the clause a unsatisfied, respectively satisfied. In the
same way as in WP, we can now apply these lifted equations to the lifted factor graph. In the
following, we will investigate different SAT solving scenarios using message passing algorithms.

3.1.6 Lifted Decimation

We have described the idea of BP-based decimation already in Section 3.1.3 and we also
indicated that SP could be used as an alternative inference algorithm to pick variables to
clamp. The first way of lifting the decimation is lifting the factor graph before running the
inference algorithm. Then we run the corresponding lifted variant of the inference algorithm
on the compressed graph. After picking one or more variables to clamp based on the beliefs or
surveys, we clamp the variables in the ground factor graph, lift the modified graph again and
run LWP on the lifted graph to simplify the graph subsequently. This process is iterated until
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input: A factor graph G, a list of query vars Y, e.g., the variables in G
output : An assignment a to the variables in Y

1 a ← ∅;
2 G ← lift(G);
3 while Y 6= ∅ do
4 b ← runLiftedInference(G); // run LBP or LSP

5 yt ← pickVarsToClamp(b); // based on beliefs or surveys

6 a = a
⋃
yt;

7 Y = Y \Yt;
8 G ← clamp(G, yt);
9 G ← lift(G);

10 G ← simplify(G); // based on LWP

11 if containsContradition(G) then
12 return None ;
13 end

14 end
15 return a;

Algorithm 3: Lifted Decimation

either a solution has been found, or alternatively a contradiction has been detected during the
simplification. The pseudo code for the lifted decimation is depicted in Algorithm 3. Especially
with LBP, LSP, and LWP at hand, we can execute every step now on the lifted level. We will
analyze the performance gains by lifting in the next section.

3.1.7 Experiments

Our intention in this section is to empirically investigate the correctness of the lifted message
updates for WP and SP, and compare their performance to the corresponding ground versions.
We want to investigate whether message passing for SAT can benefit from lifting. Therefore,
we define the following questions for this section:

(Q3.1) Do ground and lifted decimation return the same results?

(Q3.2) Does lifting speed up the decimation procedure for SAT solving?

To this aim, we implemented LWP and LSP in C++ using the libDAI library [155] for the
underlying data structures. Based on the C++ code, we implemented the (lifted) decimation in
Python which uses the C++ message passing as a subroutine. More precisely, we implemented
the decimation approaches as described in Section 3.1.3 and Section 3.1.6. As a proof of concept,
we compared the performances of lifted message passing approaches with the corresponding
ground versions on three CNFs from a standard benchmark [75]. We use the decimation to
measure the effectiveness and efficiency of the lifted algorithms.

To assess performance, we report run times. In order to abstract from the underlying physical
hardware and programing language, run time is measured by the number of messages being sent.
For the typical message sizes, e.g., for binary random variables with low degree, computing
color messages is essentially as expensive as computing the actual messages of the inference
algorithm. Therefore, we view the run time as the sum of both types of messages, i.e., color
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Figure 3.3: Total number of messages sent (y-axis) in each iteration (x-axis) of decimation for
(lifted) WP+BP and lifted BP on several CNF benchmarks. (a) Lifted WP+BP saves 13% of
the messages ground WP+BP sent. (b) Lifted WP+BP saves 16% of the messages ground
WP+BP sent. (c) A small lifting overhead occurs on this random CNF.

and (modified) propagation messages, treating individual message updates as atomic unit time
operations. BP messages were damped by a factor of 0.4, and the convergence threshold was
set to 10−3. We used parallel update schedules for (L)WP, (L)BP, and (L)SP. While the (L)BP
messages were initialized uniformly, the (L)WP and (L)SP messages were initialized with zero.

We evaluated (lifted) WP+BP decimation on a circuit synthesis problem (2bitmax 6). The
formula has 192 variables and 766 clauses. The resulting factor graph has 192 variable nodes, 766
factor nodes, and 1,800 edges. The statistics of the different variants are shown in Figure 3.3a.
As one can see, lifting yields significant improvement in efficiency especially in the first iterations:
Lifted WP+BP reduces the messages sent by 13% compared to Ground WP+BP when
always fixing the most magnetized variable, i.e., the variable with the largest difference between
negated and unnegated marginals. Additionally, the ground and the lifted version found the
same solution to the problem.

Then, we investigated a Latin square construction problem of size eight (ls8-norm). The
formula has 301 variables and 1,601 clauses, resulting in a factor graph with 3,409 edges. The
statistics of running lifted message passing are shown in Figure 3.3b. Again, the lifting yields
improvement in efficiency: Lifted WP+BP saved 16% of the messages sent by the ground
version. Both variants were also able to find the same solution.

Finally, we also applied the lifted message passing algorithms to a random 3-CNF, namely
wff.3.150.525. The CNF contains 150 variables, 525 clauses and 1,575 edges. We did not
expect compression on this problem instance because random structures typically do not provide
any significant symmetries. As expected, no lifting was possible as shown in Figure 3.3c.

We also ran ground and lifted SP on these three problem instances. Due to the properties
of the CNFs, SP always converged to a paramagnetic state, i.e., the trivial solution, in the
first iteration. In such cases the problem is usually passed to a simpler SAT solver such as
WalkSAT. Nevertheless LSP saved roughly 45% of the messages the ground version sent on
the 2bitmax 6 problem. On the Latin square, LSP sent only 44% of messages ground SP sent.
As expected, the lifting produced again a small overhead on the random 3-CNF for LSP.

To summarize, questions Q3.1 and Q3.2 where answered in favor of the introduced algorithms
and the experimental results clearly show that a unified lifted message passing framework,
including BP, WP, and SP, is indeed useful for SAT. Not only are significant efficiency gains
obtainable by lifting, but lifted WP-guided BP clearly outperforms unguided (lifted) BP. On
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top of that, the assignments returned by the lifted decimation were identical to the results of
the ground decimation.

3.1.8 Summary

In this section, we presented the first lifted message passing algorithms for determining the
satisfiability of Boolean formulas. Triggered by the success of Lifted Belief Propagation (LBP)
approaches, our algorithms construct a lifted CNF, represented as a lifted factor graph. The
clusternodes and clusterfactors correspond to sets of variables and clauses that are sending and
receiving the same messages. On these lifted data structures, we can then apply Lifted Warning
Propagation (LWP), respectively Lifted Survey Propagation (LSP), yielding (approximate)
information on satisfying assignments upon converge. The experimental results validate the
correctness of the resulting lifted approaches as they coincide with the ground results. Significant
efficiency gains are obtainable when employing lifted instead of standard WP, respectively SP.
In particular, lifted decimation approaches based on LBP and LWP, or alternatively LSP and
LWP, are faster than “just” using LBP to determine the satisfiability of Boolean formulas.

Of course, with decades of research in SAT solving, lifted SAT is not the first approach
exploiting symmetries in CNFs. Symmetries have been studied in propositional and first-
order logic for a long time and have already been related to graph isomorphism decades ago,
e.g. [42] and further references in there. In SAT solving, symmetries are often considered to be
undesirable because a search-based solver should avoid checking two symmetric branches. To
do so, in symmetry breaking, e.g. [8], additional predicates are inserted that break symmetries
but preserve the satisfiability of the CNF. Instead, the framework we presented in this section
clusters symmetries to reduce run time. In addition, it nicely integrates itself into the lifted
inference paradigm and benefits from existing implementations and ongoing research. Relating
the idea of symmetry breaking back to probabilistic inference, one should further investigate
an operation the other way around, i.e., adding evidence to the factor graph which makes the
problem more symmetric without heavily changing the underlying probability distribution.

The SP experiments are by far not exhaustive yet and it is still an open question how LSP
performs on other difficult but symmetric problems. For additional experiments, we require
more suitable large-scale CNFs that contain appropriate symmetries. In particular, running
lifted decimation based on SP+WP on structured problems, while enforcing that non-trivial
solutions are returned by SP, can make this approach significantly more applicable.

Several extensions have been proposed to SP in recent years, extending SP to the maximum
satisfiability (Max-SAT) or weighted Max-SAT case. For example, the SP-y algorithm [12]
generalizes SP to handle Max-SAT problems. The Relaxed Survey Propagation (RSP) algorithm
introduced in [36] allows to run a modified SP algorithm on weighted Max-SAT instances. Using
extensions of SP that can handle weighted SAT problems, such as RSP, are also interesting for
lifting because they could be used in inference on relational models such as MLNs. In particular,
MLNs with deterministic and soft clauses asks for a tight integration of lifted SAT and lifted
probabilistic inference. In many real-world applications, the problem formulation does not fall
neatly into one of the classes. The problem may have one component that can be well-modeled
as a pure SAT problem, while it contains another part better modeled as a probabilistic
inference problem. We suggest to partition a problem into corresponding subnetworks, run
the corresponding type of lifted message passing algorithm on each subnetwork, and combine
the information from the different subnetworks. For the non-lifted case, this is akin to Duchi
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et al. [52]’s Compose approach that has been proven to be successful for problems involving
matching problems as subproblems.

Looking at the lifted decimation framework more closely, we can already identify a possible
drawback of the naive lifting. As we have mentioned above, the approaches presented here
apply the lifting as pre-processing step in every iteration. As we will see in Section 3.2, the
lifting can be integrated more tightly into the decimation which yields a more elaborated lifted
decimation approach, however, also requiring a more complex lifting scheme. Our current
decimation approach does not take backtracking strategies into account. Many SAT solvers
though make extensive use of backtracking which allows reverting earlier decisions and exploring
other paths to the solution. Naturally, one could integrate backtracking in our approach as
well. But more interestingly, one would like to investigate how well backtracking can benefit
from lifting, i.e., connecting it again closer to symmetry breaking. Nevertheless, this section
focused on the feasibility of lifted satisfiability. Naturally, many concepts and improvements
from the past years or even decades could be included in the decimation as well, to further
improve the results and reduce run time additionally.

As a last note, it is interesting to observe that WP can be seen as a simplified version of
max-product BP. More precisely, WP is an instance of the min-sum algorithm with only
binary variables and a particular initialization of the messages. We obtain the min-sum
algorithm by running the message passing on the energy function based formulation of the
MRF (Equation (2.3)). If we assume that Ec(xc) = 0 if the constraint c is satisfied and 1
otherwise, it can be shown that the messages in the energy minimization form are equivalent
to the WP updates if the messages are initialized with values from {0, 1}. Further details can
be found in [146, Chapter 14.3]. Bearing this in mind, the existence of LWP can be derived
from LBP, however, we showed in this section that we can also lift the simpler WP equations
directly. Similarly, it has also been shown in [26] that the SP equations can be derived from
the sum-product BP equations.

3.2 Sequential Clamping

As we have seen in the previous section and as it has been reported in the literature, BP
and other lifted message passing algorithms can be extremely fast at computing approximate
marginal probability distributions over single variable nodes. These marginals were used in the
decimation procedure to solve SAT problems. They allow us to determine the magnetization of
a variable or alternatively to sample a variable according to its marginal distribution. This
computation works similarly well for marginals over neighboring nodes in the underlying
graphical model. However, if we want to solve an entire CNF, sample a complete assignment to
all variables, or sample an arbitrary subset of the variables, (lifted) message passing approaches
leave space for improvement. For instance, in the BP+WP-guided decimation as described
above, or in sampling configurations from a joint configuration [153, 146], one is essentially
computing these probabilities in the same network but with changing evidence in a sequential
procedure with re-lifting in every iteration.

While we have already discussed the importance of decimation approaches in satisfiability,
obtaining samples from a joint distribution is equally important to AI and another example of
a task fitting into the decimation framework. For example, this kind of sampling is often used
in parameter learning. Using a decimation framework, we do not set the variable to its most
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magnetized state but instead sample a state according to its marginal distribution. We then
clamp the variable in the network to the sampled state and continue as before.

In such cases where we want to apply lifted message passing to the same network with
sequentially changing evidence, we want to avoid the naive solution that recomputes the lifted
network in each step from scratch. This can possibly cancel the benefits of lifted inference
and we also ignore information from the previous iterations. One can see this handicap in
Algorithm 3, Line 9, where the graph is lifted in every iteration of the decimation.

As we will see in this section, we can do considerably better. Especially in cases where
only additional evidence is added in each iteration, we want to exploit the knowledge from
the previous lifting, to obtain the current lifted network more efficiently. Generally, we are
interested in approximate lifted inference algorithms in such sequential scenarios that use
information from previous iterations and scale to realistic domain sizes. This section makes
a number of important and novel contributions to both the lifted BP and the decimation
literature:

(C3.4) We present Shortest-Path-Sequences lifting for Lifted Belief Propagation (SPS-LBP). A
scalable lifted inference approach for approximating solutions of complex inference tasks
that is based on shortest paths sequences between variables in the factor graph. It does
not lift in every iteration from scratch but instead uses the already known liftings from
previous iterations. SPS-LBP avoids the repetitive lifting for each subtask by efficiently
computing the corresponding lifted network directly from the one already known for the
unconditioned case.

(C3.5) Besides demonstrating the application of SPS-LBP on lifted SAT solving, we also
show its usefulness on another lifted inference task, namely lifted message passing guided
sampling. The experimental results highlight that significant efficiency gains are obtainable
compared to ground inference and naive lifting in each iteration.

(C3.6) By the first and second contribution, we continue to develop a lifted decimation
framework and integrate the lifting more tightly into the decimation. The application to
sampling also shows that lifted decimation is interesting beyond SAT solving.

There has been done some prior work on related problems and we have briefly touched upon
online lifting already in Section 2.4.2. One particular lifted inference approach that is similar to
the upcoming ideas, is the work by Nath and Domingos [165]. They essentially memorize the
intermediate results of previous liftings. For new evidence, they make a warm start from the
first valid intermediate lifting. So far, their approach has not been used for lifted sampling, nor
lifted satisfiability. Additionally, the algorithm is only defined for MLNs and an MLN-specific
lifted network construction, whereas our approach applies to any factor graph by relying on
the more general Color Passing algorithm. Furthermore, the approach presented in this section
gives a clear characterization of the core information required for sequential clamping for lifted
message passing: the shortest paths sequences connecting the variables in the network.

We will now explain Shortest-Path-Sequences (SPS)-lifting in detail and provide a running
example along with it. We will also give an in-depth analysis of it and sketch the soundness of
SPS-lifting. As our experimental results will highlight, SPS-lifting is capable of saving further
messages sent in the decimation compared to the naive approach.
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Figure 3.4: (a) Original factor graph. (b) Prior lifted network, i.e., lifted factor graph without
clamped variables. (c) Lifted factor graph when X3 is clamped, indicated by the “c” superscript.
Factor graphs are shown (top) with corresponding colored computation trees (bottom). For the
sake of simplicity, we assume identical factors but omit them in the graphical representation.
The shades in (b) and (c) encode the clusternodes. (d) Shortest path distances of the nodes.
The i-th row will be denoted as disti in the text.

3.2.1 Lifted Sequential Inference

When we turn a complex inference task into a sequence of simpler tasks, we are repeatedly
answering slightly modified queries on the same graph. Because LBP and LWP generally lack
the opportunity of adaptively changing the lifted graph and using the updated lifted graph
for efficient inference, they are doomed to lift the original model in each of the k iterations
again from scratch as it was already depicted in Algorithm 3. Each Color Passing run scales
O(h · |E|) where |E| is the number of edges in the factor graph and h is the number of iterations
required. Hence, we can spend up to O(k · h · |E|) time just on lifting if we clamp k variables
in a sequential fashion. The previous section already showed how BP-guided decimation fixed
one variable after another. Depending on the nature of the CNF, or more generally on the
structure of the factor graph, this can require up to k = n iterations.

Let us now consider BP-guided sampling which can also be casted into the framework of
decimation. We will explain its idea in greater detail and show how it poses similar issues for
lifting due to changing evidence. When we want to sample from the joint distribution over k
variables, this can be reduced to a sequence of one-variable samples conditioned on a subset of
the other variables [146]. Thus, to get a sample for X = (X1, . . . , Xk), we first compute p(X1),
then p(X2|X1), . . . , p(Xk|X1, . . . Xk−1). This problem can also be casted into the framework
in Algorithm 3 and one should keep in mind that a CNF represented as a factor graph defines
a joint distribution where each solution has equal probability. Let us now exemplify the idea of
BP-guided sampling with a small example.

Example 3.4. Assume we want to sample from the joint distribution p(X1, . . . , X6), given
the network in Figure 3.4a(top). Further assume that we begin our sequential process by
first computing p(X3) from the prior lifted network, i.e., the lifted network when no evidence
has been set (depicted in Figure 3.4b(top)). After sampling a state x3, we want to compute
p(X\3|x3) as shown in Figure 3.4c(top).
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To do so, it is useful to describe BP and its operations in terms of its computation tree (CT),
see e.g. [97]. The CT is the unrolling of the (loopy) graph structure where each level i
corresponds to the i-th iteration of message passing. Similarly, we can view Color Passing as
a colored computation tree (CCT). More precisely, one considers for every node X the CT
rooted in X but now each node in the tree is colored according to the nodes’ initial colors
(cf. Figures 3.4a to 3.4c(bottom)). Each CCT encodes the root nodes’ local communication
patterns that show all the colored paths along which node X communicates in the network.
Consequently, CP groups nodes with respect to their CCTs: nodes having the same set of
rooted paths of colors (node and factor names neglected) are clustered together.

Example 3.5. For instance, Figure 3.4a(bottom) shows the CTs rooted in X3 and X5.
Because their set of paths are different, X3 and X5 are clustered into different clusternodes
as indicated by different colors in Figure 3.4b(top). For this prior lifted network, the light
green nodes exhibit the same communication pattern in the network which can be seen in
identical CCTs in Figure 3.4b(bottom), and were consequently grouped together. Now, when
we clamp the node X3 to a value x3, we change the communication pattern of every node
having a path to X3. Specifically, we change X3’s, and only X3’s, color in all CCTs where X3

is involved, as indicated by the “c” in Figure 3.4c. This affects nodes X1 and X2 differently
than X4, respectively X5 and X6, for two reasons:

1. they have different communication patterns as they belong to different clusternodes in
the prior network

2. more importantly, they have different paths connecting them to X3 in their CCTs

The shortest path is the shortest sequence of factor colors connecting two nodes. Since we are
not interested in the paths but whether the paths are identical or not, these sets might as well
be represented as colors. Note that in Figure 3.4 we assume identical factors for simplicity.
Thus in this case path colors reduce to distances. In the general case, however, we compare the
paths, i.e., the sequence of factor colors.

Example 3.6. The prior lifted network can be encoded as the vector l = (0, 0, 1, 1, 0, 0) of
node colors. Thus, to get the lifted network for p(X\3|x3), as shown in Figure 3.4c, we only
have to consider the vector dist3 of shortest paths distances to X3 (see Figure 3.4d) and
refine the initial clusternodes correspondingly. This is done by

1. the element-wise concatenation of two vectors: l ⊕ dist3

2. viewing each resulting number as a new color

For our example, we obtain:

(0, 0, 1, 1, 0, 0)⊕ (1, 1, 0, 1, 2, 2) =(1) (01, 01, 10, 11, 02, 02) =(2) (3, 3, 4, 5, 6, 6) ,

which corresponds to the lifted network for p(X\3|x3) as shown in Figure 3.4c. Thus, having
the shortest path matrix, we can directly update the prior lifted network in linear time without
taking the detour through running CP on the ground network. Now, we run inference, sample
a state X4 = x4 afterwards, and compute the lifted network for p(X\{3,4}|x4, x3) to draw a
sample for p(X1|x4, x3). Essentially, we proceed as before: compute l ⊕ (dist3⊕dist4).
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Figure 3.5: Toy example of a graph where a single run of Shortest-Paths-lifting fails to return
the correct lifting.

However, the resulting network might be suboptimal in cases when more than one variables is
clamped and variables from the same initial cluster are sampled identically, i.e., take on the
same value in the sample.

Example 3.7. The concatenation in the previous example assumed x3 6= x4 and, hence, X3

and X4 cannot be in the same clusternode. For x4 = x3, they could be placed in the same
clusternode because they were in the same clusternode in the prior network. If X3 and X4

are clamped, this can be checked by dist3�dist4, the element-wise sort of two vectors. In
our case, this yields l ⊕ (dist3�dist4) = l ⊕ l = l: the prior lifted network.

In general, we compute

l ⊕ (
⊕
x

(
⊕
s

distx,s)) ,

where
distx,s =

⊙
i∈x:xi=s

disti ,

with clsuternodes x and the truth values s. For an arbitrary network, however, the shortest
paths might be identical although the nodes have to be split, i.e., they differ in a longer
path, or in other words, the shortest paths of other nodes to the evidence node are different.
Consequently, we apply the shortest paths lifting iteratively. Let CNE denote the clusternodes
given the set E as evidence. By applying the shortest paths procedure, we compute CN{X1}
from CN∅. This step might cause initial clusternodes to be split into newly formed clusternodes.
To incorporate these changes in the network structure the shortest paths lifting procedure
has to be iteratively applied. Thus in the next step we compute CN{X1}∪∆X1

from CN{X1},
where ∆X1 denotes the changed clusternodes of the previous step. This procedure is iteratively
applied until no new clusternodes are created. We exemplify this issue by introducing another
example where a single run of shortest paths lifting fails, however, an iterative application
returns the correct lifting.

Example 3.8. The initial lifting of the graph depicted in Figure 3.5a can be encoded as
l = (0, 1, 2, 2, 1, 0). If we now clamp variable X3 as shown in Figure 3.5b, we can use the
distances in Figure 3.5c to concatenate l and dist3:

(0, 1, 2, 2, 1, 0)⊕ (1, 1, 0, 1, 2, 1) = (01, 11, 20, 21, 12, 01) = (0, 1, 2, 3, 4, 0) .
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Yet, this lifting is not correct, as we have to distinguish X1 and X6. We also observe that
the clusternodes of X2, X4, and X5 have changed. Therefore, we now have to iteratively
apply the shortest paths lifting based on the nodes that changed in the previous iteration:

(0, 1, 2, 3, 4, 0)

⊕(1, 0, 1, 2, 3, 2)

⊕(1, 2, 1, 0, 1, 1)

⊕(2, 3, 2, 1, 0, 1)

=(0112, 1023, 2112, 3201, 4310, 0211) = (0, 1, 2, 3, 4, 5) .

Since we are now at the ground level anyhow, we can stop iterating.

The description above together with Example 3.8 essentially sketch the proof of the following
theorem. Originally, the theorem in a slightly different way, together with its proof, were
presented by Ahmadi et al. [2].

Theorem 3.1. If the shortest path colors among all nodes and the prior lifted network are
given, computing the lifted network for p(X|Xk, . . . , X1), k > 0, takes O((k+h) ·n), where n is
the number of nodes and h is the number of required iterative applications of the concatenation.
Furthermore, running LBP produces the same results as running BP on the original model.

Proof. Assuming a graph G = (V,E). We have seen above that the concatenation is a linear
operation in the number of nodes. When k nodes have been set, we have to concatenate
k distance vectors. However, this concatenation can result in supernodes being changed.
Consequently, this requests the concatenation of additional nodes. This iterative application
can result in h additional concatenations.

When we set new evidence for a node X ∈ V then for all nodes within the network the color
of node X in the CCTs is changed. If two nodes Y1, Y2 ∈ V were initially clustered together
and belonged to the same clusternode, i.e., X(Y1) = X(Y2), they have to be split if the CCTs
differ. Now, we have to consider two cases:

1. If the difference in the CCTs is on the shortest path connecting X with Y1 and Y2,
respectively, then shortest path lifting directly provides the new clustering.

2. If the coloring along the shortest paths is identical, the nodes’ CCTs might change in
a longer path. Since X(Y1) = X(Y2) there exists a mapping between the paths of the
respective CCTs. In particular ∃Z1, Z2, s.t. X(Z1) = X(Z2) from a different clusternode,
i.e., X(Zi) 6= X(Yi), and

Y1, . . . , Z1, . . . , X︸ ︷︷ ︸
∆1

∈ CCT (Y1), Y1, . . . , Z2, . . . , X︸ ︷︷ ︸
∆2

∈ CCT (Y2) ,

and ∆1 ∈ CCT (Z1) 6= ∆2 ∈ CCT (Z2) are the respective shortest paths for Z1 and
Z2. Thus, by iteratively applying shortest-path lifting as explained above, the evidence
propagates through and we obtain the new clustering.

In fact, SPS lifting can be quite fast and we will now show in our experimental evaluation
how the lifting time can be decreased for tasks with evidence arriving sequentially, e.g., lifted
satisfiability or lifted sampling of joint configurations. If, however, lifting does not pay off,
computing the pairwise distances may produce an overhead.
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input: A factor graph G, list of query vars Y
output : An assignment a to the variables in Y

1 G ← compress(G);
2 D ← calcDistances(G);
3 a ← ∅;
4 while Y 6= ∅ do
5 b ← runLiftedInference(G);
6 yt ← pickVarsToClamp(b);
7 a = a

⋃
yt;

8 Y = Y \Yt;
9 clamp(G, yt);

10 adaptLifiting(G, D); // SPS-lifting

// only for SAT

11 simplify(G); // based on LWP

12 if containsContradition(G) then
13 return None ;
14 end

15 end
16 return a

Algorithm 4: Lifted Decimation using SPS-lifting

3.2.2 Experiments

After we have described the idea of SPS-lifting, we will now show how it can be integrated into
an improved lifted decimation framework and we want to investigate the following questions:

(Q3.3) Can we further support the results from the previous section and show that lifted
decimation solves satisfiability problems more efficiently?

(Q3.4) Does lifting improve sequential inference approaches beyond lifted satisfiability?

(Q3.5) Is SPS-lifting even more beneficial than naive lifting based on CP?

Therefore, we run experiments on two AI tasks in which sequential clamping is essential. Namely,
BP-guided decimation for satisfiability problems and sampling configurations from MLNs. With
SPS-lifting, both tasks essentially follow the decimation strategy shown in Algorithm 4. However,
in the case of sampling, we do not run LWP and check for contradictions. Additionally, the
variable is not clamped based on the magnetization. Instead, we sample the value of the variable
based on its marginal belief. The previous section already contained initial experiments for
lifted satisfiability, however, the lifted decimation was implemented in a naive way. This initial
investigation of Q3.2 will now be extended to additional problem instances and supported by
a secondary set of experiments based on a different inference task.

Lifted Satisfiability

As indicated above, our lifted satisfiability based on decimation fits well into the sequential
setting. However, we now use a more elaborated variant compared to the one depicted in
Algorithm 3. It distinguishes most importantly from avoiding the entire re-lifting from scratch
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CNF Name # Iters. Ground Naive SPS Walksat

ls8-normalized 26 3.17 1.12 0.95 540


structured

ls9-normalized 13 5.47 1.65 1.47 1,139

ls10-normalized 14 10.27 1.84 1.59 1,994

ls11-normalized 26 38.82 11.51 10.64 4,500

ls12-normalized 35 60.83 13.15 11.57 10,351

ls13-normalized 21 55.39 9.99 8.21 30,061

ls14-normalized 22 83.30 10.22 8.30 104,326

2bitmax 6 55 2.35 1.25 1.05 379

5 100 sd schur 53 111.19 75.98 64.91 1,573,208

wff.3.100.150 54 0.19 0.26 0.22 17
randomwff.4.100.500 78 1.73 2.04 1.89 33

wff.3.150.525 126 6.36 6.76 6.56 284

Table 3.2: Total messages sent (in millions) in SAT experiments and the number of average
flips needed by Walksat (last column).

in each iteration. We first run LBP on the lifted graph and use its marginals to fix the next
variable. Based on this clamping, the lifting is updated using SPS-lifting. We then run LWP
on the modified lifted factor graph to clamp directly implied variables as before. Again, LWP
is also used to detect possible contradictions. When LWP finds a contradiction, the algorithm
stops and does not return a satisfying configuration. Otherwise, we continue by running LBP
again.

We continue to compare the performance of lifted message passing approaches with the
corresponding ground versions on the previously used CNF benchmark from [75]. We use the
decimation as described to measure the effectiveness of the algorithms. To assess performance,
we again report the number of messages sent. As before, for the typical message sizes, e.g., for
binary random variables with low degree, computing color messages is essentially as expensive
as computing the actual messages. Therefore, we report both color and (modified) BP messages,
treating individual message updates as atomic unit time operations. We use the parallel
message protocol for (L)BP and (L)WP where messages are passed from each variable to
all corresponding factors and back at each step. The convergence threshold was set to 10−8

for (L)BP and all messages were initialized uniformly. In the case of (L)WP, all messages
were initialized with zero, i.e., no warning being sent initially. As mentioned above, it is
usually necessary to iteratively apply the SPS-lifting to obtain the correct adapted lifted graph.
The number of required iterations, however, can be high if long paths occur in the network.
Therefore, we use the SPS-lifting only once but then continued with standard CP to determine
the new lifting. This can still save several passes of CP because the SPS-lifting provides us
with a good head start.

We evaluated (Lifted) WP+BP decimation on different CNFs, ranging from problems
with about 450 up to 78,510 edges. The CNFs contain structured problems as well as random
instances. The statistics of the runs are shown in Table 3.2. As one can see, naive lifting
already yields significant improvement, further underlining the experiments from the previous
section. When applying the SPS-lifting, we can do even better by saving additional messages in
the compression phases. The savings in messages are visible in running times as well. Looking
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Figure 3.6: Experimental results for lifted decimation on Latin squares. (a) Comparison of
ground decimation with naive lifted decimation on ls8-normalized. (b) Comparison of naive
lifting with SPS-lifting on ls8-normalized. (c) Comparison of the growth in computational
costs on increasing problem sizes measured relative to the smallest problem.

at Figure 3.6a, we compare ground decimation with its lifted counterpart. In the lifted case, we
only send 33% of the total ground messages. When using the SPS-lifting, we can save up to an
additional 10% of messages sent in the compression phase (Figure 3.6b). In the decimation, we
always clamp the most magnetized variable which is the variable having the largest difference
between the probability of the True and False state. We also applied the lifted message passing
algorithms to random CNFs (last three rows in Table 3.2). As expected, no lifting was possible
because random instances do usually not contain symmetries. In our experiments, we were
able to find satisfying solutions for all problems which validates the effectiveness of the (lifted)
decimation.

Although we are not aiming at presenting a state-of-the-art SAT solver, we solved all problems
using Walksat [196] as well. Hence, we report results measured in variable flips in Table 3.2
too. Although Walksat requires fewer flips than we send messages, one can see that our lifted
decimation strategy still scales well. In Figure 3.6c we have compared the computational effort
on increasing problem sizes for Walksat and our lifted decimation. The results indicate that
our approach can handle large problem instances without employing complex heuristics and
code optimization but exploiting symmetries in the problems.

In combination with the results from the previous section, Q3.3 and Q3.5 have clearly been
answered in favor of our algorithms for the task of lifted SAT solving. The next experiments
will show that this also holds in the case of lifted sampling.

Lifted Sampling

We investigated BP, LBP and SPS-LBP for sequentially sampling a joint configuration over a set
of variables, i.e., for a sequence of one-variable samples conditioned on a subset. Thus, to get a
sample for X = {X1, . . . , Xn}, we first compute p(X1), then p(X2|X1), . . . , p(Xn|X1, . . . Xn−1)
as shown in Algorithm 4 for the SPS-case. In contrast to the decimation for SAT solving,
the procedure of picking a variable to clamp is solely based on the index of the variables.
Additionally, we now sample a state from the computed BP marginals instead of clamping a
variable to the most magnetized state. Figure 3.7 summarizes the results for the “Smokers-
and-Friends” dynamic MLN with ten people over ten time steps. This MLN over time was
described in Section 2.3.1.
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Figure 3.7: Experimental results for Lifted BP guided sampling.

In our first experiment, we randomly chose 1, 5, 10, 20, 30, . . ., 100 “cancer” nodes over all
time steps and sampled from the joint distribution. As one can see in Figure 3.7a, LBP already
provides significant improvement compared to BP, however, as the sample size increases, the
speed-up is lower. The more evidence we have in the network, the less lifting is possible.
SPS-LBP comes with an additional reduction in runtime as we do not need to perform the
lifting in each step from scratch.

In our second experiment, we fixed the sample size to 100, i.e., we sampled from the joint
distribution of all cancer(x,t) predicates for all persons x in the domain and all time steps t.
We drew 1, 5, 10, and 15 samples and the timings are averaged over five runs. Figure 3.7b
shows that LBP is only slightly advantageous compared to BP, as the sample size is 100,
especially in the later iterations we have lots of evidence and long chains to propagate the
evidence. Repeatedly running CP almost cancels the benefits. SPS-LBP on the other hand,
shows significant speed-ups.

To evaluate the quality of the samples, we drew 100 samples of the joint distribution of
all variables using the BP-guided approach and Gibbs sampling respectively. We learned
the parameters of the model maximizing the conditional marginal log-likelihood using scaled
conjugate gradient. Figure 3.7c shows the absolute difference of the learned weights from the
model the datacases were drawn. To summarize the error into a single number, we calculated
the RMSE (see Equation (2.13)). The RMSE for the BP parameters was 0.31 and for Gibbs
parameters 0.3. As one can see, parameter learning with BP-guided samples performs as good
as with samples drawn by Gibbs sampling.

This experiment for lifted sampling completes our evaluation of the SPS-lifting for sequential
clamping and also answers Q3.4 in favor of our lifted decimation. We have seen that lifting,
and in particular SPS-lifting, speeds up the sampling of joint configurations and confirms the
positive answer to question Q3.5. At the same time, BP-guided sampling achieves comparable
quality to an alternative approach base on Gibbs sampling.

3.2.3 Summary

In this section, we presented an adaption to the original Color Passing algorithm for lifting. To
avoid the lifting from scratch in each iteration of the naive realization, we employed an efficient
sequential clamping approach. The SPS-lifting also gives a novel characterization of the main
information required for lifting in terms of shortest paths in a given network. The experimental
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results were conducted on two tasks for lifted inference, namely Boolean satisfiability and
sampling joint configurations from MLNs. These experiments validate the correctness of the
proposed lifted decimation framework and demonstrate that instantiations can actually be
faster than “just” using standard lifting.

Since lifting SAT solvers themselves and the exploitation of efficient sequential lifting for
them is a major advance, one should further look into the integration of SPS-lifting for Survey
Propagation because SP has proven to be very powerful for solving certain classes for CNFs.
Initial experiments were conducted in the previous section already, but for structured CNFs,
we are often facing the problem of trivial surveys returned by SP. One should investigate if the
choice of a variable to clamp can directly influence the results of SP and its convergence.

As mentioned above, in the lifted sampling experiments, the variable to clamp was solely
picked based on its index in the problem formulation. Other algorithms use the idea of
conditioning to construct approximate inference algorithm based on BP, e.g., CBP-BBP
presented in [53], and use more elaborated methods to select a variable to clamp. Both, lifting
the CBP-BBP-algorithm, as well incorporating their ideas on picking a variable to clamp into
our decimation framework are interesting avenues for future research and still open questions.

Lastly, if we are clamping the factor graph over the iterations, we will most likely end up
with a factor graph with almost all variables being set and little opportunities for lifting. Hence,
one should also look for heuristics that stop compressing when almost all variables are clamped
and lifting is too costly.

While this section showed how lifting can be efficiently exploited over several runs of inference
with changing evidence, we will now turn our attention to an atomic inference run. For iterative
MAP inference algorithms, one should also consider adapting the lifting over the iterations of
message passing to possibly speed up run time.

3.3 Bootstrapped Inference with Lifting

The previous sections focused on marginal inference and we will turn our attention now to
MAP inference. It was already mentioned that MAP inference is an important, yet challenging,
problem and it was discussed how an approximate MAP assignment can be obtained by max-
product BP. In this section, we will go into further detail how an approximate MAP assignment
can be obtained by other means than BP. Specifically, we will consider a known Likelihood
Maximization (LM) approach [129] which was empirically shown to have a convergence rate
often significantly higher than approaches such as MPLP [70]. LM increases a lower bound
on the MAP value while being fairly simple to implement. Intuitively, Kumar and Zilberstein
approximate the original distribution by a simpler one and show that this approximation often
yields satisfying results. This approximation imposes the constraint on the model distribution
that any probability over subsets of variables is equal to the product of their single node
marginals. Kumar and Zilberstein derive Expectation Maximization (EM) [48] equations to
optimize the objective and show that their algorithm can be implemented using a message
passing paradigm. LM quickly finds high quality solutions and yet the message updates are
remarkably simple. Specifically, as our first contribution, we show that LM is liftable in a
bottom-up fashion akin to the lifting of BP and the message passing algorithms for satisfiability
presented in the previous section.

Specifically, we introduce lifted LM equations that are used on the lifted problem formulation.
Here, we also obtain the lifted model by applying a variation of the CP algorithm to the ground
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model. This contribution further extends the family of known lifted MAP approaches. However,
one common issue in lifting is evidence which often destroys symmetries in the model. The
more evidence is given, the more propositional the problem becomes, ultimately canceling the
benefits of lifted inference. It is easy to generate evidence cases that actually cancel the benefits
of lifted inference completely. Hence, the main contribution of this section is to show, how
to employ additional structure for optimization provided by LM, to further speed up lifted
inference. In particular, we will introduce the concept of Pseudo Evidence (PE).

For LM, it has been recognized that pseudo marginals may converge quickly when forcing
updates to be as greedy as possible [223]. We interpret this greedy update rule as ultimately
inducing Pseudo Evidence: if a pseudo marginal is close to one state, clamp the corresponding
variable accordingly. As we will show empirically, this can already considerably speed up
inference in the propositional case and reduce the number of messages being sent. However,
the model could potentially be simplified even further over the inference iterations, but the
naive Lifted Likelihood Maximization (LLM) approach cannot make use of this new evidence to
speed up lifted inference in later iterations. Consequently, we propose an efficient LLM version
for updating the structure of the lifted network with Pseudo Evidence over the iterations.

To do so, one is tempted to just lift the network again when new Pseudo Evidence is
“observed” using any online lifted inference approach and related approaches (see Section 2.4).
However, we can do significantly better. Existing online approaches simply compute a more
shattered model, should the new evidence require to do so. But note that the current lifted
model is always valid for the remaining iterations because we always set entire clusters as
Pseudo Evidence. Therefore we can simply lift the current lifted model and obtain models
monotonically decreasing in size. Indeed, this is akin to Bui et al. [31] who show how soft
evidence affects lifting. Bui et al. exploit symmetries before soft evidence is obtained. So, in
contrast to existing lifted inference approaches, we add evidence over the iterations and use this
additional evidence for lifting. Indeed, this bootstrapped3 LM using Pseudo Evidence is akin to
lifted “relax, compensate and then recover” (RCR) [231] because messages to clamped variables
do not have to be calculated anymore and these edges can be deleted. However, whereas RCR
first relaxes and then compensates, we just “reduce and re-lift” over the iterations.

To summarize, this section makes the following contributions:

(C3.7) We show that Kumar and Zilberstein’s LM can be lifted using a Color Passing algorithm.

(C3.8) For MAP inference, we exploit Pseudo Evidence to save message computations without
decreasing the quality of the solution drastically.

(C3.9) By employing bootstrapped re-lifting, we compress the problem additionally in later
iterations.

(C3.10) We show how to re-lift solely on the lifted level without resorting to the ground model.

Our experimental results on MLNs, Ising models, image segmentation and entity resolution
show that Bootstrapped Lifted LM (BLLM) can yield considerable efficiency gains compared to
standard LM and naive LLM.

We proceed as follows. We start off by reviewing the LM approach from [129]. We then
develop its naive lifted variant. Afterwards, we show how to obtain Pseudo Evidence and how

3Here, we refer to bootstrapping as the capability of self-improvement during the inference stage. In learning
settings, bootstrapping also refers to iteratively improved learning where the learner adds previously learned
concepts to the training set, e.g. [156].
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Figure 3.8: Kumar and Zilberstein’s LM approach relies on the fact that a factor graph is
decomposed into a mixture of Bayesian networks. Here, the factor graph composed of three
variables is split into three Bayesian networks, each containing a reward variable f̂a for the
corresponding factor.

it can be used to efficiently re-lift the already lifted model. Before discussing the new approach
and putting it into the context of the previous sections, we will present our experimental
evaluation.

3.3.1 Lifted LM

Inspired by the equivalence between MAP inference and solving a linear program, Kumar and
Zilberstein place a constraint on the probability distribution in the definition of the marginal
polytope M(G) (see Equation (2.4)). More details on the marginal polytope can be found in
Section 2.1. More precisely, they constrain the original distribution in such a way that the
following holds

p(x) =

n∏
i=1

pi(xi)

and afterwards maximize over the resulting set of mean parameters. This set of parameters
defines an inner bound of the marginal polytope. Kumar and Zilberstein show that this
maximization problem can be reformulated as likelihood maximization in a finite-mixture of
simple Bayesian networks (BNs). The hidden variables in the mixture are the Xi in the original
MRF. The potentials fa are incorporated via “binary reward variables” f̂a and the conditional
probability distribution of f̂a is proportional to fa, i.e., for every potential fa in the MRF, there
exists a BN with a reward variable and its parents being xa. Figure 3.8 shows how an example
factor graph is transformed into a mixture of BNs. The optimization of this new objective
cannot be done using linear programming techniques anymore because the restrictions on the
probability distribution are now non-linear. Therefore, Kumar and Zilberstein introduce an
EM approach that monotonically increases the lower bound of the MAP. While in the original
work the equations for pairwise MRFs were derived only, we will here give the EM message
passing equations in an adapted form for arbitrary factor graphs. A message sent from a factor
a to one of its neighboring variables i is defined as:

µa→i(xi) =
∑
¬{i}

fa(xa)
∏

j∈nb(a)\{i}

pj(xj),
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as before, ¬{i} denotes all possible instantiations of the variables in the domain of factor a
with variable Xi fixed to xi and nb(a) denotes the variables connected to factor i. Recalling the
BP message from a factor to a neighboring variable in Equation (2.8), the LM message looks
very similar. However, we do not have a message in the other way around involved but instead
solely the current beliefs pj(xj) of the marginal probabilities of the neighboring variables. This
simplifies the message passing. The M-Step updates these beliefs in every iteration as follows:

p′i(xi) =
1

Zi
pi(xi)

∑
a∈nb(i)

µa→i(xi) ,

where Zi is a normalization constant for variable Xi. Again as in BP, or the other message
passing algorithms we have seen so far, the process of sending messages is iterated until
convergence. In the case of LM, the stopping criterion is defined over the difference of the
beliefs in two subsequent iterations. For what follows, it is important to note that a modification
of this M-Step is common in order to speed up convergence: the so called soft greedy M-Step,
originally proposed in [223], is used to weight the current expectation stronger. Its usefulness
has been shown empirically in the literature.

We now derive the formulas for the lifted variant of LM. As we have explained above (see
Section 2.4.1), lifting can be viewed as a color passing procedure that finds symmetries in a
given factor graph by sending color messages. For BP, the idea of the CP algorithm was to
find variables that have the same marginal distributions under the message passing algorithm
following a parallel update schedule. Similarly, this held for warnings in WP and surveys in
SP. For the lifted LM, this means that one identifies variables that have the same optimizing
distribution in the EM algorithm.

If we want to run the LM algorithm on the lifted model, we have to adapt the messages sent
from factors to variables and the M-step, to reflect merged groups of variables and factors, i.e.,
nodes with the same color after running CP. Again, this is achieved by adding counts to the
formulas. We save messages sent from factors to nodes by observing that factors connected
to k variables of the same color only need to calculate a single message instead of k messages
because all k messages are identical. With a similar argument, we multiply the incoming
messages by k in the M-step if a variable is connected to k factors of the same color. In a lifted
representation, the variables would only appear in one single Bayesian network instead of k
different nets. Hence, the lifted message equation of the M-Step is:

p′i(xi) =
1

Zi
pi(xi)

∑
a∈nb(i)

µa→i(xi) · vc(a, i), (3.2)

where xi is a clustervariable in the lifted network. As opposed to the ground case, the lifted
equation sums over the lifted network (a ∈ nb(i)) and introduces the count vc(a, i). This count
is the number of times, ground variable Xi is connected to factors with the color of fa in the
ground network. This M-Step has only to be done once for every distinct variable color. This
provides an intuitive interpretation of what the equations do in the case of Lifted Likelihood
Maximization (LLM): LLM can be thought of sorting the Bayesian networks of the mixture
(cf. Figure 3.8) into buckets and each bucket corresponds to a clusterfactor. Initially, every
Bayesian network is assigned to a bucket according to the conditional probability table of f̂a.
Then variables compute their color signatures as before. The Bayesian networks are now put
into different buckets depending on the colors of their child nodes.
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3.3.2 Bootstrapped LM

While lifting is an exact method to speed up inference, we will now introduce an additional,
approximate modification to the LM approach that reduces run times even further. Adjusting
the current estimation of a variable’s distribution by a small amount should only have a small
effect on its direct neighbors and the effect on other variables decays with the distance. For
example, such an effect of errors in BP-messages has been analyzed in [97]. On the other hand,
if we clamp a variable in the graph, we do not have to care about messages to that variable
anymore and additionally, potentials over this variable can be simplified. On top of that, the
influence on the other variables does not necessarily have to be negative, instead these variables
can converge faster to their correct maximizing state. We will now describe, how we make use
of this observation.

When LM iteratively computes the new beliefs p′i, the uncertainty about the MAP state
decreases over the iterations. Once the probability for one state is above a threshold π, one
can assume that it will not change its state in the final MAP assignment anymore. Since
LM essentially implements a gradient-based solver for the underlying mathematical MAP
program [129], being close to one state makes it very unlikely ever turning to a different one. In
such cases, we fix the distribution in such a way that all states have zero probability except for
the most likely state which is set to one. More formally, if x∗i = arg maxxi p

′
i(xi) and p′i(x

∗
i ) > π,

we set

p′i(xi) =

{
1, if xi = x∗i ,

0, otherwise
(3.3)

We call such states Pseudo Evidence (PE) because they do not belong to knowledge that is
available beforehand but instead becomes available during the inference. Therefore, Bootstrapped
LM (BLM) will refer to the LM approach that adds evidence over the iterations. More
importantly, PE has major implications on future message updates:

• It simplifies the MRF because it cancels out impossible states from the potentials.

• It allows skipping messages to these variables because for clamped variables the M-step
is obsolete.

Recall that the idea of PE is inspired by the soft greedy rule for the M-Step in LM and also
reduces the number of iterations required to converge. On top of that, we can now combine PE
and lifting. We can re-lift the network during inference based on this new evidence. Thereby we
obtain a more compact lifted network. This is intuitively the case because PE often introduces
additional independencies in the graphical model which can be exploited via lifting. However,
as we will see below (Figure 3.9), standard CP is not always capable of exploiting all of these
newly introduced independencies. Hence, fully exploiting PE for lifting requires an adapted
form of CP. Before we explain this bootstrapped lifted LM, we want to give some intuition
into the approximative nature of the maximization when PE is present. Essentially there are
two errors that can be introduced by PE:

(A.1) In rare cases a variable will change its state again, even though its belief was already
above the threshold π. Therefore, we also propose a variant of BLM where we do not directly
clamp a variable on observing a belief above π for the first time but instead we only mark it
for clamping. We clamp the variable if we see that its state remains the same for the following
T iterations and proceed as before. To estimate the effect of this lag, we simply count the
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3.3 Bootstrapped Inference with Lifting

number of state changes during the iterations for different T . However, as we will show in our
experiments below, these state changes occur rarely.

(A.2) Clamping a variable can be seen as introducing an error to the messages. But as
shown in [97] for BP, the influence of the error on other variables in the network decays with
the distance to the clamped node. Additionally, this influence does not have to be negative. In
fact, it can also lead to faster convergence to the correct state. Optimally, one would clamp a
variable only if the effect on neighboring variables is negligible or even positive. Determining
the exact influence of PE is difficult but we estimate it by comparing the final MAP solution
obtained by BLM to the result of standard LM. One can think of more elaborated ways to
measure the effect of clamping. For example, comparing the messages exchanged between
direct neighbors with and without PE, one can calculate the error made by setting the variable.
Inspired by the idea of backtracking, one could even calculate the change in beliefs of the
neighboring nodes and omit the clamping if the direction of the gradient changes. However, this
requires even more computational effort and dispossesses LM one of its key features, namely
its simplicity.

In the experimental section, we will empirically show that issues A1 and A2 do not have
critical influence on the quality. Instead, BLM results are of high quality and we do not use
more enhanced ways for clamping which requires higher computational demand.

3.3.3 Bootstrapped Lifted LM

We now combine PE and lifting. After setting PE, we may now get more opportunities for
lifting since variables and factors may fall into the same cluster though being in different ones
in earlier iterations. A naive lifting approach takes the ground network, clamps it according to
the PE, uses CP or any online variant to lift it, and continues message passing on this new
lifted network. Although this approach sounds promising, we will now give an example to
illustrate the downside of this naive approach.

Example 3.9. Rows 1-3 in Figure 3.9 depict the naive approach of combining PE and
lifting based on CP. The figure assumes a binary, pairwise MRF with identical pairwise
potentials, i.e., fij(xi, xj) is the same for all pairs (i, j) ∈ E. The line color of the nodes
denotes different unary potentials fi(xi). In our example, all unary potentials are identical
(red) except for the one associated with the variable in the upper left corner (green). However,
for simplicity let us further assume that these priors are not converse but only different in
their parameter strength. For example, green could encode something like (0.2, 0.8) while red
encodes (0.25, 0.75). The first row in Figure 3.9 shows the ground network without any PE.
After running CP, we get the graph shown in the center column (on the right hand side of
the −→) with nodes colored by six different gray shades according to CP. This graph can be
compressed to the lifted network next to the equality sign (right column). The lifted network
contains only six nodes as opposed to nine ground nodes. Now assume that at some point we
obtain identical PE for all four corners (depicted as stars instead of circles for the variable
nodes). Running CP on the ground network with the new evidence in mind, we obtain the
very same lifting as in the previous iteration, namely a network containing six variables
(Figure 3.9, second row). As we will explain now, this behavior of CP is suboptimal. Since
the upper left corner is set, its unary factor does not have any influence on any message
being sent in future iterations. This also holds for the other three corners. This means that
their unary factors can actually be neglected and all four corner nodes should receive the
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Figure 3.9: Re-lifting a network with Pseudo Evidence which is not optimally lifted via standard
Color Passing once Pseudo Evidence is present.
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Figure 3.10: Factor graph and corresponding Bayes nets. X1 and X3 are clamped. f1 and f4

are different (denoted by different colorings of the factor nodes) while f2 and f3 are identical
(same color of factor nodes).

same color in the final coloring of the graph. We will below show how to modify CP in order
to recognize the new symmetries induced by PE. However, let us first finish our running
example. In the third row of Figure 3.9, we assume that all remaining unclamped variables
are now being fixed except for the center variable. Again, CP is not able to exploit additional
symmetries and the compressed model simply remains the initial lifting.

To sum up, the lifting obtained from CP is not always optimal if evidence is present. To
overcome this issue, we will now propose an adapted CP algorithm and we will show how to
modify CP to achieve a higher compression due to “edge-deletion” induced by PE. Evidence
Aware Color Passing (EACP) is similar to the original CP but capable of returning a lifted
network that respects PE. We begin by illustrating the underlying idea by an example.

Example 3.10. Assume the factor graph in Figure 3.10a has identical and symmetric
pairwise potentials f2 and f3. The unary factors of X1 and X3 are different, denoted by
the different colors of the factor nodes f1 and f2. We also assume that X1 and X3 have
just been set to 1 and we stick to the notation that variables with PE are denoted as stars.
Figure 3.10b shows the BNs associated with the factor graph. The message sent from f2 to
X2 (µf2→X2) is calculated as follows:

µf2→X2(x2) =
∑
x1

f2(x1, x2) · p(x1)

=f2(0, x2) · p(0)︸︷︷︸
=0

+f2(1, x2) · p(1)︸︷︷︸
=1

=f2(1, x2)

One can see that this message is affected by the evidence on X1. The message reduces to
the value of f2(1, x2) because the probability of X1 being in state 0 becomes zero due to the
PE, i.e., p(x1 = 0) = 0. Similarly, the message sent from f3 to X2 can be simplified to
µf3→X2 = f3(1, x2). In a network without PE, f2 and f3 send different messages to X2

because these messages are dependent on the current beliefs of X1 and X3 which are different
due to their unary factors. Since the messages are now identical, we can put f2 and f3 into
the same cluster, i.e., the corresponding BNs can be put into the same bucket. The key
insight is that standard CP assigns too many colors, i.e., factors that actually send identical
messages are colored differently. CP initializes X1 and X3 identically, but f1 and and f4

have different colors which are propagated to X1 and X3 in the initial color exchange.
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input: A factor graph G
output : Variable and factor colors

1 initialize colors();
2 propagate evidence();
3 while not converged do
4 foreach fk do
5 if free vars(fk) > 1 then
6 build signature(fk); /* As in standard CP */

7 end

8 end
9 factor colors = new colors();

10 foreach Xi ∈ X do
11 if not clamped(Xi) then
12 build signature(Xi); /* As in standard CP */

13 end

14 end
15 variable colors = new colors();

16 end
Algorithm 5: The EACP algorithm also accounts for existing evidence during the color
passing and thus finds more compact liftings.

Essentially, evidence creates independencies in the underlying factor graph and blocks
influence thereby. If there is no flow between two nodes due to evidence, their colors should
not be affected by each other. To overcome this problem, EACP differs from CP in several
aspects and produces a coloring of the ground factor graph that respects the PE. The pseudo
code for EACP is given in Algorithm 5. In line 2, the evidence of the variables is propagated
to the neighboring factors. This includes pseudo and observational evidence. This step allows
us to distinguish identical factors that are connected to variables with different evidence. In
turn, it can distinguish f2 and f3 in Figure 3.10a if X1 and X3 had been set to different states.
The other two main modifications compared to CP are as follows. In line 5, factors only create
new color signatures if they are connected to more than one unclamped variable. Otherwise
they keep their current color. Secondly, in line 11, evidence variables never receive new colors.
We now show that EACP indeed returns a correct lifting.

Theorem 3.2. EACP is sound, i.e., it returns a valid lifting of the ground network.

Proof sketch. All evidence variables that have the same range and are set to the same state
keep their colors because their distribution is fixed. They all have the same influence and
do not have to be distinguished. Nodes that have not been set behave as in standard Color
Passing. Without loss of generality, let us assume pairwise factors but the argument generalizes
to the arbitrary case. If one variable of a factor is clamped, messages to the other variable
become independent of any of the marginal distributions; they solely depend on the potential
of the factor. Hence, two factors with identical potentials receive the same colors initially and
do not have to adapt their colors; the messages they send are identical which satisfies the
requirement for the same color. By propagating the evidence of the variables before the actual
Color Passing, we ensure that factors can be distinguished that are connected to PE variables
in different states.
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input: A factor graph G
output : An approximate MAP assignment

1 G ← compress(G); /* G is the input graph */

2 while not converged do
3 calc deltas(); /* µf→X(x) */

4 calc marginals(); /* Equation (3.2) */

5 clamp variables(); /* Equation (3.3) */

6 if new pseudo evidence then
7 leacp();
8 average marginals();

9 end

10 end
11 return calc map(); /* MAP assignment */

Algorithm 6: Bootstrapped Lifted Likelihood Maximization

The main idea is now to replace CP with EACP. As our experiments will demonstrate,
considerably higher compression rates are obtainable because we exploit the PE. This is also
illustrated in rows four and five in Figure 3.9. Here, EACP obtains better compression than CP
after PE is observed. After clamping the corner variables, EACP returns a model containing
three variables instead of six. However, we can still do considerably better and become more
efficient because EACP operates on the ground network. As we will show now, it can also
operate on the current lifted network.

Lifted EACP (LEACP) functions similar to EACP but it requires some modifications of the
color signatures. We have to distinguish variables that are connected to a different number
of factors of the same color. This is exactly the information contained in the counts vc(a, i).
LEACP now simulates the ground color signature for a variable Xi by appending vc(a, i) times
the color c of a factor fa, i.e.,

〈c, c, . . . , c︸ ︷︷ ︸
|〈·〉|=vc(a,i)

〉 .

This idea is only correct for lifted networks that have non-fractional counts. This makes it
non-trivial to employ other approximate lifting approaches such as informed lifting [115] and
early stopping [210]. An example of fractional counts in early stopping lifting was shown in
Figure 2.8. To see that LEACP returns a valid lifting, first note that setting PE will never
require a cluster in the lifted network to be split. This is simply because all variables in a cluster
have the same expectation of their marginal distribution so that we will always set an entire
cluster to evidence. In turn, the variables in that cluster will remain to be indistinguishable in
all later iterations and we will never have to split them. This is clearly a distinction from the
decimation-based framework (Section 3.1.6) where usually just a subset of the variables, in the
extreme case only a single variable, were clamped in each cluster. This essentially proves the
soundness of LEACP.

Theorem 3.3. LEACP is sound, i.e., it returns a valid re-lifting of the current lifting con-
taining additional evidence.

Proof. Every partition is valid for all following iterations. A partition remains valid after
setting evidence because we always set an entire cluster, i.e., all ground variables in a cluster are
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set to the same state. This means that we never require more colors than we have clusternodes
in the current lifting. Only merging two clusternodes is a possible action which reduces the
number of required colors. We can merge two clusters Xi and Xj iff all corresponding ground
variables behave the same in the ground network. Similar to the BP message passing in the
lifted network, we now have to simulate the color signatures in the case of Color Passing. Here,
the counts come into play which then produce the same color signature as in the ground case.
Via Color Passing on the lifted graph and adapting the color signatures by the counts, we
obtain the same color signatures as if we were running CP on the ground graph.

Putting all pieces together, we obtain Bootstrapped Lifted LM (BLLM) as summarized in
Algorithm 6. BLLM exploits all enhancements we have introduced above. It uses standard CP
to obtain an initial lifting (line 1) for a factor graph without PE. It then runs on the lifted
level until PE is encountered (lines 3-5). In cases, where PE is set, it uses LEACP to re-lift
the model on the lifted level (line 7).

To complete the discussion of BLLM, we have to explain one final issue. Indeed, LEACP
returns a valid lifting. However, when two clusternodes are merged, they may have different
beliefs about the current estimation of the marginals. Hence, we need to calculate a common
marginal in the re-lifted network to continue with the iterative process. Reconsider Figure 3.9.
When the PE for all four corner variables is encountered, their neighboring variables have
different marginals but BLLM puts them together into one cluster. We propose to to simply
take the average of the marginals of the involved variables to make use of the calculations
of previous iterations (line 8 in Algorithm 6). Intuitively, we do not initialize the variables
again since we already know their tendency and they should get the same beliefs in the end.
Although this is not exact, it does not sacrifice the estimation quality as we will validate in our
experimental results below and it also justifies the re-lifting. On top of that, it is also likely
to reduce the variance of the estimates by this averaging. BLLM saves messages compared to
the ground inference by avoiding the calculation of indistinguishable messages. Additionally,
LEACP is more efficient than EACP and CP because it solely operates on the lifted network
to obtain the lifting for the following iterations. That is we never have to return to the ground
factor graph again after the initial lifting. This is also illustrated in rows six and seven in
Figure 3.9.

Finally, we want to comment on the time complexity of EACP and LEACP. The idea
of bootstrapped lifting only works if the repeated call to lifting is efficient. Since (L)EACP
involves only linear-time modifications of CP, each of their iterations also runs in linear time
(see Section 2.4.1 for details on the run time of CP).

3.3.4 Experiments

Here, we investigate the question whether our bootstrapped and lifted LM variants can be
considerably faster than the baselines without decreasing performance. We will answer the
following main questions:

(Q3.6) Does LM benefit from PE?

(Q3.7) Can PE combined with lifting speed up LM even further?

(Q3.8) How does the quality of B(L)LM’s results compare to standard LM?

To do so, we implemented the following set of algorithms:
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Figure 3.11: Relative run time of BLLM compared to LM and BLM.

• LM: the propositional approach by Kumar and Zilberstein

• LLM: the naively lifted LM using only standard Color Passing

• BLM: Bootstrapped LM using PE but no lifting

• BLLM: the bootstrapped lifted LM as shown in Algorithm 6

LLM, BLM, and BLLM are the contributions from this section and will be compared against
LM. To this aim, we evaluated them on lifting benign (friendly) and malignant (unfriendly)
models. In particular, we consider synthetic Ising grids and relational models, as well as
real-world models for simple image segmentation and relational entity resolution.

Before we present the quantitative and qualitative results, we give some further technical
notes on the implementation and the parameters used. Since clamping a single variable is
unlikely to achieve significant gains in lifting, we re-lift after we have obtained PE for a batch
of b% of the original number of variables. In our experiments we set b to 10. We stop the
algorithm after 2,000 iterations if the algorithm does not converge earlier. The other parameters
are set to π = 0.9 (PE-threshold) and T = 0 (lag-parameter).

Smokers-and-Friends-MLN

For our first experiment, we generated MLNs of varying domain sizes, i.e., for an increasing
number of persons (see Section 2.3.1 for more details on the S&F-MLN). More precisely, this
means that we increased the domain size of the person predicate in the MLN from 5 up to 50.
Resulting in factor graphs with up to 2,600 variables, 5,510 factors, and 10,150 edges. We call
this setting the benign S&F-MLN because it does not contain any evidence and hence is well
suited for lifting. The first plot in Figure 3.11 shows that BLLM only requires a fraction of
the time compared to LM (red circles). Additionally, the blue triangles highlight that lifting
reduces the running required by BLM significantly. For a clearer picture, we have omitted
the running times of LLM. But for this problem, LLM outperforms BLM while BLLM is the
fastest method among all. This is not surprising, as this scenario is very well suited for lifting.

We now add 25% random evidence to the MLNs by randomly choosing predicates and their
state. We call this setting the malignant S&F-MLN because the random evidence prevents CP
from lifting the network initially. The results are depicted in the second plot in Figure 3.11.
Again, BLLM only requires a fraction of LM’s running time. But compared to the benign case,
lifting BLM does not help as much as before. Nevertheless, lifting is still beneficial for the larger
problems and BLLM is capable of exploiting symmetries in models for which standard CP
resorts to the ground network. We see that lifting is an overhead in the small problem instances
but as the problems become larger, BLLM becomes faster than BLM, exploiting symmetries
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S&F-MLNs Benign Case
5 10 15 20 25 30 35 40 45 50

(L)LM 103.5 362.0 775.5 1344.0 2067.5 2946.0 3979.5 5168.0 6511.5 8010.0

B(L)LM 103.5 362.0 775.5 1344.0 2067.5 2946.0 3979.5 5168.0 6511.5 8010.0

S&F-MLNs Malignant Case
5 10 15 20 25 30 35 40 45 50

(L)LM 85.2 333.0 687.3 1234.4 1854.9 2682.3 3655.6 4744.0 5895.6 7251.8

B(L)LM 85.2 333.0 687.3 1234.4 1854.9 2682.3 3655.6 4744.0 5895.6 7251.8

Ising Grids of Varying Sizes
5 10 15 20 25 30 35 40 45 50

(L)LM 73.1 309.1 499.1 892.0 1991.6 2447.8 3095.0 3227.0 5391.7 5480.4

B(L)LM 72.8 294.4 481.4 859.4 1913.0 2352.4 2997.2 3118.9 5201.2 5248.8

Ising Grids of Varying Field Parameters
6 31 63 156 313 625

(L)LM 1693.9 1808.8 1991.6 1566.9 1093.0 1748.1
B(L)LM 1663.0 1739.8 1913.0 1520.4 1061.5 1681.8

Table 3.3: The log-scores (the higher, the better) show that the B(L)LM versions of the
algorithms achieve high quality results. Bold log-scores are in 95% of the standard LM score.

obtained from Pseudo Evidence. For these malignant MLN problems, LLM basically reduces to
the ground LM case as the evidence destroys initial symmetries. We now also want to compare
the quality of the obtained MAP configurations. To this end, we computed the log-likelihood
score, as defined in Equation (2.10), of the obtained assignments. As shown in Table 3.3, all
solutions obtained by BLLM are qualitatively as good as the results produced by LM.

Ising Models

The next set of experiments were conducted on Ising grids. Ising grids are pairwise MRFs with
xi ∈ {−1,+1} and

p(x) =
1

Z

∏
i∈V

fi(xi)
∏

(i,j)∈E

fij(xi, xj)

The unary potentials are f(xi) = exp(xiwi) where wi is called the field parameter and
is drawn from [−1, 1]. Pairwise potentials are defined as f(xi, xj) = exp(xixjwij) with the
interaction parameter wij . We call the grid attractive if all wij > 0. We consider different Ising
models in the classical sense which have a single interaction parameter wij only. Motivated by
applications in image processing, we use attractive interaction parameters and a limited set of
field parameters instead off drawing all wi randomly.

The first problem set consists of grids of increasing size. We generated grids from 5× 5 up
to 50× 50 with a fixed ratio of different field parameters equal to 10%. We generated ten grids
for every size and averaged the results over these runs. The results are shown in the third plot
in Figure 3.11. BLLM is by far the fastest method and lifting of BLM achieves around 20%
speed up on the larger instances.

The second experiment keeps a fixed grid size of 25 × 25 and varies the number of field
parameters. For every grid, we generated a set of field parameters beforehand. The size of this
set is chosen relative to the number of variables in the grid. The fourth plot in Figure 3.11
again shows that BLLM is the fastest method and requires less than 10% of LM’s running time.
Similar to the malignant S&F-MLN, lifting can here speed up BLM only little. This can be
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Figure 3.12: Input and output for the image segmentation task. In summary, BLLM outperforms
all other variants in terms of run time while achieving accurate results.

explained by the fact that the effects of unary factors vanish once a variable is set and pairwise
potentials with only a single free variable can be clustered for all distinct values of the clamped
variables. On the other hand, standard lifting does not help in this scenario and requires the
same time as the ground variant plus an small overhead due to the lifting at the beginning.
Table 3.3 contains average log-scores for a qualitative comparison of both experiments on Ising
grids. The results of BLLM are close to LM’s solutions and always above 95% of the LM score.

To obtain another qualitative measure, we compared the log-scores of LM and BLM with
max-product BP on different grids. One observes that the scores of LM and BLM are often close
to the ones obtained by max-product BP. For example, on a grid with 156 field parameters,
we have LM and BLM both with log-scores of 391 while max-product BP achieved a score of
393. However, when the strength of the interaction parameters increases, we observe that the
quality of LM solutions decrease compared to max-product BP, e.g., we obtain a log-score of
2,544 for LM and 3,162 for max-product BP (LM is not above 95% of the BP-score anymore).
A similar observation has already been made in the original work. Kumar and Zilberstein
state that the LM approach can tend to poor performance in cases where the gap between the
minimum and maximum reward is large.

In general, these random grids are not well suited for exact lifted inference as there is no
structural symmetry. However, BLLM is still able to perform better than BLM. This clearly
shows the benefits of exploiting PE and shows that lifting can become beneficial even in settings
that are adversarial towards lifting in general.

Image Segmentation

Many tasks in computer vision can be encoded as binary pairwise grids, e.g., simple forms
of foreground/background classification. To show that the BLLM algorithm actually results
in high quality solutions on real world problems, we ran our algorithm on an instance of an
image segmentation task. We have used Ising models in the previous experiment already in a
set of synthetic experiments. Now, we will use such binary discrete MRFs to label pixels as
foreground or background in an image. Having variable xi = −1 assigns the corresponding
pixel to the background and correspondingly, for xi = 1 the pixel belongs to the foreground.
As described in [154], the unary factors fi(·) are based on the difference of two video camera
images and defined as follows:

fi(xi) = exp(xiwi) = exp

(
xiw tanh

hi − c
r

)
Here, hi is the absolute difference in hue of pixel i in the two images. The other parameters,

i.e., w, c, and r can be fined tuned based on a training set. This function penalizes a large
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Cora Entity Resolution
5 10 20

(L)LM 0.98 -103.6 -689.2
B(L)LM 0.98 -116.5 -702.8

Table 3.4: The log-scores on the Cora dataset (the higher, the better) also show that the
B(L)LM versions of the algorithms achieve high quality results on a real-world problem dataset.
Bold log-scores are in 95% of the standard LM score.

difference in the input and the reference image. The pairwise factors fij(·) encode the intuition
that neighboring pixels are more likely to belong to the same part of the image:

fij(xi, xj) = exp(xixjwij)

with wij > 0. These pairwise factors are defined as in attractive Ising models and act as a
smoothing function. We used the scripts with their default parameters contained in libDAI [155]
to generate a factor graph for this task and we also used their example images. The inputs
were the first two images depicted in Figure 3.12. The script calculates the difference between
both images to define the unary factors as described above. The potentials of the pairwise
factors are defined such that neighboring pixels are more likely to belong to the same segment.
The third and fourth image in Figure 3.12 show the results after running inference (LM on
the left, BLLM on the right). The images show that the result obtained by BLLM is almost
as good as the one obtained by LM. One has to look very carefully to see differences which
visually validates the PE based approach. In fact, the score achieved by BLLM is only slightly
lower compared to LM.

Relational Entity Resolution - Cora

We conduct our final experiments on the Cora entity resolution dataset. We obtained the
dataset from the Alchemy repository4 and also used Alchemy for weight learning. We did
not evaluate on the entire dataset since subsets are already sufficient to highlight our results.
Instead, we randomly sampled k bib-entries and added all predicates describing their properties
to the evidence. We ran experiments for k = 5, 10, and 20. The largest problem instance
contains 1,110 variables, 32,965 factors, and 71,209 edges. The results in Figure 3.11, 5th plot,
show that BLLM clearly outperforms LM in terms of runtime, while the scores are very similar
(see Table 3.4). Here, lifting achieves good performance increases over BLM again. This also
holds for the naive LLM which is again omitted in the plot for clearness. One should not get
confused about the negative values for the datasets with 10 and 20 bibliographic entries. This
is due to the fact that the Cora-MLN has positive and negative weights. If not sufficiently
many clauses with positive weights are satisfied, the sum of the log-weights becomes negative.

We also analyzed the behavior of BLM on the Cora problem with respect to the nature of
the approximation as motivated in A1 and A2 above (see Section 3.3.2). We have observed
that state changes, as described for A1, during the iterations almost never occur. One has to
set the lag-parameter T > 50 to observe any state changes at all. Similarly, as one can already
expect from the log-scores, the approximate MAP solutions are very similar. The differences

4alchemy.cs.washington.edu
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3.3 Bootstrapped Inference with Lifting

X1

X2 X3

Figure 3.13: If we assume that unary and pairwise factors are identical, this fully connected
graph is compressed to a single node if Color Passing is applied.

seem to result from variables changing their states only but not due to wrong influence on
neighboring variables that results form setting PE.

The experimental results clearly show that LM is boosted by lifting and PE can indeed
considerably reduces run times without sacrificing accuracy. Moreover, BLLM scales well and is
most beneficial on relational models. Nevertheless, BLLM can also improve state-of-the-art on
propositional models that so far were challenging for lifted inference approaches. To summarize,
questions Q3.6–Q3.8 were all answered in favor of BLLM.

3.3.5 Summary

In this section, we introduced the idea of Pseudo Evidence (PE) for MAP inference. We showed
that it can considerably speed up MAP inference and provides novel structure for optimization.
Specifically, we bootstrapped lifting using PE and empirically demonstrated that this “reduce
and re-lift” concept can decrease run time even further and achieve lifting in situations where
standard lifting fails completely.

Our approach exploits additional symmetries by adding evidence during the optimization.
Essentially, we try to fix broken symmetries by PE. The fact that evidence breaks symmetries
is well known and other authors have dealt with that issue as well. For example, Van den
Broeck and Darwiche approximate evidence by low-rank boolean matrix factorization to speed
up lifted inference. It is shown how a large class of binary relations can be encoded with the
help of unary relations only. More precisely, the unary relations are represented by boolean
vectors and their product represents the original binary relation. This vector-product can be
extended to the matrix-product case as well. Based upon this insight, approximate boolean
matrix factorization is used to find a decomposition of the binary evidence relation. Instead
of a decomposition, our approach iteratively adds evidence and could be combined with a
decomposition approach to further compress the evidence, including the Pseudo Evidence.

It is important to note that LLM and BLLM currently rely on the parallel protocol for
message updates. We have seen this requirement for the other lifted algorithms as well and we
cannot run asynchronous updates because the Color Passing schedule relies on parallel updates.
This restriction prevents us from solving problems such as the one depicted in Figure 3.13
correctly. Think of a fully connected pairwise MRF with all unary and pairwise potentials
being identical. We further assume distractive pairwise potentials with wij < 0. Any of the CP
algorithms will reduce the graph to one node. If we now run LM on this graph, we will end up
with marginals (0.5, 0.5). An optimal assignment would consists of any combination with the
states not being identical, e.g., (−1, 1, 1). We cannot read off any optimal assignment from our
calculated marginals, although the marginals are computed correctly in terms of the underlying
model. Besides using a decimation approach based on conditioning, one heuristic would be to
add small noise to every unary potential. In this case, however, we could not lift the model
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anymore. On the other hand, the parallel update protocol results in satisfying solutions in
many applications and also allows easy parallelization.

Another limitation induced by lifting is the fact that we do not have the complete freedom to
randomly initialize the EM algorithm. Similar to the message passing algorithms for satisfiability
solving, e.g., SP in Section 3.1.5, LM can benefit from random initialization. However, in lifted
LM all variables have identical message updates that fall into the same cluster, i.e., we would
initialize all these variables identically. We additionally rely on the fact that we always set
all variables in one cluster as PE. If clusters were only partially clamped, we are back in the
decimation framework and we have to use methods such as the sequential clamping described
in Section 3.2.

We used in our experiments only exact CP and Lifted EACP also provided an exact extension
for BLLM. Combining BLLM with informed lifting approaches described in Section 2.4.2 is an
interesting avenue for future work. At the beginning, these algorithms will be more efficient
than BLLM but once evidence has been set, only BLLM can exploit the additional symmetries.
It would also be interesting to use approximate lifting techniques, such as early stopping.
However, as mentioned above, this is not obvious to implement due to fractional counts that
may arise. Fractional counts prevent us from using the LEACP algorithm for lifting because
signatures cannot be copied in the current form.

After PE has been set, it is also possible to further analyze the factors. Some configurations
are now impossible and hence factors can be reduced. This might also introduce new symmetries
on the factor level which can be exploited in the upcoming iterations. Similarly, setting PE
can introduces conditional independencies between variables. In the extreme case, this can
result in variables for which the entire Markov blanket is set. It is not necessary anymore
to update these variables in future iterations and one can therefore immediately clamp these
variables based on the Markov blanket. Additionally, one can also imagine to calculate the
conditional probabilities exactly for other small sets of variables that are independent from
the rest of the network and for which this calculation is feasible. This is a common pattern in
many approximate inference algorithms to increase the quality of the results. While these two
adjustments focus more on the implementation of each iteration, there are other, more general,
additional research questions. For example, one should also consider connecting PE to the use
of extreme probabilities used for lifting [38]. In general, exploring PE for other inference and
learning approaches is highly interesting. In Section 5.4, we will show how bootstrapping via
PE also works for Label Propagation.

3.4 Interim Conclusion

This chapter has contributed to the research in lifted inference in several ways and presented
lifting approaches in non-standard settings. For example, we have presented the first approach
to solving satisfiability problems based on lifted message passing algorithms (C3.1). The idea
of lifted satisfiability fits well into the emerging trend of Statistical Relational AI which focuses
on applying lifted inference and SRL-methods to classical, general, AI tasks. We have also
seen that CP is a general technique to lift a given factor graph that can lead to more compact
problem presentations for algorithms besides BP, including WP (C3.2), SP (C3.3), and LM
(C3.7). In many applications, we either want to re-lift a factor graph with changing evidence
(see Section 3.2), or we want to exploit Pseudo Evidence and re-lift iteratively as it arrives (see
Section 3.3). Both cases require an adapted lifting to benefit the most from lifted inference.
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Naive approaches, that re-lift every time from scratch, often completely cancel the benefits of
lifting. Resulting from these observations, we have presented alternative lifting approaches for
both scenarios, namely SPS-lifting (C3.4) and LEACP (C3.10).

The lifted message passing algorithms presented in this chapter ran some form of the CP
algorithm, hence, the implementation of CP and the number of iterations influence the run
time of those algorithms strongly. Lately, the correspondence between CP and the so called
coarsest equitable partition (CEP) has been investigated. The results, e.g. [151], show that the
partition obtained by CP amounts to the CEP. CEPs are frequently computed in algorithms
for graph isomorphism testing and therefore have been studied for a long time. This research
has resulted in highly efficient implementations for CEP computations. However, we cannot
directly use these algorithms but have to design an initial color encoding that respects variables
and factors, as well as the potentials and positions in factors. Nevertheless, all lifted message
passing algorithms in this section can benefit from the most efficient lifting algorithms. In the
case of CNFs, one can expect the initial color encoding to be simplified similar to the approach
presented in this chapter for CP (see Section 3.1). Chapter 4 and Chapter 5 will show how the
notion of CEPs can detach lifting from CP and present lifting from an algebraic point of view.
This framework will not explicitly require the modification of the ground inference algorithm
by means of counts.

The fact that LBP, LWP, LSP, and LLM all require an adaption of the ground algorithm,
represents one common drawback of these lifted message passing algorithms. The introduction
of different counts and explicit positions make the algorithms more complex and to some extend
cumbersome to implement. More elegant lifted inference approaches only preprocess the data
and then run an unmodified algorithm on the lifted model. For example, Mladenov et al. [152]
show how to avoid the adaption of the message passing algorithm for lifted MAP inference
based on linear program relaxations in pairwise MRFs. Their approach follows the idea of a
reparametrized model which is used instead of the original MRF.

The approaches we have used in this chapter all relied on exact lifting. First, initial factors
were only clustered if their potentials were identical based on a syntactical comparison. Second,
variables and factors were only clustered if their color signatures exactly matched. To show the
complete picture of lifted inference, one should actually employ approximate lifting algorithms
such as the ones described in Section 2.4.2. We can argue that such algorithms will work
better than standard lifting in several cases as it has been shown previously in the literature.
For example, in the case of grids with identical attractive interaction parameters and field
parameters sampled from a small range. While exact CP will not recognize that the marginals
are possibly very similar, informed lifting would still achieve lifting. This also holds for LEACP
in the case of BLLM. Still, the underlying ideas are rather orthogonal but it is an interesting
avenue to combine both.

All of the experiments in this section focused on binary MRFs which included CNFs, grounded
MLNs, and Ising grids for image segmentation, among others. However, non-binary problems,
such as Potts models, are of great interest as well. We will see in the next chapters how
lifting is applied to a labeling tasks with finite discrete random variables that have a large but
finite domain. Motivated by such applications, generalizing BLLM to MRFs with non-binary
variables is an interesting avenue and the restriction to binary variables is currently rather of
technical nature. In general, BLLM is not limited to the binary case and CP works with finite
ranges anyhow. Following up this research question, it is natural to ask for lifting approaches
in infinite domains or hybrid models as well. Besides the work on lifted GaBP or the lifted
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variational inference for hybrid models in [38], we will discuss the case of lifting for count
random variables, i.e., random variables over the natural numbers, in Chapter 7.

In general, this chapter touched upon several aspects that will return in the rest of this
thesis. For example, we will not only lift Label Propagation in Chapter 5 but also show
how bootstrapping is applicable to Label Propagation as well. However, this chapter looked
specifically at lifted message passing algorithms which relied on the CP algorithm and the
modification of the ground algorithm. These assumptions will be relaxed in the next chapters.
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CHAPTER 4

From Lifted Message Passing to Algebraic Lifting

Although the techniques presented in the previous chapter are not necessarily restricted to
binary random variables, the experiments were focused on MRFs with such variables, such is
most of the related literature on lifting and SRL. However, many applications do not neatly
fall into the category of binary variables. Let us reconsider the example of image segmentation
in Figure 3.12 where a simple foreground/background segmentation was performed based on
two images of a video camera. This approach for segmentation was inherently based on the
fact that two images, e.g., from a video camera stream, are available to construct the difference
of both images. If only a single image is at hand, this approach is not appropriate. If we were
additionally to distinguish more than just foreground and background, two possible states per
variable were not sufficient either. For example, in interactive image segmentation as described
in [241], the task is to label different objects in an image based on a rough initial labeling by
the user. Here, a human annotator starts to roughly label the image, i.e., marks pixels from
different objects. This can typically cover more than a single object and hence requires more
than two labels. More precisely, for each pixel, represented by a variable Xi, the label is xi = j
if the pixel i belongs to the j-th object and xi = 0 if the pixel is background. For example, this
allows to distinguish two persons in an image which need to be separated from the background.
In computer vision, further examples can be found that require more than two labels, such
as image denoising, depth estimation, and stereo matching [220]. If we want to model color
intensities or disparities in an image, our label alphabet increases fast because the possible
states are the number of possible colors for a pixel and this is usually at least 128.

Such a semi-automated segmentation task requires us to move from the binary Ising model to
the multinomial Potts model [183] with Xi = {0, . . . , d− 1}. The Potts model allows us to deal
with discrete, finite random variables that have potentially a large domain. The pairwise factors
allow us to define the potentials in such a way that neighboring pixels are more likely to have
the same label. A simple Potts model assumes that the pairwise potentials fij = exp(δxi,xjwij)
have identical parameters wij . Here, δxi,xj is the Kronecker delta which is δxixj = 1 if xi = xj
and 0 otherwise (cf. Section 3.3.4 for the Ising case). However, for the image segmentation
task, we want to encode in the model that neighboring pixels with similar colors should have
identical labels. Hence, we cannot restrict the model to have a constant interaction coefficient
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if we want to consider the differences in hue of neighboring pixels. If each wij is individually
parametrized, we obtain a Generalized Potts Model as described in [24]. If the hue of pixel i is
defined as hi and correspondingly the hue of pixel j as hj , we obtain the following pairwise
factor:

fij(xi, xj) = exp(δxi,xjwij) = exp
(
δxixjw(hi, hj)

)
,

with w(·, ·) measuring the similarity between color intensities of two pixels. Assuming we have
a set of initial labels for pixels L, we can incorporate this knowledge via the unary factors.
This requires us to define the unary factors in such a way that the initial labels are propagated
through the image:

fi(xi) =

{
1, xi ∈ L

0, otherwise

We do not attach unary factors to unlabeled pixels because they can take on any label.
However, if we model the factors for such a problem in a naive way, the size of the underlying
factor graph can quickly increase. In a labeling task where each unknown instance takes on d
different labels, each pairwise factor has to model d2 states. Of course, by omitting zero-states,
one can often represent factor tables more compactly but factors still grow quadratically in the
size of d.

Although there is much literature on solving Potts models efficiently with the help of
approximation algorithms, e.g., graph cuts in [25], computing the marginal probabilities or the
MAP configuration in such a discrete MRF is still expensive. This naturally becomes even
worse in tasks with a very large number of labels, i.e., the multiclass case, or with problems
where the structure is not limited to a lattice. As we have discussed in the previous chapter
already, approximate inference algorithms in MRFs often have the additional shortcoming
that the results may be inaccurate or the algorithms do not converge. Therefore, we seek for
alternative approaches that scale for problem sizes in the dimension of millions of nodes and
thousands of labels. Naturally, this asks for approaches that only have to store a similarity
function for each pair of nodes where it is desirable that this can be stored in a sparse way for
problems not densely connected. We will discuss the definition of neighbors and appropriate
similarity functions below in greater detail. For now, let us assume an arbitrary similarity
function between two instances that is w : Xi × Xj → R. We often write wij for shorthand
instead of w(xi, xj). Together with the structure of the problem, such a similarity functions
shall help us modeling problems where similar instances are supposed to have the same label.

One particular method solving this problem is the Label Propagation (LP) algorithm [260].
This semi-supervised learning algorithm assumes a row-normalized similarity matrix and a
second matrix encoding the distribution over labels for each node. We refer to this second
matrix as the label matrix which contains one column for each possible label. If a node is
initially labeled, this is reflected in the label matrix. Now, the initial labels are propagated
through the graph by multiplying the label matrix in place with the similarity matrix in an
iterative process. The process is constrained in such a way that the initial labels remain
unchanged. Upon convergence, a distribution of the labels for the unlabeled nodes can be read
off the label matrix. The propagation of the labels often works well even in cases where only
few labels are initially known because the similarity matrix specifies the structure of the entire
weighted graph. This algorithm has several interesting properties as we will describe next. This
will additionally connect LP to PGMs and naturally asks for lifting this algorithm.

Although, we are interested in a multiclass labeling problem, we can still split the problem
into multiple one-vs-rest subproblems and solve each of them separately. Afterwards, we can
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join the subproblems again to obtain the same labeling as in the mutliclass approach. Looking
at binary subproblems, the algorithm can be formulated as an energy minimization problem
which is equivalent to a Gaussian random field.

In particular, as shown by Zhu et al. [261], the LP algorithm solves the following minimization
problem if we assume binary labels:

E(f) =
1

2

∑
i,j∈E

wij(f(i)− f(j))2 . (4.1)

Here, we assume that f : X → R with the constraint that f(i) = xi if Xi belongs to the
initially known labels. I.e., the function takes on the label value for the labeled instances. With
this optimization criterion, neighboring nodes with the same label to not contribute to the
objective that is to minimize. Hence, unary factors that were enforcing the initial labels in the
Potts model are now handled by the constrained label function f . It has been shown that the
function f , solving the problem in Equation (4.1), has several desirable properties. For example,
f is harmonic, i.e., the label score of each unlabeled node is the average of its neighbor’s label
scores [261]. Since the problem has a proper definition in terms on a continuous MRF, one can
also use GaBP to solve the problem.

Besides the fact that the optimization criterion amounts to a Gaussian MRF, the energy
function is close to the discrete approach based on Potts models as well. Let us recall that an
MRF can be equally formulated based on an energy function and MAP inference amounts to
minimizing this energy (cf. Chapter 2). In many problems, like the ones above from the field of
computer vision, the energy function can be split into data and smoothness components [25]:

E(x) = Edata(x) + Esmooth(x) .

This formulation still corresponds to a Potts model. In the image segmentation example
above, the data-part encodes the initially known labels. If we are in the binary case with
xi, xj ∈ {0, 1}, we can equally write (xi − xj)2 instead of δxixj . If we now integrate the data
part into the pairwise factors, we arrive at a model that looks as follows:

E(x) = Esmooth(x) =
∑
i,j∈E

wij(xi − xj)2 .

So, we have seen that LP optimizes an objective that is akin to the problems we have seen
in the previous chapter. However, LP has an elegant implementation in terms of matrix
multiplications that is guaranteed to converge to the harmonic solution, i.e., in comparison to
BP approaches on MRFs, we do not have to worry about inaccurate beliefs or oscillation. On
top of that, it naturally handles multiclass problems.

We are interested in multiclass problems because we want to label a large-scale online
bibliography with geo-tags as motivated by the example in Section 1.1. Here, the label alphabet
can easily consist of several thousand possible locations. However, it is also clear that millions
of nodes and thousands of labels result in similarity matrices that are impossible to handle in
the standard case. Therefore, Chapter 5 will present several enhancements to the original LP
algorithm that will allow us to label a graph with more than five million nodes with one of
more than four thousand labels. In particular, this will make use of a similarity function based
on logical rules and a lifted version of LP. Since our inference is not based on message passing
anymore, this also asks for a different kind of lifting possibly without passing around colors.
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1 def label_propagation(W, Y):

2 # W is a similarity matrix

3 # Y is a label matrix

4 T = preprocess(W) # row normalization

5 Y_old = Y.copy()

6 iters = 0

7 while True:

8 Y = T * Y

9 max_diff = np.abs(Y-Y_old ).max()

10 iters += 1

11 if max_diff < th or iters == max_iters:

12 break

13 Y_old = Y.copy()

14 return iters , Y

Algorithm 7: Label Propagation by Zhu and Ghahramani implemented in Python.

To pave the way for lifted LP in the next chapter, we will now discuss the necessary
background and related work. We can divide the related literature into two main categories.
The first part is mainly concerned with the aspects of modeling labeling problems and running
LP. This also features a short discussion of efficient LP implementation and different variants
of LP. The second part focuses on lifted inference but this time from a different angle. While
the previous chapter focused on message passing based lifting, we will here describe how lifting
can be seen in terms of graph theory and algebraic operations.

4.1 Label Propagation

Label Propagation (LP) [260] is a semi-supervised learning algorithm which operates on a
similarity graph. In this setting only few nodes in the graph are labeled with one of d labels
but we have access to a similarity function between all node pairs that is encoded in the edges.
A missing edge indicates that two nodes do not have anything immediately in common. LP
now propagates node labels along the edges to compute a distribution over the labels for the
unlabeled nodes. We define the LP graph as an undirected graph G = (V,E) with nodes V
and edges E. Every edge eij ∈ E between two nodes i and j contains a weight wij that is
proportional to the similarity of the nodes. Originally, a similarity function of the following
form was suggested:

wij = w(xi, xj) = exp

(
−
∑
k

(xi,k − xj,k)2

σ2
k

)

Here, xi is a feature vector of node Vi and xi,k represents feature k of node i. One can see
immediately that this similarity function results in a completely connected graph, making this
function intractable for large problem sizes. Therefore, we will below introduce an alternative
approach to connect two nodes and to define the weights of each edge based on logical rules,
resulting in a sparse LP-graph.
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1 def clamp_evidence(T, labels ):

2 for i in labels:

3 for j in range(T.shape [1]):

4 if j == i:

5 T[i, j] = 1.0

6 else:

7 T[i, j] = 0.0

Algorithm 8: Updates the normalized affinity matrix T in such a way that the push-back
phase is integrated into affinity matrix itself.

Independent of the similarity function, we can build a symmetric similarity matrix W ∈ Rn×n
based on the edge weights. Let us define the diagonal degree matrix D with Di,i =

∑
jWi,j .

We now row-normalize the affinity matrix by multiplying it with the inverse of D:

T = D−1W.

Now, the LP algorithm performs the following matrix-matrix-multiplication until convergence:

Y t+1 = TY t , (4.2)

where Y t ∈ Rn×d is the label matrix. A simple Python implementation is shown in Algorithm 7.
At convergence, row i in Y ∗ corresponds to a distribution over the possible labels for node i.
Initially, this matrix, i.e., Y 0, is all zero except for the rows of the nodes that are labeled in
advance. For the known labels, the cell in the corresponding column is set to 1, i.e., we set
a cell yi,j to 1 if we know that node i has label j. After every iteration, a push-back phase
clamps the rows of the initially labeled nodes in Y t to their original distribution as in Y 0.

We apply a minor modification to the original algorithm by encoding the push-back phase
directly into the affinity matrix. We adapt the similarity matrix in such a way that we do
not need the push-back phase in each iteration explicitly. Intuitively, this is achieved in such
a way that the matrix multiplication leaves the rows with existing evidence in Y unchanged.
This works by setting all values to zero except for the diagonal element in each row for which
evidence is present. The diagonal element is set to 1 in these rows. This procedure is also
shown in Algorithm 8. We use this modification because it simplifies the implementation in
distributed settings where we only have to distribute the affinity matrix but not the initial
labels. Additionally, this makes the matrix sparser, and hence, the implementation becomes
more efficient when using a linear algebra library supporting sparse matrices.

When using LP as in Equation (4.2), LP tends to converge slowly which is the reason why
the iterative process is often terminated after a fixed number of iterations. At convergence, the
labels of the unknown nodes are read off the label matrix, i.e., the label of node i is given by

y∗i = arg max
0≤j≤d

Y ∗i,j .

However, we still require an efficient implementation for multiplying a sparse matrix with
a dense matrix. Our LP implementation is based on LAMA1, a highly efficient C++ linear

1www.libama.org
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algebra library. LAMA is specifically designed for parallel scalability and supports multi-core
processors, GPU accelerated computations, and distributed memory clusters as well.

Regarding an implementation of LP, it can be shown that the labeling problem solved by
LP can be equally formulated as a set of linear equations. Hence, we cannot only use standard
solvers for linear programs to solve the problem but also use GaBP on the MRF described
above. For multiclass labeling problems, this requires a one-vs-all approach to calculate the
label scores.

There exist also slight modifications of the original LP algorithm. One example is the Jacobi-
method inspired version in [16, Algorithm 11.2]. This algorithm adds a regularization term for
numerical stability and its convergence properties follow the convergence of the Jacobi-method.
Another algorithm with yet a different cost criterion was presented in [258]. Several of the label
propagation algorithms can also be seen as a form of message passing because the updated
distribution of a node is calculated based on a function of its neighbors. As stated in [16], the
convergence of LP, and both algorithms mentioned in this paragraph, can be expected to be
at worst in the order of O(kn2) where k is the number of neighbors of a node in the graph.
However, the practical average convergence depends on different properties of the graphs and
often, the final labeling does not change anymore although the scores have not converged below
a specified threshold yet. I.e., class agreement is often achieved early and we do not necessarily
have to run LP until convergence.

Zhu [259] discusses different LP implementations and compares LP based on Equation (4.2),
a conjugate gradient approach, and GaBP. Although GaBP often converges quite fast on small
problems tested by Zhu, it is beneficial for us to use LP in the form of Equation (4.2). As
we will see below, it allows us to lift LP without modifications of the implementation (see
Section 5.3). Additionally, as discussed in the previous paragraph, we do not necessarily have
to run LP until convergence.

As roughly sketched at the beginning of this chapter, we can also model multiclass labeling
problems with multinomial MRFs [241], i.e., Potts models. Although multinomial MRFs are in
general very powerful, they might not be best suited for the task of solving multiclass labeling
problems at hand. As mentioned above, a naive implementation can result in large factor
graphs and on top of that, solving the MAP inference problem in the resulting MRF has to
be done approximately for problems of realistic size. We have already discussed the issues
with solvers for this problem. For example, BP often suffers from convergence problems and
inaccurate beliefs.

4.2 Lifting and Equitable Partitions

In many cases, a naive implementation of standard LP is slow. Besides an efficient parallelized
implementation, possibly based on sparse matrices, there are various other modification that
have been introduced to reduce the run time of LP because graph problems with several
million nodes and thousands of labels call for a very efficient inference approach. Lifted Label
Propagation (LLP), which will be described in Section 5.3, is akin to lifted probabilistic inference
(see Section 2.4). While LP is based on matrix-matrix-multiplications, we have described above
already that we could also implement LP via GaBP and in turn use lifted GaBP to exploit
symmetries in LP [166]. However, this does not allow the usage of an out-of-the-box GaBP
implementation because changes to the GaBP algorithm are required to account for the lifted
model [3]. This is very similar to the modifications that we have seen in the previous chapters
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for LBP and other lifted message passing algorithms. Counts are integrated into the messages,
to reflect the structure of the lifted graph. Moreover, such a lifted LP approach is based on
matrix inversion and requires several re-liftings which is impractical for graphs at massive scale.

However, having a problem specified in terms of a weighted graph and an inference algorithm
in terms of matrix multiplications, we now take a look at lifting from the graph algebraic
point of view. For this purpose, it is useful to define the notion of symmetries in graphs. A
graph is symmetric if we can find an isomorphism to itself. Such an isomorphism is called
automorphism. An automorphism of a graph induces a partition of the nodes and intuitively,
the nodes in the same class are indistinguishable. Having an automorphism for a graph with n
nodes, we can represent this mapping with help of an n× n matrix which commutes with the
matrix specifying the graph. Unfortunately, there is no polynomial time algorithm known that
decides whether two graphs are isomorphic [71]. A common intermediate step in determining
graph isomorphisms is the calculation of the coarsest equitable partition (CEP) and it has been
shown by Mladenov et al. [151] that the partition found by the Color Passing algorithm is
identical to the CEP. The CEP also groups the nodes of the graph into classes and can equally
be represented as a matrix. However, the CEP can be coarser than the partition induced by
an automorphism [88].

In our lifted LP approach, we will directly lift the LP graph by calculating its CEP and we
prove in the next chapter that we can then run vanilla LP on the compressed graph without
any modifications to the LP algorithm itself. More specifically, we will use saucy2 [108] to find
the CEP of the graph which partitions the graph into equivalence classes. This is similar to the
Color Passing approach that was run on the factor graph to lift BP. However, saucy does not
follow a color passing approach. Instead, it suggests to look at the problem of lifting in terms
of algebraic operations and facilitates the notion of a matrix for the partitioning. saucy is
not only extremely fast at computing the CEP but the resulting fractional automorphism also
allows to construct the lifted matrix very efficiently. The advantages of using saucy in lifted
inference algorithms have also been recognized in other approach such as [170]. For further
information on equitable partitions of graphs and matrices, we refer the reader to [152] and the
references in there.

Next to lifting, as presented in the next chapter, other approaches to speed up LP also
avoid computations to decrease the computational costs. A recent approach was presented
by Fujiwara and Irie [60], who reduce the run time by updating only the scores of a subset of
labels in each iteration. Also similar in spirit to LLP, and the general idea of lifted inference,
are the ideas of Alexandrescu and Kirchhoff [6]. They proposed to merge identically labeled
nodes to speed up LP, whereas LLP intuitively clusters the entire graph. Actually, there are
many more efficient LP approaches, see e.g. the references in [60] for an overview. However,
any of these approaches can be used on top of our compressed graph.

The next chapter will introduce our relational lifted LP in greater detail and describe how
this LP approach can be used to augment online bibliographies with geo-tags. We will motivate
the need for our LLP approach by the existence of web-scale bibliographies where standard LP
runs out of memory and any decrease in run time is most welcome.

2vlsicad.eecs.umich.edu/BK/SAUCY
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CHAPTER 5

Lifted Label Propagation

The previous chapter has described how Label Propagation (LP) can be used as an alternative
to message passing algorithms for labeling problems. We have described how LP can be
implemented by means of a simple matrix-matrix-multiplication and we have also motivated to
look at lifting from a perspective independent of a message passing algorithm such as Color
Passing. Accordingly, the papers most related to this chapter are:

• Zhu and Ghahramani [260], Zhu et al. [261]: the Label Propagation algorithm, its
matrix-multiplication-based implementation, and entropy minimization for parameter
learning.

• Katebi et al. [108]: the graph theory based symmetry detection which is implemented in
saucy. saucy will be a core part of lifted LP.

In this chapter, we will enhance LP by techniques that have already been shown beneficial in
Chapter 3 but are “non-standard” approaches in the LP literature. The contributions of this
chapter can be summarized as follows:

C5.1 We use logical rules to construct a sparse similarity matrix for LP and we show how this
approach can be used to augment online bibliographies with high accuracy geo-tags.

C5.2 Standard LP does not exploit symmetries in the similarity matrix. Hence, we use lifting
techniques to compress the similarity matrix, obtaining a faster LP variant. This Lifted
Label Propagation (LLP) requires less memory and still achieves identical labeling scores
as ground LP.

C5.3 We show that the idea of bootstrapped evidence from the previous Section 3.3 can also
be used to speed up convergence of LP.

These contributions have been submitted mainly in [86] and we proceed as follows. We will
start by introducing our logical rule based LP which is used to label author-paper-pairs with
geo-tags in online bibliographies. Afterwards we will show that LP’s run time can also suffer
from unexploited symmetries in the underlying graph as we have seen it in Chapter 3 for
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message passing algorithms. We will then describe how bootstrapping and Pseudo Evidence
from Section 3.3 can be used for LP and quickly touch upon parameter learning for LP with a
similarity function based on logical rules. We summarize this chapter before we continue with
an in-depth analysis of our geo-annotated bibliographies.

5.1 Logical Rules for Label Propagation

As described above, the originally proposed similarity function leads to a completely connected
graph that is impractical for very large problem instances. We therefore propose an alternative
approach to constructing the edges and their weights. Intuitively, the weight of an edge should
still be proportional to the similarity between the nodes, however, we will now define the
similarity of two nodes based on formulas defined over logical predicates. Only those nodes are
connected via an edge where at least one relation holds and hence Wi,j > 0. Similarly to the
definition of MLNs (see Section 2.3.1), we define a set of tuples (Fa, wa). Here, Fa is a formula
in first-order logic and wa ∈ R is the weight of that rule. Along with these rules goes a set of
constants C = C1, . . . , Cn. Each constant Ci corresponds to a variable Vi ∈ V . For now, we
only use rules that are defined at most over two nodes which gives us the following weight for
each edge:

Wi,j = exp

(∑
a

wa · fa(Ci, Cj)
)

= exp

(∑
a

wa · fa(i, j)
)
. (5.1)

Here, the feature function fa corresponds to a grounding of formula Fa, with fa evaluating
to 1 if the ground formula Fa is true, and 0 otherwise. We construct the LP-graph now based
on (Fa, wa) and the constants in C. The graph construction distinguishes from the Markov
network construction in MLNs in various aspects:

• MRFs based on a grounded MLN contain one binary node for each grounding of each
predicate. For the relational LP, the nodes can have any finite range and each node
corresponds to a domain object.

• The edges in an grounded MLN are based on the variables appearing together in formulas.
In the LP-graph, edges correspond to one or several satisfied formulas over the nodes
involved.

5.2 Geo-Tagging Bibliographies

We now present an application of our rule-based LP. In particular, we are interested in labeling
online bibliographies with geographic information in order to conduct an analysis of the social
behavior in the data. Geographic information about researchers over time and across countries
is of great interest to different kinds of organizations and public authorities. Therefore, our
goal is to create geo-annotated versions of large-scale bibliographies. Looking at bibliographies
such as DBLP1 [137], the goal is to tag every of the over five million author-paper-pairs with
an affiliation and its geographic information. This would allow us to analyze movement data of
researchers worldwide in the field of computer science. We are triggered by the observation that
many collective human activities have been shown to exhibit universal patterns. However, the
possibility of strong regularities underlying computer science researcher migration has barely

1dblp.uni-trier.de
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been explored at global scale. Fortunately, in the Internet era the Web stores tons of data on
researchers which is frequently updated. We demonstrate in this section and Chapter 6 that this
information can be utilized to extract migration behavior of researchers and to learn models for
the underlying process. Bibliographic sites on the Web, such as DBLP, are publicly accessible
and contain millions of data records on publications. Papers are written virtually everywhere in
the scientific world, and the affiliations of authors tracked over time could be used as proxy for
migration. Unfortunately, many if not most of the prominent bibliographic sites do not provide
affiliation information and there are no datasets available on the Web that immediately allow
such an analysis. Instead, we first need to build a migration dataset, to conduct a large-scale
investigation of migration afterwards. To this aim, we harvested data from different sources
freely accessible on the Web and merged these into bibliographic databases. However, not all
necessary affiliation information is available — it might actually be impractical to gather —
and it is uncertain. Therefore, we have to rely on a Machine Learning algorithm to fill in the
blank spots. This is precisely where our relational LP comes into play. Our relational LP is well
suited to work on datasets based on bibliographies because the character of these databases
is inherently relational. For example, the co-authorship relation allows to construct a social
network of scientists and naturally the labels correspond to affiliations of an author-paper-pair.

Compiling the data in itself represents a significant advance in the field of quantitative
analysis of research and migration patterns. Official and commercial records are often access
restricted, incompatible between countries, and especially not registered across researchers.
Instead, we present a general machinery for propagating geographical seed locations retrieved
from the Web across online bibliographies. Next, we will describe how we gathered the data to
construct a semi-labeled graph on which we run LP afterwards.

5.2.1 Harvesting Data

The Web provides several freely accessible bibliographies with millions of papers and authors.
However, most of them do not contain affiliations or geo-information. For an extensive study
of researcher’s migration behavior this information is crucial though. Our goal is to label
every author-paper-pair in a bibliography with the affiliation of that author and its geographic
location. Although it is possible to manually, or semi-automatically, retrieve such labels, a full
labeling of large databases, such as DBLP, is not practical with such methods. In addition, if
we can build an effective automated machinery that helps us with this task, it is also much
easier to update the database continuously with new papers arriving.

To this end, we assume an initial bibliography consisting of papers and theirs authors. We
start by adding affiliation information to authors in our bibliographic database. To obtain
the affiliations, we could take a look at every paper and extract the information from the
title page of the paper. Clearly, this is not feasible for various reasons. Fortunately, there are
other information sources on the Web that contain such information. One of these systems
is the ACM Digital Library2. Unfortunately, ACM DL does not allow a full download of the
data. Consequently, we retrieved the affiliation information of only a few author-paper-pairs
randomly selected from ACM DL which we then matched with our initial bibliography. This
gave us initial seed affiliations per author for different papers. In order to fill in the missing
information, we want to resort to LP. To do so, we have to be a little bit more careful. First,
the names of the affiliations in ACM DL are not in canonical form which results in a very large

2dl.acm.org
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set of affiliation candidates. Secondly, although we have now partial affiliation information, we
still lack exact geo-information of the organizations to identify cities, countries, and continents.
Many of the affiliation names may contain a reference to the city or country but these pieces
of information are not trivial to extract from the raw strings. Additionally, we want to have
latitude and longitude values to enable further analysis and visualization.

Example 5.1. Latitude and longitude data allow to calculate the exact distances between
collaborators. One could postulate the hypothesis that the Internet-age has removed barriers
and enabled long-distance collaborations. Hence, having this precise geo-information in our
database allows to investigate such a hypothesis empirically.

This geo-location issue can be resolved by using Google’s Geocoding API3. Querying the API
resulted in geo-tags for most of the affiliation strings. The remaining gap primarily rises from
the fact that the Google API does not find geo-locations for all the retrieved affiliation strings.
This is essentially because the strings contain information not related to the geo-location such
as departments, e-mail addresses, among others. In any case, as our empirical results will
show, this resulted in enough information to propagate the seed affiliations and in turn the
geo-locations across the initial network of authors and papers.

5.2.2 Inferring Missing Data

Before we infer the missing author-paper-pairs, we revise our obtained affiliation data. To
further increase the quality of our harvested affiliations, we hypothesize that there are actually
not that many relevant organizations in computer science and these names need to get de-
duplicated. This hypothesis is confirmed by services such as MS Academic Search4 which
currently lists only 13,276 organizations compared to our 150k+ names we obtained from
crawling seed affiliations from ACM DL. Since we have the geo-locations attached to most of
the affiliation strings now, we can use this information for a simple entity resolution which helps
resolving this issue. More precisely, we clustered affiliations together for which the retrieved
city coincide. Indeed, this approach does not distinguishing multiple affiliations per city such
as MIT and Harvard which are both in Cambridge, MA, USA. However, our approach is
simple and yet effective, and — as our empirical results show in Chapter 6 — the resolution is
sufficient to establish strong regularities in the timing events.

Based on these known geo-locations, we fill in the missing ones by using the LP as described
above. LP propagates the known cities to the unknown author-paper-pairs based on the
similarity between the nodes. Correspondingly, the set of constants, C, consists of the author-
paper-pairs and we have a node in the LP graph for each of these author-paper-pairs that we
want to label with a city.

As we have mentioned above, a similarity function that is too dense will make the algorithm
impractical, especially in large-scale bibliographies with millions of authors and papers. Hence,
we resort to logical rules to formulate the similarity. These rules are based on relations such as
co-authorship between the authors associated with the nodes. Specifically, in order to define
the edges, we considered the following functions over the set of nodes that return facts about
the nodes:

• author(i): returns the author of an author-paper node

3developers.google.com/maps/documentation/geocoding
4academic.research.microsoft.com
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P A Y Aff Aff*

1 1 2000 g g
2 2 2000 b b
3 2 2001 r r
4 1,2 2002 ?,? r,r
5 1 2002 ? r
6 2 2003 r r
7 1 2004 r r
8 2 2004 g g

(a) Example database

1936 2000 2001 2002 2003 2004 2012

A1 1 4 5
R2

7

A2 2 3 4 6 8R3 R3 R3 R3

R1

(b) The graph for our rule-based LP

Figure 5.1: LP for geo-tagging bibliographies. Missing geo-tags from the example database (a)
are estimated by propagating the known cities/geo-locations across the network of authors and
papers (b).

• paper(i): returns the paper of an author-paper-node

• year(i): returns the the year of publication of an author-paper node.

Based on these functions, we can now define the following logic based rules that add a
rule-specific weight wa to every matching edge ei,j . Initially, we set all edge weights Wi,j to
zero. The first rule R1,

Wij = Wij + w1 if paper(i) = paper(j)

adds a weight between two nodes if the nodes belong to two authors that co-author the paper
associated with nodes i and j. The second rule R2,

Wij = Wij + w2 if author(i) = author(j) ∧ year(i) = year(j)

adds a weight whenever two nodes corresponds to different publications by the same author in
the same year. And finally the third rule R3,

Wij = Wij + w3 if author(i) = author(j) ∧ year(i) = year(j) + 1

fires when the nodes belong to two publications of the same author but written in subsequent
years.

Example 5.2. The construction process of the LP matrix and its corresponding graph is
depicted in Figure 5.1b for the example publication database in Figure 5.1a. The example
database is missing the affiliation information for papers 4 and 5 which is denoted by the
“?” in the “Aff”-column. The graph for propagating the information is constructed as
follows. There is a node in the graph for each pair of an author from column “A” and the
corresponding paper in column “P”. Two nodes are connected if they are written by the same
author in the same or subsequent years or if two researchers co-author them. The colors of
nodes indicate known cities and white nodes indicate unknown locations.
We then run LP on the constructed graph, to get a distribution over the possible cities for

every unlabeled node. Running LP on the graph for our running example in Figure 5.1b, we
see that LP labels the unknown nodes. Looking at the last column “Aff∗” in Figure 5.1a, the
previously missing labels for papers 4 and 5 have been inferred and the graph is now completely
labeled. This example shows a very simple case because the unlabeled nodes are only connected
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to red neighbors. Therefore, the color of the unlabeled nodes is deterministically determined
because only red can be propagated to them. Usually, the situation is less clear. For example,
if paper 6 for A2 was green, we would have a probabilistic interpretation of the label scores for
the nodes. The unlabeled nodes could be labeled with either green or red. In this situation,
with paper 3 for A2 labeled red and paper 6 for A2 labeled green, there would be a tie between
both colors because paper 4 of author A2 is identically connected to the labeled nodes. We will
now present experiments of the rule based LP on publicly available online bibliographies.

5.2.3 Experiments

With LP based on logical rules at hand, let us now turn towards filling in missing geo-tags in
bibliographic databases. There are different choices as a starting point for the data harvesting
process. Ultimately, we are interested in a bibliography covering all different scientific disciplines.
To begin with, however, we focus on computer science. For an qualitative evaluation, we are
interested in a dataset with as much ground truth as possible, to answer the following question:

Q5.1 Is the relational LP capable of producing meaningful geo-tags with high accuracy for our
bibliography based on few seed locations?

In order to answer Q5.1, we require a manually curated dataset for which we have a relatively
large amount of affiliations in advance. As we will see, the AAN bibliography — which is
described in detail in the next section — serves as a good starting point. For all our experiments,
we used the following weights for the rules described above w1 = 1, w2 = 3, and w3 = 2. These
rules were found by a grid search on a small subset of the data. Furthermore, all experiments
were run on a Linux machine with 64GB RAM and 20 cores.

GeoAAN

The ACL Anthology Network (AAN) [184] is a comparatively small, but manually curated,
dataset that contains affiliations for many authors and papers from the natural language
processing community. In total, the dump in use from August 2013 contains 19,410 publications
written by 15,397 authors from a time span across five decades. Although the dataset is
manually curated, we cannot directly use the affiliations in the provided form. Many of the
affiliation strings represent multiple affiliations for one author. Since we are interested in the
geographical location of a researcher, we have to reduce these strings to a single organization.
We split the affiliation strings and assume that the first mentioned affiliation is more likely the
residential location of a researcher. After reducing the available affiliations to the city level, the
resulting number of author-paper-pairs is 49,530 and 33,061 of these nodes are labeled with one
of 802 cities. The LP graph G has a total of 145,594 edges, resulting in a very sparse matrix W ,
respectively T . By removing an increasingly number of labels from the graph, we construct test
sets of different sizes which we use for the evaluation. We start by removing 10% of the labels,
obtaining a graph with 55% of the nodes labeled. We then gradually add 10% of the nodes to
the test set until only 6% of the nodes are labeled. We apply this dataset construction ten
times, to allow for multiple re-runs of the experiment. Table 5.1 shows the average accuracy
of the predicted labels for each test set when running LP for 200 iterations. Having access to
only 36% of the labels or more, we can achieve an accuracy ≥ 0.80. As expected, reducing the
number of labeled nodes slowly decreases the performance. With only 6% labeled nodes, we still
achieve an accuracy of 0.58, which is a high performance on a multiclass labeling problem with
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Labeled
Nodes

Accuracy

6% 0.58
12% 0.67
18% 0.72
24% 0.75
30% 0.78
36% 0.80
42% 0.81
48% 0.82
55% 0.83

Table 5.1: Label accuracy for the AAN dataset with a varying number of initially labeled nodes.
One should note that accuracy is a very challenging performance measure for a multiclass
labeling problem with around 800 classes.

roughly 800 classes; the accuracy of random labels would be 0.00125. We will refer to the AAN
dataset with augmented geo-tags as GeoAAN. These results clearly answer Q5.1 in favor of
our proposed relational LP approach. However, to infer global patterns for migration across
various fields of computer science, neither the scope nor the size of GeoAAN are satisfactory.
Instead, we want to use a bibliography, such as DBLP, with millions of papers. However, as
we will describe next, one cannot simply just run LP on a dataset of that size. Therefore, we
will describe a new LP approach that exploits symmetries in the LP-graph and splits the label
matrix into chunks, in order to obtain label scores of over five million author-paper-pairs.

5.3 Lifted Label Propagation

Although the naive implementation of LP is just a simple matrix-matrix-multiplication, this
becomes challenging with several million nodes. While W , and respectively T , are very sparse,
Y t becomes denser with every iteration. Resulting in a pure dense matrix if the graph was
completely connected. Eventually, this presents an obstacle in terms of both, computation time
and memory requirements.

Example 5.3. We have observed in our experiments that W has often < 1% of the cells
filled if we use logical rules as described in Section 5.2 to construct W . Which means
that a problem of 5M × 5M can easily be stored in RAM which is intractable with a dense
(Gaussian) similarity function. However, with around 4,000 labels, the label matrix requires
more than 160GB RAM with a 64bit-float representation.

To alleviate some of this burden, we can exploit the latent symmetries in the structure
of T . In our proposed approach, Lifted Label Propagation (LLP), we do so by means of
equitable partitions which is akin to lifted probabilistic inference in Chapter 3. If the graph
contains symmetries, lifting makes every iteration of LP more efficient. As we are often facing
the problem of slow convergence, LP should strongly benefit from lifting in the presence of
symmetries.

The algorithm proceeds as follows (illustrated in Figure 5.2): we first partition the nodes
according to their initial labels (Figure 5.2a). We then compute the coarsest equitable partition
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Figure 5.2: Toy example for LLP. The LP graph in Figure 5.2a contains two labeled nodes
(green shades) and three unlabeled nodes (white). The corresponding similarity matrix is given
in Figure 5.2b. Based on the CEP, the graph can be colored as in Figure 5.2c. The partition
clusters X3 and X4 together. The corresponding compressed matrix is depicted in Figure 5.2d.

(CEP) of T which preserves the initial label partition. From the partition, we obtain a
(hopefully) smaller quotient matrix T by:

• replacing the set of all columns corresponding to nodes in the same class by their sum
(S.1);

• replacing the set of all rows of nodes in the same class by their average (Figure 5.2b)
(S.2).

We carry out the second step on Y 0 as well to obtain the compressed label matrix Y0. Finally,
we run LP with T (Figure 5.2d) and Y0 in place of T and Y 0. As we will show next, we can
perfectly recover Y k from Yk and thus the result of LP can be recovered from the result of
LLP.

Theorem 5.1. Running LP on the compressed matrix T returns identical label scores as
running LP on T .

Proof. First observe that algebraically, T and Y0 can be written as T = B̂TB and Y0 = B̂Y0,
where B is an n× p matrix having Bik = 1 if node i is in class k of the CEP and 0 otherwise
(representing the summing of columns; S.1). B̂ is a p× n matrix defined as B̂ki = 1/|class k| if
i is in class k and 0 otherwise (representing the averaging of rows; S.2). We first reference the
following facts [79]: (♣) B̂B = Ip (B̂ acts as left inverse of B); (♥) BB̂T = TBB̂ (the matrix

BB̂ commutes with T since B comes from the CEP of T ).
As a first step, we need to show that Y t+1 = BB̂Y t+1. We proceed by induction. For

the case of t = 0, let us note that P = BB̂ is a fractional automorphism obtained from the
CEP which is a doubly stochastic matrix. Figure 5.3 shows P for our running example. We
distinguish two cases, first assume row i in Y 0 contains a non-zero entry in column j, i.e.,
Y 0
ij = 1. There can only be a single non-zero cell by construction. If node i corresponds to

class k, which has |class k| members, P contains |class k| non-zero entries Pil in row i which all
have value 1/|class k|. The columns l in P correspond to the rows in Y 0 that have class label
k, and hence Ylj = 1. Therefore, if we multiply Y 0 with P , Y 0

ij is a sum of |class k| elements

with value 1/|class k|, i.e., 1, and it remains unchanged. In the second case we have Y 0
ij = 0

and all other members of that class k have Y 0
lj = 0 as well. Therefore, Y 0

ij remains unchanged

too and we have Y 0 = PY 0 = BB̂Y 0 . For the induction step, we have

Y k+1 = TY k ind.
= TBB̂Y k ♥= BB̂TY k = BB̂Y k+1 , (♠)

104



5.3 Lifted Label Propagation

B · B̂ = P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1/2 1/2 0
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0
0 0 0 0 1


Figure 5.3: Fractional Automorphism obtained by the CEP in Figure 5.2

where the second equality follows from our induction hypothesis. Note that we omitted the
discussion of the push-back operation, however, it can be shown that the above holds after the
push-back as well. It follows from the same reasons that the integrated push-back works in the
ground case. The only difference is that an entire cluster now remains unchanged instead of a
single node.

Finally, induction also shows that Y k+1 = BYk+1. We can show that Y 0 = BY0 by similar
arguments as above. Each row in B has exactly one non-zero entry, namely Bik = 1 representing
the cluster membership of node i. All nodes in that cluster have the same label or no label at
all. Similarly, each row in Y0 also has at most one non-zero cell which exactly corresponds
to the label of the class. Therefore, multiplying B and Y0 produces exactly the ground label
matrix Y 0 because Y 0

il =
∑

j BijYjl can only be one if node i has label k. The induction shows

BYk+1 = B(B̂TB)Yk ind.
= BB̂T (BB̂)Y k ♥,♣= BB̂TY k

= BB̂Y k+1 ♠= Y k+1 .

Observe now that T ∈ Rp×p where p is the number of classes of the CEP of T . That is, we have
one row and column per cluster instead of per node. Thus, if p� n, we need to solve a much
smaller system. Moreover, using the highly efficient implementation of saucy [108], the CEP
computation is done in O [(m+ n) lnn] time. So, even in case of little to no symmetry, there is
only very little computational overhead due to symmetry detection. One striking advantage
of the LLP approach is the fact that we do not have to adapt the original algorithm and can
run standard LP implementations on the lifted matrix. This simplifies the implementation
a lot compared to the lifted message passing approaches described in Chapter 3 and we
can additionally use existing efficient parallelized LP implementations. On top of that, the
construction of the compressed matrix is a simple linear algebra operation and straightforward
to implement compared to the lifted factor graph construction for lifted message passing
algorithms.

5.3.1 Experiments

We saw above that our rule-based LP returns high quality labels on a geo-tagging task for a
small, manually curated, dataset. However, for an in-depth analysis of researcher’s migration
behavior, we would like to construct a database as large as possible. To this end, we want to
use LLP to tag a large-scale dataset and demonstrate that it is significantly superior over LP
in terms of run time and memory usage. Therefore, we pose the following two questions to be
answered in this section:
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Figure 5.4: (a) Run time of LP on the AAN dataset with an increasing number of available
cores. (b) Due to the large size of DBLP, it is not possible to run LP with all cities in a single
run. Instead, we have to split the cities into batches and run (L)LP on each batch separately.
As one can see, LLP can use up to 570 cities in a single run while LP can only handle 425 cities
at once.

Q5.2 Is LLP faster than its ground counterpart?

Q5.3 Does LLP require less memory than ground LP?

GeoAAN

Of course, LLP is not limited to cases where running LP is not feasible. Instead LLP also
reduces run time on smaller problems that fit completely into main memory. Hence, we start
off by giving results for LLP on the AAN corpus and investigate the reduction in run time
due the compression of the LP graph on this dataset as well as the potential benefit of using
a parallelized linear algebra library. After running saucy on the ground graph and using
the returned CEP to construct the lifted LP graph, the lifted similarity matrix contains only
36,178 nodes, i.e., the size of the graph has been reduced to about 73% of the original size
(see Figure 5.5(left)). We now ran both variants for 200 iterations on the compressed matrix
and Figure 5.4a shows the run times of LP and LLP for a varying number of cores. Here, the
run time measures the total time required by the script. In the case of LLP, this includes the
compression of the matrix as well. By using LLP instead LP, we reduce the run time by 20%.
Of course, the relative run time is further reduced with more iterations, as the overhead of the
compression vanishes. If we solely look at the run time of the matrix-matrix-multiplications, we
see that LLP requires up to 25% less time. One can also see that LP and LLP equally benefit
from using additional cores.

GeoDBLP

To get closer to our final goal, i.e., investigating migration regularities in large-scale online
bibliographies, we used our lifted relational LP to augment DBLP with geo-tags. Compared to
AAN, DBLP is roughly 100 times larger but contains relatively speaking way fewer labels. More
precisely, we use a DBLP dump from February 2012 which contains 1,894,758 papers written by
1,080,958 authors. While DBLP offers a best-effort entity disambiguation for authors, it does
not contain any affiliation information at all, and hence lacks the required seed labels to run
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AAN DBLP

Grnd Nodes 49,539 5,033,018
Lbld Nodes 30,025 478,365
Grnd NNZ 291,188 58,414,302
Lft Nodes 36,178 3,744,065
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Figure 5.5: (left) Dataset statistics of AAN and DBLP. (right) The number of authors and
publications per year for the DBLP dump in use. As one can see, DBLP has been growing
constantly over the past decades from 1970 until 2010.

LP. Therefore, we used the affiliation information obtained from ACM (cf. Section 5.2.1) as
seed affiliations. After matching DBLP and ACM papers, the enhanced DBLP dump contained
159,068 different affiliation names in total and 10% of the 5,033,018 author-paper-nodes were
labeled with an affiliation. The resolution to the city level reduced the label alphabet to 4,350
cities and the goal is to label the remaining unknown nodes with one of these locations. The
size of DBLP has been growing rapidly over the past years. Figure 5.5 shows the development
of the number of authors and publications from 1965 until 2010. We omitted the year 2011
because DBLP has a certain latency such that the data for 2011 was not complete by early
2012. As one can see, the number of computer scientists, as well as their productivity, have
been growing enormously over the past decades. The growth of the database further motivates
us to develop a fast and efficient LP approach, so updating the database continuously does not
form an obstacle.

A illustrated in Example 5.3, with a dataset of such size, running LP on a single machine is
not easily possible anymore, even with modern hardware. Additionally, the current LAMA
release cannot handle arbitrarily large matrices which additionally limits the maximum number
of labels. One way to overcome this hurdle, is to split the label matrix into k chunks and
do the multiplications separately. Afterwards, we can merge the results and obtain the final
labeling. Using this approach, we compared LLP with LP to see how many cities each variant
can handle in a single run. We started with the first 50 cities and added cities as possible. The
results are depicted in Figure 5.4b for 200 iterations and show that LLP requires far less RAM
because the matrices T and Y are much smaller than the uncompressed ones. We can now run
LP with up to 570 cities in a single run which only requires eight machines in a distributed
setting. On the contrary, LP can only handle 425 at a time and would require 11 machines.
The run times in 5.4b exclude the time needed for the lifting which is negligible because we
only have to compress T once and not for every chunk. The average total run time, including
lifting, for 200 iteration on the DBLP dataset with LLP is about 5.40 hours. This is a lot faster
than LP which took on average around 7.49 hours.

The effect of running rule based LP on the entire DBLP database with only initial seeds
is shown in Figure 5.6. We refer to the resulting database as GeoDBLP. One can clearly
see that the worldwide coverage increases substantially. These geo-locations of publications
alone can already reveal interesting insights such as the most productive research cities in
the world. Such statistics at full scale only become available by propagating the initial seed
locations through the DBLP graph. According to GeoDBLP, the five most productive cities
by the end of 2011 are Beijing, Singapore, Pittsburgh, Cambridge, and Los Angeles. The main
focus of our analysis, however, will be the timing of migration. At this point, we want to
mention that the resulting dataset is not perfect of course. For example, missing an elaborated
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(a) Seed data (b) Completed data

Figure 5.6: As one can see, running Label Propagation greatly improves the content of our
database. The number of geo-tagged author-paper-pairs increased substantially, showing the
publication activities across the world.

entity resolution on the affiliation’s level and missing disambiguation on authors in DBLP can
lead to unreasonable entries. The latter can lead to researchers with an unrealistic amount of
publications assigned. Nevertheless, the analysis of the data in Chapter 6 will show that the
timing patterns inferred from the database are fairly regular and can be explained intuitively.
Additionally, it will be shown that the regularities found in DBLP are very similar to the ones
founds in AAN which further supports the quality of the GeoDBLP dataset.

The experiments on the AAN and DBLP datasets clearly answered questions Q5.2 and
Q5.3, showing that LLP is superior over LP in terms of resources without any decrease in
quality.

5.4 Bootstrapped Label Propagation

Bootstrapped inference using Pseudo Evidence (PE), as presented in Section 3.3, is not restricted
to MAP inference in graphical models. PE can also be incorporated into other algorithms. We
investigated bootstrapped LP on a binary classification task as done in [62]. Here, a venue was
to be predicted for papers in the CiteSeerx citation network. Bootstrapped LP, implementing
a kind of adaptive push-back, converged to solutions very similar to standard LP, but in only
about half the number of iterations. Similar as the lag-parameter in BLM, we can incorporate
a burn-in phase to achieve solutions even closer to standard LP.

5.5 Learning Weights of Logical Rules

When we labeled the online bibliographies above, we determined appropriate parameter values
based on a small subset of the data. However, a proper Machine Learning based approach is
desirable to find weights that optimize a predefined criterion. Originally, Zhu and Ghahramani
[260] proposed the entropy minimization criterion for learning the parameters of the similarity
function in LP. We will follow their approach and present now the gradient for the parameter
learning in the case where the similarity matrix is constructed based on logical rules. Each
parameter corresponds to a weight wa of a rule. Another benefit of entropy minimization is
related to the idea of bootstrapped LP. If the label scores quickly converge to a distribution
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with low entropy, we can start setting Pseudo Evidence early. Following [260], the optimization
objective in entropy minimization is:

H = −
∑
i,j

Yij lnYij (5.2)

To simplify the derivation of the gradient, we will now assume without loss of generality that
the normalized similarity matrix T and the label matrix Y can be written in the following form:

T =

[
Tll Tlu
Tul Tuu

]
and Y =

[
Yl
Yu

]
,

where l is the number of labeled nodes and u is the number unlabeled nodes, i.e., n = l+u. The
contribution to H of nodes with a given label is zero, therefore, we can rewrite Equation (5.2)
as follows:

H = −
l+u∑
i=l+1

d∑
k=1

Yik lnYik .

Now, the partial derivative with respect to wa is:

∂H

∂wa
= −

l+u∑
i=l+1

d∑
k=1

∂Yik
∂wa

lnYik + Yik
1

Yik

∂Yik
∂wa

=
l+u∑
i=l+1

d∑
k=1

(− lnYik − 1)
∂Yik
∂wa

To obtain a value for ∂Yik
∂wa

, we have to resort to the fact that the Yu can be written as:

Yu = (I − Tuu)−1TulYl ,

which is a simple reformulation of Equation (4.2) based on algebraic rules and the fact that
YU = TuuYu + TulYl. Further details can be found in [260]. We now also follow [260], to obtain
the derivative of Yu with respect to wa:

∂Yu
∂wa

= (I − Tuu)−1

([
∂Tuu
∂wa

]
Yu +

[
∂Tul
∂wa

]
Yl

)
Up to this point, the derivation of the gradient followed the work in [260]. Since we are using
the similarity function based on logical rules, the rest of the derivation looks different:

∂Tij
∂wa

=
∂

∂wa

Wij∑
kWik

=

∂Wij

∂wa

∑
kWik −Wij

∑
k
∂Wik
wa

(
∑

kWik)2

=

[
∂Wij

∂wa
− Wij∑

kWik

∑
k

∂Wik

wa

]
/
∑
k

Wik

=

[
∂Wij

∂wa
− Tij

∑
k

∂Wik

∂wa

]
/
∑
k

Wik
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With the definition of our similarity in Equation (5.1), we obtain:

∂Wij

∂wa
=

∂

∂wa
exp

(∑
k

wk · fk(i, j)
)

= Wij · fa(i, j) ,

and lastly,

∂Tij
∂wa

=

[
Wij · fa(i, j)− Tij

∑
k

Wik · fa(i, k)

]
/
∑
k

Wik

We can now use gradient descent to find the optimal parameter values minimizing the entropy.
However, using this approach on our bibliography datasets is computationally challenging as
it requires the inversion of the matrix (I − Tuu) in each iteration of the optimization. Even
for smaller datasets, such as GeoAAN, this matrix has almost 20k rows and columns, and
therefore learning is not efficient. In conclusion, further enhancements such as lifting should
be incorporated. Alternatively, approximations such as piecewise learning [218] should be
considered in LP learning as well.

5.6 Interim Conclusion

In this chapter, we have demonstrated how large-scale, transnational bibliographies can be
constructed from the Web with the help of a small set of initial locations and AI techniques.
In particular, we have shown how Label Propagation (LP) can be applied to infer missing
locations when only a few seed locations are available. Such enriched bibliographies can be
used to discover surprisingly simple and strong regularities as we will show in Chapter 6. To
label large-scale graphs with several million nodes more efficiently, we introduced Lifted Label
Propagation (LLP) which runs LP on a lifted graph by compressing the similarity matrix
in a preprocessing step. We proved the correctness of LLP and demonstrated that LLP
can significantly reduce the run time and memory consumption of LP without sacrificing
performance at all.

We see several interesting avenues for future work. We have seen in Section 5.4 preliminary
results on ground bootstrapped LP which looked very promising. Chapter 3 discussed various
lifting approaches and also combined the idea of bootstrapping with lifting. It would be
interesting to combine the ideas of LLP with bootstrapping as well. However, combining LLP
with Pseudo Evidence requires to efficiently re-lift the graph iteratively and an algorithm that
can handle small changes in the evidence efficiently. This essentially motivates to investigate
an algorithm akin to LEACP for LLP.

In Section 5.1, we suggested to use logical rules to construct the affinity matrix for LP.
Clearly, this is only one of several possibilities to define the similarity between two nodes but
it worked well in combination with lifting. One should further investigate which alternative
similarity functions also produce symmetric and sparse graphs that can be used to obtain high
quality labels. A concrete example of another similarity function is based on the k nearest
neighbors according to a predefined distance function. This graph construction approach should
also go well along with LLP and produce symmetries as long as k is not too large. Additionally,
this will also produces sparse matrices for small values of k that can still be used with large-scale
problems.

In many applications — independent of the similarity function — we cannot expect very
large LP graphs to be perfectly symmetric and lossless data compression is not applicable
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because of insufficient symmetries. The knowledge about labels is often not systematic and
can break symmetries additionally as it has often been observed in lifting for probabilistic
inference. Therefore, one should investigate approximate lifting for LP as well. For example, in
the spirit of iLBP (cf. Section 2.4.2) or the work by Sen et al. [198]. Both approaches would
suggest to cluster variables based on approximate label scores after a sufficient number of initial
iterations of LP. Van den Broeck and Darwiche [227] have also shown how to use low-rank
boolean matrix factorization to speed up lifted probabilistic inference in MLNs. One should
investigate similar ideas for LLP too. In a piecewise approximation approach, we can partition
the graph and hope that each partition allows for considerable lifting. We can try to partition
the graph in such a way that the partitions are as symmetric as possible. We then run lifted
inference and combine the results of the partitioning afterwards. The idea of partitioning large
graphs for LP was recently introduced in [225] and the idea of lifting subgraphs is akin to the
piecewise lifting by Ahmadi et al. [4].

So far, the proposed avenues for future work were focusing on algorithmic aspects of LP
but the data harvesting pipeline also leaves room for further improvement. We currently do a
very simple resolution based on the retrieved city of an affiliation. This can be improved by
a more sophisticated entity resolution based on SRL approaches. One can easily adapt the
entity resolution approach presented in Section 3.3.4 to the problem of resolving affiliations.
Furthermore, we currently use only three rules to construct the LP graph. Looking deeper
into the nature of the problem, one can come up with additional rules that should hold among
nodes. Still, as we will see in Chapter 6, running LP on both datasets produces sufficiently
accurate results for an in-depth analysis of migration patterns in GeoAAN and GeoDBLP.

LP presented by Zhu and Ghahramani [260] is only defined for the finite case. As we will see
in the next chapters, many problems are defined most precisely by random variables over the
natural numbers. For example, imagine a problem where we want to predict the number of
publications of an author. Each node in the graph could represent an author and the labels
would correspond to the number of publications in a certain timespan. Each author is connected
to its co-authors or other researchers from the same affiliation. The idea of a harmonic solutions
is appealing in this scenario as well. Essentially, the number of publications of an author
amounts to the (weighted) average of their neighbors. Assuming that each variable is Poisson
distributed, it might be sufficient to iteratively update the mean of the distribution based on
the neighboring means. Chapter 7 will present a PGM following the idea of Poisson distributed
random variables that can alternatively be used for the prediction of publication counts as we
will see.
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CHAPTER 6

Inferring Social Phenomena From the Web Based on Counts

6.1 Migration Analysis Based on Geo-Tagged Bibliographies

We will now motivate the global meaning of our geo-annotated bibliographies that we generated
based on Label Propagation in Chapter 5 in detail and show how a statistical analysis reveals
interesting patterns about science and society. So far, it was only possible to analyze the
productivity of researchers by means of bibliographic databases and catalogs. Now, with
geo-annotated bibliographies at hand, we can extend this analysis by an geographic dimension
that did not exist at this scale beforehand. Here, we show that timing events of migration within
different countries exhibit remarkable similarities. Specifically, we look at the distribution
governing the data of researcher migration inferred from the Web. We are able to find statistical
patterns and regularities that explain the migration of researchers in a plausible way. For
instance, we show that the job market in academia can be treated as a Poisson process with
individual propensities to migrate following a log-normal distribution over the researcher’s
career stage. That is, although jobs enter the market constantly, researchers are generally
not “memoryless” but have to care greatly about their next move. The propensity to make
k > 1 migrations, however, follows a gamma distribution suggesting that migration at later
career stages is “memoryless”. This aligns well but actually goes beyond scientometric models
typically postulated based on small case studies. On a very large, transnational scale, we
establish the first general regularities that should have major implications on strategies for
education and research worldwide.

In general, unveiling, explaining, and ultimately predicting sociological processes remain key
challenges in understanding the behavior of society and science all around the globe. Over the
last years, many collective human activities have been shown to exhibit universal patterns,
see e.g., [262, 142, 61, 10, 40, 92, 135, 76, 22, 136, 72, 240, 11] among others. However, the
possibility of universal patterns across timing events of researcher migration — the event of
transfer from one residential location to another by a researcher — has barely been explored at
global scale and data is mostly collected on a national level. This is surprising since education
and science is, and has always been, international. For instance, according to the UNESCO
Institute for Statistics, the global number of foreign students pursuing tertiary education abroad
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Figure 6.1: We will now infer migration patterns from our GeoDBLP database.

increased from 1.6 million in 1999 to 2.8 million in 20081. As the UN notes [226], “there has been
an expansion of arrangements whereby universities from high-income countries either partner
with universities in developing countries or establish branch campuses there. Governments have
supported or encouraged these arrangements, hoping to improve training opportunities for their
citizens in the region and to attract qualified foreign students.” Likewise, science thrives on the
free exchange of findings and methods, and ultimately of the researchers themselves, as noted
by the German Council of Science and Humanities [65]. The European Union even defined the
free movement of knowledge in Europe as the “fifth fundamental freedom” 2. Similarly, the US
National Science Foundation argues that “international high-skill migration is likely to have a
positive effect on global incentives for human capital investment. It increases the opportunities
for highly skilled workers both by providing the option to search for a job across borders and by
encouraging the growth of new knowledge” [187]. Generally, due to globalization and rapidly
increasing international competition, today’s scientific, social, and ecological challenges can only
be met on a global scale both in education and science, and are accompanied by political and
economic interests. Thus, research on scientist’s migration and understanding it, play key roles
in the future development of most computer science departments, research institutes, companies
and, nations — especially if fertility continues to decline globally [133]. By analyzing our
geo-augmented bibliographies, we want to provide decision makers and analysts with statistical
regularities and patterns of migration to support policy formulation and funding in research.

On the first sight, reasons to migrate are manifold and complex: political stability and
freedom of science, family influences such as long distance relationships and oversea relatives, and
personal preferences such as exploration, climate, improved career, better working conditions,

1United Nations Education, Scientific and Cultural Organization, Data extract (Paris, 2011), accessed on 19
April 2011 at: http://stats.uis.unesco.org/unesco/TableViewer

2Council of the European Union (2008a), p. 5: “In order to become a truly modern and competitive economy,
and building on the work carried out on the future of science and technology and on the modernization of
universities, Member States and the EU must remove barriers to the free movement of knowledge by creating
a ‘fifth freedom’ ...”
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among others. Despite this complex web of interactions, we show in this chapter that the timing
events of migration within different countries exhibit remarkable simple but strong and similar
regularities. Specifically, we look at the distribution governing the data of researcher migration
inferred from the Web for various reasons. Although, efforts to produce comparable and
reliable statistics are underway, estimates of researcher flows are inexistent, outdated, or largely
inconsistent, for most countries. Moreover, official (NSF, EU, DFG, etc.) and commercial
(ISI, Springer, Google Scholar, AuthorMapper, ArnetMiner) records are often access restricted.
On top of it, these information sources are often highly noisy. We have seen above that we
can construct large-scale geo-tagged bibliographies by means of an AI machinery. We have
seen that papers are written virtually everywhere in the scientific world, and the affiliations
of authors tracked over time will be used as proxy for migration. GeoDBLP is the basis for
our statistical analysis due to its size. However, we will also conduct a partial analysis on
GeoAAN, to verify our findings on a dataset with more ground truth affiliation information.
The main contribution of this chapter can be summarized as follows:

C6.1 We present the first statistical regularities and patterns for researcher migration in
computer science based on geo-annotated online bibliographies introduced in Chapter 5.

The results were presented in [84] and can be further subdivided as follows:

• Regularities:

– (R1) A specific researcher’s propensity to migrate, i.e., to make the next move,
follows a log-normal distribution. That is, researchers are generally not “memoryless”
but have to care greatly about their next move. This is plausible due to the
dominating early career researchers with non-permanent positions. This regularity
of timing events is remarkably stable and similar within different continents and
countries around the globe.

– (R2) The propensity to make k > 1 migrations, however, follows a gamma distri-
bution suggesting that migration at later career stages is “memoryless”. That is,
researchers have to care less about their next move since the majority of positions
are permanent in later career stages.

– Since jobs enter the market all the time, R1 and R2 together suggest that the job
market can be treated as a Poisson-log-normal process.

– (R3) The brain circulation, i.e., the time until a researcher returns to the country
of their first publication, follows a gamma distribution. That is, returning is
also memoryless. Researchers cannot plan to return but rather have to pick up
opportunities as they arrive.

– (R4) The inter-city migration frequency follows a power-law. That is, cities with a
high exchange of researchers will exchange even more researchers in the future. So,
investments into migration pay off.

• Statistical patterns:

– (SP1) A link analysis of the author-migration graph discovers additional statistical
patterns such as migration sinks, sources and incubators.

– (SP2) We can also use the author-migration graph to find the hottest migration
cities for researchers in computer science.
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These results validate and go beyond migration models based on small case studies. Ultimately,
they can provide forecasts of (re-)migration which can help decision makers who investigate
actively the migration and the return of their researchers to reach better decisions regarding
the timing of their efforts.

6.1.1 Related Work

Already Zipf [262] in 1946 investigated inter-city migration. He analyzed so called gravity
models. These models incorporate terms measuring the masses of each origin and destination,
and the distance between them. Afterwards, log-linear regression techniques are used to
statistically calibrate the models. Over the years, several modifications and alternatives have
been postulated, see e.g. [40, 205] and the references in there.

To characterize the productivity of scientists, Stewart [214] reviewed the Poisson-log-normal
model for bibliometric/scientometric distributions. Our results actually suggest that this
Poisson-log-normal model can also be used for migration and scales to a transnational, massive
level. Sums of Poisson processes and other Poisson regression models, as well as ordinary
least-squares, have actually a long tradition within migration research, see [215, 186] for recent
overviews. All of these approaches, however, have considered small scale data only which is
additionally often publicly undisclosed. Neither did these studies consider researcher migration
in computer science explicitly.

To the best of our knowledge, only very few large-scale migration studies have been presented
so far. For example, Zagheni and Weber [255] have recently analyzed a large-scale e-mail dataset
to estimate international migration rates, but not specific to computer scientists, since the
occupation was unobserved. Moreover, Zagheni and Weber have not presented any statistical
regularities nor dealt with missing information. Using a large-scale, IP-address-based dataset,
State et al. [213] also investigated mobility data and migration flows. While Sheldon et al.
[201] presented a model for migration probabilities between countries, they also used access
restricted data and did not aim at unveiling the sociology of computer science. In contrast,
we present the first large-scale migration study for computer science inferred from publicly
available data using AI and report statistical regularities in this dataset.

Our results connect to many other human activities that have been shown to exhibit patterns,
see e.g. [262, 142, 40, 76] among others. Further prominent examples are mobility patterns drawn
from communication [135, 94] and web services [173], as well as mining blog dynamics [72] and
social ties [240]. These examples include several approaches of extracting large-scale sociological
information from the Web which has attracted a lot interest lately. However, most of this work
has focused on services like Twitter or Facebook, see e.g. [32, 176], and most importantly, the
work was directly conducted on the raw data; no AI or Machine Learning technique has been
used to fill in missing data. Moreover, these information sources are not open access and, hence,
results are not reproducible. In contrast, our methods and findings complement these results
by highlighting the value of using freely available information from the Web together with
AI to deal with missing information. Our worldwide lens onto researcher migration enables
analysts to develop global strategies for migration in research and to enrich the public debate.
Following this discussion, the papers most related to this chapter are:

• Stewart [214] presents the Poisson-log-normal model which we will use to describe the
job market in computer science.
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1936 2000 2001 2002 2003 2004 2012

A1 1 4 5 7

A2 2 3 4 6 8

Propensity
t21 t22

k-th Move Propensity
s2

2

Inter-Arrival Time
t′1 t′2 t′3

Figure 6.2: Individual propensities and (inter-)arrival times illustrated for our running example
from Figure 5.1. Every node denotes a publication and the node colors indicate different
affiliations, i.e., there are three affiliations here: blue, red, and green. From this, we can read
off migration. For example, author A2 moves from blue to red and from red to green. A
researcher’s propensity is their likelihood of migrating. The k-th move propensity is their
likelihood of making k > 1 moves. This should not be confused with the (inter-)arrival times of
the job market, i.e., of the overall Poisson process, which counts for all hops across researchers.

• Gonzales et al. [76] analyze human mobility patterns on an urban scale and serves as a
representative for this area of work where regularities in human activities are found and
appropriate models are developed.

• Cohen et al. [40] are also concerned with migration analysis and propose a Generalized
Linear Model which is capable of predicting future number of migrants. However, Cohen
et al. only analyze data of eleven countries while we look at a truly transnational dataset.

6.1.2 Sketching Migration

Unfortunately, we cannot directly observe the event of transfer from one residential location,
respectively institution, to another one by a researcher. Instead, we use the affiliations
mentioned in their publication record as a proxy. In the case of GeoDBLP, we have 4,318,206
author-paper-pairs with geo-tags after running Label Propagation. However, this list may still
be noisy and does not provide the timing information easily. To illustrate this, an author may
very well move to a new affiliation and publish a paper with their old affiliation because the
work was done while being with the old affiliation. Therefore, we considered migration sketches
only. Intuitively, a sketch captures only the main stations of a researcher career. More formally,
we define a migration sketch as the set of the unique affiliations of an author ordered by the
first appearance in the list of publications.

Example 6.1. For instance, in our running example, we have [2000 : Affg, 2002 : Affr] for
author A1 and [2000 : Affb, 2001 : Affr, 2004 : Affg] for author A2. That is, author A1 has
two different affiliations, Affg appearing in 2000 the first time and the first publication with
Affr in 2002.

Of course, this approach has the drawback that we can not capture if a person returns
to an earlier affiliation after several years. Finally, we dropped implausible entries from the
resulting sketch database. For instance, we dropped sketches with more than ten affiliations. It
is very unlikely that a single person has moved more than ten times and these sketches should
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Figure 6.3: Migration statistics over time in GeoDBLP. The ratio between hops and authors
per year (b) does not grow as fast as the number of hops (a) or authors (Figure 5.5(right)).

rather be attributed to an insufficient entity disambiguation. Having the migration sketches
at hand, we can now define a migration or move of a researcher as the event of transfer from
one residential location to another one by a researcher in their migration sketch. Figure 6.2
shows the moves of authors A1 and A2 in our running example. In total, we found 310,282
migrations in GeoDBLP. The number of moves per year is displayed in Figure 6.3a and it
shows that the number of moves increases over the years super-linearly. However, when we
normalize the number of moves by the number of authors, we see roughly a linear slope (cf.
Figure 6.3b). With this information at hand, we will now start to investigate the statistical
properties of researcher migration.

6.1.3 Regularities of Timing Events

As mentioned above, reasons to migrate are manifold. Despite this complex web of interactions,
we now show that researcher migration shows remarkably simple but strong global regularities
in the timing.

R1: Migration Propensity is Log-Normal

Given the migration sketches, we can now read off timing information. First, we estimate the
propensity to transfer to a new residential location or institution across scientists. To do so, let
T ji be the point in time when a researcher moves from one location to the next one. T j0 is the
first temporal reference we have for an author, i.e., the year of their first publication listed in
the bibliography. Let tji be the time between the T ji−1 and T ji . We call tji , i.e., the time between
two moves, the migration propensity (see Figure 6.2). It reflects the bias of researchers to stay
for a specific amount of time until moving on. Figure 6.3 shows that the number of hops per
author has been increasing constantly over the past decades, indicating that researchers are
more flexible and willing to move nowadays. We should note that reading off this information
is only possible with our annotated database. DBLP alone does not provide such information.

Figure 6.4 shows the best fitting distribution for tji in terms of log-likelihood and KL-divergence
among various distributions such as log-normal, gamma, exponential, inverse-Gaussian, and
power-law using maximum likelihood estimation for the parameters (see Table 6.1 for details).
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Figure 6.4: Migration propensity. Due to the many early stage careers, with non-permanent
contracts, the individual migration propensity is best fitted by a log-normal distribution in both
datasets. That is, although jobs enter the market all the time, researchers are generally not
“memoryless” but have to care greatly about their next move, and this timing is a multiplicative
function of many independently distributed factors.

Global Africa Asia Europe North America Oceania South America

LL KL LL KL LL KL LL KL LL KL LL KL LL KL

Log-Normal -2.33 0.01 -2.25 0.04 -2.20 0.01 -2.34 0.01 -2.42 0.01 -2.24 0.01 -2.20 0.01
Gamma -2.35 0.03 -2.25 0.04 -2.21 0.02 -2.35 0.03 -2.45 0.04 -2.25 0.02 -2.20 0.02
Inverse-Gauss -2.34 0.01 -2.26 0.05 -2.21 0.02 -2.34 0.01 -2.43 0.01 -2.25 0.02 -2.21 0.02
Weibull -2.40 0.08 -2.28 0.08 -2.26 0.07 -2.40 0.07 -2.50 0.09 -2.28 0.06 -2.25 0.06
Exponential -2.59 0.27 -2.53 0.32 -2.50 0.31 -2.61 0.28 -2.67 0.25 -2.53 0.30 -2.54 0.35
Power-Law -2.77 0.43 -2.68 0.44 -2.65 0.43 -2.80 0.45 -2.87 0.43 -2.68 0.43 -2.73 0.52

Table 6.1: Goodness-of-fit for individual migration propensities in GeoDBLP. Shown are the
log-likelihood and the KL-divergence at global scale and continental scale for the individual
propensities. Maximum values are bold. Looking at the log-likelihood, overall log-normal is
fitting best (significant at p = 0.05 according to a paired McNemar test on the continental as
well as national level).

Both fits, for GeoAAN and GeoDBLP, are log-normal distributed [5, 214]. That is, the log
of the propensity is a Gaussian distribution with density

f(x) =
1

x
√

2πσ2
e−

(ln x−µ)2

2σ2 .

The parameters µ and σ2 > 0 are the mean and the standard deviation of the variable’s natural
logarithm. The mean of the log-normal distribution is E[X] = eµ+σ2/2 and the mode is equal
to eµ−σ

2
. This fit is a plausible model due to Gibrat’s “law of proportionate effects” [69]. The

underlying propensity to move is a multiplicative function of many independently distributed
factors, such as motivation, open positions, short-term contracts, among others. That is, such
factors do not add together but are multiplied together, as a weakness in any one factor reduces
the effects of all the other factors. This leading to log-normality can be seen as follows. Recall
that log-normal random variables are transformed to normal random variables by taking the
logarithm and that by the law of large numbers, the sum of independent random variables
becomes a normal distribution regardless of the distribution of the individuals. When random
variables are multiplied, as the sample size increases, the distribution of the product becomes a
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Figure 6.5: In GeoDBLP, migration propensities are remarkably similar across continents and
again best fitted by a log-normal distribution. Thus, the timing of research careers has no
cultural boundaries across continents.

log-normal distribution regardless of the distribution of the individuals. This might explain
why the log-normal distribution is one of the most frequently observed distributions in nature
and describes a large number of physical, biological and even sociological phenomena [139].

Moreover, although the overall job market can be seen as a Poisson process, as we will show
later on (see Section 6.1.3), it is useful that the migration propensity is not exponential. It is
precisely this non-Poisson that makes it possible to make predictions based on past observations.
Since positions are occupied in a rather regularly way, upon taking a new position, it is very
unlikely that a researcher will take up another position very soon. In the Poisson case, which is
the dividing case between clustered and regular processes, a researcher should be indifferent to
the time since the last move.

Even more importantly, the log-normality of the propensity can be found across continents
and countries of the world, see Figure 6.5 and Figure 6.6, where we considered only moves
originating from a continent, respectively country, in GeoDBLP. These results show that
timing research careers has clearly no cultural boundaries. Due to the lack of datapoints, we
have omitted this analysis on GeoAAN.

Although one can expect that the information we use is noisy and the aforementioned
procedures in Section 5.2 and Section 6.1.2 may inject additional noise, a comparison of
Figure 6.4a and Figure 6.4b shows that the shapes of both fits look quite similar and both
distributions are from the same family. This gives confidence that our findings are reliable
because the results on a mainly manually curated dataset do not differ hugely from the data that
was inferred completely automatically. Nevertheless, let us describe some of the possible reasons
for noise injection in GeoDBLP. The first possible source of noise is ACM DL. In the very
first step it could happen that we match an ACM paper with a paper from DBLP incorrectly.
On top of that, the affiliations provided by ACM are not necessarily always correct. In the
next phase, we reduce the affiliation strings to their geographical locations. It is not always
possible to uniquely identify a geo-tag for every affiliation and additionally we cannot assume
that the response by Google’s Geocoding API always returns an appropriate geo-information.
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Figure 6.6: Zooming in on migration propensities in GeoDBLP: across the most productive
countries in the world, migration propensities are best fitted by a log-normal distribution.
The countries USA, China, Germany, UK, Australia, Singapore, Canada, France, Italy, and
Hong Kong are shown as representatives. Except for China, all are best fitted by log-normal
distributions. China’s migration propensity follows a gamma distribution.

Hence, it might happen that we assign a wrong city to an author-paper-pair. We then run our
relational Label Propagation to infer the missing labels and the algorithm will not label every
unknown node correctly. Finally, creating a sketch from the list of publications can create
incorrect resumés. For example, we currently cannot map researchers returning to a city where
they have stayed previously. Nevertheless, the results in Section 5.2.3 have shown that our
rule-based Label Propagation is capable of labeling nodes with high accuracy, convincing us to
trust the data in GeoDBLP.

However, there are differences in the estimated parameters, and in turn of the estimated
statistics such as mean and variance, for the two bibliographies. For instance, the difference in
the obtained parameters can be easily described in terms on the mean values of the distributions.
Calculating the means for both networks, we obtain about 5.7 years on the GeoDBLP dataset
and 6.4 years on the GeoAAN dataset. I.e., in the AAN data, it takes a researcher about eight
months longer to make the next move. This, however, can also be attributed to ACL being a
sub-community and AAN being a much smaller sample. Additionally, one can see that the
distributions reach their mode in the third year in both cases, i.e., most hops occur in the third
year. Thus headhunters, for example, should start approaching young potentials in their fourth
year, or even earlier. On the other hand, one should probably reconsider the common practice,
e.g., in the EU and the US, of having projects lasting only three years to fill in the gap.

R2: k-th Migration Propensities are Gamma

Figure 6.7 shows the best fitting distribution in terms of log-likelihood and KL-divergence among
various distributions such as log-normal, gamma, exponential, inverse-Gauss, and power-law
using maximum likelihood estimation for the propensity to make k > 1 moves (see Table 6.2 for
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Figure 6.7: k-th migration propensities. (top) Regularities in GeoAAN. (bottom) Regularities
in GeoDBLP. For larger numbers of moves, i.e., for senior scientists, the k-th move propensities
(from left to right with k = 2, 3, 4, 5) turn into a gamma distribution due to permanent positions.
This suggests that migration at later career stages is “memoryless”, i.e., it follows an exponential
distribution.

details). More precisely, the k-th move propensity for an author Ai is defined as sik =
∑k

j=1 t
i
j

and most accurately described by a gamma distribution in both datasets,

f(x) =
1

Γ(α)βα
xα−1e

− x
β ,

with shape α > 0, scale β > 0, and Γ(α) =
∫∞

0 sα−1e−sds . The mean value of the gamma
distribution is given by E[X] = α ·β . This finding suggests that migration at later career stages
is “memoryless”. This follows from the theory of Poisson processes. For Poisson processes, we
know that the inter-arrival times are independent and obey an exponential form,

f(x) = γe−γx ,

where γ > 0 is called the intensity rate. The inter-arrival time is the time between each pair
of consecutive events in a Poisson process. The important consequence of this fact is that
the distribution of x conditioned on {x > x̂} is again exponential. Hence, we can assume
that the remaining time after we have not moved to a new position at time x̂ has the same
distribution as the original time x, i.e., it is “memoryless”. The connection between the
exponential inter-arrival times and the gamma distribution rises from the insight that the sum
of exponential random variables is gamma distributed. This follows from two facts. First, the
gamma distribution turns into an exponential distribution when setting α = 1. Second, we can
show by induction that the sum of gamma distributed variables is again gamma distributed.
Moreover, we have shown that the time until the k-th move — the k-th move propensity —
has a gamma distribution; it is the sum of the first k propensities of senior researchers. So,
the propensities for the next move turn exponential for later career stages. This is plausible,
since early career researchers have seldom taken many positions and, hence, we consider here
rather senior researchers, which typically have permanent positions. These senior researchers
do not have to care as much about their moves because they are often on a tenured position.
Therefore, the longer a tenured researcher stays with an affiliation, the less likely it is that they
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k = 2 k = 3 k = 4 k = 5

LL KL LL KL LL KL LL KL

Log-Normal -2.78 0.00 -2.98 0.00 -3.12 0.01 -3.20 0.02
Gamma -2.78 0.01 -2.98 0.00 -3.11 0.00 -3.19 0.01
Inverse-Gauss -2.78 0.01 -2.99 0.01 -3.12 0.01 -3.20 0.02
Weibull -2.84 0.07 -inf inf -3.14 0.04 -inf inf
Exponential -3.19 0.42 -3.49 0.51 -3.69 0.58 -3.82 0.64
Power-Law -3.81 1.03 -4.27 1.29 -4.26 1.16 -4.06 0.88

Table 6.2: Goodness-of-fit for k-th move propensities in GeoDBLP. Results are depicted for
k = 2, 3, 4, 5 at global scale and maximum values are bold. Here, gamma is the significantly best
fitting function (significant at p = 0.05 according to a paired McNemar test on the continental
as well as national levels).

move again. As a consequence, competing universities have to top the current position of a
senior researcher if they want to hire them.

If we compare the regularities in GeoAAN and GeoDBLP in Figure 6.7, we see that the
shapes are again similar and from the same family for k > 2, again suggesting that GeoDBLP
has high quality labels. Similar to the case of the general propensity, we can compare the
mean values of the gamma distributions, to give an intuitive description of the difference in the
parameters. For example, if we look at the case of k = 3, we expect 12 years to pass until a
researcher makes the third move in GeoDBLP. Looking at the mean value of GeoAAN’s
distribution, we obtain almost the same value, namely 12.1 years. However, due to the lower
number of authors and papers in the AAN dataset, the data is sparse for higher values of k and
the results become less reliable. In this small network, there are not sufficiently many researchers
making that many moves such that a comparison for high values of k is not meaningful.

Job Market is Poisson-Log-Normal

So far, we have shown that the propensities, let us call them λ for now, to move to a new
residential location, respectively institute, follow a log-normal distribution. We have also shown
that the k-th move propensities follow a gamma distribution, suggesting that the propensities of
senior researchers are exponential. The latter fact already points towards a Poisson model since
a Poisson process is a renewal process with exponentially distributed inter-arrival times and
gamma distributed waiting times. More precisely, we here postulate that the job market follows
a Poisson-log-normal model [214]. That is, given a specific scientist’s migration propensity λ,
their probability of migrating follows a simple Poisson model:

p(x) =
λx

x!
e−λ ,

for x ∈ N. Thus λ, i.e., the rate of the Poisson process, is a function of the migration propensity.
The number of migrations for all scientists having the same λ value will follow the same Poisson
process. Moreover, since the sum of Poisson processes is again a Poisson process, we know that
every finite sample of scientists with λs drawn from a log-normal is again following a Poisson
process. Thus, assuming the job market to be a Poisson model is plausible, although we cannot
directly observe the openings of new jobs in the market from our data. It actually tells us
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Figure 6.8: (a) The circulation of expertise, i.e., the time until a researcher returns to the
country of their first publication follows a gamma distribution. Therefore, returning is also
memoryless. (b) The inter-city migration frequency distribution follows a power-law. That is,
cities with a high exchange of researchers will even exchange more researchers in the future.

that the arrival of job openings is memoryless. Open positions should always be announced
as they come. On a global scale, there is no point in waiting to announce them. There are
always researchers ready to take it. And, individual researchers can always look out for new
job openings.

R3: Brain Circulation is gamma

Brain circulation, or more widely known as brain drain, is the term generically used to describe
the mobility of high-level personnel. It is an emerging global phenomenon of significant
proportion as it affects the socio-economic and socio-cultural progress of a society and a nation.
Here, we defined it as the time until a researcher returns to the country of their first publication.
Only 29, 398 out of 193, 986 (15%) mobile researchers, i.e., researchers that have moved at least
once, and out of a total of 1, 080, 958 (3%) researchers returned to their roots when examined
in terms of publications. As to be expected from the statistical regularity for k-th move
propensities, it also follows a gamma distribution, as shown in Figure 6.8a. Since a gamma
distribution is the sum of exponential distributions, returning is memory less. Researchers
cannot plan to return to their roots but rather have to pick up opportunities as they arrive.

6.1.4 Link Analysis of Migration

Link analysis techniques provide an interesting alternative view on our migration data. That
is, we view migration as a graph where nodes are cities and directed edges are migration links
between cities. More formally, the author-migration graph is a directed graph G = (V,E)
where each vertex v ∈ V corresponds to a city in our database. There is an edge eij ∈ E from
vertex Vi to vertex Vj if there is at least one author who moved from an affiliation in city Vi to
an affiliation in city Vj . We can also add weights to the edges by considering the flow, i.e., the
total number of moves between two cities in one direction.
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Figure 6.9: (left and middle) Running HITS on the directed author-migration graph reveals
sending, receiving, and incubator cities. Shown are representative cities in North America (left)
and Europe (middle). The size of spikes encodes the value of the “authority” (blue) and “hub”
(red) scores. Incubator cities have well balanced scores. As one can see, the European cities
rather send researchers. US cities at the east-cost are incubators, and west-cost cities receive
researchers. (right) Top 25 migration cities ranked by PageRank.

R4: Inter-City Migration is Power-Law

Triggered by Zipf’s early work and other recent work on inter-city migration [262, 40, 205], we
investigated the frequency of inter-city researcher migration. The frequency of a connection
between two cities can be seen as knowledge exchange rate between the cities. It is a kind
of knowledge flow because one can assume that researchers take their acquired knowledge
to the next affiliation. If one looks at the author-movement-graph as a traffic network, high
frequent connections corresponds to highly used streets. Figure 6.8b shows the distribution
of inter-city migration with a fitted power law using maximum likelihood estimation after
removing low-frequency connections. A likelihood comparison to other distributions such as
log-normal and gamma revealed that a power law fits the best. Thus, there are only few pairs
of cities with frequent researcher exchange on the one hand and many low-frequent pairs on the
other hand. However, as the power-law suggests, cities with a high exchange of researchers will
exchange even more researchers in the future. Hence, early investments into migration pay off.

SP1: Migration Authorities and Hubs

Next, we were interested in mining the migration authorities and hubs. To do so, we use
Kleinberg’s HITS-algorithm [122] on the author-migration graph. The algorithm is an iterative
power method and returns two scores for every node in the graph, which are known as hubs
and authorities. This terminology arises from the Web where hubs and authorities represent
websites. Hubs are pages with many outlinks and authorities are pages with many inlinks.

In our context, inlinks correspond to researchers arriving in a city — they pick up a new
position — whereas an outlink corresponds to a researcher leaving a city — e.g. funding ends.
Hubs can be seen as “sending” cities, i.e., they send out researcher across the world. On the
other hand, authorities can either be cities where people want to stay and tenure positions are
available or where people drop out of research, i.e., heading to industry. These are “receiving”
cities. Moreover, if we make the assumption that only high-quality students and scientists get
new positions, one may view sending cities as institutions producing high profile scientists but
also cannot hold all of them due to restricted capacities or low attractiveness. In contrast,
receiving cities might have the capacities and reputation to hold many migrating researchers
or highly interesting industrial jobs are close by. Cities having generally high scores for both
values are incubators: they attract a lot of migration but also send them to other places.
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Figure 6.9 shows the sending and receiving scores for cities in the representative regions of
the US and Europe3. The US clearly shows an east-coast/west-coast movement. The east coast
aggregates many sending cities while receiving cities dominate the west coast. This is plausible.
Not only are there many highly productive universities on the west-coast, but labor market
for high-tech workers in, say, the Bay Area is the strongest in a decade. Thousands of new
positions are being offered by small startups and established tech giants. However, one should
view many of the east-coast cities as incubators since they have high overall scores. The scores
of European cities are typically much smaller, see Figure 6.9(middle). Europe is dominated
by sending cities. Few exceptions are Berlin, Munich, Stockholm, and Zurich. The largest
receiving city in the world is Singapore. This is plausible as well. The city-state is known for
its remarkable investment in research in recent years, as for example noted by a recent Nature
Editorial [1]4. In contrast, the largest sending city by far is Beijing. This is also plausible.
There has been upsurge in Chinese emigration to Western countries since the mid-first decade of
the 21st century [131]. In 2007, China became the biggest worldwide contributor of emigrants.

SP2: Moving Cities

Following up on HITS, we also computed PageRank [174] on the author-migration graph.
Compared to HITS, PageRank produces only a single score: a page is informative or important
if other important pages point to it. More formally, by converting a graph to an ergodic Markov
chain, the PageRank of a node Vi is the (limit) stationary probability that a random walker
is at Vi. In the context of migration, this has a natural and very appealing analogy. The
PageRank computes the (limit) stationary probability that a random researcher is at a city.

To compute the PageRank of a city, we call it the MigrationRank, the author-migration
graph is transformed into the PageRank-matrix on which a power method is applied to obtain
the PageRank-vector, containing a score for every node in the graph. The transformed matrix
also contains the stochastic adjustment identical to the random surfer in the original work.
That is, a researcher can always migrate from one affiliation to another affiliation, even if no
one else did so before. Figure 6.9(right) shows the top 25 cities in the world according to
the MigrationRank. Compared to the productivity reported for different cities in Section 5.3,
one can clearly see many similarities but although notable differences. The US is not only
productive but thrives on migration. Vancouver is among the top 25 when it comes to migration
but not when it comes to productivity. Generally, productivity does not imply a high migration
rank. Beijing, however, is top in both when it comes to productivity and migration. Singapore
is higher ranked for migration than for productivity. European cities seem to also thrive on
migration more than on productivity. At least, there are much more cities in the top 25 than
for productivity.

6.1.5 Summary

In this section, we presented statistical regularities and patterns on migration inferred from two
different datasets, namely GeoAAN and GeoDBLP. Describing and understanding migration
is of great interest and considerable meaning because international mobility among researchers
not only benefits the individual development of scientists, but also creates opportunities for

3Rendered with WebGL Globe (see www.chromeexperiments.com/globe).
4The recent economic pressure mounting on research communities in Singapore and around the world is not

well captured in our data, which lasts to roughly 2011 only.
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intellectually productive encounters, enriching science in its entirety, preparing it for the global
scientific challenges lying ahead. Moreover, mobile scientists act as ambassadors for their
home country and, after their return, also for their former host country, giving mobility a
cultural-political dimension. So far, no statistical regularities have been established for the
researcher migration within computer science at global scale. One explanation might be that
no transnational, registered dataset existed before, and is enabled through our data harvesting
approach presented in Chapter 5. We analyzed migration behavior from different points of
view and presented models for the general migration propensity and the k-th propensity among
others. Additionally, GeoDBLP revealed that there are no cultural boundaries underlying these
timing events. The patterns remain similar no matter what region one looks at. Thus, moving
on to a new position is a common pattern in terms of timing across different countries and
independent of geography. Indeed, people have had the suspicion of many of these regularities
but we have shown that they go beyond folklore.

The fact that we find in both datasets distributions from the same families for the general
propensity and the k-th propensity shows again that inferring missing information based on the
methodology presented in Chapter 5 is a valid approach. The observed difference in parameters,
i.e., different means in the general migration propensity, must not necessarily result from the
multi-source data harvesting process but can also indicate that different sub-communities of
computer science have different cultures and incentives to make the next move.

Naturally, one future goal of this analysis is the translation of the patterns and regularities
into recommendable actions, in order to help decision makers. For example, our findings
indicate that the average time to hop is longer than most projects and many PhD scholarships
last. Therefore, funding agencies should reconsider and review the duration of many projects.
This also touches upon the question of the time required to finish a PhD which is often discussed
controversially. Estimates of this statistic can be read from our datasets as well and it would
be interesting to compare our data to the dataset presented by Espenshade and Rodriguez
[55]. The work compares the performance of US and foreign students by looking at the time
required to complete a PhD for a small number of US universities.

To further improve the quality of our database, and hence increase the reliability of our
findings, several steps can be taken. Improving the construction of migration sketches and
operating on the affiliation level will certainly enable a finer level of analysis. However, in the
case of the affiliations, this will significantly increase the computational costs and requires a
high-quality entity resolution of the affiliation strings. Creating a set of ground-truth resumés
for a small number of researchers can be of great benefit as well. These resumés cannot only be
used for finding adequate weights in Label Propagation but also to further measure the quality
of migration sketches. However, this process is very time consuming and requires a standard
definition of a resumé. Additionally, one has to figure out a sample process over all researchers
to obtain a dataset which covers all fields of computer science well.

Indeed, we have only started to look into migration through the “AI and the Web” lens, but
we have demonstrated that AI can significantly broaden the scope of computational sociology
since it is able to infer missing values. This is an important advancement in understanding and
describing the migration behavior of computer scientists and should be extended beyond this
particular field. In the future, other AI and Machine Learning techniques should be explored to
reveal more migration patterns, and our results should be extended beyond computer science.
This should also include an analysis over time and the distribution over distances traveled when
migrating. In any case, our results are an encouraging sign that harvesting and inferring data
from the Web at large-scale may give fresh impetus to demographic research.

127



Inferring Social Phenomena From the Web Based on Counts

6.2 Other Social and Behavioral Phenomena

Of course, migration data is by far not the only human activity we can observe online. The
Web has become a part of everyday life for many people and is one of the main sources for
media content nowadays. Besides text documents, images, and videos are consumed frequently.
Services such as reddit and YouTube are amongst the top 25 websites visited each month
worldwide and even higher ranked in several countries5. Therefore, these websites provide
an interesting playground for observing human behavior online and analyzing the spread of
content among people and the Web.

6.2.1 Internet Memes

In [14], we analyzed time series of search queries related to Internet memes, i.e., catch phrases,
humorous pictures, or video clips that are distributed via websites such as reddit and then
spread among Internet users. We used Google Trends to investigate the dynamics of growth
and decline of such memes by looking at the search frequencies of such Internet phenomena
over time in the Google search engine. Internet memes are of great interest to many people
because their rapid growth makes the underlying process appealing to understand for all kinds
of purposes. Describing and characterizing successful Internet memes may help public relation
professionals to design viral marketing or political campaigns. One specific property of many
Internet memes is the initial explosive growth. However, once the peak has been reached, memes
start to quickly fade out again but not as rapidly as their initial growth. Interestingly, this
typical growth and decline can be nicely captured by mathematical models. In particular, we
showed that the Weibull, the Gompertz, and the Frechet distribution can capture this behavior
well and also explain the dynamics in terms of simple growth equations. Although Internet
memes have previously been described by log-normal distributions [13], it has been empirically
shown that the aforementioned distributions return a better fit to the data accompanied by an
plausible explanation of the model.

However, most remarkable is the fact that the Weibull, the Gompertz, and the Frechet
distributions share mathematical characteristics that describe growth and decline in terms of
growth equations. Growth equations model how entities grow and decline over time and we
will now exemplify this behavior for the case of the Frechet distribution since we found it to fit
best for the majority of the memes under consideration. The probability density function of
the Frechet distribution is defined as follows:

f(t) =
α

β

(
t

β

)−α−1

e−(t/β)−α ♣= bαt−(α+1)e−bt
−α

,

with shape and scale parameters α and β. Step (♣) follows from setting b = (1/β)−α. We can
now rewrite this equation as follows:

f(t) =
F (t)

bαtα+1
, (6.1)

with F (t) being the cumulative distribution function of the Frechet distribution. In this context,
the cumulative distribution function has a particular appealing interpretation. It can be viewed
as the sum of total attention attracted so far by the meme. For more details of the derivation

5Statistics obtained from Alexa (www.alexa.com) in March 2015
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and a proof, we refer to Lemma 3 in [14]. Equation (6.1) can be viewed as a growth equation
based on division. f(t) will grow as long as F (t) grows faster than bαtα+1 and the decline
term is polynomial in t. By rewriting the original distribution, we have decoupled growth and
decline, and can better understand the underlying process. This is another advantage over
the log-normal distribution when fitting time series because the log-normal does not allow an
expression as growth equation. In a similar fashion, the Weibull and the Gompertz distribution
can be reformulated as well.

We used maximum likelihood estimation to fit more than 200 Internet memes from the period
January 2004 to February 2014 to the Weibull, the Gompertz, and the Frechet distributions.
This statistical model fitting revealed that those distributions give better fits than the log-
normal distribution in terms of the KL-divergence. Additionally, we observed that the Frechet
distribution gave the best fit for the majority of the memes. This empirical evaluation indicates
that Internet memes may indeed be described by simple and interpretable growth equations
that explain their rise and fall. Using Google Trends as a proxy to observe popularity is another
example where the Web provides information about social behavior.

6.2.2 Viral Videos

While Internet memes in general can be of several different kinds of content, we will now
have a look at one particular class of content on the Web. With the increase in bandwidth of
broadband Internet connections, video platforms such as YouTube have become enormously
popular. Many short video clips also show “viral” behavior and their spread among Internet
users has rarely been analyzed nor understood. These videos can be of different kinds such as
professional music videos but also video clips taken by digital cameras or smartphones. We
have above already discussed how Internet memes can be described by mathematical models, in
[15] we focused on the spread of videos from the point of view of mathematical epidemiology.

Mathematical models of epidemic processes play a crucial role in various disciplines and
we adopt its usage to time series of Google search frequencies and additionally YouTube view
counts. The process of an epidemic outbreak can be used to describe the information spread in
a network where an initial information is propagated along the edges of the network. One can
distinguish users in a network being susceptible (S) to this effect, others being already infected
(I), and lastly infected users may either stay infected or recover (R), i.e., become susceptible
again.

Typically, these epidemic dynamics are modeled using compartment models which assume
the entire user base being divided in three groups as described in the previous paragraph and
therefore are often referred to as SIR models. Transitions between each of the groups are
specified in terms of systems of coupled, non-linear differential equations. However, this does
not allow for a closed-form solution of the temporal behavior at a certain point in time. Instead,
one has to resort to numerical methods, such as Euler’s method, to obtain the distribution
iteratively. In order to avoid such kind of difficulties, we introduced a simpler probabilistic
model based on Markov processes.

More precisely, we consider a homogeneous, time discrete Markov chain as depicted in
Figure 6.10. This conceptually simple Markov process is able to explain a wide range of
infection dynamics and we will see that this includes the spread of video clips on the Web.
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Figure 6.10: Markov process for SIR models. The parameter i is the infection rate and r
amounts to the recovery rate.

Based on this Markov chain, we can now characterize the percentage of infected users I(t) in
terms of a probability density functions as follows:

f(t) =

∫ t

0
αe−αxβe−β(t−x)dx .

Most notable about this distribution is the fact that it is the convolution of two exponential
distributions and has a closed form solution. The rate parameters of the two exponentials are
given by α = − ln(1− i) and β = − ln(1− r) and therefore lend themselves directly to the SIR
model. This admits an intuitive and plausible interpretation of the results. For full details and
a proof of the closed form solution, we refer to Proposition 1 in [15]. We can now use maximum
likelihood estimation again to determine the parameters of the model based on the observed
time series.

We considered two datasets in the empirical analysis of our proposed Markov SIR model.
The first one, presented by Jiang et al. [104], consists of more than 700 YouTube videos with
at least 500,000 views while the second one presents Google Trends time series for 50 search
queries related to videos known to exhibit viral behavior. For a baseline comparison, we also
fitted the data to the log-normal and the Weibull distributions akin to the experiments in
Section 6.1 on migration and the analysis of the Internet memes in Section 6.2.1.

The experimental results revealed that Markov SIR models provide a reasonably accurate
description of the data and are the overall best fitting model. Although the log-normal and
Weibull distributions also fit the data well in many cases, they lack a concrete explanation
of the behavior in terms of an epidemic process. Hence, the experiments suggest that it is
reasonable to describe the attention dynamics of viral videos with help of Markov SIR models.

6.3 Interim Conclusion

In this chapter we have seen applications of Machine Learning applied to data describing human
behavior. This included the migration behavior of researchers in computer science and the
viral spreading of Internet memes which in particular covered the analysis of viral videos. The
data harvesting process was utilizing various information sources, such as online bibliographies,
search frequencies in search engines, and view counts on video platforms among others. In
the case of the migration data, we have shown that Machine Learning cannot only be used
for the data analysis, as it is commonly done, but also to fill in the missing datapoints. In all
scenarios we have seen that probability distributions with only one or two parameters a capable
of describing complex real-world interactions. This is in contrast to many other approaches
that use various parameters and hence can easily overfit. Additionally, we were able to present
plausible explanations for our findings which makes interpretation a lot more accessible.

We already discussed the fact that the data harvesting process may be noisy. Of course,
the way we currently construct our migration sketches further approximates the true vita of a
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researcher. Replacing these sketches by more expressive resumés is beneficial for all kinds of
purposes. We expect not only to obtain more precise results but can also present and visualize
the results more concretely. However, this requires a precise formal definition of a resumé which
has to account for several outliers and abnormalities. Once such a standard resumé has been
defined, one can also construct a “gold” corpus of selected resumés that can be used for further
evaluation.

The interest in using Machine Learning on large-scale human behavior data has been
increasing recently and can have far-reaching impact on other fields such as sociology and
psychology. By extending our research on virality beyond Internet memes and video clips, as it
was already partially highlighted for technology trends in [14], one can further contribute to
the field of computational sociology. Fads have frequently been observed in the “old” economy
and can be expected to be found in virtual economies as well. Hence, providing researchers,
politicians, and marketers new tools. Similarly, GeoDBLP can only be seen as the first step
in Machine Learning-driven migration analysis based on online bibliographies. Transferring
this approach to related database such as PubMed6 will extend this study to other areas and
enable a comparison not only across countries but also across different fields of research.

The analysis of geo-tagged online bibliographies showed regularities for the entire research
market and migration in computer science was seen as a whole. However, there is also an
interest in the behavior of the individual researchers. For example, it would be interesting
to learn a model that predicts the number years required for a student to finish their PhD.
Or, to predict the time required for an entire group of PhD students at a specific location
conditioned on their field of research or their supervisor. In the univariate case, Cohen et al.
[40] have already looked at the prediction of the number of migrants moving between countries.
However, eventually we are interested in considering multivariate cases where we can make
predictions for a group of people influencing each other. When using PGMs for this task, we
require random variables defined over the natural numbers to model the counts. These kind of
PGMs did not receive much attention so far and therefore we will present a new approach for
PGMs over count data in the next chapter.

6www.ncbi.nlm.nih.gov/pubmed
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CHAPTER 7

Count Graphical Models

So far, we have seen inference and learning approaches for primarily binary models, as well
as models with variables over discrete finite domains. The last chapter exemplified how we
can use Label Propagation to handle random fields with variables over large label spaces.
Although the range of each variable could take on several thousand values easily, it was still
finite. Hence, if we were to predict the number of publications of an author in the next year
or even subsequent years for example, or the productivity of an entire university or country
measured in publications, we were required to artificially limit and bin the true range. This is
just one particular example where the models described so far reach their limits. We have seen
in Section 1.1 already another example where we highlighted the need for PGMs over count
data. The case of traffic flow prediction naturally fits well into the domain of natural numbers
and previous work of similar data approximated the congestion by discretization into different
levels of traffic [178]. In fact, the world contains an unimaginably vast amount of information,
and much of the data consists of counts, i.e., observations that can take only non-negative
integer values. Without counting, we cannot know how many people are born and have died;
how many men and women still live in poverty; how many children need education, and how
many teachers to train or schools to build; the prevalence and incidence of diseases; how many
customers arrive in a shop daily and whether demands for products are increasing, nor which
team wins a sports match. Our scientific and digital lives also thrive on counts. Example data
are publication and citation counts as seen in the previous chapter, bag-of-X representations
of, e.g., collections of images or text documents, genomic sequencing data, user-ratings data,
spatial incidence data, climate studies, and site visits, among others. Behavioral data of users
visiting websites for example are tracked on a large scale. Visits or log-ins are counted and then
used to enrich the user experience and to increase revenue. We have also seen in Chapter 6
how such kind of data can be used to discover interesting models for Internet memes and the
spread of video clips online. Or consider computational social science, a field that leverages
the capacity to collect and analyze data at a scale that may reveal patterns of individual and
group behaviors. Here, for instance, the number of people living in a region and the number of
people migrating from one city to another one, among others, are of great interest to politicians
and also influence decisions in education and research. With the GeoDBLP corpus presented
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in the previous chapter, we have already seen a dataset that is suitable for such a discussion.
Finally, counts also play an essential role in statistics. Consider for example an election analyst
interested in the association of gender and voting intentions. Standing on a street corner for
an hour recording data from anyone willing to talk to them, they build a contingency table,
say, with the gender in the rows and and the voting intentions in the columns. In contrast to
interviewing a fixed number of m individuals, there are no constraints on the row and column
totals, and hence the cell entries follow a count distribution.

All these examples share a common attribute: they require a distribution over counts, i.e., a
potentially skewed, discrete distribution over the natural numbers. Indeed, there are several
count distributions. Here, we focus on one of the most widely used ones, namely the Poisson
distribution. Among other observations, Poisson distributions are observed in sports data [107],
such as goals in football matches, in different fields of the natural sciences [56] which includes the
number of cells per region under a microscope for example, and Clarke [39] even observed that
the points of impact of bombs in flying-bomb attacks are Poisson distributed. However, these
classical studies have only considered uni- and bivariate cases even though in many situations
count variables may directly influence each other and should not be considered independently.
For instance, if “Neural” appears often in a document then it is also likely that “Network”
appears in the same document. Indeed, one may consider to employ a probabilistic graphical
model widely used for modeling distributions among several random variables. Unfortunately,
research has so far mainly focused on graphical models over binary, multinomial and Gaussian
random variables. These standard distributions, however, are often ill-suited for modeling
count data since they either disregard the infinite range over the natural numbers or the
potentially asymmetric shape of the distribution of count variables. Counts are neither binary
nor continuous, they are discrete with a typically right skewed distribution over an infinite
range. For example, if the mean λ of a Poisson distribution is less than five, it can be shown
that its probability histogram is markedly asymmetrical, making a Gaussian-approximation
inappropriate. However, if λ > 1000 its probability histogram is essentially symmetric and
bell-shaped. Besides the shape, the Gaussian assumption of fixed variance is often violated
for counts. The variance is typically not constant but increases with higher values. Here,
the Poisson distribution accounts for this immediately because the mean correlates with the
variance. Therefore, it is not surprising that extensions of the Poisson distribution to the
multivariate setting have been proposed, see e.g. [19, 248, 249]. However, all existing extensions
either model only negative conditional dependencies or neglect the prediction of counts, or
do not scale well. Negative dependencies limit the expressiveness of the models because one
can only represent that the mean of a variable decreases upon the observation of increasing
neighboring counts.

To ease the modeling of multivariate count data, we therefore propose a novel family of
Poisson graphical models, called Poisson Dependency Networks (PDNs). A PDN consists of a
set of local conditional Poisson distributions — each representing the probability of a single
count variable given the others — that naturally facilities a Gibbs sampling inference procedure.
Moreover, the family admits simple training procedures induced by a functional gradient view
on training. Specifically, triggered by the recent successes of functional gradient ascent for
representing multinomial Dependency Networks [160], our first technical contribution is to show
that PDNs can be represented as sums of regression models grown in a stage-wise optimization
starting from a simple initial model. In fact, this first functional gradient approach to modeling
multivariate Poisson distributions — as we will show empirically on several real world datasets

— scales well and can model positive and negative dependencies among count variables while
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often outperforming state-of-the-art approaches. However, the main technical contribution of
this chapter is the development of the first multiplicative functional gradient ascent, which is
demonstrated empirically to be able to boost the performance even further, since it essentially
implements an automated step size selection without incurring in computational overhead.

This chapter is structured as follows. We start off by discussing related work in more detail
and give an first empirical result which indicates the strength of PDNs. We then formally
introduce PDNs in Section 7.2 and describe different variants. Section 7.3 shows how to learn
PDNs, in particular, using the multiplicative functional gradient approach, and in Section 7.4
we explain how to perform inference in PDNs. Section 7.5 presents our exhaustive experimental
evaluation on different synthetic and real-world datasets demonstrating the effectiveness of this
model family. Before summing up this chapter, Section 7.6 explains how relational PDNs can
be implemented given a relational count dataset.

7.1 Related Work

Most of the existing AI and Machine Learning literature on graphical models is dedicated
to binary, multinomial, or certain classes of continuous (e.g. Gaussian) random variables.
So far, this thesis has also mainly considered binary or finite multinomial random variables.
In Chapter 3, the focus was on binary models and Chapter 5 looked at multiclass labeling
problems which also have an interpretation in terms of Gaussian MRFs. With few exceptions
in Section 3.2, we assumed undirected graphical models so far. However, recall that Section 2.1
also briefly discussed Dependency Networks (DNs), which are the focus of this chapter. We
can summarize the papers that are most related to the work in this chapter as follows:

• Heckerman et al. [90]: This work leverages the advantages of directed and undirected
graphical models and introduces Dependency Networks. We build upon this work and
use Dependency Networks in the infinite Poisson case.

• Friedman [58]: This seminal work lays the foundation of gradient boosted approaches
where functions are approximated via the sum of simpler components. We follow upon
that work and use gradient tree boosting to lean our local models.

• Yang et al. [249]: Compared to early work on Poisson graphical models, such as Besag
[19], this work introduces a modified Poisson graphical which is capable of modeling
positive and negative dependencies without giving up consistency. Still, PDNs have less
restrictions on the parameters and have lower run times.

• Allen and Liu [7]: This work presents a local Poisson model akin to our PDNs. However,
these Local Poisson Graphical Modelss (LPGMs) solely use generalized linear models to
define the mean of the local Poisson distributions.

DNs due to Heckerman et al. combine concepts from the directed and the undirected worlds.
Specifically, like Bayesian networks, DNs have directed arcs but they allow for networks with
cycles and bi-directional arcs, akin to MRFs. This makes DNs quite appealing because, if
the data is fully observed, learning is done locally on the level of the conditional probability
distributions for each variable. Hence, the learning is mixing directed and indirected as needed.
Based on these local distributions, samples from the joint distribution are obtained via Gibbs
sampling [90, 17]. Except for few cases that we will discuss below, surprisingly little attention
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has been paid to PGMs for multivariate count data within the AI and Machine Learning
communities.

Indeed, when only one count variable is considered, the literature is vast. At lot of this
can essentially be treated as a Generalized Linear Model (GLM), see [143] for example. In
GLMs, the response variable, i.e., the variable to predict, is related to a link function applied
to a linear model. One specific instantiation of GLMs is the Poisson regression case where the
link function is the logarithm. In this case, the mean of the Poisson distribution is defined
by a log-linear model. Compared to ordinary least squares regression, an advantage of the
GLM framework is the fact that non-Gaussian error structures are possible. However, when
considering jointly two or more count variables, things become more complicated and there
exists much less work.

For instance, one can define a multivariate Poisson distribution by modeling random variables
as sums of independent Poisson variables, see e.g. [107, 68]. Since this is again Poisson, the
marginals are Poisson as well. The resulting joint distribution, however, can only model positive
correlations. There are also bivariate extension for specific models, e.g. [107]. In general,
even calculating probabilities for these multivariate Poisson distributions is computationally
challenging and hence their usage is often limited [224]. Hoff [93] proposed to use Generalized
Linear Mixed Models (GLMMs) using Poisson regression and modeling the dependencies between
variables using random effects. Training the resulting GLMMs, however, is computationally
demanding because it requires the estimation of the unobserved mixed effects. Nevertheless,
GLMMs are often used, for example in studies on ecology and evolution [23]. Using just GLMs,
Yang et al. [248] have recently proposed an undirected Poisson model, called GLM graphical
model, where — close in spirit to PDNs — each conditional node distribution is assumed to be
from the exponential family with the Poisson distribution as one particular instantiation. In
contrast to the functional gradient approach of PDNs, where interactions among variables are
introduced only as needed and hence the learner does not explicitly consider the potentially
immense parameter space, Yang et al. employ a sparsity constrained, parametrized conditional
maximum likelihood estimation approach along the lines of [145]. It must be mentioned that
Yang et al.’s GLM graphical models extend the seminal work by Besag [19]. More precisely,
Besag’s Auto-Poisson model can be seen as an instantiation of GLM graphical models, however,
Yang et al. allow for higher-order cliques. In general, this line of work models the dependencies
between the variables directly, instead of adding mixed effects. That is, the mean of each
variable follows a GLM where all neighboring variables are used as explanatory variables.
However, to guarantee a consistent joint probability distribution, the parameters are required
to be negative, i.e., competitive relationships. In the case of arbitrary positive dependences,
the joint distribution is not guaranteed to be normalizable anymore because the normalization
constant becomes infinite. In contrast, PDNs drop the guarantee of consistency and stay local,
allowing for negative and positive parameters, i.e., competitive and attractive relationships.
Alternatively, Kaiser and Cressie [106] suggested the use of Winsorized Poisson distributions to
remove the drawback of negative dependencies only. The Winsorized Poisson distribution is
the univariate distribution obtained by truncating the Poisson variables at a finite constant.
Doing so makes estimation considerably harder than for PDNs that are naturally equipped
with a simple learning approach as we will demonstrate.

Probably closest in spirit to PDNs are the recent approaches due to Allen and Liu [7] and
due to Yang et al. [249]. More precisely, Allen and Liu’s LPGMs are also in the tradition of
Besag’s Auto-Poisson models and related to GLM graphical models. They assume that each
variable conditioned on all other variables in the network follows a Poisson distribution. Similar
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Auto-Poisson [19] TPGMs [249] SPGMs [249] LPGMs [7] PDN

consistent joint distribution X X X (X) (X)
arbitrary parameters - X X X X
unbounded variable range X - - X X
covers learning X X X X X
higher-order potentials - X X X X
tree-structured potentials - - - - X
functional gradient - - - - X
investigates inference - - - - X

Table 7.1: A comparison of existing Poisson graphical models most similar to PDNs. As one
can see, PDNs cover all important aspects of modeling count data while facing almost no
restrictions. The “(X)” denotes that this is the case given that an unordered Gibbs sampler on
the model converges. See main text for more details.

to PDNs, they do not focus on a consistent joint distribution but consider local conditional
probability models only. In contrast to PDNs, which employ a well scaling functional gradient
ascent, the structure of LPGMs is learned with a computationally more demanding `1-norm
penalized log-linear regression for neighborhood selection. Assuming the data is fully observed,
the neighborhood for every node is learned separately in the spirit of Gaussian MRFs. Yang
et al. [249] introduced Truncated Poisson Graphical Models (TPGMs), Quadratic Poisson
Graphical Model (QPGMs), and Sub-linear Poisson Graphical Models (SPGMs). TPGMs are
a modification of Kaiser and Cressie’s truncated models. QPGMs are a generalization of the
previously introduced Poisson graphical models with quadratic base measure. QPGMs allow
both positive and negative parameters under the restriction that the pairwise parameter matrix
is negative-definite. Instead of changing the base measure, SPGMs use sub-linear sufficient
statistics to ensure normalizability. All this makes learning harder compared to PDNs since
parametric `1-norm penalized log-linear regression or proximal gradient ascent are used to find
a single best model. Instead, PDNs are triggered by the intuition that finding many rough
rules of thumb of how count variables interact can be a lot easier than finding a single, highly
accurate Poisson model.

We have summarized the properties of the existing Poisson graphical models that are most
similar to our work and how they compare to PDNs in Table 7.1. Note that the table lists
the TPGMs from [249] instead of the Winsorized Poisson model from [106] because TPGMs
provide a consistent joint distribution and present the state-of-the-art approach for truncated
Poisson graphical models. The “(X)” denotes that this feature does not generally hold. But as
already mentioned, Bengio et al.’s recent result [17, Proposition 2] suggests the existence of a
consistent distribution. More precisely, Bengio et al. showed that an unordered Gibbs sampler
over a DN equipped with evidence induces a so-called Generative Stochastic Network (GSN)
Markov chain. As long as this GSN Markov chain has a stationary distribution, i.e., the Gibbs
sampler converges, the DN defines a joint distribution. However, this distribution does not
have to be known in closed form. Now, since PDNs (and hence LPGMs) are DNs (with local
Poisson distributions), this argument should carry over, but a formal analysis has not been
presented yet.

Our first empirical results support this as illustrated in Figure 7.1. It summarizes the results
of using the most recent approaches from Table 7.1 as well as PDNs for a network discovery
task. More precisely, following Yang et al. [249], two network families were considered that are

137



Count Graphical Models

0 20 40 60 80 100
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

Sc
or

e

F1-Score for Structure Learning
PDNs
LPGMs
SPGMs

(a) Scale-free networks
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Figure 7.1: Comparison of different count model approaches on synthetic data. Local models
(LPGMs & PDNs) outperform global models (SPGMs). Moreover, PDNs can be an order of
magnitude faster.

commonly used throughout genomics: hub and scale-free graph structures. As one can see,
the local approaches, i.e., LPGMs (red) and PDNs (green), have competitive performances
compared to the guaranteed consistent SPGMs (purple)1. The plots show the F1-scores (see
Equation (2.14)) for structure recovery for varying problem sizes averaged over five runs. More
details on the experimental setting can be found in Section 7.5.1. Moreover, the training of
PDNs is considerably faster compared to the state-of-the-art approaches, often an order of
magnitude (Figure 7.1c).

The speedup is likely due to the non-parametric nature of PDNs. In particular, we train
PDNs using functional gradients. That is, we train them in a stage-wise manner at low and
scalable costs following Friedman’s Gradient Tree Boosting [58]. This boosting approach has
been proven successful in a number of cases, see e.g. [189, 112, 50, 54, 160, 244, 164, 163], and
since it estimates the parameters and the structure jointly, it is generally related to structure
learning of graphical models. It is particularly akin to those approaches that use the local
neighborhood of each variable to construct the entire graph. For example, covariance selection
is used in Gaussian models where edges are added to the graph until a stopping criterion is
met. Despite being greedy, the method is not practical for multivariate distributions with a
large number of variables. A popular alternative is neighborhood selection via Lasso [145].
This has also been used for learning the structure of binary Ising models, see e.g. [185]. In the
case of DNs, Heckerman et al. [90] originally did neighborhood selection implicitly by learning
probabilistic decision trees for each variable. Also, undirected probabilistic relational models,
such as MLNs, were learned with the help of (boosted) decision trees in [119, 140, 162].

7.2 Poisson Dependency Networks

The review of related work revealed that modeling multivariate Poisson distributions faces the
following main challenges:

Unrestricted parameters: Some approaches only handle negative dependencies which is a serious
limitation because positive dependencies are often present as well.

1We did not compare to TPGMs since they were compared to SPGMs already in [249].
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7.2 Poisson Dependency Networks

Joint distribution: Given local Poisson probability distributions, formulate a joint probability
distribution.

Learning: Recovery of the dependencies in the present data, so that an easy interpretation of
the data is possible. A learned model should also quantify the dependencies properly to
enable accurate inference on unlabeled instances.

Inference: Given a partially observed case, the goal of MAP inference is to predict the most
likely assignment of the unobserved variables. Other probabilistic queries, such as marginal
probabilities, are of great interest as well.

With this in mind, we now develop Poisson Dependency Networks (PDNs) that are different
from existing Poisson graphical models in several ways. Considering Poisson distributions
instead of the usual binary, multinomial, or Gaussian distributions in combination with our
proposed learning algorithm is clearly “non-standard” and contributes in the following manner
as previously submitted in [87]:

(C7.1) Positive and negative dependencies: PDNs are capable of modeling positive and negative
dependencies. Furthermore, we do not have to restrict the weights to be symmetric or
limited in any such way.

(C7.2) Non-parametric: PDNs are the first non-parametric Poisson graphical models, both at
the level of local models, as well as at the global level of the overall model. The use of
(Poisson) regression trees for the (initial) conditional distributions are more flexible than
using parametric log-linear models for the mean in the Poisson distribution. Moreover,
finding many rough rules of thumb of how count variables interact can potentially be a
lot easier than finding a single, highly accurate local Poisson model.

(C7.3) Multiplicative GTB: We present the very first multiplicative functional gradient ascent.
This implements an automated step size selection and hence avoids an expensive line
search while improving convergence.

(C7.4) Flexible structure learning: The learning procedure estimates the structure and parame-
ters simultaneously while scaling well. PDNs do not require fixing the missing symmetries
in the structure to run inference. The structure learning of PDNs is competitive with
consistent models, has much lower computational costs, and is readily parallelizable.

(C7.5) Predictions: PDNs naturally facilitate a simple Gibbs sampling inference. More
precisely, we use a Gibbs sampler that provides us with samples from a joint distribution.
These samples allow us to predict counts of unobserved instances easily instead of solely
focusing on structure recovery as done for existing Poisson graphical models.

We will now introduce Poisson Dependency Networks (PDNs) more formally. Given a set of
random variables X = (X1, . . . , Xn) where each variable is defined over the natural numbers,
including 0, then a PDN is a pair (G,P ). Here, G = (V,E) is a directed, possibly cyclic,
graph with V being a set of nodes where each node corresponds to a random variable in X.
As in the case of MRFs and BNs, we can use nodes in G and the random variables in X
interchangeably. E ⊆ V × V is a set of directed edges where each edge models a dependency
between variables, i.e., if there is no edge between two variables Xi and Xj , the variables
are conditionally independent given the other variables X\i,j in the network. Here, X\i,j is
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Figure 7.2: Illustration of a Poisson Dependency Network. (left) Plot of a fitted Poisson
distribution. The number of goals scored in football matches is Poisson distributed. The plot
shows the distribution of goals scored by the home team in the 2012/13 season of the German
Bundesliga. Here, λ = 1.59, stating that the home team scored on average 1.59 goals per game.
(right) Example PDN. The conditional distribution of each variable given its parents is Poisson
distributed. Observed variables are denoted by gray shades. Similar to a Bayesian network, a
PDN is directed, however, it may also contain cycles.

shorthand for X \ {Xi, Xj}. As before, we refer to the nodes that have an edge pointing to
Xi as the parents of Xi, denoted as pai. P is a set of conditional probability distributions for
every variable in X. For now, we assume that each variable Xi, given its parents pai, is Poisson
distributed, i.e.,

p(xi|pai) = p(xi|x\i) =
λi(x\i)

xi

xi!
e−λi(x\i) . (7.1)

Here, λi(x\i) highlights the fact that the mean can have a functional form that is dependent
on Xi’s neighbors where x\i depicts the set x \ {xi}. Often, we will refer to the mean only as
λi. An example of such a local Poisson conditional probability distribution is illustrated in
Figure 7.2(left). The construction of the local conditional probability distribution is similar to
the (multinomial) BN case, however, in the case of PDNs, the graph is not necessarily acyclic
and p(xi|x\i) has an infinite range and hence cannot be represented using a finite table of
probability values. Finally, the full joint distribution is simply defined as the product of local
distributions:

p(x) =
∏

xi∈x
p(xi|x\i) =

∏
xi∈x

λxii
xi!

e−λi . (7.2)

However, this only defines a consistent joint distribution under certain restrictions. As it
is discussed for DNs in [90], there exists a one-to-one mapping between consistent DNs and
MRFs, resulting in this factorization of the PDN. An example of a PDN with three variables is
depicted in Figure 7.2(right). The gray shaded variable X0 can be seen as an observational
vector. In the spirit of other graphical models, for example Conditional Random Fields [130],
we can define a set of observed variables in advance. It will not be necessary to learn a local
model for these variables as they are always observed. Additionally, we have fewer constraints
on these variables. They do not have to be count variables but instead can be arbitrary features.
This allows us to easily incorporate features that are Gauss distributed for example, hence,
paving the way for hybrid models with local models of all kind of local distributions. We call
this new formalism Poisson Dependency Networks because they are inspired by Heckerman
et al.’s Dependency Networks.
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input : A training dataset [x(j) ∈ Nn]j=1,...,m

output : A set of optimal parameters P

1 score ← − inf;
2 for αi in HyperparameterSpace do
3 parameterScore ← 0;
4 for train, test in crossValidationSplit(data) do
5 P ← [ ];
6 for Xi in X do
7 Pi ← learnInitialCondProb(αi, Xi ∼

∑
X\i);

8 for t in [1, T ] do
9 gradientBoosting(Pi);

10 end

11 end
12 parameterScore ← parameterScore + ScoreFunction(test, P);

13 end
14 if parameterScore > score then
15 optimalPDN ← P ;
16 score ← parameterScore;

17 end

18 end
19 return optimalPDN;

Algorithm 9: Learning Algorithm for Poisson Dependency Networks

One crucial part of PDNs that we have not touched upon yet, is the encoding of p(Xi|X\i)
and of λi in particular. There are two sensible ways. First, one can follow a parametric
approach as it has been done before in the literature. Second, as an alternative, we propose a
non-parametric encoding. More precisely, we show that a PDN can be represented as sums,
respectively products, of regression models grown in a stage-wise optimization starting from
an initial constant value or a Poisson regression tree. Before doing so, let us touch upon the
issue of consistency again. Our non-parametric approach to model the means can essentially be
seen as linear functions with no restrictions on the parameters. In turn, we will generally not
be able to formulate the underlying joint probability distribution of the PDN in closed-form
by means of a standard (pairwise) Poisson graphical model. However, as we will show later,
we can use sampling techniques to draw samples from the joint distribution because we have
access to the conditional probabilities. If this sampling converges, there exists a consistent
distribution, which however does not have to be known in closed form. We will discuss the
question of consistency during this chapter in greater detail.

7.3 Learning Poisson Dependency Networks

Learning PDNs in the fully observed case amounts to determining the conditional probability
distributions from a given set of m training instances over n count variables:

[x(j) ∈ Nn]j=1,...,m .
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For simplicity, we now ignore additional observed features that do not follow count distribu-
tions. Since we do not learn models for these features anyhow, this does not immediately affect
the learning procedure. In turn, learning is equal to finding λi for each variable Xi because the
Poisson distribution is completely determined by the mean. However, λi will possibly depend
on all other variables in the network, and these dependencies define the structure of the network
underlying the PDN. We will now develop a functional gradient ascent approach to learning
PDNs, i.e., learning the λi. We will do so by starting from parametrized maximum likelihood
estimation, extending it to additive local Poisson models grown in a stage-wise manner, and
finally turning this into a multiplicative update.

Before going into details, let us summarize the resulting high-level approach in Algorithm 9,
since it covers all the approaches. The mean λi of each variable is assumed to consist of
a set of local models grown in a stage-wise manner. More precisely, initially the set is a
singleton learned in Line 7. Here, the formula Xi ∼

∑
X\i denotes that the mean for Xi can

potentially have all other variables as features. Please note that the used models may include
hyper-parameters, such as step sizes and pruning parameters in the case of regression trees
which might be estimated using a grid search and a validation set. We will touch upon these
parameters for each approach separately. After the initial learning, a pre-defined number of
gradient steps (T ) are made to further improve the model (Line 9). Depending on how we
encode the initial models, as well as on how we grow the local models per variables, different
learning approaches are realized which we will now discuss.

7.3.1 Poisson Log-Linear Models

To grasp the idea of functional gradient ascent for training PDNs, it is helpful to first describe
how to learn a single parametric Poisson model. Most commonly, as mentioned in the related
work section, the mean is modeled using a log-linear model. In its most naive form, without
further regularization, this presents a fully-connected PDN. More precisely, using a log-linear
model, the mean of each variable is:

E[Xi] = λi = exp(wi +
∑
j 6=i

wij · xj) (7.3)

In the univariate case, this approach is often referred to as Poisson Regression. The parameters
wi and wij determine the mean and can be learned via maximum likelihood estimation. That
is, we assume that the training examples are i.i.d. and we seek for parameters that maximize
the conditional log-likelihood

cll(w) = ln

m∏
k=1

p(x
(k)
i |x

(k)
\i ) =

m∑
k=1

ln p(x
(k)
i |x

(k)
\i ) .

So, we obtain the partial derivatives

∂ cll

∂wi
=

∂

∂wi

∑m

k=1
x

(k)
i · ln(λ

(k)
i )− ln(x

(k)
i !)− λ(k)

i =
∑m

k=1
x

(k)
i − λ

(k)
i

and

∂ cll

∂wij
=

∂

∂wij

∑m

k=1
x

(k)
i · ln(λ

(k)
i )− ln(x

(k)
i !)− λ(k)

i =
∑m

k=1
(x

(k)
i − λ

(k)
i ) · x(k)

j .
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Since there is no closed form solution for solving this problem, we typically employ an iterative
approach to improve the conditional log-likelihood. For instance, using a simple gradient ascent,
we can take a step in the direction of the gradient in each iteration until convergence:

wt+1 = wt + η · ∇ cll (7.4)

where ∇ cll denotes the gradient consisting of all partial derivatives. The speed of convergence
is influenced by the choice of the step size η which denotes one of the possible hyper-parameters
in Algorithm 9. Besides the simple gradient ascent, algorithms such as (L-)BFGS are common
for solving such optimization problems. However, in the case of Poisson Regression, iteratively-
re-weighted least squares (IRLS) is probably the most popular technique. We refer to [143] for
further details on IRLS.

Before moving to functional gradient ascent, let us make a further note on the consistency
of PDNs. In general, we may not be consistent, however, using log-linear models, we can
fit our PDN with log-linear means into the setting of Besag [19] and its follow up work by
restricting the parameters and structure. As Besag showed for the pairwise lattice case, there
exists an undirected graphical model with local Poisson conditional probability distributions if
the parameters wij are non-positive. It is further assumed that the pairwise parameters are
symmetric, i.e., wij = wji. This was further generalized for the non-pairwise case in [248]. If
our parameters satisfy these conditions, we can specify the joint distribution for our model and
hence we do have a consistent Poisson MRF as well.

However, we are interested in models with as few limitations as possible on the structure and
the parameters. Hence, we do not rely on the existence of a closed form equation for the joint
distribution or even insist on the existence of a consistent distribution. Instead, we introduce a
more general class of Poisson graphical models. This is mainly motivated by computational
concerns. For domains with a large number of count variables and many dependencies among
them, learning a consistent Poisson MRF is often too costly. Moreover, not being able to model
both, positive and negative, influences hurts the performance and limits the expressiveness
in many cases. Finally, as the results of our first experimental comparison in Figure 7.1
already showed, approaches that are guaranteed to provide an explicit joint distribution are not
necessarily better. Specifically, we follow [90, 17] and employ the machinery of Markov chains
to generate pseudo samples of our joint distribution. The generated samples are used to answer
complex probabilistic count queries. For more details on Gibbs sampling and a justification for
its usage we refer to Section 7.4.

7.3.2 Non-Parametric Poisson Models via Gradient Boosting

Local log-linear models tend to estimate fully connected networks and overfit. Consequently,
they typically do not provide major insights into the structure of the underlying data generation
process. Hence, regularization or post-processing such as thresholding [7, 249] have to be
employed to extract the true nature of the network. Moreover, as demonstrated in our
experiments below, the PDNs based on log-linear models often overshoot at prediction time,
leading to overflows, and in some cases prediction is not possible at all.

Therefore, we propose an alternative: instead of a single local log-linear model for λi, we grow
a set of local models in stage-wise manner using gradient information (Line 9 of Algorithm 9).
This way we avoid considering the large parameter space explicitly and include interactions
among count variables only as needed. We here employ regression trees for this boosting
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approach and the resulting approach is called Gradient Tree Boosting (GTB). Using trees has
two significant advantages over standard parametric and non-parametric regression approaches:

• By allowing the tree-structure to handle much of the overall model complexity, the models
in each leaf can be kept at a low order and are more easily interpreted.

• Interactions among features are directly conveyed by the structure of the regression tree.
As a result, interactions can be understood and interpreted more easily in qualitative
terms; we will touch upon this later again.

To develop gradient tree boosting, recall that the parameters of a parametrized log-linear
model can be viewed as a sum of gradients (cf. Equation (7.4)). Gradient boosting lifts this
intuition to the function space. That is, using the log link function, the mean λi(x\i) of a
Poisson variable Xi is viewed as λi(x\i) = exp

(
ψi(x\i)

)
, i.e., as a function of some (feature-

)function ψi. Now, we perform a gradient ascent in (log) function space for some iterations T
in order to estimate the feature functions ψi(x\i) for the count variables Xi. This corresponds
to representing the local functions of a PDN as a weighted sum:

λti(x\i) = exp
(
ψti(x\i)

)
= exp

(
ψt−1
i (x\i) + η · ∇ti

)
(7.5)

The initial ψ0
i (x\i) can be, e.g., a constant, the logarithm of the empirical mean of Xi, or a

more complex model. The ∇ti are functional gradients:

∇ti = Ex\i,xi

[
∂

∂ψt−1
i (x\i)

ln p(xi|x\i;ψt−1
i (x\i))

]
, (7.6)

indicating intuitively how we would like the mean model to change in order to increase the
log-likelihood. The expectation E[·] in Equation (7.6), however, requires access to the joint
distribution, which we do not have.

Fortunately, we can approximate it with the help of the instances in our training dataset,
which are sampled from the true joint distribution anyhow:

∇ti ≈
1

m

∑
j

∂

∂ψt−1
i (x

(j)
\i )

ln p(x
(j)
i |x

(j)
\i ;ψt−1

i (x
(j)
\i )) =

1

m

∑
j
∇ti(x(j)

i ,x
(j)
\i ) .

Intuitively, as long as we can estimate ∇ti(x
(j)
i ,x

(j)
\i ), they give us point-wise regression

examples

(x
(j)
\i ,∇

t
i(x

(j)
i ,x

(j)
\i ))

of the functional gradient. Hence, it is a sensible idea to train a regression model using them
approximating the true functional gradient. Following Dietterich et al. [50], we minimize the
following objective ∑

j

[
hti(x

(j)
\i )−∇ti(x(j)

i ,x
(j)
\i )
]2

(7.7)

using a regression tree hti [28]. Here, j iterates over all instances in our training dataset where
x(j) is the jth training example. Although fitting a regression model to Equation (7.7) is not
exactly the same as the desired ∇ti, it will point into the same direction if we have enough
training examples. So, ascent in the direction of the regression model hti — replacing ∇ti by hti
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in Equation (7.5) — will approximate the true functional gradient ascent Equation (7.5) and
was empirically proven to be quite successful for training many probabilistic models.

We will now show how the point-wise gradient regression examples for PDNs look like. For
the log link function λi = exp(ψi(x\i)) with some feature function ψi, where we have now
omitted the iteration index t for the sake of simplicity, we get:

Theorem 7.1 (see also e.g. [189]). Under the assumption of a log link function, the point-
wise gradients of the log-probability can be generated using

∂ ln p(xi|x\i;ψi(x\i))
∂ψi(x\i)

= xi − λi(x\i) .

Proof. One can verify the correctness of this gradient as follows:

∂ ln p(xi|x\i;ψi(x\i))
∂ψi(x\i)

=
∂

∂ψi(x\i)
x · ψi(x\i)− ln(xi!)− exp(ψi(x\i))

= xi − exp(ψi(x\i)) = xi − λi(x\i)

These point-wise gradients are quite intuitive. We want to make the predicted means λi(x\i)
as similar to the observed count xi as possible.

However, we are still left with the step size parameter η to compute the updated mean
model in Equation (7.5). For other probabilistic models such as CRFs, performing a line search
was reported to be too expensive [50]. Hence, it was suggested to rely on the “self-correcting”
property of tree boosting to correct any overshoot or undershoot on the next iteration, i.e.,
to use a step size of η = 1 . Unfortunately, we have observed in our experiments that using a
fixed step size of η = 1 can lead to very slow convergence or failures due to overflows for large
counts. Consequently, we now develop our main technical contribution, a multiplicative gradient
boosting approach that handles these issues without incurring any computational overhead.

7.3.3 Multiplicative Gradient Boosting

For non-negative optimization problems, multiplicative update rules for the parameters have
been shown to have much better convergence rates, see e.g., [132, 195, 199, 250], and we confirm
this for PDNs in our experimental section. More importantly, since the tree-structure of the
induced regression trees handles much of the overall PDN complexity, faster convergence implies
sparser PDNs.

To derive a multiplicative update, we consider a simpler functional dependency between
λi(x\i) and the feature function ψi. More precisely, triggered by Chen et al. [35], who have
proven the usage of the identity link function to be beneficial when using parametrized univariate
Poisson distributions for large-scale behavioral targeting, we assume λi = ψi (again omitting
the iteration index t). For this link function, the point-wise gradients are the following:

Theorem 7.2. The point-wise gradients of the log-probability assuming the identity link func-
tion are

∂ ln p(xi|x\i;ψi(x\i))
∂ψi(x\i)

=
xi

λi(x\i)
− 1 ,

and can be used to realize an additive functional gradient ascent.
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Proof. The correctness of the point-wise gradient can be seen as follows:

∂ ln p(xi|x\i;ψi(x\i))
∂ψi(x\i)

=
∂

∂ψi(x\i)
xi lnψi(x\i)− ln(xi!)− ψi(x\i)

=
xi

ψi(x\i)
− 1 =

xi
λi(x\i)

− 1

The multiplicative update now follows from Theorem 7.2 together with a functional step size.

Corollary 7.1. The multiplicative functional gradient ascent using the identity link function
is

ψt+1(x\i) = ψt(x\i) · Ex\i,xi

[ xi
λi(x\i)

]
, (7.8)

and the training instances can be generated using(
x

(j)
\i ,

xi
λi(x\i)

)
. (7.9)

Proof. From Theorem 7.2 it follows that the point-wise gradients can be split into a negative
part, namely 1, and a positive part, namely xiλ

−1
i (x\i). Since the functional gradient ∇ti in

Equation (7.6) is an expectation, ∇ti itself can be split into a negative part and a positive part,

∇t−i = Ex\i,xi [1] = 1 respectively ∇t+i = Ex\i,xi

[
xi

ψi(x\i)

]
with ∇ti = ∇t+i −∇t−i . Setting now

the step size to

η =
ψti(x\i)

∇t−i
,

the additive gradient boosting Equation (7.5) can be rewritten as

ψt+1(x\i) = ψti(x\i) + η · ∇ti = ψt(x\i) + η · (∇t+i −∇t−i )

= ψti(x\i) +
ψti(x\i)

∇t−i
· (∇t+i −∇t−i ) = ψt(x\i) ·

∇t+i
∇t−i

= ψt(x\i) ·
∇t+i

1

= ψt(x\i) · Ex\i,xi

[ xi
ψi(x\i)

]
= ψt(x\i) · Ex\i,xi

[ xi
λi(x\i)

]
.

This proves the correctness of the multiplicative functional gradient in Equation (7.8).
Moreover, following now the same steps as for the additive functional gradient ascent, this also
proves the correctness of point-wise gradients in Equation (7.9). That is, as for the additive
update, following the multiplicative functional gradient Equation (7.8), approximated using
regression trees trained using Equation (7.9), will increase the log-likelihood assuming there
are enough training examples.

The point-wise multiplicative updates are quite intuitive, too. Instead of making the
differences as small as possible, we want to make the ratio of observed counts xi and predicted
means λi(x\i) as close to 1 as possible.

Finally, we comment on the choice of the identity link function. Using it with multiplicative
updates, we make the assumption that the expected means are greater than zero. This is
plausible, since a count variable should be observable and aligns well with the definition of the
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# X1 X2 X3 ∇1
3 h1

3 λ1
3

1 0.5 4 0.5 0.5− 0.75 0.67 exp(ln(0.75) · 2
3) = 0.81

2 1.5 3 0.5 0.5− 0.75 0.67 exp(ln(0.75) · 2
3) = 0.81

3 3.5 1 1.25 1.25− 0.75 1.67 exp(ln(0.75) · 1.67) = 0.79

Figure 7.3: Example highlighting that multiplicative updates in the case of PDNs with log link
mean can fail to optimize correctly.

Poisson distribution. Second, positive and negative dependencies can still be expressed in a
single regression model induced over the iterations. Third, one can naturally realize Laplace
smoothing by adding constants αi and βi to the point-wise gradients:

xi + αi
λi(x\i) + βi

.

Finally, the identity and log link functions are weakly connected. Following the same steps as
in the proof of Corollary 7.1 but now using Theorem 7.1, we arrive at the following multiplicative
functional gradient ascent for the log link function:

ψt+1(x\i) = ψt(x\i) ·
Ex\i,xi [xi]

Ex\i,xi

[
λi(x\i)

] = ψt(x\i) · Ex\i,xi

[ x̄i
λi(x\i)

]
, (7.10)

since Ex\i,xi [xi] is the empirical mean x̄i of xi. Nevertheless, since x̄i is a constant for all
iterations, we can move the expectation out of the ratio. Approximating the expectation using
the training samples now yields Ex\i,xi [x̄i · λ−1

i (x\i)]

≈ 1

m

∑
j

[ x̄

λi(x
(j)
\i )

]
=

1

m2

∑
j

[ ∑
l x

(l)
i

λi(x
(j)
\i )

]
≥ 1

m2

∑
j

[ x
(j)
i

λi(x
(j)
\i )

]
(7.11)

because x̄i is the empirical mean of non-negative values and, hence, it is always larger than
any particular xi. Since the number of training examples m is a constant, this proves that the
multiplicative point-wise gradients for the identity link function establish a lower bound for a
multiplicative update for the log link function.

However, we must be careful using the multiplicative update in the case of the log link
mean. When the mean of the response variable is below 1, its logarithm is below zero and the
optimization does not work. Figure 7.3 shows a toy example highlighting this situation. In this
example, the mean of X3 is 0.75. Therefore, in the first GTB iteration, the mean of the first
two instances should be decreased, while the mean of the third instance should be increased.
The tree learning the quotient of ∇+ and ∇− learns this properly, i.e., is below 1 for instances
1 and 2, and above 1 for the third instance. Here, we assume that h learns the data perfectly.
However, due to the negative ψ0, only the mean of the third instance is adjusted properly.

7.3.4 PRTs, Model Compression, and Dependency Recovery

So far, we have specifically assumed two natural candidates for the initial mean model λ0
i (x\i),

namely a constant or the empirical mean of Xi. Both models might not be very precise and,
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yes noburglaries < 1145
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56e+3 / 195
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21e+3 / 176
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7296 / 129

66%

295
14e+3 / 47

24%

1820
35e+3 / 19
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Figure 7.4: Example of a Poisson regression tree for the crime “auto theft” from the Communities
and Crime dataset from our experimental evaluation. The root of the tree, denoted by a
rectangle, represents the first splitting criterion. In this case, the root node splits the dataset
according to the number of burglaries. Leafs are denoted by ellipses and contain the average
mean of that partition in the first row of the label. Additionally, the color shade of a leaf node
indicates the relative size of the mean (the darker, the higher).

in turn, may require many iterations of optimization, even when using adaptive step sizes via
multiplicative updates, resulting in a large number of regression trees and a tendency to overfit.

Therefore, we propose another initial mean model that can potentially serve as a head
start and comes with additional benefits as we will see. We are interested in a compact
regression model for each node and since we are dealing with count data, Poisson Regression
Trees (PRTs) [33] naturally lend themselves as a starting point. An example of a PRT is shown
in Figure 7.4. To initialize our PDNs, we learn one PRT for each variable Xi, where we train
treei(Xi|X\i) and evaluate λ0

i (x\i) = treei(x\i).

More precisely, a PRT partitions the training examples in the space of the dependent variables
X\i in order to best fit the response variable Xi. It is a binary tree whose leaves represent the
λi of that given partition, all other nodes represent a splitting criterion on a variable Xj ∈ X\i.
We use the PRT implementation of rpart [222] where the splitting criterion is given by the
likelihood ratio test for two Poisson groups Dparent − (D

left son
+D

right son
) with the deviance

given by

D =
∑[

xi ln
(xi
λ̄

)
− (xi − λ̄)

]
,

where λ̄ is the sample mean2 of count variable Xi. This splitting is recursively applied until
each subgroup reaches a minimum size or there are no improvements. To avoid overfitting, the
depth of a tree is typically limited a priori, alternatively post-pruning can be used after the tree
has been learned. In the rpart-implementation, the pre-pruning is controlled by a complexity
parameter cp. This parameter, which we consider to be part of the hyper-parameter space of
our algorithm (see Line 2 in Algorithm 9), controls the size of the initial tree. A secondary
step is executed where the tree is pruned using cross validation after the initial tree has been

2For stability reasons the implementation uses a revised Bayes estimate of λ̄.
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input: A factor graph G
output : A list of generated samples S

1 S ← [ ];
2 s ← {0}n; /* Initialization */

3 for k ← 0 to K do
4 for Xi ∈ V do
5 s[i ]← Xi ∼ P (Xi| nb(Xi)); /* Sample new state of Xi */

6 end
7 if k > burn-in then
8 S.append(s); /* Append new sample to list */

9 end

10 end
11 return S

Algorithm 10: Pseudo-code for the ordered Gibbs sampler.

learned. The height of the final tree will be the one that reduces the cross validation error.
This learning approach generalizes well in our experiments as shown below in Section 7.5.

A potential head start is not the sole advantage of PRTs. We can also use PRTs for model
compression [29] which is, next to Laplace estimates, an additional way to avoid overfitting.
Here, we collapse the trained additive, respectively multiplicative model, into a single model.
To do so, we evaluate it on the training set and learn a single PRT per count variable based on
this evaluation. That is, the compressed PDN model consists only of a set of local PRTs that
were learned based on the optimized GTB model.

Moreover, interactions among count variables are directly conveyed by the structure of the
compressed PDN and, as a result, interactions can be understood and interpreted more easily
in qualitative terms. More precisely, since after compression there is only one local tree model
per count variable, we simply look at the count variables used in the inner split nodes of the
trees; they indicate relevant features of the PDN. It is important to note that one tree can use
a variable Xk multiple times with different splitting criteria. This indicates that the variable is
important in the PDN. Also, count variables closer to the root of a tree are more important
than a variable further down the tree. This is, e.g., captured by Breiman et al.’s notation of
relative importance [28] saying how important the value of xv is for predicting the value for xu:

I2(u|v;λu) =
∑
l

i2l · δv(l)=u , (7.12)

where l iterates over the levels of the Poisson tree for λu of Xu, the value i2l is the maximal
estimated improvement over a constant fit over the entire region of the current node v(l), and
δ is an indicator function selecting all splits involving xv. To summarize, in contrast to other
Poisson graphical models, compressed PDNs return local models that are likely to be sparse
and therefore easier to interpret.

7.4 Making Predictions using Poisson Dependency Networks

Similar to the experiments we have seen in the previous chapters, there exist also many
applications for count models where we obtain only partially observed instances and we want
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to use probabilistic inference to predict the values of the missing variables. To be more precise,
assume that X = Y ∪E, where Y and E are disjoint. Y amounts to the unobserved variables
and E describes the evidence. Then we also want to answer queries of the form p(y|e), p(yi|e),
or arg maxy p(Y = y|e) in situations where y corresponds to one or several count random
variables. In an univariate Poisson model, MAP inference consists of just reading off the mode
of the Poisson distribution which is equal to bλic. Other marginal probabilities, e.g. p(yi = k),
can also be read off the distribution because the Poisson distribution is completely defined by
λi. The same holds for a variable Yi in a PDN if all neighbors of this variable are observed.
However, PDNs with unobserved variables that also have further unobserved neighbors require
an inference machinery to account for the dependencies. We resort to Gibbs sampling [64] to do
so. Chapter 2 already referred to MCMC techniques and to the Gibbs sampler as one particular
simple instance of a sampling algorithm. This chapter heavily relies on Gibbs sampling and
thus we will also give the pseudo-code of an ordered Gibbs sampler in Algorithm 10.

Because we do not know the underlying joint distribution explicitly, the Gibbs sampler
provides us with pseudo samples of a joint distribution, and hence it is also called Pseudo
Gibbs sampler [90] due to the potential inconsistencies arising from conflicting local and joint
distributions. Specifically, cf. Algorithm 10, the pseudo Gibbs sampler starts with an arbitrary
initialization of the unobserved variables and then iterates over each variable for a previously
defined number of sweeps. Each sweep produces a new sample by first calculating the conditional
probability distribution for every variable Xi. That is, calculating the mean λi based on the
current states of its parent variables pai. Based on the Poisson distribution parameterized by
λi, a new state for Xi is sampled. This is depicted in Algorithm 10 in Line 5 for the general case
of a variable Xi with neighbors nb(Xj). This procedure will sample from the joint distribution
after an adequate burn-in phase which removes early samples because they are heavily biased
by the initial values.

Technically, this algorithm does not distinguish itself from a standard Gibbs sampler. However,
in the case of an inconsistent set of local probability distributions, it is referred to as a “pseudo”
Gibbs sampler because we do not know a closed form joint distribution for this PDN. From
the collected samples we can then compute an approximate marginal distribution or MAP
assignment. However, the order of the Gibbs does matter in the case of PDNs due to conflicting
wij and wji, which also includes conflicting trees in the case of GTB or PRTs. Consequently,
we follow Bengio et al. [17] and use an unordered pseudo Gibbs sampler which randomly
chooses an Xi in each step. Bengio et al. showed that this unordered pseudo Gibbs sampler
induces a so-called Generative Stochastic Network (GSN) Markov chain. As long as this GSN
Markov chain has a stationary distribution, the DN defines a joint distribution, which, however,
does not have to be known in closed form. From this perspective, PDNs aim to estimate
the generating distribution of multivariate count data indirectly, by boosting the transition
operator of a Markov chain rather directly. As long as the chain is ergodic, we will arrive at a
consistent estimator of the associated joint distribution.

7.5 Experimental Evaluation

Our intention here is to investigate the usefulness of PDNs and to show their benefits in
comparison to other Poisson graphical models. To this aim, we investigated the following
questions:

Q7.1 Can PDNs learn both positive and negative dependencies?
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Q7.2 Can Gibbs sampling predict good counts?

Q7.3 Can PDNs outperform existing Poisson graphical models?

Q7.4 Can PDNs be easy to interpret?

Q7.5 Can gradient tree boosting improve the quality of an initial model?

Q7.6 Can multiplicative updates speed up training without sacrificing performance?

If all questions can be answered affirmatively, PDNs have the potential to be a valid alternative
to existing Poisson graphical models.

We implemented PDNs using a combination of Python and R, and conducted several
experiments on synthetic and real-world datasets on a standard single-core Linux machine with
32GB RAM.

To assess the quality of the trained models, we used different measures. We have seen in
previous chapters likelihood based scores already. For PDNs, pll score is slightly adapted
compared to Equation (2.11) in such away that it is normalized and averaged over a set of
instances. Given a training dataset (x(j))j=1,...,m, the pseudo log-likelihood score on the training
data is defined as follows:

pll score(x(1), . . . ,x(m)|θ) = − 1

m · n
m∑
j=1

n∑
i=1

ln p(x
(j)
i |x(j)

\i; θi) . (7.13)

Here, θi amounts to the set of parameters that define the conditional probability distributions.
This can be the w in the case of log-linear models or the set of learned trees in the case of
boosted models. This also subsumes the initial model, for example the initializing Poisson
regression tree. The score on the test data can be calculated accordingly. However, sometimes
it is more informative to consider the scores separately for each count variable xj , i.e.,

pll scorej(x
(1), . . . ,x(m)|θ) = − 1

m

m∑
i=1

ln p(x
(i)
j |x(i)

\j ; θj) .

Both measures can also be used to measure the performance of the predicted counts from

the Gibbs sampler. Assuming that x̂
(j)
i denotes the predicted value of variable Xi for the data

case j and x
(j)
i is the true observation of variable Xi, we can calculate the predictive pseudo

log-likelihood score:

pll score(x(1), . . . ,x(m); x̂(1), . . . , x̂(m)|θ) = − 1

m · n
m∑
j=1

n∑
i=1

ln p(x
(j)
i |x̂

(j)
\i ; θi) .

Following convention, we also consider a performance score based on the averaged RMSE.
For PDNs this score differs marginally from the one we have seen in Equation (2.13):

RMSE =

√√√√ 1

m · n
m∑
j=1

n∑
i=1

(
x̂

(j)
i − x

(j)
i

)2
,
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Figure 7.5: (top) A log-linear Poisson model. (a) Model without dependencies between X1

and X2. The data points (blue circles) are close to w0 = ln(10). (b) Model with positive
dependencies. The data points (green triangles) are now shifted towards the upper right corner.
(c) Model with negative dependencies. The data points (red triangles) are pushed to the lower
corner. (bottom) A boosted PDN. We re-learned a boosted PDN from the samples generated
by the log-linear model. One can see that all three groups are well separated by the tree-based
model as well.

where x̂
(j)
i again denotes the predicted value of variable Xi for the data case j and x

(j)
i is the

true observation of variable Xi. Compared to the univariate measure in Equation (2.13), we
now calculate the error over all variables and all datacases.

However, especially in the case of Poisson distributed variables with small values, the RMSE
is not a good measurement because it assumes a symmetrically shaped error. Moreover, it
takes only point predictions into account. A slightly better loss for our task is the normalized
RMSE (NRMSE):

NRMSE =
1

n

n∑
i

(
1
m

∑m
j (x̂

(j)
i − x

(j)
i )2

) 1
2

xmax
i − xmin

i

.

7.5.1 Network Discovery from Simulated Data

In the first set of experiments we focus on Q7.1, Q7.2, and Q7.3. In order to investigate
whether PDNs can model positive and negative dependencies we used the simple PDN that was
shown already earlier in Figure 7.2. This PDN consists of three variables where one variable,
namely X0, only acts as a dummy variable for the constant parameter. The means of X1 and
X2 are described by log-linear models, e.g., λ1 = exp(w1 +w12X2). Because X0 corresponds to
the constant feature with value 1, we can omit it from the sum. In turn, this PDN is an LPGM
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Hub Scale-free
10 25 50 75 100 10 25 50 75 100

PDNs 0.614 0.599 0.558 0.493 0.463 0.415 0.489 0.548 0.472 0.412

LPGMs (0.222) 0.400 0.530 0.545 0.554 (0.100) 0.262 0.372 0.376 0.286
SPGMs (0.316) 0.310 0.415 0.515 0.473 (0.000) 0.194 0.286 0.327 0.271

Table 7.2: Comparison of network discovery performance based on F1-scores (the higher, the
better). Results are averaged over five graphs for each size. LPGMs are the locally learned
models from [7] and SPGMs are the consistent Poisson graphical models introduced in [249].
The F1-scores in brackets “(·)” indicate that SPGMs and LPGMs failed to converge on several
graphs and hence did not return results for every experiment.

as introduced by Allen and Liu. We chose wi = ln(10), which means that we expect an average
value of 10 in the completely independent case. For different choices of the pairwise parameters,
we use this PDN to sample 200 instances from the joint distribution after a burn-in phase. We
consider three different parameter choices of the PDN in total:

i the independent case (blue circles)

ii cooperative interactions (green triangles)

iii competitive interactions (red triangles).

For (ii) and (iii) we assumed w12 = w21. The obtained samples are plotted in the top row of
Figure 7.5. As it can be observed, the samples drawn with the different parameter settings
are well separated and all three types of dependencies are captured well. Now we estimated
boosted PDNs on this data using additive updates. We then used this model to generate 200
new samples. The results are summarized in the bottom row of Figure 7.5. Again, it can be
observed that the three groups are well separated, highlighting that boosted PDN model both,
positive and negative, dependencies well. This clearly answers Q7.1 affirmatively. In addition,
this also highlights the fact that the (pseudo) Gibbs sampler does generate good samples for
boosted PDN models. This already provides an affirmative answer to question Q7.2, but we
will additionally use the experiments in the next subsection to answer this question using real
world datasets.

Before doing so, we will return to the experiments already shown in Section 7.1. For this
structure recovery task, we used the code provided by Yang et al. [249] for both, the data
generation and the algorithmic comparison. We employed the “PGM”3 R-package which
contains several implementations of the models described in [249]. This includes SPGMs and
LPGMs, and additionally also provides code to sample instances from Winsorized Poisson
graphical models.

The datasets were generated as follows. First, with the help of the R-package “huge”4

a graph with n = 10, 25, 50, 75, 100 nodes was generated. This data generation process is
based on multivariate normal distributions for different graph structures; we created “hub”
and “scale-free” graphs. The adjacency matrix of the resulting graph was used to construct
the neighborhoods in the Poisson graphical model. Together with an unary (wi = 0) and a

3http://github.com/zhandong/XFam/tree/master/PGMs/Package_Trial/T2
4http://cran.r-project.org/web/packages/huge/
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Figure 7.6: Prediction of cell counts. We partitioned the original image (a) into 25 patches of
equal size. We then counted the number of cells in each patch as depicted in (b). To measure
the predictive power of our PDNs, we removed the counts of 5 random patches in the images
(c) and ran the Gibbs sampler of the partially observed image. We then read off the most likely
counts of each missing patch as shown in (d).

pairwise (wij = 0.1) parameter, we then obtained the Poisson graphical model. We used the
Gibbs Simulator for Winsorized Poisson graphical models contained in the “PGM” package
to generate m = 1000 samples. This resulted in an m × n matrix with count values used
to learn a model for the original neighborhood graph. More precisely, we used the relative
importance to construct an adjacency matrix from our learned models by setting a cell to 1
whenever I2(u|v;λu) > 0. Similarly, an adjacency matrix can be read off from the parameter
matrix of LPGMs and SPGMs. The results in terms of F1-scores are shown in Table 7.2 and
correspond to Figure 7.1. As it can be seen, PDNs achieve competitive results on the hub
graphs and outperform LPGMs and SPGMs on the scale-free networks. In the latter case,
LPGMs and SPGMs may not even converge in some experiments. Moreover, as already shown
in Figure 7.1c, PDNs can be an order of a magnitude faster.

Because of this, we only compared PDNs to LPGMs in the remaining experiments. In fact,
we did ran SPGMs, but on some of the more complex datasets they were not only an order of
magnitude slower but did not terminate after days of running; while learning a PDN took less
than thirty minutes. Moreover, we note that in the following, LPGMs refer to local Poisson
models with GLM mean models learned without regularization. To cover regularization, we
also present results for PDNs with Poisson regression trees as mean models, which can be seen
as a regularized model.

7.5.2 Cell Counts and Bibliography Data

The next set of experiments is dedicated to Q7.2, Q7.3, and Q7.5. To investigate the quality
of predicted counts returned by the Gibbs sampler, we used two different datasets, namely cell
counts and counts of publications.

Cell Counts. The analysis of microscope images has become a popular application combining
biology and computer vision. One particular application is counting the number of cells in
an image. To do so, we used the SIMCEP-tool5, which is described in [134], to generate 100
microscope images showing cells. An example image is depicted in Figure 7.6a. We split
each image into 25 patches of equal size, and the cells within each patch were counted (see
Figure 7.6b). This gives us a dataset with 25 count values per image. We employed 10-fold cross

5www.cs.tut.fi/sgn/csb/simcep/tool.html
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validation. More precisely, we used 90 images to train the PDNs in various ways over these
counts and used the remaining 10 images to do predictions based on the learned model. We are
primarily interested in constructing a simple use case for our PDNs and showing that reasonable
predictions are possible. Therefore, we randomly removed the counts of five patches in each
image for prediction, as depicted in Figure 7.6c, and used the trained PDNs to infer the cell
counts for the missing patches. We ran the Gibbs sampler for 50,000 iterations and determined
the MAP configurations of the missing patches from the samples produced, cf. Figure 7.6d.

The results are summarized in Table 7.3(top rows) and Table 7.4(top rows). As it can
be seen, additively boosted PDNs — denoted by “A” — produced the lowest Normalized
RMSE (NRMSE), followed by multiplicatively boosted PDNs — denoted by “M”. Due to the
structure of the problem, an identical step size was chosen for all variables in PDN-A. It must
be mentioned that we determined a step size of 0.25 by systematic search. Nevertheless, we
also present experimental results for a step size of 1.0. It can be observed that simply setting
η = 1.0 leads to worse performance and the learning algorithms is not capable of improving
over more than two iterations as too large steps are taken. We also tested Laplace smoothing
with αi = 0.1 and βi = 0.2 in the cases of multiplicative updates. It can be seen that this
smoothing improves the quality of the predictions in terms of the predictive log-score. Although
PDNs with a log-linear mean model, i.e., LPGMs, produced the best log-score on the test
data (LOO LL), they were not able to make meaningful predictions due to overflows. This is
mainly due to the fact that patches are often correlated with strong positive weights. Using
the Gibbs sampler quickly produces (too) large counts which are meaningless. In comparison,
using Poisson regression trees — PDNtree — helps accommodating for highly varying counts
and in turn to limit the predicted counts.

Publication Data. We have already shown in the previous chapter that bibliographic
datasets are interesting for Machine Learning applications. In this section, we focus on the
prediction of publications counts and use the AAN corpus as discussed above (see Section 5.3.1).
The goal is to predict the number of publications of a researcher in future years given an initial
observation period. We observe the first six years of a researchers’ publication record and
predict the number of publications for the following four years. We take only active researchers
into account, i.e., researchers who had publications in the first three years of their career.

The 10-fold cross-validated results for the training and test likelihoods are summarized
in Table 7.3. Here, boosted PDNs with additive updates achieve the best results. However,
one should note that these results were obtained by optimizing the step size for each class
separately. Instead of a simple grid search, we used ParamILS [95] to find the best step
sizes. In our setting, we obtained step sizes of 0.5, 0.075, 0.05, and 0.075 for the four years
to predict. Although Allen and Liu’s LPGMs — PDNs with log-linear mean-models — do
a full maximum likelihood optimization for the parameters, they are not able to outperform
the boosted approaches. Most importantly, with only a few iterations of optimization and no
ParamILS, multiplicative updates achieved a better train likelihood than LPGMs, without
sacrificing the test likelihood much.

Even more interesting are the collective prediction performances as summarized in Table 7.4.
As one can clearly see, PDNtree, i.e., PDNs with Poisson Regression Trees, do the best job.
On the first sight, it is striking that boosted PDNs with initial tree models and multiplicative
updates perform worse than standard PDNtree. We attribute this to the rather small validation
set used during boosting and in turn to overfitting. This is also confirmed by the boosting
results using Laplace smoothing with αi = 0.1 and βi = 0.2. It significantly reduced the error
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Boost. Iters. Train LL LOO LL

PDN-Aconst,log
(w/ η = 1) 1.91 1.026 1.541


cells

PDN-Aconst,log
(w/ selected η) 5.60 1.046 1.428•

PDN-Mconst,id 1.26 1.167 1.547

PDN-Mconst,id
(Laplace) 1.75 1.074 1.511

PDN-Mtree,id 0.85 1.134 1.655

PDN-Mtree,id
(Laplace) 1.18 1.049 1.590

PDNtree - 1.219 1.525

LPGM [7, Allen et al.] - 0.963 1.117◦

PDN-Aconst,log
(w/ η = 1) x x x


publications

PDN-Aconst,log
(w/ ParamILS η) 31.50 0.980 1.182?

PDN-Mconst,id 1.95 1.069 1.248

PDN-Mconst,id
(Laplace) 2.68 0.994 1.228

PDN-Mtree,id 0.23 0.998 1.232

PDN-Mtree,id
(Laplace) 0.83 0.955 1.235

PDNtree - 1.004 1.212

LPGM [7, Allen et al.] - 1.137 1.233

Table 7.3: 10-fold cross validation comparison of the log-scores (the lower, the better) on
training and test data for the cell count images (top) and publication data (bottom). The “x”
indicates that training did not finish properly due to oscillation or overflows. For LOO LL, a
“•” denotes that boosted PDNs are significantly better then non-boosted PDNs, a “◦” denotes
that LPGMs are significantly better than PDNs, and a “?” denotes that PDNs are significantly
better than LPGMs.

for PDN-Mconst,id. In any case, LPGMs — the only model not developed in the present work —
are not capable of predicting all test instances due to overflows in the Gibbs sampling.

To summarize, both experiments answer questions Q7.2 and Q7.3 affirmatively. Moreover,
they already indicate that Q7.5 may also be answered affirmatively.

7.5.3 Bag-of-Word PDNs

To investigate whether PDNs can easily be interpreted (Q7.4), we trained a PDN on a text
corpus. Specifically, we used the NIPS bag-of-words dataset from the UCI repository6 containing
1,500 documents with a vocabulary above 12k words. We considered the 100 most frequent words
in the corpus only and trained an additively boosted PDN on this data, i.e., PDN-Aconst,log.
Figure 7.7 shows the dependency structure among the words extracted from the trained PDN
using relative importance I2 (cf. Equation (7.12)). The size of a node is relative to the
occurrence of the word in the corpus. As one can see, the word dependencies are rather sparse
and reflect natural groupings of words. Words such as “neural”, “net”, “network”, “weight”,
“input”, and “unit” respectively “learning”, “algorithm”,“loss” and “function” are inter-related
as indicated by the strength of the edges. Generally, the interactions are asymmetric. For

6https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Pred. LL NRMSE

PDN-Aconst,log
(w/ selected η) 1.429• 0.396•


cells

PDN-Mconst,id 1.570 0.408

PDN-Mconst,id
(Laplace) 1.503 0.410

PDN-Mtree,id 1.619 0.455

PDN-Mtree,id
(Laplace) 1.576 0.448

PDNtree 1.511 0.439

LPGM [7, Allen et al.] - -

PDN-Aconst,log
(w/ ParamILSη) 0.446• 0.262


publications

PDN-Mconst,id 0.609 0.320

PDN-Mconst,id
(Laplace) 0.610 0.268

PDN-Mtree,id 0.525 0.256

PDN-Mtree,id
(Laplace) 0.550 0.254

PDNtree 0.508 0.249

LPGM [7, Allen et al.] - -

Table 7.4: 10-fold cross validation comparison of collective prediction performances (the lower,
the better) made by the Gibbs sampler on cell count images (top) and publication data (bottom).
A “-” indicates that PDNs with log-linear mean were not able to predict the counts for all
instances due to overflows. A “•” denotes that boosted PDNs are significantly better than
non-boosted PDNs.

instance, the frequency of “training” has an impact on how often we read “error”. However,
words such as “model” and “data” are connected by edges of similar weights in both directions.
This suggest that they often co-occur. Overall, the extracted dependency structure shows that
PDNs can be easily interpreted and used to gain non-trivial insights; an affirmative answer to
Q7.4.

7.5.4 Communities & Crime and Click-Stream Data

Finally, to investigate the overall performance of PDNs (Q7.5), as well as to compare additive
and multiplicative updates (Q7.6), we used two real-world datasets, namely the Communities
& Crime dataset and a click-stream dataset.

Communities & Crime. This dataset from the UCI repository7 was obtained from
2,215 communities in the United States, reporting different crime statistics. It contains 125
observational features presenting different demographics such as the population of a community
but also statistics such as the unemployment rate. There are also eight different target statistics
per community and we focus on the count values specifying crimes such as the number of
robberies, burglaries, and others. The dataset contains missing values for some of the features
and for some target variables. For our evaluation, we removed communities with incomplete

7archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
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Figure 7.7: Dependency structure among the top 100 words of the NIPS corpus extracted from
a PDN using relative importance. The dependencies reflect natural groupings of words as
illustrated for some cases by the colors.

data as well as features that are not available for all communities8. Our cleaned data dataset
contains 1,902 communities with 101 features.

For a comparison of the additive and multiplicative updates for PDNs, we used a 10-fold
cross validation based on the folds defined in the dataset. The plots in Figure 7.8 show the
learning curves for the eight different crimes. The plots are averaged over the ten folds using a
maximum of T = 50 iterations and measure the effectiveness of the learning rate in terms of
the log-score per class. For the additive models, PDN-A, we used a step size of η = 0.01 in case
of the identity link function (red) and the log link case used η = 1−5 (purple). Both step sizes
were found based on a systematic search. We started with η = 1.0 and decreased the step size
until no more oscillation was observed during the training. In particular, when using a constant
mean-model for initialization, one can see that the multiplicative update (green) outperforms

8As one further exception, we also removed New York City from the data as it presents an extreme outlier in
terms of size.
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Figure 7.8: Comparison of gradient tree boosting PDNs on the C&C-dataset with initial mean
or Poisson regression tree models. The plots show the learning curves in terms of the ll scorei
for the eight different crime types in the dataset. The top plots show the curves for initial
models based on the mean. The curves highlight that multiplicative updates (green) learn
much faster than the additive updates (red and purple). The bottom plots show the learning
curves for initial regression tree models and indicate that the trees can give an head start.

the additive ones: it is much faster and achieves better test performance. It is worth mentioning
that this was achieved without a time consuming selection of an adequate step size at all. In
case of the additive updates, the log link function learns faster in cases of crimes with high
counts such as “larcenies” with data mean around 2,000 per community. For means with small
values, such as “murders” having an empirical mean of around 6.4, however, we see that additive
updates using the identity link function learned faster. Moreover, as shown in Figure 7.9(left),
the additive updates always required the maximum of 50 iterations to obtain the best value. We
determined the optimal iteration based on a validation set during the learning. On the other
hand, multiplicative updates required only a fraction of the iterations, while not sacrificing
predictive performance (see Figure 7.9(right)). Averaged over all experiments and classes,
multiplicative updates require far less than 10 iterations and the log likelihood score on the
test data is significantly better than for the additive case with mean initialization. This clearly
shows the advantage of multiplicative updates.

What about using Poisson regression trees for initialization? Looking at the learning curves
for PDNs with Poisson regression trees (second set of eight plots in Figure 7.8), we first see
that the initial value of the log-score is drastically lower compared to the initialization with
a constant mean. This is not surprising as the tree can represent the data initially already
much better than a single mean value. The number of iterations required drops as well. This is
also emphasized in the boxplot that compares the number of iterations (Figure 7.9, left). On
average, the multiplicative updates, PDN-M, add only less than four trees to the initial tree
and achieve comparable performance.

To summarize, boosting improves the initial model and multiplicative updates outperform
additive updates. These are affirmative answers to our initial questions (Q7.5, Q7.6).

Click-Stream-Data. To reaffirm the results of the last experiment, we created a count
dataset based on the MSNBC.com dataset from the UCI repository9. The data gives sequences
corresponding to a user’s page views for an entire day which are grouped into 17 categories.
Instead of the original dataset, we used the post-processed version from the SMPF library10

9archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
10www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Figure 7.9: Comparison of gradient tree boosting PDNs on the C&C-dataset with initial mean
or Poisson regression tree models. (left) The boxplot shows the average best iteration found by
cross validation. For easier comparison, each column shows the mean in the top area of the
plot. (right) The boxplot shows the average pll score of the best iteration on the test dataset.
The results show that the multiplicative updates, PDN-M, require only very few iterations to
achieve comparable, or even better, results than the additive updates, PDN-A. This holds for
both types of initializations, mean and tree models, even though the step sizes were carefully
chosen for PDN-A.

which removed very short click sequences. In total, this dataset contains information of about
31,790 users. We discard the sequence information and instead analyzed solely the frequencies
of the visited categories. In contrast to the C&C dataset, the means of the 17 categories have
all low mean values. To be more precise, the category “frontpage” has the highest mean (3.62)
and the category “msn-news” has the lowest mean (0.03). We also note that the variance in
the data is much lower than in the C&C-dataset.

First, we considered boosted PDNs with the empirical mean as initial model again. Since the
learning curves were qualitatively identical to the C&C-experiment, we do not show them here
again. Due to the low means and variance of the categories, the simple initial models themselves
achieve already a good average log-score of 1.22. Still, boosting was able to improve the model
with both, additive and multiplicative, updates. Additive updates achieved log-scores of 1.14
(PDN-Aconst,id) and 1.08 (PDN-Aconst,log), however, requiring more than 40 iterations. With
less than 4 iterations on average, multiplicative updates achieved an average log-score of 1.09.
Again, multiplicative updates are an order of magnitude faster, without sacrificing predictive
performance. Initialization using PRTs gives a head start for the additive updates but not for
the multiplicative ones. These results further confirm the answers to questions Q7.5 and Q7.6.

Taking all results together, the experimental evaluation clearly shows that all six questions
(Q7.1 to Q7.6) can be answered affirmatively and indicate that PDNs have the potential to
be a fast alternative to existing Poisson graphical models.
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Figure 7.10: Illustration of Relational Count Databases

7.6 Relational Count Models

Often regression problems are inherently relational which asks for relational regression algo-
rithms. As for the propositional case, not much research has been conducted on relational
count models. There exist a few approaches beyond the binary case, again mostly for the
Gaussian case. For example, Choi and Amir [37] introduce Relational Continuous Models
(RCMs) where relational atoms define attributes of objects. In the ground case, RCMs amount
to pairwise Gaussian random fields. Choi and Amir also propose a lifted inference algorithm
for RCMs which is based on ideas from lifted Variable Elimination [180, 46]. There have also
been approaches that extend MLNs to handle continuous variables. In particular, Wang and
Domingos [242] present hybrid MLNs which add numeric terms to the MLN-syntax.

Relational PDNs are of great interest because many of the problems involving counts provide
relational information. For example, in the cell count experiments above (Section 7.5.2), we
learned one separate model for each patch. Resulting in 25 models for an image with 5 × 5
patches. However, one can argue that all patches behave fairly similar and can be treated as an
observation from the same type with the same properties. Therefore, we outline in this section
how a relational PDN approach can be realized for such count models.

This can be exemplified most easily by means of a relational database. Figure 7.10 shows
two tables of a possible relational representation of the cell count images. The table “patch”
corresponds to a single patch in one of the images. The table “neighbor” models the neighbor-
hood structure of the images, e.g., the typical 4-neighbor grid. Again, it is possible that some
of the counts are not observed, indicated by “?” in the “count” column. This is a fairly simple
example because it contains only a single type of counts. One can also think of various cases
where more than one type is present. For example, the images could show different kinds of
cells. Then, we would distinguish between “count-type-A” and “count-type-B”. Both possibly
influencing each other by attraction or repulsion.

If we now want to learn a single model for the cell count of a patch, we need to make use of
aggregators because cells have a different number of neighbors and we want to make statements
on groups of neighbors. Such aggregators are typically operators defined over the neighbors
of variable Xi, such as amax(pai), returning the maximum count of Xi’s neighbors. Typically,
aggregation is done only across variables of the same type of variables. Other aggregators are
the minimum or sum over the neighboring counts. Additionally, aggregators do not necessarily
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Figure 7.11: A model learned for a relational PDN. The width of the edges indicates relative
importance of feature.

have to be Poisson, e.g., a Boolean aggregator like a∑>5(pai), firing when the sum over the
neighbors is larger than 5. We can also learns logic rules to construct more complex features,
e.g., ∃Xj ∈ pai : Xj > 5 ∧max(pai) < 10.

At learning time, we ground instances for each patch in the database. Applying the aggregators
to the data results in a propositionalized dataset. Each training instance corresponds to a
count of a variable and the values of the aggregators. Learning such a model results in a PDN
as shown in Figure 7.11. Here, we can see that the count of a patch is influenced the most
by the average of its neighbors, indicated by the edge strength. During the Gibbs sampling
based inference, we have to update the aggregators associated with neighboring patches after
sampling a particular variable.

However, the strength of probabilistic relational methods is to learn and reason about
observations jointly. Therefore, we briefly explain how to extend the model for patches to the
pairwise case, i.e., we lean models for p(Xi, Xj) where Xi and Xj correspond to the counts of
two patches. To represent the joint model p(X), we now require combining rules [159], because
Xi appears in several pairwise models and hence we obtain multiple conditional distributions
for Xi. Natarajan et al. [159] refer to this issue as the “multiple-parent problem”.

Eventually, the goal is to prevent the full grounding and run inference on the lifted level.
Therefore, lifted sampling approaches such as the ones described in Section 2.4 should be
adapted to work with count data as well. Depending on the evidence and the latent patches, we
are interested in finding a model that is as compact as possible. We can either adapt top-down
or bottom-up approaches to find a representation that permits as much compression as possible.
However, it is not immediately clear, how to adapt for example the Color Passing algorithm to
an inconsistent GTB-PDN and this remains ongoing work. Generally, the grouping will depend
on the conditional probabilities, i.e., the λi, but also has to take inconsistencies into account
during the lifting procedure.

The way we learn our PDNs also influences the lifting potential. The way we group the
variables induces a parameter tying and hence leads to a compact model, preparing the ground
for lifting. However, one can also imagine to prune or augment the non-parametric PDNs
afterwards to increase lifting capabilities. Similarly, log-linear PDNs can be regularized to
obtain a structure more suitable for lifting. Additionally, it can be reasonable to cluster variables
that are almost identical, i.e., leading to an approximate lifting as discussed in Section 2.4.2.
For example, in the tree case, one could cut the tree at a certain level and cluster variables if
they are equal up to a certain height.
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7.7 Interim Conclusion

Count data is increasingly ubiquitous in Machine Learning settings. Example data are bag-
of-X representations of, e.g., collections of images or text documents, genomic sequencing
data, user-ratings data, spatial incidence data, climate studies, and site visits, among others.
Unfortunately, standard graphical models, such as multinomial or Gaussian ones, are often
ill-suited for modeling this data. We have therefore introduced PDNs, a new graphical model
for multivariate count data. While its representation naturally facilitates a Gibbs sampler, this
model in addition allows for a very simple training procedure: starting from a simple initial
model, which in the simplest case can be a constant value or in more advanced cases a Poisson
regression tree, PDNs are represented as sums, respectively products, of regression models
grown in a stage-wise optimization. We have empirically demonstrated on several real-world
datasets that PDNs are competitive multivariate count models, both in terms of efficiency and
predictive performance.

PDNs suggest several interesting avenues for future work. In Section 7.3.4, we have already
discussed how PRTs can be used for model compression. One should further investigate
this idea and compare the results of the compressed models to the full model. Furthermore,
one should explore PDNs within other Machine Learning tasks such as characterizing neural
dependencies [18], training topic models [63], also capturing word dependencies within each
topic [99, 98], and recommendation [78]. Additionally, predicting user behavior such as retention
and churn [85] in mobile games or smartphone apps is an attractive avenue for future work.

In particular the latter application asks for relational count models. It has already been
shown that relational approaches are well suited for modeling such kind of user behavior. For
example, Dierkes et al. [49] have used MLNs to model churn and buying behavior in the mobile
phone market. However, many aspects of such problems are non-binary and count models seem
to be more appropriate. For example, it is of greater value to predict the precise number of
future purchases of an user than solely an indicator if they are likely to buy any virtual good
at all. Relational PDNs also lend themselves to approaches such as the work by Kazemi et al.
[109] where relational logistic regression is used as an aggregator in relational models with
varying population sizes. This also suggests to look into Poisson regression as aggregator. The
problem of varying population sizes also matters in relational Poisson models. For example, we
would like to build models which work for images of different sizes. It should not matter how
many patches we have if they all share the same properties.

In many situations, we cannot assume that the training data is completely observed. Therefore,
one should extend the learning procedure to handle partially observed datacases. This requires
to run inference iteratively, and hence further asks for efficient inference algorithms beyond
Gibbs sampling. In the case of MAP inference, we can add artificial temperature annealing
to the Gibbs sampler in order to obtain improved MAP configurations. One should also
explore message-passing-like inference for PDNs as we have seen in Chapter 3. For example,
understanding how max-product BP or Likelihood Maximization looks in the case of PDNs, or
generally Poisson graphical models, is appealing. Due to the infinite ranges of the variables,
a compact representation of the messages has to be found. In the case of Gaussian random
fields, Gaussian BP is only required to pass around values for the mean and the variance of
each variable. Developing a similar approach for Poisson graphical models is left for future
work. Message passing based inference also suggests to look into lifting of these algorithms.
We have already touched upon this idea in Section 7.6. The local structure of PDNs should be
in favor of lifting and paves the way for additional approximate lifting.
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Another problem not well studied yet, is the idea of Label Propagation with labels over
infinite ranges. The Label Propagation algorithm that was discussed in Chapter 5 assumed a
finite set of labels. However, one can also imagine tasks where nodes receive a natural number
as label. When solving such problems with Label Propagation, we need to compactly describe
the distribution over the labels. Making the Poisson assumption can possibly be one step in
achieving this goal.

Another interesting avenue for future work is to exploit functional gradients for learning
hybrid multivariate models. Along the way, one should investigate Dependency Networks for
the complete family of GLMs. For instance, Dobra [51] has shown that hybrid Dependency
Networks among Gaussian and logistic variables perform well for discovering genetic networks,
and Guo and Gu [80] have shown logistic (conditional) Dependency Networks to perform well
for multi-label classification. Upgrading the resulting non-parametric, hybrid Dependency
Networks to relational domains may provide novel structure learning approaches for BLOG [148]
and probabilistic programming languages [77], which feature Poisson distributions. This would
also complement relational Gaussian models [208, 37, 3] as well as relational copulas as proposed
by Xiang and Neville [247] for relational collective classification. In general, copula models
for multivariate count data [91] are an interesting option, in particular extending them to the
relational case based on Xiang and Neville. All this could lead to better methods for mining
Web-populated knowledge bases such as TextRunner, NELL, YAGO, and KnowledgeGraph. In
such open information retrieval tasks, one cannot easily assume a fixed number of “entities”
and in turn use existing probabilistic relational models such as MLNs.
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CHAPTER 8

Conclusion

Probabilistic Graphical Models (PGMs) belong to the most important formalisms in AI and
Machine Learning, with lifting being a prominent approach to reduce run time of learning
and inference algorithms in recent years. This thesis contributed in different ways to the
PGM and lifted inference literature. By considering graphical models and lifted inference
in “non-standard” settings, we proposed approaches to lifted decimation, lifted labeling, and
networks of count data, among others. By doing so, we have shown that lifting, which originated
in the Statistical Relational Learning (SRL) community, does not only apply to probabilistic
inference in relational PGMs but also decreases run time in other settings likewise. We have also
seen that many applications produce count data and various observations are tracked as counts
which are not handled appropriately by standard PGMs. This lead to the development of a
novel class of PGMs specifically tailored towards random variables over the natural numbers.
We will now summarize these contributions again in greater detail, depict the lessons learned
during the work on this thesis, and present an outlook on possible lines of futures research.

8.1 Summary

After reviewing the basics of probabilistic inference and a discussion of existing lifted inference
algorithms in Chapter 2, we showed in Chapter 3 how the idea of lifted message passing can
be extended to message passing algorithms for SAT problems. This was achieved by lifting
well known approaches to solving satisfiability problems based on message passing in factor
graphs, namely Warning Propagation and Survey Propagation. Applying naive lifting to factor
graphs representing CNFs indicated lifting potential but also revealed the requirement for more
sophisticated lifting algorithms. This holds in particular, when the CNF is simplified based
upon clamping in an iterative procedure. This resulted in novel lifting algorithms that handle
incremental changes in the evidence efficiently and fit well into the concept of decimation.
Decimation approaches turn a complex inference problem into a sequence of simpler tasks
where we want to exploit lifting for each subtask. This general paradigm is not only suitable for
propositional satisfiability, but can also be used for sampling joint configurations in MRFs. We
then showed how Shortest-Path-Sequences-lifting is capable of handling incrementally growing
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evidence in such decimation procedures. We have shown that the resulting lifted decimation
framework greatly reduced run times of SAT solving and BP-guided sampling. We have further
shown that an algorithm for MAP inference based on likelihood maximization is liftable by
similar means, yet again benefiting from adjusted treatment of evidence. In particular, we
introduced Pseudo Evidence which can be seen as soft evidence turning into hard evidence
during the course of a single run of iterative probabilistic inference. This additional evidence can
be further exploited as it introduces new independencies. In a nutshell, Chapter 3 presented an
unifying framework for lifted message passing algorithms with several extension when evidence
is being set sequentially.

To motivate the research on non-binary PGMs along with (lifted) inference approaches not
based on message passing, we described labeling problems and their probabilistic interpretation
in Chapter 4. Although Color Passing and its extensions are not limited to the binary case,
using classic multinomial MRFs with BP is not always practical. For example, in labeling
problems, where each node in a graph has to be assigned a label from a predefined alphabet,
an adapted problem formulation is better suited and additionally comes along with a simple
algorithm solving the problem exactly. We explained this particular algorithm, namely Label
Propagation, and described how it is solving multiclass labeling problems based on simple matrix-
multiplications. This also facilitated a different view on lifting. Instead of the computational
view based on Color Passing in Chapter 3, lifting was described with help of graph theoretic
concepts and algebraic operations.

However, a Gaussian similarity function, which is typically used in Label Propagation, is
suboptimal as it produces dense graphs which are not tractable for large-scale problems. Instead,
we proposed a similarity function based on logical rules in Chapter 5 which is akin to the idea
of Markov Logic Networks. This relational Label Propagation allowed us to label graphs with
over five million nodes. In particular, we presented a data processing pipeline where online
bibliographies are enriched with an initial set of affiliations and geo-tags. Label Propagation
was then run on a graph where each node corresponded to an author-paper-pair and the labels,
i.e., geo-tags, of the missing nodes were inferred. Running Label Propagation on problems of
such size naturally asks for efficient implementations and any further reduction in run time
is most welcome. Therefore, we also developed a lifted variant of Label Propagation where
the lifting is based on graph theoretic concepts and its correctness was proven by means of
algebraic operations. This novel Lifted Label Propagation does not require any modifications
of the ground algorithm and amounts to standard Label Propagation on lifted matrices. Hence,
implementing the lifting reduces to a preprocessing step and any efficient existing Label
Propagation implementation can be used on top of it.

The advancements in Chapter 5 prepared the ground for an extensive analysis of migration
behavior of researchers in computer science by compiling geo-enriched online bibliographies.
Based upon GeoDBLP, and further resources from the Web, we investigated in Chapter 6
statistical regularities and patterns underlying human behavior for different social phenomena.
The GeoDBLP dataset provides over 300k migration hops of roughly one million researchers in
total. Fitting this data to various statistical models revealed that migration patterns are fairly
regular. In particular, we found that the migration propensity follows a log-normal distribution
and the overall job market in computer science academia is Poisson-log-normal. Although these
are not the first results on such distributions in observational data, up to recent years, data
was mostly collected in the real world based on manually prepared studies. We solely focused
on data freely available on the Web and used Machine Learning techniques to fill in the missing
datapoints. Besides publication and migration data, the Web provides vast amounts of data
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describing other human behavior and therefore asking for similar studies. By analyzing time
series for Internet memes and online videos, we were also able to find descriptive mathematical
models describing this data precisely in terms of distributions with only few parameters.

All datasets in Chapter 6 had in common that we were looking at count data. We counted
the number of hops per year, the number of search queries for Internet memes, or the number of
views of a video clip. Surprisingly, very little work has been focusing on PGMs based on random
variables defined over count distributions though. With few exceptions, models with variables
over infinite ranges are mostly based on Gaussian distributed random variables. Still, many
problems are most accurately defined over the natural numbers, i.e., discrete, infinite ranges,
and can only be squeezed into finite or Gaussian models by binning or other approximations.
By introducing Poisson Dependency Networks (PDNs), we have presented a new class of PGMs
for count data where each variable is defined over the natural numbers. More precisely, the
conditional distribution of each random variable given its neighbors in the graph is Poisson
distributed. Although PDNs follow a local approach, which does not necessarily define a joint
distribution in closed form, one can query the model based on Gibbs sampling which returns
samples from a joint distribution. We have shown that PDNs can be learned efficiently by
means of Gradient Tree Boosting and we contributed to the existing literature on gradient
boosted models by introducing multiplicative updates to obtain faster convergence. Several
experiments showed how PDNs can be used on various count datasets and highlighted that
their performance in terms of quality is comparable while training and inference is done very
efficiently.

8.2 Lessons Learned

During the research over the last years, we have encountered several challenges and we can
distill some of the observations made into general lessons learned that are likely to apply beyond
the cases in this thesis.

Applying and extending several different lifted inference approaches has shown that consider-
ing lifting independent of the inference algorithm in the first instance is beneficial. The universal
notion of symmetries is very flexible and provides a general view on lifting which does not only
cover lifted message passing. With recent work on lifted linear programs by Mladenov et al.
[151] and the reparameterization of MRFs by Mladenov et al. [152], the adaption of the ground
inference algorithm can be avoided elegantly. Considering lifting as a general preprocessing
step, as it has been done in the case of Label Propagation, enables us to use any efficient
problem solver. This also detaches the inference algorithm from the lifting procedure itself
and helps to develop independent views and solutions to each problem. The knowledge of the
algebraic view on lifting and coarsest equitable partitions can also present a novel view on lifted
satisfiability where even more efficient approaches are thinkable. Although an abstract view on
symmetries is advantageous in many cases, one should also notice that not every problem can
be easily reparameterized to work with an arbitrary inference algorithm of choice.

Establishing trust in Machine Learning algorithms and applications is one of the hardest
challenges even if the results seem to be self-evident. It is often difficult to convince readers
of the models — even in cases where they are physically and socially plausible. This holds
inside the community but becomes additionally challenging when people outside the community
have to be convinced of the learned models and the impact of the results. Therefore, finding
simple models that describe complex interactions well does not only follow Occam’s razor and
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avoids overfitting, but also allows an interpretation by non-experts. Although less complex
models seem to be less expressive on the first sight, this is often proven wrong if the problem
at hand is taken into account. Examples of such simple models are not only the distributions
shown in Chapter 6, but also the idea of small interpretable trees in Gradient Tree Boosting
instead of a fully parameterized model. We have shown examples where distributions were
decomposed into a growth and decline term, both giving a meaningful interpretation of the
observations. Similarly, the set of small trees in Gradient Tree Boosting can be seen as a set
of few general rules of thumb that describe dependencies between variables. Not only are the
trees interpretable, but they also provide a good intuition. Using such simple and interpretable
models will hopefully further push the advances in the fields of AI and Machine Learning
because we can explain the statistical models in natural language.

8.3 Outlook

Looking at the algorithmic aspects of this thesis, and in particular at the lifting approaches,
the work focused on exact lifting. However, many real-world applications do not result in
perfectly symmetric problem structures. Even in the case of relational models, that tend to
produce symmetries in the underlying PGM, evidence often breaks symmetries and hence
cancels the benefits of lifted inference. However, the introduced algorithms could all benefit from
approximate lifting. A possible decrease in performance is often negligible because approximate
inference is used anyhow. This just adds another level of approximation that can even increase
performance of message passing algorithms in some cases. We have seen a similar behavior
by introducing Pseudo Evidence which transforms soft evidence into hard evidence without
significantly harming the quality of the obtained MAP assignment. Approximate lifted inference
approaches by Kersting et al. [115], as well as more recent approaches by Singla et al. [211] and
Van den Broeck and Niepert [229], can replace exact Color Passing or saucy by approximate
lifting. Alternatively, one can combine both types of lifting.

The models considered in this thesis contained only latent variables of the same type.
However, many problems exist where different types of latent variables depend on each other.
For example, one can easily imagine a PGM for count data where some of the variables
are Poisson distributed while others are better fitted by a geometric distribution. Hence,
extending Poisson Dependency Networks to something like hybrid Dependency Networks. In
general, designing additional types of PGMs with random variables of mixed distributions, e.g.,
multinomial, Poisson, Gaussian, among others, would extend the capabilities of PGMs greatly.
This is not trivial though because it requires to model dependencies between distributions
of different types. For example, a Gaussian and a Poisson distribution where the means of
each distribution dependent on each other. And on top of that, the variance of the Gaussian
distribution has to be fitted as well, taking the other parameters into account.

Furthermore, integrating continuous or count random variables into SRL models is quite
appealing. This will help to avoid artificial binning of the data or the usage of inapplicable
distributions. For example, when SRL methods are applied in the medical domain, many of
the features are continuous and incomplete [161]. Therefore missing values have to be inferred
which requires non-binary features to be discretized which is only possible with good domain
expert knowledge. Likewise, count data is currently often binned and converted to several
binary predicates before being used in formalisms such as MLNs. There exist approaches such
as Hybrid MLNs [242], that add Gaussian variables to MLNs, but we have sufficiently discussed
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in the previous chapters why one should be interested in non-Gaussian distributions as well.
Hence, we should further investigate relational hybrid, or mixed, models that extend Poisson
Dependency Networks to the relational setting and beyond Poisson distributions.

Ideas akin to lifting have been used in other fields as well. In Chapter 3, we already referred
to techniques such as symmetry breaking for satisfiability. Additional examples of grouping
variables to reduce the run time of inference can be found in computer vision [120] or natural
language processing [138], among others. Several of these approaches are tailored towards
specific applications and can exploit certain properties of the underlying problem structure,
e.g., the lattice structure of an image or a document consisting of sentences. Although not
all algorithms might be equally well applicable for any kind of problem, one should further
connect them to lifted inference in SRL. Generally, SRL and PGMs are quite popular in
these communities and also lifted inference has been applied in the past already. Besides
the example we have seen in Section 3.3.4, online lifted inference approaches have also been
applied to video streams [165] for example. Hence, this further supports the idea to investigate
sequential or bootstrapped lifting approaches in combination with approximate lifting for these
applications. Presenting an unifying view on lifting and symmetries in general across fields
will further contribute to the understanding of lifted inference. Additionally, this can result in
revised lifted inference algorithms that incorporate specialized subroutines for certain problem
structures. Akin to the idea of lifted satisfiability, a notion of lifted computer vision or lifted
natural language processing could be established.

We have mentioned in the introduction already that relational databases have been used
predominantly for mass storage and we have discussed approaches that combined such databases
with MRFs to obtain relational PGMs. However, a trend towards NoSQL databases has been
observed lately in the context of Big Data. Following the DB-Engines Ranking1, MongoDB has
reached the fifth position in the database popularity ranking in January 2015. Therefore, one
should also look at augmenting such databases with the notion of uncertainty and connect them
to PGMs. NoSQL databases such as MongoDB, are frequently used in analytics applications
tracking user behavior. On the one hand, it is possible to store millions of users events in
the database without specifying precise schema. On the other hand, the retrieval process now
becomes more challenging. Often, developers resort again to relational databases and build a
second user database based upon aggregated information on the user events. This relational
database is then used to build Machine Learning models to answer uncertainty and to make
predictions. Examples of such tasks are user churn prediction or buyer classification [192, 85].
Hence, it is desirable, to integrate such concepts of uncertain properties directly into NoSQL
databases. First approaches that involve statistical methods have been employed recently. For
example, by offering approaches such as HyperLogLog [57] for cardinality estimation in NoSQL
databases. The relationship between SQL and NoSQL databases is akin to the concepts of
top-down and bottom-up lifting. Top-down lifting also assumes a schema while the bottom-up
lifting tries to find symmetries in propositional data. The benefits and strength of bottom-up
lifting has been shown throughout this thesis and one should further connect these ideas to the
database domain.

In general, PGMs and SRL based approaches, have been used in various domains and find
an increasing number of applications in different fields. SRL formalisms do not only have
the benefit of being easily specified based on logic, but the resulting models are also often
easy to interpret, even for non-experts. This is especially important in interdisciplinary work

1db-engines.com/en/ranking
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where communication with external domain experts is inevitable and the learned model is
supposed to be used by non machine learners. For example, SRL has been used in the medical
domain to analyze electronic health records to predict myocardial infarctions [244, 245] or to
diagnose coronary heart diseases [160]. In these cases, SRL methods have several benefits. First,
being able to interpret a learned model is a key demand in order to reach helpful conclusions.
Relational models based on logical formulas can often be easily reformulated into natural
language text by Machine Learning experts. Second, incorporation of domain expert knowledge
is possible and it would be wasteful to abstain from decades of knowledge in medical research.
Instead, this information should be used to improve and guide learning algorithms. Since
building electronic health records and similar databases has just begun in recent years, and is
nowadays accompanied by small and medium sized businesses collecting data at massive scale,
the opportunities for SRL methods and algorithms will hugely grow over the next years.

Still, the applicability of SRL methods is limited due to the complexity of the corresponding
learning and inference algorithms. This thesis aimed at circumventing this drawback by
presenting new efficient approaches to inference and learning in PGMs. However, much remains
to be done, to increase efficiency and feasibility of applications, and to eventually bring AI
and Machine Learning to all areas of our everyday life, including small devices with limited
resources, such as smartphones. Efforts in this area have recently become popular, for example
to save energy consumption when using MRFs on small devices [179].

Additionally, one should not neglect that SRL approaches combine methodologies from
different fields which are not limited to logic and PGMs. Besides the computationally complexity,
this also imposes a hurdle to enter this field. This holds in general for many algorithms and
approaches in the field of AI and Machine Learning, hence, often preventing a wider usage.
Therefore, the democratization of AI and Machine Learning becomes a long term vision to
give a broad range of developers and engineers access to these technologies. This has to be
further pursued by extending “Machine Learning in the Cloud” and by providing algorithms
specialized for specific applications. In this context, declarative programming languages help
to specify problems more easily and allow to apply state-of-the art techniques without knowing
all the little details. Hence, the methods and techniques would be of greater use to a wider
audience if the problem formulation was more straightforward. With more people applying
Machine Learning, maybe even as standard subroutines, this field will observe the next boost
and help AI to take the next step in reaching the goals we all are envisioning.
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1 Selected Publications

• F. Hadiji, A. Molina, S. Natarajan, and K. Kersting. Poisson Dependency Networks:
Gradient Boosted Models for Multivariate Count Data. Machine Learning, 2015.

I have contributed to the ideas and the writing of the paper. The ideas and the content
have been discussed amongst all authors. Together with Alejandro Molina, I have
developed the code for learning and inference in this new class of probabilistic graphical
models. I also ran most of the experiments.

• F. Hadiji, M. Mladenov, C. Bauckhage, and K. Kersting. Computer Science on the
Move: Inferring Migration Regularities from the Web via Compressed Label Propagation.
Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI), 2015.

I have contributed to the ideas and the writing of this paper. I developed the idea of
Lifted Label Propagation and worked out the proof of its correctness together with Martin
Mladenov. I have implemented most parts of the underlying code and also used Christian
Bauckhage’s code for fitting different probability distributions. I also ran the experiments
of this publication. The statistical regularities and patterns have been discussed amongst
all authors.

• C. Bauckhage, K. Kersting, and F. Hadiji. How Viral are Viral Videos? In Proceedings
of the 9th International AAAI Conference on Weblogs and Social Media (ICWSM), 2015.

I conducted experiments on the YouTube view counts and I was involved in the discussion
and revision of the paper.

• R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, and C. Bauckhage. Predicting
purchase decisions in free to play mobile games. Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE), 2015. Received best paper
award.

I was mainly responsible for casting the task as a regression problem. I implemented the
Poisson regression approach, did the corresponding experiments, and did the writing on
this part of the paper. I was also involved in the preparation and discussion of the paper.
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• C. Ide, F. Hadiji, L. Habel, A. Molina, T. Zaksek, M. Schreckenberg, K. Kersting and C.
Wietfeld. LTE Connectivity and Vehicular Traffic Prediction based on Machine Learning
Approaches. IEEE Vehicular Technology Conference (VTC-Fall), 2015.

I was involved in the discussions leading to this paper and I also contributed to the
writing. I have mainly dealt with the machine learnings aspects in the paper. The ideas
and concepts were discussed amongst all authors in the SFB-876-project B4. Additionally,
I was also involved in the implementation and I conducted experiments.

• F. Hadiji, R. Sifa, A. Drachen, C. Thurau, K. Kersting, and C. Bauckhage. Predicting
Player Churn in the Wild. In Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG), 2014.

This paper was a collaborative effort based on the joint research of all authors. Several
of the participants, including myself, were affiliated with GameAnalytics at the time
the paper was written and therefore, parts of the paper were motivated upon research
questions at GameAnalytics. I was involved in developing the ideas of this paper and
also the writing. I wrote source code for the algorithms that were applied to the data
provided by GameAnalytics. I ran the experiments together with Rafet Sifa.

• F. Hadiji and K. Kersting. Reduce and Re-Lift: Bootstrapped Lifted Likelihood Maxi-
mization for MAP. In Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI), 2013.

I was involved in developing the ideas of this paper and writing the paper. The ideas and
content of the paper were discussed among both authors of the paper. I implemented the
algorithms used in this paper and I also ran the experiments.

• F. Hadiji, K. Kersting, C. Bauckhage, and B. Ahmadi. GeoDBLP: Geo-Tagging DBLP
for Mining the Sociology of Computer Science. arXiv preprint arXiv:1304.7984, 2013.

I have contributed to the ideas and the writing of this paper. The ideas and the content
of this paper were discussed amongst all authors. I followed up upon Babak Ahamdi’s
work on the rule based Label Propagation and implemented a new version based on
LAMA which enables large-scale experiments. I implemented the code for harvesting the
data and fitting the probability distribution to the data. The fitting code was build upon
Christian Bauckhage’s code. The discussion of the results and findings was done amongst
all authors.

• C. Bauckhage, K. Kersting, and F. Hadiji. Mathematical Models of Fads Explain the
Temporal Dynamics of Internet Memes. In Proceedings of the 7th International AAAI
Conference on Weblogs and Social Media (ICWSM), 2013.

I was primarily involved in discussions of the paper.

• F. Hadiji, B. Ahmadi, and K. Kersting. Efficient Sequential Clamping for Lifted Message
Passing. In Proceedings of the 34th Annual German Conference on Artificial Intelligence
(KI), 2011.

I contributed to the ideas of this paper and its writing. The ideas and the content of
this paper were discussed amongst all authors. I implemented the code for the lifted
decimation and used Babak Ahmadi’s code for SPS lifting to implement the code for
lifted satisfiability. I ran the experiments for the lifted decimation.
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• F. Hadiji, K. Kersting, and B. Ahmadi. Lifted message passing for satisfiability. In
Working Notes of the AAAI-10 Workshop on Statistical Relational AI (StarAI), 2010.

I was involved in the ideas of this paper and its writing. The ideas and the content of
this paper were discussed amongst all authors. I implemented the necessary source code
to run the lifted message passing algorithms such as Lifted WP and Lifted SP. I also ran
the experiments.

• K. Kersting, Y. El Massaoudi, B. Ahmadi, and F. Hadiji. Informed Lifting for Message-
Passing. In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI),
2010.

I was involved in the development of the ideas for this paper and also participated in the
writing of the paper.

• B. Ahmadi, K. Kersting, and F. Hadiji. Lifted Belief Propagation: Pairwise Marginals
and Beyond. In Proceedings of the 5th European Workshop on Probabilistic Graphical
Models (PGM), 2010.

I was involved in the development of the ideas and ongoing discussions.
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E Set of edges in a graph G
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CT computation tree
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iLBP informed Lifted Belief Propagation

JT Junction Tree
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LLP Lifted Label Propagation
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MAP maximum a posteriori

ML Machine Learning

MLE maximum likelihood estimation

MLN Markov Logic Network

MCMC Markov chain Monte Carlo

MRF Markov Random Field
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PDN Poisson Dependency Network
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PGM Probabilistic Graphical Model

PRT Poisson Regression Tree

RMSE Root-Mean-Square Error

SAT Boolean satisfiability problem

SP Survey Propagation
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StarAI Statistical Relational AI

SPGM Sub-linear Poisson Graphical Model
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