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Abstract

Much of the work in the literature on optimal discrimination designs assumes that the

models of interest are fully specified, apart from unknown parameters in some models.

Recent work allows errors in the models to be non-normally distributed but still requires

the specification of the mean structures. This research is motivated by the interest-

ing work of Otsu (2008) to discriminate among semi-parametric models by generalizing

the KL-optimality criterion proposed by López-Fidalgo et al. (2007) and Tommasi and

López-Fidalgo (2010). In our work we provide further important insights in this inter-

esting optimality criterion. In particular, we propose a practical strategy for finding

optimal discrimination designs among semi-parametric models that can also be verified

using an equivalence theorem. In addition, we study properties of such optimal designs

and identify important cases where the proposed semi-parametric optimal discrimination

designs coincide with the celebrated T -optimal designs.

Keywords and Phrases: continuous design, discrimination design, equivalence theorem, semi-

parametric model, T -optimality, variational calculus.
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1 Introduction

Finding optimal discrimination designs dates back to 1970’s and probably earlier. Early refer-

ences are Stigler (1971) who considered nested models and Atkinson and Fedorov (1975a,b),

where they proposed T -optimal designs to discriminate among models when errors are nor-

mally distributed. The first of the two last named papers concerns discrimination between

two models and the second paper generalized the problem to multiple models. T -optimality

for discriminating between parametric models assumes that we have a known null model and

we wish to test whether a rival model with unknown parameter holds. A likelihood ratio test

is then used to discriminate between the two rival models and under local alternatives, the

non-centrality parameter of the chi-square distribution of the test statistic, which contains the

unknown parameters from the alternative model, is proportional to the T -optimality criterion

(Wiens, 2009). Since a larger non-centrality parameter provides a more powerful test, the

T -optimal design strategy is to find a design that maximizes the minimum value of the non-

centrality parameter, where the minimum is taken over all possible values of the parameters

in the model under the alternative hypothesis. Consequently, T -optimality criterion is a type

of maximin optimality criterion and designs that maximize the minimum of the non-centrality

parameter are called T -optimal designs.

The two seminal papers of Atkinson and Fedorov (1975a,b) contain illustrative examples.

Because the T -optimality criterion is not differentiable, calculations to determine the optimal

design can be involved even for relatively simple models; see for example, Dette et al. (2012) and

Dette et al. (2016b) for some explicit non-trivial results. For the same reason, the construction

of efficient algorithms for finding T -optimal designs is a challenging problem. Some recent

progress in this direction includes Braess and Dette (2013); Dette et al. (2015, 2016a) and

Tommasi et al. (2016). An interactive software tool for finding optimal discrimination designs

is available in Stegmaier et al. (2013).

There is notable progress in tackling optimal discrimination design problems on various fronts;

the progress appeared periodic a few decades ago and seems to have picked up in recent

years. Advances include alternative problem formulations and broader applications of such

designs in cognitive science (Covagnaro et al., 2010), psychology (Myung and Pitt, 2009)

and chemical engineering (Alberton et al., 2011), to name a few. Different and more flexible

optimality criteria have also been proposed. In particular, advances in the construction of

optimal discrimination designs include the following: (i) the frequently criticized unrealistic

assumption in the T -optimality criterion that requires a known model in the null hypothesis is

now removed (Jamsen et al., 2013); (ii) the class of models of interest now includes generalized

linear models, where outcomes can be discrete (Waterhouse et al., 2008), (iii) optimal designs

for discriminating multivariate models (Yanagisawa, 1990; Ucinski and Bogacka, 2005); (iv)

Bayesian optimal designs for model discrimination (Felsenstein, 1992; Tommasi and López-

Fidalgo, 2010; Dette et al., 2015) , (v) dual-objective optimal designs for model discrimination

(Atkinson et al., 1998; Ng and Chick, 2004; Atkinson, 2008; Alberton et al., 2011; Abd El-

Monsef and Seyam, 2011), (vi) discriminating models with correlated errors (Campos-Barreiro

and Lopez-Fidalgo, 2016), (vii) adaptive designs for model discrimination (Myung and Pitt,
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2009; Donckels et al., 2009) and (viii) optimal discrimination designs for dynamic models

(Ucinski and Bogacka, 2005). Other important references that describe alternative approaches

and properties of optimal discrimination designs are López-Fidalgo et al. (2007); Dette and

Titoff (2009); Dette et al. (2015), among others.

All references cited so far require a parametric specification of the conditional distribution

of the response, which raises some robustness issues in the application of the T -optimality

criterion for constructing optimal discrimination designs. Robustness properties of optimal

discrimination designs with respect to various model assumptions have been considered by

Wiens (2009); Ghosh and Dutta (2013) and Dette et al. (2013). Otsu (2008) proposed a

new optimality criterion for discriminating between models, which is similar in spirit to the

classical T -optimality criterion and its extensions except that it does not require an exact

specification of the conditional distribution. Optimal discrimination designs were found using

the duality relationships in entropy-like minimization problems (Borwein and Lewis, 1991) and

the resulting optimal designs are called semi-parametric optimal discrimination designs.

The present paper provides a more careful analysis of the novel approach proposed by Otsu

(2008). We propose a more practical strategy for finding semi-parametric optimal discrimina-

tion designs and derive several important properties of such optimal designs. In Section 2, we

define semi-parametric optimal discrimination designs and derive several auxiliary results that

substantially simplify the calculation of optimal designs. In Section 3, we provide equivalence

theorems to characterize semi-parametric optimal discrimination designs and demonstrate that

all designs derived by Otsu (2008) are in fact not optimal. Section 4 describes the relation

between semi-parametric optimal discrimination designs and optimal discrimination designs

under some criteria discussed in the literature. In particular, we identify cases, where the

semi-parametric optimal discrimination designs proposed by Otsu (2008) coincide with the T -

optimal discrimination designs and KL-optimal designs introduced by Atkinson and Fedorov

(1975a,b) and López-Fidalgo et al. (2007), respectively. Section 5 presents numerical results

and all technical details are deferred to the appendix in Section 6.

2 Semi-parametric discrimination designs

We model the response variable Y as a function of a vector of explanatory variables x defined

on a given compact design space X . Suppose the density of Y with respect to the Lebesgue

measure is f(y, x), and we have resources to take a fixed number of observations, say n, for the

study. Following Kiefer (1974), we focus on approximate designs which are essentially proba-

bility measures defined on X . If an approximate design has k support points, say x1, . . . , xk,

and the corresponding weights are ω1, . . . , ωk, then approximately nωi observations are taken

at xi, i = 1, . . . , k. In practice, a rounding procedure is applied to every nωi so that they are

positive integers ni (i = 1, . . . , k) and
∑k

i=1 ni = n. The experimenter then takes ni indepen-

dent observations with Yi,1, . . . , Yi,ni at xi which are assumed to have a density f(y, xi) with

respect to the Lebesgue measure, i = 1, . . . , k.

To construct efficient designs for discriminating between two competing models for f(y, x),
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López-Fidalgo et al. (2007) assumed parametric densities, say fj(y, x, θj), where the parameter

θj varies in a compact parameter space, say Θj, j = 1, 2. To fix ideas, we ignore nuisance

parameters which may be present in the models. The Kullback-Leibler distance between two

densities f1 and f2 is

I1,2(x, f1, f2, θ1, θ2) =

∫
f1(y, x, θ1) log

f1(y, x, θ1)

f2(y, x, θ2)
dy (2.1)

and it measures the discrepancy between the densities. López-Fidalgo et al. (2007) assumed

that the model f1 is the “true” model with a fixed parameter vector θ1 and call a design local

KL-optimal discriminating design for the models f1 and f2 if it maximizes the criterion

KL1,2(ξ, θ1) = inf
θ2∈Θ2

∫
X
I1,2(x, f1, f2, θ1, θ2)ξ(dx). (2.2)

Otsu (2008) considered a novel setup and proposed a design criterion for discriminating a

parametric model defined by its density and another nonparametric model. More precisely,

this author considered the design problem for testing the hypothesis

H0 : η(x) = η1(x, θ1) versus H1 : η(x) = η2(x, θ2) (2.3)

where

ηj(x, θj) =

∫
yfj(y, x, θj)dy, j = 1, 2,

is the conditional mean of the density fj(y, x, θj) with support set

Sfj ,θj ,x =
{
y | fj(y, x, θj) > 0

}
, j = 1, 2. (2.4)

The setup is therefore more general than that in López-Fidalgo et al. (2007), who assumed

that f1 and f2 are known and one of the parametric models is fully specified. To be more

specific, let f1(y, x, θ1) be a parametric density with a fixed parameter θ1 and define

F2,x,θ2 =
{
f2 :

∫
f2(y, x, θ2) dy = 1,

∫
yf2(y, x, θ2)dy = η2(x, θ2), Sf2,θ2,x = Sf1,θ1,x

}
, (2.5)

which is the class of all conditional densities (at the point x) with parameter θ2 and conditional

mean η2(x, θ2). Consider the set obtained from F2,x,θ2 by letting the ranges of x and θ2 vary

over all their possible values:

F2 =
{
F2,x,θ2 | x ∈ X ; θ2 ∈ Θ2

}
and call a design ξ∗ semi-parametric optimal design for discriminating between the model
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f1(y, x, θ1) and models in the class F2 if it maximizes the optimality criterion

K(a)(ξ, θ1) = inf
θ2∈Θ2

∫
X

inf
f2∈F2,x,θ2

I1,2(x, f1, f2, θ1, θ2) ξ(dx) (2.6)

among all approximate designs defined on the design space X . Note that this criterion is a

local optimality criterion in the sense of Chernoff (1953) as it depends on the parameter θ1.

The subscript (a) denotes the first design criterion with the subscript (b) for the second design

criterion below.

Similarly, we may fix the conditional density f2(y, x, θ2) and define

F1,x,θ1
=
{
f1 :

∫
f1(y, x, θ1) dy = 1,

∫
yf1(y, x, θ1)dy = η1(x, θ1), Sf1,θ1,x = Sf2,θ2,x

}
, (2.7)

which is the class of all conditional densities with parameter θ1 and conditional mean η1(x, θ1).

For fixed θ1, let

F1 =
{
F1,x,θ1

| x ∈ X
}

and we call a design ξ locally semi-parametric optimal design for discriminating between the

model f2(y, x, θ2) and the class F1 if it maximizes the optimality criterion

K(b)(ξ, θ1) = inf
θ2∈Θ2

∫
X

inf
f1∈F1,x,θ1

I1,2(x, f1, f2, θ1, θ2) ξ(dx), (2.8)

among all approximate designs defined on the design space X .

Remark 2.1 We note that the above approach can be similarly applied when the response

variable Y is discrete and it has one of two possible discrete probability measures that depends

on x and θ1. Let these two competing measures with the same support be

P (x, θ1) =

[
y1(x, θ1) . . . ys(x, θ1)

p1(x, θ1) . . . ps(x, θ1)

]
and Q(x, θ2) =

[
y1(x, θ1) . . . ys(x, θ1)

q1(x, θ2) . . . qs(x, θ2)

]
.

If we let yi = yi(x, θ1), let pi = pi(x, θ1) and let qi = qi(x, θ2) for simplicity, we have
∑s

i=1 pi =

1 =
∑s

i=1 qi and
∑s

i=1 yipi = η1(x, θ1). Define two sets

Qx,θ2 =
{
q :

s∑
i=1

qi = 1,
s∑
i=1

yiqi = η2, 0 < qi ≤ 1
}

and Q =
{
Qx,θ2 | x ∈ X ; θ2 ∈ Θ2

}
.

To find a semi-parametric optimal design ξ∗ for discriminating between the model P (x, θ1) and

the class Q we may use the discrete version of the criterion (2.6), which is

K̃(a)(ξ, θ1) = inf
θ2∈Θ2

∫
X

inf
q∈Qx,θ2

s∑
i=1

pi(x, θ1) log
pi(x, θ1)

qi(x, θ2)
ξ(dx).
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We then write down the discrete version of (2.8) in a similar manner and proceed, omitting

details for space consideration.

In what is to follow, we assume for simplicity that f1(y, x, θ1), f2(y, x, θ2), η1(x, θ1), η2(x, θ2) are

differentiable with respect to y, x, θ1 and θ2, even though these assumptions can be weakened

a bit for what we plan to do here. Otsu (2008) derived an explicit form for the two criteria.

For the criterion (2.6), he obtained

K(a)(ξ, θ1) = inf
θ2∈Θ2

∫
X

{
µ+ 1 +

∫
log {−µ− λ(y − η2(x, θ2))} f1(y, x, θ1)dy

}
ξ(dx),

where the constants λ and µ depend on x , θ1 and θ2 and are roots of the system of equations

−
∫

f1(y, x, θ1)

µ+ λ(y − η2(x, θ2))
dy = 1,

∫
(y − η2(x, θ2))f1(y, x, θ1)

µ+ λ(y − η2(x, θ2))
dy = 0

that satisfy the constraint

µ+ λ(y − η2(x, θ2)) < 0, for all y ∈ Sf1,θ1,x.

A similar result can be obtained for the criterion (2.8) using somewhat similar arguments and

they are omitted for space consideration. In either case, the desired values for µ and λ have

to be found numerically. Otsu (2008) did not provide an effective numerical procedure for

finding solutions in the two dimensional space that solve the system of equations and satisfy

the constraint. In what is to follow, we show that the inner optimization problems in (2.6)

and (2.8) can be reduced to solving a single equation, which is much faster and more reliable.

For this purpose we derive simpler expressions for the criteria (2.6) and (2.8) that facilitate the

computation of the semi-parametric optimal discriminating designs. One of our key results is

the following.

Theorem 2.1

(a) Assume that for each x ∈ X the support of the conditional density f1(y, x, θ1) is an interval,

i.e. Sf1,θ1,x = [yx,min, yx,max], such that yx,min < η2(x, θ2) < yx,max for all θ2 ∈ Θ2. Assume

further that for all x ∈ X and for all θ2 ∈ Θ2 there exists a unique non-zero solution λ(x, θ1, θ2)

of the equation ∫
f1(y, x, θ1)

1 + λ(y − η2(x, θ2))
dy = 1, (2.9)

that satisfies

− 1

yx,max − η2(x, θ2)
< λ(x, θ1, θ2) < − 1

yx,min − η2(x, θ2)
. (2.10)
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The criterion (2.6) then takes the form

K(a)(ξ, θ1) = inf
θ2∈Θ2

∫
X

∫
log
{

1 + λ(x, θ1, θ2)(y − η2(x, θ2))
}
f1(y, x, θ1)dyξ(dx) (2.11)

and the “optimal” density f ∗2 in (2.6) is given by

f ∗2 (y, x, θ2) =
f1(y, x, θ1)

1 + λ(x, θ1, θ2)(y − η2(x, θ2))
. (2.12)

(b) Assume that the integrals∫
f2(y, x, θ2) exp(−λy)dy and

∫
yf2(y, x, θ2) exp(−λy)dy

exist for all x ∈ X and for all λ. The criterion (2.8) takes the form

K(b)(ξ) = inf
θ2∈Θ2

∫
X

∫ [
log
{
µ′(λx)

}
− λxy

]
f2(y, x, θ2) exp(−λxy)µ′(λx)dyξ(dx) (2.13)

where

µ′(λ) = µ′(λ, x, θ2) =
1∫

f2(y, x, θ2) exp(−λy)dy
(2.14)

and λx = λ(x, θ1, θ2) is the nonzero root of the equation∫
yf2(y, x, θ2) exp(−λy)dy∫
f2(y, x, θ2) exp(−λy)dy

= η1(x, θ1). (2.15)

Moreover, the “optimal” density f ∗1 in (2.8) is given by

f ∗1 (y, x, θ1) =
f2(y, x, θ2) exp(−λ(x, θ1, θ2)y)∫
f2(y, x, θ2) exp(−λ(x, θ1, θ2)y)dy

. (2.16)

The main implication of Theorem 2.1 is that we first solve equations (2.9) and (2.15) numeri-

cally for λ. For the solution of (2.9), it is natural to presume that λ < 0 if η1(x, θ1) < η2(x, θ2).

This is because, in this case, the function 1/[1 + λ(y − η2(x, θ2))] is increasing whenever

y ∈ Sf1,θ1,x, allowing us to shift the average of the function f1(y, x, θ1)/[1 + λ(y − η2(x, θ2))]

to the right. Similarly, if η1(x, θ1) > η2(x, θ2), we search for λ > 0. We state this intuitive

consideration formally in the following lemma, whose proof is deferred to the appendix.

Lemma 2.1 Assume that v2
2(x, θ2) =

∫
(y − η2(x, θ2))2f2(y, x, θ2)dy exists and is positive. If

λ is a solution of the equation (2.9) and satisfies (2.10), then λ has the same sign as the

difference η1(x, θ1)− η2(x, θ2).
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Example 2.1 Let f1(y, x, θ1) be the truncated normal density N (η(x, θ1), 1) on the interval

[−3 + η1(x, θ1), 3 + η1(x, θ1)]. This density is a function of η1(x, θ1) and it follows from (2.12)

that the optimal density f ∗2 (y, x, θ2) is a function of η1(x, θ1) and η2(x, θ2) in this case. Figure 2

shows plots of the function f ∗2 for η1(x, θ1) ≡ 0 and different values of η2(x, θ2) on the interval

[−3, 3]. On the top of each figure the value λ shows the solution of equation (2.9).
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Figure 1: The density f1 (solid line) of a truncated standard normal distribution on the interval
[−3, 3] and the solution f ∗2 in (2.12) for various choices of the mean function, that is η2(x, θ2) =
−0.5,−0.4,−0.3,+0.5,+0.4,+0.3.

3 Equivalence theorems

In our setup, the variables we wish to optimize in the design problem are the number of

support points, the locations of the support points and the weights at each of the support

point. Because the number of support points in the optimal design is not known in advance,

the dimension of the optimization is unknown at the onset. A common strategy is to confine

the search for the optimal design to a smaller class of designs, say, with a fixed number point

designs. This may simplify the search and result in a closed-form description of the optimal

design; however, such an approach may not produce a design that is optimal among all designs

on X .

When the design problem is formulated as a convex or concave optimization problem, it is

possible to derive an equivalence theorem to verify if a given design is optimal among all de-

signs on the given design space. Each convex or concave functional has a unique equivalence
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theorem but they all have same form with an inequality bounded above by 0 with equality at

the support points of the optimal design. Frequently, the function on the left hand side of the

inequality in the equivalence theorem is called the sensitivity function and if the dimension of

the design space is small, optimality of a design can be directly verified by plotting the sensitiv-

ity function over the design space and examining the resulting plot. Design monographs, such

as Pázman (1986); Silvey (1980); Pukelsheim (2006) present equivalence theorems for various

convex criteria. When the design criterion is concave (or convex) and not differentiable, the

equivalence theorems involve subgradients and consequently, the optimal designs are more dif-

ficult to find and confirm via an equivalence theorem. However, they still have the same form

as just discussed, see Wong (1992); Dette (1997) and others, for example. For T -optimality

and its other variations, equivalence theorems are available in López-Fidalgo et al. (2007);

Dette and Titoff (2009) among others.

Our proposed optimality criterion is a concave functional on the space of all approximate

designs and so it is possible to derive an equivalence theorem for confirming the optimality of

a design as a semi-parametric optimal discrimination design. The next theorem presents the

equivalence theorems for checking the optimality of a design under the two new criteria. A

major difference here compared to the “traditional” equivalence theorems is that now ours’

does not involve the Fisher information matrix.

Theorem 3.1 Suppose that the conditions of Theorem 2.1 hold and the infimum in (2.6) and

(2.8) is attained at a unique point θ∗2 ∈ Θ2 for the optimal design ξ∗.

(a) A design ξ∗ is a semi-parametric optimal design for discriminating between the model

f1(y, x, θ1) and the class F2 if and only if the following inequality holds for all x ∈ X :

I1,2(x, f1, f
∗
2 , θ1, θ

∗
2)−

∫
X
I1,2(x, f1, f

∗
2 , θ1, θ

∗
2) ξ∗(dx) ≤ 0, (3.1)

with equality at the support points of ξ∗. Here I1,2(x, f1, f2, θ1, θ2) is defined in (2.1),

θ∗2 = arg inf
θ2∈Θ2

∫
X
I1,2(x, f1, f

∗
2 , θ1, θ2) ξ∗(dx),

f ∗2 (y, x, θ2) =
f1(y, x, θ1)

1 + λ(y − η2(x, θ2))

and λ is found from (2.9). Moreover, there is equality in (3.1) for all support point of ξ∗.

(b) A design ξ∗ is a semi-parametric optimal design for discriminating between the model

f2(y, x, θ2) and the class F1 if and only if the following inequality holds for all x ∈ X :

I1,2(x, f ∗1 , f2, θ1, θ
∗
2)−

∫
X
I1,2(x, f ∗1 , f2, θ1, θ

∗
2) ξ∗(dx) ≤ 0, (3.2)
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with equality at the support points of ξ∗. Here

θ∗2 = arg inf
θ2∈Θ2

∫
X
I1,2(x, f ∗1 , f2, θ1, θ

∗
2) ξ∗(dx),

f ∗1 (y, x, θ1) =
f2(y, x, θ2) exp(−λy)∫
f2(y, x, θ2) exp(−λy)dy

and λ is found from (2.15). Moreover, there is equality in (3.2) for all support point of ξ∗.

Example 3.1 This example illustrates the application of the equivalence theorem using an

example from Otsu (2008). The goal was to construct semi-parametric optimal designs for

discriminating between f1(y, x, θ1), the truncated normal density on the interval [η1(x, θ1) −
3, η1(x, θ1) + 3] with mean η1(x, θ1) and variance 1, and densities in the class F2. The two

competing models defined on the same design space is X = [−1, 1] are

η1(x, θ1) = θ1,1 + θ1,2e
x + θ1,3e

−x, (3.3)

η2(x, θ2) = θ2,1 + θ2,2x+ θ2,3x
2, (3.4)

where θ1 = (4.5,−1.5,−2). Otsu (2008) determined the semi-parametric optimal design for

discriminating between the model f1(y, x, θ1) and the class F2 as

ξ̃ =

[
−1.000 −0.266 0.721 1.000

0.377 0.198 0.244 0.181

]
. (3.5)

The left part of Figure 3.1 shows the plots of the sensitivity function on the left-hand side of

(3.1) for the design found by Otsu (2008) (left). We conclude that this design is not optimal for

discriminating between the model f1(y, x, θ1) and the class F2, because the function is positive

throughout the design space. The subfigure on the right shows the sensitivity function of the

design

ξ∗ =

[
−1.000 −0.670 0.142 0.959

0.253 0.428 0.247 0.072

]
, (3.6)

which has been found maximizing the criterion provided by Theorem 2.1 and confirms its

optimality.
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Figure 2: The sensitivity functions of two designs for discriminating between models (3.3) and
(3.4). The left figure is for the design (3.5) calculated by Otsu (2008) and the right figure is
for the T -optimal design (3.6).

The values of the criterion (2.6) for different designs are given by K(a)(ξ̃) = 3.27779 ∗ 10−6

and K(a)(ξ
∗) = 0.0005580455 demonstrating that ξ∗ performs substantially better than ξ̃; in

fact, the efficiency of ξ̃ of the design determined by Otsu (2008) relative to ξ∗ is approximately

0.006. It turns out that the design in (3.6) is also the T -optimal design. In the next section,

we prove in Theorem 4.1 that for models (3.3) and (3.4), the semi-parametric optimal design

for discriminating between the model f1(y, x, θ1) and the class F2 actually coincides with the

T -optimal design proposed by Atkinson and Fedorov (1975a).

4 Analytical results

In this section we investigate relationships between the semi-parametric optimality criteria

considered in this paper and the optimality criteria for model discrimination with normal

errors [see Atkinson and Fedorov (1975a) and Ucinski and Bogacka (2005)]. A ”classical”

T -optimal design, say ξ∗T , for discriminating between two models maximizes the criterion

inf
θ2∈Θ2

∫
X

[η1(x, θ1)− η2(x, θ2)]2ξ(dx) (4.1)

among all designs on the design space [see Atkinson and Fedorov (1975a)], where θ1 is fixed.

We will presume throughout this section that the infimum in (4.1) is attained at a unique

point θ∗2 when ξ = ξ∗T . It follows by similar arguments as given in Wiens (2009) that under the

assumption of a normal distribution, the power of the likelihood ratio test for the hypotheses

H0 : η(x) = η1(x, θ1) versus H1 : η(x) = η2(x, θ2) for some θ2 ∈ Θ2 (4.2)

is an increasing function of the criterion (4.1). The following results give a sufficient condition

for the T -optimal discriminating design to be a semi-parametric optimal design in the sense of

Section 2.
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Theorem 4.1 Let the assumptions of the Theorem 2.1 (a) be fulfilled and assume further that

the density f1(y, x, θ1) can be represented in the form

f1(y, x, θ1) = g(y − η1(x, θ1)) (4.3)

where g is a symmetric density function supported in the interval [−a, a], i.e. f1 has support

[−a + η1(x, θ1), a + η1(x, θ1)]. The T -optimal discriminating design maximizing the criterion

(4.1) is a semi-parametric optimal design for discriminating between the model f1(y, x, θ1) and

the class F2.

A similar result is available for the semi-parametric optimal designs for discriminating between

the model f2(y, x, θ2) and the class F1. For this purpose we consider the situation, where

f2(y, x, θ2) is the density of the normal distributions N (η2(x, θ2), v2
2(x, θ2)). If f1(y, x, θ1) is

also the density of a N (η1(x, θ1), v2
2(x, θ2)) it can be shown that the power of the likelihood

ratio test for the hypotheses (4.2) is an increasing function of the quantity

inf
θ2∈Θ2

∫
X

[η1(x, θ1)− η2(x, θ2)]2

v2
2(x, θ2)

ξ(dx). (4.4)

The maximization of this expression corresponds to the KL-optimal design problem for dis-

criminating between two normal distributions with the same variance as considered by López-

Fidalgo et al. (2007). Our following result shows that this design is also optimal for discrimi-

nating between the model f2(y, x, θ2) and the class F1.

Theorem 4.2 Assume that f2(y, x, θ2) is the density of a normal distribution with mean

η2(x, θ2) and variance v2
2(x, θ2). The optimal design maximizing (4.4) is a semi-parametric

optimal design for discriminating between the model f2(y, x, θ2) and the class F1 and vice

versa. Moreover, the best approximation f ∗1 (y, x, θ1) is a normal density with mean η1(x, θ1)

and variance v2
2(x, θ2).

5 Numerical results

The numerical construction of semi-parameteric optimal discrimination designs is a very chal-

lenging problem. In this section we describe techniques for finding semi-parametric optimal

designs and illustrate our approach in two examples. It follows from the results of Section 2

that the first step in the determination of the optimal designs consists in an efficient solution

of the equations (2.9) and (2.15). In a second step any numerical method for the determina-

tion of KL-optimal discrimination designs can be adapted to the minimax problems obtained

from Theorem 2.1 as the representations (2.11) and (2.13) have a similar structure as the

KL-optimality criteria considered in López-Fidalgo et al. (2007). Even the second step defines

a very challenging problem and some recent results and algorithms for KL-optimality criteria

can be found in (Stegmaier et al., 2013), Braess and Dette (2013); Dette et al. (2015) and

Dette et al. (2016a). As the focus in this paper is on the new semi-parametric design criteria

12



we concentrate on the first step in the following discussion. For the second step we used an

adaptation of the first-order algorithm of Atkinson and Fedorov (1975a), because it can easily

be implemented.

Let δ be a user-selected positive constant. For finding the numerical solution of the equation

(2.9) we propose the following algorithm:

• if η1(x, θ1) = η2(x, θ2), set λ = 0;

• if η1(x, θ1) < η2(x, θ2), choose a solution in the interval Λ− = [−1/(yx,max − η2(x, θ2)),−δ];

• if η1(x, θ1) > η2(x, θ2), choose a solution in the interval Λ+ = [δ,−1/(yx,min − η2(x, θ2))].

Similarly, the solution of (2.15) can be obtained as follows. We search for λ > 0 if η1(x, θ1) <

η2(x, θ2) so that λ shifts the predefined density f2(y, x, θ2) to the left and, search for λ < 0 if

η1(x, θ1) > η2(x, θ2). Let β be a large user-selected positive constant, let δ be a small positive

constant and assume that the solution of (2.15) is in [−β,+β]. We note that

µ′(λ)f2(y, x, θ2) exp(−λy) > 0, ∀λ ∈ [−β,+β],

for all y ∈ Sf2,θ2,x, where µ′(λ) is defined in (2.14). We suggest the following algorithm for

finding a numeral solution of (2.15):

• if η1(x, θ1) = η2(x, θ2), set λ = 0;

• if η1(x, θ1) < η2(x, θ2), choose a solution in the interval Λ+ = [+δ,+β];

• if η1(x, θ1) > η2(x, θ2), choose a solution in the interval Λ− = [−β,−δ].

We now present two examples, where the T -optimal and semi-parametric KL−optimal designs

are determined numerically and shown to be different. To be precise, consider the optimal

design problem from López-Fidalgo et al. (2007), where they were interested to discriminate

between the two models:

η1(x, θ1) = θ1,1x+
θ1,2x

x+ θ1,3

, (5.1)

η2(x, θ2) =
θ2,1x

x+ θ2,2

. (5.2)

The design space for both models is the interval [0.1, 5] and we assume that the first model has

fixed parameters θ1 = (1, 1, 1). We construct three different types of optimal discrimination

designs for this problem: a T -optimal design, a KL-optimal design for lognormal errors (with

fixed variances v2
1(x, θ1) = v2

2(x, θ2) = 0.1) and a semi-parametric KL-optimal design (case

a)) for a mildly truncated lognormal density f1(y, x, θ1) with location and scale parameters,

respectively, given by

µ1(x, θ1) = log
[
η1(x, θ1)

]
− 1

2
log
[
1 + v2

1(x, θ1)/η2
1(x, θ1)

]
,

σ2
1(x, θ1) = log

[
1 + v2

1(x, θ1)/η2
1(x, θ1)

]
.
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Design type ξ∗ θ∗2

T -optimal
0.508 2.992 5.000
0.580 0.298 0.122

(22.564, 14.637)

KL-optimal
0.206 2.826 5.000
0.574 0.308 0.118

(20.552, 12.962)

SKL-optimal
0.454 2.961 5.000
0.531 0.344 0.125

(22.045, 14.197)

Table 1: T , KL- and semi-parametric KL-optimal discrimination (SKL) designs for discrim-
inating between models (5.1) and (5.2).

K(ξ) \ ξ T KL SKL
T 1 0.247 0.741
KL 0.653 1 0.787
SKL 0.55 0.397 1

Table 2: Efficiencies of the T , KL- and semi-parametric KL-optimal discrimination (SKL)
designs for the models (5.1) and (5.2) under different optimality criteria.

The range for this density is the interval from Q(0.0001, x, θ1) to Q(0.9999, x, θ1), where

Q(p, x, θ1) is quantile function of ordinary lognormal density with mean η1(x, θ1) and vari-

ance v2
1(x, θ1) = 0.1. We note that because of mild truncation η1(x, θ1) does not correspond

exactly to the mean of f1(y, x, θ1) but is very close to it. The optimal discrimination designs

under the three different criteria are displayed in Table 1, where we also show the “optimal”

parameter θ∗2 of the second model corresponding to the minimal value with respect to the

parameter θ2. We observe substantial differences between the T , KL- and semi-parametric

KL-optimal discrimination (SKL) designs. Figure 3 displays the sensitivity functions of the

three designs and confirms the optimality of each of the designs.

Table 2 displays the efficiencies of T , KL- and semi-parametric KL-optimal discrimination

(SKL) designs with respect to the different criteria. For example, the value 0.247 in the first

row is the efficiency of the KL-optimal design with respect to the T -optimality criterion.

We observe that the T - and KL- optimal discrimination design are not very robust under a

variation of the criteria, where the KL-optimal discrimination design has slight advantages.

On the other hand, the semi-parametric KL-optimal discrimination design yields moderate

efficiencies (about 75%) with respect to the T - and KL-optimality criterion. Figure 4 shows

the plots of the functions f1(y, x∗i , θ1) and f ∗2 (y, x∗i , θ
∗
2) for the support points x∗i , i = 1, 2, 3 of

SKL-optimal design. Above each figure the values η1(xi, θ1), η2(xi, θ
∗
2) and λ(x∗i , θ1, θ

∗
2), the

solution of (2.9), are presented. We note that the densities f1 and f ∗2 depend on the parameters

θ1 and θ∗2 only through η1(x, θ1) and η2(x, θ∗2).

As a second example we now consider a similar problem with a different function η1(x, θ1)

(Wiens, 2009). The two models of interest are

η1(x, θ1) = θ1,1

{
1− exp(−θ1,2x)

}
, (5.3)

η2(x, θ2) =
θ2,1x

θ2,2 + x
, (5.4)
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(a) T -optimal
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(b) KL-optimal
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(c) SKL-optimal

Figure 3: The sensitivity functions of the T -, KL- and semi-parametric KL-optimal discrim-
ination (SKL) designs in Table 1.
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Figure 4: The density f1(y, x∗i , θ1) of a truncated lognormal distribution (solid line) on the inter-
val [Q(0.0001, x∗i , θ1), Q(0.9999, x∗i , θ1)] and the corresponding “optimal” density f ∗2 (y, x∗i , θ

∗
2),

defined by (2.12), for the support points x∗i , i = 1, 2, 3 of SKL-optimal design and parameter
values θ∗2 from Table 1.
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Design type ξ∗ θ∗2

T -optimal
0.308 2.044 5.000
0.316 0.428 0.256

(1.223, 0.948)

KL-optimal
0.140 1.916 5.000
0.333 0.402 0.465

(1.242, 1.006)

SKL-optimal
0.395 2.090 5.000
0.396 0.355 0.249

(1.216, 0.920)

Table 3: T , KL- and semi-parametric KL-optimal discrimination (SKL) designs for discrim-
inating between the models (5.3) and (5.4).

K(ξ) \ ξ T KL SKL
T 1 0.360 0.663
KL 0.835 1 0.655
SKL 0.407 0.361 1

Table 4: Efficiencies of the T , KL- and semi-parametric KL-optimal discrimination (SKL)
designs for the models (5.3) and (5.4) under various optimality criteria.

where the design space is given by the interval X = [0.1, 5]. Here we fix the parameters of the

model (5.3) as θ1 = (1, 1) and determine the T -optimal, KL-optimal (for lognormal errors)

and a semi-parametric KL-optimal design (case a)) for mildly truncated lognormal errors. The

error variances for the KL-optimal discrimination design are v2
1(x, θ1) = v2

2(x, θ2) = 0.02 and

for the semi-parametric KL-optimal the variance is v2
1(x, θ1) = 0.02. The optimal designs with

respect to the different criteria are presented in Table 3, where we also show the corresponding

parameter θ∗2 of the second model corresponding to the minimal value with respect to the

parameter θ2. We observe again substantial differences between the optimal discrimination

designs with respect to the different criteria, and a comparison of the efficiencies of the optimal

designs with respect ot the different criteria in Table 4 shows a similar picture as in the first

example. Figure 5 displays the sensitivity functions of the T -, KL- and semi-parametric

KL-optimal discrimination designs and the three subplots confirm optimality of the three

three-point designs. Figure 6 shows the plots of the functions f1(y, x∗i , θ1) and f ∗2 (y, x∗i , θ
∗
2) for

the support points x∗i , i = 1, 2, 3 of SKL-optimal design from Table 3, the legend above each

plot has the same meaning as before.
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(a) T -optimal
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(b) KL-optimal
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(c) SKL-optimal

Figure 5: The sensitivity functions of the T -, KL- and semi-parametric KL-optimal discrim-
ination (SKL) designs in Table 3.
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Figure 6: The density f1(y, x∗i , θ1) of a truncated lognormal distribution (solid line) and the
“optimal” density f ∗2 (y, x∗i , θ

∗
2) for the support points x∗i , i = 1, 2, 3 of SKL-optimal design and

corresponding “optimal” parameter values θ∗2 from Table 3.
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6 Proofs

Proof of Theorem 2.1: We only prove the first part of the proposition. The second statement

follows by similar arguments which are omitted for the sake of brevity. We first introduce the

following temporary notation

f1(y, x, θ1) = f1(y), f2(y, x, θ2) = f2(y), η1(x, θ1) = η1, η2(x, θ2) = η2, (6.1)

and note that from (2.6), we wish to minimize

I1,2(x, f1, f2, θ1, θ2) =

∫
log

{
f1(y)

f2(y)

}
f1(y)dy

with constraints ∫
f2(y)dy = 1, and

∫
yf2(y)dy = η2. (6.2)

Consequently, with the notation

H = log

{
f1(y)

f2(y)

}
f1(y) + µf2(y) + λyf2(y) ,

we obtain the Euler-Lagrange equation

∂H

∂f2

= −f1(y)

f2(y)
+ µ+ λy = 0

and the relation

f2(y) =
f1(y)

µ+ λy
. (6.3)

We may assume without loss of generality that λ 6= 0 ; otherwise, we have µ = 1 and f2(y) =

f1(y). From the condition (6.2) and (6.3) we obtain

η2 =

∫
yf2(y)dy =

∫
y

µ+ λy
f1(y)dy

=
1

λ

∫
µ+ λy

µ+ λy
f1(y)dy − µ

λ

∫
1

µ+ λy
f1(y)dy =

1

λ
− µ

λ
.

Hence we have µ = 1− η2λ and

f2(y) =
f1(y)

1 + λ(y − η2)
.
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Substituting the new expression for f2(y) into the remaining condition gives∫
f1(y)

1 + λ(y − η2)
dy = 1. (6.4)

By the assumption in the theorem, equation (6.4) has a unique solution in the interval (2.10)

and the inequality

1 + λ(y − η2) > 0

holds for all y ∈ Sf1,θ1,x, where λ solves (6.4). This implies that f2 is a density. �

Proof of Lemma 2.1: We again use the notation in (6.1). Let λ be the solution of equation

(2.9) and f ∗2 be the “optimal” density defined by (2.12), then

η1 − η2 =

∫
yf1(y)dy −

∫
yf ∗2 (y)dy =

∫
yf1(y)

{
1− 1

1 + λ(y − η2)

}
dy

=

∫
yf1(y)

λ(y − η2)

1 + λ(y − η2)
dy = λ

∫
y(y − η2)f2(y)dy

= λ

∫
(y − η2)2f2(y)dy +

∫
(yη2 − η2

2)f2(y)dy = λv2
2,

where v2
2 > 0 is the variance of f2(y), and the last equality follows from the fact that∫

yf2(y)dy = η2.

�

Proof of Theorem 3.1: Again we only prove part (a). Part (b) follows by similar arguments.

Roughly speaking, the equivalence theorem is a consequence of the equivalence theorem for

KL-optimal designs using the specific density for the second model

f ∗2 (y, x, θ2) =
f1(y, x, θ1)

1 + λ(y − η2(x, θ2))

in the KL-criterion. More specifically, the criterion K(a)(ξ, θ1) is concave and to obtain the

equivalence theorem, we calculate the directional derivative as follows:

∂K(a)([1− α]ξ + αξx∗ , θ1)

∂α
=
∂ infθ2∈Θ2

∫
X I1,2(x, f1, f2, θ1, θ2)([1− α]ξ + αξx∗)(dx)

∂α
,

where ξx∗ is the Dirac measure at x∗. By theorem in Pshenichnyi (1971) on page 75, and the

19



assumptions in our theorem, we have

∂K(a)([1− α]ξ + αξx∗ , θ1)

∂α
=

∫
X
I1,2(x, f1, f2, θ1, θ̂2)ξx∗(dx)− inf

θ2∈Θ2

∫
X
I1,2(x, f1, f2, θ1, θ2)ξ(dx)

= I1,2(x∗, f1, f2, θ1, θ̂2)−K(a)(ξ, θ1),

where

θ̂2 = arg inf
θ2∈Θ2

∫
X
I1,2(x, f1, f2, θ1, θ2)ξ(dx).

The design ξ∗ is optimal if and only if the inequality

∂K(a)([1− α]ξ∗ + αξx, θ1)

∂α
≤ 0.

holds for every x ∈ X , which means that we can not improve the concave functional K(a)(ξ
∗, θ1)

by moving in any direction from ξ∗. �

Proof of Theorem 4.1: With the notations (6.1) consider the function

F (η1, η2, λ) =

∫ a+η1

−a+η1

log {1 + λ(y − η2)} f1(y)dy

=

∫ a

−a
log {1 + λ(t−∆η)} g(t)dt =: F (∆η, λ) ,

where we have used the representation (4.3) and the notation ∆η = η2 − η1. Similarly, we

obtain for the left-hand side of (2.9) the representation

G(η1, η2, λ) =

∫ a+η1

−a+η1

f1(y)

1 + λ(y − η2)
dy =

∫ a

−a

g(t)

1 + λ(t−∆η)
dt.

We now define the function

F (∆η) = F (∆η, λ(∆η)),

where λ(∆η) is a non-zero solution of the equation G(η1, η2, λ) = 1, which exists for all x ∈ X
and for all θ2 ∈ Θ2 by the assumption of the theorem. Note that the function

h(t,∆η) =
g(t)

1 + λ(∆η)(t−∆η)

is a density function with mean ∆η, because g(t) is symmetric on [−a, a] with mean 0. For
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the derivative of F (∆η) we therefore obtain

∂F

∂∆η

(∆η) =
∂

∂∆η

∫ a

−a
log
{

1 + λ(∆η)(t−∆η)
}
g(t)dt

=

∫ a

−a

[
∂λ

∂∆η

(∆η)(t−∆η)− λ(∆η)

]
g(t)

1 + λ(∆η)(t−∆η)
dt

=
∂λ

∂∆η

(∆η)

∫ a

−a
(t−∆η)h(t,∆η)dt− λ(∆η)

∫ a

−a
h(t,∆η)dt = −λ(∆η).

Here the first integral vanishes because h has mean ∆η and the second integral is equal to 1

because h is a density. From Lemma 2.1, we have the following implications: If

η1 > η2, then ∆η < 0⇒ λ(∆η) > 0⇒ F (∆η) is decreasing,

and if

η1 < η2, then ∆η > 0⇒ λ(∆η) < 0⇒ F (∆η) is increasing.

We also note that the symmetry of g implies the symmetry of F , i.e. F (∆η) = F (−∆η). Let

ξ∗T = {x∗1, . . . , x∗k;ω∗1, . . . , ω∗k} be a T -optimal discriminating design maximizing (4.1) and define

θ∗2 = arg inf
θ2

∫
[η1(x, θ1)− η2(x, θ2)]2ξ∗T (dx).

By the equivalence theorem for T -optimal designs (Dette and Titoff, 2009), it follows that for

all x ∈ X , we have

|η1(x, θ1)− η2(x, θ∗2)| ≤ ε = |η1(x∗1, θ1)− η2(x∗1, θ
∗
2)| = · · · = |η1(x∗n, θ1)− η2(x∗n, θ

∗
2)|.

These arguments and the representation (2.12) for the “optimal” density f ∗2 yield for all x ∈ X

I1,2(x, f1, f
∗
2 , θ1, θ

∗
2) = F (η1(x, θ1)− η2(x, θ∗2))

= F (|η1(x, θ1)− η2(x, θ∗2)|) ≤ F (ε) =
k∑
i=1

ω∗i F (ε)

=
k∑
i=1

ω∗i F (η1(x∗i , θ1)− η2(x∗i , θ
∗
2)) =

∫
I1,2(x, f1, f

∗
2 , θ1, θ

∗
2)dξ∗(x).

Here the second equality follows from the symmetry of F and the inequality is a consequence

of the monotonicity of F . By Theorem 3.1 this means that the design ξ∗ is a semi-parametric

optimal design for discriminating between the model f1(y, x, θ1) and the class F2. �

Proof of Theorem 4.2: We will show that the criterion (2.13) is equivalent to the cri-

terion (4.4) when f2(y, x, θ2) is a normal density. For simplicity, let η1 = η1(x, θ1), let
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η2 = η2(x, θ2) and let v2 = v2(x, θ2). It follows from part (b) of Theorem 2.1 that

f ∗1 (y, x, θ1) ∝ f2(y) exp(−λy) =
1√

2πv2

exp
[
− {y − η2}2

2v2
2

− λy
]

=
1√

2πv2

exp
[
− {y − (η2 − v2

2λ)}2

2v2
2

]
exp

[
− η2λ+

v2
2λ

2

2

]
.

The condition that f ∗1 (y, x, θ1) is a density with mean η1 yields

λ =
η2 − η1

v2
2

, µ′ = exp
[
η2λ−

v2
2λ

2

2

]
,

which implies that f ∗1 (y, x, θ1) is a normal density with mean η1 and variance v2
2. Then the

KL-divergence between f ∗1 (y, x, θ1) and f2(y, x, θ2) is given by [η1 − η2]2/v2
2, which yields the

criterion (4.4) and completes the proof. �
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