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LOCALLY ADAPTIVE CONFIDENCE BANDS∗

By Tim Patschkowski and Angelika Rohde

Ruhr-Universität Bochum and Albert-Ludwigs-Universität Freiburg

We develop honest and locally adaptive confidence bands for probabil-
ity densities. They provide substantially improved confidence statements in
case of inhomogeneous smoothness, and are easily implemented and visual-
ized. The article contributes conceptual work on locally adaptive inference
as a straightforward modification of the global setting imposes severe obsta-
cles for statistical purposes. Among others, we introduce a statistical notion
of local Hölder regularity and prove a correspondingly strong version of lo-
cal adaptivity. We substantially relax the straightforward localization of
the self-similarity condition in order not to rule out prototypical densities.
The set of densities permanently excluded from the consideration is shown
to be pathological in a mathematically rigorous sense. On a technical level,
the crucial component for the verification of honesty is the identification
of an asymptotically least favorable stationary case by means of Slepian’s
comparison inequality.

1. Introduction. Let X1, . . . , Xn be independent real-valued random vari-
ables which are identically distributed according to some unknown probability mea-
sure Pp with Lebesgue density p. Assume that p belongs to a nonparametric function
class P. For any interval [a, b] and any significance level α ∈ (0, 1), a confidence
band for p, described by a family of random intervals Cn(t, α), t ∈ [a, b], is said to
be (asymptotically) honest with respect to P if the coverage inequality

lim inf
n

inf
p∈P

P⊗np
(
p(t) ∈ Cn(t, α) for all t ∈ [a, b]

)
≥ 1− α

is satisfied. The aim of this article is to develop honest confidence bands Cn(t, α), t ∈
[a, b], with smallest possible width |Cn(t, α)| for every t ∈ [a, b]. Adaptive confi-
dence sets maintain specific coverage probabilities over a large union of models
while shrinking at the fastest possible nonparametric rate simultaneously over all
submodels. If P is some class of densities within a union of Hölder balls H(β, L)
with fixed radius L > 0, the confidence band is called globally adaptive, cf. Cai and
Low (2004), if for every β > 0 and for every ε > 0 there exists some constant c > 0,
such that

lim sup
n

sup
p∈H(β,L)∩P

P⊗np

(
sup
t∈[a,b]

|Cn(t, α)| ≥ c · rn(β)

)
< ε.
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Here, rn(β) denotes the minimax-optimal rate of convergence for estimation under
supremum norm loss over H(β, L) ∩ P, possibly inflated by additional logarithmic
factors. However, if P equals the set of all densities contained in⋃

0<β≤β∗
H(β, L),

honest and adaptive confidence bands provably do not exist although adaptive
estimation is possible. Indeed, Low (1997) shows that honest random-length inter-
vals for a probability density at a fixed point cannot have smaller expected width
than fixed-length confidence intervals with the size corresponding to the lowest
regularity under consideration. Consequently, it is not even possible to construct
a family of random intervals Cn(t, α), t ∈ [a, b], whose expected length shrinks at
the fastest possible rate simultaneously over two distinct nested Hölder balls with
fixed radius, and which is at the same time asymptotically honest for the union P
of these Hölder balls. Numerous attempts have been made to tackle this adapta-
tion problem in alternative formulations. Whereas Genovese and Wasserman (2008)
relax the coverage property and do not require the confidence band to cover the
function itself but a simpler surrogate function capturing the original function’s
significant features, most of the approaches are based on a restriction of the pa-
rameter space. Under qualitative shape constraints, Hengartner and Stark (1995),
Dümbgen (1998, 2003), and Davies, Kovac and Meise (2009) achieve adaptive in-
ference. Within the models of nonparametric regression and Gaussian white noise,
Picard and Tribouley (2000) succeeded to construct pointwise adaptive confidence
intervals under a self-similarity condition on the parameter space, see also Kueh
(2012) for thresholded needlet estimators. Under a similar condition, Giné and
Nickl (2010) even develop asymptotically honest confidence bands for probability
densities whose width is adaptive to the global Hölder exponent. Bull (2012) proved
that a slightly weakened version of the self-similarity condition is necessary and suf-
ficient. Kerkyacharian, Nickl and Picard (2012) develop corresponding results in the
context of needlet density estimators on compact homogeneous manifolds. Under
the same type of self-similarity condition, adaptive confidence bands are developed
under a considerably generalized Smirnov-Bickel-Rosenblatt assumption based on
Gaussian multiplier bootstrap, see Chernozhukov, Chetverikov and Kato (2014a).
Hoffmann and Nickl (2011) introduce a nonparametric distinguishability condition,
under which adaptive confidence bands exist for finitely many models under con-
sideration. Their condition is shown to be necessary and sufficient.
Similar important conclusions concerning adaptivity in terms of confidence state-
ments are obtained under Hilbert space geometry with corresponding L2-loss, see
Juditsky and Lambert-Lacroix (2003), Baraud (2004), Genovese and Wasserman
(2005), Cai and Low (2006), Robins and van der Vaart (2006), Bull and Nickl
(2013), and Nickl and Szabó (2016). Concerning Lp-loss, we also draw attention to
Carpentier (2013).
In this article, we develop locally adaptive confidence bands. They provide sub-
stantially improved confidence statements in case of inhomogeneous smoothness.
Conceptual work on locally adaptive inference is contributed as a straightforward
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modification of the global setting imposes severe obstacles for statistical purposes.
It is already delicate to specify what a ”locally adaptive confidence band” should
be. Disregarding any measurability issues, one possibility is to require a confidence
band Cn,α = (Cn,α(t))t∈[0,1] to satisfy for every interval U ⊂ [a, b] and for every β
(possibly restricted to a prescribed range)

lim sup
n→∞

sup
p∈P:

p|Uδ∈HUδ (β,L∗)

P⊗np (|Cn,α(t)| ≥ η rn(β) for some t ∈ U)→ 0

as η → ∞, where Uδ is the δ-enlargement of U . However, this definition reflects a
weaker notion of local adaptivity than the statistician may have in mind. On the
other hand, we prove that, uniformly over the function class P under consideration,
adaptation to the local or pointwise regularity in the sense of Daoudi, Lévy Véhel
and Meyer (1998), Seuret and Lévy Véhel (2002) or Jaffard (1995, 2006) is impos-
sible. Indeed, not even adaptive estimation with respect to pointwise regularity at
a fixed point is achievable. On this way, we introduce a statistically suitable notion
of local regularity βn,p(t), t ∈ [a, b], depending in particular on the sample size n.
We prove a corresponding strong version of local adaptivity, while we substantially
relax the straightforward localization of the global self-similarity condition in order
not to rule out prototypical densities. The set of functions which is excluded from
our parameter space diminishes for growing sample size and the set of permanently
excluded functions is shown to be pathological in a mathematically rigorous sense.
Our new confidence band appealingly relies on a discretized evaluation of a modified
Lepski-type density estimator, including an additional supremum in the empirical
bias term in the bandwidth selection criterion. A suitable discretization and a lo-
cally constant approximation allow to piece the pointwise constructions together in
order to obtain a continuum of confidence statements. The complex construction
makes the asymptotic calibration of the confidence band to the level α non-trivial.
Whereas the related globally adaptive procedure of Giné and Nickl (2010) reduces
to the limiting distribution of the supremum of a stationary Gaussian process, our
locally adaptive approach leads to a highly non-stationary situation. A crucial com-
ponent is therefore the identification of a stationary process as a least favorable case
by means of Slepian’s comparison inequality, subsequent to a Gaussian reduction
using recent non-asymptotic techniques of Chernozhukov, Chetverikov and Kato
(2014b). Due to the discretization, the band is computable and feasible from a
practical point of view without losing optimality between the mesh points. Our
results are exemplarily formulated in the density estimation framework but can be
mimicked in other nonparametric models. To keep the representation concise we
restrict the theory to locally adaptive kernel density estimators. The ideas can be
transferred to wavelet estimators to a large extent as has been done for globally
adaptive confidence bands in Giné and Nickl (2010).
The article is organized as follows. Basic notations are introduced in Section 2.
Section 3 presents the main contributions, that is a substantially relaxed local-
ized self-similarity condition in Subsection 3.1, the construction and in particular
the asymptotic calibration of the confidence band in Subsection 3.2 as well as its
strong local adaptivity properties in Subsection 3.3. Important auxiliary results are
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postponed to Section 4, whereas Section 5 presents the proofs of the main results.
Appendix A contains technical tools for the proofs of the main results.

2. Preliminaries and notation. Let X1, . . . , Xn, n ≥ 4, be independent
random variables identically distributed according to some unknown probability
measure Pp on R with continuous Lebesgue density p. Subsequently, we consider
kernel density estimators

p̂n(·, h) =
1

n

n∑
i=1

Kh (Xi − ·)

with bandwidth h > 0 and rescaled kernel Kh(·) = h−1K(·/h), where K is a
measurable and symmetric kernel with support contained in [−1, 1], integrating to
one, and of bounded variation. Furthermore, K needs to be of order l ∈ N, that is∫

xjK(x) dx = 0 for 1 ≤ j ≤ l,
∫
xl+1K(x) dx = c with c 6= 0.

For bandwidths of the form h = 2−j , j ∈ N, we abbreviate the notation writing
p̂n(·, h) = p̂n(·, j) and Kh = Kj . The open Euclidean ball of radius r around
some point t ∈ R is referred to as B(t, r). Subsequently, the sample is split into
two subsamples. For simplicity, we divide the sample into two parts of equal size
ñ = bn/2c, leaving possibly out the last observation. Let

χ1 = {X1, . . . , Xñ}, χ2 = {Xñ+1, . . . , X2ñ}

be the distinct subsamples and denote by p̂
(1)
n (·, h) and p̂

(2)
n (·, h) the kernel density

estimators with bandwidth h based on χ1 and χ2, respectively. Eχ1
p , Eχ2

p , and Eχp
denote the expectations with respect to the product measures

Pχ1
p = joint distribution of X1, . . . , Xñ,

Pχ2
p = joint distribution of Xñ+1, . . . , X2ñ,

Pχp = P⊗2ñ
p = Pχ1

p ⊗ Pχ2
p ,

respectively.
For some measure Q, we denote by ‖ · ‖Lp(Q) the Lp-norm with respect to Q. Is
Q the Lebesgue measure, we just write ‖ · ‖p, whereas ‖ · ‖sup denotes the uniform
norm. For any metric space (M,d), we define the covering number N(M,d, ε) as
the minimum number of closed balls with radius at most ε (with respect to d)
needed to cover M . As has been shown by Nolan and Pollard (1987) (Section 4 and
Lemma 22), the class

K =

{
K

(
· − t
h

)
: t ∈ R, h > 0

}
with constant envelope ‖K‖sup satisfies

N
(
K, ‖ · ‖Lp(Q), ε‖K‖sup

)
≤
(
A

ε

)ν
, 0 < ε ≤ 1, p = 1, 2(2.1)



LOCALLY ADAPTIVE CONFIDENCE BANDS 5

for all probability measures Q and for some finite and positive constants A and ν.
For k ∈ N we denote the k-th order Taylor polynomial of the function p at point
y by P py,k. Denoting furthermore by bβc = max {n ∈ N ∪ {0} : n < β}, the Hölder
class HU (β) to the parameter β > 0 on the open interval U ⊂ R is defined as the
set of functions p : U → R admitting derivatives up to the order bβc and having
finite Hölder norm

‖p‖β,U =

bβc∑
k=0

‖p(k)‖U + sup
x,y∈U
x 6=y

|p(bβc)(x)− p(bβc)(y)|
|x− y|β−bβc

<∞.

The corresponding Hölder ball with radius L > 0 is denoted by HU (β, L). With
this definition of ‖ · ‖β,U , the Hölder balls are nested, that is

HU (β2, L) ⊂ HU (β1, L).

for 0 < β1 ≤ β2 < ∞ and |U | < 1. Finally, HU (∞, L) =
⋂
β>0HU (β, L) and

HU (∞) =
⋂
β>0HU (β). Subsequently, for any real function f(β), the expression

f(∞) is to be read as limβ→∞ f(β), provided that this limit exists. Additionally,
the class of probability densities p, such that p|U is contained in the Hölder class
HU (β, L) is denoted by PU (β, L). The indication of U is omitted when U = R.

3. Main results. In this section we pursue the new approach of locally adap-
tive confidence bands and present the main contribution of this article. A notion of
local Hölder regularity tailored to statistical purposes, a corresponding condition of
admissibility of a class of functions over which both asymptotic honesty and adap-
tivity (in a sense to be specified) can be achieved, as well as the construction of the
new confidence band are presented. As compared to globally adaptive confidence
bands, our confidence bands provide improved confidence statements for functions
with inhomogeneous smoothness. Figure 1 illustrates the kind of adaptivity that
the construction should reveal. The shaded area sketches the intended locally adap-
tive confidence band as compared to the globally adaptive band (dashed line) for
the triangular density and for fixed sample size n. This density is not smoother
than Lipschitz at its maximal point but infinitely smooth at both sides. The region
where globally and locally adaptive confidence bands coincide up to logarithmic
factors (light gray regime in Figure 1) should shrink as the sample size increases,
resulting in a substantial benefit of the locally adaptive confidence band outside of
a shrinking neighborhood of the maximal point.

Fig 1. Comparison of locally and globally adaptive confidence bands
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3.1. Admissible functions. As already pointed out in the introduction, no
confidence band does exist which is simultaneously honest and adaptive. It is nec-
essary to impose a condition which guarantees the possibility of recovering of the
unknown smoothness parameter from the data. The subsequently introduced no-
tion of admissibility aligns to the self-similarity condition as used in Picard and
Tribouley (2000) and Giné and Nickl (2010) among others. Their self-similarity con-
dition ensures that the data contains enough information to infer on the function’s
regularity. As also emphasized in Nickl (2015), self-similarity conditions turn out to
be compatible with commonly used adaptive procedures and have been shown to
be sufficient and necessary for adaptation to a continuum of smoothing parameters
in Bull (2012) when measuring the performance by the L∞-loss. Giné and Nickl
(2010) consider globally adaptive confidence bands over the set

⋃
β∗≤β≤β∗

{
p ∈ P(β, L) : p ≥ δ on [−ε, 1 + ε],

c

2jβ
≤ ‖Kj ∗ p− p‖sup for all j ≥ j0

}(3.1)

for some constant c > 0 and 0 < ε < 1, where β∗ = l + 1 with l the order of the
kernel. They work on the scale of Hölder-Zygmund rather than Hölder classes. For
this reason they include the corresponding bias upper bound condition which is not
automatically satisfied for β = β∗ in that case.

Remark 1. As mentioned in Giné and Nickl (2010), if K(·) = 1
21{· ∈ [−1, 1]}

is the rectangular kernel, the set of all twice differentiable densities that are sup-
ported in a fixed compact interval [a, b] satisfies (3.1) with a constant c > 0. The
reason is that due to the constraint of being a probability density, ‖p′′‖sup is bounded
away from zero uniformly over this class, in particular p′′ cannot vanish everywhere.

A localized version of the self-similarity condition characterizing the above class
reads as follows.

For any nondegenerate interval (u, v) ⊂ [0, 1], there exists some β ∈ [β∗, β
∗] with

p|(u,v) ∈ P(u,v)(β, L
∗) and

c · 2−jβ ≤ sup
s∈(u+2−j ,v−2−j)

|(Kj ∗ p)(s)− p(s)|(3.2)

for all j ≥ j0 ∨ log2(1/(v − u)).

Remark 2. Inequality (3.2) can be satisfied only for

β̃ = β̃p(U) = sup
{
β ∈ (0,∞] : p|U ∈ HU (β)

}
.

The converse is not true, however.

(i) There exist functions p : U → R, U ⊂ R some interval, which are not Hölder
continuous to their exponent β̃. The Weierstraß function W1 : U → R with

W1(·) =

∞∑
n=0

2−n cos (2nπ ·)
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is such an example. Indeed, Hardy (1916) proves that

W1(x+ h)−W1(x) = O

(
|h| log

(
1

|h|

))
,

which implies the Hölder continuity to any parameter β < 1, hence β̃ ≥ 1. Moreover,
he shows in the same reference that W1 is nowhere differentiable, meaning that it
cannot be Lipschitz continuous, that is β̃ = 1 but W1 /∈ HU (β̃).

(ii) It can also happen that p|U ∈ HU (β̃) but

lim sup
δ→0

sup
|x−y|≤δ
x,y∈U

|p(bβ̃c)(x)− p(bβ̃c)(y)|
|x− y|β̃−bβ̃c

= 0,(3.3)

meaning that the left-hand side of (3.2) is violated. In the analysis literature, the
subset of functions in HU (β̃) satisfying (3.3) is called little Lipschitz (or little
Hölder) space. As a complement of an open and dense set, it forms a nowhere
dense subset of HU (β̃).

Due to the localization, a condition like (3.2) rules out examples which seem to
be typical to statisticians. Assume that K is a kernel of order l with l ≥ 1, and
recall β∗ = l+1. Then (3.2) excludes for instance the triangular density in Figure 1
because both sides are linear, in particular the second derivative exists and vanishes
when restricted to an interval U which does not contain the maximal point. In
contrast to the observation in Remark 1, ‖p′′‖U may vanish for subintervals U ⊂
[a, b]. For the same reason, densities with a constant piece are excluded. In general,
if p restricted to the 2−j0-enlargement of U is a polynomial of order at most l, (3.2)
is violated as the left-hand side is not equal to zero. In view of these deficiencies, a
condition like (3.2) is insufficient for statistical purposes.

To circumvent this deficit, we introduce ‖ · ‖β,β∗,U by

‖p‖β,β∗,U =

bβ∧β∗c∑
k=0

∥∥p(k)
∥∥
U

+ sup
x,y∈U
x 6=y

∣∣p(bβ∧β∗c)(x)− p(bβ∧β∗c)(y)
∣∣

|x− y|β−bβ∧β∗c
(3.4)

for β > 0 and for some bounded open subinterval U ⊂ R. As verified in Lemma A.4,
‖p‖β1,β∗,U ≤ ‖ · ‖β2,β∗,U for 0 < β1 ≤ β2 < ∞ and |U | ≤ 1. With the help of
‖ · ‖β,β∗,U , we formulate a localized self-similarity type condition in the subsequent
Assumption 3.1, which does not exclude these prototypical densities as mentioned
above. For any bounded open interval U ⊂ R, let Hβ∗,U (β, L) be the set of func-
tions p : U → R admitting derivatives up to the order bβ ∧ β∗c with ‖p‖β,β∗,U ≤ L.
Moreover, Hβ∗,U (β) is the set of functions p : U → R, such that ‖p‖β,β∗,U is
well-defined and finite. Correspondingly, Hβ∗,U (∞, L) =

⋂
β>0Hβ∗,U (β, L) and

Hβ∗,U (∞) =
⋂
β>0Hβ∗,U (β). Define furthermore

βp(U) = sup
{
β ∈ (0,∞] : p|U ∈ Hβ∗,U (β, L∗)

}
.(3.5)
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Remark 3. If for some open interval U ⊂ [0, 1] the derivative p
(β∗)
|U exists and

p
(β∗)
|U ≡ 0,

then ‖p‖β,β∗,U is finite uniformly over all β > 0. If

p
(β∗)
|U 6≡ 0,

then β∗, ‖p‖β,β∗,U is finite if and only if β ≤ β∗ as a consequence of the mean value
theorem. That is, βp(U) ∈ (0, β∗] ∪ {∞}.

Assumption 3.1. For sample size n ∈ N, some 0 < ε < 1, 0 < β∗ < 1, and
L∗ > 0, a density p is said to be admissible if p ∈ P(−ε,1+ε)(β∗, L

∗) and the following
holds true: for any t ∈ [0, 1] and for any h ∈ G∞ with

G∞ = {2−j : j ∈ N, j ≥ jmin = d2 ∨ log2(2/ε)e},

there exists some β ∈ [β∗, β
∗]∪{∞} such that the following conditions are satisfied

for u = h or u = 2h:

p|B(t,u) ∈ Hβ∗,B(t,u)(β, L
∗)(3.6)

and

sup
s∈B(t,u−g)

|(Kg ∗ p)(s)− p(s)| ≥
gβ

log n
(3.7)

for all g ∈ G∞ with g ≤ u/8.

The set of admissible densities is denoted by Padm
n = Padm

n (K,β∗, L
∗, ε).

Lemma 3.2. Any admissible density p ∈ Padm
n (K,β∗, L

∗, ε) can satisfy (3.6)
and (3.7) for β = βp(B(t, u)) only.

By construction, the collection of admissible densities is increasing with the number
of observations, that is Padm

n ⊂Padm
n+1 , n ∈ N. The logarithmic denominator even

weakens the assumption for growing sample size, permitting smaller and smaller
Lipschitz constants.

Remark 4. Assumption 3.1 does not require an admissible function to be totally
”unsmooth” everywhere. For instance, if K is the rectangular kernel and L∗ is
sufficiently large, the triangular density as depicted in Figure 1 is (eventually – for
sufficiently large n) admissible. It is globally not smoother than Lipschitz, and the
bias lower bound condition (3.7) is (eventually) satisfied for β = 1 and pairs (t, h)
with |t − 1/2| < (7/8)h. Although the bias lower bound condition to the exponent
β∗ = 2 is not satisfied for any (t, h) with t ∈ [0, 1] \ (1/2− h, 1/2 + h), these tuples
(t, h) fulfill (3.6) and (3.7) for β = ∞, which is not excluded anymore by the new
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Assumption 3.1. Finally, if the conditions (3.6) and (3.7) are not simultaneously
satisfied for some pair (t, h) with

1

2
+

7

8
h < |t| < 1

2
+ h,

then they are fulfilled for the pair (t, 2h) and β = 1, because |t− 1/2| < (7/8)2h.

In view of this remark, it is crucial not to require (3.6) and (3.7) to hold for every
pair (t, h). We now denote by

Pn = Pn(L∗, β∗,M,K, ε) =

{
p ∈Padm

n (K,β∗, L
∗, ε) : inf

x∈[−ε,1+ε]
p(x) ≥M

}
the set of admissible densities being bounded below by M > 0 on [−ε, 1 + ε]. We
restrict our considerations to combinations of parameters for which the class Pn is
non-empty.

The remaining results of this subsection are about the massiveness of the function
classes Pn. They are stated for the particular case of the rectangular kernel. Other
kernels may be treated with the same idea; verification of (3.7) however appears
to require a case-by-case analysis for different kernels. The following proposition
demonstrates that the pointwise minimax rate of convergence remains unchanged
when passing from the class H(β, L∗) to Pn ∩H(β, L∗).

Proposition 3.3 (Lower pointwise risk bound). For the rectangular kernel KR

there exists some constant M > 0, such that for any t ∈ [0, 1], for any β ∈ [β∗, 1],
for any 0 < ε < 1, and for any k ≥ k0(β∗) there exists some x > 0 and some
L(β) > 0 with

inf
Tn

sup
p∈Pk:

p|(−ε,1+ε)∈H(−ε,1+ε)(β,L)

P⊗np
(
n

β
2β+1 |Tn(t)− p(t)| ≥ x

)
> 0

for all L ≥ L(β), for the class Pk = Pk(L, β∗,M,KR, ε), where the infimum is
running over all estimators Tn based on X1, . . . , Xn.

Note that the classical construction for the sequence of hypotheses in order to prove
minimax lower bounds consists of a smooth density distorted by small β-smooth
perturbations, properly scaled with the sample size n. However, there does not exist
a fixed constant c > 0, such that all of its members are contained in the class (3.1).
Thus, the constructed hypotheses in our proof are substantially more complex, for
which reason we restrict attention to β ≤ 1.

Although Assumption 3.1 is getting weaker for growing sample size, some densities
are permanently excluded from consideration. The following proposition states that
the exceptional set of permanently excluded densities is pathological.
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Proposition 3.4. For the rectangular kernel KR(·) = 1
21{· ∈ [−1, 1]}, let

R =
⋃
n∈N

Padm
n (KR, β∗, L

∗, ε).

Then, for any t ∈ [0, 1], for any h ∈ G∞ and for any β ∈ [β∗, 1), the set

PB(t,h)(β, L
∗) \R|B(t,h)

is nowhere dense in PB(t,h)(β, L
∗) with respect to ‖ · ‖β,B(t,h).

Among more involved approximation steps, the proof reveals the existence of func-
tions with the same regularity in the sense of Assumption 3.1 on every interval for
β ∈ (0, 1). This property is closely related to but does not coincide with the con-
cept of mono-Hölder continuity from the analysis literature, see for instance Barral
et al. (2013). Hardy (1916) shows that the Weierstraß function is mono-Hölder con-
tinuous for β ∈ (0, 1). For any β ∈ (0, 1], the next lemma shows that Weierstraß’
construction

Wβ(t) =

∞∑
n=0

2−nβ cos(2nπt)(3.8)

satisfies the bias condition (3.7) for the rectangular kernel to the exponent β on
any subinterval B(t, h), t ∈ [0, 1], h ∈ G∞.

Lemma 3.5. For all β ∈ (0, 1), the Weierstraß function Wβ as defined in (3.8)
satisfies Wβ|U ∈ HU (β, LW ) with some Lipschitz constant LW = LW (β) for every
open interval U . For the rectangular kernel KR and β ∈ (0, 1], the Weierstraß
function fulfills the bias lower bound condition

sup
s∈B(t,h−g)

|(KR,g ∗Wβ)(s)−Wβ(s)| >
(

4

π
− 1

)
gβ

for any t ∈ R and for any g, h ∈ G∞ with g ≤ h/2.

The whole scale of parameters β ∈ [β∗, 1] in Proposition 3.4 can be covered by
passing over from Hölder classes to Hölder-Zygmund classes in the definition of Pn.
Although the Weierstraß function W1 in (3.8) is not Lipschitz, a classical result, see
Heurteaux (2005) or Mauldin and Williams (1986) and references therein, states
that W1 is indeed contained in the Zygmund class Λ1. That is, it satisfies

|W1(x+ h)−W1(x− h)− 2W1(x)| ≤ C|h|

for some C > 0 and for all x ∈ R and for all h > 0. Due to the symmetry of the
rectangular kernel KR, it therefore fulfills the bias upper bound

‖KR,g ∗W1 −W1‖sup ≤ C
′gβ for all g ∈ (0, 1].

The local adaptivity theory can be likewise developed on the scale of Hölder-
Zygmund rather than Hölder classes – here, we restrict attention to Hölder classes
because they are commonly considered in the theory of kernel density estimation.
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3.2. Construction of the confidence band. The new confidence band is based
on a kernel density estimator with variable bandwidth incorporating a localized but
not the fully pointwise Lepski (1990) bandwidth selection procedure. A suitable
discretization and a locally constant approximation allow to piece the pointwise
constructions together in order to obtain a continuum of confidence statements. The
complex construction makes the asymptotic calibration of the confidence band to
the level α non-trivial. Whereas the related globally adaptive procedure of Giné and
Nickl (2010) reduces to the limiting distribution of the supremum of a stationary
Gaussian process, our locally adaptive approach leads to a highly non-stationary
situation. An essential component is therefore the identification of a stationary
process as a least favorable case by means of Slepian’s comparison inequality.

We now describe the procedure. The interval [0, 1] is discretized into equally spaced
grid points, which serve as evaluation points for the locally adaptive estimator. We
discretize by a mesh of width

δn =

⌈
2jmin

(
log ñ

ñ

)−κ1

(log ñ)
2
β∗

⌉−1

with κ1 ≥ 1/(2β∗) and set Hn = {kδn : k ∈ Z}. Fix now constants

c1 >
2

β∗ log 2
and κ2 > c1 log 2 + 4.(3.9)

Consider the set of bandwidth exponents

Jn =

{
j ∈ N : jmin ≤ j ≤ jmax =

⌊
log2

(
ñ

(log ñ)κ2

)⌋}
.

The bound jmin ensures that 2−j ≤ ε ∧ 1/4 for all j ∈ Jn, and therefore avoids
that infinite smoothness in (3.15) and the corresponding local parametric rate is
only attainable in trivial cases as the interval under consideration is [0, 1]. The
bound jmax is standard and particularly guarantees consistency of the kernel density
estimator with minimal bandwidth within the dyadic grid of bandwidths

Gn =
{

2−j : j ∈ Jn
}
.

We define the set of admissible bandwidths for t ∈ [0, 1] as

An(t) =
{
j ∈ Jn : max

s∈B(t, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s,m)− p̂(2)

n (s,m′)
∣∣∣ ≤ c2√ log ñ

ñ2−m

for all m,m′ ∈ Jn with m > m′ > j + 2
}
,

(3.10)

with constant c2 = c2(A, ν, β∗, L
∗,K, ε) specified in the proof of Proposition 4.1.

Furthermore, let

ĵn(t) = minAn(t), t ∈ [0, 1],(3.11)
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and ĥn(t) = 2−ĵn(t). Note that a slight difference to the classical Lepski procedure
is the additional maximum in (3.10), which reflects the idea of adapting localized
but not completely pointwise for fixed sample size n. The bandwidth (3.11) is
determined for all mesh points kδn, k ∈ Tn = {1, . . . , δ−1

n } in [0, 1], and set piecewise
constant in between. Accordingly, with

ĥlocn,1(k) = 2−ĵn((k−1)δn)−un , ĥlocn,2(k) = 2−ĵn(kδn)−un ,

where un = c1 log log ñ is some sequence implementing the undersmoothing, the
estimators are defined as

ĥlocn (t) = ĥlocn,k = min
{
ĥlocn,1(k), ĥlocn,2(k)

}
and

p̂locn (t, h) = p̂(1)
n (kδn, h)

(3.12)

for t ∈ Ik = [(k−1)δn, kδn), k ∈ Tn \{δ−1
n }, Iδ−1

n
= [1−δn, 1]. Defining furthermore

the width function of the confidence band

ẑn(·) =
(
ñĥlocn (·)

)− 1
2

,(3.13)

the following theorem lays the foundation for the construction of honest and locally
adaptive confidence bands.

Theorem 3.6 (Least favorable case). For the estimators defined in (3.12) and
normalizing sequences

an = c3(−2 log δn)1/2, bn =
3

c3

{
(−2 log δn)1/2 − log(− log δn) + log 4π

2(−2 log δn)1/2

}
,

with c3 =
√

2/TV (K), it holds

lim inf
n→∞

inf
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
− bn

 ≤ x


≥ 2 P
(√

L∗G ≤ x
)
− 1

for some standard Gumbel distributed random variable G.

The proof of Theorem 3.6 is based on several completely non-asymptotic approxima-
tion techniques. The asymptotic Komlós-Major-Tusnády-approximation technique,
used in Giné and Nickl (2010), has been evaded using non-asymptotic Gaussian
approximation results recently developed in Chernozhukov, Chetverikov and Kato
(2014b). The essential component of the proof of Theorem 3.6 is the application
of Slepian’s comparison inequality to reduce considerations from a non-stationary
Gaussian process to the least favorable case of a maximum of δ−1

n independent and
identical standard normal random variables.
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With q1−α/2 denoting the (1− α/2)-quantile of the standard Gumbel distribution,
we define the confidence band as the family of piecewise constant random intervals
Cn,α = (Cn,α(t))t∈[0,1] with

Cn,α(t) =

[
p̂locn (t, ĥlocn (t))− qn(α)ẑn(t), p̂locn (t, ĥlocn (t)) + qn(α)ẑn(t)

]
(3.14)

and

qn(α) =

√
L∗ · q1−α/2

an
+ bn.

For fixed α > 0, qn(α) = O(
√

log n) as n goes to infinity.

Corollary 3.7 (Honesty). The confidence band as defined in (3.14) satisfies

lim inf
n→∞

inf
p∈Pn

Pχp
(
p(t) ∈ Cn,α(t) for every t ∈ [0, 1]

)
≥ 1− α.

3.3. Local Hölder regularity and local adaptivity. In the style of global
adaptivity in connection with confidence sets one may call a confidence band
Cn,α = (Cn,α(t))t∈[0,1] locally adaptive if for every interval U ⊂ [0, 1],

lim sup
n→∞

sup
p∈Pn|Uδ∩Hβ∗,Uδ (β,L∗)

Pχ2
p

(
|Cn,α(t)| ≥ η

(
log ñ

ñ

) β
2β+1

for some t ∈ U

)
→ 0

as η → ∞, for every β ∈ [β∗, β
∗], where Uδ is the δ-enlargement of U . As a conse-

quence of the subsequently formulated Theorem 3.12, our confidence band satisfies
this notion of local adaptivity up to a logarithmic factor. However, in view of the
imagination illustrated in Figure 1 the statistician aims at a stronger notion of
adaptivity, where the asymptotic statement is not formulated for an arbitrary but
fixed interval U only. Precisely, the goal would be to adapt even to some pointwise
or local Hölder regularity, two well established notions from analysis.

Definition 3.8 (Pointwise Hölder exponent, Seuret and Lévy Véhel (2002)).
Let p : R → R be a function, β > 0, β /∈ N, and t ∈ R. Then p ∈ Ht(β) if and
only if there exists a real R > 0, a polynomial P with degree less than bβc, and a
constant c such that

|p(x)− P (x− t)| ≤ c|x− t|β

for all x ∈ B(t, R). The pointwise Hölder exponent is denoted by

βp(t) = sup{β : p ∈ Ht(β)}.
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Definition 3.9 (Local Hölder exponent, Seuret and Lévy Véhel (2002)).
Let p : Ω → R be a function and Ω ⊂ R an open set. One classically says that
p ∈ Hloc(β,Ω), where 0 < β < 1, if there exists a constant c such that

|p(x)− p(y)| ≤ c|x− y|β

for all x, y ∈ Ω. If m < β < m+ 1 for some m ∈ N, then p ∈ Hloc(β,Ω) means that
there exists a constant c such that

|∂mp(x)− ∂mp(y)| ≤ c|x− y|β−m

for all x, y ∈ Ω. Set now

βp(Ω) = sup{β : p ∈ Hloc(β,Ω)}.

Finally, the local Hölder exponent in t is defined as

βlocp (t) = sup{βp(Oi) : i ∈ I},

where (Oi)i∈I is a decreasing family of open sets with ∩i∈IOi = {t}. [By Lemma 2.1
in Seuret and Lévy Véhel (2002), this notion is well defined, that is, it does not
depend on the particular choice of the decreasing sequence of open sets.]

The next proposition however shows that attaining the minimax rates of conver-
gence corresponding to the pointwise or local Hölder exponent (possibly inflated by
some logarithmic factor) uniformly over Pn is an unachievable goal.

Proposition 3.10. For the rectangular kernel KR there exists some constant
M > 0, such that for any t ∈ [0, 1], for any β ∈ [β∗, 1], for any 0 < ε < 1, and
for any k ≥ k0(β∗) there exists some x > 0 and constants L = L(β) > 0 and
c4 = c4(β) > 0 with

inf
Tn

sup
p∈Sk(β)

P⊗np
(
n

β
2β+1 |Tn(t)− p(t)| ≥ x

)
> 0 for all k ≥ k0(β∗)

with

Sk(β) = Sk(L, β, β∗,M,KR, ε)

=
{
p ∈Pk(L, β∗,M,KR, ε) : ∃ r ≥ c4 n−

1
2β+1

such that p|B(t,r) ∈ HB(t,r)(∞, L)
}
∩H(−ε,1+ε)(β, L),

where the infimum is running over all estimators Tn based on X1, . . . , Xn.

The proposition furthermore reveals that if a density p ∈ Pk is Hölder smooth
to some exponent η > β on a ball around t with radius at least of the order
n−1/(2β+1), then no estimator for p(t) can achieve a better rate than n−β/(2β+1).
We therefore introduce an n-dependent statistical notion of local regularity for any
point t. Roughly speaking, we intend it to be the maximal β such that the density
attains this Hölder exponent within B(t, hβ,n), where hβ,n is of the optimal adaptive
bandwidth order (logn/n)1/(2β+1). We realize this idea with ‖ · ‖β,β∗,U as defined
in (3.4) and used in Assumption 3.1.
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Definition 3.11 (n-dependent local Hölder exponent). With the classical op-
timal bandwidth within the class H(β)

hβ,n = 2−jmin ·
(

log ñ

ñ

) 1
2β+1

,

define the class Hβ∗,n,t(β, L) as the set of functions p : B(t, hβ,n)→ R, such that p
admits derivatives up to the order bβ∧β∗c and ‖p‖β,β∗,B(t,hβ,n) ≤ L, and Hβ∗,n,t(β)
the class of functions p : B(t, hβ,n) → R for which ‖p‖β,β∗,B(t,hβ,n) is well-defined
and finite. The n-dependent local Hölder exponent for the function p at point t is
defined as

βn,p(t) = sup
{
β > 0 : p|B(t,hβ,n) ∈ Hβ∗,n,t(β, L∗)

}
.(3.15)

If the supremum is running over the empty set, we set βn,p(t) = 0.

Finally, the next theorem shows that the confidence band adapts to the n-dependent
local Hölder exponent.

Theorem 3.12 (Strong local adaptivity). There exists some universal constant
c > 0 and some γ = γ(c1), such that for all δ > 0 there exists some n0(δ) ∈ N with

sup
p∈Pn

Pχ2
p

|Cn,α(t)| ≥ c
(

log ñ

ñ

) βn,p(t)

2βn,p(t)+1

qn(α)(log ñ)γ for some t ∈ [0, 1]

 ≤ δ
for all n ≥ n0(δ).

Note that the case βn,p(t) =∞ is not excluded in the formulation of Theorem 3.12.
That is, if p|U can be represented as a polynomial of degree strictly less than β∗,

the confidence band attains even adaptively the parametric width n−1/2, up to
logarithmic factors. In particular, the band can be tighter than n−β

∗/(2β∗+1). In
general,

βn,p(t) ≥ βp(Uδ) for all t ∈ U

as long as ε ≤ δ.

Corollary 3.13 (Weak local adaptivity). For every interval U ⊂ [0, 1],

lim sup
n→∞

sup
p∈Pn|Uδ∩Hβ∗,Uδ (β,L∗)

Pχ2
p

(
|Cn,α(t)| ≥ η

(
log ñ

ñ

) β
2β+1

for some t ∈ U

)
→ 0

as η →∞, for every β ∈ [β∗, β
∗], where Uδ is the δ-enlargement of U .
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4. Auxiliary notation and results. The following auxiliary results are
crucial ingredients in the proofs of Theorem 3.6 and Theorem 3.12.

Recalling the quantity hβ,n in Definition 3.11, Proposition 4.1 shows that 2−ĵn(·)

lies in a band around

h̄n(·) = hβn,p(·),n(4.1)

uniformly over all admissible densities p ∈Pn. Proposition 4.1 furthermore reveals
the necessity to undersmooth, which has been already discovered by Bickel and
Rosenblatt (1973), leading to a bandwidth deflated by some logarithmic factor. Set
now

j̄n(·) =

⌊
log2

(
1

h̄n(·)

)⌋
+ 1,

such that the bandwidth 2−j̄n(·) is an approximation of h̄n(·) by the next smaller
bandwidth on the grid Gn with

1

2
h̄n(·) ≤ 2−j̄n(·) ≤ h̄n(·).

The next proposition states that the procedure chooses a bandwidth which simul-
taneously in the location t is neither too large nor too small.

Proposition 4.1. The bandwidth ĵn(·) defined in (3.11) satisfies

lim
n→∞

sup
p∈Pn

{
1− Pχ2

p

(
ĵn(kδn) ∈

[
kn(kδn), j̄n(kδn) + 1

]
for all k ∈ Tn

)}
= 0

where kn(·) = j̄n(·)−mn, and mn = 1
2c1 log log ñ.

Lemma 4.2. Let s, t ∈ [0, 1] be two points with s < t, and let z ∈ (s, t). If

|s− t| ≤ 1

8
hβ∗,n(4.2)

then

1

3
h̄n(z) ≤ min

{
h̄n(s), h̄n(t)

}
≤ 3 h̄n(z).

Lemma 4.3. There exist positive and finite constants c5 = c5(A, ν,K) and c6 =
c6(A, ν, L∗,K), and some η0 = η0(A, ν, L∗,K) > 0, such that

sup
p∈Pn

Pχip

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣∣p̂(i)
n (s, h)− Eχip p̂

(i)
n (s, h)

∣∣∣ > η

)
≤ c5ñ−c6η, i = 1, 2

for sufficiently large n ≥ n0(A, ν, L∗,K) and for all η ≥ η0.
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The next lemma states extends the classical upper bound on the bias for the mod-
ified Hölder classes Hβ∗,B(t,U)(β, L).

Lemma 4.4. Let t ∈ R and g, h > 0. Any density p : R → R with p|B(t,g+h) ∈
Hβ∗,B(t,g+h)(β, L) for some 0 < β ≤ ∞ and some L > 0 satisfies

sup
s∈B(t,g)

|(Kh ∗ p)(s)− p(s)| ≤ b2hβ(4.3)

for some positive and finite constant b2 = b2(L,K).

Lemma 4.5. For symmetric kernels K and β = 1, the bias bound (4.3) contin-
ues to hold if the Lipschitz balls are replaced by the corresponding Zygmund balls.

5. Proofs. We first prove the results of Section 3 in Subsection 5.1 and af-
terwards proceed with the proofs of the results Section 4 in Subsection 5.2.
For the subsequent proofs we recall the following notion of the theory of empirical
processes.

Definition 5.1. A class of measurable functions H on a measure space (S,S )
is a V apnik-Červonenkis class (VC class) of functions with respect to the enve-
lope H if there exists a measurable function H which is everywhere finite with
suph∈H |h| ≤ H and finite numbers A and v, such that

sup
Q
N
(
H , ‖ · ‖L2(Q), ε‖H‖L2(Q)

)
≤
(
A

ε

)v
for all 0 < ε < 1, where the supremum is running over all probability measures Q
on (S,S ) for which ‖H‖L2(Q) <∞.

Nolan and Pollard (1987) call a class Euclidean with respect to the envelope H and
with characteristics A and ν if the same holds true with L1(Q) instead of L2(Q).
The following auxiliary lemma is a direct consequence of the results in the same
reference.

Lemma 5.2. If a class of measurable functions H is Euclidean with respect to
a constant envelope H and with characteristics A and ν, then the class

H̃ = {h− EPh : h ∈H }

is a VC class with envelope 2H and characteristics A′ = 4
√
A∨2A and ν′ = 3ν for

any probability measure P.

Proof. For any probability measure P and for any functions h̃1 = h1 − EPh1,
h̃2 = h2 − EPh2 ∈ H̃ with h1, h2 ∈H , we have

‖h̃1 − h̃2‖L2(Q) ≤ ‖h1 − h2‖L2(Q) + ‖h1 − h2‖L1(P).
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For any 0 < ε ≤ 1, we obtain as a direct consequence of Lemma 14 in Nolan and
Pollard (1987)

N
(
H̃ , L2(Q), 2ε‖H‖L2(Q)

)
≤ N

(
H , L2(Q),

ε‖H‖L2(Q)

2

)
·N
(

H , L1(P),
ε‖H‖L1(P)

2

)
.

(5.1)

Nolan and Pollard (1987), page 789, furthermore state that the Euclidean class H
is also a VC class with respect to the envelope H and with

N

(
H , L2(Q),

ε‖H‖L2(Q)

2

)
≤

(
4
√
A

ε

)2ν

,

whereas

N

(
H , L1(P),

ε‖H‖L1(P)

2

)
≤
(

2A

ε

)ν
.

Inequality (5.1) thus implies

N
(
H̃ , L2(Q), 2ε‖H‖L2(Q)

)
≤

(
4
√
A ∨ 2A

ε

)3ν

.

5.1. Proofs of the results in Section 3.

Proof of Lemma 3.2. Let p ∈ Padm
n (K,β∗, L

∗, ε) be an admissible density.
That is, for any t ∈ [0, 1] and for any h ∈ G∞ there exists some β ∈ [β∗, β

∗]∪ {∞},
such that for u = h or u = 2h both

p|B(t,u) ∈ Hβ∗,B(t,u)(β, L
∗)

and

sup
s∈B(t,u−g)

|(Kg ∗ p)(s)− p(s)| ≥
gβ

log n
for all g ∈ G∞ with g ≤ u/8

hold. By definition of βp(B(t, u)) in (3.5), we obtain βp(B(t, u)) ≥ β. We now prove
by contradiction that also βp(B(t, u)) ≤ β. If β =∞, the proof is finished. Assume
now that β <∞ and that βp(B(t, u)) > β. Then, by Lemma A.4, there exists some
β < β′ < βp(B(t, u)) with p|B(t,u) ∈ Hβ∗,B(t,u)(β

′, L∗). By Lemma 4.4, there exists
some constant b2 = b2(L∗,K) with

b2g
β′ ≥ sup

s∈B(t,u−g)
|(Kg ∗ p)(s)− p(s)| ≥

gβ

log n

for all g ∈ G∞ with g ≤ u/8, which is a contradiction.

Proof of Proposition 3.3. The proof is based on a reduction of the supre-
mum over the class to a maximum over two distinct hypotheses.
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Part 1. For β ∈ [β∗, 1), the construction of the hypotheses is based on the Weier-
straß function as defined in (3.8) and is depicted in Figure 2. Consider the function
p0 : R→ R with

p0(x) =


0, if |x− t| ≥ 10

3
1
4 + 3

16 (x− t+ 2), if − 10
3 < x− t < −2

1
6 + 1−2−β

12 Wβ(x− t), if |x− t| ≤ 2
1
4 −

3
16 (x− t− 2), if 2 < x− t < 10

3

and the function p1,n : R→ R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x)− qt,n(x), x ∈ R,

where

qa,n(x) =

{
0, if |x− a| > gβ,n
1−2−β

12

(
Wβ(x− a)−Wβ(gβ,n)

)
, if |x− a| ≤ gβ,n

for gβ,n = 1
4n
−1/(2β+1) and a ∈ R. Note that p1,n|B(t,gβ,n) is constant with value

p1,n(x) =
1

6
+

1− 2−β

12
Wβ(gβ,n) for all x ∈ B(t, gβ,n).

Fig 2. Functions p0 and p1,n for t = 0.5, β = 0.5 and n = 100

We now show that both p0 and p1,n are contained in the class Pk for sufficiently
large k ≥ k0(β∗) with

p0|(−ε,1+ε), p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(β, L
∗).

(i) We first verify that p0 integrates to one. Then, it follows directly that also p1,n

integrates to one. We have∫
p0(x) dx =

∫ t−2

t− 10
3

(
1

4
+

3

16
(x− t+ 2)

)
dx

+

∫ t+2

t−2

(
1

6
+

1− 2−β

12
Wβ(x− t)

)
dx

+

∫ t+ 10
3

t+2

(
1

4
− 3

16
(x− t− 2)

)
dx
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=
1

6
+

2

3
+

1− 2−β

12

∫ 2

−2

Wβ(x) dx+
1

6

= 1,

where the last equality is due to∫ 2

−2

Wβ(x) dx =

∞∑
k=0

2−kβ
∫ 2

−2

cos(2kπx) dx = 0.

(ii) Next, we check the non-negativity of p0 and p1,n to show that they are proba-
bility density functions. We prove non-negativity for p0, whereas non-negativity of
p1,n is an easy implication. Since p0(−10/3) = 0 and p0 is linear on (t− 10/3, t− 2)
with positive derivative, p0 is non-negative on (t − 10/3, t − 2). Analogously, p0 is
non-negative on (t+ 2, t+ 10/3). Note furthermore that

|Wβ(x)| ≤Wβ(0) =

∞∑
k=0

2−kβ =
1

1− 2−β
(5.2)

for all x ∈ R. Thus, for any x ∈ R with |x− t| ≤ 2, we have

p0(x) =
1

6
+

1− 2−β

12
Wβ(x− t) ≥ 1

6
− 1

12
=

1

12
> 0.

(iii) As p0 and also p1,n are bounded from below by M = 1/12 on B(t, 2), we
furthermore conclude that they are bounded from below by M on (−1, 2) ⊂ B(t, 2),
and therefore on any interval [−ε, 1 + ε] with 0 < ε < 1.

(iv) We now verify that p0|(−ε,1+ε), p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(β, L(β)) for some
positive constant L(β). Note again that for any 0 < ε < 1 and any t ∈ [0, 1], the
inclusion (−ε, 1 + ε) ⊂ B(t, 2) holds. Thus,

sup
x,y∈(−ε,1+ε)

x 6=y

|p0(x)− p0(y)|
|x− y|β

=
1− 2−β

12
· sup
x,y∈(−ε,1+ε)

x 6=y

|Wβ(x− t)−Wβ(y − t)|
|(x− t)− (y − t)|β

,

which is bounded by some constant c(β) according to Lemma 3.5. Together with
(5.2) and with the triangle inequality, we obtain that

p0|(−ε,1+ε) ∈ H(−ε,1+ε)(β, L)

for some Lipschitz constant L = L(β). The Hölder continuity of p1,n is now a
simple consequence. The function p1,n is constant on B(t, gβ,n) and coincides with
p0 on (−ε, 1+ε)\B(t, gβ,n). Hence, it remains to investigate combinations of points
x ∈ (−ε, 1 + ε) \ B(t, gβ,n) and y ∈ B(t, gβ,n). Without loss of generality assume
that x ≤ t− gβ,n. Then,

|p1,n(x)− p1,n(y)|
|x− y|β

=
|p1,n(x)− p1,n(t− gβ,n)|

|x− y|β
≤ |p1,n(x)− p1,n(t− gβ,n)|

|x− (t− gβ,n)|β
≤ L,
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which proves that also

p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(β, L).

(v) Finally, we address the verification of Assumption 3.1 for the hypotheses p0 and
p1,n. Again, for any t′ ∈ [0, 1] and any h ∈ G∞ the inclusion B(t′, 2h) ⊂ B(t, 2)
holds, such that in particular

p0|B(t′,h) ∈ Hβ∗,B(t′,h)(β, LW (β))

for any t′ ∈ [0, 1] and for any h ∈ G∞ by Lemma 3.5. Simultaneously, Lemma 3.5
implies

sup
s∈B(t′,h−g)

|(KR,g ∗ p0)(s)− p0(s)| > 1− 2−β∗

12

(
4

π
− 1

)
gβ ≥ gβ

log k

for all g ≤ h/2 and for sufficiently large k ≥ k0(β∗). That is, for any t′ ∈ [0, 1], both
(3.6) and (3.7) are satisfies for p0 with u = h for any h ∈ G∞.
Concerning p1,n we distinguish between several combinations of pairs (t′, h) with
t′ ∈ [0, 1] and h ∈ G∞.

(v.1) If B(t′, h)∩B(t, gβ,n) = ∅, the function p1,n coincides with p0 on B(t′, h), for
which Assumption 3.1 has been already verified.

(v.2) If B(t′, h) ⊂ B(t, gβ,n), the function p1,n is constant on B(t′, h), such that
(3.6) and (3.7) trivially hold for u = h and β =∞.

(v.3) If B(t′, h) ∩ B(t, gβ,n) 6= ∅ and B(t′, h) 6⊂ B(t, gβ,n), we have that t′ + h >
t+ gβ,n or t′−h < t− gβ,n. As p1,n|B(t,2) is symmetric around t we assume t′+h >
t+ gβ,n without loss of generality. In this case,

(t′ + 2h− g)− (t+ gβ,n) > 2

(
h

2
− g
)
,

such that

B

(
t′ +

3

2
h,
h

2
− g
)
⊂ B(t′, 2h− g) \B(t, gβ,n).

Consequently, we obtain

sup
s∈B(t′,2h−g)

|(KR,g ∗ p1,n)(s)− p1,n(s)| ≥ sup
s∈B(t′+ 3

2h,
h
2−g)

|(KR,g ∗ p1,n)(s)− p1,n(s)| .

If 2h ≥ 8g, we conclude that h/2 ≥ 2g, so that Lemma 3.5 finally proves Assumption
3.1 for u = 2h to the exponent β for sufficiently large k ≥ k0(β∗).

Combining (i) − (v), we conclude that p0 and p1,n are contained in the class Pk

with p0|(−ε,1+ε), p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(β, L
∗) for sufficiently large k ≥ k0(β∗).

The absolute distance of the two hypotheses in t is at least

|p0(t)− p1,n(t)| = 1− 2−β

12
(Wβ(0)−Wβ(gβ,n))
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=
1− 2−β

12

∞∑
k=0

2−kβ
(
1− cos(2kπgβ,n)

)
≥ 1− 2−β∗

12
2−k̃β

(
1− cos(2k̃πgβ,n)

)
≥ 2c7 g

β
β,n(5.3)

where k̃ ∈ N is chosen such that 2−(k̃+1) < gβ,n ≤ 2−k̃ and

c7 = c7(β∗) =
1− 2−β∗

24
.

It remains to bound the distance between the associated product probability mea-
sures P⊗n0 and P⊗n1,n. For this purpose, we analyze the Kullback-Leibler divergence
between these probability measures, which can be bounded from above by

K(P⊗n1,n,P
⊗n
0 ) = nK(P1,n,P0)

= n

∫
p1,n(x) log

(
p1,n(x)

p0(x)

)
1 {p0(x) > 0}dx

= n

∫
p1,n(x) log

(
1 +

qt+ 9
4 ,n

(x)− qt,n(x)

p0(x)

)
1 {p0(x) > 0} dx

≤ n
∫
qt+ 9

4 ,n
(x)− qt,n(x) +

(
qt+ 9

4 ,n
(x)− qt,n(x)

)2

p0(x)
1 {p0(x) > 0} dx

= n

∫ (
qt+ 9

4 ,n
(x)− qt,n(x)

)2

p0(x)
1 {p0(x) > 0} dx

≤ 12n

∫ (
qt+ 9

4 ,n
(x)− qt,n(x)

)2

dx

= 24n

∫
q0,n(x)2 dx

= 24n

(
1− 2−β

12

)2 ∫ gβ,n

−gβ,n
(Wβ(x)−Wβ(gβ,n))

2
dx

≤ 24L(β)2n

(
1− 2−β

12

)2 ∫ gβ,n

−gβ,n
(gβ,n − x)

2β
dx

≤ c8ng2β+1
β,n

≤ c8

using the inequality log(1 + x) ≤ x, x > −1, Lemma 3.5, and

p0(t+ 5/2) =
5

32
> M =

1

12
,



LOCALLY ADAPTIVE CONFIDENCE BANDS 23

where

c8 = c8(β) = 48L(β)24−(2β+1)22β

(
1− 2−β

12

)2

.

Using now Theorem 2.2 in Tsybakov (2009),

inf
Tn

sup
p∈Pk:

p|(−ε,1+ε)∈H(−ε,1+ε)(β,L
∗)

P⊗np
(
n

β
2β+1 |Tn(t)− p(t)| ≥ c7

)

≥ max

{
1

4
exp(−c8),

1−
√
c8/2

2

}
> 0.

Part 2. For β = 1, consider the function p0 : R→ R with

p0(x) =

{
0, if |x− t| > 4
1
4 −

1
16 |x− t|, if |x− t| ≤ 4

and the function p1,n : R→ R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x)− qt,n(x), x ∈ R,

where

qa,n(x) =

{
0, if |x− a| > g1,n

1
16 (g1,n − |x− a|), if |x− a| ≤ g1,n

for g1,n = n−1/3 and a ∈ R. The construction is depicted in Figure 3 below.

Fig 3. Functions p0 and p1,n for t = 0.5, β = 0.5 and n = 10

(i) − (iii) Easy calculations show that both p0 and p1,n are probability densities,
which are bounded from below by M = 1/8 on B(t, 2).

(iv) We now verify that p0|(−ε,1+ε), p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(1, L) for some Lip-
schitz constant L > 0. Note again that for any 0 < ε < 1 and any t ∈ [0, 1], the
inclusion (−ε, 1 + ε) ⊂ B(t, 2) holds. Thus,

sup
x,y∈(−ε,1+ε)

x 6=y

|p0(x)− p0(y)|
|x− y|

=
1

16
· sup
x,y∈(−ε,1+ε)

x 6=y

||x− t| − |y − t||
|x− y|

≤ 1

16
.
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Since p0 has maximal value 1/4, we obtain that

p0|(−ε,1+ε) ∈ H(−ε,1+ε)

(
1,

5

16

)
.

For the same reasons as before, we also obtain

p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)

(
1,

5

16

)
.

(v) Finally, we address the verification of Assumption 3.1 for the hypotheses p0 and
p1,n. Again, for any t′ ∈ [0, 1] and any h ∈ G∞ the inclusion B(t′, 2h) ⊂ B(t, 2)
holds, and we distinguish between several combinations of pairs (t′, h) with t′ ∈ [0, 1]
and h ∈ G∞. We start with p0.

(v.1) If t /∈ B(t′, h), it holds that ‖p‖β,B(t′,h) ≤ 5/16 for all β > 0, such that (3.6)
and (3.7) trivially hold for u = h and β =∞.

(v.2) In case t ∈ B(t′, h), the function p0|B(t′,2h) is not differentiable and

‖p0‖1,B(t′,2h) ≤ 5/16.

Furthermore, t ∈ B(t′, 2h− g) for any g ∈ G∞ with g < 2h/16 and thus

sup
s∈B(t′,2h−g)

|(KR,g ∗ p)(s)− p(s)| ≥ |(KR,g ∗ p)(t)− p(t)| =
1

32
g.

That is, (3.6) and (3.7) are satisfied for u = 2h and β = 1 for sufficiently large
n ≥ n0.

The density p1,n can be treated in a similar way. It is constant on the interval
B(t, gβ,n). If B(t′, h) does not intersect with {t − gβ,n, t + gβ,n}, Assumption 3.1
is satisfied for u = h and β = ∞. If the two sets intersect, t − gβ,n or t + gβ,n is
contained in B(t′, 2h−g) for any g ∈ G∞ with g < 2h/16, and we proceed as before.

Again, combining (i) − (v), it follows that p0 and p1,n are contained in the class
Pk with p0|(−ε,1+ε), p1,n|(−ε,1+ε) ∈ H(−ε,1+ε)(1, L) for sufficiently large k ≥ k0 and
some universal constant L > 0. The absolute distance of the two hypotheses in t
equals

|p0(t)− p1,n(t)| = 1

16
g1,n.

To bound the Kullback-Leibler divergence between the associated product proba-
bility measures P⊗n0 and P⊗n1,n, we derive as before

K(P⊗n1,n,P
⊗n
0 ) ≤ n

∫ (
qt+ 9

4 ,n
(x)− qt,n(x)

)2

p0(x)
1 {p0(x) > 0} dx

≤ 16n

∫ (
qt+ 9

4 ,n
(x)− qt,n(x)

)2

dx
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= 32n

∫
q0,n(x)2 dx

=
1

12
,

using p0(t+ 5/2) > 1/16. Using Theorem 2.2 in Tsybakov (2009) again,

inf
Tn

sup
p∈Pk:

p|(−ε,1+ε)∈H(−ε,1+ε)(1,L
∗)

P⊗np

(
n

1
3 |Tn(t)− p(t)| ≥ 1

32

)

≥ max

{
1

4
exp(−1/12),

1−
√

1/24

2

}
> 0.

Proof of Proposition 3.4. Define

R̃ =
⋃
n∈N

R̃n

with

R̃n =

{
p ∈ H(−ε,1+ε)(β∗) : ∀ t ∈ [0, 1] ∀h ∈ G∞ ∃β ∈ [β∗, β

∗] with

p|B(t,h) ∈ HB(t,h)(β)and ‖(KR,g ∗ p)− p‖B(t,h−g) ≥
gβ

log n

for all g ∈ G∞ with g ≤ h/8

}
.

Furthermore, let

En(β) =

{
p ∈ H(−ε,1+ε)(β) : ‖(KR,g ∗ p)− p‖B(t,h−g) ≥

2

log n
gβ for all t ∈ [0, 1],

for all h ∈ G∞, and for all g ∈ G∞ with g ≤ h/8

}
.

Note that Lemma 3.5 shows that En(β) is non-empty as soon as

2

log n
≤ 1− 4

π
.

Note additionally that En(β) ⊂ R̃n for any β ∈ [β∗, β
∗], and⋃

n∈N

En(β) ⊂ R̃.



26

With

An(β) =

{
f̃ ∈ H(−1,2)(β) : ‖f̃ − f‖β,(−ε,1+ε) <

‖KR‖−1
1

log n
for some f ∈ En(β)

}
,

we get for any f̃ ∈ An(β) and a corresponding f ∈ En(β) with

‖f̌‖β,(−ε,1+ε) < ‖KR‖−1
1

1

log n

and f̌ = f̃ − f , the lower bound∥∥∥(KR,g ∗ f̃)− f̃
∥∥∥
B(t,h−g)

≥
∥∥∥(KR,g ∗ f)− f

∥∥∥
B(t,h−g)

−
∥∥∥f̌ − (KR,g ∗ f̌)

∥∥∥
B(t,h−g)

=
2

log n
gβ − sup

s∈B(t,h−g)

∣∣∣∣∫ KR(x)
{
f̌(s+ gx)− f̌(s)

}
dx

∣∣∣∣
≥ 2

log n
gβ − gβ ·

∫
|KR(x)| sup

s∈B(t,h−g)
sup

s′∈B(s,g)
s′ 6=s

∣∣f̌(s′)− f̌(s)
∣∣

|s− s′|β
dx

≥ 2

log n
gβ − gβ · ‖KR‖1 · ‖f̌‖β,(−ε,1+ε)

≥ 1

log n
gβ

for all g, h ∈ G∞ with g ≤ h/8 and for all t ∈ [0, 1], and therefore

A =
⋃
n∈N

An(β) ⊂ R̃.

Clearly, An(β) is open in H(−ε,1+ε)(β). Hence, the same holds true for A. Next, we
verify that A is dense in H(−ε,1+ε)(β). Let p ∈ H(−ε,1+ε)(β) and let δ > 0. We now
show that there exists some function p̃δ ∈ A with ‖p − p̃δ‖β,(−ε,1+ε) ≤ δ. For the
construction of the function p̃δ, set the grid points

tj,1(k) = (4j + 1)2−k, tj,2(k) = (4j + 3)2−k

for j ∈ {−2k−2,−2k−2 + 1, . . . , 2k−1 − 1} and k ≥ 2. The function p̃δ shall be
defined as the limit of a recursively constructed sequence. The idea is to recursively
add appropriately rescaled sine waves at those locations where the bias condition
is violated. Let p1,δ = p, and denote

Jk =

{
j ∈ {−2k−2, . . . , 2k−1 − 1} : max

i=1,2

∣∣∣(KR,2−k ∗ pk−1,δ)(tj,i(k))− pk−1,δ(tj,i(k))
∣∣∣

<
1

2
c9 δ

(
1− 2

π

)
2−kβ

}
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for k ≥ 2, where

c9 = c9(β) =

(
3π

2
· 1

1− 2β−1
+

7

1− 2−β

)−1

.

For any k ≥ 2 set

pk,δ(x) = pk−1,δ(x) + c9 δ
∑
j∈Jk

Sk,β,j(x)

with functions

Sk,β,j(x) = 2−kβ sin
(
2k−1πx

)
1
{
|(4j + 2)2−k − x| ≤ 2−k+1

}
exemplified in Figure 4. That is,

pk,δ(x) = p(x) + c9 δ

k∑
l=2

∑
j∈Jl

Sl,β,j(x),

and we define p̃δ as the limit

p̃δ(x) = p(x) + c9 δ

∞∑
l=2

∑
j∈Jl

Sl,β,j(x)

= pk,δ(x) + c9 δ

∞∑
l=k+1

∑
j∈Jl

Sl,β,j(x).

The function p̃δ is well-defined as the series on the right-hand side converges: for
fixed l ∈ N, the indicator functions

1
{
|(4j + 2)2−k − x| ≤ 2−k+1

}
, j ∈ {−2l−2,−2l−2 + 1, . . . , 2l−1 − 1}

have disjoint supports, such that∥∥∥∥∑
j∈Jl

Sl,β,j

∥∥∥∥
(−ε,1+ε)

≤ 2−lβ .

Fig 4. Functions Sk,β,0 for k = 2, . . . , 5 and β = 0.5
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It remains to verify that p̃δ ∈
⋃
n∈N En(β) ⊂ A and also ‖p− p̃δ‖β,(−ε,1+ε) ≤ δ. As

concerns the inequality ‖p− p̃δ‖β,(−ε,1+ε) ≤ δ, it remains to show that∥∥∥∥∥∥
∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥∥
β,(−ε,1+ε)

≤ 1

c9
.

For s, t ∈ (−ε, 1 + ε) with |s− t| ≤ 1, we obtain∣∣∣∣∣∣
∞∑
l=2

∑
j∈Jl

Sl,β,j(s)−
∞∑
l=2

∑
j∈Jl

Sl,β,j(t)

∣∣∣∣∣∣
≤
∞∑
l=2

2−lβ
∣∣∣∣ sin(2l−1πs)

∑
j∈Jl

1{|(4j + 2)2−l − s| ≤ 2−l+1}(5.4)

− sin(2l−1πt)
∑
j∈Jl

1{|(4j + 2)2−l − t| ≤ 2−l+1}
∣∣∣∣.

Choose now k′ ∈ N maximal, such that both

(4j + 2)2−k
′
− 2−k

′+1 ≤ s ≤ (4j + 2)2−k
′
+ 2−k

′+1

and

(4j + 2)2−k
′
− 2−k

′+1 ≤ t ≤ (4j + 2)2−k
′
+ 2−k

′+1

for some j ∈ {−2k
′−2, . . . , 2k

′−1 − 1}. For 2 ≤ l ≤ k′, we have∣∣∣∣ sin(2l−1πs)
∑
j∈Jl

1{|(4j + 2)2−l − s| ≤ 2−l+1}

− sin(2l−1πt)
∑
j∈Jl

1{|(4j + 2)2−l − t| ≤ 2−l+1}
∣∣∣∣

≤
∣∣∣∣ sin(2l−1πs)− sin(2l−1πt)

∣∣∣∣
≤ min

{
2l−1π|s− t|, 2

}(5.5)

by the mean value theorem. For l ≥ k′ + 1,∣∣∣∣ sin(2l−1πs)
∑
j∈Jl

1{|(4j + 2)2−l − s| ≤ 2−l+1}

− sin(2l−1πt)
∑
j∈Jl

1{|(4j + 2)2−l − t| ≤ 2−l+1}
∣∣∣∣

≤ max

{∣∣∣∣ sin(2l−1πs)

∣∣∣∣, ∣∣∣∣ sin(2l−1πt)

∣∣∣∣
}
.
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Furthermore, due to the choice of k′, there exists some z ∈ [s, t] with

sin(2l−1πz) = 0

for all l ≥ k′ + 1. Thus, for any l ≥ k′ + 1, by the mean value theorem,∣∣∣∣ sin(2l−1πs)

∣∣∣∣ =

∣∣∣∣ sin(2l−1πs)− sin(2l−1πz)

∣∣∣∣
≤ min

{
2l−1π|s− z|, 1

}
≤ min

{
2l−1π|s− t|, 1

}
.

Analogously, we obtain∣∣∣∣ sin(2l−1πt)

∣∣∣∣ ≤ min
{

2l−1π|s− t|, 1
}
.

Consequently, together with inequality (5.4) and (5.5),∣∣∣∣∣∣
∞∑
l=2

∑
j∈Jl

Sl,β,j(s)−
∞∑
l=2

∑
j∈Jl

Sl,β,j(t)

∣∣∣∣∣∣ ≤
∞∑
l=2

2−lβ min
{

2l−1π|s− t|, 2
}
.

Choose now k ∈ N ∪ {0}, such that 2−(k+1) < |s− t| ≤ 2−k. If k ≤ 1,

∞∑
l=2

2−lβ min
{

2l−1π|s− t|, 2
}
≤ 2

2−2β

1− 2−β
≤ 2

1− 2−β
|s− t|β .

If k ≥ 2, we decompose

∞∑
l=2

2−lβ min
{

2l−1π|s− t|, 2
}
≤ π

2
|s− t|

k∑
l=0

2l(1−β) + 2

∞∑
l=k+1

2−lβ

=
π

2
|s− t| 2

k(1−β) − 2β−1

1− 2β−1
+ 2 · 2−(k+1)β

1− 2−β

≤ |s− t|β ·
(
π

2
· 1

1− 2β−1
+

2

1− 2−β

)
.

Since furthermore ∥∥∥∥∥∥
∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥∥
sup

≤ 1

1− 2−β
,

we have∥∥∥∥∥∥
∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥∥
β,(−ε,1+ε)

≤ 3

(
π

2
· 1

1− 2β−1
+

2

1− 2−β

)
+

1

1− 2−β
=

1

c9
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and finally ‖p− p̃ε‖β,(−ε,1+ε) ≤ δ. In particular p̃δ ∈ H(−ε,1+ε)(β).

We now show that the function p̃δ is contained in
⋃
n∈N En(β) ⊂ A. For any

bandwidths g, h ∈ G∞ with g ≤ h/8, it holds that h − g ≥ 4g. Thus, for any
g = 2−k with k ≥ 2 and for any t ∈ (−ε, 1 + ε), there exists some j = j(t, h, g) ∈
{−2k−2, . . . , 2k−1−1} such that both tj,1(k) and tj,2(k) are contained in B(t, h−g),
which implies

sup
s∈B(t,h−g)

|(KR,g ∗ p̃δ)(s)− p̃δ(s)| ≥ max
i=1,2

|(KR,g ∗ p̃δ)(tj,i(k))− p̃δ(tj,i(k))| .(5.6)

By linearity of the convolution and the theorem of dominated convergence,

(KR,g ∗ p̃δ)(tj,i(k))− p̃δ(tj,i(k))

= (KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k))

+ c9 δ

∞∑
l=k+1

∑
j∈Jl

(
(KR,g ∗ Sl,β,j)(tj,i(k))− Sl,β,j(tj,i(k))

)
.(5.7)

We analyze the convolution KR,g ∗ Sl,β,j for l ≥ k + 1. Here,

sin
(
2l−1π tj,1(k)

)
= sin

(
2l−k−1π (4j + 1)

)
= 0

and

sin
(
2l−1π tj,2(k)

)
= sin

(
2l−k−1π (4j + 3)

)
= 0.

Hence, ∑
j∈Jl

Sl,β,j(tj,i(k)) = 0, i = 1, 2

for any l ≥ k + 1. Furthermore,

(KR,g ∗ Sl,β,j)(tj,i(k)) =
1

2g

∫ g

−g
Sl,β,j(tj,i(k)− x) dx

=
1

2g

∫ tj,i(k)+g

tj,i(k)−g
Sl,β,j(x) dx, i = 1, 2.

Due to the identities

(4j + 2)2−k − 2−k+1 = tj,1(k)− g
(4j + 2)2−k + 2−k+1 = tj,2(k) + g,

we have either[
(4j + 2)2−l − 2−l+1, (4j + 2)2−l + 2−l+1

]
⊂ [tj,1(k)− g, tj,2(k) + g]

or [
(4j + 2)2−l − 2−l+1, (4j + 2)2−l + 2−l+1

]
∩ [tj,1(k)− g, tj,2(k) + g] = ∅
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for any l ≥ k + 1. Therefore, for i = 1, 2,∑
j∈Jl

(KR,g ∗ Sl,β,j)(tj,i(k))

=
∑
j∈Jl

1

2g

∫ tj,i(k)+g

tj,i(k)−g
2−lβ sin

(
2l−1πx

)
1
{
|(4j + 2)2−l − x| ≤ 2−l+1

}
dx

= 0

such that equation (5.7) then simplifies to

(KR,g ∗ p̃δ)(tj,i(k))− p̃δ(tj,i(k)) = (KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k)), i = 1, 2.

Together with (5.6), we obtain

sup
s∈B(t,h−g)

|(KR,g ∗ p̃δ)(s)− p̃δ(s)| ≥ max
i=1,2

|(KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k))|

for some j ∈ {−2k−2,−2k−2 + 1, . . . , 2k−2 − 1}. If j /∈ Jk, then

max
i=1,2

|(KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k))|

= max
i=1,2

|(KR,g ∗ pk−1,δ)(tj,i(k))− pk−1,δ(tj,i(k))|

≥ 1

2
c9 δ

(
1− 2

π

)
gβ .

If j ∈ Jk, then

max
i=1,2

|(KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k))|

≥ c9 δ max
i=1,2

|(KR,g ∗ Sk,β,j)(tj,i(k))− Sk,β,j(tj,i(k))|

− max
i=1,2

|(KR,g ∗ pk−1,δ)(tj,i(k))− pk−1,δ(tj,i(k))|

≥ c9 δ max
i=1,2

|(KR,g ∗ Sk,β,j)(tj,i(k))− Sk,β,j(tj,i(k))| − 1

2
c9 δ

(
1− 2

π

)
gβ .

Similar as above we obtain

(KR,g ∗ Sk,β,j)(tj,1(k))− Sk,β,j(tj,1(k))

=
1

2g

∫ tj,1(k)+g

tj,1(k)−g
2−kβ sin

(
2k−1πx

)
dx− 2−kβ

=
1

2g
2−kβ

∫ 2−k+1

0

sin
(
2k−1πx

)
dx− 2−kβ

= gβ
(

2

π
− 1

)
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as well as

(KR,g ∗ Sk,β,j)(tj,2(k))− Sk,β,j(tj,2(k)) = gβ
(

1− 2

π

)
,

such that

max
i=1,2

|(KR,g ∗ pk,δ)(tj,i(k))− pk,δ(tj,i(k))| ≥ 1

2
c9 δ

(
1− 2

π

)
gβ .

Combining the two cases finally gives

sup
s∈B(t,h−g)

|(KR,g ∗ p̃δ)(s)− p̃δ(s)| ≥
1

2
c9 δ

(
1− 2

π

)
gβ .

In particular, p̃δ ∈ En(β) for sufficiently large n ≥ n0(β, δ), and thus p̃δ ∈ A.

Since A is open and dense in the class H(−ε,1+ε)(β) and A ⊂ R̃, the complement

H(−ε,1+ε)(β) \ R̃ is nowhere dense in H(−ε,1+ε)(β). Thus, because of

H(−ε,1+ε)(β)|B(t,h) = HB(t,h)(β),

and the fact that for any x ∈ H(−ε,1+ε)(β) and any z′ ∈ HB(t,h)(β) with

‖x|B(t,h) − z′‖β,B(t,h) < δ

there exists an extension z ∈ H(−ε,1+ε)(β) of z′ with

‖x− z‖β,(−ε,1+ε) < δ,

the set HB(t,h)(β) \ R̃|B(t,h) is nowhere dense in HB(t,h)(β). Since the property
”nowhere dense” is stable when passing over to intersections and the corresponding
relative topology, we conclude that

PB(t,h)(β, L
∗) \R|B(t,h)

is nowhere dense in PB(t,h)(β, L
∗) with respect to ‖ · ‖β,B(t,h).

Proof of Lemma 3.5. As it has been proven in Hardy (1916) the Weierstraß
function Wβ is β-Hölder continuous everywhere. For the sake of completeness, we
state the proof here. Because the Weierstraß function is 2-periodic, it suffices to
consider points s, t ∈ R with |s− t| ≤ 1. Note first that

|Wβ(s)−Wβ(t)| ≤ 2

∞∑
n=0

2−nβ
∣∣∣∣sin(1

2
2nπ(s+ t)

)∣∣∣∣ · ∣∣∣∣sin(1

2
2nπ(s− t)

)∣∣∣∣
≤ 2

∞∑
n=0

2−nβ
∣∣∣∣sin(1

2
2nπ(s− t)

)∣∣∣∣ .
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Choose k ∈ N∪{0} such that 2−(k+1) < |s− t| ≤ 2−k. For all summands with index
n ≤ k, use the inequality | sin(x)| ≤ |x| and for all summands with index n > k use
| sin(x)| ≤ 1, such that

|Wβ(s)−Wβ(t)| ≤ 2

k∑
n=0

2−nβ
∣∣∣∣122nπ(s− t)

∣∣∣∣+ 2

∞∑
n=k+1

2−nβ

= π |s− t|
k∑

n=0

2n(1−β) + 2

∞∑
n=k+1

2−nβ .

Note that,

k∑
n=0

2n(1−β) =
2(k+1)(1−β) − 1

21−β − 1
=

2k(1−β) − 2β−1

1− 2β−1
≤ 2k(1−β)

1− 2β−1
,

and, as 2−β < 1,

∞∑
n=k+1

2−nβ =
2−(k+1)β

1− 2−β
.

Consequently, we have

|Wβ(s)−Wβ(t)| ≤ π |s− t| 2k(1−β)

1− 2β−1
+ 2

2−(k+1)β

1− 2−β

≤ |s− t|β
(

π

1− 2β−1
+

2

1− 2−β

)
.

Furthermore

‖Wβ‖sup ≤
∞∑
n=0

2−nβ =
1

1− 2−β
,

so that for any interval U ⊂ R,

‖Wβ‖β,U ≤
π

1− 2β−1
+

3

1− 2−β
.

We now turn to the proof of bias lower bound condition. For any 0 < β ≤ 1, for any
h ∈ G∞, for any g = 2−k ∈ G∞ with g ≤ h/2, and for any t ∈ R, there exists some
s0 ∈ [t− (h−g), t+(h−g)] with cos

(
2kπs0

)
= 1, since the function x 7→ cos(2kπx)

is 21−k-periodic. Note that in this case also

cos (2nπs0) = 1 for all n ≥ k.(5.8)

The following supremum is now lower bounded by

sup
s∈B(t,h−g)

∣∣∣∣∫ KR,g(x− s)Wβ(x) dx−Wβ(s)

∣∣∣∣
≥
∣∣∣∣∫ 1

−1

KR(x)Wβ(s0 + gx) dx−Wβ(s0)

∣∣∣∣ .
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As furthermore

sup
x∈R

∣∣KR(x)2−nβ cos (2nπ(s0 + gx))
∣∣ ≤ ‖KR‖sup · 2−nβ

and

∞∑
n=0

‖KR‖sup · 2−nβ =
‖KR‖sup

1− 2−β
<∞,

the dominated convergence theorem implies∣∣∣∣∫ 1

−1

KR(x)Wβ(s0 + gx) dx−Wβ(s0)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

2−nβIn(s0, g)

∣∣∣∣∣
with

In(s0, g) =

∫ 1

−1

KR(x) cos (2nπ(s0 + gx)) dx− cos (2nπs0) .

Recalling (5.8), it holds for any index n ≥ k

In(s0, g) =
1

2
· sin(2nπ(s0 + g))− sin(2nπ(s0 − g))

2nπg
− 1

=
sin(2nπg)

2nπg
− 1

= −1.(5.9)

Furthermore, for any index 0 ≤ n ≤ k − 1 holds

In(s0, g) =
1

2
· sin(2nπ(s0 + g))− sin(2nπ(s0 − g))

2nπg
− cos (2nπs0)

= cos(2nπs0)

(
sin(2nπg)

2nπg
− 1

)
.(5.10)

Using this representation, the inequality sin(x) ≤ x for x ≥ 0, and Lemma A.3, we
obtain

2−nβIn(s0, g) ≤ 2−nβ
(

1− sin(2nπg)

2nπg

)
≤ 2−nβ · (2nπg)2

6

≤ 2−nβ+2(n−k)+1.

Since k − n− 1 ≥ 0 and β ≤ 1, this is in turn bounded by

2−nβIn(s0, g) ≤ 2−(2k−n−2)β · 22(n−k)+1+2(k−n−1)β

≤ 2−(2k−n−2)β · 22(n−k)+1+2(k−n−1)

≤ 2−(2k−n−2)β .(5.11)
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Taking together (5.9) and (5.11), we arrive at

k−3∑
n=0

2−nβIn(s0, g) +

2k−2∑
n=k+1

2−nβIn(s0, g) ≤
k−3∑
n=0

2−(2k−n−2)β −
2k−2∑
n=k+1

2−nβ = 0.

Since by (5.9) also

∞∑
n=2k−1

2−nβIn(s0, g) = −
∞∑

n=2k−1

2−nβ < 0,

it remains to investigate

k∑
n=k−2

2−nβIn(s0, g).

For this purpose, we distinguish between the three cases

(i) cos(2k−1πs0) = cos(2k−2πs0) = 1

(ii) cos(2k−1πs0) = −1, cos(2k−2πs0) = 0

(iii) cos(2k−1πs0) = 1, cos(2k−2πs0) = −1

and subsequently use the representation in (5.10). In case (i), obviously

k∑
n=k−2

2−nβIn(s0, g) ≤ −2−kβ < 0.

using sin(x) ≤ x for x ≥ 0 again. In case (ii), we obtain for β ≤ 1

k∑
n=k−2

2−nβIn(s0, g) = 2−kβ2β
(

1− sin(π/2)

π/2

)
− 2−kβ ≤ 2−kβ

(
1− 4

π

)
< 0.

Finally, in case (iii), for β ≤ 1,

k∑
n=k−2

2−nβIn(s0, g)

= 2−(k−1)β

(
sin(π/2)

π/2
− 1

)
− 2−(k−2)β

(
sin(π/4)

π/4
− 1

)
− 2−kβ

= 2−(k−1)β

((
2

π
− 1

)
+ 2β

(
1− sin(π/4)

π/4

))
− 2−kβ

< 2−(k−1)β

(
2

π
+ 1− 8

sin(π/4)

π

)
− 2−kβ

< −2−kβ

< 0.
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That is,

sup
s∈B(t,h−g)

∣∣∣∣∫ KR,g(x− s)Wβ(x) dx−Wβ(s)

∣∣∣∣
≥
∣∣∣∣∫ 1

−1

KR(x)Wβ(s0 + gx) dx−Wβ(s0)

∣∣∣∣
= −

∞∑
n=0

2−nβIn(s0, g)

≥ −
k∑

n=k−2

2−nβIn(s0, g)

>

(
4

π
− 1

)
gβ .

Proof of Theorem 3.6. The proof is structured as follows. First, we show
that the bias term is negligible. Then, we conduct several reduction steps to non-
stationary Gaussian processes. We pass over to the supremum over a stationary
Gaussian process by means of Slepian’s comparison inequality, and finally, we em-
ploy extreme value theory for its asymptotic distribution.

Step 1 (Negligibility of the bias). For any t ∈ [0, 1], there exists some kt ∈ Tn
with t ∈ Ikt . Hence,∣∣∣Eχ1

p p̂
loc
n (t, ĥlocn (t))− p(t)

∣∣∣
ẑn(t)

=
√
ñĥlocn,kt

∣∣∣Eχ1
p p̂

(1)
n (ktδn, ĥ

loc
n,kt)− p(t)

∣∣∣
≤
√
ñĥlocn,kt

∣∣∣Eχ1
p p̂

(1)
n (ktδn, ĥ

loc
n,kt)− p(ktδn)

∣∣∣+
√
ñĥlocn,kt

∣∣∣p(ktδn)− p(t)
∣∣∣.

Assume ĵn(kδn) ≥ kn(kδn) = j̄n(kδn) −mn for all k ∈ Tn. Since δn ≤ 1
8hβ∗,n for

sufficiently large n ≥ n0(β∗, ε),

ĥlocn,kt = 2mn−un ·min
{

2−ĵn((kt−1)δn)−mn , 2−ĵn(ktδn)−mn
}

≤ 2mn−un ·min
{
h̄n((kt − 1)δn), h̄n(ktδn)

}
≤ 3 · 2mn−un · h̄n(t)

by Lemma 4.2. In particular, δn + ĥlocn,kt ≤ 2−(j̄n(t)+1) holds for sufficiently large
n ≥ n0(c1), so that Assumption 3.1, Lemma 3.2, and Lemma 4.4 yield

sup
p∈Pn

√
ñĥlocn,kt

∣∣∣Eχ1
p p̂

(1)
n (ktδn, ĥ

loc
n,kt)− p(ktδn)

∣∣∣
≤ sup
p∈Pn

√
ñĥlocn,kt sup

s∈Bδn (t)

∣∣∣Eχ1
p p̂

(1)
n (s, ĥlocn,kt)− p(s)

∣∣∣
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≤ sup
p∈Pn

b2

√
ñĥlocn,kt

(
ĥlocn,kt

)βp(B(t,2−j̄n(t)))

≤ sup
p∈Pn

b2

√
ñĥlocn,kt

(
ĥlocn,kt

)βp(B(t,h̄n(t)))

≤ sup
p∈Pn

b2
(
3 · 2mn−un

) 2β∗+1
2

√
ñh̄n(t)

log ñ
h̄n(t)βn,p(t)

≤ c10 · (log ñ)−
1
4 c1(2β∗+1) log 2(5.12)

for some constant c10 = c10(β∗, L
∗,K), on the event{

ĵn(kδn) ≥ kn(kδn) for all k ∈ Tn
}
.

Furthermore, for t ∈ Ik and for n ≥ n0,

δβ∗n ≤ 2−jmin

(
log ñ

ñ

)κ1β∗

≤ 2−jmin

(
log ñ

ñ

) 1
2

≤ h̄n(t)βn,p(t),

such that on the same event

sup
p∈Pn

√
ñĥlocn,kt |p(ktδn)− p(t)| ≤ sup

p∈Pn

√
3L∗ · 2 1

2 (mn−un)

√
ñh̄n(t)

log ñ
· δβ∗n

≤ c11 · (log ñ)−
1
4 c1 log 2(5.13)

for some constant c11 = c11(β∗, L
∗). Taking (5.12) and (5.13) together,

sup
p∈Pn

sup
t∈[0,1]

an

∣∣∣Eχ1
p p̂

loc
n (t, ĥlocn (t))− p(t)

∣∣∣
ẑn(t)

1

{
ĵn(kδn) ≥ kn(kδn)∀ k ∈ Tn

}
≤ ε1,n,

with

ε1,n = c10 · an(log n)−
1
4 c1(2β∗+1) log 2 + c11 · an(log n)−

1
4 c1 log 2.

According to the definition of c1 in (3.9), ε1,n converges to zero. Observe further-
more that

sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
(5.14)

can be written as

max
k∈Tn

sup
t∈Ik

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)

= max
k∈Tn

√
ñĥlocn,k max

{
p̂(1)
n (kδn, ĥ

loc
n,k)− inf

t∈Ik
p(t), sup

t∈Ik
p(t)− p̂(1)

n (kδn, ĥ
loc
n,k)

}
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with the definitions in (3.12) and (3.13). That is, the supremum in (5.14) is mea-
surable. Then, by means of Proposition 4.1, with x1,n = x− ε1,n,

sup
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
− bn

 ≤ x


≥ sup
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
− bn

 ≤ x,
ĵn(kδn) ≥ kn(kδn) for all k ∈ Tn


≥ sup
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− Eχ1
p p̂

loc
n (t, ĥlocn (t))

∣∣∣
ẑn(t)

− bn

 ≤ x1,n,

ĵn(kδn) ≥ kn(kδn) for all k ∈ Tn


≥ sup
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− Eχ1
p p̂

loc
n (t, ĥlocn (t))

∣∣∣
ẑn(t)

− bn

 ≤ x1,n


− sup
p∈Pn

Pχ2
p

(
ĵn(kδn) < kn(kδn) for some k ∈ Tn

)

= sup
p∈Pn

Eχp

[
Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k

∣∣∣p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

∣∣∣
(5.15)

− bn

}
≤ x1,n

∣∣∣∣∣χ2

)]
+ o(1)

for n→∞.

Step 2 (Reduction to the supremum over a non-stationary Gaussian process).
In order to bound (5.15) from below note first that

Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k

∣∣∣p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

∣∣∣− bn} ≤ x1,n

∣∣∣∣∣χ2

)

≥ Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k
p(kδn)

∣∣∣p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

∣∣∣− bn} ≤ x1,n√
L∗

∣∣∣∣∣χ2

)
.
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Using the identity |x| = max{x,−x}, we arrive at

Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k

∣∣∣p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

∣∣∣− bn} ≤ x1,n

∣∣∣∣∣χ2

)
≥ 1− P1,p − P2,p

with

P1,p = Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k
p(kδn)

(
p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

)
− bn

}
>
x1,n√
L∗

∣∣∣∣∣χ2

)

P2,p = Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k
p(kδn)

(
Eχ1
p p̂

(1)
n (kδn, ĥ

loc
n,k)− p̂(1)

n (kδn, ĥ
loc
n,k)

)
− bn

}
>
x1,n√
L∗

∣∣∣∣∣χ2

)
.

In order to approximate the maxima in P1,p and P2,p by a supremum over a Gaus-
sian process, we verify the conditions in Corollary 2.2 developed recently in Cher-
nozhukov, Chetverikov and Kato (2014b). For this purpose, consider the empirical
process

Gpnf =
1√
ñ

ñ∑
i=1

(
f(Xi)− Epf(Xi)

)
, f ∈ Fn

indexed by

Fpn = {fn,k : k ∈ Tn}

with

fn,k : R→ R

x 7→
(
ñĥlocn,k p(kδn)

)− 1
2

K

(
kδn − x
ĥlocn,k

)
.

Note that Chernozhukov, Chetverikov and Kato (2014b) require the class of func-
tions to be centered. We subsequently show that the class Fpn is Euclidean, which
implies by Lemma 5.2 that the corresponding centered class is VC. It therefore
suffices to consider the uncentered class Fpn. Note furthermore that fn,k are ran-
dom functions but depend on the second sample χ2 only. Conditionally on χ2, any
function fn,k ∈ Fpn is measurable as K is continuous. Due to the choice of κ2 and
due to

ĥlocn,k ≥ 2−un · (log ñ)κ2

ñ
≥ (log ñ)κ2−c1 log 2

ñ
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the factor (
ñĥlocn,k p(kδn)

)− 1
2 ≤ 1√

M
(log ñ)

1
2 (c1 log 2−κ2)(5.16)

tends to zero logarithmically. We now show that Fpn is Euclidean with envelope

Fn =
‖K‖sup√

M
(log ñ)

1
2 (c1 log 2−κ2).

Note first that

Fpn ⊂ F =

{
fu,h,t : t ∈ R, 0 < u ≤ 1√

M
(log ñ)

1
2 (c1 log 2−κ2), 0 < h ≤ 1

}
with

fu,h,t(·) = u ·K
(
t− ·
h

)
.

Hence,

N
(
Fpn, ‖ · ‖L1(Q), εFn

)
≤ N

(
F ,
‖ · ‖L1(Q)

Fn
, ε

)
for all probability measures Q and it therefore suffices to show that F is Euclidean.
To this aim, note that for any fu,h,t, fv,g,s ∈ F and for any probability measure Q,

‖fu,h,t − fv,g,s‖L1(Q)

Fn

≤
‖fu,h,t − fv,h,t‖L1(Q)

Fn
+
‖fv,h,t − fv,g,s‖L1(Q)

Fn

≤ |u− v| · ‖K‖sup

Fn
+

1

‖K‖sup

∥∥∥∥K ( t− ·h
)
−K

(
s− ·
g

)∥∥∥∥
L1(Q)

.

Thus, using the estimate of the covering numbers in (2.1) and Lemma 14 in Nolan
and Pollard (1987), there exist constants A′ = A′(A,K) and ν′ = ν + 1 with

sup
Q
N

(
F ,
‖ · ‖L1(Q)

Fn
, ε

)
≤
(
A′

ε

)ν′
for all 0 < ε ≤ 1. That is, F is Euclidean with the constant function Fn as envelope,
and in particular

lim sup
n→∞

sup
Q
N
(
Fpn, ‖ · ‖L1(Q), εFn

)
≤
(
A′

ε

)ν′
.(5.17)

Hence, by Lemma 5.2, the Pp-centered class Fp,0n corresponding to Fpn is VC with
envelope 2Fn and

N
(
Fp,0n , ‖ · ‖L2(Q), 2εFn

)
≤
(
A′′

ε

)ν′′
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and VC characteristics A′′ = A′′(A,K) and ν′′ = ν′′(ν). Next, we verify the Bern-
stein condition

sup
p∈Pn

sup
f∈Fn

∫
|f(y)|lp(y) dy ≤ σ2

nB
l−2
n

for some Bn ≥ σn > 0 and Bn ≥ 2Fn and l = 2, 3. First,

max
k∈Tn

∫
|fn,k(y)|2 p(y) dy

= max
k∈Tn

(
ñ p(kδn)

)−1
∫ 1

−1

K(x)2p
(
kδn + ĥlocn,kx

)
dx

≤ σ2
n

with

σ2
n =

2L∗‖K‖2sup

Mñ
.

Also, using (5.16),

max
k∈Tn

∫
|fn,k(y)|3 p(y) dy

= max
k∈Tn

(
ñĥlocn,k p(kδn)

)−3/2

ĥlocn,k

∫ 1

−1

K (x)
3
p
(
kδn + ĥlocn,kx

)
dx

≤ σ2
n‖K‖sup · max

k∈Tn

(
ñĥlocn,k p(kδn)

)−1/2

≤ σ2
n ·Bn

with Bn = 2Fn. Furthermore, it holds that ‖2Fn‖sup = Bn. According to Corol-
lary 2.2 in Chernozhukov, Chetverikov and Kato (2014b), for sufficiently large
n ≥ n0(c1, κ2, L

∗,K) such that Bn ≥ σn, there exists a random variable

Zn,p
D
= max
f∈Fpn

GPpf,

and universal constants c12 and c13, such that for η = 1
4 (κ2 − c1 log 2− 4) > 0

sup
p∈Pn

P

(
an
√
ñ

∣∣∣∣max
f∈Fpn

Gnf − Zn,p
∣∣∣∣ > ε2,n

∣∣χ2

)
≤ c12

(
(log ñ)−η +

log ñ

ñ

)
,

where

ε2,n = an

(
BnKn

(log ñ)−η/2
+
ñ1/4
√
BnσnK

3/4
n

(log ñ)−η/2
+
ñ1/3(Bnσ

2
nK

2
n)1/3

(log ñ)−η/3

)
with Kn = c13ν

′′(log ñ ∨ log(A′′Bn/σn)), and GPp is a version of the Pp-Brownian
motion. That is, it is centered and has the covariance structure

Eχ1
p f(X1)g(X1)
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for all f, g ∈ Fpn. As can be seen from an application of the Itô isometry, it possesses
in particular the distributional representation

(GPpf)f∈Fpn
D
=

(∫
f(x)

√
p(x) dW (x)

)
f∈Fpn

,(5.18)

where W is a standard Brownian motion independent of χ2. An easy calculation
furthermore shows that ε2,n tends to zero for n → ∞ logarithmically due to the
choice of η. Finally,

sup
p∈Pn

P1,p

≤ sup
p∈Pn

Pχp

(
an

(√
ñ max
f∈Fpn

Gpnf − bn
)
>
x1,n√
L∗
, an
√
ñ

∣∣∣∣max
f∈Fpn

Gpnf − Zn,p
∣∣∣∣ ≤ ε2,n

∣∣∣χ2

)
+ sup
p∈Pn

Pχp

(
an
√
ñ

∣∣∣∣max
f∈Fpn

Gpnf − Zn,p
∣∣∣∣ > ε2,n

∣∣∣χ2

)
≤ sup
p∈Pn

Pχp
(
an

(√
ñ Zn,p − bn

)
> x2,n

∣∣∣χ2

)
+ o(1)

for n→∞, with

x2,n =
x1,n√
L∗
− ε2,n =

x− ε1,n√
L∗

− ε2,n =
x√
L∗

+ o(1).

The probability P2,p is bounded in the same way, leading to

sup
p∈Pn

Pχp

(
an

{
max
k∈Tn

√
ñĥlocn,k

∣∣∣p̂(1)
n (kδn, ĥ

loc
n,k)− Eχ1

p p̂
(1)
n (kδn, ĥ

loc
n,k)

∣∣∣− bn} ≤ x1,n

∣∣∣∣∣χ2

)
≥ 2 sup

p∈Pn

Pχp
(
an

(√
ñ Zn,p − bn

)
≤ x2,n

∣∣∣χ2

)
− 1 + o(1).

Finally we conduct a further approximation

Yn,p(k)
D
=

1√
ĥlocn,k

∫
K

(
kδn − x
ĥlocn,k

)
dW (x)

for the right-hand side in (5.18) in order to obtain to a suitable intermediate process
for the next step. With

Vn,p(k) =
√
ñW (fn,k

√
p)− Yn,p(k)

D
=
√
ñ

∫
fn,k(x)

(√
p(x)−

√
p(kδn)

)
dW (x),

it remains to show that

lim
n→∞

sup
p∈Pn

PW
(
an max

k=1,...,δn
|Vn,p(k)| > ε3,n

)
= 0
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for some sequence (ε3,n)n∈N converging to zero. Note that Vn,p(k), k ∈ Tn is a
centered Gaussian process and in particular subgaussian with respect to the metric

dVn,p(k, l) =
(

EW (Vn,p(k)− Vn,p(l))2
)1/2

.

Hence, by Dudley’s entropy bound in the form of Koltchinskii (2011), Theorem 3.1,
there exists a numerical constant c14 > 0, such that

EW max
k∈Tn

|Zn,p(k)− Zn,p(k0)| ≤ c14

∫ D(Tn)

0

√
logN(Tn, dZn,p , ε) dε(5.19)

for all k0 ∈ Tn, where

D(Tn) = D(Tn, dVn,p) = sup
k,l∈Tn

dVn,p(k, l)

denotes the diameter of the space Tn with respect to dVn,p . It remains to bound the
entropy integral. Note that by Itô’s isometry and by the Minkowski inequality

dVn,p(k, l) ≤
(
ñ

∫
fn,k(x)2

(√
p(x)−

√
p(kδn)

)2

dx

)1/2

+

(
ñ

∫
fn,l(x)2

(√
p(x)−

√
p(lδn)

)2

dx

)1/2

.

Furthermore, as p ∈Pn,

ñ

∫
fn,k(x)2

(√
p(x)−

√
p(kδn)

)2

dx

=
1

p(kδn)

∫
K(x)2

(√
p(kδn + ĥlocn,kx)−

√
p(kδn)

)2

dx

≤ 1

p(kδn)

∫
K(x)2

∣∣∣p(kδn + ĥlocn,kx)− p(kδn)
∣∣∣dx

≤ L∗‖K‖22
p(kδn)

(
ĥlocn,k

)β∗
≤ L∗‖K‖22

M
(log ñ)

−c1β∗ log 2
,

(5.20)

we get

D(Tn) ≤ ∆n = 2

√
L∗‖K‖2√
M

(log ñ)
− 1

2 c1β∗ log 2
.

Because of

N(Tn, dVn,p , ε) = N
(
Gpn, ‖ · ‖L2(Pp), ε

)
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with

Gpn =

{
f̃t(·) =

√
ñfn,k(·)

(
1−

√
p(kδn)

p(·)

)
: k ∈ Tn

}
,

it remains to bound the covering numbers N
(
Gpn, ‖ · ‖L2(Pp), ε

)
. Moreover,

Gpn ⊂ Hpn =

{
gn,k,u(·) = u ·K

(
kδn − ·
ĥlocn,k

)
: k ∈ Tn, |u| ≤ Un

}
for any p ∈Pn, with

Un =

√
L∗

M

(
ñ

(log ñ)κ2−c1 log 2

) 1−β∗
2

,

since for k ∈ Tn and |kδn − x| ≤ ĥlocn,k∣∣∣∣∣(ĥlocn,k p(kδn)
)−1/2

(
1−

√
p(kδn)

p(x)

)∣∣∣∣∣ ≤ (ĥlocn,k)−1/2
(
|p(x)− p(kδn)|
p(x) p(kδn)

)1/2

≤
√
L∗

M
(ĥlocn,k)

β∗−1
2

≤ Un.

As before, for any k, l ∈ Tn and for any u, v with |u| ≤ Un and |v| ≤ Un and for
any probability measure Q, by Minkowski inequality,

‖gn,k,u − gn,l,v‖L2(Q)

≤ ‖gn,k,u − gn,k,v‖L2(Q) + ‖gn,k,v − gn,l,v‖L2(Q)

≤ |u− v| · ‖K‖sup + Un ·

∥∥∥∥∥K
(
kδn − ·
ĥlocn,k

)
−K

(
lδn − ·
ĥlocn,l

)∥∥∥∥∥
L2(Q)

which together with (2.1) implies that

N
(
Hpn, ‖ · ‖L2(Q), ε

)
≤
(
A′Un
ε

)ν+1

for 0 < ε ≤ ‖K‖sup, and for some universal constant A′ = A′(A,K), see Nolan and
Pollard (1987), Lemma 14. Consequently,

sup
p∈Pn

N(Tn, dVn,p , ε) ≤
(
A′Un
ε

)ν+1

,

and therefore, recalling (5.19),

EW max
k∈Tn

|Vn,p(k)− Vn,p(k0)|

≤ c14

√
ν + 1

∫ ∆n

0

{
log(A′) + log(Un) + log(1/ε)

}1/2

dε
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for all k0 ∈ Tn and for sufficiently large n ≥ n0(β∗, L
∗,K,M). Finally, as ∆n tends

to zero and Un goes to infinity for n→∞,

EW max
k∈Tn

|Vn,p(k)− Vn,p(k0)|

≤ c14

√
ν + 1

(
2∆n

√
log(Un) +

∫ ∆n

0

√
log(1/ε) dε

)
for sufficiently large n ≥ n0(β∗, L

∗,K,M,A) independent of p. Additionally, with
a change of variable and integration by parts,∫ ∆n

0

√
log(1/ε) dε =

∫ ∞
∆−1
n

√
log(ε)

ε2
dε

= ∆n

√
− log(∆n) +

1

2

∫ ∞
∆−1
n

1

ε2
√

log(ε)
dε

≤ ∆n

√
− log(∆n) +

1

2

∫ ∞
∆−1
n

√
log(ε)

ε2
dε

for sufficiently large n ≥ n0(β∗, L
∗,K,M) independent of p, and thus∫ ∆n

0

√
log(1/ε) dε ≤ 2∆n

√
− log(∆n).

Finally,

EW max
k∈Tn

|Vn,p(k)− Vn,p(k0)|

≤ 2c14

√
ν + 1∆n

(√
log(Un) +

√
− log(∆n)

)
,

and consequently, recalling (5.20) and using Jensen’s inequality,

EW max
k∈Tn

|Vn,p(k)|

≤ 2c14

√
ν + 1∆n

(√
log(Un) +

√
− log(∆n)

)
+ EW |Vn,p(k0)|

≤ 2c14

√
ν + 1∆n

(√
log(Un) +

√
− log(∆n)

)
+
(

EW |Vn,p(k0)|2
)1/2

≤ 2c14

√
ν + 1∆n

(√
log(Un) +

√
− log(∆n)

)
+

∆n

2

≤ (2c14

√
ν + 1 + 1/2)∆n

(√
log(Un) +

√
− log(∆n)

)
.

For the sequence
ε3,n = (log ñ)−

1
4 (c1β∗ log 2−2),

Markov’s inequality gives

sup
p∈Pn

PW
(
an max

k∈Tn
|Vn,p(k)| > ε3,n

)
≤ (2c14

√
ν + 1 + 1/2)

an∆n

ε3,n

(√
log(Un) +

√
− log(∆n)

)
,(5.21)
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where both ε3,n and the expression in (5.21) converge to 0 due to the choice of c1
in (3.9). Following the same steps as before, we obtain

sup
p∈Pn

Pχp

(
an

(√
ñmax
k∈Tn

GPpfn,k − bn
)
≤ x2,n

∣∣∣χ2

)
≥ sup
p∈Pn

PW
(
an

(
max
k∈Tn

Yn,p(k)− bn
)
≤ x3,n

)
+ o(1)

for n→∞, with x3,n = x2,n − ε3,n.

Step 3 (Reduction to the supremum over a stationary Gaussian process).
We now use Slepian’s comparison inequality in order to pass over to the least
favorable case. Since K is symmetric and of bounded variation, it possesses a rep-
resentation

K(x) =

∫ x

−1

g dP

for all but at most countably many x ∈ [−1, 1], where P is some symmetric proba-
bility measure on [−1, 1] and g is some measurable odd function with |g| ≤ TV (K).
Using this representation, and denoting by

Wk,l(z) =

√
1

ĥlocn,k

{
W (kδn + ĥlocn,k)−W (kδn + zĥlocn,k)

}
−
√

1

ĥlocn,l

{
W (lδn + ĥlocn,l)−W (lδn + zĥlocn,l)

}
W̃k,l(z) =

√
1

ĥlocn,k

{
W (kδn − zĥlocn,k)−W (kδn + zĥlocn,k)

}
+

√
1

ĥlocn,l

{
W (lδn + zĥlocn,l)−W (lδn − zĥlocn,l)

}
,

(5.22)

Fubini’s theorem and the Cauchy-Schwarz inequality yield for any k, l ∈ Tn

EW
(
Yn,p(k)− Yn,p(l)

)2

= EW

(√
1

ĥlocn,k

∫ ∫ x−kδn
ĥloc
n,k

−1

g(z) dP (z)1
{
|x− kδn| ≤ ĥlocn,k

}
dW (x)

−
√

1

ĥlocn,l

∫ ∫ x−lδn
ĥloc
n,l

−1

g(z) dP (z)1
{
|x− lδn| ≤ ĥlocn,l

}
dW (x)

)2

= EW

(∫ 1

−1

g(z)

{√
1

ĥlocn,k

∫
1

{
kδn + zĥlocn,k ≤ x ≤ kδn + ĥlocn,k

}
dW (x)



LOCALLY ADAPTIVE CONFIDENCE BANDS 47

−
√

1

ĥlocn,l

∫
1

{
lδn + zĥlocn,l ≤ x ≤ lδn + ĥlocn,l

}
dW (x)

}
dP (z)

)2

= EW

(∫ 1

−1

g(z)Wk,l(z) dP (z)

)2

= EW

(∫ 1

0

g(z)
(
Wk,l(z)−Wk,l(−z)

)
dP (z)

)2

= EW

∫ 1

0

∫ 1

0

g(z)g(z′)W̃k,l(z)W̃k,l(z
′) dP (z) dP (z′)

≤
∫ 1

0

∫ 1

0

|g(z)g(z′)|
{

EW W̃k,l(z)
2EW W̃k,l(z

′)2
}1/2

dP (z) dP (z′).

We verify in Lemma A.1 that

EW W̃k,l(z)
2 ≤ 4

for z ∈ [0, 1], so that

EW (Yn,p(k)− Yn,p(l))2 ≤ 4

(∫ 1

0

|g(z)|dP (z)

)2

≤ TV (K)2

for all k, l ∈ Tn. Consider now the Gaussian process

Yn,min(k) =
c15√
δn

∫
K

(
kδn − x
δn/2

)
dW (x), k ∈ Tn,

with

c15 =
TV (K)

‖K‖2
.

Furthermore,

EW (Yn,min(k)− Yn,min(l))
2

= EWYn,min(k)2 + EWYn,min(l)2 = TV (K)2

for all k, l ∈ Tn with k 6= l, so that

EW (Yn,p(k)− Yn,p(l))2 ≤ EW (Yn,min(k)− Yn,min(l))
2

(5.23)

for all k, l ∈ Tn. In order to apply Slepian’s comparison inequality we additionally
need coinciding second moments. For this aim, we analyze the modified Gaussian
processes

Ȳn,p(k) = Yn,p(k) + c16Z

Ȳn,min(k) = Yn,min(k) + c17Z

with

c16 = c16(K) =
TV (K)√

2
, c17 = c17(K) = ‖K‖2,
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and for some standard normally distributed random variable Z independent of
(Yn,p(k))k∈Tn and (Yn,min(k))k∈Tn . For sufficiently large n ≥ n0(K), these processes
have the same increments as the processes before but additionally coinciding second
moments. Obviously,

EW Ȳn,p(k)2 = EW Ȳn,min(k)2 =
TV (K)2

2
+ ‖K‖22

for all k ∈ Tn, and

EW
(
Ȳn,p(k)− Ȳn,p(l)

)2
= EW (Yn,p(k)− Yn,p(l))2

≤ EW (Yn,min(k)− Yn,min(l))
2

= EW
(
Ȳn,min(k)− Ȳn,min(l)

)2
for all k, l ∈ Tn by inequality (5.23). Then,

sup
p∈Pn

PW
(
an

(
max
k∈Tn

Yn,p(k)− bn
)
≤ x3,n

)
= sup
p∈Pn

PW
(
an

(
max
k∈Tn

Ȳn,p(k)− c16Z − bn
)
≤ x3,n

)
≥ sup
p∈Pn

PW
(
an

(
max
k∈Tn

Ȳn,p(k)− c16Z − bn
)
≤ x3,n, −Z ≤

1

3c16
bn

)
≥ sup
p∈Pn

PW
(
an

(
max
k∈Tn

Ȳn,p(k)− 2

3
bn

)
≤ x3,n

)
− P

(
−Z >

1

3c16
bn

)
≥ sup
p∈Pn

PW
(
an

(
max
k∈Tn

Ȳn,p(k)− 2

3
bn

)
≤ x3,n

)
+ o(1)

for n→∞. Slepian’s inequality in the form of Corollary 3.12 in Ledoux and Tala-
grand (1991) yields

sup
p∈Pn

PW
(
an

(
max
k∈Tn

Ȳn,p(k)− 2

3
bn

)
≤ x3,n

)
≥ PW

(
an

(
max
k∈Tn

Ȳn,min(k)− 2

3
bn

)
≤ x3,n

)
.

Step 4 (Limiting distribution theory). Finally, we pass over to an iid sequence
and apply extreme value theory. Together with

PW
(
an

(
max
k∈Tn

Ȳn,min(k)− 2

3
bn

)
≤ x3,n

)
≥ PW

(
an

(
max
k∈Tn

Yn,min(k) + c17Z −
2

3
bn

)
≤ x3,n, Z ≤

1

3c17
bn

)
≥ PW

(
an

(
max
k∈Tn

Yn,min(k)− 1

3
bn

)
≤ x3,n

)
− P

(
Z >

1

3c17
bn

)



LOCALLY ADAPTIVE CONFIDENCE BANDS 49

= PW
(
an

(
max
k∈Tn

Yn,min(k)− 1

3
bn

)
≤ x3,n

)
+ o(1)

as n→∞, we finally obtain

sup
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
− bn

 ≤ x


≥ 2 P

(
an

(
max
k∈Tn

Yn,min(k)− 1

3
bn

)
≤ x3,n

)
− 1 + o(1).

Theorem 1.5.3 in Leadbetter, Lindgren and Rootzén (1983) yields now

Fn(x) = PW
(
an

(
max
k∈Tn

Yn,min(k)− 1

3
bn

)
≤ x

)
−→ F (x) = exp(− exp(−x))

(5.24)

for any x ∈ R. It remains to show, that Fn(xn)→ F (x) for some sequence xn → x as
n→∞. Because F is continuous in x, for any ε > 0 there exists some δ = δ(ε) > 0
such that for all y ∈ R with |y − x| ≤ δ holds |F (x) − F (y)| ≤ ε/2. In particular,
for y = x± δ,

|F (x)− F (x+ δ)| ≤ ε

2
and |F (x)− F (x− δ)| ≤ ε

2
.(5.25)

Since xn → x, there exists some N1 = N1(ε), such that |xn−x| ≤ δ for all n ≥ N1.
Therefore, employing the monotonicity of Fn,

|Fn(xn)− F (x)| ≤ |Fn(x+ δ)− F (x)| ∨ |Fn(x− δ)− F (x)|

for n ≥ N1, where

|Fn(x± δ)− F (x)| ≤ |Fn(x± δ)− F (x± δ)|+ |F (x± δ)− F (x)| ≤ ε

for n ≥ N2 = N2(ε) due to (5.24) and (5.25). Consequently,

lim
n→∞

inf
p∈Pn

Pχp

an
 sup
t∈[0,1]

∣∣∣p̂locn (t, ĥlocn (t))− p(t)
∣∣∣

ẑn(t)
− bn

 ≤ x


≥ 2 lim
n→∞

P

(
an

(
max
k∈Tn

Yn,min(k)− 1

3
bn

)
≤ x3,n

)
− 1 + o(1)

= 2 P
(√

L∗G ≤ x
)
− 1 + o(1), n→∞,

for some standard Gumbel distributed random variable G.

Proof of Proposition 3.10. The proof is based on a reduction of the supre-
mum over the class to a maximum over two distinct hypotheses.
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Part 1. For β ∈ [β∗, 1), the construction of the hypotheses is based on the Weier-
straß function as defined in (3.8). As in the proof of Proposition 3.3 consider the
function p0 : R→ R with

p0(x) =


0, if |x− t| ≥ 10

3
1
4 + 3

16 (x− t+ 2), if − 10
3 < x− t < −2

1
6 + 1−2−β

12 Wβ(x− t), if |x− t| ≤ 2
1
4 −

3
16 (x− t− 2), if 2 < x− t < 10

3

and the functions p1,n, p2,n : R→ R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x; gβ,n)− qt,n(x; gβ,n), x ∈ R

p2,n(x) = p0(x) + qt+ 9
4 ,n

(x; c18 · gβ,n)− qt,n(x; c18 · gβ,n), x ∈ R

for gβ,n = 1
4n
−1/(2β+1) and c18 = c18(β) = (2LW (β))−1/β , where

qa,n(x; g) =

{
0, if |x− a| > g
1−2−β

12

(
Wβ(x− a)−Wβ(g)

)
, if |x− a| ≤ g

for a ∈ R and g > 0.

Fig 5. Functions p1,n and p2,n for t = 0.5, β = 0.5 and n = 50

Following the lines of the proof of Proposition 3.3, both p1,n and p2,n are contained
in the class Pk(L, β∗,M,KR, ε) for sufficiently large k ≥ k0(β∗). Moreover, both
p1,n and p2,n are constant on B(t, c18 · gβ,n), so that

p1,n|B(t,c18·gβ,n), p2,n|B(t,c18·gβ,n) ∈ HB(t,c18·gβ,n)(∞, L)

for some constant L = L(β). Using Lemma 3.5 and (5.3), the absolute distance of
the two hypotheses in t is at least

|p1,n(t)− p2,n(t)| = |qt,n(t; gβ,n)− qt,n(t; c18 · gβ,n)|

=
1− 2−β

12
|Wβ(gβ,n)−Wβ(c18 · gβ,n)|

≥ 1− 2−β∗

12

(
|Wβ(gβ,n)−Wβ(0)| − |Wβ(c18 · gβ,n)−Wβ(0)|

)
≥ 1− 2−β∗

12

(
gββ,n − LW (β) (c18 · gβ,n)

β
)

≥ 2c19g
β
β,n
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where

c19 = c19(β∗) =
1− 2−β∗

48
.

Since furthermore ∫
(p2,n(x)− p1,n(x)) dx = 0,

and log(1 + x) ≤ x for x > −1, the Kullback-Leibler divergence between the asso-
ciated product probability measures P⊗n1,n and P⊗n2,n is bounded from above by

K(P⊗n2,n,P
⊗n
1,n) ≤ n

∫
(p2,n(x)− p1,n(x))2

p1,n(x)
dx

≤ 12n

∫
(p2,n(x)− p1,n(x))2 dx

= 24n

∫
(q0,n(x; gβ,n)− q0,n(x, c18 · gβ,n))2 dx

= 24n

(
1− 2−β

12

)2
(

2

∫ gβ,n

c18·gβ,n

(
Wβ(x)−Wβ(gβ,n)

)2

dx

+

∫ c18·gβ,n

−c18·gβ,n

(
Wβ(c18 · gβ,n)−Wβ(gβ,n)

)2

dx

)

≤ 24nLW (β)2

(
1− 2−β

12

)2
(

2

∫ gβ,n

c18·gβ,n
(gβ,n − x)2β dx

+ 2(1− c18)2c18g
2β+1
β,n

)
= c20

with

c20 = c20(β) = 48LW (β)24−(2β+1)

(
1− 2−β

12

)2
(

(1− c18)2β+1

2β + 1
+ (1− c18)2c18

)
,

where we used Lemma 3.5 in the last inequality. Theorem 2.2 in Tsybakov (2009)
then yields

inf
Tn

sup
p∈Sk(β)

P⊗np
(
n

β
2β+1 |Tn(t)− p(t)| ≥ c19

)
≥ max

{
1

4
exp(−c20),

1−
√
c20/2

2

}
> 0.
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Part 2. For β = 1, consider the function p0 : R→ R with

p0(x) =

{
0, if |x− t| > 4
1
4 −

1
16 |x− t|, if |x− t| ≤ 4

and the functions p1,n, p2,n : R→ R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x; g1,n)− qt,n(x; g1,n)

p2,n(x) = p0(x) + qt+ 9
4 ,n

(x; g1,n/2)− qt,n(x; g1,n/2)

for g1,n = 1
4n
−1/3, where

qa,n(x; g) =

{
0, if |x− a| > g
1
16 (g − |x− a|), if |x− a| ≤ g

for a ∈ R and g > 0. Following the lines of the proof of Proposition 3.3, both p1,n

and p2,n are contained in the class Pk for sufficiently large k ≥ k0(β∗). Moreover,
both p1,n and p2,n are constant on B(t, g1,n/2), so that

p1,n|B(t,g1,n/2), p2,n|B(t,g1,n/2) ∈ HB(t,g1,n/2)(∞, 1/4).

The absolute distance of p1,n and p2,n in t is given by

|p1,n(t)− p2,n(t)| = 1

32
g1,n,

whereas the Kullback-Leibler divergence between the associated product probability
measures P⊗n1,n and P⊗n2,n is upper bounded by

K(P⊗n2,n,P
⊗n
1,n) ≤ n

∫
(p2,n(x)− p1,n(x))2

p1,n(x)
dx

≤ 16n

∫
(p2,n(x)− p1,n(x))2 dx

= 32n

∫
(q0,n(x; g1,n)− q0,n(x, g1,n/2))2 dx

= 32n

(
2

∫ g1,n

g1,n/2

(
1

16
(g1,n − x)

)2

dx+

∫ g1,n/2

−g1,n/2

(g1,n

32

)2

dx

)

=
2

3 · 322
+

1

32
.

Together with Theorem 2.2 in Tsybakov (2009) the result follows.

Proof of Theorem 3.12. Recall the notation of Subsection 3.2 and set the
exponent γ = γ(c1) = 1

2 (c1 log 2−1). To show that the confidence band is adaptive,
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note that according to Proposition 4.1 and Lemma 4.2 for any δ > 0 there exists
some n0(δ), such that

sup
p∈Pn

Pχ2
p

∃ t ∈ [0, 1] : |Cn,α(t)| ≥
√

6 · 2
jmin

2 +1qn(α)

(
log ñ

ñ

) βn,p(t)

2βn,p(t)+1

(log ñ)γ


= sup
p∈Pn

Pχ2
p

(
∃ t ∈ [0, 1] : ẑn(t) ≥

√
6 ·

√
log ñ

ñh̄n(t)
·
√

2un

log ñ

)

= sup
p∈Pn

Pχ2
p

(
∃ t ∈ [0, 1] : ĥlocn (t) ≤ 1

6
· h̄n(t) · 2−un

)
= sup
p∈Pn

Pχ2
p

(
sup
t∈[0,1]

h̄n(t)

ĥlocn (t)
· 2−un ≥ 6

)

= sup
p∈Pn

Pχ2
p

max
k∈Tn

sup
t∈Ik

h̄n(t)

min
{

2−ĵn((k−1)δn), 2−ĵn(kδn)
} ≥ 6


≤ sup
p∈Pn

Pχ2
p

max
k∈Tn

min
{
h̄n((k − 1)δn), h̄n(kδn)

}
min

{
2−ĵn((k−1)δn), 2−ĵn(kδn)

} ≥ 2


≤ sup
p∈Pn

Pχ2
p

∃ k ∈ Tn :
min

{
2−j̄n((k−1)δn), 2−j̄n(kδn)

}
min

{
2−ĵn((k−1)δn), 2−ĵn(kδn)

} ≥ 1


= sup
p∈Pn

1− Pχ2
p

∀ k ∈ Tn :
min

{
2−j̄n((k−1)δn), 2−j̄n(kδn)

}
min

{
2−ĵn((k−1)δn), 2−ĵn(kδn)

} < 1


≤ sup
p∈Pn

{
1− Pχ2

p

(
ĵn(kδn) < j̄n(kδn) for all k ∈ Tn

)}
≤ δ

for all n ≥ n0(δ).

5.2. Proofs of the results in Section 4.

Proof of Proposition 4.1. We prove first that

lim
n→∞

sup
p∈Pn

Pχ2
p

(
ĵn(kδn) > j̄n(kδn) + 1 for some k ∈ Tn

)
= 0.(5.26)

Note first that if ĵn(kδn) > j̄n(kδn)+1 for some k ∈ Tn, then j̄n(kδn)+1 cannot be
an admissible exponent according to the construction of the bandwidth selection
scheme in (3.10), that is, j̄n(kδn) + 1 /∈ An(kδn). By definition of An(kδn) there
exist exponents mn,k,m

′
n,k ∈ Jn with mn,k > m′n,k ≥ j̄n(kδn) + 4 such that

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

|p̂(2)
n (s,mn,k)− p̂(2)

n (s,m′n,k)| > c2

√
log ñ

ñ2−mn,k
.
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Consequently,

Pχ2
p

(
ĵn(kδn) > j̄n(kδn) + 1 for some k ∈ Tn

)
≤ Pχ2

p

(
∃k ∈ Tn and ∃mn,k,m

′
n,k ∈ Jn with mn,k > m′n,k ≥ j̄n(kδn) + 4 such that

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

|p̂(2)
n (s,mn,k)− p̂(2)

n (s,m′n,k)| > c2

√
log ñ

ñ2−mn,k

)

≤
∑
m∈Jn

∑
m′∈Jn

Pχ2
p

(
m > m′ ≥ j̄n(kδn) + 4 and

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

|p̂(2)
n (s,m)− p̂(2)

n (s,m′)|

> c2

√
log ñ

ñ2−m
for some k ∈ Tn

)
.

We furthermore use the following decomposition into two stochastic terms and two
bias terms

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

∣∣∣p̂(2)
n (s,m)− p̂(2)

n (s,m′)
∣∣∣

≤ max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

∣∣∣p̂(2)
n (s,m)− Eχ2

p p̂
(2)
n (s,m)

∣∣∣
+ max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

∣∣∣p̂(2)
n (s,m′)− Eχ2

p p̂
(2)
n (s,m′)

∣∣∣
+ sup
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))

∣∣∣Eχ2
p p̂

(2)
n (s,m)− p(s)

∣∣∣
+ sup
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))

∣∣∣Eχ2
p p̂

(2)
n (s,m′)− p(s)

∣∣∣ .
In order to bound the two bias terms, note first that for any m > m′ ≥ j̄n(kδn) + 4
both

7

8
· 2−(j̄n(kδn)+1) = 2−(j̄n(kδn)+1) − 1

8
· 2−(j̄n(kδn)+1) ≤ 2−(j̄n(kδn)+1) − 2−m

and

7

8
· 2−(j̄n(kδn)+1) = 2−(j̄n(kδn)+1) − 1

8
· 2−(j̄n(kδn)+1) ≤ 2−(j̄n(kδn)+1) − 2−m

′
.

According to Assumption 3.1 and Lemma 3.2,

p|B(kδn,2−(j̄n(kδn)+1)) ∈ Hβ∗,B(kδn,2−(j̄n(kδn)+1))

(
βp

(
B
(
kδn, 2

−j̄n(kδn)
))

, L∗
)
,
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so that Lemma 4.4 yields,

sup
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))

∣∣∣Eχ2
p p̂

(2)
n (s,m)− p(s)

∣∣∣
≤ sup
s∈B(kδn,2−(j̄n(kδn)+1)−2−m)

∣∣∣Eχ2
p p̂

(2)
n (s,m)− p(s)

∣∣∣
≤ b22−mβp(B(kδn,2−j̄n(kδn)))

≤ b22−mβp(B(kδn,h̄n(kδn)))

≤ b22−mβn,p(kδn),

with the bandwidth h̄n(·) as defined in (4.1), and analogously

sup
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))

∣∣∣Eχ2
p p̂

(2)
n (s,m′)− p(s)

∣∣∣ ≤ b22−m
′βn,p(kδn).

Thus, the sum of the two bias terms is bounded from above by 2b2h̄n(kδn)βn,p(kδn),
such that√

ñ2−m

log ñ

(
sup

s∈B(kδn, 78 ·2−(j̄n(kδn)+1)))

∣∣∣Eχ2
p p̂

(2)
n (s,m)− p(s)

∣∣∣
+ sup
s∈B(kδn, 78 ·2−(j̄n(kδn)+1)))

∣∣∣Eχ2
p p̂

(2)
n (s,m′)− p(s)

∣∣∣)

≤

√
ñh̄n(kδn)

log ñ
· 2b2h̄n(kδn)βn,p(kδn)

≤ c21,

where c21 = c21(β∗, L
∗, ε) = 2b2 · 2−jmin(2β∗+1)/2. Thus, it holds

Pχ2
p

(
ĵn(kδn) > j̄n(kδn) + 1 for some k ∈ Tn

)
≤
∑
m∈Jn

∑
m′∈Jn

{
Pχ2
p

(
max
k∈Tn

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

∣∣∣p̂(2)
n (s,m)− Eχ2

p p̂
(2)
n (s,m)

∣∣∣
>
c2 − c21

2

√
log ñ

ñ2−m

)

+ Pχ2
p

(
max
k∈Tn

max
s∈B(kδn, 78 ·2−(j̄n(kδn)+1))∩Hn

∣∣∣p̂(2)
n (s,m′)− Eχ2

p p̂
(2)
n (s,m′)

∣∣∣
>
c2 − c21

2

√
log ñ

ñ2−m′

)}

≤ 2 |Jn|2 · Pχ2
p

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣∣p̂(2)
n (s, h)− Eχ2

p p̂
(2)
n (s, h)

∣∣∣ > c2 − c21

2

)
.
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Choose c2 = c2(A, ν, β∗, L
∗,K, ε) sufficiently large such that c2 ≥ c21 + 2η0, where

η0 is given in Lemma 4.3. Then, Lemma 4.3 and the logarithmic cardinality of Jn
yield (5.26). In addition, we show that

lim
n→∞

sup
p∈Pn

Pχ2
p

(
ĵn(kδn) < kn(kδn) for some k ∈ Tn

)
= 0.(5.27)

For t ∈ [0, 1], due to the sequential definition of the set of admissible bandwidths
An(t) in (3.10), if ĵn(t) < jmax, then both ĵn(t) and ĵn(t)+1 are contained in An(t).
Note furthermore, that kn(t) < jmax for any t ∈ [0, 1]. Thus, if ĵn(kδn) < kn(kδn)
for some k ∈ Tn, there exists some index j < kn(kδn) + 1 with j ∈ An(kδn) and
satisfying (3.6) and (3.7) for u = 2−j and t = kδn. In particular,

max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j + 3)− p̂(2)

n (s, j̄n(kδn))
∣∣∣ ≤ c2√ log ñ

ñ2−j̄n(kδn)

for sufficiently large n ≥ n0(c1), using that j̄n(kδn) ∈ Jn for any k ∈ Tn. Conse-
quently

Pχ2
p

(
ĵn(kδn) < kn(kδn) for some k ∈ Tn

)

≤
∑
j∈Jn

Pχ2
p

(
∃ k ∈ Tn : j < kn(kδn) + 1 and p|B(kδn,2−j) ∈ Hβ∗,B(kδn,2−j)(β, L

∗)

and sup
s∈B(kδn,2−j−g)

|(Kg ∗ p)(s)− p(s)| ≥
gβ

log n
for all g ∈ G∞ with

g ≤ 2−(j+3) and max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j + 3)− p̂(2)

n (s, j̄n(kδn))
∣∣∣

≤ c2

√
log ñ

ñ2−j̄n(kδn)

)
.

(5.28)

The triangle inequality yields

max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j + 3)− p̂(2)

n (s, j̄n(kδn))
∣∣∣

≥ max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣
− max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j + 3)

∣∣∣
− max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j̄n(kδn))− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣ .
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We further decompose

max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣
≥ max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣
− sup
s∈B(kδn, 78 ·2−j)

∣∣∣Eχ2
p p̂

(2)
n (s, j̄n(kδn))− p(s)

∣∣∣ .
As Assumption 3.1 is satisfied for u = 2−j and t = kδn, together with Lemma 3.2
we both have

p|B(kδn,2−j) ∈ Hβ∗,B(kδn,2−j)

(
βp
(
B
(
kδn, 2

−j)) , L∗)(5.29)

and

sup
s∈B(kδn,2−j−g)

|(Kg ∗ p)(s)− p(s)| ≥
gβp(B(kδn,2−j))

log n
(5.30)

for all g ∈ G∞ with g ≤ 2−(j+3). In particular, (5.29) together with Lemma 4.4
gives the upper bias bound

sup
s∈B(kδn, 78 ·2−j)

∣∣∣Eχ2
p p̂

(2)
n (s, j̄n(kδn))− p(s)

∣∣∣ ≤ b2 · 2−j̄n(kδn)βp(B(kδn,2−j))

for sufficiently large n ≥ n0(c1), whereas (5.30) yields the bias lower bound

sup
s∈B(kδn, 78 ·2−j)

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣
= sup
s∈B(kδn,2−j−2−(j+3))

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣
≥ 2−(j+3)βp(B(kδn,2−j))

log n
.(5.31)

To show that the above lower bound even holds for the maximum over the set
B
(
kδn,

7
8 · 2

−j) ∩ Hn, note that for any point kδn − 7
82−j ≤ t̃ ≤ kδn + 7

82−j there

exists some t ∈ Hn with |t− t̃| ≤ δn, and∣∣∣Eχ2
p p̂

(2)
n (t, j + 3)− p(t)

∣∣∣
=

∣∣∣∣∫ K(x)
{
p(t+ 2−(j+3)x)− p(t)

}
dx

∣∣∣∣
≥
∣∣∣∣∫ K(x)

{
p
(
t̃+ 2−(j+3)x

)
− p

(
t̃
)}

dx

∣∣∣∣
−
∫
|K(x)| ·

∣∣∣p(t+ 2−(j+3)x)− p
(
t̃+ 2−(j+3)x

)∣∣∣dx
−
∫
|K(x)| · |p(t)− p

(
t̃
)
|dx
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≥
∣∣∣∣∫ K(x)

{
p
(
t̃+ 2−(j+3)x

)
− p

(
t̃
)}

dx

∣∣∣∣− 2‖K‖1L∗ · |t− t̃|β∗ ,

(5.32)

where

|t− t̃|β∗ ≤ δβ∗n

≤ 2−jmin

(
log ñ

ñ

) 1
2

(log ñ)−2

≤ h̄n(kδn)βn,p(kδn)

(log ñ)2

≤ 2−(j̄n(kδn)−1)βn,p(kδn)

(log ñ)2

≤ 2−(j+3)βn,p(kδn)

(log ñ)2

for sufficiently large n ≥ n0(c1). For n ≥ n0(c1) and j ∈ Jn with j < kn(kδn) + 1,

2−j > 2mn−1 · 2−j̄n(kδn) > h̄n(kδn).

Together with (5.29), this implies

βp(B(kδn, 2
−j)) ≤ βn,p(kδn)(5.33)

since otherwise p would be β-Hölder smooth with β > βn,p(kδn) on a ball B(kδn, r)
with radius r > h̄n(t), which would contradict the definition of βn,p(kδn) together
with Lemma A.4. This implies

|t− t̃|β∗ ≤ 2−(j+3)βp(B(kδn,2
−j))

(log ñ)2
.

Together with inequalities (5.31) and (5.32),

max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣
≥ sup
s∈B(kδn, 78 ·2−j)

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣− 2‖K‖1L∗
2−(j+3)βp(B(kδn,2

−j))

(log ñ)2

≥ 1

2
· 2−(j+3)βp(B(kδn,2

−j))

log ñ

for sufficiently large n ≥ n0(L∗,K, c1). Altogether, we get for j < kn(kδn) + 1,√
ñ2−j̄n(kδn)

log ñ
max

s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣
≥

√
ñ2−j̄n(kδn)

log ñ

(
max

s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− p(s)

∣∣∣
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− max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j̄n(kδn))− p(s)

∣∣∣)

≥

√
ñh̄n(kδn)

2 log ñ

(
1

2
· 2−(j+3)βp(B(kδn,2

−j))

log ñ
− b2 · 2−j̄n(kδn)βp(B(kδn,2−j))

)

≥

√
ñh̄n(kδn)

2 log ñ
2−(j̄n(kδn)−1)βp(B(kδn,2

−j))

(
1

2
· 2(j̄n(kδn)−j−4)βp(B(kδn,2

−j))

log ñ
− b22−β∗

)

>

√
ñh̄n(kδn)

2 log ñ
2−(j̄n(kδn)−1)βp(B(kδn,2

−j))

(
2(mn−5)β∗

2 log ñ
− b22−β∗

)
.

We now show that for j ∈ Jn with j < kn(kδn) + 1, we have that

βp(B(kδn, 2
−j)) ≤ β∗.(5.34)

According to (5.33), it remains to show that βn,p(kδn) ≤ β∗. If βn,p(kδn) =∞, then
j̄n(kδn) = jmin. Since furthermore j ∈ Jn and therefore j ≥ jmin, this immediately
contradicts j < kn(kδn) + 1. That is, j < kn(kδn) + 1 implies that βn,p(kδn) <∞,
which in turn implies βn,p(kδn) ≤ β∗ according to Remark 3. Due to (3.9) and
(5.34), the last expression is again lower bounded by

3c2

√
ñh̄n(kδn)

log ñ
h̄n(kδn)βp(B(kδn,2

−j))2jmin
2βp(B(kδn,2

−j))+1

2

for sufficiently large n ≥ n0(L∗,K, β∗, β
∗, c1, c2). Recalling (5.33), we obtain√

ñ2−j̄n(kδn)

log ñ
max

s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣Eχ2
p p̂

(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣
≥ 3c2

√
ñh̄n(kδn)

log ñ
h̄n(kδn)βn,p(kδn)2jmin

2βp(B(kδn,2
−j))+1

2

= 3c2.

Thus, by the above consideration and (5.28),

Pχ2
p

(
ĵn(kδn) < kn(kδn) for some k ∈ Tn

)
≤
∑
j∈Jn

(Pj,1 + Pj,2)

for sufficiently large n ≥ n0(L∗,K, β∗, β
∗, c1, c2), with

Pj,1 = Pχ2
p

(
∃k ∈ Tn : j < kn(kδn) + 1 and

√
ñ2−(j+3)

log ñ

· max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j + 3)− Eχ2

p p̂
(2)
n (s, j + 3)

∣∣∣ ≥ c2)
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Pj,2 = Pχ2
p

(
∃k ∈ Tn : j < kn(kδn) + 1 and

√
ñ2−j̄n(kδn)

log ñ

· max
s∈B(kδn, 78 ·2−j)∩Hn

∣∣∣p̂(2)
n (s, j̄n(kδn))− Eχ2

p p̂
(2)
n (s, j̄n(kδn))

∣∣∣ ≥ c2).
Both Pj,1 and Pj,2 are bounded by

Pj,i ≤ Pχ2
p

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣∣p̂(2)
n (s, h)− Eχ2

p p̂
(2)
n (s, h)

∣∣∣ ≥ c2) , i = 1, 2.

For sufficiently large c2 ≥ η0, Lemma 4.3 and the logarithmic cardinality of Jn
yield (5.27).

Proof of Lemma 4.2. We prove both inequalities separately.

Part (i). First, we show that the density p cannot be substantially unsmoother
at z ∈ (s, t) than at the boundary points s and t. Precisely, we shall prove that
min{h̄n(s), h̄n(t)} ≤ 2h̄n(z). In case

βn,p(s) = βn,p(t) =∞,

that is h̄n(s) = h̄n(t) = 2−jmin , we immediately obtain h̄n(z) ≥ 1
22−jmin since

B

(
z,

1

2
2−jmin

)
⊂ B(s, h̄n(s)) ∩B(t, h̄n(t)).

Hence, we subsequently assume that

min{βn,p(s), βn,p(t)} <∞.

Note furthermore that

min
{
h̄n(s), h̄n(t)

}
= hmin{βn,p(s),βn,p(t)},n.(5.35)

In a first step, we subsequently conclude that

z +
1

2
hmin{βn,p(s),βn,p(t)},n < s+ h̄n(s)(5.36)

or

z − 1

2
hmin{βn,p(s),βn,p(t)},n > t− h̄n(t).(5.37)

Note first that |s − t| < hβ,n for all β ≥ β∗ by condition (4.2). Assume now that
(5.36) does not hold. Then, inequality (5.37) directly follows as

z − 1

2
min{h̄n(s), h̄n(t)} = z +

1

2
min{h̄n(s), h̄n(t)} −min{h̄n(s), h̄n(t)}
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≥ s+ h̄n(s)−min{h̄n(s), h̄n(t)}
≥ t− (t− s)
> t− h̄n(t).

Vice versa, if (5.37) does not hold, then a similar calculation as above shows that
(5.36) is true. Subsequently, we assume without loss of generality that (5.36) holds.
That is,

s− h̄n(s) < z − 1

2
hmin{βn,p(s),βn,p(t)},n

< z +
1

2
hmin{βn,p(s),βn,p(t)},n(5.38)

< s+ h̄n(s).

There exists some β̃ > 0 with

hβ̃,n =
1

2
min{h̄n(t), h̄n(s)}.(5.39)

for sufficiently large n ≥ n0(β∗). Equation (5.39) implies that

β̃ < min{βn,p(s), βn,p(t)} ≤ βn,p(s).(5.40)

Finally, we verify that

βn,p(z) ≥ β̃.(5.41)

Using Lemma A.4 as well as (5.38), (5.39), and (5.40) we obtain

‖p‖β̃,β∗,B(z,hβ̃,n)

=

bβ̃∧β∗c∑
k=0

‖p(k)‖B(z, 12 min{h̄n(t),h̄n(s)})

+ sup
x,y ∈B(z, 12 min{h̄n(t),h̄n(s)})

x 6=y

|p(bβ̃∧β∗c)(x)− p(bβ̃∧β∗c)(y)|
|x− y|β̃−bβ̃∧β∗c

≤ L∗.

Consequently, we conclude (5.41). With (5.35) and (5.39), this in turn implies

min
{
h̄n(s), h̄n(t)

}
= 2hβ̃,n ≤ 2hβn,p(z),n = 2h̄n(z).

Part (ii). Now, we show that the density p cannot be substantially smoother
at z ∈ (s, t) than at the boundary points s and t. Without loss of generality, let
βn,p(t) ≤ βn,p(s). We prove the result by contradiction: assume that

min
{
h̄n(s), h̄n(t)

}
<

8

17
· h̄n(z).(5.42)
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Since t− z ≤ hβ,n/8 for all β ≥ β∗ by condition (4.2), so that in particular t− z ≤
h̄n(t)/8, we obtain together with (5.42) that

1

2

(
z − t+ h̄n(z)

)
>

1

2

(
−1

8
h̄n(t) +

17

8
h̄n(t)

)
= h̄n(t) > 0.(5.43)

Because furthermore 1
2 (z − t+ h̄n(z)) < 1, there exists some β′ = β′(n) > 0 with

hβ′,n =
1

2

(
z − t+ h̄n(z)

)
.

This equation in particular implies that hβ′,n < 1
2 h̄n(z) and thus β′ < βn,p(z).

Since furthermore t− z < h̄n(z) by condition (4.2) and therefore also

z − h̄n(z) < t− hβ′,n < t+ hβ′,n < z + h̄n(z),

we immediately obtain

‖p‖β′,β∗,B(t,hβ′,n) ≤ L∗,

so that

βn,p(t) ≥ β′.

This contradicts inequality (5.43).

Proof of Lemma 4.3. Without loss of generality, we prove the inequality for

the estimator p̂
(1)
n (·, h) based on χ1. Note first, that

sup
s∈Hn

sup
h∈Gn

√
ñh

log ñ

∣∣∣p̂(1)
n (s, h)− Eχ1

p p̂
(1)
n (s, h)

∣∣∣ = sup
f∈En

∣∣∣∣∣
ñ∑
i=1

(f(Xi)− Epf(Xi))

∣∣∣∣∣
with

En =

{
fn,s,h(·) = (ñh log ñ)−

1
2K

(
· − s
h

)
: s ∈ Hn, h ∈ Gn

}
.

Observe first that

sup
p∈Pn

Varp(fn,s,h(X1)) ≤ sup
p∈Pn

Epfn,s,h(X1)2

= sup
p∈Pn

1

ñh log ñ

∫
K

(
x− s
h

)2

p(x) dx

≤ L∗‖K‖22
ñ log ñ

=: σ2
n
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uniformly over all fn,s,h ∈ En, and

sup
s∈Hn

max
h∈Gn

‖fn,s,h‖sup ≤ max
h∈Gn

‖K‖sup√
ñh log ñ

= ‖K‖sup(log ñ)−
κ2+1

2

≤ ‖K‖sup

(log ñ)3/2
=: Un,

where the last inequality holds true because by definition of κ2 ≥ 2 in (3.9). In
particular σn ≤ Un for sufficiently large n ≥ n0(L∗,K). Since (ñh log ñ)−1/2 ≤ 1
for all h ∈ Gn and for all n ≥ n0, the class En satisfies the VC property

lim sup
n→∞

sup
Q
N
(
En, ‖ · ‖L2(Q), ε‖K‖sup

)
≤
(
A′′

ε

)ν′′
for some VC characteristics A′′ = A′′(A,K) and ν′ = ν+1, by the same arguments
as in (5.17). According to Proposition 2.2 in Giné and Guillou (2001), there exist
constants c22 = c22(A′′, ν′′) and c5 = c5(A′′, ν′′), such that

Pχ1
p

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣∣p̂(1)
n (s, h)− Eχ1

p p̂
(1)
n (s, h)

∣∣∣ > η

)

≤ c5 exp

− η

c5Un
log

1 +
ηUn

c5

(√
ñσ2

n + Un
√

log(A′′Un/σn)
)2


(5.44)

≤ c5 exp

(
− η

c5Un
log (1 + c23ηUn log ñ)

)
uniformly over all p ∈Pn, for all n ≥ n0(A′′,K, L∗) with c23 = c23(A′′, ν′′, L∗,K),
whenever

η ≥ c22

(
Un log

(
A′′Un
σn

)
+
√
ñσ2

n

√
log

(
A′′Un
σn

) )
.(5.45)

Since the right hand side in (5.45) is bounded from above by some positive constant
η0 = η0(A′′, ν′′, L∗,K) for sufficiently large n ≥ n0(A′′, ν′′, L∗,K), inequality (5.44)
holds in particular for all n ≥ n0(A′′, ν,K,L∗) and for all η ≥ η0. Finally, using the
inequality log(1 + x) ≥ x

2 for 0 ≤ x ≤ 2 (Lemma A.2), we obtain for all η ≥ η0

Pχ1
p

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣∣p̂(1)
n (s, h)− Eχ1

p p̂
(1)
n (s, h)

∣∣∣ > η

)

≤ c5 exp

(
−c24η(log ñ)3/2 log

(
1 + c25

η0√
log ñ

))
≤ c5 exp

(
−1

2
c24c25η0η log ñ

)



64

uniformly over all p ∈ Pn, for all n ≥ n0(A′′, ν′′,K, L∗) and positive constants
c24 = c24(A′′, ν′′,K) and c25 = c25(A′′, ν′′, L∗,K), which do not depend on n or η.

Proof of Lemma 4.4. Let t ∈ R, g, h > 0, and

p|B(t,g+h) ∈ Hβ∗,B(t,g+h)(β, L).

The three cases β ≤ 1, 1 < β < ∞, and β = ∞ are analyzed separately. In case
β ≤ 1, we obtain

sup
s∈B(t,g)

|(Kh ∗ p)(s)− p(s)| ≤
∫
|K(x)| sup

s∈B(t,g)

|p(s+ hx)− p(s)|dx,

where

sup
s∈B(t,g)

|p(s+ hx)− p(s)| ≤ hβ · sup
s,s′∈B(t,g+h)

s6=s′

|p(s′)− p(s)|
|s′ − s|β

≤ Lhβ .

In case 1 < β < ∞, we use the Peano form for the remainder of the Taylor poly-
nomial approximation. Note that β∗ ≥ 2 because K is symmetric by assumption,
and K is a kernel of order bβ∗c = β∗ − 1 in general, such that

sup
s∈B(t,g)

|(Kh ∗ p)(s)− p(s)|

= sup
s∈B(t,g)

∣∣∣∣∫ K(x)
{
p(s+ hx)− p(s)

}
dx

∣∣∣∣
= sup
s∈B(t,g)

∣∣∣∣∣∣
∫
K(x)

p(s+ hx)− P ps,bβ∧β∗c(s+ hx) +

bβ∧β∗c∑
k=1

p(k)(s)

k!
· (hx)k

dx

∣∣∣∣∣∣
≤
∫
|K(x)| sup

s∈B(t,g)

∣∣∣p(s+ hx)− P ps,bβ∧β∗c(s+ hx)
∣∣∣dx

≤
∫
|K(x)| sup

s∈B(t,g)

sup
s′∈B(s,h)

∣∣∣∣∣p(bβ∧β∗c)(s′)− p(bβ∧β∗c)(s)

bβ ∧ β∗c!
(hx)bβ∧β

∗c

∣∣∣∣∣dx
≤ hbβ∧β

∗chβ−bβ∧β
∗c

bβ ∧ β∗c!
·
∫
|K(x)| sup

s∈B(t,g)

sup
s′∈B(s,h)
s′ 6=s

∣∣p(bβ∧β∗c)(s′)− p(bβ∧β∗c)(s)
∣∣

|s− s′|β−bβ∧β∗c
dx

≤ L‖K‖1hβ .
(5.46)

In case β =∞, the density p satisfies p|B(t,g+h) ∈ Hβ∗,B(t,g+h)(β, L
∗) for all β > 0.

That is, the upper bound (5.46) on the bias holds for any β > 0, implying that

sup
s∈B(t,g)

|(Kh ∗ p)(s)− p(s)| = 0.

This completes the proof.
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Proof of Lemma 4.5. Note that by symmetry of K

(Kh ∗ p)(s)− p(s) =
1

2

∫ 1

−1

K(x)
(
p(s+ hx) + p(s− hx)− 2p(s)

)
dx.

The upper bound can thus be deduced exactly as in the proof of Lemma 4.4.

APPENDIX A: AUXILIARY RESULTS

Lemma A.1. For z ∈ [0, 1], the second moments of W̃k,l(z), k, l ∈ Tn as defined
in (5.22) are bounded by

EW W̃k,l(z)
2 ≤ 4.

Proof of Lemma A.1. As W̃k,l(·) = −W̃l,k(·), we assume k ≤ l without loss
of generality. For any k, l ∈ Tn

EW W̃k,l(z)
2 =

10∑
i=1

Ei

with

E1 =
1

ĥlocn,k
EWW (kδn − zĥlocn,k)2

=
kδn − zĥlocn,k

ĥlocn,k

E2 = − 2

ĥlocn,k
EWW (kδn − zĥlocn,k)W (kδn + zĥlocn,k)

= −2
kδn − zĥlocn,k

ĥlocn,k

E3 =
2√

ĥlocn,kĥ
loc
n,l

EWW (kδn − zĥlocn,k)W (lδn + zĥlocn,l)

= 2
kδn − zĥlocn,k√

ĥlocn,kĥ
loc
n,l

E4 = − 2√
ĥlocn,kĥ

loc
n,l

EWW (kδn − zĥlocn,k)W (lδn − zĥlocn,l)

= −2
min{kδn − zĥlocn,k, lδn − zĥlocn,l}√

ĥlocn,kĥ
loc
n,l

E5 =
1

ĥlocn,k
EWW (kδn + zĥlocn,k)2

=
kδn + zĥlocn,k

ĥlocn,k
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E6 = − 2√
ĥlocn,kĥ

loc
n,l

EWW (kδn + zĥlocn,k)W (lδn + zĥlocn,l)

= −2
min{kδn + zĥlocn,k, lδn + zĥlocn,l}√

ĥlocn,kĥ
loc
n,l

E7 =
2√

ĥlocn,kĥ
loc
n,l

EWW (kδn + zĥlocn,k)W (lδn − zĥlocn,l)

= 2
min{kδn + zĥlocn,k, lδn − zĥlocn,l}√

ĥlocn,kĥ
loc
n,l

E8 =
1

ĥlocn,l
EWW (lδn + zĥlocn,l)

2

=
lδn + zĥlocn,l

ĥlocn,l

E9 = − 2

ĥlocn,l
EWW (lδn + zĥlocn,l)W (lδn − zĥlocn,l)

= −2
lδn − zĥlocn,l

ĥlocn,l

E10 =
1

ĥlocn,l
EWW (lδn − zĥlocn,l)2

=
lδn − zĥlocn,l

ĥlocn,l
.

Altogether,

EW W̃k,l(z)
2 = 4z +

2√
ĥlocn,kĥ

loc
n,l

(
kδn − zĥlocn,k −min

{
kδn − zĥlocn,k, lδn − zĥlocn,l

}

−min
{
kδn + zĥlocn,k, lδn + zĥlocn,l

}
+ min

{
kδn + zĥlocn,k, lδn − zĥlocn,l

})
.

We distinguish between the two cases

(i) kδn − zĥlocn,k ≤ lδn − zĥlocn,l and (ii) kδn − zĥlocn,k > lδn − zĥlocn,l.
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In case (i), we obtain

EW W̃k,l(z)
2 = 4z +

2√
ĥlocn,kĥ

loc
n,l

(
min

{
kδn + zĥlocn,k, lδn − zĥlocn,l

}

−min
{
kδn + zĥlocn,k, lδn + zĥlocn,l

})
≤ 4.

In case (ii), we remain with

EW W̃k,l(z)
2 = 4z +

2√
ĥlocn,kĥ

loc
n,l

(
kδn − zĥlocn,k −min

{
kδn + zĥlocn,k, lδn + zĥlocn,l

})
.

If in the latter expression kδn + zĥlocn,k ≤ lδn + zĥlocn,l, then

EW W̃k,l(z)
2 = 4z −

4zĥlocn,k√
ĥlocn,kĥ

loc
n,l

≤ 4.

Otherwise, if kδn + zĥlocn,k > lδn + zĥlocn,l, we arrive at

EW W̃k,l(z)
2 = 4z +

2√
ĥlocn,kĥ

loc
n,l

(
(k − l)δn − z

(
ĥlocn,k + ĥlocn,l

))
≤ 4

because k ≤ l and z ∈ [0, 1]. Summarizing,

EW W̃k,l(z)
2 ≤ 4.

Lemma A.2. For any x ∈ [0, 1], we have

ex − 1 ≤ 2x.

Proof. Equality holds for x = 0, while e − 1 ≤ 2. Hence, the result follows by
convexity of the exponential function.

Lemma A.3. For any x ∈ R \ {0}, we have

1− sin(x)

x
≤ x2

6
.

Proof. Since both sides of the inequality are symmetric in zero, we restrict our
considerations to x > 0. For positive x, it is equivalent to

f(x) = sin(x)− x+
x3

6
≥ 0.
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As f(0) = 0, it suffices to show that

f ′(x) = cos(x)− 1 +
x2

2
≥ 0

for all x > 0. Since furthermore f ′(0) = 0 and

f ′′(x) = − sin(x) + x ≥ 0

for all x > 0, the inequality follows.

The next lemma shows that the monotonicity of the Hölder norms ‖·‖β1,U ≤ ‖·‖β2,U

with 0 < β1 ≤ β2 stays valid for the modification ‖ · ‖β,β∗,U .

Lemma A.4. For 0 < β1 ≤ β2 <∞ and p ∈ Hβ∗,U (β2),

‖p‖β1,β∗,U ≤ ‖p‖β2,β∗,U

for any open interval U ⊂ R with length less or equal than 1.

Proof. If β1 ≤ β2, but bβ1 ∧ β∗c = bβ2 ∧ β∗c, the statement follows directly
with

‖p‖β1,β∗,U =

bβ2∧β∗c∑
k=0

‖p(k)‖U + sup
x,y∈U
x 6=y

|p(bβ2∧β∗c)(x)− p(bβ2∧β∗c)(y)|
|x− y|β1−bβ2∧β∗c

≤ ‖p‖β2,β∗,U .

If β1 < β2 and also bβ1 ∧ β∗c < bβ2 ∧ β∗c, we deduce that β1 < β∗ and bβ1c+ 1 ≤
bβ2 ∧ β∗c. Then, the mean value theorem yields

‖p‖β1,β∗,U =

bβ1c∑
k=0

‖p(k)‖U + sup
x,y ∈U
x 6=y

|p(bβ1c)(x)− p(bβ1c)(y)|
|x− y|β1−bβ1c

≤
bβ1c∑
k=0

‖p(k)‖U + ‖p(bβ1c+1)‖U sup
x,y∈U
x6=y

|x− y|1−(β1−bβ1c)

≤
bβ1c+1∑
k=0

‖p(k)‖U

≤
bβ2∧β∗c∑
k=0

‖p(k)‖U

≤ ‖p‖β2,β∗,U .
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