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Abstract

In this discussion paper we present a novel unsupervised segmentation
procedure for music signals which relies on an explained variance crite-
rion in the eigenspace of the constant-Q spectral domain. The procedure
is used in the context of a spectral complexity reduction method which
mitigates effects of cochlear hearing loss. It is compared to a segmenta-
tion based on equidistant boundaries. The results demonstrate that the
proposed segmentation procedure gives an improvement in terms of signal-
to-artefacts ratio in comparison to a segmentation based on equidistant
boundaries.

1 Introduction

Recently, in [1] a method was proposed which reduces the spectral complexity
of music signals using principal component analysis (PCA) for listeners with
cochlear hearing loss. This procedure requires a segmentation step which sub-
divides the signal into meaningful blocks in the time-frequency domain before
PCA is performed. In [1] the segmentation was performed either using blocks
of fixed length or by means of note onsets obtained from MIDI files. Although
the former procedure does not require any prior information and can be ap-
plied in a real-world scenario, it does not take the underlying signal structure
into account and thus is prone to smearing temporally important properties like
note onsets. Hence, in this discussion paper we present a novel unsupervised
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segmentation procedure which detects change points in the eigenspace struc-
ture of the constant-Q spectral representation of music signals considering the
degree of explained variance. Although statistical change point detection is a
well-studied topic in the literature and numerous related methods have been
proposed for general multivariate time series both in the time domain [2, 3] and
spectral domain [4, 5, 6, 7, 8, 9], change point detection in the eigenspace of the
time-frequency domain has not been studied before. The proposed method is
evaluated in terms of signal quality measures such as the signal-to-interference
ratio (SIR) and the signal-to-artefacts ratio (SAR) as proposed in [10].

2 Spectral Complexity Reduction

2.1 Spectral Analysis and Signal Reconstruction

We consider a discrete-time signal z(n) with time index n, which is sampled
at the sampling frequency fs. It contains a leading voice signal ¢(n) and an
accompaniment signal i(n) such that z(n) = ¢(n) + i(n). For the spectral
analysis we use the constant-Q transform (CQT) [11] which allows to adjust the
center frequencies of frequency bins f, and their frequency spacing A f,, with
k = {0,1,..., K — 1}, to the geometric frequency distribution of notes f, =
fo 272 in western music. Here, fy denotes the frequency of the lowest note to
be considered and b determines the number of frequencies describing a semitone.
The CQT is defined such that the quality factor Q = fi/Afx = 1/(2ﬁ —-1)
of a frequency bin is constant. Hence, the analysis length becomes frequency-
dependent such that N, = fs/Af. = Qfs/f.. The CQT is then computed

by
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where z(n, \) = z(n+AB) is a signal frame of length Ny = Q f,/ fo with segment
index A and segment shift B and x denotes the CQT bin index. Furthermore,
wg(n) is an analysis window with a frequency-dependent length. The windows
are chosen as Hann windows. Note that the analysis windows are aligned such
that they all attain their maximum value for n = Ny/2, respectively. Outside
of their support the windows attain values of zero.

The CQT in (1) is not directly invertible since the reconstruction of Ny signal
samples from their K < Ny CQT coeflicients constitutes an under-determined
problem. However, using the method proposed in [12] we can restrict ourselves
only to reconstruct a subset of L samples centred around n = Ny /2 which trans-
forms the under-determined problem into a segmented overdetermined problem
if L < K. This problem can then be solved by means of a least-squares pro-
cedure. The full-length signal can then be reconstructed using the overlap-add
method.



2.2 Reduced-rank Approximations Based on PCA

In order to reduce the spectral complexity of the signal (n), block-wise reduced-
rank approximations of the CQT representation are computed using PCA. To
this end, the CQT-based time-frequency representation of the full signal is de-
noted by a matrix X € CV*X_ where N is the total number of frames. This
matrix is then segmented into M non-overlapping blocks U™ € CBm*K with
m={0,1,..., M — 1} and B,, being the number of frames contained in the m-
th block. For notational convenience we will drop the index m in the following
whenever possible.

PCA projects the CQT matrix U on a signal-dependent orthogonal basis
such that it represents a high amount of the total variance in the matrix U by
the first few dimensions of the transform space. To this end, PCA solves the
eigenvalue problem UMUw}, = d,wy where k € {1,2,..., K} denotes the index
of principal components and []¥ is the Hermitian conjugate operator. It finds
the eigenvalues dj, of the covariance matrix Cy, ~ UHRU, which correspond
to the variance represented in the k-th dimension of the principal component
space, and the corresponding eigenvectors wy. It is worth to note, that the
eigenvectors describe the most prominent and most covarying spectral bands.
These eigenvectors span an orthogonal basis W = [w1,wa, ..., Wg, ..., wi] and
the eigenvalues are sorted in descending order, i.e. dy > ds > ... > dg, which
ensures that the first principal components carry the highest percentage of total
variance. Each block U can then be projected onto its basis W yielding the
score representation

T =UW (2)

where T = [t1,t2,...,tg, ..., tx] and t; € CP=*! denotes the k-th coefficient
vector. A dimensionality reduction can be performed by retaining a selected
number of eigenvectors wy, with k € K = {1,2,...,k} and k < K, which span a

subspace WCwW resulting in the reduced coefficient representation
T = UW. (3)

Since W is a unitary matrix, a reduced-rank approximation of the original
spectrogram block can be obtained by

U =TWHI = UWW" (4)

Depending on the number of retained components such a reduced-rank approx-
imation retrieves the most prominent and most temporally correlated harmon-
ics of both the leading voice and the accompaniment and attenuates the low-
variance spectral contributions. As demonstrated in [1] this reduces the spectral
complexity of music signals which leads to a reduction of auditory distortion in
the presence of cochlear hearing loss.



3 Proposed Segmentation Procedure

3.1 Explained variance ratio statistics

In applications the number of principal component to retain k is usually selected
as the minimal number of the first principal components, for which the explained
variance ratio is big enough (i.e. not less than preset value). The explained
variance ratio for the k components is usually defined as

A k K
R(k,U) Zdi/Zdj. (5)

The ratio (5) takes values in [0,1] and represents the proportion between ex-
plained variance of the data along the first k principal components and total
variance in the data. Assume the number of principal component to retain is
fixed and U contains observations from some probability distribution. Then one
might consider R(E7 U) as a measure of quality of data compression with k first
principal components and use it for structural change point detection.

Suppose we are given a new sample data matrix Z € RV*K In this case we
will use the definition of explained variance ratio for ratio between the variance
explained by k first eigenvectors of U

k
Z WiHZHZW,'
RkW,Z)y=2"1L (6)
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To our knowledge explained variance ratio was not previously used for the
change point detection in the spectral domain. It includes the information
about the structure preserved in principal components and may be used for a
segmentation procedure combined with dimension reduction by PCA.

Statistical properties of explained variance ratio could be derived based on
the distribution of the eigenvalues. For example, following [13] the density of
distribution of the eigenvalues dy > - >dg of sample covariance for the matrix
Z with i.i.d. rows from N(0,) is
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where for the case ¥ = plk:
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3.2 Segmentation via explained variance ratio

Suppose the assumption that k principal components within the blocks contain
the main information about the signal is fulfilled. Then if one breaks the block
U into two sub-blocks U; € RB;XK, U, € RB?VLXK, Bl + B2 = B,,, it can be
expected that R R

R(k‘,wl,Ul) —R(k‘,wl,Ug) < 4, (9)

where matrix W; € RE*¥ contains the principal component vectors of Uy, and
§ is a constant. The sub-block U; should be big enough, namely B! > rank(Uj).

Denote by Xy, I C {1,..., N} a sub-matrix of X, which contain rows of X
with indices in the set I. Inequality (9) defines a segmentation Algorithm 1,
where parameter § controls the number of resulting blocks. The procedure
results in the set S of change points. The number of change points depends on
the value of §: increase of § leads to smaller number of change points. There is
no rule to select § at the moment. Intuitively, the choice of ¢ also determines
the delay in change point detection and it shouldn’t be neither very small, nor
too big. Also it should take into account the number of principal components
to keep: for the fixed § if one increases the number of principal components,
then detection of change points becomes less frequent. The distribution of
the left-hand side statistics (9) could be derived from the distribution of the
data. For example, for a sample from the standard normal distribution one
can use the common distribution of eigenvalues of covariance matrix (7), (8) to
derive the distribution of (5) and (6). Then, from the derived distribution it
could be possible to estimate §, and to construct the confidence intervals for
the reliability of estimation. In the Section 5 below we will show results of
simulations for different values of . For a benchmark we use the segmentation
with equidistant boundaries and a number of blocks equal to the number of
change points in the proposed segmentation method.

3.3 An idea for J selection

Suppose that U consists of N; Gaussian vectors from the distribution A(0, C1)
and Uy consists of Ny Gaussian vectors from the distribution A(0,C5). The
covariance matrices C7 and Cs are supposed to be known. Apply SVD to the
covariance matrices: C; = W;'— D;W;, i € {1,2}, where D; is a diagonal matrix
with eigenvalues d; 1,...,d; x, W; is a matrix with eigenvectors of C;. Denote
by WL,; a sub-matrix of W1y, which consists of the first k columns. We are



Algorithm 1 Structural changes via explained variance ratio

Require: k, &;
return S
ibreak = 17 ] = 17 S = @,
while 7,601 + K/2 —1< N do
I= {ibrcaka e aibrcak + K/2 — 1},
U1 = X[, U2 = Ul,
Compute principal components W for Uy,
Compute R(/%,Wl,Ul),
R(k,W1,Uz) = R(k,W1,Uy),
while R(k, W, U;) < R(k,Wy,U,) 44 do
I:= {ibreak + K/2 -1 +]},
U2 = X[,
Compute R(l%,W]_,UQ),
J=7J+1
end while
Ibreak ‘= lbreak + K/2 —145-1,7:=1,
S = {SUibreak}7

end while

interested in solving a hypothesis testing problem

Hy : Uj has columns from N(0, C}), (10)
Hj : Uy has columns from N (0, C5), (11)
where T
tr<Wl—,rpC’2W1,ic) tr(WLl%ClWlJ%) <
tr(Cy) tr(Cy) o

To this end consider a statistics

(W UTUW, ;) (W] YW, )

5(U2) = No(Ch) T ()

(13)

One might use S(Usz) to check whether hypothesis Hy is satisfied to estimate
6. Under Hy

E
1
S(Us) = A > (n; — En), (14)
2=1
where 7; are T’ (]\;2, 2%) random variables. Thus under Hy the statistics
j=1%1,j

S(U,) has centered weighted y2-distribution. Then an estimate of § might be
found from the confidence bound with fixed confidence level a.

P(S(Ug) < —(5‘H0) < . (15)



The covariance matrix C7 might be estimated from the first data matrix U;:
C1=+UU.

The more correct way is to consider also the distribution of statistics S(Us)
under H;. One can obtain

k
1
U,) = — i —E()—0 16
5(Uz) NQZ;(C ) (16)
where (;, 1 =1,... ,12; are independent I" (%, 2%) random variables and

dz; are the eigenvalues of the matrix Z = Dé/QW;'—Wl EWI%WQD;/Q. Thus

under H; the statistics S(Uj) has weighted y2-distribution with a mathematical
expectation —d. The estimate of § could be obtained from the solution of
hypothesis problem:

Hy : S(Usy) has distribution (14) with mean 0, (17)
H, : S(Uy) has distribution (16) with mean — 4, § > 0. (18)

Thus the problem consists in estimation of the mean of S(Uj). Unfortunately
in general weighted x2-distribution has no known closed-form solution. For the
0 estimation based on (15) on might use different approximation schemes (e.g.
[14]). For the problem (17)-(18) the straight-forward calculation of the decision
rule yet seems to be not feasible.

4 Evaluation

For the evaluation we used extracts of 110 synthesized MIDI files of chamber
music pieces which were also used for evaluation in [1]. The resulting leading
melody and accompaniment signal waveforms are sampled at f; = 16 kHz, con-
verted to mono signals, and mixed at an input SIR of 0 dB. To compensate for
the spectral tilt towards higher frequencies, the music signals are fed to a first
order pre-emphasis filter yielding the filtered signal z¢(n) = z(n) — 0.92(n — 1).
The CQT (1) of each signal is computed for fo = 55 Hz, fx_1 = 7040 Hz,
b =2, B=32, L =64 which denote the minimal analysis frequency, the maxi-
mal analysis frequency, the number of CQT bins per note, the frame shift and
the synthesis window length, respectively. Hann windows are used as analysis
windows wy(n) and as the synthesis window. Hence, in total we obtain 168
CQT bins corresponding to seven octaves. Note that this set of parameters pro-
vides a high-quality signal reconstruction from an unmodified CQT spectrum
[12]. To reverse the effects of the pre-emphasis filter the reconstructed signal is
fed to the corresponding first order de-emphasis filter.

Then we applied explained variance ratio Algorithm 1 and segmentation
with equidistant boundaries to CQT-spectrum to obtain sets of non-overlapping
blocks U™ € CBm*K for PCA (see 2.2) and computed the reduced rank ap-
proximations. Similarly as in [1] we use the signal-to-inference ratio (SIR) and



the signal-to-artefacts ratio (SAR) [10] to assess the degree of accompaniment
attenuation and leading voice distortion.

5 Results

5.1 Example of explained variance ratio segmentation

To illustrate explained variance ratio Algorithm 1 consider as an example a
piece from Bach Siciliano for Oboe and Piano with spectrogram in Figure 1.
In Figures 2 result of change point detection by Algorithm 1 is presented. One
can see the correspondence between the stationary and non-stationary regions
in the spectrogram and the segmentation result of the proposed algorithm.

frequency inde!

(o] 1000 2000 3000 4000 5000
Frame index

Figure 1: CQT-Spectrogram of Bach Siciliano for Oboe and Piano.

5.2 Comparison of segmentation methods

Using the experimental set-up defined in Section 4 we performed numerical com-
parison of the explained variance Algorithm 1 with segmentation with equidis-
tant boundaries. We set the threshold to § = 0.2 and take the number of
principal components to retain from the set {5, 10,15, 20,25,30}. For each sig-
nal from database (see Section 4) we computed SIR and SAR measures. The
results for the mean of SIR and SAR in the database for the explained variance
Algorithm 1 (Alg.1) and the segmentation with equidistant boundaries (Equid.)
is shown in Figure 3. There’s no improvement in terms of SIR, but in the SAR
axes one can see that explained variance ratio approach gives better results.
For the fixed § and number of principal components to retain and for different
signals the number of resulting segments differ and depend on the variability of
the input signal. Sometimes for the fixed number of principal components the
selected value of § is too high, so the delay in change point detection doesn’t al-
low to trace structural changes. Our experiments show that for each signal there
exists a certain value of § which strikes a balance between a moderate number
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Figure 2: Explained variance ratio R(k, Wy, Us) (blue dotted line) and the result
of Algorithm 1 applied to CQT-transform of Bach Siciliano for Oboe and Piano,
d = 0.2, number of principal components to retain equals 10. Red vertical lines
denote detected change points.

of blocks and the quality improvement obtained after dimensionality reduction.
Nevertheless, for the experiments reported in Figure 3, we have chosen to set §
to a fixed value of 0.2 which we found suitable on average.

6 Conclusions

The results indicate a reduction of artefacts of the leading voice compared to
the procedure based on equidistant boundaries while the attenuation of the
accompaniment remains unchanged. We argue that the proposed segmentation
procedure improves the performance of a spectral complexity reduction scheme,
which can further improve the quality of the processed signal and thus make
these signals more accessible in the presence of a cochlear hearing loss. The
demonstrated improvements were achieved with a fixed threshold 4, however,
our experimental results indicate that further improvements are possible when
¢ is chosen adaptively.



Figure 3: Results in case 6 = 0.2 for explained variance ratio method (Alg.1)
and segmentation with equidistant boundaries (Equid.). Numbers indicate the
number of principal components used in the methods. Dashed lines depict
the correspondence between results of the methods: the number of blocks in
equidistant boundary segmentation was taken equal to the number of resulting
segments of Algorithm 1 for the fixed number of components.
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