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AN ASYMPTOTIC TEST ON THE STATIONARITY OF THE
VARIANCE

HEROLD DEHLING, ROLAND FRIED AND MAX WORNOWIZKI

Abstract. We reconsider a statistic introduced in Wornowizki et al. (2016) allowing to
test the stationarity of the variance for a sequence of independent random variables. In-
stead of determining rejection regions via the permutation principle as proposed before, we
provide asymptotic critical values leading to huge savings in computation time. To prove
the required limit theorems, the test statistic is viewed as a U-statistic constructed from
blockwise variance estimates. Since the distribution of the test statistic depends on the
sample size, a suitable new law of large numbers as well as a central limit theorem are
developed. These asymptotic results are illustrated on artificial data. The permutation and
asymptotic version of the test are compared to alternative procedures in extensive Monte
Carlo experiments. The simulation results suggest that the methods offer similar results
and high power when compared to their competitors, particularly in the case of multiple
structural breaks. They also estimate the structural break positions adequately.

1. Introduction

Consider a sequence of random variables X1, . . . , Xn, n ∈ N, with existing variances de-
noted by σ2

i = V ar(Xi), i = 1, . . . , n. In this work, we propose an asymptotic procedure
testing the constancy of the variance. We investigate the hypotheses

H0 : ∀i ∈ {1, . . . , n− 1} : σ2
i = σ2

i+1 vs. H1 : ∃i ∈ {1, . . . , n− 1} : σ2
i 6= σ2

i+1.

The task of detecting changes in the volatility process received a lot of attention, partic-
ularly in the last forty years. Early approaches to derive appropriate decision rules often
relied on distributional assumptions. Examples are among others Hsu (1977), using cu-
mulative sums of χ2-type random variables under the assumption of Gaussianity, as well
as the likelihood-based procedures presented in Chen & Gupta (1997) and Jandhyala et al.
(2002). More recent papers weakened the distributional assumptions proposing asymptotical
CUSUM-type tests and nonparametric procedures, see for example Wied et al. (2012) and
Ross (2013). Keep in mind that most such methods compute their test statistic by splitting
the sample into two blocks of consecutive observations. They are constructed to detect at
most one change at a time and typically perform well in such cases. However, in case of
several variance changes they can lose a considerable amount of power.
The statistic considered in the following tries to circumvent this problem by splitting the
data into several blocks. It is based on a Fourier-type transformation of the blockwise vari-
ance estimates along with the weighting scheme proposed in Matteson & James (2014). The
corresponding permutation test investigated in Wornowizki et al. (2016) attains competitive
rejection rates in the case of one volatility change and outperforms classical procedures in
case of multiple change points. In addition, it does not make any assumptions on the dis-
tribution of the data and keeps the significance level for any sample size. However, its high
computational costs limit its applicability for large sample sizes.
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In this paper, we resolve this issue by developing asymptotic theory for the statistic in-
vestigated with the permutation test. This allows us to construct an asymptotic test with
the same advantages with regard to change point detection as its permutation version but
at much lower computational cost. In analogy to Wornowizki et al. (2016), we adopt the
framework of locally stationary, but globally non-constant variance considered, among oth-
ers, in Mercurio & Spokoiny (2004), Stărică & Granger (2005), Vassiliou & Demetriou (2005),
Spokoiny (2009), Davies et al. (2012) and Fried (2012). In particular, for the random vari-
ables X1, . . . , Xn we mainly require independence, identical distribution under H0 and ex-
isting fourth moments. A more detailled discussion on our assumptions is given at the
beginning of Section 2.
To construct the test statistic under study presented, we divide the indices 1, . . . , n into N
consecutive, equally sized blocks. These blocks, denoted by BN,1, . . . , BN,N , have common
length τN = n/N , which is for simplicity assumed to be an integer. Thus, block BN,j consists
of the indices (j− 1) τN + 1, . . . j τN for j = 1, . . . , N . The corresponding empirical variance,
calculated by σ̂2

j = 1
τN

∑
i∈BN,j X

2
i for j = 1, . . . , N , already takes into account the zero

mean. The blockwise variance estimates are then compared to one another via the statistic

TN =
1

N(N − 1)

∑
1≤j 6=k≤N

∣∣log
(
σ̂2
j

)
− log

(
σ̂2
k

)∣∣a
for some a ∈ (0, 2). Note that the case a = 1 corresponds to Gini’s mean difference applied

to the logarithmised variance estimates. A high value of TN reflects potential changes in the
variance process and will therefore lead to a rejection of the corresponding test.

The paper is structured as follows: In Section 2 we formulate and prove a suitable law
of large numbers (LLN) as well as a central limit theorem (CLT) for TN along with some
auxiliary lemmas. These results are supported by the simulations presented in Section 3.
In particular, we illustrate that the size of the asymptotic test for the stationarity of the
variance converges to the predefined significance level. Section 4 investigates the power of
this test under various alternatives by comparing it to several procedures from the literature.
Section 5 summarizes the main results and gives an outlook on possible future work. Some
minor computations and proofs of auxiliary results are given in the appendix.

2. Theoretical Results

In this section, we study a LLN and a CLT for TN (Theorem 2.1 and Theorem 2.2, respec-
tively). For the proofs, we make use of several auxiliary results: Lemma 2.3 approximates TN
by means of a Taylor expansion, Proposition 2.4 shows the LLN for this approximation and
Proposition 2.5 makes use of the Hoeffding decomposition to prove a CLT for the approxima-
tion. Hereby, we center by the sample size dependent expected value of the approximation
rather than by the corresponding limit. To justify this step Lemma 2.6 investigates the
convergence rate of the centering terms.

Before we proceed, we present our assumptions on the data and introduce some further
notation.

In what follows, we always assume that X1, . . . , Xn fulfill the following properties:

• Identical distribution under the null hypothesis
• Independence
• Zero mean
• Existing fourth moments
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We like to note that the independence assumption can probably be weakened. Furthermore,
zero means can be obtained by centering and thus the assumption can be dropped. However,
the last property is necessary, because we work towards a CLT involving empirical variances.
We therefore have to handle second moments of the squared random variables. In the
following, we refer to this set of assumptions by (A).

Under H0, the random variables X1, . . . , Xn are i.i.d.. Let in this case σ =
√

Var(X1)

and γ =
√

Var(X2
1/σ

2) denote their common standard deviation and the common standard
deviation of their scaled squares, respectively. We also frequently make use of the auxiliary
random variables

SN,j =
1
√
τN

∑
i∈BN,j

((Xi/σ)2 − 1)

for j = 1, . . . , N to approximate τ
a/2
N TN by

T̃N =
1

N(N − 1)

∑
1≤j 6=k≤N

|SN,j − SN,k|a ,

see Lemma 2.3. Under H0 the SN,1, . . . , SN,N are i.i.d. with E(SN,1) = 0 and V ar(SN,1) = γ2.

Let us start by formulating our main results:

Theorem 2.1 (Law of Large Numbers). Let X1, . . . , Xn fulfill the properties (A) and let
N
τN
→ 0 as n → ∞. For a ∈ (1, 2), let additionally E|X1|4a < ∞ be fulfilled. Then, under

H0 we get

(1)
τ
a/2
N

γa
TN −→ 2a/2E|Z|a,

in probability as n→∞, where Z denotes a standard normal random variable.

The proof of this theorem is done in two steps. First, in Lemma 2.3 i) we take a Taylor
expansion of the logarithm. This allows to show that the left hand side of (1) can be approx-
imated by the first order term in the Taylor expansion, which is T̃N/γ

a. In a second step,
Proposition 2.4 shows that the latter expression converges in probability to the desired limit.

Theorem 2.2 (Central Limit Theorem). Let X1, . . . , Xn fulfill the properties (A) and let
E|X1|6 be finite. If a ∈ (1.5, 2), in addition assume that there exists a δ > 0 such that
E|X1|4a+δ <∞. If N

τNmin(a,2−a) −→ 0, then for a ∈ (0, 2), under H0, we obtain

√
N

(
τ
a/2
N

γa
TN − 2

a
2E|Z|a

)
−→ N(0, σ̃2)

in distribution as n→∞, where σ̃2 = 4Var(h1(Z)) for h1(x) = E|x− Z ′|a and Z,Z ′ denote
independent standard normal random variables.

This CLT allows us to construct an asymptotic test for the stationarity of the variance in
a straightforward way, see page 6. It is proven in three steps. First, we apply the Taylor
expansion of the logarithm conducted in Lemma 2.3 ii). Afterwards, this approximation is
regarded as a U-statistic based on the random variables SN,j, j = 1, . . . , N . Its distribution
depends on the sample size. To obtain an adequate CLT, we modify the classical CLT for
U-statistics in Proposition 2.5, making use of the Hoeffding decomposition. Finally, Lemma
2.6 allows to show that the asymptotic Gaussianity still holds when we replace the sample
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size dependent centering E(T̃N/γ
a) used in Proposition 2.5 by its limit 2

a
2E|Z|a.

Next, we state several lemmas as well as propositions and apply them to prove the above
theorems. The proofs of the auxiliary results are given in the appendix.

The following result provides a Taylor expansion of TN allowing to handle the otherwise
bothersome logarithms in TN .

Lemma 2.3 (Taylor Expansion). Let the assumptions of Theorem 2.1 be fulfilled.

i) It then holds that

τ
a/2
N TN − T̃N −→ 0

in probability as n→∞.
ii) If N

τ
min(a,2−a)
N

→ 0, it holds that

√
N
(
τ
a/2
N TN − T̃N

)
−→ 0

in probability as n→∞.

Due to Lemma 2.3, our test statistic
τ
a/2
N

γa
TN can be approximated by the scaled U-statistic

T̃N/γ
a =

1

N(N − 1)

∑
1≤j 6=k≤N

h(SN,j/γ, SN,k/γ) for a ∈ (0, 2)

with kernel h(x, y) = |x − y|a. In the following, we therefore give some results on the
asymptotic behavior of T̃N/γ

a. Note that the underlying random variables form a triangular
array obtained via the normalized block sums.

Proposition 2.4 (U -Statistics of Renormalized Block Sums). Let X1, . . . , Xn fulfill the as-
sumptions (A) and let Z denote a standard normal random variable. If τN →∞ as n→∞,
under H0 it holds:

i) lim
N→∞

E(T̃N/γ
a) = 2a/2E|Z|a.

ii) If E|X1|4a <∞, then T̃N/γ
a converges in probability towards 2a/2E|Z|a as n→∞.

We now are able to prove the LLN stated above:

Proof of Theorem 2.1. The desired convergence in probability,
τ
a/2
N

γa
TN −→ 2a/2E|Z|a, follows

from combining the fact that τ
a/2
N TN − T̃N −→ 0 (see Lemma 2.3 i)) and that it holds

T̃N/γ
a −→ 2a/2E|Z|a (see Proposition 2.4 ii)). �

We now state the version of the CLT relying on the sample size dependent centering:

Proposition 2.5. Let the assumptions of Theorem 2.2 be fulfilled. It then holds that
√
N
(
T̃N/γ

a − E(T̃N/γ
a)
)
−→ N(0, σ̃2)

in distribution as n→∞.

We also determine the convergence rate for the sequence of centering terms used in the
CLT above:
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Lemma 2.6. Let X1, . . . , Xn fulfill the properties (A) and additionally let E|X1|6 <∞ hold.
Also, consider a standard Gaussian random variable Z. Then for any a ∈ (0, 2), it holds
that

√
N
∣∣∣E(T̃N/γ

a)− 2
a
2E|Z|a

∣∣∣ = O
(

log(τN)
√
n

τN

)
.

Proposition 2.5, Lemma 2.6 and Lemma 2.3 ii) allow us to prove the desired CLT:

Proof of Theorem 2.2. We rewrite

√
N

(
τ
a/2
N

γa
TN − 2

a
2E|Z|a

)
=
√
N
(
τ
a/2
N TN − T̃N

)
︸ ︷︷ ︸

(∗)

/γa +
√
N
(
T̃N/γ

a − E(T̃N/γ
a)
)

︸ ︷︷ ︸
(∗∗)

+
√
N
(
E(T̃N/γ

a)− 2
a
2E|Z|a

)
︸ ︷︷ ︸

(∗∗∗)

and see that (∗) −→ 0 in probability by Lemma 2.3 ii), (∗∗) −→ N(0, σ̃2) in distribution by
Proposition 2.5 and (∗ ∗ ∗) −→ 0 by Lemma 2.6 since N

τNmin(a,2−a) −→ 0.

�

3. Simulation Study of the Limit Theorems

In this section we present two simulation studies illustrating our theoretical results.

First, we check the LLN stated in Theorem 2.1 for several distributions generating the
data and different choices of N , the number of blocks. More precisely, we investigate the
standard Gaussian distribution, the t-distribution with 10 degrees of freedom and the ex-
ponential distribution with parameter λ = 1. Data sampled from the latter two distri-
butions is standardized to have expectation 0 and variance 1, in order to match our as-
sumption and allow for comparability, respectively. For each of the sample sizes n =
100, 500, 1000, 2500, 5000, 10000, 15000, we determine five numbers of blocks via N = bn1−sc,
choosing s = 0.4, 0.5, . . . , 0.8. Here, bxc denotes the largest integer smaller or equal to x.
Given a fixed number of blocks, the corresponding data of size n is split into N blocks of,
as far as possible, equal length τN , that is, the actual block lengths differ by at most one.
Hence, τN ≈ ns follows immediately. The assumption N

τN
−→ 0 in Theorem 2.1 therefore

translates to s > 0.5. For each sample size n and each distribution, 100 000 samples of size
n are generated. For each sample, the left hand side of (1) is calculated for each appropriate
choice of τN and for a = 1. Thereby, γ is replaced by its empirical counterpart, which in
turn involves the estimation of σ by the empirical standard deviation. Finally, the empirical

bias and root mean squared error (RMSE) when compared to the limit
√

2E|Z| 6.1
= 2/

√
π

are calculated from the 100 000 replications for each scenario. The results are presented in
Figure 1.

We observe several interesting properties of the method in these plots: First, the precision
of the estimation in general increases with the sample size. This holds even for s ≤ 0.5,
except for the bias in case of t-distributed data. Second, for each individual plot, the graphs
corresponding to the different block lengths N = bn1−sc are almost perfectly ordered ac-
cording to the parameter s for both the bias and the RMSE. In general the absolute bias
decreases in s, so that a large number of comparatively small blocks leads to a small bias.
The RMSE behaves in the opposite way, indicating a larger variance in case of many small
blocks. We thus observe a classical bias–variance trade-off. Finally, the distribution of the
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Figure 1. Empirical bias and RMSE for the LHS of (1) as a function of
the sample size, using data generated from the standard Gaussian distribution
(N(0,1)), the standardized t-distribution with 10 degrees of freedom (t(10))
and the standardized exponential distribution with parameter λ = 1 (Exp(1))
and choosing different numbers of blocks N = bn1−sc. The x-axis is presented
in log scale. The neutral axis is represented by the red line.

data appears to have some influence on the bias, but little on the RMSE. In the Gaussian
case, the limit is on average overestimated for all choices of blocks considered. For the other
two distributions, it is quite often underestimated for s = 0.4, 0.5, 0.6. In summary, these
results support the validity of the LLN, at least for s > 0.5.

Next, we illustrate the CLT stated in Theorem 2.2. For this purpose, a test for the
stationarity of the variance is constructed based on Theorem 2.2 and its size for various
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sample sizes n is investigated. Under H0, the statistic

Tasy =
√
N

(
τ
a/2
N

γa
TN − 2

a
2E|Z|a

)
asymptotically follows a Gaussian distribution with expectation 0 and variance σ̃2, due to the
CLT. Under the alternative of piecewise stationarity, the variance estimates σ̂2

j , j = 1, . . . , N,
typically differ more than under the null hypothesis. This results in comparatively large val-
ues for TN and consequently also for Tasy. Thus, the procedure rejecting H0 if and only if
Tasy > σ̃u1−α provides an asymptotic test for the significance level α suitable for our prob-
lem, where uβ denotes the β-quantile of the standard Gaussian distribution. For the case

a = 1 considered in the following it holds that σ̃ = 4
3

+ 8
π
(
√

3−2), cf. Gerstenberger & Vogel
(2015).
The test introduced above is applied on samples of sizes n = 100, 500, 1000, 2500, 5000, 10000,
15000. Thus, we generated data from each of the three distributions used in the simulations
concerning the LLN. We also consider the same splitting procedure for the blocks and the
same values of s as before, repeating each scenario 100 000 times. The corresponding rejec-
tion rates for α = 5% are given in percent and presented in Figure 2:
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Figure 2. Empirical size of the asymptotic test based on Tasy as a function of
the sample size, using data generated from the standard Gaussian distribution
(N(0,1)), the standardized t-distribution with 10 degrees of freedom (t(10))
and the standardized exponential distribution with parameter λ = 1 (Exp(1))
and choosing different numbers of blocks N = bn1−sc. The x-axis is presented
in log scale. The significance level α = 0.05 is represented by the horizontal
red line.
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The results differ considerably among the different choices of the number of blocks and
also depend on the distribution of the data. Overall, s = 0.6 and s = 0.7 lead to rejection
rates closest to the significance level α = 0.05. The block choices induced by s = 0.4 and
s = 0.8 seem inappropriate, so that a compromise between the block size and the number
of blocks appears to be crucial for our procedure. This may be caused by the fact that our
procedure relies on the convergence both in terms of τN and N . The latter also explains the
overall rather slow convergence of the method. For s = 0.5 the test performs quite well in
the Gaussian case, but is disadvantageous otherwise. The impact of the distribution choice
is quite similar to the one for the bias of the LLN presented in Figure 1.

4. Comparison to Alternative Procedures

There exist many approaches in the literature for checking a series of observations for con-
stant variance. In this section, we first introduce a representative collection of such methods.
Afterwards, these procedures are applied to artificial data along with the asymptotic test
studied in Section 3, allowing to evaluate the performance of the latter.

One classical tool for the detection of structural breaks is the CUSUM procedure. Among
others, Wied et al. (2012) utilize it in order to detect changes in the variance structure. They
focus on the CUSUM statistic

TCUS = D̂max
1≤t≤n

∣∣∣∣ t√n(σ̂2
1:t − σ̂2

1:n)

∣∣∣∣ ,
which asymptotically has the same distribution as supz∈[0,1] |B(z)|. Here, B(·) denotes a

one-dimensional Brownian bridge and σ̂2
1:t describes the empirical variance of the first t ob-

servations. The normalising data dependent scalar D̂ takes into account the asymptotic
variance necessary to attain the asymptotic distribution. The method determines the differ-
ence between the variance estimated on the complete sample and the variance estimated on
the subsample up to observation t. It then considers the maximal absolute deviation to test
for a structural break via critical values derived from asymptotics. The integral part of the
CUSUM procedure is the cumulative sum arising in the computation of σ̂2

1:t. Unfortunately,
this quantity is prone to masking effects in case of several change points. In other words,
multiple changes of the variance can lead to low detection rates, if their effects cancel each
other out in the cumulative sums. Therefore, in principle, the CUSUM procedure is designed
to test for at most one structural change at a time.
Essentially, the problem sketched above arises because σ̂2

1:t reflects a sort of averaged vari-
ance up to observation t rather than the local variance close to observation t. Therefore,
many authors try to alleviate this masking effect by estimating the variance locally. More
precisely, they perform the variance estimation on a moving window of observations. One
way to adopt this strategy is the MOSUM test based on the statistic

TMOS = D̃
√
bhnc max

0≤t≤n−bhnc

∣∣σ̃2
(t+1):(t+bhnc) − σ̃2

1:n

∣∣ ,
where σ̃2

i:j = 1
j−i
∑j

k=iX
2
k for j > i, c.f. the approach of Chu et al. (1995) applied to the

squared observations. The method estimates local variances using a sliding window of fixed
size bnhc. It then compares the local estimates to the global one, similar to the CUSUM
procedure. The normalizing data dependent factor D̃ as well as appropriate critical values
are derived from asymptotics. The procedure is implemented in the strucchange package
(Zeiles et al., 2002) for the software R (R Core Team, 2016). In the following, it is always
conducted choosing the default bandwidth h = 0.15, unless stated otherwise.
Ross (2013) chooses a different approach to test the stationarity of the variance. Motivated
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by the classical distribution-free Mood test, he considers the ranks corresponding to the
random variables X1, . . . , Xn. Similar to the CUSUM procedure, for every t = 1, . . . , n the
standardized statistic of the Mood test

TMood,t =

∣∣∣∑t
h=1

(
rh − n+1

2

)2 − µ∗t ∣∣∣
σ∗t

is then computed on the first t of these ranks r1, . . . , rn. The involved quantities µ∗t =

t(n2−1)/12 and σ∗t =
√
t(n− t)(n+ 1)(n2 − 4)/180 correspond under the null hypothesis to

the expected value and the standard deviation of the sum appearing in TMood,t, respectively.
In analogy to the CUSUM test the final test statistic is constructed considering the maximum
over t = 1, . . . , n:

TMood = max
t=1,...,n

TMood,t.

Corresponding critical values can be derived by simulations and are listed for several sample
sizes in Ross (2013). The procedure is based solely on the ranks of the observations and is
therefore distribution-free. However, it suffers from masking problems for the same reasons
as the CUSUM test.
In addition to these methods, we consider the asymptotic procedure based on Tasy inves-
tigated in the second part of Section 3. Another test is constructed by applying the per-
mutation approach to TN . Thereby, we always conduct 10 000 permutations. As shown in
Wornowizki et al. (2016), the performance of this method is hardly influenced by the weight
parameter a and particularly fit for detecting multiple structural changes.
We apply all five tests in five data scenarios listed below. To give a clear and compact
overview, let |n = n1, σ = σ1|n = n2, σ = σ2| denote n1 observations with standard devia-
tion σ1, followed by n2 observations with standard deviation σ2. The data cases under study
are:

1) |n = 6000, σ = 1|
2) |n = 3000, σ = 1|n = 3000, σ = 1.1|
3) |n = 2000, σ = 1|n = 2000, σ = 1.1 |n = 2000, σ = 1|
4) |n = 1200, σ = 1|n = 1200, σ = 1.1 |n = 1200, σ = 1|n = 1200, σ = 1.1 |n = 1200, σ = 1|
5) |n = 1200, σ = 1|n = 600 , σ = 1.1 |n = 1200, σ = 1|n = 1800, σ = 1.1 |n = 1200, σ = 1|

These correspond to the null hypothesis (1)), to one structural break (2)), to two structural
breaks (3)), to four equidistant structural breaks (4)) and to four non-equidistant structural
breaks (5)). The data for each of the five scenarios is generated from four different dis-
tributions. These are the standard Gaussian distribution, the t-distribution with 10 and 5
degrees of freedom and the exponential distribution with parameter λ = 1. Each of them is
standardized to have expectation zero and variance one. We thus end up with 20 data cases
in total. For each of them 10 000 replications are conducted and the five test procedures
introduced above are applied to the data set of each replication, where we choose a signif-
icance level of α = 5%. The permutation tests are executed with 2000 permutations. In
order to reduce the computational burden, both tests based on TN are carried out for a = 1
and s = 0.7 only. The corresponding rejection rates are presented in Table 1.

Under the null hypothesis of constant variance, the newly proposed test behaves somewhat
liberal for Gaussian and t(10) data. Besides that, the only procedure clearly violating the five
percent bound is the one based on TMOS in case of t(5) data. As expected, the CUSUM and
Mood-type procedures perform much better than their competitors in case of one structural
change. However, as the number of change point increases, both loose a tremendous amount
of power. The only exception is the exponential case, where the rank-based procedure
universally outperforms all remaining tests by a considerably amount. All in all, the methods
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Table 1. Rejection rates in percent for the five tests under study for the five
different data scenarios presented on page 9, and for Gaussian data (N(0,1)),
data from the t-distribution with 10 and 5 degrees of freedom (t(10) and t(5))
and exponential data (Exp(1)). The results of the asymptotic test derived
from the CLT in Theorem 2.2 and for its equivalent based on permutations
for s = 0.7 and a = 1 are denoted by Tasy and Tperm, respectively.

TCUS TMood TMOS Tasy Tperm

1) H0 :

N(0,1) 4.3 5.0 5.0 6.3 4.6

t(10) 4.6 5.0 5.4 6.3 5.1

t(5) 3.7 5.2 6.4 4.2 5.1

Exp(1) 3.9 4.8 5.5 5.2 4.9

2) 1 break:

N(0,1) 99.7 94.7 89.6 95.6 94.3

t(10) 96.7 91.0 72.3 82.3 80.0

t(5) 71.7 86.2 38.7 43.3 47.8

Exp(1) 60.8 100.0 30.9 34.5 33.2

3) 2 breaks:

N(0,1) 15.6 10.8 35.4 30.9 25.6

t(10) 11.3 9.8 24.8 21.2 17.9

t(5) 5.7 9.6 15.3 9.6 11.1

Exp(1) 5.7 44.3 12.3 9.2 9.7

4) 4 breaks:

N(0,1) 10.3 26.6 86.4 87.3 83.6

t(10) 7.8 23.6 66.9 68.3 64.2

t(5) 4.4 20.3 35.9 32.7 36.7

Exp(1) 4.4 91.9 28.6 26.5 24.9

5) 4 noneq. breaks:

N(0,1) 27.3 31.5 83.4 88.3 85.1

t(10) 18.7 27.9 63.5 68.0 63.9

t(5) 9.3 23.8 34.3 32.5 36.5

Exp(1) 8.7 96.3 27.9 26.5 25.2

referred to as Tasy and Tperm lead to competitive results across all scenarios considered. Their
rejection rates are usually quite similar with the exception of t(5)-data scenarios. Here, the
asymptotic test looses a small amount of power because the respective requirement of existing
fourth moments is not met. Overall, the MOSUM-type procedure based on TMOS slightly
outperforms the tests relying on Tasy and Tperm.
In addition to high rejection rates under various alternatives, suitable change point detection
procedures allow an adequate estimation of the position of the structural breaks. We thus
apply the corresponding estimation scheme presented in Wornowizki et al. (2016) to the tests
relying on Tasy and TMOS. The results for the situations 3) and 4) in case of Gaussian data
are depicted in Figure 3. The plots shows quite clearly that TMOS, even though occasionally
having higher rejection rates, has much more difficulties to allocate the individual structural
breaks. The method therefore leads to a considerably worse estimation of the position and
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number of the structural changes. In comparison, Tasy is able to reconstruct the true variance
structure much more reliably.

Since the tests based on Tasy and TMOS overall performed best in terms of power, we
reinvestigate them in further data cases. As before, we work with 10 000 samples of size
n = 6000. However, this time we create nine variance changes which are as follows:

I) Equidistant blocks of length 600; standard deviations alternating between 1 and 1.1
II) Randomly positioned blocks with minimum block length 120; standard deviations

alternating between 1 and 1.1
III) Randomly positioned blocks with minimum block length 120; standard deviations

randomly chosen from the candidates 0.9, 0.95, 1, 1.05, 1.1, where adjacent blocks
must have different variances.

For the test using Tasy, we split the data into 5, 10, 20 or 80 equidistant blocks of lengths
1200, 600, 300 or 75. For TMOS, we consider the window sizes bnhc = 75, 300, 600, 1200. The
results for both procedures are collected in Table 2. As expected, both methods perform best
in data case I), if they are applied using the correct data partition. Also, quite unsurprisingly,
too large blocks of length 1200 substantially decrease the rejection rate of the Tasy-test. The
same holds for large window sizes for the MOSUM procedure. We also note that this time our
newly proposed test outperforms its competitor based on TMOS in each case but the one, often
showing considerably higher rejection rates. Combined with the above results, this stresses
the notion that the procedure introduced in this work is certainly worth investigating.

Table 2. Rejection rates in percent of the tests based on Tasy and TMOS for
different block lengths τN in the data cases I), II), and III, see page 11.

Tasy TMOS

τN 75 300 600 1200 75 300 600 900 1200

I) 62.5 93.0 98.0 8.3 0.0 47.0 50.2 15.3 4.9

II) 54.5 74.4 68.8 54.3 0.0 46.8 53.5 54.2 52.6

III) 88.0 95.7 94.6 87.1 0.3 85.6 91.5 91.8 89.7

5. Conclusion

The present paper introduces an asymptotic test on the stationarity of the variance for
a sequence of independent random variables. The statistic we focus on is up to now only
utilized for testing via a permutation approach, see Wornowizki et al. (2016). Our asymptotic
pendant to this promising procedure offers similar power along with a tremendous reduction
of computational complexity. As shown in various scenarios in our simulation study, the new
method also performs well when compared to different tests suggested in the literature in
case of symmetrical distributions. In particular, our method estimates the structural break
positions adequately in case of a rejection of the null hypothesis. To derive the asymptotic
distribution under the null hypothesis, the statistic of interest is represented as a U-statistic
computed from blockwise variance estimates. Its distribution depends on the sample size,
so that the classical LLN and CLT for U-statistics are not applicable. We thus develop new
versions of such limit theorems corresponding to our setting and illustrate their correctness
in a simulation study. Future work in this area could treat the case of dependent data and
possibly make use of appropriate resampling techniques. Also, proper strategies for choosing
a suitable splitting of the data into blocks may further increase the method’s performance.
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Figure 3. Estimated change point positions computed on Gaussian data for
the tests based on Tasy (left colum) and TMOS (right column) in the case of
two (upper row) and four (lower row) equidistant variance changes.

6. Appendix

Proof of Lemma 2.3. i) The lemma essentially provides an approximation of TN . It is estab-
lished using the fact that | log(x + 1) − x| = O(x2) holds for |x| < 1. To ensure the latter
assumption holds, we introduce the set Mε = {max1≤j≤N |SN,j|/

√
τN ≤ ε} for any ε ∈ (0, 1).

First we prove that its complement MC
ε has vanishing probability. We then show that the

desired approximation indeed holds on the set Mε, yielding the claim. In the following,
the indicator functions corresponding to the sets Mε and MC

ε are denoted by IMε and IMC
ε

,
respectively.
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Rewriting τ
a/2
N TN − T̃N in terms of the SN,j yields

|τa/2N TN − T̃N |

≤ τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣log

 1

τN

∑
i∈BN,j

X2
i

− log

 1

τN

∑
i∈BN,k

X2
i

∣∣∣∣∣∣
a

−

∣∣∣∣∣∣ 1

τN

∑
i∈BN,j

((Xi/σ)2 − 1)− 1

τN

∑
i∈BN,k

((Xi/σ)2 − 1)

∣∣∣∣∣∣
a∣∣∣∣∣∣

=
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣log

 1

τN

∑
i∈BN,j

(Xi/σ)2

− log

 1

τN

∑
i∈BN,k

(Xi/σ)2

∣∣∣∣∣∣
a

−

∣∣∣∣∣∣ 1

τN

∑
i∈BN,j

((Xi/σ)2 − 1)− 1

τN

∑
i∈BN,k

((Xi/σ)2 − 1)

∣∣∣∣∣∣
a∣∣∣∣∣∣

=
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)∣∣∣∣a − ∣∣∣∣ 1
√
τN
SN,j −

1
√
τN
SN,k

∣∣∣∣a∣∣∣∣ .
We now consider the probability of the above expression restricted to the set MC

ε :

P

(
IMC

ε
· τ

a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)∣∣∣∣a
−
∣∣∣∣ 1
√
τN
SN,j −

1
√
τN
SN,k

∣∣∣∣a∣∣∣∣ > 0

)
≤P

(
MC

ε

)
= P

(
max
1≤j≤N

∣∣∣∣ 1
√
τN
SN,j

∣∣∣∣ > ε

)
≤ N · P

(∣∣∣∣ 1
√
τN
SN,1

∣∣∣∣ > ε

)
≤ N

γ2

τNε2
−→ 0

Hereby, we used Chebychev’s inequality and the fact that N
τN
→ 0 holds by assumption.

Thus, as desired, the probability of MC
ε vanishes implying the proposition on the set MC

ε .
Next, we consider the case of Mε. Our goal is to bound

IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)∣∣∣∣a − ∣∣∣∣ 1
√
τN
SN,j −

1
√
τN
SN,k

∣∣∣∣a∣∣∣∣
from above by a nonnegative random variable with vanishing mean, which would complete
the proof. The actual calculations differ for a ∈ (0, 1) and a ∈ [1, 2). However, for both of
them the approximation | log(x+ 1)− x| = O(x2) is valid in case of |x| < 1 and implies the
useful inequality

∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− 1
√
τn
SN,j

∣∣∣∣ · IMε ≤ c

(
1
√
τn
SN,j

)2

(2)
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for any 1 ≤ j ≤ N and some c ∈ R+. For a ∈ (0, 1) Lemma 6.2 i) allows us to show

IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)∣∣∣∣a − ∣∣∣∣ 1
√
τN
SN,j −

1
√
τN
SN,k

∣∣∣∣a∣∣∣∣
(6)

≤IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)
− 1
√
τN
SN,j +

1
√
τN
SN,k

∣∣∣∣a
≤IMε ·

τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

(∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− 1
√
τN
SN,j

∣∣∣∣+

∣∣∣∣log

(
1
√
τN
SN,k + 1

)
− 1
√
τN
SN,k

∣∣∣∣)a
(2)

≤IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

ca

((
1
√
τN
SN,j

)2

+

(
1
√
τN
SN,k

)2
)a

(6)

≤IMε ·
caτ

a/2
N

N(N − 1)

∑
1≤j 6=k≤N

((
1
√
τN
SN,j

)2a

+

(
1
√
τN
SN,k

)2a
)

=IMε ·
2caτ

a/2
N

N

∑
1≤j≤N

(
1
√
τN
SN,j

)2a

= IMε ·
2caτ

a/2−a
N

N

∑
1≤j≤N

(SN,j)
2a .

For the nonnegative random variable above, we get

E

(
IMε ·

2caτ
a/2−a
N

N

∑
1≤j≤N

(SN,j)
2a

)
≤ E

(
2caτ

a/2−a
N

N

∑
1≤j≤N

(SN,j)
2a

)
=2caτ

a/2−a
N E

(
(SN,1)

2a) ≤ 2caτ
a/2−a
N E

(
(SN,1)

2)a
=2caτ

a/2−a
N Var (SN,1)

a = 2caτ
a/2−a
N γ2a −→ 0

using Jensen’s inequality. Thus, this random variable converges to 0 in probability. Conse-
quently, the claim holds for a ∈ (0, 1).
In case of a ∈ [1, 2), we take a similar approach using Lemma 6.2 ii):

IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

∣∣∣∣∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)∣∣∣∣a − ∣∣∣∣ 1
√
τN
SN,j −

1
√
τN
SN,k

∣∣∣∣a∣∣∣∣
(7)

≤IMε ·
τ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

a

∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− log

(
1
√
τN
SN,k + 1

)
− 1
√
τN
SN,j +

1
√
τN
SN,k

∣∣∣∣
≤IMε ·

aτ
a/2
N

N(N − 1)

∑
1≤j 6=k≤N

(∣∣∣∣log

(
1
√
τN
SN,j + 1

)
− 1
√
τN
SN,j

∣∣∣∣+

∣∣∣∣log

(
1
√
τN
SN,k + 1

)
− 1
√
τN
SN,k

∣∣∣∣)
(2)

≤IMε ·
aτ

a/2
N

N(N − 1)

∑
1≤j 6=k≤N

c

((
1
√
τN
SN,j

)2

+

(
1
√
τN
SN,k

)2
)

=IMε ·
2caτ

a/2−1
N

N

∑
1≤j≤N

(SN,j)
2 ,
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and the latter converges to 0 in probability because of

E

(
IMε ·

2acτ
a/2−1
N

N

∑
1≤j≤N

(SN,j)
2

)
≤ E

(
2acτ

a/2−1
N

N

∑
1≤j≤N

(SN,j)
2

)
=2caτ

a/2−1
N E

(
(SN,1)

2) = 2caτ
a/2−1
N Var (SN,1) = 2caτ

a/2−1
N γ2 −→ 0.

Thus the desired result follows for a ∈ [1, 2), which completes the proof.

ii) We use the same arguments as before and multiply the expression in i) by the factor
√
N .

Consequently, one obtains the desired convergence for a ∈ (0, 1) if
√
N2caτ

−a/2
N γ2a −→ 0

holds. The latter is ensured by N
τaN
→ 0. In the case a ∈ [1, 2) we take a similar approach

exploiting N
τN 2−a → 0.

�

Proof of Proposition 2.4. i) By the classical central limit theorem SN,j/γ converges in dis-
tribution to a standard normal random variable as n → ∞ (and thereby τN → ∞) for any
1 ≤ j ≤ N . For j 6= k the normalized block sums SN,j/γ and SN,k/γ are independent.
Thus (SN,j − SN,k)/γ converges in distribution to a Gaussian random variable with mean
zero and variance 2. Consequently, for a ∈ (0, 2), we obtain convergence of the expectations
E|(SN,j − SN,k)/γ|a towards E|21/2Z|a, and hence

E(T̃N/γ
a) = E|(SN,j − SN,k)/γ|a −→ 2a/2E(|Z|a) as n→∞.

ii) Since E(T̃N/γ
a) −→ 2a/2E|Z|a holds by (i), it suffices to show that Var(T̃N) −→ 0.

Exploiting that Cov(|SN,j1 − SN,k1|a, |SN,j2 − SN,k2|a) = 0 whenever {j1, k1} ∩ {j2, k2} = ∅,
we obtain

Var(T̃N) =
1

(N(N − 1))2

∑
1≤j1 6=k1≤N

∑
1≤j2 6=k2≤N

Cov(|SN,j1 − SN,k1|a, |SN,j2 − SN,k2|a)

=
1

N(N − 1)
Var(|SN,1 − SN,2|a) +

2(N − 2)

N(N − 1)
Cov(|SN,1 − SN,2|a, |SN,1 − SN,3|a).

The Cauchy-Schwarz inequality thus allows us to bound Var(T̃N) from above:

Var(T̃N) ≤ 2N − 3

N(N − 1)
Var(|SN,1 − SN,2|a).

To further bound Var(|SN,1−SN,2|a) from above, we once more distinguish the cases a ∈ (0, 1)
and a ∈ [1, 2). For a ∈ [1, 2), the cr-inequality and the Rosenthal inequality imply

Var(|SN,1 − SN,2|a) ≤ E
(
|SN,1 − SN,2|2a

)
≤ 22aE |SN,1|2a = 22aE

∣∣∣∣∣ 1
√
τN

τN∑
i=1

((Xi/σ)2 − 1)

∣∣∣∣∣
2a

≤ 22a
[
a1(a)τ 1−aN E|(X1/σ)2 − 1|2a + a2(a)γ2a

]
.

In the other case, a ∈ (0, 1), the cr-inequality and Jensen’s inequality allow us to deduce

Var(|SN,1 − SN,2|a) ≤E
(
|SN,1 − SN,2|2a

)
≤ max(2, 22a)E

∣∣∣∣∣ 1
√
τN

τN∑
i=1

((Xi/σ)2 − 1)

∣∣∣∣∣
2a

≤max(2, 22a)

E( 1
√
τN

τN∑
i=1

((Xi/σ)2 − 1)

)2
a

= max(2, 22a)γ2a.
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Thus in both cases Var(T̃N)→ 0 is fulfilled, which proves the claim. �

Proof of Proposition 2.5. The proposition is basically a CLT for the U -statistic T̃N/γ
a, where

we center by its expectation E(T̃N/γ
a) instead of the corresponding limit 2

a
2E|Z|a, see

Lemma 2.6. Defining h(x, y) = |x− y|a for x, y ∈ R, we express T̃N/γ
a as

T̃N/γ
a =

1

N(N − 1)

∑
1≤j 6=k≤N

h(SN,j/γ, SN,k/γ).

For any N ∈ N the Hoeffding decomposition of h is given by θ(N) = Eh(SN,1/γ, SN,2/γ),

where g
(N)
1 (x) = Eh(x, SN,1/γ), h

(N)
1 (x) = g

(N)
1 (x) − θ(N) and h

(N)
2 (x, y) = h(x, y) − θ(N) −

h
(N)
1 (x)− h(N)

1 (y). This allows us to express T̃N/γ
a as

1

N(N − 1)

∑
1≤j 6=k≤N

h(SN,j/γ, SN,k/γ)

=θ(N) +
1

N(N − 1)

∑
1≤j 6=k≤N

(
h
(N)
1 (SN,j/γ) + h

(N)
2 (SN,k/γ)

)
+

1

N(N − 1)

∑
1≤j 6=k≤N

h
(N)
2 (SN,j/γ, SN,k/γ)

=θ(N) +
2

N

∑
1≤j≤N

h
(N)
1 (SN,j/γ)︸ ︷︷ ︸

=aN

+
1

N(N − 1)

∑
1≤j 6=k≤N

h
(N)
2 (SN,j/γ, SN,k/γ)︸ ︷︷ ︸

=bN

.

To prove the claim, we thus need to show
√
N aN

2
−→ N(0, σ̃

2

4
) in distribution and

√
NbN −→

0 as n→∞.
Let us first establish the asymptotic normality of

√
N aN

2
using the CLT of Lyapunov. Because

of
√
N aN

2
= 1√

N

∑
1≤j≤N h

(N)
1 (SN,j/γ) and Eh

(N)
1 (SN,1/γ) = 0, it is sufficient to prove that

for some δ > 0 and some constant σ′ > 0 it holds∑
1≤j≤N

E

∣∣∣∣∣h(N)
1 (SN,j/γ)√

N

∣∣∣∣∣
2+δ

→ 0 and
∑

1≤j≤N

Var

(
h
(N)
1 (SN,j/γ)√

N

)
→ σ′.

We start by investigating the first condition. Since for any fixed N ∈ N the h
(N)
1 (SN,j),

j = 1, . . . , N , are identically distributed, the cr-inequality allows us to deduce∑
1≤j≤N

E

∣∣∣∣∣h(N)
1 (SN,j/γ)√

N

∣∣∣∣∣
2+δ

=
1

N1+ δ
2

∑
1≤j≤N

E
∣∣∣h(N)

1 (SN,j/γ)
∣∣∣2+δ =

1

N
δ
2

E
∣∣∣h(N)

1 (SN,1/γ)
∣∣∣2+δ

=
1

N
δ
2

E
∣∣∣g(N)

1 (SN,1/γ)− θ(N)
∣∣∣2+δ ≤ 21+δ

N
δ
2

(
E
∣∣∣g(N)

1 (SN,1/γ)
∣∣∣2+δ +

(
θ(N)

)2+δ)
.

Denoting by FN the distribution of SN,1/γ, Jensen’s inequality allows us to bound the relevant
term from above:

E
∣∣∣g(N)

1 (SN,1/γ)
∣∣∣2+δ =

∫ ∣∣∣∣∫ |x− y|adFN(y)

∣∣∣∣2+δ dFN(x)

≤
∫ ∫

|x− y|a(2+δ)dFN(y)dFN(x) = E|(SN,1 − SN,2)/γ|a(2+δ).

Putting the pieces together, we thus get∑
1≤j≤N

E

∣∣∣∣∣h(N)
1 (SN,j/γ)√

N

∣∣∣∣∣
2+δ

≤ 21+δ

N
δ
2

(
E|(SN,1 − SN,2)/γ|a(2+δ) +

(
θ(N)

)2+δ)
.(3)
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Another application of the cr-inequality time yields

E|(SN,1 − SN,2)/γ|a(2+δ) ≤ max(2, 2a(2+δ))E|SN,1/γ|a(2+δ).

In case of a ∈ [1, 2), it holds that a(2 + δ) ≥ 2. The Rosenthal inequality then leads to

E|SN,1/γ|a(2+δ) ≤ a1(a(2 + δ))τ
1−a

2
(2+δ)

N E|((X1/σ)2 − 1)/γ|a(2+δ) + a2(a(2 + δ)),

which is bounded by assumption. For the case a ∈ (0, 1) and a sufficiently small δ > 0,
we get a(2 + δ) < 2 and thus

E|SN,1/γ|a(2+δ) = E|SN,1/γ|2
a
2
(2+δ) ≤

(
E|SN,1/γ|2

)a
2
(2+δ)

= 1

by Jensen’s inequality. Thus E|(SN,1 − SN,2)/γ|a(2+δ) is bounded for any a ∈ (0, 2). By
Lemma 2.6, θ(N) converges to a limit, due to N

τn
→ 0. Hence θ(N) is bounded. Using (3) we

therefore have verified the first condition of the CLT of Lyapunov:

∑
1≤j≤N

E

∣∣∣∣∣h(N)
1 (SN,j/γ)√

N

∣∣∣∣∣
2+δ

−→ 0.

We now turn to the second CLT condition, so we need to check whether the sum∑
1≤j≤N Var

(
h
(N)
1 (SN,j/γ)/

√
N
)

converges to some constant σ′ > 0. Note that for any

sequence (xn)n∈N ⊂ R with xn → x, the distribution of the random variables SN,j/γ − xn
converges to the normal distribution with mean −x and unit variance. We can therefore
apply the continuous mapping theorem for sequences of functions, yielding

∑
1≤j≤N

Var

(
h
(N)
1 (SN,j/γ)√

N

)
= Var

(
h
(N)
1 (SN,1/γ)

)
−→ Var (h1(Z)) > 0,

where h1(x) = E(h(x, Z ′)) and Z,Z ′ are i.i.d. standard Gaussian random variables. Thus

we have established
√
N aN

2
−→ N(0,Var (h1(Z)) in distribution using Lyapunov’s CLT.

To prove the proposition, it remains to show
√
NbN −→ 0. Since E(bN) = 0, it suffices to

consider the variance

Var

( √
N

N(N − 1)

∑
1≤j 6=k≤N

h
(N)
2 (SN,j/γ, SN,k/γ)

)
=

1

N − 1
Var

(
h
(N)
2 (SN,1/γ, SN,2/γ)

)
.
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The above equality holds because the summands are uncorrelated by the construction of

h
(N)
2 and are identically distributed. We further get

Var
(
h
(N)
2 (SN,1/γ, SN,2/γ)

)
≤ E

((
h
(N)
2 (SN,1/γ, SN,2/γ)

)2)
=E

((
h(SN,1/γ, SN,2/γ)− θ(N) − h(N)

1 (SN,1/γ)− h(N)
1 (SN,2/γ)

)2)
=E

(
h(SN,1/γ, SN,2/γ)2

)
−
(
θ(N)

)2 − 2E
(
h(SN,1/γ, SN,2/γ)h

(N)
1 (SN,1/γ)

)
−
(
θ(N)

)2
+
(
θ(N)

)2
+2θ(N)E

(
h
(N)
1 (SN,1/γ)

)
+ 2

[
−E

(
h(SN,1/γ, SN,2/γ)h

(N)
1 (SN,1/γ)

)
+ θ(N)E

(
h
(N)
1 (SN,1/γ)

)
+E

((
h
(N)
1 (SN,1/γ)

)2)
+ E

(
h
(N)
1 (SN,1/γ)

)2]
=E

(
h(SN,1/γ, SN,2/γ)2

)
−
(
θ(N)

)2 − 4E
(
h(SN,1/γ, SN,2/γ)h

(N)
1 (SN,1/γ)

)
+ 2E

((
h
(N)
1 (SN,1/γ)

)2)
=E

(
h(SN,1/γ, SN,2/γ)2

)
−
(
θ(N)

)2 − 2E
(
h(SN,1/γ, SN,2/γ)h

(N)
1 (SN,1/γ)

)
≤E

(
h(SN,1/γ, SN,2/γ)2

)
= E

(
|(SN,1 − SN,2)/γ|2a

)
,

where the last expression is bounded from above as shown in the proof of Proposition 2.4.

Thus, Var
(
h
(N)
2 (SN,1/γ, SN,2/γ)

)
is bounded and therefore

√
NbN converges to zero, which

completes the proof.
�

Proof of Lemma 2.6. First, note that E(T̃N/γ
a) = E|(SN,1−SN,2)/γ|a and 2

a
2E|Z|a = E|Z−

Z ′|a, where Z ′ is a standard Gaussian random variable independent of Z. We thus consider
the standardized differences 1

γ
√
2
(SN,1 − SN,2) and 1√

2
(Z − Z ′) and define their distribution

functions by

FN(x) = P

(
1

γ
√

2
(SN,1 − SN,2) ≤ x

)
and Φ(x) = P

(
1√
2

(Z − Z ′) ≤ x

)
.

By the Berry-Esseen theorem, we have ∆N = supx∈R |FN(x)−Φ(x)| ≤ c1√
τN

for some constant

c1 ∈ R+. By Theorem 11, Chapter V in Petrov (1975), this implies for N ≥ N0 sufficiently
large the following non-uniform bound for the speed of convergence for any x ∈ R and
appropriate constants c2, c3 ∈ R:

|FN(x)− Φ(x)| ≤ c2
∆N log(∆−1N )

1 + x2
≤ c3

τ
− 1

2
N log(τN)

1 + x2
.(4)

We now consider the standardized absolute differences 1
γ
√
2
|SN,1 − SN,2| and 1√

2
|Z − Z ′|

and their distribution functions

F̃N(x) = P

(
1

γ
√

2
|SN,1 − SN,2| ≤ x

)
and Φ̃(x) = P

(
1√
2
|Z − Z ′| ≤ x

)
.

From (4) we obtain

|F̃N(x)− Φ̃(x)| ≤ 2c3
τ
− 1

2
N log(τN)

1 + x2
.(5)
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Using integration by parts we have

E(T̃N/γ
a) = E|(SN,1 − SN,2)/γ|a = 2

a
2

∫ ∞
0

xadF̃N(x) = a2
a
2

∫ ∞
0

(1− F̃N(x))xa−1dx,

and similarly 2
a
2E|Z|a = E|Z − Z ′|a = a2

a
2

∫∞
0

(1− Φ̃(x))xa−1dx. Finally, we get

∣∣∣E(T̃N/γ
a)− 2

a
2E|Z|a

∣∣∣ =a2
a
2

∣∣∣∣∫ ∞
0

(F̃N(x)− Φ̃(x))xa−1dx

∣∣∣∣
(5)

≤a2
a
2 c3τ

− 1
2

N log τN

∫ ∞
0

xa−1

1 + x2
dx = O

(
log τN√
τN

)
since the integral

∫∞
0

xa−1

1+x2
dx is finite for a ∈ [1, 2). This implies the proposition.

�

Lemma 6.1 (Explicit representation of the limit in Theorem 2.1). Since

E(|Z|a) =

∫ ∞
−∞

|z|a√
2π

exp

(
−z

2

2

)
dz = 2

∫ ∞
0

za√
2π

exp

(
−z

2

2

)
dz

=2

∫ ∞
0

√
2y

a−1

√
2π

exp (−y) dy =
2
a+1
2

√
2π

∫ ∞
0

y
a−1
2 exp (−y) dy

=
2
a
2

√
π

∫ ∞
0

y
a+1
2
−1 exp (−y) dy =

2
a
2

√
π

Γ

(
a+ 1

2

)
,

we get 2
a
2E(|Z|a) = 2a√

π
Γ
(
a+1
2

)
for the limit in Theorem 2.1.

Lemma 6.2.

(i) For all a ∈ (0, 1) and x, y ∈ R we have

||x|a − |y|a| ≤ |x− y|a.(6)

(ii) For all a ∈ (1, 2) x, y ∈ R with |x|, |y| < 1 it holds

||x|a − |y|a| ≤ a|x− y|.(7)

Note that, in the limit a = 1, both inequalities give the same bound which holds by the
triangle inequality for any x, y ∈ R.

Proof. (i) To show the proposition, it suffices to establish the nonnegativity of the function
fx : [0, x]→ R defined by fx(y) = (x− y)a + ya − xa for any x ∈ R+. Note that the second
derivative of fx is f ′′x (y) = a(a − 1)(x − y)a−2 + a(a − 1)ya−2 ≤ 0 for all 0 ≤ y ≤ x. Hence,
the first derivative of fx is nonincreasing. Combined with fx(0) = fx(x) = 0, this shows the
nonnegativity of fx and therefore inequality (6).

(ii) In a similar way, we prove the proposition showing the nonnegativity of the function
gx : [0, x]→ R defined by gx(y) = a(x− y) + ya − xa for any x ∈ [0, 1). The first derivative
of gx is g′x(y) = −a+ aya−1 and thus is never zero on (0, x) because of |y| < 1. Thus gx does
not attain any minimum on (0, x). Together with gx(x) = 0 ≥ 0 and gx(0) = ax − xa ≥ 0,
one can thus deduce the nonnegativity of gx and therefore show inequality (7).

�
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