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We present estimation and inference techniques for systems of seemingly unrelated cointegrat-
ing polynomial regressions. In particular, we present two fully modified-type estimators and
Wald-type hypothesis tests based upon them. We develop tests for poolability of subsets of
coefficients over subsets of equations. For the case that these restrictions are not rejected, we
provide the correspondingly pooled estimators. This group-wise pooling turns out to be very
useful in our application where we analyze the environmental Kuznets curve for CO2 emissions
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results as unrestricted estimation whilst reducing the number of estimated parameters by about
one third. Fully pooled, panel-data type estimation performs poorly in comparison.
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1 Introduction

The environmental Kuznets curve (EKC) hypothesis postulates an inverted U-shaped relationship

between measures of economic development, typically GDP per capita, and measures of per capita

pollution or emissions. The term EKC refers by analogy to the inverted U-shaped relationship

between the level of economic development and the degree of income inequality, postulated by

Kuznets (1955) in his 1954 presidential address to the American Economic Association.

Starting with the pioneering work of Grossman and Krueger (1991, 1993, 1995) and Shafik and

Bandyopadhyay (1992) a large and still growing body of research, both theoretical and empirical,

has been devoted to the EKC hypothesis. Theoretical contributions include Andreoni and Levinson

(2001), Arrow et al. (1995), Brock and Taylor (2005, 2010), Cropper and Griffiths (1994), Dinda

(2005), Jones and Manuelli (2001), Selden and Song (1995) or Stokey (1998).1 Müller-Fürstenberger

and Wagner (2007) discuss problems that arise at the intersection of theoretical and empirical EKC

analysis. Additional early empirical contributions on top of the mentioned seminal papers include

Agras and Chapman (1999), Antweiler et al. (2001), Hilton and Levinson (1998), Holtz-Eakin and

Selden (1995),2 Kahn (1998), List and Gallet (1999) or Torras and Boyce (1998).

Criticism of the EKC is as old as the EKC itself, both on theoretical as well as on econometric

grounds. In this paper we focus on discussing two problems related to (i) using unit root and

cointegration methods for (ii) multi-country (or multi-regional) data in a parametric approach to

the EKC. The problems addressed also impact – if unit root nonstationary behavior of explanatory

variables is indeed present – the validity of other estimation approaches to the EKC, including

non-parametric approaches (see, e.g., Millimet et al., 2003), semi-parametric approaches (see, e.g.,

Bertinelli and Strobl, 2005) or specifications based on spline interpolations (see, e.g., Schmalensee

et al., 1998).

Given that a significant part of the empirical literature uses unit root and cointegration techniques,

understanding the implications of (i) and (ii) is important for empirical practice. Papers that use

time series unit root and cointegration methods include Esteve and Tamarit (2012), Fosten et al.

1A relatively recent survey of economic models for analyzing the EKC is given by Kijima et al. (2010). Uchiyama
(2016, Chapter 2) contains a detailed discussion of the model of Stokey (1998) as well as an overview discussion of
empirical work on the EKC. Already early survey papers like Stern (2004) or Yandle et al. (2004) find more than 100
refereed publications; and many more written since then.

2The quadratic formulation, i.e., the functional form that can literally lead to an inverted U-shape has first been
used in this paper, whereas Grossman and Krueger used a third order polynomial.
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(2012), Friedl and Getzner (2003), He and Richard (2010), Jalil and Mahmud (2009) and Lindmark

(2002). Panel data studies using unit root and cointegration techniques include Apergis (2016),

Auffhammer and Carson (2008), Baek (2015), Bernard et al. (2015), Dijkgraaf and Vollebergh

(2005), Dinda and Coondoo (2006), Galeotti et al. (2006), Perman and Stern (2003) or Romero-

Avila (2008). As pointed out by Wagner (2015), based on Wagner and Hong (2016), these papers

ignore the fact that powers of integrated processes are not themselves integrated processes (see also

Wagner, 2012). Therefore, a regression of (the logarithm of) emissions per capita on (the logarithm

of) GDP per capita and its powers is not a standard cointegrating regression, but in the terminology

of Wagner and Hong (2016, eq. (1)) a cointegrating polynomial regression (CPR); if this specific

form of nonlinear cointegration prevails and the regression is not spurious.3

In the presence of powers of integrated regressors in cointegrating regressions, estimators like the

fully modified OLS (FM-OLS) estimator (introduced for the linear cointegration case in Phillips

and Hansen, 1990) can be adapted by using appropriately constructed additive correction terms.

The precise form of these correction terms depends upon the specification of the relationship. They

differ from the correction terms in the linear case, see Wagner and Hong (2016).4 The implications

of this difference for EKC analysis for time series data are illustrated in Wagner (2015). The

asymptotic behavior of treating unit root process and and their powers all as unit root processes

and using the standard FM-OLS estimator this way in the CPR setting is discussed in Stypka et

al. (2016).

The part of the empirical EKC literature that uses panel unit root and cointegration techniques

relies entirely upon methods for linear cointegration developed for cross-sectionally independent

panels. Thus, a fortiori the above-mentioned problems continue to be present. Importantly, addi-

tionally the assumption of cross-sectional independence that is employed in these studies, utilizing

standard panel cointegration techniques like Kao and Chiang (2000), Phillips and Moon (1999)

or Pedroni (2000), is clearly often unrealistic.5 Also, the tacit assumption of these studies that

3Clearly, tests for nonlinear cointegration in EKC-type relationships need to be discussed, see, e.g., Choi and
Saikkonen (2010), Wagner (2013) or Wagner and Hong (2016).

4Important earlier work in this respect has been undertaken by Park and Phillips (1999, 2001), Chang et al. (2001)
or Ibragimov and Phillips (2008). The difference between the work of Wagner and Hong (2016) and, e.g., Chang et al.
(2001) is that the latter assume that the regressors are pre-determined and the errors serially uncorrelated. Wagner
and Hong (2016) remove these two assumptions and consider the “standard” setting in cointegration analysis with
endogenous regressors and serially correlated errors.

5Apergis (2016) and Romero-Avila (2008) acknowledge the potential of cross-sectional dependencies in time series
panels by considering some form of cross-sectional dependence testing. That alone, however, does not solve the
associated problems.
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all coefficients (except for, usually, the intercepts) are indeed identical, i.e., can be pooled, for all

cross-section members may be too restrictive in many applications. In case that the cross-sectional

dimension is small (compared to the time series dimension) a seemingly unrelated regressions (SUR)

approach allows to relax both the cross-sectional independence as well as the poolability assump-

tion. Based on Hong and Wagner (2014) we present in Section 2 fully modified OLS SUR estimators

for systems of seemingly unrelated cointegrating polynomial regressions (SUCPR) formulated here

for the quadratic EKC specification as used in the application.6 In the SUCPR setting we allow for

cross-sectional dependence of both the regressors and the errors and do not impose any poolability

assumptions on the coefficients. Instead of having to impose poolability of the coefficients, we

can test for any form of pooling and then estimate the parameters pooled correspondingly. Some

basic forms of pooling related to panel analysis are reviewed and stated in Appendix A.1: (P) all

coefficients but the intercepts are pooled, (S) only the coefficients corresponding to log GDP per

capita and its powers are pooled, and (T) only the coefficient corresponding to the linear time trend

is pooled. More generally, however, it may be the case that only some coefficients can be pooled

over (potentially) different subsets of cross-section members. This turns out to be the case in the

application in Section 3. Therefore we discuss estimation in partially pooled settings of a form

relevant for our application in detail in Section 2.1.

The application of our methodology to study the EKC for CO2 emissions for seven early indus-

trialized countries over the period 1870–2009 highlights the usefulness of the SUCPR approach.

Group-wise pooled estimation of the EKC leads to almost equal to almost the same results (esti-

mated parameters, turning points, and fitted values) as those obtained with unrestricted individual

or SUCPR estimation. This happens despite the reduction of the number of parameters to be

estimated by about one third. Fully pooled estimation, rejected by poolability testing, on the other

hand, performs drastically worse. This shows that the situation specific approach to pooling that

our methodology provides is a helpful addition to the EKC analysis toolkit. The flexibility of the

approach will allow for fruitful applicability also when modeling other relationships with data sets

with a small cross-sectional dimension compared to a large time series dimension.

The paper is organized as follows: In Section 2 we present the econometric methodology, i.e., two

fully modified least squares estimators for systems of seemingly unrelated cointegrating polynomial

6In terms of econometric methodology the paper discusses an extension of SUR cointegration analysis from the
linear cointegration SUR case (see, e.g., Park and Ogaki, 1991; Mark et al., 2005; Moon, 1999; Moon and Perron, 2005)
to the SUCPR case. This is similar in scope – now for the SUR case – to the extension of FM-OLS from the linear
cointegration to the CPR case presented in Wagner and Hong (2016).
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regressions including a discussion of group-wise pooling – both with respect to testing for poolabil-

ity as well estimation imposing the corresponding pooling – of a form relevant for our application.

Section 3 presents and discusses the empirical findings and Section 4 briefly summarizes and con-

cludes. Two appendices follow the main text: Appendix A contains some additional material and

results concerning different variations of pooled estimation relevant for EKC analysis. Appendix A

also contains the derivation of the limiting distributions of the group-wise pooled estimators. Ap-

pendix B contains additional empirical results.

We use the following notation: bxc denotes the integer part of x ∈ R and diag(·) denotes a diagonal

matrix with entries specified throughout. For a vector x = (xi)i=1,...,n we denote by ‖x‖2 =
∑n

i=1 x
2
i ,

and for a matrix M we denote by ‖M‖ = supx
‖Mx‖
‖x‖ . For a square matrix A we denote its

determinant by |A|. We denote the m-dimensional identity matrix by Im, with 0m×n a (m × n)-

matrix with all entries equal to zero, with 1s = [1, . . . , 1]′ ∈ Rs and with ei,N the i-th unit vector

in Rn. For (block-)matrices M we denote the (i,j)-(block-)element with M i,j , the i-th (block-)row

with M i,. and the j-th (block-)column with M .,j . With 1{·} we denote the indicator function.

Furthermore, ⊗ denotes the Kronecker product, E(·) denotes the expected value and L denotes

the backward-shift operator, i.e., L{zt}t∈Z = {zt−1}t∈Z. Definitional equality is signified by :=

and ⇒ denotes weak convergence. Brownian motions are denoted B(r) or short-hand by B, with

covariance matrices specified in the context. For integrals of the form
∫ 1
0 B(s)ds or

∫ 1
0 B(s)dB(s),

we often use the short-hand notation
∫
B or

∫
BdB and drop function arguments for notational

simplicity.

2 Seemingly Unrelated Cointegrating Polynomial Regressions

For the discussion in this paper it suffices to consider the following special case of a system of

seemingly unrelated quadratic polynomial regressions. In the application in the following section

yi,t denotes log CO2 emissions per capita and xi,t log GDP per capita in year t in country i:

yi,t = ci + δit+ β1,ixi,t + β2,ix
2
i,t + ui,t, i = 1, . . . , N, t = 1, . . . , T, (1)

= Z ′i,tθi + ui,t

xi,t = xi,t−1 + vi,t,
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with Zi,t := [1, t, xi,t, x
2
i,t]
′ and θi := [ci, δi, β1,i, β2,i]

′. Denoting with xt := [x1,t, . . . , xN,t]
′, with

ut := [u1,t, . . . , uN,t]
′ and with vt := [v1,t, . . . , vN,t]

′, we assume for ξt := [u′t, v
′
t]
′ that

ut := Ψ(L)ζt =

∞∑
j=0

Ψjζt−j , (2)

∆xt = vt := Φ(L)εt =

∞∑
j=0

Φjεt−j ,

with
∞∑
j=0

j‖Φj‖ < ∞,
∞∑
j=0

j‖Ψj‖ < ∞. Furthermore, we assume |Φ(1)| 6= 0, which excludes station-

arity of {xt}, and |Ψ(1)| 6= 0, since we need regularity of this matrix for the construction of the

modified SUR estimator, a term coined by Park and Ogaki (1991) in the linear SUR cointegration

setting. The stacked process {ξ0t }t∈Z := {[ε′t, ζ ′t]′}t∈Z is assumed to be a strictly stationary and

ergodic martingale difference sequence with respect to the natural filtration Ft with positive defi-

nite conditional variance matrix Σ := E
(
ξ0t (ξ0t )′|Ft−1

)
and supt≥1 E(‖ξ0t ‖r|Ft−1) <∞ a.s. for some

r > 4.

Remark 1 The above setting in (1) can be generalized in several ways: First, several integrated

regressors and their powers can be included, with the specifications allowed to be equation specific.

In the above example this means that different powers can be included in the different equations.

Second, more general (equation-specific) deterministic components can be included. Third, pre-

determined (or even more easily strictly exogenous) stationary regressors can be included as well.

Fourth, common non-cointegrated nonstationary regressors can also be included in the equation

system, which may be of particular relevance in, e.g., regional applications where country-wide

variables may be important determinants for all regions. For more details in these respects see

Hong and Wagner (2014).

The above assumptions are sufficient for

1√
T

brT c∑
t=1

ξt =
1√
T

brT c∑
t=1

[
ut
vt

]
⇒ B(r) =

[
Bu(r)
Bv(r)

]
= Ω1/2W (r), (3)

with W (r) a 2N -dimensional standard Wiener process and Ω :=
∑∞

h=−∞ E(ξ0ξ
′
h) the so-called long

run variance of {ξt}t∈Z. For later usage we define also the one-sided long run variance given by

∆ :=
∑∞

h=0 E(ξ0ξ
′
h) and both matrices are partitioned according to the partitioning of ξt:

Ω :=

[
Ωuu Ωuv

Ωvu Ωvv

]
, ∆ :=

[
∆uu ∆uv

∆vu ∆vv

]
(4)
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The above set of N equations (1) can be jointly written as

yt = Z ′tθ + ut, (5)

with

yt :=

 y1,t
...

yN,t

 ∈ RN , Zt :=

 Z1,t

. . .

ZN,t

 ∈ R4N×N , ut :=

 u1,t
...

uN,t

 ∈ RN ,

and with θ := [θ′1, . . . , θ
′
N ]′. Stacking all T observations for the above equation (5) we arrive at

y = Zθ + u, (6)

with

y :=

 y1
...
yT

 ∈ RNT , Z :=

 Z ′1
...
Z ′T

 ∈ RNT×4N .

A few basic observations concerning parameter estimation in (6) can already be made: First, it is

straightforward to show that the OLS estimator of θ in (6) is consistent with a limiting distribution

contaminated by second order bias terms, just as in the linear seemingly unrelated cointegrating case

studied in Park and Ogaki (1991) or Moon (1999). Alternatively, the results for the OLS estimator

given in Wagner and Hong (2016) for the single equation case, of course, generalize to the SUCPR

case. Second, in the classical SUR approach of Zellner (1962) the errors are typically assumed

to be serially uncorrelated (and the regressors nonstochastic). Correspondingly, the weighting

matrix used in SUR estimation, i.e., in GLS estimation, is an estimate of the contemporaneous

error covariance matrix. In the cointegration setting we allow for error serial correlation (and in

addition for endogenous regressors). To take this into account, Park and Ogaki (1991) define a

modified SUR (MSUR) estimator using an estimate of the long run variance matrix of the errors as

weighting matrix. The asymptotic behavior of these two estimators is derived in Hong and Wagner

(2014, Proposition 1) for the SUCPR case. As in the time series case, the limiting distributions

of the OLS and additionally the MSUR estimator are the starting points to perform the two-part

FM-type corrections.7 One of the corrections is as in the linear case, i.e., the dependent variable

7For completeness, the OLS estimator is (as always) given by θ̂OLS := (Z′Z)
−1
Z′y and the MSUR estimator is

defined as θ̂MSUR :=
(
Z′

(
IT ⊗ Ω̂−1

uu

)
Z
)−1 (

Z′
(
IT ⊗ Ω̂−1

uu

)
y
)

.
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yt is replaced by y+t := yt − Ω̂uvΩ̂
−1
vv vt, with consistent estimators of the long run variances.8 The

second transformation consists of subtracting an appropriately constructed correction term. In

the SUR setting we need two sets of correction terms, depending upon estimator considered as

starting point (OLS or MSUR). For our specification (1) these are given by A∗ := [A∗1
′, . . . , A∗N

′]′

and Ã∗ := [Ã∗1
′, . . . , Ã∗N

′]′, with

A∗i := (∆̂+
vu)i,i


02×1
T

2
T∑
t=1

xi,t

 , Ã∗i := (∆̂+
vu)i,.(Ω̂−1u.v)

.,i


02×1
T

2
T∑
t=1

xi,t

 , (7)

where (∆̂+
vu)i,i is a consistent estimator of (∆+

vu)i,i := ∆i,i
vu− (∆vv)

i,.Ω−1vv Ω.,i
vu and Ω̂u.v is a consistent

estimator of Ωu.v := Ωuu − ΩuvΩ
−1
vv Ωvu.

In order to finally define the two fully modified estimators and to state their asymptotic distributions

we still need to define some additional quantities. We define, again for our special case, the weighting

matrix G = G(T ) := IN ⊗ G•(T ), with G•(T ) := diag(T−1/2, T−3/2, T−1, T−3/2) and a stochastic

process J(r) := diag (J1(r), . . . , JN (r)) with Ji(r) := [1, r, Bvi(r), B
2
vi(r)]

′, with Bvi(r) denoting the

i-th coordinate of Bv(r).

Proposition 1 (Hong and Wagner 2014, Proposition 2) Let yt be generated by (1) with the

assumptions given in place. Assume furthermore that, based on the OLS residuals, all required

long run variances are estimated consistently. Using the correction factors defined in (7) the fully

modified systems OLS (FM-SOLS) and the fully modified SUR (FM-SUR) estimators are given by:

θ̂FM-SOLS :=
(
Z ′Z

)−1 (
Z ′y+ −A∗

)
, (8)

θ̂FM-SUR :=
(
Z ′
(
IT ⊗ Ω̂−1u.v

)
Z
)−1 (

Z ′
(
IT ⊗ Ω̂−1u.v

)
y+ − Ã∗

)
, (9)

with y+ := [y+′1 , . . . , y
+′
T ]′. As T →∞ it holds that

G−1
(
θ̂FM-SOLS − θ

)
⇒

(∫
JJ ′
)−1 ∫

JdBu.v, (10)

G−1
(
θ̂FM-SUR − θ

)
⇒

(∫
JΩ−1u.vJ

′
)−1 ∫

JΩ−1u.vdBu.v, (11)

where Bu.v(r) := Bu(r) − ΩuvΩ
−1
vv Bv(r) is a Brownian motion with variance matrix Ωu.v. By

construction Bu.v(r) is independent of Bv(r).

8The results of, e.g., Jansson (2002) apply in our setting and provide conditions on kernels and bandwidths that
allow for consistent long run variance estimation.
Note for completeness that a more detailed discussion concerning possibilities to construct FM-type estimators in the
SUR case is given in Hong and Wagner (2014) and Moon (1999).
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The above zero mean Gaussian mixture limiting distributions given in (10) and (11) form the basis

for asymptotic chi-squared inference using, e.g., Wald-type tests. Because the vectors θ̂FM-SOLS and

θ̂FM-SUR contain elements that converge at different rates, obtaining formal results for the Wald

statistics requires a condition on the restriction matrix R that is unnecessary when all estimated

coefficients converge at the same rate (see, e.g., Park and Phillips, 1988, 1989). We posit in the

following proposition a sufficient (asymptotic) rank condition that ensures that the Wald-type test

statistics have asymptotic chi-squared null distributions. Note that if none of the hypotheses mixes

coefficients with different convergence rates no additional complications compared to a standard

situation arise.

Proposition 2 (Hong and Wagner 2014, Proposition 3) Let yt be generated by (1) and the

given assumptions in place. Consider s linearly independent restrictions collected in H0 : Rθ = r

with R ∈ Rs×4N with full row rank s, r ∈ Rs and suppose that there exists a (matrix sequence)

GR = GR(T ) such that limT→∞GRRG = R∗ with R∗ ∈ Rs×4N of full rank s.

Then it holds that under H0 the Wald-type statistics:

WFM-SOLS :=
(
Rθ̂FM-SOLS − r

)′ [
R
(
Z ′Z

)−1
Z ′
(
IT ⊗ Ω̂u.v

)
Z
(
Z ′Z

)−1
R′
]−1 (

Rθ̂FM-SOLS − r
)
,

(12)

WFM-SUR :=
(
Rθ̂FM-SUR − r

)′ [
R
(
Z ′
(
IT ⊗ Ω̂−1u.v

)
Z
)−1

R′
]−1 (

Rθ̂FM-SUR − r
)

(13)

are asymptotically chi-squared distributed with s degrees of freedom.

2.1 Testing for Poolability and Pooled Estimation

As outlined in the introduction a key advantage of a SUR setting is that it allows to test for

in principle arbitrary forms of poolability rather than assuming poolability from the outset as

in panel analysis. Clearly, the results from Propositions 1 and 2 allow to test for poolability of

the coefficients. In Appendix A.1 we briefly present the test statistics and the correspondingly

pooled estimators for three “standard” pooling tests involving all cross-section members. These

are labelled as: (P), where all coefficients except for the intercepts are pooled; (S), where only the

coefficients to xi,t and x2i,t are pooled and (T), where only the linear trend coefficient is pooled.

The first variant of pooling corresponds closely to a fixed-effects panel model, with individual

specific fixed effects. Note, however, that the literature does not provide the theory for panel esti-

mation methods (with N →∞) for cross-sectionally dependent panels of cointegrating polynomial

9



regressions. de Jong and Wagner (2016) provide the theory for the cross-sectionally independent

case for the cubic formulation with one- and two-way fixed effects.9

If the considered null hypothesis is not rejected, then pooled estimation of a smaller number of

parameters allows to lift some efficiency gains in estimation. For our data, however, it turns out

that all three “global” hypotheses (P), (S) and (T) are rejected.10

A more careful analysis reveals that the coefficient corresponding to the linear time trend can be

pooled in two subgroups and the coefficients to GDP and its square, the stochastic regressors, can

be pooled in four subgroups, with two of these subgroups comprising only one country. To exploit

the possibilities of group-wise pooling thus necessitates writing down the corresponding Wald-type

statistics as well as the correspondingly group-wise pooled estimators. This is discussed in the

following subsection for the setting relevant in our application. Along similar lines any form of

group-wise pooling can be considered in more general SUCPR settings.

2.2 Group-Wise Pooling

In this subsection we consider the situation where we test the null hypothesis that the coefficients

for the linear time trend are group-wise pooled over a partition of k subsets Inj , j = 1, . . . , nk with

I := {1, . . . , N} =
⋃k
j=1 Inj . Similarly, we consider a partition over l subsets Inj , j = 1, . . . , nl

for the regressors xi,t and x2i,t, i.e., I =
⋃l
j=1 Imj . Without loss of generality order the subsets

according to decreasing cardinality, i.e., |In1 | ≥ . . . ≥ |Ink
| and |Im1 | ≥ . . . ≥ |Iml

|, denoting here

with |S| the number of elements of a set S.

The null hypothesis corresponding to group-wise poolability of the coefficients corresponding to the

above partitioning is given by:

HGW
0 : δi = δj ∀ i, j ∈ Ind

∀ d ∈ {{1, . . . , k} : |Ind
| > 1} (14)(

β1,i
β2,i

)
=

(
β1,j
β2,j

)
∀ i, j ∈ Imp ∀ p ∈ {{1, . . . , l} : |Imp | > 1}.

To construct the Wald-type test statistics discussed in Proposition 2 for this specific situation it

is convenient to define a few more quantities. First, denote with Nj = |Inj |, j = 1, . . . , k and

9Note again that the part of the empirical EKC literature that uses panel cointegration methods, estimates a
system of equations like (1) with methods for linear cointegration developed for panels of cross-sectionally independent
units. The SUCPR approach overcomes these two limitations, allowing for cross-sectional dependence and taking
into account the specific form of nonlinear cointegration.

10As will be seen in Section 3, for the 19 countries considered, (non-)cointegration tests lead to evidence for a CPR
relationship in seven countries. The CPR and SUCPR analysis is consequently performed with the data for these
seven countries.

10



Mj = |Imj |, j = 1, . . . , l. Furthermore, the elements of the index set Inj , aj,nj say, are considered

sorted, i.e., Inj = (a1,nj , a2,nj , . . . , aNj ,nj ) with 1 ≤ a1,nj < a2,nj < · · · < aNj ,nj ≤ N for j = 1, . . . , k

and similarly for the sets Imj , j = 1, . . . , l. Using this notation and setting the restriction matrix

to test for (the considered form of) group-wise poolability can be written as

RGW := [R′n1
, . . . , R′nk

, R′m1
, . . . , R′ml

]′ ∈ Rs×4N (15)

with

Rnj :=

(1(Nj−1) ⊗ e
′
a1,nj

,N

)
−


e′a2,nj

,N

...
e′aNj,nj

,N


⊗ e′2,4 ∈ R(Nj−1)×4N (16)

for j such that Nj > 1 and Rnj = ∅ otherwise; and

Rmj :=

(1(Mj−1) ⊗ e
′
a1,mj

,N

)
−


e′a2,mj

,N

...
e′aMj,mj

,N


⊗ (e′3,4e′4,4

)
∈ R2(Mj−1)×4N (17)

for j such that Mj > 1 and Rmj = ∅ otherwise. The total number of restrictions is

s =

k∑
j=1

(Nj − 1) + 2

l∑
j=1

(Mj − 1) (18)

and, clearly, r = 0 (in Rθ = r) here. Using either the FM-SOLS estimates or the FM-SUR estimates,

the two test statistics (12) and (13) can be calculated to test the considered null hypothesis HGW
0

Remark 2 In the above definition of the blocks of the restriction matrix, setting, e.g., Rnj = ∅

for Nj = 1, merely states that for groups of size one, of course, no poolability hypothesis testing is

performed. Including in RGW only the subsets of size larger than one would require to define another

index, say n∗k, until which the groups – ordered according to non-increasing size – comprise more

than one element.

In case that the null hypothesis discussed above is not rejected, the corresponding group-wise pooled

estimators can be (defined and) employed. To this end consider

D̈t := [Dn1,t, . . . , Dnk,t]
′ ∈ Rk×N , (19)

where

Dnj ,t :=
N∑
i=1

1{i∈Inj } · t · e
′
i,N . (20)

11



For the stochastic regressors we similarly have

Ẍt := [X ′m1,t, . . . , X
′
ml,t

]′ ∈ R2l×N , (21)

with

Xmj ,t :=
N∑
i=1

1{i∈Imj } ·
(
e′i,N ⊗Xi,t

)
(22)

and Xi,t := [xi,t, x
2
i,t]
′. With these quantities the group-wise pooled model can be compactly written

as

yt = Z̈ ′tθ
GW + ut, (23)

with yt := [y1,t, . . . , yN,t]
′, ut := [u1,t, . . . , uN,t]

′, Z̈t := [IN , D̈
′
t, Ẍ

′
t]
′ ∈ R(N+k+2l)×N and the pa-

rameter vector θGW := [c1, . . . , cN , δn1 , . . . , δnk
, β′m1

, . . . , β′ml
]′ ∈ RN+k+2l. Finally, stacking the

quantities over time gives

y = Z̈θGW + u, (24)

with y = [y1, . . . , yT ]′, u = [u1, . . . , uT ]′ and Z̈ = [Z̈1, . . . , Z̈T ]′.

The correction terms for the group-wise pooled FM-SOLS and FM-SUR estimators are defined as

AGW := [01×(N+nk), A
GW
m1

′, . . . , AGW
ml

′]′, ÄGW := [01×(N+nk), Ä
GW
m1

′, . . . , ÄGW
ml

′]′, with

AGW
mj

:=

N∑
i=1

1{i∈Imj } ·
(

∆̂+
vu

)i,i
·
(

T

2
∑T

t=1 xi,t

)
, (25)

ÄGW
mj

:=
N∑
i=1

1{i∈Imj } ·
(

∆̂+
vu

)i,· (
Ω̂−1u·v

)·,i
·
(

T

2
∑T

t=1 xi,t

)
. (26)

For group-wise pooled estimation the weighting matrix is given by G̈(T ) := diag(T−1/2 · IN , T−3/2 ·

Ik, Il ⊗ diag(T−1, T−3/2)) and the limit stochastic process is given by J̈(r) := [IN , J̈
′
D, J̈

′
X ]′. Here

J̈D(r) := [JDn1
(r)′, . . . , JDnk

(r)′]′ is composed of JDnj
(r) :=

N∑
i=1

1{i∈Inj } · r · e
′
i,N and J̈X(r) :=

[JXm1
(r)′, . . . , JXml

(r)′]′ is composed of JXmj
(r) :=

N∑
i=1

1{i∈Imj } ·
(
e′i,N ⊗

(
Bvi(r)
B2
vi(r)

))
.

Proposition 3 Let yt be generated by (24), the discussed restricted version of (1) with group-wise

pooled parameters, with the assumptions given in place. Assume furthermore that, based on the OLS

residuals, all required long run variances are estimated consistently. Using the correction factors

12



defined in (25) and (26), the group-wise FM-SOLS and FM-SUR estimators are given by:

θ̈GW
FM-SOLS :=

(
Z̈ ′Z̈

)−1 (
Z̈ ′y+ −AGW

)
, (27)

θ̈GW
FM-SUR :=

(
Z̈ ′
(
IT ⊗ Ω̂−1u.v

)
Z̈
)−1 (

Z̈ ′
(
IT ⊗ Ω̂−1u.v

)
y+ − ÄGW

)
. (28)

As T →∞ it holds that

G̈−1
(
θ̈GW
FM-SOLS − θGW

)
⇒
(∫

J̈ J̈ ′
)−1 ∫

J̈dBu·v, (29)

G̈−1
(
θ̈GW
FM-SUR − θGW

)
⇒
(∫

J̈Ω−1u·vJ̈
′
)−1 ∫

J̈Ω−1u·vdBu·v. (30)

In the following empirical analysis we discuss and compare unrestricted, pooled and group-wise

pooled estimation results.

3 Empirical Analysis

The empirical analysis builds upon Wagner (2015), who performs individual country FM-CPR

analysis for 19 early industrialized countries. The first step, prior to the SUR analysis performed

here, is to reassess the findings of the earlier paper, since we now have data ranging from 1870–2009

rather than only until 2000. The CO2 emissions data are from the Carbon Dioxide Information

Analysis Center of the US Department of Energy and comprise total CO2 emissions from fossil

fuel usage.11 The GDP data, measured in 1990 Geary-Khamis Dollars, are from the Maddison

project at the University of Groningen.12 The data are used in logarithms of per capita quantities.

Throughout, for all estimators and all tests we use the Bartlett kernel and the bandwidth chosen

according to Newey and West (1994).

For all 19 early industrialized countries investigated, the unit root null hypothesis is not rejected

for log GDP per capita using the unit root tests of Phillips and Perron (1988) as well as the

fixed-b versions of this test developed by Vogelsang and Wagner (2013).13 Using the tests for

cointegration in CPRs of Wagner (2013) and Wagner and Hong (2016) leads to evidence for a

quadratic cointegrating EKC for CO2 emissions for the following seven countries: Austria (AT),

Belgium (BE), Denmark (DK), Finland (FI), the Netherlands (NL), Switzerland (CH) and the

11See Boden et al. (2016) and http://cdiac.ornl.gov.
12See Bolt and van Zanden (2014) and http://www.ggdc.net/maddison/maddison-project/home.htm.
13The results are given in Table 4 in Appendix B.
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δ̂ β̂1 β̂2 TP δ̂ β̂1 β̂2 TP
Austria Belgium

FM-CPR -0.017 6.439 -0.288 71509.279 -0.004 10.989 -0.579 13201.586
(t-values) -3.672 2.446 -1.979 -2.385 8.876 -8.878
FM-SOLS -0.018 8.727 -0.413 39004.716 -0.005 11.974 -0.631 13254.808
(t-values) -4.620 3.899 -3.341 -3.274 11.927 -11.939
FM-SUR -0.014 7.503 -0.356 37456.789 -0.004 10.333 -0.543 13667.603
(t-values) -4.559 4.610 -3.813 -3.773 13.414 -13.112

Denmark Finland
FM-CPR -0.013 12.055 -0.585 29852.349 -0.030 15.775 -0.745 39396.139
(t-values) -2.441 10.323 -10.554 -3.169 8.543 -7.999
FM-SOLS -0.011 12.025 -0.587 28069.339 -0.039 16.154 -0.745 51377.431
(t-values) -2.363 11.028 -11.369 -4.708 9.509 -8.670
FM-SUR -0.009 11.656 -0.573 25925.716 -0.030 15.607 -0.732 42424.906
(t-values) -2.693 14.047 -13.646 -6.021 13.014 -11.151

Netherlands Switzerland
FM-CPR 0.001 9.370 -0.477 18323.280 -0.023 6.981 -0.232 3.4×106

(t-values) 0.643 7.734 -7.365 -6.539 5.686 -3.431
FM-SOLS 0.001 9.761 -0.498 17882.497 -0.023 6.138 -0.188 1.2×107

(t-values) 0.608 8.564 -8.187 -7.876 6.285 -3.483
FM-SUR 0.002 9.173 -0.469 17848.695 -0.022 6.664 -0.223 3.1×106

(t-values) 1.466 11.802 -10.728 -7.893 6.718 -4.053

UK Pooled
FM-CPR -0.007 7.697 -0.397 16160.237
(t-values) -2.734 5.243 -5.442
FM-SOLS -0.006 8.908 -0.465 14388.146 -0.015 13.329 -0.653 27173.094
(t-values) -2.746 6.946 -7.305 -8.749 21.481 -19.390
FM-SUR -0.005 6.754 -0.352 14720.830 -0.013 13.207 -0.652 24864.948
(t-values) -3.041 6.969 -7.226 -19.738 46.701 -41.859

Table 1: FM-CPR, FM-SOLS, FM-SUR and pooled FM-SOLS and FM-SUR estimation results for

Equation (1). The estimated turning points TP are computed as exp
(
− β̂1

2β̂2

)
.

UK.14

Table 1 shows the results of estimating the quadratic EKC (1) using both individual country FM-

CPR (as used in Wagner, 2015) and the two SUR estimators discussed in Section 2, FM-SUR and

FM-SOLS, for the seven countries listed above. In addition, the lower right block of the table

contains the results when estimating the EKC “fully” pooled, allowing only for country specific

intercepts (this form of pooling is referred to as (P) in Section 2.1).15 The following messages

14This is slightly different from Wagner (2015) who finds evidence for a quadratic EKC for CO2 emissions for only
four out of the seven countries above: Austria, Belgium, Finland and the UK. These differences may stem from the
different sample range and/or the fact that the CO2 emissions data have been updated.

15In formal terms, estimation of (1) is performed under the restrictions δi = δ, β1,i = β1 and β2,1 = β2 for
i = 1, . . . , 7.
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emerge from the table: First, the estimated coefficients (all significant with “correct” signs) and a

fortiori the estimated turning points do usually not differ strongly across the three methods for each

country. The exception here is Austria where the FM-CPR turning point is about twice as large

as the FM-SUR and FM-SOLS turning points. For Switzerland, the turning point is estimated far

outside the sample range. This is related to the fact that, see Figure 2, per capita CO2 emissions

are essentially constant since about 1980 in Switzerland. Second, with respect to the two SUR

estimators the differences are mostly very minor, with the one exception being Finland. For this

reason we focus from now on on the FM-SUR estimator in the discussion.16 Third, the estimated

coefficients and consequently the estimated turning points differ substantially across countries and

this heterogeneity can – by construction – not be captured by the pooled, i.e., almost panel-type,

estimation results in the lower right block. This finding highlights that commonly used panel

methods need to be considered very carefully, or maybe not used at all.17

The results from Table 1 are displayed graphically in Figures 1 and 2. The first figure displays the

estimated EKCs, given by using 140 equidistant values for the explanatory variable from the range

of log GDP per capita associated with values of the time trend ranging from 1,. . . ,140 and inserting

these values in Equation (1) using the coefficient estimates obtained from both FM-CPR (solid with

x-marks) and FM-SUR (solid). Additionally the graphs include the scatter plots between log GDP

per capita and log CO2 emissions per capita. The similar coefficient estimates translate, as expected

or in fact necessary, into very similar estimated EKCs. Figure 2 displays the actual values of log per

capita CO2 emissions with the fitted values obtained from both FM-CPR and FM-SUR estimation.

Clearly, the two fitted value lines corresponding to FM-CPR and FM-SUR are very close to each

other for all countries, with the still small but relatively largest differences for Austria (for which

also the estimated turning point differs most between the two methods). In general the fit is very

good, especially for the period since the second world war.

Performing the poolability tests (P), (S) and (T) described in Section 2.1 and in more detail in

Appendix A.1 for the considered seven countries leads throughout to rejections of the respective

null hypotheses for both tests, i.e., the tests based on the FM-SOLS estimator (12) and the FM-

16The similarity of the findings with both the FM-SOLS and the FM-SUR estimators is made clearly visible in
Figures 7 and 8 in Appendix B.

17Building upon the seminal work of Phillips and Moon (1999), de Jong and Wagner (2016) consider a panel
version of FM-type estimators for panels of cointegrating polynomial regressions under the assumption of cross-
sectional independence. Under appropriate assumptions it may be the case that the pooled estimates converge to
“average coefficients”, see Phillips and Moon (1999) for details. These issues remain to be studied for the cointegrating
polynomial regression case.
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Figure 1: EKC estimation results for Equation (1): scatter plot and EKC. The dots show the pairs
of observations of ln(GDP ) per capita and ln(CO2) emissions per capita. The lines show results
based on inserting 140 equidistant points from the sample range of ln(GDP ) per capita, with
corresponding values of the linear trend given by t = 1, . . . , 140 in the estimated relationship (1).
The solid lines with x-marks correspond to the FM-CPR estimates and the solid lines to the FM-
SUR estimates.

SUR estimator (13). For the hypothesis (P) this is already expected, given the cross-country

heterogeneity of the unrestricted estimates, compare again the results in Table 1. The prize to be

paid when applying pooled estimation, allowing only for country specific intercepts, despite this

restriction being rejected, is clearly visible when looking at Figures 3 and 4, which are similar in

structure to Figures 1 and 2. The fitted fully pooled EKC only fits well - and is consequently very

similar to the FM-SUR EKC – for Denmark. For the other six countries the differences are partly

enormous, both with respect to slope and shape. These differences translate directly into partly

drastic reductions of fit, when considering the fitted value graphs in Figure 4. Thus, testing for

group-wise poolability and potentially group-wise pooled estimation, as outlined in Section 2.2, are
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Figure 2: EKC estimation results for Equation (1): actual and fitted values. The dashed lines show
the actual values of ln(CO2) per capita emissions, the solid lines with x-marks the FM-CPR fitted
values and the solid lines the FM-SUR fitted values.

the logical next steps.

In many applications the researcher may have some prior knowledge concerning candidates for

group-wise pooling. To a certain extent this is also the case here, as one expects that very similar

countries, e.g., Belgium and the Netherlands, may have very similar EKCs. Here, however, we

pursue a more exploratory approach and test for the discussed three forms of pooling – (P), (S)

and (T) – in all possible sub-groups. This means that we test for these forms of poolability in

all possible 21 country-pairs, 35 country-triples and so on.18 The results are given in Table 2 and

18Note that we test for the three forms of poolability using only data for the subset of countries under investigation.
We do not perform all possible tests of group-wise poolability in all possible partitions into multiple subgroups using
the data for all seven countries. Doing that would entail a rather large number of tests to be performed. Let us stress
also that the approach is to be understood exploratory, since neither of the complications resulting from multiple
testing is even addressed, let alone solved.
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Figure 3: EKC estimation results for Equation (1): scatter plot and EKC. The solid lines correspond
to the FM-SUR estimates and the solid lines with o-marks to the pooled FM-SUR estimates. For
further explanations see notes to Figure 1.

Table 6 in Appendix B. Table 2 contains the numbers of groups of the respective sizes for which

the corresponding poolability hypothesis cannot be rejected, with the group members displayed in

Table 6. As for the coefficients, also for the tests the differences are minor between the FM-SOLS

and FM-SUR results and thus we again focus again on the results obtained with FM-SUR. The full

pooling hypothesis (P) is not rejected only for the pair Denmark and Finland. The slope parameters

β1 and β2 can be pooled for (the pooling hypothesis (S) is not rejected for) six country-pairs and

three country-triples. With respect to the trend parameters there are four country groups of size

four, for which the trend slope can be pooled. In all three of these groups Austria and Denmark

are included.

We take the above results as starting point to estimate the EKC for the seven considered countries
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Figure 4: EKC estimation results for Equation (1): actual and fitted values. The dashed lines show
the actual values, the solid lines the FM-SUR fitted values and the solid lines with o-marks the
pooled FM-SUR fitted values.

in a group-wise pooled fashion. In particular we consider: the trend slope pooled in three groups,

comprising Austria, Denmark, Finland and Switzerland; Belgium and the UK; and the Netherlands

respectively. The slope parameters are pooled in four groups, given by Belgium, the Netherlands

and the UK; Denmark and Finland; Austria; and Switzerland.19 Table 3 displays the estimation

results. As observed up to now, again the estimates are very similar for the now group-wise pooled

FM-SOLS and FM-SUR estimates. Looking at the coefficients in the individual groups it can be

clearly seen that the group-wise pooled estimates are – almost by construction when using group-

wise pooled least squares estimation – close to the averages of the country specific estimates given

19We take this group of four countries, since for this group the poolability hypothesis is not rejected also for all
subgroups of two or three countries of these four countries. The choice is made using similar arguments also for the
slope parameters. Poolability of the slope parameters is not rejected for all pairs of countries of the triple comprising
Belgium, the Netherlands and the UK.
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k 2 3 4 5 6 7 2 3 4 5 6 7
Total nr. of groups of size k 21 35 35 21 7 1 21 35 35 21 7 1

FM-SOLS FM-SUR

Linear Trend & Stochastic Regressors (P) 1 1
Stochastic Regressors (S) 5 2 6 4
Linear Trend (T) 11 8 2 12 9 3

Table 2: Testing for group-wise poolability of subsets of coefficients. The numbers indicate the
number of groups of size k for which the indicated null hypothesis of group-wise poolability is
not rejected. The members of the groups are given in Table 6 in Appendix B. Empty entries
correspond to zeros. The left column displays the results for the FM-SOLS test statistic (12) and
the right column displays the results for the FM-SUR test statistic (13). Individual test decisions
are performed at the 1% significance level.

in Table 1. Of course, group-wise pooled estimation is not simply mean-group estimation, and thus

the group-wise pooled coefficients estimates do not simply coincide with the averages. The same

observations as for the coefficients hold, of course again by implication, for the estimated turning

points.

The benefit of group-wise pooling becomes clearly visible when considering the results graphically

in Figures 5 and 6. These two figures, again similar in structure to Figures 1 and 2, show clearly

that imposing non-rejected group-wise poolability restrictions in group-wise pooled FM-SUR esti-

mation (solid lines with square symbols) leads to very similar estimates of the EKCs compared to

non-pooled FM-SUR estimation (solid lines). Importantly, also the (unavoidable) reduction in fit

is negligible (see Figure 6), with the exception of the UK to some extent. Recall for comparison the

drastic reduction in fit when pooling all slope and trend coefficients over all countries displayed in

Figures 3 and 4.20 Group-wise pooling of a form adapted to the situation leads to a sizeable reduc-

tion of the number of parameters to be estimated, in our case from 28 to 18, without any clearly

visible losses in terms of approximation quality. Unthoughtful global pooling, i.e., panel-type esti-

mation, leads to drastically worse results. These findings illustrate that a seemingly unrelated CPR

approach is indeed very useful for the analysis of the EKC and similar relationships in situations

with multi-country or multi-regional data where the cross-sectional dimension is small.

20Figures 9 and Figure 10 in Appendix B compare the group-wise pooled and pooled FM-SUR results. These two
figures clearly make the same point as the figures in the main text, but contrasting group-wise pooled and pooled
estimation results in the same figure highlights the benefits of group-wise pooling compared to pooling nicely.
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δ̂n1 δ̂n2 δ̂n3

Countries AT-DK-FI-CH BE-UK NL

FM-SOLS -0.023 -0.008 0.001
(t-values) -9.215 -7.290 -1.032
FM-SUR -0.020 -0.008 0.002
(t-values) -17.744 -11.372 2.473

β̂1,m1
β̂2,m1

β̂1,m2
β̂2,m2

β̂1,m3
β̂2,m3

β̂1,m4
β̂2,m4

Countries BE-NL-UK DK-FI AT CH

FM-SOLS 11.270 -0.584 14.491 -0.678 10.714 -0.511 6.129 -0.188
(t-values) 15.079 -14.935 20.358 -16.948 5.397 -4.600 6.323 -3.497
TP 15540.291 37832.799 35459.781 1.2×107

FM-SUR 10.464 -0.542 14.887 -0.720 10.191 -0.495 7.351 -0.267
(t-values) 22.322 -21.899 35.055 -30.992 7.166 -6.131 8.638 -5.750
TP 15676.923 30887.742 29412.644 9.7×105

Table 3: Group-wise pooled estimation results for Equation (1) using FM-SOLS and FM-SUR. The
trend parameter δ is pooled in three groups (of sizes four, two and one) and the slope parameters
β1, β2 are pooled in four groups (of sizes three, two and twice one). The estimated turning points

TP are computed as exp
(
− β̂1

2β̂2

)
.

4 Summary and Conclusions

We provide tools for multi-country (or multi-regional) cointegration analysis of the environmen-

tal Kuznets curve (EKC) by pursuing a seemingly unrelated cointegrating polynomial regressions

(SUCPR) approach advocated by Hong and Wagner (2014). The approach can be applied also

in other contexts in which inverted U-shaped relationships are studied, such as the intensity

of use (IOU) relationship between GDP and energy or material intensity (see, e.g., Guzmán et

al, 2005; Labson and Crompton, 1993).

The SUCPR approach advocated in this paper addresses three of the main challenges of the existing

literature: First, it takes into account that powers of integrated processes are themselves not

integrated processes and that consequently cointegration analysis of the EKC needs to resort to

methods designed for this specific form of nonlinear relationship, labelled cointegrating polynomial

regression by Wagner and Hong (2016). The implications of this fact for single country EKC

analysis have been pointed out earlier in Wagner (2015); the present paper translates and extends

this discussion to the multi-country data case. Second, it is not necessarily the case that, e.g.,

emissions and GDP data for different countries are independent of each other, an assumption

typically made in the panel EKC literature. Third, furthermore the EKC relationship, if present,
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Figure 5: EKC estimation results for Equation (1): scatter plot and EKC. The solid lines correspond
to the FM-SUR estimates and the solid lines with the square symbols to the group-wise pooled
FM-SUR estimates. For further explanations see notes to Figure 1.

need not be identical (potentially up to country specific individual effects) across countries, which

is the the key assumption underlying pooling which panel data analysis rests upon. A SUCPR

approach (based on Hong and Wagner, 2014) addresses these three issues and provides new tools

for group-wise poolability testing and, in case the restrictions are not rejected, correspondingly

pooled estimation.

Developing poolability tests and correspondingly pooled estimators for general sets of restrictions is

shown to be extremely useful in our application to CO2 emissions data for seven early industrialized

countries over the period 1870–2009. It turns out that the trend respectively slope parameters can
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Figure 6: EKC estimation results for Equation (1): actual and fitted values. The dashed lines show
the actual values, the solid lines the FM-SUR fitted values and the solid lines with square symbols
the group-wise pooled FM-SUR fitted values.

be pooled over different country sub-groups, a situation that we label group-wise pooling. The

results show that group-wise pooled estimation provides fits that are close to the fits from either

individual country or unrestricted SUCPR estimation, whilst the number of parameters to be

estimated is substantially reduced. Altogether, the simple reduced form SUCPR EKC analysis

leads to very good fit, especially since the second world war, and meaningful estimates of the

turning points. Performing SUCPR estimation in a fully pooled fashion with only country specific

intercepts, by comparison leads to substantial losses in terms of fit. A major limitation of any SUR

approach is the limitation to situations with a relatively small cross-sectional dimension. For data

23



sets with large cross-sectional dimension panel data approaches will need to be pursued, with all

advantages and disadvantages. For a first step in this direction see de Jong and Wagner (2016),

who in turn build upon the seminal work of Phillips and Moon (1999) for the linear cointegration

case.

The empirical results of this paper illustrate the usefulness of SUCPR analysis of the EKC, but

the reduced form character of the analysis presented here dictates the necessary next steps of the

research agenda: First, for certain applications it may be necessary to extend the methodology to

allow for the inclusion of stationary regressors.21 This is a pertinent issue in, e.g., IOU analysis.

In case of substitution possibilities between different metals (see, e.g., Stuermer, 2016) or energetic

resources, the inclusion of relative prices is of key importance to capture substitution elasticities.

Note in this respect that the SUR approach also can be used to study EKC or IOU relationships for

a set of different emissions variables or resource intensities for a given country or a small number

of countries. This allows to study the interrelationships in a system of cointegrating polynomial

regressions. Second, in particular for regional data it may be important to allow for the inclusion of

common aggregate variables, i.e., technically speaking for the inclusion of common (nonstationary)

regressors.22 Third, it is always important to strive for extending the discussed methods to allow

for a more structural analysis of EKC- or IOU-type relationships by considering more general

specifications. Extensions along all three dimensions are or will be investigated in ongoing and

planned research.
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Appendix A: More Details on Pooling

Appendix A.1: Details for Pooling Cases (P), (S) and (T)

Here we consider three cases of pooling:

HP
0 :

 δ1
β1,1
β2,1

 =

 δ2
β1,2
β2,2

 = · · · =

 δN
β1,N
β2,N

 (31)

HS
0 :

[
β1,1
β2,1

]
=

[
β1,2
β2,2

]
= · · · =

[
β1,N
β2,N

]
(32)

HT
0 : δ1 = δ2 = · · · = δN . (33)

The corresponding restriction matrices for the Wald-type test are given by:

RP =


(03×1, I3) (03×1,−I3) 03×4 . . . 03×4

... 03×4 (03×1,−I3)
. . .

...
...

...
. . .

. . . 03×4
(03×1, I3) 03×4 . . . 03×4 (03×1,−I3)

 ∈ R3(N−1)×4N , r = 03(N−1)×1

RS =


(02×2, I2) (02×2,−I2) 02×4 . . . 02×4

... 02×4 (02×2,−I2)
. . .

...
...

...
. . . 02×4

(02×2, I2) 02×4 . . . 02×4 (02×2,−I2)

 ∈ R2(N−1)×4N , r = 02(N−1)×1

RT =


(0, 1, 01×2) (0,−1, 01×2) 01×4 . . . 01×4

... 01×4 (0,−1, 01×2)
. . .

...
...

...
. . . 01×4

(0, 1, 01×2) 01×4 . . . 01×4 (0,−1, 01×2)

 ∈ R(N−1)×4N , r = 0(N−1)×1

In case the respective null hypotheses are not rejected, correspondingly pooled estimation is the

logical next step to reap the possible efficiency gains from reducing the number of parameters to

be estimated. This basically entails a corresponding redefinition of the regressor matrices, the

parameter vectors; and for the asymptotic analysis the weighting matrices and the limit processes.

We discuss the three given cases in turn and start by defining the necessary adapted quantities:
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(P) :

Z∗ :=


Z∗1
′

Z∗2
′

...
Z∗T
′

 , Z∗t :=

[
IN
X∗t

]
θP :=



c1
...
cN
δ
β1
β2


,

X∗t :=

 t t . . . t
x1,t x2,t . . . xN,t
x21,t x22,t . . . x2N,t


G∗ := diag

(
T−1/2 · IN , T−3/2, T−1, T−3/2

)
J∗(r) :=

[
IN

B∗N (r)

]
, B∗N (r) :=

 r . . . r
Bv1(r) . . . BvN (r)
B2
v1(r) . . . B2

vN
(r)


(S) :

Z̃ :=


Z̃ ′1
Z̃ ′2
...

Z̃ ′T

 , Z̃t :=



D1,t 02×1 . . . 02×1

02×1 D2,t
. . .

...
...

. . .
. . . 02×1

02×1 . . . 02×1 DN,t

x1,t x2,t . . . xN,t
x21,t x22,t . . . x2N,t


, θS :=



c1
δ1
...
cN
δN
β1
β2


,

ASi :=
(

∆̂+
vu

)i,i  T

2
T∑
t=1

xi,t

 , ÃSi :=
(

∆̂+
vu

)i,. (
Ω̂−1u.v

).,i  T

2
T∑
t=1

xi,t


G̃ := diag (IN ⊗GD, GX) , GD = diag

(
T−1/2, T−3/2

)
, GX = diag

(
T−1, T−3/2

)
J̃(r) :=

[
DN (r)
BN (r)

]
, DN (r) := IN ⊗

[
1
r

]
, BN (r) :=

[
Bv1(r) . . . BvN (r)
B2
v1(r) . . . B2

vN
(r)

]
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(T) :

Ž :=


Ž ′1
Ž ′2
...

Ž ′T

 , Žt :=


X̌1,t 04×1 . . . 04×1

04×1 X̌2,t
. . .

...
...

. . .
. . . 04×1

04×1 . . . 04×1 X̌N,t

t t . . . t

 , θT :=



c1
β1,1
β2,1

...
cN
β1,N
β2,N
δ


,

X̌i,t :=

 1
xi,t
x2i,t

 , AT :=


AT1
AT2
...
ATN

 , ǍT :=


ǍT1
ǍT2
...

ǍTN

 ,

ATi :=
(

∆̂+
vu

)i,i 
0
T

2
T∑
t=1

xi,t

 , ǍTi :=
(

∆̂+
vu

)i,. (
Ω̂−1u.v

).,i 
0
T

2
T∑
t=1

xi,t


Ǧ := diag

(
IN ⊗ Ǧ1, T

−3/2
)
, Ǧ1 := diag

(
T−1/2, T−1, T−3/2

)

J̌(r) :=


B̌v1(r)

. . .

B̌vN (r)
r . . . r

 , B̌vi(r) :=

 1
Bvi(r)
B2
vi(r)



34



Corollary 1 (Essentially Hong and Wagner 2014, Corollaries 1 and 2) Let yt be generated

by (1) with the assumptions listed in place and where the pooling restrictions considered in either

(P ), (S) or (T ) are valid. Furthermore, assume again that long run variance estimation is per-

formed consistently. Then for the three considered cases the FM-SOLS and FM-SUR estimators

are, using the quantities defined above, given by:

θ∗PFM-SOLS :=
(
Z∗′Z∗

)−1Z∗′y+ −
 0N×1
N∑
i=1

A∗i

 , (34)

θ∗PFM-SUR :=
(
Z∗′
(
IT ⊗ Ω̂−1u.v

)
Z∗
)−1Z∗′ (IT ⊗ Ω̂−1u.v

)
y+ −

 0N×1
N∑
i=1

Ã∗i

 , (35)

θ̃SFM-SOLS :=
(
Z̃ ′Z̃

)−1Z̃ ′y+ −
02N×1
N∑
i=1

ASi

 , (36)

θ̃SFM-SUR :=
(
Z̃ ′
(
IT ⊗ Ω̂−1u.v

)
Z̃
)−1Z̃ ′ (IT ⊗ Ω̂−1u.v

)
y+ −

02N×1
N∑
i=1

ÃSi

 , (37)

θ̌TFM-SOLS :=
(
Ž ′Ž

)−1(
Ž ′y+ −

[
AT

0

])
, (38)

θ̌TFM-SUR :=
(
Ž ′
(
IT ⊗ Ω̂−1u.v

)
Ž
)−1(

Ž ′
(
IT ⊗ Ω̂−1u.v

)
y+ −

[
ǍT

0

])
. (39)

For T →∞ the estimators are consistent with the following limiting distributions:

G∗−1
(
θ∗PFM-SOLS − θP

)
⇒

(∫
J∗J∗′

)−1 ∫
J∗dBu.v, (40)

G∗−1
(
θ∗PFM-SUR − θP

)
⇒

(∫
J∗Ω−1u.vJ

∗′
)−1 ∫

J∗Ω−1u.vdBu.v, (41)

G̃−1
(
θ̃SFM-SOLS − θS

)
⇒

(∫
J̃ J̃ ′
)−1 ∫

J̃dBu.v, (42)

G̃−1
(
θ̃SFM-SUR − θS

)
⇒

(∫
J̃Ω−1u.vJ̃

′
)−1 ∫

J̃Ω−1u.vdBu.v, (43)

Ǧ−1
(
θ̌TFM-SOLS − θT

)
⇒

(∫
J̌ J̌ ′
)−1 ∫

J̌dBu.v, (44)

Ǧ−1
(
θ̌TFM-SUR − θT

)
⇒

(∫
J̌Ω−1u.vJ̌

′
)−1 ∫

J̌Ω−1u.vdBu.v. (45)
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Appendix A.2: Pooling the Trend Coefficient and the Coefficients of the Stochas-
tic Regressors Over Different Subsets: Group-Wise Pooling

Proof of Proposition 3:

Deriving the limiting distribution of FM-type estimators always commences from the limiting dis-

tribution of the underlying OLS and in the SUR case additionally the MSUR estimators. In our

group-wise pooled setting these two estimators are defined as

θ̈GW
OLS :=

(
Z̈ ′Z̈

)−1
Z̈ ′y, (46)

θ̈GW
MSUR :=

(
Z̈ ′
(
IT ⊗ Ω̂−1uu

)
Z̈
)−1

Z̈ ′
(
IT ⊗ Ω̂−1uu

)
y. (47)

We start with the regressor cross-product matrix of the group-wise pooled OLS estimator θ̈GW
OLS:

Z̈tZ̈
′
t =

IN D̈′t Ẍ ′t
D̈t D̈tD̈

′
t D̈tẌ

′
t

Ẍt ẌtD̈
′
t ẌtẌ

′
t

 , (48)

where D̈tD̈
′
t = diag(

∑
j∈In1

DjD
′
j , . . . ,

∑
j∈Ink

DjD
′
j), ẌtẌ

′
t = diag(

∑
j∈Im1

XjX
′
j , . . . ,

∑
j∈Iml

XjX
′
j)

and

D̈tẌ
′
t =


∑

i∈In1

∑
j∈Im1

δijDi,tX
′
j,t . . .

∑
i∈In1

∑
j∈Iml

δijDi,tX
′
j,t

...
. . .

...∑
i∈Ink

∑
j∈Im1

δijDi,tX
′
j,t . . .

∑
i∈Ink

∑
j∈Iml

δijDi,tX
′
j,t

 , (49)

with δij denoting the Kronecker delta. The cross-product of the regressor matrix and the error

term is given by

Z̈tut =

u′t, ∑
j∈In1

D′j,tuj,t, . . . ,
∑
j∈Ink

D′j,tuj,t,
∑
j∈Im1

X ′j,tuj,t, . . . ,
∑
j∈Iml

X ′j,tuj,t

′ . (50)

Similar arguments as used in Hong and Wagner (2014, Propositions 1 and 4) imply for the group-

wise pooled OLS estimator θ̈GW
OLS that

G̈−1
(
θ̈GW
OLS − θGW

)
= G̈−1

(
T∑
t=1

Z̈tZ̈
′
t

)−1( T∑
t=1

Z̈tut

)
(51)

=

 T∑
t=1

 G̈cIN G̈c G̈cD̈
′
tG̈D G̈cẌ

′
tG̈X

G̈DD̈tG̈c G̈DD̈tD̈
′
tG̈D G̈DD̈tẌ

′
tG̈X

G̈XẌtG̈c G̈XẌtD̈
′
tG̈D G̈XẌtẌ

′
tG̈X

−1 T∑
t=1

 G̈cut
G̈DD̈tut
G̈XẌtut


⇒

(∫
J̈ J̈ ′
)−1(∫

J̈dBu + ÅGW

)
,
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with

ÅGW
mj

:=

N∑
i=1

1{i∈Imj } · (∆vu)i,i ·
(

1
2
∫
Bvi(r)

)
. (52)

For the group-wise pooled MSUR estimator θ̈GW
MSUR we obtain

G̈−1
(
θ̈GW
MSUR − θGW

)
=

(
T∑
t=1

G̈Z̈tΩ̂
−1
uu Z̈

′
tG̈

)−1 T∑
t=1

G̈Z̈tΩ̂
−1
uuut. (53)

Denote W = (wij)i,j ∈ RN×N a symmetric matrix. This leads to

D̈tWD̈′t =


∑

i∈In1

∑
j∈In1

wijDi,tD
′
j,t . . .

∑
i∈In1

∑
j∈Ink

wijDi,tD
′
j,t

...
. . .

...∑
i∈Ink

∑
j∈In1

wijDi,tD
′
j,t . . .

∑
i∈Ink

∑
j∈Ink

wijDi,tD
′
j,t

 (54)

and analogous expressions for ẌtWẌ ′t and D̈tWẌ ′t. Furthermore, Z̈tWut is given by

∑
j∈I

w1juj,t, . . . ,
∑
j∈I

wNjuj,t,
∑

i∈In1

∑
j∈I

wijD
′
i,tuj,t, . . . ,

∑
i∈Ink

∑
j∈I

wijD
′
i,tuj,t,

∑
i∈Im1

∑
j∈I

wijX
′
i,tuj,t, . . . ,

∑
i∈Iml

∑
j∈I

wijX
′
i,tuj,t

′ .
(55)

The quantities Z̈tΩ̂
−1
uu Z̈

′
t and Z̈tΩ̂

−1
uuut in (53) are now given in more detail in (54) and (55) by

setting W = Ω̂−1uu . Therefore, the limit of the first term of the above product is, when using a

consistent long run variance estimator, given by

T∑
t=1

G̈Z̈tΩ̂
−1
uu Z̈

′
tG̈ ⇒

 ∫
Ω−1uu

∫
Ω−1uu J̈

′
D

∫
Ω−1uu J̈

′
X∫

J̈DΩ−1uu
∫
J̈DΩ−1uu J̈

′
D

∫
J̈DΩ−1uu J̈

′
X∫

J̈XΩ−1uu
∫
J̈XΩ−1uu J̈

′
D

∫
J̈XΩ−1uu J̈

′
X

 =

∫
J̈Ω−1uu J̈

′. (56)

Next consider the mi element of
∑T

t=1 G̈XẌtΩ̂
−1
uuut, given by

T∑
t=1

G̈Xmi

∑
k∈Imi

∑
j∈I

(Ω̂−1uu )k,jXk,tuj,t. (57)

For fixed j ∈ I it follows that

(Ω̂−1uu )k,j
T∑
t=1

G̈Xmi

∑
k∈Imi

Xk,tuj,t ⇒ (Ω−1uu )k,j

∫ JXmi
dBuj +

∑
k∈Imi

(∆vu)k,j
(

1
2
∫
Bvk

) (58)

and therefore summation over j = 1, . . . , N leads to

T∑
t=1

G̈Xmi
Xmi,tΩ̂

−1
uuut ⇒

∫
JXmi

Ω−1uudBu +
∑
k∈Imi

(∆vu)k,·(Ω−1uu )·,k
(

1
2
∫
Bvk

)
. (59)
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Finally, stacking i = m1, . . . ,ml gives

T∑
t=1

G̈XẌtΩ̂
−1
uuut ⇒

∫
J̈XΩ−1uudBu + [

˜̊
AGW
m1

′, . . . ,
˜̊
AGW
ml

′]′, (60)

with

˜̊
AGW
mj

:=
N∑
i=1

1{i∈Imj } · (∆vu)i,· ·
(
Ω−1uu

)·,i · ( 1
2
∫
Bvi(r)

)
(61)

for j = 1, . . . , l. The limits for the terms involving the deterministic components are derived in

a similar way, with a difference being that they, of course, do not contain additive bias terms.

Combining the terms gives the limiting distribution of the MSUR estimator θ̈GW
MSUR.

Let us now consider the group-wise pooled FM-SOLS estimator θ̈GW
FM-SOLS. Consider the term∑

t G̈Z̈tu
+
t first, with the mi element given by

T∑
t=1

G̈Xmi

∑
k∈Imi

Xk,t

(
uk,t − v′tΩ̂−1vv Ω̂·,kvu

)
. (62)

The limit of
T∑
t=1

G̈Xmi

∑
k∈Imi

Xk,tuk,t is already known from the analysis of the group-wise pooled

OLS estimator θ̈GW
OLS. Thus, it remains to consider

T∑
t=1

G̈Xmi

∑
k∈Imi

Xk,tΩ̂
k,·
uvΩ̂

−1
vv vt ⇒

∫
JXmi

ΩuvΩ
−1
vv dBv +

∑
k∈Imi

(∆vv)
k,·Ω−1uuΩ·,kvu

(
1

2
∫
Bvk

)
. (63)

Combining the results for the two parts yields

T∑
t=1

G̈Xmi
Xmi,tu

+
t ⇒

∫
JXmi

dBu·v +
∑
k∈Imi

(∆+
vu)k,k

(
1

2
∫
Bvk

)
. (64)

The result for
∑T

t=1 G̈XẌtu
+
t follows from stacking the results for i = m1, . . . ,ml. A similar result

holds again for the terms involving the deterministic components, again without resultant bias

terms. Next, note that by construction

G̈Xmi
AGW
mi
⇒

∑
k∈Imi

(∆+
vu)k,k

(
1

2
∫
Bvk

)
. (65)

Combining these expressions and inserting them in the definition of the group-wise pooled FM-

SOLS estimator θ̈GW
FM-SOLS gives the result.
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For the group-wise pooled FM-SUR estimator θ̈GW
FM-SUR the result follows from combining the results

already obtained for θ̈GW
MSUR and θ̈GW

FM-SOLS. First, we obtain

T∑
t=1

G̈Z̈tΩ̂
−1
u·vZ̈

′
tG̈⇒

∫
J̈Ω−1u·vJ̈

′, (66)

replacing Ω̂−1uu by Ω̂−1u·v in (56). For the second term we obtain using similar arguments as in the

FM-SOLS case

T∑
t=1

G̈Xmi
Xmi,tΩ̂

−1
u·vu

+
t ⇒

∫
JXmi

Ω−1u·vdBu·v +
∑
k∈Imi

(∆+
vu)k,·(Ω−1u·v)

·,k
(

1
2
∫
Bvk

)
. (67)

For the correction term we have by construction that

G̈Xmi
ÄGW
mi
⇒

∑
k∈Imi

(∆+
vu)k,·(Ω−1u·v)

·,k
(

1
2
∫
Bvk

)
, (68)

which leads again by inserting all the components in the definition of the estimator to the stated

asymptotic distribution. �
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Appendix B: Additional Empirical Results

Intercept Intercept and Linear Trend

PP PP(fb)1 PP(fb)2 PP PP(fb)1 PP(fb)2

Australia 0.963 0.969 0.395 -1.232 -1.256 -1.340
Austria 0.113 0.247 -0.022 -1.836 -1.707 -1.801
Belgium 1.106 0.931 0.430 -1.261 -1.389 -1.443
Canada -0.218 -0.320 -0.438 -2.492 -3.048 -3.047
Denmark 0.162 0.184 -0.195 -2.357 -2.376 -2.340
Finland 1.003 0.917 0.342 -2.299 -2.324 -2.393
France -0.003 -0.121 -0.259 -1.939 -2.177 -2.189
Germany -0.253 -0.338 -0.322 -2.323 -2.548 -2.566
Italy 0.829 0.505 0.198 -1.683 -1.802 -1.823
Japan 0.302 0.181 -0.080 -1.708 -1.858 -1.873
Netherlands 0.285 0.225 0.099 -2.119 -2.227 -2.270
New Zealand -0.174 -0.176 -0.204 -2.608 -2.689 -2.690
Norway 1.336 1.316 0.318 -2.116 -2.144 -2.134
Portugal 1.802 1.599 0.641 -1.759 -1.772 -1.761
Spain 1.114 0.837 0.303 -0.836 -1.000 -1.067
Sweden 0.480 0.473 -0.128 -2.545 -2.588 -2.599
Switzerland -1.001 -1.047 -1.001 -2.774 -2.420 -2.450
United Kingdom 1.418 1.843 0.588 -1.318 -1.102 -1.457
United States -0.310 -0.275 -0.428 -2.971 -2.880 -2.886

Table 4: Unit root test results for log GDP per capita. The tests employed are the Phillips-Perron
(1988) test, PP, as well as the one- and two-step detrended fixed-b versions, PP(fb)1 and PP(fb)2,
of this test developed in Vogelsang and Wagner (2013). The specifications of the deterministic
components are intercept only and intercept and linear trend. The results are based on the Bartlett
kernel with bandwidth chosen according to Newey and West (1994). Italic entries denote rejection
of the null hypothesis at the 10% level and bold entries indicate rejection at the 5% level.
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POt Shin Pû CT

Australia -2.498 0.130 11.581 0.107
Austria -3.702 0.077 54.886 0.056
Belgium -5.464 0.059 49.352 0.066
Canada -2.821 0.189 15.918 0.148
Denmark -5.077 0.054 45.320 0.055
Finland -5.585 0.049 74.872 0.053
France -4.984 0.061 30.775 0.067
Germany -7.714 0.413 68.790 0.116
Italy -4.524 0.186 35.780 0.150
Japan -6.304 0.163 9.198 0.156
Netherlands -5.668 0.105 94.376 0.072
New Zealand -5.314 0.138 12.481 0.121
Norway -3.684 0.094 19.327 0.092
Portugal -11.272 0.092 75.219 0.098
Spain -3.595 0.101 41.730 0.090
Sweden -4.469 0.083 30.697 0.085
Switzerland -6.147 0.053 86.006 0.073
United Kingdom -7.826 0.088 100.674 0.076
United States -2.585 0.605 12.747 0.157

Table 5: Cointegration and non-cointegration test results for (1). The left block-column presents the
results for the “linear” non-cointegration test POt of Phillips and Ouliaris (1990) and the “linear”
cointegration test of Shin (1994). Linear here refers to an application of these tests treating log
GDP per capita and its square as two integrated processes. The right block-column presents the
results for the modifications of these two tests to the CPR setting discussed in Wagner (2013, 2015).
These are labelled Pû (non-cointegration test) and CT (cointegration test). Italic entries denote
rejection of the null hypothesis at the 10% level and bold entries indicate rejection at the 5% level.
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Figure 7: EKC estimation results for Equation (1): scatter plot and EKC. The solid lines correspond
to the FM-SUR estimates and the solid lines with +-marks to the FM-SOLS estimates. For further
explanations see notes to Figure 1.
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Figure 8: EKC estimation results for Equation (1): actual and fitted values. The dashed lines show
the actual values, the solid lines the FM-SUR fitted values and the solid lines with +-marks the
FM-SOLS fitted values.
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FM-SOLS

Linear Trend & 2 DK-FI
Stochastic Regressors (P)

Stochastic Regressors (S) 2 AT-DK, AT-NL, BE-UK, DK-FI, NL-UK,
3 AT-BE-NL, BE-NL-UK

Linear Trend (T) 2 AT-DK, AT-FI, AT-CH, AT-UK, BE-DK, BE-NL,
BE-UK, DK-FI, DK-CH, DK-UK, FI-CH,

3 AT-BE-UK, AT-DK-FI, AT-DK-CH, AT-DK-UK,
AT-FI-CH, BE-NL-UK, BE-DK-UK, DK-FI-CH,

4 AT-DK-FI-CH, AT-BE-DK-UK

FM-SUR

Linear Trend & 2 DK-FI
Stochastic Regressors (P)

Stochastic Regressors (S) 2 AT-DK, AT-NL, BE-NL, BE-UK, DK-FI, NL-UK,
3 AT-BE-NL, AT-NL-UK, BE-NL-UK, DK-NL-UK

Linear Trend (T) 2 AT-DK, AT-FI, AT-CH, AT-UK, BE-DK, BE-NL,
BE-UK, DK-FI, DK-CH, DK-UK, FI-CH, FI-UK,

3 AT-BE-UK, AT-DK-FI, AT-DK-CH, AT-DK-UK, AT-FI-CH,
AT-FI-UK, BE-DK-UK, DK-FI-UK, DK-FI-CH,

4 AT-DK-FI-UK, AT-DK-FI-CH, AT-BE-DK-UK

Table 6: List of group members corresponding to the tests described in Table 2. For more details
see notes to Table 2.
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Figure 9: EKC estimation results for Equation (1): scatter plot and EKC. The solid lines with
square symbols correspond to the group-wise pooled FM-SUR estimates and the solid lines with
o-marks to the pooled FM-SUR estimates. For further explanations see notes to Figure 1.
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Figure 10: EKC estimation results for Equation (1): actual and fitted values. The dashed lines
show the actual values, the solid lines with square symbols the group wise pooled FM-SUR fitted
values and the solid lines with o-marks the pooled FM-SUR fitted values.
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