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1. Introduction

Current macroeconomic models commonly incorporate investment adjustment costs

(IAC from now on) in order to make investment in physical capital costly. Intuitively, a

firm can neither instantly change its capital stock nor immediately produce automobiles

instead of books without some costs of adjustments. Also, it takes time and resources to

change the composition of goods produced, e.g. goods previously used in the consumption

sector cannot directly be transferred one-to-one in the investment-good sector. As Kim

(2003a, p. 533f) notes:

Two types of adjustment costs specifications coexist in the macroeconomics

literature on investment. One type specifies intertemporal adjustment costs in

terms of a nonlinear substitution between capital and investment in capital

accumulation, as in Lucas & Prescott (1971), Hayashi (1982), and Abel &

Blanchard (1983). The other specification captures multisectoral adjustment

costs by incorporating a nonlinear transformation between consumption and

investment, which is used by Sims (1989), Vallès (1997), and many other

papers adopting multisector models.

Intertemporal IAC, are most commonly used in state-of-the-art dynamic stochastic

general equilibrium (DSGE) models as they untangle the linkage to the marginal prod-

uct of capital, therefore, explaining the acyclic behavior of the real interest rate. The

papers mentioned above propose a specification, in which the IAC are based on the first

derivative of capital or, in other words, on the current level of investment. It finds use in

current DSGE models developed by e.g. the Czech National Bank (Andrle et al., 2009)

or the Council for Budget Responsibility for Slovakia (Mucka & Horvath, 2015). How-

ever, due to the popularity of models in the fashion of Christiano et al. (2005) and Smets

& Wouters (2003), it is now common to introduce IAC which depend on the current

growth rate of investment. Even though Christiano et al. (2005) note that this specifi-

cation successfully generates persistent, hump-shaped responses of aggregate investment

and output to monetary policy shocks, Groth & Khan (2010) find no empirical evidence

for this kind of specification.1 The second type of costs, multisectoral IAC, provide

1Groth & Khan (2010) use single equations in their empirical analysis, not a full-fledged model with

2



models with a potentially strong propagation mechanism and can successfully explain

co-movements between sectors without relying upon any extra features or frictions, see

e.g. Greenwood et al. (2000) and Huffman & Wynne (1999).

Both types of specifications provide interesting model dynamics in different strands

of literature. The theoretical relationship between macroeconomic (in)stability and IAC

has been studied by (among others) Chin et al. (2012), Kim (2003b) and Herrendorf &

Valentinyi (2003). The influence of IAC on news-driven cycles and co-movements has

produced a large literature strand both for intertemporal as well as multisectoral IAC:

Guo et al. (2015) and Jaimovich & Rebelo (2009) use intertemporal IAC to generate news-

driven business cycles, whereas Beaudry & Portier (2007) argue that multisectoral IAC

can support positive co-movements between consumption, investment and employment

due to changes in expectations in a perfect market environment with variable labor

supply. Dupor & Mehkari (2014) and Qureshi (2014) confirm that multisectoral IAC

lead to positive sectoral and aggregate co-movement in response to news shocks. The

regained interest in using multisectoral IAC is also evident in the residential investment

literature, see Kydland et al. (2012) and Garriga et al. (2013). Similar specifications of

multisectoral IAC are used to model imperfect labor mobility between the consumption-

sector and the investment-sector, e.g. Nadeau (2009). Cassou & Lansing (2006) and Guo

& Lansing (2003) also analyze fiscal policy in the presence of intertemporal IAC. Lastly,

there is some discussion whether financial frictions and IAC yield almost observational

equivalent models, see Bayer (2008), Casalin & Dia (2014) or Ikeda (2011).

As this short review of the literature indicates, the combination of both specifications

is rather sparsely found in macroeconomic models.2. This is mainly due to the functional

equivalence result of Kim (2003a):

[W]hen a model already has a free parameter for intertemporal adjustment

costs, adding another parameter for multisectoral adjustment costs does not

cross-restrictions. Also the variables for the marginal product of capital may be misspecified, since these

typically underestimate the nonlinearities due to factor complementarities and time-varying markups,

see Linnemann (2016).
2Moura (2015) is a recent exception who uses both IAC to study investment price rigidities in a

multisector DSGE model. It is argued that the specification of intersectoral frictions solves the functional

equivalence of Kim (2003a).
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enrich the model dynamics (Kim, 2003a, p. 534).

From an identification point of view this relates to two parameters being collinear, and

thus not separately identifiable. Specifically, in the log-linearized version of Kim (2003a)’s

small RBC model the individual parameters governing intertemporal and multisectoral

IACs enter as a sum into the solution, and are hence not separately identifiable no

matter what estimation method one uses. Mutschler (2015), however, has shown that

this is due to the log-linearization of the model, a quadratic approximation provides

enough restrictions on the mean, i.e. breaking with certainty equivalence, to identify

both parameters separately.

Using this theoretical insight and the motivation on intertemporal IAC, we extend

the functional equivalence result in the log-linearized model to intertemporal IAC which

are based on the growth rate of investment. We show theoretically that a quadratic

approximation provides again means to identify both parameters separately. We then

demonstrate that the original model of Kim (2003a) can also be estimated in finite sam-

ples when using a quadratic approximation to the solution of the model. To this end, we

simulate data for different values of parameters and compare the estimation performance

of two different extended Kalman filters within a Bayesian estimation framework, namely

the Central Difference Kalman Filter (Andreasen, 2011) and the Quadratic Kalman Filter

(Ivashchenko, 2014). Furthermore, we provide additional results on the use of pruning for

the estimation of DSGE models, as we specifically account for the effect of pruning within

both filters. Accordingly, we simulate data both from the pruned as well as unpruned

quadratic approximation. Our estimation strategy is similar to An & Schorfheide (2007)

who likewise estimate a small-scale DSGE model solved by a quadratic approximation,

however, using a particle filter to evaluate the likelihood. We provide further evidence

for their result, that estimating the quadratic approximation of a DSGE model provides

means to extract more information on the structural parameters from data. In our case

this enables us to estimate both parameters for IAC separately that are unidentiable

under the log-linearized model.
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2. The Kim (2003) model

The Kim (2003a) model builds upon the canonical neoclassical growth model (see

for example Schmitt-Grohé & Uribe (2004)), however, augmenting it with two kinds of

IAC. First, intertemporal adjustment costs are introduced into the capital accumulation

equation governed by a parameter φ, which involve a nonlinear substitution between

capital kt and investment it:

kt =

[
δ

(
it
δ

)1−φ

+ (1 − δ) (kt−1)
1−φ

] 1
1−φ

(1)

with δ denoting the depreciation rate. Note that φ = 0 implies the usual linear capital

accumulation specification. Second, we introduce multisectoral adjustment costs into

the national budget constraint given a parameter θ, which are captured by a nonlinear

transformation between consumption ct and investment it:

yt = at−1k
α
t−1 =

[
(1 − s)

(
ct

1 − s

)1+θ

+ s

(
it
s

)1+θ
] 1

1+θ

(2)

with at denoting the level of technology. The average savings rate s = c
y = βδα

1−β+δβ

consists of the depreciation rate δ, the discount factor β and the share of capital in

production α. Similar to Huffman & Wynne (1999) we focus on θ > 1, i.e. a reverse

CES technology, in order for the production possibilities set to be convex. Thus ,it

becomes more difficult to alter the composition of goods produced in the two sectors.

Note that for θ = 0 the transformation is linear.

The representative agent maximizes

E0

∞∑
t=0

βt ln ct

subject to the budget constraint (2) and the capital accumulation equation (1). The

corresponding Euler equation is

λt(1 + θ)

(
it
s

)θ (
it
δkt

)φ
= βEtλt+1

[
α(1 + θ)a1+θt k

α(1+θ)−1
t

+ (1 − δ)(1 + θ)

(
Etit+1

δkt

)φ(
Etit+1

s

)θ]
(3)
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with auxiliary variable λt = (1−s)θ

(1+θ)c1+θt

. Note that for φ = θ = 0 this simplifies to the

canonical Euler equation. To close the model, technology evolves according to

log(at) = ρalog(at−1) + εa,t (4)

with ρa measuring persistence and εa,t ∼ iid(0, σ2
a). The steady state of the model is

given by

a = 1, k =

(
δ

sa

) 1
α−1

, i = δk, c = (1 − s)

[
(αkα)

1+θ − s
(
i
s

)1+θ
1 − s

] 1
1+θ

.

There are two exogenous (kt and at) and no endogenous states. The controls are ct and

it and are both assumed to be observable and measured with error εc,t ∼ iid(0, σ2
c ) and

εi,t ∼ iid(0, σ2
i ). Since we are only interested in the estimation of two parameters, we fix

β = 0.99 and δ = 0.0125 at standard values and consider the parameter vector at local

point and prior specification given in Table 1.

3. Identification analysis

In the original paper Kim (2003a) log-linearizes the model around the non-stochastic

steady-state and shows analytically that there is observational equivalence between the

two specifications: θ and φ enter as a ratio φ+θ
1+θ into the log-linearized solution; hence,

they are not distinguishable. This can also be shown via a formal identification analysis

using the rank criteria of Iskrev (2010) and Qu & Tkachenko (2012), see also Ratto &

Iskrev (2011). In a nutshell, Iskrev (2010)’s approach checks whether the mean, variance

and autocovariogram of the observables are sensitive to changes of the deep parameters,

whereas Qu & Tkachenko (2012)’s approach focuses on the mean and spectrum of the

observables. These changes are measured by Jacobian matrices which are required to

have full rank. If we have rank shortages we can analyze the null space to pinpoint

the problematic parameters. Columns two and three of table 6 summarize the ranks

for the log-linearized model. For all used tolerance levels (which we need to specify for

the rank computations) the rank is short by one. Analyzing the nullspace indicates that

indeed one has to fix either θ or φ to identify the model. Mutschler (2015) extends these

criteria for higher-order approximations. Columns four and five in table 6 all display
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full rank in the quadratic approximation of the model. In other words, the second-order

approximation provides additional restrictions to identify both parameters separately.

As an additional result we change the specification of the intertemporal IAC (1) with

the following specification based on the growth rate of investment:

kt = (1 − δ)kt−1 + it

[
1 − φ

2

(
it
it−1

− 1

)2
]

(5)

The ranks are the same as in table 6, thus we omit the corresponding table. We conclude

that the specification of intertemporal IAC in (5) yields the same functional equivalence

in the log-linearized model, but can be identified when using a quadratic approximation.

4. Monte-Carlo study

4.1. Solution method and data-generating-process

The exact solution of our nonlinear model is given by a set of decision rules g and h

for state variables xt = (kt−1, at−1)′ and control variables yt = (ct, it)
′, that is:

yt+1 = g(xt, ut+1, σ), xt+1 = h(xt, ut+1, σ).

and ut = (εa,t, εc,t, εi,t) as we assume that all control variables are observable and subject

to measurement errors εc,t for consumption and εi,t for investment. Furthermore, we

introduce the perturbation parameter σ and approximate the functions g and h using a

quadratic Taylor approximation around the non-stochastic steady-state (σ = 0) following

e.g. Schmitt-Grohé & Uribe (2004). Therefore our first data-generating-process is given

by:

DGP 1 (Unpruned solution).

x̂t+1 = hxx̂t + huut+1 +
1

2
Hxx (x̂t ⊗ x̂t) +

1

2
Huu (ut+1 ⊗ ut+1)

+
1

2
Hxu (x̂t ⊗ ut+1) +

1

2
Hux (ut+1 ⊗ x̂t) +

1

2
hσσσ

2

ŷt+1 = gxx̂t + guut+1 +
1

2
Gxx (x̂t ⊗ x̂t) +

1

2
Guu (ut+1 ⊗ ut+1)

+
1

2
Gxu (x̂t ⊗ ut+1) +

1

2
Gux (ut+1 ⊗ x̂t) +

1

2
gσσσ

2
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A hat denotes deviations from steady-state, e.g. ŷt = yt − ȳ. hx and gx denote the

solution matrices of the first-order approximation, Hxx is a 2 × 22 matrix containing all

second-order terms for the i-th state variable in the i-th row, whereas Gxx is a 2 × 22

matrix containing all second-order terms for the i-th control variable in the i-th row.

Hxu, Hux, Gxu and Gux are accordingly shaped for the cross terms of states and shocks,

and Huu and Guu contain the second-order terms for the product of shocks.

Various simulation studies show that Taylor approximations of an order higher than

one may generate explosive time paths, even though the first-order approximation is

stable. This is due to artificial fixed points of the approximation, see Kim et al. (2008,

p. 3408) for a univariate example. Thus, the model may be neither stationary nor

imply an ergodic probability distribution, both of which assumptions are essential for

identification and estimation. Thus, Kim et al. (2008) propose the pruning scheme, in

which one omits terms from the policy functions that have higher-order effects than the

approximation order.3 For instance, given a second-order approximation, we decompose

the state vector into first-order (x̂ft ) and second-order (x̂st ) effects (x̂t = x̂ft + x̂st ), and

set up the law of motions for these variables, preserving only effects up to second-order

(see the technical appendix of Andreasen et al. (2016) for details). Our second data-

generating-process is hence given by:

DGP 2 (Pruned solution).

x̂ft+1 = hxx̂
f
t + huut+1 (6)

x̂st+1 = hxx̂
s
t +

1

2
Hxx

(
x̂ft ⊗ x̂ft

)
+

1

2
Huu (ut+1 ⊗ ut+1)

+
1

2
Hxu

(
x̂ft ⊗ ut+1

)
+

1

2
Hux

(
ut+1 ⊗ x̂ft

)
+

1

2
hσσσ

2
(7)

ŷt+1 = gx(x̂ft + x̂st ) + guut+1 +
1

2
Gxx

(
x̂ft ⊗ x̂ft

)
+

1

2
Guu (ut+1 ⊗ ut+1)

+
1

2
Gxu

(
x̂ft ⊗ ut+1

)
+

1

2
Gux

(
ut+1 ⊗ x̂ft

)
+

1

2
gσσσ

2
(8)

Thus, terms containing x̂ft ⊗ x̂st and x̂st ⊗ x̂st are omitted, since they reflect third-order

and fourth-order effects which are higher than the approximation order. Also, there are

3This may seem an ad hoc procedure, but pruning can also be founded theoretically as a Taylor

expansion in the perturbation parameter (Lombardo & Uhlig, 2014) or on an infinite moving average

representation (Lan & Meyer-Gohde, 2013).
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no second-order effects in ut+1.

4.2. Estimation method

Due to the quadratic approximation we are faced with nonlinearities such that we

cannot use the standard Kalman filter to evaluate the likelihood. There is, however, a

growing literature on estimating nonlinear solutions to DSGE models, including Quasi-

Maximum-Likelihood (QML) estimation (Andreasen, 2011; Ivashchenko, 2014; Kollmann,

2015) and Bayesian Sequential Monte Carlo methods (An & Schorfheide, 2007; Fernández-

Villaverde & Rubio-Ramı́rez, 2007; Herbst & Schorfheide, 2014). We follow this liter-

ature and estimate our model parameters both with QML as well as Bayesian MCMC

methods. The QML and MCMC algorithms both require a filtering step to evaluate

the likelihood, for which we use four different approaches: (1) Quadratic Kalman Filter

(QKF from now on), (2) Quadratic Kalman Filter taking specifically the pruned solu-

tion into account (QKFP from now on), (3) Central Difference Kalman Filter (CDKF

from now on) and (4) Central Difference Kalman Filter taking specifically the pruned

solution into account (CDKFP from now on). Therefore we extend results of Andreasen

(2011) and Ivashchenko (2014) and tune the filters to account for the stabilizing effect of

pruning. The obtained likelihood is, however, often badly shaped, multimodal and has

discontinuities. The evaluation of first-order and second-order derivatives is intractable

and gradient based optimization methods perform quite poorly. Therefore, we use an

optimization routine that is based on simulations, namely, the evolutionary algorithm

CMA-ES, see Andreasen (2010) for an application to DSGE models. The rest of the

Bayesian framework is standard, as we use a random walk Metropolis-Hastings algo-

rithm as in Schorfheide (2000) and DYNARE. That is, we run two chains, each with

15000 draws, which are initialized at the posterior mode and using the inverse hessian

for the initial proposal covariance matrix.

4.3. Estimation results

For our Monte-Carlo study we draw 50 values from the prior domain in table 1 that

yield a determinate solution. For each of these draws we simulate paths of the control

variables of T = 100 using both the (possibly) explosive DGP 1 and stable DGP 2. We

then estimate the parameters of the model using each of the four different Kalman filters
9



within a Bayesian framework.4 First, we present the bias (posterior mean - true value)

and posterior standard deviation for the well-identified parameter α in table 3. Here it is

evident that all filters are perfectly capable to pinpoint α precisely. Tables 4 and 5 depict

the bias and standard errors for θ and φ, respectively. Our Monte-Carlo results confirm

that all approaches are able to extract information to provide meaningful estimates for

both intertemporal as well as multisectoral adjustment costs parameters. The bias and

standard errors, however, are not negligible, indicating that these parameters are rather

weakly identified. This is not surprising as our sample size is rather small with just 100

data points. Nevertheless, for each MC run at least one of the filters provides estimates

within a reasonable credibility set. Moreover, there is apparently more learning from

data for φ than for θ. Regarding stability we find that accounting for pruning in the

filters eases the estimation regardless whether our data is generated by the explosive

DGP 1 or the stable DGP 2. This is evident as in some instances we have a standard

error of 0.000, which does not indicate very high precision, but rather that something

went wrong in the estimation. These instances are much more frequent when we do not

account for pruning in the filtering step. Lastly, we comment on estimation speed on a

standard desktop computer: the computation of the posterior with 2 chains and 25000

draws each took about 40 min, whereas the computation of the mode using the CMA-ES

took about 5 min.

5. Conclusion

We show that both the Central-Difference Kalman Filter as well as the Quadratic

Kalman Filter are very powerful tools to estimate pruned as well as unpruned nonlinear

DSGE models, even when the likelihood is badly shaped and we are faced with weakly

identified parameters. We are able to identify structural parameters that are unidenti-

fiable under the log-linearized model; thus, confirming the findings of Mutschler (2015)

empirically. Economically, we extend the functional equivalence result of Kim (2003a)

given intertemporal investment adjustment costs that are based on the growth rate of in-

vestment. The quadratic approximation, again, provides means to solve the observational

equivalence to multisectoral investment adjustment costs.

4The QML estimation is available on request.

10



6. References

Abel, A. B., & Blanchard, O. J. (1983). An Intertemporal Model of Saving and Investment. Economet-

rica, 51 , 675. doi:10.2307/1912153.

An, S., & Schorfheide, F. (2007). Bayesian Analysis of DSGE Models. Econometric Reviews, 26 ,

113–172. doi:10.1080/07474930701220071.

Andreasen, M. M. (2010). How to Maximize the Likelihood Function for a DSGE Model. Computational

Economics, 35 , 127–154. doi:10.1007/s10614-009-9182-6.

Andreasen, M. M. (2011). Non-linear DSGE models and the optimized central difference particle filter.

Journal of Economic Dynamics & Control , 35 , 1671–1695. doi:10.1016/j.jedc.2011.04.007.

Andreasen, M. M., Fernández-Villaverde, J., & Rubio-Ramı́rez, J. F. (2016). The Pruned State-Space

System for Non-Linear DSGE Models: Theory and Empirical Applications. Working Paper Aarhus

University.

Andrle, M., Hledik, T., Kamenik, O., & Vlcek, J. (2009). Implementing the New Structural Model of

the Czech National Bank: Working Papers. Technical Report 2009/2 Czech National Bank, Research

Department. URL: https://ideas.repec.org/p/cnb/wpaper/2009-2.html.

Bayer, C. (2008). On the interaction of financial frictions and fixed capital adjustment costs: Evidence

from a panel of German firms. Journal of Economic Dynamics and Control , 32 , 3538–3559. doi:10.

1016/j.jedc.2008.02.004.

Beaudry, P., & Portier, F. (2007). When can changes in expectations cause business cycle fluctuations in

neo-classical settings? Journal of Economic Theory, 135 , 458–477. doi:10.1016/j.jet.2006.06.009.

Casalin, F., & Dia, E. (2014). Adjustment costs, financial frictions and aggregate investment. Journal

of Economics and Business, 75 , 60–79. doi:10.1016/j.jeconbus.2014.06.001.

Cassou, S. P., & Lansing, K. J. (2006). Tax Reform with Useful Public Expenditures. Journal of Public

Economic Theory, 8 , 631–676. doi:10.1111/j.1467-9779.2006.00282.x.

Chin, C.-T., Guo, J.-T., & Lai, C.-C. (2012). A Note on Indeterminacy and Investment Adjustment

Costs in an Endogenously Growing Small Open Economy. Macroeconomic Dynamics, 16 , 438–450.

doi:10.1017/s1365100510000969.

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (2005). Nominal Rigidities and the Dynamic Effects

of a Shock to Monetary Policy. Journal of Political Economy, 113 , 1–45. doi:10.1086/426038.

Dupor, B., & Mehkari, M. S. (2014). The analytics of technology news shocks. Journal of Economic

Theory, 153 , 392–427. doi:10.1016/j.jet.2014.07.005.

Fernández-Villaverde, J., & Rubio-Ramı́rez, J. F. (2007). Estimating Macroeconomic Models: A Likeli-

hood Approach. Review of Economic Studies, 74 , 1059–1087. doi:10.1111/j.1467-937X.2007.00437.

x.

Garriga, C., Kydland, F. E., & Sustek, R. (2013). Mortgages and Monetary Policy. Working Paper

19744 National Bureau of Economic Research. URL: http://www.nber.org/papers/w19744. doi:10.

3386/w19744.

Greenwood, J., Hercowitz, Z., & Krusell, P. (2000). The role of investment-specific technological change

in the business cycle. European Economic Review , 44 , 91–115. doi:10.1016/S0014-2921(98)00058-0.

11

http://dx.doi.org/10.2307/1912153
http://dx.doi.org/10.1080/07474930701220071
http://dx.doi.org/10.1007/s10614-009-9182-6
http://dx.doi.org/10.1016/j.jedc.2011.04.007
https://ideas.repec.org/p/cnb/wpaper/2009-2.html
http://dx.doi.org/10.1016/j.jedc.2008.02.004
http://dx.doi.org/10.1016/j.jedc.2008.02.004
http://dx.doi.org/10.1016/j.jet.2006.06.009
http://dx.doi.org/10.1016/j.jeconbus.2014.06.001
http://dx.doi.org/10.1111/j.1467-9779.2006.00282.x
http://dx.doi.org/10.1017/s1365100510000969
http://dx.doi.org/10.1086/426038
http://dx.doi.org/10.1016/j.jet.2014.07.005
http://dx.doi.org/10.1111/j.1467-937X.2007.00437.x
http://dx.doi.org/10.1111/j.1467-937X.2007.00437.x
http://www.nber.org/papers/w19744
http://dx.doi.org/10.3386/w19744
http://dx.doi.org/10.3386/w19744
http://dx.doi.org/10.1016/S0014-2921(98)00058-0


Groth, C., & Khan, H. (2010). Investment adjustment costs: An empirical assessment. Journal of Money,

Credit and Banking, 42 , 1469–1494. URL: http://dx.doi.org/10.1111/j.1538-4616.2010.00350.x.

doi:10.1111/j.1538-4616.2010.00350.x.

Guo, J.-T., & Lansing, K. J. (2003). Globally-Stabilizing Fiscal Policy Rules. Studies in Nonlinear

Dynamics & Econometrics, 7 . doi:10.2202/1558-3708.1103.

Guo, J.-T., Sirbu, A.-I., & Weder, M. (2015). News about aggregate demand and the business cycle.

Journal of Monetary Economics, 72 , 83–96. doi:10.1016/j.jmoneco.2015.01.005.

Hayashi, F. (1982). Tobin’s Marginal q and Average q: A Neoclassical Interpretation. Econometrica,

50 , 213. doi:10.2307/1912538.

Herbst, E., & Schorfheide, F. (2014). Sequential Monte Carlo Sampling for DSGE Models. Journal of

Applied Econometrics, 29 , 1073–1098. doi:10.1002/jae.2397.
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Table 1: Parameters, priors and bounds for Kim (2003)

Parameters Prior specification Bounds

Parameter Local Point Density Para (1) Para (2) Lower Upper

α 0.60 Gamma 0.60 0.30 1e-5 1

θ 1 Normal 1.00 0.50 -5 5

ρa 0.7 Beta 0.50 0.20 1e-5 0.99999

φ 2 Normal 2.00 0.50 -5 5

σa 0.5 InvGamma 0.50 4.00 1e-8 5

σc 0.5 InvGamma 0.50 4.00 1e-8 5

σi 0.5 InvGamma 0.50 4.00 1e-8 5

Notes: Para (1) and (2) list the means and the standard deviations for Beta, Gamma, and

Normal distributions; the upper and lower bound of the support for the Uniform distribution;

s and v for the Inverse Gamma distribution, where ℘IG(σ|v, s) ∝ σ−v−1e−vs
2/2σ2

.
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Table 2: Identification analysis of the Kim (2003) model

Log-linearized Quadratic

tol Iskrev Qu/Tkachenko Iskrev Qu/Tkachenko

1e-05 6 6 7 7

1e-09 6 6 7 7

1e-13 6 6 7 7

rob 6 6 7 7

required 7 7 7 7

15



Table 3: Bias for α

DGP UNPRUNED DGP PRUNED

MC run CDKF CDKFP QKF QKFP CDKF CDKFP QKF QKFP

1 0.190
(0.010)

0.014
(0.006)

0.013
(0.007)

0.014
(0.006)

0.110
(0.000)

0.034
(0.006)

0.059
(0.010)

0.060
(0.005)

2 −0.003
(0.000)

−0.004
(0.000)

0.000
(0.000)

−0.003
(0.000)

−0.003
(0.000)

−0.004
(0.000)

0.000
(0.000)

−0.007
(0.000)

3 −0.005
(0.001)

−0.005
(0.000)

0.010
(0.001)

−0.008
(0.000)

−0.004
(0.001)

−0.007
(0.001)

0.000
(0.000)

−0.007
(0.000)

4 0.003
(0.003)

0.001
(0.002)

0.211
(0.001)

−0.000
(0.002)

−0.004
(0.004)

−0.004
(0.002)

0.001
(0.002)

0.001
(0.002)

5 −0.010
(0.001)

−0.007
(0.000)

−0.005
(0.000)

−0.009
(0.000)

−0.008
(0.000)

−0.000
(0.000)

0.003
(0.001)

−0.007
(0.000)

6 0.011
(0.004)

0.003
(0.003)

−0.001
(0.004)

0.006
(0.004)

0.012
(0.002)

−0.016
(0.009)

0.006
(0.002)

0.000
(0.004)

7 −0.015
(0.001)

−0.017
(0.000)

0.000
(0.000)

−0.015
(0.000)

−0.007
(0.001)

−0.005
(0.000)

−0.000
(0.000)

−0.008
(0.000)

8 −0.005
(0.003)

−0.021
(0.002)

−0.015
(0.003)

−0.002
(0.000)

−0.006
(0.002)

−0.006
(0.000)

−0.048
(0.001)

0.001
(0.001)

9 −0.009
(0.001)

−0.009
(0.001)

0.000
(0.000)

−0.006
(0.000)

−0.007
(0.001)

−0.004
(0.001)

−0.010
(0.002)

−0.010
(0.002)

10 0.126
(0.008)

−0.034
(0.005)

−0.039
(0.006)

−0.025
(0.013)

0.110
(0.007)

−0.005
(0.006)

0.006
(0.002)

−0.010
(0.006)

11 −0.009
(0.001)

−0.008
(0.000)

−0.005
(0.000)

−0.009
(0.000)

−0.007
(0.001)

−0.016
(0.000)

−0.010
(0.000)

0.004
(0.000)

12 −0.001
(0.002)

0.003
(0.002)

0.004
(0.002)

−0.001
(0.002)

−0.002
(0.002)

0.002
(0.002)

0.004
(0.002)

0.001
(0.002)

13 0.021
(0.007)

−0.016
(0.001)

−0.008
(0.002)

−0.011
(0.003)

−0.013
(0.006)

−0.017
(0.002)

−0.010
(0.002)

−0.016
(0.003)

14 0.010
(0.003)

−0.012
(0.003)

−0.023
(0.003)

−0.015
(0.004)

−0.008
(0.003)

−0.008
(0.002)

−0.008
(0.003)

−0.006
(0.003)

15 0.005
(0.002)

0.001
(0.001)

0.030
(0.000)

−0.005
(0.001)

0.001
(0.000)

−0.007
(0.001)

0.028
(0.003)

−0.013
(0.001)

16 −0.009
(0.002)

−0.012
(0.001)

−0.010
(0.000)

−0.013
(0.002)

−0.010
(0.001)

−0.011
(0.001)

−0.001
(0.000)

−0.008
(0.000)

17 −0.007
(0.004)

−0.004
(0.002)

−0.009
(0.002)

−0.006
(0.002)

−0.006
(0.003)

0.003
(0.001)

−0.003
(0.002)

−0.016
(0.001)

18 −0.011
(0.002)

−0.021
(0.000)

−0.001
(0.000)

−0.011
(0.001)

−0.021
(0.002)

−0.007
(0.000)

−0.022
(0.000)

−0.027
(0.001)

19 0.030
(0.003)

−0.013
(0.006)

0.362
(0.000)

0.002
(0.004)

0.002
(0.001)

−0.003
(0.002)

0.006
(0.004)

0.005
(0.004)

20 −0.002
(0.003)

−0.013
(0.001)

−0.006
(0.002)

−0.012
(0.002)

0.023
(0.005)

−0.006
(0.003)

−0.007
(0.003)

−0.005
(0.004)

21 −0.002
(0.003)

−0.008
(0.001)

−0.005
(0.001)

−0.007
(0.001)

−0.001
(0.003)

−0.007
(0.001)

0.001
(0.001)

−0.005
(0.002)
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22 −0.002
(0.000)

−0.001
(0.000)

−0.001
(0.000)

−0.002
(0.000)

−0.003
(0.001)

−0.001
(0.000)

−0.007
(0.000)

−0.003
(0.000)

23 −0.019
(0.000)

−0.016
(0.003)

0.004
(0.003)

0.002
(0.004)

0.000
(0.000)

−0.003
(0.004)

−0.000
(0.003)

0.003
(0.004)

24 −0.003
(0.001)

−0.002
(0.001)

0.003
(0.000)

−0.003
(0.000)

−0.005
(0.001)

−0.006
(0.001)

−0.002
(0.000)

−0.006
(0.001)

25 0.002
(0.000)

0.002
(0.001)

0.009
(0.000)

0.001
(0.001)

0.000
(0.000)

−0.001
(0.001)

0.013
(0.000)

0.001
(0.002)

26 −0.006
(0.003)

−0.008
(0.002)

0.001
(0.001)

−0.006
(0.002)

−0.002
(0.003)

−0.007
(0.001)

−0.003
(0.001)

−0.008
(0.002)

27 −0.001
(0.002)

−0.007
(0.001)

−0.003
(0.001)

−0.006
(0.001)

−0.006
(0.002)

−0.004
(0.001)

−0.006
(0.001)

−0.004
(0.002)

28 0.030
(0.005)

0.017
(0.003)

0.002
(0.000)

0.026
(0.001)

0.041
(0.003)

0.032
(0.002)

0.007
(0.000)

0.069
(0.000)

29 −0.004
(0.000)

−0.003
(0.000)

0.006
(0.000)

−0.004
(0.000)

−0.002
(0.000)

−0.002
(0.000)

0.001
(0.000)

−0.003
(0.000)

30 0.021
(0.003)

−0.016
(0.003)

−0.001
(0.004)

−0.007
(0.005)

0.008
(0.003)

−0.006
(0.002)

−0.008
(0.003)

−0.007
(0.004)

31 −0.007
(0.003)

−0.031
(0.004)

−0.035
(0.005)

−0.033
(0.006)

−0.000
(0.000)

−0.054
(0.005)

−0.048
(0.005)

−0.061
(0.006)

32 −0.010
(0.001)

−0.010
(0.001)

−0.010
(0.001)

−0.008
(0.001)

−0.009
(0.001)

−0.008
(0.001)

−0.008
(0.001)

−0.005
(0.001)

33 −0.010
(0.003)

−0.013
(0.003)

−0.010
(0.001)

−0.009
(0.001)

−0.016
(0.002)

−0.019
(0.002)

0.038
(0.000)

−0.020
(0.004)

34 −0.017
(0.002)

−0.003
(0.000)

−0.002
(0.000)

−0.004
(0.002)

−0.025
(0.002)

−0.038
(0.001)

−0.019
(0.000)

−0.032
(0.001)

35 −0.010
(0.002)

−0.013
(0.001)

−0.000
(0.000)

−0.012
(0.001)

−0.007
(0.002)

−0.014
(0.001)

−0.013
(0.001)

−0.014
(0.001)

36 0.012
(0.000)

−0.007
(0.004)

0.003
(0.002)

−0.002
(0.003)

0.015
(0.004)

−0.005
(0.004)

0.008
(0.002)

0.001
(0.002)

37 −0.013
(0.001)

−0.015
(0.001)

−0.014
(0.001)

−0.013
(0.001)

−0.007
(0.001)

−0.009
(0.000)

−0.009
(0.001)

−0.008
(0.001)

38 −0.018
(0.006)

−0.110
(0.007)

−0.004
(0.001)

−0.107
(0.000)

−0.054
(0.006)

−0.045
(0.002)

−0.032
(0.000)

−0.060
(0.002)

39 −0.000
(0.000)

−0.023
(0.009)

−0.069
(0.024)

−0.034
(0.009)

0.003
(0.000)

−0.028
(0.002)

−0.012
(0.008)

−0.037
(0.006)

40 −0.013
(0.002)

−0.036
(0.002)

0.003
(0.000)

−0.010
(0.000)

−0.004
(0.003)

−0.030
(0.006)

0.005
(0.000)

−0.010
(0.000)

41 0.002
(0.000)

−0.032
(0.004)

−0.037
(0.010)

0.055
(0.000)

0.001
(0.000)

−0.027
(0.008)

−0.090
(0.012)

0.160
(0.000)

42 0.282
(0.000)

0.050
(0.017)

0.049
(0.011)

0.054
(0.012)

0.029
(0.000)

0.001
(0.007)

0.058
(0.007)

0.034
(0.030)

43 0.054
(0.002)

−0.056
(0.003)

0.013
(0.000)

−0.002
(0.003)

−0.015
(0.003)

−0.001
(0.000)

−0.001
(0.000)

−0.029
(0.002)

44 −0.005
(0.004)

−0.011
(0.002)

−0.021
(0.003)

−0.015
(0.003)

−0.013
(0.002)

−0.016
(0.001)

−0.017
(0.001)

−0.014
(0.002)
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45 −0.006
(0.001)

−0.007
(0.001)

−0.007
(0.001)

−0.005
(0.000)

−0.008
(0.001)

−0.009
(0.000)

−0.006
(0.001)

−0.008
(0.001)

46 −0.012
(0.002)

−0.012
(0.001)

−0.009
(0.001)

−0.004
(0.000)

−0.008
(0.002)

−0.015
(0.002)

−0.004
(0.000)

−0.004
(0.000)

47 −0.002
(0.000)

−0.003
(0.000)

0.003
(0.000)

0.001
(0.000)

−0.000
(0.001)

0.001
(0.000)

0.000
(0.000)

−0.006
(0.000)

48 −0.000
(0.000)

−0.060
(0.014)

−0.120
(0.004)

0.000
(0.000)

−0.021
(0.000)

−0.043
(0.014)

−0.182
(0.013)

−0.013
(0.000)

49 −0.006
(0.001)

−0.000
(0.000)

−0.007
(0.001)

−0.006
(0.000)

−0.006
(0.001)

−0.008
(0.000)

−0.007
(0.001)

−0.000
(0.000)

50 −0.020
(0.002)

−0.026
(0.001)

0.006
(0.000)

−0.036
(0.000)

−0.010
(0.005)

−0.004
(0.000)

−0.004
(0.000)

−0.033
(0.002)

Standard deviation of posterior in parenthesis.

18



Table 4: Bias for θ

DGP UNPRUNED DGP PRUNED

MC run CDKF CDKFP QKF QKFP CDKF CDKFP QKF QKFP

1 −0.189
(0.549)

−1.036
(0.478)

−1.247
(0.503)

−0.490
(0.452)

0.047
(0.000)

−0.464
(0.485)

−0.651
(0.449)

−0.573
(0.456)

2 0.103
(0.378)

−1.282
(0.166)

0.000
(0.000)

0.336
(0.344)

0.129
(0.390)

−0.256
(0.009)

0.101
(0.000)

−0.065
(0.035)

3 0.679
(0.398)

0.197
(0.023)

1.277
(0.209)

−0.130
(0.442)

0.621
(0.403)

−1.180
(0.131)

0.000
(0.000)

0.760
(0.399)

4 0.407
(0.413)

0.371
(0.396)

3.212
(0.327)

0.318
(0.404)

0.339
(0.414)

0.272
(0.339)

0.587
(0.369)

0.412
(0.393)

5 −0.622
(0.356)

−0.623
(0.045)

0.638
(0.000)

−1.155
(0.011)

−1.012
(0.321)

0.001
(0.000)

−0.947
(0.235)

2.615
(0.103)

6 −0.086
(0.333)

0.324
(0.451)

0.630
(0.286)

0.430
(0.434)

0.137
(0.238)

0.296
(0.445)

0.408
(0.287)

0.415
(0.424)

7 −0.909
(0.280)

2.419
(0.207)

0.000
(0.000)

−0.707
(0.241)

0.314
(0.255)

0.006
(0.000)

0.000
(0.000)

0.572
(0.174)

8 0.699
(0.117)

0.121
(0.341)

−1.471
(0.051)

−0.062
(0.000)

1.097
(0.173)

0.430
(0.014)

−0.298
(0.004)

0.605
(0.075)

9 0.427
(0.457)

−0.242
(0.081)

−0.575
(0.000)

0.129
(0.066)

0.135
(0.475)

0.409
(0.325)

−0.748
(0.226)

−0.047
(0.478)

10 −0.556
(0.066)

0.455
(0.415)

0.586
(0.483)

0.521
(0.397)

0.059
(0.272)

−0.151
(0.303)

−0.634
(0.280)

−0.434
(0.307)

11 0.056
(0.359)

−1.176
(0.013)

0.337
(0.000)

−0.032
(0.055)

0.679
(0.290)

1.131
(0.182)

0.563
(0.000)

−0.088
(0.015)

12 −0.737
(0.449)

−0.530
(0.469)

−1.212
(0.320)

−0.877
(0.443)

−0.610
(0.449)

−0.715
(0.435)

−0.472
(0.476)

−0.691
(0.441)

13 0.521
(0.241)

−0.154
(0.089)

0.972
(0.336)

0.178
(0.373)

0.162
(0.061)

−0.255
(0.169)

0.863
(0.293)

−0.360
(0.353)

14 −0.434
(0.302)

−0.738
(0.314)

0.651
(0.302)

−0.304
(0.379)

−0.449
(0.405)

−0.406
(0.437)

0.483
(0.358)

−0.468
(0.412)

15 1.239
(0.470)

0.772
(0.438)

−0.362
(0.008)

1.233
(0.448)

0.297
(0.000)

−0.043
(0.011)

−1.033
(0.044)

0.802
(0.507)

16 −0.400
(0.383)

−1.725
(0.325)

−1.199
(0.000)

0.205
(0.422)

−0.815
(0.433)

−1.195
(0.363)

0.155
(0.000)

−0.231
(0.205)

17 0.565
(0.428)

0.684
(0.355)

1.976
(0.323)

0.810
(0.367)

0.098
(0.270)

0.151
(0.180)

0.979
(0.182)

−0.424
(0.251)

18 −0.307
(0.306)

−1.109
(0.007)

−0.543
(0.001)

1.068
(0.380)

−0.276
(0.345)

−0.381
(0.001)

−0.075
(0.000)

1.022
(0.311)

19 0.776
(0.144)

−0.425
(0.677)

0.624
(0.000)

−0.239
(0.449)

−0.313
(0.026)

−0.519
(0.079)

0.230
(0.458)

−0.351
(0.414)

20 0.468
(0.381)

−0.319
(0.277)

0.388
(0.365)

−0.082
(0.309)

0.441
(0.086)

0.110
(0.329)

0.418
(0.344)

0.128
(0.334)

21 0.492
(0.451)

0.149
(0.412)

1.484
(0.381)

0.404
(0.459)

0.487
(0.446)

0.156
(0.407)

0.838
(0.419)

0.503
(0.443)
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22 0.233
(0.383)

0.161
(0.011)

−0.590
(0.043)

0.576
(0.041)

0.377
(0.387)

0.651
(0.091)

0.510
(0.000)

0.532
(0.056)

23 −0.615
(0.000)

−0.589
(0.487)

−0.682
(0.443)

−0.469
(0.440)

−0.084
(0.000)

−0.368
(0.459)

−0.384
(0.414)

−0.331
(0.480)

24 1.110
(0.437)

0.187
(0.330)

0.148
(0.000)

1.195
(0.214)

0.700
(0.418)

0.934
(0.425)

−0.414
(0.002)

1.320
(0.470)

25 0.016
(0.000)

−0.264
(0.494)

−0.781
(0.270)

−0.255
(0.464)

0.000
(0.000)

−0.543
(0.525)

2.134
(0.022)

−0.193
(0.482)

26 −0.289
(0.435)

−0.484
(0.348)

−0.481
(0.359)

−0.220
(0.432)

−0.386
(0.443)

−0.289
(0.364)

0.696
(0.393)

−0.457
(0.391)

27 0.887
(0.406)

0.555
(0.407)

2.258
(0.331)

0.786
(0.411)

0.740
(0.430)

0.175
(0.211)

2.541
(0.319)

0.639
(0.401)

28 0.066
(0.442)

0.737
(0.504)

−0.728
(0.053)

−0.293
(0.169)

0.909
(0.561)

0.430
(0.202)

0.039
(0.000)

−0.746
(0.264)

29 −0.087
(0.458)

−0.088
(0.039)

−0.369
(0.024)

−0.218
(0.271)

−0.012
(0.454)

−0.362
(0.270)

0.293
(0.009)

−0.059
(0.022)

30 −0.134
(0.208)

0.583
(0.365)

1.793
(0.348)

0.904
(0.391)

0.011
(0.003)

1.282
(0.252)

1.381
(0.446)

1.011
(0.459)

31 −0.396
(0.142)

−0.249
(0.220)

0.713
(0.274)

−0.276
(0.291)

0.297
(0.000)

−0.676
(0.150)

0.488
(0.199)

−0.707
(0.213)

32 −0.432
(0.398)

−0.859
(0.429)

0.118
(0.337)

−0.316
(0.383)

−0.526
(0.422)

−0.965
(0.403)

0.075
(0.281)

−0.281
(0.380)

33 0.403
(0.276)

−0.074
(0.177)

1.170
(0.243)

0.535
(0.207)

−0.164
(0.113)

−0.554
(0.136)

−0.349
(0.061)

0.032
(0.031)

34 −0.067
(0.241)

−0.806
(0.001)

0.393
(0.000)

−0.265
(0.011)

0.008
(0.272)

−1.302
(0.098)

−0.086
(0.000)

0.156
(0.088)

35 −0.172
(0.324)

−0.935
(0.172)

0.817
(0.000)

−0.441
(0.396)

0.205
(0.035)

−2.114
(0.127)

2.285
(0.212)

−1.553
(0.188)

36 0.648
(0.001)

−0.121
(0.516)

−0.414
(0.425)

−0.150
(0.447)

−0.092
(0.421)

−0.388
(0.459)

−0.471
(0.481)

−0.363
(0.450)

37 0.218
(0.296)

−1.011
(0.185)

0.525
(0.252)

0.045
(0.267)

0.766
(0.316)

−0.401
(0.149)

0.417
(0.185)

0.484
(0.219)

38 0.990
(0.217)

−0.832
(0.116)

−0.658
(0.025)

0.041
(0.022)

−0.528
(0.187)

0.092
(0.037)

−1.038
(0.000)

0.074
(0.172)

39 −0.471
(0.000)

−0.537
(0.234)

−1.404
(0.079)

0.724
(0.320)

−0.231
(0.001)

−0.680
(0.235)

−1.770
(0.036)

0.536
(0.393)

40 0.129
(0.027)

−0.633
(0.145)

−0.485
(0.000)

1.220
(0.071)

−0.011
(0.250)

−0.508
(0.106)

−0.044
(0.000)

0.621
(0.024)

41 0.890
(0.000)

−0.006
(0.140)

−1.698
(0.019)

−0.739
(0.001)

−0.000
(0.000)

0.400
(0.213)

−1.761
(0.022)

−0.312
(0.023)

42 −0.046
(0.011)

−1.421
(0.206)

−0.091
(0.443)

−0.577
(0.466)

0.309
(0.000)

−1.871
(0.028)

−0.496
(0.464)

−0.199
(0.507)

43 2.461
(0.309)

−1.607
(0.072)

0.178
(0.000)

−1.040
(0.358)

0.649
(0.340)

−0.234
(0.006)

−0.064
(0.000)

0.545
(0.323)

44 −0.255
(0.109)

−1.160
(0.171)

0.932
(0.283)

−1.244
(0.230)

−0.656
(0.419)

−0.744
(0.422)

0.042
(0.385)

−0.693
(0.434)
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45 0.151
(0.386)

−0.579
(0.332)

−0.045
(0.187)

0.755
(0.329)

0.229
(0.407)

−0.669
(0.252)

0.126
(0.159)

0.552
(0.330)

46 0.077
(0.408)

−0.388
(0.032)

−1.398
(0.123)

0.043
(0.004)

0.109
(0.698)

−0.705
(0.221)

−0.441
(0.000)

0.130
(0.000)

47 −0.429
(0.484)

−0.081
(0.049)

0.963
(0.097)

−0.653
(0.097)

−0.299
(0.472)

0.366
(0.053)

0.000
(0.000)

−0.712
(0.080)

48 0.000
(0.000)

0.217
(0.231)

2.336
(0.222)

0.000
(0.000)

0.400
(0.000)

1.778
(0.347)

−1.343
(0.243)

0.186
(0.000)

49 −0.244
(0.283)

−0.432
(0.000)

0.320
(0.148)

−0.264
(0.193)

−0.345
(0.266)

−1.483
(0.153)

−0.664
(0.112)

0.615
(0.013)

50 0.692
(0.381)

−0.323
(0.176)

−0.035
(0.000)

−0.107
(0.054)

0.178
(0.433)

−0.197
(0.001)

−1.816
(0.017)

0.301
(0.149)

Standard deviation of posterior in parenthesis.
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Table 5: Bias for φ

DGP UNPRUNED DGP PRUNED

MC run CDKF CDKFP QKF QKFP CDKF CDKFP QKF QKFP

1 0.748
(0.403)

−2.368
(0.347)

−0.885
(1.023)

−0.282
(0.359)

−0.020
(0.000)

−1.021
(0.383)

−0.926
(0.232)

−0.272
(0.388)

2 −0.068
(0.128)

−0.508
(0.063)

−0.000
(0.000)

0.225
(0.156)

−0.051
(0.134)

−0.111
(0.006)

0.014
(0.000)

−0.102
(0.013)

3 0.212
(0.124)

0.082
(0.008)

1.019
(0.092)

−0.033
(0.149)

0.210
(0.127)

−0.402
(0.043)

0.000
(0.000)

0.295
(0.136)

4 0.700
(0.355)

0.472
(0.319)

0.086
(0.003)

0.437
(0.343)

0.334
(0.289)

0.317
(0.305)

0.782
(0.311)

0.641
(0.345)

5 −0.548
(0.211)

−0.432
(0.035)

−0.001
(0.000)

−0.723
(0.024)

−0.811
(0.180)

−0.000
(0.000)

−0.111
(0.071)

2.075
(0.153)

6 0.496
(0.171)

0.562
(0.245)

1.657
(0.218)

0.575
(0.257)

0.958
(0.150)

0.002
(0.251)

1.482
(0.220)

0.606
(0.241)

7 −1.061
(0.191)

1.419
(0.174)

0.000
(0.000)

−0.817
(0.163)

−0.135
(0.178)

−0.037
(0.000)

−0.001
(0.000)

0.024
(0.116)

8 0.226
(0.022)

−0.094
(0.088)

0.640
(0.252)

−0.057
(0.000)

0.356
(0.052)

0.101
(0.001)

0.264
(0.001)

0.115
(0.015)

9 0.033
(0.091)

−0.102
(0.016)

0.671
(0.000)

0.016
(0.011)

−0.054
(0.089)

0.078
(0.080)

1.308
(0.165)

−0.182
(0.071)

10 0.235
(0.047)

−0.312
(0.206)

−0.435
(0.197)

0.019
(0.422)

0.998
(0.294)

0.387
(0.310)

−0.024
(0.195)

0.077
(0.274)

11 −0.186
(0.225)

−0.882
(0.012)

1.101
(0.000)

−0.043
(0.035)

0.248
(0.172)

0.645
(0.129)

−0.058
(0.000)

−0.003
(0.000)

12 −0.312
(0.261)

−0.142
(0.319)

0.400
(0.273)

−0.230
(0.298)

−0.531
(0.249)

−0.076
(0.308)

−0.218
(0.298)

−0.053
(0.287)

13 0.307
(0.172)

−0.354
(0.081)

0.401
(0.265)

−0.064
(0.305)

0.009
(0.122)

−0.245
(0.145)

0.584
(0.260)

−0.296
(0.327)

14 0.283
(0.284)

0.125
(0.340)

0.256
(0.188)

−0.148
(0.310)

−0.513
(0.240)

−0.393
(0.298)

0.416
(0.257)

−0.277
(0.318)

15 0.265
(0.093)

0.194
(0.098)

0.888
(0.010)

0.136
(0.074)

0.049
(0.000)

−0.034
(0.006)

−0.172
(0.005)

0.041
(0.069)

16 −0.209
(0.199)

−0.909
(0.155)

0.008
(0.000)

−0.241
(0.244)

−0.607
(0.168)

−0.701
(0.152)

0.655
(0.000)

−0.367
(0.065)

17 0.388
(0.243)

0.362
(0.222)

1.130
(0.180)

0.432
(0.224)

0.205
(0.161)

0.345
(0.131)

1.547
(0.190)

−0.359
(0.100)

18 −0.239
(0.134)

−0.617
(0.011)

0.038
(0.000)

0.677
(0.211)

−0.198
(0.157)

−0.233
(0.002)

0.026
(0.000)

0.485
(0.187)

19 1.335
(0.145)

−0.079
(0.504)

−0.444
(0.000)

0.011
(0.394)

−0.634
(0.019)

−0.256
(0.221)

−0.998
(0.221)

−0.021
(0.401)

20 −0.125
(0.327)

−0.310
(0.353)

0.138
(0.364)

−0.202
(0.348)

0.046
(0.075)

0.004
(0.361)

−0.232
(0.285)

−0.001
(0.379)

21 0.246
(0.199)

0.012
(0.146)

0.611
(0.192)

0.147
(0.183)

0.189
(0.196)

−0.060
(0.146)

0.498
(0.224)

0.146
(0.217)
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22 0.028
(0.232)

0.087
(0.028)

1.401
(0.104)

0.345
(0.031)

0.059
(0.220)

0.456
(0.029)

1.554
(0.000)

0.461
(0.044)

23 0.069
(0.001)

−0.316
(0.206)

−0.250
(0.161)

0.304
(0.318)

−0.041
(0.000)

−0.330
(0.455)

0.433
(0.307)

0.058
(0.310)

24 0.429
(0.194)

0.124
(0.173)

1.888
(0.000)

0.401
(0.098)

0.207
(0.184)

0.362
(0.203)

−0.041
(0.000)

0.540
(0.230)

25 0.012
(0.000)

−0.029
(0.032)

−0.077
(0.020)

−0.076
(0.037)

−0.000
(0.000)

−0.030
(0.062)

−0.215
(0.000)

−0.125
(0.047)

26 −0.164
(0.186)

−0.304
(0.165)

−0.093
(0.175)

−0.139
(0.217)

−0.154
(0.209)

−0.109
(0.183)

0.372
(0.208)

−0.176
(0.202)

27 0.440
(0.206)

0.188
(0.193)

1.338
(0.197)

0.307
(0.197)

0.261
(0.205)

0.046
(0.115)

1.101
(0.194)

0.252
(0.221)

28 0.075
(0.061)

−0.046
(0.066)

0.142
(0.005)

0.132
(0.016)

0.021
(0.063)

0.060
(0.020)

−0.003
(0.000)

0.222
(0.015)

29 −0.088
(0.102)

−0.050
(0.010)

0.701
(0.040)

−0.044
(0.068)

−0.057
(0.102)

−0.097
(0.066)

0.816
(0.005)

0.076
(0.010)

30 0.142
(0.099)

−0.070
(0.089)

0.602
(0.159)

0.248
(0.174)

0.008
(0.031)

0.434
(0.128)

0.260
(0.159)

0.296
(0.233)

31 −0.365
(0.118)

−0.560
(0.177)

−0.179
(0.165)

−0.539
(0.245)

0.485
(0.001)

−0.921
(0.105)

−0.044
(0.147)

−0.978
(0.126)

32 −0.430
(0.211)

−0.547
(0.259)

1.077
(0.269)

−0.132
(0.247)

−0.465
(0.225)

−0.513
(0.236)

1.377
(0.277)

−0.146
(0.241)

33 0.088
(0.067)

−0.062
(0.044)

−0.117
(0.006)

0.100
(0.026)

−0.007
(0.034)

−0.159
(0.025)

0.063
(0.001)

−0.095
(0.025)

34 −0.083
(0.212)

−0.786
(0.003)

0.719
(0.000)

−0.263
(0.069)

−0.242
(0.211)

−1.326
(0.081)

0.050
(0.000)

−0.097
(0.045)

35 −0.271
(0.176)

−0.694
(0.096)

0.894
(0.000)

−0.379
(0.242)

0.032
(0.033)

−1.325
(0.072)

0.987
(0.139)

−1.024
(0.102)

36 0.249
(0.001)

−1.018
(0.414)

0.236
(0.341)

−0.227
(0.324)

0.005
(0.311)

−0.076
(0.335)

−0.085
(0.368)

0.028
(0.351)

37 −0.153
(0.216)

−1.009
(0.157)

1.945
(0.260)

−0.190
(0.221)

0.414
(0.257)

−0.442
(0.138)

2.269
(0.242)

0.289
(0.206)

38 0.362
(0.106)

−1.488
(0.085)

−0.346
(0.085)

−0.139
(0.010)

−0.994
(0.181)

−0.131
(0.133)

−1.302
(0.000)

0.306
(0.276)

39 −0.169
(0.000)

−0.254
(0.126)

0.763
(0.188)

−0.078
(0.118)

0.073
(0.001)

−0.380
(0.074)

0.013
(0.148)

−0.158
(0.102)

40 0.257
(0.024)

−0.383
(0.059)

−0.356
(0.000)

0.500
(0.023)

0.073
(0.127)

−0.342
(0.052)

0.081
(0.000)

−0.002
(0.008)

41 0.250
(0.000)

−0.249
(0.060)

−0.386
(0.153)

0.067
(0.001)

0.000
(0.000)

0.044
(0.086)

−0.992
(0.101)

0.511
(0.035)

42 0.047
(0.005)

0.368
(0.448)

−0.524
(0.174)

0.537
(0.380)

0.021
(0.000)

0.043
(0.505)

−0.793
(0.148)

−0.951
(1.002)

43 0.933
(0.102)

−0.438
(0.011)

0.021
(0.000)

−0.189
(0.268)

0.123
(0.083)

0.344
(0.002)

0.085
(0.000)

−0.164
(0.039)

44 −0.279
(0.056)

−0.876
(0.128)

0.167
(0.193)

−1.001
(0.161)

−0.691
(0.246)

−0.692
(0.269)

−0.504
(0.216)

−0.481
(0.348)
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45 −0.082
(0.204)

−0.394
(0.199)

1.872
(0.265)

0.443
(0.202)

−0.009
(0.221)

−0.451
(0.158)

2.386
(0.233)

0.226
(0.199)

46 −0.238
(0.183)

−0.368
(0.021)

1.324
(0.320)

0.018
(0.004)

0.045
(0.400)

−0.445
(0.128)

−0.140
(0.000)

0.067
(0.000)

47 −0.039
(0.025)

−0.015
(0.004)

0.092
(0.005)

−0.033
(0.006)

−0.017
(0.028)

0.031
(0.005)

−0.000
(0.000)

−0.128
(0.001)

48 −0.000
(0.000)

−0.216
(0.068)

−0.671
(0.018)

0.000
(0.000)

0.132
(0.000)

1.126
(0.346)

−0.653
(0.131)

0.023
(0.000)

49 −0.548
(0.298)

−0.375
(0.000)

1.851
(0.150)

−0.356
(0.256)

−0.639
(0.283)

−1.842
(0.185)

1.522
(0.277)

0.530
(0.017)

50 0.140
(0.176)

−0.319
(0.082)

−0.161
(0.000)

−0.329
(0.023)

0.114
(0.268)

−0.182
(0.001)

−0.960
(0.008)

0.427
(0.120)

Standard deviation of posterior in parenthesis.
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