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Abstract

A large part of the empirical environmental Kuznets curve literature uses cointegrating regres-

sions involving a unit root process and its powers as regressors. In this literature the unit root

process and its powers are, incorrectly, all treated as integrated processes and modified least

squares estimation methods for linear cointegrating regressions are routinely employed. We

show that this approach to estimation leads for the Fully Modified OLS estimator surprisingly

to the same limiting distribution as obtained for the version of the Fully Modified OLS estimator

adapted to the cointegrating polynomial regression setting of Wagner and Hong (2016).
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1 Introduction

The scatter plot shown in Figure 1 displays the relationship between log GDP per capita and log

CO2 emissions per capita for Belgium over the period 1870–2009. In addition to the scatter plot,

two estimates discussed in detail below are displayed.

Figure 1: EKC estimation results for the period 1870–2009 for Belgium for CO2 emissions: Scatter

plot and EKC.

[Notes]: The dots show the pairs of observations of log(GDP) and log(CO2) in per capita terms. The curves show a

line that is the result of inserting 140 equidistantly spaced points from the sample range of log(GDP) per capita, with

corresponding values of the trend given by t = 1, . . . , 140, in the estimated relationship yt = c+ δt+β1xt +β2x
2
t +ut

using the coefficient estimates obtained by FM-LIN (dashed) and FM-CPR (solid).

An inverted U-shaped relationship between GDP and emissions is known as environmental Kuznets

curve (EKC), a phrase coined by Grossman and Krueger (1995).1 If log GDP per capita, xt say, is

an integrated process, the results in the figure are derived from a regression involving a unit root

process and its square, an intercept and a linear trend as regressors and log CO2 emissions per

1The term EKC refers by analogy to the inverted U-shaped relationship between the level of economic development

and the degree of income inequality postulated by Simon Kuznets (1955) in his 1954 presidential address to the

American Economic Association. Already early survey papers like Stern (2004) or Yandle et al. (2004) find more

than 100 refereed publications; with many more written since then. See also the discussions in Wagner (2015) and

Wagner and Grabarczyk (2016) for additional references and some background.
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capita, yt say, as dependent variable, i.e., from:2

yt = c+ δt+ β1xt + β2x
2
t + ut, (1)

xt = xt−1 + vt.

If the errors in (1) are stationary, this is an example of what Wagner and Hong (2016) call cointe-

grating polynomial regression (CPR).

It is known that the square of an integrated process is not an integrated process (see, e.g.,

Wagner, 2012). Nevertheless, the empirical EKC literature that uses unit root and cointegra-

tion techniques employs cointegration estimation methods for linear cointegrating relationships,

with the sole exception of Wagner (2015) who applies the methods of Wagner and Hong (2016).

This means that, e.g., the Fully Modified OLS (FM-OLS) estimator of Phillips and Hansen (1990)

is applied treating xt and x2t incorrectly as two integrated regressors. This approach is referred to

as FM-LIN in this paper (defined in (18) in Section 2.3). The results of performing estimation this

way are displayed using the label FM-LIN (dashed) in the figure. As mentioned already, Wagner

and Hong (2016) adapt the FM-OLS estimator to the CPR case (defined in (11) in Section 2.2).

Applying this estimator yields the results labelled FM-CPR (solid) in the figure. The two results

are very similar, despite the fact that the FM-LIN estimator, i.e., the standard FM-OLS estimator,

is used in a setting for which it has not been designed.

The main result of this paper shows that this similarity is not a coincidence. The asymptotic

distributions of the FM-LIN and the FM-CPR estimators coincide for cointegrating polynomial

regressions. This main result is shown by developing some intermediate results that are of inde-

pendent interest. The discussion in Section 2 is for the CPR case with only one integrated process

and powers thereof as regressors. The result, however, extends, with only additional notational

complexity, to the more general situation considered in Wagner and Hong (2016).3 Details for the

general case are available upon request, whereas for brevity we focus in this paper on the case of

only one integrated process and its powers as regressors. This is also the most relevant case for the

applications we are aware of.

An immediate implication of the result concerning the equivalence of the asymptotic distributions

2All details including definitions and precise assumptions are given in Section 2. Here we only want to set the

stage.
3The detailed discussion in Section 2 shows that the asymptotic equivalence result requires stricter assumptions

than used in, e.g., Wagner and Hong (2016).
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is that also the asymptotic distributions of the Shin (1994)-type cointegration test as discussed

in Wagner and Hong (2016) for CPRs coincide for both the FM-LIN and the FM-CPR residuals.

The critical values for this test depend upon the specification of the equation (see Wagner, 2013),

i.e., upon the deterministic component as well as the number and powers of integrated regressors

included. Consequently, testing for cointegration using the FM-LIN residuals in conjunction with

the Shin (1994) critical values, is invalid even asymptotically. Thus, in contrast to estimation for

cointegration testing, no surprising asymptotic result rescues the “linear approach”.

The paper is organized as follows: In Section 2 we present the model and assumptions as well as

the theoretical results. Section 3 briefly summarizes and concludes. All proofs are relegated to the

appendix, including some auxiliary lemmata in the first subsection of the appendix.

We use the following notation: Definitional equality is signified by := and
d
= to denote equality in

distribution. Weak convergence is denoted by ⇒,
P→ denotes convergence in probability and

a.s.→

convergence almost surely. bxc denotes the integer part of x ∈ R and diag(·) denotes a diagonal

matrix with entries specified throughout. For a vector x = (xi)i=1,...,n we denote by ‖x‖2 :=
∑n

i=1 x
2
i

the Euclidean norm. We denote with 0m×n an (m× n)-matrix with all entries equal to zero. The

expected value is denoted by E, L denotes the backward-shift operator, i.e. L{zt}t∈Z := {zt−1}t∈Z,

and ∆ := 1− L denotes the first-difference operator. Brownian motions are denoted as B(r), with

covariance matrix specified in the context, and W (r) denotes standard Brownian motion.

2 Theory

2.1 Model and Assumptions

As mentioned in the introduction, to understand the arguments leading to the results it suffices to

consider a cointegrating polynomial regression with only one integrated regressor and its powers,

i.e.,

yt = D′tδ +Xt
′β + ut, for t = 1, . . . , T, (2)

xt = xt−1 + vt, x0 = 0,

where yt is a scalar process, Dt := [1, t, t2, . . . , tq]′, xt is a scalar I(1) process andXt := [xt, x
2
t , . . . , x

p
t ]
′.4

Denoting with Zt := [D′t, X
′
t]
′ the stacked regressor matrix and with θ := [δ′, β′]′ ∈ R(q+1+p) the

4Note that, of course, not all consecutive powers of xt need to be included and in case of more than one integrated

regressor the included powers can differ across integrated regressors. These changes lead to notational complications
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parameter vector, equation (2) can be rewritten more compactly as:

yt = Z ′tθ + ut, for t = 1, . . . , T. (3)

The above example of a polynomial time trend is considered for simplicity only and can be easily

relaxed without adding additional complications:5

Remark 1 The results of this paper also hold for more general deterministic components: There

exists a sequence of (q+1)× (q+1) scaling matrices GD = GD(T ) and a (q+1)-dimensional vector

of functions D(z), with 0 <
∫ s
0 D(z)D(z)′ds < ∞ for 0 < s ≤ 1, such that for 0 ≤ s ≤ 1 it holds

that:

lim
T→∞

√
TGDD[sT ] = D(s). (4)

If, as in (2), Dt = (1, t, t2, . . . , tq), then GD := diag(T−1/2, T−3/2, T−5/2, . . . , T−(q+1/2)) and D(s) :=

(1, s, s2, . . . , sq)′.

The precise assumptions concerning the error process and the regressor are as follows:

Assumption 1 The processes {ut}t∈Z and {∆xt}t∈Z are generated as:

ut = Cu(L)ζt =
∞∑
j=0

cujζt−j

∆xt = vt = Cv(L)εt =

∞∑
j=0

cvjεt−j

with
∑∞

j=0 j|cuj | < ∞,
∑∞

j=0 j|cvj | < ∞ and Cv(1) 6= 0. Furthermore, we assume that the process

{ξ0t }t∈Z := {[ζt, εt]′}t∈Z is independent and identically distributed with E(‖ξ0t ‖l) < ∞ for some

l > max(8, 4/(1− 2b)) for some 0 < b < 1/3.

The above Assumption 1 is stronger than the corresponding assumption used in Wagner and Hong

(2016). To be able to draw upon some of the results of Kasparis (2008) we replace the martingale

difference sequence assumptions used in Wagner and Hong (2016) with linear process assumptions

only. Clearly, also setting x0 = 0 is only for notational simplicity, the results are unchanged for any well-defined

OP(1) random x0.
5In the EKC literature the deterministic component typically consists of an intercept and a linear trend with the

latter supposed to capture autonomous energy efficiency increases.
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and the moment assumption of Kasparis (2008).6 For univariate {xt} the assumption Cv(1) 6= 0

excludes stationary {xt}, and has to be modified in the multivariate case to det(Cv(1)) 6= 0, i.e., in

the multivariate case the vector process {xt} is assumed to be non-cointegrated.

For long-run covariance estimation we impose the following assumptions with respect to kernel and

bandwidth choices, which are closely related to the corresponding assumptions of Jansson (2002):

Assumption 2 For the kernel function k(·) we assume that:

1. k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| <∞

2.
∞∫
0

k̄(x)dx <∞, where k̄(x) = supy≥x |k(y)|

Assumption 3 For the bandwidth parameter MT we assume that MT ⊆ (0,∞) and MT = O(T b),

with the same 0 < b < 1/3 as specified in Assumption 1.

Our Assumption 3 on the bandwidth implies lim
T→∞

(M−1T + T−1/3MT ) = 0, whereas Jansson (2002)

assumes lim
T→∞

(M−1T + T−1/2MT ) = 0, which corresponds to MT = O(T b), with 0 < b < 1/2.

Clearly, our assumption here is stronger, this tightening of the upper bound stems from the fact

that for the asymptotic analysis of the FM-LIN estimator defined in (18) we need to consider

“long-run covariance” estimators involving powers of a (scaled) integrated process. Establishing

weak convergence of these terms requires smaller bandwidths.

As will be seen in detail below, the FM-LIN estimator involves the usage of kernel estimates of

“long-run covariances” and “half long-run covariances” also for nonstationary processes. In order

to have uniform notation we formally define:

Definition 1 For two sequences {at} and {bt} with sample t = 1, . . . , T we define:

∆̂ab :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

atb
′
t+h, (5)

6Note that in Kasparis (2008, Assumption 1(b), p. 1376) a condition of the form l > min(8, 4/(1− 2b)) is posited.

In the proof of his Lemma A1, however, at different places moments of order 4/(1−2b) (p. 1391) and order 8 (p. 1395)

are needed. Thus, we believe that the minimum should be replaced by the maximum. Since we use similar arguments

in the proofs of our Lemmata 3 and 4 we require moments of order max(8, 4/(1− 2b)).

As discussed in Wagner and Hong (2016) similar results could also be established under alternative assumptions in

the spirit of, e.g., Ibragimov and Phillips (2008) or de Jong (2002), augmented correspondingly to accommodate the

powers of the integrated regressor. A key difference to, e.g., Chang et al. (2001) is that {ut}t∈Z is allowed to be

serially correlated, in an MDS setting in Wagner and Hong (2016) and in a linear process setting here.
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neglecting the dependence on k(·), MT and the sample range 1, . . . , T for brevity. Furthermore,

Ω̂ab := ∆̂ab + ∆̂′ab − Σ̂ab, (6)

with Σ̂ab := 1
T

∑T
t=1 atb

′
t.

Clearly, in case that {at}t∈Z and {bt}t∈Z are jointly stationary processes with finite (half) long-

run covariance ∆ab =
∞∑
h=0

E(a0b
′
h), then under appropriate assumptions ∆̂ab is – as usual – a

consistent estimator of ∆ab, with similar results holding a fortiori for Ωab :=
∑∞

h=−∞ E(a0b
′
h) and

Σab := E(a0b
′
0).

Remark 2 Note also that in our definition of ∆̂ab we use (like, e.g., Phillips, 1995) the bandwidth

MT rather than T −1 as upper bound of the summation over the index h (like, e.g., Jansson, 2002).

For truncated kernels with k(x) = 0 for |x| > 1 this is of course inconsequential. It can also be shown

(see, e.g., Phillips, 1995) that for standard long-run covariance estimation problems, consistency

is not affected by either summation index choice also for untruncated kernels like the Quadratic

Spectral kernel.

In our setting, where the asymptotic behavior of ∆̂-quantities is analyzed for a (properly scaled but)

nonstationary process (see Proposition 1 and Corollary 1), the summation bound is important. The

key result in Proposition 1 below hinges upon summation only up to MT . The tighter summation

bounds are related to the smaller bandwidths needed postulated in Assumption 3. More specifically,

we need this in the proof of Lemma 4. This lemma is related to Kasparis (2008, Lemma A1, p. 1394–

1396) where exactly this summation bound is used (in a slightly different context).

Assumption 1 implies that the process {ξt}t∈Z := {[ut, vt]′}t∈Z fulfills a central limit theorem of the

form:

T−1/2
[rT ]∑
t=1

ξt ⇒ B(r) =

[
Bu(r)

Bv(r)

]
= Ω

1/2
ξξ W (r), r ∈ [0, 1], (7)

with the covariance matrix Ωξξ of B(r) given by the long-run covariance matrix of {ξt}t∈Z, i.e.,

Ωξξ :=

[
Ωuu Ωuv

Ωvu Ωvv

]
=

∞∑
h=−∞

E(ξ0ξ
′
h) (8)

The half (or one-sided) long-run covariance matrix ∆ξξ :=
∑∞

h=0 E(ξ0ξ
′
h) is also needed below and

partitioned similarly as Ωξξ. For FM-type estimation, estimates of the above long-run covariance
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matrices are required. Below we focus on the estimation of ∆, from which an estimator of Ω follows

using (6) and an estimator of Σ, since the asymptotic behavior of estimators of ∆-type quantities

is one of the key elements for the result in Proposition 1.

Unless otherwise stated, in long-run covariance estimation the unobserved errors ut are replaced by

the OLS residuals from (2), ût. This defines ξ̂t := [ût, vt]
′ and the effects of this replacement have

to be analyzed.

2.2 Fully Modified OLS Estimation

A fully modified OLS (FM-OLS) type estimator for the parameters in (2) is presented in Wagner

and Hong (2016) by extending the FM-OLS estimation principle from the linear cointegration case

considered in Phillips and Hansen (1990) to the CPR setting.7

We briefly describe the two-part transformation required for FM-CPR estimation next: First, the

dependent variable yt is replaced by:

y+t := yt −∆xtΩ̂
−1
vv Ω̂vû, (9)

with the long-run covariances estimated from ξ̂t. The second transformation consists of adding a

bias-correction term that is for specification (2) given by:

A∗ := ∆̂+
vû



0(q+1)×1

T

2
∑T

t=1 xt
...

p
∑T

t=1 x
p−1
t


, (10)

with ∆̂+
vû := ∆̂vû − ∆̂vvΩ̂

−1
vv Ω̂vû. Finally, defining y+ := [y+1 , . . . , y

+
T ]′ and Z := [Z1, . . . , ZT ]′, the

FM-CPR estimator of θ is defined as:

θ̂+ := (Z ′Z)−1(Z ′y+ −A∗). (11)

Denoting

G = G(T ) := diag(GD(T ), GX(T )) (12)

7Note again that related work has also been undertaken by other authors, including – as already mentioned –

Chang et al. (2001), de Jong (2002), Ibragimov and Phillips (2008) or Liang et al. (2015).
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with GX(T ) := diag(T−1, T−3/2, . . . , T−(p+1)/2) and with J(r) := [D(r)′,Bv(r)
′]′ with Bv(r) :=

[Bv(r), Bv(r)
2, . . . , Bv(r)

p]′, Wagner and Hong (2016, Proposition 1) show that:8

G−1(θ̂+ − θ)⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (13)

with Bu·v(r) := Bu(r)−Bv(r)Ω−1vv Ωvu. The zero-mean Gaussian mixture limiting distribution given

in (13) forms the basis for asymptotically valid standard (chi-squared) inference.

2.3 “Linear” Fully Modified OLS Estimation

We now consider the “wrong” approach outlined in the introduction and show that it is asymp-

totically equivalent to the FM-CPR estimator discussed in the previous subsection, i.e., is in fact

asymptotically not “wrong”. We refer to this estimator, defined formally in (18), for brevity as

FM-LIN estimator.

Considering the CPR “formally” as a standard, linear cointegrating regression problem we rewrite

the model as follows:

yt = D′tδ +X ′tβ + ut (14)

Xt = Xt−1 + wt,

with

wt :=


∆xt

∆x2t
...

∆xpt

 =


vt

2xt−1vt + v2t
...∑p

k=1

(
p
k

)
xp−kt−1 v

k
t

 , (15)

i.e., the j-th component of the vector wt is given by
∑j

k=1

(
j
k

)
xj−kt−1 v

k
t . The modified dependent

variable is given by:

y++
t := yt − w′tΩ̂−1wwΩ̂wû, (16)

with Ω̂ww and Ω̂wû to be interpreted in the sense of Definition 1. The correction term for FM-LIN

is given by:

A∗∗ :=

[
0(q+1)×1

T (∆̂wû − ∆̂wwΩ̂−1wwΩ̂wû)

]
=

[
0(q+1)×1

T ∆̂+
wû

]
(17)

8The result in Wagner and Hong (2016, Proposition 1) holds with slightly weaker assumptions than Assumptions 1

to 3 used in this paper.
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with ∆̂w and ∆̂wû also to be interpreted in the sense of Definition 1. This allows to define the

FM-LIN estimator as:

θ̂++ := (Z ′Z)−1(Z ′y++ −A∗∗), (18)

with y++ := [y++
1 , . . . , y++

T ]′. Denoting with û++ := [û++
1 , . . . , û++

T ]′ where û++
t := ut−w′tΩ̂−1wwΩ̂wû,

the centered and scaled estimator can be written as:

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1 (
GZ ′u++ −GA∗∗

)
, (19)

with the first term, obviously, unchanged compared to the FM-CPR estimator. Thus, consider the

two parts of the second expression in (19) in more detail using W := [w′1, . . . , w
′
T ]′ and GW :=

GW (T ) = diag(1, T−1/2, . . . , T−(p−1)/2):

GZ ′u++ = GZ ′(u−W Ω̂−1wwΩ̂wû) (20)

= GZ ′u−GZ ′W Ω̂−1wwΩ̂wû

= GZ ′u−GZ ′WGWG
−1
W Ω̂−1wwG

−1
W GW Ω̂wû

= GZ ′u−GZ ′W̃ Ω̂−1w̃w̃Ω̂w̃û,

with W̃ := WGW a “properly scaled” version of W such that the three terms GZ ′W̃ , Ω̂w̃w̃ and

Ω̂w̃û, have well-defined limits established below. Next consider:

GA∗∗ =

[
GD 0

0 GX

][
0(q+1)×1

T ∆̂+
wu

]
(21)

=

[
0(q+1)×1

GXT ∆̂+
wu

]
=

[
0(q+1)×1

GW ∆̂+
wu

]
=

[
0(q+1)×1

∆̂+
w̃u

]
.

Combining the above we can rewrite the centered and scaled FM-LIN estimator as:

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1 (
GZ ′u−GZ ′W̃ Ω̂−1w̃w̃Ω̂w̃u − ∆̂+

w̃u

)
, (22)

Clearly, the asymptotic behavior of the “formal” long-run and half long-run covariance estimators

is of key importance and is thus investigated next in two steps. We first consider the process

{ηt} := {[ut, w̃′t]′} and then show in the second step that the same asymptotic behavior prevails

also for {η̃t} := {[ût, w̃′t]′}, when using the OLS residuals ût for actual calculations.

Proposition 1 Under Assumptions 1 to 3 it holds that

∆̂ηη :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ηtη
′
t+h ⇒ ∆ηη :=

 ∆uu ∆uv ∆uvB′

∆vu ∆vv ∆vvB′

∆vuB ∆vvB ∆vvB̃

 , (23)
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with

B := [2

∫ 1

0
Bv(r)dr, . . . , p

∫ 1

0
Bp−1
v (r)dr]′ (24)

and for i, j = 1, . . . , p− 1

B̃(i,j) := (1 + i)(1 + j)

∫ 1

0
Bi+j
v (r)dr. (25)

Furthermore, it holds that

Σ̂ηη :=
1

T

T∑
t=1

ηtη
′
t ⇒ Σηη :=

 Σuu Σuv ΣuvB′

Σvu Σvv ΣvvB′

ΣvuB ΣvvB ΣvvB̃

 . (26)

The above two results lead to:

Ω̂ηη := ∆̂ηη + ∆̂
′
ηη − Σ̂ηη ⇒ ∆ηη + ∆′ηη − Σηη =: Ωηη. (27)

Remark 3 By construction the upper 2× 2-blocks in the above results coincides with the long-run

and half long-run covariances of the process {ξt}t∈Z. For all other terms involving an integrated

process or some powers of an integrated process we observe weak convergence to functionals of

Brownian motions. This is not unexpected, since these terms are the limits of continuous functions

(continuous kernel weighted sums) of scaled powers of integrated processes. In particular these terms

are not long-run covariances of some underlying stationary processes but we continue to use the

“symbolic notation” ∆ηη, Σηη and Ωηη. Note again, only the upper left 2× 2 blocks are (long-run)

covariances.

As indicated above, replacing ut by the OLS residuals ût does not change the asymptotic behavior:

Corollary 1 Under Assumptions 1 to 3 the same results as above also hold for {η̃t}, i.e.:

∆̂η̃η̃ :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

η̃tη̃
′
t+h ⇒ ∆ηη (28)

Σ̂η̃η̃ :=
1

T

T∑
t=1

η̃tη̃
′
t ⇒ Σηη (29)

Ω̂η̃η̃ := ∆̂η̃η̃ + ∆̂′η̃η̃ − Σ̂η̃η̃ ⇒ Ωηη (30)

It remains to characterize the asymptotic behavior of the remaining component on the right hand

side of (22).
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Lemma 1 With the data given by (2) under Assumption 1 it holds for

GZ ′W̃ =

(
GDD

′W̃

GXX
′W̃

)
(31)

as T →∞ that: (
GD

T∑
t=1

Dtw
′
tGw

)
(i,1)

⇒
∫ 1

0
ridBv(r) (32)

for i = 1, . . . , q + 1 and(
GD

T∑
t=1

Dtw
′
tGw

)
(i,j)

⇒ j

∫ 1

0
riBj−1

v (r)dBv(r) + j(j − 1)∆vv

∫ 1

0
riBj−2

v (r)dr (33)

−
(
j

2

)
Σvv

∫ 1

0
riBj−2

v (r)dr,

for i = 1, . . . , q + 1; j = 2, . . . , p and(
GX

T∑
t=1

Xtw
′
tGw

)
(i,j)

⇒ j

∫ 1

0
Bi+j−1
v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2
v (r)dr (34)

−
(
j

2

)
Σvv

∫ 1

0
Bi+j−2
v (r)dr,

for i, j = 1, . . . , p.

Combining the results of Proposition 1, Corollary 1 and Lemma 1 allows to establish the main

result of this paper given next.

Proposition 2 Let the data be given by (2), with Assumption 1 in place. Furthermore, let long-run

covariance estimation be performed with Assumptions 2 and 3 in place. Then it holds for T →∞

that

G−1(θ̂++ − θ)⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r). (35)

Thus, the FM-LIN and the FM-CPR estimator have the same limiting distribution.

2.4 Testing for Cointegration

The asymptotic equivalence result established in Proposition 2 also implies that the Shin (1994)

type test of Wagner and Hong (2016, Proposition 5) for cointegration in the CPR setting can be

based on the residuals of both FM-CPR and FM-LIN estimation. Both test statistics have the

same asymptotic null distribution as shown in the following corollary.
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Corollary 2 Consider again the cointegrating polynomial regression given in (2), Assumptions 1

to 3 in place and denote as before with û+t the FM-CPR and by û++
t the FM-LIN residuals. Then

it holds that both

CT+ :=
1

T ω̂û·v

T∑
t=1

T−1/2 t∑
j=1

û+j

2

(36)

and

CT++ :=
1

T ω̂û·w

T∑
t=1

T−1/2 t∑
j=1

û++
j

2

(37)

converge under the null hypothesis as T →∞ to∫ 1

0

(
W JW
u·v (r)

)2
dr, (38)

with W JW
u·v (r) := Wu·v(r) −

∫ r
0 J(s)′ds

(∫ 1
0 J

W (s)JW (s)′ds
)−1 ∫ 1

0 J
W (s)dWu·v(s) with JW (r) :=

[D(r)′,Wv(r),Wv(r)
2, . . . ,Wv(r)

p]′, ω̂û·v := Ω̂ûû−Ω̂ûvΩ̂
−1
vv Ω̂vû and Ω̂û·w := Ω̂ûû−Ω̂ûwΩ̂−1wwΩ̂wû. Un-

der the stated assumptions both ω̂û·v and ω̂û·w are consistent estimators of ωu·v := Ωuu−ΩuvΩ
−1
vv Ωvu,

the covariance of Bu·v(r).

Remark 4 Note that in more general CPR models the above test statistic does not necessarily

have a nuisance parameter free limiting distribution. The key requirement for this is, using the

terminology of Vogelsang and Wagner (2014), full design. In case of only one integrated regressor

full design automatically prevails.

The result of Corollary 2 is in line with the cointegration test findings alluded to in the introduction.

Using the FM-LIN residuals to calculate the CT++ test statistic, but the Shin (1994) critical values

is not mutually consistent. Instead of the Shin (1994) critical values the critical values corresponding

to the above limiting distribution need to be used (given in Wagner, 2013). Therefore, using “linear”

methods does have an asymptotic effect, not for parameter estimation but for cointegration testing.

3 Summary and Conclusions

We have established asymptotic equivalence of FM-LIN and FM-CPR for cointegrating polynomial

regressions (CPRs). It is a surprising feature that the asymptotic distribution of the FM-OLS

13



estimator of Phillips and Hansen (1990) when applied, seemingly unjustified, to CPRs coincides with

the asymptotic distribution established for the FM-CPR estimator; an estimator tailor-made for

CPRs. This result is in turn driven by some interesting results for long-run covariance estimation,

in the sense of Definition 1, collected in Proposition 1. In future research, the asymptotic results will

be complemented by finite sample simulation studies to investigate whether the tailor-made FM-

CPR estimator of Wagner and Hong (2016) has finite sample performance advantages compared to

FM-LIN.

The results of this paper, obviously, raise the question whether such an asymptotic equivalence

result between FM-LIN and extensions of the FM-OLS estimator can also be established in more

general nonlinear cointegration settings. This intriguing question will be explored in detail in future

research.
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Appendix: Auxiliary Lemmata and Proofs

Auxiliary Lemmata

Lemma 2 [Kasparis (2008), Lemma A1(i)]

Let the data be generated by (2) with Assumption 1 in place. Then it holds for 0 ≤ b < 1/3

sup
r∈[0,1]

T−1/2
T b∑
h=0

|vbrT c+h| = oa.s.(1). (39)

Lemma 3 Let the data be generated by (2) and let Assumptions 1 to 3 be fulfilled. Then it holds

for all integers 0 ≤ p and 1 ≤ q that:∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p [(xt+h
T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h

∣∣∣∣∣ = oP(1). (40)

Proof of Lemma 3:

Consider f(x) := xq, x ∈ R. The function f is differentiable on the whole domain. From the mean

value theorem it follows that f(y)− f(x) = f ′(ζ)(y − x), i. e., yq − xq = qζq−1(y − x), with x < y

and ζ ∈ (x, y). Therefore, it holds

(xt+h
T 1/2

)q
−
( xt

T 1/2

)q
= q

(
xht
T 1/2

)q−1
xt+h − xt
T 1/2

=
q

T 1/2

(
xht
T 1/2

)q−1 h∑
ν=1

vt+ν , (41)

with xht = xt + γt
∑h

ν=1 vt+ν , γt ∈ (0, 1). Using this representation it follows that:

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p [(xt+h
T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h (42)

=
q

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
ν=1

vtvt+νvt+h. (43)

The assertion is hence equivalent to showing that:

1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
ν=1

vtvt+νvt+h = oP(1). (44)

In the course of the proof it is helpful to resort to strong approximations, which we get from

the Skorohod representation theorem, see Pollard (1984, p. 71–72) or Csörgo and Horváth (1993,

p.4).9 Since we are concerned with weak convergence results in this paper, we can w.l.o.g. use a

9For a discussion of this issue in a nonlinear cointegration context see, e.g., Park and Phillips (1999, Lemma 2.3)

and Park and Phillips (2001).
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distributionally equivalent version of T−1/2xbrT c, X
∗
T say, that fulfills supr∈[0,1] |(X∗T (r))−Bv(r)| =

oa.s.(1), with Bv(r) the Brownian motion given in (7). Setting C̃ := supr∈[0,1] |Bv(r)|+1/2, it holds

for sufficiently large T that

sup
r∈[0,1]

T−1/2|xbrT c| ≤ C̃ a.s. (45)

Furthermore, it holds that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c| (46)

= sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|
h∑
ν=1

vbrT c+ν | ≤ sup
r∈[0,1]

T−1/2
MT∑
ν=1

|vbrT c+ν | (47)

and thus it follows from Lemma 2 that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c| = oa.s.(1). (48)

This implies

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h| (49)

≤ sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c|+ sup
r∈[0,1]

T−1/2|xbrT c| ≤ C a.s. (50)

with C := supr∈[0,1] |Bv(r)|+ 1 and also

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xhbrT c| ≤ C a.s. (51)

Using the triangular inequality and the bounds given in (45)–(51) the following inequalities hold:∣∣∣∣∣ 1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
ν=1

vtvt+νvt+h

∣∣∣∣∣ (52)

≤
(
M3
T

T

)1/2
1

MT

MT∑
h=0

∣∣∣∣k( h

MT

)∣∣∣∣ 1

T

T−h∑
t=1

∣∣∣∣∣( xt

T 1/2

)p( xht
T 1/2

)q−1∣∣∣∣∣ |vtvt+h|
∣∣∣∣∣ 1

M
1/2
T

h∑
ν=1

vt+ν

∣∣∣∣∣ (53)

≤
(
M3
T

T

)1/2

k(0)Cp+q−1
1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h|

∣∣∣∣∣ 1

M
1/2
T

h∑
ν=1

vt+ν

∣∣∣∣∣ a.s., (54)

with k(0) = supx≥0 |k(x)| as defined in Assumption 2. Furthermore, observe that:

sup
s∈[0,1]

sup
t=1,...,T

∣∣∣∣∣∣ 1

M
1/2
T

bsMT c∑
ν=1

vt+ν

∣∣∣∣∣∣ ≤ C a.s., (55)

18



due to strict stationarity of {vt}. Consequently,∣∣∣∣∣ 1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
ν=1

vtvt+νvt+h

∣∣∣∣∣ (56)

≤
(
M3
T

T

)1/2

k(0)Cp+q
1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h| a.s. (57)

Assumption 1 implies that:

E

(
1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h|

)
≤ 1

MT

MT∑
h=0

1

T

T−h∑
t=1

(
E[v2t ]E[v2t+h]

)1/2 ≤ Σvv <∞. (58)

From the Markov inequality, see e. g., Billingsley (2012, p.294), it follows that:

1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h| = OP(1). (59)

Finally, the assertion is an immediate consequence of M3
T /T → 0 by Assumption 3, and the

remaining terms in (57) being OP(1).

Lemma 4 Let the data be generated by (2) with Assumptions 1 to 3 in place. Then it holds for all

integers 0 ≤ p that: ∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p
(vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1). (60)

Proof of Lemma 4:

In the proof of Lemma A1 in Kasparis (2008) it is shown that∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p h∑
ν=1

(vtvt+ν − E[vtvt+ν ])

∣∣∣∣∣ = oP(1) (61)

by showing

sup
0≤h≤MT

∣∣∣∣∣ 1

T

T−h∑
t=1

( xt

T 1/2

)p h∑
ν=1

(vtvt+ν − E[vtvt+ν ])

∣∣∣∣∣ = oP(1). (62)

The left-hand side of (60) can be written as∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1). (63)
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Using a similar argument as used by Kasparis (2008, p. 1394–1396) to show (62), corresponding to

his Equation A.7, it can be shown that∣∣∣∣∣ 1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1), (64)

which shows the claim of this lemma, since∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ (65)

≤ k(0)

∣∣∣∣∣ 1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ . (66)

It is the fact that our proof of this lemma uses some of the arguments of Kasparis (2008) that the

same moment and bandwidth assumptions as in this paper are required. These are consequently

contained in our Assumptions 1 to 3.

Proofs of the Results from the Main Text

Proof of Proposition 1:

First, the (1, 1)-element of ∆̂ηη is given by

(
∆̂ηη

)
(1,1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

utut+h, (67)

which is already well known, cf. Remark 3. For i ∈ {1, . . . , p} it holds

(
∆̂ηη

)
(i+1,1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

∆xit

T
i−1
2

ut+h (68)

(
∆̂ηη

)
(i+1,2)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

∆xit

T
i−1
2

vt+h, (69)

i. e., for the first and second columns (and rows) exactly the same arguments apply due to the

similar assumptions on {ut} and {vt}. Therefore, it is sufficient in the subsequent discussion to

consider the (i+ 1, j + 1)-element for i, j ∈ {1, . . . , p} of the estimator ∆̂ηη, which is given by

(
∆̂ηη

)
(i+1,j+1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

∆xit

T
i−1
2

∆xjt+h

T
j−1
2

. (70)
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Note that

∆xit
T (i−1)/2 =

1

T (i−1)/2

i∑
k=1

(
i

k

)
xi−kt (−vt)k (71)

= i
( xt

T 1/2

)i−1
vt −

i∑
k=2

(
i

k

)
(−1)k

( xt

T 1/2

)i−k ( vt

T 1/2

)k−2 v2t
T 1/2

. (72)

From Lemma 2 we know that T−1/2vt = oa.s.(1) for all t = 1, . . . , T . Additionally, it holds that

T−1/2|xt| ≤ C a.s. for t = 1, . . . , T . From E[T−1/2v2brT c] = T−1/2Σvv → 0 for all r ∈ [0, 1], we

conclude that

∆xit
T (i−1)/2 = i

( xt

T 1/2

)i−1
vt +OP(T−1/2). (73)

The kernel is bounded and MT = o(T 1/3) by assumption, hence it follows

(
∆̂ηη

)
(i+1,j+1)

= ij

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)i−1 (xt+h
T 1/2

)j−1
vtvt+h + oP(1). (74)

In the linear case, i. e. i = j = 1, the above term converges in probability to ∆vv, cf. Remark 3

again. Next, consider i > 1 and j = 1, i. e.,

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
vtvt+h. (75)

From Lemma 4 it follows that

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
vtvt+h (76)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
E[vtvt+h] + oP(1). (77)

Now, we show that∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T−h∑
t=1

( xt

T 1/2

)i−1
−

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i−1∣∣∣∣∣ = oa.s.(1). (78)

The left-hand side of (78) corresponds to

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
(79)
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and by Assumption 1 ∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1∣∣∣∣∣ (80)

≤ Ci−1
1

T

MT∑
h=0

∣∣∣∣k( h

MT

)∣∣∣∣ |E[v0vh]|h a.s. (81)

≤ k(0)|Σεε|Ci−1
1

T

MT∑
h=0

h

∞∑
j=0

|cv,jcv,j+h| (82)

≤ k(0)|Σεε|Ci−1
1

T

∞∑
j=0

|cv,j |
∞∑
h=0

h|cv,h|
P→ 0, (83)

which implies that

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
= oa.s.(1). (84)

Therefore, we obtain

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

∆xit
T (i−1)/2 vt+h (85)

= i

(
MT∑
h=0

k

(
h

MT

)
E[v0vh]

)(
1

T

T∑
t=1

( xt

T 1/2

)i−1)
+ oP(1). (86)

Thus, two separate terms need to be considered. For the first it holds that

MT∑
h=0

k

(
h

MT

)
E[v0vh]→ ∆vv. (87)

Hence, by Slutsky’s Theorem, cf. e. g., Davidson (1994, Theorem 18.10, p. 286),

i

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i−1
⇒ i∆vv

∫ 1

0
Bi−1
v (r)dr. (88)

We turn to the case i > 1 and j > 1, i. e.

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1) (xt+h
T 1/2

)(j−1)
vtvt+h. (89)

Using Lemma 3 we obtain

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1) (xt+h
T 1/2

)(j−1)
vtvt+h (90)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i+j−2)
vtvt+h + oP(1). (91)
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Now we are in the same setting as for j = 1, such that we can immediately conclude

MT∑
h=0

k

(
h

MT

)
∆xit

T
i−1
2

∆xjt+h

T
j−1
2

(92)

= ij

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i+j−2
+ oP(1) (93)

⇒ ij∆vv

∫ 1

0
Bi+j−2
v (r)dr. (94)

Joint convergence of the elements in ∆̂ηη, follows by the continuous mapping theorem. �

Proof of Corollary 1:

The OLS residuals are given by ût = ut −Z ′t(θ̂− θ). Similar to the proof of Proposition 1 consider

for j ∈ {1, . . . , p} the term

(
∆̂η̂η̂

)
(1,j+1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ût
∆xjt+h

T
j−1
2

(95)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ut
∆xjt+h

T
j−1
2

−
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′t(θ̂ − θ)
∆xjt+h

T
j−1
2

. (96)

The first term in (96) converges in distribution to (∆ηη)(1,j+1) by Proposition 1. Therefore it

remains to show that the second term is oP(1). It follows that

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′t(θ̂ − θ)
∆xjt+h

T
j−1
2

(97)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′tGG
−1(θ̂ − θ) · j

(xt+h
T 1/2

)j−1
vt+h + oP(1) (98)

by similar arguments as in the proof of Proposition 1 with G defined in (12). Expression (98) can

be further rewritten as

MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)(
G−1(θ̂ − θ)

)
+ oP(1). (99)

Finally, show that∥∥∥∥∥
MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥ = oP(1). (100)
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Using the notation from Lemma 3 it holds that∥∥∥∥∥
MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥ (101)

≤ jk(0)

MT∑
h=0

1

T 3/2

T−h∑
t=1

∥∥∥∥(T 1/2Z ′tG
)((xt+h

T 1/2

)j−1
vt+h

)∥∥∥∥ (102)

≤ jk(0)Cj−1
MT∑
h=0

1

T 3/2

T−h∑
t=1

∥∥∥T 1/2Z ′tG
∥∥∥ |vt+h|. (103)

In addition, observe that∥∥∥(T 1/2Z ′tG
)∥∥∥2 =

q∑
k=0

(
t

T

)k
+

p∑
l=1

( xt

T 1/2

)l
≤ (q + 1) +

p∑
l=1

C l =: K a.s. (104)

such that ∥∥∥∥∥
MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥ (105)

≤ jk(0)Cj−1K1/2 1

T 1/2

MT∑
h=0

1

T

T−h∑
t=1

|vt+h| a.s. (106)

follows. Similar to the discussion of (59) one can show

1

T 1/2

MT∑
h=0

1

T

T−h∑
t=1

|vt+h| = oP(1). (107)

Hence, the expressions (106) and, consequently, (97) are oP(1) such that

(
∆̂η̂η̂

)
(1,j+1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ut
∆xjt+h

T
j−1
2

+ oP(1) (108)

and the claim follows. �
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Proof of Lemma 1:

We start with considering the first column of GX
T∑
t=1

Xtw
′
tGw. According to Wagner and Hong

(2016, Proposition 1) the limit of this term for i = 1, . . . , p and j = 1 is given by:(
GX

T∑
t=1

Xtw
′
tGw

)
(i,1)

=
1

T 1/2

T∑
t=1

( xt

T 1/2

)i
vt ⇒

∫ 1

0
Bi
v(r)dBv(r) + i∆vv

∫ 1

0
Bi−1
v (r)dr. (109)

Consider now again i = 1, . . . , p, but j > 1:(
GX

T∑
t=1

Xtw
′
tGw

)
(i,j)

=
1

T 1/2

T∑
t=1

( xt

T 1/2

)i(
−

j∑
k=1

(
j

k

)
xj−kt (−vt)k

T (j−1)/2

)
(110)

=
1

T 1/2

T∑
t=1

j
( xt

T 1/2

)i+j−1
vt (111)

− 1

T 1/2

T∑
t=1

(
j

2

)( xt

T 1/2

)i+j−2 v2t
T 1/2

(112)

− 1

T 1/2

T∑
t=1

j∑
k=3

(
j

k

)( xt

T 1/2

)i+j−k (−vt)k

T (k−1)/2 . (113)

The first term on the right-hand side converges similarly to (109) to

j

∫ 1

0
Bi+j−1
v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2
v (r)dr.

For the second term (112) we write v2t = Σvv + (v2t − Σvv) and consider both terms separately.

First, (
j

2

)
Σvv

T

T∑
t=1

( xt

T 1/2

)i+j−2
⇒
(
j

2

)
Σvv

∫ 1

0
Bi+j−2
v (r)dr. (114)

Second, using Lemma 4 it holds for the remaining term that(
j

2

)
1

T

T∑
t=1

( xt

T 1/2

)i+j−2 (
v2t − Σvv

)
= oP(1). (115)

All additional terms in (113) converge to zero being OP(T−(k−2)/2). The result for GD
T∑
t=1

Dtw
′
tGw

follows analogously. �

Proof of Proposition 2:

Beforehand, note that we can use the decomposition Ωw̃w̃ = ΩvvΠv with

Πv :=

[
1 B′

B B̃

]
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and B and B̃ defined in (24) and (25), respectively. From Proposition 1 we know, that Ω̂w̃w̃ ⇒ ΩvvΠv

and Ω̂w̃u ⇒ ΩvuΠv[1, 0, . . . , 0]′. Therefore, it follows Ω̂−1w̃w̃Ω̂w̃u
P→ Ω−1vv Ωvu[1, 0, . . . , 0]′. In (22) we

have noted that

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1 (
GZ ′u−GZ ′W̃ Ω̂−1w̃w̃Ω̂w̃u − ∆̂+

w̃u

)
. (116)

Using the same arguments as in Wagner and Hong (2016) it holds that:

GZ ′u⇒
∫ 1

0
J(r)dBu(r) + ∆vu

(
0(q+1)×1

M

)
, (117)

with M = [1,B′]′. From Proposition 1 it follows immediately that A∗ and ∆̂+
w̃u have the same

limiting distribution, i. e.,

A∗ ⇒ ∆+
vu

(
0(q+1)×1

M

)
and ∆̂+

w̃u ⇒ ∆+
vu

(
0(q+1)×1

M

)
.

Lemma 1 provides the limiting distribution of GZ ′W̃ , of which we only need the first column due

to the structure of the limit of Ω̂−1w̃w̃Ω̂w̃u. The first term of GZ ′W̃ is given by GZ ′v and it holds

that:

GZ ′v ⇒
∫ 1

0
J(r)dBv(r) + ∆vv

(
0(q+1)×1

M

)
. (118)

Therefore, arrive at:

GZ ′u−GZ ′W̃ Ω̂−1w̃w̃Ω̂w̃u − ∆̂+
w̃u ⇒

∫ 1

0
J(r)dBu(r)−

∫ 1

0
J(r)dBv(r)Ω

−1
vv Ωvu. (119)

Noting that Bu·v(r) := Bu(r)−Bv(r)Ω−1vv Ωvu completes the proof. �

Proof of Corollary 2:

The result for CT+ is given in Wagner and Hong (2016, Proposition 5) and for the CT++ test statis-

tic the corresponding proof for the numerator of the test statistic, i.e., for 1
T

∑T
t=1

(
T−1/2

∑t
j=1 û

++
j

)
follows analogously from considering û++

t = u++
t −Z ′t(θ̂++− θ) with u++

t = ut−w′tΩ̂−1wwΩ̂wû. From

the proof of Proposition 1 we know that 1√
T

∑[rT ]
t=1 u

++
t ⇒ Bu·v(r) for 0 ≤ r ≤ 1. The result for the

second part immediately follows as in Wagner and Hong (2016) from the asymptotic equivalence

of the FM-CPR and FM-LIN estimators established in Proposition 2.

It thus remains to consider the asymptotic behavior ω̂û·w, which from the asymptotic behavior of
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the “long-run” covariance estimators established in Proposition 1:

ω̂û·v = Ω̂uu − Ω̂uwΩ̂−1wwΩ̂wu (120)

⇒ Ωuu − ΩuvΩ
−1
vv Ωvu[1, 0, . . . , 0]ΠvΠ

−1
v Πv[1, 0, . . . , 0]′

= Ωuu − ΩuvΩ
−1
vv Ωvu = ωu·v,

with convergence in probability, i.e. consistency, following from the fact that the limit is non-

stochastic.
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