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Abstract: The unicity of the time-varying quantile-based spectrum
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tation result involving Wigner-Ville spectra.
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1 Introduction

Emmanuel Parzen is perhaps best known for his pioneering contributions to
spectral methods in time series analysis and kernel density estimation—a method

∗Research supported by the Sonderforschungsbereich “Statistical modelling of nonlinear
dynamic processes” (SFB 823, Teilprojekt A1, C1) of the Deutsche Forschungsgemeinschaft.

†Research supported by the Sonderforschungsbereich “Statistical modelling of nonlinear
dynamic processes” (SFB 823, Teilprojekt A1, C1) of the Deutsche Forschungsgemeinschaft.

‡Research supported by an Interuniversity Attraction Pole (2012-2017) of the Belgian Sci-
ence Policy Office.

§Supported by the Engineering and Physical Sciences Research Council grant no.
EP/L014246/1.

1



which in the signal processing community is often referred to as the Parzen-
Rosenblatt window method. Another lifelong interest of Emmanuel Parzen was
quantile-based inference (see, for instance, Parzen (2004)). In 2009, when offi-
cially retiring from Texas A&M, he delivered a “Last Lecture”. A Last Lecture
is supposed to convey the essential message of a scholarly career, and, quite
significantly, Emmanuel Parzen chose to epitomize his sixty-year long activity
as a researcher in statistics with the eloquent title “Quantiles are Optimal”.

When asked to participate in this memorial volume, we thought that there
was no better way to pay tribute to Emmanuel Parzen’s memory and outstand-
ing achievement than contributing something on quantile-based spectral analy-
sis, at the intersection of his favorite subjects, quantiles and spectral analysis.

Quantile-based (equivalently, copula-based) spectral methods recently have
attracted renewed attention in the time-series community. Pioneering work
in this direction has been done by Hong (1999) and Li (2008), who coined
the name Laplace spectrum. Similar ideas were further developed by Hage-
mann (2013), and extended into cross-spectrum and spectral kernel concepts by
Dette et al. (2015) and Kley et al. (2016), where the asymptotic normality of
smoothed periodogram-based estimators is established. Along with the station-
ary marginal distribution, those quantile-based spectra entirely characterize the
bivariate distributions of all couples (Xt, Xt−h), h = 1, 2, . . . in a stationary pro-
cess {Xt, t ∈ Z}, hence provide much more information than classical second-
order spectra; computing them has been made possible by Kley (2016) and his R
package ‘quantspec’. Additional contributions can be found in Li (2012, 2014),
Lee and Rao (2012) and Davis et al. (2013).

Whether quantile-based or classical, spectral methods typically require long
observation periods, and long observation periods, in general, imply that sta-
tionarity assumptions are violated. In Birr et al. (2016), we therefore introduce
a locally stationary version of the concepts and methods initiated in Dette et
al. (2015) and Kley et al. (2016). The type of local stationarity required in this
context differs substantially from the usual notions proposed, for instance, by
Dahlhaus (1997), Zhou and Wu (2009a and b), Roueff and von Sachs (2011) or
Vogt (2012). Just as the latter, however, it involves the choice of families of
approximating stationary processes—a choice which, at first sight, could have
an impact on the resulting time-varying spectrum. In this paper, we show that
this is not the case, and establish the unicity of the time-varying quantile-based
spectra defined there, irrespective of the chosen family of approximating pro-
cesses.

The proof of that unicity property relies on an asymptotic representation
(Proposition 1) of the time-varying quantile-based spectra in terms of appro-
priate Wigner-Ville spectra that no longer involve any specific approximating
stationary processes—an idea that, mutatis mutandis, goes back to Theorem 2.2
in Dahlhaus (1996).

The outline of the paper is as follows. In Section 2, we briefly introduce the
concept of the Wigner-Ville spectrum. Section 3 similarly presents the locally
stationary quantile-based spectra proposed in Birr et al. (2016). In Section 4,
we establish the asymptotic representation result connecting those spectra with
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the Wigner-Ville ones. The desired unicity follows as a corollary.

2 Wigner-Ville spectra.

The so-called Wigner-Ville spectrum for harmonizable processes (Martin and
Flandrin 1985) originates in the signal processing literature, and constitutes
one of the few links between the engineering and the statistical approaches to
spectral analysis.

Spectral analysis in engineering and physics usually deals with (determinis-
tic) signals s(t). The spectrum of a signal, in that context, is seldom constant
over time (think of music or speech), so that the concept of a time-varying
spectrum or a time-frequency representation is quite essential. The problem is
that no obvious definition for such a concept exists—the situation is somewhat
similar to that in probability and mathematical statistics, where no obvious
concept exists for the spectrum of a nonstationary process. As a result, differ-
ent approaches have been used. The Wigner-Ville spectrum is based on one of
the classical time-frequency representations of a complex continuous-time sig-
nal s(t), called the Wigner distribution, of the form

W(t, ω) :=
1

2π

∫

s⋆(t−
1

2
τ)s(t +

1

2
τ)e−iτωdτ, (1)

where the star indicates complex conjugation. Eugene Wigner’s original moti-
vation (Wigner 1932) was to be able to calculate the quantum correction to the
second virial coefficient of a gas, which indicates how it deviates from the ideal
gas law. The Wigner distribution was later used, in connection with character-
istic function methods, in the context of signal analysis by Ville (1948). One
unpleasant feature of W(t, ω), however, is that it can take negative values.

Now, given a nonstationary continuous-time processs {X(t)}, we can define
the covariance kernel as

R(s, t) := Cov(X(s), X(t)).

For a nonstationary process, this kernel is no longer a function of the lag |t−s|; in
order to define a local autocovariance function, one can use R(t− τ/2, t+ τ/2),
which measures autocovariance at lag τ between two process values centered
about a timepoint t. A time-varying spectrum then can be obtained as the
Fourier transform of R with respect to τ , namely,

Ψ(t, ω) :=
1

2π

∫

R(t− τ/2, t+ τ/2)e−iτωdτ.

Spectra of this form have been considered, for example, by Mark (1970). But
they share the same (main) disadvantage as the Wigner-Ville distribution: they
are not necessarily positive. As a consequence, they could not compete with the
theory of evolutionary spectra proposed by Priestley (1965) and the approach
was not further pursued.
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Results by Claasen and Mecklenbräuger (1980) and Flandrin and Escu-
did (1980) brought the attention of researchers back to the Wigner-Ville con-
cepts. They independently proved that the Wigner-Ville distribution indeed
enjoys almost all properties that are desirable for a time frequency representa-
tion. For a quick overview of these properties, see Hlawatsch and Boudreaux-
Bartels (1992) and, for a systematic approach, Loynes (1968). Moreover, some
of the more important properties are not compatible with the requirement of a
non-negative function, turning what was perceived as the main drawback of the
Wigner-Ville spectrum into a necessary evil. Motivated by these results, Mar-
tin (1982) defines a time-varying spectrum, called the Wigner-Ville spectrum,
based on the Wigner-Ville distribution (1).

A process {X(t)} is called harmonizable if its autocovariance function can
be represented as

R(s, t) =
1

4π2

∫ ∫

f(λ, µ)ei(λs−µt)dλdµ

for some function f . Harmonizable processes are a generalization of weakly
stationary processes, and were used by Priestley as a starting point for his theory
of evolutionary spectra. Martin (1982) defined the Wigner-Ville spectrum of a
harmonizable process {X(t)} as

W (t, ω) :=
1

2π

∫

f(ω − τ/2, ω + τ/2)eiτtdτ,

justifying his notation by showing that, under appropriate assumptions,

W (t, ω) = E
[

∫

e−iωτX(t+ τ/2)X⋆(t− τ/2)dτ
]

.

Martin and Flandrin (1985) extended this definition to discrete-time processes
and proposed a class of estimators for it, based on a weighted covariance esti-
mator

R̂(t+ k, t− k) :=
∑

s∈Z

Φ(m, 2k)X(s+m+ k)X⋆(s+m− k),

where Φ is some adequate lag-window function. They derived the first and sec-
ond moments for those estimators under the assumption of Gaussian processes,
but, just as with the theory of evolutionary spectra, no meaningful asymptotic
results could be derived.

The first theory allowing for asymptotic results in this nonstationary context
was initiated some ten years later by Dahlhaus (1996) with the introduction of
locally stationary processes. Dahlhaus considers triangular arrays of stationary
processes {Xt,T} which are “close” to a family {Xθ(t)}θ∈(0,1) whenever t/T is
close to θ, and defines the time-varying spectrum f(u, ω) of {Xt,T} at rescaled
time point u = t/T as the classical spectrum

f(u, ω) :=
1

2π

∑

k∈Z

Cov(Xu(k), Xu(0))e
−iωk (2)
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of the stationary process {Xu(t)}. Now, as the family of approximating pro-
cessesXu(t) is not unique, it is not obvious from the definition that the resulting
spectrum is unique. But, considering the Wigner-Ville spectrum

fT (u, ω) :=
∑

s∈Z

Cov(X[uT−s/2],T , X[uT+s/2],T )e
−iωs,

Dahlhaus (1996) proves that, under appropriate assumptions,

∫ π

−π

|fT (u, ω)− f(u, ω)|2dω = o(1),

as T → ∞, which, provided that ω 7→ fT (u, ω) and ω 7→ f(u, ω) are continuous,
implies unicity of ω 7→ f(u, ω).

3 Copula Spectral Densities for locally station-

ary processes

Consider a triangular array (Xt,T , 1 ≤ t ≤ T ), T ∈ N, of finite-length real-
izations of nonstationary processes {Xt,T , t ∈ Z}, T ∈ N. The quantile-based
or copula spectral density kernels of a stationary process are defined (Dette
et al. (2015); Kley et al. (2016)) in terms of its bivariate marginal distribu-
tion functions. Therefore, it seems natural to use bivariate marginal distri-
bution functions when evaluating, in the definition of local stationarity, the
distance between the nonstationary process {Xt,T} and its stationary approxi-
mations {Xu(t)}. This leads to the following definition.

Definition 1. (Birr, Volgushev, Kley, Dette, and Hallin 2016). A triangular
array {(Xt,T )t∈Z}T∈N of processes is called locally strictly stationary (of or-
der two) if there exists a constant L > 0 and, for every u ∈ (0, 1), a strictly
stationary process {Xu(t), t ∈ Z} such that, for every 1 ≤ r, s ≤ T,

∥

∥Fr,s;T (·, ·)−Gu
r−s(·, ·)

∥

∥

∞
≤ L

(

max(|r/T − u|, |s/T − u|) + 1/T
)

, (3)

where ‖·‖∞ stands for the supremum norm, while Fr,s;T (·, ·) and Gu
k(·, ·) denote

the joint distribution functions of (Xr,T , Xs,T ) and (Xu(0), Xu(−k)), respec-
tively.

With this concept of nonstationarity, we can transfer the stationary quantile-
based concepts of Dette et al. (2015) from {Xu(t)} to the nonstationary {Xt,T},
defining the time-varying copula spectral density. Define the lag-h-copula cross-
covariance kernel of {Xu(t)} as

γu
h(τ1, τ2) := Cov

(

I{Xu(t)≤qu(τ1)}, I{Xu(t−h)≤qu(τ2)}

)

, τ1, τ2 ∈ (0, 1), (4)

where qu(τ) denotes Xu(t)’s marginal quantile of order τ . If we assume that
for all τ1, τ2, u the lag-h-covariance kernels γu

h(τ1, τ2) are summable, we obtain
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the time-varying copula spectral density

fu(ω, τ1, τ2) :=
1

2π

∞
∑

h=−∞

γu
h(τ1, τ2)e

−ihω, τ1, τ2 ∈ (0, 1), ω ∈ (−π, π]. (5)

Comparing those definitions with those of the local spectral densities in Dahl-
haus (1996), we see that the approximating autocovariances appearing there are
replaced with autocovariances involving the copula transform (equivalently, the
quantiles) of the approximating processes. This indicates that the local spectral
density kernels (5) can be viewed as fully non-parametric generalizations of
their classical L2-based counterparts, capturing pairwise serial dependencies of
arbitrary forms. For detailed comparisons, we refer to Dette et al. (2015) and
Kley et al. (2016).

4 Unicity of the time-varying quantile-based spec-

tral density

The Wigner-Ville spectrum associated with the series of indicators involved in
the definition (3) of the copula cross-covariance kernel of Xu(t) takes the form

Wt0,T (ω, τ1, τ2) =
1

2π

∞
∑

s=−∞

γt0;T (s, τ1, τ2)e
−iωs, (6)

where

γt0;T (s, τ1, τ2) := Cov
(

I{X⌊t0+s/2⌋,T≤F−1

⌊t0+s/2⌋;T
(τ1)}

, I{X⌊t0−s/2⌋,T≤F−1

⌊t0−s/2⌋;T
(τ2)}

)

and F−1
t;T denotes the generalized inverse of Ft;T , the marginal distribution func-

tion of Xt,T . Indicators being bounded, Wt0,T (ω, τ1, τ2) exists and is uniquely
defined for all ω, τ1 and τ2 as soon as absolute summability holds for the right-
hand side of (6). The following proposition establishes a strong relation between
the Wigner-Ville spectrum (6) and the time-varying copula spectral density ker-
nels fu(ω, τ1, τ2) defined in (5). To prove that result, we will use the following
two regularity assumptions on Xt,T .

(A) There exists K < ∞ such that for all t0 ∈ Z, T ∈ N and (τ1, τ2) ∈ (0, 1)2,

∑

s∈Z

|γt0;T (s, τ1, τ2)| ≤ K.

(C) For each t ∈ Z and T ∈ N, the function x 7→ Ft;T (x) is continuous.

Assumption (A) is a uniform short-range dependence assumption. It holds
under typical assumptions on short-range dependency, e.g. if the triangular ar-
ray {Xt,T} is α-mixing with mixing coefficients α(k) ≤ Ck−δ for some δ > 1
and C independent of T . Assumption (C) ensures that the marginal distribu-
tions Ft;T are continuous in a suitable uniform sense.
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Proposition 1. Let {Xt,T} be locally strictly stationary, with approximating
processes {Xt(u)}. If moreover {Xt,T} satisfies (A) and (C), then

(a) the γu
h(τ1, τ2)’s are absolutely summable for any u and (τ1, τ2) ∈ (0, 1)2,

and

(b) for t0 = ⌊uT ⌋ and any (τ1, τ2) ∈ (0, 1)2,

sup
ω∈(−π,π]

∣

∣

∣
fu(ω, τ1, τ2)−Wt0,T (ω, τ1, τ2)

∣

∣

∣
= o(1)

as T → ∞.

Proof. Throughout this proof, write t0 = ⌊uT ⌋. Let Gu and Ft,T denote the
marginal distribution functions of Xu(t) and Xt,T respectively. We begin by
proving that under condition (C) the function x 7→ Gu(x) is continuous for
every u ∈ (0, 1). This follows since, for any x ∈ R and T ∈ N,

lim
y→x

|Gu(x)−Gu(y)| ≤ 4L/T + lim
y→x

|Ft0;T (x)− Ft0;T (y)| = 4L/T.

This can be made arbitrarily small by choosing T sufficiently large, and conti-
nuity of Gu follows.

Next, observe that expectation of indicators can be written in terms of dis-
tribution functions, so that

E(I{Xu(t)≤x}) = Gu(x) and E(I{Xu(t)≤x}I{Xu(t−h)≤y}) = Gu
h(x, y),

and therefore
γu
h(τ1, τ2) = Gu

h(q
u(τ1), q

u(τ2))− τ1τ2.

Using the same representation for γt0;T (h, τ1, τ2), we obtain

|γu
h(τ1, τ2)− γt0;T (h, τ1, τ2)|

=
∣

∣

∣
F⌊t0−h/2⌋,⌊t0+h/2⌋;T (F

−1
⌊t0−h/2⌋;T (τ1), F

−1
⌊t0+h/2⌋;T (τ2))−Gu

h(q
u(τ1), q

u(τ2))
∣

∣

∣
.

Adding and subtracting Gu
h(F

−1
⌊t0−h/2⌋;T (τ1), F

−1
⌊t0+h/2⌋;T (τ2)), and utilizing the

triangle inequality yields

||F⌊t0−h/2⌋,⌊t0+h/2⌋;T (·, ·)−Gu
h(·, ·)||∞

+
∣

∣

∣
Gu

h(F
−1
⌊t0−h/2⌋;T (τ1), F

−1
⌊t0+h/2⌋;T (τ2))−Gu

h(q
u(τ1), q

u(τ2))
∣

∣

∣

where the first term, in view of local strict stationarity, can be bounded by

||F⌊t0−h/2⌋,⌊t0+h/2⌋;T (·, ·)−Gu
h(·, ·)||∞ ≤ L

(

max
(∣

∣

t0 + h

T
− u

∣

∣,
∣

∣

t0
T

− u
∣

∣

)

+ 1/T
)

≤
L(|h|+ 2)

T
.
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For the second term, invoking Sklar’s Theorem and the continuity of Gu, we
can write

Gu
h(x, y) = C(Gu(x), (Gu(y))

where C denotes the copula of Gu
h. As copulas are Lipschitz-continuous with

constant one, we obtain
∣

∣

∣
Gu

h(F
−1
⌊t0−h/2⌋;T (τ1), F

−1
⌊t0+h/2⌋;T (τ2)) −Gu

h(q
u(τ1), q

u(τ2))
∣

∣

∣
(7)

≤
∣

∣Gu(F−1
⌊t0−h/2⌋;T (τ1))−Gu(qu(τ1))

∣

∣+
∣

∣Gu(F−1
⌊t0+h/2⌋;T (τ2))−Gu(qu(τ2))

∣

∣.

The continuity of Gu and F⌊t0−h/2⌋;T implies, for the first term in the right-hand
side of (7),

∣

∣Gu(F−1
⌊t0−h/2⌋;T (τ1))−Gu(qu(τ1))

∣

∣ =
∣

∣Gu(F−1
⌊t0−h/2⌋;T (τ1))− τ1

∣

∣

=
∣

∣Gu(F−1
⌊t0−h/2⌋;T (τ1))− F⌊t0−h/2⌋;T (F

−1
⌊t0−h/2⌋;T (τ1))

∣

∣

≤ ||F⌊t0−h/2⌋;T (·)−Gu(·)||∞ ≤ L(|h|+ 2)/T,

where the last inequality holds due to local strict stationarity. Using the same
arguments for the second term, we get

|γu
h(τ1, τ2)− γt0;T (h, τ1, τ2)| ≤

3L(|h|+ 2)

T
. (8)

We first prove part (a) of the proposition. This will be done by contradiction.
Assume that, for some u, τ1 and τ2, the γ

u
h(τ1, τ2)’s are not absolutely summable.

In this case, there exists a H < ∞ such that
∑

|h|≤H

|γu
h(τ1, τ2)| > K + 1 (9)

where K is the constant from assumption (A). On the other hand, given (8),

∑

|h|≤H

|γu
h(τ1, τ2)| ≤

3L

T

∑

|h|≤H

(|h|+2)+
∑

s∈Z

|γt0;T (s, τ1, τ2)| ≤
3L

T
(2+5H+H2)+K.

By choosing T sufficiently large, this leads to a contradiction with (9). Absolute
summability of γu

h(τ1, τ2) follows, hence part (a) of Proposition 1.
We now proceed to prove part (b). From the absolute summability of

the γu
h(τ1, τ2)’s, we obtain

fu(ω, τ1, τ2) =
1

2π

T 1/3
∑

h=−T 1/3

γu
h(τ1, τ2)e

−iωh + o(1)

uniformly in ω, while Assumption (A) yields, still uniformly in ω,

Wt0,T (ω, τ1, τ2) =
1

2π

T 1/3
∑

h=−T 1/3

γt0;T (h, τ1, τ2)e
−iωh + o(1).
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As a consequence of (8), we have

T 1/3
∑

h=−T 1/3

|γu
h(τ1, τ2)− γt0;T (h, τ1, τ2)| = O

(

T 2/3

T

)

= o(1),

which establishes the desired result.

The unicity of fu(ω, τ1, τ2) then follows as an immediate corollary.

Corollary 1. For any locally strictly stationary {Xt,T} fulfilling (A) and (C),
the time-varying copula spectral density fu(ω, τ1, τ2) is uniquely defined, i.e. does
not depend of the choice of the approximating processes {Xt(u)}.
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